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Preface

Power converter applications in power systems have a long history. One of the first
installations of high-voltage direct current (HVDC) transmission systems was on
the Swedish island of Gotland in 1954. Mercury arc valves were used in the project.
These were replaced by thyristor valves in 1967. Since then, other thyristor-based
devices like the static var compensator (SVC), the thyristor-controlled series com-
pensator (TCSC), etc., started finding applications in power transmission systems.
However, with the advance of insulated-gate bipolar transistor (IGBT) technology,
voltage source converters (VSCs) have started gaining prominence in power sys-
tem applications. Currently, several VSC-based devices have been used in power
transmission applications, such as in VSC-HVDC, flexible alternating current
transmission systems (FACTS) devices, etc. At the same time, VSC applications
in power distribution systems have been gaining prominence in custom power
technologies and in microgrids.
With increased concerns about climate change, there has been an increased

application of power electronic converters in power systems and an increase in
the use of solar photovoltaic (PV) or wind power generation. Since these renewable
generators are intermittent in nature, energy storage devices (predominantly bat-
tery energy storages) are being used for both storing energy and smoothing power
fluctuations. Since VSCs generate harmonics, they are equipped with output pas-
sive filters. These filters can cause resonance with the rest of the system. Therefore,
the control of power electronic devices has gained prominence in recent times.
A very large number of publications have appeared in different IEEE Transactions
about converter controls and their usages.
The concept of a microgrid has gained much attention in recent times. Micro-

grids are small power systems that have distributed generators (DGs), battery stor-
age units, and customer loads located in close proximity. They can either be
connected to the utility grids or be operated independently in an autonomous
mode. They can provide fuel diversity and can increase the reliability and

xvii



resilience of power delivery systems. Microgrids have been installed in commu-
nities, university campuses, hospitals, manufacturing sites, as well as in military
installations. Moreover, remote area microgrids have the potential of providing
reliable power to locations that are far away from power lines. Even though small
or medium-sized diesel or gas-fired generators can be used in a microgrid, power-
converter-interfaced generators aremost prevalent as they interconnect renewable
generators and battery storages. Therefore, power converter control is a very crit-
ical issue for microgrid applications as well.
The aim of this book is twofold: to review the control theories used for smart

power converter control and to review the applications of these control concepts
in power electronic converters used in power distribution systems. A voltage
source converter can have several different control aspects that depend on its
application. However, the basic principles are somewhat common. Therefore, a
systematic approach has been taken for the application-specific converter control
design in the book.
Three chapters in the book cover control theory. Most of the materials that are

presented in these chapters can be used for a senior level undergraduate course or
a junior level graduate course. There are several worked examples and design tips
that can be used in MATLAB®, a product of MathWorks. The advantage of using
MATLAB® is that complex control algorithms can easily be tested and verified
using this software. In this book, MATLAB® has also been used for power con-
verter controller design, while the design concepts have been verified through
the Manitoba HVDC Research Center’s EMTDC/PSCAD simulation package.
The book is organized in 11 chapters. Chapter 1 introduces the book. This chap-

ter presents a basic introduction to power electronic components and power con-
verter modes of operation and topologies. The need for harmonic filtering is also
discussed briefly. Since most of the power converters can be modeled as piece-wise
linear circuits, they need be linearized for feedback control design. This is also dis-
cussed in this chapter.
The methods of analysis of AC signals are presented in Chapter 2. Topics such as

symmetrical components (phasor and instantaneous), Clarke and Park trans-
forms, and the principle and use of phase locked loop (PLL) are covered in this
chapter.
Chapter 3 provides an in-depth review of the classical control for single-input,

single-output (SISO) systems. Since most classical control analysis and design
approaches are similar for both continuous-time and discrete-time systems, more
focus has been given to continuous-time systems in the book. Topics such as
Routh–Hurwitz’s criterion, root locus, frequency response methods, Nyquist sta-
bility criterion, relative stability, compensator design, and the PID controller and
its tuning are covered along with several numerical examples. At the end of the
chapter, discrete-time representation and z-transform are discussed.
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Power converter control design in classical domain is discussed in Chapter 4.
Specifically, DC-DC converters, such as buck and boost converters, are analyzed
in detail. The process of deriving models of these converters using averaging meth-
ods and then designing classical controllers using these linearized models are
explained. It also shows that a simple output voltage control is not sufficient for
a boost converter since it has a right-half s-plane zero. A two-loop control design
is also presented.
State space analysis and control design in both continuous- and discrete-time

domains are presented in Chapter 5. Different topics such as the representation
of a SISO system in state space domain, solutions of state equations, eigenvalues,
and eigenvectors are covered in this chapter. Also, modal analysis using diagona-
lization, controllability, and observability are discussed. A state feedback control
design using pole placement and a linear quadratic regulator is explained. The
process of eliminating any steady state error using an integral control action is also
described. At the end of the chapter, the process of deriving a DC-DC boost con-
verter model using state space averaging as well as designing a controller that has a
much superior performance are demonstrated.
Chapter 6 discusses control system design in the discrete-time domain, where

prediction-based controllers are explained. Topics that are covered in this chapter
include minimum variance prediction and control, pole placement in the polyno-
mial domain, generalized predictive control, and self-tuning adaptive control that
combines recursive parameter estimation with control design. A numerical exam-
ple of the self-tuning control of a boost converter is also presented.
The open-loop control of DC-AC converters is covered in Chapter 7, where hys-

teretic current control and sinusoidal pulse with modulation (SPWM) for both
bipolar and unipolar modulations are discussed. The concept of space vectors
and space vector pulse width modulation (SVPWM) are also presented in this
chapter. It also discusses how the performance of SPWM can be improved through
a third harmonic injection. Different multilevel converters – such as diode-
clamped, flying capacitor, cascaded, andmodular – are also discussed in this chap-
ter, along with the SPWMmethods that can be used in multilevel converter output
voltage modulation.
Chapter 8 presents several techniques of closed-loop control of DC-AC conver-

ters, and discusses both voltage and current controllers. To eliminate the harmo-
nics generated by voltage source converters, they are equipped by output passive
LC or LCL filters. First, a typical filter design principle is discussed. This is followed
by a discussion of the state feedback based PWM and SVPWM voltage control of
VSCs and sliding mode voltage control. Current control, using both state feedback
and output feedback, is also discussed.
Power conditioning devices that are used for power quality improvements in

power distribution networks use DC-AC converters that need to be controlled
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in some specific manner to achieve their goals. Such devices are discussed in
Chapter 9, where, in particular, the structure and operating principles of a distri-
bution static compensator (DSTATCOM) are presented. The chapter demonstrates
that this device can be used for both voltage control, where a distribution bus volt-
age can be controlled against the load harmonics and unbalance, and for current
control for load compensation. The associated converter control method is also
presented.
Chapter 10 discusses microgrids. Both DC and AC microgrids are considered.

The primary control applications in these microgrids are in the form of droop con-
trollers, which are covered in detail in this chapter. Examples of different converter
control principles that can be used for renewable energy integration are included
in this chapter as well as the evolving smart power distribution systems that may
contain several microgrids. Some of the possible connection and operating princi-
ples of microgrid networks are discussed. Specifically, the power exchange
between the connected microgrid through a dedicated feeder is discussed in detail.
With the increased usage of power converters in power systems, higher-

frequency harmonics have been causing concerns for the operational health of
power components and appliances. In Chapter 11, some of the aspects of harmonic
analysis and the harmonic propagation aspects in distribution system are high-
lighted. Furthermore, the standards that are evolving to tackle the harmonic prob-
lem are also presented.

Arindam Ghosh
Firuz Zare
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1

Introduction

Power electronic converters are used in myriad applications. Some of these are
adjustable speed motor drive systems, high-voltage direct current (HVDC) power
transmission, flexible alternating current transmission systems (FACTS), power
conditioning custom power devices, and microgrids. Several power electronic
installations use traditional thyristor-based naturally commutated power conver-
ters, which have been in use for over half a century. However, with the advent of
high-power insulated-gate bipolar transistors (IGBTs), voltage source converters
(VSCs) have become increasingly popular in almost all the applications mentioned
above.
With the present-day concerns about climate change and its effects on the well-

being of all living creatures of our planet, an increased amount of renewable
energy sources has been integrated with modern power systems. Traditionally,
power is generated through large turbo alternators that are rotated at a fixed
speed. Note that the system frequency is directly related to the generator speed
(n = 120 f/P, n is the generator speed in rpm, f is the frequency in Hz, and P is
the number of poles). Usually, these turbogenerators have large inertia that help
in maintaining synchronism during faults or transient disturbances. Renewable
generators, on the other hand, provide low inertia and are often integrated through
power electronic converters and therefore cannot maintain system frequency. Spe-
cial control strategies are therefore adopted for the integration of renewable
generators.
Renewable energy, as the name signifies, is a form of energy that is replenished

constantly. For example, our sun is an abundant source of energy, and it shines
throughout the year in all parts of the world. Similarly, wind blows all the time,
while its speed depends on the time of day and the terrain. These two are the most
prominent types of renewable energy that are used for electricity generation. An
excellent resource for renewable energy is the book by Masters [1].
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The other forms of renewable energy sources are water (e.g. hydro, wave, and
tidal), geothermal, etc. Out of these, hydro and geothermal plants are location
dependent. Hydropower is the production of electrical power using the gravita-
tional force of falling or flowing water, where electricity is produced by placing
a turbine generator in the path of the flowing water. For this, catchment areas,
water heights, and a continuous flow of water are required. Usually, hydro plants
are placed in mountainous terrains. Hydropower is the most common form of
renewable energy, which accounts for about 16% of the world’s electricity gener-
ation. The total installed capacity of hydropower in 2020 is 1330 GW [2].
A powerful form of natural energy is generated by the gravitation of the moon

and the sun, which causes low and high tides almost twice per day. The movement
of the rising and falling sea level alters the potential energy of water that can be
converted into electricity by the operation of a power plant. To use this energy, a
dam wall is created to enclose a certain amount of seawater in an artificial bay
serving the purpose of a reservoir, just like a hydropower plant. When the tide
rises, the water enters the reservoir through a turbine which produces electric
energy until the seawater inside the reservoir is almost as high as the outside water
level. At low tide, the reverse process occurs and the water inside the reservoir exits
into the sea through the turbine. Note that these two separate processes are not
continuous as there is a pause of about two hours between these two. The tidal
power has tremendous potential; however, it is still in the experimental stage of
development due to the excessive cost involved. Other forms of waterpower that
are also in the experimental stage are ocean current and wave power plants.
Geothermal energy comes from the core of our earth. The center of the earth is

6400 km below the surface. Since the temperature there is about 4200 C, it is hot
enough to melt rock into magma. The molten rock forms the outer core. The heat
from the core rises to the earth’s mantle, which is the layer that surrounds the core.
It is this energy that powers volcanoes, geysers, and hot springs. In a geothermal
plant, water is pumped into the earth’s mantle and the resultant steam that rises is
used for electricity generation using steam turbines. Geothermal plants, however,
have a finite lifetime. The energy production ceases when the mantle at the loca-
tion of the plant cools down due to the continuous extraction of heat energy.
There are two possible ways of generating solar power: through photovoltaic

(PV) array and through concentrated solar power (CSP), which is also known
as solar thermal power. In CSP, power is generated using mirrors and lenses to
concentrate sunlight over a large area onto a receiver. The concentrated light then
produces heat energy, which drives steam turbines to produce electricity using
thermal generators. It is to be noted that water is not the only source that can
be used for heat extraction from CSP: molten nitrite salt and hydrides are also con-
sidered for their higher heat retention properties. Spain is the leading country in
CSP installation, followed by the United States.
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Most of the technologies mentioned above use rotary generators to produce
energy without any requirement of power electronic converters. This, however,
is not the case for solar PV and wind generators as they require power electronic
converters. A PV array produces power at DC voltage, which is then boosted
through aDC-DC converter. The DC-DC converter is also often used for maximum
power point tracking. The DC-DC converter output is converted into AC through a
VSC for grid connection.
There are several types of wind turbines. These are [3]:

• Type 1: Fixed speed in which a squirrel-cage, self-excited induction generator is
directly connected to the grid through a transformer. The turbine speed is syn-
chronized with the grid frequency and is therefore (nearly) fixed.

• Type 2: Limited variable speed in which a wound rotor induction generator is
connected directly to the grid through a transformer. The generator contains
a variable resistor in the rotor circuit, which can control the rotor current
quickly to keep the power constant, even during grid or wind disturbance.

• Type 3: Variable speed with partial power electronic conversion using doubly fed
induction generator (DFIG). In this, there are a pair of VSCs that are connected
back-to-back on the DC side through a capacitor. The grid side converter
exchanges power with the grid and holds the DC bus voltage, while the rotor
side converter can almost instantaneously control the magnitude and angle of
rotor current. The major advantage of the DFIG is that it can bring about a large
control of power in the stator circuit while using converters that have a much
smaller rating than the machine.

• Type 4: Variable speed with full power electronic conversion in which a perma-
nent magnet synchronous generator is connected to the grid through full-rated
back-to-back converters. The turbine, in this case, is allowed to rotate at its opti-
mal aerodynamic speed harnessing maximum power. Also, the need of a bulky
gearbox is eliminated since the machine speed is separated from the grid fre-
quency. The turbine side converter converts the generator voltage into DC
and the grid side inverter injects power to the grid at rated or prevailing grid
frequency.

Recently, several offshore windfarms have been installed. The power from these
plants is supplied to the mainland through either submarine DC cables at high
voltage or through multiterminal HVDC systems. All of these employ VSCs for
power conversion.
There are several smaller generators that are deployed in power distribution sys-

tems, though not all of them necessarily use renewable energy. Themost prevalent
among these are the rooftop solar PV systems, which generate power with an out-
put DC voltage level. These are then converted into AC through DC-AC power
converters. There are others such as wind, fuel cells, and microturbines that
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use power electronic converters. Collectively these generators are called distribu-
ted generators (or DGs) because they are distributed throughout power distribu-
tions systems and are placed close to where the energy is consumed. Many of
the renewable sources (e.g. solar and wind), however, are intermittent in nature.
Therefore, storage systems are required to maintain continuity of the power flow.
The DGs, together with the energy storage systems, are usually called distributed
energy resources (or DERs). The most common energy storage such as battery
energy storage systems (BESS) require power converters for converting DC voltage
into AC.
From the above discussion, it is evident that power electronic converters play a

very crucial role in the modern-day operation of power systems. Therefore, the
control of these converters is also very crucial for the smooth and stable operation
of power systems. Section 1.1 presents a brief introduction to power electronics.

1.1 Introduction to Power Electronics

Power electronics essentially is power processing. It is the application of electron-
ics, control, and signal processing to adjust, regulate, or control electrical energy.
Power electronics consists of power and electronic circuitry. In the power circuitry,
DC or AC energy sources are converted to regulate or adjust voltage or current
waveforms in the form of DC or AC with specific amplitude or frequency suitable
for different applications. Figure 1.1 shows a schematic diagram of a power elec-
tronics system, which consists of an input source, a power converter, a load, and a
controller.
The input source can be DC (e.g. BESS, solar PV, fuel cell, etc.) or an AC (e.g.

grid, wind turbine, etc.). In some applications, the DC source can be in the form of
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Figure 1.1 Schematic diagram of a power electronic circuit.
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capacitors that can store energy. Furthermore, in an AC system, the input can be
single- or three-phase. The loads can be either AC or DC. They can operate at
either high or low voltage, where the frequency can be variable in the case of
AC applications. For example, in home applications, power electronics is used
in battery chargers (cell phones, laptops/desktops), electric motors, and induction
cooking devices among others.
The power converter consists of semiconductor switching devices and passive

elements, such as magnetic devices and capacitors. The semiconductor switching
devices, such as MOSFETs (metal oxide silicon field effect transistor) or IGBTs,
can operate at high voltage and current ratings that are suitable for different
applications.
The controller unit consists of (i) measuring devices including input and

output voltage and current signals to monitor and protect the system, (ii) a micro-
controller with signal processing capability, and (iii) digital and analog electronic
circuits. The controller synthesizes signals in the form of pulses suitable for the
power converter to convert the input energy suitable for a load. The interface
between the controller and the power converter is through gate drives, which take
the control signals based on a pulse pattern and turn the semiconductor switches
on and off at high voltage and current amplitudes.
Overall, the main aim of modern power electronic systems is to convert and

deliver input power with maximum efficiency, high quality, minimum cost, and
weight, in an integrated and high-power density circuit.
The main components used in the controller and the gate drive units are shown

in Figure 1.2. As the voltage and current ratings of the controller and gate drives
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Figure 1.2 The main active and
passive components used in
controllers and gate drive units.
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are very low compared to the power converters, resistors, and operational ampli-
fiers (OPAMPS), linear mode switches are used in these units without any loss due
to their high efficiency. On the other hand, their circuitry and design are very com-
plex as the total power electronics system needs to be monitored and controlled
through these units.
The power converter consists of four main components, as shown in Figure 1.3.

Resistors and power switches in linear mode are not used in the power converters,
because they incur significant losses when currents pass through these compo-
nents. The energy conversion is usually based on a pulse width modulation
(PWM) method where a desired signal is generated by pulse patterns at higher fre-
quencies. The switching devices chop the input voltage or current (at high voltage
and/or current rating) based on the control signals synthesized by the controller.
Thus, the major issues of the power electronics system are (i) the generation har-
monics and high-frequency noises which should be controlled andmitigated using
filters and (ii) conduction and switching losses.
Figure 1.4 shows four different configurations of power converters that can con-

vert energy from DC or AC sources to adjustable and regulated DC or AC current
or voltage waveforms suitable for different loads. Figure 1.4a shows a DC-DC con-
verter that has an input DC voltage source (e.g. battery or PV). The output voltage
can be adjusted (increased or decreased) during the operation, as in a DC motor
control or regulated power supplies. In Figure 1.4b, the energy from an AC source
(fixed or variable amplitude or frequency), can be changed into an AC signal with
adjustable amplitude and frequency, as in variable speed motor drive systems, or
with regulated amplitude and frequency, as in grid-connected renewable energy
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Inductors

and 

Tranformers

Power 
Switches

Circuit 

Elements

Power Diodes Figure 1.3 The main active and
passive components used in
power converters.
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systems. Figure 1.4c shows a power converter can transfer the energy from an AC
source (e.g. grid or wind generator) to an adjustable or regulated DC signal (e.g. DC
grids, power supply). The input source can be either a single-phase or a three-
phase for low- or high-power applications. In the last configuration, shown in
Figure 1.4d, a DC source is connected to a power converter and the output AC sig-
nal amplitude and frequency can be adjustable (e.g. induction heating and weld-
ing) or regulated (e.g. uninterruptable power supply or controllable AC sources).

1.2 Power Converter Modes of Operation

While designing a power converter, its modes of operation should be determined
according to the system operation and the load characteristics. The instantaneous
values of the load current iout(t) and voltage vout(t) can either be positive or negative
in amplitude. These values represent four modes of operation for the power con-
verter, as shown in Figure 1.5. The converter topology will be different when it

DC
DC

AC
AC

AC
DC

DC
AC

(a) (b)

(c) (d)

Figure 1.4 Four different configurations of power converters: (a) DC-DC, (b) AC-AC,
(c) AC-DC, and (d) DC-AC.
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Figure 1.5 (a) Power converter supplying a load and (b) four quadrants of operation.
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operates in one, two, or four quadrants. These conditions and operating modes are
explained in this section.
Figure 1.6 shows a power converter with a unidirectional power flow in which

the power is controlled and processed from the input side and transferred to the
output side. The converter may operate either in quadrant I (when both voltage
and current values are positive) or in quadrant III (when both voltage and current
values are negative), or both these quadrants.
A power converter with a bidirectional power flow can operate in four different

quadrants and the power can be transferred from the source to the load (consump-
tion) or from the load to the source (regeneration). The converter may operate in
any quadrant, based on the instantaneous voltage and current values and the load
operating modes, as shown in Figure 1.7. The operating modes of a power con-
verter with different topologies and semiconductor switches (type and configura-
tion) will be explained in the following section.
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Figure 1.6 (a) Power converter in unidirectional power flow and (b) two modes of
operation.

vin(t)

iin(t)

vout

iout

vout(t)

iout(t)

Pin Pout
Power

Converter
Load

Source 
Side Load Side

(a) (b)

+

–

+

–

Mode III

Mode II Mode I

Mode IV

Figure 1.7 (a) Power converter in bidirectional power flow and (b) four modes
of operation.
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1.3 Power Converter Topologies

Several different topologies are utilized in energy conversion systems. The most
common systems are shown in Figure 1.8 and are classified as:

• Low-frequency (at grid frequency 50 or 60 Hz) power converters such as diode
rectifiers or controlled rectifiers with slow power switches, such as diodes or sil-
icon-controlled rectifiers (SCR). These converters rectify AC signals (single-
phase or a three-phase) to a DC form. These are shown in Figure 1.8a–d.

• High-frequency (at a switching frequency in kHz range) power converters are
based on fast semiconductor switching devices such as MOSFETs or IGBTs.
These converters are controlled based on PWM signals (modulated signals)
and are used in different DC-DC or DC-AC energy conversion systems. The size
of passive components utilized in these converters can be reduced if the switch-
ing frequency of the PWM signal is increased. This is shown in Figure 1.8e.

• A cascaded topology is based on a combination of a few low- and high-frequency
power converters. For example, in Figure 1.8f, two power converters are in
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cascade with a storage element to convert an AC signal into a DC form and then
the resulting DC signal back into an AC signal with adjusted or regulated ampli-
tude and frequency. This is also called back-to-back (B2B) connection.

1.4 Harmonics and Filters

Harmonics and high-frequency noises are the two main aspects of power conver-
ters which have a negative impact on the quality and efficiency of the overall sys-
tem. These phenomena are caused due to low- or high-frequency switching
transients of the semiconductor switches in power converters. For example, to
change a DC voltage to a desired level that is suitable for a load, a pulse train is
applied to a DC-DC converter with a controlled duty cycle in such a way that
the average voltage over each switching cycle can be controlled, as shown in
Figure 1.9. The DC-DC converter is shown in Figure 1.9a. For the converter,
the duty cycle is generated by comparing a reference signal (vref) with a sawtooth
signal (vst) and a gate signal is generated, as shown in Figure 1.9b. It is to be noted
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Figure 1.9 (a) A DC-DC converter, (b) its modulated signal, and (c) the output signal in time
and frequency domain.
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that the cycle time is Ts = tON+ tOFF. The switching frequency is fs = 1/Ts, and the
percentage duty cycle is defined as d = (tON/Ts) × 100%.
Let us assume that the duty cycle is controlled at 50% and the converter is

designed such that the average value of the output voltage (Vout) for this duty ratio
is 50% of the DC value (Vin). Although the pulse train is synthesized to control the
average value of the output voltage, the proposed pulse waveform has harmonics,
as shown in Figure 1.9c. This signal in time domain is not suitable for interfacing
with electronic systems and the high-frequency harmonics should be filtered using
an LC filter, as shown in Figure 1.9a.
Figure 1.10a shows a single-phase AC-DC converter where the input voltage is

supplied from a low-voltage grid. The line current is not sinusoidal, and it is dis-
torted due to the diode rectifier operation and its DC link filter (capacitor). The
current harmonic amplitudes must be reduced according to international standar-
dizations. There are several active or passive methods to mitigate current harmo-
nics at the grid side.
Based on the above discussion, a general block diagram of a power electronics

system is shown in Figure 1.11, where two filters – one at the grid side and the
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Figure 1.10 (a) A diode rectifier connected to a DC-AC converter and (b) voltage and
current waveforms of the diode rectifier.
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Figure 1.11 A general block diagram of a power electronic system with different filters.
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other one at the load side – are utilized to mitigate low- and high-frequency har-
monics. The grid side filter consists of two different types of filters: harmonics and
electromagnetic interference (EMI) filters. A harmonic filter is designed to miti-
gate low-order harmonics below the order of 40th or 50th harmonics depending
on standardization limits. The EMI filter is designed for high-frequency harmo-
nics, mainly above 150 kHz to suppress conducted emission noise.

1.5 Power Converter Operating Conditions, Modelling,
and Control

Power electronics systems are nonlinear as there are several semiconductor
switching devices which are turned on and off thereby splitting a power converter
circuitry into sub-circuitries. The system might have more subsystems when the
inductor current is not continuous during the operation. Figure 1.12 shows all
operating conditions of a DC-DC converter, which can operate in either a contin-
uous conduction mode (CCM) or a discontinuous conduction mode (DCM). The
steady state analysis is used to design a power converter under different load con-
ditions. This includes the selection of passive and active elements, switching fre-
quency, losses, and quality analysis. The system can be simplified when internal
parasitic and stray components are neglected, including the voltage drops across
the diodes or switches, the internal resistance of magnetic elements, or the stray
inductance of the interconnections.
Dynamic behavior of a power converter takes place when a change occurs in the

reference signal or input voltage or the load. This includes the startup condition
when a power converter is turned on, as shown in Figure 1.13. In this case, the
instantaneous value of the inductor current is increased from zero. The inductor
current at the beginning and at the end of each switching cycle is not the same.

DC-DC
Converter

Dynamic

Modelling

Steady State

Ideal/Real

ComponetsCCM/DCM

Control
Design

Figure 1.12 Operating conditions of DC-DC converters.
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However, when it reaches a steady state after several switching cycles, the inductor
current at the beginning and the end of each switching cycle is the same. Thus, the
dynamic behavior of a power converter, i.e. reaching the steady state value with
minimum transient time, error, and overshoot, can be improved using a proper
control system.
The general approach of designing a controller is to find the transfer function of

a system. Most power electronics systems are nonlinear with discrete operating
modes. For example, Figure 1.14a shows a buck or step-down DC-DC converter
operating in CCM where the current through the inductor is always continuous.
When the switch is turned “ON” or “OFF,” the converter circuitry is changed into
two different equivalent circuits, as shown in Figure 1.14b,c. As the power con-
verter is switched on in the frequency range of kHz, it has different subsystems
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Figure 1.13 The time
domain behavior of inductor
current of a DC-DC converter.
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that cannot be modeled and analyzed based on conventional control theory. Thus,
small signal modeling, averaging approach, and linearization techniques are
required tomodel a power converter as a continuous system. In this book, different
power converters based on the averaging method and stability analysis of power
converters are studied at the device and system levels. Discrete modeling is a help-
ful step to recognize the delays in control.

1.6 Control of Power Electronic Systems

In this section, the concept of feedback control is briefly discussed and the appli-
cation of control on a simple power electronic circuit introduced. Our discussion
starts with the advantage of feedback control.

1.6.1 Open-loop Versus Closed-loop Control

Consider a first-order system given by the differential equation

y t + αy t = u t 1 1

where y(t) is the output, u(t) is the input, and α is a scalar. Assume that the system
is at rest, i.e. y(t)|t≤ 0 = 0 and a control input u(t) = K × us is applied at time t = 0,
where us is a unit step and K is a scalar constant. Then the system response will be
given by

y t =
K
α

1− e− αt , t ≥ 0 1 2

If α> 0, the exponential termwill tend toward zero as t ∞. Therefore, the steady
state value of y(t) as t ∞ will be K/α. If, on the other hand, α< 0, the output will
tend toward infinity as time progresses, resulting in an unstable system. The sche-
matic diagram of the open-loop system is shown in Figure 1.15a.
The main aim of a control system is to follow a reference input yr(t) asymptot-

ically. To achieve this, a negative feedback of the output is used to form the control
law as

u t = K yref t − y t = Ke t 1 3
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K ∫ ẏ (t) dt

∫ ẏ (t) dt
u(t)

K
+
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yref (t)
e(t)

u(t)

(a) (b)

Figure 1.15 (a) Open-loop control system and (b) feedback control system.
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where e(t) is defined as the tracking error. Substituting (1.3) in (1.1) and assuming
u(t) = Ke(t), we have

y t + K + α y t = Kyref t 1 4

The closed-loop system is shown in Figure 1.15b. Let us assume that the refer-
ence input is a unit step. Then, the output is given by

y t =
K

K + α
1− e− K + α t , t ≥ 0 1 5

The closed-loop system will remain stable (bounded) so long as K+ α> 0.
If α> 0, then the system will be stable for positive values of K. On the other hand,
if α is negative, K should be greater than |α|. This is one of the advantages of the
feedback control. Another important aspect of the feedback is reference tracking,
where the output y(t) needs to be close to the reference input yref(t) in the steady
state, which can only be achieved if the system is stable. In that case, the steady
state tracking error is defined from (1.5) as

ess t = yr t − yr t t ∞ =
K

K + α
1 6

The steady state error can be minimized by choosing a large value of K.
Figure 1.16 shows the behavior of the open- and closed-loop systems for |α| = 0.5.

For the open-loop system, it is assumed that α> 0 and K = 1. This is shown in
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Figure 1.16 (a) Open-loop control system, feedback control system (b) with α > 0 and
(c) with α < 0.
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Figure 1.16a, where the output reaches its steady state value of 2. The closed-loop
response for α> 0 is shown in Figure 1.16b, while Figure 1.16c shows the closed-
loop response for α< 0. The value of the gain for both these cases is chosen as
K= 5. Even though the open-loop system is unstable for α< 0, the closed-loop sys-
tem is stable in Figure 1.16c since K+ α> 0.

1.6.2 Nonlinear Systems

Consider the following system

y t + αy2 t = sin θ 1 7

This is obviously a nonlinear system. Even though there is a vast amount of liter-
ature dealing with the stability and control of nonlinear systems, usually linear
controllers are designed by linearizing the system around an operating point.
For linearization, Taylor series expansion is performed around an operating point,
where the second- and the higher-order terms are neglected. This aspect is dis-
cussed later in the book. However, we present a simple method here.
Let us assume that the system operates under a steady state operating point of y0

and θ0 such that (1.7) can be written as

y0 t + αy20 t = sin θ0 1 8

Let us also assume that the system is perturbed with small increments such that

y(t) = y0(t) +Δy(t) and θ = θ0 +Δθ

The substitution of the above two equations in (1.7) yields

y0 t + Δy t + α y0 t + Δy t 2 = sin θ0 + Δθ 1 9

Since the incrementsΔy(t) andΔθ are very small, the following assumptions can
be made

Δy2(t)≈ 0, sin(Δθ) = Δθ, and cos(Δθ) = 1

Substituting these in (1.9), we have

y0 t + Δy t + αy20 t + 2αy0 t Δy t = sin θ0 + cos θ0 Δθ 1 10

The following linearized model is obtained by subtracting (1.8) from (1.10)

Δy t + 2αy0 t Δy t = cos θ0 Δθ 1 11

To determine the steady state condition, the first step is to choose a value of θ0.
Once the system attains the steady state, the derivative of the output in (1.8) will
be zero, i.e. y0 t = 0, and therefore, the steady state of the output is obtained as

y0 = sin θ0 α. For example, if α = 2, then the steady state values for θ0 = 10 ,
θ0 = 20 , and θ0 = 30 are 0.2947, 0.4135, and 0.5 respectively. Starting from
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y(t)|t=0 = 0, the response of the system with these values of θ0 are shown in
Figure 1.17. It can be seen that the output attains these values in the steady state.

1.6.3 Piecewise Linear Systems

Consider the buck converter model shown in Figure 1.14a. From Figure 1.14b, the
following equations are obtained when the switch is ON.

dvout
dt

= −
1
RC

vout +
1
C
iL

diL
dt

= −
1
L
vout +

1
L
Vin

1 12

On the other hand, when the switch is OFF, the following equations describe the
system

dvout
dt

= −
1
RC

vout +
1
C
iL

diL
dt

= −
1
L
vout

1 13

Both these sets of equations are linear. However, the behavior of the circuit is con-
trolled by the duty ratio or duty cycle shown in Figure 1.9c. This is best described in
terms of the state space description of the system, which is explained in Chapter 5.

Time (s)

Output Response (y) for θ = 10°

Output Response (y) for θ = 20°

Output Response (y) for θ = 30°
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0 1 2 3 4 5 6 7 8 9 10
0

Figure 1.17 The response of the nonlinear system with three different values of θ0.
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Let us define a state vector as x= [vout iL]
T. Then (1.12) and (1.13) can be written

respectively as

x = Ax + BVin 1 14

x = Ax 1 15

where

A =
− 1 RC 1 C

− 1 L 0
, B =

0

1 L

Now assume that the switch closes at t0, opens at t1, and subsequently closes at t2,
as shown in Figure 1.9b. In the steady state, the duty ratio D is constant, and
therefore

t1 − t0 = DTs, t2 − t1 = 1−D Ts 1 16

where D is the duty ratio and Ts is the cycle time. Then the solutions of (1.14) and
(1.15) respectively are

x t1 =

t1

t0

Ax + BVin dt + x t0 =

DTs

0

Ax + BVin dt + x t0 1 17

x t2 =

t2

t1

Axdt + x t1 =

1−D Ts

0

Axdt + x t1 1 18

In the steady state, we have x(t2) = x(t0). Solutions of (1.17) and (1.18) will yield the
description of the system between t0 and t2, which is dependent on the duty ratio,
which appears in the exponential terms of the solutions of (1.17) and (1.18). Thus,
even if the circuit is piecewise linear, the overall behavior of the circuit is nonlin-
ear. Furthermore, the DC-DC converter is controlled by its duty ratio. Therefore,
the systemwill have to be linearized for control design, as is discussed in Chapter 4
(Section 4.1.5) and Chapter 5 (Section 5.11.2).

1.7 Power Distribution Systems

Power systems’ voltages and currents can be represented either though their
instantaneous components or through their phasor components. The instantane-
ous voltage of the form v(t) = Vm sin(ωt+ δ), where Vm is the voltage magnitude, ω
is the angular frequency in rad/s, and δ is its phase angle. Phasor components rep-
resent the sinusoidal steady state, i.e. the voltage (or current) magnitude and its
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angle when the transients have died down and all the quantities in the system
are in a pure sinusoidal state. For the instantaneous voltage given above, the
phasor component is represented in polar of cartesian form as V =

Vm 2 ejδ = Vm 2 cos δ + j sin δ . A diagram representing the phasors in

a circuit is called the phasor diagram.
One of the main applications of power converters is in power distribution sys-

tems. These applications are discussed in Chapters 9 and 10 of this book. Consider,
for example, the radial power system shown in Figure 1.18a. It contains a source VS

that supplies an RL load with the impedance of ZL. Let us assume that the switch S
is open. The phasor diagram of this system is shown in Figure 1.18b. The lagging
load current (I) has two components: the real component (IR) and the reactive
component (IQ). It is the real component that is doing any practical work, while
the reactive component is present due to the load power factor. However, due
to the reactive component, the current magnitude becomes larger. This causes
more line voltage drop and larger R|I|2 drop in the line that can lead to excessive
heating in the conductors.
When switch S is closed, the capacitor, with a reactance of−jXC, is connected in

parallel with the load bus. This will draw a leading current IC from the system, as

(a) (b)

(c) (d)

VS

VL

I

IR

IQ

IC

VS

VL

VS

VLZ

ZL

I

S

XC

IC

VS

VLZ

ZL

I

IR

VSC

Figure 1.18 (a) A radial distribution system, (b) phasor diagram when the capacitor is not
connected, (c) phasor diagram when the capacitor is connected, and (d) power factor
correction through a VSC.
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shown in Figure 1.18b. If this current is such that IC= IQ, then the source will only
supply the current IR. Then, the load and the capacitor will draw power from the
source at unity power factor, as shown in Figure 11.18c.
The main problem with the above proposition is that the load may change, and

therefore fixing the value of the capacitance with all load changes is not feasible.
A better approach is to connect a VSC in shunt with the load bus. This VSC,
through proper control, can not only correct the power factor but also provide har-
monic compensation, balance the load bus voltage, and regulate the bus volt-
age [4].
Amicrogrid is a small, localized grid with its embedded control capability. It can

operate along with the main utility grid or can also disconnect from the grid and
work autonomously while supplying power to its local loads. Microgrids are sup-
plied by their local generators with most of them harnessing power from renew-
able energy sources. Additionally, a microgrid may even contain battery storage
systems. These power supply sources are collectively called DERs. Most of the
DERs are connected to microgrids through VSCs and are required to supply power
in the autonomous mode, while regulating its bus voltage and frequency. There-
fore, converter control plays a significant role in the operation of microgrids. Since
microgrids have local generators, they are very suitable for combined heat and
power applications. Microgrids have tremendous potential for remote area power
systems where power lines are not present or have very weak connections. Also,
microgrids are being developed for university campuses, for commercial/commu-
nity buildings, military usage, etc. Microgrids have even been conceptualized for
space applications [5].

1.8 Concluding Remarks

In this chapter, a brief introduction to the book are presented. Topics mentioned in
this chapter are elaborated in subsequent chapters. Specifically, several control
analysis design principles are covered in detail. Furthermore, the control of both
DC-DC and DC-AC converters is covered, along with the applications of these con-
verters to power systems.
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2

Analysis of AC Signals

From a circuit theory point of view, a DC circuit is much simpler to analyze than
an AC circuit. In the steady state of a DC circuit, the voltage across a capacitor is
open circuited and the current through an inductor is short circuited. The tran-
sient response of the capacitor voltages and inductor currents can be solved
through differential equations.
AC circuits can be single- or three-phase. Instantaneous active power in a single-

phase circuit oscillates at twice the fundamental frequency around aDC value. The
instantaneous real power in a three-phase circuit, on the other hand, has a DC
value in a balanced system, while it behaves like a single-phase circuit in an unbal-
anced system. Reactive power in an AC circuit occurs due to the presence of induc-
tors and capacitors. It does not contribute to any useful work but can cause voltage
drops and increase line losses. A three-phase circuit can have voltage and/or cur-
rent unbalance due to unbalance in loads. Also, AC signals can have harmonics,
which are nonfundamental frequency waveforms that are superimposed on the
fundamental frequency waveforms. Both unbalance and harmonics have detri-
mental effects on appliances and power apparatus connected to the system.
Control design or analysis in a DC circuit is simpler as all the signals have DC

values in the steady state, while in an AC circuit they have a constant magnitude
and phase once the transients die down. This allows us to perform a sinusoidal
steady state analysis. However, from the control design perspective or for stability
analysis, it may be desirable to represent these circuits as equivalent DC circuits.
Also, the AC circuits need to remain synchronized always such that all the differ-
ent interconnected components can function stably.
In this chapter, we discuss the various aspects of AC signals: analysis of unbal-

ance, instantaneous real and reactive power, harmonics, frequency estimation, dq
transformation, and phase locking that are important for the integration of power
electronic circuits with AC power systems. We start our discussion with the anal-
ysis of unbalance.
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2.1 Symmetrical Components

Usually, symmetrical components are used to analyze unbalance in a three-phase
system in the phasor domain. A three-phase system is termed as balanced when its
voltage (or current) waveforms have the same magnitude and are displaced from
each other by 120 . Failing these two conditions, the voltages (or currents) are said
to be unbalanced. Let us consider a set of three-phase voltages defined by

Va = Vma φa, Vb = Vmb φb, Vc = Vmc φc 2 1

where |Vma| |Vmb| |Vmc| and φa, φb, and φc are not phase displaced by 120
from each other. These unbalanced vectors are resolved into three balanced vec-
tors using the following transform

Va0

Va1

Va2

=
1
3

1 1 1

1 a a2

1 a2 a

Va

Vb

Vc

= T

Va

Vb

Vc

Va012 = TVabc

2 2

where Va0, Va1, and Va2 respectively are the zero-, positive-, and negative-sequence

voltage vectors and a = ej120 , such that a = − 0 5 + j 3 2, a2 = a∗ (complex con-
jugate of a), and 1 + a+ a2 = 0. Note that the zero- and negative-sequence com-
ponents will be zero for balanced voltages, when |Vma| = |Vmb| = |Vmc|, φb = φa−

120 , and φc = φa+ 120 . The phase voltages can be recovered from the symmet-
rical component voltages using the inverse transform

Vabc = T− 1Va012 2 3

where

T− 1 =

1 1 1

1 a2 a

1 a a2

Note that we can use the transformations of (2.2) and (2.3) for three-phase cur-
rents as well.

Example 2.1 Consider the following set of voltages

Va = 100 10 V, Vb = 110 − 120 V, Vc = 90 120 V

These constitute an unbalanced set. The sequence components are then

24 2 Analysis of AC Signals



Va0 = − 0 5064 + j0 0148 V

Va1 = 99 4936 + j5 7883 V

Va2 = − 0 5064 + j11 5618 V

These are written in polar form as

Va0 = 0 51 178 33 V, Va1 = 99 66 3 33 V, Va2 = 11 57 92 51 V

Note that the zero-sequence components for the three phases are the same and
are given by

Va0 = Vb0 = Vc0 = 0 51 178 33 V

The positive sequence phasors are balanced and have the same phase sequence
as the original vectors, i.e.

Va1 = 99 66 3 33 V, Vb1 = 99 66 −116 67 51 V, Vc1 = 99 66 123 33 V

The negative sequence vectors are also balanced, but the phase sequence is
reverse of the original phasors, i.e.

Va2 = 11 57 92 51 V, Vb2 = 11 57 212 51 V, Vc2 = 11 57 − 27 49 V

The original unbalanced signals can be written in terms of the symmetrical com-
ponents as

Va

Vb

Vc

=

Va0

Vb0

Vc0

+

Va1

Vb1

Vc1

+

Va2

Vb2

Vc2

2 4

It can be verified that we can express the unbalanced phase voltages using (2.4).

2.1.1 Voltage Unbalanced Factor (VUF)

Voltage unbalance occurs in power distribution systems primarily due to single-
phase loads. Usually, domestic power is supplied from one of the three phases
and neutral. Even though the utilities try to balance the loads between the phases,
the installments of rooftop photovoltaics (PVs) worsens the situation asmost of the
PV inverters are single-phase. There might be some influence of unbalances in
transmission lines or supply transformers on voltage unbalance.
The voltage unbalance of a circuit is defined based on different references such

as IEEE and IEC [1, 2]. This is given terms of the ratio of negative sequence to the
positive sequence voltage magnitudes as
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VUF =
Va2

Va1
× 100 2 5

The detrimental impacts of voltage unbalance on induction motors are analyzed
in [1, 3]. It is desirable to maintain the VUF below 3% for the health of induction
motors, which are the workhorse of industry. In Example 2.1, the VUF is 11.61%.

2.1.2 Real and Reactive Power

The complex power (S) in an AC circuit is given by

S = P + jQ = VI∗

Therefore, for a three-phase circuit, we can write this as

S = VaI
∗
a + VbI

∗
b + VcI

∗
c = VT

abcI
∗
abc

Using (2.3), the above equation can be written as

S = VT
a012T

−T T− 1Ia012
∗

2 6

Now

T−T T∗ − 1 =

3 0 0

0 3 0

0 0 3

Therefore

S = 3 Va0I
∗
a0 + Va1I

∗
a1 + Va2I

∗
a2 2 7

Example 2.2 Consider the voltages of Example 2.1. Assume that these voltages
supply an unbalanced load such that the currents are given by

Ia = 10 − 10 A, Ib = 11 − 100 A, Ic = 12 110 A

The sequence components of the currents are

Ia0 = 1 28− j0 43 = 1 34 − 18 63 A

Ia1 = 10 67− j0 02 = 10 67 − 0 1 A

Ia2 = − 2 10− j1 29 = 2 46 − 148 48 A

Then computing the complex power, we get

S=VaI
∗
a +VbI

∗
b +VcI

∗
c =3 Va0I

∗
a0 +Va1I

∗
a1 +Va2I

∗
a2 = 3 14+ j0 116 × 103

It is to be noted that, for balanced voltages or currents, the negative- and zero-
sequence components will be zero and the symmetrical component transforma-
tion will result only in the positive sequence components.
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2.2 Instantaneous Symmetrical Components

In Section 2.1, we demonstrate how to represent a set of three voltages or currents
in terms of their symmetrical components. The symmetrical component transfor-
mation can also be applied to instantaneous voltages and currents [4]. Through
this transformation, we can convert three-phase instantaneous quantities into a
zero-sequence component and two other phasor components. Let the instantane-
ous three-phase voltages be given by va, vb, and vc. We can then define the instan-
taneous symmetrical components as

va0
va1
va2

=
1
3

1 1 1

1 a a2

1 a2 a

va
vb
vc

= T

va
vb
vc

2 8

where va0, va1, and va2 respectively are the instantaneous zero-, positive-, and neg-
ative-sequence components. It is interesting to note that zero sequence is a time-
varying real number, while the positive and negative sequences are vectors.
Consider the following set of balanced instantaneous voltages

va = Vm sin ω t , vb = Vm sin ω t− 120 , vc = Vm sin ω t + 120

Since va+ vb+ vc = 0, the zero-sequence vector for the balanced signals will be
zero. The positive sequence vector is

va1 =
1
3

va + avb + a2vc =
1
3

va −
1
2

vb + vc + j
3
2

vb − vc 2 9

Again since va+ vb+ vc = 0, we have

va −
1
2

vb + vc =
3
2
va =

3Vm

2
sinω t

3
2

vb − vc =
3
2

Vm sin ω t− 120 − sin ω t + 120

= −
3
2

Vm − 2 cosω t ×
3
2

= −
3Vm

2
cosω t

Substitution of the above two equations in (2.9) yields

va1 =
Vm

2
sinω t− j cosω t 2 10

The negative sequence vector is

va2 =
Vm

3
va + a2vb + avc =

Vm

3
va −

1
2

vb + vc + j
3
2

vc − vb
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This can be simplified as

va2 =
Vm

2
sinω t + j cosω t 2 11

Comparing (2.10) with (2.11), it can be observed that va2 is the complex conju-
gate of va1 and both these vectors have a magnitude of Vm/2. Table 2.1 lists the
values of these vectors for one fundamental cycle, where the frequency is chosen
as 50 Hz (it can be 60 Hz as well). The rotation of these two vectors over one fun-
damental frequency is shown in Figure 2.1 for Vm = 1. The positive sequence vec-
tor starts from 0.5 ∠−90 at time t = 0 and moves in the counterclockwise
direction, while the negative sequence vector starts its rotation in the clockwise
direction from 0.5 ∠ 90 .
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Figure 2.1 Trace of (a) a positive sequence and (b) a negative sequence over a cycle for a
balanced system.

Table 2.1 Values of the sequence vectors over a fundamental cycle.

ωt (in deg) va1 va2

0 0.5Vm∠−90 0.5Vm∠ 90

90 0.5Vm∠ 0 0.5Vm∠ 0

180 0.5Vm∠ 90 0.5Vm∠−90

270 0.5Vm∠ 180 0.5Vm∠ 180
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Example 2.3 Let us now consider what happens when the system is unbalanced.
For this, the following instantaneous voltages are chosen

va = sin ω t , vb = 0 5 sin ω t− 110 , vc = 1 5 sin ω t + 100

The traces of the two vectors are shown in Figure 2.2. They are not circles, but
ellipses. However, these vectors are still complex conjugate of each other, and their
directions of rotation are the same as those of the vectors in the balanced system.
Obviously, the zero sequence will not be zero in this case since va+ vb+ vc 0.

2.2.1 Estimating Symmetrical Components from Instantaneous
Measurements

Let us define a set of unbalanced phasor voltages as

Va =
Vma

2
ejφa ,Vb =

Vmb

2
ejφb ,Vc =

Vmc

2
ejφc

The phasor symmetrical components of these quantities are then written from
(2.2) as

Va0

Va1

Va2

=
1

3 2

Vma ejφa + Vmb ejφb + Vmc ejφc

Vma ejφa + a Vmb ejφb + a2 Vmc ejφc

Vma ejφa + a2 Vmb ejφb + a Vmc ejφc

2 12
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Figure 2.2 Trace of (a) a positive sequence and (b) a negative sequence over a cycle for an
unbalanced system.
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The instantaneous values of the phasor voltages given by

va = Vma sin ωt + φa , vb = Vmb sin ωt + φb , vc = Vmc sin ωt + φc

The phasor symmetrical components will now be estimated from the instanta-
neous measurements of the voltages of the three phases.
Let us first consider the zero sequence. The instantaneous zero sequence can be

written from (2.8) as

va0 =
1
3

Vma sin ωt + φa + Vmb sin ωt + φb + Vmc sin ωt + φc

2 13

The zero-sequence voltage va0 is now multiplied with e− j ωt− 90 , and the prod-
uct is averaged over a time period T0 to form

xa0 =
1
T0

T0

0

va0e
− j ωt− 90 dt =

1
T0

T0

0

va0 sinωt + j cosωt dt 2 14

Substituting (2.13) in the above equation, we get

xa0 =
1

3T0

T0

0

Vma sin ωt + φa + Vmb sin ωt + φb

+ Vmc sin ωt + φc sinωt + j cosωt dt 2 15

Now consider the following terms

Vma sin ωt + φa sinωt =
Vma

2
cos φa − cos 2ωt + φa

j Vma sin ωt + φa cosωt = j
Vma

2
sin φa + sin 2ωt + φa

If these two terms are integrated over half a fundamental cycle (i.e. T0 = 0.01 sec-
onds for fundamental frequency of 50 Hz), the double frequency components will
be zero. Therefore, adding these two terms and integrating over half a fundamental
cycle, the following expression is obtained

Vma

T0

0

sin ωt + φa sinωt + j cosωt dt = T0
Vma

2
cos φa + j sin φa

= T0
Vma

2
e jφa 2 16

In a similar way, the following expressions can be written for the other two
phases
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Vmb

T0

0

sin ωt + φb sinωt + j cosωt dt = T0
Vmb

2
ejφb

Vmc

T0

0

sin ωt + φc sinωt + j cosωt dt = T0
Vmc

2
ejφc

2 17

Therefore substituting (2.16) and (2.17) in (2.15), we have

xa0 =
1
3

Vma e
jφa + Vmb e

jφb + Vmc e
jφc 2 18

Comparing (2.18) with the first row of (2.12), we get

Va0 = 2xa0 2 19

The instantaneous positive sequence is given from (2.8) as

va1 =
1
3

Vma sin ωt + φa + a Vmb sin ωt + φb + a2 Vmc sin ωt + φc

2 20

In the same fashion as (2.14), xa1 is defined as

xa1 =
1
T0

T0

0

va1e
− j ωt− 90 dt =

1
T0

T0

0

va1 sinωt + j cosωt dt 2 21

Now since both a and a2 are complex numbers and are independent of t, the
same procedure as before is followed to write

xa1 =
1
3

Vma e
jφa + a Vmb e

jφb + a2 Vmc e
jφc 2 22

Comparing (2.22) with the second row of (2.12), we get

Va1 = 2xa1 2 23

For the negative sequence, xa2 is given by

xa2 =
1
T0

T0

0

va2e
− j ωt− 90 dt =

1
T0

T0

0

va2 sinωt + j cosωt dt 2 24

This can then be expressed as

Va2 = 2xa2 2 25
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The numerical computations for the sequence component estimation are per-
formed in a digital computer using a fixed sampling frequency. First, from the
measurements of the instantaneous voltages (or currents), the instantaneous
sequence components are computed at each sampling instant from (2.8). Then
the integrals (2.14), (2.21), and (2.24) are computed. One easy way of computing
them is to use a moving average filter (MAF). The time window for the MAF is
chosen as half a cycle, i.e. T0 = 0.01 seconds. This is then divided into N number
of equally spaced samples. The integrals are then the average of the N samples. In
anMAF, the samples are stored in an array. Once a new sample arrives, it is placed
as the first element of the array, while the other elements are shifted down and the
Nth element is discarded. Thus, at any given time, only the latest N elements are
stored in the array. AnMAF has a fast settling time of 0.01 seconds. Alternatively, a
lowpass filter (LPF) can also be used, which will have a slower settling time.

Example 2.4 Let us consider the set of voltages of Example 2.1. The instantane-
ous voltages are

va = 100 2 sin ωt + 10 , vb = 110 2 sin ωt− 120 ,

vc = 90 2 sin ωt + 120

where the fundamental frequency is chosen as 50 Hz, i.e. ω= 100π rad/s. The pha-
sor sequence components of these are computed in Example 2.1. Figure 2.3 shows
the estimated magnitudes and phases of the sequence components. It can be seen
that they are the same as those given in Example 2.1. These values are then used in
inverse transformation to obtain the phasor values of the three phases. These are
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Figure 2.3 Estimated (a) magnitude and (b) phase of the phasor sequence components.
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then used to recreate the instantaneous waveforms using inverse symmetrical
component transform. Figure 2.4 shows the estimated and actual waveforms.
The output of the MAF is zero till the buffer is full until half a cycle is complete.
Thereafter, the estimated waveforms coincide with the actual waveforms.

Example 2.5 Let us consider the instantaneous voltages of Example 2.4. It has
been assumed that these waveforms are corrupted by 3rd, 5th, 7th, 9th, and 11th
harmonics with their magnitude being inversely proportional to their harmonic
numbers. The symmetrical components are estimated with a time window (T0)
of a half a cycle, i.e. 10 ms. Figure 2.5 shows the instantaneous distorted waveforms
and the corresponding fundamental waveforms that are recreated from the esti-
mated sequence components. Comparing these with those in Figure 2.4, it is obvi-
ous that the fundamental waveforms are the same for both the cases.
Note that, in Example 2.5, only odd harmonics are considered. Since they have a

quarter-wave symmetry, their average over half a cycle is zero. Therefore, T0 can be
chosen as 10ms. However, if the signals contained both even and odd harmonics
or just even harmonics, theMAFwindowwill have to be a full cycle (T0 = 20ms) to
eliminate both even and odd harmonics.
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Figure 2.4 Estimated and actual waveforms for the three phases.
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2.2.2 Instantaneous Real and Reactive Power

Let us define a set of three-phase voltages and currents as

vabc =

va
vb
vc

, iabc =

ia
ib
ic

Then the instantaneous real power is given by the dot product of these two
vectors

p = vabc iabc = vTabciabc = vaia + vbib + vcic 2 26

The instantaneous reactive power is defined as the cross product of these two
vectors [5]

qabc = vabc × iabc =

qa
qb
qc

=

vb vc

ib ic

vc va

ic ia

va vb

ia ib

2 27
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Figure 2.5 Estimated fundamental and actual distorted waveforms for the three phases.
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The instantaneous reactive power can then be given as the algebraic sum of qa,
qb and, qc as

q = −
qa + qb + qc

3
2 28

The expression of (2.28) retains the polarity of the reactive power. It is also possible
to express the real and reactive power in terms of the instantaneous symmetrical
components [4]. These are not discussed here.
Let us suppose a voltage V∠ 0 supplies a current I∠ δ. Then the complex power

is defined by

S = P + jQ = V I δ ∗ = VI − δ = VI cos δ− j sin δ

This implies that the reactive power is negative if the current leads the voltage
(δ> 0), while it is positive when the voltage leads the current (δ< 0).
Equation (2.28) preserves the sign notation.

Example 2.6 Let us consider a set of balanced voltages and currents, given by

va =V 2sin ωt , vb =V 2sin ωt−120 , Vc =V 2sin ωt+120

ia= I 2sin ωt−ϕ , ib= I 2sin ωt−120 −ϕ , ic= I 2sin ωt+120 −ϕ

Then, from (2.26), the instantaneous power is given by

p = 2VI sin ωt sin ωt−ϕ + sin ωt− 120 sin ωt− 120 −ϕ

+ sin ωt + 120 sin ωt + 120 −ϕ

Noting that

sinA sinB =
cos A−B

2
−

cos A + B
2

we can write

p=VI 3cos −ϕ − cos 2ωt−ϕ − cos 2ωt−120 −ϕ − cos 2ωt+120 −ϕ

=3VI cosϕ= Pav

This implies that the instantaneous power is equal to the average power in a bal-
anced three-phase circuit.
Now, qa in (2.27) is expressed in terms of the voltages and currents as

qa =2VI
sin ωt−120 sin ωt+120

sin ωt−120 −ϕ sin ωt+120 −ϕ

=2VI sin ωt+120 −ϕ sin ωt−120 − sin ωt−120 −ϕ sin ωt+120
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This can be simplified as

qa = VI cos 240 −ϕ − cos 2ωt−ϕ − cos − 240 −ϕ + cos 2ωt−ϕ

= VI cos 240 −ϕ − cos 240 + ϕ = − 3VI sinϕ

Following the same procedure, we can compute the reactive power for the other
two phases and can verify that qa= qb= qc for a balanced circuit. Then the reactive
power is computed from (2.28) as

q = 3VI sinϕ = Qav

Therefore, the instantaneous reactive power is also the average reactive power.
To see what happens in the case of voltage unbalance, let us define

Va = 1 kV,Vb = 1 − 120 kV,Vc = 1 120 kV

Ia = 15 θ A, Ib = 10 − 120 + θ A, Ic = 20 120 + θ A

where θ is chosen as ±30 . Then the average complex power VaI∗a + VbI∗b + VcI∗c
is given by

38 97 + j22 5 × 103 for θ = − 30

38 97− j22 5 × 103 for θ = +30

This means pav = 38.97 kW for both power factor angle and qav = 22.5 kVAr
when θ = − 30 (lagging current) and qav= − 22.5 kVAr when θ = +30 (leading
current). Figure 2.6 shows the instantaneous real and reactive power, where their
averages are also shown. The instantaneous quantities oscillate at double the

Active Power (kW)

Reactive Power (kVAr) for θ = – 30°

Reactive Power (kVAr) for θ = + 30°

(a)
50

40

30
0.005 0.01 0.015 0.02 0.025 0.03

Instantaneous Average

0.035 0.040

30

20

10
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

–10

–20

–30

0.005 0.01 0.015 0.02

Time (s)

0.025 0.03 0.035 0.040

(b)

(c)

Figure 2.6 Instantaneous real and reactive power. (a) Active power, (b) reactive power
for θ = −30 and (c) reactive power for θ = +30 .
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fundamental frequency (100 Hz) around the average values calculated above. In
fact, these quantities can be written as

p = pav + posc
q = qav + qosc

where the subscript “osc” denotes the double frequency oscillating components.

2.3 Harmonics

Harmonics cause distortion in voltages and currents. These are waveforms that are
integer multiples of the fundamental frequency that are impressed on the funda-
mental frequency waveform. In addition, there may be interharmonics, which are
noninteger multiples of the fundamental frequency. Interharmonics that have fre-
quency components below the fundamental frequency are termed subharmonics.
Our subsequent discussion is restricted to integer harmonics. Chapter 11 covers
the effects of harmonics and their standards in detail.
The rise in the use of power electronic converters and the increasing use of

power factor correction capacitors has caused a general rise in the level of harmo-
nics. Harmonics in a power system can increase losses, reduce equipment life,
interfere with protection and communication circuits, and reduce the lifetime
of appliances. There are several other effects of harmonics that are discussed in [4].
Harmonics in a circuit is usually defined in terms of total harmonic distortion

(THD). This is defined as

THD =

∞

n = 2
V 2

n

V 1
2 29

where Vn is the magnitude of the nth harmonic component and V1 is magnitude of
the fundamental voltage. Based on IEEE or IEC standards, THD is measured up to
the 40th or the 50th harmonics.

Example 2.7 Consider a distorted voltage waveform, given in per unit (pu) as

v= sin ωt +
1
3
sin 3ωt +

1
5
sin 5ωt +

1
7
sin 7ωt +

1
9
sin 9ωt +

1
11

sin 11ωt

The voltage waveforms (distorted and fundamental) and the harmonic spectrum
of the distorted waveform are shown in Figure 2.7. The THD of the waveform is
given by
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THD =
1
3

2
+ 1

5
2
+ 1

7
2
+ 1

9
2
+ 1

11
2

1
= 0 4383

In other words, the THD is 43.83%.
The problemwith the definition of THD given in (2.29) is that it becomes infinity

if no fundamental waveform is present. To avoid this problem, an index called the
distortion index (DIN) (or distortion factor) is used, which is defined as

DIN =

∞

n = 2
V 2

n

∞

n = 1
V 2

n

2 30

Comparing (2.29) with (2.30), we can write

DIN =
THD

1 + THD2

THD =
DIN

1−DIN2

2 31
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Figure 2.7 (a) Distorted voltage waveform and (b) its harmonic spectrum.
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Continuing with Example 2.7, the DIN is computed as

DIN =
1
3

2
+ 1

5
2
+ 1

7
2
+ 1

9
2
+ 1

11
2

1 + 1
3

2
+ 1

5
2
+ 1

7
2
+ 1

9
2
+ 1

11
2
= 0 4015

It can be easily verified that that THD and DIN obey the relations of (2.31).

2.4 Clarke and Park Transforms

In this section, we discuss two transform methods that are used in power systems
extensively: Clarke and Park transforms. Their interdependence is also discussed.

2.4.1 Clarke Transform

Let us consider a set of three-phase voltages, va, vb, and vc. These voltages can be
converted from abc- to αβγ-frame by Clarke transform as

vα
vβ
vγ

=
2
3

1 −
1
2

−
1
2

0
3
2

−
3
2

1
2

1
2

1
2

va
vb
vc

2 32

where vγ is the zero-sequence component, which is zero for balanced voltages. Let
us consider a set of balanced voltages, given by

va = Vm sin ω t , vb = Vm sin ω t− 120 , vc = Vm sin ω t + 120

Substituting these in (2.32), we get

vα =
2Vm

3
sin ω t − 0 5 sin ω t− 120 − 0 5 sin ω t + 120

=
2Vm

3
sin ω t + 0 5 sin ω t = Vm sin ω t

2 33

vβ =
Vm

3
sin ω t− 120 − sin ω t + 120 =

Vm

3
− 2 cos ω t sin 120

= −Vm cos ω t = Vm sin ω t− 90

2 34

vγ =
Vm

3
sinωt + sin ω t− 120 + sin ω t + 120 = 0 2 35
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The graphical representation of the α-β transform is shown in Figure 2.8a, in
which the α-axis is aligned with the a-axis and the β-axis lags the a-axis by 90 .
The inverse Clarke transform is given by

va
vb
vc

=

1 0 1

−
1
2

3
2

1

−
1
2

−
3
2

1

vα
vβ
vγ

2 36

Example 2.8 Consider the following set of voltages

va = Va sin ω t + φa , vb = Vb sin ω t + φb , vc = Vc sin ω t + φc

The voltage magnitudes are chosen as Va = 100 V, Vb = 90 V, and Vc = 110 V,
while the angles are selected as φa = 0 , φb = − 120 , and φc = 120 . The Clarke
transformed voltages are shown in Figure 2.9a. It can be seen that the zero-
sequence component is not zero here, and oscillates at 50 Hz with a maximum
voltage of 5.77 V. From these voltages, the original waveforms are recovered using
the inverse Clarke transform, which are shown in Figure 2.9b.

2.4.2 Park Transform

A set of voltages in the a-b-c plane can be converted into dq components using the
transformation matrix

vdvq

va

vc

vb

vα vα

vβ vβ

va

θ

(a) (b)

a-axis a-axis

Figure 2.8 (a) Clarke and (b) Park transform of a balanced three-phase voltage.
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vd

vq

v0

=
2
3

sin θ sin θ− 120 sin θ + 120

cos θ cos θ− 120 cos θ + 120

1
2

1
2

1
2

va

vb

vc

vdq0 = Tvabc

2 37

where θ = ωt+ δ is the angle between the rotating and fixed frames at time t and δ
is the initial phase shift of the voltage. This is graphically shown in Figure 2.8b. The
inverse transform is

va

vb

vc

=

sin θ cos θ 1

sin θ− 120 cos θ− 120 1

sin θ + 120 cos θ + 120 1

vd

vq

v0

vabc = T− 1vdq0

2 38

2.4.3 Real and Reactive Power

Consider a set of balanced voltages, given by

va = Vm sin ω t , vb = Vm sin ω t− 120 , vc = Vm sin ω t + 120

vα

va vb vc

vβ vγ
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Voltages using Clarke Transform (V)

Voltages Recovered using Inverse Clarke Transform (V)

Time (s)

(a)
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Figure 2.9 (a) Clarke and (b) inverse Clarke transform of unbalanced voltages.
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Let us also align the dq reference with the synchronous reference frame,
i.e. θ = ωt. Then from (2.37), we have

vd
vq
v0

=
2Vm

3

sin θ sin θ−120 sin θ+ 120

cos θ cos θ−120 cos θ+ 120
1
2

1
2

1
2

sin θ

sin θ−120

sin θ + 120

=

Vm

0

0

2 39

Therefore, d-axis and q-axis voltage can be written respectively as vd = Vm and
vq = 0. Consider now a set of balanced currents, given by

ia = Im sin ωt−φ , ib = Im sin ωt−120 −φ , ic = Im sin ωt+120 −φ

Again assuming θ = ωt, d–q–0 axis current can be given by

id

iq

i0

=
2Im
3

sin θ sin θ−120 sin θ+120

cos θ cos θ−120 cos θ+120

1
2

1
2

1
2

sin θ−φ

sin θ−120 −φ

sin θ+120 −φ

=

Im cos φ

− Im sin φ

0

2 40

We thus have id = Im cos(φ) and iq = − Im sin(φ).
In the three-phase balanced circuit with the currents and voltages defined above,

the rms voltage and current are Vm 2 and Im 2 respectively. Then the real
and reactive power are given respectively by

P =
3
2
VmIm cos φ

Q =
3
2
VmIm sin φ

With the d-axis- and q-axis voltages and currents obtained from (2.39) and (2.40),
the real and reactive power can be written as

P =
3
2
vdid

Q = −
3
2
vdiq

2 41
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In general, however, when δ 0, we have

vd = Vm cos δ , vq = −Vm sin δ

id = Im cos δ−φ , iq = − Im sin δ−φ

Then the real and reactive power are

P =
3
2

vdid + vqiq

Q = −
3
2

vdiq − vqid

2 42

2.4.4 Analyzing a Three-phase Circuit

Consider the simple radial system shown in Figure 2.10. The differential equations
governing the circuit are

dia
dt

= −
R
L
ia +

1
L

vSa − vRa

dib
dt

= −
R
L
ib +

1
L

vSb − vRb

dic
dt

= −
R
L
ic +

1
L

vSc − vRc

2 43

Taking inverse dq0 transform of (2.38), the three equations given in (2.43) can be
combined as

d
dt

T− 1idq0 = −
R
L
T− 1idq0 +

1
L
T− 1 vSdq0 − vRdq0

d
dt

T− 1 idq0 + T− 1 d
dt

idq0 = −
R
L
T− 1idq0 +

1
L
T− 1 vSdq0 − vRdq0

d
dt

idq0 = −T
d
dt

T− 1 idq0 −
R
L
idq0 +

1
L

vSdq0 − vRdq0

2 44

Let us assume θ = ωt. Then, taking time derivative of T−1 in (2.38), we have

ia

ib

ic

LR

LR

LR

vRa
+

+

+

vSa

vSb

vSc

+

+

+

vRb

vRc

Figure 2.10 A simple radial system.
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T
− 1

= ω

cos ωt − sin ωt 0

cos ωt− 120 − sin ωt− 120 0

cos ωt + 120 − sin ωt + 120 0

Therefore

TT
− 1

=
2ω
3

sin ωt sin ωt− 120 sin ωt + 120

cos ωt cos ωt− 120 cos ωt + 120

1
2

1
2

1
2

cos ωt − sin ωt 0

cos ωt− 120 − sin ωt− 120 0

cos ωt + 120 − sin ωt + 120 0

The solution of the above equation is

TT
− 1

=

0 −ω 0

ω 0 0

0 0 0

2 45

Hence (2.44) is rewritten using (2.45) as

d
dt

idq0 =

−
R
L

ω 0

−ω −
R
L

0

0 0 0

idq0 +
1
L

vSdq0 − vRdq0 2 46

Example 2.9 Consider the circuit of Figure 2.10, where the system is assumed to
be balanced. The parameters are

VSa =
11

3
30 kV,VRa =

11

3
0 kV,R = 2 42 Ω,L = 77mH

Using phasor analysis, the three-phase real power is computed as 2.54 MW and
the reactive power is computed as 0.41 MVAr. Then two different sets of simula-
tions are performed. These are:

•Method 1: The instantaneous three-phase system of (2.43) is simulated in
MATLAB®. Once the line currents are computed, the instantaneous real power
is computed from (2.26) and the reactive is computed using (2.28). These are
shown in Figure 2.11a,b.
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• Method 2: The instantaneous sending and receiving end voltages are then trans-
formed into dq-domain. The system is then simulated using (2.46). The instan-
taneous real and reactive power are then obtained using (2.41). The results are
shown in Figure 2.11c,d. Comparing Figure 2.11a with Figure 2.11c, and
Figure 2.11b with Figure 2.11d, it can be stated that both these methods yield
the same results. Specifically, the steady state the real power is identical for both
the methods. Similarly, the reactive power is also identical.

2.4.5 Relation Between Clarke and Park Transforms

To determine a relationship between Clarke and Park transforms, we define

θ = tan−1 vβ
vα

2 47

Then from Figure 2.8b, we can write

vd
vq
v0

=

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

vα
vβ
vγ

2 48
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Figure 2.11 Simulation results of the circuit of Figure 2.10 using instantaneous and
dq-domains. (a) Real power in abc-frame, (b) reactive power in abc-frame, (c) Real power
in dq-frame, (d) reactive power in dq-frame.
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Example 2.10 Let us consider a set of balanced voltages with a peak voltage
Vm = 100 V. The system frequency is assumed to be 50 Hz. The αβ components
are plotted in Figure 2.12a. These components vary sinusoidally, where vα is
aligned with va. From these values, the angle θ is computed using the “atan2” func-
tion in MATLAB® (Version 2021a). This is shown in Figure 2.12b. Note that it var-
ies between−180 and 180 in 20 ms. Alternatively, if the “atan” function is used θ
will vary between −90 and 90 in 10ms. This would have given an erroneous
result. The dq components are shown in Figure 2.12c. It can be seen that vd is a
constant and equal toVm, while vq is 0, as expected.When the signals are sinewave,
then the q-axis component is zero, whereas for cosine wave signals the d-axis com-
ponent is zero. However, in general, both the d- and the q-axis components are DC.
This is an advantage from the point of control system design.

2.5 Phase Locked Loop (PLL)

The basic aim of a phase locked loop (PLL) is to make a signal to track another.
A typical schematic diagram of a PLL is shown in Figure 2.13. Here the aim is to
keep the output signal x0 synchronized with the input signal xi both in terms of
frequency and phase. The PLL, shown in Figure 2.13, contains a phase detector
(PD), an LPF, and a voltage-controlled oscillator (VCO).

(a)

(b)

(c)
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vd vq

Figure 2.12 (a) αβ components, (b) the angle θ, and (c) dq components of a balanced
system.
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Let the input reference (xi) and output (x0) signals be given by

xi t = A sin ωit + δi

x0 t = B sin ω0t + φ0

2 49

These two signals have a phase difference. The accuracy of PLL is defined by its
ability to detect the phase difference between two signals. The information about
the error in the phase difference between the two signals is then used to control the
frequency of the loop. If the two sinewaves of (2.49) are normalized to pu values
and are plotted on the same graph, the following three different behaviors can be
observed:

• If the zero-crossings of the two signals coincide all the time, then they have the
same frequency and phase.

• If the zero-crossings occur at fixed time differences in every cycle, then the sig-
nals are not in phase, but their frequencies are the same.

• If the zero-crossings’ time differences between the signals vary continuously,
then the signals do not have the same frequency and/or phase.

The reference signal and the output of the VCO are fed to the phase detector. The
error signal ve from the PD passes through the LPF to remove any high-frequency
elements from the error. The output of the LPF is fed to the VCO, which tries to
reduce the phase difference between the signals and hence between the frequen-
cies. Initially, the loop will be out of the lock, and the error voltage will pull the
frequency of the VCO toward that of the reference, until it cannot reduce the error
any further and the loop is locked. When the phase is locked, a steady state error
voltage is produced. By using an amplifier between the PD and the VCO, the actual
error between the signals can be reduced to very small levels. However, some volt-
age must always be present at the control terminal of the VCO as this is what pro-
duces the correct frequency.

2.5.1 Three-phase PLL System

The block diagram of the three-phase PLL system is shown in Figure 2.14, where

the voltages va, vb, and vc are measured from a utility bus. The estimated angle θ

Figure 2.13 Schematic diagram of a PLL.
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needs to be synchronized with the utility voltage angle θ. Let us assume that the
input (utility) voltages are balanced and are given by

vabc =

va
vb
vc

= Vm

sin θ

sin θ− 120

sin θ + 120

2 50

These voltages are then converted to an αβ-frame to obtain the vector vαβ =
[vα vβ]

T using (2.32). These are then converted into dq-axis quantities by the

estimated angle θ using [6]

vd
vq

=
cos θ sin θ

− sin θ cos θ

vα
vβ

= Tdq θ vαβ 2 51

Combining (2.32) and (2.50) with (2.51) we have

vdq =
2Vm

3
Tdq θ

1 −
1
2

−
1
2

0
3
2

−
3
2

sin θ

sin θ− 120

sin θ + 120

= Vm
cos θ sin θ

− sin θ cos θ

sin θ

− cos θ

Of particular interest is the d-axis voltage, which can be written from the above
equation as

vd = Vm cos θ sin θ− sin θ cos θ = Vm sin θ− θ = Vm sin φ 2 52

where φ = θ− θ.

The main aim is to force φ to zero such that the difference between θ and θ
asymptotically tends to zero. This can be achieved when vd is equal to zero. Thus,
it is compared with 0 and then the difference is passed through a loop filter with a
transfer function of Kf (s). The output of the loop filter is fed into the VCO, which is

an integrator. The output of the VCO is the estimated angle θ. It is to be noted that

Figure 2.14 Block diagram of a three-phase PLL.
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this angle is to be restricted between 0 and 2π (i.e. between 0 and 360 ). Thus, the
integrator is reset every time it reaches 2π, as is indicated in Figure 2.14.

Assuming φ = θ− θ≈ 0, (2.52) is linearized as

Δvd = Vmφ 2 53

Also, from Figure 2.14, the estimated angular frequency is given by

ω =
dθ
dt

= KfΔvd 2 54

The linearized block diagram of the PLL system is shown in Figure 2.15. The
loop filter is a proportional plus integral controller of the form

Kf s =
sKP + KI

s
2 55

where KP and KI respectively are the proportional and integral gains. The closed-
loop transfer function is then given by

θ s
θ s

=
Vm sKP + KI

s2 + VmKPs + VmKI
2 56

Example 2.11 Consider a set of balanced voltages, given by

va = Vm sin ω t , vb = Vm sin ω t− 120 , vc = Vm sin ω t + 120

where Vm= 9 kV. The frequency at the beginning is 49 Hz and is changed to 51 Hz
at 0.5 seconds. From the measurement of these instantaneous voltages, we need to
produce current references that are given by

ia = Im sin ωt+ϕ , ib = Im sin ωt+ϕ−120 , ic = Im sin ωt+ϕ+120

where the power factor angle is chosen as ϕ= − 90 and Im is the magnitude of the
current, which is taken as 3 kA. Note that the PLL output angle θ = ωt. Therefore,
the currents for the three phases are obtained as

ia = Im sin θ− 90 , ib = Im sin θ− 210 , ic = Im sin θ + 30

ω (s)
Loop Filter

θ (s) θ (s)
φ (s)+

–

1
s

KfVm

VCO

Figure 2.15 Linearized block diagram of the three-phase PLL.
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The proportional gain KP is chosen as 8, while the integral gain KI is 1000. The
results are shown in Figure 2.16, where the phase-a voltage, current, and the esti-
mated frequency can be seen. It is obvious that the current waveform lags the volt-
age waveform by 90 , while the frequency change is tracked accurately. It can also
be seen that the output frequency reflects the change in the input frequency.

2.5.2 PLL for Unbalanced System

The three-phase PLL system discussed in Section 2.5.1 is valid for balanced sys-
tems. Consider now a set of unbalanced voltages, given by

vabc =

va
vb
vc

=

Vma sin ωt + φa

Vmb sin ωt + φb − 120

Vmc sin ωt + φc + 120

2 57

where Vma Vmb Vmc, φa φb φc, and ω is an unknown frequency. Obvi-
ously, the derivations presented in Section 2.5.1 will not be valid. However, even
if the signals are unbalanced, they have the same frequency. Therefore, we will
synthesize a balanced three-phase waveform from the signal of one of the three
phases.
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Figure 2.16 PLL performance: (a) reference voltage, (b) synthesized current, and (c) output
frequency.
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From (2.57), phase-a voltage is given by

va = Vma sin ωt + φa

From this voltage, the voltages of the other two phases that have the same mag-
nitude and are phase displaced by 120 from each other will be estimated. These
balanced estimated voltages can then be used in the algorithm given in
Section 2.5.1. The derivative of the voltage va is given as

λ =
dva
dt

=
Vma

ω
cos ωt + φa 2 58

Then the estimates of the other two phases are

vb = Vma sin ω t + φa − 120

= Vma sin ω t + φa cos 120 −Vma cos ω t + φa sin 120

= −
1
2
va −

3
2

ωλ

2 59

vc = Vma sin ω t + φa + 120 = −
1
2
va +

3
2

ωλ 2 60

The block diagram of the PLL is shown in Figure 2.17. Note that the term ω in
(2.58) can be chosen as the fundamental frequency. This will result in a negligible
error in the computation of λ provided that system frequency does not have a large
deviation from the fundamental frequency.

Example 2.12 Consider a set of unbalanced voltages, given by

va = 9 sin ω t kV, vb = 8 sin ω t− 120 kV, vc = 10 sin ω t + 120 kV

The frequency at the beginning is 49 Hz and is changed to 51 Hz at 0.5 seconds.
We must produce a set of balanced current references of peak magnitude of 3 kA,
while the phase-a of the current is in phase with phase-a of the measured voltage.
The results are shown in Figure 2.18, where the synthesized current is in phase
with the phase-a voltage. The frequency, however, has more ripple than that

Figure 2.17 Block diagram of a PLL for unbalanced voltages.
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observed in Figure 2.16. The assumption that ω in (2.59) and (2.60) is the funda-
mental frequency is the cause of these ripples.

2.5.3 Frequency Estimation of Balanced Signal Using αβ Components

Consider a set of balanced supply voltages, given by

va = Vm sin ω t , vb = Vm sin ω t− 120 , vc = Vm sin ω t + 120

where both the magnitude Vm and frequency ω are unknown. The αβ components
of these voltage are denoted by vα and vβ respectively, while their angle is given
from (2.47) as θ = tan−1(vβ/vα).
Let us now define a set of balanced voltages with a known frequency as

va = sin ωs t , vb = sin ωs t− 120 , vc = sin ωs t + 120

where ωs is the synchronous frequency. The αβ components of these voltage are vα

and vβ respectively, while the angle is θ = tan−1 vβ vα . Let the angle error be

defined by εθ = θ − θ . This is shown in Figure 2.19a for Vm = 1000 V,
ω = 100.8π rad/s (i.e. 50.4 Hz) before 0.12 seconds, and ωs = 100π rad/s (50 Hz)
thereafter. It can be observed that the error keeps on increasing as time progresses.
We now design a proportional plus integral controller of the form

ρ = KPεθ + KI εθ dt 2 61
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Figure 2.18 Performance of PLL for unbalanced signals: (a) reference voltage and
synthesized current and (b) output frequency.
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The frequency estimate is then given by

ω = ωs + ρ rad s 2 62

The frequency of the supply voltage is changed from 50.4 to 49.2 Hz at 0.12 sec-
onds. The controller gains are chosen as KP = KI = 1. Figure 2.19b shows the out-
put ρ of the proportional plus integral (PI) controller. It can be seen to have a
jump discontinuity when the frequency changes. Nevertheless, it has a fast set-
tling time. The estimated frequency that is shown in Figure 2.19c also has a small
settling time following the change in frequency. In this example it has been
assumed that the supply voltage and the synthesized voltage have the same
phase. The settling time of the frequency estimator can be considerably larger
when this is not true. The frequency detection scheme under unbalanced
conditions using Clarke’s transform is discussed in [7].

2.6 Concluding Remarks

In this chapter, various aspects of sinusoidal signals are discussed. We discuss how
system unbalance can be analyzed, how to estimate the symmetrical components,
Clarke and Park transforms, and PLL. In general, DC/AC converters may have to
work under unbalanced and/or distorted voltage conditions. Therefore, their
working principle under different conditions must be systematically analyzed.
The concepts discussed here can be used for the feedback control design of DC/
AC converters.
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Figure 2.19 Frequency estimation in αβ components: (a) angle error, (b) PI controller
output, and (c) estimated frequency.
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Problems

2.1 The voltage at the terminals of a balanced load consisting of three 10Ω resis-
tors connected in wye are Vab = 100 ∠ 0 , Vbc = 80.8 ∠−121.44 V, and
Vca = 90 ∠ 130 V, as shown in Figure P2.1. Determine a general expression
between the symmetrical components of the line and phase voltages that is
between Vab1 and Van1 and Vab2 and Van2. Assuming that the load neutral is
not connected with the source neutral n, find the current in phase-a from the
symmetrical components of the given voltages.

2.2 In the circuit shown in Figure P2.2, the open delta load is supplied by a bal-
anced three-phase supply. The value of the load impedance is Z= 18 + j10Ω.
Assume that the line-to-line supply voltage is Vab = 400 ∠ 0 V.
(a) Find the currents Iab and Ibc.
(b) Using the values calculated in (a), find Iab0, Iab1, and Iab2.
(c) Using the values of Iab0, Iab1, and Iab2 obtained in (b), find the sequence

components of the line current Ia0, Ia1, and Ia2.

Figure P2.1 Circuit of Problem 2.1.

Figure P2.2 Open delta circuit of Problem 2.2.
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2.3 Consider the wye-connected distribution system, the single line diagram of
which is shown in Figure P2.3. In this, a balanced load voltage supplies an
unbalanced load. The system parameters are:
Source voltage: Vs = 400 (L-L)
Feeder impedance: Zf = 0.08 + j0.04 Ω
Unbalanced wye-connected load: ZLa= 10 + j4.51Ω, ZLb= 8.5 + j3.83Ω, and

ZLc = 2+ j9 Ω
Determine the percentage VU of the load voltage VL.

2.4 Consider the circuit shown in Figure P2.4, in which a harmonically distorted
voltage source supplies a load. The system fundamental frequency is 50 Hz.
The instantaneous source voltage is given by

VS = 325 269 sin ω t +
sin 5ω t

5
+

sin 7ω t
7

V

Figure P2.3 Distribution system supplying unbalanced load of Problem 2.3.

Figure P2.4 Distribution system for VU calculation of Problem 2.4.
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The line and load impedances respectively are

ZS RS = 2 Ω, LS = 0 01 H, ZL RL = 10 Ω, LL = 0 5 H

The current IF draws a fundamental frequency current of 1.5 A with phase
angle of 0 . Find the THD of the load bus voltage.

2.5 The symmetrical component transform of (2.2) is rewritten as

Va0

Va1

Va2

= K

1 1 1

1 a a2

1 a2 a

Va

Vb

Vc

and

Ia0
Ia1
Ia2

= K

1 1 1

1 a a2

1 a2 a

Ia
Ib
Ic

Determine the value of K such that the transformation matrix is power
invariant, i.e.

S = VaI
∗
a + VbI

∗
b + VcI

∗
c = Va0I

∗
a0 + Va1I

∗
a1 + Va2I

∗
a2

2.6 Consider a set of balanced voltages, given by

va = 100 cos ω t , vb = 100 cos ω t− 120 , vc = 100 cos ω t + 120

Determine the d-axis and the q-axis component of the voltages.
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3

Review of SISO Control Systems

Many industrial processes can be controlled through a single input, which can be
used for controlling one specific output. Consider, for example a DC motor. The
speed of the motor can be controlled by controlling the armature voltage. Even
though there are other parameters in the motor circuit (e.g. mechanical torque),
the input–output relationship between armature voltage and output speed can be
written by a single linear ordinary differential equation (ODE). Systems that can be
adequately described by a single ODE are usually referred to as single-input,
single-output (SISO) systems in continuous-time domain. In this chapter, we
discuss the control of SISO systems. For control analysis and design, a SISO system
is represented by its transfer function, which is the ratio of the Laplace transform
of the output over the Laplace transform of the input, assuming the initial condi-
tions of the ODEs remain zero. Once a system is described by its transfer function,
we can analyze the system and synthesize its control using several tools that have
been formulated over the years. In the following, we present a review of these
techniques – starting with system pole-zero description, followed by time
response, Routh–Hurwitz’s stability analysis, root locus, frequency response
methods, the Nyquist stability criterion, and system gain and phase margins
(PMs). Basic control actions such as PID (proportional plus integral plus
derivative) and lag–lead compensators are also discussed.
A discrete-time control or digital control system is the basic backbone of indus-

trial control as most controllers are realized using microprocessors these days. In
this chapter, we introduce the basic concepts of digital control. A discrete-time sys-
tem is represented by a z-transform and difference equation. It is to be noted that
the control analysis techniques for both continuous time and discrete time are
essentially the same. We therefore do not discuss the digital control in detail here;
control design using the difference equations is covered in detail in Chapter 6.
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3.1 Transfer Function and Time Response

Consider a linear time system that is represented by the block diagram of
Figure 3.1, where Yr is the reference input and Y is the output. The open-loop
transfer function of the system is G(s)H(s). The transfer function of the closed-loop
system is given by

Y s
Yr s

=
G s

1 + G s H s
3 1

Note that, if H(s) = 1, then the system will be called a unity feedback system.
The characteristic equation of the system is given by

1 + G s H s = 0 3 2

It is essentially a polynomial in s. The stability of a system is governed by the roots
of the characteristic equation, which are also called the poles of the system.
A system is stable if all the poles are on the left half of the s-plane. If any of the
roots have a positive real part (i.e. any pole is on the open right-half s-plane),
the closed-loop system will be unstable. The system can be marginally stable if
simple poles are on the jω-axis, except at the origin. However, the system will
be unstable if there are multiple poles on this axis.

3.1.1 Steady State Error and DC Gain

Let the open-loop transfer function of the system be defined by

G s H s =
P s

sNQ s

where P(s) and Q(s) are polynomials in s and the system has N poles at the origin.
The system order is then equal to the total number of roots of the polynomial Q(s)
plus N, while the system type is defined by N. For example, the system will be
called Type-0 if N = 0 or Type-1 if N = 1, and so on.

Figure 3.1 Block diagram of a closed-loop
system.
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From Figure 3.1, the error equation is given by

E s = Yr s −H s Y s = Yr s −G s H s E s

=
Yr s

1 + G s H s
= Yr s

sNQ s
P s + sNQ s

3 3

The steady error is obtained from (3.3), where a systemwith a fixed reference input
will have a fixed error as time t tends to infinity, provided that the system is stable.
A system cannot have any steady state error if any of the poles are either on the
right-half s-plane or on the imaginary axis, except for the poles located at the ori-
gin. For a stable system, the steady state error can be determined using the final
value theorem of Laplace transform as

ess = lim
s 0

s ×
sNYr s Q s
P s + sNQ s

= lim
s 0

sN + 1Yr s ×
Q 0

P 0 + lim
s 0

sN × Q 0

3 4

Usually, the reference inputs are step, ramp, and parabolic. The steady
state error depends on the types of input and the system types, as listed in
Table 3.1.
The DC gain (Kdc) of a system is defined as the steady state output of the system,

when the input Yr(s) in (3.1) is a unit step, i.e.

yss = lim
t ∞

y t = lim
s 0

s
1
s

G s
1 + G s H s

=
G 0

1 + G 0 H 0
= Kdc 3 5

In a unity feedback system, the steady state error is zero when the DC
gain is 1.

Table 3.1 The steady state error depending on the system type for different inputs.

System type

Input Yr(s) type

Step (1/s) Ramp (1/s2) Parabolic (1/s3)

Type-0 (N = 0) Finite Infinite Infinite

Type-1 (N = 1) Zero Finite Infinite

Type-2 (N = 2) Zero Zero Finite

Type-3 or above (N≥ 3) Zero Zero Zero
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3.1.2 System Damping and Stability

Let us consider a second-order system that is traditionally written in the form of

Y s
Yr s

=
ω2
n

s2 + 2ξωns + ω2
n

3 6

where ωn is the undamped natural frequency of the system and ξ is the damping
ratio. Note that the systemwill have a DC gain of 1 when ξ> 0, i.e. the poles are on
the left half of the s-plane. In general, the system response will be governed by the
damping ratio ξ. The roots of the characteristic equation of the system are given by

s1,2 = − ξωn ± jωn 1− ξ2 3 7

In (3.7), the roots will have positive real parts when ξ is negative. This means a
negatively damped system is unstable. For non-negative values of the damping
ratio ξ, the system can be classified into the following four different categories:

• Undamped (or critically damped): when ξ = 0; the roots are on the imaginary
axis of the s-plane at ±jωn. Since there is no damping in the system, a sustained
oscillation occurs at the frequency ofωn, and therefore, it is called the undamped
natural frequency.

• Underdamped: when 0 < ξ< 1: the roots are at the locations given by (3.7). The
unit step response of the system is then given by

y t = 1−
e− ξωnt

1− ξ2
sin ωdt + tan − 1 1− ξ2

ξ
3 8

where ωd is the damped natural frequency of the system, given by

ωd = ωn 1− ξ2

From (3.8), it can be surmised that the system oscillates with a frequency ofωd and
the transient dies out faster as the damping ratio increases.

• Critically damped: when ξ= 1; both the roots are at the same location on the real
axis at−ωn. This means that the system will exponentially reach the steady state
of 1 for a unit step input.

• Overdamped: when ξ> 1; it can be seen from (3.7) that the system will have two
positive roots, both on the real axis. The system response will be sluggish.

Example 3.1 Consider a system of the form (3.6) with ωn = 9 rad/s. The input is
assumed to be a unit step. The system response is shown in Figure 3.2 for different
values of ξ. It is evident from Figure 3.2b that the system damping increases as the
damping ratio increases. Moreover, the system takes longer to attain the steady
state for the overdamped case.
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3.1.3 Shaping a Second-order Response

For a second-order system, the following terms are defined to quantify the system
response:

• Rise time: the time required for the system response to rise from 10 to 90% of its
final value.

• Settling time: the time required for the system response to attain the steady state.
Usually, the steady state here means that the response reaches and stays within
2% of its final value.

• Maximum (or peak) overshoot (MP): the maximum value the response curve
reaches when measured from unity. This is usually defined in terms of percent-
age by the formula

MP = e− ξ 1− ξ2 π × 100 3 9

• Peak time (tP): the time required for the response to reach its first peak (which is
usually the maximum overshoot). It is given by

tP =
π

ωd
3 10
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Figure 3.2 Step response of a second-order system: (a) undamped, (b) underdamped, and
(c) critically damped and overdamped.
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Example 3.2 Consider a simple RLC circuit containing a resistor, an inductor,
and a capacitor shown in Figure 3.3a. The transfer function of the system is given by

VC s
Vin s

=
1 LC

s2 + sRC LC + 1 LC
=

ω2
n

s2 + 2ξωns + ω2
n

where the undamped natural frequency and the damping ratio are given by

ωn =
1

LC
, ξ =

1
2

RC

LC
=

1
2
RCωn

We now choose the RLC parameter such that the system has the following
specifications:

• Undamped natural frequency: around 50 Hz

• Peak overshoot: around 20%.

The undamped natural frequency for 50 Hz is ωn = 100π = 314.1593 rad/s. If we
choose C = 500 μF, then L should ideally be

L =
1

Cω2
n
= 20 26 mH

Instead, we choose L = 20 mH. This will slightly change ωn to 316.23 rad/s or
50.33 Hz.
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Figure 3.3 (a) An RLC circuit and (b) its step response.

64 3 Review of SISO Control Systems



From (3.9), the peak overshoot is given as

0 2 = e− ξ 1− ξ2 π − 1 6094 = −
ξ

1− ξ2
π

Solving the above equation, we get ξ = 0.456. Therefore

R =
2ξ
Cωn

= 5 77Ω

Instead, we choose R = 5.5 Ω to have the following transfer function

VC s
Vin s

=
105

s2 + 275s + 105

This gives us the following:

• Damping ratio (ξ) = 0.435

• Peak overshoot (MP) = 21.94%

• Damped natural frequency (ωd) = 284.77 rad/s

• Peak time (tP) = 0.011 seconds.

The unit step response of the system is shown in Figure 3.3b. The peak time and
peak overshoot are the same as those calculated above.

3.1.4 Step Response of First- and Higher-order Systems

Consider the following first-order system

Y s
Yr s

=
1

sτ + 1
3 11

where τ is called the time constant of the system. When the reference input Yr is a
unit step, (3.11) is rewritten as

Y s =
1
s

1
sτ + 1

=
1
s
−

1
s + 1 τ

3 12

Taking the inverse Laplace transform of (3.12), we get

y t = 1− e− t τ 3 13

Note that when t = τ, y(t) is equal to 0.6321. Therefore, the time constant (τ) of the
system is defined as the time required by the system to reach 63.21% of its final
value. The smaller the time constant, the faster the time response. Figure 3.4 shows
the step response of the system of (3.11) with two different values of the time con-
stant. It can be seen that the system reaches the steady state faster when τ = 0.5 s.
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A third-order system can have three real roots or a real root and a pair of com-
plex conjugate roots, e.g.

Y s
Yr s

=
1

sτ + 1
ω2
n

s2 + 2ξωns + ω2
n

3 14

The transient response of such a system will depend on the relative position of
these roots. Consider, for example, a third-order system where the second-order
term has ωn = 9 rad/s and ξ = 0.1. The roots of the second-order polynomial
are located at −0.9 ± j8.955. The system response for two different values of τ is
shown in Figure 3.5. For τ = 1 s, the root of the first-order polynomial is at −1.
Hence it is close to the decaying term of the second-order poles, and thus the sys-
tem almost exhibits a critically damped response. On the other hand, when
τ = 0.2 s, the root of the first-order polynomial is at −5. Therefore, the system
response is dictated by the complex conjugate poles, resulting in an oscillatory
response, as in a second-order system. Since the system response is governed by
the closed-loop poles that are closest to the jω-axis, they are called the dominant
poles.

3.2 Routh–Hurwitz’s Stability Test

As mentioned in Section 3.1, the stability of a closed-loop system will depend on
the roots of the characteristic equation. Consider the characteristic equation

C s = sn + an− 1s
n− 1 + an− 2s

n− 2 + + a1s + a0 = 0 3 15
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Figure 3.4 Step response of a first-order system with two different values of time
constants.
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It is easy to evaluate the roots of the system usingMATLAB®with the “roots” com-
mand. From the perspective of checking the overall stability, Routh–Hurwitz’s cri-
terion has been losing prominence these days. However, from the design
perspective, it is still very useful. We briefly discuss this method in this section.
The first step is to determine if the polynomial C(s) is Hurwitz or not. The nec-

essary, but not sufficient, condition for the polynomialC(s) to be Hurwitz is that all
its coefficients should be positive and there must not be any zero coefficients
except for a0. If this condition is satisfied, the Routh’s table is constructed, which,
for (3.15), is of the form

sn 1 an− 2 an− 4

sn− 1 an− 1 an− 3 an− 5

sn− 2 α1 α2 α3

sn− 3 β1 β2

s0 a0

3 16

where

α1 =
an− 1an− 2 − an− 3

an− 1
, α2 =

an− 1an− 4 − an− 5

an− 1

β1 =
α1an− 3 − α2an− 1

α1
, β2 =

α1an− 5 − α3an− 1

α1

3 17
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Figure 3.5 Step response of a third-order system with two different values of τ.

3.2 Routh–Hurwitz’s Stability Test 67



From (3.16), the following statements can be made about the stability or instability
of the closed-loop system:

The system is stable if, and only if, all the elements of the first column are
positive, i.e. an− 1 > 0, α1 > 0, β1 > 0 . . .

• There are as many roots on the right-half s-plane as there are sign changes in the
first column.

Example 3.3 shows how Routh–Hurwitz’s criterion can be used for design.

Example 3.3 Consider a system, the open-loop transfer function of which is
given by

G s = K
s + 1 s + 2

s3 s + 5 s + 25

We shall determine the range of K for a stable operation of the system. The char-
acteristic equation of the system is

C s = s5 + 30s4 + 125s3 + Ks2 + 3Ks + 2K = 0

Then Routh’s table will be

s5 1 125 3K

s4 30 K 2K

s3
3750−K

30
90K − 2K

30
s2 α 2K

s1 β

s0 2K

where

α =

3750K −K2

30
−

30 × 88K
30

3750−K
30

=
1110K −K2

3750−K

β =
α
88K
30

− 2K
3750−K

30
α

To ensure that all the elements of the first column are positive, the following
conditions must be satisfied.From s0 row, K> 0.
From s3 row

3750−K
30

> 0 K < 3750
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1) If the above condition is satisfied, then α will be positive when

1110−K K > 0

Since K> 0, we have K< 1110.
Now β > 0 implies

β =
88K
30

−
2K
α

3750−K
30

> 0

=
1
30

88K − 2K
3750−K 2

1110K −K2 > 0

The above equation can be simplified as

− 90K2 + 112680K − 28125000 > 0

90K2 − 112680K + 28125000 > 0

The solution of the above quadratic equation is

K + 344 2625 K + 907 7375 < 0

The above equation is valid in the range 344.2625 < K< 907.7375.
Note that conditions (1–3) are also satisfied by condition (4). Now for

K = 344.2625, there is a complex conjugate pair at ± j2.98, indicating a
sustained oscillation at a frequency of 2.98 rad/s. Similarly, for K = 907.7375,
there is another set of complex conjugate pairs at ± j5.3, indicating a sustained
oscillation at this frequency as well. The behavior of this system is investigated
when we discuss root locus in Section 3.3.

3.3 Root Locus

The transient response of a closed-loop system is dictated by its closed-loop poles.
These poles are the roots of the characteristic equation. Sometimes the closed-loop
poles can be placed at certain desired locations by using a simple gain (propor-
tional control). Root locus is a plot of the system poles when this gain changes from
zero to infinity. Consider the characteristic equation

1 + KG s H s = 0

KG s H s = − 1
3 18

where K is the system gain. Eq. (3.18) gives the angle condition of

G s H s = ± 180 2k + 1 , k = 0, 1, 2,

G s H s = ± 180 , ± 540 , ± 900 ,
3 19
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and the magnitude condition of

KG s H s = 1 3 20

The root locus is a plot in the complex plane (s-plane) in which the values of s fulfill
the angle condition. The roots of the characteristic equation for a given value of
gain can be determined from the magnitude condition.
There are several rules for plotting a root locus. These rules were important

when they were plotted manually. With the current day availability of powerful
software tools like MATLAB®, most of these rules have become superfluous.
Therefore, only the most critical ones are discussed here. For more information,
readers should consult a textbook on the subject.

3.3.1 Number of Branches and Terminal Points

Consider an open-loop transfer function of the form

KG s H s = K
s + z1 s + z2 s + zm
s + p1 s + p2 s + pn

,n ≥ m 3 21

The characteristic equation is then given by

s + p1 s + p2 s + pn + K s + z1 s + z2 s + zm = 0 3 22

From (3.22) it can be surmised that when K is equal to zero the closed-loop poles
are equal to the open-loop poles. Since the root locus is a plot in which K changes
from 0 to∞, the starting point of any root locus is at the open-loop poles. Again, as
K ∞,m number of poles will terminate in the open-loop zeros. The rest n−m
number of poles will move to infinity. This is illustrated with the help of
Example 3.4.

Example 3.4 Let us consider an open-loop system with three poles and a zero,
given by

KG s H s = K
s + 5

s3 + 3s2 + 5s + 6

The poles are at −2, − 0.5 ± j1.66 and the zero is at −5. Now we choose a large
value of gain, say K = 1012. The characteristic equation is given by

s3 + 3s2 + 1012s + 5 × 1012 = 0

The roots of the characteristic equation are at −5, − 1 ± j106. From this it is
evident that one of the poles terminates at the system zero, while the other
two poles move toward infinity. The root locus is shown in Figure 3.6.
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From the above example, following can be concluded:

• There are as may branches of the root locus as there are open-loop poles.

• The root locus always starts at the open-loop poles.

Given that the open-loop system has m - zeros and n - poles, a total number of
m - loci terminates at the open-loop zeros.
The rest m− n number of loci asymptotically approaches infinity.

• The complex conjugate poles have a constant real component when they
approach infinity.

3.3.2 Real Axis Locus

The root locus on the real axis depends only on the poles and zeros on this axis. The
complex conjugate pairs of poles and zeros have no influence on the real axis locus.
Consider, for example, the partial root locus shown in Figure 3.7, in which three
points (A, B, and C) are identified on the real axis. The sum total of the angle con-
tributions of the complex conjugate poles all along the real axis is 0 (i.e. ϕ− ϕ) or
360 (i.e. ϕ− 360 − ϕ). These poles cannot have any contribution on the real axis
locus. Now consider the segment between points A and B. The angular contribu-
tion of the pole in point A is−180 , whereas the angular contribution of the pole at
C and the zero at B cancel out. Therefore, this segment will be on the real axis
locus. For the segment between points B and C, the angular contribution of the
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Figure 3.6 Root locus plot of the system of Example 3.4.
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pole in point A and the zero at B cancel out, whereas the angular contribution of
the pole at C is 0 , and hence this segment cannot be on the real axis locus. Finally,
for the segment to the leftC, the angular contribution of the pole in pointA and the
zero at B cancel out, whereas the angular contribution of the pole at C is −180 .
Thus, this segment will be on the real axis locus. In the real axis locus shown in
Figure 3.7, the pole in point A terminates in the zero at B, and the pole at point C
progresses to infinity along the real axis.
Following the logic mentioned above, the portions of the real axis that fall on the

real axis can be determined using the following simple logic:
Choose a test point on the real axis. If the total number of real axis poles and

zeros to the right of this point is odd, then this point is on the real axis locus.
Consider Example 3.5.

Example 3.5 Let us consider the following open-loop system

KG s H s = K
s + z1

s + p1 s + p2

where z1, p1, and p2 are strictly real and positive. We shall draw the root locus for
the following three conditions.

a) p1 > z1 > p2
b) p1 > p2 > z1
c) z1 > p1 > p2.

Case (a) is like the plot shown in Figure 3.7. This is shown in Figure 3.8a in
which one pole terminates at the zero and the other pole moves to infinity. Case
(b) is also like Case (a), except that the direction of the pole movement reverses for

Figure 3.7 Root locus on the real axis.
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one of the two poles. This is shown in Figure 3.8b. Case (c), however, is completely
different. From our discussion above, we know that the real axis locus will be in the
segment between p1 and p2, and the segment to the left of z1. We also know that
one of the two poles will terminate at the zero. However, there is no way to restrict
the movement of the poles on the real axis only. Therefore, the poles must break
away from the real axis somewhere in the segment between p1 and p2 (at point A)
and break in somewhere in the segment on the left of z1, say at Point-B. Thereafter,
one pole will terminate at the zero, while the other pole will move toward infinity.
This is shown in Figure 3.8c.

3.3.3 Breakaway and Break-in Points

It is obvious from Example 3.5 that sometimes a root locus breaks away from or
breaks into the real axis. Just by inspection, it is easy to determine from which seg-
ment it will break away and to which segment it will converge (break in). How-
ever, we cannot determine the exact value at which the locus will break in or
break away. To determine this, consider an open-loop transfer function of the form

KG s H s = K
P s
Q s

3 23

(a) (b)

(c)

Figure 3.8 (a, b and c) Root locus plots for the three cases of Example 3.5.
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Then the characteristic equation will be

Q s + KP s = 0 K = −
Q s
P s

3 24

Consider Figure 3.8c again. The poles start moving along the segment between
p1 and p2 as K increases from 0. At a particular value of K, they converge at Point-A
on the real axis. A slight increase in the value ofKwill make them break away from
the real axis. A similar argument can be made about the break-in Point-B. There-
fore, it can be concluded that the breakaway (or break-in) point occurs when the
value of K is maximum. To determine this point, the derivate of Kwith respect to s
is equated to zero. Thus from (3.24), we get

dK
ds

= −
P s × dQ s ds−Q s × dP s ds

P2 s
= 0 3 25

Example 3.6 Consider the following open-loop system

KG s H s = K
s + 5

s + 1 s + 3
= K

s + 5
s2 + 4s + 3

From (3.25), we have

s2 + 4s + 3 × 1− s + 5 × 2s + 4 = 0

s2 + 10s + 17 = 0

The solution of the quadratic gives s1,2 = − 3.17, − 7.83. The root locus plot for
the system is shown in Figure 3.9.
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Example 3.7 Let us now revisit Example 3.3, where the open-loop transfer func-
tion is given by

G s = K
s + 1 s + 2

s3 s + 5 s + 25

It was shown that the system remains stable for 344.2625 < K< 907.7375. The root
locus plot is shown in Figure 3.10a, while the zoomed portion around the imag-
inary axis is shown in Figure 3.10b. It is obvious from the figures that, of the three
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Figure 3.10 (a) Root locus plot for the system of Example 3.7 and (b) zoomed portion
around the imaginary axis.
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poles at the origin, one terminates at −1, while the other two start moving in the
right-half s-plane. These poles move over to the left-half s-plane for K = 344.2625
and remain there till K= 907.7375. Thereafter, these poles move again to the right-
half s-plane. Their imaginary axis crossing points are at the locations that are
obtained in Example 3.3.

3.4 PID Control

Consider the unity feedback system shown in Figure 3.11. Given in the forward
path are three blocks: one proportional (P), one integral (I), and a derivate (D).
The functions of these blocks are defined as:

• Proportional block: uP(t) = KPe(t) UP(s) = KPE(s)

• Integral block: uI t = KI e t dt UI s =
KI

s
E s

• Derivative block: uD t = KD
de t
dt

UD s = sKDE s

The outputs of these blocks are summed to form the control input u, given by

U s = KP +
KI

s
+ sKD E s = GC s E s 3 26

Note that the most popular form used in industrial control is the proportional
plus integral (PI) controller. However, in some cases, this controller may have
detrimental effects and it will be desirable to use a proportional plus derivative
(PD) controller instead. These two controllers are discussed in Section 3.4.1
and 3.4.2.

Figure 3.11 Block diagram of the PID control of a unity feedback system.

76 3 Review of SISO Control Systems



3.4.1 PI Controller

Consider an open-loop transfer function of the form

G s =
s + z1 s + z2 s + zm
s + p1 s + p2 s + pn

,n ≥ m 3 27

The closed-loop transfer function of the system with a P-type controller is

Y s
Yr s

=
KP s + z1 s + z2 s + zm

s + p1 s + p2 s + pn + KP s + z1 s + z2 s + zm
3 28

The DC gain of the system then is

Kdc =
KP × z1 × z2 × × zm

p1 × p2 × × pn + KP × z1 × z2 × × zm
3 29

The DC gain can be brought closer to 1, if a large value of KP is used. However,
as we have observed before, a large gain can also move the poles to the right-half
s-plane causing system instability.
Instead, a PI controller is used which is of the form

GC s = KP +
KI

s
=

sKP + KI

s

The closed-loop transfer function of the system then is

Y s
Yr s

=
sKP + KI s + z1 s + z2 s + zm

s s + p1 s + p2 s + pn + sKP + KI s + z1 s + z2 s + zm
3 30

The steady state output with a unit step response will then be

yss = lim
s 0

sKP + KI s + z1 s + z2 s + zm
sKP + KI s + z1 s + z2 s + zm

= 1 3 31

This implies that the DC gain will be 1 and the system will not have any steady
state error. We can therefore conclude that a PI controller is used to eliminate
any steady state error. Also note that the system defined in (3.27) is that of a
Type-0 system. The inclusion of the PI controller in the forward loop changes
the system Type to 1, and hence, from Table 3.1, it is obvious that the steady state
error will be zero for a step input.
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Example 3.8 This example demonstrates a procedure for the choice of PI con-
troller gains. Consider a unity feedback control system with

G s =
1

s s + 4

It will be controlled by a PI controller of the form

GC s =
10s + KI

s

We want to determine the limiting value of KI. The open-loop transfer function of
the system is

G s GC s =
10s + KI

s2 s + 4

Therefore, the characteristic equation of the system is given by

s2 s + 4 + 10s + KI = s s2 + 4s + 10 + KI = 0

The Routh’s table then is

s3 1 10
s2 4 KI

s1
40−KI

40
s0 KI

From s1 row, the limiting value of the integral gain is obtained as KI< 40.
The characteristic equation can be rewritten as

1 + KIG1 s = 0, G1 s =
1

s s2 + 4s + 10

This is in the form of (3.18) and hence is suitable for the root locus plot.
The root locus plot is shown in Figure 3.12. It can be seen from the figure that the

roots cross the imaginary axis over the right-half s-plane. For KI = 40, the complex
conjugate poles are located at ± j3.16 and the real pole will be located at −4. The
system step response with this value of the integral gain is shown in Figure 3.13,
where a sustained oscillation can be observed. The step system response with a
different value of KI = 20 is also shown in Figure 3.13. The system is stable in this
case with a steady state error of zero.

3.4.2 PD Controller

Consider a unity feedback system with an open-loop transfer function of

G s =
1
s2
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With only a proportional controller, the characteristic equation of the system
will be

s2 + KP = 0

The system will have two closed-loop poles at ± KP and hence the system will
have a sustained oscillation when subjected to a step input.
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Figure 3.12 Root locus plot for the system of Example 3.8.

2

1.5

O
u
tp

u
t 
(y

)

1

0.5

0

0 1 2 3 4 5
Times (s)

System Output for Different Values of Kl

6 7 8 9 10

Kl = 40 Kl = 20

Figure 3.13 Step response with two different values of integral gain in Example 3.8.

3.4 PID Control 79



We now use a PD controller of the form

GC s = KP + sKD

The characteristic equation of the system then is

s2 + sKD + KP = 0

The closed-loop system response then can be shaped by proper choice of the values
of the gains KP and KD. It can, therefore, be concluded that a PD controller
improves the transient response of a system.

Example 3.9 Consider a unity feedback control system with

G s =
25

s s + 0 1

This is a Type-1 system, and the steady state error will be zero for unit step input.
However, without any controller, the closed-loop transfer function is given by

Y s
Yr s

=
25

s2 + 0 1s + 25

which is a second-order system with ωn = 5 rad/s and ξ = 0.01. Since the damping
is very small, the step response of the system is oscillatory and will take a very long
time to attain a steady state, as shown in Figure 3.14a.
We now employ a PI controller of the form

GC s =
s + 0 3

s

The closed-loop system is then unstable, as is evident from the step response
shown in Figure 3.14b. Note that the characteristic equation with the PI
controller is

s3 + 0 1s2 + 25s + 7 5 = 0

This gives the closed-loop poles of −0.299 and 0.1 ± j5. This implies that the com-
plex conjugate poles are causing instability. This is not surprising, since the inclu-
sion of the PI controller, changes the system type to 2, and this will result in an
unstable response when the input is a unit step.
Alternatively, we employ the following PD controller instead of the PI controller

GC s = 25 + 5s

The inclusion of the PD controller does not change the system type, and hence the
steady state error to a step input will be zero. The closed-loop transfer function
then is
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Y s
Yr s

=
125s + 625

s2 + 125 1s + 625

This implies that the system has a DC gain of 1 and the closed-loop poles are stable.
The step response of the system is shown in Figure 3.14c.
Often the derivative part of the PID (or PD) controller is not implemented in the

form shown in Figure 3.11. An ideal derivative action can generate spikes every
time the set point changes. The PID controller, with themodified derivative action,
is given by

GC s = KP +
KI

s
+ KD

Ns
s + N

3 32

where 0 <N< 200. Note that the derivative of (3.32) contains a lowpass filter with
the transfer function of N/(s+N) that will eliminate the high-frequency terms.

3.4.3 Tuning of PID Controllers

Often, PID controllers are tuned by trial-and-error methods. Even though this usu-
ally produces satisfactory results, a more systematic approach is needed for tuning
the controllers. We present a method here that was developed by J. G. Ziegler and
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Figure 3.14 Step response of the system of Example 3.9 with (a) no controller, (b) PI
controller, and (c) PD controller.
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N. B. Nichols, and hence the technique is referred to as the Ziegler–Nichols oscil-
lation method. This method is only valid for plants that are stable in the open loop.
As a first step, the controller transfer function of (3.26) is rewritten as

GC s = KP 1 +
1
τI s

+ τDs 3 33

where KI= KP/τI and KD= KPτD. We shall now discuss the procedure for the selec-
tion of the controller gains with the help of Example 3.10.

Example 3.10 Consider a unity feedback control system with the open-loop
transfer function of

G s =
1

s + 3 3 =
1

s3 + 9s2 + 27s + 27

The first step in this process is to consider a proportional control with a gain of Kc.
The next step is to find the value of the gainKc atwhich the open-loop poles exhibit a
sustained oscillation. We can easily find this gain using Routh–Hurwitz’s method.
With the proportional controller, the characteristic equation of the system is given
by s3 + 9s2 + 27s+ 27+ Kc= 0. The partial Routh–Hurwitz’s table is then formed as

s3 1 27

s2 9 27 + Kc

s1
27 × 9− 27 + Kc

9

Note that the systemwill have a sustained oscillation when the element of s1 row is
zero, i.e.

27 × 9− 27 + Kc = 0 Kc = 27 × 8 = 216

We now form an auxiliary polynomial from row s2 with this value of Kc

9s2 + 27 + 216 = 0 s = ± j
243
9

= 27

This means that the undamped frequency is ωn = 27 = 5 196 rad/s, which is
equivalent to fn = ωn/2π = 0.827 Hz. Therefore, the undamped oscillation period
is tn = 1/fn = 1.21 s. This oscillation period is shown in Figure 3.15a. The empirical
formulas for the selection of the time constants based on Kc and tn are given in
Table 3.2. From this table, we get

KP = 0 6 × 216 = 129 6

KI =
KP

τI
=

129 6
0 5 × 1 21

= 214 357

KD = KPτD = 129 6 × 0 125 × 1 21 = 19 589

The system response with a unit step input is shown in Figure 3.15b.
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3.5 Frequency Response Methods

When a physical system is suddenly excited by a sinusoidal waveform, it goes
through a transient before attaining steady state, which is called the sinusoidal
steady state. In an electrical system, we often perform phasor analysis, assuming
that system is in the sinusoidal steady state. In this state, the voltages and cur-
rents are sinusoids with a constant frequency and amplitude. Similarly, the fre-
quency response analysis in a control system is the steady state response of a
system when it is excited by a sinusoidal input. In general, however, the fre-
quency of the sinusoidal input is varied over a large range to study the resulting
output.
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Figure 3.15 (a) Sustained oscillation time period and (b) step response of the system of
Example 3.10 with PID controller.

Table 3.2 The selection of PID parameters.

Type KP τI τD

P 0.5Kc

PI 0.45Kc tn/1.2

PID 0.6Kc 0.5tn 0.125tn
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Consider the open-loop transfer function given by

Y s
U s

= G s H s =
1

s + α

It is excited by a sinusoidal input, u(t) = V sin(ωt), such that

U s =
Aω

s2 + ω2
3 34

The output then is

Y s = U s G s H s =
1

s + α
×

Aω
s2 + ω2

3 35

The partial fraction expansion of (3.35) gives

Y s =
A

s + jω
+

A∗

s− jω
+

B
s + α

3 36

where A∗ is the complex conjugate of A. The time response of the output is then

yss t = Ae− jωt + A∗ejωt + Be− αt

If α> 0, i.e. the system is stable, then the exponential term e−αt will go to zero.
Therefore, we have the following steady state output

yss t = Ae− jωt + A∗ejωt 3 37

Now from (3.35) and (3.36), the following values are obtained.

A = G − jω H − jω
V
− j2

, A∗ = G jω H jω
V
j2

Now define

G jω H jω = GH ejφ 3 38

Therefore

A = −
V
j2

GH e− jφ, A∗ =
V
j2

GH ejφ

Substituting the expressions in (3.37), we have

yss t =
V
j2

GH × − e− j ωt + φ + ej ωt + φ = V GH sin ωt + φ 3 39

Equation (3.39) indicates that the output of a stable system, when excited by a
sinusoidal signal of a particular frequency, is also a sinusoid of the same frequency
at the sinusoidal steady state. The output can be written from (3.39) as

Y jω = V GH φ 3 40
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From (3.40), it can be summarized that the amplitude of the output gets multi-
plied by the gain of the transfer function and its angle gets phase shifted by the
phase of the transfer function. We can then write

GH =
Y jω
U jω

, φ =
Y jω
U jω

3.5.1 Bode Plot

Consider an open-loop transfer function of the form

G s H s =
ω2
n

s s + α s2 + 2ξωns + ω2
n

3 41

Replacing s by jω, the transfer function is rewritten as

G jω H jω =
ω2
n

jω jω + α j2ξωnω + ω2
n −ω2

3 42

A. Magnitude Plot: From (3.42), the magnitude condition is given as

G jω H jω =
ω2
n

ω × ω2 + α2 × 4 ξωnω
2 + ω2

n −ω2 2
3 43

In Bode plots, the magnitude is often calculated in decibels (dB). A dB is defined
as 20 times the log of the gain. Therefore, the gain |G(jω)H(jω)| in (3.43) is
given as

G jω H jω = 20 log
1
ω

+ log
1

ω2 + α2
+ log

ω2
n

4 ξωnω
2 + ω2

n −ω2 2
dB

3 44

Equation (3.44) indicates that each individual term can be plotted separately and
then can be added together to form the composite magnitude plot. Example 3.11
illustrates this.

Example 3.11 Consider the following open-loop transfer function

G s H s =
9

s s + 3 s2 + 3s + 9
=

1
3

1

s
s
3
+ 1 s2 + 3s + 9
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The transfer function has a pole at the origin (integral term), a first-order pole at
−3, and a second-order term with ωn = 3 rad/s and ξ = 0.5. Replacing s by jω, the
above transfer function is rewritten as

G jω H jω =
1
3
×

1
jω

×
1

jω
3

+ 1
×

1

1 +
jω
3

−
ω2

9

A semilog scale is usually used for Bode plots. Note that 20 log(1/3) = − 9.54 dB
and is constant. For an integral term with a gain of 1, we have the following

20 log
1
jω ω = 0 1

= 20 and 20 log
1
jω ω = 1

= 0

Therefore, the integral term drops 20 dB per decade, which is usually written as
having a slope of −20 dB/decade. Using a similar argument, the slope of a deriv-
ative term is +20 dB/decade. The magnitude plots of the gain and the integral
terms are shown in Figure 3.16.
For the first-order term, we have

20 log
1

jω
3

+ 1
=

0 for ω << 3

− 20 log ω 3 for ω >> 3
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The Integral Term

Frequency (rad/s)
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(b)

Figure 3.16 The magnitude plots of (a) the gain and (b) the integral terms.
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The Bode plot of the first-order term is a combination of two asymptotes that inter-
sect at ω= 3 rad/s, as shown in Figure 3.17a. One asymptote is a 0-dB straight line,
while the other has a slope of −20 dB/decade. The frequency ω = 3 rad/s is called
the corner frequency. The Bode plot, however, does not have a discontinuity and is
a smooth curve, as shown in Figure 3.17a. Note that a first-order term in the
numerator like (jω/ωc+ 1) will have a rise at the rate of 20 dB/decade from the
corner frequency of ωc.
In a similar way, the Bode magnitude plot of the second-order term can also be

obtained. This term is given by

1

1 +
jω
3

−
ω2

9

= − 20 log
ω2

9
+ 1−

ω2

9

2

Therefore

1

1 +
jω
3

−
ω2

9

=
0 for ω << 3 = ωn

− 40 log
ω

ωn
ω >> 3 = ωn

The gain plot of the second-order term also has two asymptotes, where the slope of
one of the asymptotes will be −40 dB/decade. The magnitude plot of the second-
order term is shown in Figure 3.17b. The bump divergence from the asymptotes
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–60
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B
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Figure 3.17 The magnitude plots (a) the first- and (b) the second-order terms.
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near the corner point will depend on the damping ratio: the less the damping, the
more will be the divergence.
B. Phase Plot: From (3.43), we can write

G jω H jω =
1
jω

+
1

jω + α
+

1

j2ξ
ω

ωn
+ 1−

ω

ωn

2 3 45

Therefore, the phase can also be plotted by adding all the individual elements.

Example 3.12 Consider again the open-loop transfer function given in Exam-
ple 3.11. The gain term does not have any phase and hence does not contribute
to the phase plot. The integral term (1/jω) will have a constant phase of −90
as it is independent of the frequency value. The phase of the first-order term is

1
jω
3

+ 1
= − tan − 1 ω

3

Therefore, we can write

1
jω
3

+ 1
=

0 for ω≈ 0

− 45 for ω = 3

− 90 as ω ∞

The phase plot of the first-order term is shown in Figure 3.18a. The phase of the
second-order term is

1

1 +
jω
3

−
ω2

9

= − tan − 1

ω

3

1−
ω2

9

We can therefore surmise

1

1 +
jω
3

−
ω2

9

=

0 for ω≈ 0

− 90 for ω = ωn

− 180 as ω ∞

The phase plot of the second-order term is shown in Figure 3.18b.
The composite Bode plot of the system of Examples 3.11 and 3.12 is shown in

Figure 3.19. Note that from this plot, we can determine the gain and phase of
the system for a particular value of frequency. For example, for ω = 10 rad/s,
the gain is −61 dB and the phase is −325 . This can also be calculated analytically
by substituting s = j10 in the open-loop transfer function.
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3.5.2 Nyquist (Polar) Plot

ANyquist plot (or polar plot) is the graph of the magnitude of the transfer function
G(jω)H(jω) versus its phase angle in polar coordinates as the frequency changes
from −∞ to ∞. Consider, for example, the following transfer function
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Figure 3.18 The phase plots of (a) the first- and (b) second-order terms.
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Figure 3.19 The composite Bode plot of Examples 3.11 and 3.12.
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G s H s =
50

s + 1 2 s + 10

Then

G jω H jω =
50

jω + 1 2 jω + 10
=

50
10− 12ω2 + j 21ω−ω3

3 46

From (3.46), we have the following conditions

G jω H jω ω = 0 = 5 0

G jω H jω ω = − ∞ =
50

jω 3
ω − ∞

= 0 270

G jω H jω ω = ∞ =
50

jω 3
ω ∞

= 0 − 270

To determine the direction of rotation, we first determine the imaginary axis
crossing point, where the real part of G(jω)H(jω) is equal to zero. From (3.46), this
is calculated as

10− 12ω2, ω = ±
10
12

= ± 0 91 rad s

For the imaginary axis crossing at ω = − j0.91, (3.46) is rewritten as

G − j0 91 H − j0 91 =
50

j 21ω + ω3
ω = − j0 91

= j2 72

For the real axis crossing, the imaginary component must be zero, i.e.

21ω−ω3 = 0 ω = 0 and ω = ± 21 = ± 4 583 rad s

Therefore, from (3.46), we have

G ± j4 483 H ± j4 483 =
50

10− 12ω2
ω = ± j4 483

= − 0 21

The Nyquist plot is shown in Figure 3.20. The plot starts at ω = −∞, for
which the magnitude of G(jω)H(jω) is zero and has a phase angle of 270 . Then
atω= − j4.483 rad/s, it crosses the real axis at Point-B. As the frequency decreases,
it crosses the imaginary axis at Point-A when ω = − j0.91 rad/s. As the frequency
reduces further to ω = 0, the magnitude becomes +5 on the real axis. The rest of
the plot is a mirror image of the above. Thus, the plot travels in a clockwise direc-
tion from ω = 0 and enters the origin with an angle of 90 as ω tends to infinity.
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An open-loop transfer function can be written in the frequency domain as G(jω)
H(jω) = |GH(ω)|∠ δ(ω), where both the magnitude and the phase angle vary as ω
varies. These two quantities are plotted separately against frequency in a Bode plot.
In the polar plot, however, as the name suggests, the locus of the tip of the vectorG
(jω)H(jω) is plotted in the complex plane as the frequency changes. Both these
plots convey certain information that are critical for control system performance
evaluation. However, these can be explained better through the Nyquist stability
criterion, which is discussed in Section 3.5.3.

3.5.3 Nyquist Stability Criterion

In this section, the Nyquist stability criterion is discussed, without presenting the
formal proof of the theorem. An open-loop transfer function can be written as

G s H s =
q s
p s

Let us define the following rational function

F s = 1 + G s H s =
p s + q s

p s
3 47

Note that the zeros of F(s) are the roots of the characteristic equation, while its
poles are also the poles of the open-loop system G(s)H(s). The first step is to form
a closed contour in the s-plane that encloses the entire right half of the plane.
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Figure 3.20 Nyquist plot of the transfer function given in (3.45).
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The contour consists of the jω axis as ω varies from −∞ to ∞ and a semicircular
path with a radius of∞, as shown in Figure 3.21a. Clearly, the direction of travel is
clockwise. This path is usually called the Nyquist path and it encloses all the poles
and zeros F(s) that have positive real parts. It is also necessary that the Nyquist
path does not pass through any pole or zero of F(s). Therefore, if F(s) has any pole
or zero along the jω axis, then a detour is taken to avoid this point, as shown in
Figure 3.21b. Here ε is a very small number and θ varies from −180 to 180 .
The Nyquist stability criterion is then expressed as

Z = N + P 3 48

where
Z = number of zeros of F(s) that are in the right-half s-plane.
P = number of poles of F(s) that are in the right-half s-plane.
N = number of clockwise encirclements of the origin in the F(jω) - plane.
Consider the contours shown in Figure 3.22a. Notice that F(jω)is the sum of a

unit vector and G(jω)H(jω). Thus 1 +G(jω)H(jω) is identical to the vector drawn
from −1 + j0 point to a point on the path formed by the vector G(jω)H(jω), as
shown in Figure 3.22b. Therefore, the encirclement of the origin in the F(jω)-plane
is equivalent to the encirclement of the −1 + j0 point in the G(jω)H(jω)-plane.
Therefore, we redefine the Nyquist stability criterion as

Z = N + P 3 49

where
Z = number of zeros of the characteristic equation 1 +G(s)H(s) = 0 (or closed-

loop poles) that are in the right-half s-plane.
P = number of poles of G(s)H(s) (i.e. open-loop poles) that are in the right-half

s-plane.
N= number of clockwise encirclements of the −1 + j0 point in the G(jω)

H(jω) - plane.

(a) (b) Figure 3.21 Nyquist path
(a) without a singularity on
the jω axis and (b) with a
singularity at the origin.
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For stability, wemust have Z= 0. Now suppose an open-loop system hasm num-
ber of poles on the right-half s-plane, i.e. P = m. Then for the system to remain
stable, we must have N= −m. This means that the Nyquist path must have m
number of counterclockwise encirclements of the −1 + j0 point.

Example 3.13 Consider the open-loop transfer function, given by

G s H s =
s2 − 1

s3 − 5s2 + 1 53s + 10 764

It has got poles at 3.9, 2.3, and −1.2. Since there are two open-loop poles in the
right-half s-plane, we have P = 2. Now

G jω H jω =
−ω2 − 1

5ω2 + 10 764 + j 1 53ω−ω3

The terminal values of the plot are

G jω H jω ω = 0 =
− 1

10 764
= 0 093 − 180

G jω H jω ω ∞ =
1
jω3

ω ∞
= 0 − 90

The Nyquist plot is shown in Figure 3.23. To find the real axis intercept, equate the
imaginary part to zero, i.e.

1 53ω−ω3 = 0

ω = 0 and ω = ± 1 53 = ± 1 2369

(a) (b)

Figure 3.22 Polar plots in two different planes: (a) F(jω) = 1 + G(jω)H(jω) plane and
(b) G(jω)H(jω) plane.
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Now

G jω H jω ω = 1 2369 = − 0 1374 = 0 1374 − 180

From the Nyquist plot of Figure 3.23, where there is no encirclement of the
−1 + j0 point and thus N = 0. Therefore, from (3.49), we get Z = 2, i.e. there are
two closed-loop poles on the right-half s-plane. It can be verified from the
characteristic equation of the system that the closed-loop poles are located at
−1.23, 2.61 ± j1.06.

Example 3.14 This is a design example, where we shall determine the range of
KP for a stable operation of the system given by the following characteristic
equation

1 + G s H s = s3 + 4KPs
2 + KP + 3 s + 10 = 0

From the characteristic equation, the following open-loop transfer function is
obtained

G s H s = KP
4s2 + s

s3 + 3s + 10

The open-loop poles are at −1.7, 0.85 ± j2.273, and hence P = 2. Thus, to have a
stable operation (Z = 0), we must have two counterclockwise encirclements of
the −1 + j0 point (N = − 2). Now

G jω H jω = KP
jω− 4ω2

10 + jω 3−ω2

= KP
ω ω− 4ω2 − 40ω2 + j 10ω + 4ω3 3−ω2

100 + ω 3−ω2 2
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Figure 3.23 Nyquist plot of the system of Example 3.13.
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The terminal points are then

G jω H jω ω = 0 = 0 0 , G jω H jω ω ∞ = 0 − 90

The real axis crossing will occur when

10ω + 4ω3 3−ω2 = 0

The above equation has roots at ω = 0 and ω = ± 1.92 rad/s. Hence

G jω H jω ω = 1 92 = − 1 47KP

For the frequency of ω = 1.92 rad/s, we can write

1 + G jω H jω = 1− 1 47K = 0

K =
1

1 47
= 0 68

The Nyquist plot for K= 0.68 is shown in Figure 3.24a. It passes through −1 + j0
point indicating that the system is critically stable, i.e. undamped with two com-
plex conjugate poles on the imaginary axis. We know that the Nyquist plot needs
two counterclockwise encirclements of the −1 + j0 point for stability. Therefore,
from Figure 3.24a, we can surmise that, for stability, K must be greater than
0.68. The Nyquist plot for K= 0.9 is shown in Figure 3.24b. Since this plot encircles
the −1 + j0 point twice in the counterclockwise direction, the system is stable for
this value of K. This result can also be verified using Routh–Hurwitz’s criterion.

3.6 Relative Stability

Consider the threeNyquist plots of the unity feedback system shown in Figure 3.25.
These plots are for three different values of the open-loop gain |G(jω)|. Assume that
the open-loop system is stable. Therefore, for stability, there shall not be any encir-
clement of the −1 + j0 point. When this gain is small, the Nyquist path does not
encircle this point (Curve-1). As the gain increases, the Nyquist path changes – it
passes through −1 + j0 point (Curve-2) or encircles this point (Curve-3). This
implies that the system is critically stable when it is on Curve-2 and is unstable
when it is on Curve-3. Therefore, it can be surmised that, with the gain |G(jω)|,
the system stability changes. In this section, we evaluate how far a system is from
instability using both Nyquist and Bode plots.

3.6.1 Phase and Gain Margins

Consider the Nyquist plot of the open-loop transfer function of the unity feedback
system shown in Figure 3.26a. Also plotted in this figure is a circle with unit radius.
The Nyquist plot intersects the unit circle at point ρ1 and the real axis at point ρ2.
These two intersections points are defined as
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Figure 3.24 Nyquist plot for the (a) undamped system and (b) stable system of
Example 3.14.

Figure 3.25 Nyquist plots as the open-loop gain |GH| of
a unity feedback system changes.
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• ρ1: gain crossover point. At this point, the plot is on the unit circle and hence the
gain |G(jω)| is equal to 1. The frequency at which this occurs is called the gain
crossover frequency ωg.

• ρ2: phase crossover point. At this point, the plot intersects the negative real axis
and hence the phase ∠G(jω) is equal to −180 . The frequency at which this
occurs is called the phase crossover frequency ωp.

Now note that in Curve-2 of Figure 3.25 the gain and phase crossover points of the
critically stable curve are the same, and it occurs when the curve intersects the unit
circle. Therefore, for critical stability we can write G(jω) = − 1 + j0 = 1∠ − 180 ,
i.e. the gain should be 1 and the phase should be −180 .
The PMs are defined as the additional phase lag required at the gain crossover

point to bring the system in the verge of instability. In Figure 3.26a, the angle that
G(jω) makes at gain crossover point ρ1 is (360 − ϕ). Noting that at the critical
point the phase must be−180 , the PM is defined by howmany additional degrees
the system will require to reach this critical point, i.e.

PM = γ = 360 −ϕ− 180 = 180 −ϕ 3 50

In Figure 3.26a, since ϕ< 180 , the PMs γ > 0, and the system is said to have pos-
itive PM. On the other hand, since ϕ> 180 in Figure 3.26b, the system is said to
have a negative PM, i.e. γ < 0.
From Figure 3.26a, we find that |G(jω)| < 1 at phase crossover frequency. Let us

denote the gain at phase crossover frequency as |G(jωp)| = Kg. The gain margin
(GM) defines how much additional gain is required to push the system on the
verge of instability. It is given in terms of decibels by

GM = 0− 20 logKg = 20 log
1
Kg

dB 3 51

From (3.51), it is obvious that the GM will be negative if Kg> 1. The system with
the Nyquist plot of Figure 3.26b has both negative GM and negative PM. However,
the system’s stability is affected by either of them being negative.

(a) (b)

Figure 3.26 Nyquist plot of a system with (a) positive phase and GMs and (b) negative
phase and GMs.
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The Bode plot of a system with positive GM and negative PM is shown in
Figure 3.27a, in which, the phase is greater than −180 at the gain crossover fre-
quency ωg, while the gain is below 0 dB at the phase crossover frequency ωp. In
Figure 3.27b, a system with both negative GM and negative PM is shown. At
ωg, the phase is below −180 , while the gain is above 0 dB at ωp. A system is stable
when both gain and PMs are positive.

Example 3.15 The open-loop transfer function of a unity feedback control
system is

G s H s =
KP

s s2 + s + 2

We shall determine the value ofKP such that the PM of the system is 50 . The trans-
fer function can be rewritten as

G jω H jω =
KP

jω 2−ω2 + jω

At the gain crossover frequency ωg, the phase must be equal to −180 + 50 =
− 130 . Therefore

G jωg H jωg = − 90 − tan − 1 ωg

2−ω2
g

= − 130

tan − 1 ωg

2−ω2
g

= 40

(a) (b)

Figure 3.27 Bode plot of a system with (a) positive phase and GMs and (b) negative phase
and GMs.
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Solving the above equation, we get the following quadratic equation

ω2
g + 1 192ωg − 2 = 0

Solving the quadratic equation gives us ωg = 0.94, − 3.13 rad/s. At the gain
crossover frequency, the gain must be equal to 1 and hence

G j0 94 H j0 94 =
KP

j0 94 2− 0 942 + j0 94
=

KP

1 371
= 1

From the above equation, we get KP = 1.371.
Note that the phase crossover will occur when the imaginary component is zero

(see Figure 3.27a). Therefore

ωp 2−ω2
p = 0

ωp = 0 and ωp = ± 2 rad s = ± 1 4142 rad s

We then get

Kg = G j1 4141 H j1 4142 = 0 6855

The GM is then 20 log 1 Kg
= 20 log 1 0 6855 = 3 28 dB. The Bode plot, where

the margins and crossover points are also indicated, is shown in Figure 3.28.
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Figure 3.28 Bode plot for the system designed in Example 3.15.
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Example 3.16 A unity feedback system with an open-loop transfer function of

G s =
4

s s + 1 s + 2

will be controlled by a PD controller of the form GC(s) = KP+ sKD. The controller
will be designed such that the compensated system has a PM of 50 at the gain
crossover frequency (ωg) of 1.7 rad/s.
At the gain crossover frequency

G j1 7 = − 90 − tan − 1 1 7 − tan − 1 1 7
2

= − 189 9

At this frequency, the phase of the compensated system must be equal to
(50− 180) = − 130 . Therefore

GC j1 7 − 189 9 = − 130

GC j1 7 = 59 9

Now we can define GC at the gain crossover as

GC j1 7 = GC j1 7 ej59 9 = GC j1 7 × 0 5015 + j0 8651

Also note that at the gain crossover

GC j1 7 × G j1 7 = 1

Since

G j1 7 =
4

1 7 × 1 72 + 1 × 1 72 + 4
= 0 4545

we have GC j1 7 = 1 0 4545 = 2 2. Then

GC j1 7 = KP + j1 7KD = 2 2 × 0 5015 + j0 8651 = 1 1035 + j1 9035

This results in the following proportional and derivative gains

KP = 1 1035, KD =
1 9035
1 7

= 1 2

The Bode plot of the compensated system is shown in Figure 3.29, while its step
response is shown in Figure 3.30. Notice that the open-loop system has a pole at the
origin and hence no integral action is required. The system shows an under-
damped response with a zero steady state error.

100 3 Review of SISO Control Systems



3.6.2 Bandwidth

The bandwidth of a system defines howwell the systemwill be able to pass a sinus-
oidal input. Consider the Bode plot shown in Figure 3.31. In this, the magnitude
becomes −3 dB at ωb, which is called the cutoff frequency of the system. The
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Figure 3.29 Bode plot of the compensated system of Example 3.16.
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Figure 3.30 Step response of the compensated system of Example 3.16.
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bandwidth of the system lies in the frequency range 0 <ω<ωb, where the mag-
nitude is above −3 dB. A system will pass sinusoidal signals of frequency below
ωb but will attenuate signals of higher frequencies. For example, consider a trans-
fer function of the form

G s =
1

s + 1

At the cutoff frequency ωb, the gain will be −3 dB, i.e. 0.7079. Then

G jωb =
1

ω2
b + 1

= 0 7079

Solving we get ωb = 0.9976 rad/s. The gain plot in dB is shown in Figure 3.32a,
where the gain around the cutoff frequency is zoomed in Figure 3.32b, from which
it is evident that the gain is nearly−3 dB at 1 rad/s. Obviously, the gain |G(jω)| will
become smaller as ω increases.

Figure 3.31 Bode plot showing bandwidth
and cutoff frequency.
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Figure 3.32 Log magnitude of a first-order system. (a) gain plot and (b) gain around the
cutoff frequency.
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Example 3.17 Consider a unity feedback system with an open-loop transfer
function of

G s =
25

s2 + 10ξs

The closed-loop transfer function is

G s
1 + G s

=
25

s2 + 10ξs + 25

This indicates that the closed-loop system has an undamped natural frequency of
5 rad/s. Now we obtain the following cutoff frequencies for different values of the
damping ratio

ξ = 0 1, ωb = 7 71 rad s

ξ = 0 5, ωb = 6 36 rad s

ξ = 0 9, ωb = 3 72 rad s

The step response of the system for these three different values of damping ratio is
shown in Figure 3.33. From these, the following observations can be made:

• As the damping ratio increases, the cutoff frequency decreases.

• As the damping ratio increases, the peak overshoot decreases.

Therefore, the peak overshoot and cutoff frequency are directly related to
each other.

System Response when ξ = 0.1
2
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System Response when ξ = 0.9
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Figure 3.33 Step response of the system of Example 3.17 for three different values of the
damping ratio.
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3.7 Compensator Design

Compensators are basically controllers. They shape the response of the closed-loop
system, just like the PID controller discussed in Section 3.4. These are, however,
called compensators as they can compensate the phase of an open-loop system.
There are two basic forms of compensators: phase lead and phase lag. They can
also be combined to form a lead–lag compensator. Phase lead compensators
improve the transient response but have little or no effect on the steady state prop-
erties. Therefore, they are similar in their performances to PD controllers. Phase
lag compensators, on the other hand, improve the steady state performance, albeit
at the expense of transient response. Consequently, they are akin to PI controllers.
Lead–lag compensators combine the two and hence can alter both the transient
response and the steady state performance, just like a PID controller.

3.7.1 Lead Compensator

A lead (or phase lead) compensator has the following transfer function

GC s =
s + 1 τ
s + 1 ατ

= α
τ s + 1
ατ s + 1

, α < 1 3 52

It can be seen that GC(j0) = α and GC(j∞) = 1. The polar plot of the lead compen-
sator is shown in Figure 3.34a.
The maximum value of the phase lead angle is denoted by ϕm. This is the angle

between the imaginary axis and tangent drawn from the origin to the semicircle
shown in Figure 3.34a. Then we can write

sinφm =
1− α 2

1 + α 2
=

1− α

1 + α
3 53

This equation gives us a relation between the maximum phase lead angle and α.
The Bode plot of the system, using asymptotic approximation, is shown in

Figure 3.34b. This has two corner frequencies: one at ω = 1 τ and the other at
ω = 1 ατ. Since α< 1, the numerator term dominates the response, holding it to
0 dB before ω = 1 τand 20 dB/decade rise thereafter till ω = 1 ατ. The denominator
term is 0 dB before ω = 1 ατ and a fall of −20 dB/decade thereafter. The overall
magnitude curve becomes constant after ω = 1 ατ , since the numerator and the
denominator terms cancel each other out. The phase plot also shows a similar
behavior. In fact, the lead compensator will show a highpass filter response.
The frequency of the point at which the tangent touches the semicircle is

denoted by ωm (Figure 3.34a). From the phase plot, we can surmise that the
maximum phase lead occurs at the geometric mean of the two corner
frequencies, i.e.
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log ωm =
1
2

log
1
τ

+ log
1
ατ

=
1
2
log

1
ατ2

= log
1
ατ

Therefore, we can write

ωm =
1
ατ

3 54

Example 3.18 Consider a unity feedback system with an open-loop transfer
function of

G s =
1
s2

The Bode plot of the uncompensated system is shown in Figure 3.35. We nowwant
to design a phase lead compensator such that the PM of the compensated system
is 45 .
The designed lead compensator will have the following form

GC s = α Kc
τ s + 1
ατ s + 1

, α Kc = 1

The phase lead condition of (3.52) gives

sin 45 =
1− α

1 + α
α = 0 1716

At the maximum phase lead frequency of ωm = 1 ατ, we have

GC jωm =
τ ×

j
ατ

+ 1

ατ ×
j
ατ

+ 1
=

j + α

jα + α
=

1 + α

α2 + α
=

1
α

(a) (b)

Figure 3.34 (a) Polar plot and (b) Bode plot of a lead compensator.

3.7 Compensator Design 105



The frequency at which the maximum phase lead occurs to be the gain crossover
frequency, i.e.

GC jωm + G jωm = 0 dB

20 log
1
ω2
m

= − 20 log
1
α

Therefore

ω2
m =

1
α

ωm = 1 5537 rad s

Again from (3.54), we get

τ =
1

ωm α
= 1 5538

Therefore, the lead compensator is

GC s =
1 5538 s + 1
0 2666 s + 1

The Bode plot of the compensated system is shown in Figure 3.36.
Note that a simple unit feedback of the uncompensated system will result in an

undamped system with the poles located at ±j1. The step response of the
closed-loop system is shown in Figure 3.37, where it is well damped. We can
therefore reiterate that a phase‑lead compensator improves the transient response
of the system, just like a PD controller.
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3.7.2 Lag Compensator

The transfer function of a lag compensator is of the form

GC s =
τ s + 1
βτ s + 1

=
1
β

s + 1 τ

s + 1 βτ
, β > 1 3 55

This can be written as

GC jω =
jωτ + 1
jωβτ + 1

Therefore, the phase of the compensator is given by

GC jω = tan − 1 ατω − tan − 1 τω 3 56

Tominimize the phase, the derivative of∠{GC(jω)} is taken with respect toω and is
equated to zero to get

τ

ωτ 2 + 1
−

βτ

ωβτ 2 + 1
= 0

ω = ±
β− 1

βτ2 β− 1
= ±

1
τ β

3 57

Consider a lag compensator with β = 10 and τ = 0.01. Then from (3.57) we get
ω = 31.62 rad/s. Substituting this frequency, the compensator is given by
GC(j31.62) = 0.32 ∠ − 54.9 . The gain of the compensator at 31.62 rad/s is 10
dB. The Bode plot of the lag compensator is shown in Figure 3.38, which has a
low pass response. If a system has a desirable transient response but unsatisfactory
steady state characteristics, then the lag compensator is employed. The basic pur-
pose is to increase the open-loop gains without moving the closed-loop poles
appreciably.

3.7.3 Lead–lag Compensator

The transfer function of a lead–lag compensator is of the form

GC s =
s + 1 τ1

s + β τ1

×
s + 1 τ2

s + 1 βτ2

, β > 1 3 58

The Bode plot of this compensator is shown in Figure 3.39. It is obvious that it is a
combination of a lag network and a lead network. The response of this network
can be shaped by the proper choice of the gains and time constants.
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Figure 3.38 Bode plot of the lag compensator with β = 10 and τ = 0.01.
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Figure 3.39 Bode plot of a lead–lag compensator with β = 10, τ1 = 0.1 and τ2 = 0.4.
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3.8 Discrete-time Control

Currently there is an abundance of low-cost digital processors in the form of digital
signal processors (DSPs), microcontrollers, field-programmable gate array (FPGA)
based devices, etc. The advantage of these processors is that they can be repro-
grammed easily and can be tuned online. As a result, most of the industrial con-
trollers these days are digital. A digital controller uses input signals in the form of a
pulse train, obtained by an analog-to-digital converter (ADC) from the measured
output data. It executes the control algorithm that resides inside a computer. The
calculated control variable is then sent to the actuator of the plant through a dig-
ital-to-analog converter (DAC). The schematic diagram of a digital control system
is shown in Figure 3.40.
A digital control is not the application of continuous-time controller in a digital

computer. The sampling process gives it an altogether different characteristic. In
digital control, we use z-transform and difference equations as opposed to Laplace
transform and differential equations used in continuous-time systems. However,
there are similarities between these two different approaches. Most of the techni-
ques that are used in classical continuous-time control systems (such as roots
locus, frequency domain analysis, etc.) can also be used for digital control systems.
Therefore, these are not discussed in detail in this section. Since all power elec-
tronic circuits involve switching, they are more suited for digital control
application.

3.8.1 Discrete-time Representation

A continuous-time signal is sampled, and the sampled data are held between the
two samples for it to be processed by a computer. Hence sampling is an integral
part of a digital control system. The sampling process is discussed first before
we proceed to derive the z-transform from the sampled signal.
The sampler is a switch that closes periodically to input physical measurement

through ADC. Once the switch closes, it remains on for a short period of time to

Figure 3.40 Schematic diagram of a digital control system.
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capture the signal. In practice, however, this time period is very small compared to
the sampling time T and, therefore, is neglected. The sampling process then can be
graphically represented, as in Figure 3.41a, where the input to the sampler (S) is
the signal f(t), while the output is a train of impulses f∗(t). The sampler in this case
is called an ideal sampler. The train of impulses for an arbitrary signal is shown in
Figure 3.41b and is expressed mathematically as

f ∗ t =
∞

k = 0

f kT δ t− kT

= f 0 δ t + f T δ t−T + f 2T δ t− 2T +

3 59

Taking the Laplace transform on both sides of (3.59), we get

F∗ s = f ∗ t =

∞

0

∞

k = 0

f kT δ t− kT e− stdt =
∞

k = 0

f kT e− skT

3 60

3.8.2 The z-transform

The Laplace transform of the train of impulses given by (3.60) is not a rational
function, given the presence of the e−sT terms on the right-hand side. Thus, it is
desirable to have a transform that converts F∗(s) into a rational function F(z). This
is called the z-transform of f(t). To convert F∗(s) into F(z), we substitute

z = esT 3 61

Then the z-transform is given by

F z = F∗ s z = esT =
∞

k = 0

f kT z− k 3 62

(a) (b)

Figure 3.41 The sampling process: (a) ideal sampler and (b) impulse modulated sampling
waveform.
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Using (3.62), the z-transform of a unit step function is given as

F z =
∞

k = 0

z− k = 1 + z− 1 + z− 2 + =
1

1− z− 1
=

z
z− 1

3 63

3.8.3 Transformation from Continuous Time to Discrete Time

Consider a continuous-time transfer function given by

G s =
bmsm + bm− 1sm− 1 + + b1s + b0
ansn + an− 1sn− 1 + + a1s + a0

, n ≥ m 3 64

Assuming that the system has n-distinct poles, (3.64) can be expanded in a partial
fraction as

G s =
n

i = 1

Ki

s + pi
3 65

where pi, i = 1, 2, . . ., n are the poles and Kis their respective residues. Equa-
tion (3.65) can be written in time domain (impulse response) as

g t =
n

i = 1

Kie
− pit 3 66

Therefore, we have

g kT =
n

i = 1

Kie
−KpiT 3 67

Let us now consider a function f(t) = e−αt. Using (3.62), its z-transform is given by

F z =
∞

k = 0

e− αkTz− k = 1 + e− αTz− 1 + e− 2αTz− 2 + e− 3αTz− 3 +

=
1

1− e− αTz− 1
=

z
z− e− αT

Using the above result, the discrete-time transfer function G(z) of (3.67) is given as

G z =
n

i = 1

Ki

1− e− piTz− 1
3 68

3.8.4 Mapping s-Plane into z-Plane

Note from (3.61) that z = esT. Therefore, as s = σ + jω is a complex number so is
z= esT. We shall now determine the region of stability in the z-plane, given that the
region of stability in the s-plane is the closed left half. Assume that a pole is at a
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location s = jω on the imaginary axis on the s-plane. Then, in the z-domain, it will
be at z = 1∠ωT. Now if the pole remains on the imaginary axis on the s-plane,
then correspondingly it will have a magnitude of 1 on the z-plane and it will turn
a full circle every time ωT changes by 360 . Thus, the imaginary axis is mapped
into a circle with unit radius, as shown in Figure 3.42. This circle is usually called
the unit circle.
Now assume that s = σ + jω. Then

z = e σ + jω T = eσT ωT

z = eσT

If σ < 0, i.e. the pole is on the -half s-plane, then, in the z-domain 0 < |z| < 1, i.e. the
pole in the z-domain will be inside the unit circle. Conversely, if σ > 0, i.e. the pole
is on the right-half s-plane, then |z| > 1. This means that the stable region in the
s-plane is mapped inside the unit circle in the z-plane, and hence it can be stated
that a discrete-time system is stable when its poles are inside the unit circle in the
z-plane.

3.8.5 Difference Equation and Transfer Function

There are several properties of z-transform. We shall state only two of them that
are important for our discussions. Let us define F z = � f t . Then

• Real Translation (Shifting Theorem): � f t−nT = z−nF z

� f t + nT = zn F z −
n− 1

k = 0

f kT z− k

• Final Value Theorem: If (1− z−1)F(z) does not have a pole on or outside the unit
circle (i.e. if the system is stable such that the final value exists), then

Figure 3.42 Stable and unstable operating
regions on the z-plane.
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f ss = lim
k ∞

f kT = lim
z 1

1− z− 1 F z 3 69

A discrete-time system can be represented by a finite difference equation,
given by

n

i = 0

aiy k− i T =
m

i = 0

biu k− i T , n ≥ m 3 70

Henceforth, we shall drop the sampling time T for brevity, where y(k) will signify
the sampled value of y(t)|t = kT. Then (3.70) can be expanded as

a0y k + a1y k− 1 + + any k−n = b0u k + b1u k− 1 + + bmu k−m

3 71

Using the shifting property of the z-transform, we get � f t− n = z− nF z
Therefore, the transfer function of (3.70) can be determined as

Y z
U z

=
b0 + b1z− 1 + + bmz−m

a0 + a1z− 1 + + anz− n
=

1
zn−m

b0zm + b1zm− 1 + + bm
a0zn + a1zn− 1 + + an

3 72

Assume that U(z) is a unit step function of the form given in (3.63). Then from
(3.72), we have

Y z =
1

1− z− 1

b0 + b1z− 1 + + bmz−m

a0 + a1z− 1 + + anz− n

Using the final value theorem of (3.69), the DC gain is obtained as

yss = lim
z 1

1− z− 1 1
1− z− 1

b0 + b1z− 1 + + bmz−m

a0 + a1z− 1 + + anz− n
=

b0 + b1 + + bm
a0 + a1z + + an

3 73

Therefore, the DC gain is the sum of numerator coefficients over the denominator
coefficients. The major advantage of the difference equation is that it can be used
in recursive computation. For example, consider (3.71). This equation can be
rewritten for the kth sample as

a0y k = − a1y k− 1 − − any k−n + b0u k + b1u k− 1 + + bmu k−m

Then replacing k by k+ 1, we get

a0y k + 1 = − a1y k − − any k− n− 1 + b0u k + 1 + b1u k

+ + bmu k−m− 1

Therefore, we find that y(k+ 1) is computed with the new input u(k+ 1) and shift-
ing the previous values of inputs and outputs by one.
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If n = m− 1 in (3.70), the transfer function is written as

Y z
U z

=
1

z− 1

b0zm + b1zm− 1 + + bm
a0zn + a1zn− 1 + + an

=
b0 + b1z− 1 + + bmz−m

a0z− 1 + a1z− 2 + + anz− n− 1

This results in the following difference equation

a0y k− 1 + a1y k− 2 + + any k− n− 1 = b0u k + b1u k− 1 + + bmu k−m

We can then see that the system becomes noncausal, i.e. y(k− 1) depends on u(k).
This implies that the output at k− 1 depends on the future input at k, which is not
possible from a control design perspective. Thus, to ensure causality, it is stipulated
that n≥m.

3.8.6 Digital PID Control

Consider the PID controller given in (3.26). There are several methods for repre-
senting s in discrete form, like forward Euler, backward Euler, or trapezoidal form.
The backward Euler method is given by

s =
1− z− 1

T
3 74

where T is the sampling time. Then we can write (3.26) as

U z
E z

= KP +
KIT

1− z− 1
+

KD

T
1− z− 1

=
KP 1− z− 1 + KIT +

KD

T
1− z− 1 2

1− z− 1

3 75

In difference equation form, (3.75) is written as

u k −u k− 1 = α0e k + α1e k− 1 + α2e k− 2 3 76

where

α0 = KP + KIT +
KD

T
, α1 = −KP − 2

KD

T
, α2 =

KD

T

In Chapter 6, we discuss control design in the discrete domain, where several
control design methods are discussed.

3.9 Concluding Remarks

In this chapter, a review of the classical control system is presented, along with
various techniques that are used for the control design of power electronic conver-
ters. Continuous-time control systems are discussed in some detail. We discuss the
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control of power converters using classical techniques in Chapter 4. An introduc-
tion to discrete-time control is also covered. Most of the techniques that are used in
continuous-time systems are also valid for discrete-time systems and, therefore,
are not discussed in detail. One of the most important aspects of discrete-time sys-
tems is the representation of SISO system in difference equation form. This has
been extensively used in power converter control systems. Therefore, this is intro-
duced in the chapter; their use in the design of controllers in the difference equa-
tion domain is discussed in Chapter 6.

Problems

3.1 Find the transfer function E2(s)/E1(s) of the operational amplifier (OPAMP)
circuit shown in Figure P3.1.

3.2 Consider the unity feedback system of where the plant transfer function is
given by (Figure P3.2)

GP s =
1

s2 + 6s + 9

(a) Find the steady state error to a unit step input (i.e. Yr(s) = 1/s) when the
controller is a proportional controller with GC(s) = KP.

(b) We now replace the proportional controller with a PI controller of the
formGC(s) = KP+ KI/s. Determine the values KP and KIof such that the
damping ratio and the undamped natural frequency of the dominant
complex conjugate poles are 0.5 and 3 rad/s respectively. The remain
closed-loop pole is assumed to be placed at −3.

(c) For the controller designed in (b), find the steady state error to a unit
ramp input.

Figure P3.1 OPAMP circuit of Problem 3.1.

Figure P3.2 Unity feedback control system of Problem 3.2.
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3.3 For the system, the root locus for which is shown in Figure P3.3, find the
characteristic equation and the values of σ1 and ω0.

3.4 Consider again the unity feedback system shown in Figure P3.2, where

GP s =
400

s2 + 40s

GC s = KP +
KI

s
, KP > 1

(a) Draw the root locus as KI changes from zero to infinity.
(b) Find the relation between KP and KI for the absolute stability of the

system.

3.5 The open-loop transfer function of a unity feedback control system is
given by

G s = K
s + β

s2 s + 2

Draw the root locus and the value (or range) of the parameter β when

(a) There is only one breakaway point at s = 0.
(b) When there are two breakaway points including the one at s = 0.
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Figure P3.3 Root locus for Problem 3.3.
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3.6 Consider the open-loop transfer function of

G s H s = K
s + 2

s s + 1 s2 + 4s + 10

(a) Determine the maximum value of K for system stability using Routh–
Hurwitz’s criterion.

(b) Determine the imaginary axis crossing point for the maximum value of
K obtained in (a).

(c) Draw the Bode plot of the system for the maximum value of K obtained
in (a), and hence comment on the stability margins.

3.7 Using the Nyquist stability criterion, determine the absolute stability of the
unity feedback system, given by

G s =
50

s + 1 2 s + 10

3.8 Determine through the Nyquist stability criterion, the limiting value of K
for the absolute stability of the system shown in Figure P3.8, where K> 0.

3.9 A unity feedback system has the open-loop transfer function of

G s =
K

s + 1 n

Using the Nyquist stability criterion, determine the range of K for stable
operation, when (a) n = 2 and when (b) n = 3.

3.10 The open-loop transfer function of a unity feedback control system is
given by

G s =
K

s s2 + s + 4

Determine the value of K such that the PM of the system is 30 . What is the
GM of the system for this value of K?

Figure P3.8 Feedback system of Problem 3.8.
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3.11 The open-loop transfer function of a unity feedback control system is
given by

G s =
1 + τs

s s + 1 1 + 0 01s

Determine the smallest possible value of τ such that the system has an infi-
nite GM.

3.12 Consider a second-order system of the form

Y s
Yr s

=
ω2
n

s2 + 2ξωns + ω2
n

Show that the bandwidth ωb is given by

ωb = ωn × 1− 2ξ2 + 4ξ4 − 2ξ2 + 2

3.13 Consider the feedback control system of Figure P3.2, where

GC s = KP +
KI

s
+ sKD

Let ωb be the gain crossover frequency at which the compensated system
has a PM of ϕm. Then prove that

KP =
cos θ

GP jωg
andωgKD −

KI

ωg
=

sin θ

GP jωg

where θ = ∠GC(jωg).

3.14 In the feedback control system of Figure P3.2, the plant and the controller
are given by

GP s =
4

s s + 1 s + 2
andGC s = KP + sKD

Using the results of Problem 3.13, find KP and KD such that the compen-
sated system has a PM of 50 at the crossover frequency of 1.7 rad/s.

3.15 In the feedback control system of Figure P3.2, the plant transfer function is
given by

GP s =
1
s2
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Design a phase lead compensator such that the PM of the compensated sys-
tem is 45 .

3.16 In the feedback control system of Figure P3.2, the plant transfer function is
given by

GP s =
80

s s + 4

Design a phase lag compensator such that the PM of the compensated sys-
tem is at least 50 .

3.17 Find the z-transform of the following sequences:

f kT =
0 for k = 0 and even integers

1 for k = odd integers

f kT =
1 for k = 0 and even integers

− 1 for k = odd integers

f kT = kTak
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Reference [8] provides a good introduction to this method.
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4

Power Electronic Control Design Challenges

In many power electronics systems, the voltage or current waveform across a load
should be regulated or controlled regardless of internal or external disturbances
and variations in the power electronics parameters. To elaborate on these issues,
we discuss DC-DC converters in this chapter, where both step-up (boost) and step-
down (buck) converters are considered. A DC-DC converter, connected to two dif-
ferent DC sources and a resistive load, is shown in Figure 4.1. In this chapter, not
only is the control of DC-DC converters discussed, but the characteristics of these
converter with respect to the sources is also studied.

4.1 Analysis of Buck Converter

Assume that the buck converter is connected to the battery source (vin) with no
voltage fluctuation and the aim of the controller is to regulate the output voltage
(vo). The circuit diagram of the converter is shown in Figure 4.2. To find the trans-
fer function of the system, we need to analyze the systemwhen the switch is on and
when it is off.
When the switch is turned on, the diode is turned off as the positive input voltage

(positive DC voltage vin) appears across the diode. The circuit diagram is shown in
Figure 4.3a. The voltage across the inductor is extracted during this time interval
(on-time) as

vL t = vin t − vo t 4 1

When the switch is turned off, the diode is turned on as the current through the
inductor is positive in the circuit diagram, shown in Figure 4.3b. Therefore, the
voltage across the inductor is extracted during this time interval (off-time) as

vL t = − v0 t 4 2
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Assuming the input and output voltage ripples are negligible, and the system is in
the steady state, the inductor voltage equations are rewritten as

vL t =
Vin −V 0 when the switch is turned on

−V 0 when the switch is turned off
4 3

Note that the steady state quantities are denoted by uppercase letters, while instan-
taneous quantities are denoted by lowercase letters.
The duty cycle (or ratio) d(t) of the converter is defined as the ratio of the on-

time, tON to the switching cycle time, Ts. When the input and output voltages have
no variation, the duty cycle is constant (denoted by D) and is expressed as

(a) (b)

Figure 4.3 The circuit diagram of a buck converter when the switch is (a) on and (b) off.

Figure 4.1 The block diagram of a DC-DC converter connected to two different DC sources.

Figure 4.2 The circuit diagram of a buck converter connected to a battery (vin) and a
resistive load (R).
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d t = D =
tON
Ts

d t = 1− d t

4 4

Based on the above analysis and operating modes, the voltage and current wave-
forms of the buck converter over one switching cycle are shown in Figure 4.4. It is
assumed that the switch and the diode are ideal (with no voltage drop when they
are turned on), the current through the inductor is continuous, and the output
voltage ripple is negligible.
When the converter has not attained a steady state, the inductor current and the

output voltage are changed at the end of each switching cycle. Once the converter
is in the steady state, the average voltage across the inductor and the current
through the capacitor should be zero. The average voltage across the inductor over
one switching cycle can then be calculated as

vL t =
1
Ts

Ts

0

vL t dt = 0 4 5

(a) (b)

(c) (d)

Figure 4.4 Voltage and current waveforms of a buck converter over a switching cycle in the
steady stare: (a) voltage across the inductor, (b) current through the inductor, (c) current
through the capacitor, and (d) load current.

4.1 Analysis of Buck Converter 125



Based on (4.3) and (4.4), the average voltage of (4.5) can be expressed as

vL t =
1
Ts

DTs

0

Vin −V 0 dt +

Ts

DTs

−V 0 dt = 0 4 6

The solution of (4.6) yields

D =
V 0

Vin
4 7

4.1.1 Designing a Buck Converter

To design a buck converter, the inductance and capacitance values must be deter-
mined. The value of the inductor can be selected based on the system operating
mode and the expected voltage and current ripples. For example, during the time
period when the switch is turned on, the inductor voltage can be expressed in
terms of its current as

vL t = L
diL t
dt

4 8

From (4.3), the voltage across the inductor is obtained. Therefore, when the switch
is on, we have

Vin −Vo = L
2ΔiL
DTs

4 9

The inductor ripple is then given by

ΔiL =
Vin −Vo DTs

2L
=

Vin −Vo D
2Lf s

4 10

For the design of a buck converter, the following aspects must be kept in mind:

• One of the main design parameters is the switching frequency, fs, which is
selected based on the quality, efficiency, cost, and size of the power converter.
In low power applications, the switching frequency is in the order of tens of kHz.

• The switch and the diode are considered ideal components in this example with-
out any voltage drop and internal resistance. In practice, however, the internal
characteristics of the semiconductor components have a significant impact on
the steady state, dynamic, and efficiency of the power converter.

• The inductor is considered to be without any internal resistance (copper loss)
and any parasitic capacitor between the turns of the winding. These parameters
can affect the voltage drop, ripple, transfer function, and high-frequency noise
emission.
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Example 4.1 Consider an ideal buck converter, the parameters of which are
given in Table 4.1. We first have to choose the duty ratio. From (4.7), we find that
for an input voltage of 12 V the duty ratio should be kept at D = 5 12 = 0 417 to
keep the output as 5 V across the load. For a 5 V output and 1Ω resistance, the
output current is

ILoad = Io =
5
1
= 5 A

For 10% current ripple, we haveΔiL= 0.5 A. Therefore, from (4.10), the inductance
is calculated as

L =
Vin −Vo D
2ΔiLf s

=
7 × 0 417

2 × 0 5 × 20 × 103
= 0 146 × 10− 3 = 0 146 mH

To determine the value of the capacitance, the average current through the
capacitor can be calculated as shown in Figure 4.5. During the time interval t1

Table 4.1 Buck converter design parameters.

Quantities Values

Switching frequency, f s =
1
Ts

20 kHz

Input voltage, Vin 12 V

Output voltage, Vo 5 V

Load resistance, R 1Ω

Inductor current ripple, ΔiL 10%

Output voltage ripple, Δvo 2%

Figure 4.5 Capacitor current and voltage
waveforms.
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to t2 (half of the switching cycle), the current through the capacitor is positive. The
voltage ripple, Δvo, is then given by

iC t = C
dvC t
dt

4 11

The surface area of the capacitor current between t1 and t2 is

t2

t1

vc t dt =
1
C

t2

t1

ic t dt 4 12

The left side of (4.12) is equal to 2Δvo, i.e. two times the voltage ripple across the
capacitor (see Figure 4.5). Thus, the voltage ripple amplitude in terms of the con-
verter parameters is given by

2Δvc = 2Δvo =
TsΔiL
4C

4 13

Therefore, the value of the capacitor is computed as

C =
ΔiL

8Δvof s
4 14

For the values given in Table 4.1, we get

C =
0 5

8 × 0 02 × 5 × 20 × 103
= 0 03125 × 10− 3 = 31 25 μF

Example 4.2 The buck converter of Table 4.1 is simulated with the designed
values of the inductance and capacitance. The cold start transients are shown
in Figure 4.6, while the voltage and currents in the steady state condition are
shown in Figure 4.7. The duty ratio is chosen as 5 12 = 0 4167. It can be seen that,
in the steady state, the voltage and current ripples are the same as the designed
values. If there are no internal or external disturbances or any variation in the
power converter elements and parameters, the output voltage is exactly 5 V.

4.1.2 The Need for a Controller

In Example 4.2, the buck converter is connected to an ideal battery (constant volt-
age with no harmonics or disturbances). The open-loop system response is shown
in Figures 4.6 and 4.7, where the converter is turned on and off with an exact duty
ratio of 0.4167 to keep the output voltage constant at 5 V. However, in practical
situations, the aim is to regulate the output voltage at 5 V regardless of the
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Figure 4.6 Initial starting transients of the buck converter.
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Figure 4.7 Steady state voltage and current ripples with the buck converter.
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uncertainties in the converter system such as load change and converter passive
element variations. In addition to the tolerances in the power converter para-
meters, a pulse generator cannot generate the expected pulses (due to variations
in electronic circuits), with the exact duty cycle. The input voltage might have
some harmonics and amplitude variations in which the output voltage will be
affected.
Consider, for example, the buck converter of Example 4.1. The converter is sup-

plied by a 12 V battery with a fixed duty ratio of 0.4167. When it operates in the
steady state, the load reduces suddenly at 0.01 seconds and then changes back
to the original value of 1Ω at 0.02 seconds. The output voltage and the inductor
current are shown in Figure 4.8a,b respectively. Due to the fixed duty ratio oper-
ation, the voltage does not get regulated. Also, the current chatters around 0 A. The
zoomed versions of voltage and current are shown in Figure 4.8c,d respectively. It
is evident that the inductor current enters a discontinuous conduction mode
(DCM), where the current is prevented from becoming negative by the diode.
Thus, to regulate the voltage at 5 V and to prevent the current entering DCM,
the duty ratio must be controlled.

Inductor Current iL (A)Output Voltage vc (V)

Inductor Current iL (A)Output Voltage vc (V)
(a) (b)

(c) (d)
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Figure 4.8 System behavior for a load change when the buck converter is supplied by a
battery: (a) Output voltage, (b) inductor current behavior, zoomed portion of (c) output
voltage and (d) inductor current.

130 4 Power Electronic Control Design Challenges



Consider another example where the buck converter is connected to a diode rec-
tifier. The output voltage should be at 5 V. This situation is completely different
from the previous case – changing the input DC source from a battery to a diode
rectifier that produces unregulated DC voltage. Here the voltage amplitude is not
constant and introduces voltage harmonics. These are obvious from the response
shown in Figure 4.9.
Due to the input voltage variation and disturbances, the duty cycle should be

changed continuously in order to generate a regulated voltage of 5 V across the
load. Therefore, there is a need to design and implement a controller based on neg-
ative feedback. This is to control the duty cycle automatically based on the error
generated by any voltage disturbance and variation.
A general circuit diagram of a buck converter with negative feedback is shown in

Figure 4.10, where the control algorithm is assumed to be executed by a microcon-
troller. An ideal DC source is shown in Figure 4.10a, where the input voltage (bat-
tery) has no harmonics, and it is expected to be constant at 12 V. The output
voltage amplitude is low (5 V) and it can be directly measured by the controller.
The output voltage is compared to a reference value (5 V in this case), while the
error should be minimized through a proper controller. The pulse generator (pulse
width modulator, PWM) can generate pulses with a variable duty cycle to control

Inductor Current iL (A)

Input Voltage Vin (V)

Output Voltage vc (V)
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4

Figure 4.9 Voltage and current behavior when the buck converter is supplied by an
uncontrolled bridge rectifier.
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the output voltage at the desired value despite all variations and disturbances in
the power converter. For example, if the load is changed affecting the operating
mode of the converter, the controller can adjust the duty cycle based on the gen-
erated error accordingly.
Figure 4.10b shows another case where the input voltage fluctuates (e.g. a rec-

tified voltage with harmonics), and the output voltage is expected to be 24 V.
Under this condition, the converter output voltage is higher than the voltage limit
that can be safely measured by a microcontroller (typically voltages below 5 V can
be measured directly by it). Thus, for the measurement, first, the output voltage
should be attenuated by a voltage divider. The sensor transfer function should
be modelled in the overall control system analysis, which can affect the stability
of the system.
To design a controller for both systems, a transfer function and a model of the

converter is required. The state variables of inductor current (iL) and capacitor

(a)

(b)

Figure 4.10 Circuit diagrams of a buck converter with negative feedback and a controller:
(a) with a battery and low-output voltage amplitude and (b) with a diode rectifier and high-
output voltage amplitude.
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voltage (vc) are defined to extract and derive the equations for all subcircuits when
semiconductor switches are turned on and off. In Sections 4.1.3–4.1.7, we intro-
duce several stages to find the transfer function of a power converter. The aver-
aging method has been used to find a continuous model of the discrete
subcircuits. As the final equations are nonlinear (some of the variables are multi-
plied together), a linearization technique is utilized to simplify the equations into
linear time-invariant form. Finally, the Laplace transform of the linearized equa-
tions is used to find the transfer function, based on which a controller can be
designed.

4.1.3 Dynamic State of a Power Converter

The dynamic behavior of a power converter is observed when the current through
an inductor or the voltage across a capacitor is changed. During this time, the
values of the voltage and current at the beginning and at the end of each switching
cycle are not the same. This phenomenon happens when a change occurs in the
reference signal, the input voltage, or the load. A similar behavior can be observed
during the start-up condition when the power converter is turned on with zero
initial condition; the current and the voltage in a power converter are increased
and changed over several switching cycles until these parameters reach the steady
state stage. This is obvious from Figure 4.6c. It can be seen that the inductor cur-
rent increases at the beginning of every switching cycle till the steady state is
reached at around 0.7 ms. Thus, the main aim of designing a proper control system
is to achieve the optimum dynamic behavior of a power converter. This means the
robust operation of the converter with respect to disturbances, such that it reaches
the steady state condition with minimum transient time, steady state error, and
over- or undershoot.

4.1.4 Averaging Method

Figure 4.3 shows the buck converter operation modes assuming the current
through the inductor is always continuous. The state variables for the converter
are the capacitor voltage vc(t) and the inductor current iL(t). When the switch is
turned on, we get the following equations from Figure 4.3a

vL t = L
diL
dt

= vin t − vo t 4 15

iC t = C
dv0
dt

= iL t − io t = iL t −
vo t
R

4 16

On the other hand, when the switch is turned off, the converter operation mode
changes to the circuit shown in Figure 4.3b. From this circuit, the dynamic equa-
tions are written as
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vL t = − vo t 4 17

iC t = iL t − io t = iL t −
vo t
R

4 18

DC-DC converters are developed in such a way that the current through the
inductors and the voltage across the capacitors are controlled when semiconductor
switches are turned on and off. In fact, there is at least one current loop for each
inductor when one of the semiconductor switches is turned on or off; otherwise, a
significant overvoltage (di dt ) appears across the inductor and can damage the con-
verter. Consider, for example, Figure 4.3. It can be seen that, when the switch is
turned on and off, the inductor current branch is not open circuited, and the cur-
rent is circulated through the capacitor and the load. Similarly, the voltage across
the capacitor must not be short circuited when one of the switches is turned on or
off. This will damage the capacitor.
The inductor current or the capacitor voltage changes instantaneously based on

the subcircuits and the operating modes of the converter. For control and stability
analysis, either the high frequency or the instantaneous variation of the current or
the voltage waveforms is not essential. However, the average variation of the cur-
rent or the voltage signal over each switching cycle should be analyzed. These
average values of the voltage and current are used in power converters as they rep-
resent the low-frequency behavior of the signal during the steady state and tran-
sient conditions.
In general, over a time period Ts, the average value of a variable is given by

y t =
1
Ts

Ts

0

y t dt

where y denotes the average of the quantity y. This method of averaging will
remove the high-frequency switching ripple over one switching cycle, while the
average value can be changed from one switching period to the next such that
low-frequency components are retained [1]. Consider (4.15), which defines the
inductor and capacitor voltage and current when the switch is closed. We replace
the input voltage vin(t) and output voltage vo(t) by their low-frequency average
values of vin t and vo t respectively to get

vL t = L
diL
dt

= vin t − vo t 4 19

Similarly, from (4.17) we have

vL t = − vo t 4 20
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The low-frequency average of the inductor voltage is then given as

vL t =
1
Ts

t + Ts

t

vL τ dτ = d t vin t − v0 t − d t v0 t

where d (t) = 1− d(t). Then (4.20) can be written as

vL t = L
diL t
dt

= d t vin t − v0 t 4 21

In the steady state, since d = vo vin, the average voltage is zero. However, during
transients, the average current varies linearly with the input voltage if the high-
frequency ripple is neglected. Similarly, the low-frequency average of the capacitor
current is rewritten from (4.16) and (4.18) as

iC t = C
dvo t
dt

= iL t −
vo t
R

4 22

4.1.5 Small Signal Model of Buck Converter

The averaged model of the inductor voltage in (4.21) is nonlinear since this is
defined in terms of a product of vin t and d(t). Usually, a nonlinear differential
equation is linearized using the Taylor series. Consider, for example, the following
nonlinear equation

y t = f y, u 4 23

where u(t) is the input. Equation (4.23) will be linearized around an operating
point, where the steady state values are denoted by uppercase letters and the per-
turbed values are prefixed by capital delta, i.e.

y t = Y + Δy t , u t = U + Δu t

Then in the Taylor series expansion, the second- and higher-order terms are
neglected to obtain a linear form of (4.23), given by

Δy t =
∂f y, u

∂y
Δy t +

∂f y, u
∂u

Δu t 4 24

For the buck converter, the following quantities are defined

vo t = V 0 + Δvo t

iL t = IL + ΔiL t

vin t = Vin + Δvin t

d t = D + Δd t

d t = 1− d t = D −Δd t

4.1 Analysis of Buck Converter 135



Then the linearized model of (4.21) is obtained in the similar fashion of (4.24) as

L
dΔiL t

dt
= DΔvin t + VinΔd t −Δv0 t 4 25

The output voltage equation of (4.22) is already linear and is rewritten in small
signal form as

C
dΔvo t

dt
= ΔiL t −

Δvo t
R

4 26

4.1.6 Transfer Function of Buck Converter

Equations (4.25) and (4.26) are now used to determine the transfer function of the
buck converter. The Laplace transforms of these two equations are

sLΔiL s = DΔvin s + VinΔd s −Δv0 s 4 27

sCΔvo s = ΔiL s −
Δvo s

R
4 28

Substituting ΔiL(s) from (4.27) in (4.28), we have

sL sC +
1
R

Δvo s = DΔvin s + VinΔd s −Δv0 s

LCs2 +
L
R
s + 1 Δvo s = DΔvin s + VinΔd s

The above equation can then be rewritten as

Δvo s = Gbuck
vin s Δvin s + Gbuck

d s Δd s 4 29

where

Gbuck
vin s =

D

LCs2 + L
R s + 1

andGbuck
d s =

Vin

LCs2 + L
R s + 1

Note that, when the buck converter is supplied by a constant DC source such as
battery, Δvin = 0 and the transfer function (4.29) is given simply by

Δvo s = Gbuck
d s Δd s .

4.1.7 Control of Buck Converter

In this section, we discuss the control of a buck converter, where themain aim is to
control the output voltage. Consider the feedback control structure of Figure 4.10a,
where the firing signal is generated through the intersection of the control signal
vcont(t) with a sawtooth waveform of height VST, as shown in Figure 4.11a. If the
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control signal is greater than the sawtooth signal, the output of the PWM is high;
otherwise, it is low. The duty cycle is then given by

d t =
TON

Ts
=

vcont t
VST

Then the transfer function of the PWM is

HPWM s =
d s

vcont s
=

1
VST

4 30

This is shown in Figure 4.11b.

Example 4.3 Consider the buck converter of Example 4.2, where the input volt-
age is supplied by a constant 12 V source. The output voltage is assumed to be 5 V
such that the duty ratio is 0.4167. The peak of the sawtooth waveformVST is chosen
as 1 such that d(t) = vcont(t). The buck converter open-loop transfer function then is

Gbuck
d s =

Vin

LCs2 + L
R s + 1

=
12

4 56 × 10− 9s2 + 1 46 × 10− 4s + 1

The DC gain of the open-loop system is 12. The root locus of the converter is shown
in Figure 4.12, from which it is obvious that the system will always remain stable.
Let us now assume that the converter is controlled by a proportional controller
with a gain of KP. The closed loop transfer function is then given by

GCL s =
KPGbuck

d s

1 + KPGbuck
d s

=
12KP

4 56 × 10− 9s2 + 1 46 × 10− 4s + 1 + 12KP

The DC gain of the closed-loop system is 12KP/(1 + 12KP). Then for KP = 2, the
DC gain will be 0.96, while for KP = 20, the DC gain will be 0.996. However, with a
proportional plus integral (PI) controller, there will not be any steady state error.
Figure 4.13 shows the response of the small signal model of the buck converter for

(a) (b)

Figure 4.11 (a) Sawtooth and control waveforms and (b) transfer function of the PWM.
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Figure 4.12 Root locus plot of the small signal model of the buck converter.
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Figure 4.13 Dynamic response of the buck converter small signal model to P-type and
PI-type controllers.
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these two values of proportional gain, along with a PI controller with KP = 2 and
KI = 1000, where the reference voltage changes from 5 V to 3 V at 2.5 ms. It can be
seen that, as the value of KP increases, the steady state error decreases. However,
this causes larger transients, as evident by comparing Figure 4.13a with
Figure 4.13b. The response of the PI controller is much superior to that of the pro-
portional controller.
The closed-loop control system of a DC-DC converter is shown in Figure 4.14.

The response of the buck converter with the PI controller is shown in Figure 4.15,
where the reference voltage is chosen as 5 V initially. It is then reduced to 3 V after
0.15 seconds and increased to 7 V at 0.3 seconds. It is evident that the voltage track-
ing is accurate, and the duty ratio changes a per the requirements.

Figure 4.14 Closed-loop control of a DC-DC converter.
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Figure 4.15 Output voltage response and duty ratio of the buck converter.
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4.2 Transfer Function of Boost Converter

The circuit diagram of a boost converter is shown in Figure 4.16a. Its transfer func-
tion can be derived based on the averaging method and the small signal analysis
explained in Section 4.1. There are two subcircuits associated with the operating
mode of the converter when the semiconductor switch is turned on and off, as
shown in Figure 4.16b,c respectively. From Figure 4.16b, we get the following
equations when the switch is on

vL t = vin t 4 31

iC t = − io t 4 32

Again, from Figure 4.16c, the following equations are obtained when the switch
is off

vL t = vin t − vo t 4 33

iC t = iL t − io t 4 34

Employing the average method discussed in Section 4.1, the average voltage
across the inductor and the current through the capacitor are calculated as

vL t = vin t d t + vin t − vo t d t

= vin t − vo t d t
4 35

iC t = − io t d t + iL t − io t d t

= iL t d t − io t
4 36

(a)

(b) (c)

Figure 4.16 (a) A boost converter, its equivalent circuit when the switch is (b) on and (c) off.
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Equations (4.35) and (4.36) are linearized as

L
dΔiL t

dt
= Δvin t + VoΔd t −D Δvo t 4 37

C
dvo t
dt

= D ΔiL t − ILΔd t −Δio t 4 38

From Figure 4.16, we find that io(t) = vo(t)/R. Also, the steady state relation
between the inductor current and the output current is given by D IL = I0 =
Vo/R. Substituting these in (4.38), we have

C
dΔvo t

dt
= D ΔiL t −

Vo

D R
Δd t −

Δvo t
R

4 39

The Laplace transform of (4.37) is

LsΔiL s = Δvin s + VoΔd s −D Δvo s 4 40

Now taking the Laplace transform of (4.39) and substitution in (4.40) results in

CsΔvo s =
D
sL

Δvin s + VoΔd s −D Δvo s −
Vo

D R
Δd s −

Δvo s
R

Cs +
D 2

sL
+

1
R

Δvo s =
D
sL

Δvin s +
D Vo

sL
−

Vo

D R
Δd s

LC
D

s2 +
L
RD

s + D Δvo s = Δvin s + Vo 1−
L

D 2R
s Δd s

Rearranging the above equation, we get

Δvo s = Gboost
vin s Δvin s + Gboost

d s Δd s 4 41

where

Gboost
vin s =

1
LC
D

s2 +
L

RD
s + D

andGboost
d s =

Vo 1−
L

D 2R
s

LC
D

s2 +
L

RD
s + D

4.2.1 Control of Boost Converter

We shall now discuss the control of a boost converter, based on the parameters listed
in Table 4.2. It is assumed that the desired output voltage is 100 V. Then the duty
ratio is 0.5, i.e. D = 0.5. Then the transfer function of the boost converter is

Gboost
d s =

Vo 1−
L

D 2R
s

LC
D

s2 +
L

RD
s + D

=
− 0 04s + 100

2 × 10− 8s2 + 2 × 10− 5s + 0 5
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The root locus plot is shown in Figure 4.17. Note that the system has an open-loop
zero on the right-half s-plane. Therefore, the roots move over to the right-half s-
plane after starting from stable positions. For a proportional gain of KP, the char-
acteristic equation of the system is given by

2 × 10− 7s2 + 2 × 10− 4 − 0 04KP s + 0 5 + 100KP = 0

Therefore, for the system to remain stable, we must have 0.0002− 0.04KP> 0, i.e.
KP< 0.005. The system will become unstable for a very small gain. If, on the other
hand, we choose a very small gain, the steady state error will be high.
Let us now consider a PI controller of the form GC(s) = (KPs+ KI)/s. Then the

open-loop transfer function of the system is
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Figure 4.17 Root locus plot of the boost converter.

Table 4.2 Boost converter parameters.

Quantities Values

Switching frequency, fs 20 kHz

Input voltage, Vin 50 V

Load resistance, R 10Ω

Inductor, L 1mH

Capacitor, C 100 μF

142 4 Power Electronic Control Design Challenges



GC s Gboost
d s =

KPs + KI − 0 04s + 100
2 × 10− 7s3 + 0 0002s2 + 0 5s

The characteristic equation of the closed-loop system is then given by

2 × 10− 7s3 + 0 0002− 0 04KP s2 + 0 5− 0 04KI + 100KP s + 100KI = 0

To find the limits of the control parameters, Routh’s table is considered, which is
given below

s3 2 × 10− 7 0 5− 0 04KI + 100KP

s2 0 0002− 0 04KP 100KI

s1 α

s0 100KI

where

α =
0 0002− 0 04KP 0 5− 0 04KI + 100KP − 2 × 10− 5KI

0 0002− 0 04KP

Since all the coefficients of the first column of each row must be positive, from the
s2 row it can be written as

0.0002− 0.04KP> 0, i.e. KP< 0.005.

Let us choose KP = 0.0045. With this value of the proportional gain, the charac-
teristic equation can be rewritten as

K1
− 0 04s + 100

2 × 10− 7s3 + 2 × 10− 5s2 + 0 95s
+ 1 = 0

Figure 4.18 shows the root locus plot as KI increases from 0 to high values.
It is evident from Figure 4.18 that the system remains stable only for a limited

range of values of KI. To check the range, we again refer to Routh’s table. Since α
must be greater than 0, we have

α =
2 × 10− 5 0 2225− 0 04KI − 2 × 10− 5KI

2 × 10− 5 = 0 2225− 1 04KI > 0

This gives KI< 0.2139. Let us choose KI = 0.2. Then the roots of the closed-loop
system are placed at −39.4 ± j2169.5 and −21.2. The closed-loop response of the
system is shown in Figure 4.19. Even though the controller can track the reference
voltage, the low gains make disturbance rejection difficult. The consequence of
this is that the system will become unstable even for small changes in the system,
such as reference voltage or load resistance.
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4.2.2 Two-loop Control of Boost Converter

The two-loop control system of the boost converter is shown in Figure 4.20a, in
which the inner current is a faster loop, while the outer voltage loop is slower.
The inner current loop, shown in Figure 4.20b, has a controller denoted by GCI(s).
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Figure 4.18 Root locus plot of the boost converter when KI increases from 0 to high values.
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Figure 4.19 Boost converter response with PI controller.
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The outer voltage loop has a controllerGCV (s) as shown in Figure 4.20c. The trans-
fer functions of the different subsystems are derived below.
Assuming that the input voltage is constant, i.e. Δvin = 0, we first derive the

transfer function of the inner current loop. For this, (4.39) is rewritten in the
Laplace domain as

Δvo s =
R

RCs + 1
D ΔiL s −

Vo

D R
Δd s

Substituting the above equation in (4.40) and since input voltage is constant,
we have

LsΔiL s = VoΔd s −D Δvo s

= VoΔd s −
D R

RCs + 1
D ΔiL s −

Vo

D R
Δd s

Rearranging the above equation, the open-loop transfer function of the current
loop transfer is given by

ΔiL s
Δd s

= GLd s 4 42

where

GLd s =
Vo Cs + 2 R

LCs2 + L Rs + D 2

(a)

(b)

(c)

Figure 4.20 (a) Two-loop control of boost converter, (b) inner current loop, and (c) outer
voltage loop.
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From Figure 4.20b, the closed-loop transfer function of the inner current loop is
obtained as

ΔiL s
ΔiLref s

= HCCL s =
GCI s GLd s

1 + GCI s GLd s
4 43

The current loop is a faster loop that basically controls the duty ratio, while the
outer voltage loop sets the current reference for the inner loop. Thus, the outer
loop does not have any significant impact on the perturbation of the duty ratio.
We can then assume Δd = 0 in (4.39) to write

CsΔvo s = D ΔiL s −
Δvo s

R

Rearranging the above equation, we get

Δvo s
ΔiL s

= GVL s 4 44

where

GVL s =
D R

RCs + 1

From Figure 4.20c, the closed-loop transfer function of the boost converter is then
given by

Δvo s
Δvref s

= HCL s =
GCV s HCCL s GVL s

1 + GCV s HCCL s GVL s
4 45

Example 4.4 Consider the boost converter, the parameters of which are given in
Table 4.2. First, we consider the inner current controller. For chosen parameters,
the open-loop transfer function is given as

GLd s =
0 01s + 20

1 × 10− 7s2 + 1 × 10− 4s + 0 25

The Bode plot of the system is shown in Figure 4.21. The system has a phase mar-
gin of 89.43 at the gain crossover frequency of 15.9 kHz, i.e. at 105 rad/s. The aim
here is to design a compensator that has a high phase margin (say 60 ) at the gain
crossover frequency of 1.59 kHz, i.e. 104 rad/s.
The open-loop transfer function of the system is rewritten by setting s = jω as

GLd jω =
20 + j0 01ω

0 25− 1 × 10− 7ω2 + j1 × 10− 4ω

At the desired gain crossover of ωg = 104 rad/s 100, GLd(jωg) is

GLd jωg = 10 4 − 95 45
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At the gain crossover frequency ωg, the phase must be equal to −180 + 60 =
− 120 . We must therefore add a phase lag of 120 − 95.45 = 24.55 through a
compensator.
For this, a phase lag compensator is employed, which is given in (3.55) as

GCI s = Kc
s + 1 τ

s + 1 βτ
, β > 1

Note that a lag compensator is really the inverse of a lead compensator. We can
thus have the following by modifying (3.53)

sinϕm =
β− 1
β + 1

Solving this, the value of β is found as

β =
1 + sin 24 55
1− sin 24 55

= 2 42

Then replacing α by β in (3.53), we get

τ =
1
βωg

= 6 43 × 10− 5

Note that, at the gain crossover frequency ωg, the total gain of the compensated
system should be 1, i.e.

Bode Plot of the Uncompensated Current Loop

GM = Inf dB (at Inf rad/s, PM = 89.43 deg (at 100 krad/s)
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Figure 4.21 Bode plot of the uncompensated current loop.
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GLd jωg × GCI jωg = 10 4Kc
s + 1 τ

s + 1 βτ
= 1

Solving this, we get Kc = 0.0618. The compensator transfer function is then
given by

GCI s =
0 0618s + 961 1

s + 6427

The Bode plot of the compensator is shown in Figure 4.22, while that of the com-
pensated system is shown in Figure 4.23. It is obvious from Figure 4.23 that the
compensated system design specifications are met.
The open-loop transfer function of the outer voltage loop is given by

GVL s =
D R

RCs + 1
=

5
0 001s + 1

It is obvious that the system has a DC gain of 5. To eliminate any steady state error,
a PI controller is employed, which is chosen as

GCV s = 5 +
1000
s

=
5s + 1000

s

Then the Bode plot of the compensated voltage loop is shown in Figure 4.24.
The response of the designed controller is shown in Figure 4.25. At the begin-

ning, the reference output voltage is set as 100 V, which is subsequently changed
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Figure 4.22 Bode plot of the lag compensator.
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to 150 V at 0.25 seconds. The controller tracks the change in the reference voltage
within 0.05 seconds.
Both capacitor voltage and inductor current are used in this two-loop controller,

where each individual controller is designed separately. The control design,

Bode Plot of the Compensated Current Loop

GM = Inf dB (at Inf rad/s, PM = 60 deg (at 10 krad/s)
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Figure 4.23 Bode plot of the compensated current loop.

Bode Plot of the Compensated Voltage Loop
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Figure 4.24 Bode plot of the compensated voltage loop.
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however, becomes much simpler if both these quantities are controlled together
under one unified control regime. This is discussed in Chapter 5.

4.2.3 Some Practical Issues

In a practical case, there are some parameters that affect the stability of the boost
converter. Figure 4.26 shows the copper loss of the inductor (RL) and the stray
resistance of the capacitor (RC). These parameters can affect the overall transfer
function of the boost converter. The inductance and capacitance values depend
on the system quality, cost, and size (design parameters), which can change the
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Figure 4.25 Response of the two-loop control system.

Figure 4.26 Boost converter with stray components.
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transfer function of the boost converter. Depending on low- or high-power appli-
cations, a combination of different types of DC capacitors can be different – the
value of RC can change depending on the capacitor type – such as a ceramic or
a film capacitor. Both resistors can change and affect the location of zero of the
converter.
The switching frequency of power converters is reduced in high-power and high-

voltage applications due to losses. Furthermore, due to the thermal issues of the
semiconductor switches, the efficiency of the system reduces. Thus, to control
the current ripple, the inductance value can also be increased based on the switch-
ing frequency, and this will change the transfer function of the boost converter.

4.3 Concluding Remarks

This chapter discusses the control of two different types of DC-DC converters,
namely the buck and boost converters. Mainly, the classical control aspects are
discussed here. This chapter shows that the classical design can be very challeng-
ing. The two-loop control design is a fairly arduous process. In Chapter 5, we pres-
ent state space analysis and design. In this approach, the control design of DC-DC
converters becomes much simpler as the state feedback system contains both the
inductor current and the output capacitor voltage. The desired response then can
be obtained by the choice of the feedback parameters.

Problems

4.1 In a boost converter, what is the main impact of lossy components in the sys-
tem stability? Analyze and compare the system stability of the following
converters:

• an ideal boost converter with L = 1 mH and C = 1 μF

• a real case boost converterwith L=1mH,C= 1 μF, andRL=10× 10−3Ω.
Neglect all other parasitic components and losses.

4.2 Repeat Problem 4.1 for a buck converter and explain the impact of RL on the
system stability compared to the boost converter.

4.3 If a DC-DC converter is connected to a single-phase AC system to supply
48 V DC source, what are the main sources of disturbances? Draw the entire
circuit diagram and analyze the stability of the system in order to reduce the
disturbance effects.
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4.4 Aboost converter is connected to a single-phase AC system and themain aim
is to control the grid current with unity power factor. Design and analyze the
control system with the following parameters:

• Vdc = 300 V, Vin = 220 V (rms) at 50 Hz

• P0 = 1 kW, ΔVdc = 5 %, and fSW less than 50 kHz.
Justify the selection of inductor and capacitor values as well.

Notes and References

The control of DC-DC converters is discussed in several books. The book by
Erickson and Maksimovic presents the control aspects in detail (see Chapters
7–9) [1]. The book by Mohan, Undeland, and Robbins has an illuminating chapter
on DC-DC converters [2]. The control aspects of DC-DC converters are also
covered in [3].

1 Erikson, R.W. and Maksimovic, D. (2020). Fundamental of Power Electronics, 3e.
Springer.

2 Mohan, N., Undeland, T.M., and Robbins, W.P. (2002). Power Electronics: Converters,
Applications and Design, 3e. New York: Wiley.

3 Krein, P. (2014). Elements of Power Electronics, 2e. Oxford University Press.
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5

State Space Analysis and Design

In this chapter, we have a thorough look at state space modeling and the control of
linear systems. If parameters of linear systems do not varywith time, they are usually
called linear time invariant orLTI systems.Thediscussions in this chapter are limited
to LTI systems. Different concepts, such as eigenvalues, eigenvectors (right and left),
controllability, observability, controller, and observer design are presented. Both
continuous and discrete-time systems are discussed in a generalized framework.
In the classical approaches, the control analysis and synthesis of a linear system

depend on transfer functions, which are derived assuming that the system is at
rest. The state space domain analysis does not suffer from this limitation. In fact,
the solution of a state equation depends on the initial condition. Therefore, starting
from any arbitrary initial condition, the system behavior can be specified for any
arbitrary time.
The state space approach is very crucial not only for control design but also for

analyzing the stability of a system. The nature of power systems containing power
electronic converters is nonlinear. Again, there might be systems that contain mul-
tiple converters, such as a microgrid. Such systems are linearized around an operat-
ing point to obtain a linear system description. The stability evaluation of the system
is then performed through eigenvalue analysis, where one or more parameters can
be varied to ascertain that the system remains stable under various disturbances.
There is a drastic difference between this approach and that of root locus. In the
latter, the characteristic equation of a system is written in the form 1+KG(s)
H(s) = 0. Then the gain K is varied from zero to infinity to trace the movement
of the system poles. It is not always easy to decompose a characteristic equation
in the above form. However, the use of state space modeling makes this redundant.
The other advantage of the state space representation is that it can easily include

multi-input, multi-output (MIMO) systems. The state space analysis technique is
based on a dynamic representation of systems in matrix–vector forms, where both
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input and output vectors can have more than one element. However, the analysis
of the system will remain the same, irrespective of the number of elements in the
input or output vectors. Furthermore, the state feedback control design process, in
general, is the same for single-input, single-output (SISO) and MIMO systems.

5.1 State Space Representation of Linear Systems

5.1.1 Continuous-time Systems

Consider an nth-order differential equation, given by

y
n

+ an− 1 y
n− 1

+ an− 2 y
n− 2

+ + a1y + a0y = u 5 1

where y is the output, u is the input, and x
k

is the kth time derivative of x, i.e.

x
k

= dkx dtk. The differential equation of (5.1) contains no derivative of the input
signal. In general, however, differential equations containing derivatives of input
can also be represented in the state space form, as is discussed in Section 5.4.1.
With respect to (5.1), let us define

x1 = y

x2 = y

xn− 1 = y
n− 2

xn = y
n− 1

5 2

Then comparing (5.1) with (5.2), the following expressions are obtained

x1 = x2
x2 = x3

xn− 1 = xn

xn = y
n

= u− an− 1xn − an− 2xn− 1 − − a1x2 − a0x1

5 3

The state vector of the system is defined as

x =

x1
x2

xn− 1

xn

5 4
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Then (5.3) can be written in the state space matrix–vector form as

x = Ax + Bu 5 5

where the system matrices are

A =

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

− a0 − a1 − a2 − an− 2 − an− 1

, B =

0

0

0

1

5 6

The output equation is then given from (5.2) as

y = x1 = Cx 5 7

where the output matrix is

C = 1 0 0 0 5 8

Equations (5.5) and (5.6) represent a special form called the controllable canon-
ical form or phase variable canonical form. This is widely used for controllability
tests and state feedback control designs, as are discussed elsewhere in this chapter.

5.1.2 Discrete-time Systems

Consider the following nth-order difference equation

y k+n +an−1y k+n−1 +an−2y k+n−2 + +a1y k+1 +a0y k =u k

5 9

In a similar fashion to Section 5.1.1, we can define

x1 k =y k

x1 k+1 =x2 k =y k+1

x2 k+1 =x3 k =y k+2

xn−1 k+1 =xn k =y k+n−1

xn k+1 =y k+n =u k −an−1xn k −an−2xn−1 k − −a1x2 k −a0x1 k

5 10

Then for the state vector of (5.4), the discrete-time state space description is
given by

x k + 1 = Ax k + Bu k 5 11

y k = Cx k 5 12
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where the matrices A and B are the same as given by (5.6) and the C matrix is
given by (5.8).

5.2 Solution of State Equation of a Continuous-time
System

The solution of a state equation is similar to solving an nth-order differential
equation. We shall start the discussion by defining what is called a state transition
matrix.

5.2.1 State Transition Matrix

A state equation is called linear homogeneous when the input signal is zero. Sub-
stituting u = 0 (5.5), the homogeneous state equation is given by

x t = Ax t 5 13

Let φ ℜn × n be the state transition matrix of the system in (5.13). Then it must
satisfy

φ t = Αφ t 5 14

Since the state equation of (5.13) has no forcing function, its solution will depend
on the initial condition x(0) at time t = 0, given by

x t = eAtx 0 5 15

Let us define

φ t = eAt 5 16

It can easily be verified that φ(t) satisfies (5.14), i.e.

φ t = AeAt = Aφ t

The solution of the state equation can be written in terms of the state transition
matrix by substituting (5.16) in (5.15) as

x t = φ t x 0 5 17

Taking the Laplace transform of both sides of (5.13), we get

sX s − x 0 = AX s

X s = sI−A − 1x 0
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The inverse Laplace transform of the above equation is

x t = − 1 sI−A − 1 x 0

Comparing (5.17) with the above equation, the state transition matrix is
obtained as

φ t = − 1 sI−A − 1 5 18

Example 5.1 Let us consider a homogeneous state equation of the form

x =
0 1

− 4 − 5
x t

Then

sI−A −1 =
s −1

4 s+5

−1

=
1

s2 + 5s+4

s+5 1

−4 s
=

1
s+4 s+1

s+5 1

−4 s

Through partial fraction expansion of the above equation, we get

sI−A − 1 =
1
3

−
1

s + 4
+

4
s + 1

−
1

s + 4
+

1
s + 1

4
s + 4

−
4

s + 1
4

s + 4
−

1
s + 1

Therefore, the state transition matrix is

φ t = − 1 sI−A − 1 =
−

1
3
e− 4t +

4
3
e− t −

1
3
e− 4t +

1
3
e− t

4
3
e− 4t −

4
3
e− t 4

3
e− 4t −

1
3
e− t

Therefore, the solution of the state equation can then be written as

x t =
−

1
3
e− 4t +

4
3
e− t −

1
3
e− 4t +

1
3
e− t

4
3
e− 4t −

4
3
e− t 4

3
e− 4t −

1
3
e− t

x 0

Note that a partial fraction expansion can be performed easily through
MATLAB®. Consider the following rational function with simple poles

H s =
Q s
P s

=
sm + qm− 1s

m− 1 + + q1s + q0
s− p1 s− p2 s− pn

, n ≥ m
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Then the “residue” command in MATLAB® will perform the partial fraction
expansion of the form

H s =
r1

s− p1
+

r2
s− p2

+ +
rn

s− pn

where ri, i = 1, …n are the residues of the partial fraction expansion. Consider, for
example, the following rational function

s + 5
s2 + 5s + 4

Then use the following MATLAB® commands:

num = [1 5];

den = [1 5 4];

[z,p,k] = residue(num,den)

This will produce z = [− 0.3333; 1.3333], p = [− 4;− 1] and k = []. In a similar way,
the residues of all other three elements of the matrix can be computed. Note that
residues for multiple poles can also be determined using the “residue” command.
Please refer to MATLAB® help.

5.2.2 Properties of State Transition Matrix

There are certain properties that are used while determining the response of a
system. Some of the properties are:

1 φ 0 = eΑ × 0 = I

2 φ− 1 t = eAt
− 1

= e−At = φ − t

3 φ t1 + t2 = eA t1 + t2 = eAt1eAt2 = φ t1 φ t2

4 φ t2 − t1 φ t1 − t0 = eA t2 − t1 eA t1 − t0 = eA t2 − t0 = φ t2 − t0

Note that, for two square matrices A and B, eA+B = eAeB only when AB = BA.
Therefore, properties 3 and 4 are valid. The fourth property is very useful as it
implies that a state transition process can be divided into two sequential transi-
tions. This property is used for some power electronic applications discussed in
Section 5.11. In general, however, the transition process can be broken into any
number of parts. Example 5.2 illustrates this.
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Example 5.2 Consider the homogeneous state equation of Example 5.1. Let the

initial condition at t0 = 0 be x 0 = 3 5 T. It is assumed that t1 = 1 seconds and
t2 = 2 seconds in property 4. Then we have

x t1 =φ t1 x 0 =
−
1
3
e−4t +

4
3
e− t

−
1
3
e−4t +

1
3
e− t

4
3
e−4t−

4
3
e− t 4

3
e−4t−

1
3
e− t

t=1

3

5
=

2 036

−1 889

Also

x t2 =φ t2−t1 x t1 =
−
1
3
e−4t+

4
3
e−t

−
1
3
e−4t+

1
3
e−t

4
3
e−4t−

4
3
e−t 4

3
e−4t−

1
3
e−t

t=1

2 036

−1 889
=

0 766

−0 763

Or else x(t2) can be directly computed from

x t2 =φ t2 x 0 =
−
1
3
e−4t +

4
3
e− t

−
1
3
e−4t +

1
3
e− t

4
3
e−4t−

4
3
e− t 4

3
e−4t−

1
3
e− t

t=2

3

5
=

0 766

−0 763

In a similar way, a chain of solutions of the state equation can be used to arrive at
the final solution for any given time instant.
Furthermore, from property 2 above, we can traverse back in time to find the

values of the state variables, such as

x t1 = φ t2 − t1
− 1x t2 =

2 036

− 1 889

and

x 0 = φ t1
− 1x t1 =

3

5

Since the state transitionmatrix satisfies thehomogeneous state equation, it repre-
sents the free response of the system. It describes the response of the system that is
excited by the initial condition only. As can be seen from (5.15), this matrix defines
the transition from the initial time t = 0 to any finite time when the input is zero.

5.2.3 State Transition Equation

In this section, the solution of nonhomogeneous LTI systems is discussed, where
the forcing function is not zero. Consider a state equation of the form (5.5), which
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need not be in the state variable canonical form. Taking Laplace transform on both
sides of (5.5), we get

sX s − x 0 = AX s + BU s

X s = sI−A − 1 x 0 + BU s
5 19

The inverse Laplace transform of (5.19) is

x t = − 1 sI−A − 1 x 0 + BU s

= φ t x 0 + − 1 sI−A − 1BU s

Using the convolution integral, the above equation is written in time domain as

x t = φ t x 0 +

t

0

eA t− τ Bu τ dτ = φ t x 0 +

t

0

eAτBu t− τ dτ 5 20

Note that (5.20) is defined with respect to the initial values at time t = 0. However,
as evident from Example 5.2, this equation can be written between any two arbi-
trary time intervals t1 and t2 as

x t2 = φ t2 − t1 x t1 +

t2

t1

eA t2 − τ Bu τ dτ 5 21

5.3 Solution of State Equation of a Discrete-time
System

The solution of a state Eq. (5.11) is akin to solving an nth-order difference equa-
tion. Equation (5.11) is expanded for the different values of k as

x 1 = Ax 0 + Bu 0

x 2 = Ax 1 + Bu 1

= A2x 0 + ABu 0 + Bu 1

x 3 = Ax 2 + Bu 2

= A3x 0 + A2Bu 0 + ABu 1 + Bu 2

Repeating the sequence, we get

x k = Akx 0 +
k− 1

i = 0

Ak− i− 1Bu i 5 22
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5.3.1 State Transition Matrix

Comparing (5.22) when the input is zero with (5.15), the state transitionmatrix of a
discrete-time system is written as

φ k = Ak 5 23

It can be readily seen that

φ k + 1 = Ak + 1 = Aφ k

which is of the same form as that given in (5.14).
The properties of the state transitionmatrix are also like those of the continuous-

time systems, i.e.

φ 0 = A− 0 = I

φ− 1 k = Ak − 1
= A− k = φ − k

φ k1 + k2 = A k1 + k2 = Ak1Ak2 = φ k1 φ k2

φ k2 − k1 φ k1 − k0 = A k2 − k1 A k1 − k0 = A t2 − t0 = φ k2 − k0

5.3.2 Computation of State Transition Matrix

The simplest way of computing a state transition matrix is through an inverse z-
transform. Consider the discrete-time homogeneous state equation of the form

x k + 1 = Ax k 5 24

Taking the z-transform of both sides of (5.24), we get

zX z − zx 0 = AX z

The solution of the above equation is

X z = zI−A − 1zx 0

Therefore, the state transition matrix is given by

φ k = z− 1 z zI−A − 1 5 25

Example 5.3 Consider a homogeneous discrete-time state equation of the form

x k + 1 =
0 1

− 4 − 5
x k
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Then

F z = z zI−A − 1 = z
z − 1

4 z + 5

− 1

=
z

z + 4 z + 1

z + 5 1

− 4 z

Using partial fraction expansion such as is given in Example 5.1, we can write

F z
z

=
1

z + 4

−
1
3

−
1
3

4
3

4
3

+
1

z + 1

4
3

1
3

4
3

−
1
3

Therefore, the state transition matrix of the discrete-time system is

φ k = z− 1 F z =
1
3

z
z + 4

− 1 − 1

4 4
+

1
3

z
z + 1

4 1

− 4 − 1

=
1
3

− 1 − 1

4 4
− 4 k +

1
3

4 1

− 4 − 1
− 1 k

5.3.3 Discretization of a Continuous-time System

Consider the state space description of (5.5). Choosing a sampling time of T sec-
onds, it has a discrete-time form of

x k + 1 = Fx k + Gu k 5 26

For this, we assume that u(t) is constant over two successive sampling intervals, i.e.
u(t) = u(kT) for kT≤ t< k(T+ 1). This implies that u(kT) is the output of a
zero-order hold circuit. From (5.20), we get the solution of (5.5) for the instant
k(T+ 1) as

x k + 1 T = eA k + 1 Tx 0 +

k + 1 T

0

eA kT + T − τ Bu τ dτ

= eA k + 1 Tx 0 + eA k + 1 T

k + 1 T

0

e−AτBu τ dτ

5 27

Furthermore, the solution of (5.5) for the instant kT is

x kT = eAkTx 0 + eAkT
kT

0

e−AτBu τ dτ 5 28
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Multiplying (5.28) by eAt and subtracting from (5.27), the following equation is
obtained

x k+1 T −eATx kT = eA k+1 T

k+1 T

kT

e−AτBu τ dτ = eAT
k+1 T

kT

eA kT−τ Bu τ dτ

5 29

Define τ = kT+ λ such that dτ = λ dτ. Also, this implies that when τ = kT, λ = 0
and when τ = (k+ 1)T, λ = T. Since the input remains constant at u(kT) between
the instants kT and k(T+ 1), we can rewrite (5.29) as

x k + 1 T − eATx kT = eAT
T

0

e−AλBu kT dλ =

T

0

eA T − λ Bu kT dλ

Again define λ= T− t such that dλ= − dt. Also, as t changes from 0 to T, λ changes
from T to 0. Thus, the above equation can be written as

x k + 1 T = eATx kT +

T

0

eAtBdt u kT 5 30

Dropping the notation T and comparing (5.26) with (5.30), we have

F = eAT

G =

T

0

eAtdt B
5 31

Example 5.4 Consider the following continuous-time state equation

x = Ax + Bu =
0 1

− 4 − 5
x +

2

1
u

Its discrete-time equivalent for a sampling time of 1 second is determined using
MATLAB®. For this, we shall use the “c2d” command:

% Continuous time

A = [0 1;-4 -5];

B = [2;1];

% Discrete-time equivalent

T = 1;

[F,G] = c2d(A,B,T);
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This will result in the following matrices

F =
0 4844 0 1165

− 0 4661 − 0 0982
, G =

1 6509

− 0 9147

5.4 Relation Between State Space Form and Transfer
Function

In this section, the relation between state space form and transfer function repre-
sentation is discussed, for both continuous-time and discrete-time systems.

5.4.1 Continuous-time System

The transfer function of a SISO is defined as the Laplace transform of the output
divided by the Laplace transform of the input of an LTI system, given that the ini-
tial conditions are zero. Therefore, the transfer function for a SISO system can be
computed by assuming that the initial condition x(0) in (5.19) is zero. This gives

X s = sI−A − 1BU s 5 32

Consider a general output equation in which the output depends both on states as
well as on the input, given by

y = Cx + Du 5 33

The Laplace transform of the output in (5.33) is

Y s = CX s + DU s

Combining the last equation with (5.32), we get

Y s = CX s = C sI−A − 1BU s + DU s

Y s
U s

= G s = C sI−A − 1B + D
5 34

Example 5.5 Consider a state space description of the form

x =
0 1

− 4 − 5
x +

0

1
u

y = 1 0 x
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From Example 5.1, we know

sI−A − 1 =
1

s + 4 s + 1

s + 5 1

− 4 s

Therefore, from (5.34), the transfer function is

G s = C sI−A −1B=
1

s+ 4 s+ 1
1 0

s+ 5 1

−4 s

0

1
=

1
s+ 4 s+ 1

Note that it is easy to calculate a transfer function using MATLAB®. This is
shown here.

% State space system

A = [0 1;-4 -5];

B = [0;1];

C = [1 0];

D = 0;

% Transfer function

[num,den] = ss2tf(A,B,C,D);

This will produces num = [0 0 1] and den = [1 5 4], which are essentially the poly-
nomials in the decreasing order of s. On the other hand, to obtain a state space
form from the transfer function, the command “tf2ss” can be used, which is of
the form [A,B,C,D] = tf2ss(num,den).
The state space representation of a transfer function is not unique. In fact, there

are three different ways of decomposing the transfer function from the state
and output equations, if the system does not have any repeated roots. The
decomposition techniques are not discussed here (for details see [1]). However,
Example 5.6 illustrates this.

Example 5.6 Consider the transfer function

Y s
U s

=
s2 + 8s + 12
s2 + 5s + 4

=
s + 6 s + 2
s + 4 s + 1

• Direct decomposition: In this form, the transfer function is expanded in terms of
s−1. The ordinary differential equations (ODEs) are then obtained while keeping
in mind that s− 1 = d dt. The following state space form is then obtained

x =
− 5 − 4

1 0
x +

1

0
u

y = 3 8 x + u
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• Cascade decomposition: In this form, the transfer function is expanded in cas-
cade form as

Y s
U s

=
s + 6
s + 4

×
s + 2
s + 1

Following this, two separate sets of ordinary differential equations (ODEs) are
formed by expanding in terms of s−1. This gives the state space equation

x =
− 4 0

2 − 1
x +

1

1
u

y = 2 1 x + u

• Parallel decomposition: In this form, the transfer function is expanded in par-
allel form as

Y s
U s

= 1 +
3s + 8

s + 4 s + 1
= 1 +

4 3
s + 4

+
5 3
s + 1

From this we get the following state space form

x =
− 4 0

0 − 1
x +

1

1
u

y =
4
3

5
3

x + u

Using (5.34), it can be easily verified that all three forms produce the desired trans-
fer function.

5.4.2 Discrete-time System

A discrete-time system is defined by

x k + 1 = Fx k + Gu k

y k = Cx k + Du k
5 35

The transfer function will then be

Y z
U z

= C zI−F − 1G + D 5 36

The state space analysis and design essentially depend on the matrix properties.
Since these properties do not change whether the system is continuous or discrete,
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only continuous-time systems are considered in Sections 5.5–5.8. Feedback control
design, however, is treated separately.

5.5 Eigenvalues and Eigenvectors

Equation (5.34) can be expanded as

Y s
U s

= C sI−A − 1B + D =
C × adj sI−A × B + sI −A × D

sI−A
5 37

Equating the denominator to zero, the characteristic equation of the system is
obtained as

sI−A = 0 5 38

The solution of the characteristic equation results in the system poles. These are
also called the eigenvalues of the matrix A.

5.5.1 Eigenvalues

The eigenvalues of the matrix A ℜn × n are given by the solution of the charac-
teristic equation |sI−A| = 0. Let these eigenvalues be λ1, λ2, …, λn. Then there are
certain properties of eigenvalues that are of importance for control system design.
These are:

1) Eigenvalues of the matrix A remain unchanged under any linear transforma-
tion. For a system of the form given by (5.5), let x = Pz, where P ℜn × n and is
nonsingular. Then

x = Pz = Ax + Bu = AP− 1z + Bu

Hence

z = P− 1APz + P− 1Bu

The eigenvalues of the transformed system are given by the solution of the
characteristic equation

sI−P− 1AP = 0

sP− 1P−P− 1AP = P− 1 sI−A P = P− 1P sI−A = sI−A = 0

In other words, the eigenvalues of the matrix P−1AP are the same as the eigen-
values of the matrix A.
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2) The trace of the matrix A is summation of the eigenvalues, i.e.

Tr A = λ1 + λ2 + + λn

3) The determinant of the matrix A is the product of the eigenvalues, i.e.

A = λ1 × λ2 × × λn

4) If A is nonsingular, then 1 λ1, 1 λ2,…, 1 λn are the eigenvalues of the matrix A−1.
5) If the matrix A is real and symmetric, then its eigenvalues are all real.
6) If a matrix B ℜn × n is such that

sI−AB = sI−BA

then the eigenvalues of AB are the same as that of BA.

5.5.2 Eigenvectors

Assume that a square matrix has simple (nonrepeated) eigenvalues. It can then be
diagonalized in a form in which the diagonal elements are the eigenvalues using a
matrix formed using the eigenvectors that are associated with these eigenvalues. In
case the matrix has repeated eigenvalues, it can also nearly be diagonalized in a
form which is called the Jordan form using the eigenvectors. Let γi be an n dimen-
sional column vector that satisfies the equation

λjγj = Aγj 5 39

where λj is the jth eigenvalue of thematrixA. Then γi is called the right eigenvector
of the matrixA, associated with the eigenvalue λj. This is called the right eigenvec-
tor since it is placed on the right of the matrix A.
Alternatively, the n dimensional row vector ρj that satisfies the equation

λjρj = ρjA 5 40

is called the left eigenvector of the matrix A, and is associated with the eigenvalue
λj. This is called the left eigenvector since it is placed on the left of the matrix A.
Transposing both sides of (5.40), we get

λjρTj = ρjA
T
= ATρTj 5 41

This implies that the transpose of the left eigenvector is the right eigenvector of the
transpose of the matrix A. In general, the right eigenvector is simply called the
eigenvector and is used for the matrix properties discussed here.
Some of the important properties of eigenvectors are:

1) The rank of the matrix (λjI−A), where λ1, λ2, …, λn are the distinct eigenvalues
of the matrix A, is n− 1.
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2) Post-multiplying the matrix (λjI−A) by γj it can be observed that the matrix
(λjγj−Aγj) is not full rank and hence it is not invertible.

3) If the matrix A has a set of n distinct eigenvalues λ1, λ2, …, λn, then the set of
eigenvectors γj, j = 1, 2, …, nγj are linearly independent, i.e.

α1γ1 + α2γ2 + + αnγn 0, for nonzero αj, j = 1, 2, ,n

4) If γj is an eigenvector of thematrixA, then βγj is also an eigenvector ofA, where
β is an arbitrary scalar.

Example 5.7 Consider the matrix

A =

0 1 0

0 0 1

− 40 − 38 − 11

It can be easily seen that

sI−A = s3 + 11s2 + 38s + 40 = s + 2 s + 4 s + 5

This means that the eigenvalues of the matrix A are −2,− 4 and − 5.
Define an eigenvector γ1 associated with the eigenvalue −2 as

γ1 =
γ11
γ12
γ13

Then, from (5.39) we have

− 2

γ11
γ12
γ13

=

0 1 0

0 0 1

− 40 − 38 − 11

×

γ11
γ12
γ13

=

γ12
γ13

− 40γ11 − 38γ12 − 11γ13

From the second property of the eigenvector given above, it is obvious that there
cannot be any unique solution of the above set of equations. Let us define
γ11 = 1. Then

γ12 = − 2γ11 = − 2

γ13 = − 2γ12 = 4

It can be easily verified that this choice satisfies the equation form from the third
row. Hence, the eigenvector γ1 is

γ1 =
1

− 2

4
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In a similar way, we can determine

γ2 =
1

− 4

16

associated with −4 and γ3 =
1

− 5

25

associated with −5.

5.6 Diagonalization of a Matrix Using Similarity
Transform

A procedure through which the matrix A given in (5.5) can be diagonalized is dis-
cussed in this section. Diagonal matrices have a significant influence on the con-
trol design as can be seen in Sections 5.7 and 5.8. The diagonalization method is
simple when the matrix has distinct (nonrepeated) eigenvalues. However, in the
case of repeated eigenvalues, an almost diagonal form, called the Jordan canonical
form is derived.

5.6.1 Matrix with Distinct Eigenvalues

Assume that the matrix A ℜn × n has distinct eigenvalues λ1, λ2, …, λn. Let the
respective eigenvectors be γ1, γ2, …, γn. Let us now form a matrix P as

P = γ1 γ2 γn 5 42

Now we shall use the similarity transform of the form

Λ = P− 1AP 5 43

From (5.42), we get

AP = Aγ1 Aγ2 Aγn

Using (5.39), the above equation is rewritten as

AP = γ1 γ2 γn

λ1

λ2

λn

= P

λ1

λ2

λn
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Therefore, substituting the above equation in (5.43), we have

Λ = P− 1AP =

λ1

λ2

λn

5 44

Example 5.8 Consider the matrix of Example 5.7, where the eigenvalues and the
eigenvectors are also calculated. Then the transformation matrix of (5.2) is

P =

1 1 1

− 2 − 4 − 5

4 16 25

It can be easily verified that

Λ = P− 1AP =

− 2

− 4

− 5

Now, defining λ1 = − 2, λ2 = − 4, and λ3 = − 5, the transformationmatrixP is in
the form

P =

1 1 1

− 2 − 4 − 5

− 2 2
− 4 2

− 5 2

=

1 1 1

λ1 λ2 λ3

λ21 λ22 λ23

In general, if the matrix A with n distinct eigenvalues is in the controllable canon-
ical form, then it can be diagonalized using the so-called Vandermonde matrix,
given by

P =

1 1 1

λ1 λ2 λn

λ21 λ22 λ2n

λn− 1
1 λn− 1

2 λn− 1
n

5 45

It is, however, not necessary for the matrix A to be in the controllable canonical
form for it to be diagonalized. Example 5.9 illustrates this concept.
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Example 5.9 Consider the matrix

A =

− 89 − 77 − 49

90 78 50

0 − 1 0

The eigenvalues of the matrix are given by λ1 = − 5, λ2 = − 4, and λ3 = − 2. Using
the same procedure as in Example 5.7, the following eigenvectors are obtained

γ1 =
− 5 1667

5

1

, γ2 =
− 4 2

4

1

, and γ3 =
− 2 3333

2

1

It can be easily verified that the matrix P formed by the eigenvectors will diago-
nalize the matrix A, given by A = diag − 5 − 4 − 2 .
The eigenvalues and eigenvectors can be obtained by using the command “eig”

in MATLAB®. For example, the command “eig(A)” will produce the three eigen-
values. On the other hand, the command “[V, U] = eig(A)” will generate two 3 × 3
matrices, whereV is transformationmatrixP, given in (5.42), andU is the diagonal
matrix Λ, given in (5.44). Note that MATLAB® produces normalized eigenvectors,
where the sum of the square of each element of the vector is 1. This, however, is not
a problem since any eigenvector, when multiplied by a scalar, still remains an
eigenvector, as per property 4 of the eigenvectors. Using the MATLAB® command,
the following eigenvectors are obtained (subscriptM is used to indicate that these
are produced by MATLAB®).

γ1M =

0 7218

− 0 6888

− 0 1378

, γ2M =

0 7136

− 0 6796

− 0 1699

, and γ3M =

0 7220

− 0 6189

− 0 3094

Note that by diving γ1M by− 0.1378, γ2M by− 0.1699, and γ3M by− 0.3094 we get
the eigenvectors γ1, γ2, and γ3 respectively calculated above, which is in accord-
ance with property 4 of eigenvectors.
Alternatively, the command “[V, U, W] = eig(A)” will produce a matrix V con-

taining the right eigenvectors, the diagonal matrix Λ (U), and a matrixW (W) con-
taining the left eigenvector, which is given by

W =

0 6919 0 6918 0 6952

0 6458 0 6534 0 6759

0 3229 0 3075 0 2331
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5.6.2 Matrix with Repeated Eigenvalues

To explain the principle, let us assume that the matrix A ℜ5 × 5 has the eigenva-
lues of λ1, λ1, λ1, λ4, and λ5. This means that it has three distinct eigenvalues λ1, λ4,
λ5 and two repeated eigenvalues. The eigenvectors for the distinct eigenvalues
then are

λ1γ1 = Aγ1
λ4γ4 = Aγ4
λ5γ5 = Aγ5

5 46

The other two eigenvectors are given by the solutions of

Aγ2 = λ1γ2 + γ1
Aγ3 = λ1γ3 + γ2

5 47

The transformation matrix P of (5.42) is now formed such that

Λ = P− 1AP = P− 1A γ1 γ2 γ3 γ4 γ5

From (5.46) and (5.47), the above equation can be written as

Λ = P− 1AP = P− 1 λ1γ1 λ1γ2 + γ1 λ1γ3 + γ2 λ3γ4 λ5γ5

= P− 1P

λ1 1

λ1 1

λ1

λ4

λ5

The matrix Λ is written in the Jordan form as

Λ = P− 1AP =

J1
J2

J3

5 48

where

J1 =

λ1 1

λ1 1

λ1

, J2 = λ4, J3 = λ5

The matrices J1, J2, and J3 are called the Jordan blocks. The Jordan canonical
form has the following properties:

1) The number of Jordan blocks is equal to the number of distinct eigenvalues, i.e.
each distinct eigenvalue is associated with one Jordan block.
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2) All the elements on the main diagonal are the eigenvalues of A.
3) All the elements below the main diagonal are zero.
4) The element immediately above all but one of a group of repeated eigenvalues

is 1.
5) The total number of 1s in the Jordan form is the difference between the total

number of eigenvalues and the total number of Jordan blocks.

Example 5.10 Consider the matrix

A =

0 6 − 5

1 0 2

3 2 4

The eigenvalues of the matrix are 2, 1, and 1. Let us define λ1 = 2, λ2 = λ3 = 1. Then

γ1 =
2

− 1

2

and γ2 =
1

− 3 7

− 5 7

From (5.47), we get

Aγ3 = λ1γ3 + γ2 γ3 =
1

− 22 49

− 46 49

Verify that the transformation matrix P = γ1 γ2 γ3 will lead to the Jor-
dan form

Λ =

2

1 1

1

5.7 Controllability of LTI Systems

The controllability of a system is defined by the ability of one or more of the inputs
to influence all the state variables such that a certain objective can be achieved in a
finite time. Intuitively, one can say that, if one of the state variables is independent
of the control inputs, then this particular state variable cannot be driven. This is
discussed with the help of the diagonalization method explained in Section 5.6.
Consider the state equation of the form (5.5), on which the linear transformation
x = Pz has been used to obtain

z = P− 1APz + P− 1Bu = Λz + Γu 5 49
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In (5.49),Λ is a diagonal matrix that contains the n distinct eigenvalues. Assume
that the system has two control inputs. Then, (5.49) can be written as

z1
z2
z3

zn

=

λ1

λ3

λ3

λn

z1
z2
z3

zn

+

τ11 τ12

τ21 τ22

τ31 τ32

τn1 τn2

u1
u2

Let us now assume that the third row of the matrix Γ has only zero elements, i.e.
τ31 = τ32 = 0. Then, none of the control inputs will have any influence on the third
mode (z3) that is associated with the eigenvalue λ3. The system in this case will be
called uncontrollable. Additionally, if λ3 has positive real parts, then the response
of the third mode will grow asymptotically for any nonzero initial condition. The
system in this case will not be stabilizable.
Consider the case of a Jordan form in which the matrix Λ is given by (5.48).

Again, assuming that there are two inputs, the following transformed state equa-
tion can be written

z1
z2
z3
z4
z5

=

λ1 1

λ1 1

λ1

λ4

λ5

z1
z2
z3
z4
z5

+

τ11 τ12

τ21 τ22

τ31 τ32

τ41 τ41

τ51 τ52

u1
u2

5 50

Obviously, the systemwill not be controllable when τ31 = τ32 = 0 or τ41 = τ42 = 0 or
τ51 = τ52 = 0. Now consider the case where τ31 0 and τ32 0. What happens
when τ11 = τ12 = 0 or τ21 = τ22 = 0? To explain, we expand the first two rows
of (5.50) to get

z1 = λ1z1 + z2 + τ11u1 + τ12u2
z2 = λ1z2 + z3 + τ21u1 + τ22u2

When τ21 = τ22 = 0, even if the control inputs do not directly reach the state z2, it
can still be indirectly influenced by the control inputs through z3. Similarly, when
τ11 = τ12 = 0, z1 can be influenced by z2. From this discussion, we can conclude
that, for a system in Jordan canonical form to be controllable, the rows of the
matrix Γ associated with the last element in each Jordan block cannot be zero,
i.e. τ31 0 and τ32 0 or τ41 0 and τ42 0, or τ51 0 and τ52 0.
The question then is, “Should a system be converted into its diagonal form

before checking for the controllability?” The answer is negative. However, before
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the controllability test condition is discussed, we shall briefly discuss the implica-
tion of the Cayley–Hamilton theorem.

5.7.1 Implication of Cayley–Hamilton Theorem

The Cayley–Hamilton theorem states that a matrix must satisfy its own character-
istic equation. Therefore, if the matrixA ℜn × n has the characteristic equation of

sI−A = sn + an− 1s
n− 1 + + a1s + a0 = 0

then

An + an− 1An− 1 + + a1A + a0I = 0 5 51

Rearranging (5.51), we write

An = − an− 1An− 1 − an− 2An− 2 − − a1A− a0I

Post-multiplying the above equation by A, the following equation is obtained

An+1=An×A=−an−1An−an−2An−1− −a1A2−a0A

=−an−1 −an−1An−1−an−2An−2− −a1A−a0I −an−2An−1− −a1A2−a0A

= a2n−1−an−2 An−1 + an−1an−2−an−3 An−2 + + an−1a1−a0 A+an−1a0I

In a similar way, all the higher powers of the matrix which are greater than or
equal to n can be expressed by a matrix polynomial of the order of n− 1.

5.7.2 Controllability Test Condition

Consider a state equation of the form given in (5.5). The solution of the equation,
assuming that the initial condition is zero, is given from (5.20) as

x t =

t

0

eA t− τ Bu τ dt

Expanding the matrix exponential, we get

x t = B

t

0

u τ dt + AB

t

0

t− τ u τ dt + A2B

t

0

t− τ 2

2
u τ dt + 5 52

Therefore, the terminal state x(t) is in the linear subspace spanned by the col-
umn vectors of infinite sequence matrices B, AB, A2B, …. Again, from the Cay-
ley–Hamilton theorem, we know that Ak, k ≥ 0, can always be expressed in
terms of A, A2, …, An− 1, thus (5.52) is rewritten as
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x t = B AB A2B An− 1B Ω = SΩ 5 53

where Ω is a vector that contains the combination of the integrals on the right-
hand side of (5.52). Note that the dimension of the matrix S is n × (n ×m),m being
the number of inputs. The aim is to check if all the elements of the state vector x(t)
can be determined uniquely from (5.53). This is only possible if the matrix S has n
linearly independent columns. In other words, the rank of the matrix must be
equal to n.

Example 5.11 Consider a system in phase variable canonical form as given by

A =

0 1 0 0

0 0 1 0

0 0 0 1

− 1 − 1 − 3 − 4

, B =

0

0

0

1

Then we have

S = B AB A2B A3B =

0 0 0 1

0 0 1 − 4

0 1 − 4 13

1 − 4 13 − 42

Note that |S| = 1, i.e. the system is full rank and hence controllable. Also, it can be
observed that all the elements in the secondary diagonal of the matrix S are 1.
Hence a system in phase variable canonical form is always controllable. This is
the reason such systems are also said to be in controllable canonical form.

Example 5.12 Let the state and input matrices of a system be given by

A =

0 1 0

0 0 α

0 0 − 1

, B =

0

β

1

A relation between α and β must be determined so that the system is controllable.
For this, the controllability matrix is

S = B AB A2B =

0 β α

β α − α

1 − 1 1

5.7 Controllability of LTI Systems 177



Then

S = − β β + α + α − β− α

= − β2 − αβ− αβ− α2 = − α + β 2

Therefore, for nonsingular S, we must have α − β.

5.8 Observability of LTI Systems

An LTI system state is said to be observable if it can be uniquely determined from
the input and output u(t), y(t), t0≤ tf and the matrices A, B, C, and D for any finite
time tf. In other words, an LTI system is said to be observable if every state of the
system can be estimated from the knowledge of the system matrices, output mea-
surements, and input data. To test for the observability, consider an LTI system
that is given by (5.5) and (5.7). Then it is said to be observable if the matrix

O =

C

CA

CA2

CAn− 1

5 54

has a full rank. The proof of this follows the same pattern as the proof for the con-
trollability condition. Consider now the transformation given by (5.49), which
diagonalizes the system. The output equation is of the form

y = Cx = CPz = Θz 5 55

Then the observability matrix will be given by

L =

Θ
ΘΛ
ΘΛ2

ΘΛn− 1

It can be seen from the above equation that matrix L will have full rank if all the
elements of the matrix Θ are not zero. This means none of the columns should be
zero. In a similar way, it can be shown that, for the system to be observable, the
first column of each Jordan block must be nonzero.
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Example 5.13 Let a state space system be characterized by the matrices

A =

0 1 0

0 0 1

− 2 − 5 − 4

, B =

0

0

1

, C = 2 3 1

Since the system is in the phase variable canonical form, it is obviously controlla-
ble. To check for the observability, we use (5.54) to get

O =

C

CA

CA2

=

2 3 1

− 2 − 3 − 1

2 3 1

The matrix O has only one independent row, and therefore has a rank of 1. Thus,
the system is not observable. Note that the transfer function of the system is
given by

Y s
U s

= C sI−A − 1B =
s2 + 3s + 2

s3 + 4s2 + 5s + 2
=

s + 1 s + 2

s + 1 2 s + 2

This implies that two poles get canceled by two zeros. Does this mean that if
there are pole-zero cancelations the system will not be observable? Let us consider
another example.

Example 5.14 Let a state space system be characterized by the matrices

A =

− 1 1 − 1

0 − 1 − 1

0 0 − 2

, B =

1

1

1

, C = 1 0 0

To check for controllability, we use (5.53) to get

S = B AB A2B =

1 − 1 1

1 − 2 4

1 − 2 4

Since the matrix S has two independent rows, it has a rank of 2. Now to check for
observability, we use (5.54) to get

O =

C

CA

CA2

=

1 0 0

− 1 1 − 1

1 − 2 2

This matrix has two independent columns, and therefore also has a rank of 2. Since
both the matrices S and O do not have full rank, the system is neither controllable
nor observable. The transfer function of the system is given by
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Y s
U s

= C sI−A − 1B =
s2 + 3s + 2

s3 + 4s2 + 5s + 2
=

s + 1 s + 2

s + 1 2 s + 2

This implies that one of the poles at the location of −1 gets canceled by the zero at
the same location.
Examples 5.13 and 5.14 illustrate that a system is either not controllable, not

observable, or both uncontrollable and unobservable if there are pole-zero cance-
lations in the transfer function. This can be a critical problem in a power system or
in a power electronic circuit where several blocks are connected together to form a
composite system. In such a case, it is quite likely that a pole-zero cancelation
between blocks may occur. In such an event, careful consideration must be given
to controller or observer design.

5.9 Pole Placement Through State Feedback

The pole technique pertains to the placement of closed-loop poles through feed-
back. In the transfer function domain, the poles are placed through a negative
feedback of the output. In a similar fashion, the system states can be fed back
to place the closed-loop poles in desired locations. The feedback control law for
a SISO system is given by

u = −Kx + KPyref 5 56

where K is the feedback gain matrix strictly containing real numbers, yref is the
reference, and KP is a proportional gain. Substituting (5.56) in (5.5), we have

x = A−BK x + BKPyref 5 57

From (5.57) and (5.7), the closed-loop transfer function of the system is obtained as

Y s
Yref s

= C sI−A + BK − 1BKP 5 58

From (5.58), we find that the closed-loop poles are given by the solution of the
equation

sI− A−BK = 0 5 59

This implies that the eigenvalues of the matrix (A− BK) are the closed-loop poles.
Now consider a system that is in phase variable canonical form with

A =

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

− a0 − a1 − a2 − an− 2 − an− 1

, B =

0

0

0

1
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Let the feedback gain matrix of a SISO system be given by

K = k1 k2 kn− 1 kn

Note that

BK =

0 0 0 0

0 0 0 0

0 0 0 0

− k1 k2 − kn− 1 − kn

Therefore

A−BK=

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

−a0−k1 −a1−k2 −a2−k3 −an−2−kn−1 −an−1−kn

Hence, we get the following characteristic equation of the closed-loop system

ΔCL s = sI− A−BK = sn+ an−1 +kn sn−1 + + a1 +k2 s+ a0 +k1 =0

5 60

The closed-loop poles can therefore be arbitrarily placed by the choice of
k1, k2, …, kn.

Example 5.15 Let a state space system be characterized by the matrices

A =

0 1 0

0 0 1

− 2 − 5 − 4

, B =

0

0

1

Since this is in the phase variable canonical form, it is controllable. Define
K = k1 k2 k3 . The characteristic equation of the closed-loop system is
obtained from (5.60) as

sI− A−BK = s3 + 4 + k3 s2 + 5 + k2 s + 2 + k1 = 0

It is desired that the dominant poles of the closed-loop system have a damping
ratio (ξ) of 0.8 and an undamped natural frequency (ωn) of 4 rad/s. The third pole
is placed at −10, which is far away from the imaginary axis. The closed-loop char-
acteristic equation is then
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ΔCL s = s2 + 2ξωns + ω2
n s + 10 = s3 + 16 4s2 + 80s + 160 = 0

Then, comparing the last two equations, we get k1 = 158, k2 = 75, and k3 = 12.4.
The closed-loop transfer function (5.58) is then given by

Y s
Yref s

=
KP

s3 + 16 4s2 + 80s + 160

The DC gain of the system is KP 160. Figure 5.1 shows the step response of the system
for two values of the gain KP. It can be seen that, as this gain increases, the steady
state error reduces. However, this is not a particularly attractive solution. A more
suitable approach is to increase the system type using an integral controller, which
is presented in Section 5.9.1.
Example 5.15 shows that the closed-loop eigenvalues can be arbitrarily placed

provided that the system is in phase variable canonical form. There is a process
by which any controllable system can be converted into a phase variable form.
The pole placement method using Ackerman’s formula is based on this phase var-
iable conversion technique [1]. These days, however, it is easy to accomplish pole
placement in MATLAB® using the command “K = place(A,B,P),” where A and
B are the systemmatrices and P a vector containing the desired eigenvalue locations.
This command is valid when there are no repeated eigenvalues. For example, if the
desired roots of ΔCL(s) are −10, − 3.2 ± j2.4, then the vector P is written as

6

Gain KP = 1

Gain KP = 100

4

2

0

0

0.2

0.4

0.6

0 0.5

× 10–3

1 1.5

Time (s)

2 2.5 3

0 0.5 1 1.5 2 2.5 3

Figure 5.1 Step response of the system of Example 5.15 with two different values of the
proportional gain.
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P =

− 10

− 3 2 + 2 4i

− 3 2− 2 4i

5.9.1 Pole Placement with Integral Action

As Example 5.15 shows, a state feedback controller can guarantee stable operation
and can place the poles in desirable locations. It cannot, however, ensure proper
reference tracking. To eliminate the steady state error, an integral controller is
introduced, which has the following form

w = KI yref − y dt w = KI yref − y 5 61

An extended state vector is then defined as xe = x w T . Then combining (5.5)
and (5.7) with (5.61), we have

xe =
A 0

−KIC 0
xe +

B

0
u +

0

KI
yref = Aexe + Beu +

0

KI
yref

5 62

Then the pole placement with integral control is given by

u = −Kxe = − K1 K2 xe = − K1 K2
x

z
= −K1x−K2w 5 63

where K1 is a vector that is the gain associated with x and K2 the scalar gain that
multiplies w. Substituting u from (5.63) in (5.62), we get

xe =
A−BK1 −BK2

−KIC 0
xe +

0

KI
yref 5 64

The closed-loop transfer function is then given by

Y s
Yref s

= C 0 sI−
A−BK1 −BK2

−KIC 0

0

KI
5 65

The block diagram of the system is shown in Figure 5.2.

x· = Ax + Bu+

– –

–yref
w x

C

K1

K2
u yʃ dtKI ʃ dt

Figure 5.2 Continuous-time state feedback with integral control.
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Example 5.16 Let us continue with Example 5.15. For the stated feedback con-
trol with integral action, the following parameters are chosen

KI = 150, P s = s + 10 s + 3 2− j2 4 s + 3 2 + j2 4 s + 20

where P(s) is a polynomial defining the closed-loop poles. The first three of the
desired closed-loop poles are placed at the same locations as given in Example 5.15.
The matrices for the extended state space system of (5.62) are given by

Ae =

0 1 0 0

0 0 1 0

− 2 − 5 − 4 0

− 150 0 0 0

, Be =

0

0

1

0

The gain matrix and the closed-loop transfer function are given by

K = 1 758 × 103 403 32 4 − 21 33

Y s
Yref s

=
3200

s4 + 36 4s3 + 408s2 + 1760s + 3200

It can be seen that the closed-loop system has a DC gain of 1. The step response of
the system is shown in Figure 5.3, where the system settles within 1.5 seconds and
the output tracks the input accurately.

1
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80

60

40

20

0

–20
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Time (s)

Output (y)

Input (u)

3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5.3 System response with state feedback with integral control.
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With the first three poles remaining in the same locations and the integral gain
remaining the same, the location of the fourth pole is varied. Figure 5.4 shows the
output response with four different pole locations. As the fourth pole moves closer
to the origin, the gain K2 becomes smaller and the impact of the integral controller
reduces. Therefore, the system response starts to become sluggish. It is thus impor-
tant to choose the pole location carefully.

5.9.2 Linear Quadratic Regulator (LQR)

In a linear quadratic regulator (LQR) for the system of (5.5), a performance index
of the form given below is chosen

J =

∞

0

xTQx + uTRu dt

where both Q and R are positive-definite weighting matrices. Note that for a sin-
gle-input system the performance index is

J =

∞

0

xTQx + ru2 dt 5 66

where r is a positive scalar.
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Figure 5.4 System response with different locations of the fourth pole. (a) Output when
Pole Placed at −2, (b) Output when Pole Placed at −1, (c) Output when Pole Placed at −0.5,
(d) Output when Pole Placed at −0.1.
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Solution (5.66) requires the solution of the Riccati of the form [2]

ATP + PA−
1
r
PBBTP + Q = 0 5 67

The feedback control and the gain matrix are then obtained by the solution of

u = −Kx = −
1
r
BTPx 5 68

Note that the term r accounts for the penalty on control action: the smaller the value,
the less the penalty on the control action and the larger the control signal applied.

Example 5.17 Consider the same system as that of Example 5.16. Here, a linear
quadratic controller with integral control is designed, where the integral gain KI

remains the same at 150. The weighting matrices are chosen as

Q =

10

1

1

1

, r = 1

The gain is obtained using the “K = lqr(Ae,Be,Q,r)” command in MATLAB® with
these matrices.
The step response of the system is shown in Figure 5.5a, while the control input

is shown in Figure 5.5b. It can be seen that the steady state error is zero due to the
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Figure 5.5 System response with LQR for two values of control weighting. (a) Output (y)
with r = 1, (b) Control input (u) with r = 1, (c) Output (y) with r = 0.001, (d) Control input (u) with
r = 0.001.
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integral action, while the peak of the control input is around 17. The control
weighting r is now changed to 0.001. The results are shown in Figure 5.5c,d. In
this case, the output requires less time to settle, albeit at the expense of a much
larger control action at the beginning.

5.9.3 Discrete-time State Feedback with Integral Control

The discrete-time design is also similar to that of the continuous-time design.
A discrete-time integral control can be written as

e k = yr k − y k

w k = w k− 1 + KIe k = w k− 1 + KIyr k −KIy k
5 69

Then defining the extended state vector as xe k = x k w k− 1 T , the
extended state space matrix can be written using (5.26) and (5.7) as

xe k + 1 =
F 0

−KIC 1
xe k +

G

0
u k +

0

KI
yref k 5 70

We can then obtain the feedback gain matrix either through pole placement using
“place” or through discrete-time LQR using the “dlqr” command in MATLAB®.

5.10 Observer Design (Full Order)

We have seen in the state feedback control design that the measurements of all the
states are required. If, however, all the states are not accessible, it is necessary to
estimate (or observe) them from the information contained in the output and input
variables. The structure of feedback control with the observer is shown in
Figure 5.6.

C y
+

–

uyref
x

K

H

x̂

x· = Ax + Bu ʃ dt

ʃ dt
x̂

A – LC

B

L
+

+

+·

Figure 5.6 Structure of feedback controller with observer.
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The state observer must be such that the observed state x is as close as possible to
the actual state x. The observer should be such that the error between the observed
state and the actual state should exponentially become zero, i.e.

x− x = W x− x 5 71

The matrixW should be chosen such that its eigenvalues have large negative real
parts. The closed-loop observer equation is given by

x = A−LC x + Bu + Ly 5 72

where L is the observer gain matrix. Eq. (5.72) can be rewritten as

x = A−LC x + Bu + LCx = Ax + Bu + LC x− x

Subtracting the state Eq. (5.5) from the above equation, we get

x− x = A−LC x− x = W x− x 5 73

It can be proved that, if the system is observable, the eigenvalues of thematrixW
can be arbitrarily placed.

5.10.1 Separation Principle

So, if all the states of the system are not measurable, the observed states in the state
feedback control law need to be used. This will require two sets of pole placement
algorithms. The question is then how should the poles of the observer be placed
such that they do not interfere with the control action? To answer this question, let
us consider the state and output equations of the forms given by (5.5) and (5.7)
respectively. The observer is given by (5.72). First, we assume that the reference
input yref in Figure 5.6 is zero. Then the control law uses the estimated values
of the states, i.e.

u = −Kx 5 74

We then have

x = Ax−BKx 5 75

Let us define the estimation error as

e = x− x 5 76

Substituting (5.76) in (5.75) we get

x = A−BK x−BKe 5 77
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Now (5.76) is combined with (5.5), (5.7), and (5.72) to give

e = x− x = Ax + Bu− A−LC x−Bu−LCx = A−LC e 5 78

Let us define an extended state vector of the form xe = x e T. Then, combin-
ing (5.77) and (5.78), we have

xe =
A−BK −BK

0 A−LC
xe 5 79

It is useful to note that if

H =
A B

C D

then

H = D A−BD− 1C = A D−CA− 1B 5 80

Using the identity (5.80), we get the characteristic equation of (5.79) as

sI−
A−BK −BK

0 A−LC
=

sI−A + BK BK

0 sI−A + LC
= 0

sI−A + BK × sI−A + LC = 0

5 81

This implies that the controller and the observer can be designed independently.
They do not necessarily interfere with the performance of each other provided that
the eigenvalues are well separated.
Note that, for the derivation above, we have assumed that the reference input yref

in Figure 5.6 is zero. This assumption, however, can be relaxed and the control law
including the reference input given by

u = −Kx + Hyref 5 82

where H is a feedforward gain. This gain must be chosen such that the DC gain of
the system is 1. Including the reference input in (5.82), the system state space
Eq. (5.79) is then rewritten as

xe =
A−BK −BK

0 A−LC
xe +

B

0
Hyref = A xe + B Hyref 5 83

Therefore, the closed-loop transfer function can then be written as

Y s
Yrer s

= H C 0 0 0 sI−A − 1B 5 84
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Example 5.18 Consider the following system

x =

0 1 0

0 0 1

− 0 1 − 0 3 − 0 5

x +

0

0

1

u = Ax + Bu

y = 1 0 0 x = Cx

It is desired that the closed-loop poles be placed at −1, − 0.5 ± j0.4. The observer
poles should be placed at locations which are far away from these closed-loop poles
and the locations are chosen as −25, − 30, and − 35. The system is both control-
lable and observable.
The “place” command inMATLAB®will be used to compute that controller and

observer gain matrices K and L. This command is of the form “K = place(A,B,
P1),” where

PT
1 = − 1 − 0 5 + j0 4 − 0 5− j0 4

which produces the gain matrix of

K = 0 31 1 11 1 5

The observer gain matrix L will place the eigenvalues of A− LC at desired loca-
tions. To use the place command, we note that (A− LC)T=AT−CTLT. Therefore,
the command “L = place(A ,C ,P2)” is used, where

PT
2 = − 25 − 30 − 35

which produces the gain matrix of

L = 89 5 2 63 × 103 2 49 × 104
T

Using these gain matrices in (5.84), to have a DC gain of 1, the parameter H must
be chosen as 0.41. The system response is shown in Figure 5.7. It can be seen that
the output settles to 1 and the estimation errors become 0.

5.11 Control of DC-DC Converter

In this section, the state space modeling and control of DC-DC converters is dis-
cussed. Only the boost converters are considered – the models of buck or buck-
boost converters and their associated control can also be derived following the pro-
cedures described in this section. The schematic diagram of a boost converter is
shown in Figure 5.8a. It is assumed that the converter operates in continuous con-
duction mode (CCM). Then the equivalent circuits when the switch is closed and
when the switch is open are shown in Figure 5.8b and Figure 5.8c respectively.
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As discussed in Chapter 4, these converters are controlled by their duty ratio (d, 0
< d< 1). The switching pulses for these converters are generated by comparing a
sawtooth waveform of frequency f (=1/T) with the duty ratio, as shown in
Figure 5.9, where the switch on and off periods are also indicated.
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Figure 5.7 System response with state feedback control and observer.
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Figure 5.8 (a) The schematic diagram of a boost converter and its equivalent circuit when
(b) the switch is closed and (c) the switch is open.
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Let us define a state vector as x = v0 i L
T
. Then the state space equation when

the switch is closed (Figure 5.8b) andwhen it is open (Figure 5.8c) are given respec-
tively by

x = A1x + B1Vdc, t0 ≤ t ≤ t1
x = A2x + B2Vdc t1 ≤ t < t2

5 85

where

A1 =
− 1 RC 0

0 0
, A2 =

− 1 RC 1 C

− 1 L 0
, B1 = B2 =

0

1 L

The output is assumed to be the capacitor voltage, and this is given by the following
equation, irrespective of whether the switch is open or closed.

y = v0 = 1 0 x = Hx 5 86

5.11.1 Steady State Calculation

From Figure 5.9, the following equations are obtained with respect to the duty
ratio d and the switching time T(=1/f)

t2 − t0 = T

t1 − t0 = dT

t2 − t1 = 1− d T

5 87

Vdc

V

t
t0 t1 t2

d

Sawtooth

waveform

Duty ratio

ON OFF

T

Figure 5.9 Switching scheme of DC-DC converters based on duty ratio control.
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For the boost converter equations of (5.85), the solutions of the state equations
are given by

x t1 = eA1dTx t0 +

dT

0

eA1 dT − τ dτ B1Vdc

x t2 = eA2 1− d Tx t1 +

1− d T

0

eA2 T − dT − τ dτ B2Vdc

5 88

In the above equations, the matrix A1 is singular and therefore noninvertible.
Fortunately, this matrix is a diagonal, whose exponential is a diagonal matrix con-
taining the exponentials of each diagonal element, i.e.

eA1 dT − τ =
e− dT − τ RC 0

0 1

The integral terms in (5.88) are then given by

G1 =

dT

0

eA1 dT−τ dτ=
−RC e− dT−τ RC 0

0 τ

dT

0

=
RC e−dT RC−RC 0

0 dT

G2 =

1−d T

0

eA2 T−dT−τ dτ= −A−1
2 eA2 T−dT 1−d T

0 = −A−1
2 I−eA2 T−dT

Substituting the above two equations in (5.88), we have

x t1 = eA1dTx t0 + G1B1Vdc

x t2 = eA2 1− d Tx t1 + G2B2Vdc
5 89

Note that B1 = B2. Therefore, by combining equations given by (5.89), the fol-
lowing composite equation is obtained

x t2 = eA2 1− d T eA1dTx t0 + G1B1Vdc + G2B2Vdc

= eA2 1− d TeA1dTx t0 + eA2 1− d TG1 + G2 B1Vdc

5 90

When the system is in the steady state at a time Tn, we expect x(Tn+ t2) = x(Tn+
t0). Using this identity, the steady state equation of a boost converter is obtained
from (5.90) as

xss = I− eA2 1− d TeA1dT
− 1

eA2 1− d TG1 + G2 B1Vdc 5 91
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There is, however, a simpler numerical method of obtaining the steady state equa-
tion using “c2d” command in MATLAB®, as given here:

% Define the duty ratio d and the cycle time T.

[F1,G1] = c2d(A1,B1,d*T);

[F2,G2] = c2d(A2,B2,(1-d)*T);

xss = inv(eye(2)-F2*F1)*(F2*G1+G2)*Vdc

Example 5.19 Consider a boost converter with the following system parameters

L = 1mH,C = 100 μF,R = 10Ω,Vdc = 10 V, f = 20 kHz

We then have

A1 =
− 1000 0

0 0
, A2 =

− 1000 10000

− 1000 0
, B1 = B2 =

0

1000

Let us choose the duty ratio as 0.5. Then the steady state condition obtained using
the MATLAB® code given above is

xss t0 = xss t2 =
20 24 V

3 87 A

The steady state waveforms for two cycles are shown in Figure 5.10. The steady
state waveforms are calculated at the beginning of a switching circle (i.e. at t0 or t2).
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Figure 5.10 Steady state voltage and current waveforms of a boost converter.
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Therefore, the peak of the capacitor voltage and the trough of the inductor current
occur at this instant, as is evident from this figure. The trough of the capacitor volt-
age and the peak of the inductor current can also be calculated from (5.89) as

xss t1 = eA1dTxss t0 + G1B1Vdc =
19 74 V

4 12 A

It can be seen from Figure 5.10 that the trough of the capacitor voltage and the
peak of the inductor current match the values calculated above.

Example 5.19 demonstrates the open-loop control of the boost converter, where
the switch is turned on and off based on a fixed duty ratio. However, as is men-
tioned in Chapter 4, for feedback control design an averaging method and a lin-
earized model are required. These are explained in Section 5.11.2.

5.11.2 Linearized Model of a Boost Converter

The averaged model will be determined using the state space averaging method
proposed byMiddlebrook and Cúk in 1976 [3]. Consider the boost converter model
given by (5.85). Then the averaged model is given by

x = A1d + A2 1− d x + B1d + B2 1− d Vdc 5 92

It is assumed that the DC voltage Vdc is constant and has no variation. Since
B1 = B2, the averaged model can be simplified as

x = A1d + A2 1− d x + B1Vdc 5 93

Note that (5.93) is nonlinear due to the product of the duty ratio and the state vec-
tor. This will thus have to be linearized.
Equation (5.93) is linearized around the operating point x0 and d0. For this, the

perturbation equations are written as

x = x0 + Δx, d = do + Δd 5 94

where Δx and Δd are the perturbed variables. Noting that Vdc is constant, (5.93)
can be linearized as

Δx = A1d0 + A2 1− d0 Δx + A1 −A2 x0Δd
= AΔx + BΔd

5 95

where

A = A1d0 + A2 1− d0 , B = A1 −A2 x0

The output equation is then given from (5.86) by

Δy = HΔx 5 96
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5.11.3 State Feedback Control of a Boost Converter

The schematic diagram of a state feedback with integral control of a boost converter
is shown in Figure 5.11. The control law, including an integral action, is given by

d = d0 + Δd

Δd = k1Δv0 + k2ΔiL + k3KI ΔVref −Δv0 dt
5 97

Since the controller is designed based on the linear model given in (5.95) and
(5.96), the first step in this process is to calculate the steady state values using
(5.91). Since the controller is designed based on the averaged variable, the meas-
ured values of the capacitor voltage and the inductor current are averaged over one
cycle. These averaged values are then subtracted from the steady state values as per
(5.94), as shown in Figure 5.11. These are then multiplied by their respective gains
and added to the output of the integral controller.
When a change in the capacitor voltage is required, Vref is changed. The steady

state value of the capacitor voltage is subtracted from Vref to obtainΔVref. The error
ΔVref−Δv0 is then passed through the integral controller and multiplied by the
gains and added with the other two components to form Δd. This is then added
to d0. Before, the duty ratio is given as an input to the pulse width modulator, a
limiter is used to restrict d between, say, 0.05 ≤ d≤ 0.95.

Example 5.20 Consider the boost converter of Example 5.19, where the duty
ratio is chosen as 0.5. From Example 5.19, we find the average steady state quan-
tities as

xss =
v0ss
iLss

= d × xss t0 + 1− d × xss t2 =
19 994 V

3 998 A

v0 k1
One-cycle
Averaging

iL
One-cycle
Averaging

vav
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–

–

iav

+

+

v0ss

iLss

k2

Vref
+ +ΔVref

Δv0

ΔiL

ʃ dt

+
+

+

Δd

d0

+
+

d

Limiter

KI k3

Figure 5.11 Feedback control structure of DC-DC converter.
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The averaged matrices are computed from (5.95) as

A =
− 1000 5000

− 500 0
, B =

− 3 87

2 02
× 104

A linear quadratic regular with an integral controller is designed with the follow-
ing parameters

KI = 1000, Q =

10

1

1

, r = 0 1

The resultant gain matrix is

K = k1 k2 k3 = 2 78 24 8 − 3 16

The converter is started from rest at t = 0 seconds, with a duty ratio of 0.5 where
the desired output voltage is V0ss and the output resistance is 10Ω. Then at
t = 0.075 seconds, the desired output voltage is changed to 30 V. Subsequently,
at t = 0.125 seconds, the output impedance is changed to 6.67Ω. The results
are shown in Figure 5.12. The duty ratio increases to 0.667 as the output voltage
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Figure 5.12 Boost converter response when averaged values are used in feedback control.
(a) Output voltage (V), (b) Inductor current (A), (c) Duty ratio.

5.11 Control of DC-DC Converter 197



increases to 30 V. However, the duty ratio remains unchanged when the load
changes, albeit for an initial transient. It might be argued that the averaging proc-
ess increases the computational requirements. To alleviate this, the instantaneous
values of output voltage and the inductor current are instead used for the control
law computation. This is shown in Figure 5.13. It can be seen that the duty ratio
has a significant ripple in this case: it chatters between 0.66 and 0.67 after 0.125
seconds.
Only a state feedback controller of the formΔd= −Kx is employed without the

integral controller. The LQR gain matrix is computed using Q = diag 100 1
and r = 0.1. This produces the gain matrix of K = 4 5 69 29 . The system
response for the same voltage reference of V0ss = 19.994 V and load change at
0.125 seconds is shown in Figure 5.14. Since the simple state feedback is essentially
a proportional controller, the change in the reference voltage is not tracked by the
controller. The controller is not even able to maintain the desired output voltage
following the load change. This proves the superiority of the state feedback con-
troller with integral control.

40
Output Voltage (V)

Inductor Current (A)

Duty Ratio

Time (s)

(a)

(b)

(c)

20

15

10

5

0.8

0.6

0.4

0

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 5.13 Boost converter response when instantaneous values are used in feedback
control. (a) Output voltage (V), (b) Inductor current (A), (c) Duty ratio.
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Example 5.21 In this example, the limits of stable operation for the boost con-
troller designed in Example 5.20 are investigated. With the controller gains
obtained from Example 5.20, the eigenvalues of the system are computed as
the resistance R changes from 20 to 0.1Ω. The eigenvalues are all real, as shown
in Figure 5.15. However, all of them have negative real parts, indicating a stable
operation. Eigenvalues-1 and 2 are very stable, while Eigenvalue-3 moves closer
to the imaginary axis as the load resistance decreases. This eigenvalue is located
at −6.29 for R = 0.1 Ω.
With the system operating at the steady state with a duty ratio of 0.5, the load

resistance is changed to 0.91Ω at 0.25 seconds. The results are shown in
Figure 5.16. It can be seen that output voltage, following an initial transient,
returns back to 20 V. The duty ratio, however, sees a marginal increase from
0.5 to 0.525. Consequently, the inductor current becomes 46 A. Nevertheless,
the system remains stable, as is expected from the eigenvalue analysis. However,
whether such large inductor current is acceptable from the practical design point
of view is debatable.
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Figure 5.14 Boost converter response with state feedback control without the integral
controller. (a) Output voltage (V), (b) Inductor current (A), (c) Duty ratio.
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5.12 Concluding Remarks

In this chapter, we discuss state space analysis and the design of linear systems.
These are very important in the analysis and control design of both power systems
and power electronic circuits. These are extensively used in the following chapters.
Even though only LTI systems are discussed here, these techniques are also exten-
sively used in linear controller design for nonlinear systems and for the eigenvalue
analysis of interconnected power electronic circuits, such as microgrids, as well as
for power system stability analysis. An example of the use of a linearization
method for a single-machine, infinite-bus (SMIB) system, compensated by a thy-
ristor-controlled series capacitor, is pointed out in the Notes and References. There
are several such examples that can be found in the literature.
Also, the state feedback control design for a DC-DC boost converter is presented

in Section 5.11. The state feedback controller is designed in the linearized domain,
which is obtained using the state space averaging method. Despite using the linear
approximation, it can been shown that the controller can stabilize the system for a
wide variation in both output voltage and resistance.
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Figure 5.15 Eigenvalue plot as the load resistance changes.
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Problems

5.1 Defining a state vector as x = i1 i2 vc
T, find the state space model of the

circuit shown in Figure P5.1.

5.2 Given the following LTI system

x =
− 2 1

0 − 1
x +

1

1
u
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Figure 5.16 Boost converter response for a large change in the output resistance. (a)
Output voltage (V), (b) Inductor current (A), (c) Duty ratio.

i1

vc

R1 R2

Vdc1

+

–
– Vdc2

+

L1 L2

+

–

i2

C

Figure P5.1 The circuit diagram of Problem 5.1.
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where u is a unit step input, write an expression for y(t), t> 0 when the ini-

tial condition of the state vector is x0 = 1 0 5 T .

5.3 One of the following matrices is a possible state transition matrix. Which
one? Justify your answer.

φ1 =
− e− t 0

0 1− e− t
, φ2 =

1− e− t 0

1 e− t
,

φ3 =
1 0

1− e− t e− t
, φ4 =

1 0

1− et e− t

5.4 Diagonalize the following matrices

a A =

− 1 − 4 0

1 − 1 0

4 2 − 3

, b A =

3 − 2 0

− 2 3 0

0 0 5

5.5 Convert the following matrix in Jordan form

A =

0 1 0

0 0 1

− 25 − 35 − 11

5.6 Consider the LTI system

x =
1 − 3

8 0
x +

0

1
u

It is to be controlled by a state feedback controller of the form u = −Kx,
where the feedback gain matrix is given by K = k1 k2 . Find the con-
straints on k1 and k2 for stable operation.

5.7 Consider the LTI system

x =

0 1 0

0 0 1

0 − 3 − 2

x +

0

0

1

u

It is a state feedback controller of the form u= −Kx, where the feedback
gain matrix is given by K = k 7 5 . Determine the value of k for
stability.
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5.8 For the LTI system given below, determine the conditions on β1, β2, γ1, and
γ2 such that the system is both controllable and observable.

x =
1 1

0 1
x +

β1
β2

u, y = γ1 γ2 x

5.9 Consider the LTI of Problem 5.8, in which β1 = β2 = γ1 = 1 and γ2 = 0.
Design a state feedback controller such that the closed-loop system has a
damping ratio of 0.707 and an undamped natural frequency of 5 rad/s.

5.10 An LTI system is given by

x =
0 1

0 0
x +

0

1
u, y = 1 0 x

(a) Design a state feedback controller such that closed-loop characteristic
equation with the controller is given by s2 + 8s+ 32 = 0.

(b) Design an observer such that the characteristic equation of the observer
is (s+ 10)2 = 0.

(c) Compute the characteristic equation of the overall system.

5.11 For the boost converter of Examples 5.19 and 5.20, discretize the system
with a sampling time of T(=1/f ) and duty ratio of 0.5. Determine the gain
matrix of a state feedback with integral controller such that the closed-loop
poles are placed at −0.5 ± j0.5, 0.1. Choose the integral gain given of 0.1.

5.12 Determine the linearized state space average model of the buck converter
given in Example 4.2, where the duty ratio is chosen as 0.5.

5.13 The schematic diagram of a buck-boost converter is shown in Figure P5.13.
Draw the equivalent circuits and write the state space equation when (a)
the switch is closed and (b) when the switch is open.

iL

D

CL

S

Vdc

+

–

–
R V0

+

Figure P5.13 Schematic diagram of a buck-boost converter.
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5.14 For the buck-boost converter of Problem 5.13, determine the linearized
state space average model for a duty ratio of 0.5 and the following converter
parameters.

L = 4mH,C = 250 μF,R = 10Ω,Vdc = 100 V, and f = 1 T = 10 kHz

Notes and References

This chapter assumes that the reader has prior knowledge of classical and digital
control systems. However, there are some wonderful texts that can be used for
brushing up the background materials. My personal favorites are books by Kuo
[1] (I prefer the fifth or sixth editions, which are not readily available anymore)
and Ogata [2]. These texts probably really stand out from the other texts. There
are other very worthy books that can also be considered [4–6]. Digital control is
covered in considerable depth in [7, 8]. There are, however, many other books that
cover these subjects in detail. The linearization of a thyristor-controlled series
compensator (TCSC) SMIB system and the TCSC controller design are discussed
in [9, 10]. Apart from the linearization of the circuit, the sensitivity of the shift in
the zero-crossing of the line current is included in the model, which makes the
model very accurate. It is shown that the predicted output and the actual output
matches very closely. The book byMohan, Undeland, and Robbins [11] is an excel-
lent text that presents the detailed analysis of DC-DC converters. The state space
averaging is first presented in [3] and has been widely used in a variety of problems
since then. The derivation of a discrete-time model for DC-DC converters, based
on which the steady state model is derived here, is presented in [12].
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6

Discrete-time Control

In this chapter, discrete-time control using difference equation is discussed. In
Chapter 3, we discuss z-transform and how a transfer function can be converted
into a difference equation. These will now be used for designing a controller
for single-input, single-output (SISO) systems. Our discussion focuses on
prediction-based controllers, under the assumption that dynamic systems have
disturbances that are stochastic in nature. However, these controllers can be used
for deterministic systems as well.
The basic premise of predictive control is simple. It involves calculating a

sequence of future control signals that will minimize a set of cost functions over
a finite prediction horizon. However, the theory behind this is not simple, neither
is its application. Even though the concept has been used by industry for a long
time, it has been restricted to processes that have much lower time constants, such
as chemical processes. The basic drawback of implementing such types of control
is that they are computation intensive. However, with the modern-day fast proces-
sors, such controllers are now under the realm of the possibility of being used in
fast dynamic systems like power converters.
In this chapter, both prediction base controllers and their application in adaptive

control are discussed. Our discussion is limited only to SISO systems in the
discrete-time domain. However, predictive controllers can be developed for
multivariable systems or for continuous-time systems. Moreover, prediction-based
controllers are often developed for systems that contain random noise. It will
therefore be assumed that the systems are stochastic in nature.
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6.1 Minimum Variance (MV) Prediction and Control

The first step in developing a predictive control is to construct a model. Several
models based on difference equations are available in the literature. Their use
depends on the behavior of the plant under discussion. We begin our discussion
with a summary of the models.

6.1.1 Discrete-time Models for SISO Systems

A generalized SISO model for a linear system with stochastic input is given by

A z− 1 y k = z− dB z− 1 u k + C z− 1 e k

= B z− 1 u k− d + C z− 1 e k
6 1

where y(k) is the output; u(k) is the input; e(k) is a noise signal, which is considered
white noise; and d is an integer input delay or dead time. Note that the second line
of (6.1) is written using the shifting theorem of the z-transform. The polynomials
are given in the backward shift operator z−1 by

A z− 1 = 1 + a1z
− 1 + a2z

− 2 + + anaz
− na

B z− 1 = b0 + b1z
− 1 + b2z

− 2 + + bnbz
− nb

C z− 1 = 1 + c1z
− 1 + c2z

− 2 + + cncz
− nc

6 2

From a causality condition, the polynomial orders will have to obey the following
conditions

na ≥ nb + d and na ≥ nc 6 3

The system of (6.1) is usually called an autoregressive moving average process
with an exogenous input, or ARMAX, process. This is the most general form that is
used in stochastic control literature. Using this general model, different models
can be derived. These are listed in Table 6.1. Note that, even if the input e(k) of

Table 6.1 List of different stochastic processes.

Process name Characteristics Equation

Autoregressive (AR) B(z−1) = 0 and C(z−1) = 1 A(z−1)y(k) = e(k)

Moving average (MA) A(z−1) = 1 and B(z−1) = 0 y(k) = C(z−1)e(k)

Autoregressive moving
average (ARMA)

B(z−1) = 0 A(z−1)y(k) = C(z−1)e(k)

Autoregressive with
exogenous input (ARX)

C(z−1) = 1 A(z−1)y(k) = z−dB(z−1)u(k) + e(k)
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an MA process is an uncorrelated white noise, the output y(k) is not uncorrelated
and it is called a colored noise [1].

6.1.2 MV Prediction

Consider the ARMAX process given by (6.1) and (6.2). In the MV control, we
choose the performance index

J = E y k + d − yr k + d 2 6 4

andminimize it to obtain u(k), where yr(k) is the reference input. The performance
index of (6.4), however, cannot be minimized in a straightforward manner. To
minimize the square of the error between the reference input and system output
at time k+ d, the control action must be taken at time k. The delay term adds d
samples between the control signals and their effect on the output. At time instant
k only the values of the system output up until that instant are known. The future
values of y(k+ i), i = 1, …d are not yet measured. Therefore, a process is required
to predict the value of y(k+ d), given the measurements up to time k.
Replacing k by k+ d, we rewrite (6.1) as

y k + d =
B z− 1

A z− 1
u k +

C z− 1

A z− 1
e k + d 6 5

Expanding the second rational term on the right-hand side of (6.5) we get

C z− 1

A z− 1
= F z− 1 + z− d G z− 1

A z− 1
6 6

where F(z−1) and G(z−1) respectively are the quotient and remainder polynomials,
given by

F z− 1 = 1 + f 1z
− 1 + + f d− 1z

− d + 1

G z− 1 = g0 + g1z
− 1 + + gng z

− ng
6 7

Equation (6.6) is rewritten in a form that is called the Diophantine equation (or
Aryabhata identity) as

C z− 1 = A z− 1 F z− 1 + z− dG z− 1 6 8

To have nonredundant coefficients, the order of the polynomial C(z−1) in (6.8) is
bounded by

nc ≤ na + d− 1 6 9

6.1 Minimum Variance (MV) Prediction and Control 209



Therefore, to have any nonredundant coefficients on the right-hand side of (6.9),
the order of the polynomial G(z−1) should be calculated from

na + d− 1 = d + ng

ng = na − 1
6 10

Let us now define

x k + d =
C z− 1

A z− 1
e k + d

= F z− 1 e k + d +
G z− 1

A z− 1
e k

6 11

Note that e(k) in (6.11) is a random noise and hence its future values cannot be
predicted. Therefore, the best d-step-ahead MV prediction can then be obtained
from the observation of the values until time k [2], i.e.

x k + d k =
G z− 1

A z− 1
e k 6 12

The term x k + d k indicates that it is the prediction of x at instant k+ d given the
measurements up to time k. Equation (6.11) can also be written as

e k =
A z− 1

C z− 1
x k

Substituting the above equation in (6.12), we have

x k + d k =
G z− 1

C z− 1
x k 6 13

Therefore, the poles of the predictor are roots of the polynomial C(z−1). Subtract-
ing (6.12) from (6.11), the following error in prediction is obtained

x k + d k = x k + d − x k + d k = F z− 1 e k + d 6 14

Assume that e(k) is an uncorrelated sequence with zero mean. Then the prediction
error E[F(z−1)e(k+ d)] is also zero mean. Therefore, the variance of the prediction
error is given by

E x k+ d k 2 =E x k+ d −x k+ d k 2

=E F z−1 e k+ d +
G z−1

A z−1
e k −x k+ d k

2

210 6 Discrete-time Control



The above equation can be expanded as

E x k + d k 2 = E F z− 1 e k + d
2
+ E

G z− 1

A z− 1
e k − x k + d k

2

+ E 2F z− 1 G z− 1

A z− 1
e k + d e k − e k + d x k + d k

The second term on the right-hand side can be eliminated using (6.12). Therefore

E x k+ d k 2 =E F z−1 e k+ d 2

+E 2F z−1 G z−1

A z−1
e k+ d e k −e k+ d x k+ d k

6 15

In (6.15), since e(k) is uncorrelated, E[e(k+ d)e(k)] = 0. Also, using the same argu-
ment, we get the following by substituting (6.12)

E e k + d x k + d k =
G z− 1

A z− 1
E e k + d e k = 0

Thus, the last term on the right-hand side of (6.15) is equal to zero. Then the
variance can be written as

E x k + d k 2 = E F z− 1 e k + d
2

6 16

Since e(k) is uncorrelated and has a mean of zero, (6.16) can be directly obtained
from (6.14). If the uncorrelated noise e(k) has a variance of σ2e , (6.16) can be
expanded as

E x k + d k 2 = 1 + f 21 + + f 2d σ2e 6 17

Example 6.1 We shall design a three-step-ahead MV predictor for the process

x k =
C z− 1

A z− 1
=

1− 1 4z− 1 + 0 5z− 2

1− 1 2z− 1 + 0 4z− 2
e k

where e k N 0, σ2e , i.e. e(k) is a normal (Gaussian) random process with zero

mean and a variance of σ2e. The polynomials F(z−1) and G(z−1) are then given from
(6.7) as

F z− 1 = 1 + f 1z
− 1 + f 2z

− 2

G z− 1 = g0 + g1z
− 1

6.1 Minimum Variance (MV) Prediction and Control 211



Therefore, the Diophantine equation of (6.8) is written for this case as

1− 1 4z− 1 + 0 5z− 2 = 1− 1 2z− 1 + 0 4z− 2 1 + f 1z
− 1 + f 2z

− 2

+ z− 3 g0 + g1z
− 1

= 1− 1 2z− 1 + 0 4z− 2 + f 1z
− 1 − 1 2f 1z

− 2 + 0 4f 1z
− 3

+ f 2z
− 2 − 1 2f 2z

− 3

0 4f 2z
− 4 + g0z

− 3 + g1z
− 4

Equating the coefficients of the negative powers of z, we have

z− 1 − 0 2 = f 1

z− 2 0 1 = − 1 2f 1 + f 2 f 2 = 0 1 + 1 2f 1 = − 0 14

z− 3 0 = 0 4f 1 − 1 2f 2 + g0 g0 = − 0 4f 1 + 1 2f 2 = − 0 088

z− 4 0 = 0 4f 2 + g1 g1 = − 0 4f 2 = 0 056

i.e. f1 = − 0.2, f2 = − 0.14, g0 = − 0.088, g1 = 0.056
The variance of the prediction error is then

E x k + 3 k 2 = 1 + f 21 + f 22 σ2e = 1 0596σ2e

6.1.3 MV Control Law

By replacing the last term on the right-hand side of (6.5) by (6.11), a d-step-ahead
prediction of the output can be written as

y k + d k =
B z− 1

A z− 1
u k + x k + d k

Substituting (6.12) in the above equation, we have

y k + d k =
B z− 1

A z− 1
u k +

G z− 1

A z− 1
e k 6 18

The noise term e(k) can be eliminated from (6.18) by substituting (6.1) into
(6.18), i.e.

y k+ d k =
B z−1

A z−1
u k +

G z−1

A z−1

A z−1

C z−1
y k −z−d B z−1

C z−1
u k

=
G z−1

C z−1
y k +

B z−1

A z−1 C z−1
C z−1 −z−dG z−1 u k
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Substitution of (6.8) in the expression of y k + d k yields the following
prediction equation

y k + d k =
G z− 1

C z− 1
y k +

B z− 1 F z− 1

C z− 1
u k 6 19

Replacing the actual value of y(k+ d) in (6.4) by its predicted value from (6.19),
the performance index of (6.4) is given as

J =E y k+ d k −yr k+ d 2

=
G z−1

C z−1
y k +

B z−1 F z−1

C z−1
u k −yr k+ d

2 6 20

Note that (6.20) contains the terms which are known or measured. Since all the
values are deterministic, the expectation operator is no longer needed. Expanding
the right-hand side of (6.20), we have

J =
G z− 1

C z− 1
y k − yr k + d

2

+
B z− 1 F z− 1

C z− 1
u k

2

+ 2
G z− 1

C z− 1
y k − yr k + d ×

B z− 1 F z− 1

C z− 1
u k

The performance index can then beminimized by taking its derivative with respect
to u(k) and equating it to zero. It is to be noted that both y(k) and yr (k+ d) are
independent of u(k). Then the minimization of the above equation with respect
to u(k) results in

∂J
∂u k

= 2
B z− 1 F z− 1

C z− 1

2

u k + 2
G z− 1

C z− 1
y k − yr k + d

B z− 1 F z− 1

C z− 1

=
B z− 1 F z− 1

C z− 1
u k +

G z− 1

C z− 1
y k − yr k + d = 0

Rearranging the above equation, we get the MV control law as

u k =
1

B z− 1 F z− 1
C z− 1 yr k + d −G z− 1 y k 6 21

Substitution of (6.21) into (6.1) yields

A z− 1 y k =
z− d

F z− 1
C z− 1 yr k + d −G z− 1 y k + C z− 1 e k

This is rearranged as

A z− 1 F z− 1 + z− dG z− 1 y k = z− dC z− 1 yr k + d

+ F z− 1 C z− 1 e k
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Again, substituting (6.8) in the above equation, the closed-loop input–output rela-
tion is obtained as

y k = yr k + F z− 1 e k 6 22

It is interesting to note from (6.22) that all the closed-loop poles are placed at the
origin. The tracking error is then given by

y k = y k − yr k = F z− 1 e k 6 23

For a zero-mean noise with a variance of σ2e , the variance of the tracking error is
the same as that given in (6.17).

Example 6.2 Consider an ARMAX process of (6.1) with d = 3 and

A z− 1 = 1− 1 2z− 1 + 0 4z− 2, B z− 1 = 0 5 + 0 2z− 1,

C z− 1 = 1− 1 4z− 1 + 0 5z− 2

The polynomials F(z−1) and G(z−1) are calculated in Example 6.1 as

F z− 1 = 1− 0 2z− 1 − 0 14z− 2

G z− 1 = − 0 088 + 0 056z− 1

Then

B z− 1 F z− 1 = 0 5 + 0 1z− 1 − 0 11z− 2 − 0 028z− 3

Therefore, the MV control law is given by

u k =
1
0 5

yr k + 3 − 1 4yr k + 2 + 0 5yr k + 1 + 0 088y k

− 0 056y k− 1 − 0 1u k− 1 + 0 11u k− 2 + 0 028u k− 3

The system noise input is assumed to be e(k) N(0, 10−3). The system output
and input are shown in Figure 6.1. At the beginning yr is chosen as a unit step
and at the 50th sample. This is changed to twice the unit step. Note that a
three-step-ahead prediction of the reference output is required from the control
equation. Since the reference is held constant at the previous value for three sam-
ples, there is no change in the output for the first three samples after the reference
change. However, the system settles within 10 samples thereafter.

6.1.4 One-step-ahead Control

Consider an ARX model with a unit delay, given by

y k = z− 1 B z− 1

A z− 1
u k +

1
A z− 1

e k 6 24
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Since F(z−1) = 1, the Diophantine equation of (6.8) then becomes

1 = A z− 1 + z− 1G z− 1 6 25

Therefore, the one-step-ahead control law is derived from (6.21) as

u k =
1

B z− 1
yr k + 1 −G z− 1 y k

=
1

B z− 1
yr k + 1 + 1−A z− 1 y k

6 26

Substituting (6.26) in (6.24), the closed-loop control system is given by

A z− 1 y k + 1 = yr k + 1 + 1−A z− 1 y k + e k + 1

Note that

A z− 1 y k + 1 − 1−A z− 1 y k = y k + 1

Therefore, the closed-loop system can be expressed as

y k + 1 = yr k + 1 + e k + 1 6 27

This implies that the one-step-ahead MV control predicts the output one step
ahead of the current sample and then applies the control signal such that the out-
put follows the reference input.
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Figure 6.1 System output and input for the three-step-ahead MV control of Example 6.1.
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Example 6.3 Consider an ARX process, given by

y k − 1 2y k− 1 + 0 4y k− 2 + 0 3y k− 3

= 0 5u k− 1 + 0 25u k− 2 + e k

From (6.26), we get the following control law

u k =
1
0 5

yr k + 1 − 1 2y k + 0 4y k− 1 + 0 3y k− 2 − 0 25u k− 1

The system noise input is assumed to be e(k) N(0, 10−3). The system output
and input are shown in Figure 6.2. As in Example 6.1, the reference input yr is
changed from a unit step to twice the unit step at the 50th sample. Since the settling
time of a one-step-ahead MV control is one sample, the output follows the refer-
ence the output then follows the reference input after one sample, as is evident
from Figure 6.2a. This, however, comes at a cost of high control effort, as shown
in Figure 6.2.
The MV control has a very desirable control action. However, it has one major

disadvantage, as is illustrated by Example 6.4.
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Figure 6.2 System output and input for the one-step-ahead MV control of Example 6.2.

216 6 Discrete-time Control



Example 6.4 Consider an ARX process given by

y k − 1 2y k− 1 + 0 4y k− 2 + 0 3y k− 3

= 0 5u k− 1 + 1 75u k− 2 + e k

This implies that the polynomial A(z−1) is the same as that of Example 6.3 and

B z− 1 = 0 5 + 1 75z− 1

The system step response is shown in Figure 6.3. It can be seen that the output
follows the reference for about 30 samples despite having a very large control action.
But eventually the control action overflows, thus resulting in an unbounded output.
In a physical system there will be limiters in the actuator that will prevent the input
signal from being excessively large and this might result in a bang-bang response, as
shown in Figure 6.4, where u(k) is restricted to ±10.
The zero of the system of this example is at −6.5, i.e. outside the unit circle. This

is called a nonminimum phase condition. From (6.26) it is obvious that the poles
of the controller are the roots of the polynomial B(z−1), i.e. the open loop system
zeros. Therefore, for a nonminimum phase system, control action is unstable and
produces an excessive control action. This obviously is not at all desirable. There
are methods in which a suboptimal control is obtained by factoring the polynomial
B(z−1) into two polynomials: one containing system zeros that are inside the unit
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Figure 6.3 System output and input for unrestricted control of Example 6.6.
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circle and the other containing zeros that are outside the unit circle. The controller
is then synthesized using the polynomial with stable zeros [1, 3].

6.2 Pole Placement Controller

Consider the ARMAX model of (6.1) again. Let the control law for the pole place-
ment design be given by

u k =
S z− 1

R z− 1
Kcyr k − y k 6 28

where Kc is a feedforward gain and the polynomials R(z−1) and S(z−1) are given by

R z− 1 = 1 + r1z
− 1 + + rnr z

− nr

S z− 1 = s0 + s1z
− 1 + + snsz

− ns

The block diagram of the pole placement controller is shown in Figure 6.5.
Substituting the control law of (6.28) in (6.1), the closed-loop equation is

given by

A z− 1 y k = z− dB z− 1 S z− 1

R z− 1
Kcyr k − y k + C z− 1 e k
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Figure 6.4 System output and input for restricted bang-bang control of Example 6.6.
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Rearranging the above equation, we get

y k =
z− dKcB z− 1 S z− 1 yr k + C z− 1 R z− 1 e k

A z− 1 R z− 1 + z− dB z− 1 S z− 1
6 29

The poles of the closed-loop system are given by the solution of the characteristic
equation

A z− 1 R z− 1 + z− dB z− 1 S z− 1 = 0

In the pole placement design, the controller polynomials are obtained through
the solution of the Diophantine equation

A z− 1 R z− 1 + z− dB z− 1 S z− 1 = T z− 1 6 30

where T(z−1) = 0 defines the desired characteristics equation of the closed-loop
system. This can be denoted as

T z− 1 = 1 + t1z
− 1 + + tnt z

− nt

From (6.30), we can stipulate the following for the polynomial orders

na + nr = d + nb + ns ≥ nt 6 31

Neglecting the noise term in (6.29), the steady state value of the output to a step
input is given by

yss k =
KcB z−1 S z−1

T z−1
z=1

=
Kc × b0 + b1+ + bnb × s0 + s1+ + sns

1+ t1+ + tnt
yr k

6 32

y(k)
+

yr(k) u(k)+Kc

+

e(k)

S(z−1)
R(z−1) A(z−1)

A(z−1)
C(z−1)

z–d B(z−1)

Figure 6.5 Block diagram of the pole placement controller.
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The gain Kc must be chosen such that the output follows the reference input, i.e.
the DC gain of the closed-loop system is 1. This gives

Kc =
1 + t1 + + tnt

b0 + b1 + + bnb × s0 + s1 + + sns
6 33

We must, however, be careful in choosing the gain as for T(z−1)|z = 1 = 0 the gain
will be zero, while for either B(z−1)|z = 1 = 0 or S(z−1)|z = 1 = 0 the gain will be
infinity.

Example 6.5 Consider an ARMAX model of Example 6.2, where the polyno-
mials are

A z− 1 = 1 + a1z− 1 + a2z− 2, B z− 1 = b0 + b1z− 1,

C z− 1 = 1− 1 4z− 1 + 0 5z− 2

where a1 = − 1.2, a2 = 0.4, b0 = 0.5, b1 = 0.2. Also, the delay d is again chosen as 3.
Note that the open-loop poles are located at −0.6 ± j1.908. It is desired that the
closed-loop poles will be placed at −0.1 ± j0.2 such that

T z− 1 = 1 + t1z
− 1 + t2z

− 2 = 1 + 0 2z− 1 + 0 05z− 2

Choosing

S z− 1 = s0 + s1z
− 1

the following polynomial orders are obtained from (6.31)

nr = d + nb + ns −na = 3

Thus

R z− 1 = 1 + r1z
− 1 + r2z

− 2 + r3z
− 3

Therefore, the Diophantine equation of (6.30) is given as

1 + a1z− 1 + a2z− 2 1 + r1z− 1 + r2z− 2 + r3z− 3

+ z− 3 b0 + b1z− 1 s0 + s1z− 1 = 1 + t1z− 1 + t2z− 2
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Expanding and equating the negative powers of z, the above equation is written
in matrix vector form as

z− 1

z− 2

z− 3

z− 4

z− 5

1 0 0 0 0

a1 1 0 0 0

a2 a1 1 b0 0

0 a2 a1 b1 b0

0 0 a2 0 b1

r1

r2

r3

s0

s1

=

t1 − a1

t2 − a2

0

0

0

Substituting the coefficient of the polynomials A(z−1) and B(z−1) and solving,
we get

S z− 1 = 0 7877− 0 4523z− 1

R z− 1 = 1 + z− 1 + 0 85z− 2 + 0 2262z− 3

The gain is calculated from (6.33) as Kc = 6.62. The control law is therefore

ε k = Kcyref k − y k

u k = s0ε k + s1ε k− 1 − r1u k− 1 − r2u k− 2 − r3u k− 3

The system output and input are shown in Figure 6.6, where the reference input
is changed from 1 to 2 at 0.5 seconds. It can be seen that the response is closer to
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Figure 6.6 System output and input for the three-step-ahead pole placement control of
Example 6.5.
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that of the MV controller since the poles are placed near the origin. However, an
arbitrary pole placement can lead to excessive control action. In order to avoid this,
the open-loop poles can be shifted tomore stable locations using the pole shift con-
trol technique.

6.2.1 Pole Shift Control

Consider a system that has a pair of complex conjugate poles and one real pole,
located respectively at α± jβ and −σ. The position of the poles in the complex
plane is shown in Figure 6.7, where it has been assumed that all the poles lie within
the unit circle. Note that, in this figure, only one of the complex conjugate pair has
been shown. The polynomial A(z−1) is then given by

A z− 1 = 1 + σ z− 1 × 1− α z− 1 + jβ z− 1 × 1− α z− 1 − jβ z− 1

= 1 + σ− 2α z− 1 + α2 + β2 − 2ασ z− 2 + α2 + β2 σ z− 3

6 34

Defining A(z−1) = 1 + a1 z
−1 + a2z

−2 + a3 z
−3, and comparing with (6.34), we get

a1 = σ− 2α , a2 = α2 + β2 − 2ασ , a3 = α2 + β2 σ

Also note from Figure 6.7 that φ = tan−1(β/α).

Re

α + jβ

−σ

−λσ

λα + jλβ

Im

1

φ

Figure 6.7 Radial shifting of poles in the z-plane.
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In the pole shift control, the closed-loop poles are determined by multiplying
open-loop poles by a factor λ, 0 < λ< 1. Then the following polynomial defines
the closed-loop poles.

T z−1 =A λz−1 = 1+ λσ z−1 × 1−λαz−1 + jλβ z−1

× 1−λαz−1− jλβ z−1

= 1+ σ−2α λz−1 + α2 + β2−2ασ λ2z−2 + α2 + β2 σλ3z−3

6 35

Comparing (6.35) with (6.34), we find that

T z− 1 = 1 + λa1 z
− 1 + λ2a2z

− 2 + λ3a3 z
− 3

The closed-loop pole locations are also shown in Figure 6.7. Note that, as the value
of λ is reduced, the closed-loop poles radially move toward the origin, with the
complex conjugate pair staying on the line joining the origin with the pole at loca-
tion α± jβ. This implies that angle φ will remain unchanged. Also, the real pole
will move toward the origin along the real axis. Therefore, in the pole shift control,
the closed-loop poles are determined by radially shifting the open-loop poles by a
factor λ (0 < λ< 1) to more stable locations [4]. In general, the closed loop is then
defined by the polynomial

T z− 1 = A λz− 1 = 1 + λa1z
− 1 + + λna tnaz

− na 6 36

Since na = nt, condition (6.31) is satisfied.

Example 6.6 Consider the ARMAX model of Example 6.5. Here the procedure
for the determination polynomials R(z−1) and S(z−1) remains the same, except that
the polynomial T(z−1) now is

T z− 1 = 1− 1 2λz− 1 + 0 4λ2z− 2

The system output and input for λ = 0.9 and 0.5 are shown in Figure 6.8, where
the reference input is changed from 1 to 2 at 0.5 seconds. It can be seen that, as the
closed-loop poles move closer to the origin, the system response becomes faster
(Figure 6.8c,d).

Example 6.7 Let us consider the nonminimum phase system of Example 6.4,
given by

y k =1 2y k−1 −0 4y k−2 −0 3y k−3 + 0 5u k−1

+ 1 75u k−2 + e k
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Let the polynomial R(z−1) be given by

R z− 1 = 1 + r1z
− 1

Then, from (6.31), the following order of the polynomial S(z−1) is obtained

ns = na + nr − d− nb = 2

Therefore, the polynomial S(z−1) is defined as

S z− 1 = s0 + s1z
− 1 + s2z

− 2

The Diophantine equation is written as

1+ a1z−1 + a2z−2 + a3z−3 1+ r1z−1 + z−1 b0 + b1z−1 s0 + s1z−1 + s2z−2

= 1+ λa1z−1 + λ2a2z−2 + λ3a2z−3

Let us choose a pole shift factor of 0.7 such that

T z− 1 = 1− 0 84z− 1 + 0 196z− 2 + 0 103z− 3
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Figure 6.8 System response with pole shift control for two different values of λ in
Example 6.6. (a) System Output for λ = 0.9, (b) Control Input for λ = 0.9, (c) System Output for
λ = 0.5, (d) Control Input for λ = 0.5.

224 6 Discrete-time Control



Then the polynomials R(z−1) and S(z−1) the gain Kc are calculated as

R z− 1 = 1 + 0 294z− 1

S z− 1 = 0 132− 0 165z− 1 − 0 05z− 2

Kc = − 2 44

Note that, since T(z−1)|z = 1 > 0, B(z−1)|z = 1 > 0, and S(z−1)|z = 1 < 0, the gain Kc

must be negative. The system response is shown in Figure 6.9. The closed-loop sys-
tem is stable, unlike that of the case of MV.

6.3 Generalized Predictive Control (GPC)

GPC was first introduced by D. W. Clarke [5–7]. Since then, it has become very
popular and is discussed in several books [3, 8–10]. Generally, a model that is
known as the controlled autoregressive integrated moving average, or CARIMA,
process is used for this controller design. This is given by

A z− 1 y k = z− dB z− 1 u k− 1 +
e k
Δ

6 37

where

Δ = 1− z− 1 6 38
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Figure 6.9 System response with pole shift control for the nonminimum phase system of
Example 6.7.
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This process has the advantage that the controller automatically contains an
integrator.
In the GPC, the following multistage cost function is chosen

J N1,N2,Nu =
N2

j = N1

y k + j k − yr k + j 2 +
Nu

j = 1

λ j Δu k + j− 1 2

6 39

where N1 and N2 respectively are the minimum and maximum costing horizons,
Nu is the control horizon, while δ( j) and λ( j) are two weighting sequences. The
prediction horizons N1 and N2 are the time limits of the output following the ref-
erence input. When the system contains a dead time d, there is no reason to choose
N1 less than d since the control action will affect the system only after the dead
time. The main idea is to minimize the cost function to compute future control
sequences in such a way that the future plant output follows the future reference
input. In some of the applications, the reference trajectory is known a priori, for
instance in a repetitive process such as a chemical process. However, in power
electronic circuits, this is often not true. A smooth first-order approximation of
the output toward a known reference input can be formed, as discussed in [8].
Comparing (6.37) with (6.1), we find that

C z− 1 =
1
Δ

=
1

1− z− 1

The Diophantine equation of (6.8) is then modified as

1 = ΔA z− 1 F z− 1 + z− jG z− 1 6 40

where

F z− 1 = f 0 + f 1z
− 1 + + f j− 1z

− j + 1

G z− 1 = g0 + g1z
− 1 + + gngz

− ng
6 41

Note that, in this case, the Diophantine equation does not depend on d but on the
prediction horizon value j. The order of ΔA(z−1) is na+ 1. Therefore, to have non-
redundant coefficients, the order of the polynomial G is obtained by modifying
(6.10) as

na + 1 + j− 1 = j + ng

ng = na
6 42

Multiplication of (6.37) by ΔF(z−1)z j results in

ΔA z− 1 F z− 1 y k + j = ΔF z− 1 B z− 1 u k + j− d− 1 + F z− 1 e k + j

6 43
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Substituting (6.40) in (6.43), we get

1− z− jG z− 1 y k + j = F z− 1 B z− 1 Δu k + j− d− 1 + F z− 1 e k + j

The above equation can be rewritten as

y k + j = G z− 1 y k + F z− 1 B z− 1 Δu k + j− d− 1 + F z− 1 e k + j

Since the future values of e(k) cannot be predicted a priori, the output prediction
equation is then

y k + j k = G z− 1 y k + H z− 1 Δu k + j− d− 1 6 44

where H(z−1) = F(z−1)B(z−1).
From (6.41) notice that F(z−1) depends on the prediction horizon and changes

with the value of j. Consequently, the solution of the Diophantine equation of
(6.40) changes with j. Therefore, we need to evaluate F(z−1) and G(z−1) as j
changes. Let us denote these polynomials as Fj(z

−1) and Gj(z
−1) for j= 1, 2,…, such

that

Fj z− 1 = 1 + f j,1z
− 1 + + f j,j− 1z

− j + 1

Gj z− 1 = gj,0 + gj,1z
− 1 + + gj,naz

− na
j = 1, 2,… 6 45

Now consider the following example.

Example 6.8 Consider a CARIMA process of (6.37) with

A z− 1 = 1− 0 9z− 1 and B z− 1 = 0 5 + 0 2z− 1

It can be seen that d = 0. Choosing N1 = 1 and N2 = Nu = 3, we define

Aδ z− 1 = ΔA z− 1 = 1 + aδ1z
− 1 + aδ2z

− 2

Gj z
− 1 = gj,0 + gj,1z

− 1

where aδ1 = − 1.9 and aδ2 = 0.9.
For j = 1, we have

F1 z− 1 = 1

Therefore, the Diophantine equation of (6.40) is

1 = 1 + aδ1z
− 1 + aδ2z

− 2 + g1,0z
− 1 + g1,1z

− 2

The solution of the above equation produces

G1 z− 1 = − aδ1 − aδ2z
− 1
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For j = 2, we have

F2 z− 1 = 1 + f 2,1z
− 1

and the Diophantine equation is

1 = 1 + f 2,1z
− 1 1 + aδ1z

− 1 + aδ1z
− 2 + g2,0z

− 2 + g2,1z
− 3

The above equation can be rewritten as

1 = 1 + f 2,1 + aδ1 z− 1 + aδ2 + aδ1f 2,1 + g2,0 z− 2 + aδ2f 2,1 + g2,1 z− 3

Solving this, we get f2,1 = − aδ1 and therefore

F2 z− 1 = 1− aδ1z
− 1 andG2 z− 1 = − aδ2 − a2δ1 + aδ1aδ2z

− 1

Similarly, for j = 3, we have

F3 z− 1 = 1 + f 3,1z
− 1 + f 3,2z

− 2

Therefore, the Diophantine equation of (6.40) results in

1 = 1 + f 3,1z
− 1 + f 3,2z

− 2 1 + aδ1z
− 1 + aδ2z

− 2 + g3,0z
− 3 + g3,1z

− 4

The above equation is expanded as

1= 1+ f3,1 + aδ1 z−1 + aδ2 + aδ1f3,1 + f3,2 z−2

+ aδ2f3,1 + aδ1f3,2 + g3,1 z−3 + aδ2f3,2 + g3,2 z−4

Solving this we get f 3,1 = − aδ1, f 3,2 = − aδ2 + a2δ1 and therefore

F3 z− 1 = 1− aδ1z− 1 + a2δ1 − aδ2 z− 2 and G3(z
−1) = − (aδ2f3,1 + aδ1f3,2)

− aδ2f3,2z
−1

The polynomials F and G can then be summarized as

F1 z− 1 = 1 G1 z− 1 = 1 9− 0 9z− 1

F2 z− 1 = 1 + 1 9z− 1 G2 z− 1 = 2 71− 1 71z− 1

F3 z− 1 = 1 + 1 9z− 1 + 2 71z− 3 G3 z− 1 = 3 439− 2 439z− 1

Once polynomials Fj are obtained, the polynomials Hj are obtained as

H1 z− 1 = B z− 1 F1 z− 1 = 0 5 + 0 2z− 1

H2 z− 1 = B z− 1 F2 z− 1 = 0 5 + 1 15z− 1 + 0 38z− 2

H3 z− 1 = B z− 1 F3 z− 1 = 0 5 + 1 15z− 1 + 1 735z− 2 + 0 542z− 3

Note that the polynomials in the above example are derived assuming a rela-
tively smaller prediction horizon. However, there are processes (e.g. chemical
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processes) that require a much larger prediction horizon. In that case, the polyno-
mial can also be derived recursively, which is discussed in [9].
As in the case of d-step-ahead MV control, a set of control input signals over the

control horizon Nmust be obtained for the minimization of (6.39). Noting that the
system contains a dead time of d, we define the horizons as

N1 = d + 1

N2 = d + N

Nu = N

6 46

The following optimal predictions for the control horizon are then obtained
from (6.44)

y k+ d+1 k =Gd+1 z−1 y k +Hd+1 z−1 Δu k

y k+ d+2 k =Gd+2 z−1 y k +Hd+2 z−1 Δu k+1

y k+ d+N k =Gd+N z−1 y k +Hd+N z−1 Δu k+N−1

6 47

Now consider the polynomials H obtained in Example 6.7. From these, we
can write

H1 z− 1 Δu k = 0 5Δu k + 0 2Δu k− 1

H2 z− 1 Δu k + 1 = 0 5Δu k + 1 + 1 15Δu k + 0 38Δu k− 1

H3 z− 1 Δu k + 2 = 0 5Δu k + 2 + 1 15Δu k + 1

+ 1 73Δu k + 1 + 0 542Δu k− 1

Let us define

H3 z− 1 = h0 + h1z
− 1 + h2z

− 2 + h3z
− 3

where

h0 = 0.5, h1 = 1.15, h2 = 1.73, and h3 = 0.542.

Then we can write

H1 z− 1 Δu k = h0Δu k + 0 2Δu k− 1

H2 z− 1 Δu k + 1 = h0Δu k + 1 + h1Δu k + 0 38Δu k− 1

H3 z− 1 Δu k + 2 = h0Δu k + 2 + h1Δu k + 1 + h2Δu k + 1

+ h3Δu k− 1

such that

H1 z− 1 = h0 + H1 z− 1 − h0 z

H2 z− 1 = B z− 1 F2 z− 1 = 0 5 + 1 15z− 1 + 0 38z− 2

H3 z− 1 = B z− 1 F3 z− 1 = 0 5 + 1 15z− 1 + 1 735z− 2 + 0 542z− 3
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The equations above can be written in the following matrix–vector form

H1 z− 1 Δu k

H2 z− 1 Δu k + 1

H3 z− 1 Δu k + 2

=

h0 0 0

h1 h0 0

h2 h1 h0

Δu k

Δu k + 1

Δu k + 2

+ ΓΔu k− 1

where

Γ =

0 2

0 36

0 488

=

H1 z− 1 − h0 z

H2 z− 1 − h0 − h1z− 1 z2

H2 z− 1 − h0 − h1z− 1 − h2z− 2 z3

Therefore, the last term on the right-hand side of (6.47) can be written as

Hd + 1 z− 1 Δu k

Hd + 2 z− 1 Δu k + 1

Hd + N z− 1 Δu k + N − 1

=

h0 0 0

h1 h0 0

hN − 1 hN − 2 h0

Δu k

Δu k + 1

Δu k + N − 1

+ ΓΔu k− 1

6 48

where

Γ =

Hd + 1 z− 1 − h0 z

Hd + 2 z− 1 − h0 − h1z− 1 z2

Hd + N z− 1 − h0 − h1z− 1 − − hN − 1z−N + 1 zN

The following vectors and matrix can then be defined as

Y =

y k+ d+1 k

y k+ d+2 k

y k+ d+N k

, Δu=

Δu k

Δu k+1

Δu k+N−1

,

H=

h0 0 0

h1 h0 0

hN−1 hN−2 h0

, f =

Gd+1 z−1

Gd+2 z−1

Gd+N z−1

y k +ΓΔu k−1
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Then, using (6.47), (6.48) can be rewritten in a compact form as

Y = HΔu + f 6 49

Defining

Yr = yr k + d + 1 yr k + d + 2 yr k + d + N T

the objective function (6.39) is given as

J = HΔu + f −Yr
T HΔu + f −Yr + λΔuTΔu 6 50

By taking the derivative of J with respect to U and equating it to zero, the control
law is obtained as

Δu = − HTH + λI
− 1

HT f −Yr 6 51

Example 6.9 We shall continue with Example 6.8 for which we have already
derived polynomials F, G, and H. Therefore, we have

H =

0 5 0 0

1 15 0 5 0

1 735 1 15 0 5

, f =

1 9y k − 0 9y k− 1 + 0 2Δu k− 1

2 71y k − 1 71y k− 1 + 0 38Δu k− 1

3 439y k − 2 439y k− 1 + 0 542Δu k− 1

Let us choose λ = 0.75. Then

HTH + λI
− 1

HT =

0 2061 0 2597 0 1667

− 0 2143 − 0 0191 0 2597

− 0 0556 − 0 2143 0 2061

Note that only the first row of (6.51) is required to calculate Δu(k). Therefore, the
control law is given by

Δu k = −0 2061 × f 1 −yr k+1 −0 2597 f 2 −yr k+2

−0 1667 f 3 −yr k+3

= −1 6685y k +1 036y k−1 −0 2302Δu k−1

+ 0 2061yr k+1 +0 2597yr k+2 +0 1667yr k+3

Since Δu(k) = u(k)− u(k− 1), the above equation can be rewritten as

u k = − 1 6685y k + 1 036y k− 1 + 0 7698u k− 1 + 0 2302u k− 2

+ 0 2061yr k + 1 + 0 2597yr k + 2 + 0 1667yr k + 3

The system response to a unit step is shown in Figure 6.10, assuming that the
system starts from rest.
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The control law above is now defined as

B z− 1 u k = A z− 1 y k + C z− 1 yr k + 3

where

A z− 1 = − 1 6685 + 1 036z− 1

B z− 1 = 1− 0 7698z− 1 − 0 2302z− 2

C z− 1 = 0 2061 + 0 2597z− 1 + 0 1667z− 2

Substituting this in the plant model, we get

A z− 1 y k + 1 = B z− 1 u k =
B z− 1

B z− 1
A z− 1 y k + C z− 1 yr k + 3

A z− 1 B z− 1 −B z− 1 A z− 1 z− 1 y k + 1 = B z− 1 C z− 1 yr k + 3

The solution of the above equation yields

1− 0 8355z− 1 + 0 2782z− 2 y k + 1

= 0 1031 + 0 1711z− 1 + 0 1353z− 2 + 0 0333z− 3 yr k + 3

The DC gain of the above equation is 1, as is with all GPC control designs due to
the presence of Δ term with the controller. However, the closed-loop system
behavior depends on the choice of parameters such as N1, N2, Nu, and λ. This is
hard to predict [8].
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Figure 6.10 System response with GPC of Example 6.7.
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6.3.1 Simplified GPC Computation

To compute GPC control law, the Diophantine equation must be solved to obtain
thematrixH and the vector f, which is not a trivial task for longer control horizons.
Note that from Example 6.9 we only needed to compute the first column of the
matrix H, as this is a lower triangular matrix, where the elements of the first col-
umn are propagated in the triangular elements. The matrix H is composed of the
plant step response elements and can be computed from [9]

hj = −

j

i = 1

aihj− 1 +
j− 1

i = 0

bi, hk = 0, k < 0 6 52

From Examples 6.8 and 6.9, we know that A(z−1) = 1− 0.9z−1 and B(z−1) = 0.5 +
0.2z−1, such that a1 = − 0.9, b0 = 0.5, and b1 = 0.2. Then

h0 = b0 = 0 5

h1 = − a1h0 + b0 + b1 = 0 9 × 0 5 + 0 5 + 0 2 = 1 15

h2 = − a1h1 + b0 + b1 = 0 9 × 1 15 + 0 5 + 0 2 = 1 735

The system output equation is

y k = 0 9y k− 1 + 0 5u k− 1 + 0 2u k− 2

Shifting the above equation by one sampling instant, we get

y k + 1 = 0 9y k + 0 5u k + 0 2u k− 1

Subtraction of y(k) from y(k+ 1) produces

y k+1 −y k =0 9y k −0 9y k−1 + 0 5 u k −u k−1

+ 0 2 u k−1 −u k−2

Rearranging the above equation and noting that Δu(k) = u(k)− u(k− 1), we have

y k + 1 = 1 9y k − 0 9y k− 1 + 0 5Δu k + 0 2Δu k− 1

The control increments will now be considered before the instant k occurs to
compute the elements of f. Therefore, we discard Δu(k) in the above equation
to define

f k + 1 = 1 9y k − 0 9y k− 1 + 0 2Δu k− 1

In a similar way, the following equations are obtained

f k+2 =1 9f k+1 −0 9y k =1 9× 1 9y k −0 9y k−1 + 0 2Δu k−1

−0 9y k

=2 71y k −1 71y k−1 + 0 38Δu k−1
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f k + 3 = 1 9f k + 2 − 0 9f k + 1

= 3 439y k − 2 439y k− 1 + 0 542Δu k− 1

Defining f = f k + 1 f k + 2 f k + 3 T , we get the same results as those
given in Example 6.9.

6.4 Adaptive Control

An adaptive quantity is able to adapt to the changes in its environment. In control
literature, an adaptive controller is defined as “a controller with adjustable para-
meters and a mechanism for adjusting the parameters” [3]. A SISO system of the
form shown in Figure 6.11 is considered in this section. The input–output relation-
ship is then given by

Y z =
1

1 + G1 z GC z
G1 z GC z Yr + G2 z E z 6 53

where yr is the reference input and e is a disturbance input. The stability of
the closed-loop system will be governed by the zeros of the polynomial
1 +G1(z)GC(z) = 0.
The purpose of the control is to minimize the error ey(k) = yr(k)− y(k), as k ∞,

as well as to provide a well-damped transient behavior. For a deterministic e(k), the
feedback control can be designed by minimizing a performance index, such as the
sum of the square of ey(k) as k varies from 0 to ∞. However, in adaptive control
literature, the term e(k) is often assumed to be stochastic and therefore a stochastic
optimal control problem must be considered.
In general, two types of adaptive controls are reported in the literature: model

reference adaptive control (MRAC) and self-tuning control or regulator. These are

y
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u+

–
GC G1

G2

+

e

Controller

Plant

ey

Figure 6.11 Typical SISO system with a disturbance input.
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respectively shown in Figures 6.12 and 6.13. In MRAC, the performance specifi-
cation is given in terms of a reference model with an output ym and input yr
[10]. The adjustment mechanism then determines the controller parameters such
that the error between ym and y asymptotically decreases. A self-tuning control,
however, is a direct method which includes a block called system identification.
This block estimates the transfer function parameters of the plant. The controller
is then designed based on the identified parameters. While the identification proc-
ess is almost the same for different types of control design, the control strategies
vary. In this chapter, we concentrate on different types of self-tuning controllers.

6.5 Least-squares Estimation

Consider a batch model, given by

Y = Xθ + V 6 54

where Y ℜn is the observation vector, θ ℜm is the parameter vector, V ℜn is
a vector random observation errors, and the matrix X ℜn ×mis called the

yyr
u+ Controller

Identfied
Parameters

Plant

System
Identification

Figure 6.13 Self-tuning adaptive control.
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Figure 6.12 Model reference adaptive control.
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observation matrix. Since the vector V is unknown, the estimate of the system out-
put is given by

Y = Xθ 6 55

The least-squares cost function is given by

JLS = Y−Y
T
Y−Y = Y−Xθ T Y−Xθ 6 56

Equation (6.56) is expanded as

JLS = YTY− θTXTY−YTXθ + θTXTXθ

Taking a derivative of the above cost function with respect to θ and equating the
result to zero, we get

− 2XTY + XTXθ = 0

Rearranging the above equation, least-squares estimates are obtained as

θ = XTX
− 1

XTY 6 57

Example 6.10 An experiment is performed to determine gravitational accelera-
tion by dropping a steel ball from a tall building. Assuming that there is no wind
drag, the length of the fall is measured at equally spaced 0.1-second intervals. How-
ever, thesemeasurements are not accurate, and they are corrupted by sensor noise.
The length of fall (l) is obtained from the following equation

l =
1
2
gt2 + e

where g is the gravitational acceleration and e is a zero-mean sensor noise that has
a variance of 1. The measured length obtained from the above equation and the
actual length with the value of g being 9.8 m/s2 are shown in Figure 6.14, where
the measurements are taken every 100 ms.
Let us define a vector containing the length of the fall as L and another vector

containing the terms t2/2 as T. Then from (6.57), the gravitational acceleration can
be estimated as

g =
TTL
TTT

m s2

Table 6.2 lists the values of the estimates for different total number of samples,
from which it is evident that the estimated value becomes more accurate as the
number of samples increases.
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6.5.1 Matrix Inversion Lemma

Given two nonsingular matrices, A and C, the inverse of the matrix A+ BCD is
given by

A + BCD − 1 = A− 1 −A− 1B C− 1 + DA− 1B
− 1

DA− 1 6 58

The proof of the lemma is rather simple. We post-multiply the right-hand side of
(6.58) by the matrix A+ BCD to get

A−1−A−1B C−1 +DA−1B
−1
DA−1 A+BCD

= I+A−1BCD−A−1B C−1 +DA−1B
−1
D

−A−1B C−1 +DA−1B
−1
DA−1BCD

= I+A−1B C−1 +DA−1B
−1

C−1 +DA−1B CD−D−DA−1BCD

= I+A−1B C−1 +DA−1B
−1

D+DA−1BCD−D−DA−1BCD

Table 6.2 Estimated values for different total number of samples.

Time (s) Total number of samples Estimate g (m/s2)

2 21 10.447

5 51 9.805

10 101 9.7996

50 501 9.8
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Figure 6.14 The actual length of fall and the measured length of fall.
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Since the terms in the square brackets on the right-hand side of the above equation
add up to 0, we have

A− 1 −A− 1B C− 1 + DA− 1B
− 1

DA− 1 A + BCD = I

This proves the lemma.

6.5.2 Recursive Least-squares (RLS) Identification

The least square procedure discussed in Section 6.5.1 will now be used for the esti-
mation of transfer function parameters online. First let us consider an ARX proc-
ess, where the delay d is assumed to be 1. This is given by

A z− 1 y k = z− 1B z− 1 u k + e k 6 59

Equation (6.59) can be written in a difference equation form as

y k = − a1y k− 1 − a2y k− 2 + − anay k−na

+ b0u k− 1 + b1u k− 2 + + bnbu k−nb + e k
6 60

Defining a parameter vector θ and a regression vector φ as

θT = a1 a2 ana b0 b1 bnb

φT k = − y k− 1 − y k− 2 − y k−na

u k− 1 u k− 1 u k−nb

6 61

Equation (6.60) is written in a compact form as

y k = θTφ k + e k = φT k θ + e k 6 62

In (6.60), the measured and control input values on the right-hand side are
known at time instant k− 1. However, since e(k) is uncorrelated, its value at
instant k is unknown. Therefore, y(k) in (6.62) will be replaced by its estimate,
which is given by

y k k− 1 = θTφ k = φT k θ 6 63

In the least squares, the following cost function is chosen

JLS =
1
k

k

i = 1

y k − y k k− 1 2 =
1
k

k

i = 1

y k −φT k θ 2
6 64
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The cost function is then minimized with respect to the parameter vector to obtain
its estimate. Let us define the following two vectors

Y k =

y 1

y 2

y k

, X k =

φT 1

φT 2

φT k

6 65

Then the least-squares cost function is written as

JLS =
1
k
Y k −X k θ T Y k −X k θ 6 66

Note that (6.66) has a similar form to (6.56). Therefore, the cost function of (6.66) is
minimized by taking its derivative with respect to θ and equating it to zero to
obtain the estimates in the same fashion as (6.57). The estimates at time k are then
given by

θ k = XT k X k
− 1

XT k Y k 6 67

Note that the inverse of the matrix product given inside the square brackets can be
obtained by using the matrix inversion lemma of (6.58).
Let us define a matrix P ℜ(n+m) × (n+m) as

P k = XT k X k
− 1

6 68

Noting from (6.65) that the matrix X(k) can be written as

X k =
X k− 1

φT k

P(k) is given by

P k = XT k− 1 X k− 1 + φ k φT k
− 1

= P k− 1 + φ k φT k
− 1

6 69

We shall now apply the matrix inversion lemma of (6.58) to (6.69) by denoting

A = P−1(k− 1), B = φ(k), C = 1, and D = φT(k)

The resultant Pmatrix at time k is given by the following recursive relationship

P k = P k− 1 −
P k− 1 φ k φT k P k− 1
1 + φT k P k− 1 φ k

6 70

Let us now define a gain matrix as

K k =
P k− 1 φ k

1 + φT k P k− 1 φ k
6 71
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Then (6.70) can be rewritten as

P k = I−K k φT k P k− 1 6 72

Substituting (6.68) into (6.67), the estimates at time k are given by

θ k = P k XT k Y k 6 73

Again Y(k) can be written as

Y k =
Y k− 1

y k

Therefore

XT k Y k =
X k− 1

φT k

T Y k− 1

y k
= XT k− 1 Y k− 1 + φ k y k

Substitution of the above equation and (6.72) in (6.73) results in

θ k = I−K k φT k P k− 1 XT k− 1 Y k− 1 + φ k y k

= P k− 1 XT k− 1 Y k− 1 + P k− 1 φ k y k

−K k φT k P k− 1 XT k− 1 Y k− 1 + φ k y k

6 74

Now, the following two equations are obtained from (6.73) and (6.71)

θ k− 1 = P k− 1 XT k− 1 Y k− 1

P k− 1 φ k = K k + K k φT k P k− 1 φ k

Substituting the above two equations in (6.74), we get

θ k = θ k− 1 + K k y k + K k φT k P k− 1 φ k y k

−K k φT k θ k− 1 −K k φT k P k− 1 φ k y k

Solving and rearranging the above equation, the recursive least-squares (RLS) esti-
mates are obtained as

θ k = θ k− 1 + K k y k − θT k− 1 φ k 6 75

The step-by-step recursive relationships for RLS are given in Table 6.3. In the
equation of K(k), the term 0 < γ < 1 is taken as a forgetting factor that is used
to discount the old measurements. The implication of this is discussed in [11].
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Example 6.11 Consider an ARX system given by

y k = 1 2y k− 1 − 0 4y k− 2 − 0 3y k− 3 + 0 5u k− 1

+ 0 25u k− 2 + e k

where e(k) is a normal, zero-mean Gaussian random process with a variance of
0.001, i.e. e(k) N(0, 0.001). For a unit step input, the system output is shown in
Figure 6.15. The identified and actual parameters are shown in Figure 6.16a–e.
The estimates are fairly accurate. The error ε k = y k − θT k− 1 φ k is called

Table 6.3 RLS algorithm.

Initial conditions:

θ 0 = 0, P 0 = αI, for α >> 0

Then, at every k, execute the following equations sequentially

ε k = y k − θT k− 1 φ k

K k =
P k− 1 φ k

γ + φT k P k− 1 φ k

θ k = θ k− 1 + K k ε k

P(k) = [I−K(k)φT(k)]P(k− 1)
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Figure 6.15 The system response to a unit step input.
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the identifier residuals. This is shown in Figure 6.16f. Note that, as the identifier
converges, the residuals become equal to e(k).

6.5.3 Bias and Consistency

Let the system be governed by

y k = θT0φ k + e k 6 76

where θ0 is the true parameter vector of the system. Then the estimates are said to
be unbiased if

E θ k = θ0 6 77

and they are said to be consistent if

lim
k ∞

θ k = θ0 6 78

Let us now define a vector

Σ k =

e 1

e 2

e k
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Figure 6.16 Identified parameters and identifier residuals. (a) Estimate (θ1), (b) Estimate
(θ2), (c) Estimate (θ3), (d) Estimate (θ4), (e) Estimate (θ5), (f) Identifier Residuals e(k).
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Then the vector Y(k) is given as

Y k = X k θ0 + Σ k 6 79

Using (6.79), (6.67) is rewritten as

θ k = XT k X k
− 1

XT k X k θ0 + Σ k

= θ0 + XT k X k
− 1

XT k Σ k
6 80

As E[XT(k)X(k)]−1 cannot be equal to zero, clearly the estimates are unbiased
only when

E XT k E k = 0

This implies that

E φ 1 e 1 + φ 2 e 2 + + φ k e k = 0 6 81

Equation (6.81) is satisfied when the expected value of each individual product
term is zero, i.e.

E φ k e k = 0, k 6 82

Note that the vector φ(k) contains the outputs y(k− 1), y(k− 2), …, y(k− na),
which will, in turn, contain the noise terms e(k− 1), e(k− 2), …, e(k− na). Addi-
tionally, this vector also contains the inputs u(k− 1), u(k− 2),…, u(k− nb). There-
fore, to have unbiased estimates, the condition of (6.82) must be satisfied and this
can only be guaranteed when the following two statements are true:

• If the input u(k) is independent of e(k).

• If the noise e(k) has a mean of zero and is uncorrelated.

Example 6.12 Now consider the same system as in Example 6.11, except that we
have chosen an ARMAX model, given by

y k =1 2y k−1 −0 4y k−2 −0 3y k−3 + 0 5u k−1

+ 0 25u k−2 +C z−1 e k

where e(k) N(0, 0.001) and

C z− 1 = 1 + 0 2z− 1 − 0 3z− 2

Note that the noise term here can be expressed as

χ k = C z− 1 e k
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This is a moving average process and therefore χ(k) is correlated, as is mentioned
in Section 6.1.1.
The identifiedparametersare showninFigure6.17a–e,while the identifier residuals

areshowninFigure6.17f. It canbeseenthat theestimates,except forθ4,drift fromtheir
nominal values. This drift becomes more pronounced as the time progresses. This
means that the estimates are biased due to the presence of correlated noise.

6.6 Self-tuning Controller

A self-tuning controller, the schematic diagram of which is shown in Figure 6.13, is
based on the certainty equivalence principle of stochastic control theory. As we
have seen in Example 6.12, the identified parameters do not converge to the true
parameter values using RLS identification due to the presence of the correlated
noise. Under the certainty equivalence principle, the control law is designed
assuming that the identified parameters are the actual system parameters [12].

6.6.1 MV Self-tuning Control

The self-tuning controller that was first proposed in [12] shows a remarkable
result: if the identified parameters converge, then the controller converges to a
MV control law. The main results can be summarized into two theorems.
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• The first theorem states that the autocovariance of the output and the cross-
covariance between the input and the output are zero using ergodic assumption.

• The results of the first theorem are then used in the second theorem, which
states that if the parameter estimation converges and if the polynomials A
and B have no common factor then the control law will converge to a MV
control.

To illustrate this, let us consider Examples 6.13 and 6.14.

Example 6.13 Consider the ARMAX system of Example 6.12, where e(k) N
(0, 0.001). We now assume that the system parameters are unknown and are esti-
mated by an RLS identifier. An MV controller is designed based on the estimated
parameters. The results are shown in Figure 6.18, in which the reference input is
changed from 1 to 2 at 0.5 seconds. It can be seen that the output response is exactly
like that of a known parameter MV controller. Also, the system parameters have
converged to those given in polynomials A and B as if polynomial C is nonexistent.
Therefore, the controller is not influenced by the colored noise and forces the iden-
tifier to converge to the correct parameters.

5 0

–0.5

–1

–1.5

(a)

(c)

(e)

(b)

(d)

(f)

0

–10

–5

0.5

0

–0.5

1

0.5

0

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1

0.5

0
0 0.2 0.4 0.6 0.8 1

0.5

0

–0.5
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

System Output Estimate (θ1)

Estimate (θ2) Estimate (θ3)

Estimate (θ4)

Time (s)

Estimate (θ5)

Time (s)

Figure 6.18 System output and identified parameters for the MV self-tuning controller
of Example 6.13. (a) System Output, (b) Estimate (θ1), (c) Estimate (θ2), (d) Estimate (θ3),
(e) Estimate (θ4), (f) Estimate (θ5).
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Example 6.14 This example considers the speed control of a DC motor,
the parameters of which are defined as

Ra Armature resistance (Ω)

La Armature inductance (H)

ia Armature current (A)

if Field current (A)

ea Input voltage (V)

eb Back emf (V)

Tm Motor torque (N-m)

ω Angular velocity of the rotor (rad/s)

J Equivalent inertia of the rotor and load referred to the motor shaft (kg-m2)

B Viscous damping coefficient of the rotor and load referred to the motor shaft
(N-s/rad)

Kb Electromotive force (EMF) constant (V-s/rad)

KT Motor torque constant (N/A)

The governing equations of the DC motor are written as [13]

• Back emf eb = Kb
dθ
dt

= Kbω

• Armature circuit ea = Raia + La
dia
dt

+ eb

•Mechanical torque Tm = J
d2θ

dt2
+ B

dθ
dt

= KTia

Since ω = dθ/dt, the mechanical torque equation can be written as

Tm = J
dω
dt

+ Bω = KTia

Taking the Laplace transform of the back emf, armature circuit, and mechanical
torque equations and assuming zero initial conditions, we get

• Back emf : Eb(s) = Kbω(s)

• Armature circuit : Ea(s) = (Ra+ Las)Ia(s) + Eb(s)

•Mechanical torque : Tm(s) = sJω(s) + Bω(s) = KTIa(s)

The back emf equation is combined with the armature circuit to result in the fol-
lowing equation

Ea s = Ra + Las Ia s + Kbω s

Ia s =
Ea s −Kbω s

Ra + Las
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Again, the following expression of the armature current can be written from the
torque equation

Tm s = sJω s + Bω s = KTIa s

Ia s =
sJω s + Bω s

KT

Equating the last two equations, we have

Ia s =
Ea s −Kbω s

Ra + Las
=

sJω s + Bω s
KT

KTEa s = sJω s + Bω s × Ra + Las + KbKTω s

The transfer function of the motor is then

ω s
Ea s

=
KT

sJ + B Ra + Las + KbKT

=
KT

LaJs2 + JRa + BLa s + BRa + KbKT

=
K

s2 + α1s + α2

where

K =
KT

LaJ
, α1 =

JRa + BLa

LaJ
, α2 =

BRa + KbKT

LaJ

The parameters chosen for this study are [14]:

Ra = 1 9, La = 0 05, J = 0 1, B = 0 0045, KT = 0 5, Kb = 0 5

A sampling time of 1 ms is chosen. This gives an ARX model of

1− 1 9626z− 1 + 0 9627z− 2 y k = 0 4937 + 0 4875z− 1 × 10− 4u k + e k

Here e(k) N(0, 0.001) is assumed to be the measurement noise. At the begin-
ning, it has been assumed that only rough values of the motor parameters are
known. Based on these values the motor model is assumed to be

1− 1 72z− 1 + 0 62z− 2 y k = 0 5 + 0 4z− 1 × 10− 3u k + e k

A MV controller is designed based on these parameter values where a reference
speed is set as 157 rad/s. The identification process has been started at the begin-
ning with a constant input voltage of 100 V. At 0.5 seconds, the self-tuning regu-
lator is switched on. The results are shown in Figure 6.19. It is obvious that, as soon
as the self-tuning controller is switched on, the speed converges to the reference
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input. Since the identified parameters have already converged, the change in speed
is smooth.

6.6.2 Pole Shift Self-tuning Control

The original self-tuning regulator was proposed for MV-based controllers. Since
then, other controllers which synthesized the control law based on identified para-
meters are generically called self-tuning controllers. Thepole placement self-tuning
controller was proposed byWellstead et al. [17], who show that this type of control-
ler can accommodate variable time delays. Obviously, the pole placement design is
nonoptimal as compared to optimal MV controllers. However, it is more robust in
the sense that it canbeused for nonminimumphase plants easily. A self-tuning pole
shift control for a nonminimum phase system is discussed in Example 6.15

Example 6.15 In this example, we consider a nonminimum phase system that is
governed by the ARMAX process of

y k = 1 2y k− 1 − 0 4y k− 2 − 0 3y k− 3 + 0 5u k− 1 + 1 75u k− 2

+ e k + 0 2e k− 1 − 0 3e k− 2
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Figure 6.19 System output and identified parameters for the self-tuning control of DC
motor of Example 6.14. (a) Output speed ω (rad/s), (b) Estimate (θ1), (c) Estimate (θ2),
(d) Estimate (θ3), (e) Estimate (θ4).
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The same control design as in Example 6.7 is now followed, except that the esti-
mated parameters using RLS are used instead of the actual parameters to compute
the controller polynomials of

R z− 1 = 1 + r1z
− 1

S z− 1 = s0 + s1z
− 1 + s2z

− 2

The Diophantine equation can be written in matrix vector form by replacing the
actual parameters with the identified parameters as

1 b0 0 0

a1 b1 b0 0

a2 0 b1 b0

a3 0 0 b1

r1
s0
s1
s2

=

a1 λ− 1

a2 λ2 − 1

a3 λ3 − 1

0

The feedforward gain is computed as

KC =
1 + a1 λ− 1 + a2 λ2 − 1 + a3 λ3 − 1

b0 + b1 × s0 + s1 + s2

A pole shift factor (λ) of 0.9 is chosen to form the closed-loop pole locations. The
system output response and the identified parameters are shown in Figure 6.20.
The reference input is assumed to be 1 at the beginning and has been changed
to 2 at 0.5 seconds. At the beginning, there are large transients. However, as the
estimated parameters converge, the tracking performance improves. In fact, the
steady state tracking is perfect after the change in the reference since the estimated
parameters have converged to their actual values by this time.

6.6.3 Self-tuning Control of Boost Converter

Consider the boost converter of Example 5.19. With the state space linearized
model of (5.95), and the switching frequency of 20 kHz (i.e. sampling time of
0.05 ms), the discrete-time input–output relationship is written in difference equa-
tion form for the parameters given in Example 5.20. The state space averaged
model is first converted into its equivalent discrete-time equivalent for a sampling
time of 0.05 ms using the “c2d” command in MATLAB®. The following difference
equation is then obtained using the “ss2tf ” command.

1− 1 945z− 1 + 0 95z− 2 y k = − 1 76z− 1 + 2 01z− 2 u k + e k
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The system zero is placed at 1.14, which indicates that the system is a nonmini-
mum phase. An MV controller cannot be used; therefore, a pole shift controller
is designed instead.
Let us write the difference equation in terms of the identified parameters as

1 + a1z
− 1 + a2z

− 2 y k = b0z
− 1 + b1z

− 2 u k + e k

Also let us define the controller polynomials as

R z− 1 = 1 + r1z
− 1 and S z− 1 = s0 + s1z

− 1

Then the coefficients of the polynomials can be obtained from

1 b0 0

a1 b1 b0
a2 0 b1

r1
s0
s1

=

a1 λ− 1

a2 λ2 − 1

0

The controller is then designed using (6.28) for pole shift factor (λ) of 0.0995.
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Figure 6.20 System output and identified parameters for the poles shift self-tuning control
of Example 6.15. (a) System Output, (b) Estimate (θ1), (c) Estimate (θ2), (d) Estimate (θ3),
(e) Estimate (θ4), (f) Estimate (θ5).
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At the beginning, it is assumed that the load of R= 10 Ω is known and therefore
the initial parameter vector and the covariance matrix are chosen as

θ 0 = − 1 945 0 95 − 1 76 2 01 T , P 0 = I4 × 1010

The load is changed to R = 5 Ω at 0.01 seconds, to R= 12.5 Ω at 0.03 seconds, and
to R = 1 Ω at 0.06 seconds. The desired output voltage is kept at 20 V. The output
voltage, inductor current, and duty ratio are shown in Figure 6.21. Despite large
changes in the load, the controller is able to regulate to the desired output voltage,
even though the ripples increase as the load resistance decreases, as can be seen
from Figure 6.21a. The inductor current, shown in Figure 6.21b, obviously
increases/decreases with the decrease/increase in the load resistance. The duty
ratio remains in the vicinity of 0.5 barring transients during load changes, as
shown in Figure 6.21c.
The estimated parameters are shown in Figure 6.22. We must keep in mind that

the controller is designed based on a linear model of the converter. Therefore, the
estimated parameters must try to adapt during the load changes such that the con-
trol law is computed based on these parameters can force the output to follow the
reference voltage. It is obvious that this has been achieved.
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Figure 6.21 Boost converter (a) output voltage, (b) inductor current, and (c) duty ratio
during load changes.
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6.7 Concluding Remarks

This chapter basically deals with the discrete-time control design of linear systems
in the polynomial domain. The controller design in the transfer function domain is
very well known. However, in many problems involving power electronics appli-
cations in power systems, the system characteristics are often not properly known.
In such cases, prediction-based controllers are needed.
There are, however, several approaches to design prediction based adaptive con-

trollers. We have restricted ourselves to a certain class, which is based on the cer-
tainty equivalence principle. Of these, MV controllers have excellent performance
in tracking reference signals. However, they have the problem associated with
instability when the open-loop zeros are placed outside the unit circle. This is often
the case where a higher-order system is represented by a lower-order system. In
general, the system response of a higher-order system is mainly governed by
the dominant poles, and therefore their response can nearly be matched by a
third-order system with complex conjugate pair poles and a real pole. This has
the advantage of a simplification of control computation. This may, however, lead
to a nonminimum phase behavior, as discussed in [4]. A pole placement controller
can, however, remain stable under such conditions.
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Figure 6.22 Estimated parameters of the boost converter during load changes. (a) Estimate
(θ1), (b) Estimate (θ2), (c) Estimate (θ3), (d) Estimate (θ4).
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Finally, predictive controllers are another important class that has been used
extensively in power converter applications. They can be applied to a variety of
systems that may include constraints and nonlinearities. Even though the design
is somewhat complicated, the resultant controller is easy to implement on amicro-
processor. However, this will require a high amount of computation, which, given
the availability of high-speed microcontrollers or a digital signal processor (DSP)
system, will not be a problem. These controllers are fairly robust and very suitable
for interconnected systems.

Problems

6.1 Consider the batch model given by (6.54). Find the weighted least-squares
estimates of θ that minimize the cost function

JWLS = Y−Y
T
W Y−Y

where W is a positive definite symmetric matrix.

6.2 Design an MV controller for the ARMAX process, given by

y k − y k− 1 + 0 5y k− 2 = u k− 2 + 0 5u k− 2

+ e k + 0 8e k− 1 + 0 25 k− 2

6.3 Consider the ARMAX process, given by

y k − 0 25y k− 1 + 0 5y k− 2 = βu k− 2 + e k + 0 5e k− 1

(a) Design an MV controller assuming β = 1.
(b) Assuming yr = 0, the controller is computed from

u k = s1y k + s2y k− 1 + r1u k− 1

Then find a set of possible convergence points of s1, s2, and r1 when β = 1.5.

6.4 For the ARMAX process of Problem 6.2, design a pole placement controller
that will place the closed-loop poles at T(z−1) = 1− 0.5z−1 + 0.5z−2 = 0.

6.5 For the ARMAX process of Problem 6.2, design a pole shift controller with a
pole shift factor of λ = 0.7.

6.6 Consider the ARMAX process

y k + ay k− 1 = bu k− 1 + e k + ce k− 1
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We use an RLS method to estimate the parameter α in the model

y k = − αy k− 1 + βu k− 1 + ξ k

where β is known. Assuming yr = 0, the control signal is generated from

u k =
α

β
y k

Then show that an MV controller with

α =
a− c
b

β

is a possible value of the parameter convergence.

6.7 Consider the buck-boost converter of Problem 5.14. Discretize the state space
average model with a sampling time of 0.1 ms. Then design a pole shift con-
troller with a pole shift factor of λ = 0.75.

Notes and References

Karl Johan Åströmwas the Chair of the Department of Automatic Control at Lund
University in Sweden. Due to his pioneering contributions to the theory and appli-
cation of adaptive control, he was awarded the IEEEMedal of Honor, which is the
highest recognition by IEEE, in 1996. Most of what is discussed in this chapter is
primarily due to his contribution and that of Rudolf E. Kalman (also an IEEE
Medal of Honor winner in 1974) before that. Even though we did not discuss
the Kalman filter in this chapter, the fundamental concepts of estimation theory
owe a great deal to him.
The books written by Åström and his colleague Wittenmark are very thorough

and immensely enjoyable to read [1–3]. Also, the concept of self-tuning control
with the remarkable property based on the certainty equivalence principle was
proposed by Åström andWittenmark in [12]. Since then, other forms of self-tuning
control such as one based on optimal control [15, 16] or based on pole placement
[17] have been proposed.
There are several classes of predictive control that are generally categorized

under the common name model predictive control [9]. General discussions on
GPC can also be found in [3] and [10]. GPCs and model predictive controllers
(MPCs) have gained much attention in power electronic applications. DC-DC con-
verter control using GPC is reported in [18], where the converter discontinuous
mode of operation is also considered.
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7

DC-AC Converter Modulation Techniques

In this chapter, AC-DC converter structures and their modulation (switching)
techniques are discussed. In general, DC-AC converters are of two types: current
source converter (CSC) and voltage source converter (VSC). The power circuits are
slightly different (type and configuration of the semiconductor switches), but the
energy conversion technique is the same. However, the main difference is how
they are supplied on their DC sides. A CSC is supplied by a DC current source,
while a DC input voltage supplies a VSC. The DC side of the CSC is realized by
a controlled DC source that is connected to a large inductor in series. The presence
of the inductor in a CSC makes it reliable and fault tolerant as the inductor can
limit the rate of change in current during a fault. However, CSCs have higher
losses and size due to the presence of the inductors. The VSCs, on the other hand,
are supplied by either DC voltage sources (e.g. battery storage, photovoltaic, fuel
cell, etc.) or by DC storage capacitors. These types of converters are more popular
than CSCs and are more important for renewable energy integration. Henceforth,
our discussion will be restricted solely to VSCs only.
There are several converter switching techniques that are available in the lit-

erature and in practice. Only three of them are discussed here: hysteresis con-
trol, sinusoidal pulse width modulation (SPWM), and space vector pulse width
modulation (SVPWM). How VSCs and the modulation techniques produce an
output voltage or current in the open loop is also discussed. In practice, how-
ever, the converters have output filters, and their feedback control systems
are designed by taking into consideration these output filters. Different types
of controllers for both voltage and current control are discussed in Chapters
8–10. Excellent texts (for example [1–2]) covering different aspects of power
electronics can be referred to complement the discussions presented in this
chapter.
High-voltage power converters are utilized in many high- and medium-power

applications such as motor drives, grid connected inverters, and power quality
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management units in industrial and commercial systems. As an example, the
demand for high-power renewable energy systems has been increasing and solar
and wind farms have been utilized in low- and medium-distribution networks
based on power electronics technology. A direct connection of conventional power
converters (two-level H-bridge inverters) tomedium-voltage distribution networks
is not possible, due to the maximum blocking voltage rating of semiconductor
switches. As a result, a multilevel power converter structure or a transformer-
based topology is required for these applications. In Section 7.5, three main multi-
level converter topologies, as well as modular multilevel converter, are discussed as
alternatives for high- and medium-voltage applications. Pulse width modulation
(PWM) of multilevel converters is also discussed.

7.1 Single-phase Bridge Converter

The schematic diagram of a single-phase converter is shown in Figure 7.1a. It is
called an H-bridge converter as it looks like the eighth letter of the English alpha-
bet (H). The converter contains four switches S1− S4, each comprising a power
semiconductor device and an antiparallel diode, as shown in Figure 7.1b. Modern
VSCs employ insulated gate bipolar transistors (IGBTs) or metal oxide semicon-
ductor field effect transistors (MOSFET) as they can carry fairly large current
and have fast switching characteristics and low losses. The wide bandgap devices
like silicon carbide (SiC) are still in their infancy. The converter switching
frequency will drastically change when such devices are readily available for
high-power applications.
The converter of Figure 7.1a supplies a passive RL load. It is connected

between the two legs of the converter, which is supplied by a DC source with
a voltage of Vdc. The switches of each leg usually have complementary values,
e.g. when S1 is on, S4 is off, and vice versa. Furthermore, when the switches
S1 and S2 are on, S3 and S4 are off. Similarly, when S3 and S4 are on, S1 and
S2 are off. However, a small time delay is provided between the turning off of
one pair of switches and the turning on of the other pair. This period, called
the blanking period, is provided to prevent the DC source from being short
circuited through the legs. Consider, for example, the transition when S3 and
S4 are turned off and S1 and S2 are turned on. During this period, if switch
S1 gets turned on before switch S4 turns off completely, these two switches will
connect the two leads of the DC source directly. It is therefore mandatory that
switch S4 turns off completely before switch S1 is turned on. To ensure this,
the blanking period (deadtime) is used. The continuity of the current during the
blanking period is maintained by the antiparallel diodes.
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The equivalent circuit of the converter when the switches S1 and S2 are on is
shown in Figure 7.1c, while when S3 and S4 being on is shown in Figure 7.1d.
Neglecting the blanking period, the current flowing through the circuit is given by

d
dt

iL = −
R
L
iL +

1
L
Vdc u 7 1

where u is the variable that takes on the values of ±1 as per

u =
+ 1 when S1 and S2 are on

− 1 when S3 and S4 are on
7 2

7.1.1 Hysteresis Current Control

Hysteresis control is the simplest form of current control. In this, the H-bridge
converter is required to track a reference current (iLref). An upper and lower
band are chosen around this reference current, as shown in Figure 7.2. When
the current touches the lower band, a positive voltage is applied across the
load by switching S1 and S2 on. Conversely, when the current reaches the upper
band, a negative voltage is applied across the load by switching S3 and S4 on. The
switching logic is given for a small positive scalar h by

If iL ≥ iLref + h then u = − 1

elseif iL ≤ iLref − h then u = + 1
7 3

S1

(a) (b)

(c) (d)

iL

L

Vdc

Vdc Vdc

+
R

S2

S3

S4

iL

L

+

R

iL

L

+

R

v0

Figure 7.1 Single-phase VSC circuit: (a) equivalent representation, (b) switch
representation, (c) equivalent circuit when S1 and S2 are on, and (d) when S3 and S4 are on.
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Example 7.1 Consider the circuit shown in Figure 7.1a with the following
parameters

• DC input voltage: Vdc = 550 V

• Sinusoidal reference current: Peak value = 400 A, frequency = 10 Hz,
i.e. iLref = 400 sin(20πt) A

• RL load: 0.42 + j0.121 Ω

• Hysteresis band: h = 10 A.

The steady state waveforms of the output current, its reference, and upper
and lower hysteresis bands are shown in Figure 7.3a. The corresponding converter
output voltage is shown in Figure 7.3b.
The output current for two cycles is shown in Figure 7.4a. It can be seen that the

current follows the reference faithfully, in spite of the ripples due to the hysteresis
band. Now, the load impedance is increased five times such that the load is
2.1 + j0.605 Ω. The result of the current tracking is shown in Figure 7.4b, from
which it is obvious that the current fails to track the reference due to the presence
of the larger inductor. With the same load, the DC voltage is now increased to
Vdc = 1500 V. The reference current tracking becomes accurate for this increased
voltage, as can be seen from Figure 7.4c. However, as the supply voltage increases,
the rate of change diL/dt increases as well.

The behavior of the current tracking vis-à-vis the load impedance is shown in
Figure 7.5. As the value of the load inductor increases, the rate of change of the
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Figure 7.4 Current tracking performance of H-bridge converter with different load and DC
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(c) Output current (A) with increased load and DC voltage.
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inductor current (diL/dt) decreases and the converter fails to overcome the effect of
the large inductor. As shown in Figure 7.5a, the converter output current fails to
reach the tracking band when the reference current moves toward its positive or
negative peaks. The converter output voltage is therefore held at its maximum or
minimum values depending on the polarity of the reference current. This can be
seen in Figure 7.5b. However, in the linear ranges between the peaks, the hysteresis
controller works perfectly and chatters around the reference current. During these
periods, the output voltage toggles between the positive and negative DC voltage.
Note from Example 7.1 that the applied DC voltage has a direct relation to the

tracking behavior. This is irrespective of the modulation strategy employed for
converter switching. The characteristics of a hysteresis controller can be summarized
by the following points:

• There is a direct relation between the hysteresis band and the switching
frequency: as the band becomes narrower, the switching frequency increases.
Even though this might result in better current tracking, high-switching
frequency results in increased losses culminating in increased heating in the
power semiconductor devices. Therefore, the choice of the hysteresis band is
a compromise between tracking error and inverter losses.

• For the samevalue of the hysteresis band, the switching frequency decreases as the
value of the inductor increases, since the rate of change in the inductor current
(diL/dt) decreases with the increase in the value of the inductor. As we can see
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Figure 7.5 Converter output current and voltage with a high load. (a) Output and reference
current (A), (b) Converter output voltage (V).
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inExample 7.1, the trackingwith a larger inductor becomes inferior compared to a
smaller inductor for the same value of the hysteresis band and input DC voltage.

• The tracking performance can be improved by increasing diL/dt. For a large
inductor, this can be achieved by increasing the DC voltage.

• The switching frequency of this controller is not fixed, as it varies based on the
reference signal. Thus, in some applications, a filter designed for harmonic mit-
igation and system stability needs to be considered for the overall system.

Hysteresis current control techniques with adaptive hysteresis band or different
topologies such as a single-phase, a three-phase, or a multilevel converter are
discussed in [3–5].

7.1.2 Bipolar Sinusoidal Pulse Width Modulation (SPWM)

In this section, the SPWM of the H-bridge converter is discussed. For SPWM, the
switching signals are generated by the intersections of a high-frequency triangular
carrier wave and a sinusoidal modulating signal, the frequency of which is the
desired frequency of the output voltage. Consider the H-bridge inverter of
Figure 7.1a. In a bipolar SPWM, the switching signals are generated as per

If VMS ≥ VTC then u = + 1

elseif VMS < VTC then u = − 1
7 4

whereVMS is the modulating signal andVTC is the triangular carrier waveform.We
define the modulation ratio or index (ma), which is the ratio of the peaks of these
two waveforms, as

ma =
Vpeak

MS

Vpeak
TC

7 5

The modulation index determines if the signal is under- or overmodulated.
If ma< 1, the signal is undermodulated, while it is overmodulated when ma> 1.
One example of an undermodulated operation is shown in Figure 7.6, where the
modulation index is chosen as ma = 0.75. The overmodulation case is shown in
Figure 7.7 for ma = 1.5.
It is also obvious from Figures 7.6 and 7.7 that the output voltage

(v0) (see Figure 7.6b) will contain harmonics. The fundamental component
(V01) of this voltage depends on the modulation index. The root mean square
(rms) value of the fundamental component of the output voltage is given, for
the undermodulated case, by [1]

V 01 = ma ×
Vdc

2
, ma ≤ 1 7 6
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Carrier and Modulting Waveforms for Under-Modulated Case
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Figure 7.6 Undermodulated bipolar SPWM and converter output voltage.

Carrier and Modulting Waveforms for Over-Modulated Case
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Figure 7.7 Overmodulated bipolar SPWM and converter output voltage.
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For the overmodulated case, the rms value of the fundamental voltage is [1]

Vdc

2
< V 01 <

4
π

Vdc

2
, ma > 1 7 7

Nowconsider the casewhere the carrierwaveformhas a frequency of 15 kHz anda
normalized peak of 1 per unit (pu) for a base voltage of 400 V. Themodulating signal
has a frequency of 50 Hz and a peak of 0.75 pu, i.e. the desired output of 300 V. The
DC bus voltage is chosen as Vdc = 550 V, i.e. 1.375 pu. From (7.6), we have

ma = 0 75

V 01 = ma ×
Vdc

2
= 0 75 ×

1 375

2
= 0 7292 pu

Therefore, the fundamental rms output voltage is 0.7292 × 400 = 291.68 V, as
shown in Figure 7.8a. For the same carrier waveform and DC voltage, a 50 Hz
modulating waveform is chosen that has a peak of 1.5 pu (i.e. 600 V). Obviously,
the modulating index in this case is 1.5. Then from (7.7), we have

1 375

2
< V01 <

4
π

1 375

2
0 9723 < V01 < 1 370 pu

This implies that the fundamental rms of the output voltage will be between
0.9723 × 400 = 388.91 V and 1.2379 × 400 = 495.17 V. In Figure 7.8b, this voltage
is plotted, where its value is found to be 453.1 V.

7.1.3 Unipolar Sinusoidal Pulse Width Modulation

In this method, the switches of the two legs of an H-bridge converter of Figure 7.1a
are not switched simultaneously. The first step in this process is to generate two
modulating signals, where one is the negative of the other. This implies that these
two signals are phase shifted by 180 . Let us denote them as VMS and −VMS. These
are then compared with the triangular carrier signal VTC. The switching law is
given by the following relations with respect to Figure 7.1a.

If VMS ≥ VTC then S1 is on; otherwise off

If VMS < VTC then S4 is on; otherwise off

If −VMS ≥ VTC then S3 is on; otherwise off

If −VMS < VTC then S2 is on; otherwise off

7 8

Figure 7.9 (a) shows the carrier and the modulating waveforms, while Figure 7.9b
shows the output voltage waveform. The rms fundamental voltage remains the
same as those given in (7.6) and (7.7) respectively for the under- and overmodulat-
ing signals.
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Undermodulated Fundamental Converter Output RMS Voltage (V)
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Figure 7.8 Rms values of the fundamental components of the output voltage for
(a) ma = 0.75 and (b) ma = 1.5.

Carrier and Modulting Waveforms for Unipolar SPWM
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Figure 7.9 Undermodulated unipolar SPWM and converter output voltage. (a) Carrier and
Modulting Waveforms for Unipolar SPWM, (b), Output Voltage for Unipolar SPWM.
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7.2 SPWM of Three-phase Bridge Converter

The schematic diagram of a three-phase full-bridge converter is shown in
Figure 7.10a. This contains six switches S1 to S6, each consisting of a power sem-
iconductor device and an antiparallel diode. As in the case of the H-bridge con-
verter, the switches of each leg are complementary (e.g. when S1 is on, S4 is off,
and vice versa). This is the most common form of three-phase converter available,
where the DC bus voltage is equal to Vdc, as shown in Figure 7.10a. However, this
has the disadvantage that the algebraic sum of the three output currents must be
zero, i.e. ia+ ib+ ic = 0, i.e. the zero-sequence current must be zero. There is an
alternative way to connect the DC link, as shown in Figure 7.10b. In this, the
DC bus is split into two, with a center point N. The DC bus voltage is still equal
to Vdc. But it now contains two DC sources, each equal to Vdc/2. The center pointN
can be connected to protective earth to circulate common mode and electromag-
netic interference (EMI) currents. In a special case, when N is connected to the
load neutral, it provides a path for the unbalanced (zero-sequence) current to flow.
Hence, the three legs of the converter can be treated separately, and each leg can be
controlled independent of the other two legs.
Two other possible three-phase converter structures are shown in Figure 7.11,

each of which provides a path for the zero-sequence load current to circulate.
The VSC of Figure 7.11a consists of three H-bridge converters. The output of each
H-bridge contains a single-phase transformer that provides a galvanic isolation
and prevents the DC bus from being short circuited [6]. The secondary side of
the three transformers are star-connected, and this point can be connected to
the load neutral (N). An alternate converter structure containing four legs is shown
in Figure 7.10b. This converter was first proposed in [7–8] and was subsequently
used for compensating unbalanced loads in [9–10]. It is evident that the center
point fourth leg is connected to the load neutral (N). The current through this path
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Figure 7.10 Three-phase converter circuits: (a) bridge converter and (b) neutral-clamped
converter.
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is iN and this current is used to cancel the zero-sequence component of the load
current. The switches S7 and S8 are controlled to cancel the zero-sequence current.
Therefore, the reference current for the fourth leg is the negative sum of the load
currents, i.e.

i∗N = − iLoad 7 9

The switches S7 and S8 are then controlled using hysteresis current control, i.e.

If iN ≥ i∗N + h then S7 is off and S8 is on

elseif iN ≤ i∗N − h then S7 is on and S8 is off
7 10

Let us now consider the converter of Figure 7.10. Only the bipolar SPWM
of this converter is considered here, where a triangular waveform is compared
with three reference sinusoidal waveforms that have equal magnitude and
are phase displaced by 120 . The switching signals for each leg of the converter
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Figure 7.11 Structure of (a) transformer couple of three H-bridge converters and (b) a four-
leg VSC.
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are then generated following the same logic as given in (7.4). For the undermo-
dulated case, the rms value of the fundamental line-to-neutral voltage is
given by [1]

VaN = ma
Vdc

2 2
, ma < 1 7 11

Example 7.2 Consider the circuit of Figure 7.12, in which the converter is
connected to a balanced back emf through an RL circuit. The system parameters
are:

• DC voltage (Vdc) = 600 V

• back emf = 415 V (L-L rms)

• frequency = 50 Hz

• R = 5 Ω

• L = 11.6 mH.

A base voltage of 400 V is chosen, with the assumption that the peak of the trian-
gular carrier waveform is 1.0 pu. The peak of the modulating signal is 315 V
(i.e. 0.7875 pu). Therefore, the modulation index is also 0.7875. Now the DC volt-
age is 1.5 pu. Therefore, from (7.11), the rms value of the line-to-neutral voltage is

given by Van = 0 7875 × 1 5 2 2 = 0 4176 pu. This translates into 0.4176 × 400
= 167, as shown in Figure 7.13b, while their phase angles are shown in
Figure 7.13c. The output voltages are balanced, i.e. they have the same magnitude
and are phase displaced by 120 .
The output voltage waveforms will contain harmonics that are dependent on the

frequency of the carrier waveforms, and these voltages will produce current har-
monics. Phase a of the output current is shown in Figure 7.14 for three different
frequencies of the triangular waveform (fTC). It can be seen that the ripples in the
current decrease as the frequency increases.
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Figure 7.12 Converter connected to a back emf through an RL impedance.
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Triangular and Reference Waveforms (pu)(a)
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Figure 7.13 SPWM control of a three-phase converter: (a) carrier and reference waveforms,
(b) rms fundamental voltage, and (c) their phase angles.
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7.3 Space Vector Modulation (SVM)

SVM is essentially an averaging technique which takes into consideration that
a three-phase inverter has only eight switch states. Figure 7.15 shows a three-phase
converter and its eight switching states. Noting that the top and bottom switches of
each leg are complementary, there are two states for each leg. Therefore, for the
three independent legs of the inverter, a total combination of 23 = 8 states can be
obtained. These are also shown in Figure 7.15.
The voltage vectors for the eight switch states are depicted in Figure 7.16. Each

vector is displaced from its adjacent vectors by 60 . The entire voltage vector space
is divided into six regions. Each region is the triangular area between two contiguous
vectors, e.g. Region-1 is the space between vectors V1 and V2, and so on. Note that
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Figure 7.15 The converter structure and the switching states.
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there are two zero states. These are the states 000 and 111, i.e. when all the top
switches are off and on respectively. For the discussions of this section, it is assumed
that “0” in Figure 7.15 is connected to the ground. However, depending on applica-
tions, this terminal may have a different potential with respect to the ground.
In Figure 7.16, two circles are also drawn. The area inside the inner circle is

called the undermodulated region. The area between the two circles is the overmo-
dulated (forbidden) region. As we have seen in the case of SPWM (Figure 7.7), over-
modulation reduces the switch utilization capability of an inverter. Therefore, proper
care must be taken to keep the converter operation in the undermodulated region.

7.3.1 Calculation of Space Vectors

Consider a set of balanced three-phase voltages, given by

va0 = 2 V sin ω t + φ

vb0 = 2 V sin ω t + φ− 120

vc0 = 2 V sin ω t + φ + 120

7 12

A space vector is then defined in the polar form as

vP =
2
3

va0 + avb0 + a2vc0 7 13

where a = ej120 . Note that

a = − 0 5 + j
3
2

, a2 = − 0 5− j
3
2

, 1 + a + a2 = 0

RealV1 (100)
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Region-3

V0 (000) V7 (111)
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Region-6

Region-5

Region-4

Region-2

Under-modulated 

Region

Forbidden

Region

Figure 7.16 The converter output voltage vector space.
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Using (7.12), the last two terms on the right-hand side of (7.13) can be expanded as

avb0 =
2 2
3

V a − 0 5 sin ω t + φ −
3
2

cos ω t + φ

a2vc0 =
2 2
3

V a2 − 0 5 sin ω t + φ +
3
2

cos ω t + φ

Adding these two terms, we have

avb0 + a2vc0 =
2 2
3

V − a + a2 0 5 sin ω t + φ − a− a2
3
2

cos ω t + φ

=
2 2
3

V 0 5 sin ω t + φ − j 3 ×
3
2

cos ω t + φ

=
2 2
3

V 0 5 sin ω t + φ − j
3
2
cos ω t + φ

Substituting these in (7.13), the voltage vector vP is expressed as

vP =
2 2
3

V
3
2
sin ω t + φ − j

3
2
cos ω t + φ

= − j 2 V cos ω t + φ + j sin ω t + φ = 2 V ej ω t + φ− 90

7 14

Therefore, the vector has a constant magnitude and rotates counterclockwise with
a speed of ω.

7.3.2 Common Mode Voltage

The voltage between the star point of the load and the midpoint of the DC link is
called the common mode voltage, vn0. From Figure 7.15, we can write

va0 = van − vn0
vb0 = vbn − vn0
vc0 = vcn − vn0

7 15

Adding the two sides of (7.15), we get

va0 + vb0 + vc0 = van + vbn + vcn − 3vn0

Note that, for a balanced system, the sum van+ vbn+ vcn will be equal to zero.
Therefore, the common mode voltage is given as

vn0 =
va0 + vb0 + vc0

3
7 16

The common mode voltage for the eight switching states is listed in Table 7.1.
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7.3.3 Timing Calculations

Now suppose at any given instant of time we want to recreate the vector vP in
Region-1, as shown in Figure 7.17a. This can be done by time averaging of the
nearest inverter state vectors V1 and V2 and a zero vector V0 or V7. The averaging
is done over a suitably chosen time interval Ts. This technique is known as space

Table 7.1 Eight switching states of a three-phase converter.

State Number S1 S3 S5 va0 vb0 vc0 vn0

V0 0 0 0
−
Vdc

2
−
Vdc

2
−
Vdc

2
−
Vdc

2
V1 1 0 0 Vdc

2
−
Vdc

2
−
Vdc

2
−
Vdc

6

V2 1 1 0 Vdc

2
Vdc

2
−
Vdc

2
Vdc

6

V3 0 1 0
−
Vdc

2
Vdc

2
−
Vdc

2
−
Vdc

6

V4 0 1 1
−
Vdc

2
Vdc

2
Vdc

2
Vdc

6

V5 0 0 1
−
Vdc

2
−
Vdc

2
Vdc

2
−
Vdc

6

V6 1 0 1 Vdc

2
−
Vdc

2
Vdc

2
Vdc

6

V7 1 1 1 Vdc

2
Vdc

2
Vdc

2
Vdc

2

Real
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Region-1
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Figure 7.17 Placement of vector vP in (a) Region-1 between vectors V1 and V2 and
(b) Region-2 between vectors V2 and V3.
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vector modulation [11]. Let us denote the converter voltages as Vi for states i = 0,
1, …, 7. Then, if the converter spends time Ta in state V1 and time Tb in state V2,
we get the following equation

vPTs = V ITa + V 2Tb + V 0 Ts −Ta −Tb 7 17

Let us assume that vP has a magnitude of |VP| and an angle α with vector V1 so
that it is written as

vP = VP α = VP cos α + j sin α 7 18

From (7.13) and Table 7.1, vP in state V1 is written as

vP =
2
3

Vdc

2
− a

Vdc

2
− a2

Vdc

2
=

Vdc

3
1− a− a2 =

2Vdc

3

Similarly, vP in state V2 is

vP =
2
3

Vdc

2
+ a

Vdc

2
− a2

Vdc

2
=

Vdc

3
1 + a− a2 =

2Vdc

3
0 5 + j

3
2

Furthermore, vP in state V0 is equal to zero. Then (7.18) can be written in the form
of (7.17) as

VP cos α + j sin α Ts =
2Vdc

3
Ta +

1
2
+ j

3
2

Tb + 0 × Ts −Ta −Tb

7 19

Equation (7.19) is resolved into real and imaginary parts as

3 VP

2Vdc
Ts cos α = Ta +

1
2
Tb 7 20

3 VP

2Vdc
Ts sin α =

3
2

Tb 7 21

From (7.21), we have

Tb

Ts
= 3

VP

Vdc
sin α 7 22

Substitution of (7.22) in (7.20) results in

3 VP

2Vdc
Ts cos α = Ta +

3
2

VP

Vdc
Ts sin α
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Rearranging (7.22), we get

Ta = 3
VP

Vdc
Ts

3
2

cos α−
1
2
sin α = 3

VP

Vdc
Ts sin 60 − α 7 23

Equations (7.22) and (7.23) give the time in which the converter will be state
vectors V1 and V2.
Let us now consider that the vector is in Region-2 between state vectors V2 and

V3, as shown in Figure 7.16b, where the vector is defined as

vP = VP ϕ 7 24

If the converter spends time Ta in state V2 and time Tb in state V3 then, following
the same process as before, we have

vP ϕ Ts = vP α + 60 Ts

=
2Vdc

3
60 Ta +

1
2
+ j

3
2

Tb + 0 × Ts −Ta −Tb

7 25

This is similar to the expression given in (7.19) and hence the timing calculations
of (7.22) and (7.23) will remain valid. However, comparing (7.19) with (7.25), we
find that the positioning of the vector changes with the region in which it is placed.
For example, in Region-3, (7.19) can be written as

VP α + 120 Ts =
2Vdc

3
120 Ta +

1
2
+ j

3
2

Tb + 0 × Ts −Ta −Tb

7 26

We must therefore determine the angle α before the computation of the times
Ta and Tb. The first step in the process is to determine the sector (region) in which
the vector is placed by observing ϕ. An integer value is then assigned to the regions
(or sectors) as

Region-i = i, i = 1,…, 6 7 27

Once the regions are identified, the angle α is calculated based on the following
formula

α = ϕ− Region-i− 1 × 60 , i = 1,…, 6 7 28

Substituting (7.28) in (7.22) and (7.23), the following timings are obtained

Tb

Ts
= 3

VP

Vdc
sin ϕ− Region-i− 1 × 60 , i = 1,…, 6 7 29
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Ta

Ts
= 3

VP

Vdc
sin 60 −ϕ + Region-i− 1 × 60

= 3
VP

Vdc
sin Region-i × 60 −ϕ , i = 1,…, 6

7 30

7.3.4 An Alternate Method for Timing Calculations

This section discusses an alternate method for timing calculation. Let us define the
vector vP as

vP = vd + jvq 7 31

Assume that the vector is in Region-1, where the converter is required to spend
time Ta in state V1 and Tb in state V2. Then, from (7.17), the following equation
is obtained

vd + jvq Ts =
2Vdc

3
Ta +

2Vdc

3
1
2
+ j

3
2

Tb 7 32

Equating the real and imaginary parts, the following equations are obtained

vd
3Ts

2Vdc
= Ta +

t2
2

vq
3Ts

2Vdc
=

3
2

Tb

Solving the above two equations, we have

Ta =
3Ts

2Vdc
vd −

1

3
vq 7 33

Tb = 3
Ts

Vdc
vq 7 34

In a similar way, the converter operating times for the other regions are com-
puted, and they are listed in Table 7.2. It is assumed that the converter spends time
Ta in the first state of each sector and time Tb in the second state of the sector while
moving in a counterclockwise direction.
Note that the time T0 is determined from the following equation

T0 = Ts −Ta −Tb 7 35
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Example 7.3 Consider a converter with the following parameters

Vdc = 600 V, 2 V = 315 V, ω = 100π rad s, φ = − 30

Using (7.12) and (7.13), the state vector vP, evaluated at t = 0.923 seconds, is

vP = 128 12− j287 77 = 315 − 66 = 315 294 V

This is obviously in Region-5, between 240 and 300 . Then from (7.30) and (7.29),
we get

Ta

Ts
= 3

315
600

sin 294 − 240 = 0 0951

Tb

Ts
= 3

315
600

sin 300 − 294 = 0 7357

Now, for Region-5, vd = 128.12 V and vq = − 287.77 V. Therefore, the following
values are obtained from Table 7.2

Ta

Ts
=

1
600

− 128 12 +
1

3
287 77 = 0 0951

Tb

Ts
=

1
600

128 12 +
1

3
287 77 = 0 7357

Thus, it can be concluded that bothmethods produce the same values. From (7.35),
T0/Ts is calculated as

T0

Ts
= 1−

Ta

Ts
−

Tb

Ts
= 0 1693

Table 7.2 Timing information for the six regions.

Region Vector Placement Ta Tb

1 Between 0 and 60 3Ts
2Vdc

vd − 1
3
vq 3 Ts

Vdc
vq

2 Between 60 and 120 3Ts
2Vdc

vd + 1
3
vq

3Ts
2Vdc

− vd + 1
3
vq

3 Between 120 and 180 3 Ts
Vdc

vq 3Ts
2Vdc

− vd − 1
3
vq

4 Between 180 and 240 3Ts
2Vdc

− vd + 1
3
vq − 3 Ts

Vdc
vq

5 Between 240 and 300 3Ts
2Vdc

− vd − 1
3
vq

3Ts
2Vdc

vd − 1
3
vq

6 Between 300 and 360 − 3 Ts
Vdc

vq 3Ts
2Vdc

vd + 1
3
vq
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7.3.5 Sequencing of Space Vectors

The SVPWM algorithm is carried out in the following steps:

1) Calculate vP from (7.13) and determine |VP| and the angle ϕ.
2) From the angle ϕ, determine the sector in which the space vector lies at that

instant.
3) Determine Ta and Tb respectively from (7.30) and (7.29) or from Table 7.3 and

T0 from (7.35).
4) Determine the switching sequence in which the upper and lower switches are

turned on or off.

However, it is desired that the space vectors remain in the undermodulated
region. For this, it must be ensured that the maximum absolute value of the space
vector is bounded by [12]

VP max =
2Vdc

3
cos 30 7 36

The modulation index is then given by

ma =
π VP

2Vdc
7 37

Then the maximum modulation index is calculated as 0.9069.
The advantage of SVPWM is that the number of switching (and hence

switching losses) can be reduced using a special arrangement in which only
one switching on each inverter leg occurs during the transition from one state
to the next. This can only be achieved due to the use of the zero vectors
V0 and V7. The switching patterns are shown in Figure 7.18. Consider the

Table 7.3 Switching information for the six regions.

Region S1 S5 S5

1 Ta+ Tb+ T0/2 Tb+ T0/2 T0/2

2 Ta+ T0/2 Ta+ Tb+ T0/2 T0/2

3 T0/2 Ta+ Tb+ T0/2 Tb+ T0/2

4 T0/2 Ta+ T0/2 Ta+ Tb+ T0/2

5 Tb+ T0/2 T0/2 Ta+ Tb+ T0/2

6 Ta+ Tb+ T0/2 T0/2 Ta+ T0/2
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Figure 7.18 Switching patterns in six regions: (a) Region-1, (b) Region-2, (c) Region-3,
(d) Region-4, (e) Region-5, and (f ) Region-6.
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switching pattern of Figure 7.18a. The converter transition pattern and the
timing sequence used for this case are:

000 100 110 111 110 100 000
T0/4 Ta/2 Tb/2 T0/2 Tb/2 Ta/2 T0/4

This is synchronized with a triangular carrier wave, as shown in Figure 7.18. The
time duration of one full cycle of the carrier wave is Ts. The switching times of the
upper switches for all the sectors are listed in Table 7.3. Note that the lower
switches are complementary to the upper switches.

Example 7.4 Consider the same system as discussed in Example 7.2. Since the
DC voltage is chosen as 600 V, |VP|max is calculated from (7.36) as 346.41 V. The
balanced sinusoidal modulating voltage has a peak of 315 V, and so |VP| = 315
V. Therefore, the modulation index that is calculated from (7.37) is 0.8247, which
is higher than the one obtained for SPWM. This proves the higher switch utiliza-
tion for SVPWM. Next, a switching frequency of 5 kHz is chosen. Figure 7.19
shows the angle variation of the vector VP and the corresponding regions (sectors).
Figure 7.20 shows the switching signals and the output current. It can be seen that
the output current has a higher magnitude than that in the case of SPWM due to
better switch utilization. Also, the switching frequency is considerably lower in
this case.
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Figure 7.19 Variation in angle of the vector VP and the computation of the regions in
Example 7.4.
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7.4 SPWM with Third Harmonic Injection

To improve the performance of SPWM so that it can better utilize the available DC
bus voltage, the injection of the third harmonics in the modulating waveform is
proposed by [13]. Let us consider the following modulating voltage

v t = sin θ + A sin 3θ 7 38

where θ = ω tand A is a parameter that needs to be determined. This parameter
must be so chosen that the modulating waveform remains below unity. Taking
the derivative of (7.36) with respect to θ and equating it to zero, we have

dv t
dθ

= cos θ + 3A cos 3θ = 0 7 39

Now

cos 3θ = 4 cos 3θ− 3 cos θ = cos θ 4 cos 2θ− 3

Therefore, (7.39) can be rewritten as

cos θ 1 + 12A cos 2θ− 9A = 0 7 40

The solution of (7.40) produces two extremal points, which are

cos θ = 0 7 41
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Figure 7.20 Switching signals and the output currents in Example 7.4.
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cos θ =
9A− 1
12A

7 42

Equation (7.41) is equivalent to

sin θ = 1 7 43

Squaring both sides of (7.42), we get cos2θ = 9A− 1/12A. Therefore, sin2θ can be
written as

sin 2θ = 1− cos 2θ = 1−
9A− 1
12A

=
3A + 1
12A

Therefore

sin θ =
3A + 1
12A

7 44

We now substitute these values in (7.38) to determine the optimal value of A.
Using the identity

sin 3θ = 3 sin θ− 4 sin 3θ = sin θ 3− 4 sin 2θ

(7.38) is rewritten as

v t = sin θ 1 + 3A− 4A sin 2θ 7 45

Substituting (7.43) in (7.45), we get

v t = 1−A 7 46

Since (7.46) does not serve any useful purpose, we substitute (7.44) in (7.45) instead
to get

v t =
3A + 1
12A

1 + 3A− 4A
3A + 1
12A

=
3A + 1
12A

12A 3A + 1 − 4A 3A + 1
12A

= 8A
3A + 1
12A

3
2

7 47

The maximum value of v(t) in (7.47) is obtained with respect to A as

dv t
dA

=
3A + 1
12A

2−
1
3A

= 0 7 48

Equation (7.48) has two possible solutions, which are

A =
1
6
andA = −

1
3

7 49
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Consider the waveform of phase-a, where the third harmonic component is in
phase with the fundamental voltage. Then, during the negative peak, the modu-
lating waveform will be more than the carrier waveform if we choose A = − 1/3.
As can be seen from Figure 7.21a, the modulating waveform is higher than the
carrier waveform indicating an overmodulation. However, it remains in the under-
modulated region ifA= 1/6 is chosen, as shown in Figure 7.21b. Then (7.38) can be
rewritten as

v t = sin θ +
1
6
sin 3θ 7 50

Substituting A = 1/6, θ can be evaluated from (7.44) as

θ = sin − 1 3 6 + 1
12 6

= sin − 1 1 5
2

= 0 866 =
3
2

7 51

Thus, the positive and negative peaks will occur at 60 , 240 ,…. The maximum
output voltage at these instants will then be

v t max = sin 60 +
1
6
sin 180 = 0 866

To increase the output voltage even further, the peak of the modulating voltage
can be made equal to 1 by using

v t = K sin θ +
1
6
sin 3θ 7 52
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Figure 7.21 Modulating wave for two different values of A. (a) For A = −1/3 and
(b) For A = 1/6.
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where the gain K is chosen as

K =
1

v t max
= 1 155

Figure 7.22 clearly shows that the switch utilization for K = 1.155 is better than
that with K = 1.
Note that the triplen harmonics of the three phases have the same phase angles

and, therefore, they are eliminated from the line to neutral voltages. The lowpass
filtered version of these three-phase voltages are shown in Figure 7.23 for two
different values of K (K = 1 and K = 1.155). The reference voltage is chosen as
400 V. The peak of the line to neutral voltage with K = 1.155 is higher than that
with K = 1. Note that the converter bandwidth must be at least three times the
desired output frequency in order to accommodate to the triplen harmonics [13].

7.5 Multilevel Converters

The first application of power electronic converters in power systems was in high-
voltage direct current (HVDC) bulk power transmission, in which the converters
were basically line frequency commutated. Most popular among these converters
were 12-step converters, which were constructed using two 6-step converters that
are phase shifted throughmagnetic connections. These weremainly thyristor-based
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Figure 7.22 Modulating wave for two different values of K.
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devices. Later, gate turn-off thyristor (GTO) based devices were proposed for multi-
step converters. However, with the improvement in the power ratings of IGBT
switches, different types of multilevel converters have been proposed. These conver-
ters are capable of high-power operation. The structures of some multilevel conver-
ters are discussed in this section. It is, however, to be noted that the control of these
converters is more involved than two-level converters.
Multilevel converters operate using a combination of a series connection of sem-

iconductor switches such as IGBTs or MOSFETs with different DC voltage sources
or capacitors to synthesize and generate different voltage levels which are either a
low-frequency staircase or a high-frequency modulated voltage waveform. In real
life applications, different energy sources such as batteries or photovoltaic panels
can be considered as the DC voltage sources in various multilevel converter
structures.
Figure 7.24a shows one leg of a general schematic of a multilevel converter with

n voltage level based on several capacitors as voltage sources. In this example, the
high-voltage DC source (Vdc) can be generated by a high-voltage rectifier and the
capacitor voltages can be charged equally or unequally. In other cases, different
low-voltage DC sources (batteries or solar panels) can be utilized to generate a
high-voltage across the DC link and the load. Assuming that the voltage ripple
across each capacitor is negligible and the capacitors are charged at defined voltage
levels (depending on the multilevel topology and configuration), the output
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Figure 7.23 Line to neutral voltage for two different values of K.
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voltage can be generated based on the position of the switch in the leg and the
configuration of the capacitors, in series with the load.
Figure 7.24b shows the output voltage of the multilevel converter for a single-

phase system with different voltage levels utilizing n number of DC capacitors
which can be charged equally or unequally [14–15]. In this case, the output vol-
tages are generated without using a high-frequency PWM strategy, and the output
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Figure 7.24 (a) Schematic diagram of multilevel converter and (b) output voltage
waveform of one phase of the converter.
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voltage is changed step by step with a low-frequency modulation method to gen-
erate a sinewave signal. In real applications, voltagemodulation can be implemen-
ted at each voltage level based on different conventional PWM methods such as
SVM or SPWM. In high-voltage applications, it is possible to generate higher volt-
age levels by adding upmore DC sources and switches depending on themultilevel
topology. However, the maximum voltage across each semiconductor switch and
diode should be considered based on the DC voltage source and themultilevel con-
verter topology and configuration. The circuit of the multilevel inverter depends
on the topology and the load configuration, i.e. either a single-phase load or a
three-phase load (delta- or star-connected).
If the number of voltage levels is increased, the output voltage waveform can be

closer to a sinusoidal voltage waveform. Under this condition, the converter does
not need a large output filter and the output voltage and current harmonics can be
minimized significantly. To highlight the main advantage of the multilevel con-
verter compared to a conventional two-level converter, their output voltage wave-
forms in the time and frequency domain have been analyzed. As shown in
Figure 7.25, the harmonic contents of the output voltage in the multilevel con-
verter of Figure 7.25b are significantly less than that of the two-level converter
of Figure 7.25a. During each switching transient, the voltage stress (dv/dt) across
the load is reduced significantly in the multilevel converter. At each switching
transient, the voltage level change is defined as Vdc/(n− 1), where n is the number
of voltage levels in the converter. For example, in a conventional converter, there
are two voltage levels, i.e. n= 2. Therefore, the voltage stress during each switching
transient is Vdc. For a three-level inverter where n = 3, the voltage stress at the
switching transients is reduced to half of Vdc. These two main advantages can
reduce low- and high-frequency harmonics and EMI filter size and cost in different
applications, such as inmotor drive and grid-connected renewable energy systems.
The other advantage of a multilevel converter is its flexibility to have low switch-

ing losses. Utilizing fast and low-voltage semiconductor devices in a multilevel con-
verter compared to slow and high-voltage semiconductors in a two-level converter
can make them operate much faster during each switching transient (on and off )
and at a lower switching frequency. Thus, a multilevel converter can be designed
with a reduced switching loss suitable for different applications. Note that it is obvi-
ous that the number of the semiconductor switches in a multilevel converter is
higher than a two-level converter but the DC voltage across each switch in a mul-
tilevel converter can be lower than the same voltage across a conventional converter.
As the switching loss is proportional to the DC voltage level across the switch, the
number of switches, the number of voltage levels, and the DC link voltage should be
considered to calculate the total switching loss in a multilevel converter.
In addition to these advantages, the multilevel converter can be modulated in

such a way that it has a reduced common-mode voltage in a three-phase system
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based on a proper modulation technique through the utilization of different zero-
voltage vectors. This feature reduces the commonmode and shaft voltage in motor
drive systems with less voltage stress on a bearing system, thereby increasing the
lifetime of the motor under control.
However, the main drawbacks of the multilevel converters are the need for a

high number of passive and switching components and a complexity on the con-
verter topology, control, and overall system design. Multilevel converters have dif-
ferent topologies and configurations based on different structures of a DC link
voltage. The main multilevel converter topologies are:

• diode-clamped

• flying capacitor

• cascaded converters.
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Figure 7.25 Output voltage waveform and harmonic spectrum of (a) two-level converter
and (b) multilevel converter.
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In some topologies, the voltage across the DC capacitors should be controlled and
balanced, which requires different current and voltage control methods. From
design points of views, each type of multilevel converter has different advantages
and disadvantages, which need to be considered to have an overall optimum
design in a specific application. For each topology, the voltage ratings of the
switches and the diodes should be considered because the voltage stress during
normal operations is different.
There are some technical terms and definitions for multilevel converters which

should be considered:

• Voltage Level: It is defined based on the number of voltage levels generated by
each leg of the inverter with respect to the negative DC link voltage terminal.
Note that, in some other technical reports and books, the voltage level might
have different definitions.

• Capacitor Voltage Level: The voltage across capacitors can be equal or unequal.
The main advantage of the unequal voltage across the capacitors is to generate
more voltage levels with a few numbers of passive and switching devices. The
main drawback here is the capacitor voltage control during the operation which
depends on the multilevel topology, control, and switching patterns.

In Sections 7.5.1–7.5.3, the general operation and switching patterns of diode-lamped
and flying capacitor multilevel topology are discussed assuming the capacitor
voltages are equal.

7.5.1 Diode-clamped Multilevel Converter

A diode-clamped (or neutral-point-clamped) multilevel converter is one of
the multilevel converter topologies which have been widely utilized in different
products such as variable speed motor drive, renewable energy, and power quality
compensation systems. Figure 7.26a shows one leg of a three-level diode-clamped
converter where the total DC link voltage is Vdc and Vc1 = Vc2 = Vdc/2.
The three-level converter, at each leg, has three voltage levels (0, Vdc/2, and Vdc)

with respect to the negative DC link terminal. The DC link voltage is split into two
voltage levels using two capacitors, C1 and C2, which are charged equally at Vdc/2.
This structure consists of pairs of switches (Sa1, Sa3 and Sa2, Sa4) and two clamped
diodes (Dca1 and Dca2) which connect the common terminals of the capacitors to
the switches in each leg. For example, when switch Sa1 is on, switch Sa3 is off, and
vice versa, and one of the diodes might be turned on depending on the converter
switching state. The switching state of each leg is defined based on the switching
states of the top switches, where 1 and 0 represent the on and off states respectively
of the top switches. For example, the switching state of 01 in leg-a means that the
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first top switch, Sa1, is off and the second top switch, Sa2, is on. Three voltage levels
are generated based on different switching states, as shown in Figure 7.26b and
explained in the following paragraphs.
To develop a single-phase or three-phase converter, more legs (switches in

series) are required to be in parallel while the DC link configuration is not
changed. However, more clamped diodes are required to connect the DC link
to each leg of the converter. To increase the output voltage amplitude and levels,
more DC capacitors and pairs of switches are required as well as the clamped
diodes, according to the topology shown in Figure 7.26c.

7.5.2 Switching States of Diode-clamped Multilevel Converters

In this section, the different switching states of the diode-clamped converter are
presented in detail.

• Case 1: When Sa1 = 0 and Sa2 = 0: In this switching state, switches Sa1 and Sa2
are off and the complement switches, Sa3 and Sa4, are on, as shown in
Figure 7.27. When the load current is positive, the antiparallel diodes Da3 and
Da4 conduct, as shown in Figure 7.27a, while Figure 7.27b depicts the loop when
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Figure 7.26 (a) One leg of a three-level diode-clamped converter, (b) its output voltage
waveform, and (c) one leg of an n-level converter.
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the load current is negative and Sa3 and Sa4 conduct. Thus, terminal a is con-
nected to terminal n of the DC link and the output voltage is zero, i.e. va = 0
during the time interval 0 < t≤ t1 (see Figure 7.26b). According to the current
loops shown in Figure 7.27, this switching state cannot affect the charging
state of the DC link capacitors, as the capacitors C1 and C2 are not charged or
discharged through the load current.

• Case 2:When Sa1 = 0 and Sa2 = 1: In this switching state, the switch Sa1 is off and
its complementary switch Sa3 is on, while the switches Sa2 and Sa4 are on and off
respectively. Figure 7.28a depicts the current flow path when the load current is
positive. During the interval t1 < t≤ t2, switch Sa2 and diode Dca1 conduct due to
the polarity of the voltage across the diode and the load current direction. In this
case, when the load current passes through the DC link capacitor, C2 will
discharge it. Figure 7.28b shows the current flow direction when the load
current is negative, where the current flow direction will cause the capacitor
C2 to charge. Assuming that the voltage ripple is negligible, and the capacitors
are charged equally, we have Vc1(t) = Vc2(t) = Vdc/2. During this interval of
t1 < t ≤ t2, the output voltage is va = Vdc/2.
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Figure 7.27 The current loops when Sa1 = 0 and Sa2 = 0 for (a) positive load current and
(b) negative load current.
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• Case 3: When Sa1 = 1 and Sa2 = 1: When the top switches Sa1 and Sa2 are on, the
output voltage is Vdc. Assuming the load current is positive, Sa1 and Sa2 conduct
and the load current passes through the DC link, as shown in Figure 7.29a.
Usually, the DC link voltage is connected to a common DC source, and the total
DC voltage does not change significantly during each switching state. Since the
switching state Sa1 = 0 and Sa2 = 0 cannot affect the charging states of the DC
link capacitors, as the capacitors C1 and C2 are assumed to be connected to a
voltage source and the total DC link, the voltage across the capacitors is not
changed.

• Case 4: When Sa1 = 1 and Sa2 = 0: This is a forbidden state for the diode-
clamped topology. Figure 7.30 shows the two different output voltage levels
based on positive and negative load currents. When the load current is positive,
the diodes Da3 and Da4 conduct, and the output voltage is zero (see
Figure 7.30a). On the other hand, when the load current is negative, the diodes
Da1 and Da3 conduct, for which the output voltage is Vdc, as shown in
Figure 7.30b. We cannot achieve an output voltage of Vdc/2 and its amplitude
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Figure 7.28 The current loops when Sa1 = 0 and Sa2 = 1 for (a) positive load current and
(b) negative load current.
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is changed from 0 to Vdc, depending on the load current. Thus, this switching
state is not used in a diode-clamped topology as the output voltage depends on
the load current.

So far only one leg of a diode-clamped converter has been analyzed and
explained. A single-phase full-bridge or a three-phase converter configuration
consists of two or three legs of the above-mentioned topology in parallel respec-
tively. The common terminals of the capacitors are connected to the switches in
each leg by the clamped diodes. These are shown in Figure 7.31. The DC link con-
figuration is not changed, while the parallel legs are added to develop single-phase
or three-phase converters.
Table 7.4 lists all switching states of a single-phase, diode-clamped three-level

converter, while Table 7.5 lists the switching states of a three-level, three-phase
converter. The output voltage (line-to-line) is measured based on two leg voltages.
However, in a three-phase system, the phase voltage across the load should be
extracted based on the leg and the common mode voltage. In Table 7.4, when
the switching state of each leg is 10, the output voltage cannot be determined,
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Figure 7.29 The current loops when Sa1 = 1 and Sa2 = 1 for (a) positive load current and
(b) negative load current.
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as the output voltage depends on the load current. This is indicated by a “?”where
this occurs, and the rows are shaded in the table. Thus, these switching states are
not used in the inverter operating modes.

7.5.3 Flying Capacitor Multilevel Converter

This multilevel converter topology comprises several capacitors that are connected
in parallel with each leg. One leg of a three-level converter is shown in
Figure 7.32a. In this, the switch pairs (Sa1, Sa4) and (Sa2, Sa3) work in complemen-
tary fashion, i.e. when one of the pairs (e.g. Sa1) is on, the other switch Sa4 is off
and/or vice versa. The capacitors in this structure are charged to different voltage
levels. Different output voltage levels can be achieved by connecting the capacitors
in parallel with the DC link voltage based on switching states of the semiconductor
switches. Assuming that the voltage across the DC capacitors is Vdc/2 with no rip-
ple, the leg voltage for different switching states is shown in Figure 7.32b. One leg
of a general n-level flying capacitor converter is shown in Figure 7.32c.
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Figure 7.30 The current loops when Sa1 = 1 and Sa2 = 0 for (a) positive load current and
(b) negative load current.

7.5 Multilevel Converters 295



As in the case of a diode-clamped converter, the switching behaviors of the flying
capacitor converter are dependent on the switching states. Three different cases
are discussed here:

• Case 1: When Sa1 = 0 and Sa2 = 0: In this switching state, the complement
switches Sa3 and Sa4 are on, as shown in Figure 7.33. The output current will
flow through either the switches or the diodes depending on the direction of
the current. The output voltage, however, will remain zero in either case.

• Case 2:When (Sa1 = 0 and Sa2 = 1) or (Sa1 = 1 and Sa2 = 0): There is no switching
restriction in the flying capacitor topology and the top switches can have two
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Figure 7.31 Three-level diode-clamped multilevel converter: (a) single-phase and
(b) three-phase.
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different combinations to generate Vdc/2, as shown in Figure 7.34. Assuming
that the voltage across the flying capacitor Ca1 is Vdc/2, the output voltage for
both switching states is Vdc/2 since:
◦ when Sa1 = 0 and Sa2 = 1, va = Vca1 = Vdc/2
◦ when Sa1 = 1 and Sa2 = 0, va = Vdc− Vca1 = Vdc/2

• Case 3:WhenSa1= 1andSa2=1: In this case both switches Sa1 and Sa2 are on and
the complementary switches Sa3 and Sa4 are off. As shown in Figure 7.35, the out-
put voltage is Vdc and the flying capacitor Ca1 are not connected across the load.

As in the case of the diode-clamped topology, a single-phase and a three-phase
flying capacitor topology can be developed by paralleling two or three legs, as
shown in Figure 7.36. Since there is no restriction for the top switches, and there
are four top switches (two in leg-a and two in leg-b), a total of 24 = 16 different
switching combinations for a single-phase, three-level converter is possible. These
are listed in Table 7.6.

Table 7.4 Switching states for a three-level, single-phase diode-clamped converter.

Switching States
Sa1 Sa2 Sb1 Sb2 va(t) vb(t) vab(t)

0000 0 0 0

0001 0 Vdc/2 −Vdc/2

0010 0 ? ?

0011 0 Vdc/2 −Vdc/2

0100 Vdc/2 0 Vdc/2

0101 Vdc/2 Vdc/2 0

0110 Vdc/2 ? ?

0111 Vdc/2 Vdc −Vdc/2

1000 ? 0 ?

1001 ? Vdc/2 ?

1010 ? ? ?

1011 ? Vdc ?

1100 Vdc 0 Vdc

1101 Vdc Vdc/2 Vdc/2

1110 Vdc ? ?

1111 Vdc Vdc 0
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Table 7.5 Only possible switching states for a three-level, three-phase diode-clamped
converter.

Switching States
Sa1 Sa2 Sb1 Sb2 Sc1 Sc2 va(t) vb(t) vc(t) vab(t) vbc(t) vca(t)

000000 0 0 0 0 0 0

010000 Vdc/2 0 0 Vdc/2 0 −Vdc/2

110 000 Vdc 0 0 Vdc 0 −Vdc

000100 0 Vdc/2 0 −Vdc/2 Vdc/2 0

010100 Vdc/2 Vdc/2 0 0 Vdc/2 −Vdc/2

110 100 Vdc Vdc/2 0 Vdc/2 Vdc/2 −Vdc

001100 0 Vdc/2 0 −Vdc Vdc 0

011100 Vdc/2 Vdc 0 −Vdc/2 Vdc −Vdc/2

111 100 Vdc Vdc 0 0 Vdc −Vdc

000001 0 0 Vdc/2 0 −Vdc/2 Vdc/2

010001 Vdc/2 0 Vdc/2 Vdc/2 −Vdc/2 0

110 001 Vdc 0 Vdc/2 Vdc −Vdc/2 −Vdc/2

000101 0 Vdc/2 Vdc/2 −Vdc/2 0 Vdc/2

010101 Vdc/2 Vdc/2 Vdc/2 0 0 0

110 101 Vdc Vdc/2 Vdc/2 Vdc/2 0 −Vdc/2

001101 0 Vdc Vdc/2 −Vdc Vdc/2 Vdc/2

011101 Vdc/2 Vdc Vdc/2 −Vdc/2 Vdc/2 0

111 101 Vdc Vdc Vdc/2 0 Vdc/2 −Vdc/2

000011 0 0 Vdc 0 −Vdc Vdc

010011 Vdc/2 0 Vdc Vdc/2 −Vdc Vdc/2

110 011 Vdc 0 Vdc Vdc −Vdc 0

000111 0 Vdc/2 Vdc −Vdc/2 −Vdc/2 Vdc

010111 Vdc/2 Vdc/2 Vdc 0 −Vdc/2 Vdc/2

110 111 Vdc Vdc/2 Vdc Vdc/2 −Vdc/2 0

001111 0 Vdc Vdc −Vdc 0 Vdc

011111 Vdc/2 Vdc Vdc −Vdc/2 0 Vdc/2

111 111 Vdc Vdc Vdc 0 0 0
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Figure 7.32 (a) One leg of a three-level flying capacitor converter, (b) its output voltage
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Figure 7.36 Three-level flying capacitor converter: (a) single-phase and (b) three-phase.

Table 7.6 Switching states for a three-level, single-phase flying capacitor converter.

Switching States
Sa1 Sa2 Sb1 Sb2 va(t) vb(t) vab(t)

0000 0 0 0

0001 0 Vdc/2 −Vdc/2

0010 0 Vdc/2 −Vdc/2

0011 0 Vdc/2 −Vdc/2

0100 Vdc/2 0 Vdc/2

0101 Vdc/2 Vdc/2 0

0110 Vdc/2 Vdc/2 0

0111 Vdc/2 Vdc −Vdc/2

1000 Vdc/2 0 Vdc/2

1001 Vdc/2 Vdc/2 0

1010 Vdc/2 Vdc/2 0

1011 Vdc/2 Vdc −Vdc/2

1100 Vdc 0 Vdc

1101 Vdc Vdc/2 Vdc/2

1110 Vdc Vdc/2 Vdc/2

1111 Vdc Vdc 0
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7.5.4 Cascaded Multilevel Converter

A cascaded multilevel converter is constructed by connecting several H-bridge
converters in series for each leg of the converter. To implement a three-phase cas-
cade converter, three legs of the single-phase cascade converter are connected, as
shown in Figure 7.37. As each leg and each H-bridge of the cascade converter can
be controlled individually to generate different voltage levels, the control system is
simple and modular. Due to this modular nature, this topology has been attractive
for medium- and high-voltage applications.

7.5.5 Modular Multilevel Converter (MMC)

HVDC transmission is one of the most important areas of power electronics
applications to power systems. Due to the large uptake of offshore windfarms,
modular multilevel converters are gaining popularity these days for VSC-HVDC
transmission. The MMCs are modular and therefore can be scalable to any desired
voltage level. They have higher efficiency and lower harmonic components. The
schematic diagram of one phase of an MMC is shown in Figure 7.38a. Each phase
can have several identical submodules (SMs). In Figure 7.38a, there are n SMs on the
positive half of the leg and another n SMs on the negative half of the leg. The SMs

a

Vdc Vdc Vdc

Vdc Vdc Vdc

b c

Figure 7.37 Schematic diagram of a three-phase cascaded multilevel converter.
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can be a half bridge or full bridge, as shown in Figure 7.38b,c. Other configurations
are also possible. It is obvious that this converter can produce an almost sinusoidal
voltage by phase shifting the firing pulses.
The SPWM of MMC is somewhat similar to that of multilevel converters. In

Section 7.5.6, we briefly present the different possible PWM techniques for multi-
level converters.

7.5.6 PWM of Multilevel Converters

We see in this chapter that a PWM voltage waveform is generated through the
intersection of a sinusoidal modulating waveform with a triangular carrier
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SMP2
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+

(c)

VSMVc

+
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Figure 7.38 (a) Schematic diagram of an MMC and (b and c) two possible SM structures.
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waveform. For a multilevel converter, several carrier waveforms are intersected
with a single modulating waveform. For an n-level converter:

• There are n− 1 carrier waveforms.

• All the carrier waveforms have the same frequency fc and the same amplitudeAc.

• The bands they occupy are contiguous.

Let the modulating waveform have a frequency of fm and an amplitude of Am.
Then the frequency ratio (or index) is defined as

mf =
f c
f m

7 53

The modulation index is defined as

ma =
Am

n− 1 Ac
7 54

Three different types of deposition of the carrier waveforms are discussed
here. For this, we shall consider a five-level converter, i.e. there will be four carrier
waveforms. The following parameters are chosen:

• Carrier waveform: Ac = 0.25 pu and fc = 1350 Hz

•Modulating waveform: Am = 0.9 pu and fm = 50 Hz

Therefore, we have mf = 27 and ma = 0.9. It is assumed that, depending on the
converter type, the relevant switches are turned on and off to obtain five voltage
levels and the capacitor voltages are kept balanced.

• Phase Disposition (PD): In this method, even though the carriers are disposed,
all of them are in phase, as shown in Figure 7.39a. The output voltage is shown
in Figure 7.39b. In this method, the harmonics are centered around the carrier
frequency fc, as can be seen from Figure 7.39c.

• Alternative Phase Opposition Disposition (APOD): In this method, the
contiguous carrier waveforms are phase displaced by 180 from each other.
This is shown in Figure 7.40a, where the topmost and the third waveform
from the top are in phase, while the other two waveforms are in phase oppo-
sition. The output voltage waveform is shown in Figure 7.40b. The significant
harmonics appear as side bands of the carrier frequency fc, as shown in
Figure 7.40c.

• Phase Opposition Disposition (POD): There are two sets of carrier waveforms:
those above and those below the reference line. The waveforms of each set
are in phase. However, the sets are phase displaced by 180 from each other,
as shown in Figure 7.41a. The output voltage waveform is shown in
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Figure 7.40 APOD-PWM of a five-level converter: (a) carrier and modulating waveforms,
(b) output voltage, and (c) harmonic spectrum.
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Figure 7.39 PD-PWM of a five-level converter: (a) carrier and modulating waveforms,
(b) output voltage, and (c) harmonic spectrum.
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Figure 7.41b. In this case also, the significant harmonics appear as side bands of
the carrier frequency fc, as shown in Figure 7.41c.

7.6 Concluding Remarks

In this chapter we discuss various converter structures and their different modu-
lation techniques. Even though multilevel converters have many desirable proper-
ties, their control is more complicated than that of two-level converters.
Themodulation techniques that are discussed in this chapter operate in the open

loop, i.e. the output is synthesized based on a reference signal, which is assumed to
be sinusoidal. However, in practical applications, open-loop control is not desira-
ble. Moreover, as seen in this chapter, switching converters generate harmonics. If
they are not suppressed, they can be damaging to the other devices that are con-
nected in parallel with these converters in a power system. One way of eliminating
harmonics is to use passive filters. Once the filters are connected at the output of
the converters, the open-loop control, discussed in this chapter, may often lead to
instability. In order to avoid this, the feedback control of the converters must be
designed by including the filter dynamics along with that of the converter. This is
discussed in Chapter 8.
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Figure 7.41 POD-PWM of a five-level converter: (a) carrier and modulating waveforms,
(b) output voltage, and (c) harmonic spectrum.
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Problems

7.1 A three-phase VSC is supplied by 2 kV at the DC side. It has to produce a line-
to-line fundamental voltage with a peak magnitude of 1 kV at 60 Hz using
bipolar SPWM. Determine the modulation index ma.

7.2 The modulation index found in Problem 7.1 is used in bipolar SPWM of a
single-phase VSC, which is supplied by a DC voltage of 2 kV. Determine
the peak of the fundamental voltage.

7.3 A set of balanced, 50 Hz three-phase voltages is given in phasor domain by

Va0 = 400 30 V, Vb0 = 400 − 90 V, Vc0 = 400 150 V

Find the space vector vP when the time is 0.11 seconds from (7.13). Verify
the result obtained from (7.14).

7.4 Find the quantities Ta, Tb, and T0 in terms of Ts using the method presented
in Section 7.3.3 when the space vector is
(a) vP = − 78.8011 + j61.5661 V, DC voltage Vdc = 250 V
(b) vP = 286.79− j409.58 V, DC voltage Vdc = 1000 V
(c) vP = 1000 ∠ 210 V, DC voltage Vdc = 2500 V

7.5 Verify the results obtained in Problem 7.4 using the timing calculation
method of Section 7.3.4.

7.6 A VSC is controlled by SVPWM, where the modulating voltages are given by

va0 = 300 sin 100π t + 10 V

vb0 = 300 sin 100π t− 110 V

vc0 = 300 sin 100π t + 130 V

Assuming the frequency of the carrier waveform as 10 kHz and the DC side
voltage of 600 V, sketch the switching pattern when t = 0.1502 seconds.

Notes and References

An excellent tutorial on space vector modulation can be found in [16]. Summaries
of different multilevel converter topologies are discussed in [17–19].
A comprehensive review of a multilevel converter, including PWM and SVPWM,
is presented in [20]. Simulation of a modular multilevel converter using an
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electromagnetic transient program is discussed in [21]. Theoretical analysis of
PWM for a multilevel converter is presented in [22], while several methods of
PWM applications in multilevel converters are discussed in [23]. Multilevel con-
verters with unbalanced voltage are discussed in [14–15].
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8

Control of DC-AC Converters

In this chapter, various techniques that can be employed for controlling the output
voltage or current of a voltage source converter (VSC) are presented. Themain aim
of the closed-loop control is to control the switching functions of the VSC in such a
way that a desired output is attained. Chapter 7 shows how a converter output
voltage can be synthesized using pulse width modulation (PWM) techniques.
These are, however, open-loop techniques where the output voltage is produced
by comparing a modulating wave with a carrier wave. Such modulation can intro-
duce harmonics into AC systems in which the VSCs are connected. In order to sup-
press the harmonics, passive filters are connected at the output of the VSC’s
output. The feedback controllers then will have to consider the presence of these
filters. This implies that the dynamics of these filters must be considered for feed-
back control design. The output filters must be chosen carefully considering: (i) the
harmonic spectrum on the converter side, (ii) possible resonance due to the inter-
action of the filter with the rest of the system, and (iii) variation in the harmonic
emission with the operating point [1]. This chapter starts with a discussion about
the structure and design of the output filters.

8.1 Filter Structure and Design

A DC-AC converter is a switching device, which generates ±Vdc voltage at the
output, where Vdc is the DC bus voltage. Therefore, when connected to a power
system, these converters inject harmonics. To prevent such harmonics from enter-
ing the system, passive filters are used at the output of the converters. Usually,
three types of filters are used: L-type, LC-type, and LCL-type. These are shown
in Figure 8.1.
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Consider the single-phase converter shown in Figure 8.1a, which has an output
L-type filter with a converter side inductance of L1. Note that the resistance R1 is
added due to the quality factor of the coil. This can also include the converter
losses. Its equivalent circuit is shown in Figure 8.1b, in which the converter is
represented by a voltage source u Vdc, where u= ±1. A converter with an LC filter
is shown in Figure 8.1c. In addition to the inductor, this also has a capacitor C that
is connected in shunt. The capacitor provides a low-impedance path to the
harmonic currents – the higher the harmonics, the lower the impedance. There-
fore, the harmonic currents are bypassed and do not appear at the output.
The LCL-type filter is shown in Figure 8.1d. In addition to the LC filter, it has
an additional inductor L2 (and its associated resistor R2), often called the outer
or grid side inductor.
The main aim of a converter control is to generate the switching signals u = ±1.

In the example of hysteresis current control in Chapter 7 (Section 7.1.1), current is
controlled through a hysteresis band when the converter output voltage varies
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Figure 8.1 (a) Single-phase voltage source converter with L filter; converter equivalent
representation with (b) L filter, (c) LC filter, and (d) LCL filter.
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between ±Vdc (Figures 7.2 and 7.3). This is the simplest form of control, which is
suitable for current control with only L-type filters. In the presence of LC or LCL
filters, the closed-loop control system needs to consider the filter dynamics for sys-
tem stability and tracking performance. However, these filters must be designed
carefully. The design of the LCL filter is discussed in Section 8.1.1, and the design
of the LC filter can be considered a subset of this design.

8.1.1 Filter Design

For the filter design, we start with the converter side inductance L1. The size of this
inductor will depend on themaximum current ripple (Δi1max). Note that, to reduce
the current ripple, a larger inductor needs to be chosen, which will increase the
size and core losses. On the other hand, a lower ripple will cause lower switching
losses. Therefore, the choice of this inductor will be a compromise between the
inductor size and the losses. Typically, the current ripple is chosen between 5
and 25% of the rated current [1]. Then, denoting the converter switching frequency
as fSW, the empirical formula for the inductor is given by [2]

L1 =
Vdc

8f SW Δi1max
8 1

Next, the value of the capacitance (C) will be selected. If this value is high, more
reactive power will flow into the capacitor, resulting in larger current demand.
This value cannot be too small either; otherwise, the inductor value must be
increased to meet the attenuation requirement. In general, the capacitance value
is chosen as a percentage (λ) of the reactive power with respect to the real power at
rated conditions, given by [1]

C = λ
S

2πf V 2
LL

8 2

where VLL is the line-line voltage, f is the line frequency of 50 or 60 Hz, and S is the
apparent power of the VSC.
According to [1], λ should be limited to 5%; otherwise, the power factor may

decrease. The total inductance (i.e. L1 + L2) should be limited within a certain per-
centage to limit the voltage drop across the inductors [1]. A detailed and optimum
LCL filter design approach is proposed in [3]. A mathematical approach is utilized
to obtain a relation between the inverter side inductor and the ripple of the inverter
output current.
In this chapter, voltage and current controllers for a VSC are developed. The

function of a voltage controller is to produce a set reference voltage across the con-
verter output. For this purpose, usually LC filters are used so that the voltage vc
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across the filter capacitor C can be directly impressed across a load or a power sys-
tem. However, depending on prevailing situations, LCL filters may also be used,
but the voltage across the filter capacitor still needs to be controlled. The L-type
filter is the most basic filter that is used for current control. For more sophisticated
current control, LCL filters are used. This is also discussed in this chapter.

Example 8.1 In this example, we shall design an LC filter based on (8.1) and
(8.2), for a 400 V (L-L), 50 kVA converter. In a three-phase system, the DC link
voltage should be kept as low as possible to minimize switching losses. However,
this DC voltage must be higher than the maximum instantaneous line to neutral
grid voltage to push the required current to the grid. In this example, the DC volt-
age is assumed to be Vdc = 600 V. The maximum per phase current is given by

i1max =
S

3VLN
=

S

3VLL
=

50 × 103

3 × 400
= 72 17 A

Then assuming that the maximum current ripple is 5% of i1max, we have
Δi1max = 3.6 A. Then, for a switching frequency of 15 kHz, the converter side
inductor is

L1 =
600

8 × 15000 × 3 6
= 1 39 mH≈ 2 mH

From (8.2), by choosing λ = 5%, the filter capacitor is calculated as

C = 0 05 ×
50 × 103

100π 400 2 = 4 97 × 10− 5 ≈ 50 μF

Consider the equivalent circuit of theLC filter shown inFigure 8.1c.Defining a state
vector as x = [vc i1]

T, the state space equation of the system can be written as

x = Ax + BVdcuc 8 3

where uc is the feedback control law, based on which the converter switching sig-
nal u = ±1 is generated and the matrices A and B are

Α =
0 1 C

− 1 L1 − R1 L1

, B =
0

1 L1

For the L and C values calculated above and choosing R1 = 0.1 Ω, the Bode plot
of the filter is shown in Figure 8.2, where the −3 dB point is around 800 Hz. This
means that the filter will attenuate signals below the 16th harmonic. Thus, with
proper control, the converter can cancel the lower-order harmonics below the 16th
harmonic. This is an important property for active filtering applications, where the
converter is required to cancel harmonics created by loads.
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8.1.2 Filter with Passive Damping

The filters discussed in Section 8.1.1 may have problems of resonance with the
systems to which the converter is connected. To compensate for the resonance peak,
passive damping circuits may be required [1, 2]. Obviously, these damping circuits
will require resistors thatmay cause power loss. Some typical passive damping filters
are shown in Figure 8.3. An LCL filter with a series resistor, as shown in Figure 8.3a,
is the simplest of the passive dampers. An improved version of the series damper is
the shunt RC damper, as shown in Figure 8.3b. The high-frequency attenuation of
the LCL filter is retained in this structure. Good high-frequency attenuation that is
achieved without causingmuch power loss through shunt RLC damper, is shown in
Figure 8.3c. Here, the fundamental current in the damping resistor is bypassed by
the damping inductance Ld. There are several other passive damping circuits that
are discussed and analyzed in [1, 2]. We shall, however, not discuss the passive
damping circuits further but will proceed to design controllers that will provide
significant damping through active damping control.

8.2 State Feedback Based PWM Voltage Control

The purpose of a converter controller is to track a set of voltages or currents
faithfully. In this section, we assume that the reference signals are instantaneous
quantities in their abc coordinates. Consider the system of Figure 8.4a, which
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depicts a bridge converter that is connected to a source (back emf ) through a
feeder. The LC filters that are connected to the converter are also shown in the
figure. The purpose of the converter control is to make the converter output
voltages vck, k = a, b, c to track a set of prespecified reference voltages. In this
section, the closed-loop PWM based state feedback control is discussed.
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Figure 8.3 Passive damping LCL filters: (a) series damper, (b) shunt RC damper, and
(c) shunt RLC damper.
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Figure 8.4 Schematic diagram of (a) a voltage source converter with its output LC filter
connected to a source through a feeder and (b) its single-line diagram.
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The output filters of the converter, shown in Figure 8.4, are all grounded. There-
fore, the three legs of the converter can be treated separately, and each leg can be
controlled independent of the other two legs. Moreover, the DC bus is split into
two, with a center point N. Nevertheless, the DC bus voltage will be equal to
Vdc, while it contains two DC sources, each equal to Vdc/2. In a three-phase,
four-wire system, when the center point N and the load neutral are connected
together, a path is provided for the unbalanced (zero-sequence) component of
the current to flow. The converter controller will be designed for just one phase
with the understanding that a similar control law can also be derived for the other
two phases.
As mentioned elsewhere, three identical controllers will be designed that will be

applied to each of the three phases separately. The single-line diagram for one
phase of the circuit is shown in Figure 8.4b, where the feeder current is denoted
by if and the capacitor current is denoted by ic. This contains an LC filter, the state

space description of which is given in (8.3), where the state vector of x = vc i1
T

has been chosen. For the circuit of Figure 8.4b, this results in the following state
space equation

x = Ax + BVdcuc +
−

1
C

0
if 8 4

The feeder current if is considered as a disturbance input and is not included in the
control design. Therefore, (8.3) is used for control law computation. Assuming that
the references for the states are available and are denoted by xref = vcref i1ref

T,
the state feedback control law is given as

uc = K xref − x 8 5

where K = k1 k2
T is the feedback gain matrix.

In the PWM control law, a triangular carrier waveform (vtri) is generated that
varies from −1 to +1 with a duty ratio of 0.5. The control output uc is compared
with the carrier waveform to generate u as per the following formula

if uc > vtri then u = +1

elseif uc < vtri then u = −1
8 6

The schematic diagram of the control law is given in Figure 8.5a.
For tracking the output voltage, the voltage reference (vcref) for the output capac-

itor voltage can be prespecified. However, it is rather difficult to find a reference
(i1ref) for the converter output current i1. One approach can be to set this reference
to zero. This will, however, lead to an incorrect control action. To avoid this prob-
lem, a state transformation is used in [4]. This, however, is feasible only when the
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overall system structure and rough estimates of the system parameters are known
a priori. Therefore, this cannot be stated as a general solution. There are two pos-
sible approaches to this problem: (i) to use a highpass filter (HPF) or (ii) to use an
observer to estimate the current. These are discussed in Sections 8.1.1 and 8.1.2.

8.2.1 HPF-based Control Design

In this method, we note that the current i1 should only contain lower-frequency
components, while its high-frequency components should be zero. Therefore, if
the current is passed through a HPF, then it is expected that the output (i1HPF)
of the filter is zero [5]. Themodified control structure is shown in Figure 8.5b. Note
that the control gains remain the same irrespective of the HPF. The HPF transfer
function is given by

i1HPF s
i1 s

=
s

s + α
8 7

Equation (8.7) can be written as

i1HPF s =
s

s + α
i1 s = 1−

α

s + α
i1 s = i1 s − i1LPF s

where i1LPF (s) is a lowpass filter, given by

i1LPF s =
α

s + α
i1 s

This can be expressed in differential equation form as

d
dt

i1LPF = − α i1LPF + α i1 8 8

Let us now define an extended state vector as xe = vc i1 i1LPF
T . Then,

combining (8.8) with (8.3), we have

xe = Aexe + BeVdcuc 8 9

+
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Figure 8.5 Two different feedback control structures: (a) full state feedback and (b) partial
state feedback with HPF.
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where

Ae =
A 0

0 α − α
, Be =

B

0

From (8.5) and Figure 8.5b, the following feedback control law is obtained

uc = k1 vcref − vc + k2 0− i1HPF = k1 vcref − vc − k2 i1 − i1LPF
= − k1 − k2 k2 xe + k1vcref

8 10

Substituting (8.10) in the state equation of (8.9), we have

xe = Ae + Be − k1 − k2 k2 xe + k1Bevcref 8 11

Example 8.2 Consider the system of Figure 8.4, where the LC filter designed in
Example 8.1 is used. The feeder parameters are R = 5 Ω and L = 11.6 mH. The
system frequency is 50 Hz (i.e. ω = 100π rad/s) and source voltage and the chosen
reference voltages are

va = 326 6 sin ωt− 20 vcrefa = 326 6 sin ωt

vb = 326 6 sin ωt− 140 vcrefb = 326 6 sin ωt− 120

vc = 326 6 sin ωt + 100 vcrefc = 326 6 sin ωt + 120

A linear quadratic regulator is designed for the system of (8.3) with the LC para-
meters of Example 8.1, with the following weighting matrices

Q =
150 0

0 1
, r = 0 01

The resultant gain matrix is K = 122 47 10 59 . The HPF is given by

HPF s =
s

s + 1000

The Bode plot of the HPF is shown in Figure 8.6, where the cutoff frequency is
about 1000 rad/s, i.e. 159 Hz. This means that the filter will pass the harmonics
components above the third harmonic. The closed-loop eigenvalues of the system,
computed from (8.11), are located at −4 × 106, −2.44 × 105, and −1 × 103. They are
all on the left half of the s-plane.
A triangular carrier wave varying between ±1 is chosen with a frequency of

15 kHz. The DC voltage (Vdc) is chosen as 800 V. The system response is shown
in Figure 8.7, where the reference voltages and the actual voltages are shown. It can
be seen that the tracking is almost perfect. The control inputs are shown in
Figure 8.8. Barring the initial transients, these are restricted to ±1, indicating that
these signals remain in the undermodulated region. These signals will be in the
overmodulated region for higher values of the gain matrix K and this will result
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Figure 8.7 Tracking performance of the closed-loop system of Example 8.2.
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in unnecessary ripples in the output voltages. In particular, the gain matrix K is
very sensitive of the choice of parameters r, as the penalty on control reduces with
the reduction on the value of r.

8.2.2 Observer-based Current Estimation

Consider again the system of Figure 8.4b. Applying KCL at the point of common
coupling (PCC) of the feeder and converter, we get

i1 = ic + if 8 12

Let the reference capacitor voltage be assumed as

vcref = Vm sin ωt + φ

Then, the reference for the capacitor current is written as

icref = C
dvcref
dt

= CVm
d sin ωt + φ

dt
= ωCVm cos ωt + φ 8 13

Now, for each phase, icref is computed using (8.13) and the feeder current if is
measured. The reference for current i1 is then formed from (8.12), which is termed

as its estimate i1. The feedback control structure is shown in Figure 8.9.
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Figure 8.8 Control signals in Example 8.2.
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Example 8.3 This is a continuation of Example 8.2. The linear quadratic reg-
ulator (LQR) gain matrix remains the same as that computed in Example 8.2. The
tracking performance is shown in Figure 8.10. It is almost identical to that of
Figure 8.7. Since the control signals are almost identical to those shown in
Figure 8.8, they are not shown here. The estimated and actual current i1 through
the filter inductor L1 are shown in Figure 8.11 for one of the phases. It can be
seen that the estimated current is actually the filtered version of the actual
current.
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Figure 8.9 Feedback control
structure with current observer.
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Figure 8.10 Tracking performance of the closed-loop system of Example 8.3.
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8.3 State Feedback Based SVPWM Voltage Control

The concept of space vector pulse width modulation (SVPWM) closed-loop control
is almost identical to that of the PWM control discussed in Section 8.2. The closed-
loop switching computation is shown in Figure 8.12. First the control input uc is
computed for all the three phases using either the HPF based or observed based
current estimation discussed in Section 8.2. Then follow the steps outlined in
Section 7.3 of Chapter 7. First, using uca, ucb, and ucc, find the state vector VP

and its angle ϕ. Then, based on the angle, determine the sector to which the vector
belongs. Thereafter, compute the timings Ta, Tb, and T0. Then, sequence the
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switches and generate the switching pulses ua, uc, and uc by comparing the output
with a triangular carrier waveform.

Example 8.4 The same system as in Example 8.2, with the same LQR gain
matrix, is used here. The switching frequency is chosen as 15 kHz. The tracking
performance is shown in Figure 8.13. It can be seen that the performance of
the SVPWM closed-loop controller is similar to those of PWM closed-loop control-
lers of Examples 8.2 and 8.3. The switching signals are shown in Figure 8.14. They
are in the undermodulated region, as expected.

8.4 Sliding Mode Control

Consider a system given by

x1 = x2

x2 = f x + g x u
8 14

Let us define a state vector of x = x1 x T and an error vector of xe = x∗− x,
where x∗ is the reference vector. We further define a time varying surface (man-
ifold) as [6]
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Figure 8.13 Tracking performance of the closed-loop system of Example 8.4.
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s xe =
d
dt

+ λ
n− 1

xe 8 15

where n is the order of the system. For the system of (8.14), the following can be
written

s xe = xe + λxe 8 16

Then the tracking problem is converted into an equivalent form of remaining on
the surface s = 0 for all t> 0.
The first-order problem of keeping s (xe) = 0 can be achieved by choosing the

following control law [6]

1
2
ds2

dt
≤ − η s , n > 0 8 17

The existence condition for the sliding mode is then written as

s > 0 when s < 0

s < 0 when s > 0
8 18

This can be written in a compact form as

ss < 0 8 19
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Figure 8.14 Switching signals of SVPWM control of Example 8.4.
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The switching control law is defined as

u =
umax for s xe > 0

umin for s xe < 0
8 20

8.4.1 Sliding Mode Voltage Control

Consider the H-bridge converter that is connected to a source, as shown in
Figure 8.15. The following equations are written for this circuit

d
dt

i1 = −
R1

L1
i1 +

1
L1

u− vC

dvC
dt

=
1
C
iC

8 21

where u = ±Vdc is the control input. Since iC = i1− iL, we can write

d2vC
dt2

=
1
C
diC
dt

=
1
C

di1
dt

−
diL
dt

=
1
C

−
R1

L1
i1 +

1
L1

u− vC −
1
C
diL
dt

=
1
C

−
R1

L1
iC + iL +

1
L1

u− vC −
1
C
diL
dt

The above equation is then written as

d2vC
dt2

= −
R1

L1C
iC +

1
L1C

u− vC −
1
C

diL
dt

−
R1

L1C
iL 8 22

Defining the following disturbance input

dist = −
1
C

diL
dt

−
R1

L1C
iL 8 23

i1

S1 S3

S2 S4

Vdc

LR v+L1R1

C vC
iLiC

VSC and LC Filter

Figure 8.15 H-bridge VSC with LC filter connected to a back emf.
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(8.21) is written as

d2vC
dt2

= −
R1

L1C
iC +

1
L1C

u− vC + dist 8 24

Let the state vector be chosen as

x =
vC
vC

Then the state space description of the system is written as

x = Ax + Bu + Hdist

y = Cx
8 25

where

A =
−

R1

L1
−

1
L1C

1 0
, B =

1
L1C
0

, H =
1

0
, C = 0 1

We now define the following error vector

xe =
v∗C − vC
v∗C − vC

The switching surface is then given from (8.16) as

s xe = xe + λxe = v∗C − vC + λ v∗C − vC 8 26

Assume that the converter has to track a reference voltage given by

v∗C = Vm sin ωt 8 27

Then

v∗C = ωVm cos ωt 8 28

The following reference equations are now defined for an ideal oscillator [7]

xm = Amxm + Bmr

ym = Cmxm
8 29

where

Am =
0 −ω2

1 0
, Bm =

1

0
, Cm = 0 1
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Then

Ym s
R s

= Cm sI−Am
− 1Bm

=
1

s2 + ω2
0 1

s −ω2

1 s

1

0
=

1
s2 + ω2

8 30

Choosing

R s = Vmω 8 31

(8.30) is rewritten as

Ym s =
Vmω

s2 + ω2

The inverse Laplace transform of the above equation is

ym = Vm sin ωt 8 32

which is the desired output voltage.
Since the switching manifold s(xe) = 0, we can write

s xe = K x∗m − x = 0 8 33

where K = 1 λ . Then, combining (8.25) and (8.29) with (8.33), we have

s xe = K Amxm + Bmr−Ax−Bu−Hdist = 0 8 34

From (8.34), an equivalent control law is obtained, which is given as

ueq = KB − 1K Amxm + Bmr−Ax−Hdist 8 35

Note that, if infinitely large umax and umin were available, (8.35) would always be
possible. This will guarantee that the sliding mode will exist. However, this is not
possible, and the sliding mode will chatter between

umin ≤ ueq ≤ umax 8 36

Now, from (8.29) and (8.25), we have

xe = xm − x = Amxm + Bmr−Ax−Bu−Hdist

Replacing u by ueq from (8.35), the following equation is obtained [7]

xe = Amxe, Am =
− λ 0

1 0
8 37

The eigenvalues of the matrixAm are located at 0 and −λ and the system time con-
stant is 1/λ. Thus, by choosing the value of λ, the convergence on the switching line
can be forced.
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Example 8.5 Consider the system of Figure 8.15, where L1 = 2 mH, C = 50 μF,
R= 5Ω, Vdc= 500 V, and L= 11.6 mH. The back emf and the reference voltage are
given by

v = 326 6 sin ωt− 20 , v∗c = 326 6 sin ωt

From (8.12), we get

i∗C = ωCVm cos ωt = 5 13 cos ωt

Since vC = iC C, the error vector is written as

xe =
v∗C − vC
v∗C − vC

=
1
C

i∗C − iC

v∗C − vC

A hysteretic control law is then designed such that xe is maintained within the
upper bound umax and lower bound umin.
The system response for two values of λ is shown in Figure 8.16. It can be seen

that the system response is much faster when λ= 200 rather than when λ= 20 due
to a smaller time constant.
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Figure 8.16 Tracking performance with sliding mode control H-bridge converter of
Example 8.5.
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Example 8.6 The same system as in Example 8.2 is considered here. The voltage
tracking performance is shown in Figure 8.17. It can be observed that the tracking
performance is perfect. However, the sliding mode controller does not operate at a
fixed switching frequency, and excessive chattering might occur in some cases,
resulting in heating in power switches.

8.5 State Feedback Current Control

Consider the circuit of Figure 8.18, which shows an H-bridge converter with an
LCL filter. The VSC is connected to a back emf through a feeder. Themain purpose
of this is to track a reference current i2ref. Defining a state vector as

x = vC i1 i2
T , the dynamic equation of the converter is given by

x = Ax + BVdcuc + HvT 8 38

where vT is the voltage at the terminal of the converter (PCC voltage) and

A =

0 1 C − 1 C

− 1 L1
−R1 L1 0

1 L2 0 − R2 L2
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0
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Figure 8.17 Tracking performance with sliding mode control of three-phase converter of
Example 8.7.
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Let the desired output current be

i2ref = Im sin ωt + ϕ

where Im is the desired magnitude and ϕ is the phase of the current with respect to
the terminal voltage vT. Since it is not possible to set references for the capacitor
voltage vC and the inner inductor current i1, two HPFs are designed that are
given by

HPF-1 i1HPF =
s

s + α1
i1, HPF-2 vCHPF =

s
s + α2

vC

The feedback control structure is shown in Figure 8.19. First, a phase locked loop
(PLL) is used to extract the phase θ of the terminal voltage vT. The phase ϕ is then
added with it to derive the reference i2ref which the converter must track. A state
feedback controller is then designed, and the resultant control signal is used for
switching signal generation through PWM [8].
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Figure 8.18 VSC in current control mode through an LCL filter.
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Figure 8.19 Current tracking state feedback control structure.
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Example 8.7 Consider the system of Figure 8.18, where the system parameters
are listed in Table 8.1. The magnitude Im of the reference current is chosen as 10 A,
while the phase ϕ of the current leads the phase of the terminal voltage by 20 .
A linear quadratic controller will now be designed. The purpose here is to inject
a current that is in series with the feeder with a higher impedance. Therefore, more
emphasis must be given on the output current error. Accordingly, the LQR is
designed with

Q =

1

1

105
, r = 0 01

The resulting gain matrix is

K = 10 25 16 15 3 15 × 103

The results are shown in Figure 8.20. The current tracking is fairly accurate as
the peak of the tracking error is 0.2 A. The total harmonic distortion (THD) of the
output current is below 0.05% in the steady state. This implies that the LCL filter
has eliminated the lower-order harmonics effectively.

Table 8.1 System parameters for Example 8.7.

System quantities Parameter values

System frequency 50 Hz

Back emf 230 V (rms), with phase of 0

Feeder resistance (R) 5Ω

Load inductance (L) 11.6 mH

Filter capacitance (C) 25 μF

Inside filter inductance (L1) 0.2 mH

Inside filter resistance (R1) 0.1Ω

Outside filter inductance (L2) 1.25 mH

Outside filter resistance (R2) 0.1Ω

DC voltage (Vdc) 450 V

HPF-1 (α1) 5000

HPF-2 (α2) 5000
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8.6 Output Feedback Current Control

A state feedback controller will require the measurements of the state variables for
feedback. As is illustrated in Section 8.5, it is not possible to form or estimate the
reference values for some of these variables and therefore two HPFs are used in
Section 8.5. An output feedback control, on the other hand, will only require
the measurements of the output variable, which is i2 in this case. Hysteresis cur-
rent control is very effective for current tracking, as demonstrated in Section 7.1.1
when the output of a VSC is connected with an L-type filter. To evaluate the behav-
ior of hysteresis controller when the VSC has an output LCL filter, consider the
state equation of (8.38). Neglecting the HvT term, the transfer function between
the input and the output is given by

i2 s
u s

= 0 0 1 sI−A − 1B 8 39

Solving (8.39), we have

i2 s
u s

=

1
CL1L2

s3 +
R1

L1
+

R2

L2
s2 +

1
L1C

+
1

L2C
+

R1R2

L1L2
s +

R1 + R2

CL1L2

8 40
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Figure 8.20 Performance of the state feedback based current controller. (a) The PLL
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The control input is now defined as u= ±Vdc. Then the characteristics equation
of the closed-loop system is defined by

ΔCL s = s3 +
R1

L1
+

R2

L2
s2 +

1
L1C

+
1

L2C
+

R1R2

L1L2
s

+
R1 + R2

CL1L2
+

±Vdc

CL1L2
= 0

8 41

Routh’s table is then given by

s3 1
1

L1C
+

1
L2C

+
R1R2

L1L2

s2
R1

L1
+

R2

L2

R1 + R2

CL1L2
+

±Vdc

CL1L2

s1 α

s0
R1 + R2

CL1L2
+

±Vdc

CL1L2

Then, for the system to be stable, α> 0. For u = Vdc, this is satisfied when

Vdc <
R1L2
L1

+
R2L1
L2

+ CR1R2
R1

L1
+

R2

L2

Since the inductances are in mH and the capacitance is in μF, this is not possible.
Furthermore, there will be two sign changes in Routh’s table, and therefore there
will be two roots of the closed-loop system in the right-half s-plane. On the other
hand, when u= − Vdc, the term in the s0 will be negative, even if α> 0 is true. This
implies that there will be one sign change in Routh’s table, indicating one unstable
closed-loop pole. Therefore, the hysteresis current control will result in an unsta-
ble system response. For the system of Example 8.7, the reference and output cur-
rents are shown in Figure 8.21, which shows that large, high-frequency current is
flowing through the VSC, indicating unwanted behavior.
In order to avoid this, a discrete-time pole placement controller with a hysteresis

band controller is designed instead. The control signal uc is obtained using a pole
placement controller, and the switching signal is generated in a hysteresis band,
given by

If uc > h then u = +1

elseif uc < − h then u = −1
8 42

where h> 0is a small number. The control structure is shown in Figure 8.22. The
following example demonstrates the effectiveness of the control design.
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Example 8.8 Consider the system of Example 8.7. The first step in this process is
to choose a sampling time, which is taken as 10 μs for this example. Then the
input–output description of the system is given in difference equation form as

y k = − a1y k− 1 − a2y k− 2 − a3y k− 3

+ b0uc k− 1 + b1uc k− 2 + b2uc k− 3 + C z− 1 e k

where y(k) = i2(k) is the output of the converter and e(k) = vT (k) is considered a
disturbance input. For the parameters given in Table 8.1, the following coefficients
of the difference equation are obtained

a1 = − 2 98, a2 = 2 97, a3 = − 0 995, b0 = 3 33 × 10− 7,
b1 = 13 27 × 10− 7, b2 = 3 32 × 10− 7

For this system, one of the open-loop zeros is outside the unit circle. Therefore, a
minimum variance controller cannot be designed for this system. Instead, we shall
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Figure 8.21 Current tracking failure due to hysteresis current control for VSC with LCL
output filter.

+

i2

uc
i2refvT PLL u

R –1( )z

–1( )zS

Sampler Hysteresis 
Band

θ Im sin (θ + ϕ)

Figure 8.22 Current tracking output feedback control structure.
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design a pole shift controller with a pole shift factor of λ = 0.75. The resultant con-
troller polynomials are

R z− 1 = 1 + 0 59z− 1 + 0 12z− 2

S z− 1 = 5 71 × 103 − 1 × 104z− 1 + 4 62 × 103z− 2

The same reference as in Example 8.7 is chosen here as well. The hysteretic band
chosen here is h = 0.05. The system output is shown in Figure 8.23a, while the
tracking error is shown in Figure 8.23b. Since this is essentially a hysteretic con-
troller, the chattering can be observed in the output current. The tracking perfor-
mance, however, is acceptable. The THD in this case is 0.21%, which is higher than
the state feedback control, even though it is much lower than the acceptable
standard.

8.7 Concluding Remarks

In this chapter, we present the basic voltage and current control concepts using
voltage source converters. These are developed further depending on the applica-
tions discussed in subsequent chapters. There are two main control aspects of
power converters: fixed frequency and variable frequency. Fixed frequency con-
trollers, using a PWM technique, are often desirable when looking to restrict
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Figure 8.23 Performance of the output feedback based current controller.
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the switching losses. The chapter shows that hysteretic current control will be
unstable when the output of the VSC is connected to a higher-order filter.
A hysteresis band controller that is designed based on a suitable discrete-time con-
trol technique is very stable. Even though these controllers operate at variable fre-
quencies, they are easier to design, and usually have faster convergence and
excellent tracking properties, albeit at the expense of higher switching losses. In
subsequent chapters, both these techniques are studied depending on the pro-
blems being addressed.

Problems

8.1 Design an LC filter with the following specifications

• Voltage: 11 kV (L-L), frequency 50 Hz

• VA rating: 1.0 MVA

• DC voltage Vdc: 1.5 time the L-N voltage

• Switching frequency: 15 kHz

• Maximum current ripple: 2.5%

• λ: 5%
Choose R1 = 0.1 Ω. Draw the Bode plot of the designed filter and find its

bandwidth.

8.2 The filter designed in Problem 8.1 is used for the PWM voltage control of a
single-phase VSC. Design an LQR state feedback controller with the follow-
ing specifications

Q =
1000

10
, r = 0 1

Find the eigenvalues of the closed-loop system.

8.3 Assume that the filter designed in Problem 8.1 is used in the voltage control
of a single-phase VSC, where the high-frequency components of the
inner inductor current are suppressed by the HPF given in (8.7), where
the parameter α is chosen as 5000. Then, choosing an extended state vector
as xe = vc i1 i1LPF

T, the state space equation is given by (8.9). The con-
trol law is given by

uc = k1 k2 k3 ×

vcref − vc
0− i1HPF

i1 − i1LPF

Design an LQR state feedback controller with the following specifications
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Q =

1000

1

10

, r = 0 1

Compute the eigenvalues of the closed-loop system and compare them
with those obtained in Problem 8.2.

8.4 Assume that three identical LC filters are connected at the output of a three-
phase VSC that is used for voltage control. The filter parameters are obtained
from Problem 8.1. The VSC and load are connected so that each phase can be
treated separately. Now assume that the state space equation in the dq
domain is given by xdq = Adqxdq + VdcBdqudq, where

xdq = vcd vcq i1d i1q
T , udq = ud uq

T

Then design an LQR controller with the following parameters

Q =

1000

1000

10

10

, R =
0 1

0 1

Compare the result with that obtained in Problem 8.2.

8.5 With the filter designed in Problem 8.1, add an outer inductor with
L2 = 2 mH and R2 = 0.5 Ω to form an LCL filter. Assuming the output is
the current i2, draw the Bode plot of the filter and find the bandwidth of
the filter. What are the gain and phase margins?

8.6 For the filter designed in Problem 8.5, design a pole shift controller with pole
shift factor (λ) of 0.7 and sampling time of 20 μs.

Notes and References

Discussion on sliding mode control can also be found in [9]. Fixed switching fre-
quency application of sliding mode control is discussed in [10, 11], where its fre-
quency domain characterization for a DSTATCOM application it also presented.
Predictive current control using VSC has attracted much attention. Even though
this is not presented in this chapter, this control method can be implemented on
grid feeding converters. Those interested can refer to [12–15].
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9

VSC Applications in Custom Power

In this chapter, various techniques are presented which can be employed for con-
trolling the output voltage or current of a voltage source converter (VSC) for power
quality improvement in power distribution systems. The main aim is to control
the switching functions of the VSC in such a way that a desired output is attained.
One of the main applications of closed-loop converter control is in custom
power, through which utilities can supply value-added power to customers [1].
The custom power technology uses power converters to alleviate various power
quality-related issues, such as harmonics, voltage or load unbalance, poor power
factor, etc. [2].
There are several custom power devices, such as:

• solid state current limiter (SSCL)

• solid state circuit breaker (SSCB)

• solid state transfer switch (SSTS)

• distribution static compensator (DSTATCOM)

• dynamic voltage restorer (DVR)

• unified power quality conditioner (UPQC).

Of these, the first three are network reconfiguring types, which can limit current
during faults or can transfer loads from one feeder to the other. The last three are
network compensating devices as they can compensate various power quality
problems.
All the network compensating custom power devices are realized by VSCs, along

with their output passive filters. DSTATCOM is connected in shunt at the point of
common coupling (PCC) of the load and the feeder. The DVR is a series connected
device that is usually connected at the load terminals such that it can tightly main-
tain the required load bus voltage in the face of voltage sag or swell in the upstream
network. A UPQC has a shunt VSC and a series VSC that are connected together
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through a DC bus capacitor. In this chapter, the control of a DSTATCOM is dis-
cussed in detail. For DVR or UPQC control, refer to [2].
A DSTATCOM can be controlled in both voltage and current control modes. In

the voltage control mode, the DSTATCOM can tightly regulate the PCC voltage
such that it is balanced and sinusoidal, irrespective of unbalance and/or distortion
in the load currents such that the upstream voltage and current are balanced sinus-
oidally. In the current control mode, the DSTATCOM can work as an active filter
where it cancels out the load current harmonics, thereby preventing them from
flowing into the upstream network. A significantly better option is complete load
compensation in which the DSTATCOM can inject currents that can simultane-
ously perform power factor correction, harmonic filtering, and load balancing.
These aspects are also discussed in this chapter.

9.1 DSTATCOM in Voltage Control Mode

A DSTATCOM is a versatile device that can be used in both voltage and current
control modes. In this section, the voltage control application of DSTATCOM is
discussed. Let us begin our discussion with an example.

Example 9.1 Consider the radial distribution system shown in Figure 9.1, where
the source supplies two loads through two feeders. Of the two loads, Load Z2 con-
tains an unbalanced RL circuit and a diode rectifier load, while Load Z1 is a bal-
anced RL load. The system parameters are given in Table 9.1. The load currents are
shown in Figure 9.2. Load Z2 currents are unbalanced and distorted, causing Load
Z1 currents to be unbalanced and distorted as well.
This example shows that, when a distribution bus voltage is distorted, it affects

the rest of the network. ADSTATCOM that is working in voltage control modewill
be used to alleviate this problem. The possible DSTATCOM structures that are
used in voltage control mode are shown in Figures 9.3–9.5. All of them have a
DC storage capacitor Cdc supplying the DC bus. Furthermore, all of them have out-
put LC filters. The voltages (vca, vcb, and vcc) across the filter capacitors (C) are to be
controlled. Figure 9.3 shows a three-leg VSC, while Figure 9.4 shows a VSC that
has been constructed through three H-bridges and three single-phase transfor-
mers. In these, the capacitors are connected together at point N, which needs to
be connected with the load neutral, so that the zero-sequence current circulates
in this path. Figure 9.5 shows a four-leg VSC, where the fourth leg is used to cancel
the zero-sequence current.
Now consider the same system as in Figure 9.1 that is redrawn with a DSTAT-

COM, as shown in Figure 9.6. Here the DSTATCOM is connected to the point of
common coupling (PCC) of Load Z2 and Feeder-2. If the DSTATCOM maintains
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the voltage at the PCC (vc) as a balanced sinusoid, then the current flowing
through the upstream Feeder-1 and Feeder-2 will be balanced. Consequently,
the Load Z1 bus voltage will also be balanced, and an undistorted balanced current
will be drawn by this load. The question here is how to make the PCC voltage
balanced.
The first step in this process is to choose a set of reference voltages for the PCC.

Let us set the references as

v∗ca = Vm sin ω t + δ

v∗cb = Vm sin ω t + δ− 120

v∗cc = Vm sin ω t + δ + 120

9 1

Rf1

iZ1

vs

Load Z1

Lf1 Rf2 Lf 2

+

Feeder-1 Feeder-2

Load Z2

iZ2

PZ2

Figure 9.1 Single-line diagram of a radial system supplying two loads.

Table 9.1 Parameters of the system of Figure 9.1.

Components Parameters

Source Voltage: 11 kV (L-L) rms, angle 0

Frequency: 50 Hz

Feeders Feeder-1: 0.4033 + j4.0527 Ω

Feeder-2: 0.2017 + j2.042 Ω

Load Z1 Balanced: Z1 = 121.0 + j39.77 Ω

Load Z2 Unbalanced RL:

Z2a = 121.0 + j39.77 Ω
Z2b = 91.0 + j31.42 Ω
Z2c = 221.0 + j71.19 Ω

Diode rectifier with R = 100 Ω and L = 100 mH
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where |Vm| is a prespecified voltage magnitude. In any VSC, the DC link voltage
should roughly be around 1.5 times the line-to-line AC voltage to be synthesized.
Once the DC capacitor is charged, the DC link voltage will remain constant if no
power is drawn from it. However, a VSC will have its switching and other losses
(such as those due to quality factor of inductor or transformer core losses, etc.).
This implies that, to hold the DC voltage constant, the converter losses must be
supplied by the grid. Failing this, the DC capacitor will get discharged and its volt-
age will continue to fall.
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Figure 9.2 The loads currents in Example 9.1.
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Figure 9.3 Three-leg DSTATCOM structure.
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It is well known that the power flow over a line connecting two AC sources
mainly depends on the angle difference between the sources. Therefore, taking
the source voltage angle as the reference, the angle δ in (9.1) should be so adjusted
that the sum total of the power required by Load Z2 and converter losses should
flow from the source to the PCC. Once the required amount of power flows to the
PCC, the DC capacitor voltage will remain constant. Therefore, the angle δ is
adjusted to hold the DC capacitor voltage constant through the following propor-
tional plus integral (PI) controller.
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+
Cdc

N

PCC

Sa1

Sa1 Sa2

Sa2

Sb2

Sb2
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Sb1 Sc1

Sc1
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TcTbTa
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Figure 9.4 DSTATCOM structure with four H-bridges.
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Figure 9.5 Four-leg DSTATCOM structure.
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δ = KP V∗
dc − Vdc t + KI V∗

dc − Vdc t dt 9 2

where V∗
dc is the DC voltage reference, Vdc(t) is the average of the DC voltage Vdc,

and KP and KI are the PI gains. The VSC of the DSTATCOM will then track the
voltage to balance the PCC voltage [3]. Any of the controllers discussed in
Chapter 8 will be able to perform this task. However, in this section, other types
of control algorithms are also discussed.

9.1.1 Discrete-time PWM State Feedback Control

The feedback control system will be designed assuming that all the phases can be
treated separately, and identical controllers can be designed, one for each phase. In
the discrete-time control system, (8.3), given in Chapter 8, is discretized to obtain
the following state space equation for phase-a

xa k + 1 = Fxa k + Guca k 9 3

where the state vector is xa = [vca i1a]
T. For a sampling frequency of T, the

matrices F and G are given by

F = eAT , G =

T

0

eAτdτ B

The control law is then given as

uca k = K xrefa k − xa k 9 4

where K is the feedback gain matrix and xref = v∗ca i∗1a
T is the reference vector.

It is mentioned in Chapter 8 that the reference of the current i1a is unknown.
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PZ2
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+
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L1
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PCC
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Lf1 Rf 2 Lf 2

Vdc

+

Feeder-1 Feeder-2

Figure 9.6 The distribution system of Figure 9.1 compensated by a DSTATCOM.
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Thus, the highpass filter (HPF) as shown in Figure 8.5b, can be used to remove the
low-frequency components of i1a. Alternately, the observer-based method shown
in Figure 8.9 can also be used.
The switching scheme for phase-a is shown in Figure 9.7 for the VSC of

Figure 9.3. The control output uc is sampled twice in each cycle, one at the negative
peak of the carrier waveform and the other at the positive peak. Assuming an
impulse modulated sampling, the output of the sampler is held by a zero-order
hold (ZOH) circuit to obtain u∗c . This is then compared with a triangular carrier
waveform (vtri). The switching signals are generated from the comparison of the
carrier waveform and the sampled output as

if u∗ca k > vtri then u = +1, i e switch S1 is on and S4 is off

elseif u∗ca k < vtri then u = −1, i e switch S4 is on and S1 is off
9 5

A similar algorithm is also employed to control phase-b through switches S3 and S6
and to control phase-c through switches S5 and S2.

Example 9.2 This is a continuation of Example 9.1, where the DSTATCOM is
connected to the PCC of the system, as in Figure 9.6. The following DSTATCOM
parameters are chosen

R1 = 1Ω,L1 = 3 3mH, C = 50μF, and Cdc = 5000 μF
Vm = 9 0 kV,ω = 100π rad s i e 50 Hz

V ∗
dc = 16 kV,KP = − 0 05 and KI = − 0 1

uca

0

Impulse Modulated Sampler

vtriuca

0

S1

0

1

S41

0

1

*

Figure 9.7 Firing pulse generation for discrete-time control.
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Note that the negative signs in the PI gains indicates that the PCC voltage should
lag the source voltage to facilitate power flow from the source to the PCC.
A discrete-time LQR is designed for the system using the principle mentioned
in this section, The carrier wave frequency is chosen as 15 kHz, and therefore
the sampling frequency (1/T) is 30 kHz.
The results are shown in Figures 9.8 and 9.9. From Figure 9.8, it can be seen that

the DC voltage (Vdc) settles to 16 kV and the load angle (δ) settles to−10.5 in about
0.6 seconds. The steady state power entering and leaving the PCC is shown in
Figure 9.8c. While the power entering the PCC (PPCC) is about 2.972 MW, the
power supplied to the load PL2 is about 2.955 MW. This means that DSTATCOM
losses are about 17 kW. Figure 9.9 shows the PCC voltages and Load Z1 currents. It
can be seen that both are balanced and free of harmonics.

9.1.2 Discrete-time Output Feedback PWM Control

The state feedback control needs the references for both the states, which is not
readily available. That is why the low-frequency components of the inductor cur-
rent are eliminated from the feedback such that its high-frequency components
can be equated to zero or an observer needs to be designed to estimate this current.
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Figure 9.8 The DC voltage, load angle, and PCC powers in Example 9.2 when the
DSTATCOM is connected.
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In an output feedback control, only the reference for the capacitor voltage is
required. Therefore, discrete-time output feedback control will be designed in this
section for the DSTATCOM. Examples 9.3 and 9.4 discuss two examples of the
DSTATCOM implementation for the same system of Example 9.2.

Example 9.3 (MV Control)

The application of minimum variance control for the DSTATCOM is illustrated in
this example. Assuming the system output for phase-a is vca, the discrete-time state
space equation of (9.3) is converted into the following transfer function

Ya z
Uca z

= 1 0 sI−F − 1G

where ya = vca. Then the above equation is converted into input–output form as

y k + a1y k− 1 + a2y k− 2 = b0u k− 1 + b1u k− 2

The frequency of the triangular carrier waveform is chosen as 10 kHz, such that
the sampling frequency is 20 kHz. With this sampling frequency and the para-
meters of Example 9.2, the polynomial coefficients are

a1 = − 1 9699, a2 = 0 985, b0 = 7 5281 × 10− 3, and b1 = 7 4902 × 10− 3
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Figure 9.9 PCC voltages and load Z1 currents in Example 9.9 when the DSTATCOM is
connected.
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The MV control law is then given by

u k =
1
b0

yr k + 1 + a1y k + a2y k− 1 − b1u k− 1

The control output is then compared with a triangular carrier waveform to obtain
the firing signals, as shown in Figure 9.7.
The system response with the MV controller is shown in Figure 9.10, where the

DC capacitor voltage and its angle and the PCC voltages are also shown. The sys-
tem response in this case is almost similar to that of Example 9.2, except that the
PCC voltage waveforms with a state feedback controller are smoother.

Example 9.4 PS Control

In Example 9.3, the open loop zero is at −0.995, i.e. almost at the edge of the sta-
bility boundary that can cause instability in MV controllers. Instead, a pole-shift
controller is designed in this example. For the input–output difference equation
given in Example 9.3, the following controller polynomials are defined

S z− 1 = s0 + s1z
− 1

R z− 1 = 1 + r1z
− 1
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Figure 9.10 DC capacitor voltage and PCC voltage angle and PCC voltages with the MV
control of Example 9.3.

350 9 VSC Applications in Custom Power



The coefficients of these polynomials are then synthesized from

1 b0 0

a1 b1 b0
a2 0 b1

r1
s0
s1

=

a1 λ− 1

a2 λ2 − 1

0

For a sampling frequency of 20 kHz and with λ = 0.25, the controller polynomials
are given by

S z− 1 = 115 87− 79 58z− 1,R z− 1 = 1 + 0 605z− 1

The system response with the PS controller is shown in Figure 9.11. It can be seen
that the response is very similar to that with the MV controller.

9.1.3 Voltage Control Using Four-leg Converter

This converter structure is shown in Figure 9.5, in which the center point fourth leg
is connected to the load neutral through a resistor and an inductor. One of the main
aspects of the PCC voltage balancing is the cancelation of the zero-sequence current.
Thus, the current through the neutral iN is used to cancel the zero-sequence com-
ponents of the load by controlling the switches S7 and S8. Therefore, the reference
current for the fourth leg is the negative sum of the three load currents, i.e.

i∗N = − iLa + iLb + iLc 9 6
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Figure 9.11 DC capacitor voltage and PCC voltage angle and PCC voltages with the PS
control of Example 9.4.

9.1 DSTATCOM in Voltage Control Mode 351



The switches S7 and S8 are then controlled using hysteretic current control
given by

If iN ≥ i∗N + h then S7 is off and S8 is on

elseif iN ≤ i∗N − h then S7 is on and S8 is off

Example 9.5 For this example, a continuous-time state feedback control is
designed. For the DSTATCOM parameters given in Example 9.2, the LQR gain
matrix is computed following the procedure presented in Chapter 8. With

Q =
15

1
, r = 0 1, the gain matrix is found to be K = 11 29 36 63 . Note

that Load Z2 contains an unbalanced RL load and a diode rectifier load which does
not produce a zero-sequence current. Therefore, the fourth leg is connected to the
neutral of the unbalanced RL load. The output L-filter parameters of the fourth
leg are

RN = 0 1Ω and LN = 1 0mH

The results are shown in Figures 9.12 and 9.13. The DC capacitor voltage, load
angle, and PCC voltage responses are similar to those shown in Example 9.2.
The neutral current reference is shown in Figure 9.13a and the actual neutral cur-
rent is shown in Figure 9.13b. They are almost identical, as evident from the track-
ing error of Figure 9.13c.
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Figure 9.12 The DC voltage, load angle, and PCC voltage with a four-leg DSTATCOM.
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9.1.4 The Effect of System Frequency

Consider Figure 9.14 in which the two sources are connected through an induc-
tance. Assume that the sending end has a frequency of ω1 and the receiving
end operates at the synchronous frequency of ω. The sending and receiving end
voltages are denoted by

vSa = Vm sin ωt + Δωt vRa = Vm sin ωt

vSb = Vm sin ωt + Δωt− 120 vRb = Vm sin ωt− 120

vSc = Vm sin ωt + Δωt + 120 vRc = Vm sin ωt + 120

where ω1 = ω+Δω. Note that if Δω = 0 then the power transfer between the
sending and receiving end will be zero, as there is no angle difference between
the voltages.
Aligning the dq reference with the synchronous reference frame, i.e. θ = ωt, we

use (2.37) to get

vRd
vRq

=
Vm

0

Again using (2.37), the sending end d-axis and q-axis voltages are given by

vSd
vSq

=
2Vm

3

sin θ sin θ− 120 sin θ + 120

cos θ cos θ− 120 cos θ + 120

sin θ + Δωt
sin θ + Δωt− 120

sin θ + Δωt + 120

9 7
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Figure 9.13 Neutral reference and actual current and current tracking error with a four-leg
DSTATCOM.
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Now using the identities

sin a sin b =
cos a− b − cos a + b

2
,

sin a cos b =
sin a + b + sin a− b

2

the terms in (9.7) are calculated as

vSd = Vm cos Δωt

vSq = Vm sin Δωt
9 8

Using the similar approach in which (2.46) of Chapter 2 is derived

d
dt

idq =
0 ω

−ω 0
idq +

Vm

L

cos Δωt − 1

sin Δωt
9 9

The state transition matrix for the state equation of (9.9) is

ϕ t = − 1
s −ω

ω s

− 1

= − 1 1
s2 + ω2

s ω

−ω s

=
cos ωt sin ωt

− sin ωt cos ωt

Therefore, the solution of (9.9), assuming that the initial conditions of the currents
are zero, is

idq =
Vm

L

t

0

cos ω t− τ sin ω t− τ

− sin ω t− τ cos ω t− τ

cos Δωτ − 1

sin Δωτ
dτ 9 10
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Figure 9.14 Two sources connected
through an inductance.
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Now

cos ω t− τ sin ω t− τ

−sin ω t− τ cos ω t− τ

cos Δωτ − 1

sin Δωτ

=
cos ωt−ωτ−Δωτ

−sin ωt−ωτ−Δωτ
+

−cos ω t− τ

sin ω t− τ

=
cos ωt−ω1τ

−sin ωt−ω1τ
+

−cos ω t− τ

sin ω t− τ

Substitution of the above equation in (9.11) results in

idq =
Vm

L

t

0

cos ωt−ω1τ

−sin ωt−ω1τ
dτ +

Vm

L

t

0

−cos ω t− τ

sin ω t− τ
dτ 9 11

The first integral of (9.11) is evaluated as

t

0

cos ωt−ω1τ

−sin ωt−ω1τ
dτ =

Vm

ω1L

sin −ωt + ω1τ

−cos −ωt + ω1τ

t

0

=
1
ω1

sin Δωt

−cos Δωτ
−

sin ωt

−cos ωt

9 12

The solution of the second integral of (9.11) is

t

0

−cos ω t− τ

sin ω t− τ
dτ =

1
ω

sin ω t− τ

cos ω t− τ

t

0

=
1
ω

sin ωt

1− cos ωt

9 13

Let us assume that Δω is small and therefore X = ωL≈ω1L. Then the substitution
of (9.12) and (9.13) in (9.11) results in

idq =
Vm

X

sin Δωt

−cos Δωτ
−

sin ωt

−cos ωt
+

sin ωt

1− cos ωt

=
Vm

X

sin Δωt

−cos Δωτ + 1

9 14

Power delivered at the receiving end is

P =
3
2

vRdid − vRqiq =
3V 2

m

2X
sin Δωt 9 15
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Example 9.6 Consider the system of Figure 9.14, where Vm = 11 kV (L-L),
Δω = 0.2 Hz, and L = 77 mH. When both the source and receiving end voltages
operateat50 Hz, the line impedance isL=77 × 10−3 × 100π=24.19Ω. Therefore, the
maximumpower that can be transferred over the line is 3 × Vm 3

2
X = 5MW.

Figure 9.15 plots the receiving end power for two values of the sending fre-
quency: 49.8 and 50.2 Hz. The power oscillates at 0.2 Hz in both these cases with
peaks of 5 MW. However, the direction of power flow at the beginning is nega-
tive when Δω is negative, while it is positive when Δω is positive.
The consequence of the frequency mismatch for the four-leg DSTATCOM of

Example 9.5 is shown in Figure 9.16 for two different values of the frequency.
Figure 9.16a shows the DC voltage when the source frequency is 49.8 Hz. In this
case, the power will flow from the receiving end to the sending at the beginning,
and, as a result, the DC capacitor will start feeding power toward the source. Con-
sequently, the capacitor voltage will start collapsing and the PCC voltage angle will
diverge rapidly, as evident from Figures 9.16a,c respectively. This will cause track-
ing failure in the VSC, resulting in a system collapse. The opposite is true when the
frequency is 50.2 Hz. A sudden rush of power from the sending end will cause the
capacitor voltage to rise, as shown in Figure 9.16b, and the angle to run away, as
shown in Figure 9.16d.
The protection circuit will prevent capacitor overvoltage and therefore the

DSTATCOM will be taken off the system.

Receiving End Power (MW) for Source Voltage Frequency of 49.8 Hz

Receiving End Power (MW) for Source Voltage Frequency of 50.2 Hz
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Figure 9.15 Power received at the receiving end for two different values of frequency.
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Example 9.7 We shall now use the frequency estimation algorithm discussed in
Chapter 2 to estimate the system frequency. The system has been operating at
the steady state at the beginning at 50 Hz, when the source frequency changes to
50.2 Hz at 1 seconds. The system response is shown in Figure 9.17. The estimated
frequency is shown in Figure 9.17a, where the change in frequency is trackedwithin
about 0.15 seconds. Consequently, the DC capacitor voltage settles to 16 kV after the
initial transient following the frequency change, as shown in Figure 9.17b. The PCC
voltage angle is shown in Figure 9.17c.

9.1.5 Power Factor Correction

The PCC reference voltage, given in (9.1), is assumed to have a fixed magnitude.
This may cause, depending on the situation, the DSTATCOM to draw unnecessary
excess reactive power from the source or even feed reactive power toward the
upstream network. Let us assume that two voltage sources are connected through
an impedance. The sending end voltage is given by VS= |V|∠ 0 , the receiving end
voltage is denoted by VR = |VP|∠ − δ, while the impedance connecting them is
given by R+ jX. Therefore, the current I flowing between the sources is

I =
V − VP − δ

R + jX
9 16

DC Capacitor Voltage for 49.8 Hz

PCC Voltage Angle (δ) for 49.8 Hz PCC Voltage Angle (δ) for 50.2 Hz
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Figure 9.16 DC bus voltage and PCC voltage angle during frequency mismatch. (a) DC
Capacitor Voltage for 49.8 Hz, (b) DC Capacitor Voltage for 50.2 Hz, (c) PCC Voltage Angle (δ)
for 49.8 Hz, (d) PCC Voltage Angle (δ) for 50.2 Hz.
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Therefore, the complex power injected to the receiving end (PCC) from the
source is

PR + jQR = VP − δ × I∗ 9 17

Expanding (9.17), the real and reactive power injected at the receiving end are
given by

Ps =
1

R2 + X2 V VP R cos δ + V VP X sin δ− VP
2R 9 18

QR =
1

R2 + X2 V VP X cos δ− V VP R sin δ− VP
2X 9 19

Assume that a DSTATCOM is connected at the receiving end (PCC) and Thévenin
impedanceof theupstreamnetwork is representedbyR+ jX.When theDSTATCOM
operates in the voltage control mode, it adjusts the angle δ to draw power from the
source in such a way that the load and the converter losses can be supplied from the
source. However, it is evident from (9.19) that the reactive power injected at the PCC
QR cannot be made equal to zero by only controlling δ. Moreover, from (9.18), it is
evident that the real power injection PR will depend on both |VP| and δ, given that
|V| and R+ jX are constant. Therefore, the reactive power control can be achieved
without sacrificing real power control. It is desired that the DSTATCOM operates
in such a way that the reactive power injected at the PCC is zero. From (9.19), it
can be seen that QR = 0 when
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Figure 9.17 DSTATCOM performance with frequency estimation algorithm.
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VP = V cos δ−
R
X

sin δ 9 20

Therefore, the reactive power can be forced to zero by controlling the PCC voltage
magnitude |VP|.
To control the PCC voltage magnitude, a PI controller is employed, which is of

the form

eQ = 0−QPCC

Vm = V∗
m + KPeQ + KI eQdt

9 21

where QPCC is the measured reactive power entering the PCC, |Vm| is the voltage

magnitude used in (9.1) and V∗
m is the reference voltage. Example 9.5 will now be

repeated with the reactive power control. The four-leg DSTATCOM is used here as

well, where V∗
m is chosen as 9 kV, peak phase voltage for L-L voltage of 11 kV.

The PI gains are KP = − 0.05 and KI = − 1. The results are shown in Figures 9.18
and 9.19. Figure 9.18 shows the DC capacitor voltage and the PCC voltage angle. It
can be seen that they are the same as those shown in Figure 9.12. Figure 9.19 shows
the controlled PCC voltage magnitude and the reactive power injected to the PCC
from the source. The reactive power becomes zero after 3.5 seconds and the result-
ant PCC voltage magnitude becomes 8.61 kV, indicating a voltage drop of 4.33%,
which is within the acceptable range.
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Figure 9.18 The DC voltage and load angle with the power factor correcting four-leg
DSTATCOM.
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9.2 Load Compensation

A load can have a poor power factor; this will result in more than the required
current drawn from the upstream feeder. The load might contain harmonics and
unbalance, which might propagate in the rest of the network, as we can see in
Example 9.1. A DSTATCOM, working in voltage control mode, will be able to
eliminate the harmonics and unbalance. As is demonstrated in Section 9.1.5,
it can also correct the power factor. There is, however, a class of current control
application in which a perfect load compensation is achieved when the load
draws a unity power factor, balanced, pure sinusoidal current from the PCC
bus. Before we discuss the operation of DSTATCOM in current control mode,
the classical load compensation technique that was proposed by Charles
Steinmetz [4] is presented.

9.2.1 Classical Load Compensation Technique

This theory was proposed by the genius mathematician and electrical engineer
Charles P. Steinmetz (1865–1923). However, this method is valid only for
Δ-connected loads, i.e. it cannot compensate for the zero-sequence load current.
Consider the Δ-connected load shown in Figure 9.20a, in which the loads are
denoted by ZLab, ZLbc, and ZLca, and they are connected between the phases
a, b, and c.
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Figure 9.19 The PCC voltage magnitude and injected reactive power with the power factor
correcting four-leg DSTATCOM.
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The load admittances are defined as

YLab =
1

ZLab
= GLab + jBLab

YLbc =
1

ZLbc
= GLbc + jBLbc

YLca =
1

ZLca
= GLca + jBLca

9 22

It is possible to have a pure reactive compensation in which three susceptances are
connected, each one in parallel with a load in the Δ-connection. This is shown in
Figure 9.20b. These susceptances are given by [4]

Bfab = −BLab +
GLca −GLbc

3

Bfbc = −BLbc +
GLab −GLca

3

Bfca = −BLca +
GLbc −GLab

3

9 23

The remarkable property of this connection is that the line currents will be
balanced and will have a unity power factor. Let us consider Example 9.8.

(a)

(b)

Figure 9.20 Classical load compensator: (a) uncompensated and (b) compensated network.
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Example 9.8 Assume that the network of Figure 9.20a has the following
parameters

Vab = 11 30 kV,Vbc = 11 − 90 kV, and Vca = 11 150 kV

ZLab = 100 + j100Ω,ZLbc = 200 + j200Ω, and ZLca = 50 + j100Ω

Note that the phase voltages will then havemagnitudes of 6.35 kV, and the phase-a
voltage will have an angle of 0 , i.e. Va = 6.35 ∠ 0 kV. The L-L currents are

Iab =
11 30
ZLab

= 75 13− j20 13 A

Ibc =
11 − 90

ZLbc
= − 27 5− j27 5 A

Ica =
11 150
ZLca

= 5 89 + j98 21 A

The real power supplied to the load is

S1 = Re VabI
∗
ab + VbcI

∗
bc + VcaI

∗
ca = 1 3915MW

The load reactances are

YLab =
1

ZLab
= GLab + jBLab = 0 005− j0 005 Ω

YLbc =
1

ZLbc
= GLbc + jBLbc = 0 0025− j0 0025 Ω

YLca =
1

ZLca
= GLca + jGLca = 0 004− j0 008 Ω

Then the compensator susceptances calculated from (9.23) are

Bfab = −BLab +
GLca −GLbc

3
= 0 0059 Ω

Bfbc = −BLbc +
GLab −GLca

3
= 0 0031 Ω

Bfca = −BLca +
GLbc −GLab

3
= 0 0066 Ω

Therefore, the compensated admittances are

Ycab = YLab + jBfab = 0 005 + j0 0009 Ω

Ycbc = YLbc + jBfbc = 0 025 + j0 0006 Ω

Ycca = YLcca + jBfca = 0 004− j0 0014 Ω
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Once the compensator is placed, the L-L currents will change. These are given by

Iab = VabYcab = 42 67 + j35 75 A

Ibc = VbcY cbc = 6 35− j27 5 A

Ica = VcaYcca = −30 17 + j35 75 A

From the L-L currents, the line currents are computed as

Ia = Iab − Ica = 73 0348 A

Ib = Ibc − Iab = − 36 5174− j63 25 = 73 0348 − 120 A

Ic = Ica − Ibc = − 36 5174 + j63 25 = 73 0348 120 A

It is obvious that the line currents are in phase with phase voltages, indicating
unity power factor operation. The power supplied to the compensated load is

P = VaIa + VbIb + VcIc = 1 3915MW

This is the same as in the case of the uncompensated load since the compensators
are pure susceptances and therefore do not consume any power.
This is a remarkable technique. However, the main drawback here is that it

requires the accurate measurements of the load and can only be applied to
Δ-connected loads. Since the load can change any time, the application of this
technique is restrictive.

9.2.2 Load Compensation Using VSC

Consider the three-phase distribution system shown in Figure 9.21, which con-
tains a DSTATCOM that is used as a current compensator. In this, the voltage
source vs supplies a load that may be unbalanced and nonlinear. The load current
drawn is denoted by iL. In the absence of the DSTATCOM, the load and source
currents will be the same, i.e.

isk = iLk , k = a, b, c 9 24

However, when the DSTATCOM is placed in the circuit, the KCL at PCC gives

isk + ifk = iLk ifk = iLk − isk , k = a, b, c 9 25

Let the load currents contain a fundamental and a harmonic component,
given by

iLk = iLkf + iLkh, k = a, b, c 9 26

where the subscripts f and h denote the fundamental and harmonic components
respectively. The DSTATCOM should operate in such a way that it supplies the
harmonic components of the load currents, i.e.

ifk = iLkh, k = a, b, c 9 27
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Then the source currents will become

isk = iLkf , k = a, b, c 9 28

This means that the source will supply only the fundamental components of the
load currents. This procedure is called active filtering and the compensator here
ensures that no harmonic current flows in the upstream network.
The active filtering method eliminates the harmonic current, but it does not guar-

antee that the power factor correction or load balancing. For example, in (9.28), if the
fundamentals of load currents have unequal magnitude, the source currents will
also have unequal magnitudes. Also, the power factor will be dominated by the
fundamental load currents. Therefore, an alternate formulation for achieving power
factor correction, load balancing, and harmonic filtering together is required. It is
required that the compensating currents need to fulfill the following three objectives:

• To force the zero-sequence components of the source currents to zero.

• To make the source currents in phase with the source voltages.

• The DSTATCOM should neither supply nor absorb any real power. This implies
that the source supplies the total real power requirement of the load.

To satisfy these three objectives, we get the following three equations

isa + isb + isc = 0 9 29

Figure 9.21 Schematic diagram of a load compensator circuit using a DSTATCOM.
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Isk = Vsk, k = a, b, c 9 30

vsaisa + vsbisb + vscisc = PLav 9 31

Equation (9.29) stipulates that the instantaneous sum of the source current is zero
and therefore the source currents will not contain any zero-sequence current.
Equation (9.30) ensures a unity power factor operation. Now, if the source currents
get balanced due to the DSTATCOM action, the power supplied to the load vsaisa+
vsbisb+ vsciscwill be a DC quantity and will be equal to the average of the real power
(PLav) drawn by the load, as given in (9.31). The compensator currents are then
given by [5]

i∗fa = ila − vsa × PLav Δ

i∗fb = ilb − vsb × PLav Δ

i∗fc = ilc − vsc × PLav Δ
9 32

where

Δ = v2sa + v2sb + v2sc

Since the DSTATCOM is supplied by a DC capacitor, as mentioned in Section 9.1,
the capacitor voltage will be discharged unless the converter losses are replenished
by drawing power from the source. Therefore, a PI controller of the same form as
(9.2) will be used to draw power from the source. This is given by

Ploss = KP V∗
dc − Vdc t + KI V∗

dc − Vdc t dt 9 33

Consequently, (9.32) is modified as

i∗fa = ila − vsa × PLav + Ploss Δ

i∗fb = ilb − vsb × PLav + Ploss Δ

i∗fc = ilc − vsc × PLav + Ploss Δ

9 34

Example 9.9 The network of Figure 9.21 has the following parameters

• Vs = 11 kV, frequency = 50 Hz, L1 = 19.3 mH, R1 = 0.1 Ω

• Unbalanced load: ZLa = 24.2 + j60.5 Ω, ZLb = 12.2 + j31.4 Ω, and ZLC = 48.2 +
j94.2 Ω

• Nonlinear load: Diode bridge rectifier supplying 100Ω load

• DC capacitor: Cdc = 1000 μF, V∗
dc = 12 kV, KP = 1, and KI = 10

Any of the DSTATCOM configurations presented in Section 9.1 can be used.
The only aspect that needs to be considered is that its neutral point N must be
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connected to the load neutral n. The DSTATCOM in this example is operated
under a hysteretic current control.
The results are shown in Figures 9.22 and 9.23. Figure 9.22a shows the load

currents, which are unbalanced and harmonically contaminated. Figure 9.22b
shows the compensated line currents, which are balanced and are almost free of
harmonics. However, some notches are visible in the source currents. These
notches are caused when the currents in each phase of the diode rectifier
commutates. There are sharp, almost discontinuous, changes in the load cur-
rents at these points. Due to the presence of the inductance L1, the DSTATCOM
cannot make its output current change rapidly enough to counter and
smoothen the notches. Figure 9.22c shows the phase-a of the source voltage
and source current, which are in phase, indicating a unity power factor
operation. The DC capacitor voltage, shown in Figure 9.23a, has a steady state
value of 12 kV, as per the reference voltage chosen. The average load power
and the power loss are shown in Figure 9.23b, where the power loss is almost
negligible.
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Figure 9.22 (a) Load currents, (b) load currents, and (c) source voltage and currents in
Example 9.9.
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9.3 Other Custom Power Devices

There are two more types of compensating custom power devices. One of them is
called a dynamic voltage restorer (DVR). This is essentially a VSC that is connected
in series to a distribution feeder, as shown in Figure 9.24. The main idea is to
protect a sensitive or critical load from voltage disturbance in the upstream feeder.
As shown in the figure, if a voltage sag occurs at the substation end, the DVR
inserts the amount of voltage needed such that the voltage supplied to the sensitive
load remains balanced and sinusoidal.
The DVR structure, shown in Figure 9.25, is a VSC, with its associated trans-

former (with leakage inductance Lf) and a filter capacitor Cd. It injects a voltage
vd such that the sensitive load voltage vL1 = vP+ vd remains balanced and sinus-
oidal. In the network of Figure 9.25, it is assumed that the load current iL1 is unbal-
anced, as shown in Figure 9.26a. This causes the PCC voltage vP to become
unbalanced as well (see Figure 9.26b). However, due to the DVR action, the critical
load bus voltage vL1 remains balanced and sinusoidal, as can be seen from
Figure 9.26c. With the system operating in the steady state, a voltage sag takes
place at 0.05 seconds, and lasts till 0.125 seconds. Due to the action of the DVR,
the voltage vL1 across the sensitive load remains balanced and supplies the load
with a specified voltage magnitude of 9 kV (peak).
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Figure 9.23 (a) Average DC capacitor voltage and (b) average load power and power loss in
Example 9.9.
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One more custom power device that has attracted some attention is the unified
power quality conditioner (UPQC), the schematic diagram of which is shown in
Figure 9.27. The UPQC contains a converter connected in shunt with the feeder
and another converter that is connected in series with the feeder. These two
converters are connected together by a DC capacitor Cdc on the DC side. The series
converter injects the voltage vd in series to protect a sensitive load, while the shunt
converter injects current if for current compensation. Furthermore, the shunt

Sensitive 

Load

DVR

Feeder
Substation

Figure 9.24 A DVR protecting a sensitive load.

Figure 9.25 Schematic diagram of a distribution systemwhere a DVR protecting a sensitive
load from a polluting load and voltage sag/swell.
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compensator draws the required current from the source to maintain the change
on the capacitor Cdc. Note that the placement of these converters can also be
reversed (i.e. shunt on the right and series on the left) depending on applications.
These placement arrangements are sometimes referred to as left UPQC or right
UPQC, depending on the relative positions of the shunt and series compensators.
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Figure 9.26 (a) Polluting load current, (b) PCC voltage, and (c) sensitive load voltage for the
distribution system of Figure 9.25.

Figure 9.27 Schematic diagram of a UPQC.
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9.4 Concluding Remarks

In this chapter, we present one of the most important aspects of power electronic
applications to power distribution systems in the form of custom power devices.
With the increasing trend of renewable energy integrations in distribution
systems, the operations of converters, in both voltage and current control modes,
are gaining importance. In Chapter 10, we discuss microgrids, where the converter
control plays a crucial role.
Among the custom power devices, the voltage control operation of the DSTAT-

COM is most important for microgrid operation, from the perspective of grid form-
ing converters. Also, the current control operation is important in terms of grid
feeding converters. These topics are covered in detail in Chapter 10 in the context
of renewable energy integration to power distribution systems.

Problems

9.1 Consider the single-line diagram of a three-phase distribution system shown
in Figure P9.1. The load is assumed to be balanced. ADSTATCOM, operating
in the voltage control mode, is regulating the load bus voltage. The system
parameters are

VS = 11 0 kV L−L ,X = 18 18Ω, and ZL = 120 + j12Ω

Assuming that the phase-a of the source voltage has an angle of 0 , it is
desired that the DSTATCOM holds the phase-a of the load bus voltage
(VL) to 6.35 ∠ −δ kV (L-N), while it produces balanced voltage across the
three phases.
(a) Determine the angle δL.
(b) Determine how much reactive power the DSTATCOM must inject to

the PCC.

Figure P9.1 DSTATCOM compensated distribution system of Problems 9.1 and 9.2.
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9.2 Consider the single-line diagram of a three-phase distribution system shown
in Figure P9.1 again. In this case the load is assumed to be unbalanced. The
system parameters are as follows

• Base voltage: 11 kV (L-L, rms)

• Source voltage (VS): 1.1 per unit

• Feeder reactance (X): 24.2Ω

• Unbalanced load impedances (ZL):

• Phase-a: 100 + j61 Ω

• Phase-b: 100 + j50 Ω

• Phase-c: 90 + j25 Ω

• DSTATCOM losses: 10 kW
Assuming that the phase-a of the source voltage angle 0 , it is desired that

the DSTATCOM holds the load bus voltage (VL) to 1∠ − δ per unit.
(a) Determine δ, and hence
(b) Compute the reactive power (QS) injected by the source.

9.3 Consider the single-line diagram of a wye-connected three-phase system
shown in Figure P9.3, where the relevant system data are also shown. A PV
is connected to all three phases of the load bus and is injecting 600 kW power
at unity power factor. Together, the PV and the utility supply a constant power
load of 6.0MVA at a lagging power factor of 0.95. The DSTATCOMhas to reg-
ulate the load bus voltage in such a way that the reactive power injected from
the utility to the PCC is zero.
(a) Determine the angle δ of the load bus voltage.
(b) Determine the magnitude of the load bus voltage.
(c) Determine the reactive power injected by the source.

Figure P9.3 DSTATCOM compensated distribution system of Problem 9.3.
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9.4 Consider the three-phase circuit, the single-line diagram of which is shown
in Figure P9.4. In this circuit, the magnitude of the load bus line-to-neutral
voltage VL has to be regulated at |V|∠ 0 V by adjusting the series compen-
sator that injects the voltage VF. The sending end line-to-neutral voltage is
VS = |V|∠ δ V.
It is stipulated that the series compensator does neither supply nor absorb

any real power from the AC system, i.e. Re VFI∗S = 0. Then determine VF,

assuming ZL = 20 + j20 Ω and Zf = 0.5 + j2 Ω.

9.5 The load in Figure P9.5 is supplied by an 11 kV (L-L), 50 Hz supply. Connect
a parallel delta-connected fixed purely reactive compensator such that the
load gets balanced and draws currents at unity power factor. Calculate the
following:
(a) Power consumed by the load.
(b) Line currents.

Figure P9.4 Series compensated distribution system of Problem 9.4.

Figure P9.5 Open-delta connection for Problem 9.4.
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9.6 Consider the compensator circuit shown in Figure 9.21, where the load is
supplied by a 50 Hz balanced supply, given in per unit as

vsa = 2 sinω t, vsb = 2 sin ω t− 120∘ , vsc = 2 sin ω t + 120∘

It is assumed that the load is unbalanced and contain fifth and seventh
harmonics. The instantaneous load currents are given in per unit as

iLa = 0 21 sin ω t− 16 5 + 0 05 sin 5ω t + 0 3 sin 7ω t

iLb = 0 42 sin ω t− 110 7 + 0 05 sin 5 ω t− 120 + 0 3 sin 7 ω t− 120

iLc = 0 31 sin ω t + 118 9 + 0 05 sin 5 ω t + 120 + 0 3 sin 7 ω t + 120

It is assumed that the shunt compensator that does not supply any real
power to the load, such that the entire amount of real power must then
come from the supply. Furthermore, the compensator balances the load,
and the compensated load draws power at unity power factor. Then find
the instantaneous compensator and source currents.

Notes and References

The instantaneous PQ theory, which was first reported in [6] has gained a world-
wide attention, due to the remarkable way in which instantaneous reactive power
is defined. Based on this, reference generation for load compensation is reported in
[7]. This method has been widely used since then for distribution system applica-
tions of shunt active filters, series active filters, and even for transmission system
applications. Various other interpretations of this method are given in [8–11].
The theory of load compensation using instantaneous symmetrical components

is proposed in [5]. In this chapter, we present a gist of this method with its appli-
cation for a distribution system having a stiff source. However, in general, a pol-
luting load can be placed further down a distribution feeder, where the switching
frequency harmonics can pollute the PCC voltage. To avoid this, an LC filter and
its associated feedback controller will be required, as is reported in [12].
The early installations of DVRs are reported in [13, 14] to protect process plants

such as automated rug manufacturing, milk food processing, etc. The DC side of a
DVR can be supported by a battery storage unit [15] or rectifier [16]. The operation
of DVRs that are supported by a DC storage capacitor was first reported in [17],
where it was ensured that the DVR does not supply any real power to maintain
its charge. This technique has also been extended to systems containing unbal-
anced and distorted loads, where the limits of performance are also evaluated
[18]. A comprehensive review of UPQC can be found in [19]. An analysis of the
applications of DSTATCOM is a power distribution system containing several
DERs is presented in [20].
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10

Microgrids

A microgrid, essentially, is a small power distribution grid where the generations
and loads are placed in closed proximity. The term microgrid was proposed by the
Consortium for Electric Reliability Technology Solutions (CERTS) [1]. There are
several definitions of a microgrid. However, most of them have some common
themes. These are that a microgrid [2]:

• Incorporates multiple loads.

• Incorporates multiple distributed energy resources (DERs).

• Is able to island from the utility grid.

• Can act as a single controllable entity.

• Can operate nominally in grid-connected mode.

• Has clear boundaries.

Summarizing the above points, a microgrid can be defined as an aggregation of
electrical loads and generation. To the utility, a microgrid is an electrical load that
can be controlled in magnitude. This load can (i) be constant, (ii) increase at night
when the price of electricity is cheaper, (iii) be zero during time of grid system
stress, and (iv) even supply power to the grid when the microgrid generation is
more than its internal load demand.
A thematic diagram of a microgrid is shown in Figure 10.1. A microgrid may

contain distributed generators (DGs), like photovoltaic (PV), wind turbine, micro-
turbine, fuel cell, and diesel (maybe biodiesel) generators. It can also contain
storages like battery energy storage systems (BESS) and flywheels. Together, the
DGs and storages are called DERs. These two terms will be used interchangeably
in the chapter. To control such diverse types of DERs, a microgrid has a central
controller, as shown in Figure 10.2. However, a microgrid may have different hier-
archies of control. This is discussed in Section 10.8.
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As can be seen from Figures 10.1 and 10.2, a microgrid is connected with the
utility grid at a point of common coupling (PCC). The utility grid may contain cen-
tral generation and large-scale renewable generators like wind farms or solar
farms. The operation of a microgrid is not influenced by the generators on the util-
ity side. A microgrid can operate in a grid-connected mode or be islanded (also
known as autonomous mode). In the latter mode of operation, the DERs con-
nected to a microgrid will have to cater to all the local loads in the microgrid.
Therefore, a microgrid will also be required to install demand response and load
shedding protocols.
An AC microgrid can contain different types of DERs with various

characteristics:

• Inertial: These have a rotating mass that can store kinetic energy. These include,
for example, diesel or natural gas turbines employing (usually) synchronous
generators. The advantage of these is that they can hold the frequency for a
longer period of time by releasing the stored kinetic energy temporarily. Disad-
vantages include the use of polluting resources and the lack of availability of
fuel, especially in remote areas. These usually have slower response times.

• Noninertial: These usually are interfaced through converters that can change
their outputs almost instantaneously (very fast response time). These include,
for example, batteries, fuel cells, microturbines, and solar photovoltaic cells
(PV). These DERs cannot store rotational energy, and frequency/voltage col-
lapse can result if immediate remedial action is not taken with respect to faults
or load increase.

Additionally, DERs are also classified according to their ability to control their
output powers:

• Dispatchable: The power output of these DERs can be controlled depending on
the load demand. These include diesel or natural gas gen-sets, batteries, fuel
cells, microturbines, etc.

• Nondispatchable: The maximum available power is harnessed in maximum
power point tracking mode in renewable energy sources, such as solar PV
and wind. The power output from these sources is intermittent since the PV out-
put can get affected by a passing cloud or the wind speed can change suddenly.

If a microgrid contains such a mix, the maximum power is obtained from non-
dispatchable sources, while the dispatchable sources supply the rest. The problem
with such a scheme can occur when the power available from the renewable
resources is more than the demand or when it is not sufficient to meet the load
demand. In both cases, storage devices will be required to absorb excess generated
power or to supply a power shortfall.
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Dispatchable DGs, such as diesel generators and microturbines, can be easily
controlled by the associated controllers to follow the desired generation patterns.
However, the nondispatchable sources, which are mainly the renewable DGs such
as wind and solar, cannot be properly controlled due to the fluctuation of their
input power. Intermittency and volatility are the main characteristics of this type
of DG, and these can deteriorate the power quality indices if their penetration level
is high. Usually, these side effects can be avoided by installing a proper capacity of
electric energy storage (ESS) units. The ESS can smooth fluctuations of the output
power of the DGs by absorbing or injecting the appropriate amount of power.
Therefore, the combination of ESS and the nondispatchable DGs can yield dis-
patchable energy sources that, beside other dispatchable DGs, can be employed
to control both the frequency and the voltage in a microgrid.
The discussions in this chapter start with the different operating modes of con-

verters for grid integration of renewable sources – both in microgrids and in power
distribution systems.

10.1 Operating Modes of a Converter

A voltage source converter (VSC) can operate in three different modes: grid form-
ing, grid feeding, and grid supporting. The dynamic operation of a converter
depends on its operating principles [3–4].

• Grid forming: The main objective of this type of converter operation is to regu-
late network voltage and frequency. A converter operates in this mode when
supplying small standalone systems like uninterrupted power supply (UPS) or
islanded microgrids. A grid forming converter works as a controlled voltage
source, with fixed voltage amplitude and frequency. Here, the real power and
the reactive power are not directly controlled, but these are determined by
the interaction of the converter with the network. It is to be noted that since grid
forming converters operate at a fixed frequency, it can operate in parallel with
other converters only when all of them operate at the same frequency.

• Grid feeding: In grid feeding converters, the active and the reactive are directly
controlled, while the voltage magnitude and frequency are determined by the
interaction of the converter with the grid. These converters are used for deliver-
ing power from renewable energy sources to the grid. For example, in a solar PV,
the active power is harnessed by a maximum power point (MPPT), while the
reactive power is usually set as zero. It is important to note that, since these con-
verters are designed to operate in parallel, they cannot operate in isolation.

• Grid supporting: These converters operate like synchronous generators by deli-
vering power to the grid. Here, frequency and voltage magnitude are controlled
by a droop mechanism, thereby imposing a fair power sharing regime.
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These converters can be connected in parallel and can also work in isolation.
As is reported in [3], these converters can either be current-source based or
voltage-source based. Only the voltage-source based converters are discussed
here since they have a direct relation with droop equations.

The schematic diagrams of these three operation modes are shown in
Figure 10.3, where CV defines the voltage reference generation and CI defines
the current reference generation. In grid forming mode, shown in Figure 10.3a,
the converter output voltage is connected to the AC grid through an output imped-
ance (Z). The converter reference voltage depends on the prespecified voltage
amplitude and frequency. In the grid feeding mode, shown in Figure 10.3b, the
converter behaves like a current source in parallel with a high impedance. In this
method, it delivers specified active and reactive power to the grid. The current
injected should be synchronized with the grid frequency. Finally, in the grid sup-
porting mode of Figure 10.3c, the converter behaves like an ideal voltage source
that is connected to the grid through an impedance. The voltage source reference
depends on active power, reactive power, voltage magnitude, and frequency.
Often, the link impedance is emulated by an internal control loop [3].

10.2 Grid Forming Converters

The feedback control principle of a grid forming converter is discussed in
Chapter 8 (Section 8.2) in the abc-frame. In this section, we design the control
based on the dq-domain. Two different types of control of such converters –
(i) using multiple proportional plus integral (PI) controllers and (ii) using state
feedback control – are discussed. For this, the same system as shown in
Figure 8.4 will be considered.
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Figure 10.3 Grid-connected VSC operation modes: (a) grid forming, (b) grid feeding, and
(c) grid supporting.
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10.2.1 PI Control in dq-domain

The VSC for the grid forming converter is assumed to be equipped with and an
output LC filter, as shown in Figure 8.4. It is desired that the VSC should reproduce
a balanced set of reference voltages across the filter capacitors, given by

v∗ca = Vm sin ωt + φ , v∗cb = Vm sin ωt + φ− 120 ,

v∗cc = Vm sin ωt + φ + 120

The system frequency is assumed to be 50 Hz. Then, from (2.40), the following
d-axis and q-axis voltage references are obtained

v∗cd = Vm cos φ , v∗cq = Vm sin φ 10 1

Two PI controllers will now be used to regulate these voltages to their desired
values. The closed-loop control system is shown in Figure 10.4. The advantage
of this scheme, as opposed to those discussed in Chapter 8, is that the filter dynam-
ics need not be considered here.

Example 10.1 Consider the same system as in Example 8.2 with the same
network, converter, and filter parameters, where the magnitude of the voltage
is chosen as Vm= 326.6 V. The AC source and the converter reference voltages
are written by choosing φ= 20 as

va = Vm sin ωt , vb = Vm sin ωt− 120 , vc = Vm sin ωt + 120

v∗ca = Vm sin ωt + 20 , v∗cb = Vm sin ωt− 100 , v∗cc = Vm sin ωt + 140

Then, as per (10.1), their reference voltages are given by v∗cd = 306 9 V and
v∗cq = 111 7 V . The gains of both the PI controllers are chosen as KP= 1 and

KI= 100.
The system tracking performance is shown in Figures 10.5 and 10.6. From these

figures, it is obvious that the steady state tracking performance is very good.
However, the transient performance needs improvement as significant ripples
can be observed at the beginning.
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Figure 10.4 Block diagram of closed-loop voltage control for grid forming converter.
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Figure 10.5 d- and q-axis voltages for grid forming converter with voltage feedback.
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Figure 10.6 Phase voltages for grid forming converter with voltage feedback.
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To eliminate the starting ripples, a further two PI controllers are added to control
the inner current loop. This is shown in Figure 10.7, where outputs of the first two
PI controllers produce d-axis and q-axis reference currents i∗1d and i∗1q respectively.
These are then compared with the d-axis and q-axis currents of i1d and i1q
respectively and passed through the second set of PI controllers to produce the
switching signals.
Continuing with Example 10.1, the proportional and integral gains of PI-3 and

PI-4 are chosen to be the same as those of the first two PI controllers, i.e.KP= 1 and
KI= 100. The results are shown in Figures 10.8 and 10.9. It can be seen that the
starting transient ripples have reduced significantly, while the steady state
tracking is perfect.
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Figure 10.7 Block diagram for inner current and outer voltage of grid forming converter.
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Figure 10.8 d- and q-axis voltages for grid forming converter with two loop controls.
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10.2.2 State Feedback Control in dq-domain

Consider the single-line diagram of the LC filter structure shown in Figure 8.1c.
The differential equations for the capacitor voltage vc and the inductor current
i1 are given by

dvc
dt

=
1
C
i1

di1
dt

= −
R1

L1
i1 +

1
L1

Vdcu− vc

10 2

These can be rewritten in a compact form for all the three phases as

dvcabc
dt

=
1
C
i1abc

di1abc
dt

= −
R1

L1
i1abc +

1
L1

Vdcuabc − vcabc
10 3

From (2.38), the dq-axis transformations of the above two equations in (10.3) are

T− 1 dvcdq0

dt
+ T

− 1
vcdq0 =

1
C
T− 1i1dq0

T− 1 di1dq0
dt

+ T
− 1

i1dq0 = −
R1

L1
T − 1i1dq0 +

1
L1

T− 1 Vdcudq0 − vcdq0

10 4
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Figure 10.9 Phase voltages for grid forming converter with two loop controls.
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These can be rewritten as

dvcdq0
dt

= −TT
− 1

vcdq0 +
1
C
i1dq0

di1dq0
dt

= −TT
− 1

i1dq0 −
R1

L1
i1dq0 +

1
L1

Vdcudq0 − vcdq0

10 5

From (2.45), we find that

TT
− 1

=

0 −ω 0

ω 0 0

0 0 0

Substituting (10.5) and neglecting the zero-sequence, the following equations
are obtained

dvcdq
dt

=
0 ω

−ω 0
vcdq +

1
C

1 0

0 1
i1dq

di1dq
dt

=
0 ω

−ω 0
i1dq −

R1

L1

1 0

0 1
i1dq +

1
L1

1 0

0 1
Vdcudq − vcdq

10 6

Let the state and control vectors be defined by

xdq =

vcd
vcq
i1d
i1q

, udq =
ud
uq

Then (10.6) is rewritten as

xdq = Axdq + BVdcudq 10 7

where

A =

0 ω 1 C 0

−ω 0 0 1 C

− 1 L1 0 −R1 L1 ω

0 − 1 L1 −ω −R1 L1

, B =

0 0

0 0
1 L1 0

0 1 L1

The state feedback control law is given by

udq = K x∗dq − xdq 10 8

The feedback control structure is shown in Figure 10.10, where the reference
vector x∗dq is computed as per Example 10.2.
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Example 10.2 Consider the same system as in Example 10.1, where the refer-
ence voltages and therefore their dq components are the same as those computed.
The reference capacitor currents are computed using (8.13), i.e.

icref=ωCVm cos(ωt+ φ)

For C= 50 μF and the system frequency of 50 Hz, the reference capacitor
currents are computed as

Im = CωVm = 5 13 A

i∗ca = Im cos ωt + 20 , i∗cb = Im cos ωt− 100 , i∗cc = Im cos ωt + 140

The d-axis and q-axis components of the capacitor currents are then com-
puted as

i∗cd = − 1 75, i∗cq = 4 82

The references for the inductor L1 are computed from (8.12) as

i∗1d = i∗cd + ifd, i∗1q = i∗cq + ifq

A linear quadratic controller is now designed with the following gain matrices
(the same as those shown in Examples 8.2 and 8.3)

Q =

150

150

1

1

, R =
0 1

0 1

The resulting gain matrix is

K =
122 47 0 10 06 0

0 122 47 0 10 06

K

+
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Figure 10.10 Block diagram of the state feedback control structure of grid forming
converter.
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The system response is shown in Figures 10.11 and 10.12. The transient response
is much smoother than both of the PI-controlled cases of Example 10.1. The reason
for this superior performance is that this controller feeds back both the output fil-
ter current and the voltage, just like the two-loop control with four PI controllers.
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Figure 10.11 d- and q-axis voltages for grid forming converter with state feedback control.
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Figure 10.12 Phase voltages for grid forming converter with state feedback control.
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However, the controller in this case is designed based on the optimal control law.
Such controllers are easier to design than PI controllers. Moreover, optimal con-
trollers are very robust to parameter variations.

10.3 Grid Feeding Converters

A grid feeding converter should be synchronized with the grid frequency and is
required to inject prespecified amounts of active and reactive power to the grid.
One of the simplest approaches is to use a hysteretic current control, where the
reference is generated in αβ-frame.
Assume that the converter output is connected with the utility bus through an

external reactance only (L-type filter). We now denote the following:

• Utility bus voltages: va, vb and vc

• Converter output currents: ia, ib and ic

• Desired active power: P∗

• Desired reactive power: Q∗.

The measured utility bus voltages (va, vb, and vc) are converted to their equiv-
alent αβ components to obtain vα and vβ. The desired real and reactive powers can
be defined as

P∗ =
3
2

vαi
∗
α + vβi

∗
β

Q∗ =
3
2

vαi
∗
β − vβi

∗
α

10 9

where i∗α and i
∗
β are the desired output currents. The solution of (10.9) can be writ-

ten in the following form

i∗α
i∗α

=
2

3 v2α + v2β

vα − vβ
vβ vα

P∗

Q∗ 10 10

Once i∗α and i
∗
β are computed, the desired output currents i∗a, i∗b, and i

∗
c are

obtained using inverse αβ transform. These are then compared with ia, ib, and ic
to generate the switching pulses using hysteretic current control.
One of the main advantages of using αβ transform is that the signal is automat-

ically synchronized with the grid frequency. The grid feeding inductor is now con-
nected with a stiff utility bus of voltage 400 V (L-L) through a 1mH inductor. The
converter DC side voltage is chosen as 600 V. The converter operates in a hysteresis
current control with a hysteresis band of 5 A. It is required that the converter
injects P∗= 50 kW and Q∗= 25 kVAr power to the utility bus, the frequency of
which is 50 Hz at the beginning. It is changed to 49.75 Hz at 1.1 seconds. The
results are shown in Figure 10.13. It can be seen that the frequency change has

10.3 Grid Feeding Converters 389



no impact on the operation of the system and that the desired active and reactive
power are supplied by the converter.
Consider the system shown in Figure 10.14, in which a utility substation supplies

a load through Feeder-1. There is a battery ESS connected to the system through
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Figure 10.13 Performance of the grid feeding converter.
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Figure 10.14 Battery-connected grid feeding converter in a distribution network.
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another feeder (Feeder-2). The battery system is interfaced with the AC system
through a three H-bridge configuration of VSC shown in Figure 7.11a. The VSC
has an LCL output filter, where L2 is the leakage inductance of the transformer.
The system parameters chosen for the study are:

• System voltage (vs): 11 kV (L-L), 50 Hz

• Feeder-1 and -2: Lf1 = Lf2 = 57.8 mH, Rf1 = Rf2 = 3.025 Ω

• RL load: LL= 372 mH, RL= 242 Ω

• LC filter: L1 = 38.5 mH, C= 3.76 μF

• Transformer: 1 MVA, 440 V: 11 kV, leakage inductance of 10%.

An output feedback current control is designed using the pole shift control in the
abc-frame as in Example 8.7 with a sampling time of 10 μs. The magnitude and the
phase angle of the battery bus voltage vB is first extracted using a fast Fourier trans-
former (FFT) block. Let this be denoted by |VBm|∠ δB. It is assumed that the battery
injects power at a unity power factor. If the power reference is denoted by P∗

B, the
reference for the current that will be injected by the battery is given by

Im =
2
3

×
P∗
B

VBM

i∗L2a = Im sin ωt + δB , i∗L2b = Im sin ωt + δB − 120 , i∗L2c = Im sin ωt + δB + 120

The results are shown in Figure 10.15. At the beginning, the source frequency is
50.1 Hz and the battery neither absorbs nor supplies any real power. Then, at 0.5,
the battery starts absorbing 135 kW of power at unity power factor. Subsequently,
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Figure 10.15 (a) Power flow in the network and (b) current tracking error when the battery
operates in grid feeding mode.
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at 1.5 seconds, the battery supplies 130 kW of power at unity power factor. The
source frequency changes to 49.8 Hz at 2.5 seconds. It can be seen from
Figure 10.15a that the power supplied by the source increases at 0.5 seconds to sup-
ply the battery and reduces at 1.5 seconds since the battery is now supplying
power. The load power remains constant throughout. The change in frequency
has no impact on the power flow since the battery is operating in the grid feeding
mode. The current tracking error for phase-a is shown in Figure 10.15b. It can be
seen that there is a jump discontinuity when the battery power reference changes.
However, the tracking error is negligible. Also, the change in frequency does not
have any impact on this tracking error.

10.4 Grid Supporting Converters for Islanded Operation
of Microgrids

In this section, the islanded (or autonomous) operation of a microgrid is discussed,
where the converters operate in grid supporting mode, as shown in Figure 10.3c.
The inputs to these converters are DGs (DERs) on the DC side. The converters are
required to produce output voltages depending on active and reactive power, volt-
age magnitude, and frequency. The DERs that are connected to the microgrid
share power according to their ratings. A step-by-step approach for designing
droop gains such that an accurate real/reactive power sharing can occur is pre-
sented here. However, the power sharing usually is dependent on the R/X ratio
of the feeders that connect the DGs in the microgrid. To explain the droop concept,
let us first consider the behavior of a large turbo alternator during transients.
A large power system has several large turbo alternators. They can store kinetic

energy while rotating at synchronous speed. If the system load suddenly increases,
the generators momentarily release the stored kinetic energy to meet the load
demand. Assuming that the system damping is negligible, the generator rotor
dynamics are given by the swing equation [5]

2H
ωs

dδ2

dt2
= Pm −Pe 10 11

where

H =
Stored kinetic energy MJ

Generator MVA

where ωs is the rotor synchronous speed in rad/s, δ is the load angle in rad,
Pm is the mechanical power input in per unit (pu), and Pe is the electrical power
output in pu.
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The load angle is related to the generator speed ω by the relation

dδ
dt

= ω−ωs 10 12

For a large turbo alternator, the mechanical input speed cannot be changed
instantaneously due to its large rotational inertia. Thus, when a sudden load
increase occurs, the term Pm− Pe becomes negative. Equation (10.12) indicates
that the generator speed ω drops below the synchronous speed ωs, i.e. the gener-
ator slows down. It tries to maintain the balance between themechanical and elec-
trical power through the release of the stored rotational energy such that the angle
does not diverge, causing the generator to lose synchronism. This, however, is a
temporary process and can last only a few cycles. In order to supply the increased
load, the generator turbine-governor action is required. This is achieved through a
steady state frequency–power relation, called the droop equation [5]. In
Section 10.4.1, the droop equations for different R/X ratios of distribution feeders
are discussed.

10.4.1 Active and Reactive Over a Feeder

Consider the simple system shown in Figure 10.16, in which two sources are
connected together through a feeder with an impedance of R+ jX. Assuming
VS= V1∠ δ1 and VR= V2∠ δ2, the current through the line is given by

I =
V 1 δ1 −V 2 δ2

R + jX
10 13

Therefore, the complex power flowing from the source is

P1 + jQ1 = V 1 × I∗ = V 1 δ1 ×
V 1 − δ1 −V 2 − δ2

R− jX
=

V 2
1 −V 1V 2 δ1 − δ2

R− jX

10 14

jX

VS

–

R I

+

VR

+

–

P1, Q1
Figure 10.16 Two AC source
connected together through a
feeder.
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Defining δ= δ1− δ2 and expanding (10.14), the real and imaginary parts are
given by

P1 =
V 1

R2 + X2 R V 1 −V 2 cos δ + XV 2 sin δ 10 15

Q1 =
V1

R2 + X2 −RV2 sin δ + X V 1 −V 2 cos δ 10 16

10.4.2 Inductive Grid

Consider the case when the grid is predominantly inductive, i.e. X> > R, such that
we can assume R ≈ 0. Furthermore, assume that the load angle δ is very small, such
that sin(δ)≈ δ and cos(δ)≈ 1. Therefore, (10.15) and (10.16) can be rewritten as

P1 ≈
V 1V 2

X
δ δ≈

XP1

V1V 2
10 17

Q1 ≈
V2

1 −V 1V 2

X
V 1 −V 2 ≈

XQ1

V 1
10 18

These two relations define the direct relationship:

• Between the load angle δ and the active power P1.

• Between the voltage difference V1− V2 and the reactive power Q1.

The first relation has resulted in a P-δ droop, as is reported in [6–7]. However,
note from (10.12) that the derivative of angle δ is proportional to the frequency
difference. Therefore, a relation between the active power and the frequency can
be established. Also, the second relation results in a voltage droop that varies
with reactive power.
Assume that a microgrid has a total N number of DERs. Then the P-f and Q-V

droop equations for each DER are given by

f i = f ∗ + ni × 0 5Pi
∗ −Pi , i = 1, 2,…,N 10 19

Vi = V ∗ + mi × 0 5Qi
∗ −Qi , i = 1, 2,…,N 10 20

where f ∗ is the reference frequency of the entire microgrid in Hz and V ∗ is the
reference voltage of the microgrid in kV; P∗

i andQ
∗
i respectively are the active

and reactive power rating of the ith DER and ni and mi are their respective droop
gains. The droop characteristics are shown in Figure 10.17. Assume that the fre-
quency variation is restricted between fmax and fmin, as shown in Figure 10.17a.
Then, as per (10.19), a DER should supply half its rated power when it operates
at the rated frequency f ∗. The Q-V droop line is shown in Figure 10.17b, which
stipulates that a DER voltage magnitude should be 1.0 pu when it supplies half
its rated reactive power.
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Consider a microgrid where only two DERs are present. The droop lines are
shown in Figure 10.18. Assume that the DERs are operating at the rated frequency
of 50 Hz, supplying half their rated power, when the load increases suddenly. It is
shown in Chapter 9 (Section 9.1.4) that all generators in a grid must operate at the
same frequency, failing which a large amount of current will flow through the net-
work. Therefore, DER-1 should supply P∗

1 2 + ΔP1 amount of power, while DER-2
should supply P∗

2 2 + ΔP2 such that the operating frequency of both the DERs
becomes 50−Δf Hz. This will be the basis of a droop gain selection. Note that
the droop line of DER-1 is shallower than that of DER-2. The inequality
P∗
1 > P∗

2 implies that the angle of the droop line with the y-axis is larger for DERs
with higher power ratings than those with lower power ratings.
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Figure 10.17 Droop characteristics for inductive grid: (a) P-f droop and (b) Q-V droop.

f

P1

50 Hz

P2

f

ΔP1 ΔP2

Δf

P1
* P2

*

22

Figure 10.18 P-f droop lines of a two-DG microgrid.
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Example 10.3 Consider the simple microgrid with two DERs, as shown in
Figure 10.19. The DERs are supplying a load through two feeders. Let us specify
that the microgrid operating frequency will be contained within 50 ± 0.5 Hz.
Therefore, the maximum frequency deviation is stipulated as Δfmax = 0.5 Hz.
Let the ratings of the DERs be

P∗
1 = 200 kW and P∗

2 = 50 kW

Then, when DER-1 supplies its maximum rated power, the following expression
is written from (10.19)

−Δf max = f 1 − f ∗ = n1 × 0 5P1
∗ − P1

Substituting the power rating of DER-1 in the above equation, we get

− 0 5 Hz = n1 0 1− 0 2 MW n1 = 5 Hz MW

In a similar way, the droop gain for DER-2 is calculated as

n2 =
0 5
0 025

= 20 Hz MW

Note from these values that

P∗
1

P∗
2
= 4 =

n2

n1

In general, a microgrid containing N number of DERs will obey the following
expression if the frequency of all of them are to be restricted between ±Δfmax Hz

P1
∗n1 = P2

∗n2 = = P∗
NnN = α 10 21

Thus, the droop gains for all the DERs should be chosen such that α remains
constant.
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V1 ∠ δ1 V2 ∠ δ2
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Figure 10.19 A simple microgrid with two DERs.
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Once the required voltage magnitude and the frequency are obtained, the refer-
ence voltages for each DER are obtained as

v∗ai = 2Vi sin 2πf it

v∗bi = 2Vi sin 2πf it− 120 i = 1, 2,…,N
v∗ci = 2Vi sin 2πf it + 120

10 22

Each DER is realized by a VSC, connected to the microgrid through an output
LC filter. The reference voltages given in Example 8.2 are then reproduced across
the filter capacitor in an abc frame using a linear quadratic regulator (LQR) state
feedback controller discussed in Chapter 8. It is assumed that the DERs are sup-
plied by fixed DC sources.
For the system of Example 10.3, the reactive power limits are chosen as half the

real power limits, i.e. Q∗
1 = 100 kVAr and Q∗

2 = 25 kVAr. The voltage droop gains
are chosen asm1 = 10 V/MVAr andm2 = 40 V/MVAr. The feeder impedances are
Lf1 = 51.4 mH, Rf1 = 3 Ω, Lf2 = 77 mH, and Rf2 = 2.42 Ω. A balanced RL load is
chosen as RL= 672 Ω and LL= 0.4265 H.
The results are shown in Figure 10.20. Figure 10.20a shows the real powers

supplied by the DERs, which, in the steady state, are P1 = 142 kW and
P2 = 35.5 kW. Thus, the power sharing ratio is 4 : 1, which is as expected from
the droop relations. From (10.19), and with the droop gain of n1 = 5 Hz/MW,
the steady frequency of DER-1 should be

f1 = 50 + 5 × (0.1− 0.142) = 49.79 Hz
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Figure 10.20 Microgrid operation results while operating with P-f and Q-V droop control.
(a) Real power supplied by DERs (kW), (b) DER frequencies (Hz), (c) Reactive power
supplied by DERs (kVAr).
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which is as shown in Figure 10.20b. As the droop gains chosen such that the
frequency remains the same throughout the microgrid, both the DERs supply
power at this frequency. The reactive powers supplied are Q1 = 14.4 kVAr and
Q2 = 23.6 kVAr, shown in Figure 10.20c. They do not obey the desired sharing
ratio. There is a potential problem with this discrepancy in the reactive power
sharing.
Let us assume that the DER output voltages are roughly equal to 6.35 kV (L-N).

Then the currents supplied by the DERs are

I1 =
1422 + 14 42

3 × 6 35
= 7 49 A and I2 =

35 52 + 23 62

3 × 6 35
= 2 24 A

Thus, the current sharing ratio is 3.34 : 1, i.e. the converter with a lower rating
has more share of the current. It might so happen that a DER with lower
rating may have to supply more reactive power than other DERs with higher
ratings, so much so that it reaches its maximum current limit. The DER protec-
tion system may then take it offline, thereby endangering the system stability.
Therefore, proper care must be taken to avoid this action.

10.4.3 Resistive Grid

Power transmission systems usually have a high a X/R ratio. On the contrary, dis-
tribution feeders are mostly resistive and therefore the reactance X in (10.15) and
(10.16) can be neglected. These two equations are then rewritten as

P1 =
V 1

R
V 1 −V 2 cos δ 10 23

Q1 = −
V 1V 2

R
sin δ 10 24

Again, assuming the load angle δ to be very small, (10.23) and (10.24) are
reduced to

V 1 −V 2 =
RP1

X
10 25

δ = −
RQ1

V 1V 2
10 26

Therefore, in a predominantly resistive grid, the real power is proportional with
voltage magnitude, while the reactive power varies with frequency. The P-V and
Q-f droop equations for the resistive grid are

Vi = V ∗ + mi × 0 5Pi
∗ − Pi 10 27

f i = f ∗ − ni × 0 5Qi
∗ −Qi 10 28
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Note that the negative sign in (10.28) results from the negative sign in Q - δ rela-
tion in (10.26). The Q-f and P-V droop lines are shown in Figure 10.21.

Example 10.4 Consider the system described in Example 10.3. The DER output
voltages have a specified value of 11 kV (L-L). Therefore, the L-N voltage will be
6.35 kV. Let the voltage variation be restricted between ±0.06 pu (6%), i.e. between
5.969 and 6.732 kV. Thus, when DER-1 is not supplying any power, from (10.27)
we have

1 06− 1 × 6 35 kV = m1 × 0 1MW

m1 =
0 381
0 1

= 3 81 kV MW

Since DER-2 rating is one-fourth of that of DER-1, its droop gain will be m2 =
15.42 kV/MW.
For the Q-f droop gains, the frequency deviation is restricted to be within ±0.5 Hz.

In Example 10.3, the reactive power limits are chosen as Q∗
1 = 100 kVAr and

Q∗
2 = 25kVAr. Using (10.27), whenDER-1 is supplying its maximum rated reactive

power, the following expression is obtained

0 5 = n1 × 0 05 n1 = 10 Hz MVAr

Therefore, the droop gain for DER-2 is n2 = 40 Hz/MVAr.
The feeder impedances are chosen as Lf1 = Lf2 = 0.8 mH and Rf1 = Rf2 = 10Ω, i.e.

the X/R ratio of both the feeders are 0.2513 : 10 (nearly 1 : 40) at 50 Hz frequency.
A balanced RL load is chosen as RL= 672 Ω and LL= 0.8556 H. The DERs are sup-
plied through two DC sources, while the converters operate in the LQR state

V

P

f

f *

fmax Vmax

fmin
Vmin

Q

2

Q*

2

P*

V *

(a) (b)

Figure 10.21 Droop characteristics for resistive grid: (a) Q-f droop and (b) P-V droop.
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feedback control mode. The results are shown in Figure 10.22. The steady state
quantities are summarized in Table 10.1. Since the reactive power supplied by
the DERs is nearly half their reactive power ratings, the operating frequency is
near 50 Hz, exactly f1 = 50− 10 × (0.05− 0.04768) = 49.777 Hz. From this table,
it is found that Q1 :Q2 = 4 and P1 : P2 = 3.62. Thus, while the reactive sharing is
fairly accurate, the real power sharing does not meet the requirement.

10.4.4 Consideration of Line Impedances

In the two droop control methods discussed in Sections 10.4.2 and 10.4.3, the droop
equations are derived by neglecting either the line resistance or the line reactance.
This results in suboptimal performances, as evident from Examples 10.3 and 10.4.

Reactive Power Supplied by DERs (kVAr)
60
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(b)

(c)
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320.5
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0
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Real Power Supplied by DERs (kW)

Time (s)

DER Frequencies (Hz)

Figure 10.22 Microgrid operation results while operating with Q-f and P-V droop control.
(a) Reactive power supplied by DERs (kVAr), (b) DER frequencies (Hz), (c) Real power supplied
by DERs (kW).

Table 10.1 Steady state quantities obtained
for the resistive grid.

DER-1 DER-2

P1 = 117.9 kW P2 = 32.6 kW

Q1 = 47.68 kVAr Q2 = 11.92 kVAr

f1 = 49.777 Hz f2 = 49.777 Hz
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One approach to include the line impedances in the droop equations is proposed in
[8]. With respect to Figure 10.16, let us define

Z θ = R + jX 10 29

where θ = tan−1(X/R). An orthogonal rotational transformation matrix is defined
as [8]

P

Q
= T

P

Q
10 30

where

T =
sin θ − cos θ

cos θ sin θ
=

X
Z

−
R
Z

R
Z

X
Z

The following observations can be made from (10.30):

•When
R
X

= 0 (θ = 90 ), P = P and Q =Q.

•When
R
X

= 1 (θ = 45 ), P =
P−Q

2
andQ =

P + Q

2
.

•When
R
X

= ∞ (θ = 0 ), P = −Q and Q = P.

The droop control equations are then [8]

f − f ∗ = n × P ∗
− P

= n
X
Z

P∗ − P −
R
Z

Q∗ −Q
10 31

V −V∗ = m × Q ∗
−Q

= m
R
Z

P∗ −P +
X
Z

Q∗ −Q
10 32

Example 10.5 Consider the same system discussed in Example 10.4. The feeder
impedances for this case are chosen as Lf1 = Lf2 = L= 0.8 mH and Rf1 = Rf2 = R=
1 Ω, i.e. the R/X ratio is 3.99 at 50 Hz frequency. Then, X= 100π × 0.0008

= 0.2513 Ω and θ = tan−1(0.2513) = 14.1 . Furthermore, Z = 0 25132 + 1 =
1 031 Ω, and therefore R/|Z| = 0.97 and X/|Z| = 0.244. The droop gains are
chosen as

n1 = 0 1, n2 = 0 4, m1 = 4, m2 = 16

The results are shown in Figure 10.23. The DER-1 supplies 135.41 kW of real
power and 54.18 kVAr of reactive power, while the real and reactive power
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supplied by DER-4 respectively are 34.44 kW and 13.71 kVAr. Both the real and
reactive power sharing ratios are (nearly) 4 : 1. The frequency of the DERs are
49.997 Hz.
As demonstrated in Example 10.5, this method accommodates the effects of line

impedance and, because of this, both real and reactive power sharing ratios are
fairly accurate. In this example, it is assumed that the feeder impedances are
known a priori. However, this assumption is not valid in real-life situations since
the load will not be lumped and placed in a single location but will be distributed
throughout the network. Therefore, a change in some of the loads will alter the
Thévenin equivalence of the feeder impedance. Moreover, in the case of plug-
and-play DERs, a DER coming online or going offline will change the Thévenin
impedance. Thus, for the method to be successfully implemented, a parameter
estimation algorithm and communication network will be required. In [9], a
method is proposed with angle droop which can facilitate accurate power sharing
in highly resistive lines, however, using a communication network.

10.4.5 Virtual Impedance

It is evident from the discussions in this chapter that the power sharing ratio
is heavily dependent on the R/X ratio of the distribution feeders. It is not
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Figure 10.23 Microgrid operation results while operating with combined droop
considering line parameters of Example 10.5. (a) Real power supplied by DERs (kW),
(b) Reactive power supplied by DERs (kVAr), (c) DER frequencies (Hz).
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possible to change the feeder impedance and therefore alternate means will be
required to counter the influence of the X/R ratios. One way of overcoming
the effect of higher resistance is to use a large output inductor in an LCL filter.
This, however, is not desirable, since it may cause unnecessary voltage drops
and degrade power factors. An alternative to this is the use of a virtual
impedance, which was first proposed in [10] and subsequently appeared in
several other publications. For a detailed explanation of this method,
see [10–12].
The main idea here is to use the droop equation discussed in Sections 10.4.2 and

10.4.3. However, the voltage reference is then modified by subtracting the output
current multiplied by the virtual impedance. Consider, for example, the microgrid
containing two DERs of Figure 10.19. The voltage references generated through
the droop equation for DERs are given in (10.22). These are then modified through
negative feedback of the output currents. For DER-1, the modified voltage refer-
ences will be

vrefk1 = v∗k1 −ZV ik1, k = a, b, c 10 33

A similar expression can also be written for DER-2. Therefore, without adding
any physical hardware that may cause the power or voltage to drop, the effect of an
output impedance is introduced in the feedback loop. Let us now consider
Examples 10.6 and 10.7.

Example 10.6 In this example, the effect of choosing virtual resistors in pre-
dominantly resistive lines will be demonstrated. For this, the same P-f droop
gains, as in Example 10.3 (i.e. n1 = 5 Hz/MW and n2 = 20 Hz/MW), are selected,
with the same DER power ratings. The feeder impedances are Lf1 = 1.9 mH,
Rf1 = 3 Ω, Lf2 = 6.4 mH, and Rf2 = 10 Ω. The R/X ratios of both feeders at
50 Hz are about 5. It is obvious that these are highly resistive feeders, where a
P-f droop will not work properly. A balanced RL load is chosen with RL=
672 Ω and LL= 0.4265 H. The Q-V droop gains are chosen as m1 = 10 V/MVAr
and m2 = 40 V/MVAr. In order to counter the highly resistive line, the effect of
the feeder resistances is nullified using two virtual resistors, which are chosen as
ZV1 = RV1 = 5 Ω and ZV2 = RV2 = 20 Ω.
The results are shown in Figure 10.24. The steady state DER output powers

are P1 = 137.5 kW and P2 = 34.38 kW, which are in the ratio of 4 : 1. The cor-
responding frequency in the steady state is 49.81 Hz, which obeys the droop
Eq. (10.19). The reactive powers, however, do not obey the droop relations.
In fact, Q1 is less than Q2 in this case since the Feeder-2 impedance is higher
than that of Feeder-1.
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Example 10.7 For this example, the predominantly resistive circuit of Example
10.4 is chosen with the same line and load parameters. The Q-f and P-V droop
parameters remain the same as those calculated in Example 10.4, which shows
that even though the reactive power sharing was accurate the real power sharing
was not acceptable. To counter the effect of the line resistance, a virtual inductor is
now chosen such that (10.33) is rewritten as

vref i = v∗i − LVi
dii
dt

, i = 1, 2

Often the derivative part is not implemented in the form shown in the above
equation. An ideal derivative action can generate spikes every time the set point
changes, as is pointed out in (3.32) of Chapter 3. Instead, the derivative action in
the above equation is modified as

LVi
dii
dt

= LVi
Ns

s + N
ii, i = 1, 2

The virtual inductor parameters are chosen as LV1 = 50 mH, LV2 = 550 mH, and
N= 100. The results are shown in Figure 10.25. The values of the reactive powers
and the frequencies are identical to those listed in Table 10.1. However, the real
power sharing has improved considerably. These are given by P1 = 119.2 kW
and P2 = 29.5 kW. They have a power sharing ratio of 4 : 1, as desired.
These two examples, which present the merits of including the virtual imped-

ance, can be very effective in improving power sharing in an islanded microgrid.
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Figure 10.24 Microgrid operation results while operating with P-f and Q-V droop control
with virtual resistance. (a) Real power supplied by DERs (kW), (b) DER frequencies (Hz), (c)
Reactive power supplied by DERs (kVAr).
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These impedances, however, can lead to system instability. The design aspects are
discussed in [10–12]. A systematic study of an interconnected microgrid will be
required, which may provide guidelines for the selection of these impedances.
The eigenvalue analysis of an inverter-based microgrid is presented in [13]. This
paper can be used as a guideline for checking the limits of these impedances for a
stable operation of microgrids.

10.4.6 Inclusion of Nondispatchable Sources

Amicrogrid, be it islanded or grid-connected, can have different generation types.
Usually, nondispatchable sources like wind or solar PV operate in a maximum
power tracking mode. A solar PV, when connected to an islanded microgrid, will
inject active power in the grid feeding mode. This can be taken as a negative load
and the dispatchable generators can supply the rest of the load in the droop control
mode, as illustrated by Example 10.8.

Example 10.8 Let us consider the inductive grid of Example 10.3, except that a
grid feeding converter is connected to the system through another feeder that is
placed to the right of DER-2 in Figure 10.19. The impedance parameters of this
feeder are 77 mH and 2.42Ω. With the system operating in steady state, the grid
feeding inverter is connected at 1 second. The power that the grid feeding con-
verter injects varies at discrete intervals of time. The results are shown in
Figure 10.26, and these are summarized in Table 10.2, where the power injected
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Figure 10.25 Microgrid operation results while operating with Q-f and P-V droop
control with virtual inductance. (a) Reactive power supplied by DERs (kVAr), (b) DER
frequencies (Hz), (c) Real power supplied by DERs (kW).
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by the grid feeding converter is denoted by PPV. From these results, it is obvious
that the inclusion of the nondispatchable source does not affect the droop sharing
of the dispatchable DERs.

10.4.7 Angle Droop Control

The angle droop control is suitable for a predominantly reactive grid, even though
it is feasible to implement this on grids with high R/X ratios using communication
networks [9]. Consider the two-DER microgrid system of Figure 10.19, which is
redrawn in Figure 10.27. In this figure, it is assumed that both the DERs are
equipped with output LCL filters. The inductances L1 and L2 represent the outer
inductances of the LCL filters. However, the DERs still operate in voltage control

Table 10.2 Steady state quantities obtained in Example 10.8.

Time t (s) PPV (kW) P1 (kW) P2 (kW) Frequency (Hz) P1 : P2

0 < t< 0.5 0 138.5 34.62 49.807 4 : 1

0.5 ≤ t< 1.25 28.4 115.65 28.91 49.92 4 : 1

1.25≤ t< 2 62.1 88.6 22.15 50.057 4 : 1

t≥ 2 28.4 115.65 28.91 49.92 4 : 1
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Figure 10.26 Operation of islanded microgrid with a grid feeding converter.
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mode in which they control the voltage across the filter capacitors. These capacitor
voltages are denoted by Vg1∠ δg1 and Vg2∠ δg2 in Figure 10.27. The outer inductors
L1 and L2 are used for real and reactive power flow control, as will be explained in
this section. The load bus voltage is denoted by V∠ δ.
It is shown in (10.17) that the real power is directly proportional to the angle

difference between two AC sources. Therefore, the droop equations for DERs
are given by

δi = δ∗ + ni × P∗
i −Pi , i = 1, 2 10 34

Vi = V∗ + mi × Q∗
i −Qi , i = 1, 2 10 35

where δ∗ is the reference angle and Vi and δi define the bus voltage magnitude and
its angle, as indicated in Figure 10.27. Assuming that the feeder resistances are
negligible and applying a DC load flow, the following expressions are obtained
for the microgrid of Figure 10.27 [6–7].

δ1 − δ = X1P1

δ2 − δ = X2P2
10 36

where X1 =
ωLf 1
VV 1

and X2 =
ωLf 2
VV2

ω being the fundamental frequency in rad/s.

In an AC system, the power flow depends on the relative angle difference, and
therefore the reference angle δ∗ can be taken as 0. However, all the DERs in a
microgrid must measure their angles with respect to this reference angle, and
hence a global clock will be required for synchronizing all the units. The angle
droop gains must be chosen as per (10.21), hence

P1
∗n1 = P2

∗n2

Load

DER-1 DER-2

1 2
P1 Q1
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P2 Q2
Lf 1 Lf 2Rf 1 Rf 2

V2 ∠ δ2V1 ∠ δ1

Vg1 ∠ δg1 Vg2 ∠ δg2

V∠ δ

Figure 10.27 Microgrid structure for angle droop control.
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Substituting the above equation in (10.34), the following expression is obtained

δ1 − δ2 = n1 × P∗
1 −P1 − n2 × P∗

2 −P2 = n1P1 −n2 × P2 10 37

Comparing (10.36) with (10.37), we get

δ1 − δ2 = X1P1 −X2P2 = n1P1 −n2 × P2 10 38

Rearranging (10.38), the following power sharing ratio is obtained

P1

P2
=

X1 + n1
X2 + n2

10 39

Then the power will be shared in proportion to the droop gains, i.e. P1n1 = P2n2
provided that

n1 >> X1 and n2 >> X2

The droop Eqs. (10.34) and (10.35) will produce the bus voltage magnitudes and
their angles. From these quantities, the references for the filter capacitor voltages
need to be calculated. Consider, for example, DER-1. From Figure 10.27, the
current I1 flowing from DER-1 to Bus-1 is given by

I1 =
Vg1 δg1 −V 1 δ1

jω L1

Then the complex power injected by the DER to the microgrid bus is given by

P1 + jQ1 = V 1 δ1
Vg1 − δg1 −V 1 − δ1

− jω L1
=

Vg1V 1 δ1 − δg1 −V 2
1

− jω L1
10 40

Separating the real and imaginary components, the real and reactive powers
injected in Bus-1 are given by

P1 =
Vg1V 1 sin δ1 − δg1

ω L1
10 41

Q1 =
Vg1V1 cos δ1 − δg1 −V 2

1

ω L1
10 42

Equations (10.41) and (10.42) can be rewritten as

sin δ1 − δg1 =
ω L1P1

Vg1V 1

cos δ1 − δg1 =
ω L1Q1 + V 2

1

Vg1V 1
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From these expressions, the angle of the DER voltage is computed as

δg1 = δ1 − tan − 1 ω L1P1

ω L1Q1 + V 2
1

10 43

In (10.43), the value ofω L1 is known a priori. The Bus-1 voltageV1 and its angle δ1
are computed from the droop equation. Furthermore, P1 and Q1 are measured.
Therefore, knowing these quantities, the angle δg1 is calculated from (10.43). Once
this is obtained, the DER reference voltages for the three phases are decided as

vg1a = Vm1 sin ωt + δg1

vg1b = Vm1 sin ωt + δg1 − 120

vg1c = Vm1 sin ωt + δg1 + 120

10 44

where Vm1 is computed from (10.41) as

Vm1 = 2
ω L1P1

V 1 sin δ1 − δg1

In a similar way, the DER-2 voltage and angle can also be derived.

Example 10.9 Consider the predominantly inductive system of Example 10.3,
with the same DER real and reactive power ratings. The other system parameters
chosen are

V∗ = 6 35 kV, δ∗ = 0 ,L1 = L2 = 10 mH

n1 = 1 MW, n4 = 4 MW,m1 = 0 05kV MVAr, andm2 = 0 2kV MVAr

The results are shown in Figures 10.28 and 10.29. Figure 10.28 shows the real
and reactive powers supplied by the DERs, which are P1 = 137.5 kW, P2 =
39.4 kW, Q1 = 50 kVAr, and Q2 = 38.8 kVAr. The active power sharing ratio
3.5 : 1 is not very accurate. The accuracy can be improved by increasing the droop
gains. This might, however, make the system unstable and auxiliary controllers
may be required for stabilization [6]. The bus voltages and their angles are shown
in Figure 10.29.

In this section, the islanded operation of microgrids is discussed, where it is
assumed that all the DERs operate in dispatchable mode and all of them are inter-
faced with the microgrid through VSCs. However, even rotary generators like
biofuel-based generators can easily be integrated to a microgrid through a fre-
quency droop equation. Hydrogen fuel cells and microturbines are dispatchable.
Solar PVs and wind turbines can also be dispatchable if they are not operated in a
maximum power point tracking mode. Furthermore, renewable generators with
battery ESSs can also act like a dispatchable generator. For example, consider
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the case in which a solar PV and battery are connected to the same bus, and they
work in tandem. Then, during the sunlight hours, the PV–battery combination can
supply a fixed amount of power in most of the time. If the PV generation is high, it
can charge the battery while maintaining the rated output power constant as well.
On the other hand, when the PV generation is low, the battery can discharge,
thereby maintaining the rated output power constant. The battery storages can
also act like a dispatchable source if they are fully charged, especially in the eve-
nings. To take into account these variabilities, microgrid planning becomes an
important aspect that needs to be considered for the successful implementation
and operation of a microgrid.

10.5 Grid-connected Operation of Microgrid

Consider the system shown in Figure 10.30, in which a microgrid is connected to a
utility substation through a feeder of impedance Rs - Ls. There is a circuit breaker
CB placed at the PCC that connects/disconnects the utility from the microgrid.
There are twomodes of operation: (i) grid-connected mode and (ii) islanded mode.
The DERs are equipped with output LC filters and will operate in voltage control
mode. The main aim is to compute the reference voltages depending on the mode
of operation of these converters. These two modes are defined as:

• Islanded mode: The DERs will share power according to their ratings under a
suitable droop control regime.

P1 Q1 P2 Q2Rf1 Rf 2

PL QL

Load

Lf1 Lf 2

DER-2RL
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DER-1

Utility
Substation

PsRs
Ls

CB

PCC

vC1 vC2
+ +

Figure 10.30 Schematic diagram of a utility connected microgrid.
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• Grid-connected mode: The DERs operate as voltage-controlled grid feeding con-
verters. They will supply fixed amounts of real and reactive power to the local
load. The rest of the power requirement will come from the utility system.

Let us denote the real and reactive power references of DER-1 by P∗
1 and Q∗

1

respectively. Also, the DER-1 output voltage is defined as

vC1 = Vm1 sin ωt + δ1 10 45

where ω is the frequency of the grid, synchronized through a PLL. The angle δ1
should be so adjusted that the required amount of active power P∗

1 flows out of
the DER. Similarly, the voltage magnitude Vm1 is adjusted through reactive power
feedback. These are accomplished through two PI controllers, given by

δ1 = KPδ1 P∗
1 −P1 + KIδ1 P∗

1 −P1 dt 10 46

Vm1 = KPV1 Q∗
1 −Q1 + KIV1 Q∗

1 −Q1 dt 10 47

In the samemanner, the real and reactive powers of DER-2 are also controlled in
the grid-connected mode.

Example 10.10 The microgrid of Figure 10.30 is operated with the parameters
given in Table 10.3. In the islanded mode, the microgrid is operated in P-f and
Q-V droop control mode. For the grid-connected mode, the PI controller para-
meters chosen for both the DERs are

KPδ = 0 001, KIδ = 10

KPV = 0 001, KIV = 100

Also, the power references chosen are

P∗
1 = 300 kW, Q∗

1 = 150 kVAr

P∗
2 = 100 kW, Q∗

2 = 50 kVAr

Both the VSCs of the DERs operate in LQR state feedback voltage control mode.
The results are shown in Figure 10.31. At the beginning, the system operates in the
grid-connected mode, where the DERs together supply 400 kW of power and the
utility supplies about 500 kW of power. The active and reactive power are regu-
lated by the PI controllers accurately. The circuit breaker (CB) opens at 1 second.
Once it opens, the power supplied by the utility becomes zero and the DER-1 and
DER-2 supply 675 and 168.75 kW of active power in a ratio of 4 : 1. Accordingly,
the frequency becomes 49.83 Hz.
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Table 10.3 System parameters chosen for Example 10.8.

Quantities Parameters

Utility

Voltage 11 kV (L-L)

Frequency 50 Hz

Feeder 0.605Ω and 19.3 mH

DER-1

Power references P∗
1 = 1 MW and Q∗

1 = 600 kVAr

Droop gains n1 = 1 Hz/MW and m1 = 0.54 kV/MVAr

Filter parameters 3.3 mH, 0.1Ω and 50 μF

DER-2

Power references P∗
2 = 250 kW and Q∗

1 = 150 kVAr

Droop gains n4 = 4 Hz/MW and m2 = 2.16 kV/MVAr

Filter parameters 3.3 mH, 0.1Ω, and 50 μF

Microgrid feeder and load parameters

Feeder-1 Rf1 = 3 Ω and Lf1 = 57.8 mH

Feeder-2 Rf2 = 6 Ω and Lf2 = 115.6 mH

Balanced RL load 120Ω and 125.5 mH

Time (s)

600

50.2

50

49.8

300

200

100

0

400

200

0
0 0.5 1 1.5 2 2.5
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Reactive Power Supplied by DERs (kVAr)

Ps

Figure 10.31 Operation of a microgrid, when connected to a utility and subsequently
islanded.
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Resynchronization of microgrids with the utility network is an active area of
research. In general, an AC source can be synchronized with another AC system,
when they have the same voltage, the same frequency, the same phase sequence,
and the same phase angle. In undergraduate laboratories, this synchronization is
performed by using synchroscopes and three lamps. However, this process must
be automated for microgrid synchronization. In [14], the grid synchronization is
performed through an intelligent connection agent (ICA), which consists of a
switch and a grid-connected VSC. The VSC is fed from an external DC source
that acts as an energy storage unit. The synchronization is performed through
a PLL that obtains the phase angle of the grid voltage. There are other aspects
that need to be considered before the microgrid can be synchronized with the
utility grid. As shown in Example 10.10, the microgrid frequency becomes
49.83 Hz in the islanded mode. However, to bring the frequency back to the grid
frequency before the synchronization can occur, an isochronous controller can
be used. In [15], a wind energy integration with an islanded microgrid is pre-
sented, where the droop line is shifted using the isochronous action before the
system can be integrated with the wind energy system. In [16], an interconnect-
ing switch is used for coupling two microgrids when they operate in different
droop control regimes.
A scheme for controlled power flow between a utility system and a microgrid is

proposed in [7]. This employs a set of back-to-back VSCs, as shown in Figure 10.32.
The voltage magnitudes of the VSCs are assumed to be specified, or can be con-
trolled through reactive power, as given in (10.47). VSC-1 holds the DC capacitor
voltage constant using an angle control, in the same manner as discussed for a
DSTATCOM in Chapter 9. VSC-2 is operated in a power control mode, where
its angle is controlled based on real power, as given in (10.46). Note that the power
exchange, denoted by PLink in Figure 10.28, is bidirectional. When a microgrid is
under stress, it can buy power from the utility. On the other hand, when themicro-
grid is lightly loaded, it can sell power to the grid. This structure is discussed in
Section 10.11, where a frequency-based microgrid overload prevention method
is presented.

PLink

VSC-1

CdcAC Utility AC MicrogridVdc

VSC-2

vMGFeeder-1

Feeder-2

vC2
Rf2

Lf2

Figure 10.32 Schematic diagram of power flow control between utility and microgrid
through back-to-back converters.
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10.6 DC Microgrids

Many electrical loads, such as LED lighting, adjustable speed motors, electric vehi-
cles, computing, and communication equipment need DC supply. At the same
time, many DERs – like PV, batteries, and fuel cells – produce power at the DC
voltage level, which is then converted into AC for grid connection. Moreover, there
is potential to directly connect a wind turbine or microturbine to a DC grid. There-
fore, there is renewed interest in DC grids at the distribution level as they reduce
conversion losses significantly. Voltage transformation from one level to another
in a DC grid can be achieved through DC-DC converters, which have more than a
95% efficiency.
The basic building block of a typical DC microgrid (DCMG) is shown in

Figure 10.33. The DCMG is connected to the utility system through a transformer
and an interlinking AC-DC converter. Renewable energy sources, like wind or
solar PV, can be directly connected to the DC bus of the microgrid. The DCMG
can also have BESS units. Usually, such units operate with constant output vol-
tages. However, there may be variations in the output voltages depending on
the battery chemistry, current, ambient temperature, and state of charge (SoC).
The direct connections of a battery to the DC bus can result in fluctuations in

Utility

DC Load

DC Bus

Transformer

AC Load

Energy

Storage

EV

Wind

PV

Interlinking
Converter

Figure 10.33 The basic building blocks of a DCMG system. Source: foxbat / Shutterstock.
com and Tesla / flickr.
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the bus voltage and inrush current, thereby shortening the lifetime of the battery
[17]. Such fluctuations can affect the DC bus voltage as well. Thus, these battery
storage units are connected through DC-DC converters, as shown in Figure 10.33.
There are advantages and disadvantages of DC systems. Some of the advantages

are [17]:

• There is no skin effect in a DC system. Therefore, the current can flow through
the entire cable and not just the outer edges. This reduces losses and makes it
possible to use smaller cables for the same amount of current.

• The problem associated with the synchronization with renewable sources with
AC grids does not exist in DC systems.

• There is no requirement for reactive power control.

Some of the disadvantages of the DC systems are [17]:

• There is no inherent current zero crossing in DC systems. Therefore, the protec-
tion of a DC system is more difficult than that of an AC system.

• DC systems will require new standards for products and voltage levels.

• DC system grounding and corrosion issues need to be investigated and resolved.

One of the interesting and important applications of DCMG that is emerging
these days is in the maritime onboard power supply. The cruise ship Queen Eliz-
abeth 2 (QE-2) was retrofitted to have diesel-electric integrated with ship’s power
system so that both the propulsion and the ship’s power demand were met by sev-
eral generators. The QE-2 is the first all-electric ship in the world in the real sense
[18]. However, its AC power supply system suffers from the ailments associated
with such connections, such as synchronization, reactive power support, and har-
monics. Therefore, the onboard power supply through DC systems has now
actively been considered. Moreover, a DC bus architecture can easily contain BESS
units without the requirement of DC-AC converters. Some of the other advantages
are given in [18].
ABB has developed an onboard DC grid that merges various DC links through-

out the ship [19]. The DC system distributes power through a single 1 kV DC cir-
cuit. It can be used for marine applications up to a power level of 20 MW. The ABB
design increases the energy efficiency of the ship by 20% while reducing the elec-
trical equipment weight by 30%. For the protection of the onboard DC power sup-
ply, fuses and isolating switches are used, and semiconductor switches are turned
off in a controlled fashion such that the fault currents can be interrupted much
faster than traditional circuit breakers.
There are several connections that are available for DCMGs, such as radial, ring,

mesh, or zonal type [17]. In this section, the radial configuration, which is the sim-
plest structure, is considered. First, the islanded operation of DCMG is discussed,
where two different droop control structures are presented.
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10.6.1 P-V Droop Control

As in the case of an AC microgrid, the DCMG, when operating in the standalone
(islanded) mode, must manage its own load. This implies that all the DGs in the
microgridmust supply the local load demand. Consider the schematic diagram of a
DCMG shown in Figure 10.34. It contains two DC-DC converters. Converter-1 and
2 are supplied by DGs, which are represented by voltage sources. These converters
supply a load RL. The output voltages of Conveters-1 and 2 are denoted by V1 and
V2 respectively, while the load voltage is denoted by VL. The feeder resistances are
represented by Rf1 and Rf2.
In the P-V droop control scheme, the desired output voltages of the DC-DC con-

verters are generated from the power flowing out of them. This is given by

V∗
1 = V ∗ −n1P1

V∗
2 = V ∗ −n2P2

10 48

where P1 = V1 × I1, P2 = V2 × I2, V
∗ is the reference voltage for the microgrid, and

n1 and n2 are droop gains. The DC-DC converters, through their duty ratio control
actions, need to follow the references generated such that V 1 ≈V ∗

1 and V 2 ≈V ∗
2.

Equation (10.48) can be written in terms of currents as

V∗
1 = V ∗ −n1V 1I1

V∗
2 = V ∗ −n2V 2I2

10 49

If the DC-DC converters can reproduce the desired reference voltage output
accurately, then Kirchhoff’s voltage law at the load bus in Figure 10.30 will
produce

VL = V 1 −Rf 1I1 = V2 −Rf 2I2 10 50

Substitution of (10.49) in (10.50) yields

V∗ −n1V 1I1 −Rf 1I1 = V∗ −n2V 2I2 −Rf 2I2

V1 V2

I1 I2Rf1 Rf 2

RL

VL
DC-DC

Converter-1
DC-DC

Converter-2

++ +
Vdc2Vdc1 P2P1

Figure 10.34 Schematic diagram of a simple DCMG.
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This implies that

I1
I2

=
n2V2 + Rf 2

n1V1 + Rf 1
10 51

Under the assumptions

n1V 1 >> Rf 1, n2V 2 >> Rf 2 10 52

(10.51) becomes

I1
I2

n2V 2

n1V 1
10 53

Therefore, the ratio of the output powers is given by

P1

P2
=

V 1I1
V 2I2

=
n2
n1

10 54

Note that the above relation is the same as that obtained for an ACmicrogrid. If a
DCMG containsM DGs, with output powers of P1, P2, …, PM and with droop gains
of n1, n2, …, nM, the droop sharing ratios will be given by

P1 × n1 = P2 × n2 = = PM × nM = α 10 55

Here we outline a procedure for the selection of droop gain selection. This pro-
cedure will produce rating-based power sharing so long as the assumptions of
(10.52) are not violated.
The droop gain selection for DCMGs depends on the maximum available power

from a DG and the maximum allowable voltage drop at the output of the converter
that can be allowed. Let themaximum available power be denoted by Pm, while the
maximum allowable voltage drops at the output of the converter be denoted by
ΔVm. Then, noting from (10.48) that the maximum voltage drop occurs when
the converter is supplying the maximum power, the following expression can
be written for each converter

V −V ∗ = −ΔVm = − nPm

Solving the above equation, the following relation for the droop gain is obtained

n =
ΔVm

Pm
V W 10 56

Example 10.11 Consider a DCMG that has four generators with the following
ratings

Pm1 = 50 kW, Pm2 = 20 kW, Pm3 = 40 kW, Pm2 = 100 kW
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Note that the standard for voltage level for DCMGs is currently emerging to be
380 V, and therefore we shall choose this as our reference voltage. Furthermore,
the voltage drop will be restricted to be within 10% of the nominal voltage, i.e.

V∗ = 380 V, ΔVm = 38 V

Therefore, using (10.56), the following droop gains for the DGs are obtained

n1 =
38
50

= 0 76 V kW, n2 =
38
20

= 1 9 V kW,

n3 =
38
40

= 0 95 V kW, n4 =
38
100

= 0 38 V kW

It can be easily verified that α in (10.55) is 38 V, i.e. equal to ΔVm.

10.6.2 The Effect of Line Resistances

Assuming that the voltage tracking by the DC-DC converters is perfect, (10.57) is
obtained from (10.49)

V ∗ = V 1 + n1V 1I1 = V2 + n2V 2I2 10 57

Now, (10.53) can be rearranged as

I1 = I2
n2V 2

n1V 1

Therefore, the above two equations are combined to get

V 1 + n1V 1I1 = V 1 + n1V 1I2
n2V2

n1V1
= V 1 + n2V 2I2 10 58

Comparing (10.57) with (10.58), it can be seen that V1 = V2, only if the assump-
tions of (10.55) are true, and for Rf1 = Rf2 and Pm1 = Pm2. Since these conditions are
not easily satisfied, we can at best haveV1≈ V2. However, the power sharing can be
influenced by the line resistances and by ΔVm.
To determine the actual power flow in the network, a set of nonlinear equations

needs to be solved. There are four unknown quantities in the network: V1, I1, V2,
and I2. Therefore, four equations are needed to solve the power flow equations. The
first two of these are obtained from (10.49) as

g1 = V 1 1 + n1I1 −V∗ = 0

g2 = V 2 1 + n2I2 −V∗ = 0
10 59
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Equation (10.50) is rewritten as

g3 = V 1 −Rf 1I1 −V 2 + Rf 2I2 = 0 10 60

Kirchhoff’s current law at the load bus of Figure 10.34 gives

VL

RL
= I1 + I2

The load bus voltage VL can be written from (10.50) as VL= V1− Rf1I1. There-
fore, substituting this voltage in the above equation, the final equation is obtained
as

g4 = I1 + I2 −
V 1 −Rf 1I1

RL
= 0 10 61

To solve these four equations, the following two vectors are formed – one for the
four unknowns and the other for the four functions

x = V1 V2 I1 I2
T and g = g1 g2 g3 g4

T

Then, the Newton–Raphson method is used to solve (10.59) to (10.61). The first
step is to form a Jacobian matrix, which is given by

J =

∂g1
∂V 1

∂g1
∂V 2

∂g1
∂I1

∂g1
∂I2

∂g2
∂V 1

∂g2
∂V 2

∂g2
∂I1

∂g2
∂I2

∂g3
∂V 1

∂g3
∂V 2

∂g3
∂I1

∂g3
∂I2

∂g4
∂V 1

∂g4
∂V 2

∂g4
∂I1

∂g4
∂I2

=

1 + n1I1 0 n1V 1 0

0 1 + n2I2 0 n2V 2

1 − 1 −Rf 1 Rf 2

−
1
RL

0 1 +
Rf 1

RL
1

10 62

Then, choosing an initial vector of x(0), the first step in the iteration process is to
determine the small perturbation of the states from

Δx k = J k
− 1

Δg k = J k
− 1

0− g k , k = 0, 1, 10 63

where k is the iteration number. The states are then updated from

x k + 1 = x k + Δx k , k = 0, 1, 10 64

The process terminates when minimum |Δx(k)| is less than a small positive
number. This is illustrated by Example 10.12.
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Example 10.12 Consider a DCMG that has two generators with the following
ratings

Pm1 = 50 kW and Pm2 = 20 kW

Then, for V ∗= 380 V, ΔVm= 38 V, the droop gains are calculated from Exam-
ple 10.11 as n1 = 0.76 V/kW and n2 = 1.9 V/kW. The load resistance is assumed to
be RL= 4 Ω. Then, assuming the maximum voltage drop across the line, the load
bus voltage is VL= 0.9 × 380 = 342 V. Therefore, the DGs will deliver
V 2

L RL = 29 24 kW power to the load. The Newton–Raphson method mentioned
in Section 10.6.2 is now employed for three Rf1 : Rf2 ratios. The results are shown in
Figure 10.35. The power sharing accuracy increases as the line resistance decreases
in all the three cases. The DG output voltages increase with line resistances to cater
for an increased drop across the lines. Furthermore, the Rf1 : Rf2 ratio plays an
important role in the power sharing ratios.

10.6.3 I-V Droop Control

An alternate droop formulation, where the output voltages depend on currents, is
discussed in this section. Consider the system of Figure 10.34 again. The droop
equations are given by

V 1 = V ∗ −n1I1
V 2 = V ∗ −n2I2

10 65
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Figure 10.35 The effect of line resistance on the output voltage, power, and power
sharing ratio.

10.6 DC Microgrids 421



where the droop gains are now defined in ohms (Ω). Substituting the relations in
(10.50), we get

VL = V∗ − n1I1 −Rf 1I1 = V∗ − n2I2 −Rf 2I2 10 66

This implies that

I1
I2

=
n2 + Rf 2

n1 + Rf 1
10 67

Under the assumption

n1 >> Rf 1, n2 >> Rf 2 10 68

(10.67) can be modified as

I1
I2

n2
n1

10 69

Furthermore, assuming V1≈ V2, the power relation is given as

P1

P2
≈

V 1I1
V 2I2

=
n2

n1
10 70

It can be seen that (10.70) is exactly the same as (10.54), and hence (10.55) also
remains valid. However, the droop gains in this case are defined in terms of resist-
ance, while in (10.53) they are defined in V/kW. Therefore, a different methodol-
ogy must be adopted for the choice of the droop gains for the I-V droop control.
Again, the maximum voltage drop condition will be used to calculate the droop

gains. From (10.65), the maximum voltage drop is given by

ΔVm = V∗ −V = nI = n
Pm

V
10 71

Equation (10.71) is written as

n =
V × ΔVm

Pm
10 72

Knowing ΔVm, V can be calculated. Then knowing Pm, n can be calculated.

Example 10.13 Consider the system of Example 10.11 with the same para-
meters. When DG-1 supplies its maximum power of 50 kW, the output voltage will
become 342 V. Then from (10.72), we have

n1 =
342 × 38
50 × 103

= 0 26 Ω

In a similar way, droop gains for the other DGs are calculated as

n2 = 0 65Ω,n3 = 0 325Ω, and n2 = 0 13Ω
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10.6.4 DCMG Operation with DC-DC Converters

The DCMG operation discussed in Section 10.6.3 assumes that the load is directly
connected across the DC line with a maximum voltage of 380 V. The voltage sup-
plied to the load can vary (drop) depending on the load resistance. In practice,
however, there might be loads connected to the microgrid that have a much lower
voltage rating. Consider, for example, the microgrid system shown in Figure 10.36.
In this, the DG voltages are raised to microgrid voltage level by the two boost con-
verters. This voltage might be higher than the voltage that can be tolerated by the
load. Therefore, a buck converter is connected at the load terminal that regulates
the voltage VL across the load. Note that the voltage Vm is applied as the input to
the buck converter. To eliminate the ripples in buck converter input voltage, a fil-
ter capacitor Cf is connected across this point. The working principle of this system
is demonstrated with both the droop controllers mentioned in Sections 10.6.1
and 10.6.3.

Example 10.14 In the DCMG of Figure 10.36, the power ratings of the DGs are
taken as

Pm1 = 50 kW and Pm2 = 20 kW

The line resistances are Rf1 = 0.01 Ω and Rf2 = 0.06 Ω. The P-V droop gains for
these are computed in Example 10.11 and the I-V droop gains are given in Exam-
ple 10.13. All the three converters are assumed to have the following parameters

L = 4mH,C = 500 μF, and f = 10 kHz

In addition, Cf= 500 μF and Vdc1 = Vdc2 = 250 V are also chosen and the refer-
ence voltage for the buck converter output voltage V∗

L = 150 V.

V1 V2

I1 I2
Rf1 Rf2

RL

Vm

Buck

Converter

Boost

Converter-1

Boost

Converter-2

++ +Vdc1 Vdc2Cf

VL

P2P1

PL

Figure 10.36 Schematic diagram of a DCMG containing buck and boost converters.
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All the three converters are operated in LQR state feedback with integral control
using the state space averaging method.
First, the load resistance RL is chosen as 1Ω such that the load draws 22.5 kW of

power. Then, at 0.5 seconds, the load resistance is decreased to 0.5Ω such that the
load now becomes 45 kW. The results with both types of droop control are shown
in Figure 10.37. These are almost identical. The power sharing ratio P1 : P2 is 2.5 : 1.
The buck converter holds the load voltage (VL) constant at 150 V. The stability
(eigenvalue) analysis for the DCMG circuit of Figure 10.36 is reported in [20],
where it is assumed that all the converters are controlled through state feedback
with integral control. The feedback gains are computed using LQR design on the
state space average model of the converters. It is shown that the system behavior is
very robust due to the optimal controller design.

10.7 Integrated AC-DC System

The schematic diagram of a utility connected DCMG is shown in Figure 10.38. The
DCMG is connected to the utility system through an interlinking converter (IC)
and a dual active bridge (DAB). The IC is a VSC, which operates in the same man-
ner as a voltage controlled DSTATCOM. Therefore, it holds the DC voltage Vdc1
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Figure 10.37 Performance of DCMG with (a and b) P-V and (c and d) I-V droop control.
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across the capacitor Cdc1 constant by drawing the power required by the DCMG
from the utility. The DAB is a bidirectional DC-DC converter that also isolates
the AC and DC systems. This device modulates the voltage Vdc2 across the capac-
itorCdc2 to facilitate the bidirectional power flow (PLink) between the utility and the
DCMG. The operation and control of the DAB is briefly discussed in Section 10.7.1.

10.7.1 Dual Active Bridge (DAB)

ADAB is an isolated, bidirectional, buck and boost DC-DC converter topology that
can be used in high-power applications as solid state transformers. The advantages
of DAB converters include a lower number of passive components, high-power
density, and high-power efficiency resulting from zero voltage switching (ZVS)
[21–23]. The schematic diagram of a DAB is shown in Figure 10.39a. It contains
two H-bridge converters that are connected together by a high-frequency trans-
former. A DAB can be controlled by:

• Phase shifting the switching of the two bridges, while they work at fixed
duty ratio.

• Controlling the duty ratio of the bridges.

• Modulating the switching frequency.

We shall derive a controller using the first method.
The equivalent circuit of a DAB is shown in Figure 10.39b. In this, R represents

converter and transformer losses and L is the leakage reactance of the transformer.
All the quantities are referred to the secondary side of the transformer. The voltage
in the primary side of the transformer is denoted by vP, while that of the secondary
side is denoted by vs. Since the converter contains two H-bridge converters, there
are four possible switching states, given by

vp =
Vdc when S1 is on and S2 is off

−Vdc when S2 is on and S1 is off

vs =
V 0 when S3 is on and S4 is off

−V 0 when S4 is on and S3 is off

10 73
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Converter
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Figure 10.38 Schematic diagram of a utility connected DCMG.
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It is assumed that both the H-bridges are operated at a 50% duty ratio. However,
their switching is phase shifted by an instant ϕ, as shown in Figure 10.40a.
There are four modes of operation of the DAB. These are defined as:

•Mode-1: When switches S1 and S4 are closed.

•Mode-2: When switches S1 and S3 are closed.

•Mode-3: When switches S2 and S3 are closed.

•Mode-4: When switches S2 and S4 are closed.

These modes of operations are shown in Figure 10.40b–e. Defining a state vector
as x = V 0 iL

T , the state space equations for the different modes are given by

Mode-1 t0 ≤ t < t1 x =
− 1 RLC − 1 C

1 L −R L
x +

0

1 L
Vdc 10 74

Mode-2 t1 ≤ t < t2 x =
− 1 RLC − 1 C

− 1 L −R L
x +

0

1 L
Vdc 10 75
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+
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Figure 10.39 Schematic diagram of (a) DAB and (b) its equivalent circuit.
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Mode-3 t2 ≤ t < t3 x =
− 1 RLC − 1 C

1 L −R L
x +

0

− 1 L
Vdc 10 76

Mode-3 t3 ≤ t < t4 x =
− 1 RLC − 1 C

1 L −R L
x +

0

− 1 L
Vdc 10 77

From Figure 10.40a, the following steady state conditions are defined

t1 − t0 = t3 − t2 = ϕ, t2 − t1 = t4 − t3 =
T
2
−ϕ, t4 − t0 = T
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Figure 10.40 (a) Switching configuration of a DAB and its equivalent circuit in (b) Mode-1,
(c) Mode-2, (d) Mode-3, and (e) Mode-4.
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Substituting these relations in (10.74)–(10.77), the solutions of these equations
are given by

x t1 = F1x t0 + G1Vdc

x t2 = F2x t1 + G2Vdc

x t3 = F3x t1 + G3Vdc

x t4 = F4x t3 + G4Vdc

10 78

These matrices are derived using the state transition equations and can be found
in [24].
Combining all the four components of (10.78), the following state transition

equation can be written between t0 and t4

x t4 = Fx t0 + GVdc 10 79

Now we define the instant t4 as k+ 1 and the instant t0 as k. Then linearizing
(10.79) around the steady state conditions of x0 and ϕ0, the following linear
discrete-time state space equation is obtained

Δx k + 1 = AΔx t0 + BΔϕ 10 80

where

A =
∂F
∂x

and B =
∂F
∂ϕ

+
∂B
∂ϕ

The output equation is

V 0 k = 1 0 = CΔx k 10 81

Equation (10.80) defines the perturbed linear state equation around x0 and ϕ0.
The steady state quantities must be derived first before a control law can be com-
puted. Assuming the converter to be lossless, the power transfer relationship is
given by [22, 23]

P1 = P2 =
VdcV 0ϕ π−ϕ

2π2fL
10 82

where f is the switching frequency. From (10.82), it is evident that the power trans-
fer is zero either when ϕ= 0 or when ϕ= π and the maximum power is trans-
ferred when ϕ= π/2.
It can be seen from (10.82) that, for a constant Vdc and ϕ, the output voltage V0

will be proportional to the output power P2. The first step in the linearization
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process is to decide a nominal value of the output power P20 at the nominal voltage
of V00. Equation (10.82) can then be rewritten in terms of these quantities as

ϕ2
0 − πϕ0 +

2π2fL
VdcV 00

P20 = 0 10 83

Solving the quadratic equation and choosing the lesser of the two values, the
nominal value of the phase shift ϕ0 is obtained.
From the nominal values of the output voltage V00 and output power P20, the

nominal value of load resistance is calculated as RL0 = V2
00 P20. With this value

of RL0 and ϕ0, Eqs. (10.74) to (10.79) are evaluated. The steady state vector is then
calculated from (10.79) as

xss = I−F − 1GVdc 10 84

This vector and ϕ0 are now used for the derivation of the linearized model of
(10.80–10.81).

10.7.2 AC Utility Connected DCMG

In Figure 10.38, the interlinking VSC holds the DC voltage Vdc1 across the capac-
itor Cdc1, while the DAB modulates the voltage Vdc2 across the capacitor Cdc2 to
facilitate the bidirectional power flow. The reference voltage V∗

dc2 is obtained by
the link power flow through the following PI controller

V∗
dc2 = V∗ + KP P∗

Link −PLink + KI P∗
Link −PLink dt 10 85

where V∗ is the DCMG reference voltage and P∗
Link is the desired link power.

Example 10.15 The DCMG is the same as that discussed in Example 10.14. The
DAB transformer is chosen as 1 kV:1 kV while its leakage inductance is 0.4 mH.
The DAB steady state model is derived for a nominal voltage of 380 V and power
of 50 kW. The DAB then is controlled using LQR state feedback with integral con-
trol. The DAB PI controller gains are KP= 2.0 and KI= 100. The results are shown
in Figure 10.41. At the beginning, the DCMG operates in the steady state, supply-
ing a load of 45 kW, where the DGs share power the ratio of 2.5 : 1. During this
time, the DAB holds its output voltage in such a way that no power exchange takes
place between the utility and the DCMG, i.e. PLink= 0. Then, at 0.25 seconds,
15 kW of power is drawn from the utility. From Figure 10.41a, it can be seen that
the load power remains constant all through this process. However, since 15 kW of
power is supplied by the utility after 0.25 seconds, the DGs supply P1 = 22.1 kW
and P2 = 8.85 kW maintaining a ratio of 2.5 : 1. The DAB output voltage and its
reference are shown in Figure 10.41b, while the DAB control output ϕ is shown
in Figure 10.41c.
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10.8 Control Hierarchies of Microgrids

The droop control of AC microgrids is essentially a local control of DERs that can
operate without communication networks. However, to operate a microgrid in the
mix of several other microgrids and distribution networks, this local controller is
not adequate. There are different levels of microgrid controllers summarized in
[25]. Figure 10.42 shows the control hierarchy of a microgrid, which consists of
three levels of control: primary, secondary, and tertiary. These are briefly discussed
in this section.

10.8.1 Primary Control

The droop control discussed in Sections 10.4.2–10.4.5 and 10.4.7 is the main type of
primary control. However, there are several drawbacks with this method, as is
pointed out in [25]. One of the obvious ones is the dependence of droop gains
on the X/R ratio. To overcome this problem, a virtual impedance can be used.
However, the stability issues for the selection of virtual impedance need to be
addressed through an eigenvalue analysis. For this, a simplified model of the sys-
tem needs to be derived.
The droop control is basically a steady state concept in which the load dynamics

are ignored. This can lead to instability during fast load changes. Furthermore, the
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Figure 10.41 Performance of utility connected DCMG. (a) Power flow in DCMG (kW),
(b) DAB output voltage and its reference (V), (c) DAB control output (ϕ).
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nonlinear and/or unbalanced loads can cause power quality issues in the system.
One way to approach this issue is to stipulate that each DGmust compensate for its
polluting local load, while they share common load as per their ratings [26]. This,
however, will require the placement of a compensating DG with each polluting
load, which is very restrictive. There are other approaches that can be found from
the references listed in [25].
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Figure 10.42 Three-level control structure of microgrids.
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Several methods have been proposed for non-droop-based methods [25],
such as:

• Centralized control is one where a central controller regulates all the DERs in
the microgrid. If a microgrid spans a small geographical area, and assuming the
presence of ubiquitous broadband or 5G networks, measurements from load
terminals can be sent to a central controller, which will then send the set points
to all DERs depending on their power ratings. This, however, is not an efficient
method and can lead to instability, even for a single point of failure in the com-
munication network.

• Amaster–slave approach is presented in [27], in which one of the converters acts
as a master in the islanded mode. The master holds the voltage, while the other
DERs supply the load. While this method is inspired by the load flow type sce-
nario, the presence of single or multiple masters complicates the scenario. This
method is a cross between a fully decentralized control and a communication-
based centralized control.

Most of the non-droop-based methods assume some form of communication. In
fact, with the increased use of data communication networks, it is conceivable that
most of these methods are viable and will be applied in future microgrid primary
control. However, a fallback strategy in case of a communication failure must be
embedded in these algorithms.

10.8.2 Secondary Control

The secondary control is basically the microgrid energy management system
(MGEMS). The secondary control level can be centralized or decentralized. As
the names signify, in a centralized control, a central controller sends control sig-
nals to the DERs, while the decentralized control depends on distributed intelli-
gence to coordinate DER operations.
The centralized control level includes a microgrid central controller (MGCC),

which sends commands to the primary controller of each DER to compensate
for the deviation in their output voltage and frequency from their respective set
points. Through this, the coordination amongst the local controllers of the micro-
grids can be realized at this level. A communication system is required to imple-
ment this level of control since the information and commands should be regularly
transferred between the local regulators and the secondary controller. Usually, the
operation timeframe of this control is slower than that of the primary level, and
therefore a lower bandwidth communication system is sufficient. Apart from
the data regarding the DERs and loads, the MGCC can consider the relevant
weather forecasting data to determine the changes in the set points required [25].
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The main problem of a centralized controller is that it can have a deleterious
effect even for a single point of failure in the communication system. In a decen-
tralized control scheme, each DER in a microgrid is provided with more autonomy
than that given in the centralized approach. In [28], a distributed control architec-
ture is discussed for power electronic based DERs such that each of them has its
secondary controller. Each of these secondary controllers can produce appropriate
control correction for their primary controllers by considering the measurements
from the other DER units. In [29], a multiagent-based secondary controller is pro-
posed. The objective of amultiagent system (MAS) is to segment a total system into
several entities, each called an agent. These agents can then interact amongst
themselves to solve a complex problem. A review of anMAS application in a smart
grid can be found in [30]. The schematic diagram of theMAS-based secondary con-
troller is shown in Figure 10.43, in which all the agents communicate amongst
themselves and with the MGCC [29].

10.8.3 Tertiary Control

This level can be considered as a part of the main grid operation [25]. At this level,
the interactions and power exchanges amongst the microgrids as well as between
the microgrids and the main grid are controlled. Generally, these actions are
organized to achieve various technical, economic, and environmental objectives
within the whole system, while satisfying some prespecified constraints. One of
the objectives could be the reactive power management through the coordination
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of different microgrids. In a coupled microgrid scenario, the tertiary controller
should determine the amount of power to be exchanged amongst the subsystems
along with the associated timings. This controller is placed at the highest level, and
therefore it is responsible for coordinating the operation of the microgrids by send-
ing appropriate commands to the secondary controllers. It is to be noted that this is
also the slowest control level that should operate in minutes rather than in sec-
onds. Some of the objectives of the tertiary level are:

•Microgrid overload relieving.

• Reliability improvement.

• Resilience enhancement.

• Loss minimization within the entire system.

10.9 Smart Distribution Networks: Networked
Microgrids

In the past, power distribution systems were radial in nature, i.e. power would flow
from a distribution substation down the feeder in a unidirectional manner. Cur-
rently, the situation is changing rapidly. Several rooftop PVs are getting connected
to power distribution systems, causing voltage rise, reverse power flow, and power
quality problems. Moreover, PVs are intermittent in nature: a sudden shading in
PVs can cause a power drop or power fluctuations that need to be smoothened out.
Moreover, the penetrations of a large number of power electronic converters have
been the cause of power quality issues that were not present in the past. In
Chapter 11, the effects of harmonics and their standards are discussed. In this sec-
tion, however, we present what the distribution grids of the future will be like.
The main objectives of a smart distribution system are improved reliability, abil-

ity to self-heal, fuel diversity, and increased generation efficiency through com-
bined heat and power (CHP) [31]. In a future power distribution system, there
will be several small to medium-scale DERs. To have a smart distribution system,
all these need to be controlled cohesively, which will require a real-time informa-
tion exchange between the DERs and the utility. One concept that is getting some
attention these days is what is called a virtual power plant (VPP), which is essen-
tially a cloud-based software that coordinates all the DERs such that they work
together as a single aggregated power plant. However, this concept is only at
the trial stage currently and its applicability is still unknown. A microgrid, on
the other hand, can operate along with the grid or as an island. Therefore, several
microgrids can work with the grid, with much lower control complexity than a
VPP. In the rest of this chapter, the concept and operation of coupled microgrids
and microgrid clusters are discussed.
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There are several advantages in forming distribution systems with a network of
microgrids. It is pointed out in [32] that networked microgrids can be used for
improving resilience in power systems. The main argument in favor of micro-
grid-based resilience enhancement is that a microgrid can island itself in case
of an extreme event. It can supply its local load demand with a much lesser impact
in the event of the grid failure. A microgrid, while interacting with a utility grid,
can provide ancillary support, voltage support, black start support, etc. [32]. Oak
Ridge National Laboratory in Tennessee, USA, has published a scoping study on
networkedmicrogrids in 2016 [33]. In this report, the authors discuss the intercon-
nection layout, communication and control architectures, and the potential ben-
efits of networking microgrids. Several research needs are pointed out in this
article. Some of these are:

• Coordination of energy trading and ancillary service management through
microgrids, addressing DER control and feeder reconfiguration.

• Multi-objective optimization considering peak shaving, loss minimization, and
voltage regulation across several interconnected microgrids.

• Comprehensive energy management for each microgrid, considering the pres-
ence of networked microgrids and distribution systems.

• Distribution energy market and distribution ancillary service market, both man-
aged by the distribution service operators.

• Demand response incentive signal design to allow utility scale energy
management.

• Defining microgrid-to-microgrid communication framework.

A comprehensive review of networked microgrids is given in [34]. In
Section 10.10, the interconnection layout and operational strategies of networked
microgrids are discussed.

10.9.1 Interconnection of Networked Microgrids

It is possible to have different layout structures of networkedmicrogrids. However,
all of these are the subsets of the three general layouts shown in Figures
10.44–10.46. Figure 10.44 shows the configuration of microgrids connected in
series to a single feeder, where the microgrid management system (MMS) controls
the operation of microgrids and the connecting switches SW-1 and SW-2. Depend-
ing on the operating principles, the MMS can control four possible operating sce-
narios. These are listed in Table 10.4, where the microgrids are abbreviated as
microgrids. The MMS will coordinate these actions and generate signals for the
switches to open or close.
Figure 10.45 shows the configuration of two microgrids that are connected in

parallel to a single feeder. The microgrids are connected by the switch SW-12,
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while switches SW-1 and SW-2 connect them with the utility feeder. Since there
are three switches, 23 = 8 operating conditions are possible, which are listed in
Table 10.5.
Figure 10.46 shows the interconnections of microgrids on multiple feeders.

Again, since there are three switches, eight operating scenarios are possible. Notice
here that the microgrids can be connected to Feeder-1 when switches SW-1 and
SW-12 are closed, and SW-2 is open. Similarly, they can be connected to
Feeder-2 when switches SW-2 and SW-12 are closed, and SW-1 is open. Further-
more, they can be connected to both the feeders when all three switches are closed.
This is the most versatile configuration of a microgrid network since it can operate
in grid-connected mode even when one of the feeders is down. In this configura-
tion, the restoration of feeders following a fault is possible, where multiple feeders
can be black started.

Main
Grid

Microgrid-1

Microgrid-2

SW-1

SW-2

MMS

Figure 10.44 Serial microgrids on a single feeder.

Main

Grid

Microgrid-1 Microgrid-2
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Figure 10.45 Parallel microgrids on a single feeder.
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Figure 10.46 Interconnected microgrids on multiple feeders.

Table 10.4 Operating scenarios of series connected microgrids to a single feeder.

Scenario Microgrid-1 Microgrid-2 SW-1 SW-2

1 Grid connected Grid connected Closed Closed

2 Grid connected Islanded Closed Open

3 Islanded Islanded Open Open

4 Islanded Connected to Microgrid-1 Open Closed

Table 10.5 Operating scenarios of parallel connected microgrids to a single feeder.

Scenario Microgrid-1 Microgrid-2 SW-1 SW-2 SW-12

1 Grid connected Grid connected Closed Closed Open

2 Islanded Islanded Open Open Open

3 Islanded Grid connected Open Closed Open

4 Grid connected Islanded Closed Open Open

5 Grid connected Connected to Microgrid-1 Closed Open Closed

6 Connected to
Microgrid-2

Grid connected Open Closed Closed

7 Islanded, but connected
to Microgrid-2

Islanded, but connected
to Microgrid-1

Open Open Closed

8 Connected to both
grid and Microgrid-2

Connected to both grid and
Microgrid-1

Closed Closed Closed



The switches in Figures 10.44–10.46 can be fast acting solid state switches.
Before the interconnection of two islanded microgrids, their droop gains must
be normalized so that they can work as a single unit [16]. However, if microgrids
select the droop gains as per (10.21), then they can work as a single cohesive unit.
Example 10.16 illustrates this.

Example 10.16 In this example, two microgrids are connected together when
both of them are operating in the islanded mode. Each of the microgrids is repre-
sented by an aggregation of generators and loads. Microgrid-1 has a total rating of
1MW, while Micogrid-2’s rating is 500 kW. It is assumed that the microgrids are
predominantly inductive and therefore P-f and Q-V droop control is selected. The
droop gains are selected based on a frequency deviation of ±0.5 Hz from the nom-
inal frequency of 50 Hz. In the islanded mode, Microgrid-1 supplies 960 kW of
power at a frequency of 49.54 Hz, while Microgrid-2 supplies 200 kW of power
at a frequency of 50.1 Hz. Once they are interconnected, Microgrid-1 supplies
790 kW and microgrid-2 supplies 395 kW of power with a collective frequency
of 49.71 Hz. The results are shown in Figure 10.47, where the microgrids are syn-
chronized when the phase angles of the voltages are nearly equal [16]. Despite this,
large transients are visible, and therefore a soft synchronization scheme will have
to be devised. Note that there is a slight discrepancy in the total power generation
before and after the reconnection. Since the loads are passive RL, the rise in the
voltage level causes a little bit of extra power being supplied to the load.
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Figure 10.47 Power flow and frequency before and after the interconnection of two
microgrids.
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10.10 Microgrids in Cluster

Example 10.16 assumes that both microgrids follow the same principle for droop
gain selection, which may not always be possible. Each microgrid is designed
based on the available resources and they may have different operating principles.
Therefore, it is desirable that each microgrid maintains its autonomy as far as pos-
sible, i.e. their operations should be relatively independent of each other. To
explain the principle, let us consider the microgrid–utility connection through a
back-to-back converter system shown in Figure 10.32. It is assumed that
the back-to-back converters connect the two systems through two feeders. The
main function of VSC-1 is to hold the DC voltage Vdc across the capacitor Cdc

by drawing power from the AC utility through angle control. On the other hand,
VSC-2 facilitates power flow between the utility and the microgrid.
Now VSC-2 must synchronize with the microgrid, which may operate at a dif-

ferent frequency and voltage level than the AC grid. Let us assume that the micro-
grid voltages at the output are given by

vMGa = VMG sin ωMGt + δMG

vMGb = VMG sin ωMGt + δMG − 120

vMGc = VMG sin ωMGt + δMG + 120

10 86

where ωMG is the operating frequency of the microgrid. Noting that power flow
over an AC line is mainly dependent on the relative angle difference, VSC-2’s out-
put voltage vC2 will be synthesized such that the required phase shift is introduced
depending on the power flow between them. Let the VSC-2 output voltages be
defined by

vC2a = VC2 sin ωMGt + δC2

vC2b = VC2 sin ωMGt + δC2 − 120

vC2c = VC2 sin ωMGt + δC2 + 120

10 87

A balanced system operation is assumed. Then, from the measurement of the
instantaneous voltages vMGa, vMGb, and vMGc at any given instant, the instantane-
ous symmetrical component transformation given in (2.8) of Chapter 2 is used to
get the positive sequence vector as

vMG1 =
1
3

vMGa + avMGb + a2vMGc

=
VMG

2
sin ωMGt + δMG − j cos ωMGt + δMG =

VMG

2
α + jβ

10 88
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where α= sin(ωMGt+ δMG) and β = cos(ωMGt+ δMG). The following three terms
are defined from (10.88)

vMG1 =
VMG

2
, α =

Re vMG1

vMG1
, β =

Im vMG1

vMG1
10 89

Similarly, the positive sequence of the converter side voltage can be written as

vC21 =
VC2

2
sin ωMGt + δC2 − j cos ωMGt + δC2 10 90

Now, for the power flow over the link (PLink ), the two angles must differ.
Defining

δ = δC2 − δMG 10 91

and substituting (10.79) in (10.78), we get

vC21 =
VC2

2
sin ωMGt + δMG + δ − j cos ωMGt + δMG + δ

=
VC2

2
α + jβ cos δ− β− jα sin δ

10 92

From the instantaneous measurements of (10.86), the terms |vMG1 |, α, and β
given in (10.89) are computed. Assuming VC2 = VMG, the positive sequence com-
ponent vector vC21 can be computed if the value of δ can be determined.
Let us assume that the microgrid needs to draw a fixed amount of power from

the utility grid. The power reference is denoted by P∗
Link . Then this is compared

with the measured link power and used in a PI controller to obtain δ through

δ = KPP P∗
Link −PLink + KIP P∗

Link −PLink dt 10 93

Once δ is calculated, the vector vC21 is calculated from (10.92). Note that the neg-
ative sequence vector vC22 is the complex conjugate of vC21. Therefore, with these
vectors and assuming that the zero-sequence component is zero, the reference sig-
nals in the abc-frame can be computed from the inverse symmetrical component
transform. If VSC-2 can follow the signals accurately, it will guarantee that the out-
put voltages are synchronized with the microgrid. Example 10.17 shows the limits
on the performance of an islanded microgrid.

Example 10.17 Let us consider a microgrid that is supplied by two identical die-
sel generator sets. Each set consists of a 4-stroke internal combustion engine
coupled to a synchronous generator. The internal combustion engine’s speed is
controlled by a governor, which is a PID controller that maintains output speed
by changing the fuel rate. The synchronous generator contains an exciter and
an automatic voltage regulator (AVR). The AVR controls the field supply of the
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generator to maintain the required terminal voltage. The maximum rating of each
diesel generator is 480 kW. The droop gains are selected based on ±0.5 Hz voltage
drop from the nominal frequency of 50 Hz. The DGs supply a constant P-type load.
At the beginning the load is 850 kW, which is shared equally between the DGs. The
steady state frequency is 49.57 Hz. With the system operating in the steady state,
the load is changed to 1.05 MW at 1 second. Obviously, this is beyond the capacity
of the DGs in the microgrid, and it needs to draw power from the utility grid to
supply this load; otherwise, load shedding may be required.
The question is how much power should be drawn from the grid. Here we stip-

ulate that the microgrid should draw as much power as is required to meet the
shortfall in its generation. Notice that when the DGs in the microgrid supply their
maximum rated power, their frequency will be 49.5 Hz. A drop in the frequency
below this value is indicative of a shortfall in power. Corrective actions will be
required when the frequency falls below 49.5 Hz. However, to differentiate
between a large transient due to load change and power shortfall, a deadtime must
be provided between the time when the frequency falls below the threshold and
the time of taking corrective action. This deadtime will depend on the type of gen-
erators present in the microgrid. If all the generators are power electronic inter-
faced, the time will be less as they cannot provide inertia. This can lead to a
voltage collapse as soon as their currents saturate. On the other hand, a synchro-
nous generator, can hold the voltage by releasing the rotational kinetic energy.
However, this can only be temporary. Therefore, once the frequency crosses the
threshold and stays there for a stipulated amount of time, a one-shot Schmitt trig-
ger is used to generate a pulse “Trig.” This will start the process of the microgrid
drawing power from the utility. The amount of power should be such that the
microgrid frequency stabilizes at 49.5 Hz. To accomplish this, another PI controller
is employed based on the frequency, which is given by

Δf = 49 5− f MG

P∗
Link = KPfΔf + KIf Δf dt

10 94

where fMG is the measured microgrid frequency at the connection point. The VSC-
2 control scheme is shown in Figure 10.48. Note that the two PI controllers get
activated through the Trig signal, which is generated only when the frequency falls
below the threshold frequency of 49.5 Hz. Once the power demand from the
microgrid is removed, the Trig signal is removed, and the PI controllers are reset
and given an input of 0 so that large starting transients do not occur when they are
called into action next time the power shortfall occurs.
The results are shown in Figure 10.49. Since the two DGs are identical, their

power overlap cannot be differentiated. However, it is obvious that the scheme
works perfectly as the frequency, when the initial transients after load change
are over, settles to 49.5 Hz and the DGs supply their maximum rated power.
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The only drawback of this scheme is that the converter losses must be supplied
continuously even when no power flow occurs between the two systems in order
to hold the DC capacitor voltage Vdc constant. However, using this scheme, the
microgrid can operate independently of the AC system. This configuration forms
the basis of microgrid clusters, which is discussed in Section 10.11.1.

10.10.1 The Concept of Power Exchange Highway (PEH)

An interesting concept of coupling microgrids is proposed in [35]. This is shown in
Figure 10.50. In this scheme, the power exchange takes place through a dedicated
line (i) between the microgrids and (ii) between the microgrids and the utility
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Figure 10.49 Microgrid power shortfall being supplied by utility in Example 10.15.
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system. This line is called the power exchange highway (PEH). In parallel with the
PEH, there is an information exchange highway through which the microgrids
communicate with each other. The advantage of these two highways is that all
microgrids can exchange power and information with each other, irrespective
of their locations vis-à-vis the other microgrids. It is also possible to have the
microgrid cluster connected through the PEH with other networked microgrids,
as shown in Figure 10.51. In this scheme, Microgrid-5 and 6 are connected through
a PEH and can operate independently of the rest of the system. However, they can
participate in energy trading as and when it is suitable. The other four microgrids
are connected through switches. Obviously, when Microgrid-1 to 4 are connected
to the utility grid, they must operate at the same frequency as the grid, while
Microgrid-5 and 6 can operate under their respective droop control regimes.
In Figures 10.50 and 10.51, the isolators are converters. The operation of back-to-

back converter connection of a microgrid with an AC grid is discussed in Exam-
ple 10.17. This can also be applied to the clusters shown in the figures. However,
the PEH can be a three-phase AC line or aDC line. The following conditions can be
stipulated for the two configurations:

• AC-PEH: If a microgrid is AC, the isolator connecting it to the PEH is back-to-
back VSCs. There need not be any isolator between the PEH and the utility sub-
station. However, if one of the microgrids is DC, the isolator is a VSC plus DAB
combination.
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Figure 10.50 Microgrid cluster formation through the PEH.
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• DC-PEH: If the microgrid is AC, the isolator is an AC-DC converter, whereas for
a DCMG the isolator is a DC-DC converter. The isolator connecting the PEH
with the utility substation is an AC-DC converter. The advantage of having a
DC PEH is that the losses are less as only one converter is needed for each
isolator.

The operating principle of an AC PEH is discussed in [36], and that of a DC PEH
is presented in [37]. Some of their principles of operation are the same. Since the
interconnection of a microgrid with a utility system through a back-to-back con-
verter is discussed elsewhere, we discuss the power exchange through aDC PEH in
the remainder of this section.

10.10.2 Operation of DC Power Exchange Highway (DC-PEH)

Let us consider an islanded microgrid cluster, as shown in Figure 10.52a. It has a
total number of n AC microgrids that are connected together through a DC-PEH.
No load is assumed to be connected to the DC-PEH. Each microgrid is connected
to the DC-PEH through a VSC. The DC link of each VSC is connected with a stor-
age capacitor. The capacitors are connected in parallel through the DC-PEH,
which is represented by line resistances.
Nominally, each microgrid, while supplying its local load, holds the voltage

across the DC capacitor connected to the VSC constant at a predefined level as
well. However, when a power shortfall occurs in one (or more) microgrid, the
other microgrids supply a part of their excess available power to support it.

Utility 
Substation

Microgrid-1

Microgrid-2

PEH

Microgrid-4

Microgrid-3

Microgrid-5

Microgrid-6

Isolator

Isolator

Isolator

Figure 10.51 Future distribution grid with different types of networked microgrids.
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The excess power available in amicrogrid can vary depending on the consumption
of its local load. Hence, it is not possible to determine a priori how much support,
in terms of real power, a microgrid can provide to others. Therefore, the surplus
available power in a microgrid must be continually updated. Based on this infor-
mation, the microgrid with excess available power will support the microgrids
with a power shortfall.
The equivalent circuit of each of the microgrids in the cluster is shown in

Figure 10.52b. It contains several DGs and loads. The VSC is connected to the
microgrid bus through a transformer. A power flow controller (PFC) controls
the bidirectional power flow between the microgrid and the DC-PEH, by deter-
mining either the available excess power that can be supplied to the DC-PEH
or the exact amount of power shortfall that is required to be replenished for the
safe operation of the microgrid. As shown in Figure 10.52b, the PFC needs infor-
mation about breaker status, microgrid frequency, and DC power to generate the
requisite control signals.

10.10.3 Overload Detection and Surplus Power Calculation

It is assumed that, when a microgrid is overloaded, it should draw the exact
amount of power that will maintain the stability in the system, as shown in Exam-
ple 10.17. The overload detection scheme is based on the frequency and is triggered
when the frequency falls below the set threshold value of the microgrid. Thereaf-
ter, the power required by the microgrid can be drawn from the DC-PEH using the
VSC control scheme of (10.94).
When a microgrid is overloaded, other microgrids with surplus power will be

able to supply the required power depending on their load consumptions at that
time. Thus, each microgrid must have a surplus power calculation scheme.
The power surplus capacity (PSC) of a microgrid is defined as the difference

between the total generation capacity the microgrid has at a given instant of time

Vdc1

AC
Microgrid -1

AC
Microgrid -2

AC
Microgrid -n

DC-PEH

………….

Vdc2 Vdcn
+

Vdc+

PFC

(a) (b)

Figure 10.52 (a) Structure of islanded microgrid cluster and (b) configuration of one of
the microgrids.
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minus the total local load that it is supplying at that instant. Assume that, at a par-
ticular time, the frequency in microgrid-i is fMGi, while its total power generation
capacity is P∗

gi. If the droop gains of all the DGs are computed based on a frequency

limit of ±0.5 Hz, the total power supplied by the DGs in the microgrid is

Pi = 50 5− f MGi × P∗
gi 10 95

Note that Pi includes the power that is supplied to the local load plus the power
supplied to other microgrids through the DC-PEH. Therefore, the power con-
sumed by the microgrid local load is the difference between Pi and the DC power
flowing to the DC-PEH through the IC. However, the surplus capacity is calculated
based on only the microgrid local load. It is defined by the difference between the
total power generation capacity (P∗

gi) and local load, i.e.

PSCi = P∗
gi − Pi −Vdci × Idci 10 96

It is interesting to note that the PFC of Figure 10.52b does not need to know
about the status of each DG for overload prevention; it just draws power from
the DC-PEH to stabilize the frequency to 49.5 Hz irrespective of how many DGs
are connected to the system. On the other hand, the PFC needs to know the
DG status for surplus power calculation. This is because the maximum generation
capacity of a microgrid changes with the availability of the DGs. It might so hap-
pen that one of the DGs is out of commission due to the required maintenance
work. Also, the microgrid generation capacity can vary when plug-and-play type
DGs are included. Suppose microgrid-i has n number of DGs, with their maximum
power being denoted by P∗

k. The total power consumed by the microgrid is Pi. The
microgrid surplus power generation capacity is then given by modifying (10.96) as

PSCi =
n

k = 1

skP
∗
k − Pi −Vdci × Idci 10 97

where the sk= 1 if the DG is connected; otherwise, sk= 0. Therefore, a communi-
cation link between the DGs and the PFC will be required to update the DG status.
Note that, since this link is only used for the status update, a low bandwidth com-
munication channel will be sufficient for this purpose.

Example 10.18 Suppose amostly inductivemicrogrid has four DGs, rated at 200,
400, 300, and 100 kW. Thus, the total power generation capacity of the microgrid
(P∗

g) is 1 MW. The droop gains, selected based on a frequency deviation of ±0.5 Hz,

are 5, 2.5, 3.33, and 10 Hz/MW respectively. Therefore, from (10.21), α= 1 Hz.
Now, suppose all the DGs in the microgrid are operational and the microgrid is

operating at a frequency of 49.9 Hz. Then, from (10.95), the total power supplied by
the microgrid is
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Pi = 50 5− f MGi × P∗
gi = 50 5− 49 9 × 1 = 0 6 MW

Let us suppose that the microgrid is supplying Vdci × Idci= 150 kW of power to
the DC-PEH. Then, the total local load plus losses in the microgrid itself is 450 kW,
and the microgrid surplus capacity is given from (10.96) as

PSCi = P∗
gi − Pi −Vdci × Idci = 1− 0 6− 0 15 = 0 55 MW

This implies that, even though the microgrid supplies 600 kW of power at this
given instant, since its local load is 450 kW, it has a surplus capacity of 550 kW.
If the DG with the maximum capacity of 200 kW trips, then the microgrid sur-

plus power generation capacity is modified from (10.97) as

PSCi = 0 4 + 0 3 + 0 1 − 0 6− 0 15 = 0 35MW

However, since the microgrid is supplying 600 kW of power to its load and to the
DC-PEH, its frequency will drop to 49.75 Hz, as per (10.95), i.e.

Pi = 0 6 = 50 5− f MGi × 0 8 f MGi = 50 5−
0 6
0 8

= 49 75 Hz

10.10.4 Operation of DC-PEH

It is assumed that the DC-PEH operates in the I-V droop discussed in Sub-
section 10.6.3. To explain its operation, let us consider the three-microgrid cluster
shown in Figure 10.53. Nominally, all the microgrids only supply their local loads.
Therefore, the voltage references for the capacitor voltages are set as per (10.65) as

V ∗
dc1 = V∗ −n1Idc1

V∗
dc2 = V∗ −n2Idc2

V∗
dc3 = V∗ −n3Idc3

10 98

Microgrid -1

DC-PEH

Vdc2

Rf1

Microgrid -2 Microgrid -3

Vdc1

+

Vdc3

Rf 2

Idc1 Idc3Idc2

Figure 10.53 Schematic diagram of a three-microgrid cluster.

10.10 Microgrids in Cluster 447



When there is no power flow from any of the microgrids to the DC-PEH, all the
currents are zero, i.e. Idc1 = Idc2 = Idc3 = 0 and therefore V∗

dc1 = V ∗
dc2 = V∗

dc3 = V ∗.
Consider the case where Microgrid-2 needs power from the DC-PEH. The power

requirement (P∗
dc2) is obtained from the PI controller of (10.94). The DC capacitor

voltage reference for Microgrid-2 is set such that this amount of power is drawn
from the DC-PEH. This is accomplished through another PI controller, given by

ed2 = P∗
dc2 − Pdc2

V∗
dc2 = V∗ −KPd ed2 −KId ed2 dt

10 99

where Pdc2 = − Vdc2 × Idc2. The overload prevention scheme is shown in
Figure 10.54. From this figure, the desired voltage of the overloaded Microgrid-i
is obtained. This voltage is then regulated using the PI controller

δi = KPδ V∗
dci −Vdci + KIδ V∗

dci −Vdci dt 10 100

The angle is then used to form the reference voltage for the IC, just like a
DSTATCOM in voltage control mode.
Note that the reference voltages of the other two microgrids are obtained using

the droop equations given in (10.98). However, their droop gains need to be com-
puted dynamically. This is discussed in Section 10.11.5.

10.10.5 Dynamic Droop Gain Selection

The surplus capacity that a microgrid has can be estimated from (10.97). It might
not, however, be necessary that a microgrid schedules the entire amount of power
surplus for dispatch through DC-PEH. Let us assume that themaximum power the
microgrid-i schedules for dispatch is P∗

i . Notice that this quantity can change
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Figure 10.54 Overload prevention scheme through controlled DC voltage generation.
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depending on the local load of each microgrid. Therefore, the droop gains need to
be adjusted dynamically. In the I-V droop control discussed in Section 10.6.3, it is
stipulated that (10.55), i.e. P∗

i × n1 = P∗
i × n2 = = P∗

M × nM = α, remains valid.
The schematic diagram of the dynamic droop gain selection scheme is shown in

Figure 10.55. Based on the estimated frequency and the status of the DGs in a
microgrid, its surplus capacity (PSCi) is calculated from (10.97). A certain amount
of power (Prsvi) is kept as reserve in themicrogrid to cater for a sudden change in its
local load. Thereafter, the desired maximum power output of the microgrid P∗

i is
selected based on the difference (PSCi− Prsvi). Note that PSCi changes for every
change in the microgrid local load. This will cause a continuous fluctuation in
the droop gain if P∗

i is simply chosen as PSCi− Prsvi. To prevent this, P∗
i is changed

in discrete steps of PSCi− Prsvi in a band that is given by

If β ≤ PSCi − Prsvi < γ, then P∗
i = β 10 101

where β is the lower limit and γ is the upper limit of the band and the bandwidth is
selected as

γ− β = λ ×
n

k = 1

skP
∗
k − Pi 10 102

where λ is a constant that defines a percentage of the total generation capacity of
the microgrid. Once P∗

i is obtained, the droop gain of the microgrid is computed
from the preset value of α.
The block diagram of the dynamic droop gain selection in the power flow control

scheme is shown in Figure 10.56. The step-by-step PFC operation is listed in
Table 10.6.
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Figure 10.55 Dynamic droop gain selection scheme.
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Figure 10.56 Dynamic droop gain selection in power flow control scheme.

Table 10.6 PFC operation.

At each sampling instant k

Check
frequency

Frequencies of all the
microgrids are above 49.5 Hz

Compute V ∗
dci from (10.98), where all the

droop gains are taken as zero

Perform capacitor voltage control of
(10.100)

If the frequency of a microgrid-
k, (k i) is below 49.5 Hz

Microgrid-k starts drawing power using
Figure 10.54, capacitor voltage control of
(10.100)

For
microgrid-i,
(k i)

Check breaker status

Find the surplus power
PSCi from (10.97)

Find P∗
i , ni from

Figure 10.55

Compute V ∗
dci

from (10.98)

Perform capacitor
voltage control of
(10.100)
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Example 10.19 (Overload in Microgrid-3)
Let us consider the microgrid cluster shown in Figure 10.53, for which the follow-
ing parameters are chosen

Rf 1 = 0 01Ω, Rf 2 = 0 06Ω, V ∗ = 2 5 kV

It is stipulated that the maximum power that can flow through the DC-PEH is
Pmax = 250 kW and the maximum allowable voltage drop ΔVmax = 100 V. Then,
from (10.72), we get

n =
2 4 × 103 × 100

2 5 × 103
= 0 96Ω

Hence

α = n × Pmax = 2 4 × 105

Assume that Microgrid-1 and Microgrid-2, at any given time, have surplus
power of 200 kW and 100 kW respectively. Then their droop gains will be

n1 =
α

Pref 1
= 1 2Ω, n2 =

α

Pref 2
= 2 4Ω

The total generation capacity of Microgrid-3 is assumed to be 1MW. At the
beginning, all the three microgrids in the cluster supply their local loads and no
power exchange takes place through the DC-PEH. During this time, the local load
in Microgrid-3 is 833 kW. At 1 second, the Microgrid-3 load increases suddenly to
1.1 MW, which is beyond its total generation capacity. This causes the Microgrid-3
frequency to drop below 49.5 Hz and hence results in the activation of the overload
prevention scheme. The power reference (P∗

dc3) set by the PI controller and Micro-
grid-3 frequency are shown in Figure 10.57. The desired frequency of 49.5 Hz is
reached at around 3 seconds when Microgrid-3 draws power from the DC-PEH.
The power flow through Microgrid-3 is shown in Figure 10.58a. The total gen-

eration saturates at 1MW, while the demand increases to 1.1 MW. This excess
amount of power flows from DC-PEH as shown in Figure 10.58b, where the share
of power betweenMicrogrid-1 andMicrogrid-2 remains in the ratio of 2 : 1. The DC
capacitor voltages of the ICs of the microgrids are shown in Figure 10.59, where it
is obvious that none of the capacitor voltages violates the minimum limit of 2.4 kV.

Example 10.20 (Dynamic Droop Gain Selection)
In this example, it is assumed that Microgrid-2 requires a total power of 200 kW.
Microgrid-1 has a surplus capacity of 200 kW and hence its droop gain is chosen as
1.2Ω. To select the droop gain of Microgrid-3, λ in (10.101) is chosen as 0.05
and Psrv3 is chosen as 50 kW, while the total generation capacity of the microgrid

10.10 Microgrids in Cluster 451



150

(a)

(b)

100

50

0

0 1 2 3

P*dc3 (kW)

MG-3 Frequency (Hz)

Time (s)

5 64

0 1 2 3 5 64

–50

49.7

49.6

49.5

49.4

49.3

Figure 10.57 Microgrid-3 overload prevention: (a) required power to be drawn from
DC-PEH and (b) Microgrid-3 frequency.
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Figure 10.58 Power flow through (a) Microgrid-3 and (b) DC-PEH in Example 10.19.
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is 1 MW. This implies that the dynamic droop remains constant for less than 50 kW
change in the local load. The droop gain selection is given in Table 10.7, for
α= 2.4 × 105.
In the beginning, Microgrid-3 is in the steady state supplying 760 kW of local

load plus system losses of around 8 kW. Then (PSC3− Prsv3) is equal to 182 kW.
The value of n3 is chosen as 1.6Ω from Table 10.7. Microgrid-3 local load changes
to 780 kW at 1 second. This implies that (PSC3− Prsv3) is equal to 162 kW, including
losses. Therefore, the droop gain should not change, and the power supplied by
Microgrid-3 to DC-PEH should remain unchanged. Thereafter, at 6 seconds,
Microgrid-3 local load changes to 830 kW, which reduces Pref3 to 100 kW and n3
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Figure 10.59 DC capacitor voltage of the ICs of the three microgrids in Example 10.19.

Table 10.7 Dynamic droop gains of Microgrid-3 in Example 10.20.

Range (kW) Pref3 (kW) n3 (Ω)

0 < (PSC3− Prsv3)≤ 50 0 0

50 < (PSC3− Prsv3)≤ 100 50 4.8

100 < (PSC3− Prsv3)≤ 150 100 2.4

150 < (PSC3− Prsv3)≤ 200 150 1.6

200 < (PSC3− Prsv3)≤ 250 200 1.2

250 < (PSC3− Prsv3) 250 0.96
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changes to 2.4Ω. The power flow through Microgrid-3 is shown in Figure 10.60a,
while the power supplied to DC-PEH by Microgrid-1 is shown in Figure 10.60b. It
is obvious that the power supplied byMicrogrid-1 remains (almost) constant when
the Microgrid-3 local load changes to 780 kW but increases when the load
increases to 830 kW. The quantity (PSC3− Prsv3) of Microgrid-3 is shown in
Figure 10.61a, while its droop gain is shown in Figure 10.61b. They follow the data
given in Table 10.7.
The power sharing strategy discussed here assumes that several microgrids in a

cluster can operate based purely on excess available power. However, economic
aspects can also play a significant role in the trading of energy between the micro-
grids. Consider, for example, that a microgrid has a power shortfall and it needs to
buy energy from the microgrids in a cluster. On the other hand, there may be sev-
eral microgrids that can supply the power. Dynamic droop gain selection is a
method that can provide an equitable distribution, provided the selling prices of
the various microgrids are the same and are fixed beforehand. This, however,
may not always be the case.
The basic aim of a microgrid is to cater to its local demand andmake profit at the

same time. These objectives can be met by drawing power from the utility when
the price is low, storing power in energy storage systems when the renewable gen-
eration is high and the load demand is low, and selling power back to the grid
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Figure 10.60 (a) Power flow in Microgrid-3 and (b) power supplied by Microgrid-1 to
DC-PEH in Example 10.20.

454 10 Microgrids



during its peak. Microgrids can also exchange power between themselves without
involving the grid. Therefore, energy trading schemesmust be established between
the microgrids, where they can work in either a cooperative or a noncooperative
manner while trying to maximize their profits.
Energy trading is a very complex problem since the overall energy price at a

given timemust be considered. Different microgrids may have different generation
costs that will depend on the types of DGs used, their fuel, and associated main-
tenance costs. Moreover, the utility may have different tariffs depending on the
time of the day. It might so happen that the cost in the evening peak hours is sig-
nificantly higher. However, during this time, several microgrids may not have suf-
ficient reserve to sell power to the utility. Therefore, the first step in the process is
to consider the cost of energy production of each microgrid vis-à-vis its load. For
example, if, at a given time, a microgrid does not have sufficient excess power after
supplying its load, it cannot participate in energy trading. On the other hand, if a
microgrid has a power shortfall, it will have to buy from the other microgrids or
from the utility, irrespective of the price of energy at the time. Therefore, a more
desirable policy is to consider different operating scenarios to determine a price
structure that is suitable for energy trading. Once this price structure is deter-
mined, cooperative or noncooperative game theoretic models can be implemented
for the purpose of energy trading.
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Figure 10.61 (a) Power supply range in Microgrid-3 and (b) its dynamic droop gain in
Example 10.20.
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10.11 Concluding Remarks

In this chapter different aspects of AC and DCMGs are presented. At the beginning
of the chapter, different converter control methods are discussed. Then, the
islanded operation of an AC microgrid is discussed. In this mode, the power shar-
ing depends on the line X/R ratio, which in turn determines which droop control is
employed: P-f, Q-V, Q-f, or P-V. However, it is shown that, by defining a virtual
impedance, the problem of a low X/R ratio can be overcome. In a highly resistive
line, through a negative feedback of converter output current, the real power shar-
ing ratio can be maintained accurately. It is to be noted that, even if the microgrid
is assumed to have all converter interfaced DGs, it is possible to have a diesel or
natural gas generator in the mix. The outputs of the droop equations, e.g. fre-
quency and voltage magnitude, are used in the internal combustion engine and
voltage regulator respectively to control the diesel generator. Even though the
diesel/natural gas generators produce greenhouse gases (unless biofuel is used),
they may be necessary in the short term to provide backup generation. One impor-
tant aspect that needs to be mentioned here is that the droop gains for an islanded
operation are chosen depending on the power rating of the DGs, and therefore an
instability problem due to disproportionately large droop gains is not possible
through this choice.
This chapter also discusses the grid-connected operation of a DCMG. A DCMG

can operate in standalone mode as well. As shown using the configuration of
Figure 10.36, the power exchange between the two systems can be controlled
through a DAB that can control a bidirectional power flow between the systems.
It is to be noted that the DCMG is still in its infancy and therefore most standards
have not yet been set. However, as shown in this chapter, they can be a viable alter-
native, especially where most loads are DC such as in data centers.
Microgrids have progressed beyond simple systems containing plug-and-play

type DERs. The concept of clustered microgrids or networked microgrids in a
smart grid framework is gaining much attention currently. We therefore include
discussions on coupled microgrids. These systems require different levels of con-
trol strategies. In this chapter, a method is discussed through which a microgrid
can mitigate its power shortfall by borrowing power from neighboring microgrids
or from utility systems. However, the inertia in a converter-dominatedmicrogrid is
almost nonexistent. Therefore, a smart load shedding strategy or battery backup
may be desirable to prevent a system-wide collapse. The discussions in this chapter
are mainly focused on the converter control problem that can tackle any energy
shortfall problem in coupled microgrids. However, the financial aspects of energy
trading need to be embedded so that an overall satisfaction level can be achieved
for all participating microgrids.
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Problems

10.1 Consider a predominantly inductive autonomous microgrid with three
DERs. The power ratings of the DERs are:

DER− 1 1MW,DER− 2 500 kW, and DER− 3 2MW

The droop equations are given by

ωi = ωr + ni × 0 5P∗
i − Pi rad s, i = 1, 2, 3

where ωr= 100π rad/s, ωi is the frequency in rad/s, P∗
i is the rated power in

MW, Pi is its measured power in MW, and ni is the droop gain of
microgrid-i.
(a) Determine the values of the droop gains if the frequency is to be limited

within ±0.5 Hz.
(b) Suppose the DERs together are supplying 1.4 MW of power to the loads

and losses, determine the operating frequency inHz and the power sup-
plied by each DER.

10.2 Consider again the autonomous microgrid of Problem 10.1. The droop
gains in this case are given by

f i = 50 + ni × P∗
i − Pi Hz

(a) Determine the droop gains if the frequency is allowed to vary between
50 Hz and 51 Hz.

(b) Assuming that the DERs are supplying 1.75 MW of loads and losses,
determine the operating frequency of the microgrid.

10.3 Consider the autonomous microgrid of Figure P10.3, where DER-1 and
DER-2 supply 600 kW and 300 kW respectively to a resistive load. The sys-
tem parameters are:
DER ratings: P∗

1 = 1 MW and P∗
2 = 0 5 MW

Voltage: 11 kV (L-L), frequency: 50 Hz
Feeder parameters: Lf1 = 10 mH and Lf2 = 20 mH
Assuming the DER voltages are held constant at 11 kV (L-L), the DERs

operate in a P-δ droop given by

δ1 = n1 × P∗
1 −P1

δ2 = n2 × P∗
2 −P2

where the droop gain n1 is given by 0.12 rad/MW.
(a) Determine the angles δ1 and δ2, assuming δL= 0 .
(b) Determine the magnitude of the load voltage VL.
(c) Determine the load resistance RL.
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10.4 Consider a predominantly resistive autonomous microgrid with three
DERs. The power ratings of the DERs are:

DER− 1 1MW,DER− 2 500 kW, and DER− 3 2MW

The reactive power ratings of the DERs inMVAr are assumed to be 50% of
their respective active power ratings in MW, i.e. 500 kVAr for DER-1, etc.
The DERs are controlled by the droop equations given in (10.27) and
(10.28), where V ∗= 22 kV (L-L) and f ∗= 60 Hz. Find the droop gains so
that the frequency variation is restricted to be within ±0.5 Hz and the
voltage variation is restricted to be within ±0.06 pu.

10.5 Consider the utility connected AC microgrid, shown in Figure P10.5.
Together the utility and the DERs supply a constant PQ load, where it is
stipulated that DER-1 supplies twice the amount of active power supplied
by DER-2. The system parameters are:
Voltage: V1 = V2 = 11 kV (L-L), 50 Hz
Feeder parameters: Lf 1 = 20 mH and Lf 2 = 10 mH
Load: PL= 400 kW and QL= 90 kVAr
If the utility supplies (Ps) 100 kW:

(a) Determine the angles δ1 and δ2 to hold VL (L-N) constant at 6.34 kV.
(b) Determine the reactive power Q1 and Q2 supplied by the DERs.
(c) Determine the reactive power supplied by the utility.

P1 Q1 P2 Q2

PL QL

Load

Lf 2Lf 1

V1 ∠ δ1

VL ∠ δL

V2 ∠ δ2

I1 I2

RL
DER-1 DER-2

Figure P10.3 The autonomous microgrid operating under angle droop of
Problem 10.3.
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10.6 Consider the DCMG shown in Figure 10.34, where the DC-DC converters
are boost converters. The system parameters are:
Voltage rating (V∗): 1 kV
Maximum voltage deviation (ΔVm): 200 V
DC-DC Coverter-1 maximum power: 300 kW
DC-DC Coverter-2 maximum power: 100 kW
Vdc1 = 500 V, Vdc2 = 400 V, Rf1 = 0.02 Ω, and Rf2 = 0.06 Ω
The microgrid is controlled under a P-V droop control regime. Assuming

that the converters together supply total load plus losses of 240 kW:
(a) Determine the duty ratios of the two boost converters.
(b) Determine the load voltage (VL) and the load resistance (RL).

10.7 Repeat Problem 10.6 if the microgrid operates under an I-V droop control
regime.

10.8 Consider the DAB circuit shown in Figure 10.39, where the transformer is
assumed to be lossless. The parameters of the DAB are:
Vdc= 48 V, V0 = 650 V, RL= 420 Ω, and frequency = 20 kHz
Transformer: 100 V: 1 kV, leakage inductance 0.79577 μH
From the power transfer relationship, determine the phase shift (ϕ).

10.9 Consider the three-microgrid cluster shown in Figure P10.9. Here, the type
of converter or the type of PEH is not important. The droop gains of all the
microgrids are chosen to restrict the frequency to be within ±0.5 Hz.

Constant 

PQ Load

I1 I2

DER-1 DER-2

Utility
Substation

PsRs
Ls

CBP1 Q1
P2 Q2

PL QL

Lf 1 Lf 2

V1 ∠ δ1
V2 ∠ δ2

VL ∠ δL

Figure P10.5 Grid-connected microgrid of Problem 10.5.
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Microgrid-2 is having a shortfall of 200 kW. The remaining two microgrids
have the following operating status:

Microgrid-1: Total capacity 2 MW. Currently supplying load at a frequency
of 49.8 Hz.

Microgrid-3: Total capacity 1 MW. Currently supplying load at a frequency
of 49.7 Hz.

Assuming that Microgrid-1 an Microgrid-2 share power according to
their balance rating, determine how much power will be supplied by each
of these microgrids. Also, determine the frequencies of these two micro-
grids after they start supplying power to Microgrid-2. Assume the converter
and line losses are negligible.

Notes and References

Different converter control modes are very well presented in [3] and [4]. Since the
power flow in a mostly inductive line depends on the relative angle difference, P-δ
based droop control is presented in [6, 7]. This method, however, is reliant on the
output inductance ratios and a global clock is necessary to synchronize the angles
in a common timeframe. However, the controller has a superior dynamic response
for converter interfaced DGs. The Virtual impedance concept has gained much
attention as a tool to overcome the impedance ratio problem [11–13]. However,
the stability of the system will depend on the choice of the virtual impedance.
Therefore, eigenvalue analysis may be required before these parameters can be
properly tuned.
The V-I droop sharing for DCMG is discussed in [38] and [39]. In [38], the droop

gain selection based on voltage drop is also highlighted. In [40], the autonomous

MG-1

MG-2

MG-3

Converter

Converter

Converter

PEH

Figure P10.9 Microgrid cluster of Problem 10.9.
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operation of AC and DC subgrids is proposed, where these are linked through an
IC that normalizes the droop equations of these two subgrids. There are several
papers that discuss the integrated operation of AC-DC systems: see [41–43].
Finally, a DC system does not have the natural zero-crossing of current, unlike
an AC system. Therefore, the protection of a DC system is very challenging, as
is discussed in [17]. A comprehensive review of DCMG protection is presented
in [44].
Game theory [45, 46], which has gained significant importance in recent years,

has been used in power markets for several years. Different power energy market
related subjects are covered in several papers, e.g. profit allocation [47], the pla-
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11

Harmonics in Electrical and Electronic Systems

In an ideal electrical and electronic system, pure sinusoidal voltage sources pro-
vide power and energy to the different parts of the system to support single-phase
or three-phase loads. The frequency of the voltage source is expected to be constant
at 50 or 60 Hz and the phase voltage amplitude is expected to be below 240 V rms in
low-voltage distribution networks, depending on a national grid code. There are
many nonlinear loads and grid equipment such as power electronics converters
and distribution transformers which can generate current and voltage signals with
different frequencies: integer and noninteger multiples of the grid fundamental
frequency. These signals are known as harmonics and interharmonics. These
are defined in this chapter, along with their effects on power systems. Also, a
review of different power quality regulations and standards is included at the
end of the chapter.

11.1 Harmonics and Interharmonics

Harmonics in power systems occur in the form of a current or voltage waveform and
it is an integer multiple of the power system’s fundamental frequency. Conventional
power electronic products, such as single-phase and three-phase diode rectifiers,
generate significant low-order harmonics because of the operating modes of the rec-
tifier (AC-DC converter) and a DC link filter to control the DC link voltage.
Interharmonics in power systems come in the form of a current or voltage wave-

form and are a noninteger multiple of the power system fundamental frequency.
Interharmonics are mainly considered for 0–2 kHz in power system applications
and can be generated by:

• Interaction between two systems operating at different frequencies.

• A rapid change of current in equipment.
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• Pulse width modulation (PWM) patterns utilized in power converters such as
random and hysteresis modulations.

• Controlled rectifiers with variable firing angles.

•Multicycle control of AC systems.

Consider, for example, the following load current

iLoad t = 10 sin ω0t + 3 sin 5ω0t − 0 5 sin 2 5ω0t A 11 1

where ω0 = 2πf0, f0 being the fundamental frequency, which is taken as 50 Hz. In
(11.1), the load current has a fundamental component of amplitude 10 A, a har-
monic component at 250 Hz with 3 A amplitude, and an interharmonic compo-
nent at 125 Hz with the amplitude of 0.5 A. The instantaneous load current is
shown in Figure 11.1a, while its harmonic spectrum is shown in Figure 11.1b.
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(a) time domain and (b) frequency domain.
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According to the International Electrotechnical Commission (IEC) 61 000 stan-
dards, the frequency range of harmonics is defined as up to 9 kHz. The method
of measurement and harmonic limits are classified based on several factors such
as the frequency range of 0–2 kHz or 2–9 kHz, load types and power levels, and dis-
tribution network configurations and types. Measurement methods and harmonic
limits in the range of 9 kHz and above are covered by International Special Commit-
tee on Radio Interference (CISPR) standards. These essential concepts are explained
in Section 11.4.

11.1.1 High-frequency Harmonics (2–150 kHz)

Two new frequency ranges, 2–9 kHz and 9–150 kHz, have been identified by inter-
national standardization committees as new disturbing frequency ranges which
affect communication and control signals in smart meters, power line carriers
(PLC), and ripple control signals in distribution networks. Conventional power
converters and modern power electronics systems based on active front end
(AFE) and PWM-based converters with fast switching operations have increased
harmonics emissions above 2 kHz in low- and medium-voltage networks.
The levels of the harmonics and their spectral contents depend on power elec-

tronics technology, design, and application, and their interaction with the grid and
grid-connected equipment. The switching operation of these power electronic
devices causes nonsinusoidal current and voltage waveforms to affect the power
quality of the grids. The utilization of power electronics systems has increased sig-
nificantly in many applications, such as rooftop solar inverters and compact fluo-
rescent lamps, with significant impacts on high-frequency and high-energy
harmonics within the frequency range of 2–150 kHz.
Harmonics have short- and long-term adverse effects on grids and grid-

connected electronics and power electronics equipment, such as malfunction, fail-
ure, and losses. These issues reduce the reliability, lifetime, and efficiency of the
electricity networks. There are no comprehensive standards for harmonic emis-
sion within the frequency range of 2–150 kHz, to protect the current and future
electricity networks and smart grids. IEC Technical Subcommittee SC 77A, Work-
ing Group 1 is the world‑leading authority to prepare technical documents for
international standards. It has requested international experts to define standards
for harmonics within the frequency range of 2–150 kHz. Conducted emission and
immunity limits and measurement methods are being developed by several IEC
and CISPR standardization committees.
The new challenging issues for future grids concerning these new frequency

ranges are classified as:

• Generation of high-frequency harmonics.

• Creation of new resonant frequencies.
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• Harmonic interactions between different types of grid-connected systems.

• Propagation of high-frequency harmonics in medium-voltage networks.

These issues depend on many factors such as load types and profiles, the length
and types of feeders, distribution transformers, and system configurations. Hence
utility companies, as well as renewable energy and power electronics manufac-
tures, have been facing new challenges to solve the harmonic issues in these fre-
quency ranges. The current trend to manage the high-frequency harmonic
concerns is to define proper harmonics standards and compatibility levels for grid
connected electronic and power electronic equipment.
Figure 11.2 presents daily average values of voltage harmonics in 2–150 kHz in a

low-voltage distribution network. As shown in this figure, there are some peaks on
voltage harmonics at higher frequencies around 30 kHz, which indicate the high
penetration of grid-connected power electronics systems with high switching fre-
quency and the interaction with the grid and grid impedance.

11.1.2 EMI in the Frequency Range of 150 kHz–30 MHz

Electromagnetic interference (EMI) is a high-frequency noise and disturbance
generated by external sources or by another part of a system. EMI is also known
as radiofrequency interference (RFI). The main phenomena occur due to the con-
ducted or radiated emission noise caused by electromagnetic and electrostatic cou-
plings between the systems, components, enclosure, and interconnections. The
disturbance may be severe enough to damage sensitive devices or significant
enough to reduce the lifetime of components or degrade the regular operation
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Figure 11.2 Daily and hourly average values for 2–150 kHz voltage harmonics in a
distribution network.
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of the system. The main EMI sources in distribution networks are lightnings, fast
high voltage and high current switching, ignition systems, pulsed width modu-
lated signals in power converters, and many other types of voltage and current
transitions in electrical and electronic devices.
As shown in Figure 11.3, high-frequency noise is classified as conducted (low-

impedance loop) and radiated (electromagnetic coupling), which can be propa-
gated and transferred from one part of the circuit to another part of the system.
CISPR standards are used for the high-frequency noise measurement and with
specific noise limits. The frequency range depends on the standard. For example,
for the conducted emission, it can be from 150 kHz to 30MHz and for the radiated
emission it can be from 30MHz to 1 GHz. The high-frequency conducted noise is
classified into common mode and differential mode noises, which are explained in
Section 11.1.1.2.

11.1.3 Common Mode and Differential Mode Harmonics and Noises

In a low-voltage power system, neutral and protective earth (PE) wires provide two
different current paths for electrical equipment. A PE wire is connected to a frame
or an enclosure of equipment for protection and safety purposes, while a neutral
wire is a main current path for single-phase systems or a zero-sequence path in
three-phase systems. As shown in Figure 11.4, in an electrical system, the currents
through the line and neutral are defined based on the common mode and differ-
ential mode components as

iLine t = iCOM t + iDM t 11 2

iNeutral t = iCOM t − iDM t 11 3

If the sum of the line and neutral currents is zero at any time, it means that there
is no leakage or common mode current through the PE wire.
Due to stray capacitive couplings in ACmotors, cables, heatsink, enclosures, and

transformers and voltage stress (dv/dt) in PWM voltage, the leakage current

Victim Source

Conducted Path

Electromagnetic
Couplings

Radiated

Figure 11.3 Conducted and radiated EMI
noise emission and propagation.
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(common mode current) is a major concern for most power electronics converters.
The amplitude, frequency, and waveform of the commonmode current depend on
the power converter topology, interconnections and PCB layout, control and mod-
ulation method, load, and filter configurations.
Figure 11.5 shows a motor drive application with a front side EMI and a DC link

filter including all interconnections and parasitic couplings with respect to the PE.
There are several common mode and differential mode loops that generate low-
and high-frequency (common mode and differential mode) currents at the load
side and the grid side.

11.1.4 Stiff and Weak Grids

A weak power system can be susceptible to a sudden change in load or operating
conditions, which can cause deviation in the grid voltage and frequency. Strong
grids are robust and have a high capability to handle sudden changes in power
demand, load variations and fault conditions – keeping the grid voltage and fre-
quency within the limits in which the system can be stable.
For power quality and harmonic analysis, we consider a weak AC grid as a sys-

temwith a high impedance and a low power transfer capability, whereas a stiff grid
has a lower impedance and higher power transfer capability. When the grid
impedance is low compared to a load impedance, the load variation has less impact
on the fundamental and harmonic voltages. As shown in Figure 11.6, the
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Figure 11.4 Common mode and
differential mode current paths.
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nonlinear devices in the low-voltage grid generate current harmonics which can
affect the power quality of the voltage at the point of common coupling due to the
voltage drop across the grid impedance vh(t) (as discussed in Chapter 9).
The grid impedance for power quality analysis should be measured and charac-

terized for the frequency range of 0–9 kHz as the impedance at any point of com-
mon coupling varies due to the load impedances, feeders, and transformers.
According to IEC standards [1, 2], the short circuit ratio (SCR) is defined as the
ratio of the short circuit power of a grid to an apparent rated power of an intercon-
necting device. In general, a weak grid has a low SCR compared to a stiff grid. For
power quality and harmonic analysis, the grid impedance varies with respect to
frequency due to capacitive couplings in cables and transformers (nonlinear per-
mittivity), as well as the nonlinear property of the magnetic core in transformers.
The impact of the grid impedance is more significant at higher-frequency ranges as
the voltage drop across the grid impedance depends on the order of the harmonics.

11.2 Power Quality Factors and Definitions

We briefly present harmonic distortion in Chapter 2. In this section, we present
elaborate definitions of different power quality factors that impact a power grid.

11.2.1 Harmonic Distortion

As mentioned in Chapter 2, the total harmonic distortion (THD) is the ratio of the
sum of the harmonic components (rms value of the orders of 2–40) to the rms value
of the fundamental signal that can be defined for current and voltage signals as
follows [1, 2]

THDi =
40
k = 2I

2
k

I21
11 4

Vs(t)

Device (2)

Device (1)

Device (n)

...

VPCCZgrid

+
_

Vh(t)

Figure 11.6 Grid impedance
impact on voltage harmonics in a
distribution network.

11.2 Power Quality Factors and Definitions 471



THDv =
40
k = 2V

2
k

V 2
1

11 5

where Ik and Vk respectively are kth harmonic component of current and voltage,
with the fundamental being k = 1.
Total harmonic current (THC) is the sum of the harmonic current components

(rms value of the orders of 2–40), which is defined as

THC =
40

k = 2
I2k 11 6

Therefore, we have

THDi =
THC
I1

Partial odd harmonic current (PHOC) is the sum of the harmonic current com-
ponents (rms value of the orders of 21–39), which is defined as

POHC =
40

k = 21,23,…I
2
k 11 7

Partial harmonic current (PHC) is the sum of the harmonic current components
(rms value of the orders of 14–40), which is defined as

PHC =
40

k = 14
I2k 11 8

Example 11.1 Consider the instantaneous current

i t = 10 2
40

k = 1

sin kωt
k

A

where ω = 100π rad/s. This means that the rms value of the current at the funda-
mental frequency of 50 Hz is 10 A, while the rms values decrease significantly to
the harmonic numbers, e.g. it is 5 A for the second harmonic and 3.33 A for the
third harmonic, and so on. Then from (11.4) and (11.6)–(11.8), we have

THDi = 0 7876, THC = 7 876 A, PHOC = 1 117 A, and PHC = 2 222 A

This implies that the current THD is 78.76%.
Figure 11.7 depicts the current, when the fundamental and different harmonic

components are present. For comparison, the fundamental component is also plot-
ted in these figures. When all even and odd harmonic components ride the fun-
damental, the waveform almost becomes a sawtooth with a frequency that is
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half of the fundamental frequency, as shown in Figure 11.7a. When the waveform
contains the odd harmonic, it almost becomes a square wave having the same fre-
quency as the fundamental waveform (Figure 11.7b). However, when only the
even harmonics are present with the fundamental, the waveform is irregular
but periodic, as shown in Figure 11.7c.

11.2.2 Power and Displacement Factors

The power factor (PF) of an electrical system is defined as the ratio of the active
power (absolute value) to apparent power as

PF =
P
S

11 9

where P is the active power and S is the apparent power. Assuming that the voltage
harmonics are negligible but load current harmonics are present, the apparent
power can be written as

S = V 2
1I

2 = V 2
1 I21 +

40

k = 2
I2k = V 2

1I
2
1 + V 2

1
40

k = 2
I2k 11 10

The fundamental apparent power is given by

S = V 2
1I

2
1 = P2

1 + Q2
1 11 11
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Figure 11.7 Distortion in current due to different harmonic components.
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where P1 andQ1 respectively are the fundamental components of real and reactive
power. The power that does not perform any task is called the nonactive power
(Qh) and is defined as

Qh = V 2
1

40

k = 2
I2k 11 12

The PF in (11.9) can also be written as

PF =
V 1I1 cosϕ1

V 1I1 1 + THD2
i

=
cosϕ1

1 + THD2
i

11 13

where ϕ1 is the phase angle difference between the fundamental voltage and cur-
rent signals. The displacement factor λdisp and distortion factor λdist are defined
based on the PF definition as

λdisp = cosϕ1 11 14

λdist =
1

1 + THD2
i

11 15

Therefore, the PF of the electrical system consists of two factors, λdisp and λdist,
which have two different effects on grids. The reactive power is due to the displace-
ment factor λdisp, which can affect the grid voltage level, the line current, and addi-
tional losses through cables and transformers. The current harmonic distortion is
represented in the distortion factor λdist, and it has an impact on the power quality
and energy efficiency of the grid, including additional core and copper losses in the
power systems.

Example 11.2 Consider the instantaneous current of Example 11.1. Let us
assume that the fundamental component of this current lags the supply voltage
by 20 , i.e. ϕ1 = − 20 . Then we have

λdisp = cosϕ1 = 0 9397, λdist =
1

1 + 0 7876 2
= 0 8863, and

PF = λdisp × λdist = 0 8329

11.3 Harmonics Generated by Power Electronics
in Power Systems

In the past, one of the main harmonic contaminations in power system was the
low-order harmonic currents caused by saturated iron in transformers and AC
motor drive systems. Today, there are several nonlinear loads: conventional and
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modern power electronics converters based on semiconductor switching devices
such as diodes, insulated-gate bipolar transistors (IGBTS), metal oxide silicon field
effect transistors (MOSFETs) or thyristors which generate harmonics or interhar-
monics at different amplitudes and frequency ranges.
Power electronics technology in distribution networks allows the transfer of

electrical power from renewable energy sources to grids, while regulating fre-
quency and/or voltage for different loads such as variable speed drives and battery
chargers. New demands for (i) cost and size reduction, (ii) performance and quality
improvement, and (iii) flexibility on power management have promoted power
electronics applications extensively in industrial, commercial, and residential
sectors.
With the recent development and advancement in power electronics applica-

tions, the cost of these devices has been competitively reduced due to an increase
in the demand and the presence of many competitors in the market. The more
recent evolution in modern power electronics devices with large power handling
capability provides a significant contribution in energy saving and the efficient use
of electricity.
The penetration of grid-connected renewable energy sources based on power

electronics technology has been increasing in low- and medium-voltage distribu-
tion networks. Harmonics are the main drawback of modern power electronics
converters. Harmonic distortion causes unnecessary heat in power system and
grid-connected equipment due to overloading of neutrals, overheating of transfor-
mers, nuisance tripping of circuit breakers, and overstressing of PF correction
capacitors. Harmonic currents together with grid and system impedance lead to
harmonic voltage distortion, which results in poor power quality and instability
of the grids. Therefore, harmonic mitigation techniques have become an impor-
tant topic in distribution networks. There are various harmonics mitigation tech-
niques to improve line current waveform.
A classification of the different harmonic mitigation techniques is shown in

Figure 11.8 and presented here:

• Passive methods based on inductor and LC filters.

• Multipulse rectifier techniques.

• Active harmonic cancelation techniques.

The pros and cons of each harmonic mitigation technique have already been
reported in various literature.
Passive filters are cost-effective solutions and can provide acceptable current

harmonic cancelation. However, they have the following drawbacks:

• Bulky and heavy.

• Performance depends on the load profile.

• Creation of resonances in power systems.
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Harmonic cancelation methods using multipulse rectifiers are based on phase-
shifting line current and are the preferred solutions to eliminate harmonics in
high-power converters, such as large motor drive applications. However, they
require bulky and expensive phase-shifting transformers, which are mostly used
in step-down systems (medium- to-low voltage grids) with passive filters to elim-
inate the remaining harmonics.

(a)

Other

Converters and

Loads

a

b

c

Lac

Ldc

Cac

Lac

Lac

ia

iL

+

(b)
a

b

c Other

Converters and

Loads

Zgrid

Zgrid

Zgrid

Tuned AC Filter 

for hth
Harmonic

Other

Converters and

Loads

(c)

AC 
Motor

(d)

a

b

c

Nonlinear
Load

Zgrid

Zgrid

Zgrid

Active Power
Filter

+

Figure 11.8 Several harmonic mitigation techniques: (a) passive inductive filter, (b) tuned
LC filter, (c) 12-pulse rectifier, and (d) active power filter.
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Active harmonic cancelation methods are based on AFE, which can reduce low-
order harmonic emission significantly. These systems are not a cost-effective solu-
tion due to the utilization of semiconductor switches, sensors, advanced control
systems, and gate drives.
Themain focus of the discussion in this section is to identify harmonic sources at

the load and grid sides. As shown in Figure 11.9, harmonics are generated
in different parts of a system based on system topology, application, and load.
In Sections 11.3.1–11.3.4, different power electronics converters generating
harmonics are explained.

11.3.1 Harmonic Analysis at a Load Side (a Three-phase Inverter)

Figure 11.10 shows a three-phase motor drive application where a three-phase
inverter is connected to a three-phase load. Let us focus on an analytical study
to find the spectral contents of the load current harmonics at the DC side (iinv)
based on the Fourier series and switching patterns of the load side inverter.
The inverter operates based on a PWMmethod such as a generic sine-triangular

PWM strategy and the switching functions of each leg. Let us assume that the DC
link voltage is equally shared across the DC link capacitors (Cdc). The switching
functions of the legs Sa, Sb, and Sc have the value of 0 or 1 depending on the
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Figure 11.9 Circuit diagram of a typical power electronic system.
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switches being off or on respectively. The load-side leg voltages va0, vb0, and vc0
with respect to the midpoint of the DC link capacitors can be written as

va0 = VdcSa −
Vdc

2
Sa =

va0
Vdc

+
1
2

11 16

Sb =
vb0
Vdc

+
1
2

11 17

Sc =
vc0
Vdc

+
1
2

11 18

The double Fourier series of the leg voltage is given by [3]

va0 =M
Vdc

2
cos ω0t

+
2Vdc

π

∞

m = 1

∞

k = − ∞
Jk m

π

2
M sin m + k

π

2
+ cos mωct + kω0t

11 19

where

• ωc = 2πfc is the carrier frequency.

• ω0 = 2πf0 is the fundamental frequency.

• M is the modulation index.

• Jk is the Bessel function of order k.

The switching function equation of Sa can be extracted from the above leg as

Sa =
M
2
cos ω0t

+
2
π

∞

m= 1

∞

k = −∞
Jk m

π

2
M sin m+ k

π

2
+ cos mωct + kω0t +

1
2

11 20

A similar switching function can also be extracted for Sb and Sc. The abovemeth-
odology can be applied to any PWM strategy to extract the leg voltage and switch-
ing function equations.
The phase voltage equation in terms of the leg voltages is discussed in this sec-

tion. The phase voltage can be used to extract the load current. In a three-phase
inverter, the leg voltage consists of the phase voltage and a common mode voltage,
as given in (7.15). In a symmetrical (balanced) system, the common mode voltage
is shown in (7.16) to be

vn0 =
va0 + vb0 + vc0

3
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Now since van = va0− vn0, the above equation can be rewritten as

van =
2va0 − vb0 − vc0

3
11 21

The load current harmonics can be defined based on the load model and its
applications. If the load is a series combination of an inductor and a resistor,
the output current can be extracted as

ia t = I0 cos ωot− θ0 +
∞

h = 1
Ih sin ωht + θh 11 22

where I0 is the maximum amplitude of the fundamental frequency load current
and θ0 is its phase angle. The second term on the right-hand side of (11.22) defines
the spectral contents of the load current based on the load model, PWM method,
and switching frequency. As there are several trigonometric terms in the phase
voltage and current equations, the harmonic currents are defined in terms of a
sinewave where ωh and θh are the angular frequency and the phase angle of
the hth harmonics, where h can have noninteger values as well.
As shown in Figure 11.10, the inverter current at the DC link side, iinv, can be

expressed in terms of the load currents and the inverter switching functions as

iinv = Saia + Sbib + Scic 11 23

Due to the symmetry in a three-phase system, the switching functions Sb and Sc
are phase shifted from Sa by 120 and therefore can be written by substituting ωot
by ωot− 120 and ωot+ 120 respectively. In a similar way, the load currents of
phases b and c can also be obtained by phase shifting ia by 120 . However, if
the load impedance is unbalanced, the phase current will be unbalanced as well.
The load side current harmonics are modelled in terms of the load side inverter
switching function and load parameters. Thus, the harmonic emission to the grid
side depends on the parameters of the entire system such as the low- and high-
frequency models of the power converter, including the passive DC link filter,
the EMI filter, and the grid impedance.

11.3.2 Harmonic Analysis at a Grid Side (a Three-phase Rectifier)

Three-phase AC-DC converters are utilized in many low- and high-power applica-
tions, such as motor drive systems and battery chargers. The low-order harmonics
generated by the three-phase diode rectifier are mitigated using a passive filter,
such as an AC or a DC inductor or a combination of these two inductors. In a
three-phase balance system, there is no third and triplen harmonics due to the
symmetrical operation of the diode rectifier in each leg, i.e. 120 phase shift of
the conduction time instants.
Figure 11.11a shows a three-phase diode rectifier with DC link inductors con-

nected to an inverter at the load side. Under a full load condition, it is expected
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that the DC link current is continuous (Figure 11.11b), and each diode conducts
for 120 based on the grid voltage, while at a partial power condition the inductor
current can be discontinuous (Figure 11.11c), and the conduction times of the
diodes depend on the system and load parameters.
Mathematical equations can be extracted to find the DC and harmonic values of

the rectified voltage and the DC link current for a three-phase diode rectifier. Let
us assume a set of three-phase balance voltages as

va = Vm sin ωot

vb = Vm sin ωot− 120

vc = Vm sin ωot + 120

11 24

where Vm is the peak amplitude of the grid voltage.
The upper and lower diodes in a three-phase diode rectifier are turned on and off

in which the rectified voltage can be expressed in terms of the line-to-line voltage,
depending on which phases are connected to the DC link. In an ideal case, if the
DC link current idc is ripple free and constant, the rectified voltage Vrec(t) consists
of six pulses, representing the line-to-line voltage for each period of π/3, as shown
in Figure 11.12a. Using Fourier series, the DC and harmonic values of the rectified
voltage can be extracted as

Vrec t =
3 3Vm

π
1−

∞

n = 1

2
36n2 − 1

cos nπ cos 6nω0t 11 25

As shown in Figure 11.12b, and assuming the current through the inductor is
continuous and the system operates in continuous conduction mode, the imped-
ance seen from the rectifier Zrec is given by

Zrec = j2ωLdc +
2Zinv

2 + jωCdcZinv
11 26

where Zinv represents the impedance of the load side inverter and its load. As the
rectified voltage has a DC part and harmonics at the frequencies of 6nω0, the
impedance in (11.26) can be simplified in terms of the grid frequency as

Zrec = j12nω0Ldc +
Zinv

1 + j3nω0CdcZinv
11 27

The DC link consists of two capacitors in series and two inductors.
The inverter impedance can be divided into two parts: the DC impedance Zinv_dc

representing the active power consumed by the inverter and the load and the har-
monic impedance Zinv(6nω0). Thus, the DC link current has two parts: the DC and
harmonic parts as
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idc t =
3 3Vm

π

1
Zinv_dc

−
∞

n = 1

1
Zinv 6nω0

×
2

36n2 − 1
cos nπ cos 6nω0t

11 28

Based on the DC link current model in terms of the converter parameters, the
grid current can be developed in terms of the switching function of the diode rec-
tifier. Let us assume that the diodes in the three-phase AC-DC rectifier system
operate without any commutations and the switching function of each phase is
symmetrical with 120 conduction, as shown in Figure 11.13. The mathematical
equation of the grid current can be calculated for phase-a of the grid current
and similar approaches can be utilized for the other two phases. As shown in
Figure 11.13, the grid current igrid_a(t) is defined as the DC link current idc(t) times
of the diode rectifier switching function Sdiode_a(t), i.e.

igrid_a t = Sdiode_a t × idc t 11 29
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The grid current can be extracted when the Fourier series of these two time
domain functions Sdiode_a(t) and idc(t) are multiplied together. From the expression
of the DC link current given in (11.28), the Fourier series of the switching function
Sdiode_a(t) is given by

Sdiode_a t =
4
π

∞

k = 1,3,5,…
cos kπ 6

k
sin kω0t 11 30

Thus, the grid current is expressed based on (11.28–11.30) as

igrid_a t =
4
π

∞

k = 1,3,5,…
cos kπ 6

k
sin kω0t ×

3 3Vm

π

1
Zinv_dc

−
∞

n = 1

1
Zinv 6nω0

×
2

36n2 − 1
cos nπ cos 6nω0t

11 31

The grid current harmonics given in (11.31) represent the current harmonics
generated by the rectified voltage. The total grid current harmonics are the effects
of both harmonics generated by the diode rectifier (11.31) and the switching pat-
tern of the inverter (11.23) through the entire circuit, including the DC and AC
filters.
Voltage harmonics at the PCC can affect the DC link voltage at the rectifier side

Vrec(t) and consequently the DC link and grid currents. The main influence of the
grid voltage harmonics is on the conductivity of the diode rectifier and the phase
shifts in their current conduction times. Thus, the grid voltage background harmo-
nics can affect the current harmonics generated by the three-phase diode rectifiers
under continuous conduction mode [4].
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Figure 11.13 The extraction of the grid current based on the DC link current and the
switching function of the diode rectifier.
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Figure 11.14 shows the grid and the rectified voltage waveforms with different
voltage harmonics at the PCC. It is obvious that the DC link voltage ripple (the
rectified voltage) is significantly varied in terms of the grid voltage harmonic
amplitude and phase angle. These phenomena have big impacts on the DC link
current harmonic levels and the grid current as well. Similar mathematical equa-
tions can be derived for the rectified voltage and the DC link current considering
the impacts of the grid voltage harmonics on the conduction times of each diode in
the AC-DC rectifier.

11.3.3 Harmonic Analysis at Grid Side (Single-phase Rectifier
with and without PF Correction System)

In low-power applications, such as lighting systems and electronic equipment, a
single-phase diode rectifier with DC-DC converters is the most common system
topology. The AC-DC diode rectifier can be cascaded with a boost converter to
improve line current harmonics and PF. The combination of the single-phase
diode rectifier with a boost converter is known as a power factor correction
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Figure 11.14 (a) The grid and (b) the rectifier voltage waveforms with different voltage
harmonics.
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(PFC) system. The schematic diagrams of a single-phase rectifier without and with
a boost converter are shown in Figure 11.15.
The single-phase diode rectifier generates 100 Hz rectified signal at the DC side

of the converter and the instantaneous rectified voltage varies from zero to the
maximum peak value of the grid voltage. Thus, a large storage element, a DC link
capacitor, is required to control the DC link voltage at a high voltage level in such a
way that the DC voltage can be utilized as a voltage source for other parts of the
system. Without the boost converter, the single-phase diode rectifier operates
mainly in a discontinuous conduction mode as the large DC link capacitor keeps
the voltage higher than the grid voltage for some periods and the diodes will be
switched off. Under this operating mode, the line current is discontinuous, as
shown in Figure 11.16a. The harmonic spectrum of the current is shown in
Figure 11.16b.
Therefore, the single-phase topology without a boost converter generates a dis-

torted line current with significant low-order harmonics, mainly below 2 kHz.
A main harmonic problem of the single-phase rectifier is the generation of a very
high third-order harmonic content. The third harmonic and triplen harmonic cur-
rent components circulate in the neutral line of a three-phase system, causing con-
cerns of overloading the neutral conductor and the transformer overheating. One
of the methods to mitigate current harmonics is to use a passive filter, such as a DC
or anAC inductor. However, the performance of the converter depends on the load
power (damping factor) and grid parameters.

Lg Rg ia
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Ldc

Vdc

+

Other

Subsystems

(a)

(b)

Other

Subsystems

Boost Converter

Controller

Lg Rg ia

Cdc

Vdc

+
Ldc

idc

vg

Figure 11.15 A single-
phase diode rectifier (a)
without a boost converter
and (b) with a boost
converter.
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In recent years, the use of the PFC systems has increased in many single-phase
appliances where low-harmonic emissions and a high PF are required. The main
advantages of the PFC system are that its line current is synchronized with the grid
voltage, and it is shaped to a sinewave using a current controller. As shown in
Figure 11.15b, a boost converter is cascaded with a diode rectifier at the DC link
side to control the inductor current to a rectified sinewave based on a modulated
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Figure 11.16 (a) Current waveform of a single-phase diode rectifier without a boost
converter and (b) its harmonic spectrum.
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high-frequency switching pattern. The control system requires current and voltage
measurement to monitor and control the power flow and DC link voltage. A phase
lock loop (PLL) or a direct grid voltage measurement is utilized to synchronize the
PFC line current with the grid voltage to generate a unity PF.
As shown in Figure 11.17, a single-phase rectifier with a PFC system has a very

low THD and low-order harmonic emission. The levels of the DC current and
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Figure 11.17 (a) Current waveform of a single-phase diode rectifier with a boost converter
and (b) its harmonic spectrum.
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specific low-order harmonics, i.e. the third and fifth orders, are limited according
to international standards, such as IEC 61000-3-2.
The main drawbacks of the PFC system are the higher system cost for more

active and passive components, high-frequency leakage, and ripple currents due
to the PWM signal and voltage stress (dv/dt) across the inductor. The current rip-
ple amplitude can be reduced if the switching frequency is increased. However, the
higher switching frequency can affect the switching losses and reduce the effi-
ciency of the system. One of the methods to control the switching loss is to increase
the switching transient time – fast dv/dt and di/dt. On the other hand, a fast
switching transient time can generate more leakage current due to capacitive cou-
plings in the converter or voltage spikes due to stay inductances. A PFC system
needs an EMI filter to mitigate and suppress high-frequency noise and harmonics
to comply with IEC and CISPR standards.

11.3.4 Harmonic Analysis at Grid Side (AFE)

The AFE is a bidirectional power flow converter with a PWM-based inverter topol-
ogy that can generate a high-quality sinusoidal line current waveform using an
appropriate high-frequency filter at the grid side. AFE converters are utilized in
single- and three-phase systems, such as solar inverters and motor drives. As
shown in Figure 11.18, the system has active power switches, such as IGBTs or
MOSFETs, and a comprehensive control system, such as a PWM, current and volt-
age measurement units, PLL, and a controller to stabilize and manage active and
reactive power control. To mitigate the switching frequency ripple in the grid, a
front side filter is required, where LC and LCL filters with a damping resistor
are common topologies for a voltage and a current control application, to circulate
high-frequency noise and harmonics from the inverter through the capacitive leg
and clean the line current at the grid side. On the other side of the converter, the
PV source or the load side is decoupled by the DC link capacitor and has its control
and converter units. In most applications, the DC link voltage is measured and
compared with a reference voltage to manage the power flow, as shown in
Figure 11.18 [5].
The quality and stability of the line current depend onmany design factors, such

as switching frequency, control and active or passive damping solution, LCL filter
configuration, PWM method, and grid impedance and background noise. Most
AFE systems utilized in low-voltage distribution networks operate at a high
switching frequency (above 9 kHz), which results in better harmonic performance
at low frequency (0–2 kHz) but can generate high-order harmonics and noise in
the frequency range of 2–150 kHz. The resonant frequency of the AFE filter also
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has a big impact on harmonic generation in distribution networks. The resonant
frequency of the filter is around one-third of the switching frequency of the AFE
converter.
The increased use of AFE topology in solar inverters and motor drive systems

has been causing a major concern in the frequency range of 2–150 kHz. This
has attracted the attention of international standardization organizations, such
as IEC committees, to develop new standards for this frequency range.
Let us model a single-phase AFE system for stability and harmonic analysis. The

block diagram of the control system is shown in Figure 11.19, where the inductors
L1 and L2 with parasitic resistors r1 and r2 (ohmic losses) are a part of the AFE filter.
The DC link voltageVdc is modelled as an ideal voltage source with no ripple, while
in practical cases, such as solar inverters or motor drive systems, the DC link volt-
age can be defined as vdc(t) = Vdc+ vnoise(t), where vnoise(t) represents the DC link
voltage variation or ripple.
The capacitor branch has a resistor Rd that can improve the stability of the sys-

tem. In some applications, a virtual damping resistor can be created by adding the
grid side voltage or current measurement in the control loop, which is known as an
active damping method. In some applications, a combination of active and passive
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Figure 11.18 An AFE topology with current control and measuring units.
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Figure 11.19 Block diagram of the closed-loop AFE control system.
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damping methods can be utilized in the control system to improve the stability of
the system and to reduce the ohmic losses caused by Rd.
The closed-loop control system is shown in Figure 11.19, where the reference

signal is compared with the grid current and the error is minimized through
the controller GC(s). The controller in a single-phase converter is based on a pro-
portional resonant controller, while in a three-phase inverter the controller can be
a proportional–integral–derivative (PID) type. The inverter system, including the
PWM modulator, is modelled as Ginv(s). As the control system is implemented
using a digital system with a sample and hold unit, the sum total of measurement
and implementation delay is modelled as Gd(s). The reference signal amplitude Iin
can be generated by an additional controller at the DC link side to manage the
active and reactive power or it can be a fixed value depending on the application
parameters. The reference signal Iref (s) is generated by a PLL unit to synchronize
the grid current with the grid voltage. The transfer function of the PLL unit is
defined as GPLL(s).
A simplified model of the AFE system with a closed-loop control system is

shown in Figure 11.20 and can be modelled as

Ig s = Iinv s −Y 0 s VPCC s 11 32

where Y0(s) is the system admittance, Iinv(s) is the internal current of the AFE, and
Ig(s) is the output current of the grid-connected AFE system. As shown in
Figure 11.20, the AFE output current is influenced by two main factors:

• The inverter current Iinv(s) and admittance Y0(s) which depend on the control
parameters and filter design parameters.

• The grid voltage background noise and harmonics.

In an ideal case, if the admittance (impedance) value is zero (infinity) over the
entire frequency range, the impact of the grid background noise on the converter
performance is minimized and the AFE can be modelled as a current source.

+

–

Iinv(s)

Ig(s)

VPCC(s)Y0(s)

Figure 11.20 A simplified model of
an AFE system with a closed-loop
control system.
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11.4 Power Quality Regulations and Standards

There are several standards for power quality. These are briefly discussed here.

11.4.1 IEEE Standards

IEEE societies and technical committees have a board of the IEEE Standards Asso-
ciation (IEEE-SA) that have developed different standards approved by the Amer-
ican National Standards Institute. The technical committees consist of volunteers
who need not be members of the IEEE. The IEEE standards are not mandatory,
while some countries, utilities, and manufacturers can refer to these standards for
specific regulations or quality controls of products or services. There are several
IEEE standards for power quality and harmonics, such as:

• IEEE 519 for harmonic control in electric power systems [6].

• IEEE 1159 for the monitoring and characterization of electric power quality
power quality [7].

• IEEE 1409 is a guide for the application of power electronics for power quality
improvement on distribution systems rated 1 through 38 kV [8].

• IEEE 1547 for interconnecting distributed resources with electric power sys-
tems [9].

• IEEE 1560 discusses methods of measurement of radiofrequency power line
interference filters (100 Hz to 10 GHz) [10].

• IEEE 1662-2008 is a guide for the design and application of power electronics in
electrical power systems on ships [11].

• IEEE 1826-2012 for power electronics open systems interfaces in zonal electrical
distribution systems rated above 100 kW [12].

• IEEE 1709-2010 is the recommended practice for 1–35 kV medium-voltage DC
power systems on ships [13].

In this section, some important IEEE standards for microgrids and low-order
harmonic emissions generated by nonlinear loads and distributed energy
resources are explained in detail.

11.4.2 IEEE 519

Power electronics converters, such as AC-DC rectifiers or AFE converters con-
nected to DC-DC or DC-AC converters, are the main harmonic sources in
low-voltage distribution networks. These converters are utilized in several appli-
cations, such as power supplies, motor drives, solar inverters, and electrical and
electronic appliances. In medium- and high-voltage applications, other types of
power electronics systems such as flexible AC transmission systems (FACTS),
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renewable energy systems, and other power system compensators are the har-
monic sources. These power converters are defined as nonlinear loads as they gen-
erate fundamental and harmonic currents at the grid side while they are connected
to an AC voltage source with a fundamental frequency of 50 or 60 Hz.
IEEE 519 evaluates harmonic emission at the system level. Therefore, a demand

load current is defined for harmonic calculation as a percentage. The harmonic
measurement method is based on IEC 61000-4-7 and IEC 61000-4-10 standards,
where discrete Fourier transform (DFT) techniques are used. For the fundamental
frequency of 50 Hz, the time domain measurement window is 200ms to capture
10 cycles with 5 Hz resolution. When the grid frequency is 60 Hz, the measure-
ment window is almost 200 ms (199.999 ms). Harmonics and interharmonics at
50, 55, 60, 65 Hz, etc., can be identified and the rms value of the signal at each har-
monic is calculated based on these harmonic values.
The maximum and average values of the harmonics can be defined based on the

measurement time, where 3-second and 10-minute time intervals are used in
many power quality meters. For example, in the 3-second (3000 ms) time interval
method, the rms value of each current harmonic component is calculated based on
15 samples which are measured with a 200 ms window method. The aggregated
harmonic value is given by

In =
1
15

15

k = 1
I2nk 11 33

Table 11.1 shows current harmonic limits for a distribution network up to 69 kV.
The limits are defined based on the percentage of the maximum demand current.
According to IEEE 519, themaximum demand current is calculated by the average
value of the maximum current in the 12 previous months.

Table 11.1 Odd harmonics limits in percentage of demand load current (IL) and short
circuit current (ISC) based limits on IEEE 519; even harmonics are limited to 25% of the odd
harmonic limits.

Current Ratio 3≤ h < 11 11≤ h < 17 17≤ h < 23 23≤ h < 35 35≤ h < 50 TDD

Isc/IL< 20 4.0 2.0 1.5 0.6 0.3 5.0

20 < Isc/IL
< 50

7.0 3.5 2.5 1.0 0.5 8.0

50 < Isc/IL
< 100

10.0 4.5 4.0 1.5 0.7 12.0

100 < Isc/IL
< 1000

12.0 5.5 5.0 2.0 1.0 15.0

1000 < Isc/IL 15.0 7.0 6.0 2.5 1.4 20.0

492 11 Harmonics in Electrical and Electronic Systems



In IEEE 519, the total demand distortion (TDD) is defined as

TDDi =
40
k = 2I

2
k

I2demand

11 34

The main difference between THD and TDD is how the percentage of the dis-
tortion is calculated. In the THD calculation, themeasured value of the fundamen-
tal current of a product is used, while in TDD themaximum demand current based
on average over a period of time (for example 12months) is utilized in the calcu-
lation. Therefore, IEEE 519 standard evaluates a system based on the demand cur-
rent rather than a product based on the measured reference or fundamental
current.

Example 11.3 Let us consider a network where two sets of loads (linear loads
and power converters) are connected to the point of common coupling as shown
in Figure 11.21. The system data considered are

Ia = 200 A at 50 Hz

Ib =

200 A at 50 Hz

70A at 250 Hz

50 A at 350 Hz

20 A at 550 Hz

Idemand = 1000 A

The THD and TDD values of the system are calculated as

THDia =
0

2002
= 0

THDib =
702 + 502 + 202

2002
=

7800
40000

= 44 1

Linear
Load

VPCC

Zgrid

Nonlinear
Load

Ia

Ib

Figure 11.21 A simplified model
of a network with two
different loads.
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THDi_total =
702 + 502 + 202

4002
=

7800
160000

= 22 1

TDDi =
40
k = 2I

2
k

I2demand

=
702 + 502 + 202

10002
= 8 8

Thus, when the demand current or the total fundamental current is increased,
the THD or the TDD value is decreased. IEEE 519 can be used to evaluate a system
rather than a product.

11.4.3 IEEE 1547

One of the standards for technical specifications of distributed energy resource
interconnection is IEEE 1547, which provides information regarding the opera-
tion, measurement, and safety of the system. This standard covers all technologies
utilized in distributed energy resources with a total capacity of 10 MVA or less at
the point of common coupling.
The TDD is calculated based on the maximum demand load current over a

period of 15 or 30minutes that is different from the maximum demand current
defined in IEEE 519.
At any point of connection where a distributed energy resource is connected, the

injected DC current should not be greater than 0.5% of the full rated output cur-
rent. Current harmonics generated by distributed energy resources should not
exceed the maximum harmonic current limits given in Table 11.2. The limits
are defined based on a maximum load current demand without energy resources
or themaximum current capacity of the distributed energy resource unit. The TDD
value should be less than 5%.

11.4.4 IEEE 1662-2008

This standard is developed to address methods and how to analyze power electron-
ics parameters for marine grids, more specifically technical design factors to
improve and optimize the size, lifecycle cost, weight, energy efficiency, and risk

Table 11.2 Harmonic limits based on IEEE 1547.

h < 11 11≤ h < 17 17≤ h < 23 23≤ h < 35 35≤ h

Odd harmonic order 4% 2% 1.5% 0.6% 0.3%

Even harmonic order 1% 0.5% 0.375% 0.15% 0.075
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of the system. This document covers all power electronics topologies and related
power system applications such as inverter, converter, and rectifiers (DC-DC, DC-
AC, AC-DC), protecting devices such as electronic fuses, current limiters and cir-
cuit breakers, power quality compensators (active harmonic and reactive power
filter), and energy storage systems.
This standard also provides technical information, which covers a wide range of

power electronics equipment to design and integrate equipment, system, and ship-
yard with power ratings above 100 kW. Examples of these designs are:

• Single propulsor system fed from two main buses.

• Single propulsor system with a dual winding propulsion motor fed from two
main buses.

• Dual propulsor system with propulsion motors fed from separate main buses.

• Dual propulsor system with dual winding propulsion motors.

• Zonal distribution with conventional propulsors.

• Integrated power system.

The AC and DC system parameters such as voltage and frequency (AC systems)
fluctuations depend on the subsystem design. For example, a high voltage above
1 kV is suggested for systems with a power rating of 5 MW and above. The fre-
quency variation for AC systems can be up to ±5%, while the voltage amplitude
variation can be from +6 to −10%. For DC systems, the voltage ripple or variation
is recommended to be within 10%. The electrical power system grounding in ship
networks is classified into three cases: (i) safety, (ii) power system, and (iii) signal,
which might be tied together in different applications.
To address the power quality and interconnection of electrical systems and dis-

tributed energy resources in marine applications, two IEEE standards (IEEE Std
519TM-1992 and IEEE Std 1547TM-2003) are recommended. These standards pro-
vide technical information and references to mitigate the harmonic voltage and
current generated by grid-connected electrical and electronics equipment.

11.4.5 IEEE 1826-2012

In this standard, a zonal electrical distribution system is defined as a system with a
set of loads, and it can be as a part of a larger grid. If a zonal electrical distribution
system has distributed energy resources or electrical storages, it can operate for
periods of time. This document can be used for different applications, including
maritime vessels and platforms.
The system has a limited number of electrical and control interfaces to prevent

any fault to be propagated into another system. The interfaces can have three
operating control states, such as (i) a central system to control the entire system,
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(ii) a distributed control with an independent communication unit, and
(iii) autonomous control without communication with other devices.
Any electrical and electronic device connected to a zonal electrical distribution

system and a larger system should have the quality of power and operation by a
customer–supplier agreement. IEEE 519 and IEEE 1547 standards can be used
for interconnection and power quality analysis and design evaluation.

11.4.6 IEEE 1709-2010

This standard can be used to analyze electrical equipment connected to a DC grid
on ships at the voltage level of 1–35 kV; more specifically, the standard provides
design parameters to optimize the size, lifecycle cost, weight, energy efficiency,
and risk issues in medium-voltage DC (MVDC) systems. The International Asso-
ciation of Classification Societies UR E11 provides technical reports and standards
for mostly AC systems and very limited standards on DC systems. MVDC grids
with voltage levels above 3 kV have no specific standards.
Similar to AC systems, in a shipboard MVDC bus system, different equipment,

such as distributed energy sources, linear loads, and power electronics converter
and storage devices, are connected to the DC bus. The power electronics converters
play an interface between the DC bus and loads to protect the DC bus against any
severe load faults. Tables 11.3 and 11.4 list the recommended rated and withstand
voltages in MVDC grids.
Grounding systems, short circuit faults, and DC arc-fault mitigation techniques

are some of the design concerns in MVDC grids. IEEE Std 1628-2009, IEEE Std

Table 11.3 Recommended MVDC voltage classes.

MVDC
Class kV

Nominal MVDC class rated
voltage (kV)

Maximum MVDC class
rated voltage (kV)

Already
established
classes

1.5 1.5 or ± 0.75 2 or ± 1

3 3 or ± 1.5 5 or ± 2.5

Future design
classes

6 6 or ± 3 10 or ± 5

12 12 or ± 6 16 or ± 8

18 18 or ± 9 22 or ± 11

24 24 or ± 12 28 or ± 14

30 30 or ± 15 34 or ± 17
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142-2007, and IEEE Std 1100-2005 are the main standards to address grounding
systems and faults.
As a DC grid has no fundamental frequency, harmonic emission is not the main

concern in DC grids. However, the DC bus voltage fluctuation and noise, including
current ripples, are considered in the DC networks. Themain issue is related to the
switching frequency of power electronics converters which generate low- and
high-frequency ripples on the load current. The non-DC component of the load
current can affect the quality of the DC bus voltage. Thus, short- and long-term
power quality factors to measure DC link voltage spikes, sags, high-frequency
noises, and surges are significantly important to evaluate the reliability and safety
of the DC network. As an example, the rms value of ripple and noise voltage should
not exceed 5% per unit. Some of the power quality factors which are defined in the
DC grids are:

• maximum nonrepetitive peak

• maximum repetitive peak

• maximum repetitive peak-to-peak.

11.4.7 IEC Standards

The IEC, founded in 1906, is the world’s leading organization with several tech-
nical committees and subcommittees to develop international standards for all
electrical, electronic, and related technologies. The subcommittee 77A (SC 77A)
is responsible to develop and prepare standards in the field of electromagnetic

Table 11.4 Proposed rated withstand voltages for MVDC voltage classes.

MVDC
Case

Rated short duration withstand voltage
to ground in kV for 1 minute

Rated lightning impulse withstand
voltage to ground in kV (peak value)

1 10 45

3 20 60

6 27 75

12 35 95

18 50 110

24 70 150

30 95 200
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compatibility for the frequency ranges of 0–2 and 2–9 kHz. SC 77A consists of sev-
eral projects, joint working groups. and the following five working groups:

•WG1: Harmonics and other low-frequency disturbances.

•WG2: Voltage fluctuations and other low-frequency disturbances.

•WG6: Low-frequency immunity tests.

•WG8: Description of the electromagnetic environment associated with the dis-
turbances present on electricity supply networks.

•WG9: Power quality measurement methods.

IEC 61000-3-2 and IEC 61000-3-12 are general standards that define harmonic
current emission limits for equipment with input current less than 16 A per phase
and between 16 and 75 A per phase respectively [1, 2]. These standards control grid
voltage distortion by limiting the maximum value for harmonic currents from 2nd
to 40th order. The limits are defined based on several types of equipment (single-
phase, three-phase, and low and high power) and grid impedance or SCR.
IEC 61000-3-16 is a similar standard to IEEE 1547, which is being developed by

the IEC SC 77A,WG1, and the first version of the standard is finalized in June 2021
[14]. IEC 61000-3-16 is about the limits for currents produced by inverter-type elec-
trical energy supplying equipment with a reference current less than or equal to
75 A per phase connected to public low-voltage systems [15].
IEC committees and working groups have published many standards for DC sys-

tems, such as IEC 62040-5-3 and IEC 61643-3 for existing DC applications. Recently,
several activities in the area of low-voltage DC applications in information and com-
munication technologies (ICT), residential and commercial buildings, etc., have led
the IEC to establish a new strategic group (SG) to study the standardization of DC
distribution, in which SG4 has been approved for low-voltage DC (LVDC) distribu-
tion systems up to 1500 VDC in relation to energy efficiency [16].
Some standards or guidelines for the onboard DC system, such as the voltage

level, new safety regulations, and suitable protection solution, are addressed in
the following standards:

• IEC 63108: Electrical installations in ships-primary DC distribution-system
design architecture: first edition published in 2017.

• IEC 61660: Short-circuit currents in DC auxiliary installations in power plants
and substations, Part 1: Calculation of short-circuit currents.

• IEC 60092-507: Electrical installations in ships, Part 507: Small vessels (includ-
ing some information about DC distribution system): third edition published
in 2014.

• IEC 61892-1: Mobile and fixed offshore units – Electrical installations – Part 1:
General requirements and conditions (including DC installations up to and
including 1500 V): third edition published in 2015.
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11.5 Concluding Remarks

This chapter addresses harmonic emissions generated by different power electron-
ics converters within the frequency range of 0–150 kHz. The conventional power
quality and harmonic analysis is limited to harmonics up to 2 kHz, while the cur-
rent standardization committees (IEC SC77A, WG1, WG8, and WG9) and utility
companies around the world have reported some severe high-frequency interfer-
ences within the 2–150 kHz range in low-voltage distribution networks. Different
IEEE and IEC standards for DC andmicrogrids systems are explained in this chap-
ter. The generic harmonic standards to define harmonic limits for grid-connected
electrical and electronic equipment are IEEE 519, IEEE 1547, IEC 61000-3-2,
IEC 61000-12, and IEC 61000-3-16.
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There are several power qualities, DC grids, and microgrid standards developed by
IEEE and IEC committees which are listed in the reference section [1, 2, 5–13].
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ics converters topologies, control and protection architecture, and energy effi-
ciency indicators.
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