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Signal processing and machine learning
theory

Signal processing and machine learning are vital areas of knowledge that find applications in virtually
all aspects of modern life. Indeed, human beings have been employing signal processing tools for
centuries without being aware of them. In recent years the affordable availability of computational
and storage resources, in addition to theoretical advances, allowed a booming activity in both related
areas. In present days the younger generation might not be able to understand how one can live without
carrying a mobile phone, travel long distances without an almost self-piloted airplane, explore other
planets without human presence, and utilize a medical facility without a wide range of diagnostic and
intervention equipment.

Signal processing consists of mapping or transforming information-bearing signals into another
form of signals at the output, aiming at some application benefits. This mapping defines a continuous
or analog system if it involves functions representing the input and output signals. On the other hand,
the system is discrete or digital if sequences of numbers represent its input and output signals.

Signal processing theory includes a wide range of tools which have found applications in uncount-
able areas, such as bioengineering, communications, control, surveillance, environment monitoring,
oceanography, and astronomy, to mention a few. Many of these applications benefited from machine
learning theory by solving some unprecedented problems and enhancing existing solutions. Machine
learning basically consists of fitting models to the provided data. There are many algorithms to perform
the desired fitting, but it is worth mentioning that data quality is essential for a successful outcome.
In addition, the book includes many topics on machine learning, highlighting some connections with
many classical methods related to learning from data. Indeed, machine learning is a framework for
many disciplines dealing with tools to learn from data and perform modeling tasks such as prediction
and classification.

This book includes an overview of classical signal processing and machine learning tools, whose
basic concepts are encountered in numerous textbooks available in the literature, as well as topics
usually not covered in the books available in the market. As a result, we believe that students and
professionals can benefit from reading many parts of this book, if not all, in order to deepen and widen
their current knowledge as well as to start exploiting new ideas. Another objective of this book is to
offer a wide range of self-contained topics in signal processing and machine learning which can be
used as complementary to existing standard courses and, above all, serve as the basis for advanced
courses. The breadth of subjects discussed provides ample coverage, so that many configurations are
possible for an entire course on special topics in signal processing and machine learning according to
the selection of chapters.

The broad scope of topics is inspired by the fact that several solutions for practical problems start
by acquiring some continuous-time signals, followed by digitizing and storing them to perform further
processing. The set of tasks may entail signal filtering, modeling, prediction, and classification, among
others.

xlvii
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The theories of signal processing and machine learning have been developing for over five decades
at a fast pace. The following chapters will cover many of the classical tools widely employed in ap-
plications that we perceive in our daily life through the use of mobile phones, media players, medical
equipment, transportation, and so on. These chapters will also cover recent advances and describe many
new tools that can potentially be utilized in new applications and further investigated. The authors of
the chapters are frequent and vital contributors to the fields of signal processing and machine learn-
ing theory. The goal of each chapter is to provide an overview and a brief tutorial of important topics
pertaining to the signal processing and machine learning theory, including key references for further
studies. The topics included in this book are the following:

• Chapter 1 provides a potpourri of the matters covered in the book.
• Chapter 2 covers the basic concepts of continuous-time signals and systems, highlighting the main

tools that can be employed to analyze and design such systems. Several examples are included to
illustrate the use of the tools in a whole continuous-time environment. The content of this chapter is
also essential to connect the continuous-time and the discrete-time systems.

• Chapter 3 addresses discrete-time signals and systems, emphasizing the essential analysis tools that
will be crucial to understand some more advanced techniques presented in the forthcoming chapters.
This chapter shows how the powerful state-space representation of discrete-time systems can be
employed as analysis and design tool.

• Chapter 4 on random signals and stochastic processes comprehensively describes the basic concepts
required to deal with random signals. It starts with the concept of probability, useful to model chance
experiments, whose outcomes give rise to the random variable. Next, the time-domain signals repre-
senting nonstatic outcomes are known as stochastic processes, where their full definition is provided.
Finally, the chapter describes the tools to model the interactions between random signals and linear
time-invariant systems.

• Chapter 5 covers sampling and quantization, where the basic concepts of properly sampling a
continuous-time signal and its representation as a sequence of discrete-valued samples are ad-
dressed in detail. The chapter discusses a wide range of topics rarely found in a single textbook,
such as uniform sampling and reconstruction of deterministic signals, the extension to sampling
and reconstruction of stochastic processes, and time-interleaved analog-to-digital (A/D) converters
(ADCs) for high-speed A/D conversion. In addition, topics related to the correction of analog chan-
nel mismatches, principles of quantization, and oversampled ADCs and digital-to-analog converters
(DACs) are briefly discussed. The chapter introduces the more advanced method for discrete-time
modeling of mixed-signal systems employed in ��-modulator-based ADCs. This chapter also in-
cludes the basic concepts of compressive sampling, featuring many practical issues related to this
important field.

• Chapter 6 takes us on a tour of the design of finite length impulse response (FIR) and infinite length
impulse response (IIR) transfer functions of fixed filters satisfying prescribed specifications, explain-
ing their fundamental realizations, and exploring more sophisticated realizations. For IIR filters, the
chapter introduces the concept of wave digital filters concisely and clearly, motivating its conception
from the analog filter structures. The resulting IIR filter realizations keep the low-sensitivity prop-
erties of their analog originators. For FIR filter structures, the chapter covers the frequency masking
approach that exploits redundancy in the impulse response of typical FIR filters with high selectivity,
aiming to reduce the computational complexity. The chapter also explains in detail how to implement
digital filters efficiently in specific hardware by adequately scheduling the arithmetic operations.
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• Chapter 7 on multirate signal processing for software radio architecture applies several concepts pre-
sented in the previous chapters as tools to develop and conceive the implementation of radio defined
by software, a subject of great interest in modern communications systems. Software-defined radio
entails implementing radio functionality into software, resulting in flexible radio systems whose
main objective is to provide multiservice, multistandard, multiband features, all reconfigurable by
software. From the signal processing perspective, several basic concepts of multirate systems such
as interpolation, decimation, polyphase decomposition, and transmultiplexing play a central role.
The chapter reviews the required concepts of signal processing theory and proposes a software-
based radio architecture. Chapter 7 uses multirate signal processing and transmultiplexers to discuss
a design procedure to be applied in communications, including the application of machine learning
to signal detection, segregation, and classification.

• Chapter 8 on modern transform design for practical audio/image/video coding applications ad-
dresses the design of several application-oriented transform methods. Most signal processing text-
books present the classical transforms requiring a large number of multiplications; however, the
demand for low-power multimedia platforms requires the development of computationally efficient
transforms for coding applications. This chapter has the unique feature of presenting systematic
procedures to design these transforms while illustrating their practical use in standard codecs.

• Chapter 9 entitled “Discrete multiscale transforms in signal processing” presents a deeper high-level
exposition of the theoretical frameworks of the classical wavelets and the anisotropic wavelets. The
aim is to enable the reader with enough knowledge of the wavelet-based tools in order to exploit
their potential for applications in information sciences even further. Indeed, the material covered in
this chapter is unique in the sense that every discrete multiscale transform is linked to a potential
application. This chapter includes the current and important issue of incorporating wavelet to neural
networks providing some potential application in machine learning.

• Chapter 10 on frames discusses the use of overcomplete signal representations employing frames
and their duals, frame operators, inverse frames, and frame bounds. The signal analysis and synthe-
sis using frame representation are also addressed in detail. In particular, the chapter’s emphasis is
on frames generated from a fixed prototype signal by using translations, modulations, and dilations
and analyzing frames of translates, Gabor frames, and wavelet frames. The chapter also presents
signal analysis techniques based on the Gaborgram and time-frequency analysis using frames and
the matching pursuit algorithm.

• Chapter 11 on parametric estimation exploits the key engineering concept related to modeling sig-
nals and systems so that the model provides an understanding of the underlying phenomena and
possibly their control. This chapter emphasizes the parametric models leading to simple estimation
of the parameters while exposing the main characteristics of the signals or systems under study.
By employing both statistical and deterministic formulations, the chapter explains how to generate
autoregressive and moving average models, which are then applied to solve problems related to
spectrum estimation, prediction, and filtering.

• Chapter 12 on adaptive filters presents a comprehensive description of the current trends as well as
some open problems in this area. The chapter discusses the basic building blocks utilized in adaptive
filtering setups as well as its typical applications. Then, the chapter discusses the optimal solutions
followed by the derivation of the main algorithms. The authors confront for the first time two stan-
dard approaches to access the performance of the adaptive filtering algorithms. The chapter closes
by discussing some current research topics and open problems for further investigation.
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• Chapter 13 on machine learning describes a wide range of tools currently utilized to learn from data.
In particular, the chapter overviews the established learning concepts and describes classical tools to
perform unsupervised and supervised learning. In addition, the idea of deep learning is highlighted
along with some of its structural variations. Finally, the chapter also addresses more recent tech-
niques such as adversarial training and federated learning and includes many illustrative examples.
The chapter aims to set the stage for the reader to acquire a broad view of the current machine
learning techniques and delve into the details addressed in the remaining chapters of the book.

• Chapter 14 on signal processing over graphs covers an emerging field where data are collected in
the vertices of a graph, forming a finite set of samples, with each vertex providing a sample at a
given time. The generic data representation originating from graphs departs from the usual regular
structures inherent to standard signal processing, such as filtering, translation, and modulation. In
this field it is challenging to generalize many of these tools to allow their application to signals from
graphs. Many existing problems are topology-dependent, where the graph representation is a natural
solution. Among these problems, we can list transportation networks, infectious disease spreading,
security systems, human migration, and many others. The graph represents the topology of the con-
sidered underlying space from where high-dimensional data are linked to the graph’s nodes and
edges. The chapter includes the basic concepts of signal processing on graphs and discusses some
open problems in this new area.

• Chapter 15 on tensor methods in deep learning addresses the representation of multidimensional
arrays using tensors, widely employed in deep neural network algorithms. The tensors allow for a
sparse representation of arrays with multiple dimensions, leading to efficient network implemen-
tation. The chapter consists of an overview of tensors and tensor methods in the context of deep
learning.

• Chapter 16 on nonconvex graph learning addresses an overview of recent advancements in the
area of learning on undirected and weighted graphs from data. The chapter describes the practical
requirements needed from such models with often appearances in machine learning problems. The
requirements include imposing sparsity and handling data with outliers or heavy tails, which are part
of tasks such as clustering and graphical-variational autoencoding, etc. The algorithms presented in
the chapter are readily available for applications.

• Chapter 17 on dictionaries in machine learning deals with tools to improve the ability to learn and
extract meaningful sparse and compact latent signals and feature representations from large datasets
originating from natural signals. The chapter provides an overview of both deterministic and sta-
tistical dictionary learning algorithms. The chapter includes a discussion about the relationship of
learned dictionary-based signal processing and detection with contemporary machine learning tech-
niques.

In summary, this book shows that numerous signal processing and machine learning theory tools,
which are apparently unrelated, inspire new ideas for further advancements. Indeed, this cross-
fertilization is a powerful enabler to allow intuitive interpretation of many successful machine learning
solutions and induce new endeavors. A current challenge in learning from data is using some signal
processing tools to close the gap between machine learning and natural intelligence.
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1.1 Introduction
Signal processing is a crucial area of knowledge that finds applications in virtually all aspects of modern
life. Indeed, human beings are employing signal processing tools for centuries without realizing it [3].
In present days the younger generation might not be able to understand how one can live without
carrying a mobile phone, travel long distances without an almost self-piloted airplane, explore other
planets without human presence, and utilize a medical facility without a wide range of diagnostic and
intervention equipment.

Signal processing consists of mapping or transforming information-bearing signals into another
form of signals at the output, aiming at some application benefits. This mapping defines a continuous
or analog system that involves functions representing the input and output signals. On the other hand,
the system is discrete or digital if its input and output signals are represented by sequences of numbers.

Machine learning is an expression that is used in many disciplines dealing with tools to learn from
data and perform modeling tasks such as prediction and classification. Machine learning theory en-
ables the solution of unprecedented problems and also enhances existing solutions. Machine learning
basically consists of fitting models to the provided data. There are many machine learning algorithms
available. However, the quality of the training data plays a crucial role in the algorithm’s success.

Signal processing and machine learning theories are very rich and have been finding applications
in uncountable areas, among which we can mention bioengineering, communications, control, surveil-
lance, environment monitoring, oceanography, astronomy, and image classification, to mention a few. In
particular, the enormous advance in digital integrated circuit technology, responsible for the computing
and information revolutions that we are so used to today, enabled the widespread use of digital signal
processing (DSP) and machine learning-based systems. These systems allowed advances in fields such
as speech, audio, image, video, automatic translation, self-driving cars, recommendation systems, and
spam filters, as well as several applications of wireless communications and digital control.

Many practical problems start by acquiring continuous-time signals, followed by digitizing and stor-
ing them to perform further processing, eventually including data mining. This chapter is an overview
of the classical signal processing and machine learning theories whose details are encountered in nu-
merous textbooks and monographs, such as [2,4–10,12,15–17,19,21–25,29–31,33,35,36]. The topics
briefly treated in this chapter and detailed in the following chapters entail the description of many sig-
nal processing and machine learning tools and how they intermingle. As a result, the interested reader
can benefit from reading many of these chapters, if not all, in order to deepen and widen their current
knowledge as well as to start exploiting new ideas.

Signal Processing and Machine Learning Theory. https://doi.org/10.1016/B978-0-32-391772-8.00007-7
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1.2 Continuous-time signals and systems
The processing of signals starts by accessing the type of information we want to deal with. Many signals
originating from nature are continuous in time, and as such, the processing involved must include
analog signal acquisition systems followed by the implementation of a continuous-time system if the
processing remains analog all the way. Alternatively, assuming the original continuous-time signal
contains limited spectral information, we can sample it in order to generate a sequence representing the
continuous-time signal unambiguously.1 In this latter form one can benefit from the advanced digital
integrated circuit technology to process the signal. However, many real-life applications still include
continuous-time signal processing, at least at the acquisition and actuator phases of the processing.

A continuous-time system maps an analog input signal represented by x(t) into an output signal
represented by y(t), as depicted in Fig. 1.1. A general representation of this mapping is

y(t) = H{x(t)},
where H{·} denotes the operation performed by the continuous-time system. If the system is linear and
time-invariant (LTI), as will be described in Chapter 2, there are several tools to describe the mapping
features of the system. Typically, a general description of the systems consists of a differential equation
which in turn can be solved and analyzed by employing the Laplace transform. A key feature of the
LTI systems is their full representation through their impulse responses. The behavior of a nonlinear
system is more complicated to analyze since its impulse response cannot fully characterize it.

FIGURE 1.1

Continuous-time system.

Other important tools to deal with periodic and nonperiodic continuous-time signals are the Fourier
series and the Fourier transform, respectively. As will be discussed in Chapter 2, the Fourier and Laplace
transforms are closely related, both being essential tools to describe the behavior of continuous-time
signals when applied to LTI systems.

The Laplace transform is suitable to represent a time-domain nonperiodic function of a continuous
and real (time) variable, resulting in a frequency-domain nonperiodic function of a continuous and
complex frequency variable. That is,

X(s) =
∫ ∞

−∞
x(t)e−st dt ⇐⇒ x(t) = 1

2π
eσ t

∫ ∞

−∞
X(σ + jω)ejωt dω.

1 As will be seen in Chapter 5, we can completely reconstruct a continuous-time band-limited signal x(t) from its sampled
version x(n) if the sampling frequency is chosen correctly.
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The Fourier transform is employed to represent a time-domain nonperiodic function of a continuous
and real (time) variable with a frequency-domain nonperiodic function of a continuous and imaginary
frequency variable. The Fourier transform is described by

X(�) =
∫ ∞

−∞
x(t)e−j�t dt ⇐⇒ x(t) = 1

2π

∫ ∞

−∞
X(�)ej�t d�.

The representation of a time-domain periodic function of a continuous and real (time) variable is
performed by the Fourier series. In the frequency domain, the representation consists of a nonperiodic
function of a discrete and integer frequency variable, described as follows:

X(k) = 1

T

∫ T

0
x(t)e−j(2π/T )kt dt ⇐⇒ x(t) =

∞∑
k=−∞

X(k)ej(2π/T )kt .

1.3 Discrete-time signals and systems
A discrete-time signal is represented by a sequence of numbers and can be denoted as x(n) with n ∈ Z,
where Z is the set of integer numbers. The samples x(n) might represent numerically the amplitude
of a continuous-time signal sample at every T seconds or can originate from discrete information. In
many applications, the sampling period T represents the time interval between two acquired samples
of the continuous-time signal. However, in other situations, it might represent the distance between two
sensors of two pixels of an image, or the separation between two antennas, to mention a few examples.

Discrete-time systems map input sequences into output sequences. A general representation of this
mapping is

y(n) = H{x(n)},
where H{·} denotes the operation performed by the discrete-time system. Fig. 1.2 depicts the input-
to-output mapping of sequences. According to the properties of H{·}, the discrete-time system might
be LTI. This way, it benefits from a number of analysis and design tools, such as frequency-domain
representations. However, there are many applications employing nonlinear, time-varying, and even
noncausal systems [4,10,20,22–25].

FIGURE 1.2

Discrete-time signal representation.

If the system is LTI, as will be described in Chapter 2, there are several tools to describe the mapping
features of the system. Typically, a general description of discrete-time systems through a difference
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equation can be solved and analyzed by employing the z-transform. Also, a discrete-time LTI system
is fully described by its impulse response, whereas a nonlinear system cannot be fully characterized by
its impulse response.

The z-transform is the key tool to represent a time-domain nonperiodic function of a discrete and
integer variable through a frequency-domain nonperiodic function of a continuous and complex fre-
quency variable. That is,

X(z) =
∞∑

n=−∞
x(n)z−n ⇐⇒ x(n) = 1

2π j

∮
C

X(z)zn−1 dz.

The discrete-time Fourier transform (DTFT) represents a time-domain nonperiodic function of a
discrete and integer variable by a periodic function of a continuous frequency variable in the frequency
domain as follows:

X(ejω) =
∞∑

n=−∞
x(n)e−jωn ⇐⇒ x(n) = 1

2π

∫ ∞

−∞
X(ejω)ejωn dω.

Finally, the discrete Fourier transform (DFT) is the right tool to represent a time-domain periodic
function of a discrete and integer variable through a periodic function of a discrete and integer frequency
variable in the frequency domain. The DFT is defined as

X(k) =
N−1∑
n=0

x(n)e−j(2π/N)kn ⇐⇒ x(n) = 1

N

N−1∑
k=0

X(k)ej(2π/N)kn.

The DFT plays a key role in DSP since it represents a finite length sequence in the time domain
through a finite length sequence in the frequency domain. Since both domains utilize sequences, this
feature makes the DFT a natural choice for the time-frequency representation of information in a digital
computer. A little mental exercise allows us to infer that the DFT is the perfect representation in the
frequency domain of a finite length sequence in the time domain if we interpret the latter as a period
of a periodic infinite length sequence. In addition, by employing appropriate zero-padding in two fi-
nite length sequences, the product of their DFTs represents the DFT of their linear convolution (see
Chapter 3), turning the DFT into a valuable tool for LTI system implementation. There is a plethora of
applications for the DFT in signal processing and communications; some of them can be accessed in
the references [10,19].

Often, whenever a DSP system is LTI, it can be described through a difference equation as follows:

N∑
i=0

aiy(n − i) +
M∑
l=0

blx(n − l) = 0.

The above description is suitable for implementation in digital computers. The difference equation
represents a causal LTI system if its auxiliary conditions correspond to its initial conditions, and those
are zeros [10]. Assuming a0 = 1, the above equation can be rewritten as

y(n) = −
N∑

i=1

aiy(n − i) +
M∑
l=0

blx(n − l).
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FIGURE 1.3

Examples of a random variable and a stochastic process.

This class of systems has infinite impulse response (IIR) (i.e., y(n) �= 0 when n → ∞), and as such, it
is called an IIR system or filter.

The nonrecursive system generates the output signal from past input samples, that is,

y(n) =
M∑
l=0

blx(n − l).

In this case, the resulting system has a finite impulse response (FIR) and is known as FIR system or
filter.

1.4 Random signals and stochastic processes
In most practical applications, we have to deal with signals that cannot be described by a function
of time since their waveforms follow a random pattern [26,28]. Take, for example, the thermal noise
inherent to any material. Despite the lack of exact knowledge of the signal values, it is possible to
analyze and extract information the signals contain by employing the mathematical tools available to
deal with random signals. Chapter 4 will present a compact and yet clarifying review of random signals
and stochastic processes, which are crucial to understanding several concepts that will be discussed in
the more advanced chapters.

The theory starts by defining a random variable as a mapping of the result of a random process
experiment onto a set of numbers. A random variable X is a function that assigns a number x to every
outcome of a random process experiment. An example is given in Fig. 1.3(a), in which each outcome
of a throw of a dice, numbers 1–6, corresponds to a determined value, x1–x6, respectively.

The stochastic process is a rule to describe the time evolution of the random variable depending on
the random process experiment, whereas the set of all experimental outcomes is its domain known as
the ensemble. An example is given in Fig. 1.3(b), in which at any time instant t0, the set formed by the
output samples of the stochastic process {X}, {x1(t0), x2(t0), x3(t0), . . . , xn(t0)}, represents a random
variable. A single outcome xi(t) of {X} is a random signal. Since random signals do not have a precise
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description of their waveforms, we have to characterize them either via measured statistics or through
a probabilistic model. Generally, the first- and second-order statistics (mean and variance, respectively)
are sufficient for characterizing the stochastic process, mainly because these statistics are suitable for
measurements.

As an illustration, Fig. 1.4 shows a random signal as an input of a high-pass filter. We can observe
that the output signal is still random but clearly shows a faster changing behavior, given that the high-
pass filter attenuated the low-frequency contents of the input signal.

FIGURE 1.4

Filtering of a random signal.

1.5 Sampling and quantization
A DSP system whose signals originated from continuous-time sources includes several building blocks,
namely, an analog-to-digital (A/D) converter, a DSP system, a digital-to-analog (D/A) converter, and a
low-pass filter. Fig. 1.5 illustrates a typical DSP setup, where:

• The A/D converter produces a set of samples in equally spaced time intervals, which may retain the
information of the continuous-time signal in the case the latter is band-limited. These samples are
converted into a numeric representation in order to be applied to the DSP system.

• The DSP performs the desired mapping between the input and output sequences.
• The D/A converter produces a set of equally spaced-in-time analog samples representing the DSP

system output.
• The low-pass filter interpolates the analog samples to produce a smooth continuous-time signal.

Chapter 5 will discuss in detail the conditions which a continuous-time signal must satisfy so that its
sampled version retains the information of the original signal, dictated by the sampling theorem. This
theorem determines that a band-limited continuous-time signal can be theoretically recovered from its
sampled version by filtering the sequence with an analog filter with a prescribed frequency response.

It is also important to mention that while processing the signals in the digital domain, these are
subject to quantization errors, such as round-off errors originating from internal arithmetic operations
performed in the signals, deviations in the filter response due to the finite word length representation of
the multiplier coefficients inherent to the signal processing operation, and errors due to the representa-
tion of the acquired continuous-time signals with a set of discrete levels.

The actual implementation of a DSP system might rely on general-purpose digital machines, where
the user writes a computer program to implement the DSP tasks. This strategy allows fast prototyping
and testing. Another way is to use special-purpose commercially available CPUs, known as digital sig-
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FIGURE 1.5

A DSP system.

nal processors, that are capable of implementing sum of product operations in a very efficient manner.
Yet another approach is to employ special-purpose hardware tailored for the given application.

Fig. 1.6 depicts a continuous-time signal, its digitized version, and its recovered continuous-time
representation. We can note from Figs. 1.6(a) to 1.6(f) the effects of a low sampling frequency and a
small number of quantization steps on the A/D and D/A processes.

Fig. 1.7 shows a detailed example of the steps entailing an A/D and a D/A conversion, where in
Fig. 1.7(a) a continuous-time signal is depicted along with its equally spaced samples. These samples
are then quantized, as illustrated in Fig. 1.7(b). Assuming the quantized samples are converted into
an analog signal through a zero-order hold, the output of the D/A converter becomes as illustrated in
Fig. 1.7(c). The sampled-and-held continuous-time signal is low-pass filtered in order to recover the
original continuous-time signal. As can be observed in Fig. 1.7(d), the recovered signal resembles the
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FIGURE 1.6

A digital signal generation.

original where the difference originates from the quantization effects and the nonideal low-pass filter at
the D/A converter output.

1.6 FIR and IIR filter design
The general form of an FIR transfer function is given by

H(z) =
M∑
l=0

blz
−l = H0z

−M
M∏
l=0

(z − zl).

Since all the poles of the FIR transfer function are placed at z = 0, it is always stable. As a result,
the transfer function above will always represent a stable filter. The main feature of the FIR filters is
the possibility of designing structurally induced linear-phase filters. On the other hand, an FIR filter
requires a higher number of multiplications, additions, and storage elements when compared to their
IIR counterparts in order to satisfy a prescribed specification for the magnitude response.

There are many methods to design an FIR filter, ranging from the simple ones, such as the win-
dow and frequency sampling methods, to more efficient and sophisticated ones that rely on some kind
of optimization method [1,11,18]. The simple methods lead to solutions that are far from optimum
in most practical applications, in the sense that they either require higher order or cannot satisfy pre-
scribed specifications. A popular optimization solution is the minimax method based on the Remez
exchange algorithm, which leads to transfer functions with a minimum order to meet prescribed spec-
ifications.

With the growing computational power, it is possible to design flexible FIR filters by utilizing
weighted least-squares (WLS) solutions. These filters are particularly suitable for multirate systems
since the resulting transfer functions can have decreasing energy in their stopband [10]. The WLS
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FIGURE 1.7

A real digital signal generation.

method enables the design of filters satisfying prescribed specifications, such as the maximum devia-
tion in the passband and part of the stopband, while minimizing the energy in a range of frequencies
in the stopband. As can be observed in Fig. 1.8, for a given filter order, the minimax design leads to
lower maximum stopband attenuation, whereas the WLS solution leads to lower stopband energy. Note
that there are solutions in between where some maximum values of stopband ripples can be minimized
while the energy of the remaining ones is also minimized. Therefore, it is possible to observe that the
WLS solution does not satisfy the prescribed specifications, given that it has the same filter order as the
minimax solution.

The typical transfer function of an IIR filter is given by

H(z) = Y(z)

X(z)
=

∑M
l=0 blz

−l

1 + ∑N
i=1 aiz−i

,
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FIGURE 1.8

Typical magnitude responses of FIR filters: minimax and WLS.

which can be rewritten in a form explicitly showing the poles’ positions as

H(z) = H0

∏M
l=0(1 − z−1zl)∏N
i=0(1 − z−1pi)

= H0z
N−M

∏M
l=0(z − zl)∏N
i=0(z − pi)

.

IIR filters are usually designed by using well-established analog filter approximations, such as the
Butterworth, Chebyshev, and elliptic methods (Fig. 1.9). The prototype analog transfer function is then
transformed into a digital transfer function by using an adequate transformation method. The most
widely used transformation methods are bilinear and the impulse invariance methods [10].

1.7 Digital filter structures and implementations
From a closer examination of the FIR and IIR transfer functions, one can infer that they can be realized
with three basic operators: adder, multiplier, and delay (represented by z−1).

For example, Fig. 1.10 shows a linear-phase FIR filter realization of odd order. Linear-phase filters
have symmetric or antisymmetric impulse response and the symmetry should be exploited in order to
minimize the number of multipliers in the filter implementation, as illustrated in Fig. 1.10.

Fig. 1.11 depicts a possible direct-form realization of an IIR transfer function. This realization
requires the minimum number of multiplications, adders, and delays to implement the desired IIR
transfer function.

There are many alternative structures to implement the FIR and IIR filters. For example, IIR transfer
functions can be implemented as a product or as a summation of lower-order IIR structures by starting
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FIGURE 1.9

Typical magnitude response of an IIR filter.

FIGURE 1.10

Odd-order linear-phase FIR filter structure with M = 5.

with their description as

H(z) =
m∏

k=1

γ0k + γ1kz
−1 + γ2kz

−2

1 + m1kz−1 + m2kz−2

= h
p

0 +
m∑

k=1

γ
p

1kz + γ
p

2k

z2 + m1kz + m2k

,
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FIGURE 1.11

Direct-form IIR filter structure.

respectively. The right choice for a filter realization must take into consideration some issues, such as
modularity, quantization effects, design simplicity, and power consumption [10]. Chapter 6 will address
advanced methods for FIR and IIR filter realization and implementation, where elegant and creative
solutions are introduced in a clear manner. That chapter will also discuss strategies to implement digital
filters efficiently.

1.8 Multirate signal processing
In DSP, it is easy to change the sampling rate of the underlying sequences by a ratio of integer values.
This feature is highly desirable whenever we want to merge information of systems employing distinct
sampling rates. In these cases, those rates should be made compatible [6,33,36].

Systems that internally employ multiple sampling rates are collectively referred to as multirate
systems. In most cases, these systems are time-varying or, at most, periodically time-invariant.

The basic operations of the multirate systems are decimation and interpolation. The proper compo-
sition of these operations allows arbitrary rational sampling rate changes. If this sampling rate change
is arbitrary and nonrational, the only solution is to recover the band-limited continuous-time signal x(t)

from its samples x(m) and then resample it with a different sampling rate, thus generating a distinct
discrete-time signal x(n).

If we assume that a discrete-time signal x(m) was generated from an continuous-time signal y(t)

with sampling period T1, so that x(m) = y(mT1), with m = . . . ,0,1,2 . . . , the sampling theorem re-
quires that y(t) should be band-limited to the range [− π

T1
, π

T1
]. The sampled continuous-time signal is
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given by

y′(t) =
∞∑

m=−∞
x(m)δ(t − mT1).

The spectrum of the sampled signal is periodic with period 2π
T1

. The original continuous-time signal y(t)

can be recovered from y′(t) through an ideal low-pass filter. This interpolation filter, whose impulse
response is denoted as h(t), has an ideal frequency response H(ejω) as follows:

H(ejω) =
{

1, ω ∈ [− π
T1

, π
T1

],
0, otherwise,

so that

y(t) = y′(t) ∗ h(t) = 1

T1

∞∑
m=−∞

x(m)sinc
π

T1
(t − mT1).

By resampling y(t) with period T2, we obtain the discrete-time signal in the new desired sampling rate
as follows:

x(n) = 1

T1

∞∑
m=−∞

x(m)sinc
π

T1
(nT2 − mT1),

where x(n) = y(nT2), with n = . . . ,0,1,2 . . . .
In this general equation governing sampling rate changes, there is no restriction on the values of T1

and T2. However, if T2 > T1 and aliasing is to be avoided, the interpolation filter must have a zero gain
for ω �∈ [− π

T2
, π

T2
].

In the case the sampling rate change corresponds to a ratio of integer numbers, all we need is
simple decimation and interpolation operations. The decimation operation, or downsampling, consists
of retaining every Mth sample of a given sequence x(m). Since we are disposing of samples from the
original sequence, either the signal is sufficiently limited in band or the signal has to be filtered by a low-
pass filter so that the decimated signal retains the useful information of the original signal. Decimation
is a time-varying operation, since, if x(m) is shifted by m0, the output signal will, in general, differ
from the unshifted output shifted by m0. Indeed, decimation is a periodically time-invariant operation,
which consists of an extra degree of freedom with respect to the traditional time-invariant systems.

The interpolation, or upsampling, of a discrete-time signal x(m) by a factor of L consists of inserting
L − 1 zeros between each of its samples. In the frequency domain, the spectrum of the upsampled
signal is periodically repeated. Given that the spectrum of the original discrete-time signal is periodic
with period 2π , the interpolated signal will have period 2π

L
. Therefore, in order to obtain a smooth

interpolated version of x(m), the spectrum of the interpolated signal must have the same shape as the
spectrum of x(m). This can be obtained by filtering out the repetitions of the spectra beyond [−π

L
, π

L
].

Thus, the upsampling operation is generally followed by a low-pass filter. The interpolation is only
periodically time-invariant and does not entail any loss of information.

Fig. 1.12 illustrates discrete-time signal decimation and interpolation operations. As can be observed
in Fig. 1.12(a), the decimation factor of two widens the spectrum of the sampled signal in comparison
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to the new sampling rate. Fig. 1.12(b) depicts the effect of increasing the sampling rate of a given
sequence by two, where it can be seen that the frequency contents of the original signal repeat twice as
often and appear narrower in the new sampling rate.

FIGURE 1.12

Signal decimation and interpolation.

Chapter 8 will further discuss the theory and practice of multirate signal processing. This chapter
will show how sophisticated real-life signal processing problems can be addressed, starting from the
basic theory. In particular, the authors address the design of flexible communications systems incorpo-
rating several advanced signal processing tools [9,32,34,37].

1.9 Filter banks and transform design
In many applications, it is desirable to decompose a wide-band discrete-time signal into several
nonoverlapping narrow-band subsignals in order to be transmitted, quantized, or stored. In this case,
each narrow-band channel can reduce its sampling rate, since the subband signals have lower band-
width than their originator signal. The signal processing tool that performs these tasks is the analysis
filter bank. The analysis filters, represented by the transfer functions Hi(z), for i = 0,1, . . . ,M − 1,
consist of a low-pass filter H0(z), bandpass filters Hi(z), for i = 1,2, . . . ,M − 2, and a high-pass filter
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HM−1(z). Ideally, these filters have nonoverlapping passbands, whereas their spectrum combination
should cover the overall spectrum of the input signal. The outputs of the analysis filters, denoted as
xi(n), for i = 0,1, . . . ,M − 1, have together M times the number of samples of the original signal
x(n). However, since each subband signal occupies a spectrum band M times narrower than the input
signal, they can be decimated so that the number of samples in the subbands does not increase. Indeed,
if the input signal is uniformly split into subbands, we can decimate each xi(n) by a factor of L smaller
than or equal to M without generating unrecoverable aliasing effects. Fig. 1.13 shows the general con-
figuration of a maximally (or critically) decimated analysis filter, where the decimation factor is equal
to the number of subbands, i.e., L = M .

FIGURE 1.13

Analysis filter bank.

Whenever the input signal is split into subbands and decimated, if L ≤ M , it is always possible to
recover the input signal by properly designing the analysis filters in conjunction with the synthesis filters
Gi(z), for i = 0,1, . . . ,M − 1. The synthesis filters are placed after interpolators, and they have the task
of smoothing the upsampled signals. Fig. 1.14 illustrates the general configuration of the synthesis filter
bank. A key feature of the synthesis filter bank is to cancel out or reduce the aliasing effects.
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FIGURE 1.14

Synthesis filter bank.

If the subband signals are not modified, the filter bank output y(n) can be a delayed copy signal
of x(n). The cascade connection of the analysis and synthesis filter banks satisfying this condition is
called a perfect reconstruction filter bank.

The cascade of an M-channel synthesis filter bank with an M-channel analysis filter bank gives
rise to a transmultiplex system. The transmultiplex model is widely used in communications to model
multiuser, multicarrier, and multiaccess systems [9], [37], [32]. Chapter 7 will utilize multirate signal
processing and transmultiplexers to discuss a design procedure to be applied in communications, also
providing an illustrative example related to the application of machine learning to signal detection,
segregation, and classification.

Chapter 8 will present several methods for designing the analysis filters Hi(z) and the synthesis
filters Gi(z) such that perfect reconstruction is achieved and other features are also met. This chapter
will focus on the connections between modern transforms and filter bank design.

Fig. 1.15 shows a four-band filter bank design and its effect on a composed signal. Fig. 1.16 il-
lustrates how a four-band synthesis filter bank performs the recomposition of the input signal starting
from the decimated subband signals. It is worth mentioning that the filter banks, when the subbands are
divided into octave bands, give rise to the discrete-time wavelet series, which is part of the discussion
in the following section.
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FIGURE 1.15

Analysis filter bank design.

FIGURE 1.16

Synthesis filter bank design.
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1.10 Discrete multiscale and transforms
Discrete-time signals and systems can be characterized in the frequency domain by their Fourier trans-
forms. One of the main advantages of discrete-time signals is that they can be processed and represented
by digital computers. However, when we examine the definition of the DTFT,

X(ejω) =
∞∑

n=−∞
x(n)e−jωn,

we notice that such a characterization in the frequency domain depends on the continuous variable ω.
This implies that the Fourier transform, as it is, is not suitable for the processing of discrete-time signals
in digital computers. We need a transform depending on a discrete-frequency variable that, if possible,
preserves the handy interpretations of the Fourier-based tools, which retain important information.
This can be obtained from the Fourier transform itself in a very simple way, by sampling uniformly
the continuous-frequency variable ω as long as the input sequence has a finite length. Otherwise, the
time-domain signal will be affected by aliasing. Using this strategy, it is possible to obtain a mapping
of a signal depending on a discrete-time variable n to a transform depending on a discrete-frequency
variable k, leading to another interpretation for the DFT. Unfortunately, the DFT has its limitations in
representing a more general class of signals, as will be discussed next.

The wavelet transform of a function belonging to L2{R}, the space of the square-integrable func-
tions, is the function decomposition in a basis composed of expansions, compressions, and translations
of a single mother function ψ(t), called wavelet.

The wavelet transform can be defined as

x(t) =
∞∑

m=−∞

∞∑
n=−∞

cm,nψm,n(t),

cm,n =
∫ ∞

−∞
x(t)ψ∗

m,n(t)dt,

where

ψm,n(t) = 2−m/2ψ(2−mt − n),

ψm,n(t) = 2−m/2ψ(2−mt − n).

This pair of equations defines a biorthogonal wavelet transform which is characterized by two wavelets:
the analysis wavelet, ψ(t), and the synthesis wavelet, ψ(t). Any function x(t) ∈ L2{R} can be decom-
posed as a linear combination of contractions, expansions, and translations of the synthesis wavelet
ψ(t). The expansion weights can be computed via the inner product of x(t) with expansions, contrac-
tions, and translations of the analysis wavelet ψ(t).

Functions ψm,n(t) do not comprise an orthogonal set, so neither do the functions ψm,n(t). However,
functions ψm,n(t) are orthogonal to ψm,n(t) so that

〈ψm,n(t),ψk,l(t)〉 = δ(m − k)δ(n − l).
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A byproduct of the development of the wavelet transforms is the so-called wavelet series, allowing
the representation of signals in the time and frequency domains through sequences. The cascade of two-
band filter banks can produce many alternative maximally decimated decompositions. The hierarchical
decomposition achieving an octave-band decomposition is of particular interest, in which only the low-
pass band is further decomposed. This configuration gives rise to the widely used wavelets series.

As discussed in Chapter 10, many transform-based tools in signal processing theory are available
to meet the requirements of different applications. The classical Fourier-based transforms have been
used for centuries, but their efficiency in dealing with nonstationary signals is limited. With wavelet
series, for example, it is possible to obtain good resolution in time and frequency domains, unlike the
Fourier-based analysis. Therefore, Chapter 10 will include a myriad of transform solutions tailored for
distinct practical situations. The chapter concludes with a detailed discussion about the incorporation
of wavelets to neural networks, illustrating how much a robust data analysis tool enhances the modeling
capability of neural networks providing to machine learning applications.

Fig. 1.17 illustrates a wavelet series representation of a composed signal, where the input signal is
decomposed by an octave-band filter bank representing a wavelet series.

FIGURE 1.17

Wavelet series of a composed sinusoidal signal.

1.11 Frames
Frames consist of a set of vectors that enables a stable representation of a signal starting from an analy-
sis operation whereby a set of coefficients is generated from the signal projection with the frame vectors
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and a synthesis operation where the synthesis vectors are linearly combined to approximate the orig-
inal signal. Chapter 12 will introduce the idea of frames by discussing the concepts of overcomplete
representations, frames and their duals, frame operators, inverse frames, and frame bounds. In partic-
ular, it will show how to implement signal analysis and synthesis employing frames generated from a
fixed prototype signal by using translations, modulations, and dilations and analyzes frames of trans-
lates, Gabor frames, and wavelet frames. The frames representation is usually redundant by requiring
more coefficients than the minimum, where redundancy is measured by frame bounds [19]. The end
result of employing the framework of frames is a set of signal processing tools such as the Gaborgram,
time-frequency analysis, and the matching pursuit algorithm.

Fig. 1.18 shows the representation of a composed signal into frames. As can be observed, the rep-
resentation of x(n) by x1(n) and x0(n) is redundant, since x1(n) has the same rate as the input signal
x(n), whereas x0(n) has half the rate.

FIGURE 1.18

Frame representation.

1.12 Parameter estimation
In many signal processing applications, it is crucial to estimate the power spectral density (PSD) of
a given discrete-time signal. Examples of the use of PSD are vocal-track modeling, radar systems,
antenna arrays, sonar systems, and synthesis of speech and music, just to name a few. Usually, the first
step in PSD estimation consists of estimating the autocorrelation function associated with the given
data, followed by a Fourier transform to obtain the desired spectral description of the process.

In the literature, we can find a large number of sources dealing with algorithms for performing
spectral estimation. However, the alternative solutions differ in their computational complexity, preci-
sion, frequency resolution, or other statistical aspects. In general, spectral estimation methods can be
classified as nonparametric or parametric methods. The nonparametric methods do not prescribe any
particular structure for the given data. In contrast, parametric schemes assume that the provided process
follows the pattern of a prescribed model characterized by a specific set of parameters [17].
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FIGURE 1.19

Spectral estimation.

Since the parametric approaches are simpler and more accurate, they will be emphasized in Chap-
ter 12. However, parametric methods rely on some (a priori) information regarding the problem at hand.

Fig. 1.19 shows a noisy signal record and the estimated PSDs utilizing distinct methods. As can be
observed, some of the resulting PSDs expose the presence of a sinusoid, not clearly observed in the
time-domain signal.

1.13 Adaptive filtering
In many practical situations, we can extract information from a signal by comparing it to another signal
or a reference. An adaptive filter is a natural solution for cases where the specifications are neither
known nor time-invariant. The coefficients of these filters are data-driven, and the resulting processing
task does not meet the homogeneity and additive conditions of linear filtering. An adaptive filter is also
time-varying since its parameters are continually changing in order to minimize a cost function.

Adaptive filters are self-designing and perform the approximation step on-line. Starting from an
initial condition, the adaptive filter searches for an optimal solution in an iterative format. Since adaptive
filters are nonlinear filters, the analysis of their performance behavior requires the solution of time-
domain equations, usually involving the second-order statistics of their internal and external quantities.
Although analyzing an adaptive filter is more complicated than analyzing fixed filters, it is a simple
solution to deal with unknown stationary and nonstationary environments. On the other hand, since
the adaptive filters are self-designing filters, their design can be considered less involved than those of
standard fixed digital filters [8]. Important topics related to adaptive filtering are neural networks and
machine learning [13], [31].
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Fig. 1.20 depicts the general setup of an adaptive-filtering environment, where, for a given itera-
tion n, an input signal x(n) excites the adaptive filter which will produce an output signal y(n), which
is then compared with a reference signal d(n). From this comparison, an error signal e(n) is formed
according to d(n) − y(n). The error signal is the argument of a cost (or objective) function whose
minimization is achieved by properly adapting the adaptive filter coefficients. Fig. 1.21 shows a signal
enhancement where it is recognized in the error signal that the input signal contained a sinusoidal com-
ponent. In Fig. 1.21(a) it is difficult to observe the presence of a sinusoidal signal, whereas the error
signal clearly shows a nearly sinusoidal behavior.

FIGURE 1.20

General adaptive filtering configuration.

FIGURE 1.21

An adaptive filtering application.

Chapter 12 will present a comprehensive overview related to adaptive signal processing that unifies
several concepts that go beyond the concepts covered in textbooks, such as [7,8,14,27]. The adaptive
filters belong to the class of data-learning algorithms.

1.14 Machine learning: review and trends
Machine learning has increasingly been finding applications in many areas pertaining to the realm of
artificial intelligence. However, there is room for further development, since in many situations, natural
intelligence excels machine learning solutions relying on data. Despite its limitations, machine learning
has achieved sounding advances in critical areas, highlighting solutions for prediction and classification
in a wide variety of fields.
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FIGURE 1.22

Using raw data x to train a machine learning model under different learning techniques.

Machine learning algorithms are usually divided into four categories: supervised, unsupervised,
self-supervised, and semisupervised. A dataset having observations or inputs and matching labels or
outputs is necessary for supervised machine learning models. By learning from this labeled dataset,
they can forecast the result from unknown input data. Fig. 1.22 illustrates supervised learning when the
switch is in position 1, and the process P rule is to multiply the input by the identity matrix. In this case,
the machine learning model learns the relationship between the input data x and its label y, and produces
output v = ŷ. Unsupervised machine learning models, on the other hand, require observations. Finding
latent patterns in unlabeled input data that could be utilized to categorize previously unknown input data
is the goal of unsupervised learning. The switch in Fig. 1.22 is in position 2 in unsupervised mode, and
the process P also multiplies the input by the identity matrix. The model is then trained by minimizing
the cost function that considers the output v = x̂ and the input data x. Since neither technique uses
annotations to learn, self-supervised learning can be viewed as a specific case of unsupervised learning.
Self-supervised learning produces pseudolabels z by transforming the input data with P , as shown in
Fig. 1.22. With the switch in position 3, the model learns by minimizing the cost function between v = ẑ
and the pseudolabels z. By using both labeled and unlabeled training data, semisupervised learning falls
between supervised and unsupervised learning. Unlabeled data are used in semisupervised models to
reorder the priority of hypotheses derived from labeled data. In this case, the switch in Fig. 1.22 might
operate in position 1 or 3. For example, in reinforcement learning with ε-greed policy, the switch is in
position 3, and P obtains a random label when ε is high. A memory replay stores the generated labels.
Therefore, when ε is low, the switch moves to position 1, and the labels in memory replay are used to
train the machine learning model.
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This section provides a couple of examples illustrating the power of machine learning solutions to
stimulate the readers to widen their knowledge in the chapters ahead.

For instance, given a training dataset with labels, artificial neural networks, or simply neural net-
works, are effective at learning complicated tasks in supervised learning. Neural networks are intercon-
nected nodes organized in layers that mimic the human brain. The connections between the nodes serve
as the neural network’s weights and the nodes themselves can represent the input, a bias, an activation
function, or the output. The error backpropagation algorithm is used by the neural network to compare
input data with its label and update its weights as input data are fed into it. After presenting, for ex-
ample, some images of different animals with correspondent labels during training, the model is able
to classify an unseen panda image with 84.283555% of accuracy, as indicated by the left-hand entry of
Fig. 1.23.

Although neural networks excel at tackling difficult problems in a variety of domains, they are in-
credibly weak against adversarial examples. Adversarial examples are perturbed versions of the original
samples that are invisible to the human eye, but are powerful enough to cause the model to confidently
misclassify the sample. For instance, by adding a small perturbation η, the model might misclassify a
panda as an indri with high confidence, as illustrated in Fig. 1.23. Approaches like adversarial train-
ing can be employed to mitigate the effects of these malicious attacks, as will be further discussed in
Chapter 13.

FIGURE 1.23

Example of adversarial image generation.

1.15 Signal processing over graphs
Large-scale interacting systems, including climate, social, and financial networks, have made a vast
amount of data available. In those applications, the data or signals can be represented by structures
known as graphs, which are composed of vertices and edges. For example, the graph’s vertices could
represent certain sensors positioned at a specific geographic location to monitor a climate variable,
while the edges could reflect the distance among them. In this sense, graph signal processing (GSP) is
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a promising study area to deal with these signals that lie over irregular domains since many classical
DSP methods are inappropriate for analyzing them. For instance, graph spectral analysis is regarded
as the analog of Fourier analysis in DSP. Hence, well-known operations like translation, convolution,
modulation, and filtering can be comparably described on the graph. Moreover, the eigenvalues and
eigenvectors of particular graph-related matrices, such as the adjacency matrix and the Laplacian ma-
trix, are connected to a spectrum in spectral graph theory. For example, the eigenvalues of the Laplacian
matrix, λl , correspond to the frequencies, and the eigenvectors, vl , correspond to the complex expo-
nentials in traditional DSP. In this way, the quicker the eigenvector vl changes values, the higher the
corresponding frequency λl .

Analyzing how frequently the signal changes polarity is one method of determining the signal fre-
quency. This can be accomplished by counting the number of edges that connect samples of different
polarities. To illustrate that, we highlight in red (mid gray in print version) the edges of the graph in
Fig. 1.24(a) that connect a positive sample to a negative one for some eigenvectors of the Laplacian
operator in Fig. 1.24(b–f). Observe that the number of red edges (mid gray in print version) increases
for higher eigenvalues, indicating that the corresponding eigenvectors change values more often, as
expected. This confirms that the eigenvalues play the role of frequencies in graph signals.

Chapter 14 introduces the fundamental concepts of GSP, starting with the GSP building blocks,
which are surrogates of the classical signal processing network structures, along with some practical
applications.

1.16 Tensor methods in deep learning
Deep neural networks include a large number of parameters requiring a considerable amount of storage
elements as well as high computational complexity. As a result, it is crucial that such complex networks
benefit from sparse representation employing tensors enabling multidimensional data and mappings
representations. Furthermore, many sophisticated learning architectures entail multidimensional blocks
of parameters, which higher-order tensors can efficiently represent.

This section highlights the tensors as a multidimensional generalization of matrices and exemplifies
how tensors can be used to represent and analyze information hidden in multidimensional data. Tensor
decompositions are critical to the reduction in the number of unknown parameters of deep models and
further mitigate the curse of dimensionality. Chapter 15 addresses the fundamentals of tensors and their
decompositions and discusses the application of tensor methods in emerging fields.

Fig. 1.25 shows an example of a tensor applied to the MNIST dataset. The resulting tensor can be
represented by X ∈ R

I1×I2×I3 , in which I1 is the height, I2 is the width, and I3 is the number of images.
It is possible to reduce the tensor’s high dimensionality, which produces compact representations

and lowers computational complexity. To do so, we need a model M that approximates X ∈R
I1×I2×I3

such that

X ≈ M =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r , (1.1)
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FIGURE 1.24

Edges connecting samples with different polarities for Laplacian eigenvectors on a randomly generated graph.

where the third-order tensor M is a sum of rank-1 tensors u
(n)
r , r = 1, · · ·R. These vectors can be

combined into three matrices, each of which has the format

U(n) =
[
u(n)

1 u(n)
2 u(n)

R

]
. (1.2)

Often referred to as rank (not to be confused with matrix rank), R is the data’s reduced dimension. By
using, for instance, R = 20, we obtain the sparse matrices U(1), U(2), and U(3) illustrated in Fig. 1.26.
In this way, the samples in the second row of Fig. 1.27 are the results of reconstruction using equa-
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FIGURE 1.25

MNIST dataset as a tensor.

tion (1.1). We can see that the reconstruction was successful by comparing the first and second rows of
samples in Fig. 1.27.

1.17 Nonconvex graph learning: sparsity, heavy tails, and clustering
This section illustrates some tools to promote sparsity and to deal with data outliers of heavy-tailed
distributions, relying on the graph formulation. This graph learning framework naturally represents the
connectivity experienced by devices that are the sources of big datasets. For instance, typical graph
learning methods might rely on cost functions represented by convex or nonconvex formulations.

Graph learning algorithms aim to learn a Laplacian matrix, or equivalently an adjacency matrix rely-
ing on data. The problem is solved using an optimization formulation involving the penalized maximum
likelihood estimator of the Laplacian-constrained precision matrix, utilizing the observed data.

This book introduces many optimization formulations for connected sparse graphs, heavy-tailed
distributions, and k-component graphs widely employed in machine learning clustering. Several opti-
mization methods are described to solve nonconvex problems found in many machine learning appli-
cations.

For instance, consider a sensor array in a forest collecting temperature measurements as illustrated
in Fig. 1.28.

The sensors are jointly utilized to estimate a variable of interest x ∈ R
N×1. From their M linear

measurements,

ym = aT
mx + nm for m = 1, · · ·M, (1.3)

where a ∈R
N×1 characterizes the measurement and nm represents noise, we can obtain the maximum

likelihood estimate of x. Since some of the sensors are closer to the fire, their contribution to the final
estimation is more important. Our goal here is to obtain this subset of sensors that is more informative
to estimate x. By following one of the criteria to select the antennas based on minimizing a function of
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FIGURE 1.26

The decomposition gives us the matrices (a) U(1), (b) U(2), and (c) U(3).

the estimation error, we end up with the following optimization problem:

maxz∈RM×1 logdet

(
M∑

m=1

zmamaT
m

)
,

s.t. ‖z‖0 = S,

(1.4)
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FIGURE 1.27

(a) Samples from original tensor X and (b) reconstructed samples from approximated tensor M.

FIGURE 1.28

Sensors in a forest to estimate a variable of interest x from their temperature measurements ym, m = 1 · · ·M.

where S is the number of selected sensors. However, the optimization problem in equation (1.4) is not
convex. A possible way to solve the problem in equation (1.4) is to replace the l0-norm constraint by
convex constraints as in

maxz∈RM×1 logdet

(
M∑

m=1

zmamaT
m

)
,

s.t. 1Tz = S, 0 ≤ zm ≤ 1, m = 1, · · ·M.

(1.5)

For instance, we can solve the problem in equation (1.5) for S = 10 selected sensors and M = 20
measurements and obtain the selection vector z illustrated in Fig. 1.29. Observe that the S greatest
z-values correspond to the most significant columns in matrix A = [a1, · · ·aM ], also shown in Fig. 1.29.
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FIGURE 1.29

Matrix of measurements A with columns representing sensors. The selected sensors are highlighted in green
(mid gray in print version), and they have the greatest z-values.

1.18 Dictionaries in machine learning
Machine learning, and more generally artificial intelligence, is a field where one tries, in some sense, to
mimic how living beings develop from interacting with the environment. Therefore, the success of an
machine learning algorithm depends on its ability to learn and extract sparse and compact latent signal
and feature representations from measured natural datasets. This section briefly discusses the benefits
of dictionary learning to aid the solution to machine learning problems.

Chapter 17 suggests easy ways to combine dictionary learning with, for instance, a neural network
classifier. The idea is to perform a preprocessing step aiming at generating a dictionary-based sparse
feature extraction. Then, with the sparse codes and dictionary elements, the network ahead can adapt its
weights, capitalizing on the sparse codes provided by the dictionary. The connections between sparse
coding and some types of neural networks also improve the interpretation of how the networks learn
from data and the resulting representation.

A dictionary-based sparse feature extraction preprocessing stage can be added to the neural network
as a technique to combine dictionary learning with a classifier. First, the dictionary D and the sparse
codes xl are learned aiming to minimize the loss function

L = 1

l

L∑
l=1

1

2
‖yl − Dxl‖2

2 + λ‖xl‖1, (1.6)

where l = 1 · · ·L, L is the number of data samples, and yl is the lth labeled data sample.
Take a labeled dataset of faces yl and their corresponding one-hot-encoded IDs zl as an illustration.

Some samples of this dataset are shown in Fig. 1.30(a). We then solve equation (1.6) and compute
the dictionary D with 100 atoms and the sparse codes xl . Fig. 1.30(b) shows some of the dictionary
components that can be reorganized as images. Observe how some features, like glasses, are highlighted
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by the atoms. Fig. 1.31 depicts the matrix with the columns representing the sparse codes. As expected,
the majority of the sparse codes’ elements are zero. Each labeled data yl ∈R

4096×1 is then replaced
by its 100-sparse representation vector xl ∈ R

100×1. The obtained sparse dataset is then used to train
a simple neural network with only one hidden layer by forcing the output of the softmax function to
match to the one-hot class encoding vectors zl . Fig. 1.32 shows that under this basic setup, validation
accuracy can be maintained to around 80% even when using a condensed version of the input images.

FIGURE 1.30

(a) Samples from the original dataset and (b) samples from the obtained dictionary with 100 atoms.

1.19 Closing comments
The theory of signal processing and machine learning has been developing for over five decades at a
fast pace. The following chapters will cover many of the classical tools widely employed in applications
that we perceive in our daily life through the use of mobile phones, media players, medical equipment,
transportation, drones, robots, and so on. These chapters will also cover recent advances and describe
many new tools that can potentially be utilized in new applications and further investigated. The authors
of the chapters are frequent and vital contributors to the field of signal processing and machine learning
theory. The goal of each chapter is to provide an overview and a brief tutorial on essential topics
pertaining to signal processing and machine learning theory, including critical references for further
studies. In addition, in the present chapter we attempted to describe the context in which each family
of tools is employed.
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FIGURE 1.31

k-Sparse vectors obtained by solving equation (1.6) with k = 100 atoms and L = 400 images.

FIGURE 1.32

Accuracy obtained during training and validation.

The rest of this book is organized into 16 more chapters covering in more depth the subjects pertain-
ing to signal processing and machine learning theory outlined in the present chapter. Using a bird’s-eye
view, we can infer that the contents ahead represent the many possible stages of acquiring data for sev-
eral purposes. Chapters 2, 3, and 4 deal with descriptions of continuous and discrete signals and their
basic manipulation that could be the dataset’s source for further processing. Chapter 5 discusses issues
related to sampling and quantization, which is part of preparing the data to be adequately represented
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for filtering, as discussed in Chapter 6. Filters are part of the mapping required to expose data or signal
features, including sampling rate changes, widening the set of methods for analysis and systems design,
as seen in Chapter 7. Then, with the previous tools, Chapters 8, 9, and 10 discuss many data-mapping
methods that are instrumental in analyzing the data as the final target or performing a preprocessing
step for further learning. In sequence, the subjects of Chapters 11 and 12 belong to the class of algo-
rithms that allows for learning model parameters from data. Chapter 13 presents several alternatives for
machine learning, broadening the power to learn from large datasets. Furthermore, Chapters 14 and 16
discuss methods to learn from data related to the nodes of a graph, where analysis, design, and learning
tools are applied to data defined on graph structures. Finally, Chapters 15 and 17 deal with the tech-
niques required to learn features from large datasets with sparse representations and utilize adequate
data preprocessing. The cross-fertilization between these areas widens our ability to interpret the mech-
anisms behind the data-learning properties of the algorithms, network structures, and applications. Pick
your choices and enjoy the ride!
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2
CHAPTER

Continuous-time signals and systems

José A. Apolinário Jr.a and Carla L. Pagliaria

Military Institute of Engineering (IME), Department of Electrical Engineering (SE/3), Rio de Janeiro, RJ, Brazil

2.1 Introduction
Most signals present in our daily lives are continuous in time such as music and speech. A signal is
a function of an independent variable, usually an observation measured from the real world such as
position, depth, temperature, pressure, or time. Continuous-time signals have a continuous independent
variable. The velocity of a car could be considered a continuous-time signal if, at any time t , the velocity
v(t) could be defined. A continuous-time signal with a continuous amplitude is usually called an analog
signal, speech signals being a typical example.

Signals convey information and are generated by electronic or natural means such as when someone
talks or plays a musical instrument. The goal of signal processing is to extract the useful information
embedded in a signal.

Electronics for audio and last-generation mobile phones rely on universal concepts associated with
the flow of information to make these devices fully functional. Therefore, a system designer, in order to
have the necessary understanding of advanced topics, needs to master basic signals and systems theory.
Systems theory could be defined as the study of the relation between input and output signals.

As characterizing the complete input/output properties of a system through measurement is, in gen-
eral, impossible, the idea is to infer the system response to nonmeasured inputs based on a limited
number of measurements. System design is a challenging task. However, several systems can be ac-
curately modeled as linear systems. Hence, the designer has to create an expected, or predictable,
relationship between the input and the output that is always the same (time-invariant). In addition,
for a range of possible input types, the system should generate a predictable output in accordance with
the input/output relationship.

A continuous-time signal is defined on the continuum of time values as the one depicted in Fig. 2.1,
x(t) for t ∈ R. This signal is actually periodic, the period being equal to one, and the figure shows the
interval of two periods.

Although signals are real mathematical functions, some transformations can produce complex sig-
nals that have both real and imaginary parts. Therefore, throughout this book, complex-domain equiv-
alents of real signals will certainly appear.

a Authors thank Prof. Ney Bruno (in memoriam) for his kind and competent review of this chapter.
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FIGURE 2.1

Example of a continuous-time signal.

FIGURE 2.2

Basic continuous-time signals: (a) unit-step signal u(t), (b) unit-area pulse, (c) impulse signal (unit-area pulse
when �τ → 0), and (d) exponential signal.
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Elementary continuous-time signals are the basis to build more intricate signals. The unit-step sig-
nal, u(t), displayed in Fig. 2.2(a) is equal to 1 for all time greater than or equal to zero and is equal to
zero for all time less than zero. A step of height K can be made with Ku(t).

A unit-area pulse is pictured in Fig. 2.2(b); as �τ gets smaller, the pulse gets higher and narrower
with a constant area of one (unit area). We can see the impulse signal in Fig. 2.2(c) as a limiting case of
the pulse signal when the pulse is infinitely narrow. The impulse response will help to estimate how the
system will respond to other possible stimuli, and we will further explore this topic in the next section.

Exponential signals are important for signals and systems as eigensignals of linear time-invariant
(LTI) systems. In Fig. 2.2(d), for A and α being real numbers, α negative, the signal is a decaying
exponential. When α is a complex number, the signal is called a complex exponential signal. The
periodic signals sine and cosine are used for modeling the interaction of signals and systems, and the
usage of complex exponentials to manipulate sinusoidal functions turns trigonometry into elementary
arithmetic and algebra.

2.2 Continuous-time systems
We start this section by providing a simplified classification of continuous-time systems in order to
focus on our main interest: an LTI system.

Why are linearity and time-invariance important? In general, real-world systems can be successfully
modeled by theoretical LTI systems; in an electrical circuit, for instance, a system can be designed using
a well-developed linear theory (valid for LTI systems) and be implemented using real components such
as resistors, inductors, and capacitors. Even though the physical components, strictly speaking, do not
comply with linearity and time-invariance for any input signals, the circuit will work quite well under
reasonable conditions (input voltages constrained to the linear working ranges of the components).

A system can be modeled as a function that transforms, or maps, the input signal into a new output
signal. Let a continuous-time system be represented as in Fig. 2.3, where x(t) is the input signal and
y(t), its output signal, corresponds to a transformation applied to the input signal: y(t) = T {x(t)}.

FIGURE 2.3

A generic continuous-time system representing the output signal as a transformation applied to the input
signal: y(t) = T {x(t)}.

The two following properties define an LTI system.

Linearity: A continuous-time system is said to be linear if a linear combination of input signals, when
applied to this system, produces an output that corresponds to a linear combination of individual out-



38 Chapter 2 Continuous-time signals and systems

puts, i.e.,

y(t) = T {a1x1(t) + a2x2(t) + · · · }
= a1T {x1(t)} + a2T {x2(t)} + · · ·
= a1y1(t) + a2y2(t) + · · · , (2.1)

where yi(t) = T {xi(t)}.
Time-invariance: A continuous-time system is said to be time-invariant when the output signal, y(t),
corresponding to an input signal x(t), will be a delayed version of the original output, y(t − t0), when-
ever the input is delayed accordingly, i.e.,

if y(t) = T {x(t)},
then y(t − t0) = T {x(t − t0)}.

The transformation caused in the input signal by an LTI system may be represented in a number of
ways: with a set of differential equations, with the help of a set of state variables, with the aid of the
concept of the impulse response, or in a transformed domain.

Let the circuit in Fig. 2.4 be an example of a continuous-time system where the input x(t) cor-
responds to the voltage between terminals A and B while its output y(t) is described by the voltage
between terminals C and D.

FIGURE 2.4

An example of an electric circuit representing a continuous-time system with input x(t) and output y(t).

We know for this circuit, according to Kirchhoff’s voltage law (KVL), that x(t) = y(t) + vR(t) and
that the current in the capacitor, i(t), corresponds to Cdy(t)/dt . Therefore, using Ohm’s law, we obtain
vR(t) = Ri(t) = RCdy(t)/dt , and we can write

RC
dy(t)

dt
+ y(t) = x(t), (2.2)
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which is an input–output (external) representation of a continuous-time system given as a differential
equation.

Another representation of a linear system, widely used in control theory, is the state-space represen-
tation. This representation will be presented in the next section since it is better explored for systems
having a higher-order differential equation.

In order to find an explicit expression for y(t) as a function of x(t), we need to solve the differential
equation. The complete solution of this system, as shall be seen in the following section, is given by
the sum of an homogeneous solution (zero-input solution or natural response) and a particular solution
(zero-state solution or forced solution):

y(t) = yh(t)︸ ︷︷ ︸
homogeneous solution

+ yp(t)︸ ︷︷ ︸
particular solution

. (2.3)

The homogeneous solution, in our example, is obtained from (2.2) by setting RDdyh(t)/dt +
yh(t) = 0. Since this solution and its derivatives must comply with the homogeneous differential equa-
tion, its usual choice is an exponential function such as Kest , s being, in general, a complex number.
Replacing this general expression in the homogeneous differential equation, we obtain RCs + 1 = 0
(characteristic equation) and, therefore, s = −1/RC, such that the homogeneous solution becomes

yh(t) = Ke− t
RC , (2.4)

where K is a constant.
The particular solution is usually of the same form as the forcing function (input voltage x(t) in

our example) and it must comply with the differential equation without an arbitrary constant. In our
example, if x(t) = Me−mt , yp(t) would be M

1−mRC
e−mt .

If we set x(t) = u(t), the step function which can be seen as a DC voltage of 1 V switched at time
instant t = 0, the forced solution is equal to one when t ≥ 0. For this particular input x(t) = u(t), the
output signal is given by y(t) = (Ke− t

RC + 1)u(t). Constant K is obtained with the knowledge of the
initial charge of the capacitor (initial conditions); assuming it is not charged (vc(t) = 0, t ≤ 0), we have

y(t) = (1 − e− t
RC )u(t), (2.5)

which can be observed in Fig. 2.5.
Note that, for this case where x(t) = u(t), the output y(t) is known as the step response, i.e., r(t) =

y(t) |x(t)=u(t). Moreover, since the impulse δ(t) corresponds to the derivative of u(t), δ(t) = du(t)/dt ,
and the system is LTI, we may write dr(t)/dt = dT {u(t)}/dt , which corresponds to T {du(t)/dt}, the
transformation applied to the impulse signal leading to

h(t) = dr(t)

dt
, (2.6)

where h(t) is known as the impulse response or h(t) = y(t) |x(t)=δ(t).
The impulse response is, particularly, an important characterization of a linear system. It will help

to estimate how the system will respond to other stimuli. In order to show the relevance of this, let us
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FIGURE 2.5

Input and output signals of the system depicted in Fig. 2.4. Click here to watch the animation.

define the unit impulse as

δ(t) = lim
�τ→0

1

�τ
[u(t) − u(t − �τ)] , (2.7)

such that we may see an input signal x(t) as in Fig. 2.6:

x(t) ≈
∞∑

k=−∞
x(k�τ)

[
u(t − k�τ) − u(t − k�τ − �τ)

�τ

]
︸ ︷︷ ︸

δ(t−k�τ) when �τ→0

�τ. (2.8)

The idea is to show that any signal, e.g., x(t), can be expressed as a sum of scaled and shifted
impulse functions.

In (2.8), making �τ → 0 and representing the resulting continuous time by τ instead of k�τ , we
can use the integral instead of the summation and find

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ. (2.9)

In an LTI system, using the previous expression as an input signal to compute the output y(t) =
T {x(t)}, we obtain

∫∞
−∞ x(τ)T {δ(t − τ)}dτ such that the output signal can be written as

y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ . (2.10)

This expression is known as the convolution integral between the input signal and the system im-
pulse response, and is represented as

y(t) = x(t) ∗ h(t). (2.11)

Please note that the output signal provided by the convolution integral corresponds to the zero-state
solution.

http://www.ime.eb.br/~apolin/CTSS/Fig5.avi
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FIGURE 2.6

A signal x(t) can be obtained from the pulses if we make �τ → 0.

From Fig. 2.6, another approximation for x(t) can be devised, leading to another expression relating
input and output signals. At a certain instant t = τ , let the angle of a tangent line to the curve of x(t) be
θ such that tan θ = dx(τ)

dτ
. Assuming a very small �τ , this tangent can be approximated by �x(τ)

�τ
such

that

�x(τ) = dx(τ)

dτ
�τ. (2.12)

Knowing each increment at every instant t = k�τ , we can visualize an approximation for x(t) as a
sum of shifted and weighted step functions u(t − k�τ), i.e.,

x(t) ≈
∞∑

k=−∞
�x(k�τ)u(t − k�τ) =

∞∑
k=−∞

dx(k�τ)

dτ
u(t − k�τ)�τ. (2.13)

From the previous expression, if we once more, as in (2.9), make �τ → 0 and represent the resulting
continuous time by τ instead of k�τ , we can drop the summation and use the integral to obtain

x(t) =
∫ ∞

−∞
dx(τ)

dτ
u(t − τ)dτ. (2.14)

Assuming, again, that the system is LTI, we use the last expression as an input signal to compute
the output y(t) = T {x(t)}, obtaining

∫∞
−∞

dx(τ)
dτ

T {u(t − τ)}dτ , which can be written as

y(t) =
∫ ∞

−∞
dx(τ)

dτ
r(t − τ)dτ (2.15)
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or, r(t) being the step response, as

y(t) = dx(t)

dt
∗ r(t). (2.16)

In our example from Fig. 2.4, taking the derivative of r(t) = (1 − e−t/RC)u(t), we obtain the im-
pulse response (the computation of this derivative is somehow tricky for we must bear in mind that the
voltage in the terminals of a capacitor cannot present discontinuities, just as in the case of the current
through an inductor) as

h(t) = 1

RC
e− t

RC u(t). (2.17)

In order to have a graphical interpretation of the convolution, we make x(t) = u(t) in (2.11) and use

r(t) = h(t) ∗ u(t) =
∫ ∞

−∞
h(τ)u(t − τ)dτ ; (2.18)

we then compute this integral, as indicated in Fig. 2.7, in two parts:

for t < 0 : r(t) = 0,

for t > 0 : r(t) =
∫ t

0
h(τ)dτ = 1

RC

∫ t

0
e− τ

RC dτ. (2.19)

FIGURE 2.7

Graphical interpretation of the convolution integral. Click here to watch an animation.

Finally, from (2.19), we obtain r(t) = (1 − e−t/RC)u(t), as previously known.
A few mathematical properties of the convolution are listed in the following:

• commutative: x(t) ∗ h(t) = h(t) ∗ x(t),
• associative: [x(t) ∗ h1(t)] ∗ h2(t) = x(t) ∗ [h1(t) ∗ h2(t)],
• distributive: x(t) ∗ [h1(t) + h2(t)] = x(t) ∗ h1(t) + x(t) ∗ h2(t),
• identity element of convolution: x(t) ∗ δ(t) = x(t).

The properties of convolution can be used to analyze different system combinations. For example,
if two systems with impulse responses h1(t) and h2(t) are cascaded, the whole cascade system will

http://www.ime.eb.br/~apolin/CTSS/Fig7.avi
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present the impulse response h1(t) ∗ h2(t). The commutative property allows the order of the systems
of the cascade combination to be changed without affecting the whole system’s response.

Two other important system properties are causability and stability.

Causability: A causal system, also known as nonanticipative system, is a system whose output y(t)

depends only on the current and past (not future) information about x(t). A noncausal, or anticipative,
system is actually not feasible to be implemented in real life. For example, y(t) = x(t + 1) is noncausal,
whereas y(t) = x(t − 1) is causal.

With respect to the impulse response, it is also worth mentioning that, for a causal system, h(t) = 0
for t < 0.

Stability: A system is stable if and only if every bounded input produces a bounded output, i.e., if
|x(t)| < Bx , then |y(t)| < By for all values of t.

More about stability will be addressed in a forthcoming section, after the concept of poles and zeros
is introduced.

The classic texts for the subjects discussed in this section include [1], [2], [3], [4], and [5], while a
more recent discussion, with examples, on the Dirac delta function is found in [6].

2.3 Differential equations
In many engineering applications, the behavior of a system is described by a differential equation. A
differential equation is merely an equation with a derivative of at least one of its variables. Two simple
examples follow:

a
d2x

dt2
+ b

dx

dt
+ c = sin(t) and (2.20)

∂2z

∂x2
+ ∂2z

∂y2
= x2 + y2, (2.21)

where a, b, and c are constants.
In (2.20), we observe an ordinary differential equation, i.e., there is only one independent variable

and x = f (t), t being the independent variable. On the other hand, in (2.21), we have a partial differen-
tial equation, where z = f (x, y), x and y being two independent variables. Both examples have order
2 (highest derivative appearing in the equation) and degree 1 (power of the highest derivative term).

This section deals with the solution of differential equations usually employed to represent the
mathematical relationship between input and output signals of a linear system. We are therefore most
interested in linear differential equations with constant coefficients having the following general form:

aoy + a1
dy

dt
· · · + aN

dNy

dtN
= b0x + b1

dx

dt
+ · · · + bM

dMx

dtM
. (2.22)

The expression on the right side of (2.22) is known as a forcing function; we could name it f (t).
When f (t) = 0, the differential equation is known as homogeneous, while a nonzero forcing function
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corresponds to a nonhomogeneous differential equation such as in

aoy + a1
dy

dt
· · · + aN

dNy

dtN
= f (t). (2.23)

As mentioned in the previous section, the general solution of a differential equation as the one
in (2.22) is given by the sum of two expressions: yH (t), the solution of the associated homogeneous
differential equation

aoy + a1
dy

dt
· · · + aN

dNy

dtN
= 0, (2.24)

and a particular solution of the nonhomogeneous equation, yP (t), such that

y(t) = yH (t) + yP (t). (2.25)

Solution of the homogeneous equation: The natural response of a linear system is given by yH (t), the
solution of (2.24). Due to the fact that a linear combination of yH (t) and its derivatives must be equal
to zero in order to comply with (2.24), it may be postulated that the nontrivial solution has the form

yH (t) = est , (2.26)

where s is a constant to be determined.
Replacing the assumed solution in (2.24), we obtain, after simplification, the characteristic (or aux-

iliary) equation

a0 + a1s + · · · + aNsN = 0. (2.27)

Assuming N distinct roots of the polynomial in (2.27), s1 to sN , the homogeneous solution is ob-
tained as a linear combination of N exponentials as in

yH (t) = k1e
s1t + k2e

s2t + · · · + kNesN t . (2.28)

Two special cases follow.

(1) Nondistinct roots: If, for instance, s1 = s2, it is possible to show that es1t and tes2t are independent
solutions leading to

yH (t) = k1e
s1t + k2te

s2t + · · · .

(2) Characteristic equation with complex roots: It is known that for real coefficients (a0 to aN ), all
complex roots will occur in complex conjugate pairs such as s1 = α + jβ and s2 = α − jβ, α and
β being real numbers. Hence, the solution would be

yH (t) = k1e
(α+jβ)t + k2e

(α−jβ)t + · · ·
= [(k1 + k2) cosβt + j (k1 − k2) sinβt]eαt + · · ·
= (k3 cosβt + k4 sinβt)eαt + · · · ,
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k3 and k4 being real numbers if we make k1 = k∗
2 . In that case, we will have

yH (t) = k5 cos(βt − θ)eαt + · · · ,

with k5 =
√

k2
3 + k2

4 and θ = arctan k4
k3

(check the signs of k3 and k4 to determine the correct quad-
rant of θ ). Also note from the last expression that in order to have a stable system (bounded output),
α should be negative (causing a decaying exponential).

Solution of the nonhomogeneous equation: A (any) forced solution of the nonhomogeneous equation
must satisfy (2.23) containing no arbitrary constant. A usual way to find the forced solution is em-
ploying the so-called method of undetermined coefficients: it consists in estimating a general form for
yP (t) from f (t), the forcing function. The coefficients (A0, A1, · · · ), as seen in Table 2.1, which shows
the most common assumed solutions for each forced function, are to be determined in order to com-
ply with the nonhomogeneous equation. A special case is treated slightly differently: when a term of
f (t) corresponds to a term of yH (t), the corresponding term in yP (t) must be multiplied by t . Also,
when we find nondistinct roots of the characteristic equation (assume multiplicity m as an example),
the corresponding term in yP (t) shall be multiplied by tm.

Table 2.1 Assumed particular solutions to common forcing
functions.

Forcing function f (t) Assumed yP (t)

K A0

Kt A0t + A1

Ktn A0t
n + A1t

n−1 + · · · + An−1t + An

Ke−αt A0e
−αt

sin	t or cos	t A0 sin	t + A1 cos	t

e−αt sin	t or e−αt cos	t e−αt (A0 sin	t + A1 cos	t)

An example of a second-order ordinary differential equation (ODE) with constant coefficients is
considered as follows:

LC
d2vo(t)

dt2
+ RC

dvo(t)

dt
+ vo(t) = vi(t), (2.29)

where R = 2.0 (in �), L = 2.0 (in H), C = 1/2 (in F), and vi(t) = e−t (in V).
This equation describes the input × output relationship of the electrical circuit shown in Fig. 2.8 for

t > 0.
Replacing the values of the components and the input voltage, the ODE becomes

d2vo(t)

dt2 + dvo(t)

dt
+ vo(t) = e−t︸︷︷︸

f (t)

. (2.30)
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FIGURE 2.8

RLC series circuit with a voltage source as input and the voltage in the capacitor as output.

The associated characteristic equation s2 + s + 1 = 0 has roots s = −1±j
√

3
2 leading to an homoge-

neous solution given by

voH (t) = k1 cos

(√
3

2
t

)
e−t/2 + k2 sin

(√
3

2
t

)
e−t/2

= k3 cos

(√
3

2
t + k4

)
e−t/2. (2.31)

Next, from the forcing function f (t) = e−t , we assume voP (t) = k5e
−t and replace it in (2.30),

resulting in k5 = 1 such that

vo(t) = k1 cos

(√
3

2
t

)
e−t/2 + k2 sin

(√
3

2
t

)
e−t/2 + e−t

= k3 cos

(√
3t

2
+ k4

)
e−t/2 + e−t , (2.32)

where k1 and k2 (or k3 and k4) are constants to be obtained from previous knowledge of the physical
system, the RLC circuit in this example. This knowledge comes as the initial conditions: an N -order
differential equation having N constants and requiring N initial conditions.

Initial conditions: Usually, the differential equation describing the behavior of an electrical circuit is
valid for any time t > 0 (instant 0 assumed the initial reference in time); the initial conditions corre-
spond to the solution (and its N − 1 derivatives) at t = 0+. In the absence of pulses, the voltage at
the terminals of a capacitance and the current through an inductance cannot vary instantaneously and
must be the same value at t = 0− and t = 0+.

In the case of our example, based on the fact that there is a key switching vi(t) to the RLC series
at t = 0, we can say that the voltage across the inductor is vo(0−) = 1 (the capacitor assumed charged
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FIGURE 2.9

Output voltage as a function of time, vo(t), for the circuit in Fig. 2.8. Click here to watch an animation.

with the DC voltage). Therefore, since the voltage across C and the current through L do not alter
instantaneously, we know that vo(0+) = 1 and i(0+) = 0. Since we know that i(t) = C

dvo(t)
dt

, we have
dv0(t)

dt

∣∣∣
t=0+ = 0. With these initial conditions and from (2.32), we find k1 = 0 and k2 = 2

√
3

3 .

Finally, the general solution is given as

vo(t) = 1.1547 sin(0.866t)e−t/2 + e−t . (2.33)

Fig. 2.9 shows vo(t) for 0 ≤ t ≤ 10. An easy way to obtain this result with MATLAB® is

> y=dsolve(’D2y+Dy+y=exp(-t)’,’y(0)=1’,’Dy(0)=0’);

> ezplot(y,[0 10])

To end this section, we represent this example using the state-space approach. We first rewrite (2.29)
using the first and second derivatives of vo(t) as v̇ and v̈, respectively, and also u = vi(t) as in

LCv̈ + RCv̇ + v = u. (2.34)

In this representation, we define a state vector x = [v v̇]T and its derivative ẋ = [v̇ v̈]T , and from
these definitions we write the state equation and the output equation:

http://www.ime.eb.br/~apolin/CTSS/Fig9.avi
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = Ax + Bu =
[

0 1
−1
LC

−R
L

][
v

v̇

]
+
[

0
1

LC

]
vi(t),

y = Cx + Du = [1 0]

[
v

v̇

]
+ 0vi(t),

(2.35)

where A is known as the state matrix, B as the input matrix, and C as the output matrix, and D (equal
to zero in this example) would be the feedthrough (or feedforward) matrix.

For further reading, we suggest [7], [8], [9], and [10].

2.4 Laplace transform: definition and properties
The Laplace transform [11] is named after the French mathematician Pierre-Simon Laplace. It is an
important tool for solving differential equations, and it is very useful for designing and analyzing linear
systems [12].

The Laplace transform is a mathematical operation that maps, or transforms, a variable (or function)
from its original domain into the Laplace domain, or s domain. This transform produces a time-domain
response to transitioning inputs, whenever time-domain behavior is more interesting than frequency-
domain behavior. When solving engineering problems one has to model a physical phenomenon that is
dependent on the rates of change of a function (e.g., the velocity of a car as mentioned in Section 2.1).
Hence, calculus and differential equations (Section 2.3) that model the phenomenon are the natural
candidates to be the mathematical tools. However, calculus solves (ordinary) differential equations pro-
vided the functions are continuous and with continuous derivatives. In addition, engineering problems
have often to deal with impulsive, nonperiodic, or piecewise-defined input signals.

The Fourier transform, to be addressed in Section 2.7, is also an important tool for signal analysis, as
well as for linear filter design. However, while the unit-step function (Fig. 2.2(a)), discontinuous at time
t = 0, has a Laplace transform, its forward Fourier integral does not converge. The Laplace transform
is particularly useful for input terms that are impulsive, nonperiodic, or piecewise-defined [4].

The Laplace transform maps the time domain into the s-domain, with s = σ + j	, converting in-
tegral and differential equations into algebraic equations. The function is mapped (transformed) to the
s-domain, eliminating all the derivatives. Hence, solving the equation becomes simple algebra in the
s-domain and the result is transformed back to the time domain. The Laplace transform converts a time-
domain 1D signal, x(t), into a complex representation, X(s), defined over a complex plane (s-plane).
The complex plane is spanned by the variables σ (real axis) and 	 (imaginary axis) [5].

The two-sided (or bilateral) Laplace transform of a signal x(t) is the function L {x(t)} defined by

X(s) = L{x(t)} =
∫ ∞

−∞
x(t)e−st dt . (2.36)

The notation X(s) = L{x(t)} indicates that X(s) is the Laplace transform of x(t). Conversely, the
notation x(t) = L−1{X(s)} denotes that x(t) is the inverse Laplace transform of X(s). This relationship

is expressed with the notation x(t)
L←−−→ X(s).
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As e−st = e−(σ+j	)t = e−σ t (cos	t − j sin	t), Eq. (2.36) can be rewritten as

L{x(t)} = X(s)|s=σ+j	 =
∫ ∞

−∞
x(t)e−σ t cos	t dt − j

∫ ∞

−∞
x(t)e−σ t sin	t dt. (2.37)

This way, one can identify that the Laplace transform real part (Re(X(s)) represents the contribution of
the (combined) exponential and cosine terms to x(t), while its imaginary part (Im(X(s)) represents the
contribution of the (combined) exponential and sine terms to x(t). As the term e−st is an eigenfunction,
we can state that the Laplace transform represents time-domain signals in the s-domain as weighted
combinations of eigensignals.

For those signals equal to zero for t < 0, the limits on the integral are changed for the one-sided (or
unilateral) Laplace transform:

X(s) = L{x(t)} =
∫ ∞

0−
x(t)e−st dt , (2.38)

with x(t) = 0 for t < 0−, in order to deal with signals that present singularities at the origin, i.e., at
t = 0.

As the interest will be in signals defined for t ≥ 0, let us find the one-sided Laplace transform of
x(t) = etu(t):

L{x(t)} = X(s) =
∫ ∞

0−
et e−st dt =

∫ ∞

0−
e(1−s)t dt = 1

1 − s
e(1−s)t

∣∣∣∣
∞

0−
= 1

s − 1
. (2.39)

The integral, in (2.39), defining L{x(t)} is true if e(1−s)t → 0 as t → ∞, ∀ s ∈ C with Re(s) > 1,
which is the region of convergence (ROC) of X(s).

As the analysis of convergence and the conditions that guarantee the existence of the Laplace inte-
gral are beyond the scope of this chapter, please refer to [5] and [4].

For a given x(t), the integral may converge for some values of σ , Re(s = σ + j	), but not for oth-
ers. So, we have to guarantee the existence of the integral, i.e., x(t)e−σ t has to be absolutely integrable.
The ROC of the integral in the complex s-plane should be specified for each transform L{x(t)}, which
exists if and only if the argument s is inside the ROC. The transformed signal, X(s), will be well de-
fined for a range of values in the s-domain that is the ROC, which is always given in association with
the transform itself.

When σ = 0, so that s = j	, the Laplace transform reverts to the Fourier transform, i.e., x(t) has a
Fourier transform if the ROC of the Laplace transform in the s-plane includes the imaginary axis.

For finite duration signals that are absolutely integrable, the ROC contains the entire s-plane. As
L{x(t)} = X(s) cannot uniquely define x(t), X(s) and the ROC are required. If we wish to find the
Laplace transform of a one-sided real exponential function x(t) = eatu(t), a ∈R, given by

x(t) =
{

0, t ≤ 0,

eat , t > 0,
(2.40)

we have

X(s) =
∫ ∞

0−
e−(s−a)t dt = − 1

s − a
e−(s−a)t

∣∣∣∣
∞

0−
= 1

s − a
. (2.41)
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The integral of (2.41) converges if σ > a, and the ROC is the region of the s-plane to the right of
σ = a, as pictured in Fig. 2.10. If σ < a the integral does not converge as X(s) → ∞, and if σ = a we
cannot determine X(s).

FIGURE 2.10

Region of convergence (ROC) on the s-plane for the signal defined by Eq. (2.40). Note that for a stable signal
(a < 0), the ROC contains the vertical axis s = j	.

In other words, if a signal x(t) is nonzero only for t ≥ 0, the ROC of its Laplace transform lies to
the right-hand side of its poles (please refer to Section 2.5). Additionally, the ROC does not contain any
pole. Poles are points where the Laplace transform reaches an infinite value in the s-plane (e.g., s = a

in Fig. 2.10).
An example of the two-sided Laplace transform of a right-sided exponential function x(t) =

e−atu(t), a ∈ R, is given by

X(s) =
∫ ∞

−∞
e−atu(t)e−st dt

=
∫ ∞

0−
e−(s+a)t dt

=
∫ ∞

0−
e−(σ+a)t e−j	tdt

= − 1

s + a
e−(s+a)t

∣∣∣∣
∞

0−
= 1

s + a
. (2.42)

As the term e−j	t is sinusoidal, only σ = Re(s) is important, i.e., the integral given by (2.42), when
t tends to infinity, converges if e−(σ+a)t is finite (σ > −a) in order for the exponential function to decay.
The integral of Eq. (2.42) converges if Re(s + 1) > 0, i.e. if Re(s) > −a, and the ROC is the region of
the s-plane to the right of σ = −a, as pictured in the left side of Fig. 2.11. The ROC of the Laplace
transform of a right-sided signal is to the right of its rightmost pole.
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If we wish to find the two-sided Laplace transform of a left-sided signal, x(t) = −e−atu(−t), a ∈
R, we have

X(s) = −
∫ ∞

−∞
e−atu(−t)e−st dt

= −
∫ 0−

−∞
e−(s+a)t dt

= 1

s + a
e−(s+a)t

∣∣∣∣
0−

∞
= 1

s + a
. (2.43)

The integral of Eq. (2.43) converges if Re(s) < −a, and the ROC is the region of the s-plane to
the left of σ = −a, as pictured in the right side of Fig. 2.11. The ROC of the Laplace transform of a
left-sided signal is to the left of its leftmost pole.

FIGURE 2.11

Regions of convergence (ROCs) on the s-plane: (a) for right-sided signals, Re(s) > −a, and (b) for left-sided
signals, Re(s) < −a.

For causal systems, where h(t) = 0, t < 0, and right-sided signals, where x(t) = 0, t < 0, the uni-
lateral (one-sided) and bilateral (two-sided) transforms are equal. However, it is important to stress that
some properties change, such as the differentiation property reduced to sX(s) for the bilateral case.
Conversely, other properties, such as convolution, hold as is, provided the system is causal and the
input starts at t = 0−.

Common Laplace transform pairs [13] are summarized in Table 2.2.
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Table 2.2 Laplace transform pairs.

x(t) = L−1 {X(s)} X(s) = L {x(t)} ROC
δ(t) 1 for all s

δ(t − τ), τ > 0 e−sτ for all s

u(t)
1

s
Re(s) > 0

−u(−t)
1

s
Re(s) < 0

t u(t)
1

s2 Re(s) > 0

tn u(t)
n!

sn+1
, n = 1,2, ... Re(s) > 0

e−at u(t)
1

s + a
Re(s) > −Re(a)

−e−at u(−t)
1

s + a
Re(s) < −Re(a)

tne−at u(t)
n!

(s + a)n+1
, n = 1,2, ... Re(s) > −Re(a)

sin	t u(t)
	

s2 + 	2
Re(s) > 0

cos	t u(t)
s

s2 + 	2
Re(s) > 0

e−at sin	t u(t)
	

(s + a)2 + 	2
Re(s) > −Re(a)

e−at cos	t u(t)
s + a

(s + a)2 + 	2 Re(s) > −Re(a)

sin(	t + θ) u(t)
s sin θ + 	 cos θ

s2 + 	2 Re(s) > 0

cos(	t + θ) u(t)
s cos θ − 	 sin θ

s2 + 	2 Re(s) > 0

e−at (	 cos	t − a sin	t) u(t)
	s

(s + a)2 + 	2 Re(s) > −Re(a)

Recalling Fig. 2.3, where x(t) is the input to a linear system with impulse response h(t), to obtain
the output y(t) one could convolve x(t) with h(t) (see (2.11)). However, if X(s) and Y(s) are the
associated Laplace transforms, the (computationally demanding) operation of convolution in the time
domain is mapped into a (simple) operation of multiplication in the s-domain:

y(t) = h(t) ∗ x(t)
L←−−→ Y(s) = H(s)X(s). (2.44)

Eq. (2.44) shows that convolution in the time domain is equivalent to multiplication in the Laplace
domain. In the following, some properties of the Laplace transform disclose the symmetry between
operations in the time and s-domains. Note that due to the practical interest on causal signals and
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systems, we focus on the properties of the unilateral (also known as ordinary or one-sided) Laplace
transform.

Linearity: If x1(t)
L←−−→ X1(s), ROC = R1, and x2(t)

L←−−→ X2(s), ROC = R2, then

L{a1x1(t) + a2x2(t)} = a1L{x1(t)} + a2L{x2(t)} = a1X1(s) + a2X2(s), (2.45)

with a1 and a2 being constants and ROC ⊇ R1 ∩ R2. The Laplace transform is a linear operation.

Time shifting: If x(t)
L←−−→ X(s), ROC = R, then x(t − t0)

L←−−→ e−st0X(s), ∀t0 ∈R, ROC = R. We
have ∫ ∞

0−
x(t − t0)e

−st dt =
∫ ∞

0−
x(τ)e−s(τ+t0)dτ

= e−st0

∫ ∞

0−
x(τ)e−s(τ )dτ

= e−st0X(s), (2.46)

where t − t0 = τ . Time shifting (or time delay) in the time domain is equivalent to modulation (alter-
ation of the magnitude and phase) in the s-domain.

Exponential scaling (frequency shifting): If x(t)
L←−−→ X(s), ROC = R, then eatx(t)

L←−−→ X(s − a),
ROC = R + Re(a), ∀a ∈ R or C. We have

L{eatx(t)} =
∫ ∞

0−
eatx(t)e−st dt =

∫ ∞

0−
x(t)e−(s−a)t dt = X(s − a). (2.47)

Modulation in the time domain is equivalent to shifting in the s-domain.

Convolution: If x1(t)
L←−−→ X1(s), ROC = R1, and x2(t)

L←−−→ X2(s), ROC = R2, then x1(t) ∗
x2(t)

L←−−→ X1(s)X2(s), ROC ⊇ R1 ∩ R2:∫ ∞

0−
[x1(t) ∗ x2(t)] e

−st dt =
∫ ∞

0−

[∫ ∞

0−
x1(τ )x2(t − τ)dτ

]
e−st dt

=
∫ ∞

0−

∫ ∞

0−
x1(τ )x2(t − τ)e−s(t−τ+τ)dτdt

=
∫ ∞

0−
x1(τ )e−sτ dτ

∫ ∞

0−
x2(υ)e−sυdυ

= X1(s)X2(s), (2.48)

where in the inner integral υ = 1 − τ . Convolution in the time domain is equivalent to multiplication in
the s-domain.

Differentiation in time: If x(t)
L←−−→ X(s), ROC = R, then ẋ(t)

L←−−→ sX(s) − x(0−), ROC ⊇ R.
Integrating by parts, we have∫ ∞

0−
dx(t)

dt
e−st dt = x(t)e−st

∣∣∞
0− −

∫ ∞

0−
x(t)(−s)e−st dt
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= 0 − x(0−) + s

∫ ∞

0−
x(t)e−st dt

= sX(s) − x(0−), (2.49)

where any jump from t = 0− to t = 0+ is considered. In other words, the Laplace transform of a deriva-
tive of a function is a combination of the transform of the function, multiplied by s, and its initial value.
This property is quite useful as a differential equation in time can be turned into an algebraic equation
in the Laplace domain, where it can be solved and mapped back into the time domain (inverse Laplace
transform).

The initial- and final-value theorems show that the initial and final values of a signal in the time
domain can be obtained from its Laplace transform without knowing its expression in the time domain.

Initial-value theorem: Assuming a strictly proper (having the degree of the numerator less than the
degree of the denominator) LTI system that generated the signal x(t), we have

lim
s→∞ sX(s) = lim

t→0+ x(t). (2.50)

From the differentiation in time property, we have ẋ(t) ↔ sX(s) − x(0−). By taking the limit when
s → ∞ of the first expression of (2.49), we find

lim
s→∞

∫ ∞

0−
dx(t)

dt
e−st dt = lim

s→∞

(∫ 0+

0−
dx(t)

dt
e0dt +

∫ ∞

0+
dx(t)

dt
e−st dt

)

= lim
t→0+ x(t) − lim

t→0− x(t) + 0

= lim
t→0+ x(t) − lim

t→0− x(t). (2.51)

If we take the limit of s to ∞ in the result of (2.49), we have

lim
s→∞(sX(s) − x(0−)) = lim

s→∞ sX(s) − lim
t→0− x(t). (2.52)

Then we can equal the results of (2.52) and (2.51) and obtain

lim
s→∞ sX(s) − lim

t→0− x(t) = lim
t→0+ x(t) − lim

t→0− x(t). (2.53)

As the right-hand side of (2.53) is obtained taking the limit when s → ∞ of the result of (2.49), we
can see from (2.51) and (2.53) that

lim
s→∞ sX(s) = lim

t→0+ x(t). (2.54)

The initial-value theorem provides the behavior of a signal in the time domain for small time in-
tervals, i.e., for t → 0+. In other words, it determines the initial values of a function in time from its
expression in the s-domain, which is particularly useful in circuits and systems.

Final-value theorem: Considering that the LTI system that generated the signal x(t) is stable, we have

lim
s→0

sX(s) = lim
t→∞x(t). (2.55)
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From the differentiation in time property, we have ẋ(t)
L←−−→ sX(s) − x(0−). By taking the limit when

s → 0 of the first expression of (2.49), we have

lim
s→0

∫ ∞

0−
dx(t)

dt
e−st dt =

∫ ∞

0−
dx(t)

dt
dt (2.56)

= lim
t→∞x(t) − lim

t→0− x(t).

If we take the limit when s → 0 of the last expression of (2.49), we get

lim
s→0

(sX(s) − x(0−)) = lim
s→0

sX(s) − lim
t→0− x(t); (2.57)

then, we can write

lim
s→0

sX(s) − lim
t→0− x(t) = lim

t→∞x(t) − lim
t→0− x(t). (2.58)

As the right-hand side of (2.58) is obtained taking the limit when s → 0 of the result of (2.49), we
can see from (2.57) and (2.58) that

lim
s→0

sX(s) = lim
t→∞x(t). (2.59)

The final-value theorem provides the behavior of a signal in the time domain for large time intervals,
i.e., for t → ∞. In other words, it obtains the final value of a function in time, assuming it is stable and
well defined when t → ∞, from its expression in the s-domain. An LTI system, as will be seen in the
next section, is considered stable if all of its poles lie within the left side of the s-plane. As t → ∞,
x(t) must reach a steady value, thus it is not possible to apply the final-value theorem to signals such
as sine, cosine, or ramp.

A list of one-sided Laplace transform properties is summarized in Table 2.3.
The inverse Laplace transform is given by

L−1{X(s)} = x(t) =
∫ σ+j∞

σ−j∞
X(s)est ds. (2.60)

The integration is performed along a line, parallel to the imaginary axis (σ − j∞, σ + j∞), that
lies in the ROC. However, the inverse transform can be calculated using partial fractions expansion with
the method of residues. In this method, the s-domain signal X(s) is decomposed into partial fractions,
thus expressing X(s) as a sum of simpler rational functions. Hence, as each term in the partial fraction
is expected to have a known inverse transform, each transform may be obtained from a table like
Table 2.2. Please recall that the ROC of a signal that is nonzero for t ≥ 0 is located to the right-hand
side of its poles. Conversely, for a signal that is nonzero for t ≤ 0, the ROC of its Laplace transform
lies to the left-hand side of its poles. In other words, if X(s) = 1/(s + a), a ∈ R, its inverse Laplace
transform is given as follows:

L−1
{

1

s + a

}
=
{

−e−at , Re(s) < −a,

e−at , Re(s) > −a.
(2.61)
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Table 2.3 Properties of (one-sided) Laplace transform.

Property Time domain s-domain ROC
x(t) X(s) R

x1(t) X1(s) R1

x2(t) X2(s) R2

Linearity a1x1(t) + a2x2(t) a1X1(s) + a2X2(s) ⊇ R1 ∩ R2

Scalar multiplication ax(t) aX(s) R

Scaling x(at)
1

a
X

(
s

a

)
R

|a|
Time shifting x(t − t0) e−st0 X(s) R

Exponential scaling eat x(t) X(s − a) R + Re(a)

Differentiation
dx(t)

dt
sX(s) − x(0−) ⊇ R

d2x(t)

dt2
s2X(s) − sx(0−) − ẋ(0−)

dnx(t)

dtn
snX(s) −

n∑
k=1

sn−kx(k−1)(0−)

Differentiation (in the s-domain) −tx(t)
dX(s)

ds
R

Convolution x1(t) ∗ x2(t) X1(s)X2(s) ⊇ R1 ∩ R2

Convolution (in the s-domain) x1(t)x2(t)
1

2πj
X1(s) ∗ X2(s) ⊇ R1 ∩ R2

In practice, the inverse Laplace transform is found recursing to tables of transform pairs (e.g., Ta-
ble 2.2). Given a function X(s) in the s-domain and an ROC, its inverse Laplace transform is given by
L−1{X(s)} = x(t) such that X(s) = L{x(t)}, s ∈ ROC.

An immediate application of the Laplace transform is in circuit analysis. Assuming that all initial
conditions are equal to zero, i.e., there is no initial charge on the capacitor, the response y(t) of the
circuit with input given by x(t) = u(t) displayed by Fig. 2.4 could be obtained in the Laplace domain
to be further transformed into the time domain.

First, the circuit elements are transformed from the time domain into the s-domain, thus creating an
s-domain equivalent circuit. Hence, the RLC elements in the time domain and s-domain are:

Resistor (voltage-current relationship):

v(t) = Ri(t)
L←−−→ V (s) = RI (s). (2.62)

The equivalent circuit is depicted in Fig. 2.12.

Inductor (initial current i(0−)):

v(t) = L
di(t)

dt

L←−−→ V (s) = sLI (s) − Li(0−); (2.63)
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applying the differentiation property (Table 2.3) leads to

I (s) = 1

sL
V (s) + i(0−)

s
. (2.64)

The equivalent circuit is depicted in Fig. 2.13. The inductor, L, is an impedance sL in the s-domain
in series with a voltage source, Li(0−), or in parallel with a current source, i(0−)

s
.

Capacitor (initial voltage v(0−)):

i(t) = C
dv(t)

dt

L←−−→ I (s) = sCV (s) − v(0−); (2.65)

applying the differentiation property (Table 2.3) leads to

V (s) = I (s)

sC
+ v(0−)

s
. (2.66)

The capacitor, C, is an impedance 1
sC

in the s-domain in series with a voltage source, v(0−)
s

, or in
parallel with a current source, Cv(0−). The voltage across the capacitor in the time domain corresponds
to the voltage across both the capacitor and the voltage source in the frequency domain. The equivalent
circuit is depicted in Fig. 2.14.

FIGURE 2.12

Equivalent circuit of a resistor in the Laplace domain.

FIGURE 2.13

Equivalent circuit of an inductor in the Laplace domain.
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FIGURE 2.14

Equivalent circuit of a capacitor in the Laplace domain.

As an example, the system’s response given by the voltage across the capacitor, y(t), depicted in
Fig. 2.4, is obtained in the Laplace domain as follows:

X(s) = 1

s
= I (s)

(
R + 1

sC

)
. (2.67)

From (2.65), we have

Y(s) = I (s)

sC
(2.68)

with

I (s) = X(s)

R + 1
sC

. (2.69)

Substituting (2.69) in (2.68) and applying the inverse Laplace transform (Table 2.2) and the linearity
property (Table 2.3), we get

L−1{Y(s)} = L−1

{
1

s
− 1

s + 1
RC

}
,

y(t) = u(t) − e−t 1
RC u(t), (2.70)

which is the same result presented in (2.5).
Another example where the Laplace transform is useful is the RLC circuit displayed by Fig. 2.8,

where the desired response is the voltage across the capacitor C, vo(t) = vC(t). Note that the initial
conditions are part of the transform, as well as the transient and steady-state responses. Given the input
signal vi(t) = e−t u(t) with initial conditions vo(0−) = 1, v̇o(0−) = 0, and io(0−) = 0, applying KVL
to the circuit, we have

vi(t) = vR(t) + vL(t) + vC(t). (2.71)
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Directly substituting (2.62), (2.63), and (2.65) in (2.71) and applying the Laplace transform to the
input signal, vi(t) = e−t u(t), we get

1

s + 1
=

(
RI (s) + sLI (s) − Lio(0

−) + 1

sC
I (s) + vo(0−)

s

)

= I (s)

(
R + sL + 1

sC

)
− Lio(0

−) + vo(0−)

s

= I (s)

sC

(
s2LC + sRC + 1

)
− Lio(0

−) + vo(0−)

s
. (2.72)

From (2.65),
I (s)

sC
= Vo(s) − vo(0−)

s
, we have

1

s + 1
= (Vo(s) − vo(0−)

s
)
(
s2LC + sRC + 1

)
− Lio(0

−)
vo(0−)

s

= Vo(s)
(
s2LC + sRC + 1

)
− vo(0−)

s

(
s2LC + sRC + 1

)
− Lio(0

−) + vo(0−)

s
. (2.73)

Substituting the values of R = 2.0 (in �), L = 2.0 (in H), and C = 1/2 (in F), the equation becomes

1

s + 1
= Vo(s)

(
s2 + s + 1

)
− vo(0−)

s

(
s2 + s + 1

)

− io(0
−) + vo(0−)

s
; (2.74)

considering that the initial conditions are v0(0−) = 1, v̇o(0−) = 0, and io(0−) = 0, we get

1

s + 1
= Vo(s)

(
s2 + s + 1

)
− 1

s

(
s2 + s + 1

)
− 0 + 1

s

= Vo(s)
(
s2 + s + 1

)
− s − 1 − 1

s
− 0 + 1

s

= Vo(s)
(
s2 + s + 1

)
− s − 1,

Vo(s) =
(

1

s + 1
+ s + 1

)(
1

s2 + s + 1

)

=
(

s2 + 2s + 2

s + 1

)(
1

s2 + s + 1

)
. (2.75)

After decomposing (2.75) into partial fractions and finding the poles and residues, the inverse
Laplace transform is applied in order to find the expression of vo(t):

Vo(s) = 1

(s + 1)
− j

√
3

3

(s + 1
2 − j

√
3

2 )
+ j

√
3

3

(s + 1
2 + j

√
3

2 )
, (2.76)
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L−1{Vo(s)} = L−1

{
1

(s + 1)
− j

√
3

3

(s + 1
2 − j

√
3

2 )
+ j

√
3

3

(s + 1
2 + j

√
3

2 )

}
. (2.77)

Applying the linearity property (Table 2.3) and recursing to the Laplace transform pair table (Ta-
ble 2.2), we get

vo(t) = e−t − j

√
3

3
e− t

2 +j t
√

3
2 + j

√
3

3
e− t

2 −j t
√

3
2 , (2.78)

considering that the inverse Laplace transforms of 1
s+a

, for Re(s) > −Re(a), given by Table 2.2, with

a = 1
2 − j

√
3

2 and a = 1
2 + j

√
3

2 , are

L−1

{
1

(s + 1
2 − j

√
3

2 )

}
= e−( 1

2 −j
√

3
2 ) t and

L−1

{
1

(s + 1
2 + j

√
3

2 )

}
= e−( 1

2 +j
√

3
2 ) t ,

respectively.
Algebraically manipulating (2.78) and substituting the terms of complex exponentials by trigono-

metric identities, we have (for t ≥ 0)

vo(t) = 2

√
3

2
e− t

2 sin(

√
3

2
) + e−t

= 1.1547 sin(0.866t)e− t
2 + e−t . (2.79)

The solution given by (2.79) is the same as that given by (2.33). However, in the solution obtained
using the Laplace transform, the initial conditions were part of the transform. We could also have
applied the Laplace transform directly to the ODE (2.30) assisted by Tables 2.3 and 2.2, as follows:

L{e−t } = L
{

d2vo(t)

dt2
+ dvo(t)

dt
+ vo(t)

}
, (2.80)

where

L
{

d2vo(t)

dt2

}
= s2Vo(s) − svo(0

−) − v̇o(0
−),

L
{

dvo(t)

dt

}
= sVo(s) − vo(0

−),

L{vo(t)} = Vo(s), and

L{e−t } = 1

s + 1
. (2.81)
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Hence, substituting the expressions from (2.81) into (2.80) and considering the initial conditions,
we obtain the same final expression presented in (2.75):

1

s + 1
= Vo(s)

(
s2 + s + 1

)
− svo(0

−) − v̇o(0
−) − vo(0

−)

= Vo(s)
(
s2 + s + 1

)
− s − 0 − 1

= Vo(s)
(
s2 + s + 1

)
− s − 1,

Vo(s) =
(

1

s + 1
+ s + 1

)(
1

s2 + s + 1

)

=
(

s2 + 2s + 2

s + 1

)(
1

s2 + s + 1

)
. (2.82)

In Section 2.2 the importance of LTI systems was introduced. The convolution integral in (2.9),
which expresses the input signal, x(t), as a sum of scaled and shifted impulse functions, uses delayed
unit impulses as its basic signals. Therefore, an LTI system response is the same linear combination of
the responses to the basic inputs.

Considering that complex exponentials, such as e−st , are eigensignals of LTI systems, Eq. (2.36) is
defined if one uses e−st as a basis for the set of all input functions in a linear combination made of infi-
nite terms (i.e., an integral). As the signal is being decomposed in basic inputs (complex exponentials),
the LTI system’s response could be characterized by weighting factors applied to each component in
that representation.

In Section 2.7, the Fourier transform is introduced and it is shown that the Fourier integral does not
converge for a large class of signals. The Fourier transform may be considered a subset of the Laplace
transform, or the Laplace transform could be considered a generalization (or expansion) of the Fourier
transform. The Laplace integral term e−st , from (2.36), forces the product x(t)e−st to zero as time t

increases. Therefore, it could be regarded as the exponential weighting term that provides convergence
to functions for which the Fourier integral does not converge.

Following the concept of representing signals as a linear combination of eigensignals, instead of
choosing e−(σ+j	)t as the eigensignals, one could choose e−j	t as the eigensignals. The latter repre-
sentation leads to the Fourier transform equation, and any LTI system’s response could be characterized
by the amplitude scaling applied to each of the basic inputs e−j	t .

The Laplace transform and its applications are discussed in greater detail in [5], [11], [12], [4], [2],
and [9].

2.5 Transfer function and stability
The Laplace transform, seen in the previous section, is an important tool to solve differential equations
and therefore to obtain, once given the input, the output of an LTI system. For an LTI system, the
Laplace transform of its mathematical representation, given as a differential equation – with constant
coefficients and null initial conditions – as in (2.22) or, equivalently, given by a convolution integral as
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in (2.10), leads to the concept of transfer function, the ratio

H(s) = Y(s)

X(s)
(2.83)

between the Laplace transform of the output signal and the Laplace transform of the input signal. This
representation of an LTI system also corresponds to the Laplace transform of its impulse response, i.e.,
H(s) = L{h(t)}.

Assuming that all initial conditions are equal to zero, solving a system using the concept of transfer
function is usually easier for the convolution integral is replaced by a multiplication in the transformed
domain:

Y(s) = L{h(t) ∗ x(t)} = H(s)X(s) (2.84)

such that

y(t) = L−1{H(s)X(s)}, (2.85)

the zero-state response of this system.
A simple example is given from the circuit in Fig. 2.4, where

H(s) = 1/RC

s + 1/RC
.

If x(t) = u(t), then X(s) = 1/s and

Y(s) = H(s)X(s) = 1/RC

(s + 1/RC)s

= 1

s
− 1

s + 1/RC
.

In this case, y(t) = L−1{Y(s)} corresponds to

y(t) = u(t) − e− 1
RC

tu(t),

which is the same solution given in (2.5).
Given (2.10) and provided that all initial conditions are null, the transfer function H(s) corresponds

to a ratio of two polynomials in s:

H(s) = P(s)

Q(s)
. (2.86)

The roots of the numerator P(s) are named zeros, while the roots of the denominator Q(s) are
known as poles. Both are usually represented in the complex plane s = σ + j	 and this plot is referred
to as pole-zero plot or pole-zero diagram.

We use the ODE (2.29) to provide an example:

H(s) = Vo(s)

Vi(s)
= 1

LCs2 + RCs + 1
. (2.87)
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Using the same values, R = 2.0 (in �), L = 2.0 (in H), and C = 1/2 (in F), we obtain the poles

(roots of the characteristic equation) s = −1±j
√

3
2 as seen in Fig. 2.15.

FIGURE 2.15

An example of a pole-zero diagram of the transfer function in (2.87) for R = 2.0 (in �), L = 2.0 (in H), and
C = 1/2 (in F). The gray curve corresponds to the root locus of the poles when R varies from R = 0 (poles at
±j ) to R = 4.1 (poles at −1.25 and −0.8). Click here to watch an animation.

For an LTI system, a complex exponential est can be considered an eigensignal:

x(t) = est −→ y(t) = est ∗ h(t) =
∫ ∞

−∞
h(τ)es(t−τ)dτ

= est

∫ ∞

−∞
h(τ)e−sτ dτ︸ ︷︷ ︸

H(s)

= H(s)est = P(s)

Q(s)
est , (2.88)

which is valid only for those values of s where H(s) exists.
If there is no common root between P(s) and Q(s), the denominator of H(s) corresponds to the

characteristic polynomial and, therefore, poles pi of an LTI system correspond to their natural frequen-
cies.

As mentioned in Section 2.2, the stability of a system, in a bounded-input bounded-output (BIBO)
sense, implies that if |x(t)| < Bx , then |y(t)| < By , Bx and By < ∞, for all values of t . This corresponds

http://www.ime.eb.br/~apolin/CTSS/Fig15.avi
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to its input response being absolutely integrable, i.e.,∫ ∞

−∞
|h(t)|dt = ‖h(t)‖1 < ∞. (2.89)

As seen previously, the natural response of a linear system corresponds to a linear combination of
complex exponentials epi t . Let us assume, for convenience, that H(s) has N distinct poles and that the
order of P(s) is lower than the order of Q(s); in that case, we can write

h(t) = L−1

{
P(s)∏N

i=1(s − pi)

}
=

N∑
i=1

Aie
pi tu(t), (2.90)

where constants Ai are obtained from simple partial fraction expansion.
In order for the system to be stable, each exponential should tend to zero as t tends to infinity. Con-

sidering a complex pole pi = σi + j	i , limt→∞ |h(t)| → 0 should imply that limt→∞ |e(σi+j	i)t | =
limt→∞ |eσi t | = 0 or σi < 0; that is, the real part of pi should be negative.

While the location of the zeros of H(s) is irrelevant for the stability of an LTI system, their poles
are of paramount importance. We summarize this relationship in the following.

1. A causal LTI system is BIBO stable if and only if all poles of its transfer function have negative real
part (belong to the left half of the s-plane).

2. A causal LTI system is unstable if and only if at least one of the following conditions occur: one
pole of H(s) has a positive real part and repeated poles of H(s) have real part equal to zero (belong
to the imaginary axis of the s-plane).

3. A causal LTI system is marginally stable if and only if there are no poles on the right half of the
s-plane and nonrepeated poles occur on its imaginary axis.

We can also state system stability from the ROC of H(s): an LTI system is stable if and only if the
ROC of H(s) includes the imaginary axis (s = j	). Fig. 2.16 depicts examples of the impulse response
for BIBO stable, marginally stable, and unstable systems.

In this section, we have basically addressed BIBO stability, which, although not sufficient for
asymptotic stability (a system can be BIBO stable without being stable when initial conditions are
not null), is usually employed for linear systems. A more thorough stability analysis could be carried
out by using Lyapunov criteria [14].

The Laplace transform applied to the input response of the differential equation provides the transfer
function whose poles (roots of its denominator) determine the system stability: a causal LTI system is
said to be stable when all poles lie in the left half of the complex s-plane. In this case, the system is
also known as asymptotically stable, for its output always tends to decrease, not presenting permanent
oscillation.

Whenever distinct poles have their real part equal to zero (poles on the imaginary axis), permanent
oscillation will occur and the system is marginally stable; the output signal does not decay nor grows
indefinitely. Fig. 2.16 shows the impulse response growing over time when two repeated poles are
located on the imaginary axis. Although not shown in Fig. 2.16, decaying exponentials of oscillation
will appear when poles are real and negative, while growing exponentials will appear in the case of real
positive poles.
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FIGURE 2.16

Pole location on the s-plane and system stability: examples of impulse responses of causal LTI systems. Visit
the “exploring the s-plane” website.

Although we have presented the key concepts of stability related to a linear system, much more
could be said about stability theory. Hence, further reading is encouraged: [2] and [14].

2.6 Frequency response
We have mentioned in the previous section that the complex exponential est is an eigensignal of a
continuous-time linear system. A particular choice of s is j	0 = j2πf0, i.e., the input signal

x(t) = ej	0t = cos(	0t) + j sin(	0t) (2.91)

has a single frequency and the output, from (2.88), is

y(t) = ej	0t

∫ ∞

−∞
h(τ)e−j	0τ dτ︸ ︷︷ ︸

H(j	0)

. (2.92)

With ej	0t being an eigensignal, H(j	0) in (2.92) corresponds to its eigenvalue. Allowing a vari-
able frequency 	 = 2πf instead of a particular value 	o = 2πf0, we define the frequency response of

http://www.jhu.edu/signals/explore/index.html
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a linear system having impulse response h(t) as

H(j	) =
∫ ∞

−∞
h(τ)e−j	τ dτ . (2.93)

We note that the frequency response corresponds to the Laplace transform of h(t) on a specific
region of the s-plane, the vertical (or imaginary) axis s = j	:

H(j	) = H(s)|s=j	
. (2.94)

It is clear from (2.93) that the frequency response H(j	) of a linear system is a complex function
of 	. Therefore, it can be represented in its polar form as

H(j	) = |H(j	)| e � H(j	)
. (2.95)

As an example, we use the RLC series circuit given in Fig. 2.17 with L = 1.0 (in H), C = 1.0 (in
F), and R varying from 0.2� to 1.2� (in �).

FIGURE 2.17

RLC series circuit: the transfer function is H(s) = Vo(s)
Vi (s)

, Vo(s) =L{v0(t)}, Vi(s) =L{vi(t)}, and the frequency
response is given by H(j	) = H(s)|s=j	

.

The frequency response, magnitude or absolute value (in dB), and argument or phase (in radians)
are depicted in Fig. 2.18. For this example, we consider the voltage applied to the circuit as input and
the voltage measured at the capacitor as output. This is worth mentioning since the output could be, for
instance, the current in the circuit or the voltage across the inductor.

In low frequencies, the capacitor tends to become an open circuit such that vo(t) = vi(t) and the
gain tends to 1 or 0 dB. On the other hand, as the frequency 	 goes towards infinity, the capacitor
tends to become a short circuit such that vo(t) goes to zero, gain in dB tending to minus infinity.
The circuit behaves like a low-pass filter allowing low frequencies to the output while blocking high
frequencies. Specially, when R has low values (when tending to zero), we observe a peak in |H(j	)|
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FIGURE 2.18

Frequency response in magnitude (|H(j	)| in dB) and normalized phase (argument of H(j	) divided by π ,
i.e., −1 corresponds to −π ) for the circuit in Fig. 2.17 with L = 1 (in H), C = 1 (in F), and R varying from 0.2
(in �) (the highest peak in magnitude is highlighted) to 1.2 (in �). Download the MATLAB code.

at 	 ≈ 	0 = 1 rad/s. This frequency, 	0 = 2πf0, is termed the resonance frequency and corresponds
to the absolute value of the pole responsible for this oscillation.

Let us write the frequency response from H(s), as given in (2.87):

H(j	) = H(s)|s=j	
= 1

(1 − 	2LC) + j	RC
. (2.96)

We note that when R → 0, the peak amplitude of |H(j	)| occurs for 1 − 	2LC → 0 (it tends to
infinity as R goes to zero), i.e., the resonance frequency corresponds to 	0 = 1√

LC
.

The impulse response and the pole diagram are shown in Fig. 2.19; from this figure, we observe the
oscillatory behavior of the circuit as R tends to zero in both the time domain and the s-domain (poles
approaching the vertical axis). The impulse response and the pole locations for the minimum value of
the resistance, R = 0.2 (in �), are highlighted in this figure.

Before providing more details about the magnitude plot of the frequency response as a function
of 	, let us show the (zero-state) response of a linear system to a real single-frequency excitation
x(t) = A cos(	t + θ). We know that the complex exponential is an eigensignal to a linear system such
that, making s = j	,

y(t)|
x(t)=ej	t

= H(j	)ej	t . (2.97)

Since we can write A cos(	t + θ) as A(ej (	t+θ) + e−j (	t+θ))/2, the output is given as

y(t) = A

2
ejθ ej	tH(j	) + A

2
e−jθ e−j	tH(−j	). (2.98)

http://www.ime.eb.br/~apolin/CTSS/Figs18and19.m
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FIGURE 2.19

Impulse responses and pole locations in the s-plane (six different values of R) for the circuit in Fig. 2.17. Note
that for lower values of R, h(t) tends to oscillate and the poles are closer to the vertical axis (marginal stability
region). Download the MATLAB code.

Assuming that h(t) is real, it is possible to ensure that all poles of H(s) will occur in complex
conjugate pairs, leading (as shall be addressed in the next section) to H ∗(j	) = H(−j	). This conju-
gate symmetry property of the frequency response, i.e., |H(j	)| = |H(−j	)| and � H(j	) = −� H(−j	),
when applied in (2.98), results in

y(t)|x(t)=A cos(	t+θ)
= |H(j	)|A cos(	t + θ + � H(j	)). (2.99)

The previous expression is also valid as regime solution when the input is a sinusoid that is nonzero
for t ≥ 0, such as x(t) = A cos(	t + θ)u(t).

Now, back to our example of a frequency response given in (2.96), let us express its magnitude
squared:

|H(j	)|2 = 1

1 + 	2(R2C2 − 2LC) + 	4L2C2 . (2.100)

It is easy to see that when 	 tends to zero, the magnitude squared tends to one, while when 	 tends
to infinity, the dominant term becomes 	4L2C2:

(a) 	 → 0 ⇒ |H(j	)| → 1 or 0dB ,
(b) 	 → ∞ ⇒ |H(j	)| → 1

	2LC
or, in dB, −40 log(	/	0), 	0 = 1√

LC
.

These two regions of |H(j	)|, close to zero and tending to infinity, could be visualized by lines in
a semilog plot; the frequency axis, due to its large range of values, is plotted using a logarithmic scale.

http://www.ime.eb.br/~apolin/CTSS/Figs18and19.m


2.6 Frequency response 69

Particularly, when 	 → ∞, the approximation in (b) tells us that in an interval from 	ref to 10	ref ,
	ref � 	0 (the resonance frequency), we have an attenuation of 40 dB, as shown in Fig. 2.20.

FIGURE 2.20

Asymptotical decay of 40 dB per decade.

A plot showing the magnitude in dB and the phase of H(j	) as a function of 	 = 2πf , plotted in a
logarithmic frequency scale, is known as Bode plot or Bode diagram. A Bode diagram may be sketched
from lines (asymptotes) which are drawn from the structure of H(s), its poles and zeros. For the case
of a transfer function with two conjugate complex roots, we have

H(s) = 	2
0

s2 + 2ζ	0s + 	2
0

, (2.101)

where, in our example in (2.87), 	0 = 1√
LC

and ζ = R
2

√
C
L

. Also note that (in order to have two conju-
gate complex roots) 0 < ζ < 1.

The magnitude of the frequency response in dB is given as

|H(j	)|dB = −10 log

⎛
⎝
(

1 −
(

	

	0

)2
)2

+
(

2ζ
	

	0

)2
⎞
⎠ . (2.102)

When 	 = 	0, |H(j	)| = −20 log(2ζ ); this value is a good approximation for the peak magnitude
(see Fig. 2.21) when ζ tends to zero (we have an error lower than 0.5% when ζ < 0.1). The peak actually
occurs in 	 = 	0

√
1 − 2ζ 2, having a peak height equal to 1

2ζ
√

1−ζ 2
; we could also add that the peak

is basically observable only when 0 < ζ < 0.5. The Bode plot of (2.87) with R = 0.1 (in �), L = 1.0
(in H), and C = 1.0 (in F) showing the (low-frequency and high-frequency) asymptotes is depicted in
Fig. 2.21.
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FIGURE 2.21

Example of Bode plot for H(s) = 	2
o

s2+2ζ	0s+	2
o

with 	0 = 1 and ζ = 0.05. Note that for this case, the approxi-

mated height of the peak −20 log (2ζ ) = 20 dB works well.

Another example with first-order poles and zeros will end our discussion on Bode plots. Let the
transfer function H(s) with poles at −1 and −10,000 and zeros at −10 and −1000 be represented as
follows:

H(s) = s2 + 1.01s + 10,000

s2 + 10,001s + 10,000

= (s + 1000)(s + 10)

(s + 10,000)(s + 1)

=
(
1 + s

1000

) (
1 + s

10

)
(

1 + s
10,000

)
(1 + s)

. (2.103)

The magnitude in dB of its frequency response could then be written as

|H(j	)|dB = 20 log

∣∣∣∣1 + j
	

1000

∣∣∣∣+ 20 log

∣∣∣∣1 + j
	

10

∣∣∣∣
−20 log

∣∣∣∣1 + j
	

10,000

∣∣∣∣− 20 log |1 + j	| . (2.104)

The first term, as in the previous example, can be checked for low and high frequencies:
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(a) 	 � 1000 ⇒ 0dB ,
(b) 	 � 1000 ⇒ increases 20 dB per decade (from 	ref to 10	ref ) or, equivalently, 6 dB per octave

(from 	ref to 2	ref ).

When 	 = 1000, the value of this term is 10 log(2) = 3.0103 dB, which is the usual error at the these
frequencies (cutoff frequencies).

Table 2.4 Asymptotes for the Bode plot of Fig. 2.22.

� Event asymptotic |H(j�)|dB

1 rad/s New asymptote starts (−20 dB per decade) 0 dB

10 rad/s New asymptote starts (+20 dB per decade) −20 dB

1000 rad/s New asymptote starts (+20 dB per decade) −20 dB

10,000 rad/s New asymptote starts (−20 dB per decade) 0 dB

We could, from the analysis of the first term, extend the results to all cutoff frequencies as shown
in Table 2.4. The resulting asymptotic sketch and real curves are shown in Fig. 2.22, where we observe
the 3-dB errors at the cutoff frequencies.

FIGURE 2.22

Bode magnitude (dB) plot for H(s) =
(
1+ s

1000

)(
1+ s

10

)(
1+ s

10,000

)(
1+ s

1

) . Download the MATLAB code.

A final observation regards the phase of the frequency response: similarly to the magnitude, a sketch
of the phase can also be obtained from the poles and zeros of H(s):

� H(j	) = � 1+j	/1000 + � 1+j	/10 − � 1+j	/10,000 − � 1+j	. (2.105)

http://www.ime.eb.br/~apolin/CTSS/Fig22.m
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The first term on the right-hand side of (2.105), � 1+j	/1000 = arctan(	/1000), can be checked for
low and high frequencies:

(a) 	 � 1000 ⇒ arctan(	/1000) ≈ 0,
(b) 	 � 1000 ⇒ arctan(	/1000) ≈ 90 degrees.

Considering only this zero (corresponding cutoff frequency 	0 = 1000 rad/s), one may assume
0.1	0 (100 rad/s) and 10	0 (10,000 rad/s) sufficiently small and sufficiently large such that an asymp-
tote could be drawn between points (102,0 degrees) and (104,90 degrees) as in Fig. 2.23. For a pole,
the asymptote is mirrored with respect to 0 degrees.

FIGURE 2.23

Asymptotical behavior of the phase for a single zero.

The asymptotic sketch and real phase curves for (2.105) are shown in Fig. 2.24; note that we have
two negative slope asymptotes, starting in 	 = 10−1 rad/s and 	 = 103 rad/s, and two positive slope
asymptotes, starting at 100 rad/s and 102 rad/s.

The topics discussed in this section are found in the following books: [15], [16], [9], [3], and [1].

2.7 The Fourier series and the Fourier transform
In electronic circuits we often deal with periodic and nonperiodic signals. In addition, circuits could be
driven by nonsinusoidal functions. Hence, methods that decompose continuous-time periodic (nonsi-
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FIGURE 2.24

Bode phase plot for H(s) =
(
1+ s

1000

)(
1+ s

10

)(
1+ s

10,000

)(
1+ s

1

) . Lighter gray dashed lines represent the asymptotes and the darker

dashed line corresponds to the asymptotic sketch (sum of the asymptotes); the real phase is the continuous
curve in black. Download the MATLAB code.

nusoidal) and nonperiodic signals into contributions from sinusoidal (sin(	t) and cos(	t)) signals are
extremely valuable for electronic system analysis; this is due to the fact that an LTI system only changes
the amplitude and phase of a real sinusoid. Several properties make sinusoids an ideal choice to be the
elementary basis functions for signal analysis and synthesis. For example, Eq. (2.99) shows that the
LTI system changed the amplitude to |H(j	)|A and the phase to θ + � H(j	) of the given sinusoidal
input, x(t) = A cos(	t + θ). In addition, as sine and cosine are mutually orthogonal, sinusoidal basis
functions are independent and can be processed independently. Usually, any sinusoidal function, such
as the one mentioned above, can be expressed as a linear combination of sine and cosine functions:
x(t) = C cos(	t) − D sin(	t). If a signal corresponding to a sum of sinusoids,

x(t) = A1 cos(	1t + θ1) + A2 cos(	2t + θ2), (2.106)

is fed to an LTI system, its output would be given as

y(t) = A1|H(j	1)| cos (	1t + θ1 + � H(j	1)) + A2|H(j	2)| cos (	2t + θ2 + � H(j	2)) . (2.107)

http://www.ime.eb.br/~apolin/CTSS/Fig24.m
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A periodic signal, x(t) = x(t + nT ), ∀n = ±1,±2,±3, . . . , with period T , may contain compo-
nents at frequencies 	 = 2πn/T , where the fundamental frequency is given by 	0 = 2πf0, f0 = 1/T .
The frequencies n	0 are the harmonics, and any pair of signals are harmonically related if their peri-
ods are related by an integer ratio. In general, the resulting signal from a sum of harmonically related
waveforms is also periodic, and its repetition period is equal to the fundamental period. The harmonic
components exist only at discrete frequencies.

Consider that we add the harmonically related signals, xn(t), with 	0 = 2π/T , over T = 1 such
that x(t) = 1

2 + 2
π

sin(2πt) + 2
3π

sin(6πt) + 2
5π

sin(10πt) + 2
7π

sin(14πt) + · · · , and get xN(t) as the
result when 1 ≤ N ≤ 5 and when N → ∞, meaning that infinite terms are added. We have

xN(t) = 1

2
+

N∑
n=1

xn(t) = 1

2
+ 2

π

N∑
n=1

1

2n − 1
sin (2π(2n − 1)t) . (2.108)

The resulting waveforms, xN(t) for 1 ≤ N ≤ 5 and xN(t) when N is large, i.e., N → ∞, are dis-
played in Fig. 2.25. It is clear that as the number of terms becomes infinite in (2.108) the result
converges at every value of the period T (to the square wave) except at the discontinuities. Actually,
the ringing effect at the discontinuities (not shown in Fig. 2.25 for the curve with the large value of N )
never dies out as N becomes larger, yet reaching a finite limit (Gibbs phenomenon).

FIGURE 2.25

Synthesized square wave from Eq. (2.108).

Hence, for a period T , for a fundamental frequency 	0 with frequencies that are integer multiples
of the fundamental frequency such that n	0, ∀n ∈Z (the set of all integers), the representation of the
harmonic components, xn(t), of a signal x(t) can be written as
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xn(t) = An sin(n	0t + θn)

= an cos(n	0t) + bn sin(n	0t)

= 1

2
(an − jbn)e

jn	0t + 1

2
(an + jbn)e

−jn	0t . (2.109)

Eq. (2.109) presents three equivalent forms to express the harmonic components xn(t): the first one is
written as a sine function with amplitude An and phase θn; the second one is written as a sum of sine
and cosine functions with real coefficients an and bn, respectively; and the last form writes xn(t) in
terms of complex exponentials.

The derivation, providing proofs, of the expressions for computing the coefficients in a Fourier series
is beyond the scope of this chapter. Hence, we simply state, without proof, that if x(t) is periodic with
period T and fundamental frequency 	0, any arbitrary real periodic signal x(t) could be represented
by the infinite summation of harmonically related sinusoidal components, known as the Fourier series:

x(t) = 1

2
a0 +

∞∑
n=1

An sin(n	0t + θn)

= 1

2
a0 +

∞∑
n=1

(an cos(n	0t) + bn sin(n	0t)), (2.110)

where for n = 0, we have the term
a0

2
corresponding to the mean value of the signal, with a frequency

of 0 Hz, known as the DC value (or level), and the other terms are as follows:

an = An sin(θn),

bn = An cos(θn),

An =
√

a2
n + b2

n,

θn = arctan

(
an

bn

)
. (2.111)

In the last form presented in (2.109), we substitute

cn = 1

2
(an − jbn),

c−n = 1

2
(an + jbn) (2.112)

to have a third representation of the Fourier series, given by

x(t) = c0 +
∞∑

n=1

cne
jn	0t +

−∞∑
n=−1

cne
jn	0t

=
∞∑

n=−∞
cne

jn	0t , (2.113)



76 Chapter 2 Continuous-time signals and systems

where c0 is real and cn, n �= 0, are complex coefficients. The coefficients of terms for positive (cn) and
negative (c−n) values of n are complex conjugates (c−n = c∗

n). This Fourier series form demands the
summation to be performed over all n ∈Z , as the continuous-time complex sinusoids, ejn	0t , present
an infinite number of terms (specific frequencies n	0). Moreover, for every integer value of n, ejn	0t =
cos(n	0t) + j sin(n	0t) is periodic with T = 2π . Hence, the periodic signal x(t) must have T = 2π

in order to compute the Fourier series expansion. However, the analysis of the Fourier cosine series of a
function x in the interval [0,π] is equivalent to the analysis of its extension first to [−π,π] as an even
function and then to all components with period T = 2π .

The complex exponential representation of the Fourier series given by (2.113) generates a two-sided
spectrum, as the summation requires all n ∈Z . The first and second representations of the Fourier series
presented in (2.110) produce a one-sided spectrum, as the sum is computed only for values of n > 0.

Eqs. (2.110) and (2.113) are called Fourier synthesis equations as it is possible to synthesize any
periodic (time) signal, x(t), from an infinite set of harmonically related signals.

If x(t) is periodic with fundamental frequency 	0 and period T , the coefficients of the three Fourier
series equivalent representations are given by

cn = 1

T

∫ t1+T

t1

x(t)e−jn	0t dt, (2.114)

and by manipulating (2.112) we obtain

an = 2

T

∫ t1+T

t1

x(t) cos(n	0t)dt,

bn = 2

T

∫ t1+T

t1

x(t) sin(n	0t)dt, (2.115)

where the integrals in (2.114) and (2.115) are obtained over any interval that corresponds to the period
T , with initial time t1 for the integration arbitrarily defined.

Eqs. (2.114) and (2.115) are known as Fourier analysis or Fourier decomposition as the signal is
being decomposed into its spectral components (basic inputs).

The continuous-time Fourier series expands any continuous-time periodic signal into a series of sine
waves. The Fourier analysis methods are named after the French mathematician Jean-Baptiste Joseph
Fourier. In general, almost any periodic signal can be written as an infinite sum of complex exponential
functions (or real sinusoidal functions) and thus be represented as a Fourier series. Therefore, finding
the response to a Fourier series means finding the response to any periodic function and its effect on its
spectrum. When computing trigonometric coefficients, one could multiply a random signal by sinusoids
of different frequencies to disclose all the (hidden) frequency components of the signal. In this way, it
becomes easier to isolate the signal of the television station we want to watch from the others that are
being simultaneously received by our television set.

In addition, the multiplication of a signal by ej	0t means that the signal is being frequency shifted
to 	0, which is equivalent to the Frequency shift Laplace property (Table 2.3).

Consider x(t) = 3/4 + cos(	0t) + cos(2	0t + π/3) + 1/3 cos(5	0t + π/4), where 	0 = 2π , 3/4
is the DC level, and we have three nonnull harmonics (n = 1,2, and 5) with the time-domain represen-
tation displayed in Fig. 2.1. The signal has several (hidden) frequencies, and no clue is provided when
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visually inspecting Fig. 2.1. The Fourier series representations are very helpful in this case, showing
the amplitudes and phases of each harmonic in the frequency domain.

The exponential form, recursing to trigonometric identities, is given by

x(t) = 3

4︸︷︷︸
c0

+

⎛
⎜⎜⎝ 1

2︸︷︷︸
c1

ej	0t + 1

2︸︷︷︸
c−1

e−j	0t

⎞
⎟⎟⎠+

⎛
⎜⎜⎝1

2
ej π

3︸ ︷︷ ︸
c2

ej2	0t + 1

2
e−j π

3︸ ︷︷ ︸
c−2

e−j2	0t

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝1

6
ej π

4︸ ︷︷ ︸
c5

ej5	0t + 1

6
e−j π

4︸ ︷︷ ︸
c−5

e−j5	0t

⎞
⎟⎟⎠ . (2.116)

The complex-valued coefficient cn conveys both amplitude (|cn|) and phase (� cn) of the frequency
content of the signal x(t) at each value n	0 rad/s as pictured in Fig. 2.26 (all other terms are null).

FIGURE 2.26

Two-sided spectrum of periodic signal x(t) depicted in Fig. 2.1.

The sinusoidal basis functions of the Fourier series are smooth and infinitely differentiable but they
only represent periodic signals. The Fourier representation for a nonperiodic (time-domain) signal has
to treat the frequency spectrum of nonperiodic signals as a continuous function of frequency. This
representation could be obtained by considering a nonperiodic signal as a special case of a periodic
signal with an infinite period. The idea is that if the period of a signal is infinite (T → ∞), then it is
never repeated. Hence, it is nonperiodic. As T → ∞, 	0 → 0, thus decreasing the spacing between
adjacent line spectra (representing each harmonic contribution in the spectrum) towards a continuous
representation of frequency.

The generalization to nonperiodic signals is known as the Fourier transform and is given by (2.117).
It is analogous to the Fourier series analysis equation (2.114). It expresses the time-domain function



78 Chapter 2 Continuous-time signals and systems

x(t) as a continuous function of frequency X(j	) defined as follows:

X(j	) = F{x(t)} =
∫ ∞

−∞
x(t)e−j	tdt . (2.117)

The inverse Fourier transform is analogous to the Fourier series synthesis equation (2.113). It ob-
tains the time-domain signal, x(t), from its frequency-domain representation X(j	):

x(t) = F−1{X(j	)} = 1

2π

∫ ∞

−∞
X(j	)ej	td	. (2.118)

The notation X(j	) = F{x(t)} denotes that X(j	) is the Fourier transform of x(t). Conversely,
x(t) = F−1{X(j	)} denotes that x(t) is the inverse Fourier transform of X(j	). This relationship is

expressed with x(t)
F←−−→ X(j	).

The Fourier series coefficients have distinct units of amplitude, whereas X(j	) has units of ampli-
tude density. The magnitude of X(j	) is termed as the magnitude spectrum (|X(j	)|) and its phase as
the phase spectrum (� X(j	)).

Following the concept of representing signals as a linear combination of eigensignals, instead of
choosing e−(σ+j	)t as the eigensignals, one could choose e−j	t as the eigensignals. The latter repre-
sentation leads to the Fourier transform equation, and any LTI system’s response could be characterized
by the amplitude scaling applied to each of the basic inputs e−j	t .

This transform is very useful as it produces the frequency complex content of a signal, X(j	), from
its temporal representation, x(t). Moreover, the mapping provides a representation of the signal as a
combination of complex sinusoids (or exponentials) for frequency-domain behavior analysis, where
the (computationally consuming) computation of the convolution in the time domain is replaced by the
(simple) operation of multiplication in the frequency domain.

Nevertheless, functions such as the unit step (Fig. 2.2(a)), discontinuous at time t = 0, do not have
forward Fourier transforms as their integrals do not converge.

An analysis of convergence is beyond the scope of this chapter; hence, we assume that the existence
of the Fourier transform is ensured by three (modified) Dirichlet conditions (for nonperiodic signals),
requiring the temporal signal, x(t), to have a finite number of discontinuities, with the size of each
discontinuity being finite; to have a finite number of local maxima and minima; and to be absolutely
integrable, i.e., ∫ ∞

−∞
|x(t)|dt < ∞. (2.119)

These are sufficient conditions, although not strictly necessary as several common signals, such as
the unit step, are not absolutely integrable. Nevertheless, we can define a transform pair that satisfies
the Fourier transform properties by the usage of impulses when dealing with this class of signals.

The Fourier transform converts a 1D time-domain signal, x(t), into its 1D complex spectrum X(j	)

representation in the frequency domain. In Section 2.4, the Laplace transform maps a time-domain 1D
signal, x(t), to a complex representation, X(s), defined over a complex plane (s-plane), spanned by
its two variables σ and 	, as s = σ + j	. The Laplace and Fourier transforms are closely related.
When s = j	, i.e., σ = 0, the Laplace integral becomes the Fourier transform. Referring to Fig. 2.10
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(Section 2.4), as the imaginary axis (j	) lies within the ROC, the Fourier transform exists only if a < 0.
For a certain class of signals, there is a simple relationship between the Fourier and Laplace transforms
given by

F{x(t)} = L{x(t)}|s=j	. (2.120)

The Laplace transform for x(t) = e−atu(t), a > 0, is X(s) = 1/(s + a) for σ > −a (Table 2.2);
X(s) has a pole at s = −a, which lies at the left half s-plane. The ROC is located at the right side of
−a (right side of Fig. 2.11), thus containing the imaginary axis (j	) of the s-plane. Hence, the signal
x(t) has a Fourier transform given by X(j	) = 1/(j	 + a). However, the Fourier transform does
not converge for Re(s) < −a because x(t) is not absolutely integrable, whereas x(t) has a Laplace
transform with the ROC pictured in the left side of Fig. 2.11.

Common Fourier transform pairs are summarized in Table 2.5.

Table 2.5 Fourier transform pairs.

x(t) = F−1{X(j�)} X(j�) = F{x(t)}
δ(t) 1

1 2πδ(	)

u(t) πδ(	) + 1

j	

|t | − 2

	2

e−at
1

a + j	

e−a|t |, a > 0
2a

a2 + 	2

ej	0t 2πδ(	 − 	0)

sgn(t)
2

j	

sin	0t −jπ[δ(	 − 	0) + δ(	 + 	0)]
cos	0t π[δ(	 − 	0) + δ(	 + 	0)]

As the Laplace transform, the Fourier transform presents a set of properties. A comprehensive de-
scription of the properties of the Fourier transform is beyond the intent of this chapter, and the properties
we examine are due to their importance in the study of linear system analysis, as is the case of linear
electronic circuits. Much of the usefulness of the Fourier transform arises from its properties, which
have important interpretations in the context of continuous-time signal processing. Understanding the
relationship between time and frequency domains (symmetry between operations) is a key point in the
study (and usage) of the Fourier transform.

Time and frequency scaling: If x(t)
F←−−→ X(j	), then x(at)

F←−−→ 1

|a|X
(

j
	

a

)
. With a �= 0 ∈ R,

F{x(at)} =
∫ ∞

−∞
x(at)e−j	tdt. (2.121)
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Substituting u = at we get

F{x(at)} =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−∞
x(u)e

−j
u
a

	 du

a
, a > 0,∫ −∞

∞
x(u)e

−j
u
a

	 du

a
, a < 0.

(2.122)

The two previous expressions can be combined in one single expression given by

F{x(at)} = 1

|a|
∫ ∞

−∞
x(u)e

−j
	
a

u
du

= 1

|a|X
(

j
	

a

)
, (2.123)

implying that a linear expansion of the time axis in the time domain leads to linear compression of the
frequency axis in the frequency domain, and vice versa. This property indicates an important trade-off
between the two domains, as narrow time-domain signals have wide Fourier representations (narrow
pulses have wide bandwidth).

Symmetry: The symmetry properties are quite useful as for a real-valued, a real-valued and even, a
real-valued and odd, and an imaginary temporal signal, x(t), we have the following relations:

x(t) real
F←−−→ X∗(j	) = X(−j	),

x(t) real and even
F←−−→ Im(X(j	)) = 0,

x(t) real and odd
F←−−→ Re(X(j	)) = 0,

x(t) imaginary
F←−−→ X∗(j	) = −X(−j	).

These properties are important as for a real-valued function in time its Fourier transform is conjugate
symmetric, X∗(j	) = X(−j	). This means that its real part (the magnitude) is an even function of
frequency and that its imaginary part (phase) is an odd function of frequency. Therefore, when we obtain
the Fourier transform of a real-valued time function, it is only necessary to display the transform for
positive values of 	. If the signal is even, i.e., x(t) = x(−t), it has a Fourier transform that is a purely
real function, X(j	) = |X(j	)|. Conversely, the transform of an odd function is an purely imaginary
function.

Furthermore, other properties deserve to be highlighted. We start with the frequency shifting prop-
erty presented in Table 2.6. As its representation in the frequency domain indicates, X(j (	 − 	0)),
a multiplication by ej	0t in the time domain modulates the signal x(t) onto a different frequency. As
most modulation and demodulation techniques involve multiplication, it is important to stress the im-
portance of the convolution property (Table 2.6). A simple operation of multiplication in time becomes
a computationally intensive operation of convolution in frequency. Conversely, a convolution operation
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in the time domain is much easier to analyze in the frequency domain (multiplication in the frequency
domain). Hence, as the convolution in the time domain defines the output of a time-invariant filter to a
given input, the analysis and design of filters are typically performed in the frequency domain.

Another important relation is Parseval’s relationship. It indicates that the information (energy) con-
tained in the time domain is preserved when representing the signal in the frequency domain. If the
power associated with a (complex) signal x(t) is |x(t)|2, Parseval’s relationship states that the signal is
represented equivalently in either the time or frequency domain without loss or gain of energy:∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(j	)|2d	. (2.124)

Hence, we can compute average power in either the time or frequency domain. The term |X(j	)|2
is known as the energy spectrum or energy density spectrum of the signal and shows how the energy of
x(t) is distributed across the spectrum.

A list of Fourier transform properties is presented in Table 2.6.

Table 2.6 Properties of the Fourier transform.

Property time domain frequency domain

Linearity a1x1(t) + a2x2(t) a1X1(j	) + a2X2(j	)

Scaling x(at)
1

|a|X(j
	

a
)

Time shifting x(t − t0) e−j	t0X(j	)

Frequency shifting ej	0t x(t) X(j (	 − 	0))

Differentiation in time
dx(t)

dt
j	X(j	)

dnx(t)

dt
(j	)nX(j	)

Integration in time
∫ t

−∞
x(τ) dτ

1

j	
X(j	) + πX(0)δ(	)

Differentiation in frequency −j tx(t)
dX(j	)

d	
Convolution in time x1(t) ∗ x2(t) X1(j	)X2(j	)

Convolution in frequency x1(t)x2(t)
1

2π
X1(j	) ∗ X2(j	)

One more time, we take, as an example, the RLC circuit displayed in Fig. 2.8, where the desired
response is the voltage, vo(t), across the capacitor C, vC(t). If we use the Fourier transform, assisted
by its differentiation property (Table 2.6), to solve the ODE in (2.30) we have

F{e−t } = Vi(j	) = F
{
LC

d2vo(t)

dt2 + RC
dvo(t)

dt
+ vo(t)

}
(2.125)

and we get the following result:

Vi(j	) = −LC	2Vo(j	) + jRC	Vo(j	) + Vo(j	), (2.126)
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where the output in the frequency domain, Vo(j	), is given by

Vo(j	) = Vi(j	)

(1 − LC	2) + jRC	
, (2.127)

which exhibits a resonant behavior exactly as in (2.96). Also note that the frequency response, defined
in (2.93), corresponds to the Fourier transform of the impulse response.

Fourier methods and applications are presented in [1], [4], [17], [18], and [5].

2.8 Conclusion and future trends
This chapter provided an introductory overview on the general concepts of signals, systems, and anal-
ysis tools used in the continuous-time domain.

We believe that the knowledge of continuous-time signals and systems, even for a book directed
towards methods used in the discrete-time domain, is extremely important. While exploring their dif-
ferences, the reader can enhance the understanding of natural phenomena.

A few papers discuss the relevance of teaching (analog) circuits and systems, as well their impor-
tance in engineering [19].

Analog circuit engineers have to deal with the entire circuit, and many parameters must be consid-
ered in their design. In order to simplify circuit models, designers have to make approximations about
the analog components, which requires expertise and years of education.

This chapter dealt with traditional electrical components and their fundamental variables: resistors
having a direct relationship between voltage and current (v = Ri, R being the resistance), inductors
relating voltage and current with its flux (dφ = vdt and dφ = Ldi, L being the inductance), and ca-
pacitors relating voltage and current with charge (dq = Cdv and dq = idt , C being the capacitance).
After first theorized in the early 1970s, the memristor regained attention in the media in 2008 when a
first real implementation was announced: the fourth fundamental circuit element relating charge and
flux as in its axiomatic definition, dφ = Mdq (M the memristance) [20]. The use of this component
in usual electronic gadgets as well as teaching its theory even in undergraduate courses seems to be an
upcoming technology trend.

In addition, most electronic devices have to interface with the external, analog, world, where data
conversion is needed at the input and output sides. Analog technologies are used along with digital
technologies, spanning from human interface components to analog circuits in wireless components.
Furthermore, analog design is also present in the mixed-signal integrated circuits, and it is becoming
increasingly critical due to high-speed circuitry [21]. Analog circuits are also used to process signals in
very high frequency ranges, such as microwave and radiofrequency ranges. In addition, electronic dig-
ital circuits are supplied with power, and the trend is to reduce power consumption of digital circuitry.
Hence, knowledge of analog circuits is required if an engineer is designing a high-performance digital
circuit.

We have tried to condense in few pages all pertinent information regarding analog signals and
systems in order to facilitate complete understanding of the forthcoming chapters. Nevertheless, we
have not exhausted the description of all details. For interested readers, we outline in the following
suggested references for further reading. We hope you enjoy the rest of the book.
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Relevant websites
http://www.britannica.com/EBchecked/topic/330320/Pierre-Simon-marquis-de-Laplace/
(article from the Encyclopædia Britannica about Laplace)

http://www.genealogy.ams.org/id.php?id=108295
(American Mathematical Society Genealogy Project, Pierre-Simon Laplace)

https://www.academie-francaise.fr/les-immortels/pierre-simon-de-laplace?fauteuil=8&election=11-04-1816
(mention to Pierre-Simon de Laplace, Grand officier de la Légion d’honneur – Académie Française)

http://www.britannica.com/EBchecked/topic/215097/Joseph-Baron-Fourier/
(article from the Encyclopædia Britannica about Fourier)

http://www.genealogy.ams.org/id.php?id=17981
(American Mathematical Society Genealogy Project, Jean-Baptiste Joseph Fourier)

http://www.ieeeghn.org/
(IEEE Global History Network)

Glossary
BIBO BIBO refers to a certain class of stability known as bounded-input bounded-output
Convolution Convolution is an operation between two functions: the output (zero-state solution) of a linear and

time-invariant system corresponds to the convolution integral between the input signal and the impulse
response, i.e., y(t) = ∫∞

−∞ x(τ)h(t − τ)dτ

Frequency response The frequency response of a linear system corresponds to the Fourier transform of its impulse response:
H(j	) = ∫∞

−∞ h(τ)e−j	τ dτ

Impulse signal δ(t) is a pulse of infinite amplitude and infinitesimal time characterized by being equal to zero when t �= 0
and

∫∞
−∞ δ(t)dt = 1

Impulse response h(t) is the output of a linear and time-invariant system when the input corresponds to the impulse δ(t)

LTI Linear and time-invariant system: when the output of a continuous-time system corresponds to a linear
operation on the input signal while not depending on a particular instant but remaining the same as time
goes by

ODE Ordinary differential equation: a differential equation having only one independent variable
RLC RLC is usually related to a circuit with resistor (R), inductor (L), and capacitor (C)
ROC The region of convergence of the Laplace transform of a given signal x(t): in the Laplace transform

domain, it corresponds to the set of values of the complex variable s that ensures the existence of L{x(t)}
Transfer function A transfer function is the representation in the s-domain of the input–output relation for a linear system;

it corresponds to the Laplace transform of the impulse response, i.e., H(s) = Y (s)
X(s)

= L{h(t)}
Unit-step signal u(t) is equal to 0 when t < 0 and equal to 1 when t > 0, and it relates to the impulse signal as follows:

u(t) = ∫ t
−∞ δ(t)dt

Nomenclature
C Capacitance, in Faraday (F)
f Frequency, in cycles per second or Hertz (Hz)
L Inductance, in Henry (H)
R Resistance, in Ohms (�)
t Time, in seconds (s)

http://www.britannica.com/EBchecked/topic/330320/Pierre-Simon-marquis-de-Laplace/
http://www.genealogy.ams.org/id.php?id=108295
https://www.academie-francaise.fr/les-immortels/pierre-simon-de-laplace?fauteuil=8&election=11-04-1816
http://www.britannica.com/EBchecked/topic/215097/Joseph-Baron-Fourier/
http://www.genealogy.ams.org/id.php?id=17981
http://www.ieeeghn.org/
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x(t) Input signal of a given continuous-time system, expressed in Volt (V) when it corresponds to an input
voltage; y(t) is usually used as the output signal

	 Angular frequency, in radians per second (rad/s) (it is sometimes referred to as frequency although corre-
sponding to 2πf )

References
[1] A. Oppenheim, A. Willsky, S. Nawab, Signals and Systems, 2nd edition, Prentice-Hall Signal Processing

Series, Prentice Hall, 1996.
[2] B.P. Lathi, Linear Systems and Signals, 2nd edition, Oxford University Press, 2004.
[3] B.P. Lathi, Signal Processing and Linear Systems, 2nd edition, Oxford University Press, Incorporated, 2009.
[4] S. Haykin, B. Veen, Signals and Systems, 2nd edition, John Wiley & Sons, 2003.
[5] B. Girod, R. Rabenstein, A. Stenger, Signals and Systems, 1st edition, John Wiley & Sons, 2001.
[6] C. Candan, Proper definition and handling of Dirac delta functions [lecture notes], IEEE Signal Processing

Magazine 38 (3) (2021) 186–203, https://doi.org/10.1109/MSP.2021.3055025.
[7] W. Boyce, R. DiPrima, Elementary Differential Equations, 9th edition, John Wiley & Sons, USA, 2008.
[8] A.C. Fischer-Cripps, The Mathematics Companion: Mathematical Methods for Physicists and Engineers,

Taylor & Francis, New York, USA, 2005.
[9] R. Dorf, J. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley & Sons, USA, 2010.

[10] G. Strang, Computational Science and Engineering, Wellesley-Cambridge Press, Massachusetts, USA, 2007.
[11] W. Thomson, Laplace Transformation, 2nd edition, Prentice-Hall Electrical Engineering Series, Prentice-Hall

Inc., 1960.
[12] J. Holbrook, Laplace Transforms for Electronic Engineers, 2nd edition, International Series of Monographs

on Electronics and Instrumentation, Pergamon Press, 1966.
[13] F. Oberhettinger, L. Badii, Tables of Laplace Transforms, Grundlehren der mathematischen wissenschaften,

Springer-Verlag, 1973.
[14] L. Padulo, M.A. Arbib, System Theory: a Unified State-Space Approach to Continuous and Discrete Systems,

W. B. Saunders Company, Philadelphia, USA, 1974.
[15] C. Close, Analysis of Linear Circuits, international edition, Harcourt Publishers Ltd., California, USA, 1974.
[16] C. Desoer, E. Kuh, Basic Circuit Theory, Electrical and Electronic Engineering Series, McGraw Hill Inter-

national Editions, New York, USA, 1969.
[17] R. Bracewell, The Fourier Transform and Its Applications, 3rd edition, McGraw-Hill Series in Electrical and

Computer Engineering, McGraw Hill, 2000.
[18] A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill Electronic Sciences Series, McGraw-

Hill, 1962.
[19] P. Diniz, Teaching circuits, systems, and signal processing, in: Circuits and Systems, 1998. ISCAS’98. Pro-

ceedings of the 1998 IEEE International Symposium on, vol. 1, 1998, pp. 428–431.
[20] G.E. Pazienza, J. Albo-Canals, Teaching memristors to EE undergraduate students [class notes], IEEE Cir-

cuits and Systems Magazine 11 (4) (2011) 36–44.
[21] R. Gray, History and trends in analog circuit challenges at the system level, in: Electronic System Design

(ISED), 2010 International Symposium on, 2010, p. 24.

https://doi.org/10.1109/MSP.2021.3055025


3
CHAPTER

Discrete-time signals and systems

Leonardo G. Baltar and Josef A. Nossek
Institute for Circuit Theory and Signal Processing, Technische Universität München, München, Germany

3.1 Introduction
Discrete-time systems are signal processing entities that process discrete-time signals, i.e., sequences
of signal values that are generally obtained as equidistant samples of continuous-time waveforms along
the time axis. Usually a clock signal will determine the period T (sampling interval) in which the input
signal values enter the system and the output samples leave the system. The interval T also determines
the cycle in which the internal signal values within the system are processed. Typical representatives
of this class of systems are the analog discrete-time signal processing systems (switched capacitor
circuits, charge-coupled devices [CCDs], bucket-brigade devices [BBDs]) as well as in omnipresent
digital systems. In the case of the latter, the sequence value for each sampling interval will also be
discretized, i.e., it will be represented with a finite set of amplitudes, usually in a binary finite word
length representation. Chapter 5 covers the topic of sampling and quantization of continuous-time sig-
nals.

It is worth mentioning that in the case of multirate discrete-time systems, the time interval in which
the internal and possibly the output signals are processed will usually be different from the input period
T . The topic of multirate discrete-time systems is covered in Chapter 9.

It is important to emphasize that the discussion in this chapter considers the special case of discrete-
time signals with unquantized values. This means that the amplitude of all the signals and the value of
the parameters (coefficients) that describe the discrete-time systems are represented with infinite word
length. This is an abstraction from real-world digital signals and systems, where the finite word length
representations of both signals and parameters have to be taken into account to fully cover all important
phenomena, such as limit cycles. Design of digital filters and their implementation will be discussed in
Chapter 7.

3.2 Discrete-time signals: sequences
Discrete-time signals can arise naturally in situations where the data to be processed are inherently
discrete in time, like in financial or social sciences, economy, etc. But more generally, the physical
quantities that a discrete-time signal represents are obtained via sensors and evolve continuously over
time, for example, voice, temperature, voltages, currents, or scattering variables. Nevertheless, inside a
sampling interval of T seconds, the continuous-time signal can be completely characterized by means

Signal Processing and Machine Learning Theory. https://doi.org/10.1016/B978-0-32-391772-8.00009-0
Copyright © 2024 Elsevier Inc. All rights reserved.
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of a single value or sample, as depicted in Fig. 3.1. In this case, the continuous-time signals are first
sampled or discretized over the time axis and possibly also discretized or quantized in the amplitude
domain.

FIGURE 3.1

Discrete-time signal as a sampled version of a continuous-time waveform.

Still images are usually described as 2D discrete signals, where the two dimensions are spatial coor-
dinates and pixels are finite, discrete quantities representing intensities either of a gray level or multiple
color levels. For videos, a third dimension is added, for example, to represent the time axis typically in
the form of a frame index or time stamp. Beyond images and videos, there are also discrete-time mul-
tidimensional signals which are obtained by simultaneous sampling of the output of multiple sensors
such as antenna or microphone arrays, for example. Some examples of applications which involve mul-
tidimensional discrete-time signals are multiantenna wireless communications, e.g., local WLAN/WiFi,
and cellular or multisensor radars, e.g., automotive radars. The representation and analysis of multidi-
mensional signals is beyond the scope of this chapter.

Important and useful examples of discrete-time signals that are fundamental in digital signal pro-
cessing and broadly used in practice will be addressed in the following paragraphs.

Analogously to the continuous-time unit impulse, known as the Dirac delta function, we can also
define a discrete-time unit impulse, known as the Kronecker delta, as

δ(n) =
{

1, n = 0,

0, else,
(3.1)

where n is an integer number. The discrete-time unit impulse is graphically shown in Fig. 3.2. Any
arbitrary discrete-time sequence can be represented as a sum of weighted and delayed unit impulses.
Also analogous to the continuous-time systems, the input–output behavior of a discrete-time system
can also be described by the impulse response, as we will see in detail in Section 3.4.3.

Another commonly used test signal is a sequence where the samples are equidistantly taken from a
sinusoid,

u(n) = U sin (nT ω + ϕ) , (3.2)

where U and ϕ are real-valued constants and ω is the frequency of the sinusoid in rad/s. In some
cases, it is important to analyze a system for a certain frequency range (frequency-domain analysis)
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FIGURE 3.2

Discrete-time unit impulse.

and in this case a sinusoidal signal with varying frequency can be applied at its input. An example of a
discrete-time sinusoid and the corresponding continuous-time waveform are depicted in Fig. 3.3.

FIGURE 3.3

Discrete-time sinusoid and corresponding continuous-time sinusoid waveform.

We can also define a random sequence, an example being the case where the samples are distributed
according to a normal distribution with zero mean and given variance σ 2 and the individual samples
are statistically independent, i.e.,

E [u(n)u(n − k)] =
{

σ 2, k = 0,

0, else.
(3.3)

This is the discrete equivalent of the white Gaussian noise (WGN) and it is useful if the behavior of the
discrete-time system is to be analyzed for all frequencies at once. Also in the case where some noise
sources are to be included during the analysis or modeling of a discrete-time system implementation,
this random sequence is the most used one.

3.3 Discrete-time systems
Mathematically, a discrete-time system with discrete-time input sequence u(n) and output sequence
y(n) is an operator T that performs the mapping

y(n) = T {u(n)}. (3.4)
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It is important to note that this mapping is applied to the entire input sequence u(n), beginning with
some starting instant in the far distant past, including the present instant n, and up to a far future instant,
to obtain the present output y(n).

3.3.1 Classification
There are many different classes of discrete-time systems. They can be categorized according to var-
ious important properties and criteria that will allow us to analyze and design systems using specific
mathematical tools. All classes and properties explained here find an equivalent for continuous-time
systems.

Memoryless systems
One sample of the output sequence y(n) of a memoryless system for a specific index n0 is a function
exclusively of the input value u(n0). The output depends neither on any past or future value of the
input ..., u(n0 + 1), u(n0 − 1), u(n0 − 2), ... nor on any past or future value of the output ..., y(n0 +
1), y(n0 − 1), y(n0 − 2), ..., i.e.,

y(n0) = T {u(n0)}. (3.5)

Dynamic systems
In contrast, a memory or dynamic system has its output as a function of at least one past value of the
output or of the input,

y(n) = T {u(n),u(n − 1), ...u(n − N),y(n − 1), ...y(n − N)}. (3.6)

The positive integer constant N is usually called the degree or order of the system. We have assumed
here, without loss of generality, that the same number of past inputs and outputs influence a certain
output sample.

Linear systems
If the system is a linear system, the superposition principle should hold. Let us consider an input u1 for
the system. Then the output is

y1(n) = T {u1(n)}. (3.7)

Similarly, with another input u2, the output is

y2(n) = T {u2(n)}. (3.8)

The superposition principle tells us that if each input is scaled by any real-valued constant αi , and
moreover, the sum of the inputs is employed as a new input, then for the new output, we have

T {α1u1(n) + α2u2(n)} = T {α1u1(n)} + T {α2u2(n)}
= α1T {u1(n)} + α2T {u2(n)} = α1y1(n) + α2y2(n). (3.9)

This can be extended for any number of different inputs and any value of the scaling factors. One
of the simplest and probably most popular linear dynamic systems is the recurrence used to generate
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Fibonacci sequences [1]:

y(n) = u(n) + y(n − 1) + y(n − 2), (3.10)

where u(n) = δ(n).

Nonlinear systems
In the case of nonlinear systems, the superposition principle does not apply. A good example is the
famous logistic map [2] or discrete logistic equation, which arise in many contexts in the biological,
economical, and social sciences:

y(n) = u(n) + αy(n − 1)(1 − y(n − 1)), (3.11)

where α is a positive real-valued number, u(n) = γ δ(n), and γ represents an initial ratio of population
to a maximum population. The logistic map is a discrete-time demographic model analogous to the
continuous-time logistic equation [3] and is a simple example of how chaotic behavior can arise. In this
chapter, we are mainly interested in linear systems, since there exist many well-established analysis
tools and they already cover a broad range of practical and useful systems.

Time-invariant systems
If the samples of the input sequence are delayed by a constant n1 and the resulting output samples
observed are delayed by the same constant, a discrete-time system is called time-invariant. Mathemati-
cally, this means

y(n − n1) = T {u(n − n1)}. (3.12)

Both the Fibonacci recurrence and the logistic map are good examples of time-invariant systems.

Time-variant systems
In the case of time-variant systems, internal parameters of the system, like multiplier coefficients, can
also vary with time. This is the case for the so-called adaptive systems or adaptive filters (see Chapter 11
for more details). A simple example of a time-variant system is the amplitude modulation

y(n) = sin(nT ω + ϕ)u(n), (3.13)

which is very useful for a broad range of wireless and wired communications systems. There exists
a special case of time-variant systems where the internal multiplier coefficients does not necessarily
vary with time, but the sampling rate is changed within the system. Those systems are called multirate
systems and they frequently present a cyclical or periodically time-varying output. This means that for
a certain multiple delay of the input signal, the output sequence will have the same samples as for the
nondelayed input.

Causal systems
In a causal system, the output samples only depend on the actual or past samples of the input sequence
and on past samples of the output itself. If the system is noncausal, this means that the output sample
depends on an input value that has not yet entered the system. The definition of dynamic systems in
(3.6) already considered a causal case. Noncausal systems are not relevant for almost all real-world
practical applications.
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3.4 Linear time-invariant systems
This is probably the most technically important class of discrete-time systems, for which a rich mathe-
matical framework exists.

Linear time-invariant (LTI) continuous-time systems in the electrical/electronic domain can be
built with memoryless (resistive) elements such as resistors, independent and controlled sources, and
memory-possessing (reactive) elements, for example, capacitors or inductors. In LTI discrete-time sys-
tems, we also have memoryless and memory-possessing elements, such as:

• Memoryless: adders and multipliers, signal sources and sinks
• Memory-possessing: delay elements.

Symbolic representations of these elements are depicted in Fig. 3.4. It is important to note that in
this context, nothing is said about how these elements are realized – neither with which electronic
components nor with which technology.

FIGURE 3.4

Basic building blocks of a discrete-time system.

3.4.1 State-space description
Any LTI system of order N can be structured into a memoryless linear (2N + 2) terminal network with
N delay elements, a single input, and a single output. Although the system can easily extend to multiple
inputs and/or multiple outputs, we will consider only single-input single-output (SISO) systems, with
which we can study all important phenomena.

Because everything within the LTI memoryless box in Fig. 3.5 can only perform weighted sums,
the (N + 1)-dimensional input vector (state vector x(n) stacked with scalar input u(n)) is mapped onto
the (N + 1)-dimensional output vector (state vector x(n + 1) stacked with scalar output y(n)) through
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FIGURE 3.5

Discrete-time system.

multiplication with the (N + 1) × (N + 1) matrix S:

⎡
⎢⎢⎢⎢⎢⎣

x1(n + 1)

x2(n + 1)

...

xN(n + 1)

y(n)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

A b

cT d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1(n)

x2(n)

...

xN(n)

u(n)

⎤
⎥⎥⎥⎥⎥⎦ = S ·

[
x(n)

u(n)

]
. (3.14)

The matrix S can obviously be partitioned into the well-known state-space description

x(n + 1) = Ax(n) + bu(n),

y(n) = cTx(n) + du(n), (3.15)

where A ∈RN×N , b ∈ RN , cT ∈R1×N , d ∈ R, x(n), x(n + 1) ∈RN , and u(n), y(n) ∈R.
Now we can take (3.15) and refine the block diagram depicted in Fig. 3.5 to show Fig. 3.6, which

is the general state-space realization. The structure in Fig. 3.6 is still rather general, because for each
element of A, b, c, and d , a multiplication has to be performed, especially if we assume all of their
elements with nontrivial values. The total number of multiplications is in this case N(N + 2) + 1.
But, as we will see later, A, b, and c are not uniquely determined by a given input–output mapping.
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FIGURE 3.6

General state-space realization of a discrete system.

Consequently there is room for optimization, e.g., to reduce the number of actual multiplications to be
performed per output sample.

Let us compute the output signal y(n) using an initial state vector x(0) and the input signal sequence
from the time instant n = 0 onwards

x(n) = Ax(n − 1) + bu(n − 1)

= A(Ax(n − 2) + bu(n − 2)) + bu(n − 1)

= . . .

= Anx(0) +
n∑

k=1

Ak−1bu(n − k), (3.16)

y(n) = cTAnx(0)︸ ︷︷ ︸
zero-input response

+
n∑

k=1

(cTAk−1bu(n − k)) + du(n)

︸ ︷︷ ︸
zero-state response

. (3.17)

From this general response we can also derive the so-called impulse response, for which we set
x(0) = 0 and u(n) = δ(n), the unit impulse which was defined in (3.1). This leads to

y(n) = h(n) =
{

d n = 0,

cTAn−1b n ≥ 1.
(3.18)

By making use of the impulse response h(n), we can reformulate the zero-state response with a
general input sequence u(n):

y(n) =
n∑

k=1

(cTAk−1bu(n − k)) + du(n)

=
n∑

k=0

h(n)u(n − k) = h(n) ∗ u(n), (3.19)
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which is the so-called convolution sum. This summation formulation corresponds to the so-called con-
volution integral for continuous-time signals and systems.

Now it is time to show that we can generate a whole class of equivalent systems (equivalent in the
sense that they have the same zero-state response and the same input–output mapping, respectively)
with the aid of a so-called similarity transform.

With a nonsingular N × N matrix T we can define a new state vector as the linear transformation
of the original one as x′(n) = T −1x(n). Then we can rewrite the state-space equations with the new
state vector x′(n) as

T x′(n + 1) = AT x′(n) + bu(n),

y(n) = cTT x′(n) + du(n), (3.20)

and by multiplying the first equation with T −1 from the left side we get

x′(n + 1) = T −1AT x′(n) + T −1bu(n),

y(n) = cTT x′(n) + du(n). (3.21)

The new state-space representation can now be formulated as

x′(n + 1) = A′x′(n) + b′u(n),

y(n) = c′ Tx(n) + d ′u(n), (3.22)

where the equations

A′ = T −1AT , b′ = T −1b, c′ T = cTT , and d ′ = d (3.23)

hold.
By inserting A′, b′, c′, and d ′ into the zero-state response, we see that this response is invariant to

the above transformation.
Depending on the choice of the transformation matrix, the matrix A′ can have different structures

or forms. A particularly interesting form is the so-called normal form, where the state matrix is di-
agonalized, allowing a much lower complexity than a dense matrix. First, we apply an eigenvalue
decomposition (EVD) [4] to A:

A = Q�Q−1 EVD of A,

Q = [
q1,q2, . . . ,qn

]
modal matrix with the eigenvectors qk,

� = diag(λk)
n
k=1 eigenvalue λk with Aqk = λkqk,

where we have assumed that A is diagonalizable and we do not need to resort to the Jordan form. The
transformation matrix and the new state vector are T = Q and ξ(n) = Q−1x(n). The system can then
be described by

ξ(n + 1) = �ξ(n) + Q−1bu(n),

y(n) = cTQξ(n) + du(n), (3.24)
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FIGURE 3.7

Normal form for real-valued eigenvalues.

which leads to the new specific implementation of Fig. 3.7. With this new implementation, the number
of coefficients, and consequently the number of multiplications, is reduced to 3N + 1.

If some of the eigenvalues are complex-valued (if this is the case they will always come in complex
conjugate pairs provided A is real-valued), we always will merge the two corresponding first-order
systems into one second-order system with real-valued multiplier coefficients only. This is equivalent
to having a block-diagonal state matrix (with 2-by-2 blocks) instead of a diagonal one.

Now, we can compute the transfer function by transforming (3.15) to the frequency domain with
the Z-transform.

3.4.2 Transfer function of a discrete-time LTI system
Similar to continuous-time systems we can also analyze a discrete-time system with the help of a
functional transform to make a transition to the frequency domain. However, we have only sequences
of signal values in the time domain and not continuous waveforms. Therefore, we have to apply the
Z-transform [5]:

Z{u(n)} =
∞∑

n=−∞
u(n)z−n = U(z),



3.4 Linear time-invariant systems 95

Z{y(n)} =
∞∑

n=−∞
y(n)z−n = Y(z),

Z{x(n)} =
∞∑

n=−∞
x(n)z−n = X(z). (3.25)

The delay in the time domain is represented in the frequency domain by a multiplication by z−1:

Z{x(n + 1)} =
∞∑

n=−∞
x(n + 1)z−n = z

∞∑
n=−∞

x(n + 1)z−(n+1)

n′=n+1= z

∞∑
n′=−∞

x[n′]z−n′ = zZ{x(n)} = zX(z). (3.26)

Now we can transform the state-space equations to the frequency domain:

zX(z) = AX(z) + bU(z),

Y (z) = cTX(z) + dU(z), (3.27)

and after we eliminate the state vector X(z), we obtain the transfer function

H(z) = Y(z)

U(z)
= cT (z1 − A)−1 b + d. (3.28)

Since

z = epT and hence for technical frequencies z|p=jω = ejωT (3.29)

holds, H(ejωT ) is obviously a periodical function of ω resp. f with frequency period 2π/T resp. 1/T .
The question that arises here is: What type of function is (3.28)? To answer that we have to consider

the expression (z1 − A)−1 more closely. We assume of course that (z1 − A)−1 is nonsingular and
therefore the inverse exists (this means that the inversion will only be performed for the values of z at
which it is possible). The inverse reads

(z1 − A)−1 = adj(z1 − A)

det (z1 − A)
, (3.30)

where the determinant is a polynomial in z of degree N , also called the characteristic polynomial

det (z1 − A) = zN + α1z
N−1 + · · · + αN−1z + αN, αk ∈R, (3.31)

and the elements of the adjugate matrix are the transposed cofactors of the matrix. The cofactors on the
other hand are subdeterminants of (z1 − A) and therefore polynomials of at most degree (N − 1).

The numerator of cT (z1 − A)−1 b is hence a linear combination of cofactors, i.e., a linear combi-
nation of polynomials of degree (N − 1) and therefore a polynomial of at most degree (N − 1). If we
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apply this result in Eq. (3.28), we will obtain a rational fractional function of z,

H(z) = β0z
N + β1z

N−1 + · · · + βN−1z + βN

zN + α1zN−1 + · · · + αN−1z + αN

, (3.32)

where β0 �= 0 only for d �= 0, since β0 = d .
We usually divide the nominator and the denominator by zn and obtain in the numerator and in the

denominator polynomials in z−1:

H(z) = βNz−N + βN−1z
−(N−1) + · · · + β1z

−1 + β0

αNz−N + αN−1z−(N−1) + · · · + α1z−1 + 1
=

∑N
k=0 βkz

−k

1 +∑N
k=1 αkz−k

= Y(z)

U(z)
. (3.33)

By multiplying both sides of (3.33) with the denominator we get

Y(z)

(
1 +

N∑
k=1

αkz
−k

)
= U(z)

N∑
k=0

βkz
−k. (3.34)

Now we go back to the time domain with help of the inverse Z-transform and obtain a global difference
equation:

y(n) +
N∑

k=1

αky(n − k) =
N∑

k=0

βku(n − k),

y(n) =
N∑

k=0

βku(n − k) −
N∑

k=1

αky(n − k). (3.35)

The difference equation is equivalent to the description of a discrete-time system like a differential
equation is for the description of a continuous-time system.

The representation of Eq. (3.35) leads us to an important special case, for which we have no equiva-
lent in continuous-time systems built with lumped elements: the so-called finite impulse response (FIR)
systems.

3.4.3 Finite duration impulse response systems
Those are systems with, as the name says, an FIR, i.e., the αi’s in (3.35) are equal to zero such that

y(n) =
N∑

k=0

βku(n − k) (3.36)

and with a unit impulse as excitation u(n) = δ(n) we get

y(n) = h(k) =
N∑

k=0

βkδ(n − k) =

⎧⎪⎨
⎪⎩

0, n < 0,

βn, 0 ≤ n ≤ N,

0, n > N.

(3.37)
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We can see that the coefficients of the polynomial transfer function then directly give values of the
impulse response so that it takes us directly to an implementation (Fig. 3.8). Note that the two structures

FIGURE 3.8

Two FIR realizations interconvertible through the principle of flow reversal.

are interconvertible if the principle of flow reversal is applied to the block diagram.
Let us now write down the state-space description for the uppermost structure in Fig. 3.8. By calling

the input of the delay elements xk(n + 1) and their outputs xk(n) indexing them from the leftmost to
the rightmost we can see that

x1(k + 1) = u(n),

x2(k + 1) = x1(n),

... = ...

xN(k + 1) = xN−1(n), (3.38)

and for the output

y(n) = β1x1(n) + β2x2(n) + · · · + βNxN(n) + β0u(n) (3.39)

holds. In matrix vector notation we get

⎡
⎢⎢⎢⎣

x1(n + 1)

x2(n + 1)

...

xN(n + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

...
. . .

...

0 · · · 1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1(n)

x2(n)

...

xN(n)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦u(n), (3.40)

y(n) = [
β1 β2 · · · βN

]
x(n) + β0u(n). (3.41)
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It can be easily demonstrated that the second structure in Fig. 3.8 is obtained by a transposition of the
state-space description of the first structure; the matrix and vectors for it are then given by

A′ = AT, b′ = c, c′ T = bT, d ′ = d. (3.42)

Other usual names for FIR systems are:

• nonrecursive systems,
• moving average (MA),
• transversal filter.

3.4.4 Infinite duration impulse response systems
On the other hand, if the αi’s are different from zero, then the impulse response will have infinite
duration, as the name says. We can again clearly derive a realization structure from the corresponding
time-domain description, in this case from Eq. (3.35) (see Fig. 3.9). This per se inefficient realization

FIGURE 3.9

IIR realization according to Eq. (3.35).

(two times the number of necessary delay elements) can be transformed into the well-known direct form
through simple rearranging of the two blocks like in Fig. 3.10. This is called a canonical realization
because it possesses a minimum number of delay elements.
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FIGURE 3.10

Canonical direct realization of an IIR system.

Now we can set up the state-space equations for the infinite impulse response (IIR) system structure
of Fig. 3.10. As already mentioned we label the output of the delays the states xk(n) and their inputs
xk(n + 1). By numbering from the topmost to the lowest delay we can see that

x1(n + 1) = −α1x1(n) − α2x2(n) − ... − αNxN(n) + u(n) (3.43)

holds and from the second until the N th state we get

x2(n + 1) = x1(n),

x3(n + 1) = x2(n),

... = ...

xN(n + 1) = xN−1(n). (3.44)

For the output we can see that

y(n) = β0x1(n + 1) + β1x1(n) + β2x2(n) + ... + βNxN(n)

= (β1 − β0α1)x1(n) + (β2 − β0α2)x2(n) + ... + (βN − β0αN)xN(n) + β0u(n), (3.45)
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where we have used the definition of x1(n + 1) of (3.43). In matrix vector notation we get

⎡
⎢⎢⎢⎣

x1(n + 1)

x2(n + 1)

...

xN(n + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−α1 −α2 · · · −αN

1 0 · · · 0
...

...
. . .

...

0 · · · 1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1(n)

x2(n)

...

xN(n)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦u(n), (3.46)

y(n) = [
β1 − β0α1, β2 − β0α2, · · · βN − β0αN

]
x(n) + β0u(n), (3.47)

where because of its particular structure, A is called a companion matrix.
If we apply the principle of flow reversal to the diagram of Fig. 3.10 we will end up with the

realization shown in Fig. 3.11. This is again equivalent to transformation of the state-space description

FIGURE 3.11

Transposed realization of the system from Fig. 3.10.

into the transposed system, i.e., the transformed system is represented by

A′ = AT, b′ = c, c′ T = bT, d ′ = d. (3.48)

If we apply these definitions to (3.28) we can see that

H ′(z) = c′ T (
z1 − A′)−1

b′ + d ′ = bT
(
z1 − AT

)−1
c + d = (H ′(z))T
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= cT
((

z1 − AT
)−1

)T

(bT)T + d = cT (z1 − A)−1 b + d = H(z). (3.49)

This means that the transposed realization has the same transfer function as the original system.
Other usual names for IIR systems are:

• recursive systems,
• autoregressive moving average (ARMA),
• systems with feedback.

3.4.5 Observability and controllability
As we have seen in the previous section, every LTI system can be completely characterized by a state-
space description

x(n + 1) = Ax(n) + bu(n), (3.50)

y(n) = cTx(n) + du(n), (3.51)

from which we can uniquely derive the corresponding transfer function

H(z) = cT (z1 − A)−1 b + d. (3.52)

It is important to note that although the way from a given state-space description to the input–output
transfer function is unique, the same is not true for the other direction. For one given transfer function
there are infinitely many different state-space descriptions and realizations, each having different spe-
cific properties, but all with the very same input–output relation! One of those properties is the stability
of the so-called LTI system.

An often applied stability criterion is to check whether the zeros of the denominator polynomial of
the transfer function H(z) lie within the unit circle of the z-plane or, equivalently, the impulse response

h(n) = Z−1 {H(z)} (3.53)

decays over time. In the following, we will see that this criterion does not provide us with complete in-
formation about the stability of an LTI system, because stability depends on the actual implementation,
which can be better reflected in detail via a state-space description and not via the transfer function or
impulse response descriptions. To get a clearer view, we have to introduce the concepts of observability
and controllability, and based on these, we can define different types of stability criteria.

Let us begin with the definition of observability. Starting with the state-space description (3.50), we
assume that the excitation u(n) = 0 for n ≥ 0 and an initial state x(0) �= 0. We then compute the system
output in the time domain:

y(0) = cTx(0),

y(1) = cTx(1) = cT(Ax(0)),

...
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y(N − 1) = cTAN−1x(0). (3.54)

Next, we stack these subsequent N output values in one vector:

y(0) =

⎡
⎢⎢⎢⎢⎢⎣

y(0)

y(1)

y(2)

...

y(N − 1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cT

cTA

cTA2

...

cTAN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x(0) = O
(
cT,A

)
x(0). (3.55)

From (3.55) we see that this output vector y(0) is given by the product of the so-called observability
matrix O

(
cT,A

)
, which is completely determined by A and cT and the system state at time instant

n = 0: x(0). Now, if the observability matrix is invertible, we can compute the state vector

x(0) = O
(
cT,A

)−1
y(0). (3.56)

If this is possible, the system (3.50) is completely observable.
Next we define controllability in a corresponding way by assuming an initial zero state x(0) = 0

and let us look for a sequence u(n), n ≥ 0, to drive the system into some desired state x(k). We look at
the evolution of the state as controlled by the excitation:

x(1) = bu(0),

x(2) = Ax(1) + bu(1) = Abu(0) + bu(1),

x(3) = Ax(2) + bu(2) = A2bu(0) + Abu(1) + bu(2),

...

x(N) = AN−1bu(0) + AN−2bu(1) + · · · + A2bu(N − 3) + Abu(N − 2) + bu(N − 1). (3.57)

This can be put together as

x(N) =
[
b,Ab,A2b, . . . ,AN−1b

]
⎡
⎢⎢⎢⎢⎢⎣

u(N − 1)

u(N − 2)

u(N − 3)

...

u(0)

⎤
⎥⎥⎥⎥⎥⎦ = C(b,A)u(N), (3.58)

where C(b,A) is the so-called controllability matrix and u(N) is the vector, in which the subsequent
excitation samples have been stacked. If the controllability matrix is invertible, we can solve for the
excitation

u(N) = C (b,A)−1 x(N), (3.59)

which will steer the system from the zero initial state into a specified desired state x(N). If this is
possible, the system (3.50) is completely controllable.
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3.4.6 Stability
Based on the concepts of observability and controllability, we can now define the following concepts
of stability:

• internal stability,
• output stability,
• input stability,
• input–output stability.

We will start with internal stability by requiring that the Euclidean norm of the state vector has to
decay over time from any initial value with zero excitation:

∀x(0) ∈RN and u(n) = 0, for n ≥ 0 : lim
n→∞‖x(n)‖2 = 0. (3.60)

This is equivalent to requiring the state vector to converge to the zero vector.
By looking at the evolution of the state vector over time,

x(1) = Ax(0),

x(2) = Ax(1) = A2x(0),

...

x(n) = Anx(0), (3.61)

and making use of the EVD of A = QΛQ−1, Λ = diag {λi}Ni=1, we get

Q−1x(n) = ΛnQ−1x(0). (3.62)

From (3.62) we can conclude that the vector Q−1x(n) will converge to the zero vector, i.e.,
lim

n→∞‖Q−1x(n)‖2 = 0 if and only if all eigenvalues λi of A are smaller than one in magnitude:

|λi | < 1 ⇐⇒ lim
n→∞‖Q−1x(n)‖2 = 0 ⇐⇒ lim

n→∞‖x(n)‖2 = 0. (3.63)

This is equivalent to saying that the poles of the transfer function are localized inside the unity circle,
since the eigenvalues of A equal the poles of the transfer function. In the above derivation, we have
assumed that A is a diagonalizable matrix. If this is not the case because of multiple eigenvalues, we
have to turn to the so-called Jordan form. Although this is slightly more complicated, it leads to the
same result.

A somewhat weaker stability criterion is to check only if the system output decays to zero from any
initial state and zero excitation:

∀x(0) ∈ RN and u(n) = 0 for n ≥ 0 : lim
n→∞|y(n)|2 = 0. (3.64)

Computing the output we get
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y(n) = cTx(n) = cTAnx(0) = cTQΛnQ−1x(0) = ηTΛn
(
Q−1x(0)

)

= [
η1 η2 · · · ηN

]
⎡
⎢⎢⎢⎢⎣

λn
1 0 · · · 0

0 λn
2 · · · 0

...
...

. . .
...

0 0 · · · λn
N

⎤
⎥⎥⎥⎥⎦
(
Q−1x(0)

)
=

N∑
i=1

ηi λn
i

(
Q−1x(0)

)
i
, (3.65)

where ηT = cTQ is the transformed output vector. If an entry ηi is equal to zero, then the eigenmode
(normal mode) λi will not contribute to the system output and, therefore, a nondecaying eigenmode
|λi | ≥ 1 will not violate the output stability criterion. This can only happen if the observability matrix
is not full rank. From (3.55) we have

y(0) = O
(
cT,A

)
x(0) = O

(
cT,A

)
Q

(
Q−1x(0)

)
= O

(
ηT,Λ

)(
Q−1x(0)

)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

η1 η2 . . . ηN

η1λ1 η2λ2 . . . ηNλN

η1λ
2
1 η2λ

2
2 . . . ηNλ2

N

...
...

. . .
...

η1λ
N−1
1 η2λ

N−1
2 . . . ηNλN−1

N

⎤
⎥⎥⎥⎥⎥⎥⎦
(
Q−1x(0)

)
(3.66)

and that O
(
ηT,Λ

)
is rank-deficient if at least one ηi is zero, and since Q is full rank, O

(
cT,A

)
must

also be rank-deficient. Therefore, a system can be output stable without being internally stable, if it is
not completely observable.

A complementary criterion is that of input stability, requiring the state vector to converge to the zero
vector, but not from any arbitrary initial state, but only from states which can be controlled from the
system input. Now we start with an initial state x(N), which can be generated from an input sequence
(see (3.58))

x(N) = C(b,A)u(N). (3.67)

The transformed state Q−1x(N) then reads

Q−1x(N) = Q−1C(b,A)u(N) = C(μ,Λ)u(N) (3.68)

with the transformed input vector μ = Q−1b. After the input u(N) has produced the state x(N) it is
switched off, i.e., u(n) = 0 for n ≥ N .

We ask whether the state vector can converge to the zero vector although the system may not be
internally stable. The answer is given by the structure of

C(μ,Λ) =

⎡
⎢⎢⎢⎢⎣

μ1 μ2 . . . μN

μ1λ1 μ2λ2 . . . μNλN

...
...

. . .
...

μ1λ
N−1
1 μ2λ

N−1
2 . . . μNλN−1

N

⎤
⎥⎥⎥⎥⎦ = Q−1C(b,A). (3.69)
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If some μi = 0, then Q−1x(0) will converge to the zero vector, even if the corresponding |λi | ≥ 1,
because this nondecaying eigenmode cannot be excited from the regular input. But this is only possible
if C(b,A) is not full rank and the system is, therefore, not completely controllable.

Finally, we look at the concept of the commonly used input–output stability, i.e., we excite the
system with zero initial state with a unit pulse and require the output to converge to zero over time. In
this setting the state and the output evolve as

x(n) = Anb, (3.70)

y(n) = cTAnb = cTQΛnQ−1b = ηTΛnμ =
N∑

i=1

ηiμiλ
n
i . (3.71)

The output will converge to zero even if there are nondecaying eigenmodes λi , as long as for every such
λi there is an ηi = 0 or a μi = 0, or both are zero. We see that a system could be input–output stable,
although it is neither internally stable nor input or output stable.

Only for systems which are completely observable and controllable, the four different stability cri-
teria coincide.

Example: The four stability concepts will now be illustrated with an example: the Cascade In-
tegrator Comb (CIC) filter [6]. These filters are attractive in situations where either a narrow-band
signal should be extracted from a wide-band source or a wide-band signal should be constructed from
a narrow-band source. The first situation is associated with the concept of sampling rate decrease or
decimation and the second one leads to the concept of sampling rate increase or interpolation. CIC
filters are very efficient from a hardware point of view, because they need no multipliers. In the first
case, i.e., decimation, the integrators come first, and then the sampling rate is decreased by a factor of
R, followed by a subsequent cascade of comb filters (Fig. 3.12(a)), while in the second case, i.e., inter-
polation, the comb filters come first, and then the sampling rate increase is followed by a subsequent
cascade of integrators (Fig. 3.12(b)).

FIGURE 3.12

Multiplierless decimator and integrator.

The stability problem in these CIC filters stems from the integrators, which obviously exhibit a
nondecaying eigenmode (pole with unit magnitude). To analyze the stability of such CIC filters we set
the sampling rate decrease/increase factor R = 1 and the number of integrator and comb filter stages
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FIGURE 3.13

CIC filters without sampling rate alteration with R = 1, L = 1, and M = 3.

to L = 1 without loss of generality. In addition, we assume a differential delay of M = 3 samples
per stage. This leads us to the following two implementations to be analyzed, which are shown in
Fig. 3.13(a and b).

Let us start with an analysis of the filter in Fig. 3.13(a), the state-space description of which reads

A1 =
⎡
⎣1 0 0

1 0 0
0 1 0

⎤
⎦ , b1 =

⎡
⎣1

0
0

⎤
⎦ , c1 =

⎡
⎣ 1

0
−1

⎤
⎦ , d1 = 1 (3.72)
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and leads to the transfer function

H1(z
−1) = 1 − z−3

1 − z−1 = 1 + z−1 + z−2. (3.73)

The observability matrix

O
(
cT

1 ,A1

)
=

⎡
⎣1 0 −1

1 −1 0
0 0 0

⎤
⎦ , det

(
O

(
cT

1 ,A1

))
= 0 (3.74)

is obviously rank-deficient and the system is therefore not completely observable.
Since the state matrix A is not diagonalizable, we have to turn to a Jordan form

A1 = Q1JQ−1
1 =

⎡
⎢⎢⎣

0 0 1√
3

0 1 1√
3

1 0 1√
3

⎤
⎥⎥⎦
⎡
⎣0 1 0

0 0 1
0 0 1

⎤
⎦
⎡
⎣−1 0 1

−1 1 0√
3 0 0

⎤
⎦ , (3.75)

which shows the three eigenvalues are λ1 = 0, λ2 = 0, and λ3 = 1. Not all eigenvalues are less than
one in magnitude. Therefore, the system of Fig. 3.13(a) is not internally stable. But transforming the
observability matrix according to (3.66), we get

O
(
ηT,J

)
= O

(
cT

1 ,A1

)
Q1 =

⎡
⎣1 0 0

1 0 0
0 1 0

⎤
⎦
⎡
⎢⎢⎣

0 0 1√
3

0 1 1√
3

1 0 1√
3

⎤
⎥⎥⎦ =

⎡
⎣−1 0 0

0 −1 0
0 0 0

⎤
⎦ (3.76)

with the third component η3 of the transformed output vector ηT = cT
1 Q1 equal to zero. This clearly

means that the nonvanishing third eigenmode is not observable at the system output. Therefore, the
system is output stable, i.e., the output converges in the limit lim

n→∞y(n) = 0, although the state vector

does not converge to the zero vector. But the controllability matrix

C (b1,A1) =
⎡
⎣1 1 1

1 1 1
0 0 1

⎤
⎦ , det (C (b1,A1)) = 1 (3.77)

is full rank, i.e., the system is completely controllable, and an arbitrary input sequence may excite the
nondecaying eigenmode. Therefore, the system is not input stable.

Now let us analyze the filter in Fig. 3.13(b), which has the following state-space description:

A2 =
⎡
⎣1 1 0

0 0 1
0 0 0

⎤
⎦ , b2 =

⎡
⎣ 1

0
−1

⎤
⎦ , c2 =

⎡
⎣1

0
0

⎤
⎦ , d2 = 1 (3.78)
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and the same transfer function as the previous filter from Fig. 3.13(a). It is interesting to note that the
second filter can be obtained from the first one by applying transposition:

A2 = AT
1 , b2 = c1, c2 = b1, d2 = d1. (3.79)

The controllability matrix of the second system

C (b2,A2) =
⎡
⎣ 1 1 0

0 −1 0
−1 0 0

⎤
⎦ , det (C (b2,A2)) = 0 (3.80)

is obviously rank-deficient and the system is therefore not completely controllable.
Since the state matrix A2 = AT

1 is not diagonalizable we again have to turn to a Jordan form:

A2 = Q2JQ−1
2 =

⎡
⎢⎢⎣

1√
2

1√
2

1

− 1√
2

0

0 − 1√
2

0

⎤
⎥⎥⎦
⎡
⎣0 1 0

0 0 1
0 0 1

⎤
⎦
⎡
⎢⎣0 −√

2 0

0 0 −√
2

1 1 1

⎤
⎥⎦ , (3.81)

which again shows obviously the same eigenvalues λ1 = 0, λ2 = 0, and λ3 = 1. The second system is
again not internally stable. Transforming the above controllability matrix according to (3.68) we get

C (μ,J ) = Q−1
2 C (b2,A2) =

⎡
⎢⎣0 −√

2 0

0 0 −√
2

1 1 1

⎤
⎥⎦
⎡
⎣ 1 1 0

0 −1 0
−1 0 0

⎤
⎦ =

⎡
⎢⎣ 0

√
2 0√

2 0 0
0 0 0

⎤
⎥⎦ (3.82)

with the third component μ3 of the transformed input vector μ = Q−1
2 b2 being equal to zero. This

shows that the nondecaying third eigenmode will not be excited by any possible input signal. Therefore,
the system is input stable, although it is not internally stable.

The observability matrix of the second system

O
(
cT

2 ,A2

)
=

⎡
⎣1 1 0

1 1 0
1 1 1

⎤
⎦ , det (O (b2,A2)) = 1 (3.83)

is full rank and the second system is completely observable. Therefore, the nondecaying eigenmode,
although not excited by any input sequence, is observable at the output. This can always happen because
of an unfavorable initial state accidentally occurring in the switch-on transient of the power supply or
because of some disturbance entering the system not through the regular input path. Therefore, the
system is not output stable.

But both systems are input–output stable, because both have the same impulse response with finite
duration.

This example shows that the standard input–output stability criterion, i.e., requiring a decaying
impulse response, does not always tell the whole story. Judging whether a system is stable or not
requires detailed knowledge about the system structure, or in other words, the realization, and not only
about input–output mapping.
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3.5 Discrete-time signals and systems with MATLAB®

In this section we will provide some examples how to generate discrete-time signals in MATLAB
and how to represent and implement basic discrete-time systems. We assume here a basic MATLAB
installation. The commands and programs shown here are not unique in the way they perform the
analysis and implement discrete-time signals and systems. Our objective here is to give an introduction
with very simple commands and functions. With this introduction the reader will get more familiar with
this powerful tool that is widely employed to analyze, simulate, and implement digital signal processing
systems. If one has access to the full palette of MATLAB toolboxes, like e.g., the Signal Processing
Toolbox, Control System Toolbox, Communications System Toolbox, and DSP System Toolbox, many
of the scripts included here can be substituted by functions encountered in those libraries.

3.5.1 Discrete-time signals
Discrete-time signals are defined in MATLAB as 1D arrays, i.e., as vectors. They can be row or column
vectors and their entries can be either real- or complex-valued. The signals we will generate and analyze
in this section are always row vectors and their entries are always real-valued. The length of the vectors
will be defined according to the time span in which the system is supposed to be analyzed.

Unit impulse
The unit impulse δ(n) can be generated with the command

L = 100;
delta = [1 zeros(1,L-1)];

where L is the length of the desired input and the function zeros(1,L-1) generates a row vector with
L-1 zeros.

The unit impulse can be further weighted and delayed. For example, 2 ∗ δ(n − 5) can be generated
by

L = 100;
N = 5;
delta = [zeros(1,N) 2 zeros(1,L-1-N)];

where we have assumed a delay of five samples or sampling periods.
The length of the vector containing only a unit impulse depends on the objective of the analysis.

For example, if the impulse response of a discrete-time system is to be studied, there should be enough
elements in the input array so that a significant part of the impulse response is contained in the output
vector.

Sinusoid
A sinusoid can be generated with the help of the function sin. Below is an example of a sinusoid where
all its parameters are first defined.

fs = 1000; % Sampling frequency in Hz
T = 1/fs; % Sampling period
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n = 1:100; % Time indices
U = 0.5; % Amplitude of the sinusoid
fc = 20; % Sinusoid frequency in Hz
omega = 2*pi*fc; % Sinusoid angular frequency in rad/s
phi = 0; % phase in radians
x = U*sin(omega*n*T+phi);

We can see that the comments after each command explain what the parameter means.
If we would like to graphically represent the sinusoid, we could use

stem(n*T,x);
xlabel(’Time in seconds’);
ylabel(’Amplitude’);

and we get the plot in Fig. 3.14, where we can see two periods of the sinusoid. An alternative to stem is

FIGURE 3.14

Discrete sinusoid with fc = 20 Hz and fs = 1 kHz plotted in MATLAB.

the command plot. If we employ it using the same parameters and the same syntax we obtain Fig. 3.15,
where it should be noted that MATLAB graphically connects the amplitude samples with a straight line
and as a consequence the discrete-time sinusoid looks like a continuous-time one. It is important to keep
in mind that the true discrete-time sinusoid is only defined for certain time instants and the amplitude
between two true samples in Fig. 3.15 is only an approximation of the amplitude of the equivalent
continuous-time sinusoid.
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FIGURE 3.15

Discrete-time sinusoid represented in MATLAB with the command plot.

As an exercise the reader could play around with the parameters of the sinusoid. For example, he
or she could change the phase φ to π/2 and plot the sinusoid again, try to use the function cos instead
of sin, set φ to 0 again, and compare with the previous plots. Change the sinusoid frequency until you
reach the Nyquist frequency, which is 500 Hz for the example above. Compare the use of the command
plot for different sampling rates and different sinusoid frequencies to see how the approximation of
the continuous-time sinusoid gets worse.

White Gaussian noise
To generate a WGN signal we have to employ the function randn, which generates pseudorandom
numbers following the normal or Gaussian distribution with zero mean and unit variance. By using

L = 100;
sigma2 = 0.5; % Variance of the WGN
u = sqrt(sigma2)*randn(1,L);

we generate a WGN vector with zero mean and variance σ 2 = 0.5.

Elaborated signal model
Many operations can be further performed with the generated signals. They can be, for example, added
to each other or multiplied by a constant or by another signal. As a last example let us generate a typical
signal model used in communications systems. Let us consider an input signal composed by a sum of
weighted and delayed unit impulses. This could be a data-carrying signal generated at the transmitter.
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Then we multiply it by a sinusoid, which could represent a modulation to a higher frequency, for
example the radio frequency (RF), to allow the propagation of the signal as an electromagnetic wave in
a physical medium between transmitter and receiver. Finally, we add WGN that represents the thermal
noise generated by the analog components used in the transmitter and receiver.

The program to generate this signal is the following:

L = 100;
u_in = [0.5*ones(1,L/4) -0.5*ones(1,L/4) 0.5*ones(1,L/4) -0.5*ones(1,L/4)];

% Sum of weighted and delayed unit impulses
fs = 1000; % Sampling frequency in Hz
T = 1/fs; % Sampling period
n = 1:L; % Time indices
U = 1; % Amplitude of the sinusoid
fc = 50; % Sinusoid frequency in Hz
omega = 2*pi*fc; % Sinusoid frequency in rad/s
phi = 0; % Phase in radians
u_sin = U*sin(omega*n*T+phi); % Sinusoid
sigma2 = 0.02; % Variance of the white Gaussian noise
u_awgn = sqrt(sigma2)*randn(1,L); % White Gaussian noise vector
u_mod = u_in.*u_sin + u_awgn; % Modulation and noise addition

In Fig. 3.16 we can see the signal that is composed of a sum of weighted and delayed unit impulses.

FIGURE 3.16

Weighted and delayed sum of unit impulses u_in.
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In Fig. 3.17 the modulated sinusoid is depicted.

FIGURE 3.17

Modulated sinusoid u_in*u_sin.

We can see in Fig. 3.18 the modulated sinusoid with the additive WGN.

3.5.2 Discrete-time systems representation and implementation
There are different ways to represent a discrete-time system in MATLAB, like, for example, the space-
state description or the transfer function. To start we revisit the elaborated signal model introduced in
the last section. If we would like to, at least approximately, recover the input signal represented by
the sum of delayed and weighted unit impulses, we should first demodulate it by multiplying it by a
sinusoid with the same frequency as the one used to modulate

u_demod=u_mod.*u_sin;

We will then obtain the sequence shown in Fig. 3.19.
The only problem with the new sequence is that not only an approximation of the desired signal

is obtained, but also another modulated version of it, but this time with a sinusoid with double the
original modulation frequency, and we still have the additive noise. If the noise variance is low enough
we are still able to approximately recover the original signal without any further processing. But first
we have to eliminate the modulated signal component, and for this we will apply a discrete-time filter
specifically designed for this task. We assume here that the filter is given and we only care about how to
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FIGURE 3.18

Modulated sinusoid with additive white Gaussian noise u_mod.

represent and implement it. In [7] and the references therein many methods for the design of discrete-
time filters can be encountered.

Let us say that a state-space description of the filter is already known and is defined as

A = [0.6969 0.8263 -0.6089 0.0111;
1 0 0 0;
0 1 0 0;
0 0 1 0];

b = [1;
0;
0;
0];

c = [-0.4272 1.0189 -0.1298 0.0160];
d = [0.9738];

where we can identify the companion matrix structure of A.
To compute the output of the filter given an initial state and the input signal, the state equations can

be directly employed and iteratively calculated as

L=100;
u= [1 zeros(1,L-1)]; % Input signal, here a unit impulse
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FIGURE 3.19

Demodulated signal u_demod.

x= [0; 0; 0; 0]; % Initial state vector
y=zeros(1,L); % Initialization of the output vector
for n=1:L

y(n)=c*x+d*u(n);
x = A*x+b*u(n);

end

where we can see that the values of the state vector are not stored for all time instants. If one is interested
in looking at the evolution of internal states, a matrix could be defined with so many rows as the number
of states and so many columns as the length of the input/output signal, and the state vector for each time
instant can be saved in its columns.

If we substitute the unit impulse by the demodulated signal as the input u = u_demod, we obtain
the signal depicted in Fig. 3.20. One can see that we do not obtain exactly the input signal u_in but an
approximation. Particularly in communications systems this is usually the case, where it is important
to recover the information contained in u_in, even if the waveform has been distorted, and not the
waveform itself.

But if one would like to implement Eq. (3.17) the program becomes more complicated, as shown
below:

L=100;
u= [1 zeros(1,L-1)]; % Input signal, here a unit impulse
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FIGURE 3.20

Demodulated and filtered signal u_demod.

x_0= [0; 0; 0; 0]; % Initial state vector
y=zeros(1,L); % Allocation of the output vector
cAb_array=zeros(1,L); % Allocation of the array c*A^(k-1)*b
A_power=eye(4); % Allocation of the powers of A matrix
cAb_array(1)=c*b; % First element of the array cAb_array
y(1)=d*u(1); % Output at sample n=0
for n=2:L
cAb_array(n)=c*A_power*b; % Inclusion of a new element in cAb_array
y(n)=c*(A*A_power)*x_0+sum(cAb_array(1:n).*u(n:-1:1))+d*u(n);

% Output
A_power=A*A_power; % New power of A

end

In both programs presented above the impulse response can be obtained. Its first 100 samples are
plotted in Fig. 3.21.

The similarity transformation can also be easily implemented. Let us consider the transformation
into the normal form. The code to perform it is

[Q,Lambda] = eig(A); % Eigenvalue decomposition:
% Lambda -> Eigenvalues in main diagonal
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FIGURE 3.21

First 100 samples of the impulse response.

% Q -> Eigenvectors in the columns

T = Q;

A_norm = inv(T)*A*T;

b_norm = inv(T)*b;

c_norm = c*T;

d_norm = d;

The resulting state-space description for our example is

A_norm = [-0.9242 0 0 0

0 0.8057 0 0

0 0 0.7968 0

0 0 0 0.0186];

b_norm = [0.6380;

126.6454;

127.3681;

1.7322];

c_norm = [ -0.7502 0.2283 -0.2268 0.0140];

d_norm = 0.9738;
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From the state-space representation it is possible to calculate the coefficients of the numerator and
of the denominator polynomials of the transfer function with help of the Faddeev–LeVerrier algorithm
[8]:

beta = [d zeros(1,3)];
alpha = [1 zeros(1,3)];
F = eye(4);
for i=1:4
alpha(i+1) = -(1/i)*trace(A*F);
beta(i+1) = c*F*b+d*alpha(i+1);
F = A*F+alpha(i+1)*eye(4);

end

where the arrays beta and alpha contain the coefficients of the nominator and denominator polynomi-
als.

With the coefficients of the transfer function it is also possible to calculate the output given the
input of the system and some past values of the output by using the difference equation that can be
implemented as

L=100;
u=[1 zeros(1,L-1)];
y=[zeros(1,L)]; % We assume a relaxed initial condition
y(1) = beta(1).*u(1); % Transition phase or first initial output
y(2) = sum(beta(1:2).*u(2:-1:1))-alpha(2).*y(1);
y(3) = sum(beta(1:3).*u(3:-1:1))-sum(alpha(2:3).*y(2:-1:1));
y(4) = sum(beta(1:4).*u(4:-1:1))-sum(alpha(2:4).*y(3:-1:1));
for n=5:L
y(n)=sum(beta.*u(n:-1:n-4))-sum(alpha(2:end).*y(n-1:-1:n-4));
end

As we saw before this is equivalent to a state-space realization in direct form.

3.6 Conclusions
In this chapter we have introduced an important and fundamental topic in electrical engineering that
provides the basics for digital signal processing. We started with the presentation of some frequently
used discrete-time signals. Then we showed how to classify discrete-time systems and started the study
of the widely employed class of LTI systems. We showed the most basic way of representing LTI
systems such that not only the input–output behavior is described, but also important internal signals,
the so-called state-space representation. We have seen that the state-space representation is not unique
and, consequently, there is room for optimization in the way discrete-time systems are realized. After
that, the transfer function was derived from the state-space description, and the two main classes of
discrete-time systems, namely FIR and IIR, were introduced. We formulated the concepts of controlla-
bility and observability and showed how they can be used to evaluate the stability of the system by also
considering its internal signals. We finally gave some examples how to implement and analyze simple
discrete-time signals and systems with MATLAB.
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Notation
Throughout this chapter, the following notations was used:

R Set of real numbers
C Set of complex numbers
Rm Real Euclidean space of dimension m

H Denotes a Hilbert space
·T Matrix transpose
·H Hermitian operation for a matrix
·∗ Complex conjugation
x Bold letter denotes a vector
x Letter in normal font denotes a scalar
X Capital bold letter denotes a matrix
xi or x(i) The ith component of vector x

X(n) or x(n) or xi(n) or x(n) Time dependence on the time index n, depending on if it is a matrix,
vector, vector component, or scalar
∇f (x) or ∇xf (x) or ∂f (x)

∂x The gradient of a function
X(i, j) or Xij The (i, j) element of matrix X

Xij (n) Time dependence on the time index n of the (i, j) element of a matrix X

E[·] Denotes expectation
x̂ Denotes the estimate of a variable, x

In case the authors wish to distinguish the random variable from its corresponding values that occur
from the experiments, the following notation is proposed. Very often, authors use bold font to denote
the random variable and nonbold for the values that result from the experiment. However, we have
adopted the use of bold fonts for the vectors.

X Denotes a random matrix
x Denotes a random vector
x Denotes a random scalar

x⊥y Denotes orthogonal vectors
|x| and |z| Absolute values for a real number x and a complex number z

||x|| or ||x||2 Denotes Euclidean norm
||A||F Denotes Frobenius norm
||x||p Denotes lp-norm
Re(x) Denotes the real part of a complex number
Im(x) Denotes the imaginary part of a complex number
Im or I Denotes the identity matrix of dimension n × n

vec(A) Column vector formed by stacking the columns of A

diag(A) Column vector with the diagonal entries of A

rank(A) Rank of matrix A

A ⊗ B The Kronecker product of two matrices
det(·) The determinant of a matrix
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Tr(·) The trace of a matrix
λi, i = 1,2, . . . ,m The eigenvalues of an m × m matrix
R(A) Range space of A

N(A) Null space of A

P(·) Probability of a discrete event
p(·) Probability density function of a random variable
R or Rx The autocorrelation matrix of a random vector x

� or �x The covariance matrix of a random vector x

σ 2 or σ 2
x The variance of the random variable x

loga The logarithm of a relative to base 10
lna The natural logarithm of a

exp (·) The exponential function
A > B Means that A−B is positive definite
A ≥ B Means that A−B is positive semidefinite
X(z) The z-transform of sequence x(n)

X(ejω) The Fourier transform of a sequence x(n)

X(ej�T ) The Fourier transform of a sampled sequence x(nT ), with sampling period T

X(j�) The Fourier transform of a function x(t)

X(m) or Xm The discrete Fourier transform of x(n)

F (�x,�y) The Fourier transform of f (x, y)

F (ωx,ωy) or F(ω1,ω2), etc. The Fourier transform of f (n,m)

F(k, l) The discrete Fourier transform of the sequence f (n,m)

X(s) The Laplace transform of a function x(t)

Notation of a matrix A

A =
⎡
⎣ A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

⎤
⎦

Notation of a vector x

x = [x1, x2, . . . , xm]T =

⎡
⎢⎢⎢⎣

x1
x2

...

xm

⎤
⎥⎥⎥⎦

It will also be nice to make an effort to use the following symbols:

• For input signals: u(n) or x(n).
• For the output signal: y(n) and d(n) for the desired response.
• For the impulse response of a system: h(n) or w(n) or g(n) and similarly for the point spread

function, h(n,m) or w(n,m) or g(n,m). Similar notation for analog systems, i.e., h(t) or h(x, y).
• e(n) for an error estimation sequence, ea(n) for an a posteriori error sequence, and ep(n) for an a

priori error sequence.
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examples, a few corrected mistakes, and important changes in convention and notation aimed at greater
cohesion and clarity, which led to a complete revision of the formulas of the final two-thirds of the
chapter. Additionally, supplemental material, such as course slides and exercises, are provided by the
authors on a companion web page.
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4.1 Introduction
Probability is an abstract concept useful to model chance experiments. The definition of a numeri-
cal representation for the outcomes of such experiments (the random variable) is essential to build a
complete and general framework for probabilistic models. These models can be extended to nonstatic
outcomes in the form of time signals,1 leading to the so-called stochastic process, which can evolve
along continuous or discrete time. Its complete description is usually too complicated to be applied
to practical situations. Fortunately, a well-accepted set of simplifying properties like stationarity and
ergodicity allows the modeling of many problems in areas as diverse as biology, economics, and com-
munications.

1 Of course, other independent variables (e.g., space) can substitute for time in this context.
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There are plenty of books on random processes,2 each one following some preferred order and
notation, but covering essentially the same topics. This chapter is just one more attempt to present the
subject in a compact manner. It is structured in the usual way: probability is first introduced and then
described through random variables; within this framework, stochastic processes are presented and then
associated with processing systems. Due to space limitations, proofs are avoided and examples are kept
at a minimum. No attempt was made to cover many families of probability distributions, for example.
The preferred path was to clearly and unambiguously define the concepts and entities associated with
the subject and whenever possible give them simple and intuitive interpretations. Even risking to seem
redundant, the authors decided to explicitly duplicate the formulations related to random processes
and sequences (i.e., continuous-time and discrete-time random processes, respectively); the idea was
to provide always a direct response to a consulting reader, instead of suggesting modifications in the
given expressions.

Writing technical material always poses a difficult problem: which level of detail and depth will
make the text useful? Our goal was to make the text approachable for undergraduate students and
provide a consistent reference for more advanced students or even researchers (re)visiting random pro-
cesses. The authors tried to be especially careful with the notation consistence throughout the chapter
in order to avoid confusion and ambiguity (which may easily occur in advanced texts). The choices
of covered topics and order of presentation reflect several years of teaching the subject, and obviously
match those of some preferred books. A selected list of didactic references on statistics [4,3], ran-
dom variables and stochastic processes [11,12,10,15], and applications [14,9] is given at the end of the
chapter. We hope you enjoy the reading.

4.2 Probability
Probabilistic models are useful to describe and study phenomena that cannot be precisely predicted. To
establish a precise framework for the concept of probability, one should define a chance experiment, of
which each trial yields an outcome s. The set of all possible outcomes is the sample space S. In this
context, one speaks of the probability that one trial of the experiment yields an outcome s that belongs
to a desired set A ⊂ S (when one says the event A has occurred), as illustrated in Fig. 4.1.

FIGURE 4.1

Sample space S, event A, and outcome s.

2 Even if the literature sometimes prefers to employ “stochastic” for processes and “random” for signals, the expression “random
processes” has become common and will be used throughout the chapter.



4.2 Probability 125

There are two different views of probability: the subjectivist and the objectivist. For subjectivists,
the probability measures someone’s degree of belief in the occurrence of a given event, while for objec-
tivists it results from concrete reality. Polemics aside, objectivism can be more rewarding didactically.

From the objectivist (or frequentist) viewpoint, one of the possible ways to define probability is the
so-called classical or a priori approach: given an experiment whose possible outcomes s are equally
likely, the probability of an event A is defined as the ratio between the number N(A) of acceptable
outcomes (elements of A) and the number N(S) of possible outcomes (elements of S):

P(A) = N(A)

N(S)
. (4.1)

The experiment of flipping a fair coin, with S = {head, tail}, is an example in which the probabilities of
both individual outcomes can be theoretically set: P({head}) = P({tail}) = 0.5.

Another way to define probability is the relative frequency or a posteriori approach: the probability
that the event A occurs after one trial of a given experiment can be obtained by taking the limit of the
ratio between the number nA of successes (i.e., occurrences of A) and the number n of experiment
trials, when the repeats go to infinity:

P(A) = lim
n→∞

nA

n
. (4.2)

In the ideal coin flip experiment, one is expected to find equal probabilities for head and tail. On the
other hand, this pragmatic approach allows modeling the nonideal case, provided the experiment can
be repeated.

A pure mathematical definition can provide a sufficiently general framework to encompass every
conceptual choice: the axiomatic approach develops a complete probability theory from three axioms:

1. P(A) ≥ 0;
2. P(S) = 1;

3. given Am, 1 ≤ m ≤ M , such that Am ∩ Am′ = ∅ ∀ m′ �= m, 1 ≤ m′ ≤ M , we have P

(
M⋃

m=1

Am

)
=

M∑
m=1

P(Am).

Referring to an experiment with sample space S:

• The events Am, 1 ≤ m ≤ M , are said to be mutually exclusive when the occurrence of one prevents
the occurrence of the others. They are the subject of the third axiom.

• The complement A of a given event A, illustrated in Fig. 4.2, is determined by the nonoccurrence of
A, i.e., A = S − A. From this definition, P(A) = 1 − P(A). Complementary events are also mutu-
ally exclusive.

• An event A = ∅ is called impossible. From this definition, P(A) = 0.
• An event A = S is called certain. From this definition, P(A) = 1.

It should be emphasized that all events A related to a given experiment are completely determined
by the sample space S, since by definition A ⊂ S. Therefore, a set B of outcomes not in S is mapped to
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FIGURE 4.2

Event A and its complement A.

an event B ∩ S = ∅. For instance, for the experiment of rolling a fair die, S = {1,2,3,4,5,6}; the event
corresponding to B = {7} (showing a 7) is B ∩ S = ∅.

According to the experiment, sample spaces may be countable or uncountable.3 For example, the
sample space of the coin flip experiment is countable. On the other hand, the sample space of the
experiment that consists in sampling with no preference any real number from the interval S = (0,100]
is uncountable. Given an individual outcome s ∈ S, defining A = {s},

P(A)

{ �= 0, if S is countable,
= 0, if S is uncountable.

(4.3)

As a consequence, one should not be surprised to find an event A �= ∅ with P(A) = 0 or an event A �= S

with P(A) = 1. In the (0,100] interval sampling experiment, A = {50} �= ∅ has P(A) = 0 and A �= S

has P(A) = 1.

4.2.1 Joint, conditional, and total probability – Bayes’ rule
The joint probability of a set of events Am, 1 ≤ m ≤ M , is the probability of their simultaneous oc-

currence
M⋂

m=1

Am. Referring to Fig. 4.3, given two events A and B, their joint probability can be found

as

P(A ∩ B) = P(A) + P(B) − P(A ∪ B). (4.4)

By rewriting this equation as

P(A ∪ B) = P(A) + P(B) − P(A ∩ B), (4.5)

one finds an intuitive result: the term P(A ∩ B) is included twice in P(A) + P(B), and should thus
be discounted. Moreover, when A and B are mutually exclusive, we arrive at the third axiom. In the
die experiment, defining A = {s ∈ S|s is even} = {2,4,6} and B = {s ∈ S|s > 3} = {4,5,6}, we have
P(A) = 1/2, P(B) = 1/2, P(A ∩ B) = P({4,6}) = 1/3, and P(A ∪ B) = P({2,4,5,6}) = 2/3.

3 One could think of mixed cases, but this discussion is better conveyed in the random variable framework, which comprises
every possible mapping from the original experiment to a subset of the real numbers.
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FIGURE 4.3

A ∩ B and A ∪ B.

The conditional probability P(A|B) is the probability of event A conditioned to the occurrence of
event B, and can be computed as

P(A|B) = P(A ∩ B)

P (B)
, P (B) > 0. (4.6)

The value of P(A ∩ B) accounts for the uncertainty of both A and B; the term P(B) discounts the
uncertainty of B, since it is certain in this context. In fact, the conditioning event B is the new (reduced)
sample space for the experiment. By rewriting this equation as

P(A ∩ B) = P(A|B)P (B), (4.7)

one gets another interpretation: the joint probability of A and B combines the uncertainty of B with
the uncertainty of A when B is known to occur. Using the example in the last paragraph, P(A|B) =
[P({4,6}) in sample space B] = 2/3.

Since P(A ∩ B) = P(B ∩ A) = P(B|A)P (A), the Bayes Rule follows straightforwardly:

P(A|B) = P(B|A)P (A)

P (B)
. (4.8)

This formula allows computing one conditional probability P(A|B) from its reverse P(B|A). Us-
ing again the example in the last paragraph, one would arrive at the same result for P(A|B) using
P(B|A) = [P({4,6}) in sample space A] = 2/3 in the last equation.

If the sample space S is partitioned into M disjoint sets Am, 1 ≤ m ≤ M , such that Am ∩ Am′ =
∅ ∀ m′ �= m,1 ≤ m′ ≤ M , then any event B ⊂ S can be written as B =

M⋃
m=1

(B ∩ Am). Since B ∩
Am, 1 ≤ m ≤ M , are disjoint sets,

P(B) =
M∑

m=1

P(B|Am)P (Am), (4.9)

which is called the total probability of B.
For a single event of interest A, for example, the application of Eq. (4.9) to Eq. (4.8) yields

P(A|B) = P(B|A)P (A)

P (B|A)P (A) + P(B|A)P (A)
. (4.10)
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Within the Bayes context, P(A) and P(A|B) are usually known as the a priori and a posteriori
probabilities of A, respectively; P(B|A) is called likelihood in the estimation context and transition
probability in the communications context. In the latter case, A = {a} could refer to a symbol a sent by
the transmitter and B = {b} to a symbol b recognized by the receiver. Knowing P(B|A), the probability
of recognizing b when a is sent (which models the communication channel), and P(A), the a priori
probability of the transmitter to send a, allows to compute P(A|B), the probability of a having been
sent given that b has been recognized. In the case of binary communication, we could partition the
sample space either in the events TX0 (0 transmitted) and TX1 (1 transmitted) or in the events RX0
(0 recognized) and RX1 (1 recognized), as illustrated in Fig. 4.4; the event “error” would be E =
(TX0 ∩ RX1) ∪ (TX1 ∩ RX0).

FIGURE 4.4

Binary communication example: partitions of S regarding transmission and reception.

4.2.2 Probabilistic independence
The events Am, 1 ≤ m ≤ M , are said to be mutually independent when the occurrence of one does not
affect the occurrence of any combination of the others.

For two events A and B, three equivalent tests can be employed: they are independent if and only
if:

1. P(A|B) = P(A),
2. P(B|A) = P(B), or
3. P(A ∩ B) = P(A)P (B).

The first two conditions follow directly from the definition of independence. Using any of them in
Eq. (4.6) one arrives at the third one. The reader is invited to return to Eq. (4.7) and conclude that B

and A|B are independent events. Consider the experiment of rolling a special die with the numbers 1,
2, and 3 stamped in black on three faces and stamped in red on the other three; the events A = {1} and
B = {s ∈ S|s is a red number} are mutually independent.

Algorithmically, the best choice for testing the mutual independence of more than two events is
using the third condition for every combination of 2,3, . . . ,M events among A1,A2, . . . ,AM .

As a final observation, mutually exclusive events are not mutually independent; on the contrary, one
could say they are maximally dependent, since the occurrence of one precludes the occurrence of the
other.
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4.2.3 Combined experiments – Bernoulli trials
The theory we have discussed so far can be applied when more than one experiment is performed at a
time. The generalization to the multiple experiment case can be easily done by using Cartesian products.

Consider the experiments Em with their respective sample spaces Sm, 1 ≤ m ≤ M . Define the com-
bined experiment E such that each of its trials is composed of one trial of each Em. An outcome of E is
the M-tuple (s1, s2, . . . , sM), where sm ∈ Sm, 1 ≤ m ≤ M , and the sample space of E can be written as
S = S1 × S2 × · · · × SM . Correspondingly, any event of E can be expressed as unions and intersections
of sets in the form A = A1 × A2 × · · · × AM , where Am is a properly chosen event of Em, 1 ≤ m ≤ M .

In the special case when the subexperiments are mutually independent, i.e., the outcomes of one do

not affect the outcomes of the others, we have P(A) =
M∏

m=1

Am. However, this is not the general case.

Consider the experiment of randomly selecting a card from a 52-card deck, repeated twice: if the first
card drawn is replaced, the subexperiments are independent; if not, the first outcome affects the second
experiment. For example, for A = {(ace of spades, ace of spades)}, P(A) = (1/52)2 if the first card is
replaced, and P(A) = 0 if not.

At this point, an interesting counting experiment (called Bernoulli trials) can be defined. Take a
random experiment E with sample space S and a desired event A (success) with P(A) = p, which
also defines A (failure) with P(A) = 1 − p. What is the probability of getting exactly k successes in
N independent repeats of E? The solution can be easily found by noticing that the desired result is

composed of k successes and N − k failures, which may occur in

(
N

k

)
different orders. Then,

P(k successes after N trials) =
(

N

k

)
pk(1 − p)N−k. (4.11)

When N → ∞, p → 0, and Np → a constant,

P(k successes after N trials) → (Np)ke−Np

k! . (4.12)

Returning to the card deck experiment (with replacement), the probability of selecting exactly two
aces of spades after 300 repeats is approximately 5.09%, from Eq. (4.11); Eq. (4.12) provides the
approximate value 5.20%. In a binary communication system where 0 and 1 are randomly transmitted
with equal probabilities, the probability that exactly 2 bits out of 3 transmitted bits are equal to 1 is
0.25%; this result can be easily checked by inspection of Fig. 4.5.

4.3 Random variable
Mapping each outcome of a random experiment to a real number provides a different framework for the
study of probabilistic models, amenable to simple interpretation and easy mathematical manipulation.
This mapping is performed by the so-called random variable.

Given a random experiment with sample space S, a random variable is any function X(s) that
maps each s ∈ S into some x ∈ R (see Fig. 4.6). The image of this transformation with domain S and
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FIGURE 4.5

Three consecutive bits sent through a binary communication system.

codomain R, which results from the convenient choice of the mapping function, can be seen as the
sample space of X; any event A of X can be described as a subset of R; and each mapped outcome x is
called a sample of X. The following conditions should be satisfied by a random variable X:

1. {X ≤ x} is an event ∀x ∈ R;
2. P({X = −∞}) = P({X = ∞}) = 0.

We will see later that these conditions allow the proper definition of the cumulative probability distri-
bution function (CDF) of X.

FIGURE 4.6

Sample space S mapped into R via random variable X(s).

As seen in Section 4.2, sample spaces (and events) can be countable or uncountable, according to
the nature of the random experiment’s individual outcomes. After mapping into subsets of R, countable
events remain countable – e.g., one could associate with the coin flip experiment a random variable V

such that V (head) = 0 and V (tail) = 1. On the other hand, uncountable events may or may not remain
uncountable. Consider the following four distinct definitions of a random variable I associated with the
(0,100] interval experiment defined immediately before Eq. (4.3):

1. I1(s) = s;

2. I2(s) =
{−1, s ≤ 50,

1, s > 50;
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3. I3(s) =
{

s, s ≤ 50,

100, s > 50;
4. I4(s) = min[s,50].
The sample space of:

1. I1, (0,100], is uncountable;
2. I2, {−1,1}, is countable;
3. I3, (0,50] ∪ {100}, is part uncountable, part countable;
4. I4, (0,50], even though it is an interval, can be considered as part uncountable, part countable.

The classification of sample spaces as countable or uncountable leads directly to the classification
of random variables as discrete, continuous, or mixed. A discrete random variable D has a countable
sample space SD and has P({D = d}) > 0, ∀ d ∈ SD – this is the case of V and I2 defined above.
A continuous random variable C has an uncountable sample space SD and (to avoid ambiguity) has
P({C = c}) = 0, ∀ c ∈ SC – this is the case of I1 defined above. A mixed variable M has a sample
space SD composed by the union of real intervals with continuously distributed probabilities, within
which P({M = m}) = 0, and discrete real values with finite probabilities P({M = m}) > 0 – this is the
case of I3 and I4 defined above. Specifically, since P(0 < I4 < 50) = P(I4 = 50) = 50%, SI4 should
rather be treated as part uncountable, part countable than as uncountable.

4.3.1 Probability distributions
From the conditions that must be satisfied by any random variable X, an overall description of its
probability distribution can be provided by the so-called cumulative probability distribution function
(shortened to CDF),

FX(x) = P({X ≤ x}). (4.13)

Since P(X = −∞) = 0, FX(−∞) = 0. It is obvious that FX(∞) = 1; but since P({X = ∞}) = 0,
P({X < ∞}) = 1. Moreover, 0 ≤ FX(x) ≤ 1 and FX(x) is a nondecreasing function of x, i.e., FX(x1) ≤
FX(x2) if x1 < x2. Also, FX(x+) = FX(x), i.e., FX(x) is continuous from the right; this will be impor-
tant in the treatment of discrete random variables. A typical CDF is depicted in Fig. 4.7. One can use
the CDF to calculate probabilities by noticing that

P({x1 < X ≤ x2}) = FX(x2) − FX(x1). (4.14)

For the random variable X whose CDF is described in Fig. 4.7, one can easily check by inspection that

P

(
X ≤ 1

2

)
= 50%.

The CDF of the random variable I1 associated above with the (0,100] interval sampling experiment
is

FI1(i1) =
⎧⎨
⎩

0, i1 ≤ 0,
i1

100 , 0 < i1 ≤ 100,

1, i1 > 100.

(4.15)
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FIGURE 4.7

Example of a cumulative probability distribution function.

The CDF of the random variable V associated above with the coin flip experiment is

FV (v) =
⎧⎨
⎩

0, v < 0,

0.5, 0 ≤ v < 1,

1, v ≥ 1.

(4.16)

Given a random variable x, any single value x0 such that P({X = x0}) = p > 0 contributes a step4

of amplitude p to FX(x). Then, it is easy to conclude that for a discrete random variable D with
SD = {. . . , di−1, di, di+1, . . . },

FD(d) =
∑

i

P ({D = di})u(d − di). (4.17)

An even more informative function that can be derived from the CDF to describe the probability
distribution of a random variable X is the so-called probability density function (shortened to PDF),

fX(x) = dFX(x)

dx
. (4.18)

Since FX(x) is a nondecreasing function of x, it follows that fX(x) ≥ 0. From the definition,

FX(x) =
∫ x+

−∞
fX(x̃)dx̃. (4.19)

4 Unit step function: u(x) =
{

0, x < 0,

1, x ≥ 0.
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Then, ∫ ∞

−∞
fX(x)dx = 1. (4.20)

The PDF corresponding to the CDF shown in Fig. 4.7 is depicted in Fig. 4.8.

FIGURE 4.8

Example of a probability density function.

One can use the PDF to calculate probabilities by noticing that

P({x1 < X ≤ x2}) =
∫ x+

2

x+
1

fX(x)dx. (4.21)

Again, for the random variable X whose distribution is described in Fig. 4.8, one can easily check by

inspection that

(
X ≤ 1

2

)
= 50%.

The PDF of the random variable I1 associated above with the (0,100] interval sampling experiment
is

fI1(i1) =
{

1
100 , 0 < i1 ≤ 100,

0, otherwise.
(4.22)

The PDF of the random variable V associated above with the coin flip experiment is

fV (v) =
{∞, v = 0 or v = 1,

0, otherwise,
(4.23)

which is not well defined. But coherently with what has been seen for the CDF, given a random variable
X, any single value x0 such that P({X = x0}) = p > 0 contributes an impulse5 of area p to fX(x). Then,

5 Unit impulse distribution, or Dirac delta: For x ∈R, δ(x) = 0 ∀x �= 0 and
∫ ∞
−∞

δ(x)dx = 1.
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it is easy to conclude that for a discrete random variable D with SD = {. . . , di−1, di, di+1, . . . },
fD(d) =

∑
i

P ({D = di})δ(d − di). (4.24)

In particular, for the coin flip experiment the PDF is fV (v) = 0.5δ(v) + 0.5δ(v − 1).
In the case of discrete random variables, in order to avoid the impulses in the PDF, one can operate

directly on the so-called mass probability function6:

PD(d) = P({D = d}). (4.25)

In this case,

FD(d) =
∑

i | di≤d

PD(di). (4.26)

This chapter favors an integrate framework for continuous and discrete variables, based on CDFs and
PDFs.

It is usual in the literature referring (for short) to the CDF as “the distribution” and to the PDF as “the
density” of the random variable. This text avoids this loose terminology, since the word “distribution”
better applies to the overall probabilistic behavior of the random variable, both in the form of a CDF or
a PDF.

4.3.2 Usual distributions
The simplest continuous distribution is the so-called uniform distribution. A random variable X is said
to be uniformly distributed between a and b > a if its PDF is

fX(x) =
⎧⎨
⎩

1

b − a
, a ≤ x ≤ b,

0, otherwise,
(4.27)

also depicted in Fig. 4.9. Notice that the inclusion or not of the interval bounds is unimportant here,
since the variable is continuous. The error produced by uniform quantization of real numbers is an
example of a uniform random variable.

Perhaps the most recurrent continuous distribution is the so-called Gaussian (or normal) distribu-
tion. A Gaussian random variable X is described by the PDF

fX(x) = 1√
2πσ 2

X

e
− (x − X)2

2σ 2
X . (4.28)

As seen in Fig. 4.10, this function is symmetrical around X, with spread controlled by σX. These
parameters, respectively called statistical mean and standard deviation of X, will be precisely defined

6 This unusual notation is employed here for the sake of compatibility with the other definitions.
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FIGURE 4.9

Uniform probability distribution.

in Section 4.3.4. The Gaussian distribution arises from the combination of several independent random
phenomena, and is often associated with noise models.

FIGURE 4.10

Gaussian probability distribution.

There is no closed expression for the Gaussian CDF, which is usually tabulated for a normalized

Gaussian random variable X̃ with X̃ = 0 and σ 2
X̃

= 1 such that

f
X̃
(x̃) = 1√

2π
e
− x̃2

2 . (4.29)
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In order to compute p = P({x1 < X ≤ x2}) for a Gaussian random variable X, one can build an aux-

iliary variable X̃ = X − X

σ 2
X

such that p = P({x̃1 < X̃ ≤ x̃2}) = F
X̃
(x̃2) − F

X̃
(x̃1), which can then be

approximated by tabulated values of F
X̃1

(x̃).
Example: The values r of a 10% resistor series produced by a component industry can be modeled

by a Gaussian random variable R with σR = 1

30
R. What is the probability of producing a resistor within

±1% of R?

Solution: The normalized counterpart of R is R̃ = R − R

1

30
R

. Then,

P({0.99R ≤ R ≤ 1.01R}) = P({−0.3 ≤ R̃ ≤ 0.3})
= F

R̃
(0.3) − F

R̃
(−0.3) ≈ 0.2358.

(4.30)

Notice once more that since the variable is continuous, the inclusion or not of the interval bounds has
no influence on the result.

In Section 4.2.3, an important discrete random variable was implicitly defined. A random variable
X that follows the so-called binomial distribution is described by

fX(x) =
N∑

k=0

(
N

k

)
pk(1 − p)N−kδ(x − k), (4.31)

and counts the number of occurrences of an event A which has probability p, after N independent runs
of a random experiment. Games of chance are related to binomial random variables.

The so-called Poisson distribution, described by

fX(x) = e−λT
∞∑

k=0

(λT )k

k! δ(x − k), (4.32)

counts the number of occurrences of an event A that follows a mean rate of λ occurrences per unit time,
during the time interval T . Traffic studies are related to Poisson random variables.

It is simple to derive the Poisson distribution from the binomial distribution. If an event A may occur
with no preference anytime during a time interval (t0, t0 + T0), the probability that A occurs within the

time interval [t, t + T ] ⊂ (t0, t0 + T0) is
T

T0
. If A occurs N times in (t0, t0 + T0), the probability that

it falls exactly k times in [t, t + T ] ⊂ (t0, t0 + T0) is

(
N

k

)
pk(1 − p)N−k . If T0 → ∞, p → 0; if A

follows a mean rate of λ = N

T0
occurrences per unit time, then N → ∞ and the probability of exact k

occurrences in a time interval of duration T becomes e−λT
∞∑

k=0

(λT )k

k! , where λT substituted for Np. If
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a central office receives 100 telephone calls per minute in the mean, the probability that more than one

call arrives during 1 second is 1 − e− 100
60 1
(

1 + 100

60
1

)
≈ 49.6%.

Due to space restrictions, this chapter does not detail other random distributions, which can be easily
found in the literature.

4.3.3 Conditional distribution
In many instances, one is interested in studying the behavior of a given random variable X under some
constraints. A conditional distribution can be built to this effect, if the event B ⊂ R summarizes those
constraints. The corresponding CDF of X conditioned to B can be computed as

FX(x|B) = P({X ≤ x|B}) = P({X ≤ x} ∩ B)

P (B)
. (4.33)

The related PDF is simply given by

fX(x|B) = dFX(x|B)

dx
. (4.34)

Conditional probabilities can be straightforwardly computed from conditional CDFs or PDFs.
When the conditioning event is an interval B = (a, b], it can be easily deduced that

FX(x|B) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ a,

FX(x) − FX(a)

FX(b) − FX(a)
, a < x ≤ b,

1, x > b

(4.35)

and

fX(x|B) =

⎧⎪⎪⎨
⎪⎪⎩

fX(x)∫ b

a

fX(x)dx

, a < x ≤ b,

0, otherwise.

(4.36)

Both sentences in Eq. (4.36) can be easily interpreted:

• Within (a, b], the conditional PDF has the same shape as the original one; the normalization factor∫ b

a

fX(x)dx ensures P((a, b]) = 100% in the restricted sample space (a, b].
• By definition, there is null probability of getting x outside (a, b].
As an example, the random variable H defined by the nonnegative outcomes of a normalized Gaussian
variable follows the PDF

fH (h) =
√

2

π
e
−h2

2 u[h]. (4.37)

The results shown in this section can be promptly generalized to any conditioning event.
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4.3.4 Statistical moments
The concept of mean does not need any special introduction: the single value that substituted for each
member in a set of numbers produces the same total. In the context of probability, following a fre-
quentist path, one could define the arithmetic mean of infinite samples of a random variable X as its
statistical mean X or its expected value E[X].

Recall the random variable V associated with the fair coin flip experiment, with PV (0) = PV (1) =
0.5. After infinite repeats of the experiment, one gets 50% of heads (V = 0) and 50% of tails (V = 1);
then, the mean outcome will be7 E[V ] = 0.5. If another variable V ′ is associated with an unfair coin
with probabilities PV ′(0) = 0.4 and PV ′(1) = 0.6, the same reasoning leads to E[V ′] = 0.6. Instead of
averaging infinite outcomes, just summing the possible values of the random variable weighted by their
respective probabilities also yields its statistical mean. Thus we can state that for any discrete random
variable D with sample space S = {. . . , di−1, di, di+1, . . . },

E[D] =
∑

i

diPD(di). (4.38)

This result can be generalized. Given a continuous random variable X, the probability of drawing a
value in the interval dx around x0 is given by fX(x0)dx. The weighted sum of every x ∈ R is simply

E[X] =
∫ ∞

−∞
xfX(x)dx. (4.39)

By substituting the PDF of a discrete variable D (see Eq. (4.24)) into this expression, one arrives at
Eq. (4.38). Then, Eq. (4.39) is the analytic expression for the expected value of any random variable X.

Suppose another random variable g(X) is built as a function of X. Since the probability of getting
the value x0 is the same as getting the respective g(x0), we can deduce that

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx. (4.40)

A complete family of measures based on expected values can be associated with a random variable.
The so-called nth-order moment of X (about the origin) is defined as

mn = E[Xn], n ∈ Z. (4.41)

The first two moments of X are:

• m1 = X, i.e., the mean of X, given by the centroid of fX(x);
• m2 = X2, i.e., the mean square value of X.

A modified family of parameters can be formed by computing the moments about the mean. The
so-called nth-order central moment of X is defined as

μn = E[(X − X)n], n ∈ Z. (4.42)

7 Note that the expected value of a random variable is not necessarily meaningful for the associated experiment.
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Subtracting the statistical mean from a random variable can be interpreted as disregarding its “deter-
ministic” part (represented by its statistical mean). We describe three special cases:

• μ2 = σ 2
X, known as the variance of X, measures the spread of fX(x) around X. The so-called

standard deviation σX = √
μ2 is a convenient measure with the same dimension of X.

• μ3, whose standardized version
μ3

σ 3
X

is the so-called skewness of X, measures the asymmetry of

fX(x).

• μ4, whose standardized version8 minus three (
μ4

σ 4
X

− 3) is the so-called kurtosis of X, measures the

peakedness of fX(x). One can say the distributions are measured against the Gaussian, which has a
null kurtosis.

Of course, analogous definitions apply to the moments computed over conditional distributions.
A useful expression, which will be recalled in the context of random processes, relates three of the

measures defined above:

σ 2
X = X2 − X

2
. (4.43)

Rewritten as

X2 = X
2 + σ 2

X, (4.44)

it allows to split the overall “intensity” of X, measured by its mean square value, into a deterministic

part, represented by X
2
, and a random part, represented by σ 2

X.
As an example, consider a discrete random variable D distributed as shown in Table 4.1. Their

respective parameters are:

Table 4.1 Statistical
distribution of D.

d PD

−1 0.2

0 0.5

1 0.3

• mean D = 0.1, indicating the PDF of D is shifted to the right of the origin;
• mean square value D2 = 1, which measures the intensity of D;
• variance σ 2

D = 0.49, which measures the random part of the intensity of D;
• standard deviation σD = 0.7, which measures the spread of D around its mean;

• skewness
μ3

σ 3
D

≈ −0.14, indicating the PDF of D is left-tailed;

• kurtosis
μ4

σ 4
D

− 3 ≈ −0.96, indicating the PDF of D is less peaky than the PDF of a Gaussian vari-

able.

8 The classical definition does not subtract three.
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At this point, we can discuss two simple transformations of a random variable X whose effects can
be summarized by low-order moments:

• A random variable Y = X + x0 can be formed by adding a fixed offset x0 to each sample of X.
As a consequence of this operation, the new PDF is a shifted version of the original one: fY (y) =
fX(y − x0), thus adding x0 to the mean of X: Y = X + x0.

• A random variable Y = αX can be formed by scaling by α each sample of X. As a consequence

of this operation, the new PDF is a scaled version of the original one: fY (y) = 1

|α|fX

(y

α

)
, thus

scaling by α the standard deviation of X: σY = ασX.

Such transformations do not change the shape (and therefore the type) of the original distribution. In
particular, one can generate:

• a zero-mean version of X by making Y = X − X, which disregards the deterministic part of X;

• a unit-standard deviation version of X by making Y = X

σX

, which enforces a standard statistical

variability to X;

• a normalized version of X by making Y = X − X

σX

, which combines both effects.

We already defined a normalized Gaussian distribution in Section 4.3.2. The normalized version D̃ of
the random variable D of the last example would be distributed as shown in Table 4.2.

Table 4.2 Statistical
distribution of D.

d̃ PD̃

−11/7 0.2

−1/7 0.5

9/7 0.3

These expectation-based parameters are mainly important because they provide a partial description
of an underlying distribution without the need to resource to the PDF. In a practical situation in which
only a few samples of a random variable are available, as opposed to its PDF and related moments, it
is easier to get more reliable estimates for the latter (especially low-order ones) than for the PDF itself.
The same rationale applies to the use of certain auxiliary inequalities that avoid the direct computation
of probabilities on a random variable (which otherwise would require the knowledge or estimation of
its PDF) by providing upper bounds for them based on low-order moments. Two such inequalities are:

• Markov’s inequality for a nonnegative random variable X:

P({X ≥ a}) ≤ X

a
, ∀a > 0;

• Chebyshev’s inequality for a random variable X:

P({|X − X| ≥ a}) ≤ σ 2
X

a2
, ∀a > 0.
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The derivation of Markov’s inequality is quite simple:

P {X ≥ a} =
∫ ∞

a

fX(x)dx =
∫ ∞

−∞
fX(x)u(x − a)dx

≤
∫ ∞

−∞
x

a
fX(x)u(x − a)dx ≤

∫ ∞

−∞
x

a
fX(x)dx = E[X]

a
.

(4.45)

Chebyshev’s inequality follows directly by substituting (X − X)2 ≥ a2 for X ≥ a in Markov’s inequal-
ity. As an example, the probability of getting a sample g > 3 from the normalized Gaussian random

variable G is P({G > 3}) ≈ 0.0013; Chebyshev’s inequality predicts P({G > 3}) ≤ 1

9
, an upper bound

almost 100 times greater than the actual probability.
Two representations of the distribution of a random variable in alternative domains provide inter-

esting links with its statistical moments. The so-called characteristic function of a random variable X

is defined as

�X(ω) = E[ejωX], ω ∈ R, (4.46)

and interrelates the moments mn by successive differentiations:

mn = (−j)n
dn�X(ω)

dωn

∣∣∣∣
ω=0

. (4.47)

The so-called moment-generating function of a random variable X is defined as

MX(ν) = E[eνX], ν ∈R, (4.48)

and provides an even more direct way to compute mn:

mn = dnMX(ν)

dνn

∣∣∣∣
ν=0

. (4.49)

4.3.5 Transformation of random variables
Consider the problem of describing a random variable Y = g(X) obtained by transformation of another
random variable X, as illustrated in Fig. 4.11. By definition,

FY (y) = P({Y ≤ y}) = P({g(X) ≤ y}). (4.50)

If X is a continuous random variable and g(·) is a differentiable function, the sentence g(X) ≤ y

is equivalent to a set of sentences in the form h1(y) < x ≤ h2(y). Since P({h1(y) < x ≤ h2(y)}) =
FX(h2(y)) − FX(h1(y)), FY (y) can be expressed as a function of FX(x).

Fortunately, an intuitive formula expresses fY (y) as a function of fX(x):

fY (y) =
∑
n

fX(xn)∣∣∣ dg(x)
dx

∣∣∣∣∣∣
x=xn

, with y = g(xn). (4.51)
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FIGURE 4.11

Random variable X mapped into random variable Y .

Given that the transformation g(·) is not necessarily monotonic, xn are all possible values mapped
to y; therefore, their contributions must be summed up. It is reasonable that fY (y) must be directly
proportional to fX(x): the more frequent a given x0, the more frequent its respective y0 = g(x0). In

turn, the term

∣∣∣∣dg(x)

dx

∣∣∣∣ accounts for the distortion imposed to fX(x) by g(x). For example, if this

transformation is almost constant in a given region, both if increasing or decreasing, then

∣∣∣∣dg(x)

dx

∣∣∣∣ in

the denominator will be close to zero; this just reflects the fact that a wide range of X values will be
mapped into a narrow range of values of Y , which will then become denser than X in that region.

As an example, consider that a continuous random variable X is transformed into a new variable
Y = X2. For the CDF of Y ,

Y ≤ y ⇒ X2 ≤ y ⇒ −√
y ≤ X ≤ √

y ⇒ FY (y) = FX(
√

y) − FX(−√
y). (4.52)

By Eq. (4.51), or by differentiation of Eq. (4.52), one arrives at the PDF of Y :

fY (y) = fX(
√

y) + fX(−√
y)√

y
. (4.53)

The case when real intervals of X are mapped into single values of Y requires an additional care
to handle the nonzero individual probabilities of the resulting values of the new variable. However, the
case of a discrete random variable X with S = {. . . , xi−1, xi, xi+1, . . . } being transformed is trivial:

fY (y) =
∑

i

PY (yi)δ(y − yi), with yi = g(xin) and PY (yi) =
∑
n

PX(xin). (4.54)

Again, xin are all possible values mapped to yi .
An interesting application of transformations of random variables is to obtain samples y of a given

random variable Y from samples x of another random variable X, both with known distributions. As-
sume that Y = g(X) exists such that FY (y = g(x)) = FX(x). Then, y = F−1

Y FX(x), which requires
only the invertibility of FY (y).

4.3.6 Multiple random variable distributions
A single random experiment E (composed or not) may give rise to a set of N random variables if each
individual outcome s ∈ S is mapped into several real values x1, x2, . . . , xN . Consider, for example, the
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random experiment of sampling the climate conditions at every point on the globe; the daily mean
temperature T and relative air humidity H can be considered as two random variables that serve as
numerical summarizing measures. One must generalize the probability distribution descriptions to cope
with this multiple random variable situation: it should be clear that the set of N individual probability
distribution descriptions, one for each distinct random variable, provides less information than their
joint probability distribution description, since the former cannot convey information about their mutual
influences.

We start by defining a multiple or vector random variable as the function X that maps s ∈ S into
x ∈ R

N , such that

X =

⎡
⎢⎢⎢⎣

X1

X2

...

XN

⎤
⎥⎥⎥⎦ (4.55)

and

x =

⎡
⎢⎢⎢⎣

x1
x2

...

xN

⎤
⎥⎥⎥⎦ . (4.56)

Note that x1, x2, . . . , xN are jointly sampled from X1,X2, . . . ,XN .
The joint cumulative probability distribution function (joint CDF) of X1,X2, . . . ,XN , or simply the

CDF of X, can be defined as

FX(x) = FX1,X2,...,XN
(x1, x2, . . . , xN)

= P({X1 ≤ x1} ∩ {X2 ≤ x2} ∩ · · · ∩ {XN ≤ xN }). (4.57)

The following relevant properties of the joint CDF can be easily deduced:

• FX(. . . , xn−1,−∞, xn+1, . . . ) = 0, since P({Xn ≤ −∞}) = 0 for any 1 ≤ n ≤ N ;
• FX(∞,∞, . . . ,∞) = 1, since this condition encompasses the complete S;
• 0 ≤ FX(x) ≤ 1 and FX(x) is a nondecreasing function of xn, 1 ≤ n ≤ N , by construction.

Define Xi containing Ni variables of interest among the random variables in X and leave the re-
maining N − Ni nuisance variables in Xn. The so-called marginal CDF of Xi1,Xi2, . . . ,XiNi

separately
describes these variables’ distribution from the knowledge of the CDF of X:

FXi(xi) = FX(x)|xn1 =xn2 =···=xnN−Ni
=∞ . (4.58)

One says the variables Xn1,Xn2, . . . ,XnN−Ni
have been marginalized out: the condition Xnm ≤ ∞ sim-

ply means they must be in the sample space, thus one does not need to care about them anymore.
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The CDF of a discrete random variable D with SD = {. . . ,di−1,di ,di+1, . . . }, analogously to the
single-variable case, is composed of steps at the admissible N -tuples:

FD(d) =
∑

i

PD(di )u(d1 − d1i )u(d2 − d2i ) . . . u(dN − dN i). (4.59)

The joint probability density function of X1,X2, . . . ,XN , or simply the PDF of X, can be defined
as

fX(x) = fX1,X2,...,XN
(x1, x2, . . . , xN) = ∂NFX(x)

∂x1∂x2 . . . ∂xN

. (4.60)

Since FX(x) is a nondecreasing function of xn, 1 ≤ n ≤ N , it follows that fX(x) ≥ 0. From the defini-
tion,

FX(x) =
∫ xN

−∞
· · ·
∫ x2

−∞

∫ x1

−∞
fX(x̃)dx̃1dx̃2 · · ·dx̃N . (4.61)

Then, ∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
fX(x)dx1dx2 · · ·dxN = 1. (4.62)

The probability of any event B ∈ R
N can be computed as

P(B) =
∫

x∈B

fX(x)dx1dx2 · · ·dxN . (4.63)

Once more we can marginalize the nuisance variables Xn1 ,Xn2, . . . ,XnN−Ni
to obtain the marginal

PDF of Xi from the PDF of X:

fXi(xi) =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
fX(x)dxn1 dxn2 · · ·dxnN−Ni

. (4.64)

Note that if Xi and Xn are statistically dependent, the marginalization of Xn does not “eliminate” (only
“hides”) the effect of Xn on Xi: the integration is performed over X, which describes their mutual
influences.

For a discrete random variable D with SD = {. . . ,di−1,di ,di+1, . . . }, the PDF consists of impulses
at the admissible N -tuples:

fD(d) =
∑

i

PD(di )δ(d1 − d1i )δ(d2 − d2i ) . . . δ(dN − dN i). (4.65)

Suppose, for example, that we want to find the joint and marginal CDFs and PDFs of two random
variables X and Y jointly uniformly distributed in the region 0 ≤ y ≤ x ≤ 1, such that

fX,Y (x, y) =
{

2, 0 ≤ y ≤ x ≤ 1,

0, otherwise.
(4.66)
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The marginalization of Y yields

fX(x) =
∫ ∞

−∞
fX,Y (x, y)dy =

∫ x

0
2dy =

{
2x, 0 ≤ x ≤ 1,

0, otherwise.
(4.67)

The marginalization of X yields

fY (y) =
∫ ∞

−∞
fX,Y (x, y)dx =

∫ 1

y

2dx =
{

2(1 − y), 0 ≤ y ≤ 1,

0, otherwise.
(4.68)

By definition,

FX,Y (x, y) =
∫ y

−∞

∫ x

−∞
fX,Y (x̃, ỹ)dx̃dỹ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < 0 or y < 0,

y(2x − y), 0 ≤ y ≤ x ≤ 1,

x2, 0 ≤ x ≤ 1 and y > x,

y(2 − y), 0 ≤ y ≤ 1 and x > 1,

1, x > 1 and y > 1.

(4.69)

The reader is invited to sketch the admissible region 0 ≤ y ≤ x ≤ 1 on the (x, y)-plane and try to solve
Eq. (4.69) by visual inspection. The marginal CDF of X is given by

FX(x) = FX,Y (x,∞) =
⎧⎨
⎩

0, x < 0,

x2, 0 ≤ x ≤ 1,

1, x > 1,

(4.70)

which could also have been obtained by direct integration of fX(x). The marginal CDF of Y is given
by

FY (y) = FX,Y (∞, y) =
⎧⎨
⎩

0, y < 0,

y(2 − y), 0 ≤ y ≤ 1,

1, y > 1,

(4.71)

which could also have been obtained by direct integration of fY (y).
Similarly to the univariate case discussed in Section 4.3.3, the conditional distribution of a vector

random variable X restricted by a conditioning event B ∈R
N can be described by its respective CDF

FX(x|B) = P({X1 ≤ x1} ∩ {X2 ≤ x2} ∩ · · · ∩ {XN ≤ xN } ∩ B)

P (B)
(4.72)

and PDF

fX(x|B) = ∂NFX(x|B)

∂x1∂x2 · · · ∂xN

. (4.73)

A special case arises when B imposes a point conditioning: Define XB containing NB variables among
those in X, such that B = {XB = xB}. It can be shown that

fX(x|B) = fX(x)

fXB
(xB)

, (4.74)
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an intuitive result in light of Eq. (4.6), to which one may directly refer in the case of discrete random
variables. Returning to the last example, the point-conditioned PDFs can be shown to be

fX(x|Y = y) =
⎧⎨
⎩

1

1 − y
, 0 ≤ y ≤ x ≤ 1,

0, otherwise
(4.75)

and

fY (y|X = x) =
⎧⎨
⎩

1

x
, 0 ≤ y ≤ x ≤ 1,

0, otherwise.
(4.76)

4.3.7 Statistically independent random variables
Based on the concept of statistical independence, discussed in Section 4.2.2, the mutual statistical
independence of a set of random variables means that the probabilistic behavior of each one is not
affected by the probabilistic behavior of the others. Formally, the random variables X1,X2, . . . ,XN are
independent when any of the following conditions is fulfilled:

• FX(x) =
N∏

n=1

FXn(xn),

• fX(x) =
N∏

n=1

fXn(xn),

• FXn(xn|any condition on the remaining variables) = FXn(xn),∀n = 1, . . . ,N , or
• fXn(xn|any condition on the remaining variables) = fXn(xn),∀n = 1, . . . ,N .

Returning to the example developed in Section 4.3.6, x and y are clearly statistically dependent. How-
ever, if they were jointly uniformly distributed in the region defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, they
would be statistically independent – this verification is left to the reader.

The PDF of a random variable Y =
N∑

n=1

Xn composed of the sum of N independent variables Xn

can be computed as9

fY (y) = (fX1 ∗ fX2 ∗ · · · ∗ fXN
)(y). (4.77)

4.3.8 Joint statistical moments
The definition of statistical mean can be directly extended to a vector random variable X with known
PDF. The expected value of a real scalar function g(X) is given by

9 Convolution integral: (a ∗ b)(y) =
∫ ∞
−∞

a(ỹ)b(y − ỹ)dỹ.
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E[g(X)] =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
g(x)fX(x)dx1dx2 · · ·dxN . (4.78)

We can analogously proceed to the definition of N -variable joint statistical moments. However, due
to the more specific usefulness of the N > 2 cases, only 2-variable moments will be presented.

An (n + k)th-order joint moment of X and Y (about the origin) has the general form

mnk = E[XnYk], n, k ∈ Z. (4.79)

The most important case corresponds to m = n = 1: m11 = RXY is called the statistical correlation
between X and Y . From a frequentist perspective, RXY is the average of infinite products of samples
x and y jointly drawn from fX,Y (x, y), which links the correlation to an inner product between the
random variables. Indeed, when RXY = 0, X and Y are called orthogonal. One can say the correlation
quantifies the overall linear relationship between the two variables. Moreover, when RXY = X Y , X

and Y are called mutually uncorrelated; this “separability” in the mean is weaker than the distribution
separability implied by the independence. In fact, if X and Y are independent,

RXY =
∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=
∫ ∞

−∞
xfX(x)dx

∫ ∞

−∞
yfY (y)dy = X Y,

(4.80)

i.e., they are also uncorrelated. The converse is not necessarily true.
An (n + k)th-order joint central moment of X and Y , computed about the mean, has the general

form

μnk = E[(X − X)n(Y − Y )k)], n, k ∈ Z. (4.81)

Once more, the case m = n = 1 is specially important: μ11 = CXY is called the statistical covariance
between X and Y , which quantifies the linear relationship between their random parts. Since10 CXY =
RX Y − X Y , X and Y are uncorrelated when CXY = 0. If CXY > 0, one says X and Y are positively
correlated, i.e., the variations of their statistical samples tend to occur in the same direction; if CXY < 0,
one says X and Y are negatively correlated, i.e., the variations of their statistical samples tend to occur
in opposite directions. For example, the age and the annual medical expenses of an individual are
expected to be positively correlated random variables. A normalized covariance can be computed as
the correlation between the normalized versions of X and Y :

ρXY = CXY

σXσY

= E

[
X − X

σX

· Y − Y

σY

]
, (4.82)

known as the correlation coefficient between X and Y , where −1 ≤ ρX Y ≤ 1. It can be interpreted as the
percentage of correlation between x and y. Recalling the inner product interpretation, the correlation
coefficient can be seen as the cosine of the angle between the statistical variations of the two random
variables.

10 Eq. (4.43) can be seen as the next expression computed for X = Y , since RXX = X2 and CXX = σ 2
X

.
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Consider, for example, the discrete variables D1 and D2 jointly distributed as shown in Table 4.3.
Their joint second-order parameters are:

Table 4.3 Statistical
distribution of D.

d1 d2 PD1,D2

−1 1 0.3

1 −1 0.6

1 1 0.1

• correlation RXY = −0.80, indicating D1 and D2 are not orthogonal;
• covariance CXY = −0.72, indicating D1 and D2 tend to evolve in opposite directions;
• correlation coefficient ρXY ≈ −0.80, indicating this negative correlation is relatively strong.

Returning to N -dimensional random variables, the characteristic function of a vector random vari-
able X is defined as

�X(ω1,ω2, . . . ,ωN) = E[ej(ω1X1+ω2X2+···ωNXN)], ω1,ω2, . . . ,ωN ∈ R, (4.83)

and interrelates the moments of order mn1,n2,...,nN
by

mn1,n2,...,nN
= (−j)n1+n2+···+nN

× ∂n1+n2+···+nN �X(ω1,ω2, . . . ,ωN)

∂ω
n1
1 ω

n2
2 · · · ∂ω

nN

N

∣∣∣∣∣
ω1=ω2=···=ωN=0

.
(4.84)

The moment-generating function of a vector random variable X is defined as

MX(ν1, ν2, . . . , νN) = E[eν1X1+ν2X2+···+νNXN ], ν1, ν2, . . . , νN ∈ R, (4.85)

and allows the computation of mn1,n2,...,nN
as

mn1,n2,...,nN
= ∂n1+n2+···+nN MX(ν1, ν2, . . . , νN)

∂ν
n1
1 ν

n2
2 · · · ∂ν

nN

N

∣∣∣∣∣
ν1=ν2=···=νN=0

. (4.86)

4.3.9 Central limit theorem
A result that partially justifies the ubiquitous use of Gaussian models, the central limit theorem (CLT),
states that (under mild conditions in practice) the distribution of a sum Y =∑N

n=1 Xn of N independent
variables Xn approaches a Gaussian distribution as N → ∞. Having completely omitted the proof of
the CLT, we can at least recall that in this case, fY (y) = lim

N→∞fY (y) = (fX1 ∗ fX2 ∗ · · · ∗ fXN
)(y) (see

Eq. (4.77)). Of course, Y =∑N
n=1 Xn, and by the independence property, σ 2

Y =∑N
n=1 σ 2

Xn
.

Gaussian approximations for finite N models are useful for sufficiently high N , but due to the shape
of the Gaussian distribution, the approximation error grows as y moves away from Y .
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The reader is invited to verify the validity of the approximation provided by the CLT for successive
sums of independent Xn uniformly distributed in [0,1].

Interestingly, the CLT also applies to the sum of discrete distributions: even if fY (y) remains im-
pulsive, the shape of FY (y) approaches the shape of the CDF of a Gaussian random variable as N

grows.

4.3.10 Multivariate Gaussian distribution
The PDF of an N -dimensional Gaussian variable is defined as

fX(x) = 1√
(2π)N det(CX)

e
−

(x − X)TC−1
X (x − X)

2 , (4.87)

where X is an N × 1 vector with elements {X}n = Xn, 1 ≤ n ≤ N , and CX is an N × N matrix with
elements {CX}mn = CXmXn, 1 ≤ m, n ≤ N , such that any related marginal distribution remains Gaus-
sian. As a consequence, by Eq. (4.74), any conditional distribution fX(x|B) with point conditioning B

is also Gaussian.
By this definition, we can see that the Gaussian distribution is completely defined by its first- and

second-order moments, which means that if N jointly distributed random variables are known to be
Gaussian, estimating their mean vector X and their covariance matrix CX is equivalent to estimating
their overall PDF. Moreover, if Xm and Xn are mutually uncorrelated, ∀m �= n, then CX is diagonal,

and the joint PDF becomes fX(x) =
N∏

n=1

fXn(xn), i.e., Xn will be mutually independent. This is a strong

result inherent to Gaussian distributions.

4.3.11 Transformation of vector random variables
The treatment of a general multiple random variable Y = T(X) resulting from the application of the
transformation T(·) to the multiple variable X always starts by enforcing FX(x) = FY(y), with y =
T(x).

The special case when T is invertible, i.e., X = T−1(Y) (or Xn = Tn
−1(Y), 1 ≤ n ≤ N ), follows a

closed expression:

fY(y) = fX(x = T−1(y))|J |, (4.88)

where

J = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂T −1
1 (y)

∂y1

∂T −1
1 (y)

∂y2
· · · ∂T −1

1 (y)

∂yN

∂T −1
2 (y)

∂y1

∂T −1
2 (y)

∂y2
· · · ∂T −1

2 (y)

∂yN

...
...

. . .
...

∂T −1
N (y)

∂y1

∂T −1
N (y)

∂y2
· · · ∂T −1

N (y)

∂yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.89)
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The reader should notice that this expression with N = 1 reduces to Eq. (4.51) particularized to the
invertible case.

Given the multiple random variable X with known mean vector X and covariance matrix CX, its
linear transformation Y = T X will have:

• a mean vector Y = T X,
• a covariance matrix CY = T CXT T.

It is possible to show that the linear transformation Y of an N -dimensional Gaussian random vari-
able X is also Gaussian. Therefore, in this case the two expressions above completely determine the
PDF of the transformed variable.

The generation of samples that follow a desired multivariate probabilistic distribution from samples
that follow another known multivariate probabilistic distribution applies the same reasoning followed in
the univariate case to the multivariate framework. The reader is invited to show that given the pair x1, x2
of samples from the random variables X1,X2, jointly uniform in the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, it is
possible to generate the pair y1, y2 of samples from the random variables Y1, Y2, jointly Gaussian with
the desired parameters Y1, σ 2

Y1
, Y2, σ 2

Y2
, and ρY1Y2 , by making

⎧⎨
⎩

y1 = Y1 + σY1

√−2 lnx1 cos(2πx2),

y2 = Y2 + ρY1Y2σY2

√−2 lnx1 cos(2πx2) + σY2

√
1 − ρ2

Y1Y2

√−2 lnx1 sin(2πx2).
(4.90)

4.3.12 Complex random variables
At first sight, defining a complex random variable Z may seem impossible, since the seminal event {Z ≤
z} makes no sense. However, in the vector random variable framework, this issue can be circumvented
if one jointly describes the real and imaginary parts (or magnitude and phase) of Z.

The single complex random variable Z = X + jY, x, y ∈R, is completely represented by
fX,Y (x, y), which allows one to compute the expected value of a scalar function g(Z) as E[g(Z)] =∫ ∞

−∞

∫ ∞

−∞
g(z)fX,Y (x, y)dxdy. Moreover, we can devise general definitions for the mean and variance

of Z as, respectively:

• Z = X + jY ,
• σ 2

Z = E[|Z − Z|2] = σ 2
X + σ 2

Y , which measures the spread of Z about its mean in the complex plan.

An N -dimensional complex random variable Z = X + jY can be easily handled through a properly
defined joint distribution, e.g., fX,Y(x,y). The individual variables Zn, 1 ≤ n ≤ N , will be independent
when

fX,Y(x,y) =
N∏

n=1

fXn,Yn(xn, yn). (4.91)

The following definitions must be generalized to cope with complex random variables:

• correlation: RZ1Z2 = E[Z1Z
∗
2 ];

• covariance: CZ1Z2 = E[(Z1 − Z1)(Z2 − Z2)
∗].
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Now, CZ1Z2 = RZ1Z2 − Z1 Z2
∗
. As before, Z1 and Z2 will be:

• orthogonal when RZ1Z2 = 0;
• uncorrelated when CZ1Z2 = 0.

4.3.13 Application: estimators
One of the most encompassing applications of vector random variables is the so-called parameter
estimation, per se an area supported by its own theory. The typical framework comprises using a finite
set of measured data from a given phenomenon to estimate the parameters11 of its underlying model.

A set X1,X2, . . . ,XN of N independent identically distributed (i.i.d.) random variables such that

fX(x) =
N∏

n=1

fX(xn) (4.92)

can describe an N -size random sample of a population modeled by fX(x). Any function g(X) (called a
statistic of X) can constitute a point estimator �̂ of some parameter θ such that given an N -size sample
x1, x2, . . . , xN of X, one can compute an estimate θ̂ = g(x) of θ .

A classical example of point estimator for a fixed parameter is the so-called sample mean, which
estimates θ = X by the arithmetic mean of the available samples xn, n = 1,2, . . . ,N :

x̂N = 1

N

N∑
n=1

xn. (4.93)

Defining a desired estimator is not always a trivial task as in the previous example. In general,
resorting to a proper analytical criterion is necessary. Suppose we are given the so-called likelihood
function of θ , L(θ) = fX(x|θ), which provides a probabilistic model for X as an explicit function of θ .
Given the sample x, the so-called maximum likelihood (ML) estimator �̂ML computes an estimate of
θ by direct maximization of L(θ). This operation is meant to find the value of θ that would make the
available sample x the most probable.

Sometimes the parameter θ itself can be a sample of a random variable � described by an a priori
PDF f�(θ). For example, suppose one wants to estimate the mean value of a shipment of components
received from a given factory; since the components may come from several production units, we can
think of a statistical model for their nominal values. In such situations, any reliable information on the
parameter distribution can be taken into account to better tune the estimator formulation; these so-called
Bayesian estimators rely on the a posteriori PDF of θ :

f�(θ |x) = fX,�(x, θ)

fX(x)
∝ L(θ)f�(θ). (4.94)

Given a sample x, the so-called maximum a posteriori (MAP) estimator �̂MAP computes an estimate of
θ as the mode of f�(θ |x). This choice is meant to find the most probable θ that would have produced

11 We will consider only scalar parameters, without loss of generality.
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the available data x. Several applications favor the posterior mean estimator, which for a given sample
x computes θ̂PM = E[�|x], over the MAP estimator.

The quality of an estimator �̂ can be assessed through some of its statistical properties.12 An overall
measure of the estimator performance is its mean square error MSE(�̂) = E[(θ − �̂)2], which can be
decomposed in two parts:

MSE(�̂) = b2(�̂) + σ 2
�̂
, (4.95)

where b(�̂) = E[θ − �̂] is the estimator bias and σ 2
�̂

is its variance. The bias measures the determinis-
tic part of the error, i.e., how much the estimates deviate from the target in the mean, thus providing an
accuracy measure: the smaller its bias, the more accurate the estimator. The variance, in turn, measures
the random part of the error, i.e., how much the estimates spread about their mean, thus providing a pre-
cision measure: the smaller its variance, the more precise the estimator. Another property attributable to
an estimator is consistence13: �̂ is said to be consistent when lim

N→∞P(|�̂ − θ | ≥ ε) = 0, ∀ε > 0. Using

the Chebyshev inequality (see Section 4.3.4), one finds that an unbiased estimator with lim
N→∞σ 2

�̂
= 0 is

consistent. It can be shown that the sample mean defined in Eq. (4.93) has b(X̂N) = 0 (thus is unbiased)

and σ 2

X̂N

= σ 2
X

N
(thus is consistent). The similarly built estimator for σ 2

X, the unbiased sample variance,

computes

σ̂ 2
X = 1

N − 1

N∑
n=1

(
xn − X̂N

)2
. (4.96)

The reader is invited to prove that this estimator is unbiased, while its more intuitive form with denom-
inator N instead of N − 1 is not.

One could argue how reliable a point estimation is. In fact, if the range of θ is continuous, one
can deduce that P({�̂ = θ}) = 0. However, perhaps we would feel more confident if the output of an
estimator were something like “θ1 ≤ θ ≤ θ2 with probability p.” The confidence limits of this interval
estimate are θ1 and θ2 and p is the confidence.

Example: A resistance meter uses a batch of 10 measurements and outputs the sample mean R̂10.
Assuming that all measurements are i.i.d. and that they can be described by a unit-variance Gaussian
random variable centered at the nominal resistance value R, determine the 95% confidence interval for
the estimates.

Solution: Evidently, R̂10 is a Gaussian random variable with E[R̂10] = R and σ 2

R̂10

= 0.1. We should

find a such that P({R̂10 − a ≤ R ≤ R̂10 + a}) = 0.95. For the associated normalized Gaussian random

variable, this is equivalent to P

({
−1.96 ≤ R − R̂10

1/
√

10
≤ 1.96

})
≈ 0.95 ⇒ a ≈ 0.62.

12 For the sake of simplicity, we refer only to the estimation of a fixed parameter θ .
13 There are other definitions of consistence.
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4.3.14 Application: feature selection
An important use of estimators is in the process of feature selection, which is widely used in machine
learning systems. Consider, for example, classification machines, whose purpose is to use a set of char-
acteristics of an entity (e.g., height, weight, and glucose level of a human, morphological characteristics
of a plant, etc.) to classify it. These models are trained in order to take an input vector of features x and
identify the “class” y of that input.14

When modeling the input as a sample of a vector random variable X, it is easy to see that high
correlation between its entries is undesirable. If two different components X1 and X2 of the random
vector are such that |ρX1X2 | ≈ 1, this means that knowledge of one of the variables is virtually sufficient
to determine the other. This, combined with the fact that dealing with a high number of dimensions is
detrimental to machine learning systems, makes a tool to identify correlations between features neces-
sary.

The covariance matrix CXX presented above is a strong candidate for this task, as its off-diagonal
terms represent cross-covariances between different features. Since the input distribution fX(x) is often
unknown, an estimate ĈXX is used instead. Suppose we have N samples of the input vector X, given
by xn ∈ R

d , where d is the number of features. Assume, without loss of generality, that all components
of the input vector are zero-mean, unit-variance random variables,15 so that the off-diagonal terms of
CXX become correlation coefficients. An estimation of the covariance matrix is given by

ĈXX = 1

N

N∑
n=1

xnxT
n = 1

N
DT

XDX, (4.97)

where DX is the data matrix, given by

DX =

⎡
⎢⎢⎢⎢⎣

xT
1

xT
2
...

xT
N

⎤
⎥⎥⎥⎥⎦ . (4.98)

An inspection of ĈXX makes it possible to identify highly correlated features (i.e., above a given
threshold) and remove redundant ones, producing a reduced input vector, better suited to the problem.
As only the input vectors themselves are used to make the selection, this type of procedure is called an
unsupervised feature selection. Alternatively, one can take into account the correlation between each
input characteristic and the desired result, which is called supervised feature selection.

14 Although we are only considering numerical features, one could talk about categorical features as well.
15 A simple normalization of the original samples based on estimations of their means and variances can approximate this
condition.
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4.4 Random process
If the outcomes s of a given random experiment vary with time t , each one can be mapped by some
X(s(t)) into a real function x(t). This is a direct generalization of the random variable. As a result, we
get an infinite ensemble of time-varying sample functions or realizations x(t) which form the so-called
stochastic or random process X(t). For a fixed t0, X(t0) reduces to a single random variable, thus a
random process can be seen as a time-ordered multiple random variable. An example of a random pro-
cess is the simultaneous observation of air humidity at every point of the globe, H(t): each realization
h(t) describes the humidity variation in time at a randomly chosen place on earth, whereas the random
variable H(t0) describes the distribution of air humidity over the earth at instant t0. A similar construc-
tion in the discrete-time n domain would produce X[n] composed of realizations x[n]. If the hourly
measures of air humidity substitute for its continuous measure in the former example, we get a new
random process H [n]16

As seen, there are continuous-time and discrete-time random processes. Since random variables
have already been classified as continuous or discrete, one analogously refers to continuous-valued and
discrete-valued random processes. The combination of the two classifications can become ambiguous
or awkwardly lengthy; whenever this complete categorization is necessary, one favors the nomenclature
random process for the continuous-time case and random sequence for the discrete-time case, using the
words “continuous” and “discrete” only with reference to amplitude values. In the former examples,
the continuous random process H(t) and random sequence H [n] would model the idealized actual
air humidity as a physical variable, whereas the practical digitized measures of air humidity would be
modeled by their discrete counterparts.

4.4.1 Distributions of random processes and sequences
One could think of the complete description of a random process or sequence as a joint CDF (or PDF)
encompassing every possible instant of time t or n, respectively, which is obviously impractical. How-
ever, their partial representation by Lth-order distributions (employing a slightly modified notation to
include the reference to time) can be useful. The CDF of a random process X(t) can be defined as

FX(x1, x2, . . . , xL; t1, t2, . . . , tL)

= P({X(t1) ≤ x1,X(t2) ≤ x2 . . . ,X(tL) ≤ xL}), (4.99)

with an associated PDF

fX(x1, x2, . . . , xL; t1, t2, . . . , tL) = ∂LFX(x1, x2, . . . , xL; t1, . . . , tL)

∂x1∂x2 · · · ∂xL

. (4.100)

The CDF of a random sequence X[n] can be defined as

FX(x1, x2, . . . , xL;n1, n2, . . . , nL)

= P({X[n1] ≤ x1,X[n2] ≤ x2 . . . ,X[nL] ≤ xL}), (4.101)

16 In this text, for completeness we opted for always explicitly writing both formulations, for processes and sequences.
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with an associated PDF

fX(x1, x2, . . . , xL;n1, n2, . . . , nL) = ∂LFX(x1, x2, . . . , xL;n1, n2, . . . , nL)

∂x1∂x2 · · · ∂xL

. (4.102)

This convention can be easily extended to the joint distributions of M random processes Xm(t), m =
1,2, . . . ,M (sequences Xm[n], m = 1,2, . . . ,M), as will be seen in the next subsection. The notation
for point-conditioned distributions can also be promptly inferred (see Section 4.4.12).

4.4.2 Statistical independence
As with random variables, the mutual independence of random processes or sequences is tested by the
complete separability of their respective distributions. The random processes Xm(t), m = 1,2, . . . ,M ,
are independent when

fX1,X2,...,XM
(x11, x12, ..., x1L1 , x21, x22, ..., x2L2 , ..., xM1, xM2, ..., xMLM

;
t11, t12, ..., t1L1 , t21, t22, ..., t2L2 , ..., tM1, tM2, ..., tMLM

)

=
M∏

m=1

fXm(xm1, xm2, ..., xmLm; tm1, tm2, ..., tmLm)

(4.103)

for any choice of time instants. Similarly, the random sequences Xm[n], m = 1,2, . . . ,M , are indepen-
dent when

fX1,X2,...,XM
(x11, x12, ..., x1L1 , x21, x22, ..., x2L2 , ..., xM1, xM2, ..., xMLM

;
n11, n12, ..., n1L1 , n21, n22, ..., n2L2 , ..., nM1, nM2, ..., nMLM

)

=
M∏

m=1

fXm(xm1, xm2, ..., xmLm;nm1, nm2, ..., nmLm)

(4.104)

for any choice of time instants.

4.4.3 First- and second-order moments for random processes and sequences
It is not necessary to redefine moments in the context of random processes and sequences, since we
will always be dealing with a set of random variables as in Section 4.3.8. But it is useful to revisit the
first- and second-order cases with a slightly modified notation to include time information.

For a random process X(t), the following definitions apply:

• the mean X(t) = E[X(t)];
• the mean square value or mean instantaneous power X2(t) = E[X2(t)];
• the variance σ 2

X(t) = E[(X(t) − X(t))2];
• the autocorrelation RXX(t1, t2) = E[X(t1)X(t2)];
• the autocovariance CXX(t1, t2) = E[(X(t1) − X(t1))(X(t2) − X(t2))].
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As seen for random variables,

σ 2
X(t) = X2(t) − (X(t))2 ⇒ X2(t) = (X(t))2 + σ 2

X(t), (4.105)

which means that the mean instantaneous power of the process is the sum of a deterministic parcel with
a random parcel.

Analogously, for a random sequence X[n], the following definitions apply:

• the mean X[n] = E[X[n]];
• the mean square value or mean instantaneous power X2[n] = E[X2[n]];
• the variance σ 2

X[n] = E[(X[n] − X[n])2];
• the autocorrelation RXX[n1, n2] = E[X[n1]X[n2]];
• the autocovariance CXX[n1, n2] = E[(X[n1] − X[n1])(X[n2] − X[n2])].
Again,

σ 2
X[n] = X2[n] − (X[n])2 ⇒ X2[n] = (X[n])2 + σ 2

X[n], (4.106)

i.e., the mean instantaneous power of the sequence is the sum of a deterministic parcel with a random
parcel.

Given two random processes X(t) and Y(t), one defines:

• the cross-correlation RXY (t1, t2) = E[X(t1)Y (t2)];
• the cross-covariance CXY (t1, t2) = E[(X(t1) − X(t1))(Y (t2) − Y(t2))].
The processes X(t) and Y(t) are said to be mutually:

• orthogonal when RXY (t1, t2) = 0, ∀t1, t2;
• uncorrelated when CXY (t1, t2) = 0, which is the same as RXY (t1, t2) = X(t1)Y (t2) ∀t1, t2.

The mean instantaneous power of (X(t) + Y(t)) is given by

E[(X(t) + Y(t))2] = X2(t) + 2E[X(t)Y (t)] + Y 2(t), (4.107)

which suggests the definition of E[X(t)Y (t)] as the mean instantaneous cross-power between X(t) and
Y(t).

Analogously, given two random sequences X[n] and Y [n], one defines:

• the cross-correlation RXY [n1, n2] = E[X[n1]Y [n2]];
• the cross-covariance CXY [n1, n2] = E[(X[n1] − X[n1])(Y [n2] − Y [n2])].
The sequences X[n] and Y [n] are said to be mutually:

• orthogonal when RXY [n1, n2] = 0, ∀n1, n2;
• uncorrelated when CXY [n1, n2] = 0, which is the same as RXY [n1, n2] = X[n1]Y [n2] ∀n1, n2.

The mean instantaneous power of (X[n] + Y [n]) is given by

E[(X[n] + Y [n])2] = X2[n] + 2E[X[n]Y [n]] + Y 2[n], (4.108)
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which suggests the definition of E[X[n]Y [n]] as the mean instantaneous cross-power between X[n]
and Y [n].

The interpretation of this “cross-power” is not difficult: it accounts for the constructive or destructive
interaction of the two involved processes (sequences) as dictated by their mutual correlation.

We will dedicate some space later to the properties of second-order moments.

4.4.4 Stationarity
The stationarity of random processes and sequences refers to the time-invariance of their statistical
properties, which makes their treatment considerably easier.

The strict-sense is the strongest class of stationarity. A strict-sense stationary (SSS) random process
X(t) (sequence X[n]) bears exactly the same statistical properties as X(t + �t), ∀�t ∈R (X[n +
�n], ∀�n ∈ Z), which means that its associated joint distribution for any set of time instants does not
change when they are all shifted by the same time lag. A random process (sequence) in which each
realization is a constant sampled from some statistical distribution in time is SSS.

Under this perspective, we can define that a random process X(t) is Lth-order stationary when

FX(x1, x2, . . . , xL; t1, t2, . . . , tL)

= FX(x1, x2, . . . , xL; t1 + �t, t2 + �t, . . . , tL + �t)
(4.109)

or, alternatively,

fX(x1, x2, . . . , xL; t1, t2, . . . , tL)

= fX(x1, x2, . . . , xL; t1 + �t, t2 + �t, . . . , tL + �t).
(4.110)

Analogously, a random sequence X[n] is Lth-order stationary when

FX(x1, x2, . . . , xL;n1, n2, . . . , nL)

= FX(x1, x2, . . . , xL;n1 + �n,n2 + �n, . . . , nL + �n)
(4.111)

or, alternatively,

fX(x1, x2, . . . , xL;n1, n2, . . . , nL)

= fX(x1, x2, . . . , xL;n1 + �n,n2 + �n, . . . , nL + �n).
(4.112)

We can say that an SSS random process or sequence is stationary for any order L. Moreover, Lth-order
stationarity implies (L − 1)th-order stationarity, by marginalization of both sides of any of the four
equations above.

First-order stationarity says the statistical distribution at any individual instant of time t (n) is the
same, i.e., fX(x; t) does not depend on t (fX(x;n) does not depend on n). A natural consequence is the
time-invariance of its statistical mean: X(t) = X (X[n] = X). Second-order stationarity says the joint
statistical distribution at any two time instants t and t − τ for a fixed τ (n and n − k for a fixed k) is
the same. A natural consequence is the time-invariance of its autocorrelation, which can depend only
on the time lag between the two time instants: RXX(t, t − τ) = RXX(τ) (RXX[n,n − k] = RXX[k]).
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A weaker class of stationarity called wide-sense is much used in practice for its simple testability.
A random process X(t) (sequence X[n]) is said to be wide-sense stationary (WSS) when its mean
and autocorrelation are time-invariant. Such conditions do not imply stationarity of any order, although
second-order stationarity implies wide-sense stationarity. As an extension of such definition, one says
that two processes X(t) and Y(t) (sequences X[n] and Y [n]) are jointly WSS when they are individually
WSS and their cross-correlation is time-invariant, i.e., can depend only on the time lag between the two
time instants: RXY (t, t − τ) = RXY (τ) (RXY [n,n − k] = RXY [k]).

4.4.5 Properties of correlation functions for WSS processes and sequences
Wide-sense stationarity in random processes and sequences induces several interesting properties, some
of which are listed below. For processes,

• |RXX(τ)| ≤ RXX(0);
• RXX(−τ) = RXX(τ);
• if lim|τ |→∞RXX(τ) = B, then B = X

2
;

• if X(t) has a periodic component, then RXX(τ) has the same periodic component;
• RXY (−τ) = RYX(τ);
• RXY (τ) ≤√RXX(0)RYY (0);

• RXY (τ) ≤ RXX(0) + RYY (0)

2
.

For sequences,

• |RXX[k]| ≤ RXX[0];
• RXX[−k] = RXX[k];
• if lim|k|→∞RXX[k] = B, then B = X

2
;

• if X[n] has a periodic component, then RXX[k] has the same periodic component;
• RXY [−k] = RYX[k];
• RXY [k] ≤√RXX[0]RYY [0];
• RXY [k] ≤ RXX[0] + RYY [0]

2
.

Even if the properties are not proven here, some interesting observations can be traced about them:

• The statistical behavior of the process (sequence) at a given instant of time is maximally correlated
with itself, an intuitive result.

• The autocorrelation commutes.
• The statistical behaviors of a WSS process (sequence) with no periodic components at two time in-

stants separated by τ → ∞ (k → ∞) are uncorrelated. Then, the autocorrelation tends to the product
of two (identical) statistical means.

• Periodic components in the process (sequence) cause the correlation maximum (and surrounding
behavior) to repeat at each fundamental period.

• The arithmetic and geometric mean properties are in a certain sense linked to the first property. The
second property is more stringent than the first.
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4.4.6 Time averages of random processes and sequences
The proper use of random processes and sequences to model practical problems depends on the careful
understanding of both their statistical and time variations. The main difference between these two con-
texts, which must be kept in mind, is the fact that time is inexorably ordered, thus allowing the inclusion
in the model of some deterministic (predictable) time structure. When we examine the statistical au-
tocorrelation between two time instants of a random process or sequence, we learn how the statistical
samples taken at those instants follow each other. In a WSS process or sequence, this measure for dif-
ferent lags can convey an idea of statistical periodicity.17 But what if one is concerned with the time
structure and characteristics of each (or some) individual realization(s) of a given process or sequence?
The use of time averages can provide this complementary description.

The time average of a given continuous-time function f (t) can be defined as

A[f (t)] = lim
T →∞

1

2T

∫ T

−T

f (t)dt. (4.113)

Given the random process X(t), the time average of any of its realizations x(t) is

x = A[x(t)]. (4.114)

The average power of x(t) is

pxx = A[x2(t)]. (4.115)

The time autocorrelation of x(t) for a lag τ is defined as

rxx(τ ) = A[x(t)x(t − τ)]. (4.116)

The time cross-correlation between the realizations x(t) of process X(t) and y(t) of process Y(t) for a
lag τ is defined as

rxy(τ ) = A[x(t)y(t − τ)]. (4.117)

As in the statistical case, an average cross-power between x(t) and y(t), which accounts for their
mutual constructive or destructive interferences due to their time structure, can be defined as

pxy = A[x(t)y(t)]. (4.118)

Computed for the complete ensemble, such measures produce the random variables X , Pxx , Rxx(τ ),
Rxy(τ ), and Pxy , respectively. Under mild convergence conditions,

E[X ] = E[A[X(t)]] = A[E[X(t)]] = A[X(t)], (4.119)

E[Pxx] = E[A[X2(t)]] = A[E[X2(t)]] = A[X2(t)], (4.120)

E[Rxx(τ )] = E[A[X(t)X(t − τ)]] = A[E[X(t)X(t − τ)]] = A[RXX(t, t − τ)], (4.121)

17 We have already addressed this fact when discussing the properties of second-order moments in Section 4.4.5.
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E[Rxy(τ )] = E[A[X(t)Y (t − τ)]] = A[E[X(t)Y (t − τ)]] = A[RXY (t, t − τ)], (4.122)

and

E[Pxy] = E[A[X(t)Y (t)]] = A[E[X(t)Y (t)]], (4.123)

which are respectively the overall mean value, mean power, and autocorrelation (for lag τ ) of process
X(t) and the cross-correlation (for lag τ ) and mean cross-power between processes X(t) and Y(t).

The time average of a given discrete-time function f [n] can be defined as

A[f [n]] = lim
N→∞

1

2N + 1

N∑
n=−N

f [n]. (4.124)

Given the random sequence X[n], the time average of any of its realizations x[n] is

x = A[x[n]]. (4.125)

The average power of x[n] is

pxx = A[x2[n]]. (4.126)

The time autocorrelation of x[n] for lag k is defined as

rxx[k] = A[x[n]x[n − k]]. (4.127)

The time cross-correlation between the realizations x[n] of sequence X[n] and y[n] of sequence Y [n]
for lag k is defined as

rxy[k] = A[x[n]y[n − k]]. (4.128)

As in the statistical case, an average cross-power between x[n] and y[n], which accounts for their
mutual constructive or destructive interferences due to their time structure, can be defined as

pxy = A[x[n]y[n]]. (4.129)

Computed for the complete ensemble, such measures produce the random variables X , Pxx , Rxx[k],
Rxy[k], and Pxy , respectively. Under mild convergence conditions,

E[X ] = E[A[X[n]]] = A[E[X[n]]] = A[X[n]], (4.130)

E[Pxx] = E[A[X2[n]]] = A[E[X2[n]]] = A[X2[n]], (4.131)

E[Rxx[k]] = E[A[X[n]X[n − k]]] = A[E[X[n]X[n − k]]] = A[RXX[n,n − k]], (4.132)

E[Rxy[k]] = E[A[X[n]Y [n − k]]] = A[E[X[n]Y [n − k]]] = A[RXY [n,n − k]], (4.133)

and

E[Pxy] = E[A[X[n]Y [n]]] = A[E[X[n]Y [n]]], (4.134)

which are respectively the overall mean value, mean power, and autocorrelation (for lag k) of sequence
X[n] and the cross-correlation (for lag k) and mean cross-power between sequences X[n] and Y [n].
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As an example, consider that a deterministic signal s(t) �= 0 (with A[s(t)] = 0) is additively con-
taminated by random noise n(t) that can be modeled as a realization of the WSS random process N(t)

(with N(t) = 0 and N2(t) = σ 2
N ), thus yielding the random signal x(t) = s(t) + n(t). The correspond-

ing process X(t) = s(t) + N(t) is obviously not WSS, since X(t) = s(t). Furthermore, (following the
nomenclature we have adopted) we can compute its:

• mean instantaneous power X2(t) = s2(t) + σ 2
N ;

• mean power Pxx = A[s2(t)] + A[n2(t)];
• overall mean power E[Pxx] = A[s2(t)] + σ 2

N .

Defining the signal-to-noise ratio (SNR) as the ratio between signal and noise powers, we can conclude

that SNRX = A[s2(t)]
σ 2

N

.

Now, suppose that two differently contaminated versions of s(t) are available, x1(t) = s(t) +
n1(t) and x2(t) = s(t) + n2(t), and that the underlying noise processes N1(t) and N2(t) are jointly

WSS and uncorrelated, with N1(t) = N2(t) = 0, N2
1 (t) = σ 2

N1
, and N2

2 (t) = σ 2
N2

. If an average signal

xm(t) = x1(t) + x2(t)

2
is computed, we can guarantee SNRXm > SNRX1 and SNRXm > SNRX2 (i.e.,

noise is reduced) as long as
1

3
<

σ 2
N1

σ 2
N2

< 3.

4.4.7 Ergodicity
Ergodicity is a property that allows interchanging statistic and temporal characteristics of some random
processes (sequences) – which are then called ergodic. There are several levels of ergodicity, some of
which are discussed below.

A random process X(t) with constant statistical mean is said to be mean-ergodic when any time
average x is equal to X with probability 1, which requires σ 2

X
= 0. If X(t) is WSS, a necessary and

sufficient condition for mean-ergodicity is

lim
T →∞

1

2T

∫ 2T

−2T

CXX(τ)

(
1 − |τ |

2T

)
dτ = 0. (4.135)

A random process X(t) with time-invariant autocorrelation is said to be autocorrelation-ergodic when
any time autocorrelation rxx(τ ) is equal to RXX(τ) with probability 1, which requires σ 2

Rxx(τ )
= 0.

Two processes X(t) and Y(t) with time-invariant cross-correlation are cross-correlation-ergodic when
any time cross-correlation rxy(τ ) is equal to RXY (τ) with probability 1, which requires σ 2

Rxy(τ ) = 0.
Conditions for correlation-ergodicity of random processes involve fourth-order moments.

A random sequence X[n] with constant statistical mean is said to be mean-ergodic when any time
average x is equal to X with probability 1, which requires σ 2

X
= 0. If X[n] is WSS, a necessary and

sufficient condition for mean-ergodicity is

lim
M→∞

1

2M + 1

2M∑
k=−2M

CXX[k]
(

1 − |k|
2M + 1

)
= 0. (4.136)
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A random sequence X[n] with time-invariant autocorrelation is said to be autocorrelation-ergodic when
any time autocorrelation rxx[k] is equal to RXX[k] with probability 1, which requires σ 2

Rxx [k] = 0. Two
sequences X[n] and Y [n] with time-invariant cross-correlation are cross-correlation-ergodic when any
time cross-correlation rxy[k] is equal to RXY [k] with probability 1, which requires σ 2

Rxy [k] = 0. Condi-
tions for correlation-ergodicity of random sequences involve fourth-order moments.

A process (sequence) that is mean- and autocorrelation-ergodic is called wide-sense ergodic. Two
wide-sense ergodic processes (sequences) that are cross-correlation-ergodic are called jointly wide-
sense ergodic.

A process (sequence) is distribution-ergodic when it is ergodic for every moment.
The SSS random process (sequence) formed by random constant realizations is not ergodic in any

sense. From Eqs. (4.135) and (4.136), a WSS process X(t) (sequence X[n]), statistically uncorrelated at
any different time instants t1 and t2 (n1 and n2), i.e., with CXX(t1 − t2) = δ(t1 − t2) (CXX[n1 − n2] =
δ[n1 − n2]), is mean-ergodic.

In practical real-life situations, quite often just a single realization of an underlying random process
(sequence) is available. In such cases, if the latter is known to be ergodic, we can make use of the
complete powerful statistical modeling framework described in this chapter. But how can one guarantee
the property is satisfied by a process (sequence) of which a single sample function is known? This is
not so stringent a requirement: in fact, one needs just to be sure that there can be an ergodic process
(sequence) of which that time function may be a realization. Strictly speaking, a given music recording
s(t) additively contaminated by background noise d(t) cannot be modeled as a realization of a mean-
ergodic process,18 since each member of the ensemble would combine the same s(t) with a different
d(t). The random process which describes the noisy signal can be written as X(t) = s(t) + D(t); thus,
X(t) = s(t), while in practice we know that x = 0.

4.4.8 An encompassing example
Define the random sequences

X1[n] = A1 cos (�0n + �1) (4.137)

and

X2[n] = A2 sin (�0n + �2) (4.138)

such that:

• A1 is a random variable with mean A1 and variance σ 2
A1

;

• A2 is a random variable with mean A2 and variance σ 2
A2

;
• (−π ≤ �0 < π) rad/sample is a real constant;
• �1 is a random variable uniformly distributed between −π and π rad;
• �2 is a random variable uniformly distributed between −π and π rad;
• A1, A2, �1, and �2 are mutually independent.

18 Even though experts do it without reservation...
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Compute their time and statistical means, mean powers, autocorrelations, cross-correlations, and mean
cross-powers and discuss their correlation, orthogonality, stationarity, and ergodicity.

Solution For the time averages,

x 1 = A[x1[n]] = a1A[cos(�0n + φ1)] = 0, (4.139)

x 2 = A[x2[n]] = a2A[sin(�0n + φ2)] = 0. (4.140)

We have

Rx1x1 [k] = A[x1[n]x1[n − k]]
= a2

1A[cos(�0n + φ1) cos(�0n − �0k + φ1)]
= a2

1A

[
cos(2�0n − �0k + 2φ1) + cos(�0k)

2

]

= a2
1

2
cos(�0k).

Then,

Px1x1 = Rx1x1[0] = a2
1

2
. (4.141)

We have

Rx2x2 [k] = A[x2[n]x2[n − k]]
= a2

2A[sin(�0n + φ2) sin(�0n − �0k + φ2)]
= a2

2A

[
cos(�0k) − cos(2�0n − �0k + 2φ2)

2

]

= a2
2

2
cos(�0k).

(4.142)

Then,

Px2x2 = Rx2x2[0] = a2
2

2
. (4.143)

We have

Rx1x2 [k] = A[x1[n]x2[n − k]]
= a1a2A[cos(�0n + φ1) sin(�0n − �0k + φ2)]
= a1a2A

[
sin(φ2 − φ1 − �0k) + sin(2�0n − �0k + φ1 + φ2)

2

]

= −a1a2

2
sin(�0k + φ1 − φ2).

(4.144)

Then,

Px1x2 = Rx1x2 [0] = a1a2

2
sin(φ2 − φ1). (4.145)
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For the expected values,

X1 = E [X1[n]] = E [A1] E [cos (�0n + �1)]

= A1

∫ π

−π

1

2π
cos(�0n + φ1)dφ1 = A1.0 = 0,

X2 = E [X2[n]] = E [A2] E [sin (�0n + �2)]

= A2

∫ π

−π

1

2π
sin(�0n + φ2)dφ2 = A2.0 = 0.

We have

RX1X1[n,n − k] = E [X1[n]X1[n − k]]
= E

[
A2

1

]
E [cos (�0n + �1) cos (�0n − �0k + �1)]

=
(
A1

2 + σ 2
A1

)
E

[
cos (2�0n − �0k + 2�1) + cos(�0k)

2

]

= A1
2 + σ 2

A1

2
cos(�0k).

Then,

X2
1 = RX1X1[n,n] = A1

2 + σ 2
A1

2
. (4.146)

We have

RX2X2[n,n − k] = E [X2[n]X2[n − k]]
= E

[
A2

2

]
E [sin (�0n + �2) sin (�0n − �0k + �2)]

=
(
A2

2 + σ 2
A2

)
E

[
cos(�0k) − cos (2�0n − �0k + 2�2)

2

]

= A2
2 + σ 2

A2

2
cos(�0k).

Then,

X2
2 = RX2X2[n,n] = A2

2 + σ 2
A2

2
. (4.147)

We have

RX1X2[n,n − k] = E [X1[n]X2[n − k]] (4.148)

= E [A1] E [A2] E [cos (�0n + �1)] E [sin (�0n − �0k + �2)]

= A1 A2.0.0 = 0. (4.149)
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We conclude the following:

• Since X1 and RX1X1[n,n − k] do not depend on n, X1[n] is WSS.
• Since X2 and RX2X2[n,n − k] do not depend on n, X2[n] is WSS.
• Since X1[n] is WSS, X2[n] is WSS, and since RX1X2[n,n − k] does not depend on n, X1[n] and

X2[n] are jointly WSS.
• Since RX1X2[n,n − k] = X1 X2, X1[n] and X2[n] are uncorrelated.
• Since RX1X2[n,n − k] = 0, X1[n] and X2[n] are orthogonal.
• Since X1 = x 1, X1[n] is mean-ergodic.
• Since X2 = x 2, X2[n] is mean-ergodic.

4.4.9 Gaussian processes and sequences
A special case of random processes (sequences) are the Gaussian-distributed ones. The corresponding
Lth-order PDFs can be written (see Section 4.3.10) as follows:

• For processes they can be written as

fX(x1, x2, . . . , xL; t1, t2, . . . , tL) = 1√
(2π)Ldet(CX)

e
−

(x − X)TC−1
X (x − X)

2 , (4.150)

where X is the L × 1 mean vector with elements {X}l = X(tl), for 1 ≤ l ≤ L, and CX is the L × L

covariance matrix with elements {CX}l1l2 = CXX(tl1 , tl2), for 1 ≤ l1, l2 ≤ L.
• For sequences they can be written as

fX(x1, x2, . . . , xL;n1, n2, . . . , nL) = 1√
(2π)Ldet(CX)

e
−

(x − X)TC−1
X (x − X)

2 , (4.151)

where X is the L × 1 mean vector with elements {X}l = X[nl], for 1 ≤ l ≤ L, and CX is the L × L

covariance matrix with elements {CX}l1l2 = CXX[nl1, nl2], for 1 ≤ l1, l2 ≤ L.

From the definition above we have the following:

• A WSS Gaussian random process (sequence) is SSS: Since the PDF of a Gaussian process (se-
quence) is entirely described by first- and second-order moments, if these moments do not depend
on t (n), the PDF itself does not depend on t (n).

• Uncorrelated Gaussian processes (sequences) are independent: A joint PDF of two uncorrelated
Gaussian processes (sequences) can be easily factorized as the product of their individual PDFs,
since the covariance matrix becomes block-diagonal.

These two strong properties make Gaussian models mathematically simpler to handle, and they make
the strict-sense stationarity and independence conditions easier to meet in practice.

The reader is invited to show that a WSS Gaussian random process (sequence) whose square auto-
covariance is absolutely integrable in τ (summable in k) is ergodic.



166 Chapter 4 Random signals and stochastic processes

4.4.10 Poisson random process
Poisson is an example of a discrete random process that we have already defined in Section 4.3.2. Each
realization x(t) of X(t) counts the occurrences along time of a certain event whose mean occurrence
rate is λ per time unit, provided that:

• there are no simultaneous occurrences;
• occurrence times are independent.

It can model the entry of clients in a store, for example. By convention:

• X(0) = 0, i.e., the count starts at t = 0;
• X(t0 > 0) provides the count between t = 0 and t = t0;
• X(t0 < 0) = −X(t0 > 0).

Time origin can be shifted if necessary.
From Eq. (4.32), the first-order PDF of a Poisson process is given by

fX(x; t) =
∞∑

k=0

(λt)ke−λt

k! δ(x − k). (4.152)

Applying the definition iteratively, one can show that for t1 ≤ t2 ≤ · · · ≤ tL, the corresponding Lth-order
PDF is

fX(x1, x2, . . . , xL; t1, t2, . . . , tL)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kL=0

(λt1)
k1

k1!
L∏

l=2

[λ(tl − tl−1)]kl−kl−1

(kl − kl−1)!
× e−λtLδ(x1 − k1)δ(x2 − k2) · · · δ(xL − kL),

k1 ≤ k2 ≤ · · · ≤ kL,

0, otherwise.

(4.153)

4.4.11 Complex random processes and sequences
Analogously to what has been done for random variables, real random processes and sequences can be
generalized to handle the complex case.

A complex random process can be described as Z(t) = X(t) + jY(t), where X(t) and Y(t) are real
random processes. It is stationary in some sense as long as X(t) and Y(t) are jointly stationary in that
sense. The remaining definitions related to process stationarity are kept the same.

For a complex random process Z(t), the following definitions apply:

• the mean Z(t) = X(t) + jY (t);
• the mean instantaneous power |Z|2(t) = |X|2(t) + |Y |2(t);
• the variance σ 2

Z(t) = E[(|Z(t) − Z(t)|2] = σ 2
X(t) + σ 2

Y (t);
• the autocorrelation RZZ(t1, t2) = E[Z(t1)Z

∗(t2)];
• the autocovariance CZZ(t1, t2) = E[(Z(t1) − Z(t1))(Z(t2) − Z(t2))

∗].
Given two random processes Z1(t) and Z2(t), one defines:
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• the mean instantaneous cross-power E[Z1(t)Z
∗
2(t)];

• the cross-correlation RZ1Z2(t1, t2) = E[Z1(t1)Z
∗
2(t2)];

• the cross-covariance CZ1Z2(t1, t2) = E[(Z1(t1) − Z1(t1))(Z2(t2) − Z2(t2))
∗].

The processes Z1(t) and Z2(t) are said to be mutually:

• orthogonal when RZ1Z2(t1, t2) = 0, ∀t1, t2;
• uncorrelated when CZ1Z2(t1, t2) = 0, which is the same as RZ1Z2(t1, t2) = Z1(t1)Z2

∗
(t2) ∀t1, t2.

For a random sequence Z[n], the following definitions apply:

• the mean Z[n] = X[n] + jY [n];
• the mean instantaneous power |Z|2[n] = |X|2[n] + |Y |2[n];
• the variance σ 2

Z[n] = E[(|Z[n] − Z[n]|2] = σ 2
X[n] + σ 2

Y [n];
• the autocorrelation RZZ[n1, n2] = E[Z[n1]Z∗[n2]];
• the autocovariance CZZ[n1, n2] = E[(Z[n1] − Z[n1])(Z[n2] − Z[n2])∗].
Given two random processes Z1[n] and Z2[n], one defines:

• the mean instantaneous cross-power E[Z1[n]Z∗
2 [n]];

• the cross-correlation RZ1Z2[n1, n2] = E[Z1[n1]Z∗
2 [n2]];

• the cross-covariance CZ1Z2[n1, n2]=E[(Z1[n1]−Z1[n1])(Z2[n2]−Z2[n2])∗].
The processes Z1[n] and Z2[n] are said to be mutually:

• orthogonal when RZ1Z2 [n1, n2] = 0, ∀n1, n2;
• uncorrelated when CZ1Z2 [n1, n2] = 0, which is the same as RZ1Z2 [n1, n2] = Z1[n1]Z2

∗[n2] ∀n1, n2.

4.4.12 Markov chains
The simplest random processes (sequences) are those whose statistics at a given instant are independent
from every other instant: a first-order distribution suffices to describe them. A less trivial model is found
when the statistical time interdependency assumes a special recursive behavior such that the knowledge
of a past conditioning state summarizes all previous history of the process (sequence). For the so-called
Markov random process (sequence), the knowledge of the past does not affect the expectation of the
future when the present is known.

Mathematically, a random process X(t) is said to be a Markov process when for tn−1 < tn,

fX(xtn; tn|xt ; all t ≤ tn−1) = fX(xtn; tn|xtn−1; tn−1), (4.154)

or for t1 < t2 < · · · < tn−1 < tn,

fX(xtn; tn|xtn−1 , . . . , xt2, xt1; tn−1, . . . , t2, t1) = fX(xtn; tn|xtn−1; tn−1). (4.155)

We will restrict ourselves to the discrete-time case. A random sequence X[n] is said to be a Markov
sequence when

fX(xn;n|xn−1, . . . , x1, x0;n − 1, . . . ,1,0) = fX(xn;n|xn−1;n − 1), (4.156)
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which can be seen as a transition PDF (also known as evolution model). From the definition, one arrives
at the chain rule

fX(x0, x1, . . . , xn;0,1, . . . , n)

= fX(xn;n|xn−1;n − 1) · · ·fX(x1;1|x0;0)fX(x0;0),
(4.157)

which means that the overall Markov sequence can be statistically described for n ≥ 0 from the knowl-
edge of its distribution at n = 0 and its subsequent transition distributions. Some interesting properties
can be deduced from the expressions above:

• Since

fX(xn;n|xn+1, xn+2 . . . , xn−k;n + 1, n + 2, . . . , n − k) = fX(xn;n|xn+1;n + 1),

a time-reversed Markov sequence is also a Markov sequence.
• For n1 < n2 < n3,

fX(xn1, xn3;n1, n3|xn2;n2) = fX(xn3;n3|xn2;n2) fX(xn1;n1|xn2;n2).

A very important property of Markov sequences is the so-called Chapman–Kolmogorov equation: for
n1 < n2 < n3,

fX(xn3;n3|xn1;n1) =
∫ ∞

−∞
fX(xn3;n3|xn2;n2) fX(xn2;n2|xn1;n1)dxn2 , (4.158)

which provides a recursive way to compute arbitrary transition PDFs.
We can say a Markov sequence X[n] is stationary when fX(xn;n) and fX(xn;n|xn−1;n − 1) are

shift-invariant. In this case, the overall sequence can be obtained from fX(x1, x2;1,2). A less trivial
(and more useful) model is provided by homogeneous Markov sequences, which are characterized only
by a shift-invariant transition distribution; they are not stationary in general, but can be asymptotically
stationary (i.e., for n → ∞) under certain conditions.

Discrete Markov processes and sequences are called Markov chains, which can assume a count-
able number of random states ai described by their state probabilities (P(X[n] = ai) = pi[n] for
sequences) and transition probabilities (P(X[n2] = aj |X[n1] = ai) = �ij [n1, n2], n1 < n2 for se-
quences). Discrete-time Markov chains satisfy the following properties, for n1 < n2 < n3:

•
∑
j

�ij [n1, n2] = 1, which totals all possible ways to leave state ai in n1;

•
∑

i

pi[n1]�ij [n1, n2] = pj [n2], which totals all possible ways to arrive at state aj in n2;

• �il[n1, n3]=∑j �ij [n1, n2]�jl[n2, n3] (Chapman–Kolmogorov equation).

If the chain has a finite number of states, a matrix notation can be employed. The state probability vector
p[n], with elements {pi[n]} = pi[n], and the transition probability matrix �[n1, n2], with elements
{�ij [n1, n2]} = �ij [n1, n2], are related by p[n2] = �T[n1, n2]p[n1].

The special class of homogeneous Markov chains satisfies the following additional properties:
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• �ij [n1, n2] = �ij [k], k = n2 − n1;
• �ij [k2 + k1] =∑l �il[k1]�lj [k2].
Accordingly, the transition probability matrix becomes �[k]. Defining �[1] = �,

p[n] = �Tp[n − 1] = (�T)np[0], (4.159)

i.e., �[n] = �n. When asymptotic stationarity is reachable, one can find the steady-state probability
vector p = p[∞] such that p = �Tp.

Consider, for example, the homogeneous Markov chain X[n] depicted in Fig. 4.12, with states
1 and 2, state probabilities P(X[n] = 1) = p1[n] and P(X[n] = 2) = p2[n], and transition probabili-
ties P(X[n] = 2|X[n − 1] = 1) = �12[1] = a and P(X[n] = 1|X[n − 1] = 2) = �21[1] = b. Its corre-
sponding one-sample transition matrix is

�[1] = � =
[

1 − a a

b 1 − b

]
, (4.160)

such that

�[k] = �k =
⎡
⎣ b+a(1−a−b)k

a+b
a−a(1−a−b)k

a+b

b−b(1−a−b)k

a+b
a+b(1−a−b)k

a+b

⎤
⎦ . (4.161)

It can also be shown that the chain reaches the steady-state probability vector

lim
n→∞ p[n] = lim

n→∞

[
p1[n]
p2[n]

]
=
[

b
a+b
a

a+b

]
. (4.162)

FIGURE 4.12

Homogeneous Markov chain with two states.

4.4.13 Spectral description of random processes and sequences
At first sight, the direct conversion of each realization x(t) (x[n]) to the frequency domain seems the
easiest way to spectrally characterize a random process X(t) (sequence X[n]). However, it is difficult
to guarantee the existence of the Fourier transform

X(jω) = F[x(t)] �
∫ ∞

−∞
x(t)e−jωtdt (4.163)

(in the case of random processes) or
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X(ej�) = F[x[n]] �
∞∑

n=−∞
x[n]e−j�n (4.164)

(in the case of random sequences) for every realization. And even if possible, we would get a random
spectrum of limited applicability.

In Section 4.4.5, we found that the autocorrelation conveys information about every sinusoidal com-
ponent found in the process (sequence). A correct interpretation of the Fourier transform19 suggests that
the autocorrelation in fact conveys information about the overall spectrum of the process (sequence).
Furthermore, it is a better-behaved function than the individual realizations, and thus amenable to be
Fourier-transformed.

In Section 4.4.6, Eq. (4.120), we defined the overall mean power of the random process X(t), which
for the general complex case becomes

Pxx = A[E[|X2(t)|]]. (4.165)

It can be shown that

Pxx = 1

2π

∫ ∞

−∞
lim

T →∞
E[|XT (jω)|2]

2T
dω, (4.166)

where

XT (jω) = F[XT (t)] (4.167)

and

xT (t) =
{

x(t), −T < t < T,

0, otherwise.
(4.168)

We can then define a power spectral density

SXX(jω) = lim
T →∞

E[|XT (jω)|2]
2T

(4.169)

such that Pxx = 1

2π

∫ ∞

−∞
SXX(jω)dω. Some additional algebraic manipulation yields

SXX(jω) = F[A[RXX(t, t − τ)]], (4.170)

which directly relates the autocorrelation to the power spectral density of the process, as predicted.
From the expressions above, SXX(jω) is a nonnegative real function of ω. Furthermore, if X(t) is real,
then SXX(jω) is an even function of ω.

In Section 4.4.6, Eq. (4.123), we also defined the overall mean cross-power between the processes
X(t) and Y(t), which for the general complex case becomes

Pxy = A[E[X(t)Y ∗(t)]]. (4.171)

19 The Fourier transform represents a time signal as a linear combination of continuously distributed sinusoids.
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Following the same steps as above, we arrive at

Pxy = 1

2π

∫ ∞

−∞
lim

T →∞
E[XT (jω)Y ∗

T (jω)]
2T

dω, (4.172)

where XT (jω) is defined as before,

YT (jω) = F[YT (t)], (4.173)

and

yT (t) =
{

y(t), −T < t < T,

0, otherwise.
(4.174)

We can then define the corresponding cross-power spectral density

SXY (jω) = lim
T →∞

E[XT (jω)Y ∗
T (jω)]

2T
(4.175)

such that Pxy = 1

2π

∫ ∞

−∞
SXY (jω)dω. In terms of the cross-correlation, the cross-power spectral density

can be written as

SXY (jω) = F[A[RXY (t, t − τ)]]. (4.176)

As expected, the cross-power density of orthogonal processes is zero. From the expressions above,
SXY (jω) = S∗

YX(jω). Furthermore, if X(t) and Y(t) are real, then the real part of SXY (jω) is even and
the imaginary part of SXY (jω) is odd.

It should be noted that in the WSS case, Pxx = E[|X2(t)|], Pxy = E[X(t)Y ∗(t)], SXX(jω) =
F[RXX(τ)], and SXY (jω) = F[RXY (τ)].

A similar development can be done for random sequences. In Section 4.4.6, Eq. (4.131), we defined
the overall mean power of the random sequence X[n], which for the general complex case becomes

Pxx = A[E[|X2[n]|]]. (4.177)

It can be shown that

Pxx = 1

2π

∫ π

−π

lim
N→∞

E[|XN(ej�)|2]
2N + 1

d�, (4.178)

where

XN(ej�) = F[XN [n]] (4.179)

and

xN [n] =
{

x[n], −N ≤ n ≤ N,

0, otherwise.
(4.180)

We can then define a power spectral density

SXX(ej�) = lim
N→∞

E[|XN(ej�)|2]
2N + 1

(4.181)
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such that Pxx = 1

2π

∫ π

−π

SXX(ej�)d�. Some additional algebraic manipulation yields

SXX(ej�) = F[A[RXX[n,n − k]]], (4.182)

which directly relates the autocorrelation to the power spectral density of the random sequence, as
expected. From the expressions above, SXX(ej�) is a nonnegative real function of �. Furthermore, if
X[n] is real, then SXX(ej�) is an even function of �.

In Section 4.4.6, Eq. (4.134), we also defined the overall mean cross-power between the random
sequences X[n] and Y [n], which for the general complex case becomes

Pxy = A[E[X[n]Y ∗[n]]]. (4.183)

Following the same steps as above, we arrive at

Pxy = 1

2π

∫ π

−π

lim
N→∞

E[XN(ej�)Y ∗
N(ej�)]

2N + 1
d�, (4.184)

where XN(ej�) is defined as before,

YN(ej�) = F[YN [n]], (4.185)

and

yN [n] =
{

y[n], −N ≤ n ≤ N,

0, otherwise.
(4.186)

We can then define the corresponding cross-power spectral density

SXY (ej�) = lim
N→∞

E[XN(ej�)Y ∗
N(ej�)]

2N + 1
(4.187)

such that Pxy = 1

2π

∫ π

−π

SXY (ej�)d�. In terms of the cross-correlation, the cross-power spectral density

can be written as

SXY (ej�) = F[A[RXY [n,n − k]]]. (4.188)

As expected, the cross-power density of orthogonal processes is zero. From the expressions above,
SXY (ej�) = S∗

YX(ej�). Furthermore, if X[n] and Y [n] are real, then the real part of SXY (ej�) is even
and the imaginary part of SXY (ej�) is odd.

It should be noted that in the WSS case, Pxx = E[|X2[n]|], Pxy = E[X[n]Y ∗[n]], SXX(ej�) =
F[RXX[k]], and SXY (ej�) = F[RXY [k]].

4.4.14 White and colored noise
One usually refers to a disturbing signal d(t) (d[n]) as noise. Since noise signals are typically unpre-
dictable, they are preferably modeled as realizations of some noise random process D(t) (sequence
D[n]).



4.4 Random process 173

A very special case is the so-called white noise (by analogy with white light), which is a uniform
combination of all frequencies.

Continuous-time white noise w(t) is sampled from a random process W(t) characterized by the
following properties:

• zero mean: W(t) = 0;
• noncorrelation between distinct time instants: RWW(t, t − τ) = 0, τ �= 0;
• constant power spectral density: SWW(jω) = SWW , ∀ω;
• infinite overall mean power: Pxx = ∞.

From the last property, continuous-time white noise is not physically realizable. Furthermore, WSS
continuous-time white noise has RWW(τ) = SWWδ(τ).

Discrete-time white noise w[n] is sampled from a random sequence W [n] characterized by the
following properties:

• zero mean: W [n] = 0;
• noncorrelation between distinct time instants: RWW [n,n − k] = 0, k �= 0;
• constant power spectral density: SWW(ej�) = A[σ 2

W [n]], ∀�;
• overall mean power Pxx = A[σ 2

W [n]].
For WSS discrete-time white noise, SWW(ej�) = σ 2

W , RWW [k] = σ 2
Wδ[k], and Pxx = σ 2

W .
Unless stated otherwise, white noise is implicitly assumed to be generated by a WSS random process

(sequence). Note, however, that the sequence d[n] = w(n) cos(�0n), where 0 < �0 < π rad and W(n)

is WSS white noise with unit variance, for example, satisfies all conditions to be called white noise,
even if RDD[n,n − k] = δ[k] cos(�0n).

A common (more stringent) model of white noise imposes that values at different time instants of
the underlying process (sequence) be statistically i.i.d.

Any random noise whose associated power spectral density is not constant is said to be colored
noise. One can find in the literature several identified colored noises (pink, gray, etc.), each one with
a prespecified spectral behavior. It should also be noted that any band-limited approximation of white
noise loses its noncorrelation property. Consider d(t) generated by a WSS random process D(t) such
that

SDD(jω) =
⎧⎨
⎩

Pπ

W
, −W < ω < W,

0, otherwise.
(4.189)

It is common practice to call d(t) “white noise” of bandwidth W and overall mean power P . Since its
autocorrelation is

RDD(τ) = P sin(Wτ)

Wτ
, (4.190)

strictly speaking one cannot say d(t) is white noise.
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4.4.15 Applications: modulation, “bandpass,” and band-limited processes, and
sampling

An interesting application of the spectral description of random processes is modeling of amplitude
modulation (AM). Assuming a carrier signal c(t) = A0 cos(ω0t) modulated by a real random signal
m(t) sampled from a process M(t), the resulting modulated random process X(t) = M(t)A0 cos(ω0t)

has autocorrelation

RXX(t, t − τ) = A2
0

2
RMM(t, t − τ)[cos(ω0τ) + cos(2ω0t − ω0τ)]. (4.191)

If M(t) is WSS, then

A[RXX(t, t − τ)] = A2
0

2
RMM(τ) cos(ω0τ), (4.192)

and the corresponding power spectral density is

SXX(jω) = A2
0

4
[SMM(j(ω − ω0)) + SMM(j(ω + ω0))]. (4.193)

We conclude that the AM constitution of X(t) carries through its autocorrelation, which provides a
simple statistical model for AM.

Quite often we find ourselves dealing with band-limited random signals. In the AM discussion
above, typically M(t) has bandwidth W � ω0. For a random process X(t) whose spectrum is at least
concentrated around ω = 0 (baseband process), we can attribute it a root mean squared (RMS) band-
width WRMS such that

W 2
RMS =

∫ ∞

−∞
ω2SXX(jω)dω∫ ∞

−∞
SXX(jω)dω

. (4.194)

If the spectrum is concentrated around a centroid

ω0 =

∫ ∞

0
ωSXX(jω)dω∫ ∞

0
SXX(jω)dω

, (4.195)

WRMS is given by

(
WRMS

2

)2

=

∫ ∞

0
(ω − ω0)

2SXX(jω)dω∫ ∞

0
SXX(jω)dω

. (4.196)
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If the process bandwidth excludes ω = 0, it is called20 a “bandpass” process.
It can be shown that if a band-limited baseband WSS random process X(t) with bandwidth W (i.e.,

such that SXX(jω) = 0 for |ω| > W ) is sampled at rate ωs > 2W to generate the random sequence

X[n] = X

(
n

2π

ωs

)
, (4.197)

then X(t) can be recovered from X[n] with zero mean squared error. This is the stochastic version of
the Nyquist criterion for lossless sampling.

4.4.16 Processing of random processes and sequences
Statistical signal modeling is often employed in the context of signal processing, and thus the interaction
between random signals and processing systems calls for a systematic approach. In this section, we will
restrict ourselves to linear time-invariant (LTI) systems.

A system defined by the operation y = L[x] between input x and output y is called linear if any
linear combination of m inputs produces as output the same linear combination of their m corresponding
outputs:

• For a continuous-time system, L

[
M∑

m=1

αmxm(t)

]
=

M∑
m=1

αmL[xm(t)], αm ∈C.

• For a discrete-time system, L

[
M∑

m=1

αmxm[n]
]

=
M∑

m=1

αmL[xm[n]], αm ∈ C.

For a linear system, one can define an impulse response h as the system output to a unit impulse δ

applied to the system input at a given time instant:

• For a continuous-time system, a unit impulse δ(·) applied at instant τ produces an impulse response
hτ (t) = L[δ(t − τ)].

• For a discrete-time system, a unit impulse21 δ[·] applied at instant k produces an impulse response
hk[n] = L[δ[n − k]].

A system is called time-invariant if a given input x applied at different time instants produces the same
output y:

• For a continuous-time system, if L[x(t)] = y(t), then L[x(t − τ)] = y(t − τ)] ∀τ ; thus, hτ (t) =
h0(t − τ) � h(t − τ).

• For a discrete-time system, if L[x[n]] = y[n], then L[x[n − k]] = y[n − k]] ∀k; thus, hk[n] =
h0[n − k] � h[n − k].

The output of an LTI system to any input x is the convolution x ∗ h between the input and the impulse
response h of the system:

20 With considerable looseness of nomenclature.
21 Unit impulse function, or Kronecker delta: For x ∈ Z, δ[x] = 0 ∀x �= 0 and δ[0] = 1.
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• For a continuous-time system, L[x(t)] =
∫ ∞

−∞
x(τ)h(t − τ)dτ � (x ∗ h)(t).

• For a discrete-time system, L[x[n]] =
∞∑

k=−∞
x[k]h[n − k] � (x ∗ h)[n].

In the frequency domain, the output Y is related to the input X by the system frequency response H :

• For a continuous-time system, Y(jω) = X(jω)H(jω), H(jω) = F[h(t)].
• For a discrete-time system, Y(ej�) = X(ej�)H(ej�), H(ej�) = F[h[n]].
The product XH brings the concept of filtering: H defines how much of each frequency component of
input X passes to the output Y . From now on, when referring to the processing of a random process
(sequence) by a system we imply that each process realization is filtered by that system.

The filtering of a complex random process X(t) by an LTI system with a complex impulse response
h(t) results in another random process Y(t) such that Y(t) = (X ∗ h)(t). Assuming X(t) is WSS, then
Y(t) will be also WSS and22:

• Y = XH(j0);
• RXY (τ) = R∗

YX(−τ) = (RXX ∗ h∗−)(τ );
• RYY (τ) = (RXY ∗ h)(τ ) = (RXX ∗ h ∗ h∗−)(τ );
• SXY (jω) = S∗

YX(jω) = SXX(jω)H ∗(jω);
• SYY (jω) = SXY (jω)H(jω) = SXX(jω)|H(jω)|2.

The filtering of a complex random sequence X[n] by an LTI system with a complex impulse re-
sponse h[n] results in another random sequence Y [n] such that Y [n] = (X ∗ h)[n]. Assuming X[n] is
WSS, then Y [n] will be also WSS and23:

• Y = XH(ej0);
• RXY [k] = R∗

YX[−k] = (RXX ∗ h∗−)[k];
• RYY [k] = (RXY ∗ h)[k] = (RXX ∗ h ∗ h∗−)[k];
• SXY (ej�) = S∗

YX(ej�) = SXX(ej�)H ∗(ej�);
• SYY (ej�) = SXY (ej�)H(ej�) = SXX(ej�)|H(ej�)|2.

Among the above results, one of the most important is the effect of filtering on the power spectral
density SXX of the input WSS random process (sequence): it is multiplied by the squared magnitude
|H |2 of the frequency response of the LTI system to produce the power spectral density SYY of the
output WSS random process (sequence). As a direct consequence, any WSS random process (sequence)
with known power spectral density S can be modeled by the output of an LTI system with squared
magnitude response |H |2 ∝ S whose input is white noise.

In order to qualitatively illustrate this filtering effect:

• Fig. 4.13 shows 200 samples of white noise w[n];

22 Note that we used for notation f−(t) � f (−t).
23 Note that we used for notation f−[n] � f [−n].
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• Fig. 4.14 shows 200 samples of l[n], a slowly evolving signal obtained by low-pass filtering of w[n]
to 20% of its original bandwidth;

• Fig. 4.15 shows 200 samples of b[n], an almost sinusoidal signal obtained by bandpass filtering of
w[n] to the central 4% of its original bandwidth.

FIGURE 4.13

White noise.

FIGURE 4.14

Realization of a “low-pass” sequence.

From the area of optimum filtering, whose overall goal is finding the best filter to perform a defined
task, we can bring an important application of the concepts presented in this section. The general
discrete Wiener filter H , illustrated in Fig. 4.16, is the LTI filter which minimizes the mean quadratic
value E[|e2|[n]] of the error e[n] = d[n] − y[n] between the desired signal d[n] and the filtered version
y[n] of the input signal x[n]. Assuming that x[n] and d[n] are realizations of two jointly WSS random
sequences X[n] and D[n], if the optimum filter is not constrained to be causal, one finds that it must
satisfy the equation

(h ∗ RXX)[k] = RDX[k], (4.198)
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FIGURE 4.15

Realization of a “bandpass” sequence.

i.e., its frequency response is

H(ej�) = SDX(ej�)

SXX(ej�)
. (4.199)

If one needs a causal finite impulse response (FIR) solution, a different but equally simple solution can
be found for h[n].

FIGURE 4.16

General discrete Wiener filter.

We can solve a very simple example where we compute an optimum zero-order predictor for a given
signal of which a noisy version is available. In this case, H(ej�) = c (a simple gain to be determined),
the input x[n] = s[n] + v[n] (signal s[n] additively corrupted by uncorrelated noise v[n]), and d[n] =
s[n + 1]. The solution is

c = RSS[1]
RSS[0] + RV V [0] , (4.200)

which yields the minimum mean quadratic error

E[e2[n]] = R2
SS[0] + RSS[0]RV V [0] − R2

SS[1]
RSS[0] + RV V [0] . (4.201)

Note that if no noise is present,

c = RSS[1]
RSS[0] (4.202)
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and

E[e2[n]] = R2
SS[0] − R2

SS[1]
RSS[0] . (4.203)

The reader should be aware that this example studies a theoretical probabilistic model, which may
therefore depend on several parameters which probably would not be available in practice and should
rather be estimated. In fact, it points out the solution a practical system should pursue.

The Wiener filter is a kind of benchmark for adaptive filters [5], which optimize themselves recur-
sively.

4.4.17 Application: characterization of LTI systems
A direct way to find the impulse response h(t) of an LTI system is to apply white noise W(t) with power
spectral density SWW(ω) = SWW ∀ω to the system input, which yields RYX(τ) = SWWh(τ). From an
estimate R̂YX(τ) of the cross-correlation, one can obtain an estimate of the desired impulse response:
ĥ(t) ≈ R̂YX(t). In practice, assuming ergodicity, the following approximations are employed:

• RXX(τ) ≈ δ(τ );

• R̂YX(τ) = R̂yx(τ ) = 1

2T

∫ T

−T

y(t)x(t − τ)dt for sufficiently long T .

Furthermore, the operations are often performed in the discrete-time domain. In order to exemplify
this procedure, a simulation was carried. With the goal of identifying the impulse response h[n] of the
system described by the difference equation y[n] = −0.155y[n − 1] + 0.36y[n − 2] − 0.06469y[n −
3] + x[n] + 0.5x[n − 1], we used 100,000 samples of white Gaussian noise.24 Each output allows us
to calculate R̂XY . Fig. 4.17 shows a comparison of the actual impulse response and the estimated value
by the aforementioned method.

The effective bandwidth of an LTI system with frequency response H(jω) can be estimated by its
noise bandwidth Ww. For a low-pass system, the idea is to identify the frequency Ww such that both
H(jω) and an ideal low-pass filter with cutoff frequency Ww and passband gain |H(0)| would deliver
equal output powers when subjected to the same input white noise process. A straightforward algebraic
development yields

Ww =
∫∞

0 |H(jω)|2dω

|H(0)|2 . (4.204)

For a bandpass system with frequency response centered at ω0, the idea is to identify the fre-
quency bandwidth Ww such that both H(jω) and an ideal bandpass filter with passband of width
[ω0 − Ww

2 ,ω0 + Ww
2 ] and gain |H(jω0)| would deliver the same output powers when subjected to the

same input white noise process. In this case,

Ww =
∫∞

0 |H(jω)|2dω

|H(ω0)|2 . (4.205)

24 Defining the number of samples needed to characterize an unknown LTI system is a challenge in itself.
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FIGURE 4.17

True system impulse response and estimation via cross-correlation.

Illustrations of this concept are given in Fig. 4.18 for a sixth-order low-pass filter and a 12th-order
bandpass filter.

FIGURE 4.18

Equivalent noise bandwidth: ideal filter modeling of a low-pass system (on the left) and of a bandpass system
(on the right).

4.4.18 Modeling of bandpass WSS random processes
Any real “bandpass” random process (see Section 4.4.15) at center frequency ω0 can be expressed as
N(t) = M(t) cos[ω0t + �(t)], where the envelope M(t) and the phase �(t) are both baseband random
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processes. We can write

N(t) = Nx(t) cos(ω0t) − Ny(t) sin(ω0t), (4.206)

where Nx(t) = M(t) cos(�(t)) and Ny(t) = M(t) sin(�(t)) are the quadrature components of N(t). In
the typical situation where N(t) is a zero-mean WSS random process with autocorrelation RNN(τ), we
can explicitly find the first- and second-order moments of the quadrature components that validate the
model. First define the Hilbert transform of a given signal n(t) as n̂(t) = (n ∗ h)(t), where

H(jω) = F[h(t)] =
{−j, ω > 0,

j, ω < 0.
(4.207)

From RNN(τ), we can find R
N̂N

(τ) and proceed to write:

• Nx = Ny = 0;
• RNxNx (τ ) = RNyNy (τ ) = RNN(τ) cos(ω0τ) + R

N̂N
(τ) sin(ω0τ);

• RNxNy (τ ) = −RNyNx (τ ) = RNN(τ) sin(ω0τ) − R
N̂N

(τ) cos(ω0τ).

In the frequency domain, if we define

S+
NN(jω) �

{
SNN(jω), ω > 0,

0, ω ≤ 0,
(4.208)

then:

• SNxNx (jω) = SNyNy (jω) = S+
NN(j(ω + ω0)) + S+

NN(j(−ω + ω0));
• SNxNy (jω) = −SNyNx (jω) = j[S+

NN(j(−ω + ω0)) − S+
NN(j(ω + ω0))].

In the particular case where N(t) is Gaussian, it can be shown that Nx(t) and Ny(t) are Gaussian, and
thus completely defined by their first- and second-order moments above.

4.4.19 Statistical modeling of signals: random sequence as the output of an LTI
system

A discrete-time signal x[n] with spectrum X(ej�) can be modeled as the output of an LTI system whose
frequency response is equal to X(ej�) when excited by a unit impulse δ[n]. In this case, the impulse
response of the system is expected to be h[n] = x[n].

In the context of statistical models, an analogous model can be built: now, we look for an LTI system
which produces as its output the WSS random sequence X[n] with power spectral density SXX(ej�),
when excited by a unit-variance random sequence W [n] of white noise. As before, the frequency re-
sponse of the system alone is expected to shape the output spectrum, yet this time in the mean power
sense, i.e., the system must be such that |H(ej�)|2 = SXX(ej�).

Assume the overall modeling system is described by the difference equation

x[n] +
p∑

k=1

ap[k]x[n − k] =
q∑

k=0

bq [k]w[n − k], (4.209)
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where w[n] is white noise with SWW(ej�) = 1. The corresponding transfer function is

H(z) = Bq(z)

Ap(z)
=

q∑
k=0

bq [k]z−k

1 +
p∑

k=1

ap[k]z−k

. (4.210)

The output X[n] of this general system model with W [n] at its input is called autoregressive moving
average25 (ARMA) process of order (p, q). It can be described by the following difference equation
(known as the Yule–Walker equation) in terms of its autocorrelation:

RXX[k] +
p∑

l=1

ap[l]RXX[k − l] =

⎧⎪⎪⎨
⎪⎪⎩

q−k∑
l=0

bq [l + k]h∗[l], 0 ≤ k ≤ q,

0, k > q.

(4.211)

The values of RXX[k] for k < 0 can be easily found by symmetry.
If one restricts the system to be FIR (i.e., to have a finite duration impulse response), then p = 0,

i.e., ap[k] = 0 for 1 ≤ k ≤ p, and

H(z) =
q∑

k=0

bq [k]z−k. (4.212)

The output of this “all-zero”26 system model with W [n] at its input is called a moving average (MA)
process of order q. Its autocorrelation can be found to be

RXX[k] =
q−|k|∑
l=0

bq [l + |k|]b∗
q [l]. (4.213)

In this case, RXX[k] = 0 for k < −q or k > q. This model is more suited for modeling notches in the
random sequence power spectrum.

If one restricts the system to be “all-pole”,27 then q = 0, i.e., bq [k] = 0 for 1 ≤ k ≤ p, and

H(z) = b[0]

1 +
p∑

k=1

ap[k]z−k

. (4.214)

25 Autoregressive for its output feedback, moving average for its weighted sum of past input samples.
26 This is misnamed, since the poles of the system are at the origin. To be precise, the zeros are the only responsible for shaping
the magnitude frequency response of the system.
27 This is also misnamed, since the zeros of the system are at the origin. To be precise, the poles are the only responsible for
shaping the magnitude frequency response of the system.
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The output of this system model with W [n] at its input is called an autoregressive (AR) process of order
p. Its autocorrelation follows the following difference equation:

RXX[k] +
p∑

l=1

ap[l]RXX[k − l] = |b[0]|2δ[k]. (4.215)

Again, the values of RXX[k] for k < 0 can be easily found by symmetry. This model is more suited
for modeling peaks in the random sequence power spectrum, which is typical of quasiperiodic signals
(as audio signals, for example). It should be noted that, differently from the ARMA and MA cases,
the equation for the AR process autocorrelation is linear in the system coefficients, which makes their
estimation easier. If RXX[k] is known for 0 ≤ k ≤ p, recalling that RXX[−k] = R∗

XX[k], one can:

• solve the pth-order linear equation system obtained by substituting k = 1,2, . . . , p in Eq. (4.215) to
find ap[k], 1 ≤ k ≤ p;

• compute |b[0]| from Eq. (4.215) with k = 0.

All-pole modeling of audio signals is extensively used in applications like speech coding [13] and audio
restoration [7], for example.

4.5 Afterword
Spanning fields as diverse as biology, economics, and telecommunications, it is impossible to list all
areas that make extensive use of probabilistic models.

In particular, digital signal processing [6] is going through a real revolution thanks to the growing
use of advanced machine learning [2] methods, previously impractical due to their high data, storage,
and computational requirements. Benefiting from deep learning [8], black box type models are being
massively adopted in various industries.

The most virtuous objective of our times is to combine the highest quality of life with the most
efficient use of natural resources. In this context, exercising maximum control over processing means
and tools becomes essential. Since the theoretical basis behind computational intelligence is inherently
probabilistic, a solid background in the subject of this chapter provides the necessary tools to that end.

Thanks for getting this far.
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CHAPTER

Sampling and quantization

Håkan Johansson
Division of Communication Systems, Department of Electrical Engineering, Linköping University, Linköping, Sweden

5.1 Introduction
The shift from analog signal processing (ASP) to digital signal processing (DSP) lies behind the tremen-
dous development of information processing systems that are used today in practically all areas one
can think of. For example, DSP has enabled the fast growth of mobile communication systems and
has paved the way for the development of new sophisticated medical aids, just to mention a couple of
important applications. The foremost advantages of DSP over ASP are its robustness and that it can per-
form functions with arbitrary precision. This is because arithmetic operations in the digital domain can
be done with as small numerical errors as desired by simply increasing the resolution, i.e., by allocating
more bits to the operands. This can always be done as the resolution in DSP systems is independent of
physical variations, like temperature changes, processing inaccuracies, etc., in contrast to ASP systems,
which are highly dependent on such variations. The trend during the past decades has therefore been to
use as little ASP as possible and to replace analog functions with the corresponding digital functions.
This trend has been sped up by the fast development of integrated circuit techniques and progress in
the implementation of digital systems. Specifically, the introduction of cost-efficient signal processors
and so-called application-specific integrated circuits has enabled low-cost implementation and manu-
facturing of digital systems. The real world is however analog by nature, which means that the need for
ASP cannot be eliminated completely. In particular, it will always be necessary to use analog-to-digital
converters (abbreviated A/D converters or ADCs) and digital-to-analog converters (abbreviated D/A
converters or DACs) for interfacing the two realms.

Evidently, ADCs and DACs are crucial components in virtually all practical applications today.
The fundamental signal processing operations in these components are sampling and quantization (in
ADCs) and signal reconstruction (in DACs). This chapter considers the basic principles of these oper-
ations as detailed below.

5.1.1 Scope and prerequisites
The theory of sampling has a long history [23,38,47,62] and a large literature body; see for example
[17,51,53] and references therein. In this chapter, we are only able to cover some parts of this field. The
emphasis is on basic principles and analysis methods for uniform sampling and quantization, which are
the most common sampling and quantization schemes used in conventional ADCs and DACs. Further-
more, we will only consider linear models of the sampling and quantization processes. Practical ADCs
and DACs exhibit (small) nonlinearities that also need be analyzed, but this topic is beyond the scope of
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this chapter. In other words, this chapter concentrates on the underlying principles of uniform sampling
and quantization rather than fine implementation details. For such details, we refer to books on ADCs
and DACs [54]. Furthermore, we take an “engineering approach” in that we concentrate on explaining
the concepts that are sufficient for understanding and analyzing practical signals and systems. Some of
the fine mathematical details are therefore sometimes left out.

It is assumed that the reader has a basic knowledge of continuous-time and discrete-time signals
and systems as well as the Fourier, Laplace, and z-transforms. Some of the basics regarding signals
and systems are however briefly recapitulated in Section 5.2. Further, for a complete understanding of
Section 5.4, the reader must be familiar with stochastic processes. Most of the material in the other
sections can however be understood without reading Section 5.4.

5.1.2 Chapter outline
After this introductory section, some basic concepts are given in Section 5.2. Then, Section 5.3 dis-
cusses the basics of uniform sampling and reconstruction of deterministic signals. The content of this
section is typically also found in introductory books on signal processing [34,39]. Section 5.4 considers
the extension to sampling and reconstruction of stochastic processes (also called random processes). In
introductory books on signal processing, this is typically treated very briefly or not at all.

Section 5.5 considers an application referred to as time-interleaved ADCs, which is a scheme that
has been introduced for high-speed A/D conversion [3]. The section discusses the principles and signal
reconstruction methods that are required in this scheme due to analog channel mismatches. Without
correction, this scheme corresponds to nonuniform sampling (or generalizations), but the overall goal,
with correction, is to achieve uniform sampling.

Section 5.6 covers the principles of quantization, both in ADCs and internally in digital systems,
as they are closely related. In Section 5.7, oversampled ADCs and DACs are briefly discussed. Over-
sampling techniques are used in practice to, e.g., increase the performance and relax the requirements
of the analog components. This chapter also includes a discussion on the use of few-bit ADCs in
massive multiple-input multiple-output (MIMO) systems. Finally, Section 5.8 presents a method for
discrete-time modeling of mixed-signal systems. This is useful in systems with feedback, like so-called
��-modulator-based ADCs. Such converters can reach a very high resolution using oversampling to-
gether with noise shaping [37,43].

Finally, it is pointed out that, throughout the chapter, real-valued signals are primarily used in the
examples. However, the basic principles to be presented are valid for complex signals as well.

5.1.3 Recent and current trends
The research and development of data converters have been quite intensive for several decades, both in
academia and industry. This interest is foreseen to continue for many years to come as the requirements
on signal processing systems and thus the converters continuously increase. At the same time, it is also
desirable to decrease the size and power consumption of the converters. To develop energy-efficient
high-performance devices, it is therefore vital to continue to conduct research on new principles of data
conversion as well their practical implementations.

There are different paths one can take to increase the performance. One way is to make use of paral-
lel converters like time-interleaved ADCs [3] (to be discussed in Section 5.5) and/or parallel ��-ADCs
[22]. Such converters have great potential but due to analog channel mismatches they also introduce
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errors that must be compensated for. A recent trend here has been “digitally assisted analog circuits,”
where digital circuitry is added to correct for analog errors [36]. With the increasing computational ca-
pacity of digital systems, one can expect that this trend will continue. The digital parts may however be
computationally excessive, and it is therefore vital to devise new algorithms to reduce their complexity.

Another recent trend is that of sub-Nyquist sampling covering so-called sparse sampling and com-
pressed sampling (also called compressed sensing) [4,33,48]. This is different from the traditional
Nyquist-sampled systems in that additional knowledge of the input signal is taken into account. Specif-
ically, if the signal is sparse in some sense, one can reduce the sampling rate and thereby relax the
requirements on the converters. One scenario is for applications where the signals are locally narrow-
band (in time) but globally wide-band. Conventionally, high-speed converters are then needed. Utilizing
the sparse or compressed sampling paradigm, the sampling rate can be substantially reduced.

Finally, in communication systems, massive MIMO systems have emerged as key enablers for 5G
systems and beyond [24,30,50]. To reduce the cost of such systems it is desired to make use of few-bit
ADCs, and low-precision analog components in general.

5.2 Preliminaries
5.2.1 Classification of signals
We communicate by conveying information (messages), like speech and images. In some contexts, one
wishes to transmit information from one place to another, like in telephone systems. In other cases, it
may be desired to store the information for later use, e.g., music stored on CDs.

Information can be transmitted using information bearing signals. A signal is a quantity that varies
with time or other independent variables. Usually, the information must be converted to a desired signal
type. For example, when we speak in a microphone, the generated sound is converted to an electrical
voltage that varies with time. The sound can then be recovered by connecting the voltage to a loud-
speaker. (In this context, however, we usually do not consider the sound as being recovered since it, in
principle, is reconstructed at the same time as it is generated.) The same information can be represented
in many different ways. Different types of signals can in other words contain exactly the same informa-
tion. For example, speech and music can be represented in analog form on LPs and in digital form on
CDs. The corresponding signals are then analog and digital, respectively.

In mathematical form, a signal is represented as a function (or sequence) of one or several inde-
pendent variables. The signal is a 1D signal if it is a function of one variable and a multidimensional
signal if it is a function of several variables. This chapter considers 1D signals only. An example of
such signals is a speech signal. It is customary to let the independent variable represent time, although
it may represent whatever we wish, like temperature, pressure, etc. The time variable in the representa-
tion of a signal can be either continuous or discrete (quantized). The signal is a continuous-time signal
if the variable is continuous and a discrete-time signal if the variable is discrete. A continuous-time
signal is thus defined for all time instances (except possibly at discontinuities), whereas a discrete-time
signal is defined only at discrete time instances. We also distinguish between signals that can take on
continuous signal values and those that only can take on discrete signal values. Consequently, signals
can be divided into four different categories according to Fig. 5.1.

In the literature, a continuous-time signal with continuous signal values is often referred to as an
analog signal, whereas a discrete-time signal with discrete signal values is called a digital signal. How-
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FIGURE 5.1

Different types of signals.

ever, in some (earlier) literature, “analog” and “digital” are only related to the signal values, i.e., the
signals to the left in Fig. 5.1 are then analog, whereas the signals to the right in the same figure are dig-
ital. In this book, we assume hereafter that analog signals are continuous-time signals whereas digital
signals are discrete-time signals.

5.2.2 Discrete-time signals – sequences
A continuous-time signal can mathematically be represented by a continuous function x(t), where
t is a continuous variable. A discrete-time signal cannot be represented in this way since it is only
defined at discrete instances. To handle discrete-time signals mathematically, one therefore makes use
of sequences of numbers.

As one can see from Fig. 5.1, the signal values of a discrete-time signal constitute a sequence of
numbers. In mathematical form, a sequence of numbers can be written as

{x(n)}, n = . . . ,−2,−1,0,1,2, . . . , (5.1)

where {x(n)} denotes the sequence and x(n) denotes the value of the nth number in the sequence.
The values x(n) are usually called samples because they are often generated through sampling of
continuous-time signals (see Section 5.2.3). The notation of the sequence is thus {x(n)}, but when
no misunderstandings can occur we write “the sequence x(n)” for the sake of simplicity. A sequence
can be represented graphically as illustrated in Fig. 5.2. The horizontal axis is drawn as a continuous
line but it is important to remember that the sequence is only defined for discrete values.
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FIGURE 5.2

Graphical representation of a sequence x(n).

FIGURE 5.3

A discrete-time signal and its representation in the form of a sequence x(n).

When a sequence represents a discrete-time signal, the samples x(n) equal the signal values of the
signal at the time instances t = tn, as illustrated in Fig. 5.3. Since sequences often represent discrete-
time signals, we frequently write “the discrete-time signal x(n)” instead of “the sequence x(n).” This is
in accordance with the continuous-time case, where one often writes “the continuous-time signal x(t)”
instead of “the function x(t).”

5.2.3 Sampling of continuous-time signals
Discrete-time signals are often generated through sampling (measurement) of continuous-time signals.
It is common to use the same time interval T between the sampling instances. The sampling then takes
place at the time instances t = nT , as illustrated in Fig. 5.4. The time interval is called the sampling
period, whereas fs = 1/T is referred to as the sampling frequency, which thus denotes the number of
sampling instances per second. This type of sampling is called uniform sampling. If xa(t) denotes the
continuous-time signal,1 the corresponding discrete-time signal x(n) becomes x(n) = xa(nT ). Instead
of using the notation x(n) one may thus use xa(nT ) to stress that the signal values are obtained via
uniform sampling of a continuous-time signal. Throughout this chapter, we mainly use x(n) for the
sake of simplicity.

1 The subscript “a” in xa(t) stands for analog. We use the notation xa(t) instead of xc(t), which would be natural when we deal
with continuous-time signals. This is to avoid confusion with frequency edges �c , etc., where “c” stands for cutoff.
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FIGURE 5.4

Sampling of a continuous-time signal.

5.2.4 Classification of systems
Systems can be classified in accordance with their input and output signal types. As we saw in the pre-
vious section, we can divide signals into four different categories. Hence, one may also divide systems
into four different classes, as seen in Fig. 5.5. A continuous-time system is a system whose input and
output signals are continuous-time signals, whereas a discrete-time system is a system whose input and
output signals are discrete-time signals. Mathematically, the role of a discrete-time system is thus to
generate an output sequence given an input sequence. Therefore, instead of the terms “input signal” and
“output signal,” we often use the terms “input sequence” and “output sequence.” A digital system is a
discrete-time system in which the samples can only take on discrete values. Today, signal processing
systems usually contain both continuous-time and discrete-time parts.

5.2.5 Digital signal processing of analog signals
The principle of DSP of analog signals is illustrated in Figs. 5.6–5.8. The first step is to convert the
signal from analog to digital form. This is carried out by an ADC which takes care of both sampling
and quantization. The digital signal thus obtained can then be processed by a digital system which
takes as input a sequence of samples, xQ(n), and generates an output sequence, yQ(n) (Q indicates
quantized signal values). Finally, reconstruction takes place in order to go back to a continuous-time
representation. This is performed by a DAC followed by an analog reconstruction filter.
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FIGURE 5.5

Three different types of systems.

FIGURE 5.6

Digital signal processing of analog signals.

To be able to perform A/D and D/A conversion without errors, the original signal must be band-
limited. Before the A/D conversion, the signal is therefore band-limited with the aid of an analog
antialiasing filter (wb in xwb(t) in Fig. 5.6 stands for wide-band). A/D conversion is carried out by first
sampling and then quantizing the signal (see Fig. 5.7(a)). In practice, the sampling is performed by a
sample-and-hold (S/H) circuit. An S/H circuit samples an analog signal at the time instances t = nT

and holds this sample value until the next sampling instance. The output signal from an ideal S/H
circuit is a new analog signal that ideally is piecewise constant. The function of the S/H circuit can be
seen in Fig. 5.8(a and b). The next step in the A/D conversion is to quantize the sample values using a
quantizer. The input signal of the quantizer is thus the output signal from the S/H circuit. The input to
the quantizer needs to be kept constant long enough for the quantizer to produce a correct result, which
is why an S/H circuit is needed.

Quantization amounts to representing each sample in a binary form with a finite word length. There
exist many different types of binary representations. One commonly used binary form is the two’s
complement representation. A number x, which for the sake of simplicity is assumed here to lie between
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FIGURE 5.7

ADC, digital system, and DAC.

−1 and 1, is then represented as

x = −x0 +
B−1∑
i=1

2−ixi , (5.2)

where xi, i = 0,1, . . . ,B–1, can take on the values zero and one. The number of bits is thus B. The
bits from a quantizer can be delivered in series or in parallel. In the latter case, the output signal from a
B-bit quantizer consists in practice of B continuous-time signals which together represent the different
sample values (see Fig. 5.7(a)). In the ideal case, these continuous-time signals are binary, that is, they
can only take on two different values, usually zero and one. The principle can be seen in Fig. 5.8(c
and d). In practice, the signals must hold the values zero or one long enough so one can store them
in registers, etc. Furthermore, it takes a certain time to perform the quantizations, which means that a
certain amount of delay will be introduced. The output signal from the quantizer is the desired digital
signal that can be processed by a digital system. In a practical implementation, the sample values are
represented in the same form as the quantizer output. The output signal from a digital system is thus
represented in the same form as its input signal (see Fig. 5.8(e and f)).

A digital signal can be converted to an analog signal using a DAC followed by an analog recon-
struction filter. The input signal to the DAC is a digital signal represented in the same form as the
output signal from the ADC, i.e., the output from the quantizer. The output signal from the DAC is a
continuous-time signal that is piecewise constant with a limited number of levels (see Fig. 5.8(g)). In
other words, it is of the same type as the output signal from the S/H circuit with the difference that
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FIGURE 5.8

Typical signals in digital signal processing of analog signals.

the DAC output signal takes on discrete signal values, whereas the S/H circuit output signal takes on
continuous signal values. Finally, to obtain the desired analog signal, the output signal from the DAC
must be filtered. The role of this filter is to “smooth out” the piecewise constant signal from the DAC
so as to obtain the desired signal.

As evident from above, sampling and reconstruction as well as quantization play fundamental roles
in DSP. The following sections treat the basic principles of these operations. We will only deal with
relations between continuous-time signals and their discrete-time counterparts. Mathematically, this
amounts to studying relations between functions xa(t) and the corresponding sequences x(n) = xa(nT )

as well as their transform–domain relations. We will not discuss the physical representation of the
signals seen in Figs. 5.7 and 5.8.
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FIGURE 5.9

Simple model of a digital communication system.

5.2.6 Digital communication – analog signal processing of digital signals
In digital communication systems, the situation is opposite to that in the previous section in that ASP
is now used for processing digital signals. Fig. 5.9 shows a simple model of a digital communication
system. The original digital information is contained in xQ(n). This information is D/A converted be-
fore being transmitted over an analog channel. Finally, on the receiver side, the signal is A/D converted,
generating yQ(n). It is desired to have yQ(n) = xQ(n), i.e., to receive the information sent. In practice,
due to many different error sources in the communication channel, advanced DSP methods are required
to transmit information successfully. Regarding the sampling and reconstruction, one can make use of
the same analysis methods here as for the system depicted earlier in Fig. 5.7.

5.3 Sampling of deterministic signals
Discrete-time signals are often generated through sampling of continuous-time signals. It is therefore
of interest to investigate the relations between the Fourier transform of a discrete-time signal and that
of the underlying continuous-time signal. This relation is given by the so-called Poisson summation
formula, which leads us to the sampling theorem. This theorem states that a continuous-time signal
can be sampled and perfectly reconstructed provided that the signal is band-limited and the sampling
frequency exceeds twice the bandwidth. If the theorem is fulfilled, the original signal can be retained
via an ideal pulse amplitude modulator. This section treats basic concepts and theory on sampling and
reconstruction. In practice, one can neither fulfill the sampling theorem nor perform the reconstruction
perfectly because ideal pulse amplitude modulators (PAMs) cannot be implemented. Some of these
practical aspects are included in the section. It is also noted that this section deals with deterministic
signals. The extension to stochastic signals is treated in Section 5.4.

5.3.1 Uniform sampling
Discrete-time signals are typically generated through sampling (measurement) of continuous-time sig-
nals. Most signal processing applications are based on uniform sampling, which means that the time
interval between two consecutive sampling instances is constant. The sampling then takes place at the
time instances t = nT , n = ...,–2,–1,0,1,2, ..., as illustrated in Fig. 5.10. The time interval T is called
the sampling period, whereas fs = 1/T is referred to as the sampling frequency, which thus denotes
the number of sampling instances per second. If xa(t) denotes the continuous-time signal, the corre-
sponding discrete-time signal, represented by the sequence x(n), becomes

x(n) = xa(nT ). (5.3)
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FIGURE 5.10

Uniform sampling.

5.3.2 Poisson’s summation formula
This section derives a relation between the Fourier transforms of x(n) and xa(t). Assume that the
continuous-time signal xa(t) has the Fourier transform Xa(j�). We can then express xa(t) in terms of
its inverse Fourier transform according to

xa(t) = 1

2π

∫ ∞

−∞
Xa(j�)ej�td�. (5.4)

In particular, we have for t = nT

xa(nT ) = 1

2π

∫ ∞

−∞
Xa(j�)ej�nT d�, (5.5)

which can be rewritten as

xa(nT ) = . . . + 1

2π

∫ −π/T

−3π/T

Xa(j�)ej�nT d� + 1

2π

∫ π/T

−π/T

Xa(j�)ej�nT d�

+ 1

2π

∫ 3π/T

π/T

Xa(j�)ej�nT d� + . . . . (5.6)

By making the variable substitutions � → � − 2πk/T , k integer, utilizing e−j2πkn = 1, and changing
the order between summation and integration, we obtain

xa(nT ) =
∞∑

k=−∞

1

2π

∫ π/T

−π/T

Xa

(
j� − j

2πk

T

)
ej (�− 2πk

T
)nT d�

= 1

2π

∫ π/T

−π/T

∞∑
k=−∞

Xa

(
j� − j

2πk

T

)
ej�T nd�. (5.7)
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With �T as integration variable we get

xa(nT ) = 1

2π

∫ π

−π

1

T

∞∑
k=−∞

Xa

(
j� − j

2πk

T

)
ej�T nd(�T ). (5.8)

Further, we know that a discrete-time signal x(n) can be expressed in terms of its inverse Fourier
transform according to

x(n) = 1

2π

∫ π

−π

X(ej�T )ej�T nd(�T ). (5.9)

Thus, if we let x(n) = xa(nT ) and utilize the uniqueness of the Fourier transform, we obtain the fol-
lowing relation from (5.8) and (5.9):

X(ej�T ) = 1

T

∞∑
k=−∞

Xa

(
j� − j

2πk

T

)
. (5.10)

Eq. (5.10) is referred to as Poisson’s summation formula2 and gives the relation between the Fourier
transform of a continuous-time signal and the Fourier transform of the discrete-time signal that is
generated by sampling the continuous-time signal uniformly with the sampling period T (sampling
frequency fs = 1/T ) [40]. Poisson’s summation formula states that the spectrum of the discrete-time
signal is obtained by summing the spectrum of the continuous-time signal and its shifted versions,
weighted by 1/T . This is illustrated in Fig. 5.11 in the following example.

5.3.2.1 Example 1: illustration of Poisson’s summation formula
Fig. 5.11(a) shows the spectrum of a band-limited continuous-time signal. Fig. 5.11(b–d) shows the
spectra of three different discrete-time signals generated by sampling the continuous-time signal with
sampling frequencies of 100 Hz, 50 Hz, and 40 Hz, i.e., T = 1/100 s, 1/50 s, and 1/40 s, respectively.
Studying Fig. 5.11, the following observations can be made. In the first two cases, the partial spectra do
not overlap with each other (Fig. 5.11(b and c)). This means that the shape of Xa(j�) is preserved and
it is thereby possible in principle to reconstruct xa(t) from x(n), as we shall see later. In the third case,
the shape of Xa(j�) is deteriorated since the partial spectra to some extent overlap with each other
(Fig. 5.11(d)). In this case, we can no longer perfectly reconstruct xa(t) from x(n). What distinguishes
the three sequences is that they have been obtained using three different sampling frequencies. If the
continuous-time signal is band-limited, it can thus be sampled and reconstructed perfectly provided that
the sampling frequency is sufficiently high. This is summarized below in the sampling theorem.

5.3.3 The sampling theorem
As illustrated above, a continuous-time signal can be sampled and reconstructed from the generated
samples if the so-called sampling theorem is fulfilled.

2 If the sampled signal is discontinuous at a certain time instant and the signal is sampled at this instant, then the sample value
must be chosen as the average of the left and right limits in order to make (5.10) valid.
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FIGURE 5.11

Spectra for a continuous-time signal and the corresponding sequences generated via sampling with three
different sampling frequencies (Example 1).

Sampling theorem. If a continuous-time signal xa(t) is band-limited to � = �0 (f = f0), i.e.,

Xa(j�) = 0, |�| > �0 = 2πf0, (5.11)

then xa(t) can be recovered from the samples x(n) = xa(nT ) provided that

fs = 1

T
> 2f0. (5.12)

Thus, if (5.11) and (5.12) are satisfied, the continuous-time signal xa(t) can be recovered from
x(n) = xa(nT ). One can understand this by studying Fig. 5.12 (and also Fig. 5.11). If the partial spectra
in Poisson’s summation formula do not overlap each other, the shape of Xa(j�) is preserved and it is
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FIGURE 5.12

Illustration of the sampling theorem.

thereby possible, in principle, to reconstruct xa(t) from x(n). From Fig. 5.12, we see that overlap of
spectra is avoided if

2π − �0T > �0T ⇔ �0T < π. (5.13)

Since � = 2πf and fs = 1/T , (5.13) is equivalent to

2πf0T < π ⇔ fs = 1

T
> 2f0, (5.14)

which is the same as (5.12). The frequency fs/2 is called the Nyquist frequency, whereas fs is
referred to as the Nyquist sampling frequency. Further, the frequency band � ∈ [−πfs, πfs] (thus
f ∈ [−fs/2, fs/2]) is referred to as the first Nyquist band.

The sampling theorem states that the sampling frequency fs must be strictly greater than 2f0 in
order to be able to recover the signal. It should be mentioned however that for some classes of signals,
like energy signals, one may select fs equal to 2f0 and still reconstruct the signals (in a certain sense).
For other classes of signals, like sinusoidal signals, it is necessary to fulfill fs > 2f0. This is because
for a sinusoidal signal with frequency f0, one may for example sample the zero-crossings. That is, if fs

equals 2f0, one may obtain a sequence with zero-valued samples, which means that the continuous-time
signal cannot be reconstructed.

If fs ≤ 2f0, the sampling theorem is not fulfilled, in which case the signal is undersampled. This
means that the partial spectra will overlap, as discussed earlier and illustrated in Fig. 5.11(d). This in
turn implies that the shape of the continuous-time signal’s spectrum is not preserved, which means that
the signal cannot be reconstructed exactly. The error that is then introduced is called aliasing distortion.
The reason for this name is that frequency components above the Nyquist frequency are aliased to the
baseband �T ∈ [−π, π] (see Fig. 5.11(d)). In practice, one often chooses a higher sampling frequency
than that required to fulfill the sampling theorem, the reason being that one can thereby reduce the
requirements on the analog components that are used in the A/D and D/A conversions. In such a case,
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the signal is oversampled. If fs = M2f0, one has M times oversampling. Oversampled A/D and D/A
converters are discussed in Section 5.7.

5.3.3.1 Example 2: illustration of aliasing
To further illustrate that the sampling theorem must be fulfilled in order to sample and reconstruct a
signal, we consider stationary sinusoidal signals. Let xa1(t) and xa2(t) be two stationary sinusoidal
signals according to

xa1(t) = sin(�0t) = sin(2πf0t) (5.15)

and

xa2(t) = − sin(3�0t) = − sin(6πf0t). (5.16)

We now form the discrete-time signals x1(n) and x2(n) by sampling xa1(t) and xa2(t), respectively,
with a sampling frequency of fs = 4f0, i.e., a sampling period of T = 1/(4f0). This gives us

x1(n) = xa1(nT ) = xa1(0.25n/f0) = sin(0.5πn) (5.17)

and

x2(n) = xa2(nT ) = xa2(0.25n/f0) = − sin(1.5πn). (5.18)

Since sin(a) = sin(a + 2πn) for all integers n and sin(a) = − sin(−a), we can rewrite x2(n) as

x2(n) = − sin(1.5πn) = − sin(1.5πn − 2πn)

= − sin(−0.5πn) = sin(0.5πn) = x1(n). (5.19)

That is, x2(n) equals x1(n). The reason for this is that the sampling theorem is not fulfilled for xa2(t).
This means that the spectrum of xa2(t) is aliased into the band �T ∈ [−π, π], as illustrated in Fig. 5.13.
If the sampling theorem is not met, we can thus obtain the same sequence by sampling different signals.

5.3.4 Antialiasing filter
A condition for sampling and perfect reconstruction (PR) of a continuous-time signal is that it is strictly
band-limited. In practice, continuous-time signals are not strictly band-limited, which means that we
will always have aliasing distortion since the partial spectra then overlap each other. This in turn implies
that we can never reconstruct the signal perfectly, but instead we obtain a distorted signal. To obtain
an acceptable level of distortion, one usually has to filter the signal before the sampling takes place,
as seen in Fig. 5.14(a). In this context, the filter H(s) is called antialiasing filter because it is used to
reduce the aliasing distortion.

Apparently, the antialiasing filter affects the signal that is to be sampled. However, in many cases,
the information in the signal lies in the low-frequency region, whereas the high-frequency band only
contains undesired frequency components like noise, etc. If the antialiasing filter is an ideal low-pass
filter, the information is unaffected, whereas the undesired components are removed. This is illustrated
in Fig. 5.14(b and c). In practice, one can not implement ideal filters, which means that one should
always take into account a certain amount of distortion. More about distortion is given in Section 5.3.6.
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FIGURE 5.13

Illustration of aliasing (Example 2).

5.3.5 Reconstruction
Reconstruction refers to the process that forms a continuous-time signal from a discrete-time signal.
The reconstruction can be done with the aid of pulse amplitude modulation. The system that performs
the pulse amplitude modulation is called PAM. The sampling and reconstruction can be represented as
in Fig. 5.15. We denote the reconstructed signal as xr(t) to distinguish it from the original signal xa(t).

The PAM forms the output signal xr(t) through multiplication of the samples x(n) by the pulse
(signal) p(t) and its shifted versions p(t–nT ). The output signal is given by

xr(t) =
∞∑

n=−∞
x(n)p(t − nT ). (5.20)
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FIGURE 5.14

Band limitation using an antialiasing filter (wb stands for wide-band).

FIGURE 5.15

Sampling and reconstruction using a PAM.

Fig. 5.16 shows an example of reconstruction according to (5.20).

5.3.5.1 Ideal reconstruction
When the sampling theorem is fulfilled, it is in principle possible to obtain xr(t) = xa(t) by properly
selecting p(t). If the original signal xa(t) is perfectly reconstructed from the samples x(n) = xa(nT ),
we have ideal reconstruction. As will be clear below, it is however not possible to perform ideal recon-
struction in practice.

To see how to choose p(t) in order to obtain xr(t) = xa(t), we proceed as follows. If we utilize the
expression for the reconstructed signal xr(t) in (5.20), its Fourier transform can be written as

Xr(j�) =
∫ ∞

−∞
xr(t)e

−j�tdt =
∫ ∞

−∞

∞∑
n=−∞

x(n)p(t − nT )e−j�tdt
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FIGURE 5.16

Example of reconstruction according to (5.20).

=
∞∑

n=−∞
x(n)

∫ ∞

−∞
p(t − nT )e−j�tdt, (5.21)

assuming that integration and summation can be interchanged. The variable substitution v = t–nT in
(5.21) yields

Xr(j�) =
∞∑

n=−∞
x(n)

∫ ∞

−∞
p(v)e−j�(v+nT )dv

=
( ∞∑

n=−∞
x(n)e−j�T n

)(∫ ∞

−∞
p(v)e−j�vdv

)

= X(ej�T )P (j�). (5.22)

We also know that X(ej�T ) is related to Xa(j�) via Poisson’s summation formula. The Fourier
transform of the reconstructed signal can therefore be related to the Fourier transform of the original
signal according to

Xr(j�) = P(j�)X(ej�T ) = P(j�)
1

T

∞∑
k=−∞

Xa

(
j� − j

2πk

T

)
. (5.23)

If the sampling theorem is fulfilled, the partial spectra Xa

(
j� − j2πk/T

)
do not overlap with each

other, as illustrated in Fig. 5.17. We can therefore obtain Xr(j�) = Xa(j�) by letting P(j�) be an
ideal low-pass filter according to

P(j�) =
{

T , |�| ≤ �c < π/T ,

0, |�| > �c,
(5.24)
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FIGURE 5.17

Illustration of ideal reconstruction.

with �0 < �c ≤ π/T , since P(j�) then leaves Xa(j�) unaffected and removes the remaining partial
spectra. This is also illustrated in Fig. 5.17. We then obtain (utilizing the uniqueness of the Fourier
transform)

Xr(j�) = Xa(j�) ⇔ xr(t) = xa(t). (5.25)

That is, the original signal xa(t) is reconstructed from the samples x(n).
The pulse p(t) is obtained by taking the inverse Fourier transform of P(j�) in (5.24). For example,

with �c = π/T , we get

p(t) = sin(πt/T )

πt/T
, (5.26)
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FIGURE 5.18

Illustration of ideal reconstruction.

which is a two-sided function and thus not realizable in practice by causal systems.

5.3.5.2 Reconstruction using a D/A converter and an analog reconstruction filter
In practice, the reconstruction is performed using a D/A converter followed by an analog reconstruction
filter as depicted in Fig. 5.18. The D/A converter is in principle a PAM and can therefore be described
by a pulse in accordance with the previous section. If we denote this pulse as q(t) and let x1(t) denote
the output from the D/A converter, we get

X1(j�) = Q(j�)X(ej�T ). (5.27)

Furthermore, we have

Xr(j�) = H(j�)X1(j�). (5.28)

Combining (5.27) and (5.28) gives us

Xr(j�) = Q(j�)H(j�)X(ej�T ). (5.29)

We can now write Xr(j�) as

Xr(j�) = P(j�)X(ej�T ), (5.30)

where

P(j�) = Q(j�)H(j�). (5.31)

We know that if P(j�) is chosen as in (5.24), then xr(t) = xa(t). Hence, also a scheme with a
D/A converter followed by a reconstruction filter according to Fig. 5.18 achieves ideal reconstruction
provided that Q(j�)H(j�) satisfies

Q(j�)H(j�) =
{

T , |�| ≤ �c < π/T ,

0, |�| > �c,
(5.32)

where �0 < �c ≤ π/T . Dividing the reconstruction into two steps gives us more degrees of freedom.
In particular, one can thereby let q(t) be a simple pulse since the only requirement is that the product
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FIGURE 5.19

Illustration of reconstruction using a D/A converter and an analog filter.

Q(j�)H(j�) must meet the right-hand side of (5.32). In principle, the actual shapes of the individual
responses Q(j�) and H(j�) are therefore arbitrary. In practice, it is much easier to generate simple
pulses that are subsequently filtered through a conventional analog filter, instead of generating more
complicated pulses directly, like the sinc function in (5.26).

A common type of D/A converter is of the type zero-order hold. In this case, q(t) is a square pulse
according to Fig. 5.19(d). This pulse can mathematically be expressed as
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FIGURE 5.20

Frequency responses in ideal reconstruction using a D/A converter followed by an analog reconstruction filter
(T = 1).

q(t) =
{

1, 0 < t < T,

0, t < 0, t > T .
(5.33)

Its Fourier transform is

Q(j�) = e−j�T/2 sin(�T/2)

�/2
. (5.34)

Hence, the Fourier transform Q(j�) is a sinc function with zero-crossings at ±2πk/T , for all
integers k. We note that Q(j�)H(j�) satisfies (5.32) if the frequency response H(j�) is selected as

H(j�) =
{

T/Q(j�), |�| ≤ �c < π/T ,

0, |�| > �c.
(5.35)

For low frequencies, H(j�) is thus

H(j�) = ej�T/2 �/2

sin(�T/2)
, |�| ≤ �c < π/T . (5.36)

When �c = π/T , the frequency response is as shown in Fig. 5.20. The response of this filter is dis-
continuous at �c = π/T and it can therefore not be implemented in practice. Furthermore, it would be
very costly to approximate this function, since a high filter order would be required in order to avoid a
large distortion.

To get around these problems in practical implementations, one uses a certain amount of oversam-
pling. This means that the sampling frequency is higher than the sampling theorem requires. One can
thereby let the reconstruction filter have a transition band as shown in Fig. 5.21. The higher is the sam-
pling frequency, the wider the transition band can be. The filter requirements are thus relaxed when
the sampling frequency is increased. Another advantage of using oversampling is that the quantization
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FIGURE 5.21

Typical spectra using oversampling and reconstruction via a D/A converter followed by an analog reconstruc-
tion filter.

noise that is introduced in the A/D conversion can be reduced via digital filtering. Oversampling will
be discussed in Section 5.7. An oversampled A/D converter generates more samples than is actually
required to reconstruct the signal. To make sure that the subsequent digital system does not have to
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work at higher data rates than necessary, one reduces the data rate by using decimation [52]. This can
be done without losing information since the signal has been oversampled. In other words, there is a
redundancy in the corresponding discrete-time signal.

5.3.6 Distortion caused by undersampling
In practice, a signal is never strictly band-limited, which means that one will always undersample the
signal and thus cause a certain amount of aliasing distortion. The sampling frequency must be high
enough to ensure that the reconstructed signal does not differ too much from the original one. The
following example illustrates how the choice of sampling frequency affects the reconstructed signal.

5.3.6.1 Example 3: illustration of distortion due to undersampling
Let xa(t) be a continuous-time signal according to

xa(t) = e−a|t |, a > 0. (5.37)

This signal has a real Fourier transform given by

Xa(j�) = 2a

�2 + a2
. (5.38)

Clearly, Xa(j�) is not band-limited. We now sample xa(t) with sampling frequency fs = 1/T , which
gives us the discrete-time signal x(n) according to

x(n) = xa(nT ) = e−a|nT | = (
e−aT

)|n|
. (5.39)

The Fourier transform of x(n) is

X(ej�T ) = 1 − e−2aT

1 − 2e−aT cos(�T ) + e−2aT
. (5.40)

When Xa(j�) is real, so is X(ej�T ), since the two transforms can be related to each other via Poisson’s
summation formula. Finally, we perform reconstruction using an ideal PAM, where P(j�) is given by

P(j�) =
{

T , |�| ≤ π/T ,

0, |�| > π/T .
(5.41)

This gives us the signal xr(t), whose Fourier transform is

Xr(j�) =
{

T X(ej�T ), |�| ≤ π/T ,

0, |�| > π/T ,
(5.42)

where X(ej�T ) is given by (5.40). Figs. 5.22 and 5.23 show the spectra Xa(j�) and X(ej�T ) as well
as the signals xa(t) and xr(t). In Fig. 5.22, T = 1/2, whereas T = 1/20 in Fig. 5.23. For T = 1/2, the
distortion is clearly visible, in both the time and frequency domains. If we instead choose T = 1/20,
i.e., we increase the sampling frequency by a factor of 10, the distortion is no longer visually noticeable.
An acceptable level of distortion can thus be obtained by selecting a high enough sampling frequency.
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FIGURE 5.22

Spectra and signals in Example 3 for T = 1/2.

FIGURE 5.23

Spectra and signals in Example 3 for T = 1/20.

5.3.7 Distortion measure for energy signals
When the sampling theorem is not satisfied, the reconstructed signal xr(t) will differ from the original
signal xa(t). We thereby get an error e(t) according to

e(t) = xr(t) − xa(t). (5.43)
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For energy signals, a common measure of the “size” of the distortion is the ratio between the error
energy and the signal energy, whereby one computes Ee/Ex , where Ex and Ee denote the energies of
xa(t) and e(t), respectively. These energies are given by

Ex =
∫ ∞

−∞
x2
a(t)dt = 1

2π

∫ ∞

−∞
|Xa(j�)|2d� (5.44)

and

Ee =
∫ ∞

−∞
e2(t)dt = 1

2π

∫ ∞

−∞
|E(j�)|2d�, (5.45)

where we have utilized Parseval’s formula. If we now make use of (5.43) we can rewrite (5.45) as

Ee = 1

2π

∫ ∞

−∞
|Xr(j�) − Xa(j�)|2d�. (5.46)

When the reconstruction is done with an ideal PAM, Xr(j�) is given by

Xr(j�) =
{

T X(ej�T ), |�| ≤ π/T ,

0, |�| > π/T ,
(5.47)

where

T X(ej�T ) =
∞∑

k=−∞
Xa

(
j� − j

2πk

T

)
. (5.48)

The energy Ee can in this case be expressed as

Ee = 1

2π

∫ π/T

−π/T

|T X(ej�T ) − Xa(j�)|2d� + 1

2π

∫
|�|≥π/T

|Xa(j�)|2d� (5.49)

or, alternatively,

Ee = 1

2π

∫ π/T

−π/T

∣∣∣∣∣∣
∑
k �=0

Xa

(
j� − j

2πk

T

)∣∣∣∣∣∣
2

d� + 1

2π

∫
|�|≥π/T

|Xa(j�)|2d�. (5.50)

The energies Ex and Ee are often difficult to compute analytically. In such cases, one has to use
numerical computations.

5.3.7.1 Example 4: illustration of distortion measure
We consider the same signals as in Example 3 of Section 5.3.6.1 with a = 1. The energies Ex and Ee

can in this case be computed as

Ex = 1

2π

∫ ∞

−∞

(
2

�2 + 1

)2

d� (5.51)
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FIGURE 5.24

Distortion as a function of the sampling frequency in Example 4.

and

Ee = 1

2π

∫ π/T

−π/T

(
1 − e−2aT

1 − 2e−aT cos(�T ) + e−2aT
− 2

�2 + 1

)2

d�

+ 1

2π

∫
|�|≥π/T

(
2

�2 + 1

)2

d�, (5.52)

respectively. Since the integrands are symmetric here, we can alternatively express Ex and Ee according
to

Ex = 1

π

∫ ∞

0

(
2

�2 + 1

)2

d� (5.53)

and

Ee = 1

π

∫ π/T

0

(
1 − e−2aT

1 − 2e−aT cos(�T ) + e−2aT
− 2

�2 + 1

)2

d�

+ 1

π

∫ ∞

π/T

(
2

�2 + 1

)2

d�, (5.54)

respectively. The integral in (5.53) can easily be computed analytically, whereby one obtains Ex = 1.
The second integral in (5.54) can be similarly solved. For the first integral in (5.54), it is difficult to find
a closed-form expression and we therefore compute it numerically. Fig. 5.24 plots the ratio Ee/Ex for
different sampling frequencies fs = 1/T . (Here, Ee/Ex equals Ee since Ex = 1.) As expected, we see
that the distortion reduces when the sampling frequency is increased. The example in Section 5.3.6.1
considered the two cases fs = 2 and fs = 20. In these cases, the distortion figures are about 6.86 × 10−3

and 5.30 × 10−6, respectively.

5.3.8 Bandpass sampling
We have so far considered low-pass signals, meaning that the signal spectrum Xa(j�) is contained in
the low-frequency region � ∈ [−�0, �0]. When the sampling frequency satisfies fs > 2f0 = �0/π ,
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FIGURE 5.25

Uniform sampling of a stochastic process.

sampling and ideal reconstruction can theoretically be achieved. For a given sampling frequency,
fs = 1/T , the signal is in other words restricted to the frequency region � ∈ [−π/T , π/T ]. This
frequency region is referred to as the first Nyquist band (or Nyquist zone). The theory can then be
extended to bandpass signals for which the spectrum is contained in the bandpass frequency region
� ∈ [−Nπ/T , −(N − 1)π/T ] ∪ [(N − 1)π/T , Nπ/T ], which is called the N th Nyquist band. Us-
ing again Poisson’s summation formula (and following, e.g., the example in Section 5.3.2.1) it is then
readily shown that the partial spectra do not overlap, which means that the signal is not aliased and
thus theoretically can be reconstructed without errors. In the reconstruction, the pulse p(t) must here
correspond to a bandpass filter instead of a low-pass filter.

5.4 Sampling of stochastic processes
This section extends the sampling theory from deterministic signals to wide-sense stationary (WSS)
stochastic processes.

5.4.1 Uniform sampling
Let Xa(t) be a continuous-time WSS stochastic process with mean mXa , autocorrelation function
rXaXa (τ ), and power spectrum RXaXa (j�). We now form X(n) by sampling Xa(t) uniformly accord-
ing to

X(n) = Xa(nT ). (5.55)

Graphically, we represent uniform sampling of a stochastic process as in Fig. 5.25.
As shown below, X(n) is also a WSS process whose mean mX, autocorrelation sequence rXX(k),

and power spectrum RXX(ej�T ) are given by

mX = mXa , (5.56)

rXX(k) = rXaXa (kT ), (5.57)

and

RXX(ej�T ) = 1

T

∞∑
p=−∞

RXaXa

(
j� − j

2πp

T

)
. (5.58)

Eq. (5.58) is the same relation as in Poisson’s summation formula for deterministic signals. One can
therefore understand that the following sampling theorem can be formulated for WSS processes.
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Sampling theorem for WSS processes. If a continuous-time WSS process Xa(t) is band-limited to
� = �0 (f = f0), i.e., if

RXaXa (j�) = 0, |�| > �0 = 2πf0, (5.59)

then Xa(t) can be recovered from the samples X(n) = Xa(nT ) if

fs = 1

T
> 2f0. (5.60)

Here, recovered means that we can form a new process Xr(t) from X(n), such that Xr(t) equals
Xa(t) in the sense that E{[Xr(t)–Xa(t)]2} = 0, where E denotes expectation.

Eqs. (5.56) and (5.57) follow immediately from their definitions according to

mX = E{X(n)} = E{Xa(nT )} = mXa (5.61)

and

rXX(k) = E{X(n)X(n − k)}
= E{Xa(nT )Xa(nT − kT )} = rXaXa (kT ), (5.62)

respectively. This shows that X(n) is a WSS process since both the mean and autocorrelation sequence
are independent of n. As for (5.58), it is first noted that the autocorrelation function can be written in
terms of its inverse Fourier transform according to

rXaXa (τ ) = 1

2π

∫ ∞

−∞
RXaXa (j�)ej�τ d�. (5.63)

In particular, one obtains for τ = kT

rXaXa (kT ) = 1

2π

∫ ∞

−∞
RXaXa (j�)ej�T kd�. (5.64)

By dividing the infinite interval integral into an infinite number of finite interval integrals, in the same
way as we did in Section 5.3.2 when deriving Poisson’s summation formula, we obtain

rXaXa (kT ) = 1

2π

∫ π

−π

1

T

∞∑
p=−∞

RXaXa

(
j� − j

2πp

T

)
ej�T kd(�T ). (5.65)

We also know that the autocorrelation sequence can be expressed in terms of its inverse Fourier trans-
form according to

rXX(k) = 1

2π

∫ ∞

−∞
RXX(ej�T )ej�T kd(�T ). (5.66)

Since rXX(k) = rXaXa (kT ) and the Fourier transform is unique, the right-hand sides in the two
equations above must be equal, which finally gives us (5.58).
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FIGURE 5.26

Sampling and reconstruction of a stochastic process using a PAM.

5.4.2 Reconstruction of stochastic processes
Reconstruction of stochastic processes can be performed with a PAM according to Fig. 5.26. The re-
constructed process Xr(t) is given by

Xr(t) =
∞∑

n=−∞
X(n)p(t − nT ). (5.67)

One can show that Xr(t) is equal to Xa(t) if the sampling theorem is fulfilled and p(t) is chosen as

p(t) = sin(πt/T )

πt/T
= sinc(t/T ). (5.68)

This is in analogy with ideal reconstruction of deterministic signals. Note again that equality holds in the
sense that E[Xr(t)–Xa(t)]2 = 0. However, in practice, one cannot have strictly band-limited processes,
which introduces aliasing distortion in the sampling process. Furthermore, errors are introduced in the
reconstruction, since only approximate sinc functions can be generated. The reconstructed process will
therefore differ from the original process.

An additional problem here is that Xr(t) generally will not be a WSS process, which complicates
the analysis of distortion, etc. To get around this dilemma, the sampling and reconstruction in (5.55)
and (5.67) are replaced with

X(n) = Xa(nT + �) (5.69)

and

Xr(t) =
∞∑

n=−∞
X(n)p(t − nT − �), (5.70)

respectively, where � is a stochastic variable that is uniformly distributed in the interval (0, T ). In
practice, this means that each realization of the sampling and reconstruction process incorporates a
stochastic delay �. However, the sampling and reconstruction are still synchronized, since they incor-
porate the same delay �. The purpose of introducing the delay � is that the reconstructed process Xr(t)

then becomes WSS. The stochastic delay � introduced in (5.69) does not have any implications as to
stationarity and ensemble averages, that is, X(n) is still WSS and (5.56)–(5.58) still hold. Furthermore,
as shown below, the same stochastic delay � introduced in (5.70) makes Xr(t) a WSS process with the
following mean mXr , autocorrelation function rXrXr (τ ), and power spectrum RXrXr (j�):

mXr = 1

T
mXP(0), (5.71)
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rXrXr (τ ) = 1

T

∞∑
k=−∞

rXX(k)

∫ ∞

−∞
p(u)p(u − τ + kT )du, (5.72)

and

RXrXr (j�) = 1

T
|P(j�)|2RXX(ej�T ). (5.73)

Moreover, as is also shown below, the reconstruction error E{[Xr(t)–Xa(t)]2} is given by

E{[Xr(t)–Xa(t)]2} = 1

2πT 2

∫ ∞

−∞
|P(j�) − T |2RXaXa (j�)d�

+ 1

2πT 2

∫ ∞

−∞

∑
p �=0

|P(j�)|2RXaXa

(
j� − j

2πp

T

)
d�. (5.74)

From this equation, we see that if p(t) is ideal according to (5.68), in which case P(j�) is an ideal
low-pass filter with passband up to π/T and gain T , then the reconstruction error becomes

E{[Xr(t)–Xa(t)]2} = 1

2π

∫
|�|≥π/T

RXaXa (j�)d�

+ 1

2π

∫ π/T

−π/T

∑
p �=0

RXaXa

(
j� − j

2πp

T

)
d�, (5.75)

which can be rewritten as

E{[Xr(t)–Xa(t)]2} = 2

π

∫ ∞

π/T

RXaXa (j�)d�. (5.76)

If, in addition, Xa(t) is band-limited to π/T , i.e., RXaXa (j�) = 0 for |�| ≥ π/T , it follows immedi-
ately from (5.76) that E[Xr(t)–Xa(t)]2 = 0, in which case PR is achieved.

We now show (5.71)–(5.73). The mean of Xr(t) becomes

mXr = E{Xr(t)} = E

{ ∞∑
n=−∞

X(n)p(t − nT − �)

}

=
∞∑

n=−∞
E {X(n)p(t − nT − �)}

=
∞∑

n=−∞
E {X(n)}E {p(t − nT − �)} , (5.77)

where we have utilized that X(n) and p(t − nT − �) are uncorrelated. Further, we have E{X(n)} =
mX and

E {p(t − nT − �)} = 1

T

∫ T

0
p(t − nT − �)d� = 1

T

∫ t−nT

t−nT −T

p(v)dv, (5.78)
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which gives us

mXr = 1

T
mX

∞∑
n=−∞

∫ t−nT

t−nT −T

p(v)dv = 1

T
mX

∫ ∞

−∞
p(v)dv = 1

T
mXP(0). (5.79)

We see that the mean is independent of t .
The autocorrelation function for Xr(t) becomes

rXrXr (τ ) = E {Xr(t)Xr(t − τ)}

= E

{ ∞∑
n=−∞

X(n)p(t − nT − �)

∞∑
m=−∞

X(m)p(t − τ − mT − �)

}

= E

{ ∞∑
n=−∞

∞∑
m=−∞

X(n)X(m)p(t − nT − �)p(t − τ − mT − �)

}

=
∞∑

n=−∞

∞∑
m=−∞

E {X(n)X(m)}

×E {p(t − nT − �)p(t − τ − mT − �)}

=
∞∑

n=−∞

∞∑
m=−∞

rXX(n − m)

× 1

T

∫ T

0
p(t − nT − �)p(t − τ − mT − �)d�. (5.80)

The variable substitutions k = n–m and u = t–nT –� yield

rXrXr (τ ) =
∞∑

n=−∞

∞∑
k=−∞

rXX(k)
1

T

∫ t−nT

t−nT −T

p(u)p(u − τ + kT )du

= 1

T

∞∑
k=−∞

rXX(k)

∫ ∞

−∞
p(u)p(u − τ + kT )du. (5.81)

We see that also the autocorrelation function is independent of t . Hence, Xr(t) is a WSS process.
The power spectrum of Xr(t) becomes

RXrXr (τ ) =
∫ ∞

−∞
rXrXr (τ )e−j�τ dτ

=
∫ ∞

−∞

(
1

T

∞∑
k=−∞

rXX(k)

∫ ∞

−∞
p(u)p(u − τ + kT )du

)
e−j�τ dτ

= 1

T

∞∑
k=−∞

rXX(k)

∫ ∞

−∞
p(u)

∫ ∞

−∞
p(u − τ + kT )e−j�τ dτdu. (5.82)
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The variable substitution v = u–τ + kT gives us

RXrXr (τ ) = 1

T

∞∑
k=−∞

rXX(k)

∫ ∞

−∞
p(u)

∫ ∞

−∞
p(v)e−j�(u−v+kT )dvdu

= 1

T

∞∑
k=−∞

rXX(k)e−j�T k

∫ ∞

−∞
p(u)e−j�udu

∫ ∞

−∞
p(v)ej�vdvdu

= 1

T
RXX(ej�T )P (j�)P �(j�)

= 1

T
|P(j�)|2RXX(ej�T ). (5.83)

The last two equalities hold when p(t) is a real function.
Next, (5.74) is shown. To this end, the reconstruction error is first expanded as

E
{
[Xr(t) − Xa(t)]2

}
= E

{
X2

r (t)
}

+ E
{
X2

a(t)
}

− 2E {Xr(t)Xa(t)} . (5.84)

The first term in (5.84) can be computed as

E
{
X2

r (t)
}

= 1

2π

∫ ∞

−∞
RXrXr (j�)d� = 1

2π

∫ ∞

−∞
1

T
|P(j�)|2RXX(ej�T )d�

= 1

2πT 2

∫ ∞

−∞
|P(j�)|2

∞∑
p=−∞

RXaXa

(
j� − j

2πp

T

)
d�. (5.85)

The second term in (5.84) is simply

E
{
X2

a(t)
}

= 1

2π

∫ ∞

−∞
RXaXa (j�)d�. (5.86)

In the third term of (5.84) we have

E {Xr(t)Xa(t)} = E

{ ∞∑
n=−∞

Xa(nT + �)p(t − nT − �)Xa(t)

}

= E

{ ∞∑
n=−∞

rXaXa (t − nT − �)p(t − nT − �)

}
, (5.87)

assuming that Xa(t) and � are uncorrelated. Since it is assumed that � is uniformly distributed on
[0, T ], it follows from (5.87) that

E {Xr(t)Xa(t)} =
∞∑

n=−∞

1

T

∫ T

0
rXaXa (t − nT − �)p(t − nT − �)d�. (5.88)
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The variable substitution u = t–nT –� now yields

E {Xr(t)Xa(t)} = 1

T

∞∑
n=−∞

∫ t−nT

t−nT −T

rXaXa (u)p(u)du

= 1

T

∫ ∞

−∞
rXaXa (u)p(u)du. (5.89)

Using Parseval’s relation ∫ ∞

−∞
x(t)y�(t)dt = 1

2π

∫ ∞

−∞
X(j�)Y �(j�)d� (5.90)

together with the fact that p(u) is real, i.e., p(u) = p�(u), (5.89) can equivalently be written as

E {Xr(t)Xa(t)} = 1

2πT

∫ ∞

−∞
RXaXa (j�)P �(j�)d�. (5.91)

Making use of the facts that RXaXa (j�) = RXaXa (−j�) and P �(j�) = P(–j�), (5.91) can equiva-
lently be written as

E {Xr(t)Xa(t)} = 1

2πT

∫ ∞

−∞
RXaXa (j�)P (j�)d�. (5.92)

Inserting (5.85), (5.86), (5.91), and (5.92) into (5.84), we finally obtain

E[Xr(t)–Xa(t)]2 = 1

2πT 2

∫ ∞

−∞
|P(j�)|2

∞∑
p=−∞

RXaXa

(
j� − j

2πp

T

)
d�

+ 1

2π

∫ ∞

−∞
RXaXa (j�)d�

− 1

2πT

∫ ∞

−∞
RXaXa (j�)P �(j�)d�

− 1

2πT

∫ ∞

−∞
RXaXa (j�)P (j�)d�

= 1

2πT 2

∫ ∞

−∞
|P(j�) − T |2RXaXa (j�)d�

+ 1

2πT 2

∫ ∞

−∞

∑
p �=0

|P(j�)|2RXaXa

(
j� − j

2πp

T

)
d�. (5.93)

5.4.2.1 Example 5: computation of reconstruction error power
Let Xa(t) be the output of an analog filter H(s) for the input Xwb(t). Assume that Xwb(t) is white
noise with zero mean and power spectrum σ 2

Xwb
and that H(s) is a first-order low-pass filter according

to

H(s) = �0

s + �0
. (5.94)
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We now form X(n) and Xr(t) through uniform sampling of Xa(t) and reconstruction with a PAM
according to (5.69) and (5.70), respectively. We assume that P(j�) is ideal and given by (5.68). We
now wish to compute the average powers of Xa(t), X(n), and Xr(t). These quantities are obtained by
integrating the corresponding power spectra.

The power spectrum of Xa(t) is

RXaXa (j�) = |H(j�)|2RXwbXwb
(j�), (5.95)

where

RXwbXwb
(j�) = σ 2

Xwb
(5.96)

and

|H(j�)|2 = �2
0

�2 + �2
0

. (5.97)

The power of Xa(t) therefore becomes

E
{
X2

a(t)
}

= 1

2π

∫ ∞

−∞
RXaXa (j�)d� = 1

2π

∫ ∞

−∞
|H(j�)|2RXwbXwb

(j�)d�

= 1

2π

∫ ∞

−∞
�2

0

�2 + �2
0

σ 2
Xwb

d� = �0σ
2
Xwb

2π
[arctan(�/�0)]∞−∞

= �0σ
2
Xwb

2
. (5.98)

The power of X(n) is the same as that of Xa(t) because

E
{
X2(n)

}
= rXX(0) = rXaXa (0) = E

{
X2

a(t)
}

. (5.99)

The power spectrum of Xr(t) is

RXrXr (j�) = 1

T
|P(j�)|2RXX(ej�T ), (5.100)

where

RXX(ej�T ) = 1

T

∞∑
p=−∞

RXaXa

(
j� − j

2πp

T

)
. (5.101)

When p(t) is given by (5.68), one obtains

P(j�) =
{

T , |�| ≤ π/T ,

0, |�| > π/T .
(5.102)

The power of Xr(t) thus becomes

E
{
X2

r (t)
}

= 1

2π

∫ ∞

−∞
RXrXr (j�)d� = 1

2π

∫ π/T

−π/T

T RXX(ej�T )d�
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= 1

2π

∫ π/T

−π/T

∞∑
p=−∞

RXaXa

(
j� − j

2πp

T

)
d�

= 1

2π

∞∑
p=−∞

∫ π/T

−π/T

RXaXa

(
j� − j

2πp

T

)
d�. (5.103)

The variable substitution j� − j2πp/T → j� finally gives us

E
{
X2

r (t)
}

= 1

2π

∞∑
p=−∞

∫ π/T −j2πp/T

−π/T −j2πp/T

RXaXa (j�)d�

= 1

2π

∫ ∞

−∞
RXaXa (j�)d� = E

{
X2

a(t)
}

. (5.104)

That is, the power of Xr(t) is the same as that of Xa(t). We thus have

E
{
X2

a(t)
}

= E
{
X2(n)

}
= E

{
X2

r (t)
}

. (5.105)

Finally, it is observed that the reconstruction error is

E
{
[Xr(t) − Xa(t)]2

}
= 2

π

∫ ∞

π/T

RXaXa (j�)d�

= 2

π

∫ ∞

π/T

|H(j�)|2RXwbXwb
(j�)d�

= 2

π

∫ ∞

π/T

�2
0

�2 + �2
0

σ 2
Xwb

d�

= 2�0σ
2
Xwb

π
[arctan(�/�0)]∞π/T

= 2�0σ
2
Xwb

π
(π/2 − arctan[π/(�0T )]). (5.106)

We see that with a fixed �0, E
{[Xr(t) − Xa(t)]2

}→ 0 when T → 0, i.e., we can make the recon-
struction error as small as desired by a proper selection of the sampling period T (sampling frequency
fs = 1/T ).

5.5 Nonuniform sampling and generalizations
This section considers the extension to nonuniform sampling [29] and generalizations. This appears in
many different forms and contexts and it is beyond the scope of this section to present a comprehensive
survey. Instead, we will concentrate on one particular application, namely M-channel time-interleaved
A/D converters, which in the simplest case corresponds to an M-periodic nonuniform sampling grid
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[10,19,21]. In this application, the sampling grid is close to a uniform grid and, thus, the obtained
nonuniform-sampling sequence is close to the desired uniform-sampling sequence. Nevertheless, re-
construction is required to recover the uniform-sampling sequence from the nonuniform-sampling
sequence. The generalized case is an extension in the sense that the M channels experience different
and general frequency responses.

5.5.1 Time-interleaved ADCs
Time interleaving of multiple parallel ADCs is a technique to increase the effective sampling rate of the
overall converter. Using an M-channel time-interleaved ADC, the effective sampling rate is increased
by a factor of M . Unfortunately, the effective resolution of the individual channel converters is not
maintained in the overall converter because of channel mismatch errors. It is therefore necessary to
compensate for these errors in order to restore the resolution [56,57]. The errors can broadly be divided
into linear and nonlinear mismatch errors [57,58]. This section only deals with linear mismatch errors,
in which case the channels are modeled as linear systems, thus having specific frequency responses.
There are also static offset mismatch errors present but they are signal-independent and straightforward
to compensate for, and therefore not explicitly included in the formulas to be presented in this section.
However, as noted in Section 5.5.5.1, one can make use of the same frequency-domain expression as
that used for relating the input and output signals.

Up to a certain resolution, one can assume that the channel frequency responses have frequency-
independent magnitude and phase delay responses, which corresponds to static gain and linear-phase
(time-skew) mismatch errors. Without gain errors, this case corresponds to nonuniform sampling and
the problem is then to recover the uniform-sampling sequence from the nonuniform-sampling sequence.
Numerous papers have addressed this problem over the last decades; see for example [7–9,13–15,56]
and references therein. However, to reach a very high resolution for high-speed conversion, one needs
to extend the channel model to general frequency responses, thus with frequency-dependent magnitude
and phase delay responses [49,57]. In this case, one has to compensate for these frequency response
mismatch errors, not only static gain and linear-phase parts which correspond to approximations of the
true responses. Recent papers have considered the more general problem [18,20,26,31,32,42,44–46,49,
59] which corresponds to the “generalizations” mentioned above.

Before proceeding, it is also noted that calibration of time-interleaved ADCs requires estimation
of and compensation for the channel frequency response mismatches. This section only discusses the
compensation which requires that accurate models of the channel frequency responses are available.
However, the estimation benefits from efficient compensation techniques, for example when the cali-
bration is done through simultaneous estimation and compensation by minimizing an appropriate cost
measure [46]. The compensation techniques to be discussed here can thus be used either after the chan-
nel frequency responses have been estimated or as a part of a calibration technique.

5.5.2 Problem formulation
The point of departure is that we have a continuous-time signal xa(t) band-limited to �0 < π/T , which
means that the Nyquist criterion for uniform sampling with a sampling frequency of 1/T without
aliasing is fulfilled, that is, sampling according to x(n) = xa(nT ) does not introduce aliasing and we
have in the frequency domain
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FIGURE 5.27

M-channel time-interleaved ADC with different channel frequency responses Qn(j�), n = 0,1, . . . ,M − 1,
and an M-periodic time-varying compensation system with impulse response hn(k) = hn+M(k).

X(ej�T ) = 1

T
Xa(j�), �T ∈ [−π,π], (5.107)

where X(ej�T ) and Xa(j�) denote the Fourier transforms of the sequence x(n) and the continuous-
time signal xa(t), respectively. This means that xa(t) can be recovered from x(n). It is generally
advisable to make �0 correspond to some 80%–90% of the overall Nyquist band as the computational
complexity of the compensation system becomes prohibitive when it approaches 100%, as exemplified
in Section 5.5.5.2. However, normally this does not impose additional band limitations as a certain
amount of oversampling is required anyhow to get reasonable requirements on the analog antialiasing
filter that precedes the ADC, in accordance with Fig. 5.39 in Section 5.7.1, which depicts a typical
system for conversion of an analog signal into its digital representation.

In an M-channel time-interleaved ADC, without correction, we do not obtain the desired uniform
sequence x(n) but instead another sequence, say v(n), through interleaving of M subsequences, as seen
in Fig. 5.27. This can equivalently be viewed as if v(n) is obtained by applying xa(t) to a time-varying
continuous-time system and then sampling the output at t = nT . Utilizing (5.107), the sequence v(n)

can then be expressed via the inverse Fourier transform as

v(n) = 1

2π

∫ �0T

−�0T

Qn(j�)X(ej�T )ej�T nd(�T ), (5.108)

where Qn(j�) = Qn+M(j�) is an M-periodic time-varying system frequency response and Qn(j�),
n = 0,1, . . . ,M − 1, constitute the M ADC channel frequency responses. For example, with static gain
constants, gn, and static time skews, dn (given as a percentage of the sampling period T = 1/fs), the
channel frequency responses are modeled as Qn(j�) = gne

j�T dn . With gn = 1, this corresponds to
v(n) = xa(nT + dnT ) and thus a nonuniform sampling and reconstruction problem. It is also noted
that the model above holds also in the more general case when M → ∞, thus also for single-channel
ADCs with a time-varying frequency response.
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The problem to be solved can now be formulated as follows: Given the sequence v(n) in (5.108),
form a new sequence y(n) that should approximate the sequence x(n) = xa(nT ) as closely as desired.
This problem is considered in Section 5.5.4.

5.5.2.1 Relaxed problem
The overall output y(n) should ideally approximate the sequence x(n) = xa(nT ). This requires that all
channel frequency responses Qn(j�) are known. In practice, it is customary to determine the ratios
between the channel frequency responses and then match the channels. Typically, one chooses the first
channel as a reference and then matches all other channels to this reference channel. In the reconstruc-
tion, this means that we set Q0(j�) = 1 and divide the remaining Qn(j�) by the actual Q0(j�). In the
estimation, the frequency response ratios are obtained directly so we will never have available Qn(j�)

but only an estimation of Qn(j�)/Q0(j�). After the compensation, the overall ADC will then experi-
ence a linear distortion, Q0(j�), because we then have Y(ej�T ) = Q0(j�)X(ej�T ). In other words,
the linear distortion after compensation is determined by the frequency response of the reference ADC.
In the compensation, this also means that the samples from the reference channel are taken as they are
and only the other channels’ samples are corrected. Finally, it is noted that in the overall system where
the A/D converter is to be used, the linear distortion needs to be equalized but this problem exists for all
types of A/D converters. In a larger composite system, like a communication system, a single equalizer
can be used to equalize all linear distortion at the same time, emanating from the filters, A/D converters,
communication channel, etc.

5.5.3 Reconstruction
Regardless whether the sequence x(n) has been obtained through uniform sampling of xa(t) or through
nonuniform sampling and/or its generalization (like in time-interleaved ADCs considered here), it is
often desired to reconstruct xa(t) from the generated sequence of samples x(n). Thus, in the generalized
case, it is desired to recover xa(t) from the sequence v(n). This can, in principle, be done in two
different ways. The first way is to reconstruct xa(t) directly from v(n) through analog reconstruction
functions. Although it is known how to do this in principle (see, e.g., [17,29,41,63]), problems arise
when it comes to practical implementations. In particular, it is very difficult to practically implement
analog functions with high precision. It is therefore desired to use the second way, which is to perform
the reconstruction in the digital domain, i.e., to first recover x(n) = xa(nT ). One then needs only one
conventional DAC and analog filter to obtain xa(t). Such components are much easier to implement
than components that are to approximate complicated analog functions. Recovery of x(n) is also of
interest even if xa(t) is not to be reconstructed. For example, in receivers in digital communication
systems, x(n) is the desired result. Sections 5.5.4–5.5.7 give more details regarding the reconstruction
of x(n) from v(n) in time-interleaved ADCs.

5.5.4 Reconstruction using a time-varying FIR system
A time-interleaved ADC corresponds to a time-varying system, and the compensation thus corresponds
to inverting such a system. For an M-channel system, this amounts to determining an M-periodic time-
varying discrete-time system characterized by an M-periodic impulse response, say hn(k) = hn+M(k),
or, equivalently, M time-invariant impulse responses hn(k), n = 0,1, . . . ,M − 1.
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Using an N th-order M-periodic time-varying finite length impulse response (FIR) system, the re-
constructed output sequence, y(n), is given by the convolution sum as

y(n) =
N/2∑

k=−N/2

v(n − k)hn(k), (5.109)

where hn(k) = hn+M(k) denotes the M-periodic impulse response. Thus, to correct each output sample,
one needs to compute N + 1 multiplications and N additions. It is convenient here to make use of a
noncausal system, which means that the impulse response is assumed to be centered around k = 0,
which corresponds to zero delay. A causal system is then obtained by introducing a delay of N/2
samples into the system. It is noted that we have assumed here that the order N of the system is even,
to keep the notation simple. Odd-order systems can be used as well after some minor appropriate
modifications.

To determine the impulse response coefficients, it is convenient to express the output y(n) in the
time-frequency domain [19], instead of the time domain given in (5.109). This will be done here in
terms of an M-periodic time-frequency function An(j�) = An+M(j�), or, equivalently, M frequency
functions An(j�),n = 0,1, . . . ,M − 1. To this end, we insert (5.108) into (5.109) and interchange the
summation and integration, and we obtain

y(n) = 1

2π

∫ �0T

−�0T

An(j�)X(ej�T )ej�T nd(�T ), (5.110)

where

An(j�) =
N/2∑

k=−N/2

hn(k)Qn−k(j�)e−j�T k. (5.111)

Further, we can write the desired sequence x(n) in terms of the inverse Fourier transform according to

x(n) = 1

2π

∫ �0T

−�0T

X(ej�T )ej�T nd(�T ). (5.112)

Comparing (5.110) and (5.112), it is seen that PR is obtained if

An(j�) = 1, � ∈ [−�0,�0], (5.113)

for n = 0,1, . . . ,M − 1, because then y(n) = x(n) for all n as An(j�) is M-periodic. Thus, if all
An(j�) = 1, we get the desired result x(n) = xa(nT ). The problem is thus to determine the M impulse
responses hn(k), n = 0,1, . . . ,M − 1, so that An(j�) approximate unity. If the channel frequency
responses Qn(j�) are known, this can be done optimally in, for example, least-squares or mini-
max senses. In practice, one does not explicitly estimate Qn(j�) but instead Qn(j�)/Q0(j�) if
Q0(j�) is the reference channel, in accordance with the discussion presented in Section 5.5.2.1.
The ratios Qn(j�)/Q0(j�) are then used in the design, which corresponds to selecting h0(k) = δ(k)

(unit impulse). Therefore, it is sufficient to determine the M − 1 impulse responses hn(k) for n =
1,2, . . . ,M − 1, so that the corresponding An(j�) approximate unity. After compensation with these
filters, the overall ADC will experience the actual linear distortion Q0(j�).
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5.5.5 Error metrics
A common metric of ADCs is the signal-to-noise ratio (SNR). In this case, the aim is to minimize
An(j�) − 1 in the least-squares sense, which means that the quantities Pn given by

Pn = 1

2π

∫ �0T

−�0T

|An(j�) − 1|2d(�T ) (5.114)

are minimized, either separately or simultaneously (e.g., by minimizing the mean of Pn). The min-
imization of Pn corresponds to the minimization of the expected error E{[y(n) − x(n)]2} when the
input signal is a stochastic process with a constant power spectrum in the region [−�0,�0] [19].

Another common metric of ADCs is the spurious-free dynamic range. In this case, it is appropriate
to write the input–output relation in the frequency domain in terms of a distortion function V0(e

j�T )

and M − 1 aliasing functions Vm(ej�T ), m = 1,2, . . . ,M − 1. This is similar to frequency-domain
input–output relations for multirate filter banks [52]. One can then write the output Fourier transform
as

Y(ej�T ) = V0(e
j�T )X(ej�T ) +

M−1∑
m=1

Vm(ej�T )X(ej (�T −2πm/M)), (5.115)

where

V0(e
j�T ) = 1

M

M−1∑
n=0

Bn(e
j�T ) (5.116)

and

Vm(ej�T ) = 1

M

M−1∑
n=0

e−j2πmn/MBn(e
j (�T −2πm/M)), (5.117)

with Bn(e
j�T ) being the 2π-periodic extensions of An(j�) in (5.111). That is, Bn(e

j�T ) = An(j�)

for −π ≤ �T ≤ π . The distortion function corresponds to a regular frequency response seen from
the input to the output, whereas the aliasing functions give the size of the aliased (frequency shifted)
versions of the input. Specifically, a frequency component at � = �0 is affected by the modulus
and phase of the distortion frequency response V0(e

j�0T ), and we also get aliased versions at the
“digital frequencies” �mT = �0T + 2πm/M, m = 1, 2, . . . , M − 1, with amplitudes determined by
Vm(ej (�0T +2πm/M)). Note also that for real signals, which always have frequency components at �0T

and −�0T simultaneously, aliased versions also appear at −�0T + 2πm/M, m = 1, 2, . . . , M − 1.
Ideally, the distortion function should equal unity, whereas the aliasing functions should be zero,

in which case we have PR, because then we obtain Y(ej�T ) = X(ej�T ) and thus y(n) = x(n). In
practice, we can only approximate PR. Typically, one then aims at minimizing two tolerances, say δd

and δa , between unity and zero. One can then solve the problem in several slightly different ways. One
typical way is to minimize δ subject to the constraints

|V0(e
j�T ) − 1| ≤ δ, �T ∈ [−�0T , �0T ], (5.118)
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and

|Vm(ej�T )| ≤ δ(δa/δd), �T ∈ �mT, (5.119)

for m = 1,2, . . . ,M − 1, where

�mT = [−�0T + 2πm

M
, �0T + 2πm

M
]. (5.120)

Clearly, |V0(e
j�T )| ≤ δd and |Vm(ej�T )| ≤ δa if δ ≤ δd . It is noted that δd and δa are related through

|δd | ≤ (M − 1)|δa | + |An(j�) − 1|min, (5.121)

which means that it is usually sufficient to ensure that the aliasing is suppressed, as this implies a small
distortion as well. Specifically, for the relaxed problem, (5.121) reduces to |δd | ≤ (M − 1)|δa | provided
|V0(e

j�T ) − 1| in (5.118) is replaced with |V0(e
j�T ) − Bq(ej�T )|, q denoting the reference channel.

The relation above is a consequence of the following equation which can be derived from (5.117):

M−1∑
m=0

ej2πmq/MVm(ej (�T +2πm/M)) = Bq(ej�T ). (5.122)

However, in a practical system, we cannot minimize δ directly as we do not have access to the distortion
and aliasing functions. Instead, δ is reduced indirectly to an acceptable level through some estimation
and correction scheme.

5.5.5.1 DC offset
It is finally noted in this section that the representation in (5.115) can be used for DC offset mismatch
as well, if we let X represent a DC signal, because it can be seen as a DC input that is time-interleaved
and amplified differently in the different channels. In accordance with the discussion on aliasing above,
it is seen that offset mismatches give rise to tones at �mT = 2πm/M, m = 0, 1, . . . , M − 1, with
amplitudes determined by the frequency-independent Vm, as Bn in this case are frequency-independent
constants equaling the channel offset values. Specifically, with all Bn being equal, say Bn = c, we
obtain from (5.117) that V0 = c and Vm = 0 for m = 1,2, . . . ,M − 1, as we in this case have a regular
DC offset.

5.5.5.2 Example 6: effect of oversampling
A good approximation can generally only be achieved if the input signal is band-limited in accordance
with the Nyquist theorem. It is generally advisable to use at least 10% oversampling; otherwise the
complexity of the reconstructor may become prohibitive. However, if low complexity is not crucial,
the amount of oversampling can be reduced. The increase in complexity with decreasing oversampling
is illustrated in Figs. 5.28 and 5.29, which plot the system (filter) order versus time skew in a two-
channel time-interleaved ADC for a reconstruction error (P1 in (5.114)) of −60, −80, and −100 dB.
It is seen that the order is roughly doubled when the don’t-care band between the upper band edge and
the Nyquist frequency fs/2 is halved (which occurs when we go from 80% to 90%, etc.). However,
it is also seen that for small time skews and moderate reconstruction errors, one may increase the
bandwidth, as the order in such cases is relatively low. Recall that for a reconstruction system of order
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FIGURE 5.28

System (filter) order versus time skew in percent of the sampling period T = 1/fs in a two-channel time-
interleaved ADC for 80% and 90% of the Nyquist band.

N , in accordance with the convolution sum in (5.109), one needs to compute N + 1 multiplications and
N additions to correct each output sample.

5.5.6 Reconstruction based on least-squares design
From the previous section, we see that the overall compensation system can be designed by mini-
mizing the quantities Pn, n = 0,1, . . . ,M − 1, in (5.114). The quantities Pn can be minimized either
separately or simultaneously. In the former case, the corresponding M impulse responses hn(k), n =
0,1, . . . ,M − 1, can be computed separately as [20]

hn = −0.5S−1
n cn, (5.123)
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FIGURE 5.29

System (filter) order versus time skew in percent of the sampling period T = 1/fs in a two-channel time-
interleaved ADC for 95% and 97.5% of the Nyquist band.

with cn,k, k = −N,−N + 1, . . . ,N , being

cn,k = − 1

π

∫ �0T

−�0T

|Qn−k(j�)| ×
cos

(
�T k − arg{Qn−k(j�)})d(�T ), (5.124)

Sn being (N + 1) × (N + 1) symmetric and positive definite matrices with entries sn,kp, k,p =
−N/2,−N + 1, . . . ,N/2, given by

sn,kp = 1

2π

∫ �0T

−�0T

|Qn−k(j�)||Qn−p(j�)| ×
cos

(
�T (p − k) + arg{Qn−k(j�)} − arg{Qn−p(j�)})d(�T ), (5.125)
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and the constant C being C = �0T/π . In order to compute hn in (5.123), it is necessary to compute
the integrals in (5.124) and (5.125), which generally has to be done numerically.

Above, the overall compensation system is designed by determining the M filter impulse responses
hn(k) through M separate matrix inversions (M − 1 in the practical relaxed case), where the size of
the matrices is (N + 1) × (N + 1), where N + 1 is the filter impulse response length [20,26]. In the
alternative case, corresponding to simultaneous design, the impulse responses hn(k) are designed si-
multaneously. This was done in [44], which poses the design problem in terms of M synthesis filters
that are designed simultaneously by inverting one matrix of size M(N + 1) × M(N + 1). Whereas the
separate-design technique yields optimum filters with respect to the reconstruction error in the band of
interest, the technique in [44] may give somewhat better results as to distortion and aliasing, because it
includes those quantities in the overall error cost measure. The main advantage of the separate-design
approach is that the design problem comprises M smaller subproblems instead of one big problem. It
may therefore be more numerically robust and simpler to design and implement.

In addition to the abovementioned design techniques [20,26,44], there are a few other related tech-
niques [26,31,32,49]. In [49], separately designed synthesis filters were obtained through windowing
techniques, which, however, are known to result in suboptimum filters. A somewhat different com-
pensation technique that also utilizes separately designed filters was proposed in [31], [32], but that
technique needs additional cosine and sine modulators, which increases the implementation cost of
the compensation system. Finally, it is noted that one may alternatively use numerical optimization in
accordance with [19], but this is costly and therefore less suitable for on-line design applications.

For all methods described above, new values of the impulse responses hn(k) must be computed
whenever the frequency responses Qn(j�) are changed, which occur in a practical time-interleaved
ADC due to temperature variations, etc. This requires recomputation of the filter coefficients using
windowing techniques (including inverse Fourier transforms), matrix inversions, or numerical opti-
mization. This may be acceptable for off-line design, which can be adopted, for example, in spectrum
analysis applications. In real-time low-power applications, on the other hand, these on-line redesign
procedures can become too costly and time consuming to implement. The next section discusses a
compensation structure for which on-line design is not needed. This structure was introduced in [18].
A similar structure has been reported in [59].

5.5.7 Reconstruction using a polynomial-based approach
As discussed in the previous section, the reconstruction can in principle be done through the time-
varying system hn(k). For an N th-order reconstructor, each system hn(k) has then N + 1 free param-
eters (multipliers) that must be estimated and implemented, and thus (M − 1)(N + 1) in total for a
practical M-channel system (in the relaxed case). This becomes difficult from the estimation point of
view and expensive to implement except for small values of M .

Depending on the behavior of the channel responses Qn(j�), the number of free parameters may
be reduced by modeling them as P th-order polynomials in j� according to

Qn(j�) = ε(0)
n [1 +

P∑
p=1

ε
(p)
n (j�T )p], (5.126)
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where ε
(0)
n is a gain constant (ideally equal to unity) and the remaining ε

(p)
n are constants (ideally equal

to zero) used for modeling the frequency dependency. This does not impose a fundamental restriction,
as it is known that any frequency response can be approximated as closely as desired by a properly
chosen polynomial and polynomial order. For example, when the system has frequency-independent
time skews, dnT , Qn(j�) can be written as

Qn(j�) = ε(0)
n ej�T dk ≈ ε(0)

n [1 +
P∑

p=1

d
p
n (j�T )p/p!], (5.127)

from which we obtain ε
(p)
n = d

p
n /p!. In this case it suffices to estimate two parameters per channel

(three, including offset errors).
A general structure for the reconstruction based on the model in (5.126) is seen in Fig. 5.30.

This structure makes use of K sets of fixed subfilters Gp(z), p = 1,2, . . . ,P , that approximate the
pth-order differentiators in (5.126). Fig. 5.30 shows a noncausal filter structure for convenience. The
corresponding causal structure is obtained by propagating D delay elements into each vertical branch
and replacing ε

(p)
n with ε

(p)
n−D , where D is the (possibly approximate) delay of the subfilters, which

can be either linear-phase finite length impulse response (FIR) subfilters or approximately linear-phase
FIR or infinite length impulse response (IIR) subfilters. Using N th-order linear-phase FIR subfilters,
D = N/2. The remaining errors in the output yK(n) of the K-stage structure in Fig. 5.30 are of or-
ders (�0T ε

(p)
n )K+1. This means that one can reach any desired error level by increasing the number

of stages provided |�0T ε
(p)
n | is small, which is the case in practical time-interleaved ADCs. The error

will in practice decrease with K to a level that is determined by the channel model accuracy, i.e., by the
distances between Qn(j�) and the actual frequency responses.

5.5.8 Performance discussion
The performance of the overall compensated ADC is naturally bounded by the performance of the in-
dividual converters. In this section, we only consider the compensation of the linear mismatch errors.
Ultimately, the overall ADC’s performance is therefore determined by the nonlinear distortion of the
individual converters. In practice, the compensation structure presented above has virtually no effect
on the nonlinear distortion. That is, the undesired frequency components caused by nonlinear distor-
tion pass the compensation structure more or less unaffected. This is because the nonlinear distortion
components, which are small themselves, pass a time-varying system that approximates a pure delay
provided ε

(p)
n , p = 1,2, . . . ,P , are small, which is the case in practice. This will be illustrated be-

low in an example. It should be noted though that the time interleaving introduces nonlinear-distortion
frequency components that are not present in the individual converters, the total nonlinear-distortion
power is virtually the same [57,58].

5.5.8.1 Example 7: frequency response mismatch correction
To illustrate the theory above, an example is provided. It is assumed here that the number of chan-
nels is M = 4, the bandwidth is �0T = 0.9π , and the four channel frequency responses Qn(j�),



5.5 Nonuniform sampling and generalizations 231

FIGURE 5.30

Reconstruction based on the model in (5.126).

n = 0,1,2,3, are modeled as

Qn(j�) = ej�T dn

1 + j �
�c

(1 + �n)
= ej�T dn

1 + j�T
fs

2πfc
(1 + �n)

, (5.128)

where fs = 1/T denotes the sampling frequency, whereas fc and �c denote the 3-dB cutoff frequency
and angular frequency, respectively, and dn and �n correspond to analog matching errors. Here, we have
chosen fs/fc = 1/2, which corresponds to a bandwidth of about two times the overall Nyquist band or,
equivalently, eight times the individual channel ADC Nyquist band. Further, we have set d0 = −0.02,
d1 = 0.02, d2 = −0.01, d3 = 0.01, �0 = −0.005, �1 = 0.005, �2 = −0.004, and �3 = 0.004. The
term in the numerator in (5.128) models static aperture delay mismatches, whereas the denominator
models the S/H circuit [49,57,58]. The values for these parameters correspond to time and bandwidth
mismatch spurs of some −30 and −60 dB, respectively, which is realistic at least for well-matched
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ADCs operating in their lower Nyquist bands. Hence, for a 10-bit resolution, one may ignore the band-
width mismatch.

We assume that the zeroth channel is the reference channel. Consequently, we need to find the
polynomial models of the rational functions Qn(j�)/Q0(j�), n = 0,1,2,3. Including terms up to
third order, we obtain from (5.128)

Qn(j�)

Q0(j�)
= 1 + j�T ε(1)

n + (j�T )2ε(2)
n + . . . + (j�T )3ε(3)

n , (5.129)

where

ε(1)
n = dn − d0 + �0 − �n, (5.130)

ε(2)
n = (dn − d0)

2

2
− �n(�0 − �n) − (dn − d0)(�0 − �n), (5.131)

and

ε(3)
n = (dn − d0)

3

6
+ �2

n(�0 − �n) − (dn − d0)�n(�0 − �n) + (dn − d0)
2

2
(�0 − �n). (5.132)

Here, we can compute the different parameters ε
(p)
n needed for the compensation, as we have

assumed that we know the channel frequency responses. In practice, these parameters are obtained
through some estimation technique for this purpose. It is noted that ε

(1)
0 = ε

(2)
0 = ε

(3)
0 = 0, as we have

assumed that the zeroth channel is the reference, i.e., the samples from this channel are taken directly
without compensation.

We have applied a 16-bit multisine input to this four-channel system. Without compensation, the
output spectrum becomes as seen in Fig. 5.31, which reveals large aliasing spurs. Fig. 5.31 also plots the
output spectra after compensation using one, two, and three stages. For each plot, an 8192-point discrete
Fourier transform (DFT) and a Blackman–Harris window have been used. The signal contains 45 unity-
amplitude sinusoidal signals with frequencies at �T = m × 0.02π − 0.00477π, m = 1,2, . . . ,45. The
frequencies have been chosen so that the aliasing spurs appear approximately in the middle of two
adjacent fundamental tones, to clearly show the aliasing, and so that the sampling is noncoherent to
avoid periodic quantization errors. Recall that coherent sampling corresponds to frequencies coinciding
with the DFT frequencies 2πk/N, k = 0,1, . . . ,N − 1, for an N -point DFT.

From Fig. 5.31, it is seen that after three stages the errors have been reduced to a level that corre-
sponds to some 16 bits. This reveals that any desired error level can be reached in the frequency band
� ∈ [−�0,�0] by increasing the number of stages, provided the model order is high enough. In this
example, the third-order model in (5.129) is required to reach 16 bits. Using instead a second-order
model, we end up with spurs of some −80 dB for K ≥ 2, which corresponds to 13–14 bits. Hence,
the approximation of Eq. (5.128) by a numerator polynomial of a certain order imposes a performance
bound that cannot be surpassed by increasing K alone. In other words, to reach the desired result, one
must select both the model order and the number of stages appropriately. It is also noted that one stage
suffices to reach some −60 dB, thus about 10 bits.



5.5 Nonuniform sampling and generalizations 233

FIGURE 5.31

Spectra in Example 7.

5.5.8.2 Example 8: frequency response mismatch correction in the presence of
nonlinearities

To illustrate that the compensation has virtually no effect on nonlinear distortion, as discussed
previously, we have applied a 13-bit two-tone input including the distortion term 0.0001x2(n) +
0.0002x3(n) and plotted the output spectra in Fig. 5.32 for the uncompensated system and compen-
sated system with K = 3. From the figure, it is seen that the two large unwanted spurs (of some
−40 dB) caused by the interleaving have been suppressed, whereas the smaller nonlinear-distortion
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FIGURE 5.32

Spectra in Example 8.

spurs (of some −90 to −85 dB) are practically unaffected by the compensation. It is also noted that the
nonlinearity terms can be suppressed by applying appropriate linearization techniques [5,27,60].

5.6 Quantization
In ideal linear systems, all signal values are represented with real numbers and all computations are
done with infinite precision. In a practical implementation, one can however only use finite precision
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FIGURE 5.33

(a) Ideal linear system. (b) Actual nonlinear system in a practical implementation.

for both the input and output signal values and the internal signal values. Hence, instead of the ideal
system in Fig. 5.33(a), we will in practice implement the one shown in Fig. 5.33(b). The boxes Q

(with additional indices) represent quantizers. The function of a quantizer Q depends on the type of
arithmetic that is to be used in the implementation. In general-purpose computers, one uses floating-
point arithmetic. However, for many fixed functions (like filters), the large number range provided by
floating-point arithmetic is not needed and thus becomes unnecessarily expensive to implement. In very
large-scale integration (VLSI) implementations, one therefore usually employs fixed-point arithmetic in
order to minimize the implementation cost. Henceforth, we assume that fixed-point arithmetic is used.
One may further choose between several different formats like sign and magnitude, one’s complement,
two’s complement, etc. Here, we consider the two’s complement format, which is commonly used in
VLSI implementations.

Using two’s complement arithmetic, a quantized number xQ within the number range −Xm ≤ xQ ≤
Xm(1 − Q) is represented by the B-bit fractional binary number xB given by

xB = −x0 +
B−1∑
i=1

2−ixi , (5.133)

where xi, i = 0,1, ...,B–1, are either zero or one and xB is related to xQ according to

xQ = XmxB. (5.134)
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The quantity x0 is referred to as the sign bit, which is zero for nonnegative numbers and one for neg-
ative numbers. Furthermore, it is seen that −1 ≤ xB ≤ 1 − Q. Hence, the quantity Xm is a scaling
constant that is used for relating numbers within the range −1 ≤ xB ≤ 1 − Q to numbers within the
range −Xm ≤ xQ ≤ Xm(1 − Q). For example, in the context of A/D conversion, we can view Xm as
the full-scale amplitude of the A/D converter. Another role of Xm is to enable representation of numbers
larger than one in magnitude. In this case, Xm = 2P , for some integer P , which can be interpreted as if
the binary point has been moved to the right. Often, this scaling constant is not explicitly implemented
but instead implicit.

The quantizers that inevitably are present introduce a number of errors that need to be analyzed
when designing and implementing digital systems. The errors can be divided into four broad categories
as discussed below. It is beyond the scope of this section to discuss all of these issues in detail. The
subsequent subsections concentrate on quantization errors in the A/D conversion process and the related
round-off errors in digital systems. For a comprehensive treatment of quantization effects, we refer in
particular to the digital filter literature [1,16,61].

• Quantization errors in the A/D conversion – A/D conversion consists of sampling followed by quan-
tization of the sample values. Thereby, a quantization error is introduced in the sampled signal.

• Overflow errors – Overflow errors occur when the available number range is exceeded. This may
give rise to large sustaining errors referred to as parasitic large-scale oscillations. Digital systems
must be designed so that such errors are suppressed once the disturbance that caused them vanishes.
This is done by scaling the signal levels appropriately, not only at inputs and outputs but also inside
the systems.

• Round-off errors – In digital systems, the results of arithmetic operations usually need to be rounded
(truncated). This gives rise to round-off errors at the output of the systems.

• Coefficient errors – The coefficients of a digital system must be represented with finite precision.
This gives rise to a static error in the corresponding transfer function, frequency response, etc.

5.6.1 Quantization errors in A/D conversion
A/D conversion consists of sampling followed by quantization according to Fig. 5.34. In the sampling
process, the samples x(n) are obtained as x(n) = xa(nT ). Quantization means that each sample is
represented in binary form with finite word length. This gives rise to a quantization error, i.e., an error
in the representation of xa(nT ), according to

e(n) = xQ(n) − x(n). (5.135)

This is also illustrated in Fig. 5.34. The size of the quantization error depends on the types of binary
representation and quantizer that are used. It is common to use fixed-point two’s complement represen-
tation and uniform quantization, in which case x(n) is rounded to the nearest number in the number
representation.

If we assume that two’s complement representation is used and that the number range for the quan-
tizer is −Xm ≤ xQ ≤ Xm(1 − Q), where Q is the quantization step, xQ(n) can be written for a B-bit
quantizer as

xQ(n) = XmxB(n), (5.136)
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FIGURE 5.34

A/D conversion – sampling and quantization.

FIGURE 5.35

(a) Uniform quantization with Xm = 1 and B = 3 bits. (b) Quantization error.

with

xB(n) = −x0(n) +
B−1∑
i=1

2−ixi(n), (5.137)

where xi(n), i = 0,1, ...,B–1, are either zero or one. When the samples xQ(n) are represented with B

bits, they can take on 2B different values, as illustrated in Fig. 5.35 for a uniform quantizer, assuming
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FIGURE 5.36

Linear model of quantization.

for simplicity that Xm = 1. The quantization step Q is given by

Q = Xm2−(B−1). (5.138)

Quantization is a nonlinear operation which in general is much more difficult to analyze than a
linear operation. To analyze the effects of the quantization errors, one therefore makes use of a linear
model of the quantization according to Fig. 5.36. In the linear model, xQ(n) is obtained by adding x(n)

and an error sequence e(n),

xQ(n) = x(n) + e(n), (5.139)

where it is assumed that x(n) and e(n) are uncorrelated. Further, e(n) is assumed to be uniformly dis-
tributed white noise. That is, one understands that the samples e(n) are uncorrelated and the errors that
e(n) can take on occur with equal probability. This model is appropriate when xa(t) varies irregularly,
since the quantization errors then vary more or less randomly and independently of previous errors.

Using uniform quantization, we have

|e(n)| ≤ Q/2, (5.140)

where Q is the quantization step according to (5.138). Each sample e(n) is therefore assumed to have
the probability density function

f (e) =
{

1/Q, |e| ≤ Q/2,

0, |e| > Q/2.
(5.141)

The mean value and variance of e(n) become

me = 0 (5.142)

and

σ 2
e = Q2

12
= X2

m

2−2(B−1)

12
, (5.143)

respectively.
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A measure that is commonly used for comparing the (useful) signal power and noise power is the
SNR, which is defined as

SNR = 10 × log10

(
signal power

noise power

)
. (5.144)

Since here the noise power is the variance of e(n) (due to me = 0), i.e., σ 2
e in (5.143), we can write the

SNR as

SNR = 10 × log10 (signal power) − 10 × log10

(
X2

m

2−2(B−1)

12

)
, (5.145)

which alternatively can be written as

SNR = 10 × log10 (signal power) + 4.77 + 6.02B − 20 × log10 (Xm) . (5.146)

We note that the SNR increases by 6 dB for each added bit. For a full-scale sinusoidal signal with
amplitude Xm, the signal power is X2

m/2, which corresponds to 20 × log10 (Xm) − 3.01 dB. In this
case, the SNR is

SNR = 1.76 + 6.02B. (5.147)

For example, in a CD player, B = 16 bits, in which case the SNR becomes 98.1 dB.

5.6.2 Round-off errors
This section considers round-off errors (or round-off noise) in digital systems. The round-off noise is
computed under the assumption that the quantization errors can be modeled as white noise, which is
appropriate in many practical situations. It is further assumed that the digital system operates under
normal conditions, which means that overflows or other abnormal disturbances do not occur. In other
words, we assume a linear model of the system incorporating one input signal and one or several
noise sources. The problem is then to determine the round-off noise power and SNR at the output of
the system. To this end, one makes use of the theory of linear systems excited with white stochastic
processes. We will explain the principle by means of examples, where we assume Xm = 1 for simplicity,
but without loss of generality.

5.6.2.1 Example 9: quantization and round-off noise in an IIR filter
Consider a system represented by the structure in Fig. 5.37(a). First, sampling and quantization take
place, with the quantization step Q1, i.e., A/D conversion with B1 bits, where Q1 = 2−(B1−1). The
output from the quantization is xQ(n), which is subsequently filtered. The filter is realized by a first-
order direct-form recursive IIR filter structure. In an implementation of this filter, the result of the
arithmetic operations must be rounded or truncated at some point(s) inside the filter. Otherwise, the
word length would increase in each iteration of the filter algorithm, since it is recursive. Here, only
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FIGURE 5.37

Signal-flow graphs used for computation of the round-off noise in Example 9.
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one quantizer with the quantization step Q2 = 2−(B2−1) is used, and it is placed after the uppermost
addition.3

We now wish to analyze the effects at the output of the filter caused by quantization errors. In
order to separate the origins of the errors, we distinguish between the errors emanating from the A/D
conversion, here referred to as quantization noise, and the errors coming from the quantizations of the
arithmetic operations inside the filter, usually referred to as round-off noise. To be able to analyze the
different errors, we make use of a linear model of the quantizations, resulting in the structure shown in
Fig. 5.37(b). The error sequences e1(n) and e2(n) are assumed to be white noise with zero mean and
variances σ 2

e1 and σ 2
e2, respectively.4 These error sequences are often called noise sources.

Since we use linear models, we can consider the input and noise sources one at a time according to
Fig. 5.37(c–e). The total output round-off noise variance is then computed as the sum

σ 2
y = σ 2

y1 + σ 2
y2, (5.148)

where

σ 2
y1 = σ 2

e1

∞∑
n=−∞

h2
1(n) (5.149)

is the output quantization noise variance and

σ 2
y2 = σ 2

e2

∞∑
n=−∞

h2
2(n) (5.150)

is the output round-off noise variance. Here, h1(n) and h2(n) are the impulse responses as seen from
the respective noise source to the output. They can be obtained through inverse transformation of the
corresponding transfer functions H1(z) and H2(z).

Here, the transfer function from e1(n) to y(n) is the same as that from x(n) to y(n) and given by

H1(z) = a0 + a1z
−1

1 + b1z−1
, (5.151)

whereas the transfer function from e2(n) to y(n) is

H2(z) = 1

1 + b1z−1
. (5.152)

In the causal-filter case, the region of convergence is |z| > b1 for both of these transfer functions. We
then get

h1(n) = a0(−b1)
nu(n) + a1(−b1)

n−1u(n − 1) (5.153)

3 Therefore, in this case the results of the remaining operations must be represented with more bits. But this is only one option:
for example, one may instead introduce quantizers after each operation. This will increase the noise at the output of the filter,
but, on the other hand, one may then use a shorter word length inside the filter. It is generally not obvious which alternative one
should use in order to attain the cheapest implementation. It has to be investigated in each specific case.
4 When quantizing previously quantized numbers, as is the case at the output of Q2, one should actually use a discrete rectangular
probability function. The difference is however negligible, except when only a few bits are discarded.
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and

h2(n) = (−b1)
nu(n), (5.154)

respectively, where u(n) denotes the unit-step sequence. This gives us the corresponding noise gains

∞∑
n=−∞

h2
1(n) = a2

0 +
(

a0 − a1

b1

)2 ∞∑
n=1

b2n
1 = a2

0 + a2
1 − 2a0a1b1

1 − b2
1

(5.155)

and
∞∑

n=−∞
h2

2(n) =
∞∑

n=0

b2n
1 = 1

1 − b2
1

, (5.156)

respectively.
If the quantizations Q1 and Q2 correspond to B1 and B2 bits, respectively, the variances σ 2

e1 and
σ 2

e2 become

σ 2
e1 = Q2

1

12
, σ 2

e2 = Q2
2

12
. (5.157)

This gives us the variances σ 2
y1 and σ 2

y2 according to

σ 2
y1 = σ 2

e1

∞∑
n=−∞

h2
1(n) = Q2

1

12

a2
0 + a2

1 − 2a0a1b1

1 − b2
1

(5.158)

and

σ 2
y2 = σ 2

e2

∞∑
n=−∞

h2
2(n) = Q2

2

12

1

1 − b2
1

, (5.159)

respectively. Finally, we obtain

σ 2
y = σ 2

y1 + σ 2
y2 = Q2

1

12

a2
0 + a2

1 − 2a0a1b1

1 − b2
1

+ Q2
2

12

1

1 − b2
1

, (5.160)

which can be rewritten as

σ 2
y = Q2

1

12

1

1 − b2
1

(
a2

0 + a2
1 − 2a0a1b1 + Q2

2

Q2
1

)
. (5.161)

From the equation above, we see that the contribution from the quantizer Q2 can be neglected if we
choose Q2 sufficiently small as compared to Q1. That is, by increasing the number of bits within the
filter, the round-off noise can be made negligible compared to the quantization noise. This shows that
digital systems can be implemented with as high resolution as desired. However, an increased internal
word length also results in a more expensive implementation. One should therefore not use longer word
lengths than necessary to meet the specification at hand, typically given in terms of an SNR required.
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FIGURE 5.38

Linear model of a linear-phase FIR filter with quantizers (Example 10).

It should also be noted that the digital signal that at the end is to be D/A converted must be quantized
to B1 bits if we want to use the same number of bits as used in the A/D converter. This will give rise to
additional round-off noise, equally large as in the A/D conversion, which in turn degrades the resolution
by half a bit. One can alleviate this problem by using oversampling techniques.

5.6.2.2 Example 10: quantization and round-off noise in an FIR filter
In this example, we compute the round-off noise at the output of a linear-phase direct-form FIR filter
structure and the increase in SNR that is achieved by using L2-norm scaling instead of safe scaling.

Assuming that quantization takes place after each multiplication, the linear model of the whole filter
is as shown in Fig. 5.38. Apparently, the errors pass directly to the output, i.e., the transfer function
from each noise source to the filter’s output is equal to unity. Assuming that the errors are uncorrelated
white noise sources, the total output noise variance equals the sum of the individual variances. As
a consequence, if all noise sources have the same variance, say σ 2

e , the total output variance for an
N th-order filter, for N even, becomes

σ 2
y = (N/2 + 1)σ 2

e . (5.162)

With N = 26, as in this example, we thus have

σ 2
y = 14σ 2

e . (5.163)

This corresponds to a degradation of almost 2 bits as compared to the case where one quantizer
is placed at the output. That is, the outputs of quantizers placed inside the filter need to be 2 bits
longer than the output of a single quantizer located at the output, in order to achieve (roughly) the same
round-off noise. On the other hand, this means that we can use adders with shorter word lengths, which
reduces the implementation cost. The alternative of using one quantizer at the output requires the use
of full-length adders inside the filter, which increases the implementation cost.
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Next, we consider the increase in SNR that is achieved by using L2-norm scaling instead of safe
scaling in the filter. Scaling of signal levels is used to avoid or reduce the probability of overflows, but it
may also be used to increase the SNR. In the FIR filter in Fig. 5.38, the only node that needs to be scaled
(assuming a scaled input) is the output, which is scaled by multiplying all impulse response values h(n)

by the scaling coefficient c. In this filter, the output SNR is affected by the scaling because the output
round-off noise variance is independent of the multiplier coefficient values, whereas the output signal
power is scaled with c. With safe scaling, c is chosen as

c = 1∑∞
n=−∞ |h(n)| . (5.164)

Using the convolution sum and the triangle inequality, one can show that c according to (5.164) guaran-
tees no overflow. On the other hand, it also results in a lower SNR. The SNR can be increased by using
a larger value of c, but at the cost of accepting the occurrence of overflow with a certain probability.
With L2-norm scaling, c is chosen as

c = 1√∑∞
n=−∞ |h(n)|2

. (5.165)

Using L2-norm scaling for white noise Gaussian input signals, the probability of overflow at the output
will be the same as the probability of overflow at the input.

Therefore, there is a trade-off between high SNR and probability of overflow. In this example, we
obtain c = 1.238477 using safe scaling and c = 3.330192 using L2-norm scaling. The increase in SNR
that is achieved by using L2-norm scaling instead of safe scaling is therefore

10 × log10(3.3301922) − 10 × log10(1.238477) ≈ 8.59 [dB], (5.166)

which roughly corresponds to some 1.5 bits. That is, using L2-norm scaling instead of safe scaling, we
can implement the filter using 1.5 bits shorter data word length, which in practice means 1 bit or 2 bits
shorter word length.

5.7 Oversampling techniques and MIMO systems
This section discusses oversampling techniques which are used in A/D and D/A conversions for re-
laxing the requirements on the analog filters and quantizers. It also discusses quantization in MIMO
systems.

5.7.1 Oversampled A/D converters
The principle of an oversampled A/D converter is shown in Fig. 5.39. To elaborate on this principle,
consider the typical spectra shown in Fig. 5.40. Assume that we have a signal xwb(t) containing infor-
mation in the baseband up to π/T and undesired frequency components above π/T , like wide-band
noise (Fig. 5.40(a)). The information can, in principle, be sampled and reconstructed without errors if
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FIGURE 5.39

Oversampled A/D converter.

the sampling frequency is fs = 1/T . However, due to the wide-band noise, the sampling will also in-
troduce aliasing distortion. Theoretically, aliasing distortion can be avoided by band-limiting the input
signal using an ideal analog low-pass filter with passband up to π/T , but such a filter cannot be realized
in practice. Hence, we must let the filter have a transition band. The wider this band is, the simpler it
becomes to implement the filter. On the other hand, we must then increase the sampling frequency so
as to avoid aliasing distortion.

Assume that we use M times oversampling, i.e., that we choose a sampling frequency fs1 according
to

fs1 = Mfs. (5.167)

This corresponds to a sampling period T1 according to

T1 = T/M. (5.168)

We can now avoid aliasing distortion by selecting the stopband edge of the antialiasing filter Ha(s)

appropriately. It suffices to ensure that aliasing into the baseband is avoided since the information is
then unaffected (see Fig. 5.40(c)). Frequency components that are aliased into the remaining frequency
region are allowed since they can be eliminated by the digital filter H(z) that succeeds the A/D converter
(see Fig. 5.40(d)). We see that the stopband edge of the analog filter must satisfy

2π − �asT1 > π/M ⇐⇒ �as < 2πMfs − πfs (5.169)

in order to avoid aliasing distortion. In practice, the distortion is suppressed to a level determined by
the attenuation of the analog antialiasing filter. To make sure that one can reduce the distortion to any
desired level, (5.169) must be satisfied, as the distortion is then determined by the filter’s stopband
attenuation.

In addition, one has to take into account that the digital filter has a transition band as well, which
means that the overall design is somewhat more complicated than indicated above. Specifically, to avoid
aliasing into the baseband, the information must therefore be limited to an angle frequency below π/T .
If the information is limited to, say �c, then the transition band of the digital filter ranges from �cT1 to
π/M .

We see that x1(m) corresponds to the information oversampled by a factor of M . The A/D converter
thus generates M times more samples per time unit than actually needed for reconstruction of the
information. To make sure that the succeeding digital system does not have to work at a higher data rate
than necessary, one therefore reduces the sampling rate through decimation (downsampling) by a factor
of M . Since we have M times oversampling after H(z), we can do this without losing information.
When M is an integer, the decimation is done by simply extracting only every Mth sample in the output
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FIGURE 5.40

Conceptual spectra in an oversampled A/D converter.
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sequence of H(z) [6,11,52]. This is done by a downsampler, represented by ↓ M . (For a noninteger M ,
more elaborate schemes must be employed.) The result is the sequence y(n) corresponding to the
information sampled with the frequency fs = 1/T (see Fig. 5.40(f)).

One motivation for using oversampling is, as mentioned earlier, that one in this way can relax the
requirements on the analog antialiasing filter. Another reason is that oversampling enables the use of an
A/D converter with lower resolution than the desired one, i.e., with fewer bits than the desired number
of bits. The reason is that the digital filter removes a large part of the noise power while leaving the
information virtually unaffected. This means that the SNR of y(n) is higher than that of x(m). To
elaborate on this point, say that x(m) is quantized to B1 bits (and again assuming a maximum signal
value of Xm = 1 for simplicity). We then know that the noise variance is

σ 2
e = 2−2(B1−1)

12
. (5.170)

Furthermore, we know that the noise variance at the output of the filter H(z), say σ 2
h , is given by

σ 2
h = σ 2

e

1

2π

∫ π

−π

|H(ej�T )|2d(�T ). (5.171)

If we now assume for the sake of simplicity that H(z) is an ideal unity-gain low-pass filter with pass-
band up to π/M , we get

σ 2
h = σ 2

e

1

2π

∫ π

−π

|H(ej�T )|2d(�T ) = 1

2π

∫ π/M

−π/M

|H(ej�T )|2d(�T ) = σ 2
e

M
. (5.172)

Since H(z) leaves the information unaffected, the SNR is M times higher at the output of the filter
than at the input of the filter, i.e., the output of the A/D converter. We can therefore obtain a desired
resolution of B bits by using oversampling and an A/D converter with a lower resolution of B1 bits.
From the equations above, we obtain

2−2(B1−1)

12M
= 2−2(B−1)

12
, (5.173)

which gives us

B1 = B − 0.5 log2(M). (5.174)

We see that for each doubling of the sampling frequency, we gain half a bit in resolution. By using
oversampling techniques, one can thus use A/D converters with lower resolution than the desired one.
In the extreme case, the so-called 1-bit converters are employed. For such an A/D converter, one must
however use a very high oversampling factor if a high resolution is desired. This causes problems in
wide-band applications since the sampling frequency then becomes too high to handle. By utilizing
the so-called ��-modulators, the oversampling factor required to achieve a certain resolution can be
reduced [37]. The basic principle is to shape the noise so that most of its energy is located in the high-
frequency region (for a low-pass converter). In this way, one gains more than a factor of M in noise
reduction when using a low-pass filter with a passband width of π/M . It is beyond the scope of this
chapter to discuss ��-converters in detail. However, Section 5.8 deals with modeling of mixed-signal
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FIGURE 5.41

Oversampled D/A converter.

systems, which is useful in the analysis of such converters. That section will also provide an example
of second-order ��-modulators.

5.7.2 Oversampled D/A converters
As discussed in the previous section, the requirements on the analog antialiasing filters can be relaxed
by using oversampled A/D converters. The requirements on the analog reconstruction filter can likewise
be relaxed by using oversampled D/A converters according to Fig. 5.41.

We start with the sequence y(n) generated by the oversampled A/D converter in Fig. 5.39. To
illustrate the principle we use again the spectra in Fig. 5.40. The spectrum of y(n) is then as shown
in Fig. 5.42(a). The first step in an oversampled D/A converter is digital interpolation by a factor of
M . This is done through an upsampler, represented by ↑ M , followed by a filter H(z) [6,11,52]. The
result is the sequence x1(m), whose spectrum is shown in Fig. 5.42(c). We see that this sequence has
the same spectrum as x1(m) in the oversampled A/D converter (see Figs. 5.39 and 5.40). In other
words, it corresponds to the information oversampled by a factor of M . In the next step, reconstruction
is performed through a D/A converter followed by a reconstruction filter. The D/A converter works
at the higher sampling frequency Mfs . As in Section 5.3.5.2, the D/A converter is here described by
the pulse q(t) according to Fig. 5.19(d). Ideally, Q(j�)Ha(j�) and Ha(j�) are then as shown in
Fig. 5.42(d and e), respectively. We see that the stopband edge of the analog reconstruction filter must
satisfy

�as < 2πMfs − πfs, (5.175)

which is the same requirement as that of the antialiasing filter in an oversampled A/D converter. By
increasing M , we thus relax the filter requirements since a wider transition band is then allowed.

In practice, one can let the digital filter equalize the deviation of Q(j�), which is needed since
Q(j�) is not constant in the baseband. That is, H(z) is designed so that

|H(ej�T1)Q(j�)| ≈ constant, for |�| < πfs. (5.176)

As analog reconstruction filter, one can then use a conventional low-pass filter with (approximately)
constant gain in both the passband and stopband. In that way, the requirements on this filter are further
relaxed. Instead, the requirements on the digital filter have become more severe, but it is much easier to
implement digital filters with stringent requirements than analog filters.
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FIGURE 5.42

Conceptual spectra in an oversampled D/A converter.
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5.7.3 Multiple-input multiple-output systems
In communication systems, multiple antennas can be used at the transmitters and/or receivers in order
to increase the data transfer capacity. In the general case, a multiple-antenna system corresponds to a
MIMO system. In particular, massive MIMO systems have been researched extensively during the past
two decades and have emerged as key enablers for 5G systems and beyond [24,30,50]. Massive MIMO
systems enable transmission of data to/from multiple users using the same time-frequency resources.
This is achieved by designing the system so that signals add up constructively at an intended user
whereas they add up destructively (cancel out) for all the other users. Similar techniques (constructive
and destructive interference) are used in beamforming networks, which correspond to a multiple-input
single-output (MISO) system at the receiver and a single-input multiple-output (SIMO) system at the
transmitter [55].

Focusing now on receivers in MIMO and MISO systems, there is a need to convert the received
signals to digital form before their further processing and final combination into the output signal(s).
This can be carried out using an RF chain for each antenna. However, this solution may become very
costly when the number of antennas is large. For such cases, it is therefore crucial to use as simple
RF chains as possible. As ADCs constitute a large part of the total power consumption, the use of
few-bit and 1-bit conversions has been studied in these contexts. As MIMO and MISO systems rely
on constructive and destructive interference, there is also an averaging effect on the quantization noise,
which may enable ADCs with few bits. It has been argued that the use of 1-bit ADCs is feasible, but
under assumptions that may not hold in practice [25,35]. One issue is that when the number of antennas
increases, the quantization errors may become correlated instead of uncorrelated, which eventually
implies that there is no improved averaging effect. This needs to be taken into account to properly
analyze the effect of using ADCs with few bits. In practice, there are also stronger signals (blockers)
that interfere with weaker signals, which makes it harder to identify the weaker signal with few-bit
ADCs [50].

5.7.3.1 Example 11: correlated channel quantization errors
To illustrate the effect of correlation, consider the case where a complex baseband signal x(n) is
transmitted through M channels and experience a random phase rotation in each channel (which ap-
proximately corresponds to random delays in each channel for narrow-band signals and line-of-sight
transmission). Then, on the receiver side (after estimating the phase rotations), an estimation of x(n),
say y(n), is formed as

y(n) = 1

M

M−1∑
m=0

(
x(n)ejαm + em(n)

)
e−jαm

= x(n) + 1

M

M−1∑
m=0

em(n)e−jαm, (5.177)

where αm denote the phase rotations and em(n) denote the quantization errors, given by the differ-
ence between the quantized value, [x(n)ejαm ]Q, and the unquantized value, x(n)ejαm , i.e., em(n) =
[x(n)ejαm ]Q − x(n)ejαm . If x(n) and em(n) are uncorrelated, the expected average power of y(n) be-
comes

Py = Px + Pe, (5.178)
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where

Px = E
{
|x(n)|2

}
. (5.179)

Assuming that all em(n) have the same quantization power, say PN , and that em(n) and ep(n) are
uncorrelated for m �= p, the expected average power, say Pe(M), of the total quantization error, e(n) =
1
M

∑M−1
m=0 em(n)e−jαm , becomes

Pe(M) = E
{
|e(n)|2

}
= E

{
e(n)e∗(n)

}
= E

⎧⎨
⎩
(

1

M

M−1∑
m=0

em(n)e−jαm

)⎛
⎝ 1

M

M−1∑
p=0

e∗
p(n)ejαp

⎞
⎠
⎫⎬
⎭

= 1

M2

M−1∑
m=0

E
{
|em(n)|2

}

= PN

M
. (5.180)

As seen, with uncorrelated noise sources, the total noise power reduces with M in the same manner as
when we use oversampling by M . However, this will only hold true as long as the channel quantization
errors are uncorrelated. Especially with few bits in the ADC, the channel quantization errors tend to
become correlated, even for relatively small values of M . This is because when M increases, more phase
rotation values become closer to each other. Then, using few bits when αm and αp have approximately
the same value implies that the quantization errors when quantizing x(n)ejαm and x(n)ejαp will have
a large common (correlated) part and smaller uncorrelated parts. As a consequence, little or no further
noise reduction will be achieved when M increases beyond a certain value.

As an illustration, for 1–10-bit quantizations, Fig. 5.43 plots the SNR = 10 log10(Px/Pe) as a
function of M , using a nonperiodic complex sinusoidal sequence x(n) = exp(j0.5

√
3πn) (thus with

Px = 1) and random phase rotation values, generated from a random variable uniformly distributed
between 0 and 2π . As a reference, the figure also plots the SNR in the ideal case (dashed curves),
where the channel quantization errors are uncorrelated, in which case the total error power is as given
by Eq. (5.180). Also recall from Section 5.7.1 that doubling M results in a 3-dB SNR increase in the
ideal case with uncorrelated errors.

As seen in Fig. 5.43, beyond a certain value of M , depending on the number of bits, practically
no further SNR increase will be achieved when M increases. For the extreme case of 1 bit, the SNR
saturates at some 18 dB and it begins to deviate from the ideal uncorrelated case already for M = 2.
For 9 and 10 bits, the solid and corresponding dashed curves are practically the same, that is, there
is no (or little) correlation in these cases for M = 256 = 28 and below. This illustrates that the errors
are (approximately) uncorrelated as long as M is (approximately) smaller than the quantization step
2(B−1), B denoting the number of bits.
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FIGURE 5.43

SNR as a function of the number of channels M using 1–10 bits (increasing SNR with the number of bits). The
lower plot is a zoom-in of the upper plot. The dashed curves correspond to the ideal uncorrelated case. The
difference between a solid curve and the corresponding dashed curve is thus the SNR loss due to correlation
between the channel quantization errors.

5.8 Discrete-time modeling of mixed-signal systems
Many systems today are mixed-signal systems conducting both continuous-time and discrete-time sig-
nal processing. From the analysis point of view, it is often advantageous to use a discrete-time model
of the mixed-signal system. This section presents an analysis method for linear time-invariant (LTI)
systems containing sampling and reconstruction inside a feedback loop [28]. Using this method, the
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FIGURE 5.44

Linear model of a second-order double feedback loop continuous-time-input ��-modulator.

FIGURE 5.45

Generalization of the scheme in Fig. 5.44.

input–output stability as well as the frequency responses of such mixed systems can easily be ana-
lyzed. One application is ADCs realized with ��-modulators with continuous-time input signals. An
example is seen in Fig. 5.44, which is a linear model of a double feedback loop continuous-time-input
��-modulator. Fig. 5.45 shows a generalization where F0(s) and F1(s) are transfer functions of general
loop filters. However, the analysis method that will be presented here is applicable to any LTI system
that can be represented by the general structure shown in Fig. 5.46, where N is a two-input/one-output
system and where the single output is uniformly sampled and reconstructed through pulse amplitude
modulation before being fed back again to N . Clearly, the structures of Figs. 5.44 and 5.45 belong to
the class of structures that can be represented by the general structure of Fig. 5.46.

It is of practical interest to analyze systems such as that of Fig. 5.44 with respect to stability as well
as frequency responses as seen from xa(t) and e(n) to the output y(n). Here, e(n) models quantization
errors that occur in the quantizer that follows the sampler. For continuous-time-input ��-modulators,
stability and frequency response analyses are often performed by using the so-called “sampled-data
equivalent” discrete-time-input ��-modulator seen in Fig. 5.47 [2,37,43], where integrators are re-
placed with accumulators. However, these “sampled-data equivalents” are only approximations of the
actual behavior of the continuous-time-input ��-modulator, as will be exemplified later in this section.
That is, they do not correctly describe the properties of the continuous-time-input circuit.

To get a correct description, the system at hand can instead be represented by the system in Fig. 5.48,
where the continuous-time input signal xa(t) is prefiltered through a continuous-time system Gp before
being sampled uniformly. The resulting sampled signal and the system output signal are then used as
input signals to a linear discrete-time system Gs , usually represented in state-space form [12,37]. It
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FIGURE 5.46

General hybrid continuous-time/discrete-time system setup with a feedback loop.

FIGURE 5.47

Linear model of a second-order discrete-time-input ��-modulator.

FIGURE 5.48

State-space representation of the system in Fig. 5.46.

is then required to determine a corresponding input–output difference equation using state variable
representation. To that end, a state matrix, A, of Gs is needed, requiring the computation of the power
series

A = eAc =
∞∑

k=0

1

k!A
k
c, (5.181)

where Ac is the state matrix of the system N in Fig. 5.46, as well as the inversion of two particular
matrices. This method gives a correct description of the circuit at hand but requires the computation
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FIGURE 5.49

Two equivalent models for the system in Fig. 5.46.

of (5.181), which can be a nontrivial task, and the abovementioned matrices often are singular. In fact,
this is always the case when F0(s) and F1(s) represent ideal integrators 1/s.

In this section, we discuss an alternative method for the analysis of the external stability as well
as the frequency responses from the inputs xa(t) and e(n) to the output y(n) of the general system in
Fig. 5.48 [28]. This is done by using the models shown in Fig. 5.49. It is readily shown that all LTI
systems belonging to the class of systems that can be represented by the system in Fig. 5.46 can be
represented as in Fig. 5.49. It should however be noted that the systems in Fig. 5.49 are only used for
input/output analysis purposes and do not capture the internal properties of the underlying system of
interest. From the input/output stability and frequency response points of view, the systems in Fig. 5.49
are equivalent to their underlying system in Fig. 5.46.

5.8.1 Input/output relations
For mixed-signal systems, direct use of transfer functions is less appropriate as they depend on two
variables (s and z). Therefore, the analysis becomes somewhat more involved than for purely discrete-
time or continuous-time systems. The mixed-signal systems are analyzed here by using equivalent
discrete-time systems that produce the same output samples as the actual mixed-signal system.

To be precise, stability is analyzed by first determining G(z) in the z-transform relation between
y(n), v(n), and e(n) given as

Y(z) = G(z)V (z) + G(z)E(z). (5.182)

Stability is then investigated by considering the poles of G(z) and the boundedness of the resulting
output signal. As to the frequency responses, as seen from xa(t) and e(n) to the output y(n), it is
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appropriate to express the output Fourier transform as

Y(ej�T ) = H(j�)
1

T
Xa(j�) + G(ej�T )E(ej�T ), (5.183)

where H(j�) represents the signal frequency response, whereas G(ej�T ) represents the noise fre-
quency response. The latter is immediately obtained from the noise transfer function G(z) evaluated
for z = ej�T .

In order to arrive at (5.182) and (5.183), the models of Fig. 5.49 are used to represent the system in
Fig. 5.46. In Fig. 5.49, P(s) represents pulse amplitude modulation.

5.8.2 Determining G(z)

We will make use of the generalized Poisson summation formula that relates the Laplace transform
of a signal xa(t) with the corresponding z-transform of its uniformly sampled version x(n) = xa(nT )

according to

X(esT ) = 1

T

∞∑
p=−∞

Xa

(
s − j

2πp

T

)
(5.184)

with the z-transform evaluated for z = esT . Furthermore, we will make use of the following equation,
which relates the output xr(t) of the PAM p(t) with its input x(n):

Xr(s) = P(s)X(esT ). (5.185)

Using the above relations, the z-transform of the output signal y(n) in Fig. 5.49(a) is easily derived as

Y(esT ) = E(esT )

+ 1

T

∞∑
p=−∞

H1

(
s − j

2πp

T

)
Xa

(
s − j

2πp

T

)

− Y(esT )
1

T

∞∑
p=−∞

H2

(
s − j

2πp

T

)
P

(
s − j

2πp

T

)
, (5.186)

where E(z) is the z-transform of e(n) and P(s) is defined by the PAM used. Here, a rectangular pulse
p(t) is assumed according to

p(t) =
{

1, 0 ≤ t ≤ T ,

0, otherwise,
(5.187)

which is commonly used in D/A conversion. This gives

P(s) = 1 − e−sT

s
. (5.188)
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FIGURE 5.50

Representation of the system in Fig. 5.46 in view of (5.182).

Eq. (5.186) can be rearranged according to (5.182) with

V (esT ) = 1

T

∞∑
p=−∞

H1

(
s − j

2πp

T

)
Xa

(
s − j

2πp

T

)
, (5.189)

which corresponds to the z-transform of v(n) in Fig. 5.49(b), i.e., a uniformly sampled version of va(t),
and

G(z) = 1

1 + L(z)
= N(z)

D(z)
(5.190)

with

L(esT ) = 1

T

∞∑
p=−∞

H2

(
s − j

2πp

T

)
P

(
s − j

2πp

T

)
. (5.191)

Eq. (5.182) can be further interpreted as shown in Fig. 5.50.
In Fig. 5.49, H1(s) models the output signal dependency of the input signal, whereas H2(s) de-

scribes the behavior of the feedback signal. Eqs. (5.182) and (5.189)–(5.191) do not give us suitable
expressions for the stability analysis. In order to express L(z) in a more suitable form for this purpose,
we make use of the observation that L(z) is the z-transform of the sequence l(n) = la(nT ), i.e., a uni-
formly sampled version of the signal la(t). Furthermore, from (5.191), it is seen that la(t) is the inverse
Laplace transform of H2(s)P (s). Hence, a more convenient representation of L(z) and thereby G(z)

can be found using the following procedure.
Starting with H2(s)P (s), its inverse Laplace transform gives la(t), from which l(n) = la(nT ) fol-

lows directly. A closed-form expression for L(z) is then obtained through the computation of the
z-transform of l(n). The approach is applicable for general H2(s) and P(s), and is straightforward
when H2(s) and P(s) are rational functions in s.

5.8.3 Stability
In order to investigate the stability, it is convenient to first consider the system in Fig. 5.51(a), where the
numerator and denominator polynomials of G(z) in Fig. 5.50, i.e., N(z) and D(z), respectively, have
been shown explicitly. The system of Fig. 5.46 will be bounded-input bounded-output (BIBO) stable if
the following two conditions are satisfied:



258 Chapter 5 Sampling and quantization

FIGURE 5.51

Representations of the system in Fig. 5.50. They are useful in the stability analysis.

1. The poles of G(z), i.e., the roots of D(z), lie inside the unit circle.
2. The signal w(n) in Fig. 5.51 is bounded.

The first condition above is easily checked once G(z) is available. The second condition requires an
analysis of H1(s) and N(z). We consider the following two different cases, which are of practical
interest.

Case 1: H1(s) is stable. This gives directly that the second condition above is satisfied, and BIBO
stability is then ensured by also fulfilling the first condition.

Case 2: H1(s) can be factored according to

H1(s) = A(s)
1

sQ1

Q2∏
q=1

1

s + pq

, (5.192)

where A(s) is stable and pq are imaginary roots. Then, H1(s) contains Q1 poles at s = 0 and Q2 poles
at s = –pq . In order to investigate stability in this case, it is convenient to consider the system shown in
Fig. 5.51(b), where

Na(s) = N(esT ). (5.193)

Since N(z) is of the form

N(z) =
K∑

k=0

akz
−k, (5.194)

the signal w(n) of Fig. 5.51(a) is identical to that in Fig. 5.51(b). This follows from Poisson’s sum-
mation formula together with the fact that Na(s) above is periodic. It then remains to investigate if
H1(s)Na(s) is stable, i.e., if it exists for all �{s} ≥ 0, assuming a causal system, and if G(z) (or, equiv-
alently, 1/D(z)) is stable.
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5.8.4 Frequency responses H(j�) and G(ej�T )

The frequency response from e(n) to the output y(n), i.e., G(ej�T ), is directly obtained from G(z) in
(5.182) if it exists for z = ej�T . It is then given by

G(ej�T ) = N(ej�T )

D(ej�T )
= 1

1 + 1
T

∑∞
p−∞ H1

(
j� − j

2πp
T

)
P
(
j� − j

2πp
T

) . (5.195)

As to the signal frequency response, H(j�), it is first noted from (5.182) and (5.183) that
H(j�) 1

T
Xa(j�) = G(ej�T )V (ej�T ), where

V (ej�T ) = 1

T

∞∑
p−∞

H1

(
j� − j

2πp

T

)
Xa

(
j� − j

2πp

T

)
. (5.196)

Assume now that the input signal xa(t) is band-limited according to the Nyquist criterion for sampling
with the sampling period T , i.e.,

Xa(j�) = 0, |�| ≥ π/T . (5.197)

In this case only the term for p = 0 in (5.196) is nonzero in the interval −π ≤ �T ≤ π . Hence, Y(ej�T )

can be written as in (5.183) with

H(j�) = H1(j�)G(ej�T ). (5.198)

5.8.5 Example 12: continuous-time-input ��-modulator
Consider the second-order continuous-time-input ��-modulator shown in Fig. 5.44. This is a special
case of the system of Fig. 5.45 with F1(s) and F2(s) being ideal integrators, i.e.,

F1(s) = K1

s
, F2(s) = K2

s
. (5.199)

In this case, one obtains that H1(s) and H2(s) are given by

H1(s) = F1(s)F2(s), H2(s) = [1 + F1(s)]F2(s). (5.200)

From this equation, we obtain

La(s) = H2(s)P (s) =
(

K1

s2 + K1K2

s3

)
(1 − e−sT ). (5.201)

Taking the inverse Laplace transform, we get

la(t) = K1[tu(t) − (t − T )u(t − T )] + K1K2

2
[t2u(t) − (t − T )2u(t − T )]. (5.202)

Sampling la(t) at t = nT then generates
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l(n) = la(nT ) = K1T [n × u(n) − (n − 1) × u(n − 1)]
+K0K1T

2

2
[n2 × u(n) − (n − 1)2 × u(n − 1)], (5.203)

where u(n) is the unit-step sequence. Then, taking the z-transform of l(n) gives

L(z) = K1T z−1

1 − z−1

[
1 + K0T

2

1 + z−1

1 − z−1

]
, (5.204)

whereby

G(z) = N(z)

D(z)
= 1

1 + L(z)
= (1 − z−1)2

1 + az−1 + bz−2
, (5.205)

where

a = K2T + 0.5K1K2T
2 − 2 (5.206)

and

b = 1 − K2T + 0.5K1K2T
2. (5.207)

Furthermore, with F0(s) and F1(s) as in (5.199), we get

H1(s)Na(s) = K0K2

s2
(1 − e−sT )2, (5.208)

which is a stable system because the corresponding impulse response is finite. Hence, stability is in
this case solely determined by the stability of G(z) given by (5.205). For example, with K0 = K1 = K ,
it is straightforward to show that stability is ensured by constraining K according to 0 < K < 2/T .
Using instead the often employed and so-called “sampled-data equivalents,” where integrators 1/s are
replaced by the accumulators 1/(1 − z−1) and z−1/(1 − z−1), one obtains 0 < K < 1.236/T . Hence,
the accumulator-based structures are not appropriate models.

Furthermore, from (5.198), (5.200), and (5.205), we obtain the frequency response

H(j�) = K0K1

(j�)2

(1 − e−j�T )2

1 + ae−j�T + be−j2�T
. (5.209)

This expression differs from that obtained via the accumulator-based structures. Also the noise transfer
functions are different. Again, this means that such structures are not appropriate. Figs. 5.52 and 5.53
illustrate these differences by plotting the modulus of the signal and noise transfer functions in the two
cases.

5.8.6 Example 13: single feedback loop system
Consider the scheme in Fig. 5.54 with F(s) being a second-order transfer function according to

F(s) = K

s(s + p)
(5.210)
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FIGURE 5.52

Modulus of the signal frequency responses for second-order continuous-time-input (dashed) and discrete-
time-input ��-modulators (solid).

FIGURE 5.53

Modulus of the noise frequency responses for second-order continuous-time-input (dashed) and discrete-
time-input ��-modulators (solid).

with a real-valued pole at s = –p, with p > 0 assumed. For the equivalent representation of Fig. 5.49,
H1(s) = H2(s) = F(s). Thus, H1(s) follows (5.192) as H1(s) = A(s)/s with A(s) = K/(s + p).
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FIGURE 5.54

System with a single feedback loop.

We first investigate the stability. We note that Case 2 applies here since H1(s) has a pole at s = 0.
To derive G(z), we first note that H1(s)P (s), using partial fraction expansion, becomes

H1(s)P (s) =
(

K/p

s2
− K/p2

s
+ K/p2

s + p

)
(1 − e−sT ). (5.211)

Hence, l(n) = la(nT ) is given by

l(n) = la0(nT ) − la0(nT − T ) (5.212)

with la0(t) being

la0(t) =
(

K

p
t − K

p2
+ K

p2
e−pt

)
u(t). (5.213)

Hence, taking the z-transform of l(n), we obtain

L(z) = KT

p(z − 1)
− K

p2 + K

p2

z − 1

z − e−pT
. (5.214)

Finally, this gives us

G(z) = 1

1 + L(z)
= (1 − z−1)(1 − z−1e−pT )

1 + az−1 + bz−2
, (5.215)

where

a = KT

p
− (1 + e−pT ) − K

p2
(1 − e−pT ) (5.216)

and

b = K

p2
(1 − e−pT ) +

(
1 − KT

p

)
e−pT . (5.217)

We note that

H1(s)Na(s) = A(s)(1 − esT )(1 − e−(s+p)T )

s
, (5.218)
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which corresponds to a stable system, because it consists of (readily shown) stable subsystems. Hence,
the stability is given by the poles of G(z), which are most easily found numerically.

Further, we get the frequency responses

G(ej�T ) = (1 − e−j�T )(1 − e−j�T e−pT )

1 + ae−j�T + be−j2�T
(5.219)

and

H(j�) = H1(j�)G(ej�T )

= K

j�(j� + p)

(1 − e−j�T )(1 − e−j�T e−pT )

1 + ae−j�T + be−j2�T
. (5.220)
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6.1 Introduction
Digital filtering is used in most communication applications because of the inherent flexibility and
reliability of digital processing. Other important factors that support this trend are the rapid development
in integrated circuit technology and the associated design tools that simplify and reduce the cost of
implementing digital signal processing systems and digital filters in particular. Of interest here are
frequency-selective digital filters, for example, low-pass and bandpass filters.

Typically we specify the filter requirements in terms of a behavioral description, i.e., output versus
input signals, for example, transfer functions, frequency responses, impulse responses, or poles and ze-
ros. Once these are determined, we need to determine a suitable structural description, i.e., an algorithm
that realizes the proper behavior. Furthermore, this algorithm must be robust under finite length arith-
metic operations. We will later discuss two main classes of such robust algorithms, i.e., nonrecursive
finite length impulse response (FIR) filters and infinite length impulse response (IIR) filters, namely,
wave digital filters.

6.1.1 Nonrecursive FIR filters
In Section 6.2, we will discuss the properties of digital filters and our design target. We are mainly
interested in designing digital filters with low power consumption, which we assume are implemented
using an field-programmable gate array (FPGA).

In Section 6.3, we will discuss computer-aided approaches to synthesize nonrecursive FIR filters.
Typically, we will try to find a behavioral description in terms of frequency response, impulse response,
or pole-zero positions. In Section 6.4, we discuss structures that can efficiently realize FIR filters.
However, these structures are not well suited for filters with narrow transition bands. In Section 6.5,
we discuss efficient structures suited for FIR and IIR filters with very narrow transition bands. We also
extend the frequency response masking (FRM) technique to realizations of half-band filters, Hilbert
transformers, multirate filters, filter banks, transmultiplexers (TMUXs), and 2D filters.
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6.1.2 Analog filters
Analog filters are often used as a first step to design digital filters. One reason is that the poles and
zeros can be mapped using the bilinear transformation to a corresponding digital filter. The bilinear
transformation [1,2,3,4] between the s- and z-domains is

s = 2

T

z − 1

z + 1
. (6.1)

A more important fact is that we know how to design and realize an analog circuit with very low
(optimal) passband sensitivity to errors in the circuit elements. A doubly resistively terminated lossless
circuit, i.e., a voltage source in series with a source resistor and loaded with a load resistor that is
designed for maximal power transfer between the source and load, will have low passband sensitivity.
The concept of maximal power transfer is essential. The port voltage and port current characterize the
power delivered into a port. It takes two variables to represent power. Hence, the corresponding digital
filter will also require two variables. We use incident and reflected waves in wave digital filters, and we
obtain a corresponding pseudopower concept.

In Section 6.6, we discuss the synthesis of analog filters using the toolbox [5]. Optimal high-pass
filters can be designed by frequency transformation of an optimal low-pass filter. Near-optimal bandpass
and bandstop filters can also be designed by frequency transformations. In Section 6.7, we discuss the
properties and design of low-sensitivity analog structures that are realized using lumped elements (LCs)
and lossless, commensurate length transmission line networks. We will show that these networks can
be mapped to a similar network consisting of resistors, inductors, and capacitors. The latter network
can be designed using classical design tools.

6.1.3 Wave digital filters
Wave digital filters are derived from an analog reference filter that consists of commensurate length
transmission lines and resistors. A wave digital filter structure inherits its reference filter’s low-
sensitivity properties, being designed for maximum power transfer in the passband. Moreover, the
concept of pseudopower in the digital domain allows us to suppress parasitic oscillations. Hence, a
wave digital filter cannot support parasitic oscillations, which is very important under finite length
arithmetic operations.

The overall design procedure is illustrated in Fig. 6.1.

FIGURE 6.1

Design procedure for wave digital filters.
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• The specification of the digital filters is mapped using the bilinear transformation and possible using
a frequency transformation to a corresponding analog low-pass filter.

• The analog transfer function, H(s) (frequency response), is determined using the toolbox.
• Next, the transfer function is realized using an LC filter structure, e.g., a ladder or lattice structure.

We will later show that a properly designed LC filter will have optimal element sensitivity in the
passband. Unfortunately, this structure is not possible to simulate in the z-domain because delay-
free loops occur.

• We use an analogy (Richards’ variable) between an LC network and a commensurate length trans-
mission line network to circumvent this problem. The latter contain sources, resistors, and lossless
transmission lines of equal length. The transmission line network has a periodic frequency response,
and there is a one-to-one mapping between the continuous-time transmission line network and its
digital counterpart. We will later discuss this in more detail.

• The digital algorithm is obtained using a wave description, i.e., wave digital filters [6,7,8], cor-
responding to a linear combination of voltages and current in the analog reference network. This
allows us to simulate power in the analog filter, which we later will show is a necessity to obtain a
low-sensitivity algorithm.

We will describe various steps in the design process, illustrated in Fig. 6.1, and the designer’s options to
minimize the implementation cost. First, we discuss in Section 6.6 the analog approximation problem
and show that classical design recommendations are not always the best. In Section 6.7, we discuss
the realization of the analog transfer function using a doubly resistively terminated network. We also
discuss what the designer can do in order to minimize the element sensitivity. We also discuss the
realization of commensurate length transmission line filters. In Sections 6.8.1 and 6.8.2, we discuss
two of the most common analog filter networks and their properties.

In Section 6.10, we discuss the design of wave digital filters, their building blocks, and their proper-
ties. In Section 6.11, we discuss the design of ladder wave digital filters. In Section 6.12, we discuss the
design of lattice wave digital filters. In addition, we compare two types of wave digital filter realizations
using an example. In Section 6.13, we discuss the design of wave digital filter structures that are based
on a factorization of the scattering matrix. These filters are similar to lattice structures. In the following
section, we discus a numerically equivalent state-space realization of the previous structures.

6.1.4 Implementation of digital filters
In Section 6.15, we discuss some properties of digital filter algorithms from a computational point of
view. In Section 6.16, we discuss computational architectures. In Section 6.17, we discuss arithmetic
operations. In Section 6.18, we discuss the computation of sum-of-products (SOP). In Section 6.19, we
discuss power reduction techniques [9].

6.1.5 MATLAB® toolbox
We will here use a toolbox for the design of both analog and digital filters [5]. This toolbox is also
valid for use in the book Analog Filters Using MATLAB [10], except that _S or _Z has been added
to the function names to differentiate between analog and digital functions, e.g., CA_POLES_S.m
and CA_POLES_Z.m find the poles and zeros for an analog and digital Cauer filter, respectively. The
toolbox includes a large number of MATLAB scripts. A key feature is that the MATLAB scripts only
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perform a single task. Hence, these scripts do not interact and can therefore be combined and modified
by the user to solve many different design tasks.

6.2 Properties of digital filters
The following properties are characteristic of digital filters.

Flexibility
The frequency response can easily and quickly be changed. This means that a digital filter implemen-
tation can be time-shared between several input signals and act as several filters. Furthermore, a digital
filter can be multiplexed to simultaneously act as several filters with one input signal and realize, for ex-
ample, a filter bank. The high flexibility is explored in adaptive filters. This feature will not be explored
in this chapter.

Special transfer functions
Discrete-time and digital filters can realize special transfer functions that are not realizable with
continuous-time LC filters, for example, filters with exact linear phase response.

Coefficient sensitivity
Digital filters are not affected by temperature variations, variations in the power supply voltage, stray
capacitances, etc., which are significant problems in analog filters. This is because the properties of
a digital filter are determined by the numerical operations on numbers and are not dependent on any
tolerances of electrical components. For the same reason, there is no aging or drift in digital filters. The
independence of element sensitivity leads to high flexibility, miniaturization, and high signal quality.

Reproducibility
Exact reproducible filters can be manufactured. This is also a consequence of the fact that the filter
properties are only dependent on the numerical operation and not on the tolerances of the electrical
components. Thus, tolerance problems as such do not exist in digital filters. However, we will see
that the sensitivity of a filter structure to errors in the coefficient directly affects the required signal
word length and implementation cost. Furthermore, no trimming is necessary, which leads to low cost.
Digital filters can be manufactured with, in principle, arbitrary precision, linearity, and dynamic range,
however, at an increasing cost.

Sample frequency range
Digital filters can be made to operate over a wide range of frequencies, from zero up to several hundred
MHz, depending on the filter complexity and the technology used for the implementation. However,
the cost in terms of power consumption and the number of gates in the integrated circuits increases
with the filter order and the sampling frequency. The maximal sample rate of a nonrecursive algorithm
is, in principle, unlimited. However, the amount of circuitry and the inherent speed of the used CMOS
technology becomes a limit. Recursive algorithms have an inherent limit on the throughput, which will
be further discussed in Section 6.15.2
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Power consumption
Digital filters generally have relatively high power consumption, but filters with low power consumption
can be implemented for applications with low sampling frequencies. However, as the CMOS geometries
are reduced, the power consumption is also reduced. Therefore, the power consumption compared with
a corresponding analog filter counterpart is often lower for a digital filter.

Implementation techniques
Digital filters can be implemented using several techniques. At low sample rates and arithmetic work-
loads, typically below a few MHz, standard signal processors can be used while application-specific or
algorithm-specific digital signal processors can be used up to a few tenths of MHz. For high sample
rates, specialized implementation techniques are required [11,4].

6.2.1 Design target
The design should meet the requirements with minimal cost. The cost to be minimized is typically
composed of several parameters, e.g., power consumption, chip area, and design effort. To complicate
the issue even further, the designer has many alternative design options available. Hence, filter design
is a challenging task, and it typically involves several conflicting optimization problems.

Power consumption
Until recently, throughput and chip area were the primary metrics for evaluating digital signal process-
ing (DSP) algorithms and their implementations. However, with the advancement of CMOS technology,
it is no longer a significant problem to achieve high enough throughput. As a result, the cost of the chip
area can usually be neglected, except in very high-volume products. Today, the focus should be on
design simplicity and low power consumption since many implementations are battery-powered. Too
high power dissipation may require more expensive packaging and cooling. Further, there is a trend to
use more sophisticated and complex DSP, increasing the power dissipation.

Chip area
The required chip area is essential since it directly affects the cost of manufacturing the filter. More-
over, the leakage current will be proportional to the chip area. A designer can minimize the required
chip area using filter structures with few arithmetic operations per sample, simplified arithmetic opera-
tions, and small memory requirements. We are interested in structures with low element sensitivity, i.e.,
where a small error in the coefficients causes only a small error in the frequency response. Hence, it is
possible to select simple coefficient values that deviate slightly from their ideal values and still meet the
requirements on the frequency response. We will later discuss filter structures with very low coefficient
sensitivities to reduce the required chip area and efficient schemes to realize filter coefficients.

The signal word length generally affects the execution time and the required chip area for the arith-
metic operations. Jackson [12,4] has shown that the round-off noise is bounded from below by the
coefficient sensitivities, i.e.,

σ 2 ≥
∑

i

σ 2
0i

∥∥∥∥∥∂
∣∣H(ejωT )

∣∣
∂ci

∥∥∥∥∥
2

p

, (6.2)
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where p = 1 or p = 2, σ 2
0i is the variance of the round-off noise sources, and the sum is over all noise

sources due to rounding at the outputs of the coefficients ci . Hence, the right-hand side of (6.2) is
small for a low-sensitivity structure and results in low round-off noise at the output of the structure.
The round-off noise will be low, even though there is no proof for it. A structure with high sensitivity
will generate a large round-off noise, and it will require a large signal word length. To summarize, the
element sensitivity affects both the required signal and coefficient word lengths and, hence, the overall
cost.

Robustness
Recursive algorithms require that the signal word length is rounded or truncated at least once in ev-
ery recursive loop that contains at least one multiplication. Otherwise, the signal word length would
increase for each iteration. Rounding/truncation and overflow correction of the available signal range
are nonlinear operations that will, in most cases, cause parasitic oscillations. As a result, the output of
the filter will contain a periodic or even a chaotic signal component that is not due to the input signal
[13,4]. This unwanted distortion can be substantial. Of course, this is highly undesirable and should be
avoided. Fig. 6.2 shows an example of the input and output of a recursive loop when the input signal
overflows the signal range just before it becomes zero. The output, which is multiplied with 512 to
more clearly show its behavior, enters an unacceptable periodic oscillation.

Nonrecursive FIR filter structures cannot support parasitic oscillations, while most recursive IIR
structures will, however, support parasitic oscillations. Therefore we will focus on nonrecursive FIR
and a class of filter structures, i.e., wave digital filters, which will suppress such undesirable oscillations.

FIGURE 6.2

Persistent parasitic overflow oscillation.

6.3 Synthesis of digital FIR filters
Digital filters can be categorized into FIR and IIR filters. Advantages of FIR filters over IIR filters are
that they can be guaranteed to be stable and may have a linear-phase response. Further, they require
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generally shorter signal word length than the corresponding IIR filters. However, FIR filters usually
require much higher orders than IIR filters for the same magnitude specification. In addition, they often
introduce a large group delay, which makes them unsuitable in many applications. In addition, FIR
filters are well suited for many multirate filter realizations. In addition, an advantage is that FIR filters
are always stable, except when used inside a recursive loop.

The synthesis of digital filters can be performed along several different routes. If the filter has
an FIR, the frequency response is typically designed directly in the z-domain using computer-based
optimization methods. Section 6.3 will discuss classical FIR filters and associated structures, suitable
for cases when the transition band is not too small. Unfortunately, for requirements with a narrow
transition band, the filter order and arithmetic workload become very large for FIR filters. In such cases,
we instead recommend recursive structures (IIR), frequency response masking techniques, which are
discussed in Section 6.5, or multirate techniques [14,15,4].

The most common method to design a linear-phase FIR filter that satisfies a specification of the
magnitude response is to use a numeric optimization procedure to determine the impulse response h(n)
in (6.3). A widely used algorithm for designing linear-phase FIR filters with multiple passbands and
stopbands is that of McClellan, Parks, and Rabiner [16,17,18,5]. We will use the function REMEZ_FIR
to design FIR filters, an improved version based on the Remez algorithm.

The impulse response h(n) of a causal FIR filter of order N (length L = N+1) is nonzero for 0 ≤ n
≤ L–1 and zero for all other values of n, as illustrated in Fig. 6.3.

FIGURE 6.3

Impulse response of a causal FIR filter of order N (length L = N+1).

The transfer function and frequency response of an Nth-order FIR filter is

H(z) =
N∑

n=0

h(n)z−n. (6.3)

The transfer function poles can only be placed at the origin of the z-plane for nonrecursive FIR
filters. The zeros can be placed anywhere in the z-plane, but they are usually located on the unit circle
or complex conjugate pairs mirrored in the unit circle.

Of primary interest are FIR filters with linear phase for which the impulse response exhibits symme-
try or antisymmetry. Linear-phase FIR filters are widely used in digital communication systems, speech
and image processing systems, spectral analysis, and particularly applications where nonlinear phase
distortion cannot be tolerated.

A linear-phase FIR filter is obtained by letting the impulse response exhibit symmetry around n =
N/2 or antisymmetry around n = N/2, i.e.,

h(n) = ±h(N − n) (6.4)
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for n = 0,1,..., N. Since the order N is either even or odd, there are four different types of FIR filters
with linear phases. These are denoted as Type I, II, III, and IV linear-phase FIR filters.

Type I: h(n) = h(N − n) , N even,

Type II: h(n) = h(N − n) , N odd,
Type III: h(n) = −h(N − n) , N even,
Type IV: h(n) = −h(N − n) , N odd.

Fig. 6.4 shows typical impulse responses for the different cases. Note that the center value h(N/2)
is always equal to zero for Type III filters. Also, when N is even, the point of symmetry is an integer
corresponding to one of the sample values. When N is odd, the point of symmetry lies between two
sample values.

FIGURE 6.4

Impulse responses for the four types of linear-phase FIR filters.

Fig. 6.5 shows a typical specification of the zero-phase response for a low-pass linear-phase FIR
filter. Several approximate expressions for the required filter order for equiripple, linear-phase FIR
filters have been determined empirically.

The deviation in the attenuation in the passband is

Amax = 20 log(
1 + δc

1 − δc

), (6.5)

and the minimum stopband attenuation is

Amin = 20log(
1 + δc

δs

). (6.6)

One simple estimate of the required filter order for a linear-phase low-pass (or high-pass) filter that
meets the specification shown in Fig. 6.5 is

N ≈ −4π

3

log (13δcδs)

�ωT
, (6.7)
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FIGURE 6.5

Specification of FIR filters.

where �ωT = ωsT − ωcT is the transition band. Note that the required filter order will be high for
filters with narrow transition bands.

Here we are concerned with linear-phase FIR filters that are frequency-selective, e.g., low-pass,
high-pass, bandpass, and bandstop filters. When designing such filters, it is convenient to consider the
zero-phase frequency response, HR

(
ejωT

)
, which is defined by

H
(
ejωT

)
= HR(ejωT )ejφ(ωT ). (6.8)

Note that
∣∣H (ejωT

)∣∣= ∣∣HR(ejωT )
∣∣.

The specification of a low-pass filter is commonly given as

1 − δc ≤ ∣∣H(ejωT )
∣∣≤ 1 + δc, ωT ∈ [0, ωcT ] ,∣∣H(ejωT )

∣∣≤ δs, ωT ∈ [ωsT , π] .
(6.9)

For linear-phase FIR filters, the specification of (6.9) can be stated with the aid of HR

(
ejωT

)
ac-

cording to

1 − δc ≤ HR

(
ejωT

)≤ 1 + δc, ωT ∈ [0, ωcT ] ,

−δs ≤ HR

(
ejωT

)≤ δs, ωT ∈ [ωsT , π] .
(6.10)

The REMEZ_FIR program will find a unique impulse response that minimizes a weighted error
function. The algorithm solves the approximation problem

minimize (E∞) = max

∣∣∣E (ejωT
)∣∣∣ , ωT ∈ �, (6.11)

where E
(
ejωT

)
is the weighted (Chebyshev) error function given by

E
(
ejωT

)
= W

(
ejωT

)[
HR

(
ejωT

)
− D

(
ejωT

)]
, ωT ∈ �, (6.12)
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with � being the union of the passband and stopband regions. In practice, � is a dense set of frequency
samples taken from the passbands and stopbands, including the band edges. It should be stressed that
all functions involved here, HR

(
ejωT

)
, E
(
ejωT

)
, D
(
ejωT

)
, and W

(
ejωT

)
(nonnegative function), are

real functions of ωT . The desired function D
(
ejωT

)
is the one to be approximated by HR

(
ejωT

)
. For

example, D
(
ejωT

)
is for the standard low-pass filter

D
(
ejωT

)
=
{

1

0

ωT ∈ [0, ωcT ] ,

ωT ∈ [ωsT , π] .
(6.13)

That is, D
(
ejωT

)
is for conventional filters equal to one in the passbands and zero in the stopbands.

The weighting function W
(
ejωT

)
specifies the cost of the deviation from the desired function. The use

of the weighting function makes it possible to obtain different deviations in different frequency bands.
The larger the weighting function is, the smaller is the ripple. For example, for a standard low-pass
filter, W

(
ejωT

)
is usually given as

W
(
ejωT

)
=
{

1
δc/δs

ωT ∈ [0, ωcT ] ,

ωT ∈ [ωsT , π] .
(6.14)

The specification of (6.10) is then satisfied if E∞ ≤ δc. The resulting filter is optimized in the Cheby-
shev (minimax) sense. MATLAB programs for designing FIR filters are found [5]. The design of special
cases of linear-phase FIR filters and nonlinear phase FIR filters is discussed in detail [4]. The following
MATLAB script can be used to compute the impulse response of a linear-phase FIR filter [5,4].

6.3.1 REMEZ_FIR
The function REMEZ_FIR [18,5], which is used to design linear-phase FIR filters, computes the unique
impulse response of an Nth-order linear-phase, equiripple FIR filter. The function REMEZ_FIR

[h, Err] = REMEZ_FIR(N, Be, D, W, Ftype, LGRID)

is called using the following parameters: h is the desired impulse response and Err is the maximal
deviation in the error function. N is the filter order (positive integer), e.g., N = 32. Be is the band edges,
e.g., Be = [0 0.2 0.5 1]×π for a low-pass filter with ωcT = 0.2π rad and ωsT = 0.5π rad. Both the
beginning and the end of the band must be included, i.e., 0 and π rad. Thus, the length of Be is even.
D is the desired values at the band edges, e.g., D = [1 1 0 0] for a low-pass filter. W is the weighting
of the bands, e.g., W = [δc δs] for low-pass filters. Ftype is m, d, and h for multibands, differentiators,
and Hilbert transformers, respectively. LGRID is typically set to {128}.

6.3.1.1 Example
Synthesize a linear-phase equiripple FIR filter that satisfies the following low-pass specifications: ωsT

= 0.2 rad, ωsT = 0.5π rad, δc = 0.01, and δs = 0.001 (low-pass). The required filter order is estimated
to N = 19 using the function LPHASE_LP_FIR_ORDER. We, however, select N = 20 to meet the
requirements. From Eqs. (6.5) and (6.6) we get Amaxreq = 0.087296 dB and Aminreq = 60.0864 dB.
The linear-phase equiripple FIR filter is synthesized using the program [5] shown in Listing 6.1.
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Listing 6.1: Program design of linear-phase equiripple FIR filters.

1 dc = 0 . 0 1 ; ds = 0 . 0 0 1 ;
2 wTedges = [ 0 . 2 0 . 5 ] ∗ p i ; % Band edges
3 b = [1 0 ] ; % Gains i n t h e bands
4 d = [ dc ds ] ; % A c c e p t a b l e d e v i a t i o n s
5 Amaxreq = 20∗ l og10 (1+ dc /(1 − dc ) )
6 Aminreq = 20∗ l og10 ( ( 1 + dc ) / ds )
7 % E s t i m a t e f i l t e r o r d e r
8 N, Be , D, W] = L_PHASE_LP_FIR_ORDER ( wTedges , d ) ;
9 W = [1 0 . 5∗ dc / ds ] % Y i e l d s an a c c e p t a b l e s o l u t i o n
10 N % E s t i m a t e d o r d e r = 19
11 N = N+1 % Minimum o r d e r 20 t o meet t h e c r i t e r i a
12 F type = ’m’ ;
13 [ h , E r r ] = REMEZ_FIR(N, Be , D, W, Ftype , { 1 2 8 } ) ;
14 d e l t a c = E r r /W( 1 ) ; % R e s u l t i n g p a s s b a n d and
15 d e l t a s = E r r /W( 2 ) ; % Stopband r i p p l e s
16 hn = h / ( 1 + d e l t a c ) ; % Make | H] max = 1
17 f p r i n t f ( ’ E r r = %2.8 f \ n ’ , E r r ) ;
18 Amax = 20∗ l og10 ( ( 1 + d e l t a c ) / (1 − d e l t a c ) )
19 Amin = 20∗ l og10 ( ( 1 + d e l t a c ) / d e l t a s )
20 f p r i n t f ( ’Amax = %2.6 f dB \ n ’ , Amax)
21 f p r i n t f ( ’ Amin = %2.4 f dB \ n ’ , Amin ) ;
22 wT = l i n s p a c e ( 0 , p i , 1 0 0 1 ) ; % wT a x i s 0 t o r a d
23 Mag = H_2_MAG( f r e q z ( hn , 1 ,wT ) ) ; % Magni tude i n dB
24 o p t = ’Mag ’ ;
25 PLOT_MAG_PZ_h_FIR (wT, Mag , hn , Be , D, d , o p t )

We get

Amax = 0.079552 dB,

Amin = 60.8030 dB.

The required filter order that is obtained from L_PHASE_LP_FIR_ORDER is only an estimation,
and it is, in this case, too low. Therefore, it is necessary to try different filter orders to find an order that
satisfies the specification. See [4] for a practical scheme. Fig. 6.6 shows the magnitude response and
the specification, pole and zeros, and the impulse response. Note that there are 20 poles at z = 0. The
filter has linear-phase response. Hence, the impulse response is symmetric for an even-order FIR filter.

6.3.2 Notch FIR filters
Narrow-stopband FIR filters are frequently used to remove a single-frequency component from the
signal spectrum, often referred to as notch filters. The minimax-based approximation used in RE-
MEZ_FIR has some inherent limitations, i.e., the solution may fail in the transition region and for
notch filters in particular. Nevertheless, maximally flat notch FIR filters can be designed using the
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FIGURE 6.6

Magnitude, pole-zeros, and impulse response for a 20th-order linear-phase FIR filter.

function MF_NOTCH_FIR. DC notch filters are used to remove a DC component from the signal spec-
trum. An efficient algorithm for designing equiripple DC notch FIR filters of even order is the function
DC_NOTCH_FIR.

6.3.3 Half-band FIR filters
Many digital filter structures can exploit the fact that a large number of coefficient values are zero.
Thus, the required number of arithmetic operations can be reduced since it is unnecessary to perform
multiplications by zero coefficients. One such case is a filter with a 3-dB cutoff angle of π/2 rad, referred
to as half-band filters since the bandwidth is half the whole frequency band. We will discuss half-band
FIR filters in Section 6.4.4.

6.3.4 Complementary FIR filters
A pair of complementary filters are used in many applications, for example, in low-sensitivity filter
structures and filter banks. Several types of complementary filter pairs are discussed in [4]. In addition,
in many applications, the need arises to split the input signal into two or more frequency bands.

For a delay-complementary filter pair, H(z) and Hc(z), we have

H(z) + Hc(z) = z−N/2, (6.15)

where N is an even integer.
Note that H(ejwT ) = Hc(e

jwT ) = 0.5, i.e., the attenuation is 6.02 dB at the crossover angle ωT .
The corresponding impulse responses are
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h(n) + hc(n) = δ(n − N/2). (6.16)

We will later show that these filters, in some cases, can be effectively realized by a slight modifica-
tion of an even-order FIR filter of Type I.

For a power-complementary filter pair, we have

|H(ejwT )|2 + |Hc(e
jwT )|2 = 1. (6.17)

Complementary half-band filters are particularly useful since the saving in the computational work-
load is significant.

6.3.5 Minimum-phase FIR filters
One of the advantages of FIR filters compared to IIR filters is attaining an exact linear-phase response.
However, the linear-phase characteristic implies symmetry or antisymmetry in the impulse response
that constrains N/2 coefficients to be the same. Hence, only N/2+1 of the remaining coefficients are
freely assignable (assuming N is even). In a nonlinear-phase filter, all N +1 coefficients are free param-
eters. The design of general nonlinear-phase FIR filters is discussed in [4].

A linear-phase response is often desirable because it introduces no phase distortion, but it has the
disadvantage that the overall delay is usually considerable. A minimum-phase FIR filter might prove
useful if a linear-phase response is not as critical as the overall delay. For each linear-phase filter, there
exists a corresponding minimum-phase filter. The function MIN_PHASE_ LP_FIR_ORDER can be
used to estimate the order of a minimum-phase FIR filter. We have

NMP = NLP + 2π

3

log(13δc)

	ωT
. (6.18)

The linear-phase filter may be up to twice as long as the corresponding minimum-phase filter for
the same magnitude specification. A minimum-phase FIR filter has all its zeros inside or on the unit
circle and can be designed using MIN_PHASE_ LP_FIR.

6.3.6 Miscellaneous FIR filters
Two commonly used FIR filters are differentiators and Hilbert transformers, which also can be de-
signed using REMEZ_FIR. Linear-phase FIR filters can also be designed using linear programming
(linprog.m) and quadratic programming techniques (quadprog.m). Several solved design cases for these
filters are given in [4].

Both analog and digital filters can be transformed into a new filter with different frequency re-
sponses. For example, a low-pass filter, usually called the reference filter, can be transformed into
high-pass, bandpass, and bandstop filters. Frequency transformation can be applied to both FIR and IIR
filters. There are two main techniques for frequency transformations: direct frequency transformation
and structural frequency transformation. The direct frequency transformation is carried out by mapping
the poles and zeros of the reference filter to new positions to obtain the new filter.

A structural frequency transformation is similar, but instead of mapping the poles and zeros, the de-
lay elements in the reference filter structure are replaced by a subnetwork corresponding to the mapping.
However, there are severe restrictions on the subnetwork because the resulting filter structure may have
delay-free loops. Structural transformations can be applied to both FIR and IIR reference filters [4].
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6.4 FIR structures
An FIR filter can be realized using both recursive or nonrecursive algorithms. The former, however,
suffer from several drawbacks and should rarely be used in practice. An exception is so-called running-
sum filters, which often are used in decimation filters for

∑
	-converters.

Nonrecursive filters are always stable and cannot sustain parasitic oscillations, except when the
filters are a part of a recursive loop. They generate little round-off noise and can therefore use shorter
signal word lengths. However, they usually require a large number of arithmetic operations and a large
amount of memory. Therefore great efforts have been directed towards developing methods to reduce
the arithmetic workload.

This can be done by reducing the number of multiplications per sample or by simplifying the co-
efficient values so that the multiplications become simpler to implement. The latter approach results
in what is referred to as multiplier-free structures since all multiplications have been replaced with ad-
dition/subtraction and shift operations. That is, the coefficients are selected among a restricted set of
values, i.e., as a sum-of-powers-of-two (SPOT), c = ±2±n1 ± 2±n2 ± ... ± 2±nm . Most FIR filters can
be realized using no more than four powers of two. Today the arithmetic workload for a properly de-
signed FIR structure is still relatively large, but chip area and power consumption are becoming more
significant.

6.4.1 Direct-form FIR structures
There exist several structures that are of interest for the realization of FIR filters. One simple structure
is the direct-form FIR, which has relatively low element sensitivity, i.e., the deviation in the frequency
response due to a small change in any of the coefficients, is relatively small. This structure has many
arithmetic operations and is therefore only suitable for relatively short FIR filters. The round-off noise
variance is (N + 1)Q2/12 if all products are rounded. For filters with very narrow transition bands, we
recommend frequency response masking structures, which are discussed later.

FIGURE 6.7

Direct-form FIR structure (transversal filter).

6.4.1.1 Adder tree
The magnitude and word length of the impulse response values of a low-pass filter is approximately
sin(x)/x. Hence, the magnitudes of the tail values are relatively small, while the center value is the
largest. It is, therefore, advantageous to pairwise add small values using adders with short word lengths.
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The partial sums, which have increasing word lengths, can then be added so that successive values
have about the same word length [4]. This scheme tends to reduce the required hardware requirement.
An implementation of the adder tree in FPGAs or ASICs may result in different wire lengths and
capacitive loads, and the adder tree may become irregular. This requires load balancing by sizing the
gates to achieve high speed and avoid glitches that waste energy. We usually realize FIR structures using
adder trees, but for reasons of simplicity, we will in figures use a simplified signal-flow representation
compared to the one used in Fig. 6.7. A detailed discussion of the optimization of the adder tree may
distract the reader from the issues at hand. However, an adder tree should, if appropriate, be used in the
final realization.

6.4.2 Transposed direct form
The transposition theorem [19] can generate new structures that realize the same transfer function as
the original filter structure. For example, the transposed direct-form FIR structure, shown in Fig. 6.8,
is derived from the direct-form structure. The throughput is higher for the transposed form because the
longest critical path is through only one multiplier and an adder, but the capacitive load at the input
node is larger since all multipliers load this node. Therefore, the transposed structure is often preferred
for an FPGA implementation.

The direct-form structures require, in general, N+1 multiplications, which may become a too large
workload for high-order FIR filters. However, the required amount of hardware can be significantly
reduced since many multiplications are performed with the same input value or the transposed case
where many signals are multiplied and then added. The internal signal level increases from left to right
as more and more internal signals are added. Also, in this structure, the round-off noise is (N + 1)Q2/12

if all products are rounded.

FIGURE 6.8

Transposed direct-form FIR structure.

6.4.3 Linear-phase FIR structures
A major reason why FIR filters are used in practice is that they can realize an exact linear-phase re-
sponse. Linear-phase implies that the impulse response is either symmetric or antisymmetric. Thus, an
advantage of linear-phase FIR filters is that the number of multiplications can be reduced by exploit-
ing the symmetry (or antisymmetry) in the impulse response, as illustrated in Fig. 6.9. This structure is
called a direct-form linear-phase FIR structure since the phase response is independent of the coefficient
values.

The number of multiplications for the direct-form linear-phase structure is (N+1)/2 for N = odd
and N/2+1 for N = even. The number of multiplications is significantly smaller than for the more
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FIGURE 6.9

Direct-form linear-phase FIR structure.

general structures in Figs. 6.7 and 6.8, whereas the number of additions is the same. Subtractors are
used instead of adders if the impulse response is antisymmetric. The signal levels at the inputs of the
multipliers are twice as large as the input signal. Hence, the input signal should be divided by two, and
the filter coefficients should be scaled so that a proper out signal level is obtained. The round-off noise
is only (N + 1)Q2/24 and (N + 2)Q2/24 for N = odd and even, respectively, independently of the filter
coefficients.

A significant drawback is that the group delay for linear-phase FIR filters is often too large to be
useful in many applications. Even-order FIR filters are often preferred since the group delay is an
integer multiple of the sample period.

The number of arithmetic operations is further reduced in linear-phase, half-band filters. Each
zero-valued coefficient makes one multiplication and one addition redundant. The number of actual
multiplications in a linear-phase, half-band filter is only (N+6)/4. The order is always N = 4m+2 for
some integer m. A half-band filter is a particular case of the Nyquist filters.

6.4.4 Half-band FIR filters
Many digital filter structures can exploit the fact that a large number of coefficient values are zero.
Therefore the required number of arithmetic operations can be reduced since it is unnecessary to per-
form multiplications by zero coefficients. One such case is a filter, with a 3-dB cutoff angle of π/2 rad,
referred to as half-band filters since the bandwidth is half the whole frequency band [4]. Every even
sample in the impulse response corresponding to the zero-phase frequency response of a half-band filter
is zero, except hR(0).

The zero-phase response of even-order half-band filters is antisymmetric around π/2 rad, i.e.,

HR

(
ejωT

)
= 1 − HR

(
ej (π−ωT )

)
, (6.19)

and we have

ωcT + ωsT = π rad, (6.20)



6.4 FIR structures 283

and the passband and stopband deviations are δc = δs . Hence, if high stopband attenuation is required,
then the passband has a small ripple, and vice versa. Hence, the smallest of the ripple factors determines
the filter order.

Only even-order (N = even) half-band, low-pass FIR filters are of interest since the coefficients are
nonzero in odd-order filters. Hence, only filter orders with N = 4n+2, where n is a positive integer, are
useful since for an even-order filter, every other, except for the first and the last coefficients, is zero.
Thus, the number of multiplications per sample in a linear-phase, half-band filter is only (N+6)/4. Even-
order half-band low-pass filters are advantageous since they use half as many arithmetic operations as
general FIR filters. Thus, they are used in filter banks, wavelets, and multirate filters, e.g., interpolating
or decimating the sampling frequency by a factor of two.

6.4.5 Delay-complementary FIR structure
Even more dramatic reductions of the required arithmetic operations are possible when a pair of
delay-complementary FIR filters is needed. We illustrate the basic ideas by example. The delay-
complementary filter Hc (z) to an even-order linear-phase filter of Type I or II can be obtained from
the direct-form linear-phase structure by subtracting the ordinary filter output from the delayed input
value, as shown in Fig. 6.10.

FIGURE 6.10

Delay-complementary FIR filter structure with N = even.

Odd-order delay-complementary FIR filters are not feasible since the symmetry axis, as shown in
Fig. 6.4, does not coincide with the impulse response. The cost of realizing the delay-complementary
filter seems to be only one subtraction. However, the passband requirement on the FIR filter realizing
H (z) must usually be increased significantly to meet the stopband requirements on the complementary
filter, Hc (z). Fortunately, a reduction of the passband ripple requires only a slight increase in the filter
order (see (6.7)). Furthermore, only even-order filters are useful. Hence, the arithmetic workload is
significantly smaller than that for two separate filters. This technique can, of course, also be applied to
even-order linear-phase FIR filter structures, with either symmetric or antisymmetric impulse response
and their transposes. Complementary half-band FIR filters are particularly useful since the saving in
arithmetic workload is substantial.

In many applications, the need arises to split the input signal into two or more frequency bands.
For example, in certain transmission systems for speech, the speech signal is partitioned into several
frequency bands using a filter bank. A filter bank is a set of bandpass filters with staggered center
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frequencies to cover the whole frequency range. The first and last filters are low-pass and high-pass
filters, respectively. The filtered signals are then processed individually to reduce the number of bits
that have to be transmitted to the receiver, where the frequency components are added to an intelligible
speech signal.

A particular case of band-splitting filters, a low-pass and high-pass filter pair, is obtained by im-
posing the following symmetry constraints. Let H(z) be an even-order FIR filter (N even). The delay-
complementary transfer function Hc (z) is defined by∣∣∣H (ejωT

)
+ Hc

(
ejωT

)∣∣∣= 1. (6.21)

This requirement can be satisfied by two FIR filters that are related according to

H (z) + Hc (z) = z−N/2. (6.22)

Hence, the two transfer functions are complementary. A signal is split into two parts that, if added,
combine into the original signal except for a delay corresponding to the group delay of the filters.
Note that the attenuation is 6.02 dB at the crossover frequency. The output of the complementary
filter Hc (z) is obtained, as shown in Fig. 6.10, by subtracting the ordinary filter output from the central
value x(n–N/2), which significantly reduces the arithmetic workload. However, the complementary
filter is not obtained for free because if the stopband attenuation is large, then the passband ripple of
the ordinary filter must be very small. Hence, the filter order must be increased. The complementary
FIR filters considered here cannot be of odd order since the center value of the impulse response, in
that case, is not available.

6.4.6 Cascade-form FIR structures
High-order FIR and IIR filters may be realized in cascade form, i.e., as a cascade of several lower-order
subfilters, as shown in Fig. 6.11 for an FIR filter. The overall transfer function is

H (z) =
M∏

k=1

Hk (z) , (6.23)

where the subfilters Hk (z) usually have orders one and two. The cascading of two minimum-phase
filters yields an overall minimum-phase filter. Moreover, cascading several linear-phase filters also
results in an overall linear-phase filter.

The benefit of cascading several filters is that the stopband attenuations of the filters add. Hence,
each subfilter needs only to contribute with a small fraction of the overall stopband attenuation, and
they can be simplified. As a result, the coefficients in the subfilters need not be as accurate, i.e., the
coefficient sensitivity in the stopband is small. However, the benefit obtained in the stopband sensitivity
is offset by increased sensitivity in the passband since errors in the lower-order filters add. Furthermore,
the cascade form suffers from a decrease in the dynamic signal range. Hence, the internal signal word
length must be increased. The ordering of the sections is essential since it affects the dynamic signal
range significantly. There are M! possible ways to order the sections for an FIR filter realized with M
sections.
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FIGURE 6.11

FIR filter in cascade form.

A minimum-phase filter can be partitioned into a linear-phase filter and a filter with a nonlinear
phase in cascade form [4]. This allows the minimum-phase filter to be realized using the linear-phase
FIR structure.

6.4.7 Lattice FIR structures
Lattice FIR structures are used in a wide range of applications, for example, speech and image pro-
cessing, adaptive filters, and filter banks [20]. The lattice structure can be of FIR or IIR type. Note,
however, that the lattice structures discussed in this section are a different type of structure compared to
the lattice wave digital filter structures discussed in Section 6.12, although confusingly, they have the
name lattice in common.

6.4.8 Recursive frequency-sampling structures
Traditionally, most textbooks [21,22,3] contain a discussion of so-called frequency-sampling FIR fil-
ter structures. These realizations are recursive algorithms that rely on pole-zero canceling techniques.
Although they may seem attractive, they are not recommended due to their high coefficient sensitivity,
low dynamic range, and severe stability problems [4].

6.4.9 Multirate FIR filters
Multirate filters are efficient in terms of arithmetic workload since a large part of the arithmetic op-
erations can be performed at a slower rate [14,15,4]. Polyphase structures are efficient for decimation
and interpolation since redundant arithmetic operations are avoided. FIR and IIR filters with narrow
transition bands can be realized by methods based on decimation–filtering–interpolation schemes [4].
Common to these techniques is that the effective number of arithmetic operations per sample is reduced.

6.5 Frequency response masking filters
For given passband ripple and stopband attenuation, the filter order as well as the number of nontrivial
coefficients of a direct-form FIR filter is according to (6.7) inversely proportional to the transition
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width. Therefore, sharp filters suffer from high computational complexity due to the high filter orders.
Lim [23] proposed an FRM FIR filter structure in 1986 for the design of sharp FIR filters with low
computational complexity. The structure was thereafter modified and improved by many researchers
to achieve even further computation savings, and has been extended to the design of various types of
filters, such as half-band filters, multirate filters, recursive filters, and 2D filters.

6.5.1 Basic FRM structure
Just as the name implies, FRM uses masking filters to obtain the desired frequency responses. The
overall structure of an FRM is a subfilter network, consisting of three subfilters, as shown in Fig. 6.12.
The three subfilters are a prototype band edge shaping filter (or simply called prototype filter) with z-
transform transfer function F(z) and two masking filters with z-transform transfer functions G1(z) and
G2(z), respectively; their corresponding frequency responses are denoted as F(ejωT ), G1(e

jωT ), and
G2(e

jωT ), respectively. A fourth filter function is realized by using a delay-complementary counterpart.

FIGURE 6.12

Structure of the frequency response masking filter.

In FRM structure, every delay of the prototype band edge shaping filter F(z) is replaced by L

delays. The frequency response of the resulting filter, F(zL), is a frequency-compressed (by a factor of
L) and periodic version of F(z), as shown in Fig. 6.13(a and b). For this reason, the number of delays
replacing one delay in the impulse response of the band edge shaping prototype filter, L, is referred to
as the compression factor of the FRM filter.

As a result of the delay element replacement, the transition band of F(z) is mapped to L transition
bands with transition width shrunk by a factor of L. The complementary filter of F(zL) is obtained by
subtracting F(zL) from a pure delay term, z−LNF /2, where NF is the order of F(z). To avoid a half
delay, NF is chosen to be even. Thus, the entire frequency region from DC to Nyquist frequency is
decomposed into L bands; F(zL) and its complement hold alternate bands respectively, as shown in
Fig. 6.13(b).

Two masking filters G1(z) and G2(z) are used to filter (i.e., mask) the outputs of F(zL) and its
complement. The desired frequency bands of F(zL) and its complement are kept and then combined to
obtain the final frequency response.

The overall z-transform transfer function of the FRM structure, H(z), is thus given by

H(z) = F(zL)G1(z) +
[
z−LNF /2 − F(zL)

]
G2(z). (6.24)

In a synthesis problem, the passband and stopband edges of the overall filter H(z), denoted as ωcT

and ωsT , respectively, are given, whereas the passband and stopband edges of the prototype filter F(z),
denoted as ωF

c T and ωF
s T , have to be determined.
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From Fig. 6.13(b), it can be seen that the transition band of the overall filter H(z) may be generated
either from F(zL) or from its complement. We denote the two cases as Case A and Case B. The filter
F(zL) (or its complement) is thus called periodic band edge shaping filter, or simply periodic filter or
band edge shaping filter.

Throughout this section, we use low-pass filters as examples (except in sections for filter banks)
to illustrate the FRM technique. The extension of the technique to other frequency-selective filters is
straightforward.

FIGURE 6.13

Frequency response of FRM subfilters of Case A.

6.5.1.1 Case A
In Case A, the transition band of H(z) is formed by the lth transition band of F(zL), as shown in
Fig. 6.13, i.e.,

ωcT = 2lπ + ωF
c T

L
and ωsT = 2lπ + ωF

s T

L
, (6.25)

respectively. For a low-pass filter H(z), the band edge of the prototype filter F(z) must have 0 <

ωF
c T < ωF

s T < π , and meanwhile, we have ωcT < ωsT and l must be an integer. According to (6.25),
there is only one value of l that can meet these requirements if there is a solution, i.e., we must select
l = 	LωcT /2π
, where 	x
 is the largest integer less than or equal to x.

Thus, for Case A, we have

ωF
c T = LωcT − 2lπ, ωF

s T = LωsT − 2lπ for l = 	LωcT /2π
. (6.26)

6.5.1.2 Case B
In Case B, the transition band of H(z) is formed by the (l − 1)th transition band of F(zL)’s comple-
ment, as shown in Fig. 6.14, i.e.,
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ωcT = 2lπ − ωF
s T

L
and ωsT = 2lπ − ωF

c T

L
, (6.27)

respectively. For the similar requirements as in Case A, the only value of l if there is a solution is
l = �LωsT /2π�, where �x� is the smallest integer larger than or equal to x. Thus, for Case B, we have

ωF
c T = 2lπ − LωsT , ωF

s T = 2lπ − LωcT for l = �LωsT /2π�. (6.28)

Once the band edges of the prototype filter F(z) are determined, for a given L, the band edges of
the masking filters G1(z) and G2(z) may be chosen to keep the desired bands to obtain the overall
responses. The band edge values of the masking filters are shown in Figs. 6.13(c) and 6.14(c), respec-
tively, for Case A and Case B.

Overall, Fig. 6.13 shows a Case A example, whereas Fig. 6.14 shows a Case B example.

FIGURE 6.14

Frequency response of FRM subfilters of Case B.

6.5.1.3 Conditions for feasible FRM solutions
The conditions derived for Case A and Case B in Sections 6.5.1.1 and 6.5.1.2 assume that a solution is
available for a given set of ωcT , ωsT , and L. It is possible that neither Case A nor Case B generates a
feasible solution for a combination of ωcT , ωsT , and L.

First, obviously only when L > 2π/(ωcT ) and L > 2π/(π − ωsT ) may the FRM technique be
considered; otherwise, the passband of the filter is too narrow or too wide to be obtained by combining
bands from both the band edge shaping filter and its complement.

Besides the above condition, from (6.25), (6.27), the fact that 0 < ωF
c T < ωF

s T < π , and ωcT <

ωsT , for a low-pass design, we can further find that L must satisfy⌈
LωcT

π

⌉
=
⌊

LωsT

π

⌋
, (6.29)
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so that either Case A or Case B, but not both, leads to a feasible solution. When (6.29) is violated, no
feasible solution exists. Such requirements were first presented in [24], where two separate conditions
were derived. Eq. (6.29) is a compact expression of those two conditions.

6.5.1.4 Selection of L

Since the transition width of the prototype filter F(z) is L(ωsT − ωcT ) for given ωcT and ωsT and
the sum of the transition width of G1(z) and G2(z) is 2π/L, the complexity of F(z) decreases with
increasing L, while the complexity of G1(z) and G2(z) increases with increasing L. It has been shown
that the minimum arithmetic complexity in terms of the number of multipliers is achieved by selecting

L = 1√
2β(ωsT − ωcT )/π

, (6.30)

where β = 1 if the subfilters are optimized separately [25] and β = 0.6 if the subfilters are optimized
jointly [26].

6.5.1.5 Computational complexity
The basic FRM structure utilizing the complementary periodic filter pairs and masking filters synthe-
sizes sharp filters with low arithmetic complexity. When

ωsT − ωcT < 0.126π rad,

the arithmetic complexity saving is achieved by using the FRM structure, rather than the direct-form
FIR filters [27]. In a typical design with ωsT − ωcT < 0.002π rad, the FRM structure reduces the
number of multipliers by a factor of 10, and the price paid for the arithmetic saving is a less than 5%
increase in the overall filter order [26].

6.5.1.6 Related structure
A special case of FRM filter, named interpolated FIR (IFIR) filter [28], was earlier developed by Neuvo
et al. IFIR consists of the upper branch of the FRM structure and can therefore only be used to design
narrow-band and wide-band sharp FIR filters.

Some modified FRM structures were proposed in [29,30,27] for further complexity reductions
mainly of the masking filters.

6.5.1.7 Design procedure
For a given set of low-pass filter specifications, including passband edge, stopband edge, passband
ripple, and stopband ripple, ωcT , ωsT , δc, and δs , respectively, a general design procedure, where all
the subfilters are optimized separately, is given as follows:

Step 1. Determine the optimum L that minimizes the filter complexity according to (6.30). If the se-
lected L violates (6.29), increase or decrease L by 1.

Step 2. Determine the passband and stopband edges of the prototype band edge shaping filter accord-
ing to (6.26) or (6.28).

Step 3. Determine the passband and stopband edges of the masking filters according to the parameters
given in Fig. 6.13(c) or Fig. 6.14(c).
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Step 4. Design the prototype band edge shaping filter and masking filters with 50% ripple margins.
Step 5. Verify the frequency response of the resulting FRM filter. If the specification has been satisfied,

then the design is successful; otherwise, increase the ripple margin and go to Step 4.

6.5.1.8 Design example
Use the FRM technique to design an FIR low-pass filter with passband edge, stopband edge, passband
ripple, and stopband ripple of 0.398π rad, 0.4π rad, 0.01, and 0.001, respectively.

We get a design of Case A with a prototype filter with L = 16. The orders of the three subfilters are
186, 78, and 124, respectively. It is advantageous to make G1(z) and G2(z) either both even or both
odd in order to use the multiple-constant implementation technique [4]. Here we increase the order of
G2(z) to 124. Note that our selection of filter orders, ripples, and band edges is not necessarily the best.
A standard realization of this filter specification using direct form requires a filter order of about 2542.
Therefore, the number of nonzero coefficients in the FRM technique is about 17.1% of that required in
the direct form. If joint optimization techniques such as that in [26] are used, the value of the optimum
L may be selected differently, and the number of nonzero coefficients can be further reduced.

The MATLAB code shown in Listing 6.2 implements the above design procedure.

Listing 6.2: Program for designing arbitrary bandwidth FRM IIR/FIR filters.

1 wcT = 0 .398∗ p i ; wsT = 0 . 4∗ p i ;
2 dc = 0 . 0 1 ; ds = 0 . 0 0 1 ; d = [ dc , ds ] ;
3 % C o n v e n t i o n a l d i r e c t form
4 [N, Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcT wsT ] , d ) ; N
5 % Dete rmine t h e optimum L t o min imize t h e c o m p l e x i t y
6 L = round ( 1 / s q r t ( 2∗ ( wsT−wcT ) / p i ) ) ; % b e t a = 1
7 % Dete rmine Case , band edges o f t h e f i l t e r s
8 [ Case , wcFT , wsFT , G1Edge , G2Edge ] = FRM_CASES( wcT , wsT , L ) ; Case
9 w h i l e Case == ’C’
10 L = L + 1 ;
11 [ Case , wcFT , wsFT , G1Edge , G2Edge ] = FRM_CASES( wcT , wsT , L ) ;
12 end ; L
13 % P r o t o t y p e f i l t e r
14 i f s t r cmp ( Case , ’B ’ )
15 d = [ ds , dc ] / 2 ; % a l l o w a d e s i g n margin
16 e l s e
17 d = [ dc , ds ] / 2 ;
18 end ;
19 [ N_F , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcFT wsFT ] , d ) ;
20 N_F = N_F + mod ( N_F , 2 ) + 2 % make t h e o r d e r even ;
21 % add 2 t o meet sp e c
22 [ f , E r r ] = REMEZ_FIR( N_F , Be , D,W, ’m’ ) ;
23 % Masking f i l t e r s
24 [ N_G1 , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ G1Edge ( 2 ) . . .
25 G1Edge ( 3 ) ] , d ) ;
26 N_G1 = N_G1 + mod ( N_G1 , 2 )



6.5 Frequency response masking filters 291

27 [ g1 , ErrG1 ] = REMEZ_FIR( N_G1 , Be , D,W, ’m’ ) ; ErrG1
28 [ N_G2 , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ G2Edge ( 2 ) . . .
29 G2Edge ( 3 ) ] , d ) ;
30 N_G2 = N_G2 + mod ( N_G2 , 2 )
31 [ g2 , ErrG2 ] = REMEZ_FIR( N_G2 , Be , D,W, ’m’ ) ; ErrG2
32 % Equal group d e l a y s
33 g1 = [ z e r o s ( 1 , ( N_G2−N_G1 ) / 2 ) g1 z e r o s ( 1 , ( N_G2−N_G1 ) / 2 ) ] ;
34 % V e r i f y t h e f r e q u e n c y r e s p o n s e o f t h e FRM f i t l e r
35 TN = N_F∗L∗16 ;
36 LwT = [ l i n s p a c e ( 0 , L∗pi , TN ) ] ; wT = [ l i n s p a c e ( 0 , p i , TN ) ] ;
37 FL = f r e q z ( f , 1 ,LwT ) ;
38 G1 = f r e q z ( g1 , 1 ,wT ) ; G2 = f r e q z ( g2 , 1 ,wT ) ;
39 f i g u r e ( 1 ) ; s u b p l o t ( 2 , 1 , 1 )
40 PLOT_MAG_Z_dB(wT, abs ( FL ) , p i , 9 0 , ’ ’ ) , h o ld on
41 PLOT_MAG_Z_dB(wT, abs ( G1 ) , p i , 9 0 , ’ F^L , G_1 ’ ) , h o ld o f f
42 s u b p l o t ( 2 , 1 , 2 )
43 PLOT_MAG_Z_dB(wT,1− abs ( FL ) , p i , 9 0 , ’ ’ ) , h o ld on
44 PLOT_MAG_Z_dB(wT, G2 , pi , 9 0 , ’ F_c ^L , G_2 ’ ) , h o ld o f f
45 f i g u r e ( 2 ) , s u b p l o t ( 2 , 1 , 1 )
46 PLOT_MAG_Z_dB(wT, abs ( FL ) . ∗ abs ( G1 ) , p i , 9 0 , ’ F^L G_1 ’ )
47 s u b p l o t ( 2 , 1 , 2 )
48 PLOT_MAG_Z_dB(wT,(1 − abs ( FL ) ) . ∗ abs ( G2 ) , p i , 9 0 , ’ F_c ^L G_2 ’ )
49 f i g u r e ( 3 ) , s u b p l o t ( 2 , 1 , 1 )
50 PLOT_MAG_Z_dB(wT, abs ( FL ) . ∗ abs ( G1)+(1− abs ( FL ) ) . . .
51 .∗ abs ( G2 ) , p i , 9 0 , ’H’ )

In the above code, the function FRM_CASES is a rewritten form of the function FRM_CASE
available in Toolbox [5], to make the parameters of the function consistent with the notations used in
this section. The function FRM_CASES is shown in Listing 6.3.

Listing 6.3: Program for the function FRM_CASES.

1 f u n c t i o n [ Case , wcFT , wsFT , G1Edge , G2Edge ] = . . .
2 FRM_CASES( wcT , wsT , L )
3 % D e t e r m i n e s t h e Case A or B f o r FRM f i l t e r s .
4 % D e t e r m i n e s t h e band edges f o r t h e p r o t o t y p e F ( z ) .
5 % D e t e r m i n e s t h e band edges f o r t h e masking f i l t e r s .
6 % Dete rmine t h e band edges o f t h e p r o t o t y p e F ( z )
7 l = f l o o r ( wcT∗L / ( 2 ∗ p i ) ) ; l 2 p i = l ∗2∗ p i ;
8 wcFT = L∗wcT−l 2 p i ; wsFT = L∗wsT−l 2 p i ;
9 i f ( wcFT<wsFT ) & (0 <wcFT ) & ( wsFT< p i & l >0)
10 Case = ’A’ ;
11 e l s e
12 l = c e i l ( L∗wsT / ( 2 ∗ p i ) ) ; l 2 p i = l ∗2∗ p i ;
13 wcFT = l 2 p i −L∗wsT ; wsFT = l 2 p i −L∗wcT ;
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FIGURE 6.15

Magnitude response of FRM subfilters of Example 6.5.1.8.

14 i f ( wcFT<wsFT ) & (0 <wcFT ) & ( wsFT< p i )
15 Case = ’B ’ ;
16 e l s e
17 Case = ’C ’ ;
18 end ;
19 end
20 % Dete rmine t h e band edges o f t h e masking f i l t e r s
21 i f ( Case == ’A’ ) % wcT_G1 = wcT and wsT_G2 = wsT
22 wcT_G1=( l 2 p i +wcFT ) / L ; wsT_G1 =( l 2 p i +2∗ pi−wsFT ) / L ;
23 wcT_G2=( l 2 p i −wcFT ) / L ; wsT_G2 =( l 2 p i +wsFT ) / L ;
24 e l s e
25 ( Case == ’B ’ ) % wcT_G2 = wcT and wsT_G1 = wsT
26 wcT_G1=( l 2 p i −2∗p i +wsFT ) / L ; wsT_G1 =( l 2 p i −wcFT ) / L ;
27 wcT_G2=( l 2 p i −wsFT ) / L ; wsT_G2 =( l 2 p i +wcFT ) / L ;
28 end ;
29 i f ( Case ~= ’C ’ )
30 G1Edge = [0 wcT_G1 wsT_G1 p i ] ;
31 G2Edge = [0 wcT_G2 wsT_G2 p i ] ;
32 e l s e
33 e r r o r ( ’ No f e a s i b l e s o l u t i o n f o r t h e s e l e c t e d L ’ ) ;
34 end ;

Fig. 6.15 shows the magnitude responses of the obtained band edge shaping filters and masking
filters. The upper plot shows the magnitude responses of the filter F(ejLω) and G1(e

jω), while the
lower plot shows that of 1 − F(ejLω) and G2(e

jω). These two plots show that 4.5 and 5 passbands of
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FIGURE 6.16

Magnitude response of the overall filter of Example 6.5.1.8.

the periodic filter pairs are attenuated, respectively. Finally, the remaining passbands are added to form
the overall magnitude response of the FRM filter, which is shown in Fig. 6.16.

6.5.2 Multistage FRM structure
In the above basic FRM structure, if the order of F(z) is too high due to a sharp transition width of
F(z), the FRM technique can be used recursively to form a multistage FRM structure to reduce the
complexity.

In a K-stage FRM structure, the z-transform transfer function of the overall system H(z) is recur-
sively constructed as

H(z) = F 0(z),

F k−1(z) = Fk(zLk )Gk
1(z) +

[
z− LkNk

F
2 − Fk(zLk )

]
Gk

2(z),

for k = 1,2, . . . ,K , where Nk
F is the filter order of the kth stage prototype band edge shaping filter

Fk(z) and Gk
1(z) and Gk

2(z) are the kth stage masking filters, with orders of Nk
1 and Nk

2 , respectively.
An example of a three-stage FRM structure is shown in Fig. 6.17.

It was discovered theoretically in [25] that the optimum number of stages to achieve the minimum
arithmetic complexity is independent of the band ripple requirements, but solely determined by the
transition width. The optimum value of the number of stage K satisfies the constraint

βb(K) ≤ ωsT − ωcT ≤ βb(K − 1), (6.31)

where βb(K) ∼= 1
4

(
K+1
K+2

)(K+1)(K+2)

. When a filter is constructed in FRM structure with the opti-

mum number of stages Kopt satisfying the constraint in (6.31), the compression factors of Lk for
k = 1,2, . . . ,K tend to be equal, and are given by(

Kopt + 1

Kopt

)Kopt

≤ Lk ≤
(

Kopt + 2

Kopt + 1

)Kopt+2

. (6.32)

It is interesting to note that both the lower bound and upper bound in (6.32) approach e (∼= 2.7, the
base of the natural logarithm) when K is large.
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FIGURE 6.17

A three-stage FRM structure.

Practical design experience showed that for a given filter transition width and a given stage K , the
minimum arithmetic complexity is achieved when [26]

Lk =
⌈

1
(K+1)

√
2β(ωsT − ωcT )/π

⌉
, (6.33)

for k = 1,2, . . . ,K , where β = 1 if the subfilters are optimized separately [25] and β = 0.6 if the sub-
filters are optimized jointly [26].

Considering both the theoretic analysis in [25] and the practical design experience in [26], the
overall arithmetic complexity of a given filter specification is in proximity to the minimum if K in
(6.33) is chosen such that Lk is 2 or 3.

6.5.2.1 Exercise
Use a two-stage FRM technique to design the FIR low-pass filter with specifications given in Exam-
ple 6.5.1.8. Compare the numbers of nonzero coefficients required and the overall delays of the filters
designed by the two techniques.

6.5.3 Half-band filter
When synthesizing half-band filters using FRM, one has to ensure that the alternate coefficient values
are trivial except that the center coefficient has a value of 0.5 [31].

In order to simplify notations, in this section, as well as in Sections 6.5.4 and 6.5.5.2, zero-phase
filters are used during derivations. The causality of the filter can be easily restored by delaying the
impulse response of the zero-phase filters by appropriate numbers of delays.

6.5.3.1 Structure
Consider a zero-phase half-band prototype band edge shaping filter of order NF = 4N − 2 with pass-
band edge ωF

c T . Its transfer function F(z) is given by

F(z) = 1

2
+ Fo(z), (6.34)
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where Fo(z) consists of only odd-power terms of z. A half-band FRM filter H(z) can be constructed
from this prototype filter by

H(z) =
[

1

2
+ Fo(z

L)

]
G1(z) +

[
1

2
− Fo(z

L)

]
G2(z) (6.35)

for odd L, where G1(z) and G2(z) are even-order low-pass masking filters. The parities of L and filter
orders are chosen to ensure the resultant overall filter H(z) is a half-band filter.

For FRM half-band filters, there are also two cases where L is an integer of 4i + 1 or 4i − 1 for
positive i, denoted as Case A and Case B, respectively.

In Case A, a transition band of 1
2 + Fo(z

L) is centered at π
2 , and in Case B, that of 1

2 − Fo(z
L) is

centered at π
2 as desired. In either case, for given passband and stopband edges ωcT , ωsT , and given

L, we have

ωcT = (L − 1)π + 2ωF
c T

2L
= (L + 1)π − 2ωF

s T

2L
. (6.36)

Thus,

ωF
c T = 2LωcT − (L − 1)π

2
and ωF

s T = (L + 1)π − 2LωcT

2
. (6.37)

The derived ωF
c T and ωF

s T of the prototype half-band filter are consistent with that of the original

FRM structure given in (6.26), where l =
⌊

LωcT
2π

⌋
= L−1

4 for Case A, and that given in (6.28), where

l =
⌈

LωsT
2π

⌉
= L+1

4 for Case B.

Fig. 6.18 shows the frequency response of F(zL), G1(z), and G2(z) of Case A. The frequency
response plot for Case B is similar to that of Fig. 6.18 except that the frequency responses of F(zL),
G1(z), and G2(z) are replaced by those of 1 − F(zL), G2(z), and G1(z), respectively.

FIGURE 6.18

Frequency responses of F(zL), 1 − F(zL), G1(z), and G2(z) for a Case A half-band filter.

From the band edges of masking filters indicated in Fig. 6.18, it seems that G1(z) may be related
with G2(z) by G2(z) = 1 − G1(−z) if the ripple requirements of the two filters are set the same. Thus,
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(6.35) may be written as

H(z) =
[

1

2
+ Fo(z

L)

]
G1(z) +

[
1

2
− Fo(z

L)

]
[1 − G1(−z)]. (6.38)

Let Go(z) consist of the odd-power terms of z and let Ge(z) consist of the even-power terms of z of
the masking filter G1(z). Then G1(z) = Go(z) + Ge(z), and we have

H(z) = 1

2
+ Go(z) + Fo(z

L)[2Ge(z) − 1]. (6.39)

Thus, H(z) consists of a constant term 1
2 and terms with odd power of z, being a half-band filter. The

filter structure is shown in Fig. 6.19.

FIGURE 6.19

Structure for synthesizing a half-band filter.

6.5.3.2 Design procedure
In FRM half-band filter design, no closed-form formula to estimate the optimal compression factor L

is available. A straightforward way to find an optimal L value is to traverse all odd integer L values
within a certain range, estimate the filter length for each subfilter, and select the L value that results in
the minimum number of multipliers required in the implementation. The general design procedure is
given as follows:

Step 1. Traverse odd integer L values from 3 to a reasonably large number. For each L, repeat Step
1.1 to Step 1.3.
Step 1.1 Determine the passband and stopband edges of the prototype band edge shaping

filter according to (6.37).
Step 1.2 Determine the passband and stopband edges of the masking filters according to the

parameters given in Fig. 6.18.
Step 1.3 Estimate the filter orders of F(z) and G1(z).

Step 2. Find the value of L that achieves the minimum arithmetic complexity in Step 1.
Step 3. Design the prototype band edge shaping filter F(z) and masking filters G1(z) with 50% ripple

margins.
Step 4. Decompose F(z) to Fo(z) and G1(z) to Go(z) and Ge(z).
Step 5. Verify the frequency response of the resulting FRM filter. If the specification has been satisfied,

then the design is successful; otherwise, increase the ripple margin and go to Step 3.
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6.5.3.3 Design example
Use the FRM technique to design a linear-phase half-band FIR filter with transition width 0.002π rad
and peak ripple 0.001.

According to the design procedure, we get a design of L = 15 that minimizes the number of multi-
pliers required. The filter orders of F(z) and G1(z) are 258 and 110, respectively. A standard realization
of this filter specification using direct form requires a filter order of about 3430. Therefore, the number
of nonzero coefficients in the FRM technique is about 14.2% of that required in the direct form.

The MATLAB code shown in Listing 6.4 implements the above design procedure.

Listing 6.4: Program for the design of low-pass FRM half-band filters.

1 % use more s t r i n g e n t band edge t o e n s u r e
2 % t h e r i p p l e a t t h e edge
3 wcT = ( 0 . 5 −0 . 0 0 1 9 / 2 )∗ p i ; wsT = ( 0 . 5 + 0 . 0 0 1 9 / 2 ) ∗ p i ;
4 dc = 0 . 0 0 1 ; ds = 0 . 0 0 1 ; d = [ dc , ds ]
5 % C o n v e n t i o n a l d i r e c t form
6 [N, Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcT wsT ] , d ) ; N
7 % Dete rmine t h e optimum L t o min imize t h e c o m p l e x i t y
8 d = d / 2 ; % a l l o w a d e s i g n margin
9 BestTL = N; BestL = 1 ;
10 f o r L = 3 : 2 : 3 9
11 % Dete rmine p r o t o t y p e f i l t e r and masking f i l t e r edges
12 [ Case , wcFT , wsFT , G1Edge , G2Edge ] = FRM_CASES( wcT , wsT , L ) ;
13 % E s t i m a t e t o t a l number o f m u l t i p l i e r s
14 [ N_F , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcFT wsFT ] , d ) ;
15 N_F = N_F−mod ( N_F , 4 ) + 2 ; % make t h e o r d e r 4 i −2
16 [ N_G1 , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ G1Edge ( 2 ) . . .
17 G1Edge ( 3 ) ] , d ) ;
18 i f ( c e i l ( N_F / 4 ) + c e i l ( N_G1/2 ) < BestTL )
19 BestTL = c e i l ( N_F / 4 ) + c e i l ( N_G1 / 2 ) + 2 ; BestL = L ;
20 end ;
21 end ; BestL
22 [ Case , wcFT , wsFT , G1Edge , G2Edge ] = FRM_CASES( wcT , wsT , BestL ) ;
23 % P r o t o t y p e f i l t e r
24 [ N_F , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcFT wsFT ] , d ) ;
25 N_F = N_F−mod ( N_F , 4 ) + 2 % make t h e o r d e r 4 i −2;
26 [ f , E r r ] = REMEZ_FIR( N_F , Be , D,W, ’m’ ) ;
27 fo = [ f ( 1 : ( end −1 ) /2 ) 0 f ( ( end + 3 ) / 2 : end ) ] ;
28 % Masking f i l t e r
28 [ N_G1 , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ G1Edge ( 2 ) . . .
29 G1Edge ( 3 ) ] , d ) ;
30 N_G1 = N_G1+mod ( N_G1 , 2 ) % make t h e o r d e r even ;
31 [ g1 , ErrG1 ] = REMEZ_FIR( N_G1 , Be , D,W, ’m’ ) ; ErrG1
32 % f i n d Go ( z ) , Ge ( z ) and G(−z )
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33 go = g1 ; ge = g1 ; g1m = g1 ;
34 go ( ( end + 1 ) / 2 : 2 : end ) = 0 ; go ( ( end + 1 ) / 2 : −2 : 1 ) = 0 ;
35 ge ( ( end + 3 ) / 2 : 2 : end ) = 0 ; ge ( ( end + 3 ) / 2 : −2 : 1 ) = 0 ;
36 g1m ( ( end + 3 ) / 2 : 2 : end ) = −g1m ( ( end + 3 ) / 2 : 2 : end ) ;
37 g1m ( ( end −1) /2 : −2 :1 ) = −g1m ( ( end −1 ) / 2 : −2 : 1 ) ;
38 % V e r i f y t h e magn i tude r e s p o n s e
39 TN = N_F∗BestL ∗16 ;
40 wT = [ l i n s p a c e ( 0 , p i , TN ) ] ;
41 FoL = FREQZ_SYMMETRY( fo , BestL , wT ) ;
42 FL = FREQZ_SYMMETRY( f , BestL , wT ) ;
43 Go = FREQZ_SYMMETRY( go , 1 , wT ) ;
44 Ge = FREQZ_SYMMETRY( ge , 1 , wT ) ;
45 G1 = FREQZ_SYMMETRY( g1 , 1 , wT ) ;
46 G1m = FREQZ_SYMMETRY( g1m , 1 , wT ) ;
47 % P l o t a c c o r d i n g t o 1 /2+ G1o ( z )+ FoL ( z ^L ) . ∗ ( 2 ∗ G1e ( z ) −1)
48 f i g u r e ( 2 ) , s u b p l o t ( 2 , 1 , 1 )
49 PLOT_MAG_Z_LS(wT, FoL , −1 . 1 , 0 . 6 , ’ ’ ) ; h o ld on ;
50 PLOT_MAG_Z_LS(wT, 2∗Ge−1 , −1 .1 ,1 .1 , ’ FoL , 2∗Ge−1 ’) ; h o ld o f f ;
51 s u b p l o t ( 2 , 1 , 2 )
52 PLOT_MAG_Z_LS(wT, FoL . ∗ ( 2 ∗ Ge−1) , − . 6 , . 6 , ’ FoL .∗ ( 2 ∗ G1e −1 ) ’ ) ;
53 f i g u r e ( 3 )
54 s u b p l o t ( 2 , 1 , 1 )
55 PLOT_MAG_Z_LS(wT, Go , −0 . 6 , 0 . 6 , ’ Go ’ ) ;
56 s u b p l o t ( 2 , 1 , 2 )
57 PLOT_MAG_Z_LS(wT, 1 / 2 + Go+FoL . ∗ ( 2 ∗ Ge−1) , −0 .1 ,1 .1 , ’H ’ ) ;

In the above code, the function FREQZ_SYMMETRY, instead of function freqz as in Listing 6.2,
is used to compute the zero-phase response of symmetric FIR filters. The program of the function is
given in Listing 6.5.

Listing 6.5: Program for the function FREQZ_SYMMETRY.

1 f u n c t i o n f r e q = FREQZ_SYMMETRY( h , L , w)
2 % h : i m p u l s e r e s p o n s e o f t h e symmet r i c FIR f i l t e r
3 % L : each d e l a y i s r e p l a c e d by L d e l a y s
4 % w: f r e q u e n c y g r i d p o i n t s
5 N = l e n g t h ( h ) ;
6 t o l = 10^( −5) ;
7 % Dete rmine t h e symmet r i c t y p e
8 i f rem (N, 2 ) = = 1
9 i f ( abs ( r e a l ( h ( 1 : ( N−1)/2)) − r e a l ( h (N: −1 : (N+ 3 ) / 2 ) ) ) < t o l . . .
10 & abs ( imag ( h ( 1 : ( N−1)/2)) − imag ( h (N: −1 : (N+ 3 ) / 2 ) ) ) < t o l )
11 t y p e = 1 ;
12 e l s e i f ( abs ( r e a l ( h ( 1 : ( N−1 ) / 2 ) ) + r e a l ( h (N: −1 : (N+ 3 ) / 2 ) ) ) < t o l . . .
13 & abs ( imag ( h ( 1 : ( N−1 ) / 2 ) ) + imag ( h (N: −1 : (N+ 3 ) / 2 ) ) ) < t o l )
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FIGURE 6.20

Zero-phase responses of Fo(z
L) and 2Ge(z) − 1 (top) and their product (bottom) for Example 6.5.3.3.

14 t y p e = 3 ;
15 e l s e e r r o r ( ’ Not symmet r i c f i l t e r ’ ) ;
16 end ;
17 end ; hn = (N+ 1 ) / 2 ;
18 e l s e
19 i f ( abs ( r e a l ( h ( 1 :N/2) ) − r e a l ( h (N: −1:N/ 2 + 1 ) ) ) < t o l . . .
20 & abs ( imag ( h ( 1 :N/2) ) − imag ( h (N: −1:N/ 2 + 1 ) ) ) < t o l )
21 t y p e = 2 ;
22 e l s e i f ( abs ( r e a l ( h ( 1 :N/ 2 ) ) + r e a l ( h (N: −1:N/ 2 + 1 ) ) ) < t o l . . .
23 & abs ( imag ( h ( 1 :N/ 2 ) ) + imag ( h (N: −1:N/ 2 + 1 ) ) ) < t o l )
24 t y p e = 4 ;
25 e l s e e r r o r ( ’ Not symmet r i c f i l t e r ’ ) ;
26 end ;
27 end ; hn = N / 2 ;
28 end ;
29 i =hn : −1 :1 ;
30 s w i t c h t y p e
31 c a s e 1 , exp = cos ( L∗ ( hn−i ’ ) ∗w ) ;
32 a = [ h ( hn ) 2 .∗ h ( hn −1 : −1 :1 ) ] ;
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33 c a s e 2 , exp = cos ( L∗ ( hn−i ’ + 0 . 5 ) ∗w ) ;
34 a = [ 2 . ∗ h ( hn : − 1 : 1 ) ] ;
35 c a s e 3 , exp = 1 i ∗ s i n ( L∗ ( hn−i ’ ) ∗w ) ;
36 a = [ h ( hn ) 2 .∗ h ( hn −1 : −1 :1 ) ] ;
37 c a s e 4 , exp = 1 i ∗ s i n ( L∗ ( hn−i ’ + 0 . 5 ) ∗w ) ;
38 a = [ 2 . ∗ h ( hn : − 1 : 1 ) ] ;
39 end ;
40 f r e q = a∗exp ;

FIGURE 6.21

Zero-phase responses of Go(z) (top) and the overall filter H(z) (bottom) for Example 6.5.3.3.

The zero-phase responses of the subfilters in the structure shown in Fig. 6.19 and that of the overall
filter are shown in Figs. 6.20 and 6.21.

In Fig. 6.20, the top subplot shows the zero-phase responses of Fo(z
L) and 2Ge(z) − 1, and the

bottom subplot shows that of their product. The top subplot of Fig. 6.21 is the zero-phase response of
Ge(z), and the bottom one is that of the overall filter.

It is interesting to note that the response of Fo(z
L)[2Ge(z) − 1] forms a bulge and a plunge around

the band edges of the overall filter. The bulge adds to the response of Go(z) in the passband, boosting
it to unit, and the plunge cancels the response of Go(z) in the stopband, nullifying it to zero. In such an
exquisite way, the final response is achieved. That is also the reason that zero-phase responses have to
be computed in the program to realize the boosting and nullifying.

Zoom-in views of the passband ripple and stopband ripple of the overall filter are also shown in
Fig. 6.21. Note that for the conciseness of the program in Listing 6.4, the code to show the zoom-in
views is not listed.

The zoom-in views show that the designed filter meets the given specification. However, it is also
noted that the ripples in the frequency range closer to the transition band are larger than the ripples
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in the other frequency ranges. This phenomenon is common for all FRM structures if subfilters are
optimized separately without special processes. To achieve equiripple filters, which may reduce the
overall arithmetic complexity, higher weights may be imposed to the frequency ranges closer to the
transition band during the optimization of the subfilters.

6.5.4 Hilbert transformer
A Hilbert transformer may be derived from a unity half-band filter by subtracting the constant 1/2 from
its transfer function, modulating the remaining coefficients by ejnπ/2, and then scale the response by 2.
Thus, the transfer function of the Hilbert transformer HH (z) can be written from (6.39) to [32]

HH (z) = 2Go(jz) + 2Fo(j
LzL)[2Ge(jz) − 1]. (6.40)

The structure of the Hilbert transformer is shown in Fig. 6.22.

FIGURE 6.22

Structure for synthesizing a Hilbert transformer.

6.5.4.1 Exercise
Use the subfilters designed in Example 6.5.3.3 to construct a Hilbert transformer. Plot the zero-phase
response of each subfilter in the structure shown in Fig. 6.22, as well as that of the overall filter. Without
checking the plots, what are the expected transition bandwidth and passband ripple of the resultant
Hilbert transformer? Verify your answer by the plots.

6.5.5 Decimator and interpolator
In classical DSP systems, all algorithms operate with the same sampling frequency. In multirate sys-
tems, the sampling rate is changed during different stages of the signal processing. These changes of
the sampling frequency are done by decimators and interpolators, which often are realized using a
polyphase structure. Multirate techniques are today used in many DSP applications, such as communi-
cations, image processing, digital audio, and multimedia. In many cases, multiple sampling frequencies
are used to simplify and reduce the computational complexity and to achieve performances that are
difficult by traditional approaches. We recommend Refs. [14,4] for further study of the design and
implementation of decimators and interpolators.

6.5.5.1 Difficulties of FRM multirate filters
To synthesize a low-pass filter with a bandwidth of approximately π/M as required in the interpolator
and decimator, there are two cases: (1) the transition band does not include π/M; and (2) the transition
band includes π/M .
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In a polyphase implementation of interpolator and decimator with a sampling rate change factor of
M , a “factor of M” reduction in computational complexity may be achieved in general. However, if the
filter is realized as a cascade of two subfilters (as in the upper branch or lower branch of the FRM struc-
ture), generally only one of the two filters may achieve the “factor of M” reduction in computational
complexity.

A straightforward way to circumvent the above difficulty is to make the output of the first filter in
the cascade nonzero only at intervals of M . This can be achieved by selecting L as an integer multiple
of M in the original FRM structure shown in Fig. 6.12.

In such a strategy, the original FRM technique may be directly used for the first case, where the
transition band does not include π/M to achieve the “factor of M” reduction in computational com-
plexity.

However, in the second case, where the transition band includes π/M , since ωcT < π/M < ωsT ,
we have

LωcT

π
<

Lπ/M

π
<

LωsT

π
, (6.41)

where Lπ/M
π

is an integer for L being an integer multiple of M , leading to
⌈

LωcT
π

⌉
=
⌊

LωsT
π

⌋
. This

violates the constraints on the selection of the compression factor L for the original FRM structure
given in (6.29). Therefore, L cannot be selected as an integer multiple of M to make the output of the
first filter nonzero only at intervals of M . Section 6.5.5.2 describes a variant of the FRM structure to
design an interpolator or decimator with transition band including π/M [24].

Moreover, the filter designed in Section 6.5.5.2 is not an Mth band filter. An Mth band filter has
impulse response values being zero for n = rM , n = 0 for all integers r . Two more variants of FRM
structure are described in Section 6.5.5.5 to design an Mth band filter. In this technique, L does not
have to be an integer multiple of M , and the transition band of the filter designed can either include
or not include π/M . When the transition band includes π/M , the filter designed may be an Mth band
filter if the prototype band edge shaping filter is an Mth band filter.

6.5.5.2 A variant of the FRM structure
A variant of the FRM structure proposed in [24] achieves the “factor of M reduction” in a multirate
filter with sampling rate change factor M when the transition band is centered at π/M . The following is
an illustration for an interpolator with an upsampling rate M . The same technique applies to decimators
as well. When considering the zero-phase response, the variant of the FRM is constructed from

H(z) = 1

2
Gs(z) + Fo(z

L)Gd(z), (6.42)

where

Gs(z) = G1(z) + G2(z), (6.43)

Gd(z) = G1(z) − G2(z). (6.44)

In (6.42)–(6.44), Fo(z) is given in the condition of (6.34) for a half-band prototype band edge shaping
filter F(z); G1(z) and G2(z) are the masking filters as that in Fig. 6.12. The factor M interpolation
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FIGURE 6.23

FRM structure for the synthesis of decimation and interpolation filters.

or decimation filter constructed in such a manner has a transition band centered at π/M . The filter
structure is shown in Fig. 6.23.

Selection of L: To ensure that the output of Fo(z
L) has nonzero values only at intervals of M , for

M even, 2L has to be an odd multiple of M , while for M odd, 2L has to be an even multiple of M .
Even M case: For the case of M even, the band edge selection of the three subfilters F(z), G1(z),

and G2(z) is the same as that of the basic FRM structure described in Section 6.5.1.
Odd M case: However, with the selection of L for M odd, the condition 	LωcT /π
 = �LωsT /π�

is violated. This difficulty can be alleviated as follows: F(z) is replaced by F(ze−j π
2L ), and G1(z)

and G2(z) are frequency response shifted versions of a prototype masking filter G(z). The frequency
responses of F(zL), F((ze−j π

2L )L), G(z), G1(z), and G2(z) are shown in Fig. 6.24.

FIGURE 6.24

The magnitude responses of F((ze−j π
2L )L), 1 − F((ze−j π

2L )L), G(z), G1(z), G2(z), and the overall filter H(z).

As F(z) is a half-band filter, its band edges obviously are

ωF
c T = π

2
− ωsT − ωcT

2
L and ωF

s T = π

2
+ ωsT − ωcT

2
L. (6.45)
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The band edges of the prototype masking filter G(z) are

ωG
c T = (2L − M)π

2LM
and ωG

s T = (2L + M)π

2LM
. (6.46)

Masking filters G1(z) and G2(z) are obtained from G(z) by shifting its frequency response by ωF
c T

L
to

the left and right, respectively, where ωF
c T is the passband edge of F(z). The frequency responses of

G1(z) and G2(z) thus are complex conjugate symmetrical to each other.
Therefore, we have

Gs(z) = G1(z) + G2(z) = 2R{G(z)} (6.47)

and

Gd(z) = G1(z) − G2(z) = 2I {G(z)}. (6.48)

Polyphase implementation: In implementation, both Gs(z) and Fo(z
L) can be efficiently decom-

posed into M polyphase components using polyphase structures since the inputs are nonzero only at
intervals of M . For Gd(z), besides the fact that the output of Fo(z

L) is nonzero at intervals of M sam-
ples, only the first polyphase component of Fo(z

L) has nonzero coefficients, because it is a function
of z−2L and 2L is an integer multiple of M . Therefore, Gd(z) may be efficiently decomposed into M

polyphase components as well.
Optimum L: When the coefficient symmetry and zero values of half-band filters are considered, the

optimum L may be selected as follows.
For M even, we have

L = [Le + mod(Le,2) − 1]
M

2
, (6.49)

where Le =
⌊

1
M

√
2(ωsT −ωcT )/π

+ 0.5
⌋

and mod(x,n) stands for x modulo n. For M odd, we have

L = [Lo + mod(Lo,2)]M, (6.50)

where Lo =
⌊

1
2M

√
2(ωsT −ωcT )/π

+ 0.5
⌋

. The modulus operation in (6.49) and (6.50) is to ensure 2L is

an odd multiple and an even multiple of M , respectively.

6.5.5.3 Design example
Using the FRM technique, design a “factor of 7” interpolation filter with a very narrow transition
width of 0.001π rad. The transition band is centered at π

7 rad; the passband and stopband peak ripple
magnitude is 0.001. The estimated order of an optimum direct-form seventh band filter meeting this
specification is 6512. Thus the computational rate is 931 (= 6512/7) multiplications per output sample
when implemented using the conventional polyphase technique.

For the FRM technique presented above, L is chosen to be 14 according to (6.50). The orders of the
prototype band edge shaping filter and the prototype masking filter are 522 and 104, respectively. The
computational rate is reduced to 68 (= 38 + 15 + 15) multiplications per output sample when subfilters
are implemented in the polyphase technique, i.e., a reduction factor of more than 13. Note that the
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FIGURE 6.25

The zero-phase responses of subfilters of Fo((ze
−j π

2L )L), Gd(z), Fo((ze
−j π

2L )L) · Gd(z), and Gs(z), from top to
bottom.

coefficient symmetry is not considered when computing the arithmetic complexity for either the direct
form or the FRM structure.

The program for the design of interpolation filters with an odd interpolation factor M is shown in
Listing 6.6.

Listing 6.6: Program for the design of interpolation filters with an odd interpolation factor M .

1 M = 7 ; Wt = 0 .001∗ p i ; % T r a n s i t i o n wid th
2 wcT = p i /M−Wt / 2 ; wsT = p i /M+Wt / 2 ;
3 dc = 0 . 0 0 4 ; ds = 0 . 0 0 4 ; d = [ dc , ds ] ;
4 % C o n v e n t i o n a l d i r e c t form
5 [N, Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcT wsT ] , d ) ; N
6 % Dete rmine L when coe . symmetry i s c o n s i d e r e d
7 temp = max ( f l o o r ( 1 / ( 2 ∗M∗ s q r t (2∗M∗Wt / ( 2 ∗ p i ) ) ) + 0 . 5 ) , 1 ) ;
8 L = ( temp+mod ( temp , 2 ) )∗M; L
9 % Dete rmine t h e band edges o f s u b f i l t e r s
10 [ wcFT , wsFT , GEdge ] = FRM_INTERP_ODDL_EDGES( wcT , . . .
11 wsT , L ,M) ;
12 d = d / 2 ;
13 [ N_F , Be , D,W] = HERRMANN_LP_FIR_ORDER( [ wcFT wsFT ] , d ) ;
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14 N_F = N_F−mod ( N_F , 4 ) + 2 % make t h e o r d e r 4 i −2;
15 % A l t e r n a t i v e way t o d e s i g n h a l f −band f i l t e r
16 N_F = N_F / 2 ;
17 [ f , E r r ] = REMEZ_FIR( N_F , [ Be ( 1 ) ; Be ( 2 ) ∗ 2 ; Be ( 4 ) ; . . .
18 Be ( 4 ) ] ,D/ 2 ,W, ’m’ ) ;
19 fo = UP_SAMPLE( f , 2 ) ;
20 foexp = [−( l e n g t h ( fo ) − 1 ) / 2 : ( l e n g t h ( fo ) − 1 ) / 2 ] ;
21 f o j = fo .∗( −1 i ) . ^ foexp ;
22 % Masking f i l t e r
23 [N_G, Be , D,W] = HERRMANN_LP_FIR_ORDER( [ GEdge ( 2 ) . . .
24 GEdge ( 3 ) ] , d ) ;
25 N_G = N_G+mod (N_G, 2 ) % make t h e o r d e r even ;
26 [ g , ErrG ] = REMEZ_FIR(N_G, Be , D,W, ’m’ ) ; ErrG
27 gexp = [−( l e n g t h ( g ) − 1 ) / 2 : ( l e n g t h ( g ) − 1 ) / 2 ] ;
28 gs = g .∗ cos ( wcFT∗gexp / L ) ;
29 gd = 2∗ j ∗g .∗ s i n ( wcFT∗gexp / L ) ;
30 % V e r i f y t h e f r e q u e n c y r e s p o n s e
31 TN = N_F∗L∗16 ;
32 wT = [ l i n s p a c e ( 0 , p i , TN ) ] ;
33 FoL = FREQZ_SYMMETRY( fo , L , wT ) ;
34 FojL = FREQZ_SYMMETRY( f o j , L , wT ) ;
35 Gs = FREQZ_SYMMETRY( gs , 1 ,wT ) ;
36 Gd = FREQZ_SYMMETRY( gd , 1 ,wT ) ;
37 f i g u r e ( 1 ) , s u b p l o t ( 4 , 1 , 1 )
38 PLOT_MAG_Z_LS(wT, FojL , −0 . 6 , 0 . 6 , ’ F_o ^L ( e^{− j \ p i / 2 } ) ’ ) ;
39 s u b p l o t ( 4 , 1 , 2 )
40 PLOT_MAG_Z_LS(wT, Gd , −0.1 , 1 . 1 , ’G_d ’ ) ;
41 s u b p l o t ( 4 , 1 , 3 )
42 PLOT_MAG_Z_LS(wT, FojL .∗Gd , −0 . 6 , 0 . 6 , . . .
43 ’ F_o ^L ( e^{− j \ p i / 2 } e ^{ j \ omega T} ) G_d ’ ) ;
44 s u b p l o t ( 4 , 1 , 4 )
45 PLOT_MAG_Z_LS(wT, Gs , −0.1 , 1 . 1 , ’ G_s ’ ) ;
46 f i g u r e ( 2 )
47 PLOT_MAG_Z_LS(wT, Gs+FojL .∗Gd , −0.1 , 1 . 1 , ’H ’ ) ;

Note that in the above code, the half-band filter F(z) is designed through a wide-band filter, whose
coefficients are the alternate nonzero (and noncenter coefficient) values of the half-band, i.e., by insert-
ing the center coefficient (which is 0.5) and alternate zeros to the wide-band low-pass filter, the required
half-band filter is obtained. This is because for certain half-band filter specifications, the REMEZ_FIR
function may not converge.

In addition, the function FRM_INTERP_ODDL_EDGES in the above code is to obtain the band
edges of subfilters F(z) and G(z). This function can be easily developed according to (6.45) and (6.46),
and is omitted here.

Fig. 6.25 shows the zero-phase responses of the subfilters in the FRM interpolation filter structure.
From top to bottom, they are the responses of filters of Fo((ze

−j π
2L )L), Gd(z), Fo((ze

−j π
2L )L) · Gd(z),
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FIGURE 6.26

The zero-phase response of the overall interpolation filter H(z).

and Gs(z). It is noted that Fo((ze
−j π

2L )L) · Gd(z) has a similar response as that of Fo(z
L)[2Ge(z) − 1]

in the FRM half-band structure. Their roles are also similar. The responses of Fo((ze
−j π

2L )L) · Gd(z)

and Gs(z) are further added to achieve the overall response, shown in Fig. 6.26.

6.5.5.4 Exercise
Develop a program to design an interpolation filter with an even interpolation factor M = 8 using the
FRM technique. The transition width and ripple requirements are the same as those in Example 6.5.5.3.
Find the arithmetic saving of the design compared with the direct-form FIR filter.

6.5.5.5 Two more variants of FRM structures
In [33], two alternative FRM structures are proposed for the design of filters for interpolation and
decimation by a factor of M . In this approach, additional constraints are imposed on the masking filters
in the original FRM structure shown in Fig. 6.12, such that

G2(z) = G1(z) − M

M − 1
G10(z

M) + 1

M − 1
(6.51)

or

G1(z) = G2(z) − M

M − 1
G20(z

M) + 1

M − 1
, (6.52)

where G10(z) and G20(z) are the 0th polyphase components in the polyphase representations of G1(z)

and G2(z), respectively. The relations in (6.51) and (6.52) specify the Class I and Class II FRM inter-
polator/decimator structures. Both classes of FRM structures can be used to design low-pass filters with
a bandwidth of approximately π/M . The transition band may or may not include π/M , depending on
the prototype band edge shaping filter. When the prototype band edge shaping filter F(z) is constrained
to an Mth band filter, the resultant overall filter H(z) is an Mth band filter as well.

The relations given in (6.51) and (6.52) impose further constraints on the selection of l and L in
(6.26) and (6.28). Nevertheless, the available choices are still much more than that available in the
variant structure described in Section 6.5.5.2 (where 2L must be an even or odd integer multiple of M),
and are sufficient to obtain arbitrary frequency selectivity in the filter design and meanwhile achieve
complexity reduction.
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When the masking filters are related to each other as those shown in (6.51) and (6.52), both the band
edge shaping filter and the masking filters can be decomposed into a polyphase structure such that all
filters are working at the lower sampling rate involved in the interpolation and decimation. Moreover,
all the polyphase components of the masking filters share a common part. Utilizing this fact, more
efficient interpolator and decimator structures may be developed.

It is interesting to note that both (6.51) and (6.52) are reduced to G2(z) = 1 − G1(−z) when M = 2;
this relation is the same as that in the half-band FRM structure given in (6.38). In fact, when the transi-
tion band is restricted to include π/M , the proposed approach is a generalization of that in Section 6.5.3
and an Mth band filter is obtained.

Note that although the transition band of the interpolation and decimation filters designed in Sec-
tion 6.5.5.2 is centered at π/M , the resultant filter is not an Mth band filter.

The two variants of FRM structures presented in this section may achieve lower arithmetic com-
plexity than that described in Section 6.5.5.2 when interpolation and decimation filters are designed,
attributed to one or more of the following three merits: (1) the filter may be constrained to an Mth band
filter; (2) more choices of L are available; and (3) all the polyphase components of the masking filters
share a common part.

6.5.5.6 An alternative recursive structure
Besides the above three FRM interpolation/decimation filter structures, a factor of two interpolation and
decimation filters are developed in [34], based on a recursive filter structure introduced in Section 6.5.8.

6.5.6 Filter banks
A two-channel maximally decimated filter bank utilizing the FRM structure is proposed in [35]. In
the diagram of a two-channel filter bank shown in Fig. 6.27, each analysis and synthesis filter of the
proposed technique is realized through a modified FRM structure with the same prototype band edge
shaping filter F(z). The z-transform transfer functions of the analysis and synthesis filters are given by

Hak(z) = F(zL)Gk1(z) + Fc(z
L)Gk2(z),

Hsk(z) = F(zL)Gk1(z) − Fc(z
L)Gk2(z),

for k = 0,1.

FIGURE 6.27

Two-channel maximally decimated filter bank.

In this FRM structure, the original magnitude complementary filter of the prototype band edge
shaping filter, 1 − F(z), is modified to an approximately power complementary filter, i.e., Fc(z) is
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related to F(z) in a form of

Fc(z) = F(−z),

and the filter order is constrained to odd order. In addition, the compression factor L is selected to be
odd and the masking filters are of even order.

While G01(z) and G02(z) are linear-phase low-pass filters, G11(z) and G12(z) are their frequency
shifted versions, obtained by

∣∣∣G11

(
ejωT

)∣∣∣= ∣∣∣G02

(
ej (ωT −π)

)∣∣∣ and
∣∣∣G12

(
ejωT

)∣∣∣= ∣∣∣G01

(
ej (ωT −π)

)∣∣∣ , (6.53)

being linear-phase high-pass filters.
To satisfy the relations in (6.53), there are two ways to relate the masking filters. In the first method,

we select

G11(z) = −G02(−z) and G12(z) = G01(−z),

and the filter bank thus constructed is aliasing-free. In the second method, we select

G11(z) = G02(−z) and G12(z) = G01(−z).

In such a way, the filter bank constructed suffers some aliasing errors, but the arithmetic complexity
may be reduced to achieve the same distortion errors as with the aliasing-free structure.

This technique is further extended to modulated M-channel filter banks by using the analysis and
synthesis filters in the upper branch of the two-channel filter bank as the prototype filters for modulation
[36]. Together with a cosine modulation block and a sine modulation block, a near-perfect reconstructed
M-channel maximally decimated filter bank is developed.

Other FRM structures for filter banks are mainly developed for two-channel filter banks, including
nonuniform filter banks with rational sampling factor [37] and multiplet perfect reconstruction filter
banks [38]. In addition, a nonmultirate fast filter bank is developed in [39] to realize the function
of sliding fast Fourier transform filter bank with low computational complexity, but achieving high
frequency selectivity and passband performance.

6.5.7 Cosine-modulated transmultiplexer
Due to the same constraints on the selection of the compression factor L as that for decimation and
interpolation filters, the prototype band edge shaping filter for an M-band TMUX is not realizable if L

is an integer multiple of M . Unlike the variant structure described in Section 6.5.5.2, an implementation
of an M-band cosine-modulated TMUX (CMT) [40] for

L = 2KaM + M

Kb

, (6.54)

where Ka is a nonnegative integer and Kb is a positive integer, is proposed.
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If only the upper branch in the original FRM structure is used as the prototype filter for the CMT,
the transfer function for the analysis filter becomes

Hm(z) =
N∑

n=0

cm,n

(
f L ∗ g1

)
(n)z−n, (6.55)

where cm,n = 2 cos

[
(2m+1)(n− N

2 )

2M
+ (−1)m π

4

]
for m = 0,1, . . . ,M − 1 and n = 0,1, . . . ,N − 1 and

the term (f L ∗ g1)(n) denotes the convolution between the impulse responses of F(zL) and G1(z).
Thus, F(zL) can be decomposed into Q = 2Kb polyphase components assuming that NF = QKc − 1
with Kc being a positive integer, and G1(z) can be decomposed to 2M polyphase components assuming
that N1 = 2KdM − 1 with Kd being a positive integer. Under the relations of L and M in (6.54) and
cm,(n+2kM) = (−1)kcm,n, the overall polyphase representation of Hm(z) is given by

Hm(z) =
Q−1∑
q=0

⎡
⎣z−LqE

q
F (−zLQ) ×

2M−1∑
p=0

c
m,
(
n+ M

Kb
q
)z−pE

p
G(−z2M)

⎤
⎦ ,

where E
q
F (z) is the qth polyphase component of the prototype band edge shaping filter F(z), given by

E
q
F (z) =

Kc∑
k=0

(−1)Kaqf (kQ + q)z−k,

and Ep
G(z) is the pth polyphase component of the masking filter G1(z) given by

E
p
G(z) =

Kd−1∑
k=0

g1(2kM + p)z−k.

If both branches in the FRM design are used, this decomposition can be applied to the lower
branch, and by enforcing both masking filters to have the same order N1 = N2, the responses of the
two branches can be added together just before the modulation stage.

6.5.8 FRM structure for recursive filters
While FRM structures were originally and mainly developed for the design of sharp FIR filters to
reduce computational complexity, a hybrid IIR and FIR filter structure was proposed for the design of
high-speed recursive digital filters [41,4].

In the proposed structures, the prototype band edge shaping filters are power-complementary IIR
filters, denoted as F(z) and Fc(z), realized as a parallel connection of two all-pass filters, and the
masking filters are linear-phase FIR filters. The prototype band edge shaping filters are expressed as

F(z) = F1(z) − F2(z)

2
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and

Fc(z) = F1(z) + F2(z)

2
,

where F1(z) and F2(z) are even- and odd-order stable all-pass filters. The overall filter order is always
odd for low-pass filters. When the magnitude responses of the power-complementary IIR filter pair
F(z) and Fc(z) are bounded by unity, the overall transfer function is expressed as

H(z) = F(zL)G2(z) + Fc(z
L)G1(z),

where G1(z) and G2(z) are the linear-phase FIR masking filters. The structure of the overall filter is
shown in Fig. 6.28.

FIGURE 6.28

The overall structure of the recursive filter.

In this structure, the all-pass filters F1(z) and F2(z) can be realized in many different ways. The one
used here is the wave digital filter, which makes it possible to maintain stability under finite arithmetic
conditions. In this case, the IIR filter F(z) corresponds to the well-known lattice wave digital filters.
Power-complementary wave digital filters will be further discussed in Section 6.10.

During the optimization of the IIR prototype band edge shaping filter F(z), a prototype Cauer filter
is first designed, and the coefficients of the two all-pass filters F1(z) and F2(z) are computed from the
poles of the Cauer filter.

Since the maximum sample frequency of recursive filters is determined by the ratio of the number
of delay elements and the operational latency in the critical loop of the filter realization (see (6.130)),
this structure introduced L delay elements in its critical loop, resulting in an L-fold increase of the
maximal sampling frequency. The increased maximal sampling frequency can be used to reduce the
power consumption using voltage scaling techniques [42].

Also for this structure we get two cases depending on L. For L = 5,9,13, ..., we get Case A and
the resulting transition band is determined by F(zL). For L = 3,7,11, ..., we get Case B and the tran-
sition band is determined by Fc(z

L). The complexity of F(z) decreases with increasing L, while the
complexity of G1(z) and G2(z) increases with increasing L.

6.5.8.1 Design example
Consider a low-pass filter meeting the following specifications: ωcT = 0.494π rad, ωsT = 0.506π rad,
Amax = 0.2 dB, Amin = 60 dB. The transition band is very small.

The band edges are selected according to Section 6.5.1. We use the program shown in Listing 6.7 to
design the filters. We select the filters F1(z) and F2(z) of orders 4 and 5 and the corresponding periodic
band edge shaping lattice filters with compress factor L = 5. In this case, we get a Case A design.
A corresponding program for Case B and FRM filters using only IIR structure is found in [4].
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We select the passband ripple of the prototype filter to a small fraction of Amax . In this case, we
select A_IIR = 0.01 dB. We get the following orders of the prototype Cauer filter and the masking
filters: NF = 9, NG1 = 25,NG2 = 25. We may use the function REMEZ_FIR to design the FIR filters
G1(z) and G2(z) as two independent low-pass filters. Here, however, we use an optimization routine
FRM_IIR_FIR that is based on a modified version of the Remez exchange algorithm to synthesize the
FIR filters. This routine tries to utilize the different requirements in the periodic band edge shaping
lattice filters. Note that the optimization may take a few minutes, and if a feasible solution is not found,
then the program results in an error.

FIGURE 6.29

Poles and zeros for the ninth-order prototype Cauer filter.

Listing 6.7: Program for the design of arbitrary bandwidth FRM IIR/FIR filters.

1 wcT = 0 .494∗ p i ; wsT = 0 .506∗ p i ;
2 Amax = 0 . 2 ; Amin = 6 0 ; L = 5 ;
3 [ Case , wcFT , wsFT , G2e , G1e ] = FRM_CASES( wcT , wsT , L ) ;
4 Case
5 % S e l e c t A_IIR of p r o t o t y p e Cauer f i l t e r << Amax
6 A_IIR = 0 . 0 1 ; % T y p i c a l l y s e l e c t Amax/ 1 0 o r l e s s
7 N = CA_ORDER_Z( wcFT , wsFT , A_IIR , Amin ) , NF = c e i l (N ) ;
8 NF = NF+1−rem (NF , 2 ) % Make t h e Cauer f i l t e r odd
9 % Find t h e maximal s t o p b a n d a t t . o f t h e Cauer f i l t e r
10 Amin_Max = CA_Amin_Z (NF , wcFT , wsFT , A_IIR )
11 Amin_comp = −10∗ l og10 (1−10^(−Amin_Max / 1 0 ) ) ;
12 [ F , Z , R_ZEROS , P , wsTnew ] = CA_POLES_Z ( wcFT , wsFT , . . .
13 A_IIR , Amin_Max , NF ) ;
14 D e l t a _ p = 1−10^(−Amax / 1 0 ) ; D e l t a _ s = 1 / 1 0 ^ ( Amin / 1 0 ) ;
15 f i g u r e ( 1 ) , PLOT_PZ_Z ( Z , P )
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16 % E s t i m a t e t h e o r d e r o f t h e two masking f i l t e r s
17 AmaxFir = Amax−A_IIR ; x = 10^( AmaxFir / 2 0 ) ;
18 dc = ( x −1 ) / ( x + 1 ) ; ds =(1+ dc ) / 1 0 ^ ( Amin / 2 0 ) ;
19 [NG1, Be , D,W] = HERRMANN_LP_FIR_ORDER( [ G1e ( 2 ) , . . .
20 G1e ( 3 ) ] , [ dc , ds ] ) ; NG1 = NG1+mod (NG1+1 ,2 )
21 [NG2, Be , D,W] = HERRMANN_LP_FIR_ORDER( [ G2e ( 2 ) , . . .
22 G2e ( 3 ) ] , [ dc , ds ] ) ; NG2 = NG2+mod (NG2+1 ,2 )
23 [ g2 , g1 ] = FRM_IIR_FIR ( G2e , G1e , De l ta_p , D e l t a _ s , . . .
24 P , L , NG2, NG1 ) ;
25 LwT = l i n s p a c e ( 0 , L∗pi , 1 0 0 0 ) ; wT = l i n s p a c e ( 0 , p i , 1 0 0 0 ) ;
26 % Dete rmine t h e magn i tude r e s p o n s e s o f t h e I IR f i l t e r
27 [ F2num , F2den , F1num , F1den ] = SORT_LATTICE_POLES_LP_Z ( P ) ;
28 [ F2 , F1 ] = LATTICE_2_H_Z ( F2num , F2den , F1num , F1den , LwT ) ;
29 FM = ( F1−F2 ) / 2 ; FcM = ( F1+F2 ) / 2 ;
30 H_G2 = ZEROAMW( g2 , wT ) ; H_G1 = ZEROAMW( g1 , wT ) ;
31 f i g u r e ( 2 ) , s u b p l o t ( 2 , 1 , 1 )
32 PLOT_MAGNITUDE_Z_dB(wT,FM, pi , 8 0 , ’ − ’ ) ; h o ld on
33 PLOT_MAGNITUDE_Z_dB(wT, H_G2 , pi , 8 0 , ’ H_l_o_w_e_r_B ’ )
34 s u b p l o t ( 2 , 1 , 2 )
35 PLOT_MAGNITUDE_Z_dB(wT, FcM , pi , 8 0 , ’ − ’ ) , ho ld on
36 PLOT_MAGNITUDE_Z_dB(wT, H_G1 , pi , 8 0 , ’ H_u_p_p_e_r_B ’ )
37 f i g u r e ( 3 )
38 H = FM.∗H_G2 + FcM.∗H_G1 ; % The o v e r a l l f i l t e r
39 PLOT_MAGNITUDE_Z_dB(wT, H, pi , 8 0 , ’H’ ) , h o ld on
40 a x e s ( ’ p o s i t i o n ’ , [ 0 . 2 4 0 . 5 0 . 2 5 0 . 2 5 ] ) ;
41 wT = l i n s p a c e ( 0 , wcT , 1 0 0 0 ) ;
42 [ F2 , F1 ] = LATTICE_2_H_Z ( F2num , F2den , F1num , F1den , L∗wT ) ;
43 FM = ( F1−F2 ) / 2 ; FcM = ( F1+F2 ) / 2 ;
44 H_G2 = ZEROAMW( g2 , wT ) ; H_G1 = ZEROAMW( g1 , wT ) ;
45 H = FM.∗H_G2+FcM.∗H_G1 ;
46 PLOT_MAGNITUDE_Z_dB2(wT, H, wcT , 0 . 2 , ’ H’ )

The pole-zero configuration of the prototype Cauer filter is shown in Fig. 6.29, i.e., an odd-order
lattice filter with a transition band equal to L(ωsT − ωcT ) rad. In this case, L = 5 and the order is L

times smaller compared to that of a direct filter design. However, Cauer filters are not very sensitive to
the width of the transition band. Thus, we do not get a significant reduction in the filter order.

The magnitude responses for the lower and upper branches are shown in Fig. 6.30. The overall
magnitude and passband responses for the FRM filter are shown in Fig. 6.31.

6.5.9 2D FRM structure
The extension of the FRM structure to 2D sharp filters is not straightforward. The main difficulty
lies in the generation of complementary band edge shaping filters, whose frequency responses of the
compressed passbands should be separated by stopbands and be able to be masked by the subsequent
masking filters.
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FIGURE 6.30

Magnitude responses for the periodic band edge shaping filters and the masking filters.

FIGURE 6.31

Overall magnitude response for FRM IIR/FIR filters.

A 2D diamond-shaped filter using FRM structure was proposed in [43]. The idea is to divide the
frequency spectrum into four suitably chosen complementary components Rk for k = 1,2,3, and 4, as
shown in Fig. 6.32, in the 2D region

[−π
L
, π

L

]2, for a compression factor of L. These regions are also

defined for the periodic repetitions of the 2D region
[−π

L
, π

L

]2.
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FIGURE 6.32

The four frequency regions for the complementary components of the 2D FRM filter.

These four complementary regions are obtained by four filters F̂k(z1, z2) for k = 1,2,3, and 4. To
make the four filters complementary, an error filter, denoted as Fe(z1, z2), is introduced, such that

4∑
k=1

F̂k(z1, z2) + Fe(z1, z2) = 1. (6.56)

Thus, the four prototype band edge shaping filters, denoted as Fk(z1, z2), are given by

Fk(z1, z2) = F̂k(z1, z2) + Fe(z1, z2)

4
.

Each delay in each dimension of the four prototype band edge shaping filters is replaced by L delays,
and four complementary band edge shaping filters Fk(z

L
1 , zL

2 ) are obtained. The outputs of Fk(z
L
1 , zL

2 )

are then filtered by respective masking filters Gk(z1, z2), and the resulting outputs are summed to form
the final output. The generation of the complementary band edge shaping filters and the overall 2D
diamond-shaped FRM filter structure are shown in Fig. 6.33.

Thus, based on the same principle of 1D FRM filters, the specifications of the prototype band edge
shaping filters and masking filters can be derived for the design procedure.

6.5.10 Summary
As one of the most successful low-computational complexity digital filter structures, the basic FRM
filter consists of an elegant filter network with two branches comprising three subfilters and realizes
frequency responses owning a sharp transition band. The price paid for the high computational saving
is a small increase in the overall filter order. Further developments on the basic FRM structure have



316 Chapter 6 Digital filter structures and their implementation

FIGURE 6.33

The overall filter structure of the 2D diamond-shaped FRM filter.

extended the technique to various areas of digital filters, including but not limited to recursive filters,
multirate filters, filter banks, and 2D filters.

6.6 The analog approximation problem
Frequency-selective filters are specified in the frequency domain in terms of an acceptable deviation
from the desired behavior of the magnitude or attenuation function. Fig. 6.34 shows a typical attenuation
specification for an analog low-pass filter. The variation (ripple) in the attenuation (loss) function in the
passband may not be larger than Amax , and the attenuation in the stopband may not be smaller than
Amin. Usually, the acceptable tolerances are piecewise constant. During the early stages of the filter
design process, it is convenient to use a normalized filter with unity gain, i.e., the minimum attenuation
is normalized to 0 dB. The filter may be provided with the proper gain in the later stages of the design
process. The passband is from 0 to ωc rad/s, the transition band is between ωc and ωs , and the stopband
is from ωs to ∞. No requirement is placed on the attenuation in the transition band.

FIGURE 6.34

Attenuation specification for an analog low-pass filter, Amax = 2 dB, Amin = 40 dB, ωc = 1 rad/s, and ωs =
1.3 rad/s.
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6.6.1 Typical requirements
Passband: The frequency band occupied by the wanted signal is referred to as the passband. In this

band, the ideal requirement for the filter is to provide constant loss and constant group delay so
that the wanted signal will be transmitted with no distortion. The passband frequency and the
acceptable tolerance Amax for an analog low-pass filter span from 0 to ωc rad/s.

Stopband: The frequency bands occupied by the unwanted signals are referred to as the stopbands.
In these bands, the specification merely requires the attenuation relative to the lower limit set for
the stopband to be equal to or greater than some minimum amount. The stopband begins at ωs for
an analog low-pass filter and extends towards infinity. For a digital low-pass filter, the stopband
begins at ωsT and extends to π rad. It is usually of no interest whether the actual filter loss in the
stopband exceeds the specified amount by 1 dB or even 20 dB. Hence, the stopband requirement
has only a lower limit, while the passband has both an upper and lower limit.

Transition band: The transition band is from ωc to ωs . There are no requirements for attenuation in
the transition band. The loss function is a continuous function of frequency and cannot have any
jump discontinuities. For this reason, there must always be some interval separating the edge of
the passband from the edge of the stopband, in which the loss can start from the low value in the
passband to that required in the stopband. The bandwidth allocated to the transition band is one of
the main factors determining the order of the filter needed to meet the specification. Moreover, as
the width of the transition band is decreased, not only do the filter order and complexity increase,
but it also becomes more challenging to meet the specification for the passband. Narrower transi-
tion bands mean that the attenuation has to change more rapidly near the passband edges, and this
causes the passband response to be more sensitive to component losses and component tolerances.

Phase response: A linear-phase or near-linear-phase response is desirable or even required in many
filter applications. However, this is usually specified in terms of the group delay.

Group delay: For the same reason that one cannot get precisely constant loss over a finite band, it
is also not possible to obtain a precisely constant group delay over a finite band with LC filters.
However, it is possible to precisely get a linear phase with filters built with distributed elements
and digital FIR filters. We will later show that the group delay is an important factor in determining
the sensitivity in the passband for error in the circuit elements.

Impulse response: The impulse response is mainly used as a theoretical concept, and the impulse
response is rarely specified. However, in some communication applications, it may be required
that the impulse response is zero at specific time instances.

Step response: In most applications, the frequency domain characteristics such as attenuation and
group delay requirements must be met, but in some cases, additional requirements in the time
domain are used, for example, step response and intersymbol interference requirements.

6.6.2 Standard low-pass approximations
Many filter approximations have been developed to meet different requirements, particularly for analog
filters. The main work has focused on approximations of low-pass filters since high-pass, bandpass, and
bandstop filters can be obtained from low-pass filters through frequency transformations [44,45,10]. It
is also possible to use these results to design digital filters. The classical low-pass filter approximations
(standard approximations) are obtained by exploiting the available tolerances in the passband and stop-
band. We may require that the magnitude function is maximally flat at ω = 0 and/or ω = ∞. We may
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alternatively require that the tolerance band is fully exploited by requiring that the magnitude function
has an equiripple. Hence, combining these requirements, we get four cases. These four cases and some
related approximations can be designed by using the functions in [5].

Butterworth: The magnitude function is maximally flat at the origin, ω = 0, and monotonically
decreasing in both the passband and the stopband. The group delay and variation within the
passband are large. This approximation requires a larger filter order to meet a given specifica-
tion than the filter approximations discussed below. We use for the synthesis BW_ORDER_S.m
and BW_POLES_S.m.

Chebyshev I: The magnitude function has an equal ripple in the passband and decreases monoton-
ically in the stopband. The group delay and the group delay variation within the passband are
somewhat less than for a Butterworth approximation that meets the same attenuation requirement.
A lower filter order is required compared to the Butterworth approximation. We use for the syn-
thesis CH_ORDER_S.m and CH_I_POLES_S.m.

Chebyshev II (inverse Chebyshev): The magnitude function is maximally flat at the origin, de-
creases monotonically in the passband, and has an equal ripple in the stopband. The group delay
is the smallest of the four approximations, and it has the smallest variation within the passband.
The same filter order is required for the Chebyshev I approximation. We use for the synthesis
CH_ORDER_S.m and CH_II_POLES_S.m.

Cauer: The magnitude function has an equal ripple in both the passband and the stopband. The group
delay and its variation are almost as low as for the Chebyshev II approximation. The Cauer filter,
also called an elliptic filter, has the smallest order to meet a given magnitude specification. We use
for the synthesis CA_ORDER_S.m and CA_POLES_S.m.

6.6.3 Comparison of the standard approximations
Comparing the standard approximations Butterworth, Chebyshev I, Chebyshev II, and Cauer filters, we
find that the two latter have lower variations in the group delay. In the literature, it is often claimed
that Cauer filters have a larger variation in the group delay than Butterworth filters and that this is a
valid reason for using the Butterworth approximation. The mistake in this argument is that the two filter
approximations are compared using the same filter order. This claim is obviously incorrect, which is
evident in the following example, since Cauer filters can handle a considerably stricter requirement on
the magnitude function. In addition, the step response for a Cauer filter is also better. The differences
between Chebyshev II and Cauer filters are, however, relatively small; the former has a somewhat
smaller group delay, but the order is larger.

6.6.3.1 Example
Compare the Butterworth, Chebyshev I, Chebyshev II, and Cauer approximations, which meet the same
standard LP specification: Amax = 0.043648 dB, (ρ = 10%), Amin = 60 dB, ωc = 1 rad/s, and ωs =
2.5 rad/s.

As will be further discussed in Section 6.7.4, Amax has been chosen very small in order to achieve
low passband sensitivity, and we may use components with large tolerances ε at the expense of a slightly
higher filter order.

We get the following filter orders with the four standard approximations:
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Butterworth: NB = 10.046 ==> NB = 11,

Chebyshev I and Chebyshev II: NC = 6.3176 ==> NC = 7,

Cauer: NCa = 4.687 ==> NCa = 5.

Note the large difference between the required orders for the standard approximations that meet the
same requirement. The difference tends to increase if the transition band is reduced. Fig. 6.35 shows
the attenuation for the four approximations. The allowed passband ripple is very small, and we are only
interested in that the requirement is met and not in detailed variation inside the passband.

FIGURE 6.35

Attenuation for the four standard approximations.

The attenuation in the transition band and the stopband varies between the different filters. The
Chebyshev II filter has a more gradual transition between the passband and stopband compared with
the Chebyshev I filter, even though they have the same order. The attenuation approaches, in this case,
i.e., odd-order filters, infinity for all of the filters.

Fig. 6.36 shows the corresponding group delays. The difference in the group delay is large between
the different approximations, and the group delay maximum lies above the passband edge ωc = 1 rad/s.
The Butterworth and Chebyshev I filters have a larger group delay in the passband, while the Chebyshev
II and Cauer filters have considerably smaller group delay, and the difference between the latter two
is relatively small. In the literature, it is commonly claimed that the Butterworth filter has the best
group delay properties. This is obviously incorrect and is based on an unfair comparison between the
standard approximations of the same order. According to Fig. 6.36, Chebyshev II and Cauer filters have
considerably lower group delays.

The element sensitivity for an LC filter is proportional to the group delay. The group delays at
the passband edge and the passband variations are shown in Table 6.1. Note that the Chebyshev II
approximation has the smallest variation. In Section 6.7.4, we discuss the effect of the group delay on
the sensitivity of a class of filter structures.

6.6.4 Filters with constant pole radius
Filters with a constant pole radius are particularly important since their digital counterpart can easily be
designed and implemented. Note that in an Nth-order filter, there are 2N+1 degrees of freedom. Here we
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FIGURE 6.36

Group delays for the four approximations.

Table 6.1 Group delays.

τg(ωc) τg(ωc) − τg(0)

Butterworth 8.27503 2.57287

Chebyshev I 11.4526 6.25390

Chebyshev II 4.36458 1.523593

Cauer 6.27324 3.31994

have restricted the poles to have the same radius. Hence, there are only N+1 degrees of freedom left once
the pole radius has been set. That is the problem of finding simple digital filter coefficients and being
significantly simplified. The characteristic functions for these filters obey the following bireciprocal
property:

C(s) = 1

C(
ω0
s

)
, (6.57)

where

|H(jω)|2 = 1

1 + ε2|C(jω)|2 . (6.58)

The magnitude function has odd symmetry around ω0 = √
ωcωs . The symmetry constraint in

(6.114) forces the ripples in the passband and stopband of the filter to be the same. Hence, a filter
with large stopband attenuation will have a very small passband attenuation. We have

Amax = 10log(
100.1Amin

100.1Amin − 1
). (6.59)

For example, with Amin = 60 dB we get Amax = 4.343 10−6 dB. Only Butterworth and Cauer
filters can have a constant pole radius and obey the symmetry constraint in (6.57). We are mainly
interested in the latter, which can be designed using the functions CA_CONST_R_ORDER_S.m and
CA_CONST_R_POLES_S.m.
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6.6.5 Frequency transformations
Optimal high-pass filters can be derived from an optimal low-pass filter using frequency transformations
[44,45,10,4]. However, the frequency transformations yield suboptimal bandpass and bandstop filters.
Optimal bandpass and stopband filters require more advanced methods [44,45,10,4,5].

6.7 Doubly resistively terminated lossless networks
Passive LC filters belong to the oldest implementation technologies, but they still play an essential role
since they are used as prototypes to design advanced frequency-selective filters. However, a drawback
with LC filters is that it is difficult to integrate resistors and coils with sufficiently high quality in inte-
grated circuit technology. LC filters are, for this reason, not well suited for systems that are implemented
in an integrated circuit.

A more important aspect is that LC filters are used as a basis for realizing high-performance
frequency-selective filters. This is the case for the design of mechanical, active, discrete-time, and SC
filters and digital filters. The main reason is that the magnitude function for a well-designed LC filter
has low sensitivity in the passband for variations in the element values in the lossless network.

6.7.1 Maximal power transfer
To explain the excellent passband sensitivity properties of correctly designed LC filters, we first con-
sider the power transferred from the source to the load in the circuit shown in Fig. 6.37. A lossless
reciprocal network (two-port) can be realized using only lossless circuit elements, e.g., inductors, ca-
pacitors, transformers, gyrators, and lossless transmission lines. However, these filters are often referred
to as LC filters.

The maximal power that can be transferred to the load, which occurs when the input impedance
Z(jω) to the lossless two-port equals Rs , is

PLmax = |Vin|2
4Rs

. (6.60)

FIGURE 6.37

Doubly resistively terminated lossless network.

The ratio of the output power and the maximal output power is

Pout

Poutmax

= 4Rs

RL

∣∣∣∣Vout (jω)

Vin (jω)

∣∣∣∣
2

≤ 1, (6.61)
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where Vin (jω) is a sinusoidal input signal. An important observation is that the power that the signal
source can deliver to the load is limited. The upper bound for the maximal power transferred explains
why filter structures can have low element sensitivity. Note that a singly terminated network has no
such limit, and the passband sensitivity is much higher.

We define the frequency response as the ratio between input and output voltages, i.e., the relation
between signal quantities and corresponding physical signal carrier, according to

H(jω) =
√

4Rs

RL

Vout (jω)

Vin (jω)
. (6.62)

It is convenient to normalize the magnitude response to |H(jω)| ≤ 1.

6.7.2 Reflection function
Note that the signal source shown in Fig. 6.37 does not deliver maximal power for all frequencies since
the input impedance to the reactance network is in general not equal to Rs . This can be interpreted as a
fraction of the maximally available power being reflected back to the source. The relationship between
the power that is absorbed in RL and the power that is reflected back to the source is illustrated in
Fig. 6.38, i.e., we have

PL

PLmax

+ Pr

PLmax

= 1. (6.63)

Feldtkeller’s equation, which is based on the assumption that the source delivers constant power,
relates the power delivered to the load and the power reflected back to the source using the reflection
function, ρ (jω). We have

4Rs

RL

|H (jω)|2 + |ρ (jω)|2 = 1. (6.64)

The reflection function is defined as

ρ (jω) = Z (jω) − Rs

Z (jω) + Rs

, (6.65)

where Z (jω) is the input impedance to the lossless network in Fig. 6.37. The magnitude of the reflec-
tion function will be small in the passband. We will later show that the reflection function is a key to
designing low-sensitivity filter structures. Note that frequencies of maximum power transferred are the
same at the zeros of the reflection function.

6.7.3 Element sensitivity
A measure of sensitivity to a parameter x is the relative sensitivity of the magnitude function

|H(jω)|
Sx

=
∂|H(jω)|
|H(jω)|

∂x
x

. (6.66)
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FIGURE 6.38

Transferred and reflected power.

It is difficult to find a simple and good measure of how the attenuation changes when several circuit
elements vary at the same time. The reason for this is that the influence of errors in different element
values interacts. In fact, for a doubly resistively terminated reactance network, we will demonstrate that
they tend to cancel. We shall therefore use and interpret sensitivity measures according to (6.66) with
care. Furthermore, it is not easy to compare different filter structures fairly.

The sensitivity of, for example, the magnitude function to a circuit element, x, is a function of the
angular frequency. The sensitivity in the passband can be determined from the derivative of Feldtkeller’s
equation to an arbitrary circuit element, x. We get

|H(jω)|
Sx

= − RL

4Rs

∣∣∣∣ ρ(jω)

H(jω)

∣∣∣∣ |ρ(jω)|
Sx

. (6.67)

For a doubly resistively terminated LC filter, we have

|ρ(jω)| =
√

100.1Amax − 1, (6.68)

where Amax is the acceptable ripple in the passband. Hence, the magnitude of the reflection function,
as well as the sensitivity will be small in the passband if Amax is small.

Alfred Fettweis showed in 1960 that the sensitivity becomes minimal if the filter is designed for
maximal power transfer at several angular frequencies in the passband. At these angular frequencies,
the reflection function ρ (jω) is zero, since input impedance to the network in Fig. 6.37 is Z (jω) = Rs .
The sensitivity at these frequencies is, therefore, according to (6.67), zero. If Amax is small, both the
reflection coefficient according to (6.65) and the magnitude of the reflection function |ρ (jω)| according
to (6.68) will be small throughout the passband. Hence, the sensitivity will be small. If the ripple is
decreased in the passband, the sensitivity is also decreased.

A doubly resistively terminated LC filter with low element sensitivity can also be realized through
the following reasoning. Irrespective of if the element value is increased or decreased from its nominal
value, PL will decrease since PL = PLmax for the nominal element value, since the derivative is zero
where the magnitude function has a maximum, i.e., for ω = ωk with nominal element values. If there
are many angular frequencies, ωk , with maximal power transfer, the sensitivity will be low throughout
the passband. This line of reasoning is referred to as Fettweis–Orchard’s argument [46,10].
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6.7.4 Errors in the elements in doubly terminated filters
Fig. 6.39 shows the typical deviation in the attenuation for doubly resistively terminated LC filters
due to errors in the reactive elements. The sensitivities to Rs and RL are proportional to the reflection
function. Hence, the sensitivities are small in the passband since |ρ (jω)| � 1 and equal zero for the
frequencies at maximal power transfer. In addition, the errors will essentially appear as a small change
in the gain of the filter and not affect the frequency selectivity.

FIGURE 6.39

Deviation in the attenuation due to element errors.

It can be shown that the deviation in the passband attenuation, as shown in Fig. 6.39, for a doubly
resistively terminated filter [47,4] is

	A(ω) ≤ 4.343ε
|ρ(jω)|

|H(jω)|2 ωτg(ω), (6.69)

where ε = |	L/L| = |	C/C| represent the uniformly distributed errors in the inductors and the capaci-
tors, i.e., (1 − ε)L ≤ L ≤ (1 + ε)L, etc. It can be shown that 	A(ω) is proportional to the electric and
magnetic energy stored in the capacitors and inductors and that (6.69) holds for commensurate length
transmission line filters [47]. The deviation will, according to (6.69), be largest for frequencies where
ωτg(ω) is largest since the reflection function, |ρ (jω)|, is small and |H(jω)| � 1 in the passband.
Hence, a doubly resistively terminated filter with 3-dB ripple in the passband is significantly more sen-
sitive to element errors than a filter with a smaller passband ripple, e.g., 0.01 dB. Thus, it is often better
to design a filter with a small ripple at the expense of a slightly higher filter order. Note that (6.69) is not
valid for singly resistively terminated filters. The effect on the attenuation of lossy reactive elements is
discussed in [45,10]. However, this is not an issue for the wave digital filters.

6.7.4.1 Example
Consider a fifth-order Chebyshev I filter with Amax = 0.5 dB, Amin = 42 dB, ωc = 1 rad/s, and ωs =
2 rad/s. We assume that the components’ errors are uniformly distributed with ε = ±1%.

Fig. 6.40 shows the deviations in the attenuation in the passband and stopband and the bound on the
deviation according to (6.69).

As shown, a significant number of filters do not meet the specification since the design margin is
very small. Therefore, in practice, a design margin should be allocated to the two bands and to the
band edges [48,10,4]. The deviation increases towards the passband edge while it is insignificant at low
frequencies. Moreover, the sensitivity at the band edge is large, and the cutoff frequency is sensitive to
component errors.
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FIGURE 6.40

Deviation in the passband attenuation (top), bound on the attenuation (middle), and deviation in the stopband
attenuation (bottom).

The maximum deviation due to component errors for the filters in Example 6.6.3.1 is shown in
Table 6.2.

Table 6.2 Maximum passband devi-
ation of the attenuation.

�A(ω) according to (6.69)
Butterworth 3.63010 ε dB

Chebyshev I 5.02407 ε dB

Chebyshev II 1.91466 ε dB

Cauer 2.75195 ε dB

Using a Chebyshev II or Cauer filter instead of a Butterworth filter reduces, in the case, the group
delay with a factor of 1.89 and 1.31, respectively. Hence, the component tolerances can be increased
with the same factor. An additional improvement of factor 2 to 3 can be obtained using a diminishing
ripple approximation that allocates a larger design margin and reduces the sensitivity at the upper part
of the passband. Analog components with large tolerances are considerably cheaper than those with
small tolerances. In the corresponding wave digital filter, the multiplication with the filter coefficients
becomes simpler and dissipates less power. In addition, the number of components is fewer, 9 and 7,
compared to 13 for Butterworth. Therefore it is essential to use an approximation with small group
delay. Cauer is often the preferred approximation since the required order is significantly lower than
for Chebyshev II, and the group delay is almost as low.

The conclusion is that Cauer is the best approximation in most cases, i.e., when we have require-
ments on both the attenuation and group delay. In addition, the Cauer approximation yields an LC filter
with fewer components and almost as low sensitivity to errors in the element values as Chebyshev II
filters. Finally, we find that classical design recommendations are not always the best.
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6.7.5 Filters with diminishing ripple
Due to deviations in the attenuation caused by errors in the element values, a part of the allowed ripple
in the passband, Amax , must be reserved to allow for errors in the component values. Therefore, the
filter must be synthesized with a design margin, i.e., with a ripple, which is less than required by the
application. According to (6.69), the deviation is smaller for low frequencies and increases towards
the passband edge. In practice, however, to simplify the synthesis, the design margin for the standard
approximations is distributed evenly in the passband, even though the margin will not be exploited
for lower frequencies. In order to exploit the allowed passband ripple better, we may let the reflection
function |ρ (jω)| of the synthesized filter decrease at the same rate as the other factors in �A(ω)

increase so that A(ω) + �A(ω) ≤ Amax , as shown in Fig. 6.40. The passband ripple will decay towards
the passband edge, and the corresponding LC filter can be implemented with components with larger
tolerances, i.e., the filter can be implemented with a lower overall cost. The group delay of a filter with
diminishing ripples is slightly smaller than for the original filter. An additional advantage is that this
will reduce the thermal noise as well [49]. The acceptable range for selecting the filter coefficients in
the corresponding wave digital filter will be larger.

6.7.5.1 Example
Consider the seventh-order Cauer filter with Amax = 0.177287 dB, ρ = 20%, Amin = 60 dB, ωc =
1 rad/s, and ωs = 1.5 rad/s shown in Fig. 6.41. The “minimum” filter order is N = 5.979. By increasing
the order to N = 7, the error tolerance can be increased to ε = 0.043. Hence, the room for the devi-
ation in the circuit elements is significantly increased and this allows the multiplier coefficients in the
corresponding digital filter to be more roughly quantized.

FIGURE 6.41

Passband for a seventh-order Cauer filter with diminishing ripple (top) and error bound (bottom).
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Fig. 6.42 shows the overall passband deviation bound and the overall attenuation. We get Amax =
0.11717 dB and Amin = 64.8222 dB.

FIGURE 6.42

Overall passband deviation bound for a seventh-order Cauer filter with diminishing ripple, A(ω) + �A(ω) ≤
Amax (top), and overall attenuation (bottom).

6.8 Design of doubly resistively terminated analog filters
Instead of using expensive components with low tolerances, we can compensate for an increase in the
tolerance factor, ε, i.e., using components with larger tolerances, using some or all of the following
possible trade-offs:

• Use a doubly resistively terminated reactance network that is designed for maximal power transfer,
i.e., (6.69) is valid.

• Reduce |ρ (jω)| by reducing the passband ripple, Amax , of the filter more than required by the
application. However, this requires that the filter order is increased. We may use a few more but
cheaper components to reduce the overall cost of the implementation.

• Use an approximation with low group delay, i.e., Chebyshev II and Cauer filters are preferred over
Butterworth and Chebyshev I filters.

• Use an approximation with a diminishing ripple.

6.8.1 Ladder structures
LC ladder structures can be used to realize filters with transfer functions with zeros on the jω-axis.
Ladder structures cannot realize zeros in the right-hand side of the s-plane, i.e., only minimum-phase
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transfer functions can be realized. Doubly resistively terminated ladder structures have low element
sensitivity in the passband, as discussed above, and relatively small sensitivity in the stopband.

6.8.1.1 Structures for low-pass filters
Figs. 6.43 and 6.44 show ladder structures of T and π types that can realize low-pass filters without
finite zeros, respectively. T and π type refer to the leftmost stage of the ladder. These ladder structures
can realize Butterworth and Chebyshev I low-pass filters.

FIGURE 6.43

Nth-order T ladder structure for low-pass filters without finite zeros.

FIGURE 6.44

Nth-order π ladder structure for low-pass filters without finite zeros.

Figs. 6.45 and 6.46 show ladder structures that can realize transfer functions with finite zeros, e.g.,
Chebyshev II and Cauer filters.

FIGURE 6.45

Nth-order T ladder structure with finite zeros.

There are two main methods for creating transmission zeros. The best method is to use series and
parallel resonance circuits in the shunt and series arms in a ladder structure, respectively. The transmis-
sion zeros are created by reflecting the signal at the resonance circuits back to the source. The stopband
sensitivity will be low if the transmission zeros are created by reflection. A zero pair on the jω-axis
is determined by only two elements. The passband sensitivity and the ratio of the largest and smallest
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FIGURE 6.46

Nth-order π ladder structure with finite zeros.

element values depend on the ordering of the transmission zeros. For low-pass filters, minimal sensi-
tivity is obtained if the transmission zeros closest to the passband edge are positioned in the center of
the ladder structure. The positioning of the zeros is very essential in narrow-band bandpass filters to
optimize the dynamic signal range.

In lattice filters, which will be discussed in Section 6.8.2, the transmission zeros are created by a
cancelation. In fact, lattice filters have low passband sensitivities but very poor stopband sensitivities.
Therefore, the lattice structure is useful for piezoelectric and ceramic resonator filters: Lattice refer-
ence filters are suitable for wave digital filters since the element errors corresponding to binary filter
coefficients are fixed.

We conclude that creating transmission zeros by using reflection at the shunt or series arms is a
superior method compared to signal cancelation or dissipation.

A singly resistively terminated reactive network does not adhere to Feldtkeller’s equation, and the
power transferred is either zero or upwards unbounded. Furthermore, it is well known that singly ter-
minated filters are much more sensitive than doubly terminated filters. Hence, singly terminated filters
are not recommended as reference filters.

6.8.1.2 Design of ladder structures
Doubly terminated ladder structures are generally designed by using the insertion loss method. This
method involves long, complicated, and numerically ill-conditioned calculations, which must be done
by a computer. Two exceptions are the Butterworth and Chebyshev I low-pass filters for which ana-
lytical solutions have been found. See Refs. [10,4] for details on the synthesis of ladder structures as
well as the design of high-pass, bandpass, and bandstop LC filers. Efficient MATLAB functions for the
synthesis of ladder filters have been implemented in the toolbox [5]. For example, the MATLAB script
in Listing 6.8 determines the component values in a T ladder.

Listing 6.8: Program for designing ladder structures of Cauer type.

1 Wc = 20000 ; Ws = 74000 ; r = 0 . 1 5 ; Amax = −10∗ l og10 (1− r ^ 2 ) ;
2 Amin = 4 0 ; Rs = 5 0 ; RL = 5 0 ;
3 Ladder = 0 ; % 1 f o r T l a d d e r and 0 f o r a p i l a d d e r
4 N = CA_ORDER_S(Wc, Ws, Amax , Amin ) ;
5 N = 5 ; % S e l e c t an i n t e g e r f i l t e r o r d e r
6 [G, Z , R_ZEROS , P , Wsnew ] = CA_POLES_S (Wc, Ws, Amax , Amin ) ;
7 [ L , C , Rs , RL , W0, K] = CA_LADDER(G, Z , R_ZEROS , . . .
8 P , Wc, Ws, RS , RL , Ladder ) ;
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6.8.1.3 Example
Determine the element values in a Cauer filter with ωc = 20 krad/s, ωs = 74 krad/s, and ρ = 15%,
which correspond to Amax = −10 log(1 − ρ2), Amin = 40 dB. Use Rs = RL = 50 Ω.

We use the program in Listing 6.8.
We get:
C1 = 1.0058733 µF,
L2 = 2.9753089 mH, C2 = 0.1776245 µF, ω02 = 43.499325 krad/s,
C3 = 1.58170022 µF,
L4 = 2.1813867 mH, C4 = 0.5301041 µF, ω04 = 29.407160 krad/s,
C5 = 0.7623550 µF.

6.8.2 Analog lattice structures
Analog lattice structures can be used to derive digital filter structures with low round-off noise, a high
degree of parallelism, and modular circuitry that is suitable for digital implementation. In addition, the
problems associated with unstable and inaccurate element values are not present in digital filters since
the coefficients are fixed binary values.

Fig. 6.47 shows a symmetric analog lattice filter with the lossless reactances X1 and X2 and Rs =
RL. An analog lattice filter is in practice unusable, because of its high sensitivity in the stopband,
except if the reactances are realized by highly stable and accurate components, for example, quartz and
ceramic resonators. In fact, due to the high stopband sensitivity, the lattice structure is often used as
a measuring device. However, lattice filters, which are designed for maximal power transfer, have low
coefficient sensitivity in the passband.

FIGURE 6.47

Analog lattice filter.

The transfer function for a lattice filter is

H(s) = (R/X1 + 1)(R/X2 + 1)

R/X1 − R/X2
. (6.70)

6.8.2.1 Wave description of two-ports
Instead of using voltages and currents to describe electrical networks, it is convenient to use a linear
combination. One such linear combination is voltage waves. An impedance Z is usually described by
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the ratio Z = V1/I1, but it can also be uniquely described using voltage waves, i.e.,

{
A1 = V1 + RI1,

B1 = V1 − RI1,
(6.71)

where R is a positive constant. Other possibilities are, for example, current waves and power waves
[7,4]. The latter is often used to describe distributed networks.

Consider the lattice structure shown in Fig. 6.48, where we have added a second optional input
signal source.

FIGURE 6.48

Symmetric analog lattice filter.

The lossless reciprocal two-port of the lattice structure can be described by the incident (A1 and A2)
and reflected (B1 and B2) voltage waves

{
A1 = V1 + RI1 = Vin1,

B1 = V1 − RI1
(6.72)

and {
A2 = V2 + RI2 = Vin2,

B2 = V2 − RI2.
(6.73)

We define the (voltage wave) scattering matrix by

[
B1

B2

]
=
[

s11 s12
s21 s22

][
A1

A2

]
= S

[
A1

A2

]
. (6.74)

The scattering matrix for a reciprocal two-port is symmetric if s11 = s22 and s12 = s21 and antimetric
if s11 = -s22 and s12 = s21. Here we are interested in the symmetric case.

We get after elimination of voltages and currents in (6.73) through (6.74)

{
2B1 = S1 (A1 − A2) + S2 (A1 + A2) ,

2B2 = S1 (A2 − A1) + S2 (A1 + A2) ,
(6.75)
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where

S1 = X1 − R

X1 + R
, (6.76)

S2 = X2 − R

X2 + R
(6.77)

are the reflectance functions for X1 and X2, respectively. Note that S1 and S2 are all-pass functions if
X1 and X2 are reactances. We can rewrite (6.75) as

⎧⎨
⎩ B1 = S2+S1

2 A1 + S2−S1
2 A2,

B2 = S2−S1
2 A1 + S2+S1

2 A2,
(6.78)

from which it follows that

s11 = S2 + S1

2
, (6.79)

s21 = S2 − S1

2
. (6.80)

The scattering parameter s21 (s) corresponds to the transfer function H (s) and s11 (s) corresponds to the
reflection function ρ(s). Feldtkeller’s equation can be expressed in terms of the scattering parameters
s11 and s21 as

|s11|2 + |s21|2 = 1. (6.81)

Hence, s11 and s21 are power-complementary transfer functions. Fig. 6.49 shows the wave-flow
diagram for the lattice filter. Note that the filter consists of two all-pass filters in parallel and that the
two outputs are obtained by adding and subtracting the outputs of the all-pass filters. The normal output
is B2. Only odd-order low-pass filters can be realized using a lattice structure, i.e., s21 is odd. Hence,
S1 and S2 are odd (even) and even (odd), respectively. See [50,51,4,5] on how to select S1 and S2 for
more general cases.

6.8.3 Realization of lossless one-ports
The reflectance functions S1 and S2 correspond according to (6.76) and (6.77) to the reactances X1 and
X2. A reactance X(s) can be realized in several canonic ways; see [10] for more design details. For
example, Foster I and II realizations are shown in Fig. 6.50. Alternative realizations are Cauer I and II
ladders, which are shown in Fig. 6.51.

6.8.3.1 Richards’ structures
An arbitrary Nth-order reactance X(s) can be realized by N lossless commensurate length transmission
lines using a Richards’ structure, which is shown in Fig. 6.52. The structure is terminated with either a
short circuit or an open circuit.
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FIGURE 6.49

Wave-flow diagram for a lattice filter.

FIGURE 6.50

Foster I (upper) and II (lower) structures.

FIGURE 6.51

Cauer I (upper) and II (lower) structures.
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FIGURE 6.52

Realization of an Nth-order reactance.

6.8.3.2 Example
Determine the element values in an analog lattice structure with the reactances realized by Cauer I
ladder or Richards’ structures when Amax = 0.2 dB, Amin = 60 dB, ωc = 1 rad/s, ωs = 2 rad/s, and R

= 1 Ω using the program shown in Listing 6.9.
We find that a fifth-order Cauer filter meets the requirements. The gain constant, zeros, and poles

are
G = 0.008905489,
Z = ± 3.114263i, ± 2.00868528i, ∞,
P = −0.367886 ± 0.6978531i, −0.118784 ±1.044093i, −0.5071094.

Listing 6.9: Program for the design of lattice structures.

1 Wc = 1 ; Ws = 2 ; Amax = 0 . 2 ; Amin = 6 0 ;
2 N = CA_ORDER_S(Wc, Ws, Amax , Amin )
3 N = 5 ;
4 [G, Z , R_ZEROS , P , wsnew ] = CA_POLES_S (Wc, Ws, Amax , Amin ,N)
5 [ S1num , S1den , S2num , S2den ] = SORT_LATTICE_POLES_LP_S ( P ) ;
6 f i g u r e ( 1 ) , s u b p l o t ( 1 , 2 , 1 ) , xmax = 1 ; xmin = −2; ymax = 2 ;
7 PLOT_PZ_S(−S1den , S1den , Wc, Ws, xmin , xmax , ymax ) ;
8 s u b p l o t ( 1 , 2 , 2 )
9 PLOT_PZ_S(−S2den , S2den , Wc, Ws, xmin , xmax , ymax ) ;
10 f i g u r e ( 2 ) , s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 0 8 0 . 4 0 . 9 0 0 . 5 ] ) ;
11 omega = l i n s p a c e ( 0 , 10 , 1 0 0 1 ) ;
12 Hodd = PZ_2_FREQ_S ( 0 . 5 , S1num , S1den , omega ) ;
13 Heven = PZ_2_FREQ_S ( 0 . 5 , S2num , S2den , omega ) ;
14 A t t = MAG_2_ATT( Heven−Hodd ) ;
15 PLOT_ATT_S ( omega , A t t ) , a x i s ( [ 0 , 10 , 0 , 8 0 ] ) ;
16 G = 1 ;
17 [Xnum , Xden ] = S_2_Z (G, S1num , S1den ) ;
18 [ L , C , K] = X_CAUER_I (Xnum , Xden )
19 [Xnum , Xden ] = S_2_Z (G, S2num , S2den ) ;
20 [ L , C , K] = X_CAUER_I (Xnum , Xden )

The scheme of splitting an odd-order low-pass transfer function into two all-pass sections is as
follows:

• Assign the real pole to S1 and remove it from the set of poles. Note that only odd-order low-pass
and high-pass filters and even-order bandpass and stopband filters are feasible.
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• Next, assign to S2 the pole pair with the smallest angle between the negative real axis and the vector
from the origin to the positive pole and remove the pole pair from the set of poles.

• Continue in the same way by alternating assigning the remaining pole pair with the smallest angle
to S1 and S2 until all poles have been assigned.

• The two all-pass filters are obtained by adding the zeros according to sz ← −sp, that is, each pole
has a corresponding zero but in the right-hand side half-plane. This is done in line 5 by the function
SORT_LATTICE_POLES_LP_S.

• Determine the reflectance functions from the all-pass functions.
• Finally, select suitable realizations of the two reactances.

The corresponding pole-zero configurations are shown in Fig. 6.53.

FIGURE 6.53

Poles and zeros for S1 (odd) and S2 (even).

In lines 18 and 20, the reactances X1 and X2 corresponding to the reflectances S1 and S2 are com-
puted, and in lines 19 and 21 the element values are computed. Note that in lines 19 and 21, an infinite
capacitor represents a short circuit, while K = 2 or 9 represents series inductors and shunt capacitors,
respectively. See X_CAUER_I for details.

We get for X1 L1 = 1.34286, C2 = 1.575207, L3 = 0.8442389.
We get for X2 L1 = 1.359117, C2 = 1.182268.
Fig. 6.54 shows the corresponding ladder structures.
The reactances in the analog lattice structure can also be realized by Richards’ structures. We there-

fore replace lines 18 and 20 in Listing 6.9 with

18 [R, K, RL] = RICHARDS_REACTANCE_S(Xnum, Xden)
20 [R, K, RL] = RICHARDS_REACTANCE_S(Xnum, Xden)

which yields
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FIGURE 6.54

Cauer I ladders for S1 (odd) and S2 (even).

R1 = 1.705221, R2 = 0.2353787, R3 = 0.246502, and RL = 0 (termination)

and

R1 = 2.2049488, R2 = 1.372225, and RL = Inf (termination).

We may mix different realizations of the reactances and Foster, Cauer, and Richards’ structures.
Hence, there exist a larger number of realization alternatives.

6.8.4 Commensurate length transmission line networks
In a commensurate length transmission line network, all transmission lines have a common electri-
cal propagation time. Commensurate length transmission line networks constitute a particular case of
distributed element networks that can easily be designed by mapping to a lumped element structure,
which can be designed using common analytical or computer-aided tools. This mapping is based on a
one-to-one mapping between the LC network and the transmission line network expressed in terms of
a complex frequency variable, Richards’ variable, �. Lossless commensurate length transmission lines
can be used to build low-sensitivity filters.

FIGURE 6.55

Transmission line.

A commensurate length transmission line with length d is illustrated in Fig. 6.55. The voltage and
current at various positions along the line can be described by an incident and a reflected wave. Under
stationary conditions, we have {

V (x) = Ae−γ x + Beγx,

I (x) = 1
Z0

(
Ae−γ x − Beγx

)
,

(6.82)
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where A and B are constants which can be determined by the boundary conditions. For example, V1 =
V (0) and I1 = I (0). Furthermore, we have

γ 2 = (r + jωl) (g + jωc) (6.83)

and

Z2
0 = r + jωl

g + jωc
, (6.84)

where r, l, g, and c are the primary constants for the resistance, inductance, conductance per unit length,
and capacitance per unit length, respectively, γ is the propagation constant, and Z0 is the characteristic

impedance, which is a real-valued positive constant, Z0 = R =
√

l
c
, for lossless transmission lines and

is therefore sometimes called characteristic resistance.

6.8.5 Richards’ variable
Commensurate length transmission line filters constitute a particular case of distributed element net-
works that can easily be designed by mapping them to an LC structure. This mapping involves Richards’
variable, which is defined as

� = ssT − 1

ssT + 1
= tanh

(
sT

2

)
, (6.85)

where � = � + j� and T is the propagation time for a wave through the transmission line and back.
Richards’ variable is a dimensionless complex-valued variable. The real frequencies in the s- and �-
domains are related by

� = tan

(
ωT

2

)
. (6.86)

Note the similarity between the bilinear transformation and Richards’ variable. Commensurate
length transmission line filters have the same periodic frequency responses as digital filters. Substi-
tuting Richards’ variable into the chain matrix for a transmission line, we get [4]

K = 1√
1 − �2

[
1 Z0�
�
Z0

1

]
. (6.87)

The matrix in (6.87) has element values that are rational functions in Richards’ variable, except
for the square-root factor. However, this factor can be handled separately during the synthesis. The
synthesis procedures (programs) used for LC design can therefore be used with small modifications to
synthesize commensurate length transmission line filters.

6.8.6 Unit elements
The transmission line filters of interest are, with a few exceptions, built using only one-ports. At this
stage, it is, therefore, interesting to study the input impedance of the one-port shown in Fig. 6.56.
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A lossless transmission line described by (6.87) is called a unit element. The input impedance to a unit
element, which is terminated by the impedance ZL, can be derived from (6.87).

FIGURE 6.56

Terminated transmission line. UE, unit element.

We get the input impedance to a transmission line, with characteristic impedance Z0 and loaded
with an impedance ZL, as

Zin (�) = ZL + Z0�

Z0 + ZL�
. (6.88)

We are interested in the input impedance of a lossless transmission line with characteristic
impedance Z0 = R that is terminated by an impedance in the following three cases.

6.8.6.1 ZL = Z0 (matched termination)
For the case where ZL = Z0, we have according to (6.88)

Zin = R. (6.89)

Hence, if we match the unit element and the load, an incident wave to the load will not be reflected.

6.8.6.2 ZL = ∞ (open-ended)
We get

Zin = R

�
. (6.90)

Hence, an open-ended unit element can be interpreted as a new kind of capacitor, i.e., a �-plane capac-
itor with the value 1/R.

6.8.6.3 ZL = 0 (short-circuited)
A short-circuited unit element has the input impedance

Zin = R�, (6.91)

which can be interpreted as a �-plane inductor with the value R.
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6.9 Design and realization of IIR filters
In the case of IIR filters, there are many design options available. For complex and nonstandard re-
quirements, the frequency response is often determined directly in the z-domain using computer-based
optimization methods [4,5].

For frequency-selective filters with standard requirements, i.e., filters with a passband that approx-
imate a constant gain in the passband, it is favorable to employ the vast available knowledge of the
design of analog filters. There are several advantages of this approach, which are illustrated in Fig. 6.1.

• Accurate numerical algorithms have been developed for analog filters [44,52,10,5].
• Classical analog attenuation approximations can be converted using the bilinear transformation to

their digital counterparts. The bilinear transformation [1,2,3,4,5] between the s- and z-domains is

s = 2

T

z − 1

z + 1
. (6.92)

Optimal high-pass filters can be designed by frequency transformation of an optimal low-pass fil-
ter. Near-optimal bandpass and bandstop filters can also be designed by frequency transformations.
However, we will take an indirect route that will yield a low-sensitivity digital filter algorithm.

• Once the analog transfer function, H(s), is determined, it is realized using an LC filter structure, e.g.,
a ladder structure. We will later show that a properly designed LC filter will have optimal element
sensitivity in the passband. Unfortunately, this structure is not possible to simulate in the z-domain
because delay-free loops occur.

• We use an analogy between an LC network and a commensurate length transmission line network
to circumvent this problem. The latter contains sources, resistors, and lossless transmission lines of
equal length. The transmission line network has a periodic frequency response, and there is a one-
to-one mapping between the continuous-time transmission line network and its digital counterpart.
We will later discuss this in more detail.

• The digital algorithm is obtained using a wave description, i.e., wave digital filters [53,8,7], consist-
ing of a linear combination of voltages and current in the analog network. This allows us to simulate
power in the analog filter, which we later will show is a necessity to obtain a low-sensitivity algo-
rithm.

• Moreover, the concept of pseudopower in the digital domain allows us to suppress parasitic oscilla-
tions and obtain a robust realization.

Therefore, we will describe various steps in the design process, illustrated in Fig. 6.1, and options the
designer has to minimize the implementation cost.

6.10 Wave digital filters
A wave digital filter is derived from an analog reference filter. The relations between the wave digital
filter, the corresponding reference filter, i.e., the transmission line filter, and the LC filter are summarized
in Fig. 6.57. The lumped element filter aims to simplify the design process using conventional LC filter
theory and design tools. In principle, all commensurate length transmission line networks can be used
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as reference filters for wave digital filters. Furthermore, wave digital filters representing classical filter
structures are also viable since all LC networks can be uniquely mapped onto commensurate length
transmission line networks using Richards’ variable.

FIGURE 6.57

Summary of the design process for wave digital filters.

Wave digital filters constitute a wide class of digital IIR filters, and in some particular cases wave
digital FIR filters. Wave digital filters have many advantageous properties, and they are therefore the
recommended type of IIR filters. A wave digital filter is derived from an analog filter, referred to as its
reference filter. Due to this relationship between the wave digital filter and the corresponding analog
reference filter, wave digital filter structures inherit many fundamental properties from their analog
counterparts. Of primary interest are favorable stability properties and low sensitivity to variations in
element values. Furthermore, the approximation problem for the wave digital filter can be carried out
in the analog domain using well-known design programs.

In order to retain the low element sensitivity and robustness of the analog reference filter, it is
necessary to adhere to the maximal power transfer principle, which was discussed in Section 6.7.1.
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Furthermore, it is necessary to use two variables to represent power or energy, e.g., voltage and current
[54]. Thus the signal-flow graphs discussed in Section 6.4 cannot represent power.

Alfred Fettweis has developed a comprehensive theory, called wave digital filter theory, which
solves these problems [6,7,8]. This theory is not only a digital filter design theory; it is a general the-
ory describing the relations between the distributed element and discrete-time networks. Furthermore,
it inherently contains an energy concept, which is essential for stability analysis of nonlinear digital
networks and for retaining the low-sensitivity properties of the reference filter.

An essential property of wave digital filters is the guaranteed stability, which is inherited from
the reference filter. In practice, the inductors in an LC ladder filter are nonlinear. Such nonlinearities
may cause and sustain parasitic oscillations. However, in the passive LC filter, such oscillations are
attenuated since the filter dissipates signal power. Hence, any oscillation will eventually vanish. This
property is retained in the wave digital filter.

Wave digital filters, particularly wave digital lattice and circulator-tree filters, are suitable for high-
speed applications. They are modular and possess a high degree of parallelism, making them easy to
implement in hardware.

However, specific reference structures result in wave digital filter algorithms that are not sequentially
computable because the wave-flow graph contains delay-free loops. Therefore, one of the main issues
is to avoid these delay-free loops. There are three main approaches to avoid delay-free loops in wave
digital filters [7,8,10]. Naturally, combinations of these methods can also be used. The main approaches
to avoid delay-free loops are:

1. using cascaded transmission lines, so-called Richards’ structures, and certain types of circulator
filters,

2. introducing transmission lines between cascaded two-ports, and
3. using reflection-free ports.

6.10.1 Wave descriptions
It is necessary to use two variables to represent power [54,7]. We usually use voltages and currents in
the analog domain, but we may also use any linear combination of voltage and current to describe a
network [7,8]. A network can be described using incident and reflected waves instead of voltages and
currents. Scattering parameter formalism has been used in microwave theory to describe networks with
distributed circuit elements.

6.10.1.1 Voltage waves
The one-port network shown in Fig. 6.58 can be described by the incident and reflected waves instead
of voltages and currents.

The voltage waves are defined as

{
A = V + RI,

B = V − RI,
(6.93)

where A is the incident wave, B is the reflected wave, and R is a positive real constant, called port
resistance. The port resistance corresponds to the characteristic impedance in a transmission line.
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FIGURE 6.58

Incident and reflected waves into a port with a port resistance, R.

6.10.1.2 Current waves
Similarly, current waves can be defined, but they result in the same digital filter structure as voltage
waves if we instead use the dual reference filter. Since the current wave description does not provide
any additional structures, we will not discuss current waves further. There are also simple relations
between wave digital filters derived using voltage, current, and power waves [8].

6.10.1.3 Power waves
In microwave theory, so-called power waves are used:⎧⎨

⎩ A = V√
R

+ √
RI,

B = V√
R

− √
RI.

(6.94)

The name “power waves” stems from the fact that their squared values have the dimension of power.
However, we will mainly use voltage waves to provide simpler digital realizations than a power wave
description.

6.10.1.4 Reflectance function
A one-port can be described by the reflectance function, which is defined by

S = B

A
. (6.95)

The reflectance function serves a similar purpose as impedances when voltages and currents to
describe a network. For example, the reflectance for an impedance Z is

S = Z − R

Z + R
. (6.96)

The reflectance is an all-pass function for a reactance.

6.10.2 Wave-flow building blocks
The basic building blocks for the reference filter are unit elements that are either open- or short-circuited
at the far end. The frequency response of such a unit element filter is periodic with a period of 2π/τ ,
i.e., the same as for a digital filter. The signals and components of the unit element filter can be mapped
to a digital filter by sampling with the sample period, T = τ , where τ is the round-trip for a wave
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through the unit element. We will derive the wave-flow equivalents to some common circuit elements
and interconnection networks in the following sections.

6.10.2.1 Circuit elements
In this section, we derive the wave-flow representation for some basic circuit elements.

6.10.2.2 Open-ended unit element
The input impedance to an open-circuited lossless unit element with Z0 = R (a �-plane capacitor) is
given in (6.90). The reflectance is

S (�) = Zin − R

Zin + R
= 1 − �

1 + �
= e−sT (6.97)

and

S (z) = z−1. (6.98)

Fig. 6.59 shows the wave-flow of an open-ended, lossless transmission line and its wave-flow equiv-
alent.

FIGURE 6.59

Open-ended lossless transmission line and its wave-flow equivalent.

6.10.2.3 Short-circuited unit element
The input impedance to a short-circuited, lossless unit element with Z0 = R (a �-plane inductor) is
given by (6.91). The reflectance is

S (�) = Zin − R

Zin + R
= � − 1

� + 1
= −e−sτ (6.99)

and

S (z) = −z−1. (6.100)

Fig. 6.60 shows the short-circuited lossless transmission line and its wave-flow equivalent.
For the sake of simplicity, we will not always distinguish between wave-flow graphs in the time and

frequency domains. Hence, the wave variables in the figures are denoted A and B, but we will use the
notation a(n) and b(n) when convenient.

An open-ended unit element corresponds to a pure delay, while a short-circuited unit element cor-
responds to a delay and a 180-degree phase shift.
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FIGURE 6.60

Short-circuited lossless transmission line and its wave-flow equivalent.

6.10.2.4 Matched termination
The reflectance for a lossless unit element terminated at the far end with a resistor with Z0 = R

(matched termination) is

S (�) = 0. (6.101)

Hence, an input signal to the unit element is not reflected back to the input.

6.10.2.5 Resistive load
The reference filters of interest are, for sensitivity reasons, doubly resistively terminated. Thus, the load
resistor and its corresponding wave-flow equivalent, a wave sink, are shown to the right in Fig. 6.61.

FIGURE 6.61

Wave-flow equivalent for a resistor, R.

6.10.2.6 Short circuit
For a short circuit, we have V = 0, which yields

S (�) = −1 (6.102)

and B = –A. Note that this holds independently of the port resistance. The corresponding wave-flow
graph is shown to the right in Fig. 6.62.

6.10.2.7 Open circuit
For an open circuit, we have I = 0, which yields B = A. This result holds independently of the port
resistance R. An open circuit has the reflectance

S (�) = 1. (6.103)

The wave-flow graph for an open circuit is shown to the right in Fig. 6.63.
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FIGURE 6.62

Wave-flow equivalent for a short-circuit.

FIGURE 6.63

Wave-flow equivalent for an open-circuit.

6.10.2.8 Voltage signal source
For a signal source with a source resistance, we have Vin = V − RI , which yields B = Vin. The source
does not reflect the incident wave since the source resistance equals the port resistance. The correspond-
ing wave-flow graph is shown to the right in Fig. 6.64.

FIGURE 6.64

Wave-flow equivalent for a voltage source with source resistance.

6.10.2.9 Circulator
The symbol for a three-port called circulator and its corresponding wave-flow graph is shown in
Fig. 6.65. The name comes from the fact that an incident wave is “circulated” to the next port, as
shown in Fig. 6.65. The incident wave to port 1 is reflected to port 2, an incident wave to port 2 is
reflected to port 3, and so on. Hence, the circulator “circulates” the incident waves to the next port in
order. Circulators can be realized in the microwave range by using ferrites. Circulators are used, for
example, to direct the signals from the transmitter to the antenna and from the antenna to the receiver
in a radar. The circulator is a useful component that is inexpensive to implement in the wave digital
domain.
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FIGURE 6.65

Three-port circulator and the corresponding wave-flow graph.

6.10.3 Interconnection networks
In order to interconnect different wave-flow graphs, it is necessary to obey Kirchhoff’s laws at the
interconnection. Generally, the incident waves are partially transmitted and reflected at the connection
point, as illustrated in Fig. 6.66. A wave-flow graph describes the transmission and reflection at the
connection port called an adaptor. There are several types of adaptors corresponding to different types
of interconnection networks [55]. It can be shown that any interconnection network can be decomposed
into a set of interconnected two-port and three-port adaptors. Since the interconnection network is
lossless, the corresponding adaptor network will also be lossless.

FIGURE 6.66

Connection of two ports.

6.10.3.1 Symmetric two-port adaptor
Fig. 6.67 shows the symbol for the symmetric two-port adaptor. The incident and reflected waves for
the two-port are

FIGURE 6.67

Symmetric two-port adaptor.

{
A1 = V1 + RI1,

B1 = V1 − RI1
(6.104)
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and {
A2 = V2 + RI2,

B2 = V2 − RI2.
(6.105)

At the point of interconnection, we have according to Kirchhoff’s current and voltage laws

{
I1 = −I2,

V1 = V2.
(6.106)

By elimination of the voltages and currents, we get the following relations between the incident and
reflected waves for the symmetric two-port adaptor:

{
B1 = A2 + α (A2 − A1) ,

B2 = A1 + α (A2 − A1)
(6.107)

and

α = R1 − R2

R1 + R2
, (6.108)

which are illustrated by the wave-flow graph in Fig. 6.68.

FIGURE 6.68

Symmetric two-port adaptor.

Note that |α| ≤ 1. The adaptor coefficient α is usually written on the side corresponding to port 1,
or one of the parallel lines is thicker. Thus, as can be seen, the wave-flow graph is almost symmetric.

Note that α = 0 for R1 = R2, the adaptor degenerates to a direct connection of the two ports, and
the incident waves are not reflected at the point of interconnection. For R2 = 0 we get α = 1 and the
incident wave at port 1 is reflected and multiplied by −1, while for R2 = ∞ we get α = −1 and the
incident wave at port 1 is reflected without a change of sign.

Several different adaptor types exist that correspond to interconnections between circuit elements
[55]. Symmetric adaptors are commonly used in the first step in the design of wave digital filters. In
subsequent design steps, these adaptors can be transformed into other types to optimize the dynamic
signal range.
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FIGURE 6.69

Series connected ports.

6.10.3.2 Series adaptors
Consider the network topology shown in Fig. 6.69 with N ports, where the currents that flow through
the ports are the same. Hence, the ports are connected in series. We have{

I1 = I2 = ... = IN ,

V1 + V2 + ... + VN = 0.
(6.109)

After elimination of voltages and currents, we get{
Bk = Ak − αkA0,

A0 =∑N
k=1 Ak,

(6.110)

where

αk = 2Rk∑N
n=1 Rn

.

The symbol used for an N-port series adaptor is shown in Fig. 6.70. It is straightforward to show that
the sum of the adaptor coefficients is

N∑
k=1

αk = 2. (6.111)

Hence, the adaptor coefficients are linearly dependent, and one of the coefficients can therefore
be eliminated, i.e., expressed in terms of the others. A port for which the adaptor coefficient has been
eliminated is called a dependent port. It is favorable to select the port with the largest adaptor coefficient
as the dependent port. The number of different adaptor coefficients can be reduced further if some of
the port resistances are the same.

6.10.3.3 Two-port series adaptor
Fig. 6.71 shows the symbol for the two-port series adaptor. In this case, we have only two adaptor
coefficients, and one of them can be eliminated since they are linearly dependent. The resulting wave-
flow graph, where α2 has been eliminated, is shown in Fig. 6.72. The remaining adaptor coefficient
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FIGURE 6.70

Series adaptor.

is

α1 = 2R1

R1 + R2
(6.112)

and 0 ≤ α1 ≤ 2.

FIGURE 6.71

Two-port series adaptor.

FIGURE 6.72

Wave-flow graphs for a two-port series adaptor.

6.10.3.4 Three-port series adaptor
A symbol for the three-port series adaptor is shown in Fig. 6.73, and Fig. 6.74 depicts the corresponding
realization of the three-port series adaptor, where adaptor coefficient α3 has been eliminated. Hence,
port 3 depends on the adaptor coefficients for the two other ports.

This three-port series adaptor requires two multiplications and six additions. However, it is often
favorable since it requires multiplications with shorter coefficient word length to eliminate the adaptor
coefficient with the largest magnitude. Hence, the corresponding port is select as the dependent port.
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FIGURE 6.73

Three-port series adaptor.

FIGURE 6.74

Three-port series adaptor with port 3 as the dependent port.

6.10.3.5 Parallel adaptors
If all ports have the same voltage, as illustrated in Fig. 6.75, then the ports are connected in parallel. By
using the definition of parallel connection of the ports, we get{

V1 = V2 = ... = VN,

I1 + I2 + ... + IN = 0.
(6.113)

FIGURE 6.75

Parallel connection of ports.

By elimination of voltages and currents, we get{
Bk = A0 − Ak,

A0 =∑N
k=1 αkAk,

(6.114)
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where

αk = 2Gk∑N
n=1 Gn

and Gk = 1/Rk . The symbol for an N-port parallel adaptor is shown in Fig. 6.76. Also, for the parallel
adaptor, we have

FIGURE 6.76

N-port parallel adaptor.

N∑
k=1

αk = 2. (6.115)

Hence, one of the adaptor coefficients can be expressed in terms of the others. The number of
multiplications can be reduced further if some of the port conductances are equal.

6.10.3.6 Two-port parallel adaptor
Fig. 6.77 shows the symbol for a two-port parallel adaptor, and the corresponding wave-flow graph is
shown in Fig. 6.78.

FIGURE 6.77

Two-port parallel adaptor.

The sum of the adaptor coefficients in an adaptor is always equal to 2, except for the symmetric two-
port adaptor. Hence, one of the coefficients can be expressed in terms of the others and can therefore
be eliminated.

The adaptor coefficient in Fig. 6.78 is

α1 = 2G1

G1 + G2
(6.116)

and 0 ≤ α1 ≤ 2.
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FIGURE 6.78

Wave-flow graph for two-port parallel adaptor.

6.10.3.7 Three-port parallel adaptor
A general three-port parallel adaptor requires two multiplications and six additions. The symbol for the
three-port parallel adaptor is shown in Fig. 6.79.

FIGURE 6.79

Three-port parallel adaptor.

Fig. 6.80 shows the wave-flow graph for the corresponding three-port parallel adaptor with port 3
as the dependent port.

FIGURE 6.80

Three-port parallel adaptor with port 3 as dependent port.

6.10.3.8 Direct interconnection of adaptors
Arbitrary interconnection networks can be built using only two- and three-port series and parallel adap-
tors. However, in some cases also four-port adaptors are used. Unfortunately, delay-free loops will, in
general, occur if two adaptors are connected, as illustrated in Fig. 6.81. The port resistances of the two
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connected ports must, of course, be equal to satisfy the Kirchhoff equations. However, this problem can
be solved by a judicious choice of the port resistances in one of the connected adaptors.

FIGURE 6.81

Potentially delay-free loop.

The port resistance must be selected so that one of the adaptor coefficients corresponding to the
connected ports becomes equal to unity. We select, for example, αN = 1, which for the series adaptor
is equivalent to

RN =
N−1∑
k=1

Rk (6.117)

and we get from (6.110)

BN = −
N−1∑
k=1

Ak. (6.118)

Hence, the reflected wave BN is independent of the incident wave AN and the delay-free loop is
broken. For a parallel adaptor, we have

GN =
N−1∑
k=1

Gk (6.119)

and we get from (6.114)

BN =
N−1∑
k=1

αkAk. (6.120)

In both cases, the expression for BN is independent of AN , i.e., a direct path from AN to BN in
the wave-flow graph does not exist. Hence, the two ports can be connected without a delay-free loop
occurring. There are no restrictions on the adjacent adaptor. The port with the coefficient equal to
unity is called a reflection-free port. Since αN = 1, one of the remaining coefficients can be eliminated.
Fig. 6.82 shows a three-port series adaptor with α3 = 1 and port 2 as the dependent port.

Note the nonexistent path between A3 and B3. A three-port parallel adaptor with α2 = 1 and port 3
as the dependent port is shown in Fig. 6.83. We denote a reflection-free port with the symbol shown in
Fig. 6.84.
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FIGURE 6.82

Series adaptor with port 3 and port 2 as dependent and reflection-free ports, respectively.

FIGURE 6.83

Parallel adaptor with port 3 as the dependent port and port 2 is reflection-free.

FIGURE 6.84

Adaptor with reflection-free port.

6.10.4 Adaptor transformations
Adaptor transformations, i.e., replacing series adaptors with parallel adaptors and vice versa, yet with
the same adaptor coefficients, can improve the dynamic signal range, lower round-off noise, and im-
prove the computational properties of the algorithm [55]. Replacing a series adaptor with a parallel
adaptor in the reference filter corresponds to replacing an impedance in series with a shunt impedance
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embedded between two gyrators [10]. Thus, a series adaptor is replaced by a parallel adaptor with a
pair of inverse multipliers at each port and an inverter at each output terminal, as shown in Fig. 6.85.

FIGURE 6.85

N-port series adaptor and its equivalent parallel adaptor.

Fig. 6.86 shows an N-port parallel adaptor and its equivalent series adaptor. A pair of inverse mul-
tipliers can be eliminated or replaced with any other pair of inverse multipliers, thereby changing the
signal levels in the parallel adaptor network. Note that a pair of inverse multipliers correspond to a
transformer in the reference filter. The equivalence transformations change neither the adaptor coeffi-
cients nor the transfer functions except for a possible change in the gain. Note, however, that inserting
a pair of inverse multipliers requires that the coefficients are of the form c = 2±n, where n is an integer,
since the product c(1/c), where both factors are in binary representation, must be equal to 1. Thus, a
network with n adaptors has 2n equivalent realizations, which differ with respect to round-off noise,
overflow probability, and dynamic signal range.

FIGURE 6.86

N-port parallel adaptor and its equivalent series adaptor.

6.10.5 Resonance circuits
First- and second-order resonance circuits play an important role as building blocks for frequency-
selective filters. We are, in practice, only interested in low-order resonance circuits, i.e., first- and
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second-order circuits. In this section, we discuss the design and properties of some resonance circuits
and their wave digital counterparts.

6.10.5.1 First-order circuits
A first-order wave digital circuit can be derived from a �-plane capacitor or inductor using series,
parallel, or symmetric adaptors. Note that a �-plane capacitor represents an open-ended unit element
while a �-plane inductor represents a short-circuited unit element. Fig. 6.87 shows a first-order circuit
corresponding to (a) an inductor and (b) a capacitor realized using the symmetric adaptor.

FIGURE 6.87

First-order section with (a) inductor and (b) capacitor.

The reflectance function for the inductor, R2�, is

SL (z) = −αz + 1

z + α
. (6.121)

The reflectance function for the capacitor, R2/�, is

SC (z) = 1 − αz

z − α
, (6.122)

where α is given by (6.112). Alternatively, first-order circuits corresponding to an inductor or a capaci-
tor can be derived using series or parallel adaptors [55,8,4].

6.10.5.2 Second-order series resonance circuit
Fig. 6.88 shows a second-order series resonance circuit and its wave digital realization using a three-
port series adaptor. The reflectance function is

S = B1

A1
= (1 − α1) z2 − (2α2 + α1 − 2) z + 1

z2 − (2α2 + α1 − 2) z + 1 − α1
. (6.123)

Note that the reflection function is an all-pass function.
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FIGURE 6.88

Realization of a series resonance circuit.

6.10.5.3 Second-order parallel resonance circuit
Fig. 6.89 shows a parallel resonance circuit and its wave digital realization using a three-port parallel
adaptor. The reflectance function is

S = − (1 − α1) z2 + (2α3 + α1 − 2) z + 1

z2 + (2α3 + α1 − 2) z + 1 − α1
. (6.124)

FIGURE 6.89

Parallel resonance circuit and its wave digital filter counterpart.

The pole density is the same as for the series resonance circuit [4].

6.10.5.4 Second-order Richards’ structures
As discussed in Section 6.8.3, a Richards’ structure that is either open-circuited or short-circuited at the
far end can realize an arbitrary reactance. Fig. 6.90 shows a second-order Richards’ structure and its
wave digital counterpart. It can be shown by using Kuroda–Levy identities that this Richards’ structure
corresponds to a series resonance circuit in the �-domain [8,4].

The reflectance function is

S (z) = −α1z
2 + (α1 − 1)α2z + 1

z2 + (α1 − 1)α2z − α1
. (6.125)

A Richard’s parallel resonance circuit has the same reflectance function, except that α1 has changed
sign. Hence, the two structures have the same pole density.
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FIGURE 6.90

Richards’ structure equivalent to second-order series resonance circuit with corresponding wave-flow graph.

6.10.6 Parasitic oscillations
Parasitic oscillations can occur only in recursive structures. Nonrecursive digital filters can have para-
sitic oscillations only if they are used inside a closed loop. Nonrecursive FIR filters are, therefore, robust
filter structures that do not support parasitic oscillation. Among the IIR filter structures, wave digital
filters and certain related state-space structures are of major interest as they can be designed to suppress
parasitic oscillations. A. Fettweis has shown that overflow oscillations can be suppressed entirely in
wave digital filters by placing appropriate restrictions on the overflow characteristic [56,57,58,8,59].
To show that a properly designed wave digital filter suppresses any parasitic oscillation, we use the
concept of pseudopower, which corresponds to power in analog networks. Note that the pseudopower
concept is defined only for wave digital filters and not for arbitrary filter structures.

FIGURE 6.91

Wave digital filter.

The instantaneous pseudopower entering the adaptor network shown in Fig. 6.91 is defined as

p (n) =
N∑

k=1

Gk

(
ak (n)2 − bk (n)2

)
. (6.126)
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Ideally, p (n) = 0, since the adaptors are lossless and an arbitrary network of adaptors is also loss-
less.

Now, to suppress a disturbance (error signal component) caused by a nonlinearity, it is sufficient to
introduce losses in each port of the network such that the nonlinearities correspond to energy losses.
This can be accomplished by making each term ak (n)2 − bk (n)2 > 0, i.e., each recursive loop will be
lossy. Note that all recursive loops must contain at least one delay element for a sequentially computable
algorithm. Any parasitic oscillation will, therefore, by necessity appear at one or several of the ports
with delay elements. Hence, a parasitic oscillation, which, of course, has finite pseudoenergy and is not
supported from an external signal source, will decay to zero since it will dissipate energy in the lossy
ports of the adaptor network. Lossy ports can be obtained by quantizing the reflected waves such that
their magnitudes are consistently decreased. Hence, for each nonzero reflected wave, we require

{ ∣∣b (n)Q
∣∣< b (n)exact ,

b (n)Q b (n)exact ≥ 0,
(6.127)

where the second constraint is to ensure that the signals have the same sign.
In order to suppress parasitic oscillations, all of the output signals from the adaptors should be

sign-magnitude truncated. It can be shown that the sign-magnitude truncation can be substituted by
truncation of the signals after the multiplications inside the adaptors and by adding a correcting term at
the outputs of the adaptors [4]. This implies considerable hardware simplifications. In practice, it seems
to be sufficient that the correcting terms are added only at those ports to which delays are connected.

6.11 Ladder wave digital filters
Doubly resistively terminated ladder structures, designed for maximal power transfer in the passband,
are characterized by low element sensitivity. A corresponding wave digital filter inherits the sensitivity
properties and the stability properties of the analog reference filter. The positions of the transmission
zeros are also relatively insensitive since they are realized by reflections in the resonance circuits. This
is valid for filters that approximate a constant passband gain. However, it is not true for, for example, a
filter that approximates a differentiator.

There are several alternative ladder design techniques:

• Unit elements can be inserted between the branches in the ladder structure to avoid delay-free loops
[6,60,8,7,4]. These filters are of less importance.

• Reference filters of Richards’ type, i.e., cascaded transmission lines, may be used to realize low-pass
and high-pass filters and a restricted set of bandpass and stopband filters [4]. Also these filters are of
less importance.

• A commonly used wave digital filter class is derived from a singly resistively terminated Richards’
structure [61,62,63,64,4]. The corresponding wave digital filter is used to realize the denominator.
The numerator is realized by injecting the input signal into several nodes in the recursive wave
digital filter structure, using a linear combination of the signal in several nodes, or a combination
thereof. A singly resistively terminated filter has very high element sensitivity [10], and they are not
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recommended for use as frequency-selective filters. Moreover, these structures suffer from signifi-
cant variations in the internal signal levels, and they also generate considerable round-off noise. The
design of the ladder wave digital filters is discussed in detail in Refs. [4,5].

• Here we recommend wave digital filters derived from a doubly resistively terminated ladder, and we
use the technique with reflection-free ports to obtain a wave digital filter without a delay-free loop.

• Alternatively, we may select a wave digital filter derived from a doubly resistively terminated lattice
filter and use reflection-free ports or a cascade of all-pass sections to obtain a wave digital filter
without a delay-free loop.

6.11.0.1 Example
Consider a low-pass filter with the following specifications: Amax = 0.1 dB, Amin = 65 dB, ωcT =
0.55π rad, and ωsT = 0.6π rad. The minimum order is Nmin = 8.499, which we increase to N = 9.

FIGURE 6.92

Ninth-order ladder wave digital filter.

The ladder structure can be scaled by inserting transformers between adjacent adaptors. Each trans-
former allows one node in an adaptor to be scaled. The adaptors with a reflection-free port have only
one critical node, i.e., the input to the multiplier. Hence, all critical nodes can be scaled, except one
node in adaptor XIII, which has two critical nodes. The L2-norm scaled structure is shown in Fig. 6.92.
Note that filters should be scaled to fairly compare the sensitivity properties, i.e., they must have about
the same dynamic signal range.

In order to illustrate and make a crude comparison of the coefficient sensitivity of a π-ladder and
lattice filter with cascaded all-pass sections, we generate 100 frequency responses where we randomly
vary the coefficients in the range −2−8 to 2−8 around their nominal values. The overall deviation in the
attenuation is shown in Fig. 6.93.

The deviation is most significant close to the stopband edge. We will later see that the deviation
in the positions of the zeros is smaller for the ladder structure compared to a corresponding lattice
structure. The deviation in the transmission zeros is relatively small because a transmission zero is
determined by only one coefficient. For example, consider the structure shown in Fig. 6.92. Port 2 of
adaptor II is reflection-free and hence α2 = 1, and therefore we have α1 + α3 = 1. Thus, the transmis-
sion zero, which is restricted to remain on the unit circle, is determined by only a single coefficient and
the coefficient word length determines the accuracy. The deviation in the attenuation in the passband is
shown in Fig. 6.94.

The variation increases towards the passband edge, which is in agreement with (6.69).
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FIGURE 6.93

Variation in the attenuation for the ninth-order ladder filter.

FIGURE 6.94

Passband variation in the attenuation for the ninth-order ladder filter.

A realization, possibly with a somewhat shorter coefficient word length, may have been found if
the filter instead was synthesized with a diminishing passband ripple. Note that it is most likely that a
set of coefficients can be found with a shorter word length than 9 bits. Typically, the coefficients can
be represented using only two or three nonzero bits, i.e., requiring only one or two adders. Fourteen
multipliers are required for this ladder structure. Wave digital ladder structures appear to yield compli-
cated wave-flow graphs that may make them challenging to implement efficiently. However, a detailed
analysis shows that this is not the case [4].

6.12 Design of lattice wave digital filters
Lattice wave digital filters are derived from an analog bridge structure and have very high stopband
sensitivity. Different wave digital lattice structures are obtained depending on how the lattice branches
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are realized. For example, we may use Forster and Cauer networks or Richards’ structures. A realization
consisting of a set of interconnected three-port circulators loaded with first- and second-order reactances
has become popular, mainly since they are easy to design and consist of simple all-pass sections [65,
66,67,4].

The transfer function for a low-pass lattice wave digital filter is

H(z) = 1

2
(S2 − S1),

where S2 and S1 are the reflectances of the even and odd branches, respectively. The power-
complementary transfer function is

H(z) = 1

2
(S2 + S1).

6.12.0.1 Example
Fig. 6.95 shows a ninth-order lattice wave digital filter with the same specification as in Exam-
ple 6.11.0.1, where the two all-pass branches have been realized by a circulator structure [10] loaded
with first- and second-order sections of the types shown in Fig. 6.90. A program for computation of the
adaptor coefficients is shown in Listing 6.10.

Listing 6.10: Program for designing lattice wave digital filters.

1 WcT = 0 .55∗ p i ; WsT = 0 . 6∗ p i ; Amax = 0 . 1 ; Amin = 6 5 ;
2 N = CA_ORDER_Z(WcT, WsT, Amax , Amin )
3 N = 9 ; % We MUST s e l e c t an odd o r d e r
4 [G, Z , R_ZEROS , P , WsnewT ] = CA_POLES_Z (WcT, WsT, Amax , Amin ,N ) ;
5 % Compute t h e a d a p t o r c o e f f i c i e n t s
6 [ Godd , Podd , Geven , Peven ] = SORT_LATTICE_POLES_LP_Z ( P ) ;
7 [ a l f a _ o d d , a l f a _ e v e n ] = CASCADE_RICHARDS_SECTIONS ( Podd , Peven )
8 a l f a _ e v e n 0 = a l f a _ e v e n ; a l f a _ o d d 0 = a l f a _ o d d ;
9 f i g u r e ( 1 ) , s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
10 d e l t a = 2^−14; wT = l i n s p a c e ( 0 , p i , 1 0 0 1 ) ;
11 f o r nn = 1 :100
12 a l f a _ o d d = a l f a _ o d d 0 + d e l t a ∗ ( r a n d ( 1 , l e n g t h ( a l f a _ o d d ) ) − 0 . 5 ) ;
13 a l f a _ e v e n = a l f a _ e v e n 0 + d e l t a ∗ ( r a n d ( 1 , l e n g t h ( a l f a _ e v e n ) ) − 0 . 5 ) ;
14 [ S1 , S2 ] = LATTICE_RICHARDS_H( a l f a _ o d d , a l f a _ e v e n , wT ) ;
15 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2−S1 ) ) ;
16 PLOT_ATT_Z (wT, Att , p i , 8 0 ) , h o ld on
17 end
18 f i g u r e ( 2 ) , s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
19 d e l t a = 2^−7; wT = l i n s p a c e ( 0 , 0 . 6∗ pi , 1 0 0 1 ) ;
20 f o r nn = 1 :100
21 a l f a _ o d d = a l f a _ o d d 0 + d e l t a ∗ ( r a n d ( 1 , l e n g t h ( a l f a _ o d d ) ) − 0 . 5 ) ;
22 a l f a _ e v e n = a l f a _ e v e n 0 + d e l t a ∗ ( r a n d ( 1 , l e n g t h ( a l f a _ e v e n ) ) − 0 . 5 ) ;
23 [ S1 , S2 ] = LATTICE_RICHARDS_H( a l f a _ o d d , a l f a _ e v e n , wT ) ;
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24 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2−S1 ) ) ;
25 PLOT_ATT_Z (wT, Att , 0 . 6∗ pi , 0 . 2 ) , h o ld on
26 end

FIGURE 6.95

Ninth-order lattice wave digital filter.

If the order of the odd branch is larger than the order of the even branch, then m = odd, otherwise
m = even [4].

To get a similar deviation in the passband and stopband attenuation as in Figs. 6.96 and 6.97 for the
ladder structure, we restrict the error range to −2−15 to 2−15, which is about 27 = 128 times smaller.
The resulting variation in the attenuation is shown in Fig. 6.96. It is evident that the stopband sensitivity
is much higher than the sensitivity for the corresponding ladder structure and that the precision in the
adaptor coefficients is not enough. The passband variation when the error range is decreased to −2−8

to 2−8 is shown in Fig. 6.97.

6.12.1 Bandpass lattice filters
Bandpass and bandstop filters can be designed by first designing a low-pass filter that is transformed
into the desired frequency response. However, lattice low-pass filters must have odd order. The ob-
tained bandpass and bandstop filters are restricted to N = 2NLP , i.e., N = 2, 6, 10, 14,. . . Hence, the
obtained filter may often be highly overdesigned. We have three bands for a bandpass filter, i.e., stop-
band, passband, stopband. The denominator is a Hurwitz polynomial of even order, N . The difference
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FIGURE 6.96

Variation in the attenuation for the ninth-order lattice filter.

FIGURE 6.97

Passband variation in the attenuation for the ninth-order lattice filter.

in the order of S1 and S2 is an even number, and the two branches are added. The proper ordering of the
poles and zeros is determined using the function SORT_LATTICE_POLES_BP_Z for both bandpass
and bandstop filters.

6.12.1.1 Example
Consider the bandpass filter with ωc1T = 0.4π rad, ωc2T = 0.5π rad, ωs1T = 0.2π rad, ωs2T = 0.7π rad,
Amax = 0.1 dB, and Amin = 60 dB. We use the program shown in Listing 6.11.

Listing 6.11: Program for the design of bandpass lattice wave digital filters with cascaded Richards’
sections.

1 wc1T = 0 . 4∗ p i ; wc2T = 0 . 5∗ p i ; ws1T = 0 . 2∗ p i ; ws2T = 0 . 7∗ p i ;
2 Amax = 0 . 1 ; Amin = 6 0 ; T = 1 ;
3 % R e q u i r e m e n t s f o r t h e a n a l o g p r o t o t y p e low−p a s s f i l t e r
4 Wac1 = ( 2 / T)∗ t a n ( wc1T / 2 ) ; Wac2 = ( 2 / T)∗ t a n ( wc2T / 2 ) ;
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5 Was1 = ( 2 / T)∗ t a n ( ws1T / 2 ) ; Was2 = ( 2 / T)∗ t a n ( ws2T / 2 )
6 Was2 = Wac1∗Wac2 / Was1 , % Band edges f o r t h e a n a l o g f i l t e r
7 Omegac = Wac2 − Wac1 ; Omegas = Was2 − Was1 ;
8 % Design o f t h e a n a l o g p r o t o t y p e low−p a s s f i l t e r ( Cauer )
9 N = CA_ORDER_S( Omegac , Omegas , Amax , Amin )
10 N = 5 ; % We must s e l e c t an i n t e g e r o r d e r
11 % Design o f t h e a n a l o g p r o t o t y p e low−p a s s f i l t e r ( Cauer )
12 [ Ga , Za , R_ZEROS , Pa , Wsnew ] = CA_POLES_S ( Omegac , Omegas , Amax , Amin ,N ) ;
13 % T r a n s f o r m a t i o n t h e a n a l o g f i l t e r i n t o a low−p a s s d i g i t a l f i l t e r
14 [G, Z , P ] = PZ_2_PZ_Z ( Ga , Za , Pa , T ) ;
15 % T r a n s f o r m a t i o n t h e low−p a s s f i l t e r i n t o a d i g i t a l b a n d p a s s
16 % f i l t e r
17 [ Gbp , Zbp , Pbp ] = PZ_2_BP_Z (G, Z , P , wc1T , wc2T , Omegac∗T )
18 f i g u r e ( 1 )
19 PLOT_PZ_Z ( Zbp , Pbp )
20 [ Zodd , Podd , Xeven , Peven ] = SORT_LATTICE_POLES_BP_Z ( Pbp ) ;
21 f i g u r e ( 2 ) , s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
22 wT = l i n s p a c e ( 0 , p i , 1 0 0 1 ) ;
23 [ a l f a _ o d d , a l f a _ e v e n ] = CASCADE_RICHARDS_SECTIONS ( Podd , Peven )
24 [ S1 , S2 ] = LATTICE_RICHARDS_H( a l f a _ o d d , a l f a _ e v e n , wT ) ;
25 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2−S1 ) ) ;
26 PLOT_ATT_Z (wT, Att , p i , 80 )

We obtain the poles and zeros shown in Fig. 6.98. As shown below, the function SORT_LAT-
TICE_POLES_BP_Z assigns every other pole pair to S1 and S2.

FIGURE 6.98

Poles and zeros for the bandpass lattice filter.
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Gbp = 0.001540573

Zbp Pbp
±1.000000 0.1451952 ± 0.9013162i S2

−0.3274959 ± 0.9448525i 0.0443251 ± 0.9343518i S1

0.5780166 ± 0.81602500i 0.2495567 ± 0.9037655i S1

−0.1668641 ± 0.9859799i −0.007322 ± 0.9785812i S2

0.4525461 ± 0.89174100i 0.3094194 ± 0.9295458i S2

The difference in order between the two branches is two. We may use second-order Richards’ structure
with symmetric two-port adaptors for the sections. Note that the attenuation, shown in Fig. 6.99 is
symmetric around the center frequency. Hence, this filter can be realized using a symmetric ladder
or a lattice structure. Multiband symmetrical lattice wave digital filters can be designed by using the
function SYM_WDF.m [4].

FIGURE 6.99

Attenuation for the bandpass lattice filter.

6.12.2 Lattice wave digital filter with a constant pole radius
Here we consider the design of odd-order low-pass lattice wave digital filters based on a reference filter
with a constant pole radius. We assume that the transfer function is realized with a doubly resistive
terminated lossless reciprocal network. Only Butterworth and Cauer filters with a constant pole radius
are feasible. The magnitude response, |s21|, of the corresponding wave digital filter is antisymmetric.
Furthermore, if the passband edge is ωcT , then the stopband edge is ωsT = π – ωcT , and the relation-
ship between the passband and stopband ripples is εp = 1/εs , where εs = √

100.1Amin − 1. Hence, for
reasonable stopband attenuations, the passband ripple will be very small, and the element sensitivity
will be very small.

Note that (N−1)/2 adaptor coefficients in the second-order sections in an odd-order low-pass filter
can be made equal. Hence, the dimensions of the parameter space are significantly constrained, and the
complexity of finding quantized adaptor coefficients is thereby significantly reduced. Moreover, these
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adaptor coefficients can often be realized using trivial coefficients requiring only a few powers-of-two
coefficients.

Note that the bilinear transformation is a conformal mapping between the s- and z-planes. Hence,
circles and straight lines are mapped to circles or straight lines. The poles of the analog filter with a
constant pole radius are on a circle with the pole radius. The corresponding poles in the wave digital
filter are also on a circle with a center in the real axis in the z-domain [4]. The coefficient α2 in the
second-order all-pass section shown in Fig. 6.90 corresponds to α2 = −(rpT )2. Hence, α2 will be a
constant for all second-order sections. We may select the pole radius so that α2 is simple to realize. The
function mincost(n) determines the minimum number of add/subs required to implement a positive
integer using less than five add/subs. This issue will be further discussed in Section 6.17.2.3.

Note that the coefficient α2 is independent of the filter order and transition band. It only depends on
the normalized bandwidth. Hence, it is possible to use the design margin to adjust the normalized band-
width so that a2 can be realized using only a few powers-of-two coefficients. Moreover, it is possible
to realize a filter with variable bandwidth by merely changing α2. We demonstrate the design process
for digital Cauer filters with a constant pole radius by using an example.

6.12.2.1 Example
Consider the following specifications: ωcT = 0.25π rad, ωsT = 0.45π rad, and Amin = 50 dB. We use
for the design the program shown in Listing 6.12. First, we synthesize an analog Cauer filter with a
constant pole radius in lines 2 through 5 and map this filter to its digital counterpart in lines 6 through
8. We select, by experience, the coefficient word length of Wc = 6 bit, and we select the adaptor coef-
ficient, which corresponds to the constant pole radius, to a2 = 34/64, which can be realized using only
one addition. In lines 18 through 43, we loop through a set of coefficients and evaluate the correspond-
ing magnitude functions, while we use as cost function the sum of the number of additions required
for their realization. There are only (N+1)/2 free coefficients when we have selected a3 = a5 = a7 =
34/64. Thus, the search space is significantly reduced.

Listing 6.12: Program for the design of the lattice wave digital filter constant pole radius.

1 wcT = 0 .25∗ p i ; wsT = 0 .45∗ p i ; Amin = 5 0 ;T = 1 ;
2 wc = ( 2 / T)∗ t a n ( wcT / 2 ) ; ws = ( 2 / T)∗ t a n ( wsT / 2 ) ;
3 N = CA_CONST_R_ORDER_S( wc , ws , Amin )
4 N = 7
5 [ Ga , Za , R_ZEROS , Pa , wsnew ] = CA_CONST_R_POLES_S( wc , ws , Amin ,N ) ;
6 [G, Z , P ] = PZ_2_PZ_Z ( Ga , Za , Pa , 1 ) ;
7 [ S1num , S1den , S2num , S2den ] = SORT_LATTICE_POLES_LP_Z ( P ) ;
8 [ a_odd , a_even ] = CASCADE_RICHARDS_SECTIONS ( S1den , S2den )
9 wTpassb = l i n s p a c e ( 0 , wcT , 1 0 0 ) ; wTstopb = l i n s p a c e ( wsT , pi , 1 0 0 ) ;
10 l o a d m i n c o s t ; % Number o f add / sub f o r an i n t e g e r
11 WX = 6 4 ; % C o e f f i c i e n t word l e n g t h : 2^6 = 64
12 TempCost = 1 0 0 ;
13 a_odd = round ( a_odd∗WX) ; % a_odd ( 3 ) = mrpT2 = (− rpT )^ 2
14 a_even = round ( a_even∗WX) ; % a_even ( 2 ) = mrpT2 ;
15 N0 = 5 ; N1 = 5 ; F a i l = 1 ; d i s p ( [ ’ S e a r c h i n g , P l e a s e wai t ’ ] )
16 mrpT2 = 3 4 ; % S e l e c t t h e c o n s t a n t p o l e r a d i u s
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17 C_odd ( 3 ) = mrpT2 ; C_even ( 2 ) = mrpT2 ; C_even ( 4 ) = mrpT2 ;
18 f o r k0 = −N0 : N1
19 C_odd ( 1 ) = a_odd ( 1 ) + k0 ;
20 f o r k1 = −N0 : N1
21 C_odd ( 2 ) = a_odd ( 2 ) + k1 ;
22 Cost_odd = sum ( m i n c o s t ( abs ( C_odd ) ) ) ;
23 f o r k2 = −N0 : N1
24 C_even ( 1 ) = a_even ( 1 ) + k2 ;
25 f o r k3 = −N0 : N1
26 C_even ( 3 ) = a_even ( 3 ) + k3 ;
27 Cos t = Cost_odd +sum ( m i n c o s t ( abs ( C_even ) ) ) ;
28 i f Cos t < TempCost
29 [ S1 , S2 ] = LATTICE_RICHARDS_H( C_odd /WX, . . .
30 C_even /WX, wTstopb ) ;
31 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2−S1 ) ) ;
32 i f min ( A t t ) >= Amin
33 [ S1 , S2 ] = LATTICE_RICHARDS_H( C_odd /WX, . . .
34 C_even /WX, wTpassb ) ;
35 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2−S1 ) ) ;
36 a_odd0 = C_odd ; a_even0 = C_even ;
37 TempCost = Cos t
38 F a i l = 0 ;
39 end
40 end
41 end
42 end
43 end
44 end
45 end
46 i f F a i l == 1 , d i s p ( [ ’ F a i l e d ’ ] ) , b reak , end
47 f i g u r e ( 2 ) ; s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
48 wT = l i n s p a c e ( 0 , p i , 1 0 0 1 ) ;
49 a_odd = a_odd0 , a_even = a_even0 , TempCost , WX
50 [ S1 , S2 ] = LATTICE_RICHARDS_H( a_odd /WX, a_even /WX, wT ) ;
51 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2 − S1 ) ) ;
52 PLOT_ATT_Z (wT, Att , p i , 7 0 )
53 f i g u r e ( 3 ) ; PLOT_PZ_Z ( Z , P )

We get N = 6.309 and select N = 7. The adaptor coefficients in the two branches are

a_odd = 0.2935188, -0.52011888. 0.54047406
a_even = -0.2233453, 0.54047406, -0.8342365, 0.54047406

Searching yields TempCost = 7 (seven add/subs) and

a_odd = (16 –31 34)/64
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a_even = (–12 34 –51 34)/64

Note that there are three identical coefficients, 34/64, corresponding to the constant pole radius, i.e.,
–(rpT )2. There are often several coefficient sets with the same adder cost. Here the realization cost
is only seven additions for the multiplications. There are seven adaptors with 7 × 3 = 21 additional
structural adders. Hence, the realization cost of the multiplications is typically far less than the cost for
the structural adders. In the literature, it is often assumed that multiplications dominate the implemen-
tation cost. This is, however, not the case when multiple-constant multiplication (MCM) techniques are
employed.

If the order of the even branch is larger than the order of the odd branch, then m = even, i.e., the
outputs from the two branches are added.

6.12.2.2 Half-band lattice wave digital filter
The half-band IIR filters are a particular case of transfer functions based on reference filters with a
constant pole radius. Half-band wave digital filters are often referred to as bireciprocal filters, although
they are only a particular case [4]. The poles for a half-band filter lie on the imaginary axis. Thus, every
odd adaptor coefficient in Fig. 6.95 becomes zero. The real pole lies at z = 0, and the odd-order section
becomes a delay element. The number of adaptors and multipliers is only (N − 1)/2, and the number
of adders is 3(N − 1)/2 + 1, where N is odd for low-pass and high-pass filters.

The transfer function for a half-band lattice wave digital filter is

H(z) = 1

2
(S2(z

2) − z−1S(z2)).

6.12.2.3 Example
Synthesize a half-band lattice wave digital filter with the following specifications: ωsT = 0.54π rad and
Amin = 60 dB. Note that the asymmetry requires that ωcT + ωsT = π rad. An 11th-order filter meets
the specification. In this case, we require 5 adaptors and 16 structural add/subs. The number of required
add/subs can be determined by appropriately modifying the program in Listing 6.13.

The half-band lattice wave digital filter is realized using the structure shown in Fig. 6.100. If the
order of the even branch is larger than the order of the odd branch, then m = even, i.e., the outputs from
the two branches are added.

Listing 6.13: Program for the design of half-band lattice wave digital filters.

1 wsT = 0 .54∗ p i ; Amin = 6 0 ;
2 N = CA_ORDER_HB_Z( wsT , Amin )
3 N = 1 1 ;
4 N = CA_ORDER_HB_Z( wsT , Amin )
5 % Compute t h e a d a p t o r c o e f f i c i e n t s
6 [G, Z , P , wcT , wsT , Amax , Amin ] = CA_POLES_HB_Z ( wsT , Amin ,N ) ;
7 [ S1num , S1den , S2num , S2den ] = . . .
8 SORT_LATTICE_POLES_HB_Z( P ) ;
9 [ a l f a _ o d d , a l f a _ e v e n ] = . . .
10 CASCADE_RICHARDS_SECTIONS ( S1den , S2den ) ;
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FIGURE 6.100

11th-order half-band lattice wave digital filter.

11 wT = l i n s p a c e ( 0 , p i , 1 0 0 1 ) ;
12 [ S1 , S2 ] = LATTICE_RICHARDS_H( a l f a _ o d d , a l f a _ e v e n , wT ) ;
13 A t t = MAG_2_ATT ( 0 . 5 ∗ ( S2 − S1 ) ) ;
14 f i g u r e ( 1 ) ;
15 s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
16 PLOT_ATT_Z (wT, Att , p i , 1 0 0 ) , h o ld on
17 AttC = MAG_2_ATT ( 0 . 5 ∗ ( S2 + S1 ) ) ;
18 p l o t (wT, AttC , ’ −− ’ , ’ l i n e w i d t h ’ , 2 ) ;
19 a x i s ( [ 0 p i 0 1 0 0 ] ) ; g r i d on , h o ld o f f
20 f i g u r e ( 2 ) ;
21 s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
22 PLOT_ATT_Z (wT, Att , p i , 3∗10^ −6) , ho ld on
23 p l o t (wT, AttC , ’ −− ’ , ’ l i n e w i d t h ’ , 2 )

The adaptor coefficients for the branches are:

odd branch:
α1 = 0,
α4 = −0.315306, α5 = 0,
α8 = −0.759827, α9 = 0,

even branch:
α2 = −0.0936040, α3 = 0,
α6 = −0.5575275, α7 = 0,
α10 = 0.9226919, α11 = 0.

All poles lie on the imaginary axis in the z-plane and alternate between the upper and lower branches
of the lattice filter and (N+1)/2 adaptor coefficients are zero and do not require any multiplications. In
addition, 3(N+1)/2 structural adders are no longer required.
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The attenuation of the low-pass filter and the complementary high-pass filter is shown in Fig. 6.101.
Note that the passband ripple is extremely small. The symmetry between the two responses is perfect
and remains symmetric independent of coefficient quantization. The crossover angle for a half-band
lattice wave digital filter pair occurs at π/2 rad.

FIGURE 6.101

11th-order half-band lattice wave digital filter.

6.12.3 Lattice filters with a pure delay branch
One way to obtain a lattice wave digital filter with an approximately linear phase in the passband
is to constrain one of the all-pass branches to a pure delay [68]. For example, the reflectance S2(z)

corresponds to a cascade of M unit elements, all with port resistance equal to R. The transfer function
is in this case

H(z) = 1
2 (z−M − S1(z)).

For low-pass and high-pass filters, the order of S1(z) must be M + 1 or M − 1. Hence, N = 2M ±
1. It is beneficial to select the order of S1(z) as M+1, i.e., M = even [68]. These filters require much
higher orders than their nonlinear-phase counterparts, especially when the transition band is narrow, but
they are advantageous compared with FIR filters. There exist no closed-form solutions for these filters.
Therefore, numerical optimization must be used, e.g., L_PHASE_LATTICE_WDF.m. This algorithm yields
a filter with equiripple attenuation in the passband and stopband. Designed examples are found in [4].

6.12.3.1 Half-band lattice filter with a pure delay
Consider a half-band lattice wave digital filter with an approximately linear phase in the passband using
a branch with a pure delay. The transfer function can, in this case, be written as

H(z) = 1
2 (S2(z) − z−M)),

where M = odd. For a half-band lattice wave digital filter, all poles lie on the imaginary axis. For a
half-band, linear-phase lattice wave digital filter, this is generally not the case. The poles can occur
in pairs on the real or imaginary axis or as a quadruple of poles for these filters. Therefore, we use a
cascade of sections of the type shown in Fig. 6.102.
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For the synthesis of half-band, linear-phase lattice wave digital filters, there exist no closed-form
solutions. Therefore, numerical optimization algorithms must be used. The approximately linear-phase
half-band filters require much higher orders than their nonlinear-phase counterparts, especially when
the transition band is narrow, but they are often advantageous compared with half-band FIR filters.

6.12.3.2 Example
Synthesize a 19th-order half-band linear-phase lattice wave digital filter having passband and stopband
edges at ωcT = 0.4π rad, ωsT = 0.56π rad, and Amin = 50 dB. Amax will be very small, but here the
function L_PHASE_IIR_HB unnecessarily requires it to be specified.

The filter is synthesized using the program shown in Listing 6.14.

Listing 6.14: Program for the design of half-band lattice wave digital filters with a pure delay branch.

1 wcT = 0 . 4∗ p i ; wsT = 0 .56∗ p i ; Amin = 5 0 ; Amax = 0 . 1 ;
2 N = 1 9 ;
3 [G, Z , P , a l f a ] = L_PHASE_IIR_HB ( wcT , wsT , Amax , Amin ,N ) ;
4 M = (N−1 ) / 2 ;
5 f i g u r e ( 1 ) , PLOT_PZ_Z ( Z , P )
6 f i g u r e ( 2 ) , s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
7 wT = l i n s p a c e ( 0 , p i , 1 0 0 1 ) ;
8 [ S1 , S2 ] = L_PHASE_LATTICE_RICHARDS_HB ( a l f a ,M, wT ) ;
9 A t t = H_2_ATT ( 0 . 5 ∗ ( S2 − S1 ) ) ;
10 s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 0 8 0 . 4 0 . 9 0 0 . 5 ] ) ;
11 PLOT_ATT_Z (wT, Att , p i , 8 0 ) , h o ld on
12 a x e s ( ’ p o s i t i o n ’ , [ 0 . 2 0 0 . 5 2 0 . 3 0 . 2 ] ) ;
13 wTc = l i n s p a c e ( 0 , wcT , 1 0 0 0 ) ;
14 [ S1 , S2 ] = L_PHASE_LATTICE_RICHARDS_HB ( a l f a ,M, wTc ) ;
15 A t t = H_2_ATT ( 0 . 5 ∗ ( S2 − S1 ) ) ;
16 PLOT_ATT_Z_LS ( wTc , At t , 3∗10^−5)
17 f i g u r e ( 3 ) , s u b p l o t ( 3 , 1 , 1 ) ;
18 [ S1 , S2 ] = L_PHASE_LATTICE_RICHARDS_HB ( a l f a ,M, wTc ) ;
19 H = 0 . 5 ∗ ( S2 − S1 ) ;
20 P h _ e r r o r = unwrap ( a n g l e (H) + 9∗wTc ) ;
21 PLOT_DELTA_PHASE_Z( wTc , P h _ e r r o r ,−3∗10^−3 ,3∗10^−3)
22 s u b p l o t ( 3 , 1 , 2 )
23 Taug = PZ_2_TG_Z (G, Z , P , wTc ) ;
24 PLOT_TG_Z( wTc , Taug , 1 4 . 4 , 1 4 . 6 )

The adaptor coefficients are

α1 = −0.7655339, a2 = −0.09483945, a3 = 0.4531888, a4 = −0.1186705, a5 = −0.1952483.

Note the different indexing of the adaptor coefficients. The realization of the filter is shown in
Fig. 6.102.
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FIGURE 6.102

Half-band lattice filter with a pure delay.

FIGURE 6.103

Poles and zeros for the half-band lattice filter with a pure delay.

If the order of the odd branch is larger than the order of the even branch, then m = odd, i.e., the
output from the odd branch is subtracted.

The poles and zeros are shown in Fig. 6.103. The attenuation is shown in Fig. 6.104, whereas the
phase error and group delay are shown in Fig. 6.105. As mentioned earlier, the passband ripple of
a half-band lattice wave digital filter is very small if the stopband attenuation is relatively high. In
the linear-phase case, this automatically leads to small phase error and group delay variations in the
passband, as shown in Fig. 6.105.
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FIGURE 6.104

Attenuation for the half-band lattice filter with a pure delay.

FIGURE 6.105

Phase error and group delay for the half-band lattice filter with a pure delay.

6.13 Circulator-tree wave digital filters
The reactance two-port that is shown in Fig. 6.37 can be described by the scattering matrix, S, given
in (6.74). If the scattering matrix is symmetric, it can be factorized into a set of smaller elementary
scattering matrices, Si , corresponding to first- and second-order reactances. That is, for a tree with four
two-ports,

S = S1S2S3S4.

This corresponds to an analog structure involving circulator-trees, as shown in Fig. 6.106, where
the lossless two-ports are elementary reactance two-ports.

Factorization of the scattering matrix is always possible for symmetric scattering matrices with
s11 = s22 and s12 = s21. Hence, circulator-tree and lattice wave digital filters are directly related since
they realize the same symmetric scattering matrices. The structure is a doubly resistively terminated
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FIGURE 6.106

Circulator-tree structure.

reactance network that can be designed for maximum power transfer and, therefore, exhibits all the
well-known favorable properties of such networks. Moreover, wave digital circulator-tree structures
exhibit well-known properties with respect to finite word length effects, and they have a high degree of
modularity.

The corresponding wave digital structure is shown in Fig. 6.107. Note that there are only feedfor-
ward waves from the inputs to the outputs. The only recursive parts are within the elementary scattering
matrices. The two outputs are power-complementary, i.e., they obey Feldtkeller’s equation. For an odd-
order filter, one section is a first-order all-pass section, and it can be realized by using a three-port
adaptor. The remaining all-pass sections require four-port adaptors, e.g., the four-port adaptor shown
in Fig. 6.108. Note that if the sections are constrained to two-ports with a single transmission line, then
the circulator-tree becomes a wave digital FIR filter.

FIGURE 6.107

Wave digital circulator-tree structure.

Symmetric circulator-tree structures require the same number of coefficients as lattice wave digital
filters, i.e., N coefficients for an N th-order filter. Antisymmetric two-ports cannot be realized with
a canonic number of multiplications. Hence, we do not discuss this case any further. Circulator-tree
structures and lattice wave digital filters are restricted to odd-order low-pass and high-pass filters and
even-order bandpass and bandstop filters.
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FIGURE 6.108

Four-port adaptor.

6.13.0.1 Example
Synthesize a circulator-tree wave digital filter with ωcT = 0.3π rad, ωsT = 0.4π rad, Amax = 0.1 dB,
and Amin = 60 dB.

We compute the adaptor coefficients using the program shown in Listing 6.15.

Listing 6.15: Program for the design of circulator-tree wave digital filters.

1 wcT = 0 . 3∗ p i ; wsT = 0 . 4∗ p i ; Amax = 0 . 1 ; Amin = 6 0 ;
2 N = CA_ORDER_Z( wcT , wsT , Amax , Amin ) ;
3 N = 7 ; % We MUST s e l e c t an odd o r d e r
4 [G, Z , R_ZEROS , P , wsnewT ] = . . .
5 CA_POLES_Z ( wcT , wsT , Amax , Amin ,N ) ;
6 a l f a = CT_TREE_WDF_LP( P )
7 wT = l i n s p a c e ( 0 , p i , 5 1 2 ) ;
8 [ s11 , s21 ] = CT_TREE_WDF_LP_H( a l f a , wT ) ;
9 A t t = H_2_ATT ( s21 ) ;
10 s u b p l o t ( ’ p o s i t i o n ’ , [ 0 . 1 0 . 4 0 . 8 8 0 . 5 ] ) ;
11 PLOT_ATT_Z (wT, Att , p i , 80 )

We get

Si Sign α1 = α2 α3 α4

1 1 0.19636589 1.607268 -

2 1 0.249462 0.1647667 1.3363089

3 –1 0.1305664 0.3168790 1.421988

4 1 0.0383347 0.4151295 1.508200

A negative sign indicates that the corresponding section should have a sign inverter at a2 and b2 as
shown below. The resulting realization of the circulator-tree structure is shown in Fig. 6.109.
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FIGURE 6.109

Circulator-tree structure.

Circulator-tree and lattice structures are closely related, and they have similar sensitivity properties.
Design examples for circulator-tree filters with constant pole radius, half-band circulator-tree, band-
pass, and stopband filters are found in [4].

6.14 Numerically equivalent state-space realization of wave digital
filters

For a given linear signal-flow graph with input x, internal states v, and output y, we can write the
state-space representation as {

V (n + 1) = AV (n) + Bx(n),

y(n) = CV (n) + Dx(n),
(6.128)

where V (n) is a vector containing the current states in the delay elements. We can rearrange these
equations to obtain a more regular form suitable for realization using matrix-vector operations:(

V (n + 1)

y(n)

)
=
[

B A

D C

](
x(n)

V (n)

)
= G

(
x(n)

V (n)

)
. (6.129)

Hence, we can realize the matrix-vector multiplication with the matrix G. We will later discuss the
realization and implementation of such matrix operations.

In order to exactly represent a wave digital filter structure, we need to observe some constraints.

• First, the matrices A, B, C, and D are computed exactly from the wave-flow graph using quan-
tized coefficients. Hence, the state-space representation is numerically equivalent to the original
algorithm.

• Second, quantization of the internal signal word lengths is performed after the matrix multiplication,
i.e., the signal bk in Fig. 6.91 according to the constraint in (6.127). Hence, any parasitic oscillation
will be suppressed.

The numerically equivalent state-space structure inherits the sensitivity properties and the robustness
of the original wave digital filter [69,70,4]. Any wave digital filter structure can be realized using a
numerically equivalent state-space realization. The state-space realization is obtained by computing
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the transmittances between the state variables (delay elements) and the input and output exactly. They
have finite word length since the adaptor coefficients in the wave digital filter have finite word length.
However, the word length becomes, in general, longer, but this drawback may be alleviated by using
multiple-constant techniques or distributed arithmetic and a suitable wave digital structure [69,70,4].
Nevertheless, this approach has several advantages.

• It retains the robustness and sensitivity properties of the wave digital filter.
• The quantization nodes, i.e., in front of the delay elements, can be optimally scaled. Hence, shorter

signal word lengths are sufficient.
• It can be implemented to achieve a maximally fast sample rate [4]. Any excess speed can be used to

reduce power consumption by reducing the power supply voltage. This issue will be discussed later.
• It can be implemented using bit-parallel, digit-serial, and bit-serial arithmetic, based on multiple-

constant techniques, as well as using distributed arithmetic, which is discussed later.

Consider a wave digital ladder filter. The elements in the matrix A will have a relatively long word
lengths since the paths between the delay elements pass through several adaptors. Furthermore, few
elements will be zero. Hence, ladder structures are not the best candidates for this realization technique.

Consider a lattice wave digital filter structure. It has two separate branches, with (N–1)/2 and
(N+1)/2 delay elements that do not interact. Hence, the required coefficient word lengths will be shorter.
Moreover, the A matrix has only N2/2 nonzero elements. Lattice wave digital filters are therefore better
candidates.

Circulator-tree structures yield a triangular A matrix and are therefore also a good candidate. In
addition, it may be advantageous to introduce pipelining to reduce the lengths of the delay-to-delay
paths.

We find that a numerically equivalent realization of a wave digital filter may in many cases be effi-
cient if multiple-constant techniques or distributed arithmetic is employed instead of a direct realization
of the wave-flow graph.

6.15 Computational properties of filter algorithms
In order to compare and evaluate different filter structures, we need to discuss a few basic properties of
algorithms and their implementation.

6.15.1 Latency and throughput
We define latency as the time to generate an output value from the corresponding input value for an
arithmetic operation, as illustrated in Fig. 6.110. The throughput is defined as the reciprocal of the time
between successive outputs. In sequential algorithms, it is possible to increase the throughput of an
algorithm, for example, by using pipelining [11].

6.15.2 Maximal sample rate
The maximal sample rate of a recursive algorithm is determined only by its recursive loops [71,11].
Nonrecursive parts of the signal-flow graph, e.g., input and output branches, generally do not limit the
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FIGURE 6.110

Latency and throughput.

sample rate, but additional delay elements may have to be introduced into the nonrecursive branches
[11]. The maximal sample frequency for an iterative recursive algorithm, described by a fully specified
signal-flow graph [11,4], is

fmax = min
i

{
Ni

Top

}
, (6.130)

where Top is the total latency due to the arithmetic operations and Ni is the number of delay elements
in the directed loop i. We will later define the latency for different arithmetic operations. The loop
with the lowest fmax is called the critical loop. The minimum sample period is also referred to as the
iteration period bound. It is, of course, not possible to improve the iteration period bound for a given
algorithm. However, a new algorithm with a higher bound can sometimes be derived from the original
algorithm using algorithm transformations [72,11,73]. We recognize from (6.130) that there are several
possibilities to improve the bound:

• Reduce the operation latency, Top, in the critical loop.
• Introduce additional delay elements into the loop without changing the behavior of the filter.
• Remove superfluous arithmetic or logic operations from the loop.

6.15.3 Cyclic scheduling
In order to achieve a maximally fast implementation that achieves the bound in (6.130), we must gen-
erally connect m computation graphs representing the operations within a single sample interval [11],
as illustrated in Fig. 6.111.

This will result in a periodic scheduling formulation that allows a schedule period that is m times
longer than the sample interval. This cyclic formulation will, under certain conditions, result in a max-
imally fast, periodic schedule. Unfortunately, it is not possible to determine the best choice of m in the
general case. In order to attain the minimum sample period, it is necessary to perform cyclic scheduling
of the operations belonging to several successive sample intervals if:

• the latency for a processing element (PE) is longer than Tmin or
• the critical loop(s) contain(s) more than one delay element.
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FIGURE 6.111

Cyclic scheduling.

Generally, the critical loop should be at least as long as the longest latency for any PEs in the loop. Bit-
serial and digit-serial operations with latencies longer than the minimal sample period can be completed
within the scheduling period. The minimum number of sample periods for the schedule is

m =
⌈

max(Tlatency,i )

Tmin

⌉
, (6.131)

where Tlatency,i is the total latency of operations in the loop i. The cyclic scheduling formulation makes
it possible to find a resource-optimal schedule with a minimum number of concurrent operations [11,4].

6.16 Architecture
A significant problem when implementing an algorithm is to decide upon a suitable hardware archi-
tecture. For example, we may elect to use one or several PEs and one or several memories or memory
ports and various communication networks between PEs and memories [11]. Typically the design tar-
get is to minimize the implementation cost, e.g., chip area and power consumption, while meeting the
throughput requirement. Usually, there is no benefit in having a higher throughput in DSP applications
than required.

We recommend that the arithmetic operations are scheduled cyclically to attain a maximally fast
implementation, as illustrated in Fig. 6.111. A maximally fast schedule and the corresponding imple-
mentation are obtained using an isomorphic mapping between the arithmetic operations and the PEs
[74,75,76]. This allows the hardware to operate with a low power supply voltage and low power con-
sumption. Moreover, the communication network becomes simple and static. There are graphic-based
methods to determine the number of independent memories or memory ports required [11].

It has been shown that a maximally fast implementation is obtainable using a numerically equivalent
state-space representation [69,4] and distributed arithmetic [70,77]. These techniques can efficiently be
implemented as a matrix-vector operation. Moreover, a numerically equivalent state-space representa-
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tion of a wave digital filter can be scaled optimally, i.e., it uses the available signal range efficiently.
Moreover, it will generate low round-off noise and will therefore require a shorter signal word length
[69,70,11,4].

6.17 Arithmetic operations
Here we are mainly interested in the arithmetic operations: addition, subtraction, and multiplication,
as well as SOP. There exist many alternative arithmetic algorithms to perform these operations. Con-
sider, for example, addition. Addition of two numbers, independently of their sign, can be performed
using a single circuit if two’s-complement representation is used. Moreover, changing the circuit for
addition into a subtractor requires only that the bits of one of the inputs are inverted. An advantage
of the two’s-complement number representation is that several numbers can be added, with possible
intermediate overflows, if we can guarantee that the result is within the correct number range. This sit-
uation frequently occurs in digital filter algorithms. A drawback is, however, that the carry propagation
limits the latency. Several techniques to speed up the computation of the carries and carry-free number
representations have been proposed [78].

6.17.1 Addition and subtraction
Adding two or more numbers is in many ways the most fundamental arithmetic operation since most
other operations are based on addition. The operands of concern here are either two’s-complement or
unsigned representation. Most DSP applications use fractional arithmetic instead of integer arithmetic
[11,4]. The sum of two W-bit numbers is a (W+1)-bit number, while the product of two binary W-bit
numbers is a 2W-bit number. In many cases, and always in recursive algorithms, the resulting num-
ber needs to be quantized to a W-bit number. Hence, the question is which bits of the result are to
be retained. In fractional arithmetic, two’s-complement numbers are interpreted as being in the range
[−1, 1[, i.e.,

x = −x0 +
W−1∑
i=1

xi2
−i . (6.132)

Therefore, the most significant part of a product is contained in the bits (x0, x1, .....). We use the
graphic representation shown in Fig. 6.112 to represent the operands and the sum bits with the most
significant bit to the left.

FIGURE 6.112

Illustration of addition of two binary numbers.
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6.17.1.1 Ripple-carry addition
A straightforward way to add two numbers is to sequentially add the two bits of the same significance
and the carry from the previous stage using a full adder (FA) and propagate the carry bit to the next
stage. This is called ripple-carry addition and is illustrated in Fig. 6.113. Note that the operation prop-
agates from right to left and that only one FA has correct inputs at a given moment. Hence, the circuit
performs addition sequentially, one bit at a time, even though it is referred to as a parallel adder. This
type of adder can add both unsigned and two’s-complement numbers.

FIGURE 6.113

Ripple-carry adder.

The major drawback with the ripple-carry adder is that the latency is proportional to the word length.
Also, typically the ripple-carry adder will produce many glitches since the FAs perform switching
operations without having correct carries. This situation is improved if the delay for the carry bit is
smaller than that for the sum bit [79].

However, due to the simple design, the energy per computation is still reasonable small [80]. Alter-
natively, all pairs of two bits of the same significance can be added simultaneously, and then the carries
are added using some efficient scheme. Many adder schemes have been proposed. For more details,
we refer to [80]. For carry-save addition we refer to [81,82]. It is also possible to perform addition in
constant time using redundant number systems such as signed-digit or carry-save representations. An
alternative is to use residue number systems, which break the carry chain into several shorter chains
[83].

6.17.1.2 Bit-serial addition and subtraction
In bit-serial arithmetic, the inputs x and y are normally processed with the least significant bit first. Bit-
serial numbers in two’s-complement representation can be added or subtracted with the circuits shown
in Fig. 6.114.

FIGURE 6.114

Bit-serial adder and subtracter.
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Since the carries are saved from one bit position to the next, the circuits are called carry-save adder
and carry-save subtractor, respectively. At the start of the addition, the D flip-flop is reset (set) for the
adder (subtractor).

Fig. 6.115 shows two latency models for bit-serial adders. The leftmost is suitable for static CMOS
logic and the rightmost is suitable for dynamic (clocked) logic styles. The time to add two W-bit num-
bers is W or W+1 clock cycles. Note that the first bit of the sum, delayed by the latency given in
Fig. 6.117, can directly be fed to any subsequent bit-serial PE. Thus, the throughput of a complex
computation may not necessarily be determined by the long addition time [11,4].

FIGURE 6.115

Latency models for a bit-serial adder.

Comparing the ripple-carry adder and the bit-serial adder, we note that both operate sequentially
with one bit addition at a time. In the ripple-carry adder, each bit addition is mapped to its private
FA, while in the bit-serial adder, all bit additions are mapped to a time-multiplexed FA. Hence, the
difference in throughput is mainly due to the time lost in the D flip-flop. The chip area for bit-serial
circuits is small, and consequently, the wiring is also small, but standard D elements have large power
consumptions.

6.17.1.3 Digit-serial addition and subtraction
From the speed and power consumption points of view, it may sometimes be advantageous to process
several bits simultaneously using so-called digit-serial processing [84,85,86,87,88,89,90]. The number
of bits processed in a clock cycle is referred to as the digit size. Fig. 6.116 shows a d-bit digital-serial
adder.

The flip-flop transmits the carry between successive digits. In the case of subtraction of a two’s-
complement number, the negative value is instead added by inverting the bits and setting the carry
flip-flop. Most of the principles for bit-serial arithmetic can easily be extended to digit-serial arithmetic.
An advantage of bit-serial and digit-serial arithmetic is that less chip area is required, and therefore the
equivalent switched capacitance and leakage current is low [91]. Furthermore, the difference in through-
put between a conventional word level and a digit-serial implementation is not great [92]. Therefore,
both bit-serial and digit-serial arithmetic circuits are suitable for implementations in FPGA circuits.
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FIGURE 6.116

Digit-serial adder with digit size d.

6.17.2 Multiplication
Bit-parallel multiplication of two numbers can be divided into two main steps:

• partial product generation that determines the bits to be added and
• accumulation of the partial products.

Two main approaches to perform the accumulation have been proposed, namely array and tree type
accumulation [78]. In addition, bit-serial and digit-serial multiplications are usually based on a shift-
and-add approach [11,93]. However, we will focus on techniques that use addition and subtraction as
generic arithmetic operations.

6.17.2.1 Serial/parallel multipliers
Two latency models for a serial/parallel multiplier are shown in Fig. 6.117. Denoting the number of
fractional bits of the coefficient by Wcf , the latencies are Wcf for latency model 0 and Wcf + 1 for
latency model 1. The corresponding latency models for digit-serial arithmetic are defined in the same
manner.

In model 0, which corresponds to a static CMOS logic style without pipelining of the gates, the la-
tency is equal to the gate delay of an FA. In model 1, which corresponds to a dynamic CMOS logic style
or a static CMOS logic style with pipelining at the gate level, the FA is followed by a D flip-flop, mak-
ing the latency equal to one clock cycle. Model 1 generally results in faster bit-serial implementation
due to the shorter logic paths between the flip-flops in successive operations.

To identify the critical loop in the filter, the total latency of the operations inside the loops must
be determined. The total latency of several sequential arithmetic operations depends on how they are
realized at the logic level because the clock frequency is determined by the longest propagation path
between any two registers. The propagation paths do not only depend on the internal circuitry in an
arithmetic unit; they also depend on the paths between units. Hence, it may be efficient to use pipelining
inside the critical loop to avoid long propagation paths between arithmetic units.

6.17.2.2 Example
Consider a lattice wave digital filter. The critical loop in a first-order all-pass section is indicated in
Fig. 6.118 [75,76].

This loop, containing two additions, one multiplication with α0, and one delay element, has the
minimal sample period given by
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FIGURE 6.117

Latency models for a serial/parallel multiplier.

FIGURE 6.118

First-order all-pass section.

Tmin1 = Tα0 + 2Tadd

1
. (6.133)

In Fig. 6.119, the critical loop in a second-order all-pass section is indicated. For this loop, consisting
of four additions, two multiplications, and one delay element, the corresponding minimal sample period
becomes

Tmin2 = Tαi + Tαi−1 + 4Tadd

1
. (6.134)

The section with the lowest throughput then bounds the minimal sample period of the filter, i.e., the
loop i that yields Tmin, since each section has to operate with the same throughput.

Fig. 6.120 shows the cyclic scheduling of the operations belonging to m sample periods for a first-
order all-pass section. The shaded areas indicate execution time for the operations, and darker shaded
areas indicate their latency. Scheduling of second-order all-pass sections can be found in [11,4]. Since a
bit-serial processing element only processes one bit in each clock cycle, a complete arithmetic operation
requires at least Wd clock cycles. Therefore, for the minimal sample period of Tmin clock cycles, where
Tmin < Wd , operations belonging to m sample periods need to be included in the schedule. It can be
shown that m must be selected as



386 Chapter 6 Digital filter structures and their implementation

FIGURE 6.119

The critical loop in a second-order all-pass section.

m ≥
⌈

Wcf + Wd + mn0

Tmin

⌉
, (6.135)

where mn0 is 0 for model 0 and 1 for model 1, to allow an arithmetic operation requiring Wcf +
Wd + mn0 clock cycles to be completed within the scheduling period. Thus, the scheduling period for
a maximally fast schedule becomes mTmin. The implementation of the complete filter is illustrated in
Fig. 6.121.

FIGURE 6.120

Maximally fast schedule for a first-order all-pass section.
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FIGURE 6.121

Complete lattice wave digital filter.

6.17.2.3 Constant multiplication
General multipliers that can execute arbitrary multiplications of two numbers with word lengths Wd

and Wc are costly. Typically the coefficient word length is shorter than the signal word length, i.e., Wc

< Wd . In many cases, we may assign a dedicated multiplier to each multiplication and simplify the
implementation by specializing the multipliers for each particular coefficient value. Here we assume
that the filter is implemented using FPGA or a standard cell approach. We have full freedom to design
a specialized multiplier that is optimized for a specific coefficient. In this case, a significant reduction
in the implementation cost, i.e., chip area or power consumption, can be achieved. In addition, in most
cases, the throughput can also be increased.

Multiplication with a power-of-two can be realized by a simple shifting operation using two’s-
complement representation. For example, multiplication with a factor 2n > 1, n > 0, involves shifting
the signal word to the left, e.g.,

22(x0.x1x2x3) = x0x1.x2x300,

where x0 is the sign bit and (.) denotes the binary point. Zeros replace the bits to the left. Multiplication
with a factor 2n < 1, n < 0, involves shifting the signal word to the right and copying the sign bit, e.g.,

2−2(x0.x1x2x3) = x0.x0x0x1x2x3.

This property of two’s-complement representation allows us to simplify the implementation of mul-
tipliers with constant coefficients. Any binary number can be split into a SPOT. Multiplication can then
be implemented by a shift-and-add approach. It is advantageous to minimize the number of nonzero bits
in the coefficients to significantly reduce the cost of the multiplier. The number of adders/subtractors
equals the number of nonzero bits minus one [94,11,4]. Of particular interest are coefficients that can
be implemented with a minimum number of shift-and-add operations.

Consider the multiplication with the integer 23. It is often simpler to view the multiplication in terms
of integers rather than factional numbers. We can, at the end, change the position of the binary point.
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We have

2310•x = (010111)2•x = 24x + 22x + 2x + x = x<<4 + x<<2 + x<<1 + x,

where we have used the in the literature commonly used notation for left-shift operator. The number of
adders equals the number of nonzero bits minus one; in this case, 4 − 1 = 3.

We may also use a signed-digit representation. We have

2310•x = (011001)SD•x = 24x + 23x – x,

which requires only two adders/subtractors; 1 denotes – 1. Moreover, we may realize the multiplications
by noting that 2310•x = 23(2x + x) – x, which also requires two adders/subtractors. We conclude that
there may exist several alternative realizations of a constant multiplication [78,4].

Extensive efforts have been made to find those multiplier algorithms that minimize the number of
adders/subtractors required for performing the fixed coefficient multiplication. The assumption is that
the number of adders represents the required chip area. However, it is often also important to consider
throughput and power consumption. The longest propagation path limits the throughput, but this limit
can be alleviated using pipelining. On the other hand, the dynamic power consumption, which depends
on switching and glitches inside the adder network, tends to be high if the longest propagation path is
long. Significant efforts have therefore been directed towards finding compromises between chip area,
throughput, and power consumption.

Fig. 6.122 shows all possible graphical representations of a network consisting of adders/subtractors
and shifts to realize a single multiplication with one, two, and three adders. The nodes with two incident
branches represent a single addition/subtraction, while nodes with three incident branches represent
two additions/subtractions. The branches have either transmittance equal to 1 or a power of two. For
example, the first graph with only a single adder may realize a multiplication by 9 when one of the
branches has transmittance 1 and the other 8, i.e., three left-shifts. There exist 11 and 34 graphs with
four and five adders/subtractors, respectively. Only five adders/subtractors are required to realize all
coefficients with word length less than 20 bits. These numbers are stored in the file mincost.mat. If the
filter structure has low coefficient sensitivity, the coefficients can be quantized to have many zero-bits.
Typically, only a few powers-of-two, i.e., less than five bits, are required. If the distance between the
two furthest nonzero bits is large, then the coefficient sensitivity is also large.

FIGURE 6.122

Graph representation of multiplication with one, two, or three adders/subtractors.
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6.18 Composite arithmetic operations
This section discusses the two main techniques to simplify the hardware implementation of MCM and
SOP. Fig. 6.123(a) shows a multiple-constant multiplication structure. Typically, the coefficients ak are
fixed and xk are variable, but there are several common cases where both ak and xk are variable, for
example, computation of correlation, which requires a general multiplier.

The arithmetic structure shown in Fig. 6.123(b) consists of a set of SOP, i.e.,

y =
N∑

k=1

akxk. (6.136)

The multiple-constant multiplication structure can be derived from a transposed version of the SOP
by reversing the directions of the signal flow graphs. These two cases often appear as substructures in
digital filter algorithms.

Distributed arithmetic is an efficient procedure for computing SOP between a fixed and a variable
signal vector. The basic principle is owed to Croisier et al. [95]. Distributed arithmetic is suitable for the
implementation of relatively short SOP, discrete cosine transforms, and complex multiplications [11,4].

6.18.1 Multiple-constant multiplication
It should be noted that by transposing an MCM structure, an SOP is obtained. If an optimal solution
is obtained for one of these cases, the same solution, but transposed, is valid for the other case. There
are two main routes to find efficient realizations of SOP using only shifts and adder/subtractor struc-
tures. The first approach is to find recurring bit patterns in the coefficient representation, which need
to be computed only once and then reused. A problem with this approach is that it depends on the
representation of the coefficients. This approach is referred to as subexpression sharing [96].

MCM techniques [78,11,4] are efficient methods to simplify multipliers with fixed coefficients and
reduce power consumption. Single multipliers and substructures of the type shown in Fig. 6.123 can be
simplified significantly by using MCM techniques [97,98,99,100,101,102]. Several effective algorithms
have been proposed for the MCM case that avoids number representation dependency [103,104]. Lower
bounds for MCM problems have been presented in [105]. Moreover, using linear programming, filter
coefficient optimization and MCM implementation can be jointly addressed [106,107].

FIGURE 6.123

Multiple-constant multiplication and sum-of-products.

Fig. 6.124 shows a typical example of an MCM network. The basic idea is to reduce the number
of basic operations (i.e., add/sub-and-shift operations) by factoring out common factors among the
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coefficients ci by first generating a set of common subexpressions, d1, d2, d3. In the next step, the simple
coefficients are multiplied and added/subtracted, generating new subexpressions, and so on [82,108].

For MCM cases with many coefficients, for example, for long FIR filters, the average increase of the
number of adders/subtractors approaches one, increasing the products’ length by one. This is because
most subexpressions have already been generated, and only a single addition/subtraction is needed to
generate another coefficient. Thus, the problem of finding optimal solutions to the MCM problem is
NP-complete. Therefore, several heuristic algorithms have been derived; see, e.g., [97,99,100,109,110,
111,108].

FIGURE 6.124

MCM network.

Fig. 6.125 shows a graph that simultaneously realizes the multiplication with 7, 11, and 106. Only
three adders/subtractors and some shift operations are required. These techniques are efficient for im-
plementing bit-parallel, digit-serial, and bit-serial processing elements [11,4].

FIGURE 6.125

MCM example.

According to Fig. 6.111, a realization will consist of a set of MCM structures where the input to a
network is taken from a register and the output is to be stored into other registers.

6.18.2 Distributed arithmetic
Consider the SOP in (6.136) and assume that the coefficients ak , k = 1, 2, ..., N, are fixed. Two’s-
complement representation is used for both coefficients and signal. The inputs are scaled so that |xk | ≤
1. The SOP can be rewritten as
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y =
N∑

k=1

ak

⎛
⎝−xk0 +

Wd−1∑
i=1

xki2
−i

⎞
⎠ , (6.137)

where xki is the ith bit in xk . By interchanging the order of the two sums, we get

y = −
N∑

k=1

akxk0 +
Wd−1∑
i=1

N∑
k=1

(akxki)2−i , (6.138)

which can be written as

y = −F0 (x10, x20, ..., xN0) +
Wd−1∑
i=1

Fi (x1i , x2i , ..., xNi)2−i , (6.139)

where

Fi (x1i , x2i , ..., xNi) =
N∑

k=1

akxki . (6.140)

F is a function of N binary variables, the kth variable being the ith bit in the signal, xk . Since Fi can
take on only a finite number of values, 2N , it can be precomputed and stored in a read-only memory
(ROM). Using Horner’s method to evaluate a polynomial for x = 0.5, Eq. (6.139) can be rewritten as

y =
(((((

0 + FWd−1
)

2−1 + ... + F2

)
2−1 + F1

)
2−1 − F0

))
. (6.141)

Fig. 6.126 shows a block diagram for computing an SOP according to (6.141).

FIGURE 6.126

Block diagram for distributed arithmetic.

Inputs x1, x2, ..., xN are shifted out bit-serially from the shift registers with the least significant bit
first. The bits xki are used as an address to the ROM storing the look-up table. Computation of the
SOP starts by adding FWd−1 to the initially cleared accumulator register, REG. In the next clock cycle,
outputs from the shift registers address FWd−2, which is added to the value in the accumulator register.
The result is divided by 2 and stored back into REG. After Wd − 1 clock cycles, F0 is subtracted from
the value in the accumulator register. The computation time is Wd clock cycles. The required word
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length in the ROM, WROM , depends on Fimax with the largest magnitude and the coefficient word
length, Wc, and WROM = ⌈Wc + log2 (N)

⌉
.

The hardware cost is similar to that of a multiplier. In fact, most multiplier structures, e.g., serial/par-
allel, array, and tree-structure multipliers, can be used for distributed arithmetic. Distributed arithmetic
can be used to implement first- and second-order direct-form I sections, FIR filters, and wave digital
filters [112,95,113,114,4].

6.18.2.1 Implementation of FIR filters using distributed arithmetic
Fig. 6.127 shows an implementation of an 11th-order linear-phase FIR filter. N/2 bit-serial adders (sub-
tractors) are used to sum the symmetrically placed values in the delay line. This reduces the number of
terms in the SOP. Only 64 words are required, whereas 212 = 4096 words are required for the general
case, e.g., a nonlinear-phase FIR filter. For higher-order FIR filters, the reduction in the number of terms
by 50% is significant. Further, the logic circuitry has been pipelined by introducing D flip-flops between
the adders (subtractors) and the ROM and between the ROM and the shift-and-add accumulator.

FIGURE 6.127

11th-order linear-phase FIR filter.

The number of words in the ROM is 2N , where N is the number of terms in the SOP. The chip area
for the ROM is small for SOP with up to 5 to 6 terms. The basic approach is useful for up to 10 to 11
terms. However, SOPs containing many terms can be partitioned into a number of smaller SOPs, which
can be computed and summed by using either distributed arithmetic or an adder tree.

A complete SOP PE and several similar types of PEs, for example, adaptors and butterflies, can be
based on distributed arithmetic. The main parts of an SOP PE are the shift-accumulator, the coefficient
ROM with decoder, and the control circuits. Overflow and quantization circuitry are also necessary,
but it is often advantageous to move parts of this circuitry to the serial/parallel converters used in the
interconnection network [11].
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6.18.2.2 Memory reduction techniques
The amount of memory required becomes very large for long SOP. There are mainly two ways to reduce
the memory requirements, namely, partitioning and coding of input signals. The two methods can be
applied at the same time to obtain a very small amount of memory.

One way to reduce the overall memory requirement is to partition the memory into smaller pieces
that are added before the shift-accumulator, as shown in Fig. 6.128.

FIGURE 6.128

Reducing the memory by partitioning.

The amount of memory is reduced from 2N words to 2 · 2
N
2 words if the original memory is parti-

tioned into two parts. For example, for N = 10, we go from 210 = 1024 words to 2 · 25 = 64 words.
Hence, this approach reduces the memory significantly at the cost of an additional adder. In addition,
the partitioning may, in some cases, be done so that long and short values are stored in different par-
titions. Note that depending on the values in the ROM, it is often favorable from both speed and area
points of view to implement a ROM by logic gates. Large ROMs tend to be slow.

The second approach is based on a special coding of the inputs, xi , which results in a symmetric
ROM content [95,11]. Memory size can be halved by using the ingenious scheme [95] based on the
identity

x = 1

2
(x − (−x)) . (6.142)

This approach is also used for the realization of a complex multiplier using only two shift-
accumulators and a ROM [11,4]

6.19 Power reduction techniques
Static CMOS technology is currently and will continue to be the dominating implementation technol-
ogy. However, the feature size is rapidly shrinking towards 7 nm and below.1 Note that the size of
viruses is in the range of 10 to 400 nm. Circuits implemented using modern CMOS processes are no

1 State-of-the-art 2021: 300-mm wafers with a transistor gate length of 2 nm.
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longer characterized by the number of transistors on the chip. Instead, the chip area, overall through-
put, and power consumption are more appropriate metrics. Here, we assume the digital filter is operated
continuously, and therefore the leakage and short-circuit currents can be neglected [42]. The power dis-
sipation associated with switching in CMOS circuits is approximately given by

P = αfCLCLVDD	VDD, (6.143)

where α is the activity factor, i.e., the average number of transitions from 0 to 1 for the equivalent
electrical node per clock cycle, fCL is the clock frequency, CL is the equivalent switched capacitance
of the circuit, VDD is the power supply voltage, and �VDD is the voltage swing. In most cases, we
use CMOS circuits with full swing, i.e., �VDD = VDD . Reducing any of the factors in (6.143) can
reduce power consumption. Below we briefly review various techniques that can be applied to reduce
the power consumption in digital filters and are useful in many other DSP algorithms [9].

The activity factor α can be reduced in several ways. Some techniques exploit the known statistical
properties of the signals. For example, operations to be executed on an adder or multiplier can be
scheduled with respect to the correlation between successive operands so that the carry propagation
and glitches are minimized. For example, only the first FA (LSB) in a bit-parallel ripple-carry adder
has correct inputs and performs a valid addition in the first moment. The other FAs have carry-ins
that are not yet determined; hence, they may perform invalid additions that consume energy. In the
next moment, the second FA has correct inputs and performs a valid addition while the first FA is
idle. In each instance, the remaining FAs may change their states and increase power dissipation. The
bit-parallel ripple-carry adder performs a bit-by-bit addition sequentially, while in bit-serial arithmetic,
a bit-by-bit addition is performed sequentially on a single FA. The execution time for a bit-parallel
addition using a ripple-carry adder is almost the same as for a bit-serial addition if the safety margins
needed for the flip-flops that separate two successive bit additions are neglected. Techniques to speed
up the propagation of the carries favor, however, bit-parallel adders at the expense of increased power
consumption.

Glitches: A redundant number representation [78] is another technique to avoid long carry propa-
gation and glitches, which are costly in terms of power consumption. Glitches in logic circuits occur
when the difference in arrival times of two logic signals to a gate is so large that false transitions occur
and change the states of some electrical nodes. Slowing down the signal paths that are too fast so that
the signals arrive simultaneously can minimize this effect and reduce power consumption by up to 40%
in a bit-parallel multiplier.

In CMOS technologies with small feature sizes, the switched capacitance associated with the de-
vices is relatively small compared to interwire capacitance, as illustrated in Fig. 6.129. The interwire
capacitance can be about six times larger than the wire-substrate capacitance. For long buses, it is
therefore important to order the transmission of successive signals on the bus so that the charging/dis-
charging of the wire capacitors is minimized. A useful measure to minimize is the sum of the Hamming
distances of the transmitted words. For example, in speech signals, it may be advantageous to use sign-
magnitude representation on long buses since most samples have small magnitudes, which causes only
the least significant bits to vary, while in two’s-complement representation, almost all bits change when
a sample value changes sign.

The clock frequency, fCL, of the circuitry should of course not be reduced, since this would reduce
the computational work performed by the circuitry, and the inherent processing capacity of the circuitry
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FIGURE 6.129

Interwire and wire-to-substrate capacitance model.

would not be fully utilized. Generally, it is efficient to use minimum-size transistors throughout the
integrated circuit, except for a few critical paths where slightly larger and faster transistors are used.
This strategy leads to a significant increase in the maximal clock frequency at the expense of a small
increase in the switched capacitance.

If a long logic path requires gates with extra drive capacity in order to meet the throughput require-
ment, it may often be more efficient to break the long path into smaller paths to reduce the chip area
and power consumption.

The required clock frequency for the algorithm may, however, be reduced at the expense of increased
chip area by exploiting computational parallelism of the algorithm by mapping the arithmetic operations
to several PEs or by using multirate techniques in which parts of the digital filter operate at lower sample
rates. Parts of the algorithm that operate at a lower rate can often be multiplexed onto a single hardware
structure in order to save chip area.

The equivalent switched capacitance, CL, can be made small by using a combination of different
techniques. On the algorithm level, most techniques focus on using filter structures with a small number
of arithmetic operations per sample. Multirate filter structures are typical examples where a significant
reduction in arithmetic workload can be obtained.

Low-sensitivity structures require shorter signal word lengths and shorter and more favorable co-
efficients that allow fixed multipliers to be simplified [11]. Canonic signed-digit code (CSDC) [78,11]
and multiple-constant techniques are efficient techniques to simplify the realization of fixed multipliers
[97,99,100,101,108,115,116,105]. The trade-off between the two extremes, bit-parallel and bit-serial
arithmetic, i.e., digit-serial arithmetic, is a promising route to lower power consumption and reduce the
chip area [11]. As mentioned above, the transmission of signals over long buses is costly in terms of time
and power consumption. Architectures with local computations are therefore preferred. Digit-serial PEs
yield smaller chip area and, hence, shorter communication distances and are a good compromise be-
tween a large number of glitches in bit-parallel arithmetic and many clock cycles per operation of the
flip-flops in bit-serial arithmetic. At the logic level, the use of efficient, low-power CMOS circuits and
clocking techniques is important [42].
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6.19.1 Power supply voltage scaling
The power consumption can be significantly reduced by using a lower power supply voltage. Unfortu-
nately, then the maximal clock frequency of the CMOS circuit is reduced [42] according to

fCL = k (VDD − VT )β

VDD

, (6.144)

where k is a process-dependent constant, β is a constant slightly larger than one in modern CMOS
processes, and VT is the threshold voltage of a MOSFET. However, the reduction in throughput can
often be compensated in parallel algorithms by exploiting more computational parallelism [11]. From
(6.144), it is evident that a CMOS process with a low threshold voltage is preferred from the point of
view of speed. In practice, many circuits are therefore manufactured with a process with two threshold
voltages. Transistors with low threshold voltages are used for high-speed circuits, while transistors with
high threshold voltages are used for low-speed circuits, since the latter have smaller leakage currents.

Many approaches to reduce power consumption are based on various techniques to decrease the
arithmetic workload. This can be done at the algorithmic level by using efficient, low-sensitivity struc-
tures that allow few and simple coefficients and at the hardware level using simplified multiplier
realizations. Usually, the power consumption, due to memory, communication, and control, is neglected
in these techniques, although their contribution may be significant. Polyphase structures and frequency
masking techniques are commonly used to reduce the arithmetic workload.

Another approach is based on power supply voltage scaling, where the implementation is operated
with a low supply voltage. Pipelining and interleaving do not apply to recursive algorithms. However,
pipelining inside recursive loops can be performed at the logic level. Therefore, it is important to exploit
all parallelism of the recursive algorithm to achieve higher speed, which allows a reduction in the power
supply voltage.

6.19.2 Overall strategy
We propose the following strategy to design recursive digital filters with low power consumption:

• Select an inherently fast and low-sensitivity filter algorithm, e.g., ladder or lattice wave digital filters,
possibly combined with frequency masking techniques or multirate techniques.

• Use an approximation with a diminishing ripple, which reduces the passband sensitivity in the wave
digital filters, and use discrete optimization techniques to reduce the operation latencies in the critical
loop.

• Use pipelining to split the nonrecursive parts into smaller pieces so that Tmin can be achieved.
• Find a maximally fast and resource-minimal schedule.
• Use an isomorphic mapping to an optimal hardware structure with bit- or digit-serial PEs.
• Use CMOS logic circuits that yield bit- or digit-serial PEs with low power consumption, especially

for the D flip-flops in the bit-serial case.
• Convert any excess circuit speed to reduced power consumption by reducing the power supply volt-

age.
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After the introductory sections on resampling theory and basics of digital filters, the architectures of
up and down converter channelizers are presented. Those paragraphs are followed by the main core of
this chapter in which the authors present novel digital up converter (DUC) and digital down converter
(DDC) architectures for software-defined radios, which are based on variations of standard polyphase
channelizers.

The proposed DUC is able to simultaneously up convert multiple signals, having arbitrary band-
widths, to arbitrarily located center frequencies. On the other side of the communication chain, the
proposed DDC is able to simultaneously down convert multiple received signals with arbitrary band-
width and arbitrarily located in the frequency domain. Both proposed structures avoid the digital data
section replication, which is necessary in the current digital transmitters and receivers, when multiple
signals have to be handled. Due to the inverse discrete Fourier transform (IDFT), performed using an
inverse fast Fourier transform (IFFT) algorithm, embedded in the channelizers, the proposed architec-
tures are very efficient in terms of total workload.

This chapter is structured into two main parts, which are composed, in total, of 10 sections. Its
structure is described in Fig. 7.1. The first part provides preliminary concepts on the sampling pro-
cess, the resampling process of a digital signal, digital filters, multirate structures, and standard M-path
polyphase up and down converter channelizers, as well as their modified versions that represent the
core of the structures we present in the second part of this chapter. These are well-known topics in the
digital signal processing (DSP) area and they represent the necessary background for people who want
to start learning about software radios. The second part of this chapter goes through new frontiers of the
research presenting the novel transmitting and receiving designs for software radios and demonstrating,
while explaining the way in which they work, the reasons that make them the perfect candidates for the
upcoming cognitive radios.
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FIGURE 7.1

Structure of the chapter.

7.1 Introduction
Signal processing is the art of representing, manipulating, and transforming wave shapes and the infor-
mation content that they carry by means of hardware and/or software devices. Until the 1960s, almost
entirely continuous-time, analog technology was used for performing signal processing. The evolution
of digital systems along with the development of important algorithms such as the well-known fast
Fourier transform (FFT), by Cooley and Tukey in 1965, caused a major shift to digital technologies
giving rise to new DSP architectures and techniques. The key difference between analog processing
techniques and digital processing techniques is that while the first process analog signals, which are
continuous functions of time, the second process sequences of values. The sequences of values, called
digital signals, are series of quantized samples (discrete-time signal values) of analog signals.
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The link between the analog signals and their sampled versions is provided by the sampling process.
When sampling is properly applied it is possible to reconstruct the continuous-time signal from its
samples while preserving its information content. Thus the selection of the sampling rate is crucial:
an insufficient sampling frequency causes, surely, irrecoverable loss of information, while a more than
necessary sampling rate causes useless overload on the digital systems.

“Multirate DSP” refers to the operation of changing the sample rate of digital signals, one or multi-
ple times, while processing them. The sampling rate changes can occur at a single or multiple locations
in the processing architecture. When the multirate processing applied to the digital signal is a filtering
step, then the digital filter is named multirate filter; a multirate filter is a digital filter that operates with
one or more sample rate changes embedded in the signal processing architecture. Selecting the most
appropriate signal sampling rate at different stages of the processing architecture, rather than having a
single (higher) sampling rate, enhances the performance of the system while reducing its implemen-
tation costs. However, the analysis and design of multirate systems could result complicated because
of the fact that they are time-varying systems. It is interesting to know that the first multirate filters
and systems were developed in the context of control systems. The pioneer papers on this topic were
published in the second half of the 1950s [13–15]. Soon the idea spilled over to the areas of speech,
audio, image processing [20,25], and communication systems [8]. Today, multirate structures seem to
be the optimum candidates for cognitive and software-defined radio [4,6,7,12,24], which represents the
frontier of innovation for the upcoming communication systems.

One of the well-known techniques that find its most efficient application when embedded in multi-
rate structures is the polyphase decomposition of a prototype filter. The polyphase networks, of generic
order M, originated in the late 1970s from the works by Bellanger et al. [1,2]. The term polyphase is
the aggregation of two words: poly, which derives from the ancient Greek word polys, which means
many, and phase. When applied to an M-path partitioned filter these two words underline the fact that
on each path, each aliased filter spectral component experiences a unique phase rotation due to both
their center frequencies and the time delays, which are different in each path because of the way in
which the filter has been partitioned. When all the paths are summed together, the undesired spectral
components, having phases with opposite polarity, cancel each other while only the desired compo-
nents, which experience the same phase on all the arms of the partitions, constructively add up. By
applying appropriate phase rotators to each path we can arbitrarily change the phases of the spectral
components, selecting the spectral component that survives as a consequence of the summation. It is
interesting to know that the first applications of the polyphase networks were in the areas of real-time
implementation of decimation and interpolation filters, fractional sampling rate-changing devices, and
uniform DFT filter banks, as well as perfect reconstruction analysis/synthesis systems. Today polyphase
filter banks, embedded in multirate structures, are used in many modern DSP applications as well as in
communication systems where they represent, according to the authors’ belief, one of the most efficient
options for designing software-based radio.

The processing architecture that represents the starting point for the derivation of the standard
polyphase down converter channelizer is the single-channel DDC. In a digital radio receiver this en-
gine performs the operations of filtering, frequency translation, and resampling on the intermediate
frequency (IF) signals. The resampling is a downsampling operation to make the signal sampling rate
commensurate to its new reduced bandwidth. When the output sampling rate is selected to be an integer
multiple of the signal’s center frequency, the signal spectrum is shifted, by aliasing, to baseband and
the complex heterodyne defaults to unity value disappearing from the processing path. The two remain-
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ing operations of filtering and downsampling are usually performed in a single processing architecture
(multirate filter). After exchanging the positions of the filter and resampler, by applying polyphase
decomposition, we achieve the standard M-path polyphase down converter channelizer which shifts
a single narrow-band channel to baseband while reducing its sampling rate. By following a similar
procedure the standard up converter channelizer can also be obtained. It performs the operation of up
converting while interpolating a single narrow-band channel.

When the polyphase channelizer is used in this fashion the complex phase rotators can be applied
to each arm to select, by coherent summation, a desired channel arbitrarily located in the frequency
domain. Moreover, the most interesting and efficient application of this engine is in the multichannel
scenario. When the IDFT block is embedded, the polyphase channelizer acquires the capability to si-
multaneously up and down convert, by aliasing, multiple equally spaced narrow-band channels having
equal bandwidths. Due to its computational efficiency, the polyphase channelizer, and its modified ver-
sions, represents the best candidate for building up new flexible multichannel digital radio architectures
[18] like software-defined radio promises to be.

Software-defined radio represents one of the most important emerging technologies for the future of
wireless communication services. By moving radio functionality into software, it promises to give flex-
ible radio systems that are multiservice, multistandard, multiband, reconfigurable, and reprogrammable
by software. The goal of software-defined radio is to solve the issue of optimizing the use of the radio
spectrum that is becoming more and more pressing because of the growing deployment of new wireless
devices and applications [17,19,21,26].

In the second part of this chapter we address the issue of designing software radio architectures
for both the transmitter and the receiver. The novel structures are based on modified versions of the
standard polyphase channelizer, which provides the system with the capability to optimally adapt its
operating parameters according to the surrounding radio environment [3,12,16,23]. This implies, on the
transmitter side, the capability of the radio to detect the available spectral holes [5,22] in the spanned
frequency range and to dynamically use them for sending signals having different bandwidths at ran-
domly located center frequencies. The signals could originate from different information sources or
they could be spectral partitions of one signal, fragmented because of the unavailability of free space
in the radio spectrum or for protecting it from unknown and undesired detections.

The core of the proposed transmitter is a synthesis channelizer [11]. It is a variant of the stan-
dard M-path polyphase up converter channelizer [7,8] that is able to perform 2-to-M upsampling while
shifting, by aliasing, all the baseband channels to the desired center frequencies. Input signals with
bandwidths wider than the synthesis channelizer bandwidth are preprocessed through small down
converter channelizers that disassemble their bandwidths into reduced-bandwidth subchannels. The
proposed transmitter avoids the need to replicate the sampled data section when multiple signals have
to be simultaneously transmitted and it also allows partitioning of the signal spectra, when necessary,
before transmitting them. Those spectral fragments will be reassembled in the receiver after being
shifted to baseband without any loss of energy because perfect reconstruction filters are used as low-
pass prototype in the channelizer polyphase decompositions.

On the other side of the communication chain, a cognitive receiver has to be able to simultane-
ously detect multiple signals, recognize, when necessary, all their spectral partitions, and filter, down
convert, and recompose them without energy losses [12] independently of their bandwidths or center
frequencies. An analysis channelizer is the key element of the proposed receiver [12]. This engine is
able to perform M-to-2 downsampling while simultaneously demodulating, by aliasing, all the received
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signal spectra having arbitrary bandwidths residing at arbitrary center frequencies [6]. Postprocessing
up converter channelizers are used for reassembling, from the analysis channelizer baseline channels,
signal bandwidths wider than the analysis channelizer channel bandwidth.

In the transmitter, complex frequency rotators apply the appropriate frequency offsets for arbitrary
center frequency positioning of the spectra. When the frequency rotators are placed in the proposed
receiver, they are responsible for perfect DC alignment of the down converted signals.

This chapter is composed of 10 main sections. The first four sections are dedicated to the basics
of DSP, multirate signal processing, and polyphase channelizers. These sections contain preliminary
concepts necessary for completely understanding the last sections of this work in which actual research
issues on software radio architecture design are discussed and innovative results are presented. In partic-
ular, Section 7.2 recalls basic concepts on the resampling process of a discrete-time signal as opposed to
the sampling process of an analog continuous-time signal. Section 7.3 introduces the readers to digital
filters providing preliminaries on their design techniques. Section 7.5 presents the standard single-path
architectures for downsampling and upsampling digital signals. Section 7.6 introduces the standard ver-
sion of the M-path polyphase down and up converter channelizers. Both of them are derived, step by
step, by the single-path structures that represent the current state of the technology. In Section 7.7 we
present the modified versions of these engines. These are the structures that give form to the proposed
digital down and up converters for software-defined radios, which are presented in Section 7.9, which
also provides the simulation results. Section 7.8 introduces the readers to the concept of software radio,
while Section 7.11 gives concluding remarks along with suggestions for future research works in this
area.

7.2 The sampling process and the “resampling” process
In the previous section we mentioned that the sampling process is the link between the continuous-time
world and the discrete-time world. By sampling a continuous-time signal we achieve its discrete-
time representation. When the sampling frequency is properly selected, the sampling process becomes
invertible and it is possible to reshift from the discrete-time representation to the continuous-time rep-
resentation of a signal while maintaining its information content during the process.

It is well known that when the signal is band-limited and has no frequency components above fMAX,
it can be uniquely described by its samples taken uniformly at frequency

fs ≥ 2fMAX. (7.1)

Eq. (7.1) is known as the Nyquist sampling criterion (or uniform sampling theorem), and the sampling
frequency fs = 2fMAX is called the Nyquist sampling rate. This theorem represents a theoretically
sufficient condition for reconstructing the analog signal from its uniformly spaced samples.

Even though sampling is practically implemented in a different way, it is convenient, in order to
facilitate the learning process, to represent it as a product of the analog waveform, x(t), with a periodic
train of unit impulse functions defined as

xδ(t) =
∞∑

n=−∞
δ(t − nT s),
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FIGURE 7.2

Sampling process as a product of the analog waveform, x(t), with a periodic train of unit impulse func-
tions xδ(t).

where Ts = 1/fs is the sampling period. By using the shifting property of the impulse function we
obtain

xs(t) = x(t)xδ(t) = x(t)

∞∑
n=−∞

δ(t − nT s) =
∞∑

n=−∞
x(nT s)δ(t − nT s). (7.2)

A pictorial description of Eq. (7.2) is given in Fig. 7.2.
To facilitate the readers’ understanding of the uniform sampling effects on the band-limited

continuous-time signal, x(t), we shift from the time domain to the frequency domain, where we are
allowed to use the properties of the Fourier transform. The product of two functions in time domain
becomes the convolution of their Fourier transforms in the frequency domain. Thus, if X(f ) is the
Fourier transform of x(t) and Xδ(f ) is the Fourier transform of xδ(t), then the Fourier transform of
xs(t) is

Xs(f ) = X(f ) ∗ Xδ(f ),

where ∗ indicates linear convolution and

Xδ(f ) = 1

Ts

∞∑
k=−∞

δ(f − kf s).
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FIGURE 7.3

Sampling process in the frequency domain.

Note that the Fourier transform of an impulse train is another impulse train with the values of the
periods reciprocally related to each other. Then in the frequency domain Eq. (7.2) becomes

Xs(f ) = X(f ) ∗ Xδ(f ) = X(f ) ∗ 1

Ts

∞∑
k=−∞

δ(f − kf s) = 1

Ts

∞∑
k=−∞

X(f − kf s), (7.3)

whose pictorial view is shown in Fig. 7.3.
From Eq. (7.3) we conclude that the spectrum of the sampled signal, in the original signal bandwidth

([−fs/2, fs/2]), is the same as the continuous-time one (except for a scale factor, 1
Ts

); however, as a

consequence of the sampling process, this spectrum periodically repeats itself with a period of fs = 1
Ts

.
We can easily recognize that it should be possible to recover the original spectrum (associated to the
spectral replica which resides in [−fs/2, fs/2]) by filtering the periodically sampled signal spectrum
with an appropriate low-pass filter.

Note from Eq. (7.3) that the spacing, fs , between the signal replicas is the reciprocal of the sampling
period Ts . A small sampling period corresponds to a large space between the spectral replicas.

A fundamental observation, regarding the selection of the uniform sampling frequency, needs to be
made at this point: When the sampling rate is selected to be less than the maximum frequency com-
ponent of the band-limited signal (fs < 2fMAX), the periodic spectral replicas overlap each other. The
amount of overlap depends of the selected sampling frequency: the smaller the sampling frequency, the
larger the amount of overlap experienced by the replicas. This phenomenon is well known as aliasing.
When aliasing occurs it is impossible to recover the analog signal from its samples. When fs = 2fMAX,
the spectral replicas touch each other without overlapping and it is theoretically (but not practically)
possible to recover the analog signal from its samples; however, a filter with an infinite number of taps



410 Chapter 7 Multirate signal processing for software radio architectures

would be required. As a matter of practical consideration, we need to specify here that the signals (and
filters) of interest are never perfectly band-limited and some amount of aliasing always occurs as an
effect of sampling; however, some techniques can be used to limit this, making it less harmful.

After the sampling has been applied, the amplitude of each sample is one from an infinite set of pos-
sible values. This is the reason why the samples are not compatible with a digital system yet. A digital
system can, in fact, only deal with a finite number of values. The digital samples need to be quantized
before being sent to the digital data system. The quantization process limits the amplitude of the sam-
ples to a finite set of values. After the quantization process the signal can still be recovered; however,
some additional imprecision is added to it. The amount of imprecision depends of the quantization lev-
els used in the process, and it has the same effect on the signal as white noise. This is the reason why
it is referred to as quantization noise. The sampling of a continuous-time signal and the quantization of
its discrete-time samples are both performed with devices called analog-to-digital converters (ADCs).

The selection of the appropriate sampling rate is a fundamental issue faced when designing digital
communication systems. In order to preserve the signal, the Nyquist criterion must always be satisfied.
Also, it is not difficult to find tasks for which, at some points in the digital data section of the transmitter
and the receiver, it is recommended to have more than two samples per signal bandwidth. On the other
hand, large sample rates cause an increase in the total workload of the system. Thus an appropriate
sampling rate must be selected according to both necessities: to have the required number of samples
and to minimize the total workload. Most likely the optimum sampling frequency changes at different
points in the digital architecture. It would be a huge advantage to have the option of changing the
signal sampling rate at different parts in the system while processing, thus optimizing the number of
samples as a function of the requirements. The process of changing the sampling rate of a digital signal

FIGURE 7.4

Resampling by zeroing sample values and by inserting zero-valued samples.
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FIGURE 7.5

Two examples of 2-to-1 downsampling of a time series with different time offsets.

is referred to as resampling process. The resampling process is the key concept in multirate signal
processing.

After this brief discussion about the sampling process of a continuous-time signal, we address now
the process of resampling an already sampled signal. Note that when a continuous-time signal is sam-
pled, there are no restrictions on the sample rate or the phase of the sample clock relative to the time
base of the continuous-time signal. On the other hand, when we resample an already sampled signal,
the output sample locations are intimately related to the input sample positions. A resampled time se-
ries contains samples of the original input time series separated by a set of zero-valued samples. The
zero-valued time samples can be the result of setting a subset of input sample values to zero or the re-
sult of inserting zeros between existing input sample values. Both options are shown in Fig. 7.4. In the
first example shown in this figure, the input sequence is resampled 2-to-l, keeping every second input
sample starting at sample index 0 while zeroing the interim samples. In the second example, the input
sequence is resampled 1-to-2, keeping every input sample but inserting a zero-valued sample between
each pair of input samples. These two processes are called downsampling and upsampling, respectively.

The nonzero-valued samples of two sequences having the same sample rate can occur at different
time indices (i.e., the same sequence can have different initial time offset), as shown in Fig. 7.5, in which
the two 2-to-1 downsampled sequences, s2(n) and s2(n − 1), have different starting time index, 0 and 1,
which gives equal magnitude spectral components with different phase profiles. This is explicitly shown
in Figs. 7.6 and 7.7, in which the time domain and frequency domain views of the resampled sequences
s5(n) and s5(n − 1) are depicted, respectively. Remember, in fact, the time shifting property of the
discrete Fourier transform (DFT) for which a shift in time domain is equivalent to a linear phase shift
in the frequency domain. The different phase profiles play a central role in multirate signal processing.
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FIGURE 7.6

Sampling sequence s5(n) in the time and frequency domains.

FIGURE 7.7

Sampling sequence s5(n − 1) in the time and frequency domains.

The M zero-valued samples inserted between the signal samples create M periodic replicas of the
original spectrum at the frequency locations k/M, with k = 0, . . . ,M−1 in the normalized domain. This
observation suggests that resampling can be used to affect translation of spectral bands, up and down
conversion, without the use of sample data heterodynes.

In the following paragraphs we clarify this concept showing how to embed the spectral translation
of narrow-band signals in resampling filters and describe the process as aliasing.
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Finally, we wish to mention that the resampling process can be applied to a time series or to the
impulse response of a filter, which, of course, is simply another time series. When the resampling
process is applied to a filter, the architecture of the filter changes considerably and the filter is called
multirate filter.

7.3 Digital filters
Filtering is the practice of processing signals which results in some changes of their spectral contents.
Usually the change implies a reduction in or filtering out of some undesired input spectral components.
A filter allows certain frequencies to pass while attenuating others. While analog filters operate on
continuous-time signals, digital filters operate on sequences of discrete sampled values (see Fig. 7.8).
Although digital filters perform many of the same functions as analog filters, they are different!

FIGURE 7.8

Digital and analog filters are different even though they perform similar tasks.

The two classes of filters share many of the same or analogous properties. In the standard order
of our educational process we first learn about analog filters and later about digital filters. To ease the
entry into the digital domain, we emphasize the similarities of the two classes of filters. This order is
due to the fact that an analog filter is less abstract than a digital filter. We can touch the components of
an analog filter: capacitors, inductors, resistors, operational amplifiers, and wires. On the other hand a
digital filter does not have the same physical form because a digital filter is merely a set of instructions
that perform arithmetic operations on an array of numbers. The operations can be weighted sums or
inner products (see Fig. 7.9). It is convenient to visualize the array as a list of uniformly spaced sample
values of an analog waveform. The instructions to perform these operations can reside as software
in a computer or microprocessor or as firmware in a dedicated collection of interconnected hardware
elements.

Let us examine the similarities that are emphasized when we learn about digital filters with some
level of prior familiarity with analog filters and the tools to describe them. Many analog filters are
formed by interconnections of lumped linear components modeled as ideal capacitors, inductors, and
resistors while others are formed by interconnections of resistors, capacitors, and operational amplifiers.
Sampled data filters are formed by interconnections of registers, adders, and multipliers. Most analog
filters are designed to satisfy relationships defined by linear time-invariant differential equations. The
differential equations are recursive, which means the initial condition time domain response, called
the homogeneous or undriven response, is a weighted sum of exponentially decaying sinusoids. Most



414 Chapter 7 Multirate signal processing for software radio architectures

FIGURE 7.9

Digital filter: registers, adders, and multipliers. Analog filter: capacitor, inductors, and resistors.

sampled data filters are designed to satisfy relationships defined by linear time-invariant difference
equations. Here we find the first major distinction between analog and digital filters: The difference
equations for the sampled data filters can be recursive or nonrecursive. When the difference equations
are selected to be recursive, the initial condition response is, as it was for the analog filter, samples of
a weighted sum of exponentially decaying sinusoids. On the other hand, when the difference equation
is nonrecursive, the initial condition response is anything the designer wants it to be and is limited only
by her imagination but is usually designed to satisfy some frequency domain specifications.

When we compare the two filter classes, analog and digital, we call attention to the similarities of
the tools we use to describe, analyze, and design them. They are described by differential and difference
equations which are weighted sums of signal derivates or weighted sums of delayed sequences. They
both have linear operators or transforms, the Laplace transform L{h(t)} = H(s) and the z-transform
z{h(n)} = H(z), which offer us insight into the internal structure of the differential or difference equa-
tions (see Fig. 7.10). They both have operator descriptions that perform the equivalent functions. These
are the integral operator, denoted by s−1, and the delay operator, denoted by z−1, in which the system
memories or state of the analog and digital filters reside, respectively. Both systems have transfer func-
tions H(s) and H(z), ratios of polynomials in the operator variables s and z. The roots of the denominator
polynomial, the operator version of the characteristic equation, are the filter poles. These poles describe
the filter modes, the exponentially damped sinusoids, of the recursive structure. The roots of the nu-
merator polynomial are the filter zeros. The zeros describe how the filter internal mode responses are
connected to the filter input and output ports. They tell us the amplitude of each response component
(called residues to impress us) in the output signal’s initial condition response. The transforms of the
two filter classes have companion transforms, the Fourier transform H(ω) and the sampled data Fourier
series H(θ), which describe, when they exist, the frequency domain behavior, the sinusoidal steady-
state gain and phase, of the filters. It is remarkable how many similarities there are in the structure, the
tools, and the time and frequency responses of the two types of filters. It is no wonder we emphasize
their similarities.

We spend a great deal of effort examining recursive digital filters because of the close relationships
with their analog counterparts. There are digital filters that are mappings of the traditional analog filters.
These include maximally flat Butterworth filters, equal ripple passband Tchebychev-I filters, equal
ripple stopband Tchebychev-II filters, and both equal ripple passband and equal ripple stopband elliptic
filters. The spectra of these infinite impulse response (IIR) filters are shown in Fig. 7.11. All DSP filter
design programs offer the DSP equivalents of their analog recursive filter counterparts.
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FIGURE 7.10

Similarity of system equations for digital and analog filters.

FIGURE 7.11

Frequency response of digital IIR filter realizations of standard analog filters.

In retrospect, emphasizing similarities between the analog filter and the equivalent digital was a poor
decision. We make this claim for a number of reasons. The first is that there are limited counterparts in
the analog domain to the nonrecursive filter of the digital domain. This is because the primary element
of the nonrecursive filter is the pure delay, represented by the delay operator z−1. We cannot form a
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pure delay response, represented by the analog delay operator e−sT, in the analog domain as the solution
of a linear differential equation. To obtain pure delay, we require a partial differential equation which
offers the wave equation whose solution is a propagating wave which we use to convert distance to
time delay. The propagation velocity of electromagnetic waves is too high to be of practical use in most
analog filter designs but the velocity of sound waves in crystal structures enables an important class of
analog filters known as acoustic surface wave (SAW) devices. Your cell phone contains one or more
such filters. In general, most of us have limited familiarity with nonrecursive analog filters so our first
introduction to the properties and design techniques for finite duration impulse response (FIR) filters is
given in our DSP classes.

The second reason for not emphasizing the similarities between analog and digital filters is that
we start believing the statement that “a digital filter is the same as an analog filter” and that all the
properties of one are embedded in the other. That seemed like an okay perspective the first 10 or 20
times we heard that claim. The problem is, it is not true! The digital filter has a resource the analog filter
does not have! The digital filter can perform tasks the analog filter cannot do! What is that resource?
It is the sampling clock! We can do applied magic in the sampled data domain by manipulating the
sample clock. There is no equivalent magic available in the analog filter domain! Analog designers
shake their heads in disbelief when they see what a multirate filter can do. Actually, digital designers
also shake their heads in disbelief when they learn that manipulating the clock can accomplish such
amazing things.

We might ask, how can the sampling clock affect the performance, or more so, enhance the capa-
bilities of a digital filter? Great question! The answer, my friend, is written in the way we define the
frequency of a sampled data signal. Let us review how frequency as we understand it in the analog
world is converted to frequency in the digital world. We now present a concise review of complex and
real sinusoids with careful attention paid to their arguments.

The exponential function ex has the interesting property that it satisfies the differential equation
shown in Eq. (7.4). This means the exponential function replicates under the differential operator, an
important property inherited by real and complex sinusoids. It is easy to verify that the Taylor series
shown in Eq. (7.5) satisfies Eq. (7.4). When we replace the argument “x” of Eq. (7.5) with the argument
“jθ” we obtain the series shown in Eq. (7.6), and when we gather the terms corresponding to the even
and odd powers respectively of the argument “jθ” we obtain the partitioned series shown in Eq. (7.7).
We recognize that the two Taylor series of the partitioned Eq. (7.7) are the Taylor series of the cosine and
sine which we show explicitly in Eq. (7.8). We note that the arguments of both the real exponential and
the complex exponential must be dimensionless; otherwise, we would not be able to sum the successive
powers of the series. We also note that the units of the argument “θ” are radians, a dimensionless unit
formed by taking the ratio of the arc length of a circle to the radius of the circle. When we replace
the “θ” argument of Eq. (7.8) with a time-varying angle “θ(t)” we obtain the time function shown in
Eq. (7.9). The simplest time-varying angle is one that changes linearly with time, θ(t) = ωct , which
when substituted in Eq. (7.9) gives Eq. (7.10). This discussion leads us to the next statement. Since
the argument of a sinusoid has the dimensionless units radians and “t” has units of seconds, the unit
of ωc must be rad/s, a velocity. In other words, the frequency ωc is the time derivative of the linearly
increasing phase angle ωct :

d

dx
f (x) = f (x), (7.4)
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ex =
∞∑

k=0

xk

k! = 1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ · · · , (7.5)

ejθ =
∞∑

k=0

(jθ)k

k! = 1 + jθ + (jθ)2

2
+ (jθ)3

6
+ (jθ)4

24
+ · · · , (7.6)

ejθ =
[

1 − θ2

2
+ θ4

24
− θ6

720
+ · · ·

]
+ j

[
θ − θ3

6
+ θ5

120
− θ7

5040
+ · · ·

]
, (7.7)

ejθ = cos(θ) + j sin(θ), (7.8)

s(t) = ejθ(t) = cos(θ(t)) + j sin(θ(t)), (7.9)

s(t) = ejωct = cos(ωct) + j sin(ωct). (7.10)

We now examine the phase argument of the sampled data sinusoid. The successive samples of a
sampled complex sinusoid are formed as shown in Eq. (7.11) by replacing the continuous argument t
with the sample time positions nT , as done in Eq. (7.12). We now note that while the argument of the
sampled data sinusoid is dimensionless, the independent variable is no longer “t” with units of seconds
but rather “n” with units of sample. This is consistent with the dimension of “T ,” which of course
is s/sample. Consequently, the product ωcT has units of (rad/s) · (s/smpl) or rad/smpl; thus, digital
frequency is given in rad/smpl or emphatically the angle change per sample! A more useful version of
Eq. (7.12) is obtained by replacing ωc with 2πfc as done in Eq. (7.13) and then replacing T with 1/fs

as done in Eq. (7.14). We finally replace 2πfc/fs with θc, as done in Eq. (7.15). Here we clearly see that
the parameter θc has units of rad/smpl, which describes the fraction of the circle the argument traverses
per successive sample. We have

s(n) = s(t)|t=nT = cos(ωct)|t=nT + j sin(ωct)|t=nT , (7.11)

s(n) = cos(ωcTn) + j sin(ωcTn), (7.12)

s(n) = cos(2πfcTn) + j sin(2πfcTn), (7.13)

s(n) = cos

(
2π

fc

fs

n

)
+ j sin

(
2π

fc

fs

n

)
, (7.14)

s(n) = cos(θcn) + j sin(θcn). (7.15)

Now suppose we have a sampled sinusoid with sample rate eight times the sinusoid’s center frequency,
so that there are eight samples per cycle. This is equivalent to the sampled sinusoid having a digital
frequency of 2π/8 rad/smpl. We can visualize a spinning phasor rotating 1/8 of the way around the
unit circle per sample. In Fig. 7.12, subplots 1 and 2 show 21 samples of this sinusoid and its spectrum.
Note the pair of spectral lines located at ±0.125 on the normalized frequency axis. We can reduce the
sample rate of this time series by taking every other sample. The spinning rate for this new sequence
is 2 · 2π/8 or 2π/4. The downsampled sequence has doubled its digital frequency. The newly sampled
sequence and its spectrum are shown in Fig. 7.12, subplots 3 and 4. Note that the pair of spectral
lines are now located at ±0.25 on the normalized frequency axis. We can further reduce the sample
rate by again taking every other sample (or every fourth sample of the original sequence). The spinning
rate for this new sequence is 4 · 2π/8 or 2π/2. The downsampled sequence has again doubled its digital
frequency. The newly sampled sequence and its spectrum are shown in Fig. 7.12, subplots 5 and 6. Note
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FIGURE 7.12

Time series and spectra of sinusoids aliased to new digital frequencies as a result of downsampling.

that the pair of spectral lines are now located at ±0.5 on the normalized frequency axis. We once again
reduce the sample rate by taking every other sample (or every eighth sample of the original sequence).
The spinning rate for this new sequence is 8 · 2π/8 or 2π , but since a 2π rotation is equivalent to no
rotation, the spinning phasor appears to be stationary or rotating at 0 rad/smpl. The newly sampled
sequence and its spectrum are shown in Fig. 7.12, subplots 7 and 8. Note that the pair of spectral lines
are now located at ±1, which is equivalent to 0 on the normalized frequency axis. Frequency shifts due
to sample rate changes are attributed to aliasing. Aliasing enables us to move the spectrum from one
frequency location to another location without the need for the complex mixers we normally use in a
DDC to move a spectral span to baseband.

Speaking of the standard DDC, Fig. 7.13 presents the primary signal flow blocks based on the DSP
emulation of the conventional analog receiver. Fig. 7.14 shows the spectra that will be observed at
successive output ports of the DDC. We can follow the signal transformations of the DDC by following
the spectra in the following description. The top figure shows the spectrum at the output of the ADC.
The second figure shows the spectrum at the output of the quadrature mixer. Here we see that the input
spectrum has been shifted so that the selected channel band resides at zero frequency. The third figure
shows the output of the low-pass filter pair. Here we see that a significant fraction of the input bandwidth
has been rejected by the stopband of the low-pass filter. Finally, the last figure shows the spectrum after
the M-to-1 downsampling that reduced the sample rate in proportion to the reduction in bandwidth
performed by the filter. We will always reduce the sample rate if we reduce the bandwidth. We gain
no performance advantage by oversatisfying the Nyquist criterion, but incur significant penalties by
operating the DSP processors at higher than necessary sample rates.
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FIGURE 7.13

Building blocks of a conventional digital down converter.

FIGURE 7.14

Spectra at consecutive points in a conventional digital down converter.

Fig. 7.15 presents the primary signal flow blocks based on aliasing the selected bandpass span to
baseband by reducing the output sample rate of the bandpass filter. Fig. 7.16 shows the spectra that will
be observed at successive output ports of the aliasing DDC. We can follow the signal transformations
of the aliasing DDC by following the spectra in the following description. The top figure shows the
spectrum at the output of the ADC. The second figure shows the spectrum of the complex bandpass
filter and the output spectrum from this filter. The bandpass filter is formed by up converting, by a
complex heterodyne, the coefficients of the prototype low-pass filter. We note that this filter does not
have a mirror image. Analog designers sigh when they see this digital option. The third figure shows
the output of the bandpass filter pair following the M-to-1 downsampling. If the center frequency of
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FIGURE 7.15

Building blocks of aliasing a digital down converter with M-to-1 downsampler.

FIGURE 7.16

Spectra at consecutive points in aliasing digital down converter with downsampling.

the band is a multiple of the output sample rate, the aliased band resides at baseband. For the example
shown here, the center frequency was �f above k fs/M , and since all multiples of fs/M alias to
baseband, our selected band has aliased to �f above zero frequency. Finally, the last figure shows the
spectrum after the output heterodyne from �f to baseband. Note that the heterodyne is applied at the
low output rate rather than at the high input rate as was done in Fig. 7.13.

The last part of this discussion deals with the equivalency of cascade operators. Here is the core idea.
Suppose we have a cascade of two filters, say a low-pass filter followed by a derivative filter, as shown
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FIGURE 7.17

A cascade of two filters is the same as a single filter formed by a composite filter.

FIGURE 7.18

The spectrum of cascade filters is the same as the spectrum of a single filter containing combined responses.

in Fig. 7.17. The filters are linear operators that commute and are distributive. We could reorder the
two filters and have the same output from their cascade or we could apply the derivative filter operator
to the low-pass filter to form a composite filter and obtain the same output as from the cascade. This
equivalency is shown in Fig. 7.18. The important idea here is that we can filter the input signal and then
apply an operator to the filter output, or we can apply the operator to the filter and have the altered filter
perform both operators to the input signal simultaneously.

Here comes the punchline! Let us examine the aliasing DDC of Fig. 7.15, which contains a bandpass
filter followed by an M-to-1 resampler. This section is redrawn in the upper half of Fig. 7.19. If we think
about it, this is almost silly: Here we compute one output sample for each input sample and then discard
M − 1 of these samples in the M-to-1 downsampler. Following the lead of the cascade linear operators,
the filter and resampler, being equivalent to a composite filter containing the resampler applied to the
filter, we replace the pair of operators with the composite operator, as shown in the lower half of
Fig. 7.19.

Embedding the M-to-1 resampler in the bandpass filter is accomplished by the block diagram shown
in Fig. 7.20. This filter accepts M inputs, one for each path, and computes one output. Thus we do not
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FIGURE 7.19

The cascade of a filter and M-to-1 resampler is equivalent to that of an M-to-1 resample filter.

FIGURE 7.20

An M-path M-to-1 resample bandpass filter performs aliased digital down conversion.

waste operations computing output samples scheduled to be discarded. An interesting note here is that
the complex rotators applied to the prototype low-pass filter in Fig. 7.15 have been factored out of
each arm and are applied once at the output of each path. This means that if the input data are real,
the samples are not made complex until they leave the filter. This represents a 2-to-1 savings over the
architecture of Fig. 7.13, in which the samples are made complex on the way into the filter, which
means there are two filters, one for each path of the complex heterodyne. The alias-based DDS with
resampler embedded in the filter is not a bad architecture! It computes output samples at the output
rate and it only uses one partitioned filter rather than two. “Not bad” is an understatement! The cherry
on top of this dessert is the rotator vector applied to the output of the path filters. This rotator can
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extract any band from the aliased frequency spans that have been aliased to baseband by the resampling
operator. If it can extract any band, then we have the option of extracting more than one band, and in
fact we can extract every band from the output of the partitioned filter. That is amazing! This filter can
service more than one output channel simultaneously; all it needs is additional rotator vectors. As we
will see shortly, the single filter structure can service all the channels that alias to baseband and the
most efficient bank of rotators is implemented by an M-point IFFT. There is more to come! Be sure to
read on! We have only scratched the surface and the body of material related to multirate filters is filled
with many wonderful properties and applications.

7.4 Windowing
As specified in the previous section, digital filters can be classified in many ways, starting with the
most general frequency domain characteristics such as low-pass, high-pass, bandpass, and bandstop
and finishing with secondary characteristics such as uniform and nonuniform group delay. We now
also know that an important classification is based on the filter’s architectural structure with a primary
consideration being that of FIR and IIR filter. Further subclassifications, such as canonic forms, cascade
forms, and lattice forms, are primarily driven by consideration of the sensitivity to finite arithmetic,
memory requirements, the ability to perform pipeline arithmetic, and hardware constraints.

The choice to perform a given filtering task with a recursive or a nonrecursive filter is driven by a
number of system considerations, including processing resources, clock speed, and various filter speci-
fications. Performance specifications, which include the operating sample rate, passband and stopband
edges, passband ripple, and out-of-band attenuation, all interact to determine the complexity required
of the digital filter.

In filters with infinite impulse response, each output sample depends on previous input samples
and on previous filter output samples. That is the reason why their practical implementation always
requires a feedback loop. Thus, like all feedback-based architectures, IIR filters are sensitive to input
perturbations that could cause instability and infinite oscillations at the output. However, IIR filters are
usually very efficient and require far few multiplications than FIR filters per output sample. Note that
an IIR filter could have an infinite sequence of output samples even if the input samples become all
zeros. It is this characteristic which gives them their name.

FIR filters use only current and past input samples and none of the filter’s previous output samples to
obtain a current output sample value (remember that they are also sometimes referred to as nonrecursive
filters). Given a finite duration of the input signal, the FIR filter will always have a finite duration of
nonzero output samples, and this is the characteristic which gives them their name.

The procedure by which FIR filters calculate the output samples is the convolution of the input
sequence with the filter impulse response:

y(n) =
M−1∑
k=0

h(k)x(n − k), (7.16)

where x(n) is the input sequence, h(n) is the filter impulse response, and M is the number of filter
taps. The convolution is nothing but a series of multiplications followed by the addition of the products,
while the impulse response of a filter is nothing but what the name tells us: It is the time-domain view
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FIGURE 7.21

Frequency response of a prototype ideal low-pass filter.

FIGURE 7.22

Impulse response of a prototype ideal low-pass filter.

of the filter’s output values when the input is an impulse (a single unity-valued sample preceded and
followed by zero-valued samples).

In the following paragraphs we introduce the basic window design method for FIR filters. Because
low-pass filtering is the most common filtering task, we will introduce the window design method for
low-pass FIR filters. However, the relationships between filter length and filter specifications and the
interactions between filter parameters remain valid for other filter types. Many other techniques can
also be used to design FIR filters. At the end of this section we will introduce the Remez algorithm,
which is one of the most widely used filter design technique, as well as one of its modified versions,
which allows us to achieve 1/f type decay for the out-of-band side lobes.

The frequency response of a prototype low-pass filter is shown in Fig. 7.21. The passband is seen to
be characterized by an ideal rectangle with unity gain between the frequencies ±f1 Hz and zero gain
elsewhere.

An attractive feature of the ideal low-pass filter H(f ) as a prototype is that from its closed-form
inverse Fourier transform, we achieve the exact expression for its impulse response h(t):

h(t) = 2f1
sin(2πf1t)

2πf1t
. (7.17)

The argument of the sin(x)/x function is always the product of 2π , half the spectral support (2f1)/2,
and the independent variable t. The numerator is periodic and becomes zero when the argument is a
multiple of π . The impulse response of the prototype filter is shown in Fig. 7.22. The sin(x)/x filter
shown in Fig. 7.22 is a continuous function which we have to sample to obtain the prototype sampled
data impulse response. To preserve the filter gain during the sampling process we scale the sampled
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function by the sample rate 1/fs . The problem with the sample set of the prototype filter is that the
number of samples is unbounded and the filter is noncausal. If we had a finite number of samples,
we could delay the response to make it causal and solve the problem. Then our first task is to reduce
the unbounded set of filter coefficients to a finite set. The process of pruning an infinite sequence to a
finite sequence is called windowing. In this process, a new limited sequence is formed as the product of
the finite sequence w(n) and the infinite sequence, as shown in Eq. (7.18), where the ∗ operator is the
standard MATLAB® point-by-point multiplication:

hw(n) = w(n)∗h(n). (7.18)

Applying the properties of the Fourier transforms, we obtain the expression for the spectrum of the
windowed impulse response, which is the circular convolution of the Fourier transform of h(n) and
w(n).

The symmetric rectangle we selected as our window abruptly turns off the coefficient set at its
boundaries. The sampled rectangle weighting function has a spectrum described by the Dirichlet ker-
nel, which is the periodic extension of the transform of a continuous-time rectangle function. The
convolution between the spectra of the prototype filter with the Dirichlet kernel forms the spectrum of
the rectangle windowed filter coefficient set. The contribution to the corresponding output spectrum is
seen to be the stopband ripple, the transition bandwidth, and the passband ripple. The passband and
stopband ripples are due to the side lobes of the Dirichlet kernel moving through the passband of the
prototype filter, while the transition bandwidth is due to the main lobe of the kernel moving from the
stopband to the passband of the prototype. A property of the Fourier series is that their truncated version
forms a new series exhibiting the minimum mean square (MMS) approximation to the original function.
We thus note that the set of coefficients obtained by a rectangle window exhibits the minimum mean
square approximation to the prototype frequency response. The problem with MMS approximations in
numerical analysis is that there is no mechanism to control the location or value of the error maxima.
The local maximum errors are attributed to the Gibbs phenomena, the failure of the series to converge
in the neighborhood of a discontinuity. These errors can be objectionably large. A process must now be
invoked to control the objectionably high side lobe levels. We have two ways to approach the problem.
We can redefine the frequency response of the prototype filter so that the amplitude discontinuities are
replaced with a specified tapering in the transition bandwidth. In this process, we trade off the transition
bandwidth for side lobe control. Equivalently, knowing that the objectionable stopband side lobes are
caused by the side lobes in the spectrum of the window, we can replace the rectangle window with
other even symmetric functions with reduced amplitude side lobe levels. The two techniques, side lobe
control and transition bandwidth control, are tightly coupled. The easiest way to visualize control of
the side lobes is by destructive cancellation between the spectral side lobes of the Dirichlet kernel as-
sociated with the rectangle and the spectral side lobes of translated and scaled versions of the same
kernel. The cost we incur to obtain reduced side lobe levels is an increase in main lobe bandwidth.
Remembering that the window’s two-sided main lobe width is an upper bound to the filter’s transition
bandwidth, we can estimate the transition bandwidth of a filter required to obtain a specified side lobe
level. The primary reason we examined windows and their spectral description as weighted Dirichlet
kernels was to develop a sense of how we trade the main lobe width of the window for its side lobe
levels and in turn filter transition bandwidth and side lobe levels. Some windows perform this trade-off
of bandwidth for side lobe level very efficiently while others do not.
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The Kaiser–Bessel window is very effective, while the triangle (or Fejer) window is not. The Kaiser–
Bessel window is in fact a family of windows parameterized over the time–bandwidth product, β, of
the window. The main lobe width increases with β, while the peak side lobe level decreases with β. The
Kaiser–Bessel window is a standard option in filter design packages such as MATLAB and QED-2000.

Other filter design techniques include the Remez algorithm [8], sometimes also referred to as the
Parks–McClellan (P-M), the McClellan–Parks–Rabiner (MPR), the Equiripple, or the multiple ex-
change algorithm, which found large acceptance in practice. It is a very versatile algorithm capable
of designing FIR filters with various frequency responses, including multiple passband and stopband
frequency responses with independent control of ripple levels in the multiple bands. The desired pass-
band cutoff frequencies, the frequencies where the attenuated bands begin, and the desired passband
and stopband ripple are given as input parameters to the software which will generate N time domain
filter coefficients. Here, N is the minimum number of taps required for the desired filter response and
it is selected by using the Harris approximation or the Hermann approximation (in MATLAB). The
problem with the Remez algorithm is that it shows equiripple side lobes, which is not a desirable char-
acteristic. We would like to have a filter frequency response which has a l/f out-of-band decay rate
rather than exhibiting equiripple. The main reasons for desiring that characteristic are related to sys-
tem performance. We often build systems comprised of a digital filter and a resampling switch. Here
the digital filter reduces the bandwidth and is followed by a resampling switch that reduces the out-
put sample commensurate with the reduced output bandwidth. When the filter output is resampled,
the low-level energy residing in the out-of-band spectral region aliases back into the filter passband.
When the reduction in sample rate is large, there are multiple spectral regions that alias or fold into the
passband. For instance, in a 16-to-l reduction in sample rate, there are 15 spectral regions that fold into
the passband. The energy in these bands is additive and if the spectral density in each band is equal,
as it is in an equiripple design, the folded energy level is increased by a factor of sqrt(15). The second
reason for which we may prefer FIR filters with l/f side lobe attenuation as opposed to uniform side
lobes is finite arithmetic. A filter is defined by its coefficient set and an approximation to this filter is
realized by a set of quantized coefficients. Given two filter sets h(n) and g(n), the first with equiripple
side lobes and the second with l/f side-lobes, we form two new sets, hQ(n) and gQ(n), by quantizing
their coefficients. The quantization process is performed in two steps. First, we rescale the filters by
dividing by the peak coefficient. Second, we represent the coefficients with a fixed number of bits to
obtain the quantized approximations. The zeros of an FIR filter residing on the unit circle perform the
task of holding down the frequency response in the stopband. The interval between the zeros contains
the spectral side lobes. When the interval between adjacent zeros is reduced, the amplitude of the side
lobe between them is reduced, and when the interval between adjacent zeros is increased, the ampli-
tude of the side lobe between them is increased. The zeros of the filters are the roots of the polynomials
H(z) and G(z). The roots of the polynomials formed by the quantized set of coefficients differ from
the roots of the nonquantized polynomials. For small changes in coefficient size, the roots exhibit small
displacements along the unit circle from their nominal positions. The amplitude of some of the side
lobes must increase due to this root shift. In the equiripple design, the initial side lobes exactly meet
the designed side lobe level with no margin for side lobe increase due to root shift caused by coefficient
quantization. On the other hand, the filter with 1/f side lobe levels has plenty of margin for side lobe
increase due to root shift caused by coefficient quantization.

More details on the modified Remez algorithm can be found in [8].
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7.5 Basics on multirate filters
Multirate filters are digital filters that contain a mechanism to increase or decrease the sample rate while
processing input sampled signals. The simplest multirate filter performs integer upsampling of 1-to-M
or integer downsampling of Q-to-1. By extension, a multirate filter can employ both upsampling and
downsampling in the same process to effect a rational ratio sample rate change of M-to-Q. More sophis-
ticated techniques exist to perform arbitrary and perhaps slowly time-varying sample rate changes. The
integers M and Q may be selected to be the same so that there is no sample rate change between input
and output but rather an arbitrary time shift or phase offset between input and output sample positions
of the complex envelope. The sample rate change can occur at a single location in the processing chain
or can be distributed over several subsections.

Conceptually, the process of downsampling can be visualized as a two-step process, as indicated
in Fig. 7.23. There are three distinct signals associated with this procedure. The process starts with an
input series x(n) that is processed by a filter h(n) to obtain the output sequence y(n) with reduced
bandwidth. The sample rate of the output sequence is then reduced Q-to-1 to a rate commensurate
with the reduced signal bandwidth. In reality the processes of bandwidth reduction and sample rate
reduction are merged in a single process called multirate filtering. The bandwidth reduction performed
by the digital filter can be a low-pass or a bandpass process.

FIGURE 7.23

Downsampling process; filtering and sample rate reduction.

In a dual way, the process of upsampling can be visualized as a two-step process, as indicated in
Fig. 7.24. Here too there are three distinct time series. The process starts by increasing the sample rate
of an input series x(n) by resampling it 1-to-M. The zero-packed time series with M-fold replication of
the input spectrum is processed by a filter h(n) to reject the spectral replicas and output the sequence
y(m) with the same spectrum as the input sequence but sampled at an M times higher sample rate.
In reality the processes of sample rate increase and selected bandwidth rejection are also merged in a
single process again called multirate filtering.

The presented structures are the most basic forms of multirate filters; in the following we present
more complicated multirate architecture models. In particular, we focus on the polyphase decomposi-
tion of a prototype filter which is very efficient when embedded in multirate structures. We also propose
the derivation, step by step, of both the polyphase down converter and up converter channelizers. These
are the two standard engines that we will modify for designing a novel polyphase channelizer that better
fits the needs of the future software-defined radio.



428 Chapter 7 Multirate signal processing for software radio architectures

FIGURE 7.24

Upsampling process; sample rate increasing and filtering.

7.6 From single-channel down converter to standard down converter
channelizer

The derivation of the standard polyphase channelizer begins with the issue of down converting a single
frequency band, or channel, located in a multichannel frequency division multiplexed (FDM) input
signal whose spectrum is composed of a set of M equally spaced, equal bandwidth channels, as shown
in Fig. 7.25. Note that this signal has been band-limited by analog filters and has been sampled at a
sufficiently high sample rate to satisfy the Nyquist criterion for the full FDM bandwidth.

We have many options available for down converting a single channel. The standard processing
chain for accomplishing this task is shown in Fig. 7.26. This structure performs the standard operations
of down converting a selected frequency band with a complex heterodyne, low-pass filtering to reduce
the output signal bandwidth to the channel bandwidth, and downsampling to a reduced rate commensu-
rate with the reduced bandwidth. The structure of this processor is seen to be a digital signal processor
implementation of a prototype analog I-Q down converter. We mention that the downsampler is com-
monly referred to as a decimator, a term that means to destroy one tenth. Since nothing is destroyed and
nothing happens in tenths, we prefer, and will continue to use, the more descriptive name, downsampler.

FIGURE 7.25

Spectrum of multichannel input signal, processing task: extract complex envelope of selected channel.

FIGURE 7.26

Standard single-channel down converter.
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FIGURE 7.27

Bandpass filter version of single-channel down converter.

The output data from the complex mixer are complex; hence, the data are represented by two time
series, I (n) and Q(n). The filter with real impulse response h(n) is implemented as two identical fil-
ters, each processing one of the quadrature time series. The convolution process between a signal and a
filter is often simply performed by multiplication and sum operations between signal data samples and
filter coefficients extracted from two sets of addressed memory registers. In this form of the filter, one
register set contains the data samples while the other contains the coefficients that define the filter im-
pulse response. By using the equivalency theorem, which states that the operations of down conversion
followed by a low-pass filter are equivalent to the operations of bandpass filtering followed by a down
conversion, we can exchange the positions of the filter and of the complex heterodyne, achieving the
block diagram shown in Fig. 7.27.

Note here that the up converted filter, h(n) exp(jθkn), is complex and as such its spectrum resides
only on the positive frequency axis without a negative frequency image. This is not a common structure
for an analog prototype because of the difficulty of forming a pair of analog quadrature filters exhibiting
a 90-degree phase difference across the filter bandwidth. The closest equivalent structure in the analog
world is the filter pair used in image-reject mixers, and even there the phase relationship is maintained
by a pair of complex heterodynes.

Applying the transformation suggested by the equivalency theorem to an analog prototype system
does not make sense since it doubles the required hardware. We would have to replace a complex scalar
heterodyne (two mixers) and a pair of low-pass filters with a pair of bandpass filters, containing twice
the number of reactive components, and a full complex heterodyne (four mixers). If it makes no sense
to use this relationship in the analog domain, why does it make sense in the digital world? The answer
is found in the fact that we define a digital filter as a set of weights stored in the coefficient memory.
Thus, in the digital world, we incur no cost in replacing the pair of low-pass filters h(n) required in
the first option with the pair of bandpass filters h(n) cos(nθk) and h(n) sin(nθk) required for the second
one. We accomplish this task by a simple download to the coefficient memory.

An interesting historical perspective is worth noting here. In the early days of wireless communi-
cation, radio tuning was accomplished by sliding a narrow-band filter to the center frequency of the
desired channel to be extracted from the FDM input signal. These radios were known as tuned radio
frequency (TRF) receivers. The numerous knobs on the face of early radios adjusted reactive compo-
nents of the amplifier chain to accomplish the tuning process. Besides the difficulty in aligning multiple
tuned stages, shifting the center frequency of the amplifier chain often initiated undesired oscillation
due to the parasitic coupling between the components in the radio. Edwin Howard Armstrong, an early
radio pioneer, suggested moving the selected channel to the fixed frequency filter rather than moving
the filter to the selected channel. This is known as the superheterodyne principle, a process invented by
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FIGURE 7.28

Downsampled bandpass down converter.

Armstrong in 1918 and quickly adopted by David Sarnoff of the Radio Corporation of America (RCA)
in 1924. Acquiring exclusive rights to Armstrong’s single-tuning dial radio invention ensured the com-
mercial dominance of RCA in radio broadcasting as well the demise of hundreds of manufacturers of
TRF radio receivers. It seems we have come full circle. We inherited from Armstrong a directive to
move the desired spectrum to the filter and we have readily applied this legacy to DSP-based process-
ing. We are now proposing that, under appropriate conditions, it makes more sense to move the filter to
the selected spectral region. We still have to justify the full complex heterodyne required for the down
conversion at the filter output rather than at the filter input, which is done in the subsequent paragraphs.

Examining Fig. 7.27, we note that following the output down conversion, we perform a sample rate
reduction in which we retain one sample out of M samples. Because we find it useless to down convert
the samples we discard in the next downsample operation, we move the downsampler before the down
converter, producing the demodulator scheme shown in Fig. 7.28. We note in this figure that also the
time series of the complex sinusoid has been downsampled. The rotation rates of the sampled complex
sinusoid are θk and Mθk rad per sample at the input and output of the M-to-1 resampler, respectively.
This change in observed rotation rate is due to aliasing. When aliased, a sinusoid at one frequency or
phase slope appears at another phase slope due to the resampling.

We now invoke a constraint on the sampled data center frequency of the down converted channel.
We choose center frequencies θk , which will alias to DC as a result of downsampling to Mθk . This
condition is ensured if Mθk is congruent to 2π , which occurs when Mθk = k2π , or more specifically,
when θk = k2π/M . The modification to Fig. 7.28 to reflect this provision is seen in Fig. 7.29. The
constraint that the center frequencies be limited to integer multiples of the output sample rate ensures
aliasing to baseband by the sample rate change. When a channel aliases to baseband because of the
resampling operation, the corresponding resampled heterodyne defaults to a unity-valued scalar, which
consequently is removed from the signal processing path.

Note that if the center frequency of the aliased signal is offset by �θ rad/smpl from a multiple of
the output sample rate, the aliased signal will reside at an offset of �θ rad/smpl from zero frequency at
baseband and a complex heterodyne, or baseband converter, is needed to shift the signal by the residual
�θ offset. This baseband mixer operates at the output sample rate rather than at the input sample rate for
a conventional down converter. We can consider this required final mixing operation as a postconversion
task and allocate it to the next processing block.

The spectral effect of the signal processing performed by the structure in Fig. 7.29 is shown in
Fig. 7.30. The savings realized by this form of down conversion is due to the fact that we no longer
require a quadrature oscillator or the pair of input mixers to effect the required frequency translation.
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FIGURE 7.29

Bandpass down converter aliased to baseband by downsampler.

FIGURE 7.30

Spectrum, downsampled output signal.

Applying again the idea that it is useless to filter those samples that will be discarded by the down-
sampler, we apply the noble identity to exchange the operations of filtering and downsampling. The
noble identity states that a filter processing every Mth input sample followed by an output M-to-1
downsampler is the same as an input M-to-1 downsampler followed by a filter processing every input
sample. Its interpretation is that the M-to-l downsampled time series from a filter processing every Mth
input sample presents the same output by first downsampling the input by M-to-1 to discard the samples
not used by the filter when computing the retained output samples and then operating the filter on only
the retained input samples. The noble identity works because samples of delay at the input clock rate is
the same interval as one-sample delay at the output clock rate.
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At this point, with only a filter followed by a resampler, we can apply the polyphase decomposition
to the filter and separate it into M parallel paths for achieving the standard M-path polyphase down
converter channelizer. In order to facilitate understanding by the reader, we first perform the polyphase
decomposition of a low-pass prototype filter and then we extend the results to the bandpass filter case.
Eq. (7.19) represents the z-transform of a digital low-pass prototype filter h(n):

H(z) =
N−1∑
n=0

h(n)z−n = h(0) + h(1)z−1 + h(2)z−2 + · · · + h(N − 1)z−(N−1). (7.19)

In order to achieve the polyphase partition of H(z), we rewrite the sum in Eq. (7.19), as shown in
Eq. (7.20), partitioning the 1D array of weights in a 2D array. In this mapping we load an array by
columns but process it by rows. The partition forms columns of length M containing M successive
terms in the original array, and continues to form adjacent M-length columns until we account for all
the elements of the original 1D array:

h(0) + h(M + 0)z−M + h(2M + 0)z−2M + · · ·
h(1)z−1 + h(M + 1)z−(M+1) + h(2M + 1)z−(2M+1) + · · ·

H(z) = h(2)z−2 + h(M + 2)z−(M+2) + h(2M + 2)z−(2M+2) + · · ·
...

h(M − 1)z−(M−1) + h(2M − 1)z−(2M−1) + h(3M − 1)z−(3M−1) + · · · (7.20)

We note that the first row of the 2D array is a polynomial in zM , which we will denote H0(z
M),

a notation to be interpreted as an addressing scheme to start at index 0 and increment in strides of length
M. The second row of the same array, while not a polynomial in zM , is made into one by factoring the
common term z−1 and then identifying this row as z−1H1(z

M). It is easy to see that each row of the 2D
array described by Eq. (7.8) can be written as z−rHr(z

M), achieving the more compact form as shown
in Eq. (7.9), where r is the row index which is coincident with the path index

H(z) =
M−1∑
r=0

z−rHr

(
zM

)
=

M−1∑
r=0

z−r

N
M

−1∑
n=0

h(r + nM)z−nM. (7.21)

The block diagram depicting the M-path polyphase decomposition of the resampled low-pass filter of
Eq. (7.21) is depicted in Fig. 7.31.

At this point, in the structure depicted in Fig. 7.31, we can pull the resampler on the left side of the
adder and downsample the separate filter outputs, performing the sum only for the retained filter output
samples. With the resamplers at the output of each filter we can invoke again the noble identity and
place them at the input of each filter.

The resamplers operate synchronously, all closing at the same clock cycle. When the switches are
closed, the signal delivered to the filter on the top path is the current input sample. The signal delivered
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FIGURE 7.31

M-path partition of prototype low-pass filter with output resampler.

FIGURE 7.32

M-path partition of prototype low-pass filter with input delays and M-to-1 resamples replaced by input commu-
tator.

to the filter one path down is the content of the one-stage delay line, which, of course, is the previous
input sample. Similarly, as we traverse the successive paths of the M-path partition, we find upon
switch closure that the kth path receives a data sample delivered k samples ago. We conclude that the
interaction of the delay lines in each path with the set of synchronous switches can be likened to an input
commutator that delivers successive samples to successive arms of the M-path filter. This interpretation
is shown in Fig. 7.32, which depicts the final structure of the polyphase decomposition of a low-pass
prototype filter.

At this point we can easily achieve the bandpass polyphase partition from the low-pass partition by
applying the frequency translation property of the z-transform that states the following.
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If

H(z) = h(0) + h(1)z−1 + h(2)z−2 + · · · + h(N − 1)zN−1 =
N−1∑
n=0

h(n)z−n

and

G(z) = h(0) + h(1)ejθ z−1 + h(2)ej2θ z−2 + · · · + h(N − 1)ej (N−1)θ zN−1

= h(0) + h(1)
[
e−jθ z

]−1 + h(2)
[
e−jθ z

]−2 + · · · + h(N − 1)
[
e−j (N−1)θ z

]−(N−1)

=
N−1∑
n=0

h(n)
[
e−jθ z

]−n

,

then

G(z) = H(z)|z=e−jθz = H
(
ejθ z

)
.

By using this property and replacing in Eq. (7.21) each z−r with z−r ejrθ , where θ = k 2π
M

, we achieve

H(ze−j(2πk/M)) =
M−1∑
r=0

z−r ejr(2πk/M)Hr

(
zM

)
. (7.22)

The complex scalars e
jr

(
2πk
M

)
attached to each path of the M-path filter can be placed anywhere

along the path. We choose to place them after the downsampled path filter segments Hr(z
M). This

change is shown in Fig. 7.33, which depicts the standard polyphase filter bank used for down con-
verting a single channel. The computation of the time series obtained from the output summation in

FIGURE 7.33

Resampling M-path down converter.



7.6 From single channel down converter 435

Fig. 7.33 is shown in Eq. (7.23). Here, the argument nM reflects the downsampling operation, which
increments through the time index in strides of length M, delivering every Mth sample of the original
output series. The variable yr(nM) is the nMth sample from the filter segment in the rth path, and
y(nM,k) is the nMth time sample of the time series from the rth center frequency. Remember that the
down converted center frequencies located at integer multiples of the output sample frequency alias to
zero frequency after the resampling operation. Note that the output y(nM,k) is computed as a phase
coherent summation of the output series yr(nM). This phase coherent sum is, in fact, an IDFT of the
M-path outputs, which can be likened to beamforming the output of the path filters:

y(nM,k) =
M−1∑
r=1

yr(nM)ej (2π/M)rk. (7.23)

The beamforming perspective offers interesting insight into the operation of the resampled down con-
verter system we have just examined. The reasoning proceeds as follows. The commutator delivering
consecutive samples to the M input ports of the M-path filter performs a downsampling operation. Each
port of the M-path filter receives data at 1/Mth of the input rate. The downsampling causes the M-to-
1 spectral folding, effectively translating the M multiples of the output sample rate to baseband. The
alias terms in each path of the M-path filter exhibit unique phase profiles due to their distinct center
frequencies and the time offsets of the different downsampled time series delivered to each port. These
time offsets are, in fact, the input delays shown in Fig. 7.31 and Eq. (7.3). Each of the aliased center
frequencies experiences a phase shift shown in Eq. (7.24) equal to the product of its center frequency
and the path time delay:

ϕ(r, k) = wk�Tr = 2π
fs

M
krT s = 2π

fs

M
kr

1

fs

= 2π

M
kr. (7.24)

The phase shifters of the IDFT perform phase coherent summations, very much like that performed
in narrow-band beamforming, extracting from the myriad of aliased time series the alias with the par-
ticular matching phase profile. This phase-sensitive summation aligns contributions from the desired
alias to realize the processing gain of the coherent sum while the remaining alias terms, which exhibit
rotation rates corresponding to the M roots of unity, are destructively canceled in the summation. The
inputs to the M-path filter are not narrow-band, and phase shift alone is insufficient to cause the destruc-
tive cancellation over the full bandwidth of the undesired spectral contributions. Continuing with our
beamforming perspective, to successfully separate signals with unique phase profiles due to the input
commutator delays, we must perform the equivalent of time-delay beamforming. The M-path filters
obtained by M-to-1 downsampling of the prototype low-pass filter supply the required time delays. The
M-path filters are approximations to all-pass filters, exhibiting, over the channel bandwidth, equal ripple
approximation to unity gain and the set of linear phase shifts that provide the time delays required for
the time-delay beamforming task. The filter achieves this property by virtue of the way it is partitioned.
Each of the M-path filters, hr(n), for instance, with weights hr(r + nM), is formed by starting with
an initial offset of r samples and then incrementing in strides of M samples. The initial offsets, unique
to each path, are the source of the different linear phase-shift profiles. It is because of the different
linear phase profiles that the filter partition is known as polyphase filter. A useful perspective is that the
phase rotators following the filters perform phase alignment of the band center for each aliased spectral
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FIGURE 7.34

Standard polyphase down converter channelizer: commutator, M-path polyphase filter, and M-point IFFT.

band, while the polyphase filters perform the required differential phase shift across these same channel
bandwidths.

When the polyphase filter is used to down convert and downsample a single channel, the phase
rotators are implemented as external complex products following each path filter. When a small num-
ber of channels are being down converted and downsampled, appropriate sets of phase rotators can be
applied to the filter stage outputs and summed to form each channel output. Therefore, the most advan-
tageous applications of that structure are those in which the number of channels to be down converted
becomes sufficiently large, which means on the order of log2(N). Since the phase rotators following
the polyphase filter stages are the same as the phase rotators of an IDFT, we can use the IDFT to simul-
taneously apply the phase shifters for all the channels we wish to extract from the aliased signal set.
This is reminiscent of phased-array beamforming. For computational efficiency, the IFFT algorithm
implements the IDFT.

The complete structure of a standard M-path polyphase down converter channelizer is shown in
Fig. 7.34.

To summarize, in this structure the commutator performs an input sample rate reduction by commu-
tating successive input samples to selected paths of the M-path filter. Sample rate reduction occurring
prior to any signal processing causes spectral regions residing at multiples of the output sample rate
to alias to baseband. The partitioned M-path filter performs the task of aligning the time origins of
the offset sampled data sequences delivered by the input commutator to a single common output time
origin. This is accomplished by the all-pass characteristics of the M-path filter sections that apply the
required differential time delay to the individual input time series. The IDFT performs the equivalent
of a beamforming operation, the coherent summation of the time-aligned signals at each output port
with selected phase profiles. The phase coherent summation of the outputs of the M-path filters sepa-
rates the various aliases residing in each path by constructively summing the selected aliased frequency
components located in each path, while simultaneously destructively canceling the remaining aliased
spectral components.



7.6 From single channel down converter 437

FIGURE 7.35

Impulse response and frequency response of prototype low-pass filter.

We conclude the reasoning on the standard M-path down converter channelizer by stating that it
simultaneously performs the following three basic operations: sample rate reduction, due to the in-
put commutator; bandwidth reduction, due to the M-path partitioned filter weights; and Nyquist zone
selection, due to the IFFT block.

In the following, in order to facilitate understanding by the reader, we show some figures, which
are results of MATLAB simulations, to support the theoretical reasoning of the previous paragraphs.
The example concerns a six-path down converter channelizer that performs 6-to-1 downsampling. In
particular, Fig. 7.35 shows the impulse response and the frequency response of the low-pass prototype
filter used for the polyphase partition.

Fig. 7.36 shows the impulse responses of the zero-packed filter on each arm of the six-path
polyphase partition, while Fig. 7.37 shows the spectra corresponding to the filters of Fig. 7.36. It is
evident from this figure that the zero-packing process has the effect of producing spectral copies of the
filter frequency response.

In Fig. 7.38 we show the phase of each spectral copy of the zero-packed prototype filter on each
arm of the partition. In this figure the phases of the spectral copies of each arm are overlaid and each
line of the plot corresponds to a specific arm in the partition.

In Fig. 7.39 the same phase profiles of Fig. 7.38 are detrended, zoomed, and made causal.
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FIGURE 7.36

Impulse response of six-path polyphase partition prior to 6-to-1 resampling.

In Fig. 7.40 the 3D view of the filter spectral copies, with their phase profiles, is shown for each
path, while in Fig. 7.41, the final result of the channelization process is shown, again in a 3D fashion.

7.6.1 From single channel up converter to standard up converter channelizer
The standard M-path up converter channelizer that performs 1-to-M upsampling while up converting
the input time series is derived from the basic structure, shown in Fig. 7.11, of a single-channel inter-
polator consisting of an upsampler followed by an appropriate low-pass filter. In this configuration, the
upsampler converts the Nyquist interval, which is the observable frequency span, from the input sample
rate to a span M times wider, which is the output sample rate. The 1-to-M upsampler zero-packs the
input time series, effectively decreasing the distance between the input samples without modifying the
spectral content of the series. The wider Nyquist interval, spanning M input Nyquist intervals, presents
M spectral copies of the input spectrum to the low-pass filter. The amplitude of each of the M copies is
1/Mth of the amplitude of the input signal spectrum. When a low-pass filter is scaled so that the peak
coefficient is unity, the filter exhibits a processing gain inversely proportional to its fractional band-
width. Thus, as the filter eliminates the M − 1 spectral copies, reducing the bandwidth by a factor of
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FIGURE 7.37

Frequency response of six-path polyphase partition prior to 6-to-1 resampling.

M, the filter gain precisely compensates for the attenuation of the input spectra due to the zero-packing
of the input series.

We start the modifications of this basic architecture by observing that the zero-valued samples of
the zero-packed input time series do not contribute to the weighted sums formed at the filter output.
Since they do not contribute, there is no need to perform the product and sum from the input data
registers containing the known zero-valued samples. Since only the nonzero-packed samples contribute
to the filter output, we can track their location in the filter and perform the weighted sum only from
the register locations containing these samples. These locations are separated by M sample values, and
their position shifts through the filter as each new zero-valued input is presented to the input of the filter.
Keeping track of the coefficient stride and the position of each coefficient set is automatically performed
by the polyphase partition of the filter which is represented in Eq. (7.25). This equation describes the
filter as a sum of successively delayed subfilters with coefficients separated by the stride of M samples.
Eq. (7.26) is a compact representation of Eq. (7.25) where the rth stage Hr(z

M) of the polyphase filter
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FIGURE 7.38

Overlaid phase response of six-path polyphase partition prior to 6-to-1 resampling.

FIGURE 7.39

Detrended overlaid phase response; six-path partition prior to 6-to-1 resampling.
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FIGURE 7.40

3D Paddle-wheel phase profiles; six-path partition prior to 6-to-1 resampling.

is formed by the coefficient set that starts at index r and increments in steps of length M:

H(z) =
M−1∑
r−0

z−r

(
N
M

)
−1∑

n=0

h(r + nM)z−nM, (7.25)

H(z) =
M−1∑
r−0

z−rHr

(
zM

)
. (7.26)

The pictorial form of the filter in the M-path polyphase partition is shown in Fig. 7.42. This structure
enables the application of the noble identity in which we slide the resampler through the filter and
replace the M units of delay at the output clock rate with one unit of delay at the input clock rate. Note
that the resampler cannot slide through the delays z−r following each filter segment Hr .

The resamplers following the separate filter stages upsample each time series by a factor of M,
and the delays in each arm shift each resulting time series at different time increments so that only
one nonzero time sample is presented to the summing junction at each output time. Thus, rather than
performing the sum with multiple zeros, we can simply point to the arm that sequentially supplies the
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FIGURE 7.41

Overlaid 3D paddle-wheel phase profiles; six-path partition prior to 6-to-1 resampling.

FIGURE 7.42

Initial structure of 1-to-M polyphase interpolator.

nonzero samples. The output commutator, shown in Fig. 7.43, performs this selective access. Fig. 7.42
represents the standard polyphase interpolator or upsampler. Due to the low-pass nature of the filter on
which the polyphase decomposition has been applied, this structure does not perform the up conversion
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FIGURE 7.43

Standard structure of polyphase interpolator.

of the interpolated signal yet. Its output is the same low-pass input spectrum with a sample rate that is
M times higher than the input sample rate.

We recall here that the purpose of the interpolation process is to increase the input sample rate while
translating the input spectrum to a higher carrier frequency. If used in a communication system, such a
structure directly translates the input signal to an IF and then outputs the digital IF signal via a single
DAC. This option reduces the system costs by using a single DAC and a bandpass filter to replace
the standard baseband process requiring matched DACs, matched low-pass filters, matched balanced
mixers, and a quadrature oscillator to form the IF band.

In the structure of Fig. 7.24, the 1-to-M interpolation process zero-packed the input data giving us
access to M spectral copies of the input time series. The spectral copies reside at multiples of the input
sample rate. The low-pass filter rejects the spectral copies, retrieving only the baseband copy centered
at DC that is then sent through a DUC for translation to the desired center frequency. It is possible to
perform the spectral translation as a part of the interpolation process when the desired center frequency
coincides with one of the multiples of the input sample rate. Rather than extracting the spectral copy at
baseband from the replicated set of spectra and then translating it by means of a complex heterodyne,
we can directly extract one of the spectral copies by using a bandpass filter as opposed to a low-pass
filter. The bandpass filter is simply an up converted version of the low-pass filter h(n) with weights
shown in Eq. (7.27). Here the center frequency is interpreted as the kth multiple of 1

M
of the output

sample rate. We have

g(n, k) = h(n) exp

(
j

2π

M
kn

)
. (7.27)
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The z-transform of the bandpass filter g(n, k) is

Gk(z) =
N−1∑
n=0

h(n) exp

(
j

2π

M
kn

)
z−n. (7.28)

The z-transform of the polyphase decomposition of this filter is shown in Eq. (7.29). Here we see that
the length M stride in coefficient index due to the 1-to-M resampling aliases the phase rotators in the
polyphase filter stages to DC and hence has no effect on the polyphase weights. The phase rotator does,
however, have a contribution related to the delay associated with each arm of the partition. The output
commutator process absorbs the delays, while the phase rotators are applied to each arm to obtain the
spectral translation as a part of the interpolation. We have

Gk(z) =
M−1∑
r=0

z−r exp

(
j

2π

M
rk

) N
M

−1∑
n=0

h(r + nM) exp

(
j

2π

M
nMk

)
z−nM

=
M−1∑
r=0

z−r exp

(
j

2π

M
rk

) N
M

−1∑
n=0

h(r + nM)z−nM. (7.29)

The polyphase filter that accomplishes the task of simultaneous interpolation and up conversion to the
kth Nyquist zone is shown in Fig. 7.44. This engine upsamples and up converts, by aliasing, a single
narrow-band channel to a particular center frequency which is a multiple of the input sample rate. By
noting, as we did in the previous section of this chapter for the dual down converter channelizer, that the
phase rotators applied in each arm are the coefficients of an IDFT, it is easy to generalize this structure
to the standard multichannel polyphase up converter channelizer by applying an IDFT block at the input
of the filter bank.

Fig. 7.45 shows the complete structure of the standard M-path polyphase up converter channelizer. It
is composed of an M-point IDFT block, an M-path partitioned filter, and an output commutator. In this
structure, we enter the M-channel process at the IDFT block and leave the process by the output com-
mutator. The M-point IDFT performs two simultaneous tasks: an initial upsampling of 1-to-M forming
an M-length vector for each input sample x(n, k) and further imparting a complex phase rotation of k
cycles in M samples on the upsampled output vector. It generates a weighted sum of complex vectors
containing an integer number of cycles per M-length vector. The polyphase filter forms a sequence of
column coefficient-weighted MATLAB dot-multiply versions of these complex spinning vectors. The
sum of these columns, formed by the set of inner products in the polyphase partitioned filter, is the
shaped version of the up converted M-length vector output from the IFFT. On each output port of this
engine we find the input baseband channel aliased to the specific Nyquist zone with a new sampling
rate that is commensurate with its reduced bandwidth.

A closing comment on both the standard polyphase up converter and downconverter channelizer is
that the operations of sampling rate change, spectral shaping, and Nyquist zone selection are completely
independent of each other. The channel bandwidth, the channel spacing, and the output sampling rate
do not necessarily have to be equal, but they can all be modified according to the applications.
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FIGURE 7.44

Structure of 1-to-M polyphase interpolator with phase rotators for selecting the spectrum centered in the Mth
Nyquist zone.

FIGURE 7.45

Polyphase up converter channelizer: M-point IFFT, M-path polyphase filter, and commutator.

7.7 Modifications of the standard down converter channelizer – M :2
down converter channelizer

In the standard polyphase down converter channelizer shown in Fig. 7.34, the channel bandwidth fBW,
the channel spacing f�, and the sampling frequency fs are fixed to be equal.

This configuration could represent a good choice when the polyphase channelizer is used for com-
munication systems. In these kinds of applications, in fact, an output sample rate matching the channel
spacing is sufficient to avoid adjacent channel crosstalk since the two-sided bandwidth of each channel
is less than the channel spacing. An example of a signal that would require this mode of operation is
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the quadrature amplitude modulation (QAM) channels of a digital cable system. In North America, the
channels are separated by 6 MHz centers and operate with square-root cosine tapered Nyquist-shaped
spectra with 18% or 12% excess bandwidth, at symbol rates of approximately 5.0 MHz. The minimum
sample rate required of a cable channelizer to satisfy the Nyquist criterion would be 6.0 MHz (the Euro-
pean cable plants have a channel spacing of 8.0 MHz and symbol rates of 7.0 MHz). The actual sample
rate would likely be selected as a multiple of the symbol rate rather than as a multiple of the channel
spacing. Systems that channelize and form samples of the Nyquist-shaped spectrum often present the
sampled data to an interpolator to resample the time series collected at a bandwidth-related Nyquist
rate to a rate offering two samples per symbol or twice the symbol rate. For the TV example just cited,
the 6 Ms/s, 5 MHz symbol signal would have to be resampled by 5/3 to obtain the desired 10 Ms/s.
This task is done quite regularly in the communication receivers and it may represent a significant
computational burden. It would be appropriate if we could avoid the external interpolation process by
modifying the design of the standard polyphase channelizer for directly providing us the appropriate
output sampling frequency.

Many other applications desire channelizers in which the output sampling frequency is not equal to
the channel spacing and the channel bandwidth. The design of a software-defined radio receiver and
transmitter is only one of them. Another can be found in [7].

We concluded the previous section mentioning that the channel spacing, the channel bandwidth, and
the output sampling frequency of the polyphase channelizer are completely independent of each other
and that they can be arbitrarily selected based on the application. Fig. 7.46 shows some possible options
in which the channel bandwidth, the output sampling rate, and the channel spacing of the channelizer
are not equal. In this chapter, for the purpose of designing flexible radio architectures, the third option,
when the selected low-pass prototype filter is a Nyquist filter (perfect reconstruction filter), results to
be the most interesting one.

In this section of the chapter we derive the reconfigured version of the standard down converter
channelizer that is able to perform the sample rate change from the input rate fs to the output sampling
rate 2fs/M maintaining both the channel spacing and the channel bandwidth equal to fs . Similar
reasoning can be applied for implementing different selections.

Note that the standard down converter channelizer is critically sampled when the channel spacing
and the channel bandwidth are both equal to fs and when the output sample rate is also equal to
fs/M . This particular choice, in fact, causes the transition band edges of the channelizer filters to alias
onto themselves, which would prevent us from further processing the signals when they are arbitrarily
located in the frequency domain, which is the case for software radio. This problem can be visualized
in the upper example depicted in Fig. 7.46.

For the record, recall that a polyphase filter bank can be operated with an output sample rate which
can be any rational ratio of the input sample rate. With minor modifications the filter can be operated
with totally arbitrary ratios between input and output sample rates. This is true for the sample rate
reduction imbedded in a polyphase receiver as well as for the sample rate increase embedded in a
polyphase modulator.

We have control over the output sampling rate of the down converter channelizer by means of the
input commutator that delivers input data samples to the polyphase stages. We normally deliver M
successive input samples to the M-path filter starting at port M − 1 and progress up the stack to port
0, and by doing so we deliver M inputs per output, which means performing an M-to-1 downsampling
operation. To obtain the desired (M/2)-to-1 downsampling, we have to modify the input commutator in
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FIGURE 7.46

Some possible channel width, channel spacing, and output sampling frequency.

a way that it delivers M/2 successive input samples starting at port (M/2) − 1 and progressing up the
stack to port 0. We develop and illustrate the modifications with the aid of Figs. 7.47, 7.48, 7.49, and
7.50.

Fig. 7.47 represents the polyphase M-path filter partition shown in Eq. (7.9) with an M/2-to-1 rather
than the conventional M-to-1 downsample operation after the output summing junction. We need it in
order to perform the desired sampling rate change.

In Fig. 7.48 we apply the noble identity to the polyphase paths by pulling the M/2-to-1 downsam-
pler through the path filters which converts the polynomials in zM operating at the high input rate to
polynomials in z2 operating at the lower output rate.

Fig. 7.49 shows the second application of the noble identity in which we again take the M/2-to-1
downsamplers through the z−M/2 parts of the input path delays for the paths in the second or bottom
half of the path set.

In Fig. 7.50 the M/2-to-1 downsamplers switch and their delays are replaced with a two-pronged
commutator that delivers the same sample values to path inputs with the same path delay. Here we also
merged the z−1 delays in the lower half of the filter bank with their path filters.

Fig. 7.51 shows and compares the block diagrams of the path filters in the upper and lower halves
of this modified polyphase partition.
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FIGURE 7.47

M-path filter and M/2:1 downsampler.

FIGURE 7.48

Noble identity applied to M-path filters.
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FIGURE 7.49

Noble identity applied to delays.

FIGURE 7.50

Path delays replaced by input commutator.
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FIGURE 7.51

M-path filters with and without extra delays.

When the input commutator is so designed, the M/2 addresses to which the new M/2 input samples
are delivered have to be first vacated by their former contents, the M/2 previous input samples. All
the samples in the 2D filter undergo a serpentine shift of M/2 samples with the M/2 samples in the
bottom half of the first column sliding into the M/2 top addresses of the second column while the M/2
samples in the top half of the second column slide into the M/2 addresses in the bottom half of the
second column, and so on. This is equivalent to performing a linear shift through the prototype 1D filter
prior to the polyphase partition. In reality, we do not perform the serpentine shift but rather perform an
addressing manipulation that swaps two memory banks. This is shown in Fig. 7.52.

After each M/2-point data sequence is delivered to the partitioned M-stage polyphase filter, in the
standard channelizer configuration, the outputs of the M stages are computed and conditioned for de-
livery to the M-point IFFT. What we need to do at this point is the time alignment of the shifting time
origin of the input samples in the M-path filter with the stationary time origin of the phase rotator out-
puts of the IFFT. We can understand the problem by visualizing, as shown in Fig. 7.53, a single cycle
of a sine wave extending over M samples being inserted in the input data register, the first column of
the polyphase filter in segments of length M/2. We can assume that the data in the first M/2 addresses
are phase-aligned with the first M/2 samples of a single cycle of the sine wave offered by the IFFT.

When the second M/2 input samples are delivered to the input data register, the first M/2 input
samples shift to the second half of the M-length array. Its original starting point is now at address M/2
but the IFFT’s origin still resides at address 0. The shift of the origin causes the input sine wave in the
register to have the opposing phase of the sine wave formed by the IFFT; in fact the data shifting into
the polyphase filter stages causes a frequency-dependent phase shift of the form shown in Eq. (7.30).
The time delay due to shifting is nT , where n is the number of samples and T is the time interval
between samples. The frequencies of interest are integer multiples k of 1/Mth of the sample rate 2π/T .
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FIGURE 7.52

Data memory loading for successive M/2-point sequences in an M-stage polyphase channelizer.

Substituting these terms in Eq. (7.30) and canceling terms, we obtain the frequency-dependent phase
shift shown in Eq. (7.31). From this relationship we see that for time shifts n equal to multiples of M,
as demonstrated in Eq. (7.32), the phase shift is a multiple of 2π and contributes zero offset to the
spectra observed at the output of the IFFT. The M-sample time shift is the time shift applied to the data
in the normal use of the polyphase filter. Now suppose that the time shift is M/2 time samples. When
substituted in Eq. (7.31), we find, as shown in Eq. (7.33), a frequency-dependent phase shift of kπ ,
from which we conclude that odd-indexed frequency terms experience a phase shift of π rad for each
successive N/2 shift of input data. We have

θ(ω) = �t · ω, (7.30)

θ(ωk) = nT · k 1

M

2π

T
= nk

M
2π, (7.31)

θ(ωk)|n=M = nk

M
2π

∣∣∣∣
n=M

= 2πk, (7.32)
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FIGURE 7.53

Illustration of phase reversal of an M-point sinusoid input to an M/2-path polyphase filter.

θ(ωk)|n=M/2 = nk

M
2π

∣∣∣∣
n=M/2

= πk. (7.33)

This π-rad phase shift is due to the fact that the odd-indexed frequencies alias to the half sample rate
when the input signal is downsampled by M/2. What we are observing is the sinusoids with an odd
number of cycles in the length M array alias to the half sample rate when downsampled M/2-to-1. Note
that when downsampled M/2-to-1, the sinusoids with an even number of cycles in the length M array
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FIGURE 7.54

Cyclic shift of input data to IFFT to absorb phase shift due to linear time shift of data through polyphase filter.

alias to DC. We can compensate for the alternating signs in successive output samples by applying the
appropriate phase correction to the spectral data as we extract successive time samples from the odd-
indexed frequency bins of the IFFT. The phase correction here is trivial, but for other downsampling
ratios, the residual phase correction would require a complex multiplication at each transform output
port. Alternatively, since time delay imposes a frequency-dependent phase shift, we can use time shifts
to cancel the frequency-dependent phase shifts. We accomplish this by applying a circular time shift
of N/2 samples to the vector of samples prior to their presentation to the IFFT. As in the case of the
serpentine shift of the input data, the circular shift of the polyphase filter output data is implemented
as an address-manipulated data swap. This data swap occurs on alternate input cycles and a simple
two-state machine determines for which input cycle the output data swap is applied. This is shown in
Fig. 7.54.

The complete structure of the modified version of the M-to-2 down converter channelizer with the
input data buffer and the circular data buffer is shown in Fig. 7.55.
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FIGURE 7.55

M-to-2 modified down converter channelizer.

For brevity of notation, we avoid reporting here all the dual mathematical derivations that led to the
final structure of the modified up converter channelizer. We briefly explain its block diagram in the next
subsection.

7.7.1 Modifications of the standard up converter channelizer – 2:M up converter
channelizer

Dual reasoning drives us to the reconfigured version of the M-path polyphase up converter channelizer
that is able to perform the sample rate change from 2fs/M to fs maintaining both the channel spacing
and the channel bandwidth equal to fs . The choice of using a 2-to-M upsampler avoids the difficulty of
having the sample rate that precisely matches the two-sided bandwidth of the input signals as well as
permitting a shorter length prototype channelizer filter due to an allowable wider transition bandwidth.
In this chapter we briefly derive its block diagram (Fig. 7.45). More details on this structure can be
found in [6–8]. We develop and illustrate the modifications with the aid of Figs. 7.56, 7.57, 7.58, 7.59,
7.60, and 7.61. In these figures we do not consider the IFFT block because for now it does not affect
our reasoning. Moreover, we will introduce it later motivating the reason for which it is important to
include a circular buffer in the design of the modified up converter channelizer.

Fig. 7.56 presents the structure of the M-path filter implementation of the polyphase partition shown
in Eq. (7.7). Note the 1-to-M/2 upsample operation at the input port normally described as the zero-
packing process. In Fig. 7.57 we apply the noble identity to the polyphase paths and pull the 1-to-M/2
upsampler through the path filters which convert the polynomials in zM operating at the high output
rate to polynomials in z2 operating at the low input rate. Note that the paths are now polynomials in
z2 rather than zM , as is the normal mode that we identify as the dual of the maximally decimated filter
bank.

Fig. 7.58 shows the second application of the noble identity in which we again take the 1-to-M/2
upsampler through the z−M/2 part of the output path delays for the paths in the second or bottom half
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FIGURE 7.56

M-path polyphase filter.

FIGURE 7.57

Noble identity applied to M-path filter.
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FIGURE 7.58

Noble identity applied to delays.

FIGURE 7.59

Interchange unit delay and path filters.
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FIGURE 7.60

Insert commutator, add the same delay paths.

of the path set. The resultant delay, z−1, now operating at the input clock rate, is then interchanged with
its path filter, as shown in Fig. 7.59.

In Fig. 7.60 the 1-to-M/2 upsamplers switch and their delays are replaced with a pair of commutators
that add the path outputs with the same path delay. Finally, in Fig. 7.61 we fold the single delay in front
of the lower set of path filters into the path filter. After having changed the output sampling rate of the
polyphase channelizer, the final modification we need to introduce is the time alignment of the phase
rotators from the input IFFT and the shifted time origin in the M-path filter.

From Fig. 7.62, we note the locations of the nonzero coefficients in the polynomials in z2 and
conclude that the input sine wave only contributes to the output time samples in the path filters located
in the upper half of the path set. When the next scaled sine wave output from the IFFT is inserted in
the first column of the path filter memory, the previously scaled sine wave is shifted one column in the
memory and it will now contribute to the output time samples from the filter paths in the lower half of
the path filter set. The problem is that the sine wave samples in the lower half of the path filter set have
opposite polarity of the sine wave samples in the upper half of the path filter set. The samples from the
two half filter sets are added, and to do so they must have the same phase. We note that this alternating
sign effect only occurs for the odd-indexed IFFT frequency bins, which have an odd number of cycles
per interval.

An alternative description of the sign reversal is that in the M/2 resampling of the modified M-
path filter the even-indexed frequencies alias to multiples of the input sample rate and the odd-indexed
frequencies alias to odd multiples of the half sample rate.
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FIGURE 7.61

Fold unit delays into path filters.

FIGURE 7.62

Comparison of path filter polynomials in z2 with and without the additional input delay.
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FIGURE 7.63

2-to-M modified up converter channelizer.

We recall here that there are two methods for performing the phase alignment of the successive
output vectors from the IFFT. In the first method we simply invert the input phase of successive input
samples to the odd-indexed IFFT bins. In the second method, recognizing that equivalency of phase
shift and time delay for sinusoids on alternate outputs from the IFFT we apply an M/2 circular shift
to its output buffer prior to delivering the phase-aligned vector to the path filter memory. This end
around shift of the output buffer occurs during the data transfer in memory and requires no additional
manipulation of the time samples.

Fig. 7.63 shows the complete block diagram of the modified M-path up converter channelizer. In
this engine, the input commutator delivers the samples to the M-point IFFT. It applies the complex
phase rotation to the separate baseband input signals and performs the initial 1-to-M upsampling of the
input samples. The circular output buffer performs the correct data offset of the two M/2-point halves
of the IFFT output vector to maintain phase alignment with the M/2 channelizer output vector. The
complex sinusoid output by the IFFT always defines its time origin as the initial sample of its output
vector. The output of the polyphase filter exhibits a time origin that shifts due to the M/2 time sample
shift embedded in the output commutator. The M/2 time sample shift of the output time series causes
sinusoids with an odd number of cycles in the length M array to alternate sign on successive shifts. The
alternating sign is the reason that the odd-indexed frequency bins up convert to a frequency k + N/2
rather than frequency index k. Rather than reverse phase alternate input samples to the odd-indexed
IFFT bins, we perform an M/2 point circular shift of alternate M-length vectors from the IFFT for
applying the correct phase alignment to all frequencies simultaneously.

The polyphase down converter and up converter channelizers shown in Figs. 7.55 and 7.63, respec-
tively, are the key elements of the proposed receiver and transmitter structures that we present in the
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following sections. Because of the signal processing tasks they handle, in the following, we refer to
them as analysis and synthesis channelizers, respectively.

7.8 Preliminaries on software-defined radios
The 20th century saw the explosion of hardware-defined radio as a means of communicating all forms
of data, audible and visual information, over vast distances. These radios have little or no software
control. Their structures are fixed in accordance with the applications; the signal modulation formats
and the carrier frequencies and bandwidths are only some of the factors that dictate the radio structures.
The smallest change to one of these parameters could imply a replacement of the entire radio system.
A consequence of this is, for example, the fact that a television receiver purchased in France does
not work in England. The reason, of course, is that the different geographical regions employ different
modulation standards for analog TV as well as for digital TV. Then, the citizens cannot use the same TV
for receiving signals in both countries; they need to buy a new television for each country in which they
decide to live. Sometimes, even if the communication devices are designed for the same application
purposes and they work in the same geographical area, they are not able to communicate between each
other. One of the most evident examples of this is that the city police car radio cannot communicate
with the city fire truck radio or with the local hospital ambulance radio, even if they have the common
purpose of helping and supporting the citizen. Also, the city fire truck radio cannot communicate with
the county fire truck radio or with the radios of the fire truck operated by the adjacent city, or by
the state park service, or the international airport. None of these services can communicate with the
National Guard, or with the local Port Authority, or with the local Navy base, or the local Coast Guard
base, or the US Border Patrol, or the US Customs Service. In a hardware-defined radio, if we decide to
change one of the parameters of the transmitted signal, like bandwidth or carrier frequency (for example
because the carrier frequency we want to use is the only one available at that particular moment), we
need to change the transmitter. On the other side, every time we want to receive a signal having a
different bandwidth or center frequency, we need to change the receiver. Hardware-defined transmitter
and receiver devices are not flexible at all; we must modify their structure every time we change even
one of the transmitting and receiving signal parameters.

In 1991, Joe Mitola coined the term software-defined radio. It referred to a class of reprogrammable
(and reconfigurable) devices. At that time it was not clear at which level the digitization should occur
to define a radio as software but the concept sounded pretty interesting, and the dream of building a
completely reconfigurable radio device involved scientists from all over the world. Today the exact
definition of software-defined radio is still controversial, and no consensus exists about the level of
reconfigurability needed to qualify a radio as software.

Fig. 7.64 shows, in a simple block diagram, all the possible places in which the digitization can occur
in a radio receiver. The exact dual block diagram can be portrayed for the radio transmitter. Current
radios, often referred to as digital but sometimes referred to as software-defined radios (depending on
their particular structure), after shifting the signals to IF, digitize them and assign all the remaining tasks
to a digital signal processor. One of the main reasons for shifting the signals to IF, before digitizing
them, is to reduce their maximum frequency so that a smaller number of samples can be taken for
preserving the information content.
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FIGURE 7.64

Simple block diagram indicating all the possible places in which the digitization can occur in a radio receiver.

Implementation of ideal software radios requires digitization at the antenna, allowing complete
flexibility in the digital domain. Then it requires both the design of a flexible and efficient DSP-based
structure and the design of a completely flexible radio frequency front-end for handling a wide range
of carrier frequencies, bandwidths, and modulation formats. These issues have not been exploited yet
in the commercial systems due to technology limitations and cost considerations.

As pointed out in the previous section, in a current software-defined radio receiver the signals are
digitized in IF bands. The receiver employs a superheterodyne frequency down conversion, in which the
radio frequency signals are picked up by the antenna along with other spurious, unwanted signals (noise
and interferences), filtered, amplified with a low noise amplifier, and mixed with a local oscillator to
shift it to IF. Depending on the application, the number of stages of this operation may vary. Digitizing
the signal in the IF range eliminates the last analog stage in the conventional hardware-defined radios
in which problems like carrier offset and imaging are encountered. When sampled, digital IF signals
give spectral replicas that can be placed accurately near the baseband frequency, allowing frequency
translation and digitization to be carried out simultaneously. Digital filtering and sample rate conver-
sion are often needed to interface the output of the ADC to the processing hardware to implement the
receiver. Likewise, on the transmitter side, digital filtering and sample rate conversion are often neces-
sary to interface the digital hardware that creates the modulated waveforms to the DAC. DSP is usually
performed in radio devices using field programmable gate arrays (FPGAs) or application-specific inte-
grated circuits (ASICs).

Even if the dream of building a universal radio is still far away, current software-defined radio ar-
chitectures are quite flexible, in the sense that they usually down convert to IF a collection of signals,
and after sampling they are able to shift these signals to baseband via software. Changes in the signal
bandwidths and center frequencies are made by changing some parameters of the digital data section.
The flexibility of such a structure can be improved by moving the ADC closest to the receiver antenna.
By digitizing the signals immediately after (and before in the transmitter) the antenna, which is the ideal
software radio case, the down conversion (and up conversion) processes are performed completely in
software and the radio acquires the capability of changing its personality, possibly in real time, guar-
anteeing a desired quality of service (QoS). The digitization after the receiver antenna, in fact, allows
service providers to upgrade the infrastructure and new market services quickly. It promises multifunc-
tionality, global mobility, ease of manufacture, compactness, and power efficiency. The flexibility in
hardware architectures combined with flexibility in software architectures, through the implementation
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of techniques such as object-oriented programming, can provide software radio also with the ability to
seamlessly integrate itself into multiple networks with widely different air and data interfaces.

7.9 Proposed architectures for software radios
A digital transmitter accepts binary input sequences and outputs radio frequency amplitude and phase-
modulated wave shapes. The DSP part of this process starts by accepting b-bit words from a binary
source at input symbol rate. These words address a look-up table that outputs gray-coded ordered pairs,
i.e., I-Q constellation points, that control the amplitude and phase of the modulated carrier. The I-Q
pair is input to DSP-based shaping filters that form 1-to-4 upsampled time series designed to control
the wave shape and limit the baseband modulation bandwidth. The time series from the shaping filter are
further upsampled by a pair of interpolating filters to obtain a wider spectral interval between spectral
replicas of the sampled data. The interpolated data are then heterodyned by a DUC to a convenient
digital IF and then moved from the sampled data domain to the continuous analog domain by a DAC
and an analog IF filter. Further analog processing performs the spectral transformations required to
couple the wave shape to the channel.

On the other side of the communication chain, a digital receiver has to perform the tasks of filtering,
spectral translation, and analog-to-digital conversion to reverse the dual tasks performed at the trans-
mitter. The receiver must also perform a number of other tasks absent in the transmitter for estimating
the unknown parameters of the received signal such as amplitude, frequency, and timing alignment. It
samples the output of the analog IF filter and down converts the IF centered signal to baseband with a
DDC. The baseband signal is downsampled by a decimating filter and finally processed in the matched
filter to maximize the signal-to-noise ratio (SNR) of the samples presented to the detector. The DSP por-
tion of this receiver includes carrier alignment, timing recovery, channel equalization, automatic gain
control, SNR estimation, signal detection, and interference suppression blocks. In order to suppress the
undesired artifacts introduced by the analog components, the receiver also incorporates a number of
DSP compensating blocks.

Fig. 7.65 shows the first-tier processing block diagrams of a typical digital transmitter–receiver
chain. The depicted transmitter is designed for sending, one per time, signals having fixed bandwidths at
precisely located center frequencies. On the other hand, the depicted receiver is also designed for down
converting to baseband fixed-bandwidth signals having fixed center frequencies. Therefore, the goal of
a cognitive radio is quite different: the cognitive transmitter and receiver should be completely flexible.
The transmitter has, in fact, to be able to simultaneously up convert, at desired center frequencies,
which are selected based on the temporary availability of the radio spectrum, a collection of signals
having arbitrary bandwidths. It should also be able to decompose a signal in spectral fragments when
a sufficiently wide portion of the radio spectrum is not available for transmission. Of course no energy
loss has to occur in the partitioning process. A cognitive receiver has to be able to simultaneously
down convert the transmitted signal spectra wherever they are positioned in the frequency domain and
whatever bandwidths they have. Also, it should have the capability of recognizing spectral segments
belonging to the same information signal and recompose them, after the baseband translation, without
energy losses. It could be possible to reach this goal by using the current technology but the cost would
be very high: For every signal we want to transmit we have to replicate the digital data section of both
the transmitter and the receiver. The more signals we have to simultaneously up and down convert, the
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FIGURE 7.65

Block diagram of primary signal processing tasks in a typical transmitter and receiver.

more sampled data sections we need to implement! Also, it is not possible, using the current technology,
to fragment a single signal, transmit its spectral partitions using the temporary available spectral holes,
and perfectly recombine them at the receiver. Today the transmission happens under the constraint that
the available space in the radio spectrum is large enough to accommodate the entire bandwidth of the
signal to be transmitted.

In the next sections of this chapter, we present novel channelizers to simultaneously up and down
convert arbitrary bandwidth signals randomly located in the frequency domain. Differently from the
previous contents of this document, from this point onwards the presented material reproduces the
results of the authors’ research on software-defined radio design, thus it is new. The proposed architec-
tures can be used for the transmitter and for the receiver devices of a cognitive radio. By using them
we avoid the need to replicate the sampled data sections for simultaneously transmitting and receiving
more signals with arbitrary bandwidths over multiple desired center frequencies. We also gain the ca-
pability to partition the signal spectra before transmitting them and to perfectly reassemble them in the
receiver after the baseband shifting.
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The core of the proposed transmitter structure is the variant of the standard M-path polyphase up
converter channelizer that is able to perform 2-to-M upsampling while shifting, by aliasing, all the
channels to desired center frequencies. This has been presented in Section 7.5 of this same chapter. In
the following we use the term synthesis channelizer to refer to this structure. This name has been given
for the tasks that this structure accomplishes when embedded in a software-defined radio transmitter.
When the input signals have bandwidths wider than the synthesis channelizer bandwidth, they are
preprocessed through small down converter channelizers that disassemble the signals’ bandwidths into
reduced bandwidth subchannels which are matched to the baseline synthesis channelizer bandwidths.
Complex sampled frequency rotators are used to offset the signal spectra by arbitrary fractions of the
sample frequency before processing them through the channelizers. This is necessary for the completely
arbitrary center frequency positioning of the signals.

On the other side the variation of the standard M-path down converter channelizer, presented in
Section 7.6, represents the key element of the proposed receiver. It is able to perform M-to-2 down-
sampling while simultaneously down converting, by aliasing, all the received signal spectra having
arbitrary bandwidths. In the following, we refer to this structure as analysis channelizer. Postprocessing
channelizers, which are a smaller version of the synthesis channelizer composing the transmitter, are
used for reassembling, from the analysis channelizer baseline channels, signal bandwidths wider than
the analysis channelizer channel bandwidth. Possible residual frequency offsets can be easily solved
with the aid of a digital complex heterodyne while a postanalysis block performs further channeliza-
tion, when it is required, for separating signal spectra falling in the same channelizer channel after the
analysis processing.

7.9.1 Proposed digital down converter architecture
The standard M-path polyphase down converter channelizer is able to shift to baseband, by alias-
ing, the input signals that are exactly located on the channel’s center frequencies, kf c, where k =
0,1, . . . ,M − 1. In this engine the center frequencies of the channels are integer multiples of the chan-
nelizer output sampling frequency as well as the channelizer channel bandwidth.

We recall here that the standard M-path downsampling channelizer simultaneously down converts,
by aliasing, from fixed center frequencies to baseband, M bands narrower than the channelizer channel
bandwidth. If kfc ± �fk are the center frequencies of the input spectra, where ±�fk are the arbitrary
frequency offsets from the channel center frequencies, kfc, after the down conversion process the output
spectra will be shifted by the same offset from DC, i.e., the down converted signals will be centered
at the frequency locations ±�fk because the polyphase down converter channelizer only compensates
the kfc frequency terms. It is unable to compensate the frequency offsets, ±�fk , that are responsible
for the arbitrary center frequency positioning of the input signals. The frequency offset compensation is
one of the motivations for which we need to add further processing blocks in the digital down converter
design when it is intended to be used in a software radio receiver. Other issues, like receiver resolution,
baseband reassembly of wide bandwidths, and arbitrary interpolation of the baseband shifted signals,
need to be considered too. All these issues are addressed and solved in the following paragraphs.

We also recall here that the standard M-to-1 down converter channelizer with the channel spacing
and channel bandwidth equal to the output sampling frequency is critically sampled (see upper plot of
Fig. 7.29). In order to use it in a cognitive radio receiver, we need to modify it, redesigning the channel
spacing, channel bandwidth, and output sampling frequency. We presented one of these modifications
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FIGURE 7.66

Block diagram of the proposed down converter; analysis down converter channelizer, postanalysis block,
synthesis up converter channelizers, complex frequency rotators, and arbitrary interpolators.

in Section 7.5, where the M-to-2 down converter channelizer was derived. Also the selection of the
low-pass prototype filter is an important issue that has to be addressed in order to avoid energy losses
while the signal is processed.

Fig. 7.66 shows the complete block diagram of the proposed down converting chain. The input
signal is processed, at first, by an analysis channelizer which is the modified version of the standard
M-to-1 down converter channelizer presented in Section 7.5. By performing an M/2-to-1 downsampling
of the input time series, this engine simultaneously shifts all the aliased channels to baseband presenting
an output sampling rate that is twice the sample rate of the standard M-to-1 channelizer. Nyquist filters
are used, as low-pass prototype, for avoiding energy losses while processing the signals. They are
briefly described in the next subsections. The interested reader can find more details on Nyquist filter
design in [8].

Note that if more signals or even spectral fragments belonging to different signals are channelized
in the same channel, further processing is needed to separate them at the output of the analysis down
converter. The extra filtering process is performed in the postanalysis block, which is connected to a
channel configuration block that provides the receiver with the necessary information about the input
signal bandwidths and center frequencies. Different options can be implemented to simplify the design
of the postanalysis block. One of the possible options is to decrease the bandwidth of the perfect re-
construction prototype low-pass filter and to increase the number of points of the IFFT block in the
analysis channelizer. By designing the channel spacing and bandwidth to accommodate the most likely
expected signal width we minimize the possibility of having more than one signal in each channel. It
is also possible to modify the analysis channelizer for having a more convenient frequency positioning
of the aliased channels. The optimal choice, of course, depends on the receiver application and on the
workload requirements.
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At the output of the analysis channelizer, most of the signals with bandwidths narrower than the
channel bandwidth are already down converted by means of the channelization process. However, the
spectra wider than the channel bandwidth, or the spectra that, as a consequence of the arbitrary center
frequency positioning, are processed by two or more adjacent channels, have been fragmented and
their segments have all been aliased to the first Nyquist zone; these segments need to be recomposed
before being translated to DC. The recomposition of spectral fragments is the task performed by the
synthesis channelizers. They have been presented in Section 7.7.1, and their block diagram is depicted
in Fig. 7.59. These are small 2-to-Pn polyphase up converters in which the IFFT size, Pn, is properly
chosen in order to span the bandwidth of the nth received signal spectrum. We summarize the reason for
including the synthesizers in our design in this way: at the output of the M-to-2 analysis channelizer all
the signals have been downsampled and their spectra, or their spectral fragments, have been translated
to the first Nyquist zone by the channelizing process. In order to reassemble the segments into a wider-
bandwidth superchannel, the time series from each segment must be upsampled and frequency shifted to
their appropriate positions so that they can be added together for forming the time series corresponding
to the wider-bandwidth assembled signal.

At the end of the down conversion and up conversion processes, all the received spectra have been
frequency-translated and, when necessary, recomposed in the first Nyquist zone. The analysis down
converter channelizer shifted to baseband the signal spectra and their fragments that are exactly cen-
tered on its channels’ center frequencies. This engine was not able to compensate the frequency offsets
deriving from the arbitrary frequency positioning of the received signals.

The frequency offset compensation task is accomplished by the complex frequency rotators that
follow the small up converter synthesizers. They are connected with the channel configuration block
that provides them proper information about the signal center frequencies.

Once the signals are perfectly centered at DC, arbitrary interpolators are used to adjust their sam-
pling rate to provide us exactly two samples per symbol needed for the further processing stages that
are performed in the digital receiver.

7.9.1.1 Postanalysis block and synthesis up converter channelizers
At the output of the analysis channelizer all the channels have been aliased to baseband. As a conse-
quence, the channelized segments of the received spectrum have been aliased to the first Nyquist zone
(see Fig. 7.61).

The following three options, which cover all the possible cases of bandwidth positioning in the
channelized spectrum, have to be considered and solved, by further processing the analysis channelizer
outputs, in order to achieve, at the end of the analysis–synthesis chain, all the received bands shifted to
baseband:

• 1. The aliased baseband channel could contain only one signal spectrum whose bandwidth is nar-
rower than the channel bandwidth. The carrier frequency of the signal generally does not coincide
with the center frequency of the channel.

• 2. The aliased baseband channel could contain two or more spectra, or also their fragments, belong-
ing to different signals. These spectra are arbitrarily positioned in the channel bandwidth.

• 3. The baseband channel could contain only one spectral fragment belonging to one of the received
signals which has bandwidth larger than the channel bandwidth.
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In the first option, at the output of the analysis channelizer, the signal spectra that are entirely con-
tained in one single channel reside in the first Nyquist zone. Eventually the receiver has to compensate
the frequency offsets derived from their arbitrary center frequency positioning and resample them to
obtain the desired output sampling rate of two samples per symbol. The complex frequency rotators
and the arbitrary interpolators perform these tasks at the end of the receiver chain.

For the case in which two or more spectra are processed by one single channel, more tasks need to
be performed before frequency offset compensation and arbitrary interpolation occur. We, in fact, have
to separate, by filtering, the bands, or their fragments, belonging to different signals before processing
all of them independently. The separation task is performed by the postanalysis block. It performs a
further channelization process that filters, from every baseband aliased channel, the bands belonging
to different signals. Note that some of the filtered signals, and precisely the ones with bandwidths
narrower than the channel bandwidth and entirely contained in the channel, only have to be frequency
shifted before being delivered to the arbitrary interpolator; else, the spectral fragments belonging to
signals processed in more than one channel have to be passed through the up converter synthesizers
before being frequency shifted and resampled.

In the third case, which concerns the signals with bandwidths wider than the channel spacing,
the analysis channelizer partitioned the bandwidths into several fragments and aliased every fragment
to baseband. In order to recombine them we must first upsample each input time series and second
translate them to their proper spectral region. We can then form the sum to obtain the superchannel
representation of the original signal bandwidth. Those are exactly the tasks performed by the synthesis
channelizers.

7.9.1.2 High-quality arbitrary interpolator
After all the bands have been translated to zero frequency, we need to resample them to obtain exactly
the two samples per symbol needed for the subsequent processing performed in the receiver.

In this subsection we present the high-quality interpolator structure used to obtain two samples per
symbol needed for the second- and third-tier processing tasks in a digital receiver. It is well known that
the dynamic range of an arbitrary interpolator should match the system’s quantization noise level [8].
The error due to the linear interpolation process, in fact, is not observable if it is below the noise level
attributed to the signal quantization process. Since the error due to the b-bit quantized signal is 2−b, the
interpolation error or, equivalently, the level of residual spectral artifacts has to be below this threshold.
In other words, if the oversampling factor, N, satisfies Eq. (7.34), then the interpolation error will not
be noticeable: [

1

2N

]2

≤ 1

2b
. (7.34)

Thus, if we interpolate a 16-bit dataset, we keep the spectral artifacts below the quantization noise level
if N is greater than or equal to 128. To interpolate the signals by a factor of N = 128, we break the
upsampling process of the baseband centered spectra in two stages.

As depicted in Fig. 7.67, we perform an initial 1-to-4 upsampling followed by a 1-to-32 upsampling
obtained by using the high-quality arbitrary interpolator shown in Fig. 7.68. The initial four-times over-
sampling has the effect of strongly decreasing the length of the polyphase filters used in the interpolator,
which significantly reduces the total workload of this structure. More details on this topic can be found
in [8].
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FIGURE 7.67

Two stage arbitrary interpolator.

FIGURE 7.68

Block diagram of high-quality arbitrary interpolator.

Note that the initial 1-to-4 signal upsampling can either be achieved by using two half-band filters
in cascade or we can previously upsample the signals by properly choosing Pn, the IFFT size of the
synthesis channelizers. Also, at the output of the synthesizers some of the signals could be already
upsampled by some factors because the IFFT size of the synthesizer has to be an even number [8] and
it also has to satisfy Nyquist criteria for every signal band.

The arbitrary interpolator shown in Fig. 7.68 performs the linear interpolation between two available
adjacent signal samples (two-neighbor interpolation). The interpolation process operates as follows:
A new input data sample is delivered to the interpolation filter register on each accumulator overflow.
The integer part of the accumulator content selects one of the M filter weights, hk(n), and one of the
M derivative filter weights, dhk(n), while the filters compute the amplitude y(n + k/M) and the first
derivative ẏ(n + k/M) at the kth interpolated point in the M-point interpolated output grid. Then the
structure uses the local Taylor series to form the interpolated sample value between grid points. The
output clock directs the accumulator process to add the desired increment � (acc_incr in Fig. 7.68)
to the modulo M accumulator and increments the output index m. The increment � can be computed
according to the following equation: � = Mfin/fout. This process continues until the accumulator over-
flows at one of the output clock increments. Upon this overflow the input index is incremented, a new
input data point is shifted into the filter, and the process continues as before.
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7.9.1.3 Nyquist filters
Particular attention has to be paid in designing the low-pass prototype filters used in the analysis chan-
nelizer. The signal spectra have to be randomly located in the frequency domain and their bandwidths
can easily span and occupy more than one baseline channel; also, in the signal disassembling and re-
assembling processes, we need to collect all the energy corresponding to a single signal without losses.

The Nyquist filter presents the interesting property of having a band edge gain equal to 0.5 (or
−6 dB). By using this filter as prototype in our channelizers, we place M of them across the whole
spanned spectrum with each filter centered on kfs/M . All adjacent filters exhibit −6 dB overlap at
their band edges. The channelizer working under this configuration is able to collect all the signal
energy across its full operating spectrum range even if signals occupy more than one adjacent chan-
nel or it resides in the channel’s overlapping transition bandwidths. In the following paragraphs, for
completeness, we provide a brief introduction on Nyquist filters.

Nyquist pulses is the name given to the wave shapes f (n) required to communicate over band-
limited channels with no intersymbol interference (ISI). When sampled at equally spaced time incre-
ments they have to verify the following requirement, which is known as the Nyquist pulse criterion for
zero ISI:

f (n) =
{

0 if n �= 0,

1 if n = 0.
(7.35)

There are infinite such functions that satisfy this set of restrictions. The one with minimum bandwidth
is the ubiquitous sin(x)/x, which is variously known as the cardinal pulse when used for band-limited
interpolation and as the Nyquist pulse when used in pulse shaping. The transform of this wave shape,
R(f ), is the unit-area rectangle with spectral support 1/T Hz. Unfortunately this waveform is noncausal
and further it resides on an infinite support. If the pulse resided on a finite support we could delay the
response sufficiently for it to be causal. We have to form finite support approximations to the sin(x)/x

pulse. The first approximation to this pulse is obtained by convolving the rectangular spectrum, R(f ),
with an even symmetric, continuous spectrum W(f ) with finite support α/T . The convolution between
R(f ) and W(f ) in the frequency domain is equivalent to a product in the time domain between r(t) and
w(t), where w(t) is the inverse transform of W(f ). The effect of the spectral convolution is to increase
the two-sided bandwidth from 1/T to (1 + α)/T . The excess bandwidth α/T is the cost we incur to form
filters on finite support. The term α is called the roll-off factor and is typically on the order of 0.5–0.1,
with many systems using values of α = 0.2. The transition bandwidth caused by the convolution is seen
to exhibit odd symmetry about the half amplitude point of the original rectangular spectrum. This is
a desired consequence of requiring even symmetry for the convolving spectral mass function. When
the windowed signal is sampled at the symbol rate 1/T Hz, the spectral component residing beyond
the 1/T bandwidth folds about the frequency ±1/2T into the original bandwidth. This folded spectral
component supplies the additional amplitude required to bring the spectrum to the constant amplitude
of R(f ).

Following this reasoning, we note that the significant amplitude of the windowed wave shape is
confined to an interval of approximate width 4T/α so that a filter with α = 0.2 spans approximately
20T , or 20 symbol durations. We can elect to simply truncate the windowed impulse response to obtain
a finite support filter, and often choose the truncation points at ±2T/α. A second window, a rectangle,
performs this truncation. The result of this second windowing operation is a second spectral convolution
with its transform. This second convolution induces passband ripple and out-of-band side lobes in the



470 Chapter 7 Multirate signal processing for software radio architectures

spectrum of the finite support Nyquist filter. The description of this band-limited spectrum normalized
to unity passband gain is presented as

H(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for |w|
wsym

≤ (1 − α),

0.5
{

1 + cos
{

2π
α

[
w

wsym
− (1 − α)

]}}
for (1 − α) ≤ |w|

wsym
≤ (1 + α),

0 for |w|
wsym

≥ (1 + α).

(7.36)

The continuous-time domain expression for the cosine-tapered Nyquist filter is shown in Eq. (7.37).
Here we see the windowing operation of the Nyquist pulse as a product with the window that is the
transform of the half-cosine spectrum:

h(t) = fsym
sin(πfsymt)

(πfsymt)

cos(παfsymt)

[1 − (2αfsymt)2] . (7.37)

Since the Nyquist filter is band-limited, we can form the samples of a digital filter by sampling the
impulse response of the continuous filter. Normally this involves two operations. The first is a scaling
factor applied to the impulse response by dividing by the sample rate, and the second is the sampling
process in which we replace t with nTs or n/fs . The sample rate must exceed the two-sided bandwidth
of the filter that, due to the excess bandwidth, is wider than the symbol rate. It is standard to select the
sample rate fs to be an integer multiple of the symbol rate fSYM so that the filter operates at M samples
per symbol. It is common to operate the filter at four or eight samples per symbol.

In the design of the proposed analysis channelizer, the Nyquist prototype low-pass filter has to
be designed with its two-sided 3 dB bandwidth equal to 1/Mth of the channelizer input sampling
frequency. This is equivalent to the filter impulse response having approximately M samples between
its peak and first zero crossing and having approximately M samples between its zero crossings. The
integer M is also the size of the IFFT as well as the number of channels in the analysis channelizer. The
prototype filter must also exhibit reasonable transition bandwidth and sufficient out-of-band attenuation
or stopband level. We designed our system for a dynamic range of 80 dB, which is the dynamic range
of a 16-bit processor.

7.9.2 Digital down converter simulation results
For simulation purposes, in this section we consider, at the input to the M-to-2 analysis channelizer,
a composite spectrum that contains 12 QAM signals with 5 different bandwidths randomly located
in the frequency domain. In particular, the signal constellations are 4-QAM, 16-QAM, 64-QAM,
and 256-QAM, while the signal bandwidths are 1.572132 MHz, 3.892191 MHz, 5.056941 MHz,
5.360537 MHz, and 11.11302 MHz, respectively. It is clear that we used two different signal band-
widths for the 256-QAM constellation (5.360537 MHz and 11.11302 MHz).

The signals are shaped by square-root Nyquist filters with 20% excess bandwidth. At the input
of the analysis channelizer all the signals are resampled to achieve a sample rate of 192 MHz. The
spectrum is shown in Fig. 7.56. In particular, the upper subplot of Fig. 7.69 shows, superimposed on
the composite received spectrum, the 61 channels of the analysis channelizer. It is easy to recognize that
the received spectra are arbitrarily located. Their center frequencies do not coincide with the channel
center frequencies. That is clearly shown in the lower subplot of Fig. 7.69, in which the enlarged view
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FIGURE 7.69

Channelized received spectrum and zoom of one of the received signals.

of one of the received signals is presented. The arbitrary signal positioning is the reason for which the
polyphase down converter channelizer, by itself, is not able to directly shift them to DC. The IFFT size
of the analysis M-to-2 down converter channelizer is M = 48 with an output sample rate of 8 MHz.

Fig. 7.70 shows the impulse response and the magnitude response of the designed prototype low-
pass Nyquist filter. It is designed to have 48 samples per symbol. Its length is 1200 taps, while its
stopband attenuation is −80 dB. Note that since this filter is M-path partitioned, the length of each
filter in the M-path bank is only 25 taps.

The 61 spectra, at the output of the analysis channelizer, are depicted in Fig. 7.71. The down con-
verter channelizer has partitioned the entire frequency range into 48 segments. It is easy to recognize
in this figure the different spectra composing the received signal. Note that because of the arbitrary
frequency positioning, it is possible that also the signals having bandwidths narrower than the channel-
izer channel bandwidth occupy more than one analysis channelizer channel. Also, in this case, before
shifting these signals to zero frequency by using complex frequency rotators, we need to pass them
through a synthesis channelizer that reassembles their fragments.

Before delivering the analysis channelizer outputs to the synthesis channelizers, we need to separate,
if necessary, by filtering, those spectra that belong to different signals lying in the same channel. An
example of this is represented by channel 30 in Fig. 7.71. It contains fragments of two spectra belonging
to different signals. The filter design in the postanalysis block, of course, depends on the bands that have
to be resolved. Their sample rate has to be the same as the analysis channelizer output rate (8 MHz). An
example of postanalysis filters along with the filtered signals, for the 30th analysis channelizer channel,
is shown in Fig. 7.72. In particular, the signal spectra and the filters used for separating them are shown
in the upper subplot, while the separated spectra are shown in the lower subplots.

At the output of the postanalysis block, all the spectra with bandwidths narrower than the analysis
channel bandwidth lying in a single analysis channel can be directly delivered to the complex hetero-
dyne that translates them to DC. All the other signals, the ones with bandwidths wider than the analysis
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FIGURE 7.70

Nyquist prototype filter.

FIGURE 7.71

Analysis channelizer outputs.
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FIGURE 7.72

Postanalysis filters and filtered signals for channel 30 of the analysis channelizer.

channel bandwidth and the ones with bandwidths narrower than the analysis channelizer channel band-
width, which as a consequence of the analysis process are delivered to two different channelizer outputs,
need to be processed by the small synthesis channelizers. We have, in fact, to upsample, frequency shift,
and recombine the time series from coupled analysis channelizer outputs. In the example of Fig. 7.69,
four of the received spectra, the narrowest ones, are directly sent to the frequency rotators. Eight of
them are processed through the synthesis channelizer. The IFFT sizes Pn, with n = 0,1,2, of the syn-
thesizers we selected to process the three remaining bandwidths are P0 = 6, P1 = 4, and P2 = 2 points.
These sizes are the minimum possible chosen to satisfy the Nyquist sampling criterion for each output
signal. Note that because of the structure of the synthesizers, we can only have an even number of IFFT
points [8].

At the output of the synthesizer, all the signal fragments are recombined in baseband but still some of
them have a residual frequency offset that needs to be compensated. The signal spectra before frequency
offset compensation are shown in Fig. 7.73. Here it is clearly visible that many of the signals are not
centered at DC (the red1 line in Fig. 7.73 represents the signals’ center frequency). We compensate
these frequency offsets by using complex frequency rotators. Note that by estimating the signal energy
in the synthesizer channels, we could easily recover the carrier offsets affecting the received spectra.
The frequency offset recovery is another of the many applications of the polyphase channelizer. Other
papers addressing this topic are being prepared.

1 For interpretation of color in Fig. 7.73, the reader is referred to the web version of this book.
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FIGURE 7.73

Log magnitude of synthesizer outputs with frequency offsets in the normalized frequency domain.

When they are DC centered, the signals need to be resampled. The signals at the outputs of the
synthesis channelizers have different sampling frequencies. All that we need at this point is to interpo-
late them to obtain exactly two samples per symbol for each of them. We use an arbitrary interpolator
to achieve the sample rate conversion. The interpolated, DC shifted signals are shown in Fig. 7.74.
We also match filtered each of the eight channelized and reconstructed time signals and present their
constellations in Fig. 7.75. Here we see that all of the QAM constellations are perfectly reconstructed,
which demonstrates the correct functionality of the proposed receiver.

7.9.3 Proposed up converter architecture
Fig. 7.76 shows the complete block diagram of the proposed up converter, which has the structure
that is a dual of the down converter structure presented in the previous sections. It is composed of
a 2-to-M upsampler synthesis channelizer, which has been presented in Section 7.7.1, preceded by
N preprocessing analysis blocks which are small Pn-to-2 analysis down converter channelizers. Their
number, N, corresponds to the number of the signal spectra wider than the synthesis channelizer channel
bandwidth. Their IFFT size, Pn, is chosen to completely span the bandwidth of the nth input signal
spectrum. Their task is to decompose the wider input spectra into Pn partitions matching the bandwidth
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FIGURE 7.74

Log magnitude of the heterodyned and interpolated spectra in the frequency domain [MHz].

and sample rate of the baseline synthesis channelizer which will coherently recombine them in the
receiver.

All the input signals to the 2-to-M synthesis channelizer with bandwidths less than or equal to the
channel spacing are to be upsampled and translated from baseband to the selected center frequency by
the channelizing process. For these signals we may only have to filter and resample to obtain the desired
sampling rate of two samples per channel bandwidth. However, we expect that many of the spectra we
presented to the synthesis channelizer have bandwidths that are wider than the synthesizer channel
spacing. To accommodate these signals we need to use the small analysis channelizers that partition
their bandwidths into several fragments, translate all of them to baseband, and reduce their sample rate
to twice the channel bandwidth. The analysis channelizers are designed as Pn-to-2 polyphase down
converter channelizers, where Pn is approximately twice the number of baseline channels spanned by
the wide-band spectrum. They were presented in Section 7.5 of this chapter, and Fig. 7.55 shows their
block diagram.

We briefly recall here that such a system accepts N/2 input samples and outputs time samples from
N output channels. The N-point input buffer is fed by a dual input commutator with an N/2 sample
offset. The N-path filter contains polynomials of the form Hr(z

2) and z−1Hr+N/2(z
2) in its upper and

lower halves, respectively. The circular output buffer performs the phase rotation alignment of the IFFT
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FIGURE 7.75

Heterodyned and interpolated constellations.

block with the N/2 stride shifting time origin of the N-path polyphase filter. The IFFT size for these
analysis channelizers, Pn, is also the number of their filter outputs.

In order to recombine the segmented signal components we have to satisfy the Nyquist criteria for
their sum. Since these are preprocessor analysis channelizers that feed the M-path synthesis channel-
izer we must have their output sample rate two times their channel bandwidth. We can achieve this
by selecting Pn to be approximately twice the number of channels being merged in the synthesizer
and setting its input sample rate to be 2fsPn, so that the preprocessor output rate per channel is the
required 2fs . Remember that the IFFT block sizes must be even to perform the 2-to-N resampling by
the technique described in Section 7.5; also remember that an actual system may have a few standard
size IFFTs to be used for the analysis channelizer and the user may have to choose from the small list
of available block sizes.

The channel selector placed between the analysis channelizer bank and the synthesis channelizer
also connected with the input channel configuration block provides the correct outputs from the prepro-
cessor analysis channelizer to the input synthesizer, while the channel configuration block provides the
necessary information to the selector block that is connected to the synthesis input series. The selector



7.9 Proposed architectures for software radios 477

FIGURE 7.76

Block diagram of the proposed up converter; arbitrary interpolators, complex frequency rotators, analysis down
converter channelizers, and synthesis up converter channelizer.

routes all the segments required to assemble the wider bandwidth channel to the synthesizer, which
performs their frequency shift and reassembly.

Depending on the desired center frequency of the disassembled spectrum an earlier complex hetero-
dyne may be required before the analyzers to shift the about to be disassembled signals with the proper
frequency offset.

7.9.4 Digital up converter simulation results
In the simulation results shown in this section we consider a set of eight distinct baseband input signals
to be delivered to the 2-to-M up converter synthesis channelizer. These are QPSK signals with three
different bandwidths as shown in Fig. 7.77. The symbol rates chosen for the three signals denoted 1,
2, and 3 are 7.5, 15.0, and 30.0 MHz. These signals are shaped by square-root Nyquist filters with
25% excess bandwidth; hence, the two-sided bandwidths are 7.5·1.25, 15.0·1.25, and 30.0·1.25 MHz,
respectively.

The IFFT size of the baseline 2-to-M up converter channelizer is M = 48 with 10 MHz channel
spacing for which the required input sample rate per input signal is 20 MHz and for which the output
sample rate will be 480 MHz. For ease of signal generation, all three signals were shaped and upsam-
pled to a sample rate of 60 MHz with shaping filters designed for eight, four, and two samples per
symbol. Signal 1, represented in the first line of Fig. 7.77, is downsampled 3-to-1 to obtain the desired
sample rate of 20 MHz for the synthesis channelizer. Signals 2 and 3, on the second and third line of
Fig. 7.77, respectively, are downsampled 6-to-2 in the six-point IFFT analysis channelizers which form
10 MHz channels at a sample rate of 20 MHz. Signal 2 is spanned by three 10 MHz channels which
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FIGURE 7.77

Example of baseband spectra to be up converted.

will feed three input ports of the 48-point synthesizer IFFT, while signal 3 is spanned by five 10 MHz
channels which will feed five input ports of the 48-point IFFT. The IFFT inputs are controlled by a
channel control block that routes them to the proper synthesis channelizer ports.

Any of the signals presented to the analysis channelizers is previously shifted to a desired frequency
offset, by means of a complex heterodyne if required. The output channels that span the offset input
bandwidth of the analysis channelizer are the channels passed on the synthesizer and these change due
to a frequency offset. The inserted baseband frequency offset will survive the synthesis channelizer.

Fig. 7.78 shows all the spectra of the output time series from the six-channel polyphase 6-to-2
analysis channelizer engine processing signal 3, which is the signal with the widest band. Also seen in
the same figure is the spectrum of signal 3 and the frequency response of all the six channels formed
by one of the analysis channelizers. Note the spectra in the upper subplots have been filtered by the
channelizer with the 10 MHz Nyquist passband frequency response, have been translated to baseband,
and have been sampled at 20 MHz. Five of these segments are presented to the five input ports of the
2-to-48 synthesis channelizer centered on the desired frequency translation index.

The up converter polyphase synthesis channelizer accepts time sequences sampled at 20 MHz with
bandwidths less than 10 MHz. We have delivered three signals that satisfy these constraints along with
four signals that were conditioned by analysis channelizers that partitioned their bandwidths into seg-
ments that also satisfied the input signal constraints. The spectra of the separate components delivered
to the synthesis channelizer are shown in Fig. 7.79. It is easy to recognize in this figure the different
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FIGURE 7.78

Spectral fragments formed by six-channel 6-to-2 downsample analysis channelizer processing signal 3.

spectra composing the received signal. Here we see that filters 4 to 8 are segments of a single frequency
band fragmented in Fig. 7.78.

At this point, we upsample, frequency shift, and recombine the time series from coupled channel
outputs using the synthesis channelizer. The frequency shifted spectra of the eight signals, including six
that have been fragmented in analysis channelizers and then defragmented in the synthesis channelizer,
are plotted in Fig. 7.80.

7.10 Case study: enabling automated signal detection, segregation, and
classification

In this section, we will present a wireless radiofrequency use case where the polyphase channelizer can
improve performance over standard techniques that rely on the FFT. Using the channelizer will allow us
to differentiate nearby signals with very wide dynamic range to a finer degree than an equivalent short-
time Fourier transform (STFT). Next, a channelizer will be used to revert the detected and localized
signals back to the time domain for either demodulation or for classification algorithms that require
time domain data. Finally, we present a machine learning technique that uses a modified strip spectral
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FIGURE 7.79

2-to-M up converter channelizer inputs.

FIGURE 7.80

Up converted synthesized spectrum with unequal bandwidths fragmented and defragmented spectral compo-
nents.
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FIGURE 7.81

An example spectrogram defining the energy or power at a particular time and frequency. Several different
signals with varying time and frequency extents are shown.

correlation analyzer (SSCA) incorporating a channelizer and a convolutional neural network to classify
the signal that was detected.

7.10.1 Signal detection and segregation using the channelizer
Creating a view into the time/frequency plane is normally achieved using an STFT and referred to as a
spectrogram, as shown in Fig. 7.81. The STFT relies on an FFT to estimate the amount of power at a
particular time and frequency. Recall that a channelizer can also provide an estimation of the power at
a particular frequency, and when successive estimates are stacked in a similar fashion used to construct
the spectrogram, an estimate of the signal power over time and frequency is achieved. Fig. 7.82 is a
spectrogram of the same signal used to produce Fig. 7.81 with the STFT replaced by the channelizer.
We will refer to the spectrogram created using the channelizer as the channogram. In this scenario,
the signals are sufficiently spread out that no clear gain was achieved by using the channelizer. In the
examples to come, we will demonstrate the channelizer’s ability to resolve signals at finer frequency
resolutions than the STFT.

Estimating the power in time and frequency using an STFT requires the designer to choose several
parameters:

1. window length,
2. window type,
3. FFT length,
4. window overlap.
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FIGURE 7.82

The channogram which is a spectrogram created using a polyphase channelizer.

The window length sets the fundamental frequency resolution that can be achieved. For example, given
a sample rate of f s = 100 MHz and a window length of 1024, the fundamental frequency resolution
that can be achieved is fs

N
= 97.7 kHz. This, however, will not be achievable in practice due to spectral

leakage caused by the window type. If no window type is selected, by default you have chosen a
box, or square, window. This window will produce the most narrow main lobe with very high side
lobes. If the signals we wish to resolve are of equal power, then this is the best window to use. Other
windows, such as the Kaiser or Hamming window, will increase the main lobe width while reducing
the side lobe height. More information on the effects of windowing can be found in [9]. The FFT length
cannot be used to increase the resolution between two independent signals; however, it does provide
finer resolution when trying to identify the peak power content of a particular signal. Increasing the
FFT length is the same as oversampling the frequency domain. The overlap amount determines the
time domain resolution of the STFT and can not be used to improve the frequency resolution. The
most important parameter, therefore, is the choice of window length if resolving signals is the highest
priority. The spectrogram of Fig. 7.81 was made using a 1024-sample window length, An important
point to note when using the STFT is that the window length and the fundamental frequency resolution
are coupled. The number of FFT points used can be no smaller than the window length. This is not true
for the channelizer, as will be explained next.

The power of the channelizer when using it to estimate power spectra is the ability to increase the
effective window length without increasing the total number of output channels you need to compute
[10]. For example, if we want a fundamental frequency resolution of 97.7 kHz, then we would choose
a channelizer with 1024 output channels. Unlike with the STFT, we may now choose a prototype filter
length that reduces the windowing spectral leakage effect down to any level we desire. This is equivalent
to saying that we can set the window length to be any multiple of the number of samples selected as
input to the channelizer. Fig. 7.83 and Fig. 7.84 show the improvement in frequency we can expect
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FIGURE 7.83

Power spectral density estimation using the STFT on the left and the channelizer on the right. The channelizer
clearly reveals the existence of two sine waves, while the STFT approach does not.

FIGURE 7.84

Spectrogram estimation using the STFT on the left and the channelizer on the right.
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FIGURE 7.85

Example of energy detector output after being applied to the channogram.

given two sine waves that are separated in power by 100 dB. This is an extremely large dynamic range,
yet the channelizer has no problem revealing the two tones, while the STFT approach hides the second
tone in the skirt of the window.

With our improved ability to distinguish between signals that are very closely spaced, we will now
discuss the process used to detect and segregate signals. Signal detection is the process of declaring
when a signal exists and then localizing the signal in the time/frequency plane. If prior information is
known about the signal or signals to be detected, a suitable detector that uses this information can be
designed. If no prior information is known about the signal, then an energy detector can be used. Energy
detection can be implemented by convolving a variety of 2D convolution kernels with the channogram
shown in Fig. 7.82 and performing some form of thresholding or object/blob detection on the output.
This leads to a series of boxes, as shown in Fig. 7.85, once energy detection has completed. The dashed
boxes are the true bounds of the energy that rose above a predefined threshold while the solid lines
represent a padded region that we will use as the boundary that will be reverted back to IQ time domain
samples. The reason for padding is to provide additional context to algorithms that will attempt to
classify these signals in later steps. In can be helpful to have access to the entire transition region from
the noise floor to the signal region, which the padding is meant to ensure.

Now that the regions we wish to convert back to the time domain have been defined, we may apply
a synthesis channelizer to revert these regions back to the time domain. First the vertical boundaries
defined by the solid black lines are reverted back to the time domain and then the time domain is sliced
according to the horizontal boundaries of the box to complete the process. The real and imaginary time
domain samples that result are shown in Fig. 7.86 and Fig. 7.87. The spectrogram for each of these time
domain samples is then shown in Fig. 7.88. At this point, each of the signals has been segregated and
both the IQ files and the channogram are available for further classification of these signals. In the next
subsection we will describe a technique for signal classification that begins with these outputs.
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FIGURE 7.86

The real time domain samples for each boxed signal region.

7.10.2 Signal classification
Suppose we wish to determine whether each of the detected and segregated signals is single-carrier,
multicarrier, direct sequence spread spectrum (DSSS), or frequency hopping. This type of classifica-
tion will be referred to as modality classification, where each of the aforementioned choices represents
a particular modality type. The approach we present for this classification task will take advantage of
the inherent cyclostationarity in communication signals as a distinguishing feature. These features will
be passed to a neural network to produce the modality type decision. Neural network approaches to
modality classification that use the STFT of the signal as the distinguishing feature are significantly
outperformed by neural networks that use cyclostationary features such as the spectral correlation den-
sity (SCD).

To define the SCD, we return to one of the most important quantities of a random process, x(t), and
the autocorrelation function R(t, τ ):

Rx(t, τ ) = E(x(t + τ)x∗(t)) . (7.38)

For communication signals, this function is generally almost periodic. Functions that are almost peri-
odic are a generalization of periodic functions in the sense that the frequencies in a Fourier decomposi-
tion of such a function are not harmonics of a fundamental tone. These frequencies can range over any
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FIGURE 7.87

The imaginary time domain samples for each boxed signal region.

(countable) set. Accordingly, we have the decomposition

Rx(t, τ ) =
∑
α

Rα
x (τ )e2iπαt . (7.39)

The frequencies in the set α are called the cycle frequencies of the signal x(t). The SCD is then the
Fourier transform of the function Rα

x (τ ) with respect to the delay τ ,

SCD(f,α) =
∫

Rα
x (τ)e−2iπf τ dτ . (7.40)

We can form a cyclostationary feature function (CFF) using the SCD by computing

F(α) = max
f

SCD(f,α) , (7.41)

which is useful when attempting to characterize the cyclic frequencies of unknown signals. An example
CFF plot using (7.41) is shown in Figs. 7.89 and 7.90. It is important to note that these features are less
sensitive to noise, and are therefore very helpful in low-SNR signal classification tasks.

We now note the results in Fig. 7.91. This figure shows the accuracy of classification of signals
versus their Es/No. To generate the plot, a number of signals of three classes, viz., bluetooth, ofdm
wifi, and DSSS, were synthetically generated at various Es/No levels. These signals were then fed to
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FIGURE 7.88

The spectrogram for each boxed region after segregating all the signals.

two different neural networks; one of these was trained using STFT features and the other was trained
using SCD features of the input signals.

Any machine learning algorithm divides the input data it is given into three sets: training, validation,
and testing. The accuracy of the output of the neural network on the testing set is recorded. The overall
accuracy at each Es/No level for each signal label is then plotted in the figure. One notes that at every
Es/No level, the network trained using the SCD features outperforms the network trained using the
STFT features.

While (7.40) defines the SCD, it is not an efficient method for estimating the SCD from collected
IQ samples. Both a reduction in computational complexity and an improvement in cycle frequency
resolution can be achieved by using an SCD estimator known as the SSCA. The SSCA is the fastest
known algorithm for estimating the SCD at a large number of points in the (f,α)-plane and will be
used for feature extraction.

The SSCA algorithm is shown in the flow diagram depicted in Fig. 7.92. The input to the algorithm
is raw IQ samples that are subsequently channelized using a windowed FFT-based channelizer. The
polyphase channelizer could be incorporated into the SSCA as well. Each channel then contains a
portion of the input spectrum centered at the Fourier frequencies of the first FFT. The contents of each
channel are multiplied by the input signal once more, and the result is sent through another FFT. The
number of channels (Np) is chosen to be much smaller than the length of each channel (N ) for reasons
of statistical reliability.
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FIGURE 7.89

The cyclic features computed by the SSCA for a Type-1 DSSS-BPSK signal, where the same PN sequence is
used to spread each data symbol. We can see sharp cyclic features at the chip rate of the signal.

We will now describe the neural network that was used to implement the signal modality classifier.
As depicted in Fig. 7.93, the network consists of an input layer of dimensions 256 × 32. This means that
the parameters of the SSCA algorithm are chosen as N = 256 and Np = 32. The input then feeds into a
convolutional layer followed by a pooling layer and another convolutional layer. A pooling layer takes
a matrix and performs a pooling operation, which means that it reduces the dimension of the input by
computing the maximum of subblocks of a given size. A convolutional layer computes the convolution
of the input matrix with a given kernel that is slid along the matrix. The output of the convolutional and
pooling layers is fed into fully connected layers. These layers compute the ReLU activation function on
their input after applying proper weights and biases. Thus, if the input to the first fully connected layer
is the matrix A, then this layer computes the output B for each output neuron such that

B = ReLU(W · A + b) , (7.42)

where the function ReLU is given by

ReLU(y) = max(y,0) . (7.43)

The ReLU function has been shown to perform better for learning algorithms than sigmoid activation
functions. The final layer in Fig. 7.93 computes probabilities of what it thinks the modality of a given
test signal instance is, and its prediction for this signal would be the label with the highest computed
probability. We note that the dimensions of these layers are hyperparameters whose choice was made
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FIGURE 7.90

The cyclic features computed by the SSCA for a Type-2 DSSS-BPSK signal. Unlike the Type-1 DSSS, each data
symbol uses a unique PN sequence for spreading, making it ideal for covert communications. Even in this
case, the cyclostationarity is preserved, and we see sharp cyclic features at the chip rate.

FIGURE 7.91

Comparison of STFT as input features to a neural network (left) against SCD (right).

through trial and error with the additional requirement that the whole architecture be as computationally
lightweight as possible.
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FIGURE 7.92

The SSCA algorithm.

The training algorithm proceeds by attempting to minimize the categorical cross-entropy I , which
is defined as

I = −
∑

i

yi logŷi . (7.44)

The sum is over all the signals in the training set, yi is the true label of the ith signal, and ŷi is the
prediction which is a function of all the weights and biases introduced above. The Adam algorithm is
used to find the optimal weights and biases in each layer, with a learning rate of 0.001, momenta of 0.9
and 0.999, and an epsilon parameter of 10−8.

Finally, we comment on the interpretation of the output of the neural network, which is depicted
in Fig. 7.94. The confusion matrix, as it is called, shows the fraction of signals of a given label that
have been classified as being signals of the same label and that have been misclassified as signals of
a different label. The confusion matrix of an ideal classifier should be the identity matrix. The output
was constructed, as noted in Fig. 7.93, using synthetic overt signals at various SNR levels as well as
real-time emanation data collected from a desktop monitor.
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FIGURE 7.93

The neural network that is used in the modality classification.

FIGURE 7.94

The output of the neural network in Fig. 7.93. This output was generated with synthetically generated overt
signals and emanations captured from a desktop monitor.
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7.11 Closing comments
This chapter has the intention of providing the basic concepts of multirate signal processing and
polyphase filter banks which, when an IDFT block and a commutator are applied, are known as
polyphase channelizer because of the processing task that they perform on the input signals. This chap-
ter also has the intention of presenting innovative results on software and cognitive radio designs. While
the polyphase filter banks and polyphase channelizers are well-known topics in the DSP area, the soft-
ware radio design is still an open research topic.

The document started with preliminaries, in Section 7.2, on the resampling process of a digital
signal as opposed to the sampling process of an analog signal. In Section 7.3 an introduction on digital
filters has been provided and the differences with analog filters have been explained. In Section 7.4 an
introduction on the window method for digital filter design has been provided. Multirate filters have
been defined and explained in Section 7.5, while the polyphase decomposition of a prototype filter
has been introduced in Section 7.6 along with the standard upsampler and downsampler polyphase
channelizers. In Section 7.7 the modifications of the standard polyphase channelizer that allow us to
change the output sampling rate have been presented. These engines are the basic components of the
proposed architectures (presented in Sections 7.8 and 7.9): the synthesis and analysis channelizers,
which are suitable for being used as software-defined transmitter and receiver, respectively.

The synthesis channelizer, in fact, when supported by small analysis channelizers, is able to si-
multaneously up convert multiple signals having arbitrary bandwidths to randomly located center
frequencies. In this engine small analysis channelizers preprocess wider-bandwidth signals into seg-
ments acceptable to the following synthesis channelizer that upsamples, translates to the proper center
frequency, and reassembles them. A channel selector block, connected with a channel configuration
block, is used to properly deliver the analysis channelizer outputs to the synthesis channelizer.

On the other side of the communication chain, the analysis channelizer, which is embedded in a
software-defined radio receiver, when supported by small synthesis channelizers, is able to simultane-
ously demodulate these signals. A channel configuration block, inserted in the receiver, communicates
with a selector block that properly delivers the analysis channelizer outputs to the synthesizer up con-
verters that follow it. These synthesizers upsample, translate, and reassemble the spectral fragments
when they belong to the same source signal. Nyquist prototype low-pass filters, which are perfect re-
construction filters, are used to allow the reconstruction of the signal fragments without energy losses.

Complex frequency rotators are used for compensating residual frequency offsets and arbitrary in-
terpolators provide us exactly two samples per symbol required for the following processing tasks of
the receiver.

Theoretical reasoning and simulation results are presented, for both the receiver and the transmitter,
in order to demonstrate their correct functionality.

Note that because in both of the proposed DUC and DDC structures, the IFFT sizes of the small
synthesis and analysis channelizers are chosen in order to give us at least two samples per symbol for
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every processed bandwidth, they result to be very efficient, from a computational point of view, when
the received signal is composed of spectra with widely varying bandwidths.

Slightly different versions of channelizers can be used based on different input signals and/or to add
functionalities to the proposed architectures. Channelizers are, in fact, highly efficient and very flexible
structures. Among their most common applications we find spectral analysis, modem synchronization
(phase, frequency, and time), and channel equalization.

Glossary
• Filter calculation procedure that transforms the input signals into others
• Digital filter: filter that operates on digital signals
• Multirate filter: digital filter that contains a mechanism to increase or decrease the sampling rate

while processing input signals
• Polyphase filter: digital filter partitioned following Eq. (7.3)
• Polyphase channelizer: flexible digital device which can arbitrarily change the sample rate and the

bandwidth of the input signal and can also select randomly located Nyquist zones
• Software radio: radio device in which the digitization of the signal occurs before the intermediate

frequency translation
• Cognitive radio: software radio with the capability to adapt its operating parameters according to

the interactions with the surrounding radio environment
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CHAPTER

Modern transform design for practical
audio/image/video coding applications

Trac D. Tran
Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States

8.1 Introduction
With the recent explosion in popularity of the Internet, wireless communication, and portable com-
puting, the demands for and the interests in digital multimedia (digitized speech, audio, image, video,
computer graphics, and their combinations) are growing exponentially. A high-performance filter bank
is typically at the heart of every state-of-the-art digital multimedia system whose compression paradigm
is illustrated in Fig. 8.1. Current popular international image/video compression standards such as
JPEG [1], MPEG2 [2], and H.263 [3] are all based on the 8 × 8 discrete cosine transform (DCT),
an eight-channel eight-tap orthogonal filter bank with fast computational algorithms based on sparse
factorizations. The image compression JPEG2000 standard [4] employs the wavelet transform, an it-
erated two-channel biorthogonal filter bank, as its decorrelation engine. Of extreme importance is the
ability to design a filter bank that can fully exploit (i) the statistical properties of a particular signal or
class of signals; (ii) the goals of the applications; and (iii) the computational resources available.

Although the roots of signal transformations can be traced back to works in the 19th century by
prominent mathematicians such as Laplace and Fourier, the exciting development of modern, practical
digital transforms and filter banks only has a few years of history [5–8] as illustrated in the timeline
of Fig. 8.2. These new systems provide more effective tools to represent digital signals not only for
analysis but also for processing and compression purposes. For multimedia signals, representations by
transform coefficients are usually more compact and efficient than the time representations, but are just
as informative. Taking advantage of the normally sparse transform coefficient matrix, we can perform
a majority of signal processing tasks directly in the transform domain at a lower level of computational
complexity.

On the other hand, fast, efficient, and low-cost transforms have played a crucial role in revolutionary
advances throughout the history of digital signal processing. The discrete Fourier transform (DFT) is an
excellent signal analysis tool. However, its popularity in practical systems was not widespread until the
discovery of the fast Fourier transform (FFT) by Cooley and Tukey in 1965 that reduces the complexity
level from O(n2) to O(n logn) [9]. Another example, the 8 × 8 DCT [10], has a theoretically elegant
closed-form expression. It was chosen as the transform-of-choice in most of current image and video
coding standards mainly because it possesses various fast algorithms [11] that can reduce the transform
complexity from 64 multiplications and 56 additions to as low as 5 multiplications and 29 additions per
8 transform coefficients.

Signal Processing and Machine Learning Theory. https://doi.org/10.1016/B978-0-32-391772-8.00014-4
Copyright © 2024 Elsevier Inc. All rights reserved.
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FIGURE 8.1

Standard compression paradigm in current digital multimedia systems.

FIGURE 8.2

A historical timeline of significant developments in signal decomposition and transformation.

In this chapter, we review the design and development progress of modern transforms for application
in digital image/video coding and processing. These new state-of-the-art transforms provide versatility
and flexibility in time-frequency mapping, coding performance, cost of implementation as well as in-
tegration into modern digital multimedia processing/communication systems. We assert that the most
successful philosophy in transform design is to construct highly complex systems from modular cas-
cades of similar, simple building blocks, each propagating a set of desired transform properties. These
novel transforms will be designed to have as many of the following features as possible:

• orthogonal or at least near-orthogonal,
• symmetric/antisymmetric (linear-phase) basis functions,
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• good stopband attenuation,
• smoothness of the basis functions for perceptually pleasant reconstruction,
• integer-to-integer mapping capability with exact recovery for a unifying lossless/lossy coding frame-

work,
• fast computation and efficient implementations in both software and hardware: multiplierless

property for low-power real-time systems; in-place computation; low memory buffering; VLSI-
friendliness with high modularity and regularity in construction; facilitating region-of-interest cod-
ing/decoding and computational parallelism.

The organization of the chapter is as follows. In Section 8.2, we offer a review of important back-
ground materials, concepts, motivations, and previous related works in transform design. Common
design strategy and desirable cost functions are discussed in Section 8.3. Next, Section 8.4 describes
the direct scaling-based design method for modern integer-coefficient transforms. Section 8.5 presents
a totally different philosophy in transformation design via general parameterization and construction
of polyphase matrices based on lifting steps (also known as ladder structures). The section also dis-
cusses in detail the subset of solutions that allows the construction and implementation of various
dyadic-coefficient transforms purely from shift-and-add operations. The design procedure of spectral
factorization of maxflat half-band filters that lead to popular wavelet filter pairs is described in Sec-
tion 8.6. Advanced design mainly via optimization with a larger number of channels and/or longer
filter lengths is covered in Section 8.7. Numerous design examples along with current practical appli-
cations will be demonstrated throughout along with discussions on each design’s advantages as well
as disadvantages and other interesting properties. Finally, we briefly summarize the chapter with a few
concluding remarks in Section 8.8.

8.2 Background and fundamentals
We provide in this section the notation, common background, a brief description of the historical
development of transforms (especially for compression applications), and a discussion on desirable
properties of a state-of-the-art modern transform in multimedia coding and processing.

8.2.1 Notation
Let R,Q, and Z denote the sets of real numbers, rational numbers, and integers, respectively. Also, let
D denote the set of dyadic rationals, i.e., all rational numbers that can be represented in the form of k

2m

where k,m ∈Z . Bold-faced lowercase characters are used to denote vectors while bold-faced uppercase
characters are used to denote matrices. Let AT ,A−1, |A|, and aij denote respectively the transpose, the
inverse, the determinant, and the ith jth element of the matrix A. Several special matrices with reserved
symbols are: the polyphase matrix of the analysis bank E(z), the polyphase matrix of the synthesis bank
R(z), the identity matrix I, the reversal or antidiagonal matrix J, the null matrix (or vector) 0, the unity
vector 1, the permutation matrix P, and the diagonal matrix D. The letter M is usually reserved for the
number of channels of the filter bank or the size of the transform. Finally, we denote the �p-norm of an

N-point vector x as ‖x‖p =
(∑N−1

i=0 |xi |p
)1/p

, where the �2-norm ‖x‖2 = √
xT x is of special interest.
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8.2.2 Transform fundamentals
A transform is most often thought of as a linear mapping which can be carried out by a simple matrix
multiplication. A block transform TA of size M is simply an M × M scalar matrix, mapping the signal
vector x to its corresponding transform coefficients c. Here, the subscript A is used to denote the analysis
transform often employed in an encoder to analyze or to decorrelate input data samples. At the decoder,
we need the inverse operator TS to recover x back, where the subscript S denotes the synthesis or
signal reconstruction operation. The series of mappings are depicted in Fig. 8.3. The operation Q in
the middle of Fig. 8.3 represents approximation (in the form of quantization for instance), processing,
coding, communication, or any combination thereof. Obviously, if the coefficients can be recovered
losslessly or ĉ = c, we simply require TS to be the exact inverse of TA to reconstruct the input signal
perfectly.

The columns φi of TT
A are often called the analysis basis functions while the columns φ̂i of TS are

called the synthesis basis functions. TA is said to be an invertible transform or a transform that has
perfect reconstruction or biorthogonal when TSTA = TATS = I. In the special case that the synthesis
transform has real coefficients and is simply the transpose of the analysis transform TS = T−1

A = TT
A,

the transform TA is said to be orthogonal. In this case, we can conceptually think of representing the
N-point input signal as

x = c0φ0 + c1φ1 + · · · + cN−1φN−1 =
N−1∑
i=0

ciφi , where ci = 〈φi ,x〉. (8.1)

However, our goal is to design the transform that yields the sparsest and most compact representation

x =
∑

i∈S;|S|=K�N

ciφi . (8.2)

In (8.2), the set of significant coefficients are indexed by the set S whose cardinality K is much
smaller than the signal dimension N.

For 2D signals such as still images or frames in video sequences, we typically employ the separable
transformation approach where all rows are transformed and then all columns are transformed or vice

FIGURE 8.3

Signal decomposition and reconstruction as matrix operations.
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versa. Mathematically, if we let X be the image of interest in the form of a matrix, then the transform
coefficients C of X can be computed as

C = TAXTT
A, (8.3)

while the inverse synthesis mapping can be computed as

X = TSCTT
S . (8.4)

Note that the computation order of rows or columns in (8.3) and (8.4) is not critical and the strategy
can be straightforwardly extended to signals of any higher dimension.

8.2.3 Optimal orthogonal transform
Obtaining the sparsest representation as in (8.2) above is certainly a signal-dependent task. Let c be
the coefficients of the input signal x, obtained from a certain linear transformation T. Let us further
assume that the input signal x can be modeled as a wide-sense stationary stochastic process. Then, the
correlation matrix of the output signal c is

Rcc = E{TxTT } = TRxxTT .

The optimal orthogonal linear transform T here is the one that can fully decorrelate x. In order to
achieve this, Rcc must be a diagonal matrix with the eigenvalues of Rxx being its diagonal entries
and each row of T being an eigenvector of Rxx . This optimal transform is often called the Karhunen–
Loève transform (KLT) of signal x, also known as principal component analysis (PCA) or the Hotelling
transform. Obviously, the KLT depends on the autocorrelation matrix Rxx . Thus it is signal-dependent,
computationally expensive, and costly to communicate to the decoder if the signal of interest is not
stationary. To find fast algorithms and signal-independent transforms for practical applications, a typical
approach is to start with a simplified stationary signal model, try to find the approximation of its KLT,
and then develop fast computational algorithms of the resulting approximation. The DCT is developed
following this approach [10,11].

8.2.4 Popular transforms in signal processing: DFT, WHT, DCT
The problem of transform design has undergone several important evolutions. In the beginning, trans-
formation was mainly thought of as a continuous-time continuous-amplitude change of basis operation
(and often in infinite-dimensional functional space) to solve complicated sets of equations. Discrete-
time transforms are often obtained from sampling the continuous-time version. Four popular discrete-
time transforms in signal processing are the DFT, the Walsh–Hadamard transform (WHT), the type-II
DCT, and the type-IV DCT, shown below in matrix representation format, respectively:

[F] = 1√
M

[
Wmn

M

] ; 0 ≤ m,n ≤ M − 1; WM = e−j 2π
M , (8.5)

H2 =
[

1 1
1 −1

]
; H2m = H2 ⊗ H2m−1 =

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
; m ∈Z,m ≥ 2, (8.6)
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[
CII

M

]
=
√

2

M

[
Km cos

(
m(n + 1/2)π

M

)]
; 0 ≤ m,n ≤ M − 1; Ki =

{
1√
2

i = 0,

1 i > 0,
(8.7)

[
CIV

M

]
=
√

2

M

[
cos

(
(m + 1/2)(n + 1/2)π

M

)]
; 0 ≤ m,n ≤ M − 1. (8.8)

Out of the four mentioned above, only the Hadamard transform has integer coefficients. Unfortu-
nately, it is too simplistic to offer reasonable coding performance. On the other hand, the DCT offers
very good compression performance but it has irrational coefficients. The DFT is not only irrational,
but it also has complex-valued coefficients.

8.2.5 The filter bank connection
A typical discrete-time, maximally decimated M-channel filter bank is depicted in Fig. 8.4. At the analy-
sis stage, the input signal x[n] is passed through a bank of M analysis filters Hi(z), i = 0,1, . . . ,M − 1,
each of which preserves a frequency band. These M filtered signals are then decimated by M to pre-
serve the system’s overall sampling rate. The resulting subband signals can be coded, processed, and/or
transmitted independently or jointly. At the synthesis stage, the subbands are combined by a set of up-
samplers and M synthesis filters Fi(z), i = 0,1, . . . ,M − 1, to form the reconstructed signal x̂[n]. In
the absence of processing errors (e.g., quantization), filter banks that yield the output x̂[n] as a pure
delayed version of the input x[n], i.e., x̂[n] = x[n − n0], are called perfect reconstruction filter banks.
From a traditional transform perspective, the analysis filter hi[n] is the ith analysis basis function φi .
Similarly, the synthesis filter fi[n] yields the ith synthesis basis function φ̂i .

The filter bank in Fig. 8.4(a) can also be represented in terms of its polyphase matrices as shown in
Fig. 8.4(b). E(z) is the analysis bank’s polyphase matrix and R(z) is the synthesis bank’s polyphase ma-
trix. Note that both E(z) and R(z) are M × M matrices whose elements are polynomials in z [7]. If E(z)

is invertible with a minimum-phase determinant (stable inverse), one can obtain perfect reconstruction
by simply choosing R(z) = E−1(z). In other words, any choice of R(z) and E(z) that satisfies

R(z)E(z) = E(z)R(z) = z−lI, l ≥ 0, (8.9)

yields perfect reconstruction. Since filter banks with finite impulse response (FIR) filters are very valu-
able in practice, we can restrict the determinants of both polyphase matrices to be monomials [6–8] as
well:

|R(z)| = z−m and |E(z)| = z−n m,n ∈Z. (8.10)

A popular choice of R(z) yielding paraunitary or orthogonal systems is

R(z) = z−KET (z−1), (8.11)

where K is the order of a properly designed E(z). In the case where E(z) may not be paraunitary but
(8.9) still holds, the filter bank is said to be biorthogonal. Now, the design of a complicated M-band
FIR perfect reconstruction filter bank is reduced to choosing appropriate polynomial matrices E(z) and
R(z) such that (8.9) and (8.10) are satisfied.
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FIGURE 8.4

M-channel filter bank. (a) Conventional representation. (b) Polyphase representation.

When the filter length equals the number of channels M, the polyphase matrices E(z) and R(z) be-
come scalar matrices of zero order and they become equivalent to the conventional transforms above,
i.e., E(z) = TA and R(z) = TS . When the filter length is higher than the number of channels, we have to
deal with matrices whose entries are polynomials in z. In the wavelet transform, M = 2 and we almost
never have a scalar polyphase matrix, except the Haar wavelet. When M equals the support of the input
signal, we have a global transform and maximum frequency resolution becomes achievable. On the
other hand, when M is much smaller than the input size (for example, most imaging applications have
a transform size of 16 × 16 or less), we have a block transform coding framework where the down-
samplers and the delay chain on the left of Fig. 8.4(b) serve as serial-to-parallel blocking mechanism
whereas the upsamplers and the delay (or advance) chain on the right of Fig. 8.4(b) implement the
parallel-to-serial unblocking mechanism. In this case, the global transform matrices TA and TS have
block-diagonal structure and maximum time/space resolution becomes achievable.
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8.2.6 The lapped transform connection
The lapped transform (LT) is defined as a linear transformation that partitions the input signal into
small overlapped blocks and then processes each block independently. The equivalence between the
LT, the filter bank in Section 8.2.5, and the general linear transformation in Section 8.2.2 has been well
established in [12].

Consider the M-channel perfect reconstruction filter bank with FIR filters, all of length L = KM for
presentation elegance. The polyphase matrix E(z) as shown in Fig. 8.4(b) is of order K − 1 and can be
expressed as E(z) =∑K−1

i=0 Eiz
−1. Similarly, the synthesis polyphase matrix R(z) can be represented

as R(z) =∑K−1
i=0 Riz

−1. With J as the time-reversal matrix, if we define

E = [EK−1J · · · E1J E0J] and R =

⎡
⎢⎢⎢⎣

JR0

JR1

...

JRK−1

⎤
⎥⎥⎥⎦ ,

then the global transform matrices can be shown to take the following forms:

TA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
E

E
E

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . 0
EK−1J EK−2J · · · E0J

EK−1J EK−2J · · · E0J
EK−1J EK−2J · · · E0J

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.12)

and

TS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
R

R
R

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0

. . . JR0

JR1 JR0
... JR1 JR0

JRK−1
... JR1

JRK−1
...

JRK−1
. . .

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.13)

Although the blocking windows overlap, the total number of produced transform coefficients is
the same as the total number of input samples. Hence, the LT does not introduce any redundancy.
In traditional block transform processing, the number of input samples from each block is the same
as the number of basis functions, i.e., L = M . In this case, the transform matrix P becomes square
(M × M) and there is no overlapping between neighboring blocks. However, as the basis vectors of
block transforms do not overlap, there may be discontinuities along the boundary regions of the blocks
when heavy quantization is involved. Different approximations of those boundary regions in each side
of the border may cause an artificial “edge” in between blocks. This is the so-called blocking effect.
Allowing overlapping block boundary leads to coding improvement over nonoverlapped transforms
such as the DCT on two counts: (i) from the analysis viewpoint, the overlapping basis takes into account
interblock correlation, hence, provides better energy compaction; (ii) from the synthesis viewpoint, the
overlapping basis either eliminates or significantly reduces blocking discontinuities.

However, the global transform matrices TA and TS remain to be very sparse, leading to fast com-
putation of transform coefficients c. The philosophy is that a few borrowed samples are enough to
eliminate blocking artifacts and to improve coding performance.

8.3 Design strategy
All of the transforms presented in the previous sections are designed to have high practical value. They
all have perfect reconstruction. Some of them even have real and symmetric basis functions. How-
ever, for the transforms to achieve high coding performance, several other properties are also needed.
Transforms can be obtained using unconstrained nonlinear optimization where some of the popular
cost criteria are: coding gain CCG, DC leakage CDC, attenuation around mirror frequencies CM , and
stopband attenuation in both analysis and synthesis bank – CA and CS . In the particular field of image
compression, all of these criteria are well-known desired properties in yielding the best reconstructed
image quality [6]. The cost function in the optimization process can be a weighted linear combination
of these measures as follows:

COverall = α1CCG + α2CDC + α3CM + α4CA + α5CS, (8.14)

where each of the individual cost functions will be further elaborated in the next section.
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8.3.1 Desirable transform properties
• Symmetry: Jφi = ±φi . Linear-phase basis functions are critical in image/video processing applica-

tions (but not so much in audio processing applications).
• Orthogonality: Orthogonality offers mathematical elegance and the norm preservation property.

However, practical codecs often employ biorthogonal transforms (e.g., the 9/7-tap wavelet in
JPEG2000). In other words, the relaxation of the tight orthogonal constraint can sometimes pro-
vide a much needed flexibility in transform design.

• Energy compaction: Energy compaction, also known as coding gain, is defined as

CCG = 10 × log10

⎛
⎜⎝ σ 2

input[∏M
i=1 σ 2

i ‖φ̂i‖2
]1/M

⎞
⎟⎠ , (8.15)

where σ 2
input is the variance of the input signal; σ 2

i is the variance of the ith subband (generated

from the ith analysis basis function φi); and ‖φ̂i‖2 is the norm-squared of the ith synthesis basis
function. Note that for orthogonal transforms, this term disappears and Eq. (8.15) reduces down to
the ratio (in dB) of the arithmetic mean over the geometric mean of the subband variances. The
signal model is the commonly used AR(1) process with intersample autocorrelation coefficient ρ =
0.95. As mentioned above, the coding gain can be thought of as an approximate measure of the
transform’s energy compaction capability. Among the listed criteria, higher coding gain correlates
most consistently with higher objective performance (measured in Mean Squared Error (MSE) or
Peak Sinal-to-Noise Ratio (PSNR)) in coding applications. Transforms with higher coding gain
compact more signal energy into a lower number of coefficients, leading to a sparser, more compact
representation and more efficient entropy coding.

• Stopband attenuation: Stopband attenuation is defined as the summation of the stopband energy of
all analysis and/or synthesis basis functions. It can be formulated as

analysis stopband attenuation CA =
M−1∑
i=0

∫
ω∈�i

|φi (e
jω)|2dω, (8.16)

synthesis stopband attenuation CS =
M−1∑
i=0

∫
ω∈�i

|φ̂i (e
jω)|2dω, (8.17)

where �i denotes the stopband of the ith basis function.
Stopband attenuation is a classical performance criterion in filter design. On the analysis side, the
stopband attenuation cost helps in improving the signal decorrelation and decreasing the amount
of aliasing. In meaningful images, we know a priori that most of the energy is concentrated in the
low-frequency region. Hence, besides the few basis functions that are designated to cover this low-
frequency range, high stopband attenuation for the remainder in this part of the frequency spectrum
becomes extremely desirable. On the contrary, at the synthesis side, the synthesis basis functions (or
filters) covering low-frequency bands need to have high stopband attenuation near and/or at ω = π

to enhance their smoothness.
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• Zero DC leakage: The DC leakage cost function measures the amount of DC energy that leaks
out to the bandpass and high-pass subbands. The main idea is to concentrate all signal energy at
DC into the DC coefficients. This proves to be advantageous in both signal decorrelation and the
prevention of discontinuities in the reconstructed signals. Low DC leakage can prevent the annoying
checkerboard artifact that usually occurs when high-frequency bands are severely quantized. Zero
DC leakage is equivalent to attaining one vanishing moment in wavelet design (a necessary condition
for the convergence of the wavelet construction): 〈φi ,1〉 = 0; ∀i �= 0. Depending on whether the
focus is on the transform coefficients or the filter bank coefficients, it can be stated as

CDC =
∑
i �=0

〈φi ,1〉 or CDC =
M−1∑
i=1

L−1∑
n=0

hi[n]. (8.18)

• Attenuation at mirror frequencies: The mirror frequency cost function is a generalization of CDC
above. The focus is now on all aliasing frequencies ωm = 2mπ

M
;m ∈ Z,1 ≤ m ≤ M

2 , instead of just
at DC. Frequency attenuation at mirror frequencies is very important in the further reduction of
blocking artifacts: the filter responses (except the only high-pass filter in the system) should vanish
at these mirror frequencies as well. The corresponding cost function is

CM =
M−2∑
i=0

|Hi(e
jωm)|2; ωm = 2mπ

M
, m ∈ Z, 1 ≤ m ≤ M

2
. (8.19)

Low DC leakage and high attenuation near the mirror frequencies are not as essential to the coder’s
objective performance as coding gain. However, they do improve the visual quality of the recon-
structed signal significantly.

• Integer-to-integer mapping with exact invertibility and tight dynamic range extension: These two
properties are critical for lossless coding applications.

• Practical considerations: Integer or dyadic-rational coefficients; hardware- and software-friendly;
low latency; small bus width; parallelizability; structural regularity; low memory buffering; and in-
place computation.

8.4 Approximation approach via direct scaling
The simplest approach to design an integer transform is to approximate a well-known infinite precision
(represented using floating-point precision) transform by a close finite precision (fixed-point) version.
For instance, an integer-coefficient transform TM can be obtained from a well-known irrational-
coefficient transform CM as follows:

TM (α,CM) = round (αCM) , (8.20)

where α is a parameter to control the precision of the approximation. Obviously, the larger α is, the
closer the approximation gets along with a higher implementation cost and a larger output dynamic
range.
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8.4.1 H.264 4 × 4 transform design
The most well-known integer transform successfully designed from this scaling approach is the four-
point bit-exact DCT approximation in the video coding international standard H.264 or MPEG-4 Part 10
[13,14]. In this particular example, the target transform is the four-point type-II DCT in (8.7), which
can be expressed as follows:

C4 =

⎡
⎢⎢⎣

1 1 1 1
c s −s −c

1 −1 −1 1
s −c c −s

⎤
⎥⎥⎦ ; c = √

2 cos
π

8
, s = √

2 sin
π

8
. (8.21)

In the earlier design, the approximation T4 transform is designed with the scaling parameter α = 26
yielding the following integer version:

T4(26) = round (26C4) =

⎡
⎢⎢⎣

13 13 13 13
17 7 −7 −17
13 −13 −13 13
7 −17 17 −7

⎤
⎥⎥⎦ , (8.22)

which happens to retain symmetry, orthogonality, and the coding gain of the DCT. The only drawback
here is the extended dynamic range which requires the transformation stage to be implemented on a 32-
bit architecture. The standardization committee later selected the following integer transform, proposed
independently by Microsoft and Nokia [14]:

T4

(
5

2

)
= round

(
5

2
C4

)
=

⎡
⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤
⎥⎥⎦ , (8.23)

whose inverse turns out to be

T−1
4

(
5

2

)
= 1

20

⎡
⎢⎢⎣

5 4 5 2
5 2 −5 −4
5 −2 −5 4
5 −4 5 −2

⎤
⎥⎥⎦ . (8.24)

The current transform in H.264 is designed with the scaling parameter α = 2.5 (actually, any pa-
rameter in the range 2.3 ≤ α < 3 also yields exactly the same result). Its coding gain as defined in
(8.15) is only 0.02 dB lower than the original DCs. Similar to the earlier design, this transform retains
symmetry as well as orthogonality, and offers an efficient multiplierless implementation as depicted in
Fig. 8.5. Most importantly, the lower dynamic range allows the entire transformation stage to fit within
a 16-bit architecture. It is interesting to note that when the binary shifts of 2 and 1

2 in the structures of
Fig. 8.5 are removed, we are left with the Walsh–Hadamard transform H4 as defined in (8.6). Despite
the important improvements, several drawbacks still exist: (i) it is not an integer-to-integer transform
with exact invertibility (its inverse involves a division by 5); and (ii) its dynamic range control is still
not tight enough. Hence, H.264 loses the capability of lossy and lossless coding based on the same
compression framework.
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FIGURE 8.5

Fast implementation of the H.264 transform (left) and inverse transform (right). No multiplications are needed,
only binary additions and shifts.

8.4.2 Integer DCT design via the principle of dyadic symmetry
The direct scaling approach is actually studied extensively by Cham, whose focus is on the two cases
M = 8 and M = 16 [15–17]. Cham’s approach can be characterized as direct scaling with orthogonal
constraint. In other words, since there is no guarantee that scaling retains the orthogonality property,
we seek additional condition(s) on the integer transform coefficients such that the scaled-up integer
transform is always orthogonal. Let us illustrate this design procedure with the M = 8 case, in which
the free integer parameters come from the set of {a, b, c, d, e, f }:

ICT8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
a b c d −d −c −b −a

e f −f −e −e −f f e

1 −1 −1 1 1 −1 −1 1
c −a d b −b −d a −c

f −e e −f −f e −e f

d −c b −a a −b c −d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.25)

In this particular case, it can be proven that the only condition they have to satisfy in order for the
resulting integer cosine transform (ICT) to be orthogonal [15] is

ab = ac + bd + cd. (8.26)

An exhaustive search, where the cost function is set to be the transform coding gain CCG as defined
in (8.15), up to a certain maximum resolution is performed to identify a rather large family of ICTs.
One example of a parameter set that yields a high-performance ICT is a = 230, b = 201, c = 134, d =
46, e = 3, and f = 1.

8.4.3 Direct scaling of a rotation angle
It is worth noting that although direct scaling of a given orthogonal matrix does not generally retain
orthogonality, it always holds in the 2 × 2 case. In this special case, any orthogonal matrix can be
characterized by a single rotation angle, and it is easy to see that orthogonality is robust under direct
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scaling. For any rotation angle Rθ , the direct scaling method produces the approximation

R̂θ = round (αRθ ) = round

(
α

[
cos θ sin θ

− sin θ cos θ

])
=
[

ĉ ŝ

−ŝ ĉ

]
, (8.27)

which always retains orthogonality regardless of the scaling parameter choice:

R̂T
θ R̂θ =

[
ĉ −ŝ

ŝ ĉ

][
ĉ ŝ

−ŝ ĉ

]
=
[

ĉ2 + ŝ2 0

0 ĉ2 + ŝ2

]
. (8.28)

The observation above leads to the following systematic integer-approximating design procedure
which does not require complicated orthogonality constraints on the parameter set:

• Obtain a rotation-based sparse factorization of the target transform.
• Apply direct scaling to each rotation.

Note that each rotation angle can be approximated independently with a different degree of accuracy.
This independent approximation approach above is actually very well known in practical fixed-point
implementations. Most fixed-point IDCT structures are obtained following this procedure [18].

The direct scaling design approach in this section offers a few practical advantages:

• Several desirable properties of the original transform can be robustly retained (most importantly,
symmetry, orthogonality, and high coding gain).

• The design procedure leads to efficient integer implementations that are often equivalent to fixed-
point hardware implementations.

However, this approach is only applicable to transform approximation, not construction of new ones.
Furthermore, a few disadvantages still remains in this ad hoc trial-and-error method:

• There is in general no exact inverse (not useful for lossless coding).
• In fact, the inverse operation often involves division operations.
• It is difficult to control the dynamic range expansion and to apply when the transform size/complex-

ity increases.

8.5 Approximation approach via structural design
The structural design approach seeks to capture structurally as many desirable properties as possible
and then optimize the parameters of the structure for high coding gain (or any other desirable property
for the targeted application). In other words, we use basic low-order building blocks (such as butter-
flies, lifting steps, scaling factors, and delay elements) to construct much more complicated high-order
transforms with certain predetermined properties (such as integer-mapping, perfect invertibility, and
symmetry). This design approach can be applied to transform approximation as well as new transform
construction. Integer- or dyadic-rational-coefficient transforms can be easily designed by approximat-
ing the optimal structural parameters by (dyadic) rationals.
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8.5.1 Lifting step
One critical component in modern transform design is the lifting step [19], which is simply an elemen-
tary upper triangular or a lower triangular matrix with unity diagonal elements, also known as a shear
operation in matrix theory or the ladder structure in signal processing literature [20]. Fig. 8.6 depicts a
typical lifting step on the left and its corresponding inverse on the right. The upper triangular matrix as
shown in Fig. 8.6 is often referred to as the update lifting step while the lower triangular matrix is called
the prediction lifting step in the literature. The operator P in Fig. 8.6 is very general as far as perfect
reconstruction is concerned: P can certainly be any scalar value; P actually can be any polynomial with
delays (as popularized in fast wavelet transform implementation); in fact, P can even be any nonlinear
operator (to generate morphological wavelets for instance). Invertibility is structurally guaranteed since
to invert a lifting step, we only need to subtract out (add in) what has been added in (subtracted out) at
the forward transform.

One advantage that the lifting scheme offers is the versatility and the simplicity in constructing fast
transforms that can map integers to integers. If a floor (or round, or ceiling, or any other quantization)
operator is placed after P in the lifting step in Fig. 8.6, the transformation can now map integers to
integers with perfect reconstruction regardless of whether the lifting step has integer coefficients or not.
This property can be confirmed through a simple inspection as demonstrated in Fig. 8.7.

Moreover, if the lifting step is chosen to be dyadic, the nonlinear operation can be incorporated into
the division using binary shift as illustrated in Fig. 8.8. A scalar lifting step of value k

2m can be imple-
mented as a multiplication by k followed by a division by 2m. Division by 2m followed by a truncation
is equivalent to a binary right-shift by m places. The numerator k can be easily implemented using
bit-shift and add operations as well, or we can split the fraction k

2m into a cascade of pure power-of-two
lifting steps, i.e., k

2m =∑
i

1
2i . The latter approach leads to an implementation with solely binary right-

shifts, preventing the bit-depth expansion in intermediate results. With all scaling factors set to unity,
multiplierless transforms can be easily constructed via a cascade of multiple lifting steps. If the scaling

FIGURE 8.6

A lifting step (left) and its corresponding inverse (right).

FIGURE 8.7

Integer-to-integer mapping with exact invertibility of a lifting step.
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FIGURE 8.8

Lifting step with (a) dyadic-rational coefficient and (b) the resulting multiplierless implementation.

factors are powers of two, we can still retain the multiplierless feature on both the analysis and the syn-
thesis side. Besides the integer-friendly property, the lifting scheme also offers several other interesting
advantages: simplicity of wavelet design on irregular intervals, in-place computation, a connection to
spatial prediction, and the capability of incorporating nonlinear filtering.

It is quite straightforward to extend the lifting result above to the higher-dimensional case of any
arbitrary M × M matrix since it is well known from LDU matrix factorization that every M × M

invertible matrix V can be completely characterized by M(M − 1) elementary matrices, M diagonal
scaling factors, and a permutation matrix. In other words, any invertible matrix V can be factorized as
V = PLDU where the upper triangular matrix U can be constructed from M(M−1)

2 elementary update

lifting steps labeled uij , the lower triangular matrix V can be constructed from M(M−1)
2 elementary

prediction lifting steps labeled pij , and the diagonal matrix D contains the scaling factors αi . The
construction of V as described above is depicted in Fig. 8.9. Note that the parameterization can be
accomplished with rotation angles and diagonal scaling factors as well (see Fig. 8.10).

FIGURE 8.9

General parameterization of any invertible matrix via lifting steps.

FIGURE 8.10

General parameterization of any invertible matrix via rotation angles.
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8.5.2 Lifting-based approximation
Lifting steps are very convenient in transform approximation as well. Fig. 8.11 shows the equivalent
representation of the popular rotation angle by three lifting steps or two lifting steps and two scal-
ing factors. Sometimes, the latter representation can lead to a more efficient approximation since the
two scaling factors can be absorbed into the quantization stage. Fig. 8.12 demonstrates a systematic
approach to rotation approximation via multiplier-free lifting:

• first compute the theoretical values of the lifting steps,
• obtain dyadic-rational approximating values from theoretical ones (the resolution of the approxi-

mating values is the trade-off between computational complexity and coding performance),
• obtain the multiplierless implementation from the dyadic-rational lifting steps.

Since most existing fast transform algorithms are obtained from sparse factorization of the transform
matrix as a cascade of rotation angles, we can systematically break down the design procedure one
rotation independently at a time. An example of a successful application of this lifting-based approxi-

FIGURE 8.11

Representation of a rotation angle via either three lifting steps or two lifting steps and two scaling factors.

FIGURE 8.12

Example of a rotation approximation by dyadic-rational lifting steps.
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FIGURE 8.13

Multiplierless 3 × 3 color transforms with exact invertibility.

mation approach is the design of multiplierless IDCT for video coding in an effort to end the drifting
effects from IDCT mismatch. Liu et al. showed that standard-compliance IDCT can be achieved on a
16-bit architecture whereas on a 32-bit architecture, approximation via lifting and butterfly can be so
accurate that the reconstructed video sequences are virtually drifting-free when pairing with a 64-bit
floating-point IDCT [21].

8.5.3 Lossless color transform design
We demonstrate in this section the simplest design example based on lifting construction for M > 2 −
3 × 3 color transforms. Fig. 8.13 depicts two different designs developed independently and submitted
to the JVT standardization committee at the same time: the RGB-to-YCoCg transform (on the left of
Fig. 8.13) by Malvar et al. [22] and the RGB-to-YFbFr transform (on the right of Fig. 8.13) by Topiwala
et al. [23].

It is interesting to note that two designs are remarkably similar since they are both designed us-
ing our lifting approximation framework described in the previous sections. First, the optimal KLT is
obtained where the autocorrelation matrix is derived from a set of high-quality test color images ac-
quired by Kodak. Lifting-based approximation is then applied to obtain the dyadic lifting coefficients.
Practical experiments show that both transforms decorrelate the three color planes more efficiently than
existing popular color transforms such as the RGB-to-YUV and the RGB-to-YCbCr transform while
additionally providing the pivotal feature of lossless integer mapping with low dynamic range (there is
only a 1-bit expansion on the two chrominance components).

Finally, both transforms only utilize four lifting steps (instead of theoretically six) without any
diagonal scaling. At the cost of one more addition and one more bit-shift operation per luminance
sample, the RGB-to-YFbFr transform attains a coding gain of 4.812 dB while the RGB-to-YCoCg
transform achieves CCG = 4.619 dB (the optimal KLT in this case has a coding gain of 4.966 dB).

8.5.4 Integer DCT design
The DCT is the most widely used transform in current international image/video compression stan-
dards. This four-point dyadic-coefficient design example is a close approximation of the four-point
DCT and it follows the DCT’s factorization very closely. The resulting structure is depicted in Fig. 8.14.

In the sparse four-point DCT factorization case, there are three butterflies and only one irrational
rotation angle of π

8 [24]. We can employ only two lifting steps for this rotation angle (since the scaling
factors associated with the two-lifting step structure can be combined with the quantization step sizes to
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FIGURE 8.14

4 × 4 integer DCT structure.

save computational complexity further) while keeping the butterflies intact. Many different transforms
can be represented using this structure; the difference between them lies only in the parameter choices
as demonstrated below:

• u = 1;p = 1/2: essentially the Walsh–Hadamard transform,
• u = 7/16;p = 3/8: Liang et al. submission to H.264 [25,26],
• u = 1/2;p = 2/5: the current four-point H.264 transform (the last two basis functions are off by 2,

5/2 scaling),
• u = 1/2;p = 1/2: the current four-point Photo Core Transform (PCT) in HD-Photo/JPEG-XR [27,

28].

It is interesting to note that the last two options yield two transforms with an identical coding gain of
7.55 dB. The lifting implementation allows the PCT [27,28] to map integers to integers losslessly and
to have a much tighter dynamic range control comparing to the rotation-based implementation of H.264
transform (this is where H.264 loses its lossless coding capability). The second option with u = 7/16
and p = 3/8 essentially achieves the same coding gain as the theoretical four-point DCT (7.57 dB for
the AR(1) signal model with ρ = 0.95). Note that all four options allow 16-bit implementation with
9-bit input data.

Integer DCTs of larger sizes (M > 4) can be easily designed using the same procedure. The rotation-
factorized representation of the transform of interest is first obtained, and then each rotation angle can
be approximated methodically as demonstrated in Section 8.5.2. With various degrees of approxima-
tion accuracy (more accuracy obviously requires more complexity), these integer DCTs can be tuned
to cover the gap between the Walsh–Hadamard transform and the original DCT. The corresponding
solution often allows a 16-bit implementation, enables lossless compression, and maintains satisfac-
tory compatibility with the floating-point DCT. The 8 × 8 and 16 × 16 integer DCTs are depicted in
Figs. 8.15 and 8.16, respectively.

Table 8.1 lists the analytical values of all the lifting parameters and some configurations of the inte-
ger DCT family (called binary DCT or binDCT in short) as shown in Fig. 8.15. The dyadic lifting values
are obtained by truncating or rounding the corresponding analytical values with different accuracy lev-
els. Cg(8) and Cg(4) are the coding gains of these 8 × 8 binDCTs and the 4 × 4 binDCTs embedded
in them. Table 8.1 also shows the MSE between the binDCT output and the true DCT output for the
popular 8 × 8 case. The MSE here is the expected �2-norm of the error in the produced coefficients and
it is computed as follows. Assume that C is the true M × M DCT and Ĉ is its approximated integer
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FIGURE 8.15

8 × 8 integer DCT.

Table 8.1 Different configurations of the 8 × 8 Integer DCT in Fig. 8.15.

Floating-point binDCT-C1 C2 C3 C4 C5
p1 0.4142135623 13/32 7/16 3/8 1/2 1/2

u1 0.3535533905 11/32 3/8 3/8 3/8 1/2

p2 0.6681786379 11/16 5/8 7/8 7/8 1

u2 0.4619397662 15/32 7/16 1/2 1/2 1/2

p3 0.1989123673 3/16 3/16 3/16 3/16 1/4

u3 0.1913417161 3/16 3/16 3/16 1/4 1/4

p4 0.4142135623 13/32 7/16 7/16 7/16 1/2

u4 0.7071067811 11/16 11/16 11/16 3/4 3/4

p5 0.4142135623 13/32 3/8 3/8 3/8 1/2

Shifts – 27 23 21 18 13

Adds – 42 37 36 33 28

MSE – 1.1E−5 8.5E−5 4.2E−4 5.8E−4 2.3E−3

Cg(8) (dB) – 8.8251 8.8220 8.8159 8.8033 8.7686

Cg(4) (dB) – 7.5697 7.5697 7.5566 7.5493 7.5485

version. For an input column vector x, the difference between the DCT coefficients and the binDCT
coefficients is
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FIGURE 8.16

16 × 16 integer DCT.

e = Cx − Ĉx = (C − Ĉ)x � Dx (8.29)

and the MSE of each coefficient is

ε � 1

M
E[eT e] = 1

M
trace{eeT } = 1

M
trace{DRxxDT }, (8.30)

where Rxx � E[xxT] is the autocorrelation matrix of the input signal. The low MSE level as depicted
in Table 8.1 indicates that the integer transform approximation is very accurate. The interested reader
is referred to [21,26] for more details on the design of this particular family of multiplierless cosine
transforms.

8.5.5 Lifting for complex-coefficient transforms
So far, we have focused on real-coefficient transforms since they are mostly employed in image/video
coding applications. For complex-coefficient transforms such as the FFT, it turns out that lifting steps
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FIGURE 8.17

Implementation of a complex multiplication operation via lifting steps.

can be as easily applied as in the real-coefficient case. Fig. 8.17 illustrates how to model a complex mul-
tiplication operation by a rotation angle and the resulting equivalent lifting representation [20,29]. Each
lifting step in Fig. 8.17 can then be approximated by a dyadic-rational value as previously shown. One
particularly nice feature of the FFT is its regularity in factorized format: its implementation is recursive
and all values of rotation angles involved are easily computed. Hence, complex-coefficient transforms
such as the FFT can be easily constructed or approximated in multiplierless fashion as well. Again, the
lifting coefficients appearing in the structures can be quantized directly to obtain different resolutions
(resulting in trade-off in computational cost) while preserving the exact reversibility property.

8.6 Wavelet filter design via spectral factorization
8.6.1 Wavelets and filter banks
One of the newest additions to the transform field is the wavelet transform, which can be interpreted
as an iteration of a two-channel filter bank with certain degrees of regularity on its low-pass output
depicted in Fig. 8.18. Part of the beauty and power of wavelets is their elegance: complicated tiling of
the time-frequency plane can be easily achieved by merely iterating a two-channel decomposition. Fur-
thermore, the wavelet representation of signals as a coarse approximation and detailed components at
different resolutions allows fast execution of many DSP applications such as image browsing, database
retrieval, scalable multimedia delivery, etc.
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FIGURE 8.18

The discrete wavelet transform as iteration of a special two-channel filter bank on its low-pass output.

The theory and design of two-channel filter banks as well as two-band wavelets have been studied
extensively and we refer the readers to several excellent text books on the topic [5–8,30]. The simplest
design procedure is the spectral factorization of a low-pass half-band filter with some regularity con-
straints (vanishing moments). Unlike all other transforms mentioned in this chapter, all of the degrees
of freedom in wavelet design are allocated to regularity. In the scope of this chapter, we will briefly
cover this most successful wavelet filter design approach for completeness only.

8.6.2 Spectral factorization
It can be verified in a straightforward fashion that in order for the two-channel filter bank in Fig. 8.18
to have perfect reconstruction (i.e., x̂[n] = x[n − D], where D is a certain time delay), the four filters
involved have to satisfy the following two conditions:

aliasing cancelation: F0(z)H0(−z) + F1(z)H1(−z) = 0, (8.31)

distortion elimination: F0(z)H0(z) + F1(z)H1(z) = 2z−D. (8.32)

The following alternating-sign construction provides an elegant way to cancel aliasing and to reduce
the design parameters involved by a factor of two

{
F0(z) = H1(−z),

F1(z) = −H0(−z).
(8.33)

With the relationship between the analysis and synthesis filters set as in (8.33), the distortion elimi-
nation condition in (8.32) reduces to

F0(z)H0(z) − F0(−z)H0(−z) = 2z−D. (8.34)
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If we define the product filter P0(z) as P0(z)
=F0(z)H0(z), then it has to satisfy the following

condition:

P0(z) − P0(−z) = 2z−D, (8.35)

which is well known in the signal processing community as the half-band condition (a filter that has
one and only one odd power of z−1). Hence, the design of a two-channel perfect reconstruction filter
bank with all four FIR filters can follow the standard procedure listed below:

• Design a low-pass half-band filter P0(z).
• Factor P0(z) into H0(z) and F0(z).
• Use the aliasing cancelation condition in (8.33) to obtain H1(z) and F1(z).

The difference between any common filter pair designed from the approach above and a good
wavelet filter pair is the degree of regularity or the level of smoothness of the resulting basis func-
tions, called the scaling function and the wavelet function, after many levels of repeated iterations. As
mentioned above, Daubechies decided to allocate all of the degrees of freedom in the design to the
degree of regularity or the number of vanishing moments [30]. In other words, an additional constraint
labeled maxflat is imposed on top of the half-band condition in (8.35), resulting in the maxflat half-band
filter defined as follows:

P0(z) = (1 + z−1)2P Q0(z). (8.36)

This key filter has 2P zeros (roots) at z = −1 or ω = π and Q0(z) is the polynomial of minimum order
(which turns out to be 2P − 2) such that the half-band condition in (8.35) is met. The closed-form
expression of this family of maxflat half-band filters can be found in [5,6,8,30].

The key step in the design process obviously lies in the second spectral factorization procedure.
There are multiple ways to split the roots {zi} of P0(z) and the desirable properties of the resulting
filters {H0(z),H1(z),F0(z),F1(z)} dictate the constraints in the root assignment. Here are three popular
desirable properties and their associated constraints in spectral factorization:

• For the filters to have real coefficients, we need zi and z∗
i to stay together: assign both to the same

filter.
• To obtain orthogonal solutions, we need to separate zi and z−1

i to different filters: we must assign zi

to H0(z) and z−1
i to F0(z) or vice versa.

• On the contrary, to obtain linear-phase solutions, we need zi and z−1
i to stay together: both are either

assigned to H0(z) or to F0(z).

Note that from the second and third conditions above, we cannot design a solution with both orthog-
onality and linear phase in the two-channel case (except the trivial 2-tap Haar solution). When the
number of channels increases (M > 2), having both orthogonality and linear phase is actually quite
easy to achieve – the type-II DCT in (8.7) and the WHT in (8.6) are two typical examples.
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8.6.2.1 5-/3-tap symmetric and 4-tap orthogonal wavelet filters
Let us consider the following maxflat half-band filter with four roots at z = −1 and two real roots at
z−1 = 2 ± √

3:

P0(z) = 1

16

(
−1 + 9z−2 + 16z−3 + 9z−4 − z−6

)
= 1

16

(
1 + z−1

)4 (−1 + 4z−1 − z−2
)

. (8.37)

Assigning two roots at z = −1 to F0(z) and the rest to H0(z), we obtain the following real-coefficient
symmetric filter pair: ⎧⎨

⎩ H0(z) = − 1
8 + 1

4z−1 + 3
4z−2 + 1

4z−3 − 1
8z−4,

H1(z) = − 1
2 + z−1 − 1

2z−2.
(8.38)

This particular solution was first published in [31], so they are often referred to as the Le Gall 5/3 filters.
Not only do they have dyadic coefficients; their lifting multiplierless implementation also provides
an efficient reversible integer-to-integer mapping as discussed in Section 8.6.3. The discrete wavelet
transform with these 5-/3-tap filters is the default transformation option for the lossless mode in the
international image coding standard JPEG2000 [4].

On the other hand, if we assign the roots {−1,−1,2 − √
3} to H0(z) while giving the roots

{−1,−1,2 + √
3} to F0(z), we arrive at the celebrated compact-support orthogonal Daubechies D4

wavelet pair

⎧⎪⎨
⎪⎩

H0(z) = 1
4
√

2

[
(1 + √

3) + (3 + √
3)z−1 + (3 − √

3)z−2 + (1 − √
3)z−3

]
,

H1(z) = 1
4
√

2

[
(1 − √

3) − (3 − √
3)z−1 + (3 + √

3)z−2 − (1 + √
3)z−3

]
.

(8.39)

With this particular maxflat half-band filter P0(z), there are only two possible orthogonal solutions.
The pair in (8.39) above is called the minimum-phase solution. Switching the roles of Hi(z) and Hi(z)

yields the other maximum-phase solution. There are quite a few more real symmetric solutions. In fact,
the 2-/6-tap and the 4-/4-tap pair are also quite popular in the image processing community.

8.6.2.2 9-/7-tap symmetric and eight-tap orthogonal wavelet filters
Let us consider the higher-order symmetric maxflat half-band filter with eight roots at z = −1, two real
roots, and four complex roots; the complex plane of P0(z) is shown on the top part of Fig. 8.19:

P0(z) = (1 + z−1)8

2048

(
−5 + 40z−1 − 131z−2 + 208z−3 − 131z−4 + 40z−5 − 5z−6

)
.

There are exactly four orthogonal solutions from spectral factorization in this case: one minimum-
phase, one maximum-phase, and two mixed-phase solutions (they are time-reversals of each other just
like the minimum-phase solution is the time-reversed version of the maximum-phase solution) as illus-
trated in Fig. 8.19.
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FIGURE 8.19

Orthogonal wavelet filter design via spectral factorization.

In the biorthogonal linear-phase case, there are many more nontrivial possibilities. The best solution
in terms of attaining the highest theoretical coding gain as well as the highest consistent coding perfor-
mance in practice is the 9-/7-tap filter pair with H0(z) having four roots at z = −1 and four complex
roots as depicted in Fig. 8.20. This is often referred to as the Daubechies 9/7 wavelet filter pair [32],
which is JPEG2000’s default for the floating-point high-performance option [4]. Various interesting
properties of these JPEG2000 wavelet filters have been explored in depth in [33].

It is worth noting that sacrificing a few vanishing moments (precisely, reducing the number of roots
at z = −1 from eight to six in P0(z)) opens up more flexibility in achieving other desirable properties
such as dyadic coefficients. The following 9-/7-tap filter pair is called binlet – binary wavelet. The
analysis bank now only has two vanishing moments (instead of four as in the Daubechies 9/7 JPEG2000
pair) whereas the synthesis bank still retains four vanishing moments since the vanishing moments –
intimately related to the level of smoothness – are more critical in signal reconstruction than in signal
decomposition. The 9-/7-tap binlet filter coefficients are⎧⎨

⎩ h0[n] = 1
64 [1 0 −8 16 46 16 −8 0 1],

h1[n] = 1
16 [1 0 −9 16 −9 0 1].

(8.40)
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FIGURE 8.20

Linear-phase biorthogonal wavelet filter design via spectral factorization.

8.6.3 Lifting and the wavelet transform
The lifting scheme was originally designed for the wavelet transform and two-channel filter bank de-
composition [19]. Two-channel filter banks implemented with the lifting scheme save roughly half of
the computational complexity due to the exploitation of the intersubband relationship between coeffi-
cients. It has been proven that any 2 × 2 polyphase matrix E(z) with unity determinant can be factored
into a cascade of prediction P(z), update U(z) lifting steps, and a diagonal scaling matrix as shown in
Fig. 8.21 [34].

As previously mentioned, one of the most elegant as well as the most popular wavelet filter pair
in practice is the Le Gall 5/3 [31] whose polyphase matrix can be constructed with two lifting steps:

FIGURE 8.21

General wavelet construction and implementation with lifting steps.
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FIGURE 8.22

The 5/3-tap integer wavelet implementation in lifting.

FIGURE 8.23

The 9/7-tap double-precision wavelet implementation in lifting.

P(z) = 1
2 (1 + z−1) and U(z) = 1

4 (1 + z). This transform depicted in Fig. 8.22 leads to a multiplierless
implementation, and since it can map integers to integers with exact invertibility, it is naturally adopted
by JPEG2000 for the lossless (or low-cost) compression mode [4]. It has a very intuitive time-domain
interpretation: each high-pass detail wavelet coefficient is simply the prediction error between the aver-
age of two neighboring even-indexed samples and the in-between odd-indexed sample. Fig. 8.23 shows
the lifting implementation of the irrational-coefficient 9/7 Daubechies wavelet filter pair [32,34] as
previously discussed in Section 8.6.2.2 (see Figure 8.22).

8.7 Higher-order design approach via optimization
One major drawback with nonoverlapped block transforms such as the DCT and its integer versions as
described in the previous section is the existence of annoying blocking artifacts from discontinuities at
block boundaries in low-bitrate applications. Transforms with overlapping basis functions such as the
wavelet transform, the wavelet packet, and the LT can elegantly solve the blocking problems, producing
much more visually pleasant reconstructed images and video frames.

From a filter bank perspective, higher-order design lengthens the filters, leading to a drastic im-
provement in frequency resolution and hence decorrelation efficiency while still retaining time or space
resolution. As mentioned above, from a filter bank perspective, the wavelet transform and LT are sim-



8.7 Higher-order design approach via optimization 523

ply higher-order systems whose polyphase matrices contain polynomials in z whereas all examples
discussed so far are block transforms whose polyphase matrices are regular scalar matrices of zero
order.

8.7.1 General modular construction
In the wavelet case where the basic building block is a two-channel filter bank, the most general design
approach is the spectral factorization of a low-pass half-band filter. The lifting scheme is used mainly
for fast and efficient wavelet implementation. When the number of channels M increases, spectral fac-
torization is not applicable and the most successful design approach is the modular construction from
the lattice structure pioneered by Vaidyanathan [7] and Malvar [12]. The first filter bank design based
on this philosophy is illustrated in Fig. 8.24 where each modular stage is a rotation angle (coupled with
a delay element), propagating the orthogonality property. This simple structure has been proven to uti-
lize the minimum number of delay elements in the resulting implementation since it shares the delays
between the two channels. More importantly, the structure in Fig. 8.24 covers all possible orthogonal so-
lutions in the two-channel case. Indeed, when K = 2, the particular selection of {θ0 = 60◦, θ1 = −15◦}
generates the D4 orthogonal Daubechies wavelet filters in (8.39). It is a simple exercise for the reader
to verify that the resulting polyphase matrix here always satisfies the paraunitary condition in (8.11),
i.e., E−1(z) = z−(K−1)ET (z−1).

Similarly, in the more general M-channel case, we can construct the high-order polyphase matrix
E(z) as in Fig. 8.25 from a cascade of many low-order building blocks Gi (z), each propagating certain
desirable properties such as symmetry, perfect reconstruction (or more elegantly, orthogonality), and
zero DC leakage. The free parameters of the structure within each building block Gi (z) are then further
optimized to achieve other remaining desirable properties such as coding gain and stopband attenuation

FIGURE 8.24

First two-channel 2K-tap filter bank design via the lattice structure propagating orthogonality.

FIGURE 8.25

Construction of a high-order polyphase matrix E(z) from a cascade of low-order building blocks Gi (z).
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FIGURE 8.26

General transformation framework for block coding systems with pre- and postprocessing operators.

as discussed in Section 8.3. This modular construction design approach yields numerous interesting
filter bank solutions, which the reader can learn about in much greater detail in two excellent textbooks
[6,7].

8.7.2 Higher-order design with pre-/postprocessing operators
Within the more restrictive constraint of this chapter, let us present in depth a general structure that has
an intuitive time-domain interpretation [35] as illustrated in Fig. 8.26.

8.7.2.1 A simple example
Several basic properties of this design approach are best explained through an almost trivial example –
the addition of two-point pre- and postprocessing (or pre-/postfiltering) operators linking any two DCT
blocks in traditional block coders such as JPEG [1] depicted in Fig. 8.27(a). This is a particular pre-
processor in the general framework of Fig. 8.26 and the postprocessor has been chosen to be the exact
inverse of the preprocessing operator.

Let {xi}, {pi}, {p̂i}, and {x̂i} be the set of the preprocessor’s input samples, the preprocessor’s output
samples, the postprocessor’s input samples, and the postprocessor’s output samples, respectively. We
examine the postprocessor first since its operation is slightly more intuitive than the preprocessor’s.

Consider p̂i and p̂i+1 in Fig. 8.27(b) – two input samples of the postprocessor at the boundary of
two neighboring IDCT blocks – and their corresponding output samples, x̂i and x̂i+1. Define a crude
measure of blocking artifact D as the absolute difference between two samples at the block boundary.
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FIGURE 8.27

Basic demonstration of the pre-/postprocessing design. (a) Simple 2 × 2 pre-/postprocessing operator pair {P,
P−1} linking two DCT blocks. (b) Preprocessed and postprocessed effects.

Without any postprocessing, D = |p̂i − p̂i+1|. It is intuitive that in order to reduce the blocking artifact
D, we simply have to pull p̂i and p̂i+1 closer (blurring out the discontinuity at the boundary) depending
on how far they are apart. One systematic method to achieve this objective is presented in Fig. 8.27(a)
where the scaling factor s is the single degree of freedom.

With P−1 = 1
2

[
1 1
1 −1

][
1 0
0 1/s

][
1 1
1 −1

]
, we can easily derive the following relation-

ships:

x̂i = p̂i + 1/s − 1

2
(p̂i − p̂i+1) and x̂i+1 = p̂i+1 − 1/s − 1

2
(p̂i − p̂i+1).

Hence, after postprocessing,

D̂ = |x̂i − x̂i+1| = |(p̂i − p̂i+1) + (1/s − 1)(p̂i − p̂i+1)|
= |(p̂i − p̂i+1)/s| = |1/s||p̂i − p̂i+1|. (8.41)

Choosing |1/s| < 1 (or equivalently |s| > 1) guarantees a decrease in blocking artifact. This postpro-
cessing effect is demonstrated in Fig. 8.27(b). For example, if we choose s = 2, then the postprocessing
operator partitions the distance D = |p̂i − p̂i+1| into four segments of equal length, moves x̂i up one
segment length from p̂i , and moves x̂i+1 down one segment length from p̂i+1. So, postprocessing
adaptively reduces the observed discrepancy D by a factor of two.

The preprocessor modifies the samples in the exact opposite direction. It attempts to “decorrelate”
the boundary by lowering the smaller-value sample xi while increasing the larger-value xi+1 based on
a percentage of their difference |xi − xi+1|. Again, the choice s > 1 makes intuitive sense. If s < 1,
samples are adjusted in the wrong direction. A good choice of s in the energy compaction sense for a

smooth AR(1) signal model is the golden ratio 1+√
5

2 or a close approximation such as 8
5 [35] (note

that this choice also yields a multiplierless postprocessor).

8.7.2.2 More general solutions
The seemingly trivial example above actually provides a valuable lesson. When more than two samples
are involved, the preprocessing operator should be designed as a flattening operator. It should attempt
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to make the input to the DCT as homogeneous as possible, thus improving the overall energy com-
paction of the combined decomposition. This is quite consistent with most preprocessing schemes in
practice: smoothing the input signal improves coding efficiency. However, in this framework, perfect
reconstruction can be easily maintained (by choosing the postprocessor as the inverse of the preproces-
sor). High-frequency signal components are never eliminated; they are only slightly shifted spatially. In
other words, we take full advantage of the block-based framework by carefully aligning high-frequency
components at block boundaries. Discontinuities between DCT blocks, i.e., actual high-frequency con-
tents, do not affect coding performance whereas, within each block, data samples are smoothened out,
enhancing the core block transform’s effectiveness in energy compaction.

The most general higher-order transform as shown in Fig. 8.27 is equivalent to an M-channel criti-
cally sampled filter bank with filters of length L = KM whose analysis polyphase matrix turns out to
be

E(z) = G0G1(z)G1(z) . . .GK−1(z), (8.42)

where each propagating component takes on the form Gi (z) = �(z) Pi with

�(z)
=
[

I 0
0 zI

][
0 I
I 0

]
=
[

0 I
zI 0

]
(8.43)

being the permuted advance chain. The synthesis polyphase matrix is then

R(z) = G−1
K−1(z)G

−1
K−2(z) . . .G−1

0 . (8.44)

The more detailed polyphase representation is shown in Fig. 8.28 for the case of M = 4 and K = 1.
By choosing the inverse G−1

i (z) = P−1
i �−1(z), we ensure that the resulting filter bank or decomposi-

tion has perfect reconstruction. Enforcing the tighter constraint P−1 = PT leads to a paraunitary system,
i.e., an orthogonal mapping.

To obtain linear-phase basis functions, a further structural constraint has to be imposed on the basic
building block P. A general closed-form M-point preprocessing operator P that works well with DCT
of any size M, generating a linear-phase mapping, is presented in [35]. This general preprocessing block
operator is shown in Fig. 8.29(a) and it should be placed squarely between two adjacent DCT blocks as
illustrated in Fig. 8.28. The linear operator consists of two stages of butterflies and a matrix V between
them:

P = 1
2

[
I J
J −I

][
I 0
0 V

][
I J
J −I

]
, (8.45)

where the reader is reminded that I,J, and 0 are the M
2 × M

2 identity matrix, the reversal matrix, and
the null matrix, respectively. The matrix V, controlling pre- and postprocessing behavior, can be further
chosen as

V = JCIIT

M/2SCIV
M/2J, (8.46)

where CII
M/2 is the M

2 -point type-II DCT matrix in (8.7), CIV
M/2 is the M

2 -point type-IV DCT matrix in

(8.8), and S is a diagonal matrix that introduces biorthogonality. One example of S is diag{ 8
5 ,1, . . . ,1}.

The structure produces an orthogonal preprocessing linear operator if S is chosen to be the identity
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FIGURE 8.28

Construction of an M-channel filter bank from two M × M matrices P and C (top) and the equivalent time-
domain interpretation of pre- and postprocessing (bottom).

FIGURE 8.29

Preprocessors for the DCT. (a) General closed-form M-point prefilter. (b) Fast eight-point rational-coefficient
preprocessing operator.

matrix. In general, it can be straightforwardly proven that any orthogonal matrix V would yield a
linear-phase orthogonal transform. For the particular case of eight-point pre-/postprocessing, a fast
rational-coefficient approximation of P is shown in Fig. 8.29(b).

It is interesting to note the flattening property of the preprocessing scheme as demonstrated in an
image processing example shown in Fig. 8.30 where preprocessing is carried out in 2D separably. When
the size of the preprocessing operator grows, the preprocessed image (which will then be the input of the
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FIGURE 8.30

Preprocessing’s blockwise flattening effect with 8 × 8 block size. From left to right: original image; after two-
point, four-point, six-point, and eight-point preprocessing.

traditional block DCT decomposition) becomes more blocky since each 8 × 8 block becomes smoother
and less correlated with its neighbors, and more high-frequency components are shifted to the block
boundary. The closed-form preprocessor P of (8.45) depicted in Fig. 8.29(a) is used to generate this
example. At the decoder side, the postprocessor – if chosen as the inverse of its counterpart – serves as
a smoothening interpolating operator placed between block boundaries, mitigating blocking artifacts.

8.7.2.3 HD photo or JPEG-XR transform
Both concepts of multiplierless transform design via the lifting scheme as described in Section 8.5.4
and pre-/postprocessing of Section 8.7.2 are on full display in JPEG-XR [27,28]. The still-image com-
pression algorithm/file format JPEG-XR has been widely distributed along with Windows Vista and
Windows 7 operating systems and was officially approved as an ISO/IEC International standard in
2010. The entire transformation stage in JPEG-XR (formerly known as Microsoft HD-Photo) – in-
cluding a base integer transform called photo core transform (PCT) C and an additional preprocessing
operator called photo overlap transform (POT) C – is just one particular solution of the more general
framework illustrated in Figs. 8.26 and 8.28.

Both operators are constructed from cascades of hardware-friendly dyadic-rational lifting steps.
In fact, the choice of the two dyadic lifting steps 1

2 in PCT comes from Configuration C5 as shown
previously in Table 8.1. In Fig. 8.31, two pairs of scaling factors

√
2 and 1√

2
are shown merely to

FIGURE 8.31

The photo overlap transform P (left) and the photo core transform C (right) in HD photo or JPEG-XR transfor-
mation stage.
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illustrate the conceptual design. The actual implementation in JPEG-XR utilizes dyadic-rational lifting
steps to approximate each pair of irrational scaling. Therefore, the entire transformation stage (including
both PCT and POT) in JPEG-XR is constructed from a cascade of only dyadic-rational lifting steps
[27,28].

8.7.3 Adaptive decomposition design
Here, by adaptivity, we refer to time-varying adaptable operators that the encoder or the decoder can
select on-the-fly based on the local statistical behavior of the input. Adaptivity can lead to significant
coding improvements if the amount of side information is cleverly avoided or kept to a minimum. It
is clear that long basis functions associated with large operator size are best for representing smooth
signal regions. On the other hand, transient signals, abrupt discontinuities, and strong edges are best
captured with short high-time resolution basis. Based on this observation, various adaptive operators
are developed to provide a powerful decomposition framework with strong time-frequency localization.
Several options are under consideration:

• varying the support of pre- and postprocessing operator at each block boundary;
• varying the transform block size;
• a combination of both of the above;
• allowing every operator’s parameters to be time-varying.

8.7.3.1 Adaptive pre-/postprocessing support
Within the pre-/postprocessing framework in Section 8.7.2, based on the energy of the transform co-
efficients generated, we can decide to turn on or off pre-/postprocessing. It is just as easy to vary the
size of preprocessing support dynamically. This adaptive-borrowing signal decomposition is illustrated
in Fig. 8.32(a) where the block size is fixed to M = 4 while the preprocessing operator can be chosen
among: no processing, 2 × 2 processing, or 4 × 4 processing. In other words, from top to bottom, we
are switching from a 4 × 8 to a 4 × 7 to a 4 × 6 to a 4 × 5 and finally to a 4 × 4 linear mapping. With
the transform set to the DCT of a fixed block size (e.g., 8) and the size of the pre-/postprocessing op-
erator chosen from the set {0,2,4,8}, the side information for each block boundary is only 2 bits. The
side information can be lowered with Huffman or context-based adaptive arithmetic coding.

A visual illustration of adaptive pre-/postprocessing is depicted in the leftmost binary image in
Fig. 8.33. Here, dark pixels indicate blocks which the coder select the minimum-size 2 × 2 operator
whereas light pixels indicate blocks where the maximum-size 8 × 8 preprocessing operator is preferred.
The decision is based on the minimum bit length needed to encode each particular data block and we
have employed an exhaustive search [36]. It is clear that pre- and postprocessing should be avoided at
or near strong edges of the input image.

8.7.3.2 Adaptive transform block size
Another adaptive decomposition scheme is to employ variable block sizes. In slowly changing homo-
geneous parts of the signal, a large data block is desirable (a higher frequency resolution is needed). On
the other hand, in fast-changing transient parts of the signal, it is more advantageous to switch to a small
block size (a higher time resolution is needed). Such a signal-adaptive switching scheme has proven to
be very effective in practice. For instance, MPEG-4’s Advanced Audio Coder switches back-and-forth
between a 256-point high-time resolution short window and a 2048-point high-frequency resolution
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FIGURE 8.32

Examples of adaptive time-varying decomposition. (a) Adaptive preprocessing with fixed DCT block size.
(b) Adaptive DCT block size with fixed preprocessing operators.

long window to avoid pre-echo and to improve coding efficiency [37]. A variable-block size decompo-
sition scheme as depicted in Fig. 8.32(b) can be employed where the preprocessing operator is fixed
whereas the DCT block size is allowed to vary. The side information, just like in the adaptive-processing
case, can be kept manageable as well with a well-chosen set of block sizes; see, e.g., {4,8,16,32} for
image/video applications.

A demonstration of the adaptive block transform algorithm is shown in the right of Fig. 8.33. An
expensive exhaustive search algorithm is set up to generate this example: pre- and postprocessing is
fixed to the maximum size allowable based on the size of any two neighboring DCT blocks; block size
selection is restricted to {4,8,16}; and the criterion is again the minimum amount of bits required to
encode each local 16 × 16 image region. This example vividly confirms that the optimally adaptive
decomposition algorithm has a tendency to latch onto strong local image features [36].

In the more general case, both adaptive preprocessing with different sizes, with multiple stages, and
adaptive variable block size can be combined. This decomposition scheme generates a large library
of basis functions that the encoder can choose from depending on the input signal behavior. How to
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FIGURE 8.33

Visual demonstration of adaptive decomposition algorithms. From left to right: pre-/postprocessing mode se-
lection for maximum local coding efficiency via exhaustive search; pre-/postprocessing mode selection for
fast overflow/underflow criterion; portion of the original Bike image; optimal block size selection based on a
maximum coding efficiency criterion.

make the right decision quickly and how to minimize the amount of side information involved are two
important open research problems.

8.7.4 Modulated design
One drawback with the cascading structural approach in (8.42) and illustrated in Fig. 8.26 is that the
optimization becomes problematic when the application demands or desires a larger number of chan-
nels M and/or a longer filter length L = KM . In speech and audio coding applications, for example,
frequency resolution of the transform is often critical and the number M of frequency bins (or channels)
is typically in the hundreds or even thousands [12,38].

Given that most of the cost function in Section 8.3.1 is not convex, the huge number of free param-

eters in the matrices {G0,Pi} – from 2K

(
M/2

2

)
in the linear-phase orthogonal case to K

(
M

2

)
in the orthogonal case to KM2 in the most general case [35] – poses a major challenge to any op-
timization approach. One particular elegant design that can efficiently deal with this obstacle is the
cosine-modulated approach where a low-pass prototype filter is designed and the rest of the filters are
obtained from cosine or sine modulation as illustrated in Fig. 8.34. Many different cosine-modulation
approaches have been developed and the most significant difference among them is the low-pass proto-
type choice and the phase of the cosine/sine sequence [6,7,12].

For the case K = 1 (M × 2M transform), the modulated design with the type-IV DCT in (8.8) is
often referred to as the modified DCT (MDCT) [39] or the modulated LT (MLT) [40]. The transform
basis functions (or the filter coefficients) are given as

hk[n] =
√

2

M
h[n] cos

[(
n + M + 1

2

)(
k + 1

2

)
π

M

]
(8.47)
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FIGURE 8.34

Construction via cosine/sine modulation.

for 0 ≤ k ≤ M − 1, 0 ≤ n ≤ 2M − 1 and h[n] can be thought of as a symmetric window modulating the
cosine sequence or the impulse response of a low-pass prototype (with a cutoff frequency of π

2M
). It

has been shown that as far as perfect reconstruction is concerned, the choice of the prototype window
h[n] is rather flexible: all it has to satisfy is the following two constraints:{

h[n] = h[2M − 1 − n],
h2[n] + h2[M − 1 − n] = 1.

(8.48)

A nice choice with a closed-form expression for the prototype filter h[n] is

h[n] = − sin

[(
n + 1

2

)
π

2M

]
, (8.49)

for which the reader can easily verify that it does not only satisfy both conditions in (8.48) but it also
produces a smooth symmetric low-pass filter.

It is interesting to note that the MDCT/MLT as defined in (8.47) and (8.49) also fits the pre- and post-
processing framework in Fig. 8.28. In this interpretation, the prototype window is completely governed
by the preprocessing operator P while the orthogonal core transform CIV takes care of the cosine-
modulation part. The particular window choice in (8.49) leads to a series of M

2 pairwise rotation angles,
which yields an overall orthogonal transform. Unfortunately, we did have to give up the linear-phase
property. However, for speech and audio applications, that is not a critical property. The MDCT/MLT as
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FIGURE 8.35

Modulated LT or MDCT implementation with pre-/postprocessing operators.

depicted in Fig. 8.35 still has a very efficient implementation. Finally, as discussed in Section 8.5.2, the
MDCT can easily be approximated with dyadic lifting steps, rendering a multiplierless transformation
with exact integer-to-integer mapping [41].

Both MP3 and MPEG-2 AAC employ the choice of window in (8.49). However, this is not the only
choice. In fact, the open source Vorbis codec selects a slightly different sine window

h[n] = sin

{
π

2
sin2

[(
n + 1

2

)
π

2M

]}
. (8.50)

MP3 utilizes a hybrid adaptive decomposition approach: the MDCT/MLT is applied to the output of
a 32-channel 512-tap near-perfect reconstruction filter bank. MP3’s hybrid filter bank adapts to the
signal characteristics via the block switching technique similarly to the adaptive mechanism shown in
Fig. 8.32: the codec adaptively selects either a 6 × 12 MDCT (labeled short block for higher time res-
olution) or an 18 × 36 MDCT (labeled long block for higher frequency resolution). On the other hand,
MPEG-4 AAC dynamically switches between a 128 × 256 MDCT (short blocks) and a 1024 × 2048
MDCT (long blocks) [38]. The long block’s frequency resolution is rather high, offering improved cod-
ing efficiency for stationary signals whereas the shorter blocks provide optimized coding capability for
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transient signals. The transform choice in MP3 and AAC clearly indicates the importance of adaptivity
in state-of-the-art compression systems.

Finally, if the application requires even higher frequency resolution, the reader should consider the
extended version of the MDCT/MLT, namely the extended lapped transform (ELT) [12,42] whose basis
functions are

hk[n] = h[n] cos

{[
k + 1

2

][(
n − L − 1

2

)
π

M
+ (N + 1)

π

2

]}
(8.51)

for 0 ≤ k ≤ M − 1, 0 ≤ n ≤ L − 1, and h[n] is again the impulse response of the prototype low-pass
window. A major advantage of the ELT is the existence of various fast implementation algorithms
which still rely on the DCT type-IV as the modulation engine but employ more layers of preprocessing
operators (similarly to the overall framework shown in Fig. 8.26).

8.8 Conclusion
In this chapter, we first briefly reviewed the deep and rich history of transform design and then presented
a general systematic approach for modern transform design: the structural construction of high-order
transforms from low-order basic building blocks: butterflies, lifting steps, and possibly scaling factors.
We concentrated on the integer or dyadic-rational coefficient case which yields powerful integer invert-
ible transforms. Numerous key examples in mainstream audio, image, and video applications were also
presented.
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9.1 Introduction
9.1.1 An overview of multiscale transforms
One’s first and most natural reflex when presented with an unfamiliar object is to carefully look it
over and hold it up to the light to inspect its different facets in the hope of recognizing it, or of at
least relating any of its aspects to a more familiar and well-known entity. This almost innate strategy
pervades all science and engineering disciplines.

Physical phenomena (e.g., earth vibrations) are monitored and observed by way of measurements
in a form of temporal and/or spatial data sequences. Analyzing such data is tantamount to extracting
information which is useful to further our understanding of the underlying process (e.g., frequency and
amplitude of vibrations may be an indicator for an imminent earthquake). Visual or manual analysis
of typically massive amounts of acquired data (e.g., in remote sensing) is impractical, making one
resort to adapted mathematical tools and analysis techniques to better cope with potential intricacies
and complex structure of the data. Among these tools, a variety of functional transforms (e.g., Fourier
transform) exist which, in many cases, may facilitate and simplify an analytical solution of a problem.
More frequently (and just as importantly) they also provide an alternative view of, and a better insight
into, the problem (this, in some sense, is analogous to exploring and inspecting data under a “different
light”). An illustration of such a “simplification” is shown in Fig. 9.1.1, where a rather intricate signal
x(t) shown in the leftmost figure may be displayed/viewed in a different space as two elementary tones.
In Fig. 9.1.2, a real bird chirp is similarly displayed as a fairly rich signal which, when considered
in an appropriate space, is reduced and “summarized” to a few “atoms” in the time-frequency (T-F)
representation. Transformed signals may formally be viewed as convenient representations in a different
domain which is itself described by a set of vectors/functions {φi(t)}i={1,2,··· ,N}. A contribution of a
signal x(t) along a direction “φi(t)” (its projection) is given by the following inner product:

Ci(x) =< x(t),φi(t) >=
∫ ∞

−∞
x(t)φi(t)dt, (9.1.1.1)

where the compact notation “< ·, · >” for an inner product is used. The choice of functions in the set
is usually intimately tied to the nature of information that we are seeking to extract from the signal of
interest. A Fourier function, for example, is specified by a complex exponential “ejωt” and reflects the
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FIGURE 9.1.1

A canonical function-based projection to simplify a representation.

harmonic nature of a signal, and provides it with a simple and an intuitively appealing interpretation as
a “tone.” Its spectral (frequency) representation is a Dirac impulse which is well localized in frequency.
A Fourier function is hence well adapted to represent a class of signals with a fairly well localized
“spectrum,” and is highly inadequate for a transient signal which, in contrast, tends to be temporally
well localized. This thus calls for a different class of analyzing functions, namely those with good
temporal compactness. The wavelet transform, by virtue of its mathematical properties, indeed provides
such an analysis framework which in many ways is complementary to that of the Fourier transform.

The success of classical wavelets has motivated active research in the multiscale analysis field where
multidisciplinary researchers pursue the best multiscale basis/frame in order to efficiently approximate
a function that has singularities across scales. Although the classical wavelets can reach the optimal
approximation for 1D functions, it has problems in generating sparse coefficients to approximate a 2D
function with discontinuities. The classical wavelets locate singularities of a 2D function in isotropic
and multiscale representations. The Fourier frequency plane is partitioned with scaled square windows
that are only in the horizontal/vertical directions. The bandpass wavelet atoms, in general, are con-
ceptually equivalent to applying differential operators (such as calculating the gradient difference) to
an image to measure the regularities in localized areas along the horizontal/vertical directions. This



9.1 Introduction 539

FIGURE 9.1.2

Bird chirp with a simplified representation in an appropriate basis.

isotropic measurement lacks flexibility, and therefore, although the classical wavelets can identify dis-
continuities efficiently, they cannot efficiently detect the direction-oriented curves in an image even
at fine scales. Even though some improvements have been introduced to adopt anisotropic dilation in
different directions, the problems still persist.

A 2D signal, visually represented as an image, typically contains spatially distributed geometrical
shapes that can be characterized by edges that signal the transients from one object to other objects.
The edges are the discontinuities in an image intensity function along curves, contours, or lines that
are directional-oriented. Scientists have acknowledged [1,2,3] the instinct of the human eye in recog-
nizing objects in a multiscale manner. The eye can quickly zoom in to the most important isotropic
or anisotropic features. Researchers in mathematics and engineering fields have extended this natural
vision to the new era of anisotropic wavelets. These new transformations have allowed researchers to
selectively capture edges, which are important features in image processing.

The recently developed curvelets [4,5,6,7], contourlets [8,9], and shearlets [10,11,12,13] aim to
mathematically animate the eye’s function in order to catch the anisotropic curve features. We gen-
erally refer to them as anisotropic wavelets. The beauty with anisotropic wavelets is their flexibility
in partitioning the Fourier plane into a collection of atoms with varied scales and orientations. One
advantage of anisotropic wavelets is that when a 2D function is projected into these wedge-shaped
atoms, the energy of singularities can be confined to only a sparse number of atoms, resulting in only
a small amount of significant coefficients across scales. They are more efficient tools than the classical
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wavelets in capturing the direction-oriented curve features. Another advantage of anisotropic wavelets
is that many nice features of classical wavelets are retained with anisotropic wavelets. Some essential
results are parallel to those for classical wavelets, for example, the exact reconstruction and energy con-
servation formula. This has not only made anisotropic wavelets more attractive tools, but also allows
fast development of anisotropic wavelets using classical wavelets as guidelines.

The goal of this chapter being of a tutorial nature, we cannot help but provide a somewhat high-level
exposition of the theoretical frameworks of classical and anisotropic wavelets, while our focus will be to
provide working knowledge of the tools as well as their potential for application in information sciences
in general. Some of the MATLAB® code for the pictures used in this paper can be downloaded [14].
Before we get into the introduction of the various wavelets, we will introduce some classical Fourier
transform-related topics in the remainder of this section.

9.1.2 Signal representation in functional bases
As noted above, a proper selection of a set of analyzing functions heavily impacts the resulting repre-
sentation of an observed signal in the dual space, and hence the resulting insight as well.

When considering finite energy signals (these are also said to be L2(Rd)), i.e.,∫
Rd

| x(t) |2 dt < ∞, (9.1.2.1)

a convenient functional vector space is that which is endowed with a norm inducing inner product,
namely a Hilbert space, which will also be our assumed space throughout.

Definition 9.1. A vector space endowed with an inner product which in turn induces a norm such
that every sequence of functions xn(t) whose elements are asymptotically close is convergent (this
convergence is in the Cauchy sense whose technical details are deliberately left out to help the flow of
the chapter) is called a Hilbert space.

Remark. An L2(Rd), d = 1,2, space is a Hilbert space.

Definition 9.2. Given α > 0, a function x(t) is said to be Lipschitz-α at t0 ∈ Rd if there exists a positive
constant K and a polynomial pn,t0 with degree n = [α] such that for all t in a neighborhood of t0 we
have

|x(t) − pn,t0(t)| ≤ K|t − t0|α. (9.1.2.2)

It is shown that the function x(t) is necessarily m times differentiable at a point s0 if x(t) is uni-
formly Lipschitz with α > m in a neighborhood of s0, namely, Eq. (9.1.2.2) is satisfied for all points t0
in the neighborhood of s0. Further, if x(t) is Lipschitz-α with α < 1 at t0, then f is not differentiable
at t0.

Definition 9.3. A set of vectors or functions {φi(t)}, i ∈N , which are linearly independent and span a
vector space is called a basis. If in addition these elements are orthonormal, then the basis is said to be
an orthonormal basis.

Among the desirable properties of a selected basis in such a space are adaptivity and a capacity to
preserve and reflect some key signal characteristics (e.g., signal smoothness). Fourier bases have in the
past been at the center of all science and engineering applications. They have, in addition, provided an
efficient framework for analyzing periodic as well as nonperiodic signals with dominant modes.
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9.1.3 The continuous Fourier transform
The Fourier transform is a powerful tool in understanding features of signals/images through a basis. A
Fourier transform essentially measures the spectral content of a signal x(t) across all frequencies “ω,”
viewed as a row vector, and is defined as the decomposition of the signal over a basis {e−jωt }.
Definition 9.4. For a signal x(t), t ∈Rd , viewed as a column vector that is an absolutely integrable
function, its Fourier transform is defined as

X(ω) =
∫
Rd

x(t)e−jωtdt . (9.1.3.1)

The formula is also referred to as the Fourier integral. The signal x(t) can be recovered by its inverse
Fourier transform, which is defined as

x(t) = 1

(2π)d

∫
Rd

X(ω)ejωtdω. (9.1.3.2)

As an orthonormal transform, the Fourier transform enjoys a number of interesting properties [15].
To simplify, we are constrained to the 1D function f (t) in the following until we get to the sections on
anisotropic wavelets. If we use FT (f )(ω) = F(ω) to represent the Fourier transform of f (t), we can
list some of its important properties as follows:

• linearity:

FT (f + g)(ω) = F(ω) + G(ω),

• convolution:

FT (f � g)(ω) = F(ω)G(ω),

• multiplication:

FT (fg)(ω) = F(ω) � G(ω),

• shifting:

FT (x(t − s))(ω) = e−jsωX(ω),

• scaling:

FT (x(at))(ω) = |a|−1X(a−1ω),

• differentiation:

FT (
∂nx(t)

∂tn
)(ω) = (jω)nX(ω).

Throughout, and unless otherwise specified, the � symbol between two functions usually indicates a
convolution between the two functions, and “*” as a superscript denotes a complex conjugate. Fur-
thermore, a useful property of the 1D Fourier transform is its energy preservation in the dual space
(transform domain),

.
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∫
R

| x(t) |2 dt =
∫
R

| X(ω) |2 dω.

This is also true for signals in Rd , and is referred to as the Plancherel–Parseval property [15].

9.1.4 Fourier series
If a canonical function of a selected basis is φ(t) = ejωt , where ω ∈ R, then we speak of a Fourier basis
which yields a Fourier series for periodic signals and a Fourier transform (FT) for aperiodic signals.

The Fourier transform is defined for a broad class of signals [16], and may also be specialized to
derive the Fourier series of a periodic signal. This is easily achieved by noting that a periodic signal
x̃(t) may be evaluated over a period T , which in turn leads to

x̃(t) = x(t + T ) =
∞∑

n=−∞
αx

nejnω0t , (9.1.4.1)

with ω0 = 2π/T and αx
n = 1/T

∫ T

0 x(t)e−jnω0t dt .
In real applications, however, x(t) is measured and sampled at discrete times, requiring that the

aforementioned transform be extended to obtain a spectral representation which closely approximates
the theoretical truth and which remains just as informative. Towards that end, we proceed to define the
discrete-time Fourier transform (DTFT) as

X(ejω) =
∞∑

i=−∞
x(i)e−jωi . (9.1.4.2)

This expression may also be extended for finite observation (finite-dimensional) signals via the fast
Fourier transform (FFT) [15]. While these transforms have been and remain crucial in many appli-
cations, they show limitations in problems requiring a good “time-frequency” localization, as often
encountered in transient analysis. This may be easily understood by reinterpreting Eq. (9.1.4.2) as a
weighted transform where each of the time samples is equally weighted in the summation for X(ejω).
Prior to introducing alternatives to uniform weighting in the Fourier space, we first discuss the practical
implementation and exploitation of the DTFT.

9.1.5 The discrete Fourier transform
In applications, the discrete Fourier transform (DFT) is the computational surrogate for the continuous
Fourier transform and a natural extension of the DTFT. It results in a periodic sequence of numbers that
is mapped to discretely sampled values of an analog signal (viewed as a time function). The sampling is
performed over an N -long window which is extended periodically. The DFT also views a finite length
signal, x(n), as a periodic signal, and is defined as

X(k) =
N−1∑
n=0

x(n)e
−j2πkn

N .
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The original signal may be recovered by applying an inverse transform

x(n) = 1

N

N−1∑
k=0

X(k)e
j2πkn

N .

The DFT decomposes a signal into an orthonormal basis. The energy is preserved by the Plancherel
formula described earlier and written as

||f ||2 =
N−1∑
n=0

|x(k)|2 = 1

N

N−1∑
k=0

|X(k)|2.

The DFT of a 2D signal (image) is correspondingly defined as

X(k1, k2) =
N−1∑

n1,n2=0

x(n1, n2)e
−j2π(k1n1+k2n2)

N .

The original signal may also be recovered by applying an inverse transform

x(n1, n2) = 1

N2

N−1∑
k1,k2=0

X(k1, k2)e
j2π(k1n1+k2n2)

N .

Since the DFT is based on the sampling taken over a certain length, the frequency content of the original
function may not be adequately represented by the DFT when the sampling rate is insufficiently low.
This will cause the high-frequency content to fold back into the lower-frequency content and yield
aliasing.

To overcome some of the limitations of the uniform weighting of a function of a classical Fourier
transform, Gabor [17] first proposed to use a different weighting window leading to the so-called win-
dowed Fourier transform, which served well in many practical applications [18] and is discussed next.

9.1.6 The windowed Fourier transform
As just mentioned, when our goal is to analyze very local features, such as those present in transient
signals, for instance, it makes sense to introduce a focusing window as follows:

Wμ,ω(t) = ejωtW(t − μ),

where ‖ W(μ,ω) ‖= 1 ∀(μ,ω) ∈ R
2 and W(·) is typically a smooth function with a compact support.

This yields the following parameterized transform:

X̂W (ω,μ) =< x(t),Wμ,ω(t) > . (9.1.6.1)

The selection of a proper window is problem-dependent and is ultimately resolved by the desired spec-
trotemporal trade-off, which is itself constrained by the Heisenberg uncertainty principle [18,19]. From
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FIGURE 9.1.3

A Gaussian waveform results in a uniform analysis in the time-frequency plane.

FIGURE 9.1.4

A time-frequency tiling of a dyadic wavelet basis by a proper subsampling of a wavelet frame.

the T-F distribution perspective, and as discussed by Gabor [17] and displayed in Fig. 9.1.3, the Gaus-
sian window may be shown to have less temporal and spectral support than any other function. It hence
represents the best compromise between the temporal and spectral resolution.

Its numerical implementation entails a discretization of the modulation and translation parameters
and results in a uniform partitioning of the T-F plane, as illustrated in Fig. 9.1.4. Different windows
result in various T-F distributions of elementary atoms, favoring either temporal or spectral resolution,
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FIGURE 9.1.5

Trade-off resulting from windows.

as may be seen for the different windows in Fig. 9.1.5. While representing an optimal T-F compromise,
the uniform coverage of the T-F plane by the Gabor transform falls short of adequately resolving a
signal whose components are spectrally far apart. This may easily and convincingly be illustrated by
the study case in Fig. 9.1.6, where we note the number of cycles which may be enumerated within a
window of fixed time width. It is readily seen that while the selected window (shown grid) may be
adequate for one fixed-frequency component, it is inadequate for another lower-frequency component.
An analysis of a spectrum exhibiting such a time-varying behavior is ideally performed by way of
a frequency-dependent time window in different designs, as we elaborate in the next several sections.
The wavelet transform described next offers a highly adaptive window which is of compact support, and
which, by virtue of its dilations and translations, covers different spectral bands at all instants of time.
Anisotropic wavelets using different windows, such as the curvelet transform, the contourlet transform,
and the shearlet transform, will be introduced following the discussion of the wavelet transform and
wavelet decomposition.
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FIGURE 9.1.6

Time windows and frequency trade-off.

9.2 Wavelets: a multiscale analysis tool
This section is organized as follows. In Section 9.2.1 we present a multiscale analysis based on a wavelet
basis and elaborate on its properties and implications, as well as its applications. In Section 9.2.2 we
discuss a specific estimation technique which is believed to be sufficiently generic and general to be
useful in a number of different applications of information sciences in general, in particular for signal
processing and communications.

9.2.1 The wavelet transform
Much like the Fourier transform, the wavelet transform is based on an elementary function, which is
well localized in time and frequency. In addition to a compactness property, this function has to satisfy
a set of properties to be admissible as a wavelet. The first fundamental property is stated next.

Definition 9.5. [18,20,21] A wavelet is a finite energy function ψ(·) (i.e., ψ(·) ∈ L2(R)) with zero
mean, ∫ ∞

−∞
ψ(t)dt = 0. (9.2.1.1)

Wavelets are commonly normalized so that ‖ ψ ‖= ∫ | ψ |2 dt = 1. The wavelet also constitutes a
fundamental building block in the construction of functions (atoms) spanning the time-scale plane by
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FIGURE 9.2.7

Admissible Mexican hat wavelet.

way of dilation and translation parameters. We hence write

ψμ,ξ (t) = 1√
ξ
ψ

(
t − μ

ξ

)
,

where the scaling factor ξ
1
2 ensures an energy invariance of ψμ,ξ (t) over all dilations “ξ” ∈ R+

and translations “μ” ∈ R. With such a function in hand, and towards mitigating the limitation of a
windowed Fourier transform, we proceed to define a Wavelet transform with such a capacity. A scale-
dependent window with good time localization properties as shown in Fig. 9.2.7 yields a transform for
x(t) given by

Wx(μ, ξ) =
∫ ∞

−∞
x(t)

1√
ξ
ψ∗( t − μ

ξ
)dt, (9.2.1.2)

where “*” denotes complex conjugate. This is of course in contrast to the Gabor transform, whose
window width remains constant throughout. A T-F plot of a continuous wavelet transform is shown in
Fig. 9.2.8 for a corresponding x(t).

9.2.2 Inverting the wavelet transform
Similarly to the weighted Fourier transform, the wavelet transform is a redundant representation, which
with a proper normalization factor leads to the reconstruction formula
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FIGURE 9.2.8

Continuous signal with corresponding wavelet transform with cones of influence around singularities.

x(t) = 1

Cψ

∫ ∞

0

∫ ∞

−∞
Wx(μ, ξ)

1√
ξ
ψ

(
t − μ

ξ

)
dξ

ξ2 dμ, (9.2.2.1)

with Cψ = ∫ +∞
0


̂2(ω)
ω

dω.
While the direct and inverse wavelet transform have been successfully applied in a number of dif-

ferent problems [18], their computational cost due to their continuous/redundant nature is considered as
a serious drawback. An immediate and natural question arises about a potential reduction in the com-
putational complexity, and hence in the wavelet transform redundancy. This clearly has to be carefully
carried out to guarantee a sufficient coverage of the T-F plane, and thereby ensure a proper recon-
struction of the transformed signal. Upon discretizing the scale and dilation parameters, a dimension
reduction relative to a continuous transform is achieved. The desired adaptivity of the window width
with varying frequency naturally results by selecting a geometric variation of the dilation parameter
ξ = ξm

0 ,m ∈Z . To obtain a systematic and consistent coverage of the T-F plane, our choice of the
translation parameter “μ” should be in congruence with the fact that at any scale “m,” the coverage of
the whole line R (for instance) is complete and the translation parameter is in step with the chosen
wavelet ψ(t), i.e., μ = nμ0ξ

m
0 , with n ∈Z . This hence gives the following scale- and translation-

adaptive wavelet:

ψ(t)m,n = ξ
−m/2
0 ψ(

t

ξm
0

− nμ0), (9.2.2.2)

where the factor “ξ−m/2
0 ” ensures a unit energy function. This reduction in dimensionality yields a

redundant discrete wavelet transform endowed with a structure which lends itself to an iterative and
fast inversion/reconstruction of a transformed signal x(t).

Definition 9.6. The set of resulting wavelet coefficients {< x(t),ψmn(t) >}(m,n)∈Z2 completely char-
acterizes x(t), and hence leads to a stable reconstruction [18,19] if ∀x(t) ∈ L2(R) (or finite energy
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signal) the following condition on the energy holds:

A ‖ x(t) ‖2≤
∑
m,n

|< x(t),ψmn(t) >|2≤ B ‖ x(t) ‖2 . (9.2.2.3)

Such a set of functions {ψmn(t)}(m,n)∈Z2 then constitutes a frame.

The energy inequality condition intuitively suggests that the redundancy should be controlled to
avoid instabilities in the reconstruction (i.e., too much redundancy makes it more likely that any per-
turbation of coefficients will yield an unstable/inconsistent reconstruction). If the frame bounds “A”
and “B” are equal, the corresponding frame is said to be tight, and if furthermore A = B = 1, it is an
orthonormal basis. Note, however, that for any A 	= 1 a frame is not a basis. In some cases, the frame
bounds specify a redundancy ratio which may help guide one in inverting a frame representation of a
signal, since a unique inverse does not exist. An efficient computation of an inverse (for reconstruction),
or more precisely of a pseudoinverse, may only be obtained by a judicious manipulation of the recon-
struction formula [18,19]. This is in a finite-dimensional setting, similar to a linear system of equations
with a rank-deficient matrix whose column space has an orthogonal complement (the union of the two
subspaces yields all of the Hilbert space), and hence whose inversion is ill-conditioned. The size of
this space is determined by the order of the deficiency (number of linearly dependent columns) and
explains the potential for instability in a frame projection-based signal reconstruction [18]. This type
of “effective rank” utilization is encountered in numerical linear algebra applications (e.g., signal sub-
space methods [22], model order identification, etc.). The close connection between the redundancy of
a frame and the rank deficiency of a matrix suggests that solutions available in linear algebra [23] may
provide insight in solving our frame-based reconstruction problem. A well-known iterative solution to
a linear system and based on a gradient search solution is described in [24] (and in fact coincides with
a popular iterative solution to the frame algorithm for reconstructing a signal) for solving

f = L−1b,

where “L” is a matrix operating on f and b is the data vector. Starting with an initial guess f0 and
iterating on it leads to

fn = fn−1 + α(b − Lfn−1). (9.2.2.4)

When α is appropriately selected, the latter iteration may be shown to yield [18]

lim
n→+∞ fn = f. (9.2.2.5)

Numerous other good solutions have also been proposed in the literature; their detailed descriptions are
given in Refs. [18,19,25,26].

9.2.3 Wavelets and multiresolution analysis
While a frame representation of a signal is of lower dimension than that of its continuous counterpart, a
complete elimination of redundancy is only possible by orthonormalizing a basis. A proper construction
of such a basis ensures orthogonality within scales as well as across scales. The existence of such a
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FIGURE 9.2.9

Hierarchy of wavelet bases.

basis with a dyadic scale progression was first shown, and an explicit construction was given by Meyer
and Daubechies [19,27]. The connection to subband coding discovered by Mallat [28] resulted in a
numerically stable and efficient implementation which helped propel wavelet analysis at the forefront
of computational sciences (see Daubechies and Meyer [29] for a comprehensive historical as well as
technical development [19], which also led to Daubechies’ celebrated orthonormal wavelet bases).

To help maintain a smooth flow of this chapter and achieve the goal of endowing an advanced
undergraduate with working knowledge of the multiresolution analysis (MRA) framework, we give a
high-level introduction, albeit comprehensive, and we refer the interested reader for most of the tech-
nical details to the sources in the bibliography. For example, the trade-off in T-F resolution advocated
earlier lies at the heart of the often technical wavelet design and construction. The balance between
the spectral and temporal decay, which constitutes one of the key design criteria, has led to a wealth
of new functional bases, and this upon the introduction of the now classical MRA framework [18,30].
The pursuit of a more refined analysis arsenal resulted in the recently introduced nonlinear MRA in
[31,32,33].

9.2.3.1 Multiresolution analysis
The MRA theory developed by Mallat and Meyer [27,34] may be viewed as a functional analytic
approach to subband signal analysis, which was previously introduced in and applied to engineering
problems [35,36]. The clever connection between an orthonormal wavelet decomposition of a signal
and its filtering by a bank of corresponding filters led to an axiomatic formalization of the theory and
subsequent equivalence. This, as a result, opened up a new wide avenue of research in the development
and construction of new functional bases as well as filter banks [21,37,38,39]. The construction of a
telescopic set of nested approximation and detail subspaces {Vj }j∈Z and {Wj }j∈Z , each endowed with
an orthonormal basis, as shown in Fig. 9.2.9, is a key step of the analysis. An inter- and intrascale
orthogonality of the wavelet functions, as noted above, is preserved, with the interscale orthogonality
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expressed as

Wi ⊥ Wj ∀i 	= j. (9.2.3.1)

By replacing the discrete parameter wavelet ψij (t) in Eq. (9.2.1.2), where (i, j) ∈Z2 (set of all positive
and negative 2-tuple integers), respectively, denote the translation and the scale parameters (i.e., μ =
2j i, ξ = 2J ), we obtain the orthonormal wavelet coefficients as [18]

Ci
j (x) =< x(t),ψij (t) > . (9.2.3.2)

The orthogonal complementarity of the scaling subspace and that of the residuals/details amount to
synthesizing the higher-resolution subspace

Vi ⊕ Wi = Vi−1.

Iterating this property leads to a reconstruction of the original space where the observed signal lies,
which is taken to be V0 in practice, i.e., the observed signal at its first and finest resolution (this may
be viewed as implicitly accepting the samples of a given signal as the coefficients in an approximation
space with a scaling function corresponding to that which the subsequent analysis is based on). The
dyadic scale progression has been thoroughly investigated, and its wide acceptance/popularity is due
to its tight connection with subband coding, whose practical implementation is fast and simple. Other
nondyadic developments have also been explored (see, e.g., Vetterli and Kovacevic [21]).

The qualitative characteristics of the MRA we have thus far discussed may be succinctly stated as
follows.

Definition 9.7. A sequence {Vi}i∈Z of closed subspaces of L2(R) is a multiresolution approximation
if the following properties hold [18]:

• ∀(j, k) ∈ Z2, x(t) ∈ Vj ↔ x(t − 2j k) ∈ Vj ,
• ∀j ∈ Z,Vj+1 ⊂ Vj ,
• ∀j ∈ Z, x(t) ∈ Vj ↔ x( t

2 ) ∈ Vj+1,

• lim
j→+∞Vj =

∞⋂
j=−∞

Vj = {0},

• lim
j→−∞Vj =

∞⋃
j=−∞

Vj = L2(R),

• there exists a function φ(t) such that {φ(t − n)}n∈Z is a Riesz basis of V0, where the “overbar”
denotes closure of the space.

9.2.3.2 Properties of wavelets
A wavelet analysis of a signal assumes a judiciously preselected wavelet, and hence prior knowledge
about the signal itself. As stated earlier, the properties of an analyzing wavelet have a direct impact on
the resulting multiscale signal representation. Carrying out a useful and meaningful analysis is hence
facilitated by a good understanding of some fundamental wavelet properties.
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9.2.3.3 Vanishing moments
Recall that one of the fundamental admissibility conditions of a wavelet is that its first moment be zero.
This is intuitively understood in the sense that a wavelet focuses on residuals or oscillating features
of a signal. This property may in fact be further exploited by constructing a wavelet with an arbitrary
number of vanishing moments. We say that a wavelet has n vanishing moments if∫

ψ(t)t idt = 0, i = {0,1, · · · , n − 1}. (9.2.3.3)

Reflecting a bit on the properties of a Fourier transform of a function [15], it is easy to note that the
number of zero moments of a wavelet reflects the behavior of its Fourier transform around zero. This
property is also useful in applications like compression, where it is highly desirable to maximize the
number of small/negligible coefficients and only preserve a minimal number of large coefficients. The
cost associated with an increased number of vanishing moments is that of an increased support size
for the wavelet, hence that of the corresponding filter [18,19], and hence that of some of its localizing
potential.

9.2.3.4 Regularity/smoothness
The smoothness of a wavelet “ψ(t)” is important for an accurate and parsimonious signal approxi-
mation. For a large class of wavelets (those relevant to applications), the smoothness (or regularity)
property of a wavelet, which may also be measured by its degree of differentiability (dαψ(t)/dtα) or
equivalently by its Lipschitzity “γ ,” is also reflected by its number of vanishing moments [18]. The
larger the number of vanishing moments, the smoother the function. In applications such as image cod-
ing, a smooth analyzing wavelet is useful for not only compressing the image, but also for controlling
the visual distortion due to errors. The associated cost (i.e., some trade-off) is again a size increase in the
wavelet support, which may in turn make it more difficult to capture local features, such as important
transient phenomena.

9.2.3.5 Wavelet symmetry
At the exception of a Haar wavelet, compactly supported real wavelets are asymmetric around their
center point. A symmetric wavelet clearly corresponds to a symmetric filter which is characterized by a
linear phase. The symmetry property is important for certain applications where symmetric features are
crucial (e.g., a symmetric error in image coding is better perceived). In many applications, however, it
is generally viewed as a property secondary to those described above. When such a property is desired,
truly symmetric biorthogonal wavelets have been proposed and constructed [19,40], with the slight
disadvantage of using different analysis and synthesis mother wavelets. In Fig. 9.2.10, we show some
illustrative cases of symmetric wavelets. Other nearly symmetric functions (referred to as symlets) have
also been proposed, and for a detailed discussion of the pros and cons of each, the interested reader is
deferred to Daubechies [19].

9.2.3.6 A filter bank view: implementation
As noted earlier, the connection between an MRA of a signal and its processing by a filter bank
was not only of intellectual interest, but was of breakthrough proportion for general applications as
well. It indeed provided a highly efficient numerical implementation for a theoretically very power-
ful methodology. Such a connection is most easily established by invoking the nestedness property of
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FIGURE 9.2.10

Biorthogonal wavelets preserve symmetry and symlets nearly do.

multiresolution subspaces. Specifically, it implies that if φ(2−j t) ∈ Vj and Vj ⊂ Vj−1, we can write

1

2j/2 φ(2−j t) = 1

2
j−1

2

∞∑
k=−∞

h(k)φ(2−j+1t − k), (9.2.3.4)

where h(k) =< φ(2−j t), φ(2−j+1t − k) >, i.e., the expansion coefficient at time shift k. By taking the
Fourier transform of Eq. (9.2.3.4), we obtain

�(2jω) = 1

21/2
H(2j−1ω)�(2j−1ω), (9.2.3.5)

which when iterated through scales leads to

�(ω) =
∞∏

p=−∞

h(2−pω)√
2

�(0). (9.2.3.6)
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The complementarity of scaling and detail subspaces noted earlier stipulates that any function in sub-
space Wj may also be expressed in terms of Vj−1, where Vj−1 = Span{φj−1,k(t)}(j,k)∈Z2 , or

1

2j/2 ψ(2−j t) =
∞∑

i=−∞

1

2(j−1)/2
g(i)φ(2−j+1t − i). (9.2.3.7)

In the Fourier domain, this leads to


(2jω) = 1√
2
G(2j−1ω)�(2j−1ω), (9.2.3.8)

whose iteration also leads to an expression of the wavelet Fourier transform in terms of the transfer
function G(ω), as previously given for �(ω) in Eq. (9.2.3.6). In light of these equations it is clear that
the filters {G(ω),H(ω)} may be used to compute functions at successive scales. This in turn implies
that the coefficients of any function x(t) may be similarly obtained as they are merely the result of an
inner product of the signal of interest x(t) with a basis function,

< x(t),ψij (t) > =
∑

< x(t), g(k)
1

2(j−1)/2
φ(2−j+1(t − 2−j i) − k) >

= mkg(k)Aj+1
i−k (x). (9.2.3.9)

To complete the construction of the filter pair {H(·),G(·)}, the properties between the approximation
subspaces

({Vj }j∈Z
)

and detail subspaces
({Wj }j∈Z

)
are exploited to derive the design criteria for

the discrete filters. Specifically, the same scale orthogonality property between the scaling and detail
subspaces in ∑

k∈Z
�(2jω + 2kπ)
(2jω + 2kπ) = 0, ∀ j, (9.2.3.10)

is the first property that the resulting filters should satisfy. For the sake of illustration, fix j = 1 and use
√

2�(2ω) = H(ω)�(ω). (9.2.3.11)

Using Eq. (9.2.3.11) together with the orthonormality property of j th scale basis functions {�jk(t)}
[18], i.e.,

∑ | �(ω + 2kπ) |2= 1, where we separate even and odd terms, yields the first property of
one of the so-called conjugate mirror filters,

| H(ω) |2 + | H(ω + π) |2= 1. (9.2.3.12)

Using the nonoverlapping property expressed in Eq. (9.2.3.10) together with the evaluations of 
(2ω)

and �(2ω) and making a similar argument as in the preceding equation, we obtain the second property
of conjugate mirror filters,

H(ω)G∗(ω) + H(ω + π)G∗(ω + π) = 0. (9.2.3.13)

The combined structure of the two filters is referred to as “a conjugate mirror filter bank,” see
Fig. 9.2.11, and their respective impulse responses completely specify the corresponding wavelets, see
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FIGURE 9.2.11

Filter bank implementation of a wavelet decomposition.

Fig. 9.2.12, (see numerous references, e.g., [20], for additional technical details). Note that the literature
in the multiresolution studies tends to follow one of two possible strategies:

• a more functional analytic approach, which is mostly followed by applied mathematicians/mathe-
maticians and scientists [18,19,30] (we could not possibly do justice to the numerous good texts
now available, the author cites what he is most familiar with),

• a more filtering-oriented approach that is widely used among engineers and some applied mathe-
maticians [21,38,41].

9.2.3.7 Refining a wavelet basis: wavelet packet and local cosine bases
A selected analysis wavelet is not necessarily well adapted to any observed signal. This is particularly
the case when the signal is time-varying and has a rich spectral structure.

One approach is to then partition the signal into homogeneous spectral segments and by the same
token find it an adapted basis. This is tantamount to further refining the wavelet basis and results in
what is referred to as a wavelet packet basis. A similar adapted partitioning may be carried out in the
time domain by way of an orthogonal local trigonometric basis (sine or cosine). The two formulations
are very similar, and the solution to the search for an adapted basis in both cases is resolved in precisely
the same way. In the interest of space, we focus in the following development only on wavelet packets.

9.2.3.8 Wavelet packets
We maintained above that the selection of an analysis wavelet function should be carried out with ref-
erence to the signal of interest. This of course assumes that we have some prior knowledge about the
signal at hand. While plausible in some cases, this assumption is very unlikely in most practical cases.
Yet it is highly desirable to select a basis which might still lead to an adapted representation of an a
priori “unknown” signal. Coifman et al. [42] proposed to refine the standard wavelet decomposition.
Intuitively, they proposed to further partition the spectral region of the details (i.e., wavelet coefficients)
in addition to partitioning the coarse/scaling portion as ordinarily performed for a wavelet representa-
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FIGURE 9.2.12

A Daubechies-8 function and its spectral properties.

tion. This, as shown in Fig. 9.2.13, yields an overcomplete representation of a signal, in other words
a dictionary of bases with a tree structure. The binary nature of the tree, as further discussed below,
affords a very efficient search for a basis which is best adapted to a given signal in the set.

Formally, we accomplish a partition refinement of say a subspace Uj by way of a new wavelet basis
which includes both its approximation and its details, as shown in Fig. 9.2.13. This construction due
to Coifman, Meyer, and Wickerhauser [42] may be simply understood as one’s ability to find a basis
for all the subspaces {Vj }j∈Z and {Wj }j∈Z by iterating the nestedness property. This then amounts to
expressing two new functions ψ̃0

j (t) and ψ̃1
j (t) in terms of {ψ̃j−1,k}(j,k)∈Z2 , an orthonormal basis of a

generic subspace Uj−1 (which in our case may be either Vj−1 or Wj−1),

ψ̃0
j (t) =

∞∑
k=−∞

h(k)ψ̃j−1(t − 2j−1k), (9.2.3.14)

ψ̃1
j (t) =

∞∑
k=−∞

g(k)ψ̃j−1(t − 2j−1k), (9.2.3.15)
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FIGURE 9.2.13

Wavelet packet basis structure.

FIGURE 9.2.14

Wavelet packet filter bank realization.

where h(·) and g(·) are the impulse responses of the filters in a corresponding filter bank, and the com-
bined family {ψ̃0

j (t − 2j k), ψ̃1
j (t − 2j k)}(j,k)∈Z2 is an orthonormal basis of Uj . This, as illustrated in

Fig. 9.2.13, is graphically represented by a binary tree where at each of the nodes the corresponding
wavelet packet coefficients reside. The implementation of a wavelet packet decomposition is a straight-
forward extension of that of a wavelet decomposition, and consists of an iteration of both H(·) and G(·)
bands (see Fig. 9.2.14) to naturally lead to an overcomplete representation. This is reflected on the tree
by the fact that, at the exception of the root and bottom nodes which only have two children nodes and
one ancestor node, respectively, each node bears two children nodes and one ancestor node.
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9.2.3.9 Basis search
To identify the best-adapted basis in an overcomplete signal representation, as just noted above, we
first construct a criterion which, when optimized, will reflect desired properties intrinsic to the signal
being analyzed. The earliest proposed criterion applied to a wavelet packet basis search is the so-called
entropy criterion [43]. Unlike Shannon’s information theoretic criterion, this is additive and makes use
of the coefficients residing at each node of the tree in lieu of computed probabilities. The presence of
more complex features in a signal necessitates such an adapted basis to ultimately achieve an ideally
more parsimonious/succinct representation. As pointed out earlier, when searching for a wavelet packet
or local cosine best basis, we typically have a dictionary D of possible bases with a binary tree structure.
Each node (j, j ′) (where j ∈ {0, . . . , J } represents the depth and j ′ ∈ {0, . . . ,2j − 1} represents the
branches on the j th level) of the tree then corresponds to a given orthonormal basis Bj,j ′ of a vector
subspace of 2({1, . . . ,N}) (Hilbert space of finite energy sequences). Since a particular partition p ∈P
of [0,1] is composed of intervals Ij,j ′ = [2−j j ′,2−j (j ′ + 1)[, an orthonormal basis of 2({1, . . . ,N})
is given by Bp = ∪{(j,j ′)|Ij,j ′ ∈P}Bj,j ′ . By taking advantage of the property

Span{Bj,j ′ } = Span{Bj+1,2j ′ } ⊥⊕ Span{Bj+1,2j ′+1}, (9.2.3.16)

where ⊕ denotes a subspace direct sum, we associate to each node a cost C(·). We can then perform a
bottom-up comparison of children versus parent costs (this in effect will eliminate the redundant/inad-
equate leaves of the tree) and ultimately prune the tree.

Our goal is to then choose the basis which leads to the best approximation of {x[t]} among a col-
lection of orthonormal bases {Bp = {
xip}1≤i≤N | p ∈ P}, where the subscript xi emphasizes that it
is adapted to {x[t]}. Trees of wavelet packet bases studied by Coifman and Wickerhauser [44] are con-
structed by quadrature mirror filter (QMF) banks and comprise functions that are well localized in time
and frequency. This family of orthonormal bases partitions the frequency axis into intervals of different
sizes, with each set corresponding to a specific wavelet packet basis. Another family of orthonormal
bases studied by Malvar [45] and Coifman and Meyer [42] can be constructed with a tree of windowed
cosine functions and corresponds to a division of the time axis into intervals of dyadically varying sizes.

For a discrete signal of size N (e.g., the size of the wavelet packet tableau shown in Fig. 9.2.13),
one can show that a tree of wavelet packet bases or local cosine bases has P = N(1 + log2 N) distinct

vectors but includes more than 2
N
2 different orthogonal bases. One can also show that the signal ex-

pansion in these bases is computed with algorithms that require O(N log2 N) operations. Wickerhauser
and Coleman [44] proposed that for any signal {x[m]} and an appropriate functional K(·), one finds the
best basis Bp0 by minimizing an “additive” cost function

Cost(x,Bp) =
N∑

i=1

K(|〈x,
xip〉|2) (9.2.3.17)

over all bases. As a result, the basis which results from minimizing this cost function corresponds to
the “best” representation of the observed signal. The resulting pruned tree of Fig. 9.2.15 bears the
coefficients at the remaining leaves/nodes.
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FIGURE 9.2.15

Tree pruning in search for a best basis.

9.2.4 Multiresolution applications in estimation problems
The computational efficiency of wavelet decomposition together with all of its properties has triggered
unprecedented interest in its application in the area of information sciences (see, e.g., [46,47,48,49,
50,51]). Specific applications have ranged from compression [52,53,54,55] to signal/image modeling
[56,57,58,59] and from signal/image enhancement to communications [60,61,62,63,64,65,66,67]. The
literature in statistical applications as a whole has seen an explosive growth in recent years, and in
the interest of space, we will focus our discussion on a somewhat broader perspective which may, in
essence, be usefully reinterpreted in a number of different instances.

9.2.4.1 Signal estimation/denoising and modeling
Denoising may be heuristically interpreted as a quest for parsimony of a representation of a signal.
Wavelets, as described above, have a great capacity for energy compaction, particularly at or near sin-
gularities. Given a particular wavelet, its corresponding basis as noted above is not universally optimal
for all signals and particularly not for a noisy one; this difficulty may be lifted by adapting the repre-
sentation to the signal in a “best” way possible and according to some criterion. The first of the two
possible ways is to pick an optimal basis in a wavelet packet dictionary and discard the negligible co-
efficients [68]. The second, which focuses on reconstruction of a signal in noise, and which we discuss
here, accounts for the underlying noise statistics in the multiscale domain to separate the noisy signal
into the “mostly” signal part and the “mostly” noise part [69,70,71]. We opt here to discuss a more gen-
eral setting which assumes unknown noise statistics and where a signal reconstruction is still sought
in some optimal way, as we elaborate below. This approach is particularly appealing in that it may be
reduced to the setting in earlier developments.

9.2.4.2 Problem statement
Consider an additive noise model

x(t) = s(t) + n(t), (9.2.4.1)
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where s(t) is an unknown but deterministic signal corrupted by a zero-mean noise process n(t) and x(t)

is the observed, i.e., noisy, signal. The objective is to recover the signal {s(t)} based on the observations
{x(t)}.

The underlying signal is modeled with an orthonormal basis representation,

s(t) =
∑

i

Cs
i ψi(t),

and similarly the noise is represented as

n(t) =
∑

i

Cn
i ψi(t).

By linearity, the observed signal can also be represented in the same fashion, with its coefficients given
by

Cx
i = Cs

i + Cn
i .

A key assumption we make is that for certain values of i, Cs
i = 0. In other words, the corresponding

observation coefficients Cx
i represent “pure noise,” rather than signal corrupted by noise. As shown

by Krim and Pesquet [72], this is a reasonable assumption in view of the spectral and structural dif-
ferences between the underlying signal s(t) and the noise n(t) across scales. Given this assumption,
wavelet-based denoising consists of determining which wavelet coefficients represent primarily signal
and which mostly capture noise. The goal is to then localize and isolate the “mostly signal” coefficients.
This may be achieved by defining an information measure as a function of the wavelet coefficients. It
identifies the “useful” coefficients as those whose inclusion improves the data explanation. One such
measure is Rissanen’s information theoretic approach (or minimum description length [MDL]) [73]. In
other words, the MDL criterion is utilized for resolving the trade-off between model complexity (each
retained coefficient increases the number of model parameters) and goodness-of-fit (each truncated
coefficient decreases the fit between the received, i.e., noisy, signal and its reconstruction).

9.2.4.3 The coding length criterion
Wavelet thresholding is essentially an order estimation problem, one of balancing model accuracy
against overfitting and one of capturing as much of the “signal” as possible, while leaving out as much
of the “noise” as possible. One approach to this estimation problem is to account for any prior knowl-
edge available on the signal of interest, which usually is of probabilistic nature. This leads to a Bayesian
estimation approach as developed in [74,75]. While generally more complex, it does provide a regular-
ization capacity which is much needed in low-signal-to-noise ratio (SNR) environments.

A parsimony-driven strategy which we expound on here addresses the problem of modeling in
general and that of compression in particular. In addition it provides a fairly general and interesting
framework where the signal is assumed deterministic and unknown and results in some intuitively
sensible and mathematically tractable techniques [68]. Specifically, it brings together Rissanen’s work
on stochastic complexity and coding length [73,76] and Huber’s work on minimax statistical robustness
[77,78].

Following Rissasen, we seek the data representation that results in the shortest encoding of both
observations and complexity constraints. As a departure from the commonly assumed Gaussian like-
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lihood, we rather assume that the noise distribution f of our observed sequence is a (possibly) scaled
version of an unknown member of the family of ε-contaminated normal distributions,

Pε = {(1 − ε)� + εG : G ∈F},

where � is the standard normal distribution, F is the set of all suitably smooth distribution functions,
and ε ∈ (0,1) is the known fraction of contamination (this is no loss of generality, since ε may always
be estimated if unknown). Note that this study straightforwardly reduces to the additive Gaussian noise
case by setting the mixture parameter ε = 0 and is in that sense more general.

For fixed model order, the expectation of the MDL criterion is the entropy plus a penalty term which
is independent of both the distribution and the functional form of the estimator. In accordance with the
minimax principle, we seek the least favorable noise distribution and evaluate the MDL criterion for
that distribution. In other words, we solve a minimax problem where the entropy is maximized over
all distributions in Pε and the description length is minimized over all estimators in S . The saddle
point (provided its existence) yields a minimax robust version of MDL, which we call the minimax
description length (MMDL) criterion.

In [68], it is shown that the least favorable distribution in Pε, which also maximizes the entropy,
is one which is Gaussian in the center and Laplacian (“double exponential”) in the tails and switches
from one to the other at a point whose value depends on the fraction of contamination ε.

Proposition 9.1. The distribution fH ∈ Pε that minimizes the negentropy is

fH (c) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − ε)φσ (a)e
1

σ2 (ac+a2)
, c ≤ −a,

(1 − ε)φσ (c), −a ≤ c ≤ a,

(1 − ε)φσ (a)e
1

σ2 (−ac+a2)
, a ≤ c,

(9.2.4.2)

where φσ is the normal density with mean zero and variance σ 2 and a is related to ε by the equation

2

(
φσ (a)

a/σ 2
− �σ (−a)

)
= ε

1 − ε
. (9.2.4.3)

9.2.4.4 Coding for worst-case noise
Let the set of wavelet coefficients obtained from the observed signal be denoted by CN = {Cx

1 , Cx
2 , . . . ,

Cx
N } as a time series without regard to the scale and where the superscript indicates the corresponding

process. Let exactly K of these coefficients contain signal information, while the remainder only con-
tain noise. If necessary, we reindex these coefficients so that

Cx
i =

{
Cs

i + Cn
i , i = 1,2, . . . ,K,

Cn
i , otherwise.

(9.2.4.4)

By assumption, the set of noise coefficients {Cn
i } is a sample of independent, identically distributed

(i.d.d.) random variates drawn from Huber’s distribution fH . It follows by Eq. (9.2.4.4) that the ob-
served coefficients Cx

i obey the distribution fH (c − Cs
i ) when i = 1,2, . . . ,K and fH (c) otherwise.
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Thus, the likelihood function is given by

(CN ; K) =
∏
i≤K

fH (Cx
i − Cs

i )
∏
i>K

fH (Cx
i ).

Since fH is symmetric and unimodal with a maximum at the origin, the above expression is maximized
(with respect to the signal coefficient estimates {Ĉs

i }) by setting

Ĉs
i = Cx

i ,

for i = 1, 2, . . . , K . It follows that the maximized likelihood (given K) is

∗(CN ; K) =
∏
i≤K

fH (0)
∏
i>K

fH (Cx
i ).

Thus, the problem is reduced to choosing the optimal value of K , in the sense of minimizing the MDL
criterion,

L(CN ; K) = − log∗(CN ; K) + K logN

= −
∑
i≤K

logfH (0) −
∑
i>K

logfH (Cx
i ) + K logN.

(9.2.4.5)

Neglecting terms independent of K , this is equivalent to minimizing

L̃(CN ; K) = 1

2σ 2

∑
i>K

η(Cx
i ) + K logN,

where

η(c) =
{

c2 if | c |< a,

a | c | − a2 otherwise

is proportional to the exponent in Huber’s distribution fH . This can simply be achieved by a threshold-
ing scheme [68].

Proposition 9.2. The coefficient | Cx
i | is truncated as follows.

Case 1. When logN > a2

2σ 2 , the coefficient | Cx
i | is truncated if

| Cx
i |< a

2
+ σ 2

a
logN.

Case 2. When logN ≤ a2

2σ 2 , the coefficient | Cx
i | is truncated if

| Cx
i |< σ

√
2 logN.
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Remarks. More ample details may be found in [68].

When σ 2 → 0, the thresholding scheme reduces to Case 2, and Cx
i is never truncated; since this repre-

sents the no-noise case, it is reasonable that all coefficients should be retained in the reconstruction.
On the other hand, for large σ 2, the thresholding scheme reduces to Case 1, which is more conser-
vative. For σ 2 → ∞, the SNR becomes zero and the best one can do is to estimate the signal as
identically zero.

Similarly, when a → ∞, the noise distribution becomes purely Gaussian, and the thresholding scheme
reduces to Case 2, as expected. The resulting threshold of this particular noise case coincides with
the results of [69,70] and is qualitatively similar to that derived in [71]. On the other hand, when
a → 0, the noise distribution becomes purely Laplacian, and the thresholding scheme reduces to
Case 1.

Finally, when N → 1, the thresholding scheme reduces to Case 2, suggesting that outliers are unlikely
to occur in a small sample, and it is hence more reasonable to assume purely Gaussian noise. On
the other hand, for large N , the thresholding scheme reduces to Case 1, since outliers are highly
likely to occur in a large sample.

It is important to distinguish the minimax error result obtained in [69], which was achieved over a signal
smoothness class, from those discussed here and derived in [68], which are obtained over a family
of noise distributions.

9.2.4.5 Numerical experiments
In the examples that follow, we demonstrate the performance of the robust thresholding procedure
described above and compare it with that of the thresholding scheme based upon the assumption of
normally distributed noise.

Example I
Using WAVELAB (available from the Stanford Statistics Department, courtesy of D.L. Donoho

and I.M. Johnstone), we synthesized a broken ramp signal of length N = 1024. This signal admits
an efficient representation in a wavelet basis, i.e., one with very few nonzero coefficients. The noise
was additive and i.i.d., obeying an N(0, σ 2) distribution contaminated by a fraction ε = 10% of white
Gaussian noise with distribution N(0,9σ 2). The overall SNR was maintained at 10 dB (see Fig. 9.2.16,
top).

We implemented two estimators. The first one was based on a purely Gaussian noise assumption
(i.e., ε = 0), where the thresholding scheme due to [72,79] was used. The second was the MMDL robust
estimator described above. The reconstructions based on each estimator appear in Fig. 9.2.16. As may
easily be observed, and in contrast to the MMDL technique, the Gaussian assumption induces a high
susceptibility to outliers.

Monte Carlo simulations were carried out to evaluate the reconstruction performance over a range of
SNRs. At each value of the SNR, 100 experiments were conducted, and the cumulative reconstruction
error is displayed in Fig. 9.2.17. The robust estimator uniformly outperforms the classic estimator in
both L1- and L2-errors over a wide range of SNRs. Furthermore, the performances of the Gaussian
and robust estimators become indistinguishable at high SNRs, i.e., small noise variance, showing that
robustness does not come at the cost of reduced efficiency.
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FIGURE 9.2.16

Noisy ramp signal and its Gaussian and robust reconstructions.

Bounding the reconstruction error.

Although the robust estimator-based reconstruction error is much improved, it is still potentially
unbounded. As further discussed in [68], and due to the compactness of wavelets, unbounded
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FIGURE 9.2.17

L1- and L2-error performance versus SNR for the Gaussian and robust estimators.

noise will still result in unbounded reconstruction error, a property that may be considered unde-
sirable. This problem may be circumvented by making the assumption that the signal has bounded
energy; in that case, one of at least two alternatives is possible:

1. In practice, the signal is known to be bounded, and prior knowledge of the physical properties
of the signal may be used to determine the ‖ · ‖∞ of the sequence of signal wavelet coefficients
{Cs

i }. This information may be used to truncate observed coefficients {Cx
i } not only below, as

discussed earlier, but also above.
2. In the absence of such prior knowledge, it may still be possible to bound the reconstruction

error through an adaptive supremum–secondary thresholding scheme based upon some rep-
resentation criterion, e.g., entropy.

The first of these approaches uses the following modified thresholding. Let β > 0 be an upper
bound on the magnitude of the signal coefficients. Then

C̃s
i =

⎧⎪⎨
⎪⎩

0, if | Cx
i | ≤ a

2 + σ 2

a
logN,

Ĉs
i = Cx

i , if a
2 + σ 2

a
logK ≤ | Cx

i | ≤ β,

β sgn(Cx
i ), if β ≤ | Cx

i |,
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FIGURE 9.2.18

Error stability versus variation in the mixture parameter ε.

provided that logN > a2/2σ 2 and β > (a/2) + (σ 2/a) logN . The graph shows that although
the robust estimator’s reconstruction error initially grows more slowly than that of the Gaussian
estimator, the two errors soon converge as the variance of the outliers grows. The reconstruction
error for the bounded-error estimator, however, levels off past a certain magnitude of the outlier,
as expected.

Sensitivity analysis for the fraction of contamination.

Although such crucial assumptions as the normality of the noise or exact knowledge of its vari-
ance σ 2 usually go unremarked, it is often thought that Huber-like approaches are limited by
the assumption of a known ε. We demonstrate the resilience and robustness of the approach by
studying the sensitivity of the estimator to changes in the assumed value of ε.
Fig. 9.2.18 shows the total reconstruction error as a function of variation in the true fraction
of contamination ε from white Gaussian noise with distribution N(0,9σ 2). In other words, an
abscissa of “0” corresponds to an assumed true fraction of contamination equal to 0; larger ab-
scissas correspond to outliers of larger magnitude than assumed by the robust estimator, and vice
versa. Clearly, the Gaussian estimator assumes zero contamination throughout, namely, the esti-
mator did not acknowledge the contamination from N(0,9σ 2). The figure in the bottom shows
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that the reconstruction error for the Gaussian estimator grows very rapidly as the true fraction of
contamination increases, whereas that of the robust estimator is nearly flat over a broad range, as
shown in the figure in the top. This should not come as a surprise; outliers are, by definition, rare
events, and for a localized procedure such as wavelet expansion, the precise frequency of outliers
is much less important than their existence at all.

Example II
The example above assumed a fixed wavelet basis. As discussed above, however, highly nonstation-

ary signals can be represented most efficiently by using an adaptive basis that automatically chooses
resolutions as the behavior of the signal varies over time. Using an L2-error criterion we search for the
best basis of a speech signal and a chirp signal shown in Fig. 9.2.19 and errors are further analyzed (see
[80] for more details).

FIGURE 9.2.19

Two real signals, a voice (left) and a bird chirp (right), are used to analyze the performance of the best basis
search by an L2-error criterion.

The separability property of most carefully designed wavelets and their inability to achieve fine
tuned directional analysis has led to a search for alternative wavelets which are more sensitive to ar-
bitrary curves and image edges. These include the introduction of curvelets, contourlets (an efficient
implementation of curvelets), and shearlets, which are discussed in more detail in the next three sec-
tions.

9.3 Curvelets and their applications
We first introduce the 2D curvelet transform developed by Candès and Donoho around 2000 [4].
Initially, they proposed the ridgelet transform in the Cartesian Fourier plane [81] in order to locate
segmented curve features in an image. Soon, they discovered that multiscale partitioning of the Fourier
plane using polar coordinate parameters can provide much simpler structures. This led to their devel-
opment of the current continuous curvelet transform. This is closely related to Hart Smith’s parabolic
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FIGURE 9.3.20

The polar and rectangle coordinates.

scaling-based transform using the Fourier integral operators [82]. The convenience in using polar co-
ordinates to define the continuous curvelet transform indeed has a cost in implementing it in the digital
world. Candès, Donoho, and their collaborators have also introduced the discretized curvelet transform,
in which the DFT involving polar coordinates has been resampled using Cartesian coordinates [83].

In a 2D spatial plane, the curvelet atoms’ effective impact is similar to applying differential operators
to an image along selected directions to measure the regularities in localized areas that can be contained
inside rotated rectangles. Large coefficients can be obtained when a differential operator is applied
across the discontinuities along a curve, and thus can be used to characterize salient features in an
image.

To start, we first review the conversion between polar coordinates and Cartesian coordinates, see
Fig. 9.3.20. In the Fourier frequency plane, a point � = (�x,�y) with Cartesian coordinates, can be
converted to polar coordinates (r, σ ) by

r = ±|�| = ±
√

�2
x + �2

y, σ = arctan(�y/�x),

assuming we confine the angle σ to (−π/2,π/2) (the angle between the polar axis and the ray from the
pole to the point). Meanwhile, the polar coordinates (r, σ ) can be converted to the Cartesian coordinates
(�x,�y) by

�x = r cosσ, �y = r sinσ. (9.3.0.1)

Let Rθ be the operator that rotates a point � in the counterclockwise (ccw) direction around the
origin by an angle of θ rad. The end point in polar coordinates will be Rθ(�) = (r, σ + θ). In Cartesian
coordinates, the operator can be written as a matrix

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
,
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FIGURE 9.3.21

Fourier transform of an image and its rotated version. (a) Selected Fourier content of an image. (b) Its corre-
sponding spatial waveform. (c) Fourier content rotated counterclockwise by 45 degrees. (d) Its corresponding
spatial waveform is also rotated counterclockwise by 45 degrees.

and the end point of the rotation, Rθ(�) = Rθ · �, is the multiplication of the rotating matrix and the
vector � (� can be viewed as a column vector).

The following proposition states that when the input of a function is rotated by θ rad in the ccw
direction, its Fourier transform is also rotated by θ rad in the Fourier plane (see Fig. 9.3.21).

Proposition 9.3. Let the Fourier transform of f (x) ∈ L2(R2) be F(�). We have

F(Rθ (�)) =
∫
R2

f (Rθ (x)) dx. (9.3.0.2)

9.3.1 The continuous curvelet transform
The continuous curvelet transform is defined as the inner product of a function with curvelet atoms at
various dilating scales, rotating angles, and translating locations. It calculates the energy of the func-
tion correlated to each curvelet atom so that the frequency content of the function can be examined
separately in each localized subband. At each scale, the curvelet atoms are generated by rotating a
smooth 2D window with compact support in its frequency domain and shifting its waveform in the
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FIGURE 9.3.22

A mother curvelet window 
a(�) at scale a = 1.

spatial domain to various locations. This window is called the mother curvelet at scale a, as shown in
Fig. 9.3.22.

9.3.1.1 Mother curvelets
At scale a, the Fourier transform of a mother curvelet is written as 
a(�x,�y) in Cartesian coordinates
or as 
a(r, σ ) in polar coordinates. It is defined using two 1D windows, along the radial and angular
directions, and is given by


a(r, σ ) = a3/4 
1(ar)
2(
σ√
a

), 0 < a ≤ 1, (9.3.1.1)

where the radial (or amplitude) window 
1(r) is a smooth, bandpass, and nonnegative real-valued
function that has its support r ∈ [1/2,2]. This interval is chosen for the convenience of using dyadic in-
tervals for discretization. The angular (or phase) window 
2(σ ) is a smooth, low-pass, and nonnegative
real-valued even function that has its support σ ∈ [−1,1].

At scale a, the mother curvelet 
a(r, σ ) is constructed by scaling the two window functions, 
1

and 
2, in two different ways. The support of this mother curvelet is a single polar wedge with an area

k · a−3/2 (k is a constant), which is located inside
{
(r, σ ) : 1

2a
< r < 2

a
, |σ | < √

a
}

and is symmetric

with respect to the polar axis. The length of the wedge in the polar axis direction is at the same order
as a−1, and the larger arc length in the angular direction is at the same order as a−1/2, as shown in
Fig. 9.3.22. Approximately, the wedge has width ≈ length2. It can be observed that the mother curvelets
at two different scales a, a′, with a 	= a′, have no scaling relation between them, so they differ slightly
at various scales.

9.3.1.2 The amplitude and angular windows
The choice of the amplitude and angular windows not only decides the properties of the mother
curvelets, but also decides the properties of the curvelet atoms. The above construction shows that the
curvelet windows have compact supports in the Fourier plane because both 
1 and 
2 have compact
supports. Further, the following proposition (derived in [84]) implies that their corresponding spatial
waveforms are such that ψ1(x),ψ2(t) ∈ C∞. Hence the mother curvelets are C∞ in the spatial plane.
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Proposition 9.4. A function ψ(x) is bounded and n times continuously differentiable with bounded
derivatives if its Fourier transform 
(�x) satisfies∫ +∞

−∞
|
(�x)|(1 + |�x |n) d�x < +∞. (9.3.1.2)

The compact support of a mother curvelet in the Fourier plane indicates that the spatial waveform
of the mother curvelet does not have a compact support in the spatial plane. Its waveform spreads out,
which is known as the side robe effects. To allow the curvelets to focus on localized areas in the spatial
domain for detecting the singularities, the windows 
1 and 
2 should be chosen as smooth as possible
in the Fourier plane so that their spatial waveforms decay rapidly. A function is said to have a rapid
decay if there exists a constant Mn, such that the following is true for all integers n > 0 for f (x):

|f (x)| ≤ Mn

(1 + |x|n) , ∀x. (9.3.1.3)

Proposition 9.4 is also true for the inverse Fourier transform. If the spatial waveform of a mother
curvelet decays fast, then it indicates that Fourier windows 
1(r) and 
2(σ ) should be Cn. Therefore,
the windows 
1 and 
2 should be smooth and n times continuously differentiable. In the literature, the
windows are often required to be C∞ to ensure the spatial functions decay rapidly.

At scale a, the mother waveform oscillates along the horizontal direction with most of its support
located inside an ellipsoid-shaped area along a ridge in the vertical direction. The ridge is defined as
the (line) locations where the amplitude of a function reaches its maximum amplitude. This ellipsoid
becomes deformed and has a “needle-like” shape (the area becomes longer and narrower) when the
scale a gets smaller. Finally, the amplitude and angular windows 
1 and 
2 should satisfy the following
admissibility conditions: ∫ ∞

0


2
1 (r)

r
dr = C
1, (9.3.1.4)

∫ 1

−1

2

2 (σ ) dσ = C
2 . (9.3.1.5)

The admissibility conditions in Eqs. (9.3.1.4) and (9.3.1.5) can be normalized such that C
1 = 1 and
C
2 = 1. Eq. (9.3.1.4) indicates that 
1(0) = 0, namely, 
1(r) is the transfer function of a bandpass
filter.

A continuously differentiable function, 
1, that satisfies 
1(0) = 0 is sufficient to ensure that 
1
satisfies the admissibility condition in Eq. (9.3.1.4) [84]. The selection of the windows for constructing
the curvelets will be further discussed in detail in the discrete case.

9.3.1.3 The curvelet atoms
Definition 9.8. A curvelet atom is an element in the set {ψa,θ,b(x),x ∈R2, a ∈ (0,1] , θ ∈ [0,2π) ,b ∈
R2}. It can be defined as the inverse Fourier transform of a function 
a,θ,b(�) as follows:


a,θ,b(�) = exp(−j 〈b,�〉)
a(Rθ�), (9.3.1.6)

where 
a(�) is a mother curvelet. The polar coordinate format of 
a(Rθ�) is equal to 
a(r, σ + θ).
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Specifically, at scale a, the curvelet atom at θ = 0,b = 0 (define 0 = (0,0)) is the mother curvelet
because


a,0,0(�) = 
a(�). (9.3.1.7)

The spatial waveform of the curvelet atom, ψa,θ,b(x), takes a complex value and can be written in
terms of a mother curvelet as

ψa,θ,b(x) = ψa,0,0(x)(Rθ (x − b)), a ∈ (0,1] , θ ∈ [0,2π) ,b ∈R2. (9.3.1.8)

Fig. 9.3.21 shows two curvelet atoms (in both Fourier and spatial planes) at different orientations.
Although complex-valued curvelet atoms are capable of separating the amplitude and the phase infor-
mation contained in a 2D function, in many situations the real-valued curvelet atoms can be built by
modifying the mother curvelet windows, namely, replacing the radial window 
1(r) with 
R,1(r) =

1(r) + 
1(−r) or replacing the angular window 
2(σ ) with 
R,2(σ ) = 
2(σ ) + 
2(σ + π). It re-
sults in mother curvelets supported on two polar wedges that are symmetric with respect to the x, y-axes
in the rectangle coordinates. Fig. 9.3.23(a) shows the frequency support (the gray area) of a mother
curvelet that generates complex-valued curvelet atoms in the spatial domain, while Fig. 9.3.23(b) shows
the frequency support of a mother curvelet that generates real-valued curvelet atoms.

FIGURE 9.3.23

Examples of mother curvelets. (a) A mother curvelet that generates a family of complex-valued curvelets. The
mother curvelet has its frequency content supported in a single wedge, represented by the gray area. (b) A
mother curvelet that generates a family of real-valued curvelets. The mother curvelet has its frequency content
supported in a pair of symmetric wedges, represented by the gray area.

The curvelet atoms generated by the mother curvelets dissect the Fourier plane into localized sub-
bands so that the Fourier plane is packed redundantly with all the dilated and rotated curvelet atoms.
Note that shifting in the spatial plane has no effect on the amplitude of the content in the Fourier plane.
Fig. 9.3.24 shows pictures of a curvelet atom: (a) in the spatial space, (b) its Fourier transform in fre-
quency space, (c) the graph of the oscillatory function along the θ -direction taken from the real part of
the wavelet atom, and (d) a zoomed in view of the center 64 × 64 pixels for a better view of the content.
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FIGURE 9.3.24

(a) The real part of a curvelet atom in the spatial space. (b) The Fourier transform of the curvelet atom. (c) The
graph of the oscillatory function along the θ-direction taken from the real part of the curvelet atom. (d) Zoom-in
view of the central region of the Fourier transform shown in (b).

9.3.1.4 The formal definition of the continuous curvelet transform
Definition 9.9. Let f (x) ∈ L2(R2) and let {ψa, θ, b(x)}a∈(0,1], θ∈[0,2π), b∈R2 be the families of
curvelet atoms defined above. The continuous curvelet transform is defined as

Cf (a, θ,b) = 〈f,ψa, θ, b
〉= ∫

R2
f (x)ψ∗

a, θ, b(x) dx, (9.3.1.9)

where {Cf (a, θ,b), a ∈ (0,1] , θ ∈ [0,2π) , b ∈R2} are called the curvelet coefficients of the function
f (x).

Note that here we mentioned the families of curvelet atoms. This is because each mother curvelet
at scale a generates a family of curvelet atoms. The curvelet transform projects a 2D function into the
families of curvelet atoms to receive a series of decomposed coefficients. Each coefficient reflects the
correlation between the function and a curvelet atom focusing inside a localized area. Typically, the
curvelet coefficients are calculated in the Fourier plane using the following result, which is the Parseval
formula.

Proposition 9.5. The curvelet transform can be calculated in the Fourier plane as
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Cf (a, θ,b) = 〈
F,
a, θ, b

〉
= 1

(2π)2

∫
R2

F(�x,�y)

∗
a, θ, b(�x, �y) d�x d�y, (9.3.1.10)

for a ∈ (0,1] , θ ∈ [0,2π) , b ∈ R2.

9.3.1.5 The properties of the curvelet transform
The vanishing moments and the oscillatory behavior
In the classical wavelet theory, a wavelet with n vanishing moments has been interpreted as a mul-

tiscale differential operator of order n. A similar concept can be extended to the curvelets in parallel. A
mother curvelet ψa,0,0 is said to have q vanishing moments if its waveform in spatial plane satisfies

∫ ∞

−∞
ψa,0,0(x, y)xn dx = 0, for all 0 < n ≤ q. (9.3.1.11)

The curvelet windows we selected can have infinitely many vanishing moments as Eq. (9.3.1.11) is
satisfied for any q.

The curvelet window that has infinitely many vanishing moments ensures that the coefficients of
an image function tend to zero when a mother curvelet is centered at x. In the spatial plane, a rotated
curvelet atom with oscillatory direction at θ rad, if shifted to the spatial location b ∈R2, plays the role
of an angular differential operator in a localized area centered at b to measure the regularity along the
orientation, as shown in Fig. 9.3.25. This area is referred to as the ellipse support area. If an image func-
tion satisfies a localized Lipschitz regularity along the radial direction at location x, then a polynomial
can be used to approximate the image function in a localized area. The aforementioned infinitely many
vanishing moments of the curvelet windows will therefore lead to many curvelet coefficients tending to
zero.

The decay rate of the curvelet coefficients
As mentioned above, the requirement for infinitely many vanishing moments ensures that the

curvelets decay rapidly in the spatial domain. A curvelet coefficient therefore measures the correla-
tion between a function and a curvelet atom which has its support focused on a spatial ellipse area. The
resulting coefficients may be classified into the following three cases [7]:

1. The magnitude of a curvelet coefficient tends to zero if the ellipse support of the curvelet atom does
not intersect with a singularity of the function.

2. The magnitude of a curvelet coefficient tends to zero if the ellipse support of the curvelet atom
intersects with a singularity, but its ridge direction is not oriented at the tangential direction of a
curve.

3. The magnitude of a curvelet coefficient decays slowly if the ellipse support of the curvelet atom
intersects with a discontinuity, and its ridge is oriented along the tangential direction of the curve
where the singularities are located. More precisely, the curvelet oscillates along the normal direction
of the curve to measure the regularities in a local area centered at b.
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FIGURE 9.3.25

A curvelet atom in its spatial plane and Fourier plane.

9.3.1.6 The reproducing formula
Similarly to the classical wavelets, the admissibility conditions in Eqs. (9.3.1.4) and (9.3.1.5) ensure
that all the curvelet atoms cover the Fourier plane completely, so the curvelet transform is a redundant
representation of a function that can be perfectly reconstructed.

Theorem 9.1. If the Fourier transform of a high-pass function f ∈ L2(R2) vanishes (is equal to 0) for
|�| < 2/a0, this function can be perfectly reconstructed from the curvelet coefficients according to the
following Calderón-like reproducing formula:

f (x) =
∫ 2π

0

∫ a0

0

∫
R2

Cf (a, θ,b)ψa, θ, b(x)
db
a1/2

da

a3/2

dθ

a
. (9.3.1.12)

For the proof of this theorem, the reader is referred to [7].
This reproducing formula can be extended to reconstruct any function f ∈ L2(R2) that includes

both low-frequency and high-frequency components. To do so, we can introduce a scaling function,
φ(x), the so-called father curvelet, through its Fourier transform, �(�), given by

�2(�) = 1 − 
2(�), where 
2(�) =
∫ a0|�|

0
|
1(r)|2 dr

r
. (9.3.1.13)

The function �(�) can be viewed as an aggregation of curvelets at scales greater than a0, written
as

�(�) =
∫ +∞

a0

|
1(r|�|)|2
r

dr =
∫ +∞

a0|�|
|
1(r)|2

r
dr, (9.3.1.14)
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and may further be written as

�(�) =

⎧⎪⎨
⎪⎩

1, |�| ≤ 1/(2a0),

(1 − 
2(�))1/2, 1/(2a0) < |�| < 2/a0,

0, |�| ≥ 2/a0.

Note that a0 is limited to 0 < a0 ≤ 1, and is typically set to a0 = 1.
The high-frequency content in �(�) equaling zero indicates the father curvelet is the impulse

response of a low-pass frequency filter. Shifting the father curvelet φ(x) builds the shifting atoms
φb(x) = φ(x − b),b ∈R2. It can be seen that the father curvelet is isotropic and is not scaled. It only
produces an atom that is shifted to spatial location b.

Theorem 9.2. Any f ∈ L2(R2) can be reproduced as

f (x) =
∫
R2

< φb, f > φb(x) db

+
∫ 1

0

∫ 2π

0

∫
R2

Cf (a, θ,b)ψa, θ, b(x)
db
a3/2

da

a

dθ

a1/2
(9.3.1.15)

and it satisfies the Plancherel formula

‖f (x)‖2
2 =

∫
R2

< φb, f >2 db

+
∫ 1

0

∫ 2π

0

∫
R2

|Cf (a, θ,b)|2 db
a3/2

da

a

dθ

a1/2 . (9.3.1.16)

The term
db
a3/2

da

a

dθ

a1/2 may be viewed as the reference measure in the parameter space of (a, θ,b).

It suggests that the curvelets use anisotropic measuring of the unit cell in the space of (a, θ,b). This the-
orem ensures that both the curvelets and the classical wavelets can be decomposed into a low-frequency
component and a combination of detail components. The polar wedge-shaped curvelet windows in the
frequency domain outperform the classical wavelet in the 2D case, as they allow one to study 2D func-
tions by measuring the energy inside the windows oriented along selective orientations to efficiently
identify the regularities.

9.3.2 The discrete curvelet transform
The continuous curvelets can be sampled along their scale, rotation, and translation parameters to form
a pyramid of discrete curvelets for numerical computation. A tight frame can be adopted for efficiency
so that a 2D function may be projected onto the discrete curvelet frame with the lowest number of large
coefficients. Here only one tight frame is introduced. First we introduce the window functions to be
used in generating the curvelets.

9.3.2.1 The selection of windows
As we mentioned earlier, the mother curvelets are primarily defined by two window functions, 
1
and 
2. A good choice is the Meyer wavelet windows in the Fourier domain. Fig. 9.3.26 shows the
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FIGURE 9.3.26

The Meyer’s wavelet windows: low-pass 
2(t), in blue (dark gray in print version) color, and high-pass 
1(t),
in red (light gray in print version) color. Only its component in the positive axis is shown here.

high-pass and low-pass windows that are orthogonal and overlapping. The low-pass window in the 1D
Fourier domain may be used as the angular window, 
2(σ ), and is defined as


2(σ ) =

⎧⎪⎨
⎪⎩

1, |σ | ≤ 1/3,

cos(π
2 β(3|σ | − 1)), 1/3 < |σ | ≤ 2/3,

0, |σ | > 2/3.

(9.3.2.1)

The high-pass window in the 1D Fourier domain may also be used as the radial window 
1(r), and is
defined as


1(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |r| ≤ 2/3 and |r| ≥ 8/3,

sin(π
2 β(

3|r|
2 − 1)), 2/3 < |r| ≤ 4/3,

cos(π
2 β(

3|r|
4 − 1)), 4/3 < |r| < 8/3,

(9.3.2.2)

where β(x) is any smooth function that defines the transition bands. It is defined on [0,1] and satisfies

β(x) + β(1 − x) = 1, x ∈R. (9.3.2.3)
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The following admissibility conditions ensure that the discretized curvelet atoms generated from
these windows can completely cover the Fourier plane.

Proposition 9.6. On a discrete scale, the two windows selected above, 
1 and 
2, satisfy the following
admissibility conditions:

∞∑
k=−∞

|
1(2
−kr)|2 = 1, r > 0, (9.3.2.4)

∞∑
l=−∞

|
2(σ − l)|2 = 1, σ ∈ R. (9.3.2.5)

The proof of the proposition only needs to be shown in the overlapping regions between two adjacent
windows; for example, for 
1(r), when r ∈ (2/3,3/4), we have

∞∑
k=−∞

|
1(2
−kr)|2 = |
1(r)|2 + |
1(2r)|2

= sin2(
π

2
β(

3|r|
2

− 1)) + cos2(
π

2
β(

3|2r|
4

− 1))

= 1. (9.3.2.6)

Refer to [85] for details of the proof for a different set of window functions. Note that Eq. (9.3.2.5)
is the same as Eq. (9.3.1.5), while Eq. (9.3.2.4) is similar to Eq. (9.3.1.4) for the continuous case
when C
1 = ln2. The selected windows can be scaled to fit supp{
1(r)} = [1/2,2] and supp{
2(σ )} =
[−1,1].

The discretized windows are used in the following to build the discrete curvelet atoms. Meanwhile,
the coarse-scale father curvelet window can be defined as the low-pass window �(r) in the radial
direction which satisfies

|�(r)|2 +
∑
k≥0

|
1(2
−kr)|2 = 1. (9.3.2.7)

The choice of β(x) determines the transition band of the Meyer window. The definition of β(x), for
example, can be chosen as

β(x) = x4(35 − 84x + 70x2 − 20x3), (9.3.2.8)

which leads to the resulting windows 
1 and 
2 being in C3. For β(x) of the form

β(x) = x3(5 − 5x + x2), (9.3.2.9)

the resulting windows 
1 and 
2 are C2.
Finally, for

β(x) = x2(3 − 2x), (9.3.2.10)

the resulting windows 
1 and 
2 are C1. The 1D window 
1 has infinitely many vanishing moments in
the parameter r because 
1(r) = 0 for |r| < 2/3. The mother curvelets constructed from the windows

1 and 
2 should have infinitely many moments too [83,85].
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9.3.2.2 Constructing a tight frame of curvelet atoms
Now we are to construct a tight Parseval curvelet frame by sampling the continuous curvelets. With a
tight frame, the whole Fourier plane can be covered with discrete curvelet atoms with minimum overlap,
and the following equation is satisfied:

∑
n∈�

| 〈f,ψn〉 |2 = C ‖ f ‖2
2 . (9.3.2.11)

The three parameters (a, θ,b) will be sampled in order to obtain a tight frame. First, at each scale k,
the radial scale is sampled on a dyadic interval at ak = 2−k, k ≥ 0, resulting in the selection of the
mother curvelet, ψk,0,0, defined as the inverse Fourier transform of 
k,0,0(r, σ ), which is created using
the polar coordinates as


k,0,0(r, σ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


1(2−k · r)
2(
2(k+2)/2σ

π
)2−3k/4, k is an even integer,


1(2−k · r)
2(
2(k+1)/2σ

π
)2−3k/4, k is an odd integer.

Second, the rotation angular parameter is sampled at θk,l , given as

θk,l =
⎧⎨
⎩πl2−(k+2)/2, k is an even integer, 0 ≤ l < 2

(k+2)
2 +1 − 1,

πl2−(k+1)/2, k is an odd integer, 0 ≤ l < 2
(k+1)

2 +1 − 1.

For example, at k = 0 and k = 1, θk,l = π
2 l, l = 0,1,2,3; at k = 2 and k = 3, θk,l = π

4 l, l =
0,1,2, · · · ,7. It can be deduced that

2
(k+2)

2 +1−1∑
l=0

|
2(
2(k+2)/2(σ + θk,l)

π
)|2 = 1 if k is an even integer (9.3.2.12)

and

2
(k+1)

2 +1−1∑
l=0

|
2(
2(k+1)/2(σ + θk,l)

π
)|2 = 1 if k is an odd integer. (9.3.2.13)

This results in the discrete curvelet atoms

ψk,l,b(x) = ψk,0,0(Rθk,l
(x − b)). (9.3.2.14)

Finally, the parameter b is sampled at

bk,l
s = R−1

θk,l
(s12−k, s22−k/2), (9.3.2.15)
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where bk,l
s denotes the grids defined by rotating the dyadic points by an angle θk,l . The discrete curvelet

atoms are given as

ψk,l,s(x) = ψk,0,0(Rθk,l
(x − bk,l

s )), s = (s1, s2). (9.3.2.16)

This curvelet frame consists of interleaved curvelet atoms, separately selected from the samplings
of two adjacent scales, the even and odd scales. Under this tight frame, the discrete curvelet transform
coefficients are given by

Cfk,l,s = 〈f,ψk,l,s

〉
. (9.3.2.17)

The coefficients are calculated in the Fourier plane using the following formula based on the mother
curvelet:

Cfk,l,s = 1

(2π)2

∫
R2

F(�)
∗
k (Rθk,l

(�))e
j
〈
bk,l

s ,�
〉
d�. (9.3.2.18)

Theorem 9.3. For a high-pass function f ∈ L2(R2), Eqs. (9.3.2.4), (9.3.2.12), and (9.3.2.13) guaran-
tee that a reproducing formula can be obtained by

f =
∑

k

∑
l

∑
s∈R2

Cfk,l,sψk,l,s, (9.3.2.19)

and the energy conservation is maintained:

‖ f ‖2
2=
∑

k

∑
l

∑
s∈R2

|Cfk,l,s |2. (9.3.2.20)

Meanwhile, if we add the father curvelet φb(x) into the frame, calculate the father curvelet coeffi-
cients from the inner product between functions φb(x) and f , put both with the curvelet coefficients,
and still write them as Cfk,l,s , then any function in L2(R2) can be reconstructed from the integrated
families of the curvelet atoms, resulting in the same formulas of Eqs. (9.3.2.19) and (9.3.2.20).

Under this curvelet tight frame, Candès and Donoho [5] have proved the following theorem, which
estimates the approximation error under the curvelet coefficients. It shows a faster convergence rate
than that using the classical wavelets in 2D.

Theorem 9.4. Let f (x) be a twice differentiable function in R2 except at discontinuities along a
C2-curve. Let f C

N be the N -term approximation of f reconstructed by using the n largest curvelet
coefficients obtained by simple thresholding. The approximation error follows

‖f − f C
N ‖2

2 ≤ CN−2(logN)3.

The proof can be found in [5].

9.3.2.3 Implementation procedure for the discrete curvelet transform
The discrete curvelet transform is implemented using a low-pass filter P0 together with a set of passband
filters �1,�2, · · · ,�s . This bank of filters partitions the whole frequency plane into s + 1 decompo-
sitions that are concentrated and are located near certain frequencies in a sequence of dyadic intervals.
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FIGURE 9.3.27

Examples of concentric square windows used in the discrete curvelet transform at several scales. (a) The
low-frequency level (k = 0). (b) Level k = 1. (c) Level k = 2. (d) Level k = 3. (e) Level k = 4. (f) The remain-
ing high-frequency level (k = 5). Note that the number of pixels in the x, y-direction is shown for each image
because of the different size of the window at different scales.

Indeed, in the digital curvelet implementation, this bank of filters is generated using concentric squares
instead of concentric circles.

To generate the concentric squares, as shown in Fig. 9.3.27, a low-pass filter at scale k is first
generated using a smooth Meyer window �(r) following Eq. (9.3.2.1) as

�k(�x,�y) = �(2−k�x)�(2−k�y). (9.3.2.21)

Here P0 refers to the window when k = 0. Then the bandpass filters �k corresponding to bandpass
window functions 
1,k(�x,�y) are defined as


1,k(�x,�y) =
√

�2
k+1(�x,�y) − �2

k(�x,�y), k ≥ 0.

The angular window 
2,k(�x,�y) in the Cartesian plane is also defined using the function 
2(σ )

in Eq. (9.3.2.1),
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2,k(�x,�y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


2(
2k/2�y

�x

), k is an even integer,


2(
2(k−1)/2�y

�x

), k is an odd integer.

The mother curvelet at scale k can be obtained in the Fourier domain as


k(�) = 2−3j/4
1,k(�)
2,k(�), � = (�x,�y).

The curvelet atoms at b = 0 can be obtained in the Fourier domain as


k,l(�) = 
k(S
−1
θk,l

�) = 2−3j/4
1,k(�)
2,k(S
−1
θk,l

(�)), � = (�x,�y),

where Sθk,l
is the shear matrix with its inverse S−1

θk,l
. Both matrices are given as

Sθk,l
=
(

1 0
− tan(θk,l) 1

)
and S−1

θk,l
=
(

1 0
tan(θk,l) 1

)
.

The selection of θk,l is defined through

tan(θk,l) =
{

l · 2−k/2, k is an even integer, l = −2k/2, · · · ,2k/2 − 1,

l · 2−(k−1)/2, k is an odd integer, l = −2(k−1)/2, · · · ,2(k−1)/2 − 1.

Here 
k,l(�x,�y) indeed defines the Cartesian approximation of the curvelet atoms in the polar
Fourier plane along the horizontal cone direction. Rotating this system by π/2 defines the Cartesian
approximation along the vertical cone direction. The two systems together define the Cartesian approx-
imation of the curvelet atoms [83,86,87]. Using the discretized curvelet atoms, the Curvelab software
[88] calculates the discrete curvelet coefficients using two different approaches, the unequispaced FFT
(USFFT) and the wrapping method. It is believed that the wrapping method is simpler to understand.
We summarize the two implementation procedures in the following.

The unequispaced FFT
The USFFT method is based on the operation of shearing a curvelet atom to an input function F in

the frequency domain according to the following formula:

Cf (k, l, s) = 1

(2π)2

∫
R2

F(�)
k(S
−1
θ �)exp(j

〈
S−T

θ b,�
〉
) d�x d�y

= 1

(2π)2

∫
R2

F(Sθ�)
k(�)exp(j 〈b,�〉) d�x d�y, (9.3.2.22)

with θ = θk,l, b � (s12−k, s22−k/2). Note that 
k(�) is a real-valued function; therefore, 
∗
k (�) =


k(�) is used in Eq. (9.3.2.22). The procedure for implementing the USFFT to calculate the discrete
curvelet coefficients is summarized in the following. For more details, refer to [83,86].

1. Apply a 2D FFT to a function f (x) and obtain its discrete Fourier samples F(n1, n2), 0 < n1, n2 ≤
N , where N is the sample size.



9.3 Curvelets and their applications 583

2. For each scale/angle pair (k, l), resample (or interpolate) F(n1, n2) to obtain sheared sample
values, written as F(n1, n2 − n1 tan θk,l) for (n1, n2) ∈ Rk . Here Rk is a rectangle of length =
2k and width = 2k/2, which is located at the center of the bandpass content of the mother curvelet at
scale k.

3. Multiplying the resampled F with the mother curvelet window 
k,l , we have Cfk,l(n1, n2) =
F(n1, n2 − n1 tan θk,l)
k,l(n1, n2).

4. Apply an inverse 2D FFT to each Cfk,l(n1, n2) obtained in the previous step to calculate the discrete
curvelet coefficients Cf (k, l, s).

In Curveletlab [88], the following package in MATALB is used to decompose the original image into
curvelet coefficients:

% is_real Type of the transform
% 0: complex-valued curvelets
% 1: real-valued curvelets
Curveletcoef = fdct_usfft(X,is_real);

The inverse curvelet transform is simply computed by “reversing” all the operations of the direct
transform with some adjustments.

1. For each scale/angle pair (k, l), perform a (properly normalized) 2D FFT of each curvelet coefficient
array Cf (k, l, s) to obtain (Cf )k,l(n1, n2) in 
k,l .

2. Now (Cf )k,l(n1, n2) should be viewed as samples on the sheared grid. Resample them back to the
standard Cartesian grid.

3. Integrate (Cf )k,l(n1, n2) from all scales and angles together. This recovers F(n1, n2).
4. Take a 2D inverse FFT to obtain f (x, y).

Fig. 9.3.28 provides the diagram for implementing the USFFT curvelet transform and its inverse
transform.

In Curveletlab, the following MATLAB syntax is used to reconstruct the original image from the
curvelet coefficients:

Y = ifdct_usfft(C,is_real);

The computational cost for the forward and inverse transform requires approximately O(n2 logn) op-
erations and O(n2) memory storage.

The wrapping method
The wrapping method uses the following formula to calculate the curvelet coefficients:

Cf (k, l, s) = 1

(2π)2

∫
R2

F(�)
k(S
−1
θ (�))exp(j 〈b,�〉) d�x d�y. (9.3.2.23)

Note that S−1
θ b in Eq. (9.3.2.22) is replaced by b, which takes its value on the rectangle grid. In this

method, the curvelet atoms 
k,l = 
k(S
−1
θk,l

(�)) should be obtained by applying the shear operation

S−1
θk,l

to the rectangle Rk as in the USFFT method. The resulting window should be a trapezoidal-shaped
region.

The following is the procedure for implementing the wrapping technique to calculate the discrete
curvelet coefficients:
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FIGURE 9.3.28

The USFFT curvelet transform diagram (in black color) and its inverse transform (in red (light gray in print
version) color).

1. Calculate the 2D FFT of an image f (x) to obtain the Fourier samples F(n1, n2).
2. For (k, l), decompose F(n1, n2) into each curvelet window by calculating F(n1, n2)
k,l(n1, n2).
3. Wrap this product around the origin in the Fourier plane. This is done by relabeling the samples.
4. Apply the inverse 2D FFT to the wrapped F(n1, n2) to calculate the discrete curvelet coefficients

Cf (k, l, s).

In Curveletlab, the following syntax is used to calculate the curvelet coefficients using the wrapping
method:
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Curveletcoefwrp = fdct_wrapping(X,0).

The inverse curvelet transform is computed as follows:

1. For each (k, l), perform a properly normalized 2D FFT of each curvelet coefficient array Cf (k, l, s)
to obtain (Cf )k,l(n1, n2) in 
k,l .

2. For each (k, l), multiply the array of the coefficients by the corresponding wrapped curvelet

k,l(n1, n2), which gives (|
k,l |2F)(n1, n2).

3. Unwrap each array (|
k,l |2F)[n1, n2] with 
k,l(n1, n2) on the frequency grid and integrate them
all to form F(n1, n2).

4. Finally, take a 2D inverse FFT of F(n1, n2) to obtain f (x, y).

In Curveletlab, the following syntax is used to reconstruct the original image from the curvelet
coefficients:

image =fdct_wrapping_dispcoef(Curveletcoefwrp).

In the wrapping approach, both the forward and inverse transforms are computed in O(n2 logn)

operations and require O(n2) storage.

9.3.3 Applications
Researchers have applied the curvelet transform in solving partial differential equations and in nu-
merous other applications including image processing, seismic exploration, fluid mechanics, and data
compression [87,89,90,91,92,93,94,95,96,97,98,99,100]. All applications take advantage of the flexi-
bility of curvelets to selectively capture curve-based features. For illustration in this manuscript, we
limit ourselves to the application of curvelets in image denoising.

The assumption about noisy signals in previous sections can be similarly made for 2D noisy images
of interest herein. It is well known that a 2D isotropic wavelet transform of an image exhibits a large
number of significant coefficients at every fine scale, making wavelet denoising more complex as many
more wavelet coefficients are needed for reconstructing edges while smoothing out the noise [68,69,70,
101]. The development of curvelet theory has shown that discrete curvelet coefficients provide a near-
optimal way to represent smooth objects with discontinuities along C2 continuous curves in an image.
The curvelet-based denoising method is similar to that of the wavelet. It consists of determining which
curvelet coefficients represent the transient features in an image. It is shown that the high-amplitude
curvelet coefficients usually indicate the position of edges and the low-amplitude curvelet coefficients
usually capture noise present in the image. Therefore, the denoising is accomplished by applying a
threshold to the curvelet coefficients.

A hard threshold estimator is defined as

IT (x) =
{

x, if |x| ≥ T ,

0, if |x| < T.

Applying the thresholds is equivalent to locally averaging the noise contribution present in the image
around the local area the image is smooth over.

Here we assume the noise to have a normal distribution N(0, σ 2), and y(n) denotes the discrete
curvelet coefficients from a noisy image. The following hard threshold is applied to estimate the curvelet
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FIGURE 9.3.29

Shown in the left is a noisy image and shown in the right is the image after applying the hard threshold denois-
ing method.

coefficients, ỹ(n), of the denoised image:

ỹ(n) =
{

y(n), if |y(n)|σ ≥ Ta,

0, if |y(n)|σ < Ta.

The threshold Ta is chosen as scale-dependent and can be estimated from the noisy image.
It is shown that the curvelet-based denoising displays higher sensitivity than the wavelet-based

denoising (see Fig. 9.3.29). In curvelet denoising, salient features in the noisy image can be clearly
enhanced, while the noise can be selectively removed [102]. However, even though the pure discrete
curvelet denoising has improved the image denoising method, it is interesting to see that a better de-
noising effect has been achieved by a hybrid approach [89] called the total variation (TV) method that
combines the discrete curvelet transform with the classical wavelet method. The TV method has shown
a higher capability in exploiting curve-like features.

9.4 Contourlets and their applications
9.4.1 The contourlet transform
In this section, we introduce the contourlet transform, proposed by Do and Vetterli [9]. The contourlet
transform is a discrete filter bank implementation that expands multidimensional signals into multireso-
lution copies for analysis, approximation, and compression [9,103]. Here we consider only 2D signals,
that is, images. A filter bank technique uses multirate signal processing techniques that have been suc-
cessfully applied in many application areas [41,104]. It is a natural and practical approach to efficiently
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compute a set of good basis functions for an image [21,105]. The contourlet filter bank technique
proceeds to decompose the frequency domain into angularly oriented directions from fine to coarse
resolution. It implements similar features to curvelet analysis so that certain frequency regions in the
coarse or detailed version can be focused on under a selected basis/frame. This advances the classical
discrete filter bank technique that is used in classical wavelet analysis. It allows the representation of
a 2D signal to be optimized using only a few significant coefficients corresponding to the geometrical
features in an image, such as edges with continuous curves.

The multiresolution decomposition filter bank technique is represented by the Laplacian pyramid
(LP) decomposition, originally developed by Burt and Adelson [106] for image coding. Its develop-
ment has inspired the usage of discrete filter bank techniques to decompose a 2D image into images
of multiresolution in discrete-time wavelet bases. This has further inspired the research for building
the connection between the filter banks and classical wavelets led by Mallat [84] and Daubechies [20].
In turn, this has led to the development of the filter bank technique, which has played an active role
in constructing various bases for classical wavelets. It has strengthened the connection between har-
monic analysis and discrete signal processing. A filter bank with a directional-oriented decomposition
capacity was later proposed by Bamberger [107]. The recently proposed contourlet filter banks have in-
tegrated the LP filter bank and the directional filter bank (DFB) for multiresolution anisotropic wavelet
decomposition.

The contourlet transform is a tree-structured filter bank that cascades multiple LP and DFB filter
banks iteratively. In general, the filter banks use maximally decimated filter banks similar to those
in subband coding and invoke the usage of multirate signal processing to reduce the computational
complexity. Each filter bank in the structure can be divided into two stages: an analysis filter bank
and a synthesis filter bank. An analysis filter bank decomposes a signal into different subsignals. Each
subsignal is downsampled to its frequency content concentrated in a segment in the Fourier plane. A
synthesis filter bank upsamples and combines the output signals from the analysis filter bank into one
signal. The basic structure of the contourlets is a two-channel maximally decimated filter bank, referred
to as a QMF bank.

In synthesis, a perfect reconstruction is achieved when the output signal equals the original signal.
An optimal approximation of the original signal is also of interest when perfect reconstruction is diffi-
cult to achieve. This is useful in signal compression, as an individual image of reduced size is efficient
for transmission even though the total sampling size might be increased. To avoid a redundant expan-
sion of a signal, filters that implement orthonormal bases are sought. However, filters that implement
biorthogonal bases or tight frames are necessary in some cases in order to relax some constraints.

A digital contourlet filter bank inevitably inherits the distortion problem in digital signal process-
ing; to avoid this problem, a nondownsampling version of the contourlets has been proposed [108],
which is parallel to the nonsubsampled discrete wavelet transform (NSWT) with the à trous algorithm.
Additionally, an M-band method that provided nonredundant DFB was proposed in [109].

In this section, we downplay the distortion problems with downsampling/upsampling to keep our
focus on MRA. Polyphase decomposition is typically used to form a fast computing system for im-
plementing filter banks [21,41,110]. In the following, we start by introducing some basic sampling
operations in digital image processing. We then introduce the LP and DFB filter banks before we intro-
duce the contourlets as the combination of the two types of filter banks.



588 Chapter 9 Data representation: from multiscale transforms to neural networks

9.4.1.1 Downsampling and upsampling operators
Downsampling is a decimation operator that reduces the original image size, while upsampling is an
interpolation operator that increases the original image size. The two operations are the basic tech-
niques that form the multirate digital system. In the 2D digital image processing, downsampling is used
to generate multiple components with reduced size for the economy of analyzing an image, while up-
sampling is used to recover the parent image. In this section and the following, n ∈Z2 is viewed as a
column vector n = (n1, n2)

T since matrix multiplication is involved. Here the superscript “T ” refers to
the transpose of a vector or a matrix.

Both sampling operations involve a 2 × 2 sampling matrix given by

M =
(

m1 0
0 m2

)
, where m1,m2 ∈Z.

Given a 2D image x(n), n = (n1, n2) ∈ Z2, with its z-transform X(z) (see Appendix 9.A.1), an
M-fold downsampling (decimator) takes x(n) as an input and produces an output, xd(n), given by

xd(n) = x(Mn).

The z-transform of an M-fold downsampled signal, xd(n), is given as

Xd(z) = |Det(M)|−1
∑

k=(k1,k2)∈S
X(z

1/m1
1 e−j2πk1/m1, z

1/m2
2 e−j2πk2/m2),

where S is the set of all integer points in Mt, t ∈ [0,1) × [0,1).
An M-fold upsampling (expander or interpolator) takes x(n) as an input and produces an output,

xu(n), given by

xu(n) =
{

x(s), if n = Ms, s ∈Z2,

0, otherwise.

The z-transform of an M-fold upsampled signal xu(n) is given as

Xu(z) = X(z
m1
1 , z

m2
2 ), with z = (z1, z2).

The dyadic subsampling occurs in the x- or y-direction when |det (M)| = 2, where det (M) is the
determinant of a matrix M . Dyadic subsampling in both the x- and y-directions occurs when m1 = 2
and m2 = 2 in the diagonal matrix M . The dyadic sampling is usually used in the digital filter bank
design of a discrete wavelet transform (DWT) or discrete anisotropic wavelet transform. Sampling
operations that invoke nondiagonal matrices are to be introduced in the following section.

9.4.1.2 Polyphase decomposition
Polyphase decomposition involves subsampling and upsampling operations which use a nondiagonal
matrix M of nonsingular integer values, given as

M =
(

m11 m12
m21 m22

)
.
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FIGURE 9.4.30

The resampling lattice generated by a dyadic sampling matrix.

This corresponds to a shearing (resampling) operation. The collection of all the subsampling vectors,
Mn, is called a lattice, given by

LAT (M) = {m : m = Mn,n ∈Z2},

which is indeed a vector space spanned by the linear combination of basis column vectors from M ,
written as n1M1 + n2M2, with M1 = (m11,m21)

T , M2 = (m12,m22)
T . In our context, a nonsingular

subsampling matrix M refers to the matrices defined in the section of DFB.
Let S be the set of points of Mt, t ∈ [0,1) × [0,1), called the fundamental parallelepiped of matrix

M . It consists of all real-valued vectors in an area of the parallelogram controlled by M1 and M2. An
example of S is shown in the shadowed square area in Fig. 9.4.30. However, we are only interested in
the integer-valued points in S . According to the division theorem in number theory [41], any integer
vector can be written as Mn + s with s = (s1, s2) ∈ S , so there are D = |det (M)| integer points in S .
We can label each integer vector s ∈ S using index k = 0,1, · · · ,D − 1. Note that k cannot be a natural
ordering like the 1D case. The sampling lattice of Mn + s results from shifting LAT (M) to the location
s ∈ S , yielding the kth coset of LAT (M) generated by integer-valued points inside S . Therefore, the
original lattice of integer numbers in the coordinate system is the union of all the cosets.

For a 2D image, polyphase decomposition is the subsampling over the cosets defined above. The
kth component subimage takes a value at the location vector in the kth coset associated with s, and is
defined as

x(k,s)(n) = x(Mn + s).

Denote by x
(k,s)
u (n) the upsampled version of the kth polyphase component x(k,s)(n), with a shifting

by s ∈ S , defined as

x(k,s)
u (n) =

{
x(k,s)(m), if n = Mm + s, s ∈ S,

0, otherwise.
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The parent image can then be reconstructed as the sum of x
(k,s)
u (n), namely,

x(n) =
D−1∑
k=0

x(k,s)
u (n).

Its z-transform can be written as

X(z) =
∑

s

z
−s1
1 z

−s2
2 X(k,s)(zM), with z = (z1, z2), s = (s1, s2) ∈ S.

Here, for a nondiagonal matrix M , zM stands for (z
m11
1 z

m21
2 , z

m12
1 z

m22
2 ), and X(k,s)(z) is the z-transform

of x(k,s)(n) (see [39]).

Definition 9.10. To be consistent with the subsampling concepts, the polyphase representation of the
z-transform X(z) of an image x(n) is defined as a vector x(z), written as

x(z) = (X0(z),X1(z), · · · ,XD−1(z)) ,

with Xk(z) = X(k,s)(z), for k = 0,1, · · · ,D − 1.

For example, a dyadic subsampling matrix M will have its cosets generated by points (0,0), (0,1),

(1,0), (1,1) in S; in short, we write the points as (i, j), i = 0,1, j = 0,1, and the z-transform of x(n)

can be written as

X(z) = X0(z
2
1, z

2
2) + z−1

1 X1(z
2
1, z

2
2) + z−1

2 X2(z
2
1, z

2
2) + z−1

1 z−1
2 X3(z

2
1, z

2
2),

where Xk(z1, z2) =∑n1

∑
n2

z
−n1
1 z

−n2
2 x(2n1 + i,2n2 + j), k = 2 × j + i, i = 0,1, j = 0,1. The

polyphase representation can then be written as

x(z) = (X0(z1, z2),X1(z1, z2),X2(z1, z2),X3(z1, z2)) .

The use of a polyphase decomposition in the design of a finite impulse response (FIR) filter bank
reduces the computational complexity in the realization of a filter bank, in which the polyphase repre-
sentation is frequently used. Note that X(z) is a vector, the z-transfer function takes a scalar value, and
the polyphase representation x(z) takes a vector value. We assume the signal is periodically expanded
if it is of finite length.

A filter bank with a solo implementation of the polyphase decomposition is also termed as a lazy
filter bank because of its simple reconstruction structure that involves only the basic operations, such as
addition, delay, downsampling, and upsampling. An iterated lazy filter bank leads to the so-called lazy
wavelet.

9.4.2 Laplacian pyramid frames
Introduced by Burt and Adelson [8,106], the LP was initially aimed at representing data in a multires-
olution setting from fine to coarse levels for data compression purposes. The analysis filter bank of
LP iteratively decomposes an image into multiple subimages of coarse approximation, namely, low-
resolution subimages with low-pass content and detail images representing the difference between the
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FIGURE 9.4.31

The LP filter bank in a single level.

low-pass filtered image and the input image. The synthesis filter bank integrates the outputs from the
analysis filters into an estimate of the original image. Perfect reconstruction occurs when the estimate
is a replica of the original image.

The analysis filter bank of the LP results in a sequence of bandpass images and a further upsampled
low-resolution image in the end level. The synthesis filters are used to recover the original image from
this sequence of subimages. The double-layered filter bank analyzes an image in various components of
size-reduced images with their frequency contents limited to subbands. The pyramid design has inspired
the connection of filter banks with the wavelet implementation and calculating linear expansions of
multiresolution signals.

9.4.2.1 Analysis filter banks and synthesis filter banks of the Laplacian pyramid
The analysis filter bank is shown in Fig. 9.4.31. It computes the approximation and the detail image
at one single level. Take x0(n) as the input image. The analysis LP filter bank decomposes the image
using a low-pass filter H (analysis filter) with the impulse response h̄(n) = h(−n). The output from the
low-pass filter H is downsampled, resulting in x1(n), which can be written as

x1(n) =
∑
s∈Z2

x0(s)h(Mn − s) ≡ 〈x(·), h̄(· − Mn)〉, (9.4.2.1)

where M is a sampling matrix which defines the downsampling. Note that the “≡” sign in Eq. (9.4.2.1)
is defined by slightly abusing the inner product notation for two vectors. The z-transform of x1(n) can
be written in a polyphase representation as

X1(z) = h(z)xT
0 (z), (9.4.2.2)

with

x0(z) = (X00(z),X01(z), . . . ,X0(D−1)(z))

and

h(z) = (H0(z),H1(z), . . . ,HD−1(z)),

which both are 1 × D polyphase representation vectors.
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The detail image is the difference between the approximation image x1(n) and the original image
x0(n). It is calculated as the difference between a version of the approximation image p(n), which is
an upsampled version of x1(n), and the original image x0(n), and is written as

d(n) = x0(n) − p(n).

The low-pass image p(n) of the original size is obtained as the following:

p(n) =
∑
s∈Z2

x1(s)g(n − Ms).

To calculate p(n), the already downsampled image x1(n) is upsampled and filtered by another low-pass
filter G (synthesis filter) with impulse response g(n). The polyphase representation p(z) can then be
written as

pT (z) = (P0(z),P1(z), · · · ,PD−1(z))
T = gT (z)X1(z), (9.4.2.3)

where g(z) = (G0(z),G1(z), . . . ,GD−1(z)) is a 1 × D vector and X1(z) is a scalar function. Thus the
polyphase representation of d(n) can be calculated using Eq. (9.4.2.3) and can be written as

dT (z) = (I − gT (z)h(z))xT
0 (z). (9.4.2.4)

If we cascade Eqs. (9.4.2.2) and (9.4.2.4), we will have a vector equation(
X1(z)

dT (z)

)
=
(

h(z)

I − gT (z)h(z)

)
xT

0 (z) = �(z)xT
0 (z), (9.4.2.5)

where �(z) is a matrix of size (D + 1) × D.
In the synthesis filter bank, a simple reconstruction of the original image can be computed by di-

rectly inverting the steps in the analysis filter. A more efficient reconstruction method is to search for
the inverse operator under an orthogonal frame system to calculate the orthogonal projections that is
defined as the pseudoinverse of matrix �(z). This approach provides the best approximation [111].

The LP filter bank can be realized through a polyphase filter bank structure, in which the low-pass
filter H is determined by its transfer function H(z) and the high-pass filter Ki, i = 0,1,2, · · · ,D − 1,
is determined by a transfer function whose polyphase representation is given as the ith row vector of the
matrix �(z) = (I − gT (z))h(z). Therefore the high-pass filters are derived from the low-pass filters H

and G in the filter bank described in Fig. 9.4.31. Fig. 9.4.32 shows the polyphase structure filter bank
for dyadic subsampling which is to be used in the contourlet filter bank.

Based on the structure of a single-level analysis filter bank shown in Fig. 9.4.31, the procedure of
multiresolution decomposition using the LP filter bank is listed as follows:

• Input an image x0(n) into the one-level LP filter bank. The outputs are the low-resolution upsampled
image x1(n) and a detailed difference image d1(n).

• Input x1(n) into the analysis filters again. The outputs are a low-resolution image x2(n) that is
further upsampled and a detailed image d2(n) that is the difference between x1(n) and x2(n).

• Iterate the procedure K times.
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FIGURE 9.4.32

The LP filter implemented using polyphase decomposition with dyadic subsampling.

FIGURE 9.4.33

An LP filter bank that decomposes the frequency content of an image into three levels.

The output sequence {xk}k=1,2,··· ,K is called a Gaussian pyramid because Gaussian low-pass filters
are typically used. The filtering structure for generating the bandpass sequence {dk}k=1,2,··· ,K is called
the LP. As xk is further decomposed, the final outputs are the sequence of detail images dk , with only
one low-resolution image at the end level, thus yielding a filter bank that is generally referred to as
the LP. It is a cascade of a sequence of filter banks for a multiresolution approximation of an original
image.

9.4.2.2 The wavelet frame associated with the Laplacian pyramid
A wavelet transform can be implemented by computing the fine to coarse multiresolution decomposi-
tion as shown in Fig. 9.4.33. The wavelet frame [8] defined in Eq. (9.2.2.3) for the decomposition can
be specified by using the filters H and G of the LP filter bank to determine the mother/father wavelets.

In the LP filter bank, a frame operator K̂i can be defined as K̂i(x,φi) = 〈x,φi〉, where each φi is
the (i + 1)th row of the matrix �(z) in Eq. (9.4.2.5). It characterizes the filter Ki in the polyphase filter
bank. This shows that the LP, with bounded output for any bounded input, provides a frame expansion
in l2(Z2) [9]. If the frame vector {φi} is normalized with ||φi || = 1 and we have A = B = 1, then {φi}
is an orthonormal basis by the discussion on Definition 9.6.
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A nonorthonormal frame induces a redundant representation of an image, for which the recon-
struction has to use a redundant frame operator that involves a dual frame of K̂i , which performs
the inverse/pseudoinverse of the matrix �. It generates instability that affects the quality of the re-
constructed image. Perfect reconstruction occurs when the original image is replicated. In numerical
analysis, the research interests have been focused on searching for orthonormal bases for optimal ap-
proximations. With an orthogonal basis, when a signal x(n) is projected onto a subspace V , given
as PV (x), it generates the minimum approximation error. In some cases, due to the requirement of the
basis functions, we have to relax the requirement for an orthonormal basis and replace it with an orthog-
onal basis, a biorthogonal basis, or even a tight frame for MRA. This is used to inject some flexibilities,
such as minimizing the redundancy of the expansion.

The LP uses a pair of biorthogonal filters with a sampling matrix M and satisfies

〈h̄(· − Mv), g(· − Ml)〉 = δ(v − l).

The filters become orthogonal when they satisfy

h(n) = g(−n) and 〈g(·), g(· − Mn)〉 = δ(n).

The orthogonal requirement on the filters H and G is equivalent to

H ∗(z) = G(z) and G∗(z)G(z) = 1.

Perfect reconstruction can then be achieved, thus providing a simple structure that connects the LP
filter bank with the classical wavelets [84] for MRA. A similar implementation involving a directional
decomposition that further connects the anisotropic curvelets with the discrete filter banks is discussed
next.

9.4.3 Directional filter banks
Introduced by Bamberger and Smith [107] in 1992, a DFB is a maximally decimated QMF bank that
partitions the 2D Fourier plane with 2r directional-oriented wedge-shaped subbands at each level r . A
perfect reconstruction of the original image may be obtained. The implementation introduced here is
using a polyphase-like tree-structured FIR filter bank [9,112]. This DFB has a simplified structure and
uses fan filters and resampling operators with dyadic downsampling in each level.

9.4.3.1 Resampling operators
The design of a DFB requires resampling operators controlled by sampling matrices, such as shearing
operators. Here we first introduce the resampling matrices.

Definition 9.11. A quincunx sampling matrix is defined as one of the following two matrices:

Q0 =
(

1 −1
1 1

)
, Q1 =

(
1 1

−1 1

)
.
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FIGURE 9.4.34

The quincunx filter bank with resampling matrix Q.

Definition 9.12. An integer matrix M is said to be a unimodular matrix if |det (M)| = 1. Here, we refer
to the following four matrices Ri , i = 0,1,2,3:

R0 =
(

1 1
0 1

)
, R1 =

(
1 −1
0 1

)
, R2 =

(
1 0
1 1

)
, R3 =

(
1 0

−1 1

)
.

The two quincunx matrices can be further decomposed as

Q0 = R1D0R2 = R2D1R1 and Q1 = R0D0R3 = R3D1R0,

where the two diagonal matrices D0 and D1 are the dyadic subsampling matrix along x- and y-axis
respectively, and are given as

D0 =
(

2 0
0 1

)
, D1 =

(
1 0
0 2

)
.

A filter that uses Q0 or Q1 carries out a downsampling operation that sheers an image along the
orientation at 45 degrees or −45 degrees. In the DFB, Q0 and Q1 are typically cascaded together to
result in dyadic downsampling in both the x- and y-directions. This is because Q0Q1 = Q1Q0 = 2I ,
where I is the unit matrix.

9.4.3.2 The design of the quincunx filter banks
A quincunx filter bank (QFB) [112,113] is a two-channel QMF as shown in Fig. 9.4.34. It incorporates
the analysis and synthesis filters with the decimators and expanders being the quincunx resampling
matrices. A QFB with fan filters used in the analysis part is a typical example. The fan filters are
nonseparable filters. In Fig. 9.4.35 is shown the support of one fan filter which can be designed starting
from a 1D filter [41].

The single-level structure analysis filter bank of QFB decomposes the frequency plane of a 2D
image into two wedge-shaped cones. The horizontal cone uses H0, a horizontal pass fan filter. The
vertical cone uses H1, a vertical pass fan filter. The synthesis filters, denoted by G0 and G1, perfectly
reconstruct the original image when the two dual filter frames satisfy the following conditions:

H0(ω)G0(ω) + H1(ω)G1(ω) = 2,
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FIGURE 9.4.35

The support of a fan filter in the Fourier plane. The shaded area is the bandpass area.

H0(ω + π)G0(ω) + H1(ω + π)G1(ω) = 0.

If the synthesis filters are the reversed versions of the analysis filters, then the frame generated by the
QFB is an orthogonal frame. This simplifies the design of the synthesis filters. When the analysis and
synthesis filters are restricted to be FIR, the perfect reconstruction conditions imply that the synthesis
filters are specified by the analysis filters (up to a shift and scale factor i) as follows:

G0(z) = ziH1(−z), G1(z) = −ziH0(z).

9.4.3.3 The design of the directional filter banks
A QFB is the essential QMF bank in a tree-structured DFB filter bank. An iterative DFB decomposes
the frequency space of a 2D image into 2r small angularly oriented wedges at the rth level. The DFB
is a cascade of multiple QFBs, together with selective resampling matrices to determine the shearing
angle of the segmented wedge in the Fourier plane. The iterative DFB can be viewed as proceeding
in multiple stages. According to the Nobel identity shown in Fig. 9.4.37(a), the overall output in two
adjacent stages can be viewed as applying a decimation M = Q0Q1 using the overall analysis filter
H1(z)H2(z

MT
). Fig. 9.4.37(b) shows the overall effect of a DFB in two stages.

The DFB decompositions in multiple levels are carried out in the following procedures:

• At the first level decomposition, the DFB uses a pair of fan filters with supports complementing
each other. The output is resampled using Q1. The two fan filters split the Fourier plane into two
cone-shaped regions: one along the vertical direction y and another along the horizontal direction x.
The output is downsampled by 2 in the x-direction.

• At the second level, the same pair of fan filters are used; however, the output image is resampled us-
ing Q1, so that the four subimages correspond to the four directional subbands shown in Fig. 9.4.38.
The filter structure for generating these four images is shown in Fig. 9.4.36. The outputs at this level
are downsampled by 2 in both the x- and y-directions.

• At the level r ≥ 3, the DFB partitions the Fourier plane into 2r wedges. Fig. 9.4.39 shows the parti-
tion at the level r = 3. This is realized by attaching to the QFB at the previous level one of the four
unimodular resampling operations, Ri , i = 0,1,2,3, before and after the analysis filters. Fig. 9.4.40
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FIGURE 9.4.36

The partition of the Fourier plane using DFB at the first two levels.

FIGURE 9.4.37

The effect of the Noble identity.

shows the filter bank structure for generating the zeroth wedge in the Fourier frequency plane at the
third level.

To ensure that each channel of the filters uses a diagonal sampling matrix, a backsampling operation
[114] is applied so that, at each level r , the vth channel subband can be equivalently viewed as being
filtered by an analysis filter Hv , for v = 0,1, · · · ,2r − 1. The diagonal sampling operator is represented
by the sampling matrix

S(r)
v =

{
diag(2r−1,2), 0 ≤ v < 2r−1,

diag(2,2r−1), 2v−1 ≤ v < 2r .

The DFB is a perfect reconstruction filter bank if and only if the QFB used at each level achieves perfect
reconstruction.



598 Chapter 9 Data representation: from multiscale transforms to neural networks

FIGURE 9.4.38

The four directional bands output from the first two-level partitions.

FIGURE 9.4.39

The eight directional bands output from a DFB at the level r = 3.

9.4.3.4 Constructing the basis for the directional filter bank
As shown in Fig. 9.4.41, in the DFB at the rth level, every analysis filter Hv with impulse response
hv is followed by a diagonal sampling S(r)

v , v = 0,1, · · · ,2r − 1. The outputs are 2r wedges in the
Fourier plane. Each wedge is an angularly oriented segment of the Fourier content of the original
image. Correspondingly, the original image can be reconstructed from applying the diagonal sampling
matrix S(r)

v to the outputs at the rth level, followed by applying the synthesis filters {Gv}v=0,1,··· ,2r−1,
with impulse response {gv(n)}v=0,1,··· ,2r−1. We also write gv(n), hv(n) as g

(r)
v (n), h

(r)
v (n) for the rth

level.
Each filter pair, with Hv and Gv in the filter bank as the analysis and synthesis filters, is related to

the angular wedge region Uv , v = 0,1, · · · ,2r − 1. The filters generate a pair of dual frames of l2(Z2).
Therefore, a basis of l2(Z2) can be obtained by translating the impulse responses of synthesis filters
gv(n) as {g(r)

v,m(n) = g
(r)
v (n − S(r)

v m) : 0 ≤ v < 2r ,m ∈Z2}. Under this basis, an image x(n) ∈ l2(Z2)

can be uniquely reconstructed as
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FIGURE 9.4.40

(a) A resampling operator is attaching to a QFB to implement the DFB. (b) Its effects on partitioning the
Fourier plane: the third region in the four partitions is used as the input, the output is the wedge indicated in
the last picture.

FIGURE 9.4.41

The analysis and synthesis filters in a DFB that partitions the Fourier plane into 2R wedges.
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x(n) =
2r−1∑
v=0

∑
m∈Z2

cv(m)g(r)
v (n − S(r)

v m),

where cv(m) = 〈x(·), h(r)
v (S(r)

v m − ·)〉, v = 0,1, · · · ,2r − 1, are the coefficients with respect to a basis
hv(S

(r)
v m − ·) of l2(Z2) at the rth DFB decomposition level. The two dual bases l2(Z2) satisfy the

following conditions when they are biorthogonal frames:

〈g(r)

v′ (· − S
(r)

v′ m′), h(r)
v (S(r)

v m − ·)〉 = δ(v − v′)δ(m − m′),

with the Dirac function given as

δ(a − a′) =
{

0, when a 	= a′,
1, when a = a′.

An orthogonal basis of l2(Z2) is obtained when h
(r)
v (n) = g

(r)
v (−n)), that is, when the synthesis filters

of the DFB are time-reverses of the analysis filters.
The following are two extreme cases of DFBs. In the first case, the filter system generates a basis

of the l2(Z2) whose elements have compact supports that do not overlap with each other in the spatial
domain. The second case shows a filter system that generates a basis of l2(Z2) whose elements have
compact supports that do not overlap with each other in the Fourier domain.

Case 1: In this case, the analysis DFB implements a polyphase decomposition with the vth
polyphase component xv(n) = x(pT

v + S(r)
v n), where

pv =
{

(v, v), if 0 ≤ v < 2r−1,

(v + 1 − 2r−1, v − 2r−1), if 2r−1 ≤ v < 2r .

The polyphase decomposition is realized when each filter Gv takes the z-transform as Gv(z) =
z−pv , where the basis g

(r)
v (n − S(r)

v m) = δ(n − pT
v − S(r)

v m) extends a standard orthonormal basis of
l2(Z2).

Case 2: Another orthonormal basis of l2(Z2) is obtained using a DFB with ideal fan filters at each
level, resulting in the synthesis filters Gv with Fourier transform given by

Gv(ω) = 2v/2δRv (ω)exp{j 〈ω,pT
v 〉}.

These two cases, however, will have noncompact support in their dual spaces. Namely, in the first
case, the Fourier content of each element in the basis is supported in the whole Fourier plane, while in
the second case, each element in the basis is a sinc function with support in the whole spatial domain.

In applications, a DFB realization that generates a basis of compact support in the Fourier plane
and fast decay in the spatial plane works better to separate a signal into subsignals that are localized in
various frequency regions. In the contourlets [9], a biorthogonal filter pair “9-7” is usually used.
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FIGURE 9.4.42

The contourlet filter bank partitions the Fourier plane into wedges for three levels.

9.4.4 Contourlet filter bank
Now we are ready to address the contourlet filter bank, which is a tree-structured double-layered filter
bank that combines the LP and DFB to decompose an original image iteratively. Fig. 9.4.42 shows the
multiscale decomposition result generated by the contourlet filter bank.

9.4.4.1 The wavelet frames of Laplacian filter banks
The LP filters in the contourlet filter bank are octave-band filters: The image is decomposed into a
low-pass frequency content and a bandpass content. The low-pass filtered image is an approximation of
the high-resolution image with dyadic downsampling applied in both directions. The bandpass filtered
image is the detail difference between the original image and the approximation image. This decompo-
sition proceeds iteratively. At level k, the original input image is decomposed into several subimages
that are focused on subbands with a corona support as shown in Fig. 9.4.33, where the Fourier plane of
an image is decomposed into three levels.

The LP filter provides a frame expansion in L2(R2). Under MRA, the LP filter bank is associated
with a wavelet frame represented by nested subspaces {Vk}k∈Z (refer to Section 9.2) that satisfies

Vk ⊂ Vk−1, for ∀ k ∈ Z,

Closure(
∞⋃

k=−∞
Vk) = L2(R2).

The low-pass filter G in Fig. 9.4.31 defines a wavelet frame of L2(R2). The filter structure uniquely
defines φ(t) that satisfies the following equation (called an orthogonal scaling function):

φ(t) = D
1
2
∑

n∈Z2

g(n)φ(Mt − n).
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FIGURE 9.4.43

Shown on the left is a noisy image, shown on the right is the image after applying the hard threshold denoising
method using the contourlets.

Recall that, in general, D = |det (M)|, where M is a diagonal matrix that corresponds to subsam-
pling. In our LP filter bank introduced here, the subsampling is constrained to a dyadic subsampling
only; therefore, we have D = 4, and

M =
(

2 0
0 2

)
.

The subspace Vk is spanned by an orthogonal basis {φk,n}n∈Z2 that is defined as

φk,n(t) = D− k
2 φ(M−kt − n).

Writing the orthogonal complement of Vk in Vk−1 as Wk (see Section 9.2), we have

Vk−1 = Vk

⊕
Wk.

Now let {fi}i=0,1,2,3 represent the impulse responses of the high-pass synthesis filters {Fi}i=0,1,2,3

in the reconstruction part of the LP polyphase structured filter bank, as shown in Fig. 9.4.32. It generates
the mother wavelet function ψi for each i = 0,1,2,3 as the following equation:

ψi(t) = D
1
2
∑
s∈Z2

fi(s)φ(Mt − s), t ∈R2, i = 0,1,2,3.

A tight frame of the detail space Wk can be obtained as a family of dilated and translated functions,
ψk,i,n(t), given as

ψk,i,n(t) = D− k
2 ψi(M

−kt − n), for k ∈Z, n ∈Z2, t ∈R2, i = 0,1,2,3. (9.4.4.1)
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Here, ψk,i,n(t) corresponds to the ith polyphase component of the LP filter bank at level k. Under this
set of tight frames, given an input image x(n), the outputs of the LP filter bank at the kth level are the
approximation wavelet coefficients ck(n), and the detail wavelet coefficients are dk,i(n). They can be
obtained from the following formulas based on the approximation coefficients at the previous level:

ck(n) = 〈x,φk,n〉 =
∑
s∈Z2

ck−1(s)g(s − Mn),

dk,i(n) = 〈x,ψk,i,n〉 =
∑
s∈Z2

ck−1(s)fi(s − Mn).

Theorem 9.5. It can be shown [111] that L2(R2) can be decomposed into detail spaces Wk, k ∈ Z ,
that are mutually orthogonal, and can be written as

L2(R2) =
⊕
k∈Z

Wk.

At a scale level k, the family of functions {ψk,i,n(t) : 0 ≤ i < D,n ∈ Z2} is a tight frame of Wk . In
addition, the entire family {ψk,i,n(t) : 0 ≤ i < D,k ∈ Z,n ∈Z2} forms a tight frame of L2(R2).

9.4.4.2 The wavelet frames of directional filter banks
In a contourlet filter bank, the high-pass content output from the LP filter bank is the input for the
DFB filter bank. The DFB generates 2r directional-oriented wedges that partition the Fourier plane.
Typically, only the high-frequency content is decomposed since it corresponds to salient features in an
image. The directional-oriented filter bank provides an anisotropic basis for an efficient decomposition.

As provided in Section 9.4.3.4, under the DFB, at level r , the family {g(r)
v,n(m) = g

(r)
v,n(m − S(r)

v n) :
0 ≤ v < 2r ,n ∈ Z2} is generated and is called a directional orthonormal basis of l2(Z2). Each g

(r)
v,n(m)

is the impulse response of a directional filter. When v = 0, · · · ,2r−1 − 1, it corresponds to an angle in
[−45◦,45◦], and when v = 2r−1, · · · ,2r − 1, it corresponds to an angle in [45◦,135◦].

This directional orthonormal basis {g(r)
v,n(m) : 0 ≤ v < 2r ,n ∈ Z2} is used to construct the frames

of the further decomposed detail space. Since the detail subspaces Wk from the LP correspond to four
components of the polyphase decomposition, the following function is introduced using Eq. (9.4.4.1),

μk,2n+si
(t) = ψk,i,s(t),

where s0 = (0,0), s1 = (1,0), s2 = (0,1), s3 = (1,1). With a lattice of dyadic subsampling in both
directions, the points si , i = 0,1,2,3, represent all the cosets with the dyadic subsampling; therefore,
any integer vector s can be written as n + si , and we have the family μk,s(t) constituting a tight frame
of Wk at level k in the LP decomposition.

Now define

ψ
(r)
k,v,n(t) =

∑
s∈Z2

g(r)
v (s − S(r)

v n)μk,s(t).

The set of functions {ψ(r)
k,v,n}n∈Z2 constitutes a tight frame of the finer partition subspace of the detail

space Wk , written as W
(r)
k,v , with v referring to the vth angular direction. The frame bounds are equal
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to 1 for each k = 1, · · · ,K and v = 0, · · · ,2r − 1. Also note that the index v is referred to an angular
direction in DFB, which is different from the index i, which refers to a polyphase component in the LP
filter.

A directional subspace W
(r)
k,v is defined on a wedge contained in a rectangular grid that has support

in the spatial domain as an oval area, similar to what is shown in Fig. 9.3.25. These subspaces are
orthogonal with

W
(r)
k,v = W

(r+1)
k,2v

⊕
W

(r+1)
k,2v+1

and

Wk =
2r−1⊕
v=0

W
(r)
k,v .

Further, combining ψ
(r)
k,v,n(t) together with φk0,n for k ≤ k0, 0 ≤ v < 2r , n ∈Z2, we obtain a tight

frame of l2(R2), as in the following theorem [113].

Theorem 9.6. l2(R2) can be decomposed into mutually orthogonal subspaces as

l2(R2) = Vk0

⊕⎛
⎝⊕

k≤k0

Wk

⎞
⎠ .

For a sequence of finite positive integers k ≤ k0, the family

{φk0,n(t),ψ
(r)
k,v,n(t) : k ≤ k0,0 ≤ v < 2r ,n ∈Z2}

is a tight frame of L2(R2).

Theorem 9.7. l2(R2) can be decomposed into mutually orthogonal subspaces as

l2(R2) =
⊕
k∈Z

Wk.

The family

{ψ(r)
k,v,n(t) : k ∈ Z,0 ≤ v ≤ 2r − 1,n ∈ Z2}

is a directional wavelet tight frame of L2(R2). In each case, the frame bounds are equal to 1.

This combination of frames from both the LP and DFB filter banks yields frequency partitions
similar to those achieved by curvelets. The support of the LP is reduced to one fourth of its original size
while the number of directions of the DFB is doubled. Hence, it connects the directional anisotropic
wavelets with the digital filter bank system.

In the Contourlet MALAB program [115], the syntax that is used for decomposition is

coeffs = pdfbdec( double(im), pfilter, dfilter, nlevels );
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The syntax that is used for reconstructing the original image from the contourlet coefficients is

imrec = pdfbrec( coeffs, pfilter, dfilter );

Since the contourlets can be viewed as a filter bank implementation of the curvelets, here we only
show in Fig. 9.4.43 an image that demonstrates the denoising outcome using the contourlets.

9.5 Shearlets and their applications
The sheartlet transform is an alternative anisotropic multiresolution system proposed by Guo, Labate,
and their colleagues [11,13,12,116,117,118,119,120,121,122,123]. It was inspired by the composite
wavelet theory, which takes advantage of geometric affine transforms, such as translation and dilation
(or resampling) in a multidimensional Cartesian coordinate system (our focus is on 2D). In the spatial
plane, the affine transforms generate a frame of functional elements (also called building blocks) that
are oscillatory waveforms across various scales, locations, and orientations.

Similar to the curvelet transform, a shearlet transform provides a Parseval (normalized tight) frame
equipped with well-localized functions at various scales, locations, and directions. When a 2D func-
tion is projected into this system, sparse significant coefficients, which correspond to discontinuities
that occur along C2 piecewise smooth curves, can be used to optimally approximate 2D functions. It
overcomes a known problem with the classical 2D wavelet transform, in which a larger number of
coefficients are needed in order to optimally represent a 2D function with discontinuities.

Meanwhile, the shearlet transform has its advantages over the curvelet transform. One advantage
with the continuous shearlet transform is that it can be defined directly in a rectangular coordinate
system using an affine transform. It avoids the usage of polar coordinates (as curvelets) and hence avoids
the computationally complex numerical conversion from polar coordinates to rectangular coordinates.
The second advantage with the shearlet transform is that it exhibits a better capability at distinguishing
different types of corner (junction) points, which can be used to separate corner (junction) points from
the regular edge points. In addition, the shearlet transform can be mathematically related to group
theoretic methods, and can hence be interpreted as a natural building block in measuring the smoothness
of a 2D function. It can also be related to the so-called co-orbit space theory [124].

In this subsection, we first describe the composite wavelets [10,125] before we introduce the shear-
lets, since the shearlets can be viewed as a special class of the composite wavelets. Applications of
the shearlet transform in image processing enjoy some interesting properties in applications in edge
detection, feature extraction, and denoising. We will also discuss more recent applications at the end of
this section.

9.5.1 Composite wavelets
The composite wavelet system provides a general framework with angularly oriented oscillatory spatial
waveforms that can be used for representing geometrical features of curves. Since it heavily relies on
the affine transform, we proceed by first introducing the affine transform system H, given as follows.
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Definition 9.13. Given a function ψ(x) ∈ L2(R2), a continuous affine system H generated by ψ(x) is
defined as

H = {ψG,b(x) = |detG|1/2ψ(G(x − b)) : b,x ∈R2,G ∈ G}, (9.5.1.1)

where G is a set of invertible 2 × 2 matrices.

All elements in the affine system H are called composite wavelets when H forms a tight (Parseval)
frame of L2(R2), namely, for any f ∈ L2(R2), the following equation holds:∑

b,G

|〈f,ψG,b〉|2 = ||f ||2, (9.5.1.2)

where G is an invertible 2 × 2 matrix in the set G.
Under this general framework of composite wavelets, various wavelet systems can be introduced

as special cases for decomposing an image. The 2D isotropic continuous (classical) wavelet transform
is a special example. It can be obtained when G, the set of matrices in Eq. (9.5.1.1), takes the form
G = {cI : c > 0}, where I is the unit matrix. Furthermore, the separable classical wavelets can also be
obtained when we further use a 2D separable function ψ(x), given as ψ(x, y) = ψ1(x)ψ2(y). The most
exciting case of composite wavelets is the shearlet transform system obtained from using the shearing
and translating operations. A shearlet transform system defines a new class of wavelets that produces a
set of efficient anisotropic components that can flexibly be adapted to represent the geometrical shapes.

9.5.2 Shearlet atoms in the spatial plane
The shearlet atoms are defined by selecting the matrix set G in Eq. (9.5.1.1), in the affine system H, as
G = {Mas : a > 0, s ∈ R}, with Mas given as

Mas =
(

a −√
as

0
√

a

)
. (9.5.2.1)

It is useful to write Mas = BsAa , where

Aa =
(

a 0
0

√
a

)
and Bs =

(
1 −s

0 1

)
.

Note that the inverse matrix M−1
as can be written as A−1

a B−1
s , and is given as

M−1
as =

(
a−1 sa−1

0 a−1/2

)
. (9.5.2.2)

Indeed, the matrix Mas is the composition of two affine operations in a plane: a parabolic scaling,
Aa , followed by a shearing Bs . The shearlets are defined on the basis of the operator, DMas , defined by
the matrix Mas as

DMas ψ(x) = |det (Mas)|− 1
2 ψ(M−1

as x),



9.5 Shearlets and their applications 607

and the translation operator Tb is defined as

Tbψ(x) = ψ(x − b),

yielding the shearlet atoms defined as

ψa,s,b(x) = TbDMas ψ(x). (9.5.2.3)

Definition 9.14. The family of shearlet atoms in the spatial plane is defined as the collection of all
atoms in the affine system generated by ψ(x) ∈ L2(R2), given by

ψa,s,b(x) = |det (Mas)|− 1
2 ψ(M−1

as (x − b)), a > 0, s ∈ R, x,b ∈ R2. (9.5.2.4)

The function ψ(x) ∈ L2(R2) is called the mother shearlet window.

Note that because det (Mas) = a3/2, Eq. (9.5.2.4) can also be written as

ψa,s,b(x) = a− 3
4 ψ(M−1

as (x − b)). (9.5.2.5)

In the literature about shearlets, the matrix Mas can also be chosen as

Mas =
(

a
√

as

0
√

a

)
, with M−1

as =
(

a−1 −sa−1

0 a−1/2

)
.

In this paper, we stick with the matrix Mas given by Eq. (9.5.2.1), which makes Eq. (9.5.2.4) achieve
the shearing effects. Hence, the inverse matrix M−1

as is used in its Fourier domain definition; however,
one can alternatively use M−1

as in the spatial domain and use Mas in the Fourier plane [118].

9.5.3 Shearlet atoms in the frequency domain
The mother shearlet window defines the properties of the shearlet atoms. Every shearlet atom is a result
of an affine transform of the mother shearlet window. We first discuss the choice of the mother shearlet
window in order to quickly address the geometrical features of an image using a shearlet transform.

9.5.3.1 The mother shearlet window
The rule of thumb for selecting a mother shearlet window in a shearlet transform is to generate shearlet
atoms that are able to focus on localized frequency content to represent geometrical features. Under this
shearlet system, the energy of a function f (x) will be mostly focused on a sparse number of coefficients
when the function is decomposed. In general, the mother shearlet window is chosen as a C∞ function
with a compact support in the Fourier plane, so that it decays rapidly in the spatial domain. The mother
shearlet window function ψ(x, y) is defined by its Fourier transform 
(�), � = (�x,�y), as


(�) = 
1(�x)
2(
�y

�x

),

where 
1(�x) and 
2(�y) satisfy the following two conditions:
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• 
1(�x) is a 1D high-pass odd function that satisfies the regular 1D admissibility condition,∫ ∞

0
|
1(a�x)|2 da

a
= 1, (9.5.3.1)

• 
2(�y) is a 1D positive low-pass even function that satisfies∫
R

|
2
2 (�y)| d�y = 1. (9.5.3.2)

A good choice for the two 1D windows are the Meyer’s wavelet windows defined in Section 9.3.

9.5.3.2 The Fourier content of shearlet atoms
Given the mother shearlet window defined above, the Fourier transform of the shearlet atoms defined
in Eq. (9.5.2.4) can be written as


a,s,b(�) = a
3
4 e−j2π<�,b>
(MT

as�)

= a
3
4 e−j2π<�,b>
1(a�x)
2(

√
a(�y − s�x)

a�x

)

= a
3
4 e−j2π<�,b>
1(a�x)
2(a

− 1
2 (

�y

�x

− s)), a > 0, s ∈R, b ∈R2. (9.5.3.3)

In addition to requiring that the functions 
1 and 
2 satisfy the conditions in Eqs. (9.5.3.1) and
(9.5.3.2), we also assume supp{
1} ⊂ [−2,− 1

2 ] ∪ [ 1
2 ,2] and supp{
2} ⊂ [−1,1]. The frequency con-

tent of each shearlet atom which is yielded from the mother shearlet window is supported on a pair
of trapezoids that are symmetric with respect to the origin point. They are centered between the two
lines, �y = m�x , with slopes m = s ± √

a. We refer to s as the orientation of this pair of trapezoids.
Fig. 9.5.44 shows some examples of the trapezoid pairs. Each supporting region may be written as

{(�x,�y) ∈ R2 : �x ∈ [−2

a
,− 1

2a
] ∪ [ 1

2a
,

2

a
],−√

a + s ≤ �y

�x

≤ √
a + s}.

So far, the mother shearlet window generates real-valued spatial shearlet atoms; however, the complex-
valued spatial shearlet atoms can also be obtained if the support of 
1 is confined to [ 1

2 ,2]. In both
cases, the mother shearlet reproduces the shearlet atoms that are angularly oriented waveforms in the
spatial domain, with its shape controlled by the shearing parameter s and scaling parameter a (see
Fig. 9.5.45).

9.5.4 The continuous shearlet transform
Definition 9.15. Let f (x) ∈ L2(R2) and let {ψa,s,b(x) : a > 0, s ∈ R,b ∈ R2} be the family of shearlet
atoms defined in Eq. (9.5.2.4). The continuous shearlet transform is defined as

γf (a, s,b) = 〈f,ψa,s,b

〉= ∫
R2

f (x)ψ∗
a,s,b(x) dx, (9.5.4.1)

where {γf (a, s,b)}a>0,s∈R,b∈R2 are called the shearlet coefficients of the function f (x).
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FIGURE 9.5.44

The frequency supports of some shearlet atoms in the Fourier plane, where a is the scale and s is the orienta-
tion of a pair of trapezoids.

Note that the shearlet coefficients of the function f (x) can also be obtained in the Fourier domain
as

γf (a, s,b) = 〈F,
a,s,b

〉
=
∫
R2

F(�)
∗
a,s,b(�) d�

= a3/4
∫
R2

F(�)
1(a�x)
2(a
− 1

2 (
�y

�x

− s))ej2π<�,b> d�. (9.5.4.2)

It can be proved that the mother shearlet window function given in the previous section satisfies the
following admissibility condition:∫

R

∫ ∞

0
|
(MT

as�)|2a−3/2 da ds = 1 for almost every � ∈R2.

This admissibility condition shows that the family of shearlets generates a reproducing system, which
yields the following theorem.

Theorem 9.8. For a function f ∈ L2(R2), the exact reproduction can be obtained by the following
generalized Calderón reproducing formula:

f (x) =
∫
R2

∫ ∞

−∞

∫ ∞

0
γf (a, s,b)ψa,s,b(x)

da

a3
ds db. (9.5.4.3)

In addition, we have

||f (x)||2 =
∫
R2

∫ ∞

−∞

∫ ∞

0
|γf (a, s,b)|2 da

a3 ds db. (9.5.4.4)
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FIGURE 9.5.45

The eight spatial waveform images of shearlet atoms corresponding to different orientations at scale = 3. Note
that the images are zoomed in to show only the center portions of the images.

9.5.4.1 Properties of a shearlet transform
A 2D function f that is smooth except for discontinuities along a curve � can be modeled as an image in
[0,1]2 showing an object and a boundary, and is written as O ∪ � = ∪L

n=1(On ∪ Cn), namely, L small
objects On, n = 1,2, · · · ,L, form a connected open set O in the image with a boundary �, connected
by piecewise smooth curves of finite length, with a finite number of corner (junction) points.

As a → 0, a shearlet atom has a slim support in the spatial domain (see Fig. 9.5.45). If this slim
support is centered at a point on an edge curve and is aligned along the normal direction of the curve, it
results in slow decay or large value shearlet coefficients.

The following conclusions demonstrate that the location and orientation of singularities can be well
characterized by the decay rate of continuous shearlet coefficients, which can be used to further classify
the geometrical features at singularity points [120,121,126].

• If b /∈ �, then

lim
a→0+a−Nγf (a, s,b) = 0, for ∀s ∈R, ∀N ∈N ,

namely, the continuous shearlet coefficients satisfy

|γf (a, s,b)| ≤ kaN, ∀N ∈ N , when a → 0+, k is a constant.

• If b ∈ � is a regular edge point, namely, the curve is at least C2 smooth near b, but s is not at the
normal direction of the curve at b, then we have

lim
a→0+a−Nγf (a, s,b) = 0,

namely, γf (a, s,b) decays rapidly to 0 as a → 0.
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• If b ∈ � is a regular edge point, namely, the curve is at least C2 smooth near b, and s is at the normal
direction of the curve at b, that is, s is at the orientation that is perpendicular to � at b, we have

lim
a→0+a−3/4γf (a, s,b) = kfb, k is a constant,

where fb is the jump of a function f at b along the normal direction.

In regard to the case that b ∈ � is a corner (junction) point, the following results follow:

• If b ∈ � is a corner (junction) point, that is, more than two curves are merged together at b, the
curves are not smooth at b, and s corresponds to one of the normal directions of the curves, we have

0 < lim
a→0+a−3/4γf (a, s,b) < +∞.

Namely, γf (a, s,b) decays as a3/4, as a → 0.
• If b ∈ � is a corner (junction) point, but s does not correspond to any of the normal directions of the

curves, the shearlet transform decays as a9/4 except in some special case. Note that in the corner
points, as a → 0+, γf (a, s,b) decays as a3/4 in two or more different normal directions at b when
two or more curves are merged together at b.

• A spike type singularity point has a different behavior for the decay of the shearlet coefficients. For
example, for a Dirac delta function centered at b0, we have |γf (a, s,b)| � a−3/4, as a → 0 for all s

when b = b0. Therefore, the shearlet coefficients actually grow at fine scales for b = b0. This is in
contrast to the case that |γf (a, s,b)| rapidly decays to zero if b is a regular edge point.

The Lipschitz regularity is commonly used to describe the local regularity of a function. In shearlet
theory, it has been shown [120] that the decay rate of the shearlet coefficients of a function f depends
on the local regularity of f . This further says that amplitudes of the shearlet coefficients are useful to
describe the regularity points of a curve when the curve can be measured by Lipschitz regularity. If
inequality (9.1.2.2) holds for all b ∈ O with constant K > 0 that is independent of b0, then the function
f is uniformly Lipschitz-α over an open set O.

The following result [120] provides us with further insight into the shearlet coefficients. It takes
advantage of the fact that the mother shearlet has an infinite number of vanishing moments, namely∫

xnψ(x, y) dx = 0, for n = 0,1, · · · ,∞.

Theorem 9.9. If function f (x) ∈ L2(R2) is Lipschitz-α, α > 0 near a point b0, we will have

|γf (a, s,b)| ≤ ka
1
2 (α+ 3

2 )(1 + |a−1/2(b − b0)|), for a < 1, k is a constant.

9.5.4.2 Shearlets in the horizontal and vertical directions
In this section, we explain that the family of shearlet atoms can be split into two families, one in
the horizontal direction and another in the vertical direction. The separation will ease the numerical
implementation of the shearlet transform because the nonuniform angular covering of the frequency
plane becomes a problem when the slope of a trapezoid is too steep, namely, when |s| takes a large
value, as shown in Fig. 9.5.44.
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The following proposition ensures that reproducing a function f ∈ L2(R2) using shearlets can be
separated into reconstruction under three systems: two (horizontal and vertical) shearlet systems, plus
a coarse-scale isotropic system. First, we introduce the horizontal shearlet family, which can be defined
by restricting the values of a and s to 0 < a < 1 and −2 ≤ s ≤ 2. The shearlets are focused on the
horizontal direction zone C(h) defined as

C(h) = {(�x,�y) ∈R2 : |�x | ≥ 2 and |�y

�x

| ≤ 1}.

Proposition 9.7. Any function f (x) ∈ L2(R2) that has its support in the horizontal zone C(h) can be
exactly reconstructed by the following reproducing formula:

f (x) =
∫
R2

∫ 2

−2

∫ 1

0
γf (a, s,b)ψa,s,b(x)

da

a3
ds db, (9.5.4.5)

assuming the mother shearlet ψ(x) satisfies the conditions given in Section 9.5.3.1 and the shearlet
atoms ψa,s,b(x) are defined as in Eq. (9.5.2.4).

The proof of this proposition can be found in [119]. The overall requirement for s is to indeed satisfy
−√

a − 1 < s <
√

a + 1. This proposition can be extended to show that any function f (x) ∈ L2(R2)

with support in the vertical zone defined as

C(v) = {(�x,�y) ∈ R2 : |�x | ≥ 2 and |�y

�x

| > 1}

can be exactly reproduced using the shearlet system defined by Eq. (9.5.2.4); however, the matrix Mas

should be replaced by MT
as , and the mother shearlet window should be replaced by ψ(v) with its Fourier

transform 
(v)(�) being defined as


(v)(�) = 
1(�y)
2(
�x

�y

).

To distinguish the mother shearlet functions for the vertical/horizontal zones, we write them as
ψ(v) (generating the vertical shearlets) and ψ(h) (generating the horizontal shearlets), respectively.
In addition, we can also define an isotropic function φ(x) as a C∞ window function in the spatial
plane R2. Its Fourier transform is defined as �(�) = 1 for � ∈ [−1/2,1/2]2 and as �(�) = 0 for
� /∈ [−2,2]2. This function � can be called the scaling function, or the father shearlet function.

Now, any function f (x) ∈ L2(R2) can be reconstructed using these three systems introduced above
as

f (x) =
∫
R2

〈f (·),φ(· − b)〉φ(x − b) db

+
∫
R2

∫ 2

−2

∫ 1

0
γ

(h)
f (a, s,b)ψ

(h)
a,s,b(x)

da

a3
db ds

+
∫
R2

∫ 2

−2

∫ 1

0
γ

(v)
f (a, s,b)ψ

(v)
a,s,b(x)

da

a3
db ds. (9.5.4.6)
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FIGURE 9.5.46

The frequency support of some horizontal and vertical shearlet atoms in the Fourier plane at two different
scales.

Typically, in finding the salient features of an image, only the high-frequency content of a function in
L2(R2) matters, and it corresponds to the curvelet atoms in the horizontal and vertical cones, written as
γ

(h)
f (a, s,b) and γ

(v)
f (a, s,b). In general, we refer to the following two horizontal/vertical cones after

we separate the low-pass content from the bandpass content:

1. the horizontal cone,

D(h) = {(�x,�y) : |�y

�x

| ≤ 1},

2. the vertical cone,

D(v) = {(�x,�y) : |�x

�y

| ≥ 1}.

Separating shearlet atoms into two families that cover the horizontal or vertical directions has made it
easier for numerical implementation of the shearlet transform. Indeed, each “vertical” direction shearlet
atom can be obtained by rotating the corresponding “horizontal” shearlet atom by π

2 . Fig. 9.5.46 shows
some examples of horizontal and vertical shearlet atoms for s = 0, s = 1 and some a. In the following,
we focus on the numerical implementation of shearlets in these two directions.

9.5.5 Discrete shearlet atoms
Several discretization methods may be chosen to generate the discrete shearlet atoms along the hor-
izontal cone and the vertical cone directions. We discretize the continuous shearlet transform by
sampling the scale, shear, and translation parameters as follows: the scale parameter is sampled at
a = 2−2k, k ≥ 0; the shearing parameter is sampled as sk,l = l2−k, −2k ≤ l < 2k; and the translation
parameter is sampled at b = BlA

k
2m, with m ∈Z2,
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Ak
2 =

(
2−2k 0

0 2−k

)
, and B l =

(
1 −l

0 1

)
.

After sampling, Eq. (9.5.2.5) is rewritten as

ψk,l,m(x) = 23k/2ψ(B−1
l A2−k(x − BlA

k
2m)). (9.5.5.1)

The following equation leads to the discretization method that we introduce in this section:

{TAk
2Bl

b}DAk
2Bl

ψ(x) = DAk
2Bl

Tbψ(x), x ∈ R2.

The discrete shearlet atoms in the horizontal direction are therefore given as the following set:

{ψ(h)
k,l,m(x) = DAk

2Bl
Tbψ

(h)(x) : k ≥ 0,−2k ≤ l < 2k,m ∈ Z2}.

The discrete shearlet atoms can be further written as:

ψ
(h)
k,l,m(x) = 23k/2ψ(h)(B−1

l A−k
2 x − m), (9.5.5.2)

where

B−1
l A−k

2 =
(

22k l2k

0 2k

)
and Ak

2B l =
(

2−2k −l2−2k

0 2−k

)
.

The Fourier transform of ψ
(h)
k,l,m(x) can be written as



(h)
k,l,m(�) = 2−3k/2
(h)((Ak

2B l)
T �)e−j2π〈Ak

2B lm,�〉

= 2−3k/2
1(2
−2k�x)
2(2

k �y

�x

− l)e−j2π〈Ak
2B lm,�〉. (9.5.5.3)

The mother shearlet function can be similarly chosen as in the continuous case. Recall that the
functions 
1(�x) and 
2(�y) are C∞(R), and shearlet atoms constructed from them are well localized
in the Fourier plane. The window 
1(�x) is supported on [−2,−1/2] ∪ [1/2,2] in the Fourier plane,
and it satisfies

∞∑
k=0

|
1(2
−2k�x)|2 = 1, for |�x | > 1

2
. (9.5.5.4)

The window 
2(�y) is supported on [−1,1] in the Fourier plane, and it satisfies

|
2(�y − 1)|2 + |
2(�y)|2 + |
2(�y + 1)|2 = 1, for |�y | ≤ 1, (9.5.5.5)

which leads to the following equation:

2k−1∑
l=−2k

|
2(2
k�y + l)|2 = 1, for |�y | ≤ 1, k ≥ 0. (9.5.5.6)
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The Fourier content of a discrete shearlet atom 

(h)
k,l,m is supported on a pair of trapezoids oriented

along a line with slope l2−k , of size about 22k × 2k , written as

Wk,l = {� = (�x,�y) : �x ∈ [−22k+1,−22k−1] ∪ [22k−1,22k+1], |�y

�x

− l2−k| ≤ 2−k}.

This system of discrete shearlet atoms defines a Parseval frame on the horizontal cone D(h). An exact
reproducing theorem can then be obtained.

Theorem 9.10. Let the horizontal shearlet atoms be defined as in Eq. (9.5.5.2), using the shearlet win-
dow that satisfies Eqs. (9.5.5.4) and (9.5.5.6). This shearlet system is a Parseval frame for L2(D(h),2).

The discrete shearlets on the vertical zone can be similarly defined as above. In addition, the low-
pass isotropic scaling shearlets can be generated by the translations of a scaling function.

9.5.6 Numerical implementation of the shearlet transform
A numerically efficient implementation of a shearlet transform was previously introduced in [118,127]
based on combining an LP with appropriate shearing filters. The problem with the implementation is
the large side lobe effects around significant edges. Recently, an improved implementation based on
separately calculating the vertical and horizontal shearlets was proposed by Yi et al. [13,122,123] and
will be introduced here.

For convenience, the new implementation reformulates the shearlet transform by introducing the
following functions in the horizontal and vertical zones separately:

W
(h)
kl (�) = 2k/2
2(2

k �y

�x

− l)χD(h) (�), (9.5.6.1)

W
(v)
kl (�) = 2k/2
2(2

k �x

�y

− l)χD(v) (�). (9.5.6.2)

The function W
(d)
kl (�), where d = v or h, is a window function supported on a pair of trapezoids in the

Fourier plane. It corresponds to a spatial function w
(d)
kl (n1, n2). Now the Fourier content of the shearlets

in Eq. (9.5.5.2) can be written as



(d)
k,l,m(�) = 2−2kV (d)(2−2k�)W

(d)
kl (�)e−j2π〈m,�〉, d = v,h,

where V (d)(�x,�y) is defined as

V (h)(�x,�y) = 
1(�x) and V (v)(�x,�y) = 
1(�y).

The discrete shearlet transform of a discrete sampled function f (n1, n2) can be computed as

γ
(d)
f (k, l,m) =

∫
R2

F(�)

(d∗)
k,l,m(�) d�

=
∫
R2

2−2kF (�)V (d∗)(2−2k�)W
(d∗)
kl (�)ej2π〈m,�〉 d�
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=
∫
R2

V
(d∗)
k f (�)W

(d∗)
kl (�)ej2π〈m,�〉 d� for d = v,h. (9.5.6.3)

Note that here the subscript “∗” indicates complex conjugate, with

V
(d)
k f (�) = aF(�)V (d)(a�), a = 2−2k,

which is the output from the high-pass filter in the horizontal/vertical zone. Eq. (9.5.6.3) can be viewed
as the inverse Fourier transform, which is equivalent to a convolution in the spatial plane, and can be
written as

γ
(d)
f (k, l,m) = (v

(d)
k f � w

(d)
kl )(m).

Here v
(d)
k f is the inverse Fourier transform of the function V

(d∗)
k f (�) and can be written as

v
(d)
k f (b) =

∫
R2

V
(d∗)
k f (�)ej2π〈b,�〉 d�.

The value of v
(d)
k f (b) is obtained through an iterative calculation as in the algorithm introduced

later. The value of w
(d)
kl (b) is the inverse Fourier transform of W

(d∗)
kl (�), obtained through a mapping of

the Fourier plane from the Cartesian grid to the pseudopolar grid, which is defined using the following
pseudopolar coordinates (ζx, ζy) ∈R2:

(ζx, ζy) = (�x,
�y

�x

) if (�x,�y) ∈ D(v), (9.5.6.4)

(ζx, ζy) = (�y,
�x

�y

) if (�x,�y) ∈ D(h).

Fig. 9.5.47 shows the mapping from the Fourier plane to the pseudopolar coordinates. Under this map-
ping, the following result is obtained:

V (d)
a f (ζx, ζy) = V (d)

a f (�x,�y),

W(d)(2k(ζy − l)) = W
(d)
kl (�x,�y).

Note that each directional window W
(d)
kl in the Fourier plane can be obtained by translating the window

W(d) in the pseudopolar grid using the function 
2 in Eqs. (9.5.6.1) and (9.5.6.2), resulting in the
directional localization supported in a wedge in the Fourier plane, as shown in Fig. 9.5.48. This results
in the spatial waveform w

(d)
kl (m) to be used in the following algorithm.

The digital implementation of the discrete shearlet transform in Eq. (9.5.6.3) can be realized through
a filter bank as follows. Let Hk and Gk be, respectively, the low-pass and high-pass filters of a wavelet
transform with 2k − 1 zeros inserted between consecutive coefficients of a given 1D filter (H or G).
Define u � H and u � G to be the separable convolution of the rows and the columns of u with H and
G, respectively.

Note that G is the wavelet filter corresponding to a high-pass odd function ψ1 and H is the filter
corresponding to the coarse scale. The window W(d) is related to an even low-pass function ψ2. ψ1 and
ψ2 can be selected through the 1D Meyer wavelets.



9.5 Shearlets and their applications 617

FIGURE 9.5.47

The mapping from a wedge in the Fourier plane to a rectangle in the pseudopolar coordinates according to
Eq. (9.5.6.4).

FIGURE 9.5.48

Images of the 23 windows that partition the Fourier plane at various orientations.

The following is a cascade algorithm for implementing the discrete shearlet transform.
Let f ∈ l2(Z2) be a 2D image. Define

S0f = f (x),

Skf = (Sk−1f ) � (Hk,Hk), k ≥ 1.

For d = v,h, the discrete shearlet transform can be calculated as follows:

γ
(d)
f (k, l,m) = (v

(d)
k f � w

(d)
kl )(m), for k ≥ 0, −2k ≤ l ≤ 2k − 1, m ∈Z2, (9.5.6.5)

where

v
(h)
k f = (Skf ) � (Gk, δ), v

(v)
k f = (Skf ) � (δ,Gk).

Fig. 9.5.49 shows a representation of the discrete shearlet coefficients for different orientations at
decomposition levels 2 and 3. For convenience, the vertical and horizontal shearlet coefficients are
relabeled according to the parameter l, which represents the orientation:
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FIGURE 9.5.49

(a). The image of a disk is shown. (b1–b4) The representations of shearlet coefficients of the disk image at
multiple scales for several values of the orientation index (l) for scale = 2. (c1–c8) The representations for
scale = 3 are shown.

γf (k, l,m) =
⎧⎨
⎩γ

(h)
f (k, l − 1 − 2k,m), 1 ≤ l ≤ 2k+1,

γ
(v)
f (k,3 ∗ 2k − 1 − l,m), 2k+1 < l ≤ 2k+2.

(9.5.6.6)

9.5.7 Applications
In the following, we are to separately introduce the applications of shearlet transform in processing
edge-related information, for example, estimation of edge orientation, edge detection, feature classifi-
cation, and image denoising.
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Edge-related tasks such as edge detection can be very difficult when noise, mixed with multiple
edges, is presented in an image. The asymptotic decay property of the shearlet coefficients γf suggests
that a shearlet transform can be a very efficient tool to determine the edges and their orientations inside
an image f . A shearlet transform not only captures the singularities in a 2D function, but also identifies
the geometrical feature of curves where the singularities are located. This leads to feature classification,
namely, to determine whether a singularity point is a regular edge point or an irregular edge point, such
as a corner or junction point.

Another difficult task in image processing is denoising. Noise is the most prevalent as spike singu-
larities are classified as isolated points that have significantly higher gradients than their neighbors. The
fact that the shearlet transform coefficients on spike points actually grow at fine scales shows that the
shearlet transform can be used to distinguish noise points from true edge points and can therefore be an
efficient tool for denoising.

9.5.7.1 Estimation of edge orientation
Detecting edge orientation using a shearlet transform takes advantage of geometrical information con-
tributions at various scales, directions, and locations. Multiple orientations may be found when more
than two curves are merged at a location. Recently, Yi and Krim [13,122,123] proposed to estimate the
edge orientation using the following formula:

l(k,m) = argmaxl |γf (k, l,m)|, (9.5.7.1)

where m is an edge point and k is a fine scale. The orientation angle, l(k,m), can then be directly calcu-
lated. Note that this angle is a discrete value associated with l = 1,2,3, · · · ,2k possible orientations. To
reduce the quantization error, the values of the orientations will be interpolated using a parabolic func-
tion of l to model the continuous shearlet transform γf (k, l,m), and the orientation angle of the edge
is associated with the maximum value in the parabolic function. The following procedure describes the
algorithm that uses shearlet transform to detect the orientation of an edge.

Shearlet orientation detection algorithm:

• Compute l1 = l(k,m) using Eq. (9.5.7.1); let l0 = ((l1 − 1) mod N), l2 = ((l1 + 1) mod N),
where N is the size of the set of indices l.

• li , i = 0,1,2, are the slopes of three adjacent discretized directions. Let θi, i = 0,1,2, be the angles
of orientations calculated from li .

• Let S(θ) = c1θ
2 + c2θ + c3. When θ = θi , S(θi) is identified with γf (k, li ,b), i = 0,1,2, then

c1, c2, c3 is obtained by fitting the system S(θi) = c1θ
2
i + c2θi + c3. The detected angle, θmax =

− c2
2c1

, c1 < 0, is the value where the parabolic function S(θ) achieves its maximum.

Fig. 9.5.50 provides an error analysis of applying this algorithm to an image with a circle object.

9.5.7.2 Feature classification
We present in this section a computationally efficient shearlet approach for classifying several different
feature points in an image. This method has advantages over wavelet-based methods, on account of the
fact that the shearlet transform catches the directional features of an image.

In a typical image, there usually exist four classes of points, namely, junction and corner points,
points near edges, points on smooth edges, and points inside a smooth region. The different types
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FIGURE 9.5.50

Comparison of the average error in the estimation of edge orientation (calculated using equation (3.4.9)
in [122]) for the disk image shown on the left, using the wavelet method (dashed line) versus the shearlet
method (solid line), as a function of the scale a, for various SNRs (additive white Gaussian noise). Courtesy
from [122].

of points may be classified by examining the behavior of the discrete shearlet transform coefficients
according to the shearlet properties at these points.

First, at a fixed scale k0, we define the energy function at each spatial point m as

Ek0(m) =
∑

l

|γf (k0, l,m)|. (9.5.7.2)

The points with large energy values E(m) are classified as boundary points.
Second, we define the following function:

sm0(l) = |γf (k0, l,m0)|.
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The function is tested on the boundary points, and the corner and junction points will be separated from
the regular edge points by applying the following criteria:

• The point m0 is a corner/junction point if more than one peak is presented in the function sm0(l) at
m0.

• The point m0 is a regular edge point if the function sm0(l) has only a single peak at m0.

In order to implement this algorithm, for each boundary point m at scale k0, let Lm be the set
that collects all the orientations at which the local maxima of the amplitudes of the discrete shearlet
coefficients occur along parameter l, namely,

Lm = {l : |γf (k0, l,m)| > |γf (k0, l + 1,m)| and |γf (k0, l,m)| > |γf (k0, l − 1,m)|}.
To verify the significance of the peaks in Lm for each boundary point m, in the following algorithm,

we use normalized shearlet coefficients at the point m defined as follows, in order to find the local
maximum points:

pm(l) =

⎧⎪⎨
⎪⎩

|γf (k0, l,m)|∑
l∈Lk

|γf (k0, l,m)| , l ∈ Lk,

0, l /∈ Lk.

(9.5.7.3)

Feature classification algorithm:

• Use the energy function Ek0(m) defined in Eq. (9.5.7.2) to cluster the image points into three mutu-
ally exclusive sets I1, I2, I3. The K-means clustering algorithm with Euclidean metric is used as the
clustering algorithm.

• Reorder the index of sets Ii , namely, let

imax = argmaxi

1

|Ii |
∑
m∈Ii

Ek0(m) and imin = argmini

1

|Ii |
∑
m∈Ii

Ek0(m).

The set Iimax is the set of boundary points, because the significant coefficients only occur at the
boundary points. The set Iimin

contains regular points inside a region because the coefficients rapidly
decay to zero at these points. The set Ii between sets Iimin

and Iimax contains the near-edge points.
• For a point m ∈ Iimax , sort the entries of the normalized coefficients pm(l) from the greatest to the

smallest, and denote them as [p̃m(1), · · · , p̃m(N)]. Using again the K-means clustering algorithm
on Iimax , this set can be further classified into one group of smooth edge points and another group of
corner and junction points according to the number of peaks at each boundary point.

Note that corner points can be further separated from junction points, and junction points can be sep-
arated into different classes corresponding to different geometric features. Fig. 9.5.51 illustrates the
result of applying the feature classification algorithm.

9.5.7.3 Edge detection
Edge detection is a difficult task when noise is present and when several edges intersect each other and
are close together. The asymptotic decay rate of the continuous shearlet transform provides a better
solution to precisely capture the geometry of edges, and it can be used to obtain both locations and
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FIGURE 9.5.51

(a1–a3) Test images. (b1–b3) Identification of corners and junctions. (c1–c3) Identification of smooth edge
points. (d1–d3) Identification of points near the edges. (e1–e3) Identification of regular points (smooth re-
gions). Courtesy from [122].

orientations of edges in an image f . Here, we describe an effective edge detection scheme to precisely
detect the shape of an edge using the shearlet transform that can be attributed to the anisotropic analytic
and geometric properties of shearlets.

In this algorithm, the first step is to identify the edge candidates in an image f . They are selected by
the shearlet transform modulus maxima at the kth scale level, that is, those points m that are the local
maxima of the function

Mkf (m)2 =
∑

l

|γf (k, l,m)|2.

The second step is to confirm edge points by excluding the noise points. According to the properties
of shearlet the transform, if m is an edge point, the shearlet transform of f has the property that

|γf (k, l,m)| ∼ C2−βk, β > 0.
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Note that points with β < 0 will be classified as noise; therefore, the edge points can be identified as
those points that have β > 0, and the task of edge detection is transferred to the task of determining the
sign of β.

Theoretically, this can be estimated by computing the best linear fit to data

{log |γf (k, l,m)|}k=1,2,··· ,L.

The magnitude of the shearlet coefficients at each point is compared with the values of its neighbors
along the gradient direction (this is obtained from the orientation map of the shearlet decomposition). If
the magnitude is smaller, the point is discarded; if it is the largest, it is kept. This yields a set of possible
edge points. This is the so-called nonmaximal suppression routine. Further, this edge candidate set will
be filtered by a window filter, and a smooth edge set can be selected by a threshold. In practice, the
following shearlet edge detection algorithm is implemented to simplify the computation complexity.

Shearlet edge detection algorithm:

• Let f ∈ l2(Z2) be a 2D image. Calculate γ
(d)
f (k, l,m), which is given as follows:

γ
(d)
f (k, l,m) = (v

(d)
k f � w

(d)
kl )(m), for k ≥ 0, −2k ≤ l ≤ 2k − 1, m ∈Z2, (9.5.7.4)

where

S0f = f (x),

Skf = (Sk−1f ) � (Hk,Hk), k ≥ 1,

v
(h)
k f = (Skf ) � (Gk, δ),

v
(v)
k f = (Skf ) � (δ,Gk).

• Define

χ
(d)
l (m) =

{
1, if γ

(d)
f (k, l,m) > γ

(d)
f (k − 1, l,m),

0, otherwise.
d = v,h. (9.5.7.5)

This defines a function to indicate the points that have negative Lipschitz regularity.
• Based on this indicator function, define

R
(d)
k f (m) =

∑
l

γ
(d)
f (k, l,m)χ

(d)
l (m), d = v,h.

• Modify v
(d)
k f, d = v,h, according to the following formula:

v
(d)
k f =

{
v

(d)
k f + R

(d)
k f, if |v(d)

k f | ≤ |R(d)
k f |,

R
(d)
k f, otherwise,

d = v,h. (9.5.7.6)

This formula modifies v
(d)
k f so that the value of v

(d)
k f is kept small (unchanged) for locations with

positive Lipschitz regularity and the value of v
(d)
k f is increased over the scales for locations with

negative Lipschitz regularity.
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FIGURE 9.5.52

Results of edge detection methods. (a) Original image. (b) Noisy image (PSNR = 24.58 dB). (c) Sobel edge
detector result (FOM = 0.54). (d) Wavelet result (FOM = 0.84). (e) Shearlet result (FOM = 0.94). Courtesy
from [122].

• After the discrete shearlet γ
(d)
f (k, l,m) is calculated using the updated v

(d)
k f , the edge at level k will

be decided by checking the local maxima of the following function:

Ek(m) = (
∑

l

γ
(v)
f (k, l,m))2 + (

∑
l

γ
(h)
f (k, l,m))2.

Fig. 9.5.52 shows the results of edge detection, in which the Pratt figure of merit (FOM) is used to
measure the performance of an edge detector [128].
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FIGURE 9.5.53

In this picture, the noisy brain image is shown to the left, and the filtered image using the shearlet denoising
method is shown to the right.

9.5.7.4 Image denoising
The properties of shearlet coefficients at fine scales show that a 2D function f can be reproduced using
the following shearlet representation (see [129]):

f (b) =
∑

k,l,m∈M1

〈f,ψk,l,m〉ψk,l,m(b) +
∑

k,l,m∈M2

〈f,ψk,l,m〉ψk,l,m(b), (9.5.7.7)

where M1 is the set of coefficients associated with the smooth regions of f and M2 is the set of coeffi-
cients associated with the edges of f .

A simple approach to achieve image denoising is carried out by using a shrinkage approach to
remove shearlet coefficients below a threshold τ . A denoised image using the discrete shearlet transform
can be expressed as

f̃ (b) ≈
∑

k,l,m∈M1

〈f,ψk,l,m〉ψk,l,m(b) +
∑

k,l,m∈Mc
2

〈f,ψk,l,m〉ψk,l,m(b), (9.5.7.8)

where Mc
2 is the set of shearlet coefficients whose values are greater than τ . This approach is able

to optimally capture directional features and reach the desired denoising effect. Fig. 9.5.53 shows a
denoising result using the shrinkage method.

9.6 Incorporating wavelets into neural networks
Artificial neural network (ANN) originally gained researchers’ attention on account of their promis-
ing performance as well as their structure, which is also reminiscent of the human brain functionality
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and its associated perception. Subsequent developments led to a refinement of ANN using wavelets
to produce a more efficient analysis tool to seek nonlinear and time-varying features in signals/im-
ages. Unlike ANN, wavelets were capable of systematically accounting for the spectral information
associated with features. Thus, a natural goal which arises is that of integrating wavelet analysis with
ANN for a joint exploitation of their respective advantages in statistical inference applications. Specif-
ically, researchers have focused on developing algorithms that integrate the advantages of ANN, i.e.,
self-adaptivity, fault tolerance, and robustness, with the advantages of the well-founded and established
wavelet transformation in T-F localization for capturing scale-invariant features. This up-to-date, hy-
brid approach promises to leverage the strengths of deep learning, thereby providing a very powerful
framework for supervised learning.

Numerous numerical stability challenges of ANN, hindering convergence, have necessitated the use
of a compact and local kernel approach to yield convolutional neural network (CNN) [130] and, more
recently, other activation-free networks referred to as Volterra neural network (VNN) [131,132]. The
popularity of CNN may be attributed to a variety of properties including its self-learning and adaptive
capacity, as well as its strong inference ability. It uses convolution as its basic representational atom
and a bank of these atoms to build one representation layer in the so-called deep learning structure of
many layers. Uniquely, the structure of CNN, by way of layers of convolutionally adapted filter banks,
provides an efficient flexibility in the size of channels (number of filters) and the depth of the network
(number of layers). This improved efficiency of CNN compared to ANN at capturing proper features
has led to state-of-the-art performance in signal/image inference. Additionally, it has been followed by
constant improvements and perspectives to address identification/annotation in video tracking [133] as
well as superresolution [134], denoising [135], etc.

Early research efforts focused on 1D signals, through which researchers realized that the activation
function was a key component in a hidden layer/unit which determined the success of a neural network.
Further, it was found that the resulting output expression of the ANN bore a form similar to that of
wavelet reconstruction. These discoveries led to the generation of a new idea: replacing the activation
function in the ANN with wavelet atoms to subsequently yield wavelet neural network (WNN) [136].

Although WNN seemed to be a promising improvement on previous techniques, the computational
complexity of multidimensional wavelets (even for 1D signals) makes the application of these tools to
2D images quite challenging. One of the key obstacles of this task is managing the cost of selection and
storage of wavelet (orthonormal and nonorthonormal frame) representations, which can very quickly
become prohibitively expensive. On the other hand, CNN can produce acceptable efficiency with large
datasets and hold promise for joint exploitation of wavelets, which could form a solid groundwork for
resolving the computational challenges in inference and processing problems.

In this section, we will introduce the neural network methods that use wavelets for both 1D signals
and 2D images in a balanced manner. While the extension from 1D to 2D signals is algebraically
tedious, it is theoretically and conceptually natural. For the sake of clarity, we separately detail the 1D
and 2D cases.

9.6.1 Using wavelets in neural networks for signal processing
For a single-input single-output (SISO) system, the output from an ANN with a fully connected single
hidden layer is analogous to that of a nonlinear regression model,
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FIGURE 9.6.54

The diagram structure of RBFN with one single hidden layer.

ŷ = f (x) =
q∑

i=1

wiσ(aT
i x + bi) +

n∑
j=1

cjxj + w0, (9.6.1.1)

where x = (x1, x2, · · · , xn) ∈ Rn is an input signal, q is the number of neurons or hidden units, wi, cj

are linear coefficients, w0 is a bias term from the hidden layer to the network output, and σ is an
activation function that represents a hidden neuron controlled by the weights ai and the hidden layer
bias bi . The choices of most popular activation functions are nonlinear functions such as:

• Rectified Linear Unit (ReLU) activation: ReLU(x) = max(x,0),

• sigmoidal activation: σ(x) = 1

1 + e−x
,

• hyperbolic tangent (Tanh) activation: Tanh(x) = ex − e−x

ex + e−x
.

Since there is no precise formula for ANN, alternatively, the output from an ANN can also yield the
following form:

ŷ = f (x) =
q∑

i=1

wiσ(ai � x + bi ) +
n∑

j=1

cj xj + w0, (9.6.1.2)

where “�” is the componentwise multiplication operator and the activation function takes the format
of a radial basis function (RBF); therefore, in this case, ANNs are also called RBF network (RBFN)
[137].

Fig. 9.6.54 provides a diagram of RBFN while we view the linear term as a convolution and ignore
the bias term. For a multiple-input multiple-output (MIMO) system, given a set of N input/output pairs,
a training dataset, (xk, yk), xk ∈Rn, k = 1, · · · ,N , is the input signal with the corresponding true label
yk ∈R for classification purposes. The output from an ANN is the estimated label ŷk . The network is
trained via a backpropagation (BP) algorithm that uses a gradient decent method to select the weight
parameters, wi,ai ,bi , cj ,w0, by minimizing a cost function (or loss function) such as an Lp-norm
between the output of the network and the desired output. When p = 2, the cost function is the mean
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square error (MSE),

L2 = 1

N

N∑
k=1

(ŷk − yk)
2.

The similarity between Eq. (9.6.1.2) and the wavelet reconstruction formula (see previous Section 9.2)
is analyzed in [139,142]. In the following subsections, we will extend the RBFN to the ANN-based
WNN, developed in the 1990s. Then, we will present the deep convolutional framelets neural network
(FrameletsNN), a recent development, to compare the advantages associated with the two wavelet-
based neural networks.

9.6.1.1 Wavelet neural networks
In a simple structured neural network with only one single hidden layer, WNN [136,138,139,140]
replaces the activation function in RBFN to allow the algorithm to function similarly to an adaptive
inverse wavelet transform while maintaining the advantages of the BP neural network. Without the bias
(shifting) term, the output can be written as

ŷ =
q∑

k=1

wiψ(ai(x − bi)) + cx, x ∈R, (9.6.1.3)

where ψ(ai(x − bi)) are wavelet atoms derived from a 1D mother wavelet ψ :R →R with ai , bi as
the scaling and translation parameters, respectively, and q is the number of wavelet neurons, also called
wavelons.

WNN quickly becomes more cumbersome in the case of a multidimensional input signal x ∈Rn.
The output (with the bias term) can be written as

ŷ =
q∑

i=1

wiψ(ai � (x − bi )) +
n∑

j=1

cj xj + w0, x,ai ,bi ∈Rn, (9.6.1.4)

where ψ is the multidimensional mother wavelet ψ :Rn →R and wi,ai ,bi , cj ,w0 are weights used in
the hidden layer. This amounts to a total of q + 2nq + n + 1 parameters being estimated. Even though
the number of weights can be reduced to 2q + qn + n + 1 by using the scalar dilating parameter ai = a,
it is still much more expensive to train a multidimensional WNN to estimate x ∈Rn than to train a 1D
WNN. Therefore, researchers are more focused on multidimensional WNN in an effort to reduce the
computational burden associated with higher-dimensional data.

The diagram of a multidimensional WNN in Fig. 9.6.55, in contrast to the diagram of an ANN
in Fig. 9.6.54, shows that the localized spectral information from the wavelet transform ensures that
useful feature information will be utilized in a more delicate manner than a general activation function
in optimizing the weights by BP. This allows WNN to mitigate the problem of inaccurate prediction
results due to the existence of local extrema. However, the fact that the linear term, if viewed as a
convolution operator, is separated from the wavelet-related neurons is a limitation that can be addressed
in FrameletsNN (to be introduced later in Section 9.6.1.2).

In training a WNN, the weights are randomly initialized, followed by iterative updates to minimize
the cost function. Numerous viable solutions [139,141] have been proposed with the intent of obtain-
ing faster convergence of the algorithm, thus strengthening the initialization of WNN. These involve
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FIGURE 9.6.55

Structure of a WNN with one single hidden layer.

procedures to select a “good” mother wavelet and wavelet atoms in order to facilitate the training. To
keep this section more focused on related topics, we will only briefly discuss how to initiate the steps
for training the WNN using a BP algorithm. For details, readers are referred to [139,141].

Selecting a mother wavelet
Since x = (x1, x2, · · · , xn) ∈ Rn is estimated as a function on a compact domain, usually the rule of

thumb for selecting the mother wavelet is to ensure that it is compactly supported or rapidly vanishing
to alleviate the computational burden due to the large number of weights that need to be trained. The
following mother wavelets are commonly used:

Gaussian derivative: ψ(x) = ||x||e−||x||2/2,

Mexican hat derivative: ψ(x) = (n − ||x||2)e−||x||2/2,

Morlet wavelet: ψ(x) = cos(5||x||)e−||x||2/2.

In the case where a multiplicative function is desired, a mother wavelet can be constructed as the
product of 1D wavelets:

ψ(x) =
n∏

i=1

ψ(xi).

Selecting wavelet atoms
Once a multidimensional mother wavelet is selected, a library of wavelons will be created as di-

lated/translated wavelet atoms. The next step will be to select the regressors on account of the linear
regression form in the first term of Eq. (9.6.1.4). The regressors are wavelets determined by the dila-
tion and translation parameters (ai, bi). The neural network will be trained to optimize the parameters.
However, in a WNN, the initialization of the parameters is a crux to reduce the training time for the
neural network. Here, we summarize three ways to “best” initialize the parameters for the regressors.
A detailed discussion can be found in Zhang [139].
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• Residual-based selection (RBS): A simple method to build the “best set” is to iteratively select the
wavelet atom from the library that best fits the output data at each step, adding new wavelets to the
developing set one-by-one until high efficiency is reached while balancing it against maintaining
low computational burden.

• Backward elimination: One of the most effective methods is to start with the library containing all
wavelets and remove wavelets of least contribution to the fitting (small wavelet coefficients) from
the library in an effective way that is similar to the wavelet shrinkage method [142,143].

• Stepwise selection by orthogonalization (SSO): SSO is an extension of the RBS method. In each
step, a new wavelet atom will be selected through a modified Gram–Schmidt algorithm and normal-
ized (see [139]). A similar modification was proposed by Oussar [141].

9.6.1.2 Deep convolutional framelets neural networks
Replacing the “�” operator in Eq. (9.6.1.2) with the convolution operator “�” while ignoring the con-
stant term, we can interpret the equation as a multichannel convolution (q-channel output) for one input
signal x, regulated by the activation function that can be viewed as a composite of nonlinearities and
pooling, followed by a fully connected 1 × 1 convolution. This replacement is what led to the creation
of the CNN, which is much more computationally efficient by virtue of needing only a small number
of weights to be used as a convolution filter.

In this subsection, we introduce first the convolution framelets [144] (called Framelets) and then the
FrameletsNN [145,146]. Framelets induce an energy-compact representation of a signal by way of local
and nonlocal bases. This representation opened up a new avenue to incorporate wavelets into the deeper
layers of a CNN, leading to the development of FrameletsNN, a CNN-based deep learning method
with a wavelet-friendly architecture that has improved performance over the popular CNN-based U-
Net reconstruction [134]. Similar to U-Net, FrameletsNN consists of a contracting path that involves
pooling functions that carry downsampled features and an expansive path that involves unpooling for
upsampled feature reconstruction. The critical role of pooling/unpooling in a neural network for feature
extraction in signal/image reconstruction was discussed in [147,148].

9.6.1.2.1 Convolution framelets (Framelets)
Framelets [144] is a patch-based representation of a signal for energy compaction. A redundant repre-
sentation consisting of patches that are wrapped around x = (x1, x2, · · · , xn) is used to yield the Hankel
matrix Hd(x) of n × d , defined as

Hd(x) =

⎡
⎢⎢⎢⎣

x1 x2 · · · xd

x2 x3 · · · xd+1

...
...

. . .
...

xn x1 · · · xd−1

⎤
⎥⎥⎥⎦ .

By way of interpreting an index i ≤ 0 as i = n + i, namely an index wrapping around a signal, x can
be reconstructed back as

xk = 1

d

d−1∑
i=0

[Hd(x)]k−i,i+1, k = 1, · · · , n. (9.6.1.5)
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For a SISO system, let v = (vd, vd−1, · · · , v1)
T represent the index-reversed vector copied from a

vector v = (v1, v2, · · · , vd)T ∈Rd . The (circular) convolution [145] of an input signal x with a convo-
lutional filter v generates the output y,

y = x � v = Hd(x)v. (9.6.1.6)

Suppose the Hankel matrix Hd(x) with rank q, 1 ≤ q ≤ d , has a singular value decomposition
(SVD) with Hd(x) = U�V T , where � = (σij ) ∈ Rq×q is a diagonal matrix, U = (u1,u2, · · · ,uq) ∈
Rn×q , and V = (v1,v2, · · · ,vq) ∈ Rd×q are orthogonal matrices (column vectors are orthonormal
to each other). Here U and V are referred to as nonlocal and local bases, respectively. Similarly,
in Framelets, the Hankel matrix is decomposed as Hd(x) = �CV T . The nonlocal basis �n×n =
(φ1,φ2, · · · ,φn), φi ∈ Rn×1, is designed to capture, as much as possible, the “variance” within the
dataset. The local basis V d×d = (v1,v2, · · · ,vd), vi ∈Rd×1, is known to represent a local segment
of a signal in an “energy compaction” fashion. As shown by Yin [144], when both local and nonlocal
bases are selected with energy concentrated on their low-frequency components in the order of in-
creased frequencies, they promote signal representations with “certain energy concentration patterns,”
and C = (cij ) ∈Rn×d will be optimized with nonzero entries only lying along the diagonal in the upper
d × d block.

Define the outer product of a nonlocal basis (the column vectors of �) with a local basis (the column
vectors of V ) as

�ij = φiv
T
j , i = 1, · · · , n, j = 1, · · · , d.

It can be shown [144] that {�ij } forms an orthonormal basis for the space of all n × d matrices, Rn×d ,
and the Hankel matrix can be written as

Hd(x) =
n∑

i=1

d∑
j=1

< x,φi � vj > �ij =
n∑

i=1

d∑
j=1

< x,φi � vj > φiv
T
j ,

where the inner product of two vectors is defined as < φ,v >= φT v. Hence, combining this equation
with Eq. (9.6.1.5), we will have the representation of x as

x = 1

d

n∑
i=1

d∑
j=1

< x,φi � vj > φi � vj . (9.6.1.7)

So we define the Framelets as

ψ ij = φi � vj , i = 1, · · · , n, j = 1, · · · , d.

Subsequently, the framelet coefficients are defined as cij =< x,ψ ij > with all coefficients forming
the elements of the framelet coefficient matrix C. Eq. (9.6.1.7) indicates that the framelets ψ ij , i =
1, · · · , n, j = 1, · · · , d , constitute a tight frame for signals in Rn. To optimize the selection of the
frame, for a given nonlocal basis �, the local basis V is optimally learned from the data with the goal
of making the framelet coefficient matrix C sufficiently sparse so that its energy will concentrate only
on the upper left block storing coefficients (along the diagonal direction of C). A more parsimonious
representation of the Framelets using dimension reduction can be found in Yin [144].
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9.6.1.2.2 Deep convolutional framelets neural networks
Framelets provides a foundation for the development of deep convolutional framelets neural networks
(FrameletsNN) [145]. If we relax the condition on matrices used in SVD, the following proposition will
provide the formula for using framelets to represent a signal, thus allowing multistage implementation.

Proposition 9.8. Let �n×m = (φ1,φ2, · · · ,φm) ∈ Rn×m be a generalized nonlocal basis matrix paired
with its dual matrix �̃ ∈Rn×m, and, similarly, let V d×q = (v1,v2, · · · ,vq) be a local basis matrix
paired with its dual matrix Ṽ = (ṽ1, ṽ2, · · · , ṽq) ∈Rd×q . Both satisfy the condition �̃�T = In×n and
Ṽ V T = Id×d , namely,

�̃�T =
m∑

i=1

φ̃iφ
T
i = In×n, (9.6.1.8)

Ṽ V T =
q∑

j=1

ṽjv
T
j = Id×d . (9.6.1.9)

A signal x can be perfectly reconstructed as

x = 1

d

q∑
j=1

(�̃cj ) � ṽj , cj = �T (x � vj ), (9.6.1.10)

and x can be further represented as

x = 1

d

q∑
j=1

m∑
i=1

< x,φi � vj > φ̃i � ṽj . (9.6.1.11)

Note that the frame conditions in Eqs. (9.6.1.8) and (9.6.1.9) can be further relaxed to PR(φ) or
PR(V ), where PR(S) denotes the projection to the range space of S, namely, the set of possible linear
combinations of its column vectors.

The encoder and decoder in a one-layer FrameletsNN
To elaborate further on perfect reconstruction, we can first write Hd(x) as

Hd(x) = �̃�T Hd(x)V Ṽ
T = �̃CṼ

T
. (9.6.1.12)

The middle term of Eq. (9.6.1.12), denoted as C = �T Hd(x)V , describes a one-layer encoder ar-
chitecture as a single-input multiple-output (SIMO) system, and the reconstruction of x from Hd(x) =
�̃CṼ

T
describes the decoder architecture as a multiple-input single-output (MISO) system. Together

they form a one-layer FrameletsNN that will be described further as follows.
In the encoder layer, the convolution of one input signal x with a multichannel filter V d×q =

(v1,v2, · · · ,vq) is a SIMO system that generates a multichannel output Y that can be written as

Y = (y1,y2, · · · ,yq)

= (x � v1,x � v2, · · · ,x � vq)

= x � V = Hd(x)V .

(9.6.1.13)
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Applying the nonlocal basis � to the multichannel output yields the framelet coefficient matrix

C = (c1, c2, · · · , cq) = �T Y = �T x � V

= (�T (x � v1),�
T (x � v2), · · · ,�T (x � vq)).

(9.6.1.14)

The decoder architecture aims for perfect reconstruction of the original signal, x, via a general-
ized inverse, H

†
d , of Hd to yield H

†
d (Hd(x)) = x, which is a MISO system [144,145]. We can convert

Eq. (9.6.1.12) back to

Hd(x) = �̃CṼ
T =

q∑
j=1

(�̃cj )ṽ
T
j .

Further using Eq. (9.6.1.5), similar to Eq. (9.6.1.7) we have

x = H
†
d (Hd(x)) = 1

d

q∑
j=1

(�̃cj ) � ṽj = (�̃C) �
˜̃V ,

where ˜̃V is a vector defined from the matrix Ṽ ,

˜̃V = 1

d

⎡
⎢⎢⎢⎢⎣

ṽ1

ṽ2

...

ṽq

⎤
⎥⎥⎥⎥⎦ ∈ Rdq×1.

In a single-stage frameletsNN, the search for a filter V is limited to the following space with positive
framelet coefficients:

H = {x ∈Rn|x = (�̃C) �
˜̃V ,C = �T (x � V ), [C]ij ≥ 0}.

Let (xk;yk), k = 1, · · · ,N , be a training dataset, where yk is the ground-truth signal corresponding
to the kth input signal xk . The goal of FrameletsNN is to learn (V , Ṽ ) from the training data through
minimizing the cost function

min
(V ,Ṽ )

N∑
k=1

||yk − F(xk;V , Ṽ )||2, (9.6.1.15)

where F(xk;V , Ṽ ) = (�̃C) �
˜̃V and C = ρ(�T (x � V )). An activation function ρ(·), such as ReLU,

is installed in the encoder to allow only positive framelet coefficients to participate in the reconstruction
[145]. In the following, we will sometimes omit the activation functions in the equations to simplify
notation, and only mark it out in the diagram figures.

The multiple-input multiple-output system
For p input signals Zn×p = (z1,z2, · · · ,zp), each can be associated with a q-channel filter (each of

length d), V j = (v
j

1,v
j

2, · · · ,v
j
q) ∈Rd×q , j = 1,2, · · · ,p. Hence, the MIMO filter kernel is a block-
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structured matrix, or its index-reversed version; together they are defined as

Vpd×q =

⎡
⎢⎢⎢⎣

V 1

V 2

...

V p

⎤
⎥⎥⎥⎦ , Vpd×q =

⎡
⎢⎢⎢⎢⎣

V 1

V 2

...

V p

⎤
⎥⎥⎥⎥⎦ , (9.6.1.16)

where V j = [vj

1,v
j

2, · · · ,v
j
q ]. The corresponding convolution can be written as

C = Z � V =
p∑

j=1

Hd(zj )V j = Hd|p(Z)V, (9.6.1.17)

where Hd|p(Z) = (Hd(z1),Hd(z2), · · · ,Hd(zp)) is called an extended Hankel matrix. Each output
vector of the MIMO system can be written as

ci =
p∑

j=1

(zj � v
j
i ), for i = 1, · · · , q.

The encoder and decoder in the deeper layers for perfect reconstruction
The single-layer FrameletsNN described above can be expanded to add new layers (also called

stages) of encoders and decoders in turn as MIMO systems to deepen the network with a varied number
of channels in each layer. Write the output from the kth encoder layer as C(k), k = 1,2, · · · ,K . Also,

denote the kth-layer local and nonlocal bases as V(k) and �(k), respectively, with Ṽ(k) and �̃
(k)

as their

corresponding dual bases. �(k) and �̃
(k)

satisfy Eq. (9.6.1.8). V(k) and Ṽ(k) satisfy condition

V(k)Ṽ(k)T = Ipkdk×pkdk
, k = 2, · · · ,K. (9.6.1.18)

Note that the local basis of the first layer V(1) is a matrix of size d1 × q1 that satisfies Eq. (9.6.1.9)
as we assume a single input at the beginning layer. The local basis of the kth layer (k = 2, · · · ,K) is
a block matrix of size dkpk × qk due to its nature as a MIMO system. For details with respect to the
specification of parameters at each layer, the reader is referred to [145].

Under the new layered notations, the q1-channel output from the encoder in the first layer can be

rewritten as C(1) = �(1)T (x � V(1)
). Similar to the first-layer FrameletsNN, C(1) now becomes the p2-

channel input to a MIMO encoder; thus, p2 = q1. It generates a q2-channel output of the second layer

as C(2) = �(2)T (C(1) � V(2)
), and subsequently, the output from the encoder layers can be written as

C(1) = �(1)T (x � V(1)
), (9.6.1.19)

C(k) = �(k)T (C(k−1) � V(k)
), for k > 1.

Meanwhile, using the new layered notations, a MIMO decoder in the first layer can be rewritten as

x = (�̃
(1)T

C(1)) �
˜̃V(1). The second-layer (the same for the following layers) reconstruction leads to
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the extended Hankel matrix

Hd2|p2(C
(1)) = �̃

(2)
C(2)Ṽ(2)T , (9.6.1.20)

which, by way of Eq. (9.6.1.5), further leads to reconstructing its input C(1) as

C(1) = 1

d2

⎡
⎣ q2∑

j=1

(�̃
(2)

c2
j ) � ṽ2,1

j ,

q2∑
j=1

(�̃
(2)

c2
j ) � ṽ2,2

j , · · · ,

q2∑
j=1

(�̃
(2)

c2
p2

) � ṽ
2,p2
j

⎤
⎦

= (�̃
(2)

C(2)) �
˜̃V(2), (9.6.1.21)

where ˜̃V(2) is reshaped from Ṽ(2)
(p2d2)×q2

as

˜̃V(2) = 1

d2

⎡
⎢⎢⎢⎢⎢⎣

ṽ2,1
1 · · · ṽ

2,p2
1

ṽ2,1
2 · · · ṽ

2,p2
2

...
...

...

ṽ2,1
q2

· · · ṽ2,p2
q2

⎤
⎥⎥⎥⎥⎥⎦ ∈R(d2q2)×p2 .

This operation will be continued in the deeper layers, so the output from each decoder layer yields

C(k−1) = (�̃
(k)T

C(k)) �
˜̃V(k), for k > 1, (9.6.1.22)

x = (�̃
(1)T

C(1)) �
˜̃V(1).

The diagram in Fig. 9.6.56 shows an encoder/decoder with three layers of perfect reconstruction (K =
3). The same module can be repeated after three stages in depth. Ideally, the reconstruction will be
perfect; however, due to noise and the estimated local basis V , the reconstruction is an approximate of

the input, so we write it as Ĉ
(k)

for the kth-layer reconstruction.

The encoder and decoder layers for FrameletsNN
The framelet representation reveals that the nonlocal basis plays a key role in the efficiency of per-

fect reconstruction. The SVD of Hd(x) exposes the limitation of using an average operator as a pooling
operator in U-Nets as the basis does not satisfy the frame condition as required for a perfect recon-
struction. This suggests the potential to replace the average pooling operator (and their corresponding
unpooling operator) in each layer of CNN with the nonlocal basis � (�̃) (layer is not specified) so that
the condition in Definition 9.6 can be best satisfied. To do so, a nonlocal basis � can be arranged as a
composition of a tight filter bank in the order of the frequency content,

� = [�1 �2 · · · �L],
where �l, l = 1, · · ·L, is the lth subband operator, each of size n × n/L (assume the size n is divisible
by L), such that

��T =
L∑

l=1

�l�
T
l = cIn×n.
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FIGURE 9.6.56

Multilayer encoder and decoder for FrameletsNN.

In the 1D case, let L = 2. We have the low-pass filter bank �low and the high-pass filter �high that
satisfy �low�T

low + �high�
T
high = I . If we use Haar wavelets, the matrices are given as

�T
low = 1√

2

⎡
⎢⎢⎢⎣

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1

⎤
⎥⎥⎥⎦

n
2 ×n

, (9.6.1.23)

�T
high = 1√

2

⎡
⎢⎢⎢⎣

1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

⎤
⎥⎥⎥⎦

n
2 ×n

. (9.6.1.24)

The following alternative form directly accounts for adding a bypass connection to fulfill the frame
condition with the nonlocal basis, which provides high-pass content to compensate for the loss from
the use of an average operator as a low-pass filter:

�ext ≡ [ I �
]= [ I �low �high

]
,

such that �ext�
T
ext = I + ��T = I + �low�T

low + �high�
T
high. Then the framelet coefficients for a

signal x can be expressed as

Cext = �T
extHd(x)V = �T

ext (x � V )

=
[

(x � V )

�T (x � V )

]
=
⎡
⎢⎣ (x � V )

�T
low(x � V )

�T
high(x � V )

⎤
⎥⎦=

⎡
⎣ (x � V )

Clow

Chigh

⎤
⎦ .
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FIGURE 9.6.57

Multilayer encoder and decoder for FrameletsNN that combines frequency localization information.

This expression highlights three approaches participating in an encoder convolution layer in the
FrameletsNN:

1. The bypass (skip) connection shown in the first row.
2. The low-pass filter shown in the second row that can be used as a pooling function. The output is

much like the low-pass content from the wavelet decomposition; we write it as Clow.
3. The high-pass filter in the third row that can be used in the unpooling function. The output is much

like the high-pass content from the wavelet decomposition; we write it as Chigh.

In the decoder, the pooled data will be unpooled by the matrix �̃, which will be further concatenated
to the bypass term for a perfect reconstruction. Thus, we have the concatenated output signal as

Mc =
[

x � V �̃�T (x � V)

]
=
[

x � V �̃Clow �̃Chigh

]
.

The reconstructed signal is obtained as y = H
†
d

(
McṼT

)
.

This analysis built the foundation for FrameletsNN to use residual networks as well as an MRA
reconstruction method to deal with the problem encountered in perfect reconstruction. Namely, the es-
timated local basis hardly satisfies the required frame condition and typically only an approximation
can be obtained. Hence, by combining frequency localization with added layers of encoder and decoder,
FrameletsNN proceeds in an MRA manner to allow the low-pass frequency content to be further de-
composed at the lower-level stage, concatenating the high-pass frequency component to the estimated
low-pass content for reconstruction (see Fig. 9.6.57).

To write out the formulas for the MRA, we first decompose the kth-layer nonlocal orthonormal
basis �(k) = [�(k)

low �
(k)
high], for which we use the Haar wavelet as in Eqs. (9.6.1.23) and (9.6.1.24);
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hence, �̃
(k) = �(k). By way of Eq. (9.6.1.20), the following formulas provide the reconstruction of the

input to each layer of the network:

Hd1(x) = �
(1)
lowC

(1)
lowṼ

(1)T + �
(1)
highC

(1)
highṼ

(1)T ,

Hdk |pk
(C

(k−1)
low ) = �

(k)
lowC

(k)
lowṼ

(k)T + �
(k)
highC

(k)
highṼ

(k)T , k = 2, · · · ,K.

The K layers of encoder of the FrameletsNN with the ReLU can be described as

C
(1)
low = ρ(�

(1)T
low (x � V(1)

)), C
(1)
high = �

(1)T
high(x � V

(1)
),

C
(k)
low = ρ(�

(k)T
low (C

(k−1)
low � V(k)

)), C
(k)
high = �

(k)T
high(C

(k−1)
low � V(k)

), k = 2, · · · ,K.

Note that the resolution will be reduced by half in each layer of the encoder. To reverse to the original
signal of higher-resolution content, at each stage, the low-frequency content is concatenated with the

high-frequency one to yield the estimate Ĉ
(k) = [Ĉ(k)

low C
(k)
high], which will subsequently be used to

reconstruct the low-frequency content in the higher layer. The K layers of decoder can be described as

Ĉ
(k−1)

low = ρ((�̃
(k)

Ĉ
(k)

) �
˜̃V(k)), k = 2, · · · ,K,

x̂ = ρ((�̃
(1)

Ĉ
(1)

) �
˜̃V(1)), (9.6.1.25)

where low-pass content estimated at the last layer can be directly bypassed to the decoder to concatenate
it with the high-pass content from the higher layer for reconstruction, or a convolution filter can be
applied to it before it is sent to the decoder at the same layer. Note the contrast with WNN, which
uses wavelets to replace the activation layer that is not related to convolution. Using the nonlocal basis
in the FrameletsNN allows it to incorporate high-frequency content into the reconstruction. The local
basis can be trained by optimizing a lost function that is similar to Eq. (9.6.1.15) to account for the
optimization over all the stages. For further details the reader is referred to [145].

9.6.2 Using wavelets in neural networks for image processing
The success of LeNet [130] launched CNN-based algorithms onto the center stage as the dominant tech-
nique in image processing. Capturing image features with localized weights made CNN significantly
more efficient than its counterpart, the fully connected ANN. Further adding to CNN’s growing success
were the development of related algorithms and technological advancement. The availability of high-
performance GPU computing systems stimulated the development of AlexNet [149] with deeper CNN
architecture for image classification. VGG networks [150] went deeper, using as many as 19 layers of
convolution while reducing a convolution field to a notably small size of 3 × 3. The batch normaliza-
tion layers [151] extended its support for generic convolution blocks that include nonlinearities/pooling
as well. Researchers have used generic convolution blocks as the backbone of CNN to construct a
deeper network of increasing complexity with the intent of improving performance as the increasing
number of network layers exponentially enhances the representation power [152]. More algorithms
were further designed in order to fine tune the CNN with well-known improvements such as the net-
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work in network (NiN) [153], GoogleNet [154], residual network (ResNet) [155], densely connected
network (DenseNet) [157], principled hierarchical (deep) dictionary learning[156], and metalearning
[158,159,160,161], just to name a few.

Researchers further extended the utility of CNN-based object classification tasks to include image
restoration. The task of retrieving a superresolution (SR) image from its lower-resolution (LR) version
or denoising an image at the same resolution has found a wide variety of applications in many research
fields. One such example is U-Net [134,162], a remarkable CNN-based algorithm, which has found
much use in the medical imaging field among others. This algorithm includes a contracting path (left
side) and an expansive path (right side) for image restoration, and many improvements and applications
have since built upon U-Net.

Still, wavelets hold a distinct advantage over CNN in that they are able to capture scale-invariant
features. Meanwhile, the CNN-based ResNet or DenseNet are able to account for the long short-term
memory [155]. Researchers combined the advantage of wavelet transformation in T-F localization with
the advantage of ResNet by adding a bypass to circumvent the problem that gradients are likely to
disappear during an error in BP in deeper networks. An even bolder attempt by researchers was to
combine the advantage of DenseNet with wavelets, further adding bypasses to connect the input from
each layer to all the outputs of the subsequent layers to make the last layer densely connected to all
preceding layers.

In the following subsections, we will discuss some research efforts that sought to embed wavelets
into deeper neural networks for image restoration only. Readers interested in using wavelets for image
registration/annotation are referred to [163,164].

9.6.2.1 Cascading wavelets with CNN-based algorithms
One straightforward solution for integrating the wavelets with CNN is to cascade them in a parallel
fashion, namely, we first decompose the input signals/images into a selected wavelet basis/frame and, in
turn, feed the coefficients into a CNN-based algorithm. To this end, two algorithms [165,166,167,168]
were proposed almost simultaneously.

9.6.2.1.1 Deep wavelet superresolution
Deep wavelet superresolution (DWSR) is a CNN-based ResNet algorithm [165] to capture the residuals
of wavelet coefficients between an LR image and its corresponding true SR version. The 2D DWT
(Haar wavelets are used) is applied to the upsampled LR image to generate four low-resolution subband
(LRSB) wavelet coefficient images: LA (average), LV (vertical), LH (horizontal), and LD (diagonal).
The LSRBs are fed into a sequence of convolution filters. The first layer has a 64-channel filter of
size 4 × 3 × 3, the last layer has a four-channel filter of size 64 × 3 × 3, and the middle N layers
(N = 10 was empirically selected) all have a 64-channel filter of size 64 × 3 × 3. Zero padding at each
layer is applied for the output to have the same image size as the subband wavelet coefficients, and
no pooling/unpooling is applied. In the algorithm, the 2D DWT is applied to the corresponding high-
resolution true image in parallel to receive the true superresolution subbands (SRSBs), labeled as SA,
SV, SH, and SD.

The algorithm learns the four subband residuals, ˆ�SB, from the true version, �SB, the difference
between the true SRSBs and the LRSBs, in an iterative manner. The parameters (weights and bias) of
the network, (�,b), minimizing the cost function are obtained as,
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FIGURE 9.6.58

The network structure of DWSR. The algorithm used about 10 convolution layers.

(�,b) = argmin
(�,b)

1

2
||�SB − ˆ�SB||22 + λ||�||22,

for selected λ > 0. Fig. 9.6.58 provides the details for the DWSR network architecture. The estimated
residual SRSBs are further added back to the LRSBs to yield the estimated SRSBs as follows:

Estimated SRSBs {ŜA, ŜV , ŜH, ŜD}
= LRSB + ˆ�SB

= {LA + �̂SA,LV + �̂SV,LH + �̂SH,LD + �̂SD}. (9.6.2.1)

9.6.2.1.2 Wavelet residual network
The wavelet residual network (WavResNet) [166,167,168] algorithm is another CNN-based algorithm
that cascades wavelet coefficients with a CNN-based network in a parallel fashion. It utilizes more
layers and bypass paths than DWSR. Because CNN learning can benefit from the deep learning on fea-
tures in wavelet subbands, WavResNet uses multiple convolution layers together with five convolution
module units for denoising, which amount to a total of 20 convolution layers for training, making it
significantly deeper than DWSR. In addition, WavResNet uses a 320-channel filter while DWSR used
a 64-channel filter in each convolution layer, except in the last layer, where only a four-channel filter is
used to output the subbands. Thus, WavResNet is designed to capture more salient features.

For consistency, we use the same notations for the subbands as used in DWSR. WavResNet also
uses the four subband wavelet coefficients as input, labeled as X = (LA,LH,SV,LD). It estimates
the wavelet coefficients of the noise ε, namely the difference between the subbands of the noisy input
and those of the clean version for the task of image denoising. The wavelet coefficients of a denoised
image are inverted as Y = X − ε. This reduces the topological complexity of the label manifolds.
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FIGURE 9.6.59

The first row shows the network structure of WavResNet. The second row shows the details inside a module
unit that is used in WaveResNet.

WavResNet can also be used to reconstruct SR images. To this end, an LR image needs to be
upsampled by bicubic interpolation. WavResNet increases the number of module units used in the
network for SR reconstruction. There are two versions of WavResNet. One version adds the bypass
link from the original input to the end output while each convolution module unit also utilizes a bypass
link adding the input of each module to its output. Fig. 9.6.59 shows the structure diagram of this
version for image denoising. The other version uses a network that is more similar to DenseNet. It
concatenates all outputs from the modules in the intermediate layers to the end output to be further
processed by convolution filters (diagram can be found in [166,167]).

In both DWSR and WavResNet, the wavelet coefficients are obtained first and fed into the neural
networks as the input. Namely, the neural networks use the preprocessed wavelet coefficients as their
input. Hence they are compatible with flexible use of wavelets. As an example, directional wavelets are
also used [167] as an input to WavResNet for low-dose X-ray CT image reconstruction. However, it is
worth to mention that the pooling/unpooling layer is missing in both DWSR and WavResNet, which
makes them somewhat less effective.

9.6.2.2 Deep convolutional framelets neural networks
As mentioned earlier, with some tedious algebraic calculation, 1D FrameletsNN [145,169] can be ex-
tended to process 2D images. For 1D FrameletsNN, if the nonlocal and local bases satisfy the given
frame conditions in Eqs. (9.6.1.8) and (9.6.1.9), in a single-layer FrameletsNN architecture, the perfect
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FIGURE 9.6.60

The network structure of FrameletsNN. In the contracting path, the input to each layer in depth is highlighted
in yellow (light gray in print version), while the images to be bypassed to the decoder layers are highlighted in
gray. Assume one input image of 224 × 224. Image size in each depth stage is marked in orange (mid gray in
print version). The number inside each box indicates the number of output channels.

reconstruction of a signal, combining the encoder and decoder, can be written as

x = H
†
d

(
�̃�T Hd(x)V Ṽ

T
)

.

Similarly, when the nonlocal and local bases satisfy the given frame conditions in Eqs. (9.6.1.8) and
(9.6.1.18), the perfect reconstruction of a 2D image X ∈Rn×p yields

X = H
†
d|p
(
�̃�T Hd|p(X)V Ṽ

T
)

.

FrameletsNN for the 2D case, shown in Fig. 9.6.60, is an extension of its 1D version shown in
Fig. 9.6.58. Deeper layers are added in a similar fashion as in the 1D case. The 2D version intuitively
visualizes this U-Net-based algorithm. In the contracting path (encoder), the nonlocal basis as a gener-
alized pooling in each stage reduces both the length and width of an image by half to arrive to the four
subbands in the next stage. The low-frequency content (LA) is further decomposed using the nonlocal
basis that is specified to the layer. This works as a generalized pooling operation following an MRA
manner. Meanwhile, the high-pass wavelet coefficients (LV, LH, LD) are bypassed to the expansive path
(decoder) to be concatenated to the estimated low-pass content. However, the perfect reconstruction is
not guaranteed, making the reconstruction similar to the wavelet reconstruction while taking advantage
of the CNN to search for the optimal local basis when training the network.

FrameletsNN makes it essential to select a nonlocal basis � as the basis for SVD to enable energy
compaction. This procedure allows it to naturally substitute the pooling layer with wavelets including
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FIGURE 9.6.61

The network structure of MWNN. Assume one input image of 224 × 224. Image size in each depth stage is
marked in orange (mid gray in print version). The number of output images is shown inside or under a box.

both low-pass and high-pass spectral spatial information, and this procedure is repeated following an
MRA manner. This, when compared to the average pooling/unpooling operation, further addresses the
limitations of U-Net and provides a significantly improved image reconstruction method.

9.6.2.3 Multilevel wavelet CNN
Multilevel wavelet CNN (MWCNN) [170] utilizes DWT to replace the pooling operations in the CNN.
The weights � used in MWCNN are optimized by minimizing the cost function defined as

L(�) = 1

2N

N∑
i=1

||F(yi;�) − (yi − xi )
2]||.

Much like the FrameletsNN, the algorithm has a structure based on the U-Net architecture (see
Fig. 9.6.61) and uses 2D DWT to replace the average pooling function as an improvement over U-
Net. What makes it significantly different from FrameletsNN is that while FrameletsNN only applies
the convolution to the low-pass content and skips the high-pass content to the decoder layer, MWCNN
concatenates all four bands of the wavelet coefficients and applies the convolution to the concatenated
block. Later, the output from the encoder is added to the wavelet recomposition. It is worthwhile to
mention that this operation is used only in the last layer (stage) in FrameletsNN for dealing with image
denoising.

The overall effectiveness of MWCNN, especially in preserving detailed texture, provides evidence
further proving the advantages of infusing wavelets in all the deep stages (layers) of a CNN-based algo-
rithm. The deeply embedded wavelets along the contracting/expansive path are tantamount to tentative
interactions between convolution and wavelets, leading to a reduction in the resolution of feature maps
while also increasing the size of the receptive field in the encoder/decoder layers. Ultimately these ben-
efit computational efficiency, making such techniques by far the most efficient way to utilize the spatial
frequency content captured by wavelets together with CNN. This coincides with the most recently de-
veloped VNN [131,132], which addresses the pooling/unpooling layers using Volterra filters directly in
a convolution layer, pointing to a new direction for neural network development.
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Appendix 9.A
9.A.1 The z-transform
Much like in the continuous-time domain, we can cover the whole complex plane by using a Laplace
transform in contrast to the harmonic Fourier transform along the imaginary axis. We may cover the
whole interior of the unit circle in the discrete domain by invoking the so-called z-transform. Due to
the direct relevance to the derivations of the various multiscale transforms in this chapter, we define the
z-transform in the 2D plane. Given a 2D discretized signal x(n), n ∈ Z2, its z-transform X(z), z ∈Z2,
is defined as

X(z) =
∑
n∈Z2

= x(n)z−n =
∑
n∈Z2

x(n)z
−n1
1 z

−n2
2 , with n = (n1, n2),z = (z1, z2).

Note that the z-transform of an image x(n) is reduced to its discrete-time Fourier series when we
evaluate its z-transform function at z = ejω.

Given a discrete 2D image x(n) as an input to a 2D linear discrete invariant system with an impulse
response of h(n), the resulting output is the following convolution sum:

y(n) = x(n) ∗ h(n) =
∑
s∈Z2

x(s1, s2)h(n1 − s1, n2 − s2).

The z-transform of the output y(n) of the system is (similarly to the continuous analog) Y(z) =
H(z)X(z), where the z-transform of the impulse response h(n) is written as H(z) and called the trans-
fer function of the filter system. The z-transform is a very widely used tool in the analysis and design
of discrete filter systems.
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10.1 Introduction
Frames were introduced by Duffin and Schaeffer [1] in 1952 for the study of nonharmonic Fourier
series [2,3]. The central idea was to represent a signal by its projections on a sequence of elements{
e j2πλnt

}
n
, n ∈ Z, not restricting λn to be multiples nF of a fundamental frequency F as in harmonic

(traditional) Fourier series. One can readily see that without such restriction the set
{
e j2πλnt

}
n

tends to
be highly redundant, or, equivalently, overcomplete. For instance, in a space L2(−T ,T ), it may consist
of a sequence of elements or functions that are greater in number than a basis for L2(−T ,T ), the latter
being given for example by a harmonic Fourier series, among others.

Overcompleteness may make it hard to find a representation of a function f (t) ∈ L2(−T ,T ) using
the set

{
e j2πλnt

}
n
, in the form

f (t) =
∑
n

cne
j2πλnt . (10.1)

This is so because due to overcompleteness, the weights or coefficients cn in Eq. (10.1) cannot be
computed by the simple approach of projecting f (t) into each element of

{
e j2πλnt

}
n
. Such projection

would be equivalent to using cn proportional to 〈f (t), e j2πλnt 〉, where 〈f (t), g(t)〉 represents the inner
product

∫
f (t)g∗(t)dt .1 One should note that when using an orthonormal basis for representing a signal

(as is the sequence of elements defining harmonic Fourier series), computing the inner product is the
standard approach for finding cn.

Despite this difficulty, overcompleteness may bring some advantages, as one may obtain more com-
pact, robust, or stable signal representations than using bases [4,5,6,7]. This is one of the reasons why
frames have been widely researched and employed since the 1990s in mathematics, statistics, computer
science, and engineering [4].

The basic idea leading to the definition of frames is the representation of signals from a given space
using more coefficients than the minimum necessary – the essential concept behind overcompleteness.
This idea is behind modern analog-to-digital converters (ADCs) that sample signals at rates that are
higher than the Nyquist rate with low resolution [8]. When the signal is sampled at a rate highly ex-
ceeding the one of Nyquist, the requirement on the sample precision can be relaxed [6]. This is a

1 g∗(t) denotes the complex conjugate of g(t).
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different perspective as compared to traditional Nyquist sampling, when in general one requires that a
good quantization precision is employed so that signal reconstruction errors can be neglected.

In addition to the above, there is the motivation of achieving robustness to nonuniform and/or ir-
regular sampling, which is useful in the cases where there is clock jitter. This has led to a large set of
results and some applications of frame theory [9]. These ideas were further extrapolated, leading to
the definition of signal sampling based on their “rate of innovation” [10], which takes into account the
number of degrees of freedom per unit of time when sampling a given class of signals. In some way,
these concepts have led to the so-called “compressed sensing” (CS) perspective [11].

Although frames provide the mathematical justification for several signal processing methods and
are at the heart of the flow of ideas and achievements briefly described above, it took a long time until
frames came definitely into play. The first book concerning the topic was written by Young in 1980 [2].
In [12] Daubechies, Grossman, and Meyer realized that frames can somehow be understood in a way
very similar to expansions using bases. This established the link among frames and wavelets [5,13,
14], and new breath was given to the research on frames. Applications of the “frame theory” have
broadly appeared. Frames have been an active area of research, allowing the production of a plethora of
theoretical results and applications. Good material on frames can be found in [4,5,13], and [6] is a good
book dedicated to this topic. We show a few of the relevant results regarding frames in this chapter.

10.1.1 Notation
In this chapter we use x to denote a signal in a discrete space, which can be finite-dimensional or not.
The value of the nth coordinate or sample of x is referred to as x[n]. A bold capital is used for matrices,
as G. Continuous functions or signals are explicitly denoted with reference to the independent variable,
as in x(t). When just a nonbold letter such as x is employed it is because the definition or result applies
in both cases – discrete and continuous spaces. Moreover, ‖x‖ refers to 〈x,x〉. The inner product 〈g,h〉
is to be understood as 〈g(t), h(t)〉 = ∫

g(t)h∗(t)dt in continuous spaces, and 〈g,h〉 =∑
n g[n]h∗[n] in

discrete spaces.

10.2 Basic concepts
Let us briefly introduce what are frames. A frame of a space H is a set of elements that spans H.
Therefore, a frame G = {gk}k∈K (a set of elements gk which are indexed by k ∈ K) can be used to
express any x ∈H by means of a linear combination of gk , that is,

x =
∑
k∈K

ckgk, (10.2)

where ck are called the frame coefficients.
The only restriction that we have imposed on G = {gk}k∈K for it being a frame is that it should span

H. Therefore, G is in general overcomplete, meaning that the set of frame coefficients {ck}k∈K that can
express x by means of Eq. (10.2) is not unique, as the overcompleteness of G means that its elements
are not linearly independent.

The above means that there may exist different ways to compute the frame coefficients ck used in
Eq. (10.2) to synthesize x. We employ interchangeably both terms “expansion” and “representation”
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since all the frame elements (generally in larger number than the space dimension) may a priori be
employed to express the signal. Due to overcompleteness one usually employs more elements than the
support or dimension of the space H to represent the signal. This is equivalent to saying that the frame
coefficients for a given signal may be in larger number than the coefficients employed in the canonical
signal representation.

Example 10.1. Consider the set of elements G in R
2, G = {[0 1/2], [1/4 −1/4], [−1/2 0]}. Any

vector x = [x[0],x[1]] projected into these elements gives a set of coefficients:

c̃ =
⎡
⎣ c̃0

c̃1

c̃2

⎤
⎦=

⎡
⎣ 0 1/2

1/4 −1/4
−1/2 0

⎤
⎦[ x[0]

x[1]
]

=
⎡
⎣ x[1]/2

(x[0] − x[1]) /4
−x[0]/2

⎤
⎦ . (10.3)

The original vector can be obtained from c̃ using, for example,

[
x[0]
x[1]

]
= G̃T

0 c̃ =
[

0 0 −2
0 −4 −2

]⎡⎣ c̃0

c̃1

c̃2

⎤
⎦ , (10.4)

[
x[0]
x[1]

]
= G̃T

1 c̃ =
[

0 0 −2
2 0 0

]⎡⎣ c̃0

c̃1

c̃2

⎤
⎦ , (10.5)

or

[
x[0]
x[1]

]
= G̃T

2 c̃ =
[

2 4 0
2 0 0

]⎡⎣ c̃0

c̃1

c̃2

⎤
⎦ , (10.6)

with G̃0, G̃1, and G̃2 being only a few among infinite other possibilities. That is, the matrix G̃T that
reconstructs x from its projection on a set G is not unique.

Now consider that G is the matrix constructed such that its rows are the frame elements. One can
use G to compute the coefficients vector c̃ with

c̃ = Gx. (10.7)

Note that in this example, if dim(x) represents the dimensions of element x, then dim(x) = 2 × 1,
dim(G) = 3 × 2, dim(c̃) = 3 × 1, and dim(G̃T) = 2 × 3. More generally, if a frame for RN has K >

N elements, then dim(x) = N × 1, dim(G) = K × N , dim(c̃) = K × 1, and dim(G̃T) = N × K . From
Eq. (10.7), the matrix G̃T used to obtain x = G̃Tc̃ must be such that G̃TG = IN (IN is the identity matrix
of dimension equating the dimension of the vectors in G, which is 2 in the present example).

Naturally, the roles of the matrices G and G̃ above can be interchanged. Since G̃TG = IN , we have
GTG̃ = IN , and thus one can employ G̃ as a projection operator on x for finding a set of coefficients c,
and reconstruct x using

x = Gc. (10.8)
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In general, the best choice for G̃ depends on the application. For instance, consider the case where
the coefficient c̃0 has been corrupted to e and one must reconstruct the original source from the cor-
rupted coefficient vector ĉ = [

e c̃1 c̃2
]T . It is possible to see that using the matrix G̃0 defined in

Eq. (10.4) one can still reconstruct the original vector x from the corrupted ĉ. A similar argument can
be made for a corruption in the coefficients c̃1 and c̃2: a perfect reconstruction is still possible using the
matrices G̃1 from Eq. (10.5) and G̃2 from Eq. (10.6). However, if one used the matrix

G̃T =
[

1 2 −1
1 −2 −1

]
(10.9)

to perform the recovery, then the recovered signal would also be corrupted, although any of the matrices
in Eqs. (10.4), (10.5), (10.6), and (10.9) would provide an exact reconstruction if no error occurred. �

As highlighted in the example above, the set c is redundant in the sense that the vectors employed
to compute {ck}k∈K (onto which x is projected) may be linearly dependent. This has the advantage
that the wrong computation of some coefficients of the expansion or even their losses may not prevent
the recovery of the original signal from the remaining coefficients within an acceptable error margin.
This is so because, as one has different possible signal reconstruction operators provided by the frame
concept, one might choose, for example, those that provide a reconstruction that is independent of the
value of the corrupted coefficient. Ideas along these lines have led to applications of frame expansions
for signal sampling with low quantization requirements [4], and also to the development of transmission
systems that are robust to erasures (when data are corrupted or lost but one knows which piece of data
has been corrupted or lost) over a network, which corresponds to the deletion of the correspondent
frame elements [15,16,17].

10.2.1 The dual frame
The above example links to the strategy for computing frame coefficients using the inverse or dual
frame [5,6,4,7], which provides the dual reconstruction formulas

x =
∑
k∈K

〈x,gk〉g̃k =
∑
k∈K

〈x, g̃k〉gk. (10.10)

From Eq. (10.10) one may define G̃ = {g̃k}k∈K as the inverse or dual frame to the frame G =
{gk}k∈K. For a given signal x, since G is overcomplete, G̃ is, in general, not unique [6], as shown
in Example 10.1.

Each coefficient ck of a frame expansion can be viewed as a measure of “how much” the signal “has”
of frame element {gk}k∈K. Naturally, this property can be used to infer or analyze signal characteristics.
Since in an overcomplete frame its elements are linearly dependent, at least two of its elements are not
orthogonal. This implies that signal characteristics that are different, but similar to one another, can
be effectively observed by projecting the signal into different frame elements that are similar to these
characteristics. If an orthogonal basis was used instead, such characteristics would not be as evident
from the projections, since each characteristic would be “partitioned” among the projections, with each
partition being orthogonal to one another. Therefore, the similar characteristics would be spread along
different projections, and would therefore not be as evident as they might in the case of a carefully
chosen redundant frame.
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The reasoning in the above paragraph has been largely employed to justify the use of the so-called
Gabor frames, which are discussed in Section 10.5.4. Gabor frames are constructed by modulation and
translation of a prototype function, thus providing a time-frequency analysis capability [4,18,19,20,21,
22]. Gabor frames employ sets of time- and frequency-translated versions of a predefined function to
analyze or synthesize a signal. These frames are named after Gabor due their origin in [23]. The main
idea is to explore functions that have some desired energy concentration in the time and frequency
domains to analyze the time-frequency content that is represented in a signal. Several tools have been
developed for achieving this, using the decomposition of a signal into a Gabor frame [24,25,26]. As
the example regarding the Gaborgram in Section 10.6.3 shows, the inverse frame elements may not
resemble the frame elements and some care must be taken when using frame expansions to capture
specific signal features.

Although the elements of a frame that are used to express a signal x are in general selected a priori,
frame expansions allow for the use of elements with special properties. The Balian–Low theorem [13]
shows that it is not possible to construct a basis with elements that are well localized in both time
and frequency domains simultaneously. Frames do not impose uniqueness to the signal representation;
therefore, the definition of the frame elements is less restrictive than it is for basis elements. Hence, for
a frame we can achieve a better localization of its elements simultaneously in the time and frequency
domains than for a basis, better dealing with the limitations imposed by the uncertainty principle [4,19,
21].

The property of frames discussed above has been largely employed by the so-called windowed
Fourier analysis schemes [4,27]. In addition, since the frame coefficients may not be unique for a given
signal, the set of frame coefficients can be altered or improved – considering the linear dependencies
among frame elements – in order to highlight desired signal features. Moreover, frames can be designed
for specific applications depending on the features that one desires to extract or analyze in a signal.
Examples of such specific designs are ones using wavelets [4,5,7], and other analysis techniques such
as time-frequency [4,28] or structurally/geometrically oriented techniques [29,30].

In general, the computational burden of decomposing discrete signals into frames surpasses the
computational demands of traditional expansions into bases, as, for example, the ones of the fast Fourier
transform (FFT) [31]. However, despite the higher computational complexity, with frame expansions,
as mentioned above, we can obtain a separation of signal structures that is much better than the one
that is possible using traditional approaches. Mallat [4] explores this in his proposed superresolution
techniques.

Due to the characteristics above, frame applications encompass, among others, signal coding [4],
signal sampling [1,4,6], signal analysis [4,5], transient detection [24,25], and communication systems
design [6,32]. Frames have also been related to the analysis and design of filter banks [33,34].

10.2.2 Signal analysis and synthesis using frames
A frame or its dual can be employed to analyze a signal and obtain the signal expansion, i.e., the frame
coefficients, and to synthesize it from the coefficients obtained in the analysis process. This is illustrated
in Fig. 10.1. As Eq. (10.24) implies, the roles of {gk}k∈K and {g̃k}k∈K can be interchanged in Fig. 10.1,
providing different perspectives for signal analysis.

We note that the “system model” of Fig. 10.1 is very similar to the one employed in several signal
processing tasks – for example in filter banks [31]. This resemblance between frames and several signal
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FIGURE 10.1

Analysis and synthesis of a signal using a frame and its dual – as noted in the text, the roles can be inter-
changed.

processing tasks provides a large range of potential applications for frames. To highlight an important
feature, the frame elements may be designed to highlight or analyze desired signal features that may be
“overlapping” or linearly dependent.

In the scenario of filter banks, a relevant and special case is the one of a “perfect reconstruction filter
bank” [31]. In this case the analysis and reconstruction filter banks correspond to a pair of dual frames.
A more detailed analysis of the input–output mapping in this case is provided in Section 10.4.1, where
we discuss frames of discrete spaces.

Some examples of common frame constructions for signal analysis purposes are Gabor and wavelet
frames. These provide expansion systems or representations that have different supports on the time-
frequency plane. We will discuss them in Sections 10.5.4 and 10.5.5, respectively.

10.3 Relevant definitions
Now that we have introduced frames and have outlined some of their basic properties, we are ready to
present a more formal definition.

Definition 10.1. A sequence of elements G = {gk}k∈K in a space H is a frame for H if there exist
constants A and B, 0 < A ≤ B < ∞, such that [4,5,7,6]

A‖x‖2 ≤
∑
k∈K

|〈x,gk〉|2 ≤ B‖x‖2, ∀x ∈H. (10.11)
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(i) The numbers A and B are called the lower and upper frame bounds, respectively, and are not
unique. The optimal lower frame bound is the supremum on all A and the optimal upper frame
bound is the infimum on all B [6].

(ii) It is said that the frame is normalized [5] if ||gk|| = 1, ∀k ∈K. �

A commonly addressed problem related to frames is how to determine if a given sequence of ele-
ments {gk}k∈K in H is a frame of H. This is often referred to as the frame characterization problem [6].
This characterization is commonly accomplished by the frame bounds. From Eq. (10.11), we note that
if A = 0, then there is a signal x that is orthogonal to all the elements {gk}k∈K and, therefore, the signal
cannot be represented as their linear combination.

That is the reason for the requirement that A > 0. The requirement for B < ∞ can be understood
considering that if for a given signal there is no upper bound in Eq. (10.11). This means that the set of
elements is too “dense” for that signal.

Given a set of elements in a space H, in order to verify if it is or is not a frame one may compute the
frame bounds. It is in general much easier to find the upper frame bound B than the lower frame bound
A.

Example 10.2. In R
N any set of M < ∞ finite norm vectors {gk}k=1,...,M necessarily implies an upper

bound B < ∞. On the other hand, for the lower bound to be A > 0, the set should span H, and such a
verification requires a more careful analysis. �

10.3.1 The frame operator
Let us now define the frame operator and state the frame decomposition result.

Definition 10.2. The frame operator S{·} is defined as

S :H →H, S{x} =
∑
k∈K

〈x,gk〉gk. (10.12)

From this definition some properties are derived [6]:

(i) The frame operator is bounded, invertible, self-adjoint, and positive. Therefore, it assumes an
inverse S−1{·}. This is referred to as the inverse frame operator, which should be such that

x = S{S−1{x}} =
∑
k∈K

〈S−1 {x} ,gk〉gk. (10.13)

(ii) If the lower and upper frame bounds of {gk}k∈K are A and B, respectively, then
{
S−1{gk}

}
k∈K

is a frame with lower and upper bounds B−1 and A−1, respectively, and the frame operator for{
S−1{gk}

}
k∈K is S−1. �

In the following example we show a numerical illustration of the computation of the frame operator.

Example 10.3. We return to Example 10.1 and find the frame operator for the set of elements G =
{[0 1/2], [1/4 −1/4], [−1/2 0]}. According to the definition contained in Eq. (10.12), we find
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S{x} =
∑
k∈K

〈x,gk〉gk

= x[1]/2

[
0

1/2

]
+ (x[0]/4 − x[1]/4)

[
1/4

−1/4

]
− x[0]/2

[ −1/2
0

]

=
[

5/16 −1/16
−1/16 5/16

][
x[0]
x[1]

]
.

�

From the definition of the frame operator one has the frame decomposition result that provides the
reconstruction formulas [6]

x =
∑
k∈K

〈x,gk〉S−1{gk} =
∑
k∈K

〈x, S−1{gk}〉gk. (10.14)

Note that this provides a way to compute g̃k = S−1{gk}, which are the elements of the inverse frame or
the so-called canonical dual.

Example 10.4. Suppose that a normalized frame {gk}k∈K is used to express the information of a signal
x, in the form of its coefficients ck , which are transmitted or stored in order to later reconstruct x, that
is,

ck = 〈x, S−1 {gk}〉, (10.15)

where S−1{x} is the inverse frame operator. From Definition 10.2 we also have

x =
∑

k

ckgk. (10.16)

However, due to quantization the coefficients cannot be recovered exactly, and this can be modeled by
a noise term wk added to coefficient ck , k ∈ K. In this case, instead of x we will reconstruct x̂ given by

x̂ =
∑
k∈K

(ck + wk)gk =
∑
k∈K

(〈
x, S−1 {gk}

〉
+ wk

)
gk. (10.17)

Then, due to the frame reconstruction equation above, we have

x̂ = x +
∑
k∈K

wkgk, (10.18)

that is, the reconstructed signal is corrupted by a noise term.
We should note that in this scenario, we know that ck (obtained by means of Eq. (10.15)) are the

expansion of a signal over a frame. However, this may not be the case for the set of coefficients

{ck + wk}k∈K =
{
〈x, S−1 {gk}〉 + wk

}
k∈K (10.19)

used to reconstruct x̂ in Eq. (10.17). However, there may not exist any x̃ ∈H that generates the quantized
coefficients ck + wk when decomposed in the frame {gk}k∈K, and this fact can be exploited to generate
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a better approximation x̂ from the quantized coefficients. Assuming that wk ∈ �2(N), i.e., the noise is
bounded, we can project

{〈x, S−1 {gk}〉 + wk

}
k∈K using the operator [4,6]

Q {ck} =
{〈∑

k

ckS
−1 {gk},gj

〉}
j∈K

. (10.20)

Using this operator in the projected-quantized frame coefficients scenario above, that is, applying
apply Q{·} to Eq. (10.19), we have

Q
{
〈x, S−1 {gk}〉 + wk

}
k∈K = {ck}k∈K + Q {wk}k∈K . (10.21)

Using the above, the signal can be reconstructed by means of

x̂ =
∑
k∈K

(ck + Q {wk})gk = x +
∑
k∈K

Q {w}k gk. (10.22)

Supposing that the frame {gk}k∈K is normalized, considering the quantization noise in Eq. (10.17)
to be white and zero-mean, and considering E[·] to denote the expected value, in [4] it is shown that

E
[
|Q {w} |2

]
≤ 1

A
E
[
|w|2

]
. (10.23)

That is, when reconstructing the signal by means of the processed coefficients as in Eq. (10.21),
the energy of the resulting quantization noise is reduced if A (the lower frame bound) is greater than
one. �

Example 10.5. We evaluate the noise resilience property evidenced by Eq. (10.23) with a simple ex-
periment. Consider a grayscale version of the image astronaut in Fig. 10.2. It is encoded using Gabor
frames (they are formalized in Section 10.5.4) having increasing lower bounds A and frame redun-
dancy. For each case, we corrupt the frame coefficients by a white Gaussian noise with variance σ 2

and reconstruct the original image. Fig. 10.3(b–d) shows the reconstructed image using each frame.
For comparison, Fig. 10.3(a) shows the original image corrupted by noise with the same variance σ 2.
The images have better quality as the lower frame bound A increases. However, it should be noted
that this robustness is achieved by increasing the redundancy in the frame representation. We compute
the mean square error (MSE) obtained for each reconstructed image, which corresponds to the term

E
[|Q {w} |2] in Eq. (10.23), and compare it to the upper bound 1

A
E
[|w|2]= σ 2

A
, plotting the values in

Fig. 10.4. Note that the reconstruction error in all cases was smaller than σ 2

A
. �

10.3.2 The inverse frame
Definition 10.3. The inverse frame G̃ = {g̃k}k∈K to a frame G = {gk}k∈K is the one that provides the
reconstruction formulas

x =
∑
k∈K

〈x, g̃k〉gk =
∑
k∈K

〈x,gk〉g̃k. (10.24)
�
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FIGURE 10.2

Grayscale version of the image astronaut, obtained from the scikit-image library [35].

Example 10.6. Let us go back to Example 10.1, where we have seen two different possibilities for
“inversion” of the frame given by the rows of the matrix

G =
⎡
⎣ 0 1/2

1/4 −1/4
−1/2 0

⎤
⎦ . (10.25)

In this example we show that the canonical dual is associated with the inverse frame operator. Using
a pseudoinversion algorithm [4] we find the pseudoinverse G+ to G (G+G = I2):

G+ =
[

1/3 2/3 −5/3
5/3 −2/3 −1/3

]
. (10.26)

We should note that this is just another example of possible frame inversion, as shown in [4], since G
has an infinite number of left inverses. �
Definition 10.4. When A = B the frame is said to be tight [6] and in this case

S−1{·} = S{·}/A. (10.27)

In addition, frames for which A ≈ B are said to be snug [34] and for these S−1{·} ≈ S{·}/A. �
Definition 10.5. A frame G = {gk}k∈K is said to be normalized when

‖gk‖ = c, ∀ k ∈K, and c > 0 is a real constant. (10.28)
�
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FIGURE 10.3

Effect of the noise on the frame coefficients. In (a), the original image astronaut is corrupted by noise with
variance σ 2 = 1000. In (b–d), the original image is decomposed using different Gabor frames, the frame co-
efficients are corrupted by noise with variance σ 2, and the image is reconstructed using (b) a Gabor frame
with A ≈ 1.83 and two times the number of coefficients, (c) a Gabor frame with A ≈ 3.99 and four times the
number of coefficients, and (d) a Gabor frame with A ≈ 8 and eight times the number of coefficients.

10.3.3 Characterization of frames: basic property
Frame bounds provide limits for the energy scaling of signals when they are represented using the
projections into the frame elements. Due to that, frames are often characterized in terms of their frame
bounds. It is very common to also use the frame bounds ratio A/B [13] to characterize a frame. It is
also possible to define the “tightness” of a frame from its frame bounds ratio: the closer that A and B

are, the tighter the frame is.
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FIGURE 10.4

Comparison between the MSE obtained for each reconstructed image in Fig. 10.3 (black cross), which corre-
spond to E

[|Q {w} |2], and the upper bound 1
A

E
[|w|2]= σ 2

A
(red (light gray in print version) dashed line).

Daubechies [5] showed the following property of the frame operator defined in Eq. (10.12):

S{x} = A + B

2
(x − R{x}) , i.e., x = 2

A + B

∑
k∈K

〈x,gk〉gk + R{x}, (10.29)

where R{x} can be understood as the error incurred in reconstructing x from the projections of x into
the frame elements instead of into the inverse frame elements.

In addition, she also showed that

R{x} = I {x} − 2

A + B
S{x}, (10.30)

where I {x} is the identity operator. Therefore, we can conclude that

− B − A

B + A
I {x} ≤ R{x} ≤ B − A

B + A
I {x} ≡ ‖R{x}‖ ≤ B − A

B + A
‖x‖. (10.31)

The above implies that if B/A is close to one, then the error incurred in the reconstruction by using
the frame itself instead of its inverse frame is small. This error gets smaller as A and B become closer.
Therefore, from an analysis–synthesis perspective, if the frame is tight there is no need to find its
inverse. Tight frames are self-dual [36], that is, the inverse frame to a tight frame is a scaled version of
the frame itself.

For normalized frames, Daubechies refers to A+B
2 as the frame redundancy. Several studies have

been developed on normalized tight frames. For example, in [37] it is shown that these frames have
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some noise reduction property. That is, if a given reconstruction distortion is required, one can use fewer
bits to represent the frame coefficients in comparison to the precision required to represent coefficients
derived from the representation in a basis. This is related to the acquisition–quantization problem we
have discussed in Example 10.4 above.

Example 10.7. Let {e1, e2, e3} be an orthonormal basis of the 3D space. Define the following vectors:

g1 =
√

2√
5

e1 −
√

3√
5

e2, g2 =
√

2√
5

e2 +
√

3√
5

e3, g3 =
√

3√
5

e1 +
√

2√
5

e3,

g4 =
√

3√
5

e1 +
√

2√
5

e2, g5 = −
√

3√
5

e2 +
√

2√
5

e3, g6 =
√

2√
5

e1 − 3√
5

e3.

For any x ∈ R
3 we have

∑
k

|〈x,gk〉|2 =
∣∣∣∣∣
〈

x,

√
2√
5

e1

〉
+
〈

x,−
√

3√
5

e2

〉∣∣∣∣∣
2

+
∣∣∣∣∣
〈

x,

√
2√
5

e2

〉
+
〈

x,

√
3√
5

e3

〉∣∣∣∣∣
2

+
∣∣∣∣∣
〈

x,

√
3√
5

e1

〉
+
〈

x,

√
2√
5

e3

〉∣∣∣∣∣
2

+
∣∣∣∣∣
〈

x,

√
3√
5

e1

〉
+
〈

x,

√
2√
5

e2

〉∣∣∣∣∣
2

+
∣∣∣∣∣
〈

x,−
√

3√
5

e2

〉
+
〈

x,

√
2√
5

e3

〉∣∣∣∣∣
2

+
∣∣∣∣∣
〈

x,

√
2√
5

e1

〉
+
〈

x,−
√

3√
5

e3

〉∣∣∣∣∣
2

=

= 2
(
|〈x, e1〉|2 + |〈x, e2〉|2 + |〈x, e3〉|2

)
= 2‖x‖2.

Therefore the six vectors define a tight frame with A = B = 2. This number can in some sense be
understood as a measure of redundancy of the frame expansion [4]. �

Tight frames, due to their operational simplicity, are relevant to many applications. For example,
tight frames were shown to be the most resistant to coefficient erasures [15]. An erasure occurs when
transiting information over a network one knows that a given piece of information is unreliable. If a
frame is used to compute the information that is transmitted over the network, then the reconstruction
error under erasures is lower for a tight frame than for nontight ones. Tight frames can also provide
sparse signal decompositions [38]. Due to these and other interesting properties a lot of attention has
been given to the construction of tight frames [39,40,41,16,38].

Example 10.8. Based on Example 10.7, define the new set of vectors:

r1 = 2g1, r2 = g2, r3 = g3,

r4 = g4, r5 = g5, r6 = g6.

For any x ∈ R
3 we have ∑

k

|〈x, rk〉|2 = |〈x, r1〉|2 +
∑
k �=1

|〈x, rk〉|2
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= |〈x,2g1〉|2 +
∑
k �=1

|〈x,gk〉|2

= 4 |〈x,g1〉|2 +
∑
k �=1

|〈x,gk〉|2

= 3 |〈x,g1〉|2 +
∑

k

|〈x,gk〉|2

= 3 |〈x,g1〉|2 + 2‖x‖2.

From the above, one can see that what prevents the frame from being tight is the term 3 |〈x,g1〉|2,
which makes the value of

∑
k |〈x, rk〉|2 depend on the direction of x. If x is orthogonal to g1, |〈x,g1〉|2 =

0, and thus
∑

k |〈x, rk〉|2 = 2‖x‖2. On the other hand, the maximum value of |〈x,g1〉|2 occurs when x
is proportional to g1, and since ‖g1‖ = 1, its maximum value is |〈x,g1〉|2 = ‖x‖2, and in this case∑

k |〈x, rk〉|2 = 5‖x‖2. Therefore, this set of vectors defines a frame with bounds A = 2 and B = 5. We
can infer from this analysis that the frame bounds are related to the directions of highest and lowest
variation in space. In Section 10.4.2 we show that for finite vector spaces, they can be obtained by
computing the eigenvalues of the so-called Gram matrix. �

10.4 Some computational remarks
In general, signal processing algorithms are implemented in digital processors. Therefore, the signals
are invariably discrete and some simplifications take place when frames are concerned.

10.4.1 Frames in discrete spaces
Consider the case of discrete spaces such as �2(Z), that is, the space of square-summable sequences,
i.e., x ∈ �2(Z) if

∑
n∈Z |x[n]|2 < ∞, where x[n] is the value of the nth coordinate/sample of x. In

general, in such spaces, signal analysis is accomplished by using sliding windows. This is actually the
case for filter banks [31], where according to the structure depicted in Fig. 10.1, the synthesis equation
is [34,33]

x[n] =
K−1∑
k=0

∞∑
m=−∞

ck,mgk,m[n]. (10.32)

In the above equation each signal’s sample x[n], n ∈ Z, is synthesized as a sum of the samples
gk,m[n] = gk[n − mN ], N ≤ K , where K is the cardinality of the frame. Here gk,m are translated ver-
sions of gk , referring to the mth length-N signal block.

Similar concepts can be brought to more general cases of frames in �2(Z), bearing in mind the
correct usage of a frame and its dual. In this case, Eq. (10.32) can be written as

x[n] =
K−1∑
k=0

∞∑
m=−∞

〈x, g̃k,m〉gk,m[n]. (10.33)
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In other words, as discussed in Section 10.2.2, the frame and its dual should be employed in the two
distinct tasks of analysis (decomposition) and synthesis (reconstruction) of x.

Up to this point, the definitions involving frames were valid for any Hilbert space H. When con-
sidering a discrete Hilbert space such as �2(Z), a space in which digital signal processing applications
may exist (they may also exist in generic finite vector spaces – see Section 10.4.2), using finite support
vectors may be handy, as in the case of finite impulse response (FIR) filter banks [31].

A signal x ∈ �2(Z) can be expressed using Eq. (10.32) if the family of functions [33]

G = {
gk,m : gk,m[n] = gk[n − mN ], k = 0, 1, . . . ,K − 1, m ∈ Z

}
(10.34)

is a frame for �2(Z). This result provides an important feature of frames for �2(Z).

Definition 10.6. A set of vectors G as defined in Eq. (10.34) (i.e., block-translated) is a frame of �2(Z)

if there exist constants 0 < A ≤ B < ∞ such that for any x ∈ �2(Z) we have

A‖x‖2 ≤
K−1∑
k=0

∞∑
m=−∞

∣∣〈x,gk,m

〉∣∣2 ≤ B‖x‖2. (10.35)
�

We should note that if Eq. (10.35) holds for G as in Eq. (10.34), then there exists another frame

G̃ = {
g̃k,m : g̃k,m[n] = g̃k[n − mN ], k = 0, 1, . . . ,K − 1, m ∈ Z

}
(10.36)

that can be employed for obtaining the coefficients ck,m in Eq. (10.33).
Naturally, the roles of G and G̃ can be interchanged, providing

x[n] =
K−1∑
k=0

∞∑
m=−∞

〈x,gk,m〉g̃k,m[n]. (10.37)

As can be noted, given G as in Eq. (10.34), G̃ as in (10.36) satisfying Eqs. (10.33) and (10.37) is not
unique.

10.4.2 Finite vector spaces
In a finite vector space H

N one in general restricts the frame to have a finite number K of elements,
and then Eq. (10.11) becomes

A‖x‖2 ≤
K∑

k=1

|〈x,gk〉|2 ≤ B‖x‖2, x ∈ H
N. (10.38)

In this case, as illustrated in examples above, some computational simplifications may take place.

Definition 10.7. Analysis and synthesis operators are defined as follows.
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(i) The synthesis operator is defined as

T {·} : CK → H
N, T {ck}k=K

k=1 =
K∑

k=1

ckgk, (10.39)

where C
K is a K-dimensional complex vector space.

(ii) The analysis operator T ∗{·} is defined as

T ∗{·} :HN →C
K, T ∗{x} = {〈x,gk〉}k=K

k=1 . (10.40)

It is also known as the adjunct operator of T {·}.
(iii) The operator T {·} synthesizes x from the frame coefficients ck . These frame coefficients are

obtained when T̃ ∗{·}, the analysis operator of a dual frame, is applied to x. Such operator is given
by

T̃ ∗{·} :HN →C
K, T̃ ∗{x} = {〈x, g̃k〉}k=K

k=1 . (10.41)

(iv) The frame operator can be expressed using the analysis and synthesis operators as

S :HN →H
N, S{x} = T {T ∗{x}} =

K∑
k=1

〈x,gk〉gk. (10.42)

Note that the frame operator does not perform the frame reconstruction depicted in Eq. (10.24)
since it does not use g̃k . �

In vector spaces the operators T {·} and T ∗{·} can be represented by matrices [6], as in the examples
above.

Assuming that x and the frame elements gk are organized as column vectors with dimensions N × 1
and the coefficients are organized as a column vector c of dimensions K × 1, the following properties
apply:

T =

⎡
⎢⎢⎣

gT
1
...

gT
K

⎤
⎥⎥⎦ dim(T) = K × N, (10.43)

T {c} = TTc dim(TT) = N × K, (10.44)

T ∗{x} = Tx dim(T∗) = K × N, (10.45)

S{x} = T {T{x}} = TTTx = Sx dim(S) = N × N, (10.46)

S−1{x} =
(

TTT
)−1

x = S−1x dim
(

S−1
)

= N × N. (10.47)

Note that in Eq. (10.44) we show how to use the frame elements gk to perform a synthesis opera-
tion. If one wants to reconstruct a signal from the coefficients obtained from the analysis operation in
Eq. (10.45), the dual frame must be used.
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The dual frame elements can be computed by means of

g̃k = S−1{gk} =
(

TTT
)−1

gk, (10.48)

and we have

T̃ {c} = T̃Tc = T
(

TT T
)−1

c dim(T̃T) = N × K, (10.49)

T̃ ∗{x} = T̃∗x =
(

TT T
)−1

Tx dim(T̃∗) = K × N. (10.50)

Example 10.9. As we have seen above, the frame operator S = TT T. If ρi are the eigenvalues of S,
then the frame bounds are given by A = mini{ρi} and B = maxi{ρi} [6]. Thus, if TT T = AIN (IN is
the identity matrix of size N ), then the frame is tight (A = B). Hence, for a tight frame S−1S = IN . �

Example 10.10. The Gram matrix or Gramian of a sequence of vectors {gk}k∈K is the matrix G whose
elements are defined by gi,j = {〈gi ,gj 〉

}
i,j∈K. It can be employed to analyze different frame charac-

teristics. For example, in [42], it is employed to investigate the symmetry properties of tight frames,
providing tight frame design procedures. In [38] the Gramian is also employed for analyzing and de-
signing frames with desired features.

Up to this subsection we have dealt with the analysis, synthesis, and frame operators, as well as their
counterparts corresponding to an inverse frame. As one may notice, a great deal of frame characteristics
can be extracted from them. The Gram matrix G also carries useful information about frames. We
readily note that G = TTT and thus dim (G) = K × K . Since each of its entries gi,j represents the
inner product between two frame elements, the Gram matrix provides information on how similar the
frame elements are to each other; therefore, it can be understood as containing indicatives of a sort of
redundancy between frame elements, and thus of connections among the different ck . �

Example 10.11. We highlight some consequences of the frame bounds in finite vector spaces. (i) If the
lower frame bound A is zero, then there is a signal x such that

∑
k∈K |〈x,gk〉|2 = 0. Consequently, the

frame elements are all orthogonal to x and the frame would not be capable of representing it. (ii) If the
frame has a finite set of elements, then, necessarily, due to the Cauchy–Schwartz inequality, the upper
frame bound condition is automatically satisfied. �

10.5 Construction of frames from a prototype signal
It is common to process signals in order to search for specific patterns in time, frequency, or even scale.
In this case, one often a priori specifies a set of desired behaviors or patterns to be searched for in
signals to be analyzed. These are usually specified as a set of parameterized waveforms. If synthesis is
not required, the restrictions on such a set are milder than in the case when synthesis is required. In the
latter case, one should guarantee the set of parameterized functions or waveforms to be a frame. This is
what is discussed in the sequel. We suppose a signal processing scenario where a given signal has to be
analyzed and synthesized using a set of parameterized waveforms that are derived from operations such
as change of position in time (translation), change of frequency (modulation), and change of support
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(dilation) of a prototype signal. In this section we discuss some conditions under which a frame is
generated when these operations are applied to a prototype waveform.

10.5.1 Translation, modulation, and dilation operators
There are several ways to construct frames from operations on a prototype signal. Some of them are
based on translations, modulations, and dilations of a function g(t) ∈ L2(R) (the space of square-
integrable functions) [6].

Definition 10.8. Translation by a ∈R is defined as

Ta : L2 (R) → L2 (R) , Tag(t) = g (t − a) . (10.51)
�

Definition 10.9. Modulation by b ∈ R is defined as

Eb : L2 (R) → L2 (R) , Ebg(t) = g(t)e2π jbt . (10.52)
�

Definition 10.10. Dilation by c ∈ R− {0} is defined as

Dc : L2 (R) → L2 (R) , Dcg(t) = 1√
c
g

(
t

c

)
. (10.53)

�

10.5.2 Common frame constructions
The most common approaches to construct frames from a prototype are:

• A frame in L2(R) constructed by translations of a given function g(t) ∈ L2(R), through

{Tnag(t)}n∈Z, with a > 0, (10.54)

is called a frame of translates [6].
• A Weyl–Heisenberg or Gabor frame is a frame in L2(R) constructed from a fixed function g(t) ∈

L2(R), by means of

{EmbTnag(t)}m,n∈Z, with a, b > 0. (10.55)

Such frame is also called a Gabor system or a windowed Fourier frame [4,5,6,43] due to its connec-
tion to time-frequency analysis techniques.

• A frame constructed by dilations and translations of a prototype (mother) function g(t) ∈ L2(R) by

{Tnacj Dcj g(t)}j,n∈Z = {c −j
2 g

(
c−j t − na

)
}j,n∈Z, with c > 1 and a > 0, (10.56)

is called a wavelet frame [4,5,6,7].

In the following subsections we discuss some conditions for obtaining frames using the above ap-
proaches and some examples of their applications and relevance.
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10.5.3 Frames of translates
Digital signal processing is heavily based on signal sampling, that is, the capability of sampling a func-
tion at regular intervals and reconstructing the signal from these samples [4,6,31,44]. In a broad sense a
sample corresponds to a value that is the outcome of an evaluation/measurement of the function/signal.
The sampling operation can often be modeled as the projection of the function/signal over a predefined
element. Regular sampling corresponds to translating such element to regularly spaced positions.

Definition 10.11. A frame of translates is a frame for L2(R) obtained through operations {Tnag(t)}n∈Z
on a fixed function g(t) with a > 0. �

Which conditions should hold on g(t) in order for {Tnag(t)}n∈Z to be a frame? In this case it can be
shown that [6] {Tnag(t)}n∈Z is a frame with bounds A and B if and only if

aA ≤
∑
k∈Z

∣∣∣∣ĝ
(

f + k

a

)∣∣∣∣≤ aB, (10.57)

for f ∈R−
{
f ∈ R : ∑k∈Z

∣∣∣ĝ (f +k
a

)∣∣∣= 0
}

, where ĝ (f ) = ∫∞
−∞ g(t)ej2πf tdt is the Fourier trans-

form of g(t).
Frames of translates are intimately related with sampling. The example below highlights their con-

nection with the Shannon sampling theorem [44].

Example 10.12. In this example one explores the connection between the Shannon sampling theo-
rem [44,45] and frames. Let a band-limited function of time x(t) be sampled using a train of impulses
at a rate 1/T . Assume that the signal bandwidth is W . If T < 1

2W
, we can reconstruct the signal using

x(t) =
∑
n

x(nT )
sin
[
(t − nT ) π

T

]
(t − nT ) π

T

. (10.58)

This is so because the infinite set of sinc pulses centered at nT provides a basis/frame of the W Hz
band-limited space.

Define R as the “amount of oversampling”

R = 1

2WT
, for R ≥ 1. (10.59)

Since at the Nyquist rate [31] 2WT = 1, R ≥ 1 gives 1/T ≥ 2W . Under these conditions we have [45]

x(t) = 1

R

∑
n

x(nT )
sin
[
(t − nT ) π

RT

]
(t − nT ) π

RT

. (10.60)

Note that for R ≥ 1, two sinc pulses centered at kT and lT (k, l ∈ Z) are actually not orthogonal.
Indeed, when R ≥ 1, the set of T temporally spaced sinc pulses is a frame in the W -band-limited signal
space, because although they expand the space, the sinc pulses centered at nT with R > 1 are not
linearly independent. In addition, the infinite set of sinc pulses above is shown to be a tight frame and
R is interpreted as a redundancy factor for the frame [10,45]. We note that for R = 1, Eq. (10.60) is the
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same as Eq. (10.58) and the signal samples occur where the sinc pulses equate either one (for t = nT )
or zero (other cases). However, as R increases, the sinc pulse centered at nT gets wider and is not
necessarily zero for t − nT = kT , k ∈ Z

∗. �

10.5.4 Gabor frames
While the introduction of the frame concept is traced back to 1952 [1], according to Christensen [6]
the first mention of what are now called Gabor or Weyl–Heisenberg frames can be traced back to even
before that, since they appear in the work of Gabor on communications [23] in 1946 and in the book of
von Neumann on quantum mechanics originally published in 1932 [46].

Let us simplify the idea of Gabor and simply state that its vision was to represent a signal x(t) by
means of

x(t) =
∑
m

∑
n

c̃m,nEmbTnag(t). (10.61)

The function g(t) is chosen to be a Gaussian due to its time-frequency concentration [19,21,47]. This
representation can provide an analysis of the time-frequency content around the points (na,mb) in
the time-frequency plane. The resemblance between this idea and the frame definition sparks, and the
following straightforward definition emerges.

Definition 10.12. A Gabor frame is a frame for L2(R) obtained through translation and modulation
operations on a fixed function g(t), {EmbTnag(t)}m,n∈Z, with a, b > 0. �

Now, one has the problem of determining conditions for the set {EmbTnag(t)}n,m∈Z to be capable
of representing any signal x(t) ∈ L2(R), i.e., to be a frame of L2(R). In addition, there is the question
of how one computes the set

{
cm,n

}
n,m∈Z2 that allows the synthesis of a signal using Eq. (10.61). The

answer to the latter question lies in the concept of inverse frame. We will start, however, from the first
question: for a given g(t), when is {EmbTnag(t)}m,n∈Z a frame? The answer depends on a complicated
interplay between g(t), a, and b. For example, in [48] a set of nonintuitive conditions was shown to
hold on a and b in order for a Gabor system to be generated. In what follows, several results collected
from the frame literature are presented, which provide either sufficient or necessary conditions for
{EmbTnag(t)}m,n∈Z to constitute a frame.

For {EmbTnag(t)}m,n∈Z to constitute a frame it is necessary that the product ab ≤ 1 [4,5,6]. How-
ever, the assumption ab ≤ 1 does not guarantee the generation of a frame for every g(t) (see for
example [48]). It should be observed that ab is a measure of the density of the frame in the time-
frequency plane [4,5,19,21,20,43]; the smaller ab is, the denser is the frame. Fig. 10.5 illustrates this
concept.

If {EmbTnag(t)}m,n∈Z constitutes a frame, then the frame bounds necessarily satisfy [6]

∀t ∈ R, A ≤ 1
b

∑
n∈Z |g (t − na)|2 ≤ B, (10.62)

∀f ∈ R, A ≤ 1
a

∑
k∈Z

∣∣ĝ (f − kb)
∣∣2 ≤ B. (10.63)

A well-known sufficient condition for {EmbTnag(t)}m,n∈Z to be a frame is presented in [14]. Let a, b >

0, let g(t) ∈ L2(R), let g∗(t) denote the complex conjugate of g(t), and suppose that ∃ A,B > 0 such
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FIGURE 10.5

Gabor system elements location in the time-frequency plane.

that

A ≤∑
n∈Z |g (t − na) |2 ≤ B ∀t ∈R and (10.64)∑

k �=0

∣∣∣∣∣∣∑n∈ Z
Tnag(t)T

na+ k
b
g∗(t)

∣∣∣∣∣∣∞ < A. (10.65)

Then {EmbTnag(t)}m,n∈Z is a Gabor frame for L2(R).
A more general sufficient condition [6,49] for the generation of a frame {EmbTnag(t)}m,n∈Z for

a, b > 0 given and g(t) ∈ L2(R) is that if

B := 1

b
sup

t∈[0,a]

∑
k∈Z

∣∣∣∣∣
∑
n∈Z

g (t − na)g∗
(

t − na − k

b

)∣∣∣∣∣< ∞, and (10.66)

A := 1

b
inf

t∈[0,a]

⎡
⎣∑

n∈Z
|g (t − na)|2 −

∑
k �=0

∣∣∣∣∣
∑
n∈Z

g (t − na)g∗
(

t − na − k

b

)∣∣∣∣∣
⎤
⎦> 0, (10.67)

then {EmbTnag(t)}m,n∈Z is a frame for L2(R) with frame bounds A,B. Note that this result shows that
if g(t) has a limited support [0,1/d], then for any set ab ≤ 1 and b < d a Gabor frame is obtained.

Other conditions for the generation of Gabor frames exist (see for example [4,5,6,27]). Ref-
erence [50] provides an extension of the results in Eqs. (10.66) and (10.67) for irregularly sam-
pled time-frequency parameters, that is, when the set (an, bm) is replaced by more generic pairs(
an,m, bn,m

) ∈ [na, (n + 1) a] × [mb, (m + 1) b].
In Section 10.6.3 we discuss the use of such frames for time-frequency analysis by means of the

Gaborgram, and in Section 10.6.4 we present an example of “how to find” the inverse frame to a
Gabor frame. In Section 10.6.5 a condition for constructing a Gabor frame in discrete space from its
continuous counterpart is stated.
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10.5.5 Wavelet frames
In wavelet analysis, translated and scaled versions of function ψ(t) are employed for representing a
signal x(t) ∈ L(R). In this sense, the signal is to be represented using functions like

ψc,a(t) = 1√
c
ψ

(
t − a

c

)
. (10.68)

If one thinks about the signal projections over different ψc,a(t) to represent the signal, the similarity
with the Gabor “time-frequency” approach is unavoidable. We apply operations to a fixed prototype
function and use the resulting modified versions of the prototype to express the signal. Discrete pairs
(a, c) define how the prototype function is modified and thus provide what signal characteristics are
being analyzed.

If we employ a continuum of (a, c) pairs, we have the so-called continuous wavelet transform [4,5,
7,51]

Wψ(a, c) = 〈x(t),ψc,a(t)〉 =
∫ ∞

−∞
x(t)

1√
c
ψ

(
t − a

c

)
dt. (10.69)

We can compute the inverse wavelet transform using

x(t) = Kψ

∫ ∞

0

∫ ∞

−∞
Wψ(a, c)

1√
c
ψ

(
t − a

c

)
da

dc

c2
. (10.70)

In the equations above, we have considered that ψ(t) is real and Kψ is a constant that depends on
ψ(t) [4,52,53]. It is worthy to say that, similarly, the Gabor frame can be linked to the so-called short
time Fourier transform [4,21].

In the case of wavelet frames, we are concerned with the case of a discrete set of pairs (a, c). In this
context, in 1910 [54] Haar has shown that for the function

ψ(t) =

⎧⎪⎨
⎪⎩

1, 0 ≤ t < 1/2,

−1, 1/2 ≤ t < 1,

0, otherwise,

(10.71)

the set of dilated and translated versions

ψj,k(t) =TkD2−j {f (t)} = 2j/2ψ
(

2j t − k
)

, j, k ∈ Z,

is a basis for L2(R).
A more thorough study of such possibilities occurred in the beginning of the 1980s. Calderón in

1964 [52] and Grossman and Morlet in 1985 [53] introduced the wavelet transform. In continuation,
the first wavelet frame construction appeared in 1986 in [12]. Great effort was dedicated to the study
of wavelets due to their capability of performing multiresolution analysis [4,5,7,13,51]. The book [55]
collects some relevant papers for wavelet analysis theory.

We should note that in Eqs. (10.68)–(10.70), the order in which the translation and dilation opera-
tions are applied differs from the one previously presented in Section 10.5.2. Therefore, for clarity, we
now define what is meant by a wavelet frame.
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Definition 10.13. For c > 1, a > 0, and g ∈ L2(R), a frame constructed by dilations and translations as

{Tnacj Dcj g(t)}j,n∈Z = {c− j
2 g
(
c−j t − na

)
}j,n∈Z (10.72)

is called a wavelet frame, as defined in Section 10.5.2. �

In [5] both necessary and sufficient conditions are provided to construct wavelet frames. For ex-

ample, if {Tnacj Dcj g(t)}j,n∈Z =
{
c

j
2 g
(
cj t − na

)}
j,n∈Z is a frame with frame bounds A and B, then

necessarily [56]

A ≤ 1

a

∑
j∈Z

∣∣∣ĝ (cjf
)∣∣∣2 ≤ B. (10.73)

A sufficient condition to generate a wavelet frame [6] is the following. Suppose that c > 1, a > 0,
and g(t) ∈ L2(R) are given. If

B :=1

b
sup

|f |∈[1,c]

∑
j,n∈Z

∣∣∣ĝ (cjf
)

ĝ
(
cjf + n

a

)∣∣∣< ∞, and (10.74)

A :=1

b
inf|f |∈[1,c]

⎡
⎣∑

n∈Z

∣∣∣ĝ (cjf
)∣∣∣2 −

∑
n�=0

∑
j∈Z

∣∣∣ĝ (cjf
)

ĝ
(
cjf + n

a

)∣∣∣
⎤
⎦> 0, (10.75)

then {Tnacj Dcj g(t)}j,n∈Z is a frame for L2(R) with bounds A,B given by the expressions above.
Reference [50] provides an extension of this condition for irregularly sampled time-scale parame-

ters, when the set
(
an, cj

)
is replaced by any pair

(
an,j , cn,j

) ∈ [cjan, cj a (n + 1)] × [cj , cj+1].

10.5.6 Finite vector spaces
When considering finite vector spaces H

N the simpler solution is to truncate or box-window the el-
ements of the discrete space frame; however, this simple approach alters the frame bounds [57]. An
alternative is to consider that the vector space is generated from an N -length section of an N -periodic
l2(Z) space, where the translation operator is a circular shift. The circular shift of a signal does not
change the vector norm; this way the frame in H

N has the same frame bounds as the frame in the
N -periodic l2(Z).

10.6 Some remarks and highlights on applications
10.6.1 Signal analysis
We have discussed the construction of different frames from a fixed prototype function. We have also
presented examples that span the possibility of signal representation, analysis, and synthesis using func-
tions with prescribed characteristics. These are some of the main features of frames that are relevant for
signal processing applications: detection of signal features and analyzing and synthesizing signals using
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a set of predefined signals. Frames bring freedom when compared to bases as the number of elements
to be employed in the analysis–synthesis process can be larger than the signal space dimension.

In the literature, there is a large number of examples of different frame constructions using a fixed
prototype signal; we have presented some in Section 10.5. Fig. 10.6 illustrates different functions with
different characteristics that can be used in this framework. It illustrates possible fixed functions to be
employed to detect localized phenomena in a signal.

FIGURE 10.6

Examples of fixed functions that can be used to construct frames.

The Gabor and wavelet approaches commonly used for building frames from a fixed function were
discussed. In some cases, the density in time, frequency, or scale of the phenomena to be analyzed
or detected in the signal [58,24,25] may be such that techniques for reducing the number of frame
elements may be handy [59].

Example 10.13. As the reader may have already noticed, wavelet frames can be used in a similar
way to Gabor frames for time-frequency analysis. However, in this case a better phrasing would be
time-scale analysis. Fig. 10.7 depicts the different tilings of the time-frequency plane obtained by these
approaches. These tilings depict the Heisenberg boxes [4] of the frame elements – these boxes roughly
correspond to the time-frequency plane area where most of the elements’ energy is concentrated. �

10.6.2 Robust data transmission
An advantage of frames is that they can increase the robustness of data transmission. Assume that at
some point the system experiences losses, that is, a certain number of coefficients are lost or delayed,
and the receiver decides to reconstruct the source with the available information. Due to the redundancy
introduced by the frames, it may still be possible to reconstruct the original source. In order to do so,
however, we must analyze the information contained in the remaining coefficients.

Example 10.14. Consider the set of frame elements G = {[1 0], [0 1], [−1 0], [0 −1]}. We can
see that this frame is robust to one erasure, since if any element is missing, the remaining elements
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FIGURE 10.7

Heisenberg boxes in the time-frequency plane for Gabor (left) and wavelet (right) frames.

form a frame that spans R
2. On the other hand, for two erasures, it may not be possible to recover

the original information. For instance, if the coefficients corresponding to the elements [1 0] and
[−1 0] are lost, the remaining coefficients do not contain information about one of the signal dimen-
sions.

Consider now the set of frame elements G = {[1 0], [0 1], [1 1], [1 −1]}. For this new set of
frame elements, under any two erasures, since the remaining elements still span R

2, it is still possible
to reconstruct the original vector. �

The above exemplifies that, for a frame with N elements to be resilient to K erasures, any subset
of N − K elements must also be a frame. Consider � as a diagonal matrix containing 0’s in the rows
corresponding to the elements that were lost. We can see that the received signal is �Gx. If � is known,
the receiver may compute a left inverse for �G and use it to reconstruct the original source. Note that
under K erasures, if the remaining elements span R

N , the matrix �G has a left inverse and a perfect
reconstruction can be found. For a large amount of erasures, the matrix �G may not have a left inverse
and only a partial reconstruction of x is possible.

Alternatively, if the erasures are not known, the receiver may use the original inverse frame G̃ and
assume that only an approximation of x can be found. This motivates several studies [16,60] to define
“optimal frames,” in the sense that they minimize the reconstruction error independently of the elements
that were deleted. It can be shown [60], for instance, that Grassmannian frames [32] are optimal for up
to two erasures.
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Example 10.15. We illustrate the resilience to erasures provided by the frame theory. Consider the
image astronaut in Fig. 10.2. We split the image in blocks of size 16 × 16 and encode each block into
the coefficients of a Gabor frame with double the number of coefficients. To simulate the loss of infor-
mation during the transmission, we randomly delete a fraction of the frame coefficients and reconstruct
the original image using the remaining ones. For comparison, we perform a similar experiment us-
ing instead the discrete cosine transform (DCT) coefficients of the image, which are transmitted under
similar conditions. We use the same 16 × 16 blocks, compute the DCT transform for each block, and
randomly delete the same ratio of DCT coefficients as in the frame experiment.

Fig. 10.8(a and c) shows the resulting images obtained when 40% and 60% of the frame coefficients,
respectively, are randomly set to zero, while Fig. 10.8(b and d) shows the images obtained when 40%
and 60% of the DCT coefficients, respectively, are randomly set to zero.

Note that for the DCT case, even with a low ratio of erasures, some blocks can be completely lost.
This behavior is due to the fact that the DCT transform concentrates information in a small number
of coefficients. Therefore, if an erasure occurs in one of these coefficients, almost no information for
the block can be retrieved. On the other hand, the Gabor coefficients allow the reconstruction of the
original image with no noticeable error when the number of erasures is small enough.

This experiment was repeated for several erasure ratios, with multiple realizations being performed
for each erasure ratio. In each realization, the MSE between the original and reconstructed images using
either the frame or the DCT coefficients were computed. For each erasure ratio, the average MSE was
taken among all realizations. The results are shown in Fig. 10.9, where it is possible to see that this
Gabor frame provides immunity to erasures of up to 50% of the coefficients. This ratio is compatible
with the fact that the employed frame contains twice as many elements as the space dimension. This
redundancy can be regarded as the price that has to be paid for having robustness to this level of
erasures. In addition, under a large erasure ratio that implies a reconstruction error using the remaining
frame coefficients, the reconstruction error is smaller than the one generated by the DCT under the
same condition. �

10.6.3 Gaborgram
In the beginning of Section 10.5.4 we have presented the idea of Gabor, that is, of representing a signal
x(t) by means of

x(t) =
∑
m

∑
n

cm,nEmbTnag(t) =
∑
m

∑
n

cm,ne
jmbg(t − na). (10.76)

As can be noticed, this equation assumes that there is a representation for any x(t) using several
gmb,na(t) = EmbTnag(t). We have seen that for these to be true it is enough for the set {EmbTnag(t)}m,n

to be a frame. This is commonly referred to as the Gaborgram, and consists in the plot of the coefficients
cm,n using the lattice presented in Fig. 10.5. As discussed above a similar concept can be used for
wavelet frames.

We have also seen that to compute the frame coefficients cm,n, the inverse frame to {EmbTnag(t)}m,n

must be used. The next section illustrates how to obtain the inverse frame in the case of an exponential
function. This gains special relevance if one notes that a Gabor frame of damped sinusoids is inspired
by the connection among transients and damped sinusoids in physical systems.
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FIGURE 10.8

Impact of frame coefficient erasures in image reconstruction. (a) Image astronaut recovered after it was split
in blocks of size 16 × 16, each block being encoded into the coefficients of a Gabor frame, 40% of which were
randomly set to zero. (b) A similar case in which instead of the Gabor frame a DCT transform is employed.
Subfigures (c) and (d) present results equivalent to (a) and (b), respectively, when 60% of coefficients are set
to zero.

10.6.4 Inverse Gabor frame
The power of the Gabor system for signal analysis and synthesis is not difficult to perceive. The problem
is how to find the coefficients cm,n that provide the reconstruction

x(t) =
∑
m

∑
n

cm,nEmbTnag(t) =
∑
m

∑
n

cm,ne
jmbg(t − na). (10.77)
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FIGURE 10.9

Reconstruction error (MSE) with respect to the ratio of erasures. The blue (mid gray in print version) dashed
curve shows the error obtained when the image astronaut is split in 16 × 16 blocks, each block is converted to
the coefficients of a Gabor frame, a proportion of coefficients are set to zero, and the image is reconstructed
from the remaining coefficients. For comparison purposes, the red (light gray in print version) dash-dotted
curve shows the case where the 16 × 16 blocks are converted to the coefficients of a DCT transform and the
same proportion of erasures is applied to its coefficients.

The inverse frame elements {g̃(t)}m,n can be used. In this case we have

x(t) =
∑
m

∑
n

〈x(t), g̃m,n(t)〉EmbTnag(t). (10.78)

Daubechies [13] has shown that, for Gabor frames, the inverse frame must be such that

g̃m,n(t) = EmbTnag̃(t). (10.79)

We have

x(t) =
∑
m

∑
n

〈x(t),EmbTnag̃(t)〉EmbTnag(t). (10.80)

From the above equations, we notice that g̃(t) must be known in order to compute the inverse frame.
Eq. (10.80) provides a biorthogonality condition between g(t) and g̃(t) (the “frame decomposition” for-
mulas discussed in Section 10.3.1). This biorthogonality condition is derived in [61] from Eq. (10.80),
where it becomes

1

ab

∫
g(t)g̃

(
t − n

b

)
e− j2πm t

a dt = δ(n)δ(m). (10.81)
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FIGURE 10.10

Examples of inverse Gabor frame prototype function of the one-sided exponential function (the set g̃(t)

biorthogonal to g(t) = √
2αe−αtu(t)) for different values of α.

Here δ(x) denotes the impulse of x. In [61] it is also discussed that Eq. (10.81) accepts more than one
solution in the oversampled case (ab < 1) [27].

Example 10.16. In [24] the problem of building a Gabor system (or Gabor frame) based on the one-
sided exponential function is presented. In this case, we have

g(t) =
{ √

2αe−αt , t ≥ 0,

0, otherwise.
(10.82)

Using the Zak transform [62,48], Ref. [24] shows that for large oversampling ratio (ab < 1),

g̃(t) ≈

⎧⎪⎪⎨
⎪⎪⎩

−ke
−α

(
t+ 2

b

)
, −1 ≤ tb < 0,

ke−αt , 0 ≤ tb < 1,

0, otherwise,

(10.83)

where k is a constant that depends on a, b, and α [24].
Fig. 10.10 illustrates g̃(t) for different cases of a and b. In order to just focus on the waveform of

g̃(t), we ignore here the value of the constant k and make all functions scaled so that maxt g̃(t) = 1.
�

10.6.5 Gabor frames in discrete spaces
Due to the time-shift frequency-shift structure of Gabor frames, these have a broad range of applications
for signal processing. Since most algorithms take place in a discrete space we should evaluate how to
construct Gabor frames in this space.
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Frames in discrete spaces (l2(Z)) can be obtained by time-sampling the elements of frames in
L2(R) [6]. If g(t) ∈ L2(R) is such that

lim
ε→0

∑
k∈Z

1

ε

∫ 1
2 ε

− 1
2 ε

|g(k + t) − g(k)|2dt = 0 (10.84)

and {Em/QTn/P g(t)}m,n∈Z with Q, P ∈ N is a frame for L2(R) with frame bounds A and B, then
{Em/QTn/P gD}n∈Z, m=0,1,...,M−1 is a frame for l2(Z) with frame bounds A and B [6]. The vector gD

is the discretized version of g(t) with one sample per time unit, i.e., gD = {g(j)}j∈Z.

10.6.6 Fast analysis and synthesis operators for Gabor frames
Gabor or Weyl–Heisenberg frames in N -dimensional spaces are also interesting because one can find
fast algorithms to compute their analysis and synthesis operators. Now, we consider that the number
of “points” of the Weyl–Heisenberg frame in the frequency axis is such that Q = N/r , Q,r ∈N, and
also that the number of points in the time axis P ∈N (the same restrictions were employed in Sec-
tion 10.6.5). These restrictions actually lead to a = 1/Q and b = N/P in Eq. (10.61). In this case, cn,m

are defined for n ∈ {0 . . . P − 1} and m ∈ {0 . . . Q − 1} and are given by

cn,m = 〈x,E
m 1

Q
T

n N
P

g〉 =
N−1∑
l=0

x[l]e − j2πlm
Q T

n N
P

g[l]. (10.85)

Defining

f
n N

P
[k] = x[k]T

n N
P

g[k] = x[k]g
[(

k − n
N

P

)
modN

]
, (10.86)

f
n N

P
=
[
f
n N

P
[0], . . . , f

n N
P
[N − 1]

]
, (10.87)

we obtain

cn,m = 〈x,E
m 1

Q
T

n N
P

g〉 =
N−1∑
l=0

f
n N

P
[l]e − j2πlm

Q . (10.88)

For Q = N/r, r ∈ N, we obtain

cn,m = 〈x,E
m 1

Q
T

n N
P

g〉 =
N−1∑
l=0

f
n N

P
[l]e − j2πl

N
mr = DFT {f

n N
P
}[mr], (10.89)

where DFT {x}[k] is the kth sample of the discrete Fourier transform of x, which can be computed
using fast algorithms (FFT) [31].

Using the result in Eq. (10.89), the analysis operator (which was discussed in Section 10.4.2) of
such Weyl–Heisenberg frames is given by
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T∗{·} : HN → C
PQ, (10.90)

T∗{x} : cn,m = {〈x,E
m 1

Q
T

n N
P

g〉}, n ∈ [0,P − 1], m ∈ [0,Q − 1], (10.91)

cn,m = FFT {f
n N

P
}[mr], f

n N
P
[k] = x[k]g

[(
k − n

N

P

)
modN

]
. (10.92)

Similarly, for the synthesis operator of such frames we have

T{·} : CPQ →H
N,

T{cn,m} = [x[0], . . . ,x[N − 1]] =
P−1∑
n=0

Q−1∑
m=0

cn,mE
m 1

Q
T

n N
P

g. (10.93)

The last equation is the sum of PQ length-N vectors and can be computed using the inverse discrete
Fourier transform as follows:

x[l] =
P−1∑
n=0

Q−1∑
m=0

cn,me
j 2πml

Q f
n N

P
[l] =

P−1∑
n=0

f
n N

P
[l]

Q−1∑
m=0

cn,me j 2π
N

lmr . (10.94)

Denoting cn(m) = cn,m we can define

cn = [cn[0], cn[1], . . . , cn[Q − 1]] (10.95)

and its upsampled version

U(cn)[k] =
{

cn[k/r], k/r ∈ {0,1, . . . ,Q − 1},
0, otherwise.

(10.96)

Thus, the synthesis operator is such that

x[l] =
P−1∑
n=0

f
n N

P
[l]

Q−1∑
m=0

U(cn)[mr]e j 2π
N

lmr =
P−1∑
n=0

f
n N

P
[l]IFFT {U(cn)}[l]. (10.97)

Fig. 10.11 presents a way to compute the expansion coefficients or the reconstructed signal when a
frame is used either as an analysis or as a synthesis operator. Note that in the outputs of each FFT block
in Fig. 10.11, there is a serial-to-parallel converter, while at the inverse FFT (IFFT) inputs a parallel-to-
serial converter exists. In Fig. 10.11 all the frame coefficients can be obtained using PN(1 + log2(N))

operations, which can be reduced if one takes into account that just Q FFT/IFFT coefficients need to
be computed at each FFT/IFFT branch.

10.6.7 Time-frequency content analysis using frame expansions
As we have seen in several cases, frames provide a powerful tool for signal analysis. This is specially
true when one considers Gabor and wavelet frames. These provide a natural tiling of the time-frequency
plane. We now discuss how a signal expansion can be mapped into a time-frequency plot.
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FIGURE 10.11

Weyl–Heisenberg fast analysis and synthesis using FFTs and IFFTs.

The Wigner–Ville distribution (WD) is probably one of the most well-known and widely used tools
for time-frequency analysis of signals. The WD of a signal x(t) is defined as [4,20,63,18]

WDx (t, f ) =
∫ +∞

−∞
x
(
t + τ

2

)
x∗ (t − τ

2

)
e−2π jf τ dτ. (10.98)

In some applications the WDs of signal decompositions have been employed in order to analyze the
time-frequency content of signals [4,20]. The WD of a signal x(t), WDx (t, f ), is a “measure” of
the energy density in the signal in both time (t) and frequency (f ) simultaneously. However, it is
just meaningful when regions of the time-frequency plane are considered as a whole (that is, as local
averages) – due to the uncertainty principle a single time-frequency point (t ′, f ′) cannot be properly
analyzed [4,20]. In addition, the WD of a signal has the drawback of not being restricted to be positive,
a mandatory characteristic for an energy density.
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In Section 10.3, we have seen that a signal x can be decomposed into a frame {gk}k∈K or into its
dual {g̃k}k∈K and reconstructed by means of

x =
∑
k∈K

〈x, g̃k〉gk =
∑
k∈K

〈x,gk〉g̃k. (10.99)

Once x is decomposed into the frame coefficients 〈x, g̃k〉 as a linear combination of the frame
elements, its time-frequency content can be analyzed using the linear combination of the time-frequency
content of the frame elements as follows:

WDx̃(t, f ) =
∑
k∈K

〈x(t), g̃k(t)〉WDgk (t, f ) . (10.100)

Approaches such as the one above that infer signal characteristics from signal decompositions are
common and powerful tools for signal analysis, detection, and estimation. Specifically, in the case of
time-frequency analysis, such approaches avoid the cross-terms that appear when the original signal is
directly analyzed [4,20,43,63,18,19,21,22].

It is important to note that there are cases where g̃k(t) do not, neither physically nor visually or
in its time-frequency content, resemble the associated gk(t). The coefficients used for obtaining the
time-frequency content are computed as 〈x(t), g̃k(t)〉, which is a measure of similarity between x(t)

and g̃k(t). This is inconvenient in the case that gk(t) and g̃k(t) are too dissimilar; therefore, in general
this approach is left aside.

For instance, in [43] the time-frequency content of signals is estimated using the matching pursuit
(MP) signal decomposition algorithm, a step-based decomposition algorithm that iterates to succes-
sively obtain better signal approximations [64]. The approximation is accomplished by selecting the
dictionary element that best matches the signal. This match is evaluated by projecting the signal on
the dictionary elements. The best-matching element is scaled by its corresponding projection and sub-
tracted from the signal generating a residual error. The process is then iteratively applied to the residual
error. This algorithm is greedy [65,66,67] in the sense that it minimizes the approximation error at each
iteration. However, it is not optimal as a sequence of greedy iterations occur, and due to this fact several
variants for MP exist [67,68,69,70].

Although the dictionary employed in MP is not required to be a frame, it is a common procedure
to employ a frame as a dictionary [59,71,72], because this choice guarantees that any signal can be
analyzed and synthesized. It is common to use a mix of Gabor and wavelet frames to build the dictionary
used in MP [43]. Doing this, the dictionary elements are placed in different locations in the time-
frequency plane and the several scales provide different concentrations for the energy of the elements
in time and frequency. A widely used dictionary in this context is one formed by Gaussian functions in
different scales with different time and frequency shifts. In this case one obtains the MP expansion of a
signal x(t) into the Gabor dictionary as

x(t) ≈
M∑

n=1

γngi(n)(t), (10.101)



684 Chapter 10 Frames in signal processing

where i(n) indexes the element selected for approximating the residual error in the decomposition step
n. From this representation the time-frequency content of x(t) is analyzed by means of

WDx(t, f ) =
M∑

n=1

γnWDgi(n)
(t, f ). (10.102)

Note that the time-frequency analysis approach using MP decomposition, associated with Eqs.
(10.101) and (10.102), resembles the one associated with Eqs. (10.99) and (10.100). However, in the
MP algorithm the coefficients γn are obtained by a similarity calculation with the function gi(n)(t) itself,
whose time-frequency analysis is used in Eq. (10.102). This circumvents the problem of the dissimilar-
ity between gk(t) and g̃k(t) discussed above in relation to Eq. (10.100). In [73] a similar approach is
used, but using a modified version of MP to obtain the signal expansion. Note the resemblance between
the approach in Eq. (10.100) and the ones in Eqs. (10.101) and (10.102).

10.7 Conclusion
In this chapter we have provided an overview of frames and their applications in signal processing.
We started by introducing the concept of overcomplete decompositions, highlighting their main char-
acteristics and showing their advantages using practical examples. We then commented on the dual
frames and on how frames can be employed to perform analysis and synthesis of signals. After this,
we provided formal definitions of the frame operator, inverse frames, and frame bounds and illustrated
their usage. We then formalized the use of frames in discrete and finite-dimensional spaces. Shifting
into more practical matters, we showed how to generate frames from a prototype function by using
translations, modulations, and dilations. From this, we analyzed the widely used frames of translates,
Gabor frames, and wavelet frames. We then described selected applications in signal analysis, where
we showed that frame representations have intrinsic properties that can increase the resilience to noise
and losses in robust data transmission systems. We formalized the Gaborgram and presented a way
to compute it more efficiently using the FFT. We finished the chapter by discussing how to compute
time-frequency analysis using decompositions and the MP algorithm.
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11.1 Introduction
In signal processing, we often wish to recover a small amount of useful information from a large
amount of data, such as the words spoken in a sound recording, the binary message encoded in a
cellular broadcast, or positional coordinates from a set of readings from a sensor network. We can
infer these parameters of interest from their effects on the structure and content of the signal that we
observe. Similarly, we might wish to analyze or control a complex system, such as an electronic circuit
or a communication channel, that generated or modified an observed signal. We can often approximate
such an unknown system using a model with a tractable number of parameters that we can infer from
the observed signal.

11.1.1 What is parametric estimation?
Parametric estimation is the practice of modeling an unknown signal or system by a finite number of
free parameters. Using prior knowledge or informed assumptions about the signal or system of interest,
we choose a model with known structure but unknown parameter values. Then, we use optimization
methods to select the parameter values that best explain the observed signal. For example, if we are
given an infinite length signal but we know in advance that the signal is a sinusoid, then we can fully
represent it with only three parameters: its frequency, amplitude, and phase. More often, a parametric
model can capture only part of the information in a signal; for example, a transcript of a speech record-
ing reflects the words spoken but not the tone, cadence, or identity of the speaker. In other cases, we
know little about the signal itself but can model the system that produced or acted on it. For example, if
the same sound is recorded by a compact array of several identical microphones, then the signal in each
microphone will differ from the signal in each other microphone by a time delay that depends on the
direction of the source. By estimating those time delays, we can infer the location of the sound source,
which is itself a parameter of the acoustic system.

It is useful to compare parametric and nonparametric methods for analyzing data. Suppose that we
are given a set of unordered data, such as an opinion poll, and asked to analyze its distribution. We might
generate a histogram of the data, which can capture fine detail but is difficult to summarize. If we have
reason to believe that the responses are normally distributed, however, we can use a parametric model,
estimating the mean and variance of the normal distribution from our dataset. For ordered data, or
signals, we are often interested in their spectral content. We can analyze the spectrum nonparametrically
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by taking a discrete Fourier transform. Because the transform has the same number of samples as
the original sequence, this analysis might not be useful for a long signal. If we know that the signal
was generated by a linear system with a tractable number of poles and zeros, such as a human vocal
tract, then we can instead fit the observed data to a linear system model whose parameters are its
rational transfer function coefficients. By estimating these parameters, we can approximate the system
and study its frequency response. In pattern recognition applications, such as image classification, a
nonparametric system might use a nearest-neighbor algorithm to search for the closest match to the
observed signal in a database, while a neural network uses a high-dimensional parametric model that
captures the structure of the images.

Parametric estimation can be used to transform and analyze signals with known structure. Because
models generally have fewer free parameters than unprocessed signals, parametric models are often
used for data compression. For example, the autoregressive (AR) models introduced later in this chapter
have been used for speech compression. If a model can easily predict a given signal, then the signal can
be represented using only the prediction error, or unpredictable components, and the parameters of the
model used for prediction. Parametric models can also be used to analyze the content of a signal, such
as the symbols encoded into a communication broadcast or the words in a speech recording. Parametric
estimation is especially useful if we know how the signal was generated. In those cases, the parameters
of interest control the behavior of the system rather than the signal itself.

Indeed, one of the most common applications of parametric estimation in signal processing is to
find an approximate model of a complex or unknown system, which is often a physical channel or
device. We can then analyze the properties of these systems, such as their stability, predict their effects
on other signals, and even control their behavior. For example, in an audio conferencing system, we
can find a parametric model for the acoustic path between a loudspeaker and a microphone, then use
that model to predict the signal at the microphone, and subtract it from the recorded signal, thereby
canceling the echo. Sometimes the predictions alone may be all that is desired, such as in forecasting
or recommendation systems. In machine learning or adaptive systems, parametric estimation can be
used to find a differentiable model for the system of interest so that it can be used as part of a larger
optimization framework. In other cases, it is the system parameters themselves that are of interest to an
application. Time differences of arrival between sensors can be used to localize a signal source, while
the Doppler shift applied to a signal can be used to estimate the relative speed of an object.

11.1.2 Parametric models for signals and systems
The art of parametric estimation lies in choosing a good model. Ideally, we should choose a model
based on prior knowledge about the phenomenon of interest, for example based on physics. Sometimes
we have direct knowledge of the system and can readily identify the relevant parameters, such as the
weighting of an unfair coin, the carrier frequency of a broadcast, or the gain applied by a linear ampli-
fier. In other cases, we know what kind of model would be reasonable, such as a pole-zero model for
a linear time-invariant (LTI) system, but we do not know exactly how many parameters we should use.
Communication channels, vocal tracts, and room acoustics can all be well modeled as linear systems
but may be too complex to characterize exactly. We can control the complexity of the model by choos-
ing the number of parameters: It should be rich enough to enable insights into the salient characteristics
of the signal or system, but parsimonious enough to be computationally tractable and avoid overfitting.
If we have no prior knowledge about the structure of the problem, then a parametric model may be in-
appropriate. For example, if our data follow a bimodal distribution, we should not try to model them by
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a normal distribution. Likewise, if an LTI system uses feedback, it cannot be effectively approximated
by a feedforward model, even if it has many coefficient parameters.

Once we have selected an appropriate model, we must choose a set of parameters that best ex-
plain the observed data. Parameter estimation is typically framed as an optimization problem, but there
are different objectives that might be optimized depending on the application. In some cases, such as
direction-of-arrival estimation, we are concerned with the accuracy of the parameter itself, and we seek
to minimize its deviation from the true value. In other applications, such as linear prediction for echo
cancelation, performance depends only indirectly on the parameter values. Instead, we are concerned
with modeling error, that is, the ability of the parameters to explain the observed data.

Consider the following motivational example. A sequence x[n] is generated using the following
linear constant-coefficient difference equation (LCCDE):

x [n] = −0.8x [n − 1] + 0.33x [n − 2] + 0.73x [n − 3] + 0.315x [n − 4] + w [n] , (11.1)

where w [n] is a sequence of independent, identically distributed, zero-mean random values. We will
formally introduce AR models in Section 11.2, but from (11.1) we can see that the sequence x [n]
is determined by its four most recent values to within the unknown and unpredictable white noise
sequence w [n].

FIGURE 11.1

Model order and diminishing returns. Left is a sequence generated by a fourth-order signal model and right is
the regression error and extrapolation error as a function of model order. The regression error applies the fitted
parameters to the same 100 samples used to find them, while the extrapolation error uses these parameters to
fit 100,000 data samples generated with the same model, but outside the 100 training samples.

Suppose that we are given 100 samples from this sequence, shown on the left in Fig. 11.1, and
told that the signal was generated by a difference equation of the form (11.1), but we do not know
the number of coefficients or their values. We try several linear models with different numbers of
coefficients, fitting each model to the system by minimizing the regression error, that is, the error
between the observed data and the data predicted by the model. The right plot of Fig. 11.1 shows the
average squared modeling error for models of order 1 through 25, that is, with 1 to 25 coefficients. The
regression error decreases monotonically with increasing model order but has diminishing returns after
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just four coefficients. On the other hand, the extrapolation error, which is evaluated on samples outside
the training range, achieves its minimum at the true model order and increases for higher orders. We can
see that although more parameters always provide a better fit to the training data, too many parameters
can harm extrapolation performance by overfitting the parameters to the data. In practice, it can be
challenging to determine the number of parameters to use for a given parametric model. Model order is
often chosen based on prior knowledge of the system of interest, computational complexity constraints,
or the amount of available training data. It can also be determined in a data-driven manner. We will
revisit model order selection in Section 11.5.

In this chapter, we describe several parametric models that are commonly used to analyze signals
and systems and the techniques used to estimate their parameters based on observed data. We present
both stochastic and data-driven formulations for parameter estimation. We focus on rational transfer
function models, that is, on systems with a finite number of poles and zeros, which can be used in batch,
segmented, and on-line recursive formulations. Finally, we discuss advanced techniques for model order
selection.

The background of the reader assumed in this chapter is a working knowledge of discrete-time sig-
nals and systems, some basic probability theory including knowledge of stationary random processes,
and the mathematical skills of a senior level undergraduate student in electrical engineering or a similar
discipline. An exemplary treatment of these topics includes the texts by [1], [2], and [3]. These texts
cover discrete-time signal and system theory, with the latter covering some random processes. Addi-
tional material on probability and stochastic processes as applied to the problems in this chapter can be
found in [4] and [5].

11.2 Preliminaries
11.2.1 Signals
Parametric estimation techniques can be used with unordered data, for example by fitting a histogram
to a parametric distribution, but in signal processing we are generally more concerned with ordered
data, also known as signals. A signal is a set of values indexed by an independent variable which we
will call time, although the index could also some other quantity, such as space (for an image), storage
locations in a memory, positions on a magnetic tape, or any other integer-valued index set. In this
chapter we restrict our attention to discrete-time signals of the form x[n], where the time index n is an
integer. Such a sequence could be sampled from a continuous-time signal, such as an acoustic waveform
recorded onto a computer using an analog-to-digital converter, or it could be intrinsically discrete, such
as a sequence of symbols in a digital transmission.

Mathematically, we allow the index n to take on any integer value, so that the sequence x[n] contains
infinitely many samples. Indeed, one of the benefits of parametric modeling is that we can characterize
an infinite length sequence using a finite number of parameters. For example, if x[n] is periodic with
period P , then it is fully characterized by P samples. If it is a sinusoid, then it is determined by its
frequency, amplitude, and phase parameters. In real-world applications, we must perform parametric
estimation using a finite number of samples. A sequence of N samples can of course be fully repre-
sented by N parameters, but to analyze the signal or the system that produced it, it is useful to select a
model with p � N parameters. As in the motivating example above, the N samples used for parameter
estimation are often a small subset of the overall signal.
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The methods in this chapter can be applied to real- or complex-valued signals and to scalar- or
vector-valued signals, but we will assume for convenience that x[n] is a sequence of real-valued scalars.
In many engineering applications, signal values are drawn from a finite alphabet, or set of possible
values. For example, communication signals comprise values from a modulation alphabet indexed by
groups of bits from a transmitted digital message. These message bits can be thought of as parameters
that control the signal observed by the recipient. Similarly, the digital signals processed by logic circuits
and computers are stored as sequences of bits corresponding to quantized signal values. The finite
precision of a digital signal can introduce nonlinear distortion effects into signal processing operations
that are difficult to model. For simplicity, in this chapter we assume that the observed sequence x[n]
can take on a continuous range of values, even if it was originally generated from a finite alphabet, and
that signal processing operations have perfect precision.

11.2.2 Data-driven framework
Because parametric estimation can be applied in many different engineering contexts, in this chapter
we will consider several frameworks for analyzing signals and systems. In particular, we will show how
to estimate the parameters of a model using both data-driven and stochastic optimization methods. The
first and perhaps simplest formulation is to assume that the signals of interest are deterministic, that is,
that the signal values x [n] can take on any finite real value (or complex value, in the case of complex
signals) and that we have no prior information, such as a probability distribution, to restrict their values.
We often refer to these methods as “data-driven” because they rely on the data alone, rather than other
prior knowledge or assumptions, to select model parameters.

In many problems for which parametric estimation is useful, such as linear prediction or echo can-
celation, we want to find parameter values that best explain the observed signal. Thus, the optimization
problem is not posed in terms of the parameter values directly. Instead, we measure the error between
the signal data that we observe and the signal data that the model predicts. A convenient and popular
performance measure is the square error between signals. The accumulated square error ELS between
an estimate x̂ [n] and a desired signal xd [n] over a block of samples, n = 0, . . . ,N , is given by

ELS =
N∑

n=0

(
xd [n] − x̂ [n]

)2
. (11.2)

We can also write the cost function as an integral square error measured in the frequency domain:

EIS = 1

2π

∫ π

−π

∣∣∣Xd (ω) − X̂ (ω)

∣∣∣2 dω. (11.3)

Both ELS and EIS capture the degree to which the approximating time domain signal x̂ [n] or frequency
domain estimate X̂ (ω) matches the deterministic signal of interest, xd [n] or Xd (ω). Assuming that
the desired signal xd [n] is zero outside the range 0 ≤ n ≤ N and that Xd (ω) =∑N

n=0 xd [n] ejωn, i.e.,
Xd (ω) is the discrete-time Fourier transform of xd [n], it can be shown that ELS = EIS using Parseval’s
relation. Thus, a parametric model that accurately predicts the signal will also accurately reflect its
frequency content.

As a simple example, suppose that we have measured a signal x [n] that corresponds to the daily tem-
perature of the water in a local pond. If we wanted to compute a good approximating signal, x̂ [n] = c,
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i.e., a signal whose value remains constant over the entire interval, and we used the accumulated square
error over the collected data signal as a measure of performance, we could write

ELS =
N∑

n=0

(x [n] − c)2 (11.4)

and seek to find the value of c that minimizes the total accumulated square error over the observation
interval. Differentiating ELS with respect to c and setting the result equal to zero, we obtain

∂ELS

∂c
= −2

N∑
n=0

(x [n] − c) , (11.5)

0 = −2
N∑

n=0

(x [n] − c) , (11.6)

which can be solved for the minimizing value of c, yielding

c = 1

N + 1

N∑
n=0

x [n] . (11.7)

This is the well-known result that the best constant-valued approximation of a given sequence, mea-
sured by square error, is the sample average of that sequence. This is one simple way in which a
parameter representing the sequence can be estimated from the data directly.

FIGURE 11.2

Approximating a signal with a constant value.

Fig. 11.2 shows the result of approximating a signal x [n] with another signal that takes on only a
single constant value. The signal in this example has an average value of c over the interval shown. As
a result, the best approximating constant-valued signal, in terms of minimizing the squared approxima-
tion error over the interval shown, is the mean of the signal, c.
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11.2.3 Stochastic model and criteria
Parametric estimation can also be approached using stochastic, that is, random, signal models, which
can help to account for some of the uncertainty in a signal or system of interest. Such models can
also incorporate prior knowledge about the signals, such as the correlation between samples. When
we use a stochastic framework, we choose measures of performance that are similar in spirit to those
of our deterministic analysis, but which are defined in terms of probabilities or statistical averages. In
statistical signal processing, performance is often measured in terms of the mean square error (MSE),
which is the stochastic average of the data-driven square error measure from the previous section. Like
that measure, the MSE has desirable mathematical properties that make optimization problems more
tractable.

The MSE performance measure is closely related to the second-order statistics of a random
process, which allow us summarize the behavior of a signal with a relatively small number of
parameters [6]. In general, to fully statistically characterize a discrete-time random signal x [n],
we would need to find the joint probability density function between any combination of samples
fx (x [n1] , x [n2] , x [n3] , . . . , x [nk]) for all possible k-tuples n1, n2, n3, . . . , nk and for all possible k.
This complete statistical knowledge may be available for certain signal or system models, but in gen-
eral, such a complete characterization is neither available nor appropriate. Instead, we will often use
second-order statistical models for random signals of interest. Second-order models are parameterized
by two statistical functions, the mean and the covariance. The mean value of a random signal x[n] is
defined as

mx [n] = E {x [n]} , (11.8)

where E { } denotes the statistical expectation operation which is taken with respect to the complete
stochastic characterization of the signal. The covariance function of the signal is defined as

Cx [m,n] = E
{
(x [m] − mx [m]) (x [n] − mx [n])∗

}
= E

{(
x [m]x [n]∗

)}− mx [m]mx [n]∗ , (11.9)

where, again, the expectation is taken with respect to the complete stochastic characterization of the
random signal. Note that if the random signal is complex-valued, then by convention the second term
in the definition is conjugated. If the signal is real-valued, then there is no conjugation.

In general, the mean and covariance of a process are both functions of time. However, when the
random signal x [n] is wide-sense stationary (WSS), then both the mean and covariance take on a
special form [6] [1]. For WSS random signals, the mean value of the signal is a constant, mx [n] = mx ,
and the covariance function is only a function of the difference in times between the two samples,

Cx [m,n] = Cx [0, n − m] � Cx [n − m] , (11.10)

where, with a slight abuse of notation, we use Cx to denote both the general and the WSS covariance
functions. Wide-sense stationarity is a generalization of strict stationarity, which requires that none
of the statistical properties of the signal vary over time (or location in space, or another independent
variable used as the index to the sequence). The second-order statistics of WSS signals do not depend
on the specific time but are functions of how close in time two samples are taken with respect to one
another.
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Returning to our earlier example of representing a signal, now a random signal, by a single constant
estimate of that signal, we might seek to minimize the following MSE rather than the accumulated
square error as before:

EMS = E
{(

x [n] − x̂ [n]
)2
}

,

EMS = E
{
(x [n] − c)2

}
, (11.11)

where once again we seek a single value of the constant c to represent the signal over the region of
interest. If the signal x [n] is stationary, then we can find a simple solution to this estimation problem
by differentiating with respect to the parameter as follows:

∂EMS

∂c
= −E {2 (x [n] − c)} ,

0 = −2E {x [n]} + 2c,

c = mx. (11.12)

This solution is the stochastic equivalent of the deterministic least-squares estimation problem; the
minimum MSE (MMSE) constant estimate of a WSS random signal is given by the mean of the signal.

11.3 Parametric models for linear time-invariant systems
In the field of signal processing, parametric estimation is often used to model the systems that gener-
ate or act on a signal of interest. We begin our study of parametric system models with LTI systems,
which are mathematically tractable and represent many real-world systems of interest, such as elec-
tronic circuits, acoustic propagation in a stationary environment, and digital signal processing filters.
Furthermore, LTI systems are often a good small-scale or short-term approximation for more complex
nonlinear and time-varying systems. When a system is LTI, the output of the system y [n] for a given
input x [n] can always be written through the convolution sum,

y [n] =
∞∑

m=−∞
h [m]x [n − m] , (11.13)

where h [n] is the impulse response of the LTI system, that is, its output when the input is a discrete-time
impulse δ [n].

LTI systems can be classified as having either finite impulse response (FIR) or infinite impulse
response (IIR). For an FIR system of order N , the impulse response h[n] has N nonzero terms, so that
for a causal system the output is given by

y [n] =
N∑

m=0

h [m]x [n − m] . (11.14)

It is straightforward to model FIR systems because the coefficients of h[n] form a complete set of
parameters that fully determine the behavior of the system.
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Not all LTI systems have FIRs, but some IIR systems can still be represented by a finite set of
parameters. These systems are defined recursively using a finite-order LCCDE:

M∑
k=0

aky [n − k] =
N∑

k=0

bkx [n − k] . (11.15)

The coefficients a0, . . . , aM and b0, . . . , bN of the LCCDE comprise a finite set of parameters that
capture the behavior of such a system. The z-transform relationship between the input and output of
such a system can be written as a rational transfer function, H (z),

H (z) =
∑N

k=0 bkz
−k∑N

k=0 akz−k
, (11.16)

which, together with the region of convergence of the system function, determines the behavior of the
LTI system. Although rational transfer functions describe systems whose impulse responses may be
infinite in length, they can still be described through a finite number of parameters, namely the coeffi-
cients of the LCCDE or equivalently the coefficients of the numerator and denominator polynomials in
its transfer function.

In this section, we will consider methods for estimating the coefficients of different kinds of ratio-
nal transfer function LTI models. The simplest such models are autoregressive (AR) systems, whose
transfer functions have only denominator coefficients, and moving average (MA) systems, whose trans-
fer functions have only numerator coefficients. When both numerator and denominator coefficients are
present, an ARMA model is the result. In both data-driven and stochastic formulations, there exist ef-
ficient algorithms to find coefficients that minimize the (mean) square error of the signal estimated by
the model.

11.3.1 Autoregressive models
A discrete-time signal x [n] is an AR process of order p if it can be written in the form [6]

x [n] + a1x [n − 1] + · · · + apx [n − p] = w [n] , (11.17)

where a1, . . . , ap are parameters of the AR model and the signal w [n] is a zero-mean white noise pro-
cess of variance σ 2, i.e., we have Cw [m] = σ 2δ [m]. This formulation can be viewed as an LCCDE with
input w [n] and output x [n], as illustrated as a flow graph for the system in Fig. 11.3. By rearranging
the order of the terms in the definition, we can write the AR process recursively as

x [n] = −a1x [n − 1] − a2x [n − 2] − · · · − apx [n − p] + w [n] . (11.18)

Thus, a pth-order AR process can be written as a linear combination of the p most recent values of the
signal plus a term that is statistically independent of the past values of the process; this is the so-called
innovations sequence, and represents the unpredictable components in the random signal.

We can interpret this difference equation in two ways. First, we can treat w[n] as the input and x[n]
as the output of an all-pole filter. Ignoring that the sequences x [n] and w [n] may be random for now
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FIGURE 11.3

Autoregressive process flow diagram.

and considering only the input–output relationship between them, we can take the z-transform of both
sides to find

X (z) +
p∑

k=1

akz
−kX (z) = W (z) (11.19)

X (z)

(
1 +

p∑
k=1

akz
−k

)
= W (z) (11.20)

X (z) =
(

1

1 +∑p

k=1 akz−k

)
W (z) . (11.21)

The term in parentheses is the rational transfer function H (z) = X(z)
W(z)

that relates X (z) and W (z). Be-
cause the numerator polynomial is B (z) = 1, this transfer function corresponds to an “all-pole” filter
with denominator polynomial A(z) = 1 +∑p

k=1 akz
−k . We can view the sequence x [n] as being gener-

ated by filtering the sequence w [n] with this all-pole filter, as illustrated in Fig. 11.4. This input–output
interpretation of an AR process provides us with a simple way to generate random processes (or deter-
ministic signals) with a spectral shape that can be parametrically controlled through the coefficients of
A(z).

FIGURE 11.4

Input–output transfer function perspective of the autoregressive model.
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We can also interpret the AR model as a form of feedforward prediction. Note that the definition of
the process represents a convolution of the input sequence x [n] with the AR parameters ak , such that
the output signal is the innovations sequence, i.e.,

p∑
k=0

akx [n − k] = w [n] , (11.22)

where we set a0 = 1. The significance of this can be seen if we slightly rearrange terms, yielding

x [n] −
(

−
p∑

k=1

akx [n − k]

)
︸ ︷︷ ︸

x̂[n]

= w [n] . (11.23)

The term in parentheses can be interpreted as an estimate of the signal x [n] based on its most recent p

samples, so that

x [n] − x̂ [n] = w [n] . (11.24)

By writing the process in this form, we see that the sequence x [n] is rather unique in that it can be
best estimated by its most recent past values and that after this predictable component is subtracted, all
that remains is a white noise sequence that is independent of the past values. The term “autoregressive”
comes from the ability to write the sequence x [n] using a “regression model” over its own past values,
i.e., using a finite linear combination of its own past values. This way, we can view A(z) as the transfer
function of an FIR linear prediction filter that produces an estimate x̂[n] of x[n] based on past sam-
ples. Then the innovations sequence w[n] is the output of a prediction error filter, which removes the
predictable component of x[n].

Because they can be expressed in this way, AR models are frequently used in prediction applica-
tions. For example, one might attempt to predict the next value of a colored noise signal with an AR
model. Fig. 11.5 shows the input x [n] and output x̂ [n] of an FIR prediction filter that is designed to
track the input using only past values of the observed signal. The signal used in Fig. 11.2 is reused in
Fig. 11.5.

Since colored noise can be generated by filtering a white noise signal, we can view the signal of
interest as if it were originally generated by filtering such a white noise signal. Thus, we expect that the
error between the predicted and measured signals will be a white noise sequence. Fig. 11.6 shows the
prediction error sequence, which indeed appears uncorrelated from sample to sample, i.e., white.

11.3.2 Moving average models
A discrete-time signal x [n] is called an MA process of order q if it can be written in the form [6] [3]

x [n] = b0w [n] + b1w [n − 1] + · · · + bqw [n − q] , (11.25)

where b0, . . . , bq are parameters of the MA model and the signal w [n] is a white noise process, i.e.,
we have that Cw [m] = σ 2δ [m]. Since the sequence x [n] can be viewed as a linear combination of the
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FIGURE 11.5

Tracking colored noise with an AR model. The signal x [n] is illustrated using circles and its linear prediction
x̂ [n] is represented with cross marks.

FIGURE 11.6

Prediction error, w [n] = x [n] − x̂ [n], from estimating colored noise using an AR model.

q + 1 most recent values of the sequence w [n], it is called a “moving average.” From this structure,
whenever the sequence x [n] is given as the output of an FIR filter whose input is a white noise sequence,
then we can refer to x [n] as an MA sequence. More generally, even when the input is not a white noise
sequence, the process of filtering with an FIR filter can be viewed as taking a “moving average” of
the input. Financial models often use 50-day and 100-day MAs as indicators of trends in various stock
prices and indices. In such a context, q and bk are usually taken such that bk = 1

(q+1)
, k = 0, . . . , q, so

that x [n] = 1
q+1

∑q

k=0 w [n − k], i.e., the arithmetic mean of the most recent q + 1 values of w [n].
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Viewing the relationship between the sequences x [n] and w [n] with a signal flowgraph model, in
Fig. 11.7a, we see that x [n] can be viewed as an FIR filtered version of the sequence w [n]. Similarly, we
can view this in Fig. 11.7b via an input–output transfer function relationship between the two sequences.

FIGURE 11.7a

Moving average flowgraph model.

FIGURE 11.7b

Transfer function perspective of the MA model relating x [n] and w [n].

11.3.3 Autoregressive moving average models
A discrete-time signal x [n] is an autoregressive moving average (ARMA) process of order (p,q) if it
can be written in the form [6] [3]

x [n] + a1x [n − 1] + · · · + apx [n − p] = b0w [n] + · · · + bqw [n − q] , (11.26)

where a1, . . . , ap, b0, . . . , bq are parameters of the ARMA model and the signal w [n] is a white noise
process, i.e., we have Cw [m] = σ 2δ [m]. We can once again relate the sequences x [n] and w [n] through
a transfer function relationship, such as

X (z) =
( ∑q

k=0 bkz
−k

1 +∑p

k=1 akz−k

)
W (z) . (11.27)

This input–output relationship implies that we can view the sequence x [n] as being generated by filter-
ing the sequence w [n] with a rational transfer function, i.e., a “pole-zero” filter with finite-order numer-
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ator and denominator polynomials, where the numerator polynomial is given by B (z) =∑q

k=0 bkz
−k

and the denominator polynomial is given by A(z) = 1 +∑p

k=1 akz
−k . It is usually assumed that the

rational function is “strictly proper,” which means that the numerator order is strictly less than that of
the denominator, i.e., q < p. For this reason, we may refer to the sequence as an ARMA(p) process,
rather than ARMA(p, q). Figs. 11.8a and 11.8b illustrate a flowgraph and transfer function perspective
of the ARMA model relating the sequences x [n] and w [n].

FIGURE 11.8a

ARMA flowgraph model using a direct form II structure.

FIGURE 11.8b

Transfer function perspective of the ARMA model relating x [n] and w [n].

11.3.4 Parametric modeling for system function approximation
Once we have selected an appropriate LTI system model, we must estimate its parameters. Generally,
our goal is to match the impulse response or frequency response of the model to that of the observed
system, which can be derived from a physical model or measured directly using probe signals. Although
these three LTI system models – AR, MA, and ARMA – are all parameterized by their rational transfer
function coefficients, the methods used to estimate their parameters vary considerably.

The parameter estimation problem can be posed in either the time domain or the frequency domain,
and we can move freely between these domains using the Fourier transform. The frequency response
H
(
ejω

)
of a discrete-time system is related to its impulse response h[n] by the discrete-time Fourier

transform [1],

H
(
ejω

)
=

∞∑
n=−∞

h [n] e−jωn, (11.28)
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h [n] = 1

2π

∫ π

−π

H
(
ejω

)
ejωndω. (11.29)

Suppose that we wish to choose the coefficients of an ARMA(p,q) model such that the frequency
response of the model system closely approximates a given frequency response H

(
ejω

)
. Using least-

squares optimization, the coefficient vectors are the solution to the minimization

{a,b}LS = argmin
{ak}pk=1,{bk}qk=0

1

2π

∫ π

−π

∣∣∣∣∣H
(
ejω

)
−

∑q

k=0 bke
−jkω

1 +∑p

k=1 ake−jkω

∣∣∣∣∣
2

dω. (11.30)

We can also write the optimization problem in the time domain using the desired impulse response
h [n]. Applying Parseval’s relation [1], which equates energy calculated in the time domain with that
calculated in the frequency domain, we have

{a,b}LS = argmin
{ak}pk=1,{bk}qk=0

∞∑
n=−∞

∣∣∣∣∣h [n] − 1

2π

∫ π

−π

∑q

k=0 bke
−jkω

1 +∑p

k=1 ake−jkω
ejωndω

∣∣∣∣∣
2

. (11.31)

Both minimization problems are quite cumbersome. The ARMA(p,q) model is the most general, but it
is also the most difficult to use because the cost function is highly nonlinear in the parameters. Thus, we
will start with AR and MA parameter estimation before returning to the more general ARMA parameter
estimation problem.

The ARMA problem formulation is difficult because the AR parameters, that is, the feedback com-
ponents, are nonlinearly related to the optimization criterion. If we were only concerned with an MA
estimate, that is, a feedforward model, and we wanted to use this least-squares criterion, then the time-
domain formulation can provide a simple solution. Without the AR coefficients, (11.31) becomes

{b}LS = argmin
{bk}qk=0

∞∑
n=−∞

∣∣∣∣∣h [n] − 1

2π

∫ π

−π

q∑
k=0

bke
−jkωejωndω

∣∣∣∣∣
2

, (11.32)

which can be rewritten

{b}LS = argmin
{bk}qk=0

∞∑
n=−∞

∣∣∣∣∣h [n] −
q∑

k=0

bkδ [n − k]

∣∣∣∣∣
2

, (11.33)

yielding the simple, though somewhat unsatisfying, solution

bk = h [k] , k = 0, . . . , q. (11.34)

This is nothing more than a simple truncation approximation to the desired impulse response for the
system of interest.

Impulse response truncation, while simple, cannot efficiently model systems that contain feedback.
Such systems have IIRs and must be modeled using poles. First, consider an all-pole transfer function,
that is, an AR model. The optimization problem (11.31) is still difficult to solve directly, but we can



704 Chapter 11 Parametric estimation

transform the problem into a more tractable one. Recall the form of the AR model for the transfer
function:

H (z) = 1

1 +∑p

k=1 akz−k
. (11.35)

Beginning with this expression and taking the inverse z-transform, we see that the impulse response of
the modeled system must satisfy

h [n] +
p∑

k=1

akh [n − k] = δ [n] . (11.36)

Now given a desired (or measured) impulse response, which we will denote hd [n], we attempt to
minimize the deviation between hd [n] and the impulse response h [n] of the approximate system:

{a}LS = argmin
{ak}pk=1

∞∑
n=−∞

∣∣∣∣∣hd [n] +
p∑

k=1

akhd [n − k]

∣∣∣∣∣
2

. (11.37)

We now have a quadratic minimization in the parameters of interest, which admits a closed-form solu-
tion. Specifically, denoting the quadratic error term in the minimization above as E, we can write

0 = ∂E

∂a�

= 2
∞∑

n=−∞

(
hd [n] +

p∑
k=1

akhd [n − k]

)
hd [n − �] , � = 1, . . . , p, (11.38)

which comprise a set of linear equations in a�, � = 1, . . . , p. We can write these equations more com-
pactly by exchanging the order of summation:

p∑
k=1

ak

∞∑
n=−∞

hd [n − k]hd [n − �]

︸ ︷︷ ︸
R̂hdhd

[k−�]

= −
∞∑

n=−∞
hd [n]hd [n − �]

︸ ︷︷ ︸
R̂hd hd

[�]

, � = 1, . . . , p. (11.39)

We have made use of the definition R̂hdhd [�] =∑∞
n=−∞ hd [n]hd [n − �] = R̂hdhd [−�], which is often

called the deterministic autocorrelation sequence for hd [n]. We can then summarize the set of equations
in matrix form, sometimes referred to as the normal equations [6] [3],

R̂�a = −�̂r, (11.40)

or ⎡
⎢⎢⎣

R̂hdhd [0] · · · R̂hdhd [p − 1]
...

. . .
...

R̂hdhd [p − 1] · · · R̂hdhd [0]

⎤
⎥⎥⎦
⎡
⎢⎣

a1

...

ap

⎤
⎥⎦= −

⎡
⎢⎢⎣

R̂hdhd [1]
...

R̂hdhd [p]

⎤
⎥⎥⎦ , (11.41)
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which has the closed-form solution

�a = −R̂−1 �̂r. (11.42)

The matrix R̂ has a special structure that allows the system of linear equations to be solved efficiently.
Because it is symmetric and constant along its diagonals, R̂ is known as a symmetric Toeplitz matrix,
for which fast linear equation solvers can be readily obtained [3] [6]. Furthermore, the values of the
correlation matrix also appear on the right-hand side of the equation. Such a system can be solved
quickly using an algorithm known as Levinson–Durbin recursion [3].

The optimization problem can also be posed stochastically. If we were to replace the accumulated
square error criterion with an MSE criterion, i.e., we sought to minimize the MSE

{a}LS = argmin
{ak}pk=1

E

⎧⎨
⎩
∣∣∣∣∣hd [n] +

p∑
k=1

akhd [n − k]

∣∣∣∣∣
2
⎫⎬
⎭ , (11.43)

we would naturally arrive at a similar form for its solution:

R�a = −�r, (11.44)

or ⎡
⎢⎣

Rhdhd [0] · · · Rhdhd [p − 1]
...

. . .
...

Rhdhd [p − 1] · · · Rhdhd [0]

⎤
⎥⎦
⎡
⎢⎣

a1

...

ap

⎤
⎥⎦= −

⎡
⎢⎣

Rhdhd [1]
...

Rhdhd [p]

⎤
⎥⎦ , (11.45)

which has the analytical solution

�a = −R−1�r. (11.46)

The only difference in our solution lies in replacing the deterministic autocorrelation R̂ with the statis-
tical autocorrelation, Rhdhd [�] = E {hd [n]hd [n − �]}, where the expectation is taken with respect to
the distribution of the random sequence hd [n]. This approach to AR modeling is often called “linear
prediction” or “linear predictive modeling” due to the use of the prediction error form that is used to
make the optimization problem linear in the parameters of interest (see [6], [3], and [7]).

We can now return to the problem of estimating an ARMA model with both poles and zeros. There
are several ways of incorporating zeros into the modeling problem while still using the much simpler
prediction-error formulation. Perhaps the simplest is to use the zeros to match the first q values of the
impulse response exactly, that is, to first solve for the denominator coefficients as above and then select

b� = hd [�] +
p∑

k=1

akhd [� − k] , k = 0, . . . q, (11.47)

which follows from the system function relation

Hd (z) =
( ∑q

k=0 bkz
−k

1 +∑p

k=1 akz−k

)
. (11.48)
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This is a two-step process: First, the AR parameters are determined using linear predictive model-
ing, and then the MA parameters are selected by exactly matching the first q samples of the impulse
response. This approach is often called Prony’s method [7] [3]. In general, this method provides a rea-
sonable set of AR parameters; however, the MA parameters are not particularly well modeled. That is,
if a system were known to have a given ARMA form and its parameters were to be estimated from
noisy observations using Prony’s method, the ak coefficients would closely match those of the true
underlying system, but the bk parameters would likely be a poor match.

We can improve the fit of the MA coefficients by separating the ARMA model into a cascade of
AR and MA systems and using least-squares parameter estimation for each component. As before, we
use the predictive least-squares approach to find the AR parameters according to the normal equations.
Next, we define the impulse response v [n] of the AR-only system:

v [n] = −
p∑

k=1

akv [n − k] + δ [n] . (11.49)

This sequence becomes the input to an MA-only system with transfer function B(z). Now, the goal is
to minimize the discrepancy between the output of that MA system and the desired impulse response
hd [n]. Specifically, we select the MA coefficients to minimize the square error criterion

{b} = argmin
{bk}qk=0

∞∑
n=−∞

∣∣∣∣∣hd [n] +
q∑

k=0

bkv [n − k]

∣∣∣∣∣
2

, (11.50)

which is once again a quadratic minimization admitting a closed-form solution. The linear equations
reduce to

q∑
k=0

bk

∞∑
n=−∞

v [n − k]v [n − �]

︸ ︷︷ ︸
R̂vv[k−�]

= −
∞∑

n=−∞
hd [n]v [n − �]

︸ ︷︷ ︸
R̂hd v[�]

, � = 0, . . . , q, (11.51)

which admits the solution

�b = −

⎡
⎢⎢⎣

R̂vv [0] · · · R̂vv [q]
...

. . .
...

R̂vv [q] · · · R̂vv [0]

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

R̂hdv [0]
...

R̂hdv [q]

⎤
⎥⎥⎦ , (11.52)

�b = −(R̂vv)
−1 �̂rhv, (11.53)

where we denote

R̂vv =

⎡
⎢⎢⎣

R̂vv [0] · · · R̂vv [q]
...

. . .
...

R̂vv [q] · · · R̂vv [0]

⎤
⎥⎥⎦ , �rhv =

⎡
⎢⎢⎣

R̂̂hdv [0]
...

R̂hdv [q]

⎤
⎥⎥⎦ . (11.54)
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This system can be solved using similar techniques to the normal equations used for the AR coefficients.
The cascaded AR and MA systems can now closely approximate the desired ARMA system. Selection
of the parameters p and q in AR and ARMA models is known as the “model order selection” problem.
In some applications these parameters can be determined from knowledge of the underlying physics or
the structure of the problem. In others, these parameters are often determined empirically. A common
selection method is to use a small segment of data to compute the modeling or extrapolation error, as
in Fig. 11.1, and select the model order p in the region where there is diminishing return in modeling
error reduction. Typically, q is then selected to be the same value for model symmetry.

11.4 Joint process estimation and sequential modeling
In many signal processing problems, we are tasked with estimating or predicting the output of a system
based on its input. If the system is unknown but we have access to past input and output signals,
then we can use parametric estimation to create an approximate model of the system and apply that
model to future input signals. The process of estimating a desired output signal that is correlated with
a known input signal is referred to as joint process estimation [2]. The problem is closely associated
with adaptive filtering algorithms, which iteratively update the parameters of the model as new data are
received. Fig. 11.9 depicts a generic joint process estimation or adaptive filtering problem.

FIGURE 11.9

A system-level diagram of the adaptive filtering problem, where the parameters of a filter with frequency
response H

(
ejω

)
are adjusted such that the output d̂[n] approximates the desired signal d[n].

In Fig. 11.9, d [n] is a desired signal, such as the observed output of an unknown system, and
d̂[n] is the output of the model system H(ejω), which we assume to be an order-p FIR system model
with impulse response {h [k]}pk=0. In joint process estimation, the parameters {h [k]}pk=0 are adjusted

to minimize the discrepancy e2 [n] =
(
d [n] − d̂ [n]

)2
between the output of the model system and the

target signal [8]. Joint process estimation can be used for system identification, where H is designed
to approximate the response of an unknown system. In that case, d[n] is the observed output of the
unknown system in response to a known input x[n]. If the parametric model perfectly matched the
unknown system, then e[n] would be zero. Such a model can be used to predict the output of the system
of interest in response to future input signals. In many applications, such as acoustic echo cancelation,
we cannot observe the system output directly, only a mixture of the output with other signals, but we
can still apply the same estimation techniques.

In this section, we consider three variations on the joint process estimation problem. First, when a
batch of data {x [k]}Nk=0 is observed and a single time-invariant set of parameters {h [k]}pk=0 is selected
based on this entire set of observations, the problem is referred to as batch or block processing. If
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instead the system of interest varies over time, then the model must also be adjusted every so often; we
will show how to use the segmented least-squares method to process the data in blocks. Finally, when
the model is adjusted in an on-line (sequential) manner, such that the filter parameters {h [k]}pk=0 are
updated after each sample, we can use adaptive filtering algorithms [8].

11.4.1 Batch joint process estimation
We begin with the batch case, where the system is assumed to be time-invariant and we use all avail-
able data to estimate its parameters. We will first consider the stochastic case, where the input and
output signals are assumed to be jointly WSS with known second-order statistics. The discrepancy to
be minimized takes the form

{hMMSE [k]}pk=0 = argmin
{h[k]}pk=0

E

{(
d [n] − d̂ [n]

)2
}

. (11.55)

Writing out this minimization using the parameters of the FIR system model, we have

{hMMSE [k]}pk=0 = argmin
{h[k]}pk=0

εMMSE, (11.56)

εMMSE = E

⎧⎨
⎩
(

d [n] −
p∑

k=0

h [k]x [n − k]

)2
⎫⎬
⎭ . (11.57)

To proceed, we assume that the sequences x [n] and d [n] are WSS stochastic processes with zero mean
and covariance functions [6]

Cx [n,n − m] = E {x [n]x [n − m]} = Rx [m] = Rx [−m] , (11.58)

Cd [n,n − m] = E {d [n]d [n − m]} = Rd [m] = Rd [−m] , (11.59)

Cxd [n,n − m] = E {x [n]d [n − m]} = Rxd [m] = Rdx [−m] . (11.60)

We can now solve for the minimizing set of parameters by differentiating this quadratic expression with
respect to each of the unknown parameters, which leads to

0 = ∂εMMSE

∂h [�]
= −2E

{(
d [n] −

p∑
k=0

h [k]x [n − k]

)
x [n − �]

}
, � = 0, . . . , p. (11.61)

Rearranging terms, we arrive at

0 = E {d [n]x [n − �]} −
p∑

k=0

h [k]E {x [n − k]x [n − �]} , � = 0, . . . , p, (11.62)

E {d [n]x [n − �]} =
p∑

k=0

h [k]E {x [n − k]x [n − �]} , � = 0, . . . , p, (11.63)
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Rdx [�] =
p∑

k=0

h [k]Rxx [k − �] , � = 0, . . . , p. (11.64)

This system of equations is another form of the autocorrelation normal equations we have seen previ-
ously for AR modeling. Expressing (11.64) as a matrix equation, we have

⎡
⎢⎣

Rxx [0] · · · Rxx [p]
...

. . .
...

Rxx [p] · · · Rxx [0]

⎤
⎥⎦
⎡
⎢⎣

h [0]
...

h [p]

⎤
⎥⎦=

⎡
⎢⎣

Rdx [0]
...

Rdx [p]

⎤
⎥⎦ , (11.65)

which has the solution

⎡
⎢⎣

hMMSE [0]
...

hMMSE [p]

⎤
⎥⎦=

⎡
⎢⎣

Rxx [0] · · · Rxx [p]
...

. . .
...

Rxx [p] · · · Rxx [0]

⎤
⎥⎦

−1⎡
⎢⎣

Rdx [0]
...

Rdx [p]

⎤
⎥⎦ , (11.66)

�hMMSE = R−1 �p. (11.67)

As in the AR modeling problem, the matrix R is an autocorrelation matrix and is therefore symmetric,
positive semidefinite, and Toeplitz. We can apply fast and numerically stable algorithms to solve for
the MMSE-optimal parameters [8] [6], which minimize the MSE. The filter defined by (11.67) is often
referred to as the Wiener solution or the Wiener filter [8].

Since the second-order statistics of the inputs and outputs may not be available, we can also formu-
late joint process estimation as a deterministic least-squares problem. Using the least-squares criterion,
the squared error discrepancy is given by

{hLS [k]}pk=0 = argmin
{h[k]}pk=0

∞∑
n=−∞

(
d [n] −

p∑
k=0

h [k]x [n − k]

)2

. (11.68)

Solving this minimization, we find the system of equations

∞∑
n=−∞

d [n]x [n − �] =
p∑

k=0

h [k]
∞∑

n=−∞
x [n − k]x [n − �] , � = 0, . . . , p, (11.69)

R̂dx [�] =
p∑

k=0

h [k] R̂xx [k − �] , � = 0, . . . , p, (11.70)

where R̂dx [�] and R̂xx [�] are defined using summations over the observed data rather than taking
an expectation with respect to an underlying stochastic model. The resulting set of normal equations
are equivalent to (11.66) with the stochastic auto- and cross-correlation functions replaced by their
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deterministic counterparts:

⎡
⎢⎣

hLS [0]
...

hLS [p]

⎤
⎥⎦=

⎡
⎢⎢⎣

R̂xx [0] · · · R̂xx [p]
...

. . .
...

R̂xx [p] · · · R̂xx [0]

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

R̂dx [0]
...

R̂dx [p]

⎤
⎥⎥⎦ , (11.71)

�hLS = R̂−1 �̂p. (11.72)

As in the stochastic formulation, this system of linear equations can be solved efficiently making use
of the special structure of the matrix.

11.4.2 Segmented least-squares
In the previous section, we considered a batch formulation of the parameter estimation problem, where
we find a single set of parameters that explain the entire set of observed data. However, there are
many practical applications where the mechanism that gives rise to the observed signals varies over
time. In prediction-based speech coding, for example, a new set of parameters is estimated every few
milliseconds as the shape of the vocal tract changes. In this section, we show how to partition the data
into segments such that each segment has a different LTI system model. In the next section, we will
consider models that vary continuously over time.

In the FIR modeling problem from the previous section, we sought a single set of filter coefficients
that minimized modeling error over the entire dataset:

{hLS [k]}pk=0 = argmin
{h[k]}pk=0

N∑
n=0

(
d [n] −

p∑
k=0

h [k]x [n − k]

)2

. (11.73)

However, there may be a better fit of the data using one set of parameters from 0 ≤ n ≤ L and another
set of parameters from L < n ≤ N . There may in fact be three or more distinct regions over which
a different set of parameters would fit the data well. This problem formulation was first posed by R.
Bellman in [9]. We denote by ei,j the square error within a segment from time index i to time index j :

ei,j = min
{h[k]}pk=0

j∑
n=i

(
d [n] −

p∑
k=0

h [k]x [n − k]

)2

. (11.74)

The total square error is the sum of these errors over each segment of the data. To discourage overfitting,
we also add a penalty term proportional to the number of segments. Thus, the segmented least-squares
(SLS) minimization problem is given by

E = min
M,{i1,...,iM }MC +

M∑
j=1

eij ,ij+1 , (11.75)

where i1 = 0, iM = N , and C > 0 is a positive constant. This formulation seeks to minimize the total
modeling error, while at the same time adding a penalty of C to the modeling error for each new
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segment added to the model. This penalty term encourages the algorithm to find a small number of
segments that fit the data well. It can be verified that if C = 0, the system could choose a different set
of parameters for each sample to achieve E = 0, which would not be a useful model. We can solve the
optimization problem using a recursion known as the Bellman equation. First, we recursively compute
the optimal SLS loss function for each partition:

E(j) = min
0≤i≤j

{
ei,j + C + E (i − 1)

}
, (11.76)

where E(j) is the SLS objective function (penalized total square error) up through sample j . Next, the
optimal partitioning of the data sequence can be obtained by tracing E(j) from N ≥ j ≥ 0.

To illustrate the SLS algorithm, a sequence x[n] was generated by changing the parameters of a
second-order AR process every 1000 samples. The sequence is plotted in Fig. 11.10. Also shown in
the figure, depicted using vertical lines, are the regions selected by the SLS algorithm over which the
parameters of a second-order model (p = 2) remain constant. As seen in Fig. 11.10, the SLS algorithm
can identify the change in parameters nearly perfectly. For this example, the constant C from (11.75)
above was selected to be twice the variance of the signal x [n].

FIGURE 11.10

A sequence generated by changing the parameters of a second-order autoregressive process every 1000
samples. Also shown are the regions selected by the segmented least-squares algorithm.

11.4.3 Recursive estimation with RLS and LMS
In certain on-line signal processing applications, we must provide predictions immediately without
waiting to observe a complete dataset or segment. In other applications, the system of interest varies
continuously in time, for example due to motion, and the parametric model must be regularly updated.
In either case, we must provide estimates sequentially, using only current and past observations to infer
the parameters. That is, unlike the previous approaches where we have the batch data {x [k]}Nk=0, the
parameters {h [k]}pk=0 must be selected at each time index n based only on {x [k]}nk=−∞.

Let us first consider a deterministic formulation of the problem using the least-squares criterion.
Using all available data up to time index n, the optimization problem is given by

{hLS [k,n]}pk=0 = argmin
{h[k]}pk=0

n∑
t=−∞

(
d [t] −

p∑
k=0

h [k]x [t − k]

)2

. (11.77)
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The estimated parameters are now functions of time and are updated as new observations arrive. In
time-varying problems, older data are less useful than newer data. To emphasize the most recent data
in the estimate, the least-squares criterion is often defined over a window of observations or weighted
to emphasize more recent samples:

{hLS [k,n]}pk=0 = argmin
{h[k]}pk=0

n∑
t=−∞

λn−t

(
d [t] −

p∑
k=0

h [k]x [t − k]

)2

. (11.78)

With this weighted criterion, the effective window length is set by the weighting parameter 0 < λ ≤ 1.
For example, when λ = 0.9, any samples that are more than (1 − λ)−1 = 10 samples old are weighted
by e−1 or less. The weighted least-squares criterion leads to a set of normal equations,

⎡
⎢⎣

hLS [0, n]
...

hLS [p,n]

⎤
⎥⎦=

⎡
⎢⎢⎣

R̂xx [0, n] · · · R̂xx [p,n]
...

. . .
...

R̂xx [p,n] · · · R̂xx [0, n]

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

R̂dx [0, n]
...

R̂dx [p,n]

⎤
⎥⎥⎦ , (11.79)

�hLS [n] = R̂ [n]−1 �̂p [n] . (11.80)

These equations are similar to those in the batch problem except that the sample autocorrelation matrix
and cross-correlation vector are time-varying and are calculated using only the available data:

R̂xx [k − �,n] =
n∑

t=−∞
λn−t x [t − k]x [t − �] , � = 0, . . . , p, (11.81)

R̂dx [�,n] =
n∑

t=−∞
λn−t d [t]x [t − �] , � = 0, . . . , p. (11.82)

Although the normal equations can be solved more efficiently than a general linear system of equa-
tions, it is still computationally prohibitive to calculate a new sample correlation matrix and solve the
system at every sample index. We can update the filter more efficiently by writing the weighted sample
correlation matrices recursively as

R̂xx [k − �,n + 1] = λR̂xx [k − �,n] + x [n + 1 − k]x [n + 1 − �] , � = 0, . . . , p, (11.83)

R̂dx [�,n + 1] = λR̂dx [�,n] + d [n + 1]x [n + 1 − �] , � = 0, . . . , p. (11.84)

We can then apply the matrix inversion lemma [8] to write the estimated model parameters at time
n + 1 in terms of the estimated parameters at time n:

e [n] = d [n] − d̂ [n] , (11.85)

�g [n] = P [n] �x [n]
{
λ + �x [n]T P [n] �x [n]

}−1
, (11.86)

P [n + 1] = λ−1P [n] − �g [n] �x [n]T λ−1P [n] , (11.87)

�h [n + 1] = �h [n] + �g [n] e [n] , (11.88)
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where P [n] = R̂ [n]−1 is updated directly. This sequential update is known as the “recursive least-
squares” (RLS) algorithm [8]. While there exist more computationally efficient lattice implementations
of this update without the matrix inversion lemma, the RLS algorithm is shown to be numerically
more stable [8] than such lattice recursions, owing to the additional redundant computations. Many
variations of the RLS algorithm have been developed, including approaches specifically designed to
improve performance when numerical precision is limited.

We observe that the estimated parameter vector �h [n] at time n is updated by adding a vector, called
the gain vector, times the estimation error e[n]:

�h [n + 1] = �h [n] + �g [n] e [n] , (11.89)

where the gain vector �g [n] is the inverse correlation matrix P [n] multiplied by the data vector �x [n]
with certain power scaling. It is common to reduce the computational complexity of this update by
replacing the scaled inverse correlation matrix by the inverse of the trace of the correlation matrix

�h [n + 1] = �h [n] + 1

Trace
(
R̂ [n]

) �x [n] e [n] . (11.90)

Subsequently, the inverse of the trace, which corresponds to the power in the stochastic process, is often
further replaced by a small positive constant μ > 0,

�h [n + 1] = �h [n] + μ�x [n] e [n] , (11.91)

yielding the celebrated least-mean squares (LMS) adaptive algorithm [10].
The LMS recursion can also be derived based using a stochastic formulation. When the underlying

stochastic model is known, i.e., the cross- and autocorrelation functions are known, the parameters that
minimize the MSE are the solution to the normal equations

�hMMSE = R−1 �p. (11.92)

The same normal equations can be solved iteratively by applying a gradient descent algorithm [8] to
the MSE cost function, yielding a recursive update

�h(k+1) = �h(k) − μ∇�h(k)E
[
e2 [n]

]
, (11.93)

�h(k+1) = �h(k) + μ
(

�p − R�h(k)
)

, (11.94)

which converges to �hMMSE as k increases provided that μ is selected appropriately [8] [10]. The notation
in (11.93) and (11.94) uses the parameter k to denote an iteration of the algorithm, rather than a time
index. As such, the superscript (k) is chosen to highlight this difference. If the underlying R and p are
not known, then the same iteration can be carried out in the time domain by replacing the expectations
over variables by their instantaneous temporal values, in other words by replacing E

[
e2 [n]

]
with e2 [n],

to yield

�h [n + 1] = �h [n] − μ∇�h[n]e
2 [n] , (11.95)



714 Chapter 11 Parametric estimation

�h [n + 1] = �h [n] + μ�x [n] e [n] , (11.96)

which yields the stochastic interpretation of the LMS algorithm. Hence, the LMS algorithm can be
considered a gradient descent algorithm, where a “stochastic” gradient is used in the update instead
of the true gradient [8]. Fig. 11.11 shows an example of the path traced by gradient descent for a
two-parameter filter. In this example, a signal y [n] is generated as the output of a filter with impulse
response h [n] = 0.5δ [n] + 0.25δ [n − 1], with an input x[n] generated as a sequence of independent,
identically distributed Gaussian random values. In this example, the LMS algorithm was initialized
with �h [0] = [0,0]	, and iterations of (11.95) and (11.96) through 1000 iterations were carried out,

where the vector �x [n] = [x [n] , x [n − 1]]	, and e [n] =
(
y [n] − �h [n]	 �x [n]

)
, and μ = 0.02 are used.

The algorithm can be seen to converge to the vicinity of the correct values and remain within a small
“misadjustment” error of these values.

FIGURE 11.11

Graphical depiction of the convergence of the stochastic gradient (LMS) algorithm, depicted for a two-
parameter filter initialized at �h[0] = [0,0]	.

11.5 Model order estimation
Even when a parametric model is known to be appropriate for a particular application, e.g., an AR,
ARMA, or MA model, we still need to decide on the number of parameters in that model, that is,
the order of the model. Determination of the proper number of parameters to use for a parametric
model is a difficult problem and has a rich history in many applications in signal processing, machine
learning, and communications [8] [11]. If the complete statistical properties of the underlying signals
were known, then increasing the number of parameters would always increase the modeling power.
However, since the model parameters must be learned from a limited amount of training data, a high-
order model can cause overfitting. As we saw in the example from Section 11.1.2, a large model can
exhibit poor extrapolation outside of the training set; that is, too many parameters can be detrimental to
performance.
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To avoid such overfitting problems, much of the early work in the model order determination liter-
ature focused on probabilistic methods, such as the minimum description length (MDL) or the Akaike
information criterion (AIC) [12] [6]. These methods establish a balance between model order and
modeling power, quantified by certain maximum likelihood or information theoretic measures, using
regularization terms. For example, for AR modeling with white Gaussian noise, the leading term of the
penalty term in the MDL for a model of order p and signal length n is given by

(p
2

)
log (n). Hence, for

a signal d [t] according to the original definition of MDL, the model order is selected by minimizing

pMDL = argmin
p

⎧⎨
⎩ min

{h[k]}pk=0

n∑
t=1

(
d [t] −

p∑
k=1

h [k]d [t − k]

)2

+ p

2
log (n)

⎫⎬
⎭ . (11.97)

While these statistical approaches have been widely used in different signal processing applications,
they require considerable statistical information on the signals of interest and can be fragile in regimes
in which the signals do not behave according to the assumed statistical model.

However, the machine learning and information theory communities have recently introduced new
approaches to the model order selection problem [13] [14]. In the universal model order selection
approach, instead of making hard decisions at each instant based on a single assumed statistical model,
one uses a performance-based mixture of all models of different orders. The goal is to perform as
well as or better than the best model in the mixture. The resulting algorithms rely on lower-order
models in the short-data record regime and emphasize higher-order models as the data record grows
to accommodate them. The elegance of the universal mixture methods is that this transition occurs
naturally: By monitoring the performance of each model on the data observed so far and placing more
emphasis on better-performing models, the algorithm changes the mixture over time to leverage the
respective strengths of both low- and high-order models.

For example, consider a linear prediction application using an AR model. Without prior information
about the signal structure, the choice of order of the linear predictor depends heavily on the amount of
data available. Instead of fixing a particular model order, one can use a convex combination of order-p
predictors x̂p [n], for p = 1, . . .M . The combined prediction is given by

x̂ [n] =
M∑

p=1

μp [n] x̂p [n] , (11.98)

where the combination weights μp [n] are calculated as μp [n] ∼ exp
(−∑n

t=1(x (t) − x̂p[t])2
)
, i.e.,

based on the performance of the pth predictor on the observed data. The output is therefore a
performance-weighted mixture.

Because the filters in the mixture differ from each other only in their order, they can be efficiently
implemented using a lattice structure. The resulting universal predictor has computational complex-
ity that is linear in the largest model order [10]. Such a model combination is shown to achieve the
following square error performance for any N [13]:

1

N

N∑
n=1

(
x [n] − x̂ [n]

)2 ≤ min
p<M

1

N

N∑
n=1

(
x [n] − x̂p [n]

)2 + 1

N
ln (M) . (11.99)
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This filter asymptotically achieves the performance of the best model order in the set of models. There-
fore, these filters are called “universal filters” and are part of a larger family of “universal” methods,
which are explored in more detail in [13] [14] [15] [16].
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Adaptive filters
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12.1 Introduction
Adaptive filters are employed in situations in which the environment is constantly changing, so that a
fixed system would not have adequate performance. As they are usually applied in real-time applica-
tions, they must be based on algorithms that require a small number of computations per input sample.

These algorithms can be understood in two complementary ways. The most straightforward way
follows directly from their name: an adaptive filter uses information from the environment and from
the very signal it is processing to change itself, so as to optimally perform its task. The information
from the environment may be sensed in real time (in the form of a so-called desired signal), or may be
provided a priori, in the form of previous knowledge of the statistical properties of the input signal (as
in blind equalization).

On the other hand, we can think of an adaptive filter also as an algorithm to separate a mixture of
two signals. The filter must have some information about the signals to be able to separate them; usually
this is given in the form of a reference signal, related to only one of the two terms in the mixture. The
filter then has two outputs, corresponding to each signal in the mixture (see Fig. 12.1). As a byproduct
of separating the signals, the reference signal is processed in useful ways. This way of viewing an
adaptive filter is very useful, particularly when one is learning the subject.

FIGURE 12.1

Inputs and outputs of an adaptive filter. Left: Detailed diagram showing inputs, outputs, and internal variables.
Right: Simplified diagram.

In the following sections we give an introduction to adaptive filters, covering subjects ranging from
basic principles to some of the most important developments. Since the adaptive filtering literature is

Signal Processing and Machine Learning Theory. https://doi.org/10.1016/B978-0-32-391772-8.00018-1
Copyright © 2024 Elsevier Inc. All rights reserved.
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vast, we are not able to treat all interesting topics. Along the text, we reference important textbooks,
classic papers, and a sample of the most promising literature. Among the many very good textbooks on
the subject, four of the most popular are [117,172,317,388].

We start with an application example in the next section. In it, we show how an adaptive filter is
applied to cancel acoustic echo in hands-free telephony. In the following sections we return frequently
to this example, to illustrate new concepts and methods on a practical situation. The example is com-
pleted by an overview of how adaptive filters work, in which we use only deterministic arguments and
concepts from basic linear systems theory, in Section 12.1.2. This overview shows many of the com-
promises that arise in adaptive filter design, without the more complicated math. Section 12.1.3 gives a
small glimpse of the wide variety of applications of adaptive filters, describing a few other examples.
Of course, in order to fully understand the behavior of adaptive filters, one must use estimation theory
and stochastic processes, which is the subject of Sections 12.2 and 12.3. The remaining sections are
devoted to extensions and improvements to the basic algorithms.

Adaptive filter theory brings together results from several fields: signal processing, matrix analysis,
control and systems theory, stochastic processes, and optimization. We provide short reviews for most
of the necessary material in separate links (“boxes”), which the reader may consult if needed.

12.1.1 Motivation – acoustic echo cancelation
Suppose you are in a virtual meeting, using your computer to talk to friends. Imagine your friend is not
using headphones, but the computer microphone and loudspeakers. Let us assume that your friend’s
computer does not have an acoustic echo canceler. In this case, the sound of your voice will leave
the loudspeaker, propagate inside your friend’s room, and find its way to your friend’s microphone,
resulting in an echo signal. The echo will be composed of a direct signal from the loudspeaker to
the microphone and also from reflexions from the walls and ceiling. This signal is fed back to the
microphone and you will hear your own voice with delay and attenuation, as shown in Fig. 12.2.

The echo signal depends on the acoustic characteristics of each room and also on the location of the
loudspeaker and microphone. Furthermore, the acoustic characteristics can change during a phone call,
since your friend may open or close a door, for example. In order to cancel the acoustic echo effectively,
the variations of the environment must be tracked by an adaptive filter, which performs on-line updating
of its parameters through an algorithm. Fig. 12.3 shows the insertion of an adaptive filter in the system
of Fig. 12.2 to cancel the echo signal. In this configuration, the adaptive filter must identify the echo
path and provide at its output an estimate of the echo signal. Thus, a synthesized version of the echo
is subtracted from the signal picked up by the computer microphone. In an ideal scenario, the resulting
signal will be free of echo and will contain only the signal of interest. The general setup of an echo
canceler is shown in Fig. 12.4. The near-end signal (near with respect to the echo canceler) may be
simply noise when the person inside the room is in silence, as considered in Figs. 12.2 and 12.3, or it
can be a signal of interest, that is, the voice of the user in the room.

You most likely have already heard the output of an adaptive echo canceler. However, you probably
did not pay attention to the initial period, when you can hear the adaptive filter learning the echo
impulse response, if you listen carefully. We illustrate this through a simulation, using a measured
impulse response of 256 samples (sampled at 8 kHz) and an echo signal produced from a recorded
voice signal. The measured impulse response is shown in Fig. 12.5. In the first example, the near-
end signal is low-power noise (more specifically, white Gaussian noise with zero mean and variance
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FIGURE 12.2

Echo in hands-free telephony. Go to http://www.lps.usp.br/FAs/echo/speech.wav to listen to a speech signal
and to http://www.lps.usp.br/FAs/echo/echo.wav to listen to the corresponding echo signal.

FIGURE 12.3

Acoustic echo cancelation using an adaptive filter.

http://www.lps.usp.br/FAs/echo/speech.wav
http://www.lps.usp.br/FAs/echo/echo.wav
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FIGURE 12.4

General echo canceler configuration.

σ 2 = 10−4). Listen to e_nlms.wav, and pay attention to the beginning. You will notice that the voice
(the echo) is fading away, while the adaptive filter is learning the echo impulse response. This file is the
output of an echo canceler adapted using the normalized least-mean squares (NLMS) algorithm, which
is described in Section 12.3.2.

Listen now to e_lsl.wav. In this case the filter was adapted using the modified error-feedback
least-squares lattice (EF-LSL) algorithm [248], which is a low-cost and stable version of the recursive
least-squares (RLS) algorithm described in Section 12.3.3. Now you will notice that the echo fades
away much faster. This fast convergence is characteristic of the EF-LSL algorithm, and is of course
a very desirable property. On the other hand, the NLMS algorithm is simpler to implement and more
robust against imperfections in the implementation. An adaptive filtering algorithm must satisfy several
requirements, such as convergence rate, tracking capability, noise rejection, computational complexity,
and robustness. These requirements are conflicting, so that there is no best algorithm that will outper-
form all the others in every situation. The many algorithms available in the literature represent different
compromises between these requirements [117,172,317].

Fig. 12.6 shows 4 seconds of the echo signal prior to cancelation (bottom) and a measure of the
quality of echo cancelation, the so-called echo return loss enhancement (ERLE) (top). The ERLE is
defined as the following ratio:

ERLE = power of original echo

power of residual echo
.

The higher the ERLE, the better the performance of the canceler. The ERLE drops when the original
echo is weak (there is nothing to cancel!) and increases again when the echo is strong. The figure shows
that EF-LSL performs better than NLMS (but at a higher computational cost).

Assuming now that the near-end signal is another recorded voice signal (click here to listen to this
signal), we applied again the EF-LSL algorithm to cancel the echo. This case simulates a person talking
on the other side. Since the speech of this person is not correlated1 to the far-end signal, the output of
the adaptive filter converges again to an estimate of the echo signal. Thus, a synthesized version of
the echo is subtracted from the signal picked up by the computer microphone and the resulting signal

1 For more on this, see Eq. (12.4) and Section 12.2.

http://www.lps.usp.br/FAs/echo/enlms.wav
http://www.lps.usp.br/FAs/echo/elsl.wav
http://www.lps.usp.br/FAs/echo/DT_echo.wav
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FIGURE 12.5

Measured impulse response (256 samples).

FIGURE 12.6

Echo return loss enhancement for the NLMS (μ̃ = 0.5, δ = 10−5, M = 256) and EF-LSL (λ = 0.999, δ = 10−5)
algorithms. Bottom trace: Echo signal prior to cancelation. The meaning of the parameters is explained in
Sections 12.3.1, 12.3.2, and 12.3.3.

converges to the speech of the person using the computer. This result can be verified by listening to the
file e_lslDT.wav.

This is a typical example of use of an adaptive filter. Although in our simulation we assumed the
environment (the echo impulse response) is fixed, in practice it changes constantly, requiring a constant
retuning of the canceling filter. Although the echo itself is not known, we have access to a reference
signal (the clean speech of the far-end user). This is the signal that is processed to obtain an estimate
of the echo. Finally, the signal captured by the near-end microphone (the so-called desired signal) is a
mixture of two signals: the echo and the near-end speech (or ambient noise, when the near-end user is
silent). The task of the adaptive filter can be seen as to separate these two signals.

We should mention that the name desired signal is somewhat misleading, although widespread in
the literature. Usually we are interested in separating the “desired” signal into two parts, one of which
is of no interest at all!

We proceed now to show how an algorithm can perform this task, modeling all signals as periodic
to simplify the arguments.

http://www.lps.usp.br/FAs/echo/elslDT.wav
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12.1.2 A quick tour of adaptive filtering
Before embarking on a detailed explanation of adaptive filtering and its theory, it is a good idea to
present the main ideas in a simple setting, to help the reader create intuition. In this section, we introduce
the least-mean squares (LMS) algorithm and some of its properties using only deterministic arguments
and basic tools from linear systems theory.

12.1.2.1 Posing the problem
Consider again the echo cancelation problem, seen in the previous section (see Fig. 12.7). Let y(n)

represent the echo, v(n) the voice of the near-end user, and x(n) the voice of the far-end user (the ref-
erence); d(n) represents the signal that would be received by the far-end user without an echo canceler
(the mixture, or desired signal).

FIGURE 12.7

A model for the echo.

The echo path represents the changes that the far-end signal suffers when it goes through the digital-
to-analog (D/A) converter, the loudspeaker, the air path between the loudspeaker and the microphone
(including all reflections), the microphone itself and its amplifier, and the analog-to-digital (A/D) con-
verter. The microphone signal d(n) will always be a mixture of the echo y(n) and an uncorrelated signal
v(n), which is composed of the near-end speech plus noise. Our goal is to remove y(n) from d(n). The
challenge is that we have no means to measure y(n) directly, and the echo path is constantly changing.

12.1.2.2 Measuring how far we are from the solution
How is the problem solved, then? Since we cannot measure y(n), the solution is to estimate it from the
measurable signals x(n) and d(n). This is done as follows: imagine for now that all signals are periodic,
so they can be decomposed as Fourier series,

x(n) =
K0∑
k=1

Ak cos(kω0n + ϕk), v(n) =
K1∑
�=1

B� cos(�ω1n + θ�), (12.1)

for certain amplitudes Ak and B�, phases ϕk and θ�, and frequencies ω0 and ω1. The highest frequencies
appearing in x(n) and v(n) must satisfy K0ω0 < π , K1ω1 < π , since we are dealing with sampled
signals (Nyquist criterion). We assume for now that the echo path is fixed (not changing) and can be
modeled by an unknown linear transfer function H(z). In this case, after the transients vanish, y(n)

would also be a periodic sequence with fundamental frequency ω0,

y(n) =
K0∑
k=1

Ck cos(kω0n + ψk),
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with Cke
jψk = H(ejkω0)Ake

jϕk . The signal picked up by the microphone is then

d(n) = y(n) + v(n) =
K0∑
k=1

Ck cos(kω0n + ψk) +
K1∑
�=1

B� cos(�ω1n + θ�).

Since we know x(n), if we had a good approximation Ĥ (z) of H(z), we could easily obtain an approx-
imation ŷ(n) of y(n) and subtract it from d(n), as in Fig. 12.8.

FIGURE 12.8

Echo canceler.

How could we find Ĥ (z) in real time? Recall that only d(n), x(n), ŷ(n), and e(n) can be observed.
For example, how could we know that we have the exact filter, that is, Ĥ (z) = H(z), by looking only
at these signals? To answer this question, take a closer look at e(n). Let the output of Ĥ (z) be

ŷ(n) =
K0∑
k=1

Ĉk cos(kω0n + ψ̂k).

Then

e(n) = d(n) − ŷ(n) = y(n) − ŷ(n) + v(n)

=
K0∑
k=1

[
Ck cos(kω0n + ψk) − Ĉk cos(kω0n + ψ̂k)

]

+
K1∑
�=1

B� cos(�ω1n + θ�)

=
K0∑
k=1

C̃k cos(kω0n + ψ̃k) +
K1∑
�=1

B� cos(�ω1n + θ�), (12.2)

where C̃ke
jψ̃k = Cke

jψk − Ĉke
jψ̂k , k = 1 . . .K0.
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Assuming that the cosines in x(n) and v(n) have no frequencies in common, the simplest approach
is to measure the average power of e(n). Indeed, if all frequencies kω0 and �ω1 appearing in e(n) are
different from one another, then the average power of e(n) is

P =
K0∑
k=1

C̃2
k

2
+

K1∑
�=1

B2
�

2
. (12.3)

If ŷ(n) = y(n), then P is at its minimum,

Po = min
Ĥ (z)

P =
K1∑
�=1

B2
�

2
,

which is the average power of v(n). In this case, e(n) is at its optimum, e(n) = eo(n) = v(n), and the
echo is completely canceled.

It is important to see that this works because the two signals we want to separate, y(n) and v(n), are
uncorrelated, that is, they are such that

lim
N→∞

1

N + 1

N/2∑
−N/2

y(n)v(n) = lim
N→∞

1

N + 1

N/2∑
−N/2

y(n)eo(n) = 0. (12.4)

This property is known as the orthogonality condition. A form of orthogonality condition will appear
in general whenever one tries to minimize a quadratic function, as is the case here. This is discussed in
more detail in Section 12.2.

The average power P could then be used as a measure of how good our approximation ŷ(n) is. The
important point is that it is very easy to find a good approximation to P . It suffices to low-pass filter
e2(n), for example,

P̂ (n) = 1

N

N−1∑
k=0

e2(n − k) (12.5)

is a good approximation if the window length N is large enough.
The adaptive filtering problem then becomes an optimization problem, with the particularity that

the cost function that is being minimized is not known exactly, but only through an approximation, as
in (12.5). In the following sections, we discuss in detail the consequences of this fact.

It is also important to remark that the average error power is not the only possible choice for the cost
function. Although it is the most popular choice for a number of reasons, in some applications other
choices are more adequate. Even posing the adaptive filtering problem as an optimization problem is
not the only alternative, as shown by recent methods based on projections onto convex sets [365].

12.1.2.3 Choosing a structure for the filter
Our approximation ŷ(n) will be built by minimizing the estimated average error power (12.5) as a
function of the echo path model Ĥ (z), that is, our estimated echo path will be the solution of

Ĥo(z) = arg min
Ĥ (z)

P̂ (n). (12.6)
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Keep in mind that we are looking for a way of solving (12.6) in real time, since P̂ (n) can only be
obtained by measuring e(n) for a certain amount of time. We must then be able to implement the
current approximation Ĥ (z), so that ŷ(n) and e(n) may be computed.

This will impose practical restrictions on the kind of function that Ĥ (z) may be: since memory and
processing power are limited, we must choose beforehand a structure for Ĥ (z). Memory and processing
power will impose a constraint on the maximum order the filter may have. In addition, in order to write
the code for the filter, we must decide if it will depend on past outputs (infinite impulse response [IIR]
filters) or only on past inputs (finite impulse response [FIR] filters). These choices must be made based
on some knowledge of the kind of echo path that our system is likely to encounter.

To explain how these choices can be made, let us simplify the problem a little more and restrict the
far-end signal x(n) to a simple sinusoid (i.e., assume that K0 = 1). In this case,

y(n) = C1 cos(ω0n + ϕ1),

with C1e
jψ1 = H(ejω0)A1e

jϕ1 . Therefore, Ĥ (z) must satisfy[
Ĥ (ejω) = H(ejω)

]
ω=ω0

(12.7)

only for ω = ω0; the value of Ĥ (ejω) for other frequencies is irrelevant, since the input x(n) has only
one frequency. Expanding (12.7), we obtain

Re{Ĥ (ejω0)} = Re{H(ejω0)}, Im{Ĥ (ejω0)} = Im{H(ejω0)}. (12.8)

The optimum Ĥ (z) is defined through two conditions. Therefore an FIR filter with just two coefficients
would be able to satisfy both conditions for any value of H(ejω0), so we could define

Ĥ (z) = w0 + w1z
−1,

and the values of w0 and w1 would be chosen to solve (12.6). Note that the argument generalizes for
K0 > 1: in general, if x(n) has K0 harmonics, we could choose Ĥ (z) as an FIR filter with length 2K0,
two coefficients per input harmonic.

This choice is usually not so simple: in practice, we would not know K0, and in the presence of
noise (as we shall see later), a filter with fewer coefficients might give better performance, even though
it would not completely cancel the echo. The structure of the filter also affects the dynamic behavior of
the adaptive filter, so simply looking at equations such as (12.7) does not tell the whole story. Choosing
the structure for Ĥ (z) is one of the most difficult steps in adaptive filter design. In general, the designer
must test different options, initially perhaps using recorded signals, but ultimately building a prototype
and performing some tests.

12.1.2.4 Searching for the solution
Returning to our problem, assume that we have decided that an FIR filter with length M is adequate to
model the echo path, that is,

Ĥ (z) =
M−1∑
k=0

wkz
−k.
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Our minimization problem (12.6) now reduces to finding the coefficients w0 . . .wM−1 that solve

min
w0 ... wM−1

P̂ (n). (12.9)

Since P̂ (n) must be computed from measurements, we must use an iterative method to solve (12.9).
Many algorithms could be used, as long as they depend only on measurable quantities (x(n), d(n),
ŷ(n), and e(n)). We will use the steepest descent algorithm (also known as gradient algorithm) as an
example now. Later we show other methods that also could be used. If you are not familiar with the
gradient algorithm, see Box 12.1 for an introduction.

The cost function in (12.9) is

P̂ (n) = 1

N

N−1∑
k=0

e2(n − k) = 1

N

N−1∑
k=0

[
d(n − k) − ŷ(n − k)

]2
.

We need to rewrite this equation so that the steepest descent algorithm can be applied. Recall also that
now the filter coefficients will change. Hence we define the vectors

w(n) = [
w0(n) w1(n) . . . wM−1(n)

]T
and

x(n) = [
x(n) x(n − 1) . . . x(n − M + 1)

]T
,

where (·)T denotes transposition. At each instant, we have ŷ(n) = wT (n)x(n), and our cost function
becomes

P̂ (n) = 1

N

N−1∑
k=0

[
d(n − k) − wT (n − k)x(n − k)

]2
, (12.10)

which depends on w(n) . . .w(n − N + 1). In order to apply the steepest descent algorithm, let us keep
the coefficient vector w(n) constant during the evaluation of P̂ , as follows. Starting from an initial
condition w(0), compute for n = 0,N,2N, . . . (the notation is explained in Boxes 12.2 and 12.6)

w(n + N) = w(n) − α
∂P̂ (n + N − 1)

∂wT

∣∣∣∣∣
w=w(n)

, (12.11)

where α is a positive constant and w(n + N − 1) = w(n + N − 2) = · · · = w(n). Our cost function now
depends on only one w(n) (compare with (12.10)):

P̂ (n + N − 1) = 1

N

N−1∑
k=0

[
d(n + N − 1 − k) − wT (n)x(n + N − 1 − k)

]2

= 1

N

N−1∑
k=0

[
d(n + k) − wT (n)x(n + k)

]2
, n = 0,N,2N, . . . . (12.12)
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We now need to evaluate the gradient of P̂ . Expanding the expression above, we obtain

P̂ (n + N − 1) = 1

N

N−1∑
k=0

[
d(n + k) −

M−1∑
�=0

w�(n)x(n + k − �)

]2

,

so

∂P̂ (n − N + 1)

∂wm(n)
= − 2

N

N−1∑
k=0

[
d(n + k) − wT (n)x(n + k)

]
x(n + k − m)

= − 2

N

N−1∑
k=0

e(n + k)x(n + k − m)

and

∂P̂ (n − N + 1)

∂wT
= − 2

N

N−1∑
k=0

e(n + k)x(n + k), n = 0,N,2N, . . . . (12.13)

As we needed, this gradient depends only on measurable quantities, e(n + k) and x(n + k), for
k = 0 . . .N − 1. Our algorithm for updating the filter coefficients then becomes

w(n + N) = w(n) + μ
1

N

N−1∑
k=0

e(n + k)x(n + k), n = 0,N,2N, . . . , (12.14)

where we introduced the overall step size μ = 2α.
We still must choose μ and N . The choice of μ is more complicated and will be treated in Sec-

tion 12.1.2.5. The value usually employed for N may be a surprise: in almost all cases, one uses N = 1,
resulting in the so-called LMS algorithm

w(n + 1) = w(n) + μe(n)x(n), (12.15)

proposed initially by Widrow and Hoff in 1960 [387] (Ref. [386] describes the history of the creation
of the LMS algorithm). The question is, how can this work if no average is being used for estimating
the error power? An intuitive answer is not complicated: assume that μ is a very small number so that
μ = μ0/N for a large N . In this case, we can approximate e(n + k) from (12.15) as follows:

w(n + 1) = w(n) + μ0

N
e(n)x(n) ≈ w(n), if N is large.

Since w(n + 1)≈w(n), we have e(n + 1)=d(n + 1) − wT (n + 1)x(n + 1)≈d(n + 1) − wT (n)x(n +
1). Therefore, we could approximate

e(n + k) ≈ d(n + k) − wT (n)x(n + k), k = 0 . . .N − 1,
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so N steps of the LMS recursion (12.15) would result in

w(n + N) ≈ w(n) + μ0

N

N−1∑
k=0

[
d(n + k) − wT (n)x(n + k)

]
x(n + k),

just what would be obtained from (12.14). The conclusion is that although there is no explicit average
being taken in the LMS algorithm (12.15), the algorithm in fact computes an implicit, approximate
average if the step size is small. This is exactly what happens, as can be seen in the animations in
Fig. 12.9. These simulations were prepared with

x(n) = cos(0.4πn + ϕ1), v(n) = 0.2 cos(0.2πn + θ1),

where ϕ1 and θ1 were chosen randomly in the interval [0,2π). Several step sizes were used. The es-
timates computed with the LMS algorithm are marked by the crosses (in red in the web version). The
initial condition is shown at the left, and the theoretical optimum is shown at the right end of each
figure. In the simulations, the true echo path was modeled by the fixed filter

H(z) = 1.5 + 0.5z−1.

For comparison, we also plotted the estimates that would be obtained by the gradient algorithm using
the exact value of the error power at each instant. These estimates are marked with small dots (in blue
in the web version).

Note that when a small step size is used, such as μ = 0.1 in Fig. 12.9(a), the LMS filter stays close to
the dots obtained assuming exact knowledge of the error power. However, as the step size increases, the
LMS estimates move further away from the dots. Although convergence is faster, the LMS estimates
do not reach the optimum and stay there: instead, they hover around the optimum. For larger step sizes,
the LMS estimates can go quite far from the optimum (Fig. 12.9(b and c)). Finally, if the step size is
too large, the algorithm will diverge, that is, the filter coefficients grow without bounds (Fig. 12.9(d)).

12.1.2.5 Trade-off between speed and precision
The animations in Fig. 12.9 illustrate an important problem in adaptive filters: even if one could mag-
ically choose as initial conditions the exact optimum solutions, the adaptive filter coefficients would
not stay there! This happens because the filter does not know the exact value of the cost function it is
trying to minimize (in this case, the error power): since P̂ (n) is an approximation, noise (and the near-
end signal in our echo cancelation example) would make the estimated gradient nonzero, and the filter
would wander away from the optimum solution. This effect keeps the minimum error power obtain-
able using the adaptive filter always a little higher than the optimum value. The difference between the
(theoretical, unattainable without perfect information) optimum and the actual error power is known as
excess mean square error (EMSE), and the ratio between the EMSE and the optimum error is known
as misadjustment (see Eqs. (12.172) and (12.175)).

For small step sizes the misadjustment is small, since the LMS estimates stay close to the estimates
that would be obtained with exact knowledge of the error power. However, a small step size also means
slow convergence. This trade-off exists in all adaptive filtering algorithms, and has been an intense topic
of research: many algorithms have been proposed to allow faster convergence without increasing the
misadjustment. We will see some of them in the next sections.
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FIGURE 12.9

LMS algorithm for echo cancelation with sinusoidal input. Click on each caption to see animations in your
browser or go to http://www.lps.usp.br/FAs/quick_introduction/.

http://www.lps.usp.br/FAs/quick_introduction/
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The misadjustment is central to evaluation of the performance of an adaptive filter. In fact, if we
want to eliminate the echo from the near-end signal, we would like that after convergence, e(n) ≈ v(n).
This is indeed what happens when the step size is small (see Fig. 12.10(a)). However, when the step
size is increased, although the algorithm converges more quickly, the performance after convergence is
not very good, because of the wandering of the filter weights around the optimum (see Fig. 12.10(b–d)
– in the last case, for μ = 1.9, the algorithm is diverging).

FIGURE 12.10

Compromise between convergence rate and misadjustment in LMS. Plots of e(n) × n for several values of μ.

We will stop this example here for the moment, and move forward to a description of adaptive filters
using probability theory and stochastic processes. We will return to the example during discussions of
stability and model order selection.

The important message from this section is that an adaptive filter is able to separate two signals in
a mixture by minimizing a well-chosen cost function. The minimization must be performed iteratively,
since the true value of the cost function is not known: only an approximation to it may be computed at
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each step. When the cost function is quadratic, as in the example shown in this section, the components
of the mixture are separated such that they are in some sense orthogonal to each other.

Box 12.1: Steepest descent algorithm

Given a cost function

J (w) = J (w0, . . . ,wM−1),

with w = [
w0 . . . wM−1

]T ((·)T denotes transposition), we want to find the minimum of J , that is,
we want to find wo such that

wo = arg min
w

J (w).

The solution can be found using the gradient of J (w), which is defined by

∇wJ (w) = ∂J

∂wT
=

⎡
⎢⎢⎢⎢⎢⎣

∂J
∂w0
∂J
∂w1

...
∂J

∂wM−1

⎤
⎥⎥⎥⎥⎥⎦ .

See Box 12.2 for a brief explanation about gradients and Hessians, that is, derivatives of functions of
several variables. The notation ∂J/∂wT is most convenient when we deal with complex variables, as
in Box 12.6. We use it for real variables for consistency.

Since the gradient always points to the direction in which J (w) increases most quickly, the steepest
descent algorithm searches iteratively for the minimum of J (w) taking at each iteration a small step in
the opposite direction, i.e., towards −∇wJ (w):

w(n + 1) = w(n) − μ

2
∇wJ (w(n)), (12.16)

where μ is the step size, i.e., a constant controlling the speed of the algorithm. As we shall see, this
constant should not be too small (or the algorithm will converge too slowly) neither too large (or the
recursion will diverge).

As an example, consider the quadratic cost function with M = 2

J (w) = 1 − 2wT r + wT Rw, (12.17)

with

r =
[

1
0

]
, R =

[
4
3 − 2

3

− 2
3

4
3

]
. (12.18)

The gradient of J (w) is

∇wJ (w) = ∂J

∂wT
= −2r + 2Rw. (12.19)
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Of course, for this example we can find the optimum wo by equating the gradient to zero:

∇wJ (wo) = 0 =⇒ Rwo = r =⇒ wo = R−1r =
[

0.9877
0.4902

]
. (12.20)

Note that in this case the Hessian of J (w) (the matrix of second derivatives, see Box 12.2) is simply
∇2

wJ = 2R. As R is symmetric with positive eigenvalues (λ1 = 2 and λ2 = 2
3 ), it is positive definite,

and we can conclude that wo is indeed a minimum of J (w). (See Boxes 12.2 and 12.3. Box 12.3 lists
several useful properties of matrices.)

Even though in this case we could compute the optimum solution through (12.20), we will apply the
gradient algorithm with the intention of understanding how it works and which are its main limitations.
From (12.16) and (12.17), we obtain the recursion

w(n + 1) = w(n) + μ
(
r − Rw(n)

)
. (12.21)

The user must choose an initial condition w(0).
In Fig. 12.11 the evolution of the approximations computed through (12.21) is plotted against the

level sets (i.e., curves of constant value) of the cost function (12.17). Different choices of step size μ are
shown. In Fig. 12.11(a), a small step size is used. The algorithm converges to the correct solution, but
slowly. In Fig. 12.11(b), we used a larger step size – convergence is now faster, but the algorithm still
needs several iterations to reach the solution. If we try to increase the step size even further, convergence
at first becomes slower again, with the algorithm oscillating towards the solution (Fig. 12.11(c)). For
even larger step sizes, such as that in Fig. 12.11(d), the algorithm diverges: the filter coefficients get
further and further away from the solution.

It is important to find the maximum step size for which the algorithm (12.21) remains stable. For
this, we need concepts from linear systems and linear algebra, in particular eigenvalues, their relation
to stability of linear systems, and the fact that symmetric matrices always have real eigenvalues (see
Box 12.3).

The range of allowed step sizes is found as follows. Rewrite (12.21) as

w(n + 1) = [I − μR]w(n) + μr,

which is a linear recursion in state-space form (I is the identity matrix).
Linear systems theory [274] tells us that this recursion converges as long as the largest eigenvalue

of A = I − μR has an absolute value of less than one. The eigenvalues of A are the roots of

det (βI − (I − μR)) = det ((β − 1)I + μR) = −det ((1 − β)I − μR) = 0.

Let 1 − β = ν. Then β is an eigenvalue of A if and only if ν = 1 − β is an eigenvalue of μR. Therefore,
if we denote by λi the eigenvalues of R, the stability condition is

−1 < 1 − μλi < 1 ∀i ⇔ 0 < μ <
2

λi

∀i ⇔ 0 < μ <
2

max{λi} .

The stability condition for our example is thus 0 < μ < 1, in agreement with what we saw in Fig. 12.11.
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FIGURE 12.11

Performance of the steepest descent algorithm for different step sizes. The crosses ( ) represent the succes-
sive approximations w(n), plotted against the level curves of (12.17). The initial condition is the point in the
lower left.

The gradient algorithm leads to relatively simple adaptive filtering algorithms; however, it has an
important drawback. As one can see in Fig. 12.11(a), the gradient does not point directly to the direction
of the optimum. This effect is heightened when the level sets of the cost function are very elongated,
as in Fig. 12.12. This case corresponds to a quadratic function in which R has one eigenvalue much
smaller than the other. In this example, we replaced the matrix R in (12.18) by

R′ = 1

9

[
25 20
20 25

]
.

This matrix has eigenvalues λ′
1 = 5 and λ′

2 = 5
9 .
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FIGURE 12.12

Performance of the steepest descent algorithm for a problem with large ratio of eigenvalues. The crosses ( )
represent the successive approximations w(n), plotted against the level curves of (12.17). The initial condition
is the point in the lower left. Step size μ = 0.1.

Let us see why this is so. Recall from Box 12.3 that for every symmetric matrix there exists an
orthogonal matrix U (that is, U−1 = UT ) such that

UT RU =
[
λ1 0
0 λ2

]
�= �, (12.22)

where we defined the diagonal eigenvalue matrix �.
Let us apply a change of coordinates to (12.19). The optimum solution to (12.17) is

wo = R−1r.

Our first change of coordinates is to replace w(n) by w̃(n) = wo − w(n) in (12.19). We subtract (12.19)
from wo and replace r in (12.19) by r = Rwo to obtain

w̃(n + 1) = w̃(n) − μRw̃(n) = [I − μR] w̃(n). (12.23)

Next, we multiply this recursion from both sides by UT = U−1:

UT w̃(n + 1) = UT [I − μR]UUT︸ ︷︷ ︸
=I

w̃(n) = [I − μ�]UT w̃(n).
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Defining w̄(n) = UT w̃(n), we have rewritten the gradient equation in a new set of coordinates, such
that now the equations are uncoupled. Given that � is diagonal, the recursion is simply

[
w̄1(n + 1)

w̄2(n + 1)

]
=
[
(1 − μλ1)w̄1(n)

(1 − μλ2)w̄2(n)

]
. (12.24)

Note that as long as |1 − μλi | < 1 for i = 1,2, both entries of w̄(n) will converge to zero, and conse-
quently w(n) will converge to wo.

The stability condition for this recursion is

|1 − μλi | < 1, i = 1,2 ⇒ μ <
2

max{λ1, λ2} .

When one of the eigenvalues is much larger than the other, say, when λ1 	 λ2, the rate of convergence
for the direction relative to the smaller eigenvalue becomes

1 > 1 − μλ2 > 1 − 2
λmin

λmax
≈ 1,

and even if one of the coordinates in w̄(n) converges quickly to zero, the other will converge very
slowly. This is what we saw in Fig. 12.12. The ratio λmax/λmin is known as the eigenvalue spread of a
matrix.

In general, the gradient algorithm converges slowly when the eigenvalue spread of the Hessian is
large. One way of solving this problem is to use a different optimization algorithm, such as Newton
or quasi-Newton algorithms, which use the inverse of the Hessian matrix, or an approximation to it, to
improve the search direction used by the gradient algorithm.

Although these algorithms converge very quickly, they require more computational power than
the gradient algorithm. We will see more about them when we describe the RLS algorithm in Sec-
tion 12.3.3.

For example, for the quadratic cost function (12.17), the Hessian is equal to 2R. If we had a good
approximation R̂ to R, we could use the recursion

w(n + 1) = w(n) + μR̂
−1

[r − Rw(n)] . (12.25)

This class of algorithms is known as quasi-Newton (if R̂
−1

is an approximation) or Newton (if R̂
−1

is
exact). In the Newton case, we would have

w(n + 1) = (1 − μ)w(n) + wo,

that is, the algorithm moves at each step precisely in the direction of the optimum solution. Of course,
this is not a very interesting algorithm for a quadratic cost function as in this example (the optimum
solution is used in the recursion!). However, this method is very useful when the cost function is not
quadratic and in adaptive filtering, when the cost function is not known exactly.
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Box 12.2: Gradients

Consider a function of several variables J (w), where

w =

⎡
⎢⎢⎢⎣

w0
w1

...

wM−1

⎤
⎥⎥⎥⎦ .

Its gradient is defined by

∇wJ (w) = ∂J

∂wT
=

⎡
⎢⎢⎢⎢⎢⎣

∂J
∂w0
∂J
∂w1

...
∂J

∂wM−1

⎤
⎥⎥⎥⎥⎥⎦ .

The real value of the notation ∂J/∂wT will only become apparent when working with functions of
complex variables, as shown in Box 12.6. We also define, for consistency,

∂J

∂w
=
[

∂J
∂w0

∂J
∂w1

. . . ∂J
∂wM−1

]
.

As an example, consider the quadratic cost function

J (w) = b − 2wT r + wT Rw. (12.26)

The gradient of J (w) is (verify!)

∇wJ (w) = ∂J

∂wT
= −2r + 2Rw. (12.27)

If we use the gradient to find the minimum of J (w), it would be necessary to also check the second-
order derivative, to make sure the solution is not a maximum or a saddle point. The second-order
derivative of a function of several variables is a matrix, the Hessian. It is defined by

∇2
wJ = ∂2J

∂w∂wT
=

⎡
⎢⎢⎢⎢⎣

∂
∂w

{
∂J
∂w0

}
...

∂
∂w

{
∂J

∂wM−1

}

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

∂2J

∂w2
0

. . . ∂2J
∂w0∂wM−1

...
. . .

...

∂2J
∂wM−1∂w0

. . . ∂2J

∂w2
M−1

⎤
⎥⎥⎥⎥⎦ . (12.28)

Note that for the quadratic cost function (12.26), the Hessian is equal to R + RT . It is equal to 2R if
R is symmetric, that is, if RT = R. This will usually be the case here. Note that R + RT is always
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symmetric: in fact, since for well-behaved functions J we have

∂2J

∂wi∂wj

= ∂2J

∂wj∂wi

,

the Hessian is usually symmetric.
Assume that we want to find the minimum of J (w). The first-order conditions are then

∂J

∂w

∣∣∣∣
wo

= 0.

The solution wo is a minimum of J (w) if the Hessian at wo is a positive semidefinite matrix, that is, if

xT ∇2
wJ (wo)x ≥ 0

for all directions x.

Box 12.3: Useful results from matrix analysis

Here we list without proof a few useful results from matrix analysis. Detailed explanations can be
found, for example, in [176,177,197,242].

Fact 12.1 (Traces). The trace of a matrix A ∈C
M×M is the sum of its diagonal elements:

Tr(A) =
M∑
i=1

aii , (12.29)

in which aii are the entries of A. For any two matrices B ∈ C
M×N and C ∈C

N×M , we have

Tr(BC) = Tr(CB). (12.30)

In addition, if λi , i = 1 . . .M , are the eigenvalues of a square matrix A ∈ C
M×M , then

Tr(A) =
M∑
i=1

λi. (12.31)

Fact 12.2 (Singular matrices). A matrix A ∈C
M×M is singular if and only if there exists a nonzero

vector u such that Au = 0.
The null space or kernel N(A) of a matrix A ∈ C

M×N is the set of vectors u ∈ C
N such that Au = 0.

A square matrix A ∈ C
M×M is nonsingular if and only if N(A) = {0}, that is, if its null space contains

only the null vector.
Note that if A =∑K

k=1 ukv
H
k , with uk,vk ∈ C

M , then A cannot be invertible if K < M . This is
because when K < M , there always exists a nonzero vector x ∈C

M such that vH
k x = 0 for 1 ≤ k ≤ K ,

and thus Ax = 0 with x = 0.
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Fact 12.3 (Inverses of block matrices). Assume the square matrix A is partitioned such that

A =
[
A11 A12

A21 A22

]
,

with A11 and A22 square. If A and A11 are invertible (nonsingular), then

A−1 =
[
I −A−1

11 A12

0 I

][
A−1

11 0

0 �−1

][
I 0

−A21A
−1
11 I

]
,

where � = A22 − A21A
−1
11 A12 is the Schur complement of A11 in A. If A22 and A are invertible, then

A−1 =
[

I 0

−A−1
22 A21 I

][
�′−1 0

0 A−1
22

][
I −A12A

−1
22

0 I

]
,

where �′ = A11 − A12A
−1
22 A21.

Fact 12.4 (Matrix inversion lemma). Let A and B be two nonsingular M × M matrices, let D ∈ C
K×K

also be nonsingular, and let C,E ∈C
M×K be such that

A = B + CDEH . (12.32)

The inverse of A is then given by

A−1 = B−1 − B−1C(D−1 + EH B−1C)−1EH B−1. (12.33)

The lemma is most useful when K � M . In particular, when K = 1, D + EH B−1C is a scalar, and we
have

A−1 = B−1 − B−1CEH B−1

D−1 + EH B−1C
.

Fact 12.5 (Symmetric matrices). Let A ∈ C
M×M be Hermitian symmetric (or simply Hermitian), that

is, AH = (
AT

)∗ = A. Then we have:

1. All eigenvalues λi , i = 1 . . .M , of A are real.
2. A has a complete set of orthonormal eigenvectors ui , i = 1 . . .M . Since the eigenvectors are or-

thonormal, uH
i uj = δij , where δij = 1 if i = j and 0 otherwise.

3. Arranging the eigenvectors in a matrix U = [
u1 . . . uM

]
, we find that U is unitary, that is,

UH U = UUH = I . In addition,

UH AU = � =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λM

⎤
⎥⎥⎥⎦ .
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4. If A = AT ∈R
M×M , it is called simply symmetric. In this case, not only the eigenvalues, but also

the eigenvectors are real.
5. If A is symmetric and invertible, then A−1 is also symmetric.

Fact 12.6 (Positive definite matrices). If A ∈ C
M×M is Hermitian symmetric and moreover for all

u ∈C
M we have

uH Au ≥ 0, (12.34)

then A is positive semidefinite. Positive semidefinite matrices have nonnegative eigenvalues: λi ≥ 0,
i = 1 . . .M . They may be singular if one or more eigenvalues are zero.

If inequality (12.34) is strict, that is, if

uH Au > 0 (12.35)

for all u = 0, then A is positive definite. All eigenvalues λi of positive definite matrices satisfy λi > 0.
Positive definite matrices are always nonsingular.

Finally, all positive definite matrices admit a Cholesky factorization, i.e., if A is positive definite,
there is a lower triangular matrix L such that A = LLH [165].

Fact 12.7 (Vector norms). Norms measure the length of a vector. The usual Euclidean norm (also

known as �2-norm) of a vector x ∈ C
M is defined by ‖x‖2 =

√∑M
k=1 |xk|2. Since we use this norm

more frequently, we denote it simply by ‖x‖.

Other common options are the �1-norm, ‖x‖1
�=∑M

k=1 |xk|, and the �∞-norm, ‖x‖∞
�=

max1≤k≤M |xk|. It can be shown that for any vector x ∈C
M , we have [304]

‖x‖2 ≤ ‖x‖1 ≤ √
M‖x‖1. (12.36)

Fact 12.8 (Schwarz’s inequality). Let x,y ∈C
M . Then it follows that |xH y| ≤ ‖x‖2‖y‖2.

Fact 12.9 (Norms and spectral radius). The spectral radius ρ(A) of a matrix A ∈ C
M×M is

ρ(A) = max
1≤i≤M

|λi | , (12.37)

in which λi are the eigenvalues of A. The spectral radius is important, because a linear system

x(n + 1) = Ax(n)

is stable if and only if ρ(A) ≤ 1, as is well known. A useful inequality is that for any matrix norm ‖ · ‖
such that for any A,B ∈C

M×M

‖AB‖ ≤ ‖A‖‖B‖,
we have

ρ(A) ≤ ‖A‖. (12.38)

This property is most useful when used with norms that are easy to evaluate, such as the 1-norm,
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‖A‖1 = max
1≤i≤M

M∑
j=1

|aij |,

where aij are the entries of A. We could also use the infinity norm,

‖A‖∞ = max
1≤j≤M

M∑
i=1

|aij |.

12.1.3 Applications
Due to the ability to adjust themselves to different environments, adaptive filters can be used in different
signal processing and control applications. Thus, they have been used as a powerful device in several
fields, such as communications, radar, sonar, biomedical engineering, active noise control, modeling,
etc. It is common to divide these applications into four groups:

1. interference cancelation;
2. system identification;
3. prediction; and
4. inverse system identification.

In the first three cases, the goal of the adaptive filter is to find an approximation ŷ(n) for the sig-
nal y(n), which is contained in the signal d(n) = y(n) + v(n). Thus, as ŷ(n) approaches y(n), the signal
e(n) = d(n) − ŷ(n) approaches v(n). The difference between these applications is what we are inter-
ested in. In interference cancelation, we are interested in the signal v(n), as is the case of acoustic echo
cancelation, where v(n) is the speech of a person using a hands-free telephone (go back to Figs. 12.4
and 12.7). In system identification we are interested in the filter parameters, and in prediction we may
be interested in the signal v(n) and/or in the filter parameters. Note that in all these applications (inter-
ference cancelation, system identification, and prediction), the signal e(n) is an approximation for v(n)

and should not converge to zero, except when v(n) ≡ 0. In inverse system identification, differently
from the other applications, the signal at the output of the adaptive filter must be as close as possible to
the signal d(n) and thus, ideally, the signal e(n) should be zeroed. In the sequel, we give an overview of
these four groups in order to arrive at a common formulation that will simplify our analysis of adaptive
filtering algorithms in further sections.

12.1.3.1 Interference cancelation
In a general interference cancelation problem, we have access to a signal d(n), which is a mixture of
two other signals, v(n) and y(n). We are interested in one of these signals, and want to separate it from
the other (the interference) (see Fig. 12.13). Even though we do not know v(n) or y(n), we have some
information about y(n), usually in the form of a reference signal x(n) that is related to y(n) through a
filtering operation H. We may know the general form of this operation; for example, we may know that
the relation is linear and well approximated by an FIR filter with 200 coefficients. However, we do not
know the parameters (the filter coefficients) necessary to reproduce it. The goal of the adaptive filter is
to find an approximation ŷ(n) to y(n), given only x(n) and d(n). In the process of finding this ŷ, the



12.1 Introduction 741

adaptive filter will construct an approximation for the relation H. A typical example of an interference
cancelation problem is the echo cancelation example we gave in Section 12.1.1. In that example, x(n)

is the far-end voice signal, v(n) is the near-end voice signal, and y(n) is the echo. The relation H is
usually well approximated by a linear FIR filter with a few hundred taps.

The approximation for H is a byproduct, which does not need to be very accurate as long as it leads
to a ŷ(n) close to y(n). This configuration is shown in Fig. 12.13 and is called interference cancelation,
since the interference y(n) should be canceled. Note that we do not want to make e(n) ≡ 0; otherwise,
we would not only be killing the interference y(n), but also the signal of interest v(n).

FIGURE 12.13

Scheme for interference cancelation and system identification. x(n) and y(n) are correlated to each other.

There are many applications of interference cancelation. In addition to acoustic and line echo can-
celation, we can mention, for example, adaptive notch filters for cancelation of sinusoidal interference
(a common application is removal of 50 or 60 Hz interference from the mains line), cancelation of
the maternal electrocardiography in fetal electrocardiography, cancelation of echoes in long-distance
telephone circuits, active noise control (as in noise-canceling headphones), and active vibration control.

12.1.3.2 System identification
In interference cancelation, the coefficients of the adaptive filter converge to an approximation for the
true relation H, but as mentioned before, this approximation is a byproduct that does not need to be
very accurate. However, there are some applications in which the goal is to construct an approximation
as accurate as possible for the unknown relation H between x(n) and y(n), thus obtaining a model for
the unknown system. This is called system identification or modeling (the diagram in Fig. 12.13 applies
also for this case). The signal d(n) is now composed of the output y(n) of an unknown system H,
plus noise v(n). The reference signal x(n) is the input to the system which, when possible, is chosen
to be white noise. In general, this problem is harder than interference cancelation, as we shall see in
Section 12.2.1.5, due to some conditions that the reference signal x(n) must satisfy. However, one point
does not change: in the ideal case, the signal e(n) will be equal to the noise v(n). Again, we do not want
to make e(n) ≡ 0; otherwise, we would be trying to model the noise (however, the smaller the noise,
the easier the task, as one would expect).

In many control systems, an unknown dynamic system (also called plant in control system terminol-
ogy) is identified on-line and the result is used in a self-tuning controller, as depicted in Fig. 12.14. The
plant and the adaptive filter have the same input x(n). In practical situations, the plant to be modeled
is noisy, which is represented by the signal v(n) added to the plant output. The noise v(n) is generally
uncorrelated with the plant input. The task of the adaptive filter is to minimize the error model e(n) and
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track the time variations in the dynamics of the plant. The model parameters are continually fed back
to the controller to obtain the controller parameters used in the self-tuning regulator loop [30].

FIGURE 12.14

Scheme for plant identification in a control system.

There are many applications that require the identification of an unknown system. In addition to
control systems, we can mention, for example, the identification of the room impulse response, used
to study the sound quality in concert rooms, and the estimation of the communication channel im-
pulse response, required by maximum likelihood detectors and blind equalization techniques based on
second-order statistics.

12.1.3.3 Prediction
In prediction, the goal is to find a relation between the current sample d(n) and previous samples d(n −
L) . . . d(n − L − M + 1), as shown in Fig. 12.15. Therefore, we want to model d(n) as a part y(n) that
depends only on d(n − L) . . . d(n − L − M + 1) and a part v(n) that represents new information. For
example, for a linear model, we would have

d(n) =
M−1∑
k=0

hkd(n − L − k)

︸ ︷︷ ︸
y(n)

+v(n).

Thus, we in fact have again the same problem as in Fig. 12.13. The difference is that now the refer-
ence signal is a delayed version of d(n), x(n) = d(n − L), and the adaptive filter will try to find an
approximation ŷ(n) for y(n), thereby separating the “predictable” part y(n) of d(n) from the “new in-
formation” v(n), to which the signal e(n) = d(n) − ŷ(n) should converge. The system H in Fig. 12.13
now represents the relation between d(n − L) and the predictable part of d(n).

Prediction finds application in many fields. We can mention, for example, linear predictive coding
(LPC) and adaptive differential pulse code modulation (ADPCM) used in speech coding, adaptive line
enhancement (ALE), autoregressive spectral analysis, etc.

For example, ALE seeks the solution for a classical detection problem, whose objective is to separate
a narrow-band signal y(n) from a wide-band signal v(n). This is the case, for example, of finding a low-
level sine wave (predictable narrow-band signal) in noise (nonpredictable wide-band signal). The signal
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FIGURE 12.15

Scheme for prediction. x(n) = d(n − L) is a delayed version of d(n).

d(n) is constituted by the sum of these two signals. Using d(n) as the reference signal and a delayed
replica of it, i.e., d(n − L), as input of the adaptive filter as in Fig. 12.15, the output ŷ(n) provides an
estimate of the (predictable) narrow-band signal y(n), while the error signal e(n) provides an estimate
of the wide-band signal v(n). The delay L is also known as decorrelation parameter of the ALE, since
its main function is to remove the correlation between the wide-band signal v(n) present in the reference
d(n) and in the delayed predictor input d(n − L).

12.1.3.4 Inverse system identification
Inverse system identification, also known as deconvolution, has been widely used in different fields such
as communications, acoustics, optics, image processing, and control, among others. In communications,
it is also known as channel equalization and the adaptive filter is commonly called equalizer. Adaptive
equalizers play an important role in digital communications systems, since they are used to mitigate the
intersymbol interference (ISI) introduced by dispersive channels. Due to its importance, we focus on
the equalization application, which is explained in the sequel.

A simplified baseband communications system is depicted in Fig. 12.16. The signal s(n) is trans-
mitted through an unknown channel, whose model is constituted by an FIR filter with transfer function
H(z) = h0 + h1z

−1 + · · · + hK−1z
K−1 and additive noise η(n). Due to the channel memory, the sig-

nal at the receiver contains contributions not only from s(n), but also from the previous symbols
s(n − 1), s(n − 2), . . . , s(n − K + 1), i.e.,

x(n) =
L−1∑
k=0

hks(n − k)

︸ ︷︷ ︸
pre-ISI

+hLs(n − L) +
K−1∑

k=L+1

hks(n − k)

︸ ︷︷ ︸
post-ISI

+η(n). (12.39)

Assuming that the overall channel equalizer system imposes a delay of L samples, the adaptive filter
will try to find an approximation ŷ(n) for d(n) = s(n − L), and for this purpose the two summations in
(12.39), which constitute the ISI, must be mitigated. Of course, when one is transmitting information
the receiver will not have access to d(n − L). The filter will adapt during a training phase, in which
the transmitter sends a preagreed signal. We can see that in this case, the role of x(n) and d(n) is



744 Chapter 12 Adaptive filters

the reverse of that in system identification. In this case, one would indeed like to have e(n) ≡ 0. The
problem is that this is not possible, given the presence of noise in x(n). The role of the adaptive filter
is to approximately invert the effect of the channel, at the same time trying to suppress the noise (or at
least, not to amplify it too much). In one sense, we are back to the problem of separating two signals,
but now the mixture is in the reference signal x(n), so what can and what cannot be done is considerably
different from the other cases.

FIGURE 12.16

Simplified communications system with an adaptive equalizer in training mode.

The scheme of Fig. 12.16 is also called training mode, since the delayed version of the transmitted
sequence d(n) = s(n − L) (training sequence) is known at the receiver. After the convergence of the
filter, the signal d(n) is changed to the estimate ŝ(n − L) obtained at the output of a decision device,
as shown in Fig. 12.17. In this case, the equalizer works in the so-called decision-directed mode. The
decision device depends on the signal constellation; for example, if s(n) = ±1, the decision device
returns +1 for ŷ(n) ≥ 0 and −1 for ŷ(n) < 0.

FIGURE 12.17

Adaptive equalizer in decision-directed mode.

12.1.3.5 A common formulation
In all the four groups of applications, the inputs of the adaptive filter are given by the signals x(n)

and d(n) and the output by ŷ(n). Note that the input d(n) appears effectively in the signal e(n) =
d(n) − ŷ(n), which is computed and fed back at each time instant n, as shown in Fig. 12.18. In the
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literature, the signal d(n) is referred to as desired signal, x(n) as reference signal, and e(n) as error
signal. These names unfortunately are somewhat misleading, since they give the impression that our
goal is to recover exactly d(n) by filtering (possibly in a nonlinear way) the reference x(n). In almost
all applications, this is far from the truth, as previously discussed. In fact, except in the case of channel
equalization, exactly zeroing the error would result in very poor performance.

The only application in which d(n) is indeed a “desired signal” is channel equalization, in which
d(n) = s(n − L). Despite this particularity in channel equalization, the common feature in all adaptive
filtering applications is that the filter must learn a relation between the reference x(n) and the desired
signal d(n) (we will use this name to be consistent with the literature). In the process of building this
relation, the adaptive filter is able to perform useful tasks, such as separating two mixed signals or
recovering a distorted signal. Section 12.2 explains this idea in more detail.

FIGURE 12.18

Inputs and output of an adaptive filter.

12.2 Optimum filtering
We now need to extend the ideas of Section 12.1.2, which applied only to periodic (deterministic)
signals, to more general classes of signals. For this, we will use tools from the theory of stochastic
processes. The main ideas are very similar: as before, we need to choose a structure for our filter and a
means of measuring how far or how near we are to the solution. This is done by choosing a convenient
cost function, whose minimum we must search iteratively, based only on measurable signals.

In the case of periodic signals, we saw that minimizing the error power (12.3), repeated below,

P =
K0∑
k=1

C̃2
k

2
+

K1∑
�=1

B2
�

2
,

would be equivalent to zeroing the echo. However, we were not able to compute the error power exactly
– we used an approximation through a time average, as in (12.5), repeated here,

P̂ (n) = 1

N

N−1∑
k=0

e2(n − k),

where N is a convenient window length (in Section 12.1.2, we saw that choosing a large window length
is approximately equivalent to choosing N = 1 and a small step size). Since we used an approximated
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estimate of the cost, our solution was also an approximation: the estimated coefficients did not converge
exactly to their optimum values, but instead hovered around the optimum (Figs. 12.9 and 12.10).

The minimization of the time average P̂ (n) also works in the more general case in which the echo
is modeled as a random signal – but what is the corresponding exact cost function? The answer is given
by the property of ergodicity that some random signals possess. If a random signal s(n) is such that its
mean E{s(n)} does not depend on n and its autocorrelation E{s(n)s(k)} depends only on n − k, it is
called wide-sense stationary (WSS) [201]. If s(n) is also (mean square) ergodic, then

average power of s(n)
�= lim

N→∞
1

N + 1

N∑
n=0

s2(n) = E{s2(n)}︸ ︷︷ ︸
if s(t) is ergodic

. (12.40)

Note that E{s2(n)} is an ensemble average, that is, the expected value is computed over all possible
realizations of the random signal. Relation (12.40) means that for an ergodic signal, the time average
of a single realization of the process is equal to the ensemble average of all possible realizations of the
process. This ensemble average is the exact cost function that we would like to minimize.

In the case of adaptive filters, (12.40) holds approximately for e(n) for a finite value of N if the
environment does not change too fast and if the filter adapts slowly. Therefore, for random variables we
will still use the average error power as a measure of how well the adaptive filter is doing. The difference
is that in the case of periodic signals, we could understand the effect of minimizing the average error
power in terms of the amplitudes of each harmonic in the signal, but now the interpretation will be in
terms of ensemble averages (means and variances).

Although the error power is not the only possible choice for cost function, it is useful to study this
choice in detail. Quadratic cost functions such as the error power have a number of properties that
make them popular. For example, they are differentiable, and hence it is relatively easy to find a closed-
form solution for the optimum, and in the important case where all signals are Gaussian, the optimum
filters are linear. Of course, quadratic cost functions are not the best option in all situations: the use
of other cost functions, or even of adaptive filters not based on the minimization of a cost function, is
becoming more common. We will talk about some of the most important alternatives in Sections 12.5.2
and 12.5.4.

Given the importance of quadratic cost functions, in this section we study them in detail. Our focus
is on what could and what could not be done if the filter were able to measure E{e2(n)} perfectly at
each instant. This discussion has two main goals. The first is to learn what is feasible, so we do not
expect more from a filter than it can deliver. The second is to enable us to make more knowledgeable
choices when designing a filter, for example, which filter order should be used, and for system identi-
fication, which input signal would result in better performance. In Section 12.4.4.3 we will study the
performance of adaptive filters taking into consideration their imperfect knowledge of the environment.

12.2.1 Linear least-mean squares estimation
In the examples we gave in previous sections, a generic adaptive filtering problem boils down to the
following. We are given two sequences, {x(n)} and {d(n)}, as depicted in Fig. 12.18. It is known from
physical arguments that d(n) has two parts, one that is in some sense related to x(n), x(n − 1), . . . and
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another that is not, and that both parts are combined additively, that is,

d(n) = H(x(n), x(n − 1), . . . )︸ ︷︷ ︸
y(n)

+v(n), (12.41)

where H(·) is an unknown relation and v(n) is the part “unrelated” to {x(n)}. In our examples so far,
H(·) was linear, but we do not need to restrict ourselves to this case. Our objective is to extract y(n)

and v(n) from d(n), based only on observations of {x(n)} and {d(n)}. We saw in Section 12.1.2 that
the average power of the difference e(n) between d(n) and our current approximation ŷ(n) could be
used as a measure of how close we are to the solution. In general, H(·) is time-varying, i.e., it depends
directly on n. We will not write this dependence explicitly to simplify the notation.

In this section we ask in some sense the inverse problem, that is, given two sequences {x(n)} and
{d(n)}, what sort of relation will be found between them if we use E{e2(n)} as a standard? The differ-
ence is that we now do not assume a model such as (12.41); instead, we want to know what kind of
model results from the exact minimization of E{e2(n)}, where e(n) is defined as the difference between
d(n) and a function of x(n), x(n − 1), . . . .

We can answer this question in an entirely general way, without specifying beforehand the form of
H. This is done in Box 12.4. However, if we have information about the physics of a problem and know
that the relation H(x(n), x(n − 1), . . . ) is of a certain kind, we can restrict the search for the solution Ĥ
to this class. This usually reduces the complexity of the filter and increases its convergence rate (because
less data is necessary to estimate a model with fewer unknowns, as we will see in Section 12.3). In this
section we focus on this second option.

The first task is to describe the class F of allowed functions Ĥ. This may be done by choosing
a relation that depends on a few parameters, such as (recall that the adaptive filter output is ŷ(n) =
Ĥ(x(n), x(n − 1), . . . ))

FFIR (FIR filter): ŷ(n) = w0x(n) + · · · + wM−1x(n − M + 1), (12.42)

FIIR (IIR filter): ŷ(n) = −a1ŷ(n − 1) + b0x(n), (12.43)

FV (Volterra filter): ŷ(n) = w0x(n) + w1x(n − 1) + w0,0x
2(n)+

+ w0,1x(n)x(n − 1) + w1,1x(n − 1)2, (12.44)

FS (saturation): ŷ(n) = arctan(ax(n)). (12.45)

In each of these cases, the relation between the input sequence
{
x(n)

}
and d(n) is constrained to a

certain class, for example, linear length-M FIR filters in (12.42), first-order IIR filters in (12.43), and
second-order Volterra filters in (12.44). Each class is described by a certain number of parameters: the
filter coefficients w0, . . . ,wM−1 in the case of FIR filters, a1 and b0 in the case of IIR filters, and so on.
The task of the adaptive filter will then be to choose the values of the parameters that best fit the data.

For several practical reasons, it is convenient if we make the filter output depend linearly on the
parameters, as happens in (12.42) and in (12.44). It is important to distinguish linear in the parameters
from input–output linear: (12.44) is linear in the parameters, but the relation between the input sequence{
x(n)

}
and the output ŷ(n) is nonlinear. What may come as a surprise is that the IIR filter of Eq. (12.43)

is not linear in the parameters; in fact, ŷ(n) = −a1ŷ(n − 1) + b0x(n) = a2
1 ŷ(n − 2) − a1b0x(n − 1) +

b0x(n) = . . . – one can see that ŷ(n) depends nonlinearly on a1 and b0.
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Linearly parameterized classes F such as FFIR (12.42) and FV (12.44) are popular because in
general it is easier to find the optimum parameters, both theoretically and in real time. In fact, when the
filter output depends linearly on the parameters and the cost function is a convex function of the error,
it can be shown that the optimal solution is unique (see Box 12.5). This is a very desirable property,
since it simplifies the search for the optimal solution.

In the remainder of this section we will concentrate on classes of relations that are linear in the pa-
rameters. As FV shows, this does not imply that we are restricting ourselves to linear models. There are,
however, adaptive filtering algorithms that use classes of relations that are not linear in the parameters,
such as IIR adaptive filters. On the other hand, blind equalization algorithms are based on nonconvex
cost functions.

Assume then that we have chosen a convenient class of relations F that depends linearly on its
parameters. That is, we want to solve the problem

min
Ĥ∈F

E

{[
d(n) − Ĥ(x(n), x(n − 1), . . . )

]2
}

. (12.46)

We want to know which properties the solution to this problem will have when F depends linearly
on a finite number of parameters. In this case, F is a linear combinations of certain functions φi of
x(n), x(n − 1), . . . ,

ŷ(n) = w0φ0 + w1φ1 + · · · + wM−1φM−1
�= wT φ, (12.47)

where in general φi = φi(x(n), x(n − 1), . . . ), 0 ≤ i ≤ M − 1. The vector φ is known as regressor. In
the case of length-M FIR filters, we would have

φ0 = x(n), φ1 = x(n − 1), . . . φM−1 = x(n − M + 1),

whereas in the case of second-order Volterra filters with memory 1, we would have

φ0 = x(n), φ1 = x(n − 1), φ2 = x2(n), φ3 = x(n)x(n − 1), φ4 = x2(n − 1).

Our problem can then be written in general terms as follows. Find wo such that

wo = arg min
w

E

{(
d − wT φ

)2
}

. (12.48)

We omitted the dependence of the variables on n to lighten the notation. Note that, in general, wo will
also depend on n.

To solve this problem, we use the fact that wT φ = φT w to expand the expected value

J (w)
�= E

{(
d − wT φ

)2
}

= E{d2} − 2wT E{dφ} + wT E{φφT }w.

Recall that the weight vector w is not random, so we can take it out of the expectations.
Define rd (the autocorrelation of d), rdφ (the cross-correlation vector), and Rφ (the autocorrelation

matrix) as follows:

rd = E{d2}, rdφ = E{dφ}, Rφ = E{φφT }. (12.49)
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The cost function then becomes

J (w) = rd − 2wT rdφ + wT Rφw. (12.50)

Differentiating J (w) with respect to w, we obtain

∂J

∂wT
= −2rdφ + 2Rφw,

and equating the result to zero, we see that the optimal solution must satisfy

Rφwo = rdφ . (12.51)

These are known as the normal, or Wiener–Hopf, equations. The solution, wo, is known as the Wiener
solution. A note of caution: the Wiener solution is not the same thing as the Wiener filter. The Wiener
filter is the linear filter that minimizes the mean square error (MSE), without restriction of filter order
[183]. The difference is that the Wiener solution has the filter order prespecified and is not restricted to
linear filters, for example, if we choose FV for our class of allowed functions.

When the autocorrelation matrix is nonsingular (which is usually the case), the Wiener solution is

wo = R−1
φ rdφ . (12.52)

Given wo, the optimum error will be

vo = d − wT
o φ. (12.53)

Note that the expected value of vo is not necessarily zero:

E{vo} = E{d} − wT
o E{φ}. (12.54)

If, for example, E{φ} = 0 and E{d} = 0, then E{vo} = E{d} = 0. In practice, it is good to keep E{vo} = 0,
because we usually know that vo should approximate a zero-mean signal, such as speech or noise. We
will show shortly, in Section 12.2.1.4, how to guarantee that vo has zero mean.

12.2.1.1 Orthogonality condition
A key property of the Wiener solution is that the optimum error is orthogonal to the regressor φ, that is,

E{voφ} = E{φ(d − wT
o φ︸︷︷︸

=φT wo

)} = E{dφ} − E{φφT }wo = rdφ − Rφwo = 0. (12.55)

We saw a similar condition in Section 12.1.2. It is very useful to remember this result, known as the
orthogonality condition: from it, we will find when to apply the cost function (12.48) to design an
adaptive filter. Note that when vo has zero mean, (12.55) also implies that vo and φ are uncorrelated.

Remark 12.1. You should not confuse orthogonal with uncorrelated. Two random variables x and y

are orthogonal if E{xy} = 0, whereas they are uncorrelated if E{xy} = E{x}E{y}. The two concepts
coincide only if either x or y has zero mean.
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Remark 12.2. The orthogonality condition is an intuitive result if we remember that we can think of
the space of random variables with finite variance as a vector space. In fact, define the cross-correlation
rxy = E{xy} between two random variables x and y as the inner product between x and y. Then the
autocorrelation of a random variable x, E{x2}, would be interpreted as the square of the “length” of
x. In this case, our problem (12.48) is equivalent to finding the vector in the subspace spanned by
φ0, . . . , φM−1 that is closest to d . As is well known, the solution is such that the error is orthogonal
(or normal — this is the reason for the name normal equations to (12.51)) to the subspace. So, the
orthogonality condition results from the vector space structure of our problem and the quadratic nature
of our cost function (see Fig. 12.19).

FIGURE 12.19

Orthogonality in vector spaces with inner products.

Remark 12.3. The difference between (12.55) and the corresponding result obtained in Box 12.4,
Eq. (12.106), is that here the optimum error is orthogonal only to the functions φi of x(n), x(n − 1), . . .

that were included in the regressor (and their linear combinations), not to any function, as in (12.106).
This is not surprising: in this section the optimization was made only over the functions in class F , and
in Box 12.4 we allow any function. Both solutions, (12.107) and (12.52), will be equal if the general
solution according to Box 12.4 is indeed in F .

Remark 12.4. The optimal MSE is (recall that E{voφ} = 0)

Jmin = rv,o = E{v2
o} = E{vo(d − wT

o φ)} = E{vod} =
= E{(d − wT

o φ)d} = E{d2} − wT
o rdφ = rd − rT

dφR−1
φ rdφ . (12.56)

Now that we have the general solution to (12.48), we turn to the following question: for which class
of problems is the quadratic cost function adequate?

12.2.1.2 Implicit versus physical models
From (12.55), we see that the fact that we are minimizing the MSE between d and a linear combination
of the regressor φ induces a model
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d = wT
o φ + vo, (12.57)

in which vo is orthogonal to φ. This is not an assumption, as we sometimes see in the literature, but a
consequence of the quadratic cost function we chose. In other words, there is always a relation such as
(12.57) between any pair (d,φ), as long as both have finite second-order moments. This relation may
make sense from a physical analysis of the problem, as we saw in the echo cancelation example, or be
simply a consequence of solving (12.48) (see Section 12.2.1.3 for examples).

Consider the following example. Assume that φ ∼ Uniform(−1,1) is a uniform scalar random vari-
able and d = sin(φ). Then

Rφ = E{φ2} =
∫ 1

−1

1

2
φ2 dφ = 1

3

and

rdφ =
∫ 1

−1

1

2
φ sin(φ)dφ = −1

2
φ cos(φ)

∣∣∣∣
1

−1
+
∫ 1

−1

1

2
cos(φ)dφ = − cos(1) + sin(1).

Therefore, in this case we have wo = 3(sin(1) − cos(1)) ≈ 0.9035 and vo = sin(φ) − 3(sin(1) −
cos(1))φ. One can check that in this case E{vo} = 0 and

E{voφ} = E{φ sin(φ) − 3(sin(1) − cos(1))φ2} = 0,

that is, we can say that there exist wo and vo such that

d = woφ + vo,

with vo orthogonal to φ, even though the definitions of φ and d do not involve wo or vo. Fig. 12.20
shows the relation between d and woφ.

FIGURE 12.20

Comparison between d and woφ.
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Relation (12.57) is never an assumption; it is a consequence of the quadratic cost function we chose
to minimize. Note that all we can say is that φ and vo are orthogonal, not independent. The analysis
of adaptive filters usually makes the assumption that φ and vo are independent, in order to simplify the
derivations (see Section 12.4.3).

On the other hand, the orthogonality condition allows us to find out when the solution of (12.48) will
be able to successfully solve a problem: assume now that we know beforehand, by physical arguments
about the problem, that d and φ must be related through

d = wT∗ φ + v, (12.58)

where w∗ is a certain coefficient vector and v is orthogonal to φ. Will the solution to (12.48) be such
that wo = w∗ and vo = v?

To check if this is the case, we only need to evaluate the cross-correlation vector rdφ assuming the
model (12.58):

rdφ = E{dφ} = E{φ( wT∗ φ︸︷︷︸
=φT w∗

+v)} = E{φφT }w∗ + E{φv}︸ ︷︷ ︸
=0

= Rφw∗. (12.59)

Therefore, w∗ also obeys the normal equations, and we can conclude that wo = w∗, vo = v, as long as
Rφ is nonsingular.

Even if Rφ is singular, the optimal error vo will always be equal to v (in a certain sense). In fact, if
Rφ is singular, then there exists a vector a such that Rφa = 0 (see Fact 12.2 in Box 12.3), and thus any
solution wo of the normal equations (we know from (12.59) that there is at least one, w∗) will have the
form

wo = w∗ + a, a ∈ N(Rφ), (12.60)

where N(Rφ) is the null space of Rφ . In addition,

0 = aT Rφa = aT E{φφT }a = E{aT φφT a} = E
{
(aT φ)2

}
.

Therefore, aT φ = 0 with probability one. Then,

vo = d − wT
o φ = d − (w∗ + a)T φ = d − wT∗ φ

with probability one. Therefore, although we cannot say that v = vo always, we can say that they are
equal with probability one. In other words, when Rφ is singular we may not be able to identify w∗, but
(with probability one) we are still able to separate d into its two components. More about this can be
found in Section 12.2.1.5.

12.2.1.3 Undermodeling
We just saw that the solution to the quadratic cost function (12.48) is indeed able to separate the two
components of d when the regressor that appears in the physical model (12.58) is the same φ that we
used to describe our class F , that is, when our choice of F includes the general solution from Box 12.4.
Let us check now what happens when this is not the case.
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Assume there is a relation

d = wT∗ φe + v, (12.61)

in which v is orthogonal to φe, but our class F is defined through a regressor φ that is a subset of the
“correct” one, φe. This situation is called undermodeling: our class is not rich enough to describe the
true relation between {x(n)} and {d(n)}.

Assume then that

φe =
[
φ

θ

]
, (12.62)

where φ ∈ R
M , θ ∈ R

K−M , with K > M . The autocorrelation of φe is

Rφe = E{φeφ
T
e } =

[
Rφ Rφθ

RT
φθ Rθ

]
,

where Rφθ = E{φθT }. From our hypothesis that φe is orthogonal to v, that is,

0 = E{vφe} =
[

E{vφ}
E{vθ}

]
,

we conclude that φ is also orthogonal to v, so

rdφ = E
{
φ(φT

e w∗ + v)
}

= E{φφT
e }w∗ + E{φv}︸ ︷︷ ︸

=0

= [
Rφ Rφθ

]
w∗.

Assuming that Rφ is nonsingular, solving the normal equations (12.51) we obtain

wo = R−1
φ

[
Rφ Rφθ

]
w∗ =

[
I R−1

φ Rφθ

]
w∗. (12.63)

Now we have two interesting special cases: first, if φ and θ are orthogonal, i.e., if Rφθ = 0, then wo
contains the first M elements of w∗. Let us consider a specific example: assume that

φ =

⎡
⎢⎢⎢⎣

x(n)

x(n − 1)

...

x(n − M + 1)

⎤
⎥⎥⎥⎦ , but φe =

⎡
⎢⎢⎢⎣

x(n)

x(n − 1)

...

x(n − K + 1)

⎤
⎥⎥⎥⎦ , (12.64)

with M < K . Then θ = [
x(n − M) . . . x(n − K + 1)

]T
. This situation is very common in practice.

In this case, Rφθ = 0 when {x(n)} is zero-mean white noise. This is one reason why white noise is
the preferred input to be used in system identification: even in the (very likely in practice) case in which
M < K , at least the first elements of w∗ are identified without bias.

On the other hand, if Rφθ = 0, then wo is a mixture of the elements of w∗. This happens in (12.64)
when the input sequence {x(n)} is not white. In this case, the optimum filter wo takes advantage of the
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correlation between the entries of φ and θ to estimate θ given φ, and uses these estimated values to
obtain a better approximation for d . Sure enough, if we write down the problem of approximating θ
linearly from φ, namely,

W o = arg min
W

E

{∥∥∥θ − W T φ
∥∥∥2
}

,

we will see that the solution is exactly W o = R−1
φ Rφθ .

What is important to notice is that in both cases the optimum error vo is not equal to v:

vo = d − wT
o φ = wT∗ φe + v − wT

o φ.

Partitioning w∗ =
[
wT∗,1 wT∗,2

]T

, with w∗,1 ∈ R
M , w∗,2 ∈R

K−M , we have

vo = (
w∗,1 − wo

)T
φ + wT∗,2θ + v = −wT∗,2R

T
φθR

−1
φ φ + wT∗,2θ + v

= wT∗,2

(
θ − RT

φθR
−1
φ φ

)
+ v.

Although vo = v, the reader may check that indeed E{voφ} = 0.
As another example, assume that we have two variables such that d = ax + bx3 + v, in which v

has zero mean and is independent of x, and a and b are constants. Assume that we choose as regressor
simply φ = x, so we try to solve

wo = arg min
w

E
{
(d − wx)2

}
.

In this case we have

Rφ = E{x2}, rdφ = E{xd} = E{ax2 + bx4},
since E{xkv} = E{xk}E{v} = 0. The optimum solution is thus

wo = a E{x2} + b E{x4}
E{x2} ,

and the optimum error is

vo = d − wox = ax + bx3 + v − a E{x2} + b E{x4}
E{x2} x = v + b

(
x2 − E{x4}

E{x2}
)

x = v.

However, vo is again orthogonal to x (but not to x3, which we did not include in the regressor).
What happens in the opposite situation, when we include more entries in φ than necessary? As one

would expect, in this case the parameters related to these unnecessary entries will be zeroed in the
optimum solution wo. This does not mean, however, that we should hasten to increase φ to make F as
large as possible and leave to the filter the task of zeroing whatever was not necessary. This is because
increasing the number of parameters to be estimated has a cost. The first and more obvious cost is in
terms of memory and the number of computations. However, we saw in Section 12.1.2 that an actual
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adaptive filter usually does not converge to the exact optimum solution, but rather hovers around it.
Because of this, increasing the number of parameters may in fact decrease the quality of the solution.
We explain this in more detail in Section 12.4.

12.2.1.4 Zero and nonzero mean variables
Up to now we did not assume anything about the means of d and φ. If both d and φ have zero mean,
we can interpret all autocorrelations as variances or covariance matrices, according to the case. To see
this, assume that

E{d} = 0, E{φ} = 0. (12.65)

Then E{ŷ} = E{wT
o φ} = 0, and thus

E{vo} = E{d} − wT
o E{φ} = 0 + wT

o 0 = 0,

so the optimum error has zero mean. In this case, rd = E{d2} = σ 2
d is the variance of d , and E{v2

o} = σ 2
v,o

is the variance of vo, so (12.56) becomes

Jmin = σ 2
v,o = E{v2

o} = σ 2
d − rT

dφR−1
φ rdφ . (12.66)

Since Rφ is positive definite, we conclude that the uncertainty in vo (its variance) is never larger than
the uncertainty in d (Box 12.3).

However, vo may have a nonzero mean if either d or φ has nonzero mean. This is verified as follows.
Define

d̄ = E{d}, φ̄ = E{φ}. (12.67)

Then

E{vo} = E{d − rT
dφR−1

φ φ} = d̄ − rT
dφR−1

φ φ̄ = 0

in general (for example, if φ̄ = 0, but d̄ = 0).
In many applications, vo should approximate some signal that is constrained to have zero mean, such

as speech or noise, or vo will be passed through a system with a high DC gain (such as an integrator),
so it may be useful to guarantee that vo has zero mean. How can this be done if the means of d and φ
are not zero? This problem is quite common, particularly when φ includes nonlinear functions of x(n).
Fortunately, there are two easy solutions. First, if one knows the means of d and φ, one could define
zero-mean variables

dc = d − E{d}, φc = φ − E{φ} (12.68)

and use these instead of the original variables in (12.48). This is the simplest solution, but we often do
not know the means d̄ and φ̄.

The second solution is used when the means are not known: simply add an extra term to φ, defining
an extended regressor (not to be confused with the extended regressor from Section 12.2.1.3)

φe =
[

1
φ

]
, (12.69)
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and an extended weight vector we ∈ R
M+1. The first coefficient of we will take care of the means, as

we show next. The extended cross-correlation vector and autocorrelation matrix are

rdφe
=
[

d̄

rdφ

]
, Rφe

=
[

1 φ̄
T

φ̄ Rφ

]
.

Assuming that Rφe and Rφ are nonsingular, we can compute wo,e if we evaluate the inverse of Rφe

using Schur complements (see Fact 12.3 in Box 12.3) as follows:

wo,e = R−1
φe

rdφe

=
[

1 0T

−R−1
φ φ̄ I

]⎡⎣(1 − φ̄
T
R−1

φ φ̄)−1 0T

0 R−1
φ

⎤
⎦[

1 −φ̄
T
R−1

φ

0 I

][
d̄

rdφ

]

=
[

1 0T

−R−1
φ φ̄ I

]⎡⎣(1 − φ̄
T
R−1

φ φ̄)−1 0T

0 R−1
φ

⎤
⎦[

d̄ − φ̄
T
R−1

φ rdφ

rdφ

]

=
[

1 0T

−R−1
φ φ̄ I

]⎡⎢⎣
d̄−φ̄

T
R−1

φ rdφ

1−φ̄
T
R−1

φ φ̄

R−1
φ rdφ

⎤
⎥⎦=

⎡
⎢⎢⎢⎣

d̄−φ̄
T
R−1

φ rdφ

1−φ̄
T
R−1

φ φ̄

R−1
φ rdφ − d̄−φ̄

T
R−1

φ rdφ

1−φ̄
T
R−1

φ φ̄
R−1

φ φ̄

⎤
⎥⎥⎥⎦ .

Using this result, we can evaluate now E{vo,e} = E{d} − wT
o,e E{φe} as follows (we used the fact that

the inverse of a symmetric matrix is also symmetric from Box 12.3):

E{vo,e} = d̄ − d̄ − φ̄
T
R−1

φ rdφ

1 − φ̄
T
R−1

φ φ̄
− rT

dφR−1
φ φ̄ + d̄ − φ̄

T
R−1

φ rdφ

1 − φ̄
T
R−1

φ φ̄
φ̄

T
R−1

φ φ̄

= d̄ − rT
dφR−1

φ φ̄ − d̄ − φ̄
T
R−1

φ rdφ

1 − φ̄
T
R−1

φ φ̄

(
1 − φ̄

T
R−1

φ φ̄
)

= 0.

12.2.1.5 Sufficiently rich signals
We saw in Section 12.2.1.2 that even when Rφ is singular, we can recover the optimum vo (with
probability one), but not the optimum w∗. Let us study this problem in more detail, since it is important
for system identification. So, what does it mean in practice to have a singular autocorrelation function
Rφ? The answer to this question can be quite complicated when the input signals are nonstationary
(i.e., when Rφ is not constant), so in this case we refer the interested reader to texts in adaptive control
(such as [179]), which treat this problem in detail (although usually from a deterministic point of view).
We consider here only the case in which the signals {d(n), x(n)} are jointly WSS.

In this case, Rφ may be singular because some entries of φ are linear combinations of the others.
For example, if we choose φ0 = x(n) and φ1 = 2x(n), then
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Rφ = E{x2(n)}
[

1 2
2 4

]
,

which is singular.
However, there are more subtle ways in which Rφ may become singular. Assume for example that

our input sequence is given by

x(n) = cos(ω0n + ϕ), (12.70)

where 0 < ω0 ≤ π is the frequency and ϕ is a random phase, uniformly distributed in the inter-
val [0,2π). This kind of model (sinusoidal signals with random phases), by the way, is the bridge
between the periodic signals from Section 12.1.2 and the stochastic models discussed in this section. In
this case, consider a vector φ formed from a delay line with x(n) as input,

φ = [
x(n) x(n − 1) . . . x(n − M + 1)

]T
.

If M = 2, we have

Rφ =
[

E{x2(n)} E{x(n)x(n − 1)}
E{x(n)x(n − 1)} E{x2(n − 1)}

]
= 1

2

[
1 cos(ω0)

cos(ω0) 1

]
.

The determinant of Rφ is 1 − cos2(ω0) = sin2(ω0) = 0 if ω0 = 0 and ω = π .
However, for any M ≥ 3, the resulting Rφ will be singular: we can write

φ = 1

2
ej (ω0n+ϕ)

⎡
⎢⎢⎢⎢⎣

1

e−jω0

...

e−j (M−1)ω0

⎤
⎥⎥⎥⎥⎦+ 1

2
e−j (ω0n+ϕ)

⎡
⎢⎢⎢⎢⎣

1

ejω0

...

ej (M−1)ω0

⎤
⎥⎥⎥⎥⎦ ,

and since E{(ejω0n+jϕ)2} = E{ej2(ω0n+ϕ)} = 0, E{ej (ω0n+ϕ)e−j (ω0n+ϕ)} = 1, we have

Rφ = 1

4

⎡
⎢⎢⎢⎢⎣

1

e−jω0

...

e−j (M−1)ω0

⎤
⎥⎥⎥⎥⎦
[
1 ejω0 . . . ej (M−1)ω0

]

+ 1

4

⎡
⎢⎢⎢⎢⎣

1

ejω0

...

ej (M−1)ω0

⎤
⎥⎥⎥⎥⎦
[
1 e−jω0 . . . e−j (M−1)ω0

]
.

Since Rφ is the sum of two rank-one matrices, its rank is at most two. It will be two when 0 < ω0 <

π , since in this case the vectors are linearly independent. We conclude that when the input signal is
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a sinusoid as in (12.70), the optimum solution to (12.48) will never be able to identify more than
two coefficients. This argument can be generalized: if x(n) is composed of K sinusoids of different
frequencies, then Rφ can be nonsingular only if M ≤ 2K .

The general conclusion is that Rφ will be singular or not, depending on which functions are chosen
as inputs, and on the input signal. We say that the input is sufficiently rich for a given problem if it is
such that Rφ is nonsingular. We show a few examples next.

12.2.1.6 Examples
The concepts we saw in Sections 12.2.1.2–12.2.1.5 can be understood intuitively if we return to our
example in Section 12.1.2. In that example, the true echo was obtained by filtering the input x(n) by an
unknown H(z), so we had

d(n) =
K∑

k=0

hkx(n − k) + v(n),

where K is the true order of the echo path, v(n) = B cos(ω1n + θ), and x(n) = A cos(ω0n + ϕ). We
considered only one harmonic for simplicity.

We are trying to cancel the echo by constructing an approximated transfer function Ĥ (z), which is
modeled as an FIR filter with M coefficients. As we saw in Section 12.1.2, if x(n) is a simple sinusoid,
the echo will be completely canceled if we satisfy (12.8), reproduced below:

Re{Ĥ (ejω0)} = Re{H(ejω0)}, Im{Ĥ (ejω0)} = Im{H(ejω0)}.

If K = M = 1, so H(z) = h0 + h1z
−1 and Ĥ (z) = w0 + w1z

−1, this condition becomes

w0 + w1 cos(−ω0) = h0 + h1 cos(−ω0),

w1 sin(−ω0) = h1 sin(−ω0),

with a single solution w0 = h0, w1 = h1.
On the other hand, if the input were as before (a single sinusoid), but K = 2, so H(z) = h0 +

h1z
−1 + h2z

−2, the equations would be

w0 + w1 cos(−ω0) = h0 + h1 cos(−ω0) + h2 cos(−2ω0),

w1 sin(−ω0) = h1 sin(−ω0) + h2 sin(−2ω0),

and the solution would be unique (since Rφ is nonsingular), but would not approximate h0 and h1 in
general.

This is an example of an undermodeled system, as we saw in Section 12.2.1.3. Fig. 12.21 shows the
LMS algorithm derived in Section 12.1.2 applied to this problem. Note that even though w0(n),w1(n)

do not converge to h0, h1, in this example the error e(n) does indeed approximate well v(n). This
happens because in this case x(n) is periodic and the term x(n − 2) can be obtained exactly as a linear
combination of x(n) and x(n − 1) (check that using the expressions for vo from Section 12.2.1.2, we
obtain vo = v in this case).

If we tried to identify H(z) by adding an extra coefficient to Ĥ (z), the equations would be
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FIGURE 12.21

LMS in the undermodeled case.

w0 + w1 cos(−ω0) + w2 cos(−2ω0) = h0 + h1 cos(−ω0) + h2 cos(−2ω0),

w1 sin(−ω0) + w2 sin(−2ω0) = h1 sin(−ω0) + h2 sin(−2ω0).
(12.71)

Now w0 = h0, w1 = h1, and w2 = h2 is a solution, but not the only one. Depending on the initial
condition, the filter would converge to a different solution, as can be seen in Fig. 12.22 (the level
sets are not shown, because they are not closed curves in this case). The input is not rich enough (in
harmonics) to excite the unknown system H(z) so that the adaptive filter might identify it, as we saw
in Section 12.2.1.5. However, for all solutions the error converges to v(n).

FIGURE 12.22

LMS under nonsufficiently rich input.



760 Chapter 12 Adaptive filters

If the input had a second harmonic (K0 = 2), we would add two more equations to (12.71), cor-
responding to Ĥ (e2jω0) = H(e2jω0), and the filter would be able to identify systems with up to four
coefficients.

The important message is that the adaptive filter only “sees” the error d(n) − ŷ(n). If a mismatch
between the true echo path H(z) and the estimated one Ĥ (z) is not observable through looking only at
the error signal, the filter will not converge to H(z). Whether a mismatch is observable or not through
the error depends on both H(z) and the input signal being used: the input must excite a large enough
number of frequencies so that H(z) can be estimated correctly. For this reason, in system identification
a good input would be white noise, which contains all frequencies.

12.2.2 Complex variables and multichannel filtering
Adaptive filters used in important applications such as communications and radar have complex vari-
ables as input signals. In this section, we extend the results of Section 12.2.1 to consider complex
signals. We start with the general solution and then restrict the result to the more usual case of circular
signals.

We show next that the general solution for complex signals is equivalent to an adaptive filter with
two inputs and two outputs. Indeed, if all input variables are complex, then the error e(n) = d(n) − ŷ(n)

will also be complex, that is, e(n) = er(n) + jei(n), where er(n), ei(n) ∈ R are the real and imaginary
parts of e(n). We must then minimize E{|e(n)|2} = E{e2

r (n)} + E{e2
i (n)}, the total power of the complex

signal e(n). The quadratic cost function (12.46) must be changed to

J (w) = E{|e(n)|2} = E{e(n)e∗(n)} = E{e2
r (n)} + E{e2

i (n)},
where e∗(n) is the complex conjugate of e(n). Now, we need to be careful about what exactly is the
coefficient vector w in this case: if the regressor is φ = φr + jφi and d = dr + jdi, in principle ŷ =
ŷr + j ŷi should be such that both its real and imaginary parts depend on both the real and imaginary
parts of φ, that is,

ŷr = wT
rrφr + wT

ri φi,

ŷi = wT
ir φr + wT

ii φi.
(12.72)

Note that there is no a priori reason for us to imagine that there should be a special relation between
the pairs (wrr,wri) and (wir,wii). That is, we are dealing with two different coefficient vectors and one
extended regressor:

wr =
[
wrr
wri

]
, wi =

[
wir
wii

]
, θ =

[
φr
φi

]
. (12.73)

Let us proceed for the time being separating the real and imaginary channels of our filter. Later, in
Section 12.2.2.1, we return to complex algebra. With these definitions, we can write

ŷr = wT
r θ, ŷi = wT

i θ . (12.74)

The cost function then becomes
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J (wr,wi) = E{(dr − wT
r θ)2} + E{(di − wT

i θ)2}
= E{d2

r − 2wT
r θdr + wT

r θθT wr} + E{d2
i − 2wT

i θdi + wT
i θθT wi}

= rdr − 2wT
r rdrθ + wT

r Rθwr + rdi − 2wT
i rdiθ + wT

i Rθwi, (12.75)

where the autocorrelation matrix and cross-correlation vectors are given by

Rθ =
[
Rr Rri

Rir Ri

]
, rdrθ =

[
r rr
r ri

]
, rdiθ =

[
r ir
r ii

]
, (12.76)

where we simplified the notation, writing Rr instead of Rφr
, Rri instead of Rφrφi

, r rr instead of rdrφr
,

and so on.
Differentiating (12.75) to find the minimum, we obtain

∂J

∂wT
r

= −2rdrθ + 2Rθwr,
∂J

∂wT
i

= −2rdiθ + 2Rθwi. (12.77)

Therefore, the optimum filters satisfy[
Rr Rri

Rir Ri

][
wrr,o
wri,o

]
=
[
r rr
r ri

]
,

[
Rr Rri

Rir Ri

][
wir,o
wii,o

]
=
[
r ir
r ii

]
. (12.78)

The optimum error is then

vr,o = dr −
[
wT

rr,o wT
ri,o

]
θ, vi,o = di −

[
wT

ir,o wT
ii,o

]
θ . (12.79)

There is also an orthogonality condition for this case: using (12.78), we obtain

E{vr,oθ} = E{drθ} − E{θθT }
[
wrr,o
wri,o

]
= 0, (12.80a)

E{vi,oθ} = E{diθ} − E{θθT }
[
wir,o
wii,o

]
= 0. (12.80b)

The value of the cost function at the minimum can be obtained using this result. As in the case of real
variables,

E{v2
r,o} = E

{
vr,o

(
dr −

[
wT

rr,o wT
ri,o

]
θ
)}

= E{vr,odr} = E
{
d2
r

}
−
[
wT

rr,o wT
ri,o

]
E{drθ},

where we used (12.80) in the second equality. Doing similarly for vi,o, we obtain

rvr,o = E{v2
r,o} = rdr −

[
wT

rr,o wT
ri,o

]
rdrθ , (12.81a)

rvi,o = E{v2
i,o} = rdi −

[
wT

ir,o wT
ii,o

]
rdiθ , (12.81b)

Jmin = rvr,o + rvi,o . (12.81c)
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What we have just described is a multichannel (two-input two-output) optimal filter. In the next
section, we rederive it using complex algebra. Note that multichannel filters have applications that are
unrelated to complex variables, particularly in control [179], stereo echo cancelation [153,295], and
active noise control [169,194,268,352].

12.2.2.1 Widely linear complex least-mean squares
This general solution can be obtained in a more straightforward way if we use the complex gradients
described in Box 12.6. Keeping the regressor θ as in (12.73) and defining the extended complex weight
vector as ω = wr + jwi, we can write the cost function as

J (ω) = E
{
(d − ωH θ)(d − ωH θ)∗

}
= rd − ωH rdθ − rH

dθω + ωH Rθω,

where we defined rd = E{|d|2} and rdθ = E{d∗θ}. Note that (·)H represents the Hermitian transpose,
that is, transpose followed by conjugation. Differentiating J (ω) with respect to ωH , as described in
Box 12.6, we obtain

∂J

∂ωH
= −rdθ + Rθω. (12.82)

The normal equations then become

Rθωo = rdθ . (12.83)

Expanding the real and imaginary parts of (12.83), we recover (12.78). Similarly, the optimum error
and the minimum value of the cost are

νo = d − ωH
o θ, Jmin = E{|νo|2} = E{|d|2} − ωH

o rdθ . (12.84)

Comparing with (12.81), we see that νo = vr,o + jvi,o, and the value of Jmin is the same as before.
However, as the reader probably noticed, using a complex weight vector ω and the complex derivatives
of Box 12.6, all expressions are much simpler to derive.

The filter using a complex weight vector ω and the real regressor θ constitutes a version of what
is known as widely linear complex filter. This version was recently proposed in [13] as a reduced-
complexity alternative to the widely linear complex filter originally proposed in [291,292], which uses
as regressor the extended vector

φe =
[

φ

φ∗
]

, (12.85)

composed of the original regressor φ and its complex conjugate φ∗ (computational complexity is re-
duced because the number of operations required to compute ωH θ is about half of what is necessary
to evaluate ωH φe). Widely linear estimation has received much attention, due to a number of different
applications, such as those described in [4,5,87,123,223,404].

But why the name widely linear? The reason for this name is that the complex regressor φ does not
appear linearly in the expressions, but only by separating its real and imaginary parts (as in θ ) or by
including its complex conjugate (as in φe). Both these expressions, from the point of view of a complex
variable, are nonlinear.

What would be a linear complex filter, then? This is the subject of the next section.
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12.2.2.2 Linear complex least-mean squares
There are many applications in which the data and regressor are such that their real and imaginary parts
are similarly distributed, so that

Rr = Ri, rdr = rdi , Rri = −Rir, r rr = r ii, r ri = −r ir. (12.86)

Under these conditions, we say that the pair (d,φ) is complex circular, or simply circular.
In this case, we can rewrite (12.78) as[

Rr Rri

−Rri Rr

][
wrr
wri

]
=
[
r rr
r ri

]
,

[
Rr Rri

−Rri Rr

][
wir
wii

]
=
[−r ri

r rr

]
.

Expand these equations as follows (notice the change in order in (12.87b)):

Rrwrr + Rriwri = r rr, −Rriwrr + Rrwri = r ri, (12.87a)

Rrwii − Rriwir = r rr, Rriwii + Rrwir = −r ri. (12.87b)

Now we can see that if (wrr,wri) is a solution to (12.87a), then

(wii = wrr,wir = −wri) (12.88)

is a solution to (12.87b). Therefore, when the input signals are circular, the number of degrees of
freedom in the problem is actually smaller. In this case, there is a very nice way of recovering the
solutions, working only with complex algebra. Indeed, defining w = wrr + jwri, we have

wH φ = (wrr − jwri)
T (φr + jφi)

=
(
wT

rrφr + wT
ri φi

)
+ j

(
wT

rrφi − wT
ri φr

)
, (12.89)

which is equivalent to (12.72) with the identities (12.88). Using this definition, it is possible to obtain
the optimum solution (12.87a), (12.87b), (12.88) using only complex algebra, following exactly the
same steps as our derivation for the real case in the previous section.

This path is very useful; we can derive almost all results for real or complex circular adaptive filters
using the same arguments. Let us see how it goes. First, we define ŷ = wH φ, so our problem becomes

min
w∈CM

E

{∣∣∣d − wH φ
∣∣∣2} . (12.90)

Expanding the cost, recalling that now
∣∣d − wH φ

∣∣2 = (d − wH φ)(d − wH φ)∗ = (d − wH φ)(d∗ −
φH w), we obtain

J (w) = E
{
|d|2 − wH φd∗ − dφH w + wH φφH w

}
= rd − wH rdφ − rH

dφw + wH Rφw, (12.91)

where we defined rd = E{|d|2}, rdφ = E{d∗φ}, Rφ = E{φφH }.
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We now need to find the minimum of this cost. One easy solution is to use the rules for differenti-
ation of real functions of complex variables, as described in Box 12.6. These rules are very useful and
surprisingly easy to use: basically, we can treat w and its conjugate wH as if they were independent
variables, that is,

∂J

∂wH
= −rdφ + Rφw. (12.92)

Equating the gradient to zero, the solution is (assuming that Rφ is nonsingular)

wo = R−1
φ rdφ, (12.93)

which is exactly equal to (12.52). This is the advantage of this approach: the expressions for complex
and real problems are almost equal. The important differences are the conjugates that appear in the
definitions of Rφ and rdφ and the absence of a factor of 2 in the gradient (12.92). This follows from
the definition of complex derivative we used (see Box 12.6). Here this difference is canceled out in the
solution (12.93), but further on we will find situations in which there will be a different factor for the
case of real and for the case of complex variables.

Let us check that (12.93) is really equivalent to (12.87a). Expanding Rφ and rdφ and using the
circularity conditions (12.86), we obtain

Rφ = E{φφH } = E{(φr + jφi)(φr − jφi)
T } = Rr + Ri + j (Rir − Rri) (12.94a)

= 2Rr − 2jRri (12.94b)

and

rdφ = E{d∗φ} = E{(dr − jdi)(φr + jφi)} = r rr + r ii + j (r ri − r ir)

= 2r rr + 2jr ri, (12.95)

so, equating the gradient (12.92) to zero, wo = wr,o + jwi,o must satisfy

2 (Rr − jRri)
(
wr,o + jwi,o

)= 2 (r rr + jr ri) ,

Rrwr,o + Rriwi,o + j
(
Rrwi,o − Rriwr,o

)= r rr + jr ri. (12.96)

Comparing the real and imaginary parts of (12.96) with (12.87a), we see that they indeed correspond
to the same set of equations.

We now make a few important remarks.

Remark 12.5. The orthogonality condition still holds in the complex circular case, but with a small
difference: defining the optimum error as before,

vo = d − wH
o φ,

we obtain, noting that (wH
o φ)∗ = φH wo,

E{v∗
oφ} = E{d∗φ − φφH wo} = rdφ − Rφwo = 0. (12.97)
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Remark 12.6. The complex gradient (12.92) seems strange because it does not include the factors of 2
that would appear in the real case. This difference will appear in many expressions in the following sec-
tions, whenever we need to differentiate between the real and complex cases. However, the difference
is illusory: if you go back to (12.94b) and (12.95), you will see that the factor of 2 is actually there, just
hidden by the definition of autocorrelation and cross-correlation under the circularity conditions.

Remark 12.7. The optimum error power can be obtained as in the real case, and is equal to

E{|vo|2} = rd − wH
o rdφ = rd − rH

dφR−1
φ rdφ . (12.98)

Box 12.4: Least-mean squares estimation

Here we consider the general problem of finding the optimum relation Ĥo between d(n) and x(n), such
that

Ĥo = arg min
Ĥ

E
{
d(n) − Ĥ(x(n), x(n − 1), . . . )

}
, (12.99)

without restricting H to a particular class.
In order to understand this problem well, let us consider first the simpler case where the relation

between x(n) and d(n) is memoryless, that is, our function depends only on the current value of x(n).
Dropping the time index to simplify the notation, our problem then becomes how to find a function Ĥ
that, applied to a certain random variable x, approximates a certain random variable d so that the MSE
is minimized, that is, we want to solve

min
Ĥ

E{[d − Ĥ(x)]2}. (12.100)

Assume that the joint probability density function (pdf) pdx(d, x) of d and x is known (we are
assuming that d and x are continuous random variables, but the final result in (12.101) also holds if
they are discrete). Then,

E{[d − Ĥ(x)]2} =
∫ ∫

[d − Ĥ(x)]2pdx(d, x)dd dx

=
∫ {∫

[d − Ĥ(x)]2pd|x(d|x)dd

}
︸ ︷︷ ︸

Ed {[d−Ĥ(x)]2|x}

px(x)dx

= Ex

{
Ed

{
[d − Ĥ(x)]2|x

}}
, (12.101)

where we use the subscripts d and x in Ed and Ex to highlight that the expectations are taken with
respect to d or x only.

Note that the inner integrand Ed

{
[d − Ĥ(x)]2|x

}
in (12.101) is nonnegative. Therefore, if we min-

imize it for each value of x, we will obtain the minimum of the full expression. That is, the optimum
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Ĥo is the function defined by

Ĥo(x) = arg min
Ĥ(x)

Ed

{
[d − Ĥ(x)]2|x

}
. (12.102)

It is important to remember that, for fixed x, Ĥ(x) is simply a number. This can be seen more easily
expanding the expectations in (12.102):

Ed

{[d − Ĥ(x)]2|x}=
∫ (

d2 − 2dĤ(x) + Ĥ2(x)
)

pd|x(d|x)dd

=
∫

d2pd|x(d|x)dd − 2Ĥ(x)

∫
dpd|x(d|x)dd + Ĥ2(x)

∫
pd|x(d|x)dd

= Ed{d2|x} − 2 E{d|x}Ĥ(x) + Ĥ2(x).

Differentiating with respect to Ĥ(x) and equating to zero, we obtain the solution

Ĥo(x) = Ed{d|x} �= ŷ(n), (12.103)

which is indeed a function of x, as desired.
Let us study the properties of this solution. First, define

vo = d − Ĥo(x).

Note that vo and Ĥo are not necessarily equal to v and H from (12.41). Evaluating the average of
Ĥo(x), we obtain

Ex{Ĥo(x)} = Ex {Ed{d|x}} = E{d},
by an argument similar to that used to obtain (12.101). We conclude that vo has zero mean. In addition,
for any function f (x) of x for which the expected values exist, we have

E{vof (x)} = Ex {Ed{d f (x)}} − E {Ed{d|x}f (x)} = 0 = E{vo}E{f (x)}, (12.104)

since Ed{d f (x)|x} = f (x)Ed{d|x}. This result means that the error vo is uncorrelated to any function
of the reference data x, which is a very strong condition. It basically means that we have extracted all
second-order information available in x about d .

Table 12.1 Counterexample:
(12.104) does not imply inde-
pendence.

r

s −1 0 1

−1 0 1/2 0

1 1/4 0 1/4

We remark that (12.104) does not imply that x and vo are independent. A simple counterexam-
ple is the following. Consider two discrete-valued random variables r and s with joint probabilities
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given by Table 12.1. Then E{sf (r)} = 1/4 · (−1) · f (+1) + 1/4 · (+1) · f (+1) + 1/2 · 0 · f (−1) = 0,
∀f (·), but r and s are not independent.

In the more general case in which Ĥ is allowed to depend on previous samples of x(n), the argu-
ments and the final conclusion are similar,

arg min
Ĥ

E

{[
d − Ĥ(x(n), x(n − 1), . . . )

]2
}

= E
{
d
∣∣x(n), x(n − 1), . . .

}
, (12.105)

and defining

vo(n) = d(n) − E
{
d
∣∣x(n), x(n − 1), . . .

}
,

we know that vo(n) has zero mean and is uncorrelated with any function of x(n), x(n − 1), . . . ,

E{vo(n)} = 0, E {vo(n)f (x(n), x(n − 1), . . . } = 0. (12.106)

Note that, in general, the optimal solution of (12.105) depends on n, so we should write

Ĥo,n(x(n), x(n − 1), . . . ) = E
{
d
∣∣x(n), x(n − 1), . . .

}
(12.107)

to make the time dependence explicit.
We can now return to the question at the start of this section. From our results thus far, we see that

minimizing E{e2(n)} leads to a model which relates d(n) and the sequence
{
x(n)

}
such that

d(n) = Ĥo,n(x(n), x(n − 1), . . . ) + vo(n),

in which vo(n) is uncorrelated with any function f (·) of x(n), x(n − 1), . . . . In other words, the solution
of (12.105) imposes such a model on our data, even if this model makes no physical sense at all. This is
an important point: such a model will always result from the minimization of the MSE, at least as long
as the statistics of d(n) and

{
x(n)

}
are such that the expected values in (12.105) are finite.

Now, what would happen if we knew beforehand, by physical arguments about the data, that a model
such as (12.41), repeated here for convenience,

d(n) = H(x(n), x(n − 1), . . . )︸ ︷︷ ︸
y(n)

+v(n),

holds between d(n) and
{
x(n)

}
, such that v(n) has zero mean and is uncorrelated to any function of

x(n), x(n − 1), . . . ? Will the solution of (12.105) be such that

Ĥo(x(n), x(n − 1), . . . ) = H(x(n), x(n − 1), . . . ), vo(n) = v(n)?

To answer this question, let us go back to (12.100) and use (12.41) to find the solution. We thus
have (we omit the arguments of d(n), v(n), and H(·) for simplicity)

min
Ĥ

E{[d − Ĥ(x)]2} = min
Ĥ

E
{
[H+ v − Ĥ]2

}
.

Since v is orthogonal to any function of x(n), x(n − 1), . . . by assumption, it will be orthogonal to H
and Ĥ in particular. Therefore, we can simplify the cost as
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min
Ĥ

E{[d − Ĥ(x)]2} = min
Ĥ

[
E
{
(H− Ĥ)2

}
+ E{v2}

]
. (12.108)

Both terms in (12.108) are positive, and only the first depends on Ĥ. Therefore, the solution is indeed
Ĥ = H and vo = v, as one would wish (to be precise, H and Ĥ could differ on a set of probability zero,
which can be seen as a generalization of our discussion on sufficiently rich signals in Section 12.2.1.5).

We conclude that we can use (12.103) as a criterion for separating the two parts y(n) and v(n) of
our model for d(n) if and only if v(n) satisfies (12.106). This holds, for example, if v(n) has zero mean
and is independent of x(n − k) for all k ≥ 0.

Note that since ŷ(n) = Ĥo,n(x(n), x(n − 1), . . . ) is itself a function of x(n), x(n − 1), . . . , Eq.
(12.106) implies that

E{vo(n)ŷ(n)} = 0,

and we have

E{v2
o(n)} = E

{
vo
[
d(n) − ŷ(n)

]}= E{vod(n)} =
= E

{[
d(n) − ŷ(n)

]
d(n)

}=
= E{d2(n)} − E

{
d(n)ŷ(n)

}=
= E{d2(n)} − E

{[
ŷ(n) + vo(n)

]
ŷ(n)

}=
= E{d2(n)} − E

{
ŷ2(n)

}
.

Recalling that E{ŷ(n)} = E{d(n)}, if we add and subtract E2{d(n)} to the last result, we conclude that

E{v2
o(n)} = σ 2

d − σ 2
ŷ

≤ σ 2
d , (12.109)

where σ 2
d and σ 2

ŷ
are the variances of d(n) and of ŷ(n).

The solution we just found is very general (it assumes little about H), and there are ways of com-
puting it adaptively from the data, using for example algorithms known as particle filters [79,88,120].
The solution requires, however, that one builds approximations for the joint probability distribution of
d(n) and x(n), x(n − 1), . . . , which in general requires a large amount of data, resulting in relatively
high complexity and relatively slow convergence. If you know more about the relation between

{
x(n)

}
and d(n), this information might be used to constrain the search to a smaller class of problems, poten-
tially leading to simpler algorithms with faster convergence. That is the goal of adaptive filters, and the
reason why we restricted ourselves to this case in the main text.

Box 12.5: Convex functions

Convex sets are such that lines between any two points in the set always stay entirely in the set (see
Fig. 12.23). More formally, a set S ∈ R

n is convex if

s1, s2 ∈ S ⇒ λs1 + (1 − λ)s2 ∈ S, for all λ ∈ [0,1].
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FIGURE 12.23

Convexity.

Convex functions, on the other hand, are functions f (x) :Rn → R such that for all x1,x2 ∈R
n and

0 < λ < 1,

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2).

The function is called strictly convex if the inequality is strict (< instead of ≤). For example, f (x) =
x2 is strictly convex. Fig. 12.24 shows examples of convex and nonconvex functions. An important
property of strictly convex functions is that they always have a unique minimum, that is, they never
have suboptimal local minima.

FIGURE 12.24

Convex functions.
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Box 12.6: Wirtinger derivatives and minima of functions of a complex variable

Suppose we want to minimize a function

f : C → R,

w ∈ C �→ f (w) ∈R,
(12.110)

that is, a function that takes a complex argument to a real value. The minimization problem is well
defined, since the image of f is real. However, we cannot use standard arguments about derivatives and
stationary points to find the minimum, because a function like this is never analytic, that is, the standard
derivative used in complex analysis does not exist.

To see why, we need to think about f as a function of two variables, x and y, the real and imaginary
parts of w. Take f (w) = |w|2 = ww∗ for example. We can write it as a function of x and y as

f̂ (x, y) = f (x + jy) = x2 + y2. (12.111)

Since it is a function of two variables, the derivatives in principle depend on the direction we are moving
along. Consider the derivative at a point w along the x-axis, that is, keeping y constant:

lim
ε→0

(x + ε)2 + y2 − (x2 + y2)

ε
= 2x.

On the other hand, along the y-axis, we have

lim
ε→0

x2 + (y + ε)2 − (x2 + y2)

ε
= 2y,

that is, the derivative at point w is different according to the direction we are moving. This is essentially
what is meant by saying that the function is not analytic at w (see for example [202] for a more complete
discussion about analytic functions).

Consider now the analytic function g = w2. Its derivative is the same, no matter which direction we
take:

lim
ε→0

(x + ε + jy)2 − (x + jy)2

ε

= lim
ε→0

(x + ε)2 − y2 + 2j (xy + εy) − (x2 − y2 + 2jxy)

ε
= 2w.

Similarly, differentiating along the y-axis we obtain again the same result

lim
ε→0

(x + j (y + ε))2 − (x + jy)2

ε
= 2w.
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When the derivative at a certain point w0 is the same along every direction, we can define derivatives
of complex functions writing simply

dg(w0)

dw
= lim

�w→0

g(w0 + �w) − g(w0)

�w
, (12.112)

since we know the limit does not depend on the direction along which �w goes to zero.
It can be shown that a function is analytic at a given point only if the Cauchy–Riemann conditions

hold at that point. Separating a generic complex function g into its real and imaginary parts g(w) =
u(x, y) + jv(x, y), the Cauchy–Riemann conditions are [202]

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= − ∂v

∂x
.

In the case of a real function of a complex variable, such as f defined as in (12.110), v ≡ 0, and of
course the conditions could hold only for points in which the real part has zero partial derivatives.

This means that we cannot search for the stationary points of a function such as (12.110) using the
derivative defined as in (12.112). We could of course always go back and interpret the function as a
function of two variables, as we did in (12.111). In order to find the minimum of f (w), we would need
to find the stationary points of f̂ (x, y),

∂f̂

∂x
= 0,

∂f̂

∂y
= 0.

This works just fine, of course, but there is a nice trick, which allows us to keep working with complex
variables in a simple way. The idea is to define derivatives differently, such that optimization problems
become easy to solve, using what is known as Wirtinger calculus.

Real functions of complex variables are usually defined in terms of variables and its conjugates,
since w + w∗ and ww∗ are both real. The idea is to define derivatives such that w and w∗ can be
treated as if they were independent variables, as follows. Despite the motivation, the new derivatives
are defined for general functions g :C → C.

Define partial derivatives of a function g :C → C with respect to w and w∗ as

∂g

∂w
= 1

2

{
∂g

∂x
− j

∂g

∂y

}
,

∂g

∂w∗ = 1

2

{
∂g

∂x
+ j

∂g

∂y

}
. (12.113)

One can check that if g is analytic at a given point (so g satisfies the Cauchy–Riemann conditions at
that point), then ∂g/∂w∗ = 0 at that point.

Consider, for example, g(w) = wm(w∗)n = (x + jy)m(x − jy)n. Then,

∂g

∂w
= 1

2

{
m(x + jy)m−1(x − jy)n + n(x + jy)m(x − jy)n−1

− j
(
jm(x + jy)m−1(x − jy)n − jn(x + jy)m(x − jy)n−1

)}
= 1

2

{
mwm−1(w∗)n + nwm(w∗)n−1 + mwm−1(w∗)n − nwm(w∗)n−1

}
= mwm−1(w∗)n.
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As advertised, the final result is what we would obtain if we had treated w and w∗ as two independent
variables. Similarly, one can check that

∂g

∂w∗ = nwm(w∗)n−1.

An important special case is the quadratic function f (w) = d − w∗r − r∗w + w∗wR, which assumes
only real values if d and R are real. Using the previous result, we see that

∂f

∂w
= −r∗ + w∗R,

∂f

∂w∗ = −r + wR.

Note that there is no factor of 2 in this case. This difference between Wirtinger derivatives and standard
real derivatives will propagate to many expressions in this text.

Now, the definitions (12.113) are useful for minimizing real functions of complex variables as in
(12.110), since from (12.113)

∂f

∂w∗ = 0 ⇔ ∂f̂

∂x
= 0 and

∂f̂

∂y
= 0.

Applying this idea to our quadratic function, we see that

∂f

∂w∗ = 0 ⇒ Rwo = r ⇒ wo = r/R,

if R = 0. In addition,

∂2f

∂w∂w∗ = R,

and we can conclude that wo is a minimum as long as R > 0.
The same conclusions could easily be obtained working directly with f̂ . The Wirtinger derivatives

are merely a shortcut that makes working with complex variables very similar to working with real
variables. A good detailed description of Wirtinger derivatives can be found in [190].

In the vector case, the definitions and results are very similar. Given a function

g : CM →R,

w =

⎡
⎢⎢⎢⎣

w0
w1

...

wM−1

⎤
⎥⎥⎥⎦ ∈ C

M �→ g(w),

with wi = xi + jyi , i = 0 . . .M − 1, we define

∂g

∂w
=
[

∂g
∂w0

. . .
∂g

∂wM−1

]
= 1

2

[
∂g
∂x0

− j
∂g
∂y0

. . .
∂g

∂xM−1
− j

∂g
∂yM−1

]
,
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∂g

∂wH
=

⎡
⎢⎢⎢⎣

∂g

∂w∗
0

...
∂g

∂w∗
M−1

⎤
⎥⎥⎥⎦= 1

2

⎡
⎢⎢⎢⎣

∂g
∂x0

+ j
∂g
∂y0

...
∂g

∂xM−1
+ j

∂g
∂yM−1

⎤
⎥⎥⎥⎦ .

Using our definition of gradients, the second derivative of f (its Hessian) is

∂2f

∂w∂wH
=

⎡
⎢⎢⎢⎢⎣

∂
∂w

{
∂f

∂w∗
0

}
...

∂
∂w

{
∂f

∂w∗
M−1

}

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

∂2f

∂w0∂w∗
0

. . .
∂2f

∂wM−1∂w∗
0

...
. . .

...

∂2f

∂w0∂w∗
M−1

. . .
∂2f

∂wM−1∂w∗
M−1

⎤
⎥⎥⎥⎥⎦ .

The most important example is the quadratic function

f (w) = rd − wH rdφ − rH
dφw + wH Rφw,

where rd is a real variable and Rφ is Hermitian symmetric. Then, we have

∂f

∂wH
= −rdφ + Rφw.

This example is the reason for the notation ∂f/∂wH that we have been using for the gradient. We see
that a stationary point of f is such that Rφwo = rdφ . In addition,

∂2f

∂w∂wH
= Rφ,

and we conclude that wo is the single point of minimum of f if and only if Rφ is positive definite.
Note that in the complex case, the gradient and the Hessian do not have the factors of 2 that we saw

in the real case (see Box 12.1.)

12.3 Stochastic algorithms
In this section, we focus on three of the most important adaptive filters: the LMS algorithm, the NLMS
algorithm, and the RLS algorithm, which serve as the basis of many others. These three stochastic
algorithms are derived in detail and analyzed using different methods. We present different approaches
for analyzing an adaptive filter, because the variety and complexity of their behavior makes it difficult
for a single technique to be able to handle all situations. The analyses provided here allow us to predict
the behavior of the algorithms in transient and steady state, and choose values of parameters (such as
the step size) for which the filters operate adequately. In particular, we study conditions under which
the filters will remain stable.
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We assume linearly parameterized classes, such as FIR (FFIR) and Volterra (FV) filters (see Sec-
tion 12.2.1). In these classes, each element of the input regressor vector is given by a certain function
φi , i = 0,1, . . . ,M − 1, of x(n), x(n − 1), . . . , x(n − N). In the case of length-M FIR filters, we have

φ(n) = [
φ0(n) φ1(n) · · · φM−1(n)

]T
= [

x(n) x(n − 1) · · · x(n − M + 1)
]T

, (12.114)

whereas in the case of second-order Volterra filters with memory N = 1 and real-valued signals, we
have

φ(n) = [
φ0(n) φ1(n) φ2(n) φ3(n) φ4(n)

]T
=
[

x(n) x(n − 1) x2(n) x(n)x(n − 1) x2(n − 1)

]T

. (12.115)

As much as possible, our presentation in this section is independent of the choices of F and φ(·). How-
ever, some algorithms are designed for a specific class F (the most common case are fast algorithms
designed for FIR filters (12.114)). In these cases, we will alert the reader of the restriction.

Using the results of Box 12.6, the derivation of algorithms for real or circular complex inputs is very
similar, the only differences being the need of conjugating a few variables in some expressions and the
appearance of a factor β = 2 in the expressions of gradients of functions of real variables and β = 1 in
the complex case.

In general, the output of a length-M adaptive filter is given by

ŷ(n) = wH (n)φ(n) = w∗
0(n)φ0(n) + w∗

1(n)φ1(n) + · · · + w∗
M−1(n)φM−1(n). (12.116)

In the case of Volterra filters, it is common to use the notation wk,� for the weight related to the input
x(n − k)x(n − �) (see Eq. (12.44)). However, to obtain a common formulation independent of the class
F , we denote the weight vector as

w(n) = [
w0(n) w1(n) w2(n) · · · wM−1(n)

]T
. (12.117)

The task of the adaptive filter will be to choose in a recursive form the values of the parameters
w0, w1, . . . , wM−1 that best fit the data at each time instant n.

Fig. 12.25 shows the scheme of a length-M adaptive filter for linearly parameterized classes, where
� denotes the set of functions φi(·), i = 0,1, . . . ,M − 1, of x(n), x(n − 1), . . . , x(n − N) that gener-
ate the elements φ0(n),φ1(n), . . . , φM−1(n) of the input regressor vector φ(n). The number of samples
of the signal x(n) needed to form φm(n) for 0 ≤ m < M (the memory of the filter) depends on the class
F and is given by N + 1. An FIR filter with length M requires N + 1 = M samples. On the other hand,
a Volterra filter with memory N requires N + 1 samples, but the length of the corresponding adaptive
filter depends on the order of the Volterra series expansion – in the example above in (12.115), N = 1
and M = 5. At each time instant, the output of the adaptive filter ŷ(n) is compared with the desired
signal d(n) to compute the error e(n) = d(n) − ŷ(n). In order to minimize a cost function of this error,
a stochastic algorithm uses e(n) to adjust the filter weights.
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FIGURE 12.25

Scheme for a length-M adaptive filter assuming linearly parameterized classes.

12.3.1 LMS algorithm
The update equation of the steepest descent algorithm is given by

w(n + 1) = w(n) − μ

β
∇wJ (n), (12.118)

where μ is a step size and β = 1 (resp. β = 2) for complex (resp. real) data (see Box 12.6). This
algorithm requires exact measurements of the gradient vector. For the case of minimization of the
MSE, that is, if J (n) = E{|e(n)|2},

∇wJ (n) = −βrdφ + βRφw(n) (12.119)

at each iteration n (see Box 12.1 for an introduction to gradient algorithms). Note that the exact gradient
requires prior knowledge of the correlation matrix Rφ and of the cross-correlation vector rdφ , which
is not feasible in real-time applications. For example, in the hands-free virtual meeting application
described in Section 12.1.1, the input signal to the adaptive filter is the far-end speech (see Figs. 12.3
and 12.4). A speech signal is nonstationary, and therefore it is not possible to obtain exact estimates for
Rφ and rdφ at each time instant. Furthermore, good estimates would demand much processing time,
which could insert an inadmissible delay in the system, making this approach not feasible, except in
off-line applications. Similar restrictions appear in virtually all adaptive filtering applications.

To circumvent this problem, a stochastic version of the steepest descent algorithm was proposed, the
LMS algorithm [387]. Instead of minimizing the exact MSE, the LMS algorithm minimizes a straight-
forward approximation to it: |e(n)|2. The idea, as we saw in Section 12.1.2.4, is that the algorithm will
approximately average the cost function if adaptation is slow (small step size). The estimation error is
(in the equations that follow, note that if x and y are real, then x∗ = x and yH = yT , so the equations



776 Chapter 12 Adaptive filters

are valid for both real and complex signals)

e(n) = d(n) − wH (n)φ(n), (12.120)

so the gradient of the instantaneous cost function is

∇̂wJ (n) = −βφ(n)d∗(n) + βφ(n)φH (n)w(n) = −βφ(n)e∗(n). (12.121)

Since e(n) depends on the old estimate of the weight vector, it is called an a priori estimation error,
as opposed to the a posteriori error, which will be introduced in (12.130). Instead of minimizing the
instantaneous cost function, the stochastic gradient defined in (12.121) can be obtained by replacing
the instantaneous estimates

R̂φ(n) = φ(n)φH (n) (12.122)

and

r̂dφ(n) = φ(n)d∗(n) (12.123)

in (12.119).
Replacing (12.121) in (12.118), we arrive at the update equation for LMS, i.e.,

w(n + 1) = w(n) + μφ(n)e∗(n). (12.124)

As explained in Section 12.1.2.4 and illustrated in the animations of Fig. 12.9, although there is no
explicit average being taken in the LMS algorithm, it in fact computes an implicit approximate average
if the step size is small.

Remark 12.8. We introduced LMS through instantaneous approximations (12.119) to the autocorrela-
tion matrix Rφ and the cross-correlation vector rdφ , but we can check that the same result is obtained
if we apply the gradient algorithm using as cost function the instantaneous square error, |e(n)|2, instead
of the average square error E{|e(n)|2}.

The LMS algorithm is summarized in Table 12.2. Its computational cost increases linearly with
the length of the filter, i.e., the computational cost is O(M). Table 12.3 shows the number of real
multiplications and real additions per iteration for real- and complex-valued signals. The quantities
inside brackets were computed in previous steps. We assume that a complex multiplication requires
four real multiplications and two real additions, and a complex addition requires two real additions
(it is possible to use fewer multiplications and more additions). Different ways of carrying out the
calculations may result in a different computational cost. For example, if we first computed μ × φ(n)

followed by [μφ(n)] × e∗(n), LMS would require M − 1 more real multiplications per iteration than
the ordering of Table 12.3, considering real-valued signals. For complex-valued signals, the cost would
be even higher, since LMS would require 4M − 2 more real multiplications and 2M more real additions.
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Table 12.2 Summary of the
LMS algorithm.

Initialization:
Set w(0) = 0
For n = 0,1,2, . . . , compute

ŷ(n) = wH (n)φ(n)

e(n) = d(n) − y(n)

w(n + 1) = w(n) + μe∗(n)φ(n)

Table 12.3 Computational cost of the LMS algorithm for
complex- and real-valued signals in terms of real multiplica-
tions and real additions per iteration.

Term Real signals Complex signals
× + × +

ŷ∗(n) = φH (n) [w(n)] M M − 1 4M 4M − 2

e∗(n) = d∗(n) − [
ŷ∗(n)

]
1 2

μ
[
e∗(n)

]
1 2[

μe∗(n)
]
φ(n) M 4M 2M

w(n + 1) = [w(n)] + [
μe∗(n)φ(n)

]
M 2M

Total per iteration 2M + 1 2M 8M + 2 8M

12.3.1.1 A deterministic approach for the stability of LMS
Finding the range of step sizes such that the recursion (12.124) converges is a complicated task. There
are two main approaches to finding the maximum step size: an average approach and a deterministic
(worst-case) approach. The average approach will be treated in Section 12.4.3. Since the deterministic
approach is easy to explain intuitively, we address it in the sequel (although a precise proof is not so
simple; see Refs. [328,353] for a full analysis).

For simplicity, assume that our filter is such that d(n) ≡ 0. Although this is not a very likely situation
to encounter in practice, it allows us to arrive at the important conclusions, but avoiding technical details
that would considerably complicate the discussion.

Let us rewrite the LMS recursion, expanding the error with d(n) = 0 as e∗(n) = −(wH (n)φ(n))∗ =
−φH (n)w(n) to obtain

w(n + 1) =
[
I − μφ(n)φH (n)

]
w(n). (12.125)

This is a linear system, but not a time-invariant one. It will be stable if the eigenvalues λi(n) of the
matrix A(n) = I − μφ(n)φH (n) satisfy

max
i

|λi(n)| ≤ 1, for all n ≥ 0. (12.126)

We have to be careful; if d(n) were not identically zero, condition (12.126) would have to be slightly
modified to guarantee stability (see, e.g., [14,353]).
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The eigenvalues of A(n) are easy to find if we note that φ(n) is an eigenvector of A(n) (the case
φ(n) = 0 is trivial):

A(n)φ(n) = φ(n) − μφ(n)φH (n)φ(n) = (1 − μ‖φ(n)‖2)φ(n),

where ‖φ(n)‖2 = φH (n)φ(n) is the square of the Euclidean norm. The corresponding eigenvalue is
λ1 = 1 − μ‖φ(n)‖2. All other eigenvalues are equal to one (the eigenvectors are all vectors orthogonal
to φ(n)). Therefore, the LMS algorithm (12.125) will be stable whenever

− 1 ≤ 1 − μ‖φ(n)‖2 ≤ 1 ⇐⇒ 0 ≤ μ ≤ 2

sup
n≥0

‖φ(n)‖2 . (12.127)

In this relation we used the supremum (sup) of a sequence, which is a generalization of the maximum,
defined to avoid a technicality. Consider the sequence f (n) = {1 − 0.5n}, n ≥ 0. Strictly speaking, it
has no maximum, since there is no n0 for which f (n0) ≥ f (n) for all n ≥ 0. The supremum is defined
so we can avoid this problem: supn≥0 f (n) = 1. Therefore, the supremum is equal to the maximum
whenever the latter exists, but is also defined for some sequences that do not have a maximum. The
infimum (inf) has a similar relation to the minimum.

This condition is sufficient for stability, but is too conservative, since ‖φ(n)‖2 is not at its highest
value at all instants. A popular solution is to use normalization. The idea is simple: adopt a time-varying
step size μ(n) such that

μ(n) = μ̃

ε + ‖φ(n)‖2
, (12.128)

where 0 < μ̃ < 2 and ε > 0 is used to avoid division by zero. The resulting algorithm is known as
normalized LMS (NLMS). We will talk more about it in the next section.

12.3.2 Normalized LMS algorithm
One problem with the LMS algorithm is how to choose the step size. How large should it be to enable
a high convergence rate, provide an acceptable misadjustment, and even ensure the stability of LMS?
More importantly, how can this choice be made so that the filter will work correctly even for very
different input signals? One answer to this problem is the NLMS algorithm, which we describe now. It
uses a time-varying step size, which is particularly useful when the statistics of the input signals change
quickly.

Thus, replacing the fixed step size μ by the time-varying step size μ(n) in (12.124), we obtain

w(n + 1) = w(n) + μ(n)φ(n)e∗(n). (12.129)

In order to increase the convergence speed, we could try to find μ(n) such that the a posteriori estima-
tion error,

ξ(n) = d(n) − wH (n + 1)φ(n), (12.130)

is zeroed. Note that in contrast to the a priori estimation error defined in (12.120), ξ(n) depends on the
updated estimate of the weight vector, hence the name a posteriori estimation error. Replacing (12.129)
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in (12.130), we obtain

ξ(n) =d(n) − wH (n)φ(n)︸ ︷︷ ︸
e(n)

−μ(n)φH (n)φ(n)e(n)

=
[
1 − μ(n)φH (n)φ(n)

]
e(n). (12.131)

In order to enforce ξ(n) = 0 at each time instant n, we must select

μ(n) = 1

φH (n)φ(n)
= 1

‖φ(n)‖2 . (12.132)

Replacing (12.132) in (12.129), we obtain the update equation of the normalized least-squares algo-
rithm, i.e.,

w(n + 1) = w(n) + 1

‖φ(n)‖2 φ(n)e∗(n). (12.133)

Note that the time-varying step size μ(n) depends inversely on the instantaneous power of the input
vector φ(n). Indeed, we will show in Section 12.4.3 that the maximum value of the fixed step size μ to
ensure the convergence and mean square stability of LMS depends inversely on the power of the input
signal.

In order to make (12.133) more reliable for practical implementations, it is common to introduce
two positive constants: a fixed step size μ̃ to control the rate of convergence (and the misadjustment)
and the regularization factor ε to prevent division by a small value when ‖φ(n)‖2 is small. With these
constants, the NLMS update equation reduces to

w(n + 1) = w(n) + μ̃

ε + ‖φ(n)‖2 φ(n)e∗(n). (12.134)

Some authors refer to (12.133) as NLMS and to (12.134) as ε-NLMS. However, for simplicity we
will refer to both as NLMS. The name “normalized” is due to a most useful property of NLMS: the
range of values of μ̃ for which the algorithm remains stable is independent of the statistics of x(n), i.e.,
0 < μ̃ < 2, as can be observed in Section 12.3.1.1.

As pointed out in [317], the NLMS algorithm can also be interpreted as a quasi-Newton algorithm.
As briefly explained in Box 12.1, a quasi-Newton algorithm updates the weights using approximations
for the Hessian matrix and gradient vector, i.e.,

w(n + 1) = w(n) − μ

β

[
∇̂2

wJ (n)
]−1 ∇̂wJ (n). (12.135)

Assuming the following instantaneous approximations,

∇̂wJ (n) = −βφ(n)d∗(n) + βφ(n)φH (n)w(n) = −βφ(n)e∗(n) (12.136)

and

∇̂2
wJ (n) = εI + φ(n)φH (n), (12.137)
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and replacing them in (12.135), we arrive at the stochastic recursion

w(n + 1) = w(n) + μ
[
εI + φ(n)φH (n)

]−1
φ(n)e∗(n). (12.138)

The term εI guarantees that (12.137) is invertible (a rank-one matrix such as φ(n)φH (n) is never
invertible).

To compute
[
εI + φ(n)φH (n)

]−1
, we can use the matrix inversion lemma (Box 12.3), which gives

us an expression for the inverse of an M × M matrix of the form

A = B + CDCH , (12.139)

where B and D are two square matrices with dimensions M and N , respectively, and C is an M × N

matrix. According to the matrix inversion lemma, the inverse of A is given by

A−1 = B−1 − B−1C(D−1 + CH B−1C)−1CH B−1. (12.140)

Thus, identifying

A = εI + φ(n)φH (n), B = εI , C = φ(n), and D = 1,

we obtain [
εI + φ(n)φH (n)

]−1 = ε−1I − ε−2

1 + ε−1φH (n)φ(n)
φ(n)φH (n). (12.141)

Multiplying (12.141) from the right by φ(n), after some algebraic manipulations, we get

[
εI + φ(n)φH (n)

]−1
φ(n) = φ(n)

ε + φH (n)φ(n)
= φ(n)

ε + ‖φ(n)‖2 . (12.142)

Replacing (12.142) in (12.138), we arrive at (12.134). Since Newton-based algorithms converge faster
than gradient-based algorithms, it is expected that NLMS exhibits a higher convergence rate than that
of LMS, which is indeed the case in general.

The NLMS algorithm is summarized in Table 12.4. To obtain its computational cost, we can use the
same procedure considered in the computation of the number of operations of LMS (see Table 12.3).
For complex-valued signals, NLMS requires 10M + 2 real multiplications, 10M real additions, and
one real division per iteration. For real-valued signals, it requires 3M + 1 real multiplications and
3M real additions per iteration. Note that for input vectors with a shift structure such as the FIR filters of
Eq. (12.114), its computational cost can be reduced if ‖φ(n)‖2 is computed by the following recursion

‖φ(n)‖2 = ‖φ(n − 1)‖2 − |x(n − M)|2 + |x(n)|2 (12.143)

with initialization ‖φ(−1)‖ = 0.
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Table 12.4 Summary of the NLMS
algorithm.

Initialization:
Set w(0) = 0 and 0 < μ̃ < 2
For n = 0,1,2, . . . , compute

ŷ(n) = wH (n)φ(n)

e(n) = d(n) − ŷ(n)

w(n + 1) = w(n) + μ̃

ε + ‖φ(n)‖2
e∗(n)φ(n)

12.3.3 RLS algorithm
The convergence rate of LMS type algorithms varies considerably with the input signal x(n), since they
are based on steepest descent optimization algorithms. If x(n) is a white noise, the convergence rate
is high. On the other hand, if the correlation between successive samples of x(n) is high, LMS type
algorithms converge slowly. The RLS algorithm does not have this drawback. However, this advantage
has a price: a considerable increase in the computational cost. Furthermore, numerical errors play a
more important role in RLS and may even lead to divergence of the weight estimates. Different versions
of RLS were proposed to circumvent these problems. In the sequel, we obtain the equations of the
conventional RLS algorithm.

The RLS can be derived in different ways (much as NLMS). Each form of arriving at the algorithm
highlights a different set of its properties: one that leads to many new algorithms and insights is the
connection between RLS and Kalman filters described in [319].

We present here shorter routes, starting with a derivation based on deterministic arguments. In fact,
RLS solves a deterministic least-squares problem, which is based on the weighted least-squares cost
function

JLS(n) =
n∑

�=0

λn−�|ξ(�)|2, (12.144)

where 0 � λ < 1 is a constant known as forgetting factor,

ξ(�) = d(�) − wH φ(�) (12.145)

are a posteriori errors, and

w(n + 1) = arg min
w

JLS(n). (12.146)

The factor λn−� emphasizes the most recent errors, forgetting the errors from the remote past. This is
important; otherwise, the algorithm would give too much weight to the remote past and would not be
able to track variations in the input signals. Note that w(n + 1) minimizes JLS(n) at each time instant.
Thus, RLS provides an exact solution for the least-squares problem at each time instant. As the NLMS
algorithm, RLS seeks to minimize the a posteriori error |ξ(n)|2, searching for an exact solution to an
optimization problem. The difference is that RLS searches for a weight vector w(n + 1) that takes into
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consideration the whole past history of inputs, minimizing λn|ξ(0)|2 + λn−1|ξ(1)|2 + · · · + λ|ξ(n −
1)|2 + |ξ(n)|2 at each time instant n, not only the current value |ξ(n)|2 as in NLMS.

The error sequence ξ(�) weighted by λ(n−�)/2 in the interval 0 ≤ � ≤ n can be written in vectorial
form, i.e.,

ξ(n) = d(n) − �(n)w∗, (12.147)

where

ξ(n) =
[

ξ(n) λ1/2ξ(n − 1) · · · λn/2ξ(0)

]T

, (12.148)

d(n) =
[

d(n) λ1/2d(n − 1) · · · λn/2d(0)

]T

, (12.149)

and

�(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ0(n) φ1(n) · · · φM−1(n)

λ1/2φ0(n − 1) λ1/2φ1(n − 1) · · · λ1/2φM−1(n − 1)

λφ0(n − 2) λφ1(n − 2) · · · λφM−1(n − 2)

...
. . .

. . .
...

λn/2φ0(0) λn/2φ1(0) · · · λn/2φM−1(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12.150)

Note that the weighted least-squares cost function can be rewritten in terms of the vector ξ(n), i.e.,

JLS(n) = ξH (n)ξ(n) = ‖ξ(n)‖2 =
n∑

�=0

λn−�|ξ(�)|2. (12.151)

Now, we have to find the weight vector w(n + 1) that minimizes (12.151). The gradient of JLS(n)

with relation to wH is given by

∇wJLS(n) = −β�T (n)d∗(n) + β�T (n)�∗(n)w, (12.152)

where as usual, β = 1 (resp. β = 2) for complex (resp. real) data. Defining

R̂φ(n) = �T (n)�∗(n) =
n∑

�=0

λn−�φ(�)φH (�) (12.153)

and

r̂dφ(n) = �T (n)d∗(n) =
n∑

�=0

λn−�d∗(�)φ(�), (12.154)

in which φ(n) is defined as before, (12.152) can be rewritten as

∇wJLS(n) = −β r̂dφ(n) + βR̂φ(n)w. (12.155)
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Equating ∇wJLS(n) to the null vector, we get the normal equations

R̂φ(n)w(n + 1) = r̂dφ(n). (12.156)

Note that these are a deterministic version of the normal equations we saw in Section 12.2.1. Therefore,
to minimize JLS(n), the weight vector w(n + 1) must satisfy

w(n + 1) = R̂
−1
φ (n)̂rdφ(n), (12.157)

which requires the solution of the linear system of Eqs. (12.156) at each time instant. Note that the
solution is guaranteed to exist and to be unique only if R̂φ(n) is nonsingular. In particular, the inverse
does not exist if n < M (Box 12.3). Assuming λ = 1 and that the signals x(n) and d(n) are jointly
stationary and ergodic, we obtain the following steady-state relations with probability one:

lim
n→∞

1

n + 1
R̂φ(n)

∣∣
λ=1 = Rφ and lim

n→∞
1

n + 1
r̂dφ(n)

∣∣
λ=1 = rdφ .

Therefore, the deterministic normal equations converge to the stochastic normal equations when λ = 1,
and the weight vector obtained from (12.157) converges to the Wiener solution, i.e.,

lim
n→∞w(n + 1)

∣∣
λ=1 = R−1

φ rdφ = wo. (12.158)

We should mention that with λ = 1 the convergence rate of RLS goes to zero, i.e., it loses the ability
to follow the statistical variations of the observed data. An equivalent result is obtained for LMS or
NLMS when the fixed step size μ or μ̃ is replaced by 1/n [195].

The computational cost of (12.157) is high due to the solution of the linear system, which requires ≈
M3/3 operations to solve at each instant if we use Gauss elimination – incidentally, note that computing
the inverse and using (12.157) requires approximately three times as many computations. In order to
solve the normal equations in real time and with less cost, we should rewrite (12.153) and (12.154) as
recursions, i.e.,

R̂φ(n) = λR̂φ(n − 1) + φ(n)φH (n) (12.159)

and

r̂dφ(n) = λ̂rdφ(n − 1) + d∗(n)φ(n), (12.160)

with initializations R̂φ(−1) = δI and r̂dφ(−1) = 0, where δ is a small positive constant. Note that
(12.160) is identical to (12.154), but (12.159) leads to the estimate

R̂φ(n) = λn+1δI +
n∑

�=0

λn−�φ(�)φH (�), (12.161)

and therefore the initialization guarantees the existence of the inverse at all instants. For 0 � λ < 1,
the initialization R̂φ(−1) = δI is forgotten and (12.159) becomes close to (12.153) as n increases.
Furthermore, if one wants the algorithm to forget quickly the initialization, besides using 0 � λ < 1,
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one should choose δ small (δ−1 large). Note however that a certain amount of regularization may be
useful in practice, to avoid problems when the input signal has long stretches with low power.

In order to obtain a recursion for the inverse matrix R̂
−1
φ (n), we can use the matrix inversion lemma

(Box 12.3) by comparing (12.139) with (12.159) and identifying

A = R̂φ(n), B = λR̂φ(n − 1), C = φ(n), and D = 1.

Thus, using (12.140), we obtain

R̂
−1
φ (n) = λ−1R̂

−1
φ (n − 1) − λ−2R̂

−1
φ (n − 1)φ(n)φH (n)R̂

−1
φ (n − 1)

1 + λ−1φH (n)R̂
−1
φ (n − 1)φ(n)

. (12.162)

Defining P (n)� R̂
−1
φ (n), with some algebraic manipulations in (12.162), we arrive at

P (n) = 1

λ

[
P (n − 1) − P (n − 1)φ(n)φH (n)P (n − 1)

λ + φH P (n − 1)φ(n)

]
(12.163)

with initialization P (−1) = δ−1I . This equation allows us to compute the inverse correlation matrix in
a recurrent form, avoiding the explicit computation of a matrix inverse. However, the implementation
of (12.163) in finite precision arithmetic requires some care to avoid numerical problems, as explained
in Section 12.3.3.1.

To simplify the following equations, it is convenient to define the column vector

k(n) = P (n − 1)φ(n)

λ + φH (n)P (n − 1)φ(n)
, (12.164)

which is the so-called Kalman gain. Thus, (12.163) can be rewritten as

P (n) = λ−1
[
I − k(n)φH (n)

]
P (n − 1). (12.165)

Using (12.165) and some algebraic manipulations in (12.164), we arrive at

k(n) = λ−1P (n − 1)φ(n) − λ−1k(n)φH (n)P (n − 1)φ(n)

= λ−1
[
I − k(n)φH (n)

]
P (n − 1)φ(n)

= P (n)φ(n). (12.166)

Thus, using (12.160) and (12.166) in (12.157), the weight vector w(n + 1) can also be computed recur-
sively, i.e.,

w(n + 1) = P (n)̂rdφ(n)

= λP (n)̂rdφ(n − 1) + P (n)φ(n)d∗(n)

= λP (n)̂rdφ(n − 1) + k(n)d∗(n). (12.167)
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Replacing (12.165) in (12.167), we arrive at

w(n + 1) = P (n − 1)̂rdφ(n − 1) − k(n)φH (n)P (n − 1)̂rdφ(n − 1) + k(n)d∗(n)

= w(n) − k(n)φH (n)w(n) + k(n)d∗(n)

= w(n) + k(n)[d(n) − wH (n)φ(n)︸ ︷︷ ︸
e(n)

]∗. (12.168)

The RLS algorithm was derived here as an exact solution for the least-squares problem. However, it
also can be interpreted as a quasi-Newton algorithm assuming the instantaneous approximation for the
gradient vector as in (12.136) and considering P (n) as an approximation for the inverse Hessian matrix.
Replacing these approximations in (12.135), we arrive at the same stochastic recursion (12.168).

The RLS algorithm is summarized in Table 12.5. Its computational cost increases with M2, much
faster than those of LMS and NLMS. Different ways of carrying out the calculations may result in a
slightly different computational cost, but all with the same order of magnitude, i.e., O(M2). Performing
the calculations in the following order [317]:

φH (n) × [w(n)] ,

d∗(n) −
[
φH (n)w(n)

]
,

λ−1φ(n),

P (n − 1) ×
[
λ−1φ(n)

]
,

φH (n) ×
[
λ−1P (n − 1)φ(n)

]
,

1 +
[
λ−1φH (n)P (n − 1)φ(n)

]
,

1/
[
1 + λ−1φH (n)P (n − 1)φ(n)

]
,[

λ−1φH (n)P (n − 1)φ(n)
]
×
[

1

1 + λ−1φH (n)P (n − 1)φ(n)

]
,

[
λ−1P (n − 1)φ(n)

]
×
[

λ−1φH (n)P (n − 1)φ(n)

1 + λ−1φH (n)P (n − 1)φ(n)

]
,

P (n)φ(n) =
[
λ−1P (n − 1)φ(n)

]
−
[

λ−2P (n − 1)φ(n)φH (n)P (n − 1)φ(n)

1 + λ−1φH (n)P (n − 1)φ(n)

]
,

[P (n)φ(n)] ×
[
d∗(n) − φH (n)w(n)

]
,

w(n + 1) = [w(n)] +
[
P (n)φ(n)

(
d∗(n) − φH (n)w(n)

)]
,

the conventional RLS requires 4M2 + 16M + 1 real multiplications, 4M2 + 12M − 1 real additions,
and one real division per iteration for complex-valued signals. For real-valued data, it requires M2 +
5M + 1 real multiplications, M2 + 3M real additions, and one real division per iteration. Note that the
quantities inside brackets were computed in previous steps.



786 Chapter 12 Adaptive filters

Table 12.5 Summary of the conventional
RLS algorithm.

Initialization:

Set P(−1) = δ−1I ; δ = small positive constant
w(0) = 0 and 0 � λ < 1
For n = 0,1,2, . . . , compute

k(n) = P (n − 1)φ(n)

λ + φH (n)P (n − 1)φ(n)

ŷ(n) = wH (n)φ(n)

e(n) = d(n) − ŷ(n)

w(n + 1) = w(n) + k(n)e∗(n)

P (n) = λ−1
[
I − k(n)φH (n)

]
P (n − 1)

12.3.3.1 Practical implementation of RLS
The RLS algorithm must be implemented carefully, because it is sensitive to numerical errors, which
may accumulate and make the algorithm unstable. The problem can be understood intuitively as
follows. In the conventional RLS algorithm, the inverse of the autocorrelation matrix is computed re-
cursively by (expanding (12.162))

P (n) = λ−1P (n − 1) − λ−2P (n − 1)φ(n)φH (n)P (n − 1)

1 + λ−1φH (n)P (n − 1)φ(n)
,

i.e., as the difference between two positive (semi)definite matrices. Note that since λ ≤ 1, the factor
multiplying the current P (n − 1) is λ−1 ≥ 1. In infinite precision arithmetic, any growth due to this
factor will be compensated by the second term. However, in finite precision arithmetic this compensa-
tion may not take place, and the factor λ−1 may make the recursion numerically unstable – usually, what
happens is that P (n) loses its positive definite character, so the matrix will have a negative eigenvalue,
which in its turn leads to the divergence of the coefficients. Thus, to avoid problems one might begin
by guaranteeing that P (n) stays symmetric and positive definite for all time instants n (these properties
are known as backward consistency of RLS [298,348]). Symmetry can be guaranteed by computing
only the upper or lower triangular part of P (n) and copying the result to obtain the rest of elements.
However, it is also necessary to guarantee positive definiteness. Reference [57] describes how this can
be achieved.

Due to the fast convergence rate of RLS, a large body of literature is devoted to finding numerically
stable and low-cost (i.e., O(M)) versions of RLS. This is not an easy problem, which required the
work of numerous researchers to be solved. Nowadays the user has a very large number of different
versions of RLS to choose from. There are versions with formal proofs of stability, versions that work
well in practice but without formal proofs, versions with O(M2) complexity, and versions with O(M)

complexity. The interested reader can find more references in Section 12.5.1.2.
One approach to ensure the consistency of P (n) uses a property of symmetric and positive definite

matrices (see Box 12.3): Cholesky factorizations. A symmetric and positive definite matrix P (n) may
always be factored as
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P (n) = P(n)PH (n), (12.169)

where P(n) is a lower triangular M × M matrix called the Cholesky factor of P (n). Thus, an algorithm
that computes P(n) instead of P (n) can avoid the numerical instability of the conventional RLS algo-
rithm. There are many algorithms based on this main idea; for some of them a precise stability proof is
available [298]. A very complete survey of QR-RLS algorithms is available in [19].

Another approach is available when the regressor sequence {φ(n)} has shift structure. In this case,
it is possible to derive lattice-based RLS filters that are in practice stable, although no formal proof is
available, as described, for example, in [248].

A more practical solution for the implementation of the RLS algorithm was proposed in [402].
This approach avoids propagation of the inverse covariance matrix, using an iterative method to solve
(12.156) at each step. The computational complexity is kept low by using the previous solution as
initialization and by restricting the majority of the multiplications to multiplications by powers of two
(which can be implemented as simple shifts) (see Section 12.5.1.3).

12.3.4 Comparing convergence rates
To compare the convergence of LMS, NLMS, and RLS, we next show two examples. In Example 12.E-
3.1 we consider a system identification application, and in Example 12.E-3.2 we use these algorithms
to update the weights of an equalizer.

As we will see in more detail in Section 12.4, adaptive filters are compared based on how well they
handle different classes of signals. For example, we could be interested in seeing how two filters handle
white noise or how they handle a certain level of correlation at the input. Given the stochastic nature of
the inputs, the performance measures are defined in terms of averaged cost functions, most commonly
the MSE, that is, the average of |e(n)|2 over all possible inputs in a given class. These averages can be
computed theoretically, as we show in Section 12.4, or via simulations.

For example, the MSE as a function of time, that is, the curve E{|e(n)|2} × n, is the learning curve
of the filter. A comparison of learning curves obtained theoretically and from simulations can be seen
in Fig. 12.31 further ahead. When simulations are used, one runs a filter L times for an interval of
N samples, starting always from the same conditions. For each run �, the error e(�)(n) is computed for
1 ≤ n ≤ N , and one obtains the so-called ensemble average learning curve

Ê(n)
�= 1

L

L∑
�=1

|e(�)(n)|2.

Usually the ensemble average learning curve will be a reasonable approximation of the true learning
curve for a reasonably small value of L (say, from 50 to 1000), but in some situations this may not be
true (see Refs. [259,262] for examples and a detailed explanation).

Example 12.E-3.1. The aim of this example is to identify the system wo = [
1 −0.8

]T
, assuming

that the regressor φ(n) is obtained from a process x(n) generated with a first-order autoregressive
model, whose transfer function is 1/(1 − 0.8z−1). This model is fed with an independent and identically
distributed (i.i.d.) Gaussian random process with unitary variance. Moreover, additive i.i.d. noise v(n)

with variance σ 2
v = 0.01 is added to form the desired signal.
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Considering an adaptive filter with M = 2 coefficients, we can obtain a contour plot of the MSE cost
as a function of w0 and w1 as shown in Fig. 12.26. The animations in Fig. 12.26 illustrate the behavior of
LMS (μ = 0.01), NLMS (μ̃ = 0.05, ε = 0.5), and RLS (λ = 0.99, δ = 1) initialized at w(0) = [−1.5 −
1.4]T . The correspondent curves of MSE along the iterations, estimated from the ensemble average of
1000 independent runs, are shown in Fig. 12.27. As expected for a colored input signal, RLS converges
much faster than NLMS and LMS. NLMS converges faster than LMS and achieves the solution through
a different path. To obtain a good behavior of NLMS in this example, we had to choose a relatively large
regularization factor ε. This is always necessary when NLMS is used with few coefficients, since in this
case ‖φ(n)‖2 has a high probability of becoming too close to zero and destabilize the algorithm. This
is shown in the analysis of Section 12.4.

FIGURE 12.26

LMS (μ = 0.01), NLMS (μ̃ = 0.05, ε = 0.5), and RLS (λ = 0.99, δ = 1) initialized at w(0) = [−1.5 − 1.4]T ,
σ 2

v = 0.01. An animation is also available.

Example 12.E-3.2. Now, we assume the transmission of a quadrature phase shift-keying (QPSK) sig-
nal, whose symbols belong to the alphabet {±1 ± j1}. This signal suffers the effect of the channel
(taken from [85])

H(z) = (−0.2 + j0.3) + (−0.5 + j0.4) z−1 + (0.7 − j0.6) z−2

+ (0.4 + j0.3) z−3 + (0.2 + j0.1) z−4 (12.170)

and of additive white Gaussian noise (AWGN) under a signal-to-noise ratio (SNR) of 30 dB. The
equalizer is an adaptive filter with M = 15 coefficients initialized with zero and the desired signal is the
transmitted sequence delayed by L=9 samples (go back to Fig. 12.16 to see the equalization scheme).
The adaptation parameters (μ, μ̃, ε, λ) were chosen in order to obtain the same steady-state perfor-
mance of LMS, NLMS, and RLS (note that with a longer filter, the regularization parameter ε can be

http://www.lps.usp.br/FAs/LMS_NLMS_RLS/LMS_NLMS_RLS.gif
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FIGURE 12.27

MSE along the iterations for LMS (μ = 0.01), NLMS (μ̃ = 0.05, ε = 0.5), and RLS (λ = 0.99, δ = 1) initialized at
w(0) = [−1.5 − 1.4]T , σ 2

v = 0.01, and ensemble average of 1000 independent runs.

much smaller than in the previous example). Fig. 12.28 shows the MSE along the iterations, estimated
from the ensemble average of 1000 independent runs. Again, RLS presents the fastest convergence
rate, followed by NLMS and LMS. These algorithms achieve the same steady-state MSE and therefore
present the same performance after convergence, which can be observed in Fig. 12.29, where the equal-
izer output signal constellations are shown. The MATLAB® file used in this simulation is available at
http://www.lps.usp.br.

FIGURE 12.28

MSE along the iterations for LMS (μ = 10−3), NLMS (μ̃ = 0.08, ε = 10−5), and RLS (λ = 0.997, δ = 1) initial-
ized at w(0) = 0; QPSK, L = 9, M = 15, and ensemble average of 1000 independent runs; equalization of the
channel (12.170).

http://www.lps.usp.br/FAs/LMS_NLMS_RLS/equalization_LMS_NLMS_RLS.m
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FIGURE 12.29

Equalizer output signal constellations after convergence for (a) LMS (μ = 10−3), (b) NLMS (μ̃ = 0.08,
ε = 10−5), and (c) RLS (λ = 0.997, δ = 1); initialized at w(0) = 0; QPSK, L = 9, M = 15; equalization of the
channel (12.170).

12.4 Statistical analysis
Closed-form expressions for the mean square performance of adaptive filters facilitate comparisons
between different algorithms and provide information about stability, convergence rates, MSE, and
tracking capability. Since adaptive algorithms are obtained from stochastic approximations of the cost
functions, gradients, and Hessians, their performance will degrade in comparison with the performance
of the exact algorithms. Thus, stochastic analyses are also important to measure the performance degra-
dation in relation to the exact algorithms.

The analysis of an adaptive algorithm constitutes a very hard problem, since adaptive filters are
time-varying, stochastic, and nonlinear systems. Therefore, it is common to introduce simplifying
approximations. They consist in most cases of disregarding the dependence between variables, for
example, approximating the expected value of the product of two random variables, say, E{xy}, by
the product of the expected values, E{x}E{y}. For historical reasons, these approximations are usually
referred to as assumptions in the literature.

In some situations, in particular for LMS and some of its variants, the approximations are proved to
converge to the exact solution in the limiting case of slow adaptation (μ → 0 in the case of LMS), and
their predictions tend to be reasonable for the range of step sizes used in practice. We will not reproduce
these proofs here, since they are in general very technical, but they can be found in [63,64,134,221,234,
354] for the case of LMS and in [195] for more general filters.

The literature contains a few exact analytical results, but only for LMS, under very particular con-
ditions [124,144,149,344]. In addition, the complexity of these exact models grows very quickly with
the number of coefficients, so they are only useful for short filters (up to about five coefficients).

The performance of an adaptive filter is usually described by evaluating the mean and the mean
square (variance) of the weight error vector and of the error signal e(n). This usually works very well
for slow adaptation (i.e., small step size). However, for fast adaptation, the behavior of an adaptive
filter is considerably more complicated than can be seen by looking only at means and variances. Some
of the phenomena that appear in LMS with large step sizes are described in [262,320]. References
[105,178,259,265] study algorithms with strong nonlinearities, for which the usual approximations are
not always valid.
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The analysis of NLMS was considered in [6,8,48,49,99,258,349,364]. Many works consider only
tapped-delay line regressors; the case of Volterra filters is considered for example in [71,192,230,338,
358]. For RLS filters, important models for infinite precision arithmetic can be found in [126,253]. The
case of finite precision arithmetic is discussed in Section 12.5.1.2.

The real importance of the approximations used in the adaptive filtering literature is that they lead
to reasonably simple models that capture well the overall behavior of an adaptive filter. Simple models
provide intuition about how a filter will behave if a given parameter is changed, which is important for a
designer to make good decisions. Some approximations are made because without them the mathemat-
ical analysis would not be feasible, but others are used mainly because they lead to simpler models. Of
course, there are situations in which it is important to study a filter in more detail, reducing the number
of assumptions used in the analysis, as in the references just cited.

In this section we analyze three of the most common adaptive filters – LMS, NLMS, and RLS
– starting with LMS in Section 12.4.3, and then showing how to extend these results to the other
algorithms in Section 12.4.4. To start, we need to define some useful performance measures. The MSE
is simply the expected value of |e(n)|2:

J (n)
�= E{|e(n)|2}. (12.171)

The most widely measure of performance used in the literature of adaptive filtering is the excess MSE
(EMSE), which is defined as

ζ(n) � E{|ea(n)|2}, (12.172)

where the excess a priori error is given by

ea(n) = w̃H (n)φ(n) (12.173)

and the weight error vector by

w̃(n) = wo(n) − w(n). (12.174)

Note that the optimal solution wo(n) is now allowed to be time-varying. Note also the difference be-
tween ea(n) and e(n), defined in (12.120). Both are a priori errors, but ea(n) is computed with w̃(n),
whereas e(n) is computed with w(n). The EMSE measures how much J (n) exceeds its minimum value
Jmin(n) due to adaptation: if we were able to find the optimum filter coefficients wo(n) at each time, the
EMSE would be zero. Since the actual filter coefficients are never exactly equal to the optimum values,
the EMSE measures the effect of this difference on the error variance. Closely related to the EMSE, the
misadjustment is defined as

M(n) � ζ(n)/σ 2
v , (12.175)

where σ 2
v = E{|vo|2}.

The excess a posteriori error ep(n) is mostly used in the analysis and derivations of algorithms. It
is the error obtained after using the current data φ(n) to update the coefficient vector (hence the names
a priori and a posteriori), i.e.,

ep(n) = w̃H (n + 1)φ(n). (12.176)
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Again, note the difference with respect to ξ(n), defined in (12.130).
Another common performance measure is the mean square deviation (MSD). It measures how far

w(n) is from wo(n) on average:

χ(n)
�= E{‖w̃(n)‖2}. (12.177)

The EMSE is the most frequently performance measure used for comparisons between adaptive filters;
however, in some applications, particularly for system identification, the MSD is more adequate.

We now will discuss a general model for the input signals, considering a set of approximations that
leads to reasonable, yet simple models.

12.4.1 Data model
From the orthogonality principle (recall Section 12.2), the optimal solution wo(n) satisfies the property

E
{
φ(n)

[
d(n) − wH

o (n)φ(n)
]}

= 0, (12.178)

i.e., the input regressor vector φ(n) is uncorrelated with the optimal estimation error

vo(n) � d(n) − wH
o (n)φ(n), (12.179)

whose mean is zero and whose variance σ 2
v (n) = E{|vo(n)|2} is equal to the minimum cost Jmin(n).

Thus, a linear regression model for d(n) holds, i.e.,

d(n) = wH
o (n)φ(n) + vo(n). (12.180)

It then follows that

e(n) = d(n) − wH (n)φ(n) = w̃H (n)φ(n) + vo(n) = ea(n) + vo(n), (12.181)

and the MSE is given by

J (n) = E{|e(n)|2} = E{|ea(n)|2} + 2 E{ea(n)vo(n)} + E{|vo(n)|2}
= ζ(n) + 2 E{ea(n)vo(n)} + σ 2

v (n).

The first approximation (or assumption) used in adaptive filtering analysis is to disregard the cross-
term E{ea(n)vo(n)}. Since vo(n) and φ(n) are uncorrelated, but not necessarily independent, the cross-
term does not vanish in general. From observations, however, one notes that the cross-term is usually
negligible, compared to the other terms. In order to obtain a simple model for the adaptive filter, we will
assume that φ(n) and vo(n) are independent of each other and of previous samples φ(n − k), v(n − k)

for k > 0.

12.A-1. The sequences {φ(n)} and {vo(n)} are i.i.d. and independent of each other (not only orthogo-
nal). In addition, the sequence {φ(n)} is assumed stationary and {vo(n)} is zero-mean.

The last two assumptions are not in fact necessary, but they simplify the analysis. In general the
sequence {φ(n)} is not i.i.d.: for example, if φ(n) is formed from a tapped-delay line or from a Volterra
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series expansion (see Eqs. (12.114) and (12.115)), φ(n) and φ(n − 1) will have terms in common.
However, assuming that the sequences are i.i.d. leads to simple models that in general are good ap-
proximations for the range of step sizes usually found in practice, in particular for small step sizes. The
analysis based on Assumption 12.A-1 is known in the literature as independence theory (see [244] for
an alternative justification for the approximations).

Going back to the adaptive filter recursions (see Tables 12.2–12.5 and Eq. (12.223) further ahead)
we see that the current weight error w̃(n) is a function of past inputs φ(n − 1), φ(n − 2), . . . and
noise samples v(n − 1), v(n − 2), . . . , but not of the current samples φ(n) and vo(n). Therefore, under
Assumption 12.A-1, w̃(n) is independent of vo(n) and φ(n), so that

E{ea(n)vo(n)} = E{w̃H (n)}E{φ(n)}E{vo(n)} = 0.

We conclude that under Assumption 12.A-1, the MSE J (n) = E{|e(n)|2} is related to the EMSE via

J (n) = ζ(n) + Jmin(n) = ζ(n) + σ 2
v , (12.182)

since Assumption 12.A-1 implies that Jmin(n) is a constant.
We also need a model for the variation of the optimal solution. Again, our choice is a model that

captures the main consequences of a nonconstant wo(n), without unnecessarily complicating the anal-
ysis.

12.A-2. Random-walk model. In a nonstationary environment, wo varies as

wo(n + 1) = wo(n) + q(n), (12.183)

where q(n) is a zero-mean i.i.d. vector with positive definite autocorrelation matrix Q = E{q(n)qH (n)},
independent of the initial condition w(0) and of {φ(�), v(�)} for all �.

The covariance matrix of wo, according to (12.183), grows slowly to infinity. A more general model
for the variation of wo uses the recursion

{
wo(n + 1) = wo(n) + θ(n),

θ(n) = αθ(n − 1) + q(n), 0 ≤ |α| < 1,
(12.184)

whose covariance matrix remains bounded, but the analysis becomes more complicated [97,317].
Therefore, it is common in the literature to adopt the model (12.183). Note that both models assume that
{x(n)} is a stationary random sequence, although wo(n) is allowed to vary with n. A model considering
nonstationary regressors (in fact, cyclostationary regressors) can be found in [133].

We remark that the performance in tracking of different adaptive filtering algorithms is usually stud-
ied by direct comparison. However, after a theoretical analysis for the Kalman filter applied to models
(12.183) and (12.184) was developed in [97], it became possible to make performance comparisons
against a fixed standard, since the Kalman filter is optimum for (12.183) and (12.184) if Q and α are
known.
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12.4.2 Relating the autocorrelation matrix of the weight error vector to the EMSE
and the MSD

The autocorrelation matrix of the weight error vector is defined as

S(n) � E
{
w̃(n)w̃H (n)

}
. (12.185)

This matrix is important in the statistical analysis of adaptive filters since it is related to the MSD and
the EMSE as we show next.

Recall that the MSD is given by

χ(n) = E{‖w̃(n)‖2} =
M−1∑
i=0

E{w̃2
i (n)}.

Now, the terms E{w̃2
i (n)} are exactly the terms that appear on the diagonal of S(n); therefore, recalling

that the trace of a square matrix is the sum of its main-diagonal elements (see Box 12.3), we obtain

χ(n) =
M−1∑
i=0

E{w̃2
i (n)} =

M−1∑
m=0

smm(n) = Tr(S(n)). (12.186)

Under Assumption 12.A-1, φ(n) and w̃(n) are independent, as we just saw. Therefore,

ζ(n) = E{|w̃H (n)φ(n)|2} = E{w̃H (n)φ(n)(w̃H (n)φ(n))∗}
= E{w̃H (n)φ(n)φH (n)w̃(n)} = E

{
E{w̃H (n)φ(n)φH (n)w̃(n)|w̃(n)}

}
= E

{
w̃H (n)E{φ(n)φH (n)|w̃(n)}w̃(n)

}
= E{w̃H (n)Rφw̃(n)},

where we used Assumption 12.A-1 to write E{φ(n)φH (n)} = Rφ (constant) and two properties of ex-
pected values. The first property is that for any two random variables a, b,

E{ab} = E {E{ab|b}} = E {E{a|b}b} ,

where the inner expected value is taken with respect to a and the second with respect to b. The second
property is that if a and b are independent, then E{a|b} does not depend on b, i.e., E{a|b} = E{a}.

To proceed, we apply a useful trick from matrix theory. One can check by direct computation that
if A ∈ C

K×L and B ∈C
L×K , then Tr(AB) = Tr(BA). Applying this property with A ← w̃H (n) and

B ← Rφw̃(n), we obtain

ζ(n) = Tr
(
Rφ E{w̃(n)w̃H (n)}

)
= Tr

(
RφS(n)

)
. (12.187)
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Since Rφ is symmetric, there always exists an orthogonal matrix U (i.e., U−1 = UH ) that diago-
nalizes Rφ , that is,

UH RφU =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 0 λM

⎤
⎥⎥⎥⎦ �= �, (12.188)

where λ1, λ2, . . . , λM are the eigenvalues of Rφ (see Box 12.3). Defining the rotated matrix

S′(n) � UH S(n)U

and recalling that UUH = I , (12.186) and (12.187) can be rewritten respectively as

χ(n) = Tr(U UH S(n)U︸ ︷︷ ︸
S′(n)

UH ) = Tr(US′(n)UH ) (12.189)

and

ζ(n) = Tr(U UH RφU︸ ︷︷ ︸
�

UH S(n)U︸ ︷︷ ︸
S′(n)

UH ) = Tr(U�S′(n)UH ). (12.190)

Using again the fact that Tr(AB) = Tr(BA), with A ← U , we obtain

χ(n) = Tr
(
S′(n)

)
(12.191)

and

ζ(n) = Tr
(
�S′(n)

)
. (12.192)

Note that both the MSD (12.191) and the EMSE (12.192) depend only on the diagonal entries of S′(n).
We can work therefore only with these diagonal entries, defining the vectors

s′(n) = diag(S′(n)) = [
s′

0(n) s′
1(n) · · · s′

M−1(n)
]T (12.193)

and

l = [λ0 . . . λM−1 ]T , (12.194)

where diag(A) represents a column vector with the diagonal elements of A, and evaluating the MSD
and EMSE respectively as

χ(n) =
M−1∑
k=0

s′
k(n) (12.195)
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and

ζ(n) = lT s′(n) =
M−1∑
k=0

λks
′
k(n). (12.196)

Again, the MSD and EMSE depend only on the elements of the diagonal of the rotated matrix S′(n).
In the case of EMSE, these elements are weighted by the eigenvalues of the autocorrelation matrix Rφ .
As we shall see in Section 12.4.3, the stability of LMS can be studied through a recursion for the vector
s′(n).

Thus, according to the previous results, in order to obtain closed-form expressions for the MSD and
the EMSE of an adaptive algorithm, one path is to find a recursion for the covariance matrix S(n) or
for the vector s′(n). However, this is not the only method to analyze adaptive algorithms, as we shall
see in Section 12.4.4.

12.4.3 Statistical analysis of the LMS algorithm
In this section, we present a statistical analysis for the LMS algorithm, assuming that the optimal
solution wo remains constant (q(n) ≡ 0, for all n). This analysis predicts the behavior of LMS in steady
state and in transient, and provides a range of the step size μ for which LMS operates adequately. If
you are familiar with the LMS analysis, go to Section 12.4.4, where we present a unified analysis for
LMS, NLMS, and RLS algorithms in a nonstationary environment.

We first rewrite (12.124) in terms of the weight error vector w̃. Thus, subtracting both sides of
(12.124) from wo, we obtain

wo − w(n + 1) = wo − w(n) − μφ(n)e∗(n),

w̃(n + 1) = w̃(n) − μφ(n)e∗(n). (12.197)

Replacing e∗(n) = e∗
a(n) + v∗

o(n) = φH (n)w̃(n) + v∗
o(n) in (12.197), we arrive at

w̃(n + 1) =
[
I −μφ(n)φH (n)

]
w̃(n)−μφ(n)v∗

o(n). (12.198)

First-order analysis
Taking expectations on both sides of (12.198), we obtain

E{w̃(n + 1)} = E
{[

I −μφ(n)φH (n)
]
w̃(n)

}
−μE{φ(n)v∗

o(n)}
= E

{[
I −μφ(n)φH (n)

]
w̃(n)

}
, (12.199)

where the last equality follows from the fact that φ(n) is orthogonal to v∗
o(n), according to the orthog-

onality condition (see Eq. (12.97)). Since w̃(n) is assumed to be independent of φ(n) (see Assump-
tion 12.A-1), we arrive at

E{w̃(n + 1)} = [
I −μRφ

]
E{w̃(n)}. (12.200)
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This is the same recursion we saw in Box 12.1. According to linear systems theory, this recursion
converges as long as the largest eigenvalue of A = I − μRφ has absolute value less than one, which
implies (see Box 12.1)

|1 − μλ| < 1 ⇔ 0 < μ <
2

λk

,∀k ⇔

0 < μ <
2

λmax
, (12.201)

where λk , k = 1,2, . . . ,M , are the eigenvalues of Rφ and λmax is its maximum eigenvalue. We should
notice that this range for μ does not ensure the stability of LMS: 0 < μ < 2/λmax guarantees the con-
vergence of the mean of w̃(n) = wo − w(n) towards 0, but the autocorrelation of w̃(n) may still be
diverging. We show next that the range for μ based on a second-order analysis is indeed more restric-
tive.

Second-order analysis
Now, we use (12.198) to find a recursion for S(n) and (12.187) to evaluate the EMSE of LMS. Multi-
plying (12.198) by its Hermitian, taking the expectations of both sides, we arrive at

E{w̃(n + 1)w̃H (n + 1)} = E{w̃(n)w̃H (n)}

−
A︷ ︸︸ ︷

μE{w̃(n)w̃H (n)φ(n)φH (n)}

−
B︷ ︸︸ ︷

μE{φ(n)φH (n)w̃(n)w̃H (n)}

+
C︷ ︸︸ ︷

μ2 E{φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)}

+
D︷ ︸︸ ︷

μ2 E{|vo(n)|2φ(n)φH (n)}

−
E︷ ︸︸ ︷

μE{vo(n)w̃(n)φH (n)}

−
F︷ ︸︸ ︷

μE{v∗
o(n)φ(n)w̃H (n)}

+
G︷ ︸︸ ︷

μ2 E{vo(n)φ(n)φH (n)w̃(n)φH (n)}

+
H︷ ︸︸ ︷

μ2 E{v∗
o(n)φ(n)w̃H (n)φ(n)φH (n)} . (12.202)

Now, using Assumption 12.A-1, we can evaluate the terms A–H of (12.202):
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A Recalling that Assumption 12.A-1 implies that w̃(n) is independent of φ(n), A can be approxi-
mated by

A = μE
{

E
{
w̃(n)w̃H (n)φ(n)φH (n)|φ(n)

}}
≈μE

{
E
{
w̃(n)w̃H (n)

}
φ(n)φH (n)

}
=μS(n) E

{
φ(n)φH (n)

}
= μS(n)Rφ . (12.203)

B Analogously, we obtain for B

B ≈ μRφS(n). (12.204)

C Using Assumption 12.A-1, C can be rewritten as

C = μ2 E
{
φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)

}
≈ μ2 E

{
φ(n)φH (n)S(n)φ(n)φH (n)

}
. (12.205)

We return to this term further on.
D Using the assumption that vo(n) is independent of φ(n) and w̃(n), D reduces to

D = μ2 E{|vo(n)|2φ(n)φH (n)} ≈ μ2 σ 2
v Rφ . (12.206)

E Using the fact that vo(n) is a zero-mean random variable and the assumption that it is independent
of φ(n) and w̃(n), E is an M × M null matrix. Using the same arguments, F , G, and H are
also null matrices. We should point out that the zero-mean assumption for vo(n) is not necessary,
but it really facilitates the analysis. Furthermore, as we saw in Section 12.2.1.4, we can enforce
E{vo(n)} = 0 using simple methods.

From the previous results, (12.202) reduces to

S(n + 1) ≈ S(n) − μS(n)Rφ − μRφS(n)

+ μ2 E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
︸ ︷︷ ︸

C

+μ2σ 2
v Rφ . (12.207)

This recursion is convenient to obtain closed-form expressions for the EMSE and the MSD of LMS.
Observe that the four first terms of the right-hand side of (12.207) are linear in S(n). Assuming that μ

is sufficiently small, C can be neglected with respect to the three first terms on the right-hand side of
(12.207). Thus, for small step sizes, (12.207) reduces to

S(n + 1) ≈ S(n) − μ
[
S(n)Rφ + RφS(n)

]+ μ2σ 2
v Rφ, (12.208)

with initialization S(0) = [wo − w(0)] [wo − w(0)]H .
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Since we can obtain the EMSE and the MSD from S(n) and Rφ through (12.187) and (12.186), we
should use the recursion (12.208) to compute S(n) and then evaluate ζ(n) = Tr(S(n)Rφ) and χ(n) =
Tr(S(n)). Particularly, for n → ∞, since S(n + 1) ≈ S(n), we obtain

S(∞)Rφ + RφS(∞) = μσ 2
v Rφ . (12.209)

Taking the trace of both sides of (12.209), we arrive at an analytical expression for the steady-state
EMSE of LMS, i.e.,

ζLMS(∞) ≈ μσ 2
v Tr(Rφ)

2
(for sufficiently small μ). (12.210)

This expression indicates that the EMSE of LMS increases with μ and with the length of the filter. The
dependence on the filter length is through the trace of Rφ . It is more evident when the class of filters

we are considering is FIR, that is, when φ(n) = [
x(n) . . . x(n − M + 1)

]T
(a tapped-delay line). In

this case, if {x(n)} is stationary, then Tr(Rφ) = M E{x2(n)}, M times the average power of x(n).
Turning now to the filter coefficients, if we multiply both sides of (12.209) from the right by R−1

φ ,
taking the trace of both sides, and recalling that Tr(AB) = Tr(BA), we obtain an expression for the
steady-state MSD of LMS, i.e.,

χLMS(∞) ≈ μσ 2
v M

2
(for sufficiently small μ). (12.211)

Again, the smaller the step size μ and the filter length M , the smaller the MSD of LMS.
These results explain what we observed in the simulations in Section 12.1.2 (Figs. 12.9 and 12.10):

for larger values of μ the filter converges faster, but hovers around the optimum solution in a larger
region. The size of this region is what the MSD attempts to measure – the EMSE measures how much
this hovering affects the error.

These quantities are important in practical situations. For example, in an actual implementation of
an acoustic echo canceler, when the near-end user is speaking, his or her voice is part of v(n). Since
the near-end speech is normally stronger than the echo, σ 2

v tends to be quite large when the near-end
speaker is talking. If the adaptive filter were allowed to keep adapting at these moments, (12.210) shows
that the filter estimates would wander too far from the optimum. To avoid this problem, the step size is
reduced to zero whenever the near-end user is speaking. A double-talk detector is used to decide when
to stop adaptation.

It can be shown that (12.208) is stable for sufficiently small μ. However, (12.208) cannot be used
to find a range of values of μ that guarantee stability, due to the approximations made, particularly the
discarding of term C. Thus, in order to study the stability of LMS, we consider next an approximation
for this term, based the assumption that the input vector is Gaussian. This assumption allows us to
approximate C as

C ≈ Rφ Tr(S(n)Rφ) + βRφS(n)Rφ, (12.212)

where as usual, β = 1 (resp. β = 2) for complex (resp. real) data. See Box 12.7 for the derivation of
(12.212).
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Replacing (12.212) in (12.207), we arrive at

S(n + 1) ≈S(n) − μ
[
S(n)Rφ + RφS(n)

]
+ μ2

[
Rφ Tr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ 2
v Rφ

]
. (12.213)

The stability of (12.213) is determined through a recursion for the vector s′(n), which contains the
elements of the diagonal of the rotated matrix S′(n) = UH S(n)U (see Section 12.4.2). A recursion
for S′(n) can be obtained by multiplying (12.213) from the left by UH and from the right by U and
recalling that UUH = I , which leads to

S′(n + 1) ≈S′(n) − μ
[
S′(n)� + �S′(n)

]
+ μ2 [�Tr(�S ′(n)) + β�S′(n)�

]+ μ2σ 2
v �, (12.214)

where � is defined as in (12.188). Thus, a recursion for s′(n + 1) is given by

s′(n + 1) =
[
I − 2μ� + μ2

(
β�2 + llT

)]
s′(n) + μ2σ 2

v l, (12.215)

where l is defined in (12.194).
The system matrix A of (12.215) is given by

A = I − 2μ� + μ2
(
β�2 + llT

)
= (I − μ�)2 + μ2(β − 1)�2 + μ2llT .

Although it is possible to obtain the exact values of all eigenvalues of A, as done in [353], we follow
here a much simpler, approximate route. We can use Fact 12.9 in Box 12.3 to find an upper bound for
the largest eigenvalue νi of A, using the 1-norm of A:

max
0≤i≤M−1

|νi | ≤ ‖A‖1 = max
0≤i≤M−1

M−1∑
j=0

|aij |,

where aij are the entries of A. If we find a range of μ for which ‖A‖1 ≤ 1, then the recursion will be
stable. This will be of course a conservative condition (sufficient, but not necessary).

Now note that the ith column of A has entries λiλj if i = j and (1 − μλi)
2 + μ2(β − 1)λ2

i + μ2λ2
i

in the term corresponding to the diagonal. Since all terms are positive, the 1-norm is

max
0≤i≤M−1

⎡
⎣(1 − μλi)

2 + μ2(β − 1)λ2
i + μ2λi

M−1∑
j=0

λj

⎤
⎦

= max
0≤i≤M−1

[
(1 − μλi)

2 + μ2(β − 1)λ2
i + μ2λi Tr(�)

]
.

Recall that Tr(�) = Tr(Rφ) (Fact 12.1 from Box 12.3). Therefore, the recursion will be stable if

1 − 2μλi + μ2λ2
i + μ2(β − 1)λ2

i + μ2λi Tr(Rφ) ≤ 1, 0 ≤ i ≤ M − 1.
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Simplifying, we obtain the condition

μ ≤ 2

βλi + Tr(Rφ)
, 0 ≤ i ≤ M − 1.

The smallest bound is for λi = λmax:

μ ≤ 2

βλmax + Tr(Rφ)
. (12.216)

If we replace λmax by Tr(Rφ) ≥ λmax in the denominator, we obtain a simpler, but more conservative
condition:

μ ≤ 2

(β + 1)Tr(Rφ)
. (12.217)

For real data, this range reduces to

0 < μ <
2

3 Tr(Rφ)
(real data), (12.218)

and for complex data, this range reduces to

0 < μ <
1

Tr(Rφ)
(complex data). (12.219)

If the input is a tapped-delay line as in (12.114), Tr(Rφ) =∑M−1
k=0 E{|x(n − k)|2}. If {x(n)} is a station-

ary sequence, the stability condition for LMS is easy to obtain: we need to choose μ in the range

0 < μ <
2

(β + 1) × M × (average power of x(n))
. (12.220)

This concludes our stability analysis for LMS. We now show how to extend these results to NLMS
and RLS in a unified way. At the end of the next section, we give examples comparing the models to
simulated results.

12.4.4 A unified statistical analysis
In this section, we assume a nonstationary environment, where the optimal solution varies according
to the random walk model (see Assumption 12.A-2). We start by obtaining a general update equation
for the LMS, NLMS, and RLS algorithms, in order to provide a unified statistical analysis for these
algorithms.

12.4.4.1 A general update equation
In order to provide a unified analysis for the LMS, NLMS, and RLS algorithms, we consider the fol-
lowing general update equation:

w(n + 1) = w(n) + ρ(n)M(n)φ(n)e∗(n), (12.221)
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where ρ(n) is a step size, M(n) is a nonsingular matrix with Hermitian symmetry (MH(n) = M(n)),
and e(n) = d(n) − wH (n)φ(n) is the estimation error. Many adaptive algorithms can be written as in
(12.221), with proper choices of ρ(n) and M(n). The LMS, NLMS, and RLS algorithms employ the
step sizes ρ(n) and the matrices M(n) as in Table 12.6, where I is the M × M identity matrix, μ and
0 < μ̃ < 2 are step sizes, and 0 � λ < 1 is a forgetting factor. For RLS, M(n) = (1 − λ)−1P (n) (see
Eq. (12.163)). Note that since (1 − λ) plays the role of step size in RLS, we multiply the matrix P (n)

by (1 − λ)−1, keeping the update equation of the RLS weights as in (12.168).
We must rewrite (12.221) in terms of the weight error vector w̃. Thus, subtracting both sides of

(12.221) from wo(n + 1) = wo(n) + q(n) (Eq. (12.183)), we obtain

wo(n + 1) − w(n + 1) = wo(n) + q(n) − w(n) − ρ(n)M(n)φ(n)e∗(n),

w̃(n + 1) = w̃(n) − ρ(n)M(n)φ(n)e∗(n) + q(n). (12.222)

Replacing e∗(n) = e∗
a(n) + v∗

o(n) = φH (n)w̃(n) + v∗
o(n) in (12.222), we arrive at

w̃(n + 1) =
[
I −ρ(n)M(n)φ(n)φH (n)

]
w̃(n)−ρ(n)M(n)φ(n)v∗

o(n) + q(n). (12.223)

Table 12.6 Parameters of LMS, NLMS, and
RLS algorithms.

Alg. ρ(n) M−1(n)

LMS μ I

NLMS
μ̃

ε + ‖φ(n)‖2
I

RLS 1 − λ (1 − λ)

n∑
�=1

λn−�φ(�)φH (�)

We next use recursion (12.223) to evaluate the EMSE and MSD of LMS, NLMS, and RLS.

12.4.4.2 Alternative analysis methods
Closed-form expressions for the EMSE and MSD can be obtained in two ways:

(i) Finding a recursion for the correlation matrix of the weight error vector, denoted by S(n). The
EMSE and MSE can be easily computed given S(n), as we saw in Section 12.4.2. This is the
earlier approach in the literature [117,172] and therefore, we refer to it here as the traditional
method.

(ii) Using the energy conservation analysis of [313,317,321,396]. The energy conservation approach
relies on an energy conservation relation that holds for a large class of adaptive filters. The en-
ergy conservation method presents some advantages when compared to the traditional one. For
example, using energy conservation, one can obtain steady-state results directly, bypassing several
of the difficulties encountered in obtaining them as a limiting case of a transient analysis. This
method can also be used in transient analyses of adaptive algorithms (see, e.g., Part V of [317]).

It is important to understand that both methods involve different sets of approximations (assump-
tions), so they do not always arrive at the same expressions. Generally, they tend to be equal in the
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limit of slow adaptation (i.e., if ρ(n) → 0 in (12.223)). For larger values of ρ(n), which method will
provide the best approximation depends on the algorithm. As for the work necessary to arrive at the
final answers, the energy conservation approach is almost always easier to use if one is interested only
in steady-state results. If one is interested in transient performance and stability studies, then the tradi-
tional method may be simpler, depending on the algorithm under study.

To give an overview of both methods, we first use the traditional method to obtain the transient and
steady-state performance of the LMS, NLMS, and RLS algorithms. This is an extension of what we did
for LMS in Section 12.4.3, taking advantage of the similarities between the algorithms. In the sequel, we
employ the energy conservation method to obtain closed-form expressions for the steady-state EMSE
of the same algorithms.

In this section we allow the environment to be nonstationary, i.e., the optimal solution wo is time-
varying. The results for stationary environments can be obtained simply by making Q = 0 in the
equations below. In order to simplify the arguments, we require that the regressor sequence {φ(n)}
be WSS, that is, we assume that Rφ is constant.

12.4.4.3 Analysis with the traditional method
The traditional analysis method consists of finding a recursion for S(n) and using (12.186) and (12.187)
to evaluate the MSD and the EMSE, respectively. A recursion for S(n) can be obtained by multiplying
(12.223) by its Hermitian, taking the expectations of both sides, and recalling that Assumption 12.A-1
implies that w̃(n) is independent of φ(n) and of the zero-mean vo(n). Furthermore, using the fact that
E{w̃(n)qH (n)} = 0 since the sequence {q(n)} is i.i.d. (Assumption 12.A-2), we arrive at

E{w̃(n + 1)w̃H (n + 1)} = E{q(n)qH (n)} + E{w̃(n)w̃H (n)}

−
A︷ ︸︸ ︷

E{ρ(n)w̃(n)w̃H (n)φ(n)φH (n)M(n)}

−
B︷ ︸︸ ︷

E{ρ(n)M(n)φ(n)φH (n)w̃(n)w̃H (n)}

+
C︷ ︸︸ ︷

E{ρ2(n)M(n)φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)M(n)}

+
D︷ ︸︸ ︷

E{ρ2(n)|vo(n)|2M(n)φ(n)φH (n)M(n)} . (12.224)

To simplify (12.224), we also need two additional assumptions.

12.A-3. Matrix M(n) varies slowly in relation to w̃(n). Thus, when M(n) appears inside the expec-
tations of (12.224), we simply replace it by its mean. For LMS and NLMS, this assumption is not
necessary, since M(n) = I . For RLS, M(n) = (1 − λ)−1P (n) ≈ (1 − λ)−1 E{P (n)} if λ ≈ 1.

12.A-4. The input regressor vector φ(n) is assumed to be Gaussian. This assumption makes the analysis
more tractable, since Gaussianity facilitates the computation of the expected values in C. Note however
that this assumption will never hold in the case of Volterra filters, since (for example) x(n) and x2(n)

cannot both be Gaussian.
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Now, using Assumptions 12.A-1–12.A-4, we can evaluate the terms A–D of (12.224):

A The term A can be approximated by

A = E
{

E
{
ρ(n)w̃(n)w̃H (n)φ(n)φH (n)M(n)|φ(n)

}}
≈E

{
ρ(n)E

{
w̃(n)w̃H (n)

}
φ(n)φH (n)

}
E {M(n)}

=S(n) E
{
ρ(n)φ(n)φH (n)

}
E {M(n)} . (12.225)

For LMS, this term reduces to

ALMS ≈ μS(n)Rφ . (12.226)

For NLMS, we must obtain an approximation for

E
{
ρ(n)φ(n)φH (n)

}
= μ̃E

{
φ(n)φH (n)

ε + φH (n)φ(n)

}
. (12.227)

It is possible to evaluate this expected value exactly (see [6,7,48,49]), but our intention here is to
obtain the simplest possible model. Therefore, we will use two additional approximations.

12.A-5. The number of coefficients M is large enough for each element φ(n)φH (n) in the numer-
ator to be approximately independent of the denominator

∑M−1
k=0 |φ(n − k)|2 and for the following

approximation to hold:

E

{
1

(ε + φH (n)φ(n))k

}
≈ 1

E
{
(ε + φH (n)φ(n))k

} . (12.228)

This is equivalent to applying the averaging principle proposed in [314], since for large M , ‖φ(n)‖2

tends to vary slowly compared to the individual entries of φ(n)φH (n).
Thus, (12.227) can be approximated as

E

{
φ(n)φH (n)

ε + φH (n)φ(n)

}
≈ E

{
1

ε + φH (n)φ(n)

}
E
{
φ(n)φH (n)

}
. (12.229)

Under Assumption 12.A-5, the first expected value in (12.229) can be approximated by

E

{
1

ε + φH (n)φ(n)

}
≈ 1

E{ε + φH (n)φ(n)} = 1

ε + Tr(Rφ)
. (12.230)

An alternative, more accurate approximation is obtained when φ(n) is Gaussian and a tapped-delay
line.

12.A-6. The regressor φ(n) is formed by a tapped-delay line with Gaussian entries as in (12.114),
and ε = 0.
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Under Assumptions 12.A-4, 12.A-5, and 12.A-6 it can be shown (see [99] for details) that

E

{
1

ε + φH (n)φ(n)

}
≈ 1

σ 2
x (M − 2)

. (12.231)

Both approximations are only valid for long filters. However, (12.231) shows that NLMS needs a
large regularization constant if M < 3, which is verified in practice [48]. We will present the final
results for NLMS in terms of Assumption 12.A-6, but recall that a less precise, but more general
option is available using only Assumption 12.A-4 and approximations such as (12.230).
Thus, the term A for NLMS reduces to (using (12.231))

ANLMS ≈ μ̃

σ 2
x (M − 2)

S(n)Rφ . (12.232)

Finally, for RLS, we obtain

ARLS ≈ S(n)RφP (n), (12.233)

where P (n) � E{R−1
φ (n)}, which we will evaluate later on.

B Analogously, we obtain for B

B ≈ E {M(n)}E
{
ρ(n)φ(n)φH (n)

}
S(n). (12.234)

Particularizing for each algorithm, we have

BLMS ≈ μRφS(n), (12.235)

BNLMS ≈ μ̃

σ 2
x (M − 2)

RφS(n), (12.236)

and

BRLS ≈ P (n)RφS(n). (12.237)

C The term C can be approximated by

C = E
{
ρ2(n)M(n)φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)M(n)

}
≈ E {M(n)}E

{
ρ2(n)φ(n)φH (n)S(n)φ(n)φH (n)

}
E {M(n)} . (12.238)

Under the Gaussianity assumption, Assumption 12.A-4, we have (see Box 12.7)

E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
= Rφ Tr(S(n)Rφ) + βRφS(n)Rφ, (12.239)

where β = 1 (resp. β = 2) for complex (resp. real) data. Thus, for LMS we have

CLMS ≈ μ2 [Rφ Tr(S(n)Rφ) + βRφS(n)Rφ

]
. (12.240)

For NLMS, using the same arguments to get (12.229), the following approximation holds for large
M:
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E
{
ρ2(n)φ(n)φH (n)S(n)φ(n)φH (n)

}

≈ μ̃2 E

{
1[

ε + φH (n)φ(n)
]2

}
E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
. (12.241)

Under Assumptions 12.A-4 and 12.A-5, using (12.281) and (12.282) from Box 12.7 with S = I ,
the first expectation on the right-hand side of (12.241) can be approximated for large M by [46]

E

{
1[

ε + φH (n)φ(n)
]2

}
≈ 1

ε2 + 2ε Tr(Rφ) + β Tr(R2
φ) + Tr2(Rφ)

. (12.242)

On the other hand, under Assumption 12.A-6, we obtain [99]

E

{
1[

φH (n)φ(n)
]2

}
≈ 1

σ 4
x (M − 2)(M − 4)

. (12.243)

Replacing (12.243) and (12.239) in (12.241), we arrive at

CNLMS ≈ μ̃2

σ 4
x (M − 2)(M − 4)

[
Rφ Tr(S(n)Rφ) + βRφS(n)Rφ

]
. (12.244)

Finally, for RLS we obtain

CRLS ≈ P (n)
[
Rφ Tr(S(n)Rφ) + βRφS(n)Rφ

]
P (n). (12.245)

D Using the assumption that vo(n) is independent of φ(n) and w̃(n), D reduces to

D = E{ρ2(n)|vo(n)|2M(n)φ(n)φH (n)M(n)}
≈ σ 2

v E{M(n)}E{ρ2(n)φ(n)φH (n)}E{M(n)}. (12.246)

Particularizing for each algorithm, we obtain

DLMS ≈ μ2 σ 2
v Rφ(n), (12.247)

DNLMS ≈ μ̃2

σ 4
x (M − 2)(M − 4)

σ 2
v Rφ(n), (12.248)

where we could also have used (12.242), and

DRLS ≈ σ 2
v P (n)RφP (n). (12.249)

From the previous results, (12.224) reduces to

S(n + 1) ≈ S(n) − E{ρ(n)} [S(n)Rφ E{M(n)} + E{M(n)}RφS(n)
]

+ E{ρ2(n)}E{M(n)} [Rφ Tr(S(n)Rφ) + βRφS(n)Rφ

]
E{M(n)}
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+ σ 2
v E{ρ2(n)}E{M(n)}Rφ E{M(n)} + Q (12.250)

with initialization S(0) = [wo(0) − w(0)] [wo(0) − w(0)]H .
For RLS, we still need an approximation for P (n) = E{P (n)}. Initializing the estimate of the auto-

correlation matrix with R̂φ(−1) = δI , we will have at iteration n

R̂φ(n) = λnδI +
n∑

�=1

λn−�φ(�)φH (�). (12.251)

Taking the expectations of both sides of (12.251), we obtain

E
{
R̂φ(n)

}= λnδI + Rφ
1 − λn

1 − λ
. (12.252)

For λ ≈ 1, the variance of R̂φ(n) is small, and we can approximate P (n) ≈ [
E
{
R̂φ(n)

}]−1
, so that

P (n) ≈
[
λnδI + Rφ

1 − λn

1 − λ

]−1

. (12.253)

This approximation is good for large n and in steady state. During the initial phases of the transient,
however, the approximation will only be reasonable if δ is large enough to make the last term in (12.252)
small compared to λnδI . This is because for n < M , the term

∑n
�=1 λn−�φ(�)φH (�) in (12.251) will

be singular, and thus it will not be well approximated by (1 − λn)Rφ/(1 − λ).
Using the previous approximations, (12.250) can be particularized for the LMS, NLMS, and RLS

algorithms as shown in Table 12.7. Since we can obtain the EMSE and the MSD from S(n) and Rφ

through (12.187) and (12.186), we should use the recursions of Table 12.7 to compute S(n) and then
evaluate ζ(n) = Tr(S(n)Rφ) and χ(n) = Tr(S(n)).

Table 12.7 Recursions for covariance matrix S(n + 1). The expressions
for NLMS assume that the regressor is a tapped-delay line. Alternative
expressions for NLMS are available using (12.230) and (12.242).

Alg. S(n + 1)

LMS S(n + 1) ≈ S(n) − μ
[
S(n)Rφ + RφS(n)

]
+ μ2

[
Rφ Tr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ 2
v Rφ

]
+ Q

NLMS S(n + 1) ≈ S(n) − μ̃

σ 2
x (M − 2)

[
S(n)Rφ + RφS(n)

]
+ μ̃2

σ 4
x (M − 2)(M − 4)

[
Rφ Tr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ 2
v Rφ

]
+ Q

RLS S(n + 1) ≈ S(n) − [
S(n)RφP (n) + P (n)RφS(n)

]
+ P (n)

[
Rφ Tr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ 2
v Rφ

]
P (n) + Q

Example 12.E-4.3. To verify the accuracy of the expressions of Table 12.7, we consider a system
identification application in a stationary environment (Q = 0). The optimal solution is a low-pass
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FIR filter with linear phase, whose coefficients are shown in Fig. 12.30. The regressor φ(n) is ob-
tained from a process x(n) generated with a first-order autoregressive model, whose transfer function
is

√
1 − b2/(1 − bz−1). Note that the sequence {φ(n)} is not i.i.d. This model is fed with an i.i.d. Gaus-

sian random process, whose variance is such that Tr(Rφ) = 1. Moreover, additive i.i.d. noise vo(n) with
variance σ 2

v = 0.01 is added to form the desired signal.
Fig. 12.31 shows the EMSE for RLS (λ = 0.995, δ = 1), NLMS (μ̃ = 0.1, ε = 10−5), and LMS

(μ = 0.05), estimated from the ensemble average of 2000 independent runs. The dashed lines represent
the theoretical EMSE computed as ζ(n) = Tr(S(n)Rφ). We can observe a good agreement between
theory and simulation.

FIGURE 12.30

Impulse response wo of the unknown low-pass filter.

FIGURE 12.31

EMSE for RLS (λ = 0.995, δ = 1), NLMS (μ̃ = 0.1, ε = 10−5), and LMS (μ = 0.05); b = 0.8, σ 2
v = 10−2, σ 2

q = 0;
mean of 2000 independent runs. The dashed lines represent the predicted values of ζ(n) for each algorithm.

Fig. 12.32 shows the EMSE of RLS (λ = 0.995), assuming different values for δ. We can observe
that the theoretical EMSE of RLS presents a good agreement with simulation during the initial phases
of the transient, but only for large values of δ due to the approximation (12.253).
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FIGURE 12.32

EMSE for RLS considering λ = 0.995 and different values of δ; b = 0.8, σ 2
v = 10−2, σ 2

q = 0; mean of 2000
independent runs. The dashed lines represent the predicted values of ζ(n) for each algorithm.

12.4.4.4 Steady-state analysis with the energy conservation method
This method (also known as the feedback approach [222,313]) is based on an energy conservation
relation that holds for a large class of adaptive filters. To obtain this relation for the algorithms of the
form (12.221), we first assume a stationary environment (q(n) ≡ 0).

Recall that the excess a posteriori error is given by

ep(n) = w̃H (n + 1)φ(n). (12.254)

Then, we multiply both sides of the Hermitian of (12.222) (with q(n) ≡ 0) from the right by φ(n) to
obtain

w̃H (n + 1)φ(n) = w̃H (n)φ(n) − ρ(n)φH (n)M(n)φ(n)e(n). (12.255)

Using (12.173) and (12.254), (12.255) reduces to

ep(n) = ea(n) − ρ(n)‖φ(n)‖2
M(n)e(n), (12.256)
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where ‖u‖2
A = uH Au stands for the Euclidean norm of u weighted by the matrix A. Using (12.256) to

eliminate e(n) in (12.222) (with q(n) ≡ 0) and assuming that φ(n) = 0, we get

w̃(n + 1) + M(n)φ(n)

‖φ(n)‖2
M(n)

e∗
a(n) = w̃(n) + M(n)φ(n)

‖φ(n)‖2
M(n)

e∗
p(n). (12.257)

Defining

ρ̄(n) �
{

1/‖φ(n)‖2
M(n), if φ(n) = 0,

0, otherwise,
(12.258)

to include the case of zero regressor and equating the squared weighted norms on both sides of (12.257)
with M−1(n) as a weighting matrix, the cross-terms cancel and we obtain

‖w̃(n + 1)‖2
M−1(n)

+ ρ̄(n)|ea(n)|2 = ‖w̃(n)‖2
M−1(n)

+ ρ̄(n)|ep(n)|2. (12.259)

This relation shows how the weighted energies of the weight error vectors at two successive time
instants are related to the energies of the excess a priori and excess a posteriori errors. This relation
is the reason why this approach is known as the energy conservation method – (12.259) relates the
(weighted) coefficient error energies at instants n and n + 1 to the a priori and a posteriori errors. In
[317], this energy conservation relation is used extensively to find models for a wide class of adaptive
filters. We follow here a shorter route, however, and derive in a more direct way the relations necessary
for the study of just LMS, NLMS, and RLS.

We can obtain the steady-state EMSE by computing the squared weighted norms on both sides of
(12.222) with M−1(n) as a weighting matrix, which leads to

‖w̃(n + 1)‖2
M−1(n)

=‖w̃(n)‖2
M−1(n)

+ ρ2(n)|e(n)|2‖φ(n)‖2
M(n)

− ρ(n)
[
ea(n)e∗(n) + e∗

a(n)e(n)
]+ ‖q(n)‖M−1(n). (12.260)

By taking expectations on both sides of (12.260), we arrive at (we already used Assumption 12.A-2 to
eliminate cross-terms with q(n) on the right-hand side)

A︷ ︸︸ ︷
E
{
‖w̃(n + 1)‖2

M−1(n)

}
=

B︷ ︸︸ ︷
E
{
‖w̃(n)‖2

M−1(n)

}

+
C︷ ︸︸ ︷

E
{
ρ2(n)|e(n)|2‖φ(n)‖2

M(n)

}

−
D︷ ︸︸ ︷

E
{
ρ(n)

[
ea(n)e∗(n) + e∗

a(n)e(n)
] }+

+
E︷ ︸︸ ︷

‖q(n)‖2
M−1(n)

. (12.261)

To proceed, we have to assume again that matrix M−1(n) varies slowly in relation to w̃(n) and q(n),
as in Assumption 12.A-3. Since now we are dealing only with the steady state, this approximation is in
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general good. Instead of Assumption 12.A-1, in energy conservation analysis the following assumptions
are used.

12.A-7. ‖φ(n)‖2
M(n) is independent of ea(n) at the steady state.

12.A-8. The noise sequence {vo(n)} is i.i.d. and independent of the input sequence {φ(n)}.
Assumption 12.A-7 is referred to in the literature as the separation principle and is reasonable in

steady state since for large n, ea(n) tends to be less sensitive to the regressor data, in particular for long
filters. Assumption 12.A-8 is a weakened version of Assumption 12.A-1, which is necessary to relate
the MSE with the EMSE through (12.182).

Under Assumptions 12.A-2, 12.A-3, and 12.A-7, we can now evaluate the terms A–E :

A Using Assumption 12.A-3, we obtain

A ≈ E
{
‖w̃(n + 1)‖2

E{M−1(n)}
}

. (12.262)

For LMS and NLMS, we have

ALMS = ANLMS ≈ E
{
‖w̃(n + 1)‖2

}
. (12.263)

For RLS,

ARLS ≈ E
{
‖w̃(n + 1)‖2

Rφ

}
. (12.264)

B Assuming that the filter is stable and reaches a steady state, we have

B = E
{
‖w̃(n)‖2

M−1(n)

}
≈ E

{
‖w̃(n + 1)‖2

M−1(n)

}
. (12.265)

C Given that e(n) = ea(n) + vo(n), since vo(n) is assumed to be independent of ea(n) (Assump-
tion 12.A-8), we obtain

E{|e(n)|2} ≈ E{|ea(n)|2} + σ 2
v .

Then, using Assumptions 12.A-3 and 12.A-8, we arrive at

C ≈ E
{
ρ2(n)φH (n)E{M(n)}φ(n)

}(
E{|ea(n)|2} + σ 2

v

)
. (12.266)

For LMS, this term reduces to

CLMS ≈ μ2 Tr(Rφ)
(

E{|ea(n)|2} + σ 2
v

)
. (12.267)

For NLMS,

CNLMS ≈ μ̃2 E

{
1

ε + φH (n)φ(n)

}(
E{|ea(n)|2} + σ 2

v

)
, (12.268)
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which for long filters and Gaussian tapped-delay line regressors can be approximated as (see
Eq. (12.231) and the alternative (12.230) for general regressors)

CNLMS ≈ μ̃2

σ 2
x (M − 2)

(
E{|ea(n)|2} + σ 2

v

)
. (12.269)

Finally, for RLS we obtain

CRLS ≈ (1 − λ)2M
(

E{|ea(n)|2} + σ 2
v

)
. (12.270)

D Using the same arguments, D reduces to

D ≈ 2 E{ρ(n)}E{|ea(n)|2}. (12.271)

For LMS, DLMS ≈ 2μE{|ea(n)|2}. Using Eq. (12.231) for NLMS, we get

DNLMS ≈ 2μ̃

σ 2
x (M − 2)

E{|ea(n)|2}.

For RLS, this term is given by DRLS ≈ 2(1 − λ)E{|ea(n)|2}.
E Using Assumption 12.A-3 and recalling that Tr(AB) = Tr(BA), we obtain

E ≈ E
{
qH (n)E{M−1(n)}q(n)

}
= Tr

(
E
{
M−1(n)

}
E{q(n)qH (n)}

)
.

For LMS and NLMS this reduces to

ELMS = ENLMS ≈ Tr(Q). (12.272)

For RLS,

ERLS ≈ Tr(RφQ). (12.273)

Using these approximations in (12.261), we arrive at the following steady-state approximation:

E{|ea(n)|2} ≈ σ 2
v E

{
ρ2(n)φH (n)E{M(n)}φ(n)

}+ Tr(QE{M−1(n)})
2 E{ρ(n)} − E

{
ρ2(n)φH (n)E{M(n)}φ(n)

} . (12.274)

Particularizing (12.274) for LMS, NLMS, and RLS, we obtain the results of the second column of
Table 12.8, which hold over a wide range of step sizes and forgetting factors.

12.4.4.5 Relation between the results obtained with both analysis methods
As we explained before, each method is based on a different set of approximations. We now show how
they are related.

The energy conservation method is capable of obtaining closed-form expressions for the EMSE
using less restrictive assumptions; in particular, φ(n) is not required to be Gaussian. These results are
equivalent to those obtained for LMS and RLS using the traditional analysis, taking the recursions
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of Table 12.7 to the limit as n → ∞ and assuming β = 0 (recall that the values of β used for the
traditional analysis are only valid if φ(n) is Gaussian). The assumption of β = 0 implies the following
approximation:

E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
≈ Rφ Tr(S(n)Rφ).

For small step sizes, this approximation does not have a large impact, since we are disregarding a term
of O(μ2), which is small compared to other O(μ) terms. For NLMS, in order to recover (12.274) using
the traditional method, we would choose β = 0 and make

E

{
1[

ε + φH (n)φ(n)
]2

}
≈
[

E

{
1

ε + φH (n)φ(n)

}]2

,

which leads to reasonable results at the steady state for long filters.
For small step sizes (or forgetting factors close to one), the denominator of (12.274) can be ap-

proximated by 2 E{ρ(n)}. In this case, the expressions of the second column reduce to those of the
third column of Table 12.8. Again, these results can be obtained from the recursions of Table 12.7,
disregarding the term C (Eq. (12.238)), which will be negligible compared to B in (12.224) if ρ ≈ 0.

The results for steady-state analysis using the traditional method are commonly obtained as the
limiting case of a transient analysis. Although this procedure is adequate for understanding both the
steady-state and the transient behavior of an adaptive algorithm, it tends to be more laborious than
using the energy conservation method to analyze the steady-state behavior. This is one of the largest
advantages of this last method.

Table 12.8 Expressions for the steady-state EMSE obtained from
the energy conservation method for LMS, NLMS, and RLS.

Alg. ζ(∞)
for a wider range of μ, μ̃, and λ

ζ(∞)
for small μ and μ̃, and λ ≈ 1

LMS
μσ 2

v Tr(Rφ) + μ−1 Tr(Q)

2 − μTr(Rφ)

μσ 2
v Tr(Rφ) + μ−1 Tr(Q)

2

NLMS
μ̃σ 2

v + μ̃−1σ 2
x (M − 2)Tr(Q)

2 − μ̃

μ̃σ 2
v + μ̃−1σ 2

x (M − 2)Tr(Q)

2

RLS
σ 2

v (1 − λ)M + Tr(QRφ)

1 − λ

2 − (1 − λ)M

σ 2
v (1 − λ)M + Tr(QRφ)

1 − λ

2

12.4.4.6 Optimal step size for tracking
From the results of the third column of Table 12.8, we can observe that the expressions for the steady-
state EMSE have two terms: one for the stationary environment, which increases as the step size
increases, and another that appears in the nonstationary case, which increases as the step size decreases.
Therefore, there exist optimal adaptation parameters ρo that minimize the EMSE. These parameters are
μo, μ̃o, and 1 − λo for LMS, NLMS, and RLS, respectively. The corresponding minima, denoted by
ζmin(∞), can also be evaluated. All these results are summarized in Table 12.9. The results for a wider
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range of adaptation parameters lead to more complicated expressions for ρo and ζo(∞) (see, e.g., [317]
and [97] for an extension to the more general model (12.184) for time variations).

Table 12.9 Expressions for the optimal adapta-
tion parameters (ρo) and minimum steady-state
EMSE (ζmin(∞)) obtained from the expressions of
the third column of Table 12.8.

Alg. ρo ζmin(∞)

LMS μo =
√

Tr(Q)

σ 2
v Tr(Rφ)

√
σ 2

v Tr(Rφ)Tr(Q)

NLMS μ̃o =
√

(M − 2)σ 2
x Tr(Q)

σ 2
v

√
σ 2

v σ 2
x (M − 2)Tr(Q)

RLS 1 − λo =
√

Tr(QRφ)

Mσ 2
v

√
σ 2

v M Tr(QRφ)

We can use the results of Table 12.9 to compare the tracking performance of the algorithms. For
instance, comparing the minimum EMSE for LMS to that of RLS, we obtain the ratio

ζRLS
min

ζLMS
min

=
√

M Tr(QRφ)

Tr(Rφ)Tr(Q)
. (12.275)

Clearly, the results of this comparison depend on the environment. There are situations where RLS has
superior tracking capability compared to LMS, and vice versa. This is highlighted considering three
different choices for matrix Q. Consider the following three situations [131]:

(i) If Q is a multiple of I , we have

ζRLS
min

ζLMS
min

=
√

M Tr(Rφ)

Tr(Rφ)Tr(I )
= 1, (12.276)

and thus the performance of LMS is similar to that of RLS.
(ii) If Q is a multiple of Rφ , we have

ζRLS
min

ζLMS
min

=
√√√√ M Tr(αR2

φ)

α Tr(Rφ)Tr(Rφ)
≥ 1. (12.277)

This result can be verified by noting that if λk are the eigenvalues of Rφ and defining λ =[
λ1 . . . λM

]T
, we can use matrix diagonalization (see Box 12.3) to show that Tr(Rφ) = ‖λ‖1

(the �1-norm) and Tr(R2
φ) = ‖λ‖2

2 (the Euclidean norm). Then, applying inequality (12.36) from
Box 12.3, we obtain (12.277). We conclude that in this case LMS is superior.
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(iii) Finally, if Q is a multiple of R−1
φ , we obtain

ζRLS
min

ζLMS
min

=
√

M Tr(I )

Tr(Rφ)Tr(R−1
φ )

= M√
Tr(Rφ)Tr(R−1

φ )

≤ 1. (12.278)

This inequality can be derived as follows. Define ν =
[
λ

−1/2
1 . . . λ

−1/2
M

]T

and λ1/2 =[
λ

1/2
1 . . . λ

1/2
M

]T

for λk as before. Then Tr(Rφ) = ‖λ1/2‖2
2, Tr(R−1

φ ) = ‖ν‖2
2, and applying

Schwarz’s inequality (see Box 12.3) we obtain

M = νT λ1/2 ≤ ‖ν‖2‖λ1/2‖2 =
√

Tr(Rφ)Tr(R−1
φ ),

and (12.278) follows. We conclude that in this case RLS is superior.

These choices for Q do not model practical situations, but they highlight that even though the conver-
gence rate of RLS is in general much higher than that of LMS, this advantage, unexpectedly, does not
necessarily follow to the problem of tracking a slowly varying parameter vector.

Example 12.E-4.4. To verify the accuracy of the expressions in Tables 12.8 and 12.9, we use the LMS,
NLMS, and RLS filters to identify the same low-pass FIR system of Fig. 12.30. Now, the environment
is assumed nonstationary with Q = 10−6I . The input signal and minimum MSE (σ 2

v ) are the same of
Example 12.E-4.3.

Fig. 12.33 shows the measured steady-state EMSE with varying adaptation factors considering the
theoretical and experimental results for LMS, NLMS, and RLS. Each value of experimental EMSE
was obtained from the ensemble average of 100 independent runs. The theoretical minimum EMSEs
predicted by the expressions of Table 12.9 are ζLMS

o (∞) = ζRLS
o (∞) = −32.9251 dB and ζNLMS

o (∞) =
−33.0989 dB, which correspond to the optimal adaptation parameters μo = 5.1 × 10−2, μ̃o = 4.9 ×
10−2, and 1 − λo = 2 × 10−3 (λo = 0.998). The experimental values for ζmin(∞) and ρo are close to
the values predicted by the expressions of Table 12.9 as shown in Fig. 12.33.

Example 12.E-4.5. Again, we consider a system identification application but with the initial optimal
solution given by

wT
o (0) = [

0.5349 0.9527 −0.9620 −0.0158 −0.1254
]
.

The input signal is assumed to be colored Gaussian noise with variance σ 2
x = 0.2. This signal is obtained

from the filtering of a white Gaussian noise by a first-order autoregressive model (b = 0.8). We also
assume that the minimum MSE is σ 2

v = 0.01.
As predicted by (12.275), the performance of RLS and LMS is similar when Q = σ 2

q I . Thus, assum-

ing Q = 10−6I , we computed μo and λo from the expressions of Table 12.9 and used these parameters
in the adaptation, such that the same minimum EMSE could be achieved by both algorithms in this
situation. Fig. 12.34 shows the EMSE estimated from the ensemble average of 5000 independent runs
for RLS (λ = λo = 0.9955, δ = 4.5 × 10−3) and LMS (μ = μo = 0.0224). At every 7 × 104 iterations,
the nonstationary environment is changed. During the first 7 × 104 iterations, Q = 10−6Rφ and LMS



816 Chapter 12 Adaptive filters

FIGURE 12.33

Theoretical and experimental EMSE as a function of the adaptation parameter for (a) LMS, (b) NLMS, and (c)
RLS. The asterisks represent simulation results and the solid lines represent the theoretical models.

presents a slightly better tracking performance than RLS. When Q = 10−6R−1
φ , this behavior changes:

RLS becomes better than LMS. Finally, for Q = 10−6I , RLS and LMS present similar performance.
The dashed lines represent the theoretical values of ζ(∞) for each algorithm, predicted from the ex-
pressions of the second column of Table 12.8.

Box 12.7: Fourth-order moments of Gaussian vectors

The second-order moments of a random sequence are related to its average power (of course, this is
an approximation unless the sequence is stationary and ergodic). This makes second-order moments
intuitive to work with and relatively easy to evaluate in practice. Therefore, when studying an adap-
tive filter, it is common to try to describe its performance in terms of the autocorrelation of the input
sequence x(n).

During the analysis of LMS, one encounters a term that contains fourth-order powers of the input
vector x(n):

F
�= E{x(n)xH (n)w̃(n)w̃H (n)x(n)xH (n)}. (12.279)
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FIGURE 12.34

EMSE for RLS (λ = 0.9955, δ = 4.5 × 10−3) and LMS (μ = 0.0224); b = 0.8, σ 2
v = 10−2, σ 2

q = 10−6; mean of
5000 independent runs. The dashed lines represent the predicted values of ζ(∞) for each algorithm.

In order to evaluate a term such as this, one needs to know much more information about the statistics
of x(n) than is provided simply by its mean and autocorrelation. However, in general this additional
information is not available, and one assumes that the signals are Gaussian in order to proceed.

Why not any other distribution? First, because many processes in Nature are indeed approximately
Gaussian. Second, because uncorrelated Gaussian variables are also independent, which is of great help
when evaluating fourth-order terms, such as E{x2(n)x2(n − 1)} or E{x3(n)x(n − 2)}.

Although in many cases the input sequence is not Gaussian (for example, speech does not follow
a Gaussian distribution), this approximation describes the most important features of adaptive filter
learning with reasonable accuracy and leads to a relatively simple model.

In order to simplify the notation, we will write simply x and w̃ instead of x(n) and w̃(n) in the
following. Assume then that x is a Gaussian random vector, with autocorrelation E{xx} = R, and that
w̃ is another vector independent of x, with autocorrelation E{w̃w̃H } = S (we do not need to know the
exact distribution of w̃). Assume also that all variables have zero mean. Our goal is to evaluate

F = E{xxH w̃w̃H xxH }.

Since w̃ is independent of x, we can write

F = E{xxH w̃w̃H xxH } = E{xxH E{w̃w̃H }xxH } = E{xxH SxxH }. (12.280)

The autocorrelation of x is in general a full matrix,

R =

⎡
⎢⎢⎢⎣

r11 r12 . . . r1M

r∗
12 r22 . . . r2M

...
...

. . .
...

r∗
1M r∗

2M . . . rMM

⎤
⎥⎥⎥⎦ ,
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that is, in general the elements of x are correlated; however, R has Hermitian symmetry and is nonneg-
ative definite, which implies that there exists a unitary matrix U such that

UH RU = � =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λM

⎤
⎥⎥⎥⎦ ,

where λi ≥ 0 for i = 1 . . .M . Define x′ = UH x. Then E{x′x′H } = E{UH xxH U} = UH E{xxH }U =
�, and we see that the entries of x′ are uncorrelated. Since x is Gaussian and a linear transformation of
a Gaussian vector is also Gaussian, the entries of x′ are independent of each other. Multiplying (12.280)
by UH on the left and by U on the right and recalling that UH U = UUH = I , we obtain

F ′ �= UH FU = E{UH xxH UUH︸ ︷︷ ︸
=I

S UUH︸ ︷︷ ︸
=I

xxH U} = E{x′x′H UH SUx′x′H }.

Defining S̄ = UH SU , we can expand F in terms of the elements s′
ij of S̄ and x′

k of x′. Each element
of F will have terms of the form

E{x′
k1x

′
k2x

′∗
k3

x′∗
k4

}s′
ij .

If the signals are real, then, as x′
k1 is independent of x′

k2 if k1 = k2, these expected values will be
nonzero only if k1 = k2 = k3 = k4, if k1 = k3 and k2 = k4, if k1 = k4 and k2 = k3, or if k1 = k2 and
k3 = k4. Evaluation of all such terms that appear in the expression for F ′ will result in

F |real signals = R Tr(SR) + 2RSR. (12.281)

If, on the other hand, the signals are complex-valued, then we need to know how the real and
imaginary parts of each entry of x relate to each other. One common assumption is that x is circularly
Gaussian. We explain more about this in Section 12.2.2.1. For now, we only remark that if this is the
case, the real and imaginary parts of each entry of x and x′ are such that E{x2

k } = E{x′2
k} = 0 for all k

(note that E{|xk|2} = rkk and E{|x′
k|2} = λk are still nonzero). This will result in a different expression

for F :

F |complex signals = R Tr(SR) + RSR. (12.282)

12.5 Extensions and current research
In this section we briefly describe some important extensions to the basic adaptive filtering algorithms,
as well as some promising research topics. The intention is not to describe in any detail all these tech-
niques, but rather to give a list of key references where the interested reader may find more information.

It is usual when starting such lists to put a disclaimer that the authors do not claim to have included
all the important contributions, nor that their list is really of the most important contributions to an area.
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This is not intended for legal purposes, nor false modesty: the size of the literature is indeed so large
(a search on “adaptive filter” on Google gives over one million hits) that we cannot claim to know with
certainty the best of it all. We included therefore the techniques that we found useful during our own
research and experience, which is perforce limited.

12.5.1 Finite precision arithmetic
Any operation made using finite precision arithmetic may involve errors. For example, the product of
a = 0.957 and b = 0.542 would result in c = 0.518694. However, if all numbers were stored keeping
only three digits, the final result would be c̄ = 0.519, with an error of c − c̄ = −3.06 × 10−4 [389,390].
These quantization errors may accumulate and modify the behavior of an adaptive filter in important
ways. A precise analysis of the effect of quantization errors is quite complicated, since these errors are
highly nonlinear functions of the variables.

When finite precision arithmetic effects are studied, it is usually important to know exactly how and
in which order the arithmetic operations are performed. In particular, the exact numerical representation
used is important: fixed-point versus floating-point, truncation versus rounding, etc. For this reason, it is
more difficult to perform analyses that are equally valid for a large class of filters. The most important
differences are between gradient-based algorithms (i.e., algorithms similar to LMS and NLMS) and
Hessian-based algorithms (i.e., algorithms similar to RLS). We will give references to works treating
both cases, starting with LMS.

12.5.1.1 Finite precision effects in LMS
The simplest models for adaptive filters in finite precision arithmetic treat the quantization error as ran-
dom noise, uniformly distributed and independent of all variables [12,24,70,160]. These models show
that the quantization errors will add another term to the EMSE. However, this term does not converge
to zero when the step size is reduced to zero, even in a stationary environment. Quite the opposite; it is
inversely proportional to the step size (similar to the EMSE in a nonstationary environment).

Another important undesirable effect is that the product μe(n) may be rounded down to zero when
e(n) becomes small (underflow), virtually stopping the adaptation. When the step size is small, this
may happen when the filter is rather far from the optimum solution. Therefore, there is an optimum
value for the step size – neither too large, to avoid increasing the misadjustment, neither too small, to
avoid underflow and excessive growth of the EMSE. A similar effect happens in RLS [117, p. 595].

This underflow problem, which is usually known as the stopping phenomenon, was studied in more
detail in [42,43,50,51], using a nonlinear model. These works show that the adaptation does not really
stop, but rather convergence is reduced to a very low rate. Note that this phenomenon is less important
in floating-point arithmetic, since floating-point arithmetic is able to represent much smaller numbers
without underflow than fixed-point arithmetic.

Finite precision effects may have worse consequences; in particular, they may make the adaptive
filter unstable. In the case of LMS, this phenomenon is rare, and will only happen when the regressor
sequence {φ} has a very ill-conditioned covariance matrix and the noise vo has a nonzero mean (this
nonzero mean may itself appear due to quantization errors) [95,161,261]. This problem is not difficult
to solve, using regularization as described in Section 12.5.2. The problem of numerical stability in RLS
is much more serious and harder to solve, and has received much attention, as we see next.

In addition to studying the effect of quantization errors in the performance of an adaptive filter,
another important topic is how to reduce the computational cost of a filter, taking advantage of imple-
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mentation details. One such approach is to replace the error e(n) in the LMS recursion by its sign, i.e.,
to use the recursion

w(n + 1) = w(n) + μ sign (e(n))φ(n), (12.283)

where sign(·) is the sign function, defined by

sign (e) =
⎧⎨
⎩

1, if e > 0,

0, if e = 0,

−1, if e < 0.

(12.284)

The resulting algorithm, known as sign-LMS, has a smaller computational cost if μ is restricted to
be a power of two, that is, if μ = 2k for an integer (usually negative) k. In this case, μ sign (e(n)) is
always equal to ±2k (or zero), and the product

[
μ sign (e(n))

]
φ(n) can be implemented in fixed-point

arithmetic as M shifts, instead of M multiplications. In floating-point arithmetic, the multiplications
are replaced by sums, since we would need to add k to the exponent terms of all entries of φ(n). This
algorithm is very robust (see also Section 12.5.4), although its convergence rate under Gaussian inputs
is considerably slower than that of LMS. Sign-LMS was thoroughly studied in [129–132,158].

Another possibility that works surprisingly well, reducing the computational cost with only a slight
decrease in convergence speed, is the power-of-two LMS algorithm [392]. In it, the error is rounded to
the nearest power of two, using the function

f (e) =

⎧⎪⎨
⎪⎩

sign(e), |e| ≥ 1,

sign(e)2
⌊

log2(|e|)
⌋
, 2−B+1 ≤ |e| < 1,

0, |e| < 2−B+1,

where B is the number of bits used to represent the error and �x� returns the largest integer smaller
than x. In this case, μ should also be a power of two.

Yet another approach consists in using sum-of-powers-of-two (SPOT) representations [104] for
coefficients. Although one may argue that any number in binary form is in some sense a sum of powers-
of-two, SPOT numbers are a modification, in which a number x is represented as

x =
K−1∑
k=0

xk2bk , (12.285)

in which xk = ±1 (it is also possible to define xk assuming values in the set {−1,0,1}) and bk are the
exponents. This class of numbers is used in [103] to derive a version of the RLS algorithm.

12.5.1.2 Finite precision effects in RLS
As we briefly described in Section 12.3.3.1, the conventional RLS is numerically unstable in finite
precision arithmetic and has O(M2) complexity. To solve these problems, different versions of RLS
were proposed in the literature. Many of these versions are based on coordinate transformations of the
state-space representation of the conventional RLS algorithm. This representation can be obtained by
replacing k(n) by P (n)φ(n) in (12.167), i.e.,

w(n + 1) = λP (n)̂rdφ(n − 1) + P (n)φ(n)d∗(n). (12.286)
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Recalling that w(n) = P (n − 1)̂rdφ(n − 1), we can replace r̂dφ(n − 1) in (12.286) as a function of
P −1(n − 1) and w(n), which leads to

w(n + 1) = λP (n)P −1(n − 1)w(n) + P (n)φ(n)d∗(n). (12.287)

This equation and the definition of the a priori error e(n) characterize the adaptation and filtering
operations of the RLS algorithm and constitute its state-space representation, i.e.,

[
w(n + 1)

e∗(n)

]
=
[

λP (n)P −1(n − 1) P (n)φ(n)

−φH (n) 1

][
w(n)

d∗(n)

]
. (12.288)

In this representation, w(n) is the state, e∗(n) is the output, and d∗(n) is the input.
Performing a coordinate transformation, (12.288) can be transformed to an unlimited number of

systems with the same input–output relation, hence solving the same least-squares problem (that is,
the output error is always the same). Although all these realizations are equivalent in infinite precision
arithmetic, the numerical behavior will vary from one coordinate system to another. Thus, the numerical
instability of the conventional RLS can be avoided by choosing a convenient transformation of (12.288)
[214,298].

An alternative method of implementing RLS is based on the QR decomposition (QRD) [165] to
triangularize the input data matrix. The main advantages of QRD-RLS-based algorithms are the pos-
sibility of implementation in systolic arrays (e.g., [92]) and the improved numerical behavior in finite
precision arithmetic. Some versions require O(M2) operations per iteration, but others have a reduced
computational cost of O(M). The low-cost versions of QRD-RLS algorithms are known as fast-QR al-
gorithms. Some important references on this subject are [11,21,92,245–247,294,300,306–310,319,334,
335]. A good tutorial on QRD-RLS-based algorithms can be found in [19], where some more advanced
developments as well as the basic concepts are covered.

Another important class of fast algorithms solves the least-squares problem in a recursive form
based on lattice realization. These algorithms are very attractive due to the possible modular imple-
mentation and low cost (O(M)). Lattice-RLS-based algorithms are derived by solving the forward
and backward linear prediction problems and require time-update and order-update recursions. They
explore the time-shift property of the input signal vector (such as in (12.114)) and do not compute
explicitly the filter weights. Recall that many applications do not require the computation of the filter
weights and have regressors that satisfy the time-shift property as, for example, channel equalization
and interference cancelation (see Section 12.1.3). In these applications, a fast RLS algorithm can be a
reasonable choice since it presents a good trade-off between convergence rate and computational cost.
One of these algorithms is the modified EF-LSL algorithm, which presents reliable numerical properties
when implemented in finite precision arithmetic [248]. This algorithm was proposed for echo cancela-
tion applications and was used in the example of Section 12.1.1. Some lattice-RLS-based algorithms
can be found in Refs. [150,199,203,208,231,248,273,296,314].

Lattice-RLS algorithms have been generalized to filter structures other than tapped-delay lines, in
particular to Laguerre filters [237,240,241].

Other fast algorithms that solve the least-squares problem in a recursive form are the fast transversal
RLS (FTRLS) algorithms. Unlike the lattice-based algorithms, the FTRLS algorithms require only
time-recursive equations and therefore compute explicitly the filter weights. The main drawback of
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these algorithms is that they are very sensitive to quantization effects and become unstable if certain
actions are not taken [117]. The list of FTRLS algorithms is vast. Some of the most important versions
can be found in Refs. [56,93,94,135,254,350,351].

12.5.1.3 DCD-RLS
The DCD-RLS algorithm, proposed in [402], is a low-complexity alternative to the RLS algorithm,
based on the dichotomous coordinate descent (DCD) algorithm for function minimization proposed in
[401]. The DCD algorithm is designed to be easily implementable in hardware (such as FPGAs, for
example) and thus avoids multiplications, divisions, and other operations that are costly to implement
in hardware, replacing them as much as possible by additions and comparisons.

The RLS weight vector estimates are given by the solution of the following set of linear equations,
which we repeat from Section 12.3.3:

R̂φ(n)w(n + 1) = r̂dφ(n), (12.289)

where R̂φ(n) and r̂dφ(n) are given by the recursions

R̂φ(n) = λR̂φ(n − 1) + φ(n)φH (n) (12.290)

and

r̂dφ(n) = λ̂rdφ(n − 1) + d∗(n)φ(n). (12.291)

The difficulty in solving these expressions is that a general solution for (12.289) involves a number
of operations of the order of M3 (O(M3)) for a filter with M coefficients. This is usually too costly for
practical applications, except perhaps for very short filters. The classical RLS algorithm described in
Section 12.3.3 solves this problem partially by using the matrix inversion lemma to compute the inverse
of R̂φ(n) recursively using the already computed inverse of R̂φ(n − 1). This reduces the total number
of computations to O(M2). However, the resulting algorithm is still difficult to implement in practice,
because numerical errors may easily cause divergence.

The DCD-RLS algorithm avoids both these problems by using a couple of clever tricks. First, as-
sume that we have a good approximation ŵ(n) for w(n). Then we could use a recursive algorithm to
find an approximation ŵ(n + 1) to the solution of (12.289), using our current approximation ŵ(n) as an
initial condition. Since the initial condition is already close to the solution, we would need only a few
iterations of our recursive algorithm to obtain ŵ(n + 1). However, this idea only helps if each iteration
of the recursive algorithm is very cheap to compute. We explain next how this can be done using DCD.

DCD minimization of quadratic functions
Let us consider first a 1D quadratic problem

min
w

{
f (w) = 1

2
aw2 − bw + c

}
,

where a > 0, b, and c are constants. Assume in addition that we want to implement our algorithm in
hardware, using fixed-point arithmetic.
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In order to solve this problem, we could proceed as follows. Assume we have an initial approxima-
tion ŵ(0). We choose a step size H > 0 and compute

�f+ = f (ŵ(0) + H) − f (ŵ(0)), �f− = f (ŵ(0) − H) − f (ŵ(0)).

Then, if �f+ < 0, we choose ŵ(1) = ŵ(0) + H , and if �f− < 0, we choose ŵ(1) = ŵ(0) − H . If both
are positive, we choose ŵ(1) = ŵ(0) and reduce the step size by half, i.e., H ← H/2 (note that if f (·)
is convex, the case of both �f+ < 0 and �f− < 0 can never occur). With the new estimate ŵ(1), the
procedure can be repeated to find a new improved estimate ŵ(2), and so on. It can be shown that this
algorithm will converge to the minimum of f (·) whenever f (·) is a convex function (see Fig. 12.35).

FIGURE 12.35

DCD applied to 1D minimization.

Although the description given so far explains the general working of the DCD algorithm, it does
not show how it can be efficiently implemented, using as few operations as possible. We will turn to this
point now, but already extending the algorithm to minimize a quadratic function of several variables.
Consider then the problem of finding the solution wo to

min
w

{
f (w) = 1

2
wT Rw − bT w + c

}
,

where R is a positive definite matrix, b is a vector, and c is a constant (note that the minimum wo of
f (w) is also the solution wo to Rwo = b, that is, any algorithm to find wo can also be used to solve the
normal equations (12.289)).

Assume that we have an initial approximation ŵ(0) to the solution and we want to find an improved
approximation, changing one entry of ŵ(0) at a time. In order to differentiate each new approximation,
we use the following notation. We define ŵ(0)

(0) = ŵ(0). We shall first seek an improved estimate
to the first entry of ŵ(0)

(0). The resulting vector will be denoted by ŵ(1)
(0). Continuing, we find an

improved estimate to the second entry of ŵ(1)
(0), resulting in vector ŵ(2)

(0), and so on. After updating
all entries of the initial estimate, we have ŵ(M)

(0). We then let ŵ(0)
(1) = ŵ(M)

(0) and repeat the
procedure.

Then we need to check if f (ŵ(0)
(0) ± He1) < f (ŵ(0)) if we add or subtract H to the first entry of

ŵ(0)
(0) (e1 is the vector

[
1 0 . . . 0

]T
). The change �f+ in the cost function obtained by adding
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H to the first entry of ŵ(0)
(0) is

�f+ = 1

2

(
ŵ(0)

(0) + He1

)T

R
(
ŵ(0)

(0) + He1

)
− bT

(
ŵ(0)

(0) + He1

)
+ c (12.292)

−
(

1

2
ŵ(0)T

(0)Rŵ(0)
(0) − bT ŵ(0)

(0) + c

)

= HeT
1 Rŵ(0)

(0) + 1

2
H 2eT

1 Re1 − HbT e1. (12.293)

Similarly, the variation �f− obtained from subtracting H from the first entry of ŵ(0) is

�f− = −HeT
1 Rŵ(0)

(0) + 1

2
H 2eT

1 Re1 + HbT e1. (12.294)

Therefore, we should make

ŵ(1)
(0) =

⎧⎪⎨
⎪⎩

ŵ(0)
(0) + He1 if �f+ < 0,

ŵ(0)
(0) − He1 if �f− < 0,

ŵ(0)
(0), otherwise.

(12.295)

The same steps can be repeated for the second entry of ŵ(1)
(0), and so on, that is, we can update

the (m + 1)th entry of ŵ(m)
(0) to obtain a new approximation ŵ(m+1)

(0) for m = 0 . . .M − 1. After
obtaining ŵ(M)

(0), we have updated all entries of ŵ(0). We can then make ŵ(0)
(1) = ŵ(M)

(0) and
repeat the procedure. However, if no update is made for m = 1 . . .M , before repeating we decrease the
step H by a factor of two (i.e., H ← H/2). By reducing H only when no update is necessary for any
entry of the vector, we avoid problems that would appear if the initial value of H were too small.

Implemented as described so far, the algorithm has a high computational cost. For example, for the
evaluation of �f+ at each step we must:

• Evaluate eT
mRŵ(m−1)

(i). This is equivalent to multiplying the mth row of R by ŵ(m−1)
(i), involving

M multiplications and M − 1 additions.
• Multiply −eT

mRŵ(m−1)
(i) + bT em by H and add the result to (H 2/2)Rm,m (Rm,m is the element

(m,m) of R). This requires two multiplications and two additions, assuming H 2/2 is precomputed.

The same steps would be necessary for the computation of �f−. Note that all these computations would
have to be repeated at each step; therefore, the update of all entries of ŵ(0)

(i) would require more than
M2 multiplications.

However, the number of computations can be reduced substantially if we take advantage of some
properties of hardware implementations of arithmetic operations, as we describe next. Assume in the
following that all variables are fixed-point binary numbers (see Box 12.8).

First, we can avoid the computation of Rŵ(m−1)
(i) by introducing a residue vector that is updated

at each step. Let r(0)(0) = b − Rŵ(0)
(0) be the initial residue vector. Note that this is the residue of

solving Rw = b using ŵ(0)
(0) as an approximation to the solution.
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At the end of the first step, ŵ(0)
(0) is updated as in (12.295). Since only one entry of ŵ(0)

(0) is
changed, the modification in the residue is simple to evaluate:

r(1)(0) = b − Rŵ(1)
(0) =

⎧⎪⎨
⎪⎩

b − R(ŵ(0)
(0) + He1) = r(0)(0) − HRe1, if �f+ < 0,

b − R(ŵ(0)
(0) − He1) = r(0)(0) + HRe1, if �f− < 0,

r(0)(0), otherwise.

(12.296)

This still requires M multiplications (H multiplied by the first column of R). However, if H is a
power of two, that is, if H = 2k for some integer k, then the computation of r(1)(0) in fixed-point
arithmetic requires only M shifts and M additions, which are much easier to implement in hardware
than multiplications. Moreover, if both �f+ and �f− are positive, no update is necessary.

Next, we note that it is not really necessary to compute both �f+ and �f−: from (12.293) and
(12.294), when updating the mth element of ŵ(m−1)

(i) at step i, we have

�f+ = −HeT
mr(m−1)(i) + 1

2
H 2eT

mRem = −Hr(m−1)
m (i) + 1

2
H 2Rm,m, (12.297)

where r
(m−1)
m (i) is the mth entry of the residue vector r(m−1)(i), r(0)(i + 1)

�= r(M)(i), and em is the
mth column of the M × M identity matrix. Similarly,

�f− = Hr(m−1)
m (i) + 1

2
H 2Rm,m. (12.298)

Then, recalling that H and Rm,m are positive (R is positive definite), �f+ < 0 only if

r(m−1)
m (i) >

1

2
HRm,m ≥ 0.

Repeating the arguments for �f−, we see that the mth entry of ŵ(m−1)
(i) will be updated if and only if

|r(m−1)
m (i)| > 1

2
HRm,m, (12.299)

with updates

ŵ(m)
(i) = ŵ(m−1)

(i) + H sign(r(m−1)
m (i))em, (12.300)

r(m)(i) = r(m−1)(i) − H sign(r(m−1)
m (i))Rem. (12.301)

Eqs. (12.299)–(12.301) require one comparison, M + 1 shifts, and M + 1 additions. Table 12.10 sum-
marizes the DCD algorithm for minimization of quadratic cost functions. Note that the algorithm will
update the entries of ŵ(i) bit by bit. It therefore makes sense to choose for the initial step size H the
power-of-two value represented by the most significant bit in the fixed-point representation being used.
The conditional jump in step 10 prevents problems in case H is chosen too small.

As seen in Table 12.10, the total number of operations never exceeds (2M + 2)(B − 1) + Nu(4M +
3) (note that here we are counting additions, comparisons, and shifts as operations – the algorithm does
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Table 12.10 Summary of the DCD algorithm for minimization of a quadratic cost
function.

Step Initialization: Number of

Choose step H = 2k , number additions, shifts, multiplications
of bits B, and maximum and comparisons
update count Nu.
Let ŵ = 0, r = b, h = H , and c = 0.

1 for b = 0 : B − 1

2 h ← h/2 1 0

3 flag← 0 0 0

4 for m = 1 : M
5 if |rm| > 1

2 hRm,m 2 0

6 ŵm ← ŵm + h sign(rm) 1 0

7 r ← r − h sign(rm)Rem 2M 0

8 c ← c + 1, flag← 1 1 0

9 if c > Nu, stop algorithm. 1 0

10 if flag= 1, go to step 2 1 0

Total: (worst case) ≤ (2M + 2)(B − 1) + Nu(2M + 3) 0

not involve multiplications). In DCD-RLS, the maximum number of updates Nu can be chosen between
one and eight with good performance, while keeping the cost low.

When applied to RLS, one final simplification can be used when implementing DCD: instead of
updating all entries of vector ŵ(i), we can only update the entry corresponding to the largest residue.
As explained in [402], the resulting algorithm (called leading DCD) is still guaranteed to converge to
the optimum solution. This algorithm is described in Table 12.12.

DCD-RLS
As we mentioned before, DCD-RLS uses the DCD algorithm just described to solve the normal equa-
tions as each new sample arrives. Since DCD is an iterative algorithm, we can use the current solution
w(n) as the initial value for computation of w(n + 1). In this way, the number of updates Nu of DCD
can be restricted to a small number (in many situations one to four updates are enough for performance
close to that of exact RLS). This further reduces the computational cost of the algorithm.

In the following, we will use w(n + 1) to denote the exact solution of (12.289) (i.e., the exact RLS
estimate) and ŵ(n + 1) to denote the approximation computed by DCD-RLS (both would be equal if
we let Nu → ∞). Assume that at time instant n, we have available both ŵ(n) and the residue

r(n) = r̂dφ(n − 1) − R̂φ(n − 1)ŵ(n). (12.302)

In order to apply the DCD algorithm to solve for ŵ(n + 1), it is convenient to update the difference

�w(n + 1) = w(n + 1) − ŵ(n). (12.303)

Define also

�R̂φ(n) = R̂φ(n) − R̂φ(n − 1), (12.304)
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�r̂dφ(n) = r̂dφ(n) − r̂dφ(n − 1). (12.305)

The normal equations (12.289) then become

R̂φ(n)
[
ŵ(n) + �w(n + 1)

]= r̂dφ(n),

and thus

R̂φ(n)�w(n + 1) = r̂dφ(n − 1) + �r̂dφ(n) − R̂φ(n − 1)ŵ(n) − �R̂φ(n)ŵ(n)

= r(n) + �r̂dφ(n) − �R̂φ(n)ŵ(n)
�= β(n). (12.306)

Given an approximate solution �ŵ(n + 1) to these equations, we obtain an updated approximate solu-
tion ŵ(n + 1) = ŵ(n) + �ŵ(n + 1). Note that the residue of solving (12.289) using ŵ(n + 1),

r(n + 1) = r̂dφ(n) − R̂φ(n)ŵ(n + 1)

= r̂dφ(n − 1) + �r̂dφ(n) − R̂φ(n)
[
ŵ(n) + �ŵ(n + 1)

]
= r̂dφ(n − 1) + �r̂dφ(n) − R̂φ(n)�ŵ(n + 1) − [

R̂φ(n − 1) + �R̂φ(n)
]
ŵ(n)

= r(n) + �r̂dφ(n) − R̂φ(n)�ŵ(n + 1) − �R̂φ(n)ŵ(n)

= β(n) − R̂φ(n)�ŵ(n + 1), (12.307)

is exactly the residue of approximately solving (12.306) by �ŵ(n + 1).
To complete, we only need to evaluate �R̂φ(n) and �r̂dφ(n). From (12.304), (12.305), (12.290),

and (12.291), we obtain

�R̂φ(n) = (λ − 1)R̂φ(n − 1) + φ(n)φT (n), (12.308)

�r̂dφ(n) = (λ − 1)̂ddφ(n − 1) + d(n)φ(n). (12.309)

Substituting these results in the definition of β(n), we obtain

β(n) = r(n) + (λ − 1)̂rdφ(n − 1) + d(n)φ(n) −
[
(λ − 1)R̂φ(n − 1) + φ(n)φT (n)

]
ŵ(n)

= r(n) + (λ − 1)r(n) + e(n)φ(n) = λr(n) + e(n)φ(n). (12.310)

We can therefore use the DCD algorithm to compute an approximate solution to (12.306) and update
the residue defined by (12.307), as described in Table 12.11.

As mentioned before, the number of operations of the DCD algorithm can be reduced if we modify
the algorithm in Table 12.10 to update only the entries of the weight vector corresponding to the largest
residue entry, as described in Table 12.12.

The total number of operations of DCD-RLS as described in Tables 12.11 and 12.12 is M2 +
4M multiplications and M2/2 + 3.5M + (2M + 1)Nu + B additions. Most of these operations are due
to the updating of R̂φ in Table 12.11, which is responsible for the terms in M2. While this cannot be
helped for general regressors φ(n), the operation count can be substantially reduced when our filter is
modeling an FIR relation as in (12.42) (i.e., φ(n) is a tapped-delay line), as we show next.
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Table 12.11 Summary of the DCD-RLS algorithm for general
regressors.

Initialization:

ŵ(0) = 0, r(0) = 0, R̂φ(−1) = � > 0
for n = 0,1,2, . . .

R̂φ(n) = λR̂(n − 1) + φ(n)φT (n) (use (12.313) for tapped-delay lines)

ŷ(n) = ŵT
(n)φ(n),

e(n) = d(n) − ŷ(n),

β(n) = λr(n) + e(n)φ(n),

Use the DCD algorithm to compute new �ŵ(n + 1) and r(n + 1)

from R̂φ(n)�ŵ(n + 1) = β(n),

ŵ(n + 1) = ŵ(n) + �ŵ(n + 1).

Table 12.12 Summary of leading-element
DCD algorithm for use in DCD-RLS,
from [402].

Step Initialization:

Choose initial condition step H = 2k ,
number of bits B, and maximum update
count Nu.
Let �ŵ = 0, r = β(n), h = H/2, b = 1.
for k = 1 : Nu

1 p = arg max
1≤m≤M

{|rm|}, go to step 4

2 b ← b + 1, h ← h/2

3 Stop if b > B

4 Go to step 2 if |rp| ≤ (h/2)Rp,p

5 �ŵp = �ŵp + sign(rp)h

6 r = r − sign(rp)hR̂φep

If

φ(n) = [
x(n) x(n − 1) . . . x(n − M + 1)

]T
, (12.311)

then R̂(n) and R̂(n − 1) share a common structure. Assume that the initial condition R̂(−1) = � =
diag(λM−1, λM−2, . . . ,1). Then

R̂(0) = λ

⎡
⎢⎢⎢⎢⎣

λM−1 0 . . . 0

0 λM−2 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

x(0)

0
...

0

⎤
⎥⎥⎥⎦[

x(0) 0 . . . 0
]
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=

⎡
⎢⎢⎢⎢⎣

λM + x2(0) 0 . . . 0

0 λM−1 . . . 0
...

...
. . .

...

0 0 . . . λ

⎤
⎥⎥⎥⎥⎦=

[
λM + x2(0) 0T

0 [R̂φ(−1)]1:M−1,1:M−1

]
,

where [R̂φ(−1)]1:M−1,1:M−1 denotes the top-left (M − 1) × (M − 1) block of R̂φ(−1). We note that
except for its first row and column, R̂(0) can be obtained directly from R̂(−1).

Following this observation, we claim that for tapped-delay line regressors, the computation of R̂φ(n)

in Table 12.11 can be replaced by an update of only its first column [R̂φ(n)]1, that is,

[R̂φ(n)]1 = λ[R̂φ(n − 1)]1 + x(n)φ(n). (12.312)

Since R̂φ(n) is symmetric, its first row is the transpose of (12.313) and does not need to be evaluated
again.

We show next by induction that this pattern holds for all n. We just showed that it is true for n = 0.
Assume then that for a certain n, we have

R̂φ(n) =
⎡
⎢⎣ (·)T

λ[R̂φ(n − 1)]1 + x(n)φ(n)

[R̂φ(n − 1)]1:M−1,1:M−1

⎤
⎥⎦ , (12.313)

where we use (·)T to indicate that the entries of the first row are the same as the entries of the first
column. We show next that R̂φ(n + 1) must follow the same pattern. Indeed,

R̂φ(n + 1) = λR̂φ(n) +

⎡
⎢⎢⎢⎣

x(n + 1)

x(n)

...

n(n − M + 2)

⎤
⎥⎥⎥⎦[

x(n + 1) x(n) . . . x(n − M + 2)
]

=
⎡
⎢⎣ (·)T

λ[R̂φ(n)]1

λ[R̂φ(n − 1)]1:M−1,1:M−1

⎤
⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(·)T
x(n + 1)φ(n + 1) ⎡

⎢⎢⎣
x2(n) . . . x(n)x(n − M + 2)

...
. . .

...

x(n)x(n − M + 2) . . . x2(n − M + 2)

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣ (·)T

λ[R̂φ(n)]1 + x(n + 1)φ(n + 1)

[R̂φ(n)]1:M−1,1:M−1

⎤
⎥⎦ ,
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where in the last step we identified the (2,2) block of the intermediate result with the first M − 1 rows
and columns of R̂φ(n), from (12.290).

Note that in practice we should not actually move the entries of R̂φ(n − 1) to their new positions;
rather, we should use an indexing system to access the entries of R̂φ(n) to avoid this costly mov-
ing operation. The total number of operations of DCD-RLS using (12.313) is 3M multiplications and
2MNu + 6M additions. This is not much larger than the complexity of NLMS. The DCD-RLS al-
gorithm has been implemented in FPGAs and runs for long periods of time without observation of
divergence [402].

Fig. 12.36 shows a comparison of RLS and DCD-RLS in a system identification problem. We are
trying to identify an M = 10 FIR filter, so we use (12.313) to update R̂φ(n) with lower cost. The input
signal x(n) is white Gaussian noise with zero mean and unit variance. The optimum coefficient vector
wo(n) follows a random-walk model as in (12.183) with Q = 10−5I (the initial value wo(0) is random,
taken from a Gaussian distribution with covariance matrix equal to I ). Both RLS and RLS-DCD use a
forgetting factor of λ = 0.95. RLS-DCD is implemented with leading DCD (Table 12.12), B = 16, and
H = 2. The maximum number of updates Nu is varied from one to eight. The optimum vector wo(n)

suffers an abrupt change at n = 400. The learning curves were obtained from the average of L = 500
realizations. As the figure shows, even for Nu = 1, the performance of RLS-DCD is very close to that of

FIGURE 12.36

EMSE for RLS and DCD-RLS for different values of Nu, with λ = 0.95, M = 10, and for DCD, H = 2 and
B = 16. Average of L = 500 realizations.

RLS. The only difference is a smaller convergence rate at the start of the algorithm. However, after the
abrupt modification of wo(n) at instant n = 400, all filters converge equally quickly to the new vector.
This shows that RLS-DCD does not lose in tracking capability when compared to standard RLS.

12.5.2 Regularization
There are applications in which the autocorrelation matrix Rφ may become very ill-conditioned (i.e.,
nearly singular). In these cases, it can be shown that the LMS weight estimates may slowly drift to quite
large values, even though the error remains small. The problem arises when the filter is implemented
in finite precision arithmetic, because the variables holding the filter weights may overflow, thereby
making the error grow suddenly very large.
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This can happen, for example, for certain kinds of equalizers in communications [95,160,161]. The
mechanism through which the LMS coefficients may slowly drift is explained in [261,329].

The usual solution to this problem is to modify the cost function to add a term proportional to ‖w‖2,
so that large values of the weight vector are penalized:

Jleaky = E

{∣∣∣d(n) − wH φ(n)

∣∣∣2}+ α‖w‖2, (12.314)

where ‖ · ‖ is the Euclidean norm and α > 0 is a small constant. With this cost function, the correspond-
ing algorithm is

w(n + 1) = (1 − μα)w(n) + μe∗(n)φ(n). (12.315)

This is known as the leaky-LMS algorithm [388]. It can be shown that the introduction of leakage will
bias the solution away from the Wiener solution, but will prevent any excessive growth of the weight
coefficients. A detailed analysis of the leaky-LMS algorithm is available in [233]. Reference [261]
proposes a modified version of the algorithm without the bias.

Difficulties with singular or near-singular autocorrelation matrices also appears with RLS. For ex-
ample, if the input is a periodic signal with little noise, the autocorrelation matrix will become nearly
singular, and matrix P (n) in RLS will diverge. This problem, as well as a solution to it using a variable
forgetting factor, is described in [220]. A constant regularization method based on DCD can be found
in [209]. Another approach, valid only for short filters, but which allows constant regularization, is
described in [370].

The leaky-LMS algorithm has found other important applications, most particularly in beamform-
ing, in which it is used to make the beamformer robust against array imperfections [180]. The algo-
rithms used in beamforming are examples of constrained adaptive filters, in which the cost function
incorporates equality conditions that must be satisfied at all times (see Section 12.5.11).

Another algorithm closely related to leaky-LMS, in which the extra term in the cost function pe-
nalizes large values of the filter output (that is, α|wH (n)φ(n)|2 instead of α‖w(n)‖2 in (12.314)), was
recently employed to improve the performance of FIR adaptive filters in the presence of saturation
nonlinearities [45].

More recent applications of regularization involve the use of the �1-norm,

‖w‖1 = |w0| + |w1| + · · · + |wM−1|,
instead of the Euclidean norm. This is because the �1-norm promotes solutions that are sparse, that is,
a filter that minimizes the cost function

Jsparse = E

{∣∣∣d(n) − wH φ(n)

∣∣∣2}+ α‖w‖1, (12.316)

will favor solutions in which the vector w has only a few nonzero entries (an intuitive explanation for
this can be found in [67], which is a good introduction to compressive sensing). We should note that
the cost function in (12.316) is still convex. Sparser solutions can also be achieved when the �1-norm
is replaced by the reweighted �1-norm [68] or by an �0-norm approximation [166,206,207]. However,
the use of these pseudo-norms makes the problem nonconvex. Algorithms for promoting sparsity have
received much attention, due to the interest in compressive sensing applications, and also in echo can-
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celation applications [17,18,86,186,243,279,403]. See also the references for the proportionate NLMS
(PNLMS) algorithm in Section 12.5.3 and the adaptive filters with constraints in Section 12.5.11.

12.5.3 Variable step size
The steady-state analysis of Section 12.4.4 shows that the step size μ plays an import role in controlling
the performance of the LMS algorithm, since it is one of the main factors affecting the convergence rate
and the misadjustment. To obtain a better trade-off between convergence speed and steady-sate EMSE,
several authors proposed different forms of adjusting the step size of LMS. Variable step size algorithms
allow the filters to dynamically adjust their performance in response to conditions in the input data and
error signals.

In this context, one of the most popular algorithms is the variable step size LMS (VSLMS) proposed
in [170]. In the VSLMS algorithm, each coefficient wk(n), k = 0, . . . ,M − 1, is updated with a time-
varying step size μk(n), whose adjustment is given by

μk(n) = μk(n − 1) + ρ sign [e(n)φk(n)] sign[e(n − 1)φk(n − 1)], (12.317)

where ρ is a small positive constant. This algorithm operates in a very intuitive way. When the algorithm
has not yet converged, the gradient term e(n)φk(n) shows a consistently positive or negative direction
in successive iterations and the step size μk(n) increases up to an allowed maximum value. On the
other hand, near steady state e(n)φk(n) approaches zero and its sign changes in successive iterations,
which reduces μk(n) (the step size is lower-bounded by a small minimum value). Therefore, during the
initial convergence VSLMS uses a large step size, which leads to a high convergence rate. When its
coefficients are close to the optimum solution, the algorithm is updated with a small step size, which
allows VSLMS to achieve a small EMSE. A variant of this algorithm is obtained by dropping the sign
functions in (12.317), i.e.,

μk(n) = μk(n − 1) + ρ e(n)e(n − 1)φk(n)φk(n − 1). (12.318)

The choice between (12.317) and (12.318) depends on the application [139].
The NLMS algorithm, proposed independently by Nagumo and Noda [255] and Albert and Gard-

ner [10], can be interpreted as a VSLMS with a particular choice for μ(n) (see Section 12.3.2). An
important variant of NLMS is the so-called power-normalized LMS (PN-LMS) algorithm, which uses
the following variable step size:

μ(n) = μ̃

ε + p(n)
, (12.319)

where

p(n) = γp(n − 1) + (1 − γ )|φ0(n)|2, (12.320)

with p(−1) = 0 and γ being a positive scalar chosen from within the interval 0 < γ ≤ 1. This algorithm
is useful when the regressor is a tapped-delay line, that is, when φi(n) = x(n − i), so that the scalar p(n)

is an estimate for the power of the input sequence {x(n)}. The range of μ̃ in (12.319) is 0 ≤ μ̃ ≤ 2
M

[317].
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Over the years, several variable step size algorithms were proposed in the literature. Some of these
algorithms can be found in Refs. [1,16,40,47,54,128,137,167,196,232,277,281,287,333,379] and the
references therein. Besides the variable step size approaches, an alternative scheme to improve the
trade-off between convergence speed and steady-sate EMSE is constituted by combinations of adaptive
algorithms, described in Section 12.5.8.1.

Another class of variable step size algorithms was developed specifically to accelerate the conver-
gence of filters whose optimum weight vector wo is sparse, that is, has only a small fraction of nonzero
elements. The primary application for this is echo cancelation, mainly for echo due to reflections in
the telephone connection. The algorithms are known as proportionate NLMS (PNLMS) algorithms and
usually have very good performance for approximating sparse weight vectors [38,39,106,107,125,154].

12.5.4 Non-Gaussian noise and robust filters
Consider a problem in which we know that the regressor φ(n) and the desired signal d(n) are related
through a model (we assume for simplicity that all variables are real)

d(n) = wT
o φ(n) + v(n), (12.321)

in which v(n) is independent of φ(n). It is shown in [382] that minimization of the fourth power of the
error may lead to an adaptive filter with better compromise between convergence rate and EMSE than
LMS if v(n) is sub-Gaussian. Let us explain what this means.

Recall that for any random variable x we have 0 ≤ σ 2
x = E{x2} − (E{x})2. Similarly, if we define

μx = E{x},

E
{
(x − μx)

4
}

≥
(

E
{
(x − μx)

2
})2 = σ 4

x , E
{
(x − μx)

6
}

≥
(

E
{
(x − μx)

2
})3 = σ 6

x .

In general, we can write E{(x − μx)
4} = ασ 4

x , with α ≥ 1. For example, consider the distributions in Ta-

ble 12.13. Distributions for which
E
{
(x−μx)4}

σ 4
x

< 3, such as binary and uniform, are called sub-Gaussian,

Table 12.13 Fourth- and sixth-order mo-
ments of different distributions.

Distribution
E

{
(x − μx)4}

σ 4
x

E
{
(x − μx)6}

σ 6
x

Binary 1 1

Uniform 9/5 27/7

Gaussian 3 15

Exponential 6 90

and those for which
E
{
x4}(

E
{
(x−μx)2

})2 > 3, such as the exponential, are called super-Gaussian. These rela-

tions are usually given in terms of the kurtosis γ4 of a distribution

γ4 = E
{
(x − μx)

4
}

σ 4
x

− 3.
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Therefore, a distribution is sub-Gaussian if its kurtosis is negative and super-Gaussian if its kurtosis
is positive. A distribution with positive kurtosis is such that its pdf f (x) decays more slowly than the
Gaussian as |x| → ∞.

The authors of [382] show that when the noise v(n) is sub-Gaussian, an algorithm based on the
minimization of

JLMP = E{|e(n)|p} (12.322)

with p > 2 results in lower steady-state EMSE than LMS. They study particularly the case p = 4, for
which the stochastic gradient algorithm is of the form

w(n + 1) = w(n) + μe3(n)φ(n). (12.323)

This algorithm is known as the least-mean fourth (LMF) algorithm. Analyses of general algorithms
with error nonlinearities can be found in [331], and a unified analysis is available in [9].

The LMF algorithm can be understood intuitively as a variable step size version of LMS:

w(n + 1) = w(n) +
(
μe2(n)

)
e(n)φ(n).

When the error is large, the “equivalent” step size μe2(n) is large, and the filter converges quickly.
On the other hand, when the error is small, the “equivalent” step size is reduced, which consequently
reduces the EMSE.

This idea works well if the distributions of φ(n) and v(n) are indeed sub-Gaussian, but it was soon
noticed that the algorithm becomes sensitive to outliers (large but rare values of the input signals). This
is also easy to understand: if the error is too large, the “equivalent” step size may be such that the
recursion becomes unstable. References [80,363] proposed changing the cost function to a mixture of
quadratic and quartic, in an attempt to reduce this sensitivity. In [316, p. 313], a different modification
of the cost function is proposed, with the same purpose. The new cost function is the following:

JLMF,mod = E {f (e(n))} , f (e) =
{

e4, if |e| ≤ γ,

e2, if |e| > γ,
(12.324)

in which γ is a constant. References [178,259] show that when the regressor is Gaussian, LMF has a
nonzero probability of diverging. From these results one can see that the solution proposed in [316]
indeed stabilizes the algorithm.

Since the LMF recursion contains a cubic nonlinearity, it can be used as a simpler platform to un-
derstand the behavior of blind equalization algorithms such as the constant modulus algorithm (CMA)
(see Section 12.5.5), which also contains a cubic nonlinearity.

Set-membership algorithms [117], which are explained in more detail in Section 12.5.10, can be
seen as an extreme version of (12.324), in which f (e) is reduced to simply 0 when |e| ≤ γ . The corre-
sponding cost function is

JSM = E {f (e(n))} , f (e) =
{

0, if |e| ≤ γ,

e2, if |e| > γ.
(12.325)

Set-membership algorithms are particularly well suited to bounded noise, i.e., to the case in which one
knows that |v| ≤ γ .
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All these methods are suited to the case in which the noise v(n) is sub-Gaussian. When the noise
is super-Gaussian, there is a small but significant probability that v(n) will assume a very large value.
This may make the performance of even LMS become poor. The solution is to give less weight to large
errors, and one choice is to use p < 2 in (12.322). This will give rise to several robust adaptive filters,
that is, algorithms that are insensitive to outliers. It should be noted that LMS itself is quite robust in
terms of energy (quadratic) relations: in fact, [171] shows that LMS is optimal in the H∞ sense (see
also [316, Chapter 17]). However, for noise distributions with higher kurtosis, it is convenient to use a
smaller value of p [31,185,227,330]. A variable step size algorithm robust against high-kurtosis noise
is described in [407].

One important algorithm of this class is the sign-LMS algorithm [158,174], which is obtained from
(12.322) with p = 1, and which we already saw in Section 12.5.1.1.

For very impulsive signals, methods based on order statistics (such as the median, for example)
may produce better results, although their complexity tends to be higher [147].

12.5.5 Blind equalization
As described in Section 12.1.3, the objective of equalization is to mitigate the ISI introduced by disper-
sive channels in order to recover the transmitted sequence. Assuming that the equalizer is an adaptive
FIR filter, its coefficients may be updated in two different ways:

(i) using a supervised algorithm in the training and decision-directed modes, as explained in Sec-
tion 12.1.3; or

(ii) using a blind equalization algorithm, which uses higher-order statistics (HOS) of the transmitted
signal instead of a training sequence, as shown in Fig. 12.37. In this case, the available bandwidth
is used in a more efficient manner due to the absence of a training sequence.

FIGURE 12.37

Simplified communications system with a blind adaptive equalizer.

The literature contains many blind equalization algorithms based on HOS, but the most popular is
the CMA, proposed independently by Godard [163] and Treichler and Agee [369] in the 1980s. CMA
seeks to minimize the constant modulus cost function defined as
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JCM = E
{
(r − |ŷ(n)|2)2

}
, (12.326)

where r = E{|s(n)|4}/E{|s(n)|2} is a dispersion constant which contains information about the HOS of
the transmitted signal s(n) and ŷ(n) = wH x(n) is the equalizer output. This function penalizes devi-
ations in the modulus of the equalized signal away from the dispersion constant r . Different from the
MSE cost function used in supervised adaptive filtering, JCM is not convex in relation to the coefficients
of the equalizer (see the definition of convex functions in Box 12.5). It has local minima, and constant
modulus-based algorithms can get stuck at these suboptimal solutions.

CMA is obtained from an instantaneous approximation for the gradient of JCM in relation to w.
Defining the estimation error

e(n) = (r − |ŷ(n)|2)ŷ(n), (12.327)

the update equation of CMA can be written as

w(n + 1) = w(n) + μe∗(n)x(n), (12.328)

where μ stands for a step size. Since CMA is a stochastic gradient-type algorithm, the similarity of
(12.328) to the LMS update equation is not surprising. Due to this similarity, CMA is sometimes in-
terpreted as a blind version of the LMS algorithm [282]. Thus, as in the LMS, small step sizes lead to
a small misadjustment and slow convergence. However, the similarity to LMS stops here. The multi-
modality of the constant modulus cost function makes the prediction of the behavior of CMA a hard
task.

To illustrate the constant modulus cost function, we assume the transmission of a binary signal
{−1, +1} through the IIR channel H(z) = 1/(1 + 0.6z−1) in the absence of noise [116]. Considering
an FIR equalizer with M = 2 coefficients, we can obtain a 3D plot of JCM as a function of w0 and w1
as shown in Fig. 12.38. As indicated in the figure, JCM contains two global minima at ± [1 0.6]T and
two local minima. Note that if w converges to one of the global minima, the transmitted sequence or its
inverse will be recovered. These two possibilities occur due to the fact that CMA seeks to recover only
the modulus of the transmitted signal and does not solve phase ambiguities introduced by the channel.
The phase ambiguities can be corrected by using differential code, which is based on the change of sign
between two successive samples.

The animations in Fig. 12.39 illustrate the behavior of CMA initialized at the different points. Ini-
tializing at w(0) = [1 0]T , the weight vector converges to [+1 + 0.6]T . Now, considering w(0) =
[−0.4 0.05]T , we get w(n) ≈ [−1 − 0.6]T at the steady state. On the other hand, if CMA is initial-
ized at [0.05 − 0.4]T , the algorithm gets stuck at a local minimum. We should note that in the presence
of noise or depending on the step size, CMA also can escape from a minimum and drift to another so-
lution.

Despite the name of the algorithm, CMA also works for nonconstant modulus signals. However,
as shown analytically in [222,342], its best performance occurs for constant modulus signals since the
variability in the transmitted signal modulus plays a role similar to the measurement noise in supervised
algorithms.

The stochastic analysis of constant modulus-based algorithms is a hard task. Due to the nonlinearity
and multimodality of the constant modulus cost function, additional assumptions are necessary. A good
review of the main results in the analysis of CMA can be found in [182], but many results were obtained
after its publication. These results address different issues of constant modulus-based algorithms, such
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FIGURE 12.38

Constant modulus cost function as a function of the equalizer weights.

as the steady-state and transient behavior [65,66,145,222,286,341–343,396], convergence and stabil-
ity [105,249,250,265,284,285,301,359], phase rotation [394,397,398], and solutions for nonconstant
modulus signals [3,35,146,235,236,339].

12.5.6 Subband and transform-domain adaptive filters
In transform-domain adaptive filters, the input signals are transformed (using the fast Fourier transform,
the discrete cosine transform, or other convenient transform), and the adaptation is performed in the
transform domain. The gains are twofold. First, using block processing, one can obtain large reductions
in computational cost. Second, by using the decorrelation properties of the transforms, it is possible
to use different step sizes for each tap in the transformed domain, thereby reducing the equivalent
eigenvalue spread and increasing the convergence rate [36,96,138,143,239,256,257,337,356].

A related approach is that of subband adaptive filters, which are also useful to both reduce the
computational cost and increase the convergence speed of long filters, in particular for acoustic echo.
The main idea is to split the input signal in several parts using an analysis filter bank. Each part, relative
to a particular band of the full spectrum, is processed separately, and finally all parts are joined together
again by a synthesis filter bank [375]. Since each subsignal has a smaller bandwidth, the sampling
rate can be reduced. The whole process must be performed carefully to avoid as much as possible a
deterioration of the signals due to aliasing, while still gaining in computational cost, in comparison
with standard full-band filters [152,159,184,288–290,383]. It is important to point out that it is possible
to avoid the introduction of extra delay (compared with a full-band filter) [173,238,252,272].

Good introductions to the subject can be found in [117,139,317].

12.5.7 Affine projections algorithm
The affine projections algorithm (APA) is an extension of NLMS, designed to obtain a convergence rate
closer to that of RLS, but with a low computational cost, as close as possible to that of NLMS. We saw
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FIGURE 12.39

CMA initialized at different points, μ = 0.016, channel H(z) = 1/(1 + 0.6z−1) in the absence of noise. You can
find animations for each simulation at http://www.lps.usp.br/FAs/CMA/.

in Section 12.3.2 that NLMS can be derived as a method for choosing the step size so that the current
a posteriori estimation error is zeroed (12.131). The APA extends this idea by canceling a vector of a
posteriori errors obtained from data from times n − K to n and the weight vector at time n + 1:

ξ(n) = d(n) − �(n)w∗(n + 1), (12.329)

in which

d(n) =

⎡
⎢⎢⎢⎣

d(n)

d(n − 1)

...

d(n − K − 1)

⎤
⎥⎥⎥⎦ , �(n) =

⎡
⎢⎢⎢⎢⎣

φT (n)

φT (n − 1)

...

φT (n − K − 1)

⎤
⎥⎥⎥⎥⎦ . (12.330)

http://www.lps.usp.br/FAs/CMA/
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The APA chooses as next weight estimate the vector w(n + 1) closest to the current estimate w(n) such
that ξ(n) = 0 [20,189,251,275,311,312]:

w(n + 1) = arg min
w

s.t. ξ(n)=0

‖w − w(n)‖2 . (12.331)

The solution to this problem is a recursion,

w(n + 1) = w(n) + �T (n)
(
�∗(n)�T (n)

)−1
e(n), (12.332)

where

e(n) = d(n) − �(n)w∗(n). (12.333)

When K = 1 and K = 2, (12.332) reduces to NLMS and binormalized LMS (BNLMS) [20,117],
respectively. Similarly to what is done for NLMS, it is convenient to introduce a regularization term
εI , with ε > 0 and a step size 0 < μ ≤ 1 in (12.332), leading to

w(n + 1) = w(n) + μ�T (n)
(
εI + �∗(n)�T (n)

)−1
e(n). (12.334)

The advantage of this algorithm is that �∗(n)�T (n) is K × K (as opposed to the M × M matrix
that must be recursively inverted for RLS), and the value of K does not need to be large, which keeps
the computational cost low. In general, a value of two or three already gives a good improvement to the
convergence rate even for regressors whose covariance matrix has large spreading factor. Furthermore,
for K ∈ {1,2,3}, which are the most common choices, the matrix inversion has a closed-form solution
[117].

In order to implement (12.334), it is useful to remember that computing the inverse explicitly is
never a good idea: it is much better to solve the linear system(

εI + �∗(n)�T (n)
)

a = e(n) (12.335)

and then compute �T (n)a. From a numerical point of view, the best option would be to use the QRD of
�(n) and avoid forming �∗(n)�T (n), but the computational cost would be larger. When the regressor
is a tapped-delay line and K is large, one can use a fast version of APA, in which the solution of
(12.335) is obtained in O(K) operations, instead of the usual O(K3) [157,305,362].

Recent works focusing on the analysis of the APA are [109,110,315,332]. The problem of regu-
larization (choice of ε) is considered in [280,302]. Applications to echo cancelation can be found in
[37,278].

A related approach is the sliding-window RLS algorithm, a version of RLS in which only a finite
memory is considered, instead of a forgetting factor as used in Section 12.3.3 [224,225].

12.5.8 Cooperative estimation
In this section, we briefly describe important advances in adaptive filtering through cooperative esti-
mation. We first describe combinations of adaptive filters and in the sequel, we focus on distributed
adaptive filtering.
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12.5.8.1 Combinations of adaptive filters
Combinations of adaptive filters have received considerable attention, since they decrease the sensitivity
of the filter to choices of parameters such as the step size, forgetting factor, or filter length. The idea is
to combine the outputs of two (or several) different independently run adaptive algorithms to achieve
better performance than that of a single filter. In general, this approach is more robust than variable
parameter schemes [25].

The first combined scheme that attracted attention was the convex combination of adaptive filters
due to its relative simplicity and the proof that the optimum combination is universal, i.e., the combined
estimate is at least as good as the best of the component filters in steady state, for stationary inputs [27].
This scheme was proposed in [226] and further extended and analyzed in [27,28]. The original idea was
to combine one fast and one slow LMS filter to obtain an overall filter with fast convergence and low
misadjustment, but it was extended to other algorithms to take advantage of different characteristics, as
explained below.

Fig. 12.40 shows the convex combination of two adaptive filters, in which the output of the overall
filter is computed as

ŷ(n) = η(n)ŷ1(n) + [1 − η(n)]ŷ2(n), (12.336)

where η(n) ∈ [0,1] is the mixing parameter, ŷi (n) = wH
i (n)φ(n), i = 1,2, are the outputs of the

transversal filters, φ(n) is the common regressor vector, and wi (n) are the weight vectors of the
component filters. Note that the weight vector and the estimation error of the overall filter are given
respectively by

w(n) = η(n)w1(n) + [1 − η(n)]w2(n) (12.337)

and

e(n) = d(n) − ŷ(n) = η(n)e1(n) + [1 − η(n)]e2(n), (12.338)

where ei(n) = d(n) − ŷi (n) are the estimation errors of each component filter.
In order to restrict the mixing parameter to the interval [0,1] and to reduce gradient noise when

η(n) ≈ 0 or η(n) ≈ 1, a nonlinear transformation and an auxiliary variable a(n) are used, i.e.,

η(n) = sgm[a(n)] � 1

1 + e−a(n)
, (12.339)

where a(n) is updated to minimize the overall squared error e2(n), i.e.,

a(n + 1) = a(n) − μa

2
∇ae

2(n) = a(n) + μa

[
ŷ1(n) − ŷ2(n)

]
e(n)η(n)

[
1 − η(n)

]
. (12.340)

In practice, a(n) must be restricted by saturation of (12.340) to an interval [−a+, a+], since the factor
η(n)

[
1 − η(n)

]
would virtually stop adaptation if a(n) were allowed to grow too much. The correct

adjustment of the step size μa depends on the input signal and additive noise powers and also on the
step sizes of the component filters. To make the choice of μa independent of the filtering scenario, a
normalized scheme was proposed in [32].
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FIGURE 12.40

Convex combination of two transversal adaptive filters.

The combination of one fast and one slow LMS (with μ1 > μ2) operates in a very intuitive way.
When fast changes appear, the fast filter outperforms the slow one, making η(n) ≈ 1. In stationary
situations, the slow filter gets a lower quadratic error and η(n) ≈ 0, which allows the overall filter
to achieve the misadjustment of the slow LMS filter. There are situations in which the combination
outperforms each component filter and in these cases, 0 < η(n) < 1. This behavior can be observed
in the simulation results shown in Fig. 12.41, where the convex combination of two LMS filters with
different step sizes (μ1 = 0.1 and μ2 = 0.01) was used to identity the system (from [27])

wo = [
0.9003 −0.5377 0.2137 −0.0280 0.7826 0.5242 −0.0871

]T
.

The regressor φ(n) is obtained from a process x(n) generated with a first-order autoregressive model,
whose transfer function is

√
1 − b2/(1 − bz−1). This model is fed with an i.i.d. Gaussian random

process, whose variance is such that Tr(Rφ) = 1. Moreover, additive i.i.d. noise v(n) with variance
σ 2

v = 0.01 is added to form the desired signal. Fig. 12.41(a) shows the EMSE curves estimated from
the ensemble average of 500 independent runs and filtered by a moving average filter with 128 coef-
ficients to facilitate the visualization. The combined filter acquires the faster convergence of μ1-LMS
and attains the EMSE of μ2-LMS. Fig. 12.41(b) shows the time evolution of the mixing parameter. We
can observe that it rapidly changes toward sgm[a+] during the initial convergence, while its steady-state
value is 1 − sgm[a+].

After the publication of [226], many papers on combinations of adaptive filters appeared in the
literature. Apparently, the idea of combining the outputs of several different independently run adaptive
algorithms was first proposed in [15] and later improved in [270,271]. The algorithms proposed in
[15,270,271] are based on a Bayesian argument and construct an overall (combined) filter through a
linear combination of the outputs of several independent adaptive filters. The weights are the a posteriori
probabilities that the underlying models used to describe each individual algorithm are “true.” Since the
weights add up to one, in a sense these first papers also proposed “convex” combinations of algorithms.
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FIGURE 12.41

(a) EMSE for μ1-LMS, μ2-LMS, and their convex combination. (b) Ensemble average of η(n). μ1 = 0.1,
μ2 = 0.01, μa = 100, a+ = 4, b = 0.8; mean of 500 independent runs.

Unconstrained linear combinations of adaptive filters were also proposed in [188]. However, the method
of [27,226] has received more attention due to its relative simplicity and the proof that the optimum
combination is universal. By this, we mean that if the combination uses at every instant the optimum
value of η, then the combined filter is always at least as good as the best component filter. However, in
practice η must also be estimated, so the performance of the combination may be slightly worse than
that of the best filter.

In the sequel, we briefly describe some of the most important contributions in this area. The key
ideas and principles behind these combination schemes and a variety of examples can be found in the
overview article [25].

In [28], the convergence of the overall filter is greatly improved by transferring a part of the fast
filter w1 to the slow filter w2 when λ(n) ≥ γ , that is,

w2(n + 1) = α [w2(n) + μ2e2(n)x(n)] + (1 − α)w1(n), (12.341)

where α is a parameter close to 1 and γ is a threshold close to the maximum value that can be reached
by λ(n). The computational cost can be reduced as suggested in [260], by simply copying the fast filter
coefficients to the slow filter, instead of the linear combination of (12.341).

A steady-state analysis of the combined filter was presented in [27]. This analysis shows that the
convex combination is universal if the optimum η is used, a property that was exploited to design filters
with improved tracking performance. Due to the nonlinear function (12.339), a transient analysis of the
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convex combination needs additional simplifications. This issue was addressed in [264], which provide
models for the transient of the convex combination based on first-order Taylor series approximations.

The convex combination was used in [405] to improve the performance of a variable tap length LMS
algorithm in a low-SNR environment (SNR ≤ 0 dB). The adaptation of the tap length in the variable
tap length LMS algorithm is highly affected by the parameter choice and the noise level. Combination
approaches improve such adaptation by exploiting advantages of parallel adaptive filters with different
parameters.

The convex combination was exploited in [342] to improve the tracking performance of adaptive
filters by combining filters with different tracking capabilities, as in the cases of LMS and RLS (see
Section 12.4.4). The combination of algorithms of different families was also addressed in [266], where
it was shown that a combination of two filters from the same family (i.e., two LMS or two RLS filters)
cannot improve the performance over that of a single filter of the same type with optimal selection of
the step size (or forgetting factor). However, combining LMS and RLS filters, it is possible to simul-
taneously outperform the optimum LMS and RLS filters. In other words, combination schemes can
achieve smaller errors than optimally adjusted individual filters. This result was extended in [97] to
a larger class of models for the variation of the optimum weight vector following (12.184) instead of
the random-walk model of (12.183). It is shown in [97] that the combination of RLS and LMS filters
achieves a performance close to that of the Kalman filter, which is optimum for tracking linear models
such as (12.184), but requires knowledge of the environment and O(M2) operations, while combina-
tions of LMS and RLS filters can be implemented in O(M) operations and do not require a priori
knowledge of the environment.

Convex combinations were used for sparse echo cancelation in [26], considering the combination
of two improved proportionate normalized LMS (IPNLMS) filters. The combined scheme increases
the IPNLMS robustness to channels with different degrees of sparsity and also alleviates the trade-off
between rate of convergence and steady-state misadjustment imposed by the selection of the step size.
Still considering the echo cancelation application, [34] proposes a combination of adaptive Volterra
kernels that presents a similar behavior to that of the complete Volterra filters, but with a reduction in
the computational load. This scheme is robust regardless of the level of nonlinear distortion, which is a
desired property for nonlinear echo cancelation.

In [198], the convex combination was also used as a scheme for adaptively biasing the weights of
adaptive filters using an output multiplicative factor. Interpreting the biased estimator as the combina-
tion of the original filter and a filter with constant output equal to zero, practical schemes to adaptively
adjust the multiplicative factor were proposed. This scheme provides a convenient bias versus variance
trade-off, leading to reductions in the filter MSE, especially in situations with a low SNR.

Extending [27], the authors of [52] proposed an affine combination of two LMS algorithms, where
the condition on the mixing parameter is relaxed, allowing it to be negative. Thus, this scheme can be
interpreted as a generalization of the convex combination since the mixing parameter is not restricted
to the interval [0, 1]. This approach allows for smaller EMSE in theory, but suffers from larger gradient
noise in some situations. Under certain conditions, the optimum mixing parameter was proved to be
negative in steady state. Although the optimal linear combiner is unrealizable, two realizable algorithms
were introduced. One is based on a stochastic gradient search and the other is based on the ratio of the
average error powers from each individual adaptive filter. Under some circumstances, both algorithms
present performance close to the optimum.
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Similarly to the convex combination, the correct adjustment of the step size for the updating of the
mixing parameter in the affine combination (using the stochastic algorithm of [52]) depends on char-
acteristics of the filtering scenario. This issue was addressed in [66], where a transient analysis for the
affine combination of two adaptive filters was presented. The results of this analysis were used to facil-
itate the adjustment of the free parameters of the scheme and to propose two normalized algorithms to
update the mixing parameter. The scheme based on the ratio of error powers of the two filters proposed
in [52] to update the mixing parameter was analyzed in [44].

Finally, [187] studied different mixing strategies in which the overall output is formed as the
weighted linear combination (not necessarily constrained to convex or affine, as before) of the out-
puts of several component algorithms for stationary and certain nonstationary data.

12.5.8.2 Distributed adaptive filtering
Adaptive networks use the information from data collected at nodes distributed over a certain region.
Each node collects noisy observations related to a parameter of interest and interacts with its neighbors
considering a certain network topology. The objective is to obtain an estimate of the parameter of in-
terest as accurate as the one that would be obtained if each node had access to the information across
the entire network [216,218,318]. Distributed estimation algorithms are useful in several contexts, in-
cluding wireless and sensor networks, where scalability, robustness, and low power consumption are
desirable. They also find applications in precision agriculture and environmental monitoring and trans-
portation [73,318].

Fig. 12.42 shows a network composed by N nodes distributed over some geographical area. At time
instant n, every node k takes a measurement {dk(n),φk(n)} to estimate some parameter vector wo. The
scalar measurement dk(n) represents the desired signal and φk(n) denotes the length-M input regressor
vector for node k. There are different solutions to the problem of estimating wo. In the centralized
solution, every node transmits its data {dk(n),φk(n)} to a fusion center for processing. This solution is
nonrobust to failure in the fusion center. In distributed solutions, every node exchanges information with
a subset of its neighboring nodes, and the processing is distributed among all nodes in the network. The
set of nodes connected to node k (including k itself) is denoted by Nk and is called the neighborhood
of node k.

FIGURE 12.42

Diffusion network with N = 7 nodes. At time n, every node k takes a measurement {dk(n),φk(n)}.

There are three main network topologies used in distributed estimation: incremental, diffusion, and
probabilistic diffusion [218,318]. In incremental networks, the nodes are connected so that information
flows sequentially from node to node, in a cyclic manner (Fig. 12.43(a)). In diffusion networks, each
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node communicates with its entire neighborhood at each instant (Fig. 12.43(b)). Finally, in probabilistic
diffusion networks each node communicates with a (possibly random) subset of its neighbors at each
instant (Fig. 12.43(c)).

FIGURE 12.43

Different network topologies.

Several estimation algorithms have been proposed in the context of distributed adaptive filtering,
such as incremental LMS, incremental RLS, diffusion LMS, diffusion RLS, diffusion Kalman filtering,
and smoothing algorithms. In these algorithms, the nodes share information with their neighbors and
perform local adaptation and merging of information using convex combinations of available estimates.
Distributed algorithms only require local communications between neighboring nodes and can attain
good estimation performance compared to centralized solutions [72–76,78,90,140,142,204,215,228,
229,263,318,326,361].

Much effort has been devoted to the development of diffusion strategies that are able to learn and
adapt from continuous streaming data and exhibit fast convergence, good tracking capability, and low
computational cost. When these strategies are implemented in wireless sensor networks, for exam-
ple, energy consumption is the most critical constraint [29,141,360]. As a result, several selective
transmission mechanisms have been proposed to reduce the energy consumption associated with the
communication processes [23,29,41,91,141,217,360,366,391,395,406]. Some of these solutions seek
to censor the nodes by avoiding the transmission of information to any of their neighbors when the in-
formation is not sufficiently new to significantly improve the current network estimates. This allows the
censored nodes to turn their transmitters off, thus saving energy, and reduces the amount of information
used in the processing [41,141,366].

Adaptive distributed algorithms have also been used to model biological systems due to their self-
organization property. Examples include fish joining together in schools, bacterial motility, and bird
flight formations [77,83,84,371–373].
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12.5.9 Adaptive IIR filters
Adaptive IIR filters represent an advantageous alternative in relation to adaptive FIR filters, due to their
capacity to provide long impulse responses with a small number of coefficients. Their use may be desir-
able in applications requiring hundreds or thousands of taps, such as satellite channel and mobile radio
equalizers. The advantages of adaptive IIR filters have a price: slow convergence, possible instability,
error surfaces with local minima, or biased global minima [62,117,269,299,336]. In addition, not all
long impulse responses will necessarily be well approximated by an IIR filter with low order.

The nonlinear relation between the adaptive filter coefficients and the internal signals makes the
gradient computation and convergence analysis more complicated than those of adaptive FIR filters
[117]. Over the years, problems related to local minima, stability, and the effect of poles close to the unit
circle have been addressed by several authors, leading to different adaptive algorithms and realization
structures [60,61,100,101,118,136,181,219,297,357].

Another difficulty with adaptive IIR filters is that the performance of simple constant gain algo-
rithms may rapidly degrade as the order of the filter grows. Even in the absence of local minima, the
adaptation of filters with order greater than two can remain almost stopped in regions where the MSE
is relatively high. This issue was addressed in [62], where a large acceleration in the convergence rate
of IIR filters was obtained.

12.5.10 Set membership and projections onto convex sets
When the desired signal and the regressor are related as

d(n) = wH
o φ(n) + v(n),

where v(n) is bounded, that is, |v(n)| ≤ γ for all n, it is natural to consider that each pair (d(n),φ(n))

defines a region in which the true solution w∗ must lie:

wo ∈ S(n) =
{
w ∈C

M :
∣∣∣d(n) − wH φ(n)

∣∣∣≤ γ
}

. (12.342)

For example, if all vectors are 2D and real, the region S(n) will be as in Fig. 12.44.
Set membership algorithms aim to find the set of possible solutions by tracking the intersection

T (n) =
n⋂

k=0

S(k) (12.343)

of all S(n) [53]. In the control literature and earlier algorithms, this is done by approximating T (n)

by ellipsoids [53,108,115]. However, very good performance is obtained if one uses just any point
contained in T (n) as a point estimate of wo at each instant. In fact, it is more interesting to restrict the
memory, so that the filter can track variations of wo. In this case, only the last K constraint sets S(n)

are used:

TK(n) =
n⋂

k=n−K+1

S(k). (12.344)
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FIGURE 12.44

Constraint imposed by data at time n.

This approach has a very nice property: close to steady state, if the weight estimates are already inside
TK(n), it is not necessary to perform any update. This may considerably reduce the average complexity
of the filter [2,111,119,121,122,205,384,385].

This approach has also been extended to a more general setting, using projections onto convex
sets and subgradients. This allows the extension of the results to nondifferentiable cost functions, with
different descriptions for the constraints (not restricted to (12.342)), also allowing the design of kernel
adaptive filters [346,347,365,393] (see Section 12.5.13).

We should note that the assumption of bounded noise was used in the earlier works, especially in
control theory. However, this assumption is not really necessary and in adaptive filtering literature, it is
common to assume v(n) is unbounded (e.g., Gaussian), but with finite variance [117].

12.5.11 Adaptive filters with constraints
In some applications, one wishes to minimize a cost function given certain constraints; a typical case is
beamforming. In the simplest example, an array of antennas or microphones receives a signal coming
from a certain (known) direction and interference from other (unknown) directions. The output of the
array is a linear combination of the signals φi(n) received at each antenna, e.g.,

ŷ(n) = w∗
0φ0(n) + w∗

1φ1(n) + · · · + w∗
M−1φM−1(n).

One way of improving the SNR at the output is to minimize the output power, under the restriction that
the gain of the array in the direction of the desired signal is one. This is described by a constraint of the
kind

cH w = 1,

where w = [
w0 . . . wM−1

]T is the weight vector and c ∈ C
M is a vector describing the constraint.

The goal of the filter would then be to find the optimum wo that is the solution of

wo = arg min
w

s.t. cH w=1

∣∣ŷ(n)
∣∣2 .
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This solution is known as the minimum-variance distortionless response (MVDR), or Capon beam-
former, since it was originally proposed in [69]. There is an extensive body of literature on this
subject [22,55,102,151,162,200,347,376,377,380,381]. Introductions to the topic can be found in
[191,368,378].

Other kinds of constraints can be useful to design specialized filters for identification of sparse
models or to guarantee that the weight estimates remain in a bounded region (box constraints), such as

am ≤ wm(n) ≤ bm, for 1 ≤ m ≤ M, (12.345)

where am ≤ bm are known constants, or norm constraints such as

‖Dw(i)‖p ≤ τ, (12.346)

where D is a diagonal matrix with nonnegative entries, τ is a constant, and ‖x‖p is a vector norm, such
as �1, �2, or �∞. Box constraints can be used to keep the estimates inside a known region where the
coefficients should be (for example, if the coefficients must be nonnegative, one can choose am = 0,
bm → ∞). The nonnegative LMS algorithm described in [82] imposes exactly this kind of constraints.
Norm constraints, on the other hand, can be used to impose sparsity constrains (if the �1-norm is used).
An extension to the RLS-DCD algorithm considering box and norm constraints is described in [267].

12.5.12 Reduced-rank adaptive filters
In applications in which large filters are necessary, such as acoustic echo cancelation and nonlinear
models using Volterra expansions, it may be useful to reduce the order of the problem by working in
a smaller subspace of the original problem. This reduces the number of parameters to be estimated,
increasing the convergence speed and reducing the EMSE [324]. Several methods have been proposed,
such as those based on eigendecompositions [168,355], the multistage Wiener filter [164,175,325], the
auxiliary vector filtering algorithm [276], and the joint iterative optimization method [112–114,400].
This last method has the advantage of having low computational cost.

12.5.13 Kernel adaptive filtering
Kernel adaptive filters are able to solve nonlinear problems by mapping the input vectors into a high-
dimensional space where a standard linear adaptive filter is employed (see, e.g., [81,98,212]). They
have been used in different applications such as time series prediction [212,323,367,399], system iden-
tification [283], echo cancelation [374], and channel equalization [211,212].

These filters use a Mercer kernel to map the input column vector φ ∈ R
M into a high-dimensional

feature space H as the column vector ϕ(φ) ∈H. A Mercer kernel is a continuous, symmetric, and
positive definite function κ : RM ×R

M →R, such that [98,193,212,327]

κ(φ,φ′) = ϕ(φ)T ϕ(φ′) (12.347)

for all M-length column vectors φ,φ′ ∈ R
M .2 Eq. (12.347) is known as the kernel trick since the inner

product ϕ(φ)T ϕ(φ′) can be computed without knowing explicitly the feature map ϕ(·).

2 In this section, in order to simplify the arguments, we assume that all quantities are real.
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The polynomial and Gaussian are two typical examples of kernel functions used in the literature.
The polynomial kernel induces a finite-dimensional Hilbert space and is defined as

κ(φ,φ′) =
(
φT φ′ + 1

)q

, (12.348)

where the integer q ≥ 1 is the degree of the polynomial. The Gaussian kernel induces an infinite-
dimensional Hilbert space and is defined as

κ(φ,φ′) = exp

(
−‖φ − φ′‖2

2σ 2

)
, (12.349)

where ‖ · ‖ denotes the Euclidean norm and σ > 0 is the kernel width [212]. Selection of an appropriate
width remains an important issue to achieve good performance [33,340]. Unless the target function can
be well approximated by a polynomial function, the Gaussian kernel is usually the default choice since
it is numerically stable and capable of universal approximation [212].

Eq. (12.347) makes it possible to obtain different kernelized versions of the standard adaptive filters,
as is the case of the kernel LMS (KLMS) algorithm [211]. In the space H, the LMS algorithm is used
to update the filter weight column vector �(n − 1) in order to estimate the desired signal d(n), i.e.,

y(n) = ϕ(φ(n))T �(n − 1), (12.350)

e(n) = d(n) − y(n), (12.351)

�(n) = �(n − 1) + μe(n)ϕ(φ(n)), (12.352)

where �(0) = 0, φ(n) is the input vector, y(n) is the filter output, e(n) represents the estimation error,
and μ is the step size. Fig. 12.45 shows a scheme for a kernel adaptive filter applied to nonlinear system
identification.

FIGURE 12.45

KLMS applied for nonlinear system identification.
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Using the Representer Theorem [212], �(n) can be expressed as a linear combination of past sam-
ples, i.e.,

�(n) =
n∑

i=1

μe(i)ϕ(φ(i)), (12.353)

which allows us to rewrite (12.350) as [211]

y(n) = μ

n−1∑
i=1

e(i)κ(φ(n),φ(i)). (12.354)

In spite of the high-dimensionality of the feature space, y(n) can be computed as a linear combi-
nation of the kernel function evaluated over the present input vector and all previous input vectors
of the filter. These vectors are usually collected into a set called dictionary D(n) = {φ1 = φ(1), φ2 =
φ(2), · · · , φn−1 = φ(n − 1)}, whose cardinality grows linearly with the incoming vectors, i.e., N(n) =
n − 1. This implies high computational cost and requires much memory.

To avoid this linear growth, many sparsification techniques have been proposed to include in the
dictionary only informative data (e.g., [58,81,127,148,156,210,213,293,303,345,367]). Among these
techniques, the novelty criterion (NC) is the most used [293]. At time instant n, NC computes the dis-
tance from φ(n) to all dictionary vectors φi , i = 1,2, · · · ,N(n). If the minimum distance is greater than
a threshold, φ(n) is considered to carry important information and must be included in the dictionary
as member φN(n+1) with N(n + 1) = N(n) + 1. Otherwise, the dictionary must remain unchanged,
i.e., D(n + 1) ←D(n) and N(n + 1) = N(n). An alternative to NC used in conjunction with KLMS
is the quantized KLMS (QKLMS) algorithm [81]. QKLMS uses NC and updates the weight of the
closest vector when the vector φ(n) is not included in the dictionary. The use of “redundant” data in
this update leads to an algorithm with better accuracy and a more compact dictionary [81]. Besides
NC, we should also mention some other interesting techniques, such as the coherence criterion (CC)
[303], random Fourier feature (RFF) [58], approximate linear dependence (ALD) [127], and Gram–
Schmidt KLMS (GS-KLMS) [59]. CC is a variant of NC and presents similar behavior. RFF uses
Bochner’s theorem to approximate the kernel by a sum of cosines whose parameters are drawn from
a pdf related to the Fourier transform of the kernel [58]. ALD was proposed in [127] as a sparsifica-
tion technique for the kernel RLS (KRLS) algorithm. It computes minb ‖∑N(n)

i biϕ(φi ) − ϕ(φ(n))‖,

where b = [
b1 b2 · · · bN(n)

]T
, and uses vector b as a representation of the mapped vector ϕ(φ(n)).

The input vector φ(n) is included in the dictionary if the computed norm is lower than a threshold.
Thus, ALD computes a basis (not necessarily orthogonal) that spans the vector space of the mapped
vectors contained in the dictionary. Finally, GS-KLMS computes an orthonormal basis using the Gram–
Schmidt process to span the vector space of the mapped vectors contained in the dictionary. At every
time instant n, this technique verifies if the norm of the projection of ϕ(φ(n)) onto that space is smaller
than a threshold. If this occurs, ϕ(φ(n)) cannot be well represented in the basis. Thus, φ(n) must be
included in the dictionary and a new vector for the basis is computed. Otherwise the dictionary and the
basis remain unchanged [59]. All these sparsification techniques provide a reduction in the computa-
tional burden and memory of kernel-based algorithms. However, this reduction is not sufficient to use
these methods in real-time problems, which remains an open question in the literature.
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Kernel adaptive filters have also been used in nonlinear system modeling with diffusion networks
[89,155]. Potential applications include monitoring of complex natural phenomena or infrastructure. A
naive distributed implementation requires the algorithm to exchange all the local datasets between the
agents, which can become unfeasible. Therefore, it is common to assume a shared dictionary among
nodes, whose selection is an open research question [322].

Box 12.8: Fixed-point arithmetic

In fixed-point arithmetic, all variables are restricted to lie in a fixed interval [−a, a) and are stored as a
sequence of B bits, b0b1 . . . bB−1. Assuming that two’s-complement arithmetic is used and that a = 1,
b0 represents the signal of the variable and the sequence of bits represents the number

−b0 +
B−1∑
m=1

bm2−m.
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13.1 Introduction
Machine learning (ML) is a pervasive technology finding more applications on a daily basis. ML is
the critical tool in methods designed to provide prediction and classification in a wide variety of fields.
One should bear in mind that despite taking part in the world of artificial intelligence (AI), ML has
its limitations. There are many tasks in which natural intelligence cannot be matched by ML solutions
relying on data. In many cases, for ML, it is hard to adapt or generalize the solution to new problems,
since it relies on the data available and ignores temporal and domain changes [53]. The broader view
of AI includes ML as an action or execution of distinct components that would get closer to an AI
benchmark if combined. In the long run, the idea contains features like cognition, perception, and
actions entirely controlled by a computer.

In summary, it is possible to predict that there is a long road ahead for ML researchers; for instance,
one can incorporate some form of reasoning to approach the goal of proper AI solutions. While AI
encompasses all aspects of intelligence, ML can be considered as only one component of AI.

This chapter covers some classical methods of ML and delves into some current problems being
addressed by the ML community [48], [8].

The adaptive filtering algorithms covered in this book fall into the class of learning algorithms,
mainly utilizing linear parametric models, that are widely used in real-time applications with inherent
streaming data. The algorithms are efficient computationally and can be applied to deal with some
particular nonlinear models as well [13]. From now on, we aim at presenting ways of learning from
data beyond the realm and without the constraints akin to classical online adaptive filtering.

In this chapter, we present the basic methods of ML that hopefully can motivate the reader to learn
further concepts of this fascinating field and set the stage for the many aspects of the ML discussed
in the remaining chapters of this book. The chapter describes the basic concepts of ML balancing the
presentation between established methods and more recent challenges in the field.

Many textbooks cover ML, statistical inference, neural networks (NNs), and related topics [2,3,10,
15,21,24,30,45,58,62–65]. Here we selected some topics that we found more relevant to develop new
tools in this area and complement the remaining topics of this book. Furthermore, wherever appropriate,
we discuss the connections with the signal processing methods discussed in the previous chapter.

Signal Processing and Machine Learning Theory. https://doi.org/10.1016/B978-0-32-391772-8.00019-3
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We should have two approaches to describe ML theory and algorithms. Some topics are covered in
more detailed form, whereas others are covered in a more informative and intuitive format. The ML
field is ample and encompasses many branches of knowledge, so it is only possible to describe a narrow
range of tools.

In the detailed cases, we should include the following information when it applies:

• cost function,
• network structure,
• learning algorithm,
• regularization (if applicable),
• universal approximation property (if applicable),
• an example (where and when it applies).

The presentation starts with a broad introduction to the basic concepts related to the learning pro-
cess inherent to any ML algorithm. In there, we discuss some issues akin to the data use in an ML
application, such as how to prepare the data; how to separate the datasets for training, validation, and
testing; and how to define a minibatch. Then, we discuss some learning modes highlighting unsuper-
vised, semisupervised, and supervised learning.

13.2 Learning concepts
Learning is the ability to acquire knowledge, enabling one to perform new and more complex tasks.
Although not restricted to humans, our amazing learning capacity distinguishes us from other animal
species. Such intelligence is enlarged by our acute sense of the surroundings, expanded memory (due
to writing), developed communication skills, and amazing processing capability (thanks to a dispro-
portionate and highly evolved brain). In the last few decades, however, a new in-lab bred species has
also developed a large ability to acquire, store, communicate, and process information, enabling it to
learn human-like skills such as language translation, music composition, image interpretation, and data
classification.

This chapter deals with this amazing process where we humans can teach this new species, the
computer, how to analyze data and extract information from it in order to develop new abilities and
perform ever more advanced tasks. To do so in a successful manner, we need to dissect the learning
process and use this analysis to develop algorithms that are able to mimic this ability.

Nature observation has become the fundamental cornerstone in science ever since Galileo pointed
his telescope to Jupiter and took note of the peculiar movements of some of the planet’s moons. From
then on, recording data from nature and interpreting them has led to many scientific discoveries and
fundamental laws.

Nowadays, we use the same approach to make computers learn new tasks. Given enough data, we
have now developed algorithms that can teach a computer an underlying pattern within a given process.
Once this pattern is mathematically modeled or, as we say, learned by the computer, the machine can
reproduce it on newly acquired data. The most important aspects in this entire process are the data, the
process at hand, and the training framework: One must have enough data to represent a process and
have an effective learning strategy to identify and mathematically represent a given pattern within the
process.
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13.2.1 Data concepts
As mentioned above, data play a major role in the ML process. Consider a given process P that maps
the m-dimensional data space Um into an output space Y , as represented in Fig. 13.1. Due to practical
issues, one only has access to a limited amount of data {um} ⊂ Um and {y} ⊂ Y about P . During the
learning process, datasets {um} and {y} are our only windows into the soul of P . Therefore, these sets
must represent as faithfully and completely as possible the process one is attempting to model.

FIGURE 13.1

Block diagram representation of a given pattern P that maps the data space Wm into an output space Y .

Any noise component in either {um} or {y} shall cause a suboptimal learning process, leading to
a biased representation P̂ of P . Noisy um data result from practical measurements, where a given
sensor may be even off due to some operational failure, whereas a noisy y is commonly associated with
improper mislabeling, which often results from imperfect human intervention. In lab conditions, such
impairments can be controlled down to a certain level, which often guarantees a successful learning
procedure. In several practical situations, however, these data imperfections are strong enough to hinder
the learning process, which shall require some additional data preprocessing stages to become feasible.

As brilliantly demonstrated by Claude E. Shannon, not all bits of data represent bits of informa-
tion. Therefore, a crucial stage in the learning framework is to perform information extraction from the
available data, where the concept of information is pretty much dependent on the nature of the under-
lying pattern one is trying to represent. In this stage, each piece of information extracted from {um} is
commonly referred to as a process attribute or feature.

As will be later assessed, system training is a somewhat intricate process, where one searches for
the best model P̂∗ for P within a subset of candidates P̂ . This search may become impractical in cases
of high values of data dimension m. This issue is commonly addressed by some form of dimensionality
reduction, leading to an input mapping of the form um → xn, where x denotes the feature vector and
commonly n << m, indicating a significant reduction in the data dimension and in the complexity of
the associated learning process.

Other important aspect arises when the available data do not completely represent the original sets
Um and Y . In such a case, our best trained model P̂∗ may seem to map well {um} into {y}, despite being
significantly distinct from P . When this happens, our estimated model P̂∗ will have poor generaliza-
tion capability and very little practical usage. Such impairment may be detected by incorporating an
extra step into the learning process which evaluates the degree of generalization achieved by the model.
This is accomplished by separating the available data into two independent subsets ({um}tr, {y}tr) and
({um}te, {y}te), where the first one is used for model training and the second one is used for testing its
performance in a different dataset. It is very important to ensure that there is no contamination between
these two datasets, meaning that no piece of information employed in system training is used during
the system testing, guaranteeing a truly independent and reliable performance assessment. This dataset
partition reduces the amount of training data, probably affecting a little bit the final estimate P̂∗ yielded
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by the learning process. By allowing the evaluation of the final trained model into completely indepen-
dent data, however, one is able to evaluate the model’s ability to represent new data, thus measuring the
process generalization capability, which is critical in most practical situations.

Following the discussion presented in this section, we may incorporate the data preprocessing, fea-
ture extraction, dimensionality reduction, and training/testing partition stages into the overall learning
process, leading to a more detailed framework, as depicted in Fig. 13.2.

FIGURE 13.2

Block diagram of a more detailed machine learning pipeline.

In this procedure, the “Training” step includes the search, as performed by a given parameter ad-
justment algorithm, for a best model P∗, according to a given performance criterion, as detailed in
Fig. 13.3.

FIGURE 13.3

Detailed block diagram for the model training procedure.

Although still soon in this section, we can say, from past practical experience, that data quality is
usually the bottleneck in the whole learning process: The quality of your final system will be affected
most by the quantity and most importantly by the quality of the available data. As we are still early in
our learning journey, some of these aspects may seem a bit hermetic to the reader at this stage. All of
them, however, will be revisited along this chapter from a practical point of view, which shall clarify
their most important concepts in due time.
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13.2.2 Kinds of learning
At this point, we hope the reader is convinced that ML is a very important and interesting field. We now
proceed to give indications that it is also a very broad field quite challenging to cover in a single book
chapter. In fact, the learning process is very diverse and rich enough to fill a large bookshelf or even an
entire library section. Among the several types of learning processes, we may cite:

• Classification × regression: Classification is a learning process where the expected output belongs
to a discrete and finite set of values (such as “class 1,” “class 2,” . . . , “class N”), whereas regression
shall output a real number.

• Binary × multiclass: A binary problem is a particular classification problem where the output set
has only N = 2 classes, whereas the multiclass problem has N > 2. (See Fig. 13.4.)

FIGURE 13.4

Illustration of (a) binary and (b) multiclass classification problems.

• Unsupervised × supervised: The unsupervised classification problem, also known as clustering,
groups the input data into subsets (clusters) without labeling them, whereas the supervised problem
uses prior information about the data (commonly obtained through painful manual annotation) to
train an algorithm that partitions the input data into a predefined set of classes. (See Fig. 13.5.)

• Online × active (learning by asking) × batch learning: In the online scheme, the input data are
acquired in real time, during the training process. In the active scheme, the learning process asks for
more data until some performance criterion is satisfied. Finally, batch learning (possibly the most
common form among these three) uses an entire precollected set of input samples. If the entire set
is divided into several smaller subsets, the strategy is also referred to as minibatch learning.

• Structured learning: This strategy refers to situations where the underlying pattern presents some
form of structure, like speech recognition systems predicting practical sentences that must follow a
formal grammatical set of rules (structure).

• Reinforcement learning (RL): In this type of learning, an algorithm models a given process by
performing it over and over again until reaching good performance levels in several occasions.
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FIGURE 13.5

Illustration of (a) unsupervised and (b) supervised classification problems.

• Adversarial learning: In this strategy, two systems are used in tandem to model a given process. One
system tries to learn about the process whereas the other system attempts to deceive the first one. In
this manner, the second system reinforces the learning process performed by the first system, thus
providing stronger and more robust results.

• Continuous learning: Practical situations where the target system dynamically changes along time
require some form of (continuous) learning, where the trained model must adjust itself to reflect the
time-varying nature of the underlying pattern.

This chapter covers several aspects associated with some of these learning strategies, mostly focus-
ing on the batch learning approach. In particular, unsupervised learning is addressed in Section 13.3, the
most common supervised algorithms are presented in Section 13.4, adversarial learning is introduced
in Section 13.6.9, and RL is treated in Section 13.8.

13.2.3 Underfitting and overfitting
Overfitting or overtraining is literally the condition of excessively adjusting our model to spurious un-
derlying patterns within the training data. When this happens, our model adjusts itself to data subtleties
that have no direct counterpart along the original target process. Such a faulty training condition may
lead to biased models P̂∗ with excellent performance along the training dataset, but with a very bad
generalization capability when analyzing new data generated by P . This process misrepresentation
commonly occurs when one uses an excessively complex model and the training data present one or
more of the following issues:

• a stochastic noise component in the measured data;
• missing data samples due to temporary sensor failures;
• data mislabeling caused by faulty human intervention.

The opposite condition to overfitting is called underfitting, which occurs when the model is not able
to represent completely the true nature of P . This situation often occurs when there are too few training
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data available and/or our model is not sufficiently complex to represent fully the target process. Such a
faulty training condition often generates biased models P̂∗ with poor performance in both the training
and testing datasets. (See Figs. 13.6 and 13.7.)

FIGURE 13.6

Illustration of (a) overfitting and (b) underfitting in a classification problem.

FIGURE 13.7

Illustration of a good fit for the classification problem in Fig. 13.6.

As the entire training process is based only on the available data, meaning that one does not have
direct access to the true process, any significant discrepancy between ({um}tr, {y}tr), and P leads the
training algorithm astray thus converging to suboptimal solutions P̂∗ in both overfitting and underfitting
situations.

In practice, overfitting can be detected by excellent levels of performance in the training stage
followed by poor performance in the test dataset. When this happens, our first impulse is to retrain the
algorithm in order to improve its performance in the testing stage. In this strategy, however, the test
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dataset is somehow guiding the training process, violating the independence condition between these
two learning stages.

Dealing with overfitting is perhaps one of the biggest challenges in the field of ML: how can some-
one be rattled by amazing performance levels during training? A bad generalization capability, however,
means that our selected model has little applicability in practice. Therefore, one may ask, “How can we
detect and mitigate overtraining?” The answer to this question lies in two distinct and complementary
strategies, namely validation and regularization.

In order to measure the generalization capability of our model, one cannot base this analysis on
the testing dataset to avoid data snooping along the training procedure. We may, however, separate
the original training dataset into two new subsets: one for the effective system training and the other,
referred to as the validation set, to verify the performance of our model with nontraining and nontesting
data. This training–validation partition can be performed in several different ways, allowing one to
estimate the average and standard deviation of our system’s performance over different validation sets.

Regularization is basically a training strategy where one reduces the number of degrees of free-
dom of the model by restricting the domain of its parameters. Common parameter constraints include a
maximum value for their absolute values (�1 constraint) or total energy (�2 constraint), for instance. By
imposing such limitations during the system training our model loses the ability to represent compli-
cated patterns which are often associated with the process misrepresentation along the available data.

13.3 Unsupervised learning
13.3.1 Introduction
Unsupervised learning attempts to divide the whole mass of available data into subgroups, where all
elements of any given partition share similar characteristics and elements from distinct partitions are
as different as possible. If properly performed, this process allows us to further analyze each sub-
group separately, thus breaking a large and complex problem into several smaller and simpler tasks,
as preconized by Descartes. Each data partition is commonly referred to as a cluster and, therefore,
unsupervised learning is also known as clusterization.

Clustering algorithms often involve the following steps [67]:

1. Feature selection and extraction: Each available piece of data must first be characterized by some of
its specific attributes or features. Proper features shall be immune to noise and easy to extract and
interpret. Choosing the proper feature set decreases the subsequent workload but usually requires
great knowledge about the problem at hand.

2. Clustering algorithm selection and tuning: There is a plethora of clustering algorithms in the lit-
erature [3,63,67]. Different clustering algorithms result from different data similarity or proximity
functions. Once such a function is selected, clustering becomes an optimization problem, which also
has a vast associated literature. The proper clustering algorithm is often chosen based on the user’s
familiarity and on the algorithm’s robustness and convergence speed.

3. Cluster validation: Different data clusters often result from different algorithms or even from the
same algorithm with different execution parameters. Therefore, evaluating the final result with ef-
fective standards and criteria is an important step in the learning process. A typical assessment, for
instance, analyzes the final number of clusters and verifies if there is no over- or underpartition;
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4. Result interpretation: As mentioned above, once clustering is performed on a given dataset, one may
extract information in an easier and more effective way by interpreting the data at both the intra-
and intercluster levels.

In the three sections that follow we consider some clustering algorithms that altogether, far from
exhausting the field, provide a good coverage of the matter in both historical and practical aspects.

13.3.2 K-Means algorithm
In the K-means algorithm, we assume the existence of K clusters in a given dataset and initially select
at random K points, μk , for k = 1,2, . . . ,K , not necessarily belonging to our dataset, to act as the
prototypes of each cluster.

We then assign each datapoint x to the closest prototype following some distance definition, such as
the Euclidean one, creating a set of K clusters.

For each cluster, a new prototype is defined as the point that minimizes the total distance to all
its points. If the Euclidean distance is employed, these prototypes are called centroids and they are
determined as the mean of all points belonging to that cluster, justifying the algorithm nomenclature.

The previous two steps (data assignment and prototype calculation) are repeated until some conver-
gence criterion is reached. Possible rules may consider a given number of iterations, total displacement
of all prototypes in consecutive iterations, and so on. Convergence of the K-means algorithm may oc-
cur to a locally optimal solution and tends to be highly dependent on the initial set of prototype points
and nonrobust to outliers [3].

13.3.3 Self-organizing map
A self-organizing map (SOM) or a Kohonen map [36] is the numerical or visual representation of a
one-layer fully connected 2D NN, where neighboring cells respond to specific but similar input signal
patterns. In this process, each input activates a cell or a group of cells in a particular region of the
network. Similar inputs will tend to activate close by cells and vice versa. After convergence, the SOM
provides a 2D representation of the input domain, where each network region corresponds to a particular
data pattern.

The SOM training process is based on the concept of competitive learning, where the cells compete
with each other to decide which one will respond or be activated by a given input. Once the winner cell
is determined, the network weights are adjusted in such a way that the cells become more similar to the
input the closer they are to the winning cell.

For an n-dimensional input vector x, each cell ci,j of an I × J SOM has an n-dimensional weight
vector wi,j associated with it, with i = 1,2, . . . , I and j = 1,2, . . . , J . We may assume that all weights
are initialized with random values. For every input x, a distance is determined between it and all weight
vectors wi,j , and the network element with minimum distance becomes the best-matching cell (BMC)
for that particular input. Once the BMC is determined, the weight vectors of all neighboring cells are
adjusted in such a way that they become more similar to the input the closer the corresponding cell is
to the BMC.

Algebraically speaking, for any input x, we determine its distance to all network weight vectors
wi,j , as given by

d(i, j) = ‖x − wi,j‖, (13.1)
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with i, j as before. The minimum value of d(i, j), say d(i∗, j∗), identifies the network cell with a
weight vector most similar to the input. Once the BMC position is determined, (i∗, j∗) in this case, we
adjust the network weight vectors such that [37]

wi,j = wi,j + ηT (i, j)(x − wi,j ), (13.2)

where η is a learning rate parameter (that may vary along the convergence process) and T (i, j) is
a function of the distance between the (i, j) cell and the BMC for that particular input. In order to
enforce larger adjustments for cells closer to the BMC, T (i, i) may be defined, for instance, as

T (i, j) = e
− ‖(i,j)−(i∗,j∗)‖

2σ2 , (13.3)

where σ is the number of cells being adjusted, as one may opt to restrict the learning process to a
close neighborhood around the BMC to reduce computational complexity. The entire weight adjustment
process is performed for all available inputs, over and over again, until the SOM converges to a dataset
match.

13.3.4 Mean-shift clustering
The mean-shift algorithm (MSA) is a member of the hierarchical clustering family, where the algorithm
itself figures out how many clusters there ought to be, as opposed for instance to K-means, where that
number must be specified a priori.

The MSA starts by considering that a given n-dimensional datapoint x is the initial value of a
cluster prototype μx(0). The MSA then determines all datapoints within a neighborhood N of radius
or bandwidth R around that prototype and obtains a new prototype by shifting the previous one in the
direction of the average point μN within N , that is,

μx(t + 1) = μx(t) + η(μN − μx(t)). (13.4)

In this iterative procedure, η sets the convergence learning rate, which can be made variable, as well as
the value of R.

In every iteration, a new cluster is defined within the new neighborhood of the shifted prototype,
and subsequently a new prototype displacement is performed, and so on. Once the procedure converges
for a given datapoint, the same algorithm is replicated to the other datapoints outside the clusters that
have already been determined.

13.3.5 MNIST example
We consider the Modified National Institute of Standards and Technology (MNIST) [39] database,
which is a large dataset containing digits handwritten by students and employees of the United States
Census Bureau. This dataset consists of 60,000 and 10,000 training and test examples, respectively.
The input of this set is a 28 × 28 matrix, where each value represents a pixel of the image. The input
signal is normalized to the range 0 to 1. The output dataset has integer values between 0 and 9. Fig. 13.8
illustrates some entries of this dataset. For the unsupervised learning example, we only consider digits 0,
1, and 4 from the training set. Each 28 × 28 matrix example representing a digit is reshaped into a vector
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FIGURE 13.8

Sample images from the MNIST dataset.

with 784 elements. To facilitate the visualization, principal component analysis (PCA) is employed
to reduce the original 784 features to only two features [56]. The obtained features are illustrated in
Fig. 13.9(d), where red (mid gray in print version), blue (dark gray in print version), and green (light
gray in print version) points represent digits 0, 1, and 4, respectively. After repeatedly computing the
centroids, both K-means and mean-shift algorithms obtain similar clusters as shown in Fig. 13.9(a)
and Fig. 13.9(c). Although the performance is similar for this example, the K-means algorithm is less
computational intensive, whereas the MSA is more automatic when deciding the number of clusters
to be formed. On the other hand, the SOM training process obtains a map of activated neurons in
an attempt to reflect the data pattern. The resulting map of neurons can then be used to determine the
clusters, as depicted in Fig. 13.10. We can visualize the clusters back in the feature space in Fig. 13.9(b).
Indeed, the SOM training method is appropriate to mimic the data behavior, and it is an adequate tool
to obtain and visualize clusters when the data dimension is high.

13.4 Supervised learning
This section presents some classical and more recent methods of supervised learning that benefit from
the availability of annotated data. With the reference signal it is expected that the training period will
be more informative to the network, resulting in improved classification or regression performance.

13.4.1 Perceptron
One of the earliest and simplest NN tools is the so-called perceptron, enabling pattern classification,
which is linearly separable. As such, the perceptron finds the hyperplane that divides the original space
into two regions. The original sources related to the perceptron concept date back to the 1940s. Some
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FIGURE 13.9

Clusters formed using (a) K-means, (b), SOM and (c) mean-shift algorithms for three classes from the MNIST
dataset (d).

FIGURE 13.10

Neuron map obtained using SOM.

highlights should be given to [26,43,49]. An excellent review of the origin of the perceptron can be
found in [24].
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Consider a dataset {(x(1), y(1)), (x(2), y(2)), · · · , (x(Q), y(Q))} such that x(q) ∈ R
n×1 belongs

to one of the classes (ω1,ω2). If the two classes are linearly separable, at least one hyperplane can
classify the set of training samples correctly. The hyperplane is defined by the normal vector wo such
that wT

o x(q) = 0 and the classification is

y(q) = sign
[
wT x(q)

]
=
{

−1, if x(q) ∈ ω1,

+1, if x(q) ∈ ω2,
(13.5)

where sign [·] is the sign function.
The bias term of the hyperplane is included in the weight vector w to simplify the notation. From the

definition of the sign function, we have y(q)(xT (q)w) > 0 if only if {x(q), y(q)} is correctly classified.
A popular example of the application of this algorithm is the credit scoring model [66], whose goal is
to identify if a person can receive credit based on the information stored in a database.

The perceptron learning algorithm aims at finding the previously mentioned hyperplane. The algo-
rithm is initialized with parameter w as a random or zero vector. The update rule per iteration is

w =
{

w + μy(q)x(q) if x(q) is misclassified,

w otherwise,
(13.6)

where μ > 0 is the step size parameter, which controls the algorithm’s convergence. It is possible to
interpret this operation by employing a geometric interpretation, as depicted in Fig. 13.11. Since x(q)

is misclassified by w, the term μy(q)x(q) is added and the hyperplane moves so that the updated
coefficient w classifies x(q) correctly.

FIGURE 13.11

The vector x is misclassified by the hyperplane Hold (in red; light gray in print version). The update rule adds
x to the coefficient vector, wnew = wold + x, where in this case μ = 1. The new hyperplane Hnew (in blue; dark
gray in print version) classifies correctly the vector x.
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After a finite number of iterations, an optimal solution wo is reached. This result holds regardless
of which criterion is chosen to select the data at each iteration and also how the weight vector in the
algorithm is initialized [47]. The perceptron algorithm is outlined in Table 13.1.

Table 13.1 Perceptron algorithm.

Perceptron algorithm
Initialize
w = random vectors or zero vectors,
set μ > 0,
Do for t > 0 (epoch)

count = 0
Do for q = 1 : Q (for iteration q, select the data {x(q), y(q)})

if y(q)(xT (q)w) < 0
w = w + μy(q)x(q)

count = count + 1
end if

end
if count = 0

break; (If count = 0, then all data is classified correctly)
end if

end

The perceptron can be extended to generate a network with multiple layers called multilayer per-
ceptron (MLP). The latter is a universal approximator able to represent any nonlinear function [29].
The classification illustrated in Fig. 13.12 cannot be implemented by the perceptron, even though this
function is considered simple. Therefore, it is suitable to apply an MLP algorithm, a version of the
perceptron with multiple layers, for this problem. The added layers between input and output are called
hidden layers. Each layer is comprised of neurons, also known as nodes in this kind of problem. A sign
function is calculated in each of the nodes belonging to the hidden and output layers, as in the percep-
tron algorithm.

FIGURE 13.12

Two classes (ω1,ω2) are formed by the union of polyhedral regions. The configuration in this image is related
to the Boolean XOR function.
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In the following, we present more complex problems which require NNs such as the feedforward
multilayer NN. The concepts and definitions of these NNs are following described.

13.4.2 Fully connected neural networks
The structure of the feedforward multilayer NN includes an input layer, several internal layers, and an
output layer as defined in the following. Let us start by considering a dataset of input–output pairs,

D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(Q), y(Q))}, (13.7)

where x(q) ∈ R
n×1 for q = 1, · · ·Q. The inherent quantities belonging to each layer l are the input

vector denoted as h(l) and the output vector denoted as a(l). The connection between the data vectors of
layers l − 1 and l is performed by applying the weight matrix W(l). For reference the NN main variables
are organized in Table 13.2.

Table 13.2 Configuration of an arbitrary neural network.

Input vector of layer l h(l) ∈ R
d(l)×1

Output vector of layer l a(l) ∈ R
(d(l)+1)×1

Weight matrix between layers l − 1 and l W(l) ∈R
(d(l)+1)×(d(l+1))

As previously mentioned, a powerful NN used in supervised learning to approximate the nonlinear
mapping between the input–output pairs is the MLP. The MLP is composed of fully connected neurons
or nodes that are organized in several layers, as illustrated in Fig. 13.13. The input layer denoted by
l = 0 acquires the signal x(q) and the output layer l = L takes care of the prescribed task, i.e., makes
a decision or prediction ŷ(q) related to the input. The hidden layers lie between them, indexed by
0 < l < L. These models of networks are known as feedforward since the data move forward from the
input layer to the output layer [24,54].

Each layer l consists of d(l) neurons. For the input and hidden layers, there are bias parameters as
part of the network. The weight matrix W(l) connects the layers l − 1 and l, so that w

(l)
ij links the ith

node of the previous layer l − 1 to the j th node of layer l. Each node of the hidden layers, except for
the bias nodes, includes an activation function f whose argument is the weighted input of the layer.
For example, at the output layer, the activation function is fL. Some of the most widely used activation
functions are the ReLU function, the sigmoid logistic function, and the hyperbolic tangent function
[20,52].

In regression problems, the number of nodes in the output layer is d(L) = 1, producing a continuous
numeric value ŷ to be compared with the reference value y. In classification problems, d(L) represents
the number of classes. The desired signal vector y is one-hot-encoded, meaning that if c is the correct
class, yc = 1 and yi = 0 for i �= c. In this case, utilizing the softmax activation function at the output
layer is useful since the output signal ŷ returns a probability distribution of the classes, that is, ŷi =
P(c = i), and the class with greater probability is chosen.

Training the MLP involves adapting the weights and biases of the model to minimize a cost function
of the error in prediction or classification related to the input signal. In the forward pass, the input
signal vector x(q) flows forward through the network and produces the estimate ŷ(q), which is then
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FIGURE 13.13

Graphical representation of a neural network with four layers (L = 3).

compared with the reference label y(q) using the objective function. In the backward pass, the chain
rule of calculus is employed in the backpropagation method [27] to compute the gradient, which is then
used by the gradient descent algorithm to update the model parameters.

The feedforward process consists of the repetition of two steps in each hidden layer. The first one is
the sum of the weighted outputs of the previous layer,

a(l) = W(l)T h(l−1), (13.8)

where a(l) is the input of layer l. The second step consists of applying an activation function at layer l

to obtain the output vector,

h(l) =
[

1

f (a(l))

]
, for 1 < l < L − 1, h(L) =

[
fL(a(L))

]
, (13.9)

where f (a(l)) is a vector whose components are f (a
(l)
j ) with a

(l)
j =∑d(l−1)

i=0 w
(l)
ij h

(l−1)
i , for j =

1, · · · , d(l). The input layer is initialized by h(0) = [1;x]T and the feedforward process follows

x = h0 W(1)−−→ a(1) f−→ h(1) W(2)−−→ a(2) f−→ y(2) · · · W(L)−−−→ a(L) fL−→ h(L) = ŷ. (13.10)

In the backward step, the objective function is minimized with respect to the weights W =
[W(1) · · ·W(L)]. By using the gradient descent algorithm, the weights are iteratively updated following
the negative gradient direction,

W(l)(k + 1) = W(l)(k) − μ
∂J (W)

∂W(l)

∣∣∣
W(k)

, (13.11)
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where μ is the step size. Here, the objective function is the sum of the pointwise square error related to
each training sample,

J (W) = 1

Q

Q∑
q=1

Jq(W) = 1

M

Q∑
q=1

d(L)∑
p=1

Jn
q (W), (13.12)

where J
p
q is the objective function related to the output node p for sample x(q). The derivatives in

(13.11) are computed recursively in a backward fashion. The chain rule is applied so that the partial
derivative is partitioned into two new expressions,

∂Jq

∂W(l)
= ∂a(l)

∂W(l)

∂Jq

∂a(l)
= h(l−1)δ(l)T , (13.13)

where the first term utilizes Eq. (13.9), whereas the second term originates from the backpropagation
process. Vector δ(l) is known as the sensitivity vector for layer l, representing the gradient of the cost
Jq with respect to input a(l). With the sensitivity vector δ(l+1) available, it is multiplied by the weight
matrix W(l+1) and the bias component is discarded, such that

ε(l) = [W(l+1)δ(l+1)]d(l)

1 . (13.14)

Backpropagation is similar to the feedforward process, but with some distinction when calculating
the value δ(l). The sensitivity vector δ(l+1) is multiplied by the weights W(l+1) and the bias component
is excluded. In the following, the applied transformation is the multiplication element by element of
ε(l) = [W(l+1)δ(l+1)]d(l)

1 ,

δ(l) = f ′(h(l)) ⊗ ε(l), (13.15)

where f ′(h(l)) is the derivative of the activation function f in h(l) and ⊗ represents elementwise mul-
tiplication.

The following chain shows how the procedure works:

δ(L)
×W(L)

∣∣d(L−1)

1−−−−−−−−→ ε(L−1) ⊗f ′(h(L−1))−−−−−−−→ δ(L−1)
×W(L−1)

∣∣d(L−2)

1−−−−−−−−−→ ε(L−2) ⊗f ′(h(L−2)−−−−−−→

· · · ×W(2)
∣∣d(1)

1−−−−−−→ ε(1) ⊗f ′(h(1))−−−−−→ δ(1), (13.16)

with
∣∣d(l)

1 meaning that only components 1,2, · · · , d(l) of the vector W(l+1)δ(l+1) are selected.
Since the derivation of the algorithm is complete, the gradient descent backpropagation algorithm

is shown in Table 13.3.
A few issues related to the backpropagation algorithm are now discussed [2,62]. The most widely

used combination in regression problems is the linear function with mean squared error, whereas for
classification problems, the softmax function is utilized with cross-entropy (CE). Historically, the most
widely used activation function had been the sigmoid function, but it has some disadvantages, such as
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Table 13.3 Gradient descent backpropagation algorithm.

Gradient descent backpropagation algorithm
Initialize
{(x(1),y(1)), (x(2),y(2)), · · · , (x(Q),y(Q))},
W = {W(1),W(2), · · · ,W(L)} (random),
Select: step size μ > 0, number of epoch T , minibatch size b, number of layers L + 1,

number of nodes (d(1), · · · , d(L)), activation function f , output activation function fL,
objective function J

I = Q/b

Do for t = 1 : T
Do for i = 1 : I (for each iteration, randomly select b examples

in training dataset → Xt
i = [x1,x2, · · · ,xb], Yt

i = [y1,y2, · · · ,yb])
[Forward Propagation]:

S0 = [s0
1, · · · , s0

b] = [ones(1, b);Xt
i ] (ones(1, b) are the bias term)

Do for l = 1 : L − 1

E(l) = (W(l))T S(l−1)

S(l) = [ones(1, b);f (E(l))]
end

E(L) = (W(L))T S(L−1)

Ŷ = [ŷ1, · · · , ŷb] = S(L) = g(E(L))

[Backpropagation]:

�(L) = [δ(L)
1 , · · · , δ

(L)
b ] = ∂J

∂E(L)

Do for l = L − 1 : −1 : 1

�(l) = f ′(E(l)) ⊗ [W(l+1)�(l+1)]d(l)

1
end

[Updating the weights]:
Do for l = 1 : L

W(l) = W(l) − μ
b

S(l−1)(�(l))T

end
end

Jtrain(W) = 1
Q

∑Q
q=1

∑d(L)

p=1 J
p
q (W) (and Jval if this set is previously defined)

end

saturation in the tails and centering on a nonzero value. Currently, the tangent hyperbolic (tanh) and
ReLU represent the standard.

The standard way to select the number of hidden layers and neurons in a training network is to
add layers and neurons until the validation error shows no improvement. The step size μ is a crucial
parameter in any learning algorithm based on the gradient descent search method, including NNs.
However, the selection of μ requires some moderation, given that large values might lead to divergence,
whereas low values might stick the cost function to a local minimum. A possible solution is to decrease
the value of μ at each iteration.

There are many other minimizers available in the literature. Some of them are more flexible op-
timizers, such as Adagrad, adaptive moment (Adam), and RMSProp [1,11,33,51,68]. Some of these
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methods employ adaptive step sizes resulting in improved and smoother convergence in comparison
with the gradient descent algorithm.

If the weights are too large or too small, the activation function will be saturated, resulting in low
gradients and slower convergence.

The weights W are randomly initialized by default. If the weights are too large or too small, the
activation function will be saturated, resulting in low gradients and slower convergence. One can deal
with this drawback by initializing the weights with a uniform or normal distribution.

13.4.2.1 Local error features
In supervised learning of NNs, each output neuron produces an estimate of a target signal and their
subtraction forms an error measure defined according to the cost function (13.12). As a rule, the closer
to zero the error e(k) is in principle, the less informative or relevant will be the contribution of the
pair (x(k),y(k)) to the parameter update at iteration k. Considering all the output neurons, the error
vector for the data pair (x,y) is

e(ŷ,y) = [e(ŷ1, y1), e(ŷ2, y2), · · · , e(ŷd(L) , yd(L))], (13.17)

where y = [y1, y2, · · · , yd(L)] is the target signal and ŷ = [ŷ1, ŷ2, · · · , ŷd(L)] is the signal estimated by
the NN. The total sum of this error is then expressed as

E
[
ŷ,y
]= d(L)∑

n=1

e
(
ŷn, yn

)
. (13.18)

Fig. 13.14 illustrates a possible behavior of the error signals in regression or classification NN
problems. A closer analysis of the behavior of the error along the learning process is directly related to
a measure of how informative the current data are.

The next step is to describe in detail the algorithms to solve regression and classification problems.

13.4.3 Regression
The chosen objective function is the mean square error (MSE),

J (W) = 1

Q

Q∑
q=1

[
1

2
(ŷ(q) − y(q))2

]
, (13.19)

where ŷ(q) = y
(L)
1 (q) = x

(L)
1 (q) and the output activation function is a linear function. Since the output

has only one dimension in regression problems, Eq. (13.18) can be rewritten as

E(ŷ, y) = e(ŷ, y) = y − ŷ, (13.20)

where y is the desired value and ŷ is the target value.
At each epoch t , it has been observed in many examples that the error signal approaches a Gaussian

distribution,

e ∼ N (0, (σ t
e )

2), (13.21)
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FIGURE 13.14

Neural network feedforward and backpropagation illustration.

where (σ t
e )

2 is the error variance. By normalizing this error distribution, we obtain

e

σ t
e

∼ N (0, 1). (13.22)

To corroborate the discussion, Fig. 13.15 illustrates the observed error statistics in an ML example
employing a deep NN (DNN).

FIGURE 13.15

Histogram of a DNN error signal.
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At iteration i in epoch t , the estimated error variance is calculated by

(σ t
e (i))

2 = (1 − λe)σ
2
e + (λe)(σ

t
e (i − 1))2, (13.23)

where σ 2
e is the error variance related to the data in the ith iteration and λe is a forgetting factor.

At each start of epoch t , the estimated error variance depends on the last error variance (σ t−1
e (b))2

from the previous epoch; thus, the equation for this dependence is established by

(σ t
e (0))2 = (σ t−1

e (b))2. (13.24)

The NN algorithm for a regression problem is outlined in Table 13.4.

13.4.4 A regression example
In regression problems, the goal is to approximate a mapping function from input variables to a con-
tinuous output variable. Since the desired output is a continuous quantity, the activation function at the
output layer is linear.

Consider the communication between a base station (BS) and a mobile phone user in Fig. 13.16.
The medium between the transmitter and the receiver, known as channel in wireless communications,
transforms the transmitted signal and generates interfering signals that affect the quality of the received
signal.

FIGURE 13.16

Illustration of the wireless communication between the base station and a mobile user.

For such environments, orthogonal frequency division multiplexing (OFDM) systems are quite suit-
able as they can mitigate the interference by adding redundant elements to the transmitted signal.
Nevertheless, to undo the channel effect, we need to estimate the channel response. To do so, pilot
symbols, which are known at the receiver, are transmitted and used to invert the received signal and
obtain an estimate for the channel response.

The channel models a moving pedestrian in urban scenarios. For this example, we can build our
training dataset by collecting previously obtained channel estimates. With the training dataset, the NN
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Table 13.4 Feedforward multilayer NN algorithm for a regression problem.

Feedforward Multilayer NN algorithm for regression
Initialize

{(x(1),y(1)), (x(2),y(2)), · · · , (x(Q),y(Q))}, W = {W(1),W(2), · · · ,W(L)} (random),
Select: step size μ > 0, number of epoch T , minibatch size b, number of

layers L, number of nodes (d(1), · · · , d(L)), activation function f , output function fL, forgetting factor λe

Objective function J = Mean Squared Error

Define I = M/b, σ 0
e (b) = 0

Do for t = 1 : T
(σ t

e (0))2 = (σ t−1
e (b))2

Do for i = 1 : I (for each iteration, randomly select b examples
in the training dataset → X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)])
[Forward Propagation]:

Y0 = [ȳ0(1), ȳ0(2), · · · , ȳ0(b)] = [ones(1, b);Xt
i ] (ones(1, b) are the bias term)

Do for l = 1 : L − 1

X(l) = (W(l))T Y(l−1)

Y(l) = [ones(1, b);f (X(l))]
end

X(L) = (W(L))T Y(L−1)

Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = Y(L) = g(X(L))

[Backpropagation]:

�L
R = [δ(L)(k1), δ

(L)(k2), · · · , δ(L)(kp)] = g′(XL
R) ⊗ (ŶR − YR)

Do for l = L − 1 : −1 : 1

�l
R = f ′(Xl

R) ⊗ [W(l+1)�l+1
R ]d(l)

1
end

[Updating the weights]:
Do for l = 1 : L

W(l) = W(l) − μ
b

Y(l−1)
R (�l

R)T

end
end

Jtrain(W) = 1
Q

∑Q
q=1 J

(1)
q (W) (and Jval if this set is previously defined)

end

will be able to learn the problem of obtaining an improved channel estimate. The input of the NN is
the estimated channel via least squares (LS) and the desired output is the refined channel estimate. The
improved channel estimator (ICE) net is illustrated in Fig. 13.17, where it has one hidden layer with
hyperbolic tangent as the activation function. In Fig. 13.18, we present the MSE between the channel
estimate and the true channel response using the traditional method LS and the NN as function of the
signal-to-noise ratio (SNR). Fig. 13.19 presents an example of estimated channel frequency response at
the data subcarriers using the ICE subnet. Since the ICE has access to typical channel examples during
training, it is natural that the ICE can outperform the traditional channel estimator in this example.
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FIGURE 13.17

ICE neural network used to estimate the channel response.

FIGURE 13.18

MSE between estimated and true channel frequency responses.

FIGURE 13.19

Estimated channel frequency response using ICE subnet for SNR = 20 dB.



892 Chapter 13 Machine learning

13.4.5 Classification
In the classification problem, we consider two objective functions: the MSE,

J (W) = 1

Q

Q∑
q=1

d(L)∑
p=1

[
1

2
(ŷp(q) − yp(q))2

]
, (13.25)

and the CE (binary),

J (W) = 1

Q

Q∑
q=1

d(L)∑
p=1

[−yp(q) ln(ŷp(q)) − (1 − yp(q)) ln(1 − ŷp(q))
]
, (13.26)

where the adopted output values are 0,1. Eq. (13.25) is one of the most widely used in signal processing
and NNs, while the relation in (13.26) obtains the best results, according to more recent research, when
combined with the softmax activation function in the output layer,

ŷp(q) = y(L)
p (q) = exp(x

(L)
p (q))∑d(L)

j=1 exp(x
(L)
p (q))

, for p = 1, · · · , d(L). (13.27)

The error value e(·) in Eq. (13.17) is defined for the MSE and CE, respectively, as

e(ŷp, yp) = (ŷp − yp)2, (13.28)

e(ŷp, yp) = −yp ln(ŷp) − (1 − yp) ln(1 − ŷp), (13.29)

where ŷp is the estimated output for the pth class and yp is the pth desired value for the output y.
In classification problems, since the last layer has multiple outputs corresponding to multiple

classes, it is difficult to infer a distribution for the error signal, as it was viable in the regression prob-
lem, Eq. (13.21). In this case, it is not feasible to discuss the error distribution properties as we did in
Eq. (13.18).

The complete procedure for feedforward multilayer NN is described in Table 13.5.

13.4.6 A classification example
In this chapter, we utilize some standard examples based on openly available data. Let us consider the
MNIST [39] database, which is a large dataset containing digits handwritten by students and employ-
ees of the United States Census Bureau. This dataset consists of 60,000 and 10,000 training and test
examples, respectively. The input of this set is a 28 × 28 matrix, where each value represents a pixel
of the image. The input signal is normalized to the range 0 to 1. The output dataset has integer values
between 0 and 9. Fig. 13.8 in Section 13.3.5 illustrates some entries of this dataset.

This dataset has been previously preprocessed and therefore has no missing values. Since we are
modeling an image classification problem, there are no categorical variables, and we have not elimi-
nated any variables before the learning process.
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Table 13.5 Feedforward multilayer NN algorithm for classification problems.

Feedforward multilayer NN algorithm for classification
Initialize

{(x(1),y(1)), (x(2),y(2)), · · · , (x(Q),y(Q))}, W = {W(1),W(2), · · · ,W(L)} (random),
Select: step size μ > 0, number of epoch I , minibatch size b, number of layers L,

number of nodes (d(1), · · · , d(L)), activation function f , forgetting factor λe

Option 1: Objective function J = Mean Squared Error, output function fL = Linear
or Hyperbolic tangent;
Option 2: Objective function J = Cross-Entropy, output function fL = Softmax;
Do for t = 1 : T

Do for i = 1 : I (for each iteration, randomly select b examples
in training dataset → X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)])
[Forward Propagation]:

Y0 = [ȳ0(1), ȳ0(2), · · · , ȳ0(b)] = [ones(1, b);X(t,i)] (ones(1, b) are the bias term)
Do for l = 1 : L − 1

X(l) = (W(l))T Y(l−1)

Y(l) = [ones(1, b);f (X(l))]
end

X(L) = (W(L))T Y(L−1)

Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = Y(L) = g(X(L))

[Backpropagation]:

�C(L)L = [δ(L)(k1), δ
(L)(k2), · · · , δ(L)(tbin)] =

{
g′(XL

C) ⊗ (ŶC − YC), if option 1 is chosen

(ŶC − YC), if option 2 is chosen
Do for l = L − 1 : −1 : 1

�l
C = f ′(Xl

C) ⊗ [W(l+1)�l+1
C ]d(l)

1
end

[Updating the weights]:
Do for l = 1 : L

W(l) = W(l) − μ
b

Y(l−1)
C (�

(l)
C )T

end
end

Jtrain(W) = 1
Q

∑Q
q=1

∑d(L)

p=1 J
p
q (W) (and Jval if this set is previously defined)

end

When the cost function is the CE error and the softmax function is the output activation function,
the step size parameter is μ = 0.1. For MSE in the objective function and linear function as output
activation, the step size is equal to 0.01. The other parameters are b = 256 and T = 100 in both cases.
In addition, the number of nodes in each hidden layer is equal to 1024.

Figs. 13.20(a) and 13.20(b) show the results with CE as the objective function and softmax as the
output activation function and results with MSE as the objective function and a linear function as the
output activation function, respectively. Also, when compared with simulation b = 32, the result is
improved in comparison with the case b = 256.



894 Chapter 13 Machine learning

FIGURE 13.20

MNIST handwritten digit recognition simulation: Test classification error (%) when (a) the output activation
function is softmax and the objective function is the CE error and (b) the output activation function is a linear
function and the objective function is MSE.

13.4.7 EMNIST letter dataset
The EMNIST letter dataset considered now is provided by the National Institute of Standards and
Technology (NIST) [55]. This dataset can represent the 26 letters of the alphabet at the output. The
letters EMNIST contain 120,000 training examples and 25,000 test examples and the data have been
normalized to values between 0 and 1. The input is a 28 × 28 matrix, where each input represents a pixel
in the image. It has no categorical variables, so it does not need any transformation in the variables.
This dataset had already been preprocessed [6]. Fig. 13.21 depicts some entries of this dataset.

The choice of the objective function and the output activation function affects the choice μ; thus,
if we choose MSE as the cost function and a linear function as the output function, the parameters in
this NN will be μ = 0.01, b = 256, and T = 100. On the other hand, if the objective function is CE and
the output function is softmax, the parameters will be μ = 0.1, b = 256, and T = 100. Moreover, the
number of nodes in the hidden layers in this simulation is 1024.

The results regarding the test classification error are shown in Figs. 13.22(a) and 13.22(b) for CE
and MSE, respectively. The performance of simulation by setting b = 32 in CE as objective function
and b = 128 in MSE as objective function shows a slight difference in the accuracy of results.

In Table 13.6, the averaged MSE over the last 10 epochs is presented for the classification problem.
We can observe that CE as an objective function combined with softmax as output activation function
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FIGURE 13.21

Sample images from the EMNIST letter dataset.

FIGURE 13.22

EMNIST letter simulation: Test classification error (%) when (a) the output activation function is softmax and
the objective function is CE error and (b) the output activation function is a linear function and the objective
function is MSE.
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achieves better results. In Table 13.7, we conclude that the minibatch requires equivalent computational
cost.

Table 13.6 Comparison of test errors between classification prob-
lems (blue [dark gray in print version] is the best and red [mid gray
in print version] is the worst for each problem).

MNIST (CE) MNIST (MSE) EMNIST (CE) EMNIST (MSE)
b = 256 1.87±0.023 2.97±0.037 9.99±0.069 15.95±0.163

b = 32 1.60±0.009 1.84±0.031 9.13±0.142 12.96±0.118

Table 13.7 Approximated number
of flops in one epoch.

MNIST EMNIST

b = 256 566 × 109 1145 × 109

b = 32 566 × 109 1145 × 109

13.4.8 Dropout
Dropout is a stochastic technique to avoid overfitting during the training, providing a way of combining
exponentially many different NN architectures. Dropout is a computationally efficient regularization
procedure and can be applied to a wide range of networks. Dropout consists of dropping out nodes in
the network, including all its connections, as shown in Fig. 13.23. In many cases, a node is retained
with probability p, according to a Bernoulli distribution, independent of other nodes; that is, its value
is temporarily set to zero in each iteration. This procedure is applied at each layer. In addition, the
derivatives of the loss function are backpropagated through the network.

FIGURE 13.23

(a) A neural network with two hidden layers. (b) Dropout applied in the network producing a thinned net.

At the testing procedure, it is unfeasible to average all combinations of many thinned models. A so-
lution is to employ an NN without dropout and utilizing a reduced version of the trained weights. If
a node is dropped with probability p during training, the weights are multiplied by p at the test, as
depicted in Fig. 13.24.
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FIGURE 13.24

(a) The training node present in the process with probability p. (b) The test phase with node always present
and weight multiplied by p.

13.4.9 Number of flops
A flop is a short description for a floating-point operation [23]. There are several difficulties associated
with calculating a precise count of floating points operations. First, addition and subtraction are always
counted as a flop. Second, multiplication is usually counted as a flop. Finally, divisions and exponents
are more complicated because we must consider each one as some flops. The values are defined as
four flops for divisions and eight flops for exponents. In this chapter, each operation is considered a
flop, including divisions and exponents. We express the number of flops in two steps for forward and
backpropagation algorithms. For instance, an NN with four layers contains two hidden layers and has i

nodes at the input layer, j nodes at the second layer, k nodes at the third layer, and l nodes at the output
layer. The data-related parameters are denoted as T (epoch), b (minibatch size), and I (iteration).

At each iteration for a certain epoch, we have b training examples. In the forward propagation, the
following operations are performed from one layer to the next layer:

X(l) = W(l)T Y(l−1), (13.30)

Y(l) = [ones(1, b);f (X(l))]. (13.31)

From the first layer to the second layer, the number of flops for a first operation, i.e., the product
between two matrices W(1) ∈ R

i×j and Y0 ∈ R
i×b, entails jb inner products between vectors of size i.

This inner product involves i − 1 additions and i multiplications. Hence, the resulting number of flops
is (2i − 1)jb. The activation function ReLU applied in the second equation has 0 flops. Then, we have
(2i − 1)jb flops.

Using the same rationale from the second layer to the third layer, we have (2j − 1)kb flops. For the
propagation from the third layer to the last layer, the matrix multiplication requires (2k − 1)lb flops.
In the last part, we obtain the estimated value in NN. In the regression problem, the output activation
function is linear, resulting in 0 flops. In the classification problem, the softmax function has l − 1
additions, 1 division, and l + 1 exponents for b training examples, resulting in a total of (2l + 1)b.

Therefore, the total number of flops for feedforward propagation depends on the problem. For the
regression problem it is (2ij + 2jk + 2kl − j − k − l)b flops, whereas for the classification problem it
is (2ij + 2jk + 2kl + l + 1)b flops.

Starting from the last layer to the third layer, we compute the sensitivity vector in the fourth layer.
To obtain �(3) = Ŷ(t,i) − Y(L), we require l(b) flops. In the remaining layers, we compute the sensitive
weights from the previously obtained vectors. For example, from the third layer to the second layer, we
have �(2) = f ′(X(2)) ⊗ [W(3)�(3)]o2

1 . The number of flops in the derivative of the activation function
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is zero. The multiplication matrix W(3)�(3) requires k(b) inner products involving l − 1 additions and
l multiplications. The elementwise operation has k(b) flops. Then, the resulting number of flops is
2lk(b) in this propagation. Finally, we have the same procedure from the second to the first layer, and
the number of flops required is 2kj (b).

The last step is the weight update; for example, from the fourth to the third layer, we have the update
W(3) = W(3) − μ

b
Y(2)(�(2))T . The multiplication matrix results in a total of (2(b) − 1)kl flops. On top

of that, there are sums of the matrices, with a number of flops equal to kl. By accumulating the number
of multiplications and additions, we end up with 2(b)kl flops. We employ the same rationale from the
third to the second layer, and we obtain 2(b)jk, and from the second to the first layer, and we obtain
2(b)ij . Then, the total number of flops in backpropagation is

2(b)ij + 2(b)jk + 2(b)kl + 2kj (b) + 2kl(b) + l(b) =
(b)(2ij + 2jk + 2kl + 2kj + 2kl + l). (13.32)

13.4.10 Convolutional neural networks
A convolutional NN (CNN) is a deep learning (DL) algorithm especially suitable for approximating an
unknown mapping function when the input is a 2D signal, as an image for example. As discussed in
Section 13.4.2, fully connected neural networks (FCNNs) can be used to solve tasks with images as
input. Nevertheless, the image dimension and its complexity play a crucial role in how computationally
intensive the task can become.

CNNs are composed of a sequence of convolutional, pooling, and fully connected layers, designed to
transform the image and extract low-dimensional features, which are then easier to process. Fig. 13.25
illustrates an input image flowing through the CNN, generating feature maps which are further pro-
cessed until the last layer is reached, where the image is finally predicted as a dog.

FIGURE 13.25

A CNN example.

In the convolutional layer, a set of filters with learnable weights are convolved across the width and
height of the input, as shown in Fig. 13.26(a), and the nonlinear activation function ReLu is applied.
Different feature maps are obtained from each filter, and they are stacked to form the input of the next
layer. To further reduce the spatial size of the feature map, a downsampling is performed by the pooling
layer, as the max pooling operation illustrated in Fig. 13.26(b). In this way, the amount of network
parameters is also reduced and overfitting can be prevented.
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FIGURE 13.26

Illustration of (a) convolutional and (b) max pooling layers.

The final set of feature maps is flattened to form the input of a fully connected layer, and they are
processed as in the FCNN case. The predicted class is the one with greatest probability after the softmax
output function.

Among the popular datasets in computer vision, we can mention the CIFAR10 dataset, which is
composed of 60,000 32 × 32 color images labeled in 10 classes. Fig. 13.27 depicts 10 samples of each
class from the CIFAR10 dataset. As an example, we perform a classification task using CIFAR10 as
the dataset and Resnet18 (cite) as the model. The classification error for the test dataset is shown in
Fig. 13.28 at each epoch.

13.4.11 Recurrent neural networks
Again let us denote the dataset {(x(1), y(1)), (x(2), y(2)), · · · , (x(K), y(K))} such that x(k) ∈R

n×1.
In the present discussion, our aim is to map a sequential1 data.

13.4.11.1 Standard RNN
Fig. 13.29(a) shows the compact representation of the RNN network. The unfolded representation of
the RNN, shown in Fig. 13.29(b), is also known as vanilla RNN.

The RNN entails generating a hidden state h(k) based on the input vector x(k), the previous
h(k − 1), and a bias vector bh as follows:

h(k) = f (h(k − 1),x(k),bh)

= tanh
(
Wf h(k − 1) + Wix(k) + bh

)
, (13.33)

where x(k) is the input of the node generation h(k), Wf is the feedback matrix, Wi is the input matrix,
and bh is the hidden-state bias vector. The output of the RNN is

1 In some cases, it consists of streaming data.
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FIGURE 13.27

Sample images from the CIFAR10 dataset.

FIGURE 13.28

Classification error of the Resnet18 model for the CIFAR10 dataset.

ŷ(k) = g (Woh(k) + Wix(k) + bo)

= softmax (Woh(k) + Wix(k) + bo)

= σ (Woh(k) + Wix(k) + bo) . (13.34)

The functions f (·) and g(·) are applied individually to each entry of the argument vector.
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FIGURE 13.29

(a) RNN configuration. (b) Its unfolded representation. The parameters are initialized randomly.

The generic cost function is

J̄ (ȳ,y) =
K∑

k=1

[
J (ŷ(k),y(k))

]
, (13.35)

where y is the label vector and ŷ is the RNN output vector generated through the state vector. In the
following text, we will denote J (ŷ(k),y(k)) as J (k), for simplification.

In the RNN structure, the state vector h(k) connects to the cost function directly at instant k, and in
the following instants k + 1 up to instant K . With the chain rule, we can compute the partial derivative
with respect to the state vector as

∂J̄ (ŷ,y)

∂h(k)
=
[
∂h(k + 1)

∂h(k)

]T
∂J̄ (ŷ,y)

∂h(k + 1)
+
[

∂ ŷ(k)

∂h(k)

]T
∂J̄ (ŷ,y)

∂ ŷ(k)
, (13.36)
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where the dependency between h(k + 1) and h(k) is taken into account. Eq. (13.36) entails a recursive
expression that propagates backwards; see [62]. Further discussions on gradients are presented in the
Appendix, Section 13.11.2.

In the forward step, the computational flow related to the state vector can be represented as(
ŷ(1);h(1)

)−→ · · · −→ (
ŷ(K − 1);h(K − 1)

)−→ (
ŷ(K);h(K)

)
. (13.37)

Similarly, in the backward step, the computational flow related to the state vector can be represented as

∂J̄ (ŷ,y)

∂h(1)
←− · · · ←− ∂J̄ (ŷ,y)

∂h(K − 1)
←− ∂J̄ (ŷ,y)

∂h(K)
. (13.38)

Note that the RNN is a kind of feedforward network with K layers. The unique feature of the RNN
is that the inputs are applied to all layers, and the layers themselves produce outputs. As such, the
gradients require a distinct backpropagation strategy.

13.4.11.2 Activation functions
One of the most widely used activation functions in RNN networks is the hyperbolic tangent, defined
as

tanh(z) = exp2z −1

exp2z +1
. (13.39)

Its partial derivative is

∂tanh(z)

∂z
= 2 exp2z

exp2z +1
− 2 exp2z exp2z −1

(exp2z +1)2

= 2 exp4z +2 exp2z −2 exp4z +2 exp2z

(exp2z +1)2
= (exp2z +1)2 − (exp2z −1)2

(exp2z +1)2

= 1 − tanh2(z). (13.40)

Another activation function widely used in RNN networks is the softmax function, redefined here
for convenience:

softmaxi (z) = σi(z) = expzi∑L
l=1 expzl

. (13.41)

Its corresponding partial derivative is

∂softmaxi (z)
∂zj

= softmaxi (z)
[
δij − softmaxj (z)

]
= σi(z)

[
δij − σj (z)

]
, (13.42)

where δij is the Kronecker delta, which means δii = 1 and δij = 0 for i �= j . The proof follows from
the definition in Eq. (13.41).
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13.4.11.3 Long short-term memory
The long short-term memory (LSTM) NN replaces the standard RNN in the hidden layers in order to
cope with the numerical issues inherent to the latter caused by vanishing or exploding values of recur-
sive gradient computations. Unlike the standard RNN whose internal hidden layers have two inputs,
the LSTM cells have three inputs, namely, the cell of the previous layer, the vector originating from the
input layer, and the hidden state of the previous layer; see for instance [5] and [28]. The LSTM structure
includes a forget gate, an input gate, an output gate, and a memory cell, denoted as f(k), i(k), o(k), and
c(k), respectively. The gates are logical units that control the error in selected quantities to halt possible
gradient anomalies. The input forget gate decides if the memory is set to zero; the input gate determines
if the memory cell is updated; and the output gate decides the visibility of the current state information.
These gates use either a softmax or sigmoid activation, and the latter case is employed here due to its
differentiability. Indeed, the forget gates avert the extreme increase or decrease of the backpropagated
errors. Usually LSTM-based networks include long memory to preserve valuable events required to
provide meaningful outcomes. Fig. 13.30 details the main components of an LSTM cell.

FIGURE 13.30

LSTM unit representation. The numbered nodes represent the following tasks: (1) forget part of the cell con-
tents; (2) forget gate computation; (3) input gate computation; (4) compute cell content; (5) add new content
to the cell; (6) compute output gate; and (7) include to the hidden state some cell information.

As can be observed, the LSTM scheme consists of some gates and an internal cell denoted as c(k),
defined as follows. In the LSTM solution, the hidden state h(k) is generated from the input vector
x(k), the previous h(k − 1), and several internal operations including the internal cell. The following
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equations describe the mathematical operations:

f(k) = σ
(
Whf h(k − 1) + Wxf x(k) + bf

)
, (13.43)

i(k) = σ (Whih(k − 1) + Wxix(k) + bi ) , (13.44)

g(k) = tanh
(
h(k − 1),x(k),bg

)
= tanh

(
Whgh(k − 1) + Wxgx(k) + bg

)
, (13.45)

o(k) = σ (Whoh(k − 1) + Wxox(k) + bo) , (13.46)

where x(k) is the input of the node generation h(k). The vectors f(k), i(k), and o(k) represent the forget,
input, and output gates, respectively. The symbol g(k) represents an internal signal.

The softmax function, represented by σ(·), is suitable to provide a gating effect to the quantities
involved, imposed by its gradient. Here tanh(·) plays the normal role of activation function, distributing
the gradient values to prevent exploding or vanishing values.

The internal information of the LSTM block is

c(k) = f(k) � c(k − 1) + i(k) � g(k), (13.47)

h(k) = o(k) � tanh (c(k)). (13.48)

The output of the LSTM layers might be given by

ŷ(k) = σ
(
Whyh(k) + by

)
. (13.49)

This output is not shown in Fig. 13.30 for simplicity.
The gradient derivations for the LSTM configuration are presented in Section 13.11.2 as an illustra-

tion and for completeness since they are rarely found in the literature.
The feedforward process is as follows:

x(1),h(1), c(1)
W,β−−−→ x(2),h(2), c(2)

W,β−−−→ · · ·x(K),h(K), c(K)
W,β−−−→ (13.50)

where the symbols W and β congregate the coefficients and the bias terms of the LSTM cells, respec-
tively. Note that for all cells the coefficients and bias terms are the same; otherwise, the LSTM updates
become too complex.

The objective function should be reduced by changing the weights W and β. By using the gradient
descent algorithm, the weights are iteratively updated following the negative gradient direction,

W(k + 1) = W(k) − μ
∂J̄ (k)

∂W , (13.51)

β(k + 1) = β(k) − μ
∂J̄ (k)

∂β
, (13.52)

where μ is the step size. As the standard, the coefficient update requires a set of partial derivatives.
The backpropagation entails the calculation of the derivatives, starting from the error signal at the

network output. The following chain shows how the procedure works:

δ(K)
W,β−−−→ ∂J̄ (K)

∂W ,
∂J̄ (K)

∂β

W,β−−−→ ∂J̄ (K − 1)

∂W ,
∂J̄ (K − 1)

∂β

W,β−−−→ ∂J̄ (1)

∂W ,
∂J̄ (1)

∂β
. (13.53)
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Table 13.8 Multilayer RNN algorithm using LSTM.

Feedforward multilayer RNN algorithm
Initialize
{(x(1),y(1)), (x(2),y(2)), · · · , (x(K),y(K))},
W = {Whf ,Wxf ,Whi ,Wxi ,Whg,Wxg,Who,Wxo} (random),
β = {bf ,bi ,bg,bo} (random),
Select: step size μ > 0

Objective function J̄ = Mean Squared Error
[Forward Propagation]:
Compute the forward path as per the procedure in (13.50)
[Backpropagation]:
Compute the partial derivatives according to the procedure described in (13.53)
[Updating the weights]:
Update the coefficients according to Eqs. (13.51) and (13.52)
end

The RNN algorithm utilizing the LSTM strategy is outlined in Table 13.8. Note that the table de-
scription is compact for simplicity.

A popular and more compact alternative to the LSTM is the gate recurrent unit (GRU). The GRU
contains only two gates, the update and reset gates; see [14] for further discussions.

13.4.11.4 Types of RNNs
There are several configurations for the RNN structure that are application-specific. The simplest stan-
dard form of RNN is the one-to-one configuration depicted in Fig. 13.31.

FIGURE 13.31

One-to-one structure.
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The many-to-one configuration, shown in Fig. 13.32, corresponds to a sequence of inputs to one
output, where for instance a sentence is analyzed by the network to classify the inherent sentiment. The
sentiment classification can be positive or negative. The many-to-one configuration is also known as
sequence-to-vector model.

FIGURE 13.32

Many-to-one structure.

Fig. 13.33 illustrates the one-to-many configuration, which finds application in image captioning
producing a series of words forming a sentence. This configuration, slightly modified by concatenating
the outputs with the hidden states, is used in music generation. The one-to-many configuration is also
known as vector-to-sequence model.

The first many-to-many configuration of Fig. 13.34, also known as sequence-to-sequence model, is
employed in name entity recognition, word prediction, sentence generation, and video frame labeling
and classification. This structure has equally sized inputs and outputs.

The second many-to-many configuration, depicted in Fig. 13.35, finds application in machine trans-
lation applications where one can feed the network with a sentence in one language and the application
outputs the sentence in the target language. This configuration also applies to the automatic summariz-
ing of sentences. This structure has unequally sized inputs and outputs. In some cases, we can configure
this model to perform and encoder–decoder task where the input vectors are mapped into an internal
representation, usually not amenable to human interpretation, which in turn is mapped into an output
sequence.

13.4.11.5 Using RNN
The basic RNN and any other forms of RNN structures, such as LSTM, can be part of many ML
configurations and applications. Let us consider the scheme illustrated in Fig. 13.36 where the input
data consisting, for instance, of K images are applied to a feature extraction block. Then, the set of
features is applied to an LSTM classifier, which, in turn, will produce the decisions related to classes
of the input images.
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FIGURE 13.33

One-to-many structure.

FIGURE 13.34

Many-to-many structure.

13.4.11.6 An example with RNN using LSTM
The RNN employing LSTM has found applications in many fields, where each one relies on the choice
of the configuration and the amount of data available. For long time series, the solution falls in the DNN
class, although what is considered DNN is debatable since some classical CNNs, such as the so-called
LeNet, had six layers. NNs with so many layers are considered deep by some definitions; however, here
we call an NN with more than six layers a DNN.
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FIGURE 13.35

Many-to-many structure.

FIGURE 13.36

A possible classification scheme using RNN.

To illustrate the use of an LSTM configuration, we utilize a prediction example inspired by the
following site:

https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-
keras/.

In this example we build an LSTM model to predict Amazon’s future stock prices. We use one
previous time step as input variable to predict the next observation. Fig. 13.37 shows the original data
in blue (dark gray in print version), the predictions during training in orange, and the predictions on the
unseen test dataset in green (light gray in print version). For this illustrative example, the model was
able to fit both the training and test datasets quite well.

13.4.12 Support vector machines
Support vector machines (SVMs) are ML tools conceived to perform novelty detection, prediction, and
classification. The SVMs belong to the class of supervised learning ML algorithms, and their solutions
rely on convex optimization, generating global optimum solutions. Unlike many ML methods based on
a probabilistic model, the SVM utilizes geometric reasoning. In SVM, we define a cost function that
is minimized during the training process. In some ways, the SVM approach provides some geometric

https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
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FIGURE 13.37

LSTM trained on a regression formulation of a stock price prediction problem.

interpretation to supervised learning as quotes [10], and it is basically meant to implement a two-class
classifier. The presentation starts with the classification task of separating datapoints into two distinct
classes.

Consider a classification problem where we separate two classes of datapoints that live in the R
n-

dimensional space using a hyperplane. For example, for n = 2, the hyperplane is a line, and we can
choose three different ones, for example, to separate the datapoints in Fig. 13.38. The observed hyper-
planes in Fig. 13.38 can differentiate the two classes. However, changing the positions of the points that
are closer to the hyperplanes might change the classification. Thus, the greater the variation needed to
misclassify these datapoints, the better is the hyperplane.

FIGURE 13.38

Better linear separation.

The optimal hyperplane is the one that separates the data with maximum margin, as illustrated
in Fig. 13.39. The position and orientation of the optimal hyperplane are determined by the support
vectors.
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FIGURE 13.39

Margins.

Let x(q) in Fig. 13.40 be the nearest datapoint to the plane S ,

wTx + b = 0, (13.54)

where w = [w1,w2, · · ·wQ], x = [x1, x2, · · ·xQ], and b is bias. By normalizing the weights so that
|wT x| = 1, the planes S1 and S2 are

S1 : wTx + b = 1,

S2 : wTx + b = −1.

FIGURE 13.40

Finding the fattest margin.
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As y(q) ∈ {+1,−1} is the classification label, y(q)(wTx(q) + b) ≥ 1, for q = 1, · · ·Q. Then, the
maximum margin is

λ = d(x(q),S), (13.55)

where d(·) is the Euclidean distance as illustrated in Fig. 13.41. The decision rule can be defined as

{
wTx(q) + b ≥ 1, if data are +,

wTx(q) + b ≤ −1, if data are −.

FIGURE 13.41

Decision rule.

Let us compute the distance between x(q) and the plane wTx + b = 0. If we take any two points
x′ and x′′ on the plane, then wTx′ + b = 0 and wTx′′ + b = 0. Since wT(x′ − x′′) = 0, the vector w is
perpendicular to the hyperplane, as illustrated in Fig. 13.42.

FIGURE 13.42

Distance between x(m) and the hyperplane.
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As wT x(q) + b = 1 and wT x′ + b = 0, wT (x(q) − x′) = 1. As also shown in Fig. 13.42, the distance
is the projection of vector (x(q) − x′) on w:

d(x(q),S) = |wT (x(q) − x′)|
‖w‖ = 1

‖w‖ . (13.56)

13.4.12.1 The optimization problem
To obtain the optimal hyperplane, we need to maximize the margin. The resulting optimization problem
is

Maximize
1

‖w‖
s.t. y(q)

(
wT x(q) + b

)
≥ 1, for q = 1, . . . ,Q,

(13.57)

which is equivalent to

Minimize
1

2
‖w‖2

s.t. y(q)
(

wT x(q) + b
)

≥ 1, for q = 1, . . . ,Q.

(13.58)

13.4.12.2 Hard-margin SVM
We can use the Lagrangian to solve the optimization problem in Eq. (13.58). The Lagrangian is defined
as

ξL (w, b,α) = 1

2
‖w‖2 +

Q∑
q=1

αq

[
1 − y(q)

(
wT x(q) + b

)]

= 1

2
‖w‖2 −

Q∑
q=1

αqy(q)
(

wT x(q)
)

− b

Q∑
q=1

αmy(q) +
Q∑

q=1

αq,

(13.59)

where αq, q = 1, · · ·Q, are the Lagrange multipliers.
Minimizing for w and b, we have

∇wξL = w −
Q∑

q=1

αqy(q)x(Q) (13.60)

and

∂ξL

∂b
=

Q∑
q=1

αqy(q). (13.61)
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By setting ∇wξL and ∂ξL

∂b
to zero, we obtain

w =
Q∑

q=1

αqy(q)x(q) (13.62)

and
Q∑

q=1

αqy(q) = 0. (13.63)

By replacing w in the Lagrangian in Eq. (13.59), we get

ξL (α) = −1

2

Q∑
n=1

Q∑
q=1

y(n)y(q)αnαqxT (n)x(q) +
Q∑

q=1

αq (13.64)

and we can maximize ξL (α) such that α ≥ 0, or equivalently minimize ξL (α) = −ξL (α). To solve this,
we can use quadratic programming (QP), defined as

min ξL (α) = 1

2
αT R̃α − 1T α,

s.t. yT α = 0,

α ≥ 0,

(13.65)

where

R̃ =

⎡
⎢⎢⎢⎢⎣

y(1)y(1)xT (1)x(1) y(1)y(2)xT (1)x(2) . . . y(1)y(Q)xT (1)x(Q)

y(2)y(1)xT (2)x(1) y(2)y(2)xT (2)x(2) . . . y(2)y(Q)xT (2)x(Q)

...
...

. . .
...

y(Q)y(1)xT (Q)x(1) y(Q)y(2)xT (Q)x(2) . . . y(Q)y(Q)xT (Q)x(Q)

⎤
⎥⎥⎥⎥⎦ (13.66)

is the matrix of quadratic coefficients.

Example: Suppose that points (1,3) and (0,1) belong to class 1 and points (2,−1) and (3,−2) belong
to class 2. Then

x =

⎡
⎢⎢⎣

1 3
0 1
2 −1
3 −2

⎤
⎥⎥⎦y =

⎡
⎢⎢⎣

1
1

−1
−1

⎤
⎥⎥⎦ . (13.67)

By using Eq. (13.66),

R̃ =

⎡
⎢⎢⎣

10 3 1 3
3 1 1 2
1 1 5 8
3 2 8 13

⎤
⎥⎥⎦ . (13.68)
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The MATLAB® formulation for solving a QP is

Min LD(α) = 1

2
(αT Rα) + f T α, (13.69)

s.t. Aα ≤ a, (13.70)

Bα = b, (13.71)

where

Aα ≤ a → α ≥ 0, (13.72)

Bα = b → yTα = 0. (13.73)

The QP solution is α = [α1, . . . , αQ] and it can be obtained via MATLAB command α =
quadprog(R̃, f,A,a,B,b), where

A =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ , a =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ , (13.74)

and

f =

⎡
⎢⎢⎣

−1
−1
−1
−1

⎤
⎥⎥⎦ . (13.75)

For this example,

α =

⎡
⎢⎢⎣

0
0.25
0.25

0

⎤
⎥⎥⎦ . (13.76)

Then, the coefficient vector w can be recovered by

w =
Q∑

q=1

αqy(q)x(q) = 0.25 × 1 × [0 1]T + 0.25 × (−1) × [2 −1]T

= [−0.5 0.5]T,

(13.77)

and b can be found by using any data with α > 0,

b = y(q) − wT x(q) = 1 − [−0.5 0.5] · [0 1]T = 0.5. (13.78)

Many of the αqs are zero due to the constrained optimization condition

αq

[
1 − y(q)

(
wT x(q) + b

)]
= 0. (13.79)
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FIGURE 13.43

Example.

However, the equality y(q)
(
wT x(q) + b

)= 1 is true only for the nearest points to w. For the remaining
internal points, we have αq = 0. The points with αq > 0 are the support vectors. One can observe that
the support vectors, highlighted in Fig. 13.43, are indeed the nearest points to the separator plane w in
red (light gray in print version).

13.4.12.3 Support vectors
Support vectors are the closest x(q) to the plane. They live on the margin (y(q)

(
wT x(k) + b

)= 1), as
illustrated in Fig. 13.44. The decision boundary is determined only by the support vectors as

w =
Nsv∑
q=1

αqy(q)x(q), (13.80)

where Nsv is the number of support vectors. We can solve for b using any support vector k,

y(k)
(

wT x(k) + b
)

= 1. (13.81)

For testing new data, we can compute

wTx(p) + b =
k∑

q=1

αqy(q)xT (k)x(p). (13.82)

Then, we classify x(p) as class 1 if the sum is positive and as class 2 otherwise.
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FIGURE 13.44

Support vectors.

As discussed in [2], an upper bound in the cross-validation error relates to the number of support
vectors, while nonsupport vector data are not taken into account. The bound result is

E[Eo] ≤ E[number of support vectors]
M − 1

. (13.83)

13.4.12.4 Nonlinear transformations
Suppose we apply a nonlinear function υ to the points that live in X space and obtain

υ : RQ → H, (13.84)

so that

x(q) �→ h(q) = υ (x(q)) , (13.85)

which live in an alternative Hilbert space denoted as H.
The freedom to choose the mapping function υ (·) allows effective similarity measures between

vectors after mapping into high-dimensional space, called the feature space. The SVM can be performed
at the feature space as follows:

〈υ (x(k)) ,υ (x(l))〉 = 〈h(k),h(l)〉 = κ (x(k),x(l)) , (13.86)

where the feature space can have a much higher dimension than R
N . The so-called kernel trick allows

the computation of inner products via functional evaluations.
Define a kernel function κ(·, ·) such that ∀x ∈ R

Q,κ(x, ·) in a Hilbert space H. A reproducing kernel
Hilbert space (RKHS) is a Hilbert space in which the value of a function f (x) ∈H can be evaluated
as f (x) = 〈f (·), κ(x, ·)〉. This reproduction property of a function via the kernel κ(x, ·) can be realized
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via functional evaluations by means of what is called the kernel trick. Fig. 13.45 illustrates the mapping
of data vectors into the feature space, where the mathematical representation is so that if

f (·) =
R∑

r=0

αrκ(x(r), ·) ∈H, (13.87)

then

f (x) =
R∑

r=0

αrκ(x(r),x) ∈R. (13.88)

FIGURE 13.45

Kernel mapping representation.

With the application of the kernel mapping, the Lagrangian becomes

ξL (α) =
Q∑

r=1

αn − 1

2

Q∑
r=1

Q∑
q=1

y(r)y(q)αnαmhT(r)h(q). (13.89)

In this case, the support vectors live in H space. In the X space, we have the preimages of the
support vectors, as illustrated in Fig. 13.46. The margin remains the same in H space.

In the following, we discuss the properties of the kernels adequate to build RKHS feature spaces.

13.4.12.5 Mercer kernels
One can form a similarity matrix K called Gram matrix and described as

K =

⎡
⎢⎢⎢⎣

κ (x(1),x(1)) κ (x(1),x(2)) · · · κ (x(1),x(Q))

κ (x(2),x(1)) κ (x(2),x(2)) · · · κ (x(2),x(Q))

...
...

. . .
...

κ (x(Q),x(1)) κ (x(Q),x(1)) · · · κ (x(Q),x(Q))

⎤
⎥⎥⎥⎦ . (13.90)
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FIGURE 13.46

Support vectors in a nonlinear problem.

The Gram matrix is inherently positive semidefinite, and those kernel matrices that satisfy this condition
are called Mercer kernels.

Assuming that the Gram matrix K is symmetric, it can be decomposed in M orthonormal eigenvec-
tors gi composing the columns of a matrix G so that

GTKG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2
...

... 0 · · · ...

...
... 0

0 0 · · · λQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �, (13.91)

where the eigenvalues λi ≥ 0.
The kernel-based SVM entails replacing the inner product performed in the original data space to

measure similarity by the kernel function evaluation in the feature space.

13.4.12.6 Some kernel functions
A pivotal step to perform the data transformation into H is the choice of the kernel function. A proper
choice is beneficial in terms of the SVM performance and relates to the type of data. A widely used
kernel function is the polynomial kernel,

κ (x(k),x(l)) = (cxT(k)x(l) + d)p, (13.92)

where p ∈N and d ≥ 0. If d �= 0, this is an inhomogeneous polynomial kernel. Also, the nonnegative
value of d is required to guarantee that the kernel matrix is positive definite, and in any case, the choice
of parameters requires that the diagonal entries of the kernel matrix be positive. Let us take a simple
example: The data vectors have two entries, i.e., Q = 1, and the polynomial power is p = 2. In this case

κ (x(k),x(l)) = (cxT(k)x(l) + d)p

= d2 + 2cd(x0(k)x0(l) + x1(k)x1(l))
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+ c2
[
x2

0(k)x2
0(l) + x2

1(k)x2
1(l) + 2x0(k)x0(l)x1(k)x1(l)

]
=
[

d
√

2cdx0(k)
√

2cdx1(k) cx2
0(k) cx2

1(k)
√

2cx0(k)x1(k)

]
×
[

d
√

2cdx0(k)
√

2cdx1(k) cx2
0(k) cx2

1(k)
√

2cx0(k)x1(k)

]T

= 〈υ (x(k)) ,υ (x(l))〉
= υT (x(k))υ (x(l)) . (13.93)

Some stability issues might show up for large values of p; therefore, this value is usually chosen to be
less than 10.

There are many types of kernel functions available in the literature. A few of them are listed in
Table 13.9.

Table 13.9 Kernel functions κ (x(k),x(l)).

Polynomial Cosine Sigmoid Laplacian Gaussian

(cxT(k)x(l) + d)p
xT(k)x(l)

‖x(k)‖2‖x(l)‖2
tanh(cxT(k)x(l) + d) e− ‖(x(k)−x(l))‖

σ e− 1
2 (x(k)−x(l))T
−1(x(k)−x(l))

c, d ∈ R, and p ∈ N c, d ∈R c, d ∈ R σ > 0 
 diagonal, entries σ 2
i

A few comments are appropriate. The sigmoid kernel does not generate a positive semidefinite Gram
matrix and is widely used in MLP. The Gram matrix must be positive semidefinite, and symmetric so
that the kernel function relates to an inner product in the feature space, benefiting from the fact that
the kernel function is more efficient to compute than the inner product. In the Gaussian case, the free
parameter choice is often σ > 1. In all cases, the choice of the kernel parameters strongly affects the
SVM performance, and it is not a trivial task.

Another family of kernel mapping relies on replacing the kernel evaluation by an approximation
entailing the inner product of two vectors, each of them representing the outcome of a randomized
feature map; see [50] for details. It entails the approximation of a kernel function through an inner
product as

κ (x(l),x(k)) ≈ zT (x(k)) z (x(l)) , (13.94)

where z(·) : RQ → R
D , for M � D.

In terms of the kernel matrix the random Fourier feature achieves the following approximation:

K ≈

⎡
⎢⎢⎢⎢⎣

zT (x(1)) z (x(1)) zT (x(1)) z (x(2)) · · · zT (x(1)) z (x(M))

zT (x(k − 1)) z (x(1)) zT (x(2)) z (x(2)) · · · zT (x(2)) z (x(Q))

...
...

. . .
...

zT (x(Q)) z (x(1)) zT (x(Q)) z (x(2)) · · · zT (x(Q)) z (x(Q))

⎤
⎥⎥⎥⎥⎦ . (13.95)
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In the kernel case, we also need to employ QP to find the SVM solution as

min ξL (α) = 1

2
αT K̃α − 1T α,

s.t. yT α = 0,

α ≥ 0,

(13.96)

where

K̃ =

⎡
⎢⎢⎢⎣

y(1)y(1)κ(1,1) y(1)y(2)κ(1,2) . . . y(1)y(Q)κ(1,Q)

y(2)y(1)κ(2,1) y(2)y(2)κ(2,2) . . . y(2)y(Q)κ(2,Q)

...
...

. . .
...

y(Q)y(1)κ(Q,1) y(Q)y(2)κ(Q,2) . . . y(Q)y(Q)κ(Q,Q)

⎤
⎥⎥⎥⎦ (13.97)

is the matrix of quadratic coefficients.

Example: In a toy example, 40 points consisting of two classes live in a 2D input space as depicted
in Fig. 13.47. After applying a polynomial kernel, the datapoints are mapped to a 3D feature space,
where performing the binary classification is easier as depicted in Fig. 13.48(a). The support vectors
are highlighted inside the red circles (light gray in print version) in Fig. 13.48(a).

FIGURE 13.47

Data samples in input space.

The boundaries cross the support vectors which can be seen highlighted inside the red circles (light
gray in print version). It is also possible to classify the data applying a Gaussian kernel, as shown in
Fig. 13.48(b). In this case, however, the Gaussian kernel leads to a complex separator hyperplane, and
all the datapoints become support vectors. We should then remind ourselves that when the model is too
complex for our dataset, we are at risk of overfitting.

As can be observed, with the proper choice of the kernel parameters, it is possible to determine an
adequate nonlinear boundary for correct classification in this example.

As discussed here, the SVM provides a decision solution without any a posteriori probability infor-
mation. However, the so-called relevance vector machines (RLVs), which are related to SVMs, utilize
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FIGURE 13.48

Illustration of (a) polynomial and (b) Gaussian kernels for the toy example in Fig. 13.47.

the Bayesian sparse kernel concepts and can be applied with benefits to address classification and re-
gression problems [3]. Although the SMV is originally a two-class classifier, there are attempts to
extend it to multiple classes with some drawbacks [3].

13.5 Ensemble learning
A good measure of a classifier performance is its average accuracy over a training-independent dataset.
In many situations, however, one must also consider the accuracy variance over different conditions in
order to infer how trustworthy the average statistics are: most of the times, a large variance reduction
more than compensates for a small decrease in average accuracy. Ensemble learning combines several
distinct classifiers to reduce overall performance variance, exploring the so-called wisdom of the crowd
concept. In this combination, strategies must be employed to guarantee that all separate classifiers
contribute significantly to the final system, without any classification trend dominating over the others.
Two examples of ensemble learning algorithms are briefly described below.

13.5.1 Random forest
When playing a game of “Who is it?,” one must guess a hidden card by asking yes-or-no questions
about the unknown character: Is he/she blond? Does he/she wear glasses? Usually our next question
depends on the answers to the previous ones. Therefore, if we know that our hidden character is male,
we may later want to find out if he has a mustache or not; something that would not make much sense
for female characters. A good strategy that maximizes long-run winning chances is to use questions
that eliminate the largest number of possibilities independently of the possible outcomes, that is, we
want questions that divide our current dataset in two subsets of about the same size.

This whole process can be represented by what is called a binary decision tree, which is a directed
graph as illustrated in Fig. 13.49. In this model, each question is referred to as a node and each possible
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answer as a branch. The first node is called the root node and the final guesses at the bottom of the tree
are the so-called leaves, indicating that our tree is somewhat upside down.

Given a preannotated dataset, one may grow or, more exactly, train a particular decision tree by fol-
lowing the “Who is it?” metaphor: Each question (node) shall attempt to split the corresponding dataset
into two equally sized subsets and each subsequent question (child node) depends on the answer given
to the previous one (parent node), leading most likely to an asymmetrical tree. This whole process,
where a particular data characteristic (attribute) must be selected along its value that better divides the
current dataset, is often implemented on a trial-and-error basis, leading to a very computationally inten-
sive procedure. In the end, the tree leaves must indicate our final guess about which class a particular
datapoint belongs to.

FIGURE 13.49

Example of decision tree applied to a possible “Who is it?” game.

After the decision tree is trained, using it to classify a given sample is straightforward, as one only
needs to follow the path defined by the correct answers/branches to each question/node along the tree
for that particular datapoint.

Decision trees are characterized by being easy-to-interpret models, which work equally well with
both numerical and categorical data attributes and are robust to outliers or mislabeled data. However,
optimal decision trees require a very computationally intensive training process and practical approx-
imations cannot guarantee global optima are reached. They are also prone to overfitting, as 100%
accuracy in training datasets can always be achieved if the tree is allowed to grow indefinitely. This
can be mitigated by a tree pruning process, where a maximum depth or performance threshold is en-
forced. Since small data changes may lead to completely different structures, decision trees also suffer
from instability, which ultimately corresponds to high levels of performance variance.

This last characteristic motivated the development of an ensemble of decision trees, as illustrated in
Fig. 13.50, appropriately referred to as a random forest.

Decorrelation among individual classifiers may be achieved by enforcing a random component dur-
ing training of each tree. Some common strategies for this include:

• splitting the initial training dataset in several subsets following a bootstrap aggregation approach to
guarantee a similar statistical distribution to each subset as in the original one;
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FIGURE 13.50

Illustration of an ensemble of decision trees.

• splitting the set of attributes extracted from the initial data in several distinct subsets, with possible
nonnull intersection, and use each subset to train a different tree.

These two strategies are often combined to train distinct decision trees, which are then combined to
form a random forest, whose output is taken as the mode of all individual tree outputs.

Random forests have few hyperparameters, the main ones being maximum tree depth and total num-
ber of trees. Adjusting these variables, however, is not a complicated task, as the final performance is
quite robust to wide a range of their values. Training random forests is quite computationally intensive,
but the process can be performed in parallel, greatly reducing the overall duration.

Generally speaking, a random forest is characterized by easy handling of heterogeneous (numer-
ical and categorical) data, intrinsic implementation of feature selection, and very little performance
variance, leading to a very good generalization capability.

13.5.2 Boosting
Training individual classifiers in parallel, although advantageous from a computation time point of
view, may not be optimal with respect to final performance. In boosting, classification units are trained
in sequence and the performances of previously trained ones drive the training process of the following
units. The main idea here is to “boost” the performance of several weak learners, each one performing
slightly better than a random decision-making scheme, into a strong and accurate ensemble algorithm.
New classifiers are added in an attempt to correct the classification errors generated by the initial ones,
in such a way that each new ensemble member becomes an expert on the errors of all its predecessors.

In boosting, one initializes the entire process by giving the same importance to all training data-
points. After developing a first weak classifier, using any model, such as decision tree, perceptron, and
so on, one evaluates its performance in the entire training dataset. Importance is then decreased for
the correctly identified points and increased for all misclassified points, and a new classifier is trained
based on the dataset with modified weights. This process of error evaluation, dataset reweighting, and
new unit training is repeated until the overall performance remains unchanged after a few consecutive
iterations.
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Adaptive boosting (AdaBoost) was the first successful boosting algorithm [17]. In it, if a given
individual hi(y) classifier has error probability εi , its ensemble weight αi is given by

αi = 1

2
ln

(
1 − εi

εi

)
, (13.98)

and the training datapoints must be reweighted in such a way that

w(i + 1) = w(i)

2
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 − εi

, if it is a hit,

1

εi

, otherwise.

(13.99)

After iterating i = 1,2, . . . , I , the final ensemble output for the AdaBoost algorithm becomes

H(y) = sign

(
I∑

i=1

αihi(y)

)
. (13.100)

Other variations with improved implementations and performances, such as the real AdaBoost, gradient
boosting [16], and extreme gradient boosting (XGBoost) [4] algorithms, can be found in the related
literature.

13.6 Deep learning
DL refers to NNs with a large number of layers. In the initial works, one would consider any network
with more than three layers DL; nowadays, however, this number has grown to many thousands of
layers, and it is still increasing in more demanding applications. In order for these systems to work
properly, mainly avoiding gradient fading or divergence during the backpropagation process, several
adjustments needed to be made on the network itself and its training procedure. In this section, we
analyze several of these combined improvements that have led to a true scientific revolution, the conse-
quences of which increase on a daily basis and we are still trying to understand.

13.6.1 Large dataset corpora
Networks with many layers starve for huge amounts of data to adjust their many coefficients. Therefore,
one of the main technological advances that boosted the DL breakthrough was the appearance of large
and properly annotated datasets. Some entries of this dataset are shown in Fig. 13.8 in Section 13.3.5.

The MNIST database includes 70,000 examples of handwritten digits which have been size-
normalized and centered in a (28 × 28)-pixel image, where each pixel is described by its 8-bit gray
level. This database was widely explored by Yann LeCun’s research group, who developed the so-
called LeNet-5 DL network for the automatic recognition of postal codes [40].

Another widely known dataset, which also played a major role in early DL development and ex-
pansion, is the ImageNet. This database is comprised of 14 million images categorized into 22,000
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distinct classes [9]. Some samples from ImageNet are shown in Fig. 13.51. Starting in 2010, a chal-
lenge ran yearly on an ImageNet subset (with about 1.4 million images divided into only 1000 classes)
to showcase image classification algorithms based on computer vision techniques. In its 2012 version,
the challenge was won by a large margin by the so-called AlexNet DL architecture developed by Geof-
frey Hinton’s research group at the University of Toronto, Canada [38]. After that year, all versions of
the challenge were won by DL algorithms with ever increasing numbers of layers. Following AlexNet’s
success, in what seems today as a blink of an eye, researchers all over the world started applying DL to
all kinds of problems, strangely enough with great success.

FIGURE 13.51

Illustrative samples from the ImageNet dataset.

Nowadays, the importance of these data corpora is summarized into the overused refrain data is
the new oil. New challenges appear almost on a daily basis. Dataset repositories and even specialized
technical journals have appeared on this topic. Despite all this, in our experience, good data, particularly
properly annotated data, are almost always the bottleneck for the development of a good DL system.
Any resource spent in this direction is paid tenfold in final system performance and most importantly
in overall problem understanding.
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13.6.2 Nonlinear activation function
Traditional NNs were mostly limited to three layers due to numerical problems during the network
training stage. Those issues resulted mainly from gradient fading along the backpropagation process
across several layers. Any attempt to avoid such fading caused the opposite effect of gradient diver-
gence. Balancing between fading and divergence was a difficult task which limited the number of
network layers down to three for several decades. Such impairment restricted the use of NNs in several
practical situations, which ultimately led to financial cuts in research funding on this topic.

Thanks to the groundbreaking work of a few obstinate and brilliant researchers, we now know that
a few adjustments in the training procedure and the network structure were required to enable stacking
of a large number of layers. In this section, we list some of these adjustments that altogether have led
to a true revolution in several research areas.

The most common activation functions are the sigmoid and tanh ones, respectively described by

φσ (x) = 1

1 + e−x
,

φt (x) = tanh(x) = ex − e−x

ex + e−x
.

(13.101)

As depicted in Fig. 13.52, the sigmoid function maps the real variable x into the 0 ≤ σ(x) ≤ 1 range,
with a possible interpretation of probability of a given event. However, the nonzero average value of
the sigmoid leads to a bias that propagates along the network training process. The tanh function can
be seen as a scaled zero-mean version of the sigmoid function,

φt (x) = 2φσ (2x) − 1. (13.102)

Those two functions, however, as also shown in Fig. 13.52, have strong saturation regions for large
values of |x|. This characteristic corresponds to very low values of their derivatives in this range, which
ultimately leads to gradient fading, slowing down or even halting the training of deeper networks.

In order to avoid this last issue, the ReLU, defined as

φr(x) = max(0, x), (13.103)

was introduced and found great success in several DL applications [31,38,46]. Besides its evident sim-
plicity, the ReLU allows for a much simpler gradient computation and avoids saturation in its positive
part, speeding up the training process.

Nowadays, among the plethora of activation functions that can be found in the related literature, the
ReLU is the most widely used one, although the tanh can be a solid choice and the sigmoid is employed
whenever the application calls for a probability-like output within the [0,1] interval.

13.6.3 Network weight initialization
A proper weight initialization procedure also constitutes a useful tool for speeding up the learning
process of DNNs.
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FIGURE 13.52

Most common activation functions for neural networks: sigmoid, tanh, and ReLU.

On the one hand, very small weights, with values close to zero, consistently shrink the signals in the
forward pass across the network, turning it useless. On the other hand, large weights tend to generate
large inputs to the activation function which saturate the corresponding neurons, thus hindering their
learning ability, as seen in Fig. 13.52. Therefore, one should aim for an in-between situation with the
weights properly distributed for both the network backward training and forward operation.

Since the saturation intervals are quite spread along the input range, a uniform weight distribution
leads to an output distribution with large peaks in the two (low and high) saturation regions, which is
obviously undesired. Therefore, a proper initialization strategy should distribute the network weights
randomly in order to achieve a more uniform distribution for the activation function output. To do
so, one may use the so-called Xavier or Glorot distributions [19]. The Glorot normal distribution is a

truncated normal distribution with zero mean and standard deviation
√

2
Ni+No

, where Ni and No are the

numbers of neurons in the preceding and subsequent layers, respectively. An alternative distribution is

the Glorot uniform with range [−�, �], with � =
√

6
Ni+No

.

When using the ReLU activation function, one may consider the He initialization scheme [25],

which uses a standard deviation of
√

2
Ni

. This value compensates for the fact that the ReLU output is

null for half of its inputs, thus doubling the weight variance to keep the output signal variance constant.

13.6.4 Loss function
The loss function attempts to evaluate how much the output y of an NN resembles the target or desired
output value ŷ for each different input x.
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Perhaps the simplest cost function is given by the MSE, defined as

LMSE(y, ŷ) = 1

n

n∑
i=1

(
yi − ŷi

)2
, (13.104)

where n is the total number of inputs. The squared operation in this function equally penalizes positive
and negative differences between y and ŷ and allows for an easy computation of its gradient with
respect to a network coefficient w as required by the backpropagation algorithm:

∂LMSE

∂w
= −1

n

n∑
i=1

2(yi − ŷi )
∂ŷi

∂w
. (13.105)

The main drawback of the MSE function is that when the activation function becomes saturated, any
coefficient change causes little to no impact in the overall cost function, that is, if ∂ŷi

∂w
≈ 0, then ∂LMSE

∂w
≈

0. This is associated with the fading gradient effect, which greatly slows down the network learning
process.

The effect of saturated neurons on the network learning speed may be diminished by substituting
the MSE by the CE cost function defined as

LCE(y, ŷ) = −1

n

n∑
i=1

[
yi ln ŷi + (1 − yi) ln(1 − ŷi )

]
. (13.106)

Once again, similar to the MSE function, any difference between y and ŷ increases the total CE cost. In
the CE case, however, the gradient with respect to a network coefficient w, after a few straightforward
calculations, is given by

∂LCE

∂w
= −1

n

n∑
i=1

yi − ŷi

ŷi (1 − ŷi )

∂ŷi

∂w
. (13.107)

In this case, in the neuron saturation regions where ∂ŷi

∂w
≈ 0, the denominator factors ŷi and (1 − ŷi )

refrain the CE gradient from approaching zero, thus avoiding the dreadful fading effect.
In Fig. 13.53, we present an illustrative example when CE and MSE losses are employed in a

classification problem. By considering ŷ1 = 1 and ŷ2 = 0 in Eqs. (13.106) and (13.104), we vary the
classifier output in order to obtain the loss surfaces as in Fig. 13.53. Observe that the loss magnitude
of CE is much higher than that of MSE, especially for y = [1,1], y = [0,1], and y = [0,0], which
would represent different classes. Since CE penalizes the error better for different categories, it is more
reasonable for classification problems. In regression problems, there is no need for this abrupt behavior,
so MSE is more adequate.

13.6.5 Learning algorithm
Network training consists of finding the best set of network coefficients w (weights and bias) that
minimize a given loss function L. As seen in Section 13.4.2, this procedure usually follows a gradient-
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FIGURE 13.53

Loss surfaces for CE and MSE.

based weight adjustment of the form

w(k + 1) = w(k) − μ
∂L
∂w

∣∣∣∣
w=w(k)

, (13.108)

where μ controls the learning rate.
Determining the partial derivatives of L in this equation is a very costly operation, especially for

large datasets. Therefore, training data are often partitioned in smaller subsets, reducing the computa-
tional cost in each iteration. Data correlation provides some stability in the gradient estimation for each
minibatch. This strategy allows one to perform a larger number of updates for a given computational
cost, thus speeding up the learning process.

Finding a good value for μ in Eq. (13.108) is a very difficult task in most practical problems: Small
values of μ make learning too slow, requiring a large number of iterations (and a large amount of
time) to converge, whereas large values of μ may lead to algorithm divergence. In addition, the highly
nonconvex nature of L often leads to suboptimal convergence due to the ever-present local minima
of its surface in the parameter space. Momentum-based algorithms adaptively adjust the learning rate
along the network training and avoid the weight vector getting trapped in the local minima valleys
by averaging the partial derivatives over several consecutive iterations. Among the several momentum-
based strategies perhaps the most currently employed are the RMSProp and Adam algorithms described
below.

The RMSProp algorithm uses a weight update procedure of the form

w(k + 1) = w(k) − 1√
m(k + 1)

∂L
∂w

∣∣∣∣
w=w(k)

, (13.109)
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where m(k + 1) is determined by

m(k + 1) = αm(k) + (1 − α)

(
∂L
∂w

∣∣∣∣
w=w(k)

)2

. (13.110)

In this process, RMSProp works as some form of gradient normalization, which avoids extreme cases
of learning rate, where m(k) is a smoothed version of the squared gradient for each weight. In this
scheme α is a hyperparameter often set to α = 0.9 or adjusted during validation.

Adam estimation uses a similar gradient normalization to the RMSProp but employs a smoothed
gradient version in the weight update step [34]:

v(k + 1) = βv(k) + (1 − β)
∂L
∂w

∣∣∣∣
w=w(k)

,

m(k + 1) = αm(k) + (1 − α)

(
∂L
∂w

∣∣∣∣
w=w(k)

)2

,

w(k + 1) = w(k) − 1√
m(k + 1)

v(k + 1).

(13.111)

RMSProp and Adam can be used interchangeably with the designer’s choice mostly based on his or
her previous experience with those (or any other) momentum algorithms. In some situations, one may
even opt to the standard stochastic steepest descent procedure, which has fewer parameters to set.

13.6.6 Network regularization
Deeper models are prone to overfitting as their extremely large number of parameters can model very
complicated data idiosyncrasies. This undesired behavior may be mitigated by increasing training data,
applying early stop during training as guided by validation, or using network regularization. In this
last approach, constraints are enforced in the parameter values, restricting their respective domain, to
avoid modeling very complex and probably undesired patterns. Among the most used regularization
strategies, we consider the weight decay and dropout techniques described below.

Weight decay or �1/�2 regularization constrains the �1- (sum of absolute values) or �2-norms (sum
of squared values) of the network weight matrix W. These strategies penalize large weight values, favor
smooth networks, and are implemented by incorporating a penalty to the loss function definition, such
as

�1 : L1(y, ŷ) = L(y, ŷ) + λ
∑

i

∑
j

|wi,j |,

�2 : L2(y, ŷ) = L(y, ŷ) + λ

√∑
i

∑
j

|wi,j |2,
(13.112)

where wi,j denotes the (i, j) entry of W. In this process, λ is a system hyperparameter usually initialized
as λ = 0 and slowly increased along the training process in order to enforce network regularization. In
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practice, �1 regularization reduces the number of nonzero coefficients, whereas �2 regularization tends
to remove larger parameters.

Weight decay is the standard regularization technique in several statistical modeling fields. In the
DL community, however, a different approach is often employed due to its great success in the AlexNet
architecture. The dropout regularization [57] randomly removes or ignores different neurons in each
training step. This can be interpreted as the elementwise multiplication of a binary masking matrix to
the original weight matrix, leading to the new weight matrix

Wd = M � W, (13.113)

with M generated according to a Bernoulli(p) distribution. In practice, as each network behaves dif-
ferently, finding an appropriate value of p often requires great experimentation. In that sense, one may
start with p = 0 and increase its value up to p = 0.5, particularly for the last hidden layers of the net-
work, and analyze the effect of these changes along the training process. Dropout can be interpreted as
an extreme case of ensemble learning (see Section 13.5), where several distinct but correlated models
are trained for a given task and the final model is given by their output average or mode values. As a
final note on the dropout approach, one must keep in mind that the final network will have all active
weights, as opposed to the incomplete networks generated along training. Therefore, one must adjust
the weight values in the complete network to compensate for the dropout removal.

13.6.7 Deep learning frameworks
Among the several platforms for DL development, perhaps the most used ones are TensorFlow and
PyTorch [35].

TensorFlow is an open source library developed by Google first made available to the general public
in November 2015. TensorFlow allows for optimized model training and execution in several hardware
configurations, including multiple CPU and GPU servers. As of its 2.0 version released in 2019, Ten-
sorFlow has a built-in mode for simplified network design. Using TensorFlow is highly facilitated by a
high-level front-end library such as Keras calling the TensorFlow platform in the background.

PyTorch was first released in January 2017, almost one year later than TensorFlow. PyTorch has a
very dynamic interface facilitating user iteration. The nature of PyTorch makes for a very flexible design
strategy, as the user can easily modify the entire network during its training process. Other platforms
often require the designer to specify all network characteristics before executing the training procedure.
PyTorch also simplifies script debugging as one can choose desired outputs on the fly.

Along the years, TensorFlow and PyTorch have learned with each other, and each platform has
incorporated advantages initially associated with the other. Nowadays, their most recent versions are
somewhat equivalent in terms of usage and performance. All in all, as often occurs in practice, the
best framework for us is the one that our lab staff is more familiar with. We just need to find the right
material (book, video, class notes, etc.) or the right person to assist us along the initial “Hello world”
designs and enjoy the rest of the ride.

13.6.8 Autoencoders
An autoencoder is a type of artificial NN that reduces its high-dimensional input, obtains a compressed
and meaningful representation of it, and then uses this compressed version of the information to re-
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construct the input. As autoencoders create their own labels from the training data, they are considered
self-supervised algorithms. The autoencoder consists of three parts: encoder, code, and decoder, as
shown in Fig. 13.54.

FIGURE 13.54

A denoising autoencoder example.

The encoder compresses the input and, as a result, produces the code. The code is a reduced feature
representation of the input, also called the latent-space representation. Then, by minimizing the loss
function, the decoder reconstructs the input using the code. Therefore, the autoencoder is particularly
helpful for compression, feature extraction, and denoising tasks. For instance, in denoising autoen-
coders, the input is corrupted by noise, as illustrated in Fig. 13.54. The autoencoder is then responsible
for reconstructing the clean version of the input. In other words, denoising autoencoders aim at mak-
ing the encoder resistant to perturbations in the input data. For example, consider a denoising example
using the MNIST [39] database: an extensive dataset containing digits handwritten by students and
employees of the United States Census Bureau. This dataset was first detailed in Section 13.3.5. Some
samples of the original MNIST dataset are shown in the first row of images in Fig. 13.55. The samples
are corrupted by noise, resulting in the second row of images illustrated in Fig. 13.55. The noisy im-
ages are used as input to the autoencoder. The autoencoder processes the input and obtains as output
the denoised images in the third row of Fig. 13.55.

FIGURE 13.55

Results obtained using a denoising autoencoder. The first row consists of the original images, the second row
is the corrupted images used as input to the autoencoder, and the third row is the output of the autoencoder.

13.6.9 Adversarial training
In Section 13.4.10, we observed how powerful the deep CNNs can be at solving classification tasks
even better than us, humans. However, the NNs are very susceptible to small perturbations in the input



13.6 Deep learning 933

image, barely unseen by the human eyes [22,60]. These malicious perturbations of the network input
are known as adversarial examples. They can easily fool the trained model with high confidence, as
illustrated in Fig. 13.56.

FIGURE 13.56

Example of adversarial image generation.

Adversarial examples are created by finding a small perturbation η to be added to the clean im-
age x so that the new image x′ = x + η is misclassified by the model. So far, adversarial training is
the state-of-the-art defense approach to mitigate the effects of adversarial attacks and hence improve
the model robustness. In adversarial training, the adversarial examples are continually produced and
injected during the training process of a DNN classifier,

fw(x) :RN → {1 · · ·C}, (13.114)

with w weights, which maps an input image x to a label y from a dataset D with C possible classes. Its
main objective consists of solving the min-max optimization problem

minw
1

|D|
∑

x,y∈D
maxη J (fw(x + η), y),

s.t. ‖η‖p ≤ ε,

(13.115)

where J (fw(x + η), y) is the loss function on the adversarial sample and η is a small perturbation
constrained by ε.

The inner maximization problem in Eq. (13.115) is responsible for creating the adversarial examples
by maximizing the loss function J in an effort to change the classification so that fw(x + η) �= fw(x). To
ensure that the adversarial example keeps similar to the clean sample, the distance between them (‖η‖p)
is constrained to be less than ε under a particular norm. The norms aim to quantify how imperceptible
to humans an adversarial example is. Some examples of norms are the l0-norm, l2-norm, and l∞-norm.
In the l0-norm, ε bounds the total number of pixels in x′ that can be modified with respect to x. For the
l2-norm, ε bounds the total squared distance between the values of pixels in x′ and the corresponding
pixels in x. And in the l∞-norm, also known as max norm, ε bounds the maximum difference between
any pixel in x′ and the corresponding pixel in x.

After the inner maximization problem is addressed, it is time to solve the outer minimization prob-
lem in Eq. (13.115) and find the model parameters that minimize the loss on the generated adversarial
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examples. The model parameters

wt = wt−1 + μ
1

|B|
∑

x,y∈B
∇wJ (fw(x + η∗), y) (13.116)

are updated using stochastic gradient descent (SGD), where B is the current minibatch. The gradient
is evaluated at the maximum point η∗ found in the inner maximization problem, thanks to the Danskin
theorem [7].

When creating the adversarial example, the amount of information available to the attacker regard-
ing the model categorizes the type of attack. If the attacker has full access to the model, including its
gradients, it is known as a white-box attack. On the other hand, when the attacker has no access to the
model, but it has some prior information, for example, the classes’ probabilities, it is considered as a
black-box attack.

13.6.9.1 White-box attack
(A) Fast gradient sign method (FGSM)

FGSM is an attack introduced by [22] that creates adversarial examples by differentiating the loss
with respect to the input and updating it so that the loss J would increase on that sample,

x′ = x + εsign(∇xJ (w,x, y)), (13.117)

where sign(·) is the sign function, ∇xJ (w,x, y) is the loss gradient with respect to x, and ε controls the
perturbation of the adversarial examples.

We can see the impact on the classification when an adversarial image is presented to a standard
trained network in Fig. 13.57. The classification is changed from car to plane with a probability of
P = 0.917503, but the difference between the adversarial and the clean images is imperceptible to the
human eye. The adversarial image is obtained via a FGSM attack with ε = 4/255. The original image
is obtained from the CIFAR10 dataset. The images in Fig. 13.57 are then presented to an adversarially
trained network via FGSM attacks with ε = 4/255. The classification results are shown in Fig. 13.58,
where both the clean and the adversarial images are correctly classified.

(B) Projected gradient descent (PGD)
Proposed by [42], the PGD attack attempts to solve the inner maximization problem in Eq. (13.115)

following an iterative procedure. In each iteration i, PGD employs the update rule

x′
i = clipx+ε(xi−1 + αsign(∇xJ (w,x, y))), (13.118)

where function clipx+ε(·) clips the input at the positions around the predefined perturbation range and
α is a step size.

An illustrative example is shown in Fig. 13.59, in which both clean and adversarial images are pre-
sented to a standard trained model. For the considered input image, a perturbation with ε = 1/255 is
sufficient to fool the Resnet18 model with a probability of P = 0.9297474. Nevertheless, the adver-
sarially trained Resnet18 is able to correctly classify the same images from Fig. 13.59 as shown in
Fig. 13.60.
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FIGURE 13.57

Classification results for original and adversarial examples via a standard trained Resnet18 network using the
CIFAR10 dataset. The adversarial image is obtained via a FGSM attack with ε = 4/255.

FIGURE 13.58

Classification results for original and adversarial examples via an adversarially trained Resnet18 network using
the CIFAR10 dataset. The adversarial image is obtained via an FGSM attack with ε = 4/255.

13.6.9.2 Black-box attack
(A) Pixel attack (sparsity-aware)

Originally, the pixel attack was proposed in [59] to perturb only one pixel with differential evolution
(DE). This black-box attack aims at solving the sparse optimization problem

maxη Padv(x + η),

s.t. ‖η‖0 ≤ d,
(13.119)

where only the probabilities of the classes are available to perform the attack. The method tries to
maximize the probability of the class being the adversarial one Padv while the number of pixels being
modified is constrained to d . The input image is represented by vector x, where each element of x
is a pixel of the image, and vector η has d nonzero elements. The adversarial class can be target or
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FIGURE 13.59

Classification results for original and adversarial examples via a standard trained Resnet18 network using the
ImageNet dataset. The adversarial image is obtained via a PGD attack with ε = 1/255 and 20 iterations.

FIGURE 13.60

Classification results for original and adversarial examples via an adversarially trained Resnet18 network using
the ImageNet dataset. The adversarial image is obtained via a PGD attack with ε = 1/255 and 20 iterations.

untargeted. The perturbation is encoded into an array composed of five elements: xy-coordinates and

RGB values of the perturbation. By using DE, a population of candidates or children for the perturbation

vector is created at each iteration based on past candidates or parents. The children compete with their

parents in terms of fitness and the winners survive for the next generation.

As shown in Figs. 13.61 and 13.62, d = 3 pixels are sufficient to fool Resnet18 for the CIFAR10

and ImageNet datasets, respectively. The perturbed pixels are highlighted in red (light gray in print

version). The maximum number of iterations is set to 100 and the early-stop criterion will be triggered

when the probability of the target class exceeds 90% or when the label of true class is lower than 5% in

the case of nontargeted attacks.
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FIGURE 13.61

Classification results for original and adversarial examples via a standard trained Resnet18 network using the
CIFAR10 dataset. The adversarial image is obtained via pixel attack with d = 3 pixels.

FIGURE 13.62

Classification results for original and adversarial examples via a standard trained Resnet18 network using the
ImageNet dataset. The adversarial image is obtained via pixel attack with d = 3 pixels.

13.7 CNN visualization
Wondering how to interpret the results of some sophisticated DL methods is legitimate. This issue is
critical in applications where high risks are involved. This section briefly discusses an approach related
to CNN visualization.

13.7.1 Saliency map (vanilla and guided backpropagation)
By composing multiple layers, DNNs are able to process a big amount of data and hence learn complex
tasks, as presented in Section 13.4.10. Nevertheless, we are still far from understanding how NNs
work inside. What elements in the image lead to a particular prediction? How can small imperceptible
perturbations be enough to make the NNs misclassify an image with high confidence? What makes an
NN robust? We want to discuss these open questions with a helpful tool known as a saliency map.
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Saliency maps are heatmaps that highlight the pixels of the input image that affected the output
classification most. In this way, the saliency maps help unravel the areas in the image that impact the
NN prediction.

By computing the loss gradient with respect to the input pixels,

∇xJ (x, yc,w), (13.120)

we can analyze the importance of each pixel when predicting class c. The pixels for which the loss
gradient would be large are the pixels that need to be changed the least to affect the class score the
most.

Fig. 13.63 depicts the saliency map for a correctly classified gorilla when the network is trained in
a standard manner. Observe that the highlighted pixels have a gorilla shape, indicating that the back-
ground is less important to the prediction. On the other hand, the adversarial version in Fig. 13.64 has
a slightly different saliency map. In this case, we notice that some parts of the background influence
the wrong classification. This dynamic behavior of the saliency maps suggests that the standard trained
network is prone to fail when small perturbations are added to the clean image. By adversarially train-
ing the network, as presented in Section 13.6.9, we can obtain the saliency maps shown in Figs. 13.65
and 13.66 for clean and adversarial examples, respectively. Observe, however, that the saliency maps
are the same in this case, indicating that the adversarially trained network is robust to small changes in
the pixels.

FIGURE 13.63

Classification result of a clean image and its saliency map for a standard trained Resnet18 using the ImageNet
dataset.

13.8 Deep reinforcement learning
RL is an ML algorithm in which an AI agent learns from the environment by interacting with it. The
agent acts on the environment and it receives as feedback the reward and the state of the environment,
as illustrated in Fig. 13.67. The agent aims at finding the action that maximizes its total reward.

In Q-learning, the Q-value or total reward Qt(s, a) represents how good action a for a particular
state s at time t is. As training progresses, the algorithm stores the current Q-values for all possible
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FIGURE 13.64

Classification result of an adversarial image and its saliency map for a standard trained Resnet18 using the
ImageNet dataset.

FIGURE 13.65

Classification result of a clean image and its saliency map for an adversarially PGD trained Resnet18 using the
ImageNet dataset.

combinations of s and a in the Q-table. The best action is then chosen based on the maximum Q-value
for a given state. The Q-learning algorithm updates the Q-value Qt(s, a) as follows:

Qt+1(s, a) = (1 − α)Qt(s, a) + α(r + γ maxa′Qt(s
′, a′)), (13.121)

where s′ is the state reached from state s when performing action a, r is the immediate reward received
when moving from s to s′, α is the learning rate, and γ is the discount factor. The maximum Q-value
maxa′Qt(s

′, a′) in the next state when considering all the available actions that lead to the next state
is computed using the Q-table. After some iterations, the Q-table becomes a helpful tool to obtain the
best action for a given state.

Nevertheless, the Q-table might become too large, exceeding the computer memory. A deep Q-
network (DQN) can be used to approximate Qt(s, a), avoiding the use of a Q-table to remember the
solutions. Instead of storing all the Q-values in the Q-table, an NN is trained to produce different Q-
values for each action. The action related with the maximum Q-value is then chosen.
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FIGURE 13.66

Classification result of an adversarial image and its saliency map for an adversarially PGD trained Resnet18
using the ImageNet dataset.

FIGURE 13.67

Illustration of reinforcement learning.

The NN is trained by minimizing the loss function

L = (r + γ maxa′Q̂(s′, a′) − Q(s, a))2, (13.122)

where maxa′Q̂(s′, a′) is the prediction using the current model on the next state s′.
The whole RL procedure is illustrated in Fig. 13.68, in which the ε-greedy policy dictates how to

learn the problem. In the beginning, the exploration rate ε employed by the ε-greedy policy is high, and
hence we uniformly select possible actions. The actions and associated states are stored in the memory
replay, which is then used to train the NN. As the training progresses, the exploration rate ε decays and
the action is chosen using the NN more often.
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FIGURE 13.68

Illustration of ε-greedy policy.

For instance, consider a maze game illustrated in Fig. 13.69(a). The black squares represent walls,
the pink squares (mid gray in print version) are starting and ending positions, and the yellow (light gray
in print version) and white squares are possible positions the player can choose. Here, the agent is the
player, the environment is the maze itself, the state is the player’s position, the action is the direction the
player can take (left, right, up, and down), and the reward is based on the player’s position in the maze.
For this example, the reward is −1 when the player reaches yellow squares (light gray in print version),
whereas 0 is the reward for white squares. After 54 steps, our agent can reach the ending position, as
shown in Fig. 13.69(b).

FIGURE 13.69

Illustration of (a) starting maze and (b) learned path.

13.9 Current trends
This section describes some topics in the ML field which are currently widely investigated. The de-
scriptions are brief but aim to attract readers to pursue further research.
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13.9.1 Transfer learning
DL architectures starve for data in order to adjust their parameters along their computationally intensive
training procedures. However, getting more labeled data is very costly and time consuming, which
motivates us to find data-efficient strategies to train such structures in new problems. One possible
way to reduce this data dependency is to avoid starting the network training from scratch and use a
pretrained network on a similar problem as our initial condition.

For instance, initial layers tend to extract basic features such as lines, edges, and simple shapes
when dealing with images. Deeper layers, in contrast, extract high-level features such as textures and
image content. The closer the layer is to the network output, the more tuned it becomes to the problem
at hand. Therefore, when dealing with image-related problems, one may use a deep network that was
previously trained on the ImageNet challenge as a starting point. Although the specific aim of the two
problems may be different, the basic image processing aspects may be similar in a way that the second
problem can take advantage of the knowledge acquired when processing the ImageNet dataset. The
network is then retrained using our limited dataset specially devised for our particular new task.

A similar approach can be used in the speech recognition problem. When dealing with languages
with limited annotated data, one may opt to start from an English-language recognizer, developed based
on thousands of hours of annotated English speech, and then further adjust or retrain the network for
recognizing another language with a limited dataset.

This strategy is often referred to as transfer learning, as all information acquired in the previous
problem is transferred to the new one via the network parameters used as initial conditions in the
training procedure. In this manner, the network does not start learning a new problem from scratch but
as we humans often do, it takes advantage of all knowledge acquired from previous similar situations.

13.9.2 Learning on graphs
There are many problems where the data entries can be associated with graphs, as described in Chap-
ters 14 and 16. Sometimes, we know the graph representing information or physical networks before-
hand. In other cases, the graph structure has to be inferred from data through a learning process. From
the ML point of view, if we can relate the data in any two nodes through an edge with a weight value,
then a graph learning problem follows naturally. Indeed, many graph signal processing tools apply to
ML, such as in graph NN problems where we apply nonlinearities to the data employed as graph data.

A graph learning framework naturally represents the connectivity experienced by devices that are
the sources of big datasets, falling within the domains of optimization methods required to solve many
ML problems.

13.9.3 Interpretable artificial intelligence
Despite their remarkable achievements in many applications, many ML and AI solutions often lack
interpretability or explanations to corroborate their reliability. This issue is particularly relevant in the
context of the widely used DL solution. The aim is to incorporate interpretability to classical ML models
exposing the relationships among the domains that produced the observed data [61]. As advocated
in [44], to be helpful, interpretability needs a precise definition in the context of ML, involving the
prediction and descriptive accuracies, as well as relevancy.
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In the prediction stage of the ML process, we have to ensure the model is adequate to produce high
prediction accuracy when employing the available test data. Then, the concern is if the interpretation of
the learned relations by a model is faithful; this issue relates to descriptive accuracy. Finally, the overall
interpretation is relevant only if it offers insight into the problem at hand and for a targeted audience;
see [44] for details.

In many cases, traditional ML-based decisions are not understandable, motivating a booming inter-
est of the research community in interpretable or explainable AI (XAI). This challenging research area
has advanced; for instance, it is possible to search for a meaningful dictionary matrix whose columns
and their combinations have semantic, and conceptual meaning is a successful approach for creating
practical XAI algorithms, as illustrated in Chapter 17.

Some tools and directions applicable to interpretable ML are discussed in Chapters 15, 16, and 17
of this book.

13.9.4 Federated learning
Federated learning (FL) is a new paradigm in the ML field for admitting decentralized training per-
formed on edge devices. FL allows smartphones, drones, medical monitoring devices, vehicles, etc., to
learn using data available in the corresponding edge devices. The local learning algorithms rely on the
processing power and storage capability of each device. Let us suppose a device has access to a down-
loaded model, and it is able to learn further by using the locally available data. Instead of uploading
the data for processing in a cloud infrastructure, it is beneficial to perform a limited and focused update
with the local infrastructure. For further details, refer to the review article on the subject [18] and the
references therein.

Fig. 13.70 illustrates a possible configuration including edge devices with varying storage and
computational capabilities, where each device might contribute to the FL process constrained by its
respective limitation.

The FL concept entails new ML tools to deal with heterogeneous edge devices, with distinct com-
putational and storage capabilities, each device with its inherent privacy and security requirements.
The full implementation of the learning system using FL benefits from the data available in millions
of devices, possibly alleviating the burden of the technical requirements of learning from large datasets
which are typically processed in homogeneous networks placed at distinct servers. The referred burden
consists of high-throughput and low-latency connections to training data required by solo cloud-based
computing learning systems.

The edge devices learn from their data and perform focused updates, and only the outcomes are sent
to the cloud. The edge devices can immediately use the information they learn, whereas at the clouds
the encrypted contributions of several devices are properly averaged. The information of the individual
device should not be decrypted separately for privacy purposes.

The FL configuration might include several access points, such as in an urban environment as de-
picted in Fig. 13.71, where the edge devices communicate with the closer access point and all data
updates are congregated in a central server.

The structure of the FL system consists of an individual multinode learning process, where each
node i has available Ni dataset input–output pairs denoted as

Di = {(xi (1), yi(1)), (xi (2), yi(2)), · · · , (xi (Ni), yi(Ni))}, (13.123)
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FIGURE 13.70

Federated learning illustration.

where xi (q) ∈R
ni × 1 for q = 1, · · ·Ni .

At the edge device, the objective is the minimization of the local function denoted as

J̃i (Wi;Di )
∣∣Ni

q=1 = J̃i (Wi;xi (q), yi(q))
∣∣Ni

q=1, (13.124)

where for the ith device, the aim is to minimize the local cost function utilizing the currently available
data,

Ji(Wi;Di )
∣∣Ni

l=1 = 1

Ni

Ni∑
q=1

J̃i (Wi;xi (q), yi(q))
∣∣Ni

l=1, (13.125)

where Ji represents the objective function related to the ith edge device. The edge updated coefficient
is then given by

Wi (k + 1) = min
Wi

Ji(Wi;Di )
∣∣Ni

l=1. (13.126)

The minimization of the local cost function at the edge devices uses the available data at node i. The
set of data available is usually small to grasp an accurate model. In addition, it is possible that the
chosen subset of parameters updated at node i, Wi (k + 1), does not encompass the full set of learning
coefficients.
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FIGURE 13.71

Federated learning system including several access points in an urban area.

In a centralized configuration, the overall cost function to be minimized is

J (W) =
N∑

i=1

αiJi (Wi;Di ) , (13.127)

where αi = Ni∑N
q=1 Nq

, where N is the number of edge devices. The symbol W(k) represents the set of

central parameters. The updated coefficient is then given by

W(k + 1) = min
W(k)

J (W(k);D(k)) , (13.128)

where D(k), encompasses Di , ∀i.
At each edge device, a gradient descent algorithm updates the weights iteratively following the

negative gradient direction,

Wi (l + 1) = Wi (l) − μi

∂Ji(Wi (l);Di (l))

∂Wi (l)

∣∣∣
l=1,...,E

, (13.129)
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where μi is the step size employed in the ith device, Di (k) represents a randomly selected minibatch
at the edge, and Wi (1) = W(k). The E samples are uniformly drawn from the set of Ni local samples.

A possible way to aggregate the contribution of all edge devices to the parameter update is given by

W(k + 1) = N

s

∑
i∈S

αiWi (k + 1), (13.130)

where S represents the set of s edge devices that provides an update at the current iteration.
It is now convenient to provide some very brief information related to FL convergence following

the work of [41]. Similar discussions are also found in [12], but details of the convergence issues fall
beyond our scope here. The convergence of the FL algorithm requires that

E [J (W)] − J (Wo) ≤ L

ε + KE − 1

(
2B

ν2 + ε

2
E

[
‖W(KE) −Wo‖2

])
, (13.131)

where the cost functions of the edge devices are considered L-smooth,2 ν-strongly convex.3 They also
have stochastic gradient with bounded variance σ 2

i , and the ‖ · ‖2 of their stochastic gradient is uni-
formly bounded by G2; see [41]. There is a degree of not independent and identically distributed (i.i.d.)
heterogeneity among the users given by � [41]. The FL algorithms stops after KE iterations providing

as solution W(T ). By selecting ε = max
(

8L
ν

;E
)

and μi = 2
ν(ε+kE)

, we get the convergence where

B =∑N
i=1 αiσ

2
i + 6L� + 8(E − 1)2G2. This discussion mainly illustrates that the proof of conver-

gence available for the FL algorithm requires a diminishing step size, a function of k.

13.9.5 Causal machine learning
ML methods perform well when assuming that the available data are i.i.d. However, the classical ML
methods need to generalize better when data distribution changes occur. As a result, a current challenge
in ML is to investigate tools to improve the generalization performance, particularly in prediction and
classification involving large datasets originating from natural signals. A solution is formally proposing
a model approach to the data generation process through the so-called structural causal model (SCM).
The aim is to estimate the data behavior after an intervention is made in the data generation process. The
end result is a causal inference procedure that might close the gap between ML and natural intelligence.

Classical ML inherently assumes that the dataset is i.i.d. Let us consider the supervised case with
the representation repeated here for convenience:

D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(Q), y(Q))}. (13.132)

The main goal is to acquire information about the conditional probability distribution denoted by
p(y|X). The i.i.d. assumption is crucial to justify the division of the dataset into training, validation,
and testing subsets. In a nutshell, for successful learning, it is expected that at least the training dataset

2 L-Smooth means J (W) ≤ J (W ′) + (W −W ′)T ∂[J (W)]
∂W)

∣∣
W ′ + L

2 ‖W −W ′‖2
2.

3 ν-Strongly convex means J (W) ≥ J (W ′) + (W −W ′)T ∂[J (W)]
∂W)

∣∣
W ′ + ν

2 ‖W −W ′‖2
2.
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follows the same distribution as the test dataset. A simple, intuitive example consists of a situation
where in the whole training dataset, the object is placed in a given class of backgrounds, and in the test-
ing phase, unexpected types of backgrounds surround the object. Broad discussions related to causal
learning are available in the tutorial articles [53], [32].

A replacement for the i.i.d. assumption is SCM, where the dataset originates from samples of in-
terventional distributions. The basic idea is to generate several datasets relying on distinct distributions
represented as

Di = {(xi (1), yi(1)), (xi (2), yi(2)), · · · , (xi (Q), yi(Q))}, (13.133)

so that we deal with a set of distributions p(yi |Xi ), where i ∈ I and I represents the set of instances.
A distinct distribution generates a separate set of data samples for each instance.

A directed acyclic graph (DAG) is a valuable tool to represent well a priori assumptions about the
causal relations in data generation. For instance, a parent node connects to the children’s nodes through
directed edges. In addition, the graphs help express how to factorize the distribution of the set of random
variables leading to a substantial reduction in the complexity inherent to joint distributions.

Let us assume the joint distribution

p(a, b, c, d) = p(a|b, c, d)p(b|c, d)p(c|d)p(d), (13.134)

where a, b, c, d represent the random variables and we utilized the probability rule to factorize the
referred distribution.

If, for instance, a is independent of all the remaining variables, as per the DAG of Fig. 13.72, we
can use the marginalized model p(a) and simplify the conditionals as follows:

p(a, b, c, d) = p(a)p(b|a)p(c|a)p(d|b, c). (13.135)

Note that the latter joint distribution involves four random variables, whereas six are present in
Eq. (13.134).

FIGURE 13.72

DAG of a Bayesian network.

Consider a graph whose nodes are connected with directed edges, where each edge connects a parent
node to a child node. Let the ith node host a random variable xi with the corresponding probability
density function represented by p(xi). The parents of xi are denoted as pa(xi), whereas if xi is an
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ancestor of xj , then xi ∈ an(xj ). Similarly, for a descendant of xi represented by xl we utilize the
notation xl ∈ de(xi).

If the graph contains the node xm, ∀m with joint distribution p(x), the so-called Markov condition
states that

p(xm|pa(xm)) = p(xm|x /∈ de(xm)), (13.136)

where every node xm is considered independent of the nondescendant nodes denoted as /∈ de(xm). This
condition leads to the following factorization of the joint distribution:

p(x) =
∏
m

p(xm|pa(xm)). (13.137)

The Bayesian network representation aids the decomposition of complex joint distributions into smaller
conditional distributions. In addition, we can benefit from the DAG structure to perform interventions.

The DAG of a Bayesian network is a starting point for providing interventions in the distribution of
interest by acting on some variable denoted by do(·). Let us consider the case

p(a, c, d|b) = p(a)p(b|a)p(c|a)p(d|b, c). (13.138)

By taking action on b, it is possible to observe its effect on the overall distribution according to the
graph configuration as depicted in Fig. 13.73. The action is an intervention that can be described as

p(a, c, d|do(b)) = p(a)p(c|a)p(d|b, c) �= p(a, c, d|b), (13.139)

since that by taking an action, it follows that p(b|a) = 1. After performing this action, the variable a

has no bearing on the behavior of b.

FIGURE 13.73

Causal Bayesian network as a result of intervention.

If we take a set L of interventions, it follows that

p(x) =
∏
m/∈L

p(xm|pa(xm)). (13.140)

This expression represents a truncated factorization of the distribution.
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In ML strategies, the causal assumption is not often imposed; therefore, it is an extra ingredient to
widen the generalization power of the ML solutions.

A missing tool for expanding the concept of causal ML is a counterfactual probe related to the
possibility of imagining a situation where a particular process a has caused b, that is, a counterfactual
account for a hypothetical backward-looking intervention related to the observed outcome. In order to
allow a wider range of applications, in addition to employing the causal factorization of Eq. (13.140),
it is possible to assume that each node signal is generated as

xi = fi(pa(xi), ui) (13.141)

for all nodes in the graph, giving rise to an SCM, where the random signal ui accounts for an ex-
plained contribution to xi and fi(·), ∀i are deterministic functions. In typical cases, the noise terms
u1, u2, . . . , ui, . . . are assumed jointly independent. Through human actions or learning methods, these
tools allow the analysis of contrafactuals, interventions, and observations. The SCM brings about the
flexibility of computing intervention-based distributions, like the causal DGM, in addition to imple-
menting counterfactuals by fixing the values of the noise signals.

The described tools form the basis for developing causal ML solutions, a subject with growing
research interest; see [53], [32], and the references therein.

13.10 Concluding remarks
This chapter presented a review of ML, attempting to cover a wide range of branches of the field
and provide the background required to endeavor in the topics presented in the chapters ahead. Since
ML is poised to take part in many products under development, research efforts continue to widen
the capabilities of ML-based solutions. The chapter illustrated many signal processing tools that are
somehow incorporated or adapted to the existing ML algorithms; however, many new ideas flourished
by the growing availability of large datasets and computer resources. Much more is yet to come!

13.11 Appendix: RNN’s gradient derivations
This appendix shows the derivation of the gradients related to the RNNs.

13.11.1 Gradient derivations of the standard RNN
Further development of a gradient-based learning algorithm requires a number of partial derivatives of
the chosen cost function with respect to the network parameters. All expressions apply the chain rule,
and they are discussed below.

Let us first consider the expression of the gradient with respect to Wo and bo as

∂J̄ (ŷ,y)

∂Wo

=
K∑

k=1

[
∂J (k)

∂ ŷ(k)

]T
∂ ŷ(k)

∂Wo

,
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∂J̄ (ŷ,y)

∂bo

=
K∑

k=1

[
∂J (k)

∂ ŷ(k)

]T
∂ ŷ(k)

∂bo

. (13.142)

We now continue by deriving the expression of the gradient with respect to Wi by accessing the
transition between the instances k and k + 1:

∂J (k + 1)

∂Wi

=
[
∂J (k + 1)

∂h(k + 1)

]T
∂h(k + 1)

∂Wi

+
[
∂J (k + 1)

∂h(k)

]T
∂h(k)

∂Wi

=
[
∂J (k + 1)

∂h(k + 1)

]T
∂h(k + 1)

∂Wi

+
[
∂J (k + 1)

∂h(k + 1)

]T
∂h(k + 1)

∂h(k)

∂h(k)

∂Wi

. (13.143)

The above equation only deals with the transition k → k + 1, where we consider that the layer output
ŷ(k + 1) feels the effect of Wi through h(k + 1) and x(k + 1). The second equality originates from the
fact that h(k + 1) is in some way a function of h(k); therefore, some sort of backpropagation scheme is
required to compute the partial derivative. The dashed line in Fig. 13.29 represents the backpropagation
path required to update the network parameters.

When considering the data at k + 1, we need the so-called backpropagation through time (BPTT)
to calculate the partial derivative of the cost function with respect to coefficients of the matrix Wi . In
Eq. (13.143), we can expand the summation to include all instants k, resulting in

∂J (k + 1)

∂Wi

=
k+1∑
l=1

[
∂J (k + 1)

∂h(k + 1)

]T
∂h(k + 1)

∂h(l)

∂h(l)

∂Wi

. (13.144)

By taking into account the entire time sequence and highlighting the output signal, we obtain

∂J̄ (ŷ,y)

∂Wi

=
K−1∑
k=0

k+1∑
l=1

[
∂J (k + 1)

∂ ŷ(k + 1)

]T
∂ ŷ(k + 1)

∂h(k + 1)

∂h(k + 1)

∂h(l)

∂h(l)

∂Wi

. (13.145)

The partial derivative of the partial cost function with respect to Wf , considering only the transition
from k to k + 1, is

∂J (k + 1)

∂Wf

=
[
∂J (k + 1)

∂ ŷ(k + 1)

]T
∂ ŷ(k + 1)

∂h(k + 1)

∂h(k + 1)

∂Wf

=
[
∂J (k + 1)

∂ ŷ(k + 1)

]T
∂ ŷ(k + 1)

∂h(k + 1)

∂h(k + 1)

∂h(k)

∂h(k)

∂Wf

. (13.146)

The second equality originates from the fact that h(k + 1) depends on h(k).
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For k + 1, we apply the BPTT to compute the partial derivative of the cost function with respect to
coefficients of the matrix Wf :

∂J (k + 1)

∂Wf

=
k+1∑
l=1

[
∂J (k + 1)

∂ ŷ(k)

]T
∂ ŷ(k)

∂h(k + 1)

∂h(k + 1)

∂h(l)

∂h(l)

∂Wf

. (13.147)

By considering the entire time sequence we obtain

∂J̄ (ŷ,y)

∂Wf

=
K−1∑
k=0

k+1∑
l=1

[
∂J (k + 1)

∂ ŷ(k)

]T
∂ ŷ(k)

∂h(k + 1)

∂h(k + 1)

∂h(l)

∂h(l)

∂Wf

. (13.148)

In the same vein, a specific and widely used cost function in RNNs is the relative entropy function
given by

L(ŷ,y) =
K∑

k=1

[
L(ŷ(k),y(k))

]

= −
L∑

i=1

K∑
k=1

[
yi (k) ln(

ŷi (k)

yi (k))

]
, (13.149)

where L is the length of vectors ŷ(k) and y(k), so that

∂L(ŷ,y)

∂ ŷ(k)
= (ŷ(k) − y(k)

)
. (13.150)

Eq. (13.150) is valid if the cost function is the logistic function and the activation function is the soft-
max. This combination is crucial to avoid undesirable behavior in the network’s learning process [62],
since it generates gradients depend only on the error vector. A brief proof of this statement is worth
pursuing. Since

L(ŷi ,yi ) =
K∑

k=1

yi (k) ln(
ŷi (k)

yi (k)
), (13.151)

assuming that ŷi (k) is generated by applying the softmax to hi (k), we have

∂L(ŷi ,yi )

∂hi (k)
= − ∂

∂hi (k)

{
K∑

k=1

yi (k)hi (k) −
K∑

k=1

yi (k) ln

[
L∑

i=1

exp(hi (k))

]}

= −yi (k) +
K∑

k=1

yi (k)
exp(hi (k))∑L
i=1 exp(hi (k))

= −yi (k) + ŷi (k)

L∑
i=1

yi (k) = −(yi (k) − ŷi (k)). (13.152)
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The RNN uses the input layer vector x(k), for instance at time k, and the feedforward process
representation is

· · ·h(k − 1) ‖ ŷ(k − 1)
Wi ;Wf ;bh‖Wi ;Wo;bo−−−−−−−−−−−−−→

x(k);tanh‖softmax
h(k) ‖ ŷ(k)

Wi ;Wf ;bh‖Wi ;Wo;bo−−−−−−−−−−−−−→
x(k+1);tanh‖softmax

· · ·, (13.153)

where the symbol ‖ in the present context represents simultaneous operations involving the network
parameters, the input data, and the corresponding nonlinear functions.

An important issue affecting RNN algorithms is the vanishing and exploding behavior of some gra-
dient components. We provide a brief illustration, inspired by [62], coming from the partial derivative
recursion and applied to the scalar state, given by

∂h(k + 1)

∂h(k)
= wf

(
1 − h2(k + 1)

)
. (13.154)

The above equality results from the partial derivative of tanh as per Eq. (13.40). In a sequence of
iterations, one gets

∂J (k + 1)

∂h(k)
= w2

f

(
1 − h2(k + 1)

)(
1 − h2(k + 2)

) ∂J (k + 1)

∂h(k + 1)
+ · · · . (13.155)

This expression derives from Eqs. (13.33) and (13.40). As can be observed, since the terms h2(·) result
from the tanh operation, |h(·)| < 1. Therefore, it is likely that the first term in the above equation will
vanish in the long run. On the other hand, the powers of wf will increase and if wf > 1, Eq. (13.155) is
prone to explode. This behavior requires alternative solutions for RNN, particularly in deep networks
such as clipping or other structures.

The same conclusion follows if we consider a simple network mapping an input vector to an output
vector, through many layers with the same weight matrix Wf being applied. This situation occurs in
RNNs but not in the standard NNs and DNNs, and the RNN dynamic range is highly dependent on the
weight matrix eigenvalues. This behavior also affects the gradients, leading to potential explosion or
vanishing of their values.

13.11.2 Gradient derivations for the LSTM scheme
In the following, we present the gradient-related quantities required to implement the BPTT to update
the LSTM-based network [5], [28]. As expected, the gradient calculations and the backpropagation
procedures are more involved than the standard NN cases. Fortunately, these expressions present some
structure that can benefit the implementation.

Define the output error as J (k) = 1
2

(
y(k) − ŷ(k)

)2 to derive the variations in the quantities associ-
ated with the output of the network. For this case, the error in the network at k is

δ(k) = y(k) − ŷ(k). (13.156)

The partial variation in the output signal with respect to the output coefficients is given by

∂J (k)

Why

=
K∑

k=1

(h(k) � δ(k)) , (13.157)
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and the partial derivative of the cost function with respect to the hidden LSTM state is

∂J (k)

∂h(k)
= Whyδ(k), (13.158)

where we will assume Why is an identity matrix from now on to simplify the derivations.
The internal variations in the LSTM building block are quantified as discussed below. The gradient

of the cost function with respect to their output gate is

∂J (k)

∂o(k)
=
[
∂J (k)

∂h(k)

]T
∂h(k)

∂o(k)
=
[
∂h(k)

∂o(k)

]T
∂J (k)

∂h(k)

= tanh (c(k)) � δ(k) (13.159)

by utilizing Eqs. (13.48) and (13.158). Using the same equations, the gradient with respect to the
internal cell coefficients is

∂J (k)

∂c(k)
=
[
∂J (k)

∂h(k)

]T
∂h(k)

∂c(k)
=
[
∂h(k)

∂c(k)

]T
∂J (k)

∂h(k)

=
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.160)

where 1 represents a column vector with entries equal to one. By taking into consideration Eq. (13.160),
the gradient with respect to the forget gate is

∂J (k)

∂f(k)
= c(k − 1) � ∂J (k)

∂c(k)

= c(k − 1) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.161)

which derives from Eqs. (13.40) and (13.48). Also from Eqs. (13.47) and (13.161), it is possible to
show that

∂J (k)

∂c(k − 1)
=
[

∂J (k)

∂c(k)

]T
∂c(k)

∂c(k − 1)

= f(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.162)

whereas from Eqs. (13.45), (13.48), and (13.160), it follows that

∂J (k)

∂g(k)
= i(k) � ∂J (k)

∂c(k)

= i(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.163)

∂J (k)

∂i(k)
= g(k) � ∂J (k)

∂c(k)

= g(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k). (13.164)
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By employing the internal variations, we can determine the coefficient matrix updates as

∂J (k)

∂Who

= ∂o(k)

∂Who

∂J (k)

∂o(k)

= o(k) � (1 − o(k)) � h(k − 1) � ∂J (k)

∂o(k)

= o(k) � (1 − o(k)) � h(k − 1) � tanh (c(k)) � δ(k), (13.165)

∂J (k)

∂Whi

= ∂i(k)

∂Whi

∂J (k)

∂i(k)

= i(k) � (1 − i(k)) � h(k − 1) � ∂J (k)

∂i(k)

= i(k) � (1 − i(k)) � h(k − 1) � g(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.166)

∂J (k)

∂Whf

= ∂f(k)

∂Whf

∂J (k)

∂f(k)

= f(k) � (1 − f(k)) � h(k − 1) � ∂J (k)

∂f(k)

= f(k) � (1 − f(k)) � h(k − 1) � c(k − 1) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.167)

∂J (k)

∂Whg

= ∂g(k)

∂Whg

∂J (k)

∂g(k)

= g(k) �
(

1 − g2(k)
)

� h(k − 1) � ∂J (k)

∂g(k)

= g(k) �
(

1 − g2(k)
)

� h(k − 1) � i(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.168)

∂J (k)

∂Wxo

= ∂o(k)

∂Who

∂J (k)

∂o(k)

= o(k) � (1 − o(k)) � x(k) � ∂J (k)

∂o(k)

= o(k) � (1 − o(k)) � x(k) � tanh (c(k)) � δ(k), (13.169)

∂J (k)

∂Wxi

= ∂i(k)

∂Whi

∂J (k)

∂i(k)

= i(k) � (1 − i(k)) � x(k) � ∂J (k)

∂i(k)

= i(k) � (1 − i(k)) � x(k) � g(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.170)

∂J (k)

∂Wxf

= ∂f(k)

∂Wxf

∂J (k)

∂f(k)

= f(k) � (1 − f(k)) � x(k) � ∂J (k)

∂f(k)

= f(k) � (1 − f(k)) � x(k) � c(k − 1) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.171)
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∂J (k)

∂Wxg

= ∂g(k)

∂Wxg

∂J (k)

∂g(k)

= g(k) �
(

1 − g2(k)
)

� x(k) � ∂J (k)

∂g(k)

= g(k) �
(

1 − g2(k)
)

� x(k) � i(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.172)

using Eqs. (13.159), (13.164), (13.161), (13.163), and (13.164), respectively. Therefore, the overall
contributions to the coefficient matrix gradients related to the state vector h(k − 1) are given by

∂J̄ (k)

∂Who

=
K∑

k=1

∂J (k)

∂Who

, (13.173)

∂J̄ (k)

∂Whi

=
K∑

k=1

∂J (k)

∂Whi

, (13.174)

∂J̄ (k)

∂Whf

=
K∑

k=1

∂J (k)

∂Whf

, (13.175)

∂J̄ (k)

∂Whg

=
K∑

k=1

∂J (k)

∂Whg

, (13.176)

∂J̄ (k)

∂Wxo

=
K∑

k=1

∂J (k)

∂Wxo

, (13.177)

∂J̄ (k)

∂Wxi

=
K∑

k=1

∂J (k)

∂Wxi

, (13.178)

∂J̄ (k)

∂Wxf

=
K∑

k=1

∂J (k)

∂Wxf

, (13.179)

∂J̄ (k)

∂Wxg

=
K∑

k=1

∂J (k)

∂Wxg

. (13.180)

The state update, required by the backpropagation procedure, has the following form:

∂J (k)

∂h(k − 1)
= ∂o(k)

∂h(k − 1)

∂J (k)

∂o(k)
+ ∂i(k)

∂h(k − 1)

∂J (k)

∂i(k)

+ ∂f(k)

∂h(k − 1)

∂J (k)

∂f(k)
+ ∂g(k)

∂h(k − 1)

∂J (k)

∂g(k)

= o(k) � (1 − o(k)) � Who

∂J (k)

∂o(k)
+ i(k) � (1 − i(k)) � Whi

∂J (k)

∂i(k)

+ f(k) � (1 − f(k)) � Whf

∂J (k)

∂f(k)
+ g(k) �

(
1 − g2(k)

)
� Whg

∂J (k)

∂g(k)
. (13.181)
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The partial derivatives of the cost function with respect to the bias coefficients follow the same type
of derivations, resulting in

∂J (k)

∂bf (k)
=
[
∂J (k)

∂f(k)

]T
∂f(k)

∂bf (k)

= f(k) � [1 − f(k)] � c(k − 1) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.182)

∂J (k)

∂bi (k)
=
[
∂J (k)

∂i(k)

]T
∂i(k)

bi (k)

= i(k) � [1 − i(k)] � g(k) �
[
1 − tanh2 (c(k))

]
� o(k) � δ(k), (13.183)

∂J (k)

∂bo(k)
=
[
∂J (k)

∂o(k)

]T
∂i(k)

∂bo(k)

= o(k) � [1 − o(k)] � tanh (c(k)) � δ(k), (13.184)

∂J (k)

∂bg(k)
=
[
∂J (k)

∂g(k)

]T
∂i(k)

∂bg(k)

= i(k) �
[
1 − tanh2 (c(k))

]
� o(k) �

[
1 − g2(k)

]
� δ(k). (13.185)

The reader should bear in mind that in all the expressions presented so far, due to the Kronecker prod-
ucts, the vector orderings are irrelevant.
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14.1 The case for GSP
Over the last decades, an enormous amount of data associated with network structures has been
constantly generated, stored, and processed in the most diverse systems related to engineering and tech-
nology. This includes, for instance, measurements of some climatological variable acquired by sensors
arbitrarily placed at a geographic region, attributes of points of a 3D cloud representing some virtual
object, and opinion scores of people grouped according to their interests and proximity relationships in
a social network. The structures on which the data or signals lie in those applications can be modeled
as graphs whose vertices are connected by edges inferred from a variety of influence or dependency
criteria. To be more specific, in a sensor network, for instance, the vertices would represent the sensors
(respecting their geographic positions), and the signal samples would assume the values of the corre-
sponding measurements; each sensor pair could be connected by an edge weighted according to the
geographical distance between them.

The aforementioned sensor network graph-based model contrasts with what is usually adopted to
process discrete-time signals, in which the samples are equidistantly placed throughout an axis (the
signals’ domain) and have left- and right-side immediate neighbors only; something similar happens in
the case of digital images, where the pixels are arranged, also equidistantly, over a rectangular grid on a
plane. Although not always apparent, the uniform structure of the signals’ domain plays a key role in the
development of classical signal processing tools. Thus, how can we analyze and process signals lying
over arbitrary networks, taking into account the structure of such networks? The search for an answer
to this question has driven the emergence of the so-called graph signal processing (GSP). In short,
GSP aims to extend concepts and operations of classical digital signal processing (DSP) to scenarios
in which the signals lie over irregular domains. In the present context, the referred irregularity means
that the signal samples can lie over the vertices of an arbitrary graph.

Extending DSP concepts to the GSP framework usually involves complicated tasks and requires the
creation of new strategies and paradigms. This is mainly due to the fact that several obvious notions
in their original DSP context are missing or at least they become unclear in GSP. The idea of origin
(i.e., the reference point of the domain, usually denoted by 0) of time or space, for example, is not
extensible to graph domains, but it is also not always relevant, since the entire structure of the graph is
commonly considered when establishing the corresponding analysis and processing tools. This means
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that for many GSP tools, if the graph vertices are identified by numbered labels, it does not matter
whether we employ a particular labeling or any of its permuted versions. On the other hand, deleting
an edge from a graph may have a relevant impact on the spectral content of the corresponding signal.
The reason is that the idea of high- or low-frequency components remains respectively related to more
or less abrupt value changes from a sample to an adjacent one, that is, between samples on vertices
connected by an edge.

Another issue that constitutes in itself a GSP subarea is graph inference. Of course there are prac-
tical scenarios in which the corresponding graph model is directly provided due to the nature of the
application. For example, a citation graph can be easily constructed using a set of papers as vertices
and the respective numbers of citations as signal samples. Directional unweighted edges connect each
paper to the papers cited by it. On the other hand, there are contexts in which the construction of an
adequate corresponding graph-based model, albeit greatly simplified, may involve complex problems
and choices with subjective character. A graph with vertices representing brain regions connected as a
function of their interdependence, on which a signal of brain activity level is defined, for instance, is a
good illustration of the abovementioned possibility. In any case, it is clear that the results achieved by
employing GSP tools highly depend on the underlying graph we construct during the system modeling.

In order to make a didactic presentation, we chose to build an example graph to be used to illustrate
most of the GSP concepts discussed in the next sections. Such a graph is the collaboration graph shown
in Fig. 14.1. It represents a network of 89 authors (vertices) of scientific papers, where an edge connects
a pair of vertices if they are related to researchers coauthoring at least one paper. The graph signal (GS)
represents the h-index1 of each author. In the figure, the color of each vertex is defined according
to the value of the corresponding GS sample and employing the sidebar colormap. This graph was
constructed using as seed vertices the authors of this chapter and the organizer of this book. Some of
the main coauthors of these researchers were also included, as well as their main coauthors, and so on.
The size and the connectivity of the graph were limited by means of an arbitrary exclusion of some
vertices and edges. All information used to construct the graph was freely obtained from the Digital
Bibliography & Library Project (DBLP), Scopus, and Google Scholar websites.

Considering the aspect of Fig. 14.1, it is natural to assume that the edges simply indicate a mutual
coauthorship relation. In this sense, the edges can be viewed as undirected and unweighted, that is,
having unitary weight.2 Otherwise, it is possible to consider a directed and weighted version of the
same graph. In this case, the connection between two researchers is made by two edges, one in each
direction. Taking into account the meaning of a coauthorship relation, it seems reasonable that the
weight of the edge going from Martins to Lima, for example, should encode the (scientific) influence
exerted by Martins on Lima, and vice versa. Accordingly, we propose to weigh the edge going from
Martins to Lima (resp. from Lima to Martins) using the ratio of the number of works coauthored by
them to the total number of works authored by Lima (resp. Martins). Throughout our text, we clearly
indicate which version – either undirected or directed – of this graph is being considered. This choice
basically depends on the concept or operation we want to highlight.

1 The h-index is an attempt to quantify both the author’s productivity and impact in terms of publications. It is defined as the
maximum integer number h such that the author has published at least h papers that have each been cited at least h times.
2 More precise definitions related to fundamentals of graph theory are given in the next section.
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FIGURE 14.1

Collaboration graph connecting a set of 89 authors of scientific papers. An edge connects a pair of vertices
if they represent researchers coauthoring at least one paper. The graph signal corresponds to the h-index of
each author.

14.2 Fundamentals of graph theory
A graph is commonly defined as the ordered pair (V,E), in which the set V contains the so-called
graph vertices and the set of edges E is a subset of V2 [1]. We will usually indicate by |V| = N and
|E | = E the number of vertices and the number of edges of a graph, respectively, with | · | denoting the
cardinality, or number of elements, of the (finite) set. For our purposes it is convenient to represent a
graph as the structure G = {V,A}, endowed with the (weighted) adjacency matrix A which captures the
vertex-to-vertex relations: if Ai,j �= 0, then there is an edge of weight Ai,j from vertex vj to vi . By d−

i

we denote the indegree of vertex vi , consisting of the sum of weights of all incoming edges to vertex
vi . Likewise, the outdegree d+

i is the sum of weights of edges departing from vi .
A graph is called undirected if and only if its adjacency matrix is symmetric, in which case the

degree of vertex vi is defined as d−
i = d+

i = di . In this case, a graph is said to be d-regular whenever
all graph vertices have degree d . If A is asymmetric, however, the respective graph is directed and its
pictorial representation depicts the edges as arrows to account for the unidirectional relation between
adjacent vertices. Examples of directed and undirected graphs are shown in Fig. 14.2. Such graphs
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FIGURE 14.2

Examples of (a) undirected and (b) directed graphs, defined over the same vertex set.

are obtained after an arbitrary pruning of the collaboration graph shown in Fig. 14.1. In particular, in
Fig. 14.2b, we always draw two edges with opposite directions to connect each pair of adjacent vertices
to emphasize that these edges can have different weights, as explained in the previous section. Naturally,
in directed graphs, the influence may not be mutual, in which case two adjacent vertices are connected
by an edge with only one direction.

The adjacency matrix is a possible building block for one of the main frameworks of GSP, which
will be covered soon, but another matrix of great importance, mainly in the branch of GSP originated
from spectral graph theory, is the Laplacian matrix

L� D − A, (14.1)

with the degree matrix D being a diagonal matrix with degree di as its ith entry. Depending on the
context, D may be taken as the indegree or outdegree matrix, although when the Laplacian matrix is
used the graphs considered are more often undirected.

A path is a set of distinct edges (with the same orientation, if the graph is directed) linking distinct
vertices. A cycle is a path with equal starting and end points/vertices, and if a graph has a cycle it is
called cyclic (otherwise it is called acyclic). If the cycle has only one edge, it is called a loop. One refers
to multiple edges whenever a single pair of vertices is connected by two or more edges. An undirected
graph is called simple if it has no loops or multiple edges.

A graph is said to be complete if any two of its vertices are adjacent. GSP over such graphs may be
extremely cumbersome, for the computational complexity of many of its techniques depends heavily
on the number of graph edges. For most applications, it is desirable to have a small number of edges
while keeping the graph connected, i.e., for any pair of vertices there exists a set of distinct edges (with
the same orientation, if directed) connecting them without making a cycle.

A graph is said to be unweighted if all its edges have unit weight. A subgraph of G is a graph
G′ = (V ′,A′) with edge set E ′, in which V ′ ⊂ V and E ′ ⊂ E . A connected component of G is a connected
subgraph G′ = (V ′,A′) in which any vertex in V ′ is linked exclusively to another vertex also in V ′.

The neighborhood of a vertex vi is the set Ni of all vertices adjacent to vi . Sometimes it is useful as
well to denote by N (i,K) the set of vertices connected to vi through a path of length K or less. This
notion is represented in Fig. 14.3. The graph shown in the figure is, again, obtained after an arbitrary
pruning of the collaboration graph shown in Fig. 14.1.
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FIGURE 14.3

(a) A graph and (b) the set of vertices N (i,2) shown in red (dark gray in print version), with vi being depicted
in white. The edges linking vi to the elements in N (i,2) are also highlighted in red (dark gray in print version).

The reader is encouraged to refer to this section whenever necessary. For a broader glossary with a
solid introduction to graph theory, the authors recommend [2,3].

14.3 Graph signals and systems
14.3.1 Graph signals
In DSP, a signal is mathematically represented by a numerical sequence. In this context, the ith number
of a sequence x is denoted by xi , i ∈ Z. A signal x defined over G = {V,A}, with |V| = N , is a discrete-
domain function mapping the graph vertex set to a scalar set, usually the complex or real numbers,

x : V → C | x(vn) = xn, (14.2)

so that x, called graph signal (GS), can be seen as a vector in C
N with entries indexed by the vertices

of G. In this context, the space of such GSs is denoted as CV . Once the vertices V = {v0, . . . , vN−1} are
clearly labeled, it is not ambiguous to represent the signal as the column vector x = [x0 x1 . . . xN−1]�,
xn ∈ C, with n ∈ {0, . . . ,N − 1}.

There are several ways to provide illustrative representations of GSs. In general, given the usual
graph drawing, the vertex labeling is omitted for the sake of simplicity, as it will be assumed that the
signal sample xn is assigned to vertex vn. The signal values can be indicated in three manners: by
writing down its numerical value next to the respective vertex, by drawing over each vertex a vertical
line whose height is related to the corresponding sample value, or by using a pseudocolor scale, the
latter of which is the scheme adopted throughout this chapter, considering xn ∈R.

In the present context, the directed ring graph is of particular importance and will be revisited a few
times throughout this chapter. It can be viewed as a link between GSP and classical DSP theory, since it
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FIGURE 14.4

Graphs with the same set of vertices, but with (a) low-pass, (b) high-pass, and (c) low-pass spectra, depending
on the signal and the corresponding set of edges.

can be used to model the finite length discrete-time domain. Its directed edges model the causality of the
time domain, whereas the feedback edge accounts for the boundary condition of periodicity imposed
by the discrete Fourier transform (DFT) analysis. Other signals that arise in practical applications have
the respective graphs easily identified. The rectangular grid, for example, models the digital image
domain [4].

The spectral characteristics of a signal depend heavily on the domain over which it is defined, but
one does not need to acknowledge this in the context of DSP, since in this case the domains are always
regular and uniform.3 From the classical theory, the common understanding states that a signal has
mostly low frequencies if adjacent samples have similar values, and high frequencies otherwise. When
dealing with signals defined over graphs, it is clear that the adjacency relations depend on the graph
topology, and therefore one may foresee that the same signal values may present different spectra when
defined over different graphs.

A preliminary and intuitive discussion regarding this issue can be carried out by considering, again,
the graph shown in Fig. 14.2a, which is also presented in Fig. 14.4a. Taking into account the colormap
employed throughout this chapter (see Fig. 14.1), we observe that in Fig. 14.2a, the signal values have
low variation when transitioning from a vertex to a corresponding adjacent vertex. This characteristic
can be associated with the predominance of low frequencies in the graph spectrum. On the other hand,
if we preserve the graph topology, but arbitrarily change the signal, so that samples with high values are
adjacent to the ones with small values, high-frequency components should appear. This would be the
case shown in Fig. 14.4b, where we can see a red (mid gray in print version) vertex directly connected
to dark blue (black in print version) vertices. Finally, we consider Fig. 14.4c, which shows a graph
having the same set of vertices of the two previous subfigures and the same signal values of Fig. 14.4b,
but a different set of edges. In this case, the edges connect only vertices that have slightly different
values, which gives a smooth characteristic to the GS and, therefore, a low-pass spectrum. We remark
that in the context of the collaboration graph we have been considering, a low-pass GS can be related

3 One could argue that in the theory of nonuniform sampling, the signal is defined over an irregular domain, since the samples
may be randomly spaced. Even in this case, however, the classical techniques still aim to recover the signal so as to represent it
in its usual – and uniform – domain.
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to a scenario in which coauthors who collaborate intensively have low disparity in their productivity (in
terms of the h-index); correspondingly, a high-pass signal suggests a scenario in which there may be a
very productive researcher, surrounded by coauthors with relatively lower productivity.

14.3.2 Inferring graphs
Some contexts in which GSP is to be applied, to perform whatever signal processing technique is nec-
essary, provide clear information on how the underlying graph is structured. This is the case with the
example we introduced at the end of Section 14.1. Specifically in this example, we can choose to con-
sider the graph as being undirected or directed and, in the latter case, we need to make decisions about
how to weigh the edges. On the other hand, the connections between the vertices, that is, the authors,
are well defined. As another example, let us reconsider a graph modeling the brain regions and their in-
terdependencies. One might suppose that each region influences or is influenced, in terms of functional
activity, by the regions physically adjacent to it. However, based on specific experiments, one actually
observes that regions without physical connectivity can be functionally interdependent. Therefore, a
graph associated with this scenario must somehow be able to capture these interrelationships.

As an additional example, let us consider a sensor network that may be covering, for instance, the
entire territory of a large country and measuring some climatological variable. If we desire to model
this scenario as a graph, in order to use GSP tools, how is one supposed to weigh the respective graph
edges, and before this, how does one decide which vertices to connect? Would representing each sensor
as a vertex of the graph and connecting it to all other sensors that were within a certain radius (in
terms of geographic distance) be the only option? Clearly it is not. Although generally the problem of
graph inference is complex, this type of geography-based graph has an adequate topology for estimation
methods.

The general idea is that if there is a clear metric to evaluate the expected similarity between samples
as a function of the available information regarding the respective vertices, then this metric may be used
as the edge weight and a threshold is set so that any weight below this value causes the respective edge
to be eliminated. In the case of vertices which have geodesic positions, the Euclidean distance may be
used as the metric because vertices that are closer together are expected to have similar signal samples,
and therefore the adjacency matrix of the underlying graph may have entries given by

Aij =

⎧⎪⎨
⎪⎩

exp

(
−dist2(vi, vj )

2θ2

)
if dist(vi, vj ) < T ,

0 otherwise,

(14.3)

as used in [5]. The choice of the parameters T and4 θ (standard deviation of the distribution) and
the choice of how to use the metric (in this case, inside a Gaussian distribution) are dictated by the
application and by the analyst’s experience.

However, if there is an isolated vertex, far from the others, the use of (14.3) may lead to a compro-
mise between keeping the graph connected and obtaining a sparse adjacency matrix, since imposing

4 T indicates a distance threshold above which we set the edge weight to zero, effectively leaving the vertices unlinked. This
means that the distance between them is assumed to be too high for any significant interdependence to exist.
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connectivity to the graph in this case implies increasing T , and therefore having many edges. To deal
with this problem and still have a good representation of the underlying graph, one alternative is to
connect a vertex to its K closest neighbors (setting K to an appropriate value, according to the context)
and weight the edges using the Gaussian distribution in (14.3).

As previously discussed, these methods require an adequate metric to evaluate the expected similar-
ity between samples in the graph vertex, but given the diverse areas in which GSs may arise, estimating
the topology of the underlying graph constitutes a challenge of its own [6–9].

14.3.3 Graph shift operators
In the study of systems for processing GSs, a path naturally analogous to that taken by the classical
DSP is to define, as a starting point, elementary operators that can be used to design more elaborate
systems for performing filtering. When the purpose is to consider linear operators in this context, it can
be seen that the role of the referred elementary operator is played by any matrix, which, multiplied by
a GS represented as a vector, produces another signal whose samples result from a linear combination
of the samples of the original signal. In this context, the first approaches that systematized the basic
GSP concepts could have chosen any well-established matrix operator from graph theory as building
blocks of the new theory; in fact, these approaches did so by focusing on operators that allowed some
meaningful physical interpretation or some parallel with the classical DSP, as described below.

The first among the prominent approaches in this scenario comes from the so-called algebraic signal
processing (ASP), in which case the adjacency matrix is used as the abovementioned elementary oper-
ator. The most natural motivation for such a choice comes to light by observing the way the adjacency
matrix

C =

⎡
⎢⎢⎢⎣

1
1

. . .

1

⎤
⎥⎥⎥⎦ (14.4)

of the directed ring graph acts on a signal over the same graph. Denoting this signal by x =
[x0 x1 . . . xN−1]�, one has

Cx =

⎡
⎢⎢⎢⎣

1
1

. . .

1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x0
x1

...

xN−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

xN−1
x0

...

xN−2

⎤
⎥⎥⎥⎦� x〈1〉. (14.5)

Clearly, the signal resulting from the operation above corresponds to the unit (circular) shift of x, which
also confirms that the directed ring graph can be viewed as a graph model for the discrete-time domain.
This suggests a generalization that consists in designating the adjacency matrix of an arbitrary graph as
a graph shift operator (GSO), when it is chosen to play the role of elementary operator in this context.
In other words, for a signal x defined over the graph G = {V,A}, the adjacency matrix A acts as a filter
which “delays” x by one unit, producing the delayed version represented hereinafter by x〈1〉 = Ax.

In the other remarkable GSP framework, the basic concepts are developed from the graph spectral
theory [5]. In this case, the matrix adopted as elementary operator to process GSs is the Laplacian
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matrix. As previously presented in this chapter, such a matrix has the expression

L = D − A, (14.6)

where D is a diagonal matrix and L is usually identified as a combinatorial or unnormalized graph
Laplacian. Working on (14.6) it is possible to see L as a difference operator acting upon a signal x,
updating each sample with the difference between the value on a vertex and its neighbors. That is,

Lx = Dx − Ax, (14.7)

implying that

[Lx]n = dnxn −
∑

m | vm∈Nn

Anmxm

=
∑
m

Anmxn −
∑

m | vm∈Nn

Anmxm

=
∑

m | vm∈Nn

Anm(xn − xm). (14.8)

In fact, it can be shown that the graph Laplacian operator is the discrete counterpart to the continuous
Laplace–Beltrami (second-order) derivative operator on a manifold [3,10]. In this sense, L can be in-
terpreted as a second-order difference operator. However, in order to be more general and to emphasize
the possibility of other choices for the graph elementary operator, we will refer to this matrix as being a
GSO as well. Note that from a terminology point of view, the key point here is the use of the term shift,
which naturally translates the idea of a basic building block in a signal processing framework.

Variations of the Laplacian that could also be used as GSO include the normalized Laplacian, given
by

Ln = D−1/2LD−1/2, (14.9)

and the random walk Laplacian, given by

Lrw = D−1L. (14.10)

Each GSO allows specific interpretations regarding its action in the vertex domain and also with respect
to the corresponding spectral domain. Naturally, the latter depends on the eigendecomposition or the
Jordan canonical form of the respective operator, which will be discussed in the next sections. From
this point forward, whenever we want to refer to a GSO without necessarily specifying it, it will be
denoted by S (instead of being denoted by A or L, for instance).

14.4 Graph Fourier transform
The topic of spectral analysis is key in signal processing, and since the introduction of the first GSP
concepts, many researchers have spent some time reflecting upon how this would fit into their theory.
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The starting point was to look at the classical Fourier transform as the signal decomposition over a basis
of eigenfunctions of linear time-invariant systems [11,12], as in the case of the basis comprised of time-
domain complex exponential functions. Thus, the graph Fourier transform (GFT) could be defined as
the decomposition over a basis of eigenvectors of linear shift-invariant (LSI) systems.

Let us take the graph G = {V,A}, |V| = N , and the corresponding GSO S. Note that at this point,
it is not necessary to specify which matrix has been chosen as GSO; in any case, S admits the Jordan
decomposition

S = V JV −1, (14.11)

where V contains the N Jordan (generalized) eigenvectors of S in its columns,

V � [v0 v1 . . . vN−1] , (14.12)

and J is a block-diagonal matrix formed of the so-called Jordan blocks. In particular, if S is diagonal-
izable, (14.11) coincides with its eigendecomposition, so that J reduces to a diagonal matrix whose
entries are the eigenvalues of S.

When we mentioned that the role to be played by the GSO would be that of an elementary operator
for GSs, this was associated with the idea that more elaborate graph systems could be designed from
S. In this sense, let us also assume that the operator related to the referred systems can be written as
polynomials in S.5 Since a matrix and its powers share the same set of eigenvectors, the columns of
V form a basis of vectors invariant to LSI systems. Besides, given that the subspaces generated by the
linearly independent eigenvectors of an eigenvalue of S are irreducible and have null intersection and
the dimensions of all subspaces add to N [13], V provides a basis which is invariant to LSI systems for
the space of signals defined over G.

Therefore, a signal x may be decomposed into its components with respect to V as

x = x̂0v0 + · · · + x̂N−1vN−1

= V [̂x0 x̂1 . . . x̂N−1]�
= V x̂, (14.13)

and this is the synthesis equation of the GFT. Hence, the analysis equation is

x̂ = V −1x. (14.14)

Again, the notion of what a Fourier transform should be, derived from the analogy described at the
beginning of this section and expressed in the analysis and synthesis equations above, is independent of
the matrix chosen as GSO. In this context, it is clear that the eigenvectors vi of S can be interpreted as
“frequency components” associated with the “graph frequencies” given by the respective eigenvalues
λi , as the Fourier component e−j�t , in the continuous-time domain t , is associated with the frequency
�.

5 In fact, LSI graph systems, or simply LSI filters, are polynomials in S. This will be covered in detail in Section 14.5.
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If the graph G is undirected, the Fourier basis is orthonormal, and then Parseval’s identity holds for
adjacency- and Laplacian-based GFT, for instance. That is,

xHy = x̂Hŷ, (14.15)

for GSs x and y on G. Since V is unitary, xHy = 〈V x̂,V ŷ〉 = 〈V HV x̂, ŷ〉 = x̂Hŷ. The interpretation
of Parseval’s identity is that the energy of the GS is conserved when passing from the vertex to the
frequency domain.

There are other important aspects to be considered which suggest specific interpretations depending
on S. Such aspects are mainly related to the way we order the eigenvalues of S and, consequently, the
respective spectral components. Clarifying this aspect is necessary to allow the distinction between low
and high graph frequencies, for instance. The next subsections are devoted to dealing with this question,
which is discussed by considering the adjacency matrix and the Laplacian as GSOs.

14.4.1 Adjacency-based graph Fourier transform
It has been emphasized that the directed ring graph can be viewed as a link between GSP and DSP,
because it models the discrete-time domain (more specifically, the domain of periodic extensions of
discrete-time signals). If we choose the adjacency matrix A as GSO, this provides a way of checking
how consistent with the classical theory the GSP tools are. When investigating how the GFT would
act upon discrete-time signals, one should first diagonalize the adjacency matrix C of the directed ring
graph, given by (14.4). Since it is circulant, it is known to be diagonalized by the DFT matrix F , with
entries

Fn,k = e−j 2π
N

nk

√
N

, (14.16)

which contains in its rows the DFT eigenvectors. The calculation of the characteristic polynomial of C,

pC(λ) = det(λI − C) =

∣∣∣∣∣∣∣∣∣

λ −1
−1 λ

. . .
. . .

−1 λ

∣∣∣∣∣∣∣∣∣
= λN − 1, (14.17)

shows that its eigenvalues are the N complex roots of unity. Setting these eigenvalues as the entries of
a diagonal matrix �C , the eigendecomposition of C may be written as

C = F−1�CF , (14.18)

and one can see that, in the case of directed ring graphs, the GFT and the DFT matrices coincide, since
V −1 = F . This equivalence indicates a consistency with the classical theory.

From this point forward, let us turn specifically to the question of ordering the graph frequencies.
For this purpose, the following fact deserves to be highlighted: whenever one has at least one eigenvalue
of A with geometric multiplicity greater than one, the same frequency may be associated with two or
more linearly independent frequency components, as indeed was the case in the example of Fig. 14.5.
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FIGURE 14.5

(a) Signal defined over an undirected ring graph and (b) its spectrum in the GSPA sense, in which the graph
frequencies correspond to the eigenvalues of the adjacency matrix.

Furthermore, this figure shows that although the signal seems to be smooth, its frequency components
are mostly associated with eigenvalues of high magnitude,6 which is counterintuitive and provides a
motivation to define a clear criterion to distinguish high and low graph frequencies.

The following mathematical reasoning consists of taking a metric which quantifies the expected
signal smoothness and using it to propose or confirm a notion of graph frequency. The metric used by
Sandryhaila and Moura was the total variation (TV), taken from classical real analysis and defined for
differentiable functions as [14,15]

‖f ‖V =
∞∫

−∞
|f ′(t)|dt, (14.19)

where f ′ denotes the first derivative of f .
For discrete domain functions fN [n], the Riemann integral is replaced by first-order differences,

‖fN‖V =
∑
p

|fN [np + 1] − fN [np]|, (14.20)

which clearly quantifies the dissimilarity between contiguous values of the function fN . With this in
mind, it was natural for Sandryhaila and Moura to use this metric in their mathematical formulation of
frequency in GSP, wherein they represented the TV of a finite length discrete-time signal x as

TV(x) =
∑
n

|xn − xn−1 mod N |. (14.21)

6 The spectral magnitude associated with the eigenvalue with the highest magnitude is null because the GS in the example has
null DC value; this will become clearer later.



14.4 Graph Fourier transform 973

From (14.5), one can see that (14.21) may be written in terms of the �1-norm7 as TV(x) = ‖x −
Cx‖1, by using the directed ring graph adjacency matrix to perform the cyclic shift. From that point,
the generalization consisted of using this expression and defining the TV on graphs of a signal x defined
over the graph G = {V,A} as

TVG(x) � ‖x − Anormx‖1, (14.22)

with Anorm = |λmax|−1A and with λmax being the eigenvalue of A having the largest absolute value.
The normalization of the adjacency matrix avoids the excessive magnification of the shifted signal [16].

Let the (possibly complex) eigenvalues of A be ordered according to

|λ0| ≤ |λ1| ≤ · · · ≤ |λN−1| � |λmax|. (14.23)

The eigenvalues above are respectively associated with the eigenvectors (vi )
N−1
i=0 , scaled so that ‖vi‖1 =

1 ∀i. Taking the TV (on graphs) of the eigenvector vk , one has

TVG(vk) = ‖vk − Avk‖1

=
∥∥∥∥vk − 1

|λmax|λkvk

∥∥∥∥
1

=
∣∣∣∣1 − λk

|λmax|
∣∣∣∣‖vk‖1

= |λk − |λmax|| ‖vk‖1

|λmax|
so that, since ‖vk‖1 = 1, one has∣∣∣λi −|λmax|

∣∣∣≤∣∣∣λj −|λmax|
∣∣∣⇐⇒TVG(vi ) ≤ TVG(vj ), (14.24)

i.e., frequency components associated with eigenvalues closer to the real point |λmax| in the complex
plane are smoother (because they have lower TV), and therefore are said to be of low frequency.
Fig. 14.6 illustrates this ordering for graph frequencies. Additionally, the fact that in the spectrum
of the signal in Fig. 14.5a the frequency components are mostly associated with eigenvalues of high
magnitude is clarified (note that since the graph is undirected, its adjacency matrix is symmetric and
the eigenvalues are real-valued).

Let us take the undirected version of the graph in Fig. 14.1 to verify the consistency of the notion
of frequency just derived. For this, along with the TV on graphs, also the number of zero crossings
(i.e., the number of edges connecting vertices with signal samples of different sign) will be used to
quantify frequency [5]. This quantity is also related to frequency in classical theory: the more a discrete
signal has contiguous samples with different sign, the higher are its frequency components. These
two functions, the TV on graphs and the number of zero crossings, were calculated for each of the
adjacency matrix eigenvectors, and the result is shown in Fig. 14.7, in which the eigenvectors vk are

7 The �1-norm and the �2-norm are particular cases of the �p-norm of a vector x ∈ C
N , defined as ‖x‖p �

(
N−1∑
n=0

|xn|p
)1/p

.
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FIGURE 14.6

Frequency ordering of graph signals, from low to high frequencies, in the complex plane [16].

FIGURE 14.7

(a) Total variation and (b) number of zero crossings of the eigenvectors (vi )i=0,...,N−1 of the adjacency matrix
A of the graph in Fig. 14.1, ordered so that the respective eigenvalues appear from the closest to the furthest
from the real point |λmax| in the complex plane. That is, according to (14.24) and Fig. 14.6, the eigenvectors
are arranged in ascending order of frequency.

ordered in such a way that the respective eigenvalues λk appear from the closest to the furthest from
the real point |λmax| in the complex plane. Along almost the entire axis representing the indices of
the ordered eigenvectors, the behavior of both metrics is similar. More specifically, both the TV and
the number of zero crossings have increasing values up to the eigenvector of index close to 20. Then,
up to the eigenvector of index close to 70, the values of both metrics show little or no fluctuation.
When we consider the eigenvectors associated with higher frequencies, we observe a downward trend
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in the number of zero crossings, while the TV shows the opposite behavior. Since the number of zero
crossings is indifferent to GS variations which do not change sign, it was already expected to be less
accurate as a figure of merit for frequency. Likely, the aforementioned downward trend stems from this
inaccuracy. Despite this disparity, it is worth highlighting how the adopted eigenvector ordering indeed
implies an ascending frequency order, since both functions in Figs. 14.7a and 14.7b, in general, agree
on the tendency of growth. More than that, TVG(vk) grows monotonically, as it should do according to
(14.24).

14.4.2 Laplacian-based graph Fourier transform
When the Laplacian matrix is chosen as GSO, the definition of the respective GFT brings another inter-
esting interpretation. First, we recover the fact that the continuous-time Fourier transform consists of a
decomposition into a basis of eigenfunctions of the continuous Laplacian operator (second derivative),
which is denoted here by �. Therefore, since L can be viewed as an approximate version of �, using
an eigenbasis of L to define the GFT as in (14.14) is somehow consistent with the classical theory.
More specifically, we have

�ej�t = ∂2

∂t2
ej�t = −�2ej�t , (14.25)

so that the eigenvalues of L, that is, the graph frequencies, would be related to −�2.
In general, the graphs for which L is taken as GSO are undirected and have edges with real-valued

weights, so that such a matrix is always real-valued, symmetric, and therefore diagonalizable. More-
over, if the referred weights are all nonnegative, for any real-valued signal x = [x0 x1 . . . xN−1]�, one
may write

x�Lx = 1

2

∑
(i,j)∈E

Aij (xi − xj )
2 ≥ 0. (14.26)

In other words, L is positive semidefinite and, equivalently, its eigenvalues are all real and nonnegative.
Additionally, it has been shown that zero is an eigenvalue with multiplicity equal to the number of
connected components of the graph (see [5] and references therein), and therefore connected graphs
have only one null eigenvalue of L. Gathering all these facts, the eigenvalues of the Laplacian matrix
are real and can be ordered as λ0 = 0 < λ1 ≤ · · · ≤ λN−1.

The ordering criterion established above allows us to return to the possible parallel between the
current GFT approach and the classical case, observing what follows. In (14.25), the frequency infor-
mation is hidden in the eigenvalues −�2 associated with each eigenfunction ej�t , and the closer to
zero is the eigenvalue, the smoother is its respective harmonic component. The same occurs with the
eigenvalues and eigenvectors of the Laplacian matrix, and a way of verifying this is using the norm
‖Lx‖2: since L is a difference operator, ‖Lx‖2 acts as a metric similar to the TV on graphs in (14.21).
If vi is the eigenvector of L associated with the eigenvalue λi ,

‖Lvi‖ = ‖λivi‖ = λi‖vi‖ (since λi ≥ 0), (14.27)

so that if ‖vi‖2 = 1 (normalized magnitude), then

λi ≤ λj ⇒ ‖Lvi‖2 ≤ ‖Lvj‖2, (14.28)
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in which case vi is smoother than vj .
Besides, looking at the unique null eigenvalue of L (for connected undirected graphs), one has

Lv0 = λ0v0 = 0, (14.29)

which consists of a system of homogeneous linear equations on the entries of vector v0. The solutions
for such a system form the so-called null space of L, and since its dimension equals the geometric mul-
tiplicity of λ0 = 0, it follows that this null space is 1D. Therefore, it suffices to find a single nontrivial
solution of (14.29) to obtain a basis for the possible eigenvectors v0. From (14.8), one may see that

[Lv0]n = 0 ⇒
∑

m | vm∈Nn

Anm(v0n − v0m) = 0, (14.30)

which shows that any constant vector is a solution for (14.29). This leads to a quite satisfactory con-
clusion: the eigenvector associated with the null eigenvalue (frequency) is constant, as it is known to
occur in the classical signal processing theory. If the eigenvectors are normalized, then each entry of v0
equals 1/

√
N .

Fig. 14.8 visually confirms the notion of frequency based on the eigenvalues of the Laplacian ma-
trix, using the example we described at the end of Section 14.1. In general, the smoothness of the
eigenvectors decreases as the frequency (eigenvalue) rises (see Fig. 14.8e). Specifically considering
the network modeled by the graph in this example, additional inferences can be carried out. Roughly
speaking, it can be observed that the graph has three main branches: one at the left, one at the top, and
one at the bottom of the image. Obviously, when we plot the eigenvector v0 as a signal over the graph in
Fig. 14.8a, its constancy is verified by the fact that we have all the vertices painted with the same color.
The eigenvector v1 corresponds to the first nonconstant spectral component, which has a remarkably
smooth behavior. When v1 is plotted over the graph in Fig. 14.8b, such a characteristic is observed
through gradual variations in the colors of the vertices, starting from the (left, upper, and lower) ends of
each of the mentioned three branches and meeting in the central part of the graph. Finally, in Fig. 14.8c,
we plot the eigenvector v88, the one representing the highest-frequency component. The highlight of
the respective image is the presence of at least one vertex to which a high-value (red (mid gray in print
version)) sample is associated, connected to other vertices on which there are samples with relatively
low amplitudes (light (dark gray in print version) and dark blue (black in print version)). This is clearly
related to high-frequency spectral content. Fig. 14.8d is an alternative way of visualizing v88, after its
positive and negative samples are respectively replaced with 1 and −1; this allows us to get a better vi-
sual sense of the relatively large number of zero crossings such an eigenvector has. Fig. 14.8f shows the
number of zero crossings of each eigenvector, meaning the number of graph edges connecting samples
of the eigenvector with different sign.

14.5 Graph filtering
In the collaboration graph illustrated in Fig. 14.1, one can clearly see that a few nodes have a much
higher h-index value than their corresponding neighbors. These nodes tend to exert greater influence
on their coauthors in terms of research topics than the other way round. Detecting which nodes are under
such influence is a matter of combining knowledge coming from the GS itself, i.e., the vector comprised
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FIGURE 14.8

Some eigenvectors of the Laplacian matrix of the collaboration graph with 89 vertices shown in Fig. 14.1: (a)
v0, (b) v1, and (d) v88. Alternatively, in (e) a binarized version of v88 is shown, with positive samples set to
1 and negative samples set to −1. In (c) and (f) two measures of signal smoothness are depicted: the norm
‖Lvi‖2 and the number of zero crossings of the eigenvectors.
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of all h-index values, and from the graph, i.e., the set of nodes corresponding to authors/researchers,
and vertices corresponding to established coauthorship/collaboration. On the other hand, some other
nodes are connected only to neighbors with rather similar h-index values. These nodes tend to work
on topics of common affinity without any particular node having a clearly greater influence over the
others. Again, it is challenging, maybe even impossible considering a single GS, to draw conclusions
from this type of observation by inspecting only either the GS, i.e., following a classical DSP approach,
or the graph, i.e., following a conventional graph theoretic approach. Rather, the combination of the
knowledge about the graph structure with the knowledge about the signal values on top of the graph
nodes is the key to infer proper information, and perhaps even to confirm our intuition, regarding the
influence on the particular research topics of the published works.

This section details the concept of graph filtering, which refers to the processing of GSs that takes
into account the graph structure (domain of the signal).

14.5.1 Convolution and filtering
The natural approach to generate signals that make the task of extracting information relevant to the
aforementioned discussion easier is filtering. In particular, linear filtering is the simplest approach,
which in classical DSP is mathematically modeled via a (linear) convolution operation.

A linear filtering operator L{·} in classical DSP acts over a discrete-time input signal x[n] to produce
an output y[n] as follows:

y[n] = L {x[n]}
(a)=L

{∑
m∈Z

x[m]δ[n − m]
}

(b)=
∑
m∈Z

x[m]L {δ[n − m]}︸ ︷︷ ︸
�hm[n]

(c)=
∑
m∈Z

x[m] · hm[n]︸ ︷︷ ︸
�h[n−m]

=
∑
m∈Z

x[m]h[n − m]

� (x ∗ h)[n], (14.31)

which is the well-known convolution sum. In (a) we rewrote the input signal as a function of the
Kronecker delta

δ[n]�
{

1, n = 0,

0, n ∈ Z \ {0}, (14.32)

using the well-known sampling property of δ[n]. In (b) we used the linearity of the linear filtering
operator and defined the response of the filter to an m-sample shifted discrete-time impulse. In (c) we
assumed that the linear filter is also shift-invariant so that hm[n] = h0[n − m] � h[n − m].
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Similarly, considering the sampling property of the Dirac delta δ(t), the continuous-time output
signal y(t) of a shift-invariant linear filter processing an input x(t) is the convolution integral

y(t) =
∞∫

−∞
x(τ)h(t − τ)dτ

� (x ∗ h)(t). (14.33)

The filter’s output signal h is called impulse response and carries the main pieces of information of
a shift-invariant linear system.

One of the main properties of the convolution operation in signal processing is that it can be im-
plemented either in the original domain (e.g., time) or in the transformed domain (e.g., frequency) via
pointwise multiplications. Indeed, the convolution theorem establishes the equivalence, under certain
assumptions as always, between the convolution of two signals in the original domain and the elemen-
twise multiplication of their transformed-domain representations.

In classical DSP, the (circular8) convolution theorem may be exemplified as follows:

(x � h)[n] = IDFT {DFT {x[n]} � DFT {h[n]}} , (14.34)

wherein DFT {·} denotes the DFT of its argument (with a conveniently chosen length), IDFT {·} denotes
the inverse DFT, and � denotes the Hadamard product (i.e., elementwise product) between the related
sequences. In this case, DFT {h[n]} is called the frequency response of the filter.

Convolution between graph signals
Inspired by the above DSP example, we shall use the frequency domain as the starting point for the
definition of the convolution operation. More specifically, we can define the convolution between two
GSs x and h as

x ∗ h� V (̂x � ĥ), (14.35)

where x̂ = V −1x, ĥ = V −1h, and V is the linear transformation associated with the IGFT. It is worth
noting that, by definition, x ∗ h = h ∗ x since the Hadamard product is commutative.

Note that if we want to keep using the convolution operation as the basic processing action associ-
ated with linear filtering, we shall consider that h in (14.35) plays the role of impulse response, whereas
ĥ plays the role of frequency response. In this context, let us define Ĥ � diag{̂h}. We can then write
x̂ � ĥ = Ĥ · x̂, so that

x ∗ h = V ĤV −1︸ ︷︷ ︸
�H

·x

= Hx, (14.36)

in which H is the vertex-domain matrix associated with the linear filtering.

8 The classical DSP approach assumes finite length sequences which can be extended periodically. Under suitable conditions on
the signals’ lengths, the circular convolution is equivalent to the linear convolution associated with linear filtering.
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Impulse graph signal
In order to justify the aforementioned nomenclature of impulse and frequency responses, let us again
trace a parallel with DSP. In classical DSP, an impulse is defined as in (14.32). For this type of signal, the
ideas of origin (n = 0) and regularity of the domain play an important role, bringing some difficulties
for the corresponding GSP generalization.9 Alternatively, an impulse can be thought of as the signal that
has a perfectly flat frequency-domain representation, expressing the fact that all frequency components
contribute equally to the signal’s composition. In this text, we shall adopt this property as the basic one
to be generalized for the impulse GS, which is defined as

δ0 � V 1N, (14.37)

with 1N denoting a column vector with all its N entries equal to 1. Note that δ̂0 = 1N . Further, observe
that the vertex-domain representation of the impulse δ0 depends on the particular graph structure or,
more specifically, on the particular IGFT matrix V .

Considering the above definition for the impulse, the underlying impulse response GS h0 of a linear
filter parameterized by matrix H is

h0 �Hδ0, (14.38)

whose graph-frequency representation is

ĥ0 � V −1h0

= ĤV −1δ0

= Ĥ1N. (14.39)

In other words, considering the definition of GS convolution in (14.35), we note that h = h0 is indeed
the impulse response and ĥ = ĥ0 is the frequency response.

As a final remark on the impulse GS definition, note that it preserves the following nice property: the
impulse signal plays the role of an identity element in the space of GSs for the convolution operation.
Indeed, we have

x ∗ δ0 = V (̂x � δ̂0)

= V (̂x � 1N)

= V x̂

= x. (14.40)

9 One could define an impulse GS centered at the nth vertex as a vector whose entries are all null but the nth entry, which would
be equal to 1. Whereas such a definition preserves some natural properties of the impulse in the vertex domain, it makes things
more difficult when considering the convolution operation in (14.35).
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Graph filters
When the graph frequencies (i.e., the eigenvalues of the GSO S), λ0, . . . , λN−1, are such that we can
find a solution h̃ to the linear system

⎡
⎢⎢⎢⎢⎣

1 λ0 · · · λL
0

1 λ1 · · · λL
1

...
... · · · ...

1 λN−1 · · · λL
N−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�U

⎡
⎢⎢⎢⎢⎢⎣

h̃0

h̃1

...

h̃L−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=h̃

=

⎡
⎢⎢⎢⎢⎣

ĥ0

ĥ1

...

ĥN−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=ĥ

, (14.41)

then we can replace ĥn with
∑L

�=0 h̃�λ
�
n and, therefore, obtain

Ĥ =
L∑

�=0

h̃��
�, (14.42)

thus yielding the graph filter

H =
L∑

�=0

h̃� V ��V −1︸ ︷︷ ︸
=S�

=
L∑

�=0

h̃�S
�. (14.43)

By definition, linearity always holds for such graph filters, since the distributivity of matrix multi-
plication with respect to vector addition guarantees that

H (α1x1 + α2x2) = α1Hx1 + α2Hx2. (14.44)

In addition to linearity, another useful desirable property is shift-invariance, which refers to the
possibility to commute filtering (i.e., multiplication by H ) and shifting (i.e., multiplication by S) op-
erations. In other words, in order for a graph filter H to be LSI it is required that SHx = HSx ∀x,
and therefore SH = HS. Once again, given the expression in (14.43), the corresponding graph filter
is LSI, for H is a polynomial in S, exactly as happens in DSP, in which LSI filters have polynomial
representations in z−1.

Let us take the filter in (14.43) and its output to the input x given by

Hx =
L∑

�=0

h̃�S
�x

= V

(
L∑

�=0

h̃��
�

)
︸ ︷︷ ︸

�h̃(�)

V −1x. (14.45)
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Taking the GFT of both sides of the last equation yields

V −1Hx = h̃(�)̂x, (14.46)

which confirms that left-multiplication by H (action of the filter in the vertex domain) is equivalent to
the left-multiplication in the frequency domain by the matrix h̃(�). In other words, h̃(�) represents the
frequency response of H .

As S is an N × N matrix, we shall assume that L ≤ N − 1 without loss of generality – indeed, if
L > N − 1, then we could rewrite H as a polynomial in S of degree at most N − 1 due to, for instance,
the Cayley–Hamilton theorem. On the other hand, guaranteeing the existence of a solution h̃ in general
requires L ≥ N − 1. Thus, let us assume L = N − 1 and λn �= λm for all n �= m, so that the (square)
Vandermonde matrix U is nonsingular. In this case, we have

h̃ = U−1ĥ (14.47a)

= (V U)−1h. (14.47b)

Eq. (14.47a) shows that the filter taps can be obtained from the filter’s frequency response using the
inverse of the Vandermonde matrix containing the underlying graph frequencies. Eq. (14.47b) shows
the relation between the filter’s taps and impulse response, since they are not identical in general. This
contrasts with what happens in classical DSP, wherein a finite duration impulse response (FIR) filter
is characterized by its taps, which also comprise the impulse response. This happens because both
the basis functions and the frequencies themselves can be written as complex exponential functions in
classical DSP, so that V U = IN ; in GSP, one may have V U �= IN in general.

14.5.2 Graph filter design
The most common way to design a graph filter is to start with the definition of a desired frequency-
domain response to be approximated. For instance, consider the function f : [λmin, λmax] →C and let
ĥn = f (λn). When filtering is performed in the graph-frequency domain, then one could directly use
ĥ0, ĥ1, . . . , ĥN−1 for this operation; in this case, if we consider that the notation f (�) represents a
diagonal matrix with entries f (λn), then the corresponding graph filter is V f (�)V −1.

Although filters can be designed regardless of the graph spectrum, developing graph filters with-
out taking into account the actual graph spectrum may lead to undesirable results due to the irregular
(i.e., nonuniform) distribution of eigenvalues. For example, consider a graph with N = 4 nodes and
Laplacian-based eigenvalues λ0 = 0, λ1 = 2.0, λ2 = 2.5, λ3 = 3.0 and define the following scalar in-
dicator function:

χ[λ<λc](λ) =
{

1, λ < λc,

0, otherwise.
(14.48)

The half-band low-pass filter χ[λ<1.5](λ) will remove all non-DC components of a GS, which might
not be intended originally. Indeed, the only eigenvalue in the set {λ0, λ1, λ2, λ3} that is smaller than 1.5
is λ0 = 0 (DC), eventually implying that all the other components (corresponding to the frequencies
λ1 = 2.0, λ2 = 2.5, λ3 = 3.0) will be zeroed by this low-pass filtering process. The interesting part of
this example is that χ[λ<1.5](λ) represents an ideal low-pass filter with cutoff frequency exactly in the
middle of the underlying Laplacian spectrum, since λ0+λ3

2 = 1.5.
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Note that if the degree L in (14.43) is not sufficiently large, say L < N − 1, then we cannot
guarantee the existence of a solution to the linear system of equations in (14.41). This means that
we would only be able to approximate the ideal graph filter V f (�)V −1 using the LSI graph filter
H =∑L

�=0 h̃�S
�. Yet, this approximation might be interesting due to some good additional properties

that polynomial (in S) filters enjoy, viz.:

• H can be computed without accessing the entire eigendecomposition of the GSO S.
• Depending on the sparsity level of the GSO and also on the polynomial degree L, polynomial filters

are localized in the vertex domain, which might be handy for big data-related graphs as well as for
distributed processing.

Least-squares approximation
The approximation of an ideal graph filter can be implemented, for instance, via least-squares ap-
proximation. Indeed, starting from the ideal function f and its specific values on the graph spectrum
ĥn = f (λn), we consider the following least-squares problem related to the linear system in (14.41):

minimize
h̃

∥∥∥ĥ − Uh̃
∥∥∥

2
, (14.49)

whose solution is

h̃ = (UHU)−1UHĥ. (14.50)

Chebyshev polynomial approximation
An alternative approach that might be useful when the GSO is the Laplacian matrix is to use Chebyshev
polynomials C� : [−1,1] →R, which satisfy the following recursion:

C�(ξ) = 2ξC�−1(ξ) − C�−2(ξ). (14.51)

Given a function f in the space of square-integrable functions in the interval [−1,1], denoted by

L2

(
[−1,1], 1√

1+ξ2

)
, with respect to the measure 1√

1+ξ2
, its Lth-order Chebyshev approximation is

given by 1
2 h̃0 +∑L

�=1 h̃�C�(ξ), where

h̃� =
1∫

−1

C�(ξ)f (ξ)√
1 + ξ2

dξ = 2

π

π∫
0

cos(�θ)f (cos(θ))dθ. (14.52)

The matrix f (L) � V f (�)V −1 can be approximated by a Chebyshev polynomial in the Laplacian
matrix. First, in order to encompass the entire Laplacian spectrum, it is necessary to map the interval
[0, λmax] into [−1,1], giving the following construction of Chebyshev polynomials in L:

C�(L) = 2LC�−1(L) − C�−2(L), (14.53)

wherein

L� 2

λmax
L − I , (14.54a)
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C0(L) � I , (14.54b)

C1(L) � L, (14.54c)

so that the resulting graph filter is

H � 1

2
h̃0 +

L∑
�=1

h̃�C�(L), (14.55)

with coefficients defined by

h̃� �
2

π

π∫
0

cos(�θ)f

(
λmax

2
(cos θ + 1)

)
dθ. (14.56)

This polynomial approximation is still valid for any real symmetric matrix with λmin not necessarily
zero, such as in the case of an adjacency matrix of an undirected graph. In this case, L� 2

λmax−λmin
(L −

λminI ) − I and

h̃� �
2

π

π∫
0

cos(�θ)f

(
λmax

2
(cos θ + 1) + λmin

)
dθ.

Jackson–Chebyshev polynomial approximation
In order to cancel the ripples associated with Chebyshev polynomials as well as to enhance the stopband
attenuation we can use the Jackson–Chebyshev polynomials [17]. Indeed, the coefficients of the Cheby-
shev polynomial can be adapted to approximate the graph filter f (L) as

∑L
�=0 ȟ�L

� with ȟ0 = 1
2 h̃0 and

ȟ� = γ�,Lh̃� for � ≥ 1, with

γ�,L =
(
1 − �

L+2

)
sin

(
π

L+2

)
cos

(
�π

L+2

)+ �
L+2 cos

(
π

L+2

)
sin

(
�π

L+2

)
sin

(
π

L+2

) . (14.57)

It is worth highlighting that the benefits of employing the Jackson–Chebyshev approximation come at
a cost of expanding the transition band.

The following example illustrates the implementation of an ideal half-band low-pass graph fil-
ter using least-squares, Chebyshev, and Jackson–Chebyshev polynomial approximations. Consider a
randomly connected sensor graph G with N = 200 nodes whose Laplacian matrix is normalized by
its largest eigenvalue. In addition, consider an ideal half-band low-pass filter f (λ) = χ[λ<λmax/2](λ).
Fig. 14.9 shows an ideal low-pass filter f (λ) approximated by polynomials of degrees L = 10 and
L = 50 (top and bottom, respectively) for least-squares, Chebyshev, and Jackson–Chebyshev poly-
nomial approximations. In comparison with the Chebyshev polynomial approximation, the Jackson–
Chebyshev polynomial approximation of degree L = 10 has a larger transition band which is narrowed
as long as the polynomial degree increases.



14.6 Down- and upsampling graph signals 985

FIGURE 14.9

Ideal low pass filter and polynomial approximations. The stars represent the Laplacian eigenvalues.

14.6 Down- and upsampling graph signals
In the collaboration graph illustrated in Fig. 14.1, we could have practical difficulties in obtaining the
h-index values of some authors. This might be the case when the authors have no profile listed on the
Digital Bibliography & Library Project (DBLP), Scopus, and Google Scholar websites. Yet, given the
nature of the h-index and considering the collaboration structure captured by the graph model, we could
infer the h-index values that would be achieved in steady state by these authors. This inference problem
can be cast as a problem of recovering a GS from one of its sampled versions. Alternatively, one can
think of the nodes with available h-index values as a graph on its own that will serve as the basic build-
ing block for a denser (virtual) graph comprised of the original nodes with available h-index values as
well as upcoming collaborating nodes with interpolated h-index values. This interpolation/forecasting
problem can be cast as a problem of upsampling GSs. This discussion clarifies the importance of devel-
oping a sampling theory for GSP that can answer questions like: For which conditions can one obtain
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perfect reconstruction of GSs from their sampled versions? Or what are the samples that favor a more
accurate/robust reconstruction of the full GS?

14.6.1 Band-limited graph signals
In classical DSP, it is quite common to have the need to work with multirate signals and filters. As
one would expect, there are many GSP applications where the underlying abstract problems can be
cast as some sort of multirate manipulation of signals or multirate design of systems. Although the
generality of the graph domain brings many advantages in terms of modeling, it also raises several
challenges, since the domain loses some interesting properties on which classical DSP tools strongly
rely. Consider, for instance, the downsampling of a discrete-time signal by a factor of 2. Such operation
can be straightforwardly implemented by dropping every odd sample of the signal. The generalization
of this operation for GSP is not straightforward, since an “odd node” is not a well-defined concept for a
general graph. Due to this difficulty, a plethora of graph sampling approaches have been developed [18]
focusing on many different applications, such as filter banks, active learning, data interpolation, etc.

In classical signal processing, the Shannon–Nyquist sampling theorem states that a sampled band-
limited signal can be perfectly recovered by a sinc10 interpolation if the sampling rate is at least twice
the bandwidth. More specifically, if f (t) is a continuous square-integrable function such that f̂ (ξ) = 0
for all |ξ | > ξb and the sampling frequency ξs ≥ 2ξb, then f (t) can be recovered by the following
interpolation formula:

f (t) =
∑
n∈Z

f

(
nπ

ξs

)
sin(ξst)

ξst
. (14.58)

The set of square-integrable11 band-limited functions

PWξs(R) �
{
f (t) ∈ L2(R) ; f̂ (ξ) = 0, |ξ | > ξs

}
(14.59)

is called a Paley–Wiener space.

Sampling and interpolation operators
In the following we shall describe several attempts to extend sampling theory to GSP. Let us first start by
defining S � {s0, ..., sM−1} ⊂ V as a subset of vertices with M ≤ N nodes; the vector of measurements
xS ∈ R

M is given by xS = �Sx, where the sampling operator

[�S ]mn �
{

1, if vn = sm,

0, otherwise
(14.60)

selects from V the nodes in S that will have the signals’ samples retained.

10 The sinc function is defined as sinc(x) = sin(x)
x for any x ∈ R \ {0} and sinc(0) = 1.

11 The set of square-integrable real functions is denoted by L2(R). That is, f (t) ∈ L2(R) ⇔ ∫
R

f 2(t)dt < ∞.
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On the other hand, the interpolation operator � is an N × M matrix such that the recovered signal
is

x̃ � ��Sx. (14.61)

If x̃ = x, the pair of sampling and interpolation operators (�,�S) can perfectly recover the signal x
from its sampled version.

As the rank of ��S is smaller than or equal to M , this perfect reconstruction is not possible for
all x ∈ R

N when M < N . This fact makes clear the necessity to constrain the class of possible GSs of
interest that can be perfectly reconstructed by their sampled versions. Once gain, we draw inspiration
from DSP and look for a subclass of signals with a certain degree of “sparsity” in its frequency-domain
representation.

Band-limitedness
The GS xb is said to be F-band-limited if [̂xb]n = 0 for all indices n such that the corresponding
frequency λn /∈F ⊂ {λ0, . . . , λN−1}, that is, the frequency content of xb is restricted to the set of fre-
quencies F . The space of F-band-limited GSs on the graph G with GFT V −1 will be denoted as
BLF (V ).

Some works also restrict the support of the frequency content and consider that a GS xb is K-
band-limited if [̂xb]k = 0 for k ≥ K , wherein it is assumed that the columns of V are ordered so that
the associated eigenvalues are properly sorted to reflect the notion of high/lower frequencies – for
instance, in the case of the GSO being the Laplacian matrix, the eigenvalues (real numbers) are sorted
in ascending order. When S = L, one can also define a ξ -band-limited GS xb when [̂xb]k = 0 for all
indices k such that λk > ξ [19]. In this case, the space of ξ -band-limited GSs, BLξ (V ), is the graph
equivalent of the PWξ (R) from classical signal processing.

Fig. 14.10 exemplifies some of the aforementioned concepts. In this example, we have three differ-
ent signals defined over the same unweighted graph with N = 10 vertices. More specifically, Fig. 14.10a
depicts a realization of a random GS that is full-band, as shown in Fig. 14.10b, in which it is clear that
the signal has nonzero components across all frequencies λ0, λ1, . . . , λ9. In this example, the adopted
GSO for computing the GFT was the Laplacian matrix. Starting from the GS in Figs. 14.10a and 14.10b,
we generated two different band-limited GSs. In Figs. 14.10c and 14.10d we have a K-band-limited GS,
with K = 5, obtained from the original GS by zeroing the frequency-domain components associated
with the frequencies λk with k ≥ K . In Figs. 14.10e and 14.10f we have an F-band-limited GS, obtained
from the original GS by zeroing the frequency-domain components associated with the frequencies λk

with k ∈ {1,3,5,7,9}. By comparing Figs. 14.10a and 14.10c, we notice that the K-band-limited GS
is a much smoother version of the original GS. On the other hand, however the F-band-limited GS in
Fig. 14.10e is smoother than the original GS, it clearly has stronger signal variations than the K-band-
limited GS. This example also makes clear that band-limitedness might not be apparent directly from a
quick look at the vertex-domain representation of a GS. Indeed, one may have an F-band-limited GS
with strong signal variations across adjacent nodes. Yet, the band-limitedness is an important property
for achieving perfect reconstruction, as we shall detail now.

Conditions for perfect reconstruction
Given the set of band-limited GSs BLF (V ), designing a pair of sampling and interpolation operators
(�,�S) boils down to finding a subset of nodes S ⊂ V whose signal values capture all the information
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FIGURE 14.10

Example of signals defined over an unweighted graph with N = 10 vertices. (a) Full-band graph signal in the
vertex domain. (b) Graph-frequency representation of the GS in (a). (c) K-band-limited graph signal in the
vertex domain, with K = 5. (d) Graph-frequency representation of the GS in (c). (e) F -band-limited graph
signal in the vertex domain, with F = {λ0, λ2, λ4, λ6, λ8}. (f) Graph-frequency representation of the GS in (e).
The adopted GSO was the Laplacian matrix.
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about any GS x ∈ BLF (V ). In this context, S is called a uniqueness set for BLF (V ) when xS = yS
implies x = y for any two GSs x,y ∈ BLF (V ).

The following admissibility condition guarantees the perfect reconstruction of an F-band-limited
GS for some sampling sets.

If the sampling operator �S satisfies

rank(�SV :,F ) = |F | = K, (14.62)

then xb = ��Sxb as long as � = V :,F�, with � satisfying ��SV :,F = IK and with V :,F being
a submatrix of V with columns restricted to the indices associated with the frequencies in F .

Note that we omitted the dependency of � on both S and F in order to simplify the notation. The
result above can be justified by noting that:

(i) the columns of � span BLF (V ), and
(ii) x = ��Sx for all x ∈ BLF (V ), meaning that ��S is a projection operator on BLF (V ); thus, if

the original GS x already belongs to BLF (V ), then ��S is an identity operator.

In order to prove (i), we start with the condition in (14.62) and recall that, by definition of �,
rank(��SV :,F ) = K , which means that matrix � spans BLF (V ). Therefore, � = V :,F� also spans
BLF (V ). To further prove (ii), i.e., that ��S is a projection operator, it is sufficient to show that it is
an idempotent matrix as follows:

(��S)2 = ��S��S = V :,F��SV :,F��S = V :,FIK��S = ��S . (14.63)

The condition in (14.62) is also equivalent to [20]

SVmax(V S,F ) ≤ 1, (14.64)

where SVmax(.) stands for the largest singular value and S = V \ S is the complement of S . This means
that no F-band-limited signal over the graph G is supported on S .

Still focused on this rank characterization of the sampling operator, note that in order to have
��SV :,F = IK , we must have |S| = M ≥ K , since rank(V :,F ) = K . If M ≥ K , � is the pseudoin-
verse of V S,F � �SV :,F and the interpolation operator is

� = V :,F
(
V H

S,FV S,F
)−1

V H
S,F . (14.65)

Note that as V is nonsingular, there is always at least one subset S such that the condition in (14.62)
is satisfied. Nonetheless, for many choices of S , V S,F can be full rank but ill-conditioned, leading
to large reconstruction errors, especially in the presence of noisy measurements or in the case of ap-
proximately band-limited GSs, which is addressed in the next section. To overcome this issue, optimal
sampling strategies, in the sense of minimizing reconstruction error, can be employed [21].



990 Chapter 14 A primer on graph signal processing

14.6.2 Approximately band-limited GSs
In practice, many GSs that we will encounter do not satisfy the aforementioned strict definitions of
band-limitedness, thus calling for an alternative definition of approximately band-limitedness. A GS is
(F , ε)-band-limited if [20]

x = xb + η, (14.66)

where xb is an F-band-limited GS and η is an F-band-limited GS such that ‖η‖2 < ε, with F �
{λ0, . . . , λN−1} \F .

When the signal x is sampled on the subset S and recovered by the interpolator in (14.65), it is
possible to show that the error energy of the reconstructed signal is upper-bounded by [20]

‖x̃ − x‖2 ≤ ‖η‖2

cos(θS,F )
, (14.67)

where θS,F is the maximum angle between the subspace of signals supported on S and the subspace
of F-band-limited GS; more specifically,

cos(θS,F ) = inf‖z‖=1

{
‖�Sz‖2 : V :,FV H

:,F z = z
}

. (14.68)

Therefore, the error bound (14.67) is minimized when the subspace of signals in BLF (V ) is as much as
possible aligned with the subspace of signals supported on S , so that θS,F is minimized. From (14.68),
it is clear that cos(θS,F ) = SVmin(V S,F ); therefore, in order to minimize the upper bound of the re-
construction error in (14.67), the set S should maximize SVmin(V S,F ). This optimal sampling strategy
will be further discussed in the next section.

14.6.3 Optimal sampling strategies
Due to the irregular topology of graphs, the sample size can influence not only the reconstruction error
when sampling and interpolating a GS by �S and �, respectively, but also the nodes in S themselves.
Therefore, whenever possible, it is favorable to select where to sample in addition to how many nodes.
It is also worth remembering that not every set S with cardinality |S| = M ≥ K is a uniqueness set for
BLF (V ). In the previous section, it was shown that the reconstruction �2-error of an approximately
band-limited GS is minimized when the chosen sampling set S maximizes SVmin(V S,F ). Therefore,
the optimal sampling set Sopt in the presence of model mismatching is

Sopt � arg max
S∈AM

SVmin(V S,F ), (14.69)

where AM is the class of all sampling sets S with |S| = M and satisfying the admissibility condition
described in Section 14.6.1.

Besides model mismatching, reconstruction errors can also arise due to measurement noise. Con-
sider a zero-mean and uncorrelated Gaussian vector η that is added to the sampled F-band-limited GS,
x, as follows:
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xS = �Sx + η. (14.70)

Then the recovered signal x̃ is

x̃ = �xS = ��Sx + �η = x + �η.

Since ‖�η‖2 = ‖V :,F�η‖2 ≤ ‖V :,F‖2‖�‖2‖η‖2 and ‖V :,F‖2 and ‖η‖2 are fixed, to minimize the up-
per bound for the error ‖�η‖2, one must minimize ‖�‖2. Since �V S,F = IK , minimizing the largest
singular value of �, its spectral norm, is equivalent to maximizing the smallest singular value of V S,F ,
leading to the optimization problem in (14.69). This problem is equivalent to the E-optimal design
problem from experimental design theory.

Finding the optimal set Sopt is a combinatorial optimization problem that may require an exhaustive
search in all possible subsets of V with size M . An alternative approach can be obtained by the following
E-optimal greedy sampling algorithm [21]12:

• Input: V :,F and M , the size of the sampling set
• Output: a subset of nodes S
• Procedure:

1. while |S| < M:
2. m ← argmax

n
f (S) = SVmin(V [S∪{n}],F )

3. S ← S ∪ {m}
4. end

• return S

As the set function f (S) = SVmin(V [S∪{n}],F ) is not submodular,13 a greedy algorithm, such as the
above E-optimal greedy sampling algorithm, does not guarantee that the resulting sampling set S is
close to a solution Sopt from (14.69). There are other sampling strategies derived from experimental
design that can also be used in this context. For instance, if the covariance matrix of the random vector
η in (14.70) is known, the interpolation operator can take this knowledge into account. The interested
reader is referred to [20] for further details regarding other sampling criteria for GS.

A common concern in the extension of classical DSP methods to GSP is having to compute the GFT,
a key building block in GSP that has to be computed globally (i.e., considering the whole graph), for
very large graphs. Therefore, the aforementioned sampling method, which requires the computation of
at least K Laplacian eigenvectors, becomes prohibitive as the size of the graph increases. To deal with
the computational cost problem, inspired by compressed sensing, different sampling strategies based on
random sampling have been proposed. The interested reader is referred to [22] for further information.

12 A greedy algorithm searches a local optimal set at each stage of the algorithm. For a general greedy algorithm, there is no
guarantee of finding a global optimal set or even near-optimal set.
13 A submodular set function has the property that the difference in the incremental value of the function that a single element
makes when added to an input set decreases as the size of the input set increases. Mathematically, f : 2V →R is submodular
when for every S1,S2 ⊂ V , with S1 ⊂ S2, and for every v ∈ V \ S2 we have f (S1 ∪ {v}) − f (S1) ≥ f (S2 ∪ {v}) − f (S2).
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14.6.4 Interpolation of band-limited GSs
Up to now we have discussed the joint design of sampling and interpolation operators. In this section,
we briefly introduce an interpolation approach that does not depend on the particular sampling method
and relies on a different definition for band-limited signals that takes into account which frequencies
are nonzero. In the forthcoming discussion, we shall consider that the GSO is the Laplacian matrix
(S = L), so that the frequencies (eigenvalues) are nonnegative real numbers.

Let us first recall that the signal x is said to be ξ -band-limited if x̂k = 0 for all k such that λk > ξ . The
space of ξ -band-limited signals on the graph G with GFT V � will be analogous to the Paley–Wiener
space and denoted by BLξ (V ).

Unlike the BLF (V ) space, BLξ (V ) takes the values of the Laplacian eigenvalues into account.
Given an ξ -band-limited GS, we aim to recover the full original GS x from few samples [23]. Note that
ξ1 < ξ2 =⇒ BLξ1(V ) ⊂ BLξ2(V ). The following definition of a �-set will be useful for the forthcom-
ing results.

Given � > 0, the subset S ⊂ V is a �-set if

‖x‖2 ≤ �‖Lx‖2 (14.71)

holds for all GSs x supported on S .
Considering the former definition of a �-set, the following result [24] provides a condition on a

subset S to be a uniqueness set for the subspace BLξ (V ).

The set S ⊂ V is a uniqueness set for BLξ (V ) when its complement S is a �-set with 0 < ξ < 1
�

.

In order to justify this result, let x,y ∈ BLξ (V ); we need to show that if xS = yS , then x = y in
order to prove that S is a uniqueness set. Note that if x ∈ BLξ (V ), then v�

k x = 0 ∀k such that λk > ξ .
Thus, we have

‖Lx‖2 = ‖V �x̂‖2

≤ ‖V ‖2︸ ︷︷ ︸
=1

· ‖�x̂‖2︸ ︷︷ ︸
=
√∑

k(λkx̂k)
2

≤
(

max
λk≤ξ

λk

)
‖x̂‖2

≤ ξ‖x‖2. (14.72)

Suppose xS = yS but y �= x. Then x − y ∈ BLξ (V ) is supported on S, and using the assumption that
S is a �-set with 0 < ξ < 1

�
, we can write

‖x − y‖ ≤ �‖L(x − y)‖ ≤ �ξ‖x − y‖ < ‖x − y‖, (14.73)

where the second inequality follows from (14.72), thus arriving at a contradiction. Hence, we must have
x = y, and the result is proved.

The following result [23] provides a cutoff frequency ξ∗ for GSs supported on S , that is, the max-
imum ξ such that any signal in BLξ (V ) can be perfectly recovered given a known subset of samples
S .
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Given a proper subset S � V of vertices of a connected graph (with only one connected component),
let

[
L2

]
S denote the submatrix of L2 = L · L containing only rows and columns corresponding to

nodes in S. Then, the set S is a uniqueness set for BLξ (V ) with 0 < ξ ≤ ξ∗ = λmin, where λ
2
min > 0

denotes the smallest eigenvalue of
[
L2

]
S .

Indeed, let z be a GS supported on S. Then

‖Lz‖2
2

‖z‖2
2

=
z�
S
([

L2
]
S
)
zS

‖zS‖2
2

� R(zS ,
[
L2

]
S
) (14.74)

is the Rayleigh quotient of
[
L2

]
S . Since λ

2
min = min

zS∈RN−M
R(zS ,

[
L2

]
S),

‖Lz‖2
2

‖z‖2
2

≥ λ
2
min ⇐⇒ 1

λmin
‖Lz‖2 ≥ ‖z‖2, (14.75)

which means that S is a 1√
λmin

-set and, therefore, it follows from a previous result that S is a uniqueness

set for BLξ (V ) with 0 < ξ ≤ ξ∗ = λmin.
On the guarantee of existence of a reconstruction formula for a sampled GS, [24, Theorem 4.1]

states that if S is a uniqueness set for BLξ (V ), then there exists a frame {vm}m∈S ⊂ BLξ (V ) such that

xn =
∑
m∈S

xmvmn, ∀x ∈ BLξ (V ).

Therefore, once a cutoff frequency ξ∗ is obtained, the reconstruction of any signal restricted to a
uniqueness set is obtained by least-squares projection. Any band-limited signal in BLξ (V ), ξ < ξ∗, can
be written as a linear combination of the Laplacian eigenvectors corresponding to eigenvalues smaller
than ξ∗. Let us denote by F∗ the index set of the Laplacian eigenvectors corresponding to eigenvalues
smaller than ξ∗. Then x = VF∗ x̂ ∀x ∈ PWξ∗(V ). Because S is a uniqueness set for BLξ (V ), it contains
all the spectral information of any GS in x ∈ BLξ (V ) and then x = V S∗ x̂F∗ . Therefore, given a subset
of nodes S , with S being the remaining nodes whose samples are unknown, let (L2)S be the submatrix
of L2 with rows and columns corresponding to nodes in S . Then S is a uniqueness set for BL

λ
∗
min

(V ),

where λ
2
min is the smallest singular value of (L2)S . SV∗

min is the largest bandwidth such that a GS can
be perfectly recovered from S . The unknown GS supported on S can be recovered by

xS = V S,F∗(V �
S,F∗V S,F∗)−1V �

S,F∗xS . (14.76)

The interpolator (14.76) is equivalent to (14.65), except for the definition of the set F .
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14.7 Examples and applications
This section is dedicated to presenting some practical applications in which GSP tools have been
successfully employed. More specifically, we describe how GSP has supported the creation of new
techniques for on-line filtering of network signals, image and video processing, 3D point cloud pro-
cessing, and spatiotemporal analysis and visualization. In our text, we opted for a more qualitative
description of the possibilities allowed by the GSP in these contexts. In this sense, we consider some
pioneering works in each of the aforementioned fields of application, connecting them to other relevant
publications.

14.7.1 On-line filtering of network signals
One of the main difficulties in translating classical DSP techniques and algorithms into the GSP frame-
work is to mold the technique in such a way that a generalization becomes apparent. This is true of
filtering – which, as we have seen in Section 14.5, is more easily handled in theory in the frequency
domain – and even more so when dealing with adaptive filters, which rely heavily on the regularity
of the signal domain. To this date, the path for designing adaptive filtering techniques for GSP is not
crystal clear. Since the field of signal processing on graphs is still incipient, we verify that many works
are still ad hoc in nature.

A common feature of the majority of works in this field is the fact that they bypass some of the
difficulties of dealing with the transformation of the time domain to the graph domain by working with
both domains simultaneously. This approach allows us to consider a linear and uniform time dimension,
while modeling the irregular dimension using graphs. In this way, GSP theory can be applied to the
snapshots of the resulting multivariable signal

x[·] : Z → C
V (14.77)

since each sample in time – when thinking in terms of classical adaptive filtering – has now become a
whole GS x[k] ∈C

V , instead of just a scalar value.
The most widely used framework in the literature for developing adaptive graph filters tackles the

problem of interpolating sampled GSs (Section 14.6). As mentioned before, graphs are particularly
useful for modeling networks. Real-world networks can be huge, and attributes of a number of nodes
may be unavailable, or deliberately undisclosed due to privacy matters [25]. Further, some practical
networks change their set of nodes over time, so that new nodes may come to exist without enough
time to sharing their node attributes with the central unit for processing. The interpolation problem,
therefore, naturally arises in these and many other practical applications, including semisupervised
learning of categorical data, ranking problems, and matrix completion problems [26]. All of these
applications rely on predicting the property of some nodes (e.g., class, ranking, or function value)
considering the knowledge of signal values at neighboring nodes, or in other words, interpolating those
values. The quality of the interpolation depends on the smoothness of the GS, which can be assessed
taking into account the similarity between nodes captured by link weights in the graph – there is an
underlying assumption that the graph model is accurate. For instance, in social networks, people tend
to rate movies similar to their friends, and in financial networks, companies that trade with each other
usually belong to the same category.
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The appeal for using adaptive filtering ideas in the GS interpolation problem arises from the
expected benefits of enabling on-line reconstruction and tracking time-varying GSs in noisy environ-
ments [27]. Although traditional interpolation methods like kriging [28] can be used for handling signal
inference in irregular domains with static reference values, adaptive algorithms seem more suitable for
dealing with dynamic GSs due to their reduced complexity and the benefits of on-line estimation.

The adaptive estimation of GSs deals with a scenario where one intends to recover a band-limited
– or approximately band-limited in practice – GS x[k] ∈ C

V , with frequency set F , from a reduced set
S[k] ⊆ V of noisy measurements drawn from d[k] = x[k] + η[k] – recall the definitions in Section 14.6.
Since only the node signals indexed by S[k] are acquired at iteration k, the reference measurements at
time instant k are in fact �S[k]d[k].

We define the (a priori) error vector e[k] ∈C
S[k] as the difference between the measured reference

GS �S[k]d[k] and the respective positions of the current estimate y[k], that is,

e[k] = �S[k]d[k] − �S[k]y[k]
= �S[k]

(
d[k] − V :,F ŷF [k]) , (14.78)

where ŷF [k] ∈C
|F | is the frequency-domain estimate of y[k] considering only the frequency support

F .
Unlike adaptive filters from classical DSP, the adaptive graph filter here is not explicitly parameter-

ized. In addition, the graph filtering algorithm employs only some ancillary information related to the
GS properties, such as the knowledge of the sampling and frequency sets S[k] and F , respectively. In
other words, the filtering process does not act upon a given input GS and the only external driving force
of the algorithm is dictated by the reference GS �S[k]d[k].

As an example, the interpolation-based graph counterpart of the well-known least-mean squares
(LMS) algorithm [29] aims to solve the problem

minimize
ŷF

E

{
‖�S[k]

(
d[k] − V :,F ŷF

)‖2
2

}
(14.79)

via a stochastic gradient approach, giving rise to the graph-frequency domain update equation

ŷF [k + 1] = ŷF [k] + μV �
:,Fe[k] , (14.80)

or, in the vertex domain,

y[k + 1] = y[k] + μV :,FV �
:,Fe[k] , (14.81)

in which μ > 0 is the convergence factor. This parameter can be chosen so as to achieve an asymptoti-
cally unbiased estimator. It can be proved that this can be attained when

0 < μ <
2

λmax

(
V �

:,F�SV :,F
) . (14.82)

In addition to the graph LMS algorithm [29] briefly described above, other works have extended the
classical adaptive filtering framework to the interpolation of GSs via normalized LMS (NLMS) [30]
and recursive least-squares (RLS) [31] algorithms. A totally different class of adaptive graph filters have
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also appeared in [32–35]. These works propose LMS-based graph diffusion strategies to obtain adaptive
graph filters that can be used in many applications analogous to the traditional system identification,
signal enhancement, deconvolution/equalization, and signal prediction, but now considering GSs. These
LMS-based adaptive graph filters along with their NLMS and RLS extensions are described in great
detail in [36]. Further extensions of graph filters to nonlinear settings have also appeared in [37–40].

14.7.2 Image processing
The fields of image and video processing are among those in which GSP tools have been most ap-
plied. Clearly, the basic structure in which a digital image is organized can be viewed as a rectangular
grid graph on which the pixels (vertices) lie and interconnect with their immediate vertical and hori-
zontal neighbors by means of edges with unit weight. The GS is then related to the attributes of each
pixel (color, transparency, depth, etc.) and, naturally, the numerical value of the corresponding sample
depends on the code employed to represent the image. Consequently, a video can be interpreted as a
time-varying GS or even as a signal over a multidimensional graph. The fact is that, considering this
basic model as reference, the GSP allows us to adjust the referred underlying graphs so that they can
better reflect the structure of a given image. This has enabled the development of GSP-based techniques
devoted to image compression, restoration, filtering, and segmentation, for instance, that achieve results
very competitive with those of classical methods.

In this context, the GFT plays an essential role and provides high flexibility, especially if we are
interested in compressing digital images. In fact, as shown in [41], the GFT is optimal for decorrelation
of an image following a Gaussian Markov random field (GMRF) model. Suboptimal GFT-like trans-
forms can therefore be obtained by adjusting the graph employed to model an image. This is usually
performed so that a reasonable trade-off between the amount of side information (graph structure) to
be sent to the decoder and the amount of energy compaction provided by the transform is reached.
Such a strategy seems to be more intuitive than others using, for instance, the Karhunen–Loève trans-
form (KLT), which takes a statistical approach, describing correlations among image pixels through
estimates of their linear correlation coefficients [42].

As a first example of what was explained above, we observe that if the rectangular grid graph
model is adopted, the GFT can be defined so that it coincides with the 2D discrete cosine transform
(DCT) [43,44]. A possibility arising from this finding is to define a 2D-DCT generalization identified
as steerable DCT (SDCT). Such a transform is obtained by applying rotations to specific pairs of 2D-
DCT basis vectors or, employing the GFT terminology, rotating pairs of eigenvectors associated with
the same eigenvalue of the Laplacian of the corresponding graph. In terms of energy compaction, the
SDCT has potential to be more effective than the 2D-DCT. This is due to the SDCT particularity of
employing a basis whose vectors are better aligned with the directions of the discontinuities of a given
image block if the corresponding rotation angles are properly chosen. On the other hand, if a complete
SDCT-based codec is designed, it is necessary to take into account the need to inform the decoder
about the angles used to transform each image block. Details regarding steerable transforms and its use
in image compression can be found in several works [42–48].

Another proposal to GFT design aiming at image compression is that based on symmetries [49]. In
this case, each image block is modeled as a totally or partially symmetric grid graph, which is motivated
by the fact that symmetries are often present in real-world data. Experimental tests have demonstrated
that symmetry-based GFTs outperform the 2D-DCT in the representation of both natural images and
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residual signals obtained from intraprediction based on the directional modes adopted in H.265 stan-
dard. In addition, we highlight the method proposed in [50], which introduces a novel algorithm for
graph estimation. Such an algorithm takes into account the coding of both the signal and the graph
topology in rate-distortion terms. The cost of the graph description is considered in the formulation
of an optimization problem which also involves the minimization of the sparsity of the GFT coeffi-
cients on the dual graph. Experimental results show that the proposed technique outperforms classical
fixed transforms for both natural and piecewise smooth images; it is also comparable to state-of-the-art
graph-based coding methods designed for depth map images. Furthermore, GFT-based compression
has been applied to light-field imaging, which is a technology for capturing images, building upon con-
ventional digital photography, that presents challenging tasks related to the amount of data generated.
The works in [51,52] propose methods for modeling the blocks of pixels from a light field as graphs
and use the GFT to compress the images, leveraging the energy concentration provided by the Fourier
analysis of the corresponding GSs. Other GSP-based methods devoted to image and video compression
can be found in [53], for example.

Even before the systematic development of GSP tools, its concepts were already used in image
filtering as well. Graph spectral image smoothing, which appears to have been documented for the first
time in [54], is a good example to illustrate such a possibility. In this case, the low-pass filtering can be
performed by employing the heat kernel filter, whose expression in the graph spectral domain is

h̃(λ) = e−τλ. (14.83)

The last equation is related to the computation of the τ th power of the heat (discrete) diffusion operator
R = e−L. If the signal f represents the initial amount of heat at each vertex, Rτf represents the amount
of heat at each vertex after time τ . Such a parameter also provides a notion of scale, as clearly explained
in [54] and [5], and, naturally, it determines the decaying speed of h̃(λ). In fact, the heat kernel has been
employed to perform low-pass filtering of GSs in several works (see, for example, [55–57]).

In general, graph spectral filtering can be used to implement discrete versions of several continuous
filtering techniques. This is applicable, for instance, to image denoising, where the noisy GS y = f 0 +
η is given by the sum of the clean signal f 0 and the Gaussian noise η. Assuming that f 0 is smooth,
the term f �Lf is used to regularize the corresponding ill-posed inverse problem, which, for a fixed
γ > 0, can be written as

argmin
f

{‖f − y‖2
2 + γf �Lf }. (14.84)

After solving (14.84), one obtains the optimal reconstruction

f∗(i) =
N−1∑
�=0

[
1

1 + γ λ�

]
ŷ(λ�)u�(i), (14.85)

or, equivalently, f = ĥ(L)y, where ĥ(λ) := 1/(1 + γ λ) can be interpreted as a low-pass filter [5,58]. It
has been demonstrated that using the above described strategy has potential to provide results that are
better than those produced by classical Wiener and Gaussian filtering, for example. The graph model
employed to carry out the referred denoising method can be constructed by connecting each pixel to its
eight immediate neighbors and setting the edge weights according to a similarity criterion.
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Finally, we can mention some more specific and sophisticated GSP-based techniques devoted to
image filtering. In [59], the authors extend the GSP context to the trilateral filter, which is a data-
dependent filter commonly used as an edge-preserving smoothing method for image processing. They
introduce a spectral graph representation of such a filter, which enables them to design an effective GS
denoising filter with a Tikhonov regularization. In [60], a spectral graph-based vertex-varying Wiener
filtering framework in the joint vertex-frequency domain for denoising of signals is proposed. The
authors demonstrate that their method provides very competitive results when compared with high-
performance denoising methods. An iterative graph-based filtering for image abstraction and stylization
is proposed in [61]. The respective framework is designed so that iterative filtering without requiring
any weight updates can be performed. The authors demonstrate that the proposed method can yield
significantly improved visual quality for stylized images as compared to other existing methods.

14.7.3 3D point cloud processing
Point clouds are digital virtual objects formed by points lying in a 3D space for which a specific co-
ordinate system is defined. In contrast to digital images and light fields, whose pixels lie in fixed and
regular grids, in a 3D cloud, the points are arbitrarily positioned in the referred space, so that they can
be viewed as vertices of a graph possibly connected according to a specific criterion. The feasibility
of using GSP tools in this context is related to the fact that one or more attributes can be associated
with the points of a 3D cloud. Such an attribute can be a color, for example, which can be numerically
encoded and, therefore, represent the value of the corresponding sample in the respective GS [62].

The usual strategy for establishing edges connecting the points of a 3D cloud (vertices of the graph)
employs the well-known k-nearest neighbor (k-NN) approach. The weight Wi,j of the edge connecting
the ith and j th vertices can be computed by combining some metric and a weighting function. In most
works on this theme, the thresholded Gaussian kernel

Wi,j =
{

exp
(
−‖pi−pj ‖2

2θ2

)
, if pj ∈ Ck(i) or pi ∈ Ck(j),

0, otherwise
(14.86)

has been used; in the last equation, θ is a variance parameter, Ck(i) is the set containing the k closest
points to pi , and ‖pi − pj‖ denotes the Euclidean distance between points pi and pj .

In this context, GSP-based techniques have been developed, for example, with the purpose of com-
pressing attributes of 3D point clouds [63–68]. In general, these methods assume the point cloud is
organized into an octree, where each occupied leaf node is a voxel that represents a point from the
cloud. After that, the respective graph is created as explained earlier in this section. This allows the
structure of the graph, that is, the octree, to be efficiently encoded and equally recovered in the decoder.
The attribute compression process itself usually has the GFT as its centerpiece, since such a transform
is optimum for decorrelating a signal following a GMRF model. Details regarding this fact can be
found in [41,63]. To be more specific, the GFT is applied in a block basis to the corresponding GS,
which can represent, for example, the components of a certain color channel. The resulting signal is
then quantized and entropy coded; this can be performed using classical techniques for these purposes,
but adapted to the statistical behavior of the GFT coefficients for the signal being processed.

The final result of the compression process includes the data coming from the graph structure (oc-
tree) encoding and the data resulting from the corresponding attribute compression. Due to quantization,
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the 3D point cloud decoding is lossy, so that the performance of the described technique can be evalu-
ated by computing the reconstruction error for a given bitrate. It has been demonstrated that, in general,
such a performance is better than that obtained by methods based on conventional transforms such as
the DCT.14 Basically, this is due to the fact that correlations in the 3D space are better captured in the
graph transform.

In the context of 3D point cloud compression, we can also specifically mention GSP-based schemes
for estimating and compensating motion in dynamic point clouds [64,65,68], techniques that employ
subdivisional meshes, graph wavelet transforms and variations of the GFT [67,69,70], and schemes that
perform progressive graph-signal sampling and encoding for static 3D geometry representation [71].

GSP-based techniques with the aim of denoising point clouds have also been proposed. Such a task
is recurrently necessary, since the occurrence of errors is common when creating a 3D model from
images. In [72], for example, the authors present a technique that uses the structure of the graph created
from a point cloud and convex optimization methods to perform the respective denoising. In this case,
the focus is on removing outliers and correcting the position of the remaining vertices. In [73], the
authors introduce an extension to GSP of a deconvolution algorithm based on the so-called Stein’s
unbiased risk estimate-linear expansion threshold (SURE-LET) approach [74]. The idea is then used
to perform deblurring of point cloud attributes. The method proposed in [75] carries out local 3D
point cloud denoising via bipartite graph approximation and TV. The authors show that their algorithm
achieves the best overall denoising performance when compared to state-of-the-art non-GSP schemes
with similar complexity. In [76], the authors employ the spectral graph wavelet transform (SGWT) to
jointly perform denoising of geometry and color attributes of 3D point clouds. They remove the noise
from the SGWT coefficients by applying data-driven adaptive soft-thresholding.

Segmentation is another task that can benefit from GSP tools in the context of 3D point clouds. This
has been demonstrated in previous works, which employ, for instance, graph convolutional networks
and hypergraph spectral clustering [77–79]. Finally, we should mention the possibility of performing
3D point cloud watermarking in the GFT domain [80,81], which has shown promising results when
compared to those obtained by non-GSP methods.

14.7.4 Spatiotemporal analysis and visualization
Another interesting GSP application scenario is related to analysis and visualization of time-varying
data on graphs. The possibility of considering a time axis along which each sample of a GS has its
value modified enhances the use of GSP tools and allows their crossing with consolidated classical
DSP techniques. Naturally, a wide range of real-world problems can be modeled by a time-varying
graph, including traffic data on street intersections in a given region along a day and according to the
day of the week, the evolution of crime data over the years in the neighborhoods of a city, the changes in
the attributes of a dynamic 3D point cloud, and the fluctuation of climatological variables measured by
sensors in a network, to mention a few. In this scope, some GSP-based techniques have been developed
and demonstrated to have potential to provide relevant results.

In [82], for instance, the problem of spatiotemporal prediction is addressed. This problem boils
down to forecasting (temporal prediction) and interpolation (spatial prediction). The former refers to

14 We remark that the DCT is a particular case of the GFT. If the DCT is used in the current application, instead of inferring an
arbitrary graph from the points in the cloud, a 1D chain (or path graph) is formed.
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predicting some physical phenomenon using historical data acquired by a network of spatially dis-
tributed sensors. The latter refers to predicting the phenomenon with a higher spatial resolution. In this
context, spatiotemporal data can be seen as a network signal in which a time series is associated with
each network element; the dynamics (time-domain evolution) of the time series depends on the net-
work structure (spatial domain), rather than on the isolated network elements only. The interpolation
is useful to generate a denser (virtual) network. Classical predictive models assume independence of
data samples and disregard relevant spatial information. In [82], a neural network (NN) architecture
is proposed to handle spatiotemporal correlations by employing GSP in conjunction with a recurrent
NN (RNN). Thus, the inherent nature of spatiotemporal data is addressed by jointly forecasting and
interpolating the underlying network signals. A global interpolation approach is adopted as it provides
accurate results when the signal is smooth in the GSP sense, whereas an RNN forecasting model is
adopted given its prior success in network prediction. Herein, not only the sampled GS is input to a
predictive model but also its spectral components, which carry spatial information on the underlying
graph. The major contribution of the model is, therefore, the ability to learn spatiotemporal features by
observing a few nodes of the entire graph.

In [83], a new batch reconstruction method of time-varying GSs is proposed by exploiting the
smoothness of the temporal difference signals. The approach also includes an on-line distributed tech-
nique that has been shown to be suitable for practical applications faced with real-world requirements.
In [84], the authors investigate the problem of recovering spatiotemporal signals from partially known
entries. They propose a low rank- and differential smoothness-based recovery method, which intro-
duces the differential smooth prior of time-varying GSs to the field of spatiotemporal signal analysis.
In another previous work [85], the problem of reconstruction of time-varying GSs is used to model
the number of new COVID-19 cases. The authors propose a method based on the minimization of the
Sobolev norm in GSP and obtain results that outperform state-of-the-art algorithms in two COVID-19
databases.

The issue of visualizing time-varying GSs for the purpose of performing specific inferences has
also been addressed in the literature. In [86], for example, a visualization method that relies on graph
wavelet theory and a stacked graph metaphor to enable the visual analysis of time-varying data defined
on the nodes of a graph is proposed. The technique allows to identify regions where data present abrupt
and mild spatial and/or temporal variation while still being able to show how such changes evolve over
time, making the identification of events an easier task. In [87], the same authors propose a methodology
that employs a fast approximation of a graph wavelet transform to derive a set of wavelet coefficients
suitable to identify activity patterns on large networks (including their temporal recurrence).

In this section, we illustrate the possibility of visualizing and performing spatial pattern detection
in spatiotemporal data by briefly describing the GSP-based technique introduced in [88]. In that paper,
the authors first introduce a graph Laplacian of Gaussian (GLoG) filter devoted to the detection of
node pairs to which abrupt variations of the corresponding GS are related. This is equivalent to a
boundary detection procedure, usually employed in the context of image processing. More specifically,
the approach consists in pointwise multiplying the GFT of the signal by the graph spectral filter

∇̃2G(λ) = −4π2λ2e−σ 2λ2
, (14.87)

where σ is a user-defined parameter and λ is the independent variable in the graph spectral domain.
The inverse GFT of the filtered signal is then computed, and in the vertex domain a thresholding-based
procedure is applied in order to decide which are the strongest boundary nodes.
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In a time-varying GS, the GLoG filter (14.87) can be applied to each time slice tj , j ∈ {1,2, . . . ,m},
and the probability pe(τi) of a node τi being a boundary node can be estimated by

pe(τi) = 1

m

m∑
k=1

I (τi, tk), (14.88)

where

I (τi, tk) =
{

1, if τi is a boundary node in time slice tk,

0, otherwise.
(14.89)

In this context, the function

p(ti, tk) =
{

pe(τi), if I (τi, tk) = 1,
1 − pe(τi), if I (τi, tk) = 0

(14.90)

computes how probable the observed configuration of a node τi (in tk) is in terms of it being a boundary
node or not. This allows to define the (graph) entropy E(tk), which corresponds to a measurement of
the degree of randomness of a time slice. It is given by

E(tk) = −
n∑

i=1

p(τi, tk) logp(τi, tk). (14.91)

The larger the entropy, the more unpredictable the time slice is in terms of its boundary node con-
figuration. This means that if we plot the entropy over time and produce an entropy diagram, time
slices where the signal presents unexpected (high entropy) or predictable (low entropy) boundary node
configurations can be visualized.

The described approach has been evaluated by using synthetic and real data. Among the case studies
considered by the authors, the analysis of downtown Manhattan taxi data deserves to be highlighted;
the respective graph has 4694 street intersections as its nodes and 6350 street blocks connecting the
intersections as its edges. The time-varying GS corresponds to the number of taxi pickups in each inter-
section, aggregated into intervals of fixed duration, along the period of one week. The generated entropy
diagram reveals, for instance, that taxi pickup follows a certain (expected) pattern in the mornings and
afternoons, becoming more random at dawn, specially in the weekend. In this case, by employing the
referred diagram as well as visualizing boundary node configuration patterns, the analyst can draw
a picture of the dynamics of the city with regard to the regions to which people move and at what
times this happens. This kind of interpretation can be extended to other application scenarios involving
time-varying data on graphs.

14.8 A short history of GSP
In the last years, theory and applications related to GSP have been widely developed and attracted the
attention of several scholars. In fact, it seems that the number of researchers working on GSP is still
increasing at the time this chapter is being written. This is reflected in the increasing quantity, quality,
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and interdisciplinarity of the works that keep appearing to this date addressing such a subject. Although
the systematization of the knowledge related to GSP has started in the beginning of the 2010s, the
use of graph theoretic mathematical tools to solve signal processing problems predates this period.
Throughout the previous sections of this chapter, some works responsible for such an embryonal stage
of the GSP were mentioned. In these publications, one identifies the presence, albeit not always very
evidently, of a first opening to the new paradigm of employing a graph to characterize the domain on
which a signal lies. From another point of view, this is equivalent to looking at a graph beyond its
structure, allowing its nodes to be associated with values that are not simple labels, but have a physical
meaning or interpretation as a function of their magnitude.

In this line, the authors of [54] represent the image pixel lattice using a weighted undirected graph.
They propose a specific methodology to determine the edge weights, after which the Laplacian is com-
puted and the diffusion across the graph structure with time is captured by using the heat equation
(diffusion kernels on graphs had already been studied in [89], for example). This is then employed to
perform grayscale and color image smoothing, but more striking than this is the fact that the developed
technique and the theoretical justifications presented by the authors remain very useful and support
several GSP concepts and methods.

Within the same scope, it is also important to highlight the emergence of transforms that had con-
nections with what would come to be identified as the GFT. This started in 2010 and was leveraged by
researchers working mainly in the area of image coding. At that moment, the bases for the respective
transforms already corresponded to eigenbases of the Laplacian of a graph that could have been gen-
erated from the edges of the image, if the purpose was to efficiently encode some depth map, or from
more arbitrary graph models connecting the pixels, if the purpose was to exploit redundancies and com-
press image blocks. In this framework, we would like to mention as a standout result the demonstration
that the GFT is optimal for decorrelation of an image following a GMRF model [41]. Other results that
supported advances in this context can be found in [63,90–92], for instance.

Another series of papers related to the beginnings of GSP is the one dealing with graph wavelets.
A work that seems to have pioneered this is the one in which the authors propose a novel method
for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted
graph [93]. Their approach is based on defining scaling using the spectral decomposition of the graph
Laplacian, which, at that time, was already pointed out as being the graph analog of the Fourier domain.
In fact, many other developments followed the aforementioned work, providing theoretical advances
and covering application scenarios. In this context, concepts related to wavelet filter banks for graph
structured data [94], wavelet frames on multislice graphs [95], the graph wavelet transform applied to
image segmentation [96], graph wavelets for multiscale community mining [97], and wavelet-based
visualization of time-varying data on graphs [86], for instance, have been investigated.

Despite all the abovementioned original contributions, when we think about the systematization of
the foundations of the GSP and its emergence as a well-established research line, it seems natural to
refer to two approaches that have moved more clearly in this direction. The first of these approaches
has as its early stage the algebraic signal processing (ASP) theory, published by Püschel and Moura in
2008 [98,99]. The ASP expands DSP by moving to an algebraic point of view: each signal processing
theory is studied as a triple (A ,M ,�) consisting of an algebra A (a vector space endowed with
multiplication between vectors), an A -module M (a vector space over the same base field as A which
admits left-multiplication by elements of A ), and a linear transformation �. Here A is called the filter
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space, M is the signal space, and � is the Fourier transform (homomorphism over M ) associated with
the structure.

When these authors drew inspiration from ASP to develop their GSP theory, the starting point was
necessarily to define the unit-shift operator of GSs, the reason being that such an operator in ASP is the
building block of the algebra A (as, for example, the unit delay z−1 is the building block for filters of
discrete-time and finite length signals A = {∑N−1

�=0 h�z
−�|h� ∈ C}). To do so, the shift of discrete-time

signals, defined over directed ring graphs, was investigated.
The other approach is based on the graph spectral theory, which is a branch of graph theory

concerned with the eigendecomposition of graph characteristic matrices, such as the adjacency and
Laplacian matrices, and the properties derived from such a decomposition. Developed from matrix the-
ory and linear algebra, it finds applications in quantum mechanics, communications theory, chemistry,
and other fields [3]. It has been used by Ortega, Shuman, and many others as foundation for the pro-
posal and growth of a theoretical framework for GSP based on the spectral properties of the Laplacian
matrix. In this branch of GSP, it is worth mentioning that the authors use to restrict the graph space in
which their tools are applied to undirected graphs with nonnegative real edge weights, as Sandryhaila
and Moura point out [100].

In short, we can state that the structure built based on the aforementioned approaches has served as
the main reference for what has been done in GSP. Throughout its still short trajectory, GSP has brought
together researchers from the most diverse areas, being established as a multidisciplinary research field
with potential for application in modern practical scenarios. Currently, judging by the community’s
efforts to propose solutions to problems using GSP, this theme seems to be in a maturing process
driven by the possibility for creativity it gives to the authors. The expectation is, therefore, that the
representativeness of GSP within signal processing will continue to grow and that its effective use in
real-world applications will become increasingly concrete.
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15.1 Introduction
Deep learning architectures such as convolutional, recurrent, and self-attention networks have led to
qualitative breakthroughs in a wide variety of artificial intelligence application realms, notably com-
puter vision, speech, and natural language processing, among many other machine learning tasks [1].
The key ingredient of their success is that they effectively leverage statistical properties of data such
as stationarity (e.g., shift- and time-invariance) and compositionality (e.g., the hierarchical structure
of images and natural language) to learn approximations of high-dimensional, nonlinear functions that
can successfully describe complex real-world data.

At the core of such learning architectures are multidimensional blocks of parameters, naturally rep-
resented by higher-order tensors. Indeed, deep convolutional neural networks (DCNNs) [2,3] consist
of alternating multidimensional convolutional layers, pointwise nonlinear functions (e.g., ReLU), and
downsampling (pooling) layers, while also containing tensor-structured fully connected layers. The use
of multidimensional convolutions in convolutional neural network (CNNs) allows extracting local fea-
tures shared across the data domain. In turn, this greatly reduces the number of learnable parameters
and consequently alleviates the effect of the curse of dimensionality, without sacrificing the ability to
approximate the target function. When dealing with sequential data such as text, deep recurrent net-
works [1] and more recently deep self-attention networks [4] have been proved effective in capturing
long-range temporal dependencies and higher-order correlations, by modeling higher-order interac-
tions among data and parameters through a series of multidimensional parametric blocks. Such tensors
of parameters, representing for example convolutional kernels or attention blocks, can be viewed as
multilinear mappings generalizing the notion of linear mappings represented by matrices.

Concretely, tensors are a multidimensional generalization of matrices, and a core mathematical
object in multilinear algebra – just like vectors and matrices are in linear algebra. The order of a tensor
is the number of indices needed to address its elements. A matrix is a second-order tensor of two modes,
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namely rows and columns, requiring two indices to access its elements. In analogy, an N th-order tensor
has N modes, and N indices index it.

Tensors have found applications in a wide range of disciplines in science and engineering, rang-
ing from many-body quantum systems [5] to algebraic geometry and theoretical computer science
[6], to mention a few. In data science and related fields such as machine learning, signal processing,
computer vision, and statistics, tensors have been used to represent and analyze information hidden
in multidimensional data, such as images and videos, or to capture and exploit higher-order similari-
ties or dependencies among vector-valued variables. Just as pairwise (i.e., second-order) similarities of
vector samples are represented by covariance or correlation matrices, a third- (or higher)-order tensor
can represent similarities among three (or more) samples in a set. Such tensors are often referred to as
higher-order statistics. In this context, tensor methods mainly focus on extending matrix-based learning
models such as component analysis [7], dictionary learning (e.g., [8]), and regression models (e.g., [9]),
to handle data represented by higher-order tensors or estimating parameters of latent variable models
by analyzing higher-order statistics [10].

Such developments were for a long time independent of the rise of deep learning, where currently
tensors and their decompositions play a pivotal role. Deep learning models are usually overparameter-
ized involving an enormous number (typically tens of millions or even billions) of unknown parameters.
Even though overparameterization of deep neural networks allows finding good local minima, particu-
larly when they are trained with gradient descent [11,12], such a large number of trainable parameters
makes deep networks prone to overfitting and noise [13], hindering the analysis of their generalization
properties (i.e., how well they perform on unseen data) [14]. Tensor decompositions can significantly
reduce the number of unknown parameters of deep models and further mitigate the curse of dimension-
ality. Indeed, tensor decompositions can be applied to the weights of neural network layers to compress
them and in some cases speed them up [15,16,17]. In addition, using tensor-based operations within
deep neural networks allows to preserve and leverage the topological structure in the data while re-
sulting in parsimonious models [18,19]. In CNNs, (nonseparable) multichannel convolution kernels
can be decomposed into a sum of mode-separable convolutions using low-rank tensor decompositions,
resulting in network compression and a reduction in the number of parameters [20,21]. Deep net-
work compression is significant in the deployment of deep learning models in resource-limited devices,
while reducing the number of parameters acts as implicit regularization that improves generalization
across tasks and domains [22,23,24]. Furthermore, randomized tensor decomposition of neural net-
works’ building blocks has been proved effective in robustifying neural networks against adversarial
attacks [25,26] and to various types of random noise, such as noise occurring naturally when capturing
data such as MRI data [27].

Quantum computing (QC) aims to provide significant improvements to classical computing, leading
to the so-called quantum advantage. The field of quantum machine learning (QML) aims to bring
similar advantages to machine and deep learning algorithms, for which an enabling factor is quantum
simulation. However, it also suffers significantly from the curse of dimensionality, scaling exponentially
fast with either the number of data (qubits) or the depth of the quantum circuit. In this context, tensor
methods have been shown to mitigate this curse of dimensionality by reducing the memory footprint of
QC systems and broadly accelerating simulations of such systems.

In this chapter, besides the fundamentals of tensors and their decompositions, we focus on recent
developments that have gradually increased tensor-related methods, especially in deep learning archi-
tectures. We particularly focus on tensor methods for (1) compressing deep architectures, (2) modeling
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higher-order interactions among data points and among model parameters, (3) interpreting the latent
space of generative adversarial networks (GANs), and (4) making deep networks robust to noise and
adversarial attacks. Finally, we introduce tensor methods in the context of the emerging field of QML.

15.2 Preliminaries on matrices and tensors
To make the chapter self-contained, we first introduce the notational conventions used in this chapter
and then review some of the fundamental concepts of linear and multilinear algebra, i.e., the algebra of
higher-order tensors.

To ensure consistency in terminology and notations that would be familiar to machine learning
researchers, we have adopted that employed in widely cited overview papers [28,29,10]. However,
there is one point where we differentiate. We employ a different ordering of elements when tensors
are flattened to matrices than that used in [29] which may be familiar to some of the readers (cf.
Definition 15.2.1).

15.2.1 Notation
Scalars are denoted by plain letters, i.e., x, I, J . First-order tensors are vectors, denoted by bold low-
ercase letters, e.g., x. Second-order tensors are matrices, denoted by bold uppercase letters, e.g., X.
I denotes the identity matrix of compatible dimensions. The transpose of X is denoted X�. The ith
column of X is denoted as xi .

The sets of real and integer numbers are denoted by R and Z, respectively. A set of M real matrices
(vectors) of varying dimensions is denoted by {X(m) ∈R

Im×N }Mm=1 ({x(m) ∈R
Im}Mm=1). Finally, for any

i, j ∈ Z, with i < j , [i . . j ] denotes the set of integers {i, i + 1, · · · , j − 1, j}.
Tensors of order three or higher are denoted by X . The reader is reminded that the order of a tensor

is the number of indices (dimensions) needed to address its elements. Each dimension is called a mode.
Specifically, an N th-order tensor has N indices, with each index addressing a mode of X . Assuming X
is real-valued, it is defined over the tensor space R

I1×I2×···×IN , where In ∈ Z for n = 1,2, . . . ,N . An
element (i1, i2, · · · , iN ) of tensor X ∈ R

I1×I2×···×IN is denoted as Xi1,i2,··· ,iN or X (i1, i2, · · · , iN ). This
corresponds to viewing a tensor as a multidimensional array in R

I1×I2×···×IN . Furthermore, given a set
of N vectors (or matrices) that correspond to each mode of X , the nth vector (or matrix) is denoted as
u(n) (or U(n)).

The elementwise �p of X is

‖X‖p = ‖vec(X )‖p =
⎛
⎝ ∑

i1,i2,··· ,iN
|Xi1,i2,··· ,iN |p

⎞
⎠

1/p

.

When p = 1, the �1-norm is denoted by ‖X‖1 and is defined as the sum of the absolute values of the
tensor’s elements. The �1-norm is used as a measure of sparsity in practice. For p = 2, the Frobenius
norm is denoted as ‖X‖F for matrices and it is generalized to higher-order tensors by the tensor norm,
denoted ‖X‖.
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FIGURE 15.1

Illustration of the slices of a third-order tensor of size 3 × 4 × 2.

Fibers are a generalization of the concept of rows and columns of matrices to tensors. They are
obtained by fixing all indices but one. A colon is used to denote all elements of a mode, e.g., the
mode-1 fibers of X are denoted as X:,i2,i3 .

Slices (Fig. 15.1) are obtained, for a third-order tensor, by fixing one of the indices.

Table 15.1 Illustration of the fibers and unfolding of a third-order
tensor.

15.2.2 Transforming tensors into matrices and vectors
Definition 15.2.1 (Tensor unfolding). Given a tensor X ∈R

I1×I2×···×IN , its mode-n unfolding is a
matrix X[n] ∈R

In×IM with M =∏N
k=1,
k �=n

Ik and is defined by the mapping from element (i1, i2, · · · , iN )

to (in, j), with j = 1 +∑N
k=1,
k �=n

(ik − 1) ×∏N
m=k+1,

m �=n

Im.

Tensor unfolding corresponds to a reordering of the fibers of the tensor as the columns of a matrix.
There are several definitions of tensor unfolding, which vary by the ordering of the fibers. In par-
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ticular, our definition corresponds to a rowwise underlying ordering (or C-ordering) of the elements.
The main other definition, popularized by Kolda and Bader [29], corresponds to a columnwise (or
Fortran) ordering of the elements, which is more efficient for libraries using that ordering, such as
MATLAB®. Conversely, our definition naturally leads to better performance for implementation with
C-ordering of the elements, which is the case with most Python/C++ software libraries as well as most
GPU libraries [30]. Table 15.1 illustrates the link between the fibers and the unfoldings, as well as the
difference between our definition (rowwise, or C-ordering) and the columnwise, or Fortran ordering
[29].

Definition 15.2.2 (Tensor vectorization). Given a tensor X ∈ R
I1×I2×···×IN , we can flatten it into a

vector vec(X ) of size I1 · I2 · . . . · IN defined by the mapping from element (i1, i2, · · · , iN ) of X to
element j of vec(X ), with j = 1 +∑N

k=1(ik − 1) ×∏N
m=k+1 Im.

15.2.3 Matrix and tensor products
Here, we will define several matrix and tensor products employed by the surveyed methods.

Definition 15.2.3 (Kronecker product). Given two matrices A ∈ R
I1×I2 and B ∈ R

J1×J2 , their Kro-
necker product is defined as

A ⊗ B =
⎡
⎢⎣

a11B · · · a1I2B
...

. . .
...

aI11B · · · aI1I2B

⎤
⎥⎦ ∈R

I1·J1×I2·J2 .

Definition 15.2.4 (Khatri–Rao product). Given two matrices A ∈ R
I×R and B ∈ R

J×R with the same
number of columns, their Khatri–Rao product, also known as columnwise Kronecker product, is defined
as A � B ∈R

I ·J×R:

A � B = [
A:,1 ⊗ B:,1, A:,2 ⊗ B:,2, · · · , A:,R ⊗ B:,R

]
.

Furthermore, the Khatri–Rao product of a set of M matrices {X(m) ∈R
Im×N }Mm=1 is denoted by

X(1) � X(2) � · · · � X(M).

Definition 15.2.5 (Hadamard product). The Hadamard product of A,B ∈R
I×J is the elementwise

product symbolized as A ∗ B and is defined elementwise as A(i,j)B(i,j).

Definition 15.2.6 (Outer product). The symbol ◦ denotes the vector outer product. Given a set of N

vectors {x(n) ∈ R
In}Nn=1, their outer product is denoted as X = x(1) ◦ x(2) ◦ · · · ◦ x(N) ∈R

I1×I2×···×IN

and defines a rank-one N th-order tensor.

Definition 15.2.7 (n-mode product). For a tensor X ∈R
I1×I2×···×IN and a matrix M ∈ R

R×In , the
n-mode product of a tensor is a tensor of size (I1 × · · · × In−1 × R × In+1 × · · · × IN) and can be
expressed using unfolding of X and the classical dot product as follows:

X ×n M = MX[n] ∈ R
I1×···×In−1×R×In+1×···×IN .
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The n-mode vector product of a tensor X ∈R
I1×I2×...×IN with a vector x ∈ R

In is denoted by X ×n

x ∈R
I1×I2×···×In−1×In+1×···×IN . The resulting tensor is of order N − 1 and is defined elementwise as

(X ×n x)i1,...,in−1,in+1,...,iN =
In∑

in=1

xi1,i2,...,iN xin . (15.1)

In order to simplify the notation, we denote X ×1 x(1) ×2 x(2) ×3 · · · ×N x(N) = X
∏N

n=1 ×nx(n).

Definition 15.2.8 (Generalized inner product). For two tensors X ,Y ∈ R
I1×I2×···×IN of the same size,

their inner product is defined as 〈X ,Y〉 = ∑I1
i1=1

∑I2
i2=1 · · ·∑IN

in=1 Xi1,i2,··· ,inYi1,i2,··· ,in . For two ten-

sors X ∈ R
Dx×I1×I2×···×IN and Y ∈R

I1×I2×···×IN×Dy sharing N modes of the same size, we similarly
define the generalized inner product along the N last (respectively first) modes of X (respectively Y)
as

〈X ,Y〉N =
I1∑

i1=1

I1∑
i2=1

· · ·
IN∑

in=1

X:,i2,i3,··· ,inYi1,i2,··· ,in−1,:,

with 〈X ,Y〉N ∈ R
Ix×Iy .

Definition 15.2.9 (Convolution). We denote a regular convolution of X with W as X � W. For 1D
convolutions, we write the convolution of a tensor X ∈ R

I1×I2×···×IN with a vector v ∈R
K along the nth

mode as X �n v. In practice, as done in current deep learning frameworks [31], we use cross-correlation,
which differs from a convolution by a flip of the kernel. This does not impact the results since the
weights are learned end-to-end. In other words, (X �n v)i1,··· ,iN =∑K

k=1 vkXi1,··· ,in−1,in+k,in+1,··· ,IN
.

15.2.4 Tensor diagrams
Most tensor methods involve a series of tensor operators, such as tensor contractions,1 resulting in
several sums over various modes and tensors, with as many indices, which can be cumbersome to read
and write.

Tensor diagrams are pictorial representations of tensor algebraic operations in the form of undi-
rected graphs offering a more intuitive way to read and write tensor operators and design tensor
methods. The vertices (circles) represent tensors, and edges represent the modes of the tensors. The
degree of each vertex (the number of edges coming out of it) thus represents the order of the corre-
sponding tensor. Consequently, using tensor diagrams a scalar (Fig. 15.2a) would simply be represented
by a vertex while a vector (i.e., a tensor with one index) would have one edge. A matrix (Fig. 15.2b)
would be a vertex with two edges, and so on for third- (Fig. 15.2c) and fourth-order (Fig. 15.2d) tensors.

By employing tensor diagrams, tensor contraction over a common dimension of two tensors is
represented by connecting the two corresponding edges. For instance, given matrices A ∈ R

I×J ,B ∈
R

J×K , we can simply express their product C = AB =∑J
j=1 a:,j b

�
j,:, as illustrated in Fig. 15.3a.

1 The n-mode product of a tensor with a matrix is a tensor contraction between the nth mode of the tensor and the second mode
of the matrix.
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FIGURE 15.2

Representation of tensors of various orders using tensor diagrams. The vertices represent tensors and their
degree represents the order of the tensors.

FIGURE 15.3

Representation of some tensor contractions using tensor diagrams.

15.3 Tensor decomposition
Matrix decomposition forms the mathematical backbone in learning parsimonious, low-dimensional
representations from high-dimensional vector data samples, such as images flattened into vectors. Com-
ponent analysis (e.g., [32]) and sparse coding (e.g., [33,34]) are prominent examples of representation
learning methods that extract simple data representations by means of low-rank matrix decompositions
and sparse, possibly overcomplete representations, respectively. Given M vector data samples {xm}Mm=1,
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where each sample xm is an I -dimensional vector, that is, xm ∈ R
I
m, such a dataset can be represented

by a data matrix X ∈ R
I×J which contains in its columns data vectors. Matrix decompositions seek to

factorize X as a product of two factor matrices U(1) ∈ R
I×R and U(2) ∈ R

J×R , namely

X = U(1)U(2)�. (15.2)

Assuming X is of low rank R < min{I, J }, Eq. (15.2) is referred to as low-rank matrix decomposi-

tion. Hence, X can be expressed as a sum of R rank-one matrices: X = U(1)U(2)� =∑R
r=1 u(1)

r ◦ u(2)
i =∑R

r=1 u(1)
r u(2)

r

�
. The concept of low-rank matrix decomposition is generalized for higher-order tensors

by low-rank tensor decomposition, which will be discussed next. Interestingly, as opposed to matrix
decomposition, which is not unique,2 low-rank tensor decomposition, such as canonical-polyadic (CP)
decomposition, also known as parallel factor analysis (PARAFAC) [35,36,37], is unique under mild
algebraic assumptions (see [28] and references therein).

In multivariate linear regression models, enforcing low-rank constraints on the coefficient matrix
offers an effective reduction of unknown parameters, which facilitates reliable parameter estimation
and model interpretation. Likewise, low-rank structures can be imposed in tensor regression models
such as those presented in Section 15.3.4.

Tensor decomposition extends the concept of matrix decomposition to higher-order tensors. Here,
we give a brief overview of the three most fundamental tensor decomposition models that are most
useful in the context of this chapter. For more details on these models, the interested reader is referred
to [38,29,28,39], where algorithmic matters are also covered in detail. We introduce all three decompo-
sitions for an N th-order tensor X ∈ R

I1×I2×···×IN .

15.3.1 Canonical-polyadic decomposition
CP decomposition, also referred to as PARAFAC [35,36,37], decomposes X into a sum of R rank-one
tensors. The rank of a tensor X is the minimum number of rank-one tensors that sum to X and gener-
alizes the notion of matrix rank to high-order tensors. However, computing the tensor rank is NP-hard
[40,41]. Hence, a predefined rank should be known in advance or estimated from data using Bayesian
approaches (e.g., [42,43]) or deep neural networks [44]. When directly learning the decomposition end-
to-end with stochastic gradient descent, the rank parameter is validated along with other parameters.

Formally, CP decomposition seeks to find the vectors u(1)
r ,u(2)

r , · · · ,u(N)
r such that

X =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r︸ ︷︷ ︸

rank-one components (tensors)

. (15.3)

These vectors can be collected into N matrices, {U(n) ∈ R
In×R}Nn=1, with each matrix defined as

U(n) =
[
u(n)

1 ,u(n)
2 , · · · ,u(n)

R

]
. (15.4)

2 To verify this, consider any invertible matrix Q ∈ R
R×R . Then we have X = U(1)U(2)� = U(1)QQ−1U(2)�.
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FIGURE 15.4

Illustration of a CP decomposition of third-order tensor X into a sum of rank-one tensors.

FIGURE 15.5

Illustration of a Tucker decomposition of a third-order tensor X into a core tensor and three matrices.

CP decomposition is denoted more compactly as X = �U(1),U(2), · · · ,U(N)� [29]. A representation
of a tensor using its CP decomposition is sometimes referred to as its Kruskal format. A pictorial
representation of CP decomposition is shown in Fig. 15.4.

15.3.2 Tucker decomposition
Tucker decomposition [45] decomposes, nonuniquely, X into a core tensor G ∈R

R1×R2×···×RN and a set
of factor matrices

(
U(1),U(2), · · · ,U(N)

)
, with U(n) ∈ R

Rn×In , n = 1,2, . . . ,N , which are multiplied
with G along its modes as follows:

X = G ×1 U(1) ×2 U(2) ×3 · · · ×N U(N). (15.5)

The core tensor captures interactions between the columns of factor matrices. If Rn � In, ∀n, then the
core tensor can be viewed as a compressed version of X . It is also worth noting that CP decomposition
can be expressed as Tucker decomposition, with Rn = R, ∀n ∈ {1,2, . . .N}, and the core tensor being
superdiagonal. Tucker decomposition is denoted compactly as �G; U(1),U(2), · · · ,U(N)� [29], and it is
shown pictorially in Fig. 15.5. By imposing the factor matrices to be orthonormal, the Tucker model is
known as higher-order singular value decomposition (HOSVD) [46].

In practice, data are corrupted by noise, and as in the matrix case, both the Tucker and CP decompo-
sitions are not exact. Therefore, they are approximated by optimizing a suitable criterion representing
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FIGURE 15.6

Illustration of a tensor-train decomposition of a third-order tensor X into a series of third-order cores. The
boundary conditions dictate R1 = RN+1 = 1.

fitting loss. Typically, the least-squares criterion is employed. In this case, assuming that {Rn}Nn=1 are
known, the Tucker decomposition is computed by solving the following nonconvex minimization prob-
lem:

min
G,{U(n)}Nn=1

‖X − �G; U(1),U(2), · · · ,U(N)�‖2. (15.6)

The most common optimization algorithm for the Tucker and CP decompositions is the alternating
least-square (ALS) algorithm [47], where the unknowns are estimated iteratively. More specifically, the
ALS algorithm fixes, sequentially, all but one factor, which is then updated by solving a linear least-
squares problem. However, the ALS algorithm is not guaranteed to converge towards a minimum; see
[48] for example.

15.3.3 Tensor-train
Tensor-train (TT) decomposition [49], also known as the matrix product state (MPS) [50] in quantum
physics, expresses X as a product of third-order tensors G1 ∈ R

R1×I1×R2, · · · ,GN ∈ R
RN×IN×RN+1 (the

cores of the decomposition), such that

X (i1, i2, · · · , iN ) = G1[i1]︸ ︷︷ ︸
R1×R2

×G2[i2]︸ ︷︷ ︸
R2×R3

×· · · × GN [iN ]︸ ︷︷ ︸
RN×RN+1

.

The boundary conditions of the TT (open boundary conditions) decomposition dictate R1 = RN+1 = 1.
The decomposition is illustrated in Fig. 15.6. The open boundary conditions can be replaced by periodic
boundary conditions (the tensor-ring) [51,52] which instead contracts together the first and last cores
along R1 and RN+1.

Let us now depict the aforementioned tensor decompositions using tensor diagrams. While rep-
resenting tensor decompositions visually (e.g., Figs. 15.4 and 15.5), we are inherently limited to a
maximum of third-order tensors, tensor diagrams conveniently represent decompositions of higher-
order tensors. For instance, let X ∈ R

I1×I2×I3×I4×I5 be a fifth-order tensor. Its CP decomposition is
shown in Fig. 15.7, its Tucker decomposition is shown in Fig. 15.8, and Fig. 15.9 depicts its TT decom-
position.
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FIGURE 15.7

Representation of a CP decomposition using tensor diagrams.

FIGURE 15.8

Representation of a Tucker decomposition using tensor diagrams.

FIGURE 15.9

Representation of a tensor-train decomposition using tensor diagrams.

15.3.4 Tensor regression
Besides learning representations, low-rank tensor decomposition facilitates reducing the parameters of
tensor regression models and prevents overfitting. Tensor regression models generalize linear regression
to higher-order tensors. More specifically, in tensor regression a regression output y ∈R is expressed as
the inner product between the observation tensor X and a weight tensor W with the same dimension as
X : y = 〈X ,W〉 + b. Several low-rank tensor regression models have been proposed [9,53,54,55,56,57].
These methods share the assumption that the unknown regression weight tensor is low-rank. This is
enforced by expressing the weight tensor in CP [9,54] or the Tucker form [58,56,59].
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15.4 Tensor methods in deep learning architectures
Tensors play a central role in modern deep learning architectures. The basic building blocks of deep
neural networks, such as multichannel convolutional kernels and attention blocks, are essentially ten-
sor mappings, represented by tensors. Deep neural networks, as mentioned earlier, operate in a regime
where the number of parameters is typically tens of millions or even billions, and is thus much larger
than the number of training data. In this overparameterized regime, incorporating tensor decompositions
into deep learning architectures leads to a significant reduction in the number of unknown parameters.
This allows the design of networks that further preserve the topological structure in the data, being more
parsimonious in terms of parameters, more data-efficient, and more robust to various types of noise and
domain shifts. Besides the design of deep networks, tensor analysis can be beneficial in demystifying
the success behind neural networks, having already been used to prove universal approximation prop-
erties of neural networks [60] and to understand the inductive bias leveraged by networks in computer
vision [61]. This section overviews recent developments in the use of tensor methods to design efficient
and robust deep neural networks and the theoretical understanding of their properties.

15.4.1 Parameterizing fully connected layers
Leveraging tensor decompositions within neural networks by reparameterizing fully connected layers
was first proposed in [15]. Since the weights of fully connected layers are represented as matrices,
tensor decompositions cannot be applied directly. Therefore, the weight matrix needs to be reshaped to
obtain a higher-order tensor.

Specifically, consider an input matrix W of size I × J , whose dimensions can be expressed as I =
I1 × I2 × · · · × IN and J = J1 × J2 × · · · × JN . Hence, W is tensorized first by reshaping it to a higher-
order tensor of size I1 × I2 × · · · × IN × J1 × J2 × · · · × JN . Next, by permuting the dimensions and
reshaping it again, an N th-order tensor of I1J1 × I2J2 × · · · × INJN is obtained. This tensor is then
compressed in the TT format. The approximated weights are reconstructed from that low-rank TT
factorization during inference and are then reshaped back into a matrix.

In this setting, other types of decompositions have also been explored, including tensor-ring [62]
and block term decomposition [63]. This strategy has also been extended to parameterize other types
of layers [64].

In the context of two-layer fully connected neural networks, tensors have also been used for deriv-
ing alternatives to (stochastic) gradient descent methods for training, with guaranteed generalization
bounds. Specifically, in [65], CP decomposition is applied on the cross-moment tensor, which encodes
the correlation between the third-order score function (i.e., the normalized derivative of the input prob-
ability density function) to obtain the parameters of the first layer. The parameters of the second layer
are obtained next via regression. Under mild assumptions, this approach comes with guaranteed risk
bounds in both the realizable setting (i.e., the target function can be approximated with zero error from
the neural network under consideration) and the nonrealizable one, where the target function is arbi-
trary.

15.4.2 Tensor contraction layers
In modern deep neural networks such as CNNs, each layer’s output is an (activation) tensor. However,
activation tensors are usually flattened and passed to subsequent fully connected layers, resulting in
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structural information loss. A natural way to preserve the multilinear structure of activation tensors is
to incorporate tensor operations into deep networks. For instance, tensor contraction can be applied
to an activation tensor to obtain a low-dimensional representation of it [18]. In other words, an input
activation tensor is contracted along each mode with a projection matrix (an n-mode product as defined
earlier).

FIGURE 15.10

An input tensor X is contracted into a smaller tensor X ′ through a tensor contraction layer [18].

Let us assume a network involves an input activation tensor X of size S × I1 × · · · × IN , where S

is the batch size. A tensor contraction layer (TCL) contracts the input activation tensor along each of
its dimensions except the batch size with a series of factor matrices {V(n)}Nn=2 (Fig. 15.10). The result
is a compact core tensor X ′ of smaller size S × R1 × · · · × RN defined as

X ′ = X ×2 V(2) ×3 V(3) × · · · ×N V(N), (15.7)

with V(n) ∈R
Rn×In, n ∈ [2 . . N ]. Note that the projections start at the second mode as we do not con-

tract along the first mode S, which corresponds to the minibatch size. These factors are learned in
an end-to-end manner concurrently with all the other network parameters by gradient backpropaga-
tion. A TCL that produces a compact core of smaller size is denoted as size-(R2, · · · ,RN) TCL, or
TCL-(R2, · · · ,RN).

In addition to preserving the multilinear structure in the input, TCLs have much fewer parameters
than a corresponding fully connected layer. We can see this by establishing the link between a fully
connected layer with structured weights and a tensor regression layer (TRL). Let us assume an input
activation tensor X of size S1 × I1 × · · · × IN . A size-(R2, · · · ,RN) TCL parameterized by weight
factors V(2), · · · ,V(N) has a total of

∑N
n=2 In × Rn parameters. By unfolding the input tensor (i.e.,

vectorizing each sample of the batch), TCL can be equivalently expressed as a fully connected layer

parameterized by the weight matrix W = (
V(2) ⊗ · · · ⊗ V(N)

)�
, which computes

X[1]W = X[1]
(

V(2) ⊗ · · · ⊗ V(N)
)�

.

However, since fully connected layers have no structure on their weights, the corresponding fully
connected layer parameterized by a weight matrix W of the same size as above would have a total of∏N

n=2 In × Rn parameters, compared to the
∑N

n=2 In × Rn parameters of the TCL.
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15.4.3 Tensor regression layers
In CNNs, after an activation tensor has been obtained through a series of convolutional layers, predic-
tions (outputs) are typically generated by flattening this activation tensor or applying a spatial pooling,
before using a fully connected output layer. However, both approaches discard the multilinear structure
of the activation tensor. To alleviate this, tensor regression models can be incorporated within deep
neural networks and trained end-to-end jointly with the other parameters of the network [19].

FIGURE 15.11

Illustration of a convolutional deep network where the activation tensor is processed through a TCL followed by
a TRL to produce the outputs while preserving the topological structure [19]. Note that y, here, is a scalar.

Specifically, let us assume we have a set of S input activation tensors X (s) ∈R
I1×I2×···×IN and

corresponding target labels y(s) ∈R, with s ∈ [1 . . S]. A TRL estimates the regression weight tensor
W ∈R

I1×I2···×IN , by further assuming that it admits a low-rank decomposition (Fig. 15.11). Originally,
TRL has been introduced by assuming a Tucker structure on the regression weights. That is, for a
rank-(R1, · · · ,RN) Tucker decomposition, we have

y(s) = 〈X (s),W〉 + b

with W = G ×1 U(1) ×2 U(2) · · · ×N U(N) (15.8)

with G ∈R
R1×···×RN , U(n) ∈R

In×Rn for each n in [1 . . N ] and U(N) ∈R
1×RN . For simplicity, here, we

introduce the problem for a scalar output, but it is established, in general, for a tensor-valued response.
The inner product between the activation tensor and the regression weight is then replaced by a tensor
contraction along matching modes.

In addition to the implicit regularization induced by the low-rank structure of the regression
weights, TRLs result in a much smaller number of parameters. For an input activation tensor X ∈
R

S×I1×I2×···×IN , a rank-(R1,R2, · · · ,RN,RN+1) TRL, and a d-dimensional output, a fully con-
nected layer taking the same input X (after a flattening layer) would have nFC parameters, with
nFC = d ×∏N

n=1 In. By comparison, a rank-(R1,R2, · · · ,RN,RN+1) TRL taking X as input has nTRL
parameters, with

nTRL =
N+1∏
n=1

Rn +
N∑

n=1

Rn × In + RN+1 × d.
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As previously observed for the TCL, TRL is much more parsimonious in terms of the number of
parameters. Note that while we introduced the TRL here with a Tucker structure on the regression
weight tensor, in general, any low-rank format can be used, including CP and TT [66].

15.4.4 Parameterizing convolutional layers
The weights of convolutional layers are naturally represented as tensors. For instance, a 2D convolution
is represented as a fourth-order tensor. Hence convolutional layers can be directly compressed by em-
ploying tensor decomposition. In fact, there is a close link between deep neural networks and efficient
convolutional blocks, which we will highlight in this section.

15.4.4.1 1 × 1 convolutions
The first thing to notice is that 1 × 1 convolutions are tensor contractions. This type of convolution is
frequently used within deep neural networks in order to create a data bottleneck. For a 1 × 1 convolution
�, defined by kernel W ∈ R

T ×C×1×1 and applied to an activation tensor X ∈R
C×H×W , we denote the

squeezed version of W along the first mode as W ∈ R
T ×C . We then have

�(X )t,y,x = X �W =
C∑

k=1

Wt,k,y,xXk,y,x = X ×1 W.

Note that, here, we have x = y = 1 as we are considering a 1 × 1 convolution.

15.4.4.2 Kruskal convolutions
Let us now focus on how tensor decomposition can be applied to the convolutional kernels of CNNs
and how this results not only in fewer parameters but also in faster operations. CP decomposition, for
instance, allows separating the modes of a convolutional kernel, resulting in a Kruskal form. Although
the application of tensor decomposition in the context of CNNs is relatively new and of practical interest
nowadays, the idea of separable representation of linear operators by means of tensor decomposition is
not new (see [67]) and in fact was one of the original motivations for tensor rank decomposition of the
matrix multiplication tensor (see [68] for example).

In computer vision, the use of separable convolutions was proposed in [69], in the context of learn-
able filter banks. In the context of deep learning, [70] proposed to leverage redundancies across channels
by exploiting separable convolutions. Furthermore, it is possible to start from a pretrained convolutional
kernel and apply CP decomposition to it in order to obtain a separable convolution. This was proposed
for 2D convolutions in [16], where CP decomposition of the kernel was achieved by minimizing the
reconstruction error between the pretrained weights and the corresponding CP approximation. The au-
thors demonstrated both space savings and computational speedups. Similar results can be obtained
using different optimization strategies such as the tensor power method [17].

An advantage of factorizing the kernel using CP decomposition is that the resulting factors can
be used to parameterize a series of efficient depthwise separable convolutions, replacing the original
convolution [16], as illustrated in Fig. 15.12. This can be seen by considering the expression of a regular
convolution:
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Ft,y,x =
C∑

k=1

H∑
j=1

W∑
i=1

W(t, k, j , i)X (k, j + y, i + x). (15.9)

A Kruskal convolution is obtained by expanding the kernel W in the CP form as introduced in
Section 15.3.1. By reordering the terms, we can then obtain an efficient reparameterization [16]:

Ft,y,x =
R∑

r=1

U(T )
t,r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W∑
i=1

U(W)
i,r

⎛
⎜⎜⎜⎜⎝

H∑
j=1

U(H)
j,r

[
C∑

k=1

U(C)
k,r X (k, j + y, i + x)

]
︸ ︷︷ ︸

1×1 conv

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
depthwise conv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
depthwise conv︸ ︷︷ ︸

1×1 convolution

. (15.10)

FIGURE 15.12

Illustration of a 2D Kruskal convolution, as expressed in Eq. (15.10), with matching colors. First, a 1 × 1 con-
volution reduces the number of input channels to the rank (blue (dark gray in print version)). Two depthwise
convolutions are then applied on the height and width of the activation tensor (red (mid gray in print version)
and green (light gray in print version)). Finally, a second 1 × 1 convolution restores the number of channels
from the rank of the CP decomposition to the desired number of output channels (black).

15.4.4.3 Tucker convolutions
As previously, we consider the convolution F = X �W described in (15.9). However, instead of a
Kruskal structure, the convolution kernel W is assumed to admit a Tucker (Fig. 15.13) decomposition
as follows:

W(t, s, j, i) =
R1∑

r1=0

R2∑
r2=0

R3∑
r3=0

R4∑
r4=0

Gr1,r2,r3,r4U(T )
t,r1

U(C)
s,r2

U(H)
j,r3

U(W)
i,r4

.

This approach allows for an efficient reformulation [71]: first, the factors along the spatial dimen-
sions are absorbed into the core by writing H = G ×3 U(H)

j,r3
×4 U(W)

i,r4
. By reordering the term, we can

now see that a Tucker convolution is equivalent to first transforming the number of channels and then
applying a (small) convolution before restoring the channel dimension from the rank to the target num-
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ber of channels:

Ft,y,x =
R1∑

r1=1

U(T )
t,r1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H∑
j=1

W∑
i=1

R2∑
r2=1

Hr1,r2,j ,i

⎡
⎢⎢⎢⎢⎣

C∑
k=1

U(C)
k,r2

X (k, j + y, i + x)

︸ ︷︷ ︸
1×1 conv

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H×W conv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
1×1 conv

. (15.11)

FIGURE 15.13

Illustration of a Tucker convolution expressed as a series of small, efficient convolutions, as illustrated in
Eq. (15.11). Note that this is the approach taken by ResNet for the bottleneck blocks. After the full kernel has
been decomposed, the factors along the input and output channels are used to parameterize 1 × 1 convolu-
tions, applied respectively first (blue (dark gray in print version)) and last (green (mid gray in print version)).
The remaining two factors are absorbed into the core and used to parameterize a regular 2D convolution (red
(mid gray in print version)).

Besides the aforementioned types of convolutions (i.e., bottleneck layers, separable convolutions),
[72] identified maximally resource-efficient convolutional layers utilizing tensor networks and decom-
positions. Tensor decompositions have also been used for unifying different successful architectures.
Particularly, in [23], the block term decomposition [73] is used to unify different architectures that
employ residual connections, such as ResNet [74], while proposing a new architecture that improves
parameter efficiency. This implies that searching over the space of tensor decompositions and their
parameters might be an excellent proxy task to limit the search space for architecture search.

From a theoretical point of view, using CP decomposition to replace convolutional with low-rank
layers results in deriving the upper bound for the generalization error of the compressed network [75].
This bound improves previous results on the compressibility and generalizability of neural networks
[76]. It is also related to the layers’ rank, providing insights into the design of neural networks (with
low-rank tensors as layers).

15.4.4.4 Multistage compression
The factorization strategies mentioned above allow for efficient compression of pretrained, fully con-
nected, and convolutional layers of deep neural networks by applying tensor decomposition to the
learned weights. Fine-tuning allows recovery for loss of performance when increasing the compression
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ratio. However, it is also possible to apply multistate compression [77] to further compress without loss
of performance. Instead of compressing and then fine-tuning, the idea is to adopt an iterative approach
by alternating low-rank factorization with rank selection and fine-tuning.

15.4.4.5 General N-dimensional separable convolutions and transduction
The design of general (N -dimensional) fully separable convolution has been introduced in the con-
text of deep neural networks in [21]. Let us assume an (N + 1)th-order input activation tensor
X ∈R

C×D1×···×DN corresponding to N dimensions with C channels. The higher-order separable con-
volution, which we denote as �, is defined by a kernel W ∈R

T ×C×K1×···×KN . By expressing this kernel
in a factorized Kruskal form as W = �λ; U(T ),U(C),U(K1), · · · ,U(KN )�, we obtain

�(X )t,i1,··· ,iN =
R∑

r=1

C∑
s=1

K1∑
i1=1

· · ·

· · ·
KN∑

iN=1

λr

[
U(T )

t,r U(C)
s,r U(K1)

i1,r
· · ·U(KN )

iN ,r Xs,i1,··· ,iN
]
.

The separable higher-order convolution can be obtained by reordering the term into

F =
(
ρ
(
X ×1 U(T )

))
×1

(
diag(λ)U(C)

)
, (15.12)

where ρ applies the 1D spatial convolutions:

ρ(X ) =
(
X �1 U(K1) �2 U(K2) � · · · �N U(KN )

)
. (15.13)

A factorized separable convolution can be extended from N dimensions to N + K (N,K ∈N) by
means of transduction [21]. Since the convolution is fully separable, it is possible to add additional
factors. In particular, to apply transduction from N to N + 1, it is sufficient to add an additional factor
UKN+1 and update ρ in Eq. (15.13) to

ρ(X ) =
(
X �1 U(K1) �2 U(K2) � · · · �N U(KN ) �N+1 U(KN+1)

)
.

15.4.4.6 Parameterizing full networks
So far, we reviewed methods focusing on parameterizing a single layer. It is also possible to jointly
parameterize a whole CNN with a single low-rank tensor. This is the idea of “T-Net” [20], where all
convolutional layers of a stacked hourglass [78] (a type of U-Net [79]) are parameterized by a single
eighth-order tensor. Each of the modes of this tensor models a modality of the network, allowing to
jointly model and regularize all the layers. Hence correlations across channels, layers, convolutional
blocks, and subnetworks of the model can be leveraged. Imposing low-rank constraints on this model
tensor results in large parameter space savings with little to no impact on performance, or even improved
performance, depending on the compression ratio. That is, small compression ratios result in improved
performance, while it is possible to reach substantial compression ratios with only minor decreases
in performance. In addition, it is possible to partially reconstruct the full tensor to obtain a Tucker
factorization of the kernel of each layer, thus allowing for speedups as described in Section 15.4.4.3.
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15.4.4.7 Parameterizing recurrent neural networks
Higher-order structures occur naturally when we try to generalize existing architectures. One example
is long short-term memory (LSTM), which is based on Markovian models that traditionally incorporate
the previous time step through a transition matrix. Extending the history to consider more time steps and
their interactions results in a higher-order tensor, allowing to model non-Markovian dynamics. While
a naive version would result in an exponential number of parameters, it can be made tractable by using
a low-rank structure on this higher-order tensor, such as TT [80]. To further improve the efficiency of
the model and enable efficient learning of convolutional LSTM in higher orders while preserving the
spatial structure, a convolutional TT decomposition has been successfully used [81].

15.4.4.8 Preventing degeneracy in factorized convolutions
As discussed above, when parameterizing DCNNs, one can either train the factorized layers from
scratch in an end-to-end fashion via stochastic gradient descent or decompose existing convolutional
kernels to obtain the factorized version. In the latter case, the authors of [82] showed that when apply-
ing decomposition to obtain a factorized convolution, degeneracy can appear in the decomposition due
to diverging components. They tackle this issue and enable stable factorization of convolutional layers
through sensitivity minimization.

15.4.5 Tensor structures in polynomial networks and attention mechanisms
Apart from CNNs, tensor structures arise in polynomial networks and attention mechanisms, capturing
higher-order (e.g., multiplicative) interactions among data or parameters. Here, we provide an overview
of how tensor methods are incorporated within such models.

Multiplicative interactions and polynomial function approximation have long been used in the do-
main of machine learning. The Group Method of Data Handling (GMDH) [83] proposes building
quadratic polynomials from input elements. The elements in each quadratic polynomial are predeter-
mined, which does not allow the method to capture data-driven correlations among different elements.
The method was later extended to higher-degree polynomials [84]. Low-degree polynomial networks
were also used in pi-sigma [85] and sigma-pi-sigma networks [86]. The pi-sigma network includes
a single hidden layer, and the output is the product of all hidden representations with fixed weights
equal to 1. The idea of sigma-pi-sigma is to sum multiple pi-sigma networks. In the context of kernel
methods, factorization machines [87] and their higher-order extension [88] model both low- and higher-
order interactions between variables, using factorized parameters via matrix/tensor decompositions. By
employing factorized parameters, such models are able to estimate higher-order interactions even in
tasks where data are sparse (e.g., recommender systems), unlike other kernel methods such as support
vector machines.

More recently, deeper neural networks have been proposed to capture multiplicative interactions
[89,90]. For instance, highway networks [89] introduce an architecture that enables second-order in-
teractions between the inputs. In [91,92,93], the authors augment the original convolution with a
multiplicative interaction to increase the representational power. In [90], the authors group several such
multiplicative interactions as a second-degree polynomial and prove that the second-degree polynomi-
als extend the class of functions that can be represented with zero error.

Recent empirical [94,95] and theoretical [90,96] results indicate that multivariate higher-degree
polynomials expand the classes of functions that can be approximated with deep neural networks. Ap-
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proximating a function using a multivariate higher-degree polynomial involves learning the multivariate
polynomial expansion parameters using input–output training data. Higher-order tensors naturally rep-
resent the parameters of such a multivariate polynomial [97], whose dimensionality increases exponen-
tially to the degree of the polynomial expansion. This is another instance of the curse of dimensionality
that tensor decompositions can mitigate. Moreover, in this setting, choosing different tensor decompo-
sitions results in different recursive equations that compose the polynomial function approximation and
are hence linked to different neural network architectures.

Particularly, let z ∈R
d be the input, e.g., the latent noise in a generative model or an image in a

discriminative model, and let x ∈R
o be the target, e.g., an output image or a class label. A polynomial

expansion3 of the input z can be considered for approximating the target x. That is, a vector-valued
function G(z) : Rd → R

o expresses the high-degree multivariate polynomial expansion:

x = G(z) =
N∑

n=1

(
W [n]

n+1∏
j=2

×jz

)
+ β, (15.14)

where β ∈R
o and

{
W [n] ∈ R

o×∏n
m=1 ×md

}N
n=1 are the learnable parameters. The form of (15.14) can

approximate any smooth function (for large N ). As aforementioned the number of parameters required
to accommodate all higher-order interactions of the input increases exponentially with the desired de-
gree of the polynomial, which is impractical for high-dimensional data. To make this model practical,
its parameters can be reduced by (1) making low-rank assumptions and (2) sharing factors between the
decompositions of each parameter tensor, which amounts to jointly factorizing all the parameter ten-
sors W [n]. To illustrate this, a certain form of CP decomposition with shared factors among low-rank
decompositions of weight tensors [95] is selected. Concretely, the parameter tensor W [n] is factorized
using n factor matrices. The first and last factor matrices (called U [1] and C, respectively) are shared
across all parameter tensors. Then, depending on the interactions between the layers we want to forge,
we can share the corresponding factor matrices. That results (see [95,100] for a detailed derivation) in
a simple recursive relationship, which can be expressed as

xn =
(
UT[n]z

)
∗ xn−1 + xn−1, (15.15)

for n = 2, . . . ,N with x1 = UT[1]z and x = CxN + β. The parameters C ∈R
o×k and U [n] ∈R

d×k for
n = 1, . . . ,N are learnable with k ∈N being the rank of the CP decomposition.

Each recursive call in (15.15) expands the approximation degree by one. Then, the final output x
is a polynomial of degree N . The recursive relationship of (15.15) enables us to implement the poly-
nomial using a hierarchical neural network, where the approximation degree defines the depth of the
network. A schematic assuming a third-degree expansion (N = 3) is illustrated in Fig. 15.14. The tensor
decomposition selected and the sharing of the factors have a crucial role in the resulting architecture.
As aforementioned, by selecting different decompositions, new architectures can emerge [95], while
additional constraints can be placed on the structure (e.g., shift-invariance) by allowing factor matrices
to implement convolutions (e.g., via the im2col operator or a circulant operator).

3 The Stone–Weierstrass theorem [98] guarantees that any smooth function can be approximated by a polynomial. Multivariate
function approximation is covered by an extension of the Weierstrass theorem, e.g., in [99] (p. 19).
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Higher-degree polynomials can be represented as a product of lower-degree polynomials, which
have been extensively studied for both univariate and multivariate cases. Berlekamp’s algorithm [101]
was one of the first to successfully factor univariate polynomials over finite fields; the Cantor–
Zassenhaus algorithm [102] has since become more popular. Factorizing multivariate polynomials
as a linear combination of univariate polynomials has recently been studied using tensor decompo-
sitions [103]. The work of [104] demonstrates that the aforementioned factorization of multivariate
polynomials is related to the joint CP decomposition.

In deep polynomial networks, instead of using a single polynomial, also products of polynomials
can be used [95]. That is, the higher-degree multivariate polynomial function is expressed as a product
of low-degree multivariate polynomials. This approach enforces variable separability in two levels: first
in the parameters of low-degree polynomials via tensor decomposition as aforementioned and second
by allowing approximation as a product of simpler functions. The product of polynomials increases the
expansion degree without increasing the number of layers significantly.

The aforementioned expansions have been utilized in nonadversarial generation [105] and condi-
tional generation [106], where multiple input variables are defined. An upper bound on the Lipschitz
constant on this class of models has been derived in [107], while [108] proved that when multiplicative
interactions are added to the network, it can learn higher-frequency functions faster.

FIGURE 15.14

Schematic illustration of the polynomial expansion for third-degree approximation of (15.15).

Furthermore, the original attention mechanism [109] is focused on neural machine translation, yet
it expresses multiplicative interactions. The idea is to capture long-range dependencies that might ex-
ist in a temporal sequence. This was later extended to attention mechanisms for image and video
data [110]. Multihead attention learns different matrices per head; concatenating those matrices, a third-
order tensor is obtained. The authors utilize a CP decomposition to reduce both the parameters and the
redundancy in the learned matrices [111]. In [112], the authors extend self-attention to capture not only
inter- but also intrachannel correlations by constructing an appropriate tensor such that the variance of
spatial- and channelwise features is regularized.

15.4.6 Tensor structures in generative adversarial networks
In addition to their utility for discriminative tasks, tensor methods have also been shown to be useful for
generative tasks [113,114,115,116,117], particularly for GANs [25]. For example, multilinear factor-
izations have been applied to the GAN latent or feature space, providing further insights and enabling
a new set of downstream tasks. Some recent advances in this direction are detailed below.
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15.4.6.1 Multilinear factorization of latent space
Modern image generators map a latent code z ∼ N (0, I) to a synthetic image through a sequence of 2D
transpose convolutional layers. Thus, the intermediate representations of a batch of images are fourth-
order tensors Z ∈R

N×H×W×C , each sample of which has height, width, and channel modes. The style
of the image at each layer is often modulated with AdaIN [94,118] via a location-scale transformation
parameterized by latent “style code” w ∈ R

d . Latent representations of GANs have been shown to con-
tain rich semantic structure [119], wherein interpretable directions can be found that affect high-level
changes to the semantic content of the synthetic images [120,121,122,123,124,125,126,127]. Recent
work has found that tensor-based factorization can be used to uncover such semantic directions in pre-
trained GAN generators. These methods can be considered to fall into one of two categories – those
finding directions in the latent space of style codes [115,116] and those operating on the convolutional
feature maps [128,117]. Interestingly enough, all the aforementioned methods can be viewed as em-
ploying Tucker style decompositions of various forms on two different stages of intermediate generator
representations. They are summarized in Table 15.2 and detailed below.

Table 15.2 Summary of recent methods using Tucker style decompositions to locate interpretable
directions in pretrained GANs. Gi are the method-specific core tensors.

Method Latent space Decomposition Generator features fac-
torized

Additional constraints

τGAN [115,116] Style codes �G1;U(d),U(P1), . . . ,U(Pk)� T ∈ R
d×P1×···×Pk None

TCA [117] Feature maps �G2; IN,U(H),U(W),U(C)� Z ∈ R
N×H×W×C None

PandA [128] Feature maps �G3; IN,U(C),U(S)� Z ∈ R
N×C×H ·W U(S) ≥ 0

15.4.6.1.1 Style code factorization
Operating on style codes w ∈R

d , the authors of [115,116] propose embedding [129] a structured dataset
of faces in the target modes of variation into the latent space. For example, given images of faces with
P identities, E expressions, and R viewpoints, a structured tensor of style codes T ∈R

d×P×E×R is
formed. The HOSVD [130] is then applied (assuming zero-mean T ) to learn a basis U(n) for each of
the subspaces T ≈ G ×1 U(d) ×2 U(E) ×3 U(P ) ×4 U(R), where G ∈R

d ′×E′×P ′×R′
is the core tensor.

The authors show that interpretable directions corresponding to a target mode of variation n can be
generated from the rows of the respective factor matrix U(n), producing compelling results for emotion
editing [116] and attribute transfer [115].

15.4.6.1.2 Feature map factorization
Tensor methods have also proven to be useful for finding interpretable directions in the interme-
diate convolutional features directly [117,128]. Given N samples’ intermediate generator feature
maps Z ∈ R

N×H×W×C , a basis for the subspace spanned by each mode’s fibers U(H),U(W),U(C) is
learned in [117] to better separate style-based variation by applying a Tucker decomposition [131]

Z ≈ Z ×2 U(H)U(H)� ×3 U(W)U(W)� ×4 U(C)U(C)�, where the columns of U(C) are found to corre-
spond to high-level attributes relating to the style of the synthetic images [117] (e.g., “hair color”).
Motivated by this finding, the authors of [128] further consider a joint seminonnegative factorization
of a dataset of images’ parts in addition to their appearances. Where [117] can be seen as a multilinear



15.4 Tensor methods in deep learning architectures 1031

decomposition of the raw activation tensors Z ∈R
N×H×W×C , [128] instead factorizes the N feature

maps’ channel-mode unfoldings Zi(3) ∈R
C×S with S �H · W . The former imposes a strict separable

structure between the two spatial modes, whilst the latter combines the height and width modes to
learn factors that can better span semantic parts of an image. Nonnegative parts’ factors P ∈ R

S×RS

are learned for the combined spatial mode, which control whereabouts in the feature maps the various
learned appearance factors A ∈ R

C×RC are present through the factors’ multiplicative interactions [90].
This is shown schematically in Fig. 15.15.

FIGURE 15.15

An overview of PandA [128]. A seminonnegative Tucker decomposition is applied to a dataset of generator ac-
tivations Zi ∈ R

H×W×C . Each factor has an intuitive interpretation: the factors for the spatial modes pj control
the parts, determining at which spatial locations in the feature maps the various appearances ak are present,
through their multiplicative interactions.

Concretely, let Ẑ ∈ R
N×C×S be a batch of the mode-3 unfoldings of the N samples’ convolutional

features (i.e., with the spatial modes combined). The following constrained optimization problem is
posed:

min
A,P≥0

N∑
i=1

||Ẑi − A
(

A�ẐiP
)

P�||2F , (15.16)

= min
A,P≥0

N∑
i=1

||(Ẑ − Ẑ ×2 AA� ×3 PP�)i ||2F , (15.17)

which we rewrite here in Eq. (15.17) with the mode-n product to make the connection to tensor decom-
positions explicit. We see that this is a special form of seminonnegative Tucker decomposition which
can also be expressed concisely as Ẑ ≈ �(Ẑ ×2 A� ×3 P�); IN,A,P� using the notation introduced in
[132].

The learned factors for parts and appearances can be used for a range of tasks. For example, the
change of basis A�Zi specifies how much of each appearance vector is present at each spatial loca-
tion, localizing the learned appearance concepts in the images. Additionally, local image editing with
appearance aj can be achieved at a target part pk in the image by adding the rank-one matrix aj ◦ pk

(refolded back to a third-order tensor) to the original feature maps.
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FIGURE 15.16

Tensor dropout on a CP decomposition. Visualization of tensor dropout applied to a CP factorization. Here, a
Bernoulli dropout is applied by first sampling a multivariate Bernoulli random vector λ. Its elements have value
1 (red (dark gray in print version)) with probability θ and 0 (white) with probability 1 − θ . Each rank-one CP
component is kept or discarded according to the corresponding Bernoulli variable, thus inducing stochasticity
on the rank of the decomposition.

15.4.7 Robustness of deep networks
Deep neural networks produce remarkable results in computer vision applications but are typically very
vulnerable to noise, such as capture noise, corruption, and adversarial attacks of domain shift. Below,
we provide a brief review of tensor methods that robustify deep networks.

15.4.7.1 Tensor dropout
One known way to increase robustness is to incorporate randomization during training. For example,
dropout [133] randomly drops activations, while DropConnect [134] applies the randomization to the
weights of fully connected layers. However, randomizing directly in the original space results in sparse
weights or activations (with zeroed values), which affects the high-order statistics.

Tensor dropout [27] is a principled way to incorporate randomization to robustify the model without
altering its statistics. It consists of applying sketching matrices in the latent subspace spanned by a
tensor decomposition, either CP (see Fig. 15.16) or Tucker (see Fig. 15.17), leading to significantly
improved robustness to random noise (e.g., during capture) or adversarial attacks.

15.4.7.2 Defensive tensorization
By combining the reparameterization approach described in Section 15.4.4.5 with tensor dropout, one
can drastically improve the robustness of a DCNN to adversarial attacks. When combined with adver-
sarial training, this approach proved successful against a wide range of attacks [135].

15.4.7.3 Tensor-Shield
In addition to the line of research that consists in modifying the weights or activations of the network to
increase robustness to adversarial attacks, it is possible to modify the input image directly. For instance,
Shield [136] uses JPEG encoding to remove any potential adversarial noise. However, the defensive ca-
pacity of this approach is limited. Instead of JPEG encoding, in [137] tensor decomposition techniques
are utilized as a preprocessing step to find a low-rank approximation of images which can significantly
discard high-frequency perturbations.
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FIGURE 15.17

Tensor dropout on a Tucker decomposition. Visualization of tensor dropout applied to a Tucker decomposition.
Several types of randomization can be used. Here, a Bernoulli dropout is represented, applied in the latent
subspace of the decomposition, by contracting the core along each mode with a series of (diagonal) Bernoulli
sketching matrices, M(k) = diag(λ(k)).

15.4.8 Applications
Tensor-based deep learning architectures have found a wide range of applications, some of which have
been mentioned already. Some additional applications, mostly related to the technical content of the
chapter, are discussed next. Due to the prevalence of deep learning methods in computer vision, many
have been evaluated in related applications, in terms of both generative modeling and predictive anal-
ysis (e.g., image classification). This has also led to rigorous evaluations in terms of performance and
effectiveness in large-scale standard benchmark datasets such as ImageNet, applications to large-scale
problems in earth observation such as land-cover classification [138], and many other related tasks. Fur-
thermore, CNNs with tensor regression layers have been used for a multitude of applications, including
affect estimation from faces [139,21], while randomized TRL has been utilized for age prediction from
MRI scans [27], outperforming compared methods. A clear example of a seminal lightweight archi-
tecture that facilitates mobile and embedded applications are the Mobilenet V1 [140] and Mobilenet
V2 [141] architectures, which can be seen as special cases of Kruskal and Tucker convolutions (Sec-
tion 15.4.4).

Integrating tensors in deep learning architectures, for example with low-rank tensor factorization,
can lead to many advantageous properties such as robustness and regularization, efficiency, and param-
eter reduction. Furthermore, one can straightforwardly leverage the structure induced by a factorization
to adapt a model to different domains or facilitate information sharing between multiple tasks. For
example, Tucker decomposition leads to a core tensor that represents a latent subspace which we can
project from and onto. In this way, applications that include cross-task and cross-domain incremental
learning are enabled, usually by facilitating weight sharing through joint factorization [22] or sharing
residual units [23]. Approaches that propose learning a task-agnostic core that can be shared between
tasks and domains have also been proposed. In more detail, the shared subspace represented by the
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core tensor can be specialized to new tasks and domains via task-specific projections, leading to much
higher efficiency in computer vision [24] and natural language processing tasks [142].

15.5 Tensor methods in quantum machine learning
QML seeks to demonstrate a significant improvement over classical machine and deep learning meth-
ods, leading to a quantum advantage. Similarly to the vast majority of optimization algorithms used
in deep learning, QML also employs gradient-based optimization, for example to optimize quantum
networks. QC is though still at its infancy, and hence quantum simulation remains essential. Simula-
tions on informative scales nevertheless come with a significant computational cost, which overwhelms
classical computing resources very quickly. In a similar fashion to deep learning, quantum tensor oper-
ations can leverage GPU acceleration. For example, approaches such as networks of factorized tensors
have led to an exponential reduction in computational overhead. In this section, we provide an overview
of recent research in this direction.

15.5.1 Quantum mechanics
The behavior of small-scale particles is not likely to be intuitive for the macroscopic reader. Quantum
mechanics, the branch of physics that describes the dynamics of electrons, photons, atoms, and other
microscopic objects, is ripe with bizarre features that are quite distinct from human perception of re-
ality. One such characteristic of quantum mechanics is its affinity for discrete quantities. For instance,
quantum light is not allowed to come in any quantity, but rather in discrete packets that contain an
integer number of photons [143]. In this chapter, we will focus on quantum systems with a discrete set
of two-levels or “states.” Such a discrete quantum system is known as a “qubit,” the fundamental unit
of quantum computation.

The status of a qubit is known as its “wavefunction,” which is most commonly represented as the
“bra” |ψ〉 in the Dirac notation favored by most physicists [144]. Mathematically, |ψ〉 can be repre-
sented as a column vector,

|ψ〉 = α|0〉 + β|1〉, |0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
. (15.18)

Here, α and β are complex coefficients and |α|2 + |β|2 = 1 such that |ψ〉 is a normal vector. Note that
the wavefunction |ψ〉 is generally both the states |0〉 and |1〉 at the same time, in contrast to classical
systems for which only a single discrete outcome is possible. We call this phenomenon “superposition”
and observe quantum wavefunctions like |ψ〉 through measurement. Measurement of |ψ〉 will yield
either the state |0〉 or |1〉, not both, and will transform our qubit completely into the resultant state,
collapsing the wavefunction. In particular, this leads to the interpretation of |α|2 (|β|2) as the probability
of observing the state |0〉 (|1〉) in measurement.

As exotic as the qubit formalism may seem, it has remained computationally tractable until this
point. However, the scale of the wavefunction becomes much more demanding when we consider mul-
tiqubit systems. We can describe the wavefunction of an ensemble of n qubits through the multiqubit
wavefunction
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|�〉 =
1∑

i1=0

1∑
i2=0

· · ·
1∑

in=0

αi1i2···in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉, (15.19)

where ⊗ is the Kronecker product and αi1i2···in is the coefficient of each tensor-product state [145,146].
As each qubit can take one of two states and all qubit combinations are possible, the wavefunction
|�〉 has 2n different states and is traditionally represented as a 2n-dimensional vector. As the form
of Eq. (15.19) suggests, however, quantum states that are not full-rank can often be represented more
compactly in some form of tensor decomposition [147].

The exponential scaling of quantum wavefunctions with the number of qubits n has both com-
plicated the study of quantum systems and motivated the quest for quantum computation. As for the
former, many branches of physics, from quantum chemistry [148,149] to condensed matter [150,151],
are intractable to fully simulate, as a mere 30-electron wavefunction requires over a billion coeffi-
cients to simulate. As a result, the first quantum computers to be proposed were quantum simulators
[151,152,153], which seek to reproduce the dynamics of difficult to study quantum systems with those
of controllable quantum systems [154]. Nevertheless, due to the low entanglement [155], high locality
[156], and considerable decoherence [157,158,159] of many naturally occurring quantum states, tensor
network decompositions have proven indispensable in modern quantum research. Similarly, since the
1990s, quantum computation for classical applications, ranging from integer factoring [160] to image
classification [161,162] and countless algorithms in between, have been proposed. While these QC
algorithms often rely on the exponentially large state space of quantum systems, decoherence due to
noise and the potential irrelevance of certain subspaces can make tensor decompositions useful.

15.5.2 Matrix product states for quantum simulation
The most common form of tensor networks for quantum simulation are the so-called “matrix product
state (MPS)” representations of quantum wavefunctions [145,146], which is the quantum community’s
term for the TT and tensor-ring formalisms. The factorization was popularized in the 1990s by pio-
neering research on the density matrix renormalization group for identifying quantum ground states in
condensed matter physics simulations [163,164,165].

In the MPS formalism, we write |�〉 as the contraction of K tensor cores,

|�〉 =
∑
j1

∑
j2

· · ·
∑
jK−1

M
p1
j1

M
p2
j1j2

· · ·MpK

jK−1
. (15.20)

In this formalism, the j indices are the bonds connecting adjacent cores. Their order determines the
rank of the tensor network. The p indices are the physical or visible indices, which can be used to
express the elements of |�〉 or can be contracted with other quantum operators, e.g., a distinct quantum
wavefunction |� ′〉 or some quantum observable Ô. We here assume that each p index represents a
single qubit and thus has dimension |p| = 2; however, multiple qubits can be encoded into larger tensor
cores. As TT is general, it can be used to express any quantum state |�〉, as long as the virtual bond
dimensions are large enough. For example, for general n-qubit states, we require each j index to have
dimension |j | = 2n−1, which is commensurate with the 2n elements of a standard vector representation
of |�〉. For useful implementations of MPS, however, |j | is much smaller than 2n−1 and the 2n|j |2-
dimensionality of Eq. (15.20) offers a significant compression.
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MPS can be used for compact quantum calculations. As a canonical example, let us consider the
inner product between two wavefunctions 〈� ′|�〉, where 〈� ′| is some distinct MPS factorized wave-
function

〈� ′| =
∑
j ′

1

∑
j ′

2

· · ·
∑
j ′
K−1

M
p′

1
j ′

1

′
M

p′
2

j ′
1j

′
2

′
· · ·Mp′

K

j ′
K−1

. (15.21)

In the standard vector representation of quantum wavefunctions, this operation would be the matrix
multiplication of 1 × 2n and 2n × 1 vectors, producing a single scalar. In MPS format, this operation is
described by the contraction

〈� ′|�〉 =
∑
{p}

∑
j ′

1j1

· · ·
∑

j ′
K−1jK−1

M
p1
j1

M
p′

1
j ′

1

′
M

p′
2

j ′
1j

′
2

′
· · ·Mp′

K

j ′
K−1

′
M

p2
j1j2

· · ·MpK

jK−1
. (15.22)

15.5.3 Factorized quantum circuit simulation with TensorLy-Quantum
TT factorization can be extended to quantum observables and unitaries to produce matrix product op-
erators (MPOs) [145,146,166]:

Ô =
∑
j1

∑
j2

· · ·
∑
jK

M
p1p

1

j1
M

p2p
2

j1j2
· · ·MpKpK

jK−1
, (15.23)

where each tensor core Mjl
now has two physical indices pl and pl . In quantum circuit simulation,

factorized operators such as Ô are used as both unitary operators (which represent the action of quantum
logic gates on the input quantum wavefunction) and observables (which represent the measurements of
quantum wavefunctions after the circuits and serve as the computations result).

Several classical simulators for quantum computation offer end-to-end implementation of quantum
circuits in MPS/MPO formalism [167,168,169], including TensorLy-Quantum [170], a quantum ex-
tension of the above discussed TensorLy software package. As the bond dimension of quantum tensor
networks grows with the intricacy of the wavefunction, or the portion of Hilbert space that contains
occupied states, the memory and FLOP requirements of the simulation grow quickly with circuit depth.
However, as the computational complexity of MPS representations grows only linearly in the number
of tensor cores, large numbers of qubits can be simulated for shallow circuits.

When simulating quantum circuits using MPS/MPO, it is typical to combine both the wavefunction
evolution and the measurement calculation as a single large tensor calculation. As an example, con-
sider that the action of a quantum circuit on some initial input quantum state |�in〉 is captured by the
contraction of |�in〉 with a unitary U ,

|�out〉 = U |�in〉. (15.24)

Likewise, the energy expectation value Eout of a quantum wavefunction |�out〉 is its inner product

Eout = 〈�out|H |�out〉 (15.25)

with the so-called “Hamiltonian” operator H . That is, the Hamiltonian is the sum of all energy-relevant
observables of a quantum system. Combining these two elements, we can study the dynamics of a
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quantum circuit as the single contraction

Eout = 〈�in|U†HU |�in〉. (15.26)

We note that in the regime in which QML will be useful, it will not be simulatable with tensor
networks nor any other kind of classical representation. This is in part by definition, as useful quantum
computation is said to have a “quantum advantage” or offer some capacity of speedup not accessible
through classical computation [171,172,173], and it is also due to the exponentially large kernel spaces
that useful QML would offer [174,175].

In addition to QML techniques for classical applications, progress has also been made in classical
machine learning for quantum applications. Research areas include state classification [176,177,178],
quantum phase prediction [179,180], and quantum compilation [181,182]. While the impact of classi-
cal machine learning on quantum science is potentially large, classical state spaces are fundamentally
limited in their ability to represent exponential quantum Hilbert spaces. Notwithstanding, in low-rank
cases, tensor networks may play a major role in the advance of these applications.

15.6 Software
In this section, to accelerate the learning curve and enable researchers and practitioners to get started
in the field of tensor methods quickly, we review available software packages for tensor algebra and
introduce the TensorLy library [30].

FIGURE 15.18

Overview of the TensorLy and TensorLy-Torch libraries.
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TensorLy is a Python library that aims at making tensor learning simple and accessible. It provides a
high-level API for tensor methods, including core tensor operations, tensor decomposition, regression,
and deep tensorized architectures. It has a flexible backend that allows running operations seamlessly
using NumPy, PyTorch, TensorFlow, etc. The project is also open-sourced under the BSD license, mak-
ing it suitable for both academic and commercial use. TensorLy is also optimized for Python and its
ecosystem. For instance, the unfolding is redefined as introduced in Section 15.2 to match the un-
derlying C-ordering of the elements in memory, resulting in better performance. An overview of the
functionalities of TensorLy can be seen in Fig. 15.18. By default, it uses NumPy as its backend. How-
ever, this can be set to any of the deep learning frameworks, optimized for running large-scale methods,
and in the companion, we also use the popular PyTorch library. Once PyTorch has been installed,
it can be easily used as a backend for TensorLy, allowing all the operations to run transparently on
multiple machines and GPUs. Finally, TensorLy has received several extensions, including TensorLy-
Torch4 [183], which builds on top of TensorLy and PyTorch and implements out-of-the-box layers for
tensor operations within deep neural networks. In addition, TensorLy-Quantum [170] builds upon Ten-
sorLy and provides a library for tensor-based QML, with efficient implementations of tensor methods
and networks that can provide significant speedups in quantum simulations and computation.

Other libraries exist for tensor operations in Python. In particular, t3f [184] is a TensorFlow library
for working with TT decomposition on CPUs and GPUs. It also supports Riemannian optimization
operations. Tntorch [185] is a library for tensor networks in PyTorch, while TensorNetwork [186]
additionally supports JAX, TensorFlow, and NumPy. Scikit-Tensor [187] is a NumPy library for tensor
learning, supporting several tensor decompositions.

In MATLAB, packages such as the Tensor Toolbox [188] or TensorLab [189] provide extensive
support for tensor decomposition. In C++, ITensor [169] provides efficient support for tensor network
calculations.

Finally, efficient operations on sparse tensors require specialized implementations. Indeed, while
libraries such as NumPy are highly optimized for matrix and tensor contractions, they do not support
operations on sparse tensors. Explicitly representing sparse tensors as dense arrays is very inefficient in
terms of memory use and prohibitive for very large tensors. Instead, these can be represented efficiently,
e.g., using the COOrdinate format, which instead of storing all the elements only stores the coordinates
and values of nonzero elements. As a result, implementing them efficiently can be tricky. While there
is a large body of work focusing on sparse matrix support, support for sparse tensor algebra is scarcer.
Libraries such as PyData Sparse5 for CPUs and the Minkowski Engine [190] for GPUs are being
developed and provide an efficient way to leverage large, sparse multidimensional data. TensorLy also
supports sparse tensor operations on CPUs through the PyData Sparse library.

15.7 Limitations and guidelines
Leveraging tensor methods in deep learning comes with a set of desirable properties. However, several
practical and scientific challenges exist that may hinder wider adoption from new researchers in the

4 http://tensorly.org/torch/dev/.
5 https://sparse.pydata.org/.

http://tensorly.org/torch/dev/
https://sparse.pydata.org/
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area. In this section, we discuss some of the most important ones and provide some practical guidelines
to address them.

15.7.1 Choosing the appropriate decomposition
While fundamental to the design of tensorized deep networks, choosing the appropriate decomposition
for a given problem setting relies on heuristics. Despite the lack of principled algorithms to determine
the right decomposition, some intuition can be leveraged when approaching this task. For example,
CP decomposition (sum of rank-one tensors) is considered appropriate for learning interpretable latent
factors. Due to separability properties, CP can be a good choice when combined with transduction for
generalization. In this context, one can, e.g., train on a static domain (such as images) and generalize to
videos [21] during inference. In fact, CP factorization can be seen as a MobileNet-v2 block, with rank
equal to the product of the expansion factor with the number of input channels. Thus, for achieving
speedup one should choose the rank accordingly, i.e., to be a power of 2. As a downside, it is ill-
advised to use CP when a tensor has both very large and small modes, since the same rank is used in
all dimensions.

On the other hand, Tucker decomposition can be considered more flexible, allowing each mode to
have a different rank. It is deemed suitable for subspace learning (e.g., applied on the activation space
of deep networks), since it facilitates projecting to and from the latent subspace represented by its core.
A Tucker convolution gives more flexibility by allowing each mode to have a different rank, but the
rank chosen along the input and output channels should also be selected with speed in mind.

Finally, TT decomposition favors higher compression ratios due to disentangling of the dimensions.
However, it may be desirable to jointly model the dimensions if intercorrelations need to be preserved
[15]. For efficient learning of convolutional LSTMs in higher orders, convolutional TT decompositions
have proven successful [81].

We note that many tensor decompositions exist that can be suitable for tensorizing deep learning
architectures. For example, if one seeks a compromise between CP and Tucker in terms of core tensor
rank, then turning to the block term decomposition [191] is likely to be a good choice. Albeit with
some new considerations, the intuition and empirical rules regarding decompositions we do not discuss
in detail are largely inherited from the deep learning context.

15.7.2 Rank selection
Most tensor methods require some estimate (or knowledge) of the decomposition rank. Unfortunately,
determining the tensor rank is considered an NP-hard [40,41] problem. Similarly to the choice of de-
composition, heuristics are also applied in practice to estimate tensor rank. Practically, it is usually
beneficial to initially select a rank that preserves 90% of the parameters and then gradually reduce the
rank, e.g., through multistage compression [77], while monitoring performance. Other methods have
also been proposed, such as Bayesian matrix factorization [192] or introducing a Lasso type penalty
that can automatically set components to zero [21]. It should be noted that in case of end-to-end train-
ing within a deep framework, all parameters are trained jointly and thus rank selection becomes less
critical. However, several tasks still require solving appropriate tensor-based problems that include rank
determination, for example in the context of interpreting generative networks.

Clearly, the problem of rank selection and the choice of decomposition depend on tensor struc-
ture, and thus are clearly interdependent. A lack of theory can be observed in terms of guiding
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optimal choices and enabling efficient search over model architectures. However, research into au-
totensorization can have an important impact, where the goal is to automatically choose the rank and
decomposition in order to optimally approximate a pretrained network in a compressed form.

15.7.3 Training pitfalls and numerical issues
Most difficulties in training tensor methods in a deep learning context are due to numerical issues and
instabilities. For example, the composition of tensor contractions is highly prone to instability (gradient
vanishing or exploding). This issue becomes even more prominent when using lower precision (e.g.,
int8) and necessitates the development of more principled initialization approaches that also account for
structure that can mitigate the problem. While using full precision (i.e., “float64”) can understandably
alleviate the majority of such issues, modern deep learning frameworks are focused on speeding up
learning and inference, and thus often make sacrifices in terms of precision. For example, reduced
precision (e.g., float32) is commonly employed, or quantization to int16, int8, or binary is often used,
amplifying issues that relate to numerical stability. Mixed-precision tools (available for instance through
NVIDIA’s Amp) can help in this regard. Concretely, reduced precision is used when this does not impact
performance, and automatic loss scaling is applied to prevent small gradient values from vanishing.
If the setting allows using only positive values, then working in log-space is also a feasible avenue
that can improve numerical stability. Finally, initialization of the decomposition factors is critical to
ensure that the reconstruction values are in the expected range. This is similar to the case of deep
convolutional networks in general, where careful initialization needs to take place (e.g., using He [193]
or Glorot [194] initialization). Typically, these methods use a Gaussian distribution with zero mean and
a small variance. Finally, it is possible to perform variance analysis and thus initialize factors directly,
in such way that the reconstruction has the desired statistics.
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Nonconvex graph learning:
sparsity, heavy tails, and
clustering

José Vinícius de M. Cardoso, Jiaxi Ying, and Daniel P. Palomar
The Hong Kong University of Science and Technology, Hong Kong SAR, China

16.1 Introduction
The current big data era has been enriched with seamless connectivity experienced by devices that gen-
erate unprecedented amounts of data at an ever-increasing pace. This interconnected scenario clearly
demands robust models that can accurately estimate, detect, and predict relationships among entities
that are part of this network.

One way to model such interconnections is via graphical models [30]. A particular class of graph-
ical models, undirected Gaussian graphical models, has found extreme success across a number of
practical fields, including biology and finance. Such success is related to its �1-norm penalized convex
formulation and the development of the graphical lasso algorithm via iterative block coordinate de-
scent methods [4,19,54]. Graphical lasso is a sparse estimator for the unconstrained precision (inverse
covariance) matrix of a multivariate Gaussian distribution. Mathematically, it can be expressed as the
following convex program:

minimize
�

tr (�S) − log det (�) + λ‖�‖1,

subject to � � 0,
(16.1)

where S is the sample covariance matrix and ‖ · ‖1 denotes the �1-norm.
Efficient optimization formulations along with scalable optimization algorithms have been key for

performing inference in graphical models. More recently, there has been a growing interest in constrain-
ing graphical models into a particular family or structure for a variety of practical reasons, including
(i) introducing prior information available from the task at hand and (ii) testing assumptions on the
data generating process. Most notably, constraints on the spectral decomposition of the adjacency and
Laplacian matrices of a graph have been applied to learn bipartite and k-component graphs for data clus-
tering [26,28,40], and sign constraints on the elements of the precision matrix of a Gaussian Markov
random field (GMRF) have been employed to learn total positivity models for stock markets [2,46,51].
From an optimization standpoint, however, such spectral constraints are typically nonconvex, which
demands the usage of powerful yet scalable optimization algorithms.

While learning the structure of general graphical models is an NP-hard task [3], its impor-
tance is critical towards understanding and leveraging the information contained in such structures.
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Learning graphs from data is a fundamental problem in the statistical graph learning and signal
processing fields [16,17,19,29,42,52,62], having a direct impact on applications such as cluster-
ing [21,22,26,28,40,47,49], finance [13,33,35], network topology inference [11,36,45], graph neural
nets [56], geometric deep learning [6], and graph variational autoencoders [24,32].

In this chapter, we discuss recent advancements in graph learning estimation methods that were only
possible via nonconvex formulations and the subsequent application of optimization frameworks that
can handle such nonconvexities. In addition, the algorithms discussed in this chapter are implemented
in the R programming language and they are available in the open source packages: https://github.com/
mirca/sparseGraph and https://github.com/dppalomar/spectralGraphTopology.

16.1.1 Learning undirected graphs
An undirected, weighted graph is denoted as a triple G = (V,E,W ), where V = {1,2, . . . , p} is the node
set, E ⊆ {{u,v} : u,v ∈ V, u �= v} is the edge set, that is, a subset of the set of all possible unordered
pairs of nodes such that {u,v} ∈ E if and only if there exists a link between nodes u and v, and W ∈
R

p×p
+ is the symmetric weighted adjacency matrix that satisfies Wii = 0,Wij > 0 if and only if {i, j} ∈

E and Wij = 0 otherwise. The combinatorial, unnormalized graph Laplacian matrix L is defined as
L �D − W , where D � Diag(W1) is the degree matrix. A graph is said to be connected if and only if
Dii > 0 ∀i; otherwise, the graph is called disconnected.

The basic idea behind learning a graph is to answer the following question: given a data matrix
whose columns represent signals (observations) measured at the graph nodes, how can one design a
graph that “best” fits such data matrix without possibly any (or with at most partial) knowledge of
the underlying graph structure? By “graph structure,” the Laplacian, adjacency, or incidence matrices
of the graph is often understood, or even a more general graph shift operator [34]. In addition, the
observed signals do not need to live in regular, ordered spaces and can take arbitrary values, such
as categorical and numerical values, and hence the probability distribution of the data can be highly
unknown. Fig. 16.1 illustrates such setting.

A p-dimensional, real-valued, Gaussian random vector x with mean vector E [x] � μ and rank-
deficient precision matrix L is said to form a Laplacian-constrained GMRF (LGMRF) [28,57–59] of
rank p − k, k ≥ 1, with respect to a graph G, when its probability density function is given as

p(x) ∝
√

det∗ (L) exp

{
−1

2
(x − μ)�L(x − μ)

}
, (16.2)

where det∗(L) is the pseudodeterminant of L, i.e., the product of its positive eigenvalues [25].
Assume we are given n observations of x, i.e., X = [x1,x2, . . . ,xn]�, X ∈R

n×p, xi ∈R
p×1. The

goal of graph learning algorithms is to learn a Laplacian matrix, or equivalently an adjacency matrix,
given only the data matrix X, i.e., often without any knowledge of the edge set E .

To that end, the penalized maximum likelihood estimator (MLE) of the Laplacian-constrained pre-
cision matrix, on the basis of the observed data X, may be formulated as the following optimization
program:

minimize
L�0

tr (LS) − log det∗ (L) + h(L),

subject to L1 = 0, Lij = Lji ≤ 0,
(16.3)

https://github.com/mirca/sparseGraph
https://github.com/mirca/sparseGraph
https://github.com/dppalomar/spectralGraphTopology
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FIGURE 16.1

Illustration of a hypothetical signal observed in a graph (Fig. 16.1a). The circles represent the graph nodes, the
thin black lines denote the graph edges, indicating the relationships among nodes, and the vertical bars de-
note the signal intensities measured at each node. Graph learning techniques seek to estimate the underlying
graph structure (edge weights Wij in Fig. 16.1b) through the graph signal measurements.

where S is a similarity matrix, e.g., the sample covariance (or correlation) matrix S ∝ X�X, and h

is a regularization function to promote certain properties on L such as sparsity or low-rankness. We
note that we can express the Laplacian matrix via its linear operator, i.e., L = Lw [28], where w ∈
R

p(p−1)/2 is the vectorized form of the upper triangular part of the adjacency matrix, also known as the
vector of graph weights. In addition, for connected graphs, it follows that det∗(Lw) = det(Lw + J ),
J � 1

p
11� [17].

Problem (16.3) is fundamental in the graph signal processing and statistical machine learning fields
and has served as a cornerstone for many extensions, primarily those involving the inference of struc-
ture onto the Laplacian matrix L [17,28,42]. Even though problem (16.3) is convex, provided we
assume a convex choice for h, it is not adequate to be solved by disciplined convex programming
languages, such as cvxpy [14], particularly due to scalability issues related to the computation of the
term log det∗(L) [17,62]. Indeed, recently, considerable efforts have been directed towards the design
of scalable, iterative algorithms based on block coordinate descent [54], majorization-minimization
(MM) [48], and the alternating direction method of multipliers (ADMM) [5] to solve problem (16.3) in
an efficient fashion; see, e.g., [17] and [62].

Estimators based on Gaussian assumptions have been proposed for connected graphs [15,17,23,29,
62]. Some of their properties, such as sparsity, are yet being investigated [58,59]. The authors in [28]
and [40] proposed optimization programs for learning the class of k-component graphs, as such class is
an appealing model for clustering tasks due to the spectral properties of the Laplacian matrix. However,
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a major shortcoming in their formulations is the lack of constraints on the degrees of the nodes, which
allows for trivial solutions, i.e., graphs with isolated nodes.

In the following sections, we discuss optimization formulations for connected sparse graphs, heavy-
tailed graphs, and k-component graphs. The latter is particular appealing for machine learning applica-
tions such as clustering. Before diving into the specific formulations, we briefly discuss the optimization
frameworks leveraged for the design of optimization algorithms.

16.1.2 Majorization-minimization: a brief visit
MM is one of the primary tools to tackle optimization problems, in particular nonconvex ones, due to
its flexible framework. In this short section, we briefly revisit the MM recipe.

The MM framework seeks to solve the following general optimization problem:

minimize
x

f (x)

subject to x ∈ X ,
(16.4)

where we consider f a continuously differentiable, possibly nonconvex function and X is a nonempty
closed set.

The general idea behind MM is to find a sequence of feasible points
{
xi

}
i∈N by minimizing a

sequence of carefully constructed global upper bounds of f . The popular expectation-maximization
(EM) algorithm is a special case of MM [55].

At point xi , we design a continuous global upper bound function g
(·,xi

) : X → R such that

g
(
x,xi

)
≥ f (x), ∀ x ∈ X . (16.5)

Then, in the minimization step we update x as

xi+1 ∈ arg min
x∈X

g(x,xi ). (16.6)

The global upper bound function g(·,xi ) must satisfy the following conditions in order to guarantee
theoretical convergence:

1. g
(
x,xi

) ≥ f (x) ∀ x ∈ X ,
2. g

(
xi ,xi

) = f
(
xi

)
,

3. ∇g
(
xi ,xi

) = ∇f
(
xi

)
,

4. g(x,xi ) is continuous on both x and xi .

A thorough discussion about MM along with a significant number of its extensions with practical
examples and comparisons to other optimization frameworks can be found in [48].
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16.1.3 Alternating direction method of multipliers: a brief visit
ADMM is a primal-dual framework designed to solve the following class of optimization problems:

minimize
x,z

f (x) + g(z)

subject to Ax + Bz = c,
(16.7)

where x ∈ R
n and z ∈R

m are the optimization variables, A ∈ R
p×n, B ∈R

p×m, and, c ∈R
p are pa-

rameters, and f and g are convex, proper, closed, possibly nondifferentiable functions.
The central object in the ADMM framework is the augmented Lagrangian function, which is given

as

Lρ(x,z,y) = f (x) + g(z) + y�(Ax + Bz − c) + ρ

2
‖Ax + Bz − c‖2

2 , (16.8)

where ρ is a penalty parameter.
The basic workflow of the ADMM algorithm is summarized in Algorithm 16.1.

Algorithm 16.1: ADMM framework.

Data: z0, y0, A, B, c, ρ > 0
Result: x�,z�,y�

1 l ← 0
2 while not converged do
3 xl+1 ← argmin

x∈X
Lρ

(
x,zl ,yl

)
4 zl+1 ← argmin

z∈Z
Lρ

(
xl+1,z,yl

)
5 yl+1 ← yl + ρ

(
Axl+1 + Bzl+1 − c

)
6 l ← l + 1
7 end

The convergence of ADMM algorithms is attained provided that the following conditions are met:

1. epi(f ) = {(x, t) ∈ R
n ×R : f (x) ≤ t} and epi(g) = {(z, s) ∈R

m ×R : g(z) ≤ s} are both closed
nonempty convex sets;

2. the unaugmented Lagrangian function L0 has a saddle point.

We refer readers to [5], where elaborate convergence results are discussed.

16.2 Sparse graphs
Sparse graph structures are of great applicability in practical scenarios because more often than not real-
world graphs are sparse. One alternative to generate sparse graphs is to conduct postprocessing pruning
of edges whose weights are below a specified threshold. However, this task may not be adequate because
such threshold may not be known a priori and it may also lead to disconnected graphs, which may
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be undesirable. Therefore, it is paramount to include sparsity-promoting regularizers directly into the
objective function or constraints of the optimization formulation. The most common sparse-inducing
function is the �1-norm, which has been a key part of graphical lasso [19,52].

However, the �1-norm may not always promote sparsity. To see that, consider optimization of a loss
function f that attains its minimum at x�,

minimize
x∈Rp

f (x),

subject to x�1 = 1, x ≥ 0.
(16.9)

It is straightforward to see that changing the objective function to f (x) + λ‖x‖1, λ > 0, does not
change the solution of the optimization problem. This toy problem is used to illustrate that careful
design choices must be considered before utilizing regularizations in optimization formulations.

Fig. 16.2 illustrates the effect of the �1-norm on the estimated graphs. We generate n = 300 data
samples from a tree graph with p = 50 nodes, as shown in Fig. 16.2a, as in X ∼ N (0,L†), where
the edge weights in L are uniformly sampled from U [2,5]. We use the data matrix X to recover the
graph L by solving problem (16.3) with h(·) set as the �1-norm with regularization hyperparameter λ.
It can be observed that in this scenario, the estimator defined as in problem (16.3) yields denser graphs
as the hyperparameter λ increases. More details can be found in [57,58].

Recently, theoretical and empirical studies on sparse formulations for undirected, weighted graphs
have been conducted [57–59,61]. The main conclusion of these works is that the �1-norm is unable to
learn sparse structures in the settings of problem (16.3). Therefore, they rely on concave regularizers
such as the minimax concave penalty (MCP) [60], smoothly clipped absolute deviation (SCAD) [18],
or the reweighted �1-norm [7].

The primary shortcoming of these regularizers is that they make the optimization formulation
nonconvex. However, efficient optimization frameworks, such as MM [48], can be used to generate a se-
quence of easy-to-solve convex problems with convergence guarantees. For instance, Ying et al. [58,59]
directly used MM on the optimization formulations with MCP, SCAD, and the logarithm approxima-
tion to the �0-norm to design an estimator that turns out to be a sequence of constrained quadratic
programs. Zhang et al. [61] used a difference-of-convex algorithm, which can be interpreted as an in-
stance of MM [48], to design an estimator for connected graphs. These formulations are identical to
that of problem (16.3), except that the function h(·) is MCP, SCAD, or the logarithm approximation to
the �0-norm.

As a practical example, we illustrate the design an MM-based estimator that solves a sequence of
majorized convex problems to obtain a sparse graph. The algorithm presented here is analogous to that
of Ying et al. [58]. Recall that the general formulation for graph learning is stated in problem (16.3).
Assuming that the graph is connected, we have the following formulation:

minimize
L�0

tr (LwS) − log det (Lw + J ) + h(w),

subject to w ≥ 0,
(16.10)

where h(·) is a concave regularizer such as MCP, SCAD [58], or approximation to the �0-norm [26].
As briefly revisited in Section 16.1.2, the MM recipe consists of two steps: (1) the majorization step

and the (2) minimization step. For the majorization step, a simple but often effective rule of thumb to
construct a majorizer of an objective function is to a take the first-order Taylor approximation of its
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FIGURE 16.2

Estimating Laplacian matrices via �1-norm regularization for different values of the regularization hyperpa-
rameter. (a) Ground truth graph. (b) λ = 0. (c) λ = 0.1. (d) λ = 10. We note that increasing the regularization
intensity actually makes the estimate graph more dense. The numbers of nonzero edges in (b), (c), and (d) are
135, 286, and 1225, respectively. The true graph in (a) has 49 edges and the graph in (d) is fully connected.
The relative errors of the learned graphs in (b), (c), and (d) are 0.14, 0.64, and 0.99, respectively.

concave components [48]. Hence, for the setting of problem (16.10), we are required to find the first-
order Taylor expansion of h(·), as the other terms are convex. Denoting by g(w,wi ) the majorizer of
the objective function in problem (16.10) at a point wi , we construct g as follows:

g(w,wi ) = tr (LwS) − log det (Lw + J ) + h(wi ) + 〈w − wi ,∇wh(wi )〉︸ ︷︷ ︸
first-order Taylor expansion of h(·)

. (16.11)

The next step is to find a minimizer of g(·,wi ), i.e.,

wi+1 ∈ arg min
w≥0

tr (LwS) − log det (Lw + J ) + 〈w,∇wh(wi )〉. (16.12)
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Note that problem (16.12) is convex; therefore, it can be solved by several optimization algorithms
such as block coordinate descent and projected gradient descent [58]. We can also rely on computa-
tional convex frameworks, e.g., cvxpy [14] for low-dimensional cases. Algorithm 16.2 summarizes the
implementation of an MM algorithm for sparse graph learning similar to that of [58].

In addition, note that Algorithm 16.2 only depends on the regularizer h through its gradient ∇h. For
reference, we list below the gradients of MCP and SCAD:

h′
MCP(x) =

⎧⎨
⎩λ − x

γ
x ∈ [0, γ λ],

0 x ∈ [γ λ,∞],
(16.13)

h′
SCAD(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ x ∈ [0, λ],
(γ λ − x)

γ
− 1 x ∈ [λ,γ λ],

0 x ∈ [γ λ,∞],
(16.14)

where γ and λ are positive hyperparameters.

Algorithm 16.2: Sparse graph learning.

Data: Similarity matrix S ∈ R
p×p, initial estimate of the graph weights w0.

Result: Graph Laplacian estimation: Lw�.
1 i ← 0
2 while convergence criteria not met do
3 � update wi+1 ∈ arg min

w≥0
tr (LwS) − log det (Lw + J ) + 〈w,∇wh(wi )〉.

4 i ← i + 1
5 end

Now, we illustrate the advantages of Algorithm 16.2 for sparse graph learning in a practical exper-
iment involving financial time-series data. More precisely, we perform an experiment with data from
returns of stocks belonging to the S&P500 in order to showcase the importance of appropriate sparsity-
promoting regularizations while learning graphs. To that end, we collect price data of p = 85 stocks
belonging to three sectors, namely, Communication Services (red), Utilities (blue), and Real Estate
(green), from April 22, 2019, to December 30, 2020, resulting in n = 429 observations.

Fig. 16.3 shows the estimated graphs by problem (16.3) using the �1-norm and MCP, which we
respectively denote as “Gaussian MLE” and “Gaussian MLE with MCP.” We observe that the modu-
larity value of the MCP-based graph is twice as much as the one based on the �1-norm. In addition, the
learned graph by MCP is sparser, which can aid interpretability of the financial network. However, im-
proved results can be obtained if we take into account that the data distribution is actually heavy-tailed,
which we will discuss in the next section.
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FIGURE 16.3

Learned graphs of S&P500 stocks during the COVID-19 pandemic.

16.3 Heavy-tail graphs
Heavy-tail events and outliers are prevalent in contemporaneous datasets. The appropriate modeling of
such events is critical to design performant graph estimators in practical scenarios [43].

Enforcing sparsity is one possible way to remove spurious conditional correlations between nodes in
the presence of data with outliers. However, assuming a principled, heavy-tailed statistical distribution
directly brings more benefits, rather than simply imposing arbitrary, nonconvex regularizations, because
they are often cumbersome to deal with from a theoretical perspective and, in practice, they bring the
additional task of tuning hyperparameters, which is often repetitive.

Data from financial instruments, e.g., returns of equities, currencies, and cryptocurrencies, can be
extremely heavy-tailed. We illustrate that phenomenon empirically using returns data from the S&P500
index from different time periods. Fig. 16.4 shows histograms of the log-returns of the S&P500 index
in different periods along with a fit of a Gaussian probability density function. As can be observed,
there exists a significant discrepancy between the fitted density and its empirical counterpart, especially
around the tails of the distribution.

In order to address the inherently heavy-tailed nature of such datasets, the authors in [8] considered
the Student t-distribution under the improper Markov random field assumption [44] with Laplacian
structural constraints, that is, they assume the data generating process can be modeled with a multivari-
ate zero-mean Student t-distribution, whose probability density function can be written as

p(x) ∝
√

det∗(�)

(
1 + x��x

ν

)− ν+p
2

, ν > 2, (16.15)
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FIGURE 16.4

Histograms of the S&P500 log-returns during the mentioned time periods, where the solid curve represents a
Gaussian fit. It can be noticed that the tails of the Gaussian decay much faster than the tails of the empirical
histograms, indicating the presence of heavy tails or outliers.

where � is a positive semidefinite inverse scatter matrix modeled as a combinatorial graph Laplacian
matrix. This results in a robustified version of the MLE for connected graph learning, i.e.,

minimize
w≥0,��0

p + ν

n

n∑
i=1

log

(
1 + x�

i Lwxi

ν

)
− log det (� + J ) ,

subject to � = Lw, dw = d,

(16.16)

where d : Rp(p−1)/2 → R
p is the degree operator defined as dw � diag (Lw). The constraint dw =

d enables the learning of additional graph structures such as regular graphs and it is crucial for k-
component graphs to avoid isolated nodes.

From a theoretical perspective, the Student t model naturally yields sparse graphs. Comparing the
objective function in problem (16.16) to that of problem (16.3), we note that the Student t contains
a log(·) term in place of a linear term of the graph weights. The usage of a log function to promote
sparsity is closely related to the iteratively reweighted �1-norm as an approximation for the �0-norm
problem [7]. Problem (16.16) is, in general, nonconvex due to the summation of log terms and hence it
is challenging to handle directly. Therefore, the authors in [8] relied on optimization frameworks such
as the ADMM and MM to come up with a convergent algorithm for this problem.
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In what follows, we illustrate how to design an ADMM algorithm for problem (16.16). Since
problem (16.16) is nonconvex, elaborate convergence results are required; however, for the sake of
simplicity we refer interested readers to the supplementary material of [8].

We start by following the ADMM exposition in Section 16.1.3. Then the partial augmented La-
grangian function of problem (16.16) can be written as

Lρ(�,w,Y ,y) = p + ν

n

n∑
i=1

log

(
1 + x�

i,∗Lwxi,∗
ν

)
− log det (� + J ) + 〈y,dw − d〉

+ ρ

2
‖dw − d‖2

2 + 〈Y ,� −Lw〉 + ρ

2
‖� −Lw‖2

F . (16.17)

The subproblem for � can be written as

�l+1 = arg min
��0

− log det (� + J ) + 〈�,Y l〉 + ρ

2

∥∥∥� −Lwl
∥∥∥2

F
. (16.18)

Now, making the simple affine transformation �l+1 = �l+1 + J , we have

�l+1 = arg min
��0

− log det (�) + 〈�,Y l〉 + ρ

2

∥∥∥� −Lwl − J
∥∥∥2

F
, (16.19)

which can be expressed as a proximal operator [41],

�l+1 = proxρ−1
(−log det(·)+〈Y l ,·〉)

(
Lwl + J

)
, (16.20)

whose closed-form solution is given by Lemma 16.1.

Lemma 16.1. The global minimizer of problem (16.20) is [12,53]

�l+1 = 1

2ρ
U

(
� +

√
�2 + 4ρI

)
U�, (16.21)

where U�U� is the eigenvalue decomposition of ρ
(
Lwl + J

) − Y l .

Hence the closed-form solution for (16.18) is

�l+1 = �l+1 − J . (16.22)

The subproblem for w can be written as

minimize
w≥0

ρ

2
w� (

d∗d+L∗L
)
w −

〈
w,L∗ (

Y l + ρ�l+1
)

− d∗ (
yl − ρd

)〉

+ p + ν

n

n∑
i=1

log

(
1 + x�

i,∗Lwxi,∗
ν

)
, (16.23)

where L∗ and d∗ are the adjoint operators of the Laplacian and degree operators, respectively [8].
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We employ the MM framework to formulate an efficient iterative algorithm to obtain a stationary
point of problem (16.23). We proceed by constructing a global upper bound of problem (16.23). Using
the fact that the logarithm is globally upper-bounded by its first-order Taylor expansion, we have

log

(
1 + t

b

)
≤ log

(
1 + a

b

)
+ t − a

a + b
, ∀a ≥ 0, t ≥ 0, b > 0, (16.24)

which results in the following upper bound:

log

(
1 + 〈w,L∗xi,∗x�

i,∗〉
ν

)
≤ 〈w,L∗xi,∗x�

i,∗〉
〈wj ,L∗xi,∗x�

i,∗〉 + ν
+ c1, (16.25)

where c1 = log

(
1 + 〈wj ,L∗xi,∗x�

i,∗〉
ν

)
− 〈wj ,L∗xi,∗x�

i,∗〉
〈wj ,L�xi,∗x�

i,∗〉 + ν
is a constant.

By upper-bounding the objective function of problem (16.23), at point wj = wl , with (16.25),
the vector of graph weights w can then be updated by solving the following nonnegative, quadratic-
constrained, strictly convex problem:

wj+1 = arg min
w≥0

ρ

2
w� (

d∗d+L∗L
)
w −

〈
w,L∗ (

Y l + ρ�l+1
)

− d∗ (
yl − ρd

)〉

+ p + ν

n

n∑
i=1

〈w,L∗xi,∗x�
i,∗〉

〈wj ,L∗xi,∗x�
i,∗〉 + ν

= arg min
w≥0

ρ

2
w� (

d∗d+L∗L
)
w +

〈
w,L∗ (

S̃
j − Y l − ρ�l+1

)
+ d∗ (

yl − ρd
)〉

, (16.26)

where S̃
j � 1

n

n∑
i=1

(p + ν)

〈wj ,L∗(xi,∗x�
i,∗)〉 + ν

xi,∗x�
i,∗ is a weighted sample covariance matrix.

Problem (16.26) is a convex quadratic program, and hence it can be solved efficiently.
The dual variables Y and y are updated as

Y l+1 = Y l + ρ
(
�l+1 −Lwl+1

)
(16.27)

and

yl+1 = yl + ρ
(
dwl+1 − d

)
. (16.28)

Algorithm 16.3 summarizes the implementation of an ADMM algorithm to solve problem (16.16).
To illustrate the benefits of the robustified MLE, we consider learning a financial stock market net-

work comprised of S&P500 stocks belonging to three sectors, namely, Communication Services (red),
Utilities (blue), and Real Estate (green), totaling p = 82 stocks, during the time period from January 3,
2014, to December 29, 2017, resulting in n = 1006 observations. In order to obtain descriptive insights
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Algorithm 16.3: Connected Student t graph learning.

Data: Data matrix X ∈R
n×p, initial estimate of the graph weights w0, desired degree vector d ,

penalty parameter ρ > 0, degrees of freedom ν, tolerance ε > 0
Result: Laplacian estimation: Lw�

1 initialize Y = 0, y = 0
2 l ← 0
3 while max

(|r l |) > ε or max
(|sl |) > ε do

4 � update �l+1 via (16.22)
5 � update wl+1 by iterating the solution of (16.26)
6 � update Y l+1 as in (16.27)
7 � update yl+1 as in (16.28)
8 � compute residual r l+1 = �l+1 −Lwl+1

9 � compute residual sl+1 = dwl+1 − d

10 l ← l + 1
11 end

into this dataset, we measure its degree of heavy-tailedness and annualized volatility.1 The former is ob-
tained by fitting the degrees of freedom of a Student t-distribution to the matrix of log-returns, whereby
we obtain ν ≈ 5.5 and σ ≈ 21%. This scenario can be considered as having a moderate amount of
heavy-tailedness.

Fig. 16.5 depicts the learned connected graphs on the aforementioned time periods. It can be readily
noticed that the graph learned with the Student t-distribution (Fig. 16.5c) is sparser than those learned
with the Gaussian assumption (Figs. 16.5a and 16.5b), which results from the fact that the Gaussian
distribution is more sensitive to outliers. Moreover, the Student t graph presents a higher degree of
interpretability as measured by its modularity value. In addition, a larger number of intersector con-
nections, as indicated by gray-colored edges, which are often spurious from a practical perspective, are
present in the graphs learned using the Gaussian MLE and Gaussian MLE with MCP regularization.
Sparsity regularization provides a means to remove edges between nodes in the presence of data with
outliers and possibly increase the modularity of the resulting graph. However, they bring the additional
task of tuning hyperparameters, which is often repetitive and impractical for real-time applications. A
cleaner graph, without the need for postprocessing or additional regularization, is obtained directly by
using the Student t assumption. More details can be found in [8].

16.4 Clustering
Recently, Kumar et al. [26,28], Nie et al. [40] proposed optimization programs for learning the class
of k-component graphs, as such class is an appealing model for clustering tasks due to the spectral

1 The annualized volatility is computed as σ =
√

252
p

∑p
i=1 σi , where σi is the daily sample standard deviation of the ith stock.
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FIGURE 16.5

Learned graphs of S&P500 stocks.

properties of the Laplacian matrix. Clustering may be accomplished through graphs by directly taking
advantage of the fact that a graph that has k disconnected components must satisfy rank(L) = p − k

[9].
More precisely, Nie et al. [40] proposed the constrained Laplacian-rank (CLR) algorithm, which

works in two stages. In the first stage it estimates a connected graph and in the second stage it heuristi-
cally projects the graph onto the set of Laplacian matrices of dimension p with rank p − k, where k is
the given number of graph components. This approach is summarized as follows:

1. Obtain an initial affinity matrix A� as the optimal solution of

minimize
A

1
2 tr (AZ) + η

2 ‖A‖2
F ,

subject to diag (A) = 0, A1 = 1, Aij ≥ 0 ∀i, j.
(16.29)

Note that problem (16.29) is a convex quadratic program; hence, it can be readily solved computa-
tionally.

2. Find a projection of A� such that L� = Diag(B��+B�

2 ) − B��+B�

2 has rank p − k:

minimize
B,L�0

‖B − A�‖2
F,

subject to B1 = 1, rank(L) = p − k,

L = Diag(B�+B
2 ) − B�+B

2 ,

(16.30)

where k is the desired number of graph components.
Note that problem (16.30) is nonconvex due to the rank constraint. However, a suitable approxima-
tion can be made, which leads to the design of an alternate optimization scheme. We point interested
readers to [40] for the derivation.
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Spectral constraints on the Laplacian matrix are an intuitive way to recover k-component graphs as
the multiplicity of its zero eigenvalue, i.e., the nullity of L, dictates the number of components of a
graph. The first framework to impose structures on the estimated Laplacian matrix under a multivariate
Gaussian setting was proposed by Kumar et al. [26,28], through the use of spectral constraints, as
follows:

minimize
w≥0,U ,λ

tr (LwS) −
p−k∑
i=1

log (λi) + η

2

∥∥∥Lw − UDiag(λ)U�
∥∥∥2

F
,

subject to U�U = I , U ∈R
p×(p−k),

λ ∈R
p−k
+ , c1 < λ1 < · · · < λp−k < c2,

(16.31)

where the term η
2

∥∥L − UDiag(λ)U�∥∥2
F, often called spectral regularization, is added as a penalty term

to indirectly promote L to have the same rank as UDiag(λ)U�, i.e., p − k, k is the number of com-
ponents of the graph to be chosen a priori, η > 0 is a hyperparameter that controls the penalization on
the spectral factorization of L, and c1 and c2 are positive, real-valued constants employed to promote
bounds on the eigenvalues of L. While problem (16.31) is nonconvex, the authors in [28] employed
the block MM framework [48] to obtain a stationary point. Note that the block MM framework is a
natural extension of the MM principle for multiple blocks of variables in a coordinate descent fashion,
i.e., the variables are partitioned into blocks and MM is applied to one block while keeping the value of
the other blocks fixed. This framework provides a clear flexibility benefit when designing majorization
functions. The convergence for the algorithm proposed in [28] is quite involved; therefore, we refer
interested readers to their supplementary material. We denote the estimator in problem (16.31) as SGL.

We now elaborate on the algorithm proposed by Kumar et al. [28]. The subproblem for w can be
written as

minimize
w≥0

tr (LwS) + η
2

∥∥Lw − UDiag(λ)U�∥∥2
F , (16.32)

which is a convex QP without closed form; nonetheless, it can be solved via standard QP solvers or
projected gradient descent methods.

The subproblem for U can be written as

minimize
U

∥∥Lw − UDiag(λ)U�∥∥2
F ,

subject to U�U = I , U ∈R
p×(p−k),

(16.33)

which can be further simplified as

maximize
U

tr
(
U�LwUDiag(λ)

)
,

subject to U�U = I , U ∈ R
p×(p−k).

(16.34)

Problem (16.34) is an optimization on the orthogonal Stiefel manifold St(p,p − k) = {U ∈
R

p×p−k : U�U = I }. From [1] the optimizer of (16.34) is the p − k eigenvectors of Lw associated
with the p − k largest eigenvalues of Lw.
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The subproblem for λ is given as

minimize
λ

−
p−k∑
i=1

log (λi) + η

2

∥∥∥Lw − UDiag(λ)U�
∥∥∥2

F
,

subject to λ ∈R
p−k
+ , c1 < λ1 < · · · < λp−k < c2,

(16.35)

which can be simplified as

minimize
λ

−
p−k∑
i=1

log (λi) + η

2
‖u − λ‖2

2 ,

subject to λ ∈R
p−k
+ , c1 < λ1 < · · · < λp−k < c2,

(16.36)

where u = diag(U�LwU).
Problem (16.36) is a convex optimization problem with isotonic constraints. While it can be solved

via general-purpose convex solvers, dedicated algorithms are needed for high-dimensional cases [50].
Algorithm 16.4 summarizes the scheme of Kumar et al. [28] for k-component graph learning.

Algorithm 16.4: k-component graph learning (SGL).

Data: Similarity matrix S ∈ R
p×p, initial estimate of the graph weights w0, integer number of

graph components k.
Result: Graph Laplacian estimation: Lw�.

1 i ← 0
2 while convergence criteria not met do
3 � update wi+1 via (16.32)
4 � update U i+1 via (16.34)
5 � update λi+1 via (16.36)
6 i ← i + 1
7 end

Note that problem (16.31) learns a k-component graph without the need for a two-stage algorithm.
However, a clear caveat of this formulation is that it does not control the degrees of the nodes in the
graph, which may result in a trivial solution that contains isolated nodes, turning out not to be useful
for clustering tasks, especially when applied to noisy datasets or to datasets that are not significantly
Gaussian-distributed. In addition, choosing values for hyperparameters η, c1, and c2 is often an intricate
task.

To showcase the capabilities of the estimators CLR and SGL, we perform experiments with both
synthetic and real datasets. Fig. 16.6 illustrates the results of clustering synthetic structures via SGL
using the spatial coordinates of the nodes as features, with 100 nodes per cluster, i.e., the data matrix is
X ∈R

100×n, where n is the number of spatial dimensions and each row of X is associated with a node’s
coordinates. More precisely, we have n = 2 in Figs. 16.6a–16.6e and n = 3 in Fig. 16.6f. We observe
that SGL succeeds in correctly clustering the nodes according to their cluster membership.
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FIGURE 16.6

The estimator defined in problem (16.31) is able to perfectly cluster the data points according to their cluster
membership for synthetic structures.

As for a real-world dataset, we consider foreign exchange data from the 34 most traded currencies
in the period from January 2, 2019, to December 31, 2020, totaling n = 522 observations. The data
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matrix is composed by the log-returns of the currencies’ prices with respect to the United States dollar.
Unlike in the experiment involving S&P500 stocks, there is no classification standard for currencies;
hence, we use a community detection algorithm [10] in order to create classes within the learned graph.
In particular, the algorithm in [10] takes as input the learned Laplacian matrix of the graph and outputs
a membership assignment that maximizes the modularity of the graph.

FIGURE 16.7

Learned nine-component graphs of currencies.

Fig. 16.7 depicts the learned nine-component graphs of currencies during the time window from
January 2, 2019, to December 31, 2020, where we can readily observe a few meaningful connections
between currencies of countries that are geographically close to each other. We can observe that SGL
and CLR allow the existence of isolated nodes in the learned graphs, which may not be ideal if we
would like to cluster a particular node. More details can be found in [8].

16.4.1 Soft-clustering via bipartite graphs
Bipartite graphs are graphs whose node set can be partitioned in two disjoint groups [9]. More
formally, an undirected, weighted, bipartite graph can be defined as a 4-tuple G �

{
Vr ,Vq,E,W

}
,

where Vr � {1,2, . . . , r} and Vq � {r + 1, r + 2, . . . , r + q} are the node sets associated with a group
of objects and classes, respectively, E ⊆ {{u,v} : u ∈ Vr , v ∈ Vq

}
is the edge set, that is, a subset

of the set of all possible unordered pairs of r + q nodes such that {u,v} ∈ E if and only if nodes
u and v are connected, and W ∈ R

p×p
+ is the symmetric weighted adjacency matrix that satisfies

Wii = 0, Wij > 0 if and only if {i, j} ∈ E and Wij = 0 otherwise. Fig. 16.8 displays an instance of
such model.

Properties associated with the spectral decomposition of graph matrices have demonstrated prolific
advantages that enable learning graphs with specific structures, such as bipartite, k-component, and
bipartite k-component graphs [26–28,38–40]. Let W = V Diag(ψ)V � be the spectral decomposition



16.4 Clustering 1067

FIGURE 16.8

A bipartite graph illustrating the modeling of dependencies between a collection of objects and their classes.
The edges of the graph correspond to nonzero elements in its adjacency matrix W .

of the adjacency matrix. Then the adjacency matrix of a bipartite graph satisfies the following spectral
properties [20]:

(P1) ψ contains exactly r − q zero elements;
(P2) ψ is antisymmetric, i.e., ψ ∈ Cψ , where

Cψ ={
ψ ∈ R

p : ψ i = −ψ2q+1−i , c1 ≥ ψ1 ≥ ψ2 ≥ · · · ≥ ψq ≥ c2,

i = 1,2, . . . , q} , (16.37)

where c1 and c2 are positive constants.
Leveraging (P1) and (P2), Kumar et al. [26,27] proposed the following nonconvex program to learn

a bipartite graph:

minimize
w,V ,ψ

tr (LwS) − log det (Lw + J ) + γ
2

∥∥Aw − V Diag(ψ)V �∥∥2
F ,

subject to w ∈R
p(p−1)/2
+ , V �V = I 2q, V ∈R

p×2q, ψ ∈ Cψ ,

(16.38)

where L and A [26] are the Laplacian and adjacency operators, respectively, and w is the vector of
graph weights. While the estimator proposed in Kumar et al. [26] does not directly assume knowledge
of the partition of the node set, it does require the availability of the number of nodes in each group. We
denote the estimator defined by problem (16.38) as SGA. The development of a block MM optimization
algorithm to solve problem (16.38) is substantially similar to that of problem (16.31); hence, we omit
the mathematical derivations.

Assuming a connected bipartite graph, Nie et al. [38] proposed a heuristic approach that relies on
the availability of a graph similarity matrix B0 ∈R

r×q and used the fact that the adjacency matrix of
a bipartite graph can be written as W = [0 B;B� 0]. More precisely, their estimator is obtained as the
solution of the following optimization problem:

minimize
B∈Rr×q

+

∥∥B − B0
∥∥2

F ,

subject to B ≥ 0, B1q = 1r .

(16.39)
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Problem (16.39) is a Euclidean projection of the rows of B onto the probability simplex. While it
can be solved efficiently via standard quadratic programming solvers, this approach lacks statistical
support and its performance in practical applications heavily depends on the quality of the initial graph
similarity matrix. We denote the estimator defined by problem (16.39) as SOBG.

We illustrate the performance of the state-of-the-art algorithms in terms of quantitative measures
such as node label accuracy and modularity. The accuracy is computed as the ratio between the number
of correctly predicted labels and the number of nodes in the object set, whereas the modularity of a
graph is defined as in [37]. The modularity measures the strength of division of a graph into groups. A
high modularity value means that the nodes from the same group are more likely to be connected.

We conduct a soft-clustering experiment using the MNIST image data [31]. While this dataset has
been widely investigated in supervised machine (deep) learning settings, which achieved human-like
accuracy, we instead use it as a proof of concept for unsupervised soft-clustering via graphical models.
MNIST provides a collection of 28 × 28 grayscaled images of handwritten digits from 0 to 9. The nodes
in the classes set are defined such that every node corresponds to a unique digit, i.e., Vq = {0,1, . . . ,9}.
We assign 500 nodes for the object set, each of which represents an image randomly selected from the
testing set. We randomly select the images in a stratified way, such that every label (digit) appears 50
times. The signal for a node vi ∈ Vq , associated with digit i, is constructed by averaging 1000 randomly
selected images from the training set whose label corresponds to i. We construct the data matrix X

by vectorizing and stacking the images in a columnwise manner. The quantitative measures are then
computed as an average of 50 realizations of this randomized experiment.

Table 16.1 Performance of the al-
gorithms in soft-clustering hand-
written digits.

Algorithm Accuracy Modularity
SOBG 0.76 +/- 0.01 0.29 +/- 0.01

SGA 0.62 +/- 0.02 0.35 +/- 0.05

We then proceed to learn graphs by SOBG and SGA. The final label assigned to the ith image
in the object set corresponds to arg maxj∈1,...,q Bij − 1. Fig. 16.9 shows the estimated graphs, while
Table 16.1 provides quantitative results, where we observe that SGA outputs a sparser graph that turns
out to have a higher modularity value than that of SOBG; on the other hand, SOBG yields a graph that
is more accurate.

16.5 Conclusion
In this chapter, we reviewed state-of-the-art formulations and numerical optimization algorithms for
graph learning under different practical requirements, e.g., sparsity and heavy tails, and different struc-
tures, such as k-components and bipartite. We illustrated the power of modern graph learning estimators
via experiments that included practical real-world datasets such as returns from financial equities and
currencies as well as images of handwritten digits.
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FIGURE 16.9

Learned bipartite graphs of handwritten digital images in the MNIST dataset. Each color represents a digit.
Gray-colored edges represent connections between images of distinct digits.
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17.1 Data-driven AI via dictionary learning for sparse signal processing
In the beginning there was information. The word came later. The transition was achieved by the
development of organisms with the capacity for selectively exploiting this information in order to
survive and perpetuate their kind.

– Fred I. Dretske, 1981 [46]

What use can the brain make of the massive flow of sensory information that occurs without any
associated rewards or punishments?

– Horace Barlow, 1989 [12]

How does one process information-laden streams of sensory data and extract thereof “dictionaries of
words” whose subsequent recognition can lead to actionable consequences? The answer to this question
is of immense importance given that the ability to learn representation vectors from observed signals
increasingly is at the foundation of much of our modern autonomous and decision making technologies.
The combination of machine learning and contemporary 21st-century statistical signal processing is at
the frontier of research and development for sensor-driven artificial intelligence (AI). One only needs
to search an academic internet database using the combination of the strings “dictionary learning” and
“machine learning” to obtain thousands of hits and thereby quickly discover that dictionary learning
has become a primary implement in the contemporary toolkit of modern machine learning in sensor-
driven environments. This fact has influenced a new generation of machine learning textbooks written
to ensure that the next generation of data scientists will have a requisite mastery of advanced tools of
contemporary statistical signal processing and the techniques of machine learning [166,105,168,90]; a
symbiosis critical for creating algorithms capable of interfacing with the physical world in an intelligent
and purposeful manner.

As well outlined and described in [153], the approximately 20-year period between 1990 and 2010
witnessed a sea change from a mature basis-based (Fourier, Laplace, etc.) approach to signal processing
to a rigorous frame-based (wavelets, dictionaries, etc.) perspective that has greatly enhanced our ability

Signal Processing and Machine Learning Theory. https://doi.org/10.1016/B978-0-32-391772-8.00023-5
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to represent, process, and extract information from signals detected in the world via a variety of sensory
modalities.1 This 21st-century (“not your grandfather’s”) signal processing science is beginning to find
its way into the basic curricula of undergraduate education [166] and has become an important, and
even central, theme in some introductory-level graduate textbooks [168,114].

In this chapter we emphasize the fact that the natural sensory world has sparse structure that can
be learned in a data-driven manner. This learned structure can be used not only for applications in
classical signal processing (such as sensing, channel equalization, compression, denoising, interpola-
tion/infilling, etc.), but also for AI applications involving discrimination, classification, regression, and
explanation of complex events sensed in the real physical world. The natural world is the world that
all living organisms have evolved to survive in, and within which intelligent robots, autonomous ve-
hicles, continuous glucose monitoring sensors, earthquake warning systems, greenhouse gas detectors,
and all other sensor-based reasoning systems must effectively function. The appropriate AI tools for
such applications cannot merely only be applicable to simple webpage click-count contingency tables
stored in a spreadsheet, but must be able to interface nicely with and process features extracted from
sensory data, often streaming and often in real time. Any successfully autonomous agent, real or syn-
thetic, that navigates or interfaces with the natural, physical world must be able to sense that world in
a manner that allows for the extraction of actionable, and even interpretable, information. Data scien-
tists who can function at the interface of the sensory world and AI systems must have a sophisticated
knowledge of how to combine the analysis and synthesis tools of both machine learning and statistical
signal processing. For this reason, we present dictionary learning as an important data-driven method-
ology for learning and encoding structure extracted from observations of domains encountered in the
natural world that enhances our understanding of those domains in support of machine learning appli-
cations.

The section topics are as follows. Sections 17.2 and 17.3 state the sparse representation problem; de-
fine terminology; discuss the difference between designed and learned dictionaries; and describe some
of the commonly used algorithms to obtained a sparse representation vector x ∈X=R

m for a given
observation vector y ∈Y=R

n. Section 17.4 derives the two most commonly used dictionary learning
algorithms, the Method of Moments (MOM) and K-singular value decomposition (K-SVD) algorithms,
and describes their relationship to K-means clustering, PCA, and factor analysis (FA). Section 17.5
describes the Bayesian approach to dictionary learning, derives the Sparse Bayesian Learning (SBL)
dictionary learning algorithm, and discusses the SBL algorithm from an information theory perspec-
tive. Section 17.6 describes the nonnegative matrix factorization (NMF) approach to dictionary learning
within the SBL framework. Section 17.7 discusses some connections between manifold learning and
dictionary learning. Section 17.8 discusses the use of dictionary learning for clustering and classifica-
tion. In Section 17.9 we discuss how the stacking of dictionaries can be used for feature extraction at
multiple scales of resolution and can be combined with tasks such as classification or regression. In
Section 17.10 we discuss an approach to kernelizing dictionary learning. Finally, in Section 17.11 we
close with some final comments.

1 The survey references [153,169,93] discuss the important, path-breaking leap in the rigor of the formalism of sparse and
compressive sensing that was provided by the seminal papers [25,44]. The contemporary sparse signal processing approach is
described at length (in roughly chronological order) in the following books and specialist monographs: [157,49,52,63,139,111,
150,164,176].
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This chapter’s goals are primarily pedagogical. For this purpose, notationally and conceptually, we
have been greatly influenced by reference [168] for describing the statement of the sparse inverse prob-
lem2 and by [153,174] when motivating the dictionary learning problem. Indeed, these are excellent
first-encounter resources the reader might read before, while, or after exploring the content of this
chapter. For going beyond these introductory resources there are many followup references, many of
which are cited herein.

17.2 Sparsity and sparse representations
17.2.1 “Something rather than anything” – sparse structure in the natural world
That the world impinges on our sensory modalities in a statistically succinct and structured manner that
can be exploited via a process of “redundancy removal” is an empirical fact that has been noted by
scientists concerned with animal sensory systems for several decades [9,11,132,133].

Suppose we were to encounter a two-dimensional sensory world having completely uniform in-
dependent statistical structure at all scales, i.e., an unconstrained, maximum-entropy sensory world.
A “typical” image drawn from such a distribution3 would look like Fig. 17.1(A) in the limit that the
spatial scale goes to zero, corresponding to spatially and temporally independent noise that has equal
power at all frequencies in all spatial directions. In this limit, Fig. 17.1(A) becomes a white blank with
no discernable structure at any scale; i.e., seeing “anything” yields “nothing of interest”. In this uncon-
strained maximum-entropy sensory world, an image like Fig. 17.1(B) is not typical and perceiving such
an image would be a probability zero event.

Yet perception of the natural world reveals quite the opposite [9,11,132,133]. There is structure in
the natural world [45,104], and under the pressure of survival selection the sensory organs of animals
have evolved to efficiently exploit this structure [183,22,23,182]. In the natural world the image shown
in Fig. 17.1(b) is a realized something that is of interest precisely because it differs from other realized
somethings in a distributionally nontrivial way. Data scientists and practitioners of modern 21st-century
statistical signal processing have come to understand that we have much to learn about nature’s solu-
tions (witness, e.g., the highly evolved primate visual system) to the problem of understanding the
structured natural world from sensory data [62,45,200,175,82,174,201,104].

The structure that exists in the natural world can be learned and codified in dictionaries whose
elements (a.k.a. atoms) serve as “words” that each succinctly capture an atomic piece of that structure.
A picturesque metaphor is to think of an overcomplete dictionary as a huge lexicon of words that
enables one to find just the right succinct expression of a few words eloquently combined. Rather than
struggle to convey a complicated idea using a small dictionary with a restricted vocabulary, with an
appropriately large dictionary one has access to the single, most apt word that perfectly describes the
situation. Thus in a large array of possible words (all contained in an overcomplete dictionary) we
search for a few highly meaningful ones. Thus a quest for sparsity is often a quest for meaning.

2 Specifically we highly recommend Chapters 9 and 10 of [168] for descriptive introductions and explanations of concepts and
algorithms that are too lengthy to provide here.
3 For a rigorous definition of “typicality” see [37].
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FIGURE 17.1

Natural images. The natural world generates data with low-dimensional structure [62,133,45].

17.2.2 Sparsity: “meaning” versus “information as choice of possibilities”
It is important to distinguish between “meaning” and “information” in the modern engineering tech-
nical sense of the word “information.” There is an unfortunate confusion between the use of the word
“information” in the vernacular sense and that used in its technical information theoretic sense. In its
vernacular sense the denotation of the word “information” is conflated with that of the word “mean-
ing” (as in the text message string “FYI”), whereas its technical sense it stands for “range of choice of
possible outcome” or “range of choice of possibility.”4 The separation of the concepts of “meaning”
and “choice” in the modern theory of information founded by Shannon [159,160] was a key step in the
development of a practically useful mathematical theory of information [144,165].

“Entropy” is a scalar measure of how much choice exists5 and a technical measure of information
in the sense that once one knows what choice of possibilities occurred, then all other possibilities are
ruled out. We stress again that this definition is independent of the possibility of the existence of any
“meaning” associated with that choice (which could be due to, e.g., instantiation of a purely random
noise). Any meaning that does happen to be attached to the occurrence of that particular choice is either
apparent to some human (or animal) that becomes aware of that choice, or else is “meaningful” in an
actionable sense if its occurrence triggers subsequent automatic/mechanical consequences. Because of

4 As expressed by Shannon and Weaver in [160]: “Information must not be confused with meaning,” and “Information is a
measure of one’s freedom of choice when one selects a message,” [emphasis added]. This can be stated using the axiomatic setup
of a probability space (�,F ,μ) with a finite sample space |�| < ∞. The primary outcomes of interest are the probability atoms
of the σ -algebra F ; the (finite in this case) number of such possible atomic outcomes and knowledge of which of these atoms
occurs (or could occur) as an experimental outcome is directly related to information in the technical sense (“which outcome
did nature choose”). For excellent pedagogic discussions of these matters, see [144,165]. For a detailed, mathematically rigorous
discussion, see [117].
5 Shannon entropy is actually a measure of average “surprise.” But since surprise directly relates to what choice of outcomes
occurred, our choice of wording should be harmless enough.
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the definition of entropy as a measure of “information as choice of outcome” one needs to be mindful of
the fact that noise and an intentional signal both have information, and that generally the sum of them
has even more information, and that therefore removing the noise from the sum to retrieve the signal is
a loss of (“bad”) information. Because of difficulties associated with “filtering” out noise, it is common
to work with noiseless models6 or, if that is not possible, to distinguish between “signal” and “noise”
by assuming that “signals” have statistical structure (i.e., correlations among the signals) while “noise”
does not (i.e., noise is uncorrelated, a.k.a. “white noise”).7 We assume in this chapter that the reader
has some familiarity with information theory; if that is not the case, then the brief summary given in
[8] is highly recommended.8

To maximize entropy is to maximize choice; to minimize entropy is to minimize choice. Note that
extracting sparse structure from sensory data generally corresponds to a minimization of choice (since
many possibility entities that do not fit the structure are “zeroed out”). Often a search for sparse struc-
ture is a search for meaning, i.e., for “information” in the vernacular sense, not for information in the
technical sense. And to look for structured patterns is to ask what is irrelevant and can be thrown away.
This is the reason that in the pattern recognition literature one encounters papers with titles like “Pat-
tern Recognition as a Quest for Minimum Entropy” [180]. To minimize entropy is to minimize choice,
often a chaotic range of choices, and it is common, especially in the theory of thermodynamics, to as-
sociate low entropy with order and high entropy with disorder. Thus a search for a sparse (low-entropy)
representation x of an observation y is a search for order that denotes a pattern and a pattern can be a
signifier of a meaningful situation to a human being or AI system. However, one must not do this in
a manner that throws away “good” information (such as contained in a statistically structured signal
of interest), but preferentially (nearly only) gets rid of “bad” information (such as white noise). This
can be done by entropy minimization of factorial representations that are simultaneously constrained
to faithfully represent observed data. These points will be discussed later below once an appropriate
mathematical framework has been set up.

17.2.3 The linear sparse generative model
First consider the noiseless model case

y = Ax with A ∈R
n×m and rank(A) = n. (17.1)

We say that the full row-rank matrix A is fat when m > n and square when m = n. We refer to either A

or the collection of its m columns as a dictionary, where the distinction between these two cases should
be clear from the context. In this chapter we are primarily concerned with the situation when A is fat
and full-rank, in which case the system is underdetermined and the dictionary A (equivalently, its set
of columns) is said to be overcomplete.9

6 Even this is not true, it may lead to acceptable results.
7 The problem of dealing with correlated noise is generally nontrivial and, in this case, it is not unusual, at least initially, to
distinguish between noise and signal.
8 An excellent and very accessible introduction to information theory is [165]. The very readable modern classic account is [37].
9 Note that the noiseless overcomplete dictionary model (17.1) is different from the standard principal component analysis (PCA)
model which assumes a (possibly rank-deficient) square matrix, m = n, that can be derived from an estimate of the covariance
matrix of y when y is random [115,88].
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To know the model (17.1) means that we know the dictionary A and any statistical assumptions that
might hold on the vector x if it is assumed to be random.10 For any observed y ∈Y=R

n we assume
that it was generated from some vector x ∈X=R

m via the above model.11 Given the assumption that
(17.1) serves as a generative model of y, then given an observation y we can ask when there exists a
unique generator x and how it can be found. These and other questions are the subject matter of sparse
signal processing and compressive sensing.

More realistically, one can consider the model-with-error case,

y = Ax + ε, (17.2)

where a variety of stochastic and/or nonstochastic modeling assumptions can be placed on the noise
error term ε. For example, one can have a stochastic “signal-plus-noise” model

y = s + n, s = Ax, (17.3)

where s = Ax satisfies the modeling assumptions of (17.1) and n = ε is a random measurement noise,
a situation that corresponds to a noisily observed signal of interest that is sparsely generated. Or ε can
be a deterministic modeling error,

ε
def= y − ŷ, ŷ = Ax,

where ŷ is an approximation to y that has a sparse representation, in which case we say that x provides
a sparse approximation of y, a situation that is encountered when one is interested in a compressed
representation x of an observation (say an image) y. And, of course, one can combine these two sce-
narios.12

In all cases considered above, noisily observed or not, our interest is in solving an inverse problem
of the form η = Ax for η = y, s, or ŷ. To a large extent we focus on the paradigmatic error-free model
(17.1)13 and we interchangeably refer to x as either a solution (to y = Ax) or as a representation (of
y). We define the sparsity sp(x) of the n-vector x to be its number of nonzero elements.14 Evidently,
because rank(A) = n means that A must have n linearly independent columns, 0 ≤ sp(x) ≤ n. It is the
case that sp(x) = ‖x‖0, where

‖x‖0
def= lim

p→0+

⎛
⎝ m∑

j=1

|xj |p
⎞
⎠

1
p

. (17.4)

Here ‖x‖0 gives the count of the nonzero components of x and is often called (as an usually harmless
abuse of terminology) the “zero-norm.” By definition, x is said to be k-sparse if its sparsity is at most
k, sp(x) ≤ k.

10 Unless specified otherwise, the default assumption is that x is deterministic or conditioned on.
11 Unless otherwise stated, we assume Y=R

n and X=R
m.

12 Analogously to Footnote 9, note that the noisy overcomplete dictionary model (17.2) is different from the standard FA model
that applies when y is random and A is assumed to be tall, n > m, and one-to-one [115,88].
13 Which has great practical utility even in the case of modeling error provided the error is “negligible.”
14 The sparsity of x should not be confused with the spark of the dictionary matrix A, spark(A), to be mentioned below.
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17.2.4 Sufficient conditions for a unique sparse solution
So far the only conditions placed on the n × m dictionary A are that it is fat and has full (row) rank,
rank(A) = n ≤ m. Subject to only these conditions, which imply that A must have at least one subset
of n linearly independent columns, every observed y ∈R

n = range(A) is guaranteed to have some (not
necessarily unique) k-sparse representation x with k ≤ n. Additional conditions that one can place on
the dictionary A to guarantee uniqueness of a sufficiently sparse solution to y = Ax are naturally of
keen interest. A sufficient condition based on a unique representation property (URP) (defined below)
was given in [75]. This was followed a few years later by the path-breaking papers [25,27,44], which led
to a variety of sufficient conditions based on the concepts of spark, mutual coherence, and the restricted
isometry property (RIP). In the interest of space we briefly describe the spark of a matrix followed by
some general comments.15

Following [44], for a full row-rank matrix A one defines the spark of A as

spark(A) = smallest number of columns of A which are linearly dependent ≤ n + 1. (17.5)

Note that by definition any k < spark(A) columns selected from A are linearly independent. By defini-
tion we say that the unique representation property (URP) holds for an n × m full row-rank matrix A

when spark(A) = n + 1 [75]. A key result is the following sufficient condition for uniqueness:

• Given y, a full row-rank matrix A, and a solution x such that y = Ax, x is unique if

sp(x) <
1

2
spark(A).

As a corollary we have that if A satisfies the URP, then a sparse solution x is unique if sp(x) < (n +
1)/2.

For arbitrary matrices of even moderate size, the direct verification of the sufficient conditions
based on spark, mutual coherence, or the URP property is computationally intractable. For this reason
one often works with structured families of designed matrices16 that provably satisfy the sufficient
conditions. Alternatively, as discussed in this chapter, one can learn dictionaries from observational
data that, at least empirically, provide stable sparse representations of the data.17 One way to build
designed matrices is to randomly and independently select the elements of the dictionaries as such
dictionaries can be shown to satisfy the desired sufficient conditions (and in particular the URP) with
high probability. In particular, such a randomly selected matrix ensures that the uniform uncertainty
principle (UUP) holds [26], which is sufficient to guarantee the URP-related sufficient conditions for
uniqueness of a sufficiently sparse solution. This fact enhances the belief that learning dictionaries from
noisy natural data will also satisfy the sufficient conditions with high probability and that sufficiently
sparse solutions (in particular those that satisfy the URP-justified condition sp(x) < n/2 [75]) are likely
to be unique with high probability.

15 For more details see the very accessible discussion of these results given in Chapter 9 of [168].
16 By a “designed matrix” we mean a matrix that has been built (“designed”) to satisfy specified properties. Note that this should
not be confused with a design matrix (a.k.a. data matrix) whose columns or rows are comprised of observed data vectors.
17 Somewhat confusingly, if one learns (estimates) dictionaries from data for specific application purposes, say for classification,
such dictionaries are also sometimes referred to as “designed” in the literature. We eschew this latter terminology: In this chapter,
by “designed” we mean something akin to “handcrafted to meet specified constraints.”
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17.2.5 Sparsity classes
Each representation x ∈R

m of y = Ax has a distinct sparsity pattern or sparsity class cx defined by
j ∈ cx if and only if xj �= 0. The cardinality of the set cx is the sparsity |cx | = sp(x). For |cx | = k, cx

has the form

cx = (j1, · · · , jk) .

The collection of all possible sparsity patterns is denoted by S(m), cx ∈ S(m), and the number of
distinct possible sparsity classes is |S(m)| = 2m. In particular, the number of sparsity classes cx with
sparsity k = |cx | is

(
m
k

)
and the sum of these numbers is 2m.

If we assume that we are working with a unique sparse representation of y, then we can reference
the sparsity pattern as cy = cx . Often we will make this assumption, in which case the sparsity class
will be denoted as cy , or even just c when y is tacitly understood.

Knowledge of the sparsity class cx allows us to write

y = Ax =
m∑

j=1

xjaj =
∑
j∈cx

xjaj =
m∑

j=1

sjcx xjaj for sjcx = 1{j ∈ cx}, (17.6)

where xj is the j th component of x, aj is the j th column of A, and 1{·} denotes the 0–1 indicator
function where the value 1 indicates that the argument is a true statement. The 0–1 indicators sjcx are
elements of an m-vector representation of the class cx denoted by scx such that

xj �= 0 ⇐⇒ sjcx = 1 and xj = 0 ⇐⇒ sjcx = 0.

Given an observation y, assume that it has a unique maximally sparse18 representation c = cy = cx .
Given the n × m full rank, fat dictionary matrix A = (a1 · · · am

)
, define the m × k subdictionary

(submatrix) Ac by

Ac = (ai1 · · · aik

) ∈R
n×k and

xT
c = (xi1 · · · xik

) ∈R
k for distinct ij ∈ c, |c| = k ≤ n + 1

2
.

We then have

y = Ax = Acxc.

Conceptually, this shows that one way to solve the underdetermined inverse problem y = Ax for the
unique maximally sparse solution x is via a two-step procedure:

S1: Given y determine its maximal sparsity class c = cy .

S2: Compute xc = A+
c y = (AT

c Ac

)−1
AT

c y.

18 By this we mean that k = |c| is a minimum. Note that to be maximally sparse is to have a minimum value for the sparsity
k. For this reason, it would seem better to refer to k as the diversity [140], but the current terminology seems entrenched in the
sparse signal processing literature. However, below we will refer to functions that we minimize to maximize the “sparsity” k as
diversity measures.
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The classification step S1 is generally a nonlinear one. Step S2 is the standard (linear) pseudoinverse
solution xc = A+

c y for a full-rank overdetermined linear system of equations y = Acxc.
Note that the classification step S1 provides pointers to each of the k = |c| columns that (when

weighted) sum up to provide a sparse representation of y ∈ range(Ac). If we force k to take the value
k = 1, the two-step procedure corresponds to vector quantization (VQ), which is a coding algorithm
that selects a single vector (in this case, a weighted single column of A) to serve as an exemplar for
measurements in the vicinity of the measurement y [65]. Thus the two-step procedure S1 and S2, and
more generally the sparse inverse problem itself, can be viewed as a generalization of VQ.19

17.2.6 Bases, frames, dictionaries, and sparsity classes
Given an n × m dictionary matrix A = (a1 · · · am) which is onto we have that for all y ∈R

n,20

y ∈R
n = range(A) = span(D) with D = {a1, · · · ,am} and m ≥ n.

The dictionary D is also known as a frame. If m = n, then D is a basis, also called a tight frame or a
complete frame. If m = n and the elements of D are orthonormal, then D is an orthonormal basis.

Associated with the basis vectors of a general (not necessarily orthonormal) tight frame is a dual
basis that is also a tight frame such that the basis and dual basis are biorthonormal.21 An orthonormal
basis is a tight frame for which the basis and the dual basis are identical. If m > n the dictionary (frame)
is said to be overcomplete and if m < n the frame is undercomplete. Consider the system y = Ax for
arbitrary y: When A is overcomplete the system is underdetermined; when A is complete the system is
determined; and when A is undercomplete the system is overdetermined.

The column vector aj is referred to as a word or atom of the dictionary/frame D. At times, we
also refer to aj as a component by analogy with PCA. As nicely described in [153], as one moves
from an orthonormal basis to a tight frame to an overcomplete dictionary one increases the expressive
power of a solution to the inverse problem y = Ax, whereas as one moves in the reverse direction from
overcomplete dictionary to tight frame to orthonormal basis one increases the computational ease of
solving the inverse problem, i.e., there is a trade-off between expressiveness and computational ease.
Given an overcomplete dictionary D, one might be interested in extracting n elements to serve as a
basis (tight frame) that appears to be very good for subsequent use for finding representations of new
observations y; such a methodology falls under the rubric of “best basis selection.”

For a large enough dictionary m � n the probability that there is a single word aj , or a very small
number of words, that with high accuracy expresses y up to a constant multiple α, y ≈ αaj , becomes
high. When a single word can always do the job, we have sparsity k = 1, in which case the problem
becomes equal to VQ, and when k > 1 is the case, then the problem is a generalization of VQ as briefly
mentioned at the end of the previous Subsection 17.2.5. From the perspective of the discussion given
in that subsection, we can view a particular selection of words to represent y as a choice of a sparsity

19 This perspective has proven to be very fruitful for creating dictionary learning algorithms [54,53,2,4], as discussed below.
20 The span of a set of vectors is the set of all linear combinations of the vectors.
21 Every Banach space (i.e., normed linear vector space) Y with a countable basis (where in our case we have Y =R

n) has a
dual Banach space Y∗ of bounded linear operators with a countable dual basis. If Y is also a Hilbert space (in our case R

n with
the standard Euclidean metric), then it is self-dual so that the space and its dual can be treated as the same space Y ≡Y∗. In this
latter case, the dual basis, also in this case called the reciprocal basis, is an alternative basis for the space Y . See [106,92].
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class cy ∈ S(m) where as m gets larger we have a greater chance of finding the perfect set of a very few
words that can express y succinctly and even, if the dictionary is chosen appropriately, meaningfully.

17.3 Sparse signal processing
Here we briefly mention some of the primary algorithms used to solve the sparse representation problem
given a dictionary A. More details on sparse signal processing and compressive sensing can be found
in [24,169,168] and a succinct survey is given in [93].

17.3.1 Measures of sparsity and diversity
The most commonly used procedures for searching for sparse representations minimize explicitly
defined scalar measures of diversity, d(x). Minimizing diversity is equivalent to maximizing con-
centration (in particular, sparsity) and for this reason the same measure can be referred to both as a
concentration measure and as a diversity measure. Thus one speaks of maximizing sparsity (a type of
concentration) while typically actually implementing a diversity minimization algorithm.

There are many measures of diversity that have been considered for use in ecology and economics
[140,80,181] and described in the sparse signal processing literature [81]. In this literature, there are a
variety of properties that have been proposed as good ones for diversity measures to satisfy with a par-
ticularly useful one being concavity.22,23 Unfortunately when constraints are operative strictly concave
measures generally have a multitude of local minima which is problematic when utilizing optimization
procedures to find sparse representations. One strictly concave diversity measure, and therefore subject
to the problem of multiple local minima, often described in the literature is the Shannon entropy.24 Per-
haps the most commonly described diversity measures are the p-diversity measures d(x) = divp(x),
where

divp(x)
def=
⎛
⎝ m∑

j=1

|xj |p
⎞
⎠

1
p

for 0 ≤ p ≤ 1. (17.7)

The value of div0(x) is defined by

div0(x) = lim
p→0+ divp(x) = sp(x) = ‖x‖0 =

m∑
j=1

1{xj �= 0},

which is the count of the nonzero components of x described earlier. For p < 1, the p-diversity measure
is strictly concave, while for p = 1 we have divp(x) = ‖x‖1, where the �1-norm ‖ · ‖1, which is not
strictly concave, is both concave and convex and satisfies the triangle inequality. Even for p < 1 the

22 See [95,148,94] for brief comments and [81,116,7] for rigorous discussions of desirable properties of concentration measures.
23 However, while being a desirable property, concavity is not a necessarily condition for being a useful diversity measure. For
example, reference [132] uses the measure d(xi ) = log(1 + x2

i
), which is not everywhere concave.

24 For example, see reference [180].
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p-diversity measures are referred to (erroneously, but generally harmlessly) as the “p-norm” diversity
measures ‖x‖p = divp(x).25 A diversity measure d(x) is said to be additive if26

d(x) = α1d1(x1) + · · · + αmdm(xm) (17.8)

with αj > 0, dj (xj ) ≥ 0, and dj (xj ) = 0 ⇐⇒ xj = 0 for j = 1, · · · ,m. A particularly popular diver-
sity measure is the 1-norm diversity,

d(x) = div1(x) = ‖x‖1 = |x1| + · · · + |xn|.
This diversity measure is convex (and concave) and almost everywhere differentiable.

The so-called “zero-norm” ‖ · ‖0 = div0(·) = sp(·) and the 1-norm ‖ · ‖1 = div1(·) measures are the
diversity measures most frequently encountered in the contemporary sparse signal processing literature.
Note that ‖x‖0 and ‖x‖1 are both additive. The (nondifferentiable) zero-norm measure ‖ · ‖0 provides
the conceptual ideal: Its value is the sparsity and is a minimum when sparsity is a maximum. On
the other hand, the 1-norm measure ‖ · ‖1 is differentiable and (nonstrictly) convex, and minimizing
it can yield sparse solutions [168], though generally this solution is not maximally sparse. However,
as noted in Subsection 17.2.4 above, sufficient conditions on the dictionary matrix can ensure that if
minimizing ‖ · ‖1 yields a “sparse enough” solution, then with high confidence that solution is unique
and maximally sparse.

17.3.2 Sparsity-inducing optimizations of diversity measures
Ideally, sparse solutions are found by exactly solving the optimization problem

min
x

sp(x) = ‖x‖0 subject to y = Ax. (17.9)

Because this is a combinatorial problem which is NP-hard, solutions are commonly determined us-
ing heuristic greedy search algorithms where one greedily collects atoms one-at-a-time until a sparse,
though generally not necessarily maximally sparse, solution is obtained. Commonly used sequential
search greedy algorithms are Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), and Com-
pressive Sampling Matching Pursuit (CoSaMP), among others [168]. If one assumes that the matrix A

is UUP, or well matched to the data via learning, then a sufficiently sparse solution (e.g., sp(x) < n/2)
is assumed to be an optimal solution. One can try a variety of greedy selection orderings to increase the
chance that such a solution will be found.

To handle the model-with-error case discussed in Eq. (17.2) et seq., where ε = y − Ax �= 0, it is
common to consider the optimization

min
x

‖y − Ax‖2
2 subject to sp(x) = ‖x‖0 ≤ k (17.10)

for a specified sparsity level k. This is a deterministic optimization problem that is useful in both the
deterministic and stochastic error cases.

25 As is well known, for p ≥ 0 the right-hand side of Eq. (17.7) defines a true norm, the so-called p-norm ‖x‖p . However, the
p-diversity measure divp(x), which is defined for p < 1, does not satisfy the triangle inequality required of a true norm. Rather,
because of the strict concavity, it satisfies the reverse triangle inequality.
26 As discussed in Section 17.3.3 below, the additivity assumption corresponds to assuming a factorial Bayesian prior on x.
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Because the above optimizations are typically difficult to perform, it is a common procedure to
replace the nondifferentiable measure sp(x) by a differentiable diversity measure d(x). Thus in the
noiseless case one commonly relaxes (17.10) to the problem

min
x

d(x) subject to y = Ax, (17.11)

with d(·) being a differentiable diversity measure. Since a general diversity measure is nonconvex,27

in general this will have many local minima. But as previously mentioned, if a sufficiently sparse
solution can be found, it is not necessarily unreasonable to assume that it is an acceptable answer. For
general, smooth concave measures one can determine local solutions to (17.11) via the use of iteratively
reweighted least-squares [75,148,28,187].

A particularly nice choice of diversity measure is the convex/concave 1-norm d(x) = div1(x) =
‖x‖1 for which (17.11) is a convex optimization problem that has a generically unique sparse solution
that is amenable to solution via standard convex optimization procedures. Furthermore, the use of the 1-
norm diversity measure leads to computational tractable optimization problems for handling the noisy
model equation (17.2). In the noisy case, one looks for a solution x to one or another of the following
three equivalent regularized optimization problems:

Sparse representations via regularized optimizations

Tikhonov [21,32] LASSO [171] Basis pursuit (BP) [32,24]

min
x

‖y − Ax‖2
2 + λ‖x‖1 min

x
‖y − Ax‖2

2 min
x

‖x‖1 (17.12)

subject to ‖x‖1 ≤ ρ subject to ‖y − Ax‖2
2 ≤ ε

which yield equivalent sparse solutions for appropriate choices of the nonnegative regularization pa-
rameters λ, ρ, ε [21]. These convex optimization problems have unique sparse solutions that can be
obtained using a variety of convex optimization algorithms [21,32]. Further, if appropriate conditions
exist on A to ensure that a sufficiently sparse solution is unique (see Section 17.2.4 above), then for
appropriately selected values of the hyperparameters λ, ρ, and ε the unique solution to the ideal opti-
mization problem (17.10) will be found [24,26,28,49,52,63,114,139,150,157,176].

17.3.3 The stochastic model and sparse Bayesian learning
Considering the stochastic noisy model (17.3),

y = Ax + n.

The sparsity algorithms described in the previous subset can be obtained within a Bayesian framework
by assuming that x is random and taking

P(x) = exp (−βd(x))/Z and P(n) = N(n;0, σ 2I) (17.13)

27 For example, if we consider a strictly concave measure d(x) = divp(x) for p < 1.
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with β > 0 and normalization factor (“partition function”)

Z =
∫

exp (−βd(x)) dx.

A maximum a posteriori (MAP) estimate of x is then given by

x̂λ = arg max
x

P(x|y) = arg max
x

P(y|x)P (x) = arg min
x

(
‖y − Ax‖2

2 + λd(x)
)

(17.14)

with λ = β/σ 2. This provides a statistical interpretation of the Tikhonov regularization form of an
inverse problem optimization,

min
x

‖y − Ax‖2
2 + λd(x). (17.15)

Note that taking d(x) = ‖x‖1 gives the LASSO/BP optimization discussed in the previous Subsec-
tion 17.3.2, while in the limit λ → 0+ we obtain x̂λ = x̂0, which is a solution to the problem (17.11).
In the MAP formalism, the sparsity-inducing mechanism is due to the explicit presence of the diversity
measure d(x) in the resulting optimizations. Such a choice for d(x) makes P(x) a sparsity-inducing
prior for x. As we will discuss below, there are good computational and statistical reasons for taking
d(x) to be of the additive form28

d(x) = α1d1(x1) + · · · + α2dm(xm), (17.16)

which corresponds to the assumption of a factorial prior distribution,

P(x) =
m∏

j=1

P(xj ), P (xj ) = exp
(−βjdj (xj )

)
/Zj , βj = βαj , Z = Z1 · · ·Zm. (17.17)

As discussed further in Subsection 17.5.1 below, this framework is often referred to as a “Type I”
estimation formalism. A richer, more general sparsity-enforcing hierarchical framework is described in
Subsection 17.5.1 which in the machine learning literature is commonly referred to as sparse Bayesian
learning (SBL) framework [172,56,173]. SBL is based on a stochastic model that induces sparsity via
a different mechanism than the direct use of sparsity-inducing functions d(xj ). SBL is an (empiri-
cal) hierarchical Bayes formalism that takes the prior on x to be of a Gaussian factorial form with
P(xj ;γj ) = N(xj ;0, γj ),29

P(x;γ ) = N(x;0,�) = N(x1;0, γ1) · · · N(xn;0, γm) with � = diag(γ ) = diag(γ1 · · · γm),

where the “hyperparameters” γj themselves are also random variables.
Note that the factorizability of the prior is equivalent to the assumption that � = diag(γ ) =

diag(γ1 · · · γm) is diagonal and that each component xj is assigned its own variance γj . SBL does

28 See Eq. (17.8).
29 Much of the SBL literature parameterizes the shown prior by the precision 1/γj . We prefer to work with the variance γj .
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not directly force the components of x to be sparse during the learning process. Instead, remarkably, it
is some of the diagonal elements γj of � that become zero as they are learned, a learning process that is
referred to as “Type II” estimation. Note that it is the resulting sparsity of diag� that enforces sparsity
of x because γj ≡ 0 ⇐⇒ xj = 0 almost surely.

When γj �= 0, we say that xj is relevant, so SBL is a search for relevance [128,172,20,189]. The
prior variances γj and the noise variance σ 2 can be learned by maximizing the evidence [107,20,168]
(a.k.a. marginal likelihood) for the model parameters γ and σ 2,

P(y|γ1, · · · , γm,σ 2) =
∫

P(y,x|γ1, · · · , γm,σ 2)dx

=
∫

P(y|x, γ1, · · · , γm,σ 2)P (x|γ1, · · · , γm,σ 2)dx,

which is a Gaussian distribution under our model assumptions. It is a remarkable30 fact that maximizing
this Gaussian likelihood with respect to the variances γj and σ 2 can yield sparsity as a result of many
variance values γj becoming arbitrarily small so that γj → 0 for those values [56,188]. Optimizing
the evidence for every new observation y results in automatic relevance determination (ARD) of the
components of its representation vector x [128,189]. Beyond the further discussion given below in
Subsection 17.5.1, detailed introductions to the SBL formalism can be found in [20,168]. For deeper
theoretical and algorithmic details see the foundational papers [172,56,173,190,188,191,189,192].

17.4 Dictionary learning I – basic models and algorithms
As noted above, within the theoretical foundation that now exists it is possible to build “designed dic-
tionaries” that have desirable efficient sparsity encoding and decoding properties. However, the natural
world presents us with signals that are structured according to principles that are still being eluci-
dated and for which dictionaries can be learned that provide excellent encoding and representation
capabilities even if it is computationally intractable to determine if they satisfy known sufficient con-
ditions, or even when they likely do not satisfy such conditions. By learning dictionaries that match to
the statistical structure of natural signals, one can obtain efficient sparse encoding/decoding capability
while often even gaining some understanding of the nature of the phenomenon at hand or of the nat-
ural sensory mechanisms that are seen in the animal kingdom, such as the mammalian vision system
[62,132,133,82,201].

For our purposes, dictionary learning is defined to be any natural data-driven procedure that leads
to the parametric statistical estimation (“learning”) of an overcomplete set of atoms (a.k.a. words) from
which one can determine a sparse representation of any future signal encountered in the natural world
of interest. In this section we detail some of the most commonly used dictionary methods.31 Two of the
most commonly used dictionary learning algorithms, the Method of Directions (MOD) and KSVD, can

30 Remarkable because sparsity of the variances γ is generally not explicitly enforced. In particular this “unforced” behavior
occurs if the sensory world satisfies the “Sparseland” assumption [50,49] as discussed in Subsection 17.5.3.
31 These are discussed in a variety of textbooks [47,33,49,168,199]. In particular, an excellent way for one to learn about the
subject is to use references [168] and [47] as an entry path into the subject.
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be viewed as generalizations of VQ. In the next subsection we set up the general dictionary learning
framework and in the subsequent subsection we briefly describe VQ.

17.4.1 Dictionary learning from observational data – the setup
Assume that we have a collection of independently observed data vectors y�, � = 1, · · · ,L, each of
which is generated by the representation model (17.2):

y� = Ax� + ε�, � = 1, · · · ,L ⇐⇒ (
y1 · · · yL

)
︸ ︷︷ ︸

Y

= A
(
x1 · · · xL

)
︸ ︷︷ ︸

X

+ (ε1 · · · εL

)
︸ ︷︷ ︸

E

.

It is assumed that any observation y� is generated by a unique k-sparse representation vector x�, for
some specified level, k, of sparseness that is independent of �. Therefore, by assumption, sp(x�) ≤ k

for all � = 1, · · · ,L. Subject to this sparseness constraint, we call the model (17.2) a k-sparse repre-
sentation model, or simply a sparse representation model if k is understood. In practice some lower
bound on the value of k will be observed to hold for the entire set of estimated representation vectors
x�, � = 1, · · · ,L, and/or it may be reasonable to assume that with high likelihood the dictionary matrix
A satisfies the URP so that one can take n/2 to be a reasonable upper bound on k.

Although the n × L data matrix Y is available,32,33 the dictionary A is unknown except for its size,
which is n × m, and it is assumed that A is onto. Each of the unobservable sparse representation vectors
x�, � = 1, · · · ,L, are also unknown, which means we have a so-called blind estimation problem. To
facilitate estimability of A we will require that our algorithms converge to estimates of A that belong
to a set A of matrices that have specified structural properties.34 Even then, as evident from (17.6),
identifiability of A is ascertainable only up to the ordering of its columns and up to the “signs” of the
columns, meaning up to ±aj due to the ambiguity induced by aj xj = (−aj )(−xj ).

Summarizing, we have the following,

Dictionary learning problem
Given an n × L data matrix Y and a k-sparse representation model

Y = AX + E (17.18)

with A n × m, onto, belonging to A, and with specified (stochastic and/or
nonstochastic) assumptions on E, estimate the dictionary matrix A up to
the ordering and “signs” of its columns.

32 Some readers, particularly those with a statistics and data science background, may be used to working with the L × n data
matrix Y = Y T whose ith row is given by yT

i
, i.e., whose ith row is equal to the components (“covariates”) of yi which is the

ith column of Y (e.g., see [115,86]). Such readers should note that in this chapter the data matrix is the n × L matrix Y =YT .
33 We will indicate that y� is a column of Y , and therefore one of our data samples, by the shorthand notation y� ∈ Y . Similarly
C ⊂ Y will denote a subset of the data.
34 Typically a matrix A ∈A is required to have either a normalized Frobenius norm ‖A‖2

F
= trace(AT A) or normalized

columns (i.e., atoms) ‖aj ‖2 = aT
j

aj = 1.
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Given a sparsity measure d(x), define its matrix extension, D(·), to the m × L matrix X =
(x1 · · · xL), and the (cumulative) sparsity, sp(·)- and max-sparsity, sp(·), of X as35

D(X) =
L∑

�=1

d(x�), sp(X) =
L∑

�=1

sp(x�), and sp(X) = max
1≤�≤L

sp(x�).

A standard approach to solving the blind dictionary learning problem is to simultaneously solve for A

and X as solutions to the Tikhonov optimization problem

min
X,A

‖Y − AX‖2
F + λD(X) (17.19)

subject to normalization constraints placed on A to ensure its identifiability. This optimization was
proposed and numerically solved in the foundational dictionary learning papers [132,133].

The regularization parameter λ is chosen to ensure that X is sufficiently sparse, sp(X) < k, for a
specified sparsity k. Note that

‖Y − AX‖2
F + λD(X) =

L∑
�=1

(
‖y� − Ax�‖2 + λd(x�)

)
.

If we assume the stochastic model (17.3) and (17.13), then with the independent sampling assump-
tion on y� we have36

P(Y ,X;A) =
L∏

�=1

P(y�,x�;A) =
L∏

�=1

P(y�|x�;A)P (x�).

Note, then, that

arg max
X,A

P (Y ,X;A) = arg min
X,A

L∑
�=1

(
‖y� − Ax�‖2 + λd(x�)

)
= arg min

X,A
‖Y − AX‖2

F + λD(X)

(17.20)

with λ = β/σ 2. This gives a statistical interpretation to the optimization problem (17.19). Note however
that

arg max
X,A

P (Y ,X;A) �= arg max
X,A

P (Y ,X;A)

P (Y ;A)
= arg max

X,A
P (X|Y ;A).

By optimizing the joint likelihood P(Y ,X;A) with respect to A rather than the conditional likelihood
P(X|Y ;A), we are side-stepping the difficult computational issue arising from the A dependence of
the model evidence P(Y ;A).

35 See Footnote 18. Note that sp(X) ≤ k means that all L columns of X are k-sparse.
36 Note that deterministic parameters are set apart via use of a semicolon. Also note that for the stochastic model (17.3) and
(17.13) we have P(y�|x�;A) = N(y�;Ax�, σ

2I ) for all � with σ 2 not dependent on A.
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Reference [133] notes that ideally one can determine a maximum likelihood estimate (MLE) of A

by maximizing

P(Y ;A) =
∫

X
P(Y ,X;A)dX =

∫
X

P(Y |X;A)P (X)dX, (17.21)

but since the integration is generally intractable, one can optimistically assume that P(X) is sufficiently
tightly peaked enough to allow the approximation

P(Y ;A) =
∫

X
P(Y |X;A)P (X)dX ≈ P(Y |X̂;A)P (X̂) = P(Y , X̂;A),

where X̂ is the value of X that maximizes P(Y ,X;A) for the current estimate of A.37 This gives the
problem (17.20) shown above, showing that it can be viewed as a procedure for obtaining an approxi-
mate MLE for the dictionary A given the observed data Y .

Here is another way to look at problem (17.19) from a stochastic perspective. Given the data Y , note
that for large L and known X,

E

{
‖y − Ax‖2 + λd(x)

}
≈ 1

L

L∑
�=1

(
‖y� − Ax�‖2 + λd(x�)

)
= 1

L

(
‖Y − AX‖2

F + λD(X)
)

.

(17.22)

Thus if sparse solutions X were known, we would be able to consider the solution

arg min
A

E

{
‖y − Ax‖2 + λd(x)

}
= arg min

A
E

{
‖y − Ax‖2

}
≈ arg min

A

1

L

L∑
�=1

‖y� − Ax�‖2. (17.23)

However, since we have a blind estimation problem where X is unknown, and therefore cannot be
averaged out, we can instead attempt to simultaneously estimate A and X given Y via the optimization
shown in (17.19), which, in turn, is a relaxed procedure for attempting to find a solution to the following
ideal joint dictionary/sparse representation problem:

Joint dictionary/representation learning problem

(A,X) ← arg min
A,X

‖Y − AX‖2
F subject to sp(X) ≤ k and A ∈A. (17.24)

Unfortunately, the simultaneous optimization of A and X is generally too difficult to perform in
combination and instead it is standard to cycle between the X and A optimizations as follows.

37 This is known as the Laplace approximation.
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A1. Cyclic optimization-based dictionary learning algorithm
Data: n × L data matrix Y ; λ; m; k; ε; dictionary constraint set A
Initialize: n × m dictionary matrix A; unconverged ← TRUE;
While unconverged

C1. X ← arg minX ‖Y − AX‖2
F subject to sp(X) ≤ k;

or
C1′. X ← arg minX ‖Y − AX‖2

F + λD(X);
C2. A ← arg minA ‖Y − AX‖2

F subject to A ∈A;
C3. If sp(X) ≤ k and ‖Y − AX‖F < ε Then unconverged ← FALSE;

End While;
Return A, X;

The sparse-solutions update step C1 of cyclic optimization algorithm A1 can be performed using any of
the sparse representation algorithms mentioned in Section 17.3. It is important to note that the dictionary
update step C2 is performed after step C1, which means that step C2 is performed conditioned on the
fact that X has sparse structure.38

Reference [133] performs step C1′ via gradient descent on X and step C2 of Algorithm A1 via the
gradient descent algorithm shown below in (17.42). Below, we describe several algorithms specific for
performing step C2. These dictionary update algorithms, which solve

C2: A ← arg min
A

‖Y − AX‖2
F subject to A ∈A, (17.25)

can learn atoms (columns of A) that match well to the ability to find sparse solutions using standard
sparse representation algorithms.

However, before we look at such algorithms beginning in Subsection 17.4.4 we discuss how some
dictionary learning algorithms designed to solve (17.25) can be viewed as generalizations of vector
quantization (VQ) algorithms [65] and how they relate to principal component analysis (PCA) and
factor analysis (FA).

17.4.2 Dictionary learning as a generalization of K-means clustering and vector
quantization

Vector quantization (VQ) is a procedure based on a disjoint partitioning of the observation signal space
Y=R

n into “cluster regions” that then allows assignment to any subsequent observation y ∈Y of a
“one-hot” vector x that points to the centroid (representative member) of the cluster that contains y.
VQ and hard clustering share the same goal of finding an exhaustive partitioning P = {C1, · · · ,CK } of
a signal space Y into K disjoint sets (a collection of equivalence classes or clusters),

Y= C1 ∪ · · · ∪ CK with Ci ∩ Cj = ∅ for i �= j,

and determining a unique representative member of each partition region aj ∈ Cj . Every observation y
is then uniquely assigned to some cluster Cj (which we can refer to as the y-cluster). Depending on the

38 This property will be exploited in the K-SVD algorithm described below.
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application, the uniquely specified representative member aj of a cluster Cj , aj ⇐⇒ Cj , is variously
called the codeword, centroid, prototype, archetype, or pattern, among other terms, for that cluster.

In particular, in VQ a cluster representative aj is generally called a codeword and the collection of
codewords is called a codebook, denoted as39

C = {a1, · · · ,aK} �P = {C1, · · · ,CK },
where the K-element partitioning P and corresponding K-codeword codebook C are created with the
goal of minimizing, on average, the coding error that arises from replacing any observation y by a finite
precision (“quantized”) codeword representative [65] according to

aj ← y ⇐⇒ y ∈ Cj .

In the clustering literature, the term centroid is used to refer to aj ∈ Cj because one commonly
searches for a representative in Cj that corresponds to some definition of centrality (commonly the
mean, median, or mode) [170,158], whereas in the pattern recognition literature, it is the terms pat-
tern, exemplar, archetype, prototype, and template that are commonly used to refer to the y-cluster
representative that serves as an indicator of which class is most likely to be the case when perform-
ing classification of an observation y [170,20]. Going forward, for a given Cj we define the centroid
function

aj = centroid(Cj )

to be the operation of producing or extracting a unique representative element aj ∈ Cj . Note that given a
centroid function, knowledge of the partition P = {C1, · · · ,CK} is sufficient to construct an associated
codebook C = {a1, · · · ,aK}.

The primary distinction between VQ used for coding purposes and hard clustering in general is
that the cluster representative in VQ, when it is used for coding purposes, is restricted to being a finite
precision object, whereas no such restriction is generally imposed in hard clustering. Further, whereas
VQ can be analyzed and performed assuming a known distribution over Y, in clustering the underlying
generative distribution is generally unknown and only a data matrix Y of observations is available.
Given a known distribution and a fixed value for K , the generalized Lloyd algorithm40 (GLA) is a
well-known greedy algorithm for learning a signal space partitioning and corresponding codebook.
It can be used to empirically perform VQ when only a data matrix Y is at hand, in which case the
GLA is equivalent to the well-known K-means algorithm41 (KMA) used in pattern recognition for
learning a K-element clustering partitioning P and the K corresponding cluster centroids C. We use the
terminology “GLA” and “KMA” interchangeably in this chapter, with a bias towards “KMA” because
of its well-established machine learning connotations.

39 It is no accident that we are using the same symbols aj to denote a codeword as we used to denote an atom/word of a
dictionary. Indeed, soon we will explain why we take codebook, dictionary, and dictionary matrix to be essentially synonymous
entities.
40 “Generalized” because it applies to vector data. The original Lloyd algorithm applies to scalar data [65].
41 The name refers to the fact that one is looking for K clusters, with K prespecified, and that each cluster representative aj is
taken to be the sample mean over all observations y ∈ Cj . Although the sample mean is still the most common choice for each
cluster centroid, other measures are also used, for example as in the K-Medoids algorithm [170].
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Given a data matrix of L observations Y = (y1 · · · yL

)
the goal is to determine a value for K , a

K-element partition P = {C1, · · · ,CK }, and a corresponding K-element set of cluster representatives
(codebook) C = {a1, · · · ,aK } such that given a new observation y ∈ Cj and corresponding representa-
tive aj ∈ Cj , a discrepancy measure d(y,aj ) ≥ 0 is minimized on average, where d(y,aj ) = 0 ⇐⇒
y = aj . A straightforward, but not the only, choice of a discrepancy measure is the squared Euclidean
distance

dis(y,aj ) = ‖y − aj‖2
2.

Conceptually, one can solve this problem for each possible value of K and then afterwards select an
optimal value for K .42 Fixing K and given data Y , the optimization to be solved is

(P̂, Ĉ) = arg min
P,C

1

L

K∑
j=1

L∑
�=1

dis(y�,aj )1(y� ∈ Cj) = arg min
P,C

1

L

K∑
j=1

∑
y�∈Cj

dis(y�,aj ), (17.26)

where 1(·) denotes the indicator function and y� is an observation (column of Y ). This is a combina-
torial optimization problem that is NP-hard and which is commonly attacked in a suboptimal manner
using the KMA, a greedy algorithm that can be designed to be guaranteed to find a locally (but not
globally) optimal solution when applied to a set of data.

To implement the KMA, in addition to fixing a value of K one also specifies a centroid function

aj = centroid(Cj ) (17.27)

and defines Cj to be the neighborhood of aj given by

Cj = nbh(aj )
def= {y ∈Y

∣∣dis(y,aj ) < dis(y,ak) for all k �= j
}⊂Y. (17.28)

In practice, we are given a data matrix Y and define the empirical neighborhood on the data by43

C̃j = enbh(aj )
def= {y� ∈ Y

∣∣dis(y�,aj ) < dis(y�,ak) for all k �= j
}⊂ Y . (17.29)

Further, we denote an empirical centroid function that applies to empirical neighborhoods by
“ecentroid(C̃j ).”

At convergence of the KMA we require the following consistency condition to hold:

aj = ecentroid(C̃j ) and C̃j = enbh(aj ), (17.30)

42 A crucial difference between VQ and general clustering of empirical data is that the number of codewords (respectively, clus-
ter centers), K , usually can be readily ascertained for VQ lossy coding purposes, whereas the number of clusters that “actually”
exists in the world from which data are collected is generally unknown. The determination of the number of clusters K from the
data itself is a difficult problem and a variety of methods have been proposed, including the elbow method, the silhouette index,
and the gap statistic, among others. See Chapter 16 of [170] for a thorough discussion of this issue.
43 y� ∈ Y denotes the fact that y� is a column of Y , i.e., that y� is an empirical data sample. Similarly, C̃j = enbh(aj ) ⊂ Y

means that all of the elements of C̃j are columns of Y .
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or equivalently,

C̃j = enbh(ecentroid(C̃j )) and ãj = ecentroid
(
enbh(ãj )

)
, (17.31)

for all j = 1, · · · ,K .
With the above structure in place, the KMA attempts to solve the problem

P̂ = arg min
P̃

1

L

K∑
j=1

∑
y�∈ C̃j =enbh(aj )⊂Y

dis(y�,aj )

︸ ︷︷ ︸
L(P̃|Y)

subject to aj = ecentroid(C̃j ), (17.32)

where L(P̃|Y) is the empirical loss function to be optimized over an empirical partitioning P̃ =
{C̃1, · · · , C̃K} over the data Y. This optimization is suboptimally done via the following iteration,
which for the standard choices of dis(·, ·) and ecentroid(·) (see below) is provably convergent to a
local minimum.

A2. K-means clustering algorithm (KMA)

Data: n × L data matrix Y ; K; dis(·); ecentroid(·); ε > 0;
Initialize: Codebook C = {a1, · · · ,aK }; unconverged ← TRUE;

C̃j = enbh(aj ) for j = 1, · · · ,K;
While unconverged

K1. aj ← ecentroid(C̃j ) for j = 1, · · · ,K;
K2. C̃j ← enbh(aj ) for j = 1, · · · ,K;
K3. If ‖aj − ecentroid(C̃j )‖2 < ε for all j = 1, · · · ,K ,

Then unconverged ← FALSE;
End While;

Return C = {a1, · · · ,aK };

We remind the reader that Algorithm A2 is also known as the generalized Lloyd algorithm (GLA).
Note that at each pass through the algorithm, step K1 rebuilds the codebook C = {a1, · · · ,aK}; step
K2 performs greedy local optimizations to rebuild the partition of the empirical data P̃ = {C̃1, · · · , C̃K}
by optimally assigning observations that are closest to aj to class C̃j ; and step K3 tests whether the
codebook and partitioning of the data adequately satisfy (to within an ε > 0) the consistency condition
(17.30). Once the KMA has converged we can associate an exemplar ai (equivalently, a neighborhood
Ci) to a new observation y ∈Y via

ai = arg min
aj ∈C

dis(y,aj ).

If we interpret the codebook as defining an (unnormalized) dictionary A ∈R
n×K by

A = (a1 · · · aK) ⇐⇒ C = {a1, · · · ,aK},
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then we can interpret the above procedure as solving the inverse problem

y = Ax + n,

where x ∈R
K is a sparsity 1 (k = 1) “one-hot” indicator unit vector x that picks out a single col-

umn of A to represent the observation y. As noted in [54,53,2,4],44 general dictionary learning can be
interpreted as a powerful extension of this idea. For example, suppose the components of x are still
constrained to be 0 or 1 in value but are allowed to have up to six nonzero components (i.e., they are
allowed to be k-sparse for k = 6) and take K = 100. It is evident that sparsity 1, the case considered
above, only allows K = 100 prototype codewords (“concepts”) to be expressed by y, whereas if up to
six codewords can be combined, we have(

100

1

)
+
(

100

2

)
+
(

100

3

)
+
(

100

4

)
+
(

100

5

)
+
(

100

6

)
= 1,271,427,895 ≈ 1.27 × 109 (17.33)

possible compound concepts that y can express, which is a huge, combinatorial boost in expressive
power. Further, in our more general model (17.2) we allow the nonzero components of x to take any
real value45; thus it is evident that the expressive power of the overdetermined dictionary model is quite
remarkable.

The standard, most commonly encountered, version of the KMA takes

dis(y,aj ) = ‖y − aj‖2
2 = ‖y − Aej‖2

2 and aj = ecentroid(C̃j ) = 1

|C̃j |
∑

y� ∈ C̃j ⊂Y

y�, (17.34)

where ej is the canonical unit vector whose coordinate value is 1 in the j th position and 0 elsewhere.
The empirical loss function of (17.32) then becomes

L(P̃|Y) = 1

L

K∑
j=1

L∑
�=1

1(y� ∈ C̃j )︸ ︷︷ ︸
def= γ�j

‖y� − Aej‖2
2 = 1

L

L∑
�=1

‖y� − Ax�‖2
2, (17.35)

where we define the one-hot vectors x� ∈R
K by

x� =
K∑

j=1

γ�jej for � = 1, · · · ,L.

Because ej are the canonical unit vectors for RK , it is the case that γ�j is the j th component of x�,
(x�)j = γ�j , and the fact that x� is a one-hot vector corresponds to the fact that, as an indicator function,

44 The discussion in [2] is particularly recommended. See also Section 17.4.5 and Appendix 17.A below.
45 This fact allows us to normalize A to ensure identifiability without any loss of generality.
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γ�j = 1 ⇐⇒ y� ∈ C̃j . Thus,46

P̃ = {C̃1, · · · , C̃K} ⇐⇒ X = (x1 · · · xL) = �T with
(
�
)
�j

= γ�j , (17.36)

as a consequence of (x�)j = γ�j and the fact that

y� ∈ C̃j ⇐⇒ γ�j = 1.

This allows us to make the identification L(P̃|Y) = L(X|Y) for purposes of optimization. Making this
notational change and continuing with Eq. (17.35), we determine that the empirical loss function of
(17.32) is equivalent to

L(X|Y ) = 1

L
trace
{
(Y − AX)T (Y − AX)

}
= 1

L
‖Y − AX‖2

F ∝ ‖Y − AX‖2
F .

The matrix X = �T is a 0 –1 patterned matrix such that no two rows can share the value 1 in the
same column position. Denoting the set of all such matrices by X , we indicate this constraint on the
form of X by X ∈X . As a member of X the rows of the K × L matrix X are necessarily orthogonal; in
particular the matrix XXT is diagonal with the j th diagonal value equal to the cardinality of C̃j , |C̃j | =
(XXT )jj . Furthermore, X ∈X implies sp(X) ≤ K and sp(X) ≤ 1.47 If we weaken the constraint set
to X̄ = {matrices with elements 0 or 1}, then

X = {X ∈ X̄
∣∣ sp(X) ≤ 1

}
.

Summarizing, the KMA, a well-known, important algorithm in signal processing and in machine
learning, provides a locally optimal solution to the 1-sparse dictionary learning problem.48

VQ problem

min
A,X

‖Y − AX‖2
F subject to sp(X) ≤ 1 and X ∈ X̄ . (17.37)

The minimization with respect to X (corresponding to step C1 in the cyclic optimization dictionary
learning algorithm A1) is equivalent to step K2 of the KMA algorithm A2, while the minimization
with respect to A (corresponding to step C2 of cyclic optimization) is equivalent to step K1 of KMA
and yields the estimate for Aej = aj shown in (17.34). This is a case where each step of a cyclic

46 Note that (x�)j = γ�j means that the �th column, x�, of the Boolean matrix X ∈R
K×L is equal to the j th row of the Boolean

matrix � ∈R
L×K .

47 If at least one column of the data matrix Y is nonzero, then sp(X) = 1, and if all columns of Y are nonzero, then sp(X) = K .
48 Note that for known A and a single measurement vector y, this is similar to the inverse problem (17.10), provided that we set
k = 1 and impose the constraint that the solution is a one-hot vector in (17.10).
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descent optimization strategy never increases the cost and is therefore guaranteed to converge to a
locally optimal solution. Note that A is n × m with m = K .49

The constraint X ∈ X̄ ensures identifiability, i.e., that the VQ problem has a unique solution. Gen-
erally, to ensure unique identifiability some form of constraints is placed on X – which is henceforth
denoted by X ∈X for some specified constraint set X – and/or on the dictionary matrix A, denoted
by A ∈A for some specified constraint set A. Given specified constraint sets X and A, the general
dictionary learning problem is a generalization of VQ (i.e., of the K-means clustering problem).

Dictionary learning problem as generalized VQ

min
A,X

‖Y − AX‖2
F subject to sp(X) ≤ k, X ∈X , and A ∈A. (17.38)

This should be compared to Eq. (17.37) above. It is quite common to impose no constraints on X

except for the ever-present sparsity constraint sp(X) ≤ k, in which case it is tacitly understood that
X =X=R

n and that uniqueness of a resulting solution will then result from the sparsity constraint
and uniqueness-inducing properties of A as discussed in Section 17.2.4.

Below, in Subsection 17.4.4 and Subsection 17.4.5, we will discuss the MOD and K-SVD dictionary
learning algorithms. As described in the original literature, both of these algorithms were designed to
function as algorithmic extensions of the KMA to the problem of dictionary learning [53,4]. The degree
to which this indeed is the case is discussed in [154].50

17.4.3 Dictionary learning as a generalization of PCA and FA
The stochastic overcomplete dictionary model (17.3) can be viewed as a generalization of the factor
analysis (FA) model, which is an important model in multivariate statistics and machine learning [97,
115,15,88,86,14]. The standard FA model is given by

y = Ax + n

with the assumptions that the unknown n × m matrix of factor loadings A is undercomplete (n ≥ m)
with full column rank m; the vector of latent variables (the factors) x is Gaussian with zero mean and
covariance I ; n is Gaussian with zero mean and covariance σ 2I ; and x and n are independent, x ⊥⊥ n.
A critical point to note is that the necessarily independent columns of the “tall” matrix A, which we
refer to as the factor directions or factor components, are generally not orthogonal or normalized.

For the FA model, the covariance matrix of y is given by

�y = AAT + σ 2I.

49 Thus a better terminology when the number of cluster centers is m would be m-means algorithm. However, historically it was
once very common to use “K” to refer to the number of clusters and as a consequence KMA has become standardized. Although
the alternative name of “generalized Lloyd algorithm” (GLA) is notationally noncommittal regarding “m” or “K ,” the machine
learning connotations of KMA better serve the themes of this chapter.
50 A point of connection between K-SVD is also described in Appendix 17.A.
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PCA is based on an eigendecomposition of �y to determine its dominant principal directions (eigen-
vectors, a.k.a. principal components) which are necessarily orthogonal and typically taken to be nor-
malized. FA can be interpreted as a generalization of PCA where the orthogonal principal directions of
PCA are shifted to new, generally nonorthogonal, factor directions (the columns of A), a process gener-
ally referred to as “factor rotation” even through the loss of orthogonality means that the transformation
is not generally orthogonal.51 In essence, the move from PCA to FA is a move from an orthogonal basis
(the principal directions of y) of Y to a tight frame (that includes the factor directions of y) that still
spans Y yet has greater interpretative power.

This last point is critical for understanding the distinction between PCA and FA. The orthogonal
principal directions provided by PCA are mathematically convenient, but generally interpretability of
the principal directions is lost. FA takes interpretability of the factor directions to be more important
than mathematical convenience. In essence, in FA the columns of A are desired to have conceptual
or semantic meaning or interpretability. Similarly, learning and solving the overcomplete dictionary
model (17.2) can also be viewed as a search for columns of A that have interpretable meaning, a
fact consistent with our often referring to them as words, except that now we are willing to grow our
dictionary until it is highly overcomplete and consider arbitrary (albeit “sparse”) combinations of words
in order to tremendously increase its expressive power as discussed in the previous Subsection 17.4.2.
This is important and topical in machine learning: currently, explainable AI (XAI) is understood to
be an important and very difficult area of research [184]. In a very important sense, a search for a
highly expressible dictionary matrix whose columns (words) and combinations of those columns have
semantic and conceptual meaning is a powerful approach for creating practical XAI algorithms. We
will return to this point when we consider an interesting example taken from [174] in Section 17.5.4
below.

17.4.4 Dictionary learning using the Method of Directions
Motivated by the fact that the dictionary learning problem can be viewed as a generalization of the
VQ problem, as is evident from a comparison of problems (17.37) and (17.38), the authors of [54,53]
proposed the cyclic optimization approach of iteratively performing an optimization to update X (anal-
ogously to performing step K1 of the KMA A1) followed by an optimization to update the dictionary
matrix A (analogously to performing step K3 of the KMA).

Obtaining a sparse estimate of X given a current estimate of A to perform step C1 of a cyclic
optimization A1 can be done using a variety of possible algorithms, as described in Section 17.3 above.
After an updated sparse estimate of X is at hand, the next problem is to obtain an updated estimate of
A (step C2 of a cyclic optimization A1). If A′ is the current estimate we can write

� = A − A′ ⇐⇒ A = A′ + �,

where � is the “direction” in A-space one moves to go from A′ to a new estimate A. One looks for
an “optimal” direction � that yields a good estimate A and for this reason the approach is called the
Method of Directions (MOD) [54,53]. Note that defining the residual R = Y − A′X we have

‖Y − AX‖2
F = ‖(Y − A′X) − �X‖2

F = ‖R − �X‖2
F , (17.39)

51 Often such transformations are referred to as “oblique rotations.”
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which shows that, given A′, one minimizes over the update direction � to obtain an optimal direction
�̂ and then form the update A = A′ + �̂. Alternatively, one can obtain an update by solving problem
(17.25). Solving the latter problem yields the update

A = YX+, (17.40)

where X+ :Rn×L →R
n×m is the pseudoinverse of X :Rn×m →R

n×L viewed as an operator whose
action is A → AX.52 For L ≥ m and rank(X) = m we have

X+ = XT
(
XXT
)−1

. (17.41)

With X being an m × L matrix where typically m and L are quite large in value, the computation of
the pseudoinverse is generally very computationally demanding. If the computation of an SVD X =
U�V T = U1SV T

1 is computationally feasible, then X+ = V1S
−1UT

1 [166]. A modification of MOD to
a sequential form that is more computationally tractable is given in [154].

It is critical that X be adequately sparse, sp(X) ≤ k, in order to force the minimizing solution A for
the least-squares loss ‖Y − AX‖2

F to match to that fact. To ensure identifiability, typically after each
update (17.40) the dictionary A is then normalized,53 a constraint we denote by A ∈A.

A3. Method of Directions (MOD) dictionary learning
Data: n × L data matrix Y ; m; k; ε; conditions for belonging to A;
Initialize: n × m dictionary matrix A ∈A; unconverged ← TRUE;

X ← arg minX ‖Y − AX‖2
F subject to sp(X) ≤ k;

While unconverged
M1. A ← YX+;
M2. Project A into A;
M3. X ← arg minX ‖Y − AX‖2

F subject to sp(X) ≤ k;
M4. If ‖Y − AX‖2

F < ε Then unconverged ← FALSE;
End While;

Return A;

Step M3 of the MOD algorithm A3 (which corresponds to step C1 of a cyclic optimization A1) can
be performed using any effective sparse solution algorithm. Unfortunately, unlike the KMA, the MOD
algorithm is not provably convergent. The problem is that step M3 is not guaranteed to produce a
value for ‖Y − AX‖2

F that is reduced, or unchanged, from its previous value computed for the previous
values of A and X. However, in practice convergence is generally seen despite the lack of a rigorous
convergence proof. Reference [154] points out the desirable property of step M1 that A is updated in
a manner that does not require a disruption of the (sparse and otherwise) structure that currently exists

52 Interestingly, this is equal to the standard matrix pseudoinverse of the n × m matrix X viewed as an operator from X=R
m

to Y=R
n.

53 Typically by normalizing its columns to one, ‖aj ‖2 = 1, j = 1, · · · , n, or forcing ‖A‖F = 1.
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in X, and which is independent of any additional structural constraints on X that might be added to the
loss function minimized in step M3. Reference [154] also presents a sequential version of MOD that
minimizes its computational cost.

An alternative to the explicit solution A = YX+ shown in step M1 is to determine A via gradient
descent on the loss function ‖Y − AX‖2

F . Using the matrix gradient of the loss [149,42],

∇A‖Y − AX‖2
F = −2(Y − AX)XT ,

one estimates A via iteration on

A ← A + λ(Y − AX)XT , (17.42)

for λ > 0. Note that this is essentially the dictionary update algorithm independently proposed in [133].

17.4.5 Dictionary learning using K-SVD
The K-SVD dictionary learning algorithm [2,51,49] is one that is quite commonly used to handle the
dictionary learning step C2 of the cyclic optimization dictionary learning procedure A1. The K-SVD
algorithm minimizes ‖Y − AX ‖2

F sequentially by updating one column aj of A at a time and doing so
in a manner that preserves the sparse structure that exists in a current solution. To begin, let rT

j denote
the j th row of the m × L matrix X,

X = (x1 · · · xL

)=
⎛
⎜⎜⎝

rT
1
...

rT
m

⎞
⎟⎟⎠= RT ∈R

m×L. (17.43)

Then, to isolate a single column aj of A, write

‖Y − AX ‖2
F =
∥∥∥∥∥ Y −

m∑
i=1

air
T
i

∥∥∥∥∥
2

F

=
∥∥∥∥∥∥
⎛
⎝Y −

m∑
i �=j

air
T
i

⎞
⎠− aj r

T
j

∥∥∥∥∥∥
2

F

=
∥∥∥Yj − aj r

T
j

∥∥∥2

F
(17.44)

with Yj
def= Y −

m∑
i �=j

air
T
i ∈R

n×L, ai ∈R
n, and r i ∈R

L. (17.45)

Note that the isolated outer product aj r
T
j is an n × L rank-1 matrix. The goal of the K-SVD algorithm

is to sequentially minimize
∥∥∥Yj − aj r

T
j

∥∥∥2
F

with respect to both aj and rT
j for j = 1, · · · ,m, and to do

so in a manner that preserves the sparse structure existing in R = XT ∈R
L×m. Note that once this has

been done for j = 1, · · · ,m, we will have performed a complete update of the dictionary A, thereby
completing step C2 of a cyclic optimization A1. The fact that we focus on a single column ai at a time
in (17.44) is similar in spirit to the KMA, which is concerned with the updating of individual centroids;
see Appendix 17.A for an elaboration of this point.
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To address the general problem of minimizing (17.44), we show that we can build and minimize a
“sparsity-enforced” version of the “isolated” loss function∥∥∥Yj − aj r

T
j

∥∥∥2
F

(17.46)

that: (1) will be tractable to optimize and (2) will allow that optimization to preserve the sparse structure
that exists in the current estimate X. A brief outline of the procedure is given here with details of the
derivation provided in Appendix 17.A.

We define the row sparsity sj = sp(rj ) to be the number of nonzero components of the current
estimate of the L-element row vector rT

j and identify the locations of those sj nonzero components54

by the following sets of integers and canonical unit L-vectors:

{j1, · · · , jsj } and {ej1, · · · , ejsj
},

each integer jik taking values between 1 and L and each eik ∈R
L having the value 1 in the kth position.

From these data we can construct the sparse downsampling matrix

Sj
def= S(rj )

def=
(
ej1 · · · ejsj

)
∈R

L×sj . (17.47)

We then form the downsampled entities,

r̃T
j = rT

j Sj ∈R
1×sj and Ỹj

def= YjSj ∈R
n×sj , (17.48)

to finally arrive at the downsampled loss function∥∥∥ Ỹj − aj r̃
T
j

∥∥∥2
F

. (17.49)

As discussed in Appendix 17.A, minimizing the downsampled loss (17.49) is equivalent to minimizing
the part of the loss (17.46) that is consistent with the goal of preserving the sparse structure of rj .

Minimization of (17.49) with respect to aj and r̃j is easily done by extracting the principal (maxi-
mum) singular value and associated singular vectors, (σ1,u1,v1), after which the answer is determined
from55

aj = u1, r̃j = σ1v1, and rj = Sj r̃j . (17.50)

This procedure is performed for each value of j = 1, · · · ,m to complete step C2 of the cyclic optimiza-
tion learning algorithm A1. Summarizing, the K-SVD algorithm is given as follows.

54 It is important to remember that we are assuming that step C1 of cyclic optimization algorithm A1 has been performed so
that R = XT indeed has sparse structure. Thus it is the case that generally one can have sj < L.
55 As discussed in [154], although the K-SVD procedure preserves the sparse structure in X, during the sequential dictionary
procedure there effectively is a disruption of the other structural properties of X so that the resulting updated dictionary is not
consistent with the current sparse solution X. Because of this disruption, reference [154] claims that K-SVD is not, strictly
speaking, a generalization of the KMA. However, the K-SVD algorithm is motivated by the properties of the KMA [4] and a
point of connection is described in Appendix 17.A.
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A4. K-SVD dictionary learning algorithm
Data: n × L data matrix Y ; m; k; ε;

A= column normalized matrices;
Initialize: n × m dictionary matrix A ∈A; unconverged ← TRUE;

RT = X ← arg minX ‖Y − AX‖2
F subject to sp(X) ≤ k;

While unconverged
K1. K_SVD(Y ,A,X = RT );

Initialize: j ← 1;
While j < m + 1

Sj ← S(rT
j );

Y j ← Y −∑m
i=1,i �=j air

T
i ;

Ỹ j ← Y jSj ;
(σ1,u1,v1) ← principal-SVD(Ỹ j );
aj ← u1;
r̃T

j ← σ1v
T
1 ;

rT
j ← r̃T

j ST
j ;

j ← j + 1;
End While;

Return A;
K2. X ← arg minX ‖Y − AX‖2

F subject to sp(X) ≤ k;
K3. If ‖Y − AX‖2

F < ε Then unconverged ← FALSE;
End While;

Return A;

In the above, the function principal-SVD(M) extracts the principal (dominant) singular value σ1 and
its associated left and right singular vectors, respectively u1 and v1, from the matrix Ỹ j . As mentioned
in Appendix 17.A, this does not necessarily involve the cost of performing a full SVD. Note that the
update of the column aj in the inner loop means that A has been updated; and the update of the
row rT

j means that the matrix X = RT has been updated. These updates affect later iterations of the
inner loop. If the sparsity level is set to k = 1, K-SVD learns atoms that when scaled serve as single
exemplars of observations; for example, given any new observation y, we obtain a k = 1 representation
y ≈ Ax = xjaj for some “shape” aj and some “gain” xj , j,1 ≤ j ≤ m. This conceptually corresponds
to performing a scaled version of VQ known as gain-shape VQ [65].

17.5 Dictionary learning II – the hierarchical/empirical Bayes approach
17.5.1 Hierarchical model for sparse Bayesian learning – Type I versus Type II

estimation
We have already encountered a simplified version of the model we describe here in Section 17.3.3
above. Here, our model is
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y = Ax + n, (17.51)

with A ∈R
n×m, m ≥ n, rank(A) = m, x ⊥⊥ n,

n ∼ p(n;) = N(n;0,), (17.52)

x
∣∣γ ∼ p(x|γ ) = N(x;0,�), � = diag(γ ), (17.53)

and

p(γ ) = p(γ1) · · ·p(γm) with γ ⊥⊥ n. (17.54)

Note that Eq. (17.53) implies

p(x|γ ) = p(x1|γ1) · · ·p(xm|γm). (17.55)

The covariance  is an arbitrary, deterministic full-rank n × n matrix that may be known or un-
known, where in the latter case it must be estimated.56,57 The dictionary A is a deterministic unknown
subject to the constraint that A ∈A, where A represents a set of appropriately constrained dictionary
matrices.58

Note that with this model we have

y
∣∣x ∼ p(y|x;A,) = N(y;Ax,) (17.56)

and, because when conditioned on γ the variable y is a linear combination of Gaussian variables,

y
∣∣γ ∼ p(y|γ ;A,) = N(y;0,�y) with �y =  + A�AT and � = diag(γ ). (17.57)

Although the diagonal matrix � can be (or become) singular, the matrix �y is always invertible. For
notational convenience we will often suppress the notational dependence of probability distributions on
the unknown parameters A and .

For the model defined above, we have the distributional factorization,

p(y,x,γ ) = p(y|x)p(x|γ )p(γ ). (17.58)

This corresponds to the two-step (“two-level”) Markov chain shown in Fig. 17.2(a). Note that the latent
variable x is a primary variable of interest as its determination provides a sparse representation for
the observed signal y. In the Bayesian literature it is common to call the vector x in p(y|x) a “Level
I parameter” that determines the behavior of y, and the vector γ in p(x|γ ) a “hyperparameter” (a
“Level II parameter”) that determines the behavior of the Level I “parameter” x. In the parlance of
[73,74,18] the estimation of the Level II parameter (hyperparameter) γ from observations y, followed
by a subsequent estimation of x, is a “Type II” estimation problem.

56 Note that heretofore we have made the simplifying assumption that  = λI .
57 A rationale for the factorial forms of p(x|γ ) and p(γ ) is mentioned in Section 17.5.3 below.
58 Such as the set of Frobenius or column normalized matrices.
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If one marginalizes out the hyperparameters γ from p(y,x,γ ),59 then one has the factoriza-
tion p(y,x) = p(y|x)p(x), which corresponds to the one-step (“one-level”) Markov chain shown in
Fig. 17.2(b). The use of this one-step factorization to estimate the “Level I parameter” x given an
observation y is called a “Type I” estimation problem.60

Our model naturally lends itself to “Type I” sparse signal processing, which includes the MAP
approaches described earlier in Section 17.3.3. Note that with

p(x, γ ) = p(x|γ )p(γ ) = N(x;0,�)p(γ ) =
m∏

j=1

N(xj ;0, γj )p(γj )

we have

p(x) =
∫

p(x,γ )dγ =
m∏

j=1

p(xj ) with p(xj ) =
∫

N(xj ;0, γj )p(γj )dγj .

It is the case that under reasonable conditions on p(γj ), the marginal distribution p(xj ) is a Gaussian
scale mixture (GSM) density that has desirable sparsity-inducing properties.61 Indeed, as detailed in
references [135,134,70,69], with the right choices of p(γj ) the marginal p(xj ) takes on the form shown
in Eq. (17.17),

p(xj ) =
∫

N(xj ;0, γj )p(γj )dγj = 1

Zj

exp
(−βjdj (xj )

)
,

where dj (·) is a diversity measure which enforces sparsity of realizations drawn from p(xj ). With

p(y,x) = p(y|x)p(x) = N(y;Ax,�y)p(x) = N(y;Ax,�y)

m∏
j=1

p(xj ), (17.59)

we see that many of the sparse representation learning algorithms described above in Section 17.3
(applicable when both A and  are known) fit within the framework of Type I MAP estimation of x

given y.
Continuing with the assumption (for now) that A and  are known, we turn to the estimation of x

within the Type II framework. Here we note that x
∣∣ (γ ,y) is Gaussian [172,191],

p(x|y,γ ) = p(y,x|γ )

p(y|γ )
= p(x|y)p(y|γ )

p(y|γ )
= N(x; μ̂, �̂), (17.60)

with (using the definitions given above in Eq. (17.57))

59 When doing so it is common to say that one has integrated out the “nuisance parameters” γ .
60 Although this terminology appears to be rarely used, discussion or estimation of parameters χ relevant for the specification
of p(γ ) = p(γ ;χ) is referred to as a “Level III” or “Type III” consideration.
61 More commonly, for mathematical convenience, one writes the shown marginalization integration resulting in p(xj ) in terms
of the precision βj = 1/γj .



1104 Chapter 17 Dictionaries in machine learning

FIGURE 17.2

Bayesian latent variable models. Independent and identically distributed (i.i.d.) samples of latent and ob-
served random variables are shown for the model described in the text using “plate notation.” “Plate notation”
means that random variables indexed by � (shown contained within the “plates”) are i.i.d. sampled L times,
� = 1, · · · ,L [124]. Only the random variable y is observable, a fact denoted by the shading of its node, while
the remaining random variables x and γ are unobservable latent variables, as denoted by their unshaded
nodes. Deterministic parameters are encased in squares which are unshaded if known and shaded if un-
known. Here we show the dictionary matrix A and the covariance matrix  as deterministic unknowns. Note
that the realization values of all the variables y, x, and γ change with every observation � = 1, · · · ,L. In partic-
ular, it is important to note that the instantiation value of γ , which is treated as a random hyperparameter for
the conditional density p(x|γ ), changes with each observed data instance �. The random variable x is a “Level
I” random variable (relative to the observed variable y) while γ is a “Level II” variable (again, relative to the
observation y). Estimation of a Level I latent variable is a “Type I” or “Level I” problem, while estimation of a
Level II latent variable is a “Type II” or “Level II” problem. In the model shown in panel (a) on the left the Level
II variable is γ . The “Type I” and “Type II” nomenclature was first proposed in [73,74]. This nomenclature
emphasizes the fact that although it is common to integrate out the hyperparameter γ in the joint distribution
P (y,x,γ ) to form p(y,x) and then deal with the estimation of the “Level I” latent variable x, which is gener-
ally the variable of direct interest (see panel (b) on the right), it instead can be advantageous, conceptually and
practically, to estimate the hyperparameter γ located one step higher in the shown Bayesian hierarchy (see
panel (a) on the left), after which an estimate of x can be computed [18,173,193,141]. This latter approach
often involves marginalizing out the Level I latent variable x from the joint distribution P (y,x,γ ) to obtain
P (y,γ ) = P (γ |y)P (y) and then estimating γ from P (γ |y).

μ̂ = μ̂(y,γ ) = �AT �−1
y y and �̂ = �̂(γ ) = � − �AT �−1

y A� =
(
�−1 + AT −1A

)−1
.

(17.61)
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Given this conditionally Gaussian model, the minimum mean square error (MMSE) and MAP esti-
mates of x given y and γ are identical and given by [172,191]

x̂ = x̂(y,γ ) = μ̂(y,γ ) = �AT �−1
y y, (17.62)

where

� = diag(γ ) and �y =  + A�AT . (17.63)

This is a remarkable result which shows that x̂j is estimated to be “irrelevant” if and only if γj = 0 and
that sparsity is attained by the solution x̂ only if sp(γ ) ≤ n.

This fact motivates the SBL Type II empirical Bayes methodology of “automatic relevance deter-
mination” (ARD) first proposed in [172]. A purely Bayesian method would directly estimate x given
an observation y from p(x,y) = p(x|y)p(y) [70], which would be obtained by marginalization of
p(y,x,γ ) over γ to thereby produce an appropriate “Type I” model (see Fig. 17.2(b) and Eq. (17.59)).
“Empirical Bayes” is a quasi-Bayesian methodology where the Level II hyperparameter γ is first esti-
mated as indicated in Fig. 17.3(c) (often using point-estimate approaches from classical, non-Bayesian
statistics) and then used to produce a Bayesian estimate (in this case, a Bayesian conditional mean
estimate given y and γ̂ ) of the Level I variable x as indicated in Fig. 17.3(d).

What is quite surprising is that in practice Type II estimation often is superior to Type I estimation
for obtaining sparse solutions to the overcomplete inverse problem y = Ax [189]. This superiority in
performance also is seen in the Type II dictionary learning algorithms to be discussed shortly. Refer-
ence [172] suggests the determination of the MAP estimate62

γ̂ = arg max
γ

p(γ |y) = arg max
γ

p(γ ,y) = arg max
γ

p(y|γ )p(γ ), (17.64)

with p(y|γ ) and p(γ ) given by Eqs. (17.57) and (17.54), respectively.63 This optimization is equivalent
to

γ̂ = arg min
� =diag(γ )≥0

⎛
⎝yT
(
 + A�AT

)−1
y + ln det

(
 + A�AT

)
− 2

m∑
j=1

lnp(γj )

⎞
⎠ . (17.65)

With γj being a scale parameter, it is common to use the Jeffreys prior

p(γj ) = 1

γj

⇐⇒ lnp(γj ) = − lnγj , (17.66)

which is an “uninformative” improper prior that is agnostic regarding scale [87,18,107]. The rationale
for using an uninformative prior in estimating a sparse representation is that unless very strong prior

62 If, as we shall be concerned with in Section 17.5.2 below, the optimization is also over unknown parameters, then
argmaxp(γ ,y) �= argmaxp(γ |y) (see Footnote 64).
63 This optimization choice will be further discussed in the context of dictionary learning in the following three sections. In
particular, it will be given an information theoretic interpretation in Section 17.5.3.
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FIGURE 17.3

Empirical Bayesian approach to learning. Here we assume that A and  are known and consider the problem
of estimating the latent variable x given an observation y. A purely Bayesian approach would marginalize
(“average out”) the latent variable (hyperparameter) γ and then solve the Type I estimation problem shown in
Fig. 17.2(b). Empirical Bayes is a quasi-Bayesian approach that estimates the Level II hyperparameter γ from
the distribution p(γ ,y) = p(γ |y)p(y) (formed via the marginalization of p(y,x,γ ) shown above in the move
from Fig. 17.3(a) to Fig. 17.3(b)) followed by an estimation of x from p(x|y, γ̂ ).

beliefs exist to suggest otherwise, the observation y itself should force the degree of sparsity appropriate
for the particular realization at hand. This heuristic works well in practice and it is the assumption on
the form of p(γj ) that we henceforth take to be the case. Note that assuming the uninformative Jeffreys
prior results in the last term on the right-hand side of Eq. (17.65) becoming

−2
m∑

j=1

lnp(γj ) = 2 ln det� ⇐⇒ − lnp(γ ) = ln det�. (17.67)

A variety of iterative procedures have been proposed to obtain the estimate in Eq. (17.65). In
particular, rather than tackle the difficult optimization in (17.65) directly, one can treat the (latent)
marginalization variable x as a missing variable and apply the EM algorithm to obtain the required
estimate of γ [20]. This involves taking the expectation of the log-likelihood of the factorization equa-
tion (17.58) conditioning on the observation y and assuming the current estimate γ̂ for the purpose
of taking the required expectations. This procedure, which is detailed in Appendix 17.B, results in the
following. Given a current estimate γ̂ , the EM updates of its components are given by

γ +
j = 3

(
μ̂2

j (y, γ̂ ) + �̂jj (γ̂ )
)

for j = 1, · · · ,m, (17.68)
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where μ̂j (y, γ̂ ) is the j th component of μ̂(y, γ̂ ) and �̂jj (γ̂ ) is the j th diagonal element of �̂(γ̂ )

(see Eq. (17.61)). Given the EM update γ̂ +, one performs the reassignment γ ← γ̂ + and iterates the
EM procedure until convergence. Note from Eq. (17.62) that the EM algorithm iteratively updates the
desired sparse estimate of x via x̂ = μ̂(y, γ̂ ).

Summarizing the EM algorithm-based SBL procedure for determining a sparse representation x for
an observation y assuming the applicability of the model (17.51)–(17.57) and the Jeffreys prior (17.66),
we have the following.

A5. SBL algorithm for sparse representation learning
Data: n-dimensional observation vector y;

n × m dictionary matrix A, n × n noise covariance matrix ;
Initialization values for m-dimensional positive hyperparameter γ ;
Initialization values for m-dimensional representation vector x;
Boolean convergence function CONV(x,γ );

While CONV(x,γ ) �= TRUE
� ← diag(γ );
�y ←  + A�AT ;
�̂ ← � − �AT �−1

y A�;

μ̂ ← �AT �−1
y y;

γ +
j ← 3

(
μ̂2

j + �̂jj

)
for j = 1, · · · ,m;

γ ← γ +;
x ← μ̂;

End While;
Return x; �̂; γ ;

17.5.2 Dictionary learning in the SBL framework
In the previous section we assumed that the dictionary A and the noise covariance matrix are
known. Now we turn to learning these two quantities given independent and identically distributed
(i.i.d.) samples y�, � = 1, · · · ,L, which is the situation shown, using “plate notation,” in Fig. 17.2
[60,71,57,59,89]. Similarly to the discussion surrounding Eq. (17.18) we represent this multiobserva-
tion situation as

Y = AX + N , (17.69)

with Y ∈R
n×L and X ∈R

m×L. Similarly we define the m × L data matrix G to be the matrix whose
columns are comprised of γ 1 · · ·γ L, in that order,

G
def= (γ 1 · · · γ L

) ∈R
m×L. (17.70)
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Given the i.i.d. sampling assumption we have

p(Y ,X,G;A,) =
L∏

�=1

p(y�,x�,γ �;A,) =
L∏

�=1

p(y�|x�;A,)p(x�|γ �)p(γ �)

and variations thereof. Although in this section we take A and  to be unknown parameters of interest,
we will often suppress them notationally in order to reduce notational clutter.

In principle, one can perform the marginalizations

p(Y ;A,) =
∫

p(Y ,X,G;A,)dXdG

and then minimize the negative log-likelihood function

− lnp(Y ;A,)

with respect to A and  to obtain MLEs of the dictionary A and the noise covariance matrix . In
practice, this is difficult to do, so instead we treat X as missing data and obtain simultaneous estimates
of G, A, and  from the optimization64,65

max
G,A,

p(Y ,G;A,), (17.71)

with

p(Y ,G;A,) =
∫

p(Y ,X,G;A,)dX.

The optimization (17.71) is equivalent to minimizing

− lnp(Y ,G;A,). (17.72)

The procedure used to do so is a generalization of the EM algorithm-based approach described in
Section 17.5.1. However, in addition to estimating the variances G, we now also desire to learn the
unknown parameters A and . The steps involved in deriving an algorithm for determining estimates
of A, , and G (i.e., γ̂ � for � = 1, · · · ,L) are rather detailed and have been relegated to Appendix 17.C.

The resulting EM algorithm-based dictionary learning procedure is given as follows:

64 Unlike the optimization in the previous section, note that here arg maxp(Y ,G;A,) �= arg maxp(Y |G;A,) as a conse-
quence of the dependence of the optimization on the unknown parameters A and .
65 Some discussion regarding possible information theoretic justifications and interpretations of the use of this optimization is
given in the following Section 17.5.3.
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A6. D-SBL algorithm for sparse representation dictionary learning
Data: n × L-dimensional observation data matrix Y = (y1 · · · yL);

Initialization values for n × m dictionary matrix A;
Initialization values for n × n noise covariance matrix ;
Initialization values for m × L hyperparameter matrix G = (γ 1 · · · γ L);
Initialization values for m × L representation matrix X = (x1 · · · xL);
Boolean convergence function CONV(μ,γ ,A,);

While CONV(X,G,A,) �= TRUE
Initialize: � ← 1; Ryy ← 0; Ryμ ← 0; Rμμ ← 0; �xx ← 0;
While � < L + 1

�� ← diag(γ �);
�y,� ←  + A��A

T ;
�̂� ← �� − ��A

T �−1
y,�A��;

μ̂� ← ��A
T �−1

y,�y�;

γ +
j,� ← 3

(
μ̂2

j,� + �̂jj,�

)
for j = 1, · · · ,m;

�xx ← �xx + �̂�;
Ryy ← Ryy + y�y

T
� ;

Ryμ ← Ryμ + y�μ̂
T
� ;

Rμμ ← Rμμ + μ̂�μ̂
T
� ;

x� ← μ̂�;
� ← � + 1;

End While;
Rxx ← Rμμ + �xx ;
A ← Ryμ R−1

xx ;

 ←
(

Ryy − Ryμ AT − ART
yμ + ARxx AT

)
/L;

G ← G+;
End While;

Return A, ;

17.5.2.1 Scalable SBL dictionary learning
Algorithm A6 may scale poorly in practice as the size of the dataset grows (i.e., as L becomes large)
and as the size of the dictionary grows (i.e., as m becomes large). More concretely, scalability refers to
the memory cost of running A6, as measured by the number of parameters which need to be stored, and
the computational cost, as measured by the number of per-iteration multiply-and-accumulate (MAC)
operations. A detailed analysis of the memory and computational costs of A6 is given in [59], along
with improvements which lead to dramatically faster and less memory-intensive algorithms. The high

computational cost of A6 results from iterating over all L data points and computing �̂
−1
� . One way in

which the computational cost can be decreased is by only updating the posterior statistics for a batch of
data instead of all data points. This is referred to as incremental EM and has a similar flavor to stochas-
tic gradient descent, whereby only a batch of data is processed at each algorithm iteration [129]. The
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per-iteration computational complexity is dominated by the matrix inversion in �̂
−1
� . If the covariance

matrix  is diagonal, i.e., σ 2I , one alternative is to approximate �̂
−1
� using

(
diag(�−1

l + σ−2AT A)
)−1

[127] such that all matrix inversions are done on diagonal matrices. In terms of memory cost, incre-
mental EM requires the storage of Lm2 parameters, corresponding to the sufficient statistic �̂� for all
L data points. Using the diagonal approximation, the memory cost can be reduced to Lm.

17.5.3 Information theory, generative models, and “Sparseland”
For convenience, set θ = (A,). We have (at least) two interesting ways that we can interpret the
distribution p(y; θ) obtained from the hierarchical Bayes model described in Section 17.5.1:

1. We can interpret it as a generative model that provides a faithful model of the actual statistical
structure of the world. In this case we assume that the true (but unknown) distribution p(y) =
ptrue(y) of sensory observations y drawn for the natural world corresponds to a marginalization of
the distribution p(y,x,γ ) = ptrue(y,x,γ ) given by the model shown in Eqs. (17.51)–(17.55) for
true (but unknown) values of the size of the dictionary, m, the parameters, θ = (A,), and the prior
probabilities p(γj ).

2. We can view it as an engineering imposition, i.e., an almost certainly mismatched model imposed on
the data to obtain a tractable procedure for obtaining a desirable representation x of an observation y,
for which a resulting learned representation x may or may not be sparse depending on the functional
form selected for the imposed model priors p(γj ), j = 1, · · ·m.

In either case we are interested in determining the model parameters m, θ = (A,), and the prior
p(γ ) that ensure p(y; θ) ≈ p(y) = ptrue(y) with sufficient accuracy over a sufficiently wide range of
possible observation values. Thus it is desirable to have a learning procedure such that given L i.i.d.
observational samples and reasonable assumptions on p(y) = ptrue(y), the procedure yields a model
distribution p(y; θ) for which the Kullback–Leibler divergence

D (p(y)‖p(y; θ)) = Ep(y)

{
ln

p(y)

p(y; θ)

}
=
∫

p(y) ln
p(y)

p(y; θ)
dy ≥ 0

is a minimum and ideally such that D (p(y)‖p(y; θ)) ≈ 0.66

To arrive at a mathematically tractable procedure for doing so, consider the related problem

θ̂ = arg min
θ

D (p(y, γ )‖p(y, γ ; θ)) , (17.73)

with p(y,γ ) = ptrue(y,γ ), noting that

p(y,γ ) = p(y,γ ; θ) =⇒ p(y) = p(y; θ)

via marginalization.

66 Recall that the divergence is zero if and only if p(y) = p(y; θ) and that the divergence has a variety of very useful properties
and is related to several important information theoretic and statistical quantities [83,39,37,165].
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A well-known relationship between the cross-entropy67

C (p(y,γ )||p(y,γ ; θ)) = Ep(y,γ )

{
ln

1

p(y,γ ; θ)

}
= −
∫

p(y,γ ) lnp(y,γ ; θ)dydγ

and divergence from the true distribution p(y,γ ) to the model distribution p(y,γ ; θ) is

C (p(y,γ )||p(y,γ ; θ)) = H(p(y,γ )) + D (p(y, γ )‖p(y, γ ; θ)) .

The quantity68

H(p(y,γ )) = Ep(y,γ )

{
ln

1

p(y,γ )

}
= −
∫

p(y,γ ) lnp(y,γ )dydγ ,

which is the entropy of the true distribution p(y,γ ), is an unknown (assumed finite) constant which we
can ignore. Thus the solution to (17.73) can be obtained from the cross-entropy optimization

θ̂ = arg min
θ

C (p(y, γ )‖p(y, γ ; θ)) . (17.74)

Now exploit the fact that for large values of L we have

C (p(y, γ )‖p(y, γ ; θ)) ≈ Ĉ (Y ,G; θ))
def= − 1

L

L∑
�=1

lnp(y�,γ �; θ) = − 1

L
lnp(Y ,G;A,),

where Y and G are the data matrices defined at the outset of Section 17.5.2 and the last step corre-
sponds to the expression shown in Eq. (17.72). It is now evident that the EM algorithm procedure for
solving Eq. (17.72) described in the previous Subsection 17.5.269 provides an approximate solution θ̂

to Eq. (17.73)/(17.74). After marginalization, this yields

p(y; θ̂) ≈ p(y).

The existence of Sparseland – Actual vs. enforced sparsity. Consider the first case described at the
outset of this section. If indeed our model provides a true representation of the stochastic behavior of ob-
servations taken in the actual world, then it is reasonable to aspire to the outcome D(p(y)‖p(y; θ̂)) ≈ 0.
Further, if the world actually does have sparse structure, an assumption referred to as the Sparseland as-
sumption in [50,49], we expect that using an uninformative prior for p(γ ), e.g., in our case the Jeffreys
prior, will allow our model to naturally (i.e., in an unforced manner) obtain “true” sparse representa-
tions of observations y as then the likelihood of the model parameters θ = (A,) will be consistent

67 The double stroke symbol “||” serves as a reminder of the essentially nonsymmetry of both the cross-entropy and the diver-
gence.
68 Note that H(p(y,γ )) = C (p(y,γ )||p(y,γ )), i.e., H(p(y,γ )) is the cross-entropy of p(y,γ ) with itself. For this reason, the
entropy H (p(y,γ )) is sometimes called the self-entropy.
69 The derivation given above in Sections 17.5.1 and 17.5.2 assumed the noninformative Jeffreys prior. However, it is straight-
forward to incorporate a variety of alternative, sparsity-inducing priors [70].
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with the world of sparsely generated observations, i.e., will be consistent with the Sparseland assump-
tion. This indeed is what synthetic data simulations given in the literature essentially demonstrate; data
“generated” by a sparse truth model allow that model to be learned and the generating sparse signal
realizations x to be accurately estimated. In a sense, the hierarchical Bayes framework clarifies the
Sparseland assumption if we define Sparseland to be a world generated by a Type II hierarchical Bayes
model for which the condition sp(γ ) < n is a probability 1 event (or equivalently, that sp(γ ) ≥ n is a
probability 0 event).70

However, if data observed in the world are not truly generated sparsely, then when using an unin-
formative prior – a prior that does not impose any sparsity assumptions – we should not be surprised
to obtain solutions no sparser than sp(x) = n, which is equivalent to the (unsurprising) fact that a basis
for Y=R

n is n-dimensional.71

Nonetheless, if the data are not truly generated sparsely, and yet one insists on obtaining sparse rep-
resentations, one can impose this assumption on the model by an appropriate choice of an “informative”
sparsity-inducing prior p(γ ) [134,135]. This corresponds to the second interpretation of the hierarchi-
cal generative model mentioned at the outset of this section. The result of this forced imposition of
sparsity can be viewed as a form of “lossy compression” and here we expect that we will be content
if D(p(y)‖p(y; θ̂)) is “small enough” for some requisite level of compression (i.e., sparseness). The
choice of a sparsity-inducing prior imposes an inductive bias in favor of sparse representations on our
model and resulting model-based algorithm.

This suggest that the “uninformative prior” hierarchical Bayesian model, where we eschew an a
priori bias towards sparsity, can be used as a type of “Sparseland detector,” where if the use of the un-
informative prior gives a sparsity-inducing model we judge that the world indeed has natural sparse
structure. One also can imagine the degree of sparsity attained by the use of a “sliding sparsity”-
enforcing prior to be a measure of the “nearness to Sparseland” of the data.

Generative modeling of signals in the natural world. Let p(y) = ptrue(y) denote the true distribution
of y as observed in the natural world. What does it mean for an information processing system, such as
an animal’s nervous system, that p(y) can be well represented by a distribution p(y; θ), θ = (A,),
according to the model given in Eqs. (17.51)–(17.55)? It has long been argued that under evolutionary
pressure natural sensory processing systems will have evolved into being which are capable of effi-
ciently extracting relevant information about the world [11,12,13,8,62] and that it is the case that a
sensory system based on the model given in Eqs. (17.51)–(17.54) can satisfy those desiderata assuming
that the external, natural sensory world indeed has sparse structure. It has been experimentally verified
that sparse structure of natural signals is ubiquitous [132,34,82] and argued from physical principles
that the physical behavior of the world encourages sparsely structured signal generation on the part of
the external, physical environment [45,104], so we assume that natural world signals are indeed capable
of being sparsely represented.

The overcomplete model y = Ax + n provides a very large increase in expressive power over linear
methods such as PCA and FA due to its ability to utilize a general frame/dictionary of very large size
that contains words (component vectors) that are generally nonorthogonal and from which one can

70 When generating synthetic sparse data this probability 1 condition is virtually always enforced.
71 However, the representation for each observation y will generally be based on a different set of m columns drawn from the n

columns of A, which reflects the fact that the model will still allow for best basis selection.
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nonlinearly select representation vectors using sparse signal processing algorithms. Furthermore, as
discussed earlier in Section 17.4.2, its expressive power is far greater than that of VQ due to the ability
to combinatorially sum up different sets of weighted component vectors. Thus our model can serve to
create a sensor capable of detecting a vast amount of information presented by the natural world.

Further, it has been argued that an organism can efficiently and quickly, i.e., in a computationally
reasonable manner, detect when the world has changed in some statistically significant way via the
use of a factorial code [13,8]. This criterion is captured in the factorized joint distributions shown in
Eqs. (17.54)–(17.55). Note that if γ were not factorial, then neither would be the marginal distribution
p(x) of p(x,γ ). Independence of the components xi , i = 1, · · · ,m, means that one has statistical inde-
pendence of the xi-weighted words {xiai , i = 1, · · · ,m} even though the unweighted words (dictionary
elements) ai ∈Y=R

n themselves are generally nonorthogonal as vectors in R
n, so that aT

i aj �= 0.
Note that each weighted word is a statistically independent representation of a complex, patterned situ-
ation in the world corresponding to an “atomic” (possibly noisy) observation of the world y = xiai + n,
and therefore changes in the observed frequency of occurrence of this patterned situation – which can
be detected as a changed relative to its prediction occurrence as given by the current learned model
– can be done in isolation of the other atomic patterns of the world which are encoded in the other
weighted words. This statistical decoupling of the ability to detect changes in the learned atomic as-
pects of the world (aspects which enable great representational power) computationally bounds the
problem of monitoring those changes in the environment which matter for the survival of a biological
organism.

An additional aspect of the hierarchical Bayesian model is that the choice of the prior for γ pro-
vides a higher-level procedure for “deploying” the dictionary words in order to best extract information
about the world contained in an observation y. The nonzero elements, xj , of the resulting sparse repre-
sentation (which correspond to the deployed words) then provide coded information about the state of
the world provided by y. Speaking metaphorically, we interpret γ as the “boss” of the representation-
extracting procedure and conclude that it is desirable to maximize the mutual information between γ

and the observation y so that γ can give the best possible “deployment orders” to the weighting factors
xj , j = 1, · · · ,m. From this perspective, as a “knowledgeable boss,” γ has enough knowledge about
the world to even be able to generate synthetic observations y. And a “good boss” who is pretty confi-
dent in their workers’ abilities to work in a world that everyone agrees already has sparse structure does
not need to overly pressure subordinates, so we can take the Jeffreys prior of Eq. (17.66) to hold for γ

which allows the boss to also be a good listener of their workers.

To make these metaphorical comments more concrete, consider the generative model Markov

chain72

72 Note that
y◦

θ
−−−−−−−−−→x◦−−−−−−−−−→γ◦ is Markov equivalent to

y◦
θ

←−−−−−−−−−x◦←−−−−−−−−−γ◦ only if the constraints
p(γ ; θ) = p(γ ) and p(y; θ) = p(y) hold. This is because the serial Markov chain on the left corresponds to the factorization
p(y,x,γ ; θ) = p(γ |x)p(x|y; θ)p(y) while the chain on the right corresponds to p(y,x,γ ; θ) = p(y|x; θ)p(x|γ )p(γ ), so that
marginalization forces these constraints. To remove these constraints, one can forgo the assumption that the root nodes of the
serial chains correspond to marginals which are independent of the model parameters. Note that in this section we essentially do
assume that the marginals are independent of the model parameters because we assume at the outset that p(γ ) is independent of
θ , so that H(γ ) is independent of θ , and then we make p(y) approximately independent of θ , so that as a consequence H(y) is
approximately independent of θ .



1114 Chapter 17 Dictionaries in machine learning

y◦
θ

←−−−−−x◦←−−−−−γ◦
as a graphical representation of the factorial model (17.54)–(17.55) with the Jeffreys prior of
Eq. (17.66), and consider the optimization of the mutual information between y and γ ,

θ̂ = arg max
θ

I(y,γ ; θ). (17.75)

The optimization is performed to select a model for which γ has maximal knowledge about the world
as embodied in observations y. For the shown model we have [37]

I(y,γ ; θ) = H(γ ) + H(y; θ) − H(γ ,y; θ),

where we take H(γ ) to be independent of θ . Now one can see that the use of a factorization distribu-
tion for γ can serve to maximize mutual information (the information that γ “knows” about y) as a
consequence of the inequality

H(γ ) ≤ H(γ1) + · · · + H(γm),

where equality holds (in which case the maximum is attained) if and only if the distribution for γ is
factorial [8].

However, rather than directly maximize I(y,γ ; θ), we make the two further approximations that

H(y; θ) ≈ H(y)

and as θ gets close to its optimum value we have p(y,γ ; θ) ≈ P(y,γ ) so that73

H(γ ,y; θ) ≈ −Eγ ,y {lnp(γ ,y; θ)} = C (p(y, γ )‖p(y, γ ; θ)) .

This yields the approximation

I(y,γ ; θ) ≈ H(y) + H(γ ) − C (p(y, γ )‖p(y, γ ; θ)) , (17.76)

where H(y) and H(γ ) are constants. This shows that the goal of maximizing the mutual information
I(y,γ ; θ) with respect to the model parameters to ensure that γ is maximally informative about y is
approximately accomplished via the minimization shown in equation (17.74), which was discussed at
the outset of this subsection and which, as described there, can be done using the Jeffreys prior-based
algorithm described at length in Subsection 17.5.2.

17.5.4 Dictionary learning for conceptual understanding of the world
The interpretation of dictionary learning and subsequent sparse feature extraction as a generalization
of K-means clustering is potentially a very powerful one. Whereas K-means provides a mechanism to

73 Recall that the entropy (a.k.a. self-entropy) is related to the cross-entropy as C (p(y,γ ; θ)‖p(y, γ ; θ)) = H(γ ,y; θ). Thus we
are invoking our approximation that the joint distribution of y and γ is independent of θ in the first argument of the cross-entropy.
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learn and point to a number of single conceptual, atomic situations (or patterns or events or influences
or · · · ) perceived in the world, dictionary learning provides a way to identify compound situations
that are comprised of a multitude of atomic situations. However, even single atomic situations are
complex enough that a mere basis representation is inadequate to allow them to be expressed in an
easily interpretable and distinct manner. To make this point clearer, let us consider an illuminating
example from [174].

FIGURE 17.4

Towards XAI? – Learned dictionaries can capture interpretable structure. Courtesy of [174].

Consider an image space of 4 × 4 = 16-pixel grayscale images. The image space is n = 16-
dimensional and therefore any image I can be represented and reconstructed from a 16-element basis
set, a.k.a. a tight frame. It is common to represent the image I as a 16-element column vector y ∈R

n,
n = 16, obtained from stacking the pixel columns, so that I ↔ y. Note that there are 20 such 16-pixel
images shown in Fig. 17.4(b); they are 4 × 4 = 16-pixel exemplars of 20 English letters, which we take
to be represented by the n = 16-dimensional column vectors aj , j = 1, · · · ,m = 20. Assume that the
presence of the exemplar images is not known and can only be detected indirectly via observations
arising from the noisy generative model

y = Ax + n with A = (a1 · · · am

) ∈R
n×m, n = 16, m = 20, and sp(x) = k = 2.

This model says that observations are generated by a noisy sum of k = 2 = sp(x) exemplar letters.
Twenty representative samples drawn from this generative model are shown in Fig. 17.4(a). There are
a total of L = 5000 such samples, Y = (y1 · · · yL

)
, which can be used to learn a hypothesized

generative model presumed to be of the form

Y = AX + N, A ∈R
16×m.

In general the unknowns of the hypothesized model include the size m of the frame, the n × m dic-
tionary A, and the m × L representation vectors X. The only thing known is that n = 16 and the
assumption of a reasonably tight upper bound k on the sparsity of solutions, sp(X) ≤ k, which can
be determined during the dictionary learning process.

Because y ∈R
n with n = 16, a representation for any dataset Y is possible if A is a tight frame,

i.e., if it is 16 × 16 and nonsingular. However, note that there are 20 letters of interest as shown in
Fig. 17.4(b). Although, of course, these 20 exemplar images can each be represented as a linear combi-
nation of 16 basis vectors that span the image space, such tight frame representations generally will not
be sparse. Reference [174] shows that by using PCA [88] or independent component analysis (ICA)
[83], one can learn 16 basis vectors, as shown in Fig. 17.4(c) and Fig. 17.4(d), respectively. By using
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either one of these bases one can uniquely solve y = Ax given an image y for an image representation
vector via a simple inversion, x = A−1y. However, in either of these tight frame cases the derived rep-
resentation x generally will not be sparse and/or easily interpretable. This will almost certainly be the
situation if the atoms themselves are noninterpretable, which is the case for the PCA and ICA solutions
as shown in Fig. 17.4(c and d).74

If we know that there are m = 20 atomic entities of interest (in this case, letters), then it is natural
to use a dictionary of m = 20 atoms, which for our example corresponds to a 16 × 20 dictionary matrix
A. Fig. 17.4(e) shows the 20 16-dimensional columns (laid out as 4 × 4 pixel grids) of the dictionary
matrix A obtained using the gradient descent dictionary learning algorithm shown in Eq. (17.42) [133],
while Fig. 17.4(f) shows the columns from finding A using the K-SVD algorithm. It is evident that
taking m = 20 > 16 = n greatly increases the interpretability of the dictionary atoms.

Now suppose we want to detect overlaid letter combinations. In the simplest case this could be two-
letter English words like “to,” “in,” “it,” “as,” etc., combined in a layered “bag-of-words” fashion. For
example, in Fig. 17.4(a) representative noisy images made up of the sum of two letters plus additive
white Gaussian noise are shown. For a well-learned dictionary, like the one shown in Fig. 17.4(f), it will
be possible to decompose the image TO as the sum of the letters T and O – “to.” And sometimes, as for
this simple example, this procedure can have meaning. And because dictionary learning has the ability
to extract meaning, it can be used in conjunction with other machine learning methods; for example in
[125] dictionary learning is used at the input layer of a deep neural network to good effect.

For an n × m dictionary matrix A, the fact that one knows, or can detect, the truth that m = m = 20
is generally nontrivial. In the example shown here, this corresponds to knowing that there are 20 atomic
classes (letters in this case) in play. Determining the value of m is equivalent to the very difficult prob-
lem of model order determination, which in the case of classification requires determining the number
of distinct classes. From the perspective of dictionary learning viewed as a powerful generalization
of clustering that allows us to deal with the case where multiple atomic classes get admixed to form
complex compound classes, this problem is seemingly amplified. However, it may well be the case that
dictionary learning is robust in the limit that our choice of m gets large in that there may be a propensity
in “Sparseland” for meaningful atoms to pop up out of a sea of nonsense atoms because the “meaning-
ful atoms” match to the structure in the world, while the remaining atoms just match to the noise. If
this latter fact is true, after a large dictionary is learned one can then keep a count of which atoms are
constantly used to represent situations encountered in the world and which ones are never in play, and
in this way eventually (over evolutionary time?) learn an appropriate model order.

17.6 Nonnegative matrix factorization in dictionary learning
As emphasized in the previous section, an increasingly important concern of contemporary research in
machine learning is the development of algorithms capable of providing semantic understanding of sit-

74 PCA results in orthonormal frames while, similarly to FA, ICA can find nonorthonormal tight frames. This allows ICA to
generally have greater expressive power than PCA, which in this case appears to be manifested in the fact that the learned ICA
atoms seem to show some hints of “letter-like” structure. Recall that a blind inverse problem at best can produce a solution for A

that is unique only up to the sign and ordering of the columns of A, so it is not clear in these two examples which atoms, if any,
are comparable.
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uations in the world in addition to having predictive or discriminative capabilities and thereby provide
explanations of how or why such predictions were arrived at. Such a semantic or interpretative capabil-
ity falls under the rubric of explainable AI (XAI) [184,155,145]. An important approach to developing
multivariate statistical learning algorithms capable of both explainability and dimensionality reduction
is nonnegative matrix factorization (NMF), which is applicable when observed data only take nonnega-
tive values [99,66,68,35,67]. Popular applications of NMF include cases where the underlying data are
nonnegative and a decomposition into constituent parts serves some application-specific benefit. One
prime example of this is speech denoising, where denoising is performed in the spectrogram domain
and the observations are decomposed (additively) into signal and noise [186]. Other applications of
NMF include document clustering [196], hyperspectral image denoising [103], and recommendation
systems [64].

When interpreting NMF, it is standard to consider the low-noise case

Y = AX + N ≈ AX,

which is a realistic assumption or approximation in many scenarios.75 We denote componentwise non-
negativity of a matrix M by M ≥ 0 or 0 ≤ M .76 Thus, in the low-noise limit we are interested in the
problem

Y ≈ AX with 0 ≤ Y ∈R
n×L, 0 ≤ A ∈R

n×m, 0 ≤ X ∈R
m×L. (17.77)

Classically NMF assumes that m ≤ n and quite frequently that m � n. We refer to this classical
case as undercomplete NMF (uNMF). Our interest is in the overcomplete case when m > n, which we
refer to as overcomplete NMF (oNMF) or, equivalently, as nonnegative dictionary learning (NDL). It
is important to distinguish between uNMF (i.e., “usual” NMF) and oNMF (NDL) as applications and
simulations suggest that qualitatively they can behave quite differently.

As noted in the foundational paper [99], VQ, PCA, and (standard undercomplete) NMF can be
interpreted as variants of a matrix factorization procedure resulting in components (a.k.a. atoms or
features) providing different types of explainability. The case where m � n can yield a parts-based
representation [99]. This arises from the fact that

y� ≈ Ax� = x1�a1 + · · · + xm�am with m � n � L

for every positive observation n-vector y ≥ 0 and associated positive representation m-vector x� ≥ 0,
� = 1, · · · ,L. The fact that all L positive observations y� have to be additively assembled as a positive
sum of the same small set of positive atoms aj ≥ 0 forces the atoms to have a parts-like structure
in contrast to techniques such as VQ and PCA which yields atoms having holistic structure [99]. In
essence, when m � n NMF performs a type of FA subject to nonnegativity constraints which produces
parts-like factor components.

NDL (oNMF) generalizes standard NMF (uNMF) to the overcomplete case m > n. Assuming that
the URP condition holds whenever m > n,77 any n columns of the n × m dictionary matrix A are lin-

75 Such as when one works with high-quality images or word count data extracted from documents. It has also been argued that
this assumption makes sense for data sensed by animals in the natural world [16].
76 Be careful not to confuse this with the positive definiteness partial ordering on square matrix which typically uses the same
notation. The meaning of M ≥ 0 should be clear from the context.
77 See Sections 17.2.4 and 17.2.5.
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FIGURE 17.5

Nonnegative dictionaries can capture whole-part relationships and discover structure. Visualization of atoms
for dictionaries A used for representing faces that are learned using the sparsity-regularized, overcomplete
NMF “Type I” algorithms given in [58]. These algorithms learn a nonnegative factorization Y ≈ AX given a
nonnegative data matrix Y of database images. The algorithm used to develop the atoms shown in the top row
enforces sparsity in the solutions X. The algorithm in the bottom row enforces sparsity both in the dictionary
A and in the solutions X. Both algorithms have a sparsity regularization parameter that increases in strength
from left to right so atoms shown on the right yield sparser representations than the atoms shown on the left,
while the atoms in the middle yield an intermediate level of sparsity. In both rows, as one moves from left to
right one can see the atoms change from being “parts” that must be assembled to present an image (yielding
less sparse representations) to atoms that can “holistically” represent an entire image in the sense of vector
quantization (which are maximally sparse sparsity-1 representations). In the bottom row, moving from left to
right one sees the development of holistic atoms that can point to holistic template atoms and parts-based
atoms that serve to “clean up” the representation adding missing “parts.” Courtesy of [58].

early independent. The existence (or enforcement) of sparse solutions to the oNMF problem allows for
the existence of holistic, nonparts-based atoms. For example, if a single column of A can (necessarily
holistically) explain an observation y, then a sparsity k = 1 representation for y exists. Indeed, in the
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limit that m → ∞, essentially any y can be assigned a holistic, sparsity k = 1 representation.78 Thus,
our heuristic discussion suggests that the m � n limit tends to enforce the creation of parts-based rep-
resentations, while taking m � n and enforcing sparsity tends to yield holistic representations. One can
conjecture that taking m only moderately greater than n will yield holistic, maximally sparse repre-
sentations for frequently occurring values of y and parts-based, less sparse representations for rarely
occurring values of y. Such behavior is experimentally shown in Fig. 17.5 taken from reference [58].

A popular approach used in standard uNMF to determine a positive factorization Y ≈ AX is through
the use of multiplicative update rules, whereby updates to A and X are generated by elementwise multi-
plication with nonnegative matrices [61]. Generalizations of these multiplicative update rules to oNMF
that minimizes a sparsity-regularized objective for a general class of sparsity-promoting regularizers is
given in [58,57], and earlier approaches to solving the oNMF problem can be found in [79,3].

Both Bayesian Type I methods [58,57] and Type II methods [127,126] can be used to develop oNMF
algorithms. When compared to the Type I approach, the Type II method exhibits superior performance
despite requiring additional implementation approximations. Fig. 17.5 gives a visualization of the atoms
learned from a database of human faces using the Type I algorithm developed in [58]. As described in
the figure caption, this visualization shows the ability of the oNMF algorithm given to learn atoms
capable of creating parts-based, holistic, and mixed representations as a function of parametric and
algorithmic choices made by the user.

17.7 Dictionaries, data manifold learning, and geometric multiresolution
analysis

There are situations where one can argue that it is reasonable to model high n-dimensional (n � 1)
signals measured in the world as being constrained to lie on intrinsically low d-dimensional manifolds
(d � n) embedded in the signal space corrupted by some degree of noise in the ambient signal space Rn.
Such is the case, for example, when imaging a world that is well modeled by articulated interconnected
rigid body objects [45,40] and/or by localized, texturally distinct image patches [142]. Multiscale (a.k.a.
multiresolution) modeling of such situations by the use of multiresolution dictionaries was explored in
the papers [179,10,178], and these investigations were amplified and extended in the works [31,123,30,
5,85,108,102]. In this section we briefly review the work of this latter literature, noting that references
[85,108,102] in particular provide a good survey of the prior art in this area.

We begin by motivating the problem using terminology already established in this chapter. Suppose
the observed data y ∈R

n actually lie on a smooth manifold Y⊂R
n of constant intrinsic dimension

d � n. Then locally around any point in y0 ∈Y, i.e., in a small enough neighborhood N(y0), we have
(see Section 17.2.5 for the definition of a sparsity class cy)

y = y0 +
∑
j ∈ cy

xjaj + ε with |cy | = d, (17.78)

78 In this limit, the problem becomes one of vector quantization.
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where the d vectors aj , j ∈ cy , span the local tangent plane Ty0Y of the d-dimensional manifold Y

located at the point y0 and the accuracy ε is appropriately “small.” Note that determining (17.78) for
any y, which requires the determination of its associated frame cy and frame location y0, can be viewed
as a form of localized best-basis selection where the number of basis vectors d = |cy | in the local frame
cy is equal to the intrinsic dimensionality of the data manifold d = dim Ty0Y. It is convenient to take
each aj to be a unit vector and to define the frame location y0 by

y0 = xy0ay0,

with ay0 being a unit vector. We represent each tangent space by the k
def= d + 1 element frame

c̃y = {ay0} ∪ {aj }j∈cy , |c̃y | = k = d + 1,

where it is understood that ay0
must be appropriately scaled by xy0

in order to site the frame cy at the
point y0 = xy0ay0 .

Assume that a collection of τ tangent planes is sufficient to cover the data manifold Y.79 Then the
collection of vectors

D =
⋃
y ∈Y

|c̃y |=k

c̃y

forms an overcomplete dictionary that can adequately (up to accuracy ε) represent any observation
y ∈Y. Note that

|D| = m ≤ kτ = (d + 1)τ

with strict inequality m < kτ if neighboring tangent planes share vectors aj . Note that this strict in-
equality m < kτ can occur if we impose the condition that m, the size of the frame D, must be as small
as possible subject to bounds on the size of the error ε. Given the dictionary D, we arrange its elements
into the columns of the n × m dictionary matrix A and thereby attain the best-localized k-basis model
of accuracy ε

y = Ax + ε = Ac̃ x c̃ + ε with c̃ = c̃y and |c̃| = k = d + 1, (17.79)

which is just a rewriting of Eq. (17.78). This model provides a representation of the k-dimensional data
manifold Y which is accurate up to the approximation error ε.

Taking stock, with A ∈R
n×m and Ac̃ ∈R

n×k , it is evident that (up to the size of the error ε) a so-
lution to Eq. (17.79) exists with sparsity no more than k = d + 1.80 It will often be the case that the
construction (17.79) yields a model that is overcomplete relative to the ambient space Rn, m > n. How-
ever, if the data manifold is of sufficiently low intrinsic dimension, d , and a relatively low number, τ ,
of tangent planes is sufficient to cover the data manifold to a requisite degree of precision, it is possible

79 By this, we mean that the error ε in (17.78) is bounded to within some acceptable level uniformly for all y.
80 Recall that x is said to be k-sparse if at most k of its components are nonzero.



17.7 Dictionaries, data manifold learning, and GMRA 1121

FIGURE 17.6

Data manifold learning using localized scale-dependent dictionaries. Visual demonstration of dictionary learning
of an unknown data manifold of data sampled from an intrinsically low-dimensional manifold embedded in
high-dimensional real Euclidean space (example and images taken from reference [102]). Data are (appro-
priately uniformly) sampled from the S-shaped surface shown in (a) and then isometrically embedded, with
a randomly chosen position and pose, into n = 100-dimensional Euclidean space. Small-variance uniformly
sampled random noise is then independently added to all n = 100 components to create noisy sampled ob-
servation vectors y� ∈R

100, � = 1, · · · ,L = 50,000. From these data alone, one is to learn a scale-dependent
dictionary that provides an acceptable approximation to the unknown manifold. After the intrinsic dimension,
d = 2, has been learned (see text), the multiscale procedures described in [102] can be applied to learn a
collection of flats (affine subspaces) that in the aggregate provide an approximation to the unknown manifold
to a specified level of accuracy. In (b) a moderate degree of approximation accuracy is obtained by learning
and adaptively fitting on the order of 26 = 64 (i.e., for scale s = 6) flats to the unknown data manifold. In (a)
a more accurate fit is obtained by learning on the order of 210 = 1024 flats (corresponding to scale s = 10).
Courtesy of [102].

to have n > m = kτ = (d + 1)τ . This emphasizes the point that redundancy (overcompleteness) is ac-
tually relative to the intrinsic dimensionality of the data (in this case, d) and not to the dimensionality,
n, of the ambient space within which data are collected.

Some thinking leads to the realization that the size of the dictionary m = |D| should be dependent
on the desired level of local accuracy m = m(ε). This is a supposition which can be formulated in a
rigorous manner within the framework of geometric multiresolution analysis (GMRA) [31,123,30,5,
85,108,102]. Furthermore, as described in these references, this can be done in a manner that results
in a tree structure hierarchy of multiscale dictionaries (with the atoms of these multiscale dictionaries
referred to as multiscale geometric wavelets81). Finite sample nonasymptotic results and approximation
error bounds are obtained by assuming that the data are generated by a distribution that is supported on
or near a manifold of intrinsic dimension d � n, subject to conditions on the data generation process
and appropriately constructed multiscale data structures that are rigorously presented in [5,108,102].

81 This terminology is somewhat misleading as the dictionary atoms do not generally obey the properties (e.g., translation and
dilation properties) often demanded of wavelets [31].
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A key contribution of the work reported in [5,108,102] is the elucidation of the importance of
constructing data structures from the observed data that capture multiscale neighborhood structure, in
particular the construction of tree structures that encode data coverings (cover trees) and partitions
(partition trees) at different scales so that one can “zoom in” and “zoom out” to various data scales
in a consistent manner [105,19]. This enables one to create scaled neighborhood-conditioned data co-
variance matrices from which the intrinsic dimension of the data can be estimated as the number of
dominant eigenvalues.82 By looking for stability of this number over space and scale (a form of topo-
logical persistence [48]), one can obtain a reliable and accurate estimate of the intrinsic dimension
[105]. Having an accurate estimate of the intrinsic dimension and with a multiscale cover/partition tree
at hand, one can then turn to the multiscale determination of dictionaries that can be used to represent
the data at a variety of scales, with finer scales corresponding to more accurate data representations. For
a given scale, s, the data manifold will be approximated by a collection of local, approximate tangent
spaces (flats a.k.a. affine subspaces) of the form (17.78) where the number of such flats is of order 2s .
Fig. 17.6 shows an example taken from [102].

17.8 Hard clustering and classification in dictionary learning
17.8.1 Clustering
Clustering in its hard sense carves up the world of observations into disjoint subsets that collectively
cover the set of observations and the range of possible future observations. This is clustering as parti-
tioning [121,122,118,161]. Because there are an infinity of ways to partition the world, and hence many
different types of algorithms available to do so, it is not surprising that clustering in the abstract – i.e.,
as a partitioning decoupled from any specified goal – is ill-posed as it stands [55,185]. Any clustering
algorithm used for such a purpose has a built-in “inductive bias” that favors some kinds of partition-
ing over others and thus it is unwise to ascribe any intrinsic meaning to the outcome of the algorithm
without some deep reflection [17].

At the end of Section 17.5.3, we discussed how the imposition of a sparsity-enforcing prior imposes
an inductive bias on the hierarchical/empirical Bayes model that favors selection of low-dimensional
affine subspaces (flats). Similarly to how standard clustering techniques are used in spectral clustering
after a spectral graph theory-based dimensionality reduction has been performed [119,177] to produce
representation vectors or how clustering can be performed after a PCA dimensionality reduction step
has first produced representation directions in data space [43], we can perform clustering on the repre-
sentation vectors we compute. In particular, one possible way to do this is in three steps:

C0 From the data learn a single overcomplete dictionary and use this learned dictionary to obtain K

distinct sparsity classes. This will result in the data being disjointly partitioned into the K sparsity
classes according to the sparsity pattern of their representations.83

82 Equivalently, as the number of dominant singular values of the data matrix [105].
83 See Section 17.2.5. The sparsity classes are comprised of the atoms defining the subspaces of interest. Generally K , or
an upper bound on K , will be prespecified. Note that this is a simplified approach in that the dictionary is learned for sparse
representation purposes only, without regard to the fact that it will subsequently be used for clustering purposes. We will comment
on this point later below.
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C1 Within each sparsity class, perform further “second-level” clustering of the data.
C2 Assign a new observation to a cluster by determining its sparsity class from its sparse representation

and then performing a second-level clustering of its representation within that sparsity class.

Note that clusters detected in this manner are naturally identified using two indices: one to indicate
the sparsity class found in step C0, the second to indicate the second-level cluster found in step C1.
The first step C0 requires the commitment to a procedure to select a low number of subspaces (i.e.,
K sparsity classes) that occur most of the time or approximately all of the time. The second step
C1 requires the selection and deployment of a second-level clustering algorithm to be applied to the
representations occurring within those subspaces. Note that these procedural choices add additional
aspects to our inductive bias.

Continuing with the ideal formalism C0–C1, we can interpret the selection of a subspace in step
C0 as the detection of a set of “atoms” (or “words”) capable of describing a “domain of discourse.”
The second step C1 detects the particular way that those atoms have been weighted and then combined
to form an isolated, identifiable statement within that domain. This is a particularly compelling way
to think about this clustering procedure if the nonnegativity constraints described in Section 17.6 are
imposed.

Interestingly, however, the procedure C0–C1 just described does not seem to have been fully
explored in the literature. The proposed procedure C0–C1, which uses K class-dependent sparsity
(“local”) subspaces determined from the columns of a single learned dictionary, is fundamentally dif-
ferent from the multidictionary approaches followed in [177,43,163,147] where global spaces (“global”
because, in essence, several cluster-dependent dictionaries are learned) are determined (one for each
cluster) based on the data followed by which clustering is performed on a new data sample by selecting
the entire cluster-dependent dictionary that best matches the sample. In particular, in [163,147] the two
steps C0 and C1 have been combined into a single step (we call this single step “step CD1”) and re-
laxed to the problem of creating full dictionaries (each one, of course, comprised of columns which are
atoms) that are each entirely specific to a single cluster84 and the remaining clustering step C2 (which
we now call “step CD2”) is performed simply by selecting the class-specific dictionary that gives the
best-fitted sparse representation. In this simplified approach we have the following two-step procedure:

CD1 Given data matrix Y , specify an integer K . Then learn K classes P = {C1, · · · ,CK } with partition
Y with each class having a distinct dictionary which we can assign to the set A = {A(1), · · · ,A(K)}.
Note that the K classes (equivalently, the K distinct class-dependent dictionaries) represent the
K clusters into one of which a new data instance will be assigned as per the next step.

CD2 Perform clustering of a new observation y by selecting the best-fitting class-specific dictionary
A(j) and assigning y ∈ Cj .

This is the procedure, for example, described in [163,147] where, for a specified number K of clusters,
step CD1 is performed by solving (for specified values of k, K , and m)85

84 Note that a single dictionary will generally correspond to many distinct sparsity classes of the type defined in Section 17.2.5.
85 As noted in [147,47], one can increase cluster separability by adding a penalty term of the form γ

∑
i �=j ‖A(i)T A(j)‖2

F
to the

loss function that is being minimized on the right-hand side of (17.80). This term penalizes the coherence between dictionaries.
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(P̂, Â) = arg min
P,A

1

L

K∑
j=1

L∑
�=1

dis(y�,A
(j))1(y� ∈ Cj ) (17.80)

with A(j) ∈R
n×m, for j = 1, · · · ,K , and

dis(y,A)
def= min

sp(x)≤k
‖y − Ax‖2

2. (17.81)

It is illuminating to compare Eq. (17.80) with Eq. (17.26). Note that in step CD1 the goal is to simulta-
neously learn K classes for the data Y and, at the same time, the K dictionaries A(i), i = 1, · · · ,K . In
general this is quite hard and – in the spirit of the K-means clustering algorithm – one will often resort
to a greedy algorithm that cycles between dictionary learning and clustering.

Once Eq. (17.80) is solved, step CD2 is given by

y ∈ Cj for j = arg min
1≤i≤K

dis(y,A(i)). (17.82)

We emphasize again that the procedure C0–C2 described at the outset of this section involves learn-
ing a single dictionary for which we determine sparsity classes as a first level of clustering and then
searching further within each sparsity class for additional subclusters. The second procedure CD1–CD2
involves learning multiple dictionaries, one for each class. Note that procedure C0–C2 can be simplified
by dropping step C1 and contenting ourselves with merely clustering according to sparsity class alone.
But note that this simplification still uses only a single learned dictionary – we will further discuss this
simplification below.86

Let us discuss a possible program for attacking the problem of solving step C0 discussed at the
outset of this section. Having learned a single overcomplete dictionary A ∈R

n×m, n < m, from the
data Y in any one of the manners described earlier means that for each data vector y�, � = 1, · · · ,L,
we have the ability to solve the k-sparse inverse problem

y� ≈ Ax�

to obtain a k-sparse representation x� ∈R
m having a specific 0–1 sparsity cc�

. We can encode this
sparsity pattern as a Boolean sparsity-pattern vector c� ∈ B

m ⊂R
m such that the nonzero elements of

c� correspond to the nonzero elements of x�.87 Note that sp(x�) = cT
� c� = |cx�

| ≤ k by construction
of c� and the requirement that x� be k-sparse. It is convenient to construct the sparsity-data Boolean
matrix C = [c1 · · · cL] ∈ B

m×L. Now note that the goal of step C0 is to cluster the binary vectors c�,
� = 1, · · · ,L (i.e., the columns of C) into K distinct classes. Fig. 17.5(c) and Fig. 17.5(f) shown above
suggest that (at least for a benign world admitting appropriately parameterized nonnegative models)
this can be done for reasonably bounded values of K .

For large values of m and L, clustering (the columns of) C can be a computationally onerous
task. For example, if m = 100 and the representations x� are k-sparse for k = 6, the computation of

86 This distinction between classification using multiple, per class, dictionaries and classification by sparsity class within a single
dictionary is discussed in [47].
87 The 2m elements of the finite set B correspond to the corners of the unit hypercube in R

m.
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Eq. (17.33) shows that there are 1.27 × 109 possible sparsity patterns to consider as (sparsity class)
cluster centroids. Therefore heuristic approaches often must be used in practice. A variety of algorithms
exist that can be used to cluster Boolean vectors [91,6,195]. However, especially for high-dimensional
data, the convergence of such algorithms to acceptable solutions can be tricky and depends sensitively
on the nature of the distance measure.88 And, of course, the difficult problem of how to choose K , the
number of clusters, must also be addressed.89 Assuming this clustering procedure tractably leads to
good solutions, the end result will be a collection of K cluster representatives ĉκ ∈ B

m, κ = 1, · · · ,K .
Note that even if step C0 can be successfully performed, one would then need to perform step C1 by

performing second-level clustering of the data within each learned sparsity class ĉκ . Thus the procedure
C0-C2, which requires clustering into sparsity classes followed by clustering within each sparsity class,
appears to be computationally daunting. Thus we note, as mentioned above, that a simpler (though
potentially suboptimal) way to proceed is to only assign a new observation to a single sparsity class and
not expend the effort to find second-level clusters within each sparsity class.90

This simplification of procedure C0–C2 means that once we have determined the cluster represen-
tatives ĉκ in step C0, we forgo step C1 and instead immediately perform step C2 (i.e., cluster a new
data vector y) via the following procedure:

solve for k-sparse representation vector x such that ‖y − Ax‖2
2 is minimized; (17.83)

then assign y ∈ Cj for j = arg min
κ

‖y − A(ĉκ ◦ x)‖2
2, (17.84)

where A is the single overcomplete dictionary learned in step C0 and ĉκ ◦ x denotes the elementwise
Hadamard product, which here serves to project x onto the sparsity pattern represented by ĉκ . Note
that all sparsity classes are involved when solving for x in the first step, which allows the K different
sparsity classes to “compete” in explaining y. The second step would then select the class that is most
effective in explaining y after the “competition” is resolved.

Note that (17.82) and (17.84) show that after clusters have been discovered from a sample of unla-
beled data, then a new observation is assigned to the cluster that results the representation having the
minimum residual error. This procedure also can be applied for learning to classify labeled data as we
discuss next.

17.8.2 Classification using residual errors
What differentiates classification from clustering? Rather than relying solely on the built-in inductive
bias of a clustering procedure, to perform classification one further requires a partition of the observa-
tion space into regions corresponding to values of some utility, loss, or classification function. From
this perspective, clustering is classification with a purpose, i.e., the inductive bias is imposed by the user
or external environment (such as when an animal in its natural ecosystem learns to classify predator
from nonpredator). Now when a new observation is assigned to one cluster versus another, different,

88 And, partially for this reason, there have been a variety of distance measures proposed for categorical data [195,41].
89 Thus, perhaps it is not surprising that the more straightforward procedure of learning cluster- and class-dependent dictionaries
appears to be a not unpopular approach to clustering and classification [163,147,77,162,143,101].
90 Note that this is philosophically similar to procedure CD1–CD2. The difference is that CD1–CD2 learns a different dictionary
for each cluster, whereas here we learn a single dictionary and from that dictionary learn a different sparsity class for each cluster.
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cluster, we have a difference that makes a difference. Different requirements/goals result in different
partitionings (clusterings) of the world into disjoint cells and one can ask what relationship one such
clustering has to another.

Similarly to the multidictionary CD1–CD2 clustering procedure described in the previous Sub-
section 17.8.1, it is natural to ask if learning a bank of (in this case, label-specific) dictionaries and
corresponding sparse representations can be used to enhance the ability to classify measured situations,
and indeed early on such investigations were begun. Classification can be view as “contextualized” clus-
tering where knowledge that an observation belongs to a particular cluster is relevant for determining
if a particular context (i.e., “class”) is the case. And this does not have to be done by straightfor-
wardly matching to categorical target-label values during training; for example the research reported in
[77,162,143] trained multiple dictionaries, each one trained for a specific context, and thereafter made
a discrimination between the contexts for a future observation by determining which context dictionary
produces a sparse representation that best explained that observation in the squared-error sense. For
example, suppose that context-1 data result in a learned dictionary A(1) and context-2 data in a learned
dictionary A(2). Then in a new, unknown context, observation y can be determined to have a sparse
representation x(1) using the context-1 dictionary and a sparse representation x(2) using the context-2
dictionary, which allows for the following simple rule for classifying y [77,162]:

‖y − A(1)x(1)‖2
decide 1

≶
decide 2

‖y − A(2)x(2)‖2, (17.85)

which is just the decision rule equation (17.82) for the binary classification case K = 2. It is evident that
this binary dictionary procedure readily extends to the general, nonbinary, multiclass case.91 General-
izations of this approach that incorporate nonnegativity constraints and allow for competition between
the class-specific learned dictionaries A(j) when learning the class representations x(j) are described in
[101].

To modify the single-dictionary clustering procedure that leads to Eqs. (17.83)–(17.84) in order to
simultaneously learn dictionary A and sparsity classes cκ appears to be computationally nontrivial. In
general, a straightforward combinatorial search for K k-sparse sparsity-pattern vectors cκ would be a
difficult computational endeavor for large values of K . One way to approach the problem would be
to solve the following problem for Â ∈R

m×n and ĉκ ∈ B
m, κ = 1, · · · ,K , given labeled data y�, � =

1, · · · ,L, for K classes92:

(Â, ĉκ , κ = 1, · · · ,K) = arg min
A,k-sparse cκ ∈ B

m

κ=1,··· ,K

1

L

K∑
κ=1

L∑
�=1

dis(y�, cκ ;A)1(y� ∈ Cκ), (17.86)

where dis(y, cκ ;A) = ‖y − A(cκ ◦ x̂)‖2
2 subject to x̂ = arg min

k-sparsex
‖y − Ax‖2

2. (17.87)

91 As discussed, for example, in references [112,194,163]. Note that the decision rule in this case is precisely Eq. (17.82).
This approach is used to great effect for face recognition in [194], where the algorithm is referred to as Sparse Representation-
based Classification (SRC), a terminology that is commonly encountered in the literature. The SRC approach to classification is
enhanced in [197,198] by the use of a loss function that directly encourages class separation.
92 As mentioned in Footnote 85, a penalization term can be added to the loss function that forces class separation.
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The procedure in Eq. (17.86) consists of learning a single dictionary at the same time that one learns
the sparsity-pattern vectors cκ . Here a dictionary matrix A is learned that enhances classification and
facilitates classification of the data.93 This should provide superior performance compared to separating
the clustering and classification steps, particularly in a world that is not likely to be accurately modeled
because of the need to work with reasonable model parameter values (e.g., of m and K).

An alternative and generally more powerful approach to classification based on layering dictionar-
ies, which also allows the use of loss functions more general than residual error, is described in the next
section. It is often the case that the concern with solving a difficult problem like (17.83)–(17.84) or
(17.86)–(17.87) is strongly coupled with a desire to have a decision making process that is explainable.
A simple rule like (17.85) hides the inner workings of the decision rule, whereas approaches bringing
structural features to light, like the class sparsities encoded in Boolean vectors like ĉκ can elucidate
structure in the world that perhaps one can attach an interpretable conceptual framework to. Other
procedures have been proposed to perform classification using dictionaries. A particularly accessible
discussion of classification using residual errors can be found in [47].

17.9 Multilayer dictionary learning and classification
Perhaps the most straightforward way to combine dictionary learning with a classifier such as a support
vector machine or a neural network is to prepend a dictionary-based sparse feature extraction prepro-
cessing stage to the network. This approach involves first independently learning the sparse codes and
dictionary elements for application to downstream tasks such as classification or regression, followed
by learning the network weights using the sparse codes provided by the dictionary in the manner shown
in Eqs. (17.88) and (17.89) and in Fig. 17.7(a) [110]. Here L denotes the loss function used in classifi-
cation, (y�,z�) are respectively the input data and expected or ground truth labels for l = 1, . . . , � sets
of data, D = A is the learned dictionary with the sparse codes x� for � = 1, . . . ,L, and the classifier
weights are denoted as W . We have

min
xl ,A

1

�

L∑
�=1

1

2
‖y� − Ax�‖2

2 + λ‖x�‖1 (17.88)

and

min
W

1

�

L∑
�=1

L(z�,Wx�) + γ

2
‖W‖2

F . (17.89)

A version of this procedure is used to good effect in [125].94 As a simple example, consider the case
where a prelearned dictionary is used to preprocess the data which are then used to train a simple single
hidden-layer multilayer perceptron (MLP) with softmax classier outputs. The steps are as follows:

93 This indicates that one can strengthen the sophistication of clustering procedure C0–C2 which, as mentioned in Footnote 83,
decouples dictionary learning from clustering. One way to do this would be to search over possible clustering during the opti-
mization shown in (17.86). Of course this would greatly increase the complexity of an already nontrivial problem.
94 See Fig. 3 of that reference.
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FIGURE 17.7

Combining a dictionary with a neural network. Learning the dictionary and associated weights for sparse clas-
sification/regression tasks [110]. (a) Backpropagation is used to learn the neural network weights W from a
pretrained dictionary A. (b) Backpropagation is used to learn both the weights W of the neural network and
the dictionary A. This combined learning procedure is nontrivial, as detailed in [110].

1. Collect labeled data y� ∈R
n, � = 1, · · · ,L, for K classes. Select the dimension m of the corre-

sponding representation vectors x� and the sparsity level k. Select the number of neurons, ν, in the
perceptron (single-layer network). Encode the K classes as one-hot unit vectors ej , j = 1, · · · ,K .

2. Using all the data, Y ∈R
n×L, learn an overcomplete dictionary A ∈R

n×m trained to provide a k-
sparse representation vector x� for each data sample y�.

3. Transform the labeled data into labeled k-sparse representation vectors y� → x�.
4. Train the weights W ∈R

K×m of the perceptron (e.g., via backpropagation) using a loss function
that forces the output of the softmax function to match to the K one-hot class encoding vectors.

The example given above is one of several possible architectures. This particular example decouples
dictionary learning from learning weights of the network performing classification or regression, as
shown in Fig. 17.7(a).

Learning the dictionary independently of classification as done in Eqs. (17.88) and (17.89) does
not give optimal performance for such tasks. A more sophisticated approach is to simultaneously learn
the dictionary and the classifier weights. Towards that end a more comprehensive approach for tasks
such as regression and classification was proposed in [110,36]. The learning architecture for such task-
driven dictionary learning is shown in Fig. 17.7(b), where learning the dictionary-based features used
for supervised learning is performed in a fully supervised manner. In this case the objective function
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for learning is as follows:

min
W,A

1

�

L∑
�=1

L(z�,Wx∗
�(yl;A)) + γ

2
‖W‖2

F , (17.90)

where

x∗(y,A) = arg min
x

1

2
‖y − Ax‖2

2 + λ1‖x‖1 + λ2

2
‖x‖2

2. (17.91)

Under a few technical assumptions on the probability distributions of (y,z) it is possible to compute
the gradient of L with derived learning rules for both W and A. The interested reader is referred to
[110] for more details on the gradient updates for W and A.

FIGURE 17.8

Deep dictionary learning. An architecture for learning dictionaries Di = Ai , i = 1, · · · , n, in a deep dictionary
network used for image classification. The backend classifier can be any shallow or deep neural network. This
architecture is a generalization of the architecture shown in Fig. 17.7(b), created by layering multiple dictionar-
ies prior to the neural network. Because the dictionaries Di are overcomplete, the pooling stages Pi also serve
the function of preventing the dimensionality of each layer from growing to an unwieldy size [29,109].

This formulation is extended to an architecture consisting of multilevel dictionaries with an image
classifier in [29] as indicated in Fig. 17.8. In this case simultaneous learning of dictionary elements,
sparse codes, and network weights is performed using backpropagation. In such architectures every
layer l consisting of a sparse code has to be overcomplete with respect to its previous one (l − 1).
Therefore it is required to perform dimensionality reduction on layer l before dictionary learning is
performed on it to generate the sparse codes which form layer l + 1. This bottleneck problem leading
to the growth of overly fat dictionaries as highlighted in [167] can be resolved by using pooling layers
as described in [29] and [109]. In these cases the pooling functions are parameter-free and differen-
tiable, which allows them to be used in backpropagation in order to learn the dictionaries at different
levels. Using similar mechanisms it is also possible to learn more general parameterized smooth pool-
ing functions in addition to the classifier weights and the dictionaries. As shown in Fig. 17.9, such deep
architectures extract features at multiple resolutions in the stack of dictionaries and thereby provide a
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FIGURE 17.9

Two alternative deep feature extraction architectures: dictionaries vs. convolutional networks. (A) On the right
is shown an archetypical deep convolutional neural network (DCNN) used in the feature extraction stack. The
stacked coding elements are convolutional layers (CLs) with pooling elements (P) interposed between the CLs.
Note that setting a pooling layer to the identity map “turns off” pooling. A trained DCNN can provide highly
useful features for further processing in a “decision stack” using a variety of decision-oriented or regression-
oriented neural networks. This combination is known to be very powerful and highly effective [96]. Essentially
each CL/P combination extracts information from the input at a higher (generally coarser and/or more abstract)
level of resolution. (B) Shown on the left is an architecture where the feature extraction stack is comprised
of an interleaving of overcomplete dictionary (D) and pooling (P) layers. Here, the pooling not only provides
control over the level of resolution of the features extracted at each layer, they are also critical for ensuring
that the dimensions internal to the feature extraction stack remain reasonably bounded. This is because pool-
ing ameliorates the explosion of dimensionality that can occur for deep dictionary architectures due to the
fact each dictionary is taken to be overcomplete, thereby requiring that the domain of each dictionary be of
higher dimension than the range. Recent work has shown indications that this architecture can be competitive
with DCNNs while also providing the possibility of extracting features at each layer that are interpretable by
humans.

powerful alternative to similar feature extraction capabilities of deep architectures such as convolutional
neural networks [98]. In this context there has been some recent work focusing on the connections be-
tween architectures such as CNNs and sparse coding to understand important considerations such as
uniqueness of representation in the network. For more details the reader is referred to [136,137,138].

Several other proposals have incorporated frameworks for jointly updating classifier weights and
dictionary elements using backpropagation. These include applications for texture classification [162]



17.10 Kernel dictionary learning 1131

and image analysis for histopathology [76]. In addition using the method outlined in [197] it is also
possible to learn separate dictionaries for each class along with the network weights as described in
[152]. However, all these proposals focus on undercomplete dictionaries which are jointly trained with
the classifier owing to the problem with dimensionality expansion using sparse codes at every layer as
described before.

17.10 Kernel dictionary learning
In this section we only cursorily describe the use of kernel methods in dictionary learning. Fortunately,
an overview and discussion of this topic is given in the very accessible textbook [47], which in partic-
ular showcases an important central idea proposed in [130,131] that allows for kernelization of many
well-known dictionary algorithms. Here, and in Appendix 17.D, we describe the rationale behind the
kernelization procedure of [130,131] in some depth and only allude to the resulting kernelized dictio-
nary learning algorithms in passing. For specific details on these algorithms see [47] and [72,1,84]. We
end this section with a brief discussion of the meaningfulness of overcompleteness and sparsity within
the context of the kernelized dictionary learning problem and mention the relevance of the work in [72]
to this discussion.

The many uses of kernel methods in machine learning are motivated by the fact that a finite col-
lection of data which are not linearly separable in the original data space are linearly separable when
transformed in a one-to-one manner to a sufficiently high-dimensional space [168]. Further, many mul-
tivariate statistical learning and inference algorithms depend only on the inner products between data
samples while performing well on data that are linearly separable. Kernel methods work by using a
“kernel function,” K(yi ,yj ), the evaluation of which corresponds to an inner product 〈·, ·〉 in some
(generally unknown) high-dimensional (often infinite-dimensional) Hilbert space M (which, for sim-
plicity, is taken to be over real-valued scalars) to which (at least conceptually) the data are mapped via
some (generally unknown) function φ(y) ∈M. That is,

K(yi ,yj ) = 〈φ(yi ), φ(yj )〉, (17.92)

for data yi , i = 1, · · · ,L. The fact that one can evaluate the left-hand side of (17.92) in lieu of the
right-hand side is known as the “kernel trick” [156,38,78]. If the computational cost of computing the
value of a known kernel function is reasonable, then one potentially can get both the benefit of high-
dimensional separability and the ability to use multivariate statistical techniques that can be expressed
in terms of inner products and to do so without the need to explicitly produce the mapping φ(y) needed
to explicitly perform the inner product shown on the right-hand side of (17.92).

A binary function K(·, ·) is guaranteed to have the property (17.92) (for some generally unknown
space M and mapping φ(·)) if it satisfies Mercer’s theorem,95 a consequence of which is that the kernel
matrix

K =
(
K(yi ,yj )

)
∈ RL×L

95 See the discussions in [156,38,78]. It is also the case that more complex kernel functions can be systematically built from
multiplying and adding simpler kernel functions [78].
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is symmetric and positive semidefinite for all L and data yi , i = 1, · · ·n. Given training data Y , note
that the kernel matrix can be computed prior to subsequent use in a kernel-dependent algorithm so that
this computational overhead is not consequential for the cost of subsequent algorithm deployment. If
K(·, ·) satisfies (17.92), we call it a Mercer kernel. Further, we call M a Mercer space, φ(·) a Mercer
mapping (or Mercer transformation), and a vector μ ∈M (e.g., μ = φ(y)) a Mercer vector (or Mercer
feature). There are many kernel functions described in the literature, with two very commonly used
ones being the radial basis function (RBF) and the polynomial kernels which are respectively given by

Kσ (yi ,yj ) = exp

{
−
(‖yi − yj‖

σ

)2
}

and Kc,d =
(
yT

i yj + c
)d

for σ real and strictly positive, c real-valued, and d a nonzero, finite positive integer. The Mercer space
for the RBF kernel is infinite-dimensional, while the Mercer space for the polynomial kernel has finite
dimension.

As well motivated in [47], the merit of transforming the observations to Mercer space is that the
ability to separate classes and/or discern fine structure in the data can be greatly enhanced. It is true that
a deterministic mapping at best can only preserve information in the Shannon sense; nonetheless, non-
stochastic (deterministic) structural distinctions between situations or classes (for which the Shannon
theory can even be irrelevant – recall, for example, that mean shifts leave the Shannon entropy invari-
ant) can be enhanced in a manner that rises above the noise level (which, of course, is also affected by
the transformation) to thereby enhance the ability to perform classification and prediction. A classic toy
example of this is shown and described in Fig. 17.10 for data transformed by φ :R2 →R

3, where for
y = (η1, η2)

T ∈R
2,

φ(y) =
(
η1, η2, exp

(
−(η2

1 + η2
2)/σ

2)
))T =

(
yT , exp

(
−‖y‖2/σ 2

))T ∈R
3v, (17.93)

with corresponding kernel function

K(yi ,yj ) = φT (yi )φ(yj ) = yT
i yj + exp

(
−
(
‖yi‖2 + ‖yj‖2

)
/σ 2
)

. (17.94)

Reference [47] discusses some simple motivating examples that suggests why dictionary learning
can benefit from mapping the observations Y ∈R

n×L via transformations,

�(Y )
def= [φ(y1) · · · φ(yL)

] ∈R
n′×L, φ(yi ) ∈M, n′ = dim(M) ≤ ∞,

where φ(·) :Y→M is a (generally unknown) Mercer transformation associated with some known
(specified) Mercer kernel function K(·, ·). For instance, the example of Fig. 17.10 suggests that in the
Mercer space one can learn directions (i.e., atoms/columns of a dictionary in the Mercer space) that are
of great utility for making decisions in the original data space. Note that in general �(Y ) has L columns
and a potentially infinite number of “rows” n′ = dim(M) ≤ ∞. Formally we have (see Appendix 17.D)

�∗(Y )�(Y ) =
(
〈φ(yi ),φ(yj )〉

)
=
(
K(yi ,yj )

)
= K ∈ RL×L.

Conceptually, once a transformation of the data Y ∈R
n×L has been performed, one would then

proceed to learn a dictionary D ∈R
n′×m capable of providing sparse representations X ∈R

m×L of the
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FIGURE 17.10

Transforming to higher dimensions can facilitate data-driven machine learning. Consider the two-class sample
data shown in the upper left-hand side (LHS). It is evident that there is low-entropy, almost deterministic, class
separation structure (cf. the discussion in [180]) that an omniscient Genie would recognize and can be cap-
tured using polar coordinates to create a radius threshold classifier as shown in the lower LHS image. However,
mere mortal data scientists are not Genies possessing all-knowing insight; they somehow must effectively
handle large amounts of data situated in very high-dimensional spaces that have been collected using the
Cartesian (and other) coordinate systems associated with standard collection devices and modalities. What is
needed are general approaches capable of deployment in highly complex, difficult to understand data environ-
ments, and the use of kernel functions provides a rich family of such approaches [156,38,78]. In the example
shown above, the kernel function of Eq. (17.94) corresponds to the Mercer transformation equation (17.93),
whose application to the data shown in the top LHS image results in the top right-hand side (RHS) image. It is
evident that the Mercer transformation “stretches” the structural difference between the two classes along a
new direction in a manner that keeps the transformed noisiness in the data reasonably bounded (i.e., so that
the stochastic signal-to-noise behavior remains favorable to the detection process). The move from the upper
RHS to the lower RHS shows the fact that the differential stretching of the two classes along the new direction
allows for discrimination using a simple separating hyperplane in the high-dimensional feature space. The
so-called “kernel trick” is used to perform this classification in the original space via use of the kernel function
(17.94). Determining a class by thresholding-transformed data values in the z-direction as shown in the lower
RHS is equivalent to thresholding along the radial direction of the original data as shown in the lower LHS, the
approach that a benevolent Genie would have suggested at the outset, but that here has been functionally
replicated without any such global awareness of the data structure. Note that in principle the z-direction of
the transformed space can be learned as a column of a dictionary in that space, showing that learning an
overcomplete linear model in the transformed space can be quite powerful for performing inference in the orig-
inal data space. See reference [131] for a comparison of dictionary learning for nontransformed data versus
Mercer-transformed data for this toy example using a polynomial kernel.
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transformed data �(Y ) ∈R
n′×L assuming the validity of a linear generative model in the (possibly)

infinite-dimensional Mercer space,

�(Y ) = DX + E. (17.95)

Again conceptually, one can envisage doing so via some implementation of steps C1 and C2 of the
cyclic-coordinate descent dictionary learning algorithm A1 discussed above in Section 17.4.1:

X ← arg min
X

‖�(Y ) − DX‖2
GF subject to sp(X) ≤ k, (17.96)

D ← arg min
D

‖�(Y ) − DX‖2
GF subject to D ∈D. (17.97)

The norms shown here are “generalized Frobenius norms” that are approximate for an operator norm
on bounded linear operators � :RL →M, where M is possibly infinite-dimensional (see Eq. (17.123)
in Appendix 17.D). Of course it generally is not tractable to solve these optimizations directly due
to the typically extremely high-dimensional (indeed, often infinite-dimensional) nature of the Mercer
space M and the fact that the Mercer mapping φ(·) is not known. Thus, as is usual in the kernel-based
learning literature, one is led to consider variants of the kernel trick that correspond to solving the
problem in a more indirect manner. Following an approach that is a key contribution of [130,131], we
briefly describe a way to do this for dictionary learning.96

Recall (see Section 17.4.1) that the cyclic-coordinate descent algorithm is a procedure to solve the
joint dictionary/representation learning problem,

(D,X) ← arg min
D,X

‖�(Y ) − DX‖2
GF subject to sp(X) ≤ k and D ∈D, (17.98)

where the generalized Frobenius norm is described in Appendix 17.D. An important and useful result,
first presented and proved in [130,131], is the fact that for the purposes of solving the optimization
problem (17.98) it suffices to assume the dictionary form97

D = �(Y )A, A ∈R
L×m. (17.99)

This key insight enables us to switch from the optimization (17.98) to the problem

(A,X) ← arg min
A,X

‖�(Y )(I − AX)‖2
GF subject to sp(X) ≤ k and A ∈A. (17.100)

96 Further details are given in Appendix 17.D.
97 As discussed in Appendix 17.D, the primary requirement is that the structural constraints imposed on D are “columnwise”
so that D can be “projected” into the constraint set D without disrupting the existing sparsity structure of X. Specifically, given
DX with sp(X) ≤ k and D /∈D, let S be an L × L diagonal matrix such that DS ∈D. For example, such a postmultiplication of
D can perform column normalization or Frobenius normalization. Then DX = DSS−1X = D′X′ with D′ ∈D and sp(X) ≤ k.
With D = �A, � = �(X), we have DX = �AX = � (AS) (S−1X) = �A′X′, with A′ = AS and X′ = S−1X, showing that
we are free to impose structural constraints on the columns of A in lieu of directly imposing constraints on D if that is our
preference. Since a (often the) primary reason to impose constraints on the dictionary is to ensure identifiability of the separate
factors D = �A and X in the product expression DX = �AX, for this purpose it is entirely reasonable to opt to constrain A.



17.10 Kernel dictionary learning 1135

As shown in Appendix 17.D, this form can be immediately recast in terms of the kernel matrix K ,

(A,X) ← arg min
A,X

trace (I − AX)T K(I − AX) subject to sp(X) ≤ k and A ∈A. (17.101)

In this optimization, the identity matrix I is L × L, A is L × m, and X is m × L. Thus we are looking
for an approximation to the identity given by the factorization AX ≈ I subject to the constraint of
sparsity on X and the identifiability constraint A ∈A. If the amount of data L is very large, then it is
also very likely the case that m � L even if the model is overcomplete in the sense that m ≥ n. Note
that the optimization in (17.101) is a weighted Frobenius norm on the “error” I − AX with weighting
given by the kernel matrix K . In the ideal case that AX = I , there is zero error because the model
perfectly fits the data; otherwise the finite-dimensional kernel matrix-weighted optimization (17.101)
finds the best fit AX ≈ I in the (generally) infinite-dimensional Mercer space.

As described in [130,131,47], one can now proceed to derive kernelized variants of many of the
standard dictionary learning algorithms, including Method of Directions (MOD) and K-SVD, and the
reader is invited to peruse that literature. More advanced aspects can be found in [72,1,84].

Some last comments should be given that pertain to the fact that there are difficulties attendant to the
nature of “overcompleteness” and “sparsity” in the kernel dictionary learning context. In the kernelized
model

� = DX + N = �AX + E,

the columns of � and D are (generally) infinite-dimensional vectors in M; the number of columns
(dictionary elements) of D and A is m; and the number of rows of A is L. Thus, the dictionary A is
L × m, and if we set n′ = dimM= dimφ(Y), the dictionary D is n′ × m. In the kernel framework we
generally have

m � L � n′ = dimφ(Y) = ∞.

This shows that the dictionaries D and A are very “tall” indeed, which certainly does not conform to
the concept of dictionary overcompleteness generally encountered in the literature where one demands
that a dictionary be a “fat” matrix.

Further, the concept of sparseness becomes muddled: Is sparseness defined relative to the dimension
of the original data space n = dim(Y) or relative to the dimension of the transformed data space n′ =
dim(M)? From the perspective of obtaining a sparse representation for y, one would like to continue to
demand that the first criterion holds, sp(x) = k � n = dimY. However, the conditions that guarantee
the existence of an exact sparse solution do not generally apply to tall matrices such as D and A.

One way to proceed would be to replace the high-dimensional Mercer data operator � by a finite-
dimensional n̂ × L approximation such that

K ≈ K̂ = �̂
T
�̂

and for which we ensure that n < n̂ < m � dimM. Having done this, one could use any of the standard
dictionary learning approaches to learn a dictionary for the model,

�̂ = DX + E,



1136 Chapter 17 Dictionaries in machine learning

where now the dictionary D is fat, n̂ × m, so that the theory of compressive sensing using overcomplete
dictionaries applies.

Having set the stage, the reader is invited to read [72] and the subsequent discussion in [47], which
proposes exactly the methodology described in the previous paragraph. The algorithm proposed in [72]
uses a Nyström sampling procedure for determining a low rank-n̂ approximation of the symmetric,
positive semidefinite kernel matrix K .

17.11 Conclusion
The seminal paper [96] ignited an intense concentrated effort by the theoretical and practical engineer-
ing community to develop and deploy the powerful deep neural networks algorithms and systems. Deep
neural networks and related technologies are now so well developed that turn-key systems exist which
have been democratized to the point that university undergraduates can use them to good effect and are
hired immediately into industries that are keen to apply these technologies.

The research community is now focusing increasingly on critical domain-specific applications and
the increasing need for understanding the “why” of machine learning algorithms. As controls engineers
well know, it is important to know, learn or and detect comprehensible features in the real physical
world in order to create robustly stable feedback control laws applicable to real-world dynamical sys-
tems. This is true for many types of complex systems in the world: energy distribution grids, embedded
biomedical control devices, next-generation supersonic passenger jets, robotic microsurgery – the list
of such safety critical applications is almost endless.

The data needed to meet the needs of real-world, real-time applications do not arise from simple
link-click counts, or monitoring of moving-watching preferences, or collection of answers to question-
naires. To collect and process the myriad signals afforded us by the material and natural worlds we
interact with is highly nontrivial and we have developed sophisticated sensors, mathematical theories,
and algorithms to facilitate these interactions and the extraction of interpretable and useful actionable
features and information [146,107,113,151,105,168]. It generally requires concentrated effort and a
significant intellectual investment, whether in graduate school or on the job, to gain mastery and deep
understanding of the theories of modern signal processing and data science to a level where one can
solve, and deploy the solutions to, the difficult problems encountered when dealing with the natural,
physical world.

Several books exist that well describe the theory and methodology of dictionary learning as it is
commonly utilized [33,47,49,139,150], and some of the highlights of that theory are described in this
chapter, where we have endeavored to describe how the standard methodologies for dictionary learning,
specifically the MOD algorithm and the K-SVD algorithm, can be related to the standard multivariable
statistical analysis techniques of K-means clustering, PCA, and FA. We also discuss points of fruitful
interactions between dictionary learning and machine learning techniques such as data manifold learn-
ing, clustering, classification, kernelization, and neural networks. It is clear that there is a lot of promise
in these interactions – and a lot of work that remains to be done! Now that many areas of machine
learning and deep neural networks are sufficiently mature, researchers can pay more attention to the
many unresolved questions that remain to be solved and it is hoped that this chapter will be an impetus
to such investigations.
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One point of separation between the presentation given here and standard references such as [33,
47,49,139,150] is our emphasis on the fact that the natural signals encountered in the world often have
sparse structure (i.e., “live” in what has been referred to as “Sparseland” [49,50]) and that, as argued
by many, are well modeled by a hierarchical/empirical Bayesian generative model framework. In this
chapter we have taken some pains to showcase this latter approach to dictionary learning and to provide
references to the relevant literature. It is a general belief amongst experimental biologists and cognitive
scientists that obtaining patterns relevant for succinct representations of natural signals provides an
enhanced ability for a biological agent to recognize situations in the world, detect changes in those
situations, and predict likely outcomes as a result of acting on such detections [8,13,12,62,100,82,132].
It seems reasonable that, to the extent this belief about the world is true, such benefits can also accrue
to man-made artificial agents acting in the natural word. This opens up many other areas of research
for aspiring researchers to look at.

Further, scientists and engineers – and users! – want and need understanding; they want/need to
know what a pattern discerned in the world means, and why that particular pattern is important for
providing a solution to the particular problem at hand. Dictionary learning can have a particularly
important and powerful role to play in a future where explainable AI (XAI) comes to the foreground
as a consequence of decision makers, politicians, legal systems, medical professionals, scientists, and
engineers asking, and demanding answers to, important “why” questions. This is much research to
be done in this regard, but, as is tantalizingly evident from a glance at Figs. 17.4 and 17.5, there is
strong evidence that semantically meaningful (interpretable) patterns can be learned from natural data.
This is a difficult research area that likely lies at the interface of information theory, signal processing,
semiotics, computer science ontology theory, and psychology. A risky area of research no doubt, but
one of huge potential payoff for those researchers who can accept the risk and cost and are willing and
able to take the long view.

Appendix 17.A Derivation and properties of the K-SVD algorithm
Here, we use the notation and variables established in Sections 17.4.2 and 17.4.5.

Relationship between K-SVD and K-means

Reference [154] argues that, strictly speaking, K-SVD is not a generalization of the KMA because
when restricted to performing the steps of the KMA it does not fully correctly do so.98 Nonetheless, the
K-SVD algorithm does have an insightful point of contact with the KMA, provided certain constraints
are imposed, as we now show.
Assume that all columns of X have sparsity 1. This imposes the constraint that rT

j = (γ1j · · · γLj

)
for r�j ≡ γ�j ∈ {0,1}, with γ�j as defined in (17.35).99 To show a correspondence with step K1 of
the KMA A2, assume that A is known and that the only nonzero columns of Yj of (17.45) are in

98 As reference [154] notes, this is a consequence of using the SVD to perform the minimization step of the K-SVD algorithm.
99 This corresponds to the K-means constraint X = �T of Eq. (17.36), which is here equivalent to the constraint R = �.
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C̃j = enbh(aj ),100 which is equivalent to constraining the columns of Yj to be γ�jy� = r�jy�, for
� = 1, · · · ,L. In this case,

aj ← arg min
aj

∥∥∥Yj − aj r
T
j

∥∥∥2

F
= arg min

aj

L∑
�=1

r�j‖y� − aj‖2 = 1

|C̃j |
∑

y� ∈ C̃j ⊂Y

y�,

which is the optimal update shown in (17.34). To show a correspondence with step K2 of the KMA A2,
note that for fixed A minimizing

‖Y − AX ‖2
F = ∥∥ Y − (Ax1 · · · AxL

) ∥∥2
F

=
∥∥∥∥∥∥
⎛
⎝ · · · y� −

m∑
i=1

ai (x�)i︸ ︷︷ ︸
r�i

· · ·
⎞
⎠
∥∥∥∥∥∥

2

F

=
∥∥∥∥∥
(

· · · y� −
m∑

i=1
ai r�i · · ·

)∥∥∥∥∥
2

F

subject to the constraints that r�i = γ�i ∈ {0,1} forces a competition between hard class assignments
y� ∈ C̃i via the optimization

XT = � = R ← arg min
R

L∑
�=1

∥∥∥∥∥y� −
m∑

i=1

r�iai

∥∥∥∥∥
2

,

whose solution is given by step K2 of the KMA. With updates for A and R in hand, one approximately
recomputes Y j by ignoring the presumably small residual “quantization errors” in

Y −
m∑

i �=j

air
T
i = Yj + matrix of residual columns. (17.102)

A residual column is of the form (y� − ai ) (presumably ≈ 0) with y� ∈ C̃i = enbh(ai ) for some i �= j .

Derivation of the K-SVD Algorithm

Recalling the definition of the construction of the downsampling matrix

Sj = S(rj ) =
(
ej1 · · · ejsj

)
∈R

L×sj ,

we have

rT
j eji

�= 0 for i = 1, · · · , sj and rT
j ep = 0 otherwise.

100 See step K2 of the KMA A2. Of course this single-column “quantization” (a.k.a. VQ-based “lossy compression” of the data
Y ) creates a model that only approximately explains Yj , as indicated in the line after Eq. (17.102).
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We also have the following, easily verified properties101,102:

Sj =
(
ej1 · · · ejsj

)
∈R

L×sj ; r̃T
j

def= rT
j Sj =

(
(rj )j1 · · · (rj )jsj

)
; r̃T

j ST
j = rT

j ;
ST

j Sj = I (sj × sj ); SjS
T
j = Ij (L × L); Ī j = I − I j ; Ī jI j = I j Ī j = 0;
rT

j I j = rT
j ; rT

j Ī j = 0;
Ij = diagonal matrix whose only nonzero elements are ones in the (ji, ji) positions for i = 1, · · · , sj ;

Ij = SjS
T
j and

Īj are symmetric and idempotent and thus orthogonal projection operators with I = Ij + Īj ;
〈MIj ,NĪj 〉F = trace

(
MIj ĪjN

)= 0 =⇒ ‖MIj + NĪj‖2
F = ‖MIj‖2

F + ‖NĪj‖2
F .

Note that postmultiplication of rT
j by Sj downsamples the sparse row vector rT

j to the dense row

vector r̃T
j by removing zeros, while postmultiplication of r̃T

j by ST
j upsamples the dense row vector

r̃T
j to the sparse row vector r̃T

j by adding (padding) zeros. These facts are captured succinctly by the
statements

rT
j = rT

j I j = rT
j SjS

T
j = r̃T

j ST
j = rT

j and r̃T
j = r̃T

j I = r̃T
j ST

j Sj = rT
j Sj = r̃T

j .

Now note that

Yj − aj r
T
j =
(
Yj − aj r

T
j

)
I =
(
Yj − aj r

T
j

)(
I j + Ī j

)= Yj Ī j +
(
Yj − aj r

T
j

)
I j .

This gives ∥∥∥Yj − aj r
T
j

∥∥∥2
F

= ∥∥Yj Ī j

∥∥2
F

+
∥∥∥(Yj − aj r

T
j

)
I j

∥∥∥2
F

.

But ∥∥∥(Yj − aj r
T
j

)
I j

∥∥∥2
F

= trace
(
Yj − aj r

T
j

)
I jI j︸ ︷︷ ︸

=I j =Sj ST
j

(
Yj − aj r

T
j

)T

= trace
(
Ỹj − aj r̃

T
j

)(
Ỹj − aj r̃

T
j

)T
,

where

r̃T
j = rT

j Sj and Ỹj=YjSj . (17.103)

101 From an algorithmic perspective, the operator S(·) that creates the downsampling matrix Sj = S(rT
j

) automatically detects

the length, L, of its argument, rT
j

, and the number, sj , and locations, 1 ≤ ji ≤ L, i = 1, · · · , sj , of the nonlinear elements of rT
j

and from this information builds the matrix Sj .
102 Note that the identity matrix symbol I is overloaded and, depending on the context, denotes either sj × sj or L × L, where
in the latter case we have I = Ij + Īj with Ij Īj = 0.
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Thus, ∥∥∥Yj − aj r
T
j

∥∥∥2
F

= ∥∥Yj Īj

∥∥2
F

+
∥∥∥Ỹj − aj r̃

T
j

∥∥∥2
F

. (17.104)

Note that ỸjS
T
j �= Yj ; the columns of Y j that have been zeroed out by postmultiplication by Sj to form

Ỹj = YjSj cannot be recovered from Ỹj and instead are contained in Yj Ī j . The error shown on the
left-hand side of (17.104) decomposes into the sum of the two error terms shown on the right-hand
side. The first term is the cost due to there being no “explanation” by aj of the data in Yj Ī j given the
current estimate of rT

j , while the second term is due to the mismatch in the explanation by aj of the

data in Ỹj given the current estimate of rT
j .

Unconstrained optimization of the left-hand side with respect to rT
j and of the right-hand side of

(17.104) with respect to r̃T
j attain different goals. Note that on the right-hand side we are structurally

enforcing a sparsity patterning constraint that exists in the current estimate of rT
j . Therefore, by opti-

mizing the expression on the right-hand side one is preserving whatever sparse structure already exists
in rT

j without a need to impose that condition as an explicit constraint. To obtain the same answer using
the loss function on the left-hand side, one would have to explicitly impose a patterning constraint since
otherwise an unconstrained optimization over all values of rT

j might destroy the sparsity structure that

exists in the current value of rT
j .

Since an unconstrained solution to minimizing a loss function of the form
∥∥∥Yj − aj r

T
j

∥∥∥2
F

can be

obtained in a very straightforward manner via use of SVD, as we discuss in the next paragraph, the
loss function on the right-hand side of (17.104) is preferred if the preservation of sparsity during the
dictionary update stage is deemed important. Furthermore, practically there are computational advan-
tages to working with the latter rather than the former, and significant computational advantages when
compared to MOD.

To preserve the sparsity structure of rT
j , we optimize the right-hand side of (17.104) to obtain the

problem

min
aj , r̃T

j

∥∥∥ Ỹj − aj r̃
T
j

∥∥∥2
F

. (17.105)

Once this has been solved for aj and r̃T
j we determine rT

j by zero-padded upsampling: rT
j = r̃T

j ST
j . It

is well known that the optimal solution to the rank-1 approximation problem

min
M, rank(M)=1

‖Ỹ j − M‖2
F

is given by M = σ1u1v
T
1 , where σ1 is the largest singular value of Ỹ j and u1 and v1 are the associated

left and right singular vectors, respectively.103 Thus one is led to consider solutions for aj and r̃T
j that

103 This is a consequence of the Eckart–Young theorem [166]. Indeed, the rank 1 approximation is quite strong and is known
to be optimal for the Frobenius norm, the spectral norm, and the nuclear norm, among others. By convention u1 and v1 are
normalized to 1.
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satisfy

aj r̃
T
j = σ1u1v

T
1 .

Unit normalization of the columns of the dictionary to ensure identifiability is easily ensured by taking
aj = u1, which then results in r̃T

j = σ1v
T
1 followed by the zero-padded upsampling step rT

j = r̃T
j ST

j .

This procedure preserves the sparsity structure of the j th row of X, rT
j .

Note that to minimize
∥∥∥Yj − aj r

T
j

∥∥∥2
F

via this procedure requires extracting the dominant singular

value, left singular vector, and right singular vector from the n × L matrix Yj , whereas to perform this
procedure to solve (17.105) we instead work with the n × sj matrix Ỹj , where often sj � L. After the
joint estimation of aj and rT

j we update both A and X and then move to the estimation of aj+1 and

rT
j+1, proceeding in this manner until all pairs (aj , r

T
j ), j = 1, · · · ,m, have been processed. At this

point step C2 of the cyclic dictionary learning procedure has been completed and we return to step C1
to recompute from anew a sparse solution matrix X in preparation for the next step C2 iteration.

To perform step M1 (which is equivalent to step C2 for a general cyclic optimization algorithm
A1) of the MOD dictionary learning algorithm A3 requires the computation of the pseudoinverse X+,
which, in turn, can be found from the SVD of the m × L matrix X. To perform cyclic optimization al-
gorithm step C2 for K-SVD requires the computation of the dominant singular value, σ1, associated left
singular vector, u1, and associated right singular vector, v1, of the n × sj matrix Ỹj for j = 1, · · · ,m.
Since it is not uncommon to encounter situations with n � m and sj � L, the computational edge often
is in favor of K-SVD. In addition the enforcement of the constraint that the space structure of X = RT

is preserved throughout the matrix update step enhances the convergence behavior of K-SVD. Further,
as pointed out in [4,49] one can iteratively compute the SVD solution for aj and r̃T

j by noting that the

separate least squares solutions for each of them that minimizes
∥∥∥ Ỹj − aj r̃

T
j

∥∥∥2
F

are easily computed
as

âj = Ỹj

(
r̃+

j

)T = Ỹj r̃j

‖r̃j‖2
and ˆ̃rT

j = a+jYj = aTjYj

‖aj‖2

and that iterating between these two solutions only a few times leads to a good approximation,104

âj
ˆ̃rT

j ≈ σ1u1v
T
1 .

Once this procedure has converged, our final estimates for âj and ˆ̃rT

j are rescaled to preserve the value
of their rank-1 matrix product while ensuring that âj is normalized to 1.

104 This corresponds to iterative coordinate descent of
∥∥∥ Ỹj − aj r̃T

j

∥∥∥2
F

with respect to aj and r̃T
j . Since this procedure con-

verges to values of aj and r̃T
j which minimize the loss and the loss function explicitly depends on their rank-1 outer product

aj r̃T
j , their outer product must be equal to the optimal rank-1 approximation σ1u1vT

1 which also minimizes the loss and is
unique.
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Appendix 17.B Derivation of the SBL EM update equation
An outline of the derivation of Eq. (17.68) is given in this appendix, where the notations used here are
developed in the discussion preceding that equation. Ignoring irrelevant coefficients and terms that do
not depend on γ , the negative Q-function is effectively given by105

−2Q(γ , γ̂ ;y) = −Ex|y, γ̂

{
lnp(y,x,γ )

}
= −Ex|y, γ̂

{
lnp(y|x)

}−Ex|y, γ̂

{
lnp(x|γ )

}−Ex|y, γ̂

{
lnp(γ )

}
.= −Ex|y, γ̂

{
lnp(x|γ )

}− lnp(γ )
.= trace

(
Ex|y, γ̂

{
xxT
}

�−1
)

+ ln det� + 2 ln det�

= trace
(
μ̂(y, γ̂ )μ̂(y, γ̂ )T + �̂(γ̂ )

)
�−1 + 3 ln det�, (17.106)

where this derivation uses the conditional probability (17.60)–(17.62), the definitions given in (17.61),
and the Jeffreys prior assumption (17.67). Maximizing the Q-function is equivalent to minimizing this
function with respect to the elements of the diagonal matrix � = diag(γ ), and doing so results in the
EM updates of Eq. (17.68)

γ +
j = 3eT

j

(
μ̂(y, γ̂ )μ̂(y, γ̂ )T + �̂(γ̂ )

)
ej = 3

(
μ̂2

j (y, γ̂ ) + �̂jj (γ̂ )
)

for j = 1, · · · ,m, (17.107)

where μ̂j (y, γ̂ ) is the j th component of μ̂(y, γ̂ ) and �̂jj (γ̂ ) is the j th diagonal element of �̂jj (γ̂ ).

Appendix 17.C SBL dictionary learning algorithm
The optimization (17.71) is determined by use of the EM algorithm to minimize

− lnp(Y ,G;A,) (17.108)

via iterative minimization of the negative Q-function,

−Q(G,A,, Ĝ, Â, ̂;Y ) = −E
X|Y , Ĝ,Â,̂

{lnp(Y ,X,G;A,)} (17.109)

given current estimates Ĝ, Â, and ̂.
This procedure is a generalization of the approach described in the previous section where here, in

addition to estimating the variances G, we also want to learn the unknown parameters A and . The
goal is to determine estimates of A, , and G (i.e., γ̂ � for � = 1, · · · ,L) via the EM procedure. To do
so, we work with the negative Q-function,

−Q(G,A,, Ĝ, Â, ̂;Y ) = −E
X|Y , Ĝ,Â,̂

{lnp(Y ,X,G;A,)}

105 “Effective equality” for the purpose of extracting the arg-max is denoted by the symbol “
.=.” Note we are still assuming, for

the time being, that the parameters A and  are known.
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= −E
X|Y , Ĝ,Â,̂

{lnp(Y |X;A,)}︸ ︷︷ ︸
T1

−E
X|Y , Ĝ,Â,̂

{lnp(X|G)}︸ ︷︷ ︸
T2

− lnp(G)︸ ︷︷ ︸
T3

,

which we proceed to evaluate term-by-term. Note that the free parameters to be optimized are G, A,
and .

The last two terms T2 and T3 depend on the free parameter G and are handled in the same manner
as in the previous section. Assuming the Jeffreys prior, the third term is straightforward to evaluate,

T3 = −
L∑

�=1

lnp(γ �) =
L∑

�=1

ln det��, �� = diag(γ �).

With lnp(X|G) =∑L
�=1 lnp(x�|γ �) and the i.i.d. sampling assumption the second term is

T2
.= 1

2

L∑
�=1

(
trace
(
Ex�|y�, γ̂ �,Â,̂

{
x�x

T
�

}
�−1

�

)
+ ln det��

)

= 1

2

L∑
�=1

((
trace
(
μ̂(y�, γ̂ �)μ̂(y�, γ̂ �)

T + �̂(γ̂ �)
)

�−1
�

)
+ ln det��

)
.

The terms μ̂(y�, γ̂ �) and �̂(γ̂ �) have dependencies on Â and ̂� = diag(γ̂ �) which here are notation-
ally suppressed (they are shown in detail in Eqs. (17.114)–(17.117) below). Term T1 has no dependency
on the free parameter G while terms T2 and T3 do not depend on the free parameters A and . Thus the
optimizations decouple into an optimization over the sum T2 + T3 with respect to G and an optimization
over T1 with respect to A and .

We have

T2 + T3
.=

L∑
�=1

((
trace
(
μ̂(y�, γ̂ �)μ̂(y�, γ̂ �)

T + �̂(γ̂ �)
)

�−1
�

)
+ 3 ln det��

)
,

which decouples so that each term in the sum indexed by � can be optimized independently,

γ +
j,� = arg min

γj,�

[(
trace
(
μ̂(y�, γ̂ �)μ̂(y�, γ̂ �)

T + �̂(γ̂ �)
)

�−1
�

)
+ 3 ln det��

]
.

This single-sample optimization was performed in the previous section and we can immediately take
over the answer determined there,

γ +
j,� = 3eT

j

(
μ̂(y�, γ̂ �)μ̂(y�, γ̂ �)

T + �̂(γ̂ �)
)

ej

= 3
(
μ̂2

j (y, γ̂ �) + �̂jj (γ̂ �)
)

for j = 1, · · · ,m, � = 1, · · · ,L. (17.110)
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We now examine term T1, which contains the information needed to perform recursive updates of
A and . We have

T1
.= 1

L

L∑
�=1

⎛
⎜⎜⎝trace

⎛
⎜⎜⎝Ex�|y�, γ̂ �,Â,̂

{
(y� − Ax�)(y� − Ax�)

T
}

︸ ︷︷ ︸
C�(A)

−1

⎞
⎟⎟⎠+ log det

⎞
⎟⎟⎠

= trace
(

C(A)−1
)

+ ln det,

with

C(A)
def= 1

L

L∑
�=1

C�(A) and C�(A) = Ex�|y�, γ̂ �,Â,̂

{
(y� − Ax�)(y� − Ax�)

T
}

. (17.111)

For any value of A we can find a minimum of T1 with respect to  by taking the matrix derivative with
respect to  to determine a unique stationary point followed by demonstrating that point gives a global
minimum. This can be done using the matrix derivative formulas106

∂

∂X
trace
(
YX−1

)
= −X−1YX−1 and

∂

∂X
ln detX = X−1.

The result is that T1 is minimized with respect to  for any value of A when  takes the value

̂+(A) = C(A) = 1

L

L∑
�=1

C�(A), (17.112)

which is computable once the functional form of C�(A) has been determined. Also note that once
the function C(A) is available, the determination of an optimal update value for A is obtained by
minimizing

trace
(

C(A)−1
)

. (17.113)

We now turn to the determination of the functional form of C�(A). Note that

Ex�|y�, γ̂ �,Â,̂

{
x�

}
= μ̂
(
y�, γ̂ �

)= �̂� ÂT �̂−1
y,� y� (17.114)

with

�̂� = diag
(
γ̂ �

)
and �̂y,� = ̂ + Â �̂� ÂT , (17.115)

106 These can be found in [120], which is recommended because it emphasizes the fact that such matrix derivative identities
often (but not always) can be easily found by first exploiting nice properties of the matrix differential and the trace and determinant
operators.



17.C SBL dictionary learning algorithm 1145

and note that

Ex�|y�, γ̂ �,Â,̂

{
x�x

T
�

}
= μ̂
(
y�, γ̂ �

)
μ̂
(
y�, γ̂ �

)T + �̂(γ̂ �) (17.116)

with

�̂(γ̂ �) = �̂� − �̂� ÂT �̂−1
y,� Â �̂�. (17.117)

This yields, setting μ̂� = μ̂
(
y�, γ̂ �

)
and �̂� = �̂(γ̂ �),

C�(A) = y�y
T
� − A μ̂�y

T
� − y�μ̂

T
� AT + A

(
μ̂�μ̂

T
� + �̂�

)
AT = (y� − A μ̂�

)(
y� − A μ̂�

)T + A �̂� AT

and

trace
(
C�(A)−1

)
= trace

([
y�y

T
� − 2Aμ̂�y

T
� + A

(
μ̂�μ̂

T
� + �̂�

)
AT
]
−1
)

.

It is clear that C�(A), and therefore C(A), depends on the current estimates of θ = (G,A,). Hence-
forth we make this manifestly evident by writing C�(A) = C�(A; θ̂) and C(A) = C(A; θ̂). We also
define

Ryy = 1

L

L∑
�=1

y�y
T
� , R̂μμ(θ̂) = 1

L

L∑
�=1

μ̂�μ̂
T
� ,

R̂μy(θ̂) = 1

L

L∑
�=1

μ̂�y
T
� , R̂yμ(θ̂) = R̂T

μy(θ̂) = 1

L

L∑
�=1

y�μ̂
T
� ,

R̂ỹỹ (A; θ̂) = 1

L

L∑
�=1

ỹ�ỹ
T
� , where ỹ�

def= y� − A μ̂�,

�̂xx(θ̂) = 1

L

L∑
�=1

�̂�, and R̂xx(θ̂) = R̂μμ(θ̂) + �̂xx(θ̂).

With these definitions we have

C(A; θ̂) = Ryy −
(

R̂yμ(θ̂)AT + A R̂μy(θ̂)
)

+ A R̂xx(θ̂)AT = R̂ỹỹ (A; θ̂) + A �̂xx(θ̂)AT , (17.118)

trace
(

C(A; θ̂)−1
)

= trace
([

Ryy − 2A R̂μy(θ̂) + A R̂xx(θ̂)AT
]
−1
)

. (17.119)

We can minimize this latter function with respect to A using the matrix derivative formulas [120]

∂

∂X
trace(XY) = Y and

∂

∂X
trace
(
XYXT Z

)
= YXT Z + YT XT ZT

to obtain the EM update
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Â+ = R̂yμ(θ̂)R̂−1
xx (θ̂), (17.120)

which then yields the update to  as

̂+ = C(Â+; θ̂). (17.121)

Appendix 17.D Mathematical background for kernelizing dictionary
learning

In this appendix we use the notation established in Section 17.10. The exposition given here is some-
what more detailed than that found in the original literature [130,131] and in the textbook [47]. This is
done in order to more carefully deal with the (generally) nonfinite dimensionality of the Mercer space
M. For more on the mathematical techniques used in this section, see [106]. For convenience, we set
φi = φ(yi ) ∈M and � = �(Y ) for i = 1, · · · ,L, and simply write

� = [φ1 · · · φL].

Given the data � = [φ1 · · · φL], define a linear operator � :RL →M by

�v =
L∑

i=1

viφi ∈M for every v ∈R
L.

This linear operator is bounded because φ(·) is assumed to be a well-defined function on its domain;
R

L is a finite-dimensional real Hilbert space with the standard Euclidean inner product and norm given
by

〈v, v′〉 = vT v′ and ‖v‖2 = vT v.

Recall that the Mercer space M is assumed to be a real Hilbert space with an inner product 〈μ,μ′〉 and
norm ‖μ‖2 = 〈μ,μ〉. The distinction between 〈·, ·〉 (respectively, ‖ · ‖) as an inner product (respectively,
a norm) on R

L or M is made clear by the type of vectors (RL-vectors v or Mercer space vectors μ ∈M)
in its arguments.107 Recall that real-valued inner products are linear in each of their arguments.

The adjoint linear operator �∗ :M→R
L is defined by the requirement that for every μ ∈M and

every v ∈R
L,108

〈�∗μ,v〉 = 〈μ,�v〉.
Now note that �∗� :RL →R

L must be an L × L matrix and that

107 Both types of inner products can occur within a single equation so care must be taken when reading the discussion in this
appendix.
108 If M is finite-dimensional and its norm is also the simple Euclidean norm 〈μ,μ〉 = μT μ′, then it is straightforward to show
from the definition of the adjoint operator that �∗ = �T . Note also in this case that 〈φi ,φj 〉 = φT

i
φj .
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vT
(
�∗�
)
v′ = 〈v,�∗�v′〉 = 〈�∗v,�v′〉 = 〈

∑
i

viφi,
∑
j

v′
jφj 〉 =

∑
i

∑
j

viv
′
j 〈φi,φj 〉.

This shows that (
�∗�
)
ij

= 〈φi,φj 〉 = K(yi ,yj ),

where K(yi ,yj ) is the ij th element of the L × L kernel matrix K . The kernel matrix K is positive
semidefinite since for all v ∈R

L we have

vT Kv = 〈v,Kv〉 = 〈v,�∗�v〉 = 〈�v,�v〉 = ‖�v‖2 ≥ 0.

As an L × L matrix on a finite-dimensional space RL, the kernel matrix is a mapping K :RL →R
L.

With R
L having the standard inner product 〈v, v′〉 = vT v′, the adjoint of K is equal to its transpose:

K∗ = KT . This means that if the kernel matrix can be shown to be self-adjoint, K∗ = K , then it must
be symmetric, KT = K . The kernel matrix is indeed self-adjoint because

K∗ = (�∗�)∗ = �∗� = K

using the facts that (�∗)∗ = � and (BF )∗ = F ∗B∗ for linear operators F :RL →M and B :M→
R

L.
Note that we have shown that given a Mercer transformation φ(·) from a finite-dimensional Hilbert

space to a general Hilbert space (Mercer space) we can construct and evaluate a kernel function
K(yi ,yj ) = 〈φ(yi ), φ(yj )〉 on the data Y , and assemble the resulting values into a kernel matrix K

which is symmetric and positive semidefinite. That is, we have shown that109

� → K = K� = �∗�.

The hard problem is the reverse direction:

K
?→ � = �K such that K = �∗�,

i.e., how to determine when a given, arbitrary binary function K(·, ·) is a kernel function for some
(generally unknown) Mercer transformation φ(·) to a (generally unknown) Mercer space. Fortunately
Mercer’s theorem can be used to answer this question and, further, given a set of kernel functions more
complicated ones can be built from them [78,168].

As a linear operator, � :RL →M has a finite-dimensional range space110

R(�) = �
(
R

L
)

⊆M,

109 Thus given � :RL →M, the operator composition �∗� is always a kernel and denoting it by the symbol K is an optional
notational convenience.
110 Note that the range space R(�), which is a Hilbert subspace arising from the linear operator � acting on its entire domain
space R

L, is not the image arising from the nonlinear operator φ(·) acting on the data space Y=R
n. In the latter case, φ(Y) is

(at best) an embedded n-dimensional nonlinear manifold in a (possibly) infinite-dimensional Mercer space, in which case there
exist Mercer vectors μ /∈ φ(Y). The image of the L data points yi , i = 1, · · · ,L, comprising the columns of Y under the action
of φ(·) are a finite collection (“cloud”) of L Mercer-transformed data points φ(yi ), i = 1, · · · , n, in M that are “sprinkled” on
the manifold φ(Y), i.e., φ(Y ) ⊂ φ(Y) is a strict inclusion. Further, the cloud of such points is collected into the L columns of �
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which is the embedding under the action � of the finite-dimensional space RL into the (generally
infinite-dimensional) Mercer space M. The range space is a Hilbert subspace of M and its dimension
is the rank r of �. We have

r = dimR(�) ≤ dimR
L = L.

Because the range space R(�) is finite-dimensional, it is topologically closed, R(�) =R(�).111

Given the linear operator � :RL →M, we have the following orthogonal decomposition of the
Mercer space112:

M=R(�) ⊕R(�)⊥. (17.122)

Let P and P⊥ respectively represent the orthogonal project operators onto the range space R(�) and
its orthogonal complement R(�)⊥. As orthogonal projection operators they are both self-adjoint (e.g.,
P ∗ = P ) and idempotent (e.g., P 2 = P ). We further have PP⊥ = P⊥P = 0. Also note that

P� = � and P⊥� = 0.

Further, for any operator H :RL →M we must have

PH = �M

for some L × L matrix M . That is, because we have PH :RL →R(�) ⊆M, the operator PH must
be representable in terms of the columns of �.

Denote the space of bounded linear operators from R
L →M by B = B(RL,M) and the space of

bounded linear operators in the reverse direction from M→R
L by B(M,RL). We have seen that

for every � ∈ B(RL,M) there exists an adjoint operator �∗ ∈ B(M,RL) and that the L × L square
matrix �∗� is symmetric and positive semidefinite. Thus �∗� has L real and nonnegative eigenvalues
σ 2

i ≥ 0, i = 1, · · · ,L, which we order as

σ 2
1 ≥ · · · ≥ σ 2

L ≥ 0.

We now tentatively define a generalized Frobenius inner product on B(RL,M), i.e., between any
two linear operators �, ∈ B(RL,M), by

〈�,〉 = trace
(
�∗
)
.

and the linear combination of all such points comprises the range space R(�). That is, the range space R(�) is the linear span
of the Mercer-transformed data points φ(Y): R(�) = spanφ(Y). The L weights used to form these linear combinations “live”
in R

L and therefore one might call RL the weight space, denoted, say, by W=R
L, in which case we can write � :W→M.

Note that φ(Y) ⊂R(�) denotes the fact that we have a strict inclusion of the columns of � into R(�).
111 In the infinite-dimensional case, this is not guaranteed to hold.
112 Although we do not use this fact, it is also the case that R(�)⊥ =N (�∗). Further, if the range space is not finite-
dimensional, we more generally have M=R(�) ⊕R(�)⊥ =R(�) ⊕N (�∗).
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This is a generalization of the standard Frobenius inner product on matrices because � and  are not
finite matrices.113 This is a tentative definition because we have to demonstrate that the proposed norm
is symmetric, linear in each argument, and positive definite when we take � = .

It is obvious that we have linearity in each argument. If � =  we have

〈�,�〉 = trace
(
�∗�
)= σ 2

1 + · · · + σ 2
L ≥ 0,

showing nonnegativity. To show definiteness, note that

〈�,�〉 = 0 ⇐⇒ σ 2
1 = · · · = σ 2

L = 0 ⇐⇒ �∗� = 0.

Thus for all v ∈R
L we have

0 = vT �∗�v = 〈v,�∗�v〉 = 〈�v,�v〉 = ‖�v‖2,

which can only be true for all v if � is the zero operator, � = 0. To show symmetry, recall that for a
real square L × L matrix M :RL →R

L, with R
L having inner product 〈v, v′〉 = vT v′, the adjoint of M

is equal to its transpose M∗ = MT . In particular, this will be true for the real L × L matrix M = �∗.
Also recall that (�∗)∗ = ∗�. Therefore, further recalling that traceM = traceMT ,

〈�,〉 = trace
[(

�∗
)]= trace

[(
�∗
)T ]= trace

[(
�∗
)∗]= trace

[(
∗�
)]= 〈,�〉.

The generalized Frobenius inner product on B(RL,M) yields the induced generalized Frobenius
norm,

‖�‖2
GF = 〈�,�〉 = trace

(
�∗�
)= σ 2

1 + · · · + σ 2
L ≥ 0, (17.123)

where σ 2
i , i = 1, · · · ,L, are the real and necessarily nonnegative eigenvalues of the symmetric, positive

semidefinite L × L kernel matrix �∗�. Let I = P + P⊥ be the identity operator on M for P and let
P⊥ be the orthogonal projection operators defined above. It is straightforward to show the following.

Pythagorean theorem for complementary subspaces:

‖P� + P⊥‖2
GF = ‖P�‖2

GF + ‖P⊥‖2
GF . (17.124)

Indeed, we have

‖P� + P⊥‖2
GF = 〈P� + P⊥,P� + P⊥〉 = 〈P�,P�〉 + 〈P⊥,P⊥〉

= ‖P�‖2
GF + ‖P⊥‖2

GF

as a consequence of the symmetry of the inner product, the linearity of each argument of the inner
product, and the fact that all the cross-terms vanish since

〈P�,P⊥〉 = 〈P⊥�,P〉 = 〈PP⊥�,〉 = 〈PP⊥,�〉 = 0

113 However, they do have finite-dimensional domains, and hence range spaces, which is why the simple generalization to the
standard Frobenius theory given here is straightforward to develop and verify.
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due to the definition of the adjoint operator, P and P⊥ being self-adjoint, and PP⊥ = P⊥P = 0.
Consider the optimization required to solve problem (17.98):

min
D,X

‖� − DX‖2
GF subject to sp(X) ≤ k and D ∈D. (17.125)

Using the identity decomposition I = P + P⊥, we can write

DX = (I )DX = (P + P⊥)DX = PDX + P⊥DX (17.126)

with PDX = �M for some L × L matrix M. (17.127)

The last step is true because PDX ∈R(�) and therefore must be of the form PDX = �M for some
matrix M ∈R

L×L.114 As a consequence of the Pythagorean theorem (17.124) we have (note that � =
P�)

‖� − DX‖2
GF = ‖� − PDX + P⊥DX‖2

GF = ‖� − PDX‖2
GF + ‖P⊥DX‖2

GF ≥ ‖� − PDX‖2
GF .

Now consider D and X given a solution to (17.125). It must be the case that D ∈D and sp(X) ≤ k.
We have

‖� − DX‖2
GF = ‖� − PDX‖2

GF + ‖P⊥DX‖2
GF ≥ ‖� − PDX‖2

GF . (17.128)

We ask: Does the (presumed) optimal solution on the far left of (17.128) attain the lower bound on
the far right? Ignoring the optimization constraints, this is true if PDX = �M . But can this be done
while preserving the constraints? Note that the value of X has not changed, so its sparsity structure is
unaffected. Let S be a diagonal matrix such that PDS ∈D.115 Then

� − PDX = � − (PDS)(S−1X) = � − D′X′,

where D′ = PDS ∈D and the transformation X′ = S−1X preserves the sparsity constraint, sp(X′) ≤
k. Thus the optimal solution can be represented as PDX and the lower bound shown on the far right-
hand side of (17.128) is indeed attained.

As noted in Footnote 114, the orthogonal projection operator onto R(�) has the form

P = �
(
�∗�
)+

�∗.

This gives

PDX = �
(
�∗�
)+

�∗DX = �AX,

where we have set

A = (�∗�
)+

�∗D = �+D.

114 The projection operator P has the form P = �(�∗�)+�∗, where (�∗�)+ denotes the Moore–Penrose pseudoinverse of the
kernel matrix �∗�. Thus PDX = �M for M = (�∗�)+�∗DX ∈R

L×L and PDX = �AX for A = (�∗�)+�∗D ∈R
L×m.

115 This can be done for constraints imposed for identifiability, such as column normalization or Frobenius normalization.
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Here, �+ is the pseudoinverse of � and A can be interpreted as a pulling back of an m-element dic-
tionary in the (potentially) infinite-dimensional Mercer space M to an m-element dictionary A in the
finite-dimensional space R

L. This is consistent with the fact that PD = �A, i.e., that � maps A to the
orthogonal projection of D into the finite-dimensional R(�). Since we have seen that the optimal solu-
tion for D exists in this space, there is no harm in working with the L × m matrix A. This recognition
that one equivalently can work with a dictionary on a finite-dimensional space in lieu of a dictionary on
an infinite-dimensional space is a key contribution of [130,131].
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Convolutional neural network (CNN), 481, 626, 630, 898, 1009
Correlation

coefficient, 147, 148, 153
matrix, 775, 784

Cost function, 21, 23, 497, 503, 505, 558, 627, 628, 693, 703,
724, 726, 728, 730–733, 735, 745, 746, 748–750,
761, 762, 774–776, 781, 782, 870, 883, 886, 887,
893, 894, 901, 908, 928

Covariance matrix, 149
Cross-entropy (CE), 885, 892, 893
Cross-power spectral density, 171, 172
Crossover frequency, 284
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Cumulative probability distribution function (CDF), 131, 132
Curvelet

atoms, 568–575, 579, 580, 582, 583
coefficients, 573–575, 580, 583–586
frame, 580
mother, 570–574, 576, 578–580, 582, 583
tight frame, 580

Cutoff frequency, 71, 72, 231, 324, 982, 992, 993
Cycle frequencies, 486
Cyclic frequencies, 486
Cyclostationary feature function (CFF), 486

D
d-regular graph, 963
Data

classification, 870
converters, 186
matrix, 1087, 1090, 1093, 1098, 1101, 1107
representations, 560, 1122
signal, 693

DC
coefficients, 505
shifted signals, 474
signal, 226

Decimated
analysis filter, 15
signal, 13
subband signals, 16

Decimating filter, 462
Decimation, 12, 13, 105, 208, 245, 285, 307–309

factor, 13, 15
filters, 280, 303, 308
operation, 13

Decoder
architecture, 632, 633
layer, 635, 643
side, 528

Deconvolution, 743, 996
algorithm, 999

Decorrelation parameter, 743
Deep

convolutional
framelets neural networks, 628, 630, 632, 641
networks, 1040

networks, 942, 952, 1010, 1011, 1020, 1021, 1032, 1039
neural networks, 25, 1010, 1016, 1020, 1022, 1023,

1025–1027, 1032, 1038, 1136
polynomial networks, 1029

Deep convolutional neural network (DCNN), 1009, 1027, 1032,
1130

Deep learning (DL), 25, 626, 640, 898, 924, 1009, 1010, 1020,
1023, 1034, 1038, 1039, 1050

algorithms, 898, 1010

architectures, 1010, 1020, 1033
context, 1040
frameworks, 931, 1014, 1038, 1040
methods, 1033, 1034

Deep NN (DNN), 888
Deep Q-network (DQN), 939
Deep wavelet superresolution (DWSR), 639–641

network architecture, 640
Degree matrix, 964
Delay elements, 90, 98, 230, 311, 359, 377–379, 508, 523
Demodulated signal, 115
Denoised image, 586, 625, 640
Denominator coefficients, 697, 705
Densely connected network (DenseNet), 639, 641
Deployed words, 1113
Derivative filter, 420

operator, 421
weights, 468

Designing
adaptive filtering techniques, 994
equiripple DC, 278
FIR filters, 276, 426
flexible radio architectures, 446
frames, 667
software radio architectures, 406

Desired signal, 721, 722, 745
Deterministic

autocorrelation, 705
autocorrelation sequence, 704
signals, 161, 186, 194, 212, 214, 698
signals sampling, 194

Dichotomous coordinate descent (DCD) algorithm, 822, 823,
825, 826

Dictionary
algorithms, 1131
atoms, 1116
components, 30
elements, 30, 683, 1113, 1127, 1129, 1130, 1135
Gabor, 683
learning, 30, 1010, 1073–1075, 1086–1088, 1090, 1094,

1096–1099, 1101
algorithms, 1074, 1086, 1090, 1095, 1105, 1134, 1135,

1141
framework, 1087
problem, 1087, 1088, 1096
procedure, 1099, 1108
process, 1115

matrix, 1081, 1083, 1087, 1090, 1096–1098, 1101, 1107,
1109, 1116, 1117, 1120

methods, 1086
overcomplete, 1075, 1081, 1096, 1097, 1120
single, 1124, 1127
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update
algorithms, 1090, 1099
stage, 1140
step, 1090

vectors, 850
Dictionary learning

nonnegative, 1117
Differential evolution (DE), 935, 936
Digital down converter (DDC), 403, 405, 418
Digital signal processing (DSP), 1, 185, 961

algorithms, 271
area, 403
equivalents, 414
filter design, 414

Digital up converter (DUC), 403, 443, 462
Digital-to-analog (D/A) converter, 6, 185, 722
Digitally assisted analog circuits, 187
Direct sequence spread spectrum (DSSS), 485, 489
Directed acyclic graph (DAG), 947, 948
Directional filter bank (DFB), 587, 589, 594, 603
Discrete

curvelet
atoms, 578–580
coefficients, 582–585
frame, 576

equivalent, 87
filters, 554, 644
frequencies, 73
random variable, 131
shearlet

atoms, 613–615
coefficients, 617, 621
transform, 615–617, 625
transform coefficients, 620

signal, 32, 86, 187, 193, 558, 655, 973
signal values, 187

Discrete cosine transform (DCT), 495, 499, 996, 999
coefficients, 514, 676

Discrete Fourier transform (DFT), 4, 120, 232, 411, 495, 542,
680

analysis, 966
filter banks, 405
matrix, 971

Discrete wavelet transform (DWT), 519, 548, 588, 639, 643
Discrete-time

random processes, 154
signal, 972

Discrete-time Fourier transform (DTFT), 4, 542
Discrete-valued random processes, 154
Discretized curvelet atoms, 578, 582
Distorted signal, 199, 745
Distributed solutions, 844
Distribution-ergodic, 162

Diversity measures, 1080, 1082, 1083
Double-talk detector, 799
Downconverter channelizer, 444
Downsampler polyphase channelizers, 492
Downsampling

digital signals, 407
dyadic, 594, 595, 601
operation, 405, 435, 446, 595
operators, 588
ratios, 453

Dyadic
coefficients, 519, 520
downsampling, 594, 595, 601
lifting coefficients, 512
sampling, 588
subsampling, 588, 595, 602, 603
subsampling matrix, 590

E
Echo

cancelation, 691, 693, 720, 722, 728, 741, 751, 762, 821,
832, 833, 839, 843, 848

impulse response, 718, 720, 721
signal, 718, 720

Echo return loss enhancement (ERLE), 720
Eigensignals, 36, 49, 62, 63, 66, 68, 78
Eigenvalue spread, 735, 837
Elaborated signal model, 111, 113
Electrical networks, 330
Embryonal stage, 1002
Encoder convolution layer, 637
Energy

compaction, 503, 504, 525, 526, 559, 631, 642, 996
compaction capability, 504
density spectrum, 81
signal, 210, 469, 505
spectrum, 81

Ensemble
average learning curve, 787
learning, 921, 931
learning algorithms, 921

Equalized signal, 836
Equalizer output signal constellations, 789
Equiripple

filters, 301
FIR filter, 276

Equivalent
circuit, 57
discrete, 87
forms, 75
representations, 76, 261
systems, 93

Ergodicity, 161, 746
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Error
classification, 894, 899, 923
distribution, 888, 892
energy, 210
evaluation, 923
level, 230
metrics, 225
minimum, 728
model, 741
nonlinearities, 834
optimum, 749, 750, 754, 755, 761, 762, 764
power, 727, 728, 745, 746, 844
probability, 924
sequence, 238, 241, 782
signal, 22, 743, 745, 760, 790, 832, 887, 892, 904
signal component, 359
sources, 194
statistics, 888
surfaces, 846
value, 892
variance, 791, 888, 889
vector, 887, 951
weight, 793

Error-feedback least-squares lattice (EF-LSL) algorithm, 720
Euclidean norm, 739, 778, 810, 814, 831, 849
Evolution model, 168
Excess a posteriori error, 791, 809, 810
Excess a priori error, 791
Excess bandwidth, 446, 469, 470, 477
Excess mean square error (EMSE), 728, 791–799, 802, 803,

807, 808, 811–813, 819, 832
curves, 841
minimum, 814, 815

Expansion coefficients, 681
Expectation-maximization (EM) algorithm, 1052
Expected value, 138, 146
Explainable AI (XAI), 1097, 1117, 1137
Exponentially

damped sinusoids, 414
decaying sinusoids, 413, 414

Expressible dictionary matrix, 1097
Extended lapped transform (ELT), 534
Extrapolation error, 692, 707
Extreme gradient boosting (XGBoost), 924

F
Factor analysis (FA), 1074, 1090, 1096, 1097, 1112

model, 1078, 1096
Factorial representations, 1077
Factorized

convolutions, 1027
separable convolution, 1026

Fan filters, 594–596, 600

Fast Fourier transform (FFT), 404, 495, 542, 655
Fast gradient sign method (FGSM), 934, 935
Fast transversal RLS (FTRLS) algorithms, 821, 822
Fast-QR algorithms, 821
Fat dictionary matrix, 1080
Father curvelet coefficients, 580
Feature representations, 30
Federated learning (FL), 943–945
Feedback approach, 809
Feedforward network, 902
Field programmable gate array (FPGA), 267, 461
Figure of merit (FOM), 624
Filter

adaptive, 21, 22, 89, 179, 270, 285, 717, 718, 720, 721, 725,
728, 730, 740–747, 749, 752, 755, 759, 760, 763,
768, 773, 774, 994, 995

algorithms, 239, 378
approximations, 317
bandpass, 14, 179, 212, 267, 283, 363, 364, 419, 421, 429,

432, 443, 444, 571
bandwidth, 429
bank, 14, 16, 267, 270, 278, 283, 285, 287, 308, 309, 444,

447, 454, 495, 497, 500, 502, 516, 550, 552, 557,
586, 587, 590, 591, 655, 656, 664, 837, 986

coefficients, 505
connection, 500
decomposition, 521
design, 523
solutions, 524

channel, 639, 640
coefficients, 229, 271, 282, 325, 326, 329, 389, 425, 426,

429, 531, 710, 726–728, 732, 740, 747
convolutional, 631
design, 271, 307, 313, 424, 426, 471, 504
design process, 316
estimates, 799
frequency response, 426, 437
FRM, 286, 289, 290, 293, 296, 311, 313, 315
gain, 424, 439
implementation, 10
impulse response, 229, 423, 429, 470
input, 430
length, 296, 424, 501, 531, 799, 840
linear, 749, 978, 980
LMS, 728, 840, 841, 843
memory, 457, 459
MSE, 843
network, 315
nonrecursive, 280, 415, 423
optimal, 762
order, 9, 206, 270, 273–277, 283–285, 290, 293, 295–297,

309, 313, 317, 318, 324, 326, 327, 746, 749
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output, 283, 284, 421, 423, 426, 430, 432, 439, 476, 747,
748, 831, 849

pairs, 289, 293, 429, 554, 598
parameters, 424, 708, 740
passband, 426
poles, 414
polyphase, 435, 436, 439, 444, 450, 451, 459, 467, 493
prototype, 286, 287, 289, 290, 295, 309, 310, 312, 405, 424,

425, 427, 470, 482, 492, 532
realization, 12, 311
requirements, 248
response, 6, 426, 505
segments, 434, 441
set, 457
space, 1003
specification, 290, 294, 297, 424
spectral, 438, 1000
stage outputs, 436
structures, 270–272, 279, 281, 296, 303, 319, 322, 323, 358,

388, 395, 596, 601, 821
system, 600, 644
taps, 423, 982
transition bandwidth, 425
wavelet, 497, 518–521, 616
weights, 437, 468, 730, 774, 821, 830

Filtering, 176
adaptive, 21, 707, 717, 722, 724, 735, 745, 746, 791, 792,

836, 839, 844, 845, 847, 848, 994, 995
algorithm, 848, 995
bandpass, 177, 429
effect, 176
Gaussian, 997
graph, 978
linear, 21, 978, 979
multichannel, 760
multirate, 427
nonlinear, 510
operations, 740, 821
optimum, 177, 745
process, 465, 995
scenario, 840, 844
spectral, 997
step, 405
structure, 593
task, 423, 424
techniques, 997

Finite impulse response (FIR), 5, 696
adaptive filters, 831
filter, 8, 243, 244, 267, 272–274, 276–281, 283, 284, 286,

289, 290, 297, 298, 416, 423, 424, 426, 500, 502,
518, 700, 725, 740, 741, 743, 747, 758, 774, 982

filter bank, 590, 594, 665
filtered version, 701

prediction filter, 699
solution, 178
subfilters, 230
systems, 96, 224
transfer function, 8

Finite word length, 375, 378
representations, 85

Forcing function, 44
Forgetting factor, 781, 802, 812, 813, 830
Fourier

frequency, 487, 597
frequency plane, 538, 568
plane, 539, 567, 569–573, 575, 578, 580, 582, 584, 587,

594, 596, 598, 600, 601, 603, 607, 614–616
representations, 77, 81
series coefficients, 78
synthesis, 76

Fourier transform (FT), 2, 3, 18, 48, 50, 62, 72, 78, 120,
194–196, 201–203, 408, 409, 414, 424, 425, 537,
538, 541, 542, 669, 690, 693, 702, 969–971, 975

Fourth power, 833
Fractional bandwidth, 438
Frame

algorithm, 549
applications, 655
bounds, 20, 549, 603, 604, 657, 661, 664, 667, 670, 673
bounds ratio, 661
characteristics, 667
characterization problem, 657
coefficients, 652–655, 659, 663, 666, 676, 681
complete, 1081
concept, 654, 670
condition, 632, 635, 636
constructions, 674
curvelet, 580
decomposition, 657, 658, 678
discrete curvelet, 576
elements, 653–656, 661, 667, 674, 675, 683
expansion, 593, 601, 654, 655, 663, 681
experiment, 676
index, 86
inverse, 658, 659, 662, 667, 670, 671, 675, 676, 678, 684
inversion, 660
literature, 670
location, 1120
operator, 593, 657, 658, 666, 667, 684
overcomplete, 654
reconstruction, 658, 666
redundancy, 659, 662
representation, 20, 549, 659, 684
theory, 652, 676
vector, 593
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Framelets, 630–632
coefficient, 631, 633, 636
coefficient matrix, 631, 633
convolution, 630
representation, 635

FrameletsNN, 628, 630, 632, 633, 635, 637, 638, 641, 642
Framework

analysis, 538
dictionary learning, 1087
kernel, 1135
learning, 27, 871, 942

Frequency
alias, 435
axis, 69, 80, 558, 680
bands, 198, 232, 276, 278, 282, 283, 286, 317, 428
bandwidth, 179
baseband, 461
bins, 457
components, 77, 198, 225, 245, 284, 407, 637, 970, 971,

973, 980
content, 77, 543, 569, 587, 591, 608, 635, 693, 987
dependency, 230
domain, 3, 4, 57, 77, 79, 80, 94, 95, 169, 176, 208, 221, 225,

316, 317, 343, 403, 406, 408, 409, 411, 414, 569,
576, 582, 587, 607, 655, 693, 702, 971, 979, 982

Fourier, 487, 597
hopping, 485
index, 459
localization, 637
masking techniques, 396
Nyquist, 111, 198, 226, 286
Nyquist sampling, 198
offset, 464, 466, 467, 473, 477, 478, 492
offset compensation, 464, 466, 467, 473
partitions, 604
passband, 317
plane, 481
positioning, 465
range, 86, 284, 300, 301, 406
region, 212, 245, 600
representation, 78
resolution, 482, 487
response, 66, 176, 267, 269, 270, 979

mismatch errors, 221
rotators, 407, 473
sampling, 189, 194, 196, 198, 199, 206, 208, 270, 283, 301,

311, 407, 409, 410, 446, 986
sampling methods, 8
scaling, 80
selectivity, 307, 324
shift, 77, 418, 473, 477, 479, 683
shifted versions, 309
shifting, 53

shifting property, 81
signal, 25
spectrum, 314
transformation, 268, 269, 279, 317, 339

Frequency division multiplexed (FDM)
bandwidth, 428
input signal, 428, 429

Frequency response masking (FRM)
filter, 285, 286, 289, 290, 293, 296, 311, 313, 315
FIR filter, 286
interpolation filter structure, 306
multirate filters, 301
structure, 280, 286, 289, 293, 301, 302, 305, 307–310, 313,

314
techniques, 267, 273

Full adder (FA), 382–384, 394
Fully connected neural network (FCNN), 898
Fundamental frequency, 73–76, 651

resolution, 482

G
Gabor

coefficients, 676
dictionary, 683
frames, 655, 659, 668, 670–672, 674, 676, 678–680
system, 668

Gate recurrent unit (GRU), 905
Gaussian

distribution, 134
filtering, 997
inputs, 820
noise, 563, 815

Gaussian Markov random field (GMRF), 1049
model, 996, 998, 1002

Gaussian scale mixture (GSM), 1103
Generalized Lloyd algorithm (GLA), 1091, 1093, 1096
Generative adversarial network (GAN), 1011, 1029, 1030
Generative model framework, 1137
Generic convolution blocks, 638
Geometric multiresolution analysis (GMRA), 1119, 1121
Gradient descent, 714, 1010, 1020, 1090, 1099

algorithm, 713, 714, 884, 887, 904, 945, 1090
backpropagation algorithm, 885
dictionary learning algorithm, 1116
search method, 886
stochastic, 934, 1016, 1027, 1109

Gradient noise, 840
Gram matrix, 664, 667
Gram–Schmidt KLMS (GS-KLMS), 850
Graph filter, 981, 982

design, 982
Graph filtering, 978
Graph Fourier transform (GFT), 970, 971
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Graph Laplacian of Gaussian (GLoG) filter, 1000, 1001
Graph shift operator (GSO), 968
Graph signal (GS), 962, 965

convolution, 980
denoising filter, 998

Graph signal processing (GSP), 24, 961
Graphical

models, 1049
representation, 1114

Grassmannian frames, 675
Group Method of Data Handling (GMDH), 1027

H
Half-band

circulator-tree, 377
filter, 279, 282, 294, 295
FIR filters, 278, 282

Hankel matrix, 630, 631
Harmonically related signals, 76
Hermitian symmetric, 738, 739, 773
Hessian, 732, 735, 736, 773
Hessian matrix, 735, 779
High frequency selectivity, 309
Higher-order singular value decomposition (HOSVD), 1017,

1030
Higher-order statistics (HOS), 835, 836
Hilbert transform, 181
Holistic representations, 1119
Homogeneous

Markov chain, 168, 169
Markov sequences, 168
networks, 943

I
Improved channel estimator (ICE) net, 890
Improved proportionate normalized LMS (IPNLMS)

filters, 843
robustness, 843

Impulse response, 2, 4, 13, 36, 38, 40–42, 86, 92, 97, 98, 175,
176, 223, 224, 267, 273, 274, 423, 424, 429, 532,
534, 554, 557, 576, 591, 696, 697, 702, 718, 742,
979, 980, 982

antisymmetric, 10
coefficients, 224
echo, 718, 720, 721
filter, 229, 423, 429, 470
finite duration, 96
infinite duration, 98
truncation, 703
values, 244
windowed, 425, 469

Impulse signal, 36, 40, 980
Impulsive signals, 835
Incremental learning, 1033
Indegree, 963, 964
Independence theory, 793
Independent

noise, 1075
signals, 482

Independent and identically distributed (i.i.d.) samples, 1107
Independent component analysis (ICA), 1115, 1116
Infinite impulse response (IIR), 5, 99, 230, 696

adaptive filters, 748
filter, 9, 10, 12, 239, 267, 272, 279, 284, 311, 339, 414, 423,

725, 747, 846
filter design, 8

Infinite word length, 85
Information signal, 462
Input

Gaussian, 820
IFFT, 478
matrix, 48
signal bandwidths, 465
stability, 103, 104

Input–output stability, 105
criterion, 108

Instantaneous cost function, 776
Insufficient sampling frequency, 405
Integer

coefficients, 500, 509
transform coefficients, 507

Integer cosine transform (ICT), 507
Intelligence Advanced Research Projects Activity (IARPA), 490
Intelligible speech signal, 284
Interconnection networks, 343, 346, 352, 392
Interest

deterministic signal, 693
filters, 337, 344
noisily observed signal, 1078
random signals, 695
signal, 499, 537, 554, 555, 560, 696, 699, 718, 741

Interference cancelation, 740, 741
Interleaved curvelet atoms, 580
Intermediate frequency (IF) signals, 405
Internal stability, 103
Interpolated signal, 13, 443
Interpolation filter, 13, 304, 305, 307, 309, 405, 468
Interpretable artificial intelligence, 942
Interpreting generative networks, 1039
Intersymbol interference (ISI), 743, 835
Interval

estimate, 152
sampling, 126, 131, 133
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Inverse
2D FFT, 583, 584
correlation matrix, 713, 784
covariance matrix, 787
curvelet transform, 583, 585
Fourier transform, 78, 195, 196, 203, 213, 222, 224, 229,

541, 571, 579, 616
frame, 658, 659, 662, 667, 670, 671, 675, 676, 678, 684

elements, 655, 662
operator, 657, 658, 660

Gabor frame, 677
Hessian matrix, 785
Laplace transform, 257, 259
matrix, 606, 607, 784
operation, 508
operator, 498, 592
preprocessor, 526
problem, 747
synthesis mapping, 499
system identification, 740, 743
transform, 543, 583, 585
transformation, 241
wavelet transform, 548, 628, 672

Inverse discrete Fourier transform (IDFT), 403, 681
Inverse fast Fourier transform (IFFT), 444, 450, 451, 453, 457,

459, 583, 585, 681
algorithm, 403, 436
block, 437, 454, 465, 476
block sizes, 476
coefficients, 681
inputs, 478
output vector, 459
points, 473
size, 466, 468, 471, 473, 474, 476, 477, 492

Irrational coefficients, 500
Irregular

domains, 961
sampling, 652

Irregularity, 961

J
Joint

CDF, 143
central moment, 147
dictionary, 1089
moment, 147
probability, 126
probability density function, 144

Jointly wide-sense ergodic, 162

K
K-means clustering algorithm (KMA), 1093

K-Medoids algorithm (KMA), 1091
k-nearest neighbor (k-NN) approach, 998
K-singular value decomposition (K-SVD) algorithms, 1074
Kaiser–Bessel window, 426
Kalman

filter, 781, 793, 843
filtering, 845

Karhunen–Loève transform (KLT), 499, 996
Kernel

adaptive filters, 848, 851
framework, 1135
matrix, 1135, 1136, 1147
trick, 916, 917

Kernel LMS (KLMS) algorithm, 849
Kernel RLS (KRLS) algorithm, 850
Kernelized dictionary learning, 1131

algorithms, 1131
Kernelizing dictionary learning, 1074
Kirchhoff’s voltage law (KVL), 39, 59
Kronecker product, 1013, 1035
Kruskal convolutions, 1023, 1024
Kullback–Leibler divergence, 1110
Kurtosis, 139, 833

L
Ladder filters synthesis, 329
Laguerre filters, 821
Laplace transform

one-sided, 49, 52, 56
pairs, 51, 53
two-sided, 49

Laplacian
matrix, 25, 27, 964, 969, 975, 976, 983, 984, 987, 992,

1003, 1050, 1051, 1062, 1063, 1066
spectrum, 982, 983

Laplacian pyramid (LP), 590
decomposition, 587
filter, 601, 604
filter bank, 587, 591, 592, 602

Laplacian-constrained GMRF (LGMRF), 1050
Lapped transform (LT), 502, 503, 522
Latent signal, 30
LC

filter, 269, 270, 317, 319, 321, 323–326, 339
network, 269, 336, 339, 340
structure, 337

Leading DCD, 826, 830
Leaky-LMS algorithm, 831
Learned

dictionary, 1122–1124, 1126, 1127
representation, 1110
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Learning
ability, 927
adaptive filter, 718, 817
adversarial, 874
algorithms, 27, 869, 870, 886, 928, 943, 1050, 1100, 1117
architectures, 1009, 1128
causal, 947
coefficients, 944
concepts, 870
continuous, 874
curve, 787, 830, 1037
deep, 25, 626, 640, 898, 924, 1009, 1010, 1020, 1023, 1034,

1038, 1039, 1050
dictionary, 30, 1010, 1073–1075, 1079, 1086–1088, 1090,

1094, 1096–1099, 1101
framework, 27, 871, 942
graphs, 1050
methods, 27, 949, 1015
model parameters, 33
modes, 870
problem, 942
procedure, 1110
process, 870–874, 876, 878, 887, 892, 926, 929, 942, 951,

1086
rate, 878, 929, 930, 939
representations, 1019
rules, 1129
settings, 1068
sparse representation, 1107
strategy, 870, 874
system, 943
tools, 33
unsupervised, 23, 874, 876, 878

Least squares (LS), 890
Least-mean fourth (LMF) algorithm, 834
Least-mean squares (LMS)

adaptive algorithm, 713
algorithm, 714, 722, 727, 728, 758, 773, 775, 776, 778, 796,

995
coefficients, 831
estimates, 728
filter, 728, 840, 841, 843
recursion, 713, 728

Likelihood, 128
Linear

coefficients, 627
combination, 38, 44, 45, 61, 64, 95, 269, 330, 339, 341, 652,

657, 683, 697, 699, 748, 750, 756, 758, 841
complex filter, 762
convolution, 408
filter, 749, 978, 980
filtering, 21, 978, 979
filtering operator, 978

Linear constant-coefficient difference equation (LCCDE), 691,
697

Linear predictive coding (LPC), 742
Linear shift-invariant (LSI)

filters, 981
graph filter, 983
graph systems, 970
system, 970
systems, 970

Linear time-invariant (LTI) system, 2, 36, 38, 41, 54, 55, 61–65,
73, 90, 101, 175, 176, 179, 181, 252, 253, 255,
690, 696, 697

causal, 64, 65
eigensignals, 61
model, 702, 710
response, 61, 78

Local
error features, 887
frame, 1120

Localized
frequency content, 607
signals, 479

Logarithmic frequency scale, 70
Logic signals, 394
Long short-term memory (LSTM), 903, 904, 1027
Loop filters, 253
Lossless

commensurate length transmission, 332, 336
network, 321, 322
sampling, 175

Low-resolution subband (LRSB), 639, 640
Lower-resolution (LR)

image, 639, 641
version, 639

M
Machine learning (ML), 22, 869

algorithms, 1, 23, 30, 1136
applications, 19, 27, 1052, 1074
causal, 946
classical, 1037
clustering, 27
connotations, 1091
dictionaries, 30
fields, 1051
methods, 1116
model, 23
problems, 30
quantum, 1010, 1034
researchers, 1011
solutions, 22, 24
systems, 153
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tasks, 1009
techniques, 1136
theory, 1, 31, 32
tools, 1
unsupervised, 23

Magnitude spectrum, 78
Majorization-minimization (MM), 1051, 1052
Manifold learning, 1074, 1119, 1121, 1136
Marginal

CDF, 143
PDF, 144

Markov
chain, 168

homogeneous, 168, 169
process, 167
random process, 167
sequence, 167, 168

Masking filters, 286, 288, 289, 292, 293, 295, 296, 302, 304,
307–313, 315

Mass probability function, 134
Matching Pursuit (MP), 683, 684, 1083

algorithm, 684
decomposition, 684
expansion, 683

Mathematical
framework, 1077
representation, 62

Matrix
autocorrelation, 120, 512, 515, 709, 748, 749, 756, 761,

786, 794, 807, 831
dictionary, 1083, 1087, 1090, 1098, 1101, 1109
inverse, 784
inversion lemma, 780
representation, 1109
sampling, 591
trace, 737

Matrix product operator (MPO), 1036
Matrix product state (MPS), 1018, 1035, 1036
Maximally

decimated filter banks, 587
sparse representations, 1080, 1119

Maximum
frequency, 460
frequency component, 409
signal value, 247

Maximum a posteriori (MAP)
approaches, 1103
estimate, 1085, 1105
estimation, 1103
estimator, 151, 152
formalism, 1085

Maximum likelihood estimate (MLE), 1089
Maximum likelihood estimator (MLE), 1050

Maximum likelihood (ML) estimator, 151
McClellan–Parks–Rabiner (MPR), 426
Mean

instantaneous
cross-power, 156, 157, 167
power, 155, 156, 161, 166, 167

square value, 138, 155, 156
vector, 149, 150, 165

Mean square deviation (MSD), 792
Mean square error (MSE), 152, 628, 659, 695, 749, 887
Mean Squared Error (MSE), 504
Mean-shift algorithm (MSA), 878
Measurement noise, 836, 1078
Memristance, 83
Memristor, 83
Mercer kernels, 917, 918
Mere basis representation, 1115
Method of Directions (MOD), 1086, 1096–1099, 1135
Method of Moments (MOM), 1074
Microphone signal, 722
Minibatch learning, 873
Minimax concave penalty (MCP), 1054, 1056
Minimum

bandwidth, 469
EMSE, 814, 815
error, 728
mean quadratic error, 178

Minimum description length (MDL), 715
Minimum mean square error (MMSE), 1105
Minimum mean square (MMS) approximation, 425
Minimum MSE (MMSE) constant estimate, 696
Minimum-variance distortionless response (MVDR), 848
Misadjustment, 728, 791
Mismatch errors, 221

channel, 221
linear, 221, 230
nonlinear, 221

Mixed variable, 131
Modality classification, 485
Modular cascades, 496
Modulated

signal component, 113
sinusoid, 113

Modulation frequency, 113
Moment-generating function, 141, 148
Mother

curvelet, 570–574, 576, 578–580, 582, 583
curvelet windows, 572, 583
shearlet window, 607, 608, 612
shearlet window function, 609

Moving average (MA), 98, 182
systems, 697
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Multichannel
convolution, 630
convolution kernels, 1010
convolutional kernels, 1020
filtering, 760
filters, 632, 762

Multidimensional signals, 86, 187
Multilayer perceptron (MLP), 882, 883, 919, 1127
Multimedia signals, 495
Multiple

experiment case, 129
signals, 403, 406

Multiple-input multiple-output (MIMO)
decoder, 634
encoder, 634
filter kernel, 633
system, 186, 627, 634

Multiple-input single-output (MISO) system, 250
Multiplier coefficients, 89
Multiply-and-accumulate (MAC) operations, 1109
Multirate

filter, 267, 283, 285, 286, 302, 316, 405, 406, 413, 416, 423,
427

banks, 225
realizations, 273
structures, 395

filtering, 427
FIR filters, 285
signal, 986

processing, 12, 14, 16, 407, 411, 492, 586, 587
Multiresolution analysis (MRA), 551, 552, 587, 594

framework, 550
reconstruction method, 637
theory, 550

Multiscale
representations, 538
signal representation, 551

Multistage Wiener filter, 848
Multivariable signal, 994
Multivariate statistical learning, 1131
Myriad signals, 1136

N
n-mode product, 1013, 1014, 1021
Natural

frequencies, 63
signals succinct representations, 1137

Near-end signal, 718, 720
Negative frequency, 429
Network

backward training, 927
characteristics, 931
compressed, 1025

design, 931
element, 1000
filter, 315
input, 933
layers, 638, 926
learning process, 928
lossless, 321, 322
output, 627, 904, 942
parameters, 898, 949, 950, 952, 1021
regularization, 930
signal, 1000
structure, 870, 926, 961, 1000
tensor, 1038
topology, 348, 1050
training, 928, 929, 942
training process, 926
training stage, 926
weight initialization, 926

Network in network (NiN), 639
Neural network (NN), 19, 21, 24, 30, 485, 487, 488, 625, 626,

628–630, 638, 641, 690, 869, 883, 1020
architecture, 1000, 1028
building blocks, 1010
classifier, 30
deep, 25, 1010, 1016, 1020, 1022, 1023, 1025–1027, 1032,

1038, 1136
development, 643
hierarchical, 1028
layers, 1010
methods, 626
Volterra, 626, 643
wavelet, 626, 628
weights, 24

Newton algorithm, 735
Noise

adversarial, 1032
bandwidth, 179
coefficients, 561
contribution, 585
covariance matrix, 1107–1109
distribution, 561, 563, 835
frequency response, 256
gains, 242
Gaussian, 563, 815
level, 843, 1132
models, 135
power, 161, 239, 247, 251
random, 161, 173, 819, 1010, 1032, 1076
random process, 172
reduction, 247, 251, 663
rejection, 720
resilience property, 659
samples, 793
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sequence, 811
shaping, 186
signals, 172
sources, 239, 241, 243
statistics, 559
term, 658
variance, 243, 247, 563, 1086

Noiseless
case, 1084
models, 1077

Noisy signal, 21, 162, 559, 585
Noncausal filter, 230
Nonconvex, 1049

cost functions, 748
formulations, 27, 1050
function, 1052
graph learning, 27
problems, 27
program, 1067
regularizations, 1057

Nondiagonal matrix, 588, 590
Nondifferentiable cost functions, 847
Nondownsampling version, 587
Nonlinear

activation function, 898, 926
filter, 21
filtering, 510

Nonnegative dictionary learning (NDL), 1117
Nonnegative matrix factorization (NMF), 1074, 1117
Nonorthonormal frame, 594, 626
Nonoverlapping passbands, 15
Nonperiodic signals, 72, 77–79, 540

frequency spectrum, 77
Nonrecursive

analog filters, 416
digital filters, 358
filter, 280, 415, 423
FIR filters, 267, 272, 273, 358

Nonseparable filters, 595
Nonsingular subsampling matrix, 589
Nonstationary signals, 19
Nonuniform

filter banks, 309
sampling, 186, 220–223, 966
sampling grid, 220

Normal distribution, 134
Normalized least-mean squares (NLMS)

algorithm, 720, 773, 778–781, 832, 995
update equation, 779

Notch
filters, 277, 278
filters adaptive, 741
FIR filters, 277

Novelty criterion (NC), 850
Null space, 737, 752, 976
Numerator coefficients, 697
Numeric representation, 6
Numerical errors, 185, 781, 786, 822
Nyquist

criterion, 175
filter, 282, 446, 465, 469, 470
filter design, 465
frequency, 111, 198, 226, 286
passband frequency response, 478
sampling, 473, 652

criterion, 407
frequency, 198
rate, 407

zone, 212, 437, 444, 466, 467, 493

O
Objectionable stopband, 425
Offset errors, 230
One-sided

Laplace transform, 49, 52, 56
Laplace transform properties, 56
real exponential function, 50
spectrum, 76

Open boundary conditions, 1018
Optimal

error, 752
filter, 762
frames, 675
sampling, 990
sampling strategies, 989, 990

Optimum
error, 749, 750, 754, 755, 761, 762, 764
error power, 765
filter, 229, 746, 753, 761
filter coefficients, 791
filtering, 177, 745

Order statistics, 835
Ordinary differential equation (ODE), 44–46, 61, 63
Originator signal, 14
Orthogonal frequency division multiplexing (OFDM) system,

889
Orthogonal Matching Pursuit (OMP), 1083
Orthogonality condition, 724, 749, 750, 752, 761, 764
Orthonormal wavelet coefficients, 551
Outdegree, 963
Outdegree matrix, 964
Output

analysis channelizer, 466, 471, 492
channelizer, 473
equation, 47
matrix, 48
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radio frequency amplitude, 462
stability, 103, 104
time, 475

Overcomplete
dictionary, 1075, 1081, 1096, 1097, 1120, 1128
frame, 654
representation, 20, 556, 557
signal representation, 558

Overcomplete NMF (oNMF), 1117
Overdetermined dictionary, 1094
Overflow errors, 236
Oversampling, 186, 206, 222, 226, 247, 482, 669

factor, 247, 467
ratio, 679
techniques, 186, 243, 244, 247

P
p-diversity measures, 1082, 1083
Paley–Wiener space, 986, 992
Parallel adaptor network, 355
Parallel factor analysis (PARAFAC), 1016
Parameter

estimation, 151
vector, 844

Parameterizing convolutional layers, 1023
Parks–McClellan (P-M), 426
Parseval

curvelet frame, 579
formula, 573
frame, 605, 615

Parsimonious
representation, 631
signal, 552

Partial differential equation, 44
Particle filters, 768
Partitioned filter, 422, 423

polyphase, 444
Pass fan filter, 595
Passband

attenuation, 320, 324
cutoff frequencies, 426
edge, 289, 290, 294, 304, 317, 319, 324, 326, 329, 360, 366
filters, 426, 580
frequency, 317
gain, 359, 470
performance, 309
regions, 276
requirement, 283
responses, 313, 317
ripple, 283–285, 289, 290, 300, 301, 312, 319, 324, 326,

327, 361, 366, 371, 373, 423, 425
sensitivity, 268, 322, 328, 329, 396

variations, 319, 363
width, 247

Passive LC filters, 321, 341
Pattern classification, 879
Peak Sinal-to-Noise Ratio (PSNR), 504
Perceptron learning algorithm, 881
Perfect reconstruction (PR), 199, 215, 224, 225
Periodic signal, 36, 73, 75–78, 542, 745, 746, 757, 831
Periodically sampled signal spectrum, 409
Phase

rotator outputs, 450
spectrum, 78

Photo core transform (PCT), 513, 528
Photo overlap transform (POT), 528, 529
Plancherel–Parseval property, 542
Point estimator, 151
Poisson

distribution, 136
process, 166
random process, 166
random variables, 136

Pole
filter, 414
radius, 319, 320, 366, 367, 369, 377

Pole-zero
diagram, 63, 64
plot, 63

Polynomial filters, 983
Polyphase

channelizer, 403, 406, 407, 427, 428, 445, 446, 457, 473,
479, 487, 492

decomposition, 405, 406, 427, 432, 433, 442, 444, 492,
587–590, 600, 603

filter, 435, 436, 439, 444, 450, 451, 459, 467, 493
filter bank, 405, 434, 446, 492, 592, 593
filter output data, 453
partitioned filter, 444
representation, 590–592

Positive definite, 739
character, 786
matrix, 739, 786

Positive semidefinite, 739
matrix, 737, 739

Postanalysis filters, 471
Posterior mean estimator, 152
Postfiltering, 524
Postprocessing channelizers, 464
Power spectral density (PSD), 20, 170, 171, 174, 176, 179, 181
Power spectrum, 182, 183, 212, 214, 216, 218, 219, 225
Power-normalized LMS (PN-LMS) algorithm, 832
Power-of-two LMS algorithm, 820
Preagreed signal, 743
Precision measure, 152
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Prediction, 742
error, 690, 699, 705
error filter, 699
filter, 699
filter FIR, 699

Preimages, 917
Prelearned dictionary, 1127
Preprocessor analysis channelizers, 476
Pretrained

convolutional kernel, 1023
network, 942, 1040

Principal component analysis (PCA), 499, 879, 1077, 1081,
1090, 1096, 1097

Probability density function (PDF), 132–134, 765, 834, 850
Probe signals, 702
Processing element (PE), 379, 380, 383
Projected gradient descent (PGD), 934, 936, 939, 940
Proportionate NLMS (PNLMS) algorithms, 832, 833
Prototype

analog, 10, 429
Cauer filter, 311–313
channelizer filter, 454
codewords, 1094
filter, 286–290, 295, 309, 310, 312, 405, 424, 425, 427, 470,

482, 492, 532
masking filter, 303, 304
signal, 20, 667, 668, 674

Pseudoinverse, 549, 592, 594, 660
Pulse amplitude modulator (PAM), 194, 200, 201, 204
PyTorch, 931, 1038

Q
QPSK signals, 477
Quadratic programming (QP), 913, 914, 920
Quadrature amplitude modulation (QAM)

channels, 446
constellations, 474
signals, 470

Quadrature mirror filter (QMF), 558, 587, 594–596
Quadrature phase shift-keying (QPSK) signal, 788
Quality of service (QoS), 461
Quantization

errors, 6, 232, 236, 238, 239, 241, 250, 251, 819
noise, 207, 241, 242, 250, 659
noise variance, 241

Quantized
adaptor coefficients, 366
coefficients, 377, 658, 659
signal, 190, 693

Quantized KLMS (QKLMS) algorithm, 850
Quantum computing (QC), 1010, 1034, 1035
Quantum machine learning (QML), 1010, 1034
Quantum networks, 1034

Quasi-Newton algorithms, 735
Quasiperiodic signals, 183
Quincunx

resampling, 595
sampling, 594

Quincunx filter bank (QFB), 595, 596

R
Radial basis function (RBF), 627, 1132
Radio frequency (RF), 112, 429, 461
Radio spectrum, 406, 462, 463
Random

matrix, 119
noise, 161, 173, 819, 1010, 1032, 1076
process, 154
sample, 151
sampling, 991
sequence, 154
signal, 5, 123, 161, 175, 695, 697, 746
variable, 129

Random Fourier feature (RFF), 850
Rank selection, 1026, 1039
RBF network (RBFN), 627
Reactance network, 322
Receiving signals, 460
Recovering spatiotemporal signals, 1000
Rectangular spectrum, 469
Rectified Linear Unit (ReLU) activation, 627
Recurrent networks, 1009
Recurrent neural network (RNN), 899, 902, 1000, 1027
Recursive filters, 286, 308, 316

frequency, 311
Recursive least-squares (RLS)

algorithm, 713, 720, 735, 773, 781, 995
filters, 791, 815, 843

Redesigning, 464
Redundant

frame, 654
frame operator, 594
representation, 547, 575, 594, 630

Reflectance functions, 332, 335, 342, 356, 357
Region of convergence (ROC), 49–52
Regression error, 691
Regressor, 748
Reinforcement learning (RL), 23, 873, 874, 938, 940
Relative frequency, 125
Relevance vector machine (RLV), 920
Representation

capabilities, 1086
frame, 20, 549, 659, 684
framelets, 635
frequency, 78
learning problem, 1089, 1134
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matrix, 1109
model, 1087
overcomplete, 20, 556, 557
polyphase, 590–592
power, 638
shearlet, 625
signal, 540, 631, 651, 655, 673
sparse, 25, 33, 1074, 1075, 1078–1082, 1084, 1086
spectral, 542
vectors, 1073, 1113, 1116
wavelet, 556

Reproducible filters, 270
Reproducing kernel Hilbert space (RKHS), 916, 917
Resampling

filters, 412
matrices, 594
operation, 430, 435
operator, 423
process, 403, 407, 411, 413, 492
quincunx, 595
switch, 426

Research interests, 594
Residual network (ResNet), 639
Resolving signals, 482
Resonance frequency, 67–69
Resonator filters, 329
Restricted isometry property (RIP), 1079
Ripple

passband, 414
stopband, 414
stopband elliptic filters, 414

Robust adaptive filters, 835
Root mean squared (RMS) bandwidth, 174
Rotated curvelet atoms, 572, 574

S
Sample

functions, 154
mean, 151
space, 124–126

Sample-and-hold (S/H) circuit, 191, 192, 231
Sampling

approaches, 986
bandpass, 211
clock, 416
compressed, 187
criteria, 991
different signals, 199
dyadic, 588
frequency, 189, 194, 196, 198, 199, 206, 208, 270, 283, 301,

311, 407, 409, 410, 445, 446, 986
grid, 221
instances, 189, 194

interval, 85
lossless, 175
matrix, 591, 594
method, 991, 992
Nyquist, 473, 652
operations, 587, 669
operator, 597, 989
optimal, 990
paradigm, 187
period, 3, 12, 109, 120, 189, 194, 196, 199, 220, 222, 245,

259, 408, 409
process, 214, 236, 403, 405, 407, 409, 411, 424, 470, 492
quincunx, 594
random, 991
rate, 12–14, 89, 105, 187, 221, 245, 405, 406, 409, 410, 444,

446, 543, 986
change, 12, 13, 302, 444, 447
changes, 33
increase, 105

sets, 989–991
signal, 652, 655, 669
size, 587
sparse, 187
strategies, 991
theorem, 6, 12, 194, 196, 198, 199, 201, 202, 206, 209, 212,

214
theory, 212, 985, 986

Schur complement, 738, 756
Seed vertices, 962
Segmented least-squares (SLS)

algorithm, 711
loss function, 711
minimization problem, 710
objective function, 711

Segmented signal components, 476
Segregated signals, 485
Selective resampling, 596
Self-adaptivity, 626
Self-organizing map (SOM), 877–880
Semisupervised learning, 23
Sentiment classification, 906
Separation principle, 811
Set-membership algorithms, 834, 846
Shannon sampling, 669
Shaping filter, 286–290, 292–294, 296, 302, 304, 307–311, 313,

315, 462, 615
Shearlet

atoms, 606–608, 611–614
coefficients, 608–611, 619, 621, 623, 625
representation, 625
transform, 545, 605, 607, 610, 611, 613, 615, 618, 619, 622

coefficients, 619
system, 606
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Shift-invariance, 981
Shifted signal, 973
Short-time Fourier transform (STFT), 479, 481–483, 672
Sign-LMS algorithm, 820, 835
Signal

aliased, 430, 436
analog, 7, 36, 83, 187, 188, 190–193, 222, 404, 405, 407,

409, 492, 542
analysis, 20, 48, 73, 655, 664, 673, 677, 681, 683, 684
analysis purposes, 656
analysis tool, 495
approximations, 683
band, 468
bandwidths, 407, 410, 427, 461, 464, 470, 669
baseband, 462
binary, 836
cancelation, 329
carrier, 322
characteristics, 533, 540, 654, 672, 683
classification, 484, 485
coding, 655
coefficients, 565
compression, 587
constellations, 470, 744
data, 693
DC, 226
decomposition, 498, 520, 682
decomposition algorithm, 683
decorrelation, 504, 505
detection, 16, 462, 479, 481, 484
discrete, 32, 86, 187, 193, 558, 655, 973
echo, 718, 720
energy, 210, 469, 505
enhancement, 22, 996
error, 22, 743, 745, 760, 790, 832, 887, 892, 904
estimation, 559
flow graphs, 389
flowgraph model, 701
frequency, 25
frequency response, 256, 259
generation, 477, 1112
interest, 499, 537, 554, 555, 560, 696, 699, 718, 741
levels, 236, 244, 282, 355, 360
model, 525
network, 1000
power, 239, 481
prediction, 996
processing, 1, 4, 22, 24, 36, 79, 85, 175, 186, 301, 404, 430,

436, 499, 509, 546, 587, 689, 690, 692, 696, 714,
718, 740, 892, 969, 1051, 1073–1075

algorithms, 664
applications, 20, 194, 673, 711, 715
architecture, 405

classical, 986
community, 518
discrete-time, 252
fields, 1050
framework, 969
methods, 652, 869
network structures, 25
operations, 6, 185, 693
path, 430
problems, 14, 707, 1002
scenario, 667
sparse, 1073
statistical, 695
systems, 85, 186, 190
tasks, 460, 495, 655, 656
technique, 967
theory, 19, 976, 1002
toolbox, 109
tools, 1, 14, 20, 942, 949, 961

processors, 271
prototype, 20, 667, 668, 674
quantization process, 467
quantized, 190, 693
random, 5, 123, 161, 175, 695, 697, 746
range, 272
reconstruction, 185, 520, 559

errors, 652
methods, 186
operation, 498
operators, 654

regions, 484, 529
replicas, 409
representation, 540, 631, 651, 655, 673
samples, 412, 468, 670, 961, 962, 965, 967, 973
sampling, 652, 655, 669
sampling rate, 405, 410
source, 322, 345, 690
space, 1119
spectrum, 211, 277, 278, 405, 466, 478
structure, 715
subspace methods, 549
upsampling, 468
values, 5, 85, 94, 187, 188, 965, 966
vector, 389
wavelet coefficients, 565
windowed, 469
word length, 271, 272, 387

Signal-to-noise ratio (SNR), 161, 462, 490, 788, 843, 847, 890,
891

Single
atomic situations, 1115
cluster, 1123
conceptual atomic situations, 1115
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DAC, 443
dictionary, 1124, 1127
filter structure, 423
frequency band, 428, 479
learned dictionary, 1123, 1124
overcomplete dictionary, 1122, 1124

Single-input multiple-output (SIMO) system, 250
Single-input single-output (SISO) system, 90, 626, 631
Singular value decomposition (SVD), 631, 632, 635, 642
Sinusoid, 21, 73, 77, 86, 109–112, 416, 417, 430, 452, 459,

689, 692
center frequency, 417
frequency, 111

Sinusoidal
basis functions, 73, 77
components, 22, 75
functions, 36, 73, 77
input, 73
input signal, 322
signals, 22, 72, 87, 177, 198, 199, 757

Skewness, 139
Smoothly clipped absolute deviation (SCAD), 1054, 1056
Social networks, 961, 994
Source signal, 492
Spam filters, 1
Sparse

adjacency matrix, 967
codes, 30, 31, 1127, 1129, 1131
graph learning, 1056
representation, 25, 33, 1074, 1075, 1078–1082, 1084, 1086

algorithms, 1090
dictionary learning, 1109
learning, 1107
learning algorithms, 1103
model, 1087
problem, 1089
vector, 1074, 1087

row vector, 1139
sampling, 187
signal

decompositions, 663
processing, 1078, 1082, 1083, 1103, 1113
realizations, 1112

solution matrix, 1141
Sparse Bayesian Learning (SBL), 1084, 1101

dictionary learning algorithm, 1074
dictionary learning scalable, 1109
framework, 1074, 1085, 1107

Sparse Representation-based Classification (SRC), 1126
Spatiotemporal signal analysis, 1000
Spectral

convolution, 469
filter, 438, 1000

filtering, 997
radius, 739
representation, 542

Spectral correlation density (SCD), 485–487
Spectral graph wavelet transform (SGWT), 999
Spectrum

analysis applications, 229
band, 15
combination, 15
continuous, 469
energy, 81
frequency, 314
signal, 211, 277, 278, 405, 466, 478

Speech signal, 36, 187, 283, 394, 567, 775
Stable

filter, 8
inverse, 500

Standard
channelizer configuration, 450
deviation, 139

State
equation, 47
matrix, 48
probabilities, 168
vector, 95, 955

Static
error, 236
offset mismatch errors, 221

Stationary signal, 533
model, 499

Statistical
correlation, 147
covariance, 147
independence, 146
mean, 138, 146

Steady-state probability vector, 169
Steerable DCT (SDCT), 996
Stein’s unbiased risk estimate-linear expansion threshold

(SURE-LET) approach, 999
Step response, 40, 42
Stochastic gradient descent (SGD), 934, 1016, 1027, 1109
Stochastic signals, 194
Stopband

attenuation, 9, 245, 274, 283–285, 320, 363, 366, 373, 471,
497, 503, 504, 523

edges, 286, 289, 290, 295, 296, 360, 366, 372, 423
filters, 321, 334, 359, 377
frequency responses, 426
peak ripple magnitude, 304
regions, 276
requirements, 283, 317
ripple, 9, 289, 290, 300, 366, 425, 426
sensitivity, 284, 328, 329, 361, 363



1182 Index

Stopping phenomenon, 819
Strict-sense stationary (SSS) random process, 157, 162
Strictly convex function, 769
Strip spectral correlation analyzer (SSCA), 481, 487–489
Structural causal model (SCM), 946, 947, 949
Sub-Gaussian, 833, 834
Subband

adaptive filters, 837
signal, 14–16, 500
signal analysis, 550
wavelet coefficients, 639, 640

Subclassifications, 423
Subdictionary, 1080
Subfilter, 230, 284, 289, 294, 296, 300, 301

network, 286
Subnetwork, 279, 1026
Suboptimum filters, 229
Subsampling, 588, 589, 602

concepts, 590
dyadic, 588, 595, 602, 603
vectors, 589

Subsignal, 587, 600, 837
Subspace learning, 1039
Successively delayed subfilters, 439
Succinct representation, 558
Sum-of-powers-of-two (SPOT) representations, 820
Super-Gaussian, 833–835
Superheterodyne frequency, 461
Superresolution (SR) image, 639
Superresolution subband (SRSB), 639
Supervised learning, 23, 870, 879, 883, 887, 908, 1128
Support vector, 915, 916
Support vector machine (SVM), 908, 912, 916, 918–920
Symbolic representations, 90
Synthesis

bank, 497, 500, 503, 520
basis functions, 498, 504
channelizer, 406, 460, 464, 466–468, 471, 473–479

bandwidth, 406, 464
channel bandwidth, 474
ports, 478

digital FIR filters, 272
equation, 78, 664
filter, 15, 229, 308, 309, 500, 517, 591, 592, 595, 596, 598,

600
bank, 15, 16, 587, 591, 592, 837
impulse responses, 598

Fourier, 76
input series, 476
mother wavelets, 552
operation, 20, 666
operator, 665, 666, 680, 681
polyphase matrix, 502, 526

problem, 286
procedures, 337
side, 504, 510
stage, 500
transform, 498
vectors, 20
viewpoint, 503
wavelet, 18

Synthetic overt signals, 490

T
Target signal, 707
Temporal

representation, 79
signal, 79, 81

Tensor contraction layer (TCL), 1020, 1021
Tensor diagrams, 1014
Tensor network, 1025, 1037, 1038

decompositions, 1035
Tensor regression layer (TRL), 1021, 1022
Tensor-ring, 1018, 1020, 1035
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