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PINGALA (200BC) in India invented that
any number can merely be represented by
binary system using 1s and 0s. A spiritual
significance of this is that 1 represented a
symbol for GOD while 0 represented
nothingness. God created the universe out of
nothing. This book is dedicated to the father
of the Universe, THE GOD.
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Preface to the First Edition

Signal processing is all about taking a signal, applying some changes to it and then
getting a new signal out. The changemight be amplification or filtration or something
else, but nearly all electronic circuits can be considered as signal processors. Thus,
the signal processor might be composed of discrete components like capacitors and
resistors, or it could be a complex integrated circuits, or it could be a digital system
which accepts a signal on its input and outputs the changed signal. Digital signal
processing (DSP) is the processing of signals by digital means. The term “digital”
comes from “digit,” meaning a number and so “digital” literally means numerical.
A signal carries a stream of information representing anything from stock prices to
data from a remote sensing satellite. If they are represented in the form of stream
of numbers, they are called digital signals. The processing of a digital signal is
done by digital signal processor (DSP) by performing numerical calculations. Digital
signal processors require several things to work properly. The processor should be
fast enough with enough precision to support the required mathematics it needs to
implement. It requires memory to store programming, samples, intermediate results
and final results. It also requires A/D and D/A converters to bring real signals into
and out of the digital domain. Further, it requires programming to do the job.

The main applications of DSP are audio signal processing, audio compression,
digital image processing, video compression, speech processing, speech recognition,
digital communications, radar, sonar, seismology and biomedicine. Specific exam-
ples include speech compression and transmission in digital mobile phones, room
matching equalization of sound, analysis and control of industrial process, seismic
data processing, medical imaging such as CAT scans and MRI, MP3 compression,
image manipulation, computer-generated animations in movies, high fidelity loud
speaker crossovers and equalization, audio effects, etc. Digital signal processing
is often implemented using specialized microprocessors such as the DSP56000, the
TMS320 or the SHARC.Multi-core implementations of DSPs have started to emerge
from companies including Free scale and stream processors.

The book is divided into eight chapters. Chapter 1 presents an introduction to
the field of the signal processing and provides overview of the development of DSP,
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x Preface to the First Edition

analog and digital signals, DSP domains, different types of filters used to eliminate
unwanted noise from the signal, DSP applications and its implementation.

The discrete time sequence x[n] can be transformed as X(jω) by Fourier trans-
form and can be analyzed using digital computer. However, X(jω) is a continuous
function of frequency ω and computationally difficulties are encountered while
analyzing X(jω) using DSP. In Chapter 2, we convert X(jω) into equally spaced
samples. Such a sequence is called discrete Fourier transform (DFT) which is a
powerful computational tool for the frequency analysis of discrete time signals.
Several methods are available for computing DFT. However, fast Fourier transform
(FFT) algorithms eliminate redundant calculations and offer rapid frequency domain
analysis. In Chapter 2, the properties of DFT, FFT algorithms, decimation in time
and decimation in frequency, linear filtering and correlation are discussed.

The digital filters are classified as infinite impulse response (IIR) andfinite impulse
response (FIR) filters. Digital IIR filter design procedure is the extension of analog
filter design. In Chapter 3, designs of IIR filter using impulse invariant method and
bilinear transformation are described. IIRfilter is also designed using system function
H(s). Low pass IIR Butterworth Chebyshev digital filter designs are also described
in this chapter.

Design techniques for finite impulse response digital filter are discussed in
Chapter 4. These filters are designed using windows such as Rectangular window,
Hamming window, Kaiser window and Hanning window. FIR filters are designed
using frequency sampling method.

The linear time invariant discrete time system is described by linear differen-
tial equation with constant coefficients. These coefficients and the signal variables
are assumed, when implemented in digital hardware to take a specified range and
stored in finite length in a digital machine. During discretization and quantization
processes, errors occur in different form. They are discussed in Chapter 5. Quantiza-
tion noise, over flow error, limit cycle oscillations, signal scaling and sampling and
hold operations are also discussed in this chapter.

In Chapter 6, introduction to multi-rate digital signal processing is given. The
necessity to use MDSP and its application are also described. The concepts of deci-
mation and interpolations are explained. Polyphase implementation of FIR filters
for interpolators and decimators are thoroughly discussed and presented. Multi-rate
implementation of sampling rate conversion and design of narrow band filters are
explained with necessary examples. Finally applications of MDSP are explained.

Digital signal processing is the processing of signals by digital means. The digital
signal processorwhich processes the signal should be fast,with enoughprecision, and
should have supporting memory to store programming, samples, intermediate and
final results. In Chapter 7, we describe different types of DSP architecture, advanced
addressing modes, pipe lining and overview of instructions set of TMS320C5X and
C54x.

One of the important applications of digital signal processing is the spectral anal-
ysis of the signals. The signal processing methods that characterize the frequency
content of a signal are termed as spectral analysis. The distribution of power with
frequency is called power density spectrum. Similarly, the distribution of energy
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with frequency is called energy density spectrum. In Chapter 8, different methods of
estimating power spectrum density and energy spectrum density are presented and
their merits and demerits discussed.
The notable features of this book include the following:

1. The syllabus content of digital signal processing of undergraduate level of most
of the Indian Universities has been well covered.

2. The organization of the chapters is sequential in nature.
3. Large number of numerical examples have been worked out.
4. Learning objectives and summary are given in each chapter.
5. For the students to practice, short and long questions with answers are given at

the end of each chapter.

The authors take this opportunity to thank Shri Sunil Saxena, Managing Director,
Ane Books Pvt. Ltd., India, for coming forward to publish this book. We would
like to express our sincere thanks to Shri A. Rathinam, General Manager (South),
Ane Books Pvt. Ltd., who took the initiatives to publish the book in a short span of
time. We would like to express our sincere thanks to Mr. V. Ashok who has done a
wonderful job to key the voluminous book like this in a very short time and beautifully
too. Suggestions and constructive criticisms are welcome from staff and students.

Pudukkottai, India S. Palani
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Chapter 1
Representation of Discrete Signals
and Systems

Learning Objectives

After completing this chapter, you should be able to:

� define various terminologies related to signals and systems.
� classify signals and systems.
� give mathematical description and representation of signals and systems.
� perform basic operations on DT signals.
� classify DT signals as periodic and non-periodic, odd and even and power and

energy signals.
� classify DT systems.

1.1 Introduction

Most of the signals encountered in science and engineering are analog in nature.
That is, the signals are functions of a continuous variable, such as time or space, and
usually take on values in a continuous range. Such signals may be processed directly
by appropriate analog systems (such as filter or frequency analyzers or frequency
multipliers) for the purpose of changing their characteristics or extracting some
desired information. In such a case, the signal has been processed directly in its
analog form. Both the input signal and the output signal are in analog form and are
shown in Fig. 1.1a.

Digital Signal Processing provides an alternativemethod for processing the analog
signal and is shown in Fig. 1.1b. To perform processing digitally, there is a need for
an interface between the analog signal and the digital processor. This interface is
called an analog to digital (A/D) converter. The output of A/D converter is a digital
signal that is applied as an input to the digital processor.
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A/D
converter

Analog
input
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x(t) x(n) y(n) y(t)

Digital
input
signal

Analog
output
signal
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converter

Digital
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processing
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x(t) y(t)

ei(t) VR(t)SYSTEM
(R, L, C) 

Input signal
or excitation

Output signal

(a)

(c)

(b)

Fig. 1.1 a Analog signal processing. b Digital signal processing. c Block diagram representation
of signals and systems

The digital signal processor may be a large programmable digital computer or a
small microprocessor programmed to perform the desired operations on the input
signal. Programmable machines provide the flexibility to change the signal process-
ing operation through a change in the software, whereas hardwired machines are
difficult to reconfigure. In application where the digital output from the digital signal
processor is to be given to the user in analog form, we must provide interface, and
this is called digital to analog (D/A) converter. Thus the signal is provided to the user
in analog form.

Digital Signal Processing has developed very rapidly over the past five decades
mainly due to the advances in digital computer technology and very large-scale inte-
grated electronic circuits. These inexpensive smaller but faster and more powerful
digital computers are capable of performing very complex signal processing func-
tions which are usually too difficult to perform by analog circuitry. The following
are the advantages of Digital Signal Processing (DSP) over analog processing.
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1 Flexibility Digital programmable systems allow flexibility in reconfiguring the DSP
operations by simply changing the program

2 Accuracy DSP provides better control of accuracy requirements, while tolerance limits
have to be met in the analog counterpart

3 Easy storage Digital signals can be easily stored in magnetic media without deterioration
or loss of signal fidelity. They can also be easily transportable and can be
processed off-time in remote laboratories

4 Processing DSP allows for the implementation of more sophisticated signal processing
than its analog counterpart

5 Cost effective With advancement in VLSI technology, digital implementation of the signal
process system is cheaper

The limitation of DSP is that the conversion speed of ADC and the process speed
of signal processors should be very high to perform real-time processing. Signals of
high bandwidth require fast sampling rate ADCs and fast processors.

Some of the applications of digital signal processor are as follows: speech pro-
cessing, signal transmission on telephone channels, image processing, biomedical,
seismology and consumer electronics.

Speech processing Speech compression and decompression for voice storage system and
for transmission and reception of voice signals

Communication Elimination of noise by filtering and echo cancelation by adaptive fil-
tering in transmission channels

Biomedical Spectrum analysis of ECG signals to identify various disorders in heart.
Spectrum analysis of EEG signals to study the malfunction or disorders
in the brain

Consumer electronics Music synthesis, digital audio and video
Seismology Spectrum analysis of seismic signals can be used to predict the earth-

quake, nuclear explosions and earth movement
Image processing Two-dimensional filtering on images for image enhancement, finger-

print matching, identifying hidden images in the signals received by
radars, etc.,

The concepts of signals and systems play a very important role in many areas
of science and technology. These concepts are very extensively applied in the field
of circuit analysis and design, long-distance communication, power system genera-
tion and distribution, electron devices, electrical machines, biomedical engineering,
aeronautics, process control, speech and image processing to mention a few. Signals
represent some independent variables which contain some information about
the behavior of some natural phenomenon.Voltages and currents in electrical and
electronic circuits, electromagnetic radio waves, human speech and sounds produced
by animals are some of the examples of signals. When these signals are operated
on some objects, they give out signals in the same or modified form. These
objects are called systems.A system is, therefore, defined as the interconnection of
objects with a definite relationship between objects and attributes. Signals appearing
at various stages of the system are attributes. R, L , C components, spring, dash-
pots, mass, etc., are the objects. The electrical and electronic circuits comprising of
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R, L , C components and amplifiers, the transmitter and receiver in a communica-
tion system, the petrol and diesel engines in an automobile, chemical plants, nuclear
reactor, human beings, animals, a government establishment, etc., are all examples
of systems. In this book, we deal with only discrete signals and systems.

1.2 Terminologies Related to Signals and Systems

Before we give mathematical descriptions and representations of various terminolo-
gies related to signals and systems, the following terminologies which are very fre-
quently used are defined as follows.

1.2.1 Signal

A signal is defined as a physical phenomenon which carries some information or
data. The signals are usually functions of independent variable time. There are some
cases where the signals are not functions of time. The electrical charge distributed
in a body is a signal which is a function of space and not time.

1.2.2 System

A system is defined as the set of interconnected objects with a definite relation-
ship between objects and attributes. The interconnected components provide desired
function.

Objects are parts or components of a system. For example, switches, springs,
masses, dashpots, etc., in a mechanical system and inductors, capacitors, resistors in
an electrical system are the objects. The displacement of mass, spring and dashpot
and the current flow and the voltage across the inductor, capacitor and resistor are
the attributes. There is a definite relationship between the objects and attributes. The
voltages across R, L , C series components can be expressed as vR = i R; VL = L di

dt

and VC = 1
C

∫
idt . If this series circuit is excited by the voltage source ei (t), the ei (t)

is the input attribute or the input signal. If the voltage across any of the objects R, L
and C is taken, then such an attribute is called the output signal. The block diagram
representation of input and output (voltage across the resistor) signals and the system
is shown in Fig. 1.1c.
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Fig. 1.2 CT signal x(t)

0 tt

1.3 Continuous and Discrete Time Signals

Signals are broadly classified as follows:

1. Continuous time signal (CT signal).
2. Discrete time signal (DT signal).
3. Digital signal.

The signal that is specified for every value of time t is called continuous time signal
and is denoted by x(t). On the other hand, the signal that is specified at discrete
value of time is called discrete time signal. The discrete time signal is represented as
a sequence of numbers and is denoted by x[n], where n is an integer. Here, time t is
divided into n discrete time intervals. The continuous time signal (CT) and discrete
time signal (DT) are represented in Figs. 1.2 and 1.3, respectively.

It is to be noted that in continuous time signal representation the independent
variable t which has unit as sec. is put in the parenthesis (·), and in discrete time signal,
the independent variable n which is an integer is put inside the square parenthesis
[·]. Accordingly, the dependent variables of the continuous time signal/system are
denoted as x(t), g(t), u(t), etc. Similarly the dependent variables of discrete time
signals/systems are denoted as x[n], g[n], u[n], etc.

A discrete time signal x[n] is represented by the following two methods:

1.

x[n] =
{(

1
a

)n
n ≥ 0

0 n < 0
(1.1)

Substituting various values of n where n ≥ 0 in Eq. (1.1), the sequence for x[n]
which is denoted by x{n} is written as follows:

x{n} =
{

1,
1

a
,
1

a2
, . . . ,

1

an

}



6 1 Representation of Discrete Signals and Systems

x[n]

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7

Quantization level

Quantization step

Sampling period

n

x[n]

1

1.51.5

0.50.5 0.5

00

nn 32101234

(a)

(b)

Fig. 1.3 a Discrete time (DT) signal. b Digital signal

2. The sequence is also represented as given below.

x{n} = {3, 2, 5, 4, 6, 8, 2}
↑

The arrow indicates the value of x[n] at n = 0 which is 5 in this case. The
numbers to the left of the arrow indicate to the negative sequence n = −1,−2,
etc. The numbers to the right of the arrow correspond to n = 1, 2, 3, 4, etc. Thus,
for the above sequence x[−1] = 2; x[−2] = 3; x[0] = 5; x[1] = 4; x[2] = 6;
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x[3] = 8 and x[4] = 2. If no arrow is marked for a sequence, the sequence starts
from the first term in the extreme left. Consider the sequence

x{n} = {5, 3, 4, 2}.

Here, x[0] = 5; x[1] = 3; x[2] = 4 and x[3] = 2. There is no negative sequence
here.

A digital signal is not very much different from a discrete signal except that
a digital signal amplitude is quantized at certain specific level. This is because a
digital computer can accept only sequences of numbers which are expressed in terms
of bits. The representation of digital signal is shown in Fig. 1.3b. The amplitude at
any discrete time interval can be only one of quantization levels. If the amplitude
is chosen from a finite set of numbers, the amplitude is said to be discritized. The
quantization level is equidistance and is called quantization step. An analog signal
can be converted into a digital signal by means of sampling and quantizing. It is then
digitized by rounding off its value to the closest permissible level. Thus, error exists
when an analog signal is discritized and quantized. This is called quantization error.
The digital signal is, therefore, discritzed in time and quantized in amplitude.

Example 1.1
Graphically represent the following sequence:

x{n} = {1, 0, −1, 1}

Solution The graphical representation x{n} = {1, 0, −1, 1} is shown in Fig. 1.4.

x[n]

1 1

2 31 nn 0

1

Fig. 1.4 Graphical representation of x[n]
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Example 1.2

Graphically represent the following sequence:

x{n} = {−2, 1, 0, 1, 2, 0, 1}
↑

Solution The sequence

x{n} = {−2, 1, 0, 1, 2, 0, 1}
↑

is represented in Fig. 1.5.

x[n]

1 11

2

321 nn 0

2

123

Fig. 1.5 Graphical representation of x[n]
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1.4 Basic Discrete Time Signals

Similar to continuous time signals, basic discrete signals are available. However,
these signals are represented at discrete interval of time “n” where n is an integer.
Representations of basic discrete time signals are discussed below.

1.4.1 The Unit Impulse Sequence

The basic impulse sequence is shown in Fig. 1.6. The unit impulse sequence also
called sample is defined as

δ[n] =
{
1 n = 0

0 n �= 0
(1.2)

1.4.2 The Basic Unit Step Sequence

The basic unit step sequence is represented in Fig. 1.7. It is denoted by u(n). It is
defined as

u[n] =
{
1 n ≥ 0

0 n < 0
(1.3)

Any discrete sequence x[n] for n ≥ 0 is expressed as x[n]u[n]. For n < 0, it is
expressed as x[n]u[−n]. It is to be noted that at n = 0, the value of u[n] = 1.

Fig. 1.6 Basic unit impulse
sequence

nn 3 2 1 1

1

0 2 3

[n]
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u[n]

1

nn 0 1 2 3 4 5

Fig. 1.7 Basic unit step sequence

r[n]

nn 0 1 2 3 4 5

5

4

3
2

1

Fig. 1.8 Basic unit ramp sequence

1.4.3 The Basic Unit Ramp Sequence

The basic unit ramp sequence which is denoted by r [n] is represented in Fig. 1.8. It
is defined as

r [n] =
{

n n ≥ 0

0 n < 0
(1.4)

1.4.4 Unit Rectangular Sequence

The discrete time unit Rectangular sequence is shown in Fig. 1.9. It is defined as

rect[n] =
{
1 |n| ≤ N

0 |n| > N
(1.5)
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rect[n]

1

nn N 3 2 1 1 2 3 N0

Fig. 1.9 Unit Rectangular sequence

The above equation can also be expressed as

rect[n] = 1 − N ≤ n ≤ N .

1.4.5 Sinusoidal Sequence

The discrete time sinusoidal signal is defined by the following mathematical
expression:

x[n] = Ae−αn sin(ω0n + φ) (1.6)

where A and α are real numbers and φ is the phase shift. Depending on the value of
α, the sinusoidal sequence is divided into the following categories:

• A purely sinusoidal sequence (α = 0).
• Decaying sinusoidal sequence (α > 0).
• Growing sinusoidal sequence (α < 0).

The above sinusoidal sequences are illustrated in Fig. 1.10a–c, respectively.

1.4.6 Discrete Time Real Exponential Sequence

The general complex exponential sequence is defined as

x[n] = Aαn (1.7)

where A and α are in general complex numbers.
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x[n] = Asin( 0n)
(a)

nn

= 0

x[n] = Ae n  sin( 0n )
(b)

nn

> 0

x[n] = Ae n sin( 0n )

nn

< 0

(c)

Fig. 1.10 Discrete time sinusoidal signal. a Purely sinusoidal. b Decaying sinusoidal. c Growing
sinusoidal
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n

(a) (b)

(c () d)

n

n

n

> 1

< 1

0 < < 1

1 < < 0

Fig. 1.11 Discrete time real exponential sequences. a α > 1. b 0 < α < 1. c α < −1. d −1 <

α < 0

In Eq. (1.7) if A and α are real, the sequence is called real exponential. These
sequences for various values of α are shown in Fig. 1.11. Depending on the value of
α, the sequence is classified as follows:

1. Exponentially growing signal (α > 1, Fig. 1.11a).
2. Exponentially decaying signal (0 < α < 1, Fig. 1.11b).
3. Exponentially growing for alternate value of n (α < −1, Fig. 1.11c).
4. Exponentially decaying for alternate value of n (−1 < α < 0, Fig. 1.11d).

1.5 Basic Operations on Discrete Time Signals

The basic operations that are applied to continuous time signals are also applicable
to discrete time signals. The time t in CT signal is replaced by n in DT signals. The
basic operations as applied to DT signals are explained below.
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x1[n]

1

13 2 0 1 2

1 1 1
.5 .5

(a)

nn

x[n] x1[n] x2[n]

.5

13 2 0 1 2 3

1
21.5

1.5
.5

.5

(c)

nn

x2[n]

0 1 2 3

1 1

.5

.5
3 12

.5

.5.5

(b)

nn

Fig. 1.12 Addition of DT signals

1.5.1 Addition of Discrete Time Sequence

Addition of discrete time sequence is done by adding the signals at every instant of
time. Consider the signals x1[n] and x2[n] shown in Fig. 1.12a, b, respectively. The
addition of these signals at every n is done and represented as y[n] = x1[n] + x2[n].
This is shown in Fig. 1.12c.

1.5.2 Multiplication of DT Signals

The multiplication of two DT signals x1[n] and x2[n] is obtained by multiplying
the signal values at each instant of time n. Consider the signals x1[n] and x2[n]
represented in Fig. 1.13a, b. At each instant of time n, the samples of x1[n] and x2[n]
are multiplied and represented as shown in Fig. 1.13c.

1.5.3 Amplitude Scaling of DT Signal

Let x[n] be a discrete time signal. The signal Ax[n] is represented by multiplying
the amplitude of the sequence by A at each instant of time n. Consider the signal
x[n] shown in Fig. 1.14a. The signal 2x[n] is represented and shown in Fig. 1.14b.
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x1[n]

1

13 23 12 0 1 2 3

1 1
1.5 .5 .5

(a)

nn

y[n] x1[n]x2[n]

.5

13 2 0 1 2 3

1
.5

.5 .25

.5 .25

(c)

n

x2[n]

0 1 2 3

1 1

.5

.5 .5

.5.5

(b)

nn

Fig. 1.13 Multiplications of two DT signals

2x[n]

.2

12 0 1 2

.6 .6
.8

.4

(b)

n

x[n]

.1

12 0 1 2

.3 .3
.4

.2

(a)

n

Fig. 1.14 Amplitude scaling of DT signals

1.5.4 Time Scaling of DT Signal

The time compression or expansion of a DT signal in time is known as time scaling.
Consider the signal x[n] shown in Fig. 1.15a. The time compressed signal x[2n] and
time expanded signal x[ n

2 ] are shown in Fig. 1.15b, c respectively. One should note
that while doing compression and expansion of DT signal, only for integer value
of n, the samples exist. For non-integer value ofn, the samples do not exist.
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x[n]

.5

2 14 3

2 2 4 6 8468
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1 1 1
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(a)

(c)

n

x[  ]

0 n
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11

(b)

n
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Fig. 1.15 Time scaling of DT signal

Time Compression

Let

y[n] = x[2n]
y[−2] = x[−4] = −0.5

y[−1] = x[−2] = 0.5

y[0] = x[0] = 0.5

y[1] = x[2] = 1

y[2] = x[4] = 1.

The plot of x[2n] is shown in Fig. 1.15b.
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Time Expansion

Let

y[n] = x
[n

2

]

y[−8] = x[−4] = −0.5

y[−6] = x[−3] = 1

y[−4] = x[−2] = 0.5

y[−2] = x[−1] = 1

y[0] = x[0] = 0.5

y[2] = x[1] = −0.5

y[4] = x[2] = 1

y[6] = x[3] = 0.5

y[8] = x[4] = 1.

The plot of x[ n
2 ] is shown in Fig. 1.15c.

1.5.5 Time Shifting of DT Signal

As in the case of CT signal, time shifting property is applied to DT signal also. Let
x[n] be the DT signal. Let n0 be the time by which x[n] is time shifted. Since n is an
integer, n0 is also an integer. The following points are applicable while DT signal is
time shifted.

• For the DT signals x[−n − n0] and x[n + n0], the signals x[−n] and x[n] are to
be left shifted by n0.

• For the DT signals x[n − n0] and x[−n + n0], the signals x[n] and x[−n] are to
be right shifted by n0.

Figure1.16 shows time shifting of DT signal.
In Fig. 1.16a the sequence x[n] is shown. The sequence x[n − 2] which is right

shifted by two samples is shown in Fig. 1.16b. x[−n] which is the folded signal is
shown in Fig. 1.16c. x[−n + 2]which is left shifted of x[−n] is shown in Fig. 1.16d.
x[n + 2] which is right shifted of x[n] is shown in Fig. 1.16e. x[−n − 2] which is
left shifted of x[−n] is shown in Fig. 1.16f.

1.5.6 Multiple Transformation

The transformations, namely amplitude scaling, time reversal, time shifting, time
scaling, etc., are applied to represent DT sequence. The sequence of operation of
these transformations is important and followed as described below.
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Fig. 1.16 Time shifting of DT signal

Consider the following DT signal:

y[n] = Ax
[
−n

a
+ n0

]

1. Plot x[n] sequence and obtain Ax[n] by amplitude scaling.
2. Using time reversal (folding), plot Ax[−n].
3. Using time shifting, plot Ax[−n + n0] where n0 > 0. The time shift is to be

right of x[−n] by n0 samples.
4. Using time scaling, plot Ax[− n

a + n0] where a is in integer. In the above case,
keeping amplitude constant, time is expanded by a.

The following examples illustrate the above operations:

Example 1.3

Let x[n] and y[n] be as given in Fig. 1.17a, b, respectively. Plot

(a) x[2n]
(b) x[3n − 1]
(c) x[n − 2] + y[n − 2]
(d) y[1 − n]

(Anna University, December, 2006)
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Solution

(a) Toplot x[2n]Here, theDT sequence is time compressed by a factor 2.Hence, the
samples only with even numbers are divided by a factor 2 and the corresponding
amplitudes marked and shown in Fig. 1.17c. When odd values of n are divided
by the factor 2, it becomes a fraction, and they are skipped.

(b) To plot x[3n − 1] The plot of x[n − 1] is obtained by right shifting of x[n] by
n0 = 1. This is shown in Fig. 1.17d. When x[n − 1] is time compressed by a
factor 3, x[3n − 1] is obtained. Only integers which are divisible by 3 in the
sequence x[n − 1] are to be taken to plot x[3n − 1]. Thus samples for n = 0
and n = 3 will be plotted as shown in Fig. 1.17e.

(c) To plot x[n − 2] + y[n − 2]s The sequence x[n − 2] is obtained by right shift-
ing of x[n] by 2 and is shown in Fig. 1.17f. Similarly, the sequence y[n − 2] is
obtained by right shifting of y[n] by 2 and is shown in Fig. 1.17g. The sequence
x[n − 2] + y[n − 2] is obtained by summing up the sequences in Fig. 1.17g, f
for all n and is shown in Fig. 1.17h.

(d) To plot y[1 − n] The sequence y[−n] is obtained by folding y[n] and is shown
in Fig. 1.17i. y[−n] is right shifted by 1 sample to get the sequence y[1 − n].
This is shown in Fig. 1.17j.

Example 1.4

Consider the sequence shown in Fig. 1.18a. Express the sequence in terms of
step function.

Solution The unit step sequence u[n] is shown in Fig. 1.18b. The unit negative
step sequence with a time delay of n0 = 4 is shown in Fig. 1.18b. It is evident from
Fig. 1.18 that {u[n] − u[n − 4]} gives the required x[n] sequence which is repre-
sented in Fig. 1.18a. Thus, x[n] = {u[n] − u[n − 4]}.

Example 1.5

Consider the sequence shown in Fig. 1.19a. Express the sequence in terms of
step function.

Solution

1. Figure1.19a represents the sequence x[n] in the interval −3 ≤ n ≤ 4.
2. Consider u[n + 3] which is represented in Fig. 1.19b. The sequence interval is

−3 ≤ n < ∞.
3. Consider the step sequence with a time delay of n0 = 5 and inverted. This can

be written as −u[n − 5] for the interval 5 ≤ n < ∞. This is represented in
Fig. 1.19c.
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Fig. 1.17 Two discrete sequences
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(c)(b)(a) x[n]

0 1 2 3

1

n

u[n]

0 1 2 3

1

n u[n 4]

0 1 2 3 4 5 6 n

Fig. 1.18 Sequences expressed in terms of step sequences

123

(a) x[n]

10 2 3 4 n 123

(b) u[n 3]
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u[n 5]
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Fig. 1.19 DT sequences expressed in terms of step sequences
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(a) x[n]
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(c)

12

x[n]{u[n 1]
u[n 3]}

0 1 2 n

2

1
.5

.5

Fig. 1.20 Multiplication of DT sequences

4. Now consider the sum of the sequences u[n + 3] and−u[n − 5]. This is nothing
but x[n]. Thus

x[n] = u[n + 3] − u[n − 5]

Example 1.6

A discrete time sequence x[n] is shown in Fig. 1.20a. Find

x[n]{u[n + 1] − u[n − 3]}
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Solution

1. x[n] sequence is represented in Fig. 1.20a.
2. {u[n + 1] − u[n − 3]} sequence is nothing but the time delayed unit step

sequence with n0 = 3, being subtracted from the time advanced unit step
sequence with n0 = 1. This sequence is represented in Fig. 1.20b.

3. Multiplying, sample wise of Fig. 1.20a, b, the required sequence x[n]{u[n +
1] − u[n − 3]} is obtained and represented in Fig. 1.20c.

Example 1.7
Sketch x[n] = an where −2 ≤ n ≤ 2 for the two cases shown below:

(1) a =
(

−1

4

)

(2) a = −4

(Anna University, May, 2007)
Solution For x[n] = (− 1

4 )
n and x[n] = (−4)n where −2 ≤ n ≤ 2, x[n] is found

and tabulated below:

n −2 −1 0 1 2
x[n] = (− 1

4 )n 16 −4 1 − 1
4

1
16

x[n] = (−4)n 1
16 − 1

4 1 −4 16

The samples of x[n] are plotted and shown in Fig. 1.21. x[n] = (− 1
4 )

n is represented
in Fig. 1.21a, and x[n] = (−4)n is represented in Fig. 1.21b.

Example 1.8
Express

x[n] = (−1)n − 2 ≤ n ≤ 2

as a sum of scaled and shifted step function.

(Anna University, May, 2007)
Solution

(1) x[n] = (−1)n is tabulated for −2 ≤ n ≤ 2. The samples corresponding to the
above table are sketched and shown as x[n] in Fig. 1.22a.

n −2 −1 0 1 2
x[n] 1 −1 1 −1 1

(2) Consider the step sequence u[n + 2] for −2 ≤ n ≤ 2. The samples are shown
in Fig. 1.22b.
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Fig. 1.21 DT sequences of Example 1.7
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Fig. 1.22 DT sequences of Example 1.8
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(3) Consider unit step sequence u[n + 3] for −3 ≤ n ≤ 3. This is represented in
Fig. 1.22c. From Fig. 1.22c,−2u[3n + 3] is obtained by amplitude inversion and
multiplication and time scaling (compression). This is represented in Fig. 1.22d
for −2 ≤ n ≤ 2.

(4) Consider the step sequence 2{u[n] − u[n − 1]} for n ≥ 0. This is represented in
Fig. 1.22e. This is nothing but the sample of strength 2 at n = 0.

(5) Now, by adding the samples in Fig. 1.22b, d, e, it can be easily verified that

x[n] = u[n + 2] − 2u[3n + 3] + 2[u[n] − u[n − 1]] − 2≤ n ≤ 2

Example 1.9
Given

x[n] = {1, 2, 3, −4, 6}
↑

Plot the signal x[−n − 1].

(Anna University, May, 2007)
Solution

1. The sequence x[n] is represented in Fig. 1.23a.
2. By folding x[n], x[−n] is obtained and represented in Fig. 1.23b.
3. x[−n] is shifted to the left by one sample, and x[−n − 1] is obtained. This is

represented in Fig. 1.23c.

1.6 Classification of Discrete Time Signals

Discrete time signals are classified as follows:

1. Periodic and non-periodic signals.
2. Odd and even signals.
3. Power and energy signals.

They are discussed below with suitable examples.
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Fig. 1.23 DT sequences of Example 1.9

x[n]

n03N 2N N N 2N 3N

Fig. 1.24 Periodic sequence

1.6.1 Periodic and Non-periodic DT Signals

A discrete time signal (sequence) x[n] is said to be periodic with period N which is
a positive integer if

x[n + N ] = x[n] for all n (1.8)

Consider the DT sequence shown in Fig. 1.24. The signal gets repeated for every N .
For Fig. 1.24, the following equation is written:

x[n + m N ] = x[n] for all n (1.9)

where m is any integer. The smallest positive integer N in Eq. (1.9) is called the
fundamental period N0. Any sequencewhich is not periodic is said to be non-periodic
or aperiodic.
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Example 1.10
Show that complex exponential sequence x[n] = e jω0n is periodic and find the
fundamental period.

Solution

x[n] = e jω0n

x[n + N ] = e jω0(n+N )

= e jω0ne jω0N

= e jω0n if e jω0N = 1

ω0N = m2π where m is any integer.

N = m
2π

ω0

or
ω0

2π
= m

N
= rational number.

Thus, e jω0n is periodic if m
N is rational. For m = 1, N = N0. The corresponding

frequency F0 = 1
N0

is the fundamental frequency. F0 is expressed in cycles and not
Hz. Similarly ω0 is expressed in radians and not in radians per second.

Example 1.11
Consider the following DT signal.

x[n] = sin(ω0n + φ)

Under what condition, the above signal is periodic?

Solution

x[n] = sin(ω0n + φ)

x[n + N ] = sin(ω0(n + N ) + φ)

= sin(ω0n + ω0N + φ)

= sin(ω0n + φ) if ω0N = 2πm where m is an integer

= x[n]

ω0

2π
= m

N
= rational



1.6 Classification of Discrete Time Signals 27

Example 1.12
If x1[n] and x2[n] are periodic, then show that the sum of the composite signal

x[n] = x1[n] + x2[n] is also periodic with the least common multiple (LCM) of the
fundamental period of individual signal.

Solution Let N1 and N2 be the fundamental periods of x1[n] and x2[n], respectively.
Since both x1[n] and x2[n] are periodic,

x1[n] = x1[n + m N1]
x2[n] = x2[n + k N2]
x[n] = x1[n] + x2[n]

= x1[n + m N1] + x2[n + k N2]

For x[n] to be periodic with period N ,

x[n + N ] = x1[n + N ] + x2[n + N ]
x[n] = x[n + N ]

x1[n + m N1] + x2[n + k N2] = x1[n + N ] + x2[n + N ]

The above equation is satisfied if

m N1 = k N2 = N

m and k which are integers are chosen to satisfy the above equation. It implies that
N is the LCM of N1 and N2.

On similar line it can be proved that if x1[n] and x2[n] are periodic signals
with fundamental period N1 and N2, respectively, then x[n] = x1[n]x2[n] is periodic
if

m N1 = k N2 = N

Example 1.13
Find whether the following signals are periodic. If periodic, determine the funda-
mental period

(a) x[n] = e jπn

(b) x[n] = cos
[n

8
− π

]

(c) x[n] = sin2
π

4
n



28 1 Representation of Discrete Signals and Systems

Solution

(a) x[n] = e jπn

ω0 = π

N = 2π

ω0
m

N = 2π

π
= 2 if m = 1

x[n] is periodic with fundamental period 2.
(b) x[n] = cos

[ n
8 − π

]

ω0 = 1

8

N = 2π

ω0
m = 16πm

For any integer value of m, N is not integer. Hence, x[n] is not periodic.

x[n] is not periodic

(c) x[n] = sin2 π
4 n

x[n] = sin2
π

4
n

= 1

2
− 1

2
cos

2π

4
n

= x1[n] + x2[n]
x1[n] = 1

2
= 1

2
(1)n is periodic with N1 = 1

x2[n] = −1

2
cos

π

2
n

ω0 = π

2

N2 = 2π

ω0
m = 4m = 4 for m = 1

N1

N2
= 1

4
or 4N1 = N2 = N

N = 4
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Example 1.14
Find the periodicity of the DT signal

x[n] = sin
2π

3
n + cos

π

2
n

(Anna University, December, 2007)
Solution

x[n] = sin
2π

3
n + cos

π

2
n

= x1[n] + x2[n]
x1[n] = sin

2

3
πn

ω1 = 2

3
π

N1 = 2π

ω1
m1 = 2π

2π
3m1 = 3 for m1 = 1

x2[n] = cos
π

2
n

ω2 = π

2

N2 = 2π

ω2
m2 = 2π

π
2m2 = 4 for m2 = 1

N1

N2
= 3

4
or 4N1 = 3N2 = N

N = 12

Example 1.15
Determine whether the following signal is periodic. If periodic, find its fundamental
period.

x[n] = cos
(nπ

2

)
cos

(nπ

4

)

(Anna University, December, 2006)
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Solution

x[n] = cos
(nπ

2

)
cos

(nπ

4

)

= x1[n]x2[n]
x1[n] = cos

nπ

2

ω1 = π

2

N1 = 2π

ω1
m1 = 2π

π
2m1 = 4 for m1 = 1

x2[n] = cos
nπ

4

ω2 = π

4

N2 = 2π

ω2
m2 = 2π

π
4m2 = 8 for m2 = 1

N1

N2
= 4

8
= 1

2
or

2N1 = N2 = N

N = 8

The signal is periodic, and the fundamental period N = 8.

Example 1.16
Test whether the following signals are periodic or not and if periodic, calculate the
fundamental period.

(a) x[n] = cos
(π

2
n
)

+ sin
(π

8
n
)

+ 3 cos
(π

4
n + π

3

)

(b) x[n] = e j 2π
3 n + e j 3π

4 n

(Anna University, December, 2007)
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Solution

(a)

x[n] = cos
(π

2
n
)

+ sin
(π

8
n
)

+ 3 cos
(π

4
n + π

3

)

= x1[n] + x2[n] + x3[n]
x1[n] = cos

π

2
n

ω1 = π

2
; N1 = 2π

ω1
= 2π 2

π
for m1 = 1

N1 = 4

x2[n] = sin
(π

8
n
)

ω2 = π

8
; N2 = 2π

ω2
m2 = 2π 8

π
for m2 = 1

N2 = 16

x3[n] = 3 cos
(π

4
n + π

3

)

ω3 = π

4
; N3 = 2π

ω3
m3 = 2π 4

π
for m3 = 1

N3 = 8

To find the LCM of N1, N2 and N3,

4 4, 8, 16
2 1, 2, 4

1, 1, 2

LCM = 4 × 2 × 2 = 16

N = 16

The signal is periodic.
(b)

x[n] = e j 2π
3 n + e j 3π

4 n

= x1[n] + x2[n]
x1[n] = e j 2π

3 n
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ω1 = 2π

3
; N1 = 2π

ω1
m1 = 2π

2π
3 for m1 = 1

N1 = 3

x2[n] = e j 3π
4 n

ω2 = 3π

4
; N2 = 2π

ω2
m2 = 2π

3π
4m2

N2 = 8 for m2 = 3
N1

N2
= 3

8
8 N1 = 3 N2 = N = 24

N = 24

The signal is periodic with fundamental period N = 24.

1.6.2 Odd and Even DT Signals

DT signals are classified as odd and even signals. The relationships are analogous to
CT signals.

A discrete time signal x[n] is said to be an even signal if

x[−n] = x[n] (1.10)

A discrete time signal x[n] is said to be an odd signal if

x[−n] = −x[n] (1.11)

The signal x[n] can be expressed as the sum of odd and even signals as

x[n] = xe[n] + x0[n] (1.12)

The even and odd components of x[n] can be expressed as

xe[n] = 1

2
[x[n] + x[−n]] (1.13)

x0[n] = 1

2
[x[n] − x[−n]] (1.14)
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Fig. 1.25 a Even function and b odd function

It is to be noted that

• An even function has an odd part which is zero.
• An odd function has an even part which is zero.
• The product of two even signals or of two odd signals is an even signal.
• The product of an odd and an even signal is an odd signal.
• At n = 0, the odd signal is zero.

The even and odd signals are represented in Fig. 1.25a, b, respectively.

Example 1.17
Determine whether the following functions are odd or even:

(a) x[n] = sin 2πn

(b) x[n] = cos 2πn

Solution

(a) x[n] = sin 2πn

x[−n] = sin(−2πn) = − sin 2πn

= −x[n]

This is an odd signal.
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(b) x[n] = cos 2πn

x[−n] = cos(−2πn) = cos 2πn

= x[n]

This is an even signal.

Example 1.18
Find the even and odd components of DT signal given below. Verify the same by
graphical method.

x[n] = {−2, 1, 3, −5, 4}
↑

Solution x[−n] is obtained by folding x[n]. Thus

x[−n] = {4, −5, 3, 1, −2}
↑

−x[−n] = {−4, 5, −3, −1, 2}
↑

xe[n] = 1

2
[x[n] + x[−n]]

= 1

2
[{−2, 1, 3, −5, 4} + {4, −5, 3, 1, −2}]

↑ ↑
= 1

2
[(−2 + 4), (1 − 5), (3 + 3), (−5 + 1), (4 − 2)]

↑

xe[n] = {1, −2, 3, −2, 1}
↑
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x0[n] = 1

2
[x[n] − x[−n]]

= 1

2
[{−2, 1, 3, −5, 4} + {−4, 5, −3, −1, 2}]

↑ ↑
= 1

2
[(−2 − 4), (1 + 5), (3 − 3), (−5 − 1), (4 + 2)]

↑

x0[n] = {−3, 3, 0, −3, 3}
↑

Odd and even components by graphical method.
Solution

1. x[n] is represented in Fig. 1.26a.
2. x[−n] is obtained by folding x[n] which is represented in Fig. 1.26b.
3. −x[n] is obtained by inverting x[−n] of Fig. 1.26b. This is represented in

Fig. 1.26c.

(a) x[n]

5

2

2 1 n0 1 2

4

3
1

(d) xe[n]

22

2 1 n0 1 2

1
3

1

(e) x0[n]

2

3 3

1 n0 1 2

3 3

(b) x[ n]

5

2 1 n0

4

3

2

1

1 2 n

(c) x[n]

2
2 1

4

0
1

2
1

3

2

5

xe[n]=    [x(n)+x( n)]1
2 x0[n]=    [x(n) x( n)]1

2

Fig. 1.26 Graphical determination of even and odd function from x[n]
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4. xe[n] = 1
2 [x[n] + x[−n]]. Figure1.26a, b sample wise are added, and their

amplitudes are divided by the factor 2. This gives xe[n] and is represented in
Fig. 1.26d.

5. x0[n] = 1
2 [x[n] − x[−n]]. Figure1.26a, c sample wise are added, and their

amplitudes are divided by a factor 2 to get x0[n]. This is represented in Fig. 1.26e.

Example 1.19

Find the even and odd components of the following DT signal and sketch the
same.

x[n] = {−2, 1, 2, −1, 3}

(Anna University, December, 2007)
Solution

x[n] = {−2, 1, 2, −1, 3}
x[−n] = {3, −1, 2, 1, −2}

↑
xe[n] = 1

2
{x[n] + x[−n]}

= 1

2
[{−2, 1, 2, −1, 3} + {3, −1, 2, 1, −2}]

↑ ↑
= {1.5, −.5, 1, .5, −2, .5, 1, −.5, 1.5}

↑
x0[n] = 1

2
[x[n] − x[−n]]

= 1

2
[{−2, 1, 2, −1, 3} − {3, −1, 2, 1, −2}]

↑ ↑
x0[n] = {−1.5, .5, −1, −.5, 0, .5, 1, −.5, 1.5}

↑

Even and odd components of x[n] are represented in Fig. 1.27a, b, respectively.

1.6.3 Energy and Power of DT Signals

For a discrete time signal x[n], the total energy is defined as
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Fig. 1.27 a Even function and b odd function

E =
∞∑

n=−∞
|x[n]|2 (1.15)

The average power is defined as

P = Lt
N→∞

1

(2N + 1)

N∑

n=−N

|x[n]|2 (1.16)

From the definitions of energy and power, the following inferences are derived:

1. x[n] is an energy sequence if 0 < E < ∞. For finite energy signal, the average
power P = 0.

2. x[n] is a power sequence if 0 < P < ∞. For a sequence with average power
P being finite, the total energy E = ∞.

3. Periodic signal is a power signal, and vice versa is not true. Here, the energy of
the signal per period is finite.

4. Signals which do not satisfy the definitions of total energy and average power
are neither termed as power signal nor energy signal. The following summation
formulae are very often usedwhile evaluating the average power and total energy
of DT sequence.

1.

N−1∑

n=0

an = (1 − an)

(1 − a)
a �= 1 (1.17)

= N a = 1

2. ∞∑

n=0

an = 1

(1 − a)
a < 1 (1.18)
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3. ∞∑

n=m

an = am

(1 − a)
a < 1 (1.19)

4.

∞∑

n=0

nan = a

(1 − a)2
a < 1 (1.20)

Example 1.20
Determine whether the following signals are energy signals or power signals:

(a) x[n] = Aδ[n]
(b) x[n] = u[n]
(c) x[n] = ramp n

(d) x[n] = A

(e) x[n] = 2e j (πn+θ)

(f) x[n] = cos
π

2
n

Solution

(a) x[n] = Aδ[n]

x[n] = Aδ[n]
= A n = 0

= 0 n �= 0

Energy E =
0∑

n=0

(A)2

E = A2

For unit impulse, A = 1 and E = 1.
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(b) x[n] = u[n]; n ≥ 0

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

|x(n)|2

= Lt
N→∞

1

(2N + 1)

N∑

n=0

1

But
∑N

n=0 1 = (N + 1)

P = Lt
N→∞

(N + 1)

(2N + 1)

= Lt
N→∞

N (1 + 1
N )

N (2 + 1
N )

= 1

2

P = 1

2
E = ∞

(c) x[n] = ramp n; n ≥ 0

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

|x[n]|2

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

n2

But
∑N

n=0 n2 = N (N+1)(2N+1)
6

P = Lt
N→∞

N (N + 1)(2N + 1)

(2N + 1)6

P = ∞

E = Lt
N→∞

N∑

n=0

n2

= Lt
N→∞

N (N + 1)(2N + 1)

6
= ∞
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E = ∞

The signal x[n] = n is neither power signal nor energy signal.
(d) x[n] = A

P = Lt
N→∞

1

(2N + 1)

∞∑

n=−∞
A2

= Lt
N→∞

A2

(2N + 1)
(2N + 1)

[ ∞∑

n=−∞
1 = (2N + 1)

]

P = A2

E = ∞

(e) x[n] = 2e j (πn+θ)

P = Lt
N→∞

1

(2N + 1)

N∑

−N

|2e j (nπ+θ)|2

P = Lt
N→∞

1

2N + 1
4

N∑

−N

|e j (nπ+θ)|2

But |e j (nπ+θ)| = 1 and
∑N

−N 1 = (2N + 1)

P = Lt
N→∞

4
(2N + 1)

(2N + 1)
= 4

P = 4

E = ∞

(f) x[n] = cos π
2 n

P = 1

(2N + 1)

N∑

−N

cos2
π

2
n

Since
∑N

−N cosπn = 0,
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Fig. 1.28 x[n] = ( 1
3

)2
u[n] x[n]

n0

1
3

P = Lt
N→∞

1

(2N + 1)

N∑

−N

(1 + cosπn)

2

= 1

2
Lt

N→∞
(2N + 1)

(2N + 1)

= 1

2

P = 1

2
E = ∞

Example 1.21
Determine the energy of the signal shown in Fig. 1.28 whose

x[n] =
(
1

3

)n

u[n]

(Anna University, December, 2007)
Solution

E = Lt
N→∞

N∑

n=0

(
1

3

)2n

= Lt
N→∞

N∑

n=0

(
1

9

)n

= 1 + 1

9
+

(
1

9

)2

+ · · ·

= 1

1 − 1
9
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E = 9

8
P = 0

Example 1.22
Find the energy of the following sequence shown below:

x[n] = n 0 ≤ n ≤ 4

Solution

x[n] = n

= {0, 1, 2, 3, 4}

E =
4∑

n=0

n2

= 0 + 1 + 4 + 9 + 16

E = 30

Example 1.23
Determine the average power and the energy per period of the sequence shown in
Fig. 1.29.

x[n]

12345 0 1

1
2

3

4 4

1
0

2
3

4

1
2

3

4

2 3 4 5 6 7 8 9

Fig. 1.29 x[n] of Example 1.23
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Solution The fundamental period N of the signal is 5. Hence, the average power
per period is

P = 1

5

4∑

n=0

n2 = 1

5
[0 + 1 + 4 + 9 + 16]

P = 6

Average energy per period is

E =
4∑

n=0

n2

= [0 + 1 + 4 + 9 + 16]

E = 30

Example 1.24
Find the energy and power of the following signal:

x[n] = anu[n]

for the following cases:

(a) |a| < 1

(b) |a| = 1

(c) |a| > 1

Solution

(a) x[n] = anu[n] where |a| < 1 and n ≥ 0

E =
∞∑

n=0

(an)2

= 1 + a2 + a4 + · · ·
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E = 1

1 − |a|2

P = 0

(b) x[n] = anu[n] where |a| = 1

E = Lt
N→∞

N∑

0

1n = Lt
N→∞

(N + 1)

E = ∞

P = Lt
N→∞

1

(2N + 1)

N∑

0

(1)n

P = = Lt
N→∞

(N + 1)

(2N + 1)

= Lt
N→∞

N (1 + 1
N )

N (2 + 1
N )

P = 1

2

(c) x[n] = anu[n] where |a| > 1

E = Lt
N→∞

N∑

0

an

= 1 + a + a2 + · · · + aN

E = ∞
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P = Lt
N→∞

1

(2N + 1)

N∑

n=0

an

= Lt
N→∞

1

(N + 1)

(1 − aN+1)

(1 − a)

P = ∞

The signal is neither energy nor power signal.

Example 1.25
Find the energy of the following signal:

x[n] = ramp[n] − 2 ramp[n − 4] + ramp[n − 8]

Solution

x[n] = ramp[n] − 2 ramp[n − 4] + ramp[n − 8]
= x1[n] + x2[n] + x3[n]

x1[n], x2[n] and x3[n] are shown in Fig. 1.30a–c ,respectively. Figure1.30d represents
x[n]. From Fig. 1.30d, the energy of the signal x[n] is obtained as

E = 12 + 22 + 32 + 42 + 32 + 22 + 12

E = 44

Example 1.26
Determine the value of power and energy of each of the following signals:

(a) x[n] = e j ( πn
2 + π

8 )

(b) x[n] =
(
1

2

)n

u[n]

(Anna University, April, 2008)
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(a) (b)

(c)

0

0
1 2 3 4 5 6 7 8 9

1 2 3 4

2
4

6
8
10

1
2

3
4

x1[n] x2[n]

n

(d)

0

x[n]

n0 1 2 3 4 5 6 7 8 9101112

x3[n]

n

n

1

1

2

2

3

3

4

4

5

3

6

2

7

1

8 9

1
2

3
4

Fig. 1.30 DT energy signal of Example 1.25.

Solution

(a) x[n] = e j ( πn
2 + π

8 )

P = Lt
N→∞

1

2N + 1

N∑

−N

|e j ( πn
2 + π

8 )|2

= Lt
N→∞

1

(2N + 1)

N∑

−N

1

P = (2N + 1)

(2N + 1)
= 1

P = 1 and E = ∞
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(b) x[n] = [ 1
2

]n
u[n]

E = Lt
N→∞

N∑

0

(
1

2

)2n

= Lt
N→∞

N∑

0

(
1

4

)n

= 1

1 − 1
4

= 4

3

E = 4

3
and P = 0

Example 1.27
Find the energy of the following DT signal

x[n] =
(
1

2

)n

n ≥ 0

= 3n n < 0

(Anna University, April, 2005)
Solution

E =
[ −1∑

−∞
(3)2n +

∞∑

0

(
1

2

)2n
]

=
[ −1∑

−∞
(9)n +

∞∑

0

(
1

4

)n
]

=
[ ∞∑

1

(9)−n + 1
(
1 − 1

4

)

]

=
[ ∞∑

1

(
1

9

)n

+ 4

3

]

=
[
1

9
+ 1

92
+ 1

93
+ · · ·

]

+ 4

3

= 1

9

[

1 + 1

9
+ 1

92
+ 1

93
+ · · ·

]

+ 4

3
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Fig. 1.31 Block diagram
representation of discrete
time system

x1[n] + x2[n] = y1[n] + y2[n]

x[n] y[n]
H

= 1

9

1

[1 − 1
9 ]

+ 4

3

= 1

8
+ 4

3

E = 35

24

1.7 Discrete Time System

The block diagram of a discrete time system is shown in Fig. 1.31. x[n] is the exci-
tation (input) signal, and y[n] is the response (output) signal of the DT system. H
represents the functional relationship between the input and outputwhich is described
by difference equation. The input–output signals appear at discrete interval of time
n, where n = 0, 1, 2 . . . which is an integer. n can also take negative value of an
integer.

1.8 Properties of Discrete Time System

Like CT systems, DT systems also possess similar properties which are given below:

1. Linearity and nonlinearity
2. Time varying and time invariant
3. Causal and non-causal
4. Stable and unstable
5. Static (instantaneous) and dynamic (system without and with memory)
6. Invertibility and inverse.
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1.8.1 Linear and Nonlinear Systems

Alinear discrete time systemobeys theproperty of superposition.Asdiscussed forCT
system, the superposition property is composed of homogeneity and additivity. Let
x1[n] excitation produce y1[n] response and x2[n] produce y2[n] response.According
to additivity property of superposition theorem, if both x1[n] and x2[n] are applied
simultaneously, then

x1[n] + x2[n] = y1[n] + y2[n]

Let a1x1[n] and a2x2[n] be the inputs. According the homogeneity (scaling) property,
when these signals are separately applied,

a1x1[n] = a1y1[n]
a2x2[n] = a2y2[n]

If a1x1[n] + a2x2[n] are simultaneously applied, the output is obtained by applying
superposition theorem as,

a1x1[n] + a2x2[n] = a1y1[n] + a2y2[n]

In the above equation, a1x1[n] + a2x2[n] is called the weighted sum of input, and
a1y1[n] + a2y2[n] is called the weighted sum of the output. Therefore, the following
procedure is followed to test the linearity of a DT system.

1. Express

y1[n] = f (x1[n])
y2[n] = f (x2[n])

2. Find the weighted sum of the output as

y3[n] = a1y1[n] + a2y2[n]

3. Find the output y4[n] due to the weighted sum of input as

y4[n] = f (a1x1[n] + a2x2[n])

4. If y3[n] = y4[n], then given DT system is linear. Otherwise it is nonlinear.

The following examples illustrate the method of testing a DT system for its lin-
earity.
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Example 1.28
Test whether the following DT systems are linear or not:

(a) y[n] = x2[n]
(b) y[n] = x[4n + 1]
(c) y[n] = x[n] + 1

x[n + 1]
(d) y[n] = x[n2]
(e) y[n] = x[n] + nx[n + 1]

Solution

(a) y[n] = x2[n]

y1[n] = x2
1 [n]

y2[n] = x2
2 [n]

1. The weighted sum of the output y3[n] is

y3[n] = a1y1[n] + a2y2[n]
= a1x2

1 [n] + a2x2
2 [n]

2. The output due to the weighted sum of the input y4[n] is

y4[n] = [a1x1[n] + a2x2[n]]2
= a2

1x2
1 [n] + a2

2x2
2 [n] + 2a1a2x1[n]x2[n]

3.

y3[n] �= y4[n]

The system is nonlinear.

(b) y[n] = x[4n + 1]

a1y1[n] = a1x1[4n + 1]
a2y2[n] = a2x2[4n + 1]

y3[n] = a1y1[n] + a2y2[n]
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1. The weighted sum of the output is

y3[n] = a1y1[n] + a2y2[n]
= a1x1[4n + 1] + a2x2[4n + 1]

2. The output due to the weighted sum of the input is

y4[n] = a1x1[4n + 1] + a2x2[4n + 1]

3.

y3[n] = y4[n]

The system is linear.

(c) y[n] = x[n] + 1
x(n+1)

a1y1[n] = a1

[

x1[n] + 1

x1(n + 1)

]

a2y2[n] = a2

[

x2[n] + 1

x2(n + 1)

]

1. The weighted sum of the output y3[n] is

y3[n] = a1y1[n] + a2y2[n]
= a1

[

x1[n] + 1

x1(n + 1)

]

+ a2

[

x2[n] + 1

x2(n + 1)

]

2. The output due to the weighted sum of the input is

y4[n] = f [a1x1[n] + a2x2[n]]
= a1[x1[n] + a2x2[n]] +

[
1

a1x1[n + 1] + a2x2[n + 1]
]

3.

y3[n] �= y4[n]

The system is nonlinear.
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(d) y[n] = x[n2]

a1y1[n] = a1x1[n2]
a2y2[n] = a2x2[n2]

1. The weighted sum of the output y3[n] is

y3[n] = a1y1[n] + a2y2[n]
= a1x1[n2] + a2x2[n2]

2. The output y4[n] due to the weighted sum of input is

y4[n] = a1x1[n2] + a2x2[n2]

3.

y3[n] = y4[n]

The system is linear.

(e) y[n] = x[n] + nx[n + 1]

a1y1[n] = a1[x1[n] + nx1[n + 1]]
a2y2[n] = a2[x2[n] + nx2[n + 1]]

1. The weighted sum of the output is

y3[n] = a1y1[n] + a2y2[n]
= a1[x1[n] + nx1[n + 1]] + a2[x2[n] + nx2[n + 1]]

2. The output due to the weighted sum of the input is

y4[n] = a1x1[n] + a2x2[n] + a1nx1[n + 1] + a2nx2[n + 1]

3.

y3[n] = y4[n]

The system is linear.
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1.8.2 Time Invariant and Time Varying DT Systems

Consider the discrete time system represented in block diagram of Fig. 1.32a. If
the input is x[n], then the output is y[n]. If the input is time delayed by n0, which
becomes x[n − n0], the output becomes y[n − n0]. The signal representation and
the delayed signals are shown in Fig. 1.32b, c, respectively. Such systems are called
time invariant.

If an arbitrary excitation x[n] of a system causes a response y[n] and the
delayed excitation x[n − n0]where n0 is any arbitrary integer causes y[n − n0],
then the system is said to be time invariant.

Procedure to Check Time Invariancy of DT Systems

1. For the delayed input x[n − n0], find the output y[n, n0].
2. Obtain the delayed output y[n − n0] by substituting n = n − n0 in y[n].
3. If y[n, n0] = y[n − n0], the system is time invariant. Otherwise the system is

time varying.

The following examples illustrate the method of testing the time invariancy of DT
systems.

Example 1.29
Determine whether the following systems are time invariant or not:

(a) y[n] = nx[n]
(b) y[n] = x[2n]
(c) y[n] = x[−n]
(d) y[n] = sin(x[n])
(e) y[n] = x[n]x[n − 1]

Solution

(a) y[n] = nx[n]
1. The output for the delayed input x[n − n0] is

y[n, n0] = nx[n − n0]

2. The delayed output for the input x[n] is

y[n − n0] = (n − n0)x[n − n0]
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x[n] x[n n0] y[n n0]Time Delay
n0

H

x[n] y[n]
H

n0 1 2 3

x[n]

n0 n0

x[n n0]

n0 n0

y[n]

n0 1 2 3

y[n]

(a)

(b)

(c)

Fig. 1.32 Block diagram and signal representation to illustrate time invariancy of DT system

3.

y[n, n0] �= y[n − n0]

The system is time variant.

(b) y[n] = x[2n]

y[n, n0] = x[2n − n0]
y[n − n0] = x[2(n − n0)]

= x[2n − 2n0]
y[n, n0] �= y[n − n0]
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The system is time varying.

(c) y[n] = x[−n]

y[n, n0] = x[−n − n0]
y[n − n0] = x[−(n − n0)]

= x[−n + n0]
y[n, n0] �= y[n − n0]

The system is time varying.

(d) y[n] = sin(x[n])

y[n, n0] = sin(x[n − n0])
y[n − n0] = sin(x[n − n0])

y[n, n0] = y[n − n0]

The system is time invariant.

(e) y[n] = x[n]x[n − 1]

y[n, n0] = x[n − n0]x[n − n0 − 1]
y[n − n0] = x[n − n0]x[n − n0 − 1]

y[n, n0] = y[n − n0]

The system is time invariant.

1.8.3 Causal and Non-causal DT Systems

A discrete time system is said to be causal if the response of the system depends
on the present or the past inputs applied. The systems is non-causal if the output
depends on the future input.
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The following examples illustrate themethod of identifying causal and non-causal
systems.

Example 1.30

Determine whether the following systems are causal or not:

(a) y[n] = x[n − 1]
(b) y[n] = x[n] + x[n − 1]
(c) y[n − 1] = x[n]
(d) y[n] = sin(x[n])

(e) y[n] =
n+4∑

k=−∞
x(k)

(f) y[n] =
−3∑

k=0

x(k)

Solution

(a) y[n] = x[n − 1]

y[0] = x[−1]
y[1] = x[0]

The output depends on the past value of x[n]. Hence

The system is causal.

(b) y[n] = x[n] + x[n − 1]

y[0] = x[0] + x[−1]
y[1] = x[1] + x[0]

here x[1] is present value and x[0] is past value. The output depends on the
present and past inputs. Hence

The system is causal.
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(c) y[n − 1] = x[n]

y[−1] = x[0] (Future input)

y[0] = x[1] (Future input)

The output depends on the future inputs. Hence

The system is non-causal.

(d) y[n] = sin x[n]

y[0] = sin x[0]
y[−1] = sin x[−1]

The output depends on the present input. Hence

The system is causal.

(e) y[n] = ∑n+4
k=−∞ x[k]

y[0] =
4∑

−∞
x[k]

= x[−∞]+ x[−∞ + 1] + · · · + x[−1]+ x[0]+ x[1]+ x[2]+ x[3]+ x[4]

x[−∞] + x[−∞ + 1], . . . , x[−1] = Past input

x[0] = Present input

x[0], x[1], x[2], x[3] and x[4] = Future input

The output depends on past, present and future input. Hence

The system is non-causal.
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(f) y[n] = ∑n−3
k=0 x[k]

y[0] =
−3∑

k=0

x[k]

= x[0] + x[−1] + x[−2] + x[−3]
x[0] = Present input

x[−1] = Past input

The output depends on the present and past input. Hence

The system is causal.

1.8.4 Stable and Unstable Systems

A discrete time system is said to be stable if for any bounded input, it produces
a bounded output. This implies that the impulse response

y[n] =
∞∑

−∞
|h[n]| < ∞

is absolutely summable.
For a bounded input,

|x[n]| ≤ Mx < ∞

the output

|y[n]| ≤ My < ∞

From the above two conditions, it can be obtained

y[n] =
∞∑

−∞
|h[n]| < ∞

The following examples illustrate the above procedure.
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Example 1.31
Check whether the DT systems described by the following equations are stable or
not.

(a) y[n] = sin x[n]

(b) y[n] =
n+1∑

k=0

x[k]

(c) y[n] = ex[n]

(d) h[n] = 3nu[n + 3]
(e) y[n] = x[−n − 3]
(f) y[n] = x[n − 1] + x[n] + x[n + 1]
(g) h[n] = e−|n|

(h) h[n] = n u[n]
(i) h[n] = 3nu[n − 3]
(j) h[n] = 2nu[−n]

Solution

(a) y[n] = sin x[n]
If x[n] is bounded, then sin x[n] is also bounded and so y[n] is also bounded

The system is stable.

(b) y[n] = ∑n+1
k=0 x[k]

Here, as n → ∞, y[n] → ∞, and the output is unbounded. For bounded input, n
should be a finite number. In that case y[n] is bounded, and the system is stable.

The system is stable. for n = finite

The system is unstable. for n = ∞

(c) ex[n]
For |x[n]| bounded, e|x[n]| is bounded, and the system is stable.

The system is stable.
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(d) h[n] = 3nu[n + 3]

|y[n]| =
∞∑

n=−3

3n

= (3)−3 + (3)−2 + (3)−1 + (3)0 + (3)1 + · · · + (3)∞

= ∞

The output is unbounded.

The system is unstable.

(e) y[n] = x[−n − 3]

y[n] = x[−n − 3]
= 1 n = −3

= 0 otherwise

The system is stable.

(f) y[n] = x[n − 1] + x[n] + x[n + 1]

y[0] = δ[−1] + δ[0] + δ[1] = 0 + 1 + 0 = 1

y[1] = δ[0] + δ[1] + δ[2] = 1 + 0 + 0 = 1

y[−1] = δ[−2] + δ[−1] + δ[0] = 0 + 0 + 1 = 1

y[−2] = δ[1] + δ[2] + δ[3] = 0 + 0 + 0 = 0

y[2] = δ[1] + δ[2] + δ[3] = 0 + 0 + 0 = 0

y[n] =
∞∑

−∞
|h[k]| = 1 + 1 + 1 = 3 < ∞

The system is stable.
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(g) h[n] = e−|n|

y[n] =
∞∑

−∞
e|n| =

−1∑

−∞
e|n| +

∞∑

0

e−|n|

=
∞∑

1

e−n +
∞∑

0

e−n

= e−1 + e−2 + · · · + 1 + e−1 + e−2 + · · ·
= e−1[1 + e−1 + e−2 + · · · ] + 1 + e−1 + e−2 + · · ·
= e−1 1

[1 − e−1] + 1

[1 − e−1]
= e−1

(1 − e−1)
+ 1

(1 − e−1)

= [1 + e−1]
[1 − e−1] < ∞

The system is stable.

(h) h[n] = n u[n]

y[n] =
∞∑

0

n = 1 + 2 + · · · + ∞ = ∞

The system is unstable.

(i) h[n] = 3nu[n − 3]

y[n] =
∞∑

3

3n = 33 + 32 + · · · + ∞ = ∞

The system is unstable.
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(j) h[n] = 2nu[−n]

y[n] =
−1∑

−∞
2n =

∞∑

1

(
1

2

)n

= 1

2
+

(
1

2

)2

+ · · ·

= 1

2

[

1 + 1

2
+

(
1

2

)2

+ · · ·
]

= 1

2

[
1

1 − 1
2

]

= 1 < ∞

The system is stable.

1.8.5 Static and Dynamic Systems

A discrete time system is said to be static (memoryless or instantaneous) if the
output response depends on the present value only and not on the past and
future values of excitation. Discrete systems described by difference equations
require memory, and hence they are dynamic systems.

The following examples illustrate the method identifying static and dynamic dis-
crete systems.

Example 1.32
Identify whether the following systems are static or dynamic:

(a) y[n] = x[3n]
(b) y[n] = sin(x[n])
(c) y[n − 1] + y[n] = x[n]
(d) y[n] = sgn|x[n]|
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Solution

(a) y[n] = x[3n]

y[1] = x[3]
y[−1] = x[−3]

The output y[1] and y[−1] depend on the future value x[3] and the past input
x[−3], respectively. Hence

The system is dynamic.

(b) y[n] = sin(x[n])

y[0] = sin(x[0])
y[1] = sin(x[1])

The output depends on the present input at all time. Hence

The system is static.

(c) y[n − 1] + y[n] = x[n]
The system is described byfirst-order difference equationwhich requirememory.
Hence

The system is dynamic.

(d) y[n] = sgn|x[n]|

sgn|x[n]| = 1 for n > 0

= −1 for n < 0

y[1] = x[1] = 1

y[−1] = x[−1] = −1

The output depends on the present value of the input. Hence

The system is static.
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x[n]

metsyS esrevnImetsyS

y[n] w(n) x[n]
y[n] =  x[k] w[n] = y[n] y[n 1]k =

Fig. 1.33 Inverse discrete time system

1.8.6 Invertible and Inverse Discrete Time Systems

A discrete time system is said to be invertible if distinct input leads to distinct
output. If a system is invertible, then an inverse system exists.

Consider the system shown in Fig. 1.33. The input x[n] produces the output y[n].
This system is in cascade with its inverse system. The output of this system is nothing
but the difference of the two successive inputs y[n] − y[n − 1]. This is the input to the
original system. Thus, by connecting an inverse system in cascade with the original
system, the excitation signal x[n] is re-established provided the original system is
invertible. The concept of invertibility is very widely used in communications.

Example 1.33

Determinewhether the following systems are static, causal, time invariant, linear
and stable.

(a) y[n] = x[4n + 1]
(b) y[n] = x[n] + n x[n + 1]
(c) y[n] = x[n]u[n]
(d) y[n] = log10 x[n]
(e) y[n] = x2[n]

(Anna University, 2007)
Solution

(a) y[n] = x[4n + 1]
1.

y[0] = x[1]
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The output depends on future input. Hence

The system is dynamic and non-causal.

2. The output due to the delayed input is

y[n, n0] = x[4n − n0 + 1]

The delayed output due to the input is

y[n − n0] = x[4(n − n0) + 1]
= x[4n − 4n0 + 1]

y[n, n0] �= y[n − n0]

The system is time variant.

3.

a1y1[n] = a1x1[4n + 1]
a2y2[n] = a2x2[4n + 1]

y3[n] = a1y1[n] + a2y2[n]
= a1x1[4n + 1] + a2x2[4n + 1]

y4[n] = a1x1[4n + 1] + a2x2[4n + 1]
y3[n] = y4[n]

The system is linear.

4. The input is time shifted and time compressed signal. As long as the input
is bounded, the output is also bounded.

The system is stable.

The system is

(1) Dynamic, (2) non-causal, (3) time variant, (4) linear and (5) stable.
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(b) y[n] = x[n] + n x[n + 1]
1.

y[0] = x[0] + 0 × x[1]

The output depends on present and future inputs.

The system is dynamic and non-causal.

2. The output due to the delayed input is

y[n, n0] = x[n − n0] + nx[n − n0 + 1]

The delayed output due to the input is

y[n − n0] = x[n − n0] + (n − n0)x[n − n0 + 1]
y[n, n0] �= y[n − n0]

The system is time variant.

3. The weighted sum of the output due to the input is

y3[n] = a1y1[n] + a2y2[n] = a1x1[n] + a1nx1[n + 1] + a2x2[n] + a2nx2[n + 1]

The output due to the weighted sum of the input is

y4[n] = a1{x1[n] + nx1[n + 1]} + a2{x2[n] + a2nx2[n + 1]}
y3[n] = y4[n]

The system is linear.

4. As long as x[n] is bounded, y[n] is also bounded for n =finite.

The system is stable.
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The system is

(1) Dynamic, (2) non-causal, (3) time variant, (4) linear and (5) stable.

(c) y[n] = x[n]u[n]
1.

y[0] = x[0]u[0]
y[1] = x[1]u[1]

The output depends on present input only.

The system is static and causal.

2. For a causal signal n ≥ 0. The weighted sum of the output due to input is

y3[n] = a1y1[n] + a2y2[n]
= {a1x1[n] + a2x2[n]}u[n]

The output due to the weighted sum of input is

y4[n] = {a1x1[n] + a2x2[n]}u[n]
y3[n] = y4[n]

The system is linear.

3. The output due to the delayed input is

y[n, n0] = x1[n − n0]u[n]

The delayed output due to the input is

y[n − n0] = x1[n − n0]u[n − n0]
y[n, n0] �= y[n − n0]

The system is time variant.
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4. As long as x[n] is bounded, y[n] is also bounded.

The system is stable.

The system is

(1) Static, (2) causal, (3) linear, (4) time variant and (5) stable.

(d) y[n] = log10 x[n]
1.

y[0] = log10 x[0]
y[1] = log10 x[1]

y[−1] = log10 x[−1]

The output depends on present input only.

The system is static and causal.

2. The weighted sum of the output due to input is

y3[n] = a1y1[n] + a2y2[n]
= a1 log10 x1[n] + a2 log10 x2[n]

The output due to the weighted sum of input is

y4[n] = log10(a1x1[n] + a2x2[n])
y3[n] �= y4[n]

The system is nonlinear.

3. The output due to the delayed input is

y[n, n0] = log10[n − n0]

The delayed output due to input is
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y[n − n0] = log10[n − n0]
y[n, n0] = y[n − n0]

The system is time invariant.

4. As long as x[n] is bounded, log10 x[n] is bounded and y[n] is also bounded.

The system is stable.

The system is

(1) Static, (2) causal, (3) nonlinear, (4) time invariant and (5) stable.

(e) y[n] = x2[n]
1.

y[0] = x2[0]
y[1] = x2[1]

The output depends on present input only.

The system is static and causal.

2. The weighted sum of the output due to input is

y3[n] = a1y1[n] + a2y2[n]
= a1x2

1 [n] + a2x2
2 [n]

The output due to weighted sum of input is

y4[n] = {a1x1[n] + a2x2[n]}2
= a2

1x2
1 [n] + a2

2x2
2 [n] + 2a1a2x1[n]x2[n]

y3[n] �= y4[n]

The system is nonlinear.
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3. The output due to the delayed input is

y[n, n0] = x2[n − n0]

The delayed output due to the input is

y[n − n0] = x2[n − n0]
y[n, n0] = y[n − n0]

The system is time invariant.

4. If x[n] is bounded, x2[n] is bounded, and y[n] is also bounded.

The system is stable.

The system is

(1) Static, (2) causal, (3) nonlinear, (4) time invariant and (5) stable.

Summary

� Signals are broadly classified as continuous time (CT) and discrete time (DT)
signals. They are further classified as deterministic and stochastic, periodic and
non-periodic, odd and even and energy and power signals.

� Basic DT signals include impulse, step, ramp, parabolic, Rectangular pulse,
triangular pulse, signum function, sinc function, sinusoid, real and complex
exponentials.

� Basic operations on DT signals include addition, multiplication, amplitude scal-
ing, time scaling , time shifting, reflection or folding and amplitude inverted
signals.

� In time shifting ofDT signal, for x(n + n0) and x(−n − n0) the time shift ismade
to the left of x(n) and x(−n), respectively, by n0. For x(n − n0) and x(−n + n0)

the time shift is made to the right of the x(n) and x(−n), respectively, by n0.
� To plot DT signals, the operation performed is in the following sequence. The

signal is folded (if necessary), time shifted, time scaled, amplitude scaled and
inverted.

� Signals are classified as even signals andodd signals. Even signals are symmetric
about the vertical axis, whereas odd signals are anti-symmetric about the time
origin. Odd signals pass through the origin. The product of two even signals or
two odd signals is an even signal. The product of an even and an odd signal is
an odd signal.



1.8 Properties of Discrete Time System 71

� A DT signal which repeats itself every N sequence is called a periodic signal.
If the signal is not periodic, it is called an aperiodic or non-periodic signal. The
necessary condition for the composite of two or more signals to be periodic is
that the individual signal should be periodic.

� A signal is an energy signal if the total energy of the signal satisfies the condition
0 < E < ∞. A signal is called a power signal if the average power of the signal
satisfies the condition 0 < P < ∞. If the energy of a signal is finite, the average
power is zero. If the power of the signal is finite, the signal has infinite energy.
All periodic signals are power signals. However all power signals need not be
periodic. Signals which are deterministic and non-periodic are usually energy
signals. Some signals are neither energy signal nor power signal.

� The system is broadly classified as continuous and discrete time system.
� TheDT systems are further classified based on the property of causality, linearity,

time invariancy, invertibility, memory and stability.
� A discrete time system is said to be causal if the impulse response h(n) = 0 for

n < 0.
� If the impulse response of a discrete time system is absolutely summable, then

the system is said to be BIBO stable.

Short Questions and Answers

1. How are signals classified?
Signals are generally classified as CT and DT signals. They are further classified
as deterministic and non-deterministic, odd and even, periodic and non-periodic
and power and energy signals.

2. What are odd and even signals?
A continuous CT signal is said to be an even signal if it satisfies the condition
x(−t) = x(t) for all t . It is said to be an odd signal if x(−t) = −x(t) for all t .
For a DT signal if x[−n] = x[n] condition is satisfied, it is an even sequence
(signal). If x[−n] = −x[n], the sequence is called odd sequence.

3. How even and odd components of a signal are mathematically expressed?

xe[n] = 1

2
{x[n] + x[−n]}

x0[n] = 1

2
{x[n] − x[−n]}

4. What are periodic and non-periodic signals?
A discrete time signal is said to be a period signal if it satisfies the condition
x[n] = x[n + N ] for all n. A signal which is not periodic is said to be non-
periodic.

5. What is the fundamental period of a periodic signal? What is fundamental
frequency?
ADT signal is said to be periodic if it satisfies the condition x(n) = x(n + N ). If
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this condition is satisfied for N = N0, it is also satisfied for N = 2N0, 3N0, . . ..
The smallest value of N that satisfies the above condition is called funda-
mental period. The fundamental frequency f0 = 1

N0
Hz. It is also expressed as

ω0 = 2π
N0

rad.

6. What are power and energy signals?
For a DT signal x[n], the total energy is defined as

E =
∞∑

n=−∞
x2[n]

The average power is defined as

P = Lt
T →∞

1

2N + 1

N∑

n=−N

x2[n]

7. Determine whether the signal x[n] = cos[0.1πn] is periodic.
The signal x[n] is periodic with fundamental period N0 = 20.

8. Find whether the signal x[n] = 5 cos[6πn] is periodic.
The signal is periodic with fundamental period N0 = 1.

9. Find the average power of the signal.

x[n] = u[n] − u[n − N ]

The average power P = 1.
10. Find the total energy of

x[n] = {1, 1, 1}
↑

The total energy E = 3.
11. If the discrete time signal x[n] = {0, 0, 0, 3, 2, 1, −1, −7, 6} then find

y[n] = x[2n − 3]?
y[n] = {0, 0, 0, 3, 1, −7}

12. What is the energy of the signal x[n] = u[n] − u[n − 6]?

E = 6
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13. What are the properties of systems?
Systems are generally classified as continuous and discrete time systems. Fur-
ther classifications of these systems are done based on their properties which
include (a) linear and nonlinear, (b) time invariant and time variant, (c) static
and dynamic, (d) causal and non-causal, (e) stable and unstable and (f) invertible
and non-invertible.

14. Define system. What is linear system?
A system is defined as the interconnection of objects with a definite relationship
between objects and attributes.

A system is said to be linear if the weighted sum of several inputs produces
weighted sum of outputs. In other words, the system should satisfy the homo-
geneity and additivity of superposition theorem if it is to be linear. Otherwise it
is a nonlinear system.

15. What is time invariant and time varying system?
A system is said to be time invariant if the output due to the delayed input is same
as the delayed output due to the input. If the continuous time system is described
by the differential equation, its coefficients should be time independent for the
system to be time invariant. In the case of discrete time system, the coefficients
of the difference equation describing the system should be time independent
(constant) for the system to be time invariants. If the above conditions are not
satisfied, the system (CT as well as DT) is said to be time variant.

16. What are static and dynamic systems?
If the output of the system depends only on the present input, the system is
said to be static or instantaneous. If the output of the system depends on the
past and future inputs, the system is not static, and it is called dynamic system.
Static system does not require memory, and so it is called memoryless system.
Dynamic system requires memory, and hence, it is called system with mem-
ory. Systems which are described by differential and difference equations are
dynamic systems.

17. What are causal and non-causal systems?
If the system output depends on present and past inputs, it is called causal system.
If the system output depends on future input, it is called non-causal system.

18. What are stable and unstable systems?
If the input is bounded and output is also bounded, the system is called BIBO
stable system. If the input is bounded and the output is unbounded, the system
is unstable. System whose impulse response curve has finite area is also called
stable systems.

19. What are invertible and non-invertible systems?
A system is said to be invertible if the distinct inputs give distinct outputs.
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Long Answer Type Questions

1. For the following DT signal find even and odd components

x[n] = {1, −3, 2, 5, 4}
xe[n] = {2, 2.5, 1, −1.5, 1, −1.5, 1, 2.5, 2}

↑
x0[n] = {−2, −2.5, −1, 1.5, 0, −1.5, 1, 2.5, 2}

↑

2. Find whether the following signals are periodic. If periodic, find the
fundamental period. (a) x[n] = cos( n

8 − π); (b) x[n] = cos( π
8 + π

2 ) + cos( π
6 −

π
2 ); (c) x[n] = cos( 5π N

12 + π
2 ) + sin 10πn

8 ; (d)x[n] = e j3n + e j4πn .
(a) Not periodic. (b) Periodic with fundamental period N0 = 48 samples/s. (c)
Periodic with fundamental period N0 = 24 samples/s. (d) Non-periodic.

3. Given x[n] and y[n]
x[−1] = 2

x[n] = 1 1 ≤ n ≤ 5

x[6] = 1

2
= 0 for other n

Plot (a) x[ n
2 ] and (b) Evx[n]. (Anna University, 2007).

(a)

x[n] = {2, 1, 1, 1, 1, 1, 1, 0.5}
↑

x
[n

2

]
= {2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0.5}

↑

(b)

xe[n] = {0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.25}
↑
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4. Find whether the following signal is periodic. If periodic, find the funda-
mental period.

x[n] = cos
(
2πn + π

2

)
sin

(
5πn − π

4

)
sin

(
8πn + π

2

)

The signal is periodic. Their fundamental period N0 = 2 samples/s.
5. For the systems given below determine whether each of them is (a) static,

(b) causal, (c) time invariant, (d) linear and (e) stable.

y[n] = x[5n]

(a) The system response depends on present, past and future inputs. Hence, it
is dynamic.

(b) Non-causal.
(c) The output due to the delayed input is not same as the delayed output. Hence,

it is time variant.
(d) The weighted sum of the output is same as output due to the weighted sum

of the input. The system is linear.
(e) If the input x[5n] is bounded, the output y[n] is also bounded. The system

is stable.

6.
y[k + 2] + 3 y[k + 1] + 4 y[k] = x[k]

(a) The system is dynamic.
(b) The system is causal.
(c) The system is time invariant.
(d) The system is linear.
(e) The system is stable.

7.
y[n] = 5x[3n]

(a) The system is dynamic.
(b) The system is non-causal.
(c) The system is time invariant.
(d) The system is linear.
(e) The system is stable.
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8.
y[n] = sin(2πx[n]) + x[n + 1]

(a) The system is dynamic.
(b) The system is non-causal.
(c) The system is time invariant.
(d) The system is nonlinear.
(e) The system is stable.

9. x[n] = u[n − 4] − u[n − 10] and h[n] = u[n − 5] − u[n − 16].
Find y[n] = x[n] ∗ h[n].

y[n] = (n − 8) 9 ≤ n ≤ 13

= 6 10 ≤ n ≤ 19

= (25 − n) 20 ≤ n ≤ 24

= 0 n > 24

10. x[n] = 4nu[−n − 2] and h[n] = u[n − 2]. Find y[n] = x[n] ∗ h[n].

y[n] = 1

3

[
1

4

]n−1

n < 0

= 1

12
n > 0

11. Determinewhether the followingLTIDtime systemswhose impulse response
given below are stable. (a) h[n] = n sin 2πn u[n], (b) h[n] =
5nu[−n] and (c) h[n] = 2−nu[n − 5].

(a) y[n] = ∞ B.I.B.O. unstable.

(b) y[n] = 1

4
< ∞ B.I.B.O. stable.

(c) y[n] = 1

6
< ∞ B.I.B.O. stable.

12. Determine the power and energy of the following signals.

(a) x[n] =
(
1

3

)n

(b) x[n] = e j( nπ
2 + π

4 )

(c) x[n] = sin
(nπ

4

)

(d) x[n] = e2nu(n)
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Ans:

(a) E = 9

8
J ; P = 0

(b) E = ∞; P = 1W

(c) E = ∞; P = 1

2
W

(d) E = ∞; P = ∞ (Neither power nor energy)

13. Determine whether each of the following signal is periodic. Find the
fundamental period.

(a) x[n] = e j6πn

(b) x[n] = e j 3
5 (n+ 1

2 )

(c) x[n] = cos

(
2π

3

)

n

(d) x[n] = cos
nπ

3
+ cos

3nπ

4

Ans:

(a) Periodic. N = 1 sample

(b) Not Periodic.

(c) Periodic. N = 3 samples

(d) Periodic. N = 24 samples

14. Find the odd and even components of the following sequence.

x(n) = {2, 3, 4, 5, 6}
↑

Ans:

xe(n) = {4, 4, 4, 4, 4}
↑

x0(n) = {−2,−1, 0, 1, 2}
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15. Test whether the following systems are time variant or time invariant.

(a) y(n) = x(n) − x(n − 1)
(b) y(n) = nx(n)

(c) y(n) = x(−n)

(d) y(n) = x(n) cosω0n
(e) y(n) = x(n) − bx(n − 1)
(f) y(n) = x(n) + c
(g) y(n) = ex(n)

(h) y(n) = nx2(n)

(i) y(n) = ∑m
k=0 ak(n − k)− ∑m

k=1 bk y(n − k)

Ans:

(a) Time invariant.
(b) Time varying.
(c) Time varying.
(d) Time varying.
(e) Time varying.
(f) Time invariant.
(g) Time invariant.
(h) Time varying.
(i) Time invariant.

16. Test the linearity of the following systems.

(a) y(n) = nx(n)

(b) y(n) = x(n2)

(c) y(n) = x2(n)

(d) y(n) = Ax(n) + B
(e) y(n) = ex(n)

Ans: (a) Linear; (b) linear; (c) nonlinear; (d) nonlinear and (e) nonlinear
17. Test the causality of the following systems.

(a) y(n) = x(n) − x(n − 1)
(b) y(n) = ∑n

k=∞ x(k)

(c) y(n) = nx(n)

Ans: (a) Causal; (b) causal; and (c) causal
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18. Test whether the following systems are stable or not.

(a) y(n) = x(−n − 2)
(b) y(n) = x(n) + by(n − 1)

(c) y(n) =
{

an n ≤ 0,

bn n < 0.

Ans: (a) Stable; (b) stable if |b| < 1; and (c) stable if |a| < 1 and |b| > 1



Chapter 2
Discrete and Fast Fourier Transforms
(DFT and FFT)

Learning Objectives

After completing this chapter, you should be able to:

� define Discrete Fourier transform (DFT) and inverse discrete Fourier transform
(IDFT).

� establish the properties of DFT.
� study different methods of circular convolution and solve numerical problems.
� study different fast Fourier transform (FFT) algorithms and their applications.
� study the use of FFT algorithms in linear filtering and correlation.

2.1 Introduction

In the study of signals and systems, the discrete time periodic signals are represented
by discrete time Fourier series (DFS) using a parallel development of continuous
system. The Fourier series representation in these cases was applicable only if the
signals are periodic. If the signal is non-periodic, then applying a limiting process,
the aperiodic discrete time signal x[n] can be expressed as a sum of everlasting
exponentials or sinusoids. The spectrum of x(ω) so obtained is called discrete time
Fourier transform (DTFT). If the spectrum obtained by DTFT is sampled for one
period of the Fourier transform, such a transformation is called discrete Fourier
transform (DFT) which is a very powerful computational tool for the evaluation
of Fourier transform. DFT finds wide applications in linear filtering, correlation
analysis and spectrum analysis. Some special algorithms are developed for the easy
implementation of DFT which result in saving of considerable computation time.
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Such algorithms are called fast Fourier transform (FFT). By divide-and-conquer
approach, the DFT which has a size N , where N is a composite number is reduced
to the smaller DFTs and computation is performed. The computational algorithms
are developed when the size of N is power of 2 and power of 4.

2.2 Discrete Fourier Transform (DFT)

By Fourier transform, the sequence x[n] is transformed as X (ω) in the frequency
domain. If the time sequence x[n] is continuous and periodic, the transformation
is called discrete time Fourier transform (DTFT). For non-periodic signal x[n], a
slightly modified transform technique which is known as discrete Fourier transform
(DFT) is used which transforms x[n] to X (ω). DFT is a very powerful tool for
the analysis and synthesis of discrete signals and systems. The method is ideally
suited for use in digital computer or specially designed digital hardware. The DFT
is obtained by sampling one period of DTFT only at a finite number of frequency
points. It has the following features:

1. The original finite duration signal can be easily recovered from its DFT since
there exists one-to-one correspondence between x[n] and X (ω).

2. For the calculation of the DFT of finite duration sequences, a very efficient and
fast technique called FFT has been developed.

3. As far as realization in digital computer is concerned, DFT is the appropriate
representation since it is discrete and of finite length in both the time and frequency
domains.

4. DFT is closely related to discrete Fourier series, the Fourier transform, convolu-
tion, correlation and filtering.

2.2.1 The Discrete Fourier Transform Pairs

Consider the sequence x[n] of length N . The Fourier transform of x[n] is given by

X (�) =
∞∑

n=−∞
x[n]e− j�n (2.1)

In Eq. (2.1), X (�) is the continuous function of �. The range of � is from −π to
π or 0 to 2π . Hence, calculating X (�) on digital computer or DSP is impossible.
It is, therefore, necessary to compute X (�) at discrete values of �. When Fourier
transform X (�) is calculated at only discrete points k, it is called discrete Fourier
transform (DFT). The DFT is denoted by X (k). For finite discrete points N , Eq. (2.1)
is written as
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X (k) =
N−1∑

n=0

x[n]e− j2πkn/N (2.2)

where k = 0, 1, 2, . . . , (N − 1). X (k) is computed at k = 0, 1, 2, . . . , (N − 1) dis-
crete points. X (k) is the sequence of N samples. The sequence x[n] is obtained back
form

X [n] = 1

N

N−1∑

k=0

X (k)e j2πkn/N (2.3)

Let us define WN = e− j2π/N , where WN is called twiddle factor. Equations (2.2) and
(2.3) are called DFT and IDFT or simply discrete Fourier transform pair. They can
be represented in terms of twiddle factor as given below

X (k) =
N−1∑

n=0

x[n]W kn
N (2.4)

x[n] = 1

N

N−1∑

k=0

X (k)W −kn
N (2.5)

Let the sequence x[n] be resentenced as a vector xN of N samples as

xN =
n = 0
n = 1

...

n = N − 1

⎡

⎢⎢⎢⎣

x(0)
x(1)

...

x(N − 1)

⎤

⎥⎥⎥⎦

N×1

(2.6)

and X (k) be represented as a vector X N of N samples as

X N =
k = 0
k = 1

...

k = N − 1

⎡

⎢⎢⎢⎣

X (0)
X (1)

...

X (N − 1)

⎤

⎥⎥⎥⎦

N×1

(2.7)

The twiddle factor W kn
N is represented as a matrix with k rows and N column as

WN =

k = 0

k = N − 1

⎡

⎢⎢⎢⎢⎢⎣

W 0
N W 0

N W 0
N · · · W 0

N

W 0
N W 1

N W 2
N · · · W N−1

N

W 0
N W 2

N W 4
N · · · W 2(N−1)

N
...

...
...

...
...

W 0
N W N−1

N W 2(N−1)
N · · · W (N−1)(N−1)

N

⎤

⎥⎥⎥⎥⎥⎦

N×N

(2.8)



84 2 Discrete and Fast Fourier Transforms (DFT and FFT)

Thus, Eqs. (2.4) and (2.5) can be written with matrix form as

X N = [WN ]xN (2.9)

xN = 1

N
[W ∗

N ]X N (2.10)

where W ∗
N = W −kn

N

WN = e− j 2π
N

= 1∠−2π/N (2.11)

From Eq. (2.11), the magnitude of the twiddle factor is 1 and the phase angle is− 2π
N .

It lies on the unit circle in the complex plane from 0 to 2π angle, and it gets repeated
for every cycle.

2.2.2 Four-Point, Six-Point and Eight-Point Twiddle Factors

As in Eq. (2.11), themagnitude of the twiddle factor is 1 and the angle−2π is equally
divided in the interval N . The most commonly used intervals are N = 4 and N = 8.
For N = 4, the angle between any N = 0 and N = 1 is π

2 .

2.2.2.1 Four-Point Twiddle Factor

For N = 4

n = 0 1 2 3

WN =
k = 0
1
2
3

⎡

⎢⎢⎣

W 0
4 W 0

4 W 0
4 W 0

4
W 0

4 W 1
4 W 2

4 W 3
4

W 0
4 W 2

4 W 4
4 W 6

4
W 0

4 W 3
4 W 6

4 W 9
4

⎤

⎥⎥⎦ (2.12)

Note: W 4
4 = W 0

4 ; W 6
4 = W 2

4 and W 9
4 = W 1

4 . From Eq. (2.11)

W 1
4 = 1∠−π/2

For N = 4, the unit circle is divided into four equal segments in the clockwise
sequence and labelled as W 0

4 , W 1
4 , W 2

4 and W 3
4 . From Fig. 2.1, the twiddle factors

are obtained as

W 0
4 = 1; W 1

4 = − j; W 2
4 = −1; W 3

4 = − j
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1

j

3
4

Im WN

Re WN

W

2
4W

1
4W

0

1

Unit Circle

4W

j

Fig. 2.1 Representation of W −nk
4

Equation (2.12) is written as

WN =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦ (2.13)

Equation (2.13) represents the twiddle factor to express DFT of any sequence x[n].
Twiddle factors for six-point DFT and eight-point DFT are derived below.

2.2.2.2 Six-Point Twiddle Factor

For N = 6, the unit circle is divided into six equal segments and in the clockwise
sequence labelled as W 0

6 , W 1
6 , W 2

6 , W 3
6 , W 4

6 and W 5
6 noting that W 6

6 = W 0
6 , W 7

6 =
W 1

6 and so on. This is shown in Fig. 2.2. Each segment is shifted by −60◦ on the unit
circle. For N = 6, W6 is obtained by multiplying the rows and columns of W6 and
is given below.



86 2 Discrete and Fast Fourier Transforms (DFT and FFT)

1

4
6

Im WN

Re WN

W 5
6W

0.5 j 0.866

0.5 j0.8660.5 j0.866

0.5 j0.866

1
6W

3
6W

2
6W

0

1

Unit Circle

6W

Fig. 2.2 Representation of W −nk
6

WN =

⎡

⎢⎢⎢⎢⎢⎢⎣

W 0
6 W 0

6 W 0
6 W 0

6 W 0
6 W 0

6
W 0

6 W 1
6 W 2

6 W 3
6 W 4

6 W 5
6

W 0
6 W 2

6 W 4
6 W 6

6 W 8
6 W 10

6
W 0

6 W 3
6 W 6

6 W 9
6 W 12

6 W 15
6

W 0
6 W 4

6 W 8
6 W 12

6 W 16
6 W 20

6
W 0

6 W 5
6 W 10

6 W 15
6 W 20

6 W 25
6

⎤

⎥⎥⎥⎥⎥⎥⎦
(2.14)

W 0
6 = W 6

6 = W 12
6 = W 18

6 = W 24
6 = 1

W 1
6 = W 7

6 = W 13
6 = W 19

6 = W 25
6 = 1e− j π

3 = 0.5 − j0.866

W 2
6 = W 8

6 = W 14
6 = W 20

6 = W 26
6 = 1e− j 2π

3 = −0.5 − j0.866

W 3
6 = W 9

6 = W 15
6 = W 21

6 = W 27
6 = −1

W 4
6 = W 10

6 = W 16
6 = W 22

6 = W 28
6 = 1e j 2π

3 = −0.5 + j0.866

W 5
6 = W 11

6 = W 17
6 = W 23

6 = W 29
6 = 1e j π

3 = 0.5 + j0.866
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Substituting the values of the elements of the matrix W6, we get

W6 =⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 0.5 − j0.866 −0.5 − j0.866 −1 −0.5 + j0.866 0.5 + j0.866
1 −0.5 − j0.866 −0.5 + j0.866 1 −0.5 − j0.866 −0.5 + j0.866
1 −1 1 −1 1 −1
1 −0.5 + j0.866 −0.5 − j0.866 1 −0.5 + j0.866 −0.5 − j0.866
1 0.5 + j0.866 −0.5 + j0.866 −1 −0.5 − j0.866 0.5 − j0.866

⎤

⎥⎥⎥⎥⎥⎥⎦

(2.15)

2.2.2.3 Eight-Point Twiddle Factor

The eight-point twiddle factor is represented in Fig. 2.3. The twiddle factor W8 is
obtained from Fig. 2.3 and is shown below.

1

5

6

8

Im WN

jW8

Re WN

W
7
8W

j
1
8W

4
8W

2
8W

3
8W

0

1

8W

Unit Circle

j 1
2√

jj

4

1
2√

1
2√

1
2√

1
2√

j1
2√

1
2√

1
2√

Fig. 2.3 Representation of W −kn
8
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W8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8
W 0

8 W 1
8 W 2

8 W 3
8 W 4

8 W 5
8 W 6

8 W 7
8

W 0
8 W 2

8 W 4
8 W 6

8 W 8
8 W 10

8 W 12
8 W 14

8
W 0

8 W 3
8 W 6

8 W 9
8 W 12

8 W 15
8 W 18

8 W 21
8

W 0
8 W 4

8 W 8
8 W 12

8 W 16
8 W 20

8 W 24
8 W 28

8
W 0

8 W 5
8 W 10

8 W 15
8 W 20

8 W 25
8 W 30

8 W 35
8

W 0
8 W 6

8 W 12
8 W 18

8 W 24
8 W 30

8 W 36
8 W 42

8
W 0

8 W 7
8 W 14

8 W 21
8 W 28

8 W 35
8 W 42

8 W 49
8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.16)

W8 =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1√

2
− j 1√

2
− j − 1√

2
− j 1√

2
−1 − 1√

2
+ j 1√

2
j 1√

2
+ j 1√

2
1 − j −1 j 1 − j −1 j
1 − 1√

2
− j 1√

2
j 1√

2
− j 1√

2
−1 1√

2
+ j 1√

2
− j − 1√

2
+ j 1√

2
1 −1 1 −1 1 −1 1 −1
1 − 1√

2
+ j 1√

2
− j 1√

2
+ j 1√

2
−1 1√

2
− j 1√

2
j − 1√

2
− j 1√

2
1 j −1 − j 1 j −1 − j
1 1√

2
+ j 1√

2
j − 1√

2
+ j 1√

2
−1 − 1√

2
− j 1√

2
− j 1√

2
− j 1√

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.17)

Example 2.1
Compute the DFT of the sequence x[n] = {1, j, −1, − j} for N = 4.

(Anna University, November, 2006)
Solution
Method 1

W4 =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦ ; X4 =

⎡

⎢⎢⎣

1
j

−1
− j

⎤

⎥⎥⎦

From Eq. (2.9)

X4 = W4x4
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X4 =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
j

−1
− j

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

1 + j − 1 − j
1 + 1 + 1 + 1
1 − j − 1 + j
1 − 1 + 1 − 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
4
0
0

⎤

⎥⎥⎦

X (0) = 0

X (1) = 4

X (2) = 0

X (3) = 0

Method 2

X (k) =
3∑

n=0

x[n]e− j 2πkn
4 ; k = 0, 1, 2, 3, . . .

For k = 0

X (0) =
3∑

n=0

x[n]

= x[0] + x[1] + x[2] + x[3]
= 1 + j − 1 − j = 0

For k = 1

X (1) =
3∑

n=0

x[n]e− j πn
2

= x[0] + x[1]e− j π
2 + x[2]e− jπ + x[3]e− j 3π

2

= 1 + j (− j) + (−1)(−1) + (− j)( j)

= 1 + 1 + 1 + 1 = 4
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For k = 2

X (2) =
3∑

n=0

x[n]e− jπn

= x[0] + x[1]e− jπ + x[2]e− j2π + x[3]e− j3π

= 1 + j (−1) + (−1)(1) + (− j)(−1)

= 1 − j − 1 + j = 0

For k = 3

X (3) =
3∑

n=0

x[n]e− j 3πn
2

= x[0] + x[1]e− 3π
2 + x[2]e− j3π + x[3]e− j 9π

2

= 1 + j ( j) + (−1)(−1) + (− j)(− j)

= 1 − 1 + 1 − 1 = 0

X (0) = 0

X (1) = 4

X (2) = 0

X (3) = 0

Method 1 is simpler and quicker.

Example 2.2
Find eight-point DFT of x[n] = {1, −1, 1, −1, 1, −1, 1, −1}.

(Anna University, April, 2004)
Solution

X N = WN xN

= W8x8 (2.18)

W8 is given in Eq. (2.17).
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x8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1

−1
1

−1
1

−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X (0) is obtained by multiplying x8with the first row of W8. Thus

X (0) = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 = 0

X (1) = 2nd row of W8 to multiply x8

= 1 − 1√
2

+ j
1√
2

− j + 1√
2

+ j
1√
2

− 1 + 1√
2

− j
1√
2

+ j = 0

X (2) = 3rd row of W8 to multiply x8

= 1 + j − 1 − j + 1 + j − 1 − j = 0

X (3) = 1 + 1√
2

+ j
1√
2

+ j − 1√
2

+ j
1√
2

− 1 − 1√
2

− j
1√
2

− j + 1√
2

− j
1√
2

= 0

X (4) = 5th row of W8 to multiply x8

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8

X (5) = 6th row of W8 to multiply x8

= 1 + 1√
2

− j
1√
2

− j − 1√
2

− j
1√
2

− 1 − 1√
2

+ j
1√
2

+ j + 1√
2

+ j
1√
2

= 0

X (6) = 1 − j − 1 + j + 1 − j − 1 + j = 0

X (7) = 1 − 1√
2

− j
1√
2

+ j + 1√
2

− j
1√
2

− 1 + 1√
2

+ j
1√
2

− j − 1√
2

+ j
1√
2

= 0

X8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
8
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.2.3 Zero Padding

In evaluating the DFT we assumed that the length of the DFT which is N is equal
to the length L of the sequence x[n]. If N < L , time domain aliasing occurs due to
under sampling and in the process we could miss out some important details and get
misleading information. To avoid this N , the number of samples of x[n] is increased
by adding some dummy sample of 0 value. This addition of dummy samples is known
as zero padding. The zero padding not only increases the number of samples but also
helps in getting a better idea of the frequency spectrum of X (�).

Example 2.3
Compute the four-point DFT of the sequence

x[n] = 1 0 ≤ n < 2

Solution For the given sequence L = 3 and N = 4. By adding a dummy samples of
0 values (zero padding), the given sequence becomes

x[n] = {1, 1, 1, 0}

xN =

⎡

⎢⎢⎣

1
1
1
0

⎤

⎥⎥⎦

W4 is given in Eq. (2.13).

X4 = W4x4

=

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
1
1
0

⎤

⎥⎥⎦

X (0) = [1 + 1 + 1 + 0] = 3

X (1) = [1 − j − 1 + 0] = − j

X (2) = [1 − 1 + 1 + 0] = 1

X (3) = [1 + j − 1 + 0] = j

X4 =

⎡

⎢⎢⎣

3
− j
1
j

⎤

⎥⎥⎦
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Example 2.4
Compute the four-point DFT of the following sequences:

(1) x[n] = {1, 1, 1, 1}
(2) x[n] = {1, 1, 0, 0}
(3) x[n] = cosπn

(4) x[n] = sin
nπ

2

(Anna University, April, 2004; November, 2007)
Solution

(1) x[n] = {1, 1, 1, 1}

x4 =

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦

X4 = W4x4

=

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦

X (0) = 1 + 1 + 1 + 1

= 4

X (1) = 1 − j − 1 + j

= 0

X (2) = 1 − 1 + 1 − 1

= 0

X (3) = 1 + j − 1 − j

= 0

X4 =

⎡

⎢⎢⎣

4
0
0
0

⎤

⎥⎥⎦
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(2) x[n] = {1, 1, 0, 0}
X4 = W4x4

X4 =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
1
0
0

⎤

⎥⎥⎦

X (0) = 1 + 1 + 0 + 0

= 2

X (1) = 1 − j + 0 + 0

= (1 − j)

X (2) = 1 − 1 + 0 + 0

= 0

X (3) = 1 + j + 0 + 0

= (1 + j)

X4 =

⎡

⎢⎢⎣

2
1 − j
0

1 + j

⎤

⎥⎥⎦

(3) x[n] = cosπn; where n = 0, 1, 2, 3, . . .

x[n] = {1, −1, 1, −1}
X4 = W4x4

=

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
−1
1

−1

⎤

⎥⎥⎦

X (0) = 1 − 1 + 1 − 1

= 0

X (1) = 1 + j − 1 − j

= 0

X (2) = 1 + 1 + 1 + 1

= 4

X (3) = 1 − j − 1 + j

= 0

X4 =

⎡

⎢⎢⎣

0
0
4
0

⎤

⎥⎥⎦
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(4) x[n] = sin nπ
2 ; where n = 0, 1, 2, 3, . . .

x[n] = {0, 1, 0, −1}
X4 = W4x4

X4 =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
1
0

−1

⎤

⎥⎥⎦

X (0) = 0 + 1 + 0 − 1

= 0

X (1) = 0 − j + 0 − j

= − j2

X (2) = 0 − 1 + 0 + 1

= 0

X (3) = 0 + j + 0 + j

= j2

X4 =

⎡

⎢⎢⎣

0
− j2
0
j2

⎤

⎥⎥⎦

Example 2.5
Find the N -point DFT of the following sequences for 0 ≤ n ≤ N − 1.

x[n] = δ[n]

Solution
x[n] = δ[n]

X (k) =
N−1∑

n=0

x[n]e− j 2πkn
N

x[n] =
{
1 n = 0

0 n �= 0

X (k) = 1
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Example 2.6
Find the IDFT of the following functions with N = 4.

(1) X (k) = {1, 0, 1, 0}
(2) X (k) = {6, (−2 + j2), −2, (−2 − j2)}

Solution

(1) X(k) = {1, 0, 1, 0}
From Eq. (2.10)

xN = 1

N
[W ∗

N ]X N

X N =

⎡

⎢⎢⎣

1
0
1
0

⎤

⎥⎥⎦

W ∗
N =

⎡

⎢⎢⎣

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤

⎥⎥⎦

For N = 4

xN = 1

4

⎡

⎢⎢⎣

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
0
1
0

⎤

⎥⎥⎦

x[0] = 1

4
[1 + 0 + 1 + 0] = 0.5

x[1] = 1

4
[1 + 0 − 1 + 0] = 0

x[2] = 1

4
[1 + 0 + 1 + 0] = 0.5

x[3] = 1

4
[1 + 0 − 1 + 0] = 0

x[n] = {0.5, 0, 0.5, 0}
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(2) x[n] = {6, (−2 + j2), −2, (−2 − j2)}

xN = 1

4

⎡

⎢⎢⎣

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

6
−2 + j2

−2
−2 − j2

⎤

⎥⎥⎦

x[0] = 1

4
[6 − 2 + j2 − 2 − 2 − j2] = 0

x[1] = 1

4
[6 − j2 − 2 + 2 + j2 − 2] = 1

x[2] = 1

4
[6 + 2 − j2 − 2 + 2 + j2] = 2

x[3] = 1

4
[6 + j2 + 2 + 2 − j2 + 2] = 3

x[n] = {0, 1, 2, 3}

Example 2.7
Compute four-point DFT of causal three sample sequence given by

x(n) =
{

1
3 , 0 ≤ n ≤ 2

0, else.

Plot the magnitude and phase spectrum.

Solution N -point DFT of x(n) is

X (k) =
N−1∑

n=0

x(n)e− j 2πkn
N ; k = 0, . . . , N − 1

Here N = 4

X (k) =
3∑

n=0

x(n)e− j 2πkn
4 =

3∑

n=0

x(n)e− j πkn
2 ; k = 0, 1, 2, 3, . . .

X (k) = x(0)e0 + x(1)e− jπk
2 + x(2)e− jπk + x(3)e− j3πk

2

= 1

3
+ 1

3
e− jπk

2 + 1

3
e− jπk + 0

= 1

3

[
1 + e− jπk

2 + e− jπk
]
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X (k) = 1

3

[
1 + cos

πk

2
− j sin

πk

2
+ cosπk − j sin πk

]
; k = 0, 1, 2, 3, . . .

For k = 0

X (0) = 1

3
[1 + cos 0 − j sin 0 + cos 0 − j sin 0]

= 1

3
[1 + 1 + 1] = 1∠0

For k = 1

X (1) = 1

3

[
1 + cos

π

2
− j sin

π

2
+ cosπ − j sin π

]

= 1

3
[1 − j − 1] = −1

3
j = 1

3
∠−π/2

For k = 2

X (2) = 1

3
[1 + cosπ − j sin π + cos 2π − j sin 2π ]

= 1

3
[1 − 1 + 1] = 1

3
∠0

For k = 3

X (3) = 1

3

[
1 + cos

3π

2
− j sin

3π

2
+ cos 3π − j sin 3π

]

= 1

3
[1 + j − 1] = j

3
= 1

3
∠π/2

Therefore

X (k) =
{
1∠0,

1

3
∠−π/2,

1

3
∠0,

1

3
∠π/2

}

Magnitude function |X (k)| =
{
1,

1

3
,
1

3
,
1

3

}

Phase function ∠X (k) =
{
0, −π

2
, 0,

π

2

}

The magnitude and phase spectrum shown in Fig. 2.4a, b respectively.
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X(k)
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X(k)
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Fig. 2.4 Magnitude and phase spectrum of Example 2.7

Example 2.8
Compute the four-point DFT of the sequence

x(n) = {0, 1, 2, 3}

Sketch the magnitude and phase spectrum.

Solution Given

x(n) = {0, 1, 2, 3}
Here the length of the sequence L = 4. Hence, we can compute four-point DFT since
N ≥ L . The four-point DFT of the sequence x(n) is given by

X (k) =
3∑

n=0

x(n)e− j 2πkn
4 =

3∑

n=0

x(n)e− j πkn
2

= x(0)e0 + x(1)e− j πk
2 + x(2)e− jπk + x(3)e− j 3πk

2

= 0 + e− j πk
2 + 2e− jπk + 3e− j 3πk

2

X (4) =
(
cos

πk

2
− j sin

πk

2

)
+ 2 (cosπk − j sin πk) + 3

(
cos

3πk

2
− j sin

3πk

2

)

For k = 0

X (0) = (cos 0 − j sin 0) + 2 (cos 0 − j sin 0) + 3 (cos 0 − j sin 0)

= 1 + 2 + 3 = 6 = 6∠0
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For k = 1

X (1) =
(
cos

π

2
− j sin

π

2

)
+ 2(cosπ − j sin π) + 3

(
cos

3π

2
− j sin

3π

2

)

= − j − 2 + 3 j = −2 + 2 j = 2.8∠135◦ = 2.8∠135 × π

180
= 2.8∠0.75π

For k = 2

X (2) = (cosπ − j sin π) + 2(cos 2π − j sin 2π) + 3(cos 3π − j sin 3π)

= −1 + 2 − 3 = −2 = 2∠180 = 2∠180 × π

180
= 2∠π

For k = 3

X (3) =
(
cos

3π

2
− j sin

3π

2

)
+ 2(cos 3π − j sin 3π) + 3

(
cos

9π

2
− j sin

9π

2

)

= j − 2 − 3 j = −2 − 2 j = 2.8∠−135◦ = 2.8∠−135 × π

180
= 2.8∠−0.75π

Therefore,

X (k) = {6∠0, 2.8∠0.75π, 2∠π, 2.8∠−0.75π}

Magnitude function |X (k)| = {6, 2.8, 2, 2.8}
Phase function ∠X (k) = {0, 0.75π, π, −0.75π}

The magnitude and phase spectrum are shown in Fig. 2.5a, b respectively.

Example 2.9
Find the DFT of a sequence x(n) = {1, 1, 0, 0} and find the IDFT of Y (k) =

{1, 0, 1, 0}
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0

6

2.8 2.8

1 2

2

3 k

X(k)

0

.75

.75

1 2 3 k

X(k)
(b)(a)

Fig. 2.5 Magnitude and phase spectrum of Example 2.8

Solution Let us assume L = N = 4. The four-point DFT of x(n) is

X (k) =
N−1∑

n=0

x(n)e− j 2πkn
N , k = 0, 1, . . . , N − 1

X (k) =
3∑

n=0

x(n)e− j 2πkn
N =

3∑

n=0

x(n)e− j πkn
2

X (0) =
3∑

n=0

x(n) = x(0) + x(1) + x(2) + x(3)

= 1 + 1 + 0 + 0 = 2

X (1) =
3∑

n=0

x(n)e− j πn
2 = x(0) + x(1)e− j π

2 + x(2)e− jπ + x(3)e− j 3π
2

= 1 + cos
π

2
− j sin

π

2
= 1 − j

X (2) =
3∑

n=0

x(n)e− jπn = x(0) + x(1)e− jπ + x(2)e− j2π + x(3)e− j3π

= 1 + cosπ − j sin π = 1 − 1 = 0

X (3) =
3∑

n=0

x(n)e− j 3πn
2 = x(0) + x(1)e− j 3π

2 + x(2)e− j3π + x(3)e− j 9π
2

= 1 + cos
3π

2
− j sin

3π

2
= 1 + j

Therefore
X (k) = {2, 1 − j, 0, 1 + j}

Given Y (k) = {1, 0, 1, 0}.
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The four-point IDFT of Y (k) is

y(n) = 1

N

N−1∑

k=0

Y (k)e j 2πkn
N , n = 0, 1, . . . , N − 1

y(n) = 1

4

3∑

k=0

Y (k)e j 2πkn
3

y(0) = 1

4

3∑

k=0

Y (k)

= 1

4
[Y (0) + Y (1) + Y (2) + Y (3)]

y(0) = 1

4
[1 + 0 + 1 + 0] = 0.5

y(1) = 1

4

3∑

k=0

Y (k)e
jπk
2

= 1

4

[
Y (0) + Y (1)e

jπ
2 + Y (2)e jπ + Y (3)e

j3π
2

]

= 1

4

[
Y (0) + Y (1) j sin

π

2
+ Y (2) cosπ + Y (3) j sin

3π

2

]

= 1

4
[1 + 0 − 1 + 0] = 0

y(2) = 1

4

3∑

k=0

Y (k)e
j4πk
4

= 1

4

[
Y (0) + Y (1)e jπ + Y (2)e j2π + Y (3)e j3π ]

= 1

4
[1 + 0 + cos 2π + 0]

= 1

4
[1 + 0 + 1 + 0] = 0.5

y(3) = 1

4

3∑

k=0

Y (k)e
j3πk
2

= 1

4

[
Y (0) + Y (1)e j 3π

2 + Y (2)e j3π + Y (3)e j 9π
2

]

= 1

4
[1 + 0 + cos 3π + 0]

= 1

4
[1 + 0 − 1 + 0] = 0
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Therefore,
y(n) = {0.5, 0, 0.5, 0}

Example 2.10
Find the DFT of a sequence

x(n) =
{
1, for 0 ≤ n ≤ 2

0, otherwise.

for (i) N = 4 and (ii) N = 8. Plot |X (k)| and ∠X (k). Comment on the result.

Solution Given length of the sequence L = 3. x[n] is represented in Fig. 2.6a.

(i) For N = 4 the periodic extension of the sequence is shown inFig. 2.6b.Consider,

x[n] = {1, 1, 1, 0}

0 1

1

2 n

x(n)

0 1 2 3 4 5 6 7 8 9 10 118 7 6 5 4 3 2 1

xp(n)

(a)

(b)

Fig. 2.6 DT signal and its periodic extension
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X (k) =
N−1∑

n=0

x(n)e− j 2πkn
N

=
3∑

n=0

x(n)e− j 2πkn
4

X (0) =
3∑

n=0

x(n) = x(0) + x(1) + x(2) + x(3)

= 3 = 3∠0

X (1) =
3∑

n=0

x(n)e− j πn
2

= x(0) + x(1)e− j π
2 + x(2)e− jπ + x(3)e− j 3π

2

= 1 + (− j) + (−1)

= − j

= 1∠π/2

X (2) =
3∑

n=0

x(n)e− jπn

= x(0) + x(1)e− jπ + x(2)e− j2π + x(3)e− j3π

= 1 + (−1) + 1 = 1 = 1∠0

X (3) =
3∑

n=0

x(n)e− j 3πn
2

= x(0) + x(1)e− j 3π
2 + x(2)e− j3π + x(3)e− j 9π

2

= 1 + j − 1 = j = 1∠π/2

Therefore,

X (k) = {3∠0, 1∠π/2, 1∠0, 1∠π/2}
|X (k)| = {3, 1, 1, 1}
∠X (k) =

{
0,−π

2
, 0,

π

2

}

Magnitude and phase spectrum are shown in Fig. 2.7a, b
respectively.

(ii) For N = 8

x(n) = {1, 1, 1, 0, 0, 0, 0, 0}



2.2 Discrete Fourier Transform (DFT) 105

X (k) =
7∑

n=0

x(n)e− j 2πkn
8 , k = 0, . . . , 7

X (0) =
7∑

n=i

x(n) = 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 = 3

= 3∠0

X (1) =
7∑

n=0

x(n)e− j πn
4

= x(0) + x(1)e− j π
4 + x(2)e− j 2π

4 + 0 + 0

= 1 + 1√
2

− j
1√
2

− j = 1.707 − j1.707

X (1) = 2.414∠−π/4

X (2) =
7∑

n=0

x(n)e− j πn
2

= x(0) + x(1)e− j π
2 + x(2)e− jπ + 0 + 0

= 1 + cos
π

2
− j sin

π

2
+ cosπ − j sin π

= 1 − j − 1 = − j

= 1∠−π/2

X (3) =
7∑

n=0

x(n)e− j 3πn
4

= x(0) + x(1)e− j 3π
4 + x(2)e− j 3π

2 + 0 + 0

= 1 + cos
3π

4
− j sin

3π

4
+ cos

3π

2
− j sin

3π

2
= 1 − 0.707 − j0.707 + j = 0.293 + j0.293

= 0.414∠π/3

X (4) =
7∑

n=0

x(n)e− jnπ

= x(0) + x(1)e− jπ + x(2)e− j2π + 0 + 0

= 1 + cosπ − j sin π + cos 2π − j sin 2π

= 1 − 1 + 1 = 1∠0
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X (5) =
7∑

n=0

x(n)e− j 5πn
4

= x(0) + x(1)e− j 5π
4 + x(2)e− j 5π

2

= 1 + cos
5π

4
− j sin

5π

7
+ cos

5π

2
− j sin

5π

2
= 1 − 0.707 + j0.707 − j

= 0.293 − j0.293 = 0.414∠−π/4

X (6) =
7∑

n=0

x(n)e− j 3πn
2

= x(0) + x(1)e− j 3π
2 + x(2)e− j3π + 0

= 1 + cos
3π

2
− j sin

3π

2
+ cos 3π − j sin 3π

= 1 + j − 1 = j

= 1∠π/2

X (7) =
7∑

n=0

x(n)e− j 7πnk
4

= 1 + e− j 7π
4 + e− j 7π

2 + 0

= 1 + cos
7π

4
− j sin

7π

4
+ cos

7π

2
− j sin

7π

2
+ 0

= 1 + 0.707 + j0.707 + j

= 1.707 + j1.707

= 2.414∠π/4

Therefore

X (k) = {3, 2.414, 1, 0.414, 1, 0.414, 1, 2.414}
∠X (k) =

{
0,−π

4
,−π

2
,
π

4
, 0,−π

4
,
π

2
,
π

4

}

The magnitude and phase spectrum are shown in Fig. 2.8a, b respectively.
Comments: It is very difficult to extrapolate the entire frequency spectrum with
N = 4, i.e., the resolution of the spectrum is very poor. In order to increase
the resolution, we must increase N . It is possible to extrapolate the frequency
spectrum with N = 8. Thus, the zero padding gives us a high density spectrum
and provides a better displayed magnitude and phase plots.
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Fig. 2.7 Magnitude and phase spectrum for N = 4

X(k)

0 1 2 3 4 5 6 7

(a)

kk

X(k)

0
1 2

3
4 5

6 7

(b)

Fig. 2.8 Magnitude and phase spectrum for N = 8

Example 2.11
Find IDFT of the sequence X (k) = {5, 0, 1 − j, 0, 1, 0, 1 + j, 0}

(Anna University, December, 2003)
Solution Given N = 8

x(n) = 1

N

N−1∑

k=0

X (k)e j 2πkn
N , n = 0, . . . , N − 1

x(n) = 1

8

7∑

k=0

X (k)e j πkn
4 , n = 0, . . . , 7
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x(0) = 1

8

7∑

k=0

X (k)

= 1

8
[5 + 0 + 1 − j + 0 + 1 + 0 + 1 + j + 0] = 1

x(1) = 1

8

7∑

k=0

X (k)e j πk
4

= 1

8
[5 + (1 − j) j + 1(−1) + (1 + j)(− j)]

= 1

8
[6] = 0.75

x(2) = 1

8

7∑

k=0

X (k)e j πk
2

= 1

8
[5 + (1 − j)(−1) + 1(1) + (1 + j)(−1)]

= 1

8
[4] = 0.5

x(3) = 1

8

7∑

k=0

X (k)e j 3πk
4

= 1

8
[5 + (1 − j)(− j) + 1(−1) + (1 + j)( j)]

= 1

8
[2] = 0.25

x(4) = 1

8

7∑

k=0

X (k)e jπk

= 1

8
[5 + (1 − j)(1) + 1(1) + (1 + j)(1)] = 1

x(5) = 1

8

7∑

k=0

X (k)e j 5πk
4

= 1

8
[5 + (1 − j)( j) + (1)(1) + (1 + j)(− j)]

= 1

8
[6] = 0.75

x(6) = 1

8

7∑

k=0

X (k)e j 3πk
2

= 1

8
[5 + (1 − j)(−1) + 1(1) + (1 + j)(−1)]

= 1

8
[4] = 0.5
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x(7) = 1

8

7∑

k=0

X (k)e j 7πk
4

= 1

8
[5 + (1 − j)(− j) + 1(−1) + (1 + j)( j)]

= 1

8
[2] = 0.25

Therefore,
x(n) = {1, 0.75, 0.5, 0.25, 1, 0.75, 0.5, 0.25}

Example 2.12
Two finite duration sequences are given by

x[n] = sin
(nπ

2

)
for n = 0, 1, 2, 3

h[n] = 2n for n = 0, 1, 2, 3

(a) Calculate the four-point DFT X (k). (b) Calculate the four-point DFT H(k) and
(c) If Y (k) = X (k)H(k), determine the inverse DFT y(n) of Y (k) and sketch it.

(Anna University, December, 2007)
Solution

(a) To calculate the four-point DFT X (k)

Given

x[n] = sin
(nπ

2

)
for n = 0, 1, 2, 3

x[n] = {0, 1, 0, −1}
X4 = W4x4

=

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
1
0

−1

⎤

⎥⎥⎦

X (0) = 0 + 1 + 0 − 1 = 0

X (1) = 0 − j + 0 − j = − j2

X (2) = 0 − 1 + 0 + 1 = 0

X (3) = 0 + j + 0 + j = j2
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X4 =

⎡

⎢⎢⎣

0
−2 j
0
2 j

⎤

⎥⎥⎦

X (k) = {0, −2 j, 0, 2 j}

(b) Calculate the four-point DFT H(k)

Given

h[n] = 2n for n = 0, 1, 2, 3

h[n] = {1, 2, 4, 8}
H4 = W4h4

=

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
2
4
8

⎤

⎥⎥⎦

H(0) = 1 + 2 + 4 + 8 = 15

H(1) = 1 − 2 j − 4 + 8 j = −3 + 6 j

H(2) = 1 − 2 + 4 − 8 = −5

H(3) = 1 + 2 j − 4 − 8 j = −3 − 6 j

H4 =

⎡

⎢⎢⎣

15
−3 + 6 j

−5
−3 − 6 j

⎤

⎥⎥⎦

H(k) = {15, −3 + 6 j, −5, −3 − 6 j}

(c)

Y (k) = X (k)H(k)

= {0, − j2, 0, j2}{15, −3 + j6, −5, −3 − j6}
= {0 × 15, (− j2)(−3 + j6), 0 × (−5), j2(−3 − j6)}
= {0, 6 j + 12, 0, −6 j + 12}

Y (k) = {0, 12 + 6 j, 0, 12 − 6 j}

From Eq. (2.10)
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yn = 1

N
[W ∗

N ]YN

Yn =

⎡

⎢⎢⎣

0
12 + 6 j

0
12 − 6 j

⎤

⎥⎥⎦

W ∗
N =

⎡

⎢⎢⎣

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤

⎥⎥⎦

For N = 4

yN = 1

4

⎡

⎢⎢⎣

1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
12 + 6 j

0
12 − 6 j

⎤

⎥⎥⎦

y[0] = 1

4
[0 + 12 + 6 j + 0 + 12 − 6 j] = 6

y[1] = 1

4
[0 + 12 j − 6 + 0 − 12 j − 6] = −3

y[2] = 1

4
[0 − 12 − 6 j + 0 − 12 + 6 j] = −6

y[3] = 1

4
[0 − 12 j + 6 + 0 + 12 j + 6] = 3

y[n] = {6, −3, −6, 3}

0 11 22

3

3

3

4

6

6

n

y(n)
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Example 2.13
Compute the DFT of

x[n] = e−0.5n, 0 ≤ n ≤ 5

(Anna University, June, 2007)
Solution For the given sequence L = 5. In general N ≥ L .
Let N = 8

X (k) =
N−1∑

n=0

x(n)e
− j2πkn

8

X (k) =
5∑

n=0

e−0.5ne
− j2πkn

8

=
5∑

n=0

e−0.5ne
− jπkn

4

=
5∑

n=0

(
e−0.5e

− jπk
4

)n

=
5∑

n=0

(
0.607e

− jπk
4

)n

=
1 −

(
0.607e

− jπk
4

)6

1 − 0.607e
− jπk

4

X (k) = 1 − 0.05e
− j3πk

2

1 − 0.607e
− jπk

4

The following summation formula is used above.

N−1∑

n=0

xn = 1 − x N

1 − x
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Example 2.14
Calculate the DFT of the sequence

x[n] = {1, 1, −2, −2}

(Anna University, November, 2006)
Solution Given

x[n] = {1, 1, −2, −2}

x4 =

⎡

⎢⎢⎣

1
1

−2
−2

⎤

⎥⎥⎦

W4 is given in Eq. (2.13)

X4 = W4x4

=

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
1

−2
−2

⎤

⎥⎥⎦

X (1) = 1 + 1 − 2 + 2 = 2

X (2) = 1 − j + 2 + 2 j = 3 + j

X (3) = 1 − 1 − 2 − 2 = −4

X (4) = 1 + j + 2 − 2 j = 3 − j

X4 =

⎡

⎢⎢⎣

2
3 + j
−4
3 − j

⎤

⎥⎥⎦

Four-point DFT of x(n) is

X (k) = {2, 3 + j, −4, 3 − j}
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Example 2.15
A finite duration sequence of length L is given as

x(n) =
{
1, 0 ≤ n ≤ L − 1,

0, otherwise.

Determine the N -point DFT of the sequence for N = L .

(Anna University, June, 2007)
Solution For N = L . A finite duration x(n) is

x(n) =
{
1, 0 ≤ n ≤ N − 1,

0, otherwise.

N -point DFT of x(n) is

X (k) =
N−1∑

n=0

x(n)e
− j2πkn

N

=
N−1∑

n=0

1 · e − j2πkn
N

=
N−1∑

n=0

(
e

− j2πk
N

)n

= 1 − e
− j2πk N

N

1 − e
− j2πk

N

∵ e
− j2πk N

N = e− j2πk = 1

= 0

Example 2.16
Compute DFT of x[n]

x(n) =
{
0, 0 ≤ n ≤ 4,

1, 5 ≤ n < 7.

(Anna University, December, 2005)
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Solution Given

x(n) =
{
0, 0 ≤ n ≤ 4,

1, 5 ≤ n < 7.

x[n] = {0, 0, 0, 0, 0, 1, 1}

Let us assume N = L = 8. Therefore, x[n] = {0, 0, 0, 0, 0, 1, 1, 0}

X (k) =
N−1∑

n=0

x(n)e
− j2πnk

N , k = 0, . . . , N − 1

X (k) =
7∑

n=0

x(n)e
− j2πnk

8 , k = 0, 1, . . . , 7

X (k) =
7∑

n=0

x(n)e
− jπnk

4 , k = 0, 1, . . . , 7

For k = 0

X (0) =
7∑

n=0

x(n)

X (0) = 0 + 0 + 0 + 0 + 0 + 1 + 1 + 0 = 2

For k = 1

X (1) =
7∑

n=0

x(n)e
− jπn

4

= x(0) + x(1)e
− jπ
4 + x(2)e

− jπ
2 + x(3)e

− j3π
4 + x(4)e− jπ

+x(5)e
− j5π

4 + x(6)e
− j3π

2 + x(7)e
− j7π

4

= 0 + 0 + 0 + 0 + 0 + e
− j5π

4 + e
− j3π

2 + 0

X (1) = −0.707 + 0.707 j + j

= −0.707 + 1.707 j

For k = 2

X (2) =
7∑

n=0

x(n)e
− jπn

2

= x(5)e
− j5π

2 + x(6)e− j3π

= − j − 1 = −1 − j
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For k = 3

X (3) =
7∑

n=0

x(n)e
− j3πn

4

= x(5)e
− j15π

4 + x(6)e
− j9π

2

= 0.707 + 0.707 j − j

= 0.707 − 0.293 j

For k = 4

X (4) =
7∑

n=0

x(n)e− jπn

= x(5)e− j5π + x(6)e− j6π

= −1 + 1 = 0

For k = 5

X (5) =
7∑

n=0

x(n)e
− j5πn

4

= x(5)e
− j25π

4 + x(6)e
− j15π

2

= 0.707 − 0.707 j + j

= 0.707 + 0.293 j

For k = 6

X (6) =
7∑

n=0

x(n)e
− j3πn

2

= x(5)e
− j15π

2 + x(6)e− j9π

= j − 1 = −1 + j

For k = 7

X (7) =
7∑

n=0

x(n)e
− j7πn

4

= x(5)e
− j35π

2 + x(6)e
− j21π

2

= −0.707 − 0.707 j − j

= −0.707 − 1.707 j
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X (k) =
{
2, −0.707 + 1.707 j, −1 − j, 0.707 − 0.293 j, 0,

0.707 + 0.293 j, −1 + j, −0.707 − 1.707 j

}

Example 2.17
Compute the DFT of the sequence x[n] = e−n where 0 ≤ n ≤ 4.

(Anna University, December, 2004)
Solution Let N = 8, therefore

x(n) =
{
en, 0 ≤ n ≤ 4,

0, 5 ≤ n ≤ 7.

X (k) =
7∑

n=0

x(n)e
− j2πnk

8

=
4∑

n=0

x(n)e
− j2πnk

8

=
4∑

n=0

e−ne
− j2πnk

8

=
4∑

n=0

(
e−1 · e − j2πk

8

)n

=
4∑

n=0

(
0.3679e

− jπk
4

)n

X (k) =
1 −

(
0.3679e

− jπk
4

)5

1 − 0.3679e
− jπk

4

, k = 0, . . . , N − 1

because

N∑

n=0

xn = 1 − x N+1

1 − x
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Example 2.18
Determine the eight-point DFT of the sequence

x[n] = {0, 0, 1, 1, 1, 0, 0, 0}

(Anna University, May, 2004)
Solution Given

X N = WN xN

X8 = W8x8

W8 is given Eq. (2.17)

x8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X (0) is obtained by multiplying x8 with first row of W8. Thus

X (0) = 0 + 0 + 1 + 1 + 1 + 0 + 0 + 0 = 3

X (1) = 2nd row of W8 to multiply x8

= − j − 1√
2

− j√
2

− 1 = −1.707 − j1.707

X (2) = 3rd row of W8 to multiply x8
= −1 + j + 1 = j

X (3) = 4th row of W8 to multiply x8

= j + 1√
2

− j
1√
2

− 1 = −0.293 + j0.293

X (4) = 5th row of W8 to multiply x8
= 1 − 1 + 1 = 1

X (5) = 6th row of W8 to multiply x8

= − j + 1√
2

+ j√
2

− 1 = −0.293 − j0.293

X (6) = 7th row of W8 to multiply x8
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= −1 − j + 1 = − j

X (7) = 8th row of W8 to multiply x8

= j − 1√
2

+ j√
2

− 1 = −1.707 + j1.707

Therefore,

X (k) =
{
3, −1.707 − j1.707, j, −0.293 + j0.293,

1, −0.293 − j0.293, − j, −1.707 + j1.707

}

Example 2.19
Find the N -point DFT of the following signals

(a) x[n] = δ(n − n0)

(b) x[n] = an

Solution

(a) x[n] = δ(n − n0)

X (k) =
N−1∑

n=0

x(n)e
− j2πkn

N

x[n] =
{
1, n = n0,

0, n �= n0.

X (k) = e
− j2πkn0

N

(b) x[n] = an

X (k) =
N−1∑

n=0

ane
− j2πkn

N

=
N−1∑

n=0

(
ae

− j2πk

N

)n
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using summation formula

N∑

n=0

xn = 1 − x N+1

1 − x

we get

X (k) =
1 −

(
ae − j2πk

N

)N

1 − ae − j2πk
N

X (k) = 1 − aN

1 − ae − j2πk
N

2.3 Relationship of the DFT to Other Transforms

2.3.1 Relationship to the Fourier Series Coefficients
of a Periodic Sequence

Fourier series of the discrete time signal is written as

x(n) =
N−1∑

k=0

Cke
j 2πnk

N − ∞ < n < ∞ (2.19)

where the Fourier series coefficients are represented as

Ck = 1

N

N−1∑

n=0

x(n)e− j 2πnk
N k = 0, . . . , N − 1 (2.20)

DFT =⇒ X (k) =
N−1∑

n=0

x(n)e− j 2πnk
N (2.21)

Comparing Eqs. (2.20) and (2.21), we get

Ck = 1

N
X (k)

X (k) = NCk (2.22)
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2.3.2 Relationship to the Fourier Transform of an Aperiodic
Sequence

Fourier transform of x(n) is

X (ω) =
∞∑

n=−∞
x(n)e− jωn (2.23)

X (k) = X (ω)

∣∣∣∣
ω= 2πk

N

, k = 0, . . . , N − 1 (2.24)

The finite duration sequence

X (k) =
N−1∑

n=0

x(n)e− j 2πkn
N

2.3.3 Relationship to the z-Transform

The z-transform of N -point sequence x(n) is given by,

X (z) =
N−1∑

n=0

x(n)z−n (2.25)

Let us evaluate X (z) at N equally spaced points on unit circle that is at z = e j 2πk
N

X (z)

∣∣∣∣
z=e j 2πk

N

=
N−1∑

n=0

x(n)e− j 2πkn
N

= X (k)

X (k) = X (z)

∣∣∣∣
z=e j 2πk

N

(2.26)

From Eq. (2.26), we can conclude that the N -point DFT of a finite duration sequence
can be obtained from the z-transform of the sequence at N equally spaced points
around the unit circle.
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Example 2.20
Consider the finite length sequence x(n) as represented below:

x(n)

0

1

2

1 2

1

n

1

3

Let X (z) be the z-transform of x(n). If we sample X (z) at

z = e j( 2π
4 )k, k = 0, 1, 2, 3

Using the relation

X1(k) = X (z)

∣∣∣∣
z=e j( 2π

4 )k

find the sequence x1(n).

Solution

X1(k) = X (z)

∣∣∣∣
z=e j( 2π

4 )k

X (z) =
3∑

n=0

x(n)z−n = x(0) + x(1)z−1 + x(2)z−2 + x(3)z−3

= 1 + 2z−1 + z−2 + z−3

X1(k) = (
1 + 2z−1 + z−2 + z−3

) ∣∣∣∣
z=e j( 2π

4 )k

X1(k) = 1 + 2e
− j2πk

4 + e
− j2πk·2

4 + e
− j2πk·3

4

X1(k) = x1(0) + x1(1)e
− j2πk

4 + x1(2)e
− j2πk·2

4 + x1(3)e
− j2πk·3

4

Therefore,
x1(n) = {1, 2, 1, 1}
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2.4 Properties of DFT

2.4.1 Periodicity

If a sequence x(n) is periodic with periodicity of N samples, then N -point DFT of
the sequence is also periodic with periodicity of N samples.

Hence, if x(n) and X (k) are an N point. DFT pair, then

x(n + N ) = x(n) for all n

X (k + N ) = X (k) for all k (2.27)

Proof

X (k) =
N−1∑

n=0

x(n)e− j 2πkn
N

X (k + N ) =
N−1∑

n=0

x(n)e− j 2π(k+N )n
N

=
N−1∑

n=0

x(n)e− j 2πkn
N e− j2πn

e− j2πn = 1 for all n, (Here n is an integer)

X (k + N ) =
N−1∑

n=0

x(n)e− j 2πkn
N

X (k + N ) = X (k)

2.4.2 Linearity

If

x1(n)
DFT←→

N
X1(k) and x2(n)

DFT←→
N

X2(k)

then for any real-valued or complex-valued constants a1 and a2

a1x1(n) + a2x2(n)
DFT←→

N
a1X1(k) + a2X2(k) (2.28)
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Proof

DFT{a1x1(n) + a2x2(n)} =
N−1∑

n=0

(a1x1(n) + a2x2(n))e− j 2πkn
N

= a1

N−1∑

n=0

x1(n)e− j 2πkn
N + a2

N−1∑

n=0

x2(n)e− j 2πkn
N

= a1X1(k) + a2X2(k)

2.4.3 Circular Shift and Circular Symmetric of a Sequence

Consider a finite duration sequence x(n) and its periodic extension x p(n). The peri-
odic extension of x(n) can be expressed as x p(n) = x(n + N ) where N is the peri-
odicity. For example, let

x(n) = { 1, 2, 3, 4} and N = 4

↑

The sequence and its periodic extension are shown in Fig. 2.9a, b respectively. Let
us shift the periodic sequence x p(n) by two units of time to the right.

Let us denote one period of this shifted sequence by x ′(n). The sequence x ′(n)

can be represented by x(n − 2, (mod4)) where mod 4 indicates that the sequence
repeats after four samples.

x ′(n) = x(n − 2, mod 4)

x ′(0) = x(−2, mod 4) = x(2) = 3

x ′(1) = x(−1, mod 4) = x(3) = 4

x ′(2) = x(0, mod 4) = x(0) = 1

x ′(3) = x(1, mod 4) = x(1) = 2

Circular representation of x(n) and x ′(n) are shown in Fig. 2.10.
From this, x ′(n) is simply x(n) shifted circularly by two units in time where the

counterclockwise direction has been arbitrarily selected as positive direction. From
this we conclude that a circular shift of an N -point sequence is equivalent to linear
shift of its periodic extension.

Let x(n) be a N -point sequence represented on a circle and x ′(n) be its shifted
sequence by k units of time

x ′(n) = x(n − k, mod 4) = x(n − k)N (2.29)
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x(n)
(a () b)

(c)

xp(n)

n 4 3 2 1 0 1 2

3

4

2
1 1

2 2
3

4 4

3

1

3 4 5 6 7

4
3

3

2

2

1

10 n

xp(n 2)

2 1 0

3

4

2
1

n1 2

2

4

3

1

3 4 5 6 7 8 9

2

4

3

1

x'(n)

0

3

4

1 2

2
1

3

(d)

Fig. 2.9 a Discrete time signal x(n), b periodic extension of x(n), c shifted periodic extension of
x(n) and d discrete time signal x ′(n)

x(n)

x(1) 2

x(0) 1x(2) 3

x(3) 4

x'(n)

x'(1) 4

x'(0) 3x'(2) 1

x'(3) 2

Fig. 2.10 Circular representation
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Even Symmetry
An N -point sequence is called even, if it is symmetric about zero on the circle

x(N − n) = x(n) for 0 ≤ n ≤ N − 1 (2.30)

Odd Symmetry
An N -point sequence is called odd, if it is asymmetric about zero on the circle

x(N − n) = −x(n) for 0 ≤ n ≤ N − 1 (2.31)

Time Reversal
Time reversal of a N -point sequence is obtained as

x(−n, mod N ) = x(N − n) (2.32)

x(−n)N = x(N − n), 0 ≤ n ≤ N − 1 (2.33)

Time reversal is equivalent to plotting x(n) in a clockwise direction on a circle.
Even and odd sequences for a periodic sequence x p(n) are given as

Even: x p(n) = x p(−n) = x p(N − n) (2.34)

Odd: x p(n) = −x p(−n) = −x p(N − n) (2.35)

If the periodic sequence is complex valued, then

Conjugate Even: x p(n) = x∗
p(N − n) (2.36)

Conjugate Odd: x p(n) = −x∗
p(N − n) (2.37)

x p(n) = x pe(n) + x po(n) (2.38)

x pe(n) = 1

2
[x p(n) + x∗

p(N − n)] (2.39)

x po(n) = 1

2
[x p(n) + x∗

p(N − n)] (2.40)

2.4.4 Symmetry Properties of the DFT

Let us assume that N -point sequence x(n) and its DFT are complex valued then,

x(n) = xR(n) + j xI (n) 0 ≤ n ≤ N − 1

X (k) = X R(k) + j X I (k) 0 ≤ k ≤ N − 1 (2.41)
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=
N−1∑

n=0

(xR(n) + j xI (n))e− j 2πkn
N

=
N−1∑

n=0

(xR(n) + j xI (n))

(
cos

2πkn

N
− j sin

2πkn

N

)

X (k) =
N−1∑

n=0

[
xR(n) cos

2πkn

N
+ xI (n) sin

2πkn

N

]

− j
N−1∑

n=0

[
xR(n) sin

2πkn

N
− xI (n) cos

2πkn

N

]

= X R(k) + j X I (k)

where

X R(k) =
N−1∑

n=0

[
xR(n) cos

2πkn

N
+ xI (n) sin

2πkn

N

]

X I (k) = −
N−1∑

n=0

[
xR(n) sin

2πkn

N
− xI (n) cos

2πkn

N

]

Similarly

xR(n) = 1

N

N−1∑

k=0

[
X R(k) cos

2πkn

N
− X I (k) sin

2πkn

N

]
(2.42)

xI (n) = 1

N

N−1∑

k=0

[
X R(k) sin

2πkn

N
+ X I (k) cos

2πkn

N

]
(2.43)

Case (i) Real Value Sequence
If x(n) is real,

X (N − k) = X∗(k) = X (−k)

X (k) = X∗(N − k), X (k) has complex conjugate symmetry

|X (N − k)| = |X (k)|
∠X (N − k) = −∠X (k) (2.44)
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Case (ii) Real and Even Value Sequence If x(n) is real and even that is,

x(n) = x(N − n), 0 ≤ n ≤ N − 1

X I (k) = 0, xI (n) = 0

DFT =⇒ X (k) = X R(k) =
N−1∑

n=0

x(n) cos
2πkn

N
; 0 ≤ n ≤ N − 1 (2.45)

IDFT =⇒ x(n) = 1

N

N−1∑

k=0

X (k) cos
2πkn

N
; 0 ≤ n ≤ N − 1 (2.46)

Case (iii) Real and Odd Sequence
If x(n) is real and odd that is,

x(n) = −x(N − n)

X R(k) = 0, xI (n) = 0

DFT =⇒ X (k) = j X I (k) = − j
N−1∑

n=0

x(n) sin
2πkn

N
; 0 ≤ n ≤ N − 1 (2.47)

IDFT =⇒ x(n) = j
1

N

N−1∑

k=0

X (k) sin
2πkn

N
; 0 ≤ k ≤ N − 1 (2.48)

Case (iv) Purely Imaginary Sequence

x(n) = j xI (n)

X R(k) =
N−1∑

n=0

xI (n) sin
2πkn

N
(2.49)

X I (k) =
N−1∑

n=0

xI (n) cos
2πkn

N
(2.50)

X (k) = X R(k) + X I (k) (2.51)

Example 2.21
The first five points of the eight-point DFT of a real-valued sequences are

{28, −4 + j9.565, −4 + j4, −4 + j1.656, −4}

Determine the remaining three points.
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Solution Give N = 8,

X (0) = 28 X (1) = −4 + j9.565

X (2) = −4 + j4 X (3) = −4 + j1.656

X (4) = −4

We have
X (k) = X∗(N − k)

The remaining three DFT points are,

X (5) = X∗(8 − 5) = X∗(3) = −4 − j1.656

X (6) = X∗(8 − 6) = X∗(2) = −4 − j4

X (7) = X∗(8 − 7) = X∗(1) = −4 − j9.565

2.4.5 Multiplication of Two DFTs and Circular Convolution

Let x1(n) and x2(n) are finite duration sequence of length N . Their respective N -point
DFTs are

X1(k) =
N−1∑

n=0

x1(n)e− j 2πnk
N ; k = 0, 1, 2, . . . , N − 1 (2.52)

X2(k) =
N−1∑

n=0

x2(l)e
− j 2πlk

N ; k = 0, 1, 2, . . . , N − 1 (2.53)

If we multiply the two DFTs together, the result is a DFT, say X3(k) of a sequence
x3(n) of length N

X3(k) = X1(k)X2(k); k = 0, 1, 2, . . . , N − 1 (2.54)

IDFT{X3(k)} = x3(m)

By the definition of IDFT

x3(m) = 1

N

N−1∑

k=0

X3(k)e j 2πkm
N m = 0, . . . , (N − 1) (2.55)

= 1

N

N−1∑

k=0

X1(k)X2(k)e j 2πkm
N
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= 1

N

N−1∑

k=0

[
N−1∑

n=0

x1(n)e− j 2πnk
N

][
N−1∑

l=0

x2(l)e
− j 2πkl

N

]
e j 2πkm

N

x3(m) = 1

N

N−1∑

n=0

x1(n)

N−1∑

l=0

x2(l)
N−1∑

k=0

e j 2πk[m−n−l]
N

Let (m − n − l) = P N , where P is an integer.

e
j2πk(m−n−l)

N = e
j2πk P N

N

= e j2πkp = (e j2πp)k

From finite geometric series sum formula

N−1∑

n=0

an =
{

N , for a = 1
1−aN

1−a , for a �= 1.

Therefore,

N−1∑

k=0

e
j2πk(m−n−l)

N =
N−1∑

k=0

(e j2πp)k =
N−1∑

k=0

1k = N

∴ x3(m) = 1

N

N−1∑

n=0

x1(n)

N−1∑

l=0

x2(l)N

=
N−1∑

n=0

x1(n)

N−1∑

l=0

x2(l)

If x2(l) is a periodic sequence with periodicity of N samples then x2(l ± P N ) =
x2(l). Here m − n − l = P N , and therefore l = m − n − P N

x2(l) = x2(m − n − P N ) = x2(m − n)N

= x2((m − n), mod N )

∴ x3(n) =
N−1∑

n=0

x1(n)

N−1∑

n=0

x2(m − n)N

=
N−1∑

n=0

x1(n)x2(m − n)N

x3(n) = x1(n) ©N x2(n)
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IDFT [X1(k)X2(k)] = x1(n) ©N x2(n)

X1(k)X2(k) = DFT [x1(n) ©N x2(n)] (2.56)

Therefore,

x1(n) ©N x2(n)
DFT←→ X1(k)X2(k) (2.57)

Thus, we conclude that multiplication of the DFTs of two sequence is equivalent to
the DFT of the circular convolution of the two sequences.

2.4.6 Time Reversal of a Sequence

If

x(n)
DFT←→

N
X (k)

then

x((−n))N = x(N − n)
DFT←→

N
X ((−k))N = X (N − k) (2.58)

Hence, reversing the N -point sequence in time is equivalent to reversing the DFT
values (enter the sequence is clockwise direction in the circle).

Proof

DFT {x(n − N )} =
N−1∑

n=0

x(N − m)e− j 2πkn
N

Let m = N − n

DFT {x(n − N )} =
N−1∑

n=0

x(m)e− j 2πk(N−m)

N

=
N−1∑

m=0

x(m)e j 2πkm
N · e− j 2πk N

N

=
N−1∑

m=0

x(m)e− j 2π(N−k)m
N = X (N − k)

X (N − k) = X ((−k))N , 0 ≤ n ≤ N − 1
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2.4.7 Circular Time Shift of a Sequence

If

x(n)
DFT←→

N
X (k)

then

x(n − l)N
DFT←→

N
X (k)e− j 2πkl

N (2.59)

Proof

DFT {x((n − l))N } =
N−1∑

n=0

x((n − l))Ne
− j 2πkn

N

DFT {x((n − l))N } =
l−1∑

n=0

x((n − l))Ne
− j 2πkn

N +
N−1∑

n=0

x(n − l)Ne
− j 2πkn

N

let

x((n − l))N = x(N + (n − l))

= x(N + n − l)

m = N + n − l

∴
l−1∑

n=0

x((n − l))Ne
− j 2πkn

N =
N−1∑

m=N−l

x(N + n − l)e− j 2πkn
N

=
N−1∑

m=N−l

x(m)e− j 2πk(m+l−N )

N

=
N−1∑

m=N−l

x(m)e− j 2πkm
N · e− j 2πkl

N

N−1∑

n=l

x(n − l)e− j 2πkn
N =

N−1−l∑

m=0

x(m)e− j 2πk(m+l)
N
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Therefore,

DFT {x(n − l)N } =
N−1∑

m=N−l

x(m)e− j 2πk(m+l)
N +

N−1−l∑

m=0

x(m)e− j 2πk(m+l)
N

=
N−1∑

m=0

x(m)e− j 2πk(m+l)
N

= e− j 2πkl
N

N−1∑

m=0

x(m)e− j 2πkm
N

= e− j 2πkl
N · X (k)

2.4.8 Circular Frequency Shift

If

x(n)
DFT←→

N
X (k)

then

x(n)e j 2πln
N

DFT←→
N

X ((k − l))N (2.60)

Proof

DFT {X ((k − l))N } = 1

N

N−1∑

k=0

X ((k − l))Ne
j 2πkn

N

= 1

N

l−1∑

k=0

X ((k − l))Ne
j 2πkn

N + 1

N

N−1∑

k=l

X ((k − l))Ne
j 2πkn

N

Let X ((k − l))N = X (N + k − l)

N + k − l = m

when k = 0 =⇒ m = N − l

when k = l − 1 =⇒ m = N − 1
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1

N

l−1∑

k=0

X ((k − l))N e j 2πkn
N = 1

N

N−1∑

m=N−l

x(N + k − l)e j 2πkn(m+l−N )
N

= 1

N

N−1∑

m=N−l

X (m)e j 2π(m+l)n
N

1

N

N−1∑

k=l

X ((k − l))e j 2πkn
N = 1

N

N−1−l∑

m=0

X (m)e j 2π(m+l)n
N

∴ DFT {X ((k − l))N } = 1

N

N−1∑

m=0

X (m)e j 2π(m+l)n
N

= e j 2πln
N

1

N

N−1∑

m=0

X (m)e j 2πmn
N

= e j 2πln
N x(n)

X ((k − l))N = DFT
{

x(n)e j 2πln
N

}

2.4.9 Complex–Conjugate Properties

If

x(n)
DFT←→

N
X (k)

then

x∗(n)
DFT←→

N
X∗((−k))N = X∗(n − k) (2.61)

Proof

DFT {X∗(n)} =
N−1∑

n=0

x∗(n)e− j 2πkn
N

=
[

N−1∑

n=0

x(n)e j 2πkn
N

]∗

DFT {X∗(n)} =
[

N−1∑

n=0

x(n)e− j 2π(N−k)n
N

]∗

= X∗(n − k)
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2.4.10 Circular Correlation

2.4.10.1 Circular Cross-Correlation

In general, for complex-valued sequence x(n) and y(n) if

x(n)
DFT←→

N
X (k) and y(n)

DFT←→
N

Y (k)

then

γxy(l)
DFT←→

N
Rxy(k) = X (k)Y ∗(k) (2.62)

2.4.10.2 Circular Auto Correlation

If x(n) = y(n)

γxx
DFT←→

N
Rxx (k) = |X (k)|2 (2.63)

2.4.11 Multiplication of Two Sequences

If

x1(n)
DFT←→

N
X1(k) and x2(n)

DFT←→
N

X2(k)

then

x1(n)x2(n)
DFT←→

N

1

N

N−1∑

k=0

X1(k) ©N X2(k) (2.64)

2.4.12 Parseval’s Theorem

For complex-valued sequences x(n) and y(n). If

x(n)
DFT←→

N
X (k) and y(n)

DFT←→
N

Y (k)
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then

N−1∑

n=0

x(n)y∗(n) = 1

N

N−1∑

k=0

X (k)Y ∗(k) (2.65)

If x(n) = y(n)

N−1∑

n=0

|x(n)|2 = 1

N

N−1∑

k=0

|X (k)|2

Proof

IDFT {Rxy(k)} = γxy(l)

= 1

N

N−1∑

k=0

Rxy(k)e j 2πkl
N

using cross correlation

N−1∑

n=0

x(n)y∗(n − l) = 1

N

N−1∑

k=0

Rxy(k)e j 2πkl
N

N−1∑

n=0

x(n)y∗(n) = 1

N

N−1∑

k=0

Rxy(k) [when l = 0]

If x(n) = y(n)

N−1∑

n=0

|x(n)|2 = 1

N

N−1∑

k=0

Rxy(k)

Now

Rxy(k) = X (k)Y ∗(k)

X (k) = Y (k)

Rxy(k) = X (k)X∗(k) = |X (k)|2

Therefore,
N−1∑

n=0

|x(n)|2 = 1

N

N−1∑

k=0

|X (k)|2
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The properties of DFT are given in Table 2.1.

Table 2.1 Summary of properties of the discrete Fourier transform

No. Finite-length sequence (length N ) N -point DFT (length N )

1. x(n) X (k)

2. x1(n), x2(n) X1(k), X2(k)

3. ax1(n) + bx2(n) aX1(k) + bX2(k)

4. X [n] N x[((−k))N ]
5. x[((n − m))N ] e

− j2πkm
N X [k]

6. e
− j2πln

N N x(n) X [((k − l))N ]
7.

∑N−1
m=0 x1(m)x2((n − m))N X1[k]X2[k]

8. x1(n)x2(n) 1
2

∑N−1
l=0 X1(l)X2((k − l))N

9. x∗(n) X∗((−k))N

10. x∗((−n))N X∗(k)

11. Re{x(n)} Xe(k) = 1
2 {X ((k))N + X∗((−k))N }

12. jIm{x(n)} Xo(k) = 1
2 {X ((k))N − X∗((−k))N }

13. xe = 1
2 {x(n) + x∗((−n))N } Re{X (k)}

14. xo = 1
2 {x(n) − x∗((−n))N } jIm{X (k)}

15. Symmetric properties X (k) = X∗((−k))N

Re{X (k)} = Re{X ((−k))N }
Im{X (k)} = −Im{X ((−k))N }
|X (k)| = |X ((−k))N |
∠X (k) = −∠X ((−k))N

16. xe(n) = 1
2 {x(n) + x((−n))N } Re{X (k)}

17. xo(n) = 1
2 {x(n) − x((−n))N } jIm{X (k)}

2.5 Circular Convolution

The circular convolution of two sequences requires that, one of the sequences should
be periodic. If both the sequences are non-periodic, then periodically extend one of
the sequences and then perform circular convolution.

The circular convolution can be performed only if both the sequences consist of
same number of samples. If the sequences have different number of samples, then
convert the smaller size sequences to the size of larger size sequence by append-
ing zero padding. The circular convolution has length same as the length of input
sequences, whereas in linear convolution the length is N1 + N2 − 1. That is,

Linear convolution ⇒ output length = N1 + N2 − 1 (2.66)

Circular convolution ⇒ output length = max(N1, N2) (2.67)
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2.5.1 Method of Performing Circular Convolution

2.5.1.1 Graphical Method (Concentric Circle Method) (Method 1)

Let x3(m) be the sequence obtained by circular convolution of x1(n) and x2(n)

x3(m) =
N−1∑

n=0

x1(n)x2(m − n) = x1(n) ©N x2(n) (2.68)

Procedure

1. Graph N samples of x1(n) at equally spaced points around the outer circle in
counterclockwise direction.

2. Start at the same point as was done for x1(n). Graph N samples of x2(n) at equally
spaced points around an inner circle in clockwise direction.

3. Multiply corresponding samples on the two circles and sum the products to pro-
duce the output.

4. Rotate the inner circle keeping the outer circle fixed by one sample in the coun-
terclockwise direction and repeat step 3 to obtain the next value of output.

5. Repeat step 4 until the inner circle first sample coincides with the first sample of
the exterior circle once again. This completes one complete rotation.

Example 2.22
Perform circular convolution of two sequences

x1(n) = { 2, 1, 2, 1} and x2(n) = {1, 2, 3, 4}
↑ ↑

Solution Given

x1(n) = { 2, 1, 2, 1} and x2(n) = {1, 2, 3, 4}
↑ ↑

∴ x3(m) = { 14, 16, 14, 16}
↑

The circular convolution is shown in Fig. 2.11.
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x1(0) 2

x1(1) 1

x1(2) 2

x1(3) 1

x2(1) (2)

(4)x2(3)

(1
)x

2(
0)

x 2
(2

)
3

x2( n)

x3(0) 2 1 1 4 2 3 1 2 14

x1(n)
m 0

42 2 2

3

1

1

1

x2(1 n)

12 3 2

4

2

1

1

x2(2 n)

22 4 2

1

3

1

1

x2(3 n)

m 1

m 2

m 3

x3(1) 2 2 1 1 2 4 1 3 16

x3(2) 2 3 1 2 2 1 1 4 14

x3(3) 2 4 1 3 2 2 1 1 16

Fig. 2.11 Circular convolution of Example 2.22
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2.5.1.2 Filtering Methods Based on DFT

DFT method gives discrete frequency representation, and this is successfully used
as a computational tool for linear filtering. It has been established that the product of
two DFTs is equivalent to circular convolution in the time domain. However, to find
the output of a linear filter, the circular convolution cannot be used. Let x[n], h[n]
and y[n] be the input, impulse response and output respectively of the linear filter.
In the frequency domain these variables are expressed as X (ω), H(ω) and Y (ω) and
the output spectrum of the linear filter is given by

Y (ω) = X (ω)H(ω)

The output sequence y[n] of the filter is obtained by taking inverse Fourier trans-
form. Since Y (ω), X (ω) and H(ω) are functions of the continuous variable ω, the
computation cannot be done on a digital computer since digital computer performs
computation of quantities which occur at discrete frequency interval. However, using
DFT, the spectrumY (ω) is represented uniquely by samples in the frequency domain.
Since the N -point DFT of the output sequence y[n] is sufficient to represent it in
the frequency domain as Y (ω), then it is possible to compute the N -point DFTs of
X (ω) and H(ω) and hence Y (ω). By taking IDFT of X (ω)H(ω), y[n] of the linear
filter is obtained. This methodology is illustrated by the following examples with the
well-defined procedure.

Procedure

1. Take N -point DFT x1(n) and x2(n).

X1(k) = DFT(x1(n)) and X2(k) = DFT[x2(n)]

2. Determine product of X1(k) and X2(k). Let X3(k) = X1(k)X2(k).
3.

x3(m) = IDFT[X3(k)] = IDFT[X1(k)X2(k)]

Example 2.23
Find x3(m) using DFT and IDFT method.

x1(n) = { 2, 1, 2, 1} and x2(n) = {1, 2, 3, 4}
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Solution

X1(k) =
3∑

n=0

x1(n)e− j 2πkn
4 , k = 0, 1, 2, 3 . . .

X1(k) = x1(0) + x1(1)e
− j πkn

2 + x1(2)e
− jπk + x1(3)e

− j 3πkn
2

For k = 0 ⇒ X1(0) = 2 + 1 + 2 + 1 = 6

For k = 1 ⇒ X1(1) = 2 + e− j π
2 + 2e− jπ + e

− j3π
2 = 2 − j − 2 + j = 0

For k = 2 ⇒ X1(2) = 2 + e− jπ + 2e− j2π + e− j3π = 2 − 1 + 2 − 1 = 2

For k = 3 ⇒ X1(3) = 2 + e− j 3π
2 + 2e− j3π + e− j 9π

2 = 2 + j − 2 − j = 0

X1(k) = {6, 0, 2, 0}
↑

X2(k) =
3∑

n=0

X2(n)e− j 2πnk
4 , k = 0, 1, 2, 3 . . .

X2(k) = x2(0) + x2(1)e
− j πk

2 + x2(2)e
− jπk + x3(3)e

− j3πk
2

For k = 0

X2(0) = 1 + 2 + 3 + 4 = 10

For k = 1

X2(1) = 1 + 2e− j π
2 + 3e− jπ + 4e− j 3πn

2 = 1 − 2 j − 3 + 4 j = −2 + j2

For k = 2

X2(3) = 1 + 2e− jπ + 3e− j2π + 4e− j3π = 1 − 2 + 3 − 4 = −2

For k = 3

X2(3) = 1 + 2e− j 3π
2 + 3e− j3π + 4e− j 9π

2 = 1 + 2 j − 3 − 4 j = −2 − 2 j

∴ X2(k) = {10,−2 + 2 j,−2,−2 − 2 j}
↑

X3(k) = X1(k)X2(k)

= [6, 0, 2, 0][10, −2 + j2, −2, −2 − j2]
= [6 × 10, 0 × (−2 + j2), 2 × (−2), 0(−2 − j2)]
= {60, 0,−4, 0}

↑
x3(m) = IDFT [X3(k)]
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= 1

N

N−1∑

k=0

X3(k)e j 2πmk
N , m = 0, 1, 2, 3, . . .

= 1

4

3∑

k=0

X3(k)e j 2πmk
4

= 1

4
[X3(0) + X3(2)e

jπm]

x3(m) = 1

4
[60 − 4e jπm]

For m = 0

X3(0) = 1

4
[60 − 4] = 56

4
= 14

For m = 1

X3(1) = 1

4
[60 − 4e jπ ] = 64

4
= 16

For m = 2

X3(2) = 1

4
[60 − 4e2 jπ ] = 56

4
= 14

For m = 3

X3(3) = 1

4
[60 − 4e3 jπ ] = 64

4
= 16

x3(m) = x1(n) ©N x2(n) = {14, 16, 14, 16}
↑

2.5.1.3 Circular Convolution Using Matrices (Method 3)

Circular convolution of x1(n) and x2(n) is

x(m) = x1(n) ©N x2(n)

=

⎡

⎢⎢⎢⎣

x2(0) x2(N − 1) x2(N − 2) · · · x(1)
x2(1) x(0) x2(N − 1) · · · x(2)

...
...

...
...

...

x2(N − 1) x2(N − 2) x2(N − 3) · · · x(0)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1(0)
x1(1)

...

x1(N − 1)

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

x3(0)
x3(1)

...

x3(m − 1)

⎤

⎥⎥⎥⎦
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Example 2.24
Perform the circular convolution using matrices method

x1(n) = { 2, 1, 2, 1} and x2(n) = {1, 2, 3, 4}

(Anna University, May, 2007)
Solution

x2(n − k)N x1(n) x3(m)⎡

⎢⎢⎣

x2(0) x2(3) x2(2) x2(1)
x2(1) x2(0) x2(3) x2(2)
x2(2) x2(1) x2(0) x2(3)
x2(3) x2(2) x2(1) x2(0)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1(0)
x1(1)
x1(2)
x1(3)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

x3(0)
x3(1)
x3(2)
x3(3)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

2
1
2
1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

14
16
14
16

⎤

⎥⎥⎦

Therefore,
x3(m) = x1(n) ©N x2(n) = {14, 16, 14, 16}

2.5.2 Performing Linear Convolution Using DFT

Toperform linear convolution usingDFTboth the sequences should be converted into
N1 + N2 − 1-point sequences by padding with zeros. Then take N1 + N2 − 1-point
DFT of both the sequences and determine the product of their DFTs. The resultant
sequence is obtained by taking inverse DFT of the product of the DFTs.

Example 2.25
Find the response (linear convolution) of the system whose impulse response and
input sequence are

h(n) = { 0.5, 1} and x(n) = {1, 0.5}
↑ ↑

using DFT-IDFT.
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Solution Here N1 = 2 and N2 = 2

N = N1 + N2 − 1 = 2 + 2 − 1 = 3

∴ x(n) = { 1, 0.5, 0} and h(n) = {0.5, 1, 0}
↑ ↑

X (k) =
2∑

n=0

x(n)e
− j2πkn

3 , k = 0, . . . , 2

X (0) = 1 + 0.5 = 1.5

X (1) =
2∑

n=0

x(n)e
− j2πn

3 = 1 + 0.5e
− j2π

3 = 0.75 − j0.433

X (2) =
3∑

n=0

x(n)e
− j2πn2

3 =
3∑

n=0

x(n)e
− j4πn

3

= 1 + 0.5e
− j4π

3 + 0 = 0.75 + j0.433

Therefore,

X (k) = {1.5, 0.75 − j0.433, 0.75 + j0.433}

H(k) =
2∑

n=0

h(n)e
− j2πkn

3 , k = 0, . . . , 2

H(0) = h(0) + h(1) + h(3) = 0.5 + 1 + 0 = 1.5

H(1) =
2∑

n=0

h(n)e
− j2πn

3

H(1) = 0.5 + e
− j2π

3 + 0 = 0.5 − 0.5 − j0.866

= − j0.866

H(2) =
2∑

n=0

h(n)e
− j4πn

3

= 0.5 + e
− j4π

3 + 0 = j0.866

H(k) = {1.5, − j0.866, j.866}
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Let

Y (k) = X (k)H(k)

= {2.25,−0.375 − j0.6495,−0.375 + j0.6495}

The sequence y(n) is obtained by taking IDFT of Y (k)

y(n) = 1

N

N−1∑

k=0

Y (k)e
j2πkn

N , n = 0, . . . , N − 1

y(n) = 1

3

2∑

k=0

Y (k)e
j2πkn
3 , n = 0, . . . , 2

For n = 0,

y(0) = 1

3
[y(0) + y(1) + y(2)] = 1

3
[1.5] = 0.5

For n = 1,

y(1) = 1

3

2∑

k=0

Y (k)e
j2πk
3

= 1

3

[
y(0) + y(1)e

j2π
3 + y(2)e

j4π
3

]

= 1

3
[2.25 + 0.75 + j0 + 0.75 + j0] = 1.25

For n = 2,

y(2) = 1

3

[
y(0) + y(1)e

j4π
3 + y(2)e

j8π
3

]

= 1

3
[2.25 − 0.375 + j.6495 − 0.375 − j0.6495]

= 0.5

∴
y(n) ={0.5, 1.25, 0.5}

↑
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Example 2.26
Determine the output response y(n) if

h(n) = {1, 1, 1} and x(n) = {1, 2, 3, 1}

by using (i) Linear convolution and (ii) Circular convolution.

Solution

(i) Linear Convolution

N1 = 4 and N2 = 3

N = N1 + N2 − 1 = 4 + 3 − 1 = 6

The linear convolution obtained by graphical method is shown in Fig. 2.12.
(ii) Circular Convolution With Zero Padding

To get the result of linear convolution with circular convolution we have to add
appropriate number of zeros to both sequence.

N = N1 + N2 − 1 = 4 + 3 − 1 = 6

∴ x(n) = {1, 2, 3, 1, 0, 0}
h(n) = {1, 1, 1, 0, 0, 0}

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1
2
3
1
0
0

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
3
6
6
4
1

⎤

⎥⎥⎥⎥⎥⎥⎦

∴ y(n) = { 1, 3, 6, 6, 4, 1}
↑
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Fig. 2.12 Linear convolution of two sequences for Example 2.26
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Example 2.27
For the x1(n), x2(n) and N given compute x1(n) ©N x2(n)

(a) x1(n) = δ(n) + δ(n − 1) + δ(n − 2)

x2(n) = 2δ(n) − δ(n − 1) + 2δ(n − 2) (N = 3)

(b) x1(n) = δ(n) + δ(n − 1) − δ(n − 2) + δ(n − 3)

x2(n) = δ(n) − δ(n − 2) + δ(n − 4) (N = 5)

Solution

(a) Given

x1(n) = {1, 1, 1} and x2(n) = {2,−1, 2}
↑ ↑
N = 3

⎡

⎣
2 2 −1

−1 2 2
2 −1 2

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ =
⎡

⎣
3
3
3

⎤

⎦

y(n) = x1(n) ©N x2(n) = { 3, 3, 3}
↑

(b) Given

x1(n) = {1, 1,−1, 1} and x2(n) = {1, 0,−1, 0, 1}
↑ ↑
N = 5

Add one zero to the sequence x1(n)

x1(n) = {1, 1,−1, 1, 0} and x2(n) = {1, 0,−1, 0, 1}
↑ ↑
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Using matrix method, we get,

⎡

⎢⎢⎢⎢⎣

1 1 0 −1 0
0 1 1 0 −1

−1 0 1 1 0
0 −1 0 1 1
1 0 −1 0 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
1

−1
1
0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

3
0

−1
0
2

⎤

⎥⎥⎥⎥⎦

y(n) ={3, 0,−1, 0, 2}
↑

Example 2.28
Find the circular convolution of x(n) ©N h(n)

x(n) = 1, 0 ≤ n ≤ 10

h(n) =
(
1

2

)n

, 0 ≤ n ≤ 10

(Anna University, December, 2005)
Solution

x(n) = 1, 0 ≤ n ≤ 10

x(n) = {1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1}
h(n) =

(
1

2

)n

, 0 ≤ n ≤ 10

= {1, 0.5, 0.25, 0.125, 0.0625, 0.03125 0.0156, 0.008, 0.004, 0.002, 0.001}

h((N − k))N
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.001 0.002 0.004 0.008 0.0156 0.03125 0.0625 0.125 0.25 0.5
0.5 1 0.001 0.002 0.004 0.008 0.0156 0.03125 0.0625 0.125 0.25
0.25 0.5 1 0.001 0.002 0.004 0.008 0.0156 0.03125 0.0625 0.125
0.125 0.25 0.5 1 0.001 0.002 0.004 0.008 0.0156 0.03125 0.0625
0.0625 0.125 0.25 0.5 1 0.001 0.002 0.004 0.008 0.0156 0.03125
0.03125 0.0625 0.125 0.25 0.5 1 0.001 0.002 0.004 0.008 0.0156
0.0156 0.03125 0.0625 0.125 0.25 0.5 1 0.001 0.002 0.004 0.008
0.008 0.0156 0.03125 0.0625 0.125 0.25 0.5 1 0.001 0.002 0.004
0.004 0.008 0.0156 0.03125 0.0625 0.125 0.25 0.5 1 0.001 0.002
0.002 0.004 0.008 0.0156 0.03125 0.0625 0.125 0.25 0.5 1 0.001
0.001 0.002 0.004 0.008 0.0156 0.03125 0.0625 0.125 0.25 0.5 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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×

x(n) x(n) ©N h(n)⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1
1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2
1.999 ≈ 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(n) ©N h(n) = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}

Example 2.29
Find the output sequence y(n) if

h(n) = {1, 1, 1} and x(n) = {1, 2, 3 1}

using circular convolution.

(Anna University, May, 2004)
Solution

Length of output sequence = N1 + N2 − 1

= 3 + 4 − 1 = 6

Therefore

h(n) = {1, 1, 1, 0, 0, 0} and x(n) = {1, 2, 3, 1, 0, 0}

using circular convolution

y(n) =

h((N − k))N x(n)⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1
2
3
1
0
0

⎤

⎥⎥⎥⎥⎥⎥⎦
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=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 + 0 + 0 + 0 + 0 + 0
1 + 2 + 0 + 0 + 0 + 0
1 + 2 + 3 + 0 + 0 + 0
0 + 2 + 3 + 1 + 0 + 0
0 + 0 + 3 + 1 + 0 + 0
0 + 0 + 0 + 1 + 0 + 0

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
3
6
6
4
1

⎤

⎥⎥⎥⎥⎥⎥⎦

Example 2.30
Find the convolution sum of

x(n) =

⎧
⎪⎨

⎪⎩

1, n = −2, 0, 1

2, n = −1

0, otherwise.

h(n) = δ(n) − δ(n − 1) + δ(n − 2) − δ(n − 3)

(Anna University, December, 2003)

Solution x(k) and h(n − k) are represented as shown in Fig. 2.13. x(n − k) is moved
such that it overlaps with x(k) and y(n) is obtained as shown in Fig. 2.13.

x(n) = {1, 2, 1, 1} and h(n) = {1,−1, 1,−1}
↑ ↑

convolution sum

y(n) = x(n) ∗ h(n)

=
N−1∑

n=0

x(k)h(n − k)

Output sequence starts at

n = n1 + n2 = −2 + 0 = −2

Length of output (convolution sum) sequence

N = N1 + N2 − 1 = 4 + 4 − 1 = 7

y(n) ={1, 1, 0, 1, −2, 0, −1}
↑
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Fig. 2.13 Linear convolution of two sequences for Example 2.30
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2.6 Fast Fourier Transform (FFT)

For spectral analysis of discrete signals, DFT approach is a very straight forward
one. For larger values of N , DFT becomes tedious because of the huge number of
mathematical operations required to perform. Consider the following DFT where
N = 8

X (k) =
7∑

k=0

x(n)e
− jk2πn

8 , k = 0, 1, . . . , 7 (2.69)

Substituting (k2π/8) = K in the above equation we get,

X (k) = x(0)e− j K0 + x(1)e− j K + x(2)e− j K2 + x(3)e− j K3 + x(4)e− j K4

+x(5)e− j K5 + x(6)e− j K6 + x(7)e− j K7 k = 0, 1, . . . , 7 (2.70)

Equation (2.70) has eight terms in the right hand side in which each term con-
tains multiplication of a real term with complex exponential. Thus, for example
x(1)e− jk = x(1)[cos K − j sin K ] requires twomultiplications and one addition for
each value of K where K = 2πk

8 , k = 0, 1, 2, . . . , 7. Thus, in Eq. (2.70) each term
in the right-hand side requires eight complex multiplications and seven additions.
The eight-point DFT therefore requires 8 × 8 = 82 = 64 complex multiplications
8 × 7 = 8(8 − 1) = 56 additions.

In general, for an N -point DFT, N 2 multiplications and N (N − 1) additions are
required. For N = 1024, about 108 multiplications and equal number of additions
are required which results in computational burden. Further such a huge number of
mathematical operations limit the bandwidth of digital signal processors. Several
algorithms have been developed to reduce the computation burden and ease the
implementation of DFT. The algorithm developed by Cooley and Tukey in 1965 is
the most efficient one and is called fast Fourier transform (FFT). The application
FFT algorithms are discussed below with illustrated examples.

2.6.1 Radix-2 FFT Algorithm

For efficient computation of DFT several algorithms have been developed based on
divide and conquer methods. However, the method is applicable for N not being a
prime number. Consider the case when N = r1r2r3 . . . rv where the {r j } are prime.
If r1 = r2 = r3 = . . . = r , then N = rv . In such a case the DFTs are of size r . The
number r is called the radix of the FFT algorithm. The most widely used FFT
algorithms are radix-2 and radix-4 algorithms and are discussed in the following
sections.

For performing radix-2 FFT, the value of N should be such that, N = 2m . Here
the decimation can be performed m times, where m = logN

2 .
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In direct computation of N -point DFT, the total number of complex addition are
N (N − 1) and total number of complex multiplications are N 2. In radix-2 FFT,
the total number of complex additions is reduced to N logN

2 and total number of
complex multiplications is

(
N
2

)
logN

2 . Comparison of number of computations by
DFT and FFT is shown in Table 2.2.

2.6.1.1 Decimation in Time (DIT) Radix-2 FFT

Consider Eqs. (2.71) and (2.72) which are given below.

X (k) =
N−1∑

n=0

x(n)e(− j2πkn)/N (2.71)

x(n) = 1

N

N−1∑

k=0

X (k)e( j2πkn)/N (2.72)

In direct evaluation of spectral components, the number of complex multiplications
and additions required are N 2 and N (N − 1) respectively as stated in Sect. 2.6. Such
a huge number of mathematical operations limit the BW of digital signal processors.
Classical DFT approach does not use the two important properties of twiddle factor,
namely symmetry and periodicity properties which are given below:

W k+N/2
N = −W k

N

W k+N
N = W k

N

Radix-2 FFT algorithm exploits these two properties thereby removing redundant
mathematical operations. However the results obtained using FFT algorithms are
exactly the same as that of DFT. Further, the efficiency of FFT algorithm increases

Table 2.2 Comparison of number of computations by DFT and FFT

Number of
points N

Direct computation Radix-2 FFT

Addition
N (N − 1)

Multiplication
N 2

Addition
N logN

2

Multiplication( N
2

)
logN

2

4 12 16 8 4

8 56 64 24 12

16 240 256 64 32

32 992 1024 160 80

64 4032 4096 384 192

128 16,256 16,384 896 448



2.6 Fast Fourier Transform (FFT) 155

as N is increased. For example, if N = 512, DFT requires nearly 110 times more
multiplications than FFT algorithm. The basic principle of FFT algorithm is there-
fore to decompose DFT into successively smaller DFTs. The manner in which this
decomposition is done leads to different FFT algorithms. The two basic classes of
algorithms are:

1. Decimation in time (DIT)
2. Decimation in frequency (DIF)

In the algorithm developed by DIT, the sequence x(n) is decomposed into succes-
sively smaller subsequences. InDIF algorithm, the sequence ofDFT coefficients x(k)

is decomposed into smaller subsequences. DIT radix-2 FFT algorithm is discussed
in this section.

In decimation in time (DIT) algorithm, the time domain sequence x(n) is deci-
mated and smaller point DFTs are performed. The results of smaller point DFTs are
combined to get the result of N -point DFT.

In DIT radix-2 FFT, the time domain sequence is decimated into two-point
sequences. For each two-point sequence, the two-point DFT is computed. The results
of two-point DFTs are used to compute four-point DFTs. Two numbers of four-point
DFTs are combined to get an eight-point DFT. This process is continued until we
get N -point DFT. In general we can say that, in decimation in time algorithm, the
N -point DFT can be realized from two numbers of N

2 -point DFTs, and the N
2 -point

DFT can be realized from two numbers of N
4 -point DFTs, and so on. This is explained

as given below.
Let us consider N -point DFT of x(n) which is written as,

X (k) =
N−1∑

n=0

x(n)e
− j2πkn

N , k = 0, 1, 2, . . . , (N − 1)

Let

WN = e
− j2πk

N ,

where WN = twiddle factor (or) phase factor. Therefore

e
− j2πkn

N = (e− j2π )
nπ
N = W nk

N

X (k) =
N−1∑

n=0

x(n)W nk
N , k = 0, 1, 2, . . . , (N − 1) (2.73)

Let x(n) be N -sample sequence. Decimate x(n) into two sequences of N
2 samples.

Let the two sequences be f1(n) and f2(n). Let f1(n) be of even numbered samples
of x(n) and f2(n) that of odd numbered samples of x(n). Thus
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∴ f1(n) = x(2n), n = 0, 1, . . . ,

(
N

2
− 1

)

f2(n) = x(2n + 1) n = 0, 1, 2, . . . ,

(
N

2
− 1

)

Eq. (2.73) can be written as

X (k) =
N−1∑

n=0

x(n)W kn
N

X (k) =
∑

n=even
x(n)W kn

N +
∑

n=odd
x(n)W kn

N , k = 0, 1, 2, . . . , N − 1 (2.74)

X (k) =
N
2 −1∑

n=0

x(2n)W k(2n)
N +

N
2 −1∑

n=0

x(2n + 1)W k(2n+1)
N

W k(2n)
N = (e− j2π )

k2n
N = (e− j2π )kn

N
2

= W kn
N
2

W k(2n+1)
N = (e− j2π )

k(2n+1)
N = (e− j2π )

k2n
N · (e− j2π )

k
N

= (e− j2π )
kn
N
2 · (e− j2π )

k
N

= W kn
N
2

· W k
N

Therefore

X (k) =
N
2 −1∑

n=0

f1(n)W kn
N
2

+
N
2 −1∑

n=0

f2(n)W kn
N
2

W k
N (2.75)

X (k) = F1(k) + W k
N F2(k) (2.76)

where F1(k) and F2(k) are N
2 -point DFT of f1(n) and f2(n) respectively.

F1(k) =
N
2 −1∑

n=0

f1(n)W kn
N
2

, F2(k) =
N
2 −1∑

n=0

f2(n)W kn
N
2

(2.77)

f1(n) would result in the two N
4 -point sequences and f2(n) would result in another

N
4 -point sequences.
Let the decimated N

4 -point sequences of f1(n) be V11(n) and f2(n) be V12(n).
That is,

V11(n) = f1(2n), n = 0, 1, 2, . . . ,

(
N

4
− 1

)
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V12(n) = f1(2n + 1), n = 0, 1, 2, . . . ,

(
N

4
− 1

)

V21(n) = f2(2n), n = 0, 1, 2, . . . ,

(
N

4
− 1

)

V22(n) = f2(2n + 1), n = 0, 1, 2, . . . ,

(
N

4
− 1

)

Let

V11(k) = N

4
point DFT of V11(n)

V12(k) = N

4
point DFT of V12(n)

V21(k) = N

4
point DFT of V21(n)

V22(k) = N

4
point DFT of V22(n)

Therefore

F1(k) = V11(k) + W k
N
2

V12(k), k = 0, 1, 2, . . . ,

(
N

2
− 1

)
(2.78)

F1

(
k + N

4

)
= V11(k) − W k

N
2

V12(k), k = 0, 1, 2, . . . ,

(
N

2
− 1

)

F2(k) = V21(k) + W k
N
2

V22(k), k = 0, 1, 2, . . . ,

(
N

2
− 1

)
(2.79)

F2

(
k + N

4

)
= V21(k) − W k

N
2

V22(k), k = 0, 1, 2, . . . ,

(
N

2
− 1

)

The decimation of the data sequence can be repeated again and again until the result-
ing sequences are reduced to two-point sequence.

Eight-point DFT using radix-2 DIT-FFT

Let us consider the computation of an N = 8 point DFT. Here N = 8 = 23, and
therefore the number of stages of computation is equal to 3. The given eight-point
sequence is decimated to two-point sequences. For each two-point sequence, the
two-point DFT is computed. From the result of two-point DFT, four-point DFT can
be computed. From the result of four-point DFT, eight-point DFT can be computed.
The block diagram of radix-2 DIT-FFT for N = 8 is shown in Fig. 2.14a.
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x(n) = {0,1,2,3,4,5,6,7}

{0,4} {2,6} {1,5} {3,7}

x(n) even 
{0,2,4,6}

x(n) odd
{1,3,5,7}

1st level decimation

2nd level decimation

a

x(0)0000

1

2

3

4

5

6

7

001

010

011

100

101

110

111

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

x(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Memory
(decimal)

Address
(binary)

Normal order Bit reversed order

Memory Data
Decimation 1

Data
Decimation 2

b

Fig. 2.14 a Data sequence decimation by radix-2. b Shifting of data and bit reversal
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Fig. 2.15 Basic butterfly
computation in the DIT-FFT
algorithm

a

b B a WN b
WN 1r

r

A a WN b
r

Step 1: Before Decimation the Sequences are Arranged in Bit Reversed Order

Let us consider N = 8 sequence. In the first-level decimation we have the sequence
x(0), x(2), x(4), x(6), x(1), x(3), x(5), x(7) and in the second-level decimation, the
sequence is x(0), x(4), x(2), x(6), x(1), x(5), x(3) and x(7). This is represented in
Fig. 2.14a.

The shifting of the input data sequences is to be arranged in a well-defined order.
The index n of x(n) is expressed in binary form. The data point x(4) is expressed in
binary form as x(100) and is placed in position m = 001 or m = 1 in the decimal
array. Now the data x(n) after decimation is stored in bit reversed order as shown in
Fig. 2.14b.

The basic computation in the above Fig. 2.14b involves butterfly operation which
is illustrated in Fig. 2.15. Consider numbers a and b. The number b is multiplied
by W r

N and then added and the product subtracted form a to form a new complex
numbers (A, B). This basic computation is called butterfly because the flow graph
resembles a butterfly. In each butterfly one complex multiplication and two complex
additions are performed.

Natural order Bit reversed order
x(0) x(000) x(000) x(0)
x(1) x(001) x(100) x(4)
x(2) x(010) x(010) x(2)
x(3) x(011) x(110) x(6)
x(4) x(100) x(001) x(1)
x(5) x(101) x(101) x(5)
x(6) x(110) x(011) x(3)
x(7) x(111) x(111) x(7)

Let

x(n) = eight-point sequence

f1(n), f2(n) = four-point sequences obtained from x(n)

V11(n), V12(n) = two-point sequences obtained from f1(n)

V21(n), V22(n) = two-point sequences obtained from f2(n)
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Compute
2-point

DFT

Combine
2-point
DFTs 
to get 
4-point

DFT
Combine
4-point
DFTs
to get 
8-point

DFT

Output
normal
order

Input
bit reversed

order

Combine
2-point
DFTs

 to get 
4-point

DFT

Compute
2-point

DFT

Compute
2-point

DFT

Compute
2-point

DFT

x(0) X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

x(4)

Fig. 2.16 Block diagram of radix-2 DIT-FFT

Block diagram of radix-2 DIT-FFT is shown in Fig. 2.16.

First Stage (two-point DFT Computation)
two-point DFT of V11(n) is

V11(k) =
∑

n=0,1

V11(n)W nk
N
4

for k = 0, 1 (2.80)

V11(0) =
∑

n=0,1

V11(n) = V11(0) + V11(1) = x(0) + x(4)

V11(1) =
∑

n=0,1

V11(n)W n
N
4

= V11(0)W 0
N
4

+ V11(1)W 1
N
4

= V11(0) − V11(1)W 0
N
4

= x(0) − x(4)
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Similarly,

V12(k) =
∑

n=0,1

V12(n)W nk
N
4

, k = 0, 1 (2.81)

V12(0) =
∑

n=0,1

V12(n) = V12(0) + V12(1) = x(2) + x(6)

V12(1) =
∑

n=0,1

V12(n)W n
N
4

= V12(0)W 0
N
4

+ V12(1)W 1
N
4

= V12(0) − V12(1)

= x(2) − x(6)

V21(k) =
∑

n=0,1

V21(n)W nk
N
4

, k = 0, 1 (2.82)

V21(0) =
∑

n=0,1

V21(n) = V21(0) + V21(1) = x(1) + x(5)

V21(1) =
∑

n=0,1

V21(n)W n
N
4

= V21(0) + V21(1)W 1
N
4

= V21(0) − V21(1)

= x(1) − x(5)

V22(k) =
∑

n=0,1

V22(n)W nk
N
4

, k = 0, 1 (2.83)

V22(0) =
∑

n=0,1

V22(n) = V22(0) + V22(1) = x(3) + x(7)

V22(1) =
∑

n=0,1

V22(n)W n
N
7

= V22(0) + V22(1)W 1
N
4

= V22(0) − V22(1)

The Second Stage Computation (four-point DFT)
Let

F1(k) = DFT [ f1(n)] and F2(k) = DFT [ f2(n)]
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From the Eq. (2.81) we get,

F1(k) = V11(k) + W k
N
2

V12(k) for k = 0, 1, 2, 3

F1(0) = V11(0) + W 0
N
2

V12(0)

F1(1) = V11(1) + W 1
N
2

V12(1)

F1(2) = V11(2) + W 2
N
2

V12(2)

= V11(0) − W 0
N
2

V12(0)

F1(3) = V11(3) + W 3
N
2

V12(3)

= V11(1) − W 1
N
2

V12(1)

Here V11(k) and V12(k) are periodic with periodicity 2. Therefore,

V11(k + 2) = V11(k) and V12(k + 2) = V12(k)

Similarly, from the Eq. (2.82) we get,

F2(k) = V21(k) + W k
N
2

V22(k) for k = 0, 1, 2, 3

F2(0) = V21(0) + W 0
N
2

V22(0)

F2(1) = V21(1) + W 1
N
2

V22(1)

F2(2) = V21(2) + W 2
N
2

V22(2)

= V21(0) − W 0
N
2

V22(0)

F2(3) = V21(3) + W 3
N
2

V22(3)

= V21(1) − W 1
N
2

V22(1)

The Third Stage of Computation (eight-point DFT)
Let

X (k) = DFT x(n)

∴ X (k) = F1(k) + W k
N F2(k), for k = 0, 1, 2, 3, 4, 5, 6, 7

X (0) = F1(0) + W 0
N F2(0)

X (1) = F1(1) + W 1
N F2(1)

X (2) = F1(2) + W 2
N F2(2)

X (3) = F1(3) + W 3
N F2(3)

X (4) = F1(4) + W 4
N F2(4)

= F1(0) − W 0
N F2(0)
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X (5) = F1(5) + W 5
N F2(5)

= F1(1) − W 1
N F2(1)

X (6) = F1(6) + W 6
N F2(6)

= F1(2) − W 2
N F2(2)

X (7) = F1(7) + W 7
N F2(7)

= F1(3) − W 3
N F2(3)

F1(k) and F2(k) are periodic with period is 4. Therefore,

F1(k + 4) = F1(k) and F2(k + 4) = F2(k)

The flow graph or butterfly diagram for eight-point DIT-FFT is shown in Fig. 2.17.

x(0)

Stage 1 Stage 2 Stage 3

1 11 1 1 1

1 1
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1 1
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x(2)
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Fig. 2.17 Eight-point radix-2 DIT-FFT butterfly diagram
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The phase factor values are,

W 0
2 = 1

W 0
4 = e− j2π× 0

4 = 1

W 1
4 = e− j2π× 1

4 = e− j π
2 = − j

W 0
8 = 1

W 1
8 = e− j 2π

8 = e
− jπ
4 = 1√

2
− j

1√
2

W 2
8 = e− j2π× 2

8 = e
− jπ
2 = − j

W 3
8 = e− j2π× 3

8 = e− j 3π
4 = −1√

2
− j

1√
2

Summary of steps of radix-2 DIT-FFT algorithm

1. The number of input samples N = 2M , where M is an integer.
2. The input sequence is shuffled through bit reversal.
3. The number of stages in the flow graph is given by M = logN

2 .
4. Each stage consists of N/2 butterflies.
5. Input–output for each butterfly are separated by 2m−1 samples, where m repre-

sents the stage index, i.e., for first stage m = 1 and for second stage m = 2 and
so on.

6. The number of complex multiplications is given by N
2 logN

2 .
7. The number of complex additions is given by N logN

2 .
8. The twiddle factor exponents are a function of the stage index m and is given by

k = Nt

2m
, t = 0, 1, 2, . . . , 2m−1 − 1.

9. The number of sets or sections of butterflies in each stage is given by the formula
2M−m .

10. The exponent repeat factor (ERF), which is the number of times the exponent
sequence associated with m is repeated is given by 2M−m .

2.6.1.2 Decimation in Frequency (DIF) Radix-2 FFT

In decimation in frequency algorithm the frequency domain sequence X (k) is dec-
imated. In this algorithm the N -point time domain sequence is converted to two
numbers of N

2 -point sequences. Then each N
2 -point sequence is converted to two

numbers of N
4 -point sequences. This process is continued until to get N

2 numbers
of two-point sequences. Finally the two-point DFT of each two-point sequence is
computed. The two-point DFTs of N

2 numbers of two-point sequences will give
N -samples, which is the N -point DFT of the time domain sequence.
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Consider a N -point sequence x(n). The N -point DFT of x(n) is given by,

X (k) =
N−1∑

n=0

x(n)W kn
N =

N
2 −1∑

n=0

x(n)W kn
N +

N−1∑

n= N
2

x(n)W kn
N (2.84)

=
N
2 −1∑

n=0

x(n)W kn
N +

N
2 −1∑

n=0

x

(
n + N

2

)
W

k(n+ N
2 )

N

=
N
2 −1∑

n=0

x(n)W kn
N +

N
2 −1∑

n=0

x

(
n + N

2

)
W kn

N · W
k N
2

N

=
N
2 −1∑

n=0

[
x(n)W kn

N + (−1)k x

(
n + N

2

)
W kn

N

] (
∵ W

k N
2

N = (−1)k
)

X (k) =
N
2 −1∑

n=0

[
x(n) + (−1)k x

(
n + N

2

)]
W kn

N (2.85)

Let us split X (k) into even and odd number sequences as follows.

X (2k) (even) =
N
2 −1∑

n=0

[
x(n) + (−1)2k x

(
n + N

2

)]
W 2kn

N (2.86)

=
N
2 −1∑

n=0

[
x(n) + x

(
n + N

2

)]
W kn

N
2

, k = 0, 1, . . . ,

(
N

2
− 1

)

X (2k + 1)(odd) =
N
2 −1∑

n=0

[
x(n) + (−1)x

(
n + N

2

)]
W (2k+1)n

N (2.87)

=
N
2 −1∑

n=0

[
x(n) − x

(
n + N

2

)]
W 2kn

N W n
N

=
N
2 −1∑

n=0

[
x(n) − x

(
n + N

2

)]
W n

N W kn
N
2

, k = 0, 1, 2, . . . ,

(
N

2
− 1

)

Let

g1(n) = x(n) + x

(
n + N

2

)
, n = 0, 1, 2 . . . ,

(
N

2
− 1

)

g2(n) =
[

x(n) − x

(
n + N

2

)]
W n

N , n = 0, 1, 2, . . . ,

(
N

2
− 1

)
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where g1(n) and g2(n) are N
2 -point time domain sequences. Therefore

X (2k) =
N
2 −1∑

n=0

g1(n)W kn
N
2

, k = 0, 1, 2, . . . ,

(
N

2
− 1

)
(2.88)

X (2k + 1) =
N
2 −1∑

n=0

g2(n)W kn
N
2

, k = 0, 1, 2, . . . ,

(
N

2
− 1

)
(2.89)

X (2k) is N
2 -point DFT of g1(n) and X (2k + 1) is N

2 -point DFT of g2(n)

∴ G1(k) =
N
2 −1∑

n=0

g1(n)W kn
N
2

, k = 0, 1, 2, . . . ,

(
N

2
− 1

)
(2.90)

G2(k) =
N
2 −1∑

n=0

g2(n)W kn
N
2

, k = 0, 1, 2, . . . ,

(
N

2
− 1

)
(2.91)

The g1(n) is N
2 -point sequence, and it can be decimated into two numbers of N

4 -point
sequences.

∴ G1(k) =
N
2 −1∑

n=0

g1(n)W kn
N
2

=
N
4 −1∑

n=0

g1(n)W kn
N
2

+
N
4 −1∑

n=0

g1

(
n + N

4

)
W

k(n+ N
4 )

N
2

=
N
4 −1∑

n=0

[
g1(n) + g1

(
n + N

4

)
W

k N
4

N
2

]
W kn

N
2

Therefore,

G1(2k) =
N
4 −1∑

n=0

d11(n)W kn
N
4

= D11(k) (2.92)

G1(2k + 1) =
N
4 −1∑

n=0

d12(n)W kn
N
4

= D12(k) (2.93)

G2(2k) =
N
4 −1∑

n=0

d21(n)W kn
N
4

= D21(k) (2.94)
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G2(2k + 1) =
N
4 −1∑

n=0

d22(n)W kn
N
4

= D22(k) (2.95)

where D11(k), D12(k), D21(k) and D22(k) are N
4 -point DFTs of d11(n), d12(n), d21(n)

and d22(n) respectively.
The decimation of the frequency domain sequence can be continued until the

resulting sequence is reduced to two-point sequences.

The eight-point DFT using radix-2 DIF-FFT

Let x(n) be an eight-point sequence where N = 8

First Stage of Computation

In the first stage of computation, two numbers of four-point sequences g1(n) and
g2(n) are obtained.

g1(n) = x(n) + x

(
n + N

2

)

g1(n) = x(n) + x (n + 4) , n = 0, 1, 2, 3

g1(0) = x(0) + x(4)

g1(1) = x(1) + x(5)

g1(2) = x(2) + x(6)

g1(3) = x(3) + x(7)

and

g2(n) =
[

x(n) − x

(
n + N

2

)]
W n

N

g2(n) = [x(n) − x (n + 4)] W n
8 , n = 0, 1, 2, 3

g2(0) = [x(0) − x(4)] W 0
8

g2(1) = [x(1) − x(5)] W 1
8

g2(2) = [x(2) − x(6)] W 2
8

g2(3) = [x(3) − x(7)] W 3
8

Second Stage of Computation
In the second stage, 4 numbers of two-point sequence is obtained.

d11(n) = g1(n) + g1

(
n + N

4

)

d11(n) = g1(n) + g1 (n + 2) , n = 0, 1

d11(0) = g1(0) + g1(2)
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d11(1) = g1(1) + g1(3)

d12(n) =
[

g1(n) − g1

(
n + N

4

)]
W n

N
2

= [g1(n) − g1 (n + 2)] W n
4 , n = 0, 1

d12(0) = [g1(0) − g1(2)] W 0
4

d12(1) = [g1(1) − g1(3)] W 1
4

d21(n) = g2(n) + g2

(
n + N

4

)

= g2(n) + g2(2), n = 0, 1

d21(n) = g2(0) + g2(2)

d21(1) = g2(1) + g2(3)

d22(n) =
[

g2(n) − g2

(
n + N

4

)]
W n

N
2

= [g2(n) − g2 (n + 2)] W n
4 , n = 0, 1

d22(0) = [g2(0) − g2(2)] W 0
4

d22(1) = [g2(1) − g2(3)] W 1
4

Third Stage Computation
In the third stage, two-point DFTs are calculated.

D11(k) =
∑

n=0,1

d11(n)W kn
2 , k = 0, 1

D11(0) =
∑

n=0,1

d11(n) = d11(0) + d11(1)

D11(1) =
∑

n=0,1

d11(n)W n
2 = [d11(0) − d11(1)] W 0

2

Similarly

D12(0) = d12(0) + d12(1)

D12(1) = [d12(0) − d12(1)] W 0
2

D21(0) = d21(0) + d21(1)

D21(1) = [d21(0) − d21(1)] W 0
2

D22(0) = d22(0) + d22(1)

D22(1) = [d22(0) − d22(1)] W 0
2

The signal flow graph or butterfly diagram of all three stages is shown in
Fig. 2.18.
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Fig. 2.18 Eight-point radix-2 DIF-FFT Butterfly diagram

Summary of steps of radix-2 DIF-FFT algorithm

1. The number of input samples N = 2M , where M is an integer.
2. The input sequence is in normal order.
3. The number of stages in the flow graph is given by M = logN

2 .
4. Each stage consists of N/2 butterflies.
5. Input–output for each butterfly are separated by 2m−1 samples, where m repre-

sents the stage index, i.e., for first stage m = 1 and for second stage m = 2 and
so on.

6. The number of complex multiplications is given by N
2 logN

2 .
7. The number of complex addition is given by N logN

2 .
8. The twiddle factor exponents are a function of the stage index m and is given by

k = Nt

2M−m+1
, t = 0, 1, 2, . . . , 2m−1 − 1.

9. The number of sets or sections of butterflies in each stage is given by the formula
2m−1.

10. The exponent repeat factor (ERF), which is the number of times the exponent
sequence associated with m is repeated is given by 2m−1.
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2.6.1.3 Comparison of DIF and DIT

Difference Between DIF and DIT

(i) In DIT, the input is bit reversed while the output is in normal order. For DIF, the
input is normal order, while output is in bit reversed order.

(ii) Considering the butterfly diagram, inDIF, the complexmultiplication takes place
after the add–subtract operation.

Similarities

(i) Both algorithms require same number of operations to compute DFT.
(ii) Both algorithms require bit reversal at some place during computation.

2.6.2 Radix-4 FFT Algorithms

The decimation in time (DIT) radix-4 FFT recursively partitions a DFT into four
quarter-length DFTs of groups of every fourth time sample. The outputs of these
shorter FFTs are reused to compute many outputs, thus greatly reducing the total
computation cost. In the decimation in frequency radix-4 FFT groups, every fourth
output sample is decimated into shorter-length DFTs to save computations.

2.6.2.1 Radix-4 DIT-FFT Algorithms

Radix-4 DIT rearranges the DFT equation into four parts: sums over all groups of
every fourth discrete time index n = [0, 4, 8, . . . , N − 4], n = [15, 9, . . . , N − 3],
n = [2, 6, 10, . . . , N − 2] and n = [3, 7, 11, . . . , N − 1], i.e.,

X (k) =
N−1∑

n=0

x(n)e− j 2πnk
N

=
N
4 −1∑

n=0

x(4n)e− j 2πk(4n)
N +

N
4 −1∑

n=0

x(4n + 1)e− j 2πk(4n+1)
N

+
N
4 −1∑

n=0

x(4n + 2)e− j 2πk(4n+2)
N +

N
4 −1∑

n=0

x(4n + 3)e− j 2πk(4n+3)
N (2.96)

=
N
4 −1∑

n=0

x(4n)e− j 2πk4n
N +

N
4 −1∑

n=0

x(4n + 1)e− j 2πk4N
N · e− j 2πk

N

+
N
4 −1∑

n=0

x(4n + 2)e− j 2π4n
N · e− j 2πk·2

N +
N
4 −1∑

n=0

x(4n + 3)e− j 2π4n
N · e− j 2πk·3

N

(2.97)
= X1(k) + W k

N X2(k) + W 2k
N X3(k) + W 3k

N X4(k)
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where

X1(k) =
N
4 −1∑

n=0

x(4n)W 4nk
N (2.98)

X2(k) =
N
4 −1∑

n=0

x(4n + 1)W 4nk
N (2.99)

X3(k) =
N
4 −1∑

n=0

x(4n + 2)W 4nk
N (2.100)

X4(k) =
N
4 −1∑

n=0

x(4n + 3)W 4nk
N (2.101)

16-Point radix-4 DIT-FFT
Here N = 16 = 42, and the number of stages are two.

X (k) = X1(k) + W k
16X2(k) + W 2k

16 X3(k) + W 3k
16 X4(k) (2.102)

Stage I

X1(k) =
3∑

n=0

x(4n)W 4nk
16 , k = 0, 1, 2, 3

= x(0) + x(4)W 4k
16 + x(8)W 8k

16 + x(12)W 12k
16 (2.103)

X2(k) =
3∑

n=0

x(4n + 1)W 4nk
16

= x(1) + x(5)W 4k
16 + x(9)W 8k

16 + x(13)W 12k
16 (2.104)

X3(k) =
3∑

n=0

x(4n + 2)W 4nk
16

= x(2) + x(6)W 4k
16 + x(10)W 8k

16 + x(14)W 12k
16 (2.105)

X4(k) =
3∑

n=0

x(4n + 3)W 4nk
16

= x(3) + x(7)W 4k
16 + x(11)W 8k

16 + x(15)W 12k
16 (2.106)
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Stage II

[Xi (k + 4) = Xi (k)]

X (k) = X1(k) + W k
16X2(k) + W 2k

16 X3(k) + W 3k
16 X4(k)

X (0) = X1(0) + X2(0) + X3(0) + X4(0)

X (1) = X1(1) + W 1
16X2(1) + W 2

16X3(1) + W 3
16X4(1)

X (2) = X1(2) + W 2
16X2(2) + W 4

16X3(2) + W 6
16X4(2)

X (3) = X1(3) + W 3
16X2(3) + W 6

16X3(3) + W 9
16X4(3)

X (4) = X1(0) + W 4
16X2(0) + W 8

16X3(0) + W 12
16 X4(0)

X (5) = X1(1) + W 5
16X2(1) + W 10

16 X3(1) + W 15
16 X4(1)

X (6) = X1(2) + W 6
16X2(2) + W 12

16 X3(2) + W 18
16 X4(2)

X (7) = X1(3) + W 7
16X2(3) + W 14

16 X3(3) + W 21
16 X4(3)

X (8) = X1(0) + W 8
16X2(0) + W 16

16 X3(0) + W 24
16 X4(0)

X (9) = X1(1) + W 9
16X2(1) + W 18

16 X3(1) + W 27
16 X4(1)

X (10) = X1(2) + W 10
16 X2(2) + W 20

16 X3(2) + W 30
16 X4(2)

X (11) = X1(3) + W 11
16 X2(3) + W 22

16 X3(3) + W 33
16 X4(3)

X (12) = X1(0) + W 12
16 X2(0) + W 24

16 X3(0) + W 36
16 X4(0)

X (13) = X1(1) + W 13
16 X2(1) + W 26

16 X3(1) + W 39
16 X4(1)

X (14) = X1(2) + W 14
16 X2(2) + W 28

16 X3(2) + W 42
16 X4(2)

X (15) = X1(3) + W 15
16 X2(3) + W 30

16 X3(3) + W 45
16 X4(3)

16-point radix-4 DIT-FFT butterfly diagram is shown in Fig. 2.19.
In radix-4 FFT

N = 4m

M = logN
4 = logN

2

2

where N/4 butterflies per stage.
Number of complex multiplications

3
N

4

log2N
2

= 3

8
N logN

2 (75% of radix-2 FFT)

Number of complex additions

8
N

4

logN
2

2
= N logN

2 (same as a radix-2 FFT)
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Output are
normal order

Input are
bit reversed

x(0)
X1(0)

X1(1)

X1(2)

X1(3)

Stage-I

4
1

2 3

6

3

9
12

12
5

15

12
18

6

7

21
14

16

24
9

18

27
10

11
22

24

13

33

36

39

45

30

15

28

42

12

20

30

8

10

4
8

4

2

8

8
12

Stage-II
X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

X(16)

x(4)

x(8)

x(12)

x(1)

x(5)

x(9)

x(13)

x(2)

x(6)

x(10)

x(14)

x(15)

x(11)

x(7)

x(3)

16

24

24

36

X3(0)

X3(1)

X3(2)

X3(3)

4

8

8
12

16

2412

24

36

X2(0)

X2(1)

X2(2)

X2(3)

4

8

8
12

16

2412

24

36

X4(0)

X4(1)

X4(2)

X4(3)

4

8

8
12

16

2412

24

36

26

14

13

12

Fig. 2.19 16-Point radix-4 DIT-FFT butterfly diagram

2.6.2.2 Radix-4 Decimation in Frequency FFT

N -point DFT formula breaking into four smaller DFTs is given by,

X (k) =
N−1∑

n=0

x(n)W kn
N

=
N
4 −1∑

n=0

x(n)W kn
N +

N
2 −1∑

n=( N
4 )

x(n)W kn
N +

3( N
4 )−1∑

n=( N
2 )

x(n)W kn
N
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+
N−1∑

n=( 3N
4 )

x(n)W kn
N (2.107)

=
N
4 −1∑

n=0

x(n)W kn
N +

N
2 −1∑

n=0

x

(
n + N

4

)
W

k(n+ N
4 )

N

+
N
4 −1∑

n=0

x

(
n + N

2

)
W

k(n+ N
2 )

N +
N
4 −1∑

n=0

x

(
n + 3N

4

)
W

k(n+ 3N
4 )

N (2.108)

=
N
4 −1∑

n=0

x(n)W kn
N + W kn/4

N

N
4 −1∑

n=0

x

(
n + N

4

)
W kn

N + W kn/2
N

+
N
4 −1∑

n=0

x

(
n + N

2

)
W nk

N + W 3Nk/4
N

N
4 −1∑

n=0

x

(
n + 3N

4

)
W kn

N (2.109)

W k N/4
N = e− j 2πk N

4N = (e− j π
2
)k = (− j)k

W k N/2
N = (−1)k

W 3k N/4
N = j k

Substituting these twiddle factors in Eq. (2.92) we get,

X (k) =
N
4 −1∑

n=0

[
x(n)+(− j)k x

(
n+ N

4

)
+(−1)k x

(
n+ N

4

)
+( j)k x

(
n+3N

4

)]
W kn

N

The four N/4-point DFTs are written as,

X (4k) =
N
4 −1∑

n=0

[
x(n) + x

(
n + N

4

)
+ x

(
n + N

2

)
+ x

(
n + 3N

4

)]
W 4kn

N

X (4k) =
N
4 −1∑

n=0

[
x(n) + x

(
n + N

4

)
+ x

(
n + N

2

)
+ x

(
n + 3N

4

)]
W 0

N · W kn
N
4

(2.110)

X (4k + 1) =
N
4 −1∑

n=0

[
x(n)− j x

(
n + N

4

)
−x

(
n + N

2

)
+ j x

(
n + 3N

4

)]
W n

N · W kn
N
4

(2.111)
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X (4k + 2) =
N
4 −1∑

n=0

[
x(n)−x

(
n + N

4

)
+x

(
n + N

2

)
−x

(
n + 3N

4

)]
W 2n

N · W kn
N
4

(2.112)

X (4k + 3) =
N
4 −1∑

n=0

[
x(n)+ j x

(
n + N

4

)
−x

(
n + N

2

)
− j x

(
n + 3N

4

)]
W 3n

N · W kn
N
4

(2.113)

16-Point DFT using radix-4 DIF-FFT

Let x(n)be an16-point sequence.The samples of x(n) are x(0), x(1), x(2), . . . , x(15).
Here N = 16.

Stage I

In the first stage four numbers of four-point sequences g1(n), g2(n), g3(n) and g4(n)

are obtained from Eqs. (2.93)–(2.96) respectively. Thus,

g1(n) =
[

x(n) + x

(
n + N

4

)
+ x

(
n + N

2

)
+ x

(
n + 3N

4

)]
W 0

N

n = 0, 1, 2, 3 and N = 16.

g1(0) = [x(0) + x(4) + x(8) + x(12)] W 0
16

g1(1) = [x(1) + x(5) + x(9) + x(13)] W 0
16

g1(2) = [x(2) + x(6) + x(10) + x(14)] W 0
16

g1(3) = [x(3) + x(7) + x(11) + x(15)] W 0
16

g2(n) =
[

x(n) − j x

(
n + N

4

)
− x

(
n + N

2

)
+ j x

(
n + 3N

4

)]
W n

N

g2(0) = [x(0) − j x(4) − x(8) + j x(12)] W 0
16

g2(1) = [x(1) − j x(5) − x(9) + j x(13)] W 1
16

g2(2) = [x(2) − j x(6) − x(10) + j x(14)] W 2
16

g2(3) = [x(3) − j x(7) − x(11) + j x(15)] W 3
16

g3(n) =
[

x(n) − x

(
n + N

4

)
+ x

(
n + N

2

)
− x

(
n + 3N

4

)]
W 2n

N

g3(0) = [x(0) − x(4) + x(8) − x(12)] W 0
16
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g3(1) = [x(1) − x(5) + x(9) − x(13)] W 2
16

g3(2) = [x(2) − x(6) + x(10) − x(14)] W 4
16

g3(3) = [x(3) − x(7) + x(11) − x(15)] W 6
16

g4(n) =
[

x(n) + j x

(
n + N

4

)
− x

(
n + N

2

)
− j x

(
n + 3N

4

)]
W 3n

N

g4(0) = [x(0) − j x(4) − x(8) − j x(12)] W 0
16

g4(1) = [x(1) − j x(5) − x(9) − j x(13)] W 3
16

g4(2) = [x(2) − j x(6) − x(10) − j x(14)] W 6
16

g4(3) = [x(3) − j x(7) − x(11) − j x(15)] W 9
16

Stage II

The four four-point DFTs are

G1(k) =
N
4 −1∑

n=0

g1(n)W kn
N/4 k = 0, 1, . . . , 3

G1(k) =
3∑

n=0

g1(n)W kn
4

G1(0) =
3∑

n=0

g1(n) = g1(0) + g1(1) + g1(2) + g1(3)

G1(1) =
3∑

n=0

g1(n)W n
4

= g1(0)W 0
4 + g1(1)W 1

4 + g1(2)W 2
4 + g1(3)W 3

4

G1(2) =
3∑

n=0

g1(n)W 2n
4

= g1(0)W 0
4 + g1(1)W 2

4 + g1(2)W 0
4 + g1(3)W 2

4

G1(3) =
3∑

n=0

g1(n)W 3n
4

= g1(0)W 0
4 + g1(1)W 3

4 + g1(2)W 2
4 + g1(3)W 1

4
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Similarly

G2(k) =
N
4 −1∑

n=0

g2(n)W kn
N/4 k = 0, 1, . . . , 3

G3(k) =
N
4 −1∑

n=0

g3(n)W kn
N/4 k = 0, 1, . . . , 3

G4(k) =
N
4 −1∑

n=0

g4(n)W kn
N/4 k = 0, 1, . . . , 3

16-point radix-4 DIF-FFT butterfly diagram is shown in Fig. 2.20.

Number of complex multiplications = 3

8
N logN

2 (2.114)

Number of complex additions = N logN
2 (same as DIT algorithm)

2.6.2.3 Four-Point DFT Using Radix-4 FFT Algorithm

X (k) =
3∑

n=0

x(n)W kn
N k = 0, . . . , 3

X (0) =
3∑

n=0

x(n)W 0
N = x(0) + x(1) + x(2) + x(3) (2.115)

X (1) =
3∑

n=0

x(n)W n
N = x(0)W 0

4 − j x(1)W 0
4 − x(2)W 0

4 + j x(3)W 0
4 (2.116)

X (2) =
3∑

n=0

x(n)W 2n
N = x(0)W 0

4 − x(1)W 0
4 + x(2)W 0

4 − x(3)W 0
4 (2.117)

X (3) =
3∑

n=0

x(n)W 3n
N = x(0)W 0

4 + j x(1)W 0
4 − x(2)W 0

4 − j x(3)W 0
4 (2.118)

Four-point radix-4 FFT butterfly diagram is shown in Fig. 2.21.
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Output are
normal order

Input are
bit reversed

x(0)
g1(0)

g1(1)

g1(2)

x1(3)

Stage-I

1
0

8
3

2
24

Stage-II

x(1)

x(0)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

x(4)

x(8)

x(12)

x(1)

x(5)

x(9)

x(13)

x(2)

x(6)

x(10)

x(14)

x(15)

x(11)

x(7)

x(3)

16

2412

24

36

g3(0)

g3(1)

g3(2)

g3(3)

4

8

8
24

16

2412

24

36

g2(0)

x2(1)

g2(2)

g2(3)

4

8

8
24

16

2412

24

36

g4(0)

g4(1)

g4(2)

g4(3)

G1(0)

G1(1)

G1(2)

G1(3)

G3(0)

G3(1)

G3(2)

G3(3)

G2(0)

G2(1)

G2(2)

G2(3)

G4(0)

G4(1)

G4(2)

G4(3)

4

8

8
24

16

2412

24

36

1

2 3

6

3

9
12

12
5

15

12
18

6

7

21
14

16

24
9

18

27
10

11
22

24

13

33

36

39

45

30

15

28

42

12

20

30

8

10

4
8

4

2

26

14

13

Fig. 2.20 16-Point radix-4 DIF-FFT butterfly diagram

In matrix form, the four-point DFT is written as

⎡

⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W 3

4
1 W 2

4 W 4
4 W 6

4
1 W 3

4 W 6
4 W 9

4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤

⎥⎥⎦ (2.119)
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X(1)x(0)

x(1)

x(2)

x(3)
j

1

j

j

j

1

1

j

1

1

W 0

X(2)

X(3)

X(4)

4

W 0
4

W 0
4

W 0
4

Fig. 2.21 Four-point radix-4 FFT butterfly diagram

or
⎡

⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

W 0
4 x(0)

W 0
4 x(1)

W 0
4 x(2)

W 0
4 x(3)

⎤

⎥⎥⎦ (2.120)

Therefore in general, the four N/4-point DFT of X (k) in matrix form is

⎡

⎢⎢⎣

X (0, q)

X (1, q)

X (2, q)

X (3, q)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤

⎥⎥⎦

⎡

⎢⎢⎣

W 0
N F(0, q)

W q
N F(1, q)

W 2q
N F(2, q)

W 3q
N F(3, q)

⎤

⎥⎥⎦ (2.121)

The basic butterfly computation in radix-4 FFT algorithm is shown in Fig. 2.22.

2.6.3 Computation of IDFT through FFT

The IDFT of an N -point sequence X (k) is defined as

x(n) = 1

N

N−1∑

k=0

X (k)e j 2πkn
N
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= 1

N

N−1∑

k=0

X (k)W −nk
N

[
∵ WN = e− j 2π

N

]

Taking the conjugate and multiplying by N , we get

N x∗(n) =
N−1∑

k=0

X∗(k)W nk
N

x∗(n) = 1

N

N−1∑

k=0

X∗(k)W nk
N

x(n) = 1

N

[
N−1∑

k=0

X∗(k)W nk
N

]∗
(2.122)

where
∑N−1

k=0 X∗(k)W nk
N is N -point DFT of X∗(k).

Hence, in order to compute IDFT of X (k) the following procedure is be followed:

1. Take conjugate of X (k) [i.e., determine X∗(k)].
2. Compute the N -point DFT of X∗(k) using radix-2 FFT.
3. Take conjugate of the output sequence of FFT.
4. Divide the sequence obtained in step 3 by N . The resultant sequence is x(n).

W 0

j

j

j

j1

1

1

1

1

N

W 0N

W q
N

W q
N

W 2q
N

W 2q
N

W 3q
N

W 3q
N

Fig. 2.22 Basic butterfly in a radix-4 FFT algorithm
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Example 2.31
An eight-point sequence is given by x(n) = {2, 2, 2, 2, 1, 1, 1, 1}. Compute eight-
point DFT of x(n) by (i) radix-2 DIT-FFT and (ii) radix-2 DIF-FFT. Also sketch the
magnitude and phase spectrum.

(Madras University, October, 2002)
(Anna University, December, 2002)

Solution Given

x(n) = {2, 2, 2, 2, 1, 1, 1, 1}
x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

W 0
2 = 1

W 0
4 = 1

W 1
4 = e

− j2π
4 = − j

W 0
8 = 1

W 1
8 = e

− j2π
8 = 1√

2
− j

1√
2

W 2
8 = e

− j2π×2
8 = − j

W 3
8 = e

− j2π×3
8 = − 1√

2
− j

1√
2

(i) DIT-FFT

X (k) = {12,− j2.414, 0, 1 − j0.414, 0, 1 + j0.414, 0, 1 + j2.414}

Input Stage-I Stage-II Stage-III Output

2 2 + 1 = 3 3 + 3 = 6 6 + 6 = 12 X (0)

1 2 − 1 = 1 1 + (− j) = 1 − j 1 − j + ( 1√
2

− j 1√
2
)(1 − j) = 1 − j2.414 X (1)

2 2 + 1 = 3 3 − 3 = 0 0 + 0 = 0 X (2)

1 2 − 1 = 1 1 + (−1)(− j) = 1 + j 1 + j + ( 1√
2

− j√
2
)(1 + j) = 1 − j0.414 X (3)

2 2 + 1 = 3 3 + 3 = 6 6 − 6 = 0 X (4)

1 2 − 1 = 1 1 + (− j) = 1 − j 1 − j − ( 1√
2

− j√
2
)(1 − j) = 1 − j0.414 X (5)

2 2 + 1 = 3 3 − 3 = 0 0 − 0 = 0 X (6)

1 2 − 1 = 1 1 + (−1)(− j) = 1 + j 1 + j − ( 1√
2

− j√
2
)(1 + j) = 1 + j2.414 X (7)

(ii) DIF-FFT
Butterfly diagram of Example 2.31(i) is shown in Fig. 2.23.
Butterfly diagram of Example 2.31(ii) is shown in Fig. 2.24.
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x(0)=2

x(4)=1

x(2)=2

x(6)=1
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x(7)=1

x(1)=2
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1 j

1 j

1 j
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0
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order

Input is
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1
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2 1
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1
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Fig. 2.23 Butterfly diagram of Example 2.31(i)
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1
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Input is
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Fig. 2.24 Butterfly diagram of Example 2.31(ii)
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X (k) = {12, 1 − j2.414, 0, 1 − j0.414, 0, 1 + j0.414, 0, 1 + j2.414}
|X (k)| = {12, 2.61, 0, 1.08, 0, 1.08, 0, 2.61}
∠X (k) = {0,−0.37π, 0,−0.12π, 0, 0.12π, 0, 0.37π}

Input Stage-I Stage-II Stage-III Output

2 2 + 1 = 3 3 + 3 = 6 6 + 6 = 12 X (0)

2 2 + 1 = 3 3 + 3 = 6 6 − 6 = 0 X (4)

2 2 + 1 = 3 (3 − 3)( j) = 0 0 + 0 = 0 X (2)

2 2 + 1 = 3 (3 − 3)(− j) = 0 0 − 0 = 0 X (6)

1 (2 − 1)1 = 1 1 − j 1 − j − j1.414 = X (1)

1 − j2.414

1 (2 − 1)( 1√
2

− j√
2
) = 1√

2
− j√

2
− 1√

2
− j√

2
= 1 − j + j1.414 = X (5)

1√
2

− j√
2

− j1.414 1 + j0.414

1 (2 − 1)(− j) = − j 1 − (− j) = 1 + j 1 + j − j1.414 = X (3)

1 − j0.414 j

1 (2 − 1)( −1√
2

− − j√
2
) = ( 1√

2
− j√

2
+ 1√

2
+ j√

2
) − j 1 + j + j1.414 = X (7)

−1√
2

− j√
2

= − j1.414 1 + j2.414

Example 2.32
In an LTI system the input x(n) = {1, 1, 1} and the impulse response h(n) =

{−1, −1}. Determine the response of LTI system by radix-2 DIT-FFT.

Solution The response of LTI system is given by linear convolution of input x(n)

and impulse response h(n). That is

y(n) = x(n) ∗ h(n)

where N1 = 3 and N2 = 2. The length of output sequence y(n) is N = N1 + N2 −
1 = 3 + 2 − 1 = 4. Therefore, the given sequence x(n) and h(n) are converted into
four-point sequences by appending zeros.

x(n) = {1, 1, 1, 0} and h(n) = {−1, −1, 0, 0}
y(n) = x(n) ∗ h(n)

Y (k) = X (k) ∗ H(k)

y(n) = IDFT {Y (k)}
y(n) = IDFT {X (k)H(k)}

Step 1: To Determine X(k)

x(n) = {1, 1, 1, 0}

Therefore, by referring to butterfly diagram we get
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(b)
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Fig. 2.25 Magnitude and phase spectrum of Example 2.31

Magnitude and phase spectrum of Example 2.31 is shown in Fig. 2.25.

X (k) = {3, − j, 1, j}

Step 2: To Determine H(k)

h(n) = {−1, −1, 0, 0}

Therefore, by referring to Fig. 2.27 we get,

H(k) = {2, −1 + j, 0, −1 − j}

Step 3: To Determine the Product X(k)H(k)
Let

Y (k) = X (k)H(k)
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x(0)

x(2)

x(1)

x(3)

X(0)

X(1)

X(2)

X(3)
j

1 1

1

1

j

1

32

0

1

1

1

1

1

0

W 02 1

W 02 1

W 04 1

W 04 j

Fig. 2.26 Butterfly diagram of X (k)

where

k = 0, Y (0) = X (0)H(0) = −6

k = 1, Y (1) = X (1)H(1) = 1 + j

k = 2, Y (2) = X (2)H(2) = 0

k = 3, Y (3) = X (3)H(3) = 1 − j

Therefore,

Y (k) = {−6, 1 + j, 0, 1 − j}

Butterfly diagram of X (k) is shown in Fig. 2.26.

Step 4: To Determine IDFT of Y(k)
The IDFT of Y (k) is given by

y(n) = 1

N

[
N−1∑

k=0

Y ∗(k)W nk
N

]∗

∴ Y ∗(k) = {−6, 1 − j, 0, 1 + j}

The four-point DFT of Y ∗(k) is,
Therefore, by referring to Fig. 2.28 we get,

y(n) = 1

4
{4-point DFT Y ∗(k)}∗

= 1

4
{−4, −8, −8, −4}∗

= 1

4
{−4, −8, −8, −4}
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h(0)

h(2)

h(1)

h(3)

H(0)

H(1)

H(2)

H(3)
1 j

1 1

1

1

1 j

0

21

1
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1

1

0

1

0

W 02 1
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W1
4 j

Fig. 2.27 Butterfly diagram of H(k)

1 1

1

1

6 4

4

8

8
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2

6

Y*(0) 6

Y*(1) 1 j

Y*(3) 1 j

Y*(2) 0
W 02 1

W 02 1

W 04 1

W1
4 j

Fig. 2.28 Butterfly diagram of Y ∗(k)

y(n) = {−1, −2, −2, −1}

Example 2.33
Find the DFT of sequence

x(n) = {1, 2, 3, 4, 4, 3, 2, 1}

using DIT and DIF algorithm.

Solution The twiddle factors are

W 0
2 = 1, W 0

4 = 1, W 1
4 = − j

W 0
8 = 0, W 1

8 = e− j 2π
8 = 1√

2
− j√

2

W 2
8 = e− j 2π×2

8 = − j

W 3
8 = e− j 2π×3

8
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Fig. 2.29 Butterfly diagram of Example 2.33(i)

= − 1√
2

− j√
2

The butterfly diagram is shown in Fig. 2.29.

(i) Using DIT Algorithm

Input Stage-I Stage-II Output
1 1 + 4 = 5 5 + 5 = 10 10 + 10 = 20
4 1 − 4 = −3 −3 − j −3 − j + (−1 − 3 j)( 1√

2
− j√

2
)

= −5.828 − j2.414
3 3 + 2 = 5 5 − 5 = 0 0 + 0 = 0
2 3 − 2 = 1 −3 + j −3 + j + (−1 + 3 j)( −1√

2
− j√

2
) =

−0.172 − j0.414
2 2 + 3 = 5 5 + 5 = 10 10 − 10 = 0
3 2 − 3 = −1 −1 + (3)(− j) = −1 − 3 j −3 − j − (−1 − 3 j)( 1√

2
− j√

2
) =

−0.172 + j0.414
4 4 + 1 = 5 5 − 5 = 0 0 + 0 = 0
1 4 − 1 = 3 −1 + (3)(− j)(−1) = −1 + 3 j −3 + j − (−1 + 3 j)( −1√

2
− j√

2
) =

−5.828 + j2.414

X (k) =
{20, −5.828− j2.414, 0, −0.172− j0.414, 0, −0.172+ j0.414, 0, −5.828+ j2.414}

Butterfly diagram of Example 2.33 using DIF algorithm is shown in Fig. 2.30.
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0
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0.707 j0.707

3 j

3 j

1

1

1

3

1

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

W 08 1

W2
8 j j

W1
8

1
2

j
2

W 3
8 2

j1
2

W 04 1

W 0
4 1

W1
4 j

W 1
4 j

Output normal
order

Input bit 
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Input Stage-I Stage-II Stage-III Output

Fig. 2.30 Butterfly diagram of Example 2.33(ii)

(ii) Using DIT Algorithm

X (k) =
{20, −5.828− j2.414, 0, −0.172v j0.414, 0, −0.172+ j0.414, 0, −5.828+ j2.414}

Input Stage-I Stage-II Output

1 1 + 4 = 5 5 + 5 = 10 10 + 10 = 20

2 2 + 3 = 5 5 + 5 = 10 10 − 10 = 0

3 3 + 2 = 5 (5 − 5)(1) = 0 0 + 0 = 0

4 4 + 1 = 5 (5 − 5)(− j) = 0 0 − 0 = 0

4 (1 − 4)1 = −3 −3 − j −3 − j − 2.828 − j1.414

= −5.828 − j0.414

3 (2 − 3)( 1√
2

− j√
2
) −0.707 + j0.707 − 2.121 − j2.121 −3 − j + 2.828 + j1.414

= −0.707 + j0.707 = −2.828 − j1.414 = −0.172 + j0.414

2 (3 − 2)(− j) = − j −3 + j −3 + j + 2.828 − j1.414

= −0.172 − j0.414

1 (4 − 1)( −1√
2

− j√
2
) −0.707 + j0.707 − (−2.121 − j2.121) −3 + j − 2.828 + j1.414

= −2.121 − j2.121 (− j) = 2.828 − j1.414 = −5.828 + j2.414
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Fig. 2.31 Butterfly diagram of X (k) for Example 2.34

Butterfly diagram of Example 2.34 is shown in Fig. 2.31.

Example 2.34
Compute four-point of sequence

x(n) = {0, 1, 2, 3}

using DIT algorithm.

Solution The twiddle factors are

W 0
2 = 1, W 0

4 = 1, W 1
4 = − j

X (k) = {6, −2 + 2 j, −2, −2 − 2 j}

Example 2.35
Find the IDFT of the sequence

X (k) = {4, 1 − j2.414, 0, 1 − j0.414, 0, 1 + j0.414, 0, 1 + j2.414}

using DIT algorithm.

Solution

X∗(k) = {4, 1 + j2.414, 0, 1 + j0.414, 0, 1 − j0.414, 0, 1 − j2.414}
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Fig. 2.32 Butterfly diagram of X∗(k)

The eight-point butterfly diagram of X∗(k) is shown in Fig. 2.32.

Input Stage-I Stage-II Output

4 4 + 0 = 4 4 + 0 = 4 4 + 4 = 8

1 + j2.414 1 + j2.414 + 1 − j0.414 = 2 + j2 2 + j2 + 2 − j2 = 4 4 − 4 = 0

0 0 + 0 = 0 4 − 0 = 4 4 + 4 = 8

1 + j0.414 1 + j0.414 + 1 − j2.414 = 2 − j2 2 + j2 − (2 − j2)(− j) = 4 4 − 4 = 0

0 4 − 0 = 4 4 + 0 = 4 4 + 4 = 8

1 − j0.414 1 + j2.414 − (1 − j0.414)
(

1√
2

− j√
2

)
2 + j2 + 2 − j2 = 4 4 − 4 = 0

= 2 + j2

0 0 − 0 = 0 4 − 0 = 4 4 + 4 = 8

1 − j2.414 1 − j0.414 − (1 − j2.414)
( −1√

2
− j√

2

)
2 + j2 + 2 − (2 − j2)(− j) = 4 4 − 4 = 0

= 2 − j2

Eight-point DFT of X∗(k) is

x(n) = 1

8
{8-point DFT of X∗(k)}∗

= 1

8
{8, 8, 8, 8, 0, 0, 0, 0}∗

x(n) = {1, 1, 1, 1, 0, 0, 0, 0}
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Fig. 2.33 Butterfly diagram of X∗(k)

Example 2.36
Find the IDFT of the sequence

X (k) = {10, −2 + j2, −2, −2 − j2}

using DIT algorithm.

Solution Given

X (k) = {10, −2 + j2, −2, −2 − j2}
X∗(k) = {10, −2 − j2, −2, −2 + j2}

The butterfly diagram of X∗(k) is shown in Fig. 2.33.
Four-point DFT of X∗(k) = {4, 12, 8, 16}

x(n) = 1

4
{4-point DFT of X∗(k)}∗

= 1

4
{4, 8, 12, 16}∗

x(n) = {1, 2, 3, 4}
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Fig. 2.34 Butterfly diagram of X (k) for Example 2.37

Butterfly diagram of Example 2.37 is shown in Fig. 2.34.

Example 2.37
Compute the DFT of the sequence

x(n) = cos
(nπ

2

)

where N = 4, using DIF-FFT algorithm.

Solution Given

x(n) = cos
(nπ

2

)
, N = 4

x(0) = 1

x(1) = 0

x(2) = −1

x(3) = 0

Therefore,

x(n) = {1, 0, −1, 0}

Therefore,
X (k) = {0, 2, 0, 2}
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Example 2.38
Using the decimation in frequency FFT flow graph compute DFT of

x[n] = cos
(nπ

4

)
for 0 ≤ n ≤ 7

(Anna University, December, 2007)
Solution Given

x[n] = cos
(nπ

4

)
for 0 ≤ n ≤ 7

x[n] = {1, 0.707, 0, −0.707, −1, −0.07, 0, 0.707}

The butterfly diagram is shown in Fig. 2.35. From Fig. 2.35, X (k) is obtained as,

X (k) = {0, 4, 0, 0, 0, 0, 0, 4}

Example 2.39
Draw the butterfly diagram using eight-point DIT-FFT for the following sequence

x[n] = {1, 0, 0, 0, 0, 0, 0, 0}

((Anna University, June, 2007)

Solution The butterfly diagram for Example 2.39 is shown in Fig. 2.36.

Input Stage-I Stage-II Output
1 1 + 0 = 1 1 + 0 = 1 1 + 0 = 1
0 0 + 1 = 1 1 + 0 = 1 1 + 0 = 1
0 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1
0 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1
0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1
0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1
0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1
0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1

X (k) = {1, 1, 1, 1, 1, 1, 1, 1}
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Fig. 2.35 Butterfly diagram for Example 2.38

Example 2.40
Compute the eight-point DFT of the sequence

x[n] = {0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0}

using the in place radix-2 DIF-FFT algorithm.
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Fig. 2.36 Butterfly diagram for Example 2.39

Solution
The twiddle factors are

W 0
8 = 1,

W 1
8 = 1√

2
− j√

2
W 2

8 = − j

W 3
8 = −−1√

2
− j√

2
W 0

4 = 1

W 1
4 = − j

W 0
2 = 1
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The butterfly diagram is shown in Fig. 2.37.

Input Stage-I Stage-II Output
0.5 0.5 + 0 = 0.5 0.5 + 0.5 = 1 1 + 1 = 2
0.5 0.5 + 0 = 0.5 0.5 + 0.5 = 1 1 − 1 = 0
0.5 0.5 + 0 = 0.5 (0.5 − 0.5)1 = 0 0 + 0 = 0
0.5 0.5 + 0 = 0.5 (0.5 − 0.5)(− j) = 0 0 − 0 = 0
0 (0.5 + 0)1 = 0.5 0.5 − 0.5 j 0.5 − 0.5 j − 0.707 j

= 0.5 − 1.207 j

0 (0.5 + 0)
(

1√
2

− j√
2

)
(0.3525 − j0.3525) 0.5 − 0.5 j + 0.707 j

= 0.3535 − j0.3525 +(−0.3525 − j0.3525) = −0.707 j = 0.5 + 0.207 j
0 (0.5 + 0)(− j) = −0.5 j 0.5 + 0.5 j 0.5 + 0.5 j − 0.707 j

= 0.5 − 0.207 j

0 (0.5 + 0)
(−1√

2
− j√

2

)
[(0.3525 − j0.3525) 0.5 + 0.5 j + 0.707 j

= −0.3535 − j0.3525 −(−0.3525 − j0.3525)](− j) = 0.5 + 1.207 j
= −0.707 j

X (k) = {2, 0.5 − 1.207 j, 0, 0.5 − 0.207 j, 0, 0.5 + 0.207 j, 0, 0.5 + 1.207 j}

Example 2.41
Find the eight-point DFT of the given sequence

x[n] = {0, 1, 2, 3, 4, 5, 6, 7}

using DIF radix-2 FFT algorithm.

(Anna University, May, 2005)
Solution

Input Stage-I Stage-II Output

0 0 + 4 = 4 8 + 4 = 12 12 + 16 = 28

1 1 + 5 = 6 6 + 10 = 16 12 − 16 = −4

2 2 + 6 = 8 4 − 8 = −4 −4 + 4 j

3 3 + 7 = 10 (6 − 10) − j = 4 j −4 − 4 j

4 0 − 4 = −4 −4 + 4 j −4 + 4 j + 8 j√
2

= −4 + 9.656 j

5 (1 − 5)
(

1√
2

− j√
2

) −4√
2

+ 4 j√
2

+ 4√
2

+ 4 j√
2

= 8 j√
2

−4 + 4 j − 8 j√
2

= −4√
2

+ 4 j√
2

= −4 − 1.656 j

6 (2 − 6)(− j) = 4 j −4 − 4 j −4 + 4 j + 8 j√
2

= −4 + 1.656 j

7 (3 − 7)
(
− 1√

2
− j√

2

) (
− 4√

2
+ 4 j√

2
− 4√

2
− 4 j√

2

)
−4 − 4 j − 8 j√

2

= 4√
2

+ 4 j√
2

− j = 8 j√
2

= −4 − 9.656 j
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X (k) =
{
28,−4 + 9.656 j,−4 + 4 j,−4 + 1.656 j,−4, −4 − 1.656 j,

− 4 − 4 j,−4 − 9.656 j
}

The butterfly diagram is shown in Fig. 2.38.

Example 2.42
Find the response of an LTI system with impulse response h(n) = {2, 1, 3} for the
input x(n) = {1, 2} using DIT radix-2 FFT algorithm.

(Anna University, December, 2007)
Solution The response of LTI system is given by linear convolution of input x(n)

and impulse h(n) i.e.,

y(n) = x(n) ∗ h(n)

N1 = 2 and N2 = 3. The length of output sequence y(n) is N = N1 + N2 − 1 =
2 + 3 − 1 = 4. Therefore, the given sequence x(n) and h(n) are converted into four-
point sequence by appending zeros.

x(n) = {1, 2, 0, 0} and h(n) = {2, 1, 3, 0}
y(n) = IDFT{X (k)H(k)}

Step 1: To determine X (k) (Refer Fig. 2.39a)

x(n) = {1, 2, 0, 0}

X (k) = {3, 1 − 2 j,−1, 1 + 2 j}

Step 2: To determine H(k) (Refer Fig. 2.39b)

h(n) = {2, 1, 3, 0}

H(k) = {6,−1 − j, 4,−1 + j}
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x(0)
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Fig. 2.39 a Butterfly diagram for Example 2.42. b Butterfly diagram for Example 2.42. c Butterfly
diagram for Example 2.42
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Step 3:

Y (k) = X (k)H(k)

= {3, (1 − 2 j), −1, (1 + 2 j)}{6, (−1 − j), 4, (−1 + j)}
= {3 × 6, (1 − 2 j)(−1 − j), −1 × 4, (1 + 2 j)(−1 + j)}

Y (k) = {18,−3 + j,−4,−3 − j}

Step 4: To determine IDFT of Y (k) (Refer Fig. 2.39(c))
The IDFT of Y (k) is given by

y(n) = 1

N

[
N−1∑

k=0

Y ∗(k)W nk
N

]∗

= 1

N

[
N point DFT of Y ∗(k)

]∗

Y ∗(k) = {18,−3 − j,−4,−3 + j}

The four-point DFT of Y ∗(k) is
Therefore,

y(n) = 1

N

[
4 point DFT of Y ∗(k)

]∗

= 1

4
{8, 20, 20, 24}∗

= 1

4
{8, 20, 20, 24}

y(n) = {2, 5, 5, 6}

Example 2.43
Develop a radix-3 DIF-FFT algorithm for evaluating the DFT for N = 9.

Solution For N = 9 = 3 · 3

X (k) =
2∑

n=0

x(3n)W 3nk
9 +

2∑

n=0

x(3n + 1)W (3n+1)k
9

+
2∑

n=0

x(3n + 2)W (3n+2)k
9

X (k) = X1(k) + W k
9 X2(k) + W 2k

9 X3(k)
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where

X1(k) =
2∑

n=0

x(3n)W 3nk
9 = x(0) + x(3)W 3k

9 + x(6)W 6k
9 k = 0, . . . , 2

X2(k) =
2∑

n=0

x(3n + 1)W 3nk
9 = x(1) + x(4)W 3k

9 + x(7)W 6k
9 k = 0, . . . , 2

X3(k) =
2∑

n=0

x(3n + 2)W 3nk
9 = x(2) + x(5)W 3k

9 + x(8)W 6k
9 k = 0, . . . , 2

The butterfly diagram is shown in Fig. 2.40.

Stage-I: Computation

X1(k) =
2∑

n=0

x(3n)W 3nk
9

= x(0) + x(3)W 3k
9 + x(6)W 6k

9 k = 0, . . . , 2

X1(0) = x(0) + x(3)W 0
9 + x(6)W 0

9

X1(1) = x(0) + x(3)W 3
9 + x(6)W 6

9

X1(2) = x(1) + x(3)W 6
9 + x(6)W 12

9

X2(k) = x(1) + x(4)W 3k
9 + x(7)W 6k

9 , k = 0, . . . , 2

X2(0) = x(1) + x(3)W 0
9 + x(7)W 0

9

X2(1) = x(1) + x(3)W 3
9 + x(7)W 6

9

X2(2) = x(1) + x(3)W 6
9 + x(7)W 12

9

X3(k) = x(2) + x(5)W 3k
9 + x(8)W 6k

9 , k = 0, . . . , 2

X3(0) = x(2) + x(5)W 0
9 + x(8)W 0

9

X3(1) = x(2) + x(5)W 3
9 + x(8)W 6

9

X3(2) = x(2) + x(5)W 6
9 + x(8)W 12

9
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Fig. 2.40 Radix-3 DIT-FFT flow diagram for N = 9
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Stage-II: Computation

X (k) = X1(k) + W k
9 X2(k) + W 2k

9 X3(k) k = 0, . . . , 8

X (0) = X1(0) + W 0
9 X2(0) + W 0

9 X3(0)

X (1) = X1(1) + W 1
9 X2(1) + W 2

9 X3(1)

X (2) = X1(2) + W 2
9 X2(2) + W 4

9 X3(2)

X (3) = X1(0) + W 3
9 X2(0) + W 6

9 X3(0)

X (4) = X1(1) + W 4
9 X2(1) + W 8

9 X3(1)

X (5) = X1(2) + W 5
9 X2(2) + W 10

9 X3(2)

X (6) = X1(0) + W 6
9 X2(0) + W 12

9 X3(0)

X (7) = X1(1) + W 7
9 X2(1) + W 14

9 X3(1)

X (8) = X1(2) + W 8
9 X2(2) + W 16

9 X3(2)

Example 2.44
Develop DIT FTT algorithm for decomposing the DFT for N = 6 and draw the flow
diagrams for

(a) N = 2 · 3
(b) N = 3 · 2
(c) Also, by using the FFT algorithm developed in part (b); evaluate the DFT values

for x(n) = {1, 2, 3, 4, 5, 6}.

Solution

(a) For N = 6 = 2 · 3, where number of sequence (m1 = 2), number of elements in
each subsequences (N1 = 3).

X (k) =
2∑

n=0

x(2n)W 2nk
6 +

2∑

n=0

x(2n + 1)W (2n+1)k
6 +

2∑

n=0

x(2)W 2nk
6 + W k

6

2∑

n=0

x(2n + 1)W 2nk
6

Also, Xi (k + 3) = Xi (k)

X (k) = X1(k) + W k
6 X2(k), k = 0, . . . , 5

where

X1(k) =
2∑

n=0

x(2n)W 2nk
6 k = 0, . . . , 2

X2(k) =
2∑

n=0

x(2n + 1)W 2nk
6 k = 0, . . . , 2
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The butterfly diagram is shown in Fig. 2.41.
Stage-I: Computation

X1(k) =
2∑

n=0

x(2n)W 2nk
6 k = 0, . . . , 2

X1(k) = x(0) + x(2)W 2k
6 + x(4)W 4k

6 k = 0, . . . , 2

X1(0) = x(0) + x(2)W 0
6 + x(4)W 0

6

X1(1) = x(0) + x(3)W 2
6 + x(4)W 4

6

X1(2) = x(1) + x(3)W 4
9 + x(4)W 8

6

X1(2) = x(0) + x(3)W 4
9 + x(4)W 2

6

X2(k) =
2∑

n=0

x(2n + 1)W 2nk
6 k = 0, . . . , 2

X2(k) = x(1) + x(3)W 2k
6 + x(5)W 4k

6 k = 0, . . . , 2

X2(0) = x(1) + x(3)W 0
6 + x(5)W 0

6

X2(1) = x(1) + x(3)W 2
6 + x(5)W 4

6

X2(2) = x(1) + x(3)W 4
6 + x(5)W 8

6

X2(2) = x(1) + x(3)W 4
6 + x(5)W 2

6

Stage-II: Computation

X (k) = X1(k) + W k
6 X2(k), k = 0, . . . 5

X (0) = X1(0) + W 0
6 X2(0)

X (1) = X1(1) + W 1
6 X2(1)

X (2) = X1(2) + W 2
6 X2(2)

X (3) = X1(3) + W 3
6 X2(3) = X1(0) + W 3

6 X2(0)

X (4) = X1(4) + W 4
6 X2(4) = X1(1) + W 4

6 X2(1)

X (5) = X1(5) + W 5
6 X2(5) = X1(2) + W 5

6 X2(2)

(b) For N = 6 = 2 · 3, where number of sequence (m1 = 3), number of elements in
each subsequences (N1 = 2).

X (k) =
1∑

n=0

x(3n)W 3nk
6 +

1∑

n=0

x(3n + 1)W (3n+1)k
6 +

1∑

n=0

x(3n + 2)W (3n+2)k
6

=
1∑

n=0

x(3n)W 3nk
6 + W k

6

1∑

n=0

x(3n + 1)W 3nk
6 + W 2k

6

1∑

n=0

x(3n + 2)W 3nk
6

X (k) = X1(k) + W k
6 X2(k) + W 2k

6 X3(k)
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where

X1(k) =
1∑

n=0

x(3n)W 3nk
6 = x(0) + x(3)W 3k

6

X2(k) =
1∑

n=0

x(3n + 1)W 3nk
6 = x(1) + x(4)W 3k

6

X3(k) =
1∑

n=0

x(3n + 2)W 3nk
6 = x(2) + x(5)W 3k

6

Also, Xi (k + 2) = Xi (k).
Stage-I: Computation

X1(k) = x(0) + x(3)W 3k
6 k = 0, 1

X1(0) = x(0) + x(3)W 0
6

X1(1) = x(0) + x(3)W 3
6

X2(k) = x(1) + x(4)W 3k
6 k = 0, 1

X2(0) = x(1) + x(4)W 0
6

X2(1) = x(1) + x(4)W 3
6

X3(k) = x(2) + x(5)W 3k
6 k = 0, 1

X3(0) = x(2) + x(5)W 0
6

X3(1) = x(2) + x(5)W 3
6

The butterfly diagram is shown in Fig. 2.42.
Stage-II: Computation

X (k) = X1(k) + W k
6 X2(k) + W 2k

6 X3(k), k = 0, . . . , 5

X (0) = X1(0) + W 0
6 X2(0) + W 0

6 X3(0)

X (1) = X1(1) + W 1
6 X2(1) + W 2

6 X3(1)

X (2) = X1(2) + W 2
6 X2(2) + W 4

6 X3(2)

= X1(0) + W 2
6 X2(0) + W 4

6 X3(0)

X (3) = X1(3) + W 3
6 X2(3) + W 6

6 X3(3)

= X1(0) + W 3
6 X2(1) + W 0

6 X3(0)

X (4) = X1(4) + W 4
6 X2(4) + W 8

6 X3(4)

= X1(0) + W 4
6 X2(0) + W 2

6 X3(0)

X (5) = X1(5) + W 5
6 X2(5) + W 10

6 X3(5)

= X1(1) + W 5
6 X2(1) + W 4

6 X3(1)
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(c) To evaluate the DFT values for x(n) (Refer Fig. 2.43)

x(n) = {1, 2, 3, 4, 5, 6}

by using the FFT algorithm developed in part (b) twiddle factors are,

W 0
6 = 1

W 1
6 = e− j2π

6 = 0.5 − j0.866

W 2
6 = e− j2π ·2

6 = −0.5 − j0.866

W 3
6 = e− j2π ·3

6 = −1

W 4
6 = e− j2π ·4

6 = −0.5 + j0.866

W 5
6 = e− j2π ·5

6 = 0.5 + j0.866

Input Stage-I Stage-II (or) Output
0 1 + 4 = 5 5 + 7 + 9 = 21 = X (0)
4 1 − 4 = −3 −3 + (0.5 − j0.866)(−3) + (−0.5 − j0.866)(−3)

= −3 + j5.196 = X (1)
2 2 + 5 = 7 5 + (0.5 − j0.866)(7) + (−0.5 + j0.866)(9)

= −3 + j1.732 = X (2)
5 2 − 5 = −3 −3 + (−1)(−3) + (1)(−3) = −3 = X (3)
3 3 + 6 = 9 5 + (0.5 + j0.866)(7) + (−0.5 − j0.866)(9)

= −3 − j1.732 = X (4)
6 3 − 6 = −3 −3 + (0.5 + j0.866)(−3) + (−0.5 + j0.866)(−3)

= −3 − j5.196 = X (5)

X (k) = {21,−3 + j5.196,−3 + j1.732,−3,−3 − j1.732,−3 − j5.196}

Example 2.45
Develop the DIT-FFT algorithm for decomposing the DFT for N = 12 and draw
the flow diagrams.

Solution For N = 12 = 3 · 4 where m1 = 3 and N1 = 4

X (k) =
3∑

n=0

x(3n)W 3nk
12 +

3∑

n=0

x(3n + 1)W (3n+1)k
12 +

3∑

n=0

x(3n + 2)W (3n+2)k
12

=
3∑

n=0

x(3n)W 3nk
12 + W k

12

3∑

n=0

x(3n + 1)W 3nk
12 + W 2k

12

3∑

n=0

x(3n + 2)W 3nk
12
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x(4)

x(5)

x(2)

X1(0)
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X2(2)

X(0)

X(2)

X(1)

X(3)

X(4)

X(5)

6

W 0
6

6

6

6

W 2
6

W 2
6

6

6
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6

W 4
6
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W 0
6

6
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6

W 2
6
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6

W 4
6

6
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order

Normal
order

Fig. 2.41 DIT-FFT flow diagram for N = 6 = 2 · 3

X (k) = X1(k) + W k
12X2(k) + W 2k

12 X3(k)

where

X1(k) =
3∑

n=0

x(3n)W 3nk
12 k = 0, . . . , 3

= x(0) + W 3k
12 x(3) + W 6k

12 x(6) + W 9k
12 x(9)

X2(k) =
3∑

n=0

x(3n + 1)W 3nk
12

= x(1) + x(4)W 3k
12 + x(7) + W 6k

12 + x(0)W 7k
12

X3(k) =
3∑

n=0

x(3n + 2)W 3nk
12

= x(2) + W 3k
12 x(5) + W 6k

12 x(8) + W 9k
11

The butterfly diagram is shown in Fig. 2.44.
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x(0)

Stage - I Stage - II

x(2)

x(4)

x(1)

x(5)

x(3)

X1(0)

X1(1)

W 2

W 3

W 4

W 5

X2(0)

X3(0)

X3(1)

X2(1)

X(0)

X(2)

X(1)

X(3)

X(4)

X(5)

6

W 2
6

W 2
6

W 1
6

6

6

W 4
6

W 4
6

W 3
6

W 3
6

W 3
6

6

Fig. 2.42 DIT-FFT flow diagram for N = 6 = 3 · 2

Stage-I: Computation

X1(k) = x(0) + W 3k
12 x(3) + W 6k

12 x(6) + W 9k
12 x(9) k = 0, . . . , 3

X1(0) = x(0) + x(3) + x(6) + x(9)

X1(1) = x(0) + W 3
12x(3) + W 6

12x(6) + W 9
12x(9)

X1(2) = x(0) + W 6
12x(3) + W 0

12x(6) + W 6
12x(9)

X1(3) = x(0) + W 9
12x(3) + W 6

12x(6) + W 3
12x(9)

X2(k) = x(1) + x(4)W 3k
12 + x(7)W 6k

12 + x(10)W 9k
12 k = 0, . . . , 5

X2(0) = x(1) + x(4) + x(7) + x(10)

X2(1) = x(1) + x(4)W 3
12 + x(7)W 6

12 + x(10)W 9
12

X2(2) = x(1) + x(4)W 6
12 + x(7)W 0

12 + x(10)W 6
12

X2(3) = x(1) + x(4)W 9
12 + x(7) + W 6

12 + x(10)W 3
12

X3(k) = x(2) + x(5)W 3k
12 + x(8)W 6k

12 + x(11)W 9k
12 k = 0, . . . , 5

X3(0) = x(2) + x(5) + x(8) + x(11)

X3(1) = x(2) + x(5)W 3
12 + x(8)W 6

12 + x(11)W 9
12
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x(0) 1

Stage - I II-egatStupnI

x(2) 3

x(4) 5

x(1) 2

x(5) 6

x(3) 4

5

7

9

3 3 j5.196

3 j5.196

3 j1.732

3 j1.732

3 3

3
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W 3

W 4

W 5

X(0)
21 Output

X(2)

X(1)

X(3)

X(4)

X(5)

6

W 2
6

W 2
6

W 1
6

6

6

W 0
6

W 4
6

W 4
6

W 3
6

W 3
6

W 3
6

6

1

1

1

Fig. 2.43 Butterfly diagram for Example 2.44(c)

X3(2) = x(2) + x(5)W 6
12 + x(8)W 0

12 + x(11)W 6
12

X3(3) = x(2) + x(5)W 9
12 + x(8)W 6

12 + x(11)W 3
12

Stage-II: Computation

X (k) = X1(k) + W k
12X2(k) + W 2k

12 X3(k), k = 0, . . . , 11

X (0) = X1(0) + X2(0) + X3(0)

X (1) = X1(1) + W 1
12X2(1) + W 2

12X3(1)

X (2) = X1(2) + W 2
12X2(2) + W 4

12X3(2)

X (3) = X1(3) + W 3
12X2(3) + W 6

12X3(3)

X (4) = X1(0) + W 4
12X2(0) + W 8

12X3(0)

X (5) = X1(1) + W 5
12X2(1) + W 10

12 X3(1)

X (6) = X1(2) + W 6
12X2(2) + W 0

12X3(2)

X (7) = X1(3) + W 7
12X2(3) + W 2

12X3(3)
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W 4

W 11
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Fig. 2.44 Flow diagram of 12-point composite radix-FFT

X (8) = X1(0) + W 8
12X2(0) + W 4

12X3(0)

X (9) = X1(1) + W 9
12X2(1) + W 6

12X3(1)

X (10) = X1(2) + W 10
12 X2(2) + W 8

12X3(2)

X (11) = X1(3) + W 11
12 X2(3) + W 10

12 X3(3)
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Example 2.46

Develop a radix-4DIT-FFT algorithm for evaluating theDFT for N = 16, and hence,
determine the 16-point DFT of the sequence

x(n) = {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

Solution
For N = 16 = 4 · 4 where m1 = 4 and N1 = 4

X (k) =
3∑

n=0

x(4n)W 4nk
16 +

3∑

n=0

x(4n + 1)W (4n+1)k
16

+
3∑

n=0

x(4n + 2)W (4n+2)k
16 +

3∑

n=0

x(4n + 3)W (4n+3)k
16

X1(k) =
3∑

n=0

x(4n)W 4nk
16 + W k

16

3∑

n=0

x(4n + 1)W 4nk
16

+W 2k
16

3∑

n=0

x(4n + 2)W 4nk
16 + W 3k

16

3∑

n=0

x(4n + 3)W 4nk
16

= X1(k) + W k
16X2(k) + W 2k

16 X3(k) + W 3k
16 X4(k)

The twiddle factors are,

W 0
16 = 1

W 1
16 = e− j2π

16 = (0.923 − j0.382)

W 2
16 = e− j2π ·2

16 = 0.707 − j0.707

W 3
16 = e− j2π ·3

16 = 0.3826 − j0.923

W 4
16 = e− j2π ·4

16 = − j

W 5
16 = −0.3826 − j0.9238

W 6
16 = e− j2π ·6

16 = −0.707 − j0.707

W 7
16 = e− j2π ·7

16 = 0.9238 − j0.382
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The radix-4 DIT-FFT algorithm is shown in Fig. 2.45.

Input Stage-I Stage-II (or) Output
0 0 + 0 + 0 + 0 = 0 0 + 4 + 0 + 4 = 8 = X (1)
0 0 + 0 + 0 + 0 = 0 0 + (0.923 − j0.382)(− j2) + (0.707 −

j0.707)(0) + (0.3826 − j0.923)(− j2)
= −2.61 − j2.61 = X (1)

0 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 0 = 0 = X (2)
0 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 0 = 0 = X (3)
1 1 + 1 + 1 + 1 = 4 0 + (− j)4 + (−1)(0) + ( j)4 = 0 =

X (4)
1 1 − j − 1 − j = −2 j 0 + (− j2)(−0.3826 − j0.9238) + 0 +

(− j2)(0.9038 + j0.382) = − j1.0824 −
1.0836

= X (5)
1 1 + 1(−1) + 1(1) + 1(−1) = 0 0 + 0 + 0 + 0 = 0 = X (6)
1 1 + 1(− j) + 1(−1) + 1( j) = 0 0 + 0 + 0 + 0 = 0 = X (7)
0 0 0 + 4(−1) + 0 + 4(1) = 0 = X (8)
0 0 0 + (− j2)(−0.923 + j0.9826) + 0 +

(− j2)(−0.382 + j0.923) = 2.6112 +
j2.6112
= X (9)

0 0 0 + 0 + 0 + 0 = 0 = X (10)
0 0 0 + 0 + 0 + 0 = 0 = X (11)
1 1 + 1 + 1 + 1 = 4 0 + 4(− j) + 0 + j4 = 0 = X (12)
1 1 + 1(− j) + 1(−1) + 1(−1) = − j2 0 + (− j2)(0.3826 + j0.923) + 0 +

(− j2)(−0.9238 − j0.382) = 1.0818 +
j1.0848
= X (13)

1 1 + 1(−1) + 1(1) + 1(−1) = 0 0 + 0 + 0 + 0 = 0 = X (14)
1 1 + 1(− j) + 1(−1) + 1( j) = 0 0 + 0 + 0 + 0 = 0 = X (15)

W 8
16 = e− j2π ·8

16 = −1

W 9
16 = e− j2π ·9

16 = −0.923 + j0.3826

W 10
16 = −0.707 + j0.707

W 11
16 = −0.3826 + j0.923

W 12
16 = − j

W 13
16 = 0.3826 + j0.923

W 14
16 = 0.707 + j0.707

W 15
16 = 0.9238 + j0.382



214 2 Discrete and Fast Fourier Transforms (DFT and FFT)

x(0) 0
0

0

0

0

0

0

0

0

0

0

0

0

8

2.6112 j2.6112
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1.0836 j1.0824

1.0848 j1.0848

0

0

0

0

0

0

0

0

0

0

0

4

4

2j

2j

Input

X(1)

X(2)

X(3)

X(4)
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13

33

36

39

45

30

15

28

42

12

20

30

8

10

4
8

4

2

8

8
12
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8

8
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8

8
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Fig. 2.45 Radix-4 DIT-FFT algorithm for Example 2.46

Example 2.47
Develop a DIF-FFT algorithm for decomposing the DFT for N = 6 and draw the
flow diagram for (a) N = 3 · 2 and (b) N = 2 · 3.

Solution

(a) To develop DIF-FFT algorithm for N = 3 · 2

X (k) =
5∑

n=0

x(n)W nk
6 =

2∑

n=0

x(n)W nk
6 +

5∑

n=3

x(n)W nk
6
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=
2∑

n=0

x(n)W nk
6 +

2∑

n=0

x(n + 3)W (n+3)k
6

X (k) =
2∑

n=0

[x(n) + x(n + 3)W 3k
6 ]W nk

6

X (2k) =
2∑

n=0

[x(n) + x(n + 3)W 6k
6 ] + W 2nk

6

=
2∑

n=0

[x(n) + x(n + 3)]W 2nk
6

X (2k + 1) =
2∑

n=0

[x(n) + x(n + 3)W 3(2k+1)
6 ]W (2k+1)n

6

=
2∑

n=0

[x(n) − x(n + 3)]W n
6 W 2nk

6

Let g(n) = x(n) + x(n + 3), h(n) = x(n) − x(n + 3)

X (2k) =
2∑

n=0

g(n)W 2nk
6

X (2k + 1) =
2∑

n=0

h(n)W n
6 W 2nk

6

The butterfly diagram is shown in Fig. 2.46.
Stage I

g(0) = x(0) + x(3) h(0) = x(0) − x(3)

g(1) = x(1) + x(4) h(1) = x(1) − x(4)

g(2) = x(2) + x(5) h(2) = x(2) − x(5)

Stage II

X (0) = g(0) + g(1) + g(2)

X (2) = g(0) + g(1)W 2
6 + g(2)W 4

6

X (4) = g(0) + g(1)W 4
6 + g(2)W 8

6

X (1) = h(0) + h(1)W 1
6 + h(2)W 2

6

X (3) = h(0) + h(1)W 1
6 W 2

6 + h(2)W 2
6 W 4

6

X (5) = h(0) + h(1)W 1
6 W 4

6 + h(2)W 2
6 W 8

6
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The DIF-FFT flow diagram for decomposing the DFT is shown in Fig. 2.47 for
N = 6 = 3 × 2.

(b) To develop DIF-FFT algorithm for N = 2 · 3

X (k) =
5∑

n=0

x(n)W nk
6 =

1∑

n=0

x(n)W nk +
3∑

n=2

x(n)W nk
6 +

5∑

n=4

x(n)W nk
6

=
1∑

n=0

[x(n) + x(n + 2)W 2k
6 + x(n + 4)W 4k

6 ]W nk
6

X (3k) =
1∑

n=0

[x(n) + x(n + 2) + x(n + 4)]W 3nk
6

X (3k + 1) =
1∑

n=0

[x(n) + x(n + 2)W 2
6 + x(n + 4)W 4

6 ]W n
6 W 3nk

6

X (3k + 2) =
1∑

n=0

[x(n) + x(n + 2)W 4
6 + x(n + 4)W 2

6 ]W 2n
6 W 3nk

6

Let

f (n) = x(n) + x(n + 2) + x(n + 4), n = 0, 1, . . .

g(n) = x(n) + x(n + 2) + W 2
6 + x(n + 4)W 4

6 , n = 0, 1, . . .

h(n) = x(n) + x(n + 2)W 4
6 + x(n + 4)W 2

6 , n = 0, 1, . . .

Stage I

f (0) = x(0) + x(2) + x(4)

f (1) = x(1) + x(3) + x(5)

g(0) = x(0) + x(2)W 2
6 + x(4)W 4

6

g(1) = x(1) + x(3)W 2
6 + x(5)W 4

6

The DIF-FFT flow diagram for decomposing the DFT for N = 6 = 2 × 3 is
shown in Fig. 2.47.

h(0) = x(0) + x(2)W 4
6 + x(4)W 2

6

h(1) = x(1) + x(3)W 4
6 + x(5)W 2

6
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X(3)
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X(5)
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6
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W 2
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W 8
6

W 4
6

W 4
6

Fig. 2.46 DIF-FFT flow diagram for decomposing the DFT for N = 6 = 3 · 2

Stage II

X (0) = f (0) + f (1)W 0
6

X (1) = g(0) + g(1)W 1
6

X (2) = h(0) + h(1)W 2
6

X (3) = f (0) + f (1)W 0
6 W 3

6

X (4) = g(0) + g(1)W 1
6 W 3

6

X (5) = h(0) + h(1)W 2
6 W 3

6

Example 2.48
Develop a radix-3 DIF-FFT algorithm for evaluating the DFT for N = 9.
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W 4
6

W 4
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6

W 3
6
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6

Fig. 2.47 DIF-FFT flow diagram for decomposing the DFT for N = 6 = 2 · 3

Solution To develop a radix-3 DIF-FFT algorithm for N = 9 = 3 · 3

X (k) =
2∑

n=0

x(n)W nk
9 +

2∑

n=0

x(n + 3)W (n+3)k
9 +

2∑

n=0

x(n + 6)W (n+6)k
9

X (k) =
2∑

n=0

[x(n) + x(n + 3)W 3k
9 + x(n + 6)W 6k

9 ]W nk
9

X (3k) =
2∑

n=0

[x(n) + x(n + 3) + x(n + 6)]W 3nk
9 ]

=
2∑

n=0

f (n)W 3nk
9

X (3k + 1) =
2∑

n=0

[x(n) + x(n + 3)W 3
9 + x(n + 6)W 6

9 ]W n
9 W 3nk

9

=
2∑

n=0

g(n)W n
9 W 3nk

9
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9
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9
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Fig. 2.48 A radix-3 DIF-FFT flow diagram for decomposing the DFT for N = 9 = 3 · 3

X (3k + 2) =
2∑

n=0

[x(n) + x(n + 3)W 6
9 + x(n + 6)W 3

9 ]W 2n
9 W 3nk

9

=
2∑

n=0

h(n)W 2n
9 W 3nk

9

The butterfly diagram is shown in Fig. 2.48.
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Stage I

f (0) = x(0) + x(3) + x(6)

f (1) = x(1) + x(4) + x(7)

f (2) = x(2) + x(5) + x(8)

g(0) = x(0) + x(3)W 3
9 + x(6)W 6

9

g(1) = x(1) + x(4)W 3
9 + x(7)W 6

9

g(2) = x(2) + x(5)W 3
9 + x(8)W 6

9

h(0) = x(0) + x(3)W 6
9 + x(6)W 3

9

h(1) = x(1) + x(4)W 6
9 + x(7)W 3

9

h(2) = x(2) + x(5)W 6
9 + x(8)W 3

9

Stage II

X (0) = f (0) + f (1) + f (2)

X (3) = f (0) + f (1)W 3
9 + f (2)W 6

9

X (6) = f (0) + f (1)W 0
6 + f (2)W 3

9

X (1) = g(0) + g(1)W 1
9 + g(2)W 2

9

X (4) = g(0) + g(1)W 1
9 W 3

9 + g(2)W 2
9 W 6

9

X (7) = g(0) + g(1)W 1
9 W 6

9 + g(2)W 2
9 W 3

9

X (2) = h(0) + h(1)W 2
9 + h(2)W 4

9

X (5) = h(0) + h(1)W 2
9 W 3

9 + h(2)W 4
9 W 6

9

X (8) = h(0) + h(1)W 2
9 W 6

9 + h(2)W 4
9 W 3

9

2.6.4 Use of the FFT Algorithm in Linear Filtering and
Correlation

An important application of the FFT algorithm is in FIR linear filtering of long
data sequences. The response of an LTI system for any arbitrary input is given by
linear convolution of the input and the impulse response of the system. If one of the
sequences (either the input sequence or impulse response sequence) is very much
larger than the other, then it is very difficult to compute the linear convolution using
DFT for the following reasons:

1. The entire sequence should be available before convolution can be carried out.
This makes long delay in getting the output.

2. Large amounts of memory is required to store the sequences.

The above problems can be overcome by linear filtering of longer sequence into
the size of smaller sequences. Then the linear convolution of each section of
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longer sequences and the smaller sequence is performed. The output sequences
obtained from the convolutions of the sections are combined to get the overall output
sequences. There are two methods to perform the linear filtering. They are,

1. Overlap add method.
2. Overlap save method.

2.6.4.1 Overlap Add Method

Let N1 be the length of longer sequence and N2, the length of smaller sequence. Let
the longer sequence be divided into sections of size N3 samples. (Note: Normally the
longer sequence is divided into sections of size same as that of smaller sequence.).

The linear convolution of each section with smaller sequence will produce an
output sequence of size N3 + N2 − 1 samples. In this method last N2 − 1 samples
of each output sequence overlaps with the first N2 − 1 samples of next section.
While combining the output sequences of the various sectioned convolutions, the
corresponding samples of overlapped regions are added and the samples of non-
overlapped regions are retained as such.

2.6.4.2 Overlap Save Method

Let N1 be the length of longer sequence and N2, the length of smaller sequence. Let
the longer sequence be divided into sections of size N3 samples.

In overlap save method, the result of linear convolution is obtained by circular
convolution. Hence, each section of longer sequence and the smaller sequence are
converted to the size of the output sequence of size N3 + N2 − 1 samples. The smaller
sequence is converted to size of N3 + N2 − 1 samples by appending with zeros. The
conversion of each section of longer sequence to the size N3 + N2 − 1 samples can
be performed in two different methods.
Method I
In this method the first N2 − 1 samples of a section are appended as last N2 −
1 samples of the previous section. The circular convolution of each section will
produce an output sequence of size N3 + N2 − 1 samples. In this output the first
N2 − 1 samples are discarded and the remaining samples of the output of sectioned
convolution are saved as the overall output sequence.
Method II
In this method the last N2 − 1 samples of a section are appended as last N2 − 1
samples of the next section. (i.e., the overlapping samples are placed at the beginning
of the section). The circular convolution of each section will produce an output
sequence of size N3 + N2 − 1 samples. In this output the last N2 − 1 samples are
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discarded and the remaining samples of the output of sectioned convolution are saved
as the overall output sequence.

Example 2.49
Perform the linear convolution of the following sequence by (i) overlap add method
and (ii) overlap save method.

x(n) = {1,−1, 2,−2, 3,−3, 4,−4} and h(n) = {−1, 1}

Solution
Overlap Add Method
Here x(n) is a longer sequence when compared to h(n). Hence, x(n) is sectioned
into sequences of size equal to h(n).

Let x(n) be sectioned into three sequences, each consisting of two samples of
x(n) as

x1(n) = 1; n = 0 x2(n) = −2; n = 3 x3(n) = 4; n = 6

−1; n = 1 +3; n = 4 −4; n = 7

2; n = 2 −3; n = 5 0; n = 8

Let y1(n), y2(n), y3(n) and y4(n) be the output of linear convolution of x1(n), x2(n),
x3(n) and x4(n) with h(n) respectively.
Convolution of Section I

y1(n) = x1(n) ∗ h(n)

Y1(k) = X1(k)H(k)

y1(n) = I DFT [X1(k)H(k)]

X1(k) ⇒ x1(n) = {1,−1, 2}

and
h(n) = {−1, 1}

Length of y1(n) = 3 + 2 − 1 = 4;

n1 = 0 and n2 = 0

so
n = n1 + n2 = 0.
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Fig. 2.49 Butterfly diagram of X (k)

Butterfly diagram of X (k) of Example 2.49 is shown in Fig. 2.49.
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Fig. 2.50 Butterfly diagram of H(k)

Butterfly diagram of H(k) of Example 2.49 is shown in Fig. 2.50.

Therefore,

x1(n) = {1,−1, 2, 0}

and
h(n) = {−1, 1, 0, 0}

Therefore

X1(k) = {2,−1 + j, 4,−1 − j}
∴ H(k) = {0,−1 − j,−2,−1 + j}

X1(k)H(k) = {0, (−1 + j)(−1 − j),−8, (−1 − j)(−1 + j)}
= {0, 2,−8, 2}

IDFT [X1(k)H(k)] ⇒

{X1(k)H(k)}∗ = {0, 2,−8, 2}
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Fig. 2.51 Butterfly diagram of [X1(k)H(k)]∗

Butterfly diagram of [X1(k)H(k)]∗ of Example 2.49 is shown in Fig. 2.51.

DFT of [X1(k)H(k)]∗

{−4, 8,−12, 8}

∴ y1(n) = 1

n
{−4, 8,−12, 8}

= 1

4
{−4, 8,−12, 8} = {−1, 2,−3, 2}

↑

Convolution of Section II

x2(n) = {−2, 3,−3} and h(n) = {−1, 1}

N = 3 + 2 − 1 = 4

x2(n) = {−2, 3,−3, 0} and h(n) = {−1, 1, 0, 0}

n1 = 3, n2 = 0 and n = n1 + n2 = 3.

X2(k) = {−2, 1 − 3 j,−8, 1 + 3 j}
X2(k)H(k) = {0, (−1 − j)(1 − 3 j), (−2)(−8), (−1 + j)(1 + 3i)}

= {0,−4 + 2 j, 16,−4 − 2 j}

IDFT [X2(k)H(k)] ⇒

{X2(k)H(k)}∗ = {0,−4 − 2 j, 16,−4 + 2 j}
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Fig. 2.52 Butterfly diagram of X2(k)

Butterfly diagram of X2(k) of Example 2.49 is shown in Fig. 2.52.
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Fig. 2.53 Butterfly diagram of [X2(k)H(k)]∗

Butterfly diagram of [X2(k)H(k)]∗ of Example 2.49 is shown in Fig. 2.53

DFT {X2(k)H(k)}∗
Therefore,

y2(n) = 1

N

{
DFT [X2(k)H(k)]∗

}∗ = 1

4
{8,−20, 24,−12}

= {2,−5, 6,−3}
↑
n = 3

Convolution of Section III

x3(n) = {4,−4, 0} and h(n) = {−1, 1}

N = 3 + 2 − 1 = 4, n1 = 6, n2 = 0 so n = n1 + n2 = 6. Therefore

x3(n) = {4,−4, 0, 0} and h(n) = {−1, 1, 0, 0}
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Fig. 2.54 Butterfly diagram of X3(k)

Butterfly diagram of X3(k) of Example 2.49 is shown in Fig. 2.54.
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Fig. 2.55 Butterfly diagram of [x3(k)H(k)]∗

Butterfly diagram of [x3(k)H(k)]∗ of Example 2.49 is shown in Fig. 2.55

X3(k) = {0, 4 + 4 j, 8, 4 − 4 j}
X3(k)H(k) = {0, (−1 − j)(4 + 4 j),−2(8), (−1 + j)(4 − 4 j)}

= {0,−8 j,−16, 8 j}

IDFT [X2(k)H(k)] ⇒

[x3(k)H(k)]∗ = {0, 8 j,−16,−8 j}

DFT
[{x3(k)H(k)}∗]

y3(n) = 1

N
[1DFT [x3(k)H(k)]]

= 1

N

[
DFT

[
[x3(k)H(k)]∗

]]∗

= 1

4
{−16, 32,−16, 0}∗

= {−4, 8,−4, 0}
↑
n = 6
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The combined output of each convolution is shown in Table 2.3.

Table 2.3 Combined output of each convolution section

n 0 1 2 3 4 5 6 7 8

y1(n) −1 2 −3 2

y2(n) 2 −5 6 −3

y3(n) −4 8 −4

y(n) −1 2 −3 4 −5 6 −7 8 −4

To combine the output of the convolution of each section N2 − 1 samples are over-
lapped. The overlapped portion (or samples) are added while combining the output.
Here N2 = 2 and N2 − 1 = 1. Samples overlapped that are added.

∴ y(n) = {−1, 2,−3, 4,−5, 6,−7, 8,−4}

The above result can be verified as follows:

1 −1 2 −2 3 −3 4 −4
−1 1

1 −1 2 −2 3 −3 4 −4
−1 1 −2 2 −3 3 −4 4
−1 2 −3 4 −5 6 −7 8 −4

y(n) = { − 1, 2, −3, 4, −5, 6, −7, 8, −4}
↑

II Overlap Save Method
Method I
In this the N2 − 1 overlapping samples are placed at the beginning of the section.
Number of overlapping samples are N2 − 1 = 2 − 1 = 1 sample.

x1(n) = 1; n = 0 x2(n) = −2; n = 3 x3(n) = 4; n = 6

−1; n = 1 +3; n = 4 −4; n = 7

2; n = 2 −3; n = 5 0; n = 8

−2; n = 2 4; n = 6 0; n = 9

Convolution of Section-I

x1(n) = {1,−1, 2,−2} and h(n) = {−1, 1, 0, 0}
↑ ↑
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Fig. 2.56 Butterfly diagram of X1(k)

Butterfly diagram of X1(k) of Example 2.49 is shown in Fig. 2.56.
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Fig. 2.57 Butterfly diagram of H(k)

Butterfly diagram of H(k) of Example 2.49 is shown in Fig. 2.57.
at n = 0.

X1(k) = {0,−1 − j, 6,−1 + j}

H(k) = {0,−1 − j,−2,−1 + j}

X1(k)H(k) = {0, (−1 − j)(−1 − j), (−2)(6), (−1 + j)(−1 + j)}
= {0, 2 j,−12,−2 j}

{X1(k)H(k)}∗ = {0,−2 j,−12, 2 j}

DFT
[
[X1(k)H(k)]∗

]

{−12, 8,−12, 16}
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Fig. 2.58 Butterfly diagram of [X1(k)H(k)]∗

Butterfly diagram of [X1(k)H(k)]∗ of Example 2.49 is shown in Fig. 2.58.
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Fig. 2.59 DFT Computation of X2(k)

DFT Computation of X2(k) of Example 2.49 is shown in Fig. 2.59.

y1(n) = 1

N

{
DFT

[
[x(k)H(k)]∗

]}∗ = 1

4
{−12, 8,−12, 16}∗

y1(n) = {−3, 2,−3, 4}
↑

n = 0

Convolution of Section-II

x2(n) = {−2, 3,−3, 4} and h(n) = {−1, 1, 0, 0}
↑ ↑

n = 3

X2(k) = {2, 1 + j,−12, 1 − j}
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Fig. 2.60 DFT computation of [X2(k)H(k)]∗

DFT computation of [X2(k)H(k)]∗ of Example 2.49 is shown in Fig. 2.60.

X2(k)H(k) = {0, (1 + j)(−1 − j), (−12)(−2), (−1 + j)(1 − j)}
= {0,−2 j, 24, 2 j}

[X2(k)H(k)] = {0, 2 j, 24,−2 j}

DFT
[
[X2(k)H(k)]∗

]

{24,−20, 24,−28}
y2(n) = 1

4
{24,−20, 24,−28}

= {6,−5, 6,−7}
↑
n = 3

Convolution of Section-III

x3(n) = {4,−4, 0, 0} and h(n) = {−1, 1, 0, 0}
↑ ↑

n = 6

X3(k) = {0, 4 + 4 j, 8, 4 − 4 j}

X3(k)H(k) = {0, (4 + 4 j)(−1 − j), 8(−2), (4 − 4 j)(−1 + j)}
= {0,−8 j,−16, 8 j}

{X3(k)H(k)} = {0, 8 j,−16,−8 j}
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Fig. 2.61 DFT Computation of X3(k)

DFT Computation of X3(k) of Example 2.49 is shown in Fig. 2.61.
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Fig. 2.62 DFT Computation of [X3(k)H(k)]∗

DFT Computation of [X3(k)H(k)]∗ of Example 2.49 is shown in Fig. 2.62.

DFT
[{X3(k)H(k)}∗]

y3(n) = 1

4
{−16, 32,−16, 0}∗

= {−4, 8,−4, 0}
↑
n = 6

To combine the output of the convolution of each section, the first N2 − 1 samples
are overlapped that are discarded.

Here y(n) is linear convolution of x(n) and h(n). It can be observed that the results
of both the methods are same, except the first N2 − 1 samples.
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The combined output of each convolution is shown in Table 2.4.

Table 2.4 Combined output of each convolution section in Method I

n 0 1 2 3 4 5 6 7 8 9

y1(n) ×−3 2 −3 4

y2(n) ×6 −5 6 −7

y3(n) 3 ×−4 8 −4 0

y(n) 3 2 −3 4 −5 6 −7 8 −4 0

Table 2.5 Combined output of each convolution in Method II

n 0 1 2 3 4 5 6 7 8 9

y1(n) −1 2 −3 ×2
y2(n) 4 −5 6 ×−7

y3(n) −7 8 −4 ×3
y(n) −1 2 −3 4 −5 6 −7 8 −4 ×

Method II

x1(n) = 1; n = 0 x2(n) = −2; n = 3 x3(n) = 4; n = 7

−1; n = 1 +3; n = 4 −4; n = 8

2; n = 2 −3; n = 5 0; n = 9

0; n = 2 4; n = 6 0; n = 10

h(n) = {−1, 1, 0, 0}. Find y1(n), y2(n) and y3(n) using FFT algorithm. Same above
method. Result is shown in Table 2.5.

2.7 In-Plane Computation

The flow graph of Fig. 2.63 describes an algorithm for the computation of the DFT.
In the flow graph the branches connecting the nodes and the transmittance of each
of these branches. No matter how the nodes in the flow graph are rearranged, it will
always represent the same computation provided that the connection between the
nodes and the transmittance of the connection are maintained. The particular form
for the flow graph in Fig. 2.63 arose out of deriving the algorithm by separating
the original sequences into the even-numbered and odd-numbered points and then
continuing to create smaller and smaller subsequences in the sameway.An interesting
by-product of this derivation is that this flow graph, in addition to describing an
efficient procedure for computing the discrete Fourier transform, also suggests a
useful way of storing the original data and storing the results of the computation in
intermediate arrays.

When implementing the computation depicting in Fig. 2.63 we can imagine the
use of two arrays of (complex) storage registers, one for the arrays being computed
and one for the data being used in the computation. For example, in computing the
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Fig. 2.63 Flow graph Xm 1[p] Xm[p]

Xm 1[q] Xm[q]
WN 1r

first array in Fig. 2.63, one set of storage registers would contain the input data and
the second set would contain the computed results for the first stage. We denote
the sequence of complex numbers resulting from the nth stage of computation as
Xm(l) where l = 0, 1, . . . N − 1, and m = 1, 2, . . . , v[v = logN

2 ]. Furthermore, for
convenience we define the set of input samples of X0[l]. We can think of Xm−1[l] as
the input array and Xm(l) as the output array for the mth stage computation. Thus,
for the case N = 8 as in Fig. 2.63, we get

X0[0] = x[0] X0[4] = x[1]
X0[1] = x[4] X0[5] = x[5]
X0[2] = x[2] X0[6] = x[3]
X0[3] = x[6] X0[7] = x[7]

Using this notation, the basic butterfly diagram is drawn as shown in Fig. 2.63.
with the associated equation as,

Xm[p] = Xm−1[p] + W r
N Xm−1[q]

Xm[q] = Xm−1[p] − W r
N Xm−1[q]

In above equations p, q and r vary form stage to stage in a manner that is readily
inferred from Fig. 2.15. It is clear from Fig. 2.15 and Fig. 2.63 that only the complex
numbers in locations p and q of the (m − 1)st array are required to compute the
elements p and q of themth array. Thus only one complex array of N storage registers
is physically necessary to implement the complete computation. That is Xm[p] and
Xm[q] are stored in the same storage registers as Xm−1[p] and Xm−1[q] respectively.
This kind of computation is commonly referred to as an “in-plane computation”.

If (n2, n1, n0) is the binary representation of the index of the sequence x[n], then
the sequence value x[n2, n1, n0] is stored in the array position X0[n0, n1, n2]. That
is, in determining the position of x[n2, n1, n0] in the input array we must reverse the
order of the bits of the index n. Let us first consider the process depicted in Fig. 2.64
for sorting a data sequence in normal order by successive examination of the bits
representing the data index. If the most significant bit of the data index is zero, x[n]
belongs to the top half of the sorted array, otherwise it belongs to the bottom half.
Next the top half and bottom half subsequences can be sorted by examining the
second most significant bit, and so on.
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Fig. 2.64 Tree diagram depicting normal-order sorting

Let us now consider the process depicted in Fig. 2.63 for sorting a data sequence
in bit reversed order. If the least significant bit is 0, the sequence value corresponds
to an even-numbered sample and therefore will appear in the top half and if the least
significant bit is 1, the sequence value corresponds to an odd-numbered sample and
consequently will appear in the bottom half of the array X0[l]. Next the even and
odd indexed subsequences are sorted into their even and odd indexed parts, and this
can be done by examining the second least significant bit in the index. This process
is repeated until N subsequences is depicted by the tree diagram Fig. 2.65.

Summary

� For spectral analysis of discrete signals, DFT approach is a very straightforward
one. However, for larger values of N , DFT becomes tedious because of the huge
number of mathematical operations required to perform. Such huge number of
mathematical operations limit the bandwidth of the digital signal processors.

� Several algorithms have been developed to reduce the computational burden and
ease the implementation of DFT. The algorithm developed by Cooley and Tukey
is the most efficient one and is called fast Fourier transform (FFT).

� The most widely used FFT algorithms are radix-2 and radix-4.
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Fig. 2.65 Tree diagram depicting bit-reversed-order sorting

� Radix-2 FFT algorithm exploits the two important properties of twiddle factors,
namely symmetry and periodicity thereby removing redundant mathematical
operations.

� The basic principle of FFT algorithm is to decompose DFT into successively
smaller DFTs. Themanner in which this decomposition is done leads to different
FFT algorithms. Decimation in time (DIT) and decimation in frequency (DIF)
are the two basic classes of algorithm.

� In the algorithm in DIT, the sequence x(n) is decomposed into successively
smaller subsequences. Similarly in DIF algorithm, the sequence of DFT coeffi-
cients X (k) is decomposed in smaller subsequences.

Short Questions and Answers

1. Define DFT of a discrete time sequence (or) analysis equation of DFT.
(Nov./Dec. 2003)

Ans: The DFT is used to convert a finite discrete time sequence x(n) to an
N -point frequency domain sequence denoted by X (k). The N -point DFT of a
finite duration sequence x(n) of length L , where L ≤ N is defined as
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X (k) =
N−1∑

n=0

x(n)e− j 2πkn
N for k = 0, 1, 2, . . . , (N − 1)

2. Define IDFT (or) synthesis equation of DFT. (Nov./Dec. 2003)
Ans: The IDFT is used to convert the N -point frequency domain sequence
X (k) to an N -point time domain sequence. The IDFT of the sequence X (k) of
length N is defined as

x(n) = 1

N

N−1∑

n=0

X (k)e j 2πkn
N for k = 0, 1, 2, . . . , (N − 1)

3. What is the drawback in Fourier transform and how it is overcome?
Ans: The drawback in Fourier transform is that it is a continuous function of
ω and so it cannot be processed by digital system. This drawback is overcome
by using discrete Fourier transform. The DFT converts the continuous function
of ω to a discrete function of ω.

4. Give any two applications of DFT (or the importance of DFT).
Ans:

(i) The DFT is used for spectral analysis of signals using a digital computer.
(ii) The DFT is used to perform filtering operation on signals using digital

computer.

5. What is the relationship between z-transform and DFT?
Ans: Let N -point DFT of x(n) be X (k) and the z-transform of x(n) be X (z).
The N -point sequence X (k) can be obtained from X (z) by evaluating X (z) at
N equally spaced points around the unit circle. That is

X (k) = X (z)

∣∣∣∣
Z=e j 2πkn

N

for k = 0, 1, 2, . . . , (N − 1)

6. Why linear convolution is important in DSP?
Ans: The response or output of LTI discrete time system for any input x(n)

is given by linear convolution of the input x(n) and the impulse response h(n)

of the system. (This means that if the impulse response of a system is known,
then the response of the system for any input can be determined by convolution
operation).

7. Write the properties of linear convolution.
Ans: The linear convolution has the following properties:

1. Commutative property: x(n) ∗ h(n) = h(n) ∗ x(n).
2. Associative property: [x(n) ∗ h1(n)] ∗ h2(n) = x(n) ∗ [h1(n) ∗ h2(n)].
3. Distributive property: x(n) ∗ (h1(n) + h2(n)) = x(n) ∗ h1(n) + x(n) ∗

h2(n).
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8. What is circular convolution?
Ans: The convolution of two periodic sequences with periodicity N is called
circular convolution. If x1(n) and x2(n) are two periodic sequences with N
samples in a period, then the circular convolution of x1(n) and x2(n) is defined
as,

x1(n) ∗ x2(n) =
N−1∑

n=0

x1(n)x2(m − n)

9. What is zero padding? Why it is needed? (Nov./Dec. 2003)
Ans: Appending zeros to a sequence in order to increase the size or length of
the sequence is called zero padding. In circular convolution, when the two input
sequences are of different size, then they are converted to equal size by zero
padding.

10. List the difference between linear convolution and circular convolution.
Ans:

Linear convolution Circular convolution
1. The length of the input

sequences can be different
The length of the input sequences should be
same

2. Zero padding is not required If the length of the input sequences are dif-
ferent, then zero padding is required

3. The input sequences need not
be periodic

At least one of the input sequences should be
periodic or should periodically be extended

4. The output sequence is non-
periodic

The output sequence is periodic. The peri-
odicity is same as that of input sequence

5. The length of the output
sequence will be greater than
the length of input sequences

The length of the input and output sequences
are same

11. Why circular convolution is important in DSP?
Ans: The Discrete Fourier Transform is used for the analysis and design of
discrete time systems using digital computers. The DFT supports only circular
convolution. Hence, when DFT techniques are employed, the results of linear
convolution are obtained only via circular convolution.

12. How will you perform linear convolution via circular convolution?
(Anna University, May/June 2006)

Ans: The linear convolution of two sequences of length N1 and N2 produces an
output sequence of length N1 + N2 − 1. To perform linear convolution via cir-
cular convolution, convert the input sequences to N1 + N2 − 1-point sequences
by padding with zeros. Now the circular convolution of the N1 + N2 − 1-point
sequences will give an output sequence, which is same as that of linear convo-
lution of the original two sequences of length N1 and N2.

13. What is sectioned convolution?
Ans: In linear convolution of two sequences, if one of the sequences is very
much larger than the other, then it is very difficult to compute the linear convo-



238 2 Discrete and Fast Fourier Transforms (DFT and FFT)

lution using DFT. In such cases, the longer sequence is sectioned into size of
smaller sequence. Then the linear convolution of each section of longer sequence
and the smaller sequence is performed. The output sequence obtained from the
convolution of all the sections are combined to get the overall output sequence.
This technique of convolution is called sectioned convolution.

14. Why sectioned convolution is performed?
Ans: In linear convolution of two sequences, if one of the sequences is very
much larger than the other, then it is very difficult to compute the linear convo-
lution using DFT for the following reasons:

(i) The entire sequence should be available before convolution can be carried
out. This makes long delay in getting the output,

(ii) Large amount of memory is required to store the sequences.

15. Compare the overlap add and overlap save method of sectioned convolu-
tions.

Overlap add method Overlap save method
1. Linear convolution of each

section of longer sequence with
smaller sequence is performed

Circular convolution of each section of longer
sequence with smaller sequence is performed.
(after converting them to the size of output
sequence)

2. Zero padding is not required Zero padding is required to convert the input
sequence to the size of output sequence

3. Overlapping of samples of
input sections are not required

The N2 − 1 samples of an input section of
longer sequence is overlapped with next input
section

4. The overlapped samples in the
output of sectioned convolu-
tions are added to get the overall
output

Depending on the method of overlapping the
input samples, either the last N2 − 1 sam-
ples or the first N2 − 1 samples of the output
sequence of each sectioned convolution are
discarded

16. In what way zero padding is implemented in overlap save method?
Ans: In overlap savemethod, the zero padding is employed to convert the small
input sequence to the size of the output sequence of each sectioned convolution.
The zero padding is also employed to convert either the last section or the first
section of the longer input sequence to the size of the output sequence of each
sectioned convolution.

17. What is FFT? (Anna University, Nov./Dec. 2006)
Ans: The FFT is a method for computing the DFT with reduced number of
calculations. The computational efficiency is achieved by employing divide and
conquer approach. This is based on the decomposition of an N -point DFT into
successively smaller DFTs.
In an N -point sequence, if N can be expressed as N = rm , then the sequence
can be decimated into r -point sequence, and r -point DFTs are computed. From
the results of r -point DFTs, the r2-point DFTs are computed. From the results of
r2-point DFT, the r3-point DFTs are computed and so on, until we get rm-point
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DFT. Hence, the number of stages of computation is m. The number r is called
the radix of the FFT algorithm.

18. What is radix-2 FFT?
Ans: The radix-2 FFT is an efficient algorithm for computing N -point DFT of
an N -point sequence. In radix-2FFT the N -point sequence is decimated into two-
point sequences and two-point DFT for each decimated sequence is computed.
From the results of two-point DFTs, the four-point DFTs are computed. From
the results of four-point DFTs, the eight-point DFTs are computed and so on
until we get N -point DFT.

19. How many multiplications and additions are involved in radix-2 FFT?
Ans: For performing radix-2 FFT, the value of N should be such that, N = 2m .
The total number of complex additions are N log2 N and the total number of
complex multiplications are (N/2) log2 N .

20. Calculate the percentage saving in calculations in a 512-point radix-2 FFT,
when compared to direct DFT.
Ans: Direct computation of DFT:

Number of complex additions = N (N − 1) = 512 × (512 − 1)

= 2, 61, 632

Number of complex multiplications = N 2 = 512 × 512 = 2, 61, 144

Radix-2 FFT:

Number of complex additions = N log2 N = 4, 608

Number of complex multiplications = (N/2) log2 N = 2, 304

Percentage saving in additions

= 100 − Number of additions in radix-2 FFT

Number of additions in direct DFT
× 100

= 100 − (4, 608)

(2, 61, 632)
× 100 = 98%

Percentage saving in multiplications

= 100 − Number of multiplications in radix-2 FFT

Number of multiplications in direct DFT
× 100

= 100 − (2, 304)

(2, 61, 144)
× 100 = 99.1%

21. Draw and explain the basic butterfly diagram or flow graph of DIT radix-2
FFT.
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Ans: The basic butterfly diagram of DIT radix-2 FFT is shown in Fig. 2.66. It
performs the following operations. Here a and b are input complex numbers and
A and B are output complex numbers.

(i) Input complex number b is multiplied by the phase factor W k
N .

(ii) The product bW k
N is added to the input complex number a to form a new

complex number A.
(iii) The product bW k

N is subtracted from the input complex number a to form a
new complex number B.

22. What is DIF radix-2 FFT?
Ans: The DIF radix-2 FFT is an efficient algorithm for computing DFT. In
this algorithm the N -point time domain sequence is converted to two numbers
of N/2-point sequences. Then each N/2-point sequence is converted to two
numbers of N/4-point sequences. This process is continued until we get N/2
numbers of two-point sequences. Now the two-point DFTs of N/2 numbers
of two-point sequences will give N samples, which is the N -point DFT of the
time domain sequence. Here the equations for forming N/2-point sequences,
N/4-point sequences, etc., are obtained by decimation of frequency domain
sequences. Hence, this method is called DIF.

23. Compare the DIT and DIF radix-2 FFT.
Ans:

DIT radix-2 FFT DIF radix-2 FFT
1. The time domain sequence is dec-

imated
The frequency domain sequence is
decimated

2. When the input is in bit reversed
order, the output will be in normal
order and vice versa

When the input is in normal order,
the output will be in bit reversed
order and vice versa

3. In each stage of computation, the
phase factor are multiplied before
add and subtract operation

In each stage of computation, the
phase factor are multiplied after
add and subtract operation

4. The value of N should be
expressed such that N − 2m and
this algorithm consists of m stages
of computations

The value of N should be
expressed such that N = 2m and
this algorithm consists of m stages
of computations

5. Total number of arithmetic opera-
tions are N log2 N complex addi-
tions and (N/2) log2 N complex
multiplications

Total number of arithmetic opera-
tions are N log2 N complex addi-
tions and (N/2) log2 N complex
multiplications

24. How will you compute IDFT using radix-2 FFT algorithm?
Ans: Let x(n) be an N -point sequence and X (k) be the N -point DFT of x(n).
The sequence x(n) can be computed from the sequence,

x(n) = 1

N

(
N−1∑

k=0

X∗(k)W nk
N

)∗



2.7 In-Plane Computation 241

The following procedure can be used to determine x(n) using radix-2 FFT algo-
rithm.

(i) Take conjugate of X (k) (i.e., determine X∗(k)).
(ii) Compute N -point DFT of X∗(k) using radix-2 FFT.
(iii) Take conjugate of the output sequence from FFT.
(iv) Divide the sequence obtained in Step (iii) by N . The resultant sequence is

x(n).

25. What is direct or slow convolution and fast convolution?
Ans: The response of an LTI system is given by convolution of input and
impulse response. The computation of the response of LTI systemby convolution
sum formula is called slow convolution because it involves very large number
of calculations. The number of calculations in DFT computation of the response
of LTI system by FFT algorithm is called fast convolution.

26. Why FFT is needed?
Ans: The FFT is needed to compute DFTwith reduced number of calculations.
The DFT is required for spectrum analysis and filtering operations on the signals
using digital computers.

27. How FFT is faster?
Ans: FFT algorithm exploits the two important properties if twiddle factors
namely symmetry and periodicity thereby removing redundant mathematical
operation. It requires N/2 logN

2 complex multiplication and N logN
2 complex

addition for computing Npoint DFT. FFT reduces the computation time required
to compute a discrete Fourier transformand improves the performance by a factor
100 or more over direct evaluation of the DFT.

28. Compute DFT of the sequence x(n) = e−n, 0 ≤ n ≤ 4
Ans:

X (k) =
N−1∑

n=0

x(n)e− j2πkn
N

=
4∑

n=0

e−ne− j2πkn
5 =

4∑

n=0

[
e−1− j2πk

5

]n

X (k) = 1 − e
−
(
1+ j2πk

5

)5

1 − e
−
(
1+ j2πk

5

)

29. Calculate the number if complex multiplication for direct evaluation of
eight-point DFT.
Ans: The number of complex multiplication required using direct computation
is

N 2 = 82 = 64
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30. Distinguish between DFT and DTFT.
Ans: DFT:

– Obtained by performing sampling operation in both the time and frequency
domains.

– Discrete frequency spectrum (Discrete function of ω).

DTFT:

– Sampling is performed only in time domain.
– Continuous frequency spectrum (continuous function of ω).

31. Give computation efficiency of 1024-point FFT over 1024-point DFT.
Ans: The number of complex multiplication required using direct computation
is

N 2 = (1024)2 = 1048576

The number of complex multiplication required using FFT is

N

2
logN

2 = 1024

2
log10242

= 512 log2
10

2

= 5120

Computation efficiency in multiplication

= 100 − 5120

1048576
× 100

= 99.5%

The number of complex multiplication required using direct computation is

N (N − 1) = 1024(1024 − 1) = 1047552

The number of complex multiplication required using FFT is

N logN
2 = 1024 log10242

= 1024 log2
10

2

= 10240

Computation efficiency in addition

= 100 − 10240

1048576
× 100

= 99%
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32. Write the analysis and synthesis equation of DFT.
Ans: Analysis equation of DFT is

X (k) =
N−1∑

n=0

x(n)e
− j2πkn

N , n = 0, 1, 2, . . . , N − 1

Synthesis equation of DFT is

x(n) = 1

N

N−1∑

k=0

X (k)e
j2πkn

N j , n = 0, 1, 2, . . . , N − 1

33. Determine the response of the system with y(n) = x(n − 1) for the input
signal.

x(n) =
{

|n|, −3 ≤ n ≤ 3

0, otherwise

Ans:

x(n) =
{

|n|, −3 ≤ n ≤ 3

0, otherwise

x(n) = {3, 2, 1, 0, 1, 2, 3}
↑

y(n) = x(n − 1)

34. Calculate the multiplication reduction factor α in computing 1024-point
DFT in a radix-2 FFT algorithm.
Ans: The number of complex multiplication required using direct computation
is

N 2 = (1024)2 = 1048576

The number of complex multiplication required using FFT is

N

2
logN

2 = 1024

2
log10242

= 512 log2
10

2

= 5120
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Multiplication reduction factor

α = 1048576

5120
= 204.8

35. Find the values of W k
N when N = 8 and k = 2 and also for k = 3.

W k
N = e− j2πk

N

Ans: For N = 8 and k = 2,

W k
N = W 2

8 = e− j2π2
8 = − j

For N = 8 and k = 3,

W k
N = W 3

8 = e− j2π3
8 = −0.707 − j0.707

36. State and prove Parsevals’ relation DFT.
Ans: For complex-valued sequence x(n) and y(n), if

x(n) ←→DFT
N X (k) and y(n) ←→DFT

N Y (k)

then

N−1∑

n=0

x(n)y∗(n) = 1

N

N−1∑

k=0

X (k)Y ∗(k)

Proof

IDFT{Rxy(k)} = �xy(l)

= 1

N

N−1∑

k=0

Rxy(k)e
j2πkl

N

using cross correlation

N−1∑

k=0

x(n)Y ∗(n − l) = 1

N

N−1∑

k=0

Rxy(k)e
j2πkl

N

N−1∑

k=0

x(n)Y ∗(n) = 1

N

N−1∑

k=0

Rxy(k) [when l = 0]
N−1∑

k=0

x(n)Y ∗(n) = 1

N

N−1∑

k=0

X (k)Y ∗(k)
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If x(n) − y(n)

N−1∑

k=0

x(n)x∗(n − l) = 1

N

N−1∑

k=0

X (k)X∗(k)

N−1∑

k=0

|x(n)|2 = 1

N

N−1∑

k=0

|X (k)|2

37. What do you mean by the term “bit reversal” as applied to FFT?
Ans: In FFT, before decimation the sequences are arranged in bit reversed
order. Bit reversal process for N = 8 is

Normal order Bit reversal order
Input Binary Bit reversal Bit reversed
sample representation binary sample input
x(0) 000 000 x(0)
x(1) 001 100 x(4)
x(2) 010 010 x(2)
x(3) 011 110 x(6)
x(4) 100 001 x(1)
x(5) 101 101 x(5)
x(6) 110 011 x(3)
x(7) 111 111 x(7)

38. The first five DFT coefficients of a sequence x(n) are X (0) = 20, X (1) = 5 +
j2, X (2) = 20, X (3) = 0.2 + j0.4 and X (4) = 0. Determine the remaining
DFT coefficients.
Ans: Let N = 8. We have X (k) = X∗(N − k). The first five DFT coefficients
are given, and the remaining DFT coefficients are obtained as,

X (5) = X∗(8 − 5) = X∗(3) = 0.2 − j0.4

X (6) = X∗(8 − 6) = X∗(2) = 20

X (7) = X∗(8 − 7) = X∗(1) = 5 − j2

39. What are the advances of FFT algorithm over direct computation of DFT?
Ans:

1. FFT algorithm reduces the number of complex multiplication and complex addi-
tion operation.

2. It reduces the computation time required to compute DFT.
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Fig. 2.66 Butterfly diagram for question 21
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Fig. 2.67 Input sequence for question 33

Fig. 2.68 Output sequence
for question 33
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11 22
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33

3 43 54 n
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The input sequence of question 33 is shown in Fig. 2.67. The output sequence of
question 33 is shown in Fig. 2.68.

Long Answer Type Questions

1. Find eight-point DFT of the sequence x(n) = an where a = 3.
2. Compute the DFTs of the following sequences where N = 4 suing DIT algo-

rithm.

(a) x(n) = 2n

(b) x(n) = 2−n

(c) x(n) = sin
(

nπ
2

)

(d) x(n) = cos
(

nπ
2

)

3. Compute the 16-point DFTs of the following sequences:
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x(n) = cos
(π

2

)
, 0 ≤ n ≤ 15

using DIT algorithm.
4. Compute the FFT for the sequence x(n) = n2 + 1 where N = 8 using DIT

algorithm..
5. Compute the DFT coefficients of a finite duration sequence {0,1,2,3,0,0,0,0}.
6. Compute the IDFT of the following sequences using (a) DIT algorithm and (b)

DIF algorithm.

(i) {5, 0, 1 − j, 0, 1, 0, 1 + j, 0}
i i) {1, 1 + j, 1 − j2, 1, 0, 1 + j2, 1 + j}

7. Derive the equation for radix-4 FFT for N = 4 and draw the butterfly diagram.
8. Derive the DFT of the sample data sequence x(n) = {1, 1, 1, 0} and compute

the corresponding amplitude and phase spectrum.
9. Compute the DFT for the sequence {1, 2, 0, 0, 0, 2, 1, 1} using radix-2 DIF-FFT

algorithm.
10. Prove that multiplication of the DFT’s of two sequences is equivalent to the DFT

of the circular convolution of the two sequences in time domain.
11. Using DFT-IDFT method, perform circular convolution of the two sequences

x(n) = {1, 2, 0, 1} and h(n) = {2, 2, 1, 1}.
12. Bymeans of DFT and IDFT, determine the response of an FIR filter with impulse

response h(n) = {1, 2, 3} to the input sequence x(n) = {1, 2, 2, 1}.
13. Develop a DIT-FFT algorithm for N = 12 = 3 · 2 · 2 and draw the signal flow

diagram.
14. The first five DFT coefficient are {22,−7.5353 − j3.1213, 1 + j,−0.4645 −

j1.1213, 0}. Determine the remaining DFT coefficients for N = 16.
15. Determine the eight-point DFT of the sequence

x(n) =
{
1, −3 ≤ n ≤ 3

0, otherwise

16. Convolve the following sequences using (i) overlap-add method and (ii) overlap
save method.

x(n) = {1,−1, 2, 1, 2,−1, 1, 3, 1} and h(n) = {1, 2, 1}

17. An input sequence x(n) = {2, 1, 0, 1, 2} is applied to a DSP system having an
impulse sequence h(n) = {5, 3, 2, 1}. Determine the output sequence produced
by (i) linear convolution and (ii) verify the same through circular convolution.
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18. Determine the DFT of the sequence

x(n) =
{
1, 2 ≤ n ≤ 6

0, otherwise

Assume that N = 10.
19. Derive and draw the radix-4 DIT and DFT algorithm for FFT of 8 points.
20. Discuss in detail the use of FFT algorithm in linear filtering.



Chapter 3
Design of IIR Digital Filters

Learning Objectives

After completing this chapter, you should be able to:

� study the characteristics and classify digital filters.
� establish the causality and stability conditions necessary when analog filters are

converted into digital filters.
� design digital filters from analog filters using impulse invariance and bilinear

transformation methods.
� design digital lowpass filters by Butterworth, Chebyshev approximations and

approximation of derivatives.
� study analog and digital frequency transformations and design filters of different

types.
� draw frequency response of digital filters from the system function.
� realize the structure of digital filters in different forms.

3.1 Introduction

Afilter is a network or system that changes the frequency response (amplitude vs. fre-
quency and phase vs. frequency) characteristics of a signal in a desired manner. The
filter extracts information from the signal by removing noise. It is also used to separate
two ormore signalswhich canmake use of the available communication channel very
efficiently. Filters are broadly classified as analog filters and digital filters. Analog fil-
ters operate on analog signals. They are governed by differential equations. They con-
sist of electric components like resistors, capacitors and inductors. On the other hand,
digital filters operate on digital samples of the signal. They are governed by linear dif-
ference equation. They consist of adders, multipliers and delay implemented in logic.
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h(k), k = 0, 1, 2, . . . . .  
x(n) y(n)

Fig. 3.1 A digital filter

Digital filters play very important role in Digital Signal Processing. They are
extensively used in data transmission, data compression, echo cancelation, image
processing, speech processing, telephone, digital audio, biomedical signal process-
ing, etc. Digital filters have the following advantages over analog filters.

3.1.1 Advantages

1. Digital filters are used in low-frequency devices used in biomedical applications
where analog filters cannot be used.

2. They have linear phase response characteristic.
3. The performance of digital filters does not vary with environmental changes.
4. Filtered and unfiltered data can be saved for future use.
5. They are cheap and consume low power. Precision is high compared to analog

filters.
6. The frequency response can be automatically adjusted using programmable

processor.

3.1.2 Disadvantages

The disadvantages of digital filters include the following:

1. The time taken for the design and hardware development is longer compared to
analog filters.

2. Themaximum bandwidth of signals that can be handled by digital filters is lower
compared to analog filters.

3. Digital filters are subject to ADC noise due to quantization and round off noise
produced during computation.
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3.2 IIR and FIR Filters

Digital filters are broadly classified as infinite impulse response (IIR) and finite
impulse response (FIR) filters. The impulse response of the filters can be represented
by the sequence h(k), (k = 0, 1, 2, . . .) as in Fig. 3.1.

From Fig. 3.1, the following equations are written for the convolution sum.

y(n) =
∞∑

R=0

h(k)x(n − k) (3.1)

y(n) =
N−1∑

R=0

h(k)x(n − k) (3.2)

Equation (3.1) gives the output of an IIR filter while Eq. (3.2) gives the output of
an FIR filter, where the response is of infinite and finite duration, respectively. The
output of IIR filter using Eq. (3.1) cannot be computed in practice because the length
of the impulse is too long. Equation (3.1) is therefore modified and expressed in
recursive form as given below:

y(n) =
N∑

R=0

bk x(n − k) −
M∑

k=1

ak y(n − k) (3.3)

In Eq. (3.3), ak and bk are the coefficients of IIR filter. Equations (3.2) and (3.3) are
used to design FIR and IIR filters, respectively. It is to be noted that, the output of
the IIR filter (recursive filter) as seen from Eq. (3.3), depends on past outputs as well
as present and past input samples. Further, Eq. (3.3) shows the inherent feedback
present in the IIR filter. On the other hand, the output of the FIR filter (non-recursive
filter) as seen from Eq. (3.2) depends on the past and present values of the input
samples. Equations (3.2) and (3.3) can also be represented in terms of the transfer
function as given below:

H(z) =
N−1∑

k=0

h(k)z−k (3.4)

H(z) =
∑N

k=0
bk z−k

[
1 +

∑M

k=1
ak z−k

] (3.5)

Equations (3.4) and (3.5), respectively, are the transfer functions of FIR and IIR
filters.
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3.3 Basic Features of IIR Filters

The transfer function of IIR filter is given in Eq. (3.5). For the IIR filter design, it
is necessary to find suitable values for the coefficients ak and bk so that the desired
frequency response is obtained. The design stages for digital IIR filters are as follows:

1. Filter specification: The function of the filter (lowpass, highpass, bandpass, band
rejected filter) and the desired performance are given.

2. Calculation of coefficients ak and bk .
3. Structure realization.
4. Finite word length effects analysis and solutions.
5. Hardware and software implementation.

3.4 Performance Specifications

For the design of IIR filters, the following specifications are normally followed.

1. Signal characteristics.
2. The frequency response characteristics of the filter.
3. Cost constraints.
4. Mode of implementation.

The frequency response specifications of frequency selective filters such as lowpass,
highpass, bandpass and bandstop filters are expressed in the formof tolerance scheme
as shown in Fig. 3.2.

Analog filter design is a well-established one. Several techniques have been devel-
oped to design digital filters which are all based on converting an analog filter into
a digital filter. The digital filter is therefore first designed in the analog domain, and
then the design is converted into the digital domain. For an analog filter, the system
function can be represented by the following equation:

Ha(s) = B(s)

A(s)

=
∑M

k=0
βksk

∑N

k=0
αksk

(3.6)

where [αk] and [βk] are the coefficients of the filter. The system function Ha(s) can
also be written by its impulse response as given below:

Ha(s) =
∞∫

−∞
h(t)e−stdt (3.7)
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Fig. 3.2 Magnitude response. a Lowpass, b highpass, c bandpass and d bandstop filter

The analog filter input and output equation can also be represented by the following
equations:

N∑

k=0

αk
dk y(t)

dt k
=

M∑

k=0

βk
dk x(t)

dt k
(3.8)

where x(t) is input signal and y(t) is the output response. The above equations, which
represent the characteristics of analog filter in three different forms, are converted
to their equivalent forms in digital domain while designing a digital filter. It is to
be noted that the conversion becomes valid and effective if the following conditions
are satisfied. If Ha(s) is the system function of a linear time invariant stable system,
then all its poles should fall in left half of the s-plane (LHP). On that basis, when
analog filter is converted to digital filter, then it should satisfy the following stability
conditions:

1. The j axis in the s-plane should map into unit circle in the z-plane. This results
in a direct relationship between the two frequency variables in s-domain and
z-domain.

2. The LHP of the s-plane should map into the interior of the unit circle in the
z-plane. This guarantees the stability of the digital filter when converted from
analog filter.
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3. The T.F.s Ha(s) and H(z) should be rational, so that the filter is causal.

The following methods of digital filter design by converting analog filter are
described:

1. Impulse invariance transform method.
2. Bilinear transformation method.

3.5 Impulse Invariance Transform Method

The impulse response of the digital filter is obtained by uniformly sampling the
impulse response of the analog filter.

h(n) = ha(t)

∣∣∣∣
t=nt

= ha(nT ) (3.9)

Ha(s) = L[ha(t)]

When Ha(s) has distinct poles, it can be expressed by partial fraction expression as

Ha(s) =
N∑

i=1

Ai

s − pi
= A1

s − p1
+ A2

s − p2
+ · · · + AN

s − pN
(3.10)

ha(t) = A1e
p1t ua(t) + A2e

p2t ua(t) + · · · + ANe
pN t ua(t)

∴ h(n) = ha(t)

∣∣∣∣
t=nT

h(n) = A1e
p1nT ua(nT ) + A2e

p2nT ua(nT ) + · · · + ANe
pN nT ua(nT )(3.11)

H(z) = Z [h(n)]
= A1

1

1 − ep1T z−1
+ A2

1

1 − ep2T z−1
+ · · · + AN

1

1 − epN T z−2

=
N∑

i=1

Ai

1 − epi T z−1
(3.12)

Therefore, by impulse invariant transformation

1

s − pi

−−−−−−−−−→
is transformed to

1

1 − epi T z−1
(3.13)
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3.5.1 Relation Between Analog and Digital Filter Poles

Let the analog poles be at s = pi where i = 1, 2, . . . , N . The digital poles are given
by roots of term (1 − epi T z−1), i.e.,

z = epi T , i = 1, 2, . . . , N (3.14)

Any point in the s-plane can be expressed as

s = σ1 + j�1 (3.15)

z = epi T

z = esT

i.e., analog pole at s = pi is transformed to digital pole at z = epi t

z = e(σ1+ j�1)T

z = eσ1T · e j�1T

|z|∠z = eσ1T · e j�1T

|z| = eσ1T and ∠z = �1T (3.16)

(i) If σ1 < 0, then the analog pole s lies on left half of s-plane. In this case, |z| < 1,
and hence the corresponding digital pole z will lie inside the unit circle in the
z-plane.

(ii) If σ1 = 0, then the analog pole s lies on imaginary axis of s-plane. Therefore,
|z| = 1, and hence the corresponding digital pole z will lie on the unit circle in
the z-plane.

(iii) If σ1 > 0, then the analog pole s lies on right half of s-plane. In this case,
|z| = 1, and hence the corresponding digital pole z will lie outside the unit circle
in z-plane as shown in Fig. 3.3.

The stability of a filter is related to the location of the poles. For a stable analog filter
the poles should lie on the left half of the s-plane. Since the left half of s-plane maps
inside the unit circle in z-plane we can say that, for a stable digital filter the poles
should lie inside the unit circle in z-plane.

3.5.2 Relation Between Analog and Digital Frequency

Let � be the analog frequency in rad/s, and ω is digital frequency in rad/s.

z = re jω

s = σ + j� (3.17)
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s-plane z-plane
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Im
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0

Fig. 3.3 s-plane to z-plane mapping

By impulse invariant transformation, the following equations are written

z = esT

re jω = e(σ+ j�)T

re jω = eσ T · e j�T

ω = �T or � = ω

T
(3.18)

The mapping of analog-to-digital frequency is not one to one. Since ω is unique over
the range (−π, π), i.e.,ω = �T implies that the interval−π/T ≤ � ≤ (π/T )maps
into the corresponding values of −π ≤ ω ≤ π . This reflects the effects of aliasing
in sampling.

The following impulse invariant transformations from s-plane to z-plane are used
for different pole locations:

1. For distinct poles

1

s − pi
−→ 1

1 − epi T z−1
(3.19)

2. For multiples poles

1

(s + pi )m
−→ (−1)m−1

(m − 1)!
dm−1

dpm−1
i

(
1

1 − e−pi T z−1

)
(3.20)
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3. For complex poles

s + a

(s + a)2 + b2
−→ 1 − e−aT (cos bT )z−1

1 − 2e−aT (cos bT )z−1 + e−2aT z−2
(3.21)

b

(s + a)2 + b2
−→ 1 − e−aT (sin bT )z−1

1 − 2e−aT (cos bT )z−1 + e−2aT z−2
(3.22)

3.6 Bilinear Transformation Method

IIR filter design by means of impulse invariance method has a serve limitation in
that it can be applied only for lowpass filters and a few limited bandpass filters. This
serious limitation is overcome by bilinear transformation which is described below.

The bilinear transformation is a conformal mapping that transforms the imaginary
axis of s-plane into the unit circle in the z-plane only once, thus avoiding aliasing
of frequency components. In this mapping all points in the left half of s-plane are
mapped inside the unit circle in the z-plane and all points in the right half of s-plane
are mapped outside the unit circle in the z-plane.

Consider an analog filter with the following system function

Ha(s) = Y (s)

X (s)
= b

(s + a)
(3.23)

Equation (3.23) is written in differential equation form as

dy(t)

dt
+ ay(t) = bx(t) (3.24)

y(t) can be expressed in terms of its derivative y′(t) with the initial condition y(t0)
as given below.

y(t) =
t∫

t0

y′(τ )dτ + y(t0). (3.25)

By using the trapezoidal formula at t = nT and t0 = nT − T , the above integral is
approximated as

y(nT ) = T

2
[y′(nT ) + y′(nT − T )] + y(nT − T ) (3.26)

Now Eq. (3.24) is written as follows.

y′(nT ) = −ay(nT ) + bx(nT ) (3.27)
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SubstitutingEq. (3.26) inEq. (3.27), the following difference equation for the discrete
system is obtained.

(
1 + aT

2

)
y(n) −

(
1 − aT

2

)
y(n − 1) = bT

2
[x(n) + x(n − 1)] (3.28)

Taking z-transform on both sides of the above equation we get,

(
1 + aT

2

)
Y (z) −

(
1 − aT

2

)
z−1Y (z) = bT

2
[1 + z−1]X (z) (3.29)

Rearranging the terms, the discrete system function is written as follows.

H(z) = Y (z)

X (z)
=

(
bT

2

)
(1 + z−1)

(
1 + aT

2

)
−
(
1 − aT

2

)
z−1

= b
[
2

T

(
1 − z−1

1 + z−1

)
+ a

] (3.30)

ComparingEq. (3.23)withEq. (3.30), the following relationship becomes validwhile
mapping from s-plane to z-plane.

s = 2

T

(
1 − z−1

1 + z−1

)
(3.31)

Equation (3.31) is called the bilinear transformation. This holds good for any N th
order system. The following examples illustrate the method of transforming Ha(s)
to digital system function H(z).

Example 3.1
All-pole analog filters have transfer function

H(s) = 1

(s2 + 5s + 6)

Find H(z) by impulse invariant technique. Assume T = 1s.

(Anna university, April, 2005)



3.6 Bilinear Transformation Method 259

Solution

(s2 + 5s + 6) = (s + 2)(s + 3)

H(s) = 1

(s + 2)(s + 3)

= A

(s + 2)
+ B

(s + 3)

H(s) = 1

(s + 2)
− 1

(s + 3)

By applying impulse invariant transformation we get

H(z) = 1

(1 − e−2T z−1)
− 1

(1 − e−3T z−1)

Substituting T = 1, we get

H(z) = 1

(1 − 0.135z−1)
− 1

(1 − 0.05z−1)

H(z) = 0.085z−1

(1 − 0.135z−1)(1 − 0.05z−1)

Example 3.2
Design a digital filter using

H(s) = 1

s2 + 9s + 18

with T = 0.2 s.

(Anna University, May, 2007)
Solution

(s2 + 9s + 18) = (s + 3)(s + 6)

H(s) = 1

(s + 3)(s + 6)

= 1

3

[
1

s + 3
− 1

s + 6

]

H(z) = 1

3

[
1

(1 − e−3T z−1)
− 1

(1 − e−6T z−1)

]
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Substituting T = 0.2 s. we get

H(z) = 1

3

[
1

(1 − 0.55z−1)
− 1

(1 − 0.3z−1)

]

H(z) = 0.083z−1

(1 − 0.55z−1)(1 − 0.3z−1)

Example 3.3
Consider the following TF of an analog filter

H(s) = (s + 1)

(s + 1)2 + 1

Convert the analog filter into a digital IIR filter by impulse invariance method for
T = 1.

Solution Method 1

H(s) = (s + 1)

(s + 1)2 + 1

= (s + 1)

s2 + 2s + 2

= (s + 1)

(s + 1 + j)(s + 1 − j)

= A1

(s + 1 + j)
+ A∗

1

(s + 1 − j)

A1 = A(s + 1)

(s + 1 + j)

∣∣∣∣
s=−1+ j

= 1

2

A∗
1 = 1

2

By impulse invariant transformation the TF of digital IIR filter is obtained as follows:

H(z) = 1

2

[
1

1 − e−(1+ j)T z−1

]
+ 1

2

[
1

1 − e(−1+ j)T z−1

]
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Substituting T = 1, we get

H(z) = 1

2

[
1

1 − 0.3678e− j z−1

]
+ 1

2

[
1

1 − 0.3678e j z−1

]

= 1 − 0.3678e j z−1 + 1 − 0.3678e− j z−1

2(1 − 0.3678e− j z−1)(1 − 0.3678e j z−1)

= 1 − 0.3678 cos 1z−1

1 − 0.3678z−1(e j + e− j ) + 0.1353z−2

H(z) = (1 − 0.2z−1)

(1 − 0.4z−1 + 0.1353z−2)

Method 2: Using Eq. (3.21), we get

(s + a)

(s + a)2 + b2
= 1 − e−aT cos bT z−1

1 − 2e−aT cos bT z−1 + 2e−2aT z−2
.

Here, a = 1; b = 1; T = 1.

H(z) = (1 − 0.2z−1)

(1 − 0.4z−1 + 0.1353z−2)

Example 3.4
Using impulse invariant method find H(z) at T = 1s.

H(z) = 2

(s2 + 8s + 15)

(Anna University, December, 2003)
Solution

(s2 + 8s + 15) = (s + 3)(s + 5)

H(s) = 2

(s + 3)(s + 5)

= 1

s + 3
− 1

s + 5
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H(z) = 1

(1 − e−3T z−1)
− 1

(1 − e−5T z−1)

= 1

(1 − 0.05z−1)
− 1

(1 − 6.73 × 10−3z−1)

H(z) = 0.04326z−1

(1 − 0.05z−1)(1 − 6.73 × 10−3z−1)

Hence, in the s-domain transfer function, if s is substituted by the term 2
T

1−z−1

1+z−1 , then
the resulting transfer function will be z-domain transfer function.

3.6.1 Relation Between Analog and Digital Filter Poles

Themapping of s-domain function to z-domain function by bilinear transformation is
a one-to-onemapping; i.e., for every point in s-plane, there is exactly a corresponding
point in z-plane and vice versa.

s = 2

T

1 − z−1

1 + z−1
(3.32)

T s

2
= 1 − 1

z

1 + 1
z

T s

2
= z − 1

z + 1
T s

2
(z + 1) = z − 1

T s

2
z − z = −1 − T s

2

−z

(
1 − T s

2

)
= −

(
1 + T s

2

)

z = 1 + T s
2

1 − T s
2

(3.33)
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Fig. 3.4 Mapping of s-plane into z-plane in bilinear transformation

Let s = σ1 + j�1

z = 1 + T
2 (σ1 + j�1)

1 − T
2 (σ1 + j�1)

=
(
1 + T

2 σ1
)+ j T

2 �1(
1 − T

2 σ1
)+ j T

2 �1
(3.34)

|z| =
√√√√
(
1 + T

2 σ1
)2 + ( T

2 �1
)2

(
1 − T

2 σ1
)2 + ( T

2 �1
)2 (3.35)

1. If σ1 < 0 (i.e., σ1 is negative), then the point s = σ1 + j�1 lies on the left half
of s-plane. In this case, |z| < 1, and hence the corresponding point in z-plane
will lie inside the unit circle in z-plane.

2. Ifσ1 = 0 (i.e., real part is zero), then the point s = σ1 + j�1 lies on the imaginary
axis in the s-plane. In this case, |z| = 1, and hence the corresponding point in
z-plane will lie on the unit circle in z-plane.

3. If σ1 > 0 (i.e., σ1 is positive), then the point s = σ1 + j�1 lies on the right half
of s-plane. In this case, |z| > 1, and hence the corresponding point in z-plane
will lie outside the unit circle in z-plane.

The above three transformations are represented in Fig. 3.4.

3.6.2 Relation Between Analog and Digital Frequency

Let s = j� be points on imaginary axis and the corresponding points on the z-plane
on unit circle are given by z = e jω where � is the analog frequency and ω is the
digital frequency. Using bilinear transformation
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s = 2

T

1 − z−1

1 + z−1

and substituting s = j� and z = e jω, we get

j� = 2

T

1 − e− jω

1 + e− jω
= 2

T

[
e( jω)/2 · e−( jω)/2 − e− jω

e( jω)/2 · e−( jω)/2 + e− jω

]

= 2

T

e−( jω)/2(e( jω)/2 − e−( jω)/2)

e−( jω)/2(e( jω)/2 + e−( jω)/2)

= 2

T

(e( jω)/2 − e−( jω)/2)
/
2

(e( jω)/2 + e−( jω)/2)
/
2

� = 2

T

(e( jω)/2 − e−( jω)/2)
/
2 j

cos(ω/2)

= 2

T

sin(ω/2)

cos(ω/2)
= 2

T
tan

ω

2

Analog frequency

� = 2

T
tan

ω

2
(3.36)

Digital frequency

ω = 2 tan−1 �T

2
(3.37)

The analog frequency � and digital frequency ω have a nonlinear relationship and is
shown is Fig. 3.5 because the entire negative imaginary axis in the s-plane (� = −∞
to 0) is mapped into the lower half of unit circle in z-plane (ω = −π to 0) and the
entire positive imaginary axis in the s-plane (� = 0 to ∞) is mapped into upper half
of unit circle in z-plane (ω = 0 to π ). This nonlinear mapping introduces a distortion
in the frequency axis which is called frequency warping.

3.6.3 Effect of Warping on the Magnitude Response

Consider an analog filter with a number of passbands. The corresponding digital
filter will have same number of passbands, but with disproportionate bandwidth as
shown in Fig. 3.6. The passband in the analog filter is of constant width with regular



3.6 Bilinear Transformation Method 265

T

T

0 1

Warping
Bilinear transformation

(Impulse invariant) 

2 3 4 5 6 7

2tan 1

T

2

2

( (
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Fig. 3.6 Effect ofwarping on themagnitude response. (Equally spaced analog passbands are pushed
together at high frequency in the digital domain)
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Ha( )
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0

Fig. 3.7 Effect of warping on the phase response

intervals. However, the passbands for the digital equivalent are somewhat pushed
together.

The effect of warping on amplitude responses can be eliminated by pre-warping
the analog filter. In this method, the specified digital frequencies are converted to
analog equivalent (� = 2

T tan(ω/2)). These analog frequencies are called pre-warps
frequencies. Using the pre-warp frequencies, the analog filter transfer function is
designed and then it is transformed to digital filter transfer function.

3.6.4 Effect of Warping on the Phase Response

Consider an analog filter with linear phase. The phase response of corresponding
digital filter will be nonlinear as shown in Fig. 3.7.

From the above, it can be state that, the bilinear transformation preserves the mag-
nitude response of an analogfilter only if the specification requires piecewise constant
magnitude, but the phase response of the analog filter is not preserved. Therefore, the
bilinear transformation can be used only to design digital filters with prescribedmag-
nitude response with piecewise constant values. A linear phase analog filter cannot
be transformed to a linear phase digital filter using bilinear transformation.
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Example 3.5
Convert the analog filter with system transfer function

Ha(s) = 2

(s + 1)(s + 2)

into a digital IIR filter by impulse invariance method, when (i) T = 1 s. and (ii)
T = 0.1 s.

(Anna University, December, 2004)
Solution Given

Ha(s) = 2

(s + 1)(s + 2)
= A

s + 1
+ B

s + 2

A = 2

s + 2

∣∣∣∣
s=−1

= 2

B = 2

s + 1

∣∣∣∣
s=−2

= −2

Ha(s) = 2

(s + 1)
− 2

(s + 2)
= 2

s − (−1)
− 2

s − (−2)

By impulse invariant transformation, we know that

Ap

s − pi

−−−−−−−−−→
is transformed to

Ai

1 − epi T z−1

H(z) = 2

1 − ep1T z−1
− 2

1 − ep2T z−1
(where p1 = −1, p2 = −2)

H(z) = 2

1 − e−T z−1
− 2

1 − e−2T z−1

(i) When T = 1 s

H(z) = 2

1 − e−1z−1
− 2

1 − e−2z−1

= 2

1 − 0.3678z−1
− 2

1 − 0.1353z−1

H(z) = 0.465z−1

(1 − 0.3678z−1)(1 − 0.1353z−1)
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(ii) When T = 0.1 s

H(z) = 2

1 − e−0.1z−1
− 2

1 − e−0.2z−1

= 2

1 − 0.9048z−1
− 2

1 − 0.8187z−1

H(z) = 0.1722z−1

(1 − 0.9048z−1)(1 − 0.8187z−1)

Example 3.6
Convert the analog filter with system transfer function

Ha(s) = (s + 0.1)

(s + 0.1)2 + 9

into a digital IIR filter by using the impulse invariant method, when T = 1 s

(Anna University, May, 2006)
Solution Given

H(s) = (s + 0.1)

(s + 0.1)2 + 9

= s + 0.1

s2 + 0.2s + 9.01

= s + 0.1

[s − (−0.1 + j3)][s − (−0.1 − j3)]
= A1

s − (−0.1 + j3)
+ A∗

1

s − (−0.1 − j3)

A1 = s + 0.1

s − (−0.1 − j3)

∣∣∣∣
s=−0.1+ j3

= 1

2

A∗
1 = 1

2

H(s) = 1/2

s − (−0.1 + j3)
+ 1/2

s − (−0.1 − j3)

By impulse invariant transformation we get,
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H(z) = 1/2

1 − e(−0.1+ j3)T z−1
+ 1/2

1 − e(−0.1− j3)T z−1

= 0.5 − 0.5e−0.1T e− j3T z−1 + 0.5 − 0.5e−0.1T e j3T z−1

(1 − e(−0.1+ j3)T z−1)(1 − e(−0.1− j3)T z−1)

= 1 − 0.5e−0.1T z−1(e j3T + e− j3T )

1 − e−0.1T − e− j3T z−1e−0.1T e j3T z−1 + e−0.1T e j3T e−0.1T e− j3T z−2

= 1 − 0.5e−0.1T z−12 cos 3T

1 − e−0.1T z−1(e j3T + e− j3T ) + e−0.2T z−2

= 1 − cos(3T )e−0.1T z−1

1 − 2 cos(3T )e−0.1T z−1 + e−0.2T z−2

For T = 1 s

H(z) = 1 − cos(3)e−0.1z−1

1 − 2 cos(z)e−0.1z−1 + e−0.2z−2

where 3 is in radian

H(z) = 1 + 0.8959z−1

1 + 1.7915z−1 + 0.8187z−2

Example 3.7
Apply the bilinear transformation to

Ha(s) = 2

(s + 1)(s + 2)

with T = 1 s and find H(z).

Solution Given

Ha(s) = 2

(s + 1)(s + 2)

put s = 2
T

1−z−1

1+z−1 in Ha(s) to get H(z)

H(z) = 2(
2
T

1−z−1

1+z−1 + 1
) (

2
T

1−z−1

1+z−1 + 2
)

= 2(
2−2z−1+1+z−1

1+z−1

) (
2−2z−1+2+2z−1

1+z−1

)
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H(z) = 2(1 + z−1)2

(3 − z−1)4

= 0.5(1 + z−1)2

3 − z−1

H(z) = −0.5(z−1 + 1)2

(z−1 − 3)

Example 3.8
The normalized transfer function of an analog filter is given by

Ha(sn) = 1

s2n + 1.414sn + 1

convert the analog filter to a digital filter with a cutoff frequency of 0.4π , using
bilinear transformation.

(Anna University, April, 2006)
Solution To preserve the magnitude response the pre-warping of analog filter has to
be performed. For this analog cutoff frequency is determined. The analog transfer
function is unnormalized by replacing sn = s/�c using this analog cutoff frequency.
Then the analog transfer function is converted to digital filter transfer function using
bilinear transformation.

Given ωc = 0.4π rad/s. Let T = 1 s

�c = 2

T
tan

(
0.4π

2

)

= 2 tan

(
0.4π

2

)
= 1.453 rad/s.

Normalized analog transfer function is,

Ha(sn) = 1

s2n + 1.414sn + 1

The analog transfer function is unnormalized by replacing sn by s/�c

Ha(s) = 1
(

s
�c

)2 + 1.414
(

s
�c

)
+ 1
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= �2
c

s2 + 1.414�cs + �2
c

= 2.11

s2 + 2.05s + 2.11

H(z) = Ha(s)

∣∣∣∣
s= 2

T
1−z−1

1+z−1

= 2.11
[
2(1−z−1)

1+z−1

]2 + 2.05
[
2(1−z−1)

1+z−1

]
+ 2.11

= 2.11(1 + z−1)2

4(1 − z−1)2 + 4.1(1 − z−1)(1 + z−1) + 2.11(1 + z−1)2

H(z) = 2.11(1 + 2z−1 + z−2)

10.21 − 3.78z−1 + 2.01z−2

= 2.11(1 + 2z−1 + z−2)

10.21(1 − 0.37z−1 + 0.197z−2)

H(z) = 0.207(1 + 2z−1 + z−2)

1 − 0.37z−1 + 0.197z−2

3.7 Specifications of the Lowpass Filter

Letωp be passband digital frequency in rad/s andωs be the stopband digital frequency
in rad/s Let

Ap = |H(ω)|ω=ωp and As = |H(ω)|ω=ωs (3.38)

where Ap is the gain at the passband frequency and As is the gain at the stopband
frequency. Let

α1 = 1

Ap
and α2 = 1

As
(3.39)

whereα1 is attenuation at the passband frequency andα2 is attenuation at the stopband
frequency.

The maximum values of normalized gain are unity and so Ap, As are less than 1
and α1, α2 are greater than 1. The magnitude response of lowpass filter in terms of
gain and attenuation is shown in Fig. 3.8.

Themagnitude response in dB is shown inFig. 3.9. Let k1 be gain in dB at passband
frequency and k2 the gain in dB at stopband frequency.
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Fig. 3.8 Gain Vsω and attenuation Vsω

H( )

(a)

s 14dB
k1 2dB

k2 14dB

20log

p 2dB

0

(b)

( (

H( )20log( (1p s

p s

Fig. 3.9 Gain and attenuation Vsω in dB

k1 = 20 log Ap and k2 = 20 log As (3.40)

Ap = 10k1/20 and As = 10k2/20 (3.41)

Let α1 be attenuation in dB at ω1, α2 be attenuation in dB at ω2

αp = 20 log

(
1

Ap

)
and αs = 20 log

(
1

As

)

αp = −20 log Ap and αs = −20 log As (3.42)
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Fig. 3.10 Magnitude square frequency response of an ideal lowpass filter

Sometimes the specifications are given in termsof passband ripple δp and stopband
ripple δs . In this case dB gain and attenuation can be estimated as

k1 = 20 log(1 − δp) and αp = −20 log(1 − δp)

k2 = 20 log δs and αs = −20 log δs (3.43)

3.8 Design of Lowpass Digital Butterworth Filter

On many practical applications, realization of H(z) from analog transfer function
H(z) may not be available and it has to be determined from the specifications of the
desired digital filters. Normally the cutoff frequency �c, of the filter, the passband
attenuation and stopband attenuation are given. The system function H(s) is obtained
to satisfy the above specifications. For realization the filter response characteristics
have to be approximated. There are several approximation techniques available for
the filter design. The most widely used approximation techniques are:

1. Butterworth filter.
2. Chebyshev filter.
3. Approximation of derivatives.

The analog filter transfer function H(s) obtained using any of these methods is con-
verted to digital filter transfer function by using either impulse invariant transforma-
tion or bilinear transformation described earlier. The characteristics of Butterworth
andChebyshev filters are ideally suited to design lowpass filter. The design procedure
for Butterworth filter is described below.

Let us consider the squared magnitude response of an ideal lowpass filter shown
in Fig. 3.10. �c is the cutoff frequency of the filter. This ideal lowpass filter charac-
teristics is however not physically realizable.
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3.8.1 Analog Butterworth Filter

The analog Butterworth filter is designed by approximating the ideal frequency
response using an error function. The error function is selected such that magnitude
is maximally flat in the passband and monotonically decreasing in the stopband.

The magnitude response of lowpass filter obtained by the approximation is given
by

|Ha(�)|2 = 1

1 +
(

�
�c

)2N (3.44)

We know that s = j�. Substituting � by s/j in Eq. (3.44)

Ha(s)Ha(−s) = 1

1 +
(

s/j
�c

)2N = 1

1 +
(
− s2

�2
c

)N (3.45)

Let s/�c = sn is the normalized function. Therefore, the normalized transfer func-
tion is

Ha(sn)Ha(−sn) = 1

1 + (−s2n
)N (3.46)

The normalized transfer function has 2N poles. For a stable and causal filter, the
poles should lie on the left half of s-plane. when N is even, all poles are complex
and exit as conjugate pair. When N is odd, one of the poles is real and all other poles
are complex and exit as conjugate pair.

From Eq. (3.46), it is possible to locate the poles of the analog filter in the s-plane.
For odd number of N ,

1 + (−s2)N = 0

s2N = 1

For N = 1,

s2 = 1

s1 = 1

s2 = −1

The poles are located as shown in Fig. 3.11.
For a stable filter, only LHP poles along are taken and the denominator of the TF

is written as
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Fig. 3.11 Pole location of first-order filter

H(s) = 1

(s + 1)

For N = 3,
s6 = 1

The magnitude of the six poles is 1, and their phase angle is given as

φk = (2k)π

2N
, k = 0, 1, 2, 3, 4, 5

Thus,

s1 = 1∠0◦; s2 = 1∠60◦; s3 = 1∠120◦; s4 = 1∠180◦; s5 = 1∠240◦; s6 = 1∠300◦

The pole locations are shown in Fig. 3.12.
Considering only LHP poles, the LF of the filter is obtained as

H(s) = 1

(s + 1)(s + 0.5 + j0.866)(s + 5 − j0.866)

H(s) = 1

(s + 1)(s2 + s + 1)
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Fig. 3.12 Pole location of
third-order filter
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j

Now let us consider N being even. The following numerator polynomial for H(s) is
written.

1 + (−s2)N = 0

s2N = 1

sk = 1∠(2k + 1)π/2 N ; k = 0, 1, . . . , 2N

For a second-order filter N = 2. The poles of H(s) are located as follows:

s1 = 1∠45◦; s2 = 1∠135◦; s3 = 1∠225◦; s4 = 1∠315◦;

The pole locations are shown in Fig. 3.13.
Considering only the LHP poles, the TF of the filter is obtained as given below

H(s) = 1

(s + 0.707 + j0.707)(s + 0.707 − j.707)

H(s) = 1

(s2 + √
2s + 1)

Now consider N = 4,
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Fig. 3.13 Pole location of a
second-order filter
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sk = 1∠(2k + 1)π/2N ; k = 0, 1, 2, 3, 4, 5, 6, 7

s1 = 1∠22.5◦; s2 = 1∠67.5◦; s3 = 1∠112.5◦; s4 = 1∠157.5◦;
s5 = 1∠202.5◦; s6 = 1∠247.5◦; s7 = 292.5◦; s8 = 1∠337.5◦

s1 = 1∠22.5◦ = cos 22.5◦ + j sin 22.5◦ = 0.9239 + j.3827

s2 = cos 67.5◦ + j sin 67.5◦ = −0.3827 + j.9239

s3 = cos 112.5◦ + j sin 112.5◦ = −0.3827 + j.9239

s4 = cos 157.5◦ + j sin 157.5◦ = −0.9239 + j.3827

s5 = cos 202.5◦ + j sin 202.5◦ = −0.9239 − j.7071

s6 = cos 247.5◦ + j sin 247.5◦ = −0.3827 − j.9239

s7 = cos 292.5◦ + j sin 292.5◦ = 0.3227 − j.9239

s8 = cos 337.5◦ + j sin 337.5◦ = 0.9239 − j.3827

The pole locations are given in Fig. 3.14.
Considering the LHP poles only, the TF of the filter is obtained as

H(s) = 1[
(s + 0.3827 + j.9239)(s + 0.3827 − j.9239)

× (s + 0.9239 + j.3827)(s + 0.9239 − j.3827)

]

H(s) = 1

(s + 0.7654s + 1)(s + 1.8478s + 1)



278 3 Design of IIR Digital Filters

.3827 j.9239

.3827 j.9239 .3827 j.9239

.3827 j.9239

.9239 j.3827 .9239 j.3827

.9239 j.3827 .9239 j.3827

22.5˚

Unit circle

s-plane
j

Fig. 3.14 Pole location of fourth-order filter

Table 3.1 Butterworth polynomial for different N

N Denominator of H(s)

1 (s + 1)

2 (s2 + √
2s + 1)

3 (s + 1)(s2 + s + 1)

4 (s2 + 0.7654s + 1)(s + 1.8478s + 1)

5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)

6 (s2 + 1.9319s + 1)(s2 + √
2s + 1)(s2 + 0.517s + s + 1)

7 (s + 1)(s2 + 1.8019s + 1)(s2 + 1.247s + 1)(s2 + 0.44s + 1)

The Butterworth polynomial for various values of N for �c = 1 rad/s is given in
Table3.1.

The Butterworth polynomials given in Table3.1 are called normalized polyno-
mials, and the corresponding poles are normalized poles. Here �c = 1 rad/s. If
�c 	= 1, the polynomial is called unnormalized polynomial and s is replaced by s/�c

in H(s).

3.8.1.1 Determination of Order N and Cutoff Frequency ‘�c’
of Butterworth Filter

Determination of order N and cutoff frequency �c is very important in the design
of Butterworth filter. Let the following specifications be considered.
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Ap ≤ |Ha(�)| ≤ 1 0 ≤ � ≤ �p

|Ha(�)| ≤ As �s ≤ �

Consider the squared magnitude response of Butterworth filter which is given below:

|Ha(�)|2 = 1

1 +
(

�
�c

)2N

Since 1 +
(

�
�c

)2N 
 1, the above equation is written as

|Ha(�)|2 = 1
(

�
�c

)2N

According to the given specifications, the following equations are written:

1
(
1 + �p

�c

)2N ≥ A2
p

1
(
1 + �s

�c

)2N ≤ A2
s

The above equations are rearranged and written as follows:

(
�p

�c

)2N

≤ 1

A2
p

− 1

(
�s

�c

)2N

≥ 1

A2
s

− 1

Dividing the equation one by the other after considering the equalities at �c we get

(
�s

�p

)2N

=
(

1
A2

s
− 1
)

(
1

A2
p
− 1
)

After taking logarithms on both sides, we solve for N as,

N = 1

2

log
[(

1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log
(

�s
�p

)
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Note: If the alternations Ap and As are given in dB, then Ap and As are determined
as follows:

20 log Ap = −dB of passband attenuation

20 log As = −dB of stopband attenuation

Now to determine �c, any of the equation for passband or stopband attenuation is
considered.

(
�p

�c

)2N

= 1

A2
p

− 1

(
�p

�c

)
=
(

1

A2
p

− 1

) 1
2N

�c = �p
(

1
A2

p
− 1
)1/2N or �c = �s

(
1
A2

s
− 1
)1/2N

The above equations may not give identical values for �c. Sometimes, the average
of these two frequencies are taken to determine �c which is given below:

�c = 1

2

⎡

⎢⎣
�p

(
1

A2
p−1

)1/2N + �s
(

1
A2

s −1

)1/2N

⎤

⎥⎦

Therefore, the transfer function of the Butterworth filters will be product of second-
order factors. The analog filter transfer function of normalized and unnormalized
Butterworth lowpass filter is also expressed as given below.
Normalized Butterworth Lowpass Filter Transfer Function
Let N be the order of the filter. When N is even

Ha(s) =
N/2∏

k=1

1

s2n + bksn + 1
(3.47)

When N is odd

Ha(s) = 1

sn + 1

(N−1)/2∏

k=1

1

s2n + bksn + 1
(3.48)

where

bk = 2 sin

(
(2k − 1)π

2N

)
(3.49)
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Unnormalized Butterworth Lowpass Filter Transfer Function
The unnormalized transfer function is obtained by replacing sn by s/�c, where
�c = 3 dB cutoff frequency. When N is even

Ha(s) =
N/2∏

k=1

�2
c

s2 + bk�cs + �2
c

(3.50)

When N is odd

Ha(s) = �c

s + �c

(N−1)/2∏

k=1

�2
c

s2 + bk�cs + �2
c

(3.51)

where

bk = 2 sin

(
(2k − 1)π

2N

)
(3.52)

3.8.2 Frequency Response of Butterworth Filter

The frequency response of Butterworth filter depends on the order N . The approxi-
matedmagnitude response approaches the ideal response as the value of N increases.

Ap is gain at the passband frequency ωp, and As is the stopband frequency ωs .
The order of the filter is given by

N ≥ 1

2

log

[(
1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log
(

�s
�p

) (3.53)

The frequency response of Butterworth filter is shown in Fig. 3.15.

3.8.3 Properties of Butterworth Filters

1. The Butterworth filters are all-pole designs (i.e., the zeros of the filter exist at
infinity).

2. At the cutoff frequency �c, the magnitude is 1/
√
2 or −3dB.

3. The filter order N completely specifies the filter.
4. The magnitude is flat at the origin.
5. The magnitude is monotonically decreasing function of �.
6. The magnitude response approaches the ideal response as the value of N

increases.
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Fig. 3.15 Frequency response of Butterworth filter

3.8.4 Design Procedure for Lowpass Digital Butterworth
Filters

Let Ap be gain at passband frequency ωp and As be gain at stopband frequency
ωs . Let �p is analog frequency corresponding to ωp and �s is analog frequency
corresponding to ωs .

Step 1. Choose either bilinear or impulse invariant transformation.
Step 2. Calculate the ratio �s/�p. For bilinear transformation,

�s

�p
= tan(ωs/2)

tan(ωp/2)
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For impulse invariant,

�s

�p
= ωs

ωp

Step 3. Determine the order N of the filter using the following equation:

N ≥ 1

2

log

[(
1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log
(

�s
�p

)

Step 4. Calculate the analog cutoff frequency �c.
For bilinear transformation,

�c = 2

T

tan(ωp/2)
[

1
A2

p
− 1
]1/2N

For impulse invariant,

�c = ωp/T
[

1
A2

p
− 1
]1/2N

Step 5. Determine the analog transfer function of the filter.
When N is even

Ha(s) =
N/2∏

k=1

�2
c

s2 + bk�cs + �2
c

When N is odd

Ha(s) = �c

s + �c

(N−1)/2∏

k=1

�2
c

s2 + bk�cs + �2
c

where

bk = 2 sin

(
(2k − 1)π

2N

)

Note: For normalized case take �c = 1 rad/s.
Step 6. Using the chosen transformation determine H(z).
Step 7. Realize the digital filter transfer function H(z) by a suitable structure.
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Example 3.9
The specification of the desired lowpass filter is

0.8 ≤ |H(ω)| ≤ 1.0; 0 ≤ ω ≤ 0.2π

|H(ω)| ≤ 0.2; 0.32π ≤ ω ≤ π

Design Butterworth digital filter using impulse invariant transformation.

(Anna University, April, 2006)
Solution Given Ap = 0.8 at ωp = 0.2π rad/s and As = 0.2 at ωs = 0.32π

�s

�p
= ωs

ωp
= 0.32π

0.2π
= 1.6

N ≥ 1

2

log
(

1
A2

s
− 1
)/(

1
A2

p
− 1
)

log
(

�s
�p

)

≥ 1

2

log

[(
1

(0.2)2 − 1
)/(

1
(0.8)2 − 1

)]

log 1.6
N ≥ 3.9931

Choose the order of the filter N = 4. The analog cutoff frequency is,

�c = ωp/T
(

1
A2

p
− 1
)1/2N

Let T = 1 s

�c = ωp
(

1
A2

p
− 1
)1/2N = 0.2π

(
1

(0.8)2 − 1
)1/8 = 0.675 rad/s.

For N is even, the analog transfer function is

Ha(s) =
N/2∏

k=1

�2
c

s2 + bk�cs + �2
c

where

bk = 2 sin

(
(2k − 1)π

2N

)
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b1 = 2 sin
(

π
8

) = 0.765 and b2 = 2 sin
(
3π
8

) = 1.848

Ha(s) =
2∏

k=1

�2
c

s2 + bk�cs + �2
c

= �2
c

s2 + b1�cs + �2
c

× �2
c

s2 + b2�cs + �2
c

= (0.675)2

s2 + (0.765 × 0.675)s + (0.675)2
× (0.675)2

s2 + (1.848)(.675)s + (0.675)2

Ha(s) = 0.2076

s2 + 0.516s + 0.456)(s2 + 1.247s + 0.456)

= 0.2076

/
[s − (−0.26 + j0.62)][s − (−0.26 − j0.62)]
×[s − (−0.62 + j0.26)][s − (−0.6 − j0.26)]

Putting into partial fraction we get,

Ha(s) = A1

s − (−0.26 + j0.62)
+ A∗

1

s − (−0.26 − j0.62)

+ A2

s − (−0.62 + j0.26)
+ A∗

2

s − (−0.62 − j0.26)

A1 = 0.2076

[s−(−0.26− j0.62)][s−(−0.62+ j0.26)][s−(−0.62− j0.26)]
∣∣∣∣
s=−0.26+ j0.62

A1 = −0.32 + j0.13

A∗
1 = −0.32 − j0.13

Similarly

A2 = 0.32 + j0.76 and A∗
2 = 0.32 − j0.76

The residues A1, A∗
1, A2 and A∗

2 may be calculated by graphical method. The
poles are located in the s-plane as shown in Fig. 3.16.

A1 = 0.2076

1.24∠90◦ × 0.51∠45◦0.95∠68◦ = 0.3455∠ − 203

= 0.3455(cos 203◦ − j sin 203◦) = −0.32 + j0.13

A∗
1 = −0.32 − j0.13
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Fig. 3.16 Determination of residues by graphical method

A2 = 0.2076

0.52∠90◦0.51∠225◦0.95∠112◦ = 0.824∠ − 67◦

= 0.824(cos 67◦ − j sin 67◦)
A2 = 0.32 + j0.76

A∗
2 = 0.32 − j0.76

Ha(s) = −0.32 + j0.13

s − (−0.26 + j0.62)
+ −0.32 − j0.13

s − (−0.26 − j0.62)

+ 0.32 + j0.76

s − (−0.62 + j0.26)
+ 0.32 − j0.76

s − (−0.62 − j0.26)

H(z) = Ha(s)

∣∣∣∣ Ai
s−pi

−→ Ai
1−epi T z−1

Let T = 1 s

H(z) = −0.32 + j0.13

1 − e−0.26+ j0.62z−1
+ −0.32 − j0.13

1 − e−0.26− j0.62z−1

+ 0.32 + j0.76

1 − e−0.62+ j0.26z−1 + 0.32 − j0.76

1 − e−0.62− j0.26z−1
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The above equation is simplified as

H(z) = −0.64 + 0.28z−1

1 − 1.26z−1 + 0.59z−2
+ 0.64 − 0.12z−1

1 − 1.04z−1 + 0.29z−2

The above system function is realized in direct form-II and is shown in Fig. 3.17.
Note: For structure realization refer Sect. 3.3.

H(z) = −0.64 + 0.28z−1

1 − 1.26z−1 + 0.59z−2
+ 0.64 − 0.12z−1

1 − 1.04z−1 + 0.29z−2

Example 3.10
Design a digital Butterworth filter satisfying the following constraints

0.707 ≤ |H(e jω)| ≤ 1 for 0 ≤ ω ≤ π

2

|H(e jω)| ≤ 0.2 for
3π

4
≤ ω ≤ π

with T = 1 s using (a) the bilinear transformation; (b) impulse invariant method.
Realize the filter in each case using the most convenient realization form.

(Anna University, May, 2007)
Solution

(a) Bilinear Transformation
Given Ap = 0.707 at ωp = (π/2) and As = 0.2 at ωs = (3π/4)

�p

�s
= tan ωs

2

tan ωp

2

= tan 3π
8

tan π
4

= 2.414

The order of the filter

N ≥ 1

2

log

[(
1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log
(

�s
�p

)

= 1

2

log

[(
1

0.22 − 1
)/(

1
0.7072 − 1

)]

log 2.414

N ≥ 1.803
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Let N = 2. The analog cutoff frequency

�c = 2

T

tan(ωp/2)
(

1
A2

p
− 1
)1/2N

= 2
tan(π/4)

(
1

(0.707)2 − 1
)1/4 = 2 rad/s.

The analog transfer function when N = even is

Ha(s) = �2
c

s2 + bk�cs + �2
c

bk = 2 sin

[
(2k − 1)π

2N

]
= 2 sin

(π

4

)
= 1.414

= 4

s2 + 2.828s + 4

By using bilinear transformation H(z) is obtained as

H(z) = Ha(s)

∣∣∣∣
s= 2

T

(
1−z−1

1+z−1

)

= 4
[
2
(
1−z−1

1+z−1

)]2 + 2.828 × 2
(
1−z−1

1+z−1

)
+ 4

= 4(1 + z−1)2

4(1 − z−1)2 + 5.656(1 − z−2) + 4(1 + z−1)2

= 0.2929(1 + z−1)2

1 + 0.1716z−2

H(z) = 0.2929(1 + 2z−1 + z−2)

1 + 0.1716z−2

The above system is realized in direct form-II and is shown in Fig. 3.18a.

(b) Impulse Invariant Method
Given Ap = 0.707 at ωp = (π/2) and As = 0.2 at ωs = (3π/4)

ωs

ωp
= 3π/4

π/2
= 3

2
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N ≥ 1

2

log

[(
1

(0.2)2 − 1
)/(

1
(0.707)2 − 1

)]

log
(
3
2

)

N ≥ 3.924

N = 4

�c =
(

1

A2
p − 1

) 1
2N

· �p

=
(

1

0.7072 − 1

) 1
8

· π

2
= 1.57

The transfer function of analog filter for N being even is,

Ha(s) =
2∏

k=1

�2
c

s2 + bk�cs + �2
c

where b1 = 0.7654 and b2 = 1.8478

Ha(s) = (1.57)4

(s2 + 1.202s + 2.465)(s2 + 2.902s + 2.465)

= A

s+1.45+ j0.6
+ A∗

s+1.45− j0.6
+ B

s+0.6+ j1.45
+ B∗

s+0.6− j1.45

A = (1.57)4

(s + 1.45 − j0.6)(s + 0.6 + j1.45)(s + 0.6 − j1.45)

∣∣∣∣
s=−1.45− j0.6

= 0.7253 + j1.754

B = (1.57)4

(s + 1.45 + j0.6)(s + 1.45 − j0.6)(s + 0.6 − j1.45)

∣∣∣∣
s=−0.6− j1.45

= −0.7253 − j0.3

Ha(s) = 0.7253 + j1.754

s + 1.45 + j0.6
+ 0.7253 − j1.754

s + 1.45 − j0.6

+ −0.7253 − 0.3 j

s + 0.6 + j1.45
+ −0.7253 + 0.3 j

s + 0.6 − j1.45

Impulse invariant transformation is

1

s − pi
=⇒ 1

1 − epi T z−1
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x(n)

y(n)

0.1716

.5858

.2929

.2929

z 1

z 1

Fig. 3.18 Direct form-II realization of H(z) for Example 3.10a

let T = 1 s

H(z) = 0.7253 + j1.754

1 − e−1.45 · e− j0.6z−1
+ 0.7253 − j1.754

1 − e−1.45 · e+ j0.6z−1

+ −0.7253 − 0.3 j

1 − e−0.6 · e− j1.45z−1
+ −0.7253 + 0.3 j

1 − e−0.6 · e j1.45z−1

H(z) = 1.454 + 0.1839z−1

1 − 0.387z−1 + 0.055z−2
+ −1.454 + 0.2307z−1

1 − 0.1322z−1 + 0.301z−2

This can be realized using parallel form as shown in Fig. 3.19.

Example 3.11
For the given specification design an analog Butterworth filter

0.9 ≤ |H( j�)| ≤ 1 for 0 ≤ � ≤ 0.2π

|H( j�)| ≤ 0.2 for 0.4π ≤ � < π
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X(z) Y(z)
x(n) y(n)

1.454

.2307

1.454

0.301

0.055

0.1839

0.387

0.1322

z 1

z 1

z 1

z 1

Fig. 3.19 Parallel form realization of H(z) for Example 3.10

Solution Given �p = 0.2π , �s = 0.4π , Ap = 0.9, As = 0.2.

N ≥ 1

2

log

[(
1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log
(

�s
�p

)

N ≥ 1

2

log

[(
1

(0.2)2 − 1
)/(

1
(0.9)2 − 1

)]

log
(
0.4π
0.2π

)

N ≥ 3.34

N = 4

�c = �p

(100.1 − 1)1/2N
or �c = �p

(
1

A2
p
− 1
)1/2N

= 0.2π

(0.484)1/4
= 0.24π
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The analog transfer function

Ha(s) =
2∏

k=1

�2
c

s2 + bk�cs + �2
c

= �2
c

s2 + b1�cs + �2
c

· �2
c

s2 + b2�cs + �2
c

bk = 2 sin

(
(2k − 1)π

2N

)
, k = 1, 2,

where b1 = 0.7653 and b2 = 1.8477

Ha(s) = 0.323

(s2 + 0.577s + 0.0576π2)(s2 + 1.393s + 0.0576π2)

Example 3.12
Determine the order and the poles of lowpass Butterworth analog filter that has a
3dB attenuation at 500Hz and an attenuation of 40dB at 1000Hz.

Solution Given −20 log Ap = 3dB, �p = 2π × 500 = 1000π rad/s and −20 log
As = 40dB �s = 2π × 1000 = 2000π rad/s.

20 log Ap = −3

Ap = 0.707

20 log As = −40

As = 0.01

N ≥ 1

2

log

[(
1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log
(

�s
�p

)

N ≥ 1

2

log

[(
1

(0.01)2 − 1
)/(

1
(0.707)2 − 1

)]

log
(
2000π
1000π

)

N ≥ 6.64319

N = 7

The poles of Butterworth filter are given by sk = �ce j�k
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�c = �p
(

1
A2
1
− 1
)1/2N = 1000π

(
1

(0.707)2 − 1
)1/14 = 1000π

sk = 1000πe j�k , k = 1, . . . , 7

where

φk = π

2
+ (2k − 1)π

2N
, k = 1, . . . , 7

The normalized poles of analog Butterworth filter are obtained as follows. (This
can be taken from Table3.1 also.)

For k = 1, φ1 = π

2
+ π

14
= 102.865◦

For k = 2, φ2 = 128.57◦

For k = 3, φ3 = 154◦

For k = 4, φ4 = 180◦

The normalized LHP poles are,

s1 = 1e j102.865◦ = −0.2265 + j0.9749

s2 = e j128.57◦ = −0.6235 + j0.7818

s3 = e j154◦ = −0.8987 + j0.4384

s4 = e j180◦ = −1

s5 = s∗
3 = −0.8987 − j0.4384

s6 = s∗
2 = −0.6235 − j0.7818

s7 = s∗
1 = −0.2265 − j0.9749

These poles in LHP of the s-plane are shown in Fig. 3.20.
The transfer function of analog Butterworth normalized filter is given as

Ha(s) = 1

(s + s4)(s + s1)(s + s7)(s + s2)(s + s6)(s + s3)(s + s5)

= 1

[(s + 1)(s2 + 1.8019s + 1)(s2 + 1.247s + 1)(s2 + 0.44s + 1)]
The transfer function of the unnormalized filter is obtained by replaced s by

s

�c
= s

1000π
.
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Fig. 3.20 Location of
normalized poles

Unit circle

s-planes1
s2

s3

s4

s5

s6
s7

j

Therefore

Ha(s) =
(�c)

7

[(s + �c)(s2 + 1.8019�cs + �2
c)(s

2 + 1.247�cs + �2
c)(s

2 + 0.44�cs + �2
c)]

Ha(s) =
3 × 1024

/[
(s + 3140)(s2 + 5658 s + 9.87 × 106)(s2 + 3893.6 s + 9.87 × 106)

(s2 + 1381.6 s + 9.87 × 106)
]

Example 3.13
If H(s) = 1

(s+1)(s+2) , find H(z) using impulse invariance method for sampling fre-
quency of 5 samples/s.

(Anna University, May, 2007)
Solution

H(s) = 1

(s + 1)(s + 2)

The above function can be put into partial fraction as,

H(s) = 1

(s + 1)
− 1

(s + 2)
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The sampling frequency is given as Fs = 5

T = 1

Fs
= 1

5
= 0.2 s

Using impulse invariance we get,

H(z) = 1

1 − e−T z−1
− 1

(1 − e2T z−1)

= 1

1 − e−0.2z−1
− 1

(1 − e−0.4z−1)

= 1

1 − 0.8187z−1
− 1

(1 − 0.6703z−1)

H(z) = 0.1484z−1

(1 − 1.489z−1 + 0.5488z−2)

Example 3.14
Convert the analog filter with system function Ha(s) into digital filter using bilinear
transformation.

Ha(s) = (s + 0.3)

(s + 0.3)2 + 16

(Anna University, November, 2006)
Solution

Ha(s) = (s + 0.3)

(s + 0.3)2 + 16
= (s + 0.3)

(s + 0.3)2 + 16

The bilinear transformation is given by

s = 2

T

(1 − z−1)

(1 + z−1)
= 2

T

(z − 1)

(z + 1)

Assuming T = 1 and substituting for s in Ha(s) we get
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H(z) = 2 (z−1)
(z+1) + 0.3

(
2 (z−1)

(z+1)

)2 + 0.6 + (z−1)
(z+1) + 16.09

= [2(z − 1) + 0.3(z + 1)](z + 1)

4(z − 1)2 + 0.6(z − 1)(z + 1) + 16.09(z + 1)

= (2.3z2 + 0.6z − 1.7)

(4.6z2 + 8.09z + 19.49)

H(z) = (−1.7z−2 + 0.6z−1 + 2.3)

(19.4z−2 + 8.09z−1 + 4.6)

Example 3.15
Find the analog T.F. for a digital Butterworth filter satisfying the following specifi-
cations.

0.7 ≤ |H(e jω)| ≤ 1, 0 ≤ ω ≤ 0.2π

|H(e jω)| ≤ 0.004, 0.6π ≤ ω ≤ π

Assume T = 1 s. Apply impulse invariant transformation.

(Anna University, December, 2007)
Solution Given Ap = 0.7; ωp = 0.2π and As = 0.004; ωs = 0.6π

�s

�p
= 0.6π

0.2π
= 3

N ≥ 1

2

log
[(

1
A2

s
− 1
)/(

1
A2

p
− 1
)]

log �s
�p

≤
1
2 log

[(
1

(0.004)2 − 1
)/(

1
(0.7)2 − 1

)]

log 3
= 5

�c = 1

T

ωp
(

1
A2

p
− 1
)1/2N

= 0.2π
(

1
0.49 − 1

)0.1 = 0.2π rad/s.

�c = 0.6283
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For N = 5 which is odd, the analog Butterworth filter is expressed by the following
system function

Ha(s) = (�c)
5

(s + �c)(s2 + b1�cs + �2
c)(s

2 + b2�cs + �2
c)

Since b1 = 0.618 and b2 = 1.618

Ha(s) = (0.6283)5

(s + 0.6283)(s2 + 0.3883 s + 0.395)(s2 + s + 0.395)

Example 3.16
Design a third-order Butterworth digital filter using impulse invariant technique.
Assume the sampling period T = 1s

Solution Given N = 3. If N is odd, the analog transfer function is

Ha(s) = �c

s + �c

(N−1)/2∏

k=1

�2
c

s2 + bk�cs + �2
c

= �c

s + �c
· �2

c

s2 + bk�cs + �2
c

(Let �c = 1 for normalized filter).

= 1

(s + 1)(s2 + b1s + 1)

(
bk = 2 sin

[
(2k − 1)π

2N

])

Ha(s) = 1

(s + 1)(s2 + s + 1)
(b1 = 1)

= 1

(s + 1)(s + 0.5 + j0.866)(s + 0.5 − j0.866)

= A

s + 1
+ B

s + 0.5 + j0.866
+ C

s + 0.5 − j0.866

A = 1

s2 + s + 1

∣∣∣∣
s=−1

= 1

B = 1

(s + 1)(s + 0.5 − j0.866)

∣∣∣∣
s=0.5− j0.866

= −0.5 + j0.288

C = B∗ = −0.5 − j0.288

H(z) = 1

s + 1
+ −0.5 + 0.288 j

s + 0.5 + j0.866
+ −0.5 − 0.288 j

s + 0.5 − j0.866
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By impulse invariant transformation, the transfer function of the digital filter is,

H(z) = 1

1 − e−1z−1
+ −0.5 + 0.288 j

1 − e−0.5 · e− j0.866z−1
+ −0.5 − 0.288 j

1 − e−0.5e j0.866z−1

H(z) = 1

1 − 0.368z−1
+ −1 + 0.66z−1

1 − 0.786z−1 + 0.368z−2

Example 3.17
Apply impulse invariant method and find H(z) for

H(s) = s + a

(s + a)2 + b2

Solution The inverse Laplace transform of given function is

h(t) =
{
e−at cos bt, t ≥ 0

0, otherwise

h(n) = h(t)

∣∣∣∣
t=nT

h(n) =
{
e−anT cos(bnT ), t ≥ 0

0, otherwise

The digital transfer function is

H(z) =
∞∑

n=0

e−anT cos bnT z−n

=
∞∑

n=0

e−anT

(
e jbnT + e− jbnT

2

)
z−n

H(z) = 1

2

∞∑

n=0

[(e−(a− jb)T z−1)n + (e−(a+ jb)T z−1)n]

= 1

2

[
1

1 − e−(a− jb)T z−1
+ 1

1 − e−(a+ jb)T z−1

]

= 1

2

[
1 − e−(a+ jb)T z−1 + 1 − e−(a− jb)T z−1

(1 − e−(a− jb)T z−1)(1 − e−(a+ jb)T z−1)

]
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H(z) = 1 − e−aT cos(bT )z−1

1 − 2e−aT cos(bT )z−1 + e−2aT z−2

Example 3.18
An analog filter has a transfer function

H(s) = 10

s2 + 7s + 10

Design a digital filter equivalent to this using impulse invariant method for T = 0.2 s

Solution Given

H(s) = 10

s2 + 7s + 10
and T = 0.2 s

H(s) = 10

(s + 5)(s + 2)
= A

(s + 5)
+ B

(s + 2)

A = 10

(s + 2)

∣∣∣∣
s=−5

= −3.33

B = 10

(s + 5)

∣∣∣∣
s=−2

= 3.33

H(s) = −3.33

(s + 5)
+ 3.33

(s + 2)

H(z) = −3.33

1 − e−5T z−1
+ 3.33

1 − e−2T z−1

= −3.33

1 − e−1z−1
+ 3.33

1 − e−0.4z−1

= −3.33

1 − 0.3678z−1
+ 3.33

1 − 0.67z−1

H(z) = 1.006z−1

1 − 1.0378z−1 + 0.247z−2
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Example 3.19
Use bilinear transform to design a first-order Butterworth LPF with 3 dB cutoff
frequency of 0.2π .

(Anna University, April, 2004)
Solution Given 3 dB cutoff frequency ωc = 0.2π = ωp.

The analog transfer function for first-order Butterworth filter is

Ha(s) = �c

s + �c

�c = 2

T
tan
(ωp

2

)
= 2 tan

(
0.2π

2

)
= 0.6498

Ha(s) = 0.6498

s + 0.6498

Using bilinear transformation,

H(z) = Ha(s)
∣∣∣
s= 2

T
1−z−1

1+z−1

Assume T = 1 s

H(z) = 0.6498

s + 0.6498

∣∣∣
s=2

(
1−z−1

1+z−1

) [∵ T = 1 s]

= 0.6498
2(1−z−1)

(1+z−1)
+ 0.6498

= 0.6498(1 + z−1)

2(1 − z−1) + 0.6498(1 + z−1)

= 0.6498(1 + z−1)

2 − 2z−1 + 0.6498 + 0.6498z−1

= 0.6498(1 + z−1)

2.6498 − 1.3502z−1

= 0.6498(1 + z−1)

2.6498(1 − 0.5095z−1)

H(z) = 0.2452(1 + z−1)

1 − 0.5095z−1
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Example 3.20
Using bilinear transformation design a digital bandpass Butterworth filter with the
following specifications:

Sampling frequency = 8kHz
αp = 2 dB in the passband 800Hz ≤ f ≤ 1000 Hz
αs = 20 dB in the stopband 0 ≤ f ≤ 400Hz and 2000 ≤ f ≤ ∞

(Anna University, December, 2006)
Solution

ω1T

2
= 2 × π × 400

2 × 8000
= π

20

[
T = 1

fs
= 1

8000

]

ω1T

2
= 2 × π × 800

2 × 8000
= π

10
ωu T

2
= 2π × 1000

2 × 8000
= π

8
ω2T

2
= 2π × 2000

2 × 8000
= π

4

Pre-warped analog frequencies are given by

�1T

2
= tan

ω1T

2
= tan

π

20
= 0.1584

�l T

2
= tan

ωl T

2
= tan

π

10
= 0.325

�u T

2
= tan

ωu T

2
= tan

π

8
= 0.4142

�2T

2
= tan

ω2T

2
= tan

π

4
= 1

First we design a prototype normalized compass filter and then use suitable trans-
formation to obtain the transfer function of bandpass filter. To reduce computational
complexity we use above values to find �r and substitute s = 1−z−1

1+z−1 for bilinear
transformation (∵ all the above frequencies contain the term T/2)

A = −�2
1 + �l�u

�1(�u − �l)

= −(0.1584)2 + (0.325)(0.4142)

0.1584(0.4142 − 0.325)

A = 11.303



3.8 Design of Lowpass Digital Butterworth Filter 303

B = �2
2 − �l�u

�2(�u − �l)
= 1 − (0.4142)(0.325)

1(0.4142 − 0.325)

= 1 − 0.1346

0.0892
= 0.865385

0.0892
= 9.7016

�r = min{|A|, |B|} = 9.7016

N =
log10

√
102−1
100.2−1

log10(9.7016)
= log10(13.01)

log10(9.7016)
= 1.1142

0.9868

= 1.1290

N = 2

The second-order normalized Butterworth lowpass filter transfer function given
by

H(s) = 1

s2 + 1.4142s + 1

The transformation for the bandpass filter is

s → s2 + �l�u

s(�u − �l)
= s2 + 0.1346

s(0.0892)

H(s) = 1

s2 + 1.4142s + 1

∣∣∣∣
s= s2+0.1346

(0.0892)s

= 1
(

s2+0.1346
(0.0892)s

)2 + 1.4142
(

s2+0.1346
(0.0892)s

)
+ 1

= 0.0079s2

s4 + 0.2692s2 + 0.0181 + 1.4142(0.0892)s(s2 + 0.1346) + 0.0079s2

= 0.0079s2

s4 + 0.2692s2 + 0.0181 + 0.126s(s2 + 0.1346) + 0.0079s2

= 0.0079s2

s4 + 0.2692s2 + 0.0181 + 0.126s3 + 0.0169s + 0.0079s2

H(s) = 0.0079s4

s4 + 0.126s3 + 0.2771s2 + 0.0169s + 0.0181

H(z) = H(s)

∣∣∣∣
s= 1−z−1

1+z−1

=
0.0079

(
1−z−1

1+z−1

)2

(
1−z−1

1+z−1

)4 + 0.126
(
1−z−1

1+z−1

)3 + 0.277
(
1−z−1

1+z−1

)2 + 0.169
(
1−z−1

1+z−1

)
+ 0.0181
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= 0.0079(1 − z−1)2
/[

(1 − z−1)4 + 0.126(1 − z−1)3(1 + z−1)

+ 0.2692(1 − z−1)2(1 + z−1)2 + 0.169(1 − z−1)(1 + z−1)3

+ 0.0181(1 + z−1)4
]

= 0.0079(1 − z−2)2
/[

1 − 4z−1 + 6z−2 − 4z−3 + z−4

+ 0.126(1 − 2z−1 + 2z−3 − z−4) + 0.2677(1 − 2z−2

+ z−4) + 0.169(1 + 2z−1 − 2z−3 − z−4) + 0.0181(1 + 4z−1

+ 6z−2 + 4z−3 + z−4)

]

= 0.0079(1 − z−2)2

7.1871 − 3.8416z−1 + 0.644z−2 − 4.086z−3 + 0.9908z−4

3.9 Design of Lowpass Digital Chebyshev Filter

3.9.1 Analog Chebyshev Filter

It is designed by approximating the ideal frequency response using error function.
The Chebyshev characteristic provides an alternative method of getting a suit-

able analog transfer function Ha(s) from which lowpass digital filters are designed
using either bilinear transformation or impulse invariance. There are two types of
Chebyshev filters available as type I and type II filters. The type I filter charac-
teristic for odd value of N is shown in Fig. 3.21a, and type II characteristic for
even value of N is shown in Fig. 3.21b. The characteristic of type I filters has equal
ripple in the passband and monotonic in the stopband. They are all-pole filters.
Type II Chebyshev filter characteristics are shown in Figs. 3.22a, b for odd and even
values of N . These filters have equal ripples in the stopband and monotonic in the
passband. Further, they have both poles and zeros in the transfer function.

3.9.2 Determination of the Order of the Chebyshev Filter

The type I of N th order Chebyshev filter can be expressed as,

|H( j�)|2 = 1[
1 + ε2 C2

N

(
�
�p

)] ; N = 1, 2, . . . (3.53a)
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where ε is a parameter which is the function of the ripple in the passband. CN (x) is
the Chebyshev polynomial of order N . In the passband and stopband it is defined as,

CN (x) = cos(N cos−1 x), |x | ≤ 1

CN (x) = cosh(N cosh−1 x), |x | > 1

The Chebyshev polynomial is also expressed by the following recursive formula.

CN (x) = 2xCN−1(x) − CN−2(x), N > 1

where C0(x) = 1 and C1(x) = x .
Taking logarithm for Eq. (3.53a) we get

20 log |H(�)| = −10 log

[
1 + ε2C2

N

(
�

�p

)]

At passband � = �p

20 log |H(�)| = −αp

αp = 10 log

[
1 + ε2C2

N

(
�p

�p

)]

Using the property of CN (1) = 1, we get

αp = 10 log(1 + ε2)

ε =
√
100.1αp − 1

At stopband � = �s .

20 log |H( j�)| = −αs log

[
1 + ε2C2

N

(
�s

�p

)]

But CN =
(

�s
�p

)
= cosh

[
N cosh−1 �s

�p

]

αs = 10 log

[
1 + ε2

{
cosh

(
N cosh−1

(
�s

�p

))}2]
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But

cosh

(
N cosh−1

(
�s

�p

)]2
= 100.1αs − 1

ε2
= 100.1αs − 1

(100.1αp − 1)

N cosh−1

(
�s

�p

)
= cosh−1

[
(100.1αs ) − 1

100.1αp − 1

]1/2

N ≥
cosh−1

[
100.1αs −1
100.1αp −1

]1/2

cosh−1
(

�s
�p

)

or

N ≥
cosh−1

[
1
ε

(
1
A2

s
− 1
)1/2]

cosh−1
(

�s
�p

)

Note: cosh−1 x can be evaluated using the following identity:

cosh−1 x = ln[x +
√

(x2 − 1)]

They are two types:

(I) Type-I: The magnitude response is equiripple in the passband and monotonic in
the stopband as shown in Fig. 3.21.

(II) Type-II: The magnitude response is monotonic in passband and equiripple in
stopband as shown in Fig. 3.22.

The magnitude response of type-I lowpass filter is given by

|Ha(�)|2 = 1

1 + ε2C2
N

(
�
�c

) (3.54)

where ε is attenuation constant and CN is Chebyshev polynomial

ε =
[

1

A2
p

− 1

]1/2
(3.55)

where s = j� gives � = s/j . Substitute � = s/j in above equation
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Fig. 3.21 Frequency response of type-I Chebyshev filter
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Fig. 3.22 Frequency response of type-II Chebyshev filter. a N is odd and b N is even

Ha(s)Ha(−s) = 1

1 + ε2C2
N

(
s/j
�c

)

Ha(s)Ha(−s) = 1

1 + ε2C2
N (− jsn)

(3.56)

If N is even all poles are complex. When N is odd one of the poles is real and
all other poles are complex.

3.9.3 Unnormalized Chebyshev Lowpass Filter Transfer
Function

When N is even

Ha(s) =
N/2∏

k=1

Bk�
2
c

s2 + bk�2
cs + Ck�2

c

(3.57)
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When N is odd

Ha(s) = B0�c

s + C0�c

N−1/2∏

k=1

Bk�
2
c

s2 + bk�2
cs + Ck�2

c

(3.58)

where

bk = 2YN sin

(
(2k − 1)π

2N

)
(3.59)

ck = Y 2
N + cos2

(
(2k − 1)π

2N

)
(3.60)

c0 = YN (3.61)

YN = 1

2

⎧
⎨

⎩

[(
1

ε2
− 1

)1/2

+ 1

ε

]1/N

−
[(

1

ε2
+ 1

)1/2

+ 1

ε

]−(1/N )
⎫
⎬

⎭

(3.62)

For N is even, parameter Bk is evaluated by

Ha(s)

∣∣∣∣
s=0

= 1

(1 + ε2)1/2
(3.63)

for N is odd, Bk is calculated by

Ha(s)

∣∣∣∣
s=0

= 1 and B0 = B1 = B2 = · · · = Bk (3.64)

3.9.4 Frequency Response of Chebyshev Filter

The frequency response of Chebyshev filter is shown in Fig. 3.23.

N ≥
cos h−1

{
1
ε

(
1
A2

s
− 1
)1/2}

cos h−1
(

�s
�p

) (3.65)
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Fig. 3.23 Frequency response of Chebyshev filter type-I filter

3.9.5 Properties of Chebyshev Filter (Type I)

1. The magnitude oscillates between 1 and 1√
1+ε2

with in passband (equiripple in
the passband).

2. At cutoff frequency �c, the magnitude is 1√
1+ε2

.
3. Magnitude is monotonic outside the passband.
4. Chebyshev filter are all-pole design.
5. As N increases, it is approaches to ideal response.

3.9.6 Design Procedures for Lowpass Digital Chebyshev IIR
Filter

1. Choose either bilinear or impulse invariant transformation.
2. Calculate the attenuation constant ε

ε =
[

1

A2
p

− 1

]1/2

3. Calculate the ratio �s/�p using the following equation which is appropriate.
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For bilinear transformation,
�s

�p
= tan(ωs/2)

tan(ωp/2)

For impulse invariant,
�s

�p
= ωs

ωp

4. Decide the order N of the filter from

N ≤
cos h−1

{
1
ε

[
1
As
2
− 1
]1/2}

cos h−1
(

�s
�p

)

5. Calculate the analog cutoff frequency �c from the equations given below:

For bilinear transformation, �c = 2

T

tan(ωp/2)
[

1
A2

p
− 1
]1/2N

For impulse invariant, �c = (ωp/T )
[

1
A2

p
− 1
]1/2N

6. Determine analog transfer function, when N is even

Ha(s) =
N/2∏

k=1

Bk�
2
c

s2 + bk�cs + ck�2
c

When N is odd

Ha(s) = B0�c

s + c0�c

N−1/2∏

k=1

Bk�
2
c

s2 + bk�cs + ck�2
c

where

bk = 2YN sin

(
(2k − 1)π

2N

)

ck = Y 2
N + cos2

(
(2k − 1)π

2N

)

c0 = YN

YN = 1

2

⎧
⎨

⎩

[(
1

ε2
+ 1

)1/2

+ 1

ε

]1/N

−
[(

1

ε2
+ 1

)1/2

+ 1

ε

]−(1/N )
⎫
⎬

⎭
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Bk can be calculated from

N = even; Ha(s)

∣∣∣∣
s=0

= 1

(1 + ε2)1/2

N = odd; Ha(s)

∣∣∣∣
s=0

= 1

(the normal practice is to take B0 = B1 = B2, . . . , Bk).
7. Convert Ha(s) into H(z) using the chosen transform (bilinear or impulse invari-

ance).
8. Realize the digital filter transfer function by a suitable structure.

3.10 Frequency Transformation

3.10.1 Analog Frequency Transformation

The IIR lowpass analog filters are designed for the given specifications. By applying
appropriate approximations and transformations lowpass digital filters are designed.
By using frequency transformations it is possible to design lowpass filters with dif-
ferent passband frequencies, highpass filters, bandpass filters and bandstop filters. In
the frequency transformation, the variable s of normalized (�c = 1) lowpass filter is
replaced by appropriate variable. From the normalized lowpass filter, the following
filters are designed:

1. Lowpass to lowpass.
2. Lowpass to highpass filter.
3. Lowpass to bandpass filter.
4. Lowpass to band elimination filter (bandstop filter).

Let �p be the passband frequency of lowpass analog filter. Let �′
p be the edge fre-

quency of the lowpass filter which we wish to convert. The frequency transformation
to achieve this is given by

s → �p

�′
p

(3.66)
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3.10.1.1 Lowpass to Highpass Filter

The transformation that is made to convert the lowpass to highpass filter is given by

s → �p�
′
p

s
(3.67)

where �p = Edge frequency of the prototype lowpass filter and �′
p = Edge fre-

quency of the highpass filter.

3.10.1.2 Lowpass to Bandpass Filter

Let �l be the lower band edge frequency of bandpass filter and �u be the upper
band edge frequency of the same filter. The transfer function from lowpass filter to
bandpass filter is achieved by the following transformation:

s → �p
(s2 + �l�u)

s(�u − �l)
(3.68)

3.10.1.3 Lowpass to Bandstop Filter

Let

�p = Passband edge frequency of the given lowpass filter.
�u = Upper band edge frequency of the bandstop filter.
�l = Lower band edge frequency of the bandstop filter.

The transfer function from lowpass prototype to bandstop filter transfer function is
achieved by the following transformation.

s → �p
s(�u − �l)

(s2 + �u�l)
(3.69)

3.10.2 Digital Frequency Transformation

If we design a lowpass digital filter andwish to convert to desired lowpass filter, high-
pass filter, bandpass filter and bandstop filter, the following frequency transformation
may be used.
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3.10.2.1 Lowpass to Lowpass Filter

z−1 → z−1 − α

1 − αz−1
(3.70)

where

α = sin[(ωp−ω′
p/2)]

sin[(ωp+ω′
p)/2] .

ωp = Band edge frequency of the lowpass original filter.
ω′

p = Band edge frequency of the lowpass desired filter.

3.10.2.2 Lowpass to Highpass Filter

z−1 → z−1 + α

1 + αz−1
(3.71)

α = cos[(ωp + ω′
p)/2]

cos[(ωp − ω′
p)/2]

3.10.2.3 Lowpass to Bandpass Filter

z−1 → (z−2 − α1z−1 + α2)

(α2z−2 − α1z−1 + 1)
(3.72)

α1 = 2αk

k + 1

α2 = (k − 1)

(k + 1)

α = cos[(ωu + ωl)/2]
cos[(ωu − ωl)/2]

k = cot
(ωu − ωl)

2
tan

ωp

2
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3.10.2.4 Lowpass to Bandstop Filter

z−1 → (z−2 − α1z−1 + α2)

(α2z−1 − α1z−1 + 1)
(3.73)

α1 = 2α

(k + 1)

α2 = (1 − k)

(1 + k)

α = cos[(ωu + ωl)/2]
cos[(ωu − ωl)/2]

k = tan
(ωu − ωl)

2
tan

ωp

2

Filter type Transformation

1. Lowpass s → s

�c

2. Highpass s → �c

s

3. Bandpass s → Q(s2 + �2
0)

�0s

4. Bandstop s → �0s

Q(s2 + �2
0)

where �0 is center frequency, �0 = √�p�s where Q is quality factor, Q = �0
�s−�p

.

Example 3.21
The specification of the desired lowpass filter is

0.8 ≤ |H(ω)| ≤ 1.0; 0 ≤ ω < 0.2π

|H(ω)| ≤ 0.2; 0.32π ≤ ω ≤ π

Design Chebyshev digital filter using bilinear transformation.

Solution Given Ap = 0.8 at ωp = 0.2π rad/s and As = 0.2 at ωs = 0.32π rad/s
For bilinear transformation we get,
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�s

�p
= tan(ωs/2)

tan(ωp/2)
= tan(0.32π/2)

tan(0.2π/2)
= 1.692

The attenuation constant ε =
(

1
A2

p
− 1
)1/2 = 0.75

N ≥
cos h−1

{
1
ε

[
1
A2

s
− 1
]1/2}

cos h−1 �s
�p

=
cos h−1

{
1

0.75

[
1

0.22 − 1
]1/2}

cos h−11.692

= cos h−16.53

cos h−11.692

cos h−16.53 = ln(6.53 +
√
6.532 − 1)

= 2.56

cos h−11.692 = ln(1.692 +
√
1.6922 − 1)

= 1.1173

N = 2.56

1.1173
N ≥ 2.295

N = 3

Let T = 1s. The analog cutoff frequency

�c = 2

T

tan(ωp/2)
[

1
A2

p
− 1
]1/2N

�c = 2
tan(0.2π/2)
[

1
(0.8)2 − 1

]1/6

�c = 0.715 rad/s.

For N is odd, the analog transfer function

Ha(s) = B0�c

s + c0�c

(N−1)/2∏

k=1

Bk�
2
c

s2 + bk�cs + ck�2
c

= B0�c

s + c0�c

B1�
2
c

s2 + b1�cs + c1�2
c

YN = 1

2

⎧
⎨

⎩

[(
1

ε2
+ 1

)1/2

+ 1

ε

]1/N

−
[(

1

ε2
+ 1

)1/2

+ 1

ε

]−(1/N )
⎫
⎬

⎭
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= 1

2

⎧
⎨

⎩

[(
1

0.752
+ 1

)1/2

+ 1

0.75

]1/3
−
[(

1

0.752
+ 1

)1/2

+ 1

0.75

]−(1/3)
⎫
⎬

⎭

= 0.7211 − 0.3467 = 0.3744

c0 = YN = 0.3744

ck = Y 2
N + cos2

(2k − 1)π

2N

c1 = Y 2
N + cos2

(π

6

)
= 0.37442 + cos2

(π

6

)
= 0.8902

bk = 2YN sin

[
(2k − 1)π

2N

]

b1 = 2 × 0.3744 sin
[π
6

]
= 0.3744

Ha(s) = 0.715B0

(s + 0.3744 × 0.715)
× (0.715)2B1

s2 + 0.3744 × 0.715s + 0.8902 × 0.7152

= 0.3655B0B1

(s + 0.2677)(s2 + 0.2677s + 0.4551)

Ha(s)

∣∣∣∣
s=0

= 1

0.3655B0B1

0.2677 × 0.4551
= 1

3B0B1 = 1

B0B1 = 1

3

B2
0 = 1

3
B0 = 0.577

∴ B0 = B1 = 0.577

Ha(s) = 0.3655 × 0.5772

(s + 0.2677)(s2 + 0.2677s + 0.4551)

= 0.1217

(s + 0.2677)(s2 + 0.2677s + 0.4551)

H(z) = Ha(s)

∣∣∣∣
s= 2(1−z−1)

1+z−1

(Let T = 1 s)

H(z) = 0.1217
(
2(1−z−1)

1+z−1 + 0.2677
)((

2(1−z−1)

1+z−1

)2 + 0.2677 × 2(1−z−1)

1+z−1 + 0.4551

)
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X(z) Y(z)

0.012

0.8792

2

1

1.59130.7639 1

z 1 z 1

z 1

Fig. 3.24 Cascade form realization of H(z) for Example 3.22

= 0.1217(1 + z−1)3
/

(2.2677 − 1.7323z−1)(4 + 4z−2 − 8z−1 + 0.5354

− 0.5354z−2 + 0.4551 + 0.4551z−2 + 0.9102z−1)

= 0.1217(1 + z−1)3

(2.2677 − 1.7323z−1)(4.4551 − 7.089z−1 + 3.9197z−2)

= 0.012(1 + z−1)3

(1 − 0.7639z−1)(1 − 1.5913z−1 + 0.8798z−2)

H(z) = 0.012(1 + z−1)(1 + 2z−1 + z−2)

(1 − 0.7639z−1)(1 − 1.5913z−1 + 0.8792z−2)

The cascade form realization is shown in Fig. 3.24.

Example 3.22
The specifications of the desired lowpass digital filter are:

0.9 ≤ |H(ω)| ≤ 1; 0 ≤ ω < 0.25π

|H(ω)| ≤ 0.24; 0.5π ≤ ω ≤ π

Design Chebyshev digital filter using impulse invariant transformation.

(Anna University, December, 2007)
Solution Given Ap = 0.9 atωp = 0.25π rad/s and As = 0.24 atωs = 0.5π rad/s.

�s

�p
= ωs

ωp
= 0.5π

0.25π
= 2
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ε =
(

1

A2
p

− 1

)1/2

=
(

1

(0.9)2
− 1

)1/2

= 0.484

N ≥
cosh−1

{
1
ε

[
1
A2

s
− 1
]1/2}

cos h−1 �s
�p

≥
cosh−1

{
1

0.484

[
1

0.242 − 1
]1/2}

cos h−12

≥ cosh−1 2.8126

cosh−1 2
N ≥ 2.136

N = 3

Let T = 1 s

�c = ωp/T
[

1
A2

p
− 1
]1/2N

�c = 0.25π
[

1
(0.9)2 − 1

]1/6

�c = 1 rad/s.

The analog transfer function for N is odd is given by

Ha(s) = B0�c

s + c0�c

(N−1)/2∏

k=1

Bk�
2
c

s2 + bk�cs + ck�2
c

= B0�c

s + c0�c
· B1�

2
c

s2 + b1�cs + c1�2
c

YN = 1

2

⎧
⎨

⎩

[(
1

ε2
+ 1

)1/2

+ 1

ε

]1/N

−
[(

1

ε2
+ 1

)1/2

+ 1

ε

]−(1/N )
⎫
⎬

⎭

= 1

2

⎧
⎨

⎩

[(
1

0.4842
+ 1

)1/2

+ 1

0.484

]1/3
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−
[(

1

0.4842
+ 1

)1/2

+ 1

0.484

]−(1/3)
⎫
⎬

⎭

= 1

2

{
1.6338 − 1

1.6338

}

YN = 0.511

c0 = YN = 0.511

ck = Y 2
N + cos2

(2k − 1)π

2N

c1 = 0.5112 + cos2
(π

6

)
= 1.011

bk = 2YN sin

[
(2k − 1)π

2N

]

b1 = 2 × 0.511 sin
[π
6

]
= 0.511

∴ Ha(s) = B0B1

(s + 0.511)(s2 + 0.511s + 1.011)

Ha(s)

∣∣∣∣
s=0

= 1

B0B1

0.511 × 1.011
= 1 (Let B0 = B1)

B2
0 = 1

1.939
B0 = 0.719

∴ B0 = B1 = 0.719

Ha(s) = (0.719)2

(s + 0.511)(s2 + 0.511s + 1.011)

= 0.517

(s + 0.511)(s2 + 0.511s + 1.011)

= A

(s + 0.511)
+ Bs + C

(s2 + 0.511s + 1.011)

A(s2 + 0.511s + 1.011) + (Bs + C)(s + 0.511) = 0.517

Put s = −0.511

A(1.011) = 0.5166; A = 0.511
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Put s = 0

1.01A + 0.51C = 0.517; C = 0

Equating the coefficients of s2 we get

A + B = 0

B = −0.511

A = 0.511, B = −0.511 and C = 0

Ha(s) = 0.511

(s + 0.511)
− 0.511s

(s2 + 0.511s + 1.011)

= 0.511

(s + 0.511)
− 0.511

s + 0.256 − 0.256

(s + 0.256)2 + 0.9722

= 0.511

(s + 0.511)
− 0.511

s + 0.256

(s + 0.256)2 + 0.9722

+ 0.0511 · 0.256

(s + 0.256)2 + 0.9722

= 0.511

(s + 0.511)
− 0.511

s + 0.256

(s + 0.256)2 + 0.9722
+ 0.0511

0.972

× 0.256 · 0.972

(s + 0.256)2 + 0.9722

H(s) = 0.511

(s + 0.511)
− 0.511

s + 0.256

(s + 0.256)2 + 0.9722
+ 0.135

× 0.972

(s + 0.256)2 + 0.972

H(z) = 0.511

1 − e−0.511z−1
− 0.511

1 − e−0.256 cos(0.972)z−1

1 − 2e−0.256(cos 0.972)z−1 + e−2×0.256z−2

+ 0.135
e−0.256 sin(0.972)z−1

1 − 2e−0.256(cos 0.972)z−1 + e−2×0.256z−2

= 0.511

1 − 0.6z−1
+ −0.511 + 0.223z−1

1 − 0.873z−1 + 0.6z−2
+ 0.086z−1

1 − 0.873z−1 + 0.6z−2

= 0.511

1 − 0.6z−1
+ −0.511 + 0.223z−1 + 0.086z−1

1 − 0.873z−1 + 0.6z−2

H(z) = 0.511

1 − 0.6z−1
+ −0.511 + 0.309z−1

1 − 0.873z−1 + 0.6z−2
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Example 3.23
Determine the system lowest-order Chebyshev digital filter that meets the following
specification:

(a) 1 dB ripple in the passband 0 ≤ |ω| ≤ 0.3π .
(b) Atleast 60 dB attenuation in the stopband 0.35π ≤ |ω| ≤ π . Use the bilinear

transformation.

Solution

− 20 log Ap = 1 dB, ωp = 0.3π

− 20 log As = 60 dB, ωs = 0.35π

20 log Ap = −1,

Ap = 0.89125,

20 log As = −60,

As = 0.001

The attenuation constant ε =
(

1

A2
p

− 1

) 1
2

=
(

1

(0.89)2
− 1

) 1
2

= 0.5123

�s

�p
= tan

(
ωs
2

)

tan
(ωp

2

) = tan
(
0.35π

2

)

tan
(
0.3π

2

) = 0.6128

0.5045

= 1.203

N ≥
cosh−1

{
1
ε

[
1
A2

s
− 1
] 1

2

}

cosh−1 �s
�p

≥
cosh−1

{
1

0.5123

[
1

(0.001)2 − 1
] 1

2

}

cosh−1(1.203)

≥ cosh−1(1951.98)

cosh−1(1.203)

≥ 8.2697

0.6265
N ≥ 13.1935

N = 14
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Example 3.24
Design a Chebyshev filter with a maximum passband attenuation of 2.5 dB at �p =
20 rad/s and the stopband attenuation of �s = 50 rad/s.

(Anna University, May, 2007)
Solution Given

−20 log Ap = 2.5, �p = 20 rad/s

Ap = 0.749,

Ap ≈ 0.75

−20 log As = 30, �s = 50 rad/s

As = 0.0316

The attenuation constant ε =
(

1

A2
p

− 1

) 1
2

=
(

1

(0.75)2
− 1

) 1
2

= 0.8819

�s

�p
= 50

20
= 2.5

N ≥
cosh−1

{
1
ε

[
1
A2

s
− 1
] 1

2

}

cosh−1
(

�s
�p

)

≥
cosh−1

{
1

0.8819

[
1

(0.0316)2 − 1
] 1

2

}

cosh−1(2.5)

≥ cosh−1(35.8654)

cosh−1(2.5)

≥ 4.2727

1.5667
≥ 2.72

N = 3

The analog cutoff frequency

�c ≈ �p = 20 rad/s
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For N is odd

Ha(s) = B0�c

s + c0�c

N−1
2∏

k=1

Bk�2
c

s2 + bk�cs + ck�2
c

= B0 × 20

s + (c0 × 20)

3−1
2∏

k=1

Bk(20)2

s2 + bk20s + ck(20)2

= 20B0

s + 20c0
× 20B1

s2 + b120s + (20)2c1

bk = 2YN sin

(
(2k − 1)π

2N

)

YN = 1

2

⎧
⎪⎨

⎪⎩

[(
1

ε2
+ 1

) 1
2 + 1

ε

] 1
N

−
[(

1

ε2
+ 1

) 1
2 + 1

ε

]−
(

1
N

)⎫
⎪⎬

⎪⎭

= 1

2

⎧
⎪⎨

⎪⎩

[(
1

(0.8819)2
+ 1

) 1
2 + 1

0.8819

] 1
3

−
[(

1

(0.8819)2
+ 1

) 1
2 + 1

0.8819

]− 1
3

⎫
⎪⎬

⎪⎭

= 1

2

{
[1.51187 + 1.134] 13 − [1.51187 + 1.134]− 1

3

}

= 1

2
{1.3831 − 0.723}

YN = 0.33

b1 = 2YN sin

(
(2 − 1)π

2 × 3

)

= 2 × 0.33 sin
[π
6

]

b1 = 0.33

c0 = YN = 0.33

ck = Y 2
n + cos2

(
(2k − 1)π

2N

)

c1 = (0.33)2 + cos2
[

(2 − 1)π

2 × 3

]

= (0.33)2 + cos2
[π
6

]

= (0.33)2 + 0.75

c1 = 0.8589

Ha(s) = 20B0

s + (20 × 0.33)
× 202B1

s2 + (0.33)(20)s + ((20)2 × 0.8589)
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Ha(s) = 20B0

s + 6.6
× 202B1

s2 + 6.6 s + 343.56

For N = odd, Bk can be calculated from

Ha(s)

∣∣∣∣
s=0

= 1, [B0 = B1 = B2 · · · BN ]
20B0

6.6
× 202B1

343.56
= 1

8000B2
0

2267.496
= 1

B2
0 = 0.2834

B0 = 0.532

B0 = B1 = 0.532

Ha(s) = 20 × 0.532

s + 6.6
× 202 × 0.532

s2 + 6.6s + 343.56

= 10.64

s + 6.6
· 212.8

s2 + 6.6s + 343.56

Ha(s) = 2265.76

(s + 6.6)(s2 + 6.6s + 343.56)

H(z) = Ha(s)

∣∣∣∣
s= 2

T
(z−1)
(z+1)

, Let T = 1 s

= 2265.76
(
2(z−1)

z+1 + 6.6
) [(

2(z−1)
(z+1)

)2 + 6.6 × 2(z−1)
(z+1) + 343.56

]

= 2265.76(
2(z−1)+6.6(z+1)

(z+1)

) (
4(z−1)2+13.2(z−1)(z+1)+343.56(z+1)2

(z+1)2

)

= 2265.76(z + 1)3

[2(z − 1) + 6.6(z + 1)][4(z2 − 2z + 1) + 13.2(z2 − 1) + 343.56(z2 + 2z + 1)]
= 2265.76(z + 1)2

[8.6z + 4.6][4z2 − 8z + 2 + 13.2z2 − 13.2 + 343.56z2 + 687.12z + 343.56]

H(z) = 2265.76(z + 1)2

(8.6z + 4.6)[360.76z2 + 687.72z + 332.36]
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Example 3.25
Design a digital Chebyshev filter to meet the constraints

1√
2

≤ |H(ω)| ≤ 1; 0 ≤ ω ≤ 0.2π

0 ≤ |H(ω)| ≤ 0.1; 0.5π ≤ ω ≤ π

by using bilinear transformation. Assume T = 1 s

(Anna University)
Solution Given

Ap = 0.707 at ωp = 0.2π rad/s

As = 0.2 at ωs = 0.5π rad/s

The attenuation constant ε =
(

1

A2
p

− 1

) 1
2

= (2 − 1)
1
2

ε = 1

�s

�p
= tan

(
ωs
2

)

tan
(ωp

2

) = tan
(
0.5π
2

)

tan 0.2π
2

= 1

0.3249

�s

�p
= 3.0378

n ≥
cosh−1

{
1
ε

[
1
A2

s
− 1
] 1

2

}

cosh−1 �s
�p

≥
cosh−1

{
1
1

[
1

0.22 − 1
] 1

2

}

cosh−1(3.078)

≥ cosh−1(4.899)

cosh−1(3.078)

≥ 2.2716

1.7899
≥ 1.269

N = 2
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Given T = 1 s. The analog cutoff frequency

�c = 2

T

tan
(ωp

2

)

[
1

A2
p
− 1
] 1

2 N

�c = 2
tan
(
0.2π
2

)

[
1

(0.707)2 − 1
] 1

4

= 0.6498

1
= 0.6498 rad/s

For N is even

Ha(s) =
N
2∏

k=1

Bk�
2
c

s2 + bk�cs + ck�2
c

= B1�
2
c

s2 + b1�cs + c1�2
c

YN = 1

2

⎧
⎨

⎩

[(
1

ε2
+ 1

) 1
2

+ 1

ε

] 1
N

−
[(

1

ε2
+ 1

) 1
2

+ 1

ε

]−( 1
N )
⎫
⎬

⎭

= 1

2

⎧
⎨

⎩

[(
1

12
+ 1

) 1
2

+ 1

1

] 1
2

−
[(

1

12
+ 1

) 1
2

+ 1

1

]− 1
2

⎫
⎬

⎭

= 1

2

{
[4.4142 + 1] 1

2 − [4.4142 + 1]− 1
2

}

= 1

2
{1.554 − 0.6435}

YN = 0.45525

bk = 2Yn sin

(
(2k − 1)π

2N

)

b1 = 2YN sin

(
(2 − 1)π

4

)

= 2YN sin
(π

4

)

= 2 × 0.45525 sin
(π

4

)

b1 = 0.6438

ck = Y 2
N + cos2

(
(2k − 1)π

2N

)
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c1 = (0.45525)2 + cos2
(π

4

)

= (0.45525)2 + 0.5

c1 = 0.707

Ha(s) = B1�
2
c

s2 + 0.6438�cs + 0.707�2
c

= B1(0.6498)2

s2 + 0.6438 × 0.6498s + 0.707(0.6498)2

Ha(s)
B10.4222

s2 + 0.4183s + 0.2985

For N is even.

Ha(s)

∣∣∣∣
s=0

= 1

(1 + ε2)
1
2

B1 × 0.4222

0.2985
= 1

(1 + 12)
1
2

0.4222B1

0.2985
= 1

B1 = 0.2985

0.4222
B1 = 0.707

Ha(s) = 0.707 × 0.4222

s2 + 0.4183s + 0.2985

Ha(s) = 0.2985

s2 + 0.4183 s + 0.2985

Using bilinear transformation we get

H(z) = Ha(s)

∣∣∣∣
s= 2

T
z−1
z+1

, T = 1 s

= 0.2985
(
2 Z−1

Z+1

)2 + 0.4183
(

s (Z−1)
(Z+1)

)
2 + 0.2985

= 0.2985(z + 1)2

4(z − 1)2 + 0.8366(z − 1)(z + 1) + 0.2985(z + 1)2

= 0.2985(z2 + 2z + 1)

4(z2 − 2z + 1) + 0.8366(z2 − 1) + 0.2985(z2 + 2z + 1)

= 0.2985(z2 + 2z + 1)

4z2 − 8z + 4 + 0.8366z2 − 0.8366 + 0.2985z2 + 0.597z + 0.2985
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= 0.2985(z2 + 2z + 1)

5.1351z2 − 7.403z + 3.4619

H(z) = 0.2985(z−2 + 2z−1 + 1)

3.4619z−2 − 7.403z−1 + 5.1351

= 0.2985(z−2 + 2z−1 + 1)

5.1351(0.674z−2 − 1.4416z−1 + 1)

H(z) = 0.0581(z−2 + 2z−1 + 1)

0.674z−2 − 1.4416z−1 + 1

Example 3.26
The transfer function of an analog LPF is

H(z) = 1

s + 1

with a bandwidth of 1 rad/s. Use bilinear transform to design a digital filter with a
bandwidth 20Hz at a sampling frequency 600Hz.

(Anna University, December, 2005)
Solution Given

H(z) = 1

s + 1
, �p = 1 rad/s

f ′
p = 20Hz

�′
p = 2π f ′

p

= 2π × 20

= 125.66 rad/s.

Analog lowpass filter to lowpass filter transformation from Eq. (3.66) obtains by

replacing s → �p

�′
p

· s

H(s) = 1
s

125.66 + 1

= 125.66

s + 125.66

The sampling frequency is given as fs = 60H z
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T = 1

fs

= 1

60
= 0.0167 s.

Using bilinear transformation we get,

H(z) = H(s)

∣∣∣∣
s= 2

T
(1−z−1)

1+z−1

H(z) = 125.66

s + 125.66

∣∣∣∣
s

= 2

0.0167

1 − z−1

1 + z−1

= 125.66

120 (1−z−1)

(1+z−1)
+ 125.66

= 125.66(1 + z−1)

120(1 − z−1) + 125.66(1 + z−1)

= 125.66(1 + z−1)

120 − 120z−1 + 125.66 + 125.66z−1

= 125.66(1 + z−1)

245.66 + 5.66z−1

= 125.66(1 + z−1)

245.66(1 + 0.023z−1)

H(z) = 0.512(1 + z−1)

1 + 0.023z−1

3.11 IIR Filter Design by Approximation of Derivatives

One way of converting an analog filter into a digital filter is to approximate the
differential equation governing the analog filter by an equivalent difference equation.
Thus, the first-order differential equation can be approximated andwritten as follows.

dy(t)

dt

∣∣∣∣
t=nT

= y(nT ) − y(nT − T )

T

= y(n) − y(n − 1)

T
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where T is the sampling interval. The above equation can be written with analog sys-
tem function as H(s) = s and digital system function H(z) = (1−z−1)

T . The frequency
domain equivalence is therefore written as

s = (1 − z−1)

T
(3.74)

Thus, the system function for the digital IIR filter is written as

H(z) = Ha(s)

∣∣∣∣
s=
(

1−z−1
T

). (3.75)

The stable analog filter when converted into digital filter should also be stable. The
mapping of the LHP in the s-plane to z-plane has to be investigated. Equation (3.74)
can be written as

z = 1

(1 − sT )

Substituting s = j� in the above equation we have

z = 1

1 + j�T

= 1 + j�T

(1 + j�T )(1 + j�T )

= 1

(1 + �2T 2)
+ j�T

(1 + �2T 2)

Let

z = x + j y

x = 1

(1 + �2T 2)
and y = �T

(1 + �2T 2)

Consider the following equation

(
x − 1

2

)2

+ y2 =
[

1

(1 + �2T 2)
− 1

2

]2
+ �2T 2

(1 + �2T 2)

=
(
1

2

)2

.
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This is the equation of a circle in the z-plane with center at z = 1
2 and radius

1
2 . Thus

the mapping takes the points in LHP of the s-plane (for stable analog filter) into
corresponding points inside this circle in the z-plane as shown in Fig. 3.25.

From Fig. 3.25 it is evident that the mapping s = (1−z−1)

T takes LHP in the s-plane
into points inside the circle of radius 1

2 and at center z = 1
2 in the z-plane. Thus, the

location of the poles of the digital filter so designed are confined to a small frequency
range which means it is suitable for the design of lowpass and bandpass filters of
small resonant frequencies and not suitable for highpass digital filter design. The
method is illustrated by the following numerical example.

Example 3.27
Convert the analog bandpass filter with the system function

Ha(s) = 1

(s + 0.1)2 + 5
; T = 0.1 s

into a digital IIR filter using the backward difference for the derivative.

Solution

Ha(s) = 1

(s + 0.1)2 + 5

Substituting

s = (1 + z−1)

T
= (10 + 10z−1)

H(z) = 1

(10.10 + 10z−1)2 + 5

H(z) = 9.34 × 10−3

1 − 1.8877z−1 + 0.934z−2

The poles are at

z = 0.9438 ± j0.209

= 0.9667∠ ± 12.5◦

The poles are within the circle at center z = 1
2 and radius 1

2 . Hence, the digital filter
so designed is stable.
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3.12 Frequency Response from Transfer Function H(z)

The frequency response of a discrete time system can be determined from the transfer
function H(z). Several methods are available to achieve this. The geometric method
of evaluation of frequency response is described here.

Consider the transfer function H(z) expressed in terms of poles and zeros are
given below:

H(z) = K (z − z1)(z − z2) · · · (z − zn)

(z − p1)(z − p2) · · · (z − pn)
=

N∏

i=1

k(z − zi )

(z − pi )

The frequency response is obtained by substituting z = e jωT where 0 ≤ ω ≤ ωs/2;
ωs is sampling frequency; and T is sampling period.

The frequency response of H(z) written as H(e jωT ) is given below:

H(e jωT ) =
∏N

i=1 k(e jωT − zi )∏N
i=1(e

jωT − pi )

For simplicity consider a system function H(z) having two poles and two zeros. The
pole–zero diagram is shown in Fig. 3.26. The zeros are located at z1 and −z2, and
the poles are located at p1 and p2. Consider any point P on the unit circle. Draw
a radial line from the origin to the point P . The line O P makes angle θ from the
reference axis. θ and ωT are related as follows.

θ = ω1T

Knowing θ and the sampling period T , the frequencyω1 at point P can be calculated.
Draw radial lines from poles and zeros of H(z) to the point P . Then

H(e jωT ) = K
A∠θz1 B∠θz2

C∠θp1 D∠θp2

Knowing K , A, B, C and D, |H(e jωT )| can be estimated. Similarly, knowing θz1 ,
θz2 , θp1 and θp2 ,∠H(e jωT ) can be estimated atω = ω1. Bymoving the point P on the
unit circle, at ω = ω2, the magnitude and phase of H(e jωT ) can be estimated. Since
the frequency response gets repeated for every ω = ωs

2 , it is necessary to estimate
the magnitude and phase of H(e jωT ) for the frequency interval 0 ≤ ω ≤ ωs

2 . The
following example illustrates the above procedure.
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z-plane

Re(z)

Unit circle

Im(z)

j

j

z21 1

z2 p2
p1 z1

p2 p1 z1

P

ACD

O

1T

B

Fig. 3.26 Pole–zero diagram of H(z)

Example 3.28
Consider the following system function of a certain discrete time system:

H(z) = 0.632z

(z − 1)(z − 0.368)

Draw the frequency response plot. Assume T = 1 s.

Solution
The poles and zeros of H(z) are located in the z-plane as shown in Fig. 3.27,

and a unit circle is drawn. Any point P is chosen on the unit circle, and radial line
from the origin is drawn. From Fig. 3.27 ωT is found and knowing T = 1, ω is
estimated |H(e jωT )| and ∠H(e jωT ) are also estimated at point P . This is repeated
upto ω = π

T = π . The values are tabulated as shown below:
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Re(z)

Unit circle

Im(z)

j

P

j

1 1

T

O 0.368

Fig. 3.27 Pole–zero diagram of Example 3.28

ω 0 π
2 π 3π

2 2π
|H(e jω)| ∞ 0.42 0.231 0.42 π

|H(e jω)| −90◦ −155◦ −180◦ −205◦ −270◦

The frequency response polar plot of the discrete time system is shown in
Fig. 3.28a. The magnitude and phase responses are shown in Figs. 3.28b and 3.28c,
respectively.

3.13 Structure Realization of IIR System

The IIR system can be described by the following difference equation.

y(n) = −
N∑

k=1

ak y(n − k) +
M∑

k=0

bk x(n − k) (3.76)

Taking z-transform on both sides we get,

Y (z) = −
N∑

k=1

ak z−kY (z) +
M∑

k=0

bk z−k X (z) (3.77)
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Re

H(e j ) plot

H(e j ) plane

Im

0

2

0

0.231

2

0.231

H(e j )

2

90°

180°

270°

360°

H(e j )

b(  )

(  )c

(  )a

Fig. 3.28 a Frequency response polar plot of discrete system. b Magnitude response. c Phase
response

Y (z) +
N∑

k=1

ak z−kY (z) =
M∑

k=0

bk z−k X (z)

Y (z)

[
1 +

N∑

k=1

ak z−k

]
= X (z)

M∑

k=0

bk z−k

Y (z)

X (z)
= H(z) =

∑M
k=0 bk z−k

1 +∑N
k=1 ak z−k

(3.78)

H(z) = b0 + b1z−1 + b2z−2 + · · · + bM z−M

1 + a1z−1 + a2z−2 + · · · + aN z−N
(3.79)

where H(z) → transfer function of IIR system.
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The different types of structures for realizing IIR systems are:

(i) Direct form-I structure.
(ii) Direct form-II structure.
(iii) Cascade form structure.
(iv) Parallel form structure.
(v) Transposed direct form realization.
(vi) Lattice structure form.

3.13.1 Direct Form-I Structure

Consider the following difference equation of an IIR system.

y(n) = −
N∑

k=1

ak y(n − k) +
M∑

k=0

bk x(n − k)

y(n) = −a1y(n − 1) − a2y(n − 2) − · · · − aN y(n − N )

+ b0x(n) + b1x(n − 1) + b2x(n − 2) + · · · + +bM x(n − M) (3.80)

Taking z-transform, we get

Y (z) = −a1z−1Y (z) − a2z−2Y (z) − · · · − aN z−N Y (z)

+ b0X (z) + b1z−1X (z) + b2z−2X (z) + · · · + +bM z−M X (z) (3.81)

Equation (3.81) is represented in Fig. 3.29.
This structure uses different delays (z−1) for input and output. So more memory

is required for realizing.

3.13.2 Direct Form-II Structure

Direct form-II structure uses less number of delays compared to Direct form-I. Con-
sider the IIR difference Eq. (3.80)

y(n) = −
N∑

k=1

ak y(n − k) +
M∑

k=0

bk x(n − k)

y(n) = −a1y(n − 1) − a2y(n − 2) − · · · − aN y(n − N )

+ b0x(n) + b1x(n − 1) + b2x(n − 2) + · · · + bM x(n − M)
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X(z)

(x(n)) (y(n))

(x(n 1))
z 1X(z)

(y(n 1))
z 1Y(z)

(x(n 2))
z 2X(z)

(y(n 2))
z 2Y(z)

(x(n (M 1)))
z (M 1)X(z)

(y(n (N 1)))
z (N 1)Y(z)

(x(n M))
z Mx(z)

(y(n N))
z NY(z)

Y(z)
H1 H2

z 1

z 1

z 1

z 1

b0

b1

b2

bM-1

bM

z 1

z 1

z 1

z 1

a2

a1

aN

aN 1

aN-1

Fig. 3.29 Direct form-I realization

Taking z-transform on both sides we get,

Y (z) = −a1z−1Y (z) − a2z−2Y (z) − · · · − aN z−N Y (z)

+ b0X (z) + b1z−1X (z) + b2z−2X (z) + · · · + bM z−M X (z)

Y (z) + a1z−1Y (z) + a2z−2Y (z) + · · · + aN z−N Y (z)

= b0X (z) + b1X (z)z−1 + b2z−2X (z) + · · · + bM z−M X (z)

Y (z)[1 + a1z−1 + a2z−2 + · · · + aN z−N ]
= X (z)[b0 + b1z−1 + b2z−2 + · · · + bM z−M ]

Y (z)

X (z)
= b0 + b1z−1 + b2z−2 + · · · + bM z−M

1 + a1z−1 + a2z−2 + · · · + aN z−N
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X(z)

W(z)

Y(z)

z 1W(z)

z 2W(z)

z (N 1)W(z)

z NW(z)

z 1

z 1

z 1

z 1

b0

b1

b2

bM-1

bM

a1

a2

aN 1

aN

Fig. 3.30 Direct form-II structure of IIR system for N = M

Let

Y (z)

X (z)
= W (z)

X (z)

Y (z)

W (z)
where

W (z)

X (z)
= 1

1 + a1z−1 + · · · + +aN z−N
(3.82)

and
Y (z)

W (z)
= b0 + b1z−1 + b2z−2 + · · · + bM z−M (3.83)

Cross-multiplying Eq. (3.82) we get,

W (z) + a1z−1W (z) + a2z−2W (z) + · · · + aN z−N W (z) = X (z)

∴ W (z) = X (z) − a1z−1W (z) − a2z−2W (z) − · · · − aN z−N W (z) (3.84)

Cross-multiplying Eq. (3.84)

Y (z) = b0W (z) + b1z−1W (z) + b2z−2W (z) + · · · + bM z−M W (z) (3.85)

Equations (3.84) and (3.85) represent IIR system in z-domain. It can be realized by
direct form-II structure as shown in Fig. 3.30.
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x(n)

(after 
interchanging
H1  & H2 )

Output to delay
elements in
H1  & H2  are
same. So we
can combine
the delay
elements.

y(n)

H1H2

z 1

z 1

z 1

b0

b1

b2

bM

z 1

z 1

z 1

a2

a1

aN

Fig. 3.31 Conversion of Direct form-I to Direct form-II structure.

3.13.2.1 Conversion of DF-I Structure to DF-II Structure

DF-I can be converted to DF-II by interchanging the order of cascading of two
systems H1 and H2. It can be interchanged by linearity property.

Now we combine the delay elements to get a single system, and the resultant
structure will be DF-II structure as shown in Fig. 3.31.

3.13.3 Cascade Form Realization

The transfer function H(z) can be expressed as a product of a number of second-order
or first-order sections.

H(z) = Y (z)

X (z)
=

k∏

i=1

Hi (z) (3.86)

where

Hi (z) = C0i + C1i z−1 + C2i z−2

d0i + d1i z−1 + d2i z−2
(second-order section) (3.87)
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X (z)−−−−−−→ H1(z) −−−−−−→ H2(z) −−−−−−→Y (z)

Fig. 3.32 Cascade realization of IIR system

or

Hi (z) = C0i + C1i z−1

d0i + d1i z−1
(first-order section) (3.88)

The individual second-order or first-order sections can be realized either in direct
form-I or DF-II structures. The overall system is obtained by cascading the individual
sections.

The cascade form is shown in Fig. 3.32. The difficulty in realizing the system in
cascade form is:

(i) Decision of pairing poles and zeros.
(ii) Deciding the order of cascading the first- and second-order sections.
(iii) Scaring multipliers should be provided between individual sections to prevent

the filter variable from becoming too large or too small.

3.13.4 Parallel Form Realization

By applying partial fraction to H(z), the system can be expressed as sum of first-
and second-order sections as given below.

H(z) = Y (z)

X (z)
= C +

k∑

i=1

Hi (z) (3.89)

where

Hi (z) = C0i + C1i z−1

d0i + d1i z−1 + d2i z−2
(second-order section) (3.90)

or

Hi (z) = C0i

d0i + d1i z−1
(first-order section) (3.91)

The individual first- and second-order sections can be realized either in DF-I or in
DF-II structure. Then the overall system is obtained by connecting the individual
sections in parallel as shown in Fig. 3.33.
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Fig. 3.33 Parallel form
realization of IIR filter

X(z) Y(z)

Hk(z)

H3(z)

H2(z)

H1(z)

C

3.13.5 Transposed Direct Form Realization

3.13.5.1 Signal Flow Graph

It is a graphical representation of the relationship between the variables of a set of
linear difference equations. The basic elements of signal flow graph are branches
and nodes.
Nodes: Represent system variables, which is equal to the sum of incoming signals
from all branches connecting to the node. Nodes having two types:

Source Nodes → have only outgoing branches.
Sink Nodes → have only incoming branches.

Arrow head shows the direction of branch. The branch gain is indicated next to arrow
head. The delay is indicated by the branch transmittance z−1.

When branch transmittance is unity it is unlabelled. Consider the block diagram
of first-order digital filter as shown in Fig. 3.34.

The signal flow graph is shown in Fig. 3.35.
Here we have 4 nodes out of this 2 nodes are running nodes, while other 2 are

branching points. The delay is indicated by branch transmittance z−1. Branch trans-
mittance is indicated next to arrow head. The signal flow graph of first-order filter is
shown in Fig. 3.35.
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x(n) y(n)
b0

b1a

z 1

Fig. 3.34 First-order system

x(n) y(n)

Sink node

Source node

1 2 3

4

z 1

b0

b1a

Fig. 3.35 Signal flow graph of first-order system

3.13.6 Transposition Theorem and Transposed Structure

The transpose of a structure is defined by the following operations:

(i) Reverse the direction of all branches in the signal flow graph.
(ii) Interchange the inputs and outputs.
(iii) Reverse the roles of all nodes in the flow graph.
(vi) Summing points become branching points.
(v) Branching points become running points.

According to transportation theorem, the system transfer function remains unchanged
by transposition.

Example 3.29
Realize the second-order digital filter

y(n) = 2n cosω0y(n − 1) − r2y(n − 2) + x(n) − r cosω0x(n − 1).
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x(n)

(n)

y(n)

r cos 0

r2

2r cos 0

z 1 z 1

z 1

Fig. 3.36 Direct form-I realization for Example 3.29

Solution Let

x(n) − r cos(ω0)x(n − 1) = ω(n)

y(n) = 2r cosω0y(n − 1) − r2y(n − 2) + ω(n)

The realization is shown in Fig. 3.36.

Example 3.30
Obtain the DF-I realization for the system described by difference equation

y(n) = 0.5y(n − 1) − 0.25y(n − 2) + x(n) + 0.4x(n − 1)

Solution Let

x(n) + 0.4x(n − 1) = ω(n)

y(n) = 0.5y(n − 1) − 0.25y(n − 2) + ω(n)

The direct form-I is shown in Fig. 3.37.

Example 3.31
Realize the second-order system y(n) = 2r cosω0y(n − 1) − r2y(n − 2) + x(n) −
r cos(ω0)x(n − 1) in DF-II.
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X(z) W(z) Y(z)

0.4 0.5

0.25

z 1 z 1

z 1

Fig. 3.37 Direct form-I realization for Example 3.30

X(z) Y(z)

r cos 0

r2

2r cos 0

z 1

z 1

Fig. 3.38 Direct form-II realization for Example 3.31

Solution

y(n) = 2r cosω0y(n − 1) − r2y(n − 2) + x(n) − r cos(ω0)x(n − 1)

Y (z)(1 − 2r cosω0z−1 + r2z−2) = X (z)(1 − r cosω0z−1)

Y (z)

X (z)
= 1 − r cosω0z−1

1 − 2r cosω0z−1 + r2z−2

The direct form-II realization is shown in Fig. 3.38.

Example 3.32
Determine the DF-II realization for the following system y(n) = −0.1y(n − 1) +
0.72y(n − 2) + 0.7x(n) − 0.252x(n − 2).
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X(z) Y(z)

0.1

0.2520.72

0.7

z 1

z 1

Fig. 3.39 Direct form-II realization for Example 3.32

Solution

Y (z)(1 + 0.1z−1 − 0.72z−2) = X (z)(0.7 − 0.252z−2)

Y (z)

X (z)
= 0.7 − 0.252z−2

1 + 0.1z−1 − 0.72z−2

Direct form-II realization is shown in Fig. 3.39.

Example 3.33
Realize the system with difference equation

y(n) = 3

4
y(n − 1) − 1

8
y(n − 2) + 1

3
x(n − 1) + x(n)

in cascade form.

Solution

Y (z)

(
1 − 3

4
z−1 + 1

8
z−2

)
= X (z)

(
1 + 1

3
z−1

)

H(z) = Y (z)

X (z)
= 1 + 1

3 z−1

1 − 3
4 z−1 + 1

8 z−2

= 1 + 1
3 z−1

(
1 − 1

2 z−1
) (
1 − 1

4 z−1
) = H1(z) · H2(z)
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Y(z)Y1(z)X(z)

1
2

1
4

1
3

z 1 z 1

Fig. 3.40 Cascade form realization for Example 3.33

H1(z) = 1 + 1
3 z−1

1 − 1
2 z−2

, H2(z) = 1

1 − 1
4 z−1

The cascade form realization is shown in Fig. 3.40.

Example 3.34
Obtain the DF-I, DF-II, cascade and parallel form realization for the system.

y(n) = −0.1y(n − 1) + 0.2y(n − 2) + 3x(n) + 3.6x(n − 1) + 0.6x(n − 2)

Solution

y(n) = −0.1y(n − 1) + 0.2y(n − 2) + 3x(n) + 3.6x(n − 1) + 0.6x(n − 2)

Y (z)[1 + 0.1z−1 − 0.2z−2] = X (z)(3 + 3.6z−1 + 0.6z−2)

H(z) = Y (z)

X (z)
= 3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2
=
(
3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2

)

Cascade Form

Y (z)

X (z)
= 3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2

= (3 + 0.6z−1)(1 + z−1)

(1 + 0.5z−1)(1 − 0.4z−1)

Let

H1(z) = 3 + 0.6z−1

1 + 0.5z−1
, H2(z) = 1 + z−1

1 − 0.4z−1
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Direct form-I and direct form-II are shown in Fig. 3.41 a, b respectively.

X(z) Y(z)

3.6

33

(a)

DF-I

0.2

0.1

z 1

0.6

z 1

z 1

z 1

3.6

3

(b)

DF-II

Y(z)X(z)

0.1

0.2 0.6

z 1

z 1

Fig. 3.41 a, b Direct form-I and direct form-II realization for Example 3.34

Parallel Form

H(z) = 3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2

= −3 + 3.9z−1 + 6

1 + 0.1z−1 − 0.2z−2

Consider

3.9z−1 + 6

1 + 0.1z−1 − 0.2z−2
= 3.9z−1 + 6

(1 − 0.4z−1)(1 + 0.5z−1)

= A

1 − 0.4z−1
+ B

1 + 0.5z−1
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⇒ A = (1 − 0.4z−1) · 3.9z−1 + 6

(1 − 0.4z−1)(1 + 0.5z−1)

∣∣∣∣
z−1= 1

0.4

= 7

⇒ B = (1 − 0.5z−1) · 3.9z−1 + 6

(1 − 0.4z−1)(1 + 0.5z−1)

∣∣∣∣
z−1= −1

0.5

= −1

∴ H(z) = −3 + 7

1 − 0.4z−1
− 1

1 + 0.5z−1

= C + H1(z) + H2(z)

Cascade form realization of Example 3.34 is shown in Fig. 3.42.

Y(z)X(z)

0.4

13

10.5 0.6

z 1 z 1

Fig. 3.42 Cascade form realization for Example 3.34

Parallel form realization of Example 3.34 is shown in Fig. 3.43.

Y(z)

X(z)

7

0.4

0.5

1

3

z 1

z 1

Fig. 3.43 Parallel form realization for Example 3.34
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Cascade form realization for Example 3.35 is shown in Fig. 3.44.

X(z)

H1(z) H2(z)

1

z 1

z 1

Y(z)

z 1

z 1

1
2

1
4

1
4

1 1
2

3
2

3
2

Fig. 3.44 Cascade form realization for Example 3.35

Example 3.35
Obtain the cascade realization for the following system.

H(z) = (1 + 3
2 z−1 + 1

2 z−2)(1 − 3
2 z−1 + z−2)

(1 + z−1 + 1
4 z−2)(1 + 1

4 z−1 + 1
2 z−2)

Solution Let H(z) = H1(z)H2(z)

H1(z) = 1 + 3
2 z−1 + 1

2 z−2

1 + z−1 + 1
4 z−2

, H2(z) = 1 − 3
2 z−1 + z−2

1 + 1
4 z−1 + 1

2 z−2
,

Example 3.36
Obtain the cascade realization of the system

H(z) = (1 − 1
2 z−1)(1 − 1

2 z−1 + 1
4 z−2)

(1 + 1
4 z−1)(1 + z−1 + 1

2 z−2)(1 − 1
4 z−1 + 1

2 z−2)

Solution Let

H(z) = H1(z)H2(z)H3(z)
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Cascade form realization for Example 3.36 is shown in Fig. 3.45.

X(z)

1
4

1
4

1
4

1
2

1
2

1
2

1
2

z 1

Y(z)

1

z 1

z 1

z 1

z 1

H1(z) H2(z) H3(z)

Fig. 3.45 Cascade form realization for Example 3.36

where

H1(z) = 1 − 1
2 z−1

1 + 1
4 z−1

; H2(z) = 1 − 1
2 z−1 + 1

4 z−2

1 + z−1 + 1
2 z−2

; H3(z) = 1

1 − 1
4 z−1 + 1

2 z−2

Example 3.37
Obtain the direct form-I, direct form-II, cascade and parallel form realization of LTI
system governed by the equation

y(n) = −3

8
y(n − 1) + 3

32
y(n − 2) + 1

64
y(n − 3) + x(n) + 3x(n − 1) + 2x(n − 2)

(Anna University, April, 2004)
Solution Direct form-I

y(n) = −3

8
y(n − 1) + 3

32
y(n − 2) + 1

64
y(n − 3) + x(n) + 3x(n − 1) + 2x(n − 2)

Y (z) = −3

8
z−1Y (z) + 3

32
z−2Y (z) + 1

64
z−3Y (z) + X (z) + 3z−1X (z) + 2z−2X (z)

Direct form-II

H(z) = Y (z)

X (z)
= Y (z)

W (z)
× W (z)

X (z)
= 1 + 3z−1 + 2z−2

1 + 3
8 z−1 − 3

32 z−2 − 1
64 z−3
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Direct form-I realization for Example 3.37 is shown in Fig. 3.46.

X(z)

W(z)

Y(z)

3

2

3
8

3
32

1
64

z 1 z 1

z 1

z 1

z 1

Fig. 3.46 Direct form-I realization of H(z) for Example 3.37

where

W (z)

X (z)
= 1

1 + 3
8 z−1 − 3

32 z−2 − 1
64 z−3

Y (z)

W (z)
= 1 + 3z−1 + 2z−2

X (z) = W (z)

(
1 + 3

8
z−1 − 3

32
z−2 − 1

64
z−3

)

W (z) = X (z) − 3

8
z−1W (z) + 3

32
z−2W (z) + 1

64
z−3W (z)

Y (z) = W (z) + 3z−1W (z) + 2z−2W (z)

Cascade Form Realization

H(z) = 1 + 3z−1 + 2z−2

1 + 3
8 z−1 − 3

32 z−2 − 1
64 z−3

= (1 + z−1)(1 + 2z−1)(
1 + 1

8 z−1
) (
1 + 1

2 z−1
) (
1 − 1

4 z−1
)

H(z) = H1(z)H2(z)H3(z)
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Direct form-II realization for Example 3.37 is shown in Fig. 3.47.

X(z) Y(z)

3
8

3

3

2
32

1
64

z 1

z 1

z 1

Fig. 3.47 Direct form-II realization of H(z) for Example 3.37

Cascade form realization for Example 3.37 is shown in Fig. 3.48.

X(z) Y(z)

1 2
8

1 1
2

1
4

z 1 z 1 z 1

Fig. 3.48 Cascade form realization of H(z) for Example 3.37

where

H1(z) = 1 + z−1

1 + 1
8 z−1

; H2(z) = 1 + 2z−1

1 + 1
2 z−1

; H3(z) = 1

1 − 1
4 z−1

Parallel Form

H(z) = (1 + z−1)(1 + 2z−1)(
1 + 1

8 z−1
) (
1 + 1

2 z−1
) (
1 − 1

4 z−1
)

= A

1 + 1
8 z−1

+ B

1 + 1
2 z−1

+ C

1 − 1
4 z−1
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A = (1 + z−1)(1 + 2z−1)(
1 + 1

2 z−1
) (
1 − 1

4 z−1
)
∣∣∣∣
z−1=−8

= −35

3

B = (1 + z−1)(1 + 2z−1)(
1 + 1

8 z−1
) (
1 − 1

4 z−1
)
∣∣∣∣
z−1=−2

= 8

3

C = (1 + z−1)(1 + 2z−1)(
1 + 1

8 z−1
) (
1 + 1

2 z−1
)
∣∣∣∣
z−1=4

= 10

H(z) = −35

3

(
1

1 + 1
8 z−1

)
+ 8

3

(
1

1 + 1
2 z−1

)
+ 10

(
1

1 − 1
4 z−1

)

H(z) = H1(z) + H2(z) + H3(z)

Parallel form realization for Example 3.37 is shown in Fig. 3.49.

X(z) Y(z)

35
3

1
8

1
2

1
4

8
3

10

z 1

z 1

z 1

Fig. 3.49 Parallel form realization of H(z) for Example 3.37

Example 3.38
Realize the given system in cascade and parallel form

H(z) = 1 + 1
2 z−1

(
1 − z−1 + 1

4 z−2
) (
1 − z−1 + 1

2 z−2
)
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Cascade form realization for Example 3.38 is shown in Fig. 3.50.

X(z) Y(z)

11 1
2

1
2

1
4

z 1 z 1

z 1 z 1

Fig. 3.50 Cascade form realization of H(z) for Example 3.38

Solution Cascade Form Realization

H(z) = 1 + 1
2 z−1

(
1 − z−1 + 1

4 z−2
) (
1 − z−1 + 1

2 z−2
)

= 1

1 − z−1 + 1
4 z−2

· 1 + 1
2 z−1

1 − z−1 + 1
2 z−2

H(z) = H1(z)H2(z)

where

H1(z) = 1

1 + z−1 + 1
4 z−2

; H2(z) = 1 + 1
2 z−1

1 − z−1 + 1
2 z−2

Parallel Form Realization

H(z) = 1 + 1
2 z−1

(
1 − z−1 + 1

4 z−2
) (
1 − z−1 + 1

2 z−2
)

= z
(
z3 + 1

2 z2
)

(
z2 − z + 1

4

) (
z2 − z + 1

2

)

H(z)

z
= Az + B

z2 − z + 1
4

+ Cz + D

z2 − z + 1
2

= 5z − 3
2

z2 − z + 1
4

+ −4z + 3

z2 − z + 1
2
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H(z) = 5 − 3
2 z−1

1 − z−1 + 1
4 z−2

+ −4 + 3z−1

1 − z−1 + 1
4 z−2

= H1(z)H2(z)

H(z) = 5 − 3
2 z−1

1 − z2 + 1
4 z−2

+ −4 + 3z−1

1 − z−1 + 1
2 z−2

= 5
(
1 − 3

10 z−1
)

1 − z−1 + 1
4 z−2

+ −4
(
1 − 3

4 z−1
)

1 − z−1 + 1
2 z−2

Parallel form realization for Example 3.38 is shown in Fig. 3.51.

X(z)

Y(z)

3
10

1
4

4

5

1

3
4

1
2

1

z 1

z 1

z 1

z 1

Fig. 3.51 Parallel form realization of H(z) for Example 3.38
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Cascade form realization for Example 3.39 is shown in Fig. 3.52.

X(z) Y(z)

2

1

11

1
2

1
4

z 1 z 1

z 1

Fig. 3.52 Cascade form realization of H(z) for Example 3.39

Example 3.39
The transfer function of a system is given by

H(z) = (1 + z−1)3(
1 − 1

4 z−1
) (
1 − z−1 + 1

2 z−2
)

Realize the system in cascade and parallel structures.

Solution Cascade Form Realization

H(z) = 1 + z−1

1 − 1
4 z−1

·
(
1 + z−1

)2

1 − z−1 + 1
2 z−2

= 1 + z−1

1 − 1
4 z−1

· 1 + 2z−1 + z−2

1 − z−1 + 1
2 z−2

H(z) = H1(z)H2(z)

where

H1(z) = 1 + z−1

1 − 1
4 z−1

and H2(z) = 1 + 2z−1 + z−2

1 − z−1 + 1
2 z−2

Parallel Form

H(z) = (1 + z−1)3(
1 − 1

4 z−1
) (
1 − z−1 + 1

2 z−2
)
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H(z) = 1 + 3z−1 + 3z−2 + z−3

1 − 5
4 z−1 + 3

4 z−2 − 1
8 z−3

= z3 + 3z2 + 3z + 1

z3 − 5
4 z−2 + 3

4 z − 1
8

= 1 +
17
4 z2 + 9

4 z + 9
8

z3 − 5
4 z−2 + 3

4 z − 1
8

= 1 +
17
4 z2 + 9

4 z + 9
8(

z − 1
4

) (
z2 − z + 1

2

)

17
4 z2 + 9

4 z + 9
8(

z − 1
4

) (
z2 − z + 1

2

) = A

z − 1
4

+ Bz + C

z2 − z + 1
2

=
25
4

z − 1
4

+ −2z + 8

z2 − z + 1
2

H(z) = 1 +
25
4 z−1

1 − 1
4 z−1

+ −2z−1 + 8z−2

1 − z−1 + 1
2 z−2

Example 3.40
Determine the direct form-II and transposed direct form-II for the given system

y(n) = 1

2
y(n − 1) − 1

4
y(n − 2) + x(n) + x(n − 1)

Solution Given

Y (z) = 1

2
z−1Y (z) − 1

4
z−2Y (z) + X (z) + z−1X (z)

H(z) = Y (z)

X (z)
= 1 + z−1

1 − 1
2 z−1 + 1

4 z−2

Direct Form-II Realization
To get transposed direct form-II do the following operation:

1. Change the direction of all branches.
2. Interchange the input and output.
3. Change the summing point to branching point and vice versa.
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Parallel form realization for Example 3.39 is shown in Fig. 3.53.

Y(z)X(z)

1

1

4

1
2

2

8

25
4

z 1

z 1

z 1

Fig. 3.53 Parallel form realization of H(z) for Example 3.39

Example 3.41
Realize the system given by difference equation

y(n) = −0.1y(n − 1) + 0.72y(n − 2) + 0.7x(n) − 0.252x(n − 2)

in parallel form.

(Anna University, May, 2007)
Solution

H(z) = 0.7 − 0.252z−2

1 + 0.1z−1 − 0.72z−2

= 0.35 + 0.35 − 0.035z−1

1 + 0.1z−1 − 0.72z−2

= 0.35 + 0.35 − 0.035z−1

(1 + 0.9z−1)(1 − 0.8z−1)
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= 0.35 + A

(1 + 0.9z−1)
+ B

(1 − 0.8z−1)

= 0.35 + 0.206

(1 + 0.9z−1)
+ 0.1444

(1 − 0.8z−1)

= C + H1(z) + H2(z)

Transposed direct form-II for Example 3.40 is shown in Fig. 3.54.

y(n) y(n)x(n)x(n)

(b)(a)

4
1

4
1

1
2 z 1

1
z 1

1
2

z 1

z 1

x(n)y(n)

(c)

4
1

1
2 z 1

1

z 1

y(n)x(n)

(d)

4
1

1
2

z 1
1

z 1

y(n)x(n)

(e)

1

1

4
1

1
2

z 1

z 1

Fig. 3.54 Transposed direct form-II realization for Example 3.40
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Parallel realization for Example 3.41 is shown in Fig. 3.55.

Y(z)

X(z)

0.206

0.35

0.8

0.144

0.9

z 1

z 1

Fig. 3.55 Parallel form realization of H(z) for Example 3.41

3.13.7 Lattice Structure of IIR System

Let us consider an all-pole system with system function

H(z) = 1

1 +∑N
k=1 aN z−k

= 1

AN (z)
(3.92)

The difference equation for this IIR system is derived as follows.

Y (z)

X (z)
= 1

1 +∑N
k=1 aN z−k

Y (z) +
N∑

k=1

aN z−kY (z) = X (z)

Y (z) = −
N∑

k=1

aN z−kY (z) + X (z)

y(n) = −
N∑

k=1

aN (k)y(n − k) + x(n) (3.93)
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or

x(n) = y(n) +
N∑

k=1

aN (k)y(n − k) (3.94)

For N = 1

x(n) = y(n) + a1(1)y(n − 1) (3.95)

Equation (3.95) can be realized in lattice structure as shown in Fig. 3.56.
From Fig. 3.56, we can obtain

x(n) = f1(n) (3.96)

y(n) = f0(n) = f1(n) − k1g0(n − 1)

= x(n) − k1y(n − 1) (3.97)

g1(n) = k1 f0(n) + g0(n − 1)

= k1y(n) + y(n − 1) (3.98)

k1 = a1(1) (3.99)

Now, let us consider for the case N = 2, then

x(n) = f2(n) (3.100)

y(n) = x(n) − a1(1)y(n − 1) − a2(2)y(n − 2) (3.101)

This output can also be obtained from a two-stage lattice structure as shown in
Fig. 3.57 from which we have

f2(n) = x(n) (3.102)

f1(n) = f2(n) − k2g1(n − 1) (3.103)

g2(n) = k2 f1(n) + g1(n − 1) (3.104)

f0(n) = f1(n) − k1g0(n − 1) (3.105)

Fig. 3.56 Single stage
all-pole lattice structure

y(n) = f0(n)

z 1

x(n)

f1(n)

g1(n) g0(n)

k1

k1
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f0(n)

z 1

x(n)

y(n)f2(n)

g2(n) g1(n) g0(n)

k2

k2

z 1

k1

f1

k1

Fig. 3.57 Two stage all-pole lattice filter

g1(n) = k1 f0(n) + g0(n − 1) (3.106)

y(n) = f0(n) = g0(n) (3.107)

= f1(n) − k1g0(n − 1)

= f2(n) − k2g1(n − 1) − k1g0(n − 1)

= f2(n) − k2[k1 f0(n − 1) + g0(n − 2)] − k1g0(n − 1)

= f2(n) − k1(1 + k2)y(n − 1) − k2y(n − 2) (3.108)

Similarly
g2(n) = k2y(n) + k1(1 + k2)y(n − 1) + y(n − 2) (3.109)

Comparing Eqs. (3.101) and (3.108) we get

a2(0) = 1, a2(1) = k1(1 + k2), a2(2) = k2 (3.110)

For a N -stage IIR filter realized in lattice structure as shown in Fig. 3.58, we get

fN (n) = x(n) (3.111)

fm−1(n) = fm(n) − km gm−1(n − 1), m = N , N − 1, . . . , 1 (3.112)

gm(n) = km fm−1(n) + gm−1(n − 1), m = N , N − 1, . . . , 1 (3.113)

y(n) = f0(n) = g0(n) (3.114)

3.13.8 Conversion from Direct Form to Lattice Structure

For a 3-stage IIR system

x(n) = f3(n) = f2(n) + k3g2(n − 1) (3.115)

g3(n) = k3 f2(n) + g2(n − 1) (3.116)
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from which
g2(n − 1) = g3(n) − k3 f2(n) (3.117)

Substituting Eq. (3.117) in Eq. (3.115) we get,

f3(n) = f2(n) + k3[g3(n) − k3 f2(n)]

and

f2(n) = f3(n) − k3g3(n)

1 − k2
3

=

⎡

⎣
y(n) + a3(1)y(n − 1) + a3(2)y(n − 2) + a3(3)y(n − 3)
+k3a3(3)y(n) − k3a3(2)y(n − 2)
−k3a3(n)y(n − 1) − a3y(n − 3)

⎤

⎦

1 − k2
3

= y(n) + a3(1) − a3(3)a3(2)

1 − a2
3(3)

y(n − 1) + a3(2) − a3(2)a3(3)

1 − a2
3(3)

y(n − 2) + · · ·
(3.118)

Comparing Eqs. (3.118) and (3.101) we have

a2(0) = 1, a2(1) = a3(1) − a3(3)a3(2)

a − a2
3(3)

, a2(2) = a3(2) − a3(2)a3(3)

1 − a2
3(3)

(3.119)

In general

am−1(0) = 1

km = am(m)

am−1(k) = am(k) − am(m)am(m − k)

1 − a2
m(m)

(3.120)

Equation (3.120) can be used to convert direct form to lattice structure.

3.13.9 Lattice–Ladder Structure

A general IIR filter containing both poles and zeros can be realized using an all-pole
lattice as the basic building block.
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y(n)

z 1

x(n)

fN(n)

g2(n)

CN C2 C1 C0

kN

kN

z 1

k2

fN 1(n)

CN 1

f2(n) f1(n)

f0 (n)

k2

z 1

k1

k1

Fig. 3.59 Lattice–ladder structure for realizing a pole–zero IIR filter

Consider an IIR filter with system function

H(z) = BM(z)

AN (z)
=

N∑
k=0

bM(k)z−k

1 +
N∑

k=1
aN (k)z−k

(3.121)

where N ≥ M . A lattice structure for Eq. (3.121) can be constructed by filter realiz-
ing an all-pole lattice coefficients, km , 1 ≤ M ≤ N for the denominator AN (z), and
then adding a ladder part as shown in Fig. 3.59 for M = N . The output of the ladder
part can be expressed as a weighted linear combination of {gm(n)}.

Now the output is given by

y(n) =
M∑

m=0

Cm gm(n) (3.122)

where {cm} is called the ladder co-efficients and can be obtained using the recursive
relation.

Cm = bm −
M∑

i=m+1

Ci ai (i − m); m = M, M − 1, . . . , 0 (3.123)

Example 3.42
Realize the following system function in lattice–ladder structure

H(z) = 1 + 3
2 z−1 + 1

2 z−2

1 + z−1 + 1
4 z−2
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Solution

Given BM(z) = 1 + 3

2
z−1 + 1

2
z−2

AN (z) = 1 + z−1 + 1

4
z−2

a2(0) = 1, a2(1) = 1, a2(2) = 1

4

k2 = a2(2) = 1

4

From Eq. (3.121) we have

am−1(k) = am(k) − am(m)am(m − k)

1 − a2
m(m)

For m = 2 and k = 1

k1 = a1(1) = a2(1) − a2(2)a2(1)

a − a2
2(2)

= 1 − 1
4 · 1

1 − ( 14
)2 = 0.75

0.9375
= 0.8

For m = 2 and k = 0

a1(0) = a2(0) − a2(2)a2(2)

1 − a2
2(2)

= 1 − ( 14
)2

1 − ( 14
)2 = 1

Therefore, for lattice structure

k1 = 0.8, k2 = 0.25

For ladder structure

Cm = bm −
M∑

i=m+1

Ci ai (i − m), m = M, M − 1, . . . , 0

C2 = b2 = 1

2
C1 = b1 − c2a2(0)

= 3

2
− 1

2
(1) = 1
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y(n)

x(n)

f2(n)

g2(n)

C2 = 0.5 C1 = 1 C0  = 0.5

z 1

f1(n) f0 (n)

z 1

0.8

0.814

14

Fig. 3.60 Lattice–ladder form for the Example 3.42

C0 = b0 − [C1a1(0) + C2a2(1)]
= 1 −

[
1 · 1 + 1

2
· 1
]

= 1 −
[
1 + 1

2

]
= −0.5

The lattice–ladder structure for the given pole–zero is shown in Fig. 3.60.

Example 3.43
Convert the following all-pole IIR filter into a lattice structure.

H(z) = 1

1 + 13
24 z−1 + 5

8 z−2 + 1
3 z−3

Solution Given

AN (z) = 1 + 13

24
z−1 + 5

8
z−2 + 1

3
z−3

a3(0) = 1, a3(1) = 13

24
, a3(2) = 5

8
; a3(3) = 1

3

K3 = a3(3) = 1

3
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From Eq. (3.121) we have

am−1(k) = am(k) − am(m)am(m − k)

1 − a2
m(m)

For m = 2, and k = 1

a2(1) = a3(1) − a3(3)a3(2)

1 − a2
3(3)

=
13
24 − 1

3

(
5
8

)

1 − ( 23
)2 = 3

8

For m = 3 and k = 2

k2 = a2(2) = a3(2) − a3(3)a3(1)

1 − a2
3(3)

=
5
8 − 1

3

(
13
24

)

1 − ( 13
)2 = 1

2

For m = 2 and k = 1

k1 = a1(1) = a2(1) − a2(2)a2(1)

1 − a2
2(2)

=
3
8 − 1

2

(
3
8

)

1 − ( 12
)2 = 1

4

Therefore, for lattice structure

k1 = 1

4
, k2 = 1

2
, k3 = 1

3

The lattice structure for the given all-pole filter is shown in Fig. 3.61 (Figs. 3.62,
3.63, 3.64, 3.65).

Summary

� Digital filters are broadly classified as infinite impulse response (IIR) and finite
impulse response (FIR) filters. The design of IIR filter is presented in this chapter.

� The design methodology for analog filters is a well-developed one. By proper
transformations, these analog filters can be converted to digital filters. Impulse
invariant transformation and bilinear transformation are used to convert analog
filters to digital filters.

� When stable analog filters are converted to digital filters, it is necessary that the
poles of these digital filters lie within the unit circle in the s-plane, so that the
filter is causal and stable.
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Fig. 3.61 Lattice structure for Example 3.43

j

3 T

T

T

3 T

RHPLHP Unit circle

jIm(z)

j1

1

j1

1
Re(z)

Fig. 3.62 Mapping of s-plane into z-plane in impulse invariant transformation for question 16

RHPLHP

Unit circle jIm(z)

Re(z)

j

1
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1

Fig. 3.63 Mapping of s-plane to z-plane for question 26

� In the design of lowpass filters, when the specifications are given in the frequency
domain it may not be always possible to get physically realizable stable filters.
The magnitude response needs to be approximated.

� Several approximations to design lowpass filters are available in the litera-
ture. However, in this chapter, Butterworth and Chebyshev approximations and
approximation of derivatives are used to design lowpass filters.



3.13 Structure Realization of IIR System 371
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Fig. 3.64 Magnitude response of Butterworth lowpass filter for various values of N for question
27
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1
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2

Fig. 3.65 Realization of H(z) = (1+ 1
2 z−1)

(1− 1
2 z−1)

for question 32

� By analog-to-digital frequency transformation, it is possible to convert lowpass
prototype analog filter into either a bandpass, highpass or stop band filter.

� Several methods such as direct form-I, direct form-II parallel form, cascade form
are available to realize the structure of the digital filter. They are described in this
chapter. Finally the method of getting frequency response plot for the system
function H(z) is described.

Short Questions and Answers

1. What are the requirements for an analog filter to be stable and causal?

• The analog transfer function H(s) should be a rational function of s, and
the co-efficients of s should be real, so that the system is causal.

• The poles should lie in the left half of s-plane, so that the system is stable.
• The number of zeros should be less than or equal to number of poles.
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2. What are the requirements for a digital filter to be stable and causal?

• The digital transfer function H(z) should be a rational function of z and the
co-efficients of z should be real, so that the system is causal.

• The poles should lie inside of the unit circle in z-plane, so that the system
is stable.

3. Define ripples in a filter.

The limits of tolerance in the magnitude of passband and stopband are called
ripples. The tolerance in passband is denoted by δp and that in stopband is
denoted by δs .

4. Mention any two techniques for digitizing the transfer function of an analog
filter.
The bilinear transformation and the impulse invariant transformations are the
two techniques available for digitizing the analog filter transfer function.

5. Compare the digital and analog filters.

Digital filter Analog filter

1 Operates on digital samples of the signal Operates on analog samples of the signal
2 It is governed by linear difference equation It is governed by linear differential equation
3 It consists of adders, multipliers and delays

implemented digital logic
It consists of electrical components like resis-
tors, capacitors and inductors

4 In digital filters the filter co-efficients are
designed to satisfy the desired frequency
response

In analog filters the approximation problem is
solved to satisfy the desired frequency response

6. What are the advantages and disadvantages of digital filters?

Advantages:

• High thermal stability due to the absence of electrical components.
• The performance characteristics like accuracy, dynamic range, stability and
tolerance can be enhanced by increasing the length of the registers.

• The digital filters are programmable.
• Multiplexing and adaptive filtering are possible.

Disadvantages:

• The bandwidth of the discrete signal is limited by the sampling frequency.
• The performance of digital filter depends on the hardware used to implement
the filter.

7. Mention the important features of IIR filters.

• The physically realizable IIR filter does not have linear phase.
• The IIR specifications include the desired characteristics for the magnitude
response only.
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8. What is impulse invariant transformation?
The transformation of analog filter to digital filter without modifying the impulse
response of the filter is called impulse invariant transformation, i.e., in this trans-
formation the impulse response of the digital filter will be sampled version of
the impulse response of analog filters.

9. What is the main objective of impulse invariant transformation?
The main objective is to develop an IIR filter transfer function whose impulse
response is the sampled version of impulse response of the analog filter. There-
fore, the frequency response characteristics of analog filter are preserved.

10. How analog poles are mapped to digital poles in impulse invariant/bilinear
transformation?
In impulse invariant/linear transformation themapping of analog-to-digital poles
are as follows:

• The analog poles on the left half of s-plane are mapped into the interior of
unit circle in z-plane.

• The analog poles on the imaginary axis of s-plane are mapped into the unit
circle in z-plane.

• The analog poles on the right half of s-plane are mapped into the exterior
of unit circle in z-plane.

11. What is the importance of poles in filter design?
The stability of a filter is related to the location of the poles. For a stable analog
filter the poles should lie on the left half of the s-plane. For a stable digital filter
the poles should lie inside of the unit circle of z-plane.

12. Write the impulse invariant transformation used to transform real poles
with and without multiplicity.

The impulse invariant transformation used to transform real pole (at s = −pi )
without multiplicity is

1

(s + pi )

is transformed to−−−−−−−−→ 1

1 − e−pi T z−1

13. Write the impulse invariant transformused to transformcomplex conjugate
poles.

(s + a)

(s + a)2 + b2

is transformed to−−−−−−−−→ 1 − e−aT (cos bT )z−1

1 − 2e−aT (cos bT )z−1 + e−2aT z−2

b

(s + a)2 + b2

is transformed to−−−−−−−−→ 1 − e−aT (sin bT )z−1

1 − 2e−aT (cos bT )z−1 + e−2aT z−2

14. What is the relation between analog and digital frequency in impulse invari-
ant transformation?
The relation between analog and digital frequency in impulse invariant transfor-
mation is given by,
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Digital frequency, ω = �T

where � = analog frequency and T = sampling time period.
15. What is aliasing?

The phenomena of high-frequency sinusoidal components acquiring the identity
of low-frequency sinusoidal components after sampling is called aliasing (i.e.,
aliasing is higher frequencies impersonating lower frequencies). The aliasing
problem will arise if the sampling rate does not satisfy the Nyquist sampling
criteria.

16. Why an impulse invariant transformation is not considered to be one-to-
one?
In impulse invariant transformation any strip of width (2π)/T in the s-plane
for values of s in the range (2k − 1)π/T ≤ � ≤ (2k + 1)π/T (where k is an
integer) is mapped into the entire z-plane. The left half portion of each strip
in s-plane maps into the interior of the unit circle in z-plane, right half portion
of each strip in s-plane maps into the exterior of the unit circle in z-plane and
the imaginary axis of each strip in s-plane maps into the unit circle in z-plane.
Hence, the impulse invariant transformation is many-to-one.

17. What is aliasing problem in impulse invariant method of designing digital
filter? Why it is absent in bilinear transformation?
In impulse invariant mapping, the analog frequencies in the interval (2k −
1)π/T ≤ � ≤ (2k + 1)π/T (where k is an integer) map into corresponding
values of digital frequencies in the interval −π ≤ ω ≤ π . Hence, the mapping
of � to ω is many-to-one.

This will result in high-frequency components acquiring the identity of the
low-frequency components if the analog filter is not bandlimited. This effect is
called aliasing. The aliasing can be avoided in bandlimited filters by choosing
very small values of sampling time. The bilinearmapping is one-to-onemapping,
and so there is no effect of aliasing.

18. What is bilinear transformation?

The bilinear transformation is a conformal mapping that transforms the s-plane
to z-plane. In this mapping the imaginary axis of s-plane is mapped into the unit
circle in z-plane, the left half of s-plane is mapped into interior of unit circle in
z-plane and right half of s-plane is mapped into exterior of unit circle in z-plane.
The bilinear mapping is a one-to-one mapping, and it is accomplished when

s = 2

T

1 − z−1

1 + z−1
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19. What is the relation between analog and digital frequency in bilinear trans-
formation?

The relation between analog and digital frequency in bilinear transformation is
given by,

Digital frequency, ω = 2 tan−1

(
�T

2

)

where � = analog frequency and T = sampling time period.
20. What is frequency warping?

In bilinear transformation, the relation between analog and digital frequencies is
nonlinear. When the s-plane is mapped into z-plane using bilinear transforma-
tion, this nonlinear relationship introduces distortion in frequency axis, which is
called frequency warping.

21. What is pre-warping? Why it is employed?

In IIR filter design using bilinear transformation, the conversion of the specified
digital frequencies to analog frequencies is called pre-warping. The pre-warping
is necessary to eliminate the effect of warping on amplitude response.

22. Explain the technique of pre-warping.

In IIR filter design using bilinear transformation, the specified digital frequencies
are converted to analog frequencieswhich are called pre-warp frequencies.Using
the pre-warped frequencies, the analog filter transfer function is designed and
then it is transferred to digital filter transfer function.

23. Compare the impulse invariant and bilinear transformation.

Impulse invariant Bilinear transformation

1 It is many-to-one mapping It is one-to-one mapping
2 The relation between analog and digital fre-

quency is linear
The relation between analog and digital fre-
quency is nonlinear

3. To prevent the problem of aliasing the analog
filters should be bandlimits

There is no problem of aliasing and the filters
need not be bandlimits

24. Obtain the impulse response of digital filter to correspond to an analog filter
with impulse response ha(t) = 0.3e−2t and with a sampling rate of l.0kHz
using impulse invariant method.
Given that, ha(t) = 0.3e−2t and sampling frequency, F = 1kHz = 1 × 103 Hz.

∴ Sampling time, T = 1

F
= 1

1 × 103
= 10−3 s.

Impulse response of digital fitterh(n) = he(t)|t=nT = 0.3e−2t |t=nT = 0.3e−2nT

= 0.3(e−2T )n = 0.3(e−2×10−3
)n

= 0.3(0.998)n; for n ≥ 0.
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25. Given that, Ha(s) = 1/(s + 1). By impulse invariant method, obtain the
digital filter transfer function and the difference equation of digital filter.
Given that, Ha(s) = 1/(s + 1). In impulse invariant transformation,

1

s + pi

is transformed to−−−−−−−−→ 1

1 − e−pi T z−1

Let T = 1 s. Transfer function of digital filter

H(z) = 1

1 − e−T z−1
= 1

1 − e−1z−1
= 1

1 − 0.368z−1

We know that,

H(z) = Y (z)

X (z)
Y (z)

X (z)
= 1

1 − 0.368z−1

On cross-multiplying we get

Y (z) − 0.368z−1Y (z) = X (z)

∴ Y (z) = X (z) + 0.368z−1Y (z)

On taking inverse z-transform we get,

y(n) = x(n) + 0.368y(n − 1)

26. Sketch the mapping of s-plane to z-plane in bilinear transformation.
27. How does the order of the filter affect the frequency response of Butter-

worth filter?

The magnitude response of Butterworth filter is shown in Fig. 3.64, from which
it can be observed that the magnitude response approaches the ideal response as
the order of the filter is increased.

28. Write the transfer function of unnormalized Butterworth lowpass filter.
When N is even, transfer function of analog lowpass Butterworth filter is,

Ha(s) =
N/2∑

k=1

�2
c

s2 + bk�cs + �2
c

When N is odd, transfer function of analog lowpass Butterworth filter is,
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Ha(s) = �c

s + �c

(N−1)/2∑

k=1

�2
c

s2 + bk�cs + �2
c

where

bk = 2 sin[ (2k − 1)π

2N
]

N = Order of the fitter and �c = Analog cutoff frequency.
29. How will you choose the order N for a Butterworth filter?

Calculate a parameter N1 using the following equation and correct, it to nearest
integer.

N1 = 1

2

log

{[
1

A2
p
− 1
]/[

1
A2

s −1

]}

log
(

�s
�p

)

Choose the order N of the filter such that N ≥ N1.
30. Write the properties of Butterworth filter.

(i) The Butterworth filters have all-pole designs.
(ii) At the cutoff frequency �c, the magnitude of normalized Butterworth filter

is 1/
√
2.

(iii) The filter order N completely specifies the filter, and as the value of N
increases the magnitude response approaches the ideal response.

31. Find the digital transfer function H(z) by using impulse invariant method
for the analog T.F. H(s) = 1

(s+2) . Assume T = 0.1 sec and 0.5 s.

(Anna University, December, 2007)

H(z) = 1

(1 − 0.8187z−1)
for T = 0.1 s.

H(z) = 1

(1 − 0.3679z−1)
for T = 0.5 s.

32. Realize the following system using Direct Form-II.

(Anna University, December, 2007)

y(n) − 1

2
y(n − 1) = x(n) + 1

2
x(n − 1)

H(z) = (1 + 1
2 z−1)

(1 − 1
2 z−1)
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33. Transform the single pole lowpass Butterworth filter with system function
H(s) = �p

(
�p

s +�p)
into a bandpass filter with upper and lower band edge fre-

quencies �u and �l ,respectively.

(Anna University, June, 2007)

H(s) = �p(s2 + �l�u)

�p(s2 + �l + �u) + s(�u − �l)

34. Convert the analog bandpass filter.

Ha(s) = 1

(s + 0.1)2 + 9

into a digital IIR filter by use of the mapping s = 1
T

(z−1)
(z+1) .

(Anna University, June, 2007)

H(z) = T 2(1 + 2z−1 + z−2)

[9.01T 2 + (18.02T 2 − 2)z−1 + (9.01T 2 − 2T + 1)z−2]
35. Write the equation for frequency transformation from lowpass to bandpass

filter.

(Anna University, June, 2007)

s → �p
(s2 + �l�u)

s(�u − �l)

36. Find the digital filter equivalent for H(s) = 1
(s+8)

(Anna University, June, 2007)

H(z) = 1

(1 − e−8T z−1)

37. What are the parameters (specifications) of a Chebyshev filter?

(Anna University, June, 2007)

The parameters of a Chebyshev filter are (a) passband ripple, (b) passband cutoff
frequency, (c) stopband frequency, (d) attenuation beyond stopband frequency.



3.13 Structure Realization of IIR System 379

38. Give the location of poles of normalized Butterworth filter.

(Anna University, June, 2007)

The poles of the normalized Butterworth filter occur on a unit circle at equally
spaced points in the complex s-plane. The pole locations are identified as

sk = e jπ/2e j (2k+1) π
N , k = 0, 1, 2 . . . (N − 1)

N is order of the filter. For stable filter only LHP poles are taken.
39. State two advantages of bilinear transformation

(Anna University, December, 2006)

The two advantages of bilinear transformation are:

(a) It avoids aliasing in frequency components.
(b) The transformation of stable analog filter results in a stable digital filter.

40. What is Chebyshev approximation?

In Chebyshev approximation, the error is defined as the difference between
the ideal brickwall characteristic and the actual response and this is minimized
over a prescribed band of frequencies. There are two types of Chebshev transfer
functions. In the type 1, approximation, themagnitude characteristic is equiripple
in the passband and monotonic in the stopband. In type 2 approximation, the
magnitude response is monotonic in the passband and equiripple in the stopband.

41. What is Butterworth approximation?

The frequency response characteristic of the lowpass Butterworth filter is mono-
tonic in both the passband and stopband. The response approximates to the ideal
response as the order N of the filter increases. (Flat Characteristics).

42. What are the parameters that can be obtained from the Chebyshev filter
specifications?

For a given set of specifications, the order N of the filter can be determined.
Knowing N , the poles and zeros can be located.

43. Write down the transfer functions of a first-order Butterworth normalized
lowpass filter and highpass filter.

The normalized first-order Butterworth normalized lowpass filter is

ha(s) = 1

(s + 1)
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The first-order highpass filter normalized transfer function is

ha(s) = 1
1
s + 1

= s

s + 1

44. Compare the lowpass Butterworth filter with lowpass Chebyshev filter.

(a) In the Butterworth filter, the frequency response decreases monotonically
while the magnitude response of the Chebyshev filter contains ripples in the
passband and monotonically decreases in the stopband.

(b) The poles of the Butterworth filter lie on unit circle, whereas the poles of
Chebyshev filter lie on ellipse.

(c) The transition band is more in Butterworth filter compared to Chebyshev
filter.

(d) For the same specifications, the order of the Butterworth filter is higher than
that of Chebyshev filter.

45. Why IIR filters do not have linear phase?

A linear phase filter must have a system function

H(z) = ±z−N H(z−1)

where z−N represents a delay of N units. For this it is necessary to have a mirror
image pole outside the unit circle for every pole inside the unit circle in the
z-plane. This means the filter will be unstable. Hence, a causal and stable IIR
filter cannot have linear phase if it is to be physically realizable.

46. What are the disadvantages of Impulse invariance method of designing fil-
ters?

If the sampling interval T is large, the IIRfilter designed using impulse invariance
method results in aliasing due to sampling. This method is not suitable to design
highpass filter due to the spectrum aliasing which results from the sampling
process.

Long Answer Type Questions

1. Explain the impulse invariance method of IIR filter design.
2. Explain bilinear transformation method of IIR filter design.
3. Draw the direct form-I and direct form-II structure of IIR system.
4. Convert the analog transfer function of the second-order Butterworth filter into

digital transfer function using bilinear transformation.
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5. What is meant by aliasing? Explain with example.
6. Describe the procedure for the design of digital filters from analog filters and

advantages and disadvantages of digital filters.
7. State and prove the conditions satisfied by a stable and causal discrete time filter

in the z-transform domain.
8. Design a Butterworth filter using impulse invariant method for the following

specifications:

0.8 ≤ |H(e jω)| ≤ 1; 0 ≤ ω ≤ 0.2π

|H(e jω)| ≤ 0.2; 0.6 ≤ ω ≤ π

9. Mention the advantages and disadvantages of FIR and IIR filters.
10. Design a Butterworth digital filter to meet the following constraints:

0.9 ≤ |H(ω)| ≤ 1; 0 ≤ ω ≤ π

2

|H(ω)| ≤ 0.2; 3π

4
≤ ω ≤ π

Use bilinear transformation mapping technique. Assume T = 1 s.
11. Develop impulse invariant mapping technique for designing IIR filter.
12. Realize the given transfer function using direct form-I and parallel methods

H(z) = (4z2 + 11z − 2)

(z + 1)(z − 3)
.

13. Derive the equation for calculating the order of the Butterworth filter.
14. Design and realize a digital filter using bilinear transformation for the following

specifications:

(a) Monotonic passband and stopband.
(b) −3 dB cutoff at 0.5π rad.
(c) magnitude down at least 15 dB at ω = 0.75π rad.

15. Using impulse invariant method find H(z) at T = 1 s.

H(s) = 2

s2 + 8s + 15

16. Enumerate the various steps involved in the design of LF digital Butterworth IIR
filter.

17. Obtain direct form-II, cascade and parallel realizations of a discrete time system
described by the difference equation
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y(n) − 5

8
y(n − 1) − 1

16
y(n − 2) = x(n) − 3x(n − 1) + 3x(n − 2) − x(n − 3)

(Anna University)

Ans: Direct Form-II

Y (z)

X (z)
= (1 − 3z−1 + 3z−2 − z−3)(

1 − 5
8 z−1 − 1

16 z−2
)

Cascade Form

H1(z) = (1 − z−1)

(1 − 0.7125z−1)

H2(z) = (1 − 2z−1 + z−2)

(1 + 0.086z−1)

Parallel Form

H(z) = −208 + 16z−1 + 209 − 149z−1

(
1 − 5

8 z−1 − 1
16 z−2

)

18. Determine the system function H(z) of the lowest-order Chebyshev digital filter
that meets the following specifications.

(a) 1 dB ripple in the passband 0 ≤ ω ≤ 0.3π .
(b) At least 60 dB attenuation in the stopband 0.35 ≤ |ω| ≤ π . Use the bilinear

transformation.

(Anna University)
19. Design a Chebyshev filter with a maximum passband altenuation of 2.5 dB at

�p = 20 rad/s and the stopband altenuation of 30 dB at �s = 50 rad/s.

(Anna University)
20. Find the direct form-I and direct form-II realization of the filter

H(z) = 1 − 2z−2 + 3z−3

1 − 0.2z−3

(Anna University, May, 2006)
21. Obtain the direct form-I, Canonic form and parallel form realization structures

for the system given by the difference equation
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y(n) = −0.1y(n − 1) + 0.72y(n − 2) + 0.7x(n) − 0.252x(n − 2)

(Anna University, June, 2006)

Ans: Direct Form-I and Canonic Form

H(z) = (0.7 − 0.252z−2)

(1 + 0.1z−1 − 0.72z−2)

Parallel Form

H(z) = 0.35 + 0.1441

(1 − 0.8z−1)
+ 0.2058(

1 + 0.9z−1
)



Chapter 4
Finite Impulse Response (FIR) Filter
Design

Learning Objectives

After completing this chapter, you should be able to:

� Study the characteristic of practical frequency selective digital filters.
� Realize the finite impulse response (FIR) filter structure.
� Study the characteristics of FIR filters with linear phase.
� Study different type of symmetry of the impulse response of linear phase FIR

filters.
� Design FIR filter by frequency sampling method.
� Design linear phase FIR filters using windows.
� Design FIR differentiators.

4.1 Introduction

In Chap.3, the design of IIR filter was considered. These filters are designed by
transformation from analog domain to digital domain. They are called recursive
filters since feedback is used. Hence, IIR filters should be carefully designed to
ensure that the system function H(z) is stable. In the case of FIR filter design which
is non-recursive in nature, the stability problem does not arise. Since the system
function H(z) is a polynomial of z−1 it always guarantees the stability of the filter.
Further, unlike IIR filter design which has nonliner phase characteristic, the FIR
digital filter has linear phase. A filter with a nonlinear phase characteristic causes
phase distortion in the signal which is undesirable in much practical applications
such as data transmission, music and video. However, to meet the same frequency
response specifications, the order of FIR filter transfer function is much higher than
that of an IIR digital filter. Hence, FIR filters require more parameters more memory
and has more computational complexity.
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The basic approach to the design of FIR digital filter is based on direct approxi-
mation of the specified magnitude response in addition to the requirement of linear
phase response. Unlike IIR filter, it does not have any connection with the analog
filter. Linear phase FIR filters are designed based on whether the impulse response
function h(n) is positive or negative and the order of the filter is odd or even. Thus
there are four types of linear phase FIR filters. FIR filters are also designed based
on Fourier coefficients which have infinite length. By truncating these coefficients
of infinite Fourier series, FIR filters are designed. This is called windowing. Several
windowing techniques are available. FIR filter design using the above techniques is
discussed in this chapter.

4.1.1 LTI System as Frequency Selective Filters

An LTI system performs a type of filtering among the various frequency components
at its input. The nature of this filtering is determined by the frequency response
characteristics H(ω), which in turn depends on the choice of the system parameters
[ak and bk coefficient]. Thus, by proper selection of the coefficients, we can design
frequency selective filters that pass signalswith frequency components in some bands
while they attenuate signals that contain frequency components in other frequency
bands.

In general an LTI system modifies the input spectrum X (ω) according to its fre-
quency response H(ω) to yield an output signal with spectrum Y (ω) = H(ω)X (ω).
H(ω) acts as a weighting function or a spectral shaping function to the different
frequency components in the input signal.

Let us consider a signal x(n) with frequency content in a band of frequencies
ω1 < ω < ω2 (i.e., band limited signal)

X (ω) = 0 for ω ≥ ω2 and ω ≤ ω1 (4.1)

If it is passed through a filter with frequency response,

H(ω) =
{

Ce− jωα, ω1 < ω < ω2

0, otherwise, where Cand α = +ve constants
(4.2)

The signal at the output of the filter has the spectrum which is expressed as,

Y (ω) = X (ω)H(ω)

= X (ω)Ce− jωα (4.3)

= C X (ω)e− jωα (4.4)
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Using the following identity we get,

F[x(n − α)] = X (ω)e− jωα

∴ Y (ω) = C F[x(n − α)]

Taking inverse Fourier transform on both sides we get,

y(n) = Cx(n − α)

i.e., the filter output is simply a delayed and amplitude scaled version of the input
signal. A pure delay is usually tolerable and is not considered a distortion of the
signal. Likewise the amplitude scaling. The filter defined by

H(ω) =
{

Ce− jωα, ω1 < ω < ω2

0, otherwise

is called an ideal filter.

H(ω) = |H(ω)|∠H(ω)

|H(ω)| = C, ∠H(ω) = θ(ω) = −αω (4.5)

|H(ω)| (amplitude) = constant

|H(ω)| (phase) = linear function of frequency ω

In general any deviation of the frequency response characteristics of a linear filter
from the ideal response results in signal distortion.

(i) Amplitude distortion: If the filter has a variable magnitude frequency response
characteristic in the passband, then the filter has amplitude distortion.

(ii) Phase distortion: If the phase characteristic is not linear within the desired
frequency band, the signal undergoes phase distortion.

(iii) Signal delay: The derivative of the phase with respect to frequency has the units
of delay

τ(ω) = −dθ(ω)

dω
= − d

dω
(−αω) = α (4.6)

Filters are classified according to their frequency response characteristics. The ideal
frequency response H(ω) of four major types of filters is:
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(i) Ideal frequency response of LPF

Hd(ω) =
{

Ce− jαω, −ωc ≤ ω ≤ ωc

0, −π < ω < −ωc and ωc < ω < π
(4.7)

(ii) Ideal frequency response of HPF

Hd(ω) =
{

Ce− jαω, −π ≤ ω ≤ −ωc, ωc ≤ ω ≤ π,

0, −ωc < ω < ωc
(4.8)

(iii) Ideal frequency response of BPF

Hd(ω) =
{

Ce− jαω, −ωc2 ≤ ω ≤ −ωc1 and ωc1 ≤ ω ≤ ωc2

0, −π ≤ ω ≤ −ωc2 & − ωc1 ≤ ω ≤ ωc1 & ωc2 ≤ ω ≤ π

(4.9)
(iv) Ideal frequency response of BSF

Hd(ω) =
{

Ce− jαω, −π ≤ ω ≤ −ωc2 & − ωc1 ≤ ω ≤ ωc1& ωc2 ≤ ω ≤ π

0, −ωc2 < ω < −ωc1 and ωc1 < ω < ωc2

(4.10)
The magnitude response of ideal lowpass, highpass, bandpass and bandstop
filters is shown in Fig. 4.1a–d respectively.

4.2 Characteristic of Practical Frequency Selective Filters

Causality has very important implications is the design of frequency selective filters.
Causality implies that the frequency response characteristic H(ω) of the filter cannot
be zero, except at a finite set of points in the frequency range. In addition, H(ω) cannot
have an infinitely sharp cutoff from passband to stopband. That is H(ω) cannot drop
from unity to zero abruptly. Therefore, the ideal filters are non-causal and hence
physically unrealizable for the real-time signal processing applications.

The input x(n) and output y(n) of a LTI system are governed by the following
N th order difference equation.

y(n) = −
N∑

k=1

ak y(n − k) +
M∑

k=0

bk x(n − k)
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Fig. 4.1 Magnitude response of ideal lowpass, highpass, bandpass and bandstop filter
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On taking Fourier transform on both sides we get

Y (ω) = −
N∑

k=1

ake
− jωkY (ω) +

M∑
k=0

bke
− jωk X (ω)

Y (ω)

[
1 +

N∑
k=1

ake
− jωk

]
=

M∑
k=0

bke
− jωk X (ω)

H(ω) = Y (ω)

X (ω)

=

M∑
k=0

bke− jωk

1 +
N∑

k=1
ake− jωk

; N ≥ M (4.11)

which are causal and physically realizable. The basic digital filter design problem is
to approximate any of the ideal frequency response characteristics with a system that
has frequency response H(ω) by properly selecting the coefficient {ak} and {bk}.

In practice it is not necessary to insist that the magnitude |H(ω)| is constant in
the entire passband of the filters. A small amount of ripple in the passband is usually
tolerable. Similarly it is not necessary for the filter response |H(ω)| to be zero in the
stopband. A small nonzero value or a small amount of ripple in the stopband is also
tolerable. The magnitude response of a practical lowpass filter is shown in Fig. 4.2.

The transition of the frequency response from passband to stopband defines the
transition band or transition region of the filter. The band edge frequency ωp defines
the edge of the passband, while the frequency ωs denotes the beginning of the stop-
band. Thus the width of the transition band is ωs − ωp. The width of the passband
is usually called the bandwidth of the filter.

In any filter design problem, one may specify

(i) The maximum passband ripple δp.
(ii) The maximum stopband ripple δs .
(iii) Passband edge frequency ωp.
(iv) Stopband edge frequency ωs .

Based on these specifications,wemay select the parametersak andbk in the frequency
response characteristic which best approximates the desired specifications.
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0 p s

Fig. 4.2 Magnitude response of a practical lowpass filter

4.3 Structures for Realization of the FIR Filter

In general an FIR system is described by the following difference equation:

y(n) =
N−1∑
k=0

bk x(n − k) (4.12)

Y (z) =
N−1∑
k=0

bk z−k X (z)

H(z) = Y (z)

X (z)
=

N−1∑
k=0

bk z−k = b0 + b1z−1 + b2z−2 + · · · + bN−1z−(N−1) (4.13)

where H(z) is transfer function.

H(z) = Z [h(n)]

=
N−1∑
k=0

h(k)z−k = h(0) + h(1)z−1 + h(2)z−2 + · · · + h(N − 1)z−(N−1)

(4.14)

On comparing Eqs. (4.13) and (4.14) we get

bk = h(k) for k = 0, 1, 2, 3, . . . , N − 1 (4.15)
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X(z)

b0 b1 b2

Y(z)

bN 2 bN 1

z (N 1) X(z)z 1X(z) z 2X(z) z 3X(z)
z 1 z 1 z 1 z 1

Fig. 4.3 Direct form realization

The different types of structures for realizing FIR systems are:

1. Direct form realization.
2. Cascade form realization.
3. Linear phase realization.

4.3.1 Direct Form Realization

The direct form structure that can be obtained from the z-domains equation governing
the FIR system is shown in Fig. 4.3.

Y (z) =
N−1∑
k=0

bk z−k X (z)

= b0X (z) + b1z−1X (z) + b2z−2X (z) + · · · + bN−1z−(N−1) X (z) (4.16)

4.3.2 Cascade Form Realization

The transfer function of FIR system is (N − 1)th order polynomial in z. This poly-
nomial can be factorized into second-order factors (when N is odd) and the transfer
function can be expressed as a product of second-order factors.

When N is odd, H(z) =
(N−1)/2∏

i=1

(c0i + c1i z
−1 + c2i z

−2) (4.17)

= H1H2 . . . H(N−1)/2
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When N is even, H(z)will have one first-order and (N − 2)/2 second-order section.

When N is even, H(z) = (c01 + c11z−1)

N/2∏
i=2

(c0i + c1i z
−1 + c2i z

−2) (4.18)

= H1H2 . . . HN/2

4.3.3 Linear Phase Realization

In FIR systems for linear phase response, the impulse response should be symmet-
rical. For this,

h(k) = h(N − 1 − k) (4.19)

When N is Even

H(z) =
N−1∑
k=0

h(k)z−k =
(N/2)−1∑

k=0

h(k)z−k +
N−1∑

k=(N/2)

h(k)z−k (4.20)

Let m = N − 1 − k =⇒ k = N − 1 − m

When k = N

2
;=⇒ m = N − 1 − N

2
= N

2
− 1

When k = N − 1;=⇒ m = N − 1 − (N − 1) = 0

∴ H(z) =
(N/2)−1∑

k=0

h(k)z−k +
(N/2)−1∑

m=0

h(N − 1 − m)z−(N−1−m)

On replacing m by k we get,

H(z) =
(N/2)−1∑

k=0

h(k)z−k +
(N/2)−1∑

k=0

h(N − 1 − k)z−(N−1−k)

=
(N/2)−1∑

k=0

h(k)z−k +
(N/2)−1∑

k=0

h(k)z−(N−1−k)

H(z) =
(N/2)−1∑

k=0

h(k)[z−k + z−(N−1−k)]
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Fig. 4.4 Linear phase realization when N is even

Therefore,

Y (z) =
(N/2)−1∑

k=0

h(k)[z−k X (z) + z−(N−1−k) X (z)] where h(k) = bk

= b0[X (z) + z−(N−1) X (z)] + b1[z−1X (z) + z−(N−2) X (z)]
+ · · · + b(N/2)−1[z−[(N/2)−1] X (z) + z−(N/2) X (z)]

(4.21)

Equation (4.21) is realized in Fig. 4.4.

When N is Odd

H(z) =
N−1∑
k=0

h(k)z−k =
N−3
2∑

k=0

h(k)z−k + h

(
N − 1

2

)
z−( N−1

2 ) +
N−1∑

k= N+1
2

z−1 (4.22)

Let m = N − 1 − k =⇒ k = N − 1 − m

When k = N + 1

2
;=⇒ m = N − 3

2
When k = N − 1;=⇒ m = 0

∴ H(z) =
N−3
2∑

k=0

h(k)z−k + h

(
N − 1

2

)
z−( N−1

2 )

N−3
2∑

m=0

h(N − 1 − m)z−(N−1−m)
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Fig. 4.5 Linear phase realization when N is odd

On replacing m by k we get

H(z) =
N−3
2∑

k=0

h(k)z−k + h

(
N − 1

2

)
z−( N−1

2 )

N−3
2∑

k=0

h(N − 1 − k)z−(N−1−k)

=
N−3
2∑

k=0

h(k)[z−k + z−(N−1−k)] + h

(
N − 1

2

)
z−( N−1

2 ) ∵ (bk = h(k))

Y (z) = b N−1
2

z−( N−1
2 )X (z) +

N−3
2∑

k=0

bk(z
−k X (z)) + z−(N−1−k) X (z)

Y (z) = b N−1
2

z−( N−1
2 )X (z) + b0[X (z) + z−(N−1) X (z)] + · · ·

+b N−3
2

[
z−( N−3

2 )X (z) + z−(N+2) X (z)
]

(4.23)

Equation (4.23) is realized in Fig. 4.5.

Example 4.1
Draw the direct form structure of the FIR system described by the following transfer
function:

H(z) = 1 + 1

2
z−1 + 3

4
z−2 + 1

4
z−3 + 1

2
z−4 + 1

5
z−5
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X(z)

Y(z)

z 1X(z) z 2X(z) z 3X(z) z 4X(z) z 5X(z)

1/51/21/43/41/21

z 1 z 1 z 1 z 1 z 1

Fig. 4.6 Direct form (or) transversal realization of H(z) for Example 4.1

Solution

Y (z) = X (z) + 1

2
z−1X (z) + 3

4
z−2X (z) + 1

4
z−3X (z) + 1

2
z−4X (z) + 1

5
z−5X (z)

The direct form or transversal realization of Example 4.1 is shown in Fig. 4.6.

Example 4.2
Realize the FIR system in (1) Direct form (2) Cascade form.

H(z) =
(
1 + 1

2
z−1

)(
1 + 1

2
z−1 + 1

4
z−2

)

(Anna University, December, 2005)
Solution Given

H(z) =
(
1 + 1

2
z−1

)(
1 + 1

2
z−1 + 1

4
z−2

)

(1) Direct form realization

H(z) = Y (z)

X (z)

= 1 + 1

2
z−1 + 1

4
z−2 + 1

2
z−1 + 1

4
z−2 + 1

8
z−3

= 1 + z−1 + 1

2
z−2 + 1

8
z−3

Y (z) = X (z) + z−1X (z) + 1

2
z−2X (z) + 1

8
z−3X (z)

The direct form FIR filter for Example 4.2 is shown in Fig. 4.7.



4.3 Structures for Realization of the FIR Filter 397

X(z)

Y(z)

z 1X(z) z 2X(z) z 3X(z)
z 1 z 1 z 1

1 1 1
2

1
8

Fig. 4.7 Direct form realization of FIR filter for Example 4.2

Direct form realization for Example 4.2 is shown in Fig. 4.7.

X(z)

Y(z)
Y1(z)

z 1 z 1 z 1

11 1
2

1
4

1
2

Fig. 4.8 Cascade form realization of FIR filter for Example 4.2

(2) Cascade form realization

H(z) =
(
1 + 1

2
z−1

)(
1 + 1

2
z−1 + 1

4
z−2

)
= H1(z) · H2(z)

where

H1(z) = 1 + 1

2
z−1

H2(z) = 1 + 1

2
z−1 + 1

4
z−2

h1(n) =
{
1,

1

2

}

h2(n) =
{
1,

1

2
,
1

4

}

Here h1(n) and h2(n) do not satisfy the condition h(n) �= h(∞ − 1 − ∞). Therefore,
both systems are realized in direct form. Cascade form realization of FIR filter for
Example 4.2 is shown in Fig. 4.8.
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Example 4.3
Obtain cascade realization of linear phase FIR filter having system function

H(z) =
(
1 + 1

2
z−1 + z−2

)(
2 + 1

4
z−1 + 2z−2

)

using minimum number of multipliers.

(Anna University, April, 2005)
Solution Given

H(z) =
(
1 + 1

2
z−1 + z−2

)(
2 + 1

4
z−1 + z−2

)
= H1(z)H2(z)

where

H1(z) = 1 + 1

2
z−1 + z−2,

H2(z) = 2 + 1

4
z−1 − 2z−2

h1(n) =
{
1 + 1

2
, 1

}
and N = 3,

h2(n) =
{
2 + 1

4
, 2

}
and N = 3

Here h1(n) and h2(n) satisfy the condition h(n) = h(N − 1 − n).
Therefore,

H1(z) = (1 + z−2) + 1

2
z−1

H2(z) = 2(1 + z−2) + 1

4
z−1
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X(z)

Y(z)

z 1X(z)

z 2X(z) z 2X(z)

z 1X(z)
z 1

z 1 z 1

z 1

1 1
421

2

Fig. 4.9 Cascade connection of linear phase FIR filter of Example 4.3

Cascade form realization of FIR filter for Example 4.3 is shown in Fig. 4.9.

Example 4.4
Realize the following system with minimum number of multipliers

(i) H(z) = 1

4
+ 1

2
z−1 + 3

4
z−2 + 1

2
z−3 + 1

4
z−4

(ii) H(z) = 1 + 1

2
z−1 + 1

2
z−2 + z−3

(iii) H(z) =
(
1 + 1

2
z−1 + z−2

)(
1 + 1

4
z−1 + z−2

)

Solution

(i) Given

H(z) = 1

4
+ 1

2
z−1 + 3

4
z−2 + 1

2
z−3 + 1

4
z−4

H(z) =
∞∑

n=0

h(n)z−n = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + · · ·

Comparing these two equations, we get the following impulse response:

h(n) =
{
1

4
,
1

2
,
3

4
,
1

2
,
1

4

}
and N = 5

Here h(n) satisfies the condition h(n) = h(N − 1 − n)
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X(z)

Y(z)

3/41/21/4

z 1X(z) z 2X(z)

z 4X(z) z 3X(z)

z 1 z 1

z 1z 1

Fig. 4.10 Linear phase realization of H(z) for Example 4.4(i)

∴ H(z) = Y (z)

X (z)
= 1

4
+ 1

2
z−1 + 3

4
z−2 + 1

2
z−3 + 1

4
z−4

= Y (z)

X (z)
= 1

4

(
1 + z−4

) + 1

2

(
z−1 + z−3

) + 3

4
z−2

Y (z) = 1

4

(
X (z) + z−4X (z)

) + 1

2

(
z−1X (z) + z−3X (z)

) + 3

4
z−2X (z)

Y (z) is realized as shown in Fig. 4.10.

(ii) Given

H(z) = 1 + 1

2
z−1 + 1

2
z−2 + z−3

Impulse response

h(n) =
{
1,

1

2
,
1

2
, 1

}
and N = 4

Here h(n) satisfies the condition

h(n) = h(N − 1 − n)

∴ Y (z)

X (z)
= [1 + z−3] + 1

2
[z−1 + z−2]

Y (z) = [X (z) + z−3X (z)] + 1

2
[z−1X (z) + z−2X (z)]

Y (z) is realized as shown in Fig. 4.11.
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Fig. 4.11 Linear phase
realization of H(z) for
Example 4.4(ii)

X(z)

1

Y(z)

z 1X(z)

z 3X(z) z 2X(z)

1/2

z 1

z 1 z 1

(iii) Given

H(z) =
(
1 + 1

2
z−1 + z−2

)(
1 + 1

4
z−1 + z−2

)
= H1(z)H2(z)

where

H1(z) = 1 + 1

2
z−1 + z−2 = (1 + z−2) + 1

2
z−1

H2(z) = 1 + 1

4
z−1 + z−2 = (1 + z−2) + 1

4
z−1

Consider

H1(z) = Y1(z)

X (z)
= (1 + z−2) +

(
1

2
z−1

)

Y1(z) = [X (z) + z−2X (z)] + 1

2
z−1X (z)

Consider

H2(z) = Y (z)

Y1(z)
= (1 + z−2) +

(
1

4
z−1

)

Y (z) = [Y1(z) + z−2Y1(z)] + 1

4
z−1Y1(z)

Y (z) is realized as shown in Fig. 4.12.
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1 1

X(z)

Y(z)

z 1X(z)

H1(z) H2(z)
z 1Y1(z)

z 2Y2(z)

Y1(z)

z 2X(z)

1/2 1/4

z 1

z 1 z 1

z 1

Fig. 4.12 Linear phase realization of H(z) for Example 4.4(iii)

4.3.4 Lattice Structure of an FIR Filter

Let us consider an FIR filter with system function

H(z) = Am(z) = 1 +
m∑

k=1

αm(k)z−k, m ≥ 1

Y (z)

X (z)
= 1 +

m∑
k=1

αm(k)z−k

Y (z) = X (z) +
m∑

k=1

αm(k)z−k X (z)

Taking inverse z-transform on both sides we get

y(n) = x(n) +
m∑

k=1

αm(k)x(n − k) (4.24)

Interchanging the role of input and output in Eq. (4.24) we get

x(n) = y(n) +
m∑

k=1

αm(k)y(n − k) (4.25)



4.3 Structures for Realization of the FIR Filter 403

f1(n) = y(n)
f0(n)

z 1

x(n)

g0(n) g0(n 1)
g1(n)

k1

k1

Fig. 4.13 Single stage all-zero lattice structure

We find that Eq. (4.25) describes an IIR system having the system function H(z) =
1

Am (z) , while the system described by the difference equation in Eq. (4.24) represents
an FIR system with system function H(z) = Am(z).

Based on this, we use lattice structure system described in Chap.3 to obtain a
lattice structure for an all-zero FIR system by interchanging the role of input and
output.

For an all-pole filter the input x(n) = fN (n) and the output y(n) = f0(n). For
an all-zero FIR filter of order M − 1 the input x(n) = f0(n) and the output y(n) =
fm−1(n).
For m = 1 the Eq. (4.24) reduces to

y(n) = x(n) + α1x(n − 1) (4.26)

This output can also be obtained from a single-stage lattice filter shown in Fig. 4.13
from which we have

x(n) = f0(n) = g0(n)

y(n) = f1(n) = f0(n) + k1g0(n − 1)

= x(n) + k1x(n − 1) (4.27)

and

g1(n) = k1 f0(n) + g0(n − 1)

= k1x(n) + x(n − 1) (4.28)

Comparing Eq. (4.26) with Eq. (4.27) we get

α1(0) = 1

α1(1) = k1

http://dx.doi.org/10.1007/978-3-030-96322-4_3
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f2(n) = y(n)f1(n)f0(n)

z 1 z 1

x(n)

g0(n) g1(n) g1(n 1) g2(n)

k1

k1

k2

k2

Fig. 4.14 Two stage all-zero lattice structure

Now let us consider an FIR filter for which m = 2.

y(n) = x(n) + α2(1)x(n − 1) + α2(2)x(n − 2) (4.29)

By cascading two lattice stage as shown in Fig. 4.14 it is possible to obtain the output
y(n).

From Fig. 4.14 the output from second stage is obtained as,

y(n) = f2(n) = f1(n) + k2g1(n − 1)

g2(n) = k2 f1(n) + g1(n − 1) (4.30)

Substituting for f1(n) and g1(n − 1) from Eq. (4.28) in Eq. (4.30), we get

y(n) = f2(n) = x(n) + k1x(n − 1) + k2[k1x(n − 1) + x(n − 2)]
= x(n) + k1(1 + k2)x(n − 1) + k2x(n − 2) (4.31)

Equation (4.31) is identical to Eq. (4.29) from which we have

α2(0) = 1,

α2(2) = k2,

α2(1) = k1(1 + k2)

= α1(1)[1 + α2(2)] (4.32)

Similarly

g2(n) = α2x(n) + k1(1 + k2)x(n − 1) + x(n − 2) (4.33)

From Eqs. (4.31) and (4.33), we observe that the filter coefficients for the lattice filter
that produces f2(n) are {1, α2(1), α2(2)} while the coefficients for filter with output
g2(n) are {α2(2), α2(1), 1}. We also note that these two sets of coefficients are in
reverse order.
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For a m − 1 stage filter

f0(n) = g0(n)

fm(n) = fm−1(n) + km gm−1(n − 1)

gm(n) = km fm−1(n) + gm−1(n − 1), m = 1, 2, · · · m − 1 (4.34)

The output of m − 1 stage filter

y(n) = fm−1(n)

4.3.4.1 Conversion of Lattice Coefficients to Direct Form
Filter Coefficients

For m = 3 the Eq. (4.24) can be written as

y(n) = x(n) + α3(1)x(n − 1) + α3(2)x(n − 2) + α3(3)x(n − 3) (4.35)

We have

y(n) = f3(n) = f2(n) + k3g2(n − 1)

= x(n) + α2(1)x(n − 1) + α2(2)x(n − 2) + k3α2(2)x(n − 1)

+k3α2(1)x(n − 2) + k3x(n − 3)

= x(n) + [α2(1) + k3α2(1)]x(n − 1) + [α2(2) + k3α2(1)]x(n − 2)

+k3x(n − 3) (4.36)

Comparing Eqs. (4.35) and (4.36) we get

α3(0) = 1

α3(1) = α2(1) + k3α2(1)

= α2(1) + α3(3)α2(1)

α3(2) = α2(2) + k3(3)α2(1)

= α2(2) + α3(3)α2(1) (4.37)

α3(3) = k3

From Eqs. (4.32) and (4.37) for a general case we find that

αm(0) = 1

αm(m) = km

αm(k) = αm−1(k) + km(m)αm−1(m − k) (4.38)
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Equation (4.38) can be used to convert the lattice filter coefficients to direct form
FIR filter coefficients.

Example 4.5
Consider an FIR lattice filter coefficients

k1 = 1

3
, k2 = 1

4
, k3 = 1

2

Determine the FIR filter coefficients for the direct form structure.

Solution From the given data and from Eq. (4.38) we find that

α3(0) = 1

α3(3) = k3 = 1

2

α1(1) = k1 = 1

3

α2(2) = k2 = 1

4

From Eq. (4.38) we write

αm(k) = αm−1(k) + kmαm−1(m − k)

For m = 2 and k = 1

α2(1) = α1(1) + k2α1(1)

= 1

3
+ 1

4
· 1
3

= 1

3
+ 1

12
= 4 + 1

12
= 5

12

For m = 3 and k = 1

α3(1) = α2(1) + α3(3)α2(2)

= 5

12
+ 1

2
· 1
4

= 5

12
+ 1

8

= 40 + 12

96

= 52

96
= 13

24
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For m = 2 and k = 2

α3(2) = α3(2) + α3(3)α2(1)

= 1

4
+ 1

2
· 5

12

= 1

4
+ 5

24

= 6 + 5

24

= 11

24

α3(0) = 1, α3(1) = 13

24
, α3(2) = 11

2
, α3(3) = 1

2

4.3.4.2 Conversion of Direct Form FIR Filter Coefficients to Lattice
Coefficients

For a three-stage direct form FIR filter

y(n) = x(n) + α3(1)x(n − 1) + α3(2)x(n − 2) + α3(3)x(n − 3) (4.39)

For a three-stage lattice structure

y(n) = f3(n) = f2(n) + k3g2(n − 1)

g3(n) = k3 f2(n) + g2(n − 1)

y(n) = f3(n) = f2(n) + k3[g3(n) − k3 f2(n)]
y(n) = f3(n) = f2(n)[1 − k2

3] + k3g3(n)

f2(n)[1 − k2
3] = f3(n) − k3g3(n)

f2(n) = f3(n) − k3g3(n)

1 − k23

=
[

x(n) + α3(1)x(n − 1) + α3(2)x(n − 2) + α3(3)x(n − 3)

−k23x(n) − α3(3)α3(2)x(n − 1) − α3(3)α3(1)x(n − 2)

−α3(3)x(n − 3)

]/
1 − α2

3(3)

= x(n)+α3(1) − α3(2)α3(2)

1 − α2
3(2)

x(n − 1)+α3(2) − α3(3)α3(1)

1 − α2
3(3)

x(n−2)

(4.40)
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Comparing Eqs. (4.39) and (4.40) we get

α2(0) = 1

α2(1) = α3(1) − α3(3)α3(2)

1 − α2
3(3)

α2(2) = α3(2) − α3(3)α3(1)

1 − α2
3(3)

In general for a m-stage filter

αm−1(0) = 1

km = αm(m)

αm−1(k) = αm(k) − αm(m)αm(m − k)

1 − α2
m(m)

, 1 ≤ k ≤ m − 1

(4.41)

Example 4.6
An FIR filter is given by the difference equation

y(n) = x(n) + 4

3
x(n − 1) + 1

2
x(n − 2) + 2

3
x(n − 3)

Determine its lattice form.

Solution Given

y(n) = x(n) + 4

3
x(n − 1) + 1

2
x(n − 2) + 2

3
x(n − 3)

α3(0) = 1, α3(1) = 4

3
, α3(2) = 1

2
, α3(3) = 2

3

From Eq. (4.41) we get

α2(0) = 1

k3 = α3(3) = 2

3

αm−1(k) = αm(k) − αm(m)αm(m − k)

1 − α2
m(m)

, 1 ≤ k ≤ 2
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For m = 3 and k = 1

α2(1) = α3(1) − α3(3)α3(2)

1 − α2
3(3)

=
4
3 − 2

3 · 1
2

1 − ( 23 )
2

=
4
3 − 2

6

1 − 4
9

= 1.8

For m = 3 and k = 2

k2 = α2(2) = α3(2) − α3(3)α3(1)

1 − α2
3(3)

=
1
2 − 2

3 · 4
3

1 − ( 23 )
2

=
1
2 − 8

9

1 − 4
9

= −0.7

For m = 2 and k = 1

k1 = α1(1) = α2(1) − α2(2)α2(1)

1 − α2
2(2)

= 1.8 − (−0.7)(1.8)

1 − (−0.7)2

= 3.06

0.51
= 6

k1 = 6, k2 = −0.7, k3 = 0.6667

The lattice structure is shown in Fig. 4.15.
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f 3(
n)

 =
 y

(n
)

f 1(
n)

f 2(
n)

f 0(
n)

z
1

z
1

z
1

x(
n)

g 0
(n

)
g 1

(n
)

g 2
(n

)
g 3

(n
)

k 1
6

k 1
6

k 2
0.

7

k 2
0.

7

k 3
0.

66
67

k 3
0.

66
67

F
ig
.4
.1
5

L
at
tic

e
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ur
e
fo
r
th
e
E
xa
m
pl
e
4.
6
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Example 4.7a
An FIR filter is given by the difference equation

y(n) = 2x(n) + 4

5
x(n − 1) + 3

2
x(n − 2) + 2

3
x(n − 3)

Determine the lattice form.

(Anna University, May 2007)
Solution Given

y(n) = 2x(n) + 4

5
x(n − 1) + 3

2
x(n − 2) + 2

3
x(n − 3)

= 2

[
x(n) + 2

5
x(n − 1) + 3

4
x(n − 2) + 1

3
x(n − 3)

]

= k0

[
1 +

3∑
k=1

αm(k)x(n − k)

]

where k0 = 2

α3(0) = 1, α3(1) = 2

5
, α3(2) = 3

4
, α3(3) = 1

3

From Eq. (4.24), we get

α2(0) = 1

k3 = α3(3) = 1

3

αm−1(k) = αm(k) − αm(m)αm(m − k)

1 − α2
m(m)

, 1 ≤ k ≤ 2

For m = 3 and k = 1

α2(1) = α3(1) − α3(3)α3(2)

1 − α2
3(3)

=
2
5 − 1

3 · 3
4

1 − ( 13 )
2

α2(1) = 0.16875

Lattice form realization of FIR filter for Example 4.7(a) is shown in Fig. 4.16.
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f 3(
n)

 =
 y

(n
)

f 1(
n)

f 2(
n)

f 0(
n)

z
1

z
1

z
1

x(
n)

g 0
(n

)
g 1

(n
)

g 2
(n

)
g 3

(n
)

k 1
0.

09
96

k 1
0.

09
96

k 2
0.

69
37

5

k 2
0.

69
37

5

k 3
0.

33
33

k 3
0.

33
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F
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.1
6
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e
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fo
r
th
e
E
xa
m
pl
e
4.
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For m = 3 and k = 2

k2 = α2(2) = α3(2) − α3(3)α3(1)

1 − α2
3(3)

=
3
4 − 1

3 · 2
5

1 − ( 13 )
2

= 111

160

k2 = 0.69375

For m = 2 and k = 1

k1 = α1(1) = α2(1) − α2(2)α2(1)

1 − α2
2(2)

= 0.16875 − (0.69375)(0.16875)

1 − (0.69375)2

k1 = 0.0996

Lattice form coefficients are,

k1 = 0.0996, k2 = 0.69375, k3 = 0.3333.

Example 4.7(b)
Given a three stage lattice filter with coefficients k1 = 1

4 and k2 = 1
4 , k3 = 1

3 . Deter-
mine the FIR filter coefficients for the direct form structure?

(Anna University, May, 2007)
Solution From the given data and from Eq. (4.38), we can find that

α3(0) = 1, α3(3) = k3 = 1

3

α1(1) = k1 = 1

4
, α2(2) = k2 = 1

4

We know that
αm(k) = αm−1(k) + kmαm−1(m − k)

For m = 2 and k = 1
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α2(1) = α1(1) + k2α1(1)

α2(1) = 1

4
+ 1

4
.
1

4
= 1

4
+ 1

16

= 4 + 1

16
= 5

16

For m = 3 and k = 1

α3(1) = α2(1) + α3(3)α2(2)

= 5

16
+ 1

3
.
1

4
= 5

16
+ 1

12

= 60 + 16

192
= 76

192
= 0.3958

= 19

48

For m = 3 and k = 2

α3(2) = α2(2) + k3α2(1)

= 1

4
+ 1

3
.
5

16

α3(2) = 1

4
+ 5

48
= 12 + 5

48
= 17

48

Direct form coefficients are,

α3(0) = 1, α3(1) = 19

48
, α3(2) = 17

48
, α3(3) = 1

3

4.4 FIR Filters

The filters designed by using finite number of samples of impulse response are
called FIR filters. These finite number of samples are obtained from the infinite
duration desired impulse response hd(n). Here hd(n) is the inverse Fourier trans-
form of Hd(ω), where Hd(ω) is the ideal (desired) frequency response. The various
methods of designing FIR filters differ only in themethod of determining the samples
of h(n) from the samples of hd(n). They are discussed ahead.
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4.4.1 Characteristics of FIR Filters with Linear Phase

Let h(n) be a causal finite duration sequence defined over the interval 0 ≤ n ≤ N − 1
and the samples of h(n) be real. The Fourier transform of h(n) is given by

H(ω) =
N−1∑
n=0

h(n)e− jωn (4.42)

which is periodic with period 2π . Therefore

H(ω) = H(ω + 2πm), m = 0,±1,±2, . . . (4.43)

with the constraint that h(n) is real and H(ω) is complex.

H(ω) = ±|H(ω)|e jθ(ω)

The operators “±” represents real part of H(ω) taking on both +ve and −ve values.
When h(n) is real, then |H(ω)| is symmetric function and ∠H(ω) or ∠θ(ω) is
anti-symmetric function, i.e.,

|H(ω)| = |H(−ω)|
∠θ(ω) = −∠θ(−ω) (4.44)

For many practical FIR filters, exact linearity of phase is a desired goal.
Let us assume that the phase of H(ω) is a linear function of ω, i.e.,

θ(ω) ∝ ω

θ(ω) ∝ −αω, −π ≤ ω ≤ π (4.45)

where α is a constant phase delay in samples. From Eqs. (4.43) and (4.45) we get

H(ω) = ±|H(ω)|e− jαω

From Eq. (4.24) we get

H(ω) =
N−1∑
n=0

h(n)e− jωn

N−1∑
n=0

h(n)e− jωn = ±|H(ω)|e− jαω (4.46)

N−1∑
n=0

h(n)[cosωn − j sinωn] = ±|H(ω)|[cosαω − j sin αω]
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On equating the real and imaginary parts we get,

± |H(ω)| cosαω =
N−1∑
n=0

h(n) cosωn (4.47)

±|H(ω)| sin αω =
N−1∑
n=0

h(n) sinωn (4.48)

Dividing the Eq. (4.20) by Eq. (4.48), we get

sin αω

cosαω
=

N−1∑
n=0

h(n) sinωn

N−1∑
n=0

h(n) cosωn

(4.49)

sin αω

N−1∑
n=0

h(n) cosωn = cosαω

N−1∑
n=0

h(n) sinωn

N−1∑
n=0

h(n)[sin αω cosωn − cosαω sinωn] = 0 (4.50)

N−1∑
n=0

h(n) sin(α − n)ω = 0 (4.51)

The solution of Eq. (4.51) exits when

α = N − 1

2
and h(n) = h(N − 1 − n), 0 ≤ n ≤ N − 1 (4.52)

From the condition, α = N−1
2 we can say that for every value of N there is only one

value of phase delay α for which linear phase can be obtained easily.
From the condition, h(n) = h(N − 1 − n) we can say that for this value of α, the

h(n) has a special kind of symmetry. The symmetry impulse response is shown in
Fig. 4.17.

The definition of linear phase filter θ(ω) = −ωα requires to have both constant
group delay and constant phase delay.

If only constant group delay is required an another type of linear phase filter exists,
in which, the phase of H(ω) is a piece-wise linear function of ω. For this case H(ω)

can be expressed as

H(ω) = ±|H(ω)|e+ j (β−ωα) (4.53)

Solution of Eq. (4.53) exists only if α = N−1
α

, β = ±π
2 and
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Fig. 4.17 Symmetry impulse response for N = odd and N = even

h(n)

center of 
anti-symmetry

N 5, 2

0 1 2 3 4 5 n

center of 
anti-symmetry

h(n) N 6, 2.5

N is EvenN is Odd

0 1 2 3 4 5 n

Fig. 4.18 Anti-symmetry impulse response for N = odd and N = even

h(n) = −h(N − 1 − n) for 0 ≤ n ≤ −1 (4.54)

The anti-symmetric impulse response is shown in Fig. 4.18.

4.4.1.1 Phase Delay and Group Delay

The phase delay and group delay are the two important parameters that characterize
the frequency response characteristics of a digital filter. Suppose the system is excited
by the following input which is sinusoidal of frequency ω0 and amplitude A.

x(n) = A cos(ω0n + φ)

For the LTI system, the output may be expressed by the following equation.
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y(n) = A|H(e jω0)| cos
(

ω0

(
n + θ(ω0)

ω0

)
+ 


)
= A|H(e jω0)| cos(ω0(n − τp(ω0) + 
)

where

τp(ω0) = θ(ω0)

ω0

τp is called the phase delay. Now the output is a time delayed version of the input
x(n).

When the input signal contains many sinusoidal components with different fre-
quencies which are different from harmonics, each component will go through differ-
ent phase delays when they are passed through a LTI discrete system and the signal
delay now is determined bywhat is named as group delay denoted by the letter τg(ω).
The group delay is defined as,

τg(ω) = dθ(ω)

dω

Example 4.8
Determine the frequency response of FIRfilter defined by y(n) = 0.25x(n) + x(n −
1) + 0.25x(n − 2). Calculate the phase delay and group delay.

(Anna University, December, 2005)
Solution Given

y(n) = 0.25x(n) + x(n − 1) + 0.25x(n − 2)

Taking Fourier transform on both sides

Y (e jω) = 0.25X (e jω) + e− jω X (e jω) + 0.25e− j2ω X (e jω)

H(e jω) = Y (e jω)

X (e jω)
= 0.25 + e− jω + 0.25e−2 jω

= e− jω(0.25e jω + 1 + 0.25e− jω)

= e− jω(1 + 0.5 cosω)

H(e jω) = e− jω H̄(e jω)
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We know that
H(e jω) = e jθ(ω) H̄(e jω)

Comparing these two equations, we get

θ(ω) = −ω

The phase delay

τp = −θ(ω)

ω
= ω

ω
= 1

The group delay

−dθ(ω)

dω
= − d

dω
(−ω) = 1

4.4.2 Frequency Response of Linear Phase FIR Filter

Depending on the value of N and the type of symmetry of the filter impulse response
there are four possible types of linear phase. The following are the four cases of
impulse response for the linear phase FIR filters.

Case I. Symmetric impulse response when N is odd.
Case II. Symmetric impulse response when N is even.
Case III. Anti-symmetric impulse response when N is odd.
Case IV. Anti-symmetric impulse response when N is even.

4.4.2.1 Symmetric Impulse Response of the Linear Phase FIR Filters
When N Is Odd

The Fourier transform of h(n) is

H(ω) = H(e jω) =
∞∑

n=−∞
h(n)e− jωn

Since the impulse response of FIR filter has only N samples, the limits of summation
can be changed to n = 0 to N − 1

H(ω) =
N−1∑

n=−∞
h(n)e− jωn
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Fig. 4.19 Symmetry impulse response when N = odd

Let impulse response h(n) be symmetric and it has odd number of samples. Let
N = 9. The symmetrical impulse response is shown in Fig. 4.19.

When N is an odd number, the symmetrical impulse response will have the center
of symmetry at n = (N − 1)/2. Hence, H(e jω) can be expressed as

H(ω) =
N−3
2∑

n=0

h(n)e− jωn + h

[
N − 1

2

]
e− jω[ N−1

2 ] +
N−1∑

n=(N+1)/2

h(n)e− jωn (4.55)

Let m = N − 1 − n. Therefore, n = N − 1 − m.

When n = N + 1

2
; m = N − 1 − N + 1

2
= N − 3

2
When n = N − 1; m = N − 1 − (N − 1) = 0

H(ω) =
N−3
2∑

n=0

h(n)e− jωn + h

[
N − 1

2

]
e− jω[ N−1

2 ] +
N−3
2∑

m=0

h(N − 1 − m)e− jω(N−1−m)

Replacing m by n we get

H(ω) =
N−3
2∑

n=0

h(n)e− jωn + h

[
N − 1

2

]
e− jω[ N−1

2 ] +
N−3
2∑

n=0

h(N − 1 − n)e− jω(N−1−n)

For symmetrical impulse response h(N − 1 − n) = h(n). Therefore
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H(ω) =
N−3
2∑

n=0

h(n)e− jωn + h

[
N − 1

2

]
e− jω[ N−1

2 ] +
N−3
2∑

n=0

h(n)e(− jω(N−1)+ jωn)

H(ω) = e− jω[ N−1
2 ]

⎡
⎣h

[
N − 1

2

]
+

N−3
2∑

n=0

h(n)
[
e jω[ N−1

2 ]− jωn + e− jω[ N−1
2 ]+ jωn

]⎤⎦

= e− jω[ N−1
2 ]

⎡
⎣h

[
N − 1

2

]
+

N−3
2∑

n=0

h(n)
[
e jω[ N−1

2 −n] + e− jω[ N−1
2 −n]

]⎤⎦

= e− jω[ N−1
2 ]

⎡
⎣h

[
N − 1

2

]
+

N−3
2∑

n=0

2h(n) cosω

(
N − 1

2
− n

)⎤
⎦

Let k = N − 1

2
− n; n = N − 1

2
− k

When n = 0, k = N − 1

2
and

When n = N − 3

2
, k = 1

= e− jω[ N−1
2 ]

⎡
⎣h

[
N − 1

2

]
+

N−1
2∑

k=1

2

(
N − 1

2
− k

)
cosωk

⎤
⎦

Replacing k by n we get

H(ω) = e− jω[ N−1
2 ]

⎡
⎣h

[
N − 1

2

]
+ 2

N−1
2∑

n=1

h

(
N − 1

2
− n

)
cosωn

⎤
⎦ (4.56)

Equation (4.56) is the frequency response of linear phase FIR filter when impulse
response is symmetric and N is odd.

Magnitude function of H(ω) is given by

|H(ω)| = h

[
N − 1

2

]
+ 2

N−1
2∑

n=1

h

(
N − 1

2
− n

)
cosωn (4.57)

Phase function of H(ω) is given by

∠H(ω) = −ω

[
N − 1

2

]
= −ωα (4.58)

where α = (N − 1)/2. The magnitude response of H(ω) is shown in Fig. 4.20.
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Fig. 4.20 Magnitude response of H(ω)

Fig. 4.21 Symmetry
impulse response when
N = even

center of 
symmetry

N 1
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n

2

The magnitude response of H(ω) is symmetric with ω = π when the impulse
response is symmetric and N is odd.

4.4.2.2 Symmetric Impulse Response of the Linear Phase FIR Filters
When N Is Even

Let h(n) be symmetric and impulse response, for N = 10 is shown in Fig. 4.21.
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The Fourier transform of h(n) is

H(ω) =
N−1∑
n=0

h(n)e− jωn

=
N
2 −1∑
n=0

h(n)e− jωn +
N−1∑
n= N

2

h(n)e− jωn (4.59)

Let m = N − 1 − n =⇒ n = N − 1 − m

When n = n

2
;=⇒ m = N − 1 − N

2
= N

2
− 1

When n = N − 1;=⇒ m = N − 1 − N + 1 = 0

H(ω) =
N
2 −1∑
n=0

h(n)e− jωn +
N
2 −1∑
m=0

h(N − 1 − m)e− jω(N−1−m)

replace m by n and h(n) = h(N − 1 − m)

H(ω) =
N
2 −1∑
n=0

h(n)e− jωn +
N
2 −1∑
n=0

h(n)e− jω(N−1)+ jωn

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

h(n)
(
e jω( N−1

2 )− jωn + e− jω( N−1
2 )+ jωn

)⎤⎦

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

h(n)
(
e jω( N−1

2 −n) + e− jω( N−1
2 −n)

)⎤⎦

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

2h(n) cos

(
N − 1

2
− n

)
ω

⎤
⎦ (

∵ cos θ = eiθ + e−iθ

2

)

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

2h(n) cos

(
N

2
− n − 1

2

)
ω

⎤
⎦
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Let k = N

2
− n =⇒ n = N

2
− k

When n = 0;=⇒ k = N

2

When n = N

2
− 1;=⇒ k = 1

H(ω) = e− jω( N−1
2 )

⎡
⎣ N

2∑
k=1

2h

(
N

2
− k

)
cosω

(
k − 1

2

)⎤⎦
Replacing k by n we get

H(ω) = e− jω( N−1
2 )

⎡
⎣ N

2∑
n=1

2h

(
N

2
− n

)
cosω

(
n − 1

2

)⎤⎦ (4.60)

Equation (4.60) is the frequency response of linear phase FIR filter when impulse
response is symmetric and N is even.

Magnitude function of H(ω) is given by

|H(ω)| =
N/2∑
n=1

2h

(
N

2
− n

)
cos

(
n − 1

2

)
ω (4.61)

Phase function of H(ω) is given by

∠|H(e jω) = −ω

[
N − 1

2

]
= −ωα where α = N − 1

2

The magnitude function of H(ω) is anti-symmetric with ω = π , when impulse
response is symmetric and N is even is shown in Fig. 4.22.

4.4.2.3 Frequency Response of Linear Phase FIR Filters When Impulse
Response Is Anti-symmetric When N Is Odd

The Fourier transform of h(n) is,

H(ω) =
∞∑

n=−∞
h(n)e− jωn
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Centre of antisymmetry

2

H(ej )

Fig. 4.22 Magnitude function of H(ω)

Since the impulse response has only N samples, the limit of summation can be
changed from N = 0 to N − 1.

∴ H(ω) =
N−1∑
n=0

h(n)e− jωn

The impulse response is anti-symmetric at n = (
N−1
2

)
, and h

(
N−1
2

) = 0. Hence
H(ω) can be expressed as,

H(ω) =
N−3
2∑

n=0

h(n)e− jωn + h

(
N − 1

2

)
e− jω( N−1

2 ) +
N−1∑

n= N+1
2

h(n)e− jωn

=
N−3
2∑

n=0

h(n)e− jωn +
N−1∑

n= N+1
2

h(n)e− jωn (4.62)

Let m = N − 1 − n =⇒ n = N − 1 − m

When n = N + 1

2
;=⇒ m = N − 1 −

(
N + 1

2

)
= N − 3

2
When n = N − 1;=⇒ m = N − 1 − (N − 1) = 0

Using the above relations, Eq. (4.62) can be written as
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H(ω) =
N−3
2∑

n=0

h(n)e− jωn +
N−3
2∑

m=0

h(N − 1 − m)e− jω(N−1−m)

On replacing m by n we get

H(ω) =
N−3
2∑

n=0

h(n)e− jωn +
N−3
2∑

n=0

h(N − 1 − m)e− jω(N−1−n)

For anti-symmetric impulse response, h(N − 1 − n) = −h(n). Therefore,

H(ω) =
N−3
2∑

n=0

h(n)e− jωn +
N−3
2∑

n=0

(−h(n))e− jω(−n)− jω(N−1)

H(ω) =
⎡
⎣ N−3

2∑
n=0

h(n)
[
e− jωn+ jω( N−1

2 ) − e− jω(−n)− jω(N−1)+ jω( N−1
2 )

]⎤⎦ e− jω( N−1
2 )

=
⎡
⎣ N−3

2∑
n=0

h(n)
[
e jω( N−1

2 −n) − e− jω( N−1
2 −n)

]⎤⎦ e− jω( N−1
2 )

because

sin θ = e jθ−e− jθ

2 j

H(ω) =
⎡
⎣ N−3

2∑
n=0

h(n)2 j sin

[
ω

(
N − 1

2
− n

)]⎤⎦ e− jω( N−1
2 )

The operator j can be written as e( jπ)/2

∴ H(ω) =
⎡
⎣ N−3

2∑
n=0

2h(n)e
jπ
2 sin

[
ω

(
N − 1

2
− n

)]⎤⎦ e− jω( N−1
2 )

=
⎡
⎣ N−3

2∑
n=0

2h(n) sin

[
ω

(
N − 1

2
− n

)]⎤⎦ e j( π
2 −ω( N−1

2 ))
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Let k = N − 1

2
− n =⇒ n = N − 1

2
− k

When n = 0;=⇒ k = N − 1

2

When n = N − 3

2
;=⇒ k = N − 1

2
− N − 3

2
= 1

H(ω) =
⎡
⎣ N−1

2∑
k=0

2h

(
N − 1

2
− k

)
sinωk

⎤
⎦ e j( π

2 −ω( N−1
2 ))

On replacing k by n we get,

H(ω) =
⎡
⎣ N−1

2∑
k=0

2h

(
N − 1

2

)
sinωn

⎤
⎦ e j( π

2 −ω( N−1
2 )) (4.63)

Equation (4.63) is the frequency response of linear phase FIR filter when impulse
response in anti-symmetric and N is odd. The magnitude function is given by Eq.
(4.64). Magnitude function

|H(ω)| =
N−1
2∑

n=1

2h

(
N − 1

2

)
sinωn (4.64)

The phase function is given by Eq. (4.65)

∠H(ω) = π

2
− ω

(
N − 1

2

)
= β − αω (4.65)

where β = π
2 and α = N−1

2 .
The sketch of symmetrical impulse response when N = 8 and its corresponding

magnitude response is shown in Fig. 4.23a, b respectively.

4.4.2.4 Frequency Response of Linear Phase FIR Filters When Impulse
Response Is Anti-symmetric When N Is Even

Let impulse response anti-symmetric with N is even is shown in Fig. 4.24.
The Fourier transform of h(n) for, impulse response of N samples

H(ω) =
N−1∑
n=0

h(n)e− jωn
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Fig. 4.23 a Anti-symmetric impulse response for N = 9. bMagnitude function of H(ω)
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Fig. 4.24 Anti-symmetric impulse response for N = even
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The impulse response is asymmetric in between n = N
2 − 1 and n = N

2

H(ω) =
N
2 −1∑
n=0

h(n)e− jωn +
N−1∑
n= N

2

h(n)e− jωn (4.66)

Let m = N − 1 − n =⇒ n = N − 1 − m

When n = N

2
;=⇒ m = N − 1 − N

2
= N

2
− 1

When n = N − 1;=⇒ m = N − 1 − (N − 1) = 0

H(ω) =
N
2 −1∑
n=0

h(n)e− jωn +
N
2 −1∑
m=0

h(N − 1 − m)e− jω(N−1−m)

On replacing m by n we get

H(ω) =
N
2 −1∑
n=0

h(n)e− jωn +
N
2 −1∑
n=0

h(N − 1 − n)e− jω(N−1−n)

For anti-symmetric h(N − 1 − n) = −h(n)

H(ω) =
N
2 −1∑
n=0

h(n)e− jωn −
N
2 −1∑
n=0

h(n)e− jω(N−1)+ jωn

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

h(n)e− jω( N−1
2 )− jωn −

N
2 −1∑
n=0

h(n)e− jω( N−1
2 )+ jωn

⎤
⎦

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

h(n)
[
e jω( N−1

2 −n) − e− jω( N−1
2 −n)

]⎤⎦

= e− jω( N−1
2 )

⎡
⎣ N

2 −1∑
n=0

h(n)

[
2 j sin

(
N − 1

2
− n

)
ω

]⎤⎦

= e− jω( N−1
2 )e jπ/2

⎡
⎣ N

2 −1∑
n=0

2h(n) sin

(
N − 1

2
− n

)
ω

⎤
⎦
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= e j( π
2 −ω( N−1

2 ))

⎡
⎣ N

2 −1∑
n=0

2h(n) sin

(
N − 1

2
− n

)
ω

⎤
⎦

= e j( π
2 −ω( N−1

2 ))

⎡
⎣ N

2 −1∑
n=0

2h(n) sin

(
N

2
− n − 1

2

)
ω

⎤
⎦

Substitute k = N
2 − n =⇒ n = N

2 − k

When n = 0;=⇒ k = N

2

When n = N

2
− 1;=⇒ k = N

2
− N

2
+ 1 = 1

H(ω) = e j( π
2 −ω( N−1

2 ))

⎡
⎣ N

2∑
k=1

2h

(
N

2
− k

)
sin

(
k − 1

2

)
ω

⎤
⎦

Replacing k by n we get,

H(ω) = e j( π
2 −ω( N−1

2 ))

⎡
⎣ N

2∑
n=1

2h

(
N

2
− n

)
sin

(
n − 1

2

)
ω

⎤
⎦ (4.67)

Equation (4.67) represents frequency response of linear phase FIR filter with impulse
response as anti-symmetric when N is even. The magnitude response is given by Eq.
(4.68) and is shown in Fig. 4.25.

|H(e jω)| =
N
2∑

n=1

2h

(
N

2
− n

)
sin

(
n − 1

2

)
ω (4.68)

The phase response is given by

∠H(e jω) = π

2
− ω

(
N − 1

2

)
∠H(ω) = β − ωα

(4.69)

where α = N−1
2 and β = π

2 .
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center of symmetry

0 2

H( )

Fig. 4.25 Magnitude function of H(e jω)

4.5 Design Techniques for Linear Phase FIR Filters

Some of the well-known method of design techniques for linear phase FIR filters
are:

1. Fourier serious method.
2. Window method.
3. Frequency sampling method.

4.5.1 Fourier Series Method of FIR Filter Design

Fourier series analysis exists only for periodic function. That is, any periodic function
can be expressed as a linear combination of complex exponentials. The frequency
response of a digital filter is periodic, with period equal to the sampling frequency.
Therefore, the desired frequency response of an FIR digital filter can be represented
by Fourier series as

Hd(ω)|ω=ωT = Hd(ωT ) =
∞∑

n=−∞
hd(n)e− jωnT (4.70)
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where the Fourier series coefficients hd(n) are the desired impulse response and are
given by

hd(n) = 1

ωs

ωs/2∫
−ωs/2

Hd(ωT )e jωnT dω (4.71)

where

fs = sampling frequency in Hz.

ωs = 2π fs = sampling frequency in rad/s.

T = 1

fs
= sampling period in sec.

The impulse response hd(n) has infinite number of samples. For FIR filters, we
truncate this infinite impulse response to a finite duration sequence of length N ,
where N is odd.

∴ h(n) = hd(n); |n| ≤
(

N − 1

2

)
(4.72)

On taking z-transform of Eq. (4.72) we get

H(z) =
N−1
2∑

n=− (N−1)
2

h(n)z−n (4.73)

The transfer function of Eq. (4.73) represents non-causal filter. Hence, the transfer
function is multiplied by z− (N−1)

2 . This modification does not affect the amplitude
response of the filter.

H(z) = z−( N−1
2 )

N−1
2∑

n=− (N−1)
2

h(n)z−n (4.74)

= z−( N−1
2 )

⎡
⎣ −1∑

n=− (N−1)
2

h(n)z−n + h(0) +
N−1
2∑

n=1

h(n)z−n

⎤
⎦
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H(z) = z−( N−1
2 )

⎡
⎣ N−1

2∑
n=1

h(−n)zn + h(0) +
N−1
2∑

n=1

h(n)z−n

⎤
⎦

H(z) = z−( N−1
2 )

⎡
⎣h(0) +

N−1
2∑

n=1

h(n)[zn + z−n]
⎤
⎦ ∵ h(n) = h(−n) (4.75)

The abrupt truncation of the Fourier series results in oscillations in the passband and
stopband. These oscillations are due to the slow convergence of the Fourier series
at the points of discontinuity. This effect is known as “Gibbs phenomenon.” This
oscillation can be reduced by multiplying the desired impulse response coefficients
by an appropriate window function.

The specifications of lowpass, highpass, bandpass and bandstop filters design by
Fourier series are given below:

Lowpass, Hd(ω) =
{
1, −ωc ≤ ω ≤ ωc

0, −ωs
2 ≤ ω ≤ −ωc and ωc < ω ≤ ωs

2

(4.76)

Highpass, Hd(ω) =
{
1, −ωs

2 ≤ ω ≤ −ωc and ωc ≤ ω ≤ ωs
2

0, −ωc ≤ ω ≤ ωc
(4.77)

Bandpass, Hd(ω)

=
{
1, −ωc2 ≤ ω ≤ −ωc1 and ωc1 ≤ ω ≤ ωc2

0, −ωs
2 ≤ ωc < −ωc2 , −ωc1 ≤ ω ≤ ωc1 , and ωc2 < ω ≤ ωs

2

(4.78)

Bandstop, Hd(ω)

=
{
1, −ωs

2 ≤ ωc < −ωc2 , −ωc1 ≤ ω ≤ ωc1 , and ωc2 ≤ ω ≤ ωs
2

0, −ωc2 < ω < −ωc1 and ωc1 < ω < ωc2

(4.79)

Example 4.9
Design an ideal lowpass filter with a frequency response

Hd(e
jω) =

{
1, for − π

2 ≤ |ω| ≤ π
2

0, for π
2 ≤ |ω| ≤ π

Find the values of h(n) for N = 11. Find H(z).
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2

1

0
2

hd (n)

n

X(z)

Y(z)

z 1X(z) z 2X(z) z 3X(z) z 4X(z) z 5X(z)

z 6X(z)z 7X(z)z 8X(z)z 9X(z)z 10X(z)

0.063 0.318 0.50.106

z 1

z 1

z 1

z 1

z 1

z 1

z 1 z 1

z 1z 1

a

b

Fig. 4.26 a Impulse response of LPF for Example 4.9. b Structure realization for Example 4.9

Solution hd(n) is shown in Fig. 4.26a

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

= 1

2π

π/2∫
−π/2

e jωndω

= 1

2π jn
[e jωn]π/2

−π/2

= 1

πn

[
e j (π/2)n − e− j (π/2)n

2 j

]

= sin(π/2)n

πn
, −∞ ≤ n ≤ 11
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Here n = 11

∴ h(n) =
{

sin(π/2)n
πn , for |n| ≤ 5

0, otherwise

For n = 0

hd(n) = Lim
n→0

sin(π/2)n

πn

= 1

2
Lim
n→0

sin(π/2)n

(π/2)n

[
∵ Lim

θ→0

sin θ

θ
= 1

]

= 1

2

From the frequency response, Hd(e jω) we find that α = 0, and therefore, filter coef-
ficients are symmetrical about n = 0, i.e., h(n) = h(−n).

For n = 1 : h(1) = h(−1) = sin(π/2)

π
= 1

π
= 0.3183

For n = 2 : h(2) = h(−2) = sin 2(π/2)

2π
= 0

For n = 3 : h(3) = h(−3) = sin 3(π/2)

3π
= −0.106

For n = 4 : h(4) = h(−4) = sin 2π

4π
= 0

For n = 5 : h(5) = h(−5) = sin 5(π/2)

5π
= 0.06366

H(z) = z−( N−1
2 )

⎡
⎣ N−1

2∑
n=1

h(n)[zn + z−n] + h(0)

⎤
⎦

= z−5

[
h(0) +

5∑
n=1

h(n)[zn + z−n]
]

= z−5
[
0.5 + h(1)(z + z−1) + h(2)(z2 + z−2) + h(3)(z3 + z−3)

+h(4)(z4 + z−4) + h(5)(z5 + z−5)
]

H(z) = 0.53z−5 + 0.3183(z−4 + z−6) + 0 − 0.106(z−2 + z−8)

+0.063(z−10 + 1)

Y (z) = 0.5z−5X (z) + 0.3183(z−4 + z−6)X (z) − 0.106[X (z)z−2 + X (z)z−8]
+0.063[X (z)z−10 + X (z)]
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The structure realization is shown in Fig. 4.26b.

Example 4.10
Design an ideal highpass filter with a frequency response

Hd(e
jω) =

{
1, for − π

4 ≤ |ω| ≤ π

0, for |ω| < π
4

Find the values of h(n) for N = 11. Find H(z). Plot the magnitude response.

(Anna University, December, 2006)
Solution hd(n) is shown in Fig. 4.27a

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

= 1

2π

⎡
⎢⎣

−π/4∫
−π

e jωndω +
π∫

π/4

e jωndω

⎤
⎥⎦

= 1

2π jn

[
e jωn

∣∣∣∣
−π/4

−π

+ e jωn

∣∣∣∣
π

π/4

]

= 1

πn(2 j)

[
e− j (π/4)n − e− jπn + e jπn − e j (π/4)n

]

hd(n) =
{

1
πn [sin πn − sin(π/4)n], for |n| ≤ 5

0, otherwise

For n = 0

h(n) = Lim
n→0

sin πn

πn
− Lim

n→0

sin(π/4)n

4(πn/4)

= 1 − 1

4
= 0.75
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4

1

0
4

hd (n)

n
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Fig. 4.27 a Impulse response for Example 4.10. b Structure realization for Example 4.10. c Mag-
nitude response for the Example 4.10
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For n = 1 : h(1) = h(−1) = sin π − sin(π/4)

π
= −0.225

For n = 2 : h(2) = h(−2) = sin 2π − sin(2π/4)

2π
= −0.159

For n = 3 : h(3) = h(−3) = sin 3π − sin(3π/4)

3π
= −0.075

For n = 4 : h(4) = h(−4) = sin 4π − sin π

4π
= 0

For n = 5 : h(5) = h(−5) = sin 5π − sin(5π/4)

5π
= 0.045

H(z) = z−5

[
N∑

n−1

h(n)(zn + z−n) + h(0)

]

= z−5
[
h(0) + h(1)(z + z−1) + h(2)(z2 + z−2) + h(3)(z3 + z−3)

+h(4)(z4 + z−4) + h(5)(z5 + z−5)
]

H(z) = 0.75z−5 − 0.225(z−4 + z−6) − 0.159(z−3 + z−7) − 0.075(z−2 + z−8)

+0.045(1 + z−10)

Y (z) = 0.75z−5X (z) − 0.225[X (z)z−4 + X (z)z−6] − 0.159[X (z)z−3 + X (z)z−7]
−0.075[X (z)z−2 + X (z)z−8] + 0.045[X (z) + X (z)z−10]

The structure realization FIR highpass filter is shown in Fig. 4.27b.

Magnitude Response

The frequency response of FIR filter when impulse response is symmetric and N is
odd.

H(e jω) =
N−1
2∑

n=0

a(n) cosωn
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where

a(0) = h

(
N − 1

2

)
= h(5) = 0.75

a(n) = 2h

(
N − 1

2
− n

)
a(1) = 2h(5 − 1) = 2h(4) = −0.45

a(2) = 2h(5 − 2) = 2h(3) = −0.318

a(3) = 2h(5 − 3) = 2h(2) = −0.15

a(4) = 2h(5 − 4) = 2h(1) = 0

a(5) = 2h(5 − 5) = 2h(0) = 0.09

H(e jω) = a(0) + a(1) cosω + a(2) cos 2ω + a(3) cos 3ω + a(4) cos 4ω

+a(5) cos 5ω

= 0.75 − 0.45 cosω − 0.318 cos 2ω − 0.15 cos 3ω + 0.09 cos 5ω

The magnitude response is shown in Fig. 4.27c.

ω (deg/s) 0 10 30 50 80 100 120 140 160 170

H(e jω) −0.08 −0.066 0.122 0.61 1.11 0.98 0.94 1.26 1.01 0.96

|H(e jω)|dB −22 −23.62 −18.2 −4.2 0.95 −0.132 −0.537 2 0.16 −0.31

Example 4.11
Design an ideal bandpass filter with a frequency response

Hd(e
jω) =

{
1, for π

4 ≤ |ω| ≤ 3π
4

0, otherwise

Find the values of h(n) for N = 11. Find H(z) and also plot the frequency response.

(Anna University, December, 2004 and May, 2005)
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Solution The impulse response hd(n) is shown in Fig. 4.28a.

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωn

= 1

2π

⎡
⎢⎣

−π/4∫
−(3π/4)

e jωndω +
(3π)/4∫
π/4

e jωndω

⎤
⎥⎦

= 1

2π jn

[
e(− jπn)/4 − e( j3πn)/4 + e( j3πn)/4 − e( jπn)/4

]

hd(n) =
{

1
πn [sin[(3π)/4]n − sin(π/4)n], for |n| ≤ 5

0, otherwise

For n = 0

hd(0) = Lim
n→0

sin(3π/4)n
4
3

(
πn3
4

) − Lim
n→0

sin(π/4)n

4
(

πn
4

)
= 3

4
− 1

4
= 0.5

For n = 1 : h(1) = h(−1) = sin 3π
4 − sin π

4

π
= 0

For n = 2 : h(2) = h(−2) = sin 3π
2 − sin π

2

2π
= − 2

2π
= −0.3183

For n = 3 : h(3) = h(−3) = sin 9π
4 − sin 3π

4

3π
= 0

For = 4 : h(4) = h(−4) = sin 3π − sin π

4π
= 0

For n = 5 : h(5) = h(−5) = sin 15π
4 − sin 5π

4

5π
= 0

H(z) = z−5

[
5∑

n=1

h(n)(zn + z−n) + h(0)

]

= 0.5z−5 − 0.3183(z−3 + z−7)
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Fig. 4.28 a Impulse response for the Example 4.11. b Structure realization for Example 4.11. c
Frequency response of bandpass filter of Example 4.11
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The filter coefficients of the causal filters are

h(0) = h(10) = h(1) = h(9) = h(2) = h(8) = h(4) = h(6) = 0

h(3) = h(7) = −0.3183

h(5) = 0.5

The filter structure is shown in Fig. 4.28b.

|H(e jω)| =
N−1
2∑

n=1

2h

(
N − 1

2
− n

)
cosωn + h

(
N − 1

2

)

=
N−1
2∑

n=1

a(n) cosωn + a(0)

where

a(0) = h

(
N − 1

2

)
= h(5) = 0.5

a(n) = 2h

(
N − 1

2
− n

)
a(1) = 2h(5 − 1) = 2h(4) = 0

a(2) = 2h(5 − 2) = 2h(3) = −0.6366

a(3) = 2h(5 − 3) = 2h(2) = 0

a(4) = 2h(5 − 4) = 2h(1) = 0

a(5) = 2h(5 − 5) = 2h(0) = 0

|H(e jω)| = 0.5 − 0.6366 cos 2ω

ω (deg/s) 0 20 45 60 90 120 135 180

H(e jω) −0.1366 0.012 0.5 0.818 1.1366 0.818 0.5 −0.1366

|H(e jω)|dB −17.3 −38.17 −6.02 −1.74 1.11 −1.74 −6.02 −17.32

The magnitude response is shown in Fig. 4.28c.
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Example 4.12
Design an ideal band reject filter with a desired frequency response

Hd(e
jω) = 1 for |ω| ≤ π

3
and |ω| ≥ 2π

3

Find the values of h(n) for N = 11. Find H(z).

Solution The impulse response hd(n) is shown in Fig. 4.29a

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

= 1

2π

⎡
⎢⎣

−2π/3∫
−π

e jωndω +
π/3∫

−(π/3)

e jωndω +
π∫

2π/3

e jωndω

⎤
⎥⎦

= 1

2π jn

[
e− j2πn/3 − e− jπn + e jπn/3 − e− jπn/3 + e jπn − e j2πn/3

]

hd(n) =
{

1
πn

[
sin πn + sin π

3 n − sin 2π
3 n

]
, |n| ≤ 5

0, otherwise

The filter coefficients are symmetrical about n = 0 satisfying the condition h(n) =
h(−n). For n = 0

hd(0) = Lim
n→0

[
sin πn

πn
+ sin(π/3)n

πn
− sin(2π/3)n

πn

]

=
[
1 + 1

3
− 2

3

]
= 0.667

For n = 1 : h(1) = h(−1) = sin π + sin π
3 − sin 2π

3

π
= 0

For n = 2 : h(2) = h(−2) = sin 2π + sin 2π
3 − sin 4π

3

2π
= 0.2757

For n = 3 : h(3) = h(−3) = sin 3π + sin π − sin 2π

3π
= 0

For n = 4 : h(4) = h(−4) = sin 4π + sin 4π
3 − sin 8π

3

4π
= −0.1378

For n = 5 : h(5) = h(−5) = sin 5π + sin 5π
3 − sin 10π

3

5π
= 0
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Fig. 4.29 a Impulse response for Example 4.12. b Structure realization for Example 4.12

H(z) = z−5

[
5∑

n=1

h(n)(zn + z−n) + h(0)

]

= 0.667z−5 + 0.2757(z−3 + z−7) − 0.1378(z−1 + z−9)

Y (z) = 0.667z−5X (z) + 0.2757[X (z)z−3 + X (z)z−7]
−0.1378[X (z)z−1 + X (z)z−9]

The structure realization is shown in Fig. 4.29b.
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4.5.2 Window Method

4.5.2.1 Rectangular Window

Rectangular window function,

WR(n) =
{
1; 0 ≤ n ≤ N − 1

0; otherwise
(4.80)

(or)

WR(n) =
{
1; − (

N−1
2

) ≤ n ≤ N−1
2

0; otherwise
(4.81)

The spectrum of the Rectangular window is given by

WR(ω) =
N−1
2∑

n=−((N−1)/2)

e− jωn = e jω (N−1)
2 + · · · + e jω + 1 + e− jω

+e−2 jω + · · · + e− jω( N−1
2 ) (4.82)

= e jω (N−1)
2

[
1 + e− jω + · · · + e− jω(N−1)]

= e jω (N−1)
2

[
1 − e− jωN

1 − e− jω

] (
∵ 1 + x + x2 + · · · + x N−1 = 1 − x N

1 − x

)

= e
jωN
2 (1 − e− jωN )

e
jω
2 (1 − e− jω)

= e
jωN
2 − e− jωN

2

e
jω
2 − e− jω

2

= sin(ωN/2)

sin(ω/2)
(4.83)

The window spectrum for N = 31 is shown in Fig. 4.30. The spectrum of WR(ω)

has two important features and they are:

1. Width of mainlobe= 4π
N

2. Peak sidelobe magnitude (dB)= −13 dB

The magnitude response |H(ω)| of the lowpass filter designed using Rectangular
window is shown in Fig. 4.30. The approximated filter response differs from the ideal
desired response, i.e., in the passband a series of overshoots and undershoots occur.
In the stopband the FIR filter has a nonzero response. This can be explained in terms
of the features of the window spectrum.

Thewidth of the transition region is related to thewidth of themainlobe of WR(ω).
Since the mainlobe width of WR(ω) is equal to 4π

N , the size of this transition region
can be reduced to any desired size by increasing the size N of the window sequence.



446 4 Finite Impulse Response (FIR) Filter Design

WR(n)(a () b)

(c) (d)

(e)

N 31

0 015

20

15

2

n

WR( )
H

(
) 

 o
r 

 H
d(

) H( )-Approximate
response

Hd( )-Ideal response

Wc
0 0.1

G
ai

n 
(d

B
)

Normalised frequency

0.2 0.3 0.4 0.5

WR( )

N
2
N

40

60

80

100

0
13
20
40
60
80

100

H( )  

N 31

0

0 0.1 0.2 0.3 0.4 0.5

side lobes side lobes

pass
band

stop
band

transition region

in dB

dB

Fig. 4.30 Rectangular window sequence and its frequency response. a Rectangular window
sequence. b Magnitude response of Rectangular window. c Log-magnitude response of Rectan-
gular window. d Magnitude response of LPF approximated using Rectangular window and e Log-
magnitude response of FIR LPF designed using Rectangular window



4.5 Design Techniques for Linear Phase FIR Filters 447

The increase in N also increases the number of computations necessary to implement
the FIR filter.

In the passband the sidelobe effect of the WR(ω) appears as both overshoots and
undershoots in the desired response. In the stopband these effects appear as a nonzero
response. These sidelobe effects do not diminish significantly but remain constant
as the duration of Rectangular window is increased.

It is observed that whatever be the number of elements of hd(n) included in the
h(n), the magnitudes of the overshoot and leakage will not change significantly. This
result is known as Gibb’s phenomenon. To reduce these sidelobe effects, we must
consider alternate window sequences having spectrum exhibiting smaller sidelobes.
We can observe that the sidelobes of thewindow spectrum represents the contribution
of the high frequency components. For theRectangularwindow, these high frequency
components are due to the sharp transitions form 0 to 1 and 1 to 0 at the edges of
window sequence. Hence the amplitude of these high frequency components i.e.,
sidelobe levels can be reduced by replacing these sharp transitions bymore gradually
ones. So we go for raised cosine window sequences.

Design Procedure

Step 1 Choose the desired frequency response of the filter, Hd(ω).
Step 2 Take inverse Fourier transform of Hd(ω) to obtain the desired impulse

response, hd(n).
Step 3 Choose thewindow sequenceW (n) andmultiply hd(n) byW (n) [i.e., h(n) =

W (n) × hd(n)] to convert the infinite impulse response to finite impulse
response.

W (n) =
{
1, 0 ≤ n ≤ N − 1

0, otherwise

Step 4 The transfer function of the filter H(z) is obtained by taking z-transform of
h(n).

Step 5 Realize the filter using suitable realization method (either direct form (or)
linear phase realization).

Example 4.13
Design a LPF using Rectangular window by taking nine samples of W (n) and with
cutoff frequency of 1.2 rad/s?

Solution

Step 1 Choose the Desired Frequency Response

Hd(ω) =
{
e− jωα, −ωc ≤ ω ≤ ωc [for LPF]

0, −π ≤ ω ≤ −ωc and ωc ≤ ω ≤ π
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Step 2 To Find Hd(n)

Take inverse Fourier transform of Hd(ω). That is,

hd(n) = 1

2π

π∫
−π

Hd(ω)e jωndω

= 1

2π

ωc∫
−ωc

e− jωαe jωndω

= 1

2π

ωc∫
−ωc

e jω(n−α)dω

= 1

2π

[
e jω(n−α)

j (n − α)

]ωc

−ωc

= 1

2 jπ(n − α)

[
e jωc(n−α) − e− jωc(n−α)

]
= 1

π(n − α)
[sinωc(n − α)]

∴ hd(n) = 1

π(n − α)
[sinωc(n − α)]

Step 3 Conversion of Infinite to Finite Sequence

h(n) = W (n) × hd(n)

Here, for Rectangular window,

W (n) =
{
1, for 0 ≤ n ≤ (N − 1)

0, for otherwise

∴ h(n) =
{

sinωc(n−α)

π(n−α)
; 0 ≤ n ≤ (N − 1)

0, otherwise

where

ωc = 1.2 rad/s,

n = 0 to 8 [∵ 9 samples]
α = N + 1

2
= 9 − 1

2
= 4
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Therefore

h(0) = sin 1.2(0 − 4)

π(0 − 4)
= −0.079

h(1) = sin 1.2(1 − 4)

π(1 − 4)
= −0.0469

h(2) = sin 1.2(2 − 4)

π(2 − 4)
= 0.107

h(3) = sin 1.2(3 − 4)

π(3 − 4)
= 0.296

h(4) = sin 1.2(4 − 4)

π(4 − 4)
= 0

Apply “L” Hospitals rule Lim
θ→0

sin Aθ

θ
= Lim

θ→0

cos Aθ · A

Aθ
= A

∴ h(4) = sin 1.2(n − 4)

π(n − 4)
= 1.2

π
= 0.3819

h(5) = sin 1.2(5 − 4)

π(5 − 4)
= 0.296

h(6) = sin 1.2(6 − 4)

π(6 − 4)
= 0.107

h(7) = sin 1.2(7 − 4)

π(7 − 4)
= −0.0469

h(8) = sin 1.2(8 − 4)

π(8 − 4)
= −0.079.

Step 4 To Find H(z)

H(z) =
N−1∑
n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5

+h(6)z−6 + h(7)z−7 + h(8)z−8

= −0.079 − 0.0469z−1 + 0.107z−2 + 0.296z−3 + 0.3819z−4

+0.296z−5 + 0.107z−6 − 0.0469z−7 − 0.079z−8

= −0.079(1 + z−8) − 0.0469(z−1 + z−7)

+0.107(z−2 + z−6) + 0.296(z−3 + z−5) + 0.3819z−4

Step 5 Linear Phase Realization

The structure realization is shown in Fig. 4.31.
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0.079 0.046 0.1075 0.2966 0.3819

Y(z)

z 1 z 1 z 1 z 1

z 1z 1z 1z 1

Fig. 4.31 Linear phase realization of H(z) for Example 4.13

4.5.2.2 Raised Cosine Windows

The raised cosine windows are smoother at the ends, but closer to one at the middle.
The smoother ends and the broader middle section produce less distortion of hd(n)

around n = 0.
The window function is of the form

Wα(n) =
{

α + (1 − α) cos
(
2πn
N−1

)
, − (

N−1
2

) ≤ n ≤ N−1
2

0, otherwise
(4.84)

If α=0.5, the window is called as HanningWindow. If α=0.54, the window is called
as Hamming window. The window spectrum for raised cosine window is given by

Wα(ω) =
N−1
2∑

n=−( N−1
2 )

[
α + (1 − α) cos

(
2πn

N − 1

)]
e− jωn (4.85)

= α

N−1
2∑

n=−( N−1
2 )

e− jωn

︸ ︷︷ ︸
+

(
1 − α

2

) N−1
2∑

n=−( N−1
2 )

e− j(ω− 2π
N−1 )n

︸ ︷︷ ︸
X Y

+
(
1 − α

2

) N−1
2∑

n=−( N−1
2 )

e− j(ω+ 2π
N−1 )n

︸ ︷︷ ︸
(4.86)

Z
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X = α
[
e jω( N−1

2 ) + · · · + e jω + 1 + e− jω + · · · + e− jω( N−1
2 )

]
= α

[
1 − e− jωN

1 − e− jω

]
e jω( N−1

2 )

= α

[
e

jωN
2 − e− jωN

2

e
jω
2 − e− jω

2

]

X = α

[
sin ωN

2

sin ω
2

]
(4.87)

Y = 1 − α

2

[
e j (ω− 2π

N−1 )

(
N − 1

2

)
+ · · · + e j (ω− 2π

N−1 )

+1 + e− j (ω− 2π
N−1 ) + · · · + e− j (ω− 2π

N−1 )

(
N − 1

2

)]

= 1 − α

2

⎡
⎣e j (ω− 2π

N−1 )
(

N−1
2

) [
1 − e− j(ω− 2π

N−1 )N
]

e j ( ω
2 − π

N−1 )
[
1 − e− j (ω− 2π

N−1 )
]

⎤
⎦

= 1 − α

2

[
e j ( ωN

2 − π N
N−1 ) − e− j ( ωN

2 − π N
N−1 )

e j ( ωN
2 − π

N−1 ) − e− j ( ω
2 − π

N−1 )

]

= 1 − α

2

[
sin

(
ωN
2 − π N

N−1

)
sin

(
ω
2 − π

N−1

)
]

(4.88)

Similarly

z = 1 − α

2

[
sin

(
ωN
2 + π N

N−1

)
sin

(
ω
2 + π

N−1

)
]

(4.89)

Substituting Eqs. (4.87) to (4.89) in Eq. (4.85), we get

Wα(ω) = α
sin ωN

2

sin ω
2

+ 1 − α

2

[
sin

(
ωN
2 − π N

N−1

)
sin

(
ω
2 − π

N−1

)
]

+1 − α

2

[
sin

(
ωN
2 + π N

N−1

)
sin

(
ω
2 + π

N−1

)
]

(4.90)
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4.5.2.3 Hanning Window

TheHanningwindow sequence can be obtained by substitutingα = 0.5 inEq. (4.84)

WC(n) =
{
0.5 + 0.5 cos

(
2πn
N−1

) ; − (
N−1
2

) ≤ n ≤ N−1
2

0; otherwise
(4.91)

(or)

WC(n) =
{
0.5 − 0.5 cos 2nπ

N−1 ; 0 ≤ n ≤ N − 1

0; otherwise
(4.92)

Frequency response of the Hanning window is given by

WC(ω) = 0.5
sin ωN

2

sin(ω/2)
+ 0.25

sin
(

ωN
2 − π N

N−1

)
sin

(
ω
2 − π

N−1

) + 0.25
sin

(
ωN
2 + π N

N−1

)
sin

(
ω
2 + π

N−1

)
(4.93)

Width of mainlobe = 8π

N
Peak sidelobe magnitude (dB) = −31 dB

In the log-magnitude response of WC(ω) the magnitude of the first sidelobe is
−31 dB, an improvement of 6dB over triangular window. Mainlobe width is same
as in triangular window. But the magnitude of sidelobes is reduced, as shown in
Fig. 4.32. Hence the Hanning window is preferable to triangular window since the
magnitude responses of lowpass filter have improved stopband characteristics.

Design Procedure

Step 1 Choose the desired frequency response of the filter [Hd(ω)].
Step 2 Take inverse Fourier transform of Hd(ω) to obtain the desired impulse

response hd(n).
Step 3 Choose a window sequence W (n).

W (n) =
{
0.5 − 0.5 cos

(
2πn
N−1

)
, 0 ≤ n ≤ N − 1

0, otherwise

Multiply hd(n) by W (n) to convert the infinite impulse response to a finite
impulse response h(n). That is

h(n) = hd(n) × W (n)
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Step 4 The transfer function of the filter, i.e., H(z) is obtained by taking z-transform
of h(n).

Step 5 Realize the filter using suitable realization method (use direct form or linear
phase).

Example 4.14
Design a BPF to pass frequencies in the range 1–2 rad/s using Hanning window,
with N = 5.

Solution

Step 1 Choose Hd(ω) such that

Hd(ω) =
{
e− jωα, −ωc2 ≤ ω ≤ −ωc1 and ωc1 ≤ ω ≤ ωc2

0, otherwise

Step 2 To Find hd(n)

hd(n) = 1

2π

⎡
⎢⎣

−ωc1∫
−ωc2

e− jωαe jωndω +
ωc2∫

ωc1

e− jωαe jωndω

⎤
⎥⎦

= 1

2π

⎡
⎢⎣

−ωc1∫
−ωc2

e jω(n−α)dω +
ωc2∫

ωc1

e jω(n−α)dω

⎤
⎥⎦

= 1

2π

[
e jω(n−α)

j (n − α)

]−ωc1

−ωc2

+ 1

2π

[
e jω(n−α)

j (n − α)

]ωc2

ωc1

= 1

2π j (n − α)

[
e− jωc1 (n−α) − e− jωc2 (n−α) + e jωc2 (n−α) − e jωc1 (n−α)

]
= 1

2π j (n − α)

[(
e jωc2 (n−α) − e− jωc2 (n−α)

) − (
e jωc1 (n−α) − e− jωc1 (n−α)

)]
= 1

2π j (n − α)
× 2 j

[
sinωc2(n − α) − sinωc1(n − α)

]
= 1

π(n − α)

[
sinωc2(n − α) − sinωc1(n − α)

]

Given that ωc1 = 1 rad/s and ωc2 = 2 rad/s, α = N−1
2 −→ α = 2.
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Step 3 To Find h(n)

W (n) = 0.5 − 0.5 cos

(
2πn

N − 1

)
h(n) = hd(n) × W (n)

= 1

π(n − 2)
[sin 2(n − 2) − sin(n − 2)]

[
0.5 − 0.5 cos

(
2πn

4

)]

h(0) = 0

h(1) = 0.0108

h(2) = 0.318 [Applying L’ Hospital’s rule]

h(3) = 0.0108

h(4) = 0

Step 4 Take z-transform

H(z) =
4∑

n=0

h(n)z−n = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4

H(z) = 0.0108[z−1 + z−3] + 0.318z−2

Step 5 Draw the realization structure. This is shown in Fig. 4.33.

4.5.2.4 Hamming Window

The Hamming window sequence can be obtained by substituting α = 0.54 in Eq.
(4.84)

WH (n) =
{
0.54 + 0.46 cos

(
2πn
N−1

) ; − (
N−1
2

) ≤ n ≤ N−1
2

0; otherwise
(4.94)

(or)

WH (n) =
{
0.54 − 0.46 cos 2nπ

N−1 ; 0 ≤ n ≤ N − 1

0; otherwise
(4.95)
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0.0108

0.318
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z 1X(z)

z 3X(z) z 2X(z)

z 1

z 1

z 1

Fig. 4.33 Linear phase realization of H(z) for Example 4.14

Frequency response,

WH (ω) = 0.54
sin ωN

2

sin(ω/2)
+ 0.23

sin
(

ωN
2 − π N

N−1

)
sin

(
ω
2 − π

N−1

) + 0.23
sin

(
ωN
2 + π N

N−1

)
sin

(
ω
2 + π

N−1

) (4.96)

Width of mainlobe = 8π

N
Peak sidelobe magnitude (dB) = −41 dB

The Hamming window and its frequency response are shown in Fig. 4.34. The
magnitude of the first sidelobe has been reduced to −41 dB, an improvement of
10dB compared to the Hanning window. But sidelobe magnitude at high frequencies
is almost constant.

Design Procedure

Step 1 Choose the desired frequency response of the filter, i.e., Hd(ω).
Step 2 Take the inverse Fourier transform of Hd(ω) to obtain the desired impulse

response hd(n).
Step 3 Choose a window sequence (here) Hamming window sequence with

W (n) =
{
0.54 − 0.46 cos

(
2πn
N−1

) ; 0 ≤ n ≤ N − 1

0; otherwise

Now multiply hd(n) and W (n) to get h(n)

h(n) = hd(n) × W (n)

This step converts the infinite impulse response to finite impulse response
h(n).
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Fig. 4.34 Hamming window sequence and its frequency response. a Hamming window sequence.
b Magnitude response of Hamming window. c Log-magnitude response of Hamming window. d
Magnitude response of LPF approximated using Hamming window and e Log-magnitude response
of FIR filter using Hamming window
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Fig. 4.35 a Hamming window characteristic. b Linear phase realization of H(z) for Example 4.15

Step 4 The transfer function of the filter, H(z) is obtained by taking the z-transform
of h(n).

Step 5 Realize the filter using suitable realizationmethod (useDirect Form or Linear
Phase).

Example 4.15
Design a HPF with Hamming window. The cutoff frequency is 1.2 rad s−1 N = 9.

Solution
Step 1 Choose Hd(ω): The Hamming window characteristic is shown in Fig. 4.35a.

H(e jω) = Hd(ω) =
{
e− jωα; −π ≤ ω ≤ −ωc and ωc ≤ ω ≤ π

0; otherwise
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Step 2 To Find hd(n)

hd(n) = 1

2π

π∫
−π

Hd(ω)e jωndω

= 1

2π

−ωc∫
−π

e− jωαe jωndω + 1

2π

π∫
ωc

e− jωαe jωndω

= 1

2π

⎡
⎣ −ωc∫

−π

e jω(n−α)dω +
π∫

ωc

e jω(n−α)dω

⎤
⎦

= 1

2π

[[
e jω(n−α)

j (n − α)

]−ωc

−π

+
[
e jω(n−α)

j (n − α)

]π

ωc

]

= 1

j2π(n − α)

[
e− jωc(n−α) − e− jπ(n−α) + e jπ(n−α) − e jωc(n−α)

]
= 1

j2π(n − α)
(2 j) [sin(n − α)π − sinωc(n − α)]

= 1

π(n − α)
[sin π(n − α) − sinωc(n − α)]

Step 3 To Find h(n)

W (n) =
[
0.54 − 0.46 cos

(
2πn

N − 1

)]
h(n) = hd(n) × W (n)

= [sin π(n − α) − sinωc(n − α)]
π(n − α)

[
0.54 − 0.46 cos

(
2πn

N − 1

)]

where α = N−1
2 = 4

h(n) = [sin π(n − 4) − sin 1.2(n − 4)]
π(n − 4)

[
0.54 − 0.46 cos

(nπ

4

)]
h(0) = 6 × 10−3 = 0.0063

h(1) = 0.0101

h(2) = 0.0581

h(3) = −0.2367

h(4) = −0.6180 (Applying L’ Hospital rule)

h(5) = −0.2567

h(6) = 0.0581

h(7) = 0.0101

h(8) = 6.34 × 10−3
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Fig. 4.36 Blackman window sequence and its frequency response. a Blackman window sequence.
bMagnitude response of Blackman window. c Log-magnitude response of Blackman window and
d Log-magnitude response of FIR LPF approximated using Blackman window

Step 4 Take z-transform:

H(z) =
N−1∑
n=0

h(n)z−n

H(z) = 0.0063[1 + z−8] + 0.101[z−1 + z−7] + 0.0581[z−2 + z−6]
−0.2367[z−3 + z−5] + (−0.6180)z−4

Step 5 Draw the realization structure. The structure is realized as shown in
Fig. 4.35b.
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4.5.2.5 Blackman Window

The Blackman window function is another type of cosine window and is given by
the following equation:

WB(n) =
{
0.42 + 0.5 cos 2nπ

N−1 + 0.08 cos 4nπ
N−1 ; − (

N−1
2

) ≤ n ≤ N−1
2

0; otherwise
(4.97)

(or)

WB(n) =
{
0.42 − 0.5 cos 2nπ

N−1 + 0.08 cos 4nπ
N−1 ; 0 ≤ n ≤ N − 1

0; otherwise
(4.98)

Width of mainlobe = 12π

N
Peak sidelobe magnitude (dB) = −58 dB

The frequency response and impulse response characteristics of Blackmann win-
dow are shown in Fig. 4.36.

The frequency response of Blackman window is shown in Fig. 4.36. The mag-
nitude of the first sidelobe is −58 dB and the sidelobe magnitude decreases with
frequency. This desirable feature is achieved at the expense of increased mainlobe
width.

Design Procedure

1. Choose the desired frequency response Hd(ω). Take inverse Fourier transform of
Hd(ω) to obtain the desired impulse response hd(n).

2. Choose a window sequence W (n) and multiply hd(n) and W (n) to convert the
infinite impulse response to finite impulse response h(n).

3. The transfer function H(z) is obtained by taking z-transform of h(n).
4. Realize the filter using suitable realization method.

Example 4.16
Design an ideal bandpass filter using Blackman window to pass frequencies in the
range 1.2–1.7 rad/s with N = 7.

Solution

Step 1 Choose desired frequency response
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Hd(e
jω) =

{
e− jωα, −ωc2 ≤ ω ≤ ωc1 and ωc1 ≤ ω ≤ ωc2

0, else

∴ Hd(e
jω) =

{
e− jωα, −1.7 ≤ ω ≤ −1.2 and 1.2 ≤ ω ≤ 1.7

0, else

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

hd(n) = 1

2π

−1.2∫
−1.7

e− jωα · e jωndω + 1

2π

1.7∫
1.2

e− jωα · e jωndω

= 1

2π

[
e jω(n−α)

j (n − α)

]−1.2

−1.7

+ 1

2π

[
e jω(n−α)

j (n − α)

]1.7
1.2

= 1

2π

[
e− j1.7(n−α)

j (n − α)
− e−1.2 j (n−α)

j (n − α)
+ e1.7 j (n−α)

j (n − α)
− e j1.2(n−α)

j (n − α)

]

= 1

2π

[
2 j sin 1.7(n − α) − 2 j sin 1.2(n − α)

j (n − α)

]

= 1

π(n − α)
[sin 1.7(n − α) − sin 1.2(n − α)]

where α = N−1
2 = 3

∴ hd(n) = 1

π(n − 3)
[sin 1.7(n − 3) − sin 1.2(n − 3)]

W (n) =
{
0.42 − 0.5 cos

(
2πn
6

) + 0.08 cos
(
4πn
6

) ; 0 ≤ n ≤ 6

0; otherwise

Step 2

h(n) = W (n)hd(n) 0 ≤ n ≤ N − 1

=
[
0.42 − 0.5 cos

(
2πn

6

)
+ 0.08 cos

(
4πn

6

)]

× 1

π(n − 3)
[sin 1.7(n − 3) − sin 1.2(n − 3)] ; 0 ≤ n ≤ 6

h(0) = 0

h(1) = −0.019

h(2) = 0.0119

h(3) = Apply L ′Hospital’s Rule
h(4) = 0.0119
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X(z)

0.0119

0.019

0.162

Y(z)

z 1 z 1 z 1

z 1z 1

Fig. 4.37 Linear phase realization of H(z) for Example 4.16

h(5) = −0.019

h(6) = 0

h(3) =
([

0.42 − 0.5 sin

(
2π × 3

6

)
− 0.08 sin

(
4π × 3

6

)]

× [sin 1.7(n − 3) − sin 1.2(n − 3)]

/
π(n − 3)

=
[
0.42 − 0.5 cos

(
2π × 3

6

)
+ 0.08 cos

(
4π × 3

6

)]

×
[
sin 1.7(n − 3)

1.7(n − 3)
· 1 · 7 − sin 1.2(n − 3)

1.2(n − 3)
· 1 · 2

])/
π

= 1 × (0.5)

π
= 0.162

Step 3

H(z) =
N−1∑
n=0

h(n)z−n = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4

+h(5)z−5 + h(6)z−6

H(z) = −0.019z−1 + 0.0119z−2 + 0.162z−3 + 0.0119z−4 − 0.019z−5

= −0.019(z−1 + z−5) + 0.0119(z−2 + z−4) + 0.162z−3

Step 4 Realization Structure
The structure realization is shown in Fig. 4.37.
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4.5.2.6 Kaiser Window

Kaiser window function is given in the following form:

WK (n) =
⎧⎨
⎩

I0

(
α

√
1−( 2n

N−1 )
2
)

I0(α)
; − (

N−1
2

) ≤ n ≤ N−1
2

0; otherwise
(4.99)

or

WK (n) =

⎧⎪⎨
⎪⎩

I0

(
α

√
( N−1

2 )
2−(n− N−1

2 )
2
)

I0(α
N−1
2 )

; 0 ≤ n ≤ N−1
2

0; otherwise
(4.100)

The parameter α is an independent variable that can be varied to control the sidelobe
levels with respect to the mainlobe peak. The modified Bessel function of the first
kind I0(x) is given by

I0(x) = 1 +
∞∑

k=1

[
1

k!
( x

2

)k
]2

= 1 +
∞∑

k=1

(
(0.5)2

(k!)2
)k

(4.101)

= 1 + (0.25x2)2

(k!)2 = 1 + 0.25x2

(1!)2 + (0.25x2)2

(2!)2 + · · · (4.102)

This equation can be used to compute I0(α) and I0

(
α

√(
2n

N−1

)2)
. Figure4.38 shows

the Kaiser window sequence and its frequency response. The width of the mainlobe
can be adjusted by varying the length N of the window sequence.

Design Procedure

(i) Determine “δ” using the formula

δ = min(δp, δs)

where

δp = 100.05Ap − 1

100.05Ap + 1
δs = 10−0.05As

(ii) Find the actual stopband attenuation using “δ”

A′
s = −20 log10 δ
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Fig. 4.38 Kaiser window sequence and its frequency response. a Kaiser window sequence. b Log-
magnitude response of Kaiser window. c Magnitude frequency response of Kaiser window for
different values of α (when N = 31). dMagnitude response of Kaiser window for different values
of α (when N = 31) and e Log-magnitude response of FIR LPF designed using Kaiser window
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Table 4.1 Comparison of window function in frequency domain characteristics

Type of window Approximate width of
mainlobe

Peak sidelobe magnitude (dB)

Rectangular 4π/N −13

Hanning 8π/N −31

Hamming 8π/N −41

Blackman 12π/N −58

Comparison of window function in frequency domain characteristics is shown
in Table 4.1.

(iii) Determine Kaiser window design parameter using the following equation:

αk =

⎧⎪⎨
⎪⎩
0, A′

s ≤ 21

0.5842(A′
s − 21)0.4 + 0.07886(A′

s − 21), 21 ≤ A′
s ≤ 50

0.1102(As − 8.7), A′
s > 50

(iv) Determine the design parameter “D” using the following equation:

D =
{
0.9222, A′

s ≤ 21
A′

s−7.95
14.36 , A′

s > 21

(v) Determine the order of filter using the following equation:

N ≥ F D

� f
+ 1

� f = fs − f p

where D = design parameter and F = sampling frequency.
(vi) Select the desired frequency response Hd(ω)

ωc = 2π fc

F
= 2π(1/2)( f p + fs)

F

where fc = (1/2)( f p + fs).
(vii) Find hd(n) using inverse Fourier transform

hd(n) = 1

2π

π∫
−π

Hd(ω)e jωndω
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(viii) Find the window function using ω(n) equation. Bessel function

I0(x) = 1 + 0.25x2

(1!)2 + (0.25x2)2

(2!)2 + (0.25x2)3

(3!)2 + (0.25x2)4

(4!)2

+ (0.25x2)5

(5!)2 + (0.25x2)6

(6!)2

ω(n) =
I0

[
αk

√(
N−1
2

)2 (
n − N−1

2

)2]
I0

[
αk

(
N−1
2

)] ; 0 ≤ n ≤ N − 1

ω(n) =
I0

[
α

√
1 − (

2n
N−1

)2]
I0[α] ; −

(
N − 1

2

)
≤ n ≤ N − 1

2
; and |n| ≤ N − 1

2

(ix) Find h(n) using h(n) = hd(n)ω(n).
(x) Find H(z) using z-transform

H(z) =
N−1∑
n=0

h(n)z−n

(xi) Draw suitable realization.

Example 4.17
Design a FIR lowpass filter using Kaiser window filter the following specifications.

Passband cutoff frequency = 150 Hz

Stopband cutoff frequency = 250 Hz

Passband ripple = 0.1 dB

Stopband attenuation = 40 dB

Sampling frequency = 1000 Hz

Solution Given

f p = 150 Hz

fs = 250 Hz

Ap = 0.1 dB

As = 40 dB

F = 1000 Hz
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Step 1 Find δ using the following equation:

δp = 100.05Ap − 1

100.05Ap + 1
= 100.05×0.1 − 1

100.05×0.1 + 1
= 5.76 × 10−3

= 0.00576

δs = 10−0.05As = 10−0.05×40 = 0.01

δ = min(δp, δs)

∴ δ = 0.00576

Step 2 Find actual stopband attenuation, A′
s using the following equation:

A′
S = −20 log10 δ

= −20 log10(0.00576)

∴ A′
s = 44.8 dB

Step 3 Find the Kaiser window parameter, αk using the following equation:

αk = 0.5842(A′
s − 21)0.4 + 0.07886(A′

s − 21)

αk = 0.5842(44.8 − 21)0.4 + 0.07886(44.8 − 21)

∴ αk = 3.953

Step 4 Find the design parameter “D” (because A′
s > 21) using the following equa-

tion:

D = A′
s − 7.95

14.36
= 44.8 − 7.95

14.36
∴ D = 2.566

Step 5 Find the order of the filter, N using the following equation:

N ≥ F · D

� f
+ 1 = F · D

fs − f p
+ 1

= 1000 × 2.566

(250 − 150)
+ 1

= 26.66

∴ N = 27

Step 6 To find cutoff frequency, ωc, using the following equation is used
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fc = 1

2
( fs + f p)

= 1

2
(250 + 150) = 200 Hz

ωc = 2π fc

F
(normalized by F )

ωc = 2π × 200

1000
= 1.2566

∴ ωc = 1.2566

Step 7 To find hd(n), the following procedure is followed.

For a lowpass filter, the frequency response is given by

Hd(e
jω) =

{
e− jωα, −ωc ≤ ω ≤ ωc

0, else

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

hd(n) = 1

2π

ωc∫
−ωc

e− jωαe jωndω

as ωc = 1.2566 (from Step 6)

hd(n) = 1

2π

1.2566∫
−1.2566

e jω(n−α)dω

hd(n) = 1

2π

e jω(n−α)

j (n − α)

∣∣∣∣
1.2566

−1.2566

hd(n) = 1

2π

[
e j1.2566(n−α) − e− j1.2566(n−α)

j (n − α)

]

hd(n) = sin 1.2566(n − α)

π(n − α)

because

sin θ = eiθ − e−iθ

2i

As α = N−1
2 = 27−1

2 = 13

hd(n) = sin 1.2566(n − 13)

π(n − 13)
0 ≤ n ≤ N − 1 and 0 ≤ n ≤ 26
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hd(0) = −0.01438 hd(7) = 0.050

hd(1) = 0.0156 hd(8) = −1.1797 × 10−5

hd(2) = 0.0275 hd(9) = −0.075

hd(3) = −1.1797 × 10−5 hd(10) = −0.0623

hd(4) = −0.033 hd(11) = 0.09355

hd(5) = −0.0233 hd(12) = 0.3027

hd(6) = 0.0267 hd(13) = 1.2566

π
= 0.3999

Step 8 To find the window function W (n). As N is very large

W (n) =
I0

[
αk

√
1 − (

2n
N−1

)2]
I0[αk] 0 ≤ n ≤ N − 1; 0 ≤ n ≤ 26

W (n) =
I0

[
3.953

√
1 − ( 2n

26 )
2
]

I0[3.953] [∵ N = 27]

I0[x] = 1 + 0.25x2

(1!)2 + (0.25x2)2

(2!)2 + (0.25x2)3

(3!)2 + · · · + (0.25x2)6

(6!)2

W (0) = I0[3.953]
I0[3.953] = 10.824

10.824
= 1

W (1) = I0[3.938]
10.824

= 0.99

W (2) = I0[3.9]
10.824

= 0.9582

W (3) = I0[3.843]
10.824

= 0.9125

W (4) = I0[3.758]
10.824

= 0.8485

W (5) = I0[3.646]
10.824

= 0.77

W (6) = I0[3.504]
10.824

= 0.684

W (7) = I0[3.328]
10.824

= 0.5905

W (8) = I0[3.113]
10.824

= 0.4955



4.5 Design Techniques for Linear Phase FIR Filters 471

W (9) = I0[2.85]
10.824

= 0.3998

W (10) = I0[2.5239]
10.824

= 0.30967

W (11) = I0[2.105]
10.824

= 0.22689

W (12) = I0[1.519]
10.824

= 0.1539

W (13) = I0[0]
10.824

= 0.09242

Step 9 To Find h(n)

h(n) = hd(n)W (n) 0 ≤ n ≤ 26

h(0) = −0.01438 h(7) = 0.029526

h(1) = 0.015444 h(8) = −5.8419 × 10−6

h(2) = 0.02635 h(9) = −0.02998

h(3) = −1.0758 × 10−5 h(10) = −0.01929

h(4) = −0.028 h(11) = 0.02122

h(5) = −0.0179 h(12) = 0.04658

h(6) = 0.01826 h(13) = 0.036958

Applying the linear phase condition of an FIR filter, that is, h(n) = h(N −
1 − n), we get

h(0) = h(26) h(7) = h(19)

h(1) = h(25) h(8) = h(18)

h(2) = h(24) h(9) = h(17)

h(3) = h(23) h(10) = h(16)

h(4) = h(22) h(11) = h(15)

h(5) = h(21) h(12) = h(14)

h(6) = h(20) h(13) = h(13)

Step 10 To Find H(z)

H(z) = −0.01438(1+ z−26)+0.01544(z−1+ z−25)+0.02635(z−2+ z−24)

−1.075 × 10−5(z−3 + z−23) − 0.0028(z−4 + z−22)

−0.0179(z−5 + z−21) + 0.01826(z−6 + z−20)

+0.029525(z−7 + z−19) − 5.8419 × 10−6(z−8 + z−18)
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−0.02998(z−9 + z−17) − 0.01929(z−10 + z−16)

+0.02122(z−11+z−15)+0.04658(z−12+z−14)+0.036958(z−13)

Step 11 Draw the realization structure. This is shown in Fig. 4.39.

4.5.3 Frequency Sampling Method

In this method the ideal frequency response is sampled at sufficient number of points.
Let h(n) be the filter coefficients of an FIR filter and H(k) be the DFT of h(n)

H(k) =
N−1∑
k=0

h(n)e− j 2πkn
N , k = 0, 1, . . . , N − 1

h(n) = 1

N

N−1∑
k=0

H(k)e j 2πkn
N , n = 0, 1, . . . , N − 1

The DFT samples H(k) for an FIR sequence can be regarded as samples of the filter
z-transform evaluated at N -points equally spaced around the unit circle.

H(k) = H(z)

∣∣∣∣
z=e j 2πk

N

The transfer function H(z) of an FIR filter is given by

H(z) =
N−1∑
n=0

h(n)z−n

H(z) =
N−1∑
n=0

[
1

N

N−1∑
k=0

H(k)e j 2πkn
N

]
z−n

=
N−1∑
k=0

H(k)

N

N−1∑
k=0

H(k)
(
e j 2πk

N z−1
)n

=
N−1∑
k=0

H(k)

N

1 −
(
e j 2πk

N z−1
)N

1 − e
j2πk

N z−1

= 1 − z−N

N

N−1∑
k=0

H(k)

1 − e
j2πk

N z−1
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Using the following identity we get

H(e jω)

∣∣∣∣
ω= 2πk

N

= H(e j 2πkn
N ) = H(k)

i.e., H(k) is the k th DFT component obtained by sampling the frequency response
H(e jω). As such this approach for designing FIR filter is called the frequency sam-
pling. There are two design procedures.

1. Type-1 design procedure.
2. Type-2 design procedure.

Type-1 Design Procedure

Step 1 Choose the desired frequency response Hd(ω).
Step 2 Sample Hd(ω) at “N” points by taking ω = 2πk

N and generate the sequence

H̃(k) = Hd(ω)|ω= 2πk
N

, k = 0 to N − 1 (4.103)

Step 3 Compute h(n) using the following equations.

When N is odd h(n) = 1

N

⎧⎨
⎩H̃(0) + 2

N−1
2∑

k=1

Re
[

H̃(k)e
j2πkn

N

]⎫⎬
⎭ (4.104)

When N is even h(n) = 1

N

{
H̃(0) + 2

(N/2)−1∑
k=1

Re
[

H̃(k)e
j2πkn

N

]}
(4.105)

Step 4 Take z-transform of h(n)

H(z) =
N−1∑
n=0

h(n)z−n (4.106)

Step 5 Draw the realization structure.

Type-2 Design Procedure

Step 1 Choose the desired frequency response Hd(ω).
Step 2 Sample Hd(ω) at “N” points by taking ω = π(2k+1)

N and generate the
sequence, i.e.,

H̃(k) = Hd(ω)

∣∣∣∣
ω= π(2k+1)

N

, k = 0, 1, . . . , N − 1 (4.107)
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Step 3 Compute h(n) using the following equations

When N is odd, h(n) = 2

N

⎧⎨
⎩

N−3
2∑

k=0

Re
[

H̃(k)e
jnπ(2k+1)

N

]⎫⎬
⎭ (4.108)

When N is even, h(n) = 2

N

{
(N/2)−1∑

k=0

Re
[

H̃(k)e
jnπ(2k+1

N

]}
(4.109)

Step 4 Take z-transform of h(n)

H(z) =
N−1∑
n=0

h(n)z−n (4.110)

Step 5 Draw the realization structure.

Example 4.18
Determine the filters coefficient of a linear phase FIR filter of length N = 15, which
has a symmetric unit sample response and a frequency response that satisfies the
following conditions.

Hr

(
2πk

15

)
=

⎧⎪⎨
⎪⎩
1; k = 0, 1, 2, 3

0.4; k = 4

0; k = 5, 6, 7

(Anna University, May, 2007)
Solution
Step 1

H̃(k) = Hd(ω)

/
ω = 2πk

15
=

⎧⎪⎨
⎪⎩
1e− jωα; k = 0, 1, 2, 3

0.4e− jωα; k = 4

0; k = 5, 6, 7

α = N − 1

2
= 7

H̃(k) =

⎧⎪⎨
⎪⎩
e− j 2πk

15 ·α; k = 0, 1, 2, 3

0.4e− j 2πk
15 α; k = 4

0; k = 5, 6, 7
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Step 2When

k = 0, H̃(0) = 1

k = 1, H̃(1) = e− j 2π
15 (1)×7 = e− j 14π

15

k = 2, H̃(2) = e− j 2π
15 (2)×7 = e− j 28π

15

k = 3, H̃(3) = e− j 2π
15 (3)×7 = e− j 42π

15

k = 4, H̃(4) = 0.4e− j 2π
15 (4)×7 = 0.4e− j 56π

15

k = 5, H̃(5) = 0

k = 6, H̃(6) = 0

k = 7, H̃(7) = 0

Step 3 To Find h(n). Here N = 15 (odd)

∴ h(n) = 1

N

[
H̃(0) + 2

7∑
k=1

Re
[

H̃(k)e j 2πkn
N

]]

h(n) = 1

15

[
1 + 2

3∑
k=1

Re
[
e− j7× 2πk

15 × e j 2πnk
15

]
+ 2Re

[
0.4 × e− j 56π

15 × e j 2πnk
15

]]

= 1

15

[
1 + 2

3∑
k=1

cos
2πk

15
(n − 7) + 0.8 cos

8π

15
(n − 7)

]

= 1

15
+ 2

15
cos

2π

15
(n − 7) + 2

15
cos

4π

15
(n − 7) + 2

15
cos

6π

15
(n − 7)

+0.8

15
cos

8π

15
(n − 7)

h(0) = −0.71155 h(8) = 4.778

h(1) = 0.575 h(9) = 0.459

h(2) = 0.973 h(10) = −1.6015

h(3) = −0.499 h(11) = −0.499

h(4) = −1.6015 h(12) = 0.973

h(5) = 0.459 h(13) = 0.575

h(6) = 4.778 h(14) = −0.71155

h(7) = 7.053
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Example 4.19
A lowpass filter is to be designed with the following desired frequency response

Hd(e
jω) =

{
e− j2ω, −π/4 ≤ ω ≤ π/4

0; π/4 ≤ |ω| ≤ π

Determine the filter coefficients hd(n) if window function

ω(n) =
{
1, 0 ≤ n ≤ 4

0, otherwise

(Anna University, December, 2007)
Solution Given

Hd(e
jω) =

{
e− j2ω, −π/4 ≤ ω ≤ π/4

0; π/4 ≤ |ω| ≤ π

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

= 1

2π

π/4∫
−π/4

e− j2ω.e jωndω

= 1

2π

π/4∫
−π/4

e jω(n−2)dω

= 1

2π

[
e jω(n−2)

j (n − 2)

]π/4

−π/4

= 1

2π

[
e j (π/4)(n−2) − e− j (π/4)(n−2)

j (n − 2)

]

= 1

2π

[
sin(π/4)(n − 2)

(n − 2)

]
n �= 2

From the given frequency response it is clear that

N − 1 = 4 ⇒ N = 5 ⇒ α = N − 1

2
= 2

if n = 2. Apply L’ Hospital’s rule.
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hd(n) = Lim
n→2

cos(π/4)(n − 2) − (π/4)

π(−1)

hd(2) = 1 · π/4

π
= 1

4

∴ hd(n) =
{

sin(π/4)(n−2)
π(n−2) , n �= 2

1
4 , n = 2

To determine finite impulse response h(n)

h(n) = hd(n)ω(n)

[
∴ ω(n) =

{
1, 0 ≤ n ≤ 4

0, else

]

h(n) =
{

hd(n), 0 ≤ n ≤ 4

0, else

Therefore, filter coefficients are

h(0) = sin(π/4)(−2)

π(n − 2)
= 0.159

h(1) = sin(π/4)(−1)

π(−1)
= 0.225

h(2) = 1

4

h(3) = sin(π/4)(1)

π(1)
= 0.225

h(4) = sin(π/4)(2)

π(2)
= 0.159

Example 4.20
A filter is to be designed with the following desired frequency response

Hd(e
jω) =

{
0, −π/4 ≤ ω ≤ π/4

e− j2ω; π/4 ≤ |ω| ≤ π

Determine the filter coefficients hd(n) using Hanning window with N = 5.
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Solution Given

Hd(e
jω) =

{
0, −π/4 ≤ ω ≤ π/4

e− j2ω, π/4 ≤ |ω| ≤ π

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

= 1

2π

⎡
⎢⎣

−π/4∫
−π

e− j2ω · e jωndω +
π∫

π/4

e− j2ω · e jωndω

⎤
⎥⎦

= 1

2π

⎡
⎢⎣

−π/4∫
−π

e jω(n−2)dω +
π∫

π/4

e jω(n−2)dω

⎤
⎥⎦

= 1

2π

[[
e jω(n−2)

j (n − 2)

]−(π/4)

−π

+
[
e jω(n−2)

j (n − 2)

]π

π/4

]

= 1

2π

[
e− j (π/4)(n−2) − e− jπ(n−2) + e jπ(n−2) − e j (π/4)(n−2)

j (n − 2)

]

hd(n) =
[
sin π(n − 2) − sin(π/4)(n − 2)

π(n − 2)

]
n �= 2

if n = 2. Apply L’ Hospital’s rule.

hd(n) = Lim
n→2

cosπ(n − 2)(−π) − cos(π/4)(n − 2)[−(π/4)]
π(−1)

hd(2) = π − (π/4)

π
= (3π/4)

4
= 3

4

∴ hd(n) =
{

sin π(n−2)−sin(π/4)(n−2)
π(n−2) , n �= 2

3
4 , n = 2

To determine h(n),

h(n) = hd(n)ω(n)

where

ωHan(n) =
{
0.5 − 0.5 cos 2πn

N−1 , 0 < n < N − 1

0, otherwise
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Therefore

ωHan(n) =
{
0.5 − 0.5 cos 2πn

4 , 0 < n < 4

0, otherwise

Therefore, the filter coefficients are,

hd(0) = −0.159 ω(0) = 0 h(0) = 0

hd(1) = −0.225 ω(1) = 0.5 h(1) = −0.1125

hd(2) = 3

4
ω(2) = 1 h(2) = 3

4
hd(3) = −0.225 ω(3) = 0.5 h(3) = −0.1125

hd(4) = −0.159 ω(4) = 0 h(4) = 0

Example 4.21
The desired response of a LPF is

Hd(e
jω) =

{
e− j3ω, −3π/4 ≤ ω ≤ 3π/4

0; 3π/4 ≤ |ω| ≤ π

Determine the frequency response of the filter for N = 7 using Hamming window.

(Anna University, December, 2003)
Solution Given

Hd(e
jω) =

{
e− j3ω −3π/4 ≤ ω ≤ 3π/4

0, 3π/4 ≤ |ω| ≤ π

hd(n) = 1

2π

3π/4∫
−3π/4

e− j3ωe jωndω

= 1

2π

⎡
⎢⎣

3π/4∫
−3π/4

e jω(n−3)dω

⎤
⎥⎦

= 1

2π

[
e jω(n−3)

j (n − 3)

]3π/4

−3π/4

= 1

2π

[
e j (3π/4)(n−3) − e− j (3π/4)(n−3)

j (n − 3)

]

hd(n) =
[
sin(3π/4)(n − 3)

π(n − 3)

]
n �= 3
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For n = 3, apply L’ Hospital’s rule.

hd(n) = Lim
n→3

cos(3π/4)(n − 3)[(3π/4) − 1]
π(−1)

hd(3) = 1 · (3π/4)

π
= 3

4

∴ hd(n) =
{

sin(3π/4)(n−3)
π(n−3) , n �= 3

3
4 , n = 3

To determine h(n),

h(n) = hd(n)ω(n) where ωHam(n) =
{
0.54 − 0.46 cos 2πn

6 , 0 < n < 6

0, otherwise

Therefore, filter coefficients are

hd(0) = 0.0750 ω(0) = 0.08 h(0) = 0.006

hd(1) = −0.1592 ω(1) = 0.31 h(1) = −0.0494

hd(2) = 0.2251 ω(2) = 0.77 h(2) = 0.1733

hd(3) = 0.75 ω(3) = 1 h(3) = 0.75

hd(4) = 0.2251 ω(4) = 0.77 h(4) = 0.1733

hd(5) = −0.1592 ω(5) = 0.31 h(5) = −0.0494

hd(6) = 0.0750 ω(6) = 0.08 h(6) = 0.006

The transfer function of the system is,

H(z) =
N−1∑
n=0

h(n)z−n

= h(0)z−0 + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5

+h(6)z−6

= h(0)[1 + z−6] + h(1)[z−1 + z−5] + h(2)[z−2 + z−4] + h(3)z−3

= 0.006[1 + z−6] − 0.0494[z−1 + z−5] + 0.1733[z−2 + z−4] + 0.75z−3

The frequency response of the filter is,

H(e jω) =
⎡
⎣h

[
N − 1

2

]
+ 2

N−1
2∑

n=1

h

(
N − 1

2
− n

)
cosωn

⎤
⎦ e− jω( N−1

2 )

=
[

h(3) + 2
3∑

n=1

h (3 − n) cosωn

]
e− j3ω
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= (h(3) + 2h(2) cosω + 2h(1) cos 2ω + 2h(0) cos 3ω)e− j3ω

H(e jω) = (0.75 + 0.3466 cosω − 0.0988 cos 2ω + 0.012 cos 3ω)e− j3ω

Magnitude response

H(e jω) = 0.75 + 0.3466 cosω − 0.0988 cos 2ω + 0.012 cos 3ω

Phase response

∠H(e jω) = −3ω

Example 4.22
A lowpass filter should have the frequency response given below. Find filter coeffi-
cients hd(n). Also determine τ if hd(n) = hd(−n)

Hd(e
jω) =

{
e− jωτ , −ωc ≤ ω ≤ ωc

0; ωc ≤ |ω| ≤ π

Solution Given

Hd(e
jω) =

{
e− jωτ −ωc ≤ ω ≤ ωc

0; ωc ≤ |ω| ≤ π

hd(n) = 1

2π

ωc∫
−ωc

e− jωτ e jωndω

= 1

2π

ωc∫
−ωc

e jω(n−τ)dω

= 1

2π

[
e jω(n−τ)

j (n − τ)

]ωc

−ωc

= 1

2π

[
e jωc(n−τ) − e− jωc(n−τ)

j (n − τ)

]

hd(n) =
[
sinωc(n − τ)

π(n − τ)

]
n �= τ

if n = τ ; apply L’ Hospital’s rule

hd(n) = Lim
n→τ

cosωc(n − τ)(−ωc)

π(−1)
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hd(τ ) = ωc

π

∴ hd(n) =
{

sinωc(n−τ)

π(n−τ)
, n �= τ

ωc
π

, n = τ

To determine τ , given

h(n) = hd(−n)

hd(−n) = sinωc(n − τ)

π(n − τ)
⇒ − sinωc(n + τ)

−π(n + τ)
= sinωc(n + τ)

π(n + τ)

= sinωc(n − τ)

π(n − τ)
= sinωc(n + τ)

π(n + τ)

This exists only if

(n − τ) = n + τ

To achieve this τ should be 0.

τ = 0

Example 4.23
A LPF has the desired response as given below:

Hd(e
jω) =

{
e− j3ω, 0 ≤ ω ≤ π/2

0; π/2 ≤ ω ≤ π

Determine filter coefficients h(n) for N = 7 using type 1 frequency sampling tech-
nique.

Solution Given

Hd(e
jω) =

{
e− j3ω, 0 ≤ ω ≤ π/2

0, π/2 ≤ ω ≤ π

H̃(k) = Hd(ω)

∣∣∣∣
ω=ωk= 2πk

N

k = 0, 1, . . . , N − 1

= Hd(ω)

∣∣∣∣
ωk= 2πk

N

k = 0, 1, . . . , 6

The magnitude response is shown in Fig. 4.40.
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H( )

c

0
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0
k

H(k)
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3
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˜

X(z)

Y(z)

0.0025 0.2030.104 0.75

z 1 z 1 z 1

z 1 z 1 z 1

z 1 z 1

X(z)

Y(z)

0.0036 0.20520.1084 0.750.0298

z 1

z 1 z 1

z 1 z 1

z 1 z 1 z 1

z 1 z 1

a

b

Fig. 4.40 Magnitude response for Example 4.23. a Structure realization for Example 4.24. b
Structure realization for Example 4.24
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ωk = 2πk

7
where k = 0 ω0 = 0

k = 1 ω1 = 2π

7

k = 2 ω2 = 4π

7

k = 3 ω3 = 6π

7

k = 4 ω4 = 8π

7

k = 5 ω5 = 10π

7

k = 6 ω6 = 12π

7
→ ωk >

3π

2

H̃(k) =

⎧⎪⎨
⎪⎩
e− j3ωk , k = 0, 1

0, k = 2, 3, 4, 5

e− j3ωk , k = 6

=

⎧⎪⎨
⎪⎩
e− j6πk/7, k = 0, 1

0, k = 2, 3, 4, 5

e− j6πk/7, k = 6

∴ N is odd

h(n) = 1

N

⎡
⎣H̃(0) + 2

N−1
2∑

k=1

Re
[

H̃(k)e j 2πkn
N

]⎤⎦

= 1

7

[
H̃(0) + 2

3∑
k=1

Re
[

H̃(k)e j 2πkn
N

]]

= 1

7

[
H̃(0) + 2

3∑
k=1

Re
[
e j − j6πk

7 · e j 2πkn
7

]]

= 1

7

[
1 + 2

∑
k=1

Re
[
e j 2πk

7 (n−3)
]]

= 1

7

[
1 + 2

∑
k=1

cos
2πk

7
(n − 3)

]

h(n) = 1

7

[
1 + 2 cos

2π

7
(n − 3)

]
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The filter coefficients are

h(0) = −0.11456

h(1) = 0.07927

h(2) = 0.321

h(3) = 0.4285

h(4) = h(2) = 0.321

h(5) = h(1) = 0.07927

h(6) = h(0) = −0.1145

Example 4.24
Design a highpass filter with frequency response

Hd(e
jω) =

{
e− jωα, −π/4 ≤ ω ≤ π

0; |ω| ≤ π/4

using (i) Hanning and (ii) Hamming window with N = 11.

Solution

Hanning Window

Step 1

Hd(e
jω) =

{
e− jωα, −π/4 ≤ ω ≤ −π, π/4 ≤ ω ≤ π

0, otherwise

Step 2

hd(n) = 1

2π

⎡
⎢⎣

−π/4∫
−π

e− jωαe jωndω +
π∫

π/4

e− jωαe jωndω

⎤
⎥⎦

= 1

2π

⎡
⎢⎣

−π/4∫
−π

e jω(n−α)dω +
π∫

π/4

e jω(n−α)dω

⎤
⎥⎦

= 1

2π

[
e jω(n−α)

j (n − α)

]−π/4

−π

+
[
e jω(n−α)

j (n − α)

]π

π/4
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= 1

2π

[
e− j (π/4)(n−α) − e− jπ(n−α) + e jπ(n−α) − e j (π/4)(n−α)

j (n − α)

]

= 1

2π j (n − α)
2 j

[
sin π(n − α) − sin

π

4
(n − α)

]

hd(n) = sin π(n − α) − sin π
4 (n − α)

π(n − α)
, n �= α

When n = α; apply L’ hospital’s rule.

hd(n) = Lim
n→α

cosπ(n − α)π − cos(π/4)(n − α)π/4

π

= π − (π/4)

π
= 0.75

hd(n) =
{

sin π(n−α)−sin(π/4)(n−α)

π(n−α)
, n �= α

0.75, n = α

Step 3

h(d) = hd(n) + ωH (n)

ωH (n) =
{
0.5 − 0.5 cos

(
2πn
N−1

)
, 0 ≤ n ≤ N − 1

0, otherwise

ωH (n) =
{
0.5 − 0.5 cos

(
πn
5

)
, 0 ≤ n ≤ 10

0, otherwise

ωH (0) = 0 ωH (6) = 0.9045

ωH (1) = 0.0954 ωH (7) = 0.6545

ωH (2) = 0.3454 ωH (8) = 0.3454

ωH (3) = 0.6545 ωH (9) = 0.0954

ωH (4) = 0.9045 ωH (10) = 0

ωH (5) = 1

α = N − 1

2
= 5

hd(n) =
{

sin π(n−5)−sin(π/4)(n−5)
π(n−5) , n �= 5

0.75, n = 5

hd(0) = sin π(−5) − sin(π/4)(−5)

π(−5)
= 0.0450

hd(1) = 0 hd(6) = −0.225
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hd(2) = −0.075 hd(6) = −0.159

hd(3) = −0.159 hd(6) = −0.075

hd(4) = −0.225 hd(6) = 0

hd(5) = 0.75 hd(6) = 0.0450

h(n) = hd(n)ωH (n)

h(0) = 0.045 × 0 = 0

h(1) = 0 × 0.0954 = 0

h(2) = −0.075 × 0.3454 = −0.0259

h(3) = −0.159 × 0.6545 = −0.104

h(4) = −0.225 × 0.9045 = −0.203

h(5) = 0.75 × 1 = 0.75

h(6) = −0.225 × 0.9045 = −0.203

h(7) = −0.159 × 0.6545 = −0.104

h(8) = −0.075 × 0.3454 = −0.0259

h(9) = 0 × 0.954 = 0

h(10) = 0.045 × 0 = 0

Step 4

H(z) =
10∑

n=0

h(n)z−n

H(z) = −0.0259[z−2 + z−8] − 0.104[z−3 + z−7] − 0.203[z−4 + z−6]
+0.75z−5

Step 5 The structure realization is shown in Fig. 4.40a.

Hamming Window

Step 1

Hd(e
jω) =

{
e− jωα, −π/4 ≤ ω ≤ −π, π/4 ≤ ω ≤ π

0, otherwise
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Step 2

hd(n) =
{

sin(n−α)−sin(π/4)(n−α)

π(n−α)
, n �= α

0.75, n = α

Step 3

h(d) = hd(n)ωH (n)

ωH (n) =
{
0.54 − 0.46 cos

(
2πn
N−1

)
, 0 ≤ n ≤ N − 1

0.54 − 0.46 cos
(

πn
5

)
, 0 ≤ n ≤ 10

ωH (0) = 0.08 ωH (6) = 0.9121

ωH (1) = 0.1678 ωH (7) = 0.6821

ωH (2) = 0.3978 ωH (8) = 0.3978

ωH (3) = 0.6821 ωH (9) = 0.1678

ωH (4) = 0.9121 ωH (10) = 0.08

ωH (5) = 1

h(n) = hd(n)ωH (n) [∵ hd(n) same as above problem]

h(0) = 0.045 × 0.08 = 0.0036

h(1) = 0 × 0.1678 = 0

h(2) = −0.075 × 0.3978 = −0.0298

h(3) = −0.159 × 0.6821 = −0.1084

h(4) = −0.225 × 0.9121 = −0.2052

h(5) = 0.75 × 1 = 0.75

h(6) = −0.255 × 0.9121 = −0.2052

h(7) = −0.159 × 0.6821 = −0.1084

h(8) = −0.075 × 0.3978 = −0.0298

h(9) = 0 × 0.1678 = 0

h(10) = 0.045 × 0.08 = 0.0036

Step 4

H(z) =
N−1∑
n=0

h(n)z−n =
10∑

n=0

h(n)z−n

H(z) = 0.0036[1 + z−10] − 0.0298[z−2 + z−8] − 0.1084[z−3 + z−7]
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−0.2052[z−4 + z−6] + 0.75z−5

Step 5 The structure realization is shown in Fig. 4.40b.

Example 4.25
Design an ideal differentiator with frequency response

H(e jω) = jω, −π ≤ ω ≤ π

using (i) Rectangular and (ii) Hamming window with N = 8. For both cases plot
magnitude response.

(Anna University, December, 2006)
Solution

Rectangular Window

Step 1

H(e jω) = jω = e j (π/2)ω

H(e jω) = e j (π/2)e− jαω H(e jω), α = 0

Hd(e
jω) = jωe− jωα for − π ≤ ω ≤ π, N = 8

Step 2

hd(n) = 1

2π

π∫
−π

jωe− jωαe jωndω

= 1

2π
j

π∫
−π

ωe jω(n−α)dω

= 1

2π

[
ωe jω(n−α)

j (n − α)

]π

−π

−
[

e jω(n−α)

[ j (n − α)]2
]π

−π

= 1

2π

[
ωe jω(n−α)

j (n − α)
− e jω(n−α)

[ j (n − α)]2
]π

−π

= 1

2π

[
πe jπ(n−α)

j (n − α)
− e jπ(n−α)

j2(n − α)2
− (−π)e− jπ(n−α)

j (n − α)
+ e− jπ(n−α)

j (n − α)2

]

= 1

2π

[
π
2 cosπ(n − α)

j (n − α)
+ 2 j sin π(n − α)

(n − α)2

]
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hd(n) = cosπ(n − α)

n − α
− sin π(n − α)

π(n − α)2
where N = even

hd(n) = − sin π(n − α)

π(n − α)2

Step 3

h(n) = hd(n)ωH (n)

ωH (n) = 1

h(n) = hd(n)

hd(n) is anti-symmetry. So

hd(n) = −hd(N − 1 − n)

where

α = (N − 1)/2 = 7

2
.

hd(0) = −hd(7) = − sin(−7/2)π

π(−7/2)
= −0.026

hd(1) = −hd(6) = 0.0509

hd(2) = −hd(5) = −0.1415

hd(3) = −hd(4) = 1.27

h(n) = hd(n)

hd(0) = −hd(7) = −0.026

hd(1) = −hd(6) = 0.0509

hd(2) = −hd(5) = −0.1415

hd(3) = −hd(4) = 1.27

Step 4

H(z) =
7∑

n=0

h(n)z−n

= −0.026[1 − z−7] + 0.0509[z−1 − z−6] − 0.1415[z−2 − z−5]
+1.27[z−3 − z−4]

Step 5 The structure realized as shown in Fig. 4.41a.
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j2
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Fig. 4.41 a Structure realization (Rectangular window) for Example 4.25. b Frequency response
plot. c Structure realization (Hamming window) for Example 4.25 (d)
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0.0909 1.21520.0129
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2
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j2.078
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Fig. 4.41 (continued)

Frequency response of ideal differentiator for anti-symmetric impulse response
and N = even is,

H(e jω) =
N
2∑

n=1

d(n) sinω

(
n − 1

2

)

where

d(n) =
N
2∑

n=1

2h

(
N

2
− n

)
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d(1) = 2h

(
N

2
− 1

)
= 2h(4 − 1) = 2h(3) = 2.54

d(2) = 2h(4 − 2) = 2h(2) = −0.283

d(3) = 2h(4 − 3) = 2h(1) = 0.1010

d(4) = 2h(0) = −0.52

H(e jω) = d(1) sin
ω

2
+ d(2) sin

3ω

2
+ d(3) sin

5ω

2
+ d(4) sin

7ω

2

= 2.54 sin
ω

2
− 0.283 sin

3ω

2
+ 0.1010 sin

5ω

2
− 0.52 sin

7ω

2

H(e jω) = j

(
2.54 sin

ω

2
− 0.283 sin

3ω

2
+ 0.1010 sin

5ω

2
− 0.52 sin

7ω

2

)

ω deg/s 0 20 40 60 80 100 180 240 270 360

H(e jω) 0 j0.5839 j0.3889 j1.2975 j0.5795 j1.9945 j3.444 j1.662 j1.89 0

The frequency response plot is shown in Fig. 4.41b.

Hamming Window

Steps 1 and 2 Same as Rectangular window.
Step 3

ωH (n) =
{
0.54 − 0.46 cos

(
2πn
N−1

)
, 0 ≤ n ≤ N − 1

0.54 − 0.46
(
cos πn

5

)
, 0 ≤ n ≤ N

ωH (0) = ωH (7) = 0.08

ωH (1) = ωH (6) = 0.2532

ωH (2) = ωH (5) = 0.6424

ωH (3) = ωH (4) = 0.954

hd(n) same as above.

h(0) = −h(7) = hd(0)ωH (0) = −0.0021

h(1) = −h(6) = hd(1)ωH (1) = 0.0129

h(2) = −h(5) = hd(2)ωH (2) = −0.0909

h(3) = −h(4) = hd(3)ωH (3) = 1.2152

Step 4

H(z) = −0.0021[1 − z−7] + 0.0129[z−1 − z−6] − 0.0909[z−2 − z−5]
+1.2152[z−3 − z−4]
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Step 5 The structure realization is shown in Fig. 4.41c.

Frequency response

H̄(e jω) =
N
2∑

n=1

d(n) sin

(
n − 1

2

)
ω

where

d(n) =
N
2∑

n=1

2h

(
N

2
− n

)

=
4∑

n=1

2h (4 − n)

d(1) = 2h(4 − 1) = 2h(3) = 2.4304

d(2) = 2h(4 − 2) = 2h(2) = −0.1818

d(3) = 2h(4 − 3) = 2h(1) = 0.0258

d(4) = 2h(0) = −0.0042

H̄(e jω) = d(1) sin
ω

2
+ d(2) sin

3ω

2
+ d(3) sin

5ω

2
+ d(4) sin

7ω

2

= 2.4304 sin
ω

2
− 0.1818 sin

3ω

2
+ 0.0258 sin

5ω

2
− 0.0042 sin

7ω

2
H(e jω) = j H̄(e jω)

= j

(
2.4304 sin

ω

2
− 0.1818 sin

3ω

2
+ 0.0258 sin

5ω

2
− 0.0042 sin

7ω

2

)

ω deg/s 0 45 90 120 180 240 270 315 360

|H(e jω)| 0 j0.7875 j1.568 j2.078 j2.6422 j2.078 j1.568 j0.7875 0

Example 4.26
Design an ideal Hilbert transformer having frequency response

H(e jω) =
{

j, −π ≤ ω ≤ 0

− j, 0 ≤ ω ≤ π

using (i) Rectangular window and (ii) Blackman window with N = 11.

(Anna University, May, 2007)
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Solution

Step 1

H(e jω) =
{

j, −π ≤ ω ≤ 0

− j, 0 ≤ ω ≤ π

Step 2

hd(n) = 1

2π

⎡
⎣ 0∫

−π

je jωndω +
π∫

0

− je jωndω

⎤
⎦

= j

2π

[[
e jωn

jn

]0
−π

−
[
e jωn

jn

]π

0

]

= j

2π

1

jn

[[
e0 − e− jπn − e jπn + e0

]]
= 1

2πn

[
2 − e jπn + e− jπn

]
= 1

2πn
[2 − 2 cosπn]

= 1 − cosπn

πn
=

{
2 sin2( πn

2 )

πn , n �= 0

0, n = 0

hd(n) = 1 − cosπn

πn
∴ hd(n)is antisymmetry

hd(0) = 1 − cos 0

π0
= 0

hd(1) = 1 − cosπ

π
= 2

π
= −hd(−1)

hd(2) = 0 = −hd(−2)

hd(3) = 2

3π
= −hd(−3)

hd(4) = 0 = −hd(−4)

hd(5) = 2

5π
= −hd(−5)

Step 3

h(n) = hd(n)ωH (n) (where ωh(n) = 1)

h(n) = hd(n)

h(0) = 0

h(1) = −h(−1) = 2

π
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h(2) = −h(−2) = 0

h(3) = −h(−3) = 2

3π
h(4) = −h(−4) = 0

h(5) = −h(−5) = 2

5π

Step 4

H(Z) = z−5
5∑

n=−5

h(n)z−n

= z−5

[
2

π
[z − z−1] + 2

3π
[z3 − z−3] + 2

5π
[z5 − z−5]

]

= 2

π
[z−4 − z−6] + 2

3π
[z−2 − z−8] + 2

5π
[1 − z−10]

Step 5 The structure realization is shown in Fig. 4.42a

Blackman Window

Step 1 and 2 Same as Rectangular window.
Step 3

ωB(n) = 0.42 + 0.5 cos
πn

5
+ 0.08 cos

2πn

5
for − 5 ≤ n ≤ 5

ωB(0) = 1

ωB(1) = ωB(−1) = 0.849

ωB(2) = ωB(−2) = 0.509

ωB(3) = ωB(−3) = 0.2

ωB(4) = ωB(−4) = 0.4

ωB(5) = ωB(−5) = 0

h(n) = hd(n)ωB(n)

h(0) = 0

h(1) = −h(−1) =
(
2

π

)
0.849 = 0.5405

h(2) = −h(−2) = 0 = 0

h(3) = −h(−3) =
(

2

3π

)
0.2 = 0.0423

h(4) = −h(−4) = 0 = 0
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1 1 1

2
5

2
3

2

X(z)

Y(z)

z 1

z 1

z 1

z 1

z 1

z 1

z 1 z 1

z 1z 1

0.0424 0.54

X(z)

Y(z)

z 1 z 1 z 1

z 1 z 1 z 1

z 1 z 1

a

b

Fig. 4.42 a Structure realization (Rectangular window) for Example 4.26. b Structure realization
(Blackmann window) for Example 4.26
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h(5) = −h(−5) =
(

2

5π

)
0 = 0

Step 4

H(z) = z−5
5∑

n=−5

h(n)z−n

= z−5[0.54(z − z−1) + 0.0424(z3 − z−3)]
= 0.54[z−4 − z−6] + 0.0424[z−2 − z−8]

Step 5 The structure realization is shown in Fig. 4.42b

Example 4.27
Using a Rectangular window technique design a lowpass filter with passband gain
of unity, cutoff frequency of 100Hz and working at a sampling frequency of 5kHz.
The length of the impulse response should be 7.

(Anna University, May, 2007)
Solution Given fc = 1000Hz, F = 5000Hz

Hd(e
iω) =

{
1, −ωc ≤ ω ≤ ωc

0, −π ≤ −ω ≤ −ωc and ωc ≤ ω ≤ π

where

ωc = 2π fc

= 2π × 1000.T

ωc = 2000π

5000
= 2π

5

The desired frequency response of the LPF is shown in Fig. 4.43a.
The filter coefficients are given by

hd(n) = 1

2π

π∫
−π

Hd(e
jω).e jωndω
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2
5

1

2
5

Hd (e j )

X(z)

Y(z)

z 1X(z)

z 6X(z) z 5X(z) z 4X(z)

z 2X(z) z 3X(z)
z 1

z 1 z 1

z 1

z 1

z 1

0.06236 0.0935 0.3027 0.4

a

b

Fig. 4.43 a Frequency response of for Example 4.27. b Linear phase realization of FIR filter for
Example 4.27

= 1

2π

ωc∫
−ωc

e jωndω

= 1

2π

2π
5∫

−2π
5

e jωndω

= 1

2π

[
e jωn

jn

] 2π
5

−2π
5

= 1

nπ

[
e

j2πn
5 − e

− j2πn
5

2 j

]

hd(n) = sin 2πn
5

nπ
,−∞ ≤ n ≤ ∞
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The Rectangular window for N = 7 is given by

ωR(n) =
{
1, −3 ≤ n ≤ 3

0, otherwise

The filter coefficient

h(n) = hd(n) × ωR(n)

h(n) =
{

hd(n), −3 ≤ n ≤ 3

0, otherwise

For n = 0,

h(0) = hd(0) = Lim
n→0

sin 2πn
5

nπ

= Lim
n→0

2

5

sin 2πn
5

2πn
5

= Lim
n→0

2

5

h(0) = 2

5

For n = 1;

h(1) = h(−1) = sin 2π
5

π
= 0.3027

For n = 2;

h(2) = h(−2) = sin 4π
5

2π
= 0.0935

For n = 3;

h(3) = h(−3) = sin 6π
5

3π
= −0.06236

The filter coefficients of realizable filter are:

h(0) = h(6) = −0.06236

h(1) = h(5) = 0.0935

h(2) = h(4) = 0.3027

h(3) = 0.4
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It is symmetric about α = N−1
2 = 7−1

2 = 3. The transfer function of realizable filter
is

H(z) =
N−1∑
n=0

h(n)z−n

=
6∑

n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3

+h(4)z−4 + h(5)z−5 + h(6)z−6

H(z) = Y (z)

X (z)

= h(0)[1 + z−6] + h(1)[z−1 + z−5] + h(2)[z−2

+z−4] + h(3)z−3

Y (z) = −0.06236[1 + z−6]X (z) + 0.0935[z−1 + z−5]X (z)

+0.3027[z−2 + z−4]X (z) + 0.4z−3X (z)

Linear phase realization of the filter is shown in Fig. 4.43b.

Example 4.28
Design a bandpass filter which approximates the ideal filter with cutoff frequencies
at 0.2 and 0.3 rad/s. The filter order is N = 7. Use Hamming window.

(Anna University, December, 2007)
Solution Given ωc1 = 0.2 rad/s, ωc2 = 0.3 rad/s, N = 7.

Step 1 Choose Hd(ω) ideal filter such that

Hd(ω) =
{
1, −ωc2 ≤ ω ≤ −ωc1 and ωc1 ≤ ω ≤ −ωc2
0, otherwise

Step 2 To Find hd(n)

hd(n) = 1

2π

⎡
⎣ −ωc1∫

−ωc2

Hd(ω)e jωndω +
ωc2∫

ωc1

Hd(ω)e jωndω

⎤
⎦

= 1

2π

⎡
⎣ −0.2∫

−0.3

e jωndω +
0.3∫

0.2

e jωndω

⎤
⎦
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= 1

2π

[[
e jωn

jn

]−0.2

−0.3

+
[
e jωn

jn

]0.3
0.2

]

= 1

2nπ j

[
e− j0.2n − e− j0.3n + e j0.3n − e j0.2n

]
= 1

nπ

[
e j0.3n − e− j0.3n

2 j
− e j0.2n − e− j0.2n

2 j

]

= 1

nπ
[sin 0.3n − sin 0.2n]

hd(n) = 1

nπ
[sin 0.3n − sin 0.2n]

Step 3 To Find h(n)

h(n) = hd(n) × ωH (n)

Hamming window function is,

ωH (n) =
{
0.54 +0.46 cos( 2πn

N−1 ) − (N−1)
2 ≤ n ≤ (N−1)

2

0, otherwise

ωH (0) = 0.54 + 0.46 = 1

ωH (1) = ωH (−1) = 0.54 + 0.46 cos
2π

6
= 0.77

ωH (2) = ωH (−2) = 0.54 + 0.46 cos
4π

6
= 0.31

ωH (3) = ωH (−3) = 0.54 + 0.46 cos
6π

6
= 0.08

hd(n) = 1

nπ
[sin 0.3n − sin 0.2n], −3 ≤ n ≤ 3

hd(0) = Lim
n→0

1

π

[
0.3

sin 0.3n

0.3n
− 0.2

sin 0.2n

0.2n

]

= 0.3 − 0.2

π
= 0.03183

hd(1) = hd(−1) = 1

π
[sin 0.3 − sin 0.2] = 0.0308

hd(2) = hd(−2) = 1

2π
[sin 0.6 − sin 0.4] = 0.0278

hd(3) = hd(−3) = 1

3π
[sin 0.9 − sin 0.6] = 0.0232

h(n) = hd(n) × ωH (n)

h(0) = hd(0) × ωH (0) = 0.03183
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h(1) = h(−1) = hd(+1) × ωH (+1) = 0.02926

h(2) = h(−2) = hd(2) × ωH (2) = 0.0086

h(3) = h(−3) = hd(3) × ωH (3) = 0.01856

Step 4 To Find H(z)

H(z) = z−( N−1
2 )

⎡
⎣ N−1

2∑
n=1

h(n)[zn + z−n] + h(0)

⎤
⎦

= z−3

[
h(0) +

3∑
n=1

h(n)[zn + z−n]
]

= z−3
[
h(0) + h(1)[z1 + z−1] + h(2)[z2 + z−2] + h(3)[z3 + z−3]]

H(z) = [
h(0)z−3 + h(1)[z−2 + z−4] + h(2)[z−1 + z−5]

+h(3)[1 + z−6]]

H(z) = 0.03183z−3 + 0.02926[z−2 + z−4] + 0.0086[z−1 + z−5]
+ 0.01856[1 + z−6]

Step 5 Realization of the filter

Y (z) = h(0)z−3X (z) + h(1)[z−2 + z−4]X (z)

+h(2)[z−1 + z−5]X (z)

+h(3)[1 + z−6]X (z)

FIR filter is realized as shown in Fig. 4.44.

Example 4.29
Obtain linear phase structure with minimum member of multipliers for the system
described by the equation.

y(n) = x(n) + 1

2
x(n − 1) − 1

4
x(n − 2) + 1

2
x(n − 3) + x(n − 4)

(Anna University, December, 2007)
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X(z)

Y(z)

z 1X(z)

z 6X(z) z 5X(z) z 4X(z)

z 2X(z) z 3X(z)
z 1

z 1 z 1

z 1

z 1

z 1

h(3) 0.01856 h(2) 0.0086 h(1) 0.0292
h(0) 0.03183

Fig. 4.44 Realization of FIR filter for Example 4.28

Solution Given

y(n) = x(n) + 1

2
x(n − 1) − 1

4
x(n − 2) + 1

2
x(n − 3) + x(n − 4)

Taking z-transform on both sides, we get

Y (z) = X (z) + 1

2
z−1X (z) − 1

4
z−2X (z) + 1

2
z−3X (z) + z−4X (z)

= X (z)

[
1 + 1

2
z−1 − 1

4
z−2 + 1

2
z−3 + z−4

]
Y (z)

X (z)
= 1 + 1

2
z−1 − 1

4
z−2 + 1

2
z−3 + z−4

H(z) = 1 + 1

2
z−1 − 1

4
z−2 + 1

2
z−3 + z−4

X(z)

Y(z)

z 1X(z)

z 4X(z) z 3X(z)

z 2X(z)
z 1

z 1 z 1

z 1

1 1
4

1
2

Fig. 4.45 Linear phase realization for the Example 4.29
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H(z) =
∞∑

n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + · · ·

Comparing these equations, we get impulse response.

h(0) = 1, h(1) = 1

2
, h(2) = −1

4
, h(3) = 1

2
, h(4) = 1

h(n) = {1, 1
2
,
−1

4
,
1

2
, 1} and N = 5

Here h(n) satisfies the condition h(n) = h(N − 1 − n)

H(z) = Y (z)

X (z)
= (1 + z−4) + 1

2
[z−1 + z−3] − 1

4
z−2

Y (z) = [X (z) + z−4X (z)] + 1

2
[z−1X (z) + z−3X (z)] − 1

4
z−2X (z)

Y (z) is realized as shown in Fig. 4.45.

Example 4.30
Design a linear phase FIR digital filter for the given specifications using Hamming
window of length M = 7.

Hd(ω) =
{
e− j3ω, for |ω| ≤ π

6

0, for π
6 ≤ |ω| ≤ π

(Anna University, May, 2007)
Solution Given

Hd(ω) =
{
e− j3ω, |ω| ≤ π

6

0, π
6 ≤ |ω| ≤ π

The frequency response having a term e− jω( N−1
2 ), gives h(n) which is symmetrical

about α = N−1
2 = 3, i.e., we get a causal sequence.

hd(n) = 1

2π

π
6∫

−π
6

e− jωndω
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= 1

2π

π
6∫

−π
6

e j (n−3)ωdω

= 1

2π

[
e j (n−3)ω

j (n − 3)

] π
6

−π
6

= 1

π(n − 3)

[
e j π

6 (n−3) − e− j π
6 (n−3)

2 j

]

hd(n) = sin π
6 (n − 3)

π(n − 3)
, 0 ≤ n ≤ N − 1, 0 ≤ n ≤ 6

hd(0) = hd(6) = sin( π
2 )

3π
= 0.1061

hd(1) = hd(5) = sin( π
3 )

2π
= 0.1378

hd(2) = hd(4) = sin( π
6 )

π
= 0.1591

hd(3) = Lim
n→3

sin π
6 (n − 3)

6. π
6 (n − 3)

= 1

6
= 0.1666

Hamming window function is,

ωH (n) =
{
0.54 − 0.46 cos( 2πn

N−1 ), 0 ≤ n ≤ N − 1

0, otherwise

ωH (n) =
{
0.54 − 0.46 cos( 2πn

6 ), 0 ≤ n ≤ 6

0, otherwise

ωH (0) = 0.54 − 0.46 = 0.08

ωH (1) = 0.54 − 0.46 cos

(
2π

6

)
= 0.31

ωH (2) = 0.54 − 0.46 cos

(
4π

6

)
= 0.77

ωH (3) = 0.54 − 0.46 cos

(
6π

6

)
= 1

ωH (4) = ωH (2) = 0.77

ωH (5) = ωH (1) = 0.31

ωH (6) = ωH (0) = 0.08

h(n) = hd(n) × ωH (n)

h(0) = hd(0) × ωH (0)
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h(0) = 0.0048

h(6) = h(0) = 0.0048

h(1) = h(5) = hd(1) × ωH (1) = 0.04271

h(2) = h(4) = hd(2) × ωH (2) = 0.1225

h(3) = hd(3) × ωH (3) = 0.16667

H(z) =
N−1∑
n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5 + h(6)z−6

= h(0)[1 + z−6] + h(1)[z−1 + z−5] + h(2)[z−2 + z−4] + h(3)z−3

H(z) = 0.0048[1 + z−6] + 0.04271[z−1 + z−5]
+0.1225[z−2 + z−4] + 0.16667z−3

Realization of the filter is

H(z) = Y (z)

X (z)

= 0.0048[1 + z−6] + 0.04271[z−1 + z−5] + 0.1225[z−2 + z−4]
+0.16667z−3

Y (z) = 0.0048[X (z) + z−6X (z)] + 0.04271[z−1X (z) + z−5X (z)]
+0.1225[z−2X (z) + z−4X (z)] + 0.16667z−3X (z)

The structure of the filter is shown in Fig. 4.46.

Example 4.31
Design and implement linear phase FIR filter of length N = 15 which has following
unit sample sequence:

H(k) =
{
1, k = 0, 1, 2, 3

0, k = 4, 5, 6, 7

(Anna University, May 2007)



4.5 Design Techniques for Linear Phase FIR Filters 509

X(z)

Y(z)

z 1X(z)

z 6X(z) z 5X(z) z 4X(z)

z 2X(z) z 3X(z)
z 1

z 1 z 1

z 1

z 1

z 1

0.0048 0.04271 0.1225 0.1667

Fig. 4.46 FIR filter structure Example 4.30

Solution Linear phase FIR filter is symmetric about

α = N − 1

2
= 15 − 1

2
= 7

|H(k)| =
{
1, for 0 ≤ k ≤ 3 and 11 ≤ k ≤ 14

0, for 4 ≤ k ≤ 10

H(k) =
{
e− jωα, k = 0, 1, 2, 3

0, k = 4, 5, 6, 7

H(k) =
{
e

− j2πkα

15 , k = 0, 1, 2, 3

0, k = 4, 5, 6, 7

H(k) =

⎧⎪⎨
⎪⎩
e

− j14πk
15 , k = 0, 1, 2, 3

0, 4 ≤ k ≤ 10

e
− j14π(k−15)

15 , 11 ≤ k ≤ 14

H(k) =
{
e

j14πk
15 , k = 0, 1, 2, 3

0, k = 4, 5, 6, 7

h(n) = 1

N

⎡
⎣H(0) + 2

N−1
2∑

k=1

Re(H(k)e
j2πnk
15 )

⎤
⎦

= 1

15

[
1 + 2

7∑
k=1

Re[e j14πk
15 .e

j2πnk
15 ]

]

= 1

15

[
1 + 2

3∑
k=1

cos
2πk(7 − n)

15

]
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h(n) = 1

15

[
1 + 2 cos

2π(7 − n)

15
+ 2 cos

4π(7 − n)

15
+ 2 cos

6π(7 − n)

15

]

h(0) = h(14) = 1

15

[
1 + 2 cos

14π

15
+ 2 cos

28π

15
+ 2 cos

42π

15

]
= −0.05

h(1) = h(13) = 1

15

[
1 + 2 cos

12π

15
+ 2 cos

24π

15
+ 2 cos

36π

15

]
= 0.041

h(2) = h(12) = 1

15

[
1 + 2 cos

10π

15
+ 2 cos

20π

15
+ 2 cos

30π

15

]
= 0.0666

h(3) = h(11) = −0.0365

h(4) = h(10) = −0.1078

h(5) = h(9) = 0.034

h(6) = h(8) = 0.3188

h(7) = = 0.466

H(z) =
N−1∑
n=0

h(n)z−n

= h(0)z−1 + h(1)z−2 + · · ·
= h(0)[1 + z−14] + h(1)[z−1 + z−13] + h(2)[z−2 + z−12]

+h(3)[z−3 + z−11] + h(4)[z−4 + z−10] + h(5)[z−5 + z−9]
+h(6)[z−6 + z−8] + h(7)z−7

H(z) = −0.05[1 + z−14] + 0.041[z−1 + z−13] + 0.0666[z−2 + z−12]
−0.0365[z−3 + z−11] − 0.1078[z−4 + z−10] + 0.034[z−5 + z−9]
+0.3188[z−6 + z−8] + 0.466z−7

The structure is shown in Fig. 4.47.

H(k)

k0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

a

Fig. 4.47 a Ideal magnitude response for Example 4.31. b Structure realization for Example 4.31
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Example 4.32
Design a FIR filter approximating the ideal frequency response.

Hd(e
jω) =

{
e− jαω, for |ω| ≤ π

6

0, for π
6 ≤ |ω| ≤ π

Determine the filter coefficients for N = 13.

(Anna University, December, 2005)
Solution We know that,

hd(n) = 1

2π

π∫
−π

Hd(e
jω)e jωndω

= 1

2π

π
6∫

−π
6

e− jαωne jωndω

= 1

2π

π
6∫

−π
6

e j (n−α)ωdω

= 1

2

[
e j (n−α)ω

j (n − α)

] π
6

−π
6

= 1

π(n − α)

[
e j (n−α) π

6

2 j
− e− j (n−α) π

6

2 j

]

= sin(n − α)π
6

π(n − α)

Form the frequency response we can find that the filter coefficients are symmetrical
about α = N−1

2 = 6, satisfying h(n) = h(N − 1 − n)

hn =
{

hd(n), for 0 ≤ n ≤ 12

0, otherwise

hn =
{

sin π
6 (n−α)

π(n−α)
, 0 ≤ n ≤ 12

0, otherwise



4.5 Design Techniques for Linear Phase FIR Filters 513

h(n) = h(N − 1 − n)

h(n) = h(13 − 1 − 0) = h(12) = 0

h(1) = h(11) = 0.0318

h(2) = h(10) = 0.0689

h(3) = h(9) = 0.106

h(4) = h(8) = 0.1379

h(5) = h(7) = 0.159

h(6) = Lim
n→6

sin π
6 (n − 6)

6π
6 (n − 6)

= 1

6
= 0.1667

H(z) =
N−1∑
n=0

h(n)z−n

=
12∑

n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + · · · + h(12)z−12

= h(0)[1 + z−12] + h(1)[z−1 + z−11] + h(2)[z−2 + z−10]
+h(3)[z−3 + z−9] + h(4)[z−4 + z−8] + h(5)[z−5 + z−7] + h(6)z−6

H(z) = 0.0318[z−1 + z−11] + 0.0689[z−2 + z−10]
+0.106[z−3 + z−9] + 0.1379[z−4 + z−8]

+0.159[z−5 + z−7] + 0.1667z−6

The structure realization is shown in Fig. 4.48.

Example 4.33
Design a filter with

Hd(e
− jω) =

{
e− j3ω, −π

4 ≤ ω ≤ π
4

0, π
4 < |ω| ≤ π

(Anna University, May, 2004)
Solution Given

Hd(e
− jω) = e− j3ω

α = 3 = N − 1

2
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N = 7

The frequency response is having a term e− jω( N−1
2 ) which gives h(n) symmetrical

about n = N−1
2 = 3. Therefore, we get casual sequence.

hd(n) =
π
4∫

−π
4

e− j3ωe jωndω

=
π
4∫

−π
4

e j (n−3)ωdω

=
π
4∫

−π
4

[
e j (n−3)ω

j (n − 3)

] π
4

−π
4

hd(n) = sin π
4 (n − 3)

π(n − 3)

For N = 7, the filter coefficients are,

h(n) = hd(n)

h(0) = h(6) = 0.075

h(1) = h(5) = 0.159

h(2) = h(4) = 0.22

h(3) = 0.25

H(z) =
N−1∑
n=0

h(n)z−n =
6∑

n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5 + h(6)z−6

= h(0)[1 + z−6] + h(1)[z−1 + z−5] + h(2)[z−2 + z−4] + h(3)z−3

H(z) = 0.075[1 + z−6] + 0.159[z−1 + z−5] + 0.22[z−2 + z−4] + 0.25z−3
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Example 4.34
Design a filter with

Hd(e
− jω) =

{
e− j3ω, −π

4 ≤ ω ≤ π
4

0, π
4 ≤ |ω| ≤ π

using a Hamming window with N = 7.

(Anna University, December, 2004)
Solution Given

Hd(e
− jω) =

{
e− j3ω, −π

4 ≤ ω ≤ π
4

0, π
4 ≤ −|ω| ≤ π

α = 3; N−1
2 = 3; N = 7. Impulse response h(n) is symmetric about α = 3. Since

the frequency response is having a term e− jωα

hd(n) = 1

2π

π
4∫

−π
4

e− j3ωe jωndω

= 1

2π

π
4∫

−π
4

e j (n−3)ωdω

hd(n) = sin π
4 (n − 3)

π(n − 3)

hd(0) = hd(6) = 0.075

hd(1) = hd(5) = 0.159

hd(2) = hd(4) = 0.22

hd(3) = Lim
n→3

sin π
4 (n − 3)

4. π
4 (n − 3)

hd(3) = 1

4
= 0.25

Hamming window function is,
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ωH (n) =
{
0.54 − 0.46 cos( 2πn

N−1 ), 0 ≤ n ≤ N − 1

0, otherwise

ωH (n) =
{
0.54 − 0.46 cos( 2πn

6 ), 0 ≤ n ≤ 6

0, otherwise

ωH (0) = 0.08

ωH (1) = 0.31

ωH (2) = 0.77

ωH (3) = 1

ωH (4) = 0.77

ωH (5) = 0.31

ωH (6) = 0.08

The filter coefficients are,

h(n) = hd(n) × ωH (n)

h(0) = h(6)

= hd(0) × ωH (0)

= 0.006

h(1) = h(5)

= hd(0) × ωH (1)

= 0.049

h(2) = h(4)

= hd(0) × ωH (2)

= 0.1694

h(3) = hd(3)ωH (3)

= 0.25

The transfer function of the filter is,

H(z) =
N−1∑
n=0

h(n)z−n

=
6∑

n=0

h(n)z−n
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X(z)

Y(z)

z 1X(z)

z 6X(z) z 5X(z) z 4X(z)

z 2X(z) z 3X(z)
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z 1 z 1
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52.04961.0940.0600.0

Fig. 4.49 Structure realization for Example 4.34

Structure realization filter for Example 4.34 is shown in Fig. 4.49.
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Fig. 4.50 Log-magnitude spectrum of Hamming window

Log-magnitude spectrum of Hamming window for question 26 is shown in Fig. 4.50.

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5

+h(6)z−6

= h(0)[1 + z−6] + h(1)[z−1 + z−5] + h(2)[z−2 + z−4] + h(3)z−3

H(z) = 0.006[1 + z−6] + 0.049[z−1 + z−5]
+0.1694[z−2 + z−4] + 0.25z−3

The structure realized as shown in Figs. 4.49, 4.50 and 4.51.
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X(z) Y(z)

a

z 1

Fig. 4.51 Direct form realization for problem 49

Direct form realization for problem 49 is shown in Fig. 4.51.

Example 4.35
A lowpass filter is required to be designed with the desired frequency response.

Hd(ω) =
{
e− j2ω, −0.25π ≤ ω ≤ 0.25π

0, 0.25π ≤ ω ≤ π

Obtain the filter coefficients, h(n) using Hamming window function. Also fluid the
frequency response H(ω) of the designed filter.

(Anna University, April, 2005)
Solution Given

Hd(ω) =
{
e− j2ω, −0.25π ≤ ω ≤ 0.25π

0, 0.25π ≤ ω ≤ π

hd(n) = 1

2π

π∫
−π

Hd(ω)e jωndω

= 1

2π

0.25π∫
−0.25π

e− j2ωe jωndω

= 1

2π

0.25π∫
−0.25π

e j (n−2)ωdω

= 1

2π

[
e j (n−2)ω

j (n − 2)

]0.25π
−0.25π

= 1

π(n − 2)

[
e j0.25π(n−2) − e− j0.25π(n − 2)

2 j

]
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X(z)
Y(z)

b 1

z 1

Fig. 4.52 A structure for problem 50

hd(n) = 1

π(n − 2)
. sin 0.25π(n − 2)

From the given frequency it is clear that

N − 1

2
= 2 → N − 1 = 4 → N = 5

α = N − 1

2
= 2

If n = 2,

hd(n) = Lim
n→2

sin( π
4 )(n − 2)

4. π
4 (n − 2)

= 1

4

Hd =
{

sin 0.25(n−2)
π(n−2) , n �= 2

1
4 , n = 2

hd(0) = hd(4) = sin 0.25(−2)

π(−2)
= 0.159

hd(1) = hd(3) = sin 0.25(−1)

π(−1)
= 0.225

hd(2) = = 1

4
= 0.25



4.5 Design Techniques for Linear Phase FIR Filters 521

Hamming window

ωH (n) =
{
0.54 − 0.46 cos( 2πn

N−1 ), 0 ≤ n ≤ N ≤ 1

0, otherwise

=
{
0.54 − 0.46 cos( 2πn

4 ), 0 ≤ n ≤ N ≤ 4

0, otherwise

ωH (0) = 0.54 − 0.46 = 0.08

ωH (1) = 0.54

ωH (2) = 1

ωH (3) = 0.54

ωH (4) = 0.54 − 0.46 = 0.08

h(n) = hd(n) × ωH (n)

h(0) = h(4) = hd(0) × ωH (0) = 0.0127

h(1) = h(3) = hd(1) × ωH (1) = 0.1215

h(2) = hd(2) × ωH (2) = 0.25

Filter coefficients are,
h(0) = h(4) = 0.0127

h(1) = h(3) = 0.1215

h(2) = 0.25

Summary

� Digital filters are classified as FIR and IIR filters. They have their own merits
and demerits. The choice of the filter is made depending upon the application.

� The difference equation which describes FIR filter is non-recursive; the output
response is a function only of past and present values of the input. When FIR is
implemented in this form, it is always stable.

� FIR filters have exactly linear phase characteristic which has unique properties
and helps in the design and applications.

� The design of FIR filters are divided into five independent stages. They are:

(a) Filter specifications.
(b) Coefficient calculation.
(c) Realization.
(d) Analysis of errors.
(e) Implementation.

� FIR filters are designed usually by the following methods among others:
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(a) Frequency sampling method.
(b) Fourier series method.
(c) Design using windows.

� The following windowing techniques are generally used to design FIR filters:

(a) Rectangular window.
(b) Raised cosine window.
(c) Hanning window.
(d) Hamming window.
(e) Blackman window.
(f) Kaiser window.

� There are different types of structures for realizing FIR filter system. The fol-
lowing structures are described in this chapter:

(a) Direct from realization.
(b) Cascade form realization.
(c) Linear phase realization.
(d) Lattice structure realization.

Short Questions and Answers

1. What are FIR Filters?
The specifications of the desired filter will be given in terms of ideal frequency
response Hd(ω). The impulse response hd(n) of desired filter can be obtained
by inverse Fourier transform of Hd(ω), which consists of infinite number of
samples. The filters designed by selecting finite number of samples of impulse
response are called FIR filters.

2. What are advantages of FIR filters?
The advantages of FIR filters are:

• Linear phase FIR filters can be easily designed.
• Efficient realizations of FIR filter exist as both recursive and non-recursive
structures.

• FIR filters realized non-recursively are always stable.
• The round off noise can be made small in non-recursive realization of FIR
filter.

3. What are disadvantages of FIR filters?
The disadvantages of FIR filters are:

• The duration of impulse response should be large to realize sharp cutoff
filters.

• The non-integral delay can lead to problems in some signal processing appli-
cations.
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4. What are the conditions to be satisfied for constant phase delay in linear
phase FIR filters?
The conditions for constant phase delay are:

Phase delay, α = N − 1

2
(i.e., phase delay is constant)

Impulse response, h(n) = h(N − 1 − n) (i.e., impulse response is symmetric)

5. What are the possible types of impulse response for linear phase FIR filter?
There are four types of impulse response for linear phase FIR filter.

• Symmetric impulse response for N is odd.
• Symmetric impulse response for N is even.
• Anti-symmetric impulse response for N is odd.
• Anti-symmetric impulse response for N is even.

6. Write themagnitude andphase function ofFIRfilterwhen impulse response
is symmetric and N is odd.

Magnitude function, |H(ω)| = h

(
N − 1

2

)
+

N−1∑
n=1

2h

(
N − 1

2
− n

)
cosωn

Phase function, ∠H(ω) = −αω

7. Write themagnitude andphase function ofFIRfilterwhen impulse response
is symmetric and N is even.

Magnitude function, |H(ω)| =
N/2∑
n=1

2h

(
N − 1

N
− n

)
cos

(
ω

(
n − 1

2

))

Phase function,∠H(ω) = −αω

8. Write themagnitude andphase function ofFIRfilterwhen impulse response
is anti-symmetric and N is odd.

Magnitude function, |H(ω)| =
N−1
2∑

n=1

2h

(
N − 1

N
− n

)
sinωn

Phase function,∠H(ω) = β − αω

9. Write themagnitude andphase function ofFIRfilterwhen impulse response
is anti-symmetric and N is even

Magnitude function, |H(ω)| =
N/2∑
n=1

2h

(
N

2
− n

)
sin

(
ω

(
n − 1

2

))
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Phase function,∠H(ω) = β − αω

10. List the well-known design techniques for linear phase FIR filter.
There are three well-known methods of design techniques for linear phase FIR
filters. They are:

• Fourier series method and window method.
• Frequency sampling method.
• Optimal filter design method.

11. What is Gibb’s phenomenon (or Gibb’s oscillation)?
InFIRfilter design byFourier seriesmethod (orRectangularwindowmethod) the
finite duration impulse response is truncated to finite duration impulse response.
The abrupt truncation of impulse response introduces oscillations in the passband
and stopband. This effect is knownasGibb’s phenomenon (orGibb’s oscillation).

12. Write the procedure for designing FIR filter using windows?

• Choose the desired frequency response of the filter Hd(ω).
• Take inverse Fourier transform of Hd(ω) to obtain the desired impulse

response hd(n).
• Choose a window sequence ω(n) and multiply hd(n) by ω(n) to convert the

infinite duration impulse response h(n).
• The transfer function H(z) of the filter is obtained by taking z-transform of

h(n).

13. Write the procedure forFIRfilters designedby frequency samplingmethod.

• Choose the desired frequency response Hd(ω).
• Take N -samples of Hd(ω) to generate the sequence H(k).
• Take inverse DFT of H(k) to get the impulse response h(n).
• The transfer function H(z) of the filter is obtained by taking z-transform of
impulse response.

14. What is the drawback in FIR filter design using windows and frequency
sampling method? How is it overcome?
The FIR filter designs by window and frequency sampling method do not have
precise control over the critical frequencies such as ωp, and ωs .

This drawback can be overcome by designing FIR filter using Chebyshev
approximation technique. In this technique an error function is used to approxi-
mate the ideal frequency response, in order to satisfy the desired specifications.

15. Write the characteristics features of Rectangular window.

• The mainlobe width is equal to 4π/N .
• The maximum sidelobe magnitude is −13dB.
• The sidelobe magnitude does not decrease significantly with increasing ω.
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16. List the features of FIR filter designed using Rectangular window.

• The width of the transition region is related to the width of the mainlobe of
window spectrum.

• Gibb’s oscillations are noticed in the passband and stopband.
• The attenuation in the stopband is constant and cannot be varied.

17. How the transition width of the FIR filter can be reduced in design using
windows?
In FIR filter design using windows, the width of the transition region is related to
the width of the mainlobe in window spectrum If the mainlobe width is narrow
then the transition region in FIR filter will be small. In general the width of
mainlobe is xπ/N , where x = 4 or 8 or 12 and N is the length of the window
sequence used for designing the filter. Hence, the width of mainlobe can be
reduced by increasing the value of N , which in turn reduces the width of the
transition region in the FIR filter.

18. WhyGibb’s oscillations are developed in Rectangular window and how can
it be eliminated or reduced?
The Gibb’s oscillations in Rectangular window are due to sharp transition from
1 to 0 at the edges of window sequence. These oscillations can be eliminated
or reduced by replacing the sharp transition by gradual transition. This is the
motivation for development of triangular and cosine windows.

19. List the characteristics of FIR filters designed using windows.

• The width of transition band depends on the type of window.
• The width of transition band can be made narrow by increasing the value of

N where N is the length of window sequence.
• The attenuation in the stopband is fixed for a given window, except in case
of Kaiser window where it is variable.

20. Write the frequency response of Hanning window.
Frequency response of Hanning window is,

WC(ω) = 0.5
sinω(N/2)

sinω/2
+ 0.25

sin(ωN/2 − π N/(N − 1))

sin(ω/2 − π/(N − 1))

+0.25
sin(ωN/2 + π N/(N − 1))

sin(ω/2 + π/(N − 1))

21. Write the frequency response of Hamming window.
Frequency response of Hamming window is,
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WH (ω) = 0.54
sinω(N/2)

sinω/2

+0.23
sin(ωN/2 − π N/(N − 1))

sin(ω/2 − π/(N − 1))

+0.23
sin(ωN/2 + π N/(N − 1))

sin(ω/2 + π/(N − 1))

22. Give the equation for Hanning window function.
Hanning window function is,

WC(n) =
{
0.5 − 0.5 cos(2πn/(N − 1)); for 0 ≤ n ≤ (N − 1)

0; else

23. List the features of Hanning window spectrum.

• The mainlobe width is equal to 8π/N .

• The maximum sidelobe magnitude is −31 dB.
• The sidelobe magnitude decreases with increasing ω.

24. Compare the Rectangular window and Hanning window.

Rectangular window Hanning Window
1 The mainlobe width is equal to

4π/N
The mainlobe width is equal to
8π/N

2 The maximum sidelobe magnitude
in window spectrum is −13dB

The maximum sidelobe magnitude
in window spectrum is −31dB

3 In window spectrum, the sidelobe
magnitude slightly decreases with
increasing ω

In window spectrum, the sidelobe
magnitude decreases with increas-
ing ω

4 In FIR filter designed using Rectan-
gular window, the minimum stop-
band attenuation is 22dB

In FIR filter designed using Han-
ning window, the minimum stop-
band attenuation is 44dB

25. Write the equation for Hamming window function.
Hanning window function is,

WH (n) =
{
0.54 − 0.46 cos(2πn/(N − 1)); for 0 ≤ n ≤ (N − 1)

0; else

26. Sketch the log-magnitude spectrum of Hamming window.
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27. Compare the Rectangular window and Hamming window.

Rectangular window Hamming window
1 The mainlobe width is equal to

4π/N
The mainlobe width is equal to
8π/N

2 The maximum sidelobe magnitude
in window spectrum is −13dB

The maximum sidelobe magnitude
in window spectrum is −41dB

3 In window spectrum, the sidelobe
magnitude slightly decreases with
increasing ω

In window spectrum, the sidelobe
magnitude remains constant

4 In FIR filter designed using Rectan-
gular window, the minimum stop-
band attenuation is 22dB

In FIR filter designed using Ham-
ming window, the minimum stop-
band attenuation is 51dB

28. List the features of Hamming window spectrum.

• The mainlobe width is equal to 8π/N .
• The maximum sidelobe magnitude is −41dB.
• The sidelobe magnitude remains constant for increasing ω.

29. Compare the Hanning window and Hamming window.

Hanning window Hamming window
1 The mainlobe width in window

spectrum is equal to 8π/N
The mainlobe width in window
spectrum is equal to 8π/N

2 The maximum sidelobe magnitude
in window spectrum is −31dB

The maximum sidelobe magnitude
in window spectrum is −41dB

3 In window spectrum, the sidelobe
magnitude decreases with increas-
ing ω

In window spectrum, the sidelobe
magnitude remains constant. Here,
the increased sidelobe attenuation is
achieved at the expense of constant
attenuation at high frequencies

4 In FIR filter designed using Han-
ning window, the minimum stop-
band attenuation is 44dB

In FIR filter designed using Ham-
ming window, the minimum stop-
band attenuation is 51dB
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30. Compare Hamming window and Blackman window?

Hamming window Blackman window
1 The mainlobe width in window

spectrum is equal to 8π/N
The mainlobe width in window
spectrum is equal to 12π/N

2 The maximum sidelobe magnitude
in window spectrum is −41dB

The maximum sidelobe magnitude
in window spectrum is −58dB

3 The higher value of sidelobe, atten-
uation is achieved at the expense
of constant attenuation at high fre-
quencies

The higher value of sidelobe atten-
uation is achieved at the expense of
increased mainlobe width

4 In widow spectrum, the sidelobe
magnitude remains constant with
increasing ω

In window spectrum, the sidelobe
magnitude decreases rapidly with
increasing ω

5 In FIR filter designed using Ham-
ming window, the minimum stop-
band attenuation is 51dB

In FIR filter designed using Black-
man window, the minimum stop-
band attenuation is 78dB

31. List the features of Blackman window spectrum.

• The mainlobe width is 12π/N .
• The maximum sidelobe magnitude is −58dB.
• The sidelobe magnitude decreases with increasing ω.
• The sidelobe attenuation in Blackman window is the highest among win-
dows, which is achieved at the expense of increased mainlobe width. How-
ever, the mainlobe width can be reduced by increasing the value of N .

32. Write the expression for Kaiser window function.
Kaiser window function is,

Wk(n) =
{

I0(β)

I0(α)
; for − (N − 1)/2 ≤ n ≤ (N − 1)/2

0; else.

where β = α

(
1 −

(
2n

(N − 1)

)2
)0.5

I0(x) = 1 + 0.25x2

(1!)2 + (0.25x2)2

(2!)2 + (0.25x2)3

(3!)2 + · · ·

The series of I0(x) is used to compute I0(β) and I0(α) and are computed for any
desired accuracy. Usually 25 terms of the series are sufficient for most practical
purposes.

33. List the desirable features of Kaiser window spectrum.

• The width of mainlobe and the peak sidelobe are variable.
• The parameter α in the Kaiser window function is an independent variable
that can be varied to control the sidelobe levels with respect to mainlobe
peak.



4.5 Design Techniques for Linear Phase FIR Filters 529

• The width of the mainlobe in window spectrum can be varied by varying
the length N of the window sequence.

34. Compare the Hamming window and Kaiser window.

Hamming Window Kaiser Window
1. The width of mainlobe in window

spectrum is 8π/N .
The width of mainlobe in window
spectrum depends on the values of
α and N

2. The maximum sidelobe magnitude
in windows spectrum is fixed at
−41dB.

The maximum sidelobe magnitude
with respect to peak of mainlobe is
variable using the parameter α

3. In window spectrum, the sidelobe
magnitude remains constant with
increasing ω.

In window spectrum, the sidelobe
magnitude decreases with increas-
ing ω

4 In FIR filter designed using Ham-
ming window, the minimum stop-
band attenuation is 51dB

In FIR filter designed using Kaiser
window, the minimum stopband
attenuation is variable and depends
on the value of α

35. Define an IIR filter.
The filter designed by considering all the infinite samples of impulse response
is called IIR filter. The impulse response is obtained by taking inverse Fourier
transform of ideal frequency response.

36. Compare IIR and FIR filter.

IIR Filter FIR Filter
1. All infinite samples of impulse

response are considered.
Only N samples of impulse
response are considered

2. The impulse response cannot be
directly converted to digital fil-
ter transfer function.

The impulse response can be
directly converted to digital fil-
ter transfer function

3. The design involves design of
analog filter and then transform-
ing analog filter to digital filter.

The digital filter can be directly
designed to achieve the desired
specification

4. The specifications include the
desired characteristics for mag-
nitude response only.

The specifications include the
desired characteristics for both
magnitude and phase response

5. Linear phase characteristics
cannot be achieved

Linear phase filters can be easily
designed

37. What are the properties that are maintained same in the transformation of
analog to digital filters? (Or mention two properties that an analog filter
should have for effective transformation).
The analog filters should be stable and causal for effective transformation to
digital filters. While transforming the analog filters to digital filters, these two
properties (i.e., stability and causality) are maintained same, which means that
the transformed digital filter should also be stable and physically realizable.

38. What is the condition to be satisfied by linear phase FIR filter?
(Anna University, 2007)



530 4 Finite Impulse Response (FIR) Filter Design

For an FIR filter to have linear phase, its phase response should satisfy the
following equations

θ(ω) = −αω

θ(ω) = β − αω

If the first equation is satisfied, the filter will have constant group and constant
phase delay responses. For this the impulse response of the filter must have
positive symmetry. If the second equation is satisfied, the filter will have constant
group delay. In this case, the impulse response of the filter will have negative
symmetry.

39. In the design of FIR filter, how is Kaiser window different from other win-
dows?
In other windows the width of the mainlobe and the attenuation of the side-
lobes depend only upon the length N of the filter and they cannot be controlled
independently whereas in Kaiser window it is possible to control the length
of the filter and the transition width of the mainlobe by introducing additional
parameter.

40. Show that the filter with h(n) = {−1, 0, 1} is a linear phase filter.

H(e jω) = −e− jω2 sinω

θ(ω) = π − ω

Hence, it has linear phase.
41. What is the desirable characteristic of the frequency response of window

function?
The desirable characteristics of the frequency response of window function are:

(a) The central lobe of the frequency response of the window should be narrow
and contain maximum energy.

(b) The sidelobes should decrease in energy as ω tends π .
(c) The highest sidelobe level should be small.

42. Why is linear phase is important in Digital Signal Processing applications?
The linear phase does not alter the shape of the signal and hence the output
response is not distorted. Hence, digital filters with linear phase are designed.

43. List out the well-known design techniques for linear phase FIR filter?
The following techniques are used to design linear phase FIR filter.

(a) Frequency sampling method.
(b) Windows method.
(c) Optimal or minimax design.

44. What are the disadvantages of FIR filter?
The disadvantages of FIR filter are:

(a) Memory requirement and execution time are very high.
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(b) FIR filters require narrow transition band which increases the cost as it
requires large arithmetic operations and hardware components such as mul-
tipliers, adders and time delay elements.

45. What is frequency sampling?
The filter coefficients h(n) can be obtained as the inverse DFT of the frequency
samples,

h(n) = 1

N

N−1∑
k=0

H(k)e j( 2π
N )nk

where, H(k) = 0, 1, . . . , (N − 1) are samples of the ideal frequency response.
For linear phase, with positive symmetrical impulse response, the above equation
is written as

h(n) = 1

N

⎡
⎣ N

2 −1∑
k=1

2|H(k)| cos 2πk(n − α)

N
+ H(0)

⎤
⎦

where α = (N − 1)/2. The resulting filter will have a frequency response which
is exactly same as the original response at the sampling instants. This is called
frequency sampling.

46. For what type of filters frequency sampling method is suitable?
The frequency sampling method is very suitable for the design of non-recursive
FIR frequency selective filters such as lowpass, highpass and bandpass filters
and also for filters with arbitrary frequency response.

47. What is meant by FIR filter and why is it stable?
Consider the following difference equation and the transfer function of a digital
filter which are described as given below:

y(n) =
N−1∑
n=0

h(k)x(n − k)

H(z) =
N−1∑
n=0

h(k)z−k

where h(n) are the coefficients of the filter.When the digital filter is implemented
in this form, it is called FIR filters. The poles of H(z) all fall at the origin of the
z-plane, and therefore FIR filters are always stable.

48. Find the number of delays required in a direct form I structure that realizes
a second-order transfer function?
Four delay elements are required to realize a second-order system in direct form-I
structure.

49. The unit sample response of an FIR filter is
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h(n) = an{u(n) − u(n − 2)}

Draw the direct form realization of this system.

H(z) = 1

(1 + az−1)

50. Afirst-orderfilter structure is shown inFig.4.52.Find the transfer function?

H(z) = (1 + z−1)

(1 − bz−1)

Long Answer Type Questions

1. Describe the design of FIR filter using frequency sampling technique.

(Anna University, December, 2007)
2. A bandpass FIR filter of length 7 is required. It is to have lower and upper cutoff

frequencies of 3kHz and 5kHz respectively and is intended to be used with a
sampling frequency of 24kHz. Determine the filter coefficients using Hanning
window. Consider the filter to be causal.

(Anna University June, 2007)
3. Compare the Hamming window and Blackman window.

(Anna University, December, 2007)
4. Explain the polyphase decomposition for FIR filter structure.

(Anna University, December, 2007)
5. What is the principle of designing FIR filter using frequency sampling method?

(Anna University, December, 2009)
6. Design a second-order band reject filter with ω1 and ω2 as cutoff frequency and

sampling interval as T .

(Anna University, May, 2009)
7. List the three well-known methods of design techniques for FIR filters and

explain any one.

(Anna University, December, 2006)
8. Design an ideal lowpass filter for a cutoff frequency ωc = 0.4 rad using (8-tap)

window design method.

(Anna University, June, 2006)
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9. Determine the filter coefficients h(n) of length M = 15 obtained by sampling
its frequency response as

H

[(
2π

15

)
k

]
=

⎧⎪⎨
⎪⎩
1, k = 0, 1, 2, 3, 4

0.4, k = 5

0, k = 6, 7

using Rectangular window.
(Anna University, June, 2006)

10. Design a digital filter with

Hd(e
jω) =

{
1, 2 ≤ |ω| ≤ π

0, otherwise

using Hamming window with N = 7. Draw the frequency response.

(Anna University, June, 2006)
11. List the various steps in designing FIR filters.

(Anna University, June, 2006)
12. The desired frequency response of a desired filter is

Hd(ω) =
{
e− j3w, −π

4 ≤ ω ≤ π
4

0, π
4 ≤ |ω| ≤ π

Determine the filter coefficients if the window function is defined as

ω(x) =
{
1, 0 ≤ x ≤ 5

0, otherwise

(Anna University, June, 2006)
13. Illustrate the steps involved in the design of linear phase FIR filter by the fre-

quency sampling method.
14. An FIR filter is given by

y(n) = 2x(n) + 4

5
x(n − 1) + 3

2
x(n − 2) + 2

3
x(n − 3)

Find the lattice structure coefficients.

(Anna University, May, 2004)



534 4 Finite Impulse Response (FIR) Filter Design

15. What are the issues in designing FIR filter using window method?

(Anna University, May, 2004)
16. Mention the advantages and disadvantages of FIR and IIR filters.

(Anna University, May, 2004)
17. Design a digital lowpass FIR filter of length II with cutoff frequency of 0.5kHz

and sampling rate 2kHz using Hamming window.

(Anna University, May, 2004)
18. Derive the frequency response of a linear phaseFIRfilterwith symmetric impulse

response.
19. Explain the design procedure for designing FIR filter using window function.
20. Explain the concept of optimum equiripple filter.
21. Design a nine-tap linear phase filter having the ideal response.

Hd(e
jω) =

⎧⎪⎨
⎪⎩
1, |ω| ≤ π

6

0, π
6 ≤ |ω| ≤ π

3

1, π
3 ≤ |ω| ≤ π

using Hamming window and draw the realization for the same.
22. Design an FIR digital filter to approximate an ideal lowpass filter with passband

gain of unity, cutoff frequency of 850kHz and working at a sampling frequency
of fs = 5kHz. The length of the impulse response should be 5. Use a Rectan-
gular window.

(Anna University, December, 2003)
23. The desired response of a lowpass filter is,

Hd(e
jω) =

{
e− j3ω; −3π

4 ≤ ω ≤ 3π
4

0, 3π
4 ≤ |ω| ≤ π

Determine the frequency response of the filter for M = 7 using a Hamming
window.

(Anna University, December, 2003)



Chapter 5
Finite Word Length Effects

Learning Objectives

After completing this chapter, you should be able to:

� Provide an understanding of the errors that arise in practical DSP systems due
to quantization and use of finite word length arithmetic.

� Study the effects of errors on signal quality.
� Develop the techniques to combat the errors.
� Enhance the skill in the design of DSP systems.

5.1 Introduction

When digital systems are implemented either in hardware or in software, the filter
coefficients are stored in binary registers. These registers can accommodate only
a finite number of bits, and hence, the filter coefficients have to be truncated or
rounded off in order to fit into these registers. Truncation or rounding of the data
results in degradation of system performance. Also, in digital processing systems,
a continuous time input signal is sampled and quantized in order to get the digital
signal. The process of quantization introduces an error in the signal which is called
round off noise. This makes the system nonlinear and leads to limit cycle behavior.

In general the effects due to finite precision representation of numbers in a digital
system are commonly referred to as finite word length effects. Some of the finite
word length effects in digital filters are:

1. Errors due to quantization of input data by A/D converter.
2. Errors due to quantization of filter coefficients.
3. Errors due to rounding the product in multiplication.
4. Errors due to overflow in addition.
5. Limit cycles.
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The effects of these errors introduced by signal processing depend on a number of
factors which include the type of arithmetic used, the quality of the input signal and
the DSP algorithm implemented. These are discussed in this chapter.

5.2 Representation of Numbers in Digital System

The basic operations involved in Digital Signal Processing are multiplications, addi-
tions and delays. They are often carried out using either fixed point or floating point
arithmetic. Block floating point arithmetic combines the benefits of the above two
operations. Fixed point arithmetic is the most widely used arithmetic in DSP because
it is very fast and less expensive when implemented. However, it is limited in the
range of numbers that can be represented. Further it is susceptible to problems of
overflow which may occur when the result of an addition exceeds the permissible
number range. To prevent this the operands are scaled. However, this degrades the
performance of DSP systems which reduces the signal to noise ratio.

Floating point arithmetic is preferred where the magnitude of the variables or
system coefficients vary widely and eliminate overflow problem. Further, floating
point processing simplifies programming. However, floating point arithmetic is more
expensive and often slower. While fixed point digital signal processors with large
word lengths are extensively used in DSP techniques where wide dynamic range
and high precision are required the floating point processing provides a simpler and
more natural way of achieving these requirements. The applications of floating point
arithmetic include real-time parameter equalization of digital audio signals, spectrum
analysis in radar and sonar, seismology, biomedicine. The above two arithmetic
operations are discussed below.

5.2.1 Fixed Point Representation

In fixed point representation, the bits allotted for integer part and fraction part are
fixed, and so the position of binary point is also fixed.

5.2.1.1 Positive Binary Fraction Number

In fixed point representation, there is only one unique way of representing positive
binary number as given by the following equation:

Positive binary fraction number, Np =
B∑

i=0

di2
−i (5.1)

where di = i th digit of the number and B = number of fractional digits.
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5.2.1.2 Negative Binary Fraction Number

In fixed point representation, there are three different formats for representing neg-
ative binary numbers. They are:

1. Sign-magnitude format.
2. One’s complement format.
3. Two’s complement format.

1. Sign-magnitude Format

Except the sign bit all other digits of the negative of a given number are same as that
of its positive representation. The sign bit is 0 for positive number and 1 for negative
number.

Positive binary fraction number, Np = (0 × 20) +
B∑

i=1

di2
−i (5.2)

Negative binary fraction number, Nn = (1 × 20) +
B∑

i=1

di2
−i (5.3)

For example,

+0.12510 −→ 0.0012
−0.12510 −→ 1.0012

2. One’s Complement Format

• In one’s complement format, the positive number is same as that of sign-magnitude
format.

• The negative of the given number is obtained by bit by bit complement of its
positive representation

Complement of di = d̄i = (1 − di ) (5.4)

Negative binary fraction number in one’s complement is,

N1c = (1 × 20) +
B∑

i=1

(1 − di )2
−i (5.5)

For example,

+0.12510 −→ 0.0012
−0.12510 −→ 1.1102
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3. Two’s Complement Format

• In two’s complement format, the positive number is same as that of the given
magnitude format.

• The negative of the given number is obtained by taking one’s complement of its
positive representation and then adding one to the least significant bit.

Negative binary fraction number in two’s complement is,

N2c = (1 × 20) +
B∑

i=1

(1 − di )2
−i + (1 × 2−B) (5.6)

For example,

+0.12510 −→ 0.0012
−0.12510 −→ 1.1112

Disadvantage of Fixed Point Representation
It is impossible to represent too large and too small numbers by fixed point represen-
tation. Therefore, the range of numbers that can be represented in fixed point method
for a given binary word size is less compared in floating point representation.

Example 5.1

Convert the decimal number 25.625 to binary form.

Solution

Integer part conversion Fractional part conversion

2 25
2 12 – 1 ↑ (LSB)
2 6 – 0 ↑
2 3 – 0 ↑
1 – 1 ↑→ →→
(MSB)

Integer

0.625 × 2 = 1.25 1 (MSB)

0.25 × 2 = 0.5 0 ↓
0.5 × 2 = 1.0 1 (LSB)

Therefore,

(25.625)10 = (1 1 0 0 1.1 0 1)2
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Example 5.2

Convert the following decimal numbers into binary. (a) (20.675)10 and (b)
(120.75)10.

Solution

(a) (20.675)10 ⇒ integer part conversion by successive division

2 20
2 10 – 0 ↑ (LSB)
2 5 – 0 ↑
2 2 – 1 ↑
1 – 0 ↑→ →→
(MSB)

(10100)2

Fractional part conversion by successive multiplication

0.675 × 2 = 1.35 1 (MSB)

0.35 × 2 = 0.7 0 ↓
0.7 × 2 = 1.4 1 ↓
0.4 × 2 = 0.8 0 ↓
0.8 × 2 = 1.6 1 ↓
0.6 × 2 = 1.2 1 ↓
0.2 × 2 = 0.4 0 (LSB)

(.1010110 . . .)2

Binary equivalent of (20.675)10 is

(10100.1010110 . . .)2
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(b) (120.75)10 ⇒ integer part conversion

2 120
2 60 – 0 ↑ (LSB)
2 30 – 0 ↑
2 15 – 0 ↑
2 7 – 1 ↑
2 3 – 1 ↑
1 – 1 ↑→ →→
(MSB)

(1111000)2

fractional part conversion

0.75 × 2 = 1.5 1 (MSB)

↓
0.5 × 2 = 1.0 1 (LSB)

(0.11)2

Binary equivalent of (120.75)10 is

(1111000.11)2

Example 5.3

Represent the following number in fixed point representation.

(a) + 0.37510 (b) − 0.7510

Solution

(a) +(0.375)10

In fixed point representation

+0.37510 = (0.011)2
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(b) −(0.75)10

In fixed point representation there are three different formats for representing
negative number:

(i) Sign magnitude: −(0.75)10 = 1.110.
(ii) One’s complement: −(0.75)10 = 1.001.
(iii) Two’s complement: −(0.75)10 = 1.010.

Example 5.4

Represent the following numbers in sign-magnitude form.

(a) + 8.2510 (b) − 8.2510

Solution

+(8.25)10 = 01000.010

↑
sign bit

−(8.25)10 = 11000.010

↑
sign bit

Example 5.5

Represent the following numbers in one complement form.

(a) − 0.37510 (b) − 0.062510

Solution

(a) −0.37510 = (1.1001111)2

0.37510 = (0.0110000)2

Complementing each bit we get −0.37510 = (1.1001111)2.
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(b) −0.062510 = (1.1110111)2

0.062510 = (0.0001000)2

Complementing each bit we get −0.062510 = (1.1110111)2.

Example 5.6

Represent the following numbers in two’s complement form.

(a) − 0.12510 (b) − 0.2510

Solution

(a) −0.12510 where +0.12510 = 0.0012

One’s complement ⇒ 1.1102
Two’s complement ⇒ 1.1112

(b) −0.2510 where +0.2510 = 0.0102

One’s complement ⇒ 1.1012
Two’s complement ⇒ 1.1102

5.2.2 Floating Point Representation

In floating point representation, the binary point can be shifted to desired position so
that bits in the integer part and fraction part of a number can be varied. In general,
the floating point number can be represented as

N f = M × 2E (5.7)

where M =mantissa and E = exponent.

Mantissa

• It will be in binary fraction format and in the range of 0.5 ≤ M ≤ 1.
• If mantissa is characterized by 5 bits in which the left most one bit is used for
representing sign and other 4 bits are used to represent a binary fraction number.
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Fig. 5.1 Floating point
number representation

Sign

bit

Mantissa
Exponent

Sign

bit

Fig. 5.2 IEEE-754 format
for 32 bit floating point
number

0 1 8 9 31

E MS

Exponent

• It is either a positive or negative integer.
• If it is characterized by 3 bits out of which the left most one bit is used to represent
sign and the other two bits are used to represent a positive or negative binary integer
number. The representation of floating point number is shown in Fig. 5.1.

The range of number that can be represented by floating point format is from
±(2−4 × 2−3) to ±((2 − 2−4) × 2−3).

Here 4 in 2−4 represents the 4 bits allotted for fractional binary number inmantissa,
and the 3 in 2−3 or 2+3 represents the maximum size of integer.

The IEEE-754 standard for 32 bit single precision floating point number is given
by

N f = (−1)S × 2E−127 × M (5.8)

where

S = 1 bit field for sign of number.
E = ε bit field for exponent.
M = 23 bit field for mantissa.

IEEE-754 format for 32 bit floating point number is shown in Fig. 5.2.
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Example 5.7

Represent the following numbers in floating point representation with five bits
for mantissa and three bits for exponent.

(a) + 710 (b) + 0.2510 (c) − 710 (d) − 0.2510

Solution

(a)

+710 = +1112 = 0.1110 × 2+3 = 0.1110 × 2+112

Sign bit Sign bit

↓ ↓
0 1 1 1 0 0 1 1

︸ ︷︷ ︸ ︸ ︷︷ ︸
Mantissa (M) Exponent (E)

(b)

+0.2510 = +0.012 = 0.0100 × 20 = 0.1000 × 2−1 = 0.1000 × 2−012

Sign bit Sign bit

↓ ↓
0 1 0 0 0 1 0 1

︸ ︷︷ ︸ ︸ ︷︷ ︸
Mantissa (M) Exponent (E)

(c)

−710 = −1112 = 1.1110 × 2+3 = 1.1110 × 2+112
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Sign bit Sign bit

↓ ↓
1 1 1 1 0 0 1 1

︸ ︷︷ ︸ ︸ ︷︷ ︸
Mantissa (M) Exponent (E)

(d)

−0.2510 = −0.012 = 1.0100 × 20 = 1.1000 × 2−1 = 1.1000 × 2−012

Sign bit Sign bit

↓ ↓
1 1 0 0 0 1 0 1

︸ ︷︷ ︸ ︸ ︷︷ ︸
Mantissa (M) Exponent (E)

Example 5.8

Add+0.12510 and−0.37510 in one’s complement and two’s complement forms.

Solution

One’s Complement Form

+0.12510 ⇒ 0.0012
−0.37510, (in one’s complement) ⇒ 1.1002

_____

(+)

1.1012

Since carry is zero the sum is negative. The sum can be converted to decimal as

1.1012
extract sign bit−−−−−−−−−→ 0.1012

complement the−−−−−−−−−−→
fractional part

−0.0102
Convert to decimal−−−−−−−−−−−→ −0.2510
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Two’s Complement Form

+0.12510 ⇒ 0.0012
−0.37510 (in two’s complement) ⇒ 1.1012

_____

(+)

1.1102

Since carry is zero the sum is negative

1.1102
extract sign bit−−−−−−−−−→ 0.1102

two’s complement−−−−−−−−−−−−→ −0.0102
Convert to decimal−−−−−−−−−−−−→ −0.2510

Example 5.9

Add−0.12510 and+0.37510 in one’s complement and two’s complement forms.

Solution

One’s Complement Form

−0.12510(in one’s complement) ⇒ 1.1102
+0.37510 ⇒ 0.0112

_____

(+)

1.001

1

_____

0.010

Since carry is one, the sum is positive

0.0102
Covert to decimal−−−−−−−−−−−→ +.2510

Two’s Complement Form

−0.12510 (in two’s complement) ⇒ 1.1112
+0.37510 ⇒ 0.0112

_____

(+)

10.010
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Discard the carry, since the sum is positive.

0.0102
convert−−−−−−→

to decimal
+0.2510

Example 5.10

Multiply +0.2510 and +510 in fixed point format.

Solution

+0.2510 = 0.0102
+510 = 1012

0.0102
×1012

____________________

0 0 1 0

0 0 0 0

0 0 1 0

____________________

0 0 1. 0 1 02

001.0102
covert to decimal−−−−−−−−−−→ 1.2510

Example 5.11

Add +0.12510 and +510 in floating point format.

Solution

+510 = +1012 = 0.101000 × 2+310 = 0.101000 × 2112

= 0.101000 × 20112
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+0.12510 = +.0012 = 0.100000 × 2−210 unnormalized−−−−−−−−→ 0.000001 × 2+310

= 0.000001 × 20112

+510 ⇒ 0.101000 × 20112

+0.12510 ⇒ 0.000001 × 20112

______________

0.101001 × 20112

0.101001 × 2+32 = 101.001 × 202 = 101.0012 = 5.12510

Example 5.12

Multiply +0.12510 and +510 in floating point format.

Solution

+0.12510 = 0.100000 × 2−210

+510 = 0.101000 × 2+310

+0.12510 × +510 ⇒ (0.100000 × 0.101000) × 2−2+3

⇒ 0.010100 × 21

0.010100 × 21
normalized−−−−−−−→ 0.10100 × 20 = 0.62510

5.3 Methods of Quantization

The process of converting a discrete time continuous amplitude signal into a dig-
ital signal by expressing each sample value as a finite number of digits is called
quantization. The error introduced in representing the continuous valued signal by
a finite set of discrete level is called “quantization error or quantization noise.”
The quantization error is a sequence which is defined as the difference between the
quantized value and the actual sample value. The actual values of the samples of
x(n) cannot be processed by DSP or a digital computer since it is very difficult to
store and manipulate all the samples. To eliminate the excess digits that occur due
to quantization either discard them (truncation) or discard them by rounding the
resulting number (rounding).

Thus, there are two methods of quantization employed in digital system. They
are: (1) truncation and (2) rounding. They are discussed below.
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5.3.1 Truncation

Truncation is the process of reducing the size of binary numbers by discarding all
bits less significant than the least significant bit that is retained. In the truncation of
a binary numbers to b bits, all the less significant bits beyond bth bit are discarded.
The quantization steps are marked on y-axis, and the range of unquantized numbers
is marked on x-axis.

1. Any positive unquantized number in the range 0 ≤ N ≤ (1 × 2−b) will be
assigned the quantization step (0 × 2−b).

2. Any positive unquantized number in the range (1 × 2−b) ≤ N ≤ (2 × 2−b) will
be assigned the quantization step (1 × 2−b) and so on.

Example 5.13

Perform the quantization of 0.87510 to 2 bit by truncation.

Solution

0.87510
convert−−−−−→
to binary

0.11102
truncate to 2 bits−−−−−−−−−−→ 0.112

convert−−−−−−→
to decimal

0.7510

5.3.1.1 Fixed Point Number System

In fixed point number system, the effect of truncation on positive numbers is same in
all the three representations. The error due to truncation of negative number depends
on the type of representation of the number. Let N = unquantized fixed point binary
numbers and Nt =fixed point binary number quantized by truncation. The quanti-
zation error due to truncation is

Truncation error, et = Nt − N (5.9)

The range of errors in truncation of fixed point numbers in different types of repre-
sentation is shown in Fig. 5.3 and tabulated in Table5.1.

The truncation of a positive number results in a number that is smaller than the
unquantized number; hence, truncation error is always negative.

For the truncation of negative numbers represented in sign magnitude and one’s
complement format, the error is always positive because truncation basically reduces
the magnitude of the numbers.

In the two’s complement representation the negative of a number is obtained
by subtracting the corresponding positive number from 2. Therefore, the effect of
truncation on a negative number is to increase the magnitude of the negative number
and so the truncation error is always negative.
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Table 5.1 Range of error in truncation of fixed point numbers

Numbers and its representation Range of error when truncated to b bits

Positive numbers 0 ≥ e > −2−b

Sign-magnitude negative number 0 ≤ e < −2−b

One’s complement negative number 0 ≤ e < −2−b

Two’s complement negative number 0 ≥ e > −2−b

p(et) p( t)(b)(a)

t

et

2b

2b
4

002 b 2 2 b 2 2 b

p(et)

et t

2b
2

02 b 2 b

2b
2

0
2 2 b

p( t)(d)(c)

Fig. 5.4 Quantization noise probability density function for truncations. a Fixed point two’s com-
plement, b Floating point when mantissa in two’s complement, c Fixed point one’s complement or
sign magnitude and d Floating point when mantissa is one’s complement or in sign magnitude

5.3.1.2 Floating Point Number System

In floating point representation, the mantissa of the number alone is truncated. The
truncation error in a floating point number is proportional to the number being quan-
tized.

Let N f = unquantized floating point binary number and Nt f = truncated floating
point binary number. Now

Nt f = N f + N f εt (5.10)
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Table 5.2 Range of error in truncation of floating point number

Numbers and its representation Range of error when truncated to b bits

Two’s complement positive mantissa 0 ≥ εt > −2−b × 2

Two’s complement negative mantissa 0 ≤ εt < 2−b × 2

One’s complement positive and negative
mantissa

0 ≤ εt < −2 × 2−b

Sign-magnitude positive and negative mantissa 0 ≤ εt < −2 × 2−b

where εt is the relative error due to truncation of floating point number. Relative error
due to truncation is,

εt = Nt f − N f

N f
(5.11)

In truncation of binary number, the range of error is known, but the probability
of obtaining an error within the range is not known. Hence, it is assumed that the
errors occur uniformly throughout the interval. The range of error in truncation of
floating point number is shown in Table5.2, and the corresponding quantization noise
probability density function is shown in Fig. 5.4.

5.3.2 Rounding

Rounding is the process of reducing the size of a binary number to finite word size
of b bits such that the rounded b bit number is closest to the original unquantized
number. The rounding process consists of truncation and addition. In rounding of a
number to b bits, first the unquantized number is truncated to b bits by retaining the
most significant b bits. Then a zero or one is added to LSB of the truncated number
depending on the bit that is next to the least significant bit that is retained. If the bit
next to the least significant bit that is retained is zero, then zero is added to the least
significant bit of the truncated number. If the bit next to the least significant bit that is
retained is one, then one is added to the least significant bit of the truncated number.
The input–output characteristics of the quantizer used for rounding are shown in
Fig. 5.5.

The quantization steps are marked on y-axis, and the range of unquantized num-
bers are marked on x-axis.

1. Any positive unquantized number in the range 1 × 2−b

2 ≤ N < 2 × 2−b

2 will be
assigned the quantization step 1 × 2−b.

2. Any positive unquantized number in the range 2 × 2−b

2 ≤ N < 3 × 3−b

2 will be
assigned the quantization step 2 × 2−b and so on.
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Fig. 5.5 Input–output
characteristics of the
quantizer used for rounding

Nr

N

3 2 b

3 2 b

2 2 b

1 2 b

2 2 b

1 2 b

3 2 b

2

1 2 b

2
2 2 b

2
3 2 b

2

2 2 b

2
1 2 b

2

Example 5.14

Perform the quantization of 0.062510 to 3 bit by rounding.

Solution

0.062510
convert−−−−−→
to binary

0.00012
rounded to 3 bits−−−−−−−−−−→ 0.0012

convert−−−−−−→
to decimal

0.12510

Fixed Point Number

Let N = unquantized fixed point binary number and Nr =fixed point binary number
quantized by rounding. The quantization error in fixed point number due to rounding
is defined as

Rounding error, er = Nr − N (5.12)

The range of error due to rounding for all the three formats of fixed point represen-
tation is same. In fixed point representation the range of error made by rounding a
number to b bits is

−2−b

2
≤ er ≤ 2−b

2
(5.13)



554 5 Finite Word Length Effects

p(er)

(a) Rounding-fixed point (b) Rounding-floating point

2b

2 b

2
0

2b

2

p( r)

2 b 2 b 2 b0
2

er r

Fig. 5.6 Quantization noise probability density functions for rounding

Floating Point Number

Let N f = unquantized floating point binary number and Nr f = rounded floating
point binary number. Now

Nr f = N f + N f εr (5.14)

where εr is the relative error due to rounding of a floating point number.

∴ Relative error due to rounding, εr = Nr f − N f

N f
(5.15)

The range of error by rounding a number in floating point representation to b bits is,

− 2−b ≤ εr ≤ 2−b. (5.16)

The probability density function for rounding fixed point and floating numbers is
shown in Fig. 5.6.

5.4 Quantization of Input Data by Analog to Digital
Converter

The process of analog to digital conversion involves: (i) sampling the continuous time
signal at a rate much greater than Nyguist rate and (ii) quantizing the amplitude of the
sampled signal into a set of discrete amplitude levels. The input–output characteristics
of a uniform quantizers are shown in Fig. 5.7. This quantizer rounds the sampled
signal to the nearest quantized output level. The difference between the quantized
signal amplitude xq(n) and the actual signal amplitude x(n) is called the quantization
error e(n). That is



5.4 Quantization of Input Data by Analog to Digital Converter 555

xq(n)

x(n)

2 b

2 b

Quantizer

x(n)

e(n)

xq(n)

Fig. 5.7 Two’s complement number quantization

Fig. 5.8 Probability density
function for quantization
round off error in A/D
conversion

p(e)

e

2b

02 b

2
2 b

2

e(n) = xq(n) − x(n)

Since, rounding is involved in the process of quantization the range of values for the
quantization error is

− 2−b

2
≤ e(n) ≤ 2−b

2
(5.17)

The quantization error is assumed to be uniformly distributed over − 2−b

2 ≤ e(n) ≤
2−b

2 . It is also assumed that this quantization noise e(n) is a stationary white noise
sequence x(n) which traverses several quantization levels between two successive
samples.

In the process of quantization, the samples value is rounded off to the nearest
quantization level. The probability density function for the quantization round off
error in A/D conversion is shown in Fig. 5.8.



556 5 Finite Word Length Effects

It can be noted from the Fig. 5.8 that the quantization error is uniformly distributed
and the mean value of error in zero. The power of the quantization noise, which is
nothing but variance (σ 2

e ), is given by

σ 2
e = E[e2(n)] − E2[e(n)] (5.18)

= E[e2(n)] (5.19)

Therefore, mean value of error is zero, i.e., E[e(n)] = 0.
Quantization step size is expressed as,

q = R

2b
(for two’s complement) (5.20)

where R = range of analog signal to be quantized. Usually the analog signal is scaled
such that the magnitude of quantized signal is less or equal to one. In such case the
range of analog signal to be quantized is −1 to 1, therefore, R = 2.

Quantization step size q = 2

2b
= 2.2−b (5.21)

The quantization error for rounding will be in the range of −q/2 to +q/2

∴ Variance of error signal σ 2
e = 1

q
2 − (−q/2)

∫ q/2

−q/2
e2de (5.22)

= 1

q

[
e3

3

]q/2

−(q/2)

= 1

3q

[
q3

8
+ q3

8

]

= 1

3q
· 2q3

8
= q2

12
(5.23)

σ 2
e = 1

12

(
R

2−b

)2

(5.24)

The variance of error signal is also called steady-state noise power due to input
quantization.

5.4.1 Output Noise Power Due to the Quantization Error
Signal

After converting the continuous time signal into digital signal, let us assume that
this quantized signal is applied as an input to a digital system with impulse response
h(n).
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Fig. 5.9 Representation of
quantization noise in digital
system

x(n) h(n)

e(n)

xq(n) y′(n)

The quantized input signal of a digital system can be represented as a sum of
unquantized signal x(n) and error signal e(n) as shown in Fig. 5.9

y′(n) = xq(n) ∗ h(n) (5.25)

= [x(n) + e(n)] ∗ h(n)

y′(n) = [x(n) ∗ h(n)] + [e(n) ∗ h(n)] (5.26)

y′(n) = y(n) + e(n) (5.27)

where

y(n) = x(n) ∗ h(n) is the output due to input signal

ε(n) = e(n) ∗ h(n) is the output due to error signal

Variance of the signal ε(n) is called the output noise power or steady output noise
power.

Output noise power (or) steady-state output noise power due to quantization errors
is given by the following equation:

σ 2
e0 = σ 2

e

∞∑

n=0

h2(n) (5.28)

The summation of h2(n) can be evaluated using Parseval’s theorem

σ 2
e0 = σ 2

e

∞∑

n=0

h2(n) = σ 2
e

1

2π j

∮

c

H(z)H(z−1)z−1dz (5.29)

The closed contour integration can be evaluated using residue theorem of z-transform

σ 2
e0 = σ 2

e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi (5.30)
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where p1, p2, . . . , pn are poles of H(z)H(z−1)z−1. Since the closed contour inte-
gration is around the unit circle |z| = 1, only the residue of the poles that is inside
the unit circle is considered.

Example 5.15

The output of anA/D converter is applied to a digital filterwhose system function
is,

H(z) = z(0.5)

z − 0.5

Find the output noise power from the digital filter, when the input signal is quantized
to have eight bits.

Solution Given b = 8 (assuming sign bit is included). Let R = 2

Quantization step size q = R

2b
= 2

2b
= 22

−b = 2 × 2−8 = 2−7.

The input quantization noise power is obtained using Eq. 5.22

σ 2
e = q2

12
= (2−7)2

12
= 2−4

12
= 5.086 × 10−6

The output noise power is given by

σ 2
e0 = σ 2

e

2π j

∮

c

H(z)H(z−1)z−1dz

= σ 2
e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi

H(z)H(z−1)z−1 = 0.5z

z − 0.5
· 0.5z−1

z−1 − 0.5
· z−1

= 0.25z−1

z−1(z − 0.5)(1 − 0.5z)

= 0.25

(z − 0.5)(1 − 0.5z)
[poles are at z = 0.5, z = 2]
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Res[H(z)H(z−1)z−1] due to pole z = 0.5 alone is to be consisdered.

Res[H(z)H(z−1)z−1]|z=0.5 = (z − 0.5)0.25

(z − 0.5)(1 − 0.5z)

∣∣∣∣
z=0.5

[∵ z = 0.5 pole lies insider the unit circle]
= 1

3

Therefore, the output noise power is

σ 2
e0 = σ 2

e × Res[H(z)H(z−1)z−1]|z=0.5

= 5.086 × 10−6 × 1

3

σ 2
e0 = 1.6954 × 10−6.

Example 5.16

For the recursive filter shown in figure, the input x(n) has a peak value of 10V,
represented by 6 bits. Compute the variance of output due to A/D conversion process

e(n)

0.93
z 1

x(n) y′(n)

Solution Given R = 10V , b = 6 bits.

Note: If in case, R value is not mentioned in the problem assume R = 2V .

Quantization step size, q = R

2b

∴ q = 10

26
= 0.15625

The variance of the error signal is σ 2
2 .

∴ σ 2
e = q2

12
= (0.15625)2

12
= 2.0345 × 10−3
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The given recursive (first order) filter can be redrawn as follows:

0.93
z 1

x(n) y(n)

y(n 1)

The difference equation of the system is,

y(n) = 0.93y(n − 1) + x(n)

Taking z-transform for the above equation we get

Z{y(n)} = 0.93Z{y(n − 1)} + Z{x(n)}
Y (z) = 0.93z−1Y (z) + X (z) [∵ Z{ f (n − 1)} = z−1F(z)]
X (z) = Y (z)(1 − 0.93z−1)

Y (z)

X (z)
= 1

(1 − 0.93z−1)
= H(z)

The steady-state output noise power due to quantization is,

σ 2
e0 = σ 2

e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi

H(z) = 1

1 − 0.93z−1
= z

z − 0.93

H(z−1) = z−1

z−1 − 0.93
[Replace z by z−1 in H(z) to get H(z−1)]

∴ H(z)H(z−1)z−1 = z

z − 0.93
× z−1

z−1 − 0.93
× z−1

= z−1

(z − 0.93)(z−1 − 0.93)

= 1

(z − 0.93)(1 − 0.93z)

Here H(z) has only one pole at pi = 0.93.
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∴
N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi

= Res[H(z)H(z−1)z−1]|z=0.93

[because if pi is the pole Res [H(z)] = (s − pi ) × H(z)z=pi
]

N∑

i=1

= (z − 0.93)z−1

(z − 0.93)(z−1 − 0.93)

∣∣∣∣
z=0.93

= (0.93)−1

((0.93)−1 − 0.93)
= 7.4019

Therefore, the output noise power (or variance) due to A/D conversion process is,

σ 2
e0 = σ 2

e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=0.93

= 2.0345 × 10−3 × 7.4019

σ 2
e0 = 0.0151

Example 5.17

The input to the system

y(n) = 0.999y(n − 1) + x(n)

is applied to an ADC. What is the power produced by the quantization noise at the
output of the filter if the input is quantized to (a) 8 bits and (b) 16 bits?

(Anna University, May, 2007)
Solution Given

y(n) = 0.999y(n − 1) + x(n)

Taking z-transform on the both sides we get
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Y (z) = 0.999z−1Y (z) + X (z)

H(z) = Y (z)

X (z)
= 1

1 − 0.999z−1

The quantization noise power at the output of the digital filter is

σ 2
e0 = σ 2

e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi

H(z)H(z−1)z−1 =
(

1

1 − 0.999z−1

)(
1

1 − 0.999z

)
z−1

= z−1

z−1(z − 0.999)(1 − 0.999z)

= z−1

(z − 0.999)(1 − 0.999z)

Here H(z) has only one pole at p = 0.999which lies inside the unit circle. Therefore

N∑

i=1

Res[H(z)H(z−1)z−1]
∣∣∣∣
z=pi

= Res[H(z)H(z−1)z−1]
∣∣∣∣
z=0.999

= (z − 0.999)
1

[z − 0.999][1 − 0.999z]
∣∣∣∣
z=0.999

= 1

(1 − 0.999z)

∣∣∣∣
z=0.999

= 1

(1 − 0.999z)2

= 500.25

Therefore

σ 2
e0 = σ 2

e (500.25)

= q2

12
(500.25) =

(
R
2b

)2

12
(500.25)

Let R = 2V

(a) Given b = 8 bits (including sign bit)

σ 2
e0 =

(
2
28

)2

12
[500.25]

= 2−14

12
(500.25) = 2.544 × 10−3
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(b) Given b = 16 bits

σ 2
e0 =

(
2
216

)2

12
[500.25]

= 2−30

12
(500.25) = 3.882 × 10−8

Example 5.18

Consider (b + 1) bits (including sign bit) bipolar A/D converter. Obtain an
expression for signal to quantization noise ratio. State the assumption made.

(Anna University, May 2007)
Solution The quantization noise model of A/D converter is,

x(t) x(t) x(nT ) xq(n) x(n) e(n)

e(n)

Sampler

The A/D converter output is the sum of the input signal x(n) and the error signal
e(n). If the rounding is used for quantization then the quantization error is

e(n) = xq(n) − x(n) is bounded by
−q

2
≤ e(n) ≤ q

2

In most cases, we can assume that the A/D conversion error e(n) has the following
properties:

(i) The error sequence e(n) is a sample sequence of a stationary random process.
(ii) The error signal is uncorrected with x(n) and other signal in the system.
(iii) The error is awhite noise processwith uniformamplitude probability distribution

over the range of quantization error.

The variance of e(n) is given by

σ 2
e = E[e2(n)] − E2[e(n)]

σ 2
e = E[e2(n)]

= 1

q

∫ q/2

−q/2
e2(n)de = 1

q

[
e3

3

]q/2

−q/2
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= 1

3q
×

[
q3

8
+ q3

8

]
= q2

12

σ 2
e =

(
2

2b+1

)2

12

σ 2
e = 2−2b

12

where b is number of bits (excluding sign bit). σ 2
e is also known as the steady-state

noise power due to input quantization.
If the input signal is x(n) and its variance is σ 2

x , then the ratio of signal power to
noise power which is known as signal to noise ratio for rounding is

SNR = σ 2
x

σ 2
e

= σ 2
x

2−2b

12

= 12(22bσ 2
x )

Signal to noise ratio in dB is expressed as

SNR (dB) = 10 log10
σ 2

x

σ 2
e

= 10 log10(12 22bσ 2
x )

SNR (dB) = 6.02b + 10.79 + 10 log10 σ 2
x

SNR increases approximately by 6dB for each bit added to register length.

5.5 Quantization of Filter Coefficients

In the design of a digital filter the coefficients are evaluated with infinite precision.
But they are limited by the word length of the register used to store the coefficients.
Usually the filter coefficients are quantized to the word size of the register used to
store them either by truncation or by rounding.

The location of poles and zeros of the digital filters directly depends on the value
of filter coefficients. The quantization of the filter coefficients will modify the value
of poles and zeros and so the location of the poles and zeros will be shifted from
the desired location. This will create deviation in the frequency response of the
system. Hence we obtain a filter having a frequency response that is different from
the frequency response of the filter with unquantized coefficients. The sensitivity of
the filter frequency response characteristics to quantization of the filter coefficients
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is minimized by realizing the filter having a large number of poles and zeros as an
interconnection of second-order section. Therefore, the coefficient quantization
has less effect in cascade realization when compared to other realizations.

Example 5.19

For the second-order IIR filter, the system function is,

H(z) = 1

(1 − 0.5z−1)(1 − 0.45z−1)

Study the effect of shift in pole location with 3 bit coefficient representation in direct
and cascade forms.

Solution

H(z) = 1

(1 − 0.5z−1)(1 − 0.45z−1)
= z2

(z − 0.5)(z − 0.45)

Original poles of H(z) =⇒ p1 = 0.5 and p2 = 0.45.

Case (i) Direct Form

H(z) = 1

(1 − 0.5z−1)(1 − 0.45z−1)
= 1

(1 − 0.95z−1 + 0.225z−1)

Quantization of coefficient by truncation

.9510
Convert to binary−−−−−−−−−−−−→ .11112

Truncate to 3 bits−−−−−−−−−−−−→ .1112
Convert to decimal−−−−−−−−−−−−−→ .81510

.22510
Convert to binary−−−−−−−−−−−−→ .00112

Truncate to 3 bits−−−−−−−−−−−−→ .0012
Convert to decimal−−−−−−−−−−−−−→ .12510

H(z) = 1

1 − 0.875z−1 + 0.125z−2

H(z) = 1

(1 − 0.695z−1)(1 − 0.179z−1)

The poles are at p1 = 0.695 and p2 = 0.179.
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Case (ii) Cascade Form

H(z) = 1

(1 − 0.5z−1)(1 − 0.45z−1)

Quantization by truncation

.510
Convert to binary−−−−−−−−−−−→ .10002

Truncate to 3 bits−−−−−−−−−−−→ .1002
Convert to decimal−−−−−−−−−−−→ .510

.4510
Convert to binary−−−−−−−−−−−→ .01112

Truncate to 3 bits−−−−−−−−−−−→ .0112
Convert to decimal−−−−−−−−−−−→ .37510

H(z) = 1

1 − 0.52z−1
× 1

1 − 0.375z−1

The poles are p1 = 0.5 and p2 = 0.375.

Conclusion:

• From direct form, we can see that the quantized poles deviate very much from the
original poles.

• From cascade form, we can see that one pole is exactly the same while the other
pole is very close to the original pole.

5.6 Product Quantization Error

In fixed point arithmetic the product of two b bit numbers results in number of 2b
bits length. If the word length of the register used to store the result is b bit, then
it is necessary to quantize the product to b bits, which produce an error known as
product quantization error or product round off noise. In realization structures
of digital system, multipliers are used to multiply the signal by constants.

The model for fixed point round off noise following a multiplication is shown in
Fig. 5.10.

x(n)
a

e(n)

ax(n)

Q[ax(n)] ax(n) e(n)

Fig. 5.10 Fixed point product round off noise model
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The multiplication is modeled as an infinite precision multipliers followed by an
adder where round off noise is added to the product so that overall result equals some
quantization level. The round off noise sample is a zero mean random variable with
a variance (2−2b/3), where b is the number of bits used to represent the variables.

In general the following assumptions are made regarding the statistical indepen-
dence of the various noise sources in the digital filter.

1. Any two different samples from the same noise source are uncorrelated.
2. Any two different noise source,when considered as randomprocesses, are uncor-

related.
3. Each noise source is uncorrelated with the input sequence.

The product quantization noise model for first-order and second-order system is
shown in Fig. 5.11. The product quantization noise models for IIR using cascade are
shown in Fig. 5.12.

In each noisemodel there are a number of noise sources. The output noise variance
due to each source is computed separately by considering one noise source at a time.
The total output noise variance is given by sum of the output noise variance at all
the noise sources. For each noise source, the noise transfer function (NTF) has to be
determined by treating the noise source as input and the output being the output of
the system. NTF for noise sources ea11(n) in Fig. 5.12 = H1(z) and NTF for noise
sources ea12(n) in Fig. 5.12 = H2(z).

Let ek(n) be the error signal from k th noise source, hk(n) the impulse response
for k th noise source and Tk(n) the noise transfer function (NTF) for kth noise source.

Variance of k th noise source σ 2
ek = q2

12
= 2−2b

3
[∵ R = 2]

Output noise variance due to kth noise source is,

σ 2
e0k = σ 2

ek

∞∑

n=0

h2
k(n)

σ 2
e0k = σ 2

ek

1

2k j

∮
Tk(z)Tk(z

−1)z−1dz

= σ 2
ek

n∑

i=1

Res
[
Tk(z)Tk(z

−1)z−1
]

z=pi
(5.31)

where p1, p2, p3, . . . , pn are poles of Tk(z)Tk(z−1)z−1. Let the number of noise
sources in digital system be M .
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x(n)

(a)

y(n)

ea1(n) eb1(n)

eb0(n)

b0

b1a1

z 1

x (n) y(n)

ea1(n)

ea2(n)

eb1(n)

eb0(n)

eb2(n)

b0

b1

b2

a1

a2

(b)

z 1

z 1

Fig. 5.11 Product quantization noisemodels of IIR systems for direct form realization. a First-order
direct form-II and b Second-order direct form-II

Therefore, total output noise variance due to product quantization error is,

σ 2
e0 =

M∑

k=1

σ 2
e0k (5.32)

σ 2
e0 = σ 2

e01 + σ 2
e02 + σ 2

e0M
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Example 5.20
In the IIR system given below the products are rounded to 4 bits (including sign bits).
The system function is

H(z) = 1

(1 − 0.35z−1)(1 − 0.62z−1)

Find the output round off noise power in a direct form realization and b cascade
form realization.

Solution

(a) Direct Form Realization

H(z) = 1

(1 − 0.35z−1)(1 − 0.62z−1)

H(z) = 1

(1 − 0.97z−1 + 0.217z−2)

Direct form realization of H(z) is shown in Fig. 5.13.
The variance of the error signal is,

σ 2
e = q2

12
; q = R

2b

Here R is not given. So take R = 2V and b = 4 bits

∴ q = R

2b
= 2

24
= 1

23
= 1

8

σ 2
e = (1/8)2

12
= q2

12

σ 2
e = 1.3021 × 10−3

Output noise power due to the noise signal e1(n) is,

σ 2
e01 = σ 2

e

N∑

i=1

Res[T1(z)T1(z
−1)z−1]|z=pi

Here

T1(z) = H(z) = z2

(z − 0.35)(z − 0.62)
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Therefore

T1(z)T1(z
−1)z−1 = z2

(z − 0.35)(z − 0.62)
× z−2

(z−1 − 0.35)(z−1 − 0.62)
× z−1

= z−1

(z − 0.35)(z − 0.62)(z−1 − 0.35)(z−1 − 0.62)

The poles of H(z) are p1 = 0.35 and p2 = 0.62.

Res[T (z)T (z−1)z−1]|z=0.35

= (z − 0.35)
z−1

(z − 0.35)(z − 0.62)(z−1 − 0.35)(z−1 − 0.62)

∣∣∣∣
z=0.35

= −1.8867

Res[T1(z)T1(z
−1)z−1]|z=0.62

= (z − 0.62)
z−1

(z − 0.35)(z − 0.62)(z−1 − 0.35)(z−1 − 0.62)

∣∣∣∣
z=0.62

= 4.7640
N∑

i=1

Res[T1(z)T1(z
−1)z−1]

= Res[T1(z)T1(z
−1)z−1]|z=0.35 + Res[T1(z)T1(z

−1)z−1]|z=0.62

= −1.8867 + 4.7640

= 2.8773.

Therefore

σ 2
e01 = σ 2

e

N∑

i=1

Res[T1(z)T1(z
−1)z−1]|z=pi

= 1.3021 × 10−3 × 2.8733

σ 2
e01 = 3.7465 × 10−3

Here the output noise due to error source e2(n) is same as that of e1(n), i.e.,

e2(n)′s noise power = noise power of e1(n)

σ 2
e01 = σ 2

e02

= 3.7465 × 10−3

Total output noise power due to all the noise sources is,

σ 2
e0 = σ 2

e01 + σ 2
e02
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Fig. 5.13 Direct form
realization of H(z) for
Example 5.20

x (n) y (n)

e1

e2

0.97

0.217

z 1

z 1

σ 2
e0 = 7.493 × 10−3

(b) Cascade Realization

Given

H(z) = 1

(1 − 0.35z−1)(1 − 0.62z−1)

Let H(z) = H1(z)H2(z), i.e.,

H1(z) = 1

(1 − 0.35z−1)
and H2(z) = 1

(1 − 0.62z−1)

Case (i) H(z) = H1(z)H2(z)

The cascade form realization of H(z) is shown in Fig. 5.14.
The order of cascading is H1(z)H2(z). Output noise power due to error signal
e1(n) is

σ 2
e01 = σ 2

e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi = 3.7465 × 10−3

[
Refer Direct Form where H(z) = T (z)

]
.
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x(n) y(n)

e1(n)

0.35

e2(n)

0.62

z 1 z 1

Fig. 5.14 Cascade form realization of H(z) for Example 5.20

Output noise power due to the error signal e2(n) is

σ 2
e02 = σ 2

e

N∑

i=1

Res[T2(z)T2(z
−1)z−1]|z=pi

Here T2(z) = H2(z)

T2(z)T2(z
−1)(z−1) = z−1

(z − 0.62)(z−1 − 0.62)
N∑

i=1

Res[T2(z)T2(z
−1)z−1]|z=pi = z−1 × (z − 0.62)

(z − 0.62)(z−1 − 0.62)

∣∣∣∣
z=0.62

= 1.6244

σ 2
e02 = σ 2

e ×
N∑

i=1

Res[T2(z)T2(z
−1)z−1]

= 1.3021 × 10−3 × 1.6244

= 2.1151 × 10−3

Output noise power

σ 2
e0 = σ 2

e01 + σ 2
e02

= 3.7465 × 10−3 + 2.1151 × 10−3

σ 2
e0 = 5.8616 × 10−3

Case (ii) The order of cascading is H(z) = H2(z)H1(z) and is shown in
Fig. 5.15.
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x(n) y(n)

0.350.62

e1 e2

z 1 z 1

Fig. 5.15 Cascade form realization of H(z) for Example 5.20

The output noise power due to error source e1 is,

σ 2
e01 = 3.7465 × 10−3

[Same as in Direct Form because T (z) = H(z)].
The output noise power due to error source e2(n) is,

σ 2
e02 = σ 2

e

N∑

i=1

Res[T3(z)T3(z
−1)]z=pi

Here T3(z) = H1(z)

Res[T3(z)T3(z
−1)z−1]|z=pi = (z − 0.35)z−1

(z − 0.35)(z−1 − 0.35)

∣∣∣∣
z=0.35

= 1.1396

σ 2
e02 = 1.1396 × 1.3021 × 10−3

= 1.4839 × 10−3

Total output noise power

σ 2
e0 = σ 2

e01 + σ 2
e02

= 3.7465 × 10−3 + 1.4839 × 10−3

σ 2
e0 = 5.2304 × 10−3

Conclusion: Thus, in cascade form realization, the product noise round off power
is less in case (ii) when compared to case (i) and also direct form realization.
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5.7 Limit Cycles in Recursive System

5.7.1 Zero-Input Limit Cycles

In recursive systems, when the input is zero or some nonzero constant value, the
nonlinearities due to finite precision arithmetic operation may cause periodic oscil-
lations, in the output. During periodic oscillations, the output y(n) of a system will
oscillate between a finite positive and negative value for increasing n or the output
will become constant for increasing n. Such oscillations are called limit cycles. If
the system output enters a limit cycle, it will continue to remain in limit cycle even
when the input is made zero. Hence, these limit cycles are also called zero-input limit
cycles.

Consider the following difference equation of first-order system with one pole
only.

y(n) = ay(n − 1) + x(n) (5.33)

The system has one product ay(n − 1). If the product is quantized to finite word
length then the response y(n)will deviate from actual value. Let y′(n) be the response
of the system when the product is quantized.

y′(n) = Q
[
ay′(n − 1)

] + x(n) (5.34)

Let y′(n) = 0, for n < 0 and a = 1
2

x(n) =
{
0.875, n = 0

0, n �= 0

Let the product be quantized to three bit (excluding sign bit) binary by rounding
when n = 0,

y′(n) = Q
[
ay′(n − 1)

] + x(n)

y′(0) = Q

[
1

2
y′(−1)

]
+ x(0)

= Q

[
1

2
× 0

]
+ 0.875 = 0.87510 = 7

8

When n = 1,

y′(1) = Q
[
ay′(0)

] + x(1)

= Q

[
1

2
× 0.875

]
+ 0
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= Q

[
1

2
× 7

8

]
= Q

[
7

16

]
= Q [0.4375]

0.437510
Convert to binary−−−−−−−−−−−→ .0111002

add sign bit−−−−−−−→ 0.0111002
round to 3 bit−−−−−−−−→ 0.1002

Extract sign bit−−−−−−−−−→ 0.1002
Convert to decimal−−−−−−−−−−−→ 0.510 = 1

2

When n = 2,

y′(2) = Q
[
ay′(1)

] + x(2)

= Q

[
1

2
× 1

2

]
+ 0

= Q

[
1

4

]
= Q [0.25]

0.2510
Convert tobinary−−−−−−−−−−−−→ 0.010002

round to3bit−−−−−−−−−→ 0.0102
Convert todecimal−−−−−−−−−−−−−→ 0.2510 = 1

4

When n = 3,

y′(3) = Q
[
ay′(2)

] + x(3)

= Q

[
1

2
× 1

4

]
+ 0

= Q

[
1

8

]
= Q [0.125]

0.12510
Convert to binary−−−−−−−−−−−→ 0.001002

round to 3 bit−−−−−−−−→ 0.0012
Convert to decimal−−−−−−−−−−−−→ 0.2510 = 1

8

When n = 4,

y′(4) = Q
[
ay′(3)

] + x(4)

= Q

[
1

2
× 1

8

]
+ 0 = Q

[
1

16

]
= Q [0.0625]

0.062510
Convert to binary−−−−−−−−−−→ 0.0001002

round to 3 bit−−−−−−−−→ 0.0012
Convert to decimal−−−−−−−−−−−→ 0.12510 = 1

8
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Table 5.3 Limit cycle in recursive system

n x(n) y(n − 1) ay(n − 1) Q[ay(n − 1)] y′(n) =
Q [ay(n − 1)] +
x(n)

0 0.875 0 0 0.000 7/8

1 0 7/8 −7/16 1.100 −1/2

2 0 −1/2 1/4 0.010 1/4

3 0 1/4 −1/8 −0.001 −1/8

4 0 −1/8 1/16 0.001 1/8

5 0 1/8 −1/16 1.001 −1/8

6 0 −1/8 1/16 0.001 1/8

The Limit cycle in recursive system is shown in Table 5.3.

When n = 5,

y′(5) = Q
[
ay′(4)

] + x(5)

= Q

[
1

2
× 1

8

]
+ 0 = Q

[
1

16

]
= 0.125 = 1

8

For all values of n, where n ≥ 3, the y′(n) = 1/8 = 0.001. Hence, the output
becomes constant for n ≥ 3. Also for n ≥ 3, the input x(n) is zero. Therefore, the
system enters a limit cycle even though the input becomes zero for n ≥ 3.

When a = −1/2 we can see from Table5.3 that the output oscillates between
+0.125 and −0.125.

Dead Band

In a limit cycle the amplitudes of the output are confined to a range of values, which
is called the dead band of the filter.

For a first-order system described by the equation, y(n) = ay(n − 1) + x(n), the
dead band is given by

Dead band = ± 2−b

1 − |a| =
[ −2−b

1 − |a| , + 2−b

1 − |a|
]

(5.35)

where b = number of bits (including sign bits) used to represent the product. For
a second-order system described by the difference equation y(n) = a1y(n − 1) +
a2y(n − 2) + x(n), the dead band in

Dead band = ± 2−b

1 − |a2| =
[ −2−b

1 − |a2| , + 2−b

1 − |a2|
]

(5.36)

The following example illustrates the method if finding dead band.
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Example 5.21

Explain the characteristics of a limit cycle oscillation with respect to the system
described by the equation

y(n) = 0.95y(n − 1) + x(n).

Determine the dead band of the filter.

(Anna University, December, 2006)
Solution Given that

y(n) = 0.95y(n − 1) + x(n)

The recursive realization of the given system involves the product 0.95y(n − 1). Let
y′(n) be the response of system when the product is quantized by rounding.

∴ y′(n) = Q[0.95y(n − 1)] + x(n)

where Q is quantization. Let us consider 5 bit sign-magnitude binary representation
with 4 bit for magnitude and 1 bit for sign. Let

y′(n) = 0 for n < 0

and

x(n) =
{
0.75, for n = 0

0, for n �= 0

When n = 0,

y′[0] = Q[0.95y(−1)] + x[0]
= Q[0.95 × 0] + 0.75

= Q[0] + 0.75

y′[0] = 0.7510 = 0.11002

+.75
Convert to binary−−−−−−−−−−−→ .110002

add sign bit−−−−−−−→ 0.110002
round to 4 bit−−−−−−−−→ 0.11002

+0.11002
Convert to decimal−−−−−−−−−−−→ +.7510

When n = 1,

y′[n] = y′[1] = Q[0.95y′(n − 1)] + x[n]
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= Q[0.95y′(0)] + x[1]
= Q[0.95 × 0.75] + 0

= Q[0.7125]
y′[1] = 0.687510 = 0.10112

Q[0.7125] =⇒
+.7125

Convert to binary−−−−−−−−−−−→ .101102
add sign bit−−−−−−−→ 0.101102

round to 4 bit−−−−−−−−→ 0.10112

+0.10112
Convert to decimal−−−−−−−−−−−→ +.687510

When n = 2,

y′[2] = Q[0.95y′(1)] + x[2]
= Q[0.95 × 0.6875] + 0

= Q[0.653125]
y′[2] = 0.625

= 0.010102

Q[0.65312510] =⇒
.65312510

Convert to binary−−−−−−−−−−−→ .101002
add sign bit−−−−−−−→ 0.101002

round to 4 bit−−−−−−−−→ 0.10102

+0.10102
Convert to decimal−−−−−−−−−−−→ +.62510

When n = 3,

y′[3] = Q[0.95y′(2)] + x[3]
= Q[0.95 × 0.625] + 0

= Q[0.59375]
y′[3] = 0.62510

= 0.10102

Q[0.59375] =⇒
.59375

Convert to binary−−−−−−−−−−−→ .100112
add sign bit−−−−−−−→ 0.100112

round to 4 bit−−−−−−−−→ 0.10102

+0.10102
Convert to decimal−−−−−−−−−−−→ +0.62510
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Thus, y′(2) = y′(3), and hence for all values of n ≥ 2, y′(n) will remain as 0.625.
Therefore, the system enters into the limit cycle when n = 2.

For the first-order system with only one pole, dead band is given by

Dead band = ± 2−b

1 − |a|
where b is number of bit in binary representation and |a| = |0.95|

Dead band = ± 2−5

1 − 0.95
= ±0.625

= [−0.625,+0.625]

Example 5.22

An IIR causal filter has the system function

H(z) = z

z − 0.97

Assume that the input signal is zero valued and the computed output signal values
are rounded to one decimal place. Show that under those stated conditions, the filter
output exhibits dead band effect. What is the dead band range?

(Anna University, May, 2007)
Solution Given

H(z) = z

z − 0.97

H(z) = Y (z)

X (z)
= z

z − 0.97

= Y (z)

X (z)
= 1

1 − 0.97z−1

X (z) = Y (z) − 0.97z−1Y (z)

Taking inverse z-transform on both sides we get

y(n) − 0.97y(n − 1) = x(n)

y(n) = 0.97y(n − 1) + x(n)

Let y′(n) be the response of the system when the product is quantized by rounding

y′(n) = Q[0.97y′(n − 1)] + x(n)
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For a causal filter

y(n) = 0, for n < 0

Let

x(n) =
{
11, n = 0,

0, n �= 0.

When n = 0,

y′(0) = Q[0.97y′(n − 1)] + x(n)

= 0 + 11 = 11

When n = 1,

y′(1) = Q[0.97y(0)] + x(1)

= Q[0.97 × 11] + 0

= Q[10.67]

Q[10.67] ⇒
(10.67)10

convert−−−−−→
to binary

(1010.101)2
rounded to the−−−−−−−−−→
decimal place

(1010.1)2
convert−−−−−−→

to decimal
(10.5)10

y′(1) = Q[10.67] = 10.5

When n = 2,

y′(2) = Q[0.97y′(1)]
= Q[0.97 × 10.5]
= Q[10.185]

Q[10.185] ⇒
(10.185)10

convert−−−−−→
to binary

(1010.001)2
rounded to the−−−−−−−−−→
one decimal

(1010)2
convert−−−−−−→

to decimal
(10)10

y′(2) = Q[10.185] = 10
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When n = 3,

y′(3) = Q[0.97y′(2)]
= Q[0.97 × 10]
= Q[9.7]

Q[9.7] ⇒ (9.7)10
convert−−−−−−→
to binary

(1001.101)2
rounded to−−−−−−−−→
one decimal

(1001.1)2
convert−−−−−−−→

to decimal
(9.5)10

y′(3) = Q[9.7] = 9.5

When n = 4,

y′(4) = Q[0.97y′(3)]
= Q[0.97 × 9.5]
= Q[9.215]

Q[9.215] ⇒ (9.215)10
convert−−−−−−→
to binary

(1001.001)2
rounded to−−−−−−−−→
one decimal

(1001)2
convert−−−−−−−→

to decimal
(9)10

y′(4) = Q[9.215] = 9

When n = 5,

y′(5) = Q[0.97y′(4)]
= Q[0.97 × 9]
= Q[8.73]

Q[8.73] ⇒
(8.73)10

convert−−−−−→
to binary

(1001.101)2
rounded to−−−−−−−→
one decimal

(1000.1)2
convert−−−−−−→

to decimal
(8.5)10

y′(5) = Q[8.73] = 8.5

When n = 6,

y′(6) = Q[0.97y′(5)]
= Q[0.97 × 8.5]
= Q[8.245]
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Q[8.245] ⇒ (8.245)10
convert−−−−−−→
to binary

(1000.001)2
rounded to−−−−−−−−→
one decimal

(1000)2
convert−−−−−−−→

to decimal
(8)10

y′(6) = Q[8.245] = 8

When n = 7,

y′(7) = Q[0.97y′(6)]
= Q[0.97 × 8]
= Q[7.76]

Q[7.76] ⇒ (7.76)10
convert−−−−−→
to binary

(0111.110)2
rounded to−−−−−−−→
one decimal

(1000)2
convert−−−−−−→

to decimal
(8)10

y′(7) = Q[7.76] = 8

Thus, y′(7) = y′(6) and hence for all values of n ≥ 6, y′(n) will remain as 8. There-
fore, the system enters into limit cycle when n = 6

Dead band = ± 2−b

1 − |α|
= ± 2−2

1 − 0.97
Dead band = ±8.333

Thus, the dead band interval is [−8.333, 8.333].

Example 5.23

A causal filter is defined by the difference equation

y(n) = x(n) − 0.9y(n − 1)

Theunit sample responseh(n) is computed such that the computedvalues are rounded
to one decimal place. Show that the filter exhibits dead band effect. Determine the
dead band range.

(Anna University, May, 2007)
Solution Given

y(n) = x(n) − 0.9y(n − 1)
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For causal system y(n) = 0, for n < 0. Consider the input

x(n) =
{
12, n = 0,

0, n �= 0.

Let y′(n) be the response of the filter when the product is quantized by rounding.

y′(n) = −Q[0.9y′(n − 1)] + x(n)

When n = 0,

y′(0) = −Q[0.9y′(−1)] + x(0)

= 0 + 12

= 12

When n = 1,

y′(1) = −Q[0.9y′(0)] + x(1)

= −Q[0.9 × 12] + 0

= −Q[10.8]

Q[10.8] ⇒ (10.8)10
convert−−−−−−→
to binary

(1010.110)2
rounded to the−−−−−−−−−−→
one decimal

(1011)2
convert−−−−−−−→

to decimal
(11)10

y′(1) = −Q[10.185] = −11

When n = 2,

y′(2) = −Q[0.9y′(1)]
= −Q[0.9 × (−11)]
= −Q[−9.9]

Q[−9.9] ⇒ −(9.9)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(0110.001)2

rounded to one−−−−−−−−−→
decimal place

(0110)2

take two’s−−−−−−−→
complement

(1010)2
convert−−−−−−→

to decimal
−(10)10

y′(2) = −Q[9.9] = −(−10) = 10
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When n = 3,

y′(3) = −Q[0.9y′(2)]
= −Q[0.9 × 10]
= −Q[9] = −9

When n = 4,

y′(4) = −Q[0.9y′(3)]
= −Q[0.9 × (−9)]
= −Q[−8.1]

Q[−8.1] ⇒ −(8.1)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(1000.000)2

rounded to−−−−−−−→
one decimal

(1000)2

take two’s−−−−−−−→
complement

−(1000)2
convert−−−−−−→

to decimal
−(8)10

y′(4) = −Q[−8.1] = −(−8) = 8

When n = 5,

y′(5) = −Q[0.9y′(4)]
= −Q[0.9 × 8]
= −Q[7.2]

Q[7.2] ⇒ (7.2)10
convert−−−−−→
to binary

(0111.001)2
rounded to−−−−−−−→
one decimal

(0111)2
convert−−−−−−→

to decimal
(7)10

y′(5) = −Q[7.2] = −7

When n = 6,

y′(6) = −Q[0.9y′(5)]
= −Q[0.9 × (−7)]
= −Q[−6.3]

Q[−6.3] ⇒ −(6.3)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(1001.110)2

rounded to−−−−−−−→
one decimal

(1010)2
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take two’s−−−−−−−→
complement

−(0110)2
convert−−−−−−→

to decimal
(−6)10

y′(6) = −Q[−6.3] = −(−6) = 6

When n = 7,

y′(7) = −Q[0.9y′(6)]
= −Q[0.9 × 6]
= −Q[5.4]

Q[5.4] ⇒ (5.4)10
convert−−−−−→
to binary

(0101.011)2
rounded to−−−−−−−→
one decimal

(0101)2
convert−−−−−−→

to decimal
(5.5)10

y′(7) = −Q[5.4] = −5.5

When n = 8,

y′(8) = −Q[0.9y′(7)]
= −Q[0.9 × (−5.5)]
= −Q[−4.95]

Q[−4.95] ⇒ −(4.95)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(1011.001)2

rounded to−−−−−−−→
one decimal

(1011)2

take two’s−−−−−−−→
complement

−(0101)2
convert−−−−−−→

to decimal
(−5)10

y′(8) = −Q[−4.95] = −(−5) = 5

When n = 9,

y′(9) = −Q[0.9y′(8)]
= −Q[0.9 × 5]
= −Q[4.5]

Q[4.5] ⇒ (4.5)10
convert−−−−−→
to binary

(0100.10)2
rounded to−−−−−−−→
one decimal

(0100.1)2
convert−−−−−−→

to decimal
(4.5)10

y′(9) = −Q[4.5] = −4.5

When n = 10,

y′(10) = −Q[0.9y′(9)]
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= −Q[0.9 × (−4.5)]
= −Q[−4.05]

Q[−4.05] ⇒ −(4.05)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(1100.000)2

rounded to−−−−−−−→
one decimal

(1100)2

take two’s−−−−−−−→
complement

−(0100)2
convert−−−−−−→

to decimal
(−4)10

y′(10) = −Q[−4.05] = −(−4) = 4

When n = 11,

y′(11) = −Q[0.9y′(10)]
= −Q[0.9 × 4]
= −Q[3.6]

Q[3.6] ⇒ (3.6)10
convert−−−−−−→
to binary

(0011.100)2
rounded to−−−−−−−−→
one decimal

(0011.1)2
convert−−−−−−−→

to decimal
(3.5)10

y′(11) = −Q[3.6] = −3.5

When n = 12,

y′(12) = −Q[0.9y′(11)]
= −Q[0.9 × 3.5]
= −Q[−3.15]

Q[−3.15] ⇒ −(3.15)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(1100.111)2

rounded to−−−−−−−→
one decimal

(1101)2

take two’s−−−−−−−→
complement

−(0011)2
convert−−−−−−→

to decimal
(−3)10

y′(12) = −Q[−3.15] = −(−3) = 3

When n = 13,

y′(13) = −Q[0.9y′(12)]
= −Q[0.9 × 3]
= −Q[2.7]
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Q[2.7] ⇒ (2.7)10
convert−−−−−−→
to binary

(0010.101)2
rounded to−−−−−−−−→
one decimal

(0010.1)2
convert−−−−−−−→

to decimal
(2.5)10

y′(13) = −Q[2.7] = −2.5

When n = 14,

y′(14) = −Q[0.9y′(13)]
= −Q[0.9 × (−2.5)]
= −Q[−2.25]

Q[−2.25] ⇒ −(2.25)10
convert to binary−−−−−−−−−−−−→

(two’s complement)
(1101.10)2

rounded to−−−−−−−→
one decimal

(1101.1)2

take two’s−−−−−−−→
complement

−(0010.1)2
convert−−−−−−→

to decimal
−(2.5)10

y′(14) = −Q[−2.25] = −(−2.5) = 2.5

For all values of n ≥ 13, y′(n) will remain in the same magnitude as 2.5 with alter-
native sign. Therefore, the system enters into limit cycle when n = 13

Dead band = ± 2−b

1 − |α| = ± 2−2

1 − 0.9

Dead band = ± 0.25

1 − 0.9
= ±2.5

Thus the dead band interval is [−2.5, 2.5].
Unit Impulse Response

Given

y(n) = −0.9y(n − 1) + x(n)

Taking z-transform on the both sides, we get

Y (z) = −0.9z−1Y (z) + X (z)

Y (z)[1 + 0.9z−1] = Y (z)

H(z) = Y (z)

X (z)
= 1

1 + 0.9z−1
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The unit impulse response h(n) is

h(n) = z−1[H(z)]

h(n) = (−0.9)nu(n)

Example 5.24

A digital system is characterized by the difference equation

y(n) = 0.9y(n − 1) + x(n)

Determine the dead band of the system when x(n) = 0 and y(−1) = 12.

(Anna University, May, 2004)
Solution Given

y(n) = −0.9y(n − 1) + x(n)

where x(n) = 0, y(−1) = 12. Let y′(n) be the response of the filter when the product
is quantized.

y′(n) = Q[0.9y′(n − 1)] + x(n)

When n = 0,

y′(0) = Q[0.9y′(−1)]
= Q[0.9 × 12]
= Q[10.8]

Q[10.8] ⇒ (10.8)10
convert−−−−−−→
to binary

(1010.110)2
rounded to the−−−−−−−−−−→
one decimal

(1011)2
convert−−−−−−−→

to decimal
(11)10

y′(0) = Q[10.8] = 1

When n = 1,

y′(1) = Q[0.9y′(0)]
= Q[0.9 × 11]
= Q[9.9]
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Q[9.9] ⇒ (9.9)10
convert−−−−−−→
to binary

(1001.111)2
rounded to the−−−−−−−−−−→
one decimal

(1010)2
convert−−−−−−−→

to decimal
(10)10

y′(1) = Q[9.9] = 10

When n = 2,

y′(2) = Q[0.9y′(1)]
= Q[0.9 × 10]
= Q[9] = 9

When n = 3,

y′(3) = Q[0.9y′(2)]
= Q[0.9 × 9]
= Q[8.1]

Q[8.1] ⇒ (8.1)10
convert−−−−−→
to binary

(1000.000)2
rounded to the−−−−−−−−−→
one decimal

(1000)2
convert−−−−−−→

to decimal
(8)10

y′(3) = Q[8.1] = 8

When n = 4,

y′(4) = Q[0.9y′(3)]
= Q[0.9 × 8]
= Q[7.2]

Q[7.2] ⇒ (7.2)10
convert−−−−−→
to binary

(0111.000)2
rounded to−−−−−−−→
one decimal

(0111)2
convert−−−−−−→

to decimal
(7)10

y′(4) = Q[7.2] = 7

When n = 5,

y′(5) = Q[0.9y′(4)]
= Q[0.9 × 7]
= Q[6.3]
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Q[6.3] ⇒ (6.3)10
convert−−−−−−→
to binary

(0110.010)2
rounded to−−−−−−−−→
one decimal

(0110.1)2
convert−−−−−−−→

to decimal
(6.5)10

y′(5) = Q[6.3] = 6.5

When n = 6,

y′(6) = Q[0.9y′(5)]
= Q[0.9 × 6.5]
= Q[5.85]

Q[5.85] ⇒ (5.85)10
convert−−−−−→
to binary

(0101.110)2
rounded to−−−−−−−→
one decimal

(0110)2
convert−−−−−−→

to decimal
(6)10

y′(6) = Q[5.85] = 6

When n = 7,

y′(7) = Q[0.9y′(6)]
= Q[0.9 × 6]
= Q[5.4]

Q[5.4] ⇒ (5.4)10
convert−−−−−−→
to binary

(0101.011)2
rounded to−−−−−−−−→
one decimal

(0101.1)2
convert−−−−−−−→

to decimal
(5.5)10

y′(7) = Q[5.4] = 5.5

When n = 8,

y′(8) = Q[0.9y′(7)]
= Q[0.9 × 5.5]
= Q[4.95]

Q[4.95] ⇒ (4.95)10
convert to−−−−−−−→
binary

(0100.111)2
rounded to−−−−−−−−→
one decimal

(0101)2
convert−−−−−−−→

to decimal
(5)10

y′(8) = Q[4.95] = 5

When n = 9,

y′(9) = Q[0.9y′(8)]



592 5 Finite Word Length Effects

= Q[0.9 × 5]
= Q[4.5]

Q[4.5] ⇒ (4.5)10
convert−−−−−−→
to binary

(0100.10)2
rounded to−−−−−−−−→
one decimal

(0100.1)2
convert−−−−−−−→

to decimal
(4.5)10

y′(9) = Q[4.5] = 4.5

When n = 10,

y′(10) = Q[0.9y′(9)]
= Q[0.9 × 4.5]
= Q[4.05]

Q[4.05] ⇒ (4.05)10
convert to−−−−−−−→
binary

(0100.000)2
rounded to−−−−−−−−→
one decimal

(0100)2
convert−−−−−−−→

to decimal
(4)10

y′(10) = Q[4.05] = 4

When n = 11,

y′(11) = Q[0.9y′(10)]
= Q[0.9 × 4]
= Q[3.6]

Q[3.6] ⇒ (3.6)10
convert−−−−−−→
to binary

(0011.100)2
rounded to−−−−−−−−→
one decimal

(0011.1)2
convert−−−−−−−→

to decimal
(3.5)10

y′(11) = Q[3.6] = 3.5

When n = 12,

y′(12) = Q[0.9y′(11)]
= Q[0.9 × 3.5]
= Q[3.15]

Q[3.15] ⇒ (3.15)10
convert to−−−−−−−→
binary

(0011.001)2
rounded to−−−−−−−−→
one decimal

(0011)2
convert−−−−−−−→

to decimal
(3)10

y′(12) = Q[3.15] = 3
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When n = 13,

y′(13) = Q[0.9y′(12)]
= Q[0.9 × 3]
= Q[2.7]

Q[2.7] ⇒ (2.7)10
convert−−−−−−→
to binary

(0010.101)2
rounded to−−−−−−−−→
one decimal

(0010.1)2
convert−−−−−−−→

to decimal
(2.5)10

y′(13) = Q[2.7] = 2.5

When n = 14,

y′(14) = Q[0.9y′(13)]
= Q[0.9 × 2.5]
= Q[2.25]

Q[2.25]⇒(2.25)10
convert to−−−−−−−→
binary

(0010.010)2
rounded to−−−−−−−−→
one decimal

(0010.1)2
convert−−−−−−−→

to decimal
(2.5)10

y′(14) = Q[2.25] = 2.5

For all values of n ≥ 13, y′(n)will remainwith the samemagnitude as 2.5. Therefore,
the system enters into limit cycle when n = 13

Dead band = ± 2−b

1 − |α|
= ± 2−2

1 − 0.9

Dead band = ±0.25

0.1
= ±2.5

Thus, the dead band interval is [−2.5, 2.5].
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Example 5.25

Determine the dead band of the following filter if 8 bits are used for representa-
tion

y(n) = 0.2y(n − 1) + 0.5y(n − 2) + x(n)

(Anna University, December, 2003)
Solution Given b = 8 bits (including sign bit)

y(n) = 0.2y(n − 1) + 0.5y(n − 2) + x(n)

Consider the second-order system, which is described by the following difference
equation.

y(n) = a1y(n − 1) + a2y(n − 2) + x(n)

Comparing these two equations we get a1 = 0.2 and a2 = 0.5.
For the second-order system, dead band is given by

Dead band = ± 2−b

1 − |a2|
= ± 2−8

1 − |0.5|

Dead band = ±0.0078125

Thus, the dead band has the interval of [−0.0078125,+0.0078125].

5.7.2 Overflow Limit Cycle Oscillation

In fixed point addition of two binary numbers the overflow occurs when the sum
exceeds the finite word length of the register used to store the sum. The overflow in
addition may lead to oscillation in the output which is referred to as an overflow limit
cycle. An overflow in addition of two or more binary numbers occurs when the sum
exceeds the dynamic range of number system. Let us consider two positive numbers
n1 and n2 which are represented in sign magnitudes.
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y(n)

1

1

n

Fig. 5.16 Transfer characteristics of an adder

Fig. 5.17 Characteristics of
saturation adder

y(n)

1

0 11 n

n1 = 3

8
→ 0.011

n2 = 6

8
→ 0.110

n1 + n2 = 1.001 → −1

8
in sign magnitude

In the above example, when two positive numbers are added the sum is wrongly
interpreted as a negative number. The transfer characteristics of an adder is shown
in Fig. 5.16, where n is the input to the adder and y(n) is the corresponding output.
The overflow oscillations can be eliminated if saturation arithmetic is performed.
The characteristics of saturation adder is shown in Fig. 5.17. In saturation arithmetic,
when an overflow is sensed, the output is set equal to maximum allowable value and
when an underflow is sensed, the output (sum) is set equal to minimum allowable
value. The saturation arithmetic introduces nonlinearity in the adder, and the signal
distortion due to this nonlinearity is small if the saturation occurs infrequently.
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5.8 Scaling to Prevent Overflow

Saturation arithmetic eliminates limit cycle due to overflow, but it causes undesirable
signal distortion due to nonlinearity of the clipper. In order to limit the amount of
nonlinear distortion, it is important to scale the input signal to the adder such that
the overflow becomes a rare event. Let

x(n) = Input to the system

hm(n) = Impulse response between the input and output of node −m

ym(n) = Response of the system at node −m

To scale the input signal so that

∞∑

n=−∞
|ym(n)|2 ≤ S2

∞∑

n=−∞
|x(n)|2

where S is the scaling factor, using Parseval’s and residue theorems the expression
for scaling factor is given by

S2 = 1∑∞
n=−∞ |hm(n)|2 = 1

2π j
∮

c S(z)S(z−1)z−1dz

S2 = 1
∑N

i=1 Res[S(z)S(z−1)z−1dz]|z=pi

(5.37)

where S(z) is the transfer function seen between the input to system and output of
summing node −m. For example, consider the second-order system which is shown
in Fig. 5.18.

The transfer function between the input to the system and output of adder A is
given by

S(z) = W (z)

X (z)

The output signal of adder A is

W (z) = X (z) − a1z−1W (z) − a2z−2W (z)

X (z) = W (z) + a1z−1W (z) + a2z−2W (z)

∴ S(z) = W (z)

X (z)
= 1

1 + a1z−1 + a2z−2
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x(n) (z)

Adder
A

y(n)

S0

a1 b1

b0

a2 b2

z 1

z 1

Fig. 5.18 Second-order system with input in sealed by S0

Example 5.26

For digital network shown in figure, find H(z) and scale factor so to avoid
overflow in register A1.

z 1

x(n)
(n)

(n 1)

y(n)
A1δ0

0.245

0.245

0.509

Solution In figure, the output signal at node A1, is ω(n). At node A1, the following
equation is written.

ω(n) = δ0x(n) + 0.509(ω(n − 1))

On taking z-transform we get,

W (z) = δ0X (z) + 0.509z−1W (z)

W (z) − 0.509z−1W (z) = δ0X (z)

W (z)[1 − 0.509z−1] = δ0X (z)
W (z)

X (z)
= δ0

1 − 0.509z−1
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At the output node the following equation is written.

y(n) = 0.245(ω(n) + 0.245ω(n − 1))

y(n) = 0.245ω(n) + 0.06ω(n − 1)

On taking z-transform we get,

Y (z) = 0.245W (z) + 0.06W (z)z−1

Y (z) = (0.245 + 0.06z−1)W (z)

∴ Y (z)

W (z)
= (0.245 + 0.06z−1)

The transfer function of the system Y (z)
X (z) is obtained by multiplying W (z)/X (z) and

Y (z)/W (z)

∴ Transfer function of the system
Y (z)

X (z)
= Y (z)

W (z)
× W (z)

X (z)

= δ0[0.245 + 0.06z−1]
[1 − 0.509z−1]

The scaling factor δ0 is given by

δ20 = 1
1

2π j

∮
c δ(z)δ(z−1)z−1dz

where δ(z) → transfer function seen between system input and output of register
A1.

δ(z) = W (z)

X (z)

When there is no scaling multiplier, we get

δ(z) = 1

1 − 0.509z−1
= z

z − 0.509

∴ δ(z)δ(z−1)z−1 = z−1

(z − 0.509)(z−1 − 0.509)

1

2π j

∮

c
δ(z)δ(z−1)z−1dz =

N∑

i=1

Res[δ(z)δ(z−1)z−1]z=pi
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We have only one pole at z = 0.509

= (z − 0.509)
z−1

(z − 0.509)(z−1 − 0.509)

∣∣∣∣
z=0.509

= z−1

z−1 − 0.509

∣∣∣∣
z=0.509

= 0.509−1

0.509−1 − 0.509
= 1.3497

∴ δ20 = 1

1.3497
= 0.7409

Scaling factor

δ0 = √
0.7409 = 0.8608.

Example 5.27

The output signal of an A/D converter is passed through a first-order lowpass
filter, with transfer function given by

H(z) = (1 − a)z

z − a
, 0 < a < 1

Find the steady-state output noise power due to quantization at the output of the
digital filter.

Solution Using Eqs. 5.29 and 5.30 we get,

σ 2
e0 = σ 2

e

1

2π j

∮

c
H(z)H(z−1)z−1dz

= σ 2
e

N∑

i=1

[Res(H(z)H(z−1)z−1dz)]|z=pi

Given,

H(z) = (1 − a)z

z − a

H(z−1) = (1 − a)z−1

z−1 − a
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H(z)H(z−1)z−1 = (1 − a)z(1 − a)z−1 · z−1

(z − a)(z−1 − a)
= (1 − a)2z−1

(z − a)(z−1 − a)

There are two poles at z = a, z = 1/a out of which the pole at z = a lies inside of
the unit circle since 0 < a < 1. Therefore, residue due to pole z = a is given as,

Res[H(z)H(z−1)z−1]|z=a = (z − a)
(1 − a)2z−1

(z − a)(z−1 − a)

∣∣∣∣
z=a

= (1 − a)2a−1

a−1 − a

= (1 − a)2

(1 − a2)

Therefore, steady-state output noise power is

σ 2
e0 = σ 2

e Res[H(z)H(z−1)z−1]|z=a

= σ 2
e

[
(1 − a)2

1 − a2

]

= σ 2
e

[
1 − a

1 + a

]

where σ 2
e = (q2/12), if R = 1

σ 2
e =

(
2−2b

12

)
.

Example 5.28

Find the steady-state variance of the noise in the output due to quantization of
input for the first-order filter described by the following difference equation.

y(n) = 0.5y(n − 1) + x(n)

(Anna University, May, 2007)
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Solution Given

y(n) = 0.5y(n − 1) + x(n)

Taking z-transform on both sides we have

Y (z) = 0.5z−1Y (z) + X (z)

H(z) = Y (z)

X (z)
= 1

1 − 0.5z−1
= z

z − 0.5

H(z−1) = z−1

z−1 − 0.5

The steady-state output noise power as given by Equation (5.30) is,

σ 2
e0 = σ 2

e

N∑

i=1

Res[H(z)H(z−1)z−1]|z=pi

H(z)H(z−1)z−1 = z · z−1 · z−1

(z − 0.5)(z−1 − 0.5)

= z−1

(z − 0.5)(z−1 − 0.5)

The pole z = 0.5 only lies inside of the unit circle, and therefore

Res[H(z)H(z−1)z−1]|z=0.5 = (z − 0.5)
z−1

(z − 0.5)(z−1 − 0.5)

∣∣∣∣
z=0.5

= (0.5)−1

(0.5)−1 − 0.5

= 1

1 − (0.5)2
= 1

1 − 0.25
= 1.333

The steady-state output noise variance (power) is

σ 2
e0 = σ 2

e Res[H(z)H(z−1)z−1]|z=0.5

σ 2
e0 = σ 2

e 1.333.
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Example 5.29

Consider the transfer function

H(z) = H1(z)H2(z)

where

H1(z) = 1

1 − 0.5z−1
and H2(z) = 1

1 − 0.6z−1

Find the output round off noise power.

(Anna University, May, 2007)
Solution The round off noise model for H(z) = H1(z)H2(z) is shown in Fig. 5.19.
From the realization, the noise transfer function seen by noise source e1(n) is written
as,

T1(z) = H(z) = H1(z)H2(z) = 1

(1 − 0.5z−1)(1 − 0.6z−1)

The noise transfer function seen by e2(n) is written as,

T2(z) = H2(z) = 1

1 − 0.6z−1

The steady-state output noise power due to e1(n) as given by Equation (5.30) is,

x(n)
e1(n) e2(n)

0.5

H1(z)

0.6

H2(z)

z 1 z 1

Fig. 5.19 Round off noise model for Example 5.29
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σ 2
e01 = σ 2

e

N∑

i=1

[Res(T1(z)T1(z
−1)z−1)]|z=pi

= σ 2
e Res

[
z−1

(1 − 0.5z−1)(1 − 0.6z−1)(1 − 0.5z)(1 − 0.6)

]

z=0.5,0.6,(1/0.5),(1/0.6)

Only two poles at z = 0.5 and z = 0.6 lie inside of unit circle

σ 2
e01 = σ 2

e

[∑
Res(T1(z)T1(z

−1)z−1)
] ∣∣∣∣

z=0.5 and z=0.6

= σ 2
e

[
(z − 0.5)

z

(z − 0.5)(z − 0.6)(1 − 0.5z)(1 − 0.6)

∣∣∣∣
z=0.5

+(z − 0.6)
z

(z − 0.5)(z − 0.6)(1 − 0.5z)(1 − 0.6)

∣∣∣∣
z=0.6

]

= σ 2
e

[
0.5

(0.5 − 0.6)(1 − .25)(1 − 0.3)
+ 0.6

(0.6 − 0.5)(1 − 0.3)(1 − 0.36)

]

= σ 2
e [−9.5238 + 13.3928]

σ 2
e01 = σ 2

e [3.8690]

The steady-state output noise power due to e2(n) is,

σ 2
e02 = σ 2

e

N∑

i=1

Res[(T2(z)T2(z
−1)z−1)]|z=pi

= σ 2
e

N∑

i=1

Res[(H2(z)H2(z
−1)z−1)]|z=pi

= σ 2
e

∑
Res

[
1

1 − 0.6z−1
· 1

1 − 0.6z
· z−1

]

z=0.6 and z=(1/0.6)

The residue at pole z = (1/0.6) is zero, since that pole lies outside of the unit circle

σ 2
e02 = σ 2

e Res

[
1

(z − 0.6)(1 − 0.6z)

]

z=0.6

= σ 2
e

[
(z − 0.6)

1

(z − 0.6)(1 − 0.6z)

]

z=0.6

σ 2
e02 = σ 2

e [1.5626]
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The total steady-state output noise power is,

σ 2
e0 = σ 2

e01 + σ 2
e02

= σ 2
e [3.8690 + 1.5626]

= σ 2
e [5.4315]

For example for b = 4 bits (including sign bit)

σ 2
e = q2

12
= (R/2b)2

12

σ 2
e = (2/24)2

12
= 2−6

12
= 1.302 × 10−3

σ 2
e0 = 1.302 × 10−3 × 5.4315 = 7.0718 × 10−3

The total round off noise power is,

σ 2
e0 = 7.0718 × 10−3

Example 5.30

Draw the quantization noise model for a second-order system

H(z) = 1

1 − 2r cos θ z−1 + r2z−2

and find the steady-state output noise variance.

(Anna University, May, 2005)
Solution Given

H(z) = 1

1 − 2r cos θ z−1 + r2z−2

The quantization noise model is shown in Fig. 5.20.

σ 2
e0 = σ 2

e01 + σ 2
e02

Both noise sources see the same transfer function

H(z) = 1

1 − 2r cos θ z−1 + r2z−2

σ 2
e01 = σ 2

e02
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Fig. 5.20 Quantization
noise model for Example
5.30

x (n) y (n)

2r cos

r2

e1(n)

e2(n)

z 1

z 1

The impulse response of the transfer function is given by

h(n) = rn sin(n + 1)θ

sin θ
u(n)

(Please refer z-transform table)

σ 2
e01 = σ 2

e02 = σ 2
e

∞∑

n=−∞
h2(n)

σ 2
e0 = 2σ 2

e01

= 2σ 2
e

∞∑

n=0

r2n sin2(n + 1)θ

sin2 θ

= 2σ 2
e

1

2 sin2 θ

∞∑

n=0

r2n[1 − cos 2(n + 1)θ ] [∵ cos 2θ = 1 − 2 sin2 θ ]

= 2σ 2
e

1

2 sin2 θ

[ ∞∑

n=0

r2n −
∞∑

n=0

r2n cos 2(n + 1)θ

]

= 2σ 2
e

1

2 sin2 θ

[
1

1 − r2
− 1

2

[ ∞∑

n=0

r2ne j (2n+1)θ +
∞∑

n=0

r2ne− j (2n+1)θ

]]

= 2σ 2
e · 1

2 sin2 θ

[
1

1 − r2
− 1

2

[
e2 jθ

1 − r2e2 jθ
+ e−2 jθ

1 − r2e−2 jθ

]]
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σ 2
e0 = 2σ 2

e · 1

2 sin2 θ

[
1

1 − r2
− cos 2θ − r2

1 − 2r2 cos 2θ + r4

]

= 2σ 2
e · 1

2 sin2 θ

[
(1 + r2)(1 − cos 2θ)

(1 − r2)(1 − 2r2 cos 2θ + r4)

]

= 2σ 2
e · 1

2 sin2 θ

[
(1 + r2)2 sin2 θ

(1 − r2)(1 − 2r2 cos 2θ + r4)

]

σ 2
e0 = 2σ 2

e

[
1 + r2

(1 − r2)(1 − 2r2 cos 2θ + r4)

]

where

σ 2
e =

(
q2

12

)
= (R/2b)2

12
.

Example 5.31

Given

H(z) = 0.5 + 0.4z−1

1 − 0.312z−1

is the transfer function of a digital filter. Find the scaling factor S0 to avoid overflow
in adder of the digital filter shown in Fig. 5.21.

Solution From Eq. 5.37, the scaling factor is written as,

S2
0 = 1

∑N
i=1 Res(S(z)S(z−1)z−1)

∣∣∣∣
z=pi

x(n)
y(n)(n)

S0

0.312 0.4

0.5

z 1

Fig. 5.21 Realization of transfer function for Example 5.31
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where

S(z) = W (z)

X (z)
ω(n) = x(n) + 0.312ω(n − 1)

W (z) = X (z) + 0.312z−1W (z)

S(z) = W (z)

X (z)
= 1

1 − 0.312z−1

S2
0 = 1

∑
Res

[
z−1

(1−0.312z−1)(1−0.312z)

]

= 1
∑

Res
[

1
(z−0.312)(1−0.312z)

]

= 1

Res
[

1
(z−0.312)(1−0.312z)

]
∣∣∣∣
z=0.312

= 1

(z − 0.312)
[

1
(z−0.312)(1−0.312z)

]

z=0.312

S2
0 = 1

1.1078

S0 = 0.9501.

Summary

� The performance of a DSP system is limited by the number of bits used in the
implementation. The common sources of errors are due to input quantization,
coefficient quantization, product round off and addition overflow.

� The ADC quantization noise is reduced by increasing the number of ADC bits
or by using multirate techniques.

� When an IIR digital filter is implemented, errors arise in representing the filter
coefficients. These errors can be reduced to acceptable level by using more bits.
However, this increases the cost.

� Addition of two large numbers of a similar sign may produce an overflow which
results in excess of permissible word length. This occurs at the output of adders
and can be prevented by scaling the inputs to the adders in such a way that the
outputs are kept low. However, this reduces the signal to noise ratio and increases
the cost.

� In digital filter, the product of two variables requires very long bits. For recursive
filters, if it is not reduced, subsequent computations will cause the number of bits
to grow without limit. Truncation or rounding is used to quantize the products to
the permissible word length. When the products are quantized, round off errors



608 5 Finite Word Length Effects

occur and they may lead to oscillations in the output even when there is no
input. Further the signal to noise ratio is also small. The round off noise can
be reduced or minimized by passing through subsequent sections of a cascade
structure where it is alternated.

� Reduction in signal to noise ratio due to round off error can be offset by the use
of error spectral shaping scheme. However this scheme increases the number of
multiplications and additions but computationally more efficient.

Short Questions and Answers

1. What is meant by finite word length effects in digital filters?
The fundamental operations in digital filters are multiplication and addition.
When these operations are performed in a digital system, the input data as well
as the product and sum (output data) have to be represented in finite word length,
which depends on the size (length) of the register used to store the data. In
digital computation the input and output data (sum and product) are quantized
by rounding or truncation to convert them into finite word size. This creates error
(in noise) in the output or creates oscillations (limit cycles) in the output. These
effects due to finite precision representation of numbers in digital system are
called as finite word length effects.

2. List some of the finite word length effects in digital filters.

1. Errors due to quantization of the input data.
2. Errors due to quantization of the filter coefficients.
3. Errors due to rounding the product in multiplications.
4. Limit cycles due to product quantization and overflow in addition.

3. Explain the fixed point representation of binary numbers.
In fixed point representation of binary numbers in a given word size, the bits
allotted for integer part and fraction part of the numbers are fixed, and therefore
the position of binary point is fixed. The most significant bit is used to represent
the sign of the number. This is shown in Fig. 5.22.

4. What are the different formats of fixed point representation?
In fixed point representation, there are three different formats for representing
binary numbers:

1. Sign-magnitude format.
2. One’s complement format.
3. Two’s complement format.

In all the three formats, the positive number is same, but they differ only in
representing negative numbers.

5. Explain the floating point representation of binary numbers.
The floating numbers will have a mantissa part and exponent part. In a given
word size the bits allotted for mantissa and exponent are fixed. The mantissa
is used to represent a binary fraction number, and the exponent is a positive
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Fig. 5.22 Fixed point
representation of binary
numbers (question 3)

Binary point

sign bit

bi-bits
for integer

bf -bits for
fraction

Fig. 5.23 IEEE standard
format for 32 bit floating
point (question 6)

0
MES

13981

or negative binary integer. The value of the exponent can be adjusted to move
the position of the binary point in mantissa. Hence, this representation is called
floating point. The floating point number is expressed as

Floating point number, N f = M × 2E

where M =mantissa and E = exponent.

6. Give the IEEE-754 standard format for 32 bit floating point numbers.
The IEEE-754 standard for 32 bit single precision floating point number is
given by floating point numbers, N f = (−1) × 2E−127 × M . This is shown in
Fig. 5.23.

S = 1 bit field for sign of number.
E = 8 bit field for exponent.
M = 23 bit field for mantissa.

7. What are the types of arithmetic used in digital computers?
The floating point arithmetic and two’s complement arithmetic are the two types
of arithmetic employed in digital systems.

8. Compare the fixed point and floating point number representations.

Fixed point representation Floating point representation
1. In a b bit binary the range of In a b bit binary the range of the

numbers represented is less when numbers represented is large when
compared to floating point compared to fixed point
representation representation

2. The position of binary point The position of binary point
is fixed is variable

3. The resolution is uniform The resolution is variable
throughout the range
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9. Compare the fixed point and floating point arithmetic.

Fixed point arithmetic Floating point arithmetic
1. The accuracy of the result is less The accuracy of the result will be

due to smaller dynamic range higher due to larger dynamic range
2. Speed of processing is high Speed of processing is low
3. Hardware implementation Hardware implementation

is cheaper is costlier
4. Fixed point arithmetic can be Floating point arithmetic cannot

used for real-time computation be used for real-time computation
5. Quantization error occurs only Quantization error occurs in both

in multiplication multiplication and addition

10. What are the two types of quantization employed in digital system?
The two types of quantization in digital system are truncation and rounding.

11. What is Truncation?
The truncation is the process of reducing the size of binary number by discarding
all bits less significant than the least significant bit that is retained. (In trunca-
tion of a binary number to b bits all the less significant bits beyond bth bit are
discarded).

12. Sketch the characteristics of the quantizer used for truncation.
13. What is rounding?

Rounding is the process of reducing the size of a binary number to finite word
sizes of b bits such that, the rounded b bit number is closest to the original
unquantized number.

14. Sketch the noise probability density function for rounding.
15. What are the errors generated by A/D process?

The A/D process generates two types of errors. They are quantization error and
saturation error. The quantization error is due to representation of the sampled
signal by a fixed number of digital level (quantization levels). The saturation error
occurs when the analog signal exceeds the dynamic range of A/D converter.

16. What is quantization step size?
In digital systems, the numbers are represented in binary.With b bit binarywe can
generate 2b different binary codes. Any range of analog value to be represented
in binary should be divided into 2b levels with equal increment. The 2b levels are
called quantization levels, and the increment in each level is called quantization
step size. If R is the range of analog signal then,

Quantization step size, q = R

2b
(5.38)

17. How the input quantization noise is represented in LTI system?
The quantized input signal of a digital system can be represented as a sum of
unquantized signal x(n) and error signal e(n) as shown in Fig. 5.26.
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18. What is steady-state output noise due to input quantization?
The input signal to digital system can be considered as a sum of unquantized
signal and error signal due to input quantization. The response of the system
can be expressed as a summation of response due to unquantized input and error
signal. The response of the system due to error signal is given by convolution of
error signal and impulse response. The variance of the response of the system
for error signal is called steady-state output noise power.

19. How the digital filter is affected by quantization of filter coefficients?
The quantization of filter coefficients will modify the values of poles and zeros
and so the location of poles and zeros will be shifted from the desired location.
This will create deviation in the frequency response of the system. Hence, the
resultant filter will have a frequency response different from that of the filter
with unquantized coefficients.

20. What is meant by product quantization error?
In digital computation, the output of the multiplier i.e., the products are quan-
tized to the finite word length in order to store them in registers and to be used
in subsequent calculation. The error due to the quantization of the output of
multiplier is referred to as product quantization error.

21. Why rounding is preferred for quantizing the product?
In digital system the product quantization is performed by rounding due to the
following desirable characteristics of rounding.

(i) The rounding error is independent of the type of arithmetic.
(ii) The mean value of rounding error signal is zero.
(iii) The variance of the rounding error signal is least.

22. Define noise transfer function (NTF).
The noise transfer function (NTF) is defined as the transfer function from the
noise source to the filter output. The NTF depends on the structure of the digital
network.

23. Draw the statistical model of the fixed point product quantization.
The multiplier is considered as an infinite precision multiplier. Using an adder
the error signal is added to the output of the multiplier so that the output of the
adder is equal to the quantized product.

24. Draw the product quantization noise model of second-order IIR system.
25. Draw the product quantization noise model of second-order IIR system with

two first-order section in cascade?
26. What are limit cycles?

In recursive systems when the input is zero or some nonzero constant value, the
nonlinearities due to finite precision arithmetic operations may cause periodic
oscillations in the output. These oscillations are called limit cycles.

27. What are two types of limit cycles?
The two types of limit cycles are zero input limit cycle and overflow limit cycle.
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28. What is zero Input limit cycle?
In recursive system, the product quantization may create periodic oscillations in
the output. These oscillations are called limit cycles. If the system output enters
a limit cycle, it will continue to remain in limit cycle even when the input is
made zero. Hence, these limit cycles are also called zero-input limit cycles.

29. What is dead band?
In a limit cycle the amplitudes of the output are confined to a range of values,
which is called dead band of a filter.

30. How the system output can be brought out of the limit cycle?
The system output can be brought out of limit cycle by applying an input of large
magnitude, which is sufficient to drive the system out of limit cycle.

31. Draw the transfer characteristics of two’s complement adder?
32. What is saturation arithmetic?

In saturation arithmetic when the result of arithmetic operations exceeds the
dynamic range of number system, then the result is set to maximum or minimum
possible value. If the upper limit is exceeded, then the result is set to maximum
possible value. If the lower limit is exceeded, then the result is set to minimum
possible value.

33. What is overflow limit cycle?
In fixed point addition the overflow occurs when the sum exceeds the finite word
length of the register used to store the sum. The overflow in addition may lead
to oscillations in the output which is called overflow limit cycle.

34. How overflow limit cycles can be eliminated?
The overflow limit cycles can be eliminated either by using saturation arithmetic
or by scaling the input signal to the adder.

35. What is the drawback in saturation arithmetic?
The saturation arithmetic introduces nonlinearity in the adder which leads to
signal distortion.

36. Give the rounding errors for fixed and floating print arithmetic.
For fixed point arithmetic

Rounding error, er = Nr − N

where Nr is the fixed point binary number quantized by rounding and N is the
unquantized fixed point binary number.
The range of error due to rounding is

−2−b

2
≤ er ≤ 2−b

2

For floating point arithmetic

Rounding error, Er = Nr f − N f

N f
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where Nr f is rounded floating point binary number and N f unquantized floating
point binary number.
The range of error due to rounding is

−2−b ≤ er ≤ 2−b

37. What is the steady-state noise power at the output of an LTI system due to
the quantization at the input to L bits?

Quantization step (q) = R

2−b
= R

2−L

Steady-state input noise power σ 2
e = q2

12
= (R/2−L)2

12

Steady-state noise power at the output is σ 2
e0 = σ 2

e

N∑

i=1

Re[H(z)H(z−1)z−1]|z=pi

38. What are the three quantization errors due to finite word length, registers
in digital filters?

1. Input quantization error.
2. Coefficient quantization error.
3. Product quantization error.

39. Write the two’s complement of the following (a) +7 and (b) −7

(a) + 710 = (0111)2
(b) − 710 = one’s complement ⇒ 1000

= two’s complement ⇒ 1001

−710 = (1001)2

40. What is the steady-state noise power due to quantization if the number of
bits is b?
Steady-state noise power

σ 2
e = 2−2b

12

where b is the number of bits excluding sign bit.
41. Why rounding is preferred to truncation in realizing digital filter?

Rounding is preferred to truncation due to the following desirable characteristics
of rounding.

1. The rounding error is independent of the type of arithmetic.
2. The mean value of rounding error signal is zero.
3. The variance of rounding error signal is least.
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42. Express the fraction (−7/32) in signed magnitude and two’s complement
notation using 6 bits?

(−7

32

)

10

= −(0.21875)10

signed magnitude:

(−7

32

)

10

= (1.0011)2

two’s complement:

(−7

32

)

10

= (1.11001)2

43. Identify the various factors which degrade the performance of the digital
filter implementation when finite word length is used.

1. Error due to quantization of the input data.
2. Error due to quantization of the filter coefficients.
3. Error due to rounding the product in multiplication.
4. Limit cycles due to product quantization and overflow in addition.

44. Express the fraction (7/8) and (−7/8) in sign magnitude and two’s com-
plement and one’s complement.

Fraction:

(
7

8

)

10

= (0.111)2 in sign magnitude

= (0.111)2 is one’s and two’s complement

Fraction:

(
−7

8

)

10

= (1.111)2 in sign magnitude

= (1.000)2 in one’s complement

= (1.001)2 in two’s complement

45. What are the different quantization methods?
The common methods of quantization are (1) truncation and (2) rounding.

46. Plot the truncation error for sign magnitude and two’s complement num-
bers.

47. Give the expression for signal to quantization noise ratio and calculate the
improvement with an increase of 2 bits to the existing bit.

Signal to noise ratio (SNR) = 6b − 1.24dB

With an increase of 2 bits, increase in SNR is approximately 12 dB (Figs. 5.24,
5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31 ,5.32).
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Fig. 5.24 Characteristic of quantizer used for truncation (for question 12)

p(er)

Rounding-fixed point Rounding-floating point

2b
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2
0

2
2b

p( r)

2 b 2 b 2 b0

2

er r

Fig. 5.25 Noise probability of density function for rounding (for question 14)

Fig. 5.26 Representation of
input quantization noise (for
question 17)

x(n)

e(n)

h(n) y′(n)
xq(n)
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x(n)
a

e(n)

Q[ax(n)] ax(n) e(n)
ax(n)

Fig. 5.27 Statistical model of fixed point product quantization (question 23)

x(n)
y(n)

ea1(n)

ea2(n)

eb1(n)

eb0(n)

eb2(n)

b0

b1

b2

a1

a2

z1

z1

Fig. 5.28 Product quantization noise model of second-order IIR system (question 24)

x(n)

y(n)

H1(z) H2(z)

eb11(n)ea11(n)

a11
b11

eb12(n)ea12(n)

a12
b12

z 1z1

Fig. 5.29 product quantization noise model of second-order IIR system (question 25)

Long Answer Type Questions

1. Explain coefficient quantization effects in direct form realization of IIR filter.
2. Explain about fixed point and floating point representations.
3. Derive the steady-state noise power at the output of an LTI system due to quan-

tization at the input.
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Fig. 5.30 Transfer characteristics of two’s complementary adder (question 31)
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Fig. 5.31 Two’s complement with truncation error (question 46)
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Fig. 5.32 Sign complement

4. Explain the aliasing effect in the down sampling process if the original spectrum
is not band limited to ω = π/M .

5. Prove that the up sampler is time varying system.
6. Illustrate the characteristics of a limit cycle oscillation of a typical first-order

system.
7. Enumerate with suitable examples the truncation and rounding errors.
8. The output of an A/D converter is applied to a digital filter with the system

function

H(z) = 0.53

(z − 0.5)

Find the output noise power from the digital filter when the input signal is
quantized to have eight bits.
Ans:

σ 2
e0 = 1.675 × 10−6

9. What do you mean by down sampling?
10. Obtain the spectrum (expression) of the down sampled signal.
11. Plot the spectra of any signal x(n) and its down sampled version.
12. Discuss on efficient transversal structure for decimator and interpolator.
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13. Consider the truncation of negative fraction numbers represented in (β + 1) bit
fixed point binary form including sign bit. Let (β − b) bits be truncated. Obtain
the range of truncation error for signedmagnitude, two’s complements and one’s
complement representations of the negative numbers.
Ans:

Sign magnitude: = 0 ≤ e < −2−(β−b)

One’s complement: = 0 ≤ e < −2−(β−b)

Two’s complement: = 0 ≥ e > −2−(β−b)

14. An 8 bit ADC feeds a DSP system characterized by the following transfer func-
tion

H(z) = 1

(z + 0.5)

Estimate the steady-state quantization noise power at the output of the system.
Ans:

σ 2
e0 = 6.7813 × 10−6

15. The coefficients of a system defined by

H(z) = 1

(1 − 0.4z−1)(1 − 0.55z−1)

are represented in a number system with a sign bit and 3 data bits using signed
magnitude representation and truncation. Determine the new pole locations for
direct realization and for cascade realization of first-order systems.
Ans:

Direct form realization = New pole locations arez1 = 0.695, z2 = 0.1798

Cascade form realization = New pole locations arez1 = 0.5, z2 = 0.375

16. Draw the product quantization noise model of second-order IIR system.
17. Find the output round off noise power for the system having transfer function

H(z) = 1

(1 − 0.5z−1)(1 − 0.4z−1)

Which is realized in cascade form. Assume word length is 4 bits.
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X(z)
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 W2 (z)

Fig. 5.33 Determination of H(z) (question 19)

Ans:

σ 2
e0 = 4.648 × 10−3

18. Explain signal scaling to prevent overflow limit cycle in the second-order digital
filter implementation.

19. Determine H(z) = Y (z)
X (z) for Fig. 5.33.

Ans:

H(z) = Y (z)

X (z)

= a4

/[
1 + (a1 + a1a2 + a3)z

−1 − (−a1 + 2a1a2 + a1a2a3 − a3)z
−2

+(a1a2 − a1a2a3)z
−3 − (3a1a2a3)z

−4 + (a1a2a3)z
−5

]

20. For the given T.F. H(z) = H1(z)H2(z) where

H1(z) = 1

(1 − 0.5z−1)
and H2(z) = 1

(1 − 0.4z−1)
,

find the output round off noise power. Calculate the value if b = 3 (excluding
sign bit). What is the round off noise power if the system realized is in direct
form?
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Ans:

σ 2
e0 = 6.1968 × 10−3

21. Find the effect of coefficient quantization on pole location of the given second-
order IIR systemwhen it is realized in direct form-I and in cascade form. Assume
a word length of 4 bits through truncation.

22. Explain the effects of word length in FIR digital filters.
23. Describe briefly about limit cycle oscillations in recursive systems.
24. Determine the variance of the round off noise at the output of the two cascade

realization of the filter with system function.

H(z) = H1(z)H2(z)

H1(z) = 1

(1 − 0.5z−1)

H2(z) = 1

(1 − 0.25z−1)

Ans:

σ 2
e0 = 2.8953σ 2

e , σ 2
e = 2−2b

12

25. Explain in detail about finite word length effect in the digital filter design.
26. Explain fixed point representation of binary numbers.



Chapter 6
Multi-rate Digital Signal Processing

Learning Objectives

After completing this chapter, you should be able to:

� understand the concept of multi-rate digital signal processing and its application.
� understand decimation by integer factors (downsampling).
� understand interpolation by integer factors (sampling rate increase-upsampling).
� represent the spectrum of down and upsampled signals.
� implement polyphase structure of decimator and interpolator.
� understand the various applications of MDSP.

6.1 Introduction

Modern digital systems require to process data at more than one sampling rate.
Systems that use single sampling rate fromA/D converter to D/A converter are called
single rate systems. The discrete systems that process data at more than one sampling
rate are known as multi-rate systems and the processing of signals by these systems
is called multi-rate digital signal processing (MDSP). In many practical applications
such as digital audio and video, different sampling rates are used. This is achieved
using an upsampler and downsampler. In MDSP, this is achieved by interpolation
and decimation. The process of decimation and interpolation are the fundamental
operations in DSP. The sampling frequency is increased or decreased without any
undesirable effects of errors due to quantization and aliasing.

In multi-rate signal processing, the sampling rate conversion is generally done by
two methods. In the first method, sampling rate conversion is achieved by D/A and
A/D converters as shown in Fig. 6.1a.
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MFy

(b) Block diagram of a decimator.

(a) Sampling rate conversion using D/A and A/D converters.

Fig. 6.1 a Sampling rate conversion usingD/A andA/D converters. bBlock diagram of a decimator

In this method, the digital signal is passed through a D/A converter, filtered if
necessary and then re-sampled at the desired sampling rate using A/D converter. In
the second method, the sampling rate is achieved through interpolator and decima-
tor depending upon the sampling rate requirement. The fundamental operations of
interpolation and decimation of an MDSP are discussed in this chapter.

6.2 Advantages and Applications of Multi-rate Signal
Processing

Advantages and applications ofmulti-rate signal processing aremany. They are listed
below:

1. In speech processing, the use of MDSP reduces the transmission rate of speech
data. The original speech is reconstructed from the low bit rate representation.

2. In data acquisition and storage systems, signals of different bandwidths which
require different sampling frequencies are efficiently handled without anti-
aliasing analog filters.

3. MDSP efficiently implements DSP functions such as implementation of narrow
band digital FIR filters with less computational requirements.

4. It is used in the compact disk player and simplifies the use of D/A conversion
process without loss of quality of sound.

5. It is used in the acquisition of high quality data, high resolution spectral analysis
and design and implementation of narrow band digital filters.

6. MDSP is widely used in antenna systems, communication systems and radar
systems.
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Fig. 6.3 Block diagram
representation of an
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The block diagram of an upsampler is shown in Fig. 6.3.

6.3 Downsampling (Decimator)

Downsampling of a signal is the process of decimating a signal x(n) by an inte-
ger factor M and this is represented in Fig. 6.1b. The sampling rate compressor is
represented by a down arrow along with the decimation factor M . The output

y(n) = x(Mn)

Here, the sampling rate reduction is achieved by discarding (M − 1) samples for
every M samples. Figure 6.2 shows the downsampling for M = 3 (Fig. 6.3).

6.4 Upsampling (Interpolator)

Upsampling is the process of increasing the sampling frequency of the signal.Upsam-
pling is also called sampled rate expander or interpolator. The interpolator is repre-
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Fig. 6.4 Illustration of upsampled DT signal for L = 4

sented by an upward arrow along with the interpolation factor L . While the input
sampling frequency Fs is changed as Fs/M in downsampling, it is changed as Fs L
by upsampling. The upsampling of x(n) is illustrated in Fig. 6.4 for L = 4.

For upsampling, for each sample of x(n), the interpolator includes (L − 1) zero
valued samples to form the new signal at a rate of L Fs .

It is noted that for downsampling an anti-aliasing filter is to be connected before it
is applied to a decimator. By this, the input x(n) is bandlimited to less than Fs/2M .
Similarly when upsampling is done, the signal x(n) after passing through the inter-
polator (sample rate expander) it should be passed through anti-imaging filter. This
is necessary to remove image frequencies created by the rate increase of L output
samples.

6.5 Sampling Rate Conversion by Non-integer Factors
Represented by Rational Number

Some applications of multi-rate digital signal processing require sampling rate by
non-integer factor. When two different digital audio systems have different sampling
rates, the transfer of data from one storage system to another require non-integer
factor. For example, when the data from a compact disk at a rate of 44.1kHz is
transferred to a digital audio tape at 48kHz, it requires data rate upsamplingby a factor
48/44.1, which is a non-integer. However, this non-integer factor can be achieved



6.5 Sampling Rate Conversion by Non-integer Factors Represented by Rational Number 627

by the rational numbers L and M which are integers. Here, the sampling frequency
change is achievedby an interpolator as shown inFig. 6.5awith interpolation factor L .
The output of the interpolator is passed through a LPF and the upsampling frequency
is obtained as L Fs . This signal is passed through a downsampler with a decimation
factor M . It is necessary to pass the upsampled signal to pass through the LPF
before it is applied to the downsampler to avoid removal of some of the desired
frequency components. Since the two LPF filters h0(k) and hD(k) which form part
of the interpolator and downsampler, respectively, are connected in cascade and are
operated at same frequency rate they can be replaced by a single LPF h(k) as shown
in Fig. 6.5b. Further, it should be noted that the interpolation process should precede
decimation process to preserve the spectral characteristics of x(n).

The sampling rate conversion by non-integer factors as applied to CD and digital
audio tape can be explained as follows. Let us choose L = 160. The CD data rate
is increased to L Fs = 160 × 44.1 = 7056Hz. By choosing the decimation factor
M = 147, the data rate of DAT becomes 7056 ÷ 147 = 48 kHz. Here, L and M are
integers. Further, the ratios L

M = 160
147 is rational. It is to be noted that, in general if

M < L , the operation is a decimation process and M > 1, it is integer interpolation
process. The mathematical proof of the above concept is derived as shown below:

Let H(ωv) be the frequency response function of the lowpass filter h(k) which
can be characterized as given below:

H(ωv) =
{
1, 0 ≤ |ωv| ≤ min

(
π
M , π

L

)
0, otherwise

(6.1)

The output of the upsampler is given by the following sequence:

V (l) =
{

x( l
L ), l = 0,±L ± 2L : ± · · ·

0, otherwise
(6.2)

The output of the LPF can be written by its convolution as

ω(L) =
∞∑

k=−∞
h(l − k)v(k)

=
∞∑

k=−∞
h(l − kL)x(k) (6.3)

In the above equation h(k) is the impulse response of the LPF. The output y(m) is
obtained by downsampling ω(l) and the following equation is written.

y(m) = ω(m M)

=
∞∑

k=−∞
h(m M − kL)x(k) (6.4)
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Let

k =
⌊

m M

L

⌋
−n (6.5)

Substituting Eq. (6.5) in (6.4) we get,

y(m) =
∞∑

n=−∞
x

(⌊
m M

L
− n

⌋)
h

(
m M −

[
m M

L

]
L + nL

)
(6.6)

Substituting the following

m M −
⌊

m M

L

⌋
L = m M modulo L

= (m M)I

in Eq. (6.6) we get,

y(m) =
∞∑

n=−∞
x

(⌊
m M

L
− n

⌋)
h(nL + (m M)I ) (6.7)

Equation (6.7) shows that the output y(m) is obtained by passing through the time
invariant filter with the following impulse response.

g(n, m) = h(nL + (m M)I ) − ∞ < m, n < ∞ (6.8)

In Eq. (6.8) h(k) is the impulse response of the time invariant LPF whose sampling
rate is L Fs . Equation (6.8), for any integer k, can be written as follows:

g(n, m + kL) = h(nL + (m M + k M L)I )

= h(nL + (m M)I )

= g(n, m) (6.9)

This shows that g(n, m) is periodic with period L . The frequency response of the
LPF can be written as

V (ωv) = H(ωv)X (ωv L)

V (ωv) =
{

L X (ωv L), 0 ≤ ωv ≤ min
(

π
M , π

L

)
0, otherwise
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The spectrum of the output sequence is expressed as

Y (ωy) = 1

L

M−1∑
k=0

V

(
ωy − 2πk

L

)
(6.10)

Since the linear filter prevents aliasing, Eq. (6.10) is written as,

Y (ωy) =
{

L
M X

(ωy

M

)
, 0 ≤ |ωy| ≤ min

(
π, π M

L

)
0, otherwise

(6.11)

From Eq. (6.11) it is evident that the sampling rate conversion can be achieved by
a factor L

M by first increasing the sampling rate by L accomplished by inserting
(L − 1) zeros between successive values of the input sequence x(n), followed by
linear filtering of the resulting sequence to eliminate unwanted images of X (ω)

and finally by downsampling the filtered signal by a factor M .

Example 6.1

A three stage decimator is used to reduce the sampling rate from 3072 kHz. The
decimation factors are 16, 8 and 4. Draw the block diagram and indicate the sampling
rate at the output of each stages.

Solution To retain all the desired frequency components of the signal to be down-
sampled, it is necessary that the signal is passed through lowpass filter which is
shown in Fig. 6.6, for three stages.

At the end of stage 1, the sampling rate is

Fs1 = 3072

16
= 192 kHz

At the end of the second stage the frequency sampling rate is

Fs2 = 192

8
= 24 kHz

At the end of the third stage the frequency sampling rate is

Fs3 = 24

4
= 6 kHz
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6.6 Characteristics of Filter and Downsampler

As already stated while a signal is downsampled, it is necessary to have anti-aliasing
filter. By this the signal is band limited before it is applied to the downsampler. The
input sequence x(n) is passed through a lowpass filter whose impulse response is
h(n) and the frequency response HD(ω) which satisfies the following condition:

HD(ω) =
{
1, |ω| ≤ π

M

0, otherwise
(6.12)

Equation (6.12) implies that the spectrum X (ω) is eliminated by the filter in the range
π
M < ω < π and allows the components in the range |ω| ≤ π

M for further processing.
Now consider Fig. 6.7.

The output of LPF sequence v(n) is obtained using convolution as

v(n) =
∞∑

k=0

h(k)x(n − k) (6.13)

The sequence v(n) is applied to the decimator and the output of the decimator is
given by

y(m) = v(m M)

=
∞∑

k=0

h(k)x(m M − k) (6.14)

It is well-known that the lowpass filter is linear and time invariant. However, the
decimator even though has linear characteristics, is time varying. This is also true in
the case of an interpolator. The mathematical proof of the above statement is given
in the section to follow.

v(n)x(n)
h(n)

Fx Fs

y(m)

M

Fs FsDecimator Filter
MFy

Fig. 6.7 Representation of a decimator with filter
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6.7 Linearity and Time Invariancy of Decimator
and Interpolator

6.7.1 Linearity of Decimator

A discrete time system is linear if the weighted sum of the output is equal to the
output due to the weighted sum of the input. The input-output of a decimator is
written as

y(m) = x(nM)

y1(m) = x1(nM) (6.15)

y2(m) = x2(nM)

The weighted sum of the output is,

y3(m) = a1y1(m) + a2y2(m)

= a1x1(nm) + a2x2(nm)

The output due to the weighted sum of the input is

y4(m) = a1x1(nM) + a2x2(nM)

∴ y3(m) = y4(m)

The weighted sum of the output is equal to the output due to the weighted sum of
the input. Hence, the system with a downsampler is linear.

6.7.2 Linearity of an Interpolator

The input-output of an interpolator is written as

y(m) = x
( n

L

)
y1(m) = x1

( n

L

)
(6.16)

y2(m) = x2
( n

L

)

The weighted sum of the output is

y3(m) = a1y1(m) + a2y2(m)

= a1x1
( n

L

)
+ a2x2

( n

L

)
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The output due to the weighted sum of the input is

y4(m) = a1x1
( n

L

)
+ a2x2

( n

L

)

The weighted sum of the output is equal to the output due to the weighted sum of
the input. Hence, the system with interpolator is linear.

6.7.3 Time Invariancy of a Decimator

A discrete time system is said to be time invariant if the delayed output y(n, n0)

where n0 is the delay, is equal to the output y(n − n0) which is due to the delayed
input.

Consider the decimator with the following equation:

y(n) = x(nM)

The delayed output is,

y(n − n0) = x((n − n0)M)

= x(nM − n0M)

The output due to the delayed input is

y(n, n0) = x(nM − n0)

y(n, n0) �= y(n − n0)

Hence, the decimator is a time varying system.However, it can bemade time invariant
if the delay n0 is made multiple of the decimation factor M .

6.7.4 Time Invariancy of an Interpolator

Let us consider the interpolator with the following equation:

y(n) = x
( n

L

)

The delayed output is

y(n, n0) = x

(
n − n0

L

)
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The output due to the delayed input is

y(n − n0) = x
( n

L
− n0

)
y(n, n0) �= y(n − n0)

Hence, the interpolator is a time varying system.

6.8 Spectrum of Downsampled Signal

Consider Fig. 6.7 where the downsampler together with the LPF is connected. The
frequency response of the output sequence y(m)with that of the input sequence x(n)

is obtained as given below. The sequence v(n) is defined as follows:

v̄(n) =
{

v(n), n = 0,±M,±2M, . . .

0, otherwise
(6.17)

v̄(n) is interpreted as a sequence obtained by multiplying v(n) by train of impulses
p(n) with period M . p(n) can be expressed in discrete Fourier series as

p(n) = 1

M

M−1∑
k=0

e j2πkn/M (6.18)

Also,

v̄(n) = v(n)p(n) (6.19)

y(m) = v̄(m M)

= v(m M)p(m M)

= v(m M) (6.20)

The z-transform of the output sequence is,

Y (z) =
∞∑

m=−∞
y(m)z−m

=
∞∑

m=−∞
v̄(m M)z−m (6.21)
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Since v̄(m) = 0 except at multiples of M , the above equation is written as:

Y (z) =
∞∑

m=−∞
v̄(m)z

−m
M

Using Eqs. (6.18), (6.19) and (6.21) we get,

Y (z) =
∞∑

m=−∞
v(m)

[
1

M

M−1∑
k=0

e j2πmk/M

]
z

−m
M

= 1

M

M−1∑
k=0

∞∑
m=−∞

v(m)(e− j2πk/M z− 1
M )−m

= 1

M

M−1∑
k=0

V (e− j2πk/M z
1
M )

Making use of the property that V (z) = HD(z)X (z) the above equation is written as

Y (z) = 1

M

M−1∑
k=0

HD(e− j2πk/M z
1
M )X (e− j2πk/M z

1
M ) (6.22)

The spectrum of the output y(m) is obtained by evaluating Y (z) in the unit circle.
Denoting the frequency variable of y(m) by ωy , Eq. (6.22) becomes

Y (ωy) = 1

M

M−1∑
k=0

HD
(ωy − 2πk)

M
X

(ωy − 2πk)

M
(6.23)

where ωy is expressed in rad/s.
Also

ωy = 2π Fy

ωy = Mωx

If aliasing is eliminated by proper design of LPF, Eq. (6.23) is written as:

Y (ωy) = 1

M
HD

(ωy

M

)
X

(ωy

M

)
(6.24)
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For 0 ≤ |ωy| ≤ π , the above equation is written as:

Y (ωy) = 1

M
X

(ωy

M

)
(6.25)

The spectra of x(n), h(n), v(n)and y(m) are shown in Fig. 6.8.

6.9 Effect of Aliasing in Downsampling

The signal x(n) is passed through a lowpass filter before it is passed through a
decimator. The function of this anti-aliasing filter is to prevent aliasing of the sampled
signal. Aliasing refers to distortion of the signal spectrum due to low sampling rate.
Now consider the downsampler without the LPF in Fig. 6.7. From Eq. (6.22), the
z-transform of the output is obtained as

Y (z) = 1

M

M−1∑
k=0

X (e− j2πk/M z
1
M ) (6.26)

The frequency spectrum of the above equation is obtained by substituting z = e jω

Y (e jω) = 1

M

M−1∑
k=0

X (e
− j2πk

M e
jω
M ) (6.27)

= 1

M

M−1∑
k=0

X (e
j (ω−2πk)

M ) (6.28)

The plots of |X (e jω)| and |Y (e jω)| with respect to ωx and the plot of |Y (e jω)| with
respect to ωy are shown in Fig. 6.9. The spectrum of X (e jω) is a periodic one with
period 2π . The plot of |Y (e jω)|with respect toωx is nothing but the stretched version
of |X (e jω)| and scaled by a factor 1

M . In the interval 0 to 2π , there will be (M − 1)
equally spaced replica of X (e jω) with period 2π

M . This is shown in Fig. 6.9b. Using
the relation Fy = M Fx , the plot of |Y (e jω)| drawn for ωy is shown in Fig. 6.9c.

Now consider the signal x(n)whose frequency is greater than± π
m . The frequency

spectra of |X (e jω)| and |Y (e jω)| are plotted as shown in Fig. 6.10a, b, respectively. In
Fig. 6.10b the aliasing effect is shown. Because of aliasing signal distortion in y(m)

will take place and hence a lowpass filter is to be connected before the signal x(n) is
passed through the downsampler. This will limit the input signal to the downsampler
to ± π

M which avoids aliasing and hence signal distortion.
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Fig. 6.8 Frequency spectra
of decimated signal X(  x)
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6.10 Spectrum of Upsampling Signal

The increase in sampling rate is achieved by an interpolator or an upsampler. The
output of the interpolator is passed through the LPF to avoid removal of some of
the desired frequency components of the sampled signal. Let v(m) be the sequence
obtained from the interpolator. v(m) is obtained by adding (L − 1) zeros between
successive values of x(n). If Fs is the sampling rate of x(n), then the sampling rate
of v(m) is L Fs which is same as the sampling rate of y(m). The interpolator system
is shown in Fig. 6.11a. v(m) is characterized by the following equation:

v(m) =
{

x(m
L ), m = 0,±L ,±2L , . . .

0, otherwise
(6.29)

The z-transform of the above equation is written as:

V (z) =
∞∑

m=−∞
v(m)z−m

=
∞∑

m=−∞
x(m)z−mL

= X (zL) (6.30)

The frequency spectrum of v(m) is obtained by evaluating V (z) on the unit circle
(z = e jω) in the z-plane. Thus,

V (e jω) = X (e jωyL)

or V (ωy) = X (ωy L) (6.31)

where ωy = 2π Fy and Lωy = ωx .
The spectra of |X (ωx )|, |V (ωy)|, |H(ωy)| and |Y (ωy)| are shown in Fig. 6.11b.

FromFig. 6.11b it is observed that (L − 1) zero samples are addedbetween successive
values of x(n).

6.10.1 Anti-imaging Filter

In the interpolation process when the sampling rate is increased by a factor L , the
sampling frequency is also increased by the same factor. For each sample of the
input signal x(n), the interpolator inserts (L − 1) zero valued samples to form the
new signal v(m) at the rate L Fs where Fs is the sampling frequency of x(n). However
v(m) contains images created by the rate increase and hence it becomes necessary to
remove these image frequencies by passing through the LPF and the output y(m) is
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Fig. 6.11 a Interpolator with a filter. b Frequency spectra of x(n), v(n), h(n) and y(m)
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obtainedwhich has a sampling rate L Fs . The insertion of (L − 1) zero valued samples
spreads the energy of each signal sample over L output samples. This interpolation
process is called anti-image filtering which is shown in Fig. 6.11a.

Example 6.2
Plot the spectra of any signal x(n) and its downsampled version for a sampling rate
M = 2.

Solution From Eq. (6.28) the frequency response of a downsampler is given by

Y (e jω) =
M−1∑
k=0

X (e j (ω−2πk)/M)

For M = 2, the above equation is written as:

Y (e jω) = 1

2

1∑
k=0

X (e j (ω−2πk)/2)

= 1

2
[X (e jω/2) + X (e j (ω−2π)/2)]

= 1

2
[X (e jω/2) + X (e jω/2e− jπ )]

= 1

2
[X (e jω/2) + X (−e jω/2)]

The plots of X (e jω), X (e jω/2), X (−e jω/2) and Y (e jω) are shown in Fig. 6.12.
The spectrum |X (e jω)| of an arbitrary sequence x(n) is shown in Fig. 6.12a. The

plot of |X (e jω/2)| is shown in Fig. 6.12b whose frequency is expanded by a factor
2 and its maximum amplitude remains the same as 1. The plot of |X (−e jω/2)| is
nothing but the spectrum of |X (e jω/2)| shifted by 2π and is shown in Fig. 6.12c.
|Y (e jω)| is obtained by adding Fig. 6.12b, c with the amplitude being divided by the
factor 2 and is shown in Fig. 6.12d. It is evident from Fig. 6.12d, that if the signal is
band limited to π

2 there is no overlapping in Y (e jω) and there won’t be any aliasing. If
the signal frequency is greater than π

2 , aliasing occurs. To avoid aliasing, in general,
the signal before downsampled, should be band limited to π

M .

Example 6.3
Draw the spectra of any signal x(n) and its upsampled version for a sampling rate of
L = 3.



6.10 Spectrum of Upsampling Signal 643

5 2 3 2
22

3
2 2 2

5
2

(a)
X(e j )

1.0

0

5 4 2 33 2 4 5

(b)
X(e j 2)

1

0

7 6 5 4 2 33 2 4 5 6 7

(c)

(d)

X( e j 2)

1

0

7 6 5 4 2 33 2 4 5 6 7

Y(e j )

0.5

0

Fig. 6.12 Spectrum of x(n)

Solution Recall Eq. (6.31) which gives the frequency response for any input x(n)

of an upsampler.
Y (e jω) = X (e jωL)

For L = 3, the above equation is written as:

Y (e jω) = X (e j3ω)
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Fig. 6.13 Magnitude spectrum of X (e jω) and Y (e jω)

X (e j3ω) implies that X (e jω) is repeated 3 times. The plot of X (e jω) is plotted as
shown in Fig. 6.13a for any arbitrary signal x(n) which has a periodicity 2π . In
the frequency interval 0 < ωy < 2π , there should be L − 1 = 3 − 1 = 2 images of
X (e jω) which has the same spectrum as x(n) with appropriate scaling factor. This is
represented in Fig. 6.13.

6.11 Efficient Transversal Structure for Decimator

The decimator consists of an anti-aliasing filter and a downsampler. The anti-aliasing
filter can be realized using a direct form structure as shown in Fig. 6.14. In this
configuration, the filter is operating at a high sampling rate Fs while only one output
out of every M output samples is required and such a decimator is inefficient. Now
consider the decimator shown in Fig. 6.15.

In this structure all the multiplications and additions are performed at lower sam-
pling rate Fs

M and works more efficiently.

6.12 Efficient Transversal Structure for Interpolator

The interpolator inserts (L − 1) zeros between samples of the sequence x(n) and
filtered. FIR filter is normally used for filtering. The upsampler connected to the
transposed direct form FIR filter is shown in Fig. 6.16. If the sampling rate of x(n)

is Fs , the input sampling rate at the input of FIR filter is L Fs and hence filter compu-
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Fig. 6.16 Transposed direct
form realization for
interpolator
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Fig. 6.17 Efficient
realization for interpolator
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L
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L

tations are to be performed at this high sampling rate and the interpolator becomes
an inefficient one. The interpolator is made more efficient by putting the upsampler
within the filter as shown in Fig. 6.17. This enables that all the filter multiplications
and additions are performed at the low sampling rate Fs and the interpolator becomes
more efficient.
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6.13 Identities

The sampling rate decimation and interpolation are represented in block diagram.The
block diagrams can be modified and represented in convenient form using identities.
These identities (equivalence) are given below without proof in Fig. 6.18.

6.14 Polyphase Filter Structure of a Decimator

Efficient implementation of sampling rate conversion was discussed in Sections 6.11
and 6.12 for upsampling and downsampling, respectively, in a single stage. The
computational requirements can be further decreased using multi-stage design.

Additional reduction in the computational complexity is possible by realizing the
FIR filters using the polyphase decomposition which is described below:

6.14.1 The Polyphase Decomposition

Consider an FIR with an impulse response having N -coefficients. The system func-
tion is written as:

H(z) =
N−1∑
n=0

h(n)z−n (6.32)

For N = 7, the above equation is written as:

H(z) =
6∑

n=0

h(n)z−n

= h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4

+h(5)z−5 + h(6)z−6

= (h(0) + h(2)z−2 + h(4)z−4 + h(6)z−6) +
z−1(h(1) + h(3)z−2 + h(5)z−4)

= P0(z
2) + z−1P1(z

2) (6.33)

where

P0(z
2) = h(0) + +h(2)z−1 + h(4)z−2 + h(6)z−4

P1(z
2) = h(1) + h(3)z−1 + h(5)z−2
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Fig. 6.18 Identities of downsampling and upsampling
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The decomposition of H(z) as given in Eq. (6.33) is known as polyphase decom-
position of the system function with two branches. In general for M branches H(z)
can be decomposed as

H(z) =
N−1∑
m=0

z−m Pm(zM) (6.34)

where

Pm(zm) =
(N+1)/M∑

n=0

h(Mn + m)z−n 0 ≤ m ≤ M − 1

The z-transform of infinite duration sequence is given by

H(z) =
∞∑

n=−∞
h(n)z−n (6.35)

If H(z) is decomposed into M-branches we get,

H(z) =
M−1∑
m=0

z−m Pm(zm) (6.36)

where

Pm(z) =
∞∑

l=−∞
h(l M + m)z−l

H(z) =
M−1∑
m=0

∞∑
l=−∞

h(l M + m)z−Ml

=
M−1∑
m=0

∞∑
l=−∞

h(l M + m)z−(l M+m)

Let h(l M + m) = Pm(l)
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Y (z)

X (z)
= H(z) =

M−1∑
m=0

∞∑
l=−∞

Pm(l)z−(l M+m)

Y (z) =
M−1∑
m=0

∞∑
l=−∞

Pm(l)z−(l M+m) X (z)

=
M−1∑
m=0

∞∑
l=−∞

Pm(l)Z [x(n − (l M + m))]

Taking inverse z-transform on both sides we get,

y(n) =
m−1∑
m=0

∞∑
l=−∞

Pm(l)x(n − (l M + m)) (6.37)

Let xm(l) = x(l M − m)

y(n) =
M−1∑
m=0

∞∑
l=−∞

Pm(l)x(n − l)

=
M−1∑
m=0

Pm(n) ∗ xm(n) (6.38)

=
M−1∑
m=0

ym(n) (6.39)

where ym(n) = Pm(n) ∗ xm(n)which is known as polyphase convolution. For exam-
ple for M = 2, Eq. (6.38) becomes

y(n) =
1∑

m=0

Pm(l) ∗ xm(n)

y(n) = P0(n) ∗ x0(n) + P1(n) ∗ x1(n)

In Eq. (6.38), xm(n) is obtained first by delaying x(n) by m units and de-sampling
by a factor M . ym(n) is obtained by convolving xm(n) with Pm(n). The structure of
a polyphase decimator with two branches is shown in Fig. 6.19a and the polyphase
structure of a M branch decimator is shown in Fig. 6.19b.
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Fig. 6.19 a Polyphase structure of a two branch decimator. b Polyphase structure of M branch
decimator
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Fig. 6.20 Polyphase
structure of M branch
decimator using z-transform

z 1

Y(z)
P0(zM)

X(z)

z 1

z 1

PM 1(zM)

P1(zM)

P2(zM)

M

6.14.2 Polyphase Structure of a Decimator Using
z-Transform

Consider Eq. (6.36) which gives the FIR filter function.

H(z) =
N−1∑
m=0

z−m Pm(zM)

We have M sub-filters P0(z), P1(z), . . . , PM−1(z) of FIR filters and can be repre-
sented as shown in Fig. 6.20.

Using first identity Fig. 6.20 can be represented as shown in Fig. 6.21 and using
third identity Fig. 6.20 can be represented as shown in Fig. 6.22.

6.14.3 Polyphase Structure of an Interpolator

The polyphase structure of an interpolator can be obtained by transposing the struc-
ture of a decimator which is shown in Fig. 6.20. Here, the polyphase components of
impulse responses are given by the following equation (refer to Eq. (6.37)).

Pm(l) = h(l L + m), m = 0, 1, 2, . . . (L − 1)
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Fig. 6.21 z-transform
representation of polyphase
decimation
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Fig. 6.23 Polyphase
structure of a three branch
interpolator

z 1

z 1

y(n)x(n) y0(n)

y1(n)

y2(n)

P0(n)

P1(n)

P2(n)

L

L

L

the output of L sub-filters are represented as

ym(n) = x(n) × Pm(n)

The overall output of the interpolator is (refer Eq. (6.39))

y(n) =
(L−1)∑
m=0

ym(n)

For L = 3

y(n) =
2∑

m=0

ym(n)

= y0(n) + y1(n) + y2(n)

= x(n) × P0(n) + x(n) × P1(n) + x(n) × P2(n)

The polyphase structure of an interpolator with three branch is shown in Fig. 6.23.
In general, when the sampling rate increases to L , the polyphase structure with L
branch is shown in Fig. 6.24.
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Fig. 6.24 Polyphase
structure of a L branch
interpolator
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6.14.4 Polyphase Structure of an Interpolator Using
z-Transform

From Eq. (6.34), the transfer function of an interpolator is written by replacing M
by L

H(z) =
L−1∑
m=0

z−m Pm(zL) (6.40)

= P0(z) + z−1P1(z
L) + z−2P2(z

L) + · · ·
+z−(L−1) PL−1(z

L)

The interpolator with the system function H(z) is shown in Fig. 6.25. Using fourth
and sixth identities an efficient polyphase, structure of the interpolator is realized as
shown in Fig. 6.26.
The structure for Example 6.4 is shown in Fig. 6.27.

Example 6.4
For the structure shown in Fig. 6.27, find the relationship between x(n) and y(n).

(Anna University, April, 2005)
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Fig. 6.25 Polyphase
structure of interpolator
(z-transform representation)
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Solution The relations between various signal variables and the input are tabulated
below:

n 0 1 2 3 4 5 6
x(n) x(0) x(1) x(2) x(3) x(4) x(5) x(6)
v(n) x(0) x(2) x(4) x(6) x(8) x(10) x(12)
w(n) x(−1) x(1) x(3) x(5) x(7) x(9) x(11)
vu(n) x(0) 0 x(2) 0 x(4) 0 x(6)
wu(n) x(−1) 0 x(1) 0 x(3) 0 x(5)
vu(n − 1) 0 x(0) 0 x(2) 0 x(4) 0
y(n) x(−1) x(0) x(1) x(2) x(3) x(4) x(5)

y(n) = wn(n) + vn(n − 1)

= x(−1) + x(0) + x(1) + x(2) + x(3) + · · ·

y(n) = x(n − 1)

6.15 Polyphase Decomposition of IIR Transfer Function

The polyphase decomposition of IIR transfer function H(z) is not that straight for-
ward as that of FIR transfer function explained above. One approach is to decompose

H(z) = P(z)

D(z)

into P ′(z)/D′(zM) by multiplying the denominator D(z) and the numerator P(z)
by an appropriate polynomial. The M-branch polyphase decomposition is done for
P ′(z). This is illustrated by the following example.

Example 6.5
Consider the following IIR transfer function:

H(z) = (1 − 3z−1)

(1 + 4z−1)

Obtain a two band decomposition with M = 2.
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Solution

H(z) = (1 − 3z−1)

(1 + 4z−1)

Multiplying the numerator and the denominator by (1 − 4z−1) we get

H(z) = (1 − 3z−1)(1 − 4z−1)

(1 + 4z−1)(1 − 4z−1)

= (1 − 7z−1 + 12z−2)

(1 − 16z−2)

= (1 + 12z−2)

(1 − 16z−2)
+ z−1 (−7)

(1 − 16z−2)

= E0(z
2) + E1(z

2)

where

E0(z) = (1 + 12z−1)

(1 − 16z−1)

E1(z) = −7

(1 − 16z−1)

6.16 Cascading of Upsampler and Downsampler

The sampling rate alteration devices change the sampling rate of signal by an integer.
If fractional change in the sampling rate is required, it is possible to achieve this by
cascading an upsampler with downsampler without any change in the input-output
relation. Consider the cascade structure shown in Fig. 6.28a. The following equations
are written.

Fig. 6.28 Cascading of up
and downsamplers

x(n)

(a)

y1(n)
v1(n)L M

x(n)

(b)

y2(n)
v2(n) LM
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V1(z) = X (z2) (6.41)

Y1(z) = 1

M

M−1∑
k=0

V1(z
1/M W −k

M ) (6.42)

where WM = e− j2π/M .
Combining the above two equations we get

Y1(z) = 1

M

M−1∑
k=0

X (zL/M W −kL
M ) (6.43)

Now consider Fig. 6.28b. The following equations are written:

V2(z) = 1

M

M−1∑
k=0

X (zL/M W −k
M ) (6.44)

Y2(z) = V2(z
L) (6.45)

Combining Eqs. (6.44) and (6.45) we get

Y2(z) = 1

M

M−1∑
k=0

X (zL/M W −k
M ) (6.46)

For Y1(z) = Y2(z), the following conditions is to be satisfied.

M−1∑
k=0

X (zL/M W −kL
M ) =

M−1∑
k=0

X (zL/M W −k
M ) (6.47)

Equation (6.47) is valid iff M and L do not have a common factor which is an integer
greater than one.

6.17 Multi-stage Rating of Sampling Rate Conversion

Single stage sampling rate conversion is inefficient if the decimation factor M or
interpolation factor L are verymuch greater than unity. If M � 1 or L � 1, sampling
rate conversion is done in multi-stage. The multi-stage conversion where M � 1 is
represented in Fig. 6.29. The decimation factor M is expressed as a product of positive
integers as given below:

M =
N∏

k=1

Mk (6.48)
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x(n) y(n)
h1(n) h2(n) hN(n)M1 M2 MN

Fs
M1M2 M

Fs
M1

Fs

Fs

Fy

Fig. 6.29 Multi-stage implementation of sampling rate conversion for M � 1

x(n) y(n)
h2(n) hN(n)h1(n)L1 L2 LN

Fy LFsL1Fs L1L2Fs

Fs

Fig. 6.30 Multi-stage implementation of sampling rate conversion for L � 1

Each decimator is implemented and cascaded to get N stages as shown in Figure 6.29.
The final sampling rate achieved is

Fy = Fs

M

where M = M1M2 . . . MN .
Similar to multi-stage downsampling multi-stage upsampling is done in N stages.

Here, the final sampling rate achieved is

Fy = L Fs .

For L � 1, this is represented in Fig. 6.30. The interpolation factor is expressed as

L =
N∏

k=1

Lk

6.18 Implementation of Narrow Band Lowpass Filter

A narrow band filter is identified with a narrow pass band and a narrow transition
band. It requires a very large number of filter coefficients and therefore finite word
length effect occurs in such a digital filter design. Further it requires more number
of computations and memory locations. To overcome these problems, multi-rate
signal processing is applied using decimator and interpolator, which are connected
in cascade as shown in Figure 6.31. The sampling rate of the sequence x(n) is reduced
by a factor M and lowpass filtering is preformed. The sampling rate of the output
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h1(n) h2(n)
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Fs

M
Fs
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Fig. 6.31 Implementation of narrow band LPF

h1(k) h2(k) h3(k)
x(n)

y(m)

Stage 1 Stage 2 Stage 3

8 6 2

96 kHz 12 kHz 2 kHz 1 kHz

Fig. 6.32 Three stage decimator for Example 6.6

sequence y(n) is increased by a factor M . Thus, the sampling rates of x(n) and y(n)

are the same which is Fs . The filters in decimator h1(n) and interpolator h2(n) are
chosen to be identical with pass band ripple δp/2 and stop band ripple δs/2 to get the
desired specification of a narrow band LPF.

Example 6.6
The block diagram of a three stage decimator (Fig. 6.32) which is used to reduce the
sampling range from 96kHz to 1kHz is given. Assuming decimation factors of 8, 6,
2, indicate the sampling rate at the output of each of the three stages.

Solution

• At the first stage sampling rate is reduced by a factor of 8 from 96kHz to 12kHz.
• At the second stage sampling rate is further reduced by a factor of 6 from 12kHz
to 2kHz.

• At the third stage the sampling rate is reduced by a factor of 2 from 2kHz to 1kHz.

Example 6.7
Assume that the decimator in Example 6.6 satisfies the following overall specifica-
tions.
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Input sampling frequency F = 96 kHz

Decimator factor M = 96

Pass band ripple = 0.01 dB

Stop band ripple = 60 dB

Frequency band of interest = 0 − 450 kHz

Determine band edge frequency for the decimating filter at each stage.

Solution The pass band edge frequency of each of three decimating filters is the
same (namely 455Hz) to preserve the frequency band of interest.

The stop band edge frequencies are different to exploit the differences in the
sampling rate. The bandstop frequencies are given by the relation as,

fsi = Fi − Fs

2M
, 1, 2, 3

Stage One:

fs1 = 12 − 96

2 × 96
= 11.5 kHz

Thus, band edge frequencies are 0, 450, 11.5, 48kHz.

Stage Two:

fs2 = 2 − 96

2 × 96
= 1.5 kHz

Thus, band edge frequencies are 0, 450kHz, 1.5kHz, 6kHz.

Stage Three:

fs3 = 1 − 96

2 × 96
= 0.5 kHz

Thus, band edge frequencies are 0, 450kHz, 0.5kHz, 1kHz.

Example 6.8
Assume that the input and output sampling rate of a decimator are 96kHz and 1kHz,
respectively:
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(i) Write down the overall decimator factor.
(ii) Write down all the possible sets of integer decimation factor (written in descend-

ing order only) assuming two stages of decimation.
(iii) Repeat (ii) but assuming three stages of decimation.
(iv) Repeat (iii) but assuming four stages of decimation.

Solution

(i) Overall decimator factor is 96/1 or 8 × 6 × 2 = 96.
(ii)

48 × 2

24 × 4

12 × 8

(iii)

24 × 2 × 2

6 × 4 × 4
(iv)

3 × 2 × 4 × 4

Example 6.9
For the decimator in Example 6.6, calculate the total number of multiplications per
seconds (MPs) and to storage requirement.

Solution

MPs =
I∑

i=1

Ni Fi

TSR =
I∑

i=1

Ni

where Ni is number of filter coefficients for “i” stages.

MPs = N1 × 12 × 103 + N2 × 2 × 103 + N3 × 1 × 103

TSR = N1 + N2 + N3
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6.19 Adaptive Filters

In Chaps. 3 and 4 IIR and FIR filters design was discussed which requires the knowl-
edge of second order statistics of the signals. However in applications such as channel
equalization, echo cancelation and systemmodeling to mention a few these statistics
cannot be specified a prior. In such applications digital filters with adjustable coef-
ficients are designed. These filters have self-adjusting characteristics and therefore
they are called as ADAPTIVE FILTERS. These filters are widely used in commu-
nication systems, control systems, adaptive antenna systems, digital communication
receivers, adaptive noise canceling technique, etc. An adaptive filter has the prop-
erty that it automatically adjusts or modifies its frequency response characteristics
according to the changes in the input signal characteristics. These filters are also
used when there is spectral overlap between the signal and noise is unknown. In
these cases the conventional filters would lead to distortion of the desired signal.

6.19.1 Concepts of Adaptive Filtering

An adaptive filter consists of two distinct parts and they are:

1. A digital filter with adjustable coefficients.
2. An adaptive algorithm which is used to adjust or modify the coefficients.

In almost all adaptive systems, FIR digital filter is used since it has simple structure
and stability is guaranteed. Only in limited applications, IIR or lattice filter is used.
Adaptive algorithms commonly used are:

1. Least Mean Square (LMS) algorithm.
2. Recursive Least Square (RLS) algorithm.

There aremany configurations of adaptive filter. Some of them include the following:

1. Adaptive noise canceler.
2. Adaptive self-tuning filter.
3. Adaptive line enhancer.
4. System modeling.
5. Linear combiner.

The above configurations are described below.

6.19.2 Adaptive Noise Canceller

The block diagram of an adaptive filter as a noise canceler is shown in Fig. 6.33.
The input signals xk and yk are simultaneously applied. xk is the noise yk contains

the desired signal sk polluted with noise nk . The noise xk is processed by the digital

http://dx.doi.org/10.1007/978-3-030-96322-4_3
http://dx.doi.org/10.1007/978-3-030-96322-4_4
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Fig. 6.33 Block diagram of
an adaptive filter as a noise
canceler

Digital filter

Adaptive
algorithm

yk sk nk
(Signal noise) 

ek sk
(Signal

estimate)

xk
(noise) 

nk

filter and gives out the estimate n̄k of nk . An estimate of the desired signal is obtained
by subtracting the digital filter output n̄k form yk . From Fig. 6.33 the following
equation is written.

s̄k = yk − n̄k = sk + nk − n̄k (6.49)

FromEq. (6.49), it is evident that optimumestimate of the desired signal sk is obtained
by producing an optimumestimate of the noise in the polluted signal. This is achieved
by feeding the signal estimate s̄k to the adaptive filter which adjusts the digital filter
coefficients. By using suitable adaptive algorithm, the noise in s̄k is minimized. Thus
the output signal s̄k is used as an estimate of the desired signal sk and also as an error
signal which is used to adjust the filter coefficients. The configurations of adaptive
self-tuning filter, adaptive line enhancer, adaptive system modeling and adaptive
linear combiner are shown in Fig. 6.34a–d, respectively.

6.19.3 Main Components of the Adaptive Filter

In most of the systems, the digital filter shown in Fig. 6.33 is used. The output can
be obtained as

n̄k =
N−1∑
i=0

wk(i)xk−i (6.50)

where wk(i), i = 0, 1 . . . , are the adjustable filter coefficients or the weights, and
xk(i) and n̄k are the input and output of the filter. Fig. 6.35 shows the single input–
signal output system.
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(a) Adaptive self tuning filter.

Adaptive filterz M

Error

(Output signal)

Delay

nk

yk

xk

ek

(b) Adaptive line enhancer.

Fig. 6.34 a Adaptive self-tuning filter. b Adaptive line enhancer. c System modeling. d Adaptive
linear combiner
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(d) Adaptive linear combiner.

Fig. 6.34 (continued)
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Fig. 6.35 Direct form adaptive FIR filter

6.19.4 Adaptive Algorithms

Adaptive algorithms are used to adjust or modify the coefficients of digital filter so
that the error signal ek is minimized to meet certain constraints. The most commonly
used algorithms in adaptive filters are:

1. Least Mean Square (LMS) algorithm
2. Recursive Least Squares (RLS) algorithm
3. Kalman Filter algorithm.

LMS algorithm is the most efficient algorithm in terms of computation and stor-
age requirements. It also does not suffer from numerical instability problem which
is inherently present in other two algorithms. However, RLS algorithm has supe-
rior convergence properties. In the section to follow LMS and RMS algorithms are
described.

6.19.4.1 Least Mean Square (LMS) Algorithm

In LMS algorithm the coefficients of the digital filter are adjusted from sample to
sample in such a way as to minimize the Mean Square Error (MES). The weight
vectors are updated from sample to sample as given below:

Wk+1 = Wr − μ�k (6.51)

where Wk and �k are the weights and true gradient vectors, respectively, at the kth
instant andμ controls the stability and rate of convergence. The LMS algorithm aims
at getting the digital filter weight Wk . The LMS algorithm for updating the weights
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from sample to sample as suggested by Widow-Hopf is given by

Wk+1 = Wr + 2μek Xk (6.52)

where

ek = yk − W T
x xk (6.53)

where xk is the input vector. The weights obtained by the LMS algorithm are only
the estimates which gradually improve with time as the weights are adjusted and the
filter learns the characteristics of the signals and finally the weights converge with
the following condition.

0 < μ <
1

λmax
(6.54)

where λmax is the maximum eigen value of the input data matrix. The computational
procedure for the LMS algorithm is summarized below.

1. Initially, set each weight wk(i) = 0, 1, . . . , N − 1 to an arbitrary fixed value.
For subsequent sampling instant k, carry out the following steps.

2. Compute filter output

n̄k =
N−1∑
i=0

wk(i)xk−i

3. Compute the error estimate
ek = yk − n̄k

4. Update the next filter weights

wk+1(i) = wk(i) + 2μek xk−i

The LMS algorithm requires approximately 2N + 1multiplications and 2N + 1
addition for each new set of input and output samples. Modern DSPs are very
much suited for direct implementation of LMS algorithm. The simplicity and
ease of implementation make the LMS algorithm of first choice in many real
time systems. The flow chart of LMS algorithm is given in Fig. 6.36.

6.19.4.2 Recursive Least Squares Algorithm

Themajor advantage of the LMSalgorithm is its simplicity in computation.However,
if the eigenvalues of the auto correlation matrix has a large spread, convergence
becomes very slow which is a major disadvantage of LMS algorithm. Further the
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Fig. 6.36 Flow chart for
LMS adaptive filter Initial

wk(i) and xk i

Read wk and yk
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Computer error
ek yk nk

Computer factor
2 ek

Updated coefficient
wk 1 wk 2 ek wk i

algorithm has a single adjustable parameter for controlling the convergence rate. To
obtain the faster convergence more than one adjustable parameters are required. In
recursive least squares algorithm for each eigenvalue one parameter is chosen and
convergence becomes faster. However the algorithm becomes more complex.

The RLS algorithm is based on the least squares method which is illustrated in
Fig. 6.36. From Fig. 6.36, the following equation connecting the input and output is
written (Fig. 6.37):

yk =
n−1∑
i=0

w(i)xk(i) + ek (6.55)
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Fig. 6.37 Illustrations of
RLS yk (Signal noise)

LS
filter

Output

xk (noise) nk

ek

where ek is the error, w(i) is the weight of the i th input and yk is the primary signal
which contains noise. In the least square method, the objective is to estimate w(o) to
w(n − 1) given xk(i) and yk . For the filter weight w(i), the optimum estimates are
given as

Wm = [X T
m X M ]−1X T

mYm (6.56)

where Wm , Xm and Ym are given by

Ym =

⎡
⎢⎢⎢⎢⎣

y0
y1
y2
. . .

ym−1

⎤
⎥⎥⎥⎥⎦ ; Xm =

⎡
⎢⎢⎢⎢⎣

X T (0)
X T (1)
X T (2)
. . .

X T (m − 1)

⎤
⎥⎥⎥⎥⎦ ; Wm =

⎡
⎢⎢⎢⎢⎣

w(0)
w(1)
w(2)
. . .

w(n − 1)

⎤
⎥⎥⎥⎥⎦

The filter output is obtained as

n̄k =
n−1∑
i=0

w̄(i)xk−i , k = 1, 2, . . . , m (6.57)

In Eq. (6.57), the estimates of Wm is obtained using recursive method. Here, the
estimates of Wm are updated for each new set of data acquired. A suitable RLS
algorithm is obtained by exponentially weighting the data to remove gradually the
effects of old data on Wm . Thus the following equation is written.

Wk = Wk−1 + Gkek (6.58)

Pk = 1

γ
[Pk−1 − Gk X T Pk−1] (6.59)

where

Gk = Pk−1X (k)

αk
(6.60)

ek = yk − X T (k)Wk−1 (6.61)

αk = γ + X T (k)Pk−1X (k) (6.62)

The RLS algorithm is represented in Fig. 6.37.
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In Eq. (6.59) Pk represents recursive way of computing [X T
k Xk]−1. k represents that

the quantities are obtained at each sample when k is varied and gama is called the
forgetting factor.

The main limitation of RLS algorithm is its sensitivity to computer round off
errors which leads to instability.
Summary

� Multi-rate signal processing has many applications in which the given sampling
rate is converted into another signal with a different sampling rate.

� The two basic sampling rate alteration devices are the upsampler and the down-
sampler.

� To down-sample a signal it is essential to pass the signal through an anti-aliasing
LPF to band limit the signal before it is applied to the decimator.

� If an interpolator is used to up sample a signal, it is essential that the output
of the signal from the interpolator is passed through a LPF to avoid removal of
some of the desired frequency components of the sampled signal.

� The up sampler and downsampler possess the property of linearity and time
variancy.

� If Fs is the sampling rate of the sequence x(n), the down-sampled signal will
have the sampling rate Fs

M and the up sampled signal will have the sampling rate
L Fs .

� If a signal x(n) is down-sampled by a factor M and then up sampled by a factor
L , then the sampling rate conversion is L/M which is a rational factor.

� Sampling rate conversion can be more efficiently done using polyphase decom-
position. This reduces computational complexity.

Short Questions and Answers

1. What do you understand by down-sampling?
Downsampling is the process of creating an output sequence y(n) from the input
sequence x(n) using a downsampler with a sampling factor of M where M is
a positive integer. The down-sampling operation is implemented by keeping
every M th sample of the input sequence x(n) and removing (M − 1) in between
samples. The input–output are related by the following equation

y(n) = x(nM)

2. What do you understand by upsampling?
Upsampling is the process of sampling rate alteration in which the sampling rate
of the output sequence is L times larger than that of the input sequence where L
is a positive integer, which is called upsampling factor. Here, (L − 1) equidistant
zero valued samples between two consequential samples of the input sequence
are inserted. The input–output are related by the following equation.
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y(n) =
{

x
(

n
L

)
, n = 0,±L ,±2L , · · ·

0, otherwise

3. What is a Decimator?
The decimator consists of two blocks. The input sequence is applied to a lowpass
filter followed by downsampler. The LPF is used to avoid aliasing. When both
these blocks are connected in cascade the unit is called decimator.

4. What is an Interpolator?
The process of up sampling is done by an up sampler and a LPF which are
connected in cascade. The LPF removes unwanted images from the signal. The
upsampler together with LPF is called an Interpolator.

5. What is sampling rate conversion?
The process of converting a signal from a given sampling rate to a different
sampling rate is called sampling rate conversion.

6. What is a multi-rate systems?
Discrete time system with unequal sampling rates at various parts of the system
are called multi-rate systems.

7. What is aliasing?
When the signal x(n) is downsampled, the plot of the frequency response of
the output Y (e jω) has an overlap and the original shape of the input X (e jω)

is lost. This is aliasing. If X (e jω) is zero for |ω| ≥ π
2 there is no aliasing. To

avoid aliasing the signal is first sent through anti-aliasing LPF and then the band
limited signal is downsampled.

8. What is the necessary condition to be satisfied for connecting up-sampler
and downsampler in cascade?
The necessary condition for connecting the up-sampler and downsampler in
cascade is that the decimation and interpolation factor M and L are relatively
prime. This implies that M and L do not have a common factor that is an integer
which is greater than one.

Long Answer Type Questions

1. Explain the need for multi-stage implementation of sampling rate conversion.
2. Explain clearly the downsampling and upsampling in multi-rate signal process-

ing.
3. Explain sampling rate reduction by an integer factor M and derive input–output

relationship in both time and frequency domains.
4. Explain samplinmg rate increase by an integer factor L and derive input–output

relationship in both time and frequency domains.
5. Propose a scheme for a sampling rate conversion by a rational factor L/M where

L is the upsampling integer factor and M is the downsampling integer factor.
6. Prove that decimator and interpolators are linear and time varying.
7. Derive the spectrum of the output of a decimator.
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8. Derive the spectrum of the output of a interpolator.
9. Explain the aliasing effect in the downsampling process if the original spectrum

is not band limited to |ω| = π/M .
10. Explain the identities used in multi-rate processing.
11. Discuss the efficient transversal structure for decimator and interpolator.
12. Explain the polyphase decomposition for FIR filter structure.
13. Explain filter design and implementation (structure) for sampling rate conversion

system.
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