Hong-Gi Lee
Linearization of Nonlinear Control Systems

Springer

Linearization of Nonlinear Control Systems

Hong-Gi Lee

Linearization of Nonlinear Control Systems

Hong-Gi Lee
Chung-Ang University
Seoul, Korea (Republic of)

ISBN 978-981-19-3642-5 ISBN 978-981-19-3643-2 (eBook)
https://doi.org/10.1007/978-981-19-3643-2

[^0]For Yeonhee, Jaekwon, and Jung-Gyu Sung

Preface

The theory of nonlinear control systems attracts much attention with the recent rapid development of digital equipment. The linearization problem of a nonlinear control system is to find the state transformation and feedback such that a nonlinear system satisfies, in the new state, a linear system equation. It is well known as one of the effective control techniques if applicable. In addition to linear algebra, differential geometry is essential to understanding the linearization problems of the control nonlinear systems. However, according to the author's experience, the basics of differential geometry are hard to learn for engineering students. In this book, the basics of differential geometry and Lie algebra formulas needed in linearization are explained for the students who are not accustomed to differential geometry. Standard definitions in differential geometry are also found in the Appendix.

The conditions in the linearization problems are complicated to check because the Lie bracket calculation of vector fields by hand needs much attention. This book provides the MATLAB programs for most of the theorems. The MATLAB programs in this book might be helpful for further research in nonlinear control problems.

The book's contents are organized as follows: Chap. 2 gives the mathematical background for understanding the linearization problem. Conditions of linearization problems cannot be understood without differential geometry. Chapters 3-6 consider the continuous-time systems. State equivalence to a linear system (LS) and feedback linearization are discussed in Chaps. 3 and 4, respectively. In Chap. 5, the state equation and the output equation are considered for linearization. It is shown, in Chap. 6, that we can enlarge the class of linearizable systems by using dynamic feedback instead of static feedback. Chapter 7 deals with the discrete version of Chaps. 35. The conditions for linearization of discrete-time systems are quite different from those for continuous-time cases. The discrete version of Chap. 6 can also be found, even though it is omitted in this book. Chapter 8 deals with the observer linearization problem. If we find a state transformation that transforms the nonlinear system into a nonlinear observer canonical form, then a Luenberger-like observer design is possible. Finally, input-output decoupling is explained in Chap. 9. MATLAB programs are provided for examples and problems at the end of every chapter. I like to refer to the book [A3] by A. Isidori and the book [A5] by H. Nijmeijer and
A. van der Schaft for more advanced topics of nonlinear control systems. They have been beneficial for me to understand the nonlinear control theory.

I wish to thank Prof. Hyung-Jong Ko, Prof. Yong-Min Kim, and Prof. Ho-Jae Lee for their comments and encouragement. Also, I thank Ms. Hyeran Hong for her contribution to drawing the figures. Finally, I would like to thank Prof. Steven I. Marcus and Prof. Ari Arapostathis for their help.

Seoul, Korea (Republic of)
Hong-Gi Lee
January 2022

Acknowledgements This book was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2019R1F1A1057480).

Contents

1 Introduction 1
1.1 Trends of Nonlinear Control System Theory 1
1.2 Approximate Linearization of the Nonlinear Systems 4
1.3 Exact Linearization of the Nonlinear Systems 5
2 Basic Mathematics for Linearization 9
2.1 Vector Calculus 9
2.2 State Transformation 12
2.3 Nonsingular State Feedback 14
2.4 Vector Field and Tangent Vector 16
2.5 Covector Field and One Form 39
2.6 Distribution and Frobenius Theorem 43
2.7 State Equivalence and Feedback Equivalence 60
2.8 MATLAB Programs 67
2.9 Problems 72
3 Linearization by State Transformation 79
3.1 Introduction 79
3.2 Single Input Nonlinear Systems 80
3.3 Multi Input Nonlinear Systems 88
3.4 MATLAB Programs 93
3.5 Problems 95
4 Feedback Linearization 99
4.1 Introduction 99
4.2 Single Input Nonlinear Systems 101
4.3 Multi-input Nonlinear Systems 114
4.4 Applications of Feedback Linearization 135
4.5 MATLAB Programs 144
4.6 Problems 152
5 Linearization with Output Equation 157
5.1 Introduction 157
5.2 State Equivalence to a SISO Linear System 160
5.3 State Equivalence to a MIMO Linear System 163
5.4 Feedback Linearization with Output of SISO Systems 166
5.5 Input-Output Linearization of MIMO Systems 182
5.5.1 Introduction 182
5.5.2 Structure Algorithm 187
5.5.3 Conditions for Input-Output Linearization 192
5.6 Feedback Linearization with Multi Output 199
5.7 MATLAB Programs 213
5.8 Problems 222
6 Dynamic Feedback Linearization 227
6.1 Introduction 227
6.2 Preliminary 231
6.3 Restricted Dynamic Feedback Linearization 235
6.4 Examples 250
6.5 MATLAB Programs 256
6.6 Problems 260
7 Linearization of Discrete Time Control Systems 263
7.1 Introduction 263
7.2 Single Input Discrete Time Systems 268
7.3 Multi-input Discrete Time Systems 286
7.4 Linearization of Discrete Time Systems with Single Output 305
7.5 MATLAB Programs 318
7.6 Problems 325
8 Observer Error Linearization 329
8.1 Introduction 329
8.2 Single Output Observer Error Linearization 332
8.3 Dynamic Observer Error Linearization 350
8.4 Multi Output Observer Error Linearization 367
8.5 Discrete Time Observer Error Linearization 415
8.6 Discrete Time Dynamic Observer Error Linearization 440
8.7 MATLAB Programs 481
8.8 Problems 513
9 Input-Output Decoupling 521
9.1 Introduction 521
9.2 Input-Output Decoupling of the Nonlinear Systems 523
9.3 Dynamic Input-Output Decoupling 527
9.3.1 Dynamic Extension Algorithm 531
9.4 MATLAB Programs 546
9.5 Problems 551
Appendix A: Basics of Topology 553
Appendix B: Manifold and Vector Field 559
Appendix C: MATLAB Subfunctions 567
References 581
Index 587

Acronyms

DOEL	Dynamic observer error linearizable
GNOCF	Generalized nonlinear observer canonical form
LOCF	Linear observer canonical form
LS	Linear system
MIMO	Multi input multi output
NLS	Nonlinear system
NOCF	Nonlinear observer canonical form
OT	Output transformation
RDOEL	Restricted dynamic observer error linearizable
SISO	Single input single output

Chapter 1
 Introduction

For the control of complex nonlinear systems such as robots and aircraft, more advanced control techniques are required. Thus, the theory of nonlinear control systems has developed rapidly over the past several decades. This book deals with linearization, one of the significant trends in modern nonlinear control system theory.

1.1 Trends of Nonlinear Control System Theory

Consider the following state equation and output equation of the control system:

$$
\dot{x}=F(x, u) ; \quad y=h(x, u) .
$$

If $F(x, u)$ and $h(x, u)$ are linear functions of state x and control input u, then it is a linear control system. Otherwise, it is a nonlinear system. For example, system (1.2) and system (1.3) are nonlinear control systems.

$$
\begin{gather*}
\dot{x}=A x+B u ; \quad y=C x+D u \tag{1.1}\\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3}+\left(1+2 x_{2}\right) u \\
x_{1}-x_{2}^{2}+u
\end{array}\right] ; y=x_{1}-x_{2}^{2}+x_{2}} \tag{1.2}\\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-2 x_{1}-2 x_{2}+x_{1}^{2}+x_{2}^{2}+\left(1+x_{1}^{2}\right) u
\end{array}\right] ; y=x_{1}} \tag{1.3}
\end{gather*}
$$

For linear control system (1.1), it is clear that $t \geq 0$,

$$
\begin{equation*}
y(t)=C e^{A t} x(0)+\int_{0}^{t} C e^{A(t-\tau)} B u(\tau) d \tau+D u(t) \tag{1.4}
\end{equation*}
$$

and the transfer function $G(s)$ can be defined such that $Y(s)=G(s) U(s)$. For a nonlinear system, $y(t)$ cannot be expressed in the closed-form, such as (1.4). Instead, it can be expressed as a series, called the Volterra series (See (5.66)). The transfer function cannot even be defined. Thus, the nonlinear systems are more complicated to analyze and control than the linear systems. The classical method of controlling a nonlinear system is the first-order approximate linearization (See Sect. 1.2.) In other words, the linear system can be obtained by ignoring all terms above the second order in the Taylor series of $F(x, u)$ about the nominal trajectory. In other words, if the nominal trajectory of system (1.2) is the origin, the system can be linearized, by ignoring $2 x_{1} x_{2},-2 x_{2}^{3}, 2 x_{2} u,-x_{2}^{2}$, and $-x_{2}^{2}$, as follows:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

If the nominal trajectory of system (1.3) is the origin, the system (1.3) can also be linearized approximately, by ignoring x_{1}^{2}, x_{2}^{2}, and $x_{1}^{2} u$, as follows:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

One of the nonlinear control research trends is to extend the results for the linear systems to the nonlinear systems. For example, the input-output decoupling (or diagonalization) problem has been considered for the linear system. Suppose that the number of the outputs and the inputs are the same. If the transfer function is a diagonal matrix, each output can be controlled independently.

Example 1.1.1 Consider the following MIMO linear system:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-2 & -3 & -4 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=A x+B u} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=C x}
\end{aligned}
$$

Find out a nonsingular linear feedback such that the transfer function matrix of the closed-loop system is a diagonal matrix.

Solution It is easy to see that $\dot{y}_{1}=x_{2}$

$$
\left[\begin{array}{l}
\ddot{y}_{1} \\
\dot{y}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -3 & -4 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

and

$$
G(s)=C(s I-A)^{-1} B=\left[\begin{array}{cc}
\frac{1}{s^{2}+3 s+2} & \frac{-4}{\left(s^{2}+3 s+2\right)(s+3)} \\
0 & \frac{1}{s+3}
\end{array}\right] .
$$

If we let

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=F x+G v
$$

then we have that

$$
\left[\begin{array}{l}
\ddot{y}_{1} \\
\dot{y}_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

or

$$
Y(s)=G_{c}(s) V(s)=\left[\begin{array}{cc}
\frac{1}{s^{2}} & 0 \\
0 & \frac{1}{s}
\end{array}\right] V(s) .
$$

Example 1.1.2 Consider the following MIMO nonlinear system:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{1}^{2}+u_{1}+u_{2} \\
\left(1+x_{2}^{2}\right) u_{2}
\end{array}\right] ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right] .
$$

Find out the nonsingular feedback $u=\gamma(x, v)$, such that

$$
\left[\begin{array}{l}
\ddot{y}_{1} \\
\dot{y}_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
$$

Solution It is easy to see that $\dot{y}_{1}=x_{2}$ and

$$
\left[\begin{array}{l}
\ddot{y}_{1} \\
\dot{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 1 \\
0 & 1+x_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
$$

Therefore, it is clear that

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =-\left[\begin{array}{ccc}
1 & 1 & \\
0 & 1+x_{2}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
x_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
0 & 1+x_{2}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-x_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
1-\frac{1}{1+x_{2}^{2}} \\
0
\end{array} \frac{1}{1+x_{2}^{2}}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\gamma(x, v) .
\end{aligned}
$$

Example 1.1.2 is the nonlinear version of Example 1.1.1. In other words, the nonlinear version of the input-output decoupling problem can be defined. (See Chap. 9.) Similarly, many researchers have studied the nonlinear version of controllability, observability, noninteracting control, disturbance decoupling, controlled invariant distribution, adaptive control, optimal control, etc.

Another research trend is feedback linearization, which transforms a nonlinear system into a linear system using nonlinear state transformation and feedback. If a given nonlinear system is feedback linearizable, it is possible to use a well-developed linear system theory to control the nonlinear system. Thus, the feedback linearization problem has attracted tremendous interest from many researchers. In Sect. 1.3, the linearization problems are briefly introduced.

1.2 Approximate Linearization of the Nonlinear Systems

In this section, the classical approximate linearization method is introduced. Consider the following nonlinear control system:

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(x(t), u(t)), \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m} \tag{1.5}
\end{equation*}
$$

Suppose that the nominal trajectory $x^{0}(t)$ and nominal input $u^{0}(t)$ satisfies

$$
\begin{equation*}
\dot{x}^{0}(t)=f\left(x^{0}(t), u^{0}(t)\right) ; \quad x^{0}(0)=x(0) \tag{1.6}
\end{equation*}
$$

If we expand the right-hand side of (1.5) into a Taylor series about $\left(x^{0}(t), u^{0}(t)\right)$, then we have

$$
\begin{align*}
\frac{d x(t)}{d t}= & f\left(x^{0}(t), u^{0}(t)\right)+\left.\frac{\partial f}{\partial x}\right|_{\substack{x=x^{0}(t) \\
u=u^{(t)}}}\left(x(t)-x^{0}(t)\right) \\
& +\left.\frac{\partial f}{\partial u}\right|_{\substack{x=x^{0}(t) \\
u=u^{0}(t)}}\left(u(t)-u^{0}(t)\right)+\cdots \tag{1.7}
\end{align*}
$$

Let

$$
\begin{equation*}
\Delta x(t) \triangleq x(t)-x^{0}(t) ; \quad \Delta u(t) \triangleq u(t)-u^{0}(t) \tag{1.8}
\end{equation*}
$$

If $\|\Delta x(t)\|$ and $\|\Delta u(t)\|$ are very small, then it is clear, by Taylor Theorem, that

$$
\begin{align*}
\frac{d}{d t}(\Delta x(t)) & =\dot{x}(t)-\dot{x}^{0}(t) \\
& \left.\cong \frac{\partial f}{\partial x}\right|_{\substack{x=0^{0}(t) \\
u=u^{0}(t)}} \Delta x(t)+\left.\frac{\partial f}{\partial u}\right|_{\substack{x=x^{0}(t) \\
u=u^{0}(t)}} \Delta u(t) \tag{1.9}\\
& \triangleq A(t) \Delta x(t)+B(t) \Delta u(t)
\end{align*}
$$

Example 1.2.1 Find a nominal trajectory $x^{0}(t)$, which is the solution to system (1.3) with initial conditions $x^{0}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and input $u^{0}(t)=0, t \geq 0$. Also, linearize system (1.3) about the nominal trajectory $x^{0}(t)$ and nominal input $u^{0}(t)$.

Solution Omitted.

Example 1.2.2 Find a nominal trajectory $x^{0}(t)$ and input $u^{0}(t)$, which is the solution to system (1.3) with initial conditions $x^{0}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Also, linearize system (1.3) about the nominal trajectory $x^{0}(t)$ and nominal input $u^{0}(t)$.

Solution Omitted.
In Example 1.2.2, it is not easy to find the nominal trajectory for the first-order approximation linearization. Besides, if the state is far from the nominal trajectory, the approximation becomes inaccurate, and the new approximation equation about the new nominal trajectory must be obtained for accurate control.

1.3 Exact Linearization of the Nonlinear Systems

In the previous section, we studied the approximate linearization. This section introduces the exact linearization problem. This method has been defined in the
early 80s and has attracted much attention. For example, if we consider nonlinear control system (1.3), then the closed-loop system with nonlinear state feedback $u=-\frac{x_{1}^{2}+x_{2}^{2}}{1+x_{1}^{2}}+\frac{1}{1+x_{1}^{2}} v$ satisfies the following linear system equation:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v .
$$

The above equation is not an approximation, but an exact one. In other words, nonlinear feedback could eliminate some nonlinear terms of the state equation. However, for nonlinear control system (1.2), there is no feedback to remove all the nonlinear terms. Another way to linearize a nonlinear system is to use a nonlinear coordinate transformation. To understand this, consider the following example.

Example 1.3.1 Consider the following linear system:

$$
\left[\begin{array}{l}
\dot{z}_{1} \tag{1.10}\\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u
$$

Let us define nonlinear state transform $x=S(z)$ by

$$
\left[\begin{array}{c}
x_{1} \tag{1.11}\\
x_{2}
\end{array}\right]=S(z)=\left[\begin{array}{c}
z_{1}+z_{2}^{2} \\
z_{2}
\end{array}\right] \quad \text { or } z=S^{-1}(x)=\left[\begin{array}{c}
x_{1}-x_{2}^{2} \\
x_{2}
\end{array}\right] .
$$

Show that the new state x satisfies Eq. (1.2).
Solution It is easy to see that

$$
\dot{x}_{1}=\dot{z}_{1}+2 z_{2} \dot{z}_{2}=u+2 z_{2}\left(z_{1}+u\right)=2 x_{1} x_{2}-2 x_{2}^{3}+\left(1+2 x_{2}\right) u
$$

and

$$
\dot{x}_{2}=\dot{z}_{2}=z_{1}+u=x_{1}-x_{2}^{2}+u .
$$

Thus, we have

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] u .
$$

As shown in Example 1.3.1, when the nonlinear coordinate transformation of Eq.(1.11) is applied to linear system (1.10), the system becomes nonlinear system (1.2) in the new coordinate system. In other words, when the nonlinear coordinate transformation of Eq. (1.11) is applied to nonlinear system (1.2), the system becomes
linear system (1.10) in the new coordinate system. Thus, nonlinear system (1.2) is linearizable by a state transformation.

So far, it has been shown that nonlinear feedback and nonlinear state transformation can be used to linearize nonlinear systems. Linearization techniques, if applicable, are known to be very powerful techniques for developing effective control laws for nonlinear systems. Several linearization problems can be defined. These are discussed in turn, starting with the linearization by state transformation. The next chapter introduces basic mathematics necessary to understand linearization problems and conditions. Chapter 2 would be useful not only for linearization theory, but also for other fields of nonlinear control system theory.

Chapter 2
 Basic Mathematics for Linearization

2.1 Vector Calculus

We define the partial derivative of scalar function $h(x)=h\left(x_{1}, \ldots, x_{n}\right)$ with respect to vector variable $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ by

$$
\begin{equation*}
\frac{\partial h(x)}{\partial x} \triangleq\left[\frac{\partial h(x)}{\partial x_{1}} \ldots \frac{\partial h(x)}{\partial x_{n}}\right] . \tag{2.1}
\end{equation*}
$$

In other words, $\frac{\partial h(x)}{\partial x}$ is a $1 \times n$ matrix. Then it is easy to see that for scalar functions $h(x)$ and $\eta(x)$

$$
\begin{equation*}
\frac{\partial\{h(x) \eta(x)\}}{\partial x}=\eta(x) \frac{\partial h(x)}{\partial x}+h(x) \frac{\partial \eta(x)}{\partial x} . \tag{2.2}
\end{equation*}
$$

Example 2.1.1 Let $x=\left[x_{1} \cdots x_{n}\right]^{\top}$. Suppose that C and A are $1 \times n$ constant matrix and $n \times n$ constant matrix, respectively. Show that
(a) $\frac{\partial}{\partial x}(C x)=C$
(b) $\frac{\partial}{\partial x}\left(x^{\top} C^{\top}\right)=C$
(c) $\frac{\partial}{\partial x}\left(x^{\top} A x\right)=x^{\top}\left(A^{\top}+A\right)$.

Solution Omitted. (Problem 2-1, 4.)
With (2.1), the derivative with respect to a vector variable can be expressed as simple as the derivative with respect to a scalar variable, as shown in (a) of the above example. However, (b) and (c) require some care. We can also define the partial
derivative of $m \times 1$ column vector function $h(x)=\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{m}(x)\end{array}\right]$ with respect to vector variable $x=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\top}$ by

$$
\frac{\partial h(x)}{\partial x} \triangleq\left[\begin{array}{c}
\frac{\partial h_{1}(x)}{\partial x} \\
\vdots \\
\frac{\partial h_{m}(x)}{\partial x}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial h_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial h_{1}(x)}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{m}(x)}{\partial x_{1}} & \cdots & \frac{\partial h_{m}(x)}{\partial x_{n}}
\end{array}\right]
$$

Example 2.1.2 Let $x=\left[x_{1} \cdots x_{n}\right]^{\top}$. Suppose that $h(x)$ is a scalar matrix. Show that $\frac{\partial}{\partial x}\left(\frac{\partial h(x)}{\partial x}\right)^{\top}$ is a symmetric $n \times n$ matrix.

Solution Omitted. (Problem 2-2.)
Example 2.1.3 Let $x=\left[x_{1} \cdots x_{n}\right]^{\top}$. Suppose that $b(x)$ and $c(x)$ are $1 \times m$ matrix and $m \times 1$ matrix, respectively. Show that

$$
\begin{equation*}
\frac{\partial}{\partial x}\{b(x) c(x)\}=c(x)^{\top} \frac{\partial b(x)^{\top}}{\partial x}+b(x) \frac{\partial c(x)}{\partial x} . \tag{2.3}
\end{equation*}
$$

Solution Omitted. (Problem 2-3.)
Example 2.1.4 Let $x=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\top}$. Suppose that $A(x)$ and $b(x)$ are $q \times m$ matrix and $m \times 1$ matrix, respectively. Show that

$$
\frac{\partial}{\partial x}(A(x) b(x))=\left[\begin{array}{c}
b(x)^{\top} \frac{\partial A_{1}(x)^{\top}}{\partial x} \tag{2.4}\\
\vdots \\
b(x)^{\frac{\top}{} \frac{\partial A_{q}(x)^{\top}}{\partial x}}
\end{array}\right]+A(x) \frac{\partial b(x)}{\partial x}
$$

where $A_{i}(x)$ is the i th row of $A(x)$.
Solution Omitted. (Problem 2-5.)
To define the partial differentiation of a matrix function with respect to a vector variable, it is difficult to effectively arrange it on two-dimensional paper. In this case, the Kronecker product \otimes can be used. Let

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 q} B \\
a_{21} B & a_{22} B & \cdots & a_{2 q} B \\
\vdots & \vdots & \cdots & \vdots \\
a_{p 1} B & a_{p 2} B & \cdots & a_{p q} B
\end{array}\right]
$$

where $a_{i j}$ is (i, j) element of $p \times q$ matrix A and B is a $m \times n$ matrix. Similarly, we can define $\frac{\partial B}{\partial A}$ by

$$
\frac{\partial B}{\partial A}=\left[\begin{array}{cccc}
\frac{\partial}{\partial a_{11}} B & \frac{\partial}{\partial a_{12}} B & \cdots & \frac{\partial}{\partial a_{1 q}} B \\
\frac{\partial}{\partial a_{21}} B & \frac{\partial}{\partial a_{22}} B & \cdots & \frac{\partial}{\partial a_{2 q}} B \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial}{\partial a_{p 1}} B & \frac{\partial}{\partial a_{p 2}} B & \cdots & \frac{\partial}{\partial a_{p q}} B
\end{array}\right]_{(m p) \times(n q)} .
$$

Theorem 2.1 (Chain rule) Suppose that $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g(y): \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$ are smooth functions. Then the derivative of the composite function satisfies

$$
\frac{\partial(g \circ f)(x)}{\partial x}=\frac{\partial g(f(x))}{\partial x}=\left.\frac{\partial g(y)}{\partial y}\right|_{y=f(x)} \frac{\partial f(x)}{\partial x}
$$

For example, if $S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $x(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$, then it is clear, by chain rule, that

$$
\frac{d S(x(t))}{d t}=\frac{\partial S(x)}{\partial x} \frac{d x(t)}{d t}=\sum_{i=1}^{n} \frac{\partial S(x)}{\partial x_{i}} \frac{d x_{i}(t)}{d t} .
$$

Example 2.1.5 (a) Find out $\frac{d}{d x}\left(e^{x^{2}}\right)$.
(b) Find out $\frac{\partial g(f(x))}{\partial x}$, where $g(y)=\left[\begin{array}{c}e^{y_{1}} \cos y_{3} \\ y_{2} \sin y_{1}\end{array}\right]$ and $f(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{1}+x_{2} \\ e^{x_{3}}\end{array}\right]$.

Solution (a) $\frac{d}{d x} e^{x^{2}}=\left.\frac{d e^{y}}{d y}\right|_{y=x^{2}} \frac{d}{d x} x^{2}=2 x e^{x^{2}}$.
(b) Since

$$
\frac{\partial g(y)}{\partial y}=\left[\begin{array}{ccc}
e^{y_{1}} \cos y_{3} & 0 & -e^{y_{1}} \sin y_{3} \\
y_{2} \cos y_{1} & \sin y_{1} & 0
\end{array}\right] ; \quad \frac{\partial f(x)}{\partial x}=\left[\begin{array}{ccc}
2 x_{1} & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & e^{x_{3}}
\end{array}\right]
$$

we have, by chain rule, that

$$
\begin{aligned}
& \frac{\partial g(f(x))}{\partial x}=\left.\frac{\partial g(y)}{\partial y}\right|_{y=f(x)} \frac{\partial f(x)}{\partial x} \\
& =\left[\begin{array}{ccc}
2 x_{1} e^{x_{1}^{2}} \cos \left(e^{x_{3}}\right) & 0 & -e^{x_{3}+x_{1}^{2}} \sin \left(e^{x_{3}}\right) \\
2 x_{1}\left(x_{1}+x_{2}\right) \cos \left(x_{1}^{2}\right)+\sin \left(x_{1}^{2}\right) \sin \left(x_{1}^{2}\right) & 0
\end{array}\right] .
\end{aligned}
$$

2.2 State Transformation

In short, a state coordinate change is differentiable bijective (1-1 and onto) function $z=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Thus, inverse function $x=S^{-1}(z)$ exists. We can assume without loss of generality that $S(0)=0$, if necessary. The precise definition of state transformation is given in Definition 2.4.

Definition $2.1\left(C^{r}\right.$ and $\left.C^{\infty}\right)$
(a) A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on an open set U of \mathbb{R}^{n} is said to be of class C^{0} if it is continuous on U. A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be of class C^{0} if $S_{i}(x)$ is of class C^{0} for $1 \leq i \leq m$.
(b) Let r be a positive integer. A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on an open set U of \mathbb{R}^{n} is said to be of class C^{r} (or r-times continuously differentiable) on U if all partial derivatives

$$
\frac{\partial^{\lambda} S(x)}{\partial x_{1}^{\lambda_{1}} \partial x_{2}^{\lambda_{2}} \cdots \partial x_{n}^{\lambda_{n}}}
$$

exist and are continuous on U, for every $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ nonnegative integers, such that $\lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} \leq r$. A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be of class C^{r} if $S_{i}(x)$ is of class C^{r} for $1 \leq i \leq m$.
(c) A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined on an open set U of \mathbb{R}^{n} is said to be of class C^{∞}, or smooth, on U if $S(x)$ is of class C^{r} on U for all positive integer r.

Definition 2.2 (homeomorphism) A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined on an open set U of \mathbb{R}^{n} is said to be a homeomorphism if $S(x)$ is bijective (or 1-1 and onto) and functions $S(x)$ and $S^{-1}(z): S(U) \rightarrow \mathbb{R}^{n}$ are continuous (or of class C^{0}).

Definition 2.3 (diffeomorphism) A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined on an open set U of \mathbb{R}^{n} is said to be a diffeomorphism if $S(x)$ is bijective (or 1-1 and onto) and functions $S(x)$ and $S^{-1}(z): S(U) \rightarrow \mathbb{R}^{n}$ are smooth (or of class C^{∞}).
Definition 2.4 (state transformation) A function $S(x): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined on an open set U of \mathbb{R}^{n} is said to be a state transformation on $U\left(\subset \mathbb{R}^{n}\right)$ if $S(x)$ is a diffeomorphism.

For example $\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=S(x)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=S(x)=\left[\begin{array}{c}x_{1}+x_{2}^{2} \\ x_{2}\end{array}\right]$ are state transformations on \mathbb{R}^{2}.

Example 2.2.1 (Similarity Transformation) Consider the following linear system:

$$
\begin{equation*}
\dot{x}=A x+B u ; \quad y=C x \tag{2.5}
\end{equation*}
$$

Suppose that state transformation $z=S(x)=P^{-1} x$ is linear. Show that system (2.5) satisfies, in z-coordinates, a new linear system equation.

Solution It is easy to see that

$$
\begin{aligned}
\dot{z} & =P^{-1} \dot{x}=P^{-1}(A x+B u)=P^{-1} A P z+P^{-1} B u \\
& \triangleq \tilde{A} z+\tilde{B} u
\end{aligned}
$$

and

$$
y=C x=C P z=\tilde{C} z
$$

In the linear system theory, the linear state transformation (or similarity transformation) of Example 2.2.1 is used to transform system (2.5) into various canonical forms such as controllable canonical form (CCF), observable canonical form (OCF), Jordan canonical form (JCF), etc.

An open set $U\left(\subset \mathbb{R}^{n}\right)$ is said to be a neighborhood of a point $p\left(\in \mathbb{R}^{n}\right)$, if $p \in U$. It is easy to see that $z=S(x)=\left[x_{1}+x_{2}^{2} x_{2}\right]^{\top}$ is invertible and thus it is a state transformation. But, it is not easy to see whether $z=S(x)=\left[x_{1}+x_{2}^{2} x_{2}+x_{1}^{2}\right]^{\top}$ is an invertible function (or local state transformation) or not. The following theorem gives the condition for a smooth function to be invertible on a neighborhood of a point.

Theorem 2.2 (inverse function theorem) Suppose that $S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a smooth function. If $\left.\frac{\partial S(x)}{\partial x}\right|_{x=a}$ is a nonsingular matrix, then there exists a neighborhood U of a such that $S(x): \bar{U} \rightarrow S(U)$ is a diffeomorphism.

Theorem 2.2 means that if $\operatorname{det}\left(\left.\frac{\partial S(x)}{\partial x}\right|_{x=a}\right) \neq 0$, smooth function $z=S(x)$ is a local state transformation (or diffeomorphism) on a neighborhood of $x=a$.

Example 2.2.2 Show that $z=S(x)=\left[\begin{array}{l}x_{1}+\frac{1}{2} x_{2}^{2} \\ x_{2}+\frac{1}{2} x_{1}^{2}\end{array}\right]$ is a local state transformation on a neighborhood of the origin.

Solution Note that

$$
\operatorname{det}\left(\left.\frac{\partial S(x)}{\partial x}\right|_{x=0}\right)=\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=1
$$

which implies, by inverse function theorem, that $z=S(x)$ is a local state transformation (or diffeomorphism) on a neighborhood of the origin.

Example 2.2.3 Show that $\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=S(x)=\left[\begin{array}{l}e^{x_{1}} \cos x_{2} \\ e^{x_{1}} \sin x_{2}\end{array}\right]$ is a local state transformation. Is it a global state transformation?

Solution Note that

$$
\operatorname{det}\left(\frac{\partial S(x)}{\partial x}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
e^{x_{1}} & \cos x_{2} & -e^{x_{1}} \sin x_{2} \\
e^{x_{1}} \sin x_{2} & e^{x_{1}} \cos x_{2}
\end{array}\right]\right)=e^{2 x_{1}} \neq 0
$$

which implies, by inverse function theorem, that $z=S(x)$ is a local state transformation. But, since $z=S(x)$ is not injective in the entire region $\left(S\left([00]^{\top}\right)=S\left([02 \pi]^{\top}\right)\right)$, it is not a global state transformation.

Theorem 2.3 (implicit function theorem) Suppose that $f(x, y): \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$ is a smooth function with $f\left(x_{0}, y_{0}\right)=0$. If $\left.\frac{\partial f(x, y)}{\partial y}\right|_{(x, y)=\left(x_{0}, y_{0}\right)}$ is a $m \times m$ nonsingular matrix, then there exist a neighborhood $V\left(\subset \mathbb{R}^{n}\right)$ and a unique smooth function $g(x): V \rightarrow \mathbb{R}^{m}$ such that $g\left(x_{0}\right)=y_{0}$ and

$$
f(x, g(x))=0, \text { for all } x \in V
$$

Given implicit equation $f(x, y)=O_{m \times 1}, y \in \mathbb{R}^{m}$, implicit function theorem gives the condition for the existence of explicit function $y=g(x)$.

2.3 Nonsingular State Feedback

In this book, we consider the following nonlinear systems:

$$
\begin{equation*}
\dot{x}=F(x, u) ; \quad y=h(x) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u ; \quad y=h(x) \tag{2.7}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{q}$. Also, we assume that $F(x, u), f(x), g(x)$, and $h(x)$ are smooth functions with $F(0,0)=0, f(0)=0$, and $h(0)=0$. In this book, we assume that $(0,0)$ is the equilibrium point of the system. System (2.7) is said to be an affine system. $F(x, u), f(x)$, and $g(x)$ are said to be vector fields. (See the next section.) The solution of differential equation (2.6) depends on the vector field $F(x, u)$ and the initial state $x(0)$. Vector field $F(x, u)$ can be changed by state feedback $u=\gamma(x, v)$, where $v\left(\in \mathbb{R}^{m}\right)$ is the new input. We assume that $\gamma(0,0)=0$, so that $(0,0)$ is the equilibrium point of the closed-loop system. With state feedback $u=\gamma(x, v)$, we have the closed-loop system

$$
\dot{x}=F(x, \gamma(x, v)) \triangleq \bar{F}(x, v) .
$$

State feedback

$$
u=\alpha(x)+\beta(x) v ; \quad \alpha(0)=0
$$

is said to be an affine feedback. For affine system (2.7), we have, with affine state feedback $u=\alpha(x)+\beta(x) v$, the affine closed-loop system

$$
\dot{x}=f(x)+g(x) \alpha(x)+g(x) \beta(x) v \triangleq \bar{f}(x)+\bar{g}(x) v .
$$

Consider

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
1+x_{1}^{2} \\
1+x_{2}^{2} \\
1+x_{3}^{2}
\end{array}\right] u
$$

If we let state feedback $u=\alpha(x)+\beta(x) v=0$, then it is clear that the closed-loop system is linear. However, we cannot control the closed-loop system. Therefore, the nonsingular (or regular) state feedback is used in this book.

Definition 2.5 (nonsingular state feedback) A state feedback $u=\alpha(x)+\beta(x) v$ (or $u=\gamma(x, v))$ is said to be nonsingular if

$$
\begin{gathered}
\operatorname{rank}(\beta(0))=\operatorname{rank}\left(\beta(0)^{-1}\right)=m \\
\left(\text { or } \operatorname{rank}\left(\left.\frac{\partial \gamma(x, v)}{\partial v}\right|_{(0,0)}\right)=\operatorname{rank}\left(\left.\frac{\partial \gamma(x, v)}{\partial v}\right|_{(0,0)} ^{-1}\right)=m\right)
\end{gathered}
$$

For system (2.7), if we consider the dynamic feedback

$$
\begin{align*}
& u=c(x, z)+d(x, z) v \tag{2.8}\\
& \dot{z}=a(x, z)+b(x, z) v
\end{align*}
$$

then we have the extended system

$$
\begin{align*}
\dot{x}_{E} & =\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
f(x)+g(x) c(x, z) \\
a(x, z)
\end{array}\right]+\left[\begin{array}{c}
g(x) d(x, z) \\
b(x, z)
\end{array}\right] v \tag{2.9}\\
& =f_{E}\left(x_{E}\right)+g_{E}\left(x_{E}\right) v .
\end{align*}
$$

where $z \in \mathbb{R}^{d}$ and $x_{E}=\left[\begin{array}{l}x \\ z\end{array}\right]$.

Definition 2.6 (regular dynamic feedback) A dynamic feedback (2.8) is said to be regular if the extended system (2.9) with output $u=c(x, z)+d(x, z) v$ is dynamic input-output decouplable (Refer to Chap. 9 for dynamic i-o decoupling).

The regular dynamic state feedback is considered in Chap. 6 for dynamic feedback linearization.

2.4 Vector Field and Tangent Vector

In this section, vector field and tangent vector on subsets of Euclidean space will be studied. Vector field and tangent vector on manifolds can be found in Appendix. The right-hand side of the state equation in (2.7) is called a vector field on \mathbb{R}^{n}. Suppose that U be an open subset of \mathbb{R}^{n}. A function $f: U\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is said to belong to $C^{\infty}(U)$, if f is C^{∞} (or smooth). In other words, $C^{\infty}(U)$ is the set of all smooth scalar functions on U.

Definition 2.7 (smooth vector field on Euclidean space) A vector-valued function $f: U\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is said to be a smooth vector field on U, if $f(x)=\left[\begin{array}{c}f_{1}(x) \\ \vdots \\ f_{n}(x)\end{array}\right]$ and $f_{i} \in C^{\infty}(U)$ for $1 \leq i \leq n$.

Suppose that $x \triangleq\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{\top}$ is a Cartesian coordinate system of \mathbb{R}^{n}. Then a vector field $f(x)$ can be expressed by

$$
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right]=f_{1}(x) \frac{\partial}{\partial x_{1}}+f_{2}(x) \frac{\partial}{\partial x_{2}}+\cdots+f_{n}(x) \frac{\partial}{\partial x_{n}}
$$

where

$$
\frac{\partial}{\partial x_{1}} \triangleq\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \frac{\partial}{\partial x_{2}} \triangleq\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \cdots, \text { and } \frac{\partial}{\partial x_{n}} \triangleq\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] .
$$

For system (2.7), $f(x), g(x)$, and $f(x)+g(x) u$ are smooth vector fields on \mathbb{R}^{n}, if $f(x)$ and $g(x)$ are smooth functions on \mathbb{R}^{n}. Addition of vector fields and scalar multiplication are defined by

$$
\left[\begin{array}{c}
f_{1}(x) \tag{2.10}\\
f_{2}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right]+\left[\begin{array}{c}
g_{1}(x) \\
g_{2}(x) \\
\vdots \\
g_{n}(x)
\end{array}\right] \triangleq\left[\begin{array}{c}
f_{1}(x)+g_{1}(x) \\
f_{2}(x)+g_{2}(x) \\
\vdots \\
f_{n}(x)+g_{n}(x)
\end{array}\right]
$$

and

$$
r(x)\left[\begin{array}{c}
f_{1}(x) \tag{2.11}\\
f_{2}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right] \triangleq\left[\begin{array}{c}
r(x) f_{1}(x) \\
r(x) f_{2}(x) \\
\vdots \\
r(x) f_{n}(x)
\end{array}\right], \quad \forall r(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

Example 2.4.1 Show that the set of all smooth vector fields on \mathbb{R}^{n} is a vector space over field \mathbb{R}.

Solution Omitted. (Problem 2-9.)
Example 2.4.2 Consider the following control system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right]=f(x)
$$

Let $x(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then it is easy to see that $x(t)=\left[\begin{array}{c}\cos t \\ \sin t\end{array}\right]$ and $\frac{d x(t)}{d t}=\left[\begin{array}{c}-\sin t \\ \cos t\end{array}\right]$. Note that $x\left(\frac{\pi}{4}\right)=\left[\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and

$$
\left.\frac{d x(t)}{d t}\right|_{t=0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=f\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) ;\left.\quad \frac{d x(t)}{d t}\right|_{t=\frac{\pi}{4}}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=f\left(\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\right) .
$$

Thus, $f(\bar{x})$ is a tangent vector of solution curve $x(t)$ at point $x=\bar{x}\left(\in \mathbb{R}^{2}\right)$ (See Fig. 2.1).

Given smooth vector field $f(x)$ on \mathbb{R}^{n}

$$
f(\bar{x})=\left[f_{1}(\bar{x}) f_{2}(\bar{x}) \cdots f_{n}(\bar{x})\right]^{\top}=\left.\sum_{i=1}^{n} f_{i}(\bar{x}) \frac{\partial}{\partial x_{i}}\right|_{\bar{x}}
$$

is said to be a tangent vector at point $\bar{x}\left(\in \mathbb{R}^{n}\right)$ that is a vector starting at point p. The vector at \mathbb{R}^{n} has a magnitude and direction. The tangent vector at point $\bar{x}\left(\in \mathbb{R}^{n}\right)$ is a vector starting at point \bar{x}. If $\bar{x} \neq \hat{x}$, then $f(\bar{x})+f(\hat{x})$ can not be defined or required.

Fig. 2.1 Tangent vectors of Example 2.4.2

Suppose that $f(x)$ and $g(x)$ are smooth vector fields on \mathbb{R}^{n}. Also, let $h(x) \in$ $C^{\infty}\left(\mathbb{R}^{n}\right)$. The following two operations (Lie bracket and Lie derivative) will be used very often in this book.

Definition 2.8 (Lie bracket) The Lie bracket of vector field $f(x)$ and vector field $g(x)$ is defined by

$$
\begin{equation*}
[f(x), g(x)] \triangleq \frac{\partial g(x)}{\partial x} f(x)-\frac{\partial f(x)}{\partial x} g(x) \tag{2.12}
\end{equation*}
$$

Definition 2.9 (Lie derivative) The Lie derivative of scalar function $h(x)$ with respect to vector field $f(x)$ is defined by

$$
\begin{equation*}
L_{f(x)} h(x) \triangleq \frac{\partial h(x)}{\partial x} f(x)=\sum_{i=1}^{n} f_{i}(x) \frac{\partial h(x)}{\partial x_{i}} . \tag{2.13}
\end{equation*}
$$

In engineering mathematics, it is learned that the directional derivative of $h(x)$ at $x=p$ in the direction of $f(p)$ is given by $\left.\left\{\frac{1}{\|f(x)\|} L_{f} h(x)\right\}\right|_{x=p}$. It is clear, by Definition 2.8, that

$$
[f(x), f(x)]=0 \text { and }[f(x), 0]=0 .
$$

For simplicity, we use 0 instead of $O_{n \times 1}$. Also, if b_{1} and b_{2} are constant vector fields on \mathbb{R}^{n}, it is clear that

$$
\begin{equation*}
\left[b_{1}, b_{2}\right]=0 \tag{2.14}
\end{equation*}
$$

For $\forall h(x), \beta(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$, it is easy to see that

$$
\begin{gather*}
L_{f(x)+g(x)} h(x)=L_{f(x)} h(x)+L_{g(x)} h(x) \tag{2.15}\\
L_{\beta(x) g(x)} h(x)=\beta(x) L_{g(x)} h(x) . \tag{2.16}
\end{gather*}
$$

$\frac{\partial f(x)}{\partial x}$ can be calculated via jacobian(f,x) or $\operatorname{diff}(\cdot, \cdot)$ of Matlab program. Thus, Lie bracket $\left[f(x), g(x)\right.$] and Lie derivative $L_{f} h(x)$ can also be easily calculated by Matlab program (See $\operatorname{adfg}(\mathrm{f}, \mathrm{g}, \mathrm{x})$ and $\mathbf{L f h}(\mathrm{f}, \mathrm{h}, \mathrm{x})$ in Appendix C).

Example 2.4.3 Let $h(x)=x_{1} x_{2}, f(x)=\left[\begin{array}{c}x_{2} \\ 1\end{array}\right]$, and $g(x)=\left[\begin{array}{c}1 \\ x_{1}\end{array}\right]$. Find out $[f(x), g(x)]$ and $L_{f} h(x)$.

Solution

$$
\begin{aligned}
{[f(x), g(x)] } & =\frac{\partial g(x)}{\partial x} f(x)-\frac{\partial f(x)}{\partial x} g(x) \\
& =\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
1
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

and

$$
L_{f} h(x)=\frac{\partial h(x)}{\partial x} f(x)=\left[\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
1
\end{array}\right]=x_{2}^{2}+x_{1}
$$

Example 2.4.4 Let $h_{1}(x), h_{2}(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Show the following:
(a) linearity

$$
L_{f}\left\{r_{1} h_{1}(x)+r_{2} h_{2}(x)\right\}=r_{1} L_{f} h_{1}(x)+r_{2} L_{f} h_{1}(x), \quad \forall r_{1}, r_{2} \in \mathbb{R}
$$

(b) Leibniz rule

$$
L_{f}\left\{h_{1}(x) h_{2}(x)\right\}=h_{2}(x) L_{f} h_{1}(x)+h_{1}(x) L_{f} h_{2}(x)
$$

Solution It is clear, by (2.2), that

$$
\begin{aligned}
L_{f}\left\{h_{1}(x) h_{2}(x)\right\} & =\frac{\partial\left\{h_{1}(x) h_{2}(x)\right\}}{\partial x} f=\left(h_{2}(x) \frac{\partial h_{1}(x)}{\partial x}+h_{1}(x) \frac{\partial h_{2}(x)}{\partial x}\right) f(x) \\
& =h_{2}(x) L_{f} h_{1}(x)+h_{1}(x) L_{f} h_{2}(x)
\end{aligned}
$$

Example 2.4.5 Use Example 2.1.3 to show that for all $h(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
L_{[f, g]} h(x)=L_{f} L_{g} h(x)-L_{g} L_{f} h(x) . \tag{2.17}
\end{equation*}
$$

Solution

$$
\begin{aligned}
L_{f} L_{g} h(x) & -L_{g} L_{f} h(x)=L_{f}\left(\frac{\partial h}{\partial x} g\right)-L_{g}\left(\frac{\partial h}{\partial x} f\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x} g\right) f-\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x} f\right) g \\
& =\left(g^{\top} \frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x}\right)^{\top}+\frac{\partial h}{\partial x} \frac{\partial g}{\partial x}\right) f-\left(f^{\top} \frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x}\right)^{\top}+\frac{\partial h}{\partial x} \frac{\partial f}{\partial x}\right) g \\
& =\left(g^{\top} h_{x x} f-f^{\top} h_{x x} g\right)+\frac{\partial h}{\partial x}\left(\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g\right) \\
& =\frac{\partial h(x)}{\partial x}[f(x), g(x)]=L_{[f, g]} h(x)
\end{aligned}
$$

where $h_{x x} \triangleq \frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x}\right)^{\top}=h_{x x}^{\top}$.
The relation in (2.17) is used very often in this book. In fact, it is used as the definition of Lie bracket $[f(x), g(x)]$ for the vector fields on manifolds. (See (B.1) in Appendix.)

Example 2.4.6 Suppose that $f(x), g(x)$, and $\tau(x)$ are smooth vector fields on \mathbb{R}^{n}. Show the following:
(a) bilinear

$$
\begin{aligned}
& {\left[r_{1} f(x)+r_{2} g(x), \tau(x)\right]=r_{1}[f(x), \tau(x)]+r_{2}[g(x), \tau(x)], \quad \forall r_{1}, r_{2} \in \mathbb{R}} \\
& {\left[\tau(x), r_{1} f(x)+r_{2} g(x)\right]=r_{1}[\tau(x), f(x)]+r_{2}[\tau(x), g(x)], \quad \forall r_{1}, r_{2} \in \mathbb{R}}
\end{aligned}
$$

(b) anticommutativity or skew-commutative

$$
[f(x), g(x)]=-[g(x), f(x)]
$$

(c) Jacobi identity

$$
\begin{equation*}
[f(x),[g(x), \tau(x)]]+[g(x),[\tau(x), f(x)]]+[\tau(x),[f(x), g(x)]]=0 \tag{2.18}
\end{equation*}
$$

Solution It is obvious that (a) and (b) are satisfied. Note that if $L_{f} h(x)=0$ for $\forall h(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$, then $f_{i}(x)=L_{f} x_{i}=0$ for $1 \leq i \leq n$ or $f(x)=0$. It is easy, by (2.15) and (2.17), to show that for $\forall h(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
& L_{[f f,[g, \tau]]+[g,[\tau, f]]+[\tau,[f, g]]} h=L_{[f,[g, \tau]]} h+L_{[g,[\tau, f]]} h+L_{[\tau,[f, g]]} h \\
& =L_{f} L_{[g, \tau]} h-L_{[g, \tau]} L_{f} h+L_{g} L_{[\tau, f]} h-L_{[\tau, f]} L_{g} h+L_{\tau} L_{[f, g]} h-L_{[f, g]} L_{\tau} h \\
& =L_{f} L_{g} L_{\tau} h-L_{f} L_{\tau} L_{g} h-L_{g} L_{\tau} L_{f} h+L_{\tau} L_{g} L_{f} h+L_{g} L_{\tau} L_{f} h-L_{g} L_{f} L_{\tau} h \\
& \quad-L_{\tau} L_{f} L_{g} h+L_{f} L_{\tau} L_{g} h+L_{\tau} L_{f} L_{g} h-L_{\tau} L_{g} L_{f} h-L_{f} L_{g} L_{\tau} h+L_{g} L_{f} L_{\tau} h \\
& =0 .
\end{aligned}
$$

Therefore, (2.18) is satisfied. Of course, (2.18) can also be shown directly by using (2.4) and (2.12) (See Problem 2-11). For example

$$
\begin{aligned}
& {[\tau,[f, g]]=\left[\tau,\left(\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g\right)\right]=\frac{\partial}{\partial x}\left(\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g\right) \tau-\frac{\partial \tau}{\partial x}\left(\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g\right)} \\
& =\left[\begin{array}{c}
f^{\top}\left(g_{1}\right)_{x x} \tau \\
\vdots \\
f^{\top}\left(g_{n}\right)_{x x} \tau
\end{array}\right]+\frac{\partial g}{\partial x} \frac{\partial f}{\partial x} \tau-\left[\begin{array}{c}
g^{\top}\left(f_{1}\right)_{x x} \tau \\
\vdots \\
g^{\top}\left(f_{n}\right)_{x x} \tau
\end{array}\right]-\frac{\partial f}{\partial x} \frac{\partial g}{\partial x} \tau-\frac{\partial \tau}{\partial x}\left(\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g\right) .
\end{aligned}
$$

It is easy, by Examples 2.4.1 and 2.4.6, to show that the set of all smooth vector fields on \mathbb{R}^{n} is a Lie algebra over field \mathbb{R}. The set of all $n \times n$ real matrices is a (linear) algebra over field \mathbb{R}. Lie algebra can be used in the nonlinear system theory, whereas linear algebra can be used in the linear system theory.

Definition 2.10 (differential map of tangent vector) Suppose that $z=S(x): \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} is a smooth function. Differential map S_{*} of $z=S(x)$ is a linear map from the set of tangent vectors at x^{0} in \mathbb{R}^{n} to the set of tangent vectors at $z^{0}\left(=S\left(x^{0}\right)\right)$ in \mathbb{R}^{m}. The differential map $S_{*}\left(f\left(x^{0}\right)\right)$ of tangent vector $f\left(x^{0}\right)$ is defined by

$$
S_{*}\left(f\left(x^{0}\right)\right)=\left.\frac{\partial S}{\partial x}\right|_{x^{0}} f\left(x^{0}\right)
$$

Example 2.4.7 Let $z=S(x)=\left[\begin{array}{c}x_{1} \\ \left(1+x_{1}\right) x_{2}+2 x_{3}\end{array}\right], f(x)=\left[\begin{array}{c}1 \\ 0 \\ x_{2}\end{array}\right]$, and $g(x)=$ $\left[\begin{array}{c}0 \\ 1 \\ x_{1}\end{array}\right]$ Find the tangent vectors $S_{*}\left(f\left(x^{0}\right)\right), S_{*}\left(f\left(x^{1}\right)\right), S_{*}\left(g\left(x^{0}\right)\right)$, and $S_{*}\left(g\left(x^{1}\right)\right)$, where $x^{0}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $x^{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.

Solution Note that $z^{0}=S\left(x^{0}\right)=S\left(x^{1}\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Thus, $S_{*}\left(f\left(x^{0}\right)\right), S_{*}\left(f\left(x^{1}\right)\right)$, $S_{*}\left(g\left(x^{0}\right)\right)$, and $S_{*}\left(g\left(x^{1}\right)\right)$ are tangent vectors at $z=\left[\begin{array}{l}1 \\ 2\end{array}\right] \in \mathbb{R}^{2}$.

$$
\begin{aligned}
S_{*}\left(f\left(x^{0}\right)\right) & =\left.\frac{\partial S}{\partial x}\right|_{x=x^{0}} f\left(x^{0}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
& =\left.\frac{\partial}{\partial z_{1}}\right|_{\left[\begin{array}{l}
1 \\
2
\end{array}\right]}+\left.3 \frac{\partial}{\partial z_{2}}\right|_{\left[\begin{array}{l}
1 \\
2
\end{array}\right]}
\end{aligned}
$$

Similarly, it is easy to see that

$$
S_{*}\left(f\left(x^{1}\right)\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], S_{*}\left(g\left(x^{0}\right)\right)=\left[\begin{array}{l}
0 \\
4
\end{array}\right], \text { and } S_{*}\left(g\left(x^{1}\right)\right)=\left[\begin{array}{l}
0 \\
4
\end{array}\right] .
$$

Definition 2.11 (well-defined vector field of differential map) Suppose that smooth function $z=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective (or onto). Let $f(x)$ is a vector field on $\mathbb{R}^{n} . S_{*}(f(x))$ is said to be a well-defined vector field on \mathbb{R}^{m}, if $S_{*}(f(x))=S_{*}(f(\bar{x}))$ whenever $S(x)=S(\bar{x})$.

It is easy to see that if $z=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a state transformation (or diffeomorphism), then $\tilde{f}(z) \triangleq S_{*}(f(x))$ is a well-defined vector field on \mathbb{R}^{n}. By Definition 2.11, $S_{*}(f(x))$ in Example 2.4.7 is not a well-defined vector field on \mathbb{R}^{2}, whereas $S_{*}(g(x))$ in Example 2.4 .7 might be a well-defined vector field on \mathbb{R}^{2}. (See Fig. 2.2.) If $S(x)$ is surjective and $m<n$, there exists a constant $(n-m) \times n$ matrix A such that $\left[\begin{array}{c}\left.\frac{\partial S}{\partial x}\right|_{x=0} \\ A\end{array}\right]$ is an invertible matrix. Thus, if we let

$$
\bar{z} \triangleq\left[\begin{array}{c}
z \tag{2.19}\\
\tilde{z}
\end{array}\right]=\left[\begin{array}{c}
S(x) \\
\tilde{S}(x)
\end{array}\right] \triangleq\left[\begin{array}{c}
S(x) \\
A x
\end{array}\right] \triangleq \bar{S}(x)
$$

then it is clear, by Theorem 2.2 , that $\bar{z}=\bar{S}(x)$ has an inverse function $x=\bar{S}^{-1}(\bar{z})$ locally. In Example 2.4.7, if we let $\bar{z} \triangleq\left[\begin{array}{c}z \\ \tilde{z}_{1}\end{array}\right]=\left[\begin{array}{c}S(x) \\ x_{3}\end{array}\right]=\bar{S}(x)$, then we have that $x=\bar{S}^{-1}(\bar{z})=\left[\begin{array}{lll}z_{1} & \frac{z_{2}-2 \tilde{z}_{1}}{1+z_{1}} & \tilde{z}_{1}\end{array}\right]^{\top}$

Fig. 2.2 $S_{*}(f(x))$ of Example 2.4.7

$$
\begin{aligned}
\left.\frac{\partial S}{\partial x} f(x)\right|_{x=\bar{S}^{-1}(\bar{z})} & =\left.\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{2} & 1+x_{1} & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
x_{2}
\end{array}\right]\right|_{x=\bar{S}^{-1}(\bar{z})}=\left.\left[\begin{array}{c}
1 \\
3 x_{2}
\end{array}\right]\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& =\left[\begin{array}{c}
1 \\
\frac{3 z_{2}-6 \tilde{z}_{1}}{1+z_{1}}
\end{array}\right]
\end{aligned}
$$

and

$$
\left.\frac{\partial S}{\partial x} g(x)\right|_{x=\bar{S}^{-1}(\bar{z})}=\left.\left[\begin{array}{c}
0 \tag{2.20}\\
1+3 x_{1}
\end{array}\right]\right|_{x=\bar{S}^{-1}(\bar{z})}=\left[\begin{array}{c}
0 \\
1+3 z_{1}
\end{array}\right] .
$$

Since $\left.\frac{\partial S}{\partial x} g(x)\right|_{x=\bar{S}^{-1}(\bar{z})}$ depends on z only, $S_{*}(g(x))$ is a well-defined vector field on \mathbb{R}^{m}. But, since $\left.\frac{\partial S}{\partial x} f(x)\right|_{x=\bar{S}^{-1}(\bar{z})}$ does not depend on z only, $S_{*}(f(x))$ is not a welldefined vector field on \mathbb{R}^{m}. Geometric condition for well-defined vector field can be also found in Theorem 2.6.

Definition 2.12 (differential map of vector field) Suppose that $f(x)$ is a smooth vector field on \mathbb{R}^{n} and smooth function $z=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective. Also, suppose that $S_{*}(f(x))$ is a well-defined vector field in \mathbb{R}^{m}. The differential map $S_{*}(f(x))$ of vector field $f(x)$ under smooth function $z=S(x)$ is defined by

$$
S_{*}(f(x))=\left.\left\{\frac{\partial S(x)}{\partial x} f(x)\right\}\right|_{x=\bar{S}^{-1}(\bar{z})}
$$

where $\bar{z}=\bar{S}(x)$ is defined in (2.19).

If $z=S(x)$ is a state transformation, then

$$
\begin{equation*}
S_{*}(f(x))=\left.\left\{\frac{\partial S(x)}{\partial x} f(x)\right\}\right|_{x=S^{-1}(z)} \tag{2.21}
\end{equation*}
$$

Also, it is easy to see that

$$
\begin{equation*}
(T \circ S)_{*}(f(x))=T_{*} \circ S_{*}(f(x)) \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{*}^{-1}\left(S_{*}(f(x))\right)=f(x) \tag{2.23}
\end{equation*}
$$

where $w=T(z)$ and $z=S(x)$ are state transformations.
Example 2.4.8 Consider the following control system:

$$
\begin{align*}
& \dot{x}=f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x)=f(x)+g(x) u \tag{2.24}\\
& y=h(x)
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{q}$. Suppose that $z=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a state transformation and system (2.24) satisfies, in z-coordinates,

$$
\begin{aligned}
\dot{z} & =\tilde{f}(z)+\sum_{i=1}^{m} u_{i} \tilde{g}_{i}(z)=\tilde{f}(z)+\tilde{g}(z) u \\
y & =\tilde{h}(z)
\end{aligned}
$$

Show that for $1 \leq i \leq m$

$$
\begin{aligned}
& \tilde{f}(z)=S_{*}(f(x)) ; \quad \tilde{g}_{i}(z)=S_{*}\left(g_{i}(x)\right) \\
& \tilde{h}(z)=h \circ S^{-1}(z)
\end{aligned}
$$

In other words, $f(x)$ and $\tilde{f}(z)\left(=S_{*}(f(x))\right.$ are the same vector fields expressed in x-coordinates and z-coordinates, respectively.

Solution It is easy to see that

$$
\begin{aligned}
\dot{z} & =\frac{d}{d t} S(x(t))=\frac{\partial S(x)}{\partial x} \dot{x}=\frac{\partial S(x)}{\partial x}\left\{f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x)\right\} \\
& =\left.\frac{\partial S(x)}{\partial x} f(x)\right|_{x=S^{-1}(z)}+\left.\sum_{i=1}^{m} u_{i} \frac{\partial S(x)}{\partial x} g_{i}(x)\right|_{x=S^{-1}(z)} \\
& =S_{*}(f(x))+\sum_{i=1}^{m} u_{i} S_{*}\left(g_{i}(x)\right)
\end{aligned}
$$

and

$$
y=h(x)=h \circ S^{-1}(z)
$$

In Example 2.2.1, since $z=S(x)=P^{-1} x$, then it is easy to see that $\tilde{f}(z)=$ $S_{*}(A x)=P^{-1} A P z, \tilde{g}(z)=S_{*}(B)=P^{-1} B$, and $\tilde{h}(z)=\left.C x\right|_{x=S^{-1}(z)}=C P z$.

Example 2.4.9 Suppose that

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right] .
$$

Find out $S_{*}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $S_{*}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
Solution It is clear that

$$
S_{*}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left.\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad S_{*}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

or

$$
\left.\left[\begin{array}{l}
1 \tag{2.25}\\
0
\end{array}\right]\right|_{x}=\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{2}}=\left.\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right|_{z}
$$

and

$$
\left.\left[\begin{array}{l}
0 \tag{2.26}\\
1
\end{array}\right]\right|_{x}=\frac{\partial}{\partial x_{2}}=\frac{\partial}{\partial z_{2}}=\left.\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right|_{z} .
$$

See Fig. 2.3.
Suppose that $z=S(x)$ is a state transformation. Then, by chain rule (Theorem 2.1), we have with a slight abuse of notation that

Fig. 2.3 Unit vectors of Example 2.4.9

$$
\frac{\partial}{\partial x_{i}} h(z)=\frac{\partial}{\partial x_{i}} h(z(x))=\sum_{j=1}^{n} \frac{\partial h}{\partial z_{j}} \frac{\partial z_{j}}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial z_{j}}{\partial x_{i}} \frac{\partial}{\partial z_{j}} h(z)
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial z_{j}}{\partial x_{i}} \frac{\partial}{\partial z_{j}} \tag{2.27}
\end{equation*}
$$

We can use (2.27) to show that (2.25) and (2.26) are satisfied. Vector fields in (2.21) can be written in the operator form as follows:

$$
\sum_{i=1}^{n} f_{i}(x) \frac{\partial}{\partial x_{i}}=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i}(x) \frac{\partial z_{j}}{\partial x_{i}} \frac{\partial}{\partial z_{j}}
$$

Example 2.4.10 Use Example 2.4.8 to solve Example 1.3.1.
Solution Note that $\tilde{f}(z)=\left[\begin{array}{c}0 \\ z_{1}\end{array}\right]$ and $\tilde{g}(z)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\begin{aligned}
f(x) & =S_{*}(\tilde{f}(z))=\left.\frac{\partial S(z)}{\partial z} \tilde{f}(z)\right|_{z=S^{-1}(x)}=\left.\left[\begin{array}{cc}
1 & 2 z_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
z_{1}
\end{array}\right]\right|_{z=S^{-1}(x)} \\
& =\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
g(x) & =S_{*}(\tilde{g}(z))=\left.\frac{\partial S(z)}{\partial z} \tilde{g}(z)\right|_{z=S^{-1}(x)}=\left.\left[\begin{array}{cc}
1 & 2 z_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right|_{z=S^{-1}(x)} \\
& =\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] .
\end{aligned}
$$

The following two theorems show that Lie bracket and Lie derivative defined in Definitions 2.8 and 2.9 are coordinate free. They are very important and are used very often in the rest of this book.

Theorem 2.4 Suppose that $f(x)$ and $g(x)$ are smooth vector fields on \mathbb{R}^{n} and smooth function $z=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective (or onto). Also, suppose that $\left(S_{*}(f(x))\right.$ and $S_{*}(g(x))$ are well-defined vector fields on \mathbb{R}^{m}. Then the following is satisfied:

$$
\begin{equation*}
S_{*}([f(x), g(x)])=\left[\left(S_{*}(f(x)), S_{*}(g(x))\right] .\right. \tag{2.28}
\end{equation*}
$$

Proof If $\frac{\partial}{\partial \tilde{z}}\left\{\left.\Phi(x)\right|_{x=\bar{S}^{-1}(\bar{z})}\right\}=O_{n \times(n-m)}$, then we have that

$$
\begin{align*}
& \left.\frac{\partial}{\partial z}\left\{\left.\Phi(x)\right|_{x=\bar{S}^{-1}(\bar{z})}\right\} S_{x}(x)\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& =\left.\left[\frac{\partial}{\partial z}\left\{\left.\Phi(x)\right|_{x=\bar{S}^{-1}(\bar{z})}\right\} O_{n \times(n-m)}\right]\left[\begin{array}{l}
S_{x}(x) \\
\tilde{S}_{x}(x)
\end{array}\right]\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& =\left.\frac{\partial}{\partial \bar{z}}\left\{\left.\Phi(x)\right|_{x=\bar{S}^{-1}(\bar{z})}\right\} \bar{S}_{x}(x)\right|_{x=\bar{S}^{-1}(\bar{z})} \tag{2.29}\\
& =\left.\left.\frac{\partial \Phi(x)}{\partial x}\right|_{x=\bar{S}^{-1}(\bar{z})} \frac{\partial \bar{S}^{-1}(\bar{z})}{\partial \bar{z}} \frac{\partial \bar{S}(x)}{\partial x}\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& =\left.\left.\frac{\partial \Phi(x)}{\partial x}\right|_{x=\bar{S}^{-1}(\bar{z})} \frac{\partial\left\{\bar{S}^{-1} \circ \bar{S}(x)\right\}}{\partial x}\right|_{x=\bar{S}^{-1}(\bar{z})}=\left.\frac{\partial \Phi(x)}{\partial x}\right|_{x=\bar{S}^{-1}(\bar{z})} .
\end{align*}
$$

Thus, if we denote $\frac{\partial S(x)}{\partial x}=S_{x}(x)$, then we have, by (2.29), that

$$
\begin{aligned}
& {\left[\left(S_{*} f\right)(z),\left(S_{*} g\right)(z)\right]=\left[\left.\left(S_{x}(x) f(x)\right)\right|_{x=\bar{S}^{-1}(\bar{z})},\left.\left(S_{x}(x) g(x)\right)\right|_{x=\bar{S}^{-1}(\bar{z})}\right]} \\
& \quad=\left.\left.\frac{\partial}{\partial z}\left\{\left.\left(S_{x}(x) g(x)\right)\right|_{x=\bar{S}^{-1}(\bar{z})}\right\} S_{x}(x)\right|_{x=\bar{S}^{-1}(\bar{z})} f(x)\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& \quad-\left.\left.\frac{\partial}{\partial z}\left\{\left.\left(S_{x}(x) f(x)\right)\right|_{x=\bar{S}^{-1}(\bar{z})}\right\} S_{x}(x)\right|_{x=\bar{S}^{-1}(\bar{z})} g(x)\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& \quad=\left.\left\{\frac{\partial\left(S_{x}(x) g(x)\right)}{\partial x} f(x)-\frac{\partial\left(S_{x}(x) f(x)\right)}{\partial x} g(x)\right\}\right|_{x=\bar{S}^{-1}(\bar{z})} .
\end{aligned}
$$

Thus, it is easy to see, by (2.4), that

$$
\begin{aligned}
& {[}\left.\left(S_{*} f\right)(z),\left(S_{*} g\right)(z)\right] \\
&=\left.\left\{\left[\begin{array}{c}
g(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}}{\partial x}\right)^{\top} \\
\vdots \\
g(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{n}}{\partial x}\right)^{\top}
\end{array}\right] f(x)+\frac{\partial S(x)}{\partial x} \frac{\partial g(x)}{\partial x} f(x)\right\}\right|_{x=\bar{S}^{-1}(\bar{z})} \\
&-\left.\left\{\left[\begin{array}{c}
f(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}}{\partial x}\right)^{\top} \\
\vdots \\
f(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{n}}{\partial x}\right)^{\top}
\end{array}\right] g(x)-\frac{\partial S(x)}{\partial x} \frac{\partial f(x)}{\partial x} g(x)\right\}\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& \quad=\left.\left\{\frac{\partial S(x)}{\partial x} \frac{\partial g(x)}{\partial x} f(x)-\frac{\partial S(x)}{\partial x} \frac{\partial f(x)}{\partial x} g(x)\right\}\right|_{x=\bar{S}^{-1}(\bar{z})} \\
& \quad=\left.\left\{\frac{\partial S(x)}{\partial x}[f(x), g(x)]\right\}\right|_{x=\bar{S}^{-1}(\bar{z})}=S_{*}([f(x), g(x)])
\end{aligned}
$$

since $\left(\frac{\partial}{\partial x}\left(\frac{\partial S_{1}}{\partial x}\right)^{\top}\right)^{\top}=\frac{\partial}{\partial x}\left(\frac{\partial S_{1}}{\partial x}\right)^{\top}$ and $g^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}}{\partial x}\right)^{\top} f=f^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}}{\partial x}\right)^{\top} g$.
Theorem 2.5 Suppose that $f(x)$ is a smooth vector field on \mathbb{R}^{n} and $z=S(x)$ is a state transformation. Then for $\forall h(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
L_{\tilde{f}(z)} \tilde{h}(z)=\left.L_{f} h(x)\right|_{x=S^{-1}(z)} \tag{2.30}
\end{equation*}
$$

where $\tilde{f}(z)=S_{*}(f(x))$ and $\tilde{h}(z)=h \circ S^{-1}(z)$.
Proof Note, by chain rule, that

$$
\begin{aligned}
\left.L_{\tilde{f}(z)} \tilde{h}(z)\right|_{z=S(x)} & =\left.\left.\frac{\partial\left(h \circ S^{-1}(z)\right)}{\partial z}\right|_{z=S(x)} \tilde{f}(z)\right|_{z=S(x)} \\
& =\left.\frac{\partial h(x)}{\partial x} \frac{\partial S^{-1}(z)}{\partial z}\right|_{z=S(x)} \frac{\partial S(x)}{\partial x} f(x) \\
& =\frac{\partial h(x)}{\partial x} \frac{\partial\left(S^{-1} \circ S(x)\right)}{\partial x} f(x)=L_{f} h(x)
\end{aligned}
$$

which implies that (2.30) is satisfied.
Consider state transformation $z=S(x)$ and vector fields $f(x), \tilde{f}(z), g(x)$, and $\tilde{g}(z)$, where $\tilde{f}(z)=S_{*}(f(x))$ and $\tilde{g}(z)=S_{*}(g(x))$. Thus, $f(x)$ and $\tilde{f}(z)$ are the same vector fields expressed in the different coordinates. Theorem 2.4 means that $[f(x), g(x)]$ and $[\tilde{f}(z), \tilde{g}(z)]$ are also the same vector fields expressed in the different coordinates. In other words, Lie bracket operation of vector fields is coordinate free. Also, since $h(x)$ and $\tilde{h}(z)\left(=h \circ S^{-1}(z)\right)$ are the same scalar functions expressed
in the different coordinates, Theorem 2.5 means that $L_{f} h(x)$ and $L_{\tilde{f}(z)} \tilde{h}(z)$ are also the same scalar functions expressed in the different coordinates. In other words, Lie derivative operation of scalar function with respect to vector field is also coordinate free.

Example 2.4.11 Consider the scalar function $h(x)=x_{1} x_{2}$ and vector fields $f(x)=\left[\begin{array}{c}x_{2} \\ 1\end{array}\right]$ and $g(x)=\left[\begin{array}{c}1 \\ x_{1}\end{array}\right]$ given in Example 2.4.3. Let $z=S(x)=\left[\begin{array}{c}x_{1}+x_{2}^{2} \\ x_{2}\end{array}\right]$ be a state transformation. Find out $\tilde{h}(z)\left(\triangleq h \circ S^{-1}(z)\right), \tilde{f}(z)\left(\triangleq S_{*}(f(x))\right)$, $\tilde{g}(z)\left(\triangleq S_{*}(g(x))\right),[\tilde{f}(z), \tilde{g}(z)]$, and $L_{\tilde{f}(z)} \tilde{h}(z)$. Also, show that $S_{*}([f(x), g(x)])=$ $[\tilde{f}(z), \tilde{g}(z)]$ and $L_{\tilde{f}(z)} \tilde{h}(z)=\left.L_{f} h(x)\right|_{x=S^{-1}(z)}$.

Solution Note, by Example 2.4.3, that $[f(x), g(x)]=\left[\begin{array}{c}-x_{1} \\ x_{2}\end{array}\right]$ and $L_{f} h(x)=x_{1}+$ x_{2}^{2}. Also, it is easy to see that

$$
\begin{gathered}
x=S^{-1}(z)=\left[\begin{array}{c}
z_{1}-z_{2}^{2} \\
z_{2}
\end{array}\right] ; \tilde{h}(z)=h \circ S^{-1}(z)=z_{2}\left(z_{1}-z_{2}^{2}\right) \\
\tilde{f}(z)=S_{*}(f(x))=\left.\frac{\partial S}{\partial x} f(x)\right|_{x=S^{-1}(z)}=\left.\left[\begin{array}{cc}
1 & 2 x_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
1
\end{array}\right]\right|_{x=S^{-1}(z)} \\
=\left[\begin{array}{c}
3 z_{2} \\
1
\end{array}\right]=3 z_{2} \frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{2}} \quad \begin{array}{c}
\tilde{g}(z)=S_{*}(g(x))=\left.\left[\begin{array}{c}
1+2 x_{1} x_{2} \\
x_{1}
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
1+2 z_{2}\left(z_{1}-z_{2}^{2}\right) \\
z_{1}-z_{2}^{2}
\end{array}\right] \\
{[\tilde{f}(z), \tilde{g}(z)]=\frac{\partial \tilde{g}(z)}{\partial z} \tilde{f}(z)-\frac{\partial \tilde{f}(z)}{\partial z} \tilde{g}(z)=\left[\begin{array}{c}
-z_{1}+3 z_{2}^{2} \\
z_{2}
\end{array}\right]} \\
S_{*}([f(x), g(x)])=\left.\left[\begin{array}{c}
-x_{1}+2 x_{2}^{2} \\
x_{2}
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
-z_{1}+3 z_{2}^{2} \\
z_{2}
\end{array}\right] \\
L_{\tilde{f}} \tilde{h}(z)=\frac{\partial \tilde{h}(z)}{\partial z} \tilde{f}(z)=\left[z_{2} z_{1}-3 z_{2}^{2}\right]\left[\begin{array}{c}
3 z_{2} \\
1
\end{array}\right]=z_{1}
\end{array} .
\end{gathered}
$$

and

$$
\left.L_{f} h(x)\right|_{x=S^{-1}(z)}=z_{1}
$$

Theorem 2.6 gives geometric necessary and sufficient conditions for a welldefined vector field.

Theorem 2.6 (geometric condition for a well-defined vector field) Suppose that smooth function $y=S(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective and $f(x)$ is a vector field on \mathbb{R}^{n}. $S_{*}(f(x))$ is a well-defined vector field on \mathbb{R}^{m}, if and only if

$$
\begin{equation*}
\left[f(x), \operatorname{ker} S_{*}\right] \subset \operatorname{ker} S_{*} \tag{2.31}
\end{equation*}
$$

where $\operatorname{ker} S_{*} \triangleq\left\{\tau(x) \mid S_{*}(\tau(x))=0\right\}$.
Proof Necessity. Suppose that $S_{*}(f(x))$ is a well-defined vector field on \mathbb{R}^{m}. Let $\tau(x) \in \operatorname{ker} S_{*}$. Then it is clear, by Theorem 2.4, that

$$
S_{*}([f(x), \tau(x)])=\left[S_{*}(f(x)), S_{*}(\tau(x))\right]=\left[S_{*}(f(x)), 0\right]=0
$$

which implies that (2.31) is satisfied.
Sufficiency. Suppose that (2.31) is satisfied. Let $S(\bar{x})=S(x)$. Let $\gamma_{t}(x)$ be a smooth parameterized curve such that $\gamma_{0}(x)=x, \gamma_{1}(x)=\bar{x}$, and

$$
\begin{equation*}
S\left(\gamma_{t}(x)\right)=S(x), \quad 0 \leq t \leq 1 . \tag{2.32}
\end{equation*}
$$

(For example, in Example 2.4.7, $\gamma_{t}(x)=\left[\begin{array}{ll}x_{1} & x_{2}+t\left(\bar{x}_{2}-x_{2}\right) \\ x_{3}-\frac{t}{2}\left(1+x_{1}\right)\left(\bar{x}_{2}-\right. \\ \hline\end{array}\right.$ $\left.\left.x_{2}\right)\right]^{\top}$.) If we can show that for $0 \leq t \leq 1$

$$
\left.\left\{\frac{\partial S(x)}{\partial x} f(x)\right\}\right|_{x=\gamma_{t}(x)}=\frac{\partial S(x)}{\partial x} f(x)
$$

or

$$
\left.\frac{d}{d t}\left(\left.\left\{\frac{\partial S(x)}{\partial x} f(x)\right\}\right|_{x=\gamma_{t}(x)}\right)\right|_{t=0}=0
$$

then $S_{*}(f(x))$ is a well-defined vector field on \mathbb{R}^{m}. Note, by (2.32), that

$$
\left.\frac{d S\left(\gamma_{t}(x)\right)}{d t}\right|_{t=0}=\left.\frac{\partial S(x)}{\partial x} \frac{d \gamma_{t}(x)}{d t}\right|_{t=0}=0
$$

or

$$
\begin{equation*}
\left.b(x) \triangleq \frac{d \gamma_{t}(x)}{d t}\right|_{t=0} \in \operatorname{ker} S_{*} . \tag{2.33}
\end{equation*}
$$

Thus, it is clear, by (2.31) and (2.33), that

$$
\frac{\partial S(x)}{\partial x} \frac{\partial b(x)}{\partial x} f(x)-\frac{\partial S(x)}{\partial x} \frac{\partial f(x)}{\partial x} b(x)=\frac{\partial S(x)}{\partial x}[f(x), b(x)]=0
$$

which implies, together with (2.4), that

$$
\begin{aligned}
& \left.\frac{d}{d t}\left(\left.\left\{\frac{\partial S(x)}{\partial x} f(x)\right\}\right|_{x=\gamma_{t}(x)}\right)\right|_{t=0}=\left.\frac{\partial}{\partial x}\left\{\frac{\partial S(x)}{\partial x} f(x)\right\} \frac{d \gamma_{t}(x)}{d t}\right|_{t=0} \\
& =\left[\begin{array}{c}
f(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}(x)}{\partial x}\right)^{\top} b(x) \\
\vdots \\
f(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{m}(x)}{\partial x}\right)^{\top} b(x)
\end{array}\right]+\frac{\partial S(x)}{\partial x} \frac{\partial f(x)}{\partial x} b(x) \\
& =\left[\begin{array}{c}
b(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}(x)}{\partial x}\right)^{\top} f(x) \\
\vdots \\
b(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{m}(x)}{\partial x}\right)^{\top} f(x)
\end{array}\right]+\frac{\partial S(x)}{\partial x} \frac{\partial b(x)}{\partial x} f(x) \\
& =\frac{\partial}{\partial x}\left\{\frac{\partial S(x)}{\partial x} b(x)\right\} f(x)=0 .
\end{aligned}
$$

If $z=S(x)$ is a diffeomorphism on a neighborhood U of the origin, then $\operatorname{ker} S_{*}=$ $\operatorname{span}\{0\}$. Thus, $S_{*}(f(x))$ is, by Theorem 2.6, a well-defined vector field as (2.21), for any smooth vector field $f(x)$.

Example 2.4.12 Consider Example 2.4.7 again. Let

$$
f(x)=\left[\begin{array}{c}
1 \\
0 \\
x_{2}
\end{array}\right], g(x)=\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right], \text { and } z=S(x)=\left[\begin{array}{c}
x_{1} \\
\left(1+x_{1}\right) x_{2}+2 x_{3}
\end{array}\right]
$$

Use Theorem 2.6 to show that $S_{*}(f(x))$ is not a well-defined vector field on \mathbb{R}^{2} and $S_{*}(g(x))$ is a well-defined vector field on \mathbb{R}^{2}.

Solution Note that

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{2} & 1+x_{1} & 2
\end{array}\right] \text { and } \operatorname{ker} S_{*}=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
-2 \\
1+x_{1}
\end{array}\right]\right\}
$$

Thus, we have that

$$
\left[f(x),\left[\begin{array}{c}
0 \\
-2 \\
1+x_{1}
\end{array}\right]\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right] \notin \operatorname{ker} S_{*} \text { and }\left[g(x),\left[\begin{array}{c}
0 \\
-2 \\
1+x_{1}
\end{array}\right]\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \in \operatorname{ker} S_{*}
$$

Hence, it is clear, by Theorem 2.6, that $S_{*}(f(x))$ is not a well-defined vector field on \mathbb{R}^{2} and $S_{*}(g(x))$ is a well-defined vector field on \mathbb{R}^{2}. Vector field $S_{*}(g(x))$ is given by (2.20).

Let us define

$$
\begin{equation*}
L_{f}^{0} h(x) \triangleq h(x) ; \quad L_{f}^{k+1} h(x) \triangleq L_{f}\left(L_{f}^{k} h(x)\right), \text { for } k \geq 0 \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ad}_{f}^{0} g(x) \triangleq g(x) ; \operatorname{ad}_{f}^{k+1} g(x) \triangleq\left[f(x), \operatorname{ad}_{f}^{k} g(x)\right], \text { for } k \geq 0 \tag{2.35}
\end{equation*}
$$

For example, we write $L_{f}^{4} h(x)$ and $\mathrm{ad}_{f(x)}^{3} g(x)$ instead of $L_{f}\left(L_{f}\left(L_{f}\left(L_{f} h(x)\right)\right)\right)$ and $[f(x),[f(x),[f(x), g(x)]]]$, respectively.

Example 2.4.13 (a) Consider the following linear system:

$$
\dot{x}(t)=A x(t) ; \quad y(t)=C x(t), \quad x \in \mathbb{R}^{n}, y \in \mathbb{R} .
$$

Use chain rule to show that for $k \geq 0$

$$
y^{(k)}(t) \triangleq \frac{d^{k}}{d t^{k}} y(t)=C A^{k} x(t)
$$

(b) Consider the following nonlinear system:

$$
\dot{x}(t)=f(x(t)) ; \quad y(t)=h(x(t)), \quad x \in \mathbb{R}^{n}, y \in \mathbb{R}
$$

Use chain rule to show that for $k \geq 0$

$$
\begin{equation*}
y^{(k)}(t) \triangleq \frac{d^{k}}{d t^{k}} y(t)=L_{f}^{k} h(x(t)) \tag{2.36}
\end{equation*}
$$

Solution (a) Omitted.

(b) Note that

$$
\begin{gathered}
\dot{y}(t)=\frac{\partial h(x)}{\partial x} \dot{x}=\frac{\partial h(x)}{\partial x} f(x)=L_{f} h(x(t)) \\
\ddot{y}(t)=\frac{\partial\left(L_{f} h(x)\right)}{\partial x} \dot{x}=\frac{\partial L_{f} h(x)}{\partial x} f(x)=L_{f} L_{f} h(x)=L_{f}^{2} h(x(t)) .
\end{gathered}
$$

It is easy to show, by mathematical induction, that (2.36) is satisfied.
Example 2.4.14 Suppose that

$$
\tilde{f}(z)=S_{*}(f(x)), \quad \tilde{g}(z)=S_{*}(g(x)), \quad \text { and } \tilde{h}(z)=h \circ S^{-1}(z)
$$

where $z=S(x)$ is a state transformation.
(a) Show that for $k \geq 0$

$$
\begin{equation*}
\operatorname{ad}_{\tilde{f}}^{k} \tilde{g}(z)=S_{*}\left(\operatorname{ad}_{f}^{k} g(x)\right) \text { or } \operatorname{ad}_{f}^{k} g(x)=S_{*}^{-1}\left(\operatorname{ad}_{\tilde{f}}^{k} \tilde{g}(z)\right) \tag{2.37}
\end{equation*}
$$

(b) Show that if $\tilde{f}(z)=A z$ and $\tilde{g}(z)=b$, then

$$
\begin{equation*}
\operatorname{ad}_{\tilde{f}}^{k} \tilde{g}(z)=(-1)^{k} A^{k} b, \quad k \geq 0 \tag{2.38}
\end{equation*}
$$

and

$$
\left[\operatorname{ad}_{f}^{i} g(x), \operatorname{ad}_{f}^{j} g(x)\right]=0, \quad i \geq 0, \quad j \geq 0
$$

(c) Show that for $k \geq 0$

$$
\begin{equation*}
L_{\tilde{f}}^{k} \tilde{h}(z)=\left.L_{f}^{k} h(x)\right|_{x=S^{-1}(z)} \text { or } L_{f}^{k} h(x)=\left.L_{\tilde{f}}^{k} \tilde{h}(z)\right|_{z=S(x)} \tag{2.39}
\end{equation*}
$$

(d) Show that if $\tilde{f}(z)=A z, \tilde{g}(z)=b$, and $\tilde{h}(z)=c z$, then for $k \geq 0$

$$
\begin{equation*}
L_{\tilde{f}}^{k} \tilde{h}(z)=c A^{k} z \text { or } L_{f}^{k} h(x)=c A^{k} S(x) \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{g} L_{f}^{k} h(x)=c A^{k} b \tag{2.41}
\end{equation*}
$$

Solution Since $\tilde{f}(z)=S_{*}(f(x))$ and $\tilde{g}(z)=S_{*}(g(x))$, it is easy to show, by (2.23), (2.28), (2.35), and mathematical induction, that (2.37) is satisfied. It is obvious that (2.38) is satisfied for $k=0$. Assume that (2.38) is satisfied for $k \leq i$ and $i \geq 0$. Then we have that

$$
\begin{aligned}
\operatorname{ad}_{\tilde{f}}^{i+1} \tilde{g}(z) & =\left[\tilde{f}(z), \operatorname{ad}_{\tilde{f}}^{i} \tilde{g}(z)\right]=(-1)^{i}\left\{\frac{\partial\left(A^{i} b\right)}{\partial z} A z-\frac{\partial(A z)}{\partial z} A^{i} b\right\} \\
& =(-1)^{i+1} A^{i+1} b
\end{aligned}
$$

which implies, by mathematical induction, that (2.38) is satisfied for $k \geq 0$. Therefore, it is easy to see, by (2.14), (2.28), (2.37), and (2.38), that for $i \geq 0$ and $j \geq 0$

$$
\begin{aligned}
{\left[\operatorname{ad}_{f}^{i} g(x), \operatorname{ad}_{f}^{j} g(x)\right] } & =\left[S_{*}^{-1}\left(\operatorname{ad}_{\tilde{f}}^{i} \tilde{g}(z)\right), S_{*}^{-1}\left(\operatorname{ad}_{\tilde{f}}^{j} \tilde{g}(z)\right)\right] \\
& =S_{*}^{-1}\left(\left[\operatorname{ad}_{\tilde{f}}^{i} \tilde{g}(z), \operatorname{ad}_{\tilde{f}}^{j} \tilde{g}(z)\right]\right) \\
& =S_{*}^{-1}\left(\left[(-1)^{i} A^{i} b,(-1)^{j} A^{j} b\right]\right)=S_{*}^{-1}(0)=0 .
\end{aligned}
$$

Since $\tilde{f}(z)=S_{*}(f(x))$ and $\tilde{h}(z)=h \circ S^{-1}(z)$, it is easy to show, by (2.30) and mathematical induction, that (2.39) is satisfied (See Problem 2-20). It is also clear, by Example 2.4.13 and (2.39), that (2.40) is satisfied. Finally, we have, by (2.30) and (2.40), that

$$
\begin{aligned}
L_{g} L_{f}^{k} h(x) & =L_{g}\left(c A^{k} S(x)\right)=\left.L_{\tilde{g}}\left(c A^{k} S \circ S^{-1}(z)\right)\right|_{z=S(x)} \\
& =\left.c A^{k} b\right|_{z=S(x)}=c A^{k} b
\end{aligned}
$$

Example 2.4.15 Show the following useful properties for any scalar functions $\lambda(x)$ and $a(x)$ and vector fields $f(x)$ and $g(x)$.
(a)

$$
\begin{equation*}
[f(x), \lambda(x) g(x)]=\lambda(x)[f(x), g(x)]+\left(L_{f} \lambda(x)\right) g(x) \tag{2.42}
\end{equation*}
$$

(b)

$$
\begin{align*}
{[a(x) f(x), \lambda(x) g(x)] } & =a(x) \lambda(x)[f(x), g(x)]+a(x)\left(L_{f} \lambda(x)\right) g(x) \\
& -\lambda(x)\left(L_{g} a(x)\right) f(x) \tag{2.43}
\end{align*}
$$

(c)

$$
\begin{equation*}
\operatorname{ad}_{f(x)}^{i}\{\lambda(x) g(x)\}=\sum_{k=0}^{i}\binom{i}{k} L_{f}^{k} \lambda(x) \operatorname{ad}_{f}^{i-k} g(x), \quad i \geq 0 \tag{2.44}
\end{equation*}
$$

(d)

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{i} g} h(x)=\sum_{k=0}^{i}(-1)^{k}\binom{i}{k} L_{f}^{i-k} L_{g} L_{f}^{k} h(x), \quad i \geq 0 \tag{2.45}
\end{equation*}
$$

where $\binom{i}{k} \triangleq \frac{i!}{k!(i-k)!}$ and $\binom{i}{k-1}+\binom{i}{k}=\binom{i+1}{k}$.

Solution (a)

$$
\begin{aligned}
{[f(x), \lambda(x) g(x)] } & =\frac{\partial(\lambda g)}{\partial x} f-\frac{\partial f}{\partial x} \lambda g=g \frac{\partial \lambda}{\partial x} f+\lambda \frac{\partial g}{\partial x} f-\lambda \frac{\partial f}{\partial x} g \\
& =\left(L_{f} \lambda\right) g+\lambda[f, g]
\end{aligned}
$$

(b)

$$
\begin{aligned}
{[a f, \lambda g] } & =\left(L_{a f} \lambda\right) g+\lambda[a f, g]=a\left(L_{f} \lambda\right) g-\lambda[g, a f] \\
& =a\left(L_{f} \lambda\right) g-\lambda\left(a[g, f]+\left(L_{g} a\right) f\right) \\
& =a \lambda[f, g]+a\left(L_{f} \lambda\right) g-\lambda\left(L_{g} a\right) f
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{ad}_{f}^{i+1}(\lambda g) & =\left[f, \operatorname{ad}_{f}^{i}(\lambda g)\right]=\sum_{k=0}^{i}\binom{i}{k}\left[f, L_{f}^{k} \lambda \operatorname{ad}_{f}^{i-k} g\right] \\
& =\sum_{k=0}^{i}\binom{i}{k} L_{f}^{k} \lambda \operatorname{ad}_{f}^{i-k+1} g+\sum_{k=0}^{i}\binom{i}{k} L_{f}^{k+1} \lambda \operatorname{ad}_{f}^{i-k} g \\
& =\operatorname{ad}_{f}^{i+1} g+\sum_{k=1}^{i}\binom{i}{k} L_{f}^{k} \lambda \operatorname{ad}_{f}^{i-k+1} g \\
& +\sum_{k=1}^{i}\binom{i}{k-1} L_{f}^{k} \lambda \operatorname{ad}_{f}^{i-k+1} g+L_{f}^{i+1} \lambda g \\
& =\sum_{k=0}^{i+1}\binom{i+1}{k} L_{f}^{k} \lambda \operatorname{ad}_{f}^{i+1-k} g
\end{aligned}
$$

(d)

$$
\begin{aligned}
& L_{\mathrm{ad}_{f}^{i+1} g} h=L_{\left[f, \mathrm{ad}_{f}^{i} g\right]} h=L_{f} L_{\mathrm{ad}_{f}^{i} g} h-L_{\mathrm{ad}_{f}^{i} g} L_{f} h \\
& =\sum_{k=0}^{i}(-1)^{k}\binom{i}{k} L_{f}^{i-k+1} L_{g} L_{f}^{k} h-\sum_{k=0}^{i}(-1)^{k}\binom{i}{k} L_{f}^{i-k} L_{g} L_{f}^{k+1} h \\
& =L_{f}^{i+1} L_{g}+\sum_{k=1}^{i}(-1)^{k}\binom{i}{k} L_{f}^{i-k+1} L_{g} L_{f}^{k} h \\
& +\sum_{k=1}^{i}(-1)^{k}\binom{i}{k-1} L_{f}^{i-k+1} L_{g} L_{f}^{k} h-(-1)^{i} L_{g} L_{f}^{i+1} h \\
& =\sum_{k=0}^{i+1}(-1)^{k}\binom{i+1}{k} L_{f}^{i+1-k} L_{g} L_{f}^{k} h .
\end{aligned}
$$

Example 2.4.16 By using (2.45), show that the following statements are equivalent.
(a)

$$
L_{g} L_{f}^{i} h(x)= \begin{cases}a_{i}, & 0 \leq i<N-1 \tag{2.46}\\ c(x), & i=N-1\end{cases}
$$

(b)

$$
L_{\mathrm{ad}_{f}^{i} g} L_{f}^{k} h(x)= \begin{cases}(-1)^{i} a_{i+k}, & i+k<N-1 \tag{2.47}\\ (-1)^{i} c(x), & i+k=N-1\end{cases}
$$

(c)

$$
L_{\mathrm{ad}_{f}^{i} g} h(x)= \begin{cases}(-1)^{i} a_{i}, & i<N-1 \tag{2.48}\\ (-1)^{i} c(x), & i=N-1\end{cases}
$$

where $a_{i}, 0 \leq i \leq N-1$ are constants.
Solution Suppose that (2.46) is satisfied. Then we have, by (2.45), that

$$
\begin{aligned}
L_{\operatorname{ad}_{f}^{i} g} L_{f}^{k} h(x) & =\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} L_{f}^{i-j} L_{g} L_{f}^{k+j} h(x) \\
& = \begin{cases}0, & k+i<N-1 \\
(-1)^{i} L_{g} L_{f}^{k+i} h(x), & k+i=N-1\end{cases}
\end{aligned}
$$

which implies that (2.47) is satisfied. Suppose that (2.47) is satisfied. Then it is obvious, with $k=0$, that (2.48) is satisfied. Suppose that (2.48) is satisfied. Then it is obvious that (2.46) is satisfied when $i=0$. Assume that (2.46) is satisfied for $i \leq k$ and $0 \leq k \leq N-2$. Then we have, by (2.45), that

$$
L_{\mathrm{ad}_{f}^{k+1} g} h(x)=\sum_{j=0}^{k+1}(-1)^{j}\binom{k+1}{j} L_{f}^{k+1-j} L_{g} L_{f}^{j} h(x)=(-1)^{k+1} L_{g} L_{f}^{k+1} h(x)
$$

which implies that (2.46) is satisfied for $i \leq k+1$. Therefore, by mathematical induction, (2.46) is satisfied.

Example 2.4.17 Let $z=S(x)$ be a state coordinates change. Show the following useful property for any scalar function $\lambda(x)$ and vector field $g(x)$.

$$
\begin{equation*}
S_{*}(\lambda(x) g(x))=\lambda \circ S^{-1}(z) S_{*}(g(x)) \tag{2.49}
\end{equation*}
$$

Solution

$$
\begin{aligned}
S_{*}(\lambda(x) g(x)) & =\left.\frac{\partial S(x)}{\partial x} \lambda(x) g(x)\right|_{x=S^{-1}(z)}=\left.\lambda(x) \frac{\partial S(x)}{\partial x} g(x)\right|_{x=S^{-1}(z)} \\
& =\lambda\left(S^{-1}(z)\right) S_{*}(g(x))
\end{aligned}
$$

Example 2.4.18 By using Jacobi identity, show that the following statements are equivalent:
(a)

$$
\begin{equation*}
\left[\operatorname{ad}_{f}^{i} g(x), \operatorname{ad}_{f}^{k} g(x)\right]=0,0 \leq i \leq s_{1} \text { and } 0 \leq k \leq s_{2} \tag{2.50}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\left[\operatorname{ad}_{f}^{i} g(x), \operatorname{ad}_{f}^{k} g(x)\right]=0,0 \leq i+k \leq s_{1}+s_{2} \tag{2.51}
\end{equation*}
$$

Solution If (2.51) holds, then (2.50) is obviously satisfied. Suppose that (2.50) is satisfied. Then, it is easy to see, by (2.18), that for $0 \leq i \leq s_{1}$ and $0 \leq k \leq s_{2}$

$$
\begin{aligned}
{\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{k} g\right]=} & {\left[\left[f, \operatorname{ad}_{f}^{i-1} g\right], \operatorname{ad}_{f}^{k} g\right]=-\left[\left[\operatorname{ad}_{f}^{i-1} g, \operatorname{ad}_{f}^{k} g\right], f\right] } \\
& -\left[\left[\operatorname{ad}_{f}^{k} g, f\right], \operatorname{ad}_{f}^{i-1} g\right]=0-\left[\operatorname{ad}_{f}^{i-1} g, \operatorname{ad}_{f}^{k+1} g\right]
\end{aligned}
$$

In this manner, it is easy to see that for $0 \leq i \leq s_{1}, 0 \leq k \leq s_{2}$, and $-k \leq j \leq i$

$$
\left[\operatorname{ad}_{f}^{i-j} g, \operatorname{ad}_{f}^{k+j} g\right]=(-1)^{j}\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{k} g\right]=0
$$

which implies that (2.51) is satisfied.
Example 2.4.19 Let $m(\geq 3)$ be odd. Suppose that for $2 \leq i+k \leq m$

$$
\begin{equation*}
\left[\operatorname{ad}_{f}^{i-1} g(x), \operatorname{ad}_{f}^{k-1} g(x)\right]=0 \tag{2.52}
\end{equation*}
$$

Show that (2.52) is satisfied for $2 \leq i+k \leq m+1$.
Solution Suppose that (2.52) is satisfied for $2 \leq i+k \leq m$. Then, by Example 2.4.18, it is clear that (2.52) is satisfied for $1 \leq i \leq \frac{m-1}{2}$ and $1 \leq k \leq \frac{m+1}{2}$. Since $\left[\operatorname{ad}_{f}^{\frac{m+1}{2}-1} g(x), \operatorname{ad}_{f}^{\frac{m+1}{2}-1} g(x)\right]=0$, (2.52) is satisfied for $1 \leq i \leq \frac{m+1}{2}$ and $1 \leq k \leq \frac{m+1}{2}$. Hence, it is clear, by Example 2.4.18, that (2.52) is satisfied for $2 \leq i+k \leq m+1$.

Example 2.4.20 Suppose that $\left\{Y^{1}(x), Y^{2}(x), \ldots, Y^{n}(x)\right\}$ is a set of linearly independent vector fields on a neighborhood of $0 \in \mathbb{R}^{n}$. Let

$$
Y^{n+1}(x)=\sum_{i=1}^{n} a_{i}(x) Y^{i}(x)
$$

Show that if for $1 \leq i \leq n+1$ and $1 \leq j \leq n+1$

$$
\left[Y^{i}(x), Y^{j}(x)\right]=0
$$

then

$$
Y^{n+1}(x)=\sum_{i=1}^{n} a_{i} Y^{i}(x)
$$

for some constants $a_{i} \in \mathbb{R}, 1 \leq i \leq n$.
Solution Let $Y^{n+1}(x)=\sum_{i=1}^{n} a_{i}(x) Y^{i}(x)$. Then we have that for $1 \leq j \leq n$

$$
\begin{aligned}
0 & =\left[Y^{j}(x), Y^{n+1}(x)\right]=\sum_{i=1}^{n}\left[Y^{j}(x), a_{i}(x) Y^{i}(x)\right] \\
& =\sum_{i=1}^{n} a_{i}(x)\left[Y^{j}(x), Y^{i}(x)\right]+\sum_{i=1}^{n} L_{Y^{j}} a_{i}(x) Y^{i}(x)=\sum_{i=1}^{n} L_{Y^{j}} a_{i}(x) Y^{i}(x)
\end{aligned}
$$

which implies that for $1 \leq i \leq n$

$$
O_{1 \times n}=\left[L_{Y^{1}} a_{i}(x) \cdots L_{Y^{n}} a_{i}(x)\right]=\frac{\partial a_{i}(x)}{\partial x}\left[Y^{1}(x) \cdots Y^{n}(x)\right] .
$$

Since $\frac{\partial a_{i}(x)}{\partial x}=O_{1 \times n}$ for $1 \leq i \leq n$, it is clear that $a_{i}(x)$ is a constant for $1 \leq i \leq n$.

2.5 Covector Field and One Form

A covector field on Euclidean space is the transpose of a vector field. Suppose that U be an open subset of \mathbb{R}^{n}.

Definition 2.13 (smooth covector field on Euclidean space) A vector-valued function $w: U\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is said to be a smooth covector field on U, if $w=$ $\left[w_{1} w_{2} \cdots w_{n}\right]$ and $w_{i} \in C^{\infty}(U)$ for $1 \leq i \leq n$.

Suppose that $x \triangleq\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{\top}$ is a Cartesian coordinate system of \mathbb{R}^{n}. Then a covector field $w(x)$ can be expressed by

$$
\begin{aligned}
w(x) & =\left[w_{1}(x) w_{2}(x) \cdots w_{n}(x)\right] \\
& =w_{1}(x) d x_{1}+w_{2}(x) d x_{2}+\cdots+w_{n}(x) d x_{n}
\end{aligned}
$$

where

$$
d x_{1} \triangleq\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right], d x_{2} \triangleq\left[\begin{array}{llll}
0 & 1 & 0 & \cdots
\end{array}\right], \cdots, \text { and } d x_{n} \triangleq\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right]
$$

Addition of covector fields and scalar multiplication are defined by the transpose of (2.10) and (2.11).

Example 2.5.1 Show that the set of all smooth covector fields on \mathbb{R}^{n} is a vector space over field \mathbb{R}.

Solution Omitted. (Problem 2-15.)
Let us define $\langle w(x), f(x)\rangle$ by

$$
\left\langle\sum_{i=1}^{n} w_{i}(x) d x_{i}, \sum_{j=1}^{n} f_{j}(x) \frac{\partial}{\partial x_{j}}\right\rangle \triangleq \sum_{i=1}^{n} w_{i}(x) f_{i}(x)=w(x) f(x) .
$$

With the operator $\langle w(x), \cdot\rangle$, a smooth covector field $w(x)$ can be thought of a function from the set of smooth vector fields to $C^{\infty}\left(\mathbb{R}^{n}\right)$. For example, $d x_{i}$ is a linear function such that

$$
\left\langle d x_{i}, \frac{\partial}{\partial x_{j}}\right\rangle= \begin{cases}1, & \text { if } j=i \\ 0, & \text { if } j \neq i\end{cases}
$$

The differential (or total derivative) $d h(x)$ of $h(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
d h(x) \triangleq\left[\frac{\partial h(x)}{\partial x_{1}} \frac{\partial h(x)}{\partial x_{2}} \cdots \frac{\partial h(x)}{\partial x_{n}}\right]=\sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}} d x_{i} .
$$

A smooth covector field $w(x)$ is obtained when a scalar function is differentiated once, so it is also called a differential one form, or simply a one form. The Lie derivative of $h(x)$ with respect to $f(x)$ can also be written by

$$
L_{f} h(x)=\frac{\partial h(x)}{\partial x} f(x)=\langle d h(x), f(x)\rangle
$$

Definition 2.14 (exact one form) One form $w(x)$ is said to be an exact one form, if there exists a scalar function $h(x)$ such that $w(x)=\frac{\partial h}{\partial x}$ or $w(x)=d h(x)$.

Note that $\frac{\partial^{2} h(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} h(x)}{\partial x_{j} \partial x_{i}}$, for $1 \leq i \leq n$ and $1 \leq j \leq n$. If $w(x)$ is an exact one form, then $w_{i}(x)=\frac{\partial h(x)}{\partial x_{i}}, 1 \leq i \leq n$ for some scalar function $h(x)$. Thus, it is clear that

$$
\begin{equation*}
\frac{\partial w_{j}(x)}{\partial x_{i}}=\frac{\partial w_{i}(x)}{\partial x_{j}}, \quad 1 \leq i \leq n, 1 \leq j \leq n \tag{2.53}
\end{equation*}
$$

or

$$
\frac{\partial w(x)^{\top}}{\partial x}=\left(\frac{\partial w(x)^{\top}}{\partial x}\right)^{\top}
$$

Conversely, if (2.53) is satisfied, then $w(x)$ is an exact one form (See Lemma 2.1).
Lemma 2.1 Let $1 \leq k \leq n, x=\left[\begin{array}{c}x^{1} \\ x^{2}\end{array}\right], x^{1}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right]$, and $x^{2}=\left[\begin{array}{c}x_{k+1} \\ \vdots \\ x_{n}\end{array}\right]$. Suppose that $w_{i}(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ for $1 \leq i \leq k$. There exists a function $h(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $h\left(0, x^{2}\right)=0$ and $\frac{\partial h(x)}{\partial x^{1}}=\left[w_{1}(x) \cdots w_{k}(x)\right] \triangleq w^{1}(x)$, if and only if for $1 \leq$ $i \leq k$ and $1 \leq j \leq k$

$$
\begin{equation*}
\frac{\partial w_{j}(x)}{\partial x_{i}}=\frac{\partial w_{i}(x)}{\partial x_{j}} \tag{2.54}
\end{equation*}
$$

or

$$
\frac{\partial w^{1}(x)^{\top}}{\partial x^{1}}=\left(\frac{\partial w^{1}(x)^{\top}}{\partial x^{1}}\right)^{\top}
$$

We denote

$$
\begin{aligned}
h(x) & =\int\left[w_{1}(x) \cdots w_{k}(x)\right] d\left(x_{1} \cdots x_{k}\right) \\
& \triangleq \int w^{1}(x) d x^{1} .
\end{aligned}
$$

Proof Necessity. Obvious.
Sufficiency. Suppose that (2.54) is satisfied. Let

$$
\begin{equation*}
h(x)=\sum_{j=1}^{k} Q_{j}(x) \tag{2.55}
\end{equation*}
$$

where

$$
\begin{align*}
& Q_{1}(x)=\int w_{1}(x) d x_{1} \\
& Q_{i}(x)=\int w_{i}(x) d x_{i}-\sum_{j=1}^{i-1} \int \frac{\partial Q_{j}(x)}{\partial x_{i}} d x_{i}, \quad 2 \leq i \leq k \tag{2.56}
\end{align*}
$$

Then it is easy to see, by (2.56), that

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{i} Q_{j}(x)\right)=w_{i}(x), \quad 1 \leq i \leq k \tag{2.57}
\end{equation*}
$$

Now we will show, by mathematical induction, that for $2 \leq i \leq k$

$$
\begin{equation*}
\frac{\partial Q_{i}(x)}{\partial x_{\ell}}=0, \quad 1 \leq \ell \leq i-1 \tag{2.58}
\end{equation*}
$$

Since $Q_{2}(x)=\int w_{2}(x) d x_{2}-\iint \frac{\partial w_{1}(x)}{\partial x_{2}} d x_{1} d x_{2}$, we have, by (2.54), that

$$
\frac{\partial Q_{2}(x)}{\partial x_{1}}=\int \frac{\partial w_{2}(x)}{\partial x_{1}} d x_{2}-\int \frac{\partial w_{1}(x)}{\partial x_{2}} d x_{2}=\int\left(\frac{\partial w_{2}(x)}{\partial x_{1}}-\frac{\partial w_{1}(x)}{\partial x_{2}}\right) d x_{2}=0
$$

which implies that (2.58) is satisfied when $i=2$. Assume that (2.58) is satisfied for $2 \leq i \leq p$ and $2 \leq p \leq k-1$. Let $1 \leq q \leq p$. Then we have, by (2.54), (2.56), and (2.57), that

$$
\begin{aligned}
\frac{\partial Q_{p+1}(x)}{\partial x_{q}} & =\int \frac{\partial w_{p+1}(x)}{\partial x_{q}} d x_{p+1}-\int \frac{\partial^{2}\left(\sum_{j=1}^{p} Q_{j}(x)\right)}{\partial x_{p+1} \partial x_{q}} d x_{p+1} \quad \text { (by (2.56)) } \\
& =\int \frac{\partial w_{p+1}(x)}{\partial x_{q}} d x_{p+1}-\int \frac{\partial^{2}\left(\sum_{j=1}^{q} Q_{j}(x)\right)}{\partial x_{p+1} \partial x_{q}} d x_{p+1} \quad \text { (by assumption) } \\
& =\int \frac{\partial w_{p+1}(x)}{\partial x_{q}} d x_{p+1}-\int \frac{\partial w_{q}(x)}{\partial x_{p+1}} d x_{p+1} \quad \text { (by (2.57)) } \\
& =\int\left(\frac{\partial w_{p+1}(x)}{\partial x_{q}}-\frac{\partial w_{q}(x)}{\partial x_{p+1}}\right) d x_{p+1}=0 \quad \text { (by (2.54)) }
\end{aligned}
$$

which implies that (2.58) is satisfied for $i=p+1$. Therefore, (2.58) is, by mathematical induction, satisfied for $2 \leq i \leq k$. Hence, it is easy to see, by (2.55), (2.57), and (2.58), that for $1 \leq i \leq k$

$$
\frac{\partial h(x)}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{k} Q_{j}(x)\right)=\frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{i} Q_{j}(x)\right)=w_{i}(x) .
$$

Example 2.5.2 Show that one form $w(x)=\left[\begin{array}{ll}1 & x_{1}\end{array}\right]$ is not exact.

Solution Since

$$
\frac{\partial w_{1}(x)}{\partial x_{2}}=0 \neq 1=\frac{\partial w_{2}(x)}{\partial x_{1}} \text { or } \frac{\partial w(x)^{\top}}{\partial x}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \neq\left(\frac{\partial w(x)^{\top}}{\partial x}\right)^{\top}
$$

(2.53) is not satisfied. Thus, $w(x)=\left[1 x_{1}\right]$ is not an exact one form.

Example 2.5.3 Show that $w(x)=\left[\begin{array}{lll}x_{2} & x_{1}+x_{3} & x_{2}+2 x_{3}\end{array}\right]$ is an exact one form. Find out scalar function $h(x)$ such that $w(x)=d h(x)$ and $h(0)=0$.

Solution Since

$$
\frac{\partial w_{1}}{\partial x_{2}}=1=\frac{\partial w_{2}}{\partial x_{1}} ; \quad \frac{\partial w_{1}}{\partial x_{3}}=0=\frac{\partial w_{3}}{\partial x_{1}} ; \quad \frac{\partial w_{2}}{\partial x_{3}}=1=\frac{\partial w_{3}}{\partial x_{2}}
$$

or

$$
\frac{\partial w(x)^{\top}}{\partial x}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]=\left(\frac{\partial w(x)^{\top}}{\partial x}\right)^{\top}
$$

(2.53) is satisfied. Therefore, one form $w(x)=\left[\begin{array}{lll}x_{2} & x_{1} & x_{3}\end{array}\right]$ is exact. We have $h(x)=x_{1} x_{2}+R_{1}\left(x_{2}, x_{3}\right)$ from $\frac{\partial h(x)}{\partial x_{1}}=w_{1}(x)=x_{2}$. (or $Q_{1}(x)=x_{1} x_{2}$.) Also, since $\frac{\partial h(x)}{\partial x_{2}}=w_{2}(x)=x_{1}+x_{3}$, we have $\frac{\partial R_{1}\left(x_{2}, x_{3}\right)}{\partial x_{2}}=x_{3}$ and $R_{1}\left(x_{2}, x_{3}\right)=x_{2} x_{3}+R_{2}\left(x_{3}\right)$.
(or $Q_{2}(x)=x_{2} x_{3}$.) Finally, since $\frac{\partial h(x)}{\partial x_{3}}=w_{3}(x)=x_{2}+2 x_{3}$, we have $\frac{\partial R_{2}\left(x_{3}\right)}{\partial x_{3}}=2 x_{3}$ and $R_{2}\left(x_{3}\right)=x_{3}^{2}+$ const. (or $Q_{3}(x)=x_{3}^{2}$.) Hence, we have $h(x)=x_{1} x_{2}+x_{2} x_{3}+$ $x_{3}^{2}\left(=Q_{1}(x)+Q_{2}(x)+Q_{3}(x)\right)$.

2.6 Distribution and Frobenius Theorem

When vector field $f(x)$ and a state transformation $z=S(x)$ are given, vector field $\tilde{f}(z)\left(=S_{*}(f(x))\right)$, that is the same vector field expressed in z-coordinates, can be found as in Example 2.4.11. In this section, we first try to find a state transformation $z=S(x)$ such that for $1 \leq i \leq n$

$$
\begin{equation*}
S_{*}\left(f_{i}(x)\right)=\frac{\partial}{\partial z_{i}} \tag{2.59}
\end{equation*}
$$

when $\left\{f_{1}(x), \cdots, f_{n}(x)\right\}$ are a set of linearly independent vector fields.
Example 2.6.1 Consider vector fields $f(x)=\left[\begin{array}{c}x_{2} \\ 1\end{array}\right]$ and $\tau(x)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Find a state transformation $z=S(x)$ such that $S_{*}(f(x))=\frac{\partial}{\partial z_{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $S_{*}(\tau(x))=\frac{\partial}{\partial z_{2}}=$ $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Solution We need to find a state transformation $z=S(x)$ such that

$$
\left[S_{*}(f(x)) S_{*}(\tau(x))\right]=\left.\left[\frac{\partial S(x)}{\partial x} f(x) \frac{\partial S(x)}{\partial x} \tau(x)\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Since

$$
\frac{\partial S(x)}{\partial x}[f(x) \tau(x)]=\frac{\partial S(x)}{\partial x}\left[\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right]=I
$$

we have that

$$
\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\frac{\partial S_{2}(x)}{\partial x}
\end{array}\right]=\frac{\partial S(x)}{\partial x}=\left[\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0 & 1 \\
1 & -x_{2}
\end{array}\right] .
$$

Since one forms $\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $\left[1-x_{2}\right]$ are exact, there exist scalar functions $S_{1}(x)$ and $S_{2}(x)$ such that $\frac{\partial S_{1}(x)}{\partial x}=\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $\frac{\partial S_{2}(x)}{\partial x}=\left[\begin{array}{ll}1 & -x_{2}\end{array}\right]$. By easy calculation, we have $S(x)=\left[\begin{array}{c}x_{2} \\ x_{1}-\frac{1}{2} x_{2}^{2}\end{array}\right]$.

Example 2.6.2 Consider vector fields $f(x)=\left[\begin{array}{c}x_{2} \\ 1\end{array}\right]$ and $g(x)=\left[\begin{array}{c}e^{x_{1}} \\ 0\end{array}\right]$. Can we find a state transformation $z=S(x)$ such that $S_{*}(f(x))=\frac{\partial}{\partial z_{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $S_{*}(g(x))=$ $\frac{\partial}{\partial z_{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
Solution A state transformation $z=S(x)$ should satisfy

$$
\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\frac{\partial S_{2}(x)}{\partial x}
\end{array}\right]=[f(x) g(x)]^{-1}=\left[\begin{array}{cc}
0 & 1 \\
e^{-x_{1}} & -x_{2} e^{-x_{1}}
\end{array}\right] .
$$

Since one form $\left[e^{-x_{1}}-x_{2} e^{-x_{1}}\right]$ is not exact, there does not exist a scalar function $S_{2}(x)$ such that $\frac{\partial S_{2}(x)}{\partial x}=\left[e^{-x_{1}}-x_{2} e^{-x_{1}}\right]$.

In the above Examples, it can be easily shown that $[f(x), \tau(x)]=0$ and $[f(x), g(x)] \neq 0$. Theorem 2.7 gives the conditions for the existence of a state transformation $z=S(x)$ such that (2.59) holds. The following Theorem is often used in this book.

Theorem 2.7 Suppose that $\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ is a set of linearly independent smooth vector fields on open set U of \mathbb{R}^{n}. There exists a state transformation $z=S(x): U \rightarrow \mathbb{R}^{n}$ such that for $1 \leq i \leq n$

$$
\begin{equation*}
S_{*}\left(f_{i}(x)\right)=\frac{\partial}{\partial z_{i}} \tag{2.60}
\end{equation*}
$$

if and only if for $1 \leq i \leq n$ and $1 \leq j \leq n$

$$
\begin{equation*}
\left[f_{i}(x), f_{j}(x)\right]=0 \tag{2.61}
\end{equation*}
$$

Furthermore, state transformation $z=S(x)$ satisfies

$$
\begin{equation*}
\frac{\partial S(x)}{\partial x}=\left[f_{1}(x) \cdots f_{n}(x)\right]^{-1} \tag{2.62}
\end{equation*}
$$

Proof Theorem 2.7 is a special case of Theorem 2.9 with $k=n$. Since Frobenius Theorem (Theorem 2.8) is needed to prove the sufficiency part of Theorem 2.9 when $k \leq n-1$, Theorem 2.9 is considered after Theorem 2.8. However, Theorem 2.7 can be proven without Frobenius Theorem. The proof is omitted, since it is very similar to that of Theorem 2.9 with $k=n$. It is easy to see, by (2.71), that (2.62) is satisfied.

From now on, we try to find a state transformation $z=S(x)$ such that for $k+1 \leq$ $p \leq n$

$$
L_{f_{i}(x)} S_{p}(x)=0,1 \leq i \leq k
$$

or

$$
\frac{\partial S_{p}(x)}{\partial x}\left[f_{1}(x) \cdots f_{k}(x)\right]=[0 \cdots 0]
$$

when $k \leq n-1$ and $\left\{f_{1}(x), \cdots, f_{k}(x)\right\}$ are a set of linearly independent vector fields.

Example 2.6.3 Let $f_{1}(x)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $f_{2}(x)=\left[\begin{array}{c}x_{1}^{2} \\ 1 \\ x_{2}\end{array}\right]$. Find a state transformation $z=S(x)$ such that $L_{f_{1}} S_{3}(x)=0$ and $L_{f_{2}} S_{3}(x)=0$.

Solution Since

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
0 & 0
\end{array}\right]} & =\left[\begin{array}{ll}
L_{f_{1}} S_{3}(x) & L_{f_{2}} S_{3}(x)
\end{array}\right]=\left[\frac{\partial S_{3}(x)}{\partial x} f_{1}(x)\right. \\
\frac{\partial S_{3}(x)}{\partial x} f_{2}(x)
\end{array}\right]
$$

we have that $\frac{\partial S_{3}(x)}{\partial x}=\left[0-x_{2} a(x) a(x)\right]$, where $a(x)$ is a smooth nonzero function. If we let $a(x)=1$, then one form $\left[0-x_{2} a(x) a(x)\right]$ is exact and it is easy to see that $S_{3}(x)=x_{3}-\frac{1}{2} x_{2}^{2}$. We can choose any smooth functions $S_{1}(x)$ and $S_{2}(x)$ such that $\left\{d S_{1}(x), d S_{2}(x), d S_{3}(x)\right\}$ are linearly independent. For example, let $S_{1}(x)=x_{1}$ and $S_{2}(x)=x_{2}$. Then it is clear that $z=S(x)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}-\frac{1}{2} x_{2}^{2}\end{array}\right]$ is a state transformation such that $L_{f_{1}} S_{3}(x)=0$ and $L_{f_{2}} S_{3}(x)=0$.

Example 2.6.4 Let $g_{1}(x)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $g_{2}(x)=\left[\begin{array}{c}0 \\ 1 \\ x_{1}\end{array}\right]$. Show that there does not exist a state transformation $z=S(x)$ such that $L_{g_{1}} S_{3}(x)=0$ and $L_{g_{2}} S_{3}(x)=0$.

Solution Since

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0
\end{array}\right] } & =\left[\begin{array}{ll}
L_{g_{1}} S_{3}(x) & L_{g_{2}} S_{3}(x)
\end{array}\right]=\left[\frac{\partial S_{3}(x)}{\partial x} g_{1}(x) \frac{\partial S_{3}(x)}{\partial x} g_{2}(x)\right] \\
& =\frac{\partial S_{3}(x)}{\partial x}\left[g_{1}(x) g_{2}(x)\right]=\frac{\partial S_{3}(x)}{\partial x}\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & x_{1}
\end{array}\right]
\end{aligned}
$$

we have that $\frac{\partial S_{3}(x)}{\partial x}=\left[0-x_{1} a(x) a(x)\right] \triangleq\left[w_{1}(x) w_{2}(x) w_{3}(x)\right]$, where $a(x)$ is a smooth nonzero function. Note that $\frac{\partial w_{3}(x)}{\partial x_{1}}=\frac{\partial a(x)}{\partial x_{1}}, \frac{\partial w_{2}(x)}{\partial x_{1}}=-a(x)-x_{1} \frac{\partial a(x)}{\partial x_{1}}$, and $\frac{\partial w_{1}(x)}{\partial x_{3}}=\frac{\partial w_{1}(x)}{\partial x_{2}}=0$. In order for one form $\left[w_{1}(x) w_{2}(x) w_{3}(x)\right]$ to be exact, it is clear that $\frac{\partial w_{3}(x)}{\partial x_{1}}=\frac{\partial w_{1}(x)}{\partial x_{3}}$ and $\frac{\partial w_{2}(x)}{\partial x_{1}}=\frac{\partial w_{1}(x)}{\partial x_{2}}$. Thus we have that $a(x)=0$ and $S_{3}(x)=0$. Therefore, there does not exist a state transformation $z=S(x)$ such that $L_{g_{1}} S_{3}(x)=$ 0 and $L_{g_{2}} S_{3}(x)=0$.

In Examples 2.6.3 and 2.6.4, note that

$$
\begin{aligned}
& {\left[f_{1}, f_{2}\right]=\left[\begin{array}{c}
2 x_{1} \\
0 \\
0
\end{array}\right] \in\left\{c_{1}(x) f_{1}+c_{2}(x) f_{2} \mid c_{1}(x), c_{2}(x) \in C^{\infty}\left(\mathbb{R}^{3}\right)\right\}} \\
& {\left[g_{1}, g_{2}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \notin\left\{c_{1}(x) g_{1}+c_{2}(x) g_{2} \mid c_{1}(x), c_{2}(x) \in C^{\infty}\left(\mathbb{R}^{3}\right)\right\} .}
\end{aligned}
$$

For simplicity, we let

$$
\operatorname{span}\left\{f_{1}(x), \ldots, f_{k}(x)\right\} \triangleq\left\{\sum_{i=1}^{k} c_{i}(x) f_{i}(x) \mid c_{i}(x) \in C^{\infty}\left(\mathbb{R}^{n}\right), 1 \leq i \leq k\right\}
$$

Definition 2.15 (distribution) $D(x)$ is said to be a k-dimensional distribution on open set U of \mathbb{R}^{n}, if $D(x)$ is k-dimensional subspace of \mathbb{R}^{n} for any $x \in U$.

Let $p_{1}, p_{2} \in U \subset \mathbb{R}^{n}$ and $p_{1} \neq p_{2}$. If $\operatorname{dim} D\left(p_{1}\right) \neq \operatorname{dim} D\left(p_{2}\right)$, then $D(x)$ is not a distribution. For example, let

$$
D(x)=\operatorname{span}\left\{\left[\begin{array}{c}
1+x_{2} \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} .
$$

Since $D\left(\left[\begin{array}{c}0 \\ -1\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$, we have that $\operatorname{dim}\left(D\left(\left[\begin{array}{c}0 \\ -1\end{array}\right]\right)\right)=1$. Thus, $D(x)$ is a 2-dimensional distribution not on \mathbb{R}^{2} but on open set $U \triangleq\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2} \neq-1\right\}$ of \mathbb{R}^{2}.

Definition 2.16 (smooth distribution) $D(x)$ is said to be a k-dimensional smooth distribution on open set U of \mathbb{R}^{n}, if there exists a set of smooth vector fields $\left\{f_{1}(x)\right.$, $\left.\ldots, f_{k}(x)\right\}$, defined on a neighborhood \bar{U} of $p \in U$, such that for any $x \in \bar{U}$

$$
D(x)=\operatorname{span}\left\{f_{1}(x), \ldots, f_{k}(x)\right\}
$$

Here $\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is called a local basis of distribution $D(x)$.

Definition 2.17 (involutive distribution) Smooth distribution $D(x)$ is said to be involutive, if for any smooth vector fields $f(x) \in D(x)$ and $g(x) \in D(x)$

$$
[f(x), g(x)] \in D(x)
$$

In other words, smooth distribution $D(x)$ is said to be involutive, if $D(x)$ is closed under bracket operation.

Example 2.6.5 Show that smooth distribution $D(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}$ is not involutive, where $g_{1}(x)=\frac{\partial}{\partial x_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $g_{2}(x)=\frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}}=\left[\begin{array}{c}0 \\ 1 \\ x_{1}\end{array}\right]$.

Solution $D(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}$ is not involutive, since

$$
\left[g_{1}(x), g_{2}(x)\right]=\frac{\partial}{\partial x_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \notin D(x)
$$

Example 2.6.6 Let $D(x)=\operatorname{span}\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$, where $\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a set of linearly independent smooth vector fields. Show that distribution $D(x)$ is involutive, if and only if for $1 \leq i \leq k$ and $1 \leq j \leq k$

$$
\left[f_{i}(x), f_{j}(x)\right] \in D(x)
$$

Solution Omitted. (Problem 2-22.)
By Example 2.6.6, only a finite number of brackets of vector fields belonging to the basis are needed to check in order to know whether the distribution is involutive or not.

Example 2.6.7 Show that smooth distribution $D(x)=\operatorname{span}\left\{f_{1}(x), f_{2}(x)\right\}$ is involutive, where $f_{1}(x)=\left[\begin{array}{c}1 \\ x_{1} x_{2} \\ x_{1} x_{3}\end{array}\right]$ and $f_{2}(x)=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.

Solution It is easy to see that

$$
\left[f_{1}(x), f_{2}(x)\right]=\left[\begin{array}{c}
0 \\
-x_{1} \\
-x_{1}
\end{array}\right]=-x_{1} f_{2}(x) \in D(x)
$$

Thus, by Example 2.6.6, $D(x)$ is an involutive distribution.

Definition 2.18 (completely integrable distribution) Suppose that $D(x)=$ $\operatorname{span}\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a k-dimensional smooth distribution on open set U of \mathbb{R}^{n}. Distribution $D(x)$ is said to be completely integrable, if there exists a state transformation $z=S(x): U \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{align*}
\tilde{D}(z)=S_{*}(D(x)) & \triangleq \operatorname{span}\left\{S_{*}\left(f_{1}(x)\right), \ldots, S_{*}\left(f_{k}(x)\right)\right\} \\
& =\operatorname{span}\left\{\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{k}}\right\} \tag{2.63}
\end{align*}
$$

or for $k+1 \leq j \leq n$

$$
\begin{equation*}
L_{f(x)} S_{j}(x)=0, \quad \forall f(x) \in D(x) \tag{2.64}
\end{equation*}
$$

Theorem 2.8 (Frobenius Theorem) A distribution $D(x)$ is completely integrable, if and only if $D(x)$ is involutive.

Proof Omitted. (Refer to [A1].)
Suppose that $\left\{S_{k+1}(x), \ldots, S_{n}(x)\right\}$ is a set of scalar functions such that (2.64) is satisfied. Let $\left\{S_{1}(x), \ldots, S_{k}(x)\right\}$ be any set of scalar functions such that $z=S(x)$ is a state transformation or $\left\{d S_{1}(x), \ldots, d S_{n}(x)\right\}$ are linearly independent. Then (2.63) is also satisfied, even though it may not be true that $S_{*}\left(f_{i}(x)\right)=\frac{\partial}{\partial z i}, 1 \leq i \leq k$.
Example 2.6.8 For involutive distribution $D(x)$ in Example 2.6.7, find out a scalar function $h(x)\left(\right.$ or $\left.S_{3}(x)\right)$ such that $h(0)=0,\left.\frac{\partial h(x)}{\partial x}\right|_{x=0} \neq 0$, and

$$
L_{f(x)} h(x)=0, \quad \forall f(x) \in D(x)
$$

Also, find out a state transformation $z=S(x)$ such that

$$
\begin{equation*}
\tilde{D}(z) \triangleq \operatorname{span}\left\{S_{*}\left(f_{1}(x)\right), S_{*}\left(f_{2}(x)\right)\right\}=\operatorname{span}\left\{\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial z_{2}}\right\} . \tag{2.65}
\end{equation*}
$$

Solution Note that

$$
\left[\begin{array}{lll}
0 & 0
\end{array}\right]=\frac{\partial h(x)}{\partial x}\left[f_{1}(x) f_{2}(x)\right]=\frac{\partial h(x)}{\partial x}\left[\begin{array}{cc}
1 & 0 \\
x_{1} x_{2} & 1 \\
x_{1} x_{3} & 1
\end{array}\right]
$$

which implies that $a(0) \neq 0$ and

$$
\frac{\partial h(x)}{\partial x}=\left[\frac{\partial h(x)}{\partial x_{1}} \frac{\partial h(x)}{\partial x_{2}} \frac{\partial h(x)}{\partial x_{3}}\right]=\left[x_{1}\left(x_{2}-x_{3}\right) a(x)-a(x) a(x)\right] \triangleq \omega(x)
$$

Thus, we need to find $a(x)$ such that $\omega(x)$ is an exact one form (or $\frac{\partial \omega_{i}(x)}{\partial x_{j}}=\frac{\partial \omega_{j}(x)}{\partial x_{i}}, i \neq$ j). Since distribution $D(x)$ is involutive, there exists, by Theorem 2.8, a scalar func-
tion $a(x)$ such that $\omega(x)$ is an exact one form. In general, a scalar function $a(x)$ is complicated to find.

$$
\begin{aligned}
& \frac{\partial \omega_{1}(x)}{\partial x_{2}}=x_{1} a(x)+x_{1}\left(x_{2}-x_{3}\right) \frac{\partial a(x)}{\partial x_{2}} ; \quad \frac{\partial \omega_{2}(x)}{\partial x_{1}}=-\frac{\partial a(x)}{\partial x_{1}} \\
& \frac{\partial \omega_{1}(x)}{\partial x_{3}}=-x_{1} a(x)+x_{1}\left(x_{2}-x_{3}\right) \frac{\partial a(x)}{\partial x_{3}} ; \quad \frac{\partial \omega_{3}(x)}{\partial x_{1}}=\frac{\partial a(x)}{\partial x_{1}} \\
& \frac{\partial \omega_{2}(x)}{\partial x_{3}}=-\frac{\partial a(x)}{\partial x_{3}} ; \quad \frac{\partial \omega_{3}(x)}{\partial x_{2}}=\frac{\partial a(x)}{\partial x_{2}}
\end{aligned}
$$

If we let $\frac{\partial a(x)}{\partial x_{2}}=\frac{\partial a(x)}{\partial x_{3}}=0$, we can obtain scalar functions $a(x)=e^{-\frac{1}{2} x_{1}^{2}}$ and $h(x)=$ $e^{-\frac{1}{2} x_{1}^{2}}\left(-x_{2}+x_{3}\right)$. Of course, we may be able to obtain a different $a(x)$ without $\frac{\partial a(x)}{\partial x_{2}}=\frac{\partial a(x)}{\partial x_{3}}=0$. We can choose any smooth functions $S_{1}(x)$ and $S_{2}(x)$ such that $\left\{d S_{1}(x), d S_{2}(x), d S_{3}(x)\right\}$ are linearly independent. For example, let $S_{1}(x)=x_{1}$ and $S_{2}(x)=x_{2}$. Then it is clear that $z=S(x)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ e^{-\frac{1}{2} x_{1}^{2}}\left(-x_{2}+x_{3}\right)\end{array}\right]$ is a state transformation. Since $x=S^{-1}(z)=\left[\begin{array}{c}z_{1} \\ z_{2} \\ z_{3} e^{\frac{1}{2} z_{1}^{2}}+z_{2}\end{array}\right]$, we have

$$
\begin{aligned}
S_{*}\left(f_{1}(x)\right) & =\left.\left\{\frac{\partial S(x)}{\partial x} f_{1}(x)\right\}\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
1 \\
z_{1} z_{2} \\
0
\end{array}\right]=\frac{\partial}{\partial z_{1}}+z_{1} z_{2} \frac{\partial}{\partial z_{2}} \\
S_{*}\left(f_{2}(x)\right) & =\left.\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-x_{1} e^{-\frac{1}{2} x_{1}^{2}}\left(-x_{2}+x_{3}\right)-e^{-\frac{1}{2} x_{1}^{2}} & e^{-\frac{1}{2} x_{1}^{2}}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}\right|_{x=S^{-1}(z)} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{\partial}{\partial z_{2}}
\end{aligned}
$$

which implies that (2.65) is satisfied.
Theorem 2.9 Suppose that $\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a set of linearly independent smooth vector fields on open set U of \mathbb{R}^{n}. There exists a state transformation $z=S(x): U \rightarrow$ \mathbb{R}^{n} such that for $1 \leq i \leq k$,

$$
\begin{equation*}
S_{*}\left(f_{i}(x)\right)=\frac{\partial}{\partial z_{i}} \tag{2.66}
\end{equation*}
$$

if and only if for $1 \leq i \leq k$ and $1 \leq j \leq k$

$$
\begin{equation*}
\left[f_{i}(x), f_{j}(x)\right]=0 \tag{2.67}
\end{equation*}
$$

Proof Necessity. Suppose that there exists a state transformation $z=S(x)$ such that (2.66) is satisfied. Then, it is clear, by Theorem 2.4, that for $0 \leq i \leq k$ and $0 \leq j \leq k$

$$
\left[f_{i}(x), f_{j}(x)\right]=\left[S_{*}^{-1}\left(\frac{\partial}{\partial z_{i}}\right), S_{*}^{-1}\left(\frac{\partial}{\partial z_{j}}\right)\right]=S_{*}^{-1}\left(\left[\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{j}}\right]\right)=0
$$

Sufficiency. Suppose that (2.67) is satisfied. Then, distribution $D(x)$ is involutive, where

$$
D(x) \triangleq \operatorname{span}\left\{f_{1}(x), \cdots, f_{k}(x)\right\}
$$

Thus, it is clear, by Frobenius Theorem (Theorem 2.8), that there exists a state transformation $\tilde{x}=T(x)$ such that

$$
\begin{equation*}
\tilde{D}(\tilde{x}) \triangleq \operatorname{span}\left\{\tilde{f}_{1}(\tilde{x}), \ldots, \tilde{f}_{k}(\tilde{x})\right\}=\operatorname{span}\left\{\frac{\partial}{\partial \tilde{x}_{1}}, \ldots, \frac{\partial}{\partial \tilde{x}_{k}}\right\} \tag{2.68}
\end{equation*}
$$

where $\tilde{f}_{i}(\tilde{x}) \triangleq T_{*}\left(f_{i}(x)\right)$ for $1 \leq i \leq k$ (If $k=n$, we can let $\tilde{x}=T(x)=x$). Thus, we can let

$$
\tilde{f}_{i}(\tilde{x}) \triangleq\left[\begin{array}{c}
\hat{f_{i}}(\tilde{x}) \tag{2.69}\\
O_{(n-k) \times 1}
\end{array}\right], \quad 1 \leq i \leq k
$$

Also, it is clear, by Theorem 2.4, that for $1 \leq i \leq k$ and $1 \leq j \leq k$

$$
\begin{equation*}
\left[\tilde{f}_{i}(\tilde{x}), \tilde{f}_{j}(\tilde{x})\right]=0 \text { or } \frac{\partial \hat{f}_{i}(\tilde{x})}{\partial \tilde{x}^{1}} \hat{f}_{j}(\tilde{x})-\frac{\partial \hat{f}_{j}(\tilde{x})}{\partial \tilde{x}^{1}} \hat{f}_{i}(\tilde{x})=O_{k \times 1} \tag{2.70}
\end{equation*}
$$

Let $\tilde{x}=\left[\begin{array}{c}\tilde{x}^{1} \\ \tilde{x}^{2}\end{array}\right], \tilde{x}^{1}=\left[\begin{array}{c}\tilde{x}_{1} \\ \vdots \\ \tilde{x}_{k}\end{array}\right]$, and $\tilde{x}^{2}=\left[\begin{array}{c}\tilde{x}_{k+1} \\ \vdots \\ \tilde{x}_{n}\end{array}\right]$. Also, define $1 \times k$ matrix $w_{i}(\tilde{x}), 1 \leq$ $i \leq k$ by

$$
\left[\begin{array}{c}
w_{1}(\tilde{x}) \tag{2.71}\\
\vdots \\
w_{k}(\tilde{x})
\end{array}\right] \triangleq\left[\hat{f}_{1}(\tilde{x}) \cdots \hat{f}_{k}(\tilde{x})\right]^{-1}
$$

or

$$
\left[\begin{array}{c}
w_{1}(\tilde{x}) \\
\vdots \\
w_{k}(\tilde{x})
\end{array}\right]\left[\begin{array}{lll}
\hat{f}_{1}(\tilde{x}) & \cdots & \hat{f}_{k}(\tilde{x})
\end{array}\right]=\left[\begin{array}{lll}
1 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 1
\end{array}\right] .
$$

In other words, $w_{p}(\tilde{x}) \hat{f}_{i}(\tilde{x})=\delta_{p, i}$ for $1 \leq p \leq k$ and $1 \leq i \leq k$, where $\delta_{p, i}$ is the Kronecker delta function. Thus, we have, by (2.3), that for $1 \leq p \leq k$ and $1 \leq i \leq k$

$$
\frac{\partial\left(w_{p}(\tilde{x}) \hat{f}_{i}(\tilde{x})\right)}{\partial \tilde{x}^{1}}=w_{p}(\tilde{x}) \frac{\partial \hat{f}_{i}(\tilde{x})}{\partial \tilde{x}^{1}}+\hat{f}_{i}(\tilde{x})^{\top} \frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}}=O_{1 \times k} .
$$

Therefore, we have that for $1 \leq p \leq k, 1 \leq i \leq k$, and $1 \leq j \leq k$

$$
w_{p}(\tilde{x}) \frac{\partial \hat{f}_{i}(\tilde{x})}{\partial \tilde{x}^{1}} \hat{f}_{j}(\tilde{x})+\hat{f}_{i}(\tilde{x})^{\top} \frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}} \hat{f}_{j}(\tilde{x})=0
$$

and

$$
w_{p}(\tilde{x}) \frac{\partial \hat{f}_{j}(\tilde{x})}{\partial \tilde{x}^{1}} \hat{f}_{i}(\tilde{x})+\hat{f}_{j}(\tilde{x})^{\top} \frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}} \hat{f}_{i}(\tilde{x})=0
$$

which imply that

$$
w_{p}\left(\frac{\partial \hat{f}_{i}}{\partial \tilde{x}^{1}} \hat{f}_{j}-\frac{\partial \hat{f}_{j}}{\partial \tilde{x}^{1}} \hat{f}_{i}\right)+\hat{f}_{i}^{\top}\left\{\frac{\partial\left(w_{p}^{\top}\right)}{\partial \tilde{x}^{1}}-\left(\frac{\partial\left(w_{p}^{\top}\right)}{\partial \tilde{x}^{1}}\right)^{\top}\right\} \hat{f}_{j}=0
$$

Therefore, it is easy to see, by (2.70), that for $1 \leq p \leq k$

$$
\left[\begin{array}{c}
\hat{f}_{1}(\tilde{x})^{\top} \\
\vdots \\
\hat{f}_{k}(\tilde{x})^{\top}
\end{array}\right]\left\{\frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}}-\left(\frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}}\right)^{\top}\right\}\left[\hat{f}_{1}(\tilde{x}) \cdots \hat{f}_{k}(\tilde{x})\right]=O_{k \times k}
$$

Since $\left[\hat{f}_{1}(\tilde{x}) \cdots \hat{f}_{k}(\tilde{x})\right]$ has rank k, we have $\frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}}=\left(\frac{\partial\left(w_{p}(\tilde{x})^{\top}\right)}{\partial \tilde{x}^{1}}\right)^{\top}$ for $1 \leq p \leq k$ and thus there exists, by Lemma 2.1, a scalar function $\tilde{S}_{p}(\tilde{x})$ for $1 \leq p \leq k$ such that $\frac{\partial \tilde{S}_{p}(\tilde{x})}{\partial \tilde{x}^{1}}=w_{p}(\tilde{x})$. Let $\tilde{S}(\tilde{x}) \triangleq\left[\begin{array}{lllll}\tilde{S}_{1}(\tilde{x}) & \cdots & \tilde{S}_{k}(\tilde{x}) & \tilde{x}_{k+1} & \cdots\end{array} \tilde{x}_{n}\right]^{\top} \triangleq\left[\begin{array}{c}\tilde{S}^{1}(\tilde{x}) \\ \tilde{x}^{2}\end{array}\right]$. Since $\frac{\partial \tilde{S}^{1}(\tilde{x})}{\partial \tilde{x}^{1}}=\left[\begin{array}{c}w_{1}(\tilde{x}) \\ \vdots \\ w_{k}(\tilde{x})\end{array}\right]$, it is easy to see, by (2.71), that $z=\tilde{S}(\tilde{x})$ is a state transformation.
Therefore, we have, by (2.69) and (2.71), that

$$
\begin{aligned}
& {\left[\tilde{S}_{*}\left(\tilde{f}_{1}(\tilde{x})\right) \cdots \tilde{S}_{*}\left(\tilde{f}_{k}(\tilde{x})\right)\right]=\left.\left[\frac{\partial \tilde{S}(\tilde{x})}{\partial \tilde{x}} \tilde{f}_{1}(\tilde{x}) \cdots \frac{\partial \tilde{S}(\tilde{x})}{\partial \tilde{x}} \tilde{f}_{k}(\tilde{x})\right]\right|_{\tilde{x}=\tilde{S}^{-1}(z)}} \\
& \quad=\left.\left\{\frac{\partial \tilde{S}(\tilde{x})}{\partial \tilde{x}}\left[\tilde{f}_{1}(\tilde{x}) \cdots \tilde{f}_{k}(\tilde{x})\right]\right\}\right|_{\tilde{x}=\tilde{S}^{-1}(z)} \\
& \quad=\left.\left\{\left[\begin{array}{cc}
\frac{\partial \tilde{S}^{1}(\tilde{x})}{\partial \tilde{x}^{1}} & \frac{\partial \tilde{S}^{1}(\tilde{x})}{\partial \tilde{x}^{2}} \\
O_{(n-k) \times k} & I_{n-k}
\end{array}\right]\left[\begin{array}{ccc}
\hat{f}_{1}(\tilde{x}) & \cdots & \hat{f}_{k}(\tilde{x}) \\
O_{(n-k) \times 1} & \cdots & O_{(n-k) \times 1}
\end{array}\right]\right\}\right|_{\tilde{x}=\tilde{S}^{-1}(z)} \\
& \quad=\left[\begin{array}{c}
I_{k} \\
O_{(n-k) \times k}
\end{array}\right]
\end{aligned}
$$

which implies that $\tilde{S}_{*}\left(\tilde{f}_{i}(\tilde{x})\right)=\frac{\partial}{\partial z_{i}}$ for $1 \leq i \leq k$. Hence, it is clear that for $1 \leq i \leq k$

$$
S_{*}\left(f_{i}(x)\right)=\tilde{S}_{*} \circ T_{*}\left(f_{i}(x)\right)=\tilde{S}_{*}\left(\tilde{f}_{i}(\tilde{x})\right)=\frac{\partial}{\partial z_{i}}
$$

where $z=S(x) \triangleq \tilde{S} \circ T(x)$.
Corollary 2.1 Let $x=\left[\begin{array}{l}x^{1} \\ x^{2}\end{array}\right], x^{1}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right]$, and $x^{2}=\left[\begin{array}{c}x_{k+1} \\ \vdots \\ x_{n}\end{array}\right]$. Suppose that $\left\{f_{1}(x)\right.$, $\left.\ldots, f_{k}(x)\right\}$ is a set of linearly independent smooth vector fields on open set U of \mathbb{R}^{n} and that

$$
\begin{equation*}
\operatorname{span}\left\{f_{1}(x), \cdots, f_{k}(x)\right\}=\operatorname{span}\left\{\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{k}}\right\} \tag{2.72}
\end{equation*}
$$

There exists a state transformation $z=S(x): U \rightarrow \mathbb{R}^{n}$ such that for $1 \leq i \leq k$

$$
\begin{equation*}
S_{*}\left(f_{i}(x)\right)=\frac{\partial}{\partial z_{i}} \tag{2.73}
\end{equation*}
$$

if and only if for $1 \leq i \leq k$ and $1 \leq j \leq k$

$$
\begin{equation*}
\left[f_{i}(x), f_{j}(x)\right]=0 \tag{2.74}
\end{equation*}
$$

Furthermore, a state transformation $z=S(x) \triangleq\left[\begin{array}{c}S^{1}(x) \\ x^{2}\end{array}\right]$ satisfies

$$
\begin{equation*}
\frac{\partial S^{1}(x)}{\partial x}=\left[\hat{f}_{1}(x) \cdots \hat{f}_{k}(x)\right]^{-1} \tag{2.75}
\end{equation*}
$$

where $f_{i}(x) \triangleq\left[\begin{array}{c}\hat{f_{i}}(x) \\ O_{(n-k) \times 1}\end{array}\right]$ for $1 \leq i \leq k$.

Proof If (2.72) is satisfied, Frobenius Theorem is not needed. In other words, the proof of Corollary 2.1 is the same as the proof of Theorem 2.9 with $\tilde{x}=T(x)=x$.

The annihilator $D(x)^{\perp}$ of distribution $D(x)$ in open set U of \mathbb{R}^{n} is defined by

$$
D(x)^{\perp} \triangleq\{w(x) \mid\langle w(x), X\rangle=0, \quad \forall X \in D(x)\}
$$

In other words, $D(x)^{\perp}$ is the set of all one forms which are perpendicular to all vector fields in $D(x)$. Thus, it is easy to see that $\operatorname{dim}\left(D(x)^{\perp}\right)=n-\operatorname{dim}(D(x))$.

Example 2.6.9 Let $D(x)$ be the smooth distribution in Example 2.6.7. Find the annihilator $D(x)^{\perp}$ of $D(x)$.

Solution It is easy to see that

$$
D(x)^{\perp}=\operatorname{span}\left\{\left[x_{1}\left(x_{2}-x_{3}\right)-11\right]\right\}
$$

Since $D(x)$ is involutive, there exists a scalar function $h(x)=e^{-\frac{1}{2} x_{1}^{2}}\left(-x_{2}+x_{3}\right)$ such that $D(x)^{\perp}=\operatorname{span}\{d h(x)\}$ (Refer to Example 2.6.8)

Suppose that $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a smooth surjective function and $D(x)=$ span $\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a k-dimensional smooth distribution on \mathbb{R}^{n}. Define the set $S_{*}(D(x))$ of tangent vectors on \mathbb{R}^{m} by

$$
S_{*}(D(x)) \triangleq\left\{S_{*}\left(\sum_{i=1}^{k} a_{i}(x) f_{i}(x)\right) \mid a_{i}(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)\right\}
$$

Example 2.6.10 Suppose that $x \in \mathbb{R}^{3}$ and $z=S(x)=\left[\begin{array}{c}x_{1} \\ \left(1+x_{1}\right) x_{2}+2 x_{3}\end{array}\right]$. Consider the following smooth distributions:

$$
\begin{aligned}
& D_{1}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{1}(x)\right\} \\
& D_{2}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
e^{x_{3}} \\
x_{1} e^{x_{3}}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{2}(x)\right\} \\
& D_{3}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
x_{2}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{3}(x)\right\} \\
& D_{4}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1+x_{1}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{1}(x), f_{4}(x)\right\} .
\end{aligned}
$$

Let $\bar{x}=\left[\begin{array}{c}x_{1} \\ a \\ x_{3}+\frac{1}{2}\left(1+x_{1}\right) x_{2}-\frac{1}{2} a\left(1+x_{1}\right)\end{array}\right]$. Then it is clear that $S(\bar{x})=S(x)$ for all $a \in \mathbb{R}$. Find $S_{*}\left(D_{i}(x)\right), \quad 1 \leq i \leq 4$ and $S_{*}\left(D_{i}(\bar{x})\right), 1 \leq i \leq 4$.

Solution Note that $S_{*}\left(D_{i}(x)\right), 1 \leq i \leq 4$ and $S_{*}\left(D_{i}(\bar{x})\right), 1 \leq i \leq 4$ are the sets of tangent vectors at $z=\left[\begin{array}{c}x_{1} \\ \left(1+x_{1}\right) x_{2}+2 x_{3}\end{array}\right] \in \mathbb{R}^{2}$. It is clear that

$$
\begin{aligned}
& S_{*}\left(f_{1}(x)\right)=\frac{\partial S}{\partial x} f_{1}(x)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{2} & 1+x_{1} & 2
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1+3 x_{1}
\end{array}\right] \\
& S_{*}\left(f_{2}(x)\right)=\left[\begin{array}{c}
0 \\
\left(1+3 x_{1}\right) e^{x_{3}}
\end{array}\right] ; S_{*}\left(f_{3}(x)\right)=\left[\begin{array}{c}
1 \\
3 x_{2}
\end{array}\right] \\
& S_{*}\left(f_{4}(x)\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Also, we have that

$$
\begin{aligned}
& S_{*}\left(f_{1}(\bar{x})\right)=\left.\frac{\partial S}{\partial x} f_{1}(x)\right|_{x=\bar{x}}=\left[\begin{array}{c}
0 \\
1+3 x_{1}
\end{array}\right] \\
& S_{*}\left(f_{2}(\bar{x})\right)=\left[\begin{array}{c}
0 \\
\left(1+3 x_{1}\right) e^{x_{3}+\frac{1}{2}\left(1+x_{1}\right) x_{2}-\frac{1}{2} a\left(1+x_{1}\right)}
\end{array}\right] \\
& S_{*}\left(f_{3}(\bar{x})\right)=\left[\begin{array}{c}
1 \\
3 a
\end{array}\right] ; \quad S_{*}\left(f_{4}(\bar{x})\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Thus, it is easy to see that

$$
\begin{gathered}
S_{*}\left(D_{1}(\bar{x})\right)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1+3 x_{1}
\end{array}\right]\right\}=S_{*}\left(D_{1}(x)\right) \\
S_{*}\left(D_{2}(\bar{x})\right)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1+3 x_{1}
\end{array}\right]\right\}=S_{*}\left(D_{2}(x)\right) \\
x_{*}+\frac{1}{2}\left(1+x_{1}\right) x_{2}-\frac{1}{2} a\left(1+x_{1}\right)
\end{array}\right]\right\} \\
S_{*}\left(D_{3}(\bar{x})\right)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
3 a
\end{array}\right]\right\} \neq \operatorname{span}\left\{\left[\begin{array}{c}
1 \\
3 x_{2}
\end{array}\right]\right\}=S_{*}\left(D_{3}(x)\right)
\end{gathered}
$$

and

$$
S_{*}\left(D_{4}(\bar{x})\right)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1+3 x_{1}
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1+3 x_{1}
\end{array}\right]\right\}=S_{*}\left(D_{4}(x)\right)
$$

In the above Example, since $S_{*}\left(f_{1}(x)\right)$ is a well-defined vector field $\tilde{f}_{1}(z) \triangleq$ $S_{*}\left(f_{1}(x)\right)=\left[\begin{array}{c}0 \\ 1+3 z_{1}\end{array}\right]=\left(1+3 z_{1}\right) \frac{\partial}{\partial z_{2}}$, it is clear that $\tilde{D}_{1}(z) \triangleq S_{*}\left(D_{1}(x)\right)=$ span $\left\{\left[\begin{array}{c}0 \\ 1+3 z_{1}\end{array}\right]\right\}$ is a distribution on a neighborhood $U=\left\{\|z\|<\frac{1}{3}\right\}$ of the origin $\left[\begin{array}{l}0 \\ 0\end{array}\right] \in \mathbb{R}^{2}$. Even though $S_{*}\left(f_{2}(x)\right)$ is not a well-defined vector field, $S_{*}\left(e^{-x_{3}} f_{2}(x)\right)$ is a well-defined vector field $S_{*}\left(e^{-x_{3}} f_{2}(x)\right)=\left[\begin{array}{c}0 \\ 1+3 z_{1}\end{array}\right]=\left(1+3 z_{1}\right) \frac{\partial}{\partial z_{2}}$ and $D_{2}(x)=$ $\operatorname{span}\left\{f_{2}(x)\right\}=\operatorname{span}\left\{e^{-x_{3}} f_{2}(x)\right\}=D_{1}(x)$. Thus, $\tilde{D}_{2}(z) \triangleq S_{*}\left(D_{2}(x)\right)=\tilde{D}_{1}(z)=$ span $\left\{\left[\begin{array}{c}0 \\ 1+3 z_{1}\end{array}\right]\right\}$ is also a distribution on a neighborhood U of the origin $\left[\begin{array}{l}0 \\ 0\end{array}\right] \in \mathbb{R}^{2}$. Both of $S_{*}\left(f_{3}(x)\right)$ and $S_{*}\left(f_{3}(\bar{x})\right)$ are the set of tangent vectors on $z=S(x)=S(\bar{x})$. However, since $S_{*}\left(D_{3}(x)\right) \neq S_{*}\left(D_{3}(\bar{x})\right)$ unless $a=x_{2}$, it is clear that $S_{*}\left(D_{3}(x)\right)$ is not a distribution on \mathbb{R}^{2}. Since $S_{*}\left(D_{4}(x)\right)=S_{*}\left(D_{4}(\bar{x})\right)$, it is clear that $S_{*}\left(D_{4}(x)\right)$ is a distribution on \mathbb{R}^{2}.

Suppose that $D(x)=\operatorname{span}\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a k-dimensional smooth distribution on \mathbb{R}^{n}. If $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a state transformation (or diffeomophism), then $S_{*}\left(f_{i}(x)\right), 1 \leq i \leq k$ are well-defined vector fields and

$$
\begin{aligned}
\tilde{D}(z) & \triangleq S_{*}(D(x))=\operatorname{span}\left\{S_{*}\left(f_{1}(x)\right), \ldots, S_{*}\left(f_{k}(x)\right)\right\} \\
& \triangleq \operatorname{span}\left\{\tilde{f}_{1}(z), \ldots, \tilde{f}_{k}(z)\right\}
\end{aligned}
$$

is a smooth distribution.
Definition 2.19 (well-defined smooth distribution) Suppose that $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a smooth surjective function and $D(x)$ is a smooth distribution on $\mathbb{R}^{n} . S_{*}(D(x))$ is said to be a well-defined smooth distribution on \mathbb{R}^{m}, if $S_{*}(D(\bar{x}))=S_{*}(D(x))$ whenever $S(\bar{x})=S(x)$.

A geometric condition for the differential map of the distribution to be a welldefined distribution is given in the following Theorem.

Theorem 2.10 (geometric condition for well-defined distribution) Suppose that $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a smooth surjective function. Also, suppose that $D(x)=$ span $\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a k-dimensional smooth distribution on \mathbb{R}^{n}. Then
$S_{*}(D(x))$ is a well-defined distribution on a neighborhood of $z(=S(x))$ in \mathbb{R}^{m}, if and only if

$$
\begin{equation*}
\left[f_{i}(x), \operatorname{ker} S_{*}\right] \subset D(x)+\operatorname{ker} S_{*}, 1 \leq i \leq k \tag{2.76}
\end{equation*}
$$

Proof Necessity. Let $z=S(x)$. Suppose that $S_{*}(D(x))$ is a well-defined \bar{k} dimensional distribution on a neighborhood of $z(=S(x))$ in \mathbb{R}^{m}. Without loss of generality, assume that for $\bar{k}+1 \leq i \leq k$

$$
\begin{equation*}
f_{i}(x) \in \operatorname{ker} S_{*} \text { or } S_{*}\left(f_{i}(x)\right)=0 \tag{2.77}
\end{equation*}
$$

Let $z=S(x)$. Then we have that

$$
\begin{aligned}
\tilde{D}(z) & =S_{*}(D(x))=S_{*}\left(\operatorname{span}\left\{f_{1}(x), \ldots, f_{\bar{k}}(x)\right\}\right) \\
& =\operatorname{span}\left\{\bar{f}_{1}(z), \ldots, \bar{f}_{\bar{k}}(z)\right\}
\end{aligned}
$$

and for $1 \leq j \leq \bar{k}$

$$
\bar{f}_{j}(z)=S_{*}\left(\sum_{i=1}^{\bar{k}} a_{j i}(x) f_{i}(x)\right)
$$

for some smooth functions $a_{j i}(x)$. Let $\tau(x) \in \operatorname{ker} S_{*}$. Thus, it is clear, by Theorem 2.6 and (2.42), that for $1 \leq j \leq \bar{k}$

$$
\left[\sum_{i=1}^{k} a_{j i}(x) f_{i}(x), \tau(x)\right] \in \operatorname{ker} S_{*}
$$

or

$$
\sum_{i=1}^{k} a_{j i}(x)\left[f_{i}(x), \tau(x)\right]-\sum_{i=1}^{k} L_{\tau} a_{j i}(x) f_{i}(x) \in \operatorname{ker} S_{*}
$$

which implies that for $1 \leq j \leq \bar{k}$

$$
\begin{equation*}
\sum_{i=1}^{k} a_{j i}(x)\left[f_{i}(x), \tau(x)\right] \in D(x)+\operatorname{ker} S_{*} \tag{2.78}
\end{equation*}
$$

Since $\operatorname{rank}\left(\left[\begin{array}{ccc}a_{11} \cdots & a_{1 \bar{k}} \\ \vdots & & \vdots \\ a_{\bar{k} 1} \cdots & \cdots & a_{\bar{k} \bar{k}}\end{array}\right]\right)=\bar{k}$, it is clear, by (2.78), that (2.76) is satisfied for $1 \leq i \leq \bar{k}$. Since ker S_{*} is involutive, (2.76) is, by (2.77), satisfied for $\bar{k}+1 \leq i \leq k$.

Sufficiency. Suppose that (2.76) is satisfied. Let $S(\bar{x})=S(x)$. Let $\gamma_{t}(x)$ be a smooth parameterized curve such that $\gamma_{0}(x)=x, \gamma_{1}(x)=\bar{x}$, and

$$
\begin{equation*}
S\left(\gamma_{t}(x)\right)=S(x), \quad 0 \leq t \leq 1 . \tag{2.79}
\end{equation*}
$$

(For example, in Example 2.4.7, $\gamma_{t}(x)=\left[\begin{array}{c}x_{1} \\ x_{2}+t\left(\bar{x}_{2}-x_{2}\right) \\ x_{3}-\frac{t}{2}\left(1+x_{1}\right)\left(\bar{x}_{2}-x_{2}\right)\end{array}\right]$.) Note that

$$
S_{*}\left(D\left(\gamma_{t}(x)\right)\right)=\operatorname{span}\left\{\left.\left\{\frac{\partial S(x)}{\partial x} f_{1}(x)\right\}\right|_{x=\gamma_{t}(x)}, \ldots,\left.\left\{\frac{\partial S(x)}{\partial x} f_{k}(x)\right\}\right|_{x=\gamma_{t}(x)}\right\}
$$

If we can show that for $0 \leq t \leq 1$

$$
\begin{aligned}
S_{*}\left(D\left(\gamma_{t}(x)\right)\right) & =S_{*}(D(x)) \\
& =\operatorname{span}\left\{\frac{\partial S(x)}{\partial x} f_{1}(x), \ldots, \frac{\partial S(x)}{\partial x} f_{k}(x)\right\}
\end{aligned}
$$

or for $1 \leq i \leq k$

$$
\begin{equation*}
\left.\frac{d}{d t}\left(\left.\left\{\frac{\partial S(x)}{\partial x} f_{i}(x)\right\}\right|_{x=\gamma_{t}(x)}\right)\right|_{t=0} \in S_{*}(D(x)) \tag{2.80}
\end{equation*}
$$

then $S_{*}(D(x))$ is a well-defined distribution on a neighborhood of $z(=S(x))$ in \mathbb{R}^{m}. Note, by (2.79), that

$$
\left.\frac{d S\left(\gamma_{t}(x)\right)}{d t}\right|_{t=0}=\left.\frac{\partial S(x)}{\partial x} \frac{d \gamma_{t}(x)}{d t}\right|_{t=0}=0
$$

or

$$
\begin{equation*}
\left.b(x) \triangleq \frac{d \gamma_{t}(x)}{d t}\right|_{t=0} \in \operatorname{ker} S_{*} \tag{2.81}
\end{equation*}
$$

Thus, it is easy to see, by (2.76) and (2.81), that there exists $\tilde{f}_{i}(x) \in D(x)$ such that for $1 \leq i \leq k$

$$
\begin{aligned}
\frac{\partial S(x)}{\partial x}\left(\left[f_{i}(x), b(x)\right]\right) & =\frac{\partial S(x)}{\partial x} \frac{\partial b(x)}{\partial x} f_{i}(x)-\frac{\partial S(x)}{\partial x} \frac{\partial f_{i}(x)}{\partial x} b(x) \\
& =\frac{\partial S(x)}{\partial x} \tilde{f}_{i}(x)
\end{aligned}
$$

which implies, together with (2.4) and (2.81), that for $1 \leq i \leq k$,

$$
\begin{aligned}
& \left.\frac{d}{d t}\left(\left.\left\{\frac{\partial S(x)}{\partial x} f_{i}(x)\right\}\right|_{x=\gamma_{t}(x)}\right)\right|_{t=0}=\left.\frac{\partial}{\partial x}\left\{\frac{\partial S(x)}{\partial x} f_{i}(x)\right\} \frac{d \gamma_{t}(x)}{d t}\right|_{t=0} \\
& =\left[\begin{array}{c}
f_{i}(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}(x)}{\partial x}\right)^{\top} b(x) \\
\vdots \\
f_{i}(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{m}(x)}{\partial x}\right)^{\top} b(x)
\end{array}\right]+\frac{\partial S(x)}{\partial x} \frac{\partial f_{i}(x)}{\partial x} b(x) \\
& =\left[\begin{array}{c}
b(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{1}(x)}{\partial x}\right)^{\top} f_{i}(x) \\
\vdots \\
b(x)^{\top} \frac{\partial}{\partial x}\left(\frac{\partial S_{m}(x)}{\partial x}\right)^{\top} f_{i}(x)
\end{array}\right]+\frac{\partial S(x)}{\partial x} \frac{\partial b(x)}{\partial x} f_{i}(x)-\frac{\partial S(x)}{\partial x} \tilde{f}_{i}(x) \\
& =\frac{\partial}{\partial x}\left\{\frac{\partial S(x)}{\partial x} b(x)\right\} f_{i}(x)-\frac{\partial S(x)}{\partial x} \tilde{f}_{i}(x) \\
& =-\frac{\partial S(x)}{\partial x} \tilde{f}_{i}(x) \in S_{*}(D(x)) .
\end{aligned}
$$

In other words, (2.80) is satisfied. Hence, $S_{*}(D(x))$ is a well-defined distribution on a neighborhood of $z(=S(x))$ in \mathbb{R}^{m}.

Example 2.6.11 Suppose that $D(x)$ is involutive distribution on \mathbb{R}^{n} and $S_{*}(D(x))$ is a well-defined smooth distribution on \mathbb{R}^{m}. Show that $S_{*}(D(x))$ is also an involutive distribution.

Solution Omitted. (Problem 2-24.)
Example 2.6.12 Suppose that $x \in \mathbb{R}^{3}$ and $z=S(x)=\left[\begin{array}{c}x_{1} \\ \left(1+x_{1}\right) x_{2}+2 x_{3}\end{array}\right]$. Consider the following smooth distributions:

$$
\begin{aligned}
& D_{1}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{1}(x)\right\} \\
& D_{2}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
e^{x_{3}} \\
x_{1} e^{x_{3}}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{2}(x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& D_{3}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
x_{2}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{3}(x)\right\} \\
& D_{4}(x)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1+x_{1}
\end{array}\right]\right\}=\operatorname{span}\left\{f_{1}(x), f_{4}(x)\right\} \\
& D_{5}(x)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}=\operatorname{span}\left\{f_{5}(x), f_{6}(x)\right\} .
\end{aligned}
$$

Use Theorem 2.10 to find whether $S_{*}(D(x))$ is a well-defined smooth distribution on a neighborhood of the origin in \mathbb{R}^{2} or not. If it is a well-defined smooth distribution, then express it in terms of z-coordinates.

Solution Since $\frac{\partial S(x)}{\partial x}=\left[\begin{array}{ccc}1 & 0 & 0 \\ x_{2} & 1+x_{1} & 2\end{array}\right]$, it is clear that

$$
\operatorname{ker} S_{*}=\operatorname{span}\left\{-2 \frac{\partial}{\partial x_{2}}+\left(1+x_{1}\right) \frac{\partial}{\partial x_{3}}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
-2 \\
1+x_{1}
\end{array}\right]\right\} \triangleq \operatorname{span}\{\tau(x)\}
$$

Thus, it is easy to see that

$$
\begin{aligned}
& {\left[f_{1}(x), \tau(x)\right]=0 \in \operatorname{ker} S_{*} \subset D_{1}(x)+\operatorname{ker} S_{*}} \\
& {\left[f_{2}(x), \tau(x)\right]=-\left(1+x_{1}\right)\left[\begin{array}{c}
0 \\
e^{x_{3}} \\
x_{1} e^{x_{3}}
\end{array}\right] \in D_{2}(x)+\operatorname{ker} S_{*}} \\
& {\left[f_{3}(x), \tau(x)\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right] \notin D_{3}(x)+\operatorname{ker} S_{*}} \\
& {\left[f_{4}(x), \tau(x)\right]=0 \in \operatorname{ker} S_{*} \subset D_{4}(x)+\operatorname{ker} S_{*}} \\
& {\left[f_{5}(x), \tau(x)\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \in D_{5}(x)+\operatorname{ker} S_{*}} \\
& {\left[f_{6}(x), \tau(x)\right]=0 \in \operatorname{ker} S_{*} \subset D_{5}(x)+\operatorname{ker} S_{*}} \\
& {\left[f_{5}(x)-\frac{x_{2}}{1+x_{1}} f_{6}(x), \tau(x)\right]=\frac{1}{1+x_{1}} \tau(x) \in \operatorname{ker} S_{*}}
\end{aligned}
$$

which imply that $S_{*}\left(D_{3}(x)\right)$ is not a well-defined smooth distribution on a neighborhood of the origin in \mathbb{R}^{2} and

$$
\begin{aligned}
& S_{*}\left(D_{1}(x)\right)=S_{*}\left(D_{2}(x)\right)=S_{*}\left(D_{4}(x)\right)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
1+3 z_{1}
\end{array}\right]\right\} \\
& S_{*}\left(D_{5}(x)\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1+3 z_{1}
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

If $\Phi(x)$ is a distribution and $f(x)-g(x) \in \Phi(x)$, we denote

$$
f(x) \equiv g(x) \quad \bmod \Phi(x)
$$

For example, suppose that

$$
f(x)=\left[\begin{array}{c}
0 \\
3 \\
1+x_{1}
\end{array}\right], g(x)=\left[\begin{array}{c}
0 \\
1 \\
x_{3}
\end{array}\right], \text { and } \Phi(x)=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] .
$$

Then we have that

$$
f(x) \equiv g(x) \quad \bmod \quad \Phi(x)
$$

2.7 State Equivalence and Feedback Equivalence

The concept of an equivalence relation is important in mathematics and will be used in the form of state equivalence or feedback equivalence. In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. So the equivalence relationship divides the set into separate equivalence classes.

Definition 2.20 (equivalence relation) Binary relation \sim on a set A is said to be an equivalence relation, if for all elements a, b, c of A
(a) $a \sim a$ (reflexivity)
(b) $a \sim b \Rightarrow b \sim a$ (symmetry)
(c) $a \sim b$ and $b \sim c \Rightarrow a \sim c$ (transitivity).

Example 2.7.1 Suppose that $a \sim b$ if $a-b$ is even for $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. Show that binary relation \sim on a set \mathbb{Z} is an equivalence relation.

Solution Omitted. (Problem 2-25.)
Definition 2.21 (equivalence class) Suppose that a binary relation \sim on a set A is an equivalence relation. The equivalence class of an element x in A is defined to be the set $[x] \triangleq\{a \in A \mid a \sim x\}$.

Example 2.7.2 For the equivalence relation defined in Example 2.7.1, show that $[1]=[-3]$ and $[0]=[6]$.

Solution Omitted. (Problem 2-27.)
Consider the following systems:

$$
\begin{align*}
& \Sigma_{1}: \dot{x}=f(x)+g(x) u=f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x) \tag{2.82}\\
& \Sigma_{2}: \dot{z}=\tilde{f}(z)+\tilde{g}(z) u=\tilde{f}(z)+\sum_{i=1}^{m} u_{i} \tilde{g}_{i}(z) \tag{2.83}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $f(0)=\tilde{f}(0)=0$.
Definition 2.22 (state equivalence of the systems) System (2.82) is said to be state equivalent to system (2.83), if there exists a state transformation $z=S(x)$ such that system (2.82) satisfies, in z-coordinates, the state equation of system (2.83). In other words, for all $u\left(\in \mathbb{R}^{m}\right)$

$$
S_{*}(f(x)+g(x) u)=\tilde{f}(z)+\tilde{g}(z) u
$$

Example 2.7.3 Show that the relation of Definition 2.22 is equivalence relation.
Solution We need to prove that the conditions of Definition 2.20 are satisfied.
(a) Reflexivity is obviously satisfied with $S(x)=x$.
(b) Suppose that $\Sigma_{1} \sim \Sigma_{2}$. Then there exists a state transformation $z=S(x)$ such that $S_{*}(f(x)+g(x) u)=\tilde{f}(z)+\tilde{g}(z) u$. Since $S_{*}^{-1}(\tilde{f}(z)+\tilde{g}(z) u)=f(x)+$ $g(x) u$, it is clear that $\Sigma_{2} \sim \Sigma_{1}$.
(c) Suppose that $\Sigma_{1} \sim \Sigma_{2}$ and $\Sigma_{2} \sim \Sigma_{3}$, where

$$
\Sigma_{3}: \dot{\xi}=\bar{f}(\xi)+\bar{g}(\xi) u
$$

Then there exist state transformations $z=S^{1}(x)$ and $\xi=S^{2}(z)$ such that $S_{*}^{1}(f(x)+g(x) u)=\tilde{f}(z)+\tilde{g}(z) u \quad$ and $\quad S_{*}^{2}(\tilde{f}(z)+\tilde{g}(z) u)=\bar{f}(\xi)+\bar{g}(\xi) u$. Since $\quad\left(S^{2} \circ S^{1}\right)_{*}(f(x)+g(x) u)=S_{*}^{2} \circ S_{*}^{1}(f(x)+g(x) u)=\bar{f}(\xi)+\bar{g}(\xi) u$ and $\xi=S^{2} \circ S^{1}(x)$ is a state transformation, it is clear that $\Sigma_{1} \sim \Sigma_{3}$.

By Example 2.7.3, the binary relationship of Definition 2.22 can be called the state equivalence.

Example 2.7.4 Show that if system Σ_{1} and system Σ_{2} are state equivalent, then the eigenvalues of $\left.\frac{\partial f(x)}{\partial x}\right|_{x=0}$ are the same as the eigenvalues of $\left.\frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0}$.

Solution Since

$$
\tilde{f}(z)=S_{*}(f(x))(z)=\left.\frac{\partial S(x)}{\partial x} f(x)\right|_{x=S^{-1}(z)}
$$

we have, by chain rule, that

$$
\frac{\partial \tilde{f}(z)}{\partial z}=\left.\frac{\partial}{\partial x}\left(\frac{\partial S(x)}{\partial x} f(x)\right)\right|_{x=S^{-1}(z)} \frac{\partial S^{-1}(z)}{\partial z}
$$

and

$$
\left.\frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0}=\left.\left.\frac{\partial}{\partial x}\left(\frac{\partial S(x)}{\partial x} f(x)\right)\right|_{x=0} \frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0}
$$

If we let the i th row of $\frac{\partial S(x)}{\partial x}$ by $A_{i}(x)$, then it is easy, by (2.4), to see that

$$
\begin{aligned}
\left.\frac{\partial}{\partial x}\left(\frac{\partial S(x)}{\partial x} f(x)\right)\right|_{x=0} & =\left.\left[\begin{array}{c}
f(0)^{\top} \frac{\partial A_{1}(x)^{\top}}{\partial x} \\
\vdots \\
f(0)^{\top} \frac{\partial A_{n}(x)^{\top}}{\partial x}
\end{array}\right]\right|_{x=0}+\left.\left.\frac{\partial S(x)}{\partial x}\right|_{x=0} \frac{\partial f(x)}{\partial x}\right|_{x=0} \\
& =\left.\left.\frac{\partial S(x)}{\partial x}\right|_{x=0} \frac{\partial f(x)}{\partial x}\right|_{x=0}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left.\frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0} & =\left.\left.\left.\frac{\partial S(x)}{\partial x}\right|_{x=0} \frac{\partial f(x)}{\partial x}\right|_{x=0} \frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0} \\
& =\left.P \frac{\partial f(x)}{\partial x}\right|_{x=0} P^{-1}
\end{aligned}
$$

where $P=\left.\frac{\partial S(x)}{\partial x}\right|_{x=0}$. Since $\left.\frac{\partial f(x)}{\partial x}\right|_{x=0}$ and $\left.\frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0}$ are similar, it is clear that the eigenvalues of them are the same.

Example 2.7.5 Use Example 2.7.4 to show that system (1.2) is not state equivalent to the following system:

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u
$$

Solution Omitted. (See Problem 2-28.)
Example 2.7.6 Show that the following two systems are state equivalent with $z=$ $S(x)=\left[\begin{array}{c}x_{2}+\frac{1}{2} x_{1}^{2} \\ -x_{1}\end{array}\right]:$

$$
\begin{gather*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{1}^{2} \\
-x_{1} x_{2}-\frac{1}{2} x_{1}^{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v} \tag{2.84}\\
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] v} \tag{2.85}
\end{gather*}
$$

Solution It is clear that $x=S^{-1}(z)=\left[\begin{array}{c}-z_{2} \\ z_{1}-\frac{1}{2} z_{2}^{2}\end{array}\right]$ and

$$
\begin{gathered}
S_{*}\left(\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{1}^{2} \\
-x_{1} x_{2}-\frac{1}{2} x_{1}^{3}+v
\end{array}\right]\right)=\left.\left[\begin{array}{ll}
x_{1} & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{1}^{2} \\
-x_{1} x_{2}-\frac{1}{2} x_{1}^{3}+v
\end{array}\right]\right|_{x=S^{-1}(z)} \\
=\left.\left[\begin{array}{c}
v \\
-x_{2}-\frac{1}{2} x_{1}^{2}
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
v \\
-z_{1}
\end{array}\right] .
\end{gathered}
$$

Therefore, system (2.84) is state equivalent to system (2.85) via $z=S(x)=$ $\left[\begin{array}{c}x_{2}+\frac{1}{2} x_{1}^{2} \\ -x_{1}\end{array}\right]$.

Consider the following systems:

$$
\begin{equation*}
\Sigma_{1}: \dot{x}=f(x)+g(x) u=f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x) \tag{2.86}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{2}: \dot{z}=\tilde{f}(z)+\tilde{g}(z) v=\tilde{f}(z)+\sum_{i=1}^{m} v_{i} \tilde{g}_{i}(z) \tag{2.87}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}$, and $f(0)=\tilde{f}(0)=0$.
Definition 2.23 (feedback equivalence of the systems) System (2.86) is said to be feedback equivalent to system (2.87), if there exist a nonsingular feedback $u=$ $\alpha(x)+\beta(x) v$ and a state transformation $z=S(x)$ such that the closed-loop system of (2.86) satisfies, in z-coordinates, the state equation of system (2.87) or

$$
S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v)=\tilde{f}(z)+\tilde{g}(z) v .
$$

In other words, system (2.86) is said to be feedback equivalent to system (2.87) if there exists a nonsingular feedback $u=\alpha(x)+\beta(x) v$ such that the closed-loop system of (2.86) is state equivalent to system (2.87).

Example 2.7.7 Show that the relation of Definition 2.23 is equivalence relation.
Solution We need to prove that the conditions of Definition 2.20 are satisfied.
(a) Reflexivity is obviously satisfied with state transformation $z=S(x)=x$ and feedback $u=v$.
(b) Suppose that $\Sigma_{1} \sim \Sigma_{2}$. Then there exist a state transformation $z=S(x)$ and feedback $u=\alpha(x)+\beta(x) v$ such that $S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v)=$ $\tilde{f}(z)+\tilde{g}(z) v$. Since $\tilde{g}(z)=S_{*}(g(x) \beta(x))=S_{*}(g(x))\left(\beta \circ S^{-1}(z)\right)$, we have that $\tilde{g}(z)\left(\beta \circ S^{-1}(z)\right)^{-1}=S_{*}(g(x))$ and $S_{*}^{-1}\left(\tilde{g}(z)\left(\beta \circ S^{-1}(z)\right)^{-1}\right)=g(x)$. Since $\tilde{f}(z)=S_{*}(f(x)+g(x) \alpha(x))=S_{*}(f(x))+S_{*}(g(x))\left(\alpha \circ S^{-1}(z)\right)$, it is easy to see that

$$
\begin{aligned}
S_{*}(f(x)) & =\tilde{f}(z)-S_{*}(g(x))\left(\alpha \circ S^{-1}(z)\right) \\
& =\tilde{f}(z)-\tilde{g}(z)\left(\beta \circ S^{-1}(z)\right)^{-1}\left(\alpha \circ S^{-1}(z)\right)
\end{aligned}
$$

Therefore, it is clear that

$$
\begin{aligned}
S_{*}(f(x)+g(x) u)= & \tilde{f}(z)-\tilde{g}(z)\left(\beta \circ S^{-1}(z)\right)^{-1}\left(\alpha \circ S^{-1}(z)\right) \\
& +\tilde{g}(z)\left(\beta \circ S^{-1}(z)\right)^{-1} u
\end{aligned}
$$

or

$$
S_{*}^{-1}\left(\tilde{f}+\tilde{g}\left(\beta \circ S^{-1}(z)\right)^{-1}\left(-\alpha \circ S^{-1}(z)+u\right)\right)=f(x)+g(x) u
$$

Hence, $\Sigma_{2} \sim \Sigma_{1}$ with state transformation $x=S^{-1}(z)$ and feedback $v=$ $\left(\beta \circ S^{-1}(z)\right)^{-1}\left(-\alpha \circ S^{-1}(z)+u\right)$.
(c) Suppose that $\Sigma_{1} \sim \Sigma_{2}$ with state transformations $z=S^{1}(x)$ and feedback $u=$ $\alpha_{1}(x)+\beta_{1}(x) v$ and $\Sigma_{2} \sim \Sigma_{3}$ with state transformations $\xi=S^{2}(z)$ and feedback $v=\alpha_{2}(z)+\beta_{2}(z) w$, where

$$
\Sigma_{3}: \dot{\xi}=\bar{f}(\xi)+\bar{g}(\xi) w
$$

In other words,

$$
S_{*}^{1}\left(f(x)+g(x) \alpha_{1}(x)+g(x) \beta_{1}(x) v\right)=\tilde{f}(z)+\tilde{g}(z) u
$$

and

$$
S_{*}^{2}\left(\tilde{f}(z)+\tilde{g}(z) \alpha_{2}(z)+\tilde{g}(z) \beta_{2}(z) w\right)=\bar{f}(\xi)+\bar{g}(\xi) w
$$

Thus, it is easy to see that

$$
\begin{aligned}
& \left(S^{2} \circ S^{1}\right)_{*}\left(f(x)+g(x)\left\{\alpha_{1}(x)+\beta_{1}(x)\left(\alpha_{2} \circ S_{1}(x)+\beta_{2} \circ S_{1}(x) w\right)\right\}\right) \\
& =S_{*}^{2}\left(S_{*}^{1}\left(\left\{f(x)+g(x) \alpha_{1}(x)\right\}+g(x) \beta_{1}(x)\left\{\alpha_{2} \circ S_{1}(x)+\beta_{2} \circ S_{1}(x) w\right\}\right)\right) \\
& =S_{*}^{2}\left(\tilde{f}(z)+\tilde{g}(z)\left\{\alpha_{2}(z)+\beta_{2}(z) w\right\}\right) \\
& =\bar{f}(\xi)+\bar{g}(\xi) w
\end{aligned}
$$

Since $\xi=S^{2} \circ S^{1}(x)$ is a state transformation, it is clear that $\Sigma_{1} \sim \Sigma_{3}$ with state transformations $\xi=S^{2} \circ S^{1}(x)$ and feedback

$$
u=\alpha_{1}(x)+\beta_{1}(x)\left\{\alpha_{2} \circ S_{1}(x)+\beta_{2} \circ S_{1}(x) w\right\}
$$

By Example 2.7.7, the binary relationship of Definition 2.23 can be called the feedback equivalence.

Definition 2.24 (feedback equivalent to a linear system) System (2.86) is said to be feedback equivalent to a linear system, if there exist a nonsingular feedback $u=\alpha(x)+\beta(x) v$ and a state transformation $z=S(x)$ such that for all $v\left(\in \mathbb{R}^{m}\right)$,

$$
S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v)=A z+B v
$$

for some constant $n \times n$ matrix A and $n \times m$ matrix B.
The feedback may change the eigenvalues of $\left.\frac{\partial f(x)}{\partial x}\right|_{x=0}$. Thus, the eigenvalues of $\left.\frac{\partial f(x)}{\partial x}\right|_{x=0}$ and $\left.\frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0}$ may not be the same when system Σ_{1} and system Σ_{2} are feedback equivalent.

Example 2.7.8 Suppose that system Σ_{1} and system Σ_{2} are feedback equivalent. Show that for $k \geq 1$,

$$
\begin{aligned}
& \operatorname{rank}\left(\left[\left.\tilde{g}(0) \frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0} \tilde{g}(0) \cdots\left(\left.\frac{\partial \tilde{f}(z)}{\partial z}\right|_{z=0}\right)^{k-1} \tilde{g}(0)\right]\right) \\
& \quad=\operatorname{rank}\left(\left[\left.g(0) \frac{\partial f(x)}{\partial x}\right|_{x=0} g(0) \cdots\left(\left.\frac{\partial f(x)}{\partial x}\right|_{x=0}\right)^{k-1} g(0)\right]\right) .
\end{aligned}
$$

Solution Omitted. (See Problem 2-29.)
Example 2.7.9 Show that a single input controllable linear system is feedback equivalent to the following Brunovsky canonical form:

$$
\dot{z}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{2.88}\\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] v=A_{0} z+b_{0} v
$$

Solution Consider the following single input controllable linear system:

$$
\begin{equation*}
\dot{\zeta}=A \zeta+b w \tag{2.89}
\end{equation*}
$$

where $\operatorname{rank}\left(\left[b A b \cdots A^{n-1} b\right]\right)=n$ and

$$
A^{n} b=\sum_{i=1}^{n} a_{i} A^{i-1} b
$$

Let $z=P^{-1} \zeta$, where

$$
P=\left[\begin{array}{lll}
b & A b & \cdots
\end{array} A^{n-1} b\right]\left[\begin{array}{ccccc}
-a_{2} & -a_{3} & \cdots & -a_{n} & 1 \\
-a_{3} & -a_{4} & \cdots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
-a_{n-1} & -a_{n} & \cdots & 0 & 0 \\
-a_{n} & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

Then it is easy to see that

$$
\begin{align*}
\dot{z} & =P^{-1} A P z+P^{-1} b w \\
& =\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{n}
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] w=\bar{A} z+b_{0} w . \tag{2.90}
\end{align*}
$$

Therefore, system (2.89) is feedback equivalent to system (2.90) with state transformation $z=P^{-1} \zeta$ and nonsingular feedback $w=w$. Also, system (2.90) is feedback equivalent to system (2.88) with state transformation $z=z$ and nonsingular feedback $w=-\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right] z+v$. Hence, system (2.89) is feedback equivalent to system (2.88) with state transformation $z=P^{-1} \zeta$ and nonsingular feedback $w=-\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right] P^{-1} \zeta+v$.

By Example 2.7.9, it is clear that if a single input system is feedback equivalent to a controllable linear system, then it is feedback equivalent to the Brunovsky canonical form. It is also true for the multi-input system.

Example 2.7.10 Show that a multi-input controllable linear system is feedback equivalent to the following Brunovsky canonical form:

$$
\begin{aligned}
\dot{z} & =\left[\begin{array}{cccc}
A_{11} & O & \cdots & O \\
O & A_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & A_{m m}
\end{array}\right] z+\left[\begin{array}{cccc}
B_{11} & O & \cdots & O \\
O & B_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & B_{m m}
\end{array}\right] v \\
& =A z+B v
\end{aligned}
$$

where $\sum_{i=1}^{m} \kappa_{i}=n$ and

$$
A_{i i}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]\left(\kappa_{i} \times \kappa_{i}\right) ; \quad B_{i i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]\left(\kappa_{i} \times 1\right)
$$

Solution Omitted. (Problem 2-31.)

2.8 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, ChZero, ChCommute, ChExact, ChInverseF,
Codi, Lfh, sstarmap
The following MATLAB program is for Examples 2.4.3, 2.4.7, 2.4.10, and 2.4.11.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real
EX=2403
% EX=2407
% EX=2410
% EX=2411
if EX==2403
    f=[x2; 1]; g=[1; x1]; h=x1*x2
    n=size(f,1); x=sym('x',[n,1]);
    out1=adfg(f,g,x)
    out2=Lfh(f,h,x)
end
```

```
if EX==2407
    S=[x1; (1+x1)*x2+2*x3]
    f=[1; 0; x2]; g=[0; 1; x1]
    p0=[1; 1; 0]; p1=[1; 0; 1]
    n=size(f,1); x=sym('x',[n,1]);
    dS=jacobian(S,x)
    Sf=dS*f
    Sg=dS*g
    ans1=subs(Sf,x,p0)
    ans2=subs(Sf,x,p1)
    ans3=subs(Sg,x,p0)
    ans4=subs(Sg,x,p1)
end
if EX==2410
    S=[z1+z2^2; z2]
    iS=[x1-x2^2; x2]
    fz=[0; z1]; gz=[1; 1]
    n=size(fz,1); x=sym('x',[n,1]); z=Sym('z',[n,1]);
    dS=jacobian(S,z)
    Tfz=dS*fz
    fx=subs(Tfz,z,iS)
    Tgz=dS*gz
    gx=subs(Tgz,z,iS)
end
if EX==2411
    S=[x1+x2^2; x2]; iS=[z1-z2^2; z2]
    fx=[x2; 1]; gx=[1; x1]; h=x1*x2;
    n=size(fx,1); x=sym('x',[n,1]); z=Sym('z',[n,1]);
    hz=subs(h,x,iS)
    dS=jacobian(S,x);
    Tfx=dS*fx;
    fz=subs(Tfx,x,iS)
    Tgx=dS*gx;
    gz=subs(Tgx,x,iS)
    adfzgz=adfg(fz,gz,z)
    adfxgx=adfg(fx,gx,x)
    Sadfxgx=subs(dS*adfg(fx,gx,x),x,iS)
    Lfzhz=Lfh(fz,hz,z)
    LfxhxiS=subs(Lfh(fx,h,x),x,iS)
end
return
```

The following MATLAB program is for Examples 2.6.1, 2.6.5, 2.6.7, and 2.6.8.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real
EX=2601
% EX=2605
% EX=2607
% EX=2608
if EX==2601
    f=[x2; 1]; tau=[1; 0];
    n=size(f,1); x=sym('x',[n,1]);
    idS=[f tau]
    if ChCommute(idS,x)==0
        return
    end
    dS=simplify(inv(idS))
    S=Codi(dS,x)
end
if or(EX==2605,EX==2607)
    g1=[1; 0; 0]; g2=[0; 1; x1];
    f1=[1; x1*x2; x1*x3]; f2=[0; 1; 1];
    n=length(g1); x=sym('x',[n,1]);
    if EX==265
        D=[llll
    else
        D=[lll f2]
    end
    T12=adfg(D(:,1),D(:, 2),x)
    if rank([T12 D]) > rank(D)
        display('NOT Involutive.')
        return
    end
    display('Involutive.')
end
if EX==2608
    f1=[1; x1*x2; x1*x3]; f2=[0; 1; 1];
    n=length(f1); x=sym('x',[n,1]); z=sym('z',[n,1]);
    D=[f1 f2]
    e3=[0; 0; 1]
    bD=[[D e3]
    Tomega=e3'*inv(bD)
    if ChExact(Tomega,x)==0
        display('Find out a(x) without MATLAB.')
        ax=exp(-x1^2/2)
    else
        ax=1
    end
    omega=ax*Tomega
```

```
    if ChExact(omega,x)==0
        display('a(x) is not correct.')
        return
    end
    S3=Codi (omega,x)
    S=[x1; x2; S3]
    iS=[x1; x2; x3*exp(x1^2/2) +x2]
    if ChInverseF(S,iS,x)==0
        display('Inverse function iS is not correct.')
        return
    end
    Tf1z=sstarmap(S,iS,f1,x)
    f1z=subs(Tf1z,x,z)
    Tf2z=sstarmap(S,iS,f2,x)
    f2z=subs(Tf2z,x,z)
    Dz=[f1z f2z]
    Dz2=[[1; 0; 0] [0; 1; 0]]
    r1=rank(Dz)
    r2=rank(Dz2)
    r3=rank([Dz Dz2])
end
return
```

The following MATLAB program is for Problem 2-12, 16, 17, 19, and 21.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real
EX=2912
% EX=2916
% EX=2917
% EX=2919
% EX=2921
if EX==2912
    x=sym('x',[2,1]); z=Sym('z',[2,1]);
    S=[x1; x2+x1^2]; iS=[z1; z2-z1^2]
    f1=[1; 0]; f2=[x2; 1]
    Tf1x=jacobian(S,x) *f1
    f1z=subs(Tf1x,x,iS)
    Tf2x=jacobian(S,x) *f2
    f2z=subs(Tf2x,x,iS)
end
if EX==2916
    x=sym('x',[2,1]); z=Sym('z',[2,1]);
    f=[2*x1*x2-2*x2^3; x1-x2^2]
    g=[1+2*x2; 1]
```

```
    X2=adfg(f,g,x)
    ANSa=adfg(g,X2,x)
    idS=[g X2]
    dS=inv(idS)
    s=Codi (dS,x)
    Tfz=simplify(dS*f)
    Tgz=simplify(dS*g)
end
if EX==2917
    x=sym('x',[3,1]); z=Sym('z',[3,1]);
    f=[-2*x2*(x1+x2+x2^2); x1+x2+x2^2; -2*x2*(x1+x2+x2^2) ]
    g=[1 0; 0 0; 0 1]
    X2=adfg(f,g(:,1),x)
    idS=[g(:,1) X2 g(:,2)]
    r1=rank(idS)
    ANSa=ChCommute(idS,x)
    dS=inv(idS)
    S=Codi(dS,x)
    Tfz=simplify(dS*f)
    Tgz=simplify(dS*g)
end
if EX==2919
    syms a real
    x=sym('x',[3,1]); z=sym('z',[3,1]);
    Sab=[x2-x1^2; x1]; dSab=jacobian(Sab,x)
    kerSab=[0; 0; 1]
    fa=[1; 0; 0]
    Ta=adfg(fa,kerSab,x)
    if rank([Ta kerSab])>rank(kerSab)
        display('S_*(fa) is NOT a well-defined vector field.')
    end
    Tfax=dSab*fa
    iSab=[z2; z1+z2^2; a]
    faz=subs(Tfax,x,iSab)
    fb=[0; 0; 1]
    Tb=adfg(fb, kerSab,x)
    if rank([Tb kerSab])>rank(kerSab)
        display('S_*(fb) is NOT a well-defined vector field.')
    end
    Tfbx=dSab*fb
    fbz=subs(Tfbx,x,iSab)
    Sc=[x2-x1^2; x3*(1+x1)]; dSc=jacobian(Sc,x)
    kerSc=[1; 2*x1; -x3/(1+x1)]; fc=[0; 0; 1]
    Tc=adfg(fc,kerSc,x)
```

```
    if rank([Tc kerSc])>rank(kerSc)
    display('S_*(fc) is NOT a well-defined vector field.')
    end
    Sde=[x2-x1*(x2^2+x3); x2^2+x3]; dSde=jacobian(Sde,x)
    kerSde=[1; x2^2+x3; -2*x2*(x2^2+x3)];
    fd=[1; 0; 0]
    Td=adfg(fd,kerSde,x)
    if rank([Td kerSde])>rank(kerSde)
    display('S_*(fd) is NOT a well-defined vector field.')
    end
    Tfdx=dSde*fd
    iSde=[a; z1+a*z2; z2-(z1+a*z2)^2]
    fbz=subs(Tfdx,x,iSde)
    fe=[0; 1; 0]
    Te=adfg(fe,kerSde,x)
    if rank([Te kerSde])>rank(kerSde)
        display('S_*(fe) is NOT a well-defined vector field.')
    end
end
if EX==2921
    omegaA=[1 -2*x2]
    x=sym('x',[2,1]);
    Ta=jacobian(omegaA',x)
    ha=Codi(omegaA, x)
    omegaB=[x2 x1 x3 1]
    x=sym('x',[4,1]);
    Tb=jacobian(omegaB',x)
    hb=Codi(omegaB,x)
end
return
```


2.9 Problems

2-1. Solve Example 2.1.1.
2-2. Solve Example 2.1.2.
2-3. Solve Example 2.1.3.
2-4. By using Example 2.1.3, solve Example 2.1.1(c).
2-5. By using Example 2.1.3, solve Example 2.1.4.

2-6. Prove that (2.15) and (2.16) are satisfied.
2-7. Prove the following:
(a) $L_{f+g u} h(x)=L_{f} h(x)+L_{g} h(x) u$
(b) $L_{f+g u}^{2} h(x)=L_{f}^{2} h(x)+\left(L_{g} L_{f} h(x)+L_{f} L_{g} h(x)\right) u+L_{g}^{2} h(x) u^{2}$

2-8. Consider the following nonlinear control system:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t), \quad u \in \mathbb{R} \\
& y(t)=h(x(t))
\end{aligned}
$$

(a) Show that

$$
y^{(2)}(t) \triangleq \frac{d^{2} y(t)}{d t^{2}}=L_{f}^{2} h+\left(L_{g} L_{f} h+L_{f} L_{g} h\right) u+L_{g}^{2} h u^{2}+L_{g} h \dot{u}(t)
$$

(b) Find out $y^{(3)}(t)$.
(c) Define natural number ρ by $L_{g} L_{f}^{\ell} h(x)=0, \ell \leq \rho-2$ and $L_{g} L_{f}^{\rho-1} h(x) \neq$ 0 . Show that

$$
\begin{aligned}
& y^{(i)}(t)=L_{f}^{i} h(x), \quad 0 \leq i \leq \rho-1 \\
& y^{(\rho)}(t)=L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u .
\end{aligned}
$$

2-9. Solve Example 2.4.1.
2-10. Find $f(x), g(x), h_{1}(x)$, and $h_{2}(x)$ such that

$$
L_{f} L_{g}\left(h_{1}(x) h_{2}(x)\right) \neq h_{2}(x) L_{f} L_{g}\left(h_{1}(x)\right)+h_{1}(x) L_{f} L_{g}\left(h_{2}(x)\right) .
$$

In other words, $L_{f} L_{g}(\cdot)$ does not satisfy Leibniz rule in Example 2.4.4(b).
$2-11$. Use (2.4) and (2.12) to show that (2.18) is satisfied.
$2-12$. Define state transformation $z=S(x)$ by

$$
z=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1} \\
x_{2}+x_{1}^{2}
\end{array}\right] .
$$

Find out $S_{*}\left(\frac{\partial}{\partial x_{1}}\right)$ and $S_{*}\left(x_{2} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right)$.

2-13. Let

$$
\begin{aligned}
& \hat{f}(\xi)=\left[\begin{array}{ccc}
A_{1} \xi^{1} \\
\hat{\Phi}\left(\xi^{1},\right. & \left.\xi^{2}\right)
\end{array}\right], \quad \hat{g}(\xi)=\left[\begin{array}{c}
b_{1} \\
\hat{\Psi}\left(\xi^{1},\right. \\
\left.\xi^{2}\right)
\end{array}\right], \quad \xi=\left[\begin{array}{c}
\xi^{1} \\
\xi^{2}
\end{array}\right] \\
& A_{1}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right](\rho \times \rho), \quad b_{1}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right](\rho \times 1) \\
& \xi^{1}=\left[\begin{array}{c}
\xi_{1}^{1} \\
\vdots \\
\xi_{\rho}^{1}
\end{array}\right], \quad \xi^{2}=\left[\begin{array}{c}
\xi_{1}^{2} \\
\vdots \\
\xi_{n-\rho}^{2}
\end{array}\right] .
\end{aligned}
$$

Show that for $k \geq 0$

$$
\operatorname{ad}_{\hat{f}}^{k} \hat{g}(\xi)=\left[\begin{array}{c}
(-1)^{k} A_{1}^{k} b_{1} \\
*
\end{array}\right]
$$

or

$$
\operatorname{ad}_{\hat{f}}^{k} \hat{g}(\xi) \equiv\left[\begin{array}{c}
(-1)^{k} A_{1}^{k} b_{1} \\
O_{(n-\rho) \times 1}
\end{array}\right] \quad \bmod \operatorname{span}\left\{\left[\begin{array}{c}
O_{\rho \times 1} \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
O_{\rho \times 1} \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]\right\}
$$

2-14. Suppose that $\left\{g(x), \operatorname{ad}_{f} g(x), \ldots, \operatorname{ad}_{f}^{n-1} g(x)\right\}$ is a set of linearly independent vector fields on a neighborhood of $0 \in \mathbb{R}^{n}$. Let $z=S(x)$ be a state transformation such that

$$
S_{*}\left(\operatorname{ad}_{f}^{i-1} g(x)\right)=\frac{\partial}{\partial z_{i}}
$$

Show that if for $1 \leq i \leq n$ and $1 \leq j \leq n$

$$
\left[\operatorname{ad}_{f}^{i-1} g(x), \operatorname{ad}_{f}^{j-1} g(x)\right]=0
$$

then

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{f}^{n} g(x)\right)=\sum_{i=1}^{n} a_{i}\left(z_{n}\right) S_{*}\left(\operatorname{ad}_{f}^{i-1} g(x)\right) \tag{2.91}
\end{equation*}
$$

for some scalar functions $a_{i}\left(z_{n}\right), 1 \leq i \leq n$.

2-15. Solve Example 2.5.1.
2-16. Consider the following nonlinear control system:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] u=f(x)+g(x) u .
$$

(a) Show that $\left[g(x), \operatorname{ad}_{f} g(x)\right]=0$.
(b) Find out state coordinates change $z=S(x)$ such that $S_{*}(g(x))=\frac{\partial}{\partial z_{1}}$ and $S_{*}\left(\operatorname{ad}_{f} g(x)\right)=\frac{\partial}{\partial z_{2}}$.
(c) Find out the state equation that the new state z in (b) satisfies.

2-17. Consider the following nonlinear control system:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-2 x_{2}\left(x_{1}+x_{2}+x_{2}^{2}\right) \\
x_{1}+x_{2}+x_{2}^{2} \\
-2 x_{2}\left(x_{1}+x_{2}+x_{2}^{2}\right)
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
\end{aligned}
$$

(a) Let $X_{1}(x)=g_{1}(x), X_{2}(x)=\operatorname{ad}_{f} g_{1}(x)$, and $X_{3}(x)=g_{2}(x)$. Show that $\left\{X_{1}(x), X_{2}(x), X_{3}(x)\right\}$ satisfies (2.61) of Theorem 2.7.
(b) Find out state coordinates change $z=S(x)$ such that $S_{*}\left(X_{i}(x)\right)=\frac{\partial}{\partial z_{i}}, 1 \leq$ $i \leq 3$.
(c) Find out the state equation for the new state z in (b).

2-18. Suppose that $z=S(x)$ is a state coordinates change. By using that $\frac{\partial S(x)}{\partial x}$ is a nonsingular matrix, show that if $\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is a set of linearly independent vector fields, then $\left\{S_{*}\left(f_{1}(x)\right), \ldots, S_{*}\left(f_{k}(x)\right)\right\}$ is also a set of linearly independent vector fields.
2-19. Consider the following smooth functions $z=S(x): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. Use Theorem 2.6 to determine whether $S_{*}(f(x))$ is a well-defined vector field on a neighborhood of $0 \in \mathbb{R}^{2}$ or not. If it is a well-defined vector field, then find $S_{*}(f(x))$.
(a) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}^{2} \\ x_{1}\end{array}\right], f(x)=\frac{\partial}{\partial x_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
(b) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}^{2} \\ x_{1}\end{array}\right], f(x)=\frac{\partial}{\partial x_{3}}$
(c) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}^{2} \\ x_{3}+x_{1} x_{3}\end{array}\right], f(x)=\frac{\partial}{\partial x_{3}}$
(d) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}\left(x_{2}^{2}+x_{3}\right) \\ x_{2}^{2}+x_{3}\end{array}\right], f(x)=\frac{\partial}{\partial x_{1}}$
(e) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}\left(x_{2}^{2}+x_{3}\right) \\ x_{2}^{2}+x_{3}\end{array}\right], f(x)=\frac{\partial}{\partial x_{2}}$

2-20. Suppose that

$$
\tilde{f}(z)=S_{*}(f(x)) \text { and } \tilde{h}(z)=h \circ S^{-1}(z)
$$

where $z=S(x)$ is a state transformation.
(a) Show that for $k \geq 0$,

$$
L_{\tilde{f}}^{k} \tilde{h}(z)=\left.L_{f}^{k} h(x)\right|_{x=S^{-1}(z)}
$$

(b) Show that if $\tilde{f}(z)=A z$ and $\tilde{h}(z)=c z$, then

$$
L_{f}^{k} h(x)=c A^{k} S(x), \quad k \geq 0
$$

2-21. Show that one form $w(x)$ is exact and find the scalar function $h(x)$ such that $d h(x)=w(x)$ and $h(0)=0$.
(a) $w(x)=\left[1-2 x_{2}\right]$
(b) $w(x)=\left[\begin{array}{lll}x_{2} & x_{1} & x_{3}\end{array}\right]$.

2-22. Solve Example 2.6.6 by using (2.43).
2-23. Find out annihilator $D(x)^{\perp}$ of distribution

$$
D(x)=\operatorname{span}\left\{x_{3} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
x_{3} \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} .
$$

2-24. Solve Example 2.6.11.
2-25. Solve Example 2.7.1.
2-26. Suppose that $a \sim b$ if $a-b$ is odd for $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. Show that binary relation \sim on \mathbb{Z} is not an equivalence relation.
2-27. Solve Example 2.7.2.
2-28. Solve Example 2.7.5.
2-29. Solve Example 2.7.8.
2-30. Suppose that $\Phi_{t}^{f(x)}\left(x_{0}\right)$ is the solution of the following differential equation:

$$
\dot{x}=f(x) ; x(0)=x_{0} .
$$

In other words,

$$
\frac{d}{d t} \Phi_{t}^{f(x)}\left(x_{0}\right)=f\left(\Phi_{t}^{f(x)}\left(x_{0}\right)\right) ; \quad \Phi_{0}^{f(x)}\left(x_{0}\right)=x_{0}
$$

Show that

$$
\left.L_{f} h(x)\right|_{x=x_{0}}=\left.\frac{d}{d t} h\left(\Phi_{t}^{f}\left(x_{0}\right)\right)\right|_{t=0}
$$

2-31. Solve Example 2.7.10.

Chapter 3
 Linearization by State Transformation

3.1 Introduction

In Example 1.3.1, we have obtained a nonlinear state equation by a nonlinear state transformation from a linear state equation. Conversely, we could have a linear state equation by a nonlinear state transformation from a nonlinear state equation. It motivates the linearization problem by state transformation. Consider the following nonlinear control system:

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u=f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x) \tag{3.1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $f(0)=0$.

Definition 3.1 (state equivalence to a linear system) System (3.1) is said to be (locally) state equivalent to a linear system (or linearizable by state transformation), if there exist a neighborhood U of origin and a state transformation $z=S(x): U \rightarrow \mathbb{R}^{n}$ such that system (3.1) satisfies, in z-coordinates, the following linear controllable system:

$$
\begin{equation*}
\dot{z}=A z+B u, \quad z \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m} \tag{3.2}
\end{equation*}
$$

In other words, system (3.1) is said to be state equivalent to a linear system (or linearizable by state transformation), if there exists a controllable linear system that is state equivalent to system (3.1). Thus, linearization problem by state transformation is to find the equivalence class of the set of all controllable linear systems. If $U=\mathbb{R}^{n}$ in the above definition, we call it the global linearization problem. Throughout the book, we consider the local linearization problems only. In almost all references, the (A, B) matrix of the linear system (3.2) is assumed to be a controllable pair, because

Fig. 3.1 state equivalence to a linear system
it is difficult to solve the above problem without this assumption. Therefore, in this book, the linear system (3.2) in the above definition is assumed to be controllable. The state equivalence to a linear system is shown, in Fig. 3.1, as a block diagram. If nonlinear system (3.1) is linearizable by state transformation, then system (3.1) can be controlled as easily as linear system (3.2). For example, if we want to find a control input $u(t)$ which steers the state $x(t)$ from the initial state x^{0} at $t=0$ to the final state x^{f} at $t=t_{f}$, it is enough to find a control input $u(t)$ for linear system (3.2) which steers the state $z(t)$ from the initial state $z^{0}=S\left(x^{0}\right)$ to the final state $z^{f}=S\left(x^{f}\right)$. Also, note that $S(0)=0$. Thus, if $A-B K$ is asymptotically stable (or Hurwitz) and feedback control $u(t)=\alpha(x)=-K S(x)$ is applied to system (3.1), then we obtain that $\lim _{t \rightarrow \infty} x(t)=0$.

3.2 Single Input Nonlinear Systems

This section deals with the linearization problem of the following smooth single input nonlinear system:

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R} . \tag{3.3}
\end{equation*}
$$

We can assume, without loss of generality, that $f(0)=0$. Let $z=S(x)$ be a state transformation. Then system (3.3) satisfies, in z-coordinates, that

$$
\begin{align*}
\dot{z} & =\frac{\partial S(x)}{\partial x} \dot{x}=\frac{\partial S(x)}{\partial x}(f(x)+g(x) u) \\
& =\left.\left\{\frac{\partial S(x)}{\partial x} f(x)\right\}\right|_{x=S^{-1}(z)}+\left.\left\{\frac{\partial S(x)}{\partial x} g(x)\right\}\right|_{x=S^{-1}(z)} u \tag{3.4}\\
& =S_{*}(f(x))+S_{*}(g(x)) u=\tilde{f}(z)+\tilde{g}(z) u .
\end{align*}
$$

Therefore, the linearization by state transformation is to find a state transformation $z=S(x)$ such that

$$
\begin{equation*}
\tilde{f}(z)=S_{*}(f(x))=A z \text { and } \tilde{g}(z)=S_{*}(g(x))=b \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{rank}\left(\left[b A b \cdots A^{n-1} b\right]\right)=n \tag{3.6}
\end{equation*}
$$

Theorem 3.1 (necessary and sufficient condition) System (3.3) is state equivalent to a linear system with state transformation $z=S(x)$, if and only if
(i) $\operatorname{rank}\left(\left.\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}\right)=n$
(ii) $\left[\operatorname{ad}_{f}^{i-1} g(x), \operatorname{ad}_{f}^{j-1} g(x)\right]=0, \quad 1 \leq i \leq n+1,1 \leq j \leq n+1$.

Furthermore, a state transformation $z=S(x)$ can be obtained by

$$
\begin{equation*}
\frac{\partial S(x)}{\partial x}=\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]^{-1} \tag{3.7}
\end{equation*}
$$

Proof Necessity. Suppose that system (3.3) is state equivalent to a linear system. Then there exists a state transformation $z=S(x)$ such that (3.5) is satisfied. It is easy to see, by Example 2.4.14, that for $i \geq 0$,

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{f}^{i} g(x)\right)=(-1)^{i} A^{i} b \tag{3.8}
\end{equation*}
$$

and for $1 \leq i \leq n+1$ and $1 \leq j \leq n+1$,

$$
\begin{equation*}
\left[\operatorname{ad}_{f}^{i-1} g(x), \operatorname{ad}_{f}^{j-1} g(x)\right]=0 \tag{3.9}
\end{equation*}
$$

which implies that condition (ii) is satisfied. Also, we have, by (3.8), that

$$
\begin{align*}
{[b} & \left.-A b \cdots(-1)^{n-1} A^{n-1} b\right] \\
\quad & =\left.\left\{\frac{\partial S(x)}{\partial x}\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right\}\right|_{x=S^{-1}(z)} \tag{3.10}\\
& =\left.\left.\frac{\partial S(x)}{\partial x}\right|_{x=0}\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}
\end{align*}
$$

which implies, together with (3.6), that condition (i) is satisfied.
Sufficiency. Suppose that condition (i) and (ii) are satisfied. Then, by Theorem 2.7, there exists a state transformation $z=S(x)$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{f}^{i-1} g(x)\right)=\frac{\partial}{\partial z_{i}} \tag{3.11}
\end{equation*}
$$

or

$$
\frac{\partial S(x)}{\partial x}\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]=I
$$

Thus, it is clear that $\tilde{g}(z) \triangleq S_{*}(g(x))=\frac{\partial}{\partial z_{1}}=\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]^{\top} \triangleq b$. We will show that $\tilde{f}(z) \triangleq S_{*}(f(x))=A z$ for some constant matrix A. It is easy to see, by (2.28) and (3.11), that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
-\frac{\partial \tilde{f}(z)}{\partial z_{i}} & =\left[\tilde{f}(z), \frac{\partial}{\partial z_{i}}\right]=\left[S_{*}(f(x)), S_{*}\left(\operatorname{ad}_{f}^{i-1} g(x)\right)\right] \\
& =S_{*}\left(\operatorname{ad}_{f}^{i} g(x)\right)=\frac{\partial}{\partial z_{i+1}}
\end{aligned}
$$

which implies that for $1 \leq j \leq n$ and $1 \leq i \leq n-1$,

$$
\frac{\partial \tilde{f}_{j}(z)}{\partial z_{i}}= \begin{cases}-1, & \text { if } j=i+1 \\ 0 . & \text { otherwise }\end{cases}
$$

Also, it is clear, by Example 2.4.20 and condition (i) and (ii), that there exist some constants $a_{i} \in \mathbb{R}, 1 \leq i \leq n$ such that

$$
\operatorname{ad}_{f}^{n} g(x)=\sum_{i=1}^{n} a_{i} \mathrm{ad}_{f}^{i-1} g(x)
$$

Thus, we have, by (2.28) and (3.11), that

$$
\begin{aligned}
-\frac{\partial \tilde{f}(z)}{\partial z_{n}} & =\left[\tilde{f}(z), \frac{\partial}{\partial z_{n}}\right]=\left[S_{*}(f(x)), S_{*}\left(\operatorname{ad}_{f}^{n-1} g(x)\right)\right]=S_{*}\left(\operatorname{ad}_{f}^{n} g(x)\right) \\
& =\sum_{i=1}^{n} a_{i} S_{*}\left(\operatorname{ad}_{f}^{i-1} g(x)\right)=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial z_{i}}=\left[a_{1} \cdots a_{n}\right]^{\top}
\end{aligned}
$$

Since $\tilde{f}(0)=0$, it is clear that

$$
\frac{\partial \tilde{f}(z)}{\partial z}=-\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{1} \tag{3.12}\\
1 & 0 & 0 & \cdots & 0 & a_{2} \\
0 & 1 & 0 & \cdots & 0 & a_{3} \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & \vdots & a_{n}
\end{array}\right]=A
$$

and $\tilde{f}(z) \triangleq S_{*}(f(x))=A z$.
We say that vector field $f(x)$ and vector field $g(x)$ commute if $[f(x), g(x)]=$ 0. Condition (ii) of Theorem 3.1 is that $\left\{g, \operatorname{ad}_{f} g, \ldots, \operatorname{ad}_{f}^{n-1} g, \operatorname{ad}_{f}^{n} g\right\}$ is a set of
commuting vector fields. If we replace condition (ii) by that $\left\{g, \operatorname{ad}_{f} g, \ldots, \operatorname{ad}_{f}^{n-1} g\right\}$ is a set of commuting vector fields, then the state transformation $z=S(x)$ in (3.7) still exists. However, vector field $S_{*}(f(x))$ may not be linear in z.

Example 3.2.1 Suppose that $\left\{g(x), \operatorname{ad}_{f} g(x), \ldots, \operatorname{ad}_{f}^{n-1} g(x)\right\}$ is a set of commuting linearly independent vector fields. Let $z=S(x)$ be the state transformation in (3.7). Use (2.91) to show that

$$
\tilde{f}(z) \triangleq S_{*}(f(x))=-\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right] z+\gamma\left(z_{n}\right)
$$

for some vector function $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$.
Solution Omitted. (Problem 3-1.)
Since $f(0)=0$, it is clear that

$$
\begin{equation*}
\left(\mathrm{ad}_{f} g\right)(0)=\left.\frac{\partial g}{\partial x}\right|_{x=0} f(0)-\left.\frac{\partial f}{\partial x}\right|_{x=0} g(0)=-\left.\frac{\partial f}{\partial x}\right|_{x=0} g(0) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\operatorname{ad}_{f}^{i} g\right)(0)=(-1)^{i}\left(\left.\frac{\partial f}{\partial x}\right|_{x=0}\right)^{i} g(0), \quad i \geq 0 \tag{3.14}
\end{equation*}
$$

Therefore, condition (i) of Theorem 3.1 is satisfied on a neighborhood of the origin, if and only if

$$
\begin{equation*}
(\text { (i) })^{\prime} \operatorname{rank}\left(\left[\left.g(0) \frac{\partial f}{\partial x}\right|_{x=0} g(0) \cdots\left(\left.\frac{\partial f}{\partial x}\right|_{x=0}\right)^{n-1} g(0)\right]\right)=n . \tag{3.15}
\end{equation*}
$$

Example 3.2.2 Show, by using the Jacobi identity of vector fields, that condition (ii) of Theorem 3.1 can also be expressed as follows.

$$
\begin{equation*}
\text { (ii) } \quad \operatorname{ad}_{g} \operatorname{ad}_{f}^{k} g(x)=0, \quad 0 \leq k \leq 2 n-1 \tag{3.16}
\end{equation*}
$$

Solution By Examples 2.4.18 and 2.4.19, it is easy to show. (Problem 3-2.)

Example 3.2.3 Consider the nonlinear system (1.2).

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{3.17}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] u=f(x)+g(x) u .
$$

In Example 1.3.1, we have obtained system (1.2) from linear system

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u
$$

by nonlinear state transformation

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1}-x_{2}^{2} \\
x_{2}
\end{array}\right]
$$

Show that system (1.2) satisfies the conditions of Theorem 3.1. Also, find the state transformation in (3.7).

Solution Since

$$
\begin{aligned}
\operatorname{ad}_{f} g(x) & =\frac{\partial g(x)}{\partial x} f(x)-\frac{\partial f(x)}{\partial x} g(x) \\
& =\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]-\left[\begin{array}{cc}
2 x_{2} & 2 x_{1}-6 x_{2}^{2} \\
1 & -2 x_{2}
\end{array}\right]\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 x_{2} \\
-1
\end{array}\right]
\end{aligned}
$$

and

$$
\operatorname{ad}_{f}^{2} g(x)=\frac{\partial\left(\operatorname{ad}_{f} g(x)\right)}{\partial x} f(x)-\frac{\partial f(x)}{\partial x} \operatorname{ad}_{f} g(x)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

it is easy to see that condition (i) and (ii) of Theorem 3.1 are satisfied. Therefore, system (1.2) is state equivalent to a linear system. It is clear, by (3.7), that

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{cc}
1+2 x_{2} & -2 x_{2} \\
1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -2 x_{2} \\
1 & -1-2 x_{2}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
z_{1} \tag{3.18}\\
z_{2}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1}-x_{2}^{2} \\
x_{1}-x_{2}-x_{2}^{2}
\end{array}\right] .
$$

It is easy to see that

$$
\left[\begin{array}{l}
\dot{z}_{1} \tag{3.19}\\
\dot{z}_{2}
\end{array}\right]=S_{*}(f(x))+S_{*}(g(x)) u=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u .
$$

Note that system (3.19) is state equivalent to system (1.10) with a linear state transformation (i.e., similarity transformation).

Example 3.2.4 Consider the nonlinear system (1.2).
(a) Let $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Find an input $u(t), 0 \leq t \leq t_{f}$ such that $t_{f}=2$ and $x\left(t_{f}\right)=$ $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(b) Find a nonlinear feedback $u=\alpha(x)$ such that $\lim _{t \rightarrow \infty} x(t)=0$ for the nonlinear system (1.2).
Solution The controllability Gramian of linear system (3.19) can be calculated as follows:

$$
\begin{aligned}
W(0, t) & \triangleq \int_{0}^{t} e^{-A \tau} b b^{\top}\left(e^{-A \tau}\right)^{\top} d \tau \\
& =\int_{0}^{t}\left[\begin{array}{ll}
1 & 0 \\
\tau & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \tau \\
0 & 1
\end{array}\right] d \tau=\left[\begin{array}{cc}
t & \frac{1}{2} t^{2} \\
\frac{1}{2} t^{2} & \frac{1}{3} t^{3}
\end{array}\right] .
\end{aligned}
$$

Note that $z(0)=S(x(0))=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ and $z\left(t_{f}\right)=S\left(x\left(t_{f}\right)\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, where $z=S(x)$ is given in (3.18). Thus,

$$
\begin{aligned}
u(t) & =-b^{\top}\left(e^{-A t}\right)^{\top} W\left(0, t_{f}\right)^{-1} z(0)=-\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 2 \\
2 & \frac{8}{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& =\frac{3}{2}(t-1), \quad 0 \leq t \leq 2
\end{aligned}
$$

is an input such that $z(2)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $x(2)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. If we let $u=\tilde{\alpha}(z)=-2 z_{1}+2 z_{2}$, then the closed-loop system of system (3.19) satisfies the following asymptotically stable linear system:

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
-2 & 2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

and $\lim _{t \rightarrow \infty} z(t)=0$. Thus,

$$
u=\tilde{\alpha} \circ S(x)=-2\left(x_{1}-x_{2}^{2}\right)+2\left(x_{1}-x_{2}-x_{2}^{2}\right)=-2 x_{2}
$$

is a nonlinear feedback such that $\lim _{t \rightarrow \infty} x(t)=0$.

Example 3.2.5 Show that the following nonlinear system is (locally) state equivalent to a linear system.

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{3.20}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
x_{1} \cos ^{2} x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u=f(x)+g(x) u
$$

Solution It is easy to see that

$$
\operatorname{ad}_{f} g(x)=\frac{\partial g(x)}{\partial x} f(x)-\frac{\partial f(x)}{\partial x} g(x)=\left[\begin{array}{c}
0 \\
-\cos ^{2} x_{2}
\end{array}\right]
$$

and

$$
\operatorname{ad}_{f}^{2} g(x)=\frac{\partial \operatorname{ad}_{f} g(x)}{\partial x} f(x)-\frac{\partial f(x)}{\partial x} \operatorname{ad}_{f} g(x)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Therefore, condition (i) and (ii) of Theorem 3.1 are satisfied and thus system (3.20) is state equivalent to a linear system. It is clear, by (3.7), that

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{cc}
1 & 0 \\
0-\cos ^{2} x_{2}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0-\sec ^{2} x_{2}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1} \\
-\tan x_{2}
\end{array}\right] .
$$

Then we have that

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=S_{*}(f(x))+S_{*}(g(x)) u=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u .
$$

Note that $\left(\frac{\partial S(x)}{\partial x}\right)^{-1}$ is not nonsingular when $x_{2}=\frac{\pi}{2}$. Thus, $S(x)$ is a state transformation on $\left\{x \in \mathbb{R}^{2}| | x_{2} \left\lvert\,<\frac{\pi}{2}\right.\right\}$. In other words, the state equivalence does not work on the entire state space \mathbb{R}^{2}. It is called the local linearization.

Example 3.2.6 Show that the following nonlinear system is not state equivalent to a linear system.

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{3.21}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u=f(x)+g(x) u .
$$

Solution It is easy to see that

$$
g(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{c}
0 \\
2 x_{1}
\end{array}\right]
$$

and

$$
\left[\operatorname{ad}_{f} g(x), \operatorname{ad}_{f}^{2} g(x)\right]=\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Therefore, condition (ii) of Theorem 3.1 is not satisfied and thus system (3.21) is not state equivalent to a linear system.

If we use feedback $u=-x_{1}^{2}+v$ for system (3.21), we have the following linear closed-loop system

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{3.22}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v=f_{c}(x)+g_{c}(x) v
$$

In other words, system (3.21) can be linearized by using feedback $u=-x_{1}^{2}+v$.
Example 3.2.7 Show that the following nonlinear system is not state equivalent to a linear system.

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{3.23}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-x_{2}^{3}-x_{1}\left(1+2 x_{2}\right) \\
-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] u=f(x)+g(x) u .
$$

Solution It is easy to see that

$$
g(x)=\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right], \quad \operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
1+2 x_{2}+4 x_{2}^{2} \\
2 x_{2}
\end{array}\right]
$$

and

$$
\left[g(x), \operatorname{ad}_{f} g(x)\right]=\left[\begin{array}{c}
2+4 x_{2} \\
2
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Therefore, condition (ii) of Theorem 3.1 is not satisfied and thus system (3.23) is not state equivalent to a linear system.

If we use feedback $u=x_{1}+v$ for system (3.23), we have

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{3.24}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] v=f_{c}(x)+g_{c}(x) v
$$

that is state equivalent to a linear system. (Refer to Example 3.2.3) In other words, system (3.23) can be linearized by using state transformation (3.18) and feedback $u=x_{1}+v$. The linearization by using both state transformation and feedback will be discussed in the next chapter.

3.3 Multi Input Nonlinear Systems

In this section, we extend the single input results of the previous section to multi-input systems. Consider the following smooth multi-input control systems:

$$
\begin{equation*}
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) u_{i}=f(x)+g(x) u \tag{3.25}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $f(0)=0$. We want to find a state transformation $z=$ $S(x)$ such that

$$
\begin{equation*}
\dot{z}=A z+\sum_{i=1}^{m} b_{i} u_{i}=A z+B u \tag{3.26}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{*}(f(x))=A z \text { and } S_{*}\left(g_{i}(x)\right)=b_{i}, 1 \leq i \leq m \tag{3.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{rank}\left(\left[b_{1} A b_{1} \cdots A^{\kappa_{1}-1} b_{1} \cdots b_{m} \cdots A^{\kappa_{m}-1} b_{m}\right]\right)=n \tag{3.28}
\end{equation*}
$$

Definition 3.2 (Kronecker indices) For the list of $m n$ constant vector fields of the form

$$
\left.\left(g_{1}, \ldots, g_{m}, \operatorname{ad}_{f} g_{1}, \ldots, \operatorname{ad}_{f} g_{m}, \ldots, \operatorname{ad}_{f}^{n-1} g_{1}, \ldots, \operatorname{ad}_{f}^{n-1} g_{m}\right)\right|_{x=0}
$$

delete all vector fields that are linearly dependent on the set of preceding vector fields and obtain the unique set of linearly independent constant vector fields

$$
\left.\left\{g_{1}, \operatorname{ad}_{f} g_{1}, \ldots, \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1}, \ldots, g_{m}, \operatorname{ad}_{f} g_{m}, \ldots, \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right\}\right|_{x=0}
$$

$\left(\kappa_{1}, \ldots, \kappa_{m}\right)$ are said to be the Kronecker indices of system (3.25).

In other words, κ_{i} is the smallest nonnegative integer such that

$$
\begin{align*}
\left.\operatorname{ad}_{f}^{\kappa_{i}} g_{i}(x)\right|_{x=0} \in & \operatorname{span}\left\{\left.\operatorname{ad}_{f}^{\ell-1} g_{j}(x)\right|_{x=0} \mid 1 \leq j \leq m, \quad 1 \leq \ell \leq \kappa_{i}\right\} \\
& +\operatorname{span}\left\{\left.\operatorname{ad}_{f}^{\kappa_{i}} g_{j}(x)\right|_{x=0} \mid 1 \leq j \leq i-1\right\} \tag{3.29}
\end{align*}
$$

If $\sum_{i=1}^{m} \kappa_{i}=n$, system (3.25) is said to be reachable on a neighborhood of the origin.
Example 3.3.1 Show that the Kronecker indices are invariant under state transformation. In other words, the Kronecker indices of system (3.25) are the same as the Kronecker indices of system (3.26).

Solution Suppose that $\tilde{f}(z)=S_{*}(f(x))$ and $\tilde{g}(z)=S_{*}(g(x))$, where $z=S(x)$ is a state transformation. Since rank $\left(\left.\frac{\partial S(x)}{\partial x}\right|_{x=0}\right)=n$ and

$$
\begin{aligned}
& {\left.\left[\tilde{g}_{1} \cdots, \tilde{g}_{m} \operatorname{ad}_{\tilde{f}} \tilde{g}_{1} \cdots \operatorname{ad}_{\tilde{f}} \tilde{g}_{m} \cdots \operatorname{ad}_{\tilde{f}}^{n-1} \tilde{g}_{1} \cdots \operatorname{ad}_{\tilde{f}}^{n-1} \tilde{g}_{m}\right]\right|_{z=0}} \\
& =\left.\left.\frac{\partial S(x)}{\partial x}\right|_{x=0}\left[g_{1} \cdots g_{m} \operatorname{ad}_{f} g_{1} \cdots, \operatorname{ad}_{f} g_{m} \cdots \operatorname{ad}_{f}^{n-1} g_{1} \cdots \operatorname{ad}_{f}^{n-1} g_{m}\right]\right|_{x=0}
\end{aligned}
$$

we obtain, after deletion of Definition 3.2, the unique set of linearly independent constant vector fields

$$
\left.\left\{\tilde{g}_{1}, \operatorname{ad}_{\tilde{f}} \tilde{g}_{1}, \ldots, \operatorname{ad}_{\tilde{f}}^{k_{1}-1} \tilde{g}_{1}, \ldots, \tilde{g}_{m}, \operatorname{ad}_{\tilde{f}} \tilde{g}_{m}, \ldots, \operatorname{ad}_{\tilde{f}}^{k_{m}-1} \tilde{g}_{m}\right\}\right|_{z=0}
$$

Therefore, the Kronecker indices of system (3.26) are $\left(\kappa_{1}, \ldots, \kappa_{m}\right)$.

Theorem 3.2 (necessary and sufficient condition) System (3.25) is state equivalent to a linear system, if and only if
(i) $\sum_{i=1}^{m} \kappa_{i}=n$.
(ii) for $1 \leq i \leq m, 1 \leq j \leq m, 1 \leq \ell_{i} \leq \kappa_{i}+1$, and $1 \leq \ell_{j} \leq \kappa_{j}+1$,

$$
\begin{equation*}
\left[\operatorname{ad}_{f}^{\ell_{i}-1} g_{i}(x), \operatorname{ad}_{f}^{\ell_{j}-1} g_{j}(x)\right]=0 \tag{3.30}
\end{equation*}
$$

Furthermore, a state transformation $z=S(x)$ can be obtained by

$$
\begin{equation*}
\frac{\partial S(x)}{\partial x}=\left[g_{1} \operatorname{ad}_{f} g_{1} \cdots \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1} \cdots g_{m} \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right]^{-1} \tag{3.31}
\end{equation*}
$$

Proof Necessity. Suppose that system (3.25) is state equivalent to a linear system. Then there exists a state transformation $z=S(x)$ such that (3.27) is satisfied. It is easy to see, by Example 2.4.14, that for $1 \leq i \leq m$ and $k \geq 0$,

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{f}^{k} g_{i}(x)\right)=(-1)^{k} A^{k} b_{i} \tag{3.32}
\end{equation*}
$$

Thus, it is easy to see that for $1 \leq i \leq m, 1 \leq j \leq m, 1 \leq \ell_{i} \leq \kappa_{i}+1$, and $1 \leq \ell_{j} \leq$ $\kappa_{j}+1$,

$$
\begin{aligned}
{\left[\operatorname{ad}_{f}^{\ell_{i}-1} g_{i}(x), \operatorname{ad}_{f}^{\ell_{j}-1} g_{j}(x)\right] } & =\left[S_{*}^{-1}\left\{(-1)^{\ell_{i}-1} A^{\ell_{i}-1} b_{i}\right\}, S_{*}^{-1}\left\{(-1)^{\ell_{j}-1} A^{\ell_{j}-1} b_{i}\right\}\right] \\
& =S_{*}^{-1}\left\{\left[(-1)^{\ell_{i}-1} A^{\ell_{i}-1} b_{i},(-1)^{\ell_{j}-1} A^{\ell_{j}-1} b_{i}\right]\right\}=0
\end{aligned}
$$

and condition (ii) is satisfied. Also, we have, by (3.32), that

$$
\begin{aligned}
& {\left[b_{1}-A b_{1} \cdots(-1)^{\kappa_{1}-1} A^{\kappa_{1}-1} b_{1} \cdots b_{m} \cdots(-1)^{\kappa_{m}-1} A^{\kappa_{m}-1} b_{m}\right]} \\
& =\left.\left\{\frac{\partial S(x)}{\partial x}\left[g_{1} \cdots \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1} \cdots g_{m} \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right]\right\}\right|_{x=S^{-1}(z)} \\
& =\frac{\partial S(x)}{\partial x}\left[g_{1} \cdots \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1} \cdots g_{m} \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right]
\end{aligned}
$$

which implies, together with (3.28), that condition (i) is satisfied.
Sufficiency. Suppose that condition (i) and (ii) are satisfied. Then, by Theorem 2.7, there exists a state transformation $z=S(x)$ such that for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}$,

$$
\begin{align*}
& S_{*}\left(\operatorname{ad}_{f}^{\ell-1} g_{i}(x)\right)=\frac{\partial}{\partial z_{\ell}^{i}} \\
& z=\left[\begin{array}{c}
z^{1} \\
\vdots \\
z^{m}
\end{array}\right], \quad z^{i}=\left[\begin{array}{c}
z_{1}^{i} \\
\vdots \\
z_{\kappa_{i}}^{i}
\end{array}\right] \tag{3.33}
\end{align*}
$$

or

$$
\frac{\partial S(x)}{\partial x}\left[g_{1} \operatorname{ad}_{f} g_{1} \cdots \operatorname{ad}_{f}^{k_{1}-1} g_{1} \cdots g_{m} \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right]=I
$$

Thus, it is clear that $S_{*}\left(g_{i}(x)\right)=\frac{\partial}{\partial z_{i}^{i}} \triangleq b_{i}$ for $1 \leq i \leq m$. We will show that $S_{*}(f(x))=A z$ for some constant matrix A. Let

$$
\begin{equation*}
S_{*}(f(x))=\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}} \tilde{f}_{j}^{i}(z) \frac{\partial}{\partial z_{j}^{i}} . \tag{3.34}
\end{equation*}
$$

Then, it is easy to see, by (3.33), (3.34), and condition (ii), that for $1 \leq k_{1} \leq m$, $1 \leq k_{2} \leq m, 1 \leq \ell_{1} \leq \kappa_{k_{1}}, 1 \leq \ell_{2} \leq \kappa_{k_{2}}$,

$$
\begin{align*}
0 & =S_{*}\left(\left[\left[f(x), \operatorname{ad}_{f}^{\ell_{1}-1} g_{k_{1}}(x)\right], \operatorname{ad}_{f}^{\ell_{2}-1} g_{k_{2}}(x)\right]\right) \\
& =\left[\left[S_{*}(f(x)), S_{*}\left(\operatorname{ad}_{f}^{\ell_{1}-1} g_{k_{1}}(x)\right)\right], S_{*}\left(\operatorname{ad}_{f}^{\ell_{2}-1} g_{k_{2}}(x)\right)\right] \\
& =\left[\left[\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{j}} \tilde{f}_{j}^{i}(z) \frac{\partial}{\partial z_{j}^{i}}, \frac{\partial}{\partial z_{\ell_{1}}^{k_{1}}}\right], \frac{\partial}{\partial z_{\ell_{2}}^{k_{2}}}\right] \tag{3.35}\\
& =\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{j}} \frac{\partial^{2} \tilde{f}_{j}^{i}(z)}{\partial z_{\ell_{1}}^{k_{1}} \partial z_{\ell_{2}}^{k_{2}}} \frac{\partial}{\partial z_{j}^{i}}
\end{align*}
$$

Since $\frac{\partial}{\partial z}\left(\frac{\partial \tilde{f}_{i}^{i}(z)}{\partial z}\right)^{\top}=0$ for $1 \leq i \leq m, 1 \leq j \leq \kappa_{i}$, it is clear that

$$
\tilde{f}_{i}(z)=\tilde{f}_{i}(0)+A_{i} z, \quad 1 \leq i \leq n
$$

Since $f(0)=0$ and $S(0)=0$, it is clear that $\tilde{f}(0)=S_{*}(f(0))=0$. Therefore, we have that $\tilde{f}_{i}(z)=A_{j}^{i} z$ and

$$
\begin{equation*}
S_{*}(f(x))=\sum_{i=1}^{m} \sum_{i=1}^{\kappa_{j}} A_{j}^{i} z \frac{\partial}{\partial z_{j}^{i}}=A z \tag{3.36}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{c}
A^{1} \\
\vdots \\
A^{m}
\end{array}\right], \quad A^{i}=\left[\begin{array}{c}
A_{1}^{i} \\
\vdots \\
A_{\kappa_{i}}^{i}
\end{array}\right], \quad 1 \leq i \leq m
$$

Example 3.3.2 Show, by using the Jacobi identity of vector fields, that condition (ii) of Theorem 3.2 can also be expressed as follows.

$$
\begin{equation*}
\text { (ii) }^{\prime} \quad \operatorname{ad}_{g_{i}} \operatorname{ad}_{f}^{\ell} g_{j}(x)=0 \text { for } 0 \leq \ell \leq \kappa_{i}+\kappa_{j} . \tag{3.37}
\end{equation*}
$$

Solution By Example 2.4.18, it is easy to show. (See Problem 3-8.)
Example 3.3.3 Show that the following nonlinear system is state equivalent to a linear system. Also, find out the state transformation $z=S(x)$ in (3.31).

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-2 x_{2}\left(x_{1}+x_{2}+x_{2}^{2}\right) \\
x_{1}+x_{2}+x_{2}^{2} \\
-2 x_{2}\left(x_{1}+x_{2}+x_{2}^{2}\right)
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{3.38}\\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} .
\end{align*}
$$

Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$ and

$$
\operatorname{ad}_{f} g_{1}(x)=\left[\begin{array}{c}
2 x_{2} \\
-1 \\
2 x_{2}
\end{array}\right], \quad \operatorname{ad}_{f} g_{2}(x)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g_{1}(x)=\left[\begin{array}{c}
-2 x_{2} \\
1 \\
-2 x_{2}
\end{array}\right] .
$$

It is easy to see that condition (i) and (ii) of Theorem 3.2 are satisfied. Therefore, system (3.38) is state equivalent to a linear system. It is clear, by (3.31), that

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{lll}
1 & 2 x_{2} & 0 \\
0 & -1 & 0 \\
0 & 2 x_{2} & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
1 & 2 x_{2} & 0 \\
0 & -1 & 0 \\
0 & 2 x_{2} & 1
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1}+x_{2}^{2} \\
-x_{2} \\
x_{3}+x_{2}^{2}
\end{array}\right] .
$$

Then we have that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =S_{*}(f(x))+S_{*}\left(g_{1}(x)\right) u_{1}+S_{*}\left(g_{2}(x)\right) u_{2} \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
\end{aligned}
$$

Example 3.3.4 Show that the following nonlinear system is not state equivalent to a linear system.

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2} \\
-x_{1}+x_{2}^{2} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1+x_{1}^{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{3.39}\\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
\end{align*}
$$

Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$ and

$$
\operatorname{ad}_{f} g_{1}(x)=\left[\begin{array}{c}
-1-x_{1}^{2} \\
2 x_{2}\left(x_{1}-1-x_{1}^{2}\right) \\
0
\end{array}\right] .
$$

Since $\left[g_{1}(x), \operatorname{ad}_{f} g_{1}(x)\right] \neq 0$, condition (ii) of Theorem 3.2 is not satisfied. Therefore, system (3.39) is not state equivalent to a linear system.

3.4 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed: adfg, adfgk, adfgM, adfgkM, ChCommute, ChZero,
Codi, Delta, Kindex0, TauFG
MATLAB program for Theorem 3.1:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[2*x1*x2-2*x2^3; x1-x2^2]; g=[1+2*x2 ; 1]; %Ex:3.2.3
% f=[0; x1*\operatorname{cos}(x2)^2]; g=[1; x1-x1]; %Ex:3.2.5
% f=[x2; x1^2]; g=[x1-x1; 1]; %Ex:3.2.6
% f=[2*x1*x2-2*x2^3-x1* (1+2*x2); -x2^2];
% g=[1+2*x2; 1]; %Ex:3.2.7
% f=[x1*x2+x2-x2^3; 0]; g=[2*x2; 1]; %P:3-3
% f=[2*x2-2*x1*x2+2*x2^2+2*x2^3; -x1+x2+x2^2];
% g=[1; x1-x1] ; %P:3-4
% f=[x2+(1/2)*x\mp@subsup{1}{}{\wedge}2; x1^2]; g=[x1-x1; 1]; %P:3-5
% f=[x2+x3^2; x3; 0]; g=[2*x3; -2*x3; 1]; %P:3-6
% f=[x1-x1]; g=[1+x1]; %P:3-7
f=simplify(f)
g=simplify(g)
[n,m]=size(g);
x=sym('x',[n,1]);
T(:,1)=g;
for k=2:n+1
    T(:,k) =adfg(f,T(:,k-1),x);
end
T=simplify(T)
BD=T(:, 1:n)
BD0=subs (BD,x,x-x) ;
if rank(BDO) < n
    display('condition (i) of Thm 3.1 is not satisfied.')
    display('System is NOT state equivalent to a LS.')
    return
```

```
end
if ChCommute(T,x) == 0
    display('condition (ii) of Thm 3.1 is not satisfied.')
    display('System is NOT state equivalent to a LS.')
    return
end
display('System is state equivalent to a LS with')
dS=simplify(inv(BD))
S=Codi(dS,x)
AS=simplify(dS*f);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)
return
```


MATLAB program for Theorem 3.2:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[-2*x2*(x1+x2+x2^2); x1+x2+x2^2; -2*x2*(x1+x2+x2^2)];
g=[1 x1-x1; 0 0; 0 1]; %Ex:3.3.3
% f=[x2; -x1+x2^2; x3^2];
% g=[0 x1-x1; 1+x1^2 0; 0 1]; %Ex:3.3.4
% f=[x2; x4; x4+3*x2^2*x4; 0];
% g=[0 2*x4; 1 0; 3*x2^2 0; 0 1]; %P:3-9
% f=[-x1+x2^2; -2*x2+sin(x2)];
% g=[1 x1-x1; 0 1]; %P:3-10
f=simplify(f)
g=simplify(g)
[n,m]=size(g);
x=sym('x',[n,1]);
[kappa,D]=Kindex0(f,g,x)
if sum(kappa)<n
    display('condition (i) of Thm 3.2 is not satisfied.')
    return
end
BDD=TauFG(f,g,x,kappa+1)
```

```
if ChCommute(BDD,x) == 0
    display('condition (ii) of Thm 3.2 is not satisfied.')
    return
end
display('System is state equivalent to a LS with')
BD=TauFG(f,g,x,kappa)
dS=simplify(inv(BD))
S=Codi(dS,x)
AS=simplify(dS*f)
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)
return
```


3.5 Problems

3-1. Solve Example 3.2.1.
3-2. Solve Example 3.2.2.
3-3. Show that the following nonlinear system is state equivalent to a linear system. Also, find the state transformation in (3.7).

$$
\dot{x}=\left[\begin{array}{c}
x_{1} x_{2}+x_{2}-x_{2}^{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right] u .
$$

3-4. Show that the following nonlinear system is state equivalent to a linear system.
Also, find the state transformation $z=S(x)$ and the linear system.

$$
\dot{x}=\left[\begin{array}{c}
2 x_{2}-2 x_{1} x_{2}+2 x_{2}^{2}+2 x_{2}^{3} \\
-x_{1}+x_{2}+x_{2}^{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u .
$$

3-5. Show that the following nonlinear system is not state equivalent to a linear system.

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{3.40}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{1}^{2} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u .
$$

3-6. Find a nonlinear feedback $u=\alpha(x)$ such that $\lim _{t \rightarrow \infty} x(t)=0$ for the following nonlinear control system.

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
1
\end{array}\right] u .
$$

3-7. Linearize the following nonlinear control system by state transformation.

$$
\dot{x}=(1+x) u
$$

Find the subset (containing the origin of the state) where this linearization technique is effective. Also, linearize the above nonlinear control system by using feedback.

3-8. Solve Example 3.3.2.
3-9. Linearize the following nonlinear system by state transformation.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{4} \\
x_{4}+3 x_{2}^{2} x_{4} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 2 x_{4} \\
1 & 0 \\
3 x_{2}^{2} & 0 \\
0 & 1
\end{array}\right] u
$$

3-10. Show that the following nonlinear system is not state equivalent to a linear system.

$$
\dot{x}=\left[\begin{array}{c}
-x_{1}+x_{2}^{2} \\
-2 x_{2}+\sin x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{2} .
$$

3-11. Consider the nonlinear system in Example 3.2.3.

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3} \\
x_{1}-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] u .
$$

Find the state transformation $z=S(x)$ such that

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u .
$$

3-12. Suppose that system (3.3) is state equivalent to a linear system.
(a) Show that

$$
\operatorname{ad}_{f}^{n} g(x)=\sum_{i=1}^{n}(-1)^{i} c_{i-1} \operatorname{ad}_{f}^{i-1} g(x)
$$

for some constants $c_{0}, c_{1}, \ldots, c_{n-1}$.
(b) Find out the state transformation $z=S(x)$ such that the system satisfies, in z-coordinates, the following controllable canonical form:

$$
\dot{x}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-c_{0} & -c_{1} & -c_{2} & \cdots & -c_{n-2} & -c_{n-1}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] u
$$

3-13. Suppose that condition (i) of Theorem 3.1 is satisfied. Show that condition (ii) of Theorem 3.1 is equivalent to the following condition.
(ii) ${ }^{\prime \prime}\left[\operatorname{ad}_{f}^{i-1} g(x), \operatorname{ad}_{f}^{j-1} g(x)\right]=0, \quad i \geq 1, j \geq 1$.

Chapter 4
 Feedback Linearization

4.1 Introduction

In Chap. 3, we considered the linearization by state transformation only. This chapter deals with the linearization problems by both state transformation and feedback. In Example 3.2.6, we have shown that a nonlinear system (3.21), that is not state equivalent to a linear system, can be linearized by using nonlinear feedback $u=$ $-x_{1}^{2}+v$. Consider

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{4.1}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{1}^{2} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u=f(x)+g(x) u
$$

that is not linearizable by state transformation (See Problem 3-3.5). We cannot eliminate the nonlinear term $\frac{1}{2} x_{1}^{2}$ by feedback. If we let

$$
\begin{equation*}
u=-x_{1}^{2}-x_{1} x_{2}-\frac{1}{2} x_{1}^{3}+v \tag{4.2}
\end{equation*}
$$

then we have the following closed-loop system:

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{4.3}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{1}^{2} \\
-x_{1} x_{2}-\frac{1}{2} x_{1}^{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v=f_{c}(x)+g_{c}(x) v
$$

If we let $z=S(x)=\left[\begin{array}{c}x_{2}+\frac{1}{2} x_{1}^{2} \\ -x_{1}\end{array}\right]$, then we have

$$
\left[\begin{array}{l}
\dot{z}_{1} \tag{4.4}\\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] v
$$

(See Example 2.7.6). System (4.1) is not linearizable by state transformation. However, we can transform system (4.1) into a linear system by using both feedback (4.2)
and state transformation $z=S(x)=\left[\begin{array}{c}x_{2}+\frac{1}{2} x_{1}^{2} \\ -x_{1}\end{array}\right]$. In other words, the larger class of the nonlinear systems can be linearized by using both feedback and state transformation. It motivates the linearization problem by state transformation and feedback (or simply feedback linearization problem). Consider the following nonlinear control system:

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u=f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x) \tag{4.5}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $f(0)=0$.
Definition 4.1 (Feedback linearization) System (4.5) is said to be feedback linearizable. If there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=\alpha(x)+\beta(x) v$ such that the closed-loop system satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\begin{aligned}
\dot{z} & =\left[\begin{array}{cccc}
A_{11} & O & \cdots & O \\
O & A_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & A_{m m}
\end{array}\right] z+\left[\begin{array}{cccc}
B_{11} & O & \cdots & O \\
O & B_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & B_{m m}
\end{array}\right] v \\
& =A z+B v
\end{aligned}
$$

or

$$
\begin{equation*}
S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v)=A z+B v \tag{4.6}
\end{equation*}
$$

where $\sum_{i=1}^{m} \kappa_{i}=n, z=\left[\begin{array}{c}z^{1} \\ \vdots \\ z^{m}\end{array}\right], z^{i}=\left[\begin{array}{c}z_{1}^{i} \\ \vdots \\ z_{\kappa_{i}}^{i}\end{array}\right]$, and

$$
A_{i i}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]\left(\kappa_{i} \times \kappa_{i}\right), \quad B_{i i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]\left(\kappa_{i} \times 1\right)
$$

For the same reason as in Chap.3, we assume that $\sum_{i=1}^{m} \kappa_{i}=n$ or

$$
\begin{equation*}
\operatorname{dim}\left(\left[B A B \cdots A^{n-1} B\right]\right)=n \tag{4.7}
\end{equation*}
$$

Fig. 4.1 Feedback linearization

Fig. 4.2 Relation of feedback linearization and state equivalence to a linear system

Figure 4.1 gives the block diagram of feedback linearization. If a system is state equivalent to a linear system, it is also feedback linearizable with $u=v$. Figure 4.2 shows the relationship between linearization by state transformation and feedback linearization.

4.2 Single Input Nonlinear Systems

This section deals with the feedback linearization problem of the following smooth single input nonlinear system:

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R} \tag{4.8}
\end{equation*}
$$

We can assume, without loss of generality, that $f(0)=0$.

Definition 4.2 (Feedback linearization) System (4.8) is said to be feedback linearizable. if there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=\alpha(x)+\beta(x) v$ such that the closed-loop system satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\dot{z}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{4.9}\\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] v=A z+b v
$$

or

$$
\begin{equation*}
S_{*}(f(x)+g(x) \alpha(x)+g \beta(x) v)=A z+b v . \tag{4.10}
\end{equation*}
$$

Example 4.2.1 Suppose that

$$
\begin{equation*}
L_{g} L_{f}^{i} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ;\left.\quad L_{g} L_{f}^{n-1} S_{1}(x)\right|_{x=0} \neq 0 . \tag{4.11}
\end{equation*}
$$

Show that

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \tag{4.12}\\
\frac{\partial L_{f} S_{1}(x)}{\partial x} \\
\vdots \\
\frac{\partial L_{f}^{n-1} S_{1}(x)}{\partial x}
\end{array}\right]\right|_{x=0}\right)=n
$$

and

$$
\begin{equation*}
\operatorname{rank}\left(\left.\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}\right)=n \tag{4.13}
\end{equation*}
$$

Solution It is easy to see, by Example 2.4.16, that

$$
\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\frac{\partial L_{f} S_{1}(x)}{\partial x} \\
\vdots \\
\frac{\partial L_{f}^{n-1} S_{1}(x)}{\partial x}
\end{array}\right]\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
L_{g} S_{1}(x) & L_{\mathrm{ad}_{f} g} S_{1}(x) & \cdots & L_{\mathrm{ad}_{f}^{n-1} g} S_{1}(x) \\
\vdots & \vdots & & \vdots \\
L_{g} L_{f}^{n-2} S_{1}(x) & L_{\mathrm{ad}_{f} g} L_{f}^{n-2} S_{1}(x) & \cdots & L_{\mathrm{ad}_{f}^{n-1} g} L_{f}^{n-2} S_{1}(x) \\
L_{g} L_{f}^{n-1} S_{1}(x) & L_{\mathrm{ad}_{f} g} L_{f}^{n-1} S_{1}(x) & \cdots & L_{\mathrm{ad}_{f}^{n-1} g} L_{f}^{n-1} S_{1}(x)
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & \cdots & (-1)^{n-1} L_{g} L_{f}^{n-1} S_{1}(x) \\
\vdots & \vdots & & * \\
0 & -L_{g} L_{f}^{n-1} S_{1}(x) & \cdots & * \\
L_{g} L_{f}^{n-1} S_{1}(x) & * & \cdots & *
\end{array}\right] .
\end{aligned}
$$

Since the matrix of the right-hand side has rank n, it is clear that (4.12) and (4.13) are satisfied.

Lemma 4.1 System (4.8) is feedback linearizable with state transformation $z=$ $S(x)=\left[\begin{array}{lll}S_{1}(x) & \cdots & S_{n}(x)\end{array}\right]^{\top}$ and feedback $u=\alpha(x)+\beta(x) v$, if and only if there exists a scalar function $S_{1}(x)$ such that
(i) $L_{g} L_{f}^{i} S_{1}(x)=0, \quad 0 \leq i \leq n-2$
(ii) $\left.L_{g} L_{f}^{n-1} S_{1}(x)\right|_{x=0} \neq 0$.

Furthermore, state transformation $z=S(x)$ andfeedback $u=\alpha(x)+\beta(x) v$ satisfy

$$
\begin{equation*}
z=S(x)=\left[S_{1}(x) L_{f} S_{1}(x) \cdots L_{f}^{n-1} S_{1}(x)\right]^{\top} \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(x)=-\frac{L_{f}^{n} S_{1}(x)}{L_{g} L_{f}^{n-1} S_{1}(x)} ; \quad \beta(x)=\frac{1}{L_{g} L_{f}^{n-1} S_{1}(x)} \tag{4.15}
\end{equation*}
$$

Proof Necessity. Suppose that system (4.8) is feedback linearizable. Then, there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=\alpha(x)+\beta(x) v$ $(\beta(x) \neq 0)$ such that (4.10) is satisfied. Thus, we have that

$$
\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\vdots \\
\frac{\partial S_{n-1}(x)}{\partial x} \\
\frac{\partial S_{n}(x)}{\partial x}
\end{array}\right]\{f(x)+g(x) \alpha(x)+g(x) \beta(x) v\}=A S(x)+b v=\left[\begin{array}{c}
S_{2}(x) \\
\vdots \\
S_{n}(x) \\
v
\end{array}\right]
$$

In other words, for $1 \leq i \leq n-1$

$$
S_{i+1}(x)=L_{f+g(\alpha+\beta v)} S_{i}(x)=L_{f} S_{i}(x)+L_{g} S_{i}(x)\{\alpha(x)+\beta(x) v\}
$$

and

$$
v=L_{f+g(\alpha+\beta v)} S_{n}(x)=L_{f} S_{n}(x)+L_{g} S_{n}(x)\{\alpha(x)+\beta(x) v\}
$$

Since $\beta(0) \neq 0$, it is easy to see that for $1 \leq i \leq n-1$

$$
\begin{equation*}
S_{i+1}(x)=L_{f} S_{i}(x) ; \quad L_{g} S_{i}(x)=0 \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{f} S_{n}(x)+L_{g} S_{n}(x) \alpha(x)=0 ; \quad L_{g} S_{n}(x) \beta(x)=1 \tag{4.17}
\end{equation*}
$$

which imply that (4.14) is satisfied. Therefore, it is easy to see, by (4.16) and (4.17), that condition (i), (ii) and (4.15) are satisfied.

Sufficiency. Suppose that there exists a scalar function $S_{1}(x)$ such that condition (i)-(ii) are satisfied. Let us define $z=S(x)=\left[S_{1}(x) \cdots S_{n}(x)\right]^{\top}$ and feedback $u=$ $\alpha(x)+\beta(x) v$ as (4.14) and (4.15), respectively. Then it is clear, from Example 4.2.1, that $z=S(x)$ is a state transformation. Also, it is easy to see, by condition (i), (4.14), and (4.15), that

$$
\begin{aligned}
S_{*} & (f(x)+g(x)(\alpha(x)+\beta(x) v))=\left.\frac{\partial S(x)}{\partial x}(f+g(\alpha+\beta v))\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\frac{\partial S_{f}(x)}{\partial x} \\
\vdots \\
\frac{\partial L_{f}^{n-1} S_{1}(x)}{\partial x}
\end{array}\right]\{f+g(\alpha+\beta v)\}\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
L_{f} S_{1}(x)+L_{g} S_{1}(x)(\alpha+\beta v) \\
\vdots \\
L_{f}^{n-1} S_{1}(x)+L_{g} L_{f}^{n-2} S_{1}(x)(\alpha+\beta v) \\
L_{f}^{n} S_{1}(x)+L_{g} L_{f}^{n-1} S_{1}(x)(\alpha+\beta v)
\end{array}\right]\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
L_{f} S_{1}(x) \\
\vdots \\
L_{f}^{n-1} S_{1}(x) \\
v
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n} \\
v
\end{array}\right]
\end{aligned}
$$

By using Lemma4.1, the verifiable necessary and sufficient conditions can be obtained as follows.

Theorem 4.1 (Conditions for feedback linearization) System (4.8) is feedback linearizable, if and only if
(i) $\operatorname{rank}\left(\left.\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}\right)=n$.
(ii) Distribution $\Delta_{n-2}(x)$ is involutive, where

$$
\Delta_{n-2}(x) \triangleq \operatorname{span}\left\{g(x), \operatorname{ad}_{f} g(x), \ldots, \operatorname{ad}_{f}^{n-2} g(x)\right\}
$$

Proof Necessity. Suppose that system (4.8) is feedback linearizable. Then, by Lemma4.1, there exists a smooth function $S_{1}(x)$ such that

$$
L_{g} L_{f}^{i} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ;\left.\quad L_{g} L_{f}^{n-1} S_{1}(x)\right|_{x=0} \neq 0
$$

Thus, by Example 4.2.1, condition (i) is satisfied. Also, it is clear, by Example 2.4.16, that

$$
L_{\mathrm{ad}_{f}^{i} g} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ;\left.\quad L_{\mathrm{ad}_{f}^{n-1} g} S_{1}(x)\right|_{x=0} \neq 0
$$

Therefore, by Frobenius Theorem (or Theorem 2.8), distribution $\Delta_{n-2}(x)$ is involutive and condition (ii) is satisfied.

Sufficiency. Suppose that condition (i) and (ii) are satisfied. Then, there exists, by Frobenius Theorem (or Theorem 2.8), a smooth function $S_{1}(x)$ such that $S_{1}(0)=0$ and

$$
\begin{equation*}
L_{\operatorname{ad}_{f}^{i} g} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ;\left.\quad L_{\mathrm{ad}_{f}^{n-1} g} S_{1}(x)\right|_{x=0} \neq 0 \tag{4.18}
\end{equation*}
$$

Then, it is clear, from Example 2.4.16, that

$$
\begin{equation*}
L_{g} L_{f}^{i} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ;\left.\quad L_{g} L_{f}^{n-1} S_{1}(x)\right|_{x=0} \neq 0 \tag{4.19}
\end{equation*}
$$

Therefore, it is clear that $S_{1}(x)$ satisfies condition (i) and (ii) of Lemma4.1. Hence, by Lemma 4.1, system (4.8) is feedback linearizable.
(i) of Theorem 4.1 is called the controllability (or more precisely, reachability) condition, and (ii) is called the involutivity condition. If $n=2$, then $\Delta_{0}=\operatorname{span}\{g\}$ and condition (ii) of Theorem 4.1 is obviously satisfied. Thus, when $n=2$, we need to check the controllability condition only for feedback linearizability.

Suppose that conditions of Theorem 4.1 are satisfied. Then we need to find $S_{1}(x)$, that satisfies (4.18), in order to find a state transformation $z=S(x)$ and a nonsingular feedback $u=\alpha(x)+\beta(x) v$. In other words

$$
\begin{align*}
\frac{\partial S_{1}(x)}{\partial x} & {\left[\left.g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-2} g(x) \operatorname{ad}_{f}^{n-1} g(x)\right|_{x=0}\right] } \tag{4.20}\\
& =c(x)\left[00 \cdots 0(-1)^{n-1}\right]
\end{align*}
$$

where $c(0) \neq 0$ (For example, $c(0)=1$). Thus, we have

$$
\begin{aligned}
\frac{\partial S_{1}(x)}{\partial x} & =c(x)\left[0 \cdots 0(-1)^{n-1}\right]\left[\left.g(x) \cdots \operatorname{ad}_{f}^{n-2} g(x) \operatorname{ad}_{f}^{n-1} g(x)\right|_{x=0}\right]^{-1} \\
& \triangleq c(x) \omega(x)
\end{aligned}
$$

If one form $\omega(x)=\left[\omega_{1}(x) \cdots \omega_{n}(x)\right]$ is exact, then we can let $c(x)=1$. Otherwise, we need to find a scalar function $c(x)$ such that $c(x) \omega(x)$ is exact. By Theorem 2.8 (Frobenius Theorem), we know the existence of such $c(x)$. Thus, we have, by Lemma 2.1, that

$$
\frac{\partial\left(c(x) \omega(x)^{\top}\right)}{\partial x}=\left(\frac{\partial\left(c(x) \omega(x)^{\top}\right)}{\partial x}\right)^{\top}
$$

or

$$
c(x) \frac{\partial \omega(x)^{\top}}{\partial x}+\omega(x)^{\top} \frac{\partial c(x)}{\partial x}=c(x)\left(\frac{\partial \omega(x)^{\top}}{\partial x}\right)^{\top}+\left(\frac{\partial c(x)}{\partial x}\right)^{\top} \omega(x)
$$

which implies that

$$
\begin{align*}
\left(\frac{\partial \ln c(x)}{\partial x}\right)^{\top} \omega(x)-\omega(x)^{\top} \frac{\partial \ln c(x)}{\partial x} & =\frac{\partial \omega(x)^{\top}}{\partial x}-\left(\frac{\partial \omega(x)^{\top}}{\partial x}\right)^{\top} \tag{4.21}\\
& \triangleq Q(x)
\end{align*}
$$

Since the both sides of (4.21) are skew-symmetric matrix, we have the following $\binom{n}{2}$ equations:

$$
\begin{equation*}
\frac{\partial \ln c(x)}{\partial x}\left[W_{1}(x) W_{2}(x) \cdots W_{n-1}(x)\right] \triangleq \frac{\partial \ln c(x)}{\partial x} \bar{W}(x)=\bar{Q}(x) \tag{4.22}
\end{equation*}
$$

where $Q(x)=\left\{q_{i j}(x)\right\}$ and for $1 \leq i \leq n-1$,

$$
W_{i}(x)=\left[\begin{array}{cccc}
O_{(i-1) \times 1} & O_{(i-1) \times 1} & \cdots & O_{(i-1) \times 1} \\
\omega_{i+1}(x) & \omega_{i+2}(x) & \cdots & \omega_{n}(x) \\
-\omega_{i}(x) & 0 & \cdots & 0 \\
0 & -\omega_{i}(x) & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & -\omega_{i}(x)
\end{array}\right](n \times(n-i) \text { matrix })
$$

and

$$
\bar{Q}(x)=\left[q_{12}(x) \cdots q_{1 n}(x) q_{23}(x) \cdots q_{2 n}(x) \cdots q_{(n-1) n}(x)\right] .
$$

For example, if $n=4$, then we have

$$
\left.\begin{array}{c}
\frac{\partial \ln c(x)}{\partial x}\left[\begin{array}{cccccc}
\omega_{2}(x) & \omega_{3}(x) & \omega_{4}(x) & 0 & 0 & 0 \\
-\omega_{1}(x) & 0 & 0 & \omega_{3}(x) & \omega_{4}(x) & 0 \\
0 & -\omega_{1}(x) & 0 & -\omega_{2}(x) & 0 & \omega_{4}(x) \\
0 & 0 & -\omega_{1}(x) & 0 & -\omega_{2}(x) & -\omega_{3}(x)
\end{array}\right] \\
\quad=\left[\begin{array}{lllll}
q_{12}(x) & q_{13}(x) & q_{14}(x) & q_{23}(x) & q_{24}(x)
\end{array} q_{34}(x)\right.
\end{array}\right] .
$$

Then it is easy to see that

$$
\omega(x) \bar{W}(x)=O .
$$

Since $\omega(0) \neq 0$, it is easy to see that $\operatorname{rank}(\bar{W}(x))=\operatorname{rank}(\bar{W}(0))=n-1$ and $\frac{\partial \ln c(x)}{\partial x}=\frac{-1}{\omega_{K}(x)}\left[q_{K 1}(x) q_{K 2}(x) \cdots q_{K n}(x)\right]=\frac{-1}{\omega_{K}(x)} \mathbf{q}_{K}(x)$ is a particular solution of linear algebraic equation (4.22), where $\omega_{K}(0) \neq 0$ and $\mathbf{q}_{K}(x)$ is the K th row of $Q(x)$. Therefore, the general solution of linear equation (4.22) is

$$
\begin{equation*}
\frac{\partial \ln c(x)}{\partial x}=\frac{-1}{\omega_{K}(x)} \mathbf{q}_{K}(x)+d(x) \omega(x) \tag{4.23}
\end{equation*}
$$

where $d(x)$ is a smooth function on a neighborhood of the origin. If one form $\frac{-1}{\omega_{K}(x)} \mathbf{q}_{K}(x)$ is exact, then we can find easily $\ln c(x), c(x)$, and $S_{1}(x)$ such that

$$
\begin{equation*}
\frac{\partial \ln c(x)}{\partial x}=\frac{-1}{\omega_{K}(x)} \mathbf{q}_{K}(x) \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial S_{1}(x)}{\partial x}=c(x) \omega(x) \tag{4.25}
\end{equation*}
$$

(See MATLAB function $\mathbf{S 1}(f, g, x)$ and $\mathbf{C X e x a c t}(\omega, x)$ in Appendix C.) However, if one form $\frac{-1}{\omega_{K}(x)} \mathbf{q}_{K}(x)$ is not exact, we need to find $c(x)$ without MATLAB program such that $c(x) \omega(x)$ is exact.

Example 4.2.2 In Example 3.2.6, it is shown that system (3.21) is not state equivalent to a linear system. Show that system (3.21) is feedback linearizable.

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{4.26}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u=f(x)+g(x) u
$$

Solution Since

$$
g(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and } \operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

condition (i) and (ii) of Theorem4.1 are satisfied. Therefore, system (3.21) is feedback linearizable. A state transformation (4.14) and feedback (4.15) can be found as follows. By (4.20), we have

$$
c(x)[0-1]=\left[\begin{array}{ll}
\frac{\partial S_{1}(x)}{\partial x_{1}} & \frac{\partial S_{1}(x)}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

which implies that $\left[\frac{\partial S_{1}(x)}{\partial x_{1}} \frac{\partial S_{1}(x)}{\partial x_{2}}\right]=c(x)\left[\begin{array}{ll}1 & 0\end{array}\right]$. We need to find a scalar function $c(x)(\neq 0)$ such that $\frac{\partial}{\partial x_{2}}\left(\frac{\partial S_{1}(x)}{\partial x_{1}}\right)=\frac{\partial}{\partial x_{1}}\left(\frac{\partial S_{1}(x)}{\partial x_{2}}\right)$ or $\frac{\partial c(x)}{\partial x_{2}}=0$. Since one form [10 10$]$ is exact, we have that $c(x)=1$ and $S_{1}(x)=x_{1} .\left(c(x)\right.$ is not unique. $c(x)=1+2 x_{1}$ and $S_{1}(x)=x_{1}+x_{1}^{2}$ also work.) Thus, it is easy to see that

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(x) \\
L_{f} S_{1}(x)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

and

$$
u=-\frac{L_{f}^{2} S_{1}(x)}{L_{g} L_{f} S_{1}(x)}+\frac{1}{L_{g} L_{f} S_{1}(x)} v=-x_{1}^{2}+v
$$

It is easy to see that

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v .
$$

Example 4.2.3 Find out a state transformation $z=S(x)$ and a feedback $u=\alpha(x)+$ $\beta(x) v$ such that the closed-loop system of system (3.23) in Example 3.2.7 satisfies the Brunovsky canonical form

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}^{3}-x_{1} \\
-x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
1+2 x_{2} \\
1
\end{array}\right] u=f(x)+g(x) u
$$

Solution Since

$$
\operatorname{det}\left(\left[g(x) \operatorname{ad}_{f} g(x)\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1+2 x_{2} & 1+2 x_{2}+4 x_{2}^{2} \\
1 & 2 x_{2}
\end{array}\right]\right)=1
$$

controllability condition (i) of Theorem 4.1 is satisfied. Since $n=2$, involutivity condition (ii) of Theorem 4.1 is trivially satisfied. Therefore, by Theorem4.1, system (3.23) is feedback linearizable. By (4.20), we have

$$
\begin{aligned}
c(x)[0-1] & =\frac{\partial S_{1}(x)}{\partial x}\left[\left.g(x) \operatorname{ad}_{f} g(x)\right|_{x=0}\right] \\
& =\left[\frac{\partial S_{1}(x)}{\partial x_{1}} \frac{\partial S_{1}(x)}{\partial x_{2}}\right]\left[\begin{array}{cc}
1+2 x_{2} & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

which implies that $\left[\frac{\partial S_{1}(x)}{\partial x_{1}} \frac{\partial S_{1}(x)}{\partial x_{2}}\right]=c(x)\left[-11+2 x_{2}\right]$. We need to find a scalar function $c(x)(\neq 0)$ such that $\frac{\partial}{\partial x_{2}}\left(\frac{\partial S_{1}(x)}{\partial x_{1}}\right)=\frac{\partial}{\partial x_{1}}\left(\frac{\partial S_{1}(x)}{\partial x_{2}}\right)$ or $-\frac{\partial c(x)}{\partial x_{2}}=\left(1+2 x_{2}\right) \frac{\partial c(x)}{\partial x_{1}}$. Since one form $\left[\begin{array}{ll}-1 & 1+2 x_{2}\end{array}\right]$ is exact, we have that $c(x)=1$ and $S_{1}(x)=-x_{1}+$ $x_{2}+x_{2}^{2}$. Thus, we have that

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(x) \\
L_{f} S_{1}(x)
\end{array}\right]=\left[\begin{array}{c}
-x_{1}+x_{2}+x_{2}^{2} \\
x_{1}-x_{2}^{2}
\end{array}\right]
$$

and

$$
u=-\frac{L_{f}^{2} S_{1}(x)}{L_{g} L_{f} S_{1}(x)}+\frac{1}{L_{g} L_{f} S_{1}(x)} v=x_{1}+v
$$

Then, it is easy to see that

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v .
$$

Example 4.2.4 Show that the following nonlinear control system is feedback linearizable. Also, find a linearizing state transformation and feedback.

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{4.27}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{1} \\
x_{2}+x_{1} x_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u=f(x)+g(x) u
$$

Solution By simple calculation, we have

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
0 \\
-1 \\
-x_{3}
\end{array}\right] \text { and } \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{c}
1 \\
0 \\
1-x_{2}
\end{array}\right]
$$

which implies that condition (i) of Theorem 4.1 is satisfied. Since $\left[g(x), \operatorname{ad}_{f} g(x)\right]=$ 0 , distribution $\Delta_{1}(x)=\operatorname{span}\left\{g(x), \operatorname{ad}_{f} g(x)\right\}$ is involutive and condition (ii) is also satisfied. Therefore, by Theorem4.1, system (4.27) is feedback linearizable. By (4.20), we have

$$
\begin{aligned}
c(x)\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] & =\left[\begin{array}{lll}
L_{g} S_{1}(x) & L_{\mathrm{ad}_{f} g} S_{1}(x) & L_{\left.\mathrm{ad}_{f}^{2} g\right|_{x=0}} S_{1}(x)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial S_{1}(x)}{\partial x_{1}} \frac{\partial S_{1}(x)}{\partial x_{2}} \frac{\partial S_{1}(x)}{\partial x_{3}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 0 \\
0 & -x_{3} & 1
\end{array}\right]
\end{aligned}
$$

which implies that $\left[\frac{\partial S_{1}(x)}{\partial x_{1}} \frac{\partial S_{1}(x)}{\partial x_{2}} \frac{\partial S_{1}(x)}{\partial x_{3}}\right]=c(x)\left[0-x_{3} 1\right] \triangleq c(x) \omega(x)$. Note that one form $\omega(x)$ is not exact. We need to find a scalar function $c(x)(c(0)=1)$ such that $\frac{\partial}{\partial x_{j}}\left(\frac{\partial S_{1}(x)}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\frac{\partial S_{1}(x)}{\partial x_{j}}\right)$ for $i \neq j$ or

$$
\begin{aligned}
\frac{\partial c(x)}{\partial x_{1}} & =0 \\
\frac{\partial c(x)}{\partial x_{2}} & =\frac{\partial\left(-c(x) x_{3}\right)}{\partial x_{3}}=-c(x)-\frac{\partial c(x)}{\partial x_{3}} x_{3}
\end{aligned}
$$

We have, by (4.24) and (4.25), that $\omega_{3}(0)=1 \neq 0$

$$
\begin{gathered}
Q(x) \triangleq \frac{\partial \omega(x)^{\top}}{\partial x}-\left(\frac{\partial \omega(x)^{\top}}{\partial x}\right)^{\top}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \\
\frac{\partial \ln c(x)}{\partial x}=\frac{-1}{\omega_{3}(0)} \mathbf{q}_{3}(x)=\left[\begin{array}{ll}
0-1 & 0
\end{array}\right]
\end{gathered}
$$

Since one form $\frac{-1}{\omega_{3}(0)} \mathbf{q}_{3}(x)$ is exact, we have $\ln c(x)=-x_{2}, c(x)=e^{-x_{2}}$, and $S_{1}(x)=$ $x_{3} e^{-x_{2}}$. Thus, we have that

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(x) \\
L_{f} S_{1}(x) \\
L_{f}^{2} S_{1}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{3} e^{-x_{2}} \\
x_{2} e^{-x_{2}} \\
x_{1}\left(1-x_{2}\right) e^{-x_{2}}
\end{array}\right]
$$

and

$$
u=-\frac{L_{f}^{3} S_{1}(x)}{L_{g} L_{f}^{2} S_{1}(x)}+\frac{1}{L_{g} L_{f}^{2} S_{1}(x)} v=\frac{x_{1}^{2} x_{2}-2 x_{1}^{2}-x_{2}^{2}+x_{2}}{x_{2}-1}+\frac{e^{x_{2}}}{1-x_{2}} v
$$

Then, it is easy to see that

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] v .
$$

Example 4.2.5 Feedback linearize the following nonlinear system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{4.28}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}-x_{1}^{2} \\
x_{3}+2 x_{1} x_{2}-x_{1}^{3} \\
x_{1}^{2}-3 x_{1}^{2} x_{2}+3 x_{1}^{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1+x_{1}
\end{array}\right] u=f(x)+g(x) u
$$

Solution By simple calculation, we have

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
0 \\
-1-x_{1} \\
x_{2}-x_{1}^{2}
\end{array}\right] \text { and } \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{c}
1+x_{1} \\
4 x_{1}^{2}+2 x_{1}-2 x_{2} \\
-2 x_{1}^{3}-3 x_{1}^{2}+x_{3}
\end{array}\right]
$$

which implies that condition (i) of Theorem 4.1 is satisfied. Since $\left[g(x), \operatorname{ad}_{f} g(x)\right]=$ 0 , distribution $\Delta_{1}(x)=\operatorname{span}\left\{g(x), \operatorname{ad}_{f} g(x)\right\}$ is involutive and condition (ii) is also satisfied. Therefore, by Theorem4.1, system (4.28) is feedback linearizable. By (4.20), we have

$$
c(x)\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial S_{1}(x)}{\partial x_{1}} & \frac{\partial S_{1}(x)}{\partial x_{2}} & \frac{\partial S_{1}(x)}{\partial x_{3}}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1-x_{1} & 0 \\
1+x_{1} & x_{2}-x_{1}^{2} & 0
\end{array}\right]
$$

which implies that $\left[\frac{\partial S_{1}(x)}{\partial x_{1}} \frac{\partial S_{1}(x)}{\partial x_{2}} \frac{\partial S_{1}(x)}{\partial x_{3}}\right]=c(x)\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$. Since one form $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ is exact, we can let $c(x)=1$ and $S_{1}(x)=x_{1}$. Thus, we have

$$
\left[\begin{array}{c}
z_{1} \tag{4.29}\\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(x) \\
L_{f} S_{1}(x) \\
L_{f}^{2} S_{1}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2}-x_{1}^{2} \\
x_{3}+x_{1}^{3}
\end{array}\right]
$$

and

$$
\begin{equation*}
u=-\frac{L_{f}^{3} S_{1}(x)}{L_{g} L_{f}^{2} S_{1}(x)}+\frac{1}{L_{g} L_{f}^{2} S_{1}(x)} v=-\frac{x_{1}^{2}}{1+x_{1}}+\frac{1}{1+x_{1}} v \tag{4.30}
\end{equation*}
$$

Then, it is easy to see that

$$
\left[\begin{array}{l}
\dot{z}_{1} \tag{4.31}\\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] v .
$$

Brunovsky canonical form (4.31) is not asymptotically stable, because all eigenvalues are zero. In Example 4.2.5, if we use the feedback

Fig. 4.3 Feedback linearization with the compensator

$$
\begin{aligned}
u & =-\frac{x_{1}^{2}}{1+x_{1}}+\frac{1}{1+x_{1}}\left\{-a_{0} z_{1}-a_{1} z_{2}-a_{2} z_{3}+w\right\} \\
& =-\frac{x_{1}^{2}}{1+x_{1}}+\frac{1}{1+x_{1}}\left\{-a_{0} S_{1}(x)-a_{1} S_{2}(x)-a_{2} S_{3}(x)+w\right\}
\end{aligned}
$$

instead of (4.30), then we have

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] w
$$

whose characteristic equation is $s^{3}+a_{2} s^{2}+a_{1} s+a_{0}=0$. In other words, once the nonlinear system is feedback linearized, we can use the well-known linear system theory to control it. Figure 4.3 shows the block diagram of feedback linearization with the compensation.

In Example 4.2.5, state transformation (4.29) is valid for all x , but feedback (4.30) works only when $x_{1} \neq-1$. Therefore, the nonlinear system (4.28) is not globally feedback linearizable. System (4.28) is locally feedback linearizable (on $\left\{x \in \mathbb{R}^{3} \mid x_{1}>-1\right\}$). The neighborhood of the origin, for local linearization, depends on how far the state transformation and feedback are valid.

For system (4.8), let us define the following distributions:

$$
\begin{align*}
\Delta_{0}(x) & =\operatorname{span}\{g(x)\} \\
\Delta_{i}(x) & =\Delta_{i-1}(x)+\left[f(x), \Delta_{i-1}(x)\right], \quad i \geq 1 \tag{4.32}
\end{align*}
$$

or for $i \geq 0$,

$$
\begin{align*}
\Delta_{i}(x) & \triangleq \operatorname{span}\left\{\operatorname{ad}_{f}^{k} g(x) \mid 0 \leq k \leq i\right\} \tag{4.33}\\
& =\operatorname{span}\left\{g(x), \operatorname{ad}_{f} g(x), \ldots, \operatorname{ad}_{f}^{i} g(x)\right\}
\end{align*}
$$

With nonsingular feedback $u=\alpha(x)+\beta(x) v$, we have the following closed-loop system:

$$
\begin{align*}
\dot{x} & =f(x)+g(x) \alpha(x)+g(x) \beta(x) v \tag{4.34}\\
& \triangleq \hat{f}(x)+\hat{g}(x) v .
\end{align*}
$$

It is clear that

$$
\begin{equation*}
f(x)=\hat{f}(x)+\hat{g}(x) \hat{\alpha}(x) ; \quad g(x)=\hat{g}(x) \hat{\beta}(x) \tag{4.35}
\end{equation*}
$$

where $\hat{\beta}(x)=\beta(x)^{-1}$ and $\hat{\alpha}(x)=-\hat{\beta}(x) \alpha(x)$. For the closed-loop system (4.47), we can also define the following distributions:

$$
\begin{align*}
\hat{\Delta}_{0}(x) & =\operatorname{span}\{\hat{g}(x)\} \\
\hat{\Delta}_{i}(x) & =\hat{\Delta}_{i-1}(x)+\operatorname{ad}_{\hat{f}} \hat{\Delta}_{i-1}(x), \quad i \geq 1 \tag{4.36}
\end{align*}
$$

or for $i \geq 0$,

$$
\begin{align*}
\hat{\Delta}_{i}(x) & \triangleq \operatorname{span}\left\{\operatorname{ad}_{\hat{f}}^{k} \hat{g}(x) \mid 0 \leq k \leq i\right\} \tag{4.37}\\
& =\operatorname{span}\left\{\hat{g}(x), \operatorname{ad}_{\hat{f}} \hat{g}(x), \ldots, \operatorname{ad}_{\hat{f}}^{i} \hat{g}(x)\right\}
\end{align*}
$$

Example 4.2.6 Suppose that $\operatorname{dim}\left(\Delta_{n-1}(x)\right)=n$ and $0 \leq k \leq n-2$. Show that if distribution $\Delta_{k}(x)$ is involutive, then $\Delta_{k-1}(x)$ is also involutive.

Solution Suppose that $\Delta_{k}(x)$ is involutive. Assume that $\Delta_{k-1}(x)$ is not involutive. Then, there exists i and j such that $j<i \leq k-1$ and

$$
\left[\operatorname{ad}_{f}^{i} g(x), \operatorname{ad}_{f}^{j} g(x)\right]=c(x) \operatorname{ad}_{f}^{k} g(x)+Y(x)
$$

where $c(x) \neq 0$ and $Y(x) \in \Delta_{k-1}(x)$. By Jacobi identity (or (2.18)), it is clear that

$$
\left[f,\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{j} g\right]\right]=\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{j+1} g\right]-\left[\operatorname{ad}_{f}^{j} g, \operatorname{ad}_{f}^{i+1} g\right]
$$

Thus, we have, by (2.42), that

$$
\begin{aligned}
& {\left[\operatorname{ad}_{f}^{j} g, \operatorname{ad}_{f}^{i+1} g\right]=\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{j+1} g\right]-\left[f,\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{j} g\right]\right]} \\
& =\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{j+1} g\right]-c(x) \operatorname{ad}_{f}^{k+1} g-L_{f} c(x) \operatorname{ad}_{f}^{k} g-[f, Y(x)] \\
& \triangleq-c(x) \operatorname{ad}_{f}^{k+1} g+Z(x)
\end{aligned}
$$

where $Z(x)=\left[\operatorname{ad}_{f}^{i} g, \operatorname{ad}_{f}^{j+1} g\right]-L_{f} c(x) \operatorname{ad}_{f}^{k} g-[f, Y(x)] \in \Delta_{k}(x)$. Since $\operatorname{ad}_{f}^{k+1} g$ $\notin \Delta_{k}(x), c(x) \neq 0$, and $j<i+1 \leq k,\left[\operatorname{ad}_{f}^{j} g, \operatorname{ad}_{f}^{i+1} g\right] \notin \Delta_{k}(x)$ and thus $\Delta_{k}(x)$ is not involutive. It contradicts. Hence, $\Delta_{k-1}(x)$ is involutive.

Theorem 4.2 (Conditions for feedback linearization) System (4.8) is feedback linearizable, if and only if
(i) $\operatorname{dim}\left(\Delta_{n-1}(x)\right)=n$
(ii) $\Delta_{k}(x), 0 \leq k \leq n-2$ are constant dimensional involutive distributions.

Proof Obvious by Theorem 4.1 and Example 4.2.6.
Example 4.2.7 Show that the following nonlinear system is not feedback linearizable.

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{4.38}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{2}^{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u=f(x)+g(x) u
$$

Solution By simple calculation, we have

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
-1 \\
-1-2 x_{2} \\
0
\end{array}\right] \text { and } \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{c}
1+2 x_{2} \\
2 x_{2}^{2}+2 x_{2}-2 x_{3} \\
0
\end{array}\right]
$$

which implies that condition (i) of Theorem4.1 is satisfied. However, since $\left[g(x), \operatorname{ad}_{f} g(x)\right]=\left[\begin{array}{lll}0 & -2 & 0\end{array}\right]^{\top} \notin \Delta_{1}(x)$, distribution $\Delta_{1}(x)=\operatorname{span}\left\{g(x), \operatorname{ad}_{f} g(x)\right\}$ is not involutive and condition (ii) is not satisfied. Therefore, by Theorem 4.1, system (4.28) is not feedback linearizable.

4.3 Multi-input Nonlinear Systems

In this section, we extend the single input results of the previous section to multi-input systems. Consider the following smooth multi-input control systems:

$$
\begin{equation*}
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) u_{i}=f(x)+g(x) u \tag{4.39}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $f(0)=0$. Let us define the following set of vector fields:

$$
\begin{align*}
\Delta_{0}(x) & =\operatorname{span}\left\{g_{i}(x) \mid 1 \leq i \leq m\right\} \\
\Delta_{i}(x) & =\Delta_{i-1}+\left[f(x), \Delta_{i-1}(x)\right], \quad i \geq 1 \tag{4.40}
\end{align*}
$$

or

$$
\begin{equation*}
\Delta_{i}(x) \triangleq \operatorname{span}\left\{\operatorname{ad}_{f}^{k} g_{j}(x) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\}, \quad i \geq 0 \tag{4.41}
\end{equation*}
$$

Then it is clear that

$$
\begin{equation*}
\Delta_{0}(x) \subset \Delta_{1}(x) \subset \Delta_{2}(x) \subset \cdots \subset \Delta_{n-1}(x)=\Delta_{n}(x)=\cdots \tag{4.42}
\end{equation*}
$$

Example 4.3.1 Suppose that $\operatorname{dim}\left(\Delta_{i}(x)\right)=\operatorname{dim}\left(\Delta_{i}(0)\right), i \geq 0$ on a neighborhood U of $0 \in \mathbb{R}^{n}$. In other words, $\Delta_{i}(x), i \geq 0$ are distributions on a neighborhood U of $0 \in \mathbb{R}^{n}$. Show that for $i \geq 0$,

$$
\begin{equation*}
\Delta_{i}(x)=\operatorname{span}\left\{\operatorname{ad}_{f}^{k} g_{j}(x) \mid 1 \leq j \leq m, 0 \leq k \leq \min \left(i, \kappa_{j}-1\right)\right\} \tag{4.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(\Delta_{i}(x)\right)=\sum_{j=1}^{m} \min \left(i+1, \kappa_{j}\right) \tag{4.44}
\end{equation*}
$$

Solution Suppose that $1 \leq p \leq m, \ell \geq \kappa_{p}$, and $i \leq \kappa_{p}-1$. If

$$
\operatorname{ad}_{f}^{\ell} g_{p}(x) \notin \operatorname{span}\left\{\operatorname{ad}_{f}^{k} g_{j}(x) \mid 1 \leq j \leq m, 0 \leq k \leq \min \left(i, \kappa_{j}-1\right)\right\}
$$

then we have that

$$
\left.\operatorname{ad}_{f}^{\ell} g_{p}(x)\right|_{x=0} \notin \operatorname{span}\left\{\left.\operatorname{ad}_{f}^{k} g_{j}(x)\right|_{x=0} \mid 1 \leq j \leq m, 0 \leq k \leq \min \left(i, \kappa_{j}-1\right)\right\}
$$

which contradicts the definition of the Kronecker indices. Thus, it is clear that for $1 \leq p \leq m$ and $\ell \geq \kappa_{p}$

$$
\operatorname{ad}_{f}^{\ell} g_{p}(x) \in \operatorname{span}\left\{\operatorname{ad}_{f}^{k} g_{j}(x) \mid 1 \leq j \leq m, 0 \leq k \leq \min \left(i, \kappa_{j}-1\right)\right\}
$$

Therefore, it is easy to see that (4.43) and (4.44) are satisfied.
Definition 4.3 (g-invariant distribution) For system (4.39), distribution $D(x)$ is said to be g-invariant, if for $1 \leq i \leq m$

$$
\begin{equation*}
\left[g_{i}(x), D(x)\right] \subset D(x) \tag{4.45}
\end{equation*}
$$

Definition $4.4((f, g)$-invariant distribution) For system (4.39), distribution $D(x)$ is said to be (f, g)-invariant, if for $1 \leq i \leq m$

$$
\begin{equation*}
[f(x), D(x)] \subset D(x) \text { and }\left[g_{i}(x), D(x)\right] \subset D(x) \tag{4.46}
\end{equation*}
$$

With nonsingular feedback $u=\alpha(x)+\beta(x) v$, we have the following closed-loop system:

$$
\begin{align*}
\dot{x} & =f(x)+g(x) \alpha(x)+g(x) \beta(x) v \tag{4.47}\\
& \triangleq \hat{f}(x)+\hat{g}(x) v
\end{align*}
$$

It is clear that

$$
\begin{equation*}
f(x)=\hat{f}(x)+\hat{g}(x) \hat{\alpha}(x) ; \quad g(x)=\hat{g}(x) \hat{\beta}(x) \tag{4.48}
\end{equation*}
$$

where $\hat{\beta}(x)=\beta(x)^{-1}$ and $\hat{\alpha}(x)=-\hat{\beta}(x) \alpha(x)$. For the closed-loop system (4.47), we can also define the following distributions:

$$
\begin{align*}
& \hat{\Delta}_{0}(x)=\operatorname{span}\left\{\hat{g}_{j}(x) \mid 1 \leq j \leq m\right\} \\
& \hat{\Delta}_{i}(x)=\hat{\Delta}_{i-1}(x)+\left[\hat{f}(x), \hat{\Delta}_{i-1}(x)\right], \quad i \geq 1 \tag{4.49}
\end{align*}
$$

or

$$
\begin{equation*}
\hat{\Delta}_{i}(x) \triangleq \operatorname{span}\left\{\operatorname{ad}_{\hat{f}}^{k} \hat{g}_{j}(x) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\}, \quad i \geq 0 \tag{4.50}
\end{equation*}
$$

Example 4.3.2 Show that if $\Delta_{i}(x), i \geq 0$ are g-invariant, then

$$
\begin{equation*}
\hat{\Delta}_{i}(x)=\Delta_{i}(x), \quad i \geq 0 \tag{4.51}
\end{equation*}
$$

Solution Suppose that for $i \geq 0$,

$$
\begin{equation*}
\left[g_{j}(x), \Delta_{i}(x)\right] \subset \Delta_{i}(x), \quad 1 \leq j \leq m \tag{4.52}
\end{equation*}
$$

Let $\beta_{k j}(x)$ and $\hat{\beta}_{k j}(x)$ be the $k j$-element of $\beta(x)$ and $\hat{\beta}(x)$, respectively. Since $\hat{g}_{j}(x)=$ $\sum_{k=1}^{m} \beta_{k j}(x) g_{k}(x)$ and $g_{j}(x)=\sum_{k=1}^{m} \beta_{k j}(x) \hat{g}_{k}(x)$, we have that $\hat{\Delta}_{0}(x) \subset \Delta_{0}(x)$ and $\Delta_{0}(x) \subset \hat{\Delta}_{0}(x)$, respectively. Thus, it is clear that $\hat{\Delta}_{0}(x)=\Delta_{0}(x)$. Assume that $i \geq 1$ and $\hat{\Delta}_{i-1}(x)=\Delta_{i-1}(x)$. Then it is easy to see, by (2.42), (4.40), (4.42), and (4.52), that

$$
\begin{aligned}
\hat{\Delta}_{i}(x) & =\hat{\Delta}_{i-1}(x)+\left[\hat{f}(x), \hat{\Delta}_{i-1}(x)\right] \\
& =\Delta_{i-1}(x)+\left[f(x)+\sum_{k=1}^{m} \alpha_{k}(x) g_{k}(x), \Delta_{i-1}(x)\right] \\
& \subset \Delta_{i-1}(x)+\left[f, \Delta_{i-1}\right]+\sum_{k=1}^{m} \alpha_{k}(x)\left[g_{k}, \Delta_{i-1}\right]+\Delta_{0} \\
& \subset \Delta_{i}(x) .
\end{aligned}
$$

Similarly, we can show that $\Delta_{i}(x) \subset \hat{\Delta}_{i}(x)$. Thus, we have $\hat{\Delta}_{i}(x)=\Delta_{i}(x)$. Therefore, by mathematical induction, (4.51) is satisfied.
Lemma 4.2 If system (4.39) is feedback linearizable, then

$$
\operatorname{dim}\left(\Delta_{n-1}(x)\right)=n
$$

Proof Suppose that system (4.39) is feedback linearizable with state transformation $z=S(x)$ and nonsingular feedback $u=\alpha(x)+\beta(x) v$. Then it is clear, by (4.6), that

$$
S_{*}(\hat{f}(x))=A z ; \quad S_{*}\left(\hat{g}_{j}(x)\right)=b_{j}
$$

where $\hat{f}(x)=f(x)+g(x) \alpha(x), \hat{g}(x)=g(x) \beta(x), f(x)=\hat{f}(x)+\hat{g}(x) \hat{\alpha}(x)$, and $g(x)=\hat{g}(x) \hat{\beta}(x)$. It is easy to see, by (2.28) and Example 2.4.14, that for $i \geq 0$, $1 \leq j \leq m, 1 \leq \ell \leq m$, and $0 \leq k \leq i$

$$
\begin{aligned}
{\left[\hat{g}_{j}(x), \operatorname{ad}_{\hat{f}}^{k} \hat{g}_{\ell}(x)\right] } & =\left[S_{*}^{-1}\left(b_{j}\right), S_{*}^{-1}\left(A^{k} b_{\ell}\right)\right]=S_{*}^{-1}\left(\left[b_{j}, A^{k} b_{\ell}\right]\right) \\
& =0 \in \hat{\Delta}_{i}(x)
\end{aligned}
$$

which implies that $\hat{\Delta}_{i}(x), i \geq 0$ are g-invariant. Therefore, it is clear, from Example 4.3.2, that $\hat{\Delta}_{i}(x)=\Delta_{i}(x), i \geq 0$. Since for $i \geq 0$,

$$
\begin{aligned}
\hat{\Delta}_{i}(x) & \triangleq \operatorname{span}\left\{\operatorname{ad}_{\hat{f}}^{k} \hat{g}_{j}(x) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\} \\
& =\operatorname{span}\left\{S_{*}^{-1}\left(A^{k} b_{\ell}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\}
\end{aligned}
$$

it is easy to see that $\operatorname{dim}\left(\Delta_{n-1}(x)\right)=\operatorname{dim}\left(\hat{\Delta}_{n-1}(x)\right)=\sum_{i=1}^{m} \kappa_{i}=n$.
Example 4.3.3 Let $1 \leq j \leq m$. Suppose that for $1 \leq i \leq j$

$$
\begin{equation*}
L_{g} L_{f}^{k} S_{i 1}(x)=0, \quad 0 \leq k \leq \kappa_{i}-2 \tag{4.53}
\end{equation*}
$$

and

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
L_{g} L_{f}^{\kappa_{1}-1} S_{11}(x) \tag{4.54}\\
L_{g} L_{f}^{\kappa_{2}-1} S_{21}(x) \\
\vdots \\
L_{g} L_{f}^{\kappa_{j}-1} S_{j 1}(x)
\end{array}\right]\right|_{x=0}\right)=j
$$

Show that

$$
\left\{\left.d\left(L_{f}^{\ell} S_{i 1}(x)\right)\right|_{x=0} \mid 1 \leq i \leq j, 0 \leq \ell \leq \kappa_{i}-1\right\}
$$

is a set of linearly independent 1-forms.
Solution We can assume, without loss of generality, that $\kappa_{1} \geq \kappa_{2} \geq \cdots \geq \kappa_{j}$. Let

$$
\kappa_{1}=\cdots=\kappa_{m_{1}}>\kappa_{m_{1}+1}=\cdots=\kappa_{m_{2}}>\cdots>\kappa_{m_{p-1}+1}=\cdots=\kappa_{m_{p}}
$$

and for $1 \leq q \leq p$

$$
S^{q}(x) \triangleq\left[\begin{array}{c}
S_{\left(m_{q-1}+1\right) 1}(x) \\
\vdots \\
S_{m_{q} 1}(x)
\end{array}\right]
$$

where $m_{p}=j$ and $m_{0} \triangleq 0$. Suppose that

$$
\begin{gather*}
\left.\sum_{i=1}^{p-1} \sum_{\ell=0}^{\kappa_{m_{i}}-\kappa_{m_{i+1}}-1} c_{\ell}^{i}\left[\begin{array}{c}
d\left(L_{f}^{\ell+\kappa_{m_{1}}-\kappa_{m_{i}}} S^{1}(x)\right) \\
d\left(L_{f}^{\ell+\kappa_{m_{2}}-\kappa_{m_{i}}} S^{2}(x)\right) \\
\vdots \\
d\left(L_{f}^{\ell} S^{i}(x)\right)
\end{array}\right]\right|_{x=0} \tag{4.55}\\
+\left.\sum_{\ell=0}^{\kappa_{m_{p}-1}} c_{\ell}^{p}\left[\begin{array}{c}
d\left(L_{f}^{\ell+\kappa_{m_{1}}-\kappa_{m_{p}}} S^{1}(x)\right) \\
d\left(L_{f}^{\ell+\kappa_{m_{2}}-\kappa_{m_{p}}} S^{2}(x)\right) \\
\vdots \\
d\left(L_{f}^{\ell} S^{p}(x)\right)
\end{array}\right]\right|_{x=0}=O_{1 \times n}
\end{gather*}
$$

where $c_{\ell}^{i}, \quad 1 \leq i \leq p$ are $1 \times m_{i}$ vectors for all ℓ. If we postmultiply (4.55) by $\left.\left[g_{1}(x) \cdots g_{m}(x)\right]\right|_{x=0}$, then we have, by (4.53), that

$$
O_{1 \times m_{p}}=\left.c_{\kappa_{m_{p}}-1}^{p}\left[\begin{array}{c}
L_{g} L_{f}^{\kappa_{m_{1}}-1} S^{1}(x) \\
L_{g} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x) \\
\vdots \\
L_{g} L_{f}^{\kappa_{m_{p}}-1} S^{p}(x)
\end{array}\right]\right|_{x=0}
$$

which implies, together with (4.54), that $c_{\kappa_{m_{p}}-1}^{p}=O_{1 \times m_{p}}$. If $\kappa_{m_{p}} \geq 2$, then we can show that $c_{\kappa_{m_{p}-2}}^{q}=O_{1 \times m_{p}}$ by post-multiplying (4.55) by $\left.\left[\operatorname{ad}_{f} g_{1}(x) \cdots \operatorname{ad}_{f} g_{m}(x)\right]\right|_{x=0}$. In this manner, it can be easily shown that $c_{\ell}^{p}=$ $O_{1 \times m_{p}}$ for $0 \leq \ell \leq \kappa_{m_{p}}-1$. Similarly, we can show that $c_{\kappa_{m_{p-1}}-\kappa_{m_{p}}-1}^{p-1}=O_{1 \times m_{p-1}}$ by post-multiplying (4.55) by $\left.\left[\operatorname{ad}_{f}^{\kappa_{m_{p}}} g_{1}(x) \cdots \mathrm{ad}_{f}^{\kappa_{m_{p}}} g_{m}(x)\right]\right|_{x=0}$. In this manner, it can be easily shown that $c_{\ell}^{i}=O_{1 \times m_{i}}$ for $1 \leq i \leq p-1$ and $0 \leq \ell \leq \kappa_{m_{i}}-\kappa_{m_{i+1}}-1$. Therefore, $\left\{\left.d\left(L_{f}^{\ell} S_{i 1}(x)\right)\right|_{x=0} \mid 1 \leq i \leq j, 0 \leq \ell \leq \kappa_{i}-1\right\}$ is a set of linearly independent 1 -forms.

The following Lemma is the multi-input version of Lemma4.1.
Lemma 4.3 System (4.39) is feedback linearizable with state transformation $z=$ $S(x)=\left[S_{11}(x) \cdots S_{1 \kappa_{1}}(x) \cdots S_{m 1}(x) \cdots S_{m \kappa_{m}}(x)\right]^{\top}$ and feedback $u=\alpha(x)+$ $\beta(x) v$, if and only if for $1 \leq i \leq m$
(i) $L_{g} L_{f}^{k} S_{i 1}(x)=0,0 \leq k \leq \kappa_{i}-2$
(ii) $\operatorname{rank}\left(\left.\left[\begin{array}{c}L_{g} L_{f}^{\kappa_{1}-1} S_{11}(x) \\ \vdots \\ L_{g} L_{f}^{\kappa_{m}-1} S_{m 1}(x)\end{array}\right]\right|_{x=0}\right)=m$.

Furthermore, state transformation $z=S(x)=\left[S_{11}(x) \cdots S_{1 \kappa_{1}}(x) \cdots S_{m 1}(x) \cdots\right.$ $\left.S_{m \kappa_{m}}(x)\right]^{\top}$ and feedback $u=\alpha(x)+\beta(x) v$ satisfy that for $1 \leq i \leq m$,

$$
\begin{equation*}
S_{i k}(x)=L_{f}^{k-1} S_{i 1}(x), 2 \leq k \leq \kappa_{i} \tag{4.56}
\end{equation*}
$$

and

$$
\beta(x)=\left[\begin{array}{c}
L_{g} L_{f}^{\kappa_{1}-1} S_{11}(x) \tag{4.57}\\
\vdots \\
L_{g} L_{f}^{\kappa_{m}-1} S_{m 1}(x)
\end{array}\right]^{-1} ; \alpha(x)=-\beta(x)\left[\begin{array}{c}
L_{f}^{\kappa_{1}} S_{11}(x) \\
\vdots \\
L_{f}^{\kappa_{m}} S_{m 1}(x)
\end{array}\right]
$$

Proof Necessity. Suppose that system (4.39) is feedback linearizable with state transformation $\quad z=S(x)=\left[S_{11}(x) \cdots S_{1 \kappa_{1}}(x) \cdots S_{m 1}(x) \cdots S_{m \kappa_{m}}(x)\right]^{\top} \quad$ and feedback $u=\alpha(x)+\beta(x) v$. Then, we have, by (4.6), that for $1 \leq i \leq m$ and $1 \leq k \leq \kappa_{i}-1$

$$
\begin{aligned}
S_{i(k+1)}(x) & =L_{f+g(\alpha+\beta v)} S_{i k}(x) \\
& =L_{f} S_{i k}(x)+L_{g} S_{i k}(x)\{\alpha(x)+\beta(x) v\}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right] } & =\left[\begin{array}{c}
L_{f+g(\alpha+\beta v)} S_{1 \kappa_{1}}(x) \\
\vdots \\
L_{f+g(\alpha+\beta v)} S_{m \kappa_{m}}(x)
\end{array}\right] \\
& =\left[\begin{array}{c}
L_{f} S_{1 \kappa_{1}}(x) \\
\vdots \\
L_{f} S_{m \kappa_{m}}(x)
\end{array}\right]+\left[\begin{array}{c}
L_{g} S_{1 \kappa_{1}}(x) \\
\vdots \\
L_{g} S_{m \kappa_{m}}(x)
\end{array}\right]\{\alpha(x)+\beta(x) v\} .
\end{aligned}
$$

Since $\operatorname{det}(\beta(0)) \neq 0$, it is easy to see that for $1 \leq i \leq m$ and $1 \leq k \leq \kappa_{i}-1$

$$
\begin{equation*}
S_{i(k+1)}(x)=L_{f} S_{i k}(x) ; \quad L_{g} S_{i k}(x)=O_{1 \times m} \tag{4.58}
\end{equation*}
$$

and

$$
\left[\begin{array}{c}
L_{f} S_{1 \kappa_{1}}(x) \tag{4.59}\\
\vdots \\
L_{f} S_{m \kappa_{m}}(x)
\end{array}\right]+\left[\begin{array}{c}
L_{g} S_{1 \kappa_{1}}(x) \\
\vdots \\
L_{g} S_{m \kappa_{m}}(x)
\end{array}\right] \alpha(x)=0 ; \quad\left[\begin{array}{c}
L_{g} S_{1 \kappa_{1}}(x) \\
\vdots \\
L_{g} S_{m \kappa_{m}}(x)
\end{array}\right] \beta(x)=I_{m}
$$

which imply that (4.56) is satisfied. Therefore, it is easy to see, by (4.58) and (4.59), that condition (i), condition (ii) and (4.57) are satisfied.

Sufficiency. Suppose that there exist scalar functions $S_{i 1}(x), 1 \leq i \leq m$ such that condition (i) and condition (ii) are satisfied. Let us define

$$
\begin{aligned}
z & \triangleq\left[z_{11} \cdots z_{1 \kappa_{1}} \cdots z_{m 1} \cdots z_{m \kappa_{m}}\right]^{\top} \\
& =S(x)=\left[S_{11}(x) \cdots S_{1 \kappa_{1}}(x) \cdots S_{m 1}(x) \cdots S_{m \kappa_{m}}(x)\right]^{\top}
\end{aligned}
$$

and feedback $u=\alpha(x)+\beta(x) v$ as (4.56) and (4.57), respectively. Then it is clear, by Example 4.3.3, that $z=S(x)$ is a state transformation. It is easy to see, by condition (i) and (4.56), that

$$
\begin{aligned}
& S_{*}(f+g(\alpha+\beta v))=\left.\frac{\partial S(x)}{\partial x}(f+g(\alpha+\beta v))\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
\frac{\partial S_{11}(x)}{\partial x}(x) \\
\frac{\partial L_{f} S_{11}(x)}{\partial x} \\
\vdots \\
\frac{\partial L_{f}^{\kappa_{f}-1} S_{11}(x)}{\partial x} \\
\vdots \\
\frac{\partial S_{m 1}(x)}{\partial x} \\
\vdots \\
\frac{\partial L_{f f}^{\kappa_{m}-1} S_{m 1}(x)}{\partial x}
\end{array}\right]\{f+g(\alpha+\beta v)\}\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
L_{f} S_{11}(x)+L_{g} S_{11}(x)(\alpha+\beta v) \\
\vdots \\
L_{f}^{\kappa_{1}-1} S_{11}(x)+L_{g} L_{f}^{\kappa_{1}-2} S_{11}(x)(\alpha+\beta v) \\
L_{f}^{\kappa_{1}} S_{11}(x)+L_{g} L_{f}^{\kappa_{1}-1} S_{11}(x)(\alpha+\beta v) \\
\vdots \\
L_{f} S_{11}(x)+L_{g} S_{m 1}(x)(\alpha+\beta v) \\
\vdots \\
L_{f}^{\kappa_{m}} S_{m 1}(x)+L_{g} L_{f}^{\kappa_{m}-1} S_{m 1}(x)(\alpha+\beta v)
\end{array}\right]\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
L_{f} S_{11}(x) \\
\vdots \\
L_{f}^{\kappa_{1}-1} S_{11}(x) \\
v_{1} \\
\vdots \\
L_{f} S_{m 1}(x) \\
\vdots \\
L_{f}^{\kappa_{m}-1} S_{m 1}(x) \\
v_{m}
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
z_{12} \\
\vdots \\
z_{1 \kappa_{1}} \\
v_{1} \\
\vdots \\
z_{m 2} \\
\vdots \\
z_{m \kappa_{m}} \\
v_{m}
\end{array}\right] .
\end{aligned}
$$

Suppose that $\left(\kappa_{1}, \kappa_{2}, \ldots, \kappa_{m}\right)$ is the Kronecker indices of system (4.39). If we let $\kappa_{\max } \triangleq \max \left\{\kappa_{i}, 1 \leq i \leq m\right\}$, it is clear, by the definition of the Kronecker indices, that $\Delta_{\kappa_{\max }-1}(x)=\Delta_{n-1}(x)$.

Lemma 4.4 Suppose that system (4.39) satisfies
(i) $\operatorname{dim}\left(\Delta_{\kappa_{\text {max }}-1}(x)\right)=n$
(ii) $\Delta_{i}(x), 0 \leq i \leq \kappa_{\max }-2$ are involutive distributions on a neighborhood of $0 \in$ \mathbb{R}^{n}.

Then there exist scalar functions $\left\{S_{11}(x), \ldots, S_{m 1}(x)\right\}$ such that for $1 \leq i \leq m$ and $1 \leq j \leq m, S_{i 1}(0)=0$

$$
\begin{gather*}
\frac{\partial S_{i 1}(x)}{\partial x} \operatorname{ad}_{f}^{k-1} g_{j}(x)=0,1 \leq k \leq \kappa_{i}-1 \tag{4.60}\\
\left.\left.\frac{\partial S_{i 1}(x)}{\partial x}\right|_{x=0} \operatorname{ad}_{f}^{\kappa_{i}-1} g_{j}(x)\right|_{x=0}=(-1)^{\kappa_{i}-1} \delta_{i, j}, \text { if } \kappa_{j} \geq \kappa_{i} \tag{4.61}
\end{gather*}
$$

and

$$
\Delta_{i}(x)^{\perp} \triangleq \operatorname{span}\left\{d\left(L_{f}^{k} S_{j 1}(x)\right) \mid 1 \leq j \leq m, 0 \leq k \leq \kappa_{j}-i-2\right\}
$$

In other words, there exist scalar functions $\left\{S_{11}(x), \ldots, S_{m 1}(x)\right\}$ such that condition (i) and condition (ii) of Lemma 4.3 are satisfied.

Proof Suppose that condition (i) and condition (ii) of Lemma 4.4 are satisfied. We can assume, without loss of generality, that $\kappa_{1} \geq \kappa_{2} \geq \cdots \geq \kappa_{m}$. Let

$$
\kappa_{1}=\cdots=\kappa_{m_{1}}>\kappa_{m_{1}+1}=\cdots=\kappa_{m_{2}}>\cdots>\kappa_{m_{p-1}+1}=\cdots=\kappa_{m_{p}}
$$

and

$$
g^{i}(x) \triangleq\left[g_{m_{i-1}+1}(x) \cdots g_{m_{i}}(x)\right]
$$

where $m_{p}=m$ and $m_{0} \triangleq 0$. Note, by Example 4.3.1, that

$$
\begin{align*}
\operatorname{dim}\left(\Delta_{\kappa_{m_{1}}-2}(x)\right) & =\sum_{j=1}^{m} \min \left(\kappa_{m_{1}}-1, \kappa_{j}\right)=\sum_{j=1}^{m_{1}}\left(\kappa_{m_{1}}-1\right)+\sum_{j=m_{1}+1}^{m} \kappa_{j} \\
& =\sum_{j=1}^{m} \kappa_{j}-m_{1}=n-m_{1} . \tag{4.62}
\end{align*}
$$

Thus, there exist, by Frobenius Theorem (or Theorem 2.8), smooth functions $S_{i 1}(x)$, $1 \leq i \leq m_{1}$ such that $S_{i 1}(0)=0$ and

$$
\begin{equation*}
\Delta_{\kappa_{m_{1}}-2}(x)^{\perp}=\operatorname{span}\left\{d S_{i 1}(x) \mid 1 \leq i \leq m_{1}\right\} \tag{4.63}
\end{equation*}
$$

or for $1 \leq i \leq m_{1}$ and $1 \leq j \leq m$

$$
\begin{align*}
& L_{\mathrm{ad}_{f}^{k} g_{j}} S_{i 1}(x)=0, \quad 0 \leq k \leq \kappa_{m_{1}}-2 \\
& \left.L_{g^{1}} L_{f}^{k_{n_{1}}-1} S^{1}(x)\right|_{x=0}=I_{m_{1}} \tag{4.64}
\end{align*}
$$

where $S^{1}(x) \triangleq\left[\begin{array}{c}S_{11}(x) \\ \vdots \\ S_{m_{1} 1}(x)\end{array}\right]$. It is clear, by (4.64) and Example 2.4.16, that for $1 \leq$ $i \leq m_{1}$ and $1 \leq j \leq m$

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{k} g_{j}} L_{f}^{\ell} S_{i 1}(x)=0, \quad 0 \leq k+\ell \leq \kappa_{m_{1}}-2 . \tag{4.65}
\end{equation*}
$$

which implies, together with (4.41), that for $1 \leq i \leq m_{1}$ and $0 \leq \ell \leq \kappa_{m_{1}}-\kappa_{m_{2}}$

$$
\begin{equation*}
d\left(L_{f}^{\ell} S_{i 1}(x)\right) \in \Delta_{\kappa_{m_{2}}-2}(x)^{\perp} . \tag{4.66}
\end{equation*}
$$

Also, it is easy to show, by (4.64) and Example 4.3.3, that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m_{1}, 0 \leq \ell \leq \kappa_{i}-1\right\}\right)=m_{1} \kappa_{m_{1}} . \tag{4.67}
\end{equation*}
$$

Similarly, we have, by Example 4.3.1, that

$$
\begin{align*}
\operatorname{dim}\left(\Delta_{\kappa_{m_{2}}-2}(x)\right) & =\sum_{j=1}^{m} \min \left(\kappa_{m_{2}}-1, \kappa_{j}\right)=\sum_{j=1}^{m_{2}}\left(\kappa_{m_{2}}-1\right)+\sum_{j=m_{2}+1}^{m} \kappa_{j} \\
& =\sum_{j=1}^{m} \kappa_{j}-\sum_{j=1}^{m_{1}}\left(\kappa_{m_{1}}-\kappa_{m_{2}}\right)-m_{2} \tag{4.68}\\
& =n-m_{1}\left(\kappa_{m_{1}}-\kappa_{m_{2}}\right)-m_{2}
\end{align*}
$$

Thus, there exist, by Frobenius Theorem (or Theorem 2.8), smooth functions $h_{i}(x)$, $1 \leq i \leq m_{1}\left(\kappa_{m_{1}}-\kappa_{m_{2}}\right)+m_{2}$ such that $h_{i}(0)=0$ and

$$
\begin{equation*}
\Delta_{\kappa_{m_{2}}-2}(x)^{\perp}=\operatorname{span}\left\{d h_{i}(x) \mid 1 \leq i \leq m_{1}\left(\kappa_{m_{1}}-\kappa_{m_{2}}\right)+m_{2}\right\} . \tag{4.69}
\end{equation*}
$$

By (4.66) and (4.69), there exist at least $\left(m_{2}-m_{1}\right)$ functions $h_{s_{j}}(x), 1 \leq j \leq m_{2}-$ m_{1} such that

$$
d h_{s_{j}}(x) \notin \operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m_{1}, 0 \leq \ell \leq \kappa_{m_{1}}-\kappa_{m_{2}}\right\} .
$$

Let $S_{m_{1}+j}(x)=h_{s_{j}}(x)$ for $1 \leq j \leq m_{2}-m_{1}$. Then, it is easy to see that

$$
\Delta_{\kappa_{m_{2}}-2}(x)^{\perp}=\operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m_{2} .0 \leq \ell \leq \kappa_{i}-\kappa_{m_{2}}\right\} .
$$

In other words, there exist smooth functions $S_{i 1}(x), m_{1}+1 \leq i \leq m_{2}$ such that for $m_{1}+1 \leq i \leq m_{2}$ and $1 \leq j \leq m$

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{k} g_{j}} S_{i 1}(x)=0, \quad 0 \leq k \leq \kappa_{i}-2 \tag{4.70}
\end{equation*}
$$

and

$$
\begin{align*}
& {\left.\left[\begin{array}{cc}
L_{g^{1}} L_{f}^{\kappa_{m_{2}}-1} L_{f}^{\kappa_{m_{1}}-\kappa_{m_{2}}} S^{1}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{2}}-1} L_{f}^{\kappa_{m_{1}}-\kappa_{m_{2}}} S^{1}(x) \\
L_{g^{1}} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x)
\end{array}\right]\right|_{x=0}} \tag{4.71}\\
& =\left.\left[\begin{array}{cc}
L_{g^{1}} L_{f}^{\kappa_{m_{1}}-1} S^{1}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{1}}-1} S^{1}(x) \\
L_{g^{1}} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x)
\end{array}\right]\right|_{x=0}=C=\left[\begin{array}{cc}
I_{m_{1}} & C_{12} \\
O & I_{m_{2}-m_{1}}
\end{array}\right]
\end{align*}
$$

where

$$
S^{1}(x) \triangleq\left[\begin{array}{c}
S_{11}(x) \\
\vdots \\
S_{m_{1} 1}(x)
\end{array}\right] \text { and } S^{2}(x) \triangleq\left[\begin{array}{c}
S_{\left(m_{1}+1\right) 1}(x) \\
\vdots \\
S_{m_{2} 1}(x)
\end{array}\right]
$$

$$
\left(\text { If } C=\left[\begin{array}{cc}
I_{m_{1}} & C_{12} \\
C_{21} & C_{22}
\end{array}\right] \neq\left[\begin{array}{cc}
I_{m_{1}} & C_{12} \\
O & I_{m_{2}-m_{1}}
\end{array}\right]\right. \text {, then use new scalar functions }
$$

$$
\bar{S}^{2}(x)=\left(C_{22}-C_{21} C_{12}\right)^{-1}\left\{S^{2}(x)-C_{21} L_{f}^{\kappa_{m_{1}}-\kappa_{m_{2}}} S^{1}(x)\right\}
$$

instead of $S^{2}(x)$.) Also, it is easy to show, by (4.64), (4.70), (4.71), and Example 4.3.3, that

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m_{2}, 0 \leq \ell \leq \kappa_{i}-1\right\}\right) \\
& \quad=m_{1} \kappa_{m_{1}}+\left(m_{2}-m_{1}\right) \kappa_{m_{2}}=\sum_{i=1}^{m_{2}} \kappa_{i}
\end{aligned}
$$

Let $\Delta_{-1}(x) \triangleq \operatorname{span}\left\{O_{n \times 1}\right\}$. In this manner, we can find smooth functions $S_{i 1}(x), 1 \leq$ $i \leq m_{p}=m$ such that $S_{i 1}(0)=0$ and for $1 \leq q \leq p$

$$
\Delta_{\kappa_{m_{q}}-2}(x)^{\perp}=\operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m_{q} .0 \leq \ell \leq \kappa_{i}-\kappa_{m_{q}}\right\}
$$

In other words, there exist smooth functions $S_{i 1}(x), m_{q-1}+1 \leq i \leq m_{q}$ such that for $m_{q-1}+1 \leq i \leq m_{q}$ and $1 \leq j \leq m$

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{k} g_{j}} S_{i 1}(x)=0, \quad 0 \leq k \leq \kappa_{i}-2 \tag{4.72}
\end{equation*}
$$

and

$$
\begin{align*}
& {\left.\left[\begin{array}{cccc}
L_{g^{1}} L_{f}^{\kappa_{m_{1}}-1} S^{1}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{1}}-1} S^{1}(x) & \cdots & L_{g^{q}} L_{f}^{k_{m_{1}}-1} S^{1}(x) \\
L_{g^{1}} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{2}}-1} S^{2}(x) & \cdots & L_{g^{q}} L_{f}^{\kappa_{m_{2}}-1} \\
\vdots & S^{2}(x) \\
\vdots & \vdots & \vdots \\
L_{g^{1}} L_{f}^{\kappa_{m_{q}}-1} S^{q}(x) & L_{g^{2}} L_{f}^{\kappa_{m_{q}}-1} S^{q}(x) & \cdots & L_{g^{q}} L_{f}^{\kappa_{m_{q}}-1} S^{q}(x)
\end{array}\right]\right|_{x=0}} \tag{4.73}\\
& =\left[\begin{array}{cccc}
I_{m_{1}} & C_{12} & \cdots & C_{1 q} \\
O & I_{m_{2}-m_{1}} & \cdots & C_{2 q} \\
\vdots & \vdots & & \vdots \\
O & O & \cdots & I_{m_{q}-m_{q-1}}
\end{array}\right]
\end{align*}
$$

where $m_{0}=0$ and for $1 \leq q \leq p$

$$
S^{q}(x) \triangleq\left[\begin{array}{c}
S_{\left(m_{q-1}+1\right) 1}(x) \\
\vdots \\
S_{m_{q} 1}(x)
\end{array}\right] .
$$

Also, it is easy to show, by (4.72), (4.73), and Example 4.3.3, that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m_{q}, 0 \leq \ell \leq \kappa_{i}-1\right\}\right)=\sum_{i=1}^{m_{q}} \kappa_{i} \tag{4.74}
\end{equation*}
$$

In this manner, we can find smooth functions $S_{i 1}(x), 1 \leq i \leq m_{p}=m$ such that $S_{i 1}(0)=0$

$$
\begin{gather*}
L_{\mathrm{ad}_{f}^{k} g} S_{i 1}(x)=0, \quad 0 \leq k \leq \kappa_{i}-2 \tag{4.75}\\
\operatorname{rank}\left(\left[\begin{array}{ccc}
L_{\mathrm{ad}_{f}^{k_{1}-1} g_{1}} S_{11}(x) & \cdots & L_{\mathrm{ad}_{f}^{k_{1}-1}{ }_{g_{m}}} S_{11}(x) \\
\vdots & \vdots \\
L_{\mathrm{ad}_{f}^{k_{m}-1} g_{1}} S_{m 1}(x) & \cdots L_{\mathrm{ad}_{f}^{k_{m}-1}{ }_{g_{m}}} S_{m 1}(x)
\end{array}\right]\right) \tag{4.76}\\
=\operatorname{rank}\left(\left[\begin{array}{c}
L_{g} L_{f}^{\kappa_{1}-1} S_{11}(x) \\
\vdots \\
L_{g} L_{f}^{\kappa_{m}-1} S_{m 1}(x)
\end{array}\right]\right)=m
\end{gather*}
$$

and

$$
\operatorname{dim}\left(\operatorname{span}\left\{d\left(L_{f}^{\ell} S_{i 1}(x)\right) \mid 1 \leq i \leq m, 0 \leq \ell \leq \kappa_{i}-1\right\}\right)=\sum_{i=1}^{m} \kappa_{i}=n
$$

The proof of Lemma 4.4 seems more complicated than the sufficiency proof of Theorem 4.1. For example, let $n=7, m=3$, and $\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)=(4,2,1)$. Then we can find a scalar function $S_{11}(x)$ such that

$$
\begin{aligned}
& d S_{11}(x) \in\left(\operatorname{span}\left\{g_{1}, g_{2}, g_{3}, \operatorname{ad}_{f} g_{1}, \operatorname{ad}_{f} g_{2}, \operatorname{ad}_{f}^{2} g_{1}\right\}\right)^{\perp} \text { and } \\
& \left.L_{\operatorname{ad}_{f}^{3} g_{1}} S_{11}(x)\right|_{x=0}=-1 \quad\left(\text { or }\left.\quad L_{g_{1}} L_{f}^{3} S_{11}(x)\right|_{x=0}=1\right)
\end{aligned}
$$

Also, we can find a scalar function $S_{21}(x)$ such that

$$
\begin{gathered}
d S_{21}(x) \in\left(\operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\}\right)^{\perp} \text { and } \\
{\left.\left[L_{\mathrm{ad}_{f} g_{1}} S_{21}(x) L_{\mathrm{ad}_{f} g_{2}} S_{21}(x)\right]\right|_{x=0}=[0-1]}
\end{gathered}
$$

Finally, we can find a scalar function $S_{31}(x)$ such that

$$
\left.\left[L_{g_{1}} S_{31}(x) L_{g_{2}} S_{31}(x) L_{g_{3}} S_{31}(x)\right]\right|_{x=0}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
$$

Then it is easy to see that $S_{i 1}(x), 1 \leq i \leq 3$ satisfy

$$
L_{g} L_{f}^{k} S_{i 1}(x)=0,1 \leq i \leq 3 \text { and } 0 \leq k \leq \kappa_{i}-2
$$

and

$$
\left.\left[\begin{array}{c}
L_{g} L_{f}^{3} S_{11}(x) \\
L_{g} L_{f} S_{21}(x) \\
L_{g} S_{31}(x)
\end{array}\right]\right|_{x=0}=\left[\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]
$$

Theorem 4.3 (Conditions for feedback linearization) System (4.39) is locally feedback linearizable, if and only if
(i) $\operatorname{dim}\left(\Delta_{\kappa_{\text {max }}-1}(0)\right)=n$
(ii) $\Delta_{i}(x), 0 \leq i \leq \kappa_{\max }-2$ are involutive distributions on a neighborhood of $0 \in$ \mathbb{R}^{n}.

Proof Necessity. Suppose that system (4.39) is feedback linearizable. Then, by Lemma 4.2, condition (i) of Theorem 4.3 is satisfied. Also, by Lemma 4.3, there exist smooth functions $S_{i 1}(x), 1 \leq i \leq m$ such that condition (i) and (ii) of Lemma 4.3 are satisfied. Thus, we have that for $1 \leq i \leq m$

$$
L_{g} L_{f}^{k} S_{i 1}(x)=0,0 \leq k \leq \kappa_{i}-2
$$

and

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
L_{g} L_{f}^{\kappa_{1}-1} S_{11}(x) \\
\vdots \\
L_{g} L_{f}^{\kappa_{m}-1} S_{m 1}(x)
\end{array}\right]\right|_{x=0}\right)=m
$$

Then, it is clear, by Example 2.4.16, that for $1 \leq i \leq m$ and $1 \leq j \leq m$

$$
L_{\mathrm{ad}_{f}^{k} g_{j}} S_{i 1}(x)=0, \quad 0 \leq k \leq \kappa_{i}-2
$$

and

$$
\operatorname{rank}\left(\left.\left[\begin{array}{ccc}
L_{\mathrm{ad}_{f}^{k_{1}-1}{ }_{g_{1}}} S_{11}(x) & \cdots & L_{\mathrm{ad}_{f}^{k_{1}-1}{ }_{g_{m}}} S_{11}(x) \\
\vdots & & \vdots \\
L_{\mathrm{ad}_{f}^{k_{m-1}}{ }_{g_{1}}} S_{m 1}(x) & \cdots & L_{\mathrm{ad}_{f}^{k_{m}-1}{ }_{g_{m}}} S_{m 1}(x)
\end{array}\right]\right|_{x=0}\right)=m .
$$

Thus, it is easy to see, by (4.41), Examples 4.3.3, and 2.4.16, that for $i \geq 0$

$$
\Delta_{i}(x)^{\perp}=\operatorname{span}\left\{d L_{f}^{k} S_{j 1}(x) \mid 1 \leq j \leq m, 0 \leq k \leq \kappa_{j}-2-i\right\}
$$

and

$$
\begin{aligned}
\operatorname{dim}\left(\Delta_{i}(x)^{\perp}\right) & =\sum_{j=1}^{m} \max \left(\kappa_{j}-1-i, 0\right)=\sum_{j=1}^{m}\left\{\kappa_{j}-\min \left(i+1, \kappa_{j}\right)\right\} \\
& =n-\sum_{j=1}^{m} \min \left(i+1, \kappa_{j}\right)
\end{aligned}
$$

Therefore, by Frobenius Theorem (or Theorem 2.8), $\Delta_{i}(x), 0 \leq i \leq \kappa_{\max }-2$ are involutive distributions with dimension $\sum_{j=1}^{m} \min \left(i+1, \kappa_{j}\right)$ and condition (ii) of Theorem 4.3 is satisfied.

Sufficiency. Suppose that conditions (i) and (ii) of Theorem 4.3 are satisfied. Then, by Lemma 4.4, there exist scalar functions $\left\{S_{11}(x), \ldots, S_{m 1}(x)\right\}$ such that conditions (i) and (ii) of Lemma 4.3 are satisfied. Therefore, by Lemma 4.3, system (4.39) is feedback linearizable.

Example 4.3.4 In Example 3.3.4, it is shown that system (3.39) is not state equivalent to a linear system. Show that system (3.39) is feedback linearizable.

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2} \\
-x_{1}+x_{2}^{2} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1+x_{1}^{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
\end{aligned}
$$

Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$ and

$$
\operatorname{ad}_{f} g_{1}(x)=\left[\begin{array}{c}
-1-x_{1}^{2} \\
2 x_{2}\left(x_{1}-1-x_{1}^{2}\right) \\
0
\end{array}\right]
$$

Since $\kappa_{1}+\kappa_{2}=3$, condition (i) of Theorem4.3 is satisfied. Since $\operatorname{dim}\left(\Delta_{0}(0)\right)=$ $\operatorname{dim}\left(\Delta_{0}(x)\right)=\operatorname{dim}\left(\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}\right)=2, \Delta_{0}(x)$ is a distribution. Also, it is easy to see that distribution $\Delta_{0}(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}$ is involutive and condition (ii) of Theorem 4.3 is satisfied. Therefore, by Theorem 4.3, system (3.39) is feedback linearizable. We need to find scalar functions $S_{11}(x)$ and $S_{21}(x)$ such that

$$
\begin{aligned}
& \operatorname{span}\left\{d S_{11}(x)\right\}=\Delta_{0}(x)^{\perp}=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}^{\perp} \\
& \operatorname{span}\left\{d S_{11}(x), d L_{f} S_{11}(x), d S_{21}(x)\right\}=\Delta_{-1}(x)^{\perp} \triangleq \mathbb{R}^{3}
\end{aligned}
$$

In other words, we have, by (4.60) and (4.61), that $c_{1}(0)=1$ and

$$
\begin{aligned}
c_{1}(x)\left[\begin{array}{lll}
0 & 0 & -1
\end{array}\right] & =\frac{\partial S_{11}(x)}{\partial x}\left[\left.g_{1}(x) g_{2}(x) \operatorname{ad}_{f} g_{1}(x)\right|_{x=0}\right] \\
& =\left[\frac{\partial S_{11}(x)}{\partial x_{1}} \frac{\partial S_{11}(x)}{\partial x_{2}} \frac{\partial S_{11}(x)}{\partial x_{3}}\right]\left[\begin{array}{ccc}
0 & 0 & -1 \\
1+x_{1}^{2} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

which implies that $\frac{\partial S_{11}(x)}{\partial x}=c_{1}(x)\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$. Since $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ is exact, we have $c_{1}(x)=1$ and $S_{11}(x)=x_{1}$. ($S_{11}(x)$ is not unique.) Also, we have, by (4.60) and (4.61), that $c_{2}(0)=1$ and

$$
\begin{aligned}
c_{2}(x)\left[\begin{array}{ll}
0 & 1
\end{array}\right] & =\frac{\partial S_{21}(x)}{\partial x}\left[g_{1}(0) g_{2}(0)\right] \\
& =\left[\begin{array}{ll}
\frac{\partial S_{21}(x)}{\partial x_{1}} & \frac{\partial S_{21}(x)}{\partial x_{2}}
\end{array} \frac{\partial S_{21}(x)}{\partial x_{3}}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

which implies that $\frac{\partial S_{21}(x)}{\partial x}=c_{2}(x)[d(x) 01] .(d(x)$ is a smooth function.) Since $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ is exact, we have $d(x)=0, c_{2}(x)=1$, and $S_{21}(x)=x_{3} .\left(S_{21}(x)\right.$ is not unique.) Then, it is clear, by (4.56) and (4.57), that

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=S(x)=\left[\begin{array}{c}
S_{11}(x) \\
L_{f} S_{11}(x) \\
S_{21}(x)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{c}
L_{g} L_{f} S_{11}(x) \\
L_{g} S_{21}(x)
\end{array}\right]^{-1}\left(-\left[\begin{array}{l}
L_{f}^{2} S_{11}(x) \\
L_{f} S_{21}(x)
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
1+x_{1}^{2} & 0 \\
0 & 1
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
-x_{1}+x_{2}^{2} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{x_{1}-x_{2}^{2}}{1+x_{2}^{2}} \\
-x_{3}^{2}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{1+x_{1}^{2}} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\alpha(x)+\beta(x) v .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right] } & =S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v) \\
& =\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
\end{aligned}
$$

Example 4.3.5 Show that the following nonlinear system is feedback linearizable.

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
x_{2}+2 x_{4} x_{5} \\
x_{3} \\
0 \\
x_{5} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & x_{1} \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{4.77}\\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
\end{align*}
$$

Also, find a state transformation and feedback.
Solution By simple calculation, we have

$$
\left[\operatorname{ad}_{f} g_{1}(x) \operatorname{ad}_{f} g_{2}(x)\right]=\left[\begin{array}{cc}
0 & -2 x_{4} \\
-1 & -x_{1} \\
0 & x_{2}+2 x_{4} x_{5} \\
0 & -1 \\
0 & 0
\end{array}\right] \text { and } \operatorname{ad}_{f}^{2} g_{1}(x)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

It is clear that $\operatorname{dim}\left(\Delta_{0}(0)\right)=\operatorname{dim}\left(\Delta_{0}(x)\right)=\operatorname{dim}\left(\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}\right)=2$, $\operatorname{dim}\left(\Delta_{1}(0)\right)=\operatorname{dim}\left(\Delta_{1}(x)\right)=\operatorname{dim}\left(\operatorname{span}\left\{g_{1}(x), g_{2}(x), \operatorname{ad}_{f} g_{1}(x), \operatorname{ad}_{f} g_{2}(x)\right\}\right)=4$, and $\left(\kappa_{1}, \kappa_{2}\right)=(3,2)$. Since $\kappa_{1}+\kappa_{2}=5$, condition (i) of Theorem 4.3 is satisfied. Also, it is easy to see that $\Delta_{0}(x)$ and $\Delta_{1}(x)$ are involutive distributions and thus condition (ii) of Theorem 4.3 is satisfied. Therefore, by Theorem 4.3, system (4.77) is feedback linearizable. We need to find scalar functions $S_{11}(x)$ and $S_{21}(x)$ such that

$$
\begin{aligned}
& \operatorname{span}\left\{d S_{11}(x)\right\}=\Delta_{1}(x)^{\perp} \\
& \operatorname{span}\left\{d S_{11}(x), d L_{f} S_{11}(x), d S_{21}(x)\right\}=\Delta_{0}(x)^{\perp}
\end{aligned}
$$

In other words, we have, by (4.60) and (4.61), that $c_{1}(0)=1, c_{2}(0)=1$

$$
c_{1}(x)\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]=\frac{\partial S_{11}(x)}{\partial x}\left[\begin{array}{ccccc}
0 & 0 & 0 & -2 x_{4} & 1 \\
0 & 0 & -1 & -x_{1} & 0 \\
1 & x_{1} & 0 & x_{2}+2 x_{4} x_{5} & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
c_{2}(x)\left[\begin{array}{llll}
0 & 0 & 0 & -1
\end{array}\right]=\frac{\partial S_{21}(x)}{\partial x}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & x_{1} & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

which imply that

$$
\frac{\partial S_{11}(x)}{\partial x}=c_{1}(x)\left[\begin{array}{lllll}
1 & 0 & 0 & -2 x_{4} & 0
\end{array}\right]
$$

and

$$
\frac{\partial S_{21}(x)}{\partial x}=c_{2}(x)\left[\begin{array}{lllll}
d_{2}(x) & 0 & 0 & 1 & 0
\end{array}\right]
$$

Since $\left[\begin{array}{llll}1 & 0 & 0 & -2 x_{4}\end{array}\right]$ is exact, we have $c_{1}(x)=1$ and $S_{11}(x)=x_{1}-x_{4}^{2} .\left(S_{11}(x)\right.$ is not unique.) Since $\left[d_{2}(x) 00010\right]$ is exact with $d_{2}(x)=0$, we have $c_{2}(x)=1$ and $S_{21}(x)=x_{4} .\left(S_{21}(x)\right.$ is not unique.) Then, it is clear, by (4.56) and (4.57), that

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]=S(x)=\left[\begin{array}{c}
S_{11}(x) \\
L_{f} S_{11}(x) \\
L_{f}^{2} S_{11}(x) \\
S_{21}(x) \\
L_{f} S_{21}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{4}^{2} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

and

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{l}
L_{g} L_{f}^{2} S_{11}(x) \\
L_{g} L_{f} S_{21}(x)
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
L_{f}^{3} S_{11}(x) \\
L_{f}^{2} S_{21}(x)
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
1 & x_{1} \\
0 & 1
\end{array}\right]^{-1}\left(-\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
1 & -x_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\alpha(x)+\beta(x) v .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4} \\
\dot{z}_{5}
\end{array}\right] } & =\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
& =S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v) .
\end{aligned}
$$

Example 4.3.6 Show that the following nonlinear system is feedback linearizable:

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
x_{2}-x_{4}\left(x_{3}+x_{4}\right) \\
0 \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & x_{1} \\
0 & 1 \\
-1 & -x_{1} \\
1 & x_{1}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{4.78}\\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
\end{align*}
$$

Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,2)$ and

$$
\left[\operatorname{ad}_{f} g_{1}(x) \operatorname{ad}_{f} g_{2}(x)\right]=\left[\begin{array}{cc}
x_{3}+x_{4} & x_{2}+\left(x_{1}-x_{4}\right)\left(x_{3}+x_{4}\right)-1 \\
0 & 0 \\
-1 & x_{4}\left(x_{3}+x_{4}\right)-x_{2}-x_{1} \\
0 & x_{2}-x_{4}\left(x_{3}+x_{4}\right)
\end{array}\right]
$$

Since $\kappa_{1}+\kappa_{2}=4$, condition (i) of Theorem 4.3 is satisfied. It is clear that $\operatorname{dim}\left(\Delta_{0}(0)\right)=\operatorname{dim}\left(\Delta_{0}(x)\right)=\operatorname{dim}\left(\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}\right)=2$. Also, it is easy to see that distribution $\Delta_{0}(x)$ is involutive and thus condition (ii) of Theorem 4.3 is
satisfied. Therefore, by Theorem 4.3, system (4.78) is feedback linearizable. We need to find scalar functions $S_{11}(x)$ and $S_{21}(x)$ such that

$$
\begin{aligned}
\operatorname{span} & \left\{d S_{11}(x), d S_{21}(x)\right\}=\Delta_{0}(x)^{\perp} \\
& =\operatorname{span}\left\{\left[\begin{array}{lll}
1 & -x_{1} & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]\right\} \\
& =\operatorname{span}\left\{d x_{1}-x_{1} d x_{2}, d x_{3}+d x_{4}\right\}
\end{aligned}
$$

In other words, we have, by (4.60) and (4.61), that $c_{1}(0)=1, c_{2}(0)=1$

$$
c_{1}(x)\left[\begin{array}{llll}
0 & 0 & -1 & 0
\end{array}\right]=\frac{\partial S_{11}(x)}{\partial x}\left[\begin{array}{cccc}
0 & x_{1} & 0 & -1 \\
0 & 1 & 0 & 0 \\
-1 & -x_{1} & -1 & 0 \\
1 & x_{1} & 0 & 0
\end{array}\right]
$$

and

$$
c_{2}(x)\left[\begin{array}{llll}
0 & 0 & 0 & -1
\end{array}\right]=\frac{\partial S_{21}(x)}{\partial x}\left[\begin{array}{cccc}
0 & x_{1} & 0 & -1 \\
0 & 1 & 0 & 0 \\
-1 & -x_{1} & -1 & 0 \\
1 & x_{1} & 0 & 0
\end{array}\right]
$$

which imply that

$$
\frac{\partial S_{11}(x)}{\partial x}=c_{1}(x)\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]
$$

and

$$
\frac{\partial S_{21}(x)}{\partial x}=c_{2}(x)\left[\begin{array}{lll}
1-x_{1} & 0 & 0
\end{array}\right]
$$

Since $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ is exact, we have $c_{1}(x)=1$ and $S_{11}(x)=x_{3}+x_{4} .\left(S_{11}(x)\right.$ is not unique.) Since $\left[1-x_{1} 00\right]$ is not exact, we need to find $c_{2}(x)$ such that $c_{2}(x)\left[\begin{array}{lll}1-x_{1} & 0 & 0\end{array}\right]$ is exact. It is easy to see, by (4.24) and (4.25), that $c_{2}(x)=e^{-x_{2}}$ and $S_{21}(x)=x_{1} e^{-x_{2}}$ work. ($S_{21}(x)$ is not unique.) Then, it is clear, by (4.56) and (4.57), that

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=S(x)=\left[\begin{array}{c}
S_{11}(x) \\
L_{f} S_{11}(x) \\
S_{21}(x) \\
L_{f} S_{21}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{3}+x_{4} \\
x_{4} \\
x_{1} e^{-x_{2}} \\
\left(x_{2}-x_{4}\left(x_{3}+x_{4}\right)\right) e^{-x_{2}}
\end{array}\right]
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
L_{g} L_{f} S_{11}(x) \\
L_{g} L_{f} S_{21}(x)
\end{array}\right]^{-1}\left(-\left[\begin{array}{l}
L_{f}^{2} S_{11}(x) \\
L_{f}^{2} S_{21}(x)
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right)} \\
& =\left[\begin{array}{c}
1 \\
x_{1} \\
-\left(x_{3}+x_{4}\right) e^{-x_{2}} \\
\left(1-x_{2}-\left(x_{1}-x_{4}\right)\left(x_{3}+x_{4}\right)\right) e^{-x_{2}}
\end{array}\right]^{-1} \\
& \cdot\left(\left[\begin{array}{c}
0 \\
x_{4}^{2} e^{-x_{2}}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\frac{x_{1} x_{4}^{2}}{1-x_{2}+x_{4}\left(x_{3}+x_{4}\right)} \\
\frac{x_{4}^{4}}{1-x_{2}+x_{4}\left(x_{3}+x_{4}\right)}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1-x_{2}-\left(x_{1}-x_{4}\right)\left(x_{3}+x_{4}\right)}{1-x_{2}+x_{4}\left(x_{4}+x_{4}\right)} & \frac{x_{1} e^{x_{2}}}{1-x_{2}+x_{2}\left(x_{3}+x_{4}\right)} \\
\frac{x_{2}}{1-x_{2}+x_{4}\left(x_{3}+x_{4}\right)} & \frac{1-x_{2}+x_{4}\left(x_{3}+x_{4}\right)}{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
& =\alpha(x)+\beta(x) v \text {. }
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4}
\end{array}\right] } & =\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
& =S_{*}(f(x)+g(x) \alpha(x)+g(x) \beta(x) v)
\end{aligned}
$$

Example 4.3.7 Show that the following nonlinear system is not feedback linearizable.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{4.79}\\
x_{3} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{1} \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(3,1)$ and

$$
\left[\operatorname{ad}_{f} g_{1}(x) \operatorname{ad}_{f} g_{2}(x) \operatorname{ad}_{f}^{2} g_{1}(x) \operatorname{ad}_{f}^{2} g_{2}(x)\right]=\left[\begin{array}{cccc}
0 & x_{2} & 1 & x_{3} \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\kappa_{1}+\kappa_{2}=4$, condition (i) of Theorem4.3 is satisfied. Since $4=\operatorname{dim}\left(\Delta_{1}(x)\right) \neq$ $\operatorname{dim}\left(\Delta_{1}(0)\right)=3$, it is clear that

$$
\Delta_{1}(x)\left(\triangleq \operatorname{span}\left\{g_{1}(x), g_{2}(x), \operatorname{ad}_{f} g_{1}(x), \operatorname{ad}_{f} g_{2}(x)\right\}\right)
$$

is not a distribution on a neighborhood of the origin and condition (ii) of Theorem 4.3 is not satisfied. Therefore, by Theorem 4.3, system (4.79) is not feedback linearizable. If we consider the local linearization on a neighborhood of $x^{0}\left(x_{2}^{0} \neq 0\right)$ instead of a
neighborhood of 0 , we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,2)$ on a neighborhood of $x^{0}\left(x_{2}^{0} \neq 0\right)$ and system (4.79) is feedback linearizable with

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=S(x)=\left[\begin{array}{c}
S_{11}(x) \\
L_{f} S_{11}(x) \\
S_{21}(x) \\
L_{f} S_{21}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{1} e^{-x_{4}} \\
x_{2} e^{-x_{4}}
\end{array}\right]
$$

and

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
L_{g} L_{f} S_{11}(x) \\
L_{g} L_{f} S_{21}(x)
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
L_{f}^{2} S_{11}(x) \\
L_{f}^{2} S_{21}(x)
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right)} \\
=\left[\begin{array}{c}
1 \\
0
\end{array} 0\right. \\
0-x_{2} e^{-x_{4}}
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
x_{4} \\
x_{3} e^{-x_{4}}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) .
$$

Example 4.3.8 Show that the following nonlinear system is not feedback linearizable:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{4.80}\\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{2}^{2} \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$ and

$$
\left[\operatorname{ad}_{f} g_{1}(x) \operatorname{ad}_{f} g_{2}(x)\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Since $\kappa_{1}+\kappa_{2}=3$, condition (i) of Theorem4.3 is satisfied. Since $\operatorname{dim}\left(\Delta_{0}(x)\right)=$ $\operatorname{dim}\left(\Delta_{0}(0)\right)=2$, it is clear that $\Delta_{0}(x)$ is a distribution on a neighborhood of the origin. However, since

$$
\left[g_{1}(x), g_{2}(x)\right]=\left[\begin{array}{c}
2 x_{2} \\
0 \\
0
\end{array}\right] \notin \Delta_{0}(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}
$$

it is clear that distribution $\Delta_{0}(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}$ is not involutive and condition (ii) of Theorem 4.3 is not satisfied. Therefore, by Theorem 4.3, system (4.80) is not feedback linearizable.

4.4 Applications of Feedback Linearization

As seen in Example4.3.8, even a simple nonlinear system may not be feedback linearizable. That is, the class of control systems that is feedback linearizable is relatively small. However, many control systems, including robots, aircraft, and AC motors, belong to this class. For this reason, the problem of feedback linearization has attracted considerable attention.

Example 4.4.1 (magnetic-ball-suspension system) The dynamic equations of the magnetic-ball-suspension system in Fig. 4.4 are

$$
\begin{gathered}
M \frac{d^{2} y(t)}{d t^{2}}=M g-\frac{i(t)^{2}}{y(t)} \\
L \frac{d i(t)}{d t}+\operatorname{Ri}(t)=e(t)
\end{gathered}
$$

where $y(t), M, g, R, L, i(t)$, and $e(t)$ are steel ball position, steel ball mass, gravitational acceleration, winding resistance, winding inductance, winding current, and input voltage, respectively. With the state variables $x_{1}(t)=y(t), x_{2}(t)=\dot{y}(t)$, and $x_{3}(t)=i(t)$, we can obtain the following state equation:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{4.81}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
g-\frac{1}{M} \frac{x_{3}^{2}}{x_{1}} \\
-\frac{R}{L} x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{L}
\end{array}\right] e \triangleq F(x, e)
$$

Fig. 4.4 Magnetic-ballsuspension system of Example 4.4.1

Note that $F(0,0) \neq 0$. Let $x^{0}=\left[\begin{array}{lll}y_{0} & 0 & \sqrt{M g y_{0}}\end{array}\right]^{\top}$ and $e^{0}=R \sqrt{M g y_{0}}$, where $y_{0}>0$. Then $F\left(x^{0}, e^{0}\right)=0$ and $\left(x^{0}, e^{0}\right)$ is an equilibrium point of system (4.81). Since $\dot{\xi}=F\left(\xi+x^{0}, u+e^{0}\right)$, we have

$$
\left[\begin{array}{l}
\dot{\xi}_{1} \tag{4.82}\\
\dot{\xi}_{2} \\
\dot{\xi}_{3}
\end{array}\right]=\left[\begin{array}{c}
\xi_{2} \\
g-\frac{1}{M} \frac{\left(\xi_{3}+x_{3}^{0}\right)^{2}}{\xi_{1}+y_{0}} \\
-\frac{R}{L} \xi_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{L}
\end{array}\right] u \triangleq \bar{f}(\xi)+\bar{g}(\xi) u
$$

where $x_{3}^{0} \triangleq \sqrt{M g y_{0}}$,

$$
\left[\begin{array}{l}
\xi_{1} \tag{4.83}\\
\xi_{2} \\
\xi_{3}
\end{array}\right] \triangleq x-x^{0}=\left[\begin{array}{c}
x_{1}-y_{0} \\
x_{2} \\
x_{3}-\sqrt{M g y_{0}}
\end{array}\right] \text { and } u \triangleq e-e^{0}=e-R \sqrt{M g y_{0}}
$$

Note that $\bar{f}(0)=0$. By simple calculation, we have

$$
\left[\operatorname{ad}_{\bar{f}} \bar{g}(\xi) \operatorname{ad}_{\bar{f}}^{2} \bar{g}(\xi)\right]=\left[\begin{array}{cc}
0 & -\frac{2\left(\xi_{3}+x_{3}^{0}\right)}{L M\left(\xi_{1}+y_{0}\right)} \\
\frac{2\left(\xi_{3}+x_{3}^{0}\right)}{L M\left(\xi_{1}+y_{0}\right)} & \frac{2 x_{3}^{0}\left(R \xi_{1}+R y_{0} L \xi_{2}-2 \xi_{2} \xi_{3}\right.}{L^{2} M\left(\xi_{1}+y_{0}\right)^{2}} \\
\frac{R}{L^{2}} & \frac{R^{2}}{L^{3}}
\end{array}\right]
$$

which implies that condition (i) of Theorem 4.1 is satisfied. Since

$$
\left[\bar{g}(\xi), \operatorname{ad}_{\bar{f}} \bar{g}(\xi)\right]=\left[\begin{array}{c}
0 \\
\frac{2}{L^{2} M\left(\xi_{1}+y_{0}\right)} \\
0
\end{array}\right]=\frac{1}{L\left(\xi_{3}+x_{3}^{0}\right)}\left(\operatorname{ad}_{\bar{f}} \bar{g}(\xi)-\frac{R}{L} \bar{g}(\xi)\right)
$$

distribution $\Delta_{1}(x)=\operatorname{span}\left\{\bar{g}(\xi), \operatorname{ad}_{\bar{f}} \bar{g}(\xi)\right\}$ is involutive and condition (ii) is satisfied. Therefore, by Theorem 4.1, system (4.82) is feedback linearizable. By (4.20), we have

$$
\left.\left.\begin{array}{rl}
c(\xi)\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] & =\frac{\partial S_{1}(\xi)}{\partial \xi}\left[\left.\bar{g}(\xi) \operatorname{ad}_{\bar{f}} \bar{g}(\xi) \operatorname{ad}_{\bar{f}}^{2} \bar{g}(\xi)\right|_{\xi=0}\right.
\end{array}\right] \quad \begin{array}{lll}
\frac{\partial S_{1}(\xi)}{\partial \xi_{1}} & \frac{\partial S_{1}(\xi)}{\partial \xi_{2}} & \frac{\partial S_{1}(\xi)}{\partial \xi_{3}}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -\frac{2 x_{3}^{0}}{L M y_{0}} \\
0 & \frac{2\left(\xi_{3}+x_{3}^{0}\right)}{L M\left(\xi_{1}+y_{0}\right)} & \frac{2 R x_{3}^{0^{2}}}{L^{2} y_{0}} \\
\frac{1}{L} & \frac{R}{L^{2}} & \frac{R^{2}}{L^{3}}
\end{array}\right] .
$$

which implies that $\left[\frac{\partial S_{1}(\xi)}{\partial \xi_{1}} \frac{\partial S_{1}(\xi)}{\partial \xi_{2}} \frac{\partial S_{1}(\xi)}{\partial \xi_{3}}\right]=c(\xi)\left[-\frac{L M y_{0}}{2 x_{3}^{0}} 00\right]$. Since one form $\left[-\frac{L M y_{0}}{2 x_{3}^{0}} 000\right]$ is exact, we can let $c(\xi)=-\frac{2 x_{3}^{0}}{L M y_{0}}$ and $S_{1}(\xi)=\xi_{1}$. Thus, we have that

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(\xi) \\
L_{\bar{f}} S_{1}(\xi) \\
L_{\bar{f}}^{2} S_{1}(\xi)
\end{array}\right]=\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
g-\frac{1}{M} \frac{\left(\xi_{3}+x_{3}^{0}\right)^{2}}{\xi_{1}+y_{0}}
\end{array}\right]
$$

and

$$
\begin{aligned}
u & =-\frac{L_{\bar{f}}^{3} S_{1}(\xi)}{L_{g} L_{\bar{f}}^{2} S_{1}(\xi)}+\frac{1}{L_{\bar{g}} L_{\bar{f}}^{2} S_{1}(\xi)} v \\
& =R \xi_{3}+\frac{L \xi_{2}\left(\xi_{3}+x_{3}^{0}\right)}{2\left(\xi_{1}+y_{0}\right)}-\frac{L M\left(\xi_{1}+y_{0}\right)}{2\left(\xi_{3}+x_{3}^{0}\right)} v
\end{aligned}
$$

Then, it is easy to see that

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] v .
$$

Refer to the MATLAB program in Sect.4.5.
Example 4.4.2 (robot arm) The dynamic equation of the robot arm with p degrees of freedom (or p joints) is

$$
\begin{equation*}
M(q) \ddot{q}+B(q, \dot{q}) \dot{q}+G(q)+F(q, \dot{q})=\tau \tag{4.84}
\end{equation*}
$$

where q is a $p \times 1$ vector representing the position (distance or angle) of each joint. Here, the input τ is a $p \times 1$ vector representing the force or the torque. With the state variables $x^{1} \triangleq q$ and $x^{2} \triangleq \dot{q}$, we can obtain the following state equation.

$$
\left[\begin{array}{c}
\dot{x}^{1} \tag{4.85}\\
\dot{x}^{2}
\end{array}\right]=\left[\begin{array}{c}
x^{2} \\
-M\left(x^{1}\right)^{-1}\left\{B\left(x^{1}, x^{2}\right) x^{2}+G\left(x^{1}\right)+F\left(x^{1}, x^{2}\right)\right\}
\end{array}\right]+\left[\begin{array}{c}
0 \\
M\left(x^{1}\right)^{-1}
\end{array}\right] \tau
$$

If we consider nonlinear feedback

$$
\begin{align*}
\tau & =B\left(x^{1}, x^{2}\right) x^{2}+G\left(x^{1}\right)+F\left(x^{1}, x^{2}\right)+M\left(x^{1}\right) v \tag{4.86}\\
& =\alpha(x)+\beta(x) v
\end{align*}
$$

then we have the linear closed-loop system

$$
\dot{x}=\left[\begin{array}{c}
\dot{x}^{1} \\
\dot{x}^{2}
\end{array}\right]=\left[\begin{array}{ll}
O & I_{p} \\
O & O
\end{array}\right]\left[\begin{array}{l}
x^{1} \\
x^{2}
\end{array}\right]+\left[\begin{array}{c}
O \\
I_{p}
\end{array}\right] v
$$

where I_{p} is the $p \times p$ identity matrix. Therefore, system (4.85) is linearizable with feedback (4.86).

Example 4.4.3 (induction motor) In the $d-q$ coordinate frame rotating synchronously with an angular speed w_{s}, the dynamic equations of a p-pole pair induction motor are

$$
\begin{aligned}
\dot{i}_{d s} & =-a_{1} i_{d s}+w_{s} i_{q s}+a_{2} \Phi_{d r}+p a_{3} w_{r} \Phi_{q r}+c V_{d s} \\
\dot{i}_{q s} & =-w_{s} i_{d s}-a_{1} i_{q s}-p a_{3} w_{r} \Phi_{d r}+a_{2} \Phi_{q r}+c V_{q s} \\
\dot{\Phi}_{d r} & =a_{5} i_{d s}-a_{4} \Phi_{d r}+\left(w_{s}-p w_{r}\right) \Phi_{q r} \\
\dot{\Phi}_{q r} & =a_{5} i_{q s}-\left(w_{s}-p w_{r}\right) \Phi_{d r}-a_{4} \Phi_{q r} \\
\dot{w}_{r} & =\frac{-D w_{r}+K_{T}\left(\Phi_{d r} i_{q s}-\Phi_{q r} i_{d s}\right)-T_{L}}{J}
\end{aligned}
$$

Here, $V_{d s}, V_{q s}$, and w_{s} are the control inputs. The constants c, D, J, K_{T} and $a_{i}, i=$ $1, \ldots, 5$ are the parameters of the induction motor.
V_{a}, V_{b}, V_{c} stator phase voltages
i_{a}, i_{b}, i_{c} stator phase currents
$V_{d s}\left(V_{q s}\right) d$-axis (q-axis) stator voltage
$i_{d s}\left(i_{q s}\right) d$-axis (q-axis) stator current
$\Phi_{d r}\left(\Phi_{q r}\right) d$-axis (q-axis) rotor flux
w_{r} rotor angular speed
w_{s} slip angular speed
$R_{S}\left(R_{r}\right)$ stator (rotor) resistance
$L_{s}\left(L_{r}\right)$ stator (rotor) self-inductance
M stator/rotor mutual inductance
p number of pole pairs
σ leakage coefficient $\left(=1-\frac{M^{2}}{L_{s} L_{r}}\right)$
$c=\frac{1}{\sigma L_{s}}$
$a_{1}=c\left(R_{s}+\frac{M^{2} R_{r}}{L_{r}^{2}}\right) ; a_{2}=\frac{c M R_{r}}{L_{r}^{2}} ; a_{3}=\frac{c M}{L_{r}} ; a_{4}=\frac{R_{r}}{L_{r}} ; a_{5}=\frac{M R_{r}}{L_{r}}$
J rotor inertia of the MG set
D damping coefficient of the MG set
K_{T} torque constant $\left(=\frac{3 p M}{2 L_{r}}\right)$
$T_{e}=K_{T}\left(\Phi_{d r} i_{q s}-\Phi_{q r} i_{d s}\right)$ generated torque
T_{L} disturbance torque
Refer to (F6) for the symbol meaning. With the state variables

$$
x \triangleq\left[\begin{array}{lllll}
i_{d s} & i_{q s} & \Phi_{d r} & \Phi_{q r} & w_{r}
\end{array}\right]^{\top}
$$

we obtain the following state equation.

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5}
\end{array}\right] } & =\left[\begin{array}{c}
a_{2} x_{3}-a_{1} x_{1}+p a_{3} x_{4} x_{5} \\
a_{2} x_{4}-a_{1} x_{2}-p a_{3} x_{3} x_{5} \\
a_{5} x_{1}-a_{4} x_{3}-p x_{3} x_{5} \\
a_{5} x_{2}-a_{4} x_{4}+p x_{3} x_{5} \\
\frac{K_{T}\left(x_{2} x_{3}-x_{1} x_{4}\right)-T_{L}-D x_{5}}{J}
\end{array}\right]+\left[\begin{array}{ccc}
c & 0 & x_{2} \\
0 & c & -x_{1} \\
0 & 0 & x_{4} \\
0 & 0 & -x_{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{d s} \\
V_{q s} \\
w_{s}
\end{array}\right] \tag{4.87}\\
& \triangleq f(x)+g(x) u
\end{align*}
$$

Since

$$
\left[\operatorname{ad}_{f} g_{1}(x) \operatorname{ad}_{f} g_{2}(x) \operatorname{ad}_{f} g_{3}(x)\right]=\left[\begin{array}{ccc}
a_{1} c & 0 & 0 \\
0 & a_{1} c & 0 \\
-a_{5} c & 0 & 0 \\
0 & -a_{5} c & 0 \\
\frac{K_{T} c x_{4}}{J} & \frac{-K_{T} c x_{3}}{J} & 0
\end{array}\right]
$$

we have that $\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)=(2,2,1)$ on a neighborhood of $x=x_{0}(\neq 0)$. Since $3=$ $\operatorname{dim}\left(\Delta_{0}(x)\right) \neq \operatorname{dim}\left(\Delta_{0}(0)\right)=2$ for $x \neq 0, \Delta_{0}(x)\left(\triangleq \operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\}\right)$ is not a distribution on a neighborhood of $x=0$ and condition (ii) of Theorem 4.3 is not satisfied. Therefore, by Theorem 4.3, system (4.87) is not feedback linearizable on a neighborhood of $x=0$. If we consider the local linearization on a neighborhood of $x=x_{0}(\neq 0)$ instead of a neighborhood of 0 , we have that $\kappa_{1}+\kappa_{2}+\kappa_{3}=5$ on a neighborhood of $x=x_{0}$ and condition (i) of Theorem4.3 is satisfied. Also, it is clear that $\Delta_{0}(x)\left(\triangleq \operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\}\right)$ is a involutive distribution on a neighborhood of $x=x_{0}$ and thus condition (ii) of Theorem4.3 is satisfied. Hence, system (4.87) is feedback linearizable with

$$
S=\left[\begin{array}{c}
x_{3}^{2}+x_{4}^{2} \\
-2 a_{4} x_{3}^{2}+2 a_{5} x_{1} x_{3}-2 a_{4} x_{4}^{2}+2 a_{5} x_{2} x_{4} \\
x_{5} \\
\frac{K_{T}\left(x_{2} x_{3}-x_{1} x_{4}\right)-T_{L}-D x_{5}}{J} \\
x_{1}
\end{array}\right]
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{d s} \\
V_{q s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{c}
L_{g} L_{f} S_{11}(x) \\
L_{g} L_{f} S_{21}(x) \\
L_{g} S_{31}(x)
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
L_{f}^{2} S_{11}(x) \\
L_{f}^{2} S_{21}(x) \\
L_{f} S_{31}(x)
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)} \\
& =\left[\begin{array}{cc}
2 a_{5} c x_{3} & 2 a_{5} c x_{4} \\
\frac{-K_{T} x_{4}}{J} & 0 \\
c & K_{T} c x_{3} \\
J & 0 \\
0 & x_{2}
\end{array}\right]^{-1}\left(-\left[\begin{array}{l}
L_{f}^{2} S_{11}(x) \\
L_{f}^{2} S_{21}(x) \\
L_{f} S_{31}(x)
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
\alpha_{1}(x) \\
\alpha_{2}(x) \\
\alpha_{3}(x)
\end{array}\right]+\left[\begin{array}{ccc}
\frac{x_{3}}{2 a_{5} c\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{-J x_{4}}{K_{T} c\left(x_{3}^{2}+x_{4}^{2}\right)} & 0 \\
\frac{x_{4}}{2 a_{5} c\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{J x_{3}}{K_{T} c\left(x_{3}^{2}+x_{4}^{2}\right)} & 0 \\
\frac{-x_{3}}{2 a_{5} x_{2}\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{J x_{4}}{K_{T} x_{2}\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{1}{x_{2}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\alpha(x)+\beta(x) v
\end{aligned}
$$

where

$$
\begin{aligned}
L_{f}^{2} S_{11}(x) & =2 a_{5} x_{3} f_{1}(x)+2 a_{5} x_{4} f_{2}(x)+\left(2 a_{5} x_{1}-4 a_{4} x_{3}\right) f_{3}(x) \\
& +\left(2 a_{5} x_{2}-4 a_{4} x_{4}\right) f_{4}(x) \\
L_{f}^{2} S_{21}(x) & =\frac{K_{T}\left(-x_{4} f_{1}(x)+x_{3} f_{2}(x)+x_{2} f_{3}(x)-x_{1} f_{4}(x)\right)}{J}-\frac{D f_{5}(x)}{J} \\
L_{f} S_{31}(x) & =a_{2} x_{3}-a_{1} x_{1}+a_{3} p x_{4} x_{5}
\end{aligned}
$$

and

$$
\alpha(x)=-\left[\begin{array}{ccc}
\frac{x_{3}}{2 a_{5} c\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{-J x_{4}}{K_{T} c\left(x_{3}^{2}+x_{4}^{2}\right)} & 0 \\
\frac{x_{4}}{2 a_{5}\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{J x_{3}}{K_{T} c\left(x x_{3}^{2}+x_{4}^{2}\right)} & 0 \\
\frac{x_{3}}{2 a_{5} x_{2}\left(x_{3}^{2}+x_{4}^{2}\right)} & \frac{J_{x_{4}} x_{T} x_{2}\left(x_{3}^{2}+x_{4}^{2}\right)}{K_{2}} & \frac{1}{x_{2}}
\end{array}\right]\left[\begin{array}{l}
L_{f}^{2} S_{11}(x) \\
L_{f}^{2} S_{21}(x) \\
L_{f} S_{31}(x)
\end{array}\right]
$$

Then it is easy to see that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4} \\
\dot{z}_{5}
\end{array}\right] } & =\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \\
& =A z+B v .
\end{aligned}
$$

Refer to the MATLAB program in Sect.4.5.
Example 4.4.4 (the aircraft) The dynamic equations for the aircraft model can be written as follows: (Refer to (E3).)

$$
\begin{aligned}
\dot{x}= & u \cos \psi \cos \theta+v(\cos \psi \sin \theta \sin \phi-\sin \psi \cos \phi) \\
& +w(\cos \psi \sin \theta \cos \phi+\sin \psi \sin \phi) \\
\dot{y}= & u \sin \psi \cos \theta+v(\sin \psi \sin \theta \sin \phi+\cos \psi \cos \phi) \\
& +w(\sin \psi \sin \theta \cos \phi-\cos \psi \sin \phi) \\
\dot{z}= & -u \sin \theta+v \cos \theta \sin \phi+w \cos \theta \cos \phi \\
\dot{u}= & -g \sin \theta+r v-q w+\frac{X(\xi)}{m}+\frac{J \rho}{m} \\
\dot{v}= & g \cos \theta \sin \phi+p w-r u+\frac{Y(\xi)}{m} \\
\dot{w}= & g \cos \theta \cos \phi+q u-p v+\frac{Z(\xi)}{m} \\
\dot{\phi}= & p+\tan \theta(q \sin \phi+r \cos \phi) \\
\dot{\theta}= & q \cos \phi-r \sin \phi \\
\dot{\psi}= & \frac{q \sin \phi+r \cos \phi}{\cos \theta}
\end{aligned}
$$

where
(x, y, z) the center of mass in an absolute frame
(u, v, w) the velocity components in a relative frame
(ϕ, θ, ψ) roll, pitch, and yaw angles
(p, q, r) the components of the kinetic moment in the relative frame ρ the thrust
g gravitational acceleration
$(X(\xi)+J \rho, Y(\xi), Z(\xi))$ the components of the force vector excepting gravity.
With the state variables

$$
\xi \triangleq\left[\begin{array}{llllllll}
x & y & z & u & v & w & \phi & \theta
\end{array}\right]^{\top}
$$

we obtain the following state equation.

$$
\begin{align*}
& \dot{\xi}=f(\xi)+g_{1}(\xi) p+g_{2}(\xi) q+g_{3}(\xi) r+g_{4}(\xi) \rho \tag{4.88}\\
& f(\xi)=\left[\begin{array}{c}
f_{1}(\xi) \\
f_{2}(\xi) \\
-\xi_{4} \sin \xi_{8}+\xi_{5} \cos \xi_{8} \sin \xi_{7}+\xi_{6} \cos \xi_{8} \cos \xi_{7} \\
-g \sin \xi_{8} \\
g \cos \xi_{8} \sin \xi_{7} \\
g \cos \xi_{8} \cos \xi_{7} \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{X(\xi)}{\frac{r(\xi)}{m}} \\
\frac{Z(\xi)}{m} \\
0 \\
0 \\
0
\end{array}\right] \\
& \triangleq f^{0}(\xi)+\tilde{f}(\xi) \\
& {\left[g_{1}(\xi) g_{2}(\xi) g_{3}(\xi) g_{4}(\xi)\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -\xi_{6} & \xi_{5} & \frac{J}{m} \\
\xi_{6} & 0 & -\xi_{4} & 0 \\
-\xi_{5} & \xi_{4} & 0 & 0 \\
1 & \tan \xi_{8} \sin \xi_{7} \tan \xi_{8} \cos \xi_{7} & 0 \\
0 & \cos \xi_{7} & -\sin \xi_{7} & 0 \\
0 & \frac{\sin \xi_{7}}{\cos \xi_{8}} & \frac{\cos \xi_{7}}{\cos \xi_{8}} & 0
\end{array}\right]}
\end{align*}
$$

where

$$
\begin{aligned}
f_{1}(\xi)= & \xi_{4} \cos \xi_{9} \cos \xi_{8}+\xi_{5}\left(\cos \xi_{9} \sin \xi_{8} \sin \xi_{7}-\sin \xi_{9} \cos \xi_{7}\right) \\
& +\xi_{6}\left(\cos \xi_{9} \sin \xi_{8} \cos \xi_{7}+\sin \xi_{9} \sin \xi_{7}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}(\xi)= & \xi_{4} \sin \xi_{9} \cos \xi_{8}+\xi_{5}\left(\sin \xi_{9} \sin \xi_{8} \sin \xi_{7}+\cos \xi_{9} \cos \xi_{7}\right) \\
& +\xi_{6}\left(\sin \xi_{9} \sin \xi_{8} \cos \xi_{7}-\cos \xi_{9} \sin \xi_{7}\right)
\end{aligned}
$$

Since

$$
\left[g_{2}(\xi), g_{4}(\xi)\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
\frac{J}{m} \\
0 \\
0 \\
0
\end{array}\right] \notin \Delta_{0}(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x), g_{4}(x)\right\}
$$

it is clear that $\Delta_{0}(x)$ is not an involutive distribution and thus condition (ii) of Theorem 4.3 is not satisfied. Therefore, by Theorem 4.3, system (4.88) is not feedback linearizable. Consider system (4.88) with $\rho=0$. It is easy to see that

$$
\begin{aligned}
& {\left[\operatorname{ad}_{f} g_{1}(\xi) \operatorname{ad}_{f} g_{2}(\xi) \mathrm{ad}_{f} g_{3}(\xi)\right]} \\
& \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-\frac{L_{g_{1} X(\xi)}}{m} & -\frac{Z(\xi)}{m}-\frac{L_{g_{2}} X(\xi)}{m} & \frac{Y(\xi)}{m}-\frac{L_{g_{3}} X(\xi)}{m} \\
\frac{Z(\xi)}{m}-\frac{L_{g_{1} Y} Y(\xi)}{m} & -\frac{L_{g_{2} Y(\xi)}^{m}}{m} & -\frac{X(\xi)}{m}-\frac{L_{g_{3}} Y(\xi)}{m} \\
-\frac{Y(\xi)}{m}-\frac{L_{g_{1}} Z(\xi)}{m} & \frac{X(\xi)}{m}-\frac{L_{g_{2}} Z(\xi)}{m} & -\frac{L_{g_{3} Z(\xi)}^{m}}{m} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left.\left[\operatorname{ad}_{f}^{2} g_{1}(\xi) \operatorname{ad}_{f}^{2} g_{2}(\xi) \mathrm{ad}_{f}^{2} g_{3}(\xi)\right]\right|_{\xi=0}} \\
& =\left.\left[\begin{array}{ccc}
\frac{L_{g_{1}} X(\xi)}{m} & \frac{Z(\xi)}{m}+\frac{L_{g_{2}} X(\xi)}{m} & -\frac{Y(\xi)}{m}+\frac{L_{g_{3}} X(\xi)}{m} \\
-\frac{Z(\xi)}{m}+\frac{L_{g_{1}} Y(\xi)}{m} & \frac{L_{g_{2}} Y(\xi)}{m} & \frac{X(\xi)}{m}+\frac{L_{g_{3} Y(\xi)}}{m} \\
\frac{Y(\xi)}{m}+\frac{L_{g_{1}} Z(\xi)}{m} & -\frac{X(\xi)}{m}+\frac{L_{g_{2}} Z(\xi)}{m} & \frac{L_{g_{3}} Z(\xi)}{m} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right|_{\xi=0} \\
& \bmod \operatorname{span}\left\{g_{1}(\xi), g_{2}(\xi), g_{3}(\xi), \operatorname{ad}_{f} g_{1}(\xi), \operatorname{ad}_{f} g_{2}(\xi), \operatorname{ad}_{f} g_{3}(\xi)\right\}
\end{aligned}
$$

which imply that $\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)=(3,3,3)$ and thus condition (i) of Theorem4.3 is satisfied. Also, it is easy to see that $\Delta_{0}(x)\left(=\operatorname{span}\left\{g_{1}(\xi), g_{2}(\xi), g_{3}(\xi)\right\}\right)$ and $\Delta_{1}(x)\left(=\operatorname{span}\left\{g_{1}(\xi), g_{2}(\xi), g_{3}(\xi), \operatorname{ad}_{f} g_{1}(\xi), \operatorname{ad}_{f} g_{2}(\xi), \operatorname{ad}_{f} g_{3}(\xi)\right\}\right)$ are involutive distributions and thus condition (ii) of Theorem 4.3 is satisfied. Therefore, by Theorem 4.3, system (4.88) is feedback linearizable with

$$
z=S(\xi)=m\left[\begin{array}{c}
\xi_{1} \\
f_{1}(\xi) \\
L_{f} f_{1}(\xi) \\
\xi_{2} \\
f_{2}(\xi) \\
L_{f} f_{2}(\xi) \\
\xi_{3} \\
f_{3}(\xi) \\
L_{f} f_{3}(\xi)
\end{array}\right]=m\left[\begin{array}{c}
\xi_{1} \\
f_{1}(\xi) \\
L_{\tilde{f}} f_{1}(\xi) \\
\xi_{2} \\
f_{2}(\xi) \\
L_{\tilde{f}} f_{2}(\xi) \\
\xi_{3} \\
f_{3}(\xi) \\
g+L_{\tilde{f}} f_{3}(\xi)
\end{array}\right]
$$

and

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]} & =\left[\begin{array}{lll}
L_{g_{1}} L_{\tilde{f}} f_{1} & L_{g_{2}} L_{\tilde{f}} f_{1} & L_{g_{3}} L_{\tilde{f}} f_{1} \\
L_{g_{1}} L_{\tilde{f}} f_{2} & L_{g_{2}} L_{\tilde{f}} f_{2} & L_{g_{3}} L_{\tilde{f}} f_{2} \\
L_{g_{1}} L_{\tilde{f}} f_{3} & L_{g_{2}} & L_{\tilde{f}} f_{3}
\end{array} L_{g_{3}} L_{\tilde{f}} f_{3}\right.
\end{array}\right]^{-1}\left(-\left[\begin{array}{l}
L_{f} L_{\tilde{f}} f_{1}(\xi) \\
L_{f} L_{\tilde{f}} f_{2}(\xi) \\
L_{f} L_{\tilde{f}} f_{3}(\xi)
\end{array}\right]+\frac{1}{m}\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)
$$

where

$$
L_{f^{0}} f_{1}(\xi)=0 ; \quad L_{f^{0}} f_{2}(\xi)=0 ; \quad L_{f^{0}} f_{3}(\xi)=g .
$$

Refer to the MATLAB program in Sect.4.5. Then it is easy to see that

Suppose that the system is not feedback linearizable. Then we can consider the approximate linearization(Problem 4-12), the partial linearization(Problem 4-13), and the dynamic feedback linearization(Problem 4-14). In fact, system (4.88) with $\rho \neq 0$ is dynamic feedback linearizable (Refer to Problem 4-15). The dynamic feedback linearization is considered in more detail in Chap. 6.

4.5 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed: adfg, adfgk, adfgM, adfgkM, ChExact, ChInvolutive, ChZero, Codi, CXexact, Delta, Kindex0, Kindex, Lfh, Lfhk, S1, S1M

MATLAB program for Theorem 4.1:

```
clear all syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[x2; x1^2]; g=[x1-x1; 1]; %Ex:4.2.2
%f=[-x1-2*x2^3; -x2^2]; g=[1+2*x2; 1]; %Ex:4.2.3
% f=[x2; x1; x2+x1*x3]; g=[1; x1-x1; 0]; %Ex:4.2.4
% f=[x2-x1^2; x3+2*x1*x2-x1^3; x1^2-3*x1^2*x2+3*x1^4];
% g=[0; 0; 1+x1]; %Ex:4.2.5
% f=[x2; x3+x\mp@subsup{2}{}{\wedge}2; 0]; g=[x1-x1; 1; 1]; %Ex:4.2.7
% f=[x2+2*x3*x1^2; x3; x1^2];
% g=[2*x3*(1+x2^2); 0; 1+x2^2]; %P:4-1
% f=[x2; 0]; g=[x1; 1]; %P:4-3(a)
% f=[x2+x3^2; x3; 0]; g=[x1-x1; 0; 1]; %P:4-3(b)
% f=[x2+x3^2; x3; x4; 0]; g=[x1-x1; 0; 0; 1]; %P:4-3(c)
```

```
% f=[x2; x3^2; x4; 0]; g=[x1-x1; 0; 0; 1]; %P:4-4
f=simplify(f)
g=simplify(g)
[n,m]=size(g);
x=\operatorname{sym}('x',[n,1]);
T(:,1)=g;
for k=2:n
    T(:,k)=adfg(f,T(:,k-1),x);
end
T=simplify(T)
T0=simplify(subs(T,x,x-x));
TD=T(:,1:n-1);
if rank(TO) < n
    display('condition (i) of Thm 4.1 is not satisfied.')
    display('System is NOT feedback linearizable.')
    return
end
if ChInvolutive(TD,x) == 0
    display('condition (ii) of Thm 4.1 is not satisfied.')
    display('System is NOT feedback linearizable.')
    return
end
display('System is feedback linearizable.')
[flag,S1]=S1(f,g,x)
if flag==0
    display('Find out z=S(x) without MATLAB.')
    return
end
S=x-x;
for k=1:n
    S(k)=Lfhk(f,S1,x,k-1);
end
S=simplify(S)
beta=simplify(inv(Lfh(g,S(n),x)))
alpha=simplify(-beta*Lfh(f,S(n),x))
hg=simplify(g*beta)
hf=simplify(f+g*alpha)
dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
```

```
B=simplify(dS*hg)
return
```


MATLAB program for Theorem 4.3:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[x2; -x1+x2^2; x3^2]; g=[0 0; 1+x1^2 0; 0 1]; %Ex:4.3.4
% f=[x2+2*x4*x5; x3; 0; x5; 0]
% g=[0 0; 0 0; 1 x1; 0 0; 0 1]; %Ex:4.3.5
% f=[x2-x4* (x3+x4); 0; x4; 0];
% g=[0 x1; 0 1; -1 -x1; 1 x1]; %Ex:4.3.6
% f=[x2; x3; x4; 0]; g=[0 x1; 0 0; 1 0; 0 1]; %Ex:4.3.7
% f=[x2; 0; 0]; g=[0 x2^2; 1 0; 0 1]; %Ex:4.3.8
% f=[x2; x4; x4+3*x2^2*x4; 0];
% g=[2*x1*x4 2*x4; 1 0; 3*x2^2 0; x1 1]; %P:4-5
% f=[-x1+x2^2; -2*x2+sin(x2)]; g=[1 x1-x1; 0 1]; %P:4-6
% g=[1 0 1; 2*(x1-x5) 0 0; 0 1 x3; -2*(x1-x5) 0 0; 0 0 1];
% f=[x1^2; x3; 0; x5; x1^2]; %P:4-7
% g=[0 x3; 0 0; 1 0; 0 1]; f=[0; x3; 0; 0]; %P:4-8(a)
% g=[0 x3; 0 0; 1 0; 0 0]; f=[x2; x3; 0; x1]; %P:4-8(b)
% g=[0 x3; 0 0; 1 0; 0 1]; f=[x2; x3; 0; 0]; %P:4-8(c)
% f=[x2; x3; 0; 0]; g=[2*x1 0; 2*x2 0; 1 0; 0 1]; %P:4-9
% f=[x2; 0; x4; 0]; g=[0 0; 1+x2 0; 0 0; 0 1]; %P:4-10
% f=[x2; 0; x4; 0]; g=[0 x2^3; 1+x2 0; 0 0; 0 1]; %P:4-11
% fo=[x2; 0; x4; 0]; go=[0 x2^3; 1+x2 0; 0 0; 0 1];
% f=[fo+x5*go(:,2); 0]; g(:,1)=[go(:,1); 0]
% g(:,2)=[go(:,2)-go(:,2); 1]; %P:4-14 (x5=eta)
f=simplify(f)
g=simplify(g)
[n,m]=size(g);
x=sym('x',[n,1]);
[kappa,D]=Kindex0(f,g,x)
```

```
if sum(kappa) < n
    display('condition (i) of Thm 4.3 is not satisfied.')
    display('System is NOT feedback linearizable.')
    return
end
for k=1:max(kappa)-1
    TD=D(:,1:k*m);
    if rank(TD) ~ = rank(subs(TD,x,x-x))
            display('NOT (constant dimensional) distribution.')
            display('condition (ii) of Thm 4.3 is not satisfied.')
            display('System is NOT feedback linearizable.')
            return
        end
        if ChInvolutive(TD,x) == 0
            display('condition (ii) of Thm 4.3 is not satisfied.')
            display('System is NOT feedback linearizable.')
            return
        end
end
display('System is feedback linearizable.')
[flag,S1]=S1M(f,g,x,kappa);
if flag==0
    display('Find out z=S(x) without MATLAB.')
    return
end
S=x1-x1;
for k1=1:m
    for k=1:kappa(k1)
        t1=Lfhk(f,S1(k1),x,k-1);
        S=[S; t1];
    end
end
S=simplify(S (2:n+1))
t2=S1-S1;
for k1=1:m
    t2(k1)=Lfhk(f,S1(k1),x,kappa(k1)-1);
end
t2=simplify(t2);
ibeta=simplify(Lfh(g,t2,x));
beta=simplify(inv(ibeta))
t3=simplify(Lfh(f,t2,x));
alpha=simplify(-beta*t3)
hg=simplify(g*beta)
hf=simplify(f+g*alpha)
dS=simplify(jacobian(S,x));
```

```
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
return
```

MATLAB program for Example 4.4.1:

```
clear all
syms x1 x2 x3 x4 x5 real
syms R L M g y0 real
bg=[x1-x1; 0; 1/L];
bf=[x2; g-(1/M)*((x3+sqrt(M*g*y0))^2) /(x1+y0); -(R/L)*x3];
[n,m]=size(bg);
x=sym('x',[n,1]);
bf=simplify(bf)
bg=simplify(bg)
T(:,1)=bg;
for k=2:n
    T(:,k) =adfg(bf,T(:,k-1),x);
end
T=simplify(T)
T0=simplify(subs(T,x,x-x));
TD=T(:,1:n-1);
if rank(TO) < n
    display('condition (i) of Thm 4.1 is not satisfied.')
    display('System is NOT feedback linearizable.')
    return
end
if ChInvolutive(TD,x) == 0
    display('condition (ii) of Thm 4.1 is not satisfied.')
    display('System is NOT feedback linearizable.')
    return
end
display('System is feedback linearizable.')
[flag,S1]=S1(bf,bg,x)
if flag==0
    display('Find out z=S(x) without MATLAB.')
    return
end
S1=- (2* (M* G*y0)^(1/2)) / (L*M*Y0) *S1
```

```
S=x-x;
for k=1:n
    S(k)=Lfhk(bf,S1,x,k-1);
end
S=simplify(S)
beta=simplify(inv(Lfh(bg,S(n),x)))
alpha=simplify(-beta*Lfh(bf,S(n),x))
hg=simplify(bg*beta)
hf=simplify(bf+bg*alpha)
dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
return
```

MATLAB program for Example 4.4.3:

```
clear all
syms x1 x2 x3 x4 x5 real
syms u1 u2 u3 real
syms a1 a2 a3 a4 a5 real
syms p c J D Te TL KT real
g=[c 0 x2; 0 c -x1; 0 0 x4; 0 0 -x3; 0 0 0];
[n,m]=size(g);
x=sym('x', [n,1]);
f=x-x; f(5)=(-D*x5+KT* (x2*x3-x1*x4)-TL)/J;
f(1:2) = [-a1*x1+a2*x3+p*a3*x4*x5; -a1*x2-p*a3*x3*x5+a2*x4];
f(3:4)=[a5*x1-a4*x3-p*x4*x5; a5*x2+p*x3*x5-a4*x4];
f=simplify(f)
g=simplify(g)
[ka,D]=Kindex(f,g,x)
if sum(ka) < n
    display('condition (i) of Thm 4.3 is not satisfied.')
    return
end
for k=1:max(ka)-1
    if ChInvolutive(D(:,1:k*m),x) == 0
            display('condition (ii) of Thm 4.3 is not satisfied.')
            return
    end
end
display('System is feedback linearizable.')
```

```
S1=[x3^2+x4^2; x5; x1]
S=x1-x1;
for k1=1:m
    for k=1:ka(k1)
        t1=Lfhk(f,S1(k1),x,k-1);
        S=[S; t1];
    end
end
S=simplify(S (2:n+1))
t2=S1-S1;
for k1=1:m
    t2(k1)=Lfhk(f,S1(k1),x,ka(k1)-1);
end
t2=simplify(t2);
ibeta=simplify(Lfh(g,t2,x))
beta=simplify(inv(ibeta))
t3=simplify(Lfh(f,t2,x))
alpha=simplify(-beta*t3)
hg=simplify(g*beta)
hf=simplify(f+g*alpha)
dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
return
```

MATLAB program for Example 4.4.4 and Problem 4-15:

```
clear all
syms E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 real
syms U1 U2 U3 real
syms a1 a2 a3 a4 a5 real
syms g J m X Y Z real
syms X11 X12 X13 Y11 Y12 Y13 Z11 Z12 Z13 real
G1=[0}00000; 0 0 0 0; 0 0 0 0];
G2=[0 -E6 E5 J/m; E6 0 -E4 0; -E5 E4 0 0];
G3=[1 tan(E8)*sin(E7) tan(E8)*\operatorname{cos(E7) 0; 0 cos(E7) -sin(E7) 0;}
    0 sin(E7)/cos(E8) cos(E7)/cos(E8) 0];
TG=[G1; G2; G3];
f0=TG(:,1)-TG(:,1); f0t1=sin(E8)*sin(E7);
f0(1) =E4* cos(E9)* cos(E8) +E5*(cos(E9)*f0t1-sin(E9) * cos(E7));
f0(1)=f0(1)+E6*(cos(E9)*sin(E8)*Cos(E7)+sin(E9)*sin(E7)) ;
```



```
f0(2) =f0(2)+E6*(sin(E9)*sin(E8)*\operatorname{cos(E7)-cos(E9)*sin(E7));}
f0(3) =-E4* sin(E8)+E5* cos(E8)*sin(E7) +E6* cos(E8)* cos(E7);
f0(4)= -g*sin(E8);
f0(5)= g* cos(E8)*sin(E7);
f0(6)= g* cos(E8)* cos(E7);
G=TG; %Ex:4.4.4 (bm=4)
[n,bm]=size(G);
E=sym('E',[n,1]);
EYE=jacobian(E,E)
t1=adfg(G(:, 2),G(:,4),E)
if rank([t1 G]) > rank(G)
    display('condition (ii) of Thm 4.3.1 is not satisfied.')
    display('The system with rho is NOT FB linearizable.')
end
G=TG(:,1:3); %Ex:4.4.4 (bm=3, rho=0)
[n,bm]=size(G);
tf=(X/m)*EYE (:,4) +(Y/m)*EYE (:, 5) +(Z/m)*\operatorname{EYE}(:, 6)
f=f0+tf;
f=simplify(f)
G=simplify(G)
D=G
temp1=adfgM(f,G,E)
t11=(X11/m)* EYE (:,4) + (Y11/m)*EYE (:,5) + (Z11/m)*EYE (:, 6);
t12=(X12/m)* EYE (:,4) + (Y12/m)*EYE (:,5) + (Z12/m)*EYE (:,6);
t13=(X13/m)*\operatorname{EYE}(:,4)+(Y13/m)*EYE (:,5) + (Z13/m)*\operatorname{EYE}(:,6);
temp2=[t11 t12 t13]
D=[D temp1-temp2]
temp3=adfgM(f,D(:,4:6),E)
temp30=subs (temp3,E,E-E)
Flag1=ChInvolutive(D(:, 1:3),E)
Flag2=ChInvolutive(D(:, 1:6),E)
display('System with rho=0 is feedback linearizable.')
ANS1=simplify(Lfh(f0,f(1),E))
ANS2=simplify(Lfh(f0,f(2),E))
ANS3=simplify(Lfh(f0,f(3),E))
display('Problem 4-15')
G=TG;
[n,bm]=size(G);
E=sym('E',[n+1,1]);
```

```
FE=[f+E(10)*G(:,4); 0]
GE=[G(:,1:3) G(:,4)-G(:,4)];
GE=[GE; [0 0 0 1]]
Flag1E=ChInvolutive(D(:, 1:4),E)
Flag2E=ChInvolutive(D(:,1:8),E)
display('Extended system (4.6.4) is feedback linearizable.')
return
```


4.6 Problems

4-1. Show that the following nonlinear control system is feedback linearizable. Also, find a linearizing state transformation and feedback.

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+2 x_{3} x_{1}^{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{c}
2 x_{3}\left(1+x_{2}^{2}\right) \\
0 \\
1+x_{2}^{2}
\end{array}\right] u
$$

4-2. Find a nonlinear feedback $u=\alpha(x)$ that causes $\lim _{t \rightarrow \infty} x(t)=0$ for the nonlinear control system of Problem 4-1.
4-3. Find out whether the following nonlinear control system is feedback linearizable. If it is feedback linearizable, find a linearizing state transformation and feedback.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
x_{1} \\
1
\end{array}\right] u
$$

(b)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u
$$

(c)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] u
$$

4-4. Show that the following nonlinear control system is not locally feedback linearizable on a neighborhood of the origin:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3}^{2} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] u
$$

4-5. Linearize the following nonlinear control system by state transformation and feedback.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{4} \\
x_{4}+3 x_{2}^{2} x_{4} \\
0
\end{array}\right]+\left[\begin{array}{cc}
2 x_{1} x_{4} & 2 x_{4} \\
1 & 0 \\
3 x_{2}^{2} & 0 \\
x_{1} & 1
\end{array}\right] u
$$

4-6. Show that the following nonlinear control system is feedback linearizable:

$$
\dot{x}=\left[\begin{array}{c}
-x_{1}+x_{2}^{2} \\
-2 x_{2}+\sin x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{2}
$$

4-7. Find out whether the following nonlinear control system is feedback linearizable. If it is feedback linearizable, find a linearizing state transformation and feedback.

$$
\dot{x}=\left[\begin{array}{c}
x_{1}^{2} \\
x_{3} \\
0 \\
x_{5} \\
x_{1}^{2}
\end{array}\right]+u_{1}\left[\begin{array}{c}
1 \\
2\left(x_{1}-x_{5}\right) \\
0 \\
-2\left(x_{1}-x_{5}\right) \\
0
\end{array}\right]+u_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+u_{3}\left[\begin{array}{c}
1 \\
0 \\
x_{3} \\
0 \\
1
\end{array}\right]
$$

4-8. Show that the following nonlinear control systems are not locally feedback linearizable on a neighborhood of the origin:
(a)

$$
\dot{x}=\left[\begin{array}{c}
0 \\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{3} \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

(b)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0 \\
x_{1}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{3} \\
0 \\
0 \\
0
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

(c)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{3} \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

4-9. Show that the following nonlinear control system is feedback linearizable. Also, find a linearizing state transformation and feedback.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{1} \\
2 x_{2} \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

4-10. Show that the following nonlinear control system is feedback linearizable. Also, find a linearizing state transformation and feedback.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{4.89}\\
0 \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1+x_{2} \\
0 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

4-11. Show that the following nonlinear control system is not feedback linearizable:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{4.90}\\
0 \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1+x_{2} \\
0 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{2}^{3} \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

4-12. Big O notation can be used to describe the error term in an approximation to a mathematical function. The most significant terms are written explicitly, and then the least-significant terms are summarized in a single big O term. For example, $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots=1+x+$ $\frac{1}{2} x^{2}+O\left(x^{3}\right)=1+x+O\left(x^{2}\right)$. Show that if the state transformation and nonsingular feedback of Problem 4-10 are used, then system (4.90) satisfies, in z-coordinates

$$
\dot{z}(t)=A z(t)+B v(t)+O\left((z, v)^{4}\right)
$$

In other words, system (4.90) is not feedback linearizable. But, it can be approximated to a linear system (up to the third-order) more accurately than the classical first-order approximation technique, by using feedback and state transformation. It is called the approximate linearization.
4-13. For system (4.90), find a state transformation $z=S(x)$ and nonsingular feedback $u=\alpha(x)+\beta(x) v$ such that

$$
\begin{aligned}
& \dot{z}^{1}=A z^{1}+B v \\
& \dot{z}^{2}=\phi\left(z^{1}, z^{2}\right)+\psi\left(z^{1}, z^{2}\right) v
\end{aligned}
$$

where $z=\left[\begin{array}{c}z^{1} \\ z^{2}\end{array}\right], z^{1} \in \mathbb{R}^{d}$, and $z^{2} \in \mathbb{R}^{n-d}$. Find the maximum of d. It is called the partial linearization.
4-14. Consider system (4.90). With the dynamic feedback

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
w_{1} \\
\eta_{1}
\end{array}\right] ; \quad \dot{\eta}_{1}=w_{2}
$$

we have the extended system

$$
\begin{align*}
\dot{x}_{E} & =\left[\begin{array}{c}
\dot{x} \\
\dot{\eta}_{1}
\end{array}\right]=\left[\begin{array}{c}
f(x)+\eta_{1} g_{2}(x) \\
0
\end{array}\right]+\left[\begin{array}{cc}
g_{1}(x) & 0 \\
0 & 1
\end{array}\right] w \tag{4.91}\\
& =f_{E}\left(x_{E}\right)+g_{E}\left(x_{E}\right) w
\end{align*}
$$

where $x_{E}=\left[\begin{array}{c}x \\ \eta_{1}\end{array}\right]$. Show that the extended system (4.91) is feedback linearizable. Also, find the extended state transformation $z_{E}=S_{E}\left(x_{E}\right)$ and nonsingular feedback $w=\alpha\left(x_{E}\right)+\beta\left(x_{E}\right) v$. In other words, system (4.90) is linearizable by the extended state transformation $z_{E}=S_{E}\left(x_{E}\right)$ and the dynamic feedback

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
\eta_{1}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \alpha\left(x_{E}\right)+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \beta\left(x_{E}\right) v \\
\dot{\eta}_{1} & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \alpha\left(x_{E}\right)+\left[\begin{array}{ll}
0 & 1
\end{array}\right] \beta\left(x_{E}\right) v .
\end{aligned}
$$

It is called the dynamic feedback linearization.
4-15. Consider system (4.88) in Example 4.4.4. With the dynamic feedback

$$
\begin{aligned}
& p=w_{1} ; \quad q=w_{2} ; \quad r=w_{3} ; \quad \rho=\eta \\
& \dot{\eta}=w_{4}
\end{aligned}
$$

we have the extended system

$$
\begin{align*}
\dot{\xi}_{E} & =\left[\begin{array}{c}
\dot{\xi} \\
\dot{\eta}
\end{array}\right]=\left[\begin{array}{c}
f(\xi)+\eta g_{4}(\xi) \\
0
\end{array}\right]+\left[\begin{array}{cccc}
g_{1}(\xi) & g_{2}(\xi) & g_{3}(\xi) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] w \tag{4.92}\\
& =f_{E}\left(\xi_{E}\right)+g_{E}\left(\xi_{E}\right) w
\end{align*}
$$

where $\xi_{E}=\left[\begin{array}{l}\xi \\ \eta\end{array}\right]$. Show that the extended system (4.92) is feedback linearizable.

Chapter 5
 Linearization with Output Equation

In Chaps. 3 and 4, only the state equation is considered for linearizing the system, and the output equation is still a nonlinear function of the new state variable. Here, we can also find the more restrictive problem that the output equation should also be a linear function for the new state variable. In this chapter, we discuss the linearization of a nonlinear control system with output. Linearization with output equation requires that both input-state and input-output relationships are linear.

5.1 Introduction

Consider the following smooth nonlinear control system with output:

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \\
& y(t)=h(x(t)) \tag{5.1}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{p}$.
Example 5.1.1 Consider system (1.2) once again.

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} x_{2}-2 x_{2}^{3}+\left(1+2 x_{2}\right) u \\
x_{1}-x_{2}^{2}+u
\end{array}\right]} \tag{5.2}\\
& y=x_{1}-x_{2}^{2}+x_{2}
\end{align*}
$$

It is shown, in Example 3.2.3, that system (5.2) is state equivalent, with state transformation $\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=S(x)=\left[\begin{array}{c}x_{1}-x_{2}^{2} \\ x_{2}\end{array}\right]$, to the following linear system:

$$
\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u
$$

Since $h \circ S^{-1}(z)=z_{1}+z_{2}$, we have the following linear output equation:

$$
y=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

But, if output equation is $y=x_{1}$ instead of $y=x_{1}-x_{2}^{2}+x_{2}$, then output equation is $y=z_{1}+z_{2}^{2}$ which is nonlinear in z-coordinates.

As in the above Example, if not only state equation but also output equation is linearized by state transformation, then both the states and the output can be controlled very easily.

Definition 5.1 (state equivalence to a $L S$ with output)
System (5.1) is said to be state equivalent to a linear system (LS) with output, if there exists a state transformation $z=S(x)$ such that system (5.1) satisfies, in z-coordinates, the following controllable linear system:

$$
\begin{align*}
\dot{z} & =A z+B u \tag{5.3}\\
y & =C z .
\end{align*}
$$

In other words,

$$
\begin{align*}
& S_{*}(f(x))=A z, \quad\left[S_{*}\left(g_{1}(x)\right) \cdots S_{*}\left(g_{m}(x)\right)\right]=B \\
& h \circ S^{-1}(z)=C z . \tag{5.4}
\end{align*}
$$

That is, not only is the state equation of the system linear in the new coordinate system, but the output equation must also be linear in the new coordinate system. By using feedback in addition to state transformation, we can linearize the larger class of nonlinear control systems with output.

Definition 5.2 (Feedback linearization with output)
System (5.1) is said to be feedback linearizable with output, if there exist a feedback $u=\alpha(x)+\beta(x) v$ and a state transformation $z=S(x)$ such that the closed-loop system satisfies, in z-coordinates, the following controllable linear system:

$$
\begin{align*}
\dot{z} & =A z+B v \\
y & =C z \tag{5.5}
\end{align*}
$$

Fig. 5.1 State equivalence to a linear system with output

Fig. 5.2 Feedback linearization with output

In other words,

$$
\begin{align*}
& S_{*}(f(x)+g(x) \alpha(x))=A z ; h \circ S^{-1}(z)=C z \\
& {\left[S_{*}\left(g(x) \beta_{1}(x)\right) \cdots S_{*}\left(g(x) \beta_{m}(x)\right)\right]=B} \tag{5.6}
\end{align*}
$$

where $\beta(x)=\left[\beta_{1}(x) \cdots \beta_{m}(x)\right]$.
Figures 5.1 and 5.2 give the block diagrams of the two linearization problems with output in Definitions 5.1 and 5.2. It is obvious that the conditions for the linearization problems with output would be more restricted than those for the linearization problems without output. In the next sections, the conditions for the linearization problems with output are considered.

5.2 State Equivalence to a SISO Linear System

In this section, we consider the following single input single output (SISO) nonlinear system:

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \tag{5.7}\\
& y(t)=h(x(t))
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}, y \in \mathbb{R}$, and $f(x), g(x)$, and $h(x)$ are smooth functions with $f(0)=0$ and $h(0)=0$.

Example 5.2.1 Consider the following linear system:

$$
\dot{z}=A z+b u ; \quad y=c z .
$$

Use mathematical induction to show that

$$
y^{(\ell)}=c A^{\ell} z+\sum_{j=0}^{\ell-1} c A^{\ell-1-j} b u^{(j)}, \quad \ell \geq 1
$$

Solution Omitted. (See Problem 5-1.)
Theorem 5.1 (conditions for state equivalence to a LS with output) System (5.7) is state equivalent to a $L S$ with output, if and only if
(i) $\operatorname{rank}\left(\left.\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}\right)=n$.
(ii) $\left[\operatorname{ad}_{f}^{i-1} g(x), \operatorname{ad}_{f}^{j-1} g(x)\right]=0, \quad 1 \leq i \leq n+1,1 \leq j \leq n+1$.
(iii) $L_{\mathrm{ad}_{f}^{k-1} g} h(x)=$ const, $1 \leq k \leq n$.

Furthermore, a state transformation $z=S(x)$ can be obtained by

$$
\begin{equation*}
\frac{\partial S(x)}{\partial x}=\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]^{-1} \tag{5.8}
\end{equation*}
$$

Proof Necessity. Suppose that system (5.7) is state equivalent to a linear system with output. Then there exists a state transformation $z=S(x)$ such that

$$
\begin{align*}
& \tilde{f}(z) \triangleq S_{*}(f(x))=A z ; \quad \tilde{g}(z) \triangleq S_{*}(g(x))=b \\
& \tilde{h}(z) \triangleq h \circ S^{-1}(z)=c z \tag{5.9}
\end{align*}
$$

It is clear, by Theorem 3.1, that condition (i) and (ii) of Theorem 5.1 are satisfied. It is easy to see, by Example 2.4.14, that for $k \geq 0$,

$$
S_{*}\left(\operatorname{ad}_{f}^{k} g(x)\right)=\operatorname{ad}_{\tilde{f}}^{k} \tilde{\tilde{g}}(z)=(-1)^{k} A^{k} b .
$$

Thus, we have, by Theorem 2.5, that for $1 \leq k \leq n$,

$$
L_{\mathrm{ad}_{f}^{k-1} g} h(x)=\left.L_{\mathrm{ad}_{f}^{k-1} \tilde{g}} \tilde{h}(z)\right|_{z=S(x)}=(-1)^{k-1} c A^{k-1} b
$$

Therefore, condition (iii) is satisfied.
Sufficiency. Suppose that condition (i)-(iii) are satisfied. Then, by Theorem 2.7, there exists a state transformation $z=S(x)$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{f}^{i-1} g(x)\right)=\frac{\partial}{\partial z_{i}} \tag{5.10}
\end{equation*}
$$

or

$$
\frac{\partial S(x)}{\partial x}\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]=I
$$

It is easy to see, by (3.11)-(3.12), that $S_{*}(g(x))=\frac{\partial}{\partial z_{1}}=\left[\begin{array}{llll}1 & 0 & \cdots\end{array}\right]^{\top} \triangleq b$ and $S_{*}(f(x))=A z$ for some constant matrix A. (For this, refer to the sufficiency proof of Theorem 3.1.) Let $\tilde{h}(z)=h \circ S^{-1}(z)$. Then we have, by (2.30), (5.10) and condition (iii), that for $1 \leq k \leq n$,

$$
\frac{\partial \tilde{h}(z)}{\partial z_{k}}=L_{S_{*}\left(\mathrm{ad}_{f}^{k-1} g\right)} \tilde{h}(z)=\left.L_{\mathrm{ad}_{f}^{k-1} g} h(x)\right|_{x=S^{-1}(z)}=\text { const } \triangleq c_{k}
$$

Since $\tilde{h}(0)=0$, it is clear that $\tilde{h}(z) \triangleq h \circ S^{-1}(z)=\left[c_{1} \cdots c_{n}\right] z$. Therefore, system (5.7) is state equivalent to a linear system via $z=S(x)$ in (5.8).

Example 5.2.2 Show that the following nonlinear system is state equivalent to a LS with output:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
x_{1} \cos ^{2} x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u=f(x)+g(x) u \tag{5.11}\\
y & =2 x_{1}+\tan x_{2}=h(x)
\end{align*}
$$

Also, find a state transformation $z=S(x)$ in (5.8).
Solution It is easy to see that

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
0 \\
-\cos ^{2} x_{2}
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
L_{g} h(x)=2, \quad L_{\mathrm{ad}_{f} g} h(x)=-1
$$

(Refer to Example 3.2.5.) It is easy to see that condition (i)-(iii) of Theorem 5.1 are satisfied. Therefore, by Theorem 5.1, system (5.11) is state equivalent to a LS with output. It is clear, by (5.8), that

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{cc}
1 & 0 \\
0 & -\cos ^{2} x_{2}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0-\sec ^{2} x_{2}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1} \\
-\tan x_{2}
\end{array}\right] .
$$

Then we have that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =S_{*}(f(x))+S_{*}(g(x)) u=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
y & =h \circ S^{-1}(z)=[2-1]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] .
\end{aligned}
$$

Example 5.2.3 Show that the following nonlinear system is not state equivalent to a LS with output:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
x_{1} \cos ^{2} x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u=f(x)+g(x) u \tag{5.12}\\
y & =x_{2}=h(x)
\end{align*}
$$

Solution It is easy to see that

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
0 \\
-\cos ^{2} x_{2}
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
L_{g} h(x)=0, \quad L_{\mathrm{ad}_{f} g} h(x)=-\cos ^{2} x_{2}
$$

Since condition (iii) of Theorem 5.1 is not satisfied, system (5.12) is not state equivalent to a LS with output.

Example 5.2.4 Show that the following nonlinear system is not state equivalent to a LS with output:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{l}
x_{2} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u=f(x)+g(x) u \tag{5.13}\\
y & =x_{1}=h(x)
\end{align*}
$$

Solution It is easy to see that

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{c}
0 \\
2 x_{1}
\end{array}\right]
$$

and

$$
\left[\operatorname{ad}_{f} g(x), \operatorname{ad}_{f}^{2} g(x)\right]=\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \neq 0
$$

which implies that condition (ii) of Theorem 5.1 is not satisfied. Therefore, by Theorem 5.1, system (5.13) is not state equivalent to a LS with output.

It is clear that system (5.13) becomes a linear system with nonsingular feedback $u=-x_{1}^{2}+v$. In other words, the larger class of input output systems can be linearized by using nonsingular feedback. It will be discussed in Sect.5.4.

5.3 State Equivalence to a MIMO Linear System

In this section, we consider the following multi-input multi-output (MIMO) nonlinear system:

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \tag{5.14}\\
& y(t)=h(x(t))
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{q}$, and $f(x), g(x)$, and $h(x)$ are smooth functions with $f(0)=0$ and $h(0)=0$. Suppose that $\left(\kappa_{1}, \ldots, \kappa_{m}\right)$ is the Kronecker indices of system (5.14).

Theorem 5.2 (conditions for state equivalence to a LS with output)
System (5.14) is state equivalent to a $L S$ with output via state transformation $z=$ $S(x)$, if and only if
(i) $\sum_{i=1}^{m} \kappa_{i}=n$
(ii) for $1 \leq i \leq m, 1 \leq j \leq m, 1 \leq \ell_{i} \leq \kappa_{i}+1$, and $1 \leq \ell_{j} \leq \kappa_{j}+1$,

$$
\begin{equation*}
\left[\operatorname{ad}_{f}^{\ell_{i}-1} g_{i}(x), \operatorname{ad}_{f}^{\ell_{j}-1} g_{j}(x)\right]=0 \tag{5.15}
\end{equation*}
$$

(iii) for $1 \leq i \leq m, 1 \leq j \leq q$, and $1 \leq k \leq \kappa_{i}$,

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{k-1} g_{i}} h_{j}(x)=\text { constant } \tag{5.16}
\end{equation*}
$$

Furthermore, a state transformation $z=S(x)$ can be obtained by

$$
\begin{equation*}
\frac{\partial S(x)}{\partial x}=\left[g_{1} \operatorname{ad}_{f} g_{1} \cdots \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1} \cdots g_{m} \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right]^{-1} \tag{5.17}
\end{equation*}
$$

Proof Necessity. Suppose that system (5.14) is state equivalent to a linear system. Then there exists a state transformation $z=S(x)$ such that for $1 \leq i \leq m$ and $1 \leq$ $j \leq q$,

$$
\begin{align*}
& \tilde{f}(z) \triangleq S_{*}(f(x))=A z ; \quad \tilde{g}_{i}(z) \triangleq S_{*}\left(g_{i}(x)\right)=b_{i} \\
& \tilde{h}_{j}(z) \triangleq h_{j} \circ S^{-1}(z)=c^{j} z \tag{5.18}
\end{align*}
$$

where $A, B \triangleq\left[\begin{array}{lll}b_{1} \cdots & b_{m}\end{array}\right]$, and $C \triangleq\left[\begin{array}{c}c^{1} \\ \vdots \\ c^{q}\end{array}\right]$ are constant matrices. It is clear, by Theorem 3.2, that condition (i) and (ii) of Theorem 5.2 are satisfied. It is easy to see, by Example 2.4.14, that for $1 \leq i \leq m$ and $k \geq 0$,

$$
\begin{equation*}
\operatorname{ad}_{\tilde{f}}^{k} \tilde{g}_{i}(z)=S_{*}\left(\operatorname{ad}_{f}^{k} g_{i}(x)\right)=(-1)^{k} A^{k} b_{i} \tag{5.19}
\end{equation*}
$$

Thus, we have, by Theorem 2.5, that for $1 \leq i \leq m, 1 \leq j \leq q$, and $1 \leq k \leq \kappa_{i}$,

$$
L_{\mathrm{ad}_{f}^{k-1} g_{i}} h_{j}(x)=\left.L_{\mathrm{ad}_{f}^{k-1} \tilde{g}_{i}} \tilde{h}_{j}(z)\right|_{z=S(x)}=c^{j} A^{k-1} b_{i}
$$

Therefore, condition (iii) is satisfied.
Sufficiency. Suppose that condition (i)-(iii) are satisfied. Then, by Theorem 2.7, there exists a state transformation $z=S(x)$ such that for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}$,

$$
\begin{align*}
& S_{*}\left(\operatorname{ad}_{f}^{\ell-1} g_{i}(x)\right)=\frac{\partial}{\partial z_{\ell}^{i}} \\
& z=\left[\begin{array}{c}
z^{1} \\
\vdots \\
z^{m}
\end{array}\right], \quad z^{i}=\left[\begin{array}{c}
z_{1}^{i} \\
\vdots \\
z_{\kappa_{i}}^{i}
\end{array}\right] \tag{5.20}
\end{align*}
$$

or

$$
\frac{\partial S(x)}{\partial x}\left[g_{1} \operatorname{ad}_{f} g_{1} \cdots \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1} \cdots g_{m} \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}\right]=I
$$

It is easy to see, by (3.36), that $S_{*}\left(g_{i}(x)\right)=\frac{\partial}{\partial z_{1}^{i}} \triangleq b_{i}$ and $S_{*}(f(x))=A z$ for some constant matrix A. (For this, refer to the sufficiency proof of Theorem 3.2.) Let $\tilde{h}_{j}(z)=h_{j} \circ S^{-1}(z)$ for $1 \leq j \leq q$. Then we have, by (2.30), (5.20) and condition (iii), that for $1 \leq i \leq m, 1 \leq j \leq q$, and $1 \leq k \leq \kappa_{i}$,

$$
\frac{\partial \tilde{h}_{j}(z)}{\partial z_{k}^{i}}=L_{S_{*}\left(\mathrm{ad}_{f}^{k-1} g_{i}\right)} \tilde{h}_{j}(z)=\left.L_{\mathrm{ad}_{f}^{k-1} g_{i}} h_{j}(x)\right|_{x=S^{-1}(z)}=\mathrm{const} \triangleq c_{i k}^{j}
$$

Since $\tilde{h}(0)=0$, it is clear that $\tilde{h}(z) \triangleq h \circ S^{-1}(z)=C z$, where $C \triangleq\left[\begin{array}{c}c^{1} \\ \vdots \\ c^{q}\end{array}\right]$ and $c^{j} \triangleq$ $\left[c_{11}^{j} \cdots c_{1 \kappa_{1}}^{j} \cdots c_{m 1}^{j} \cdots c_{m \kappa_{m}}^{j}\right]$. Therefore, system (5.14) is state equivalent to a linear system via $z=S(x)$ in (5.17).

Example 5.3.1 Show that the following nonlinear system is state equivalent to a LS with output:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-2 x_{2}\left(x_{2}+x_{2}+x_{2}^{2}\right) \\
x_{1}+x_{2}+x_{2}^{2} \\
-2 x_{2}\left(x_{1}+x_{2}+x_{2}^{2}\right)
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} \tag{5.21}\\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] } & =\left[\begin{array}{c}
x_{1}+x_{2}^{2} \\
x_{2}+x_{2}^{2}+x_{3}
\end{array}\right]=\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]=h(x) .
\end{align*}
$$

Also, find a state transformation $z=S(x)$ in (5.17).
Solution By simple calculation, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$ and

$$
\operatorname{ad}_{f} g_{1}(x)=\left[\begin{array}{c}
2 x_{2} \\
-1 \\
2 x_{2}
\end{array}\right], \quad \operatorname{ad}_{f} g_{2}(x)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g_{1}(x)=\left[\begin{array}{c}
-2 x_{2} \\
1 \\
-2 x_{2}
\end{array}\right]
$$

(Refer to Example 3.3.3.) Also, we have that

$$
L_{g_{1}} h(x)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad L_{g_{2}} h(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad L_{\mathrm{ad}_{f} g_{1}} h(x)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .
$$

It is easy to see that condition (i)-(iii) of Theorem 5.2 are satisfied. Therefore, by Theorem 5.2, system (5.21) is state equivalent to a LS with output. It is clear, by (5.17), that

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{lll}
1 & 2 x_{2} & 0 \\
0 & -1 & 0 \\
0 & 2 x_{2} & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & 2 x_{2} & 0 \\
0 & -1 & 0 \\
0 & 2 x_{2} & 1
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=S(x)=\left[\begin{array}{c}
x_{1}+x_{2}^{2} \\
-x_{2} \\
x_{3}+x_{2}^{2}
\end{array}\right] .
$$

Then we have that

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =S_{*}(f(x))+S_{*}\left(g_{1}(x)\right) u_{1}+S_{*}\left(g_{2}(x)\right) u_{2} \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
y & =h \circ S^{-1}(z)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]
\end{aligned}
$$

5.4 Feedback Linearization with Output of SISO Systems

In this section, we consider the following single input single output (SISO) nonlinear system:

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \tag{5.22}\\
& y(t)=h(x(t))
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}, y \in \mathbb{R}$, and $f(x), g(x)$, and $h(x)$ are smooth functions with $f(0)=0$ and $h(0)=0$.

Definition 5.3 (feedback linearization with output)
System (5.22) is said to be feedback linearizable with output, if there exist a feedback $u=\alpha(x)+\beta(x) v$ and a state transformation $z=S(x)$ such that the closed-loop satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\begin{align*}
& \dot{z}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] v=A z+b v \tag{5.23}\\
& y=c z
\end{align*}
$$

In other words,

$$
\begin{align*}
& S_{*}(f(x)+g(x) \alpha(x))=A z ; \quad S_{*}(g(x) \beta(x))=b \tag{5.24}\\
& h \circ S^{-1}(z)=c z .
\end{align*}
$$

Definition 5.4 (characteristic number)

The characteristic number ρ of the output is defined as the smallest natural number such that $L_{g} L_{f}^{\rho-1} h(x) \neq 0$. In other words,

$$
\begin{equation*}
L_{g} L_{f}^{k-1} h(x)=0,1 \leq k \leq \rho-1 \text { and } L_{g} L_{f}^{\rho-1} h(x) \neq 0 \tag{5.25}
\end{equation*}
$$

or (by Example 2.4.16)

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{k-1} g} h(x)=0,1 \leq k \leq \rho-1 \text { and } L_{\mathrm{ad}_{f}^{\rho-1} g} h(x) \neq 0 \tag{5.26}
\end{equation*}
$$

If $L_{g} L_{f}^{k} h(x)=0$ for $k \geq 0$, then we let $\rho \triangleq \infty$.
It is easy to see, by mathematical induction, that

$$
\begin{align*}
& L_{f+g \alpha}^{k} h(x)=L_{f}^{k} h(x), \quad 1 \leq k \leq \rho-1 \\
& L_{f+g \alpha}^{\rho} h(x)=L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) \alpha(x) \tag{5.27}
\end{align*}
$$

Example 5.4.1 Suppose that ρ is the characteristic number of the system output. Let $\rho \leq n$. Find the nonsingular feedback $u=\alpha(x)+\beta(x) v$ such that the transfer function of the closed-loop system is

$$
G_{c}(s) \triangleq \frac{Y(s)}{V(s)}=\frac{1}{s^{\rho}+a_{\rho-1} s^{\rho-1}+\cdots+a_{1} s+a_{0}}
$$

Solution It is easy to see, by (5.27), that

$$
\begin{aligned}
& y^{(k)}(t) \triangleq \frac{d^{k} y(t)}{d t^{k}}=L_{f}^{k} h(x), \quad 1 \leq k \leq \rho-1 \\
& y^{(\rho)}(t)=L_{f+g u} L_{f}^{\rho-1} h(x)=L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u
\end{aligned}
$$

We need to find the feedback such that

$$
\begin{aligned}
y^{(\rho)} & =-a_{\rho-1} y^{\rho-1}-\cdots-a_{1} \dot{y}-a_{0} y+v \\
& =-a_{\rho-1} L_{f}^{\rho-1} h(x)-\cdots-a_{1} L_{f} h(x)-a_{0} h(x)+v
\end{aligned}
$$

Thus, we have

$$
u=\frac{-L_{f}^{\rho} h(x)-a_{\rho-1} L_{f}^{\rho-1} h(x)-\cdots-a_{1} L_{f} h(x)-a_{0} h(x)+v}{L_{g} L_{f}^{\rho-1} h(x)}
$$

Example 5.4.2 Show that if $\rho=n$ and $\left.L_{g} L_{f}^{\rho-1} h(x)\right|_{x=0} \neq 0$, then system (5.22) is feedback linearizable with output.

Solution Suppose that $\rho=n$ and $\left.L_{g} L_{f}^{\rho-1} h(x)\right|_{x=0} \neq 0$. Then, we have, by (5.25), that

$$
L_{g} L_{f}^{k-1} h(x)=0,1 \leq k \leq n-1 \text { and } L_{g} L_{f}^{n-1} h(x) \neq 0
$$

Thus, conditions of Lemma 4.1 are satisfied with $S_{1}(x)=h(x)$. Therefore, by Lemma 4.1, system (5.22) is feedback linearizable with state transformation

$$
z=S(x)=\left[\begin{array}{c}
h(x) \tag{5.28}\\
L_{f} h(x) \\
\vdots \\
L_{f}^{\rho-1} h(x)
\end{array}\right]
$$

and feedback

$$
\begin{equation*}
u=-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)}+\frac{1}{L_{g} L_{f}^{\rho-1} h(x)} v=\alpha(x)+\beta(x) v . \tag{5.29}
\end{equation*}
$$

Since $\tilde{h}=h \circ S^{-1}(z)=z_{1}$, it is easy to see that (5.23) is satisfied with $c=$ $[10 \cdots 0]$.

Suppose that $\rho<n$. Let $z=S(x)=\left[\begin{array}{l}z^{1} \\ z^{2}\end{array}\right]$, where $z^{2} \in \mathbb{R}^{n-\rho}$ and

$$
z^{1}=\left[h(x) L_{f} h(x) \cdots L_{f}^{\rho-1} h(x)\right]^{\top}
$$

Then, the closed-loop system with state feedback (5.29) satisfies, in z-coordinates, the following system:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{z}^{1}(t) \\
\dot{z}^{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
A_{\rho} z^{1}(t) \\
\tilde{f}^{2}(z(t))
\end{array}\right]+\left[\begin{array}{c}
b_{\rho} \\
\tilde{g}^{2}(z(t))
\end{array}\right] v(t) \\
y(t) & =\left[\begin{array}{lll}
1 & 0 & \cdots
\end{array}\right] z(t)
\end{aligned}
$$

Theorem 5.3 (conditions for feedback linearization with output)
Let $\rho \leq n$. System (5.22) is feedback linearizable with output, if and only if
(i) $\operatorname{rank}\left(\left.\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}\right)=n$
(ii) $\left.L_{\mathrm{ad}_{f}^{\rho-1} g} h(x)\right|_{x=0} \neq 0$
(iii) one form $\omega(x)$ is exact or $\frac{\partial \omega(x)^{\top}}{\partial x}=\left(\frac{\partial \omega(x)^{\top}}{\partial x}\right)^{\top}$.
(iv) $L_{\hat{g}} L_{\hat{f}}^{k-1} h(x)=$ const for $\rho \leq k \leq n$,
where

$$
\begin{gather*}
\omega(x) \triangleq\left[0 \cdots 0 \frac{(-1)^{n-1}}{\beta(x)}\right]\left[g(x) \mathrm{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]^{-1} \tag{5.30}\\
\frac{\partial S_{1}(x)}{\partial x}=\omega(x) \tag{5.31}\\
\hat{g}(x) \triangleq \frac{1}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=g(x) \beta(x) \tag{5.32}\\
\hat{f}(x) \triangleq f(x)-\frac{L_{f}^{n} S_{1}(x)}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=f(x)+g(x) \alpha(x) \tag{5.33}
\end{gather*}
$$

Furthermore, a state transformation $z=S(x)$ is given by

$$
\begin{equation*}
S(x)=\left[S_{1}(x) L_{f} S_{1}(x) \cdots L_{f}^{n-1} S_{1}(x)\right]^{\top} \tag{5.34}
\end{equation*}
$$

Proof Necessity. Suppose that system (5.22) is feedback linearizable with output. Then there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=$ $\alpha(x)+\beta(x) v$ such that

$$
\begin{align*}
& \tilde{f}(z) \triangleq S_{*}(f(x)+g(x) \alpha(x))=A z ; \quad \tilde{g}(z) \triangleq S_{*}(g(x) \beta(x))=b \\
& \tilde{h}(z) \triangleq h \circ S^{-1}(z)=c z=\left[\begin{array}{cc}
c_{1} & c_{2}
\end{array} \cdots c_{n}\right] z \tag{5.35}
\end{align*}
$$

where $\hat{f}(x)=f(x)+g(x) \alpha(x)$ and $\hat{g}(x)=g(x) \beta(x)$. It is clear, by Theorem 4.1, that condition (i) of Theorem 5.3 is satisfied. Since $S_{*}(f(x)+g(x) \alpha(x)+$ $g(x) \beta(x) v)=A z+b v$ by (5.35), it is clear that

$$
\frac{\partial S(x)}{\partial x}\{f(x)+g(x) \alpha(x)+g(x) \beta(x) v\}=A S(x)+b v=\left[\begin{array}{c}
S_{2}(x) \\
\vdots \\
S_{n}(x) \\
v
\end{array}\right]
$$

Thus, we have that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
S_{i+1}(x) & =\frac{\partial S_{i}(x)}{\partial x}\{f(x)+g(x) \alpha(x)+g(x) \beta(x) v\}=L_{f+g \alpha+g \beta v} S_{i}(x) \\
& =L_{f} S_{i}(x)+L_{g} S_{i}(x)\{\alpha(x)+\beta(x) v\}
\end{aligned}
$$

and

$$
v=L_{f+g(\alpha+\beta v)} S_{n}(x)=L_{f} S_{n}(x)+L_{g} S_{n}(x)\{\alpha(x)+\beta(x) v\} .
$$

Since $\beta(0) \neq 0$, it is easy to see that for $1 \leq i \leq n-1$,

$$
S_{i+1}(x)=L_{f} S_{i}(x) ; \quad L_{g} S_{i}(x)=0
$$

and

$$
L_{f} S_{n}(x)+L_{g} S_{n}(x) \alpha(x)=0 ; \quad L_{g} S_{n}(x) \beta(x)=1
$$

which imply that

$$
\begin{aligned}
& L_{g} L_{f}^{i} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ; \quad L_{g} L_{f}^{n-1} S_{1}(x) \beta(x)=1 \\
& \alpha(x)=-\beta(x) L_{f}^{n} S_{1}(x)
\end{aligned}
$$

Then, it is clear, by Example 2.4.16, that

$$
L_{\mathrm{ad}_{f}^{i} g} S_{1}(x)=0,0 \leq i \leq n-2 ; \quad L_{\mathrm{ad}_{f}^{n-1} g(x)} S_{1}(x)=\frac{(-1)^{n-1}}{\beta(x)}
$$

or

$$
\frac{\partial S_{1}(x)}{\partial x}\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]=\left[0 \cdots 0 \frac{(-1)^{n-1}}{\beta(x)}\right]
$$

which implies that (5.30) and (5.31) are satisfied. Since $\omega(x)=\frac{\partial S_{1}(x)}{\partial x}$, it is clear that condition (ii) is satisfied. Also, it is easy to see, by Example 2.4.14 and (5.35), that for $1 \leq k \leq n$,

$$
\begin{equation*}
L_{\hat{g}} L_{\hat{f}}^{k-1} h(x)=\left.L_{\tilde{g}} L_{\tilde{f}}^{k-1} \tilde{h}(z)\right|_{z=S(x)}=c A^{k-1} b=c_{n+1-k} \tag{5.36}
\end{equation*}
$$

which implies that condition (iv) is satisfied. Note, by (5.27), that $c_{k}=0, n+2-$ $\rho \leq k \leq n$. Finally, it is easy to see, by (2.16) and (5.36), that

$$
c_{n+1-\rho}=L_{g \beta} L_{f}^{\rho-1} h(x)=L_{g} L_{f}^{\rho-1} h(x) \beta(x)
$$

which implies that (5.32) is satisfied. (Without loss of generality, we can let $c_{n+1-\rho}=$ 1.) Since $\beta(0) \neq 0$ and $\frac{1}{\beta(0)} \neq 0$, condition (ii) is satisfied.

Sufficiency. Suppose that condition (i)-(iv) are satisfied. Then, it is clear that

$$
\begin{equation*}
\frac{\partial S_{1}(x)}{\partial x}\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]=\left[0 \cdots 0 \frac{(-1)^{n-1}}{\beta(x)}\right] \tag{5.37}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{\mathrm{ad}_{f}^{i} g} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ; \quad L_{\mathrm{ad}_{f}^{n-1} g} S_{1}(x)=\frac{(-1)^{n-1}}{\beta(x)} \tag{5.38}
\end{equation*}
$$

Thus, it is easy to see, by Example 2.4.16, that

$$
\begin{equation*}
L_{g} L_{f}^{i} S_{1}(x)=0, \quad 0 \leq i \leq n-2 ; \quad L_{g} L_{f}^{n-1} S_{1}(x) \beta(x)=1 \tag{5.39}
\end{equation*}
$$

By mathematical induction, it is easy to see that

$$
\begin{equation*}
L_{\hat{f}}^{i} S_{1}(x)=L_{f}^{i} S_{1}(x), \quad 0 \leq i \leq n-1 \tag{5.40}
\end{equation*}
$$

which implies that

$$
\begin{align*}
L_{\hat{f}}^{n} S_{1}(x) & =L_{\hat{f}} L_{f}^{n-1} S_{1}(x)=L_{f}^{n} S_{1}(x)+L_{g} L_{f}^{n-1} S_{1}(x) \alpha(x) \\
& =L_{f}^{n} S_{1}(x)+\frac{1}{\beta(x)} \alpha(x)=0 . \tag{5.41}
\end{align*}
$$

Let $S_{i}(x)=L_{f}^{i-1} S_{1}(x)=L_{\hat{f}}^{i-1} S_{1}(x), 2 \leq i \leq n$. Then, we have, by (5.39), (5.40), and (5.41), that

$$
\begin{align*}
S_{*}(\hat{f} & +\hat{g} v)=\left.\frac{\partial S(x)}{\partial x}(\hat{f}+\hat{g} v)\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\frac{\partial L_{\hat{f}} S_{1}(x)}{\partial x} \\
\vdots \\
\frac{\partial L_{f}^{n-1} S_{1}(x)}{\partial x}
\end{array}\right](\hat{f}+\hat{g} v)\right|_{x=S^{-1}(z)} \\
& =\left.\left[\begin{array}{c}
L_{\hat{f}} S_{1}(x)+L_{\hat{g}} S_{1}(x) v \\
\vdots \\
L_{\hat{f}}^{n-1} S_{1}(x)+L_{\hat{g}} L_{f}^{n-2} S_{1}(x) v \\
L_{\hat{f}}^{n} S_{1}(x)+L_{\hat{g}} L_{f}^{n-1} S_{1}(x) v
\end{array}\right]\right|_{x=S^{-1}(z)} \tag{5.42}\\
& =\left.\left[\begin{array}{c}
L_{f} S_{1}(x) \\
\vdots \\
L_{f}^{n-1} S_{1}(x) \\
v
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n} \\
v
\end{array}\right]=A z+b v
\end{align*}
$$

which implies that

$$
\begin{equation*}
S_{*}(\hat{f}(x))=A z \text { and } S_{*}(\hat{g}(x))=b \tag{5.43}
\end{equation*}
$$

It is easy to see, by Example 2.4.14, that for $1 \leq k \leq n$,

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{\hat{f}}^{k-1} \hat{g}(x)\right)=\operatorname{ad}_{\tilde{f}}^{k-1} \tilde{g}(z)=(-1)^{k-1} A^{k-1} b=(-1)^{k-1} \frac{\partial}{\partial z_{n+1-k}} \tag{5.44}
\end{equation*}
$$

Let $\tilde{h}(z)=h \circ S^{-1}(z)$. Then we have, by (2.30), (5.26), (5.44), Example 2.4.16, and condition (iv), that for $1 \leq k \leq n$,

$$
\begin{align*}
(-1)^{k-1} \frac{\partial \tilde{h}(z)}{\partial z_{n+1-k}} & =L_{S_{*}\left(\mathrm{ad}_{\hat{f}}^{k-1} \hat{g}\right)} \tilde{h}(z)=\left.L_{\mathrm{ad}_{f}^{k-1} \hat{g}} h(x)\right|_{x=S^{-1}(z)} \\
& = \begin{cases}0, & 1 \leq k \leq \rho-1 \\
\text { const } \triangleq(-1)^{k-1} c_{n+1-k}, & \rho \leq k \leq n\end{cases} \tag{5.45}
\end{align*} .
$$

Since $\tilde{h}(0)=0$, it is clear that

$$
\begin{equation*}
\tilde{h}(z) \triangleq h \circ S^{-1}(z)=\left[c_{1} \cdots c_{n+1-\rho} 0 \cdots 0\right] z \tag{5.46}
\end{equation*}
$$

Hence, system (5.22) is feedback linearizable with output.

Theorem 5.4 (conditions for feedback linearization with output)
Let $\rho \leq n$. System (5.22) is feedback linearizable with output, if and only if
(i) $\operatorname{rank}\left(\left.\left[g(x) \operatorname{ad}_{f} g(x) \cdots \operatorname{ad}_{f}^{n-1} g(x)\right]\right|_{x=0}\right)=n$
(ii) $\left.L_{\mathrm{ad}_{f}^{\rho-1} g} h(x)\right|_{x=0} \neq 0$
(iii) for $1 \leq i \leq n+1$ and $1 \leq j \leq n+1$,

$$
\begin{equation*}
\left[\operatorname{ad}_{\bar{f}}^{i-1} \hat{g}(x), \operatorname{ad}_{\bar{f}}^{j-1} \hat{g}(x)\right]=0 \tag{5.47}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{g}(x) \triangleq \frac{1}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=g(x) \beta(x) \tag{5.48}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{f}(x) \triangleq f(x)-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)} g(x) \tag{5.49}
\end{equation*}
$$

Proof Necessity. Suppose that system (5.22) is feedback linearizable with output. Then, by Theorem 5.3, condition (i) and (ii) of Theorem 5.4 are satisfied. Also, there exists a scalar function $S_{1}(x)$ such that

$$
\frac{\partial S_{1}(x)}{\partial x}\left[g \operatorname{ad}_{f} g \cdots \mathrm{ad}_{f}^{n-1} g\right]=\left[0 \cdots 0(-1)^{n-1} L_{g} L_{f}^{\rho-1} h(x)\right]
$$

and

$$
L_{\mathrm{ad}_{\hat{f}}^{k-1} \hat{g}} h(x)= \begin{cases}0, & 1 \leq k \leq \rho-1 \tag{5.50}\\ (-1)^{k-1} c_{n+1-k}=\mathrm{const}, & \rho \leq k \leq n\end{cases}
$$

where

$$
\begin{equation*}
\hat{g}(x) \triangleq \frac{1}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=g(x) \beta(x) \tag{5.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}(x) \triangleq f(x)-\frac{L_{f}^{n} S_{1}(x)}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=f(x)-L_{f}^{n} S_{1}(x) \hat{g}(x) \tag{5.52}
\end{equation*}
$$

Thus, it is easy to see, by (5.37)-(5.46), that

$$
\begin{equation*}
S_{*}(\hat{f}(x))=A z ; \quad S_{*}(\hat{g}(x))=b \tag{5.53}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{h}(z) \triangleq h \circ S^{-1}(z)=\left[c_{1} \cdots c_{n+1-\rho} 0 \cdots 0\right] z \tag{5.54}
\end{equation*}
$$

where

$$
z=S(x)=\left[S_{1}(x) L_{f} S_{1}(x) \cdots L_{f}^{n-1} S_{1}(x)\right]^{\top}
$$

It is clear, by Example 2.4.16, (5.26), and (5.50)-(5.52), that

$$
c_{n+1-\rho}=(-1)^{\rho-1} L_{\mathrm{ad}_{f}^{\rho-1} \hat{g}} h(x)=L_{\hat{g}} L_{\hat{f}}^{\rho-1} h(x)=L_{g} L_{f}^{\rho-1} h(x) \beta(x)=1 .
$$

Thus, we have, by (5.54), that

$$
h(x)=L_{f}^{n-\rho} S_{1}(x)+\sum_{i=1}^{n-\rho} c_{i} L_{f}^{i-1} S_{1}(x)
$$

which implies, together with (5.49), that

$$
L_{f}^{\rho} h(x)=L_{f}^{n} S_{1}(x)+\sum_{i=1}^{n-\rho} c_{i} L_{f}^{i-1+\rho} S_{1}(x)
$$

and

$$
\begin{equation*}
\bar{f}(x) \triangleq \hat{f}(x)-\left(\sum_{i=1}^{n-\rho} c_{i} L_{f}^{i-1+\rho} S_{1}(x)\right) \hat{g}(x) \tag{5.55}
\end{equation*}
$$

Therefore, it is easy to see, by (2.49), (5.53), and (5.55), that

$$
\begin{aligned}
S_{*}(\bar{f}(x)) & =S_{*}(\hat{f}(x))-\left.\left(\sum_{i=1}^{n-\rho} c_{i} L_{f}^{i-1+\rho} S_{1}(x)\right)\right|_{x=S^{-1}(z)} S_{*}(\hat{g}(x)) \\
& =A z-b\left[0 \cdots 0 c_{1} \cdots c_{n-\rho}\right] z \\
& \triangleq(A-b \bar{c}) z \triangleq \bar{A} z
\end{aligned}
$$

Hence, by Example 2.4.14, condition (iii) of Theorem 5.4 is satisfied.

Sufficiency. Suppose that condition (i)-(iii) of Theorem 5.4 are satisfied. Then, it is clear, by (4.51), condition (i), and condition (iii), that

$$
\operatorname{rank}\left(\left.\left[\hat{g}(x) \operatorname{ad}_{f} \hat{g}(x) \cdots \operatorname{ad}_{\hat{f}}^{n-1} \hat{g}(x)\right]\right|_{x=0}\right)=n .
$$

Also, it is easy to see, by (5.25) and (5.49), that for $1 \leq k \leq \rho$,

$$
L_{\bar{f}}^{k-1} h(x)=L_{f}^{k-1} h(x)
$$

and

$$
L_{\bar{f}}^{\rho} h(x)=L_{f-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h} g} L_{f}^{\rho-1} h(x)=0
$$

which imply, together with (5.48), that for $k \geq 1$,

$$
L_{\hat{g}} L_{\bar{f}}^{k-1} h(x)= \begin{cases}1, & k=\rho \\ 0, & k \neq \rho\end{cases}
$$

or

$$
\begin{equation*}
L_{\mathrm{ad}_{\tilde{f}}^{k-1} \hat{g}} h(x)=\text { constant, } \quad 1 \leq k \leq n . \tag{5.56}
\end{equation*}
$$

Hence, by Theorem 5.1, the closed-loop system of system (5.22) with nonsingular feedback $u=-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)}+\frac{1}{L_{g} L_{f}^{\rho-1} h(x)} w$ is state equivalent to a LS with output and thus system (5.22) is feedback linearizable with output.

If $\left.L_{g} L_{f}^{\rho-1} h(x)\right|_{x=0} \neq 0$, then we have nonsingular feedback

$$
\begin{equation*}
u=-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)}+\frac{1}{L_{g} L_{f}^{\rho-1} h(x)} w \tag{5.57}
\end{equation*}
$$

such that the closed-loop system

$$
\begin{align*}
\dot{x} & =\bar{f}(x)+\hat{g}(x) w \tag{5.58}\\
y & =h(x)
\end{align*}
$$

has linear input-output relation $y^{(\rho)}=w$, where $\hat{g}(x)$ and $\bar{f}(x)$ are given in (5.48) and (5.49). (Refer to Example 5.4.1.) Theorem 5.4 shows that system (5.22) is feedback linearizable with output, if and only if the closed-loop system (5.58) is state equivalent to a linear system (without feedback).

Example 5.4.3 Use Theorem 5.3 to show that the following nonlinear system is feedback linearizable with output:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
x_{1} \cos ^{2} x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u=f(x)+g(x) u \tag{5.59}\\
y & =x_{2}=h(x)
\end{align*}
$$

Solution It is easy to see that

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
0 \\
-\cos ^{2} x_{2}
\end{array}\right], \quad L_{g} h(x)=0, \quad L_{\mathrm{ad}_{f} g} h(x)=-\cos ^{2} x_{2} .
$$

Thus, we have that $\rho=2, L_{g} L_{f} h(x)=-L_{\mathrm{ad}_{f} g} h(x)=\cos ^{2} x_{2}, \beta(x)=\frac{1}{L_{g} L_{f} h(x)}=$ $\frac{1}{\cos ^{2} x_{2}}$, and

$$
\begin{aligned}
& \omega(x) \triangleq\left[0 \frac{-1}{\beta(x)}\right]\left[g(x) \operatorname{ad}_{f} g(x)\right]^{-1}=\left[0-\cos ^{2} x_{2}\right]\left[\begin{array}{cc}
1 & 0 \\
0-\cos ^{2} x_{2}
\end{array}\right]^{-1} \\
& =\left[0-\cos ^{2} x_{2}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{\cos ^{2} x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] .
\end{aligned}
$$

Since $\frac{\partial \omega(x)^{\top}}{\partial x}=O_{2 \times 2}$ is symmetric, condition (iii) of Theorem 5.3 is satisfied. Since $\frac{\partial S_{1}(x)}{\partial x}=\omega(x)=\left[\begin{array}{ll}0 & 1\end{array}\right]$, it is clear that $S_{1}(x)=x_{2}$. Also, it is clear that condition (i) and (ii) of Theorem 5.3 are satisfied. We have, by (5.32) and (5.33), that $\alpha(x)=$ $-\frac{L_{f}^{2} S_{1}(x)}{L_{g} L_{f} h(x)}=-\frac{-2 x_{1}^{2} \cos ^{3} x_{2} \sin x_{2}}{\cos ^{2} x_{2}}=x_{1}^{2} \sin 2 x_{2}$ and

$$
\hat{f}(x)=f(x)+g(x) \alpha(x)=\left[\begin{array}{c}
x_{1}^{2} \sin 2 x_{2} \\
x_{1} \cos ^{2} x_{2}
\end{array}\right] ; \quad \hat{g}(x)=g(x) \beta(x)=\left[\begin{array}{c}
\frac{1}{\cos ^{2} x_{2}} \\
0
\end{array}\right]
$$

By simple calculation, we have that

$$
\operatorname{ad}_{\hat{f}} \hat{g}(x)=\left[\begin{array}{c}
-\frac{2 x_{1} \sin x_{2}}{\cos x_{2}} \\
-1
\end{array}\right], \quad L_{\hat{g}} h(x)=0, \quad L_{\mathrm{ad}_{\hat{f}} \hat{g}} h(x)=-1
$$

which implies that (iv) of Theorem 5.3 is satisfied. Hence, by Theorem 5.3, system (5.59) is feedback linearizable with output via state transformation $z=$ $S(x)=\left[\begin{array}{c}S_{1}(x) \\ L_{f} S_{1}(x)\end{array}\right]=\left[\begin{array}{c}x_{2} \\ x_{1} \cos ^{2} x_{2}\end{array}\right]$ and nonsingular feedback $u=\alpha(x)+\beta(x) v=$ $x_{1}^{2} \sin 2 x_{2}+\frac{1}{\cos ^{2} x_{2}} v$. It is easy to see that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =S_{*}(\hat{f}(x))+S_{*}(\hat{g}(x)) v=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v \\
y & =h \circ S^{-1}(z)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] .
\end{aligned}
$$

Example 5.4.4 Consider the following nonlinear system:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
e^{x_{1}}
\end{array}\right] u=f(x)+g(x) u \tag{5.60}\\
y & =2 x_{1}+x_{2}=h(x)
\end{align*}
$$

(a) Use Theorem 5.3 to show that the above system is feedback linearizable with output.
(b) Use Theorem 5.4 to show that the above system is feedback linearizable with output.

Solution (a) It is easy to see that

$$
\operatorname{ad}_{f} g(x)=\left[\begin{array}{c}
0 \tag{5.61}\\
-e^{x_{1}} \\
x_{2} e^{x_{1}}
\end{array}\right], \quad \operatorname{ad}_{f}^{2} g(x)=\left[\begin{array}{c}
e^{x_{1}} \\
-2 x_{2} e^{x_{1}} \\
\left(x_{2}^{2}+x_{3}\right) e^{x_{1}}
\end{array}\right]
$$

and

$$
L_{g} h(x)=0, \quad L_{\mathrm{ad}_{f} g} h(x)=-e^{x_{1}}
$$

Thus, condition (i) and (ii) of Theorem 5.3 are satisfied. Also, we have that $\rho=2, L_{g} L_{f} h(x)=-L_{\mathrm{ad}_{f} g} h(x)=e^{x_{1}}, \beta(x)=\frac{1}{L_{g} L_{f} h(x)}=e^{-x_{1}}$, and

$$
\begin{aligned}
\omega(x) & \triangleq\left[\begin{array}{lll}
0 & 0 & \frac{1}{\beta(x)}
\end{array}\right]\left[\begin{array}{lll}
g(x) & \mathrm{ad}_{f} g(x) \mathrm{ad}_{f}^{2} g(x)
\end{array}\right]^{-1} \\
& =\left[\begin{array}{lll}
0 & 0 & e^{x_{1}}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & e^{x_{1}} \\
0 & -e^{x_{1}} & -2 x_{2} e^{x_{1}} \\
e^{x_{1}} & x_{2} e^{x_{1}} & \left(x_{2}^{2}+x_{3}\right) e^{x_{1}}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{lll}
0 & 0 & e^{x_{1}}
\end{array}\right]\left[\begin{array}{ccc}
\left(x_{2}^{2}-x_{3}\right) e^{-x_{1}} & x_{2} e^{-x_{1}} & e^{-x_{1}} \\
-2 x_{2} e^{-x_{1}} & -e^{-x_{1}} & 0 \\
e^{-x_{1}} & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Since $\frac{\partial \omega(x)^{\top}}{\partial x}=O_{3 \times 3}$ is symmetric, condition (iii) of Theorem 5.3 is satisfied. Since $\frac{\partial S_{1}(x)}{\partial x}=\omega(x)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, it is clear that $S_{1}(x)=x_{1}$. We have, by (5.32) and (5.33), that $\alpha(x)=-\frac{L_{f}^{3} S_{1}(x)}{L_{g} L_{f} h(x)}=-\frac{x_{1}^{2}}{e^{x_{1}}}=-x_{1}^{2} e^{-x_{1}}$ and

$$
\hat{f}(x)=f(x)+g(x) \alpha(x)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0
\end{array}\right] ; \quad \hat{g}(x)=g(x) \beta(x)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

By simple calculation, we have that

$$
\operatorname{ad}_{\hat{f}} \hat{g}(x)=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], \quad \operatorname{ad}_{\hat{f}}^{2} \hat{g}(x)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and

$$
L_{\hat{g}} h(x)=0, \quad L_{\mathrm{ad}_{\hat{f}} \hat{g}} h(x)=-1, \quad L_{\mathrm{ad}_{\hat{f}} \hat{\hat{g}}} h(x)=2
$$

which implies that (iv) of Theorem 5.3 is satisfied. Hence, by Theorem 5.3, system (5.60) is feedback linearizable with output via state transformation $z=$ $S(x)=\left[\begin{array}{c}S_{1}(x) \\ L_{f} S_{1}(x) \\ L_{f}^{2} S_{1}(x)\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and nonsingular feedback $u=\alpha(x)+\beta(x) v=$ $-x_{1}^{2} e^{-x_{1}}+e^{-x_{1}} v$. It is easy to see that

$$
\begin{gather*}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right]=S_{*}(\hat{f}(x))+S_{*}(\hat{g}(x)) v=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] v} \tag{5.62}\\
y=h \circ S^{-1}(z)=\left[\begin{array}{lll}
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right] .
\end{gather*}
$$

(b) Since $\rho=2, L_{g} L_{f} h(x)=e^{x_{1}}$, and $L_{f}^{2} h(x)=x_{1}^{2}+2 x_{3}$, we have, by (5.48) and (5.49), that

$$
\hat{g}(x) \triangleq \frac{1}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and

$$
\bar{f}(x) \triangleq f(x)-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
-2 x_{3}
\end{array}\right]
$$

By simple calculation, we have that

$$
\left[\operatorname{ad}_{\bar{f}} \hat{g}(x) \operatorname{ad}_{\hat{f}}^{2} \hat{g}(x) \operatorname{ad}_{\hat{f}}^{3} \hat{g}(x)\right]=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & -2 & -4 \\
2 & 4 & 8
\end{array}\right]
$$

which implies that (iii) of Theorem 5.4 is satisfied. Hence, by Theorem 5.4, system (5.60) is feedback linearizable with output.

Example 5.4.5 Use Theorem 5.3 to show that the following nonlinear system is not feedback linearizable with output:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
e^{x_{1}}
\end{array}\right] u=f(x)+g(x) u \tag{5.63}\\
y & =2 x_{1}+e^{x_{2}}-1=h(x) .
\end{align*}
$$

Solution By simple calculation, we have

$$
L_{g} h(x)=0, \quad L_{\mathrm{ad}_{f g}} h(x)=-e^{x_{1}+x_{2}}
$$

where $\operatorname{ad}_{f} g(x)$ and $\operatorname{ad}_{f}^{2} g(x)$ are given by (5.61). Thus, condition (i) and (ii) of Theorem 5.3 are satisfied. Also, we have that $\rho=2, L_{g} L_{f} h(x)=-L_{\mathrm{ad}_{f} g} h(x)=$ $e^{x_{1}+x_{2}}, \beta(x)=\frac{1}{L_{g} L_{f} h(x)}=e^{-x_{1}-x_{2}}$, and

$$
\begin{aligned}
\omega(x) & \triangleq\left[\begin{array}{lll}
0 & 0 & \frac{1}{\beta(x)}
\end{array}\right]\left[g(x) \operatorname{ad}_{f} g(x) \operatorname{ad}_{f}^{2} g(x)\right]^{-1} \\
& =\left[\begin{array}{lll}
0 & 0 & e^{x_{1}+x_{2}}
\end{array}\right]\left[\begin{array}{ccc}
\left(x_{2}^{2}-x_{3}\right) e^{-x_{1}} & x_{2} e^{-x_{1}} & e^{-x_{1}} \\
-2 x_{2} e^{-x_{1}} & -e^{-x_{1}} & 0 \\
e^{-x_{1}} & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
e^{x_{2}} & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Since

$$
\frac{\partial \omega(x)^{\top}}{\partial x}=\left[\begin{array}{lll}
0 & e^{x_{2}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \neq\left(\frac{\partial \omega(x)^{\top}}{\partial x}\right)^{\top}
$$

$\omega(x)$ is not exact and condition (iii) of Theorem 5.3 is not satisfied. Hence, by Theorem 5.3, system (5.63) is not feedback linearizable with output.

Example 5.4.6 Consider the following nonlinear system:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
e^{x_{1}}
\end{array}\right] u=f(x)+g(x) u \tag{5.64}\\
y & =\sin x_{1}+x_{2}=h(x)
\end{align*}
$$

(a) Use Theorem 5.3 to show that the above system is not feedback linearizable with output.
(b) Use Theorem 5.4 to show that the above system is not feedback linearizable with output.

Solution (a) By simple calculation, we have

$$
L_{g} h(x)=0, \quad L_{\mathrm{ad}_{f} g} h(x)=-e^{x_{1}}
$$

where $\operatorname{ad}_{f} g(x)$ and $\operatorname{ad}_{f}^{2} g(x)$ are given by (5.61). Thus, condition (i) and (ii) of Theorem 5.3 are satisfied. Also, we have that $\rho=2, L_{g} L_{f} h(x)=$ $-L_{\mathrm{ad}_{f} g} h(x)=e^{x_{1}}, \beta(x)=\frac{1}{L_{g} L_{f} h(x)}=e^{-x_{1}}$, and

$$
\begin{aligned}
\omega(x) & \triangleq\left[\begin{array}{lll}
0 & 0 & \frac{1}{\beta(x)}
\end{array}\right]\left[\begin{array}{ll}
g(x) \mathrm{ad}_{f} g(x) \mathrm{ad}_{f}^{2} g(x)
\end{array}\right]^{-1} \\
& =\left[\begin{array}{lll}
0 & 0 & e^{x_{1}}
\end{array}\right]\left[\begin{array}{ccc}
\left(x_{2}^{2}-x_{3}\right) e^{-x_{1}} & x_{2} e^{-x_{1}} & e^{-x_{1}} \\
-2 x_{2} e^{-x_{1}} & -e^{-x_{1}} & 0 \\
e^{-x_{1}} & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Since $\frac{\partial \omega(x)^{\top}}{\partial x}=O_{3 \times 3}=\left(\frac{\partial \omega(x)^{\top}}{\partial x}\right)^{\top}$, condition (iii) of Theorem 5.3 is satisfied. Since $\frac{\partial S_{1}(x)}{\partial x}=\omega(x)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, it is clear that $S_{1}(x)=x_{1}$. We have, by (5.32) and (5.33), that $\alpha(x)=-\frac{L_{f}^{3} S_{1}(x)}{L_{g} L_{f} h(x)}=-\frac{x_{1}^{2}}{e^{x_{1}}}=-x_{1}^{2} e^{-x_{1}}$ and

$$
\hat{f}(x)=f(x)+g(x) \alpha(x)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0
\end{array}\right] ; \hat{g}(x)=g(x) \beta(x)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

By simple calculation, we have that

$$
\operatorname{ad}_{\hat{f}} \hat{g}(x)=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], \quad \operatorname{ad}_{\hat{f}}^{2} \hat{g}(x)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and

$$
L_{\hat{g}} h(x)=0, \quad L_{\mathrm{ad}_{f} \hat{g}} h(x)=-1, \quad L_{\mathrm{ad}_{f}^{2} \hat{g}} h(x)=\cos x_{1}
$$

which implies that (iv) of Theorem 5.3 is not satisfied. Hence, by Theorem 5.3, system (5.64) is not feedback linearizable with output.
(b) Since $\rho=2, L_{g} L_{f} h(x)=e^{x_{1}}$, and $L_{f}^{2} h(x)=x_{3} \cos x_{1}-x_{2}^{2} \sin x_{1}+x_{1}^{2}$, we have, by (5.48) and (5.49), that

$$
\hat{g}(x) \triangleq \frac{1}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and

$$
\bar{f}(x) \triangleq f(x)-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)} g(x)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{2}^{2} \sin x_{1}-x_{3} \cos x_{1}
\end{array}\right] .
$$

By simple calculation, we have that

$$
\begin{aligned}
{\left[\operatorname{ad}_{\hat{f}} \hat{g}(x) \operatorname{ad}_{\bar{f}}^{2} \hat{g}(x)\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-1 & -\cos x_{1} \\
\cos x_{1} & x_{2} \sin x_{1}-\sin ^{2} x_{1}+1
\end{array}\right] \\
\operatorname{ad}_{\bar{f}}^{3} \hat{g}(x) & =\left[\begin{array}{c}
\cos x_{1} \\
\frac{\sin ^{2} x_{1}-1}{\frac{x_{2} \sin \left(2 x_{1}\right)}{2}+\cos ^{3} x_{1}}
\end{array}\right]
\end{aligned}
$$

and

$$
\left[\operatorname{ad}_{\bar{f}}^{2} \hat{g}(x), \operatorname{ad}_{\bar{f}}^{3} \hat{g}(x)\right]=\left[\begin{array}{c}
-\sin x_{1} \\
\frac{\sin \left(2 x_{1}\right)}{2} \\
-\sin x_{1}\left(x_{2} \sin x_{1}-\sin ^{2} x_{1}+1\right)
\end{array}\right] \neq 0
$$

which implies that (iii) of Theorem 5.4 is not satisfied. Hence, by Theorem 5.4, system (5.64) is not feedback linearizable with output.

5.5 Input-Output Linearization of MIMO Systems

5.5.1 Introduction

The feedback linearization problem of the nonlinear system with output is to obtain feedback that makes both the relationship between the state variable and the input and the relationship between the output and the input linear. In the previous section, we considered feedback linearization with the output for the single input single output nonlinear system. For the single input system, the state and output expressions must be made linear with one input. For the multi-input system, if we use only a part of the inputs to linearize the input-output relation, we could use the remaining inputs to linearize the state equation. Therefore, it is a less restrictive problem than the single input problem. First, the input-output linearization problem of a multi-input multi-output system is explained. Consider the following nonlinear systems:

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \\
& y(t)=h(x(t)) \tag{5.65}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{q}$, and $f(x), g(x)$, and $h(x)$ are analytic functions with $f(0)=0$ and $h(0)=0$. The input-output relation of system (5.65) is expressed in the following Volterra series:

$$
\begin{align*}
y(t)= & w^{(0)}(t, x)+\sum_{i_{1}=1}^{m} \int_{0}^{t} w_{i_{1}}^{(1)}\left(t, \tau_{1}, x\right) u_{i_{1}}\left(\tau_{1}\right) d \tau_{1} \tag{5.66}\\
& +\sum_{i_{1}, i_{2}=1}^{m} \int_{0}^{t} \int_{0}^{\tau_{1}} w_{i_{1}, i_{2}}^{(2)}\left(t, \tau_{1}, \tau_{2}, x\right) u_{i_{1}}\left(\tau_{1}\right) u_{i_{2}}\left(\tau_{2}\right) d \tau_{2} d \tau_{1}+\cdots
\end{align*}
$$

where j-th triangular Volterra kernel $w_{i_{1}, i_{2}, \cdots, i_{j}}^{(j)}$ satisfies the following Taylor series:

$$
\begin{aligned}
w^{(0)}(t, x) & =\sum_{k=0}^{\infty} L_{f}^{k} h(x) \frac{t^{k}}{k!} \\
w_{i}^{(1)}\left(t, \tau_{1}, x\right) & =\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} L_{f}^{k_{2}} L_{g_{i}} L_{f}^{k_{1}} h(x) \frac{\left(t-\tau_{1}\right)^{k_{1}}}{k_{1}!} \frac{\tau_{1}^{k_{2}}}{k_{2}!} \\
w_{i_{1}, i_{2}}^{(2)}\left(t, \tau_{1}, \tau_{2}, x\right) & =\sum_{k_{3}, k_{2}, k_{1}=0}^{\infty} L_{f}^{k_{3}} L_{g_{i_{2}}} L_{f}^{k_{2}} L_{g_{i_{1}}} L_{f}^{k_{1}} h(x) \frac{\left(t-\tau_{1}\right)^{k_{1}}\left(\tau_{1}-\tau_{2}\right)^{k_{2}} \tau_{2}^{k_{3}}}{k_{1}!k_{2}!k_{3}!}
\end{aligned}
$$

The first term on the right-hand side of (5.66) is the zero input response, whereas the rest is the part of the output depending on the input. System (5.65) is said to have a linear input-output relation if the following is satisfied:

$$
\begin{equation*}
y(t)=w^{(0)}(t, x)+\sum_{i=1}^{m} \int_{0}^{t} w_{i}^{(1)}(t-\tau) u_{i}(\tau) d \tau \tag{5.68}
\end{equation*}
$$

Example 5.5.1 By using (5.66) and (5.67), show that linear time-invariant system

$$
\begin{align*}
& \dot{z}(t)=A z(t)+B v(t) \\
& y(t)=C z(t) \tag{5.69}
\end{align*}
$$

has the following input-output relation:

$$
\begin{equation*}
y(t)=C e^{A t} z(0)+\int_{0}^{t} C e^{A(t-\tau)} B v(\tau) d \tau \tag{5.70}
\end{equation*}
$$

Solution Omitted. (See Problem 5-6.)
Example 5.5.2 Show the following:
(a) The first Volterra kernel $w^{(1)}(t, \tau, x)$ depends only on $t-\tau$, if and only if

$$
\begin{equation*}
L_{g} L_{f}^{k} h(x)=\text { const }, \quad k \geq 0 \tag{5.71}
\end{equation*}
$$

(b) If $w^{(1)}(t, \tau, x)$ depends only on $t-\tau$, then $w^{(i)}=0$ for $i \geq 2$.

Solution (a) Suppose that $w^{(1)}(t, \tau, x)$ depends only on $t-\tau$. Then it is clear that $w^{(1)}(t, 0, x)$ depends only on t. Thus, we have, by (5.67), that

$$
\begin{align*}
w_{i}^{(1)}\left(t, \tau_{1}, x\right)= & \sum_{k_{1}=0}^{\infty} L_{g_{i}} L_{f}^{k_{1}} h(x) \frac{\left(t-\tau_{1}\right)^{k_{1}}}{k_{1}!} \\
& +\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=1}^{\infty} L_{f}^{k_{2}} L_{g_{i}} L_{f}^{k_{1}} h(x) \frac{\left(t-\tau_{1}\right)^{k_{1}}}{k_{1}!} \frac{\tau_{1}^{k_{2}}}{k_{2}!} \tag{5.72}
\end{align*}
$$

which implies that

$$
w_{i}^{(1)}(t, 0, x)=\sum_{k_{1}=0}^{\infty} L_{g_{i}} L_{f}^{k_{1}} h(x) \frac{t^{k_{1}}}{k_{1}!}
$$

and (5.71) is satisfied. Conversely, suppose that (5.71) is satisfied. Then

$$
w_{i}^{(1)}\left(t, \tau_{1}, x\right)=\sum_{k_{1}=0}^{\infty} L_{g_{i}} k_{f}^{k_{1}} h(x) \frac{\left(t-\tau_{1}\right)^{k_{1}}}{k_{1}!} .
$$

Since $L_{g_{i}} L_{f}^{k_{1}} h(x)=$ constant for $k_{1} \geq 0$, it is clear that $w^{(1)}(t, \tau, x)$ depends only on $t-\tau$.
(b) Suppose that $w^{(1)}(t, \tau, x)$ depends only on $t-\tau$. Then, it is clear, by (a), that $L_{g_{i}} L_{f}^{k_{1}} h(x)=$ constant for $k_{1} \geq 0$. Thus, it is easy to see, by (5.67), that for $k_{1} \geq 0$ and $k_{2} \geq 0$,

$$
L_{g_{i_{2}}} L_{f}^{k_{2}} L_{g_{i}} L_{f}^{k_{1}} h(x)=0
$$

which implies that $w^{(i)}=0$ for $i \geq 2$.

The input-output linearization problem of a nonlinear system is to find nonsingular state feedback $u=\alpha(x)+\beta(x) v$ such that the closed-loop system

$$
\begin{align*}
& \dot{x}(t)=f(x)+g(x) \alpha(x)+g(x) \beta(x) v(t)=\hat{f}(x(t))+\hat{g}(x(t)) v(t) \\
& y(t)=h(x(t)) \tag{5.73}
\end{align*}
$$

satisfies

$$
\begin{equation*}
y(t)=\hat{w}^{(0)}(t, x)+\sum_{i=1}^{m} \int_{0}^{t} \hat{w}_{i}^{(1)}(t-\tau) v_{i}(\tau) d \tau \tag{5.74}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{w}^{(0)}(t, x) & =\sum_{k=0}^{\infty} L_{\hat{f}}^{k} h(x) \frac{t^{k}}{k!} \\
\hat{w}_{i}^{(1)}\left(t-\tau_{1}\right) & =\sum_{k_{1}=0}^{\infty} L_{\hat{g}_{i}} L_{\hat{f}}^{k_{1}} h(x) \frac{\left(t-\tau_{1}\right)^{k_{1}}}{k_{1}!} . \tag{5.75}
\end{align*}
$$

Definition 5.5 (input-output linearization)

System (5.65) is said to be locally input-output linearizable, if there exists a nonsingular state feedback $u=\alpha(x)+\beta(x) v$ on a neighborhood U of $0 \in \mathbb{R}^{n}$ such that input-output relation of the closed-loop system of system (5.65) satisfies (5.74). In other words,

$$
\begin{equation*}
L_{\hat{g}} L_{\hat{f}}^{k} h(x)=\text { const, } \quad k \geq 0 \tag{5.76}
\end{equation*}
$$

where $\hat{f}(x)=f(x)+g(x) \alpha(x)$ and $\hat{g}(x)=g(x) \beta(x)$.

We use the nonsingular feedback (i.e., nonsingular $\beta(x)$) for input-output linearization. If we use singular feedback, we are giving up some of the input. For example, the feedback $u=\alpha(x)+\beta(x) v=\alpha(x)+O v$ obtains the linear relation between the output and the new input v . In the previous section, the characteristic number of the output has been defined for the single output system. For multi-output systems, each output can have a different characteristic number.

Definition 5.6 (relative degree of output y_{i})
The relative degree ρ_{i} of the output y_{i} is defined as the smallest integer such that $L_{g} L_{f}^{\rho_{i}-1} h_{i}(x) \neq 0$, where

$$
L_{g} h_{i}(x) \triangleq \frac{\partial h_{i}(x)}{\partial x} g(x)=\left[L_{g_{1}} h_{i}(x) \cdots L_{g_{m}} h_{i}(x)\right]
$$

In other words, ρ_{i} is the characteristic number of y_{i} such that

$$
\begin{equation*}
L_{g} L_{f}^{\ell-1} h_{i}(x)=0, \quad \ell \leq \rho_{i}-1 ; \quad L_{g} L_{f}^{\rho_{i}-1} h_{i}(x) \neq 0 \tag{5.77}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{f+g u}^{\ell-1} h_{i}(x)=L_{f}^{\ell-1} h_{i}(x), \quad \ell \leq \rho_{i} ; \quad \frac{\partial}{\partial u}\left(L_{f+g u}^{\rho_{i}} h_{i}(x)\right) \neq 0 \tag{5.78}
\end{equation*}
$$

$\rho \triangleq \min \left(\rho_{1}, \ldots, \rho_{q}\right)$ is said to be the characteristic number of the output. (Refer to Definition 5.4.) Suppose that ρ_{i} is the relative degree of the output y_{i}. Then, it is clear that

$$
\begin{align*}
{\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}\right)} \\
\vdots \\
y_{q}^{\left(\rho_{q}\right)}
\end{array}\right] } & =\left[\begin{array}{c}
L_{f}^{\rho_{1}} h_{1}(x) \\
\vdots \\
L_{f}^{\rho_{m}} h_{q}(x)
\end{array}\right]+\left[\begin{array}{c}
L_{g} L_{f}^{\rho_{1}-1} h_{1}(x) \\
\vdots \\
L_{g} L_{f}^{\rho_{m}-1} h_{q}(x)
\end{array}\right] u \tag{5.79}\\
& \triangleq E(x)+D(x) u .
\end{align*}
$$

If $q=m$ and $m \times m$ matrix $D(0)$ is invertible, then the closed-loop system has decoupled input-output relationship

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}\right)} \tag{5.80}\\
\vdots \\
y_{m}^{\left(\rho_{m}\right)}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]
$$

with static feedback

$$
\begin{equation*}
u=-D(x)^{-1} E(x)+D(x)^{-1} v \tag{5.81}
\end{equation*}
$$

Therefore, $D(x)$ is called the decoupling matrix of system (5.65). (Refer to Chap. 9.)

Lemma 5.1 Suppose that V is $a q \times q$ nonsingular constant matrix. If system (5.65) is locally input-output linearizable, then

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \tag{5.82}\\
& \tilde{y}(t)=\operatorname{Vh}(x(t))=\tilde{h}(x(t))
\end{align*}
$$

is also locally input-output linearizable with the same feedback, and vice versa.
Proof Omitted. (See Problem 5-8.)
Example 5.5.3 Find out a state feedback for input-output linearization of the following nonlinear system.

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{2}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] u=f(x)+g(x) u \tag{5.83}\\
y & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=h(x)
\end{align*}
$$

Solution By simple calculation, we have $\left(\rho_{1}, \rho_{2}\right)=(1,2)$ and

$$
\left[\begin{array}{l}
\dot{y}_{1} \tag{5.84}\\
\ddot{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}^{2} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
$$

Therefore, it is easy to see that system (5.83) is input-output linearizable by nonsingular state feedback

$$
\left[\begin{array}{l}
u_{1} \tag{5.85}\\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{-x_{2}^{2}}{1+x_{1}} \\
0
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{1+x_{1}} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Example 5.5.4 Find out a state feedback for input-output linearization of the following nonlinear system.

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] u=f(x)+g(x) u \tag{5.86}\\
y & =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=h(x)
\end{align*}
$$

Solution By simple calculation, we have $\left(\rho_{1}, \rho_{2}\right)=(1,1)$ and

$$
\left[\begin{array}{l}
\dot{y}_{1} \tag{5.87}\\
\dot{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}^{2} \\
x_{2}^{2}+x_{3}
\end{array}\right]+\left[\begin{array}{ll}
1+x_{1} & 0 \\
1+x_{1} & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \triangleq E(x)+D(x) u
$$

Since $D(0)$ is not invertible, there is no nonsingular feedback such that $\dot{y}_{1}=v_{1}$ and $\dot{y}_{2}=v_{2}$ as in Example 5.5.3. By premultiplying equation (5.87) by constant nonsingular matrix $\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$, we have

$$
\left[\begin{array}{c}
\dot{\tilde{y}}_{1} \tag{5.88}\\
\dot{\tilde{y}}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2}^{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
\tilde{y}_{1} \tag{5.89}\\
\tilde{y}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

Since the relative degree of \tilde{y}_{2} is not 1 but 2, we have

$$
\left[\begin{array}{c}
\dot{\tilde{y}}_{1} \tag{5.90}\\
\tilde{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}^{2} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \triangleq \tilde{E}(x)+\tilde{D}(x) u .
$$

Since $\tilde{D}(0)$ is invertible, the new output \tilde{y} and the new input v has linear input-output relation with nonsingular feedback (5.85). Therefore, by Lemma 5.1, it is clear that system (5.86) is also input-output linearizable by nonsingular feedback (5.85).

As in (5.89) of Example 5.5.4, we can find the linear transformation \tilde{y} of the output y (and its derivatives) such that the decoupling matrix $\tilde{D}(x)$ of \tilde{y} has the maximal rank. We call the above procedure the structure algorithm and introduce it in the next section.

5.5.2 Structure Algorithm

We define the structure algorithm for system (5.65).

5.5.2.1 Structure Algorithm of the Nonlinear System

Step 1: Let $\rho \triangleq \min \left(\rho_{1}, \ldots, \rho_{q}\right)$ and $\operatorname{rank}\left(\left.L_{g} L_{f}^{\rho-1} h(x)\right|_{x=0}\right)=\sigma_{1}$. If $\sigma_{1}=q$, then the algorithm terminates with $P_{1}=I_{q}$ (or $V_{1}=I$) and $\gamma_{1}(x)=L_{f}^{\rho-1} h(x)$. Otherwise, we can find, by elementary row operations, a nonsingular constant matrix $V_{1}=\left[\begin{array}{c}P_{1} \\ K_{1}^{1}\end{array}\right]$ such that

$$
\left.V_{1} L_{g} L_{f}^{\rho-1} h(x)\right|_{x=0}=\left[\begin{array}{c}
E_{1}(0) \\
O_{\left(q-\sigma_{1}\right) \times m}
\end{array}\right]
$$

and

$$
V_{1} L_{g} L_{f}^{\rho-1} h(x)=\left[\begin{array}{l}
E_{1}(x) \\
\hat{E}_{1}(x)
\end{array}\right] \triangleq\left[\begin{array}{l}
\bar{E}_{1}(x) \\
\hat{E}_{1}(x)
\end{array}\right]
$$

where P_{1} and K_{1}^{1} are $\sigma_{1} \times q$ matrix and $\left(q-\sigma_{1}\right) \times q$ matrix, respectively. Let

$$
\begin{equation*}
\gamma_{1}(x)=P_{1} L_{f}^{\rho-1} h(x) \text { and } \bar{\gamma}_{1}(x)=K_{1}^{1} L_{f}^{\rho-1} h(x) \tag{5.91}
\end{equation*}
$$

In other words, we have that $\hat{E}_{1}(0)=O\left(q-\sigma_{1}\right) \times 1$,

$$
\left[\begin{array}{l}
L_{g} \gamma_{1}(x) \\
L_{g} \bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{l}
E_{1}(x) \\
\hat{E}_{1}(x)
\end{array}\right] \text { and } \operatorname{rank}\left(E_{1}(x)\right)=\operatorname{rank}\left(E_{1}(0)\right)=\sigma_{1}
$$

If $\hat{E}_{1}(x) \neq O$, then the algorithm terminates. (System (5.65) is not, by Theorem 5.5, locally input-output linearizable.)
Step i: Suppose that

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
\bar{E}_{i-1}(x) \\
L_{g} L_{f} \bar{\gamma}_{i-1}(x)
\end{array}\right]\right|_{x=0}\right)=\sum_{j=1}^{i} \sigma_{j} \triangleq \bar{\sigma}_{i}
$$

If $\bar{\sigma}_{i}=q$, then the algorithm terminates with $P_{i}=I_{\sigma_{i}}\left(\right.$ or $\left.V_{i}=I\right)$ and $\gamma_{i}(x)=$ $P_{i} L_{f} \bar{\gamma}_{i-1}(x)=L_{f} \bar{\gamma}_{i-1}(x)$. In this case, $\bar{\gamma}_{i}(x)$ is not defined. Otherwise, we can find, by elementary row operations, a nonsingular constant matrix

$$
V_{i}=\left[\begin{array}{ccccc}
I_{\sigma_{1}} & 0 & \cdots & 0 & 0 \\
0 & I_{\sigma_{2}} & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & I_{\sigma_{i-1}} & 0 \\
0 & 0 & \cdots & 0 & P_{i} \\
K_{1}^{i} & K_{2}^{i} & \cdots & K_{i-1}^{i} & K_{i}^{i}
\end{array}\right] \triangleq\left[\begin{array}{cc}
I_{\bar{\sigma}_{i-1}} & O_{\bar{\sigma}_{i-1} \times\left(q-\bar{\sigma}_{i-1}\right)} \\
O_{\sigma_{i} \times \bar{\sigma}_{i-1}} & P_{i} \\
\bar{K}_{i} & K_{i}^{i}
\end{array}\right]
$$

such that

$$
\left.V_{i}\left[\begin{array}{c}
\bar{E}_{i-1}(x) \\
L_{g} L_{f} \bar{\gamma}_{i-1}(x)
\end{array}\right]\right|_{x=0}=\left[\begin{array}{c}
\bar{E}_{i-1}(0) \\
E_{i}(0) \\
O_{\left(q-\bar{\sigma}_{i}\right) \times m}
\end{array}\right]
$$

and

$$
V_{i}\left[\begin{array}{c}
\bar{E}_{i-1}(x) \\
L_{g} L_{f} \bar{\gamma}_{i-1}(x)
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{i-1}(x) \\
E_{i}(x) \\
\hat{E}_{i}(x)
\end{array}\right] \triangleq\left[\begin{array}{c}
\bar{E}_{i}(x) \\
\hat{E}_{i}(x)
\end{array}\right]
$$

where P_{i} and K_{i}^{i} are $\sigma_{i} \times\left(q-\bar{\sigma}_{i-1}\right)$ matrix and $\left(q-\bar{\sigma}_{i}\right) \times\left(q-\bar{\sigma}_{i-1}\right)$ matrix, respectively. Let

$$
\begin{align*}
\gamma_{i}(x) & =P_{i} L_{f} \bar{\gamma}_{i-1}(x) \\
\bar{\gamma}_{i}(x) & =K_{1}^{i} \gamma_{1}(x)+\cdots+K_{i-1}^{i} \gamma_{i-1}(x)+K_{i}^{i} L_{f} \bar{\gamma}_{i-1}(x) \tag{5.92}\\
& =\bar{K}_{i} \Gamma_{i-1}(x)+K_{i}^{i} L_{f} \bar{\gamma}_{i-1}(x)
\end{align*}
$$

where $\bar{K}_{i} \triangleq\left[\begin{array}{lll}K_{1}^{i} & K_{2}^{i} \cdots K_{i-1}^{i}\end{array}\right]$ and

$$
\Gamma_{i}(x) \triangleq\left[\begin{array}{c}
\gamma_{1}(x) \\
\gamma_{2}(x) \\
\vdots \\
\gamma_{i}(x)
\end{array}\right] \quad\left(\bar{\sigma}_{i} \times 1\right)
$$

In other words, we have that

$$
\begin{align*}
& L_{g} \Gamma_{i}(x)=\bar{E}_{i}(x) ; \quad \operatorname{rank}\left(\bar{E}_{i}(x)\right)=\operatorname{rank}\left(\bar{E}_{i}(0)\right)=\bar{\sigma}_{i} \tag{5.93}\\
& L_{g} \bar{\gamma}_{i}(x)=\hat{E}_{i}(x) ; \quad \hat{E}_{i}(0)=O_{\left(q-\bar{\sigma}_{i}\right) \times m}
\end{align*}
$$

If $\sigma_{i}=0$, the step is said to be degenerated with $\bar{E}_{i}(x)=\bar{E}_{i-1}(x)$ and $0 \times\left(q-\bar{\sigma}_{i-1}\right)$ matrix P_{i}. If $\hat{E}_{i}(x) \neq O$, then the algorithm terminates. (System (5.65) is not, by Theorem 5.5 , locally input-output linearizable.)

If the algorithm terminates at finite step \bar{k}, then we obtain $\Gamma_{\bar{k}}(x)$ such that $\operatorname{rank}\left(L_{g} \Gamma_{\bar{k}}(x)\right)=\operatorname{rank}\left(\bar{E}_{\bar{k}}(x)\right)=\bar{\sigma}_{\bar{k}}=q$. If the algorithm does not end in a finite step, we define k as the last nondegenerate step \bar{k}, and we obtain $\Gamma_{\bar{k}}(x)$ and $\bar{\gamma}_{\bar{k}}(x)$. In other words, there exist $\left(q-\bar{\sigma}_{\bar{k}}\right) \times \bar{\sigma}_{\bar{k}}$ matrices $\bar{K}_{\bar{k}+i}$ such that for $i \geq 1$,

$$
\begin{align*}
\bar{\gamma}_{\bar{k}+i}(x) & =\bar{K}_{\bar{k}+i} \Gamma_{\bar{k}}(x)+L_{f} \bar{\gamma}_{\bar{k}+i-1}(x) \tag{5.94}\\
L_{g} \bar{\gamma}_{\bar{k}+i}(x) & =O_{\left(q-\bar{\sigma}_{\bar{k}}\right) \times m} .
\end{align*}
$$

Structure algorithm can be found in (A3) and (G13). Structure algorithm for the discrete time nonlinear systems can also be found in (G14).

Example 5.5.5 For system (5.86) in Example 5.5.4, use the structure algorithm to find out $\Gamma_{\bar{k}}(x)$ and $\bar{\gamma}_{\bar{k}}(x)$.

Solution It is easy to see that $\left(\rho_{1}, \rho_{2}\right)=(1,1)$ and

$$
L_{g} h(x)=\left[\begin{array}{ll}
1+x_{1} & 0 \tag{5.95}\\
1+x_{1} & 0
\end{array}\right]
$$

Since $\operatorname{rank}\left(\left.L_{g} h(x)\right|_{x=0}\right)=1=\sigma_{1}<2$, we obtain, by elementary row operations, constant matrix V_{1} such that

$$
\left.V_{1} L_{g} h(x)\right|_{x=0}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{1}(0) \\
O_{1 \times 2}
\end{array}\right]
$$

which implies that $P_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $K_{1}^{1}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$. Let

$$
\left[\begin{array}{l}
\gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=V_{1}\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
P_{1} \\
K_{1}^{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Since $\hat{E}_{1}(x) \triangleq L_{g} \bar{\gamma}_{1}(x)=O_{1 \times 2}$, we go to step 2. Note that

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
\bar{E}_{1}(x) \\
L_{g} L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]\right|_{x=0}\right)=\operatorname{rank}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=2=\bar{\sigma}_{2}
$$

Since $\bar{\sigma}_{2}=q=2$, the algorithm terminates with $P_{2}=I_{1}\left(\right.$ or $\left.V_{2}=I\right)$ and $\gamma_{2}(x)=$ $P_{2} L_{f} \bar{\gamma}_{1}(x)=x_{3}$. Since $\bar{\sigma}_{2}=q, \bar{\gamma}_{2}(x)$ is not defined. In other words, we have $\Gamma_{2}(x)=\left[\begin{array}{l}\gamma_{1}(x) \\ \gamma_{2}(x)\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right]$ such that rank $\left(\left.L_{g} \Gamma_{2}(x)\right|_{x=0}\right)=2=q$, where

$$
\frac{d}{d t} \Gamma_{2}(x)=L_{f} \Gamma_{2}(x)+L_{g} \Gamma_{2}(x) u
$$

Example 5.5.6 Use the structure algorithm to find out $\Gamma_{\bar{k}}(x)$ and $\bar{\gamma}_{\bar{k}}(x)$ for the following system.

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{1}^{2} \\
x_{1} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 1 \\
0 & 0 \\
0 & 1
\end{array}\right] u=f(x)+g(x) u \tag{5.96}\\
y & =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=h(x)
\end{align*}
$$

Solution It is easy to see that $\left(\rho_{1}, \rho_{2}\right)=(1,1)$ and

$$
L_{g} h(x)=\left[\begin{array}{ll}
1+x_{1} & 1 \\
1+x_{1} & 1
\end{array}\right]
$$

Since rank $\left(\left.L_{g} h(x)\right|_{x=0}\right)=1=\sigma_{1}<2$, we obtain, by elementary row operations, constant matrix V_{1} such that

$$
\left.V_{1} L_{g} h(x)\right|_{x=0}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{1}(0) \\
O_{1 \times 2}
\end{array}\right]
$$

which implies that $P_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right], K_{1}^{1}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$, and

$$
\left[\begin{array}{l}
\gamma_{1}(x) \tag{5.97}\\
\bar{\gamma}_{1}(x)
\end{array}\right]=V_{1}\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
P_{1} \\
K_{1}^{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Since $\hat{E}_{1}(x) \triangleq L_{g} \bar{\gamma}_{1}(x)=O_{1 \times 2}$, we go to step 2. Note that

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
\bar{E}_{1}(x) \\
L_{g} L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]\right|_{x=0}\right)=\operatorname{rank}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)=1=\bar{\sigma}_{2} .
$$

Since $\bar{\sigma}_{2}<q=2$, we obtain, by elementary row operations, constant matrix V_{2} such that

$$
\left.V_{2}\left[\begin{array}{c}
\bar{E}_{1}(x) \\
L_{g} L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]\right|_{x=0}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{2}(0) \\
O_{1 \times 2}
\end{array}\right] .
$$

Since $\sigma_{2}=0$, step 2 is degenerated with $\bar{E}_{2}(x)=\bar{E}_{1}(x), 0 \times 1$ matrix P_{2}, and

$$
\bar{\gamma}_{2}(x)=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{c}
\gamma_{1}(x) \\
L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}
\end{array}\right]=0 .
$$

Since $\hat{E}_{2}(x) \triangleq L_{g} \bar{\gamma}_{2}(x)=O_{1 \times 2}$, we go to step 3 . In this manner, it is easy to see that step i is also degenerated for $i \geq 3$. Therefore, $\bar{k}=1$ is the last nondegenerated step with $\gamma_{1}(x)$ and $\bar{\gamma}_{1}(x)$ in (5.97).
Remark 5.1 The structure algorithm is state transformation invariant. Suppose that $z=S(x)$ is a state transformation for system (5.65). Then we have the following system:

$$
\begin{align*}
& \dot{z}(t)=\tilde{f}(z(t))+\tilde{g}(z(t)) u(t) \\
& y(t)=\tilde{h}(z(t)) \tag{5.98}
\end{align*}
$$

where $\tilde{h}(z)=h \circ S^{-1}(z), \tilde{f}(z)=S_{*}(f(x))$, and

$$
\tilde{g}(z)=\left[S_{*}\left(g_{1}(x)\right) \cdots S_{*}\left(g_{m}(x)\right)\right] \triangleq S_{*}(g(x)) .
$$

Thus, it is easy to see, by Example 2.4.14, that for $k \geq 0$,

$$
L_{\tilde{g}} L_{\tilde{f}}^{k} \tilde{h}(z)=L_{S_{*}(g)} L_{S_{*}(f)}^{k} \tilde{h}(z)=\left.L_{g} L_{f}^{k} h(x)\right|_{x=S^{-1}(z)} .
$$

Therefore, if we obtain $V_{i}, 1 \leq i \leq \bar{k}, \Gamma_{\bar{k}}(x)$, and $\bar{\gamma}_{\bar{k}}(x)$ by the structure algorithm for system (5.65), then we also have $V_{i}, 1 \leq i \leq \bar{k}, \Gamma_{\bar{k}} \circ S^{-1}(z)$, and $\bar{\gamma}_{\bar{k}} \circ S^{-1}(z)$ by the structure algorithm for system (5.98).
Remark 5.2 The structure algorithm is feedback invariant. Suppose that $u=\alpha(x)+$ $\beta(x) v$ is a nonsingular feedback for system (5.65). Then we have the following closed-loop system:

$$
\begin{align*}
\dot{x}(t) & =\hat{f}(x(t))+\hat{g}(x(t)) v(t) \tag{5.99}\\
y(t) & =h(x(t))
\end{align*}
$$

where $\hat{f}(x)=f(x)+g(x) \alpha(x)$ and $\hat{g}(x)=g(x) \beta(x)$. Note, by Definition 5.4, that $L_{f+g \alpha}^{\rho-1} h(x)=L_{f}^{\rho-1} h(x)$. Since $L_{\hat{g}} L_{\hat{f}}^{\rho-1} h(x)=L_{g} L_{f}^{\rho-1} h(x) \beta(x)$, it is clear, by (5.91), that

$$
\hat{\gamma}_{1}(x) \triangleq P_{1} L_{\hat{f}}^{\rho-1} h(x)=P_{1} L_{f}^{\rho-1} h(x)=\gamma_{1}(x)
$$

and

$$
\overline{\hat{\gamma}}_{1}(x) \triangleq K_{1}^{1} L_{\hat{f}}^{\rho-1} h(x)=K_{1}^{1} L_{f}^{\rho-1} h(x)=\bar{\gamma}_{1}(x) .
$$

Since $L_{g} \bar{\gamma}_{i-1}(x)=O$ for $2 \leq i \leq \bar{k}$, we have, by (5.92), that for $2 \leq i \leq \bar{k}$,

$$
\hat{\gamma}_{i}(x)=P_{i} L_{\hat{f}} \bar{\gamma}_{i-1}(x)=P_{i} L_{f} \bar{\gamma}_{i-1}(x)=\gamma_{i}(x)
$$

$$
\overline{\hat{\gamma}}_{i}(x)=\bar{K}_{i} \Gamma_{i-1}(x)+K_{i}^{i} L_{\hat{f}} \bar{\gamma}_{i-1}(x)=\bar{K}_{i} \Gamma_{i-1}(x)+K_{i}^{i} L_{f} \bar{\gamma}_{i-1}(x)=\bar{\gamma}_{i}(x)
$$

and

$$
\begin{aligned}
\operatorname{rank}\left(\left[\begin{array}{c}
L_{\hat{g}} \hat{\Gamma}_{i-1}(x) \\
L_{\hat{g}} L_{\hat{f}} \hat{\hat{\gamma}}_{i-1}(x)
\end{array}\right]\right) & =\operatorname{rank}\left(\left[\begin{array}{c}
L_{g} \Gamma_{i-1}(x) \\
L_{g} L_{f} \bar{\gamma}_{i-1}(x)
\end{array}\right] \beta(x)\right) \\
& =\operatorname{rank}\left(\left[\begin{array}{c}
L_{g} \Gamma_{i-1}(x) \\
L_{g} L_{f} \bar{\gamma}_{i-1}(x)
\end{array}\right]\right) .
\end{aligned}
$$

Therefore, if we obtain $V_{i}, 1 \leq i \leq \bar{k}, \Gamma_{\bar{k}}(x)$, and $\bar{\gamma}_{\bar{k}}(x)$ by the structure algorithm for system (5.65), then we also have $V_{i}, 1 \leq i \leq \bar{k}, \Gamma_{\bar{k}}(x)$, and $\bar{\gamma}_{\bar{k}}(x)$ by the structure algorithm for system (5.99).

5.5.3 Conditions for Input-Output Linearization

Suppose that the structure algorithm for system (5.65) satisfies

$$
\hat{E}_{i}(x) \triangleq L_{g} \bar{\gamma}_{i}(x)=O_{\left(q-\bar{\sigma}_{i}\right) \times m}, \quad 1 \leq i \leq \bar{k} .
$$

Then, by structure algorithm, we have

$$
\Gamma_{\bar{k}}(x)=\left[\begin{array}{c}
\gamma_{1}(x) \\
\gamma_{2}(x) \\
\vdots \\
\gamma_{\bar{k}}(x)
\end{array}\right]
$$

such that

$$
\operatorname{rank}\left(\left.L_{g} \Gamma_{\bar{k}}(x)\right|_{x=0}\right)=\operatorname{rank}\left(\bar{E}_{\bar{k}}(0)\right)=\sum_{i=1}^{\bar{k}} \sigma_{i}=\bar{\sigma}_{\bar{k}}
$$

By column operation, we can obtain a $m \times m$ permutation matrix R_{1} such that

$$
L_{g} \Gamma_{\bar{k}}(x) R_{1}=\bar{E}_{\bar{k}}(x) R_{1}=\left[\bar{E}_{\bar{k}}^{1}(x) \bar{E}_{\bar{k}}^{2}(x)\right]
$$

where $\bar{\sigma}_{\bar{k}} \times \bar{\sigma}_{\bar{k}}$ matrix $\bar{E}_{\bar{k}}^{1}(0)$ is invertible. Let

$$
\begin{align*}
& \bar{\beta}(x)=R_{1}\left[\begin{array}{ll}
\left(\bar{E}_{\bar{k}}^{1}(x)\right)^{-1}-\left(\bar{E}_{\bar{k}}^{1}(x)\right)^{-1} \bar{E}_{\bar{k}}^{2}(x) \\
O_{\left(m-\bar{\sigma}_{\bar{k}}\right) \times \bar{\sigma}_{\bar{k}}} & I_{m-\bar{\sigma}_{\bar{k}}}
\end{array}\right] \triangleq R_{1} R_{2}(x) \tag{5.100}\\
& \bar{\alpha}(x)=-\bar{\beta}(x)\left[\begin{array}{c}
L_{f} \Gamma_{\bar{k}}(x) \\
O_{\left(m-\bar{\sigma}_{\bar{k}}\right) \times 1}
\end{array}\right] .
\end{align*}
$$

Then, it is easy to see that

$$
\begin{align*}
& L_{\bar{g}} \Gamma_{\bar{k}}(x)=L_{g} \Gamma_{\bar{k}}(x) \bar{\beta}(x)=\left[I_{\bar{\sigma}_{\bar{k}}} O_{\bar{\sigma}_{\bar{k}} \times\left(m-\bar{\sigma}_{\bar{k}}\right.}\right] \\
& L_{\bar{f}} \Gamma_{\bar{k}}(x)=L_{f} \Gamma_{\bar{k}}(x)+L_{g} \Gamma_{\bar{k}}(x) \bar{\alpha}(x)=O_{\bar{\sigma}_{\bar{k}} \times 1} \tag{5.101}
\end{align*}
$$

where $\bar{f}(x)=f(x)+g(x) \bar{\alpha}(x)$ and $\bar{g}(x)=g(x) \bar{\beta}(x)$. In other words, we have that for $1 \leq i \leq \bar{k}$,

$$
\begin{equation*}
L_{\bar{f}} \gamma_{i}(x)=L_{f+g \bar{\alpha}} \gamma_{i}(x)=O_{\sigma_{i} \times 1} . \tag{5.102}
\end{equation*}
$$

Example 5.5.7 Show that for $1 \leq i \leq \bar{k}$,

$$
V_{i} V_{i-1} \cdots V_{1} L_{f+g \alpha}^{\rho-2+i} h(x)=\left[\begin{array}{c}
L_{f+g \alpha}^{i-1} \gamma_{1}(x) \tag{5.103}\\
\vdots \\
L_{f+g \alpha} \gamma_{i-1}(x) \\
\gamma_{i}(x) \\
\bar{\gamma}_{i}(x)+Q_{i-1}(x)
\end{array}\right] \triangleq\left[\begin{array}{c}
\tilde{\Gamma}_{i}(x) \\
\bar{\gamma}_{i}(x)+Q_{i-1}(x)
\end{array}\right]
$$

$$
V_{i} V_{i-1} \cdots V_{1} L_{f+g \bar{\alpha}}^{\rho-2+i} h(x)=\left[\begin{array}{c}
O_{\bar{\sigma}_{i-1} \times 1} \tag{5.104}\\
\gamma_{i}(x) \\
\bar{\gamma}_{i}(x)-\bar{K}_{i} \Gamma_{i-1}
\end{array}\right]
$$

and for $i \geq 1$,

$$
\begin{equation*}
L_{f+g \bar{\alpha}}^{i} \bar{\gamma}_{\bar{k}}(x)=\bar{\gamma}_{\bar{k}+i}(x)-\bar{K}_{\bar{k}+i} \Gamma_{\bar{k}}(x) \tag{5.105}
\end{equation*}
$$

where $\bar{\sigma}_{0}=0, Q_{0}(x)=O_{\left(q-\bar{\sigma}_{1}\right) \times 1}$, and for $1 \leq j \leq \bar{k}-1$,

$$
\begin{equation*}
Q_{j}(x)=\bar{K}_{j+1} L_{f+g \alpha} \tilde{\Gamma}_{j}(x)-\bar{K}_{j+1} \Gamma_{j}(x)+K_{j+1}^{j+1} L_{f+g \alpha} Q_{j-1}(x) \tag{5.106}
\end{equation*}
$$

Solution It is clear, by (5.27) and (5.91), that

$$
V_{1} L_{f+g \bar{\alpha}}^{\rho-1} h(x)=V_{1} L_{f}^{\rho-1} h(x)=\left[\begin{array}{l}
\gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right] .
$$

Thus, (5.103) is satisfied when $i=1$. Assume that (5.103) is satisfied when $i=j$ and $1 \leq j \leq \bar{k}-1$. Then it is easy to see, by (5.92), (5.93), and (5.106), that

$$
\begin{aligned}
& V_{j+1} V_{j} \cdots V_{1} L_{f+g \alpha}^{\rho-1+j} h(x)=V_{j+1} L_{f+g \alpha}\left(V_{j} \cdots V_{1} L_{f+g \alpha}^{\rho-2+j} h(x)\right) \\
& \\
& \quad=V_{j+1} L_{f+g \alpha}\left(\left[\begin{array}{c}
\tilde{\Gamma}_{j}(x) \\
\bar{\gamma}_{j}(x)+Q_{j-1}(x)
\end{array}\right]\right)=V_{j+1}\left[\begin{array}{c}
L_{f+g \alpha} \tilde{\Gamma}_{j}(x) \\
L_{f} \bar{\gamma}_{j}(x)+L_{f+g \alpha} Q_{j-1}(x)
\end{array}\right] \\
& \quad=\left[\begin{array}{c}
L_{f+g \alpha} \tilde{\Gamma}_{j}(x) \\
\gamma_{j+1}(x) \\
\bar{K}_{j+1} L_{f+g \alpha} \tilde{\Gamma}_{j}(x)+K_{j+1}^{j+1} L_{f} \bar{\gamma}_{j}(x)+K_{j+1}^{j+1} L_{f+g \alpha} Q_{j-1}(x)
\end{array}\right] \\
& \quad=\left[\begin{array}{c}
\tilde{\Gamma}_{j+1}(x) \\
\bar{K}_{j+1} L_{f+g \alpha} \tilde{\Gamma}_{j}(x)+\bar{\gamma}_{j+1}(x)-\bar{K}_{j+1} \Gamma_{j}(x)+K_{j+1}^{j+1} L_{f+g \alpha} Q_{j-1}(x)
\end{array}\right] \\
& \quad=\left[\begin{array}{c}
\tilde{\Gamma}_{j+1}(x) \\
\bar{\gamma}_{j+1}(x)+Q_{j}(x)
\end{array}\right]
\end{aligned}
$$

which implies that (5.103) is satisfied when $i=j+1$. Therefore, by mathematical induction, (5.103) is satisfied for $1 \leq i \leq \bar{k}$. It is clear, by (5.102), (5.103), and (5.106), that for $1 \leq i \leq \bar{k}$,

$$
V_{i} V_{i-1} \cdots V_{1} L_{f+g \bar{\alpha}}^{\rho-2+i} h(x)=\left[\begin{array}{c}
L_{f+g \bar{\alpha}}^{i-1} \gamma_{1}(x) \\
\vdots \\
L_{f+g \bar{\alpha}} \gamma_{i-1}(x) \\
\gamma_{i}(x) \\
\bar{\gamma}_{i}(x)+Q_{i-1}(x)
\end{array}\right]=\left[\begin{array}{c}
O_{\bar{\sigma}_{i-1} \times 1} \\
\gamma_{i}(x) \\
\bar{\gamma}_{i}(x)+Q_{i-1}(x)
\end{array}\right]
$$

and for $2 \leq i \leq \bar{k}$,

$$
\begin{aligned}
Q_{i-1}(x) & =\bar{K}_{i} L_{f+g \bar{\alpha}} \tilde{\Gamma}_{i-1}(x)-\bar{K}_{i} \Gamma_{i-1}(x)+K_{i}^{i} L_{f+g \bar{\alpha}} Q_{i-2}(x) \\
& =-\bar{K}_{i} \Gamma_{i-1}(x)
\end{aligned}
$$

which imply that (5.104) is satisfied for $1 \leq i \leq \bar{k}$. Since $L_{g} \bar{\gamma}_{\bar{k}}(x)=0$, it is clear, by (5.94), that

$$
L_{f+g \bar{\alpha}} \bar{\gamma}_{\bar{k}}(x)=L_{f} \bar{\gamma}_{\bar{k}}(x)=\bar{\gamma}_{\bar{k}+1}(x)-\bar{K}_{\bar{k}+1} \Gamma_{\bar{k}}(x)
$$

which implies that (5.105) is satisfied when $i=1$. Assume that (5.105) is satisfied when $i=j$ and $j \geq 1$. Then it is easy to see, by (5.94) and (5.101), that

$$
\begin{aligned}
L_{f+g \bar{\alpha}}^{j+1} \bar{\gamma}_{\bar{k}}(x) & =L_{f+g \bar{\alpha}}\left(\bar{\gamma}_{\bar{k}+j}(x)-\bar{K}_{\bar{k}+j} \Gamma_{\bar{k}}(x)\right) \\
& =L_{f+g \bar{\alpha}} \bar{\gamma}_{\bar{k}+j}(x)-\bar{K}_{\bar{k}+j} L_{f+g \bar{\alpha}} \Gamma_{\bar{k}}(x)=L_{f} \bar{\gamma}_{\bar{k}+j}(x) \\
& =\bar{\gamma}_{\bar{k}+j+1}(x)-\bar{K}_{\bar{k}+j+1} \Gamma_{\bar{k}}(x)
\end{aligned}
$$

which implies that (5.105) is satisfied when $i=j+1$. Therefore, by mathematical induction, (5.105) is satisfied for $i \geq 1$.

Theorem 5.5 (conditions for input-output linearization)
System (5.65) is locally input-output linearizable, if and only if for $1 \leq i \leq \bar{k}$,

$$
\begin{equation*}
\hat{E}_{i}(x) \triangleq L_{g} \bar{\gamma}_{i}(x)=O_{\left(q-\bar{\sigma}_{i}\right) \times m} \tag{5.107}
\end{equation*}
$$

Proof Necessity. Suppose that system (5.65) is input-output linearizable on a neighborhood U of $0 \in \mathbb{R}^{n}$. Then, by Definition 5.5 , there exists a nonsingular feedback $u=\alpha(x)+\beta(x) v$ on a neighborhood U of $0 \in \mathbb{R}^{n}$ such that for $k \geq 0$,

$$
L_{g \beta} L_{f+g \alpha}^{k} h(x)=L_{g} L_{f+g \alpha}^{k} h(x) \beta(x)=\mathrm{const}
$$

on $x \in U$. Thus, it is clear that for $k \geq 0$,

$$
\begin{aligned}
L_{g \beta} L_{f+g \alpha}^{k} \gamma_{1}(x) & =P_{1} L_{g \beta} L_{f+g \alpha}^{k} L_{f}^{\rho-1} h(x) \\
& =P_{1} L_{g \beta} L_{f+g \alpha}^{k} L_{f+g \alpha}^{\rho-1} h(x)=\mathrm{const}
\end{aligned}
$$

and

$$
\begin{align*}
L_{g \beta} L_{f+g \alpha}^{k} \bar{\gamma}_{1}(x) & =K_{1}^{1} L_{g \beta} L_{f+g \alpha}^{k} L_{f}^{\rho-1} h(x) \tag{5.108}\\
& =K_{1}^{1} L_{g \beta} L_{f+g \alpha}^{k+\rho-1} h(x)=\mathrm{const}
\end{align*}
$$

on $x \in U$. Thus, we have, by (5.108) with $k=0$, that on $x \in U$,

$$
\hat{E}_{1}(x) \beta(x)=L_{g \beta} \bar{\gamma}_{1}(x) \triangleq \tilde{E}_{1}=\text { const. }
$$

Since $\hat{E}_{1}(0)=O_{\left(q-\bar{\sigma}_{1}\right) \times m}$ and $\beta(x)$ is nonsingular on $x \in U$, it is clear that $\tilde{E}_{1}=$ $\hat{E}_{1}(0) \beta(0)=O_{\left(q-\bar{\sigma}_{1}\right) \times m}$ and

$$
\hat{E}_{1}(x)=\tilde{E}_{1} \beta(x)^{-1}=O_{\left(q-\bar{\sigma}_{1}\right) \times m}
$$

which implies that (5.107) is satisfied when $i=1$. We will show, by induction, that for $1 \leq i \leq \bar{k}$ and $k \geq 0$,

$$
\begin{equation*}
L_{g \beta} L_{f+g \alpha}^{k} \gamma_{i}(x)=\text { const and } L_{g \beta} L_{f+g \alpha}^{k} \bar{\gamma}_{i}(x)=\mathrm{const} \tag{5.109}
\end{equation*}
$$

on $x \in U$. Assume that (5.107) and (5.109) are satisfied for $1 \leq i \leq \ell-1$ and $2 \leq$ $\ell \leq \bar{k}$. Then, it is clear, by (5.92) and (5.109), that for $k \geq 0$,

$$
\begin{aligned}
L_{g \beta} L_{f+g \alpha}^{k} \gamma_{\ell}(x) & =P_{\ell} L_{g \beta} L_{f+g \alpha}^{k} L_{f} \bar{\gamma}_{\ell-1}(x) \\
& =P_{\ell} L_{g \beta} L_{f+g \alpha}^{k} L_{f+g \alpha} \bar{\gamma}_{\ell-1}(x)=\mathrm{const}
\end{aligned}
$$

and

$$
\begin{align*}
& L_{g \beta} L_{f+g \alpha}^{k} \bar{\gamma}_{\ell}(x)=\sum_{j=1}^{\ell-1} K_{j}^{\ell} L_{g \beta} L_{f+g \alpha}^{k} \gamma_{j}(x)+K_{\ell}^{\ell} L_{g \beta} L_{f+g \alpha}^{k} L_{f} \bar{\gamma}_{\ell-1}(x) \\
& \tag{5.110}\\
& =\sum_{j=1}^{\ell-1} K_{j}^{\ell} L_{g \beta} L_{f+g \alpha}^{k} \gamma_{j}(x)+K_{\ell}^{\ell} L_{g \beta} L_{f+g \alpha}^{k} L_{f+g \alpha} \bar{\gamma}_{\ell-1}(x)=\mathrm{const}
\end{align*}
$$

which imply that (5.109) is satisfied for $i=\ell$. Thus, we have, by (5.110) with $k=0$, that on $x \in U$,

$$
\hat{E}_{\ell}(x) \beta(x)=L_{g \beta} \bar{\gamma}_{\ell}(x) \triangleq \tilde{E}_{\ell}=\text { const. }
$$

Since $\hat{E}_{\ell}(0)=O_{\left(q-\bar{\sigma}_{\ell}\right) \times m}$ and $\beta(x)$ is nonsingular on $x \in U$, it is clear that $\tilde{E}_{\ell}=$ $\hat{E}_{\ell}(0) \beta(0)=O_{\left(q-\bar{\sigma}_{\ell}\right) \times m}$ and

$$
\hat{E}_{\ell}(x)=\tilde{E}_{\ell} \beta(x)^{-1}=O_{\left(q-\bar{\sigma}_{\ell}\right) \times m}
$$

which implies that (5.107) is also satisfied when $i=\ell$. Therefore, (5.107) is, by mathematical induction, satisfied for $1 \leq i \leq \bar{k}$.

Sufficiency. Let $u=\bar{\alpha}(x)+\bar{\beta}(x) v$, where $\bar{\alpha}(x)$ and $\bar{\beta}(x)$ are defined by (5.100). Also, let $\bar{f}(x)=f(x)+g(x) \bar{\alpha}(x)$ and $\bar{g}(x)=g(x) \bar{\beta}(x)$. It will be shown that for $i \geq 0$,

$$
\begin{equation*}
L_{\bar{g}} L_{\bar{f}}^{i} h(x)=L_{g} L_{f+g \bar{\alpha}}^{i} h(x) \bar{\beta}(x)=\text { const. } \tag{5.111}
\end{equation*}
$$

It is clear, by (5.25) and (5.27), that (5.111) is satisfied for $0 \leq i \leq \rho-2$. Also, it is easy to see, by (5.93), (5.101), and (5.104), that for $1 \leq i \leq \bar{k}$,

$$
\begin{aligned}
& V_{i} V_{i-1} \cdots V_{1} L_{g \bar{\beta}} L_{f+g \bar{\alpha}}^{\rho-2+i} h(x)=L_{g \bar{\beta}}\left(V_{i} V_{i-1} \cdots V_{1} L_{f+g \bar{\alpha}}^{\rho-2+i} h(x)\right) \\
& \quad=\left[\begin{array}{c}
O_{\bar{\sigma}_{i-1} \times m} \\
L_{g \bar{\beta}} \gamma_{i}(x) \\
L_{g \bar{\beta}} \bar{\gamma}_{i}(x)
\end{array}\right]=\left[\begin{array}{ccc}
O_{\bar{\sigma}_{i-1} \times \bar{\sigma}_{i-1}} & O_{\bar{\sigma}_{i-1} \times \sigma_{i}} & O_{\bar{\sigma}_{i-1} \times\left(m-\bar{\sigma}_{i}\right)} \\
O_{\sigma_{i} \times \bar{\sigma}_{i-1}} & I_{\sigma_{i}} & O_{\sigma_{i} \times\left(m-\bar{\sigma}_{i}\right)} \\
-\bar{K}_{i} & O_{\left(q-\bar{\sigma}_{i}\right) \times \sigma_{i}} & O_{\left(q-\bar{\sigma}_{i}\right) \times\left(m-\bar{\sigma}_{i}\right)}
\end{array}\right]
\end{aligned}
$$

which implies that (5.111) is satisfied for $\rho-1 \leq i \leq \rho-2+\bar{k}$. Finally, we have, by (5.94), (5.101), (5.104), and (5.105), that for $i \geq 1$,

$$
\begin{aligned}
& V_{\bar{k}} V_{\bar{k}-1} \cdots V_{1} L_{g \bar{\beta}} L_{f+g \bar{\alpha}}^{\rho-2+\bar{k}+i} h(x)=L_{g \bar{\beta}} L_{f+g \bar{\alpha}}^{i}\left(V_{\bar{k}} V_{\bar{k}-1} \cdots V_{1} L_{f+g \bar{\alpha}}^{\rho-2+\bar{k}} h(x)\right) \\
& \quad=\left[\begin{array}{c}
O_{\bar{\sigma}_{i-1} \times m} \\
L_{g \bar{\beta}} L_{f+g \bar{\alpha}}^{i} \gamma_{\bar{k}}(x) \\
L_{g \bar{\beta}} L_{f+g \bar{\alpha}}^{i} \bar{\gamma}_{\bar{k}}(x)
\end{array}\right]=\left[\begin{array}{c}
O_{\bar{\sigma}_{i-1} \times m} \\
O_{\sigma_{i} \times m} \\
L_{g \bar{\beta}} \bar{\gamma}_{\bar{k}+i}(x)-L_{g \bar{\beta}} \bar{K}_{\bar{k}+i} \Gamma_{\bar{k}}(x)
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
O_{\bar{\sigma}_{\bar{k}} \times \bar{\sigma}_{\bar{k}}} & O_{\bar{\sigma}_{\bar{k}} \times\left(m-\bar{\sigma}_{\bar{k}}\right)} \\
-\bar{K}_{\bar{k}+i} & O_{\left(q-\bar{\sigma}_{\bar{k}}\right) \times\left(m-\bar{\sigma}_{\bar{k}}\right)}
\end{array}\right]
\end{aligned}
$$

which implies that (5.111) is satisfied for $i \geq \rho-1+\bar{k}$. Since (5.76) is satisfied, system (5.65) is input-output linearizable.

Example 5.5.8 Find the nonsingular feedback $u=\alpha(x)+\beta(x) v$ for the inputoutput linearization of system (5.96) in Example 5.5.6.

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{1}^{2} \\
x_{1} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 1 \\
0 & 0 \\
0 & 1
\end{array}\right] u=f(x)+g(x) u \tag{5.112}\\
y & =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=h(x)
\end{align*}
$$

Solution In Example 5.5.6, we have, by structure algorithm, that $\bar{k}=1$ and

$$
\left[\begin{array}{l}
\Gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{l}
\gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Since

$$
L_{g} \Gamma_{1}(x)=\left[\begin{array}{ll}
1+x_{1} & 1
\end{array}\right]
$$

we have, by (5.100), that $R_{1}=I$ and

$$
\begin{aligned}
& \beta(x)=\left[\begin{array}{cc}
\frac{1}{1+x_{1}} & -\frac{1}{1+x_{1}} \\
0 & 1
\end{array}\right] \\
& \alpha(x)=-\beta(x)\left[\begin{array}{c}
x_{1}^{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{x_{1}^{2}}{1+x_{1}} \\
0
\end{array}\right] .
\end{aligned}
$$

Then, it is easy to see that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
x_{1} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] v=\hat{f}(x)+\hat{g}(x) v \\
y & =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=h(x)
\end{aligned}
$$

and for $i \geq 0$,

$$
L_{\hat{g}} L_{\hat{f}}^{i} h(x)=\text { constant }
$$

Example 5.5.9 Show that the following system is not locally input-output linearizable:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{1}^{2} \\
x_{3} \\
x_{2}^{2}
\end{array}\right]+\left[\begin{array}{rr}
1 & 0 \\
x_{1} & 0 \\
0 & 1
\end{array}\right] u=f(x)+g(x) u \tag{5.113}\\
y & =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=h(x) .
\end{align*}
$$

Solution It is easy to see that $\left(\rho_{1}, \rho_{2}\right)=(1,1)$ and

$$
L_{g} h(x)=\left[\begin{array}{cc}
1 & 0 \\
1+x_{1} & 0
\end{array}\right]
$$

Since rank $\left(\left.L_{g} h(x)\right|_{x=0}\right)=1=\sigma_{1}<2$, we obtain, by elementary row operations, constant matrix V_{1} such that

$$
\left.V_{1} L_{g} h(x)\right|_{x=0}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{1}(0) \\
O_{1 \times 2}
\end{array}\right]
$$

which implies that $P_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right], K_{1}^{1}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$, and

$$
\left[\begin{array}{l}
\gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=V_{1}\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
P_{1} \\
K_{1}^{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Since $\hat{E}_{1}(x) \triangleq L_{g} \bar{\gamma}_{1}(x)=\left[\begin{array}{ll}x_{1} & 0\end{array}\right] \neq O_{1 \times 2}$, system (5.113) is, by Theorem 5.5, not input-output linearizable.

5.6 Feedback Linearization with Multi Output

In this section, we deal with the multi output version of Sect.5.4. Consider the following nonlinear systems.

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \tag{5.114}\\
& y(t)=h(x(t))
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{q}$, and $f(x), g(x)$, and $h(x)$ are analytic functions with $f(0)=0$ and $h(0)=0$. Suppose that $\left(\kappa_{1}, \ldots, \kappa_{m}\right)$ is the Kronecker indices of system (5.114).

Definition 5.7 (feedback linearization with output)
System (5.114) is said to be feedback linearizable with output, if there exist a feedback $u=\alpha(x)+\beta(x) v$ and a state transformation $z=S(x)$ such that the closed-loop system satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\begin{align*}
\dot{z} & =\left[\begin{array}{cccc}
\hat{A}_{11} & O & \cdots & O \\
O & \hat{A}_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & \hat{A}_{m m}
\end{array}\right] z+\left[\begin{array}{cccc}
\hat{B}_{11} & O & \cdots & O \\
O & \hat{B}_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & \hat{B}_{m m}
\end{array}\right] v \tag{5.115}\\
& =A z+B v \\
y & =C x
\end{align*}
$$

or

$$
\begin{align*}
& S_{*}(f(x)+g(x) \alpha(x))+S_{*}(g \beta(x) v)=A z+B v \\
& h \circ S^{-1}(z)=C z \tag{5.116}
\end{align*}
$$

where $\sum_{i=1}^{m} \kappa_{i}=n$ and

$$
\hat{A}_{i i}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]\left(\kappa_{i} \times \kappa_{i}\right) ; \quad \hat{B}_{i i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]\left(\kappa_{i} \times 1\right)
$$

Theorem 5.6 Suppose that $q=m$ and $\sum_{i=1}^{n} \rho_{i}=n$. If

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
L_{g} L_{f}^{\rho_{1}-1} h_{1}(x) \tag{5.117}\\
\vdots \\
L_{g} L_{f}^{\rho_{q}-1} h_{q}(x)
\end{array}\right]\right|_{x=0}\right)=m
$$

then system (5.114) is feedback linearizable with output.
Proof Suppose that $q=m, \sum_{i=1}^{n} \rho_{i}=n$, and (5.117) is satisfied. Then, we have, by (5.77), that for $1 \leq i \leq q$ and $1 \leq k \leq \rho_{i}-1$,

$$
L_{g} L_{f}^{k-1} h_{i}(x)=0 \text { and } \operatorname{rank}\left(\left.\left[\begin{array}{c}
L_{g} L_{f}^{\rho_{1}-1} h_{1}(x) \\
\vdots \\
L_{g} L_{f}^{\rho_{q}-1} h_{q}(x)
\end{array}\right]\right|_{x=0}\right)=m
$$

Thus, conditions of Lemma 4.3 are satisfied with $S_{i 1}(x)=h_{i}(x)$ and $\kappa_{i}=\rho_{i}$ for $1 \leq i \leq m=q$. Therefore, by Lemma 4.3, system (5.114) is feedback linearizable with state transformation

$$
z=S(x)=\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
L_{f}^{\rho_{1}-1} h_{1}(x) \\
\vdots \\
h_{q}(x) \\
\vdots \\
L_{f}^{\rho_{q}-1} h_{q}(x)
\end{array}\right]=\left[\begin{array}{c}
z_{11} \\
\vdots \\
z_{1 \rho_{1}} \\
\vdots \\
z_{q 1} \\
\vdots \\
z_{q \rho_{q}}
\end{array}\right]
$$

and feedback

$$
\begin{aligned}
u & =\left[\begin{array}{c}
L_{g} L_{f}^{\rho_{1}-1} h_{1}(x) \\
\vdots \\
L_{g} L_{f}^{\rho_{q}-1} h_{q}(x)
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
L_{f}^{\rho_{1}} h_{1}(x) \\
\vdots \\
L_{f}^{\rho_{q}} h_{q}(x)
\end{array}\right]+v\right) \\
& =\alpha(x)+\beta(x) v .
\end{aligned}
$$

Since $\tilde{h}_{i}=h_{i} \circ S^{-1}(z)=z_{i 1}, 1 \leq i \leq q$, it is easy to see that (5.116) is satisfied with $C=\left[\begin{array}{ccccccccc}1 & 0 & \cdots & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & 0 & \cdots & 0\end{array}\right]$.

Example 5.6.1 Use Theorem 5.6 to show that the following nonlinear system is feedback linearizable with output:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}^{2} \\
x_{3}+x_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] u=f(x)+g(x) u \tag{5.118}\\
y & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=h(x)
\end{align*}
$$

Solution It is easy to see that $L_{f+g u} h_{2}(x)=x_{3}+x_{1}^{2}$ and

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{1}^{(1)} \\
y_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{c}
L_{f} h_{1}(x) \\
L_{f}^{2} h_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
L_{g} h_{1}(x) \\
L_{g} L_{f} h_{2}(x)
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{2}^{2} \\
2 x_{1} x_{2}^{2}
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 0 \\
2 x_{1}\left(1+x_{1}\right) & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
\end{aligned}
$$

which implies that $\left(\rho_{1}, \rho_{2}\right)=(1,2), \rho_{1}+\rho_{2}=3=n$, and (5.117) is satisfied. Hence, by Theorem 5.6, system (5.118) is feedback linearizable with output. Let

$$
z=S(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
L_{f} h_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}+x_{1}^{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
u & =\left[\begin{array}{cc}
1+x_{1} & 0 \\
2 x_{1}\left(1+x_{1}\right) & 1
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
x_{2}^{2} \\
2 x_{1} x_{2}^{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
-\frac{x_{2}^{2}}{1+x_{1}} \\
0
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{1+x_{1}} & 0 \\
-2 x_{1} & 1
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right]=\alpha(x)+\beta(x) v .
\end{aligned}
$$

Then we have that

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] z+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
y & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] z .
\end{aligned}
$$

Lemma 5.2 System (5.114) is feedback linearizable with output via state transformation $z=S(x)$ and nonsingular feedback $u=\alpha(x)+\beta(x) v$, if and only if
(i) system (5.114) is input-output linearizable.
(ii)

$$
\begin{align*}
\dot{x} & =f(x)+g(x) u \\
\bar{y} & =\Gamma_{\bar{k}}(x) \triangleq \bar{h}(x) \tag{5.119}
\end{align*}
$$

is feedback linearizable with output via state transformation $z=S(x)$ and nonsingular feedback $u=\alpha(x)+\beta(x) v$.

Proof Necessity. Suppose that system (5.114) is feedback linearizable with output via state transformation $z=S(x)$ and feedback $u=\alpha(x)+\beta(x) v$. In other words, we have that

$$
\begin{aligned}
& \tilde{f}(z)+\tilde{g}(z) v \triangleq S_{*}(\hat{f}(x)+\hat{g}(x) v)=A z+B v \\
& \tilde{h}(z) \triangleq h \circ S^{-1}(z)=C z
\end{aligned}
$$

where $\hat{f}(x)=f(x)+g(x) \alpha(x)$ and $\hat{g}(x)=g(x) \beta(x)$. Then system (5.114) is input-output linearizable. It is also clear, by Remark 5.1, that

$$
\tilde{\bar{h}}(z) \triangleq \bar{h} \circ S^{-1}(z)=\Gamma_{\bar{k}} \circ S^{-1}(z)=\bar{C} z
$$

where $\bar{C} z$ is the function $\Gamma_{\bar{k}}(z)$ that is obtained by the structure algorithm for linear system

$$
\dot{z}=A z+B v ; \quad y=C z
$$

Hence, system (5.119) is feedback linearizable with output via state transformation $z=S(x)$ and feedback $u=\alpha(x)+\beta(x) v$.

Sufficiency. Suppose that system (5.114) is input-output linearizable and system (5.119) is feedback linearizable with output via state transformation $z=S(x)$ and feedback $u=\alpha(x)+\beta(x) v$. In other words, we have that

$$
\begin{align*}
& \tilde{f}(z)+\tilde{g}(z) v \triangleq S_{*}(\hat{f}(x)+\hat{g}(x) v)=A z+B v \tag{5.120}\\
& \tilde{\bar{h}}(z) \triangleq \bar{h} \circ S^{-1}(z)=\Gamma_{\bar{k}} \circ S^{-1}(z)=\bar{C} z
\end{align*}
$$

where $\hat{f}(x)=f(x)+g(x) \alpha(x)$ and $\hat{g}(x)=g(x) \beta(x)$. Thus, it is clear, by (2.30), that for $1 \leq i \leq \bar{k}$ and $j \geq 0$,

$$
L_{\hat{g}} L_{\hat{f}}^{j} \bar{h}(x)=\left.L_{\tilde{g}} L_{\tilde{f}}^{j} \tilde{\bar{h}}(z)\right|_{z=S(x)}=\bar{C} A^{j} B=\mathrm{const}
$$

and

$$
\begin{equation*}
L_{\hat{g}} L_{\hat{f}}^{j} \gamma_{i}(x)=\text { const. } \tag{5.121}
\end{equation*}
$$

We need to show that

$$
\begin{equation*}
\tilde{h}(z) \triangleq h \circ S^{-1}(z)=C z \tag{5.122}
\end{equation*}
$$

It will be shown that for $i \geq 0$,

$$
\begin{equation*}
L_{\hat{g}} L_{\hat{f}}^{i} h(x)=\text { const. } \tag{5.123}
\end{equation*}
$$

It is clear, by (5.25) and (5.27), that (5.123) is satisfied for $0 \leq i \leq \rho-2$. Also, it is easy to see, by (5.93), (5.103), (5.106), and (5.121), that for $2 \leq i \leq \bar{k}$,

$$
\begin{aligned}
L_{\hat{g}} Q_{i-1}(x) & =\bar{K}_{i} L_{\hat{g}} L_{\hat{f}} \tilde{\Gamma}_{i-1}(x)-\bar{K}_{i} L_{\hat{g}} \Gamma_{i-1}(x)+K_{i}^{i} L_{\hat{g}} L_{\hat{f}} Q_{i-2}(x) \\
& =\mathrm{const}
\end{aligned}
$$

and for $1 \leq i \leq \bar{k}$,

$$
\begin{aligned}
& V_{i} V_{i-1} \cdots V_{1} L_{\hat{g}} L_{\hat{f}}^{\rho-2+i} h(x)=L_{\hat{g}}\left(V_{i} V_{i-1} \cdots V_{1} L_{\hat{f}}^{\rho-2+i} h(x)\right) \\
& \quad=\left[\begin{array}{c}
L_{\hat{g}} \tilde{\Gamma}_{i}(x) \\
L_{\hat{g}} \bar{\gamma}_{i}(x)+L_{\hat{g}} Q_{i-1}(x)
\end{array}\right]=\left[\begin{array}{c}
L_{\hat{g}} \tilde{\Gamma}_{i}(x) \\
L_{\hat{g}} Q_{i-1}(x)
\end{array}\right]=\mathrm{const}
\end{aligned}
$$

which implies that (5.123) is satisfied for $\rho-1 \leq i \leq \rho-2+\bar{k}$. It is easy to see, by (5.94) and mathematical induction, that for $i \geq 1$,

$$
L_{\hat{f}}^{i} \bar{\gamma}_{\bar{k}}(x)=\bar{\gamma}_{\bar{k}+i}(x)-\sum_{j=1}^{i} \bar{K}_{\bar{k}+j} L_{\hat{f}}^{i-j} \Gamma_{\bar{k}}(x)
$$

which implies, together with (5.94) and (5.121), that for $i \geq 1$,

$$
\begin{equation*}
L_{\hat{g}} L_{\hat{f}}^{i} \bar{\gamma}_{\hat{k}}(x)=L_{g} \bar{\gamma}_{\bar{k}+i}(x) \beta(x)-\sum_{j=1}^{i} \bar{K}_{\bar{k}+j} L_{\hat{g}} L_{\hat{f}}^{i-j} \Gamma_{\bar{k}}(x)=\text { const. } \tag{5.124}
\end{equation*}
$$

Finally, we have, by (5.103), (5.106), (5.121), and (5.124), that for $i \geq 1$,

$$
\begin{aligned}
L_{\hat{g}} L_{\hat{f}}^{i} Q_{\bar{k}-1}(x) & =\bar{K}_{i} L_{\hat{g}} L_{\hat{f}}^{i+1} \tilde{\Gamma}_{\bar{k}-1}(x)-\bar{K}_{i} L_{\hat{g}} L_{\hat{f}}^{i} \Gamma_{\bar{k}-1}(x)+K_{i}^{i} L_{\hat{g}} L_{\hat{f}}^{i+1} Q_{\bar{k}-2}(x) \\
& =\mathrm{const}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{\bar{k}} V_{\bar{k}-1} \cdots V_{1} L_{\hat{g}} L_{\hat{f}}^{\rho-2+\bar{k}+i} h(x)=L_{\hat{g}} L_{\hat{f}}^{i}\left(V_{\bar{k}} V_{\bar{k}-1} \cdots V_{1} L_{f+g \bar{\alpha}}^{\rho-2+\bar{k}} h(x)\right) \\
& \quad=\left[\begin{array}{c}
L_{\hat{g}} L_{\hat{f}}^{i} \tilde{\Gamma}_{\bar{k}}(x) \\
L_{\hat{g}} L_{\hat{f}}^{i} \bar{\gamma}_{\bar{k}}(x)+L_{\hat{g}} L_{\hat{f}}^{i} Q_{\bar{k}-1}(x)
\end{array}\right]=\mathrm{const}
\end{aligned}
$$

which implies that (5.123) is satisfied for $i \geq \rho-1+\bar{k}$. Since (5.123) is satisfied, it is clear, by Example 2.4.16, that for $1 \leq j \leq m$ and $i \geq 0$,

$$
L_{\mathrm{ad}_{\hat{f}}^{i} \hat{g}_{j}} h(x)=\mathrm{const}
$$

which implies, together with (2.30), that for $1 \leq j \leq m$ and $i \geq 0$,

$$
\begin{equation*}
L_{S_{*}\left(\operatorname{ad}_{\hat{f}}^{i} \hat{g}_{j}\right)} \tilde{h}(z)=\left.L_{\operatorname{add}_{\hat{f}}^{i} \hat{g}_{j}} h(x)\right|_{x=S^{-1}(z)}=\text { const. } \tag{5.125}
\end{equation*}
$$

Note, by (2.38), (5.115), and (5.120), that

$$
\begin{aligned}
& {\left[(-1)^{\kappa_{1}-1} S_{*}\left(\operatorname{ad}_{\hat{f}}^{\kappa_{1}-1} \hat{g}_{1}(x)\right) \cdots S_{*}\left(\hat{g}_{1}(x)\right) \cdots\right.} \\
& \left.(-1)^{\kappa_{m}-1} S_{*}\left(\operatorname{ad}_{\hat{f}}^{\kappa_{m}-1} \hat{g}_{m}(x)\right) \cdots S_{*}\left(\hat{g}_{m}(x)\right)\right] \\
& =\left[\begin{array}{lllllll}
A^{\kappa_{1}-1} b_{1} & \cdots & b_{1} & \cdots & A^{\kappa_{m}-1} b_{m} & \cdots & b_{m}
\end{array}\right]=I_{n}
\end{aligned}
$$

which implies, together with (5.125), that

$$
\left.\begin{array}{rl}
\frac{\partial \tilde{h}(z)}{\partial z}= & \frac{\partial \tilde{h}(z)}{\partial z}\left[(-1)^{\kappa_{1}-1} S_{*}\left(\operatorname{ad}_{\hat{f}}^{\kappa_{1}-1} \hat{g}_{1}(x)\right) \cdots S_{*}\left(\hat{g}_{1}(x)\right) \cdots\right. \\
& (-1)^{\kappa_{m}-1} S_{*}\left(\operatorname{ad}_{\hat{f}}^{\kappa_{m}-1} \hat{g}_{m}(x)\right) \cdots
\end{array} \cdots S_{*}\left(\hat{g}_{m}(x)\right)\right] .
$$

Therefore, (5.122) is satisfied. Hence, system (5.114) is feedback linearizable with output via state transformation $z=S(x)$ and feedback $u=\alpha(x)+\beta(x) v$.

Suppose that system (5.114) is feedback linearizable with output. Then, it is clear that system (5.114) is input-output linearizable. Thus, by structure algorithm, we can obtain

$$
\Gamma_{\bar{k}}(x)=\left[\begin{array}{c}
\gamma_{1}(x) \\
\gamma_{2}(x) \\
\vdots \\
\gamma_{\bar{k}}(x)
\end{array}\right]
$$

such that

$$
\begin{equation*}
\operatorname{rank}\left(\left.L_{g} \Gamma_{\bar{k}}(x)\right|_{x=0}\right)=\operatorname{rank}\left(\bar{E}_{\bar{k}}(0)\right)=\sum_{i=1}^{\bar{k}} \sigma_{i}=\bar{\sigma}_{\bar{k}} \tag{5.126}
\end{equation*}
$$

By column operation, we can obtain a nonsingular constant $m \times m$ matrix R_{1} such that

$$
\begin{equation*}
L_{g} \Gamma_{\bar{k}}(x) R_{1}=\bar{E}_{\bar{k}}(x) R_{1}=\left[\bar{E}_{\bar{k}}^{1}(x) \bar{E}_{\bar{k}}^{2}(x)\right] \tag{5.127}
\end{equation*}
$$

where $\bar{\sigma}_{\bar{k}} \times \bar{\sigma}_{\bar{k}}$ matrix $\bar{E}_{\bar{k}}^{1}(0)$ is invertible. Let

$$
\begin{equation*}
u=\bar{\alpha}(x)+\bar{\beta}(x) w \tag{5.128}
\end{equation*}
$$

where

$$
\bar{\beta}(x)=R_{1}\left[\begin{array}{cc}
\left(\bar{E}_{\bar{k}}^{1}(x)\right)^{-1} & -\left(\bar{E}_{\bar{k}}^{1}(x)\right)^{-1} \tag{5.129}\\
O_{\left(m-\bar{\sigma}_{k}\right) \times \bar{\sigma}_{k}} & I_{m-\bar{\sigma}_{\bar{k}}}^{2}(x)
\end{array}\right] \triangleq R_{1} R_{2}(x)
$$

and

$$
\bar{\alpha}(x)=-\bar{\beta}(x)\left[\begin{array}{c}
L_{f} \Gamma_{\bar{k}}(x) \tag{5.130}\\
O_{\left(m-\bar{\sigma}_{\bar{k}}\right) \times \bar{\sigma}_{\bar{k}}}
\end{array}\right]
$$

Then, it is easy to see that

$$
L_{\bar{g}} \Gamma_{\bar{k}}(x)=L_{g} \Gamma_{\bar{k}}(x) \bar{\beta}(x)=\left[\begin{array}{ll}
I_{\bar{\sigma}_{\bar{k}}} & O_{\bar{\sigma}_{\bar{k}} \times\left(m-\bar{\sigma}_{\bar{k}}\right)} \tag{5.131}
\end{array}\right]
$$

and

$$
\begin{equation*}
L_{\bar{f}} \Gamma_{\bar{k}}(x)=L_{f} \Gamma_{\bar{k}}(x)+L_{g} \Gamma_{\bar{k}}(x) \bar{\alpha}(x)=O \tag{5.132}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{f}(x)=f(x)+g(x) \bar{\alpha}(x) \tag{5.133}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}(x)=g(x) \bar{\beta}(x) \triangleq\left[\bar{g}^{1}(x) \bar{g}^{2}(x)\right] . \tag{5.134}
\end{equation*}
$$

In other words, we have that

$$
\begin{aligned}
\frac{d}{d t} \Gamma_{\bar{k}}(x(t)) & =L_{\bar{f}} \Gamma_{\bar{k}}(x)+L_{\bar{g}} \Gamma_{\bar{k}}(x) w \\
& =\left[I_{\bar{\sigma}_{\bar{k}}} O_{\bar{\sigma}_{\bar{k}} \times\left(m-\bar{\sigma}_{\bar{k}}\right)}\right]\left[\begin{array}{l}
w^{1} \\
w^{2}
\end{array}\right]=w^{1} .
\end{aligned}
$$

Consider the following closed-loop system with output \bar{y} and nonsingular feedback $u=\bar{\alpha}(x)+\bar{\beta}(x) w:$

$$
\begin{align*}
\dot{x} & =\bar{f}(x)+\bar{g}(x(t)) w \\
\bar{y} & =\Gamma_{\bar{k}}(x) \triangleq \bar{h}(x) . \tag{5.135}
\end{align*}
$$

Suppose that $\left(\bar{\kappa}_{1}, \ldots, \bar{\kappa}_{m}\right)$ is the Kronecker indices of system (5.135). The following Corollary is a direct consequence of Lemma 5.2.

Corollary 5.1 System (5.114) is feedback linearizable with output via state transformation $z=S(x)$ and nonsingular feedback $u=\alpha(x)+\beta(x) v$, if and only if
(i) system (5.114) is input-output linearizable.
(ii) system (5.135) is feedback linearizable with output via state transformation $z=S(x)$ and nonsingular feedback

$$
\begin{align*}
w & =\bar{\beta}(x)^{-1}(\alpha(x)-\bar{\alpha}(x))+\bar{\beta}(x)^{-1} \beta(x) v \\
& \triangleq \hat{\alpha}(x)+\hat{\beta}(x) v \tag{5.136}
\end{align*}
$$

Theorem 5.7 (conditions for feedback linearization with output)
Let $\bar{\sigma}_{\bar{k}}=$ m. System (5.114) is feedback linearizable with output, if and only if
(i) system (5.114) is input-output linearizable or for $1 \leq i \leq \bar{k}$,

$$
\hat{E}_{i}(x) \triangleq L_{g} \bar{\gamma}_{i}(x)=O_{\left(q-\bar{\sigma}_{i}\right) \times m}
$$

(ii) $\sum_{j=1}^{m} \bar{\kappa}_{j}=n$
(iii) for $1 \leq i \leq m, 1 \leq j \leq m, 1 \leq \ell_{i} \leq \bar{\kappa}_{i}+1$, and $1 \leq \ell_{j} \leq \bar{\kappa}_{j}+1$,

$$
\begin{equation*}
\left[\operatorname{ad}_{\bar{f}}^{\ell_{i}-1} \bar{g}_{i}(x), \operatorname{ad}_{\bar{f}}^{\ell_{j}-1} \bar{g}_{j}(x)\right]=0 \tag{5.137}
\end{equation*}
$$

where $\bar{f}(x)$ and $\bar{g}(x)$ are given in (5.133) and (5.134).
Proof Necessity. Suppose that system (5.114) is feedback linearizable with output via state transformation $z=S(x)$ and nonsingular feedback $u=\alpha(x)+\beta(x) v$. Then, by Corollary 5.1, condition (i) is satisfied and system (5.135) is feedback linearizable with output via state transformation $z=S(x)$ and nonsingular feedback (5.136). Thus, it is clear that condition (ii) is satisfied and

$$
\begin{align*}
& \tilde{f}(z) \triangleq S_{*}(\hat{f}(x))=A z ; \quad \tilde{g}(z) \triangleq\left[S_{*}\left(\hat{g}_{1}(x)\right) \cdots S_{*}\left(\hat{g}_{m}(x)\right)\right]=B \\
& \tilde{\bar{h}}(z) \triangleq \bar{h} \circ S^{-1}(z)=\bar{C} z \tag{5.138}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{f}(x)=\bar{f}(x)+\bar{g}(x) \hat{\alpha}(x) \text { and } \hat{g}(x)=\bar{g}(x) \hat{\beta}(x) \tag{5.139}
\end{equation*}
$$

Let

$$
z=S(x)=\left[\begin{array}{lllll}
S_{11}(x) & \cdots & S_{1 \kappa_{1}}(x) & \cdots & S_{m 1}(x) \\
\cdots & S_{m \kappa_{m}}(x)
\end{array}\right]^{\top} .
$$

Since $S_{*}(\bar{f}(x)+\bar{g}(x) \hat{\alpha}(x)+\bar{g}(x) \hat{\beta}(x) v)=A z+B v$ by (5.138), it is clear that for $1 \leq i \leq m$,

$$
\left[\begin{array}{c}
\frac{\partial S_{i 1}(x)}{\partial x} \\
\vdots \\
\frac{\partial S_{i\left(k_{i}-1\right)}(x)}{\partial x} \\
\frac{\partial S_{i i_{i}}(x)}{\partial x}
\end{array}\right]\{\bar{f}(x)+\bar{g}(x) \hat{\alpha}(x)+\bar{g}(x) \hat{\beta}(x) v\}=\left[\begin{array}{c}
S_{i 2}(x) \\
\vdots \\
S_{i k_{i}}(x) \\
v_{i}
\end{array}\right] .
$$

Thus, it is easy to see that for $1 \leq i \leq m$ and $2 \leq k \leq \kappa_{i}$,

$$
\begin{equation*}
S_{i k}(x)=L_{\bar{f}}^{k-1} S_{i 1}(x) ; \quad L_{\bar{g}} L_{\bar{f}}^{k-2} S_{i 1}(x)=0 \tag{5.140}
\end{equation*}
$$

and

$$
\hat{\beta}(x)=\left[\begin{array}{c}
L_{\bar{g}} S_{1 \kappa_{1}}(x) \tag{5.141}\\
\vdots \\
L_{\bar{g}} S_{m \kappa_{m}}(x)
\end{array}\right]^{-1} ; \hat{\alpha}(x)=-\hat{\beta}(x)\left[\begin{array}{c}
L_{\bar{f}} S_{1 \kappa_{1}}(x) \\
\vdots \\
L_{\bar{f}} S_{m \kappa_{m}}(x)
\end{array}\right] .
$$

(Refer to Lemma 4.3.) Also, it is easy to see, by Example 2.4.14, (5.131), (5.138), and (5.139), that

$$
\begin{align*}
\hat{\beta}(x) & =L_{\bar{g}} \bar{h}(x) \hat{\beta}(x)=L_{\hat{g}} \bar{h}(x)=\left.L_{\tilde{g}} \tilde{\bar{h}}(z)\right|_{z=S(x)} \\
& =\bar{C} B=\left[\begin{array}{ccc}
\bar{c}_{1 \kappa_{1}}^{1} & \cdots & \bar{c}_{m \kappa_{m}}^{1} \\
\vdots & & \vdots \\
\bar{c}_{1 \kappa_{1}}^{m} & \cdots & \bar{c}_{m \kappa_{m}}^{m}
\end{array}\right] \tag{5.142}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{g}(x)=\hat{g}(x)(\bar{C} B)^{-1} \tag{5.143}
\end{equation*}
$$

where

$$
\overline{\boldsymbol{C}}=\left[\begin{array}{ccccc}
\bar{c}_{11}^{1} & \cdots & \bar{c}_{1 \kappa_{1}}^{1} & \cdots & \bar{c}_{m 1}^{1} \tag{5.144}
\end{array} \cdots \bar{c}_{m \kappa_{m}}^{1}\right] .
$$

Thus, we have, by (5.138), that

$$
\begin{aligned}
\bar{h}(x) & =\bar{C} S(x)=\left[\begin{array}{c}
\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}} \bar{c}_{i j}^{1} S_{i j}(x) \\
\vdots \\
\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}} \bar{c}_{i j}^{m} S_{i j}(x)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\bar{c}_{1 \kappa_{1}}^{1} & \cdots & \bar{c}_{m \kappa_{m}}^{1} \\
\vdots & \vdots \\
\bar{c}_{1 \kappa_{1}}^{m} & \cdots & \bar{c}_{m \kappa_{m}}^{m}
\end{array}\right]\left[\begin{array}{c}
S_{1 \kappa_{1}}(x) \\
\vdots \\
S_{m \kappa_{m}}(x)
\end{array}\right]+\left[\begin{array}{c}
\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}-1} \bar{c}_{i j}^{1} S_{i j}(x) \\
\vdots \\
\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}-1} \bar{c}_{i j}^{m} S_{i j}(x)
\end{array}\right]
\end{aligned}
$$

which implies, together with (5.139)-(5.144), that

$$
\begin{aligned}
0 & =L_{f} \bar{h}(x)=\bar{C} B\left[\begin{array}{c}
L_{\bar{f}} S_{I_{1}}(x) \\
\vdots \\
L_{\bar{f}} S_{m \kappa_{m}}(x)
\end{array}\right]+\left[\begin{array}{c}
\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}-1} \bar{c}_{i j}^{1} S_{i(j+1)}(x) \\
\vdots \\
\sum_{i=1}^{m} \sum_{j=1}^{\kappa_{i}-1} \bar{c}_{i j}^{m} S_{i(j+1)}(x)
\end{array}\right] \\
& =-\hat{\alpha}(x)+\bar{C} A S(x)
\end{aligned}
$$

and

$$
\begin{align*}
\bar{f}(x) & =\hat{f}(x)-\bar{g}(x) \hat{\alpha}(x) \\
& =\hat{f}(x)-\hat{g}(x)(\bar{C} B)^{-1} \bar{C} A S(x) . \tag{5.145}
\end{align*}
$$

Therefore, it is easy to see, by (2.49), (5.143), and (5.145), that

$$
\begin{align*}
{\left[S_{*}\left(\bar{g}_{1}(x)\right) \cdots S_{*}\left(\bar{g}_{m}(x)\right)\right] } & =\left[S_{*}\left(\hat{g}_{1}(x)\right) \cdots S_{*}\left(\hat{g}_{m}(x)\right)\right](\bar{C} B)^{-1} \\
& =B(\bar{C} B)^{-1} \triangleq \bar{B} \tag{5.146}
\end{align*}
$$

and

$$
\begin{align*}
S_{*}(\bar{f}(x))= & S_{*}(\hat{f}(x)) \\
& -\left.\left[S_{*}\left(\hat{g}_{1}(x)\right) \cdots S_{*}\left(\hat{g}_{m}(x)\right)\right](\bar{C} B)^{-1} \bar{C} A S(x)\right|_{x=S^{-1}(z)} \tag{5.147}\\
= & A z-B(\bar{C} B)^{-1} \bar{C} A z=\left\{A-B(\bar{C} B)^{-1} \bar{C} A\right\} z \triangleq \bar{A} z
\end{align*}
$$

Hence, by Example 2.4.14, (5.146), and (5.147), condition (iii) is satisfied.
Sufficiency. Suppose that condition (i)-(iii) of Theorem 5.7 are satisfied. Then, by Theorem 2.7, there exists a state transformation $z=S(x)$ such that for $1 \leq i \leq m$ and $1 \leq j \leq \kappa_{i}$,

$$
\begin{equation*}
S_{*}\left(\operatorname{ad}_{\bar{f}}^{j-1} \bar{g}_{i}(x)\right)=\frac{\partial}{\partial z_{i j}} \tag{5.148}
\end{equation*}
$$

or

$$
\frac{\partial S(x)}{\partial x}\left[\bar{g}_{1} \operatorname{ad}_{\bar{f}} \bar{g}_{1} \cdots \operatorname{ad}_{\bar{f}}^{\kappa_{1}-1} \bar{g}_{1} \cdots \bar{g}_{m} \cdots \operatorname{ad}_{\bar{f}}^{\kappa_{m}-1} \bar{g}_{m}\right]=I
$$

where

$$
z=\left[\begin{array}{lllllll}
z_{11} & \cdots & z_{1 \kappa_{1}} & \cdots & z_{m 1} & \cdots & z_{m \kappa_{m}}
\end{array}\right]^{\top} .
$$

Thus, it is clear that

$$
\begin{equation*}
S_{*}\left(\bar{g}_{i}(x)\right)=\frac{\partial}{\partial z_{i 1}} \triangleq \bar{b}_{i} . \tag{5.149}
\end{equation*}
$$

It is also easy to see that

$$
\begin{equation*}
S_{*}(\bar{f}(x))=\bar{A} z \tag{5.150}
\end{equation*}
$$

for some constant matrix \bar{A}. (Refer to the sufficiency part of Theorem 3.2.) Also, it is easy to see, by Example 2.4.16, (5.131), and (5.132), that for $1 \leq k \leq m, 1 \leq i \leq m$ and $1 \leq j \leq \kappa_{i}$,

$$
L_{\bar{g}_{i}} L_{\bar{f}}^{j-1} \bar{h}_{k}(x)= \begin{cases}1, & \text { if } i=k \text { and } j=1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
L_{\mathrm{ad}_{\tilde{f}}^{j-1} \bar{g}_{i}} \bar{h}_{k}(x)= \begin{cases}1, & \text { if } i=k \text { and } j=1 \\ 0, & \text { otherwise }\end{cases}
$$

which implies, together with Example 2.4.14 and (5.148), that for $1 \leq k \leq m, 1 \leq$ $i \leq m$ and $1 \leq j \leq \kappa_{i}$,

$$
\begin{aligned}
\frac{\partial}{\partial z_{i j}} \tilde{\bar{h}}_{k}(z) & =L_{S_{*}\left(\operatorname{ad}_{f}^{j-1} \bar{g}_{i}\right)} \bar{h}_{k} \circ S^{-1}(z)=\left.L_{\mathrm{ad}_{f}^{j-1} \bar{g}_{i}} \bar{h}_{k}(x)\right|_{x=S^{-1}(z)} \\
& = \begin{cases}1, & \text { if } i=k \text { and } j=1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\tilde{\bar{h}}_{k}(z)=\bar{h}_{k} \circ S^{-1}(z)=\left[\begin{array}{c}
z_{11} \tag{5.151}\\
\vdots \\
z_{m 1}
\end{array}\right] \triangleq \hat{C} z
$$

where $\tilde{\bar{h}}(z) \triangleq \bar{h} \circ S^{-1}(z)$. Therefore, it is clear, by (5.149), (5.150), and (5.151), that system (5.135) is state equivalent to a controllable linear MIMO system via state transformation $z=S(x)$. It is well-known that there exist a nonsingular matrices P, G, and an $m \times n$ matrix F such that

$$
P^{-1}(\bar{A}+\bar{B} F) P=A \text { and } P^{-1} \bar{B} G=B
$$

(Refer to Problem 5-13.) In other words, system (5.135) is feedback linearizable with output via state transformation $z=P^{-1} S(x)$ and nonsingular feedback $w=$ $F S(x)+G v$. Hence, by Corollary 5.1, system (5.114) is feedback linearizable with output via state transformation $z=P^{-1} S(x)$ and nonsingular feedback

$$
u=\alpha(x)+\beta(x) v=\bar{\alpha}(x)+\bar{\beta}(x)(F S(x)+G v)
$$

Example 5.6.2 Use Theorem 5.7 to show that the following nonlinear system is feedback linearizable with output:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{2} \\
x_{2}^{2} \\
x_{1}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] u=f(x)+g(x) u \tag{5.152}\\
y & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=h(x) .
\end{align*}
$$

Solution Let us consider the structure algorithm for system (5.152). Since

$$
L_{g} h(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

we have that $\rho \triangleq \min \left(\rho_{1}, \rho_{2}\right)=1$ and $\operatorname{rank}\left(\left.L_{g} h(x)\right|_{x=0}\right)=1=\sigma_{1}<2$. Thus, we obtain, by elementary row operations, constant matrix V_{1} such that

$$
\left.V_{1} L_{g} h(x)\right|_{x=0}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{1}(0) \\
0
\end{array}\right]
$$

which implies that $P_{1}=\left[\begin{array}{ll}0 & 1\end{array}\right], K_{1}^{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$, and

$$
\left[\begin{array}{l}
\gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=V_{1}\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
P_{1} \\
K_{1}^{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right] .
$$

Since

$$
\begin{equation*}
\hat{E}_{1}(x) \triangleq L_{g} \bar{\gamma}_{1}(x)=0 \tag{5.153}
\end{equation*}
$$

we go to step 2. Note that $L_{f} \bar{\gamma}_{1}(x)=x_{2}$ and

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
\bar{E}_{1}(x) \\
L_{g} L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]\right|_{x=0}\right)=\operatorname{rank}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=1=\bar{\sigma}_{2}
$$

Since $\bar{\sigma}_{2}=1<q$, we obtain, by elementary row operations, constant matrix V_{2} such that

$$
\left.V_{2}\left[\begin{array}{c}
\bar{E}_{1}(x) \\
L_{g} L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]\right|_{x=0}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{1}(0) \\
0
\end{array}\right]
$$

which implies that $\left[\begin{array}{ll}K_{1}^{2} & K_{2}^{2}\end{array}\right]=\left[\begin{array}{ll}-1 & 1\end{array}\right]$, and

$$
\bar{\gamma}_{2}(x)=\left[\begin{array}{ll}
K_{1}^{2} & K_{2}^{2}
\end{array}\right]\left[\begin{array}{c}
\gamma_{1}(x) \\
L_{f} \bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
x_{2}
\end{array}\right]=0 .
$$

Since $\bar{\sigma}_{2}=\bar{\sigma}_{3}=\cdots$, the algorithm does not end in a finite step. Thus, we have that the final step $\bar{k}=1$ and

$$
\left[\begin{array}{c}
\Gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
0
\end{array}\right] .
$$

It is clear, by Theorem 5.5 and (5.153), that system (5.152) is input-output linearizable. Therefore, we have, by (5.129) and (5.130), that

$$
\bar{\beta}(x)=\left(L_{g} \Gamma_{1}(x)\right)^{-1}=1
$$

and

$$
\bar{\alpha}(x)=-\bar{\beta}(x) L_{f} \Gamma_{1}(x)=-x_{2}^{2}
$$

which imply that

$$
\bar{f}(x)=f(x)+g(x) \bar{\alpha}(x)=\left[\begin{array}{c}
x_{2} \\
0 \\
x_{1}
\end{array}\right] \text { and } \bar{g}(x)=g(x) \bar{\beta}(x)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

It is easy to see that

$$
\left[\operatorname{ad}_{\bar{f}} \bar{g}(x) \operatorname{ad}_{\bar{f}}^{2} \bar{g}(x) \operatorname{ad}_{\bar{f}}^{3} \bar{g}(x)\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

which implies that $\bar{\kappa}_{1}=3=n$ and condition (ii) of Theorem 5.7 is satisfied. It is also easy to see that condition (iii) of Theorem 5.7 is satisfied. Hence, by Theorem 5.7, system (5.152) is feedback linearizable with output.

Example 5.6.3 Use Theorem 5.7 to show that the following nonlinear system is not feedback linearizable with output:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2} \\
x_{2}^{2} \\
x_{1}+x_{2}^{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right] u=f(x)+g(x) u \tag{5.154}\\
y & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=h(x)
\end{align*}
$$

Solution By the structure algorithm, we have that $\bar{k}=1$ and

$$
\left[\begin{array}{c}
\Gamma_{1}(x) \\
\bar{\gamma}_{1}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
0
\end{array}\right] .
$$

Therefore, we have, by (5.129) and (5.130), that

$$
\bar{\beta}(x)=\left(L_{g} \Gamma_{1}(x)\right)^{-1}=1 ; \quad \bar{\alpha}(x)=-\bar{\beta}(x) L_{f} \Gamma_{1}(x)=-x_{2}^{2}
$$

which imply that

$$
\bar{f}(x)=f(x)+g(x) \bar{\alpha}(x)=\left[\begin{array}{c}
x_{2} \\
0 \\
x_{1}+x_{2}^{2}\left(1-x_{1}\right)
\end{array}\right] ; \quad \bar{g}(x)=g(x) \bar{\beta}(x)=\left[\begin{array}{c}
0 \\
1 \\
x_{1}
\end{array}\right] .
$$

It is easy to see that

$$
\left[\operatorname{ad}_{\bar{f}} \bar{g}(x) \operatorname{ad}_{\bar{f}}^{2} \bar{g}(x) \operatorname{ad}_{\bar{f}}^{3} \bar{g}(x)\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
x_{2}\left(2 x_{1}-1\right) & 1+x_{2}^{2} & 0
\end{array}\right]
$$

which implies that $\bar{\kappa}_{1}=3=n$ and condition (ii) of Theorem 5.7 is satisfied. However, we have that

$$
\left[\bar{g}(x), \operatorname{ad}_{\bar{f}} \bar{g}(x)\right]=\left[\begin{array}{c}
0 \\
0 \\
2 x_{1}
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

which implies that condition (iii) of Theorem 5.7 is not satisfied. Hence, by Theorem 5.7, system (5.152) is not feedback linearizable with output.

5.7 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed: adfg, adfgk, adfgM, adfgkM, CharacterNum, ChExact, ChZero, ChCommute, ChConst, Codi, Delta, Kindex0, Lfh, Lfhk, RowReorder, TauFG

MATLAB program for Theorem 5.1:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[0; x1*\operatorname{cos(x2)^2]; g=[1; x1-x1]; h=2*x1+tan(x2); %Ex:5.2.2}
% f=[0; x1*cos(x2)^2]; g=[1; x1-x1]; h=x2; %Ex:5.2.3
% f=[x2; x1^2]; g=[x1-x1; 1]; h=x1; %Ex:5.2.4
% f=[x2+x3^2; x3; 0]; g=[2*x3; -2*x3; 1]; h=x1; %P:5.2(a)
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]);
T(:,1)=g;
for k=2:n+1
    T(:,k) =adfg(f,T(:,k-1),x);
end
T=simplify(T)
BD=T(:, 1:n)
```

```
if rank(BD) < n
    display('condition (i) of Thm 5.1 is not satisfied.')
    return
end
if ChCommute(T,x) == 0
    display('condition (ii) of Thm 5.1 is not satisfied.')
    return
end
tC=simplify(Lfh(BD,h,x))
if ChConst(tC,x) == 0
    display('condition (iii) of Thm 5.1 is not satisfied.')
    return
end
dS=simplify(inv(BD));
display('By Thm 5.1, state equivalent to a LS with')
S=Codi(dS,x)
AS=simplify(dS*f);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)
C=tC
return
```


MATLAB program for Theorem 5.2:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[-2*x2*(x1+x2+x2^2); x1+x2+x2^2; -2*x2*(x1+x2+x\mp@subsup{2}{}{\wedge}2)];
g=[1 x1-x1; 0 0; 0 1]; h=[x1+x2^2; x2+x2^2+x3]; %Ex:5.3.1
% f=[x2+x3^2; x3; 0];
% g=[2*x3; -2*x3; 1]; h=[x1-x3^2; x3]; %P:5.2(b)
% f=[x2; x4; x4+3*x2^2*x4; 0];
% g=[0 2*x4; 1 0; 3*x2^2 0; 0 1]; h=x2; %P:5.2(c)
% g=[0 2*x4; 1 0; 3*x2^2 0; 0 1];
% f=[x2; x4; x4+3*x2^2*x4; 0]; h=[x1-x4^2; x3-x2^3]; %P:5.2(d)
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]);
```

```
[ka,D]=Kindex0(f,g,x)
if sum(ka) < n
    display('condition (i) of Thm 5.2 is not satisfied.')
    return
end
BDD=TauFG(f,g,x,ka+1)
if ChCommute(BDD,x) == 0
    display('condition (ii) of Thm 5.2 is not satisfied.')
    return
end
BD=TauFG(f,g,x,ka)
tC=simplify(Lfh(BD,h,x))
if ChConst(tC,x) == 0
    display('condition (iii) of Thm 5.2 is not satisfied.')
    return
end
display('By Thm 5.2, state equivalent to a LS with')
dS=simplify(inv(BD));
S=Codi (dS,x)
AS=simplify(dS*f);
dAS=simplify(jacobian(AS,x));
A=simplify (dAS*BD)
B=simplify(dS*g)
C=tC
return
```


MATLAB program for Theorem 5.3:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[0; x1*\operatorname{cos(x2)^2]; g=[1; x1-x1]; h=x2; %Ex:5.4.3}
% f=[x2; x3; x1^2]; g=[0; 0; exp(x1)]; h=2*x1+x2; %Ex:5.4.4
% f=[x2; x3; x1^2]; g=[0; 0; exp(x1)];
%h=2*x1+exp (x2)-1; %Ex:5.4.5
% f=[x2; x3; x1^2]; g=[0; 0; exp(x1)]; h=sin(x1)+x2; %Ex:5.4.6
% f=[x2; x1^2]; g=[x1-x1; 1]; h=x1; %Ex:P:5.3
% f=[x2; x1^2]; g=[x1-x1; 1]; h=x2+x1^2; %Ex:P:5.4
% f=[x2+x3^2; x3; 0]; g=[2*x3; -2*x3; 1]; h=x1; %P:5.5(a)
% f=[x2; x3; x1^2]; g=[x1-x1; 0; 1]; h=x2; %P:5.5(b)
```

```
% f=[x2; x3; x1^2]; g=[x1-x1; 0; 1]; h=x2+x1^2; %P:5.5(c)
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]);
T(:,1)=g;
for k=2:n
    T(:,k) =adfg(f,T(:,k-1),x);
end
T=simplify(T)
BD=T(:, 1:n)
if rank(BD) < n
    display('condition (i) of Thm 5.3 is not satisfied.')
    return
end
rho=CharacterNum(f,g,h,x)
CON2=Lfh(T(:,rho),h,x)
CON20=simplify(subs(CON2,x,x-x))
if ChZero(CON20) == 1
    display('condition (ii) of Thm 5.3 is not satisfied.')
    return
end
beta=(-1)^(rho-1) / CON2
iBD=simplify(inv(BD))
omega=(-1)^(n-1)/beta*iBD(n,:)
if ChExact(omega,x) == 0
    display('condition (iii) of Thm 5.3 is not satisfied.')
    return
end
S1=Codi (omega,x)
S=x-x; S(1)=S1;
for k=2:n
    S(k)=Lfh(f,S(k-1),x);
end
S=simplify(S)
tt2=Lfhk(f,S1,x,n);
alpha=-tt2*beta
hf=simplify(f+alpha*g)
hg=simplify(beta*g)
hT (:,1)=hg;
for k=2:n
    hT(:,k) =adfg(hf,hT(:,k-1),x);
end
hT=simplify(hT)
```

```
CON4=simplify(Lfh(hT,h,x))
if ChConst(CON4,x) == 0
    display('condition (iv) of Thm 5.3 is not satisfied.')
    return
end
display('By Thm 5.3, feedback linearizable with output.')
dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
dh=simplify(jacobian(h,x));
C=simplify(dh*idS)
return
```


MATLAB program for Theorem 5.4:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[0; x1* cos(x2)^2]; g=[1; x1-x1]; h=x2; %Ex:5.4.3
% f=[x2; x3; x1^2]; g=[0; 0; exp(x1)]; h=2*x1+x2; %Ex:5.4.4
% f=[x2; x3; x1^2]; g=[0; 0; exp(x1)];
%h=2*x1+exp (x2)-1; %Ex:5.4.5
% f=[x2; x3; x1^2]; g=[0; 0; exp(x1)]; h=sin(x1)+x2; %Ex:5.4.6
% f=[x2; x1^2]; g=[x1-x1; 1]; h=x1; %Ex:P:5.3
% f=[x2; x1^2]; g=[x1-x1; 1]; h=x2+x1^2; %Ex:P:5.4
% f=[x2+x3^2; x3; 0]; g=[2*x3; -2*x3; 1]; h=x1; %P:5.5(a)
% f=[x2; x3; x1^2]; g=[x1-x1; 0; 1]; h=x2; %P:5.5(b)
% f=[x2; x3; x1^2]; g=[x1-x1; 0; 1]; h=x2+x1^2; %P:5.5(c)
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]);
T(:,1)=g;
for k=2:n
    T(:,k)=adfg(f,T(:,k-1),x);
end
T=simplify(T)
```

```
T0=subs(T,x,x-x)
if rank(T0) < n
    display('condition (i) of Thm 5.4 is not satisfied.')
    return
end
rho=CharacterNum(f,g,h,x)
CON2=Lfh(T(:,rho),h,x)
CON20=simplify(subs(CON2,x,x-x))
if ChZero(CON20) == 1
    display('condition (ii) of Thm 5.4 is not satisfied.')
    return
end
beta=(-1)^(rho-1)/CON2
talpha=Lfhk(f,h,x,rho);
alpha=-beta*talpha
bf=simplify(f+alpha*g)
hg=simplify(beta*g)
hT (:,1) =hg;
for k=2:n+1
    hT(:,k) =adfg(bf,hT(:,k-1),x);
end
hT=simplify(hT)
if ChCommute (hT,x)==0
    display('condition (iii) of Thm 5.4 is not satisfied.')
    return
end
display('By Thm 5.4, feedback linearizable with output.')
idS=hT(:,1:n);
dS=inv(idS);
S=Codi(dS,x)
AS=simplify(dS*bf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
dh=simplify(jacobian(h,x));
C=simplify(dh*idS)
return
```

The following is a MATLAB subfunction program for Theorem 5.5.

```
function [r,V]=RowOperation(D)
q=size(D,1); r=rank(D); Iq=eye(q);
if r==q
    V=Iq;
    return
end
R0=RowReorder (D);
D1=R0*D;
t1=D1(1:r,:);
t2=D1 ((r+1):q,:);
K=t2*t1'*inv(t1*t1');
R1=Iq;
R1((r+1):q,1:r)=-K;
V=R1*R0;
```

The following is a MATLAB subfunction program for Theorem 5.5. (Refer to Structure Algorithm.)

```
function [flag,kf,GAMMA,bargammak]=StructureA(f,g,h,x)
flag=1; bargammak=x(1)-x(1);
n=size(g,1); q=length(h);
rho=CharacterNum(f,g,h,x);
T1=Lfhk(f,h,x,rho-1);
E=Lfh(g,T1,x);
E0=subs(E,x,x-x);
[s1,V]=RowOperation(E0);
VT1=V*T1;
VE=V*E;
GAMMA=VT1(1:s1);
kf=1;
if s1==q
    return
end
bargamma (1:q-s1)=VT1 ((s1+1) :q);
hatSi=VE((s1+1):q,:)
if ChZero(hatSi) == 0
    flag=0;
    return
end
if s1>0
    oldbargammak=bargamma(1:q-s1);
end
s=s1;
for k1=2:n
    T1=[GAMMA; Lfh(f,bargamma(1:q-s1),x)];
    E=Lfh(g,T1,x);
    E0=subs (E,x,x-x);
    [s1,V]=RowOperation(E0);
```

```
    VT1=V*T1;
    VE=V*E;
    GAMMA=VT1(1:s1);
    kf=k1;
    olds=max(s);
    s=[s; s1];
    if s1==q
        return
    end
    bargamma(1:q-s1)=VT1((s1+1):q)
    hatSi=VE((s1+1):q,:)
    if ChZero(hatSi) == 0
        flag=0;
        return
    end
    if s1>max(s)
        oldbargammak=bargamma(1:q-s1);
    end
    s=[s; s1];
end
for k2=1:n
    if s(k2)==s(n)
        kf=k2;
        bargammak=oldbargammak;
        return
    end
end
```


MATLAB program for Theorem 5.5:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[x2^2; x3; 0];
g=[1+x1 0; 0 0; 0 1]; h=[x1; x1+x2]; %Ex:5.5.6
% f=[x1^2; x1; x3^2];
% g=[1+x1 1; 0 0; 0 1]; h=[x1; x1+x2]; %Ex:5.5.8
% f=[x1^2; x3; x2^2];
% g=[1 0; x1 0; 0 1]; h=[x1; x1+x2]; %Ex:5.5.9
% f=[x1^2; x3; x3^2];
% g=[1+x1 1; 0 0; x1 x2]; h=[x1; x1+x2]; %Ex:P5-10
% f=[x2; x1^2; x4; x5; x3^2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; x4]; %Ex:P5-11a
% f=[x2; x1^2; x4; x5; x3^2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; x3]; %Ex:P5-11b
% f=[x2; x1^2; x4; x5; x3^2];
```

```
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; 2*x1+x3]; %Ex:P5-11c
% f=[x2; x1^2; x4; x5; x3^2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; x1^2+x3]; %Ex:P5-11d
% f=[x2; x1^2; x4; x5; x3^2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1+x5; x3]; %Ex:P5-11e
% f=[x1^2+x4; x3+x1*x4; x2^2; 0];
% g=[x1-x1 0; 0 0; 0 1; 1 0]; h=[x1; x1+x2]; %Ex:P5-12
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]); u=sym('u',[m,1]);
[flag,kf,GAMMA, bargammak]=StructureA(f,g,h,x)
if flag==0
    display('By Thm 5.5, NOT locally i-o linearizable.')
    return
end
display('By Thm 5.5, system is locally i-o linearizable.')
bsk=length (GAMMA) ;
D=Lfh (g,GAMMA, x);
D0=subs (D, x,x-x);
L1=RowReorder(D0');
R1=L1';
bD=D*R1;
bS1=bD(:,1:bsk);
bS2=bD(:,bsk+1:m) ;
R2=jacobian(u,u);
R2(1:bsk,:)=[inv(bS1) -inv(bS1)*bS2];
beta=R1*R2
t3=Lfh(f,GAMMA,x);
alpha=beta(:,1)-beta(:,1);
alpha(1:bsk)=t3;
alpha=-beta*alpha
fc=simplify(f+g*alpha)
gc=simplify(g*beta)
Tc=h;
for k=2:n
    TC=[Tc; Lfhk(fc,h,x,k-1)];
end
Tc=simplify(Tc)
cc=Lfh(gc,Tc,x)
return
```


5.8 Problems

5-1 Solve Example 5.2.1.
5-2 Find out whether the following nonlinear control systems are state equivalence to a linear system with output or not. If it is state equivalence to a linear system with output, find a linearizing state transformation.
(a)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
1
\end{array}\right] u ; \quad y=x_{1}
$$

(b)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
1
\end{array}\right] u ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{3}^{2} \\
x_{3}
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{4} \\
x_{4}+3 x_{2}^{2} x_{4} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 2 x_{4} \\
1 & 0 \\
3 x_{2}^{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] ; y=x_{2}
$$

(d)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{4} \\
x_{4}+3 x_{2}^{2} x_{4} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 2 x_{4} \\
1 & 0 \\
3 x_{2}^{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-x_{4}^{2} \\
x_{3}-x_{2}^{3}
\end{array}\right]
$$

5-3 Use Theorem 5.3 or Theorem 5.4 to show that (5.13) is feedback linearizable with output.
5-4 Use Theorem 5.3 or Theorem 5.4 to show that (5.13) with output equation $y=h(x)=x_{2}+x_{1}^{2}$ is not feedback linearizable with output.
5-5 Find out whether the following nonlinear control systems are feedback linearizable with output or not. If it is feedback linearizable with output, find a linearizing state transformation and feedback.
(a)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
1
\end{array}\right] u ; \quad y=x_{1}
$$

(b)

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u ; \quad y=x_{2}
$$

(c)

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u ; \quad y=x_{2}+x_{1}^{2}
$$

5-6 Solve Example 5.5.1.
5-7 Show that the relative degree of system (5.65) is invariant with nonsingular feedback.
5-8 Prove Lemma 5.1.
5-9 Show that the following system is input-output linearizable. Also, find the nonsingular feedback $u=\alpha(x)+\beta(x) v$ for the input-output linearization.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u ; \quad y=x_{2}+x_{1}^{2}
$$

5-10 Show that the following system is not locally input-output linearizable.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{l}
x_{1}^{2} \\
x_{3} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{cc}
1+x_{1} & 1 \\
0 & 0 \\
x_{1} & x_{2}
\end{array}\right] u=f(x)+g(x) u \\
y & =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=h(x)
\end{aligned}
$$

5-11 Use Theorem 5.5 to determine whether the following system is input-output linearizable. If it is input-output linearizable, find the nonsingular feedback $u=\alpha(x)+\beta(x) v$ for the input-output linearization.

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{5.155}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}^{2} \\
x_{4} \\
x_{5} \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] u
$$

(a)

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
2 x_{1}+x_{3}
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{1}^{2}+x_{3}
\end{array}\right]
$$

(e)

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{5} \\
x_{3}
\end{array}\right]
$$

5-12 For the system (5.113), consider the following dynamic feedback:

$$
\begin{aligned}
& u_{1}=\eta ; \quad u_{2}=w_{2} ; \\
& \dot{\eta}=w_{1}
\end{aligned}
$$

Then we have the following extended system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{5.156}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{\eta}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+\eta \\
x_{3}+x_{1} \eta \\
x_{2}^{2} \\
0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] w ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right] .
$$

Show that the extended system (5.156) is locally input-output linearizable. Find the nonsingular feedback $w=\alpha(x, \eta)+\beta(x, \eta) v$ for the input-output linearization. In other words, system (5.113) of Example 5.5.9 is locally inputoutput linearizable not by static feedback but by dynamic feedback. It is called the dynamic input-output linearization.
5-13 Suppose that (\bar{A}, \bar{B}) is a controllable pair. By using the controllable canonical form to show that there exist a nonsingular matrices P, G, and an $m \times n$ matrix F such that

$$
P^{-1}(\bar{A}+\bar{B} F) P=A \text { and } P^{-1} \bar{B} G=B
$$

where (A, B) is a Brunovsky canonical form in (5.115).

Chapter 6
 Dynamic Feedback Linearization

6.1 Introduction

In Chap. 4, we have studied feedback linearization of the following affine nonlinear system:

$$
\begin{equation*}
\dot{x}=f(x)+\sum_{i=1}^{m} u_{i} g_{i}(x), \quad x \in \mathbb{R}^{n} \tag{6.1}
\end{equation*}
$$

Some of the systems that cannot be linearized only by coordinate transformations can be linearized using feedback in addition to coordinate transformations. This chapter shows that more nonlinear systems can be linearized using the more general dynamic feedback than the static feedback used in Chap. 4. For example, consider system (4.80), which is not feedback linearizable, in Example 4.3.8.

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
x_{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{2}^{2} \\
0 \\
1
\end{array}\right] u_{2} \tag{6.2}\\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} .
\end{align*}
$$

Since span $\left\{g_{1}(x), g_{2}(x)\right\}$ is not involutive, system (6.2) is not (static) feedback linearizable. Consider the following linear dynamic compensation:

$$
\begin{gather*}
\dot{z}=w_{2}=A_{\mathbf{d}} z+B_{\mathbf{d}} w \\
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
z
\end{array}\right]=C_{\mathbf{d}} z+D_{\mathbf{d}} w} \tag{6.3}
\end{gather*}
$$

where z and w are the state and new input of the dynamic compensation, respectively. Then the extended system of system (6.2) with dynamic compensation (6.3) is as follows.

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{z}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}+x_{2}^{2} z \\
0 \\
z \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] w_{1}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] w_{2} \tag{6.4}\\
& =f_{E}(x, z)+g_{E 1}(x, z) w_{1}+g_{E 2}(x, z) w_{2}
\end{align*}
$$

Since $\quad \operatorname{span}\left\{g_{E 1}\left(x_{E}\right), g_{E 2}\left(x_{E}\right)\right\} \quad$ and $\quad \operatorname{span}\left\{g_{E 1}\left(x_{E}\right), g_{E 2}\left(x_{E}\right), \operatorname{ad}_{f_{E}} g_{E 1}\left(x_{E}\right)\right.$, $\left.\operatorname{ad}_{f_{E}} g_{E 2}\left(x_{E}\right)\right\}$ are involutive distributions, it is easy to see, by Theorem 4.3, that extended system (6.4) is feedback linearizable with state transformation $\xi=S_{E}(x, z)=\left[\begin{array}{lll}x_{1} & x_{2}+x_{2}^{2} z & x_{3} \\ z\end{array}\right]^{\top}$ and feedback

$$
\left[\begin{array}{l}
w_{1} \tag{6.5}\\
w_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{1+2 x_{2} z} & \frac{-x_{2}^{2}}{1+2 x_{2} z} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Extended system (6.4) satisfies, in the extended new states ξ, the following linear system:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{\xi}_{1} \\
\dot{\xi}_{2} \\
\dot{\xi}_{3} \\
\dot{\xi}_{4}
\end{array}\right] } & =\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3} \\
\xi_{4}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] v_{1}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] v_{2} \tag{6.6}\\
& =A_{E} \xi+b_{E 1} v_{1}+b_{E 2} v_{2}
\end{align*}
$$

In other words, system (6.2) can be linearized by extended state transformation $\xi=S_{E}(x, z)=\left[\begin{array}{lll}x_{1} & x_{2}+x_{2}^{2} z & x_{3}\end{array}\right]^{\top}$ and dynamic feedback

$$
\begin{align*}
\dot{z} & =v_{2} \tag{6.7a}\\
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
z
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{1+2 x_{2} z} & \frac{-x_{2}^{2}}{1+2 x_{2} z} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] . \tag{6.7b}
\end{align*}
$$

If we consider dynamic feedback

$$
\begin{align*}
\dot{z} & =a(x, z)+b(x, z) v, \tag{6.8a}\\
u & =c \in \mathbb{R}^{d} \tag{6.8b}\\
u(x, z)+d(x, z) v, & v \in \mathbb{R}^{m}
\end{align*}
$$

then the extended system of system (6.1) can be obtained as follows.

$$
\begin{align*}
\dot{x}_{E} & =\left[\begin{array}{c}
\dot{\dot{~}} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
f(x)+g(x) c(x, z) \\
a(x, z)
\end{array}\right]+\left[\begin{array}{c}
g(x) d(x, z) \\
b(x, z)
\end{array}\right] v \tag{6.9}\\
& =f_{E}\left(x_{E}\right)+g_{E}\left(x_{E}\right) v .
\end{align*}
$$

Fig. 6.1 Dynamic feedback linearization

Fig. 6.2 Restricted dynamic feedback

Definition 6.1 (dynamic feedback linearization) System (6.1) is said to be locally dynamic feedback linearizable, if there exist $z^{0} \in \mathbb{R}^{d}$, a neighborhood U_{z} of z^{0}, a neighborhood U_{x} of $0 \in \mathbb{R}^{n}$, a regular dynamic feedback (6.8), and an extended state transformation $\xi=S_{E}(x, z)=S_{E}\left(x_{E}\right): U_{x} \times U_{z} \rightarrow \mathbb{R}^{n+d}$ such that the extended system (6.9) satisfies, in the new extended state ξ,

$$
\dot{\xi}=A_{E} \xi+B_{E} v, \quad \xi \in \mathbb{R}^{n+d}
$$

where A_{E} and B_{E} are Brunovsky canonical form.
Block diagram for dynamic feedback linearization is given in Fig. 6.1. However, the conditions for dynamic feedback linearization problem are very complicated and necessary and sufficient conditions have not to be known. Some results on restricted dynamic feedback linearization have been reported and will be introduced in this chapter.

Definition 6.2 (restricted dynamic feedback) For system (6.1), restricted dynamic feedback with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ is defined by the following dynamic system:

$$
\begin{gather*}
\dot{z}=A_{\mathbf{d}} z+B_{\mathbf{d}} w \\
u=C_{\mathbf{d}} z+D_{\mathbf{d}} w \tag{6.10}\\
w=\alpha(x, z)+\beta(x, z) v \tag{6.11}
\end{gather*}
$$

where $\quad d \triangleq \sum_{i=1}^{m} d_{i}, \quad A_{\mathbf{d}}=\operatorname{diag}\left\{A_{1}, \ldots, A_{m}\right\}, \quad B_{\mathbf{d}}=\operatorname{diag}\left\{B_{1}, \ldots, B_{m}\right\}, \quad C_{\mathbf{d}}=$ $\operatorname{diag}\left\{C_{1}, \ldots, C_{m}\right\}, D_{\mathbf{d}}=\operatorname{diag}\left\{D_{1}, \ldots, D_{m}\right\}$, and $d_{i} \times d_{i}$ matrix $A_{i}, d_{i} \times 1$ matrix $B_{i}, 1 \times d_{i}$ matrix C_{i}, and 1×1 matrix D_{i} are defined by

$$
\begin{aligned}
& A_{i}=\left[\begin{array}{ll}
0 & I_{\left(d_{i}-1\right) \times\left(d_{i}-1\right)} \\
0 & O_{1 \times\left(d_{i}-1\right)}
\end{array}\right] ; \quad B_{i}=\left[\begin{array}{c}
O_{\left(d_{i}-1\right) \times 1} \\
1
\end{array}\right] \\
& C_{i}=\left\{\begin{array}{ll}
{\left[\begin{array}{ll}
1 & O_{1 \times\left(d_{i}-1\right)}
\end{array}\right],} & \text { if } d_{i} \geq 1 \\
O_{1 \times 0}, & \text { if } d_{i}=0
\end{array} ; \quad D_{i}= \begin{cases}0, & \text { if } d_{i} \geq 1 \\
1, & \text { if } d_{i}=0 .\end{cases} \right.
\end{aligned}
$$

Block diagram for restricted dynamic feedback is given in Fig. 6.2. For example, if $\mathbf{d}=(1,0,3)$, then

$$
\begin{aligned}
& \dot{z}=A_{\mathbf{d}} z+B_{\mathbf{d}} w=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] z+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] w \\
& u=C_{\mathbf{d}} z+D_{\mathbf{d}} w=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] z+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] w
\end{aligned}
$$

where $z \triangleq\left[\begin{array}{llll}z_{1}^{1} & z_{1}^{3} & z_{2}^{3} & z_{3}^{3}\end{array}\right]^{\top}, z^{1} \triangleq z_{1}^{1}, z^{3} \triangleq\left[\begin{array}{ccc}z_{1}^{3} & z_{2}^{3} & z_{3}^{3}\end{array}\right]^{\top}$, and $\dot{z}^{i}=A_{i} z^{i}+B_{i} w$, for $i=1,3$. Also, it is easy to see, by (6.10), that for $1 \leq i \leq m$,

$$
\begin{equation*}
u_{i}^{\left(d_{i}\right)}=w_{i} \tag{6.12}
\end{equation*}
$$

Definition 6.3 (restricted dynamic feedback linearization) System (6.1) is said to be locally restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$, if there exist $z^{0} \in \mathbb{R}^{d}$, a neighborhood U_{z} of z^{0}, a neighborhood U_{x} of $0 \in \mathbb{R}^{n}$, a restricted dynamic feedback with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$, and an extended state transformation $\xi=S_{E}(x, z)=S_{E}\left(x_{E}\right): U_{x} \times U_{z} \rightarrow \mathbb{R}^{n+d}$ such that the extended system satisfies, in the new extended state ξ,

$$
\begin{equation*}
\dot{\xi}=A_{E} \xi+B_{E} v, \quad \xi \in \mathbb{R}^{n+d} \tag{6.13}
\end{equation*}
$$

where A_{E} and B_{E} are Brunovsky canonical form.
In other words, restricted dynamic feedback linearization is to find a linear dynamic compensator (6.10) such that the extended system

Fig. 6.3 Restricted dynamic feedback linearization

$$
\begin{aligned}
\dot{x}_{E} & =\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
f(x)+g(x) C_{\mathbf{d}} z \\
A_{\mathbf{d}} z
\end{array}\right]+\left[\begin{array}{c}
g(x) D_{\mathbf{d}} \\
B_{\mathbf{d}}
\end{array}\right] w \\
& =F\left(x_{E}\right)+G\left(x_{E}\right) w
\end{aligned}
$$

is locally (static) feedback linearizable on a neighborhood $U_{E}\left(=U_{x} \times U_{z}\right)$ of $(x, z)=\left(0, z^{0}\right) \in \mathbb{R}^{n+d}$.

Block diagram for restricted dynamic feedback linearization is given in Fig. 6.3. Restricted dynamic feedback is composed of two parts, linear dynamic compensator (6.10) and extended state feedback (6.11). For this reason, restricted dynamic feedback linearization is sometimes called linearization by pure integrators followed by static feedback.

6.2 Preliminary

Suppose that system (6.1) is said to be restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$. Then extended system of system (6.1) with linear dynamic compensator (6.10)

$$
\begin{align*}
\dot{x}_{E} & =\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
f(x)+g(x) C_{\mathbf{d}} z \\
A_{\mathbf{d}} z
\end{array}\right]+\left[\begin{array}{c}
g(x) D_{\mathbf{d}} \\
B_{\mathbf{d}}
\end{array}\right] w \tag{6.14}\\
& =F\left(x_{E}\right)+G\left(x_{E}\right) w
\end{align*}
$$

is (static) feedback linearizable on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. If we let $d \triangleq \sum_{j=1}^{m} d_{j}$ and for $1 \leq j \leq m$,

$$
\begin{gathered}
z=\left[\begin{array}{c}
z^{1} \\
\vdots \\
z^{m}
\end{array}\right], \quad z^{j}=\left[\begin{array}{c}
z_{1}^{j} \\
\vdots \\
z_{d_{j}}^{j}
\end{array}\right], \quad \bar{A}_{\mathbf{d}} \triangleq\left[\begin{array}{c}
O_{n \times d} \\
A_{\mathbf{d}}
\end{array}\right] \\
\bar{f}\left(x_{E}\right) \triangleq\left[\begin{array}{c}
f(x) \\
O_{d \times 1}
\end{array}\right]=\sum_{k=1}^{n} f_{k}(x) \frac{\partial}{\partial x_{k}} \\
\bar{g}_{j}\left(x_{E}\right) \triangleq\left[\begin{array}{c}
g_{j}(x) \\
O_{d \times 1}
\end{array}\right]=\sum_{k=1}^{n} g_{j, k}(x) \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

then it is easy to see that

$$
\begin{aligned}
F\left(x_{E}\right) & =\bar{f}(x, z)+\sum_{\substack{j=1 \\
d_{j} \geq 1}}^{m} z_{1}^{j} \bar{g}_{j}(x, z)+\bar{A}_{\mathbf{d}} z \\
G_{j}\left(x_{E}\right) & = \begin{cases}\bar{g}_{j}\left(x_{E}\right), & \text { if } d_{j}=0 \\
\frac{\partial}{\partial z_{d_{j}}^{j}}, & \text { if } d_{j} \geq 1\end{cases}
\end{aligned}
$$

For example, if $\mathbf{d}=(0,2), \quad z=\left[\begin{array}{l}z_{1}^{2} \\ z_{2}^{2}\end{array}\right], \quad G_{1}\left(x_{E}\right)=\bar{g}_{1}(x, z), \quad G_{2}\left(x_{E}\right)=\frac{\partial}{\partial z_{2}^{2}}$, and $F\left(x_{E}\right)=\bar{f}(x, z)+z_{1}^{2} \bar{g}_{2}(x, z)+z_{2}^{2} \frac{\partial}{\partial z_{1}^{2}}=\left[\begin{array}{c}f(x)+z_{1}^{2} g_{2}(x) \\ z_{2}^{2} \\ 0\end{array}\right]$. For extended system (6.14), let for $i \geq 0$,

$$
\begin{equation*}
D_{i}\left(x_{E}\right) \triangleq \operatorname{span}\left\{\operatorname{ad}_{F\left(x_{E}\right)}^{k} G_{j}\left(x_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\} \tag{6.15}
\end{equation*}
$$

Then, by Theorem 4.3, the following two conditions are satisfied:
(i) $\operatorname{dim}\left(D_{n+d-1}\left(0, z^{0}\right)\right)=n+d$
(ii) $D_{i}\left(x_{E}\right), i \geq 0$ are involutive distributions on U_{E}.

Also, define distributions $Q_{i}\left(x_{E}\right), i \geq 0$ by

$$
\begin{gather*}
Q_{0}\left(x_{E}\right) \triangleq \operatorname{span}\left\{\bar{g}_{j}\left(x_{E}\right) \mid d_{j}=0\right\} \\
Q_{i}\left(x_{E}\right) \triangleq Q_{i-1}\left(x_{E}\right)+\operatorname{ad}_{F} Q_{i-1}\left(x_{E}\right)+\operatorname{span}\left\{\bar{g}_{j}\left(x_{E}\right) \mid 1 \leq j \leq m, d_{j}=i\right\} \\
=\operatorname{span}\left\{\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i-d_{j}\right\} \tag{6.16}
\end{gather*}
$$

Example 6.2.1 Show the followings:
(a) for $1 \leq j \leq m$ and $k \geq 0$,

$$
\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)= \begin{cases}(-1)^{k} \frac{\partial}{\partial z_{d j-k}^{j}}, & \text { if } 0 \leq k<d_{j} \tag{6.17}\\ (-1)^{d_{j}} \operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right), & \text { if } k \geq d_{j}\end{cases}
$$

(b) for $i \geq 0$,

$$
\begin{equation*}
D_{i}\left(x_{E}\right)=Q_{i}\left(x_{E}\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{k}^{j}} \right\rvert\, 1 \leq j \leq m, d_{j} \geq 1, d_{j}-i \leq k \leq d_{j}\right\} \tag{6.18}
\end{equation*}
$$

(c)

$$
\begin{equation*}
Q_{i}\left(x_{E}\right) \subset \operatorname{span}\left\{\left.\frac{\partial}{\partial x_{k}} \right\rvert\, 1 \leq k \leq n\right\} . \tag{6.19}
\end{equation*}
$$

Solution Omitted. (See Problem 6-1.)
Example 6.2.2 Show the followings:
(a) For $1 \leq i \leq m$ and $p \geq 1$,

$$
\begin{equation*}
\operatorname{ad}_{F}^{p} \bar{g}_{i}\left(x_{E}\right)=X_{p}^{i}\left(x, \mathbf{z}_{p-1}\right)+\sum_{\substack{j=1 \\ d_{j} \geq p}}^{m} z_{p}^{j} \operatorname{ad}_{\bar{g}_{j}} \bar{g}_{i}\left(x_{E}\right) \tag{6.20}
\end{equation*}
$$

where $X_{1}^{i}(x) \triangleq \operatorname{ad}_{\bar{f}} \bar{g}_{i}\left(x_{E}\right)$,

$$
\mathbf{z}_{p} \triangleq\left\{z_{k}^{j} \mid 1 \leq j \leq m, 1 \leq k \leq \min \left(p, d_{j}\right)\right\}
$$

and for $p \geq 1$,

$$
X_{p+1}^{i}\left(x, \mathbf{z}_{p}\right) \triangleq \operatorname{ad}_{F} X_{p}^{i}\left(x, \mathbf{z}_{p-1}\right)+\sum_{d_{j} \geq p} z_{p}^{j} \operatorname{ad}_{F} \operatorname{ad}_{\bar{g}_{j}} \bar{g}_{i}\left(x_{E}\right)
$$

(b) For $1 \leq i \leq m, 1 \leq j \leq m, p \geq 1$, and $p+1 \leq k \leq d_{j}$,

$$
\begin{equation*}
\left[\frac{\partial}{\partial z_{k}^{j}}, \operatorname{ad}_{F}^{p} \bar{g}_{i}\left(x_{E}\right)\right]=0 \tag{6.21}
\end{equation*}
$$

(c) For $1 \leq j \leq m, i \geq 0$, and $k \geq i+1$,

$$
\begin{equation*}
\left[\frac{\partial}{\partial z_{k}^{j}}, Q_{i}\left(x_{E}\right)\right] \subset Q_{i}\left(x_{E}\right) \tag{6.22}
\end{equation*}
$$

Solution It is clear that (6.20) is satisfied when $p=1$. Since

$$
L_{F} z_{p}^{j}= \begin{cases}z_{p+1}^{j}, & \text { if } p \leq d_{j}-1 \\ 0, & \text { if } p=d_{j}\end{cases}
$$

it is easy to see that for $p \geq 1$,

$$
\begin{aligned}
\operatorname{ad}_{F}^{p+1} \bar{g}_{i} & =\operatorname{ad}_{F} X_{p}^{i}+\sum_{d_{j} \geq p} \operatorname{ad}_{F}\left(z_{p}^{j} \operatorname{ad}_{\bar{g}_{j}} \bar{g}_{i}\right) \\
& =\operatorname{ad}_{F} X_{p}^{i}+\sum_{d_{j} \geq p} z_{p}^{j} \operatorname{ad}_{F} \operatorname{ad}_{\bar{g}_{j}} \bar{g}_{i}+\sum_{d_{j} \geq p} L_{F}\left(z_{p}^{j}\right) \operatorname{ad}_{\bar{g}_{j}} \bar{g}_{i} \\
& =X_{p+1}^{i}\left(x, \mathbf{z}_{p}\right)+\sum_{d_{j} \geq p+1} z_{p+1}^{j} \operatorname{ad}_{\bar{g}_{j}} \bar{g}_{i}
\end{aligned}
$$

which implies that (6.20) is satisfied. Since $\operatorname{ad}_{F}^{p} \bar{g}_{i}$ is a function of x and $\mathbf{z}_{p}\left(=\left\{z_{k}^{j} \mid 1 \leq j \leq m, k \leq \min \left(p, d_{j}\right)\right\}\right)$ only by (6.20), it is easy to see, by (6.16), that (6.21) and (6.22) are satisfied.

Example 6.2.3 Use (6.18) and (6.19) to show that if $D_{i}\left(x_{E}\right), i \geq 0$ are involutive distributions on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$, then the following two conditions are satisfied:
(a) $Q_{i}\left(x_{E}\right), i \geq 0$ are involutive distributions on U_{E}.
(b) For $1 \leq j \leq m, d_{j} \geq 1$, and $d_{j}-i \leq k \leq d_{j}$,

$$
\begin{equation*}
\left[\frac{\partial}{\partial z_{k}^{j}}, Q_{i}\left(x_{E}\right)\right] \subset Q_{i}\left(x_{E}\right) \tag{6.23}
\end{equation*}
$$

Also, show that the converse is true.

Solution Obvious. (Refer to Problem 6-2.)

Lemma 6.1 Suppose that $\sigma \geq 0, \bar{g}_{j}\left(x_{E}\right) \in Q_{\sigma}\left(x_{E}\right)$, and

$$
\begin{equation*}
Q_{\sigma}\left(x_{E}\right)=Q_{\sigma+1}\left(x_{E}\right) \tag{6.24}
\end{equation*}
$$

Then the followings are satisfied:
(i) for $k \geq 1$,

$$
\begin{equation*}
\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right) \in Q_{\sigma}\left(x_{E}\right) \tag{6.25}
\end{equation*}
$$

(ii) for $1 \leq j \leq m, d_{j} \geq \sigma$ and $1 \leq k \leq d_{j}$,

$$
\begin{equation*}
\left[\frac{\partial}{\partial z_{k}^{j}}, Q_{\sigma}\left(x_{E}\right)\right] \subset Q_{\sigma}\left(x_{E}\right) \tag{6.26}
\end{equation*}
$$

Proof Assume that that (6.25) is satisfied for $k=s$ and $s \geq 0$. Then we have that

$$
\operatorname{ad}_{F}^{s+1} \bar{g}_{j}\left(x_{E}\right) \in\left[F\left(x_{E}\right), Q_{\sigma}\left(x_{E}\right)\right] \subset Q_{\sigma+1}\left(x_{E}\right)=Q_{\sigma}\left(x_{E}\right)
$$

which implies that (6.25) is also satisfied for $k=s+1$. Hence, by mathematical induction, (6.25) is satisfied. It is clear, by (6.22) and (6.24), that (6.26) is satisfied for $\sigma \leq k \leq d_{j}$. Suppose that $2 \leq s \leq \sigma$ and (6.26) is satisfied for $s \leq k \leq d_{j}$. In other words,

$$
\begin{equation*}
\left[\frac{\partial}{\partial z_{s}^{j}}, Q_{\sigma}\left(x_{E}\right)\right] \subset Q_{\sigma}\left(x_{E}\right) . \tag{6.27}
\end{equation*}
$$

Since $\left[F\left(x_{E}\right), Q_{\sigma}\left(x_{E}\right)\right] \subset Q_{\sigma+1}\left(x_{E}\right)=Q_{\sigma}\left(x_{E}\right)$ by (6.16), we have, by Jacobi identity (2.18) and (6.27), that for any vector field $\tau\left(x_{E}\right) \in Q_{\sigma}\left(x_{E}\right)$,

$$
\begin{aligned}
{\left[\frac{\partial}{\partial z_{s-1}^{j}}, \tau\right] } & =-\left[\left[F, \frac{\partial}{\partial z_{s}^{j}}\right], \tau\right]=\left[\left[\frac{\partial}{\partial z_{s}^{j}}, \tau\right], F\right]+\left[[\tau, F], \frac{\partial}{\partial z_{s}^{j}}\right] \\
& =-\left[F,\left[\frac{\partial}{\partial z_{s}^{j}}, \tau\right]\right]+\left[\frac{\partial}{\partial z_{s}^{j}},[F, \tau]\right] \\
& \in\left[F, Q_{\sigma}\right]+\left[\frac{\partial}{\partial z_{s}^{j}}, Q_{\sigma}\right] \subset Q_{\sigma}\left(x_{E}\right)
\end{aligned}
$$

which implies that (6.26) is also satisfied for $k=s-1$. Hence, by mathematical induction, (6.26) is satisfied.

6.3 Restricted Dynamic Feedback Linearization

In this section, we derive the conditions of the restricted dynamic feedback linearization using the basic relations in the previous section and obtain the necessary and sufficient conditions that can be easily checked by using them.

Let $\mathbf{I} \subset\{1,2, \ldots, m\}, \overline{\mathbf{I}}=\{1,2, \ldots, m\}-\mathbf{I}$, and

$$
\tilde{d}_{i}= \begin{cases}d_{i}, & i \in \mathbf{I} \\ d_{i}-1, & i \in \overline{\mathbf{I}}\end{cases}
$$

In other words,

$$
\mathbf{I} \triangleq\left\{i \mid 1 \leq i \leq m, d_{i}=\tilde{d}_{i}\right\} \text { and } \overline{\mathbf{I}} \triangleq\left\{i \mid 1 \leq i \leq m, d_{i}>\tilde{d}_{i}\right\}
$$

Let us denote the extended system of system (6.1) with linear dynamic compensator (6.10) with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$ by

$$
\begin{align*}
\dot{\tilde{x}}_{E} & =\left[\begin{array}{c}
\dot{x} \\
\dot{\tilde{z}}
\end{array}\right]=\left[\begin{array}{c}
f(x)+g(x) C_{\tilde{\mathbf{d}}} \tilde{z} \\
A_{\tilde{\mathbf{d}}} \tilde{z}
\end{array}\right]+\left[\begin{array}{c}
g(x) D_{\tilde{\mathbf{d}}} \\
B_{\tilde{\mathbf{d}}}
\end{array}\right] w \tag{6.28}\\
& =\tilde{F}\left(\tilde{x}_{E}\right)+\tilde{G}\left(\tilde{x}_{E}\right) w
\end{align*}
$$

where for $1 \leq j \leq m$,

$$
\tilde{z}=\left[\begin{array}{c}
\tilde{z}^{1} \\
\vdots \\
\tilde{z}^{m}
\end{array}\right] \text { and } \tilde{z}^{j}=\left[\begin{array}{c}
\tilde{z}_{1}^{j} \\
\vdots \\
\tilde{z}_{\tilde{d}_{j}}^{j}
\end{array}\right]
$$

If we let $\tilde{d} \triangleq \sum_{j=1}^{m} \tilde{d}_{j}$ and for $1 \leq j \leq m$,

$$
\begin{aligned}
& \tilde{f}\left(\tilde{x}_{E}\right) \triangleq\left[\begin{array}{c}
f(x) \\
O_{\tilde{d} \times 1}
\end{array}\right]=\sum_{k=1}^{n} f_{k}(x) \frac{\partial}{\partial x_{k}} \\
& \tilde{g}_{j}\left(\tilde{x}_{E}\right) \triangleq\left[\begin{array}{c}
g_{j}(x) \\
O_{\tilde{d} \times 1}
\end{array}\right] ; \quad \bar{A}_{\tilde{\mathbf{d}}} \triangleq\left[\begin{array}{c}
O_{n \times \tilde{d}} \\
A_{\tilde{\mathbf{d}}}
\end{array}\right]
\end{aligned}
$$

then it is easy to see that

$$
\begin{aligned}
& \tilde{F}\left(\tilde{x}_{E}\right)=\tilde{f}(x, \tilde{z})+\sum_{d_{j} \geq 1} \tilde{z}_{1}^{j} \tilde{g}_{j}(x, \tilde{z})+\bar{A}_{\tilde{\mathbf{d}}} \tilde{z} \\
& \tilde{G}_{j}\left(\tilde{x}_{E}\right)= \begin{cases}\tilde{g}_{j}\left(\tilde{x}_{E}\right), & \text { if } \tilde{d}_{j}=0 \\
\frac{\partial}{\partial \tilde{z}_{d_{j}}^{j}}, & \text { if } \tilde{d}_{j} \geq 1\end{cases}
\end{aligned}
$$

and for $i \geq 0$,

$$
\begin{equation*}
\tilde{D}_{i}=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{\ell} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid 1 \leq j \leq m, 0 \leq \ell \leq i\right\} . \tag{6.29}
\end{equation*}
$$

Let $\left[\begin{array}{l}x \\ \tilde{z}\end{array}\right]=\pi(x, z)$ and $\left[\begin{array}{c}0 \\ \tilde{z}^{0}\end{array}\right]=\pi\left(0, z^{0}\right)$, where canonical projection map $\pi: \mathbb{R}^{n+d} \rightarrow \mathbb{R}^{n+\tilde{d}}$ is defined by

$$
\pi\left(x, z_{1}^{1}, \ldots, z_{d_{1}}^{1}, \ldots, z_{1}^{m}, \ldots, z_{d_{m}}^{m}\right)=\left(x, z_{1}^{1}, \ldots, z_{\tilde{d}_{1}}^{1}, \ldots, z_{1}^{m}, \ldots, z_{\tilde{d}_{m}}^{m}\right)
$$

In other words,

$$
\begin{aligned}
& \pi_{*}\left(\frac{\partial}{\partial x_{k}}\right)=\frac{\partial}{\partial x_{k}}, 1 \leq k \leq n \\
& \pi_{*}\left(\frac{\partial}{\partial z_{\ell}^{j}}\right)=\frac{\partial}{\partial \tilde{z}_{\ell}^{j}}, 1 \leq j \leq m, 1 \leq \ell \leq \tilde{d}_{j} \\
& \pi_{*}\left(\frac{\partial}{\partial z_{d_{j}}^{j}}\right)=0, j \in \overline{\mathbf{I}}
\end{aligned}
$$

and

$$
\begin{equation*}
\operatorname{ker}\left(\pi_{*}\right)=\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{d_{j}}^{j}} \right\rvert\, j \in \overline{\mathbf{I}}\right\} . \tag{6.30}
\end{equation*}
$$

Let $\bar{z} \triangleq\left\{z_{d_{\ell}}^{\ell} \mid \ell \in \overline{\mathbf{I}}\right\}$.
Lemma 6.2 Suppose that extended system (6.14) is (static) feedback linearizable on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. Then the followings are satisfied:
(i) $\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right), 1 \leq j \leq m, k \geq 0$ are well-defined vector fields on a neighborhood $\tilde{U}_{E}\left(=\pi\left(U_{E}\right)\right)$ of $(x, \tilde{z})=\left(0, \tilde{z}^{0}\right)\left(=\pi\left(0, z^{0}\right)\right)$. In other words, for $j \in \mathbf{I}$ and $k \geq 0$,

$$
\begin{equation*}
\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right)=\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \tag{6.31}
\end{equation*}
$$

and for $j \in \overline{\mathbf{I}}$,

$$
\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right)= \begin{cases}0, & \text { if } k=0 \tag{6.32}\\ -\operatorname{ad}_{\tilde{F}}^{k-1} \tilde{G}_{j}\left(\tilde{x}_{E}\right), & \text { if } k \geq 1\end{cases}
$$

(ii) $\pi_{*}\left(D_{i}\left(x_{E}\right)\right), i \geq 0$ are well-defined involutive distributions on a neighbor$\operatorname{hood} \tilde{U}_{E}\left(=\pi\left(U_{E}\right)\right)$ of $(x, \tilde{z})=\left(0, \tilde{z}^{0}\right)\left(=\pi\left(0, z^{0}\right)\right)$. In other words, for $i \geq 0$,

$$
\begin{align*}
& \pi_{*}\left(D_{i}\left(x_{E}\right)\right)=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i\right\} \\
& \\
& \quad+\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq i-1\right\} \tag{6.33}\\
& = \\
& \quad \pi_{*}\left(Q_{i}\left(x_{E}\right)\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\ell}^{j}} \right\rvert\, j \in \mathbf{I}, \tilde{d}_{j}-i \leq \ell \leq \tilde{d}_{j}\right\} \\
& \quad+\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\ell}^{j}} \right\rvert\, j \in \overline{\mathbf{I}}, \tilde{d}_{j}+1-i \leq \ell \leq \tilde{d}_{j}\right\}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(\pi_{*}\left(D_{n+d-1}\left(0, z^{0}\right)\right)\right)=n+\tilde{d} \tag{6.34}
\end{equation*}
$$

(iii) $\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right), 1 \leq j \leq m, k \geq 0$ are well-defined vector fields on \tilde{U}_{E} and for $1 \leq j \leq m$ and $k \geq 0$,

$$
\begin{equation*}
\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right)=\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \tag{6.35}
\end{equation*}
$$

(iv) $\pi_{*}\left(Q_{i}\left(x_{E}\right)\right), i \geq 0$ are well-defined involutive distributions on a neighborhood $\tilde{U}_{E}\left(=\pi\left(U_{E}\right)\right)$ and for $i \geq 0$,

$$
\begin{align*}
\pi_{*}\left(Q_{i}\left(x_{E}\right)\right)= & \operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i-\tilde{d}_{j}\right\} \\
& +\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq i-1-\tilde{d}_{j}\right\} \tag{6.36}
\end{align*}
$$

Proof Suppose that extended system (6.14) is (static) feedback linearizable on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. Thus, by Theorem 4.3, we have that
(a) $\operatorname{dim}\left(D_{n+d-1}\left(0, z^{0}\right)\right)=n+d$
(b) $D_{i}\left(x_{E}\right), i \geq 0$ are involutive distributions on U_{E}
where for $i \geq 0$,

$$
\begin{align*}
& D_{i}\left(x_{E}\right)=\operatorname{span}\left\{\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\} \\
& \quad=Q_{i}\left(x_{E}\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{k}^{j}} \right\rvert\, 1 \leq j \leq m, d_{j} \geq 1, d_{j}-i \leq k \leq d_{j}\right\} \tag{6.37}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{i}\left(x_{E}\right)=\operatorname{span}\left\{\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i-d_{j}\right\} \tag{6.38}
\end{equation*}
$$

Since $\operatorname{ker}\left(\pi_{*}\right) \subset D_{0}\left(x_{E}\right) \subset D_{i}\left(x_{E}\right)$ by (6.17), (6.30) and (6.37) and distributions $D_{i}\left(x_{E}\right), i \geq 0$ are involutive on U_{E}, it is clear that distributions $\operatorname{ker}\left(\pi_{*}\right)+D_{i}\left(x_{E}\right)(=$ $\left.D_{i}\left(x_{E}\right)\right), i \geq 0$ are involutive on U_{E}. Therefore, $\pi_{*}\left(D_{i}\left(x_{E}\right)\right), i \geq 0$ are, by Theorem 2.10, well-defined involutive distributions on $\tilde{U}_{E}\left(=\pi_{*}\left(U_{E}\right)\right)$. In other words, we have, by Definition 2.19 and (6.37), that for $i \geq 0$,

$$
\begin{align*}
& \pi_{*}\left(D_{i}\left(x_{E}\right)\right)=\pi_{*}\left(D_{i}\left(\left.x_{E}\right|_{\bar{z}=0}\right)\right) \\
& \quad=\operatorname{span}\left\{\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\} . \tag{6.39}
\end{align*}
$$

Since for $1 \leq j \leq m, k \geq 0$, and $i \in \overline{\mathbf{I}}$,

$$
\left[\frac{\partial}{\partial z_{d_{i}}^{i}},\left.\quad \operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right]=0
$$

it is clear, by Theorem 2.6, that $\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right), 1 \leq j \leq m, k \geq 0$ are welldefined vector fields on \tilde{U}_{E}. It is easy to see, by (6.17) and mathematical induction, that for $j \in \mathbf{I}$ and $0 \leq k \leq d_{j}$,

$$
\begin{aligned}
\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\tilde{z}=0}\right) & = \begin{cases}(-1)^{k} \pi_{*}\left(\frac{\partial}{\partial z_{d_{j}-k}^{j}}\right), & \text { if } 0 \leq k<d_{j} \\
(-1)^{d_{j}} \pi_{*}\left(\bar{g}_{j}\left(x_{E}\right)\right), & \text { if } k=d_{j}\end{cases} \\
& =\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right)
\end{aligned}
$$

and for $j \in \mathbf{I}$ and $k \geq d_{j}$,

$$
\begin{aligned}
\pi_{*} & \left(\left.\operatorname{ad}_{F}^{k+1} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right) \\
= & \left.(-1)^{d_{j}} \frac{\partial \pi\left(x_{E}\right)}{\partial x_{E}}\left(\frac{\partial \operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right)}{\partial x_{E}} F\left(x_{E}\right)-\frac{\partial F\left(x_{E}\right)}{\partial x_{E}} \operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right)\right)\right|_{\bar{z}=0} \\
= & \left.(-1)^{d_{j}} \frac{\partial \pi\left(x_{E}\right)}{\partial x_{E}} \frac{\partial \operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right)}{\partial \tilde{x}_{E}}\right|_{\bar{z}=0} \tilde{F}\left(\tilde{x}_{E}\right) \\
& -\left.(-1)^{d_{j}} \frac{\partial \pi\left(x_{E}\right)}{\partial x_{E}} \frac{\partial F\left(\left.x_{E}\right|_{\bar{z}=0}\right)}{\partial x} \frac{\partial x}{\partial x_{E}} \operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0} \\
= & \frac{\partial \pi_{*}\left(\left.\operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right)}{\partial \tilde{x}_{E}} \tilde{F}\left(\tilde{x}_{E}\right)-\frac{\partial \tilde{F}\left(x_{E}\right)}{\partial \tilde{x}_{E}} \pi_{*}\left(\left.\operatorname{ad}_{F}^{k-d_{j}} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right) \\
= & \frac{\partial \operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right)}{\partial \tilde{x}_{E}} \tilde{F}\left(\tilde{x}_{E}\right)-\frac{\partial \tilde{F}\left(x_{E}\right)}{\partial \tilde{x}_{E}} \operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right)=\operatorname{ad}_{\tilde{F}}^{k+1} \tilde{G}_{j}\left(\tilde{x}_{E}\right)
\end{aligned}
$$

which imply that (6.31) is satisfied. Similarly, it can be shown, by (6.17) and mathematical induction, that for $j \in \overline{\mathbf{I}}$ and $0 \leq k \leq d_{j}$,

$$
\begin{aligned}
\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} G_{j}\left(x_{E}\right)\right|_{\tilde{z}=0}\right) & = \begin{cases}\pi_{*}\left(\frac{\partial}{\partial z_{d_{j}}^{j}}\right), & \text { if } k=0 \\
(-1)^{k} \pi_{*}\left(\frac{\partial}{\partial z i_{d_{j}-k}^{j}}\right), & \text { if } 1 \leq k<d_{j} \\
(-1)^{d_{j}} \pi_{*}\left(\bar{g}_{j}\left(x_{E}\right)\right), & \text { if } k=d_{j}\end{cases} \\
& = \begin{cases}0, & \text { if } k=0 \\
-\operatorname{ad}_{\tilde{F}}^{k-1} \tilde{G}_{j}\left(\tilde{x}_{E}\right), & \text { if } 1 \leq k \leq d_{j}\end{cases}
\end{aligned}
$$

and for $j \in \overline{\mathbf{I}}$ and $k \geq d_{j}$,

$$
\pi_{*}\left(\left.\operatorname{ad}_{F}^{k+1} G_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right)=-\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right)
$$

which imply that (6.32) is satisfied. Therefore, we have, by (6.31), (6.32), and (6.39), that for $i \geq 0$,

$$
\begin{aligned}
\pi_{*}\left(D_{i}\left(x_{E}\right)\right)= & \operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i\right\} \\
& +\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq i-1\right\} \\
= & \pi_{*}\left(Q_{i}\left(x_{E}\right)\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\ell}^{j}} \right\rvert\, j \in \mathbf{I}, \tilde{d}_{j}-i \leq \ell \leq \tilde{d}_{j}\right\} \\
& +\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\ell}^{j}} \right\rvert\, j \in \overline{\mathbf{I}}, \tilde{d}_{j}+1-i \leq \ell \leq \tilde{d}_{j}\right\}
\end{aligned}
$$

Also, it is clear that

$$
\operatorname{dim}\left(\pi_{*}\left(D_{n+d-1}\left(0, z^{0}\right)\right)\right)=n+d-\operatorname{dim}\left(\operatorname{ker}\left(\pi_{*}\right)\right)=n+\tilde{d}
$$

Since for $1 \leq j \leq m, k \geq 0$, and $i \in \overline{\mathbf{I}}$,

$$
\left[\frac{\partial}{\partial z_{d_{i}}^{i}},\left.\quad \operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right]=0
$$

it is clear, by Theorem 2.6, that $\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right), 1 \leq j \leq m, k \geq 0$ are welldefined vector fields on \tilde{U}_{E}. It is easy to see, by (6.17), (6.31), and (6.32), that for $1 \leq j \leq m$ and $k \geq 0$,

$$
\begin{aligned}
& \pi_{*}\left(\left.\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right)\right|_{\tilde{z}=0}\right)=(-1)^{d_{j}} \pi_{*}\left(\left.\operatorname{ad}_{F}^{k+d_{j}} G_{j}\left(x_{E}\right)\right|_{\tilde{z}=0}\right) \\
& \\
& \quad=\left\{\begin{array}{ll}
(-1)^{d_{j}} \operatorname{ad}_{\tilde{F}}^{k+d_{j}} \tilde{G}_{j}\left(\tilde{x}_{E}\right), & j \in \mathbf{I} \\
(-1)^{d_{j}-1} \operatorname{ad}_{\tilde{F}}^{k+\tilde{d}_{j}} \tilde{G}_{j}\left(\tilde{x}_{E}\right), & j \in \overline{\mathbf{I}}
\end{array}= \begin{cases}\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right), & j \in \mathbf{I} \\
\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right), & j \in \overline{\mathbf{I}}\end{cases} \right. \\
& \quad=\operatorname{ad} \tilde{\tilde{F}}_{k}^{\bar{g}_{j}\left(\tilde{x}_{E}\right)}
\end{aligned}
$$

which imply that (6.35) is satisfied. Since $\operatorname{ker}\left(\pi_{*}\right)$ and $D_{i}\left(x_{E}\right), i \geq 0$ are involutive distributions on U_{E}, it is clear, by Example 6.2.3, that distributions $\operatorname{ker}\left(\pi_{*}\right)+Q_{i}\left(x_{E}\right)$, $i \geq 0$ are involutive on U_{E}. Therefore, $\pi_{*}\left(Q_{i}\left(x_{E}\right)\right), i \geq 0$ are, by Theorem 2.10, well-defined involutive distributions on $\tilde{U}_{E}\left(=\pi_{*}\left(U_{E}\right)\right)$. In other words, we have, by Definition 2.19, (6.35), and (6.38), that for $i \geq 0$,

$$
\begin{aligned}
\pi_{*} & \left(Q_{i}\left(x_{E}\right)\right)=\pi_{*}\left(Q_{i}\left(\left.x_{E}\right|_{\bar{z}=0}\right)\right) \\
& =\operatorname{span}\left\{\pi_{*}\left(\left.\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right)\right|_{\bar{z}=0}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i-d_{j}\right\} \\
& =\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i-d_{j}\right\}
\end{aligned}
$$

which implies that (6.36) is satisfied.
Theorem 6.1 If system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ and $d_{i} \geq 1$ for $1 \leq i \leq m$, then system (6.1) is also restricted dynamic feedback linearizable with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$, where $\tilde{d}_{i}=d_{i}-1$ for $1 \leq i \leq m$.

Proof Suppose that system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ and $d_{i} \geq 1$ for $1 \leq i \leq m$. Then extended system (6.14) is (static) feedback linearizable on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. We need to show that extended system (6.28) with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$ is (static) feedback linearizable on a neighborhood \tilde{U}_{E} of $(x, \tilde{z})=\left(0, \tilde{z}^{0}\right)$. In other words, we need to show, by Theorem 4.3, that
(a) $\operatorname{dim}\left(\tilde{D}_{n+d-2}\left(0, \tilde{z}^{0}\right)\right)=n+\tilde{d}$
(b) $\tilde{D}_{i}\left(\tilde{x}_{E}\right), i \geq 0$ are involutive distributions on \tilde{U}_{E}
where for $i \geq 0$,

$$
\begin{equation*}
\tilde{D}_{i}\left(\tilde{x}_{E}\right)=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\} . \tag{6.40}
\end{equation*}
$$

Let $\left[\begin{array}{l}x \\ \tilde{z}\end{array}\right]=\pi(x, z)$ and $\left[\begin{array}{c}0 \\ \tilde{z}^{0}\end{array}\right]=\pi\left(0, z^{0}\right)$, where canonical projection map $\pi: \mathbb{R}^{n+d} \rightarrow \mathbb{R}^{n+\tilde{d}}$ is defined by

$$
\pi\left(x, z_{1}^{1}, \ldots, z_{d_{1}}^{1}, \ldots, z_{1}^{m}, \ldots, z_{d_{m}}^{m}\right)=\left(x, z_{1}^{1}, \ldots, z_{d_{1}-1}^{1}, \ldots, z_{1}^{m}, \ldots, z_{d_{m}-1}^{m}\right) .
$$

In other words, let

$$
\mathbf{I}=\phi \text { and } \overline{\mathbf{I}}=\{1,2, \ldots, m\}
$$

Then, it is clear, by (6.33), that for $i \geq 0$,

$$
\begin{equation*}
\tilde{D}_{i}\left(\tilde{x}_{E}\right)=\pi_{*}\left(D_{i+1}\left(x_{E}\right)\right) \tag{6.41}
\end{equation*}
$$

Therefore, by Lemma 6.2, $\tilde{D}_{i}\left(\tilde{x}_{E}\right), i \geq 0$ are involutive distributions on $\tilde{U}_{E}(=$ $\left.\pi_{*}\left(U_{E}\right)\right)$ and

$$
\operatorname{dim}\left(\tilde{D}_{n+d-2}\left(0, \tilde{z}^{0}\right)\right)=\operatorname{dim}\left(\pi_{*}\left(D_{n+d-1}\left(0, z^{0}\right)\right)\right)=n+\tilde{d}
$$

Hence, system (6.1) is also restricted dynamic feedback linearizable with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$.

It can be easily shown that the converse of Theorem 6.1 also holds. (See Problem 63.) The following results can be obtained by repeated use of Theorem 6.1.

Corollary 6.1 If the system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$, then the system (6.1) is also restricted dynamic feedback linearizable with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$, where

$$
\begin{equation*}
\tilde{d}_{i}=d_{i}-d_{\min } \text { and } d_{\min }=\min \left\{d_{1}, \ldots, d_{m}\right\} \tag{6.42}
\end{equation*}
$$

If system (6.1) is restricted dynamic feedback linearizable, then it is linearizable without a pure integrator for at least one of the input channels (i.e., $d_{\min }=0$). Thus, we have the following interesting results.

Corollary 6.2 If single input system (6.1) (with $m=1$) is restricted dynamic feedback linearizable, then system (6.1) is static feedback linearizable. It is obvious that the converse also holds.

In other words, dynamic feedback linearization is meaningful only for multi-input nonlinear systems. Without loss of generality, we can assume that

$$
0=d_{1} \leq d_{2} \leq \cdots \leq d_{m}
$$

and $\left\{g_{1}(0), g_{2}(0), \ldots, g_{m}(0)\right\}$ are linearly independent. Now we will find the upper limit of indices $d_{i}, i \geq 2$. In other words, it will be shown that, if system (6.1) is restricted dynamic feedback linearizable, then system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right), d_{\text {min }}=0$, and $d_{i} \leq 2 n-3$, $1 \leq i \leq m$. Define the smallest positive integer σ_{1} by

$$
\begin{equation*}
Q_{0}\left(x_{E}\right) \neq \cdots \neq Q_{\sigma_{1}-1}\left(x_{E}\right)=Q_{\sigma_{1}}\left(x_{E}\right) \tag{6.43}
\end{equation*}
$$

on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. For example, if $Q_{0}\left(x_{E}\right)=Q_{1}\left(x_{E}\right)$, then $\sigma_{1}=1$. It is clear that $\operatorname{dim}\left(Q_{\sigma_{1}-1}\right)=\operatorname{dim}\left(Q_{\sigma_{1}}\right) \geq \sigma_{1}$.

Lemma 6.3 Suppose that system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ and $d_{1}=0$. Also assume that

$$
\begin{equation*}
Q_{\sigma_{1}-1}\left(x_{E}\right)=Q_{\sigma_{1}}\left(x_{E}\right)=\cdots=Q_{2\left(\sigma_{1}-1\right)}\left(x_{E}\right) \tag{6.44}
\end{equation*}
$$

on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. Then system (6.1) is also restricted dynamic feedback linearizable with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$, where

$$
\tilde{d}_{i}= \begin{cases}d_{i}-1, & \text { if } d_{i} \geq \max \left(2 \sigma_{1}-2,1\right) \triangleq \bar{d} \tag{6.45}\\ d_{i}, & \text { otherwise }\end{cases}
$$

Proof Suppose that system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ and $d_{1}=0$. Then extended system (6.14) is (static) feedback linearizable on a neighborhood U_{E} of $(x, z)=\left(0, z^{0}\right)$. We need to show that extended system (6.28) with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$ is (static) feedback linearizable on a neighborhood \tilde{U}_{E} of $(x, \tilde{z})=\left(0, \tilde{z}^{0}\right)$. In other words, we need to show, by Theorem 4.3, that
(a) $\operatorname{dim}\left(\tilde{D}_{n+d-2}\left(0, \tilde{z}^{0}\right)\right)=n+\tilde{d}$
(b) $\tilde{D}_{i}\left(\tilde{x}_{E}\right), i \geq 0$ are involutive distributions on \tilde{U}_{E}
where for $i \geq 0$,

$$
\begin{align*}
\tilde{D}_{i}\left(\tilde{x}_{E}\right) & =\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \tilde{G}_{j}\left(\tilde{x}_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i\right\} \\
& =\tilde{Q}_{i}\left(\tilde{x}_{E}\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{k}^{j}} \right\rvert\, j \in \mathbf{I}, \tilde{d}_{j}-i \leq k \leq \tilde{d}_{j}\right\} \tag{6.46}\\
& +\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{k}^{j}} \right\rvert\, j \in \overline{\mathbf{I}}, \tilde{d}_{j}-i \leq k \leq \tilde{d}_{j}\right\}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{Q}_{i}\left(\tilde{x}_{E}\right)=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid 1 \leq j \leq m, 0 \leq k \leq i-\tilde{d}_{j}\right\} . \tag{6.47}
\end{equation*}
$$

Let

$$
\mathbf{I} \triangleq\left\{i \mid 1 \leq i \leq m, d_{i}<\bar{d}\right\} \text { and } \overline{\mathbf{I}} \triangleq\left\{i \mid 1 \leq i \leq m, d_{i} \geq \bar{d}\right\} .
$$

Since $Q_{\bar{d}-1}\left(x_{E}\right)=Q_{\bar{d}}\left(x_{E}\right)$ and $\bar{g}_{j}\left(x_{E}\right) \in Q_{\bar{d}-1}\left(x_{E}\right), j \in \mathbf{I}$, it is easy to see, by Lemma 6.1 and (6.35), that for $i \geq 0$,

$$
\begin{aligned}
\operatorname{ad}_{F}^{i} \bar{g}_{j}\left(x_{E}\right) & \in Q_{\bar{d}-1}\left(x_{E}\right) \\
& =\operatorname{span}\left\{\operatorname{ad}_{F}^{k} \bar{g}_{j}\left(x_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq \bar{d}-1-d_{j}\right\}
\end{aligned}
$$

and for $i \geq \bar{d}$,

$$
\begin{align*}
\operatorname{span} & \left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i-\tilde{d}_{j}\right\} \\
& =\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq \bar{d}-1-\tilde{d}_{j}\right\} \tag{6.48}\\
& =\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i-1-\tilde{d}_{j}\right\}
\end{align*}
$$

Therefore, it is easy to see, by (6.36), (6.47), and (6.48), that for $0 \leq i \leq \bar{d}-2$,

$$
\begin{aligned}
& \pi_{*}\left(Q_{i}\left(x_{E}\right)\right)=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i-\tilde{d}_{j}\right\}=\tilde{Q}_{i}\left(\tilde{x}_{E}\right) \\
& \pi_{*}\left(Q_{\bar{d}}\left(x_{E}\right)\right)=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq \bar{d}-\tilde{d}_{j}\right\} \\
& \quad+\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq \bar{d}-1-\tilde{d}_{j}\right\} \\
& \quad=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq \bar{d}-1-\tilde{d}_{j}\right\} \\
& \quad+\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq \bar{d}-1-\tilde{d}_{j}\right\}=\tilde{Q}_{\bar{d}-1}\left(\tilde{x}_{E}\right)
\end{aligned}
$$

and for $i \geq \bar{d}$,

$$
\begin{aligned}
\pi_{*} & \left(Q_{i+1}\left(x_{E}\right)\right)=\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i+1-\tilde{d}_{j}\right\} \\
& +\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq i-\tilde{d}_{j}\right\} \\
& =\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \mathbf{I}, 0 \leq k \leq i-\tilde{d}_{j}\right\} \\
& +\operatorname{span}\left\{\operatorname{ad}_{\tilde{F}}^{k} \bar{g}_{j}\left(\tilde{x}_{E}\right) \mid j \in \overline{\mathbf{I}}, 0 \leq k \leq i-\tilde{d}_{j}\right\}=\tilde{Q}_{i}\left(\tilde{x}_{E}\right)
\end{aligned}
$$

which imply that

$$
\tilde{Q}_{i}\left(\tilde{x}_{E}\right)= \begin{cases}\pi_{*}\left(Q_{i}\left(x_{E}\right)\right), & \text { if } 0 \leq i \leq \bar{d}-1 \tag{6.49}\\ \pi_{*}\left(Q_{i+1}\left(x_{E}\right)\right), & \text { if } i \geq \bar{d}\end{cases}
$$

Thus, by Lemma 6.2, $\tilde{Q}_{i}\left(\tilde{x}_{E}\right), i \geq 0$ are involutive distributions. We also have, by (6.33) and (6.46), that for $0 \leq i \leq \bar{d}-1$,

$$
\begin{equation*}
\tilde{D}_{i}\left(\tilde{x}_{E}\right)=\pi_{*}\left(D_{i}\left(x_{E}\right)\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\tilde{d}_{j}-i}^{j}} \right\rvert\, j \in \overline{\mathbf{I}}\right\} \tag{6.50}
\end{equation*}
$$

and for $i \geq \bar{d}$,

$$
\begin{align*}
\tilde{D}_{i}\left(\tilde{x}_{E}\right)= & \pi_{*}\left(Q_{i+1}\left(x_{E}\right)\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\ell}^{j}} \right\rvert\, j \in \mathbf{I}, 1 \leq \ell \leq \tilde{d}_{j}\right\} \tag{6.51}\\
& +\operatorname{span}\left\{\left.\frac{\partial}{\partial \tilde{z}_{\ell}^{j}} \right\rvert\, j \in \overline{\mathbf{I}}, \tilde{d}_{j}-i \leq \ell \leq \tilde{d}_{j}\right\}=\pi_{*}\left(D_{i+1}\left(x_{E}\right)\right) .
\end{align*}
$$

It will be shown that for $0 \leq i \leq \bar{d}-1$,

$$
\begin{equation*}
\left[\frac{\partial}{\partial z_{d_{j}-i-1}^{j}}, Q_{i}\left(x_{E}\right)\right] \subset Q_{i}\left(x_{E}\right), \text { for } j \in \overline{\mathbf{I}} \tag{6.52}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\frac{\partial}{\partial \tilde{z}_{\tilde{d}_{j}-i}^{j}}, \tilde{Q}_{i}\left(\tilde{x}_{E}\right)\right] \subset \tilde{Q}_{i}\left(\tilde{x}_{E}\right), \text { for } j \in \overline{\mathbf{I}} . \tag{6.53}
\end{equation*}
$$

If $\bar{d}=1$ or $\sigma_{1}=1$, (6.52) is obviously satisfied, since $Q_{0}\left(x_{E}\right)=\operatorname{span}\left\{\bar{g}_{j}\left(x_{E}\right) \mid d_{j}=\right.$ $0\}$. Thus, let $\bar{d}=2 \sigma_{1}-2$ or $\sigma_{1} \geq 2$. If $0 \leq i \leq \sigma_{1}-2$ and $d_{j} \geq 2 \sigma_{1}-2$, then $d_{j}-$ $i-1 \geq \sigma_{1}-1>i$. Therefore, it is easy to see, by (6.22), that (6.52) holds for $0 \leq i \leq \sigma_{1}-2$. Also, it is clear, by Lemma 6.1 and (6.44), that (6.52) holds for $\sigma_{1}-1 \leq i \leq 2 \sigma_{1}-3(=\bar{d}-1)$. In other words, (6.53) is satisfied for $0 \leq i \leq \bar{d}-$ 1. Thus, by (6.50), distributions $\tilde{D}_{i}\left(\tilde{x}_{E}\right), 0 \leq i \leq \bar{d}-1$ are involutive. It is clear, by Lemma 6.2 and (6.51), that $\tilde{Q}_{i}\left(\tilde{x}_{E}\right), i \geq \bar{d}$ are also involutive distributions on $\tilde{U}_{E}\left(=\pi_{*}\left(U_{E}\right)\right)$ and

$$
\operatorname{dim}\left(\tilde{D}_{n+d-2}\left(0, \tilde{z}^{0}\right)\right)=\operatorname{dim}\left(\pi_{*}\left(D_{n+d-1}\left(0, z^{0}\right)\right)\right)=n+\tilde{d} .
$$

Hence, system (6.1) is also restricted dynamic feedback linearizable with indices $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$.

Remark 6.1 Suppose that system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$, where $0=d_{1} \leq d_{2} \leq \cdots \leq d_{m}$, and

$$
\begin{equation*}
Q_{0}\left(x_{E}\right) \neq \cdots \neq Q_{\sigma_{1}-1}\left(x_{E}\right)=Q_{\sigma_{1}}\left(x_{E}\right) . \tag{6.54}
\end{equation*}
$$

If $\operatorname{dim}\left(Q_{\sigma_{1}-1}\left(x_{E}\right)\right)=n$, then $\sigma_{1} \leq n$ and (6.44) is satisfied. Thus, it can be assumed, by repeated use of Lemma 6.3, that $d_{i} \leq 2\left(\sigma_{1}-1\right)-1 \leq 2 n-3$, for $2 \leq i \leq m$.

If $\operatorname{dim}\left(Q_{\sigma_{1}-1}\left(x_{E}\right)\right)<n$, define index $p_{2}\left(d_{p_{2}}>\sigma_{1}\right)$ and the smallest positive integer σ_{2} by

$$
\begin{equation*}
p_{2} \triangleq \min \left\{j \mid \bar{g}_{j}\left(x_{E}\right) \notin Q_{\sigma_{1}}\left(x_{E}\right)\right\} \tag{6.55}
\end{equation*}
$$

and

$$
\begin{align*}
& Q_{0} \neq \cdots \neq Q_{\sigma_{1}-1}=Q_{\sigma_{1}}=\cdots=Q_{d_{p_{2}}-1} \tag{6.56}\\
& \neq Q_{d_{p_{2}}} \neq \cdots \neq Q_{d_{p_{2}}+\sigma_{2}-1}=Q_{d_{p_{2}}+\sigma_{2}}
\end{align*}
$$

If $d_{p_{2}}>2\left(\sigma_{1}-1\right)$, then (6.44) is satisfied. Thus, it can be assumed, by repeated use of Lemma 6.3, that $\sigma_{1} \geq 2$ and

$$
d_{p_{2}} \leq 2 \sigma_{1}-2
$$

Note that

$$
\begin{equation*}
\sigma_{1}+\sigma_{2} \leq \operatorname{dim}\left(Q_{d_{p_{2}}+\sigma_{2}}\left(x_{E}\right)\right) \leq n \tag{6.57}
\end{equation*}
$$

Let $p_{1}=1$. In this manner, if $\operatorname{dim}\left(Q_{d_{p_{k-1}}+\sigma_{k-1}}\left(x_{E}\right)\right)<n$, we can define, for $2 \leq k \leq$ r, index $p_{k}\left(d_{p_{k}}>d_{p_{k-1}}+\sigma_{k-1}\right)$ and the smallest positive integer σ_{k} by

$$
\begin{gather*}
p_{k} \triangleq \min \left\{j \mid \bar{g}_{j}\left(x_{E}\right) \notin Q_{d_{p_{k-1}}+\sigma_{k-1}}\left(x_{E}\right)\right\} \tag{6.58}\\
Q_{d_{p_{k}}-1} \neq Q_{d_{p_{k}}} \neq \cdots \neq Q_{d_{p_{k}}+\sigma_{k}-1}=Q_{d_{p_{k}}+\sigma_{k}} \tag{6.59}
\end{gather*}
$$

and

$$
\begin{equation*}
\sigma_{1}+\cdots+\sigma_{r} \leq \operatorname{dim}\left(Q_{d_{p r}+\sigma_{r}}\left(x_{E}\right)\right)=n \tag{6.60}
\end{equation*}
$$

Lemma 6.4 Suppose that system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ and $d_{1}=0$. Also, assume that $k \geq 2, \mu_{k} \triangleq \sum_{j=1}^{k} 2\left(\sigma_{j}-\right.$ 1), $\mu_{k-2}+\sigma_{k-1}+1 \leq d_{p_{k}} \leq \mu_{k-1}$, and

$$
\begin{equation*}
Q_{d_{p_{k}+\sigma_{k}-1}}\left(x_{E}\right)=Q_{d_{p_{k}}+\sigma_{k}}\left(x_{E}\right)=\cdots=Q_{\mu_{k}}\left(x_{E}\right) \tag{6.61}
\end{equation*}
$$

Then system (6.1) is also restricted dynamic feedback linearizable with indices $\tilde{\mathbf{d}}=$ $\left(\tilde{d}_{1}, \ldots, \tilde{d}_{m}\right)$, where

$$
\tilde{d}_{i}= \begin{cases}d_{i}-1, & \text { if } d_{i} \geq \mu_{k} \tag{6.62}\\ d_{i}, & \text { otherwise }\end{cases}
$$

Proof The proof of Lemma 6.4 is the same as that of Lemma 6.3 with $\bar{d} \triangleq \mu_{k}$.
Theorem 6.2 Let $n>m \geq 2$. Suppose that system (6.1) is restricted dynamic feedback linearizable. Then system (6.1) is also restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$, where $d_{\min }=0$ and for $1 \leq i \leq m$,

$$
\begin{equation*}
d_{i} \leq 2 n-3 \tag{6.63}
\end{equation*}
$$

Proof Suppose that system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$. We assume, without loss of generality, that $d_{1} \leq d_{2} \leq$ $\cdots \leq d_{m}$. Also, we can assume $d_{1}=0$ by Theorem 6.1. Define positive integer σ_{1} by (6.54). If $\sigma_{1}=n$, then $\operatorname{dim}\left(Q_{\sigma_{1}-1}\left(x_{E}\right)\right)=n$ and (6.61) is satisfied. Thus, it can be assumed, by repeated use of Lemma 6.3, that $d_{i} \leq 2\left(\sigma_{1}-1\right)-1=2 n-3$, for $2 \leq$ $i \leq m$. As explained in Remark 6.1, if $\operatorname{dim}\left(Q_{\sigma_{1}-1}\left(x_{E}\right)\right)<n$, define index $p_{2}\left(d_{p_{2}}>\right.$ σ_{1}) and the smallest positive integer σ_{2} such that (6.55) and (6.56) are satisfied. Note that (6.57) is satisfied. If $d_{p_{2}}>2\left(\sigma_{1}-1\right)$, then (6.61) is satisfied. Thus, it can be assumed, by repeated use of Lemma 6.4, that $\sigma_{1} \geq 2$ and

$$
d_{p_{2}} \leq 2 \sigma_{1}-2
$$

If $\operatorname{dim}\left(Q_{d_{p_{2}}+\sigma_{2}}\left(x_{E}\right)\right)=n$, then (6.61) holds for $k=2$. Thus, it can be assumed, by repeated use of Lemma 6.4, that for $p_{2}+1 \leq i \leq m$,

$$
\begin{equation*}
d_{i} \leq 2\left(\sigma_{1}+\sigma_{2}-2\right)-1 \leq 2 n-5 \tag{6.64}
\end{equation*}
$$

If $\operatorname{dim}\left(Q_{d_{p_{2}}+\sigma_{2}}\left(x_{E}\right)\right)<n$, define index $p_{3}\left(d_{p_{2}}>\sigma_{1}\right)$ and the smallest positive integer σ_{3} such that (6.58) and (6.59) are satisfied. Note that $\sigma_{1}+\sigma_{2}+\sigma_{3} \leq$ $\operatorname{dim}\left(Q_{d_{p_{3}}+\sigma_{3}}\left(x_{E}\right)\right) \leq n$. If $d_{p_{3}}>\mu_{2}=2\left(\sigma_{1}+\sigma_{2}-2\right)$, then (6.61) holds for $k=3$. Thus, it can be assumed, by repeated use of Lemma 6.4, that

$$
d_{p_{3}} \leq \mu_{2}=2\left(\sigma_{1}+\sigma_{2}-2\right) .
$$

If $\operatorname{dim}\left(Q_{d_{p_{3}}+\sigma_{3}}\left(x_{E}\right)\right)=n$, then (6.61) holds for $k=3$. Thus, it can be assumed, by repeated use of Lemma 6.4, that for $p_{3}+1 \leq i \leq m$,

$$
\begin{equation*}
d_{i} \leq 2\left(\sigma_{1}+\sigma_{2}+\sigma_{3}-3\right)-1 \leq 2 n-7 . \tag{6.65}
\end{equation*}
$$

In this manner, if $\operatorname{dim}\left(Q_{d_{p_{3}}+\sigma_{3}}\left(x_{E}\right)\right)<n$, we can define, for $2 \leq k \leq r$, index $p_{k}\left(d_{p_{k}}>d_{p_{k-1}}+\sigma_{k-1}\right)$ and the smallest positive integer σ_{k} by

$$
\begin{gathered}
p_{k} \triangleq \min \left\{j \mid \bar{g}_{j}\left(x_{E}\right) \notin Q_{d_{p_{k-1}}+\sigma_{k-1}}\left(x_{E}\right)\right\} \\
Q_{d_{p_{k}}-1} \neq Q_{d_{p_{k}}} \neq \cdots \neq Q_{d_{p_{k}}+\sigma_{k}-1}=Q_{d_{p_{k}}+\sigma_{k}}
\end{gathered}
$$

$$
d_{p_{k}} \leq \mu_{k-1}=\sum_{j=1}^{k-1} 2\left(\sigma_{j}-1\right)
$$

and

$$
\sigma_{1}+\cdots+\sigma_{r} \leq \operatorname{dim}\left(Q_{d_{p r}+\sigma_{r}}\left(x_{E}\right)\right)=n
$$

Finally, since $\operatorname{dim}\left(Q_{d_{p_{r-1}+\sigma_{r}-1}}\left(x_{E}\right)\right)=n$, (6.61) holds for $k=r$. Thus, it can be assumed, by repeated use of Lemma 6.4, that for $p_{r}+1 \leq i \leq m$,

$$
\begin{equation*}
d_{i} \leq \mu_{r}-1=2\left(\sigma_{1}+\cdots+\sigma_{r}-r\right)-1 \leq 2 n-(2 r+1) \tag{6.66}
\end{equation*}
$$

Let $n>m \geq 2$. If system (6.1) is restricted dynamic feedback linearizable, then system (6.1) is also restricted dynamic feedback linearizable such that the number d of extended state z satisfies

$$
\begin{equation*}
d \leq(m-1)(2 n-3) \tag{6.67}
\end{equation*}
$$

The upper limit d_{i} and d in Theorem 6.2 are sharp. When $\sigma_{1}=n, d$ is the maximum. It can be seen in Example 6.3.1.

Example 6.3.1 Let $n \geq m+2$. Show that the following nonlinear system is not restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$ and $d_{i}<$ $2 n-3,1 \leq i \leq m$. Also, show that the following nonlinear system is restricted dynamic feedback linearizable with indices $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)=(0,2 n-3, \ldots$, $2 n-3$).

$$
\begin{align*}
& \dot{x}_{1}=x_{2}+x_{1} \sum_{i=2}^{m} u_{i} \\
& \dot{x}_{j}=x_{j+1}, 2 \leq j \leq n-m \tag{6.68}\\
& \dot{x}_{n-m+1}=u_{1} \\
& \dot{x}_{n-m+i}=\left(1+x_{n-m+1}\right) u_{i}, 2 \leq i \leq m
\end{align*}
$$

Solution For simplicity, we consider the case of $m=2$. Let $d_{1}=0$ and $d_{2}<2 n-3$. It is easy to see that $\bar{g}_{1}\left(x_{E}\right)=\frac{\partial}{\partial x_{n-1}}$ and for $1 \leq k \leq n-2$,

$$
\begin{equation*}
\operatorname{ad}_{F}^{k} \bar{g}_{1}\left(x_{E}\right)=(-1)^{k} \frac{\partial}{\partial x_{n-k-1}}-z_{k}^{2} \frac{\partial}{\partial x_{n}} \tag{6.69}
\end{equation*}
$$

Let d_{2} is even and $d_{2} \leq 2 n-4$. Then we have that $\frac{d_{2}}{2} \leq n-2$ and

$$
Q_{\frac{d_{2}}{2}}\left(x_{E}\right)=\operatorname{span}\left\{\operatorname{ad}_{F}^{k} \bar{g}_{1}\left(x_{E}\right) \left\lvert\, 0 \leq k \leq \frac{d_{2}}{2}\right.\right\} .
$$

Since

$$
\left[\frac{\partial}{\partial z_{\frac{d_{2}}{2}}^{2}}, \mathrm{ad}_{F}^{\frac{d_{2}}{2}} \bar{g}_{1}\left(x_{E}\right)\right]=-\frac{\partial}{\partial x_{n}} \notin Q_{\frac{d_{2}}{2}}\left(x_{E}\right)
$$

$D_{\frac{d_{2}}{2}}\left(x_{E}\right)$ is not involutive, where

$$
D_{\frac{d_{2}}{2}}\left(x_{E}\right)=Q_{\frac{d_{2}}{2}}\left(x_{E}\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{k}^{2}} \right\rvert\, \frac{d_{2}}{2} \leq k \leq d_{2}\right\} .
$$

Let d_{2} is odd and $d_{2} \leq 2 n-5$. Then we have that $\frac{d_{2}+1}{2} \leq n-2$ and

$$
Q_{\frac{d_{2}+1}{2}}\left(x_{E}\right)=\operatorname{span}\left\{\operatorname{ad}_{F}^{k} \bar{g}_{1}\left(x_{E}\right) \left\lvert\, 0 \leq k \leq \frac{d_{2}+1}{2}\right.\right\} .
$$

Since

$$
\left[\frac{\partial}{\partial z_{\frac{d_{2}+1}{2}}^{2}}, \operatorname{ad}_{F}^{\frac{d_{2}+1}{2}} \bar{g}_{1}\left(x_{E}\right)\right]=-\frac{\partial}{\partial x_{n}} \notin Q_{\frac{d_{2+1}}{2}}\left(x_{E}\right)
$$

$D_{\frac{d_{2}+1}{2}}\left(x_{E}\right)$ is not involutive, where

$$
D_{\frac{d_{2}+1}{2}}\left(x_{E}\right)=Q_{\frac{d_{2}+1}{2}}\left(x_{E}\right)+\operatorname{span}\left\{\frac{\partial}{\partial z_{k}^{2}} \left\lvert\, \frac{d_{2}-1}{2} \leq k \leq d_{2}\right.\right\} .
$$

Therefore, system (6.68) is not restricted dynamic feedback linearizable with indices $d_{1}=0$ and $d_{2}<2 n-3$. In the same manner, it can be shown that system (6.68) is not restricted dynamic feedback linearizable with indices $d_{2}=0$ and $d_{1}<2 n-3$. Now let $d_{1}=0$ and $d_{2}=2 n-3$. Then it is easy to see that

$$
\begin{equation*}
\operatorname{ad}_{F}^{n-1} \bar{g}_{1}\left(x_{E}\right)=z_{1}^{2} \frac{\partial}{\partial x_{1}}-z_{n-1}^{2} \frac{\partial}{\partial x_{n}} \tag{6.70}
\end{equation*}
$$

which implies, together with (6.70), that $Q_{n-1}\left(x_{E}\right)$ is an n-dimensional involutive distribution on $U_{E}\left(=\left\{(x, z) \mid z_{1}^{2}=0, z_{n-1}^{2} \neq 0\right\}\right)$, where

$$
\begin{equation*}
Q_{n-1}\left(x_{E}\right)=\operatorname{span}\left\{\left.\frac{\partial}{\partial x_{k}} \right\rvert\, 1 \leq k \leq n\right\} . \tag{6.71}
\end{equation*}
$$

It is clear that $Q_{i}\left(x_{E}\right), 0 \leq i \leq n-2$ is an $(i+1)$-dimensional involutive distributions. For $0 \leq i \leq n-2$ and $2 n-3-i=d_{2}-i \leq j \leq d_{2}$, we have, by (6.22), that $i<n-1 \leq d_{2}-i \leq j$ and

$$
\left[\frac{\partial}{\partial z_{j}^{2}}, Q_{i}\left(x_{E}\right)\right] \subset Q_{i}\left(x_{E}\right)
$$

which implies that $D_{i}\left(x_{E}\right), 0 \leq i \leq n-2$ are involutive, where for $0 \leq i \leq n-2$,

$$
D_{i}\left(x_{E}\right)=Q_{i}\left(x_{E}\right)+\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{j}^{2}} \right\rvert\, d_{2}-i \leq j \leq d_{2}\right\} .
$$

Finally, It is obvious, by (6.71), that $D_{i}\left(x_{E}\right), 0 \leq i \leq n-2$ are involutive distributions on U_{E} and

$$
\operatorname{dim}\left(D_{2 n-4}\left(x_{E}\right)\right)=3 n-3=n+d_{2} \text { for } x_{E} \in U_{E}
$$

Hence, system (6.68) is restricted dynamic feedback linearizable with indices $\mathbf{d}=$ ($0,2 n-3$).

By Corollary 6.1 and Theorem 6.2, only a finite set of indices need to be considered, in order to determine whether system (6.1) is restricted dynamic feedback linearizable or not. Therefore, the conditions of Theorem 6.2 is verifiable. For example, if $m=2$, then check whether system (6.1) is restricted dynamic feedback linearizable with indices $\mathbf{d}=(0,0),(0,1), \ldots,(0,2 n-3),(1,0),(2,0), \ldots,(2 n-3,0)$ in sequence. If system (6.1) is not restricted dynamic feedback linearizable with the above indices, then system (6.1) is not restricted dynamic feedback linearizable.

6.4 Examples

Example 6.4.1 Find out whether the following nonlinear system is restricted dynamic feedback linearizable or not. If it is restricted dynamic feedback linearizable, find out the restricted dynamic feedback and state transformation.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{6.72}\\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
x_{4} \\
0 \\
1+x_{3}
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

Solution Since $\left[g_{1}(x), g_{2}(x)\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\top} \notin \operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}$, system (6.72) is not feedback linearizable. Consider the following dynamic compensator with index $\left(d_{1}, d_{2}\right)=(0,1):$

$$
\begin{aligned}
& u_{1}=w_{1} ; \quad u_{2}=z \\
& \dot{z}=w_{2}
\end{aligned}
$$

Then we have the extended system

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{z}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{4} z \\
0 \\
\left(1+x_{3}\right) z \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] w_{1}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] w_{2} \tag{6.73}\\
& =F(x, z)+G_{1}(x, z) w_{1}+G_{2}(x, z) w_{2} .
\end{align*}
$$

Since

$$
\left[\operatorname{ad}_{F} G_{1}(x, z) \operatorname{ad}_{F} G_{2}(x, z)\right]=\left[\begin{array}{cc}
0 & 0 \\
-1 & -x_{4} \\
0 & 0 \\
-z & -1-x_{3} \\
0 & 0
\end{array}\right] \quad \text { and } \operatorname{ad}_{F}^{2} G_{1}(x, z)=\left[\begin{array}{c}
1 \\
z^{2} \\
0 \\
0 \\
0
\end{array}\right]
$$

it is easy to see that $\left(\kappa_{1}, \kappa_{2}\right)=(3,2), \operatorname{dim}\left(D_{2}(x, z)\right)=5=n+d$, and distributions $D_{0}=\operatorname{span}\left\{G_{1}, G_{2}\right\}$ and $D_{1}=\operatorname{span}\left\{G_{1}, G_{2}, \operatorname{ad}_{F} G_{1}, \operatorname{ad}_{F} G_{2}\right\}$ are involutive. Hence, by Theorem 4.3, system (6.73) is (static) feedback linearizable. Functions $S_{11}(x, z)=$ x_{1} and $S_{21}(x, z)=x_{4}$ satisfying the conditions of Lemma 4.3 can be easily found. Thus, extended state transformation $\xi=S_{E}(x, z)$ and extended static feedback $w=$ $\alpha(x, z)+\beta(x, z) v$ can be obtained by (4.56) and (4.57), respectively.

$$
\xi=S_{E}(x, z)=\left[\begin{array}{c}
S_{11}(x, z) \tag{6.74}\\
L_{F} S_{11}(x, z) \\
L_{F}^{2} S_{11}(x, z) \\
S_{21}(x, z) \\
L_{F} S_{21}(x, z)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}+x_{4} z \\
x_{4} \\
\left(1+x_{3}\right) z
\end{array}\right]
$$

and

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]} & =\left[\begin{array}{cc}
1 & x_{4} \\
z & 1+x_{3}
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
\left(1+x_{3}\right) z^{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{-\left(1+x_{3}\right)^{2} z^{2}}{1+x_{3}-x_{4} z} \\
\frac{\left(1+x_{3} z^{3}\right.}{1+x_{3}-x_{4} z}
\end{array}\right]+\left[\frac{1+x_{3}}{1+x_{3}-x_{4} z} \frac{-x_{4}}{1+x_{3}-x_{4} z}\right. \\
1+x_{3}-x_{4} z & \frac{1}{1+x_{3}-x_{4} z}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
$$

In other words, the restricted dynamic feedback for system (6.72) is

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} & =\left[\begin{array}{c}
\frac{-\left(1+x_{3}\right)^{2} z^{2}}{1+x_{3}-x_{4} z} \\
z
\end{array}\right]+\left[\begin{array}{cc}
\frac{1+x_{3}}{1+x_{3}-x_{4} z} & \frac{-x_{4}}{1+x_{3}-x_{4} z} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \tag{6.75}\\
\dot{z} & =\frac{\left(1+x_{3}\right) z^{3}}{1+x_{3}-x_{4} z}+\left[\frac{-z}{1+x_{3}-x_{4} z}\right. \\
\frac{1}{1+x_{3}-x_{4} z}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] . ~ .
$$

Example 6.4.2 Show that system (6.76) is not restricted dynamic feedback linearizable.

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
x_{4} \\
1 \\
1+x_{3}
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
x_{4} \\
0 \\
1+x_{3}
\end{array}\right] u_{2} \tag{6.76}\\
& =f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} .
\end{align*}
$$

But, system (6.76) is dynamic feedback linearizable.
Solution By simple calculation or MATLAB program in Sect. 6.5, it is easy to see that system (6.76) is not restricted dynamic feedback linearizable with indices $\mathbf{d}=(0,0),(0,1), \ldots,(0,5),(1,0),(2,0), \ldots,(5,0)$. Hence, system (6.76) is not restricted dynamic feedback linearizable by Theorem 6.2. If we let

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right]
$$

then we have

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
x_{2} \\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \bar{u}_{1}+\left[\begin{array}{c}
0 \\
x_{4} \\
0 \\
1+x_{3}
\end{array}\right] \bar{u}_{2} \tag{6.77}\\
& =f(x)+g_{1}^{\prime}(x) \bar{u}_{1}+g_{2}^{\prime}(x) \bar{u}_{2} .
\end{align*}
$$

In Example 6.4.1, it is shown that system (6.77) is restricted dynamic feedback linearizable. In other words, system (6.76) is linearizable by the extended state transformation (6.74) and the dynamic feedback

$$
\begin{align*}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{c}
\frac{-\left(1+x_{3}\right)^{2} z^{2}}{1+x_{3}} \\
z+\frac{1+x_{4} z}{1+x_{3}-x^{2} z}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1+x_{3}}{1+x_{3}-x_{4} z} & \frac{-x_{4}}{1+x_{3}-x_{4} z} \\
\frac{-\left(1+x_{3}\right)}{1+x_{3}-x_{4} z} & \frac{x_{4}}{1+x_{3}-x_{4} z}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \tag{6.78}\\
\dot{z} & =\frac{\left(1+x_{3}\right) z^{3}}{1+x_{3}-x_{4} z}+\left[\frac{-z}{1+x_{3}-x_{4} z} \frac{1}{1+x_{3}-x_{4} z}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
\end{align*}
$$

However, dynamic feedback (6.78) is not a restricted dynamic feedback.

Example 6.4.3 Consider system (6.79) that is not reachable on a neighborhood of $0 \in \mathbb{R}^{n}$.

$$
\dot{x}=\left[\begin{array}{c}
0 \tag{6.79}\\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{2} \\
0 \\
0 \\
1
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}
$$

(a) Show that system (6.79) is restricted dynamic feedback linearizable with $\mathbf{d}=(0,2)$. Also, find out the restricted dynamic feedback and extended state transformation.
(b) Let $x(0)=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$. Find an input $u(t), 0 \leq t \leq t_{f}$ such that $t_{f}=2$ and $x\left(t_{f}\right)=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\top}$.
Solution (a) Since $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$ and $\kappa_{1}+\kappa_{2}<4=n$, system (6.79) is not feedback linearizable. It is also easy to see that system (6.79) is not restricted dynamic feedback linearizable with $\mathbf{d}=(0,1)$. Consider the following dynamic compensator with index $\left(d_{1}, d_{2}\right)=(0,2)$:

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
w_{1} \\
z_{1}
\end{array}\right] ; \quad\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
w_{2}
\end{array}\right] .
$$

Then we have the extended system

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2} z_{1} \\
x_{3} \\
0 \\
z_{1} \\
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right] w_{1}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] w_{2} \tag{6.80}\\
& =F(x, z)+G_{1}(x, z) w_{1}+G_{2}(x, z) w_{2}
\end{align*}
$$

Since

$$
\left[\operatorname{ad}_{F} G_{1} \operatorname{ad}_{F} G_{2} \operatorname{ad}_{F}^{2} G_{1} \operatorname{ad}_{F}^{2} G_{2}\right]=\left[\begin{array}{cccc}
0 & 0 & z_{1} & x_{2} \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

it is easy to see that $\left(\kappa_{1}, \kappa_{2}\right)=(3,3)$ on $U_{E}\left(=\left\{(x, z) \in \mathbb{R}^{6} \mid z_{1} \neq 0\right\}\right), \kappa_{1}+$ $\kappa_{2}=6=n+d$, and distributions $D_{0}(x, z)$ and $D_{1}(x, z)$ are involutive distributions on U_{E}, where

$$
D_{0}(x, z)=\operatorname{span}\left\{G_{1}(x, z), G_{2}(x, z)\right\}
$$

and

$$
D_{1}(x, z)=\operatorname{span}\left\{G_{1}(x, z), G_{2}(x, z), \operatorname{ad}_{F} G_{1}(x, z), \operatorname{ad}_{F} G_{2}(x, z)\right\}
$$

Hence, by Theorem 4.3, system (6.80) is (static) feedback linearizable on U_{E}. Scalar functions $S_{11}(x, z)=x_{1}$ and $S_{21}(x, z)=x_{4}$ satisfying the conditions of Lemma 4.3 can be easily found. Thus, extended state transformation $\xi=S_{E}(x, z)$ and extended static feedback $w=\alpha(x, z)+\beta(x, z) v$ can be obtained by (4.56) and (4.57), respectively.

$$
\xi=S_{E}(x, z) \triangleq\left[\begin{array}{c}
S_{E}^{1}(x, z) \tag{6.81}\\
S_{E}^{2}(x, z)
\end{array}\right]=\left[\begin{array}{c}
S_{11}(x, z) \\
L_{F} S_{11}(x, z) \\
L_{F}^{2} S_{11}(x, z) \\
S_{21}(x, z) \\
L_{F} S_{21}(x, z) \\
L_{F}^{2} S_{21}(x, z)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} z_{1} \\
x_{3} z_{1}+x_{2} z_{2} \\
x_{4} \\
z_{1} \\
z_{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
{\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
z_{1} & x_{2} \\
0 & 1
\end{array}\right]^{-1}\left(-\left[\begin{array}{c}
2 x_{3} z_{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\frac{2 x_{3} z_{2}}{z_{1}} \\
0
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{z_{1}} & -x_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
\end{aligned}
$$

In other words, the restricted dynamic feedback for system (6.79) is

$$
\begin{align*}
& {\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 x_{3} z_{2}}{z_{1}} \\
z_{1}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{z_{1}} & -\frac{x_{2}}{z_{1}} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]} \tag{6.82}
\end{align*}
$$

and the extended system of system (6.79) with the dynamic feedback (6.82) satisfies, in ξ-coordinates, the following controllable linear system:

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{\xi}_{1} \\
\dot{\xi}_{2} \\
\dot{\xi}_{3} \\
\dot{\xi}_{4} \\
\dot{\xi}_{5} \\
\dot{\xi}_{6}
\end{array}\right] } & =\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3} \\
\xi_{4} \\
\xi_{5} \\
\xi_{6}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \tag{6.83}\\
& =\left[\begin{array}{cc}
A_{11} & O \\
O & A_{22}
\end{array}\right] \xi+\left[\begin{array}{cc}
B_{11} & O \\
O & B_{22}
\end{array}\right] v .
\end{align*}
$$

(b) Since $z_{1}(t) \neq 0$ for $0 \leq t \leq t_{f}$, we let $x_{4}(t)=1-\frac{1}{2} t, z_{1}(t)=\dot{x}_{4}(t)=-\frac{1}{2}$, $z_{2}(t)=\dot{z}_{1}(t)=0$, and $v_{2}(t)=\dot{z}_{2}(t)=0$, for $0 \leq t \leq t_{f}$, where $z(0)=\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right]$. In order to control $\left\{x_{1}(t), x_{2}(t), x_{3}(t)\right\}$ or $\left\{\xi_{1}(t), \xi_{2}(t), \xi_{3}(t)\right\}$, consider the following controllability Gramian of linear subsystem in (6.83):

$$
W_{11}(0, t) \triangleq \int_{0}^{t} e^{-A_{11} \tau} B_{11} B_{11}^{\top}\left(e^{-A_{11} \tau}\right)^{\top} d \tau=\left[\begin{array}{ccc}
\frac{t^{5}}{20} & -\frac{t^{4}}{8} & \frac{t^{3}}{6} \\
-\frac{t^{4}}{8} & \frac{t^{3}}{3} & -\frac{t^{2}}{2} \\
\frac{t^{3}}{6} & -\frac{t^{2}}{2} & t
\end{array}\right]
$$

Since $z(0)=\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right]$ and $z\left(t_{f}\right)=\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right]$, it is clear that

$$
\xi^{1}(0)=S_{E}^{1}(x(0), z(0))=\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right] \text { and } \xi^{1}\left(t_{f}\right)=S_{E}^{1}\left(x\left(t_{f}\right), z\left(t_{f}\right)\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

where $\xi^{1}=S_{E}^{1}(x, z)$ is given in (6.81). Thus, it is easy to see that

$$
\begin{aligned}
v_{1}(t) & =B_{11}^{\top}\left(e^{-A_{11} t}\right)^{\top} W_{11}\left(0, t_{f}\right)^{-1}\left[e^{-A_{11} t_{f}} \xi^{1}\left(t_{f}\right)-\xi^{1}(0)\right] \\
& =-\frac{3}{4}+6 t-\frac{15}{4} t^{2}, \quad 0 \leq t \leq 2
\end{aligned}
$$

is an input such that $\xi(2)=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & -\frac{1}{2}\end{array} 0\right]^{\top}$ and $\left[\begin{array}{l}x(2) \\ z(2)\end{array}\right]=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & -\frac{1}{2} & 0\end{array}\right]^{\top}$.

6.5 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, adfgk, adfgM, ChExact, ChZero, ChInvolutive, Codi, CXexact, Delta, Kindex0, Lfh, Lfhk, S1M

The following is a MATLAB subfunction program for Theorem 6.2.

```
function d=dec2N(a,N,m)
d=zeros(1,m);
for k=1:m-1
    d(k)=fix(a/power (N,m-k));
    a=rem(a,power (N,m-k));
end
d(m)=a;
```

The following is a MATLAB subfunction program for Theorem 6.2.

```
function [kappa,D]=KindexE0z(fe,ge,xe,x)
[N,m]=size(ge);
D1=Delta(fe,ge,xe);
D0=subs (D1,x,x-x) ;
kappa=zeros(m,1); DD=xe-xe;
for k1=1:N
    for k2=1:m
        t1=[DD D0(:,m* (k1-1) +k2)];
        if rank(t1)>rank(DD)
            kappa(k2)=kappa(k2)+1;
            DD=t1;
            if rank(DD)==rank(D0)
                        D=D1(:,1:m*max(kappa));
                        return
            end
        end
    end
end
```

The following is a MATLAB subfunction program for Theorem 6.2.

```
function [out,dd, F,G,xe]=dRDFL(d, fx,g,x)
out=0; dd=d;
[n,m]=size(g);
sumd=sum(d);
for k=1:m
    s(k)=sum(d(1:k));
end
z0=sym('z',[2*n-3,m]);
```

```
zz=x(1)-x(1);
for k=1:m
    zz=[zz; z0(1:d(k),k)];
end
z=zz(2:sumd+1);
xe=[x; z];
F=xe-xe;
bz=xe-xe;
for k=1:m
    G(:,k) =xe-xe;
end
bf=[fx; z-z];
for k=1:m
    bg(:,k)=[g(:,k); z-z];
end
bz=x-x;
for k=1:m
    if d(k) >= 1
            bz=[bz; z0(2:d(k),k); x(1)-x(1)];
    end
end
bz=simplify(bz);
F=bf;
for k=1:m
    if d(k) ~}=
        F=F+z0(1,k)*bg(:,k);
        G(:,k)=xe-xe;
        G(n+s(k),k)=1;
    else
        F=F;
        G(:,k)=bg(:,k);
    end
end
F=simplify(F+bz);
G=simplify(G);
[kappaE,De]=KindexE0z(F,G,xe,x);
if sum(kappaE) < n+sumd
    return
end
for k=1:max(kappaE)-1
    TD=De(:,1:k*m);
        if rank(TD) ~ = rank(subs(TD,x,x-x))
            return
        end
        if ChInvolutive(TD,xe)==0
            return
        end
end
out=1;
```


MATLAB program for Theorem 6.2:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 real
fx=[x2; x3; x4; 0; 0];
g=[ 0 x1; 0 0; 0 0; 1 0; 0 (1+x4)]; %Ex:6.3.1, n=5
% fx=[x2; x3; 0; 0];
% g=[ 0 x1; 0 0; 1 0; 0 (1+x3)]; %Ex:6.3.1, n=4
% g=[ 0 x1 x1; 0 0 0; 1 0 0; 0 (1+x3) 0; 0 0 (1+x3)];
% fx=[x2; x3; 0; 0; 0]; %Ex:6.3.1, m=3
% fx=[x2; x3; 0; 0]; g=[0 0; 0 x4; 1 0; 0 1+x3]; %Ex:6.4.1
% fx=[x2; x3; 0; 0]; g=[0 0; x4 x4; 1 0; 1+x3 1+x3]; %Ex:6.4.2
% fx=[0; x3; 0; 0]; g=[0 x2; 0 0; 1 0; 0 1]; %Ex:6.4.3
% fx=[x2; x3; 0; 0]; g=[0 x1^3; 0 0; 1 0; 0 1+x1]; %P:6-6(a)
% fx=[x2; x3; 0; 0]; g=[0 x2^3; 0 0; 1 0; 0 1+x1]; %P:6-6(b)
% fx=[x2; x3; 0; 0]; g=[0 x3; 0 0; 1 0; 0 1+x3]; %P:6-6(c)
% fx=[x2; x3; 0; 0]; g=[0 x3^2; 0 0; 1 0; 0 1+x3]; %P:6-6(d)
% fx=[x2; x3+x2^2; x1^2]; g=[x1-x1; 1; 1]; %P:6-6(e)
% fx=[x2; x3; 0; 0; 0];
% g=[0 0 x2^2; 0 x3 0; 1 0 0; 0 1 0; 0 0 1]; %P:6-6(f)
% fx=[x1-x1; 0; 0]; g=[0 x2; 1 0; 0 1]; %P:6-7(a)
% fx=[0; x3; 0; 0]; g=[0 x3; 0 0; 1 0; 0 1]; %P:6-7(b)
fx=simplify(fx)
g=simplify(g)
[n,m]=size(g); x=sym('x',[n,1]);
% d=[l0 1 2]
% [out,dd,F,G,xe]=dRDFL(d,fx,g,x)
% [kappaE,D]=KindexE0z(F,G,xe,x)
% return
N=2*n-2;
for k=0:N^m-1
    d=dec}2N(k,N,m
    if min(d)==0
            [out,dd,F,G,xe]=dRDFL(d,fx,g,x);
```

```
    if out==1
            break
        end
    end
end
if out ==0
    display('System is not restricted dynamic FB linearizable.')
    return
end
display('System is restricted dynamic FB linearizable with')
d=dd
[FLAG,dd,F,G,xe]=dRDFL(d, fx,g,x)
[kappaE,D]=KindexE0z(F,G,xe,x)
[kappa,D]=Kindex0(F,G,xe) ;
if sum(kappa)<length(xe)
    display('Find out xi=Se(xe) without MATLAB.')
    return
end
[flag,Se1]=S1M(F,G,xe,kappa)
if flag==0
        display('Find out xi=Se(xe) without MATLAB.')
        return
end
Se=xe(1) -xe(1);
for k1=1:m
    for k=1:kappa(k1)
            t1=Lfhk(F,Se1(k1),xe,k-1);
            Se=[Se; t1];
        end
end
Se=simplify(Se(2:length(xe)+1))
t2=Se1-Se1;
for k1=1:m
    t2(k1)=Lfhk(F,Se1(k1),xe,kappa(k1)-1);
end
t2=simplify(t2);
ibeta=simplify(Lfh(G,t2,xe));
beta=simplify(inv(ibeta))
t3=simplify(Lfh(F,t2,xe));
alpha=simplify(-beta*t3)
hG=simplify(G*beta)
hF=simplify(F+G*alpha)
dSe=simplify(jacobian(Se,xe));
idSe=simplify(inv(dSe));
```

```
AS=simplify(dSe*hF);
dAS=simplify(jacobian(AS,xe));
A=simplify(dAS*idSe)
B=simplify(dSe*hG)
return
```


6.6 Problems

6-1. Solve Example 6.2.1.
6-2. Solve Example 6.2.3.
6-3. Show that the converse of Theorem 6.1 also holds.
6-4. Prove Corollary 6.2.
6-5. Solve Example 6.3.1 for $m \geq 3$.
6-6. Find out whether or not the following nonlinear system is restricted dynamic feedback linearizable. If it is restricted dynamic feedback linearizable, find out the restricted dynamic feedback and state transformation.
(a) $\dot{x}=\left[\begin{array}{l}x_{2} \\ x_{3} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] u_{1}+\left[\begin{array}{c}x_{1}^{3} \\ 0 \\ 0 \\ 1+x_{1}\end{array}\right] u_{2}$
(b) $\dot{x}=\left[\begin{array}{c}x_{2} \\ x_{3} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] u_{1}+\left[\begin{array}{c}x_{2}^{3} \\ 0 \\ 0 \\ 1+x_{1}\end{array}\right] u_{2}$
(c) $\dot{x}=\left[\begin{array}{c}x_{2} \\ x_{3} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] u_{1}+\left[\begin{array}{c}x_{3} \\ 0 \\ 0 \\ 1+x_{3}\end{array}\right] u_{2}$
(d) $\dot{x}=\left[\begin{array}{c}x_{2} \\ x_{3} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] u_{1}+\left[\begin{array}{c}x_{3}^{2} \\ 0 \\ 0 \\ 1+x_{3}\end{array}\right] u_{2}$
(e) $\dot{x}=\left[\begin{array}{c}x_{2} \\ x_{3}+x_{2}^{2} \\ x_{1}^{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] u$
(f) $\dot{x}=\left[\begin{array}{c}x_{2} \\ x_{3} \\ 0 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right] u_{1}+\left[\begin{array}{c}0 \\ x_{3} \\ 0 \\ 1 \\ 0\end{array}\right] u_{2}+\left[\begin{array}{c}x_{2}^{2} \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right] u_{3}$

6-7. Consider the following systems that are not reachable on a neighborhood of $0 \in \mathbb{R}^{n}$. Show that they are restricted dynamic feedback linearizable. Also, find out the restricted dynamic feedback and extended state transformation.
(a)

$$
\dot{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{2} \\
0 \\
1
\end{array}\right] u_{2}
$$

(b)

$$
\dot{x}=\left[\begin{array}{c}
0 \\
x_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
x_{3} \\
0 \\
0 \\
1
\end{array}\right] u_{2}
$$

6-8. Define the dynamic feedback linearization problem of the discrete time control systems. In other words, obtain the discrete version of Definition 6.1.
6-9. Define the restricted dynamic feedback linearization problem of the discrete time control systems. In other words, obtain the discrete version of Definition 6.2.
6-10. Find out the necessary and sufficient conditions for the discrete time control systems to be restricted dynamic feedback linearizable. In other words, obtain the discrete version of Theorem 6.2.

Chapter 7
 Linearization of Discrete Time Control Systems

7.1 Introduction

In Chaps. 3-6, we have discussed the linearization of continuous nonlinear control systems. The following four different linearization problems can be defined depending on the use of feedback and the consideration of output.

- State equivalence to a linear system without the output.
- Feedback linearization without the output.
- State equivalence to a linear system with the output.
- Feedback linearization with the output.

In this chapter, it will be shown that the idea of linearization can be applied to the discrete time nonlinear control systems. The discrete version of Chap. 6 can also be found in (E12).

Example 7.1.1 Consider the following discrete linear control system:

$$
\left[\begin{array}{l}
z_{1}(t+1) \tag{7.1}\\
z_{2}(t+1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)=\tilde{f}(z(t), u(t))
$$

Find the state equation in x-coordinates with state transformation

$$
\left[\begin{array}{l}
x_{1} \tag{7.2}\\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
z_{1}+z_{2}^{2} \\
z_{2}
\end{array}\right] \triangleq S(z)
$$

Solution It is clear that

$$
\left[\begin{array}{l}
z_{1} \tag{7.3}\\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{2}^{2} \\
x_{2}
\end{array}\right]=S^{-1}(x)
$$

Thus, we have

$$
\begin{aligned}
x_{1}(t+1) & =z_{1}(t+1)+z_{2}(t+1)^{2}=z_{2}(t)+\left(z_{1}(t)+u(t)\right)^{2} \\
& =x_{2}(t)+\left\{x_{1}(t)-x_{2}(t)^{2}+u(t)\right\}^{2} \\
x_{2}(t+1) & =z_{2}(t+1)=z_{1}(t)+u(t)=x_{1}(t)-x_{2}(t)^{2}+u(t)
\end{aligned}
$$

or

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right] } & =S \circ \tilde{f}\left(S^{-1}(x(t)), u(t)\right) \\
& =\left[\begin{array}{c}
x_{2}(t)+\left\{x_{1}(t)-x_{2}(t)^{2}+u(t)\right\}^{2} \\
x_{1}(t)-x_{2}(t)^{2}+u(t)
\end{array}\right] \tag{7.4}
\end{align*}
$$

In the above example, we have obtained the nonlinear system (7.4) from a linear system (7.1) with a state transformation (7.2). Conversely, we can obtain, by using state transformation (7.3), the linear system (7.1) from a nonlinear system (7.4). System (7.4) is not an affine system, whereas the system (7.1) is affine. Unlike the continuous case, the state equivalent system to a discrete linear system may not be affine. Therefore, for the linearization problems of the discrete systems, the general nonlinear systems should be considered. For the feedback linearization problems, the general feedback $u=\gamma(x, v)$ should also be used rather than the affine form $u=\alpha(x)+\beta(x) v$. Consider the following discrete nonlinear control system:

$$
\begin{align*}
x(t+1) & =F(x(t), u(t)) \triangleq F_{u}(x) \\
y(t) & =h(x(t)) \tag{7.5}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{q}$, and $F(x, u): \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ and $h(x)$ are smooth functions with $f(0,0)=0$ and $h(0)=0$.

Definition 7.1 (state equivalence to a linear system)
System (7.5) is said to be state equivalent to a linear system if there exists a state transformation $z=S(x)$ such that

$$
\begin{align*}
z(t+1) & =A z(t)+B u(t) \\
y(t) & =h \circ S^{-1}(z(t)) \tag{7.6}
\end{align*}
$$

or

$$
\begin{equation*}
\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=A z+B u \tag{7.7}
\end{equation*}
$$

where

$$
\operatorname{rank}\left(\left[B A B \cdots A^{n-1} B\right]\right)=n
$$

Definition 7.2 (state equivalence to a linear system with output)
System (7.5) is said to be state equivalent to a linear system with output if there exists a state transformation $z=S(x)$ such that

$$
\begin{aligned}
z(t+1) & =A z(t)+B u(t) \\
y(t) & =C z(t)
\end{aligned}
$$

or

$$
\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=A z+B u ; \quad \tilde{h}(z) \triangleq h \circ S^{-1}(z)=C z
$$

where

$$
\operatorname{rank}\left(\left[B A B \cdots A^{n-1} B\right]\right)=n
$$

Definition 7.3 (feedback linearization)
System (7.5) is said to be feedback linearizable if there exist a nonsingular feedback $u=\gamma(x, v)\left(\operatorname{det}\left\{\frac{\partial \gamma(x, v)}{\partial v}\right\} \neq 0\right)$ and a state transformation $z=S(x)$ such that the closed-loop system satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\begin{aligned}
z(t+1) & =\left[\begin{array}{cccc}
A_{11} & O & \cdots & O \\
O & A_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & A_{m m}
\end{array}\right] z(t)+\left[\begin{array}{cccc}
B_{11} & O & \cdots & O \\
O & B_{22} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & B_{m m}
\end{array}\right] v(t) \\
& =A z(t)+B v(t)
\end{aligned}
$$

or

$$
\tilde{F}_{v}(z) \triangleq S \circ F\left(S^{-1}(z), \gamma\left(S^{-1}(z), v\right)\right)=A z+B v
$$

where $\sum_{i=1}^{m} \kappa_{i}=n, z=\left[\begin{array}{c}z^{1} \\ \vdots \\ z^{m}\end{array}\right], z^{i}=\left[\begin{array}{c}z_{1}^{i} \\ \vdots \\ z_{\kappa_{i}}^{i}\end{array}\right]$, and

$$
A_{i i}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]\left(\kappa_{i} \times \kappa_{i}\right), \quad B_{i i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]\left(\kappa_{i} \times 1\right) .
$$

Fig. 7.1 Linearization of discrete time system by state transformation

Fig. 7.2 Discrete state equivalence to a linear system with output

Definition 7.4 (feedback linearization with output)
System (7.5) is said to be feedback linearizable with output if there exist a nonsingular feedback $u=\gamma(x, v)\left(\operatorname{det}\left\{\frac{\partial \gamma(x, v)}{\partial v}\right\} \neq 0\right)$ and a state transformation $z=S(x)$ such that the closed-loop system satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\begin{align*}
z(t+1) & =A z(t)+B v(t) \\
y(t) & =C z(t) \tag{7.8}
\end{align*}
$$

or

$$
\begin{aligned}
\tilde{F}_{v}(z) & \triangleq S \circ F\left(S^{-1}(z), \gamma\left(S^{-1}(z), v\right)\right)=A z+B v \\
\tilde{h}(z) & \triangleq h \circ S^{-1}(z)=C z
\end{aligned}
$$

where A and B are defined in Definition 7.3 and C is a $q \times n$ constant matrix.
Block diagrams of the linearization problems defined above are shown in Figs. 7.1, $7.2,7.3$, and 7.4. The state equation of the continuous system is a differential equation, whereas that of the discrete system is a difference equation. Therefore, the conditions for discrete linearization problems are very different from those for the continuous case. Suppose that $z=S(x)$ is a state transformation. Then, it is easy to see that system (7.5) satisfies, in z-coordinates,

Fig. 7.3 Feedback linearization of discrete time system

Fig. 7.4 Feedback linearization of discrete time system with output

$$
\begin{align*}
z(t+1) & =S(x(t+1))=S \circ F_{u(t)}(x(t)) \tag{7.9}\\
& =S \circ F_{u(t)} \circ S^{-1}(z(t)) \triangleq \tilde{F}_{u(t)}(z(t))
\end{align*}
$$

For the continuous system, the vector fields $f(x)$ and $g_{j}(x)$ are $S_{*}(f(x))$ and $S_{*}\left(g_{j}(x)\right)$ in z-coordinates when $z=S(x)$. (Refer to (3.4) and (3.27).) And we use that $S_{*}\left(\operatorname{ad}_{f}^{k} g_{j}(x)\right), 1 \leq j \leq m, k \geq 0$, are constant vector fields when linearizable. In other words, if $S_{*}(f(x))=A z$ and $S_{*}\left(g_{j}(x)\right)=b_{j}$, then we have that for $1 \leq j \leq$ m and $k \geq 0$,

$$
S_{*}\left(\operatorname{ad}_{f}^{k} g_{j}(x)\right)=(-1)^{k} A^{k} b_{j} .
$$

For discrete system (7.5), the right-hand side of the state equation is, in z-coordinates, the composite function

$$
\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)
$$

Let $F_{0}^{0}(x)=x, \hat{F}_{u}^{0}(x)=x$, and for $k \geq 1$,

$$
\begin{equation*}
F_{0}^{k}=F_{0}^{k-1} \circ F_{0}(x) \text { and } \hat{F}_{u}^{k}(x)=F_{0}^{k-1} \circ F_{u}(x) \tag{7.10}
\end{equation*}
$$

Example 7.1.2 Show that discrete system (7.5) satisfies

$$
\begin{aligned}
x(t+k) & =F_{u(t+k-1)} \circ \cdots \circ F_{u(t)}(x(t)) \\
y(k) & =h \circ F_{u(k-1)} \circ \cdots \circ F_{u(0)}(x(0)) .
\end{aligned}
$$

Solution Omitted. (See Problem 7.1.)
Example 7.1.3 Suppose that $F_{u}(x)=A x+B u$. Show that

$$
\begin{gathered}
F_{u^{1}} \circ \cdots \circ F_{u^{k}}(x)=A^{k} x+\sum_{\ell=1}^{k} A^{\ell-1} B u^{\ell} \\
\left(F_{u^{1}} \circ \cdots \circ F_{u^{k}}(0)=\sum_{\ell=1}^{k} A^{\ell-1} B u^{\ell}\right)
\end{gathered}
$$

and

$$
\hat{F}_{u}^{k}(x)=A^{k} x+A^{k-1} B u .
$$

Solution Omitted. (See Problem 7.2.)
Example 7.1.4 Suppose that $\tilde{F}_{u}(z)=S \circ F_{u} \circ S^{-1}(z)$ and $S(0)=0$. Show that for $i \geq 1$,

$$
\begin{aligned}
& F_{u^{1}} \circ \cdots \circ F_{u^{i}}(x)=S^{-1} \circ \tilde{F}_{u^{1}} \circ \cdots \circ \tilde{F}_{u^{i}} \circ S(x) \\
& F_{u^{1}} \circ \cdots \circ F_{u^{i}}(0)=S^{-1} \circ \tilde{F}_{u^{1}} \circ \cdots \circ \tilde{F}_{u^{i}}(0)
\end{aligned}
$$

and

$$
\hat{F}_{u}^{i}(x)=S^{-1} \circ \hat{\tilde{F}}_{u}^{i} \circ S(x)
$$

Solution Omitted. (See Problem 7.3.)

7.2 Single Input Discrete Time Systems

In this section, we consider the following single input discrete nonlinear system:

$$
\begin{equation*}
x(t+1)=F(x(t), u(t)) \triangleq F_{u(t)}(x(t)) \tag{7.11}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}$, and $F(x, u): \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is a smooth function with $F(0,0)=$ 0 . Let us define composite functions $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\mathcal{F}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ as follows:

$$
\begin{align*}
\Psi(U) & =\Psi\left(u^{1}, \ldots, u^{n}\right) \triangleq F_{u^{1}} \circ F_{u^{2}} \circ \cdots \circ F_{u^{n}}(0) \tag{7.12}\\
\mathcal{F}(\tilde{U}) & =\mathcal{F}\left(u^{1}, \ldots, u^{n+1}\right) \triangleq F_{u^{1}} \circ \cdots \circ F_{u^{n}} \circ F_{u^{n+1}}(0) \\
& =F_{u^{1}} \circ \Psi\left(u^{2}, \ldots, u^{n+1}\right) \tag{7.13}
\end{align*}
$$

where

$$
U \triangleq\left[u^{1} \cdots u^{n}\right]^{\top} \text { and } \tilde{U} \triangleq\left[u^{1} \cdots u^{n} u^{n+1}\right]^{\top}
$$

It is clear that

$$
\begin{equation*}
\Psi\left(u^{1}, \ldots, u^{n}\right)=\mathcal{F}\left(u^{1}, \ldots, u^{n}, 0\right) \tag{7.14}
\end{equation*}
$$

If $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular, then $\operatorname{ker} \Psi_{*}=\operatorname{span}\{0\}$. Thus, it is clear, by Theorem 2.6, that $\Psi_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq n$ are well-defined vector fields and

$$
\Psi_{*}\left(\frac{\partial}{\partial u^{i}}\right)=\left.\frac{\partial \Psi(U)}{\partial u^{i}}\right|_{U=\Psi^{-1}(z)}
$$

However, $\mathcal{F}(\tilde{U})$ is not $1-1$ and $\operatorname{ker} \mathcal{F}_{*} \neq \operatorname{span}\{0\}$. Therefore, if

$$
\left[\frac{\partial}{\partial u^{i}}, \operatorname{ker} \mathcal{F}_{*}\right] \not \subset \operatorname{ker} \mathcal{F}_{*},
$$

then $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)$ is not a well-defined vector field. Suppose that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)$ is a well-defined vector field. Then, it is clear, by Definition 2.11, that

$$
\frac{\partial \mathcal{F}\left(U, u^{n+1}\right)}{\partial u^{i}}=\left.\frac{\partial \mathcal{F}\left(U, u^{n+1}\right)}{\partial u^{i}}\right|_{\tilde{U}=\left[\begin{array}{l}
U \\
0
\end{array}\right]}
$$

where $z=\mathcal{F}\left(U, u^{n+1}\right)=\mathcal{F}(U, 0)=\Psi(U)$. Therefore, we have, by Definition 2.12, that

$$
\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)=\left.\frac{\partial \mathcal{F}\left(U, u^{n+1}\right)}{\partial u^{i}}\right|_{\left[\begin{array}{c}
U \tag{7.15}\\
u^{n+1}
\end{array}\right]=\left[\begin{array}{c}
\Psi^{-1}(z) \\
0
\end{array}\right]} .
$$

Example 7.2.1 Let $F_{u}(x)=\left[\begin{array}{c}x_{2} \\ x_{1} x_{2}+u\end{array}\right]$. Find out $\Psi_{*}\left(\frac{\partial}{\partial u^{1}}\right), \Psi_{*}\left(\frac{\partial}{\partial u^{2}}\right), \mathcal{F}_{*}\left(\frac{\partial}{\partial u^{1}}\right)$, and $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{3}}\right)$. Also, show that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{2}}\right)$ is not a well-defined vector field.

Solution It is clear that

$$
\begin{aligned}
\mathcal{F}\left(u^{1}, u^{2}, u^{3}\right) & \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
0 \\
u^{3}
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{l}
u^{3} \\
u^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
u^{2} \\
u^{2} u^{3}+u^{1}
\end{array}\right]
\end{aligned}
$$

and

$$
\Psi\left(u^{1}, u^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)=\mathcal{F}\left(u^{1}, u^{2}, 0\right)=\left[\begin{array}{c}
u^{2} \\
u^{1}
\end{array}\right]
$$

Since $\frac{\partial \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right)}{\partial \tilde{U}}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & u^{3} & u^{2}\end{array}\right]$, we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{-u^{2} \frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}\right\}
$$

and

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial u^{i}},-u^{2} \frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*}, \text { for } i=1,3} \\
& {\left[\frac{\partial}{\partial u^{2}},-u^{2} \frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}\right]=-\frac{\partial}{\partial u^{1}} \notin \operatorname{ker} \mathcal{F}_{*} .}
\end{aligned}
$$

Thus, it is clear, by Theorem 2.6, that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{2}}\right)$ is not a well-defined vector field. Finally, it is easy to see that

$$
\begin{aligned}
& \Psi_{*}\left(\frac{\partial}{\partial u^{1}}\right)=\left.\frac{\partial \Psi\left(u^{1}, u^{2}\right)}{\partial u^{1}}\right|_{\left[\begin{array}{l}
u^{1} \\
u^{2}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{1}
\end{array}\right]}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{\partial}{\partial z_{2}} \\
& \Psi_{*}\left(\frac{\partial}{\partial u^{2}}\right)=\left.\frac{\partial \Psi\left(u^{1}, u^{2}\right)}{\partial u^{2}}\right|_{\left[\begin{array}{c}
u^{1} \\
u^{2}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{1}
\end{array}\right]}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{\partial}{\partial z_{1}} \\
& \mathcal{F}_{*}\left(\frac{\partial}{\partial u^{1}}\right)=\left.\frac{\partial \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right)}{\partial u^{1}}\right|_{\left[\begin{array}{c}
u^{1} \\
u^{2} \\
u^{3}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{1} \\
0
\end{array}\right]}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{\partial}{\partial z_{2}} \\
& \mathcal{F}_{*}\left(\frac{\partial}{\partial u^{3}}\right)=\left.\frac{\partial \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right)}{\partial u^{3}}\right|_{\left[\begin{array}{c}
u^{1} \\
u^{2} \\
u^{3}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{1} \\
0
\end{array}\right]}=\left[\begin{array}{c}
0 \\
z_{1}
\end{array}\right]=z_{1} \frac{\partial}{\partial z_{2}} .
\end{aligned}
$$

Example 7.2.2 Let $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ be nonsingular. Suppose that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)$ is a welldefined vector field for $1 \leq i \leq n$. Show that for $1 \leq i \leq n$,

$$
\begin{equation*}
\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)=\Psi_{*}\left(\frac{\partial}{\partial u^{i}}\right) \tag{7.16}
\end{equation*}
$$

Solution Suppose that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)$ is a well-defined vector field for $1 \leq i \leq n$. Then, it is easy to see, by (7.15), that for $1 \leq i \leq n$,

$$
\begin{aligned}
\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right) & =\left.\frac{\partial \mathcal{F}\left(U, u^{n+1}\right)}{\partial u^{i}}\right|_{\left[\begin{array}{c}
U \\
u^{n+1}
\end{array}\right]=\left[\begin{array}{c}
\Psi^{-1}(z) \\
0
\end{array}\right]} \\
& =\left.\frac{\partial F_{u^{1}} \circ \cdots \circ F_{u^{n}} \circ F_{u^{n+1}}(0)}{\partial u^{i}}\right|_{\left[\begin{array}{c}
U \\
u^{n+1}
\end{array}\right]=\left[\begin{array}{c}
\Psi^{-1}(z) \\
0
\end{array}\right]} \\
& =\left.\frac{\partial F_{u^{1}} \circ \cdots \circ F_{u^{n}}(0)}{\partial u^{i}}\right|_{U=\Psi^{-1}(z)}=\Psi_{*}\left(\frac{\partial}{\partial u^{i}}\right) .
\end{aligned}
$$

Theorem 7.1 (conditions for state equivalence to a linear system) System (7.11) is state equivalent to a linear system, if and only if
(i) $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular.
(ii) $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq n+1$, are well-defined vector fields or

$$
\begin{equation*}
\left[\frac{\partial}{\partial u^{i}}, \operatorname{ker} \mathcal{F}_{*}\right] \subset \operatorname{ker} \mathcal{F}_{*}, 1 \leq i \leq n+1 \tag{7.17}
\end{equation*}
$$

Furthermore, $z=S(x)=\Psi^{-1}(x)$ is a linearizing state transformation.
Proof Necessity. Suppose that system (7.11) is state equivalent to a linear system with state transformation $z=S(x)$. Then we have

$$
\begin{align*}
z(t+1) & =S \circ F_{u(t)} \circ S^{-1}(z(t)) \\
& \triangleq \tilde{F}_{u(t)}(z(t))=A z(t)+b u(t) \tag{7.18}
\end{align*}
$$

where

$$
\begin{equation*}
\operatorname{rank}\left(\left[b A b \cdots A^{n-1} b\right]\right)=n \tag{7.19}
\end{equation*}
$$

Since $F_{u}(x)=S^{-1} \circ \tilde{F}_{u} \circ S(x), \tilde{F}_{u}(z)=A z+b u$, and $S(0)=0$, it is easy to see, by Examples 7.1.3 and 7.1.4, that

$$
\begin{align*}
\Psi\left(u^{1}, \ldots, u^{n}\right) & =S^{-1}\left(A^{n-1} b u^{n}+\cdots+b u^{1}\right) \\
\mathcal{F}\left(u^{1}, \ldots, u^{n+1}\right) & =S^{-1}\left(A^{n} b u^{n+1}+\cdots+b u^{1}\right) \tag{7.20}
\end{align*}
$$

which implies that

$$
\left.\frac{\partial \Psi\left(u^{1}, \ldots, u^{n}\right)}{\partial U}\right|_{U=0}=\left.\frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0}\left[b A b \cdots A^{n-1} b\right]
$$

where $U=\left[\begin{array}{llll}u^{1} & u^{2} & \cdots & u^{n}\end{array}\right]^{\top}$. Since $\left.\frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0}$ is nonsingular, it is clear, by (7.19), that $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular. Also, it is clear, by (7.20), that

$$
\begin{equation*}
\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right)=\left(S^{-1}\right)_{*}\left(A^{i-1} b\right), 1 \leq i \leq n+1 \tag{7.21}
\end{equation*}
$$

which implies that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq n+1$, are well-defined vector fields and (7.17) is, by Theorem 2.6, satisfied.

Sufficiency. Suppose that system (7.11) satisfies conditions (i) and (ii). By condition (i), it is clear that $z=S(x)=\Psi^{-1}(x)$ is a state transformation on a neighborhood of the origin. We will show that system (7.11) satisfies, in z-coordinates, a linear system. In other words, we will show that

$$
\begin{equation*}
\tilde{F}_{u}(z) \triangleq \Psi^{-1} \circ F_{u} \circ \Psi(z)=A z+b u \tag{7.22}
\end{equation*}
$$

for some constant matrices A and b. If we let

$$
\begin{equation*}
Y^{i}=\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq n+1, \tag{7.23}
\end{equation*}
$$

then we have, by Theorem 2.4 and (7.16), that for $1 \leq i \leq n+1$ and $1 \leq j \leq n+1$,

$$
\begin{equation*}
\left[Y^{i}, Y^{j}\right]=\mathcal{F}_{*}\left(\left[\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right]\right)=\mathcal{F}_{*}(0)=0 \tag{7.24}
\end{equation*}
$$

and for $1 \leq i \leq n$,

$$
\begin{equation*}
\Psi_{*}\left(\frac{\partial}{\partial u^{i}}\right)=Y^{i} \tag{7.25}
\end{equation*}
$$

Thus, it is clear, by condition (i), that $\left\{Y^{1}, Y^{2}, \ldots, Y^{n}\right\}$ is a set of linearly independent vector fields on a neighborhood of the origin. Also, we have, by (7.24) and Example 2.4.20, that

$$
\begin{equation*}
Y^{n+1}=\sum_{i=1}^{n} a_{i} Y^{i} \tag{7.26}
\end{equation*}
$$

for some constant $a_{i} \in \mathbb{R}$. It is easy to see, by (7.13), that $F_{u} \circ \Psi(z)=\mathcal{F}(u, z)$ and

$$
\begin{equation*}
\tilde{F}(z, u) \triangleq \tilde{F}_{u}(z)=\Psi^{-1} \circ F_{u} \circ \Psi(z)=\Psi^{-1} \circ \mathcal{F}(u, z) \tag{7.27}
\end{equation*}
$$

Thus, we have, by (7.23), (7.25), and (7.27), that

$$
\begin{align*}
\tilde{F}(z, u)_{*}\left(\frac{\partial}{\partial u}\right) & =\left(\Psi^{-1} \circ \mathcal{F}(u, z)\right)_{*}\left(\frac{\partial}{\partial u}\right)=\left(\Psi^{-1}\right)_{*}(\mathcal{F}(u, z))_{*}\left(\frac{\partial}{\partial u}\right) \\
& =\left(\Psi^{-1}\right)_{*}\left(Y^{1}\right)=\frac{\partial}{\partial z_{1}} \tag{7.28}
\end{align*}
$$

Similarly, it is easy to see, by (7.23), (7.25), (7.26), and (7.27), that for $1 \leq i \leq n-1$,

$$
\begin{align*}
\tilde{F}(z, u)_{*}\left(\frac{\partial}{\partial z_{i}}\right) & =\left(\Psi^{-1} \circ \mathcal{F}(u, z)\right)_{*}\left(\frac{\partial}{\partial z_{i}}\right) \tag{7.29}\\
& =\left(\Psi^{-1}\right)_{*}\left(Y^{i+1}\right)=\frac{\partial}{\partial z_{i+1}}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{F}(z, u)_{*}\left(\frac{\partial}{\partial z_{n}}\right) & =\left(\Psi^{-1} \circ \mathcal{F}(u, z)\right)_{*}\left(\frac{\partial}{\partial z_{n}}\right)=\left(\Psi^{-1}\right)_{*}\left(Y^{n+1}\right) \\
& =\left(\Psi^{-1}\right)_{*}\left(\sum_{i=1}^{n} a_{i} Y^{i}\right)=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial z_{i}} \tag{7.30}
\end{align*}
$$

Therefore, it is clear, by (7.28)-(7.30), that

$$
\tilde{F}(z, u)=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{1} \tag{7.31}\\
1 & 0 & \cdots & 0 & a_{2} \\
0 & 1 & \cdots & 0 & a_{3} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & a_{n}
\end{array}\right] z+\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] u
$$

It is easy to see, by (7.14), that $\left.\frac{\partial \mathcal{F}(\tilde{U})}{\partial U}\right|_{\tilde{U}=O}=\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=O}$. Thus, if condition (i) of Theorem 7.1 is satisfied, then it is clear that $\frac{\partial \mathcal{F}(\tilde{U})}{\partial \tilde{U}}=\left[\frac{\partial \mathcal{F}(\tilde{U})}{\partial U} \frac{\partial \mathcal{F}(\tilde{U})}{\partial u^{n+1}}\right]$ and

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{\left[\begin{array}{c}
-\left(\frac{\partial \mathcal{F}(\tilde{U})}{\partial U}\right)^{-1} \frac{\partial \mathcal{F}(\tilde{U})}{\partial u^{n+1}} \tag{7.32}\\
1
\end{array}\right]\right\} .
$$

(Refer to MATLAB subfunction ker-sF.)

Example 7.2.3 Show that the following discrete time system is state equivalent to a linear system:

$$
\left[\begin{array}{l}
x_{1}(t+1) \tag{7.33}\\
x_{2}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t)-u(t)^{2} \\
u(t)
\end{array}\right]=F(x(t), u(t))=F_{u(t)}(x(t)) .
$$

Solution It is easy to see, by (7.13) and (7.14), that

$$
\begin{aligned}
\mathcal{F}\left(u^{1}, u^{2}, u^{3}\right) & \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
-\left(u^{3}\right)^{2} \\
u^{3}
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{c}
u^{3}-\left(u^{2}\right)^{2} \\
u^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
u^{2}-\left(u^{1}\right)^{2} \\
u^{1}
\end{array}\right]
\end{aligned}
$$

and

$$
\Psi\left(u^{1}, u^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)=\mathcal{F}\left(u^{1}, u^{2}, 0\right)=\left[\begin{array}{c}
u^{2}-\left(u^{1}\right)^{2} \\
u^{1}
\end{array}\right]
$$

Since $\operatorname{det}\left(\frac{\partial \Psi(U)}{\partial U}\right)=\operatorname{det}\left(\left[\begin{array}{cc}-2 u^{1} & 1 \\ 1 & 0\end{array}\right]\right)=-1 \neq 0$, condition (i) of Theorem 7.1 is satisfied. Since $\frac{\partial \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right)}{\partial \tilde{U}}=\left[\begin{array}{ccc}-2 u^{1} & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$, we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{\frac{\partial}{\partial u^{3}}\right\}
$$

and for $1 \leq i \leq 3$,

$$
\left[\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{3}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq 3$, are well-defined vector fields and condition (ii) of Theorem 7.1 is satisfied. Hence, by Theorem 7.1, system (7.33) is state equivalent to a linear system. Let

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\Psi^{-1}(x)=\left[\begin{array}{c}
x_{2} \\
x_{1}+x_{2}^{2}
\end{array}\right] .
$$

Then it is easy to see that

$$
\tilde{F}_{u}(z)=S \circ F_{u} \circ S^{-1}(z)=S\left(\left[\begin{array}{c}
z_{1}-u^{2} \\
u
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u .
$$

Theorem 7.1 is the discrete version of Theorem 3.1. Even though the reachability condition (i) is the same, the condition (ii) is quite different. For a discrete system, $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq n+1$, may not be well-defined vector fields. If they are well-defined vector fields, then they commute. Another difference is that the partial differential equation must be solved to obtain a linearizing state transformation for a continuous system. But in the case of a discrete system, it can be obtained directly as $z=S(x)=\Psi^{-1}(x)$.

Example 7.2.4 Show that the following discrete time system is not state equivalent to a linear system:

$$
\left[\begin{array}{l}
x_{1}(t+1) \tag{7.34}\\
x_{2}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t) \\
x_{1}(t)^{2}+u(t)
\end{array}\right]=F_{u(t)}(x(t))
$$

Solution It is easy to see, by (7.13) and (7.14), that

$$
\begin{aligned}
\mathcal{F}\left(u^{1}, u^{2}, u^{3}\right) & \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
0 \\
u^{3}
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{l}
u^{3} \\
u^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
u^{2} \\
u^{1}+\left(u^{3}\right)^{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\Psi\left(u^{1}, u^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)=\mathcal{F}\left(u^{1}, u^{2}, 0\right)=\left[\begin{array}{c}
u^{2} \\
u^{1}
\end{array}\right] .
$$

Since $\operatorname{det}\left(\frac{\partial \Psi(U)}{\partial U}\right)=\operatorname{det}\left(\left[\begin{array}{cc}-2 u^{1} & 1 \\ 1 & 0\end{array}\right]\right)=-1 \neq 0$, condition (i) of Theorem 7.1 is satisfied. Since $\frac{\partial \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right)}{\partial \tilde{U}}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 2 u^{3}\end{array}\right]$, we have, by (7.32), that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{-2 u^{3} \frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}\right\}
$$

and

$$
\left[\frac{\partial}{\partial u^{3}}, \quad-2 u^{3} \frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}\right]=-2 \frac{\partial}{\partial u^{1}} \notin \operatorname{ker} \mathcal{F}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{3}}\right)$ is not a well-defined vector field and condition (ii) of Theorem 7.1 is not satisfied. Hence, by Theorem 7.1, system (7.34) is not state equivalent to a linear system.

It is clear that system (7.34) is linearizable by using feedback $u(t)=-x_{1}(t)^{2}+$ $v(t)$. In the following, the discrete version of Theorem 4.1 will be obtained.

Example 7.2.5 Suppose that for $0 \leq i \leq n-1$,

$$
\begin{equation*}
\frac{\partial}{\partial u}\left(S_{1} \circ \hat{F}_{u}^{i}(x)\right)=0 ;\left.\quad \frac{\partial}{\partial u}\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)\right|_{(0,0)} \neq 0 \tag{7.35}
\end{equation*}
$$

Show that

$$
\operatorname{rank}\left(\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\left.\partial x_{0}(x)\right)} \tag{7.36}\\
\frac{\partial\left(S_{1} \circ F_{0}\right.}{\partial x} \\
\vdots \\
\frac{\partial\left(S_{1} \circ F_{0}^{n-1}(x)\right)}{\partial x}
\end{array}\right]\right)=n
$$

and

$$
\begin{align*}
& \operatorname{rank}\left(\left.\left[\frac{\partial F_{u}(x)}{\partial u} \frac{\partial F_{0}(x)}{\partial x} \frac{\partial F_{u}(x)}{\partial u} \cdots\left(\frac{\partial F_{0}(x)}{\partial x}\right)^{n-1} \frac{\partial F_{u}(x)}{\partial u}\right]\right|_{(0,0)}\right) \tag{7.37}\\
& =\operatorname{rank}\left(\left.\frac{\partial}{\partial U} \Psi(U)\right|_{U=0}\right)=n .
\end{align*}
$$

Solution It is easy to see, by (7.12) and chain rule, that for $1 \leq i \leq n$,

$$
\begin{aligned}
& \left.\frac{\partial}{\partial u^{i}} \Psi(U)\right|_{U=0}=\left.\frac{\partial}{\partial u^{i}}\left(F_{u^{1}} \circ F_{u^{2}} \circ \cdots F_{u^{n}}(0)\right)\right|_{U=0} \\
& \quad=\left.\left.\left.\frac{\partial F_{u^{1}}(x)}{\partial x}\right|_{(0,0)} \cdots \frac{\partial F_{u^{i-1}}(x)}{\partial x}\right|_{(0,0)} \frac{\partial F_{u^{i}}(x)}{\partial u^{i}}\right|_{(0,0)} \\
& \quad=\left.\left(\left.\frac{\partial F_{0}(x)}{\partial x}\right|_{(0,0)}\right)^{n-1} \frac{\partial F_{u}(x)}{\partial u}\right|_{(0,0)}
\end{aligned}
$$

which implies that

$$
\left.\frac{\partial}{\partial U} \Psi(U)\right|_{U=0}=\left.\left[\frac{\partial F_{u}(x)}{\partial u} \frac{\partial F_{0}(x)}{\partial x} \frac{\partial F_{u}(x)}{\partial u} \cdots\left(\frac{\partial F_{0}(x)}{\partial x}\right)^{n-1} \frac{\partial F_{u}(x)}{\partial u}\right]\right|_{(0,0)}
$$

Also, it is easy to see, by (7.35) and chain rule, that

$$
\begin{aligned}
& {\left[\begin{array}{c}
\frac{\partial S_{1}(x)}{\partial x} \\
\frac{\partial S_{1} \circ F_{0}(x)}{\partial x} \\
\vdots \\
\frac{\partial S_{1} \circ F_{0}^{n-1}(x)}{\partial x}
\end{array}\right]\left[\frac{\partial F_{u}(x)}{\partial u} \frac{\partial F_{0}(x)}{\partial x} \frac{\partial F_{u}(x)}{\partial u} \cdots\left(\frac{\partial F_{0}(x)}{\partial x}\right)^{n-1}\right.} \\
& \left.\frac{\partial F_{u}(x)}{\partial u}\right]\left.\right|_{(0,0)} \\
& =\left[\left.\begin{array}{cccc}
\frac{\partial\left(S_{1} \circ \hat{F}_{u}(x)\right)}{\partial u} & \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{2}(x)\right)}{\partial u} & \cdots & \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)}{\partial u} \\
\vdots & \vdots & \vdots \\
\frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n-1}(x)\right)}{\partial u} & \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)}{\partial u} & \cdots & \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{2 n-2}(x)\right)}{\partial u} \\
\frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)}{\partial u} & \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n+1}(x)\right)}{\partial u} & \cdots & \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{2 n-1}(x)\right)}{\partial u}
\end{array}\right|_{(0,0)}\right. \\
& 0 \\
& =\left[\begin{array}{ccc}
0 & \cdots & \left.\cdots \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)}{\partial u}\right|_{(0,0)} \\
0 & \left.\begin{array}{c}
\left.\frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)}{\partial u}\right|_{(0,0)} \\
\cdots
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

Since the matrix of the right-hand side has rank n, it is clear that (7.36) and (7.37) are satisfied.

Lemma 7.1 System (7.11) is feedback linearizable, if and only if there exists a scalar smooth function $S_{1}(x)$ such that
(i) $\frac{\partial}{\partial u}\left(S_{1} \circ \hat{F}_{u}^{i}(x)\right)=0,1 \leq i \leq n-1$.
(ii) $\left.\frac{\partial}{\partial u}\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)\right|_{(0,0)} \neq 0$.

Furthermore, state transformation $z=S(x)$ and feedback $u=\gamma(x, v)$ satisfy

$$
\begin{equation*}
z=S(x)=\left[S_{1}(x) S_{1} \circ F_{0}(x) \cdots S_{1} \circ F_{0}^{n-1}(x)\right]^{\top} \tag{7.38}
\end{equation*}
$$

and

$$
\begin{equation*}
v=S_{1} \circ F_{0}^{n-1} \circ F_{\gamma(x, v)}(x)=S_{1} \circ \hat{F}_{\gamma(x, v)}^{n}(x) . \tag{7.39}
\end{equation*}
$$

Proof Necessity. Suppose that system (7.11) is feedback linearizable. Then, there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=\gamma(x, v)$ $\left(\frac{\partial \gamma(x, v)}{\partial v} \neq 0\right)$ such that

$$
\tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=A z+b v .
$$

Thus, we have that

$$
\left[\begin{array}{c}
S_{1} \circ F_{\gamma(x, v)}(x) \\
\vdots \\
S_{n-1} \circ F_{\gamma(x, v)}(x) \\
S_{n} \circ F_{\gamma(x, v)}(x)
\end{array}\right]=A S(x)+b v=\left[\begin{array}{c}
S_{2}(x) \\
\vdots \\
S_{n}(x) \\
v
\end{array}\right] .
$$

In other words, for $1 \leq i \leq n-1$,

$$
S_{i+1}(x)=S_{i} \circ F_{\gamma(x, v)}(x)
$$

and

$$
v=S_{n} \circ F_{\gamma(x, v)}(x)
$$

which imply that for $1 \leq i \leq n-1$,

$$
0=\frac{\partial\left(S_{i} \circ F_{\gamma(x, v)}(x)\right)}{\partial v}=\left.\frac{\partial\left(S_{i} \circ F_{u}(x)\right)}{\partial u}\right|_{u=\gamma(x, v)} \frac{\partial \gamma(x, v)}{\partial v}
$$

and

$$
1=\frac{\partial\left(S_{n} \circ F_{\gamma(x, v)}(x)\right)}{\partial v}=\left.\frac{\partial\left(S_{n} \circ F_{u}(x)\right)}{\partial u}\right|_{u=\gamma(x, v)} \frac{\partial \gamma(x, v)}{\partial v} .
$$

Since $\frac{\partial \gamma(x, v)}{\partial v} \neq 0$, it is easy to see that for $1 \leq i \leq n-1$,

$$
S_{i+1}(x)=S_{i} \circ F_{0}(x) ; \quad \frac{\partial\left(S_{i} \circ F_{u}(x)\right)}{\partial u}=0
$$

and

$$
v=S_{n} \circ F_{\gamma(x, v)}(x) ; \quad \frac{\partial\left(S_{n} \circ F_{u}(x)\right)}{\partial u} \neq 0 .
$$

In other words, for $1 \leq i \leq n-1$,

$$
S_{i+1}(x)=S_{1} \circ F_{0}^{i}(x)=S_{1} \circ \hat{F}_{u}^{i}(x) ; \quad \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{i}(x)\right)}{\partial u}=0
$$

and

$$
v=S_{1} \circ \hat{F}_{\gamma(x, v)}^{n}(x) ; \quad \frac{\partial\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)}{\partial u} \neq 0
$$

which imply that conditions (i), (ii), (7.38), and (7.39) are satisfied.
Sufficiency. Suppose that there exists a scalar function $S_{1}(x)$ such that conditions (i) and (ii) are satisfied. Let us define $z=S(x)=\left[S_{1}(x) \cdots S_{n}(x)\right]^{\top}$ and feedback $u=\gamma(x, v)$ as (7.38) and (7.39), respectively. Then it is clear, by Example 7.2.5, that $z=S(x)$ is a state transformation. Also, it is easy to see, by conditions (i), (7.38), and (7.39), that

$$
\begin{aligned}
& \tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z) \\
& =\left[\begin{array}{c}
S_{1} \circ F_{\gamma(x, v)} \circ S^{-1}(z) \\
S_{1} \circ F_{0} \circ F_{\gamma(x, v)} \circ S^{-1}(z) \\
\vdots \\
S_{1} \circ F_{0}^{n-1} \circ F_{\gamma(x, v)} \circ S^{-1}(z)
\end{array}\right] \\
& =\left[\begin{array}{c}
S_{1} \circ \hat{F}_{\gamma(x, v)} \circ S^{-1}(z) \\
S_{1} \circ \hat{F}_{\gamma(x, v)}^{2} \circ S^{-1}(z) \\
\vdots \\
S_{1} \circ \hat{F}_{\gamma(x, v)}^{n} \circ S^{-1}(z)
\end{array}\right]=\left[\begin{array}{c}
S_{1} \circ \hat{F}_{0} \circ S^{-1}(z) \\
\vdots \\
S_{1} \circ \hat{F}_{0}^{n-1} \circ S^{-1}(z) \\
\left.S_{1} \circ \hat{F}_{\gamma(x, v)}^{n}(x)\right|_{x=S^{-1}(z)}
\end{array}\right] \\
& \\
& =\left[\begin{array}{c}
S_{1} \circ F_{0} \circ S^{-1}(z) \\
\vdots \\
S_{1} \circ F_{0}^{n-1} \circ S^{-1}(z) \\
\left.S_{1} \circ \hat{F}_{\gamma(x, v)}^{n}(x)\right|_{x=S^{-1}(z)}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n} \\
v
\end{array}\right] .
\end{aligned}
$$

By Lemma 7.1, the necessary and sufficient conditions for feedback linearization can be obtained as follows.

Theorem 7.2 (conditions for feedback linearization)
System (7.11) is feedback linearizable, if and only if
(i) $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular.
(ii) $\mathcal{F}_{*}\left(\Delta_{i}\right), 1 \leq i \leq n-1$, are well-defined involutive distributions or

$$
\begin{equation*}
\left[\frac{\partial}{\partial u^{i}}, \operatorname{ker} \mathcal{F}_{*}\right] \subset \operatorname{ker} \mathcal{F}_{*}+\Delta_{i}(\tilde{U}), 1 \leq i \leq n-1 \tag{7.40}
\end{equation*}
$$

where for $1 \leq i \leq n-1$

$$
\begin{equation*}
\Delta_{i}(\tilde{U})=\operatorname{span}\left\{\frac{\partial}{\partial u^{1}}, \ldots, \frac{\partial}{\partial u^{i}}\right\} . \tag{7.41}
\end{equation*}
$$

Proof Necessity. Suppose that system (7.11) is feedback linearizable. Then, by Lemma 7.1, there exists a smooth function $S_{1}(x)$ such that

$$
\begin{equation*}
\frac{\partial}{\partial u}\left(S_{1} \circ \hat{F}_{u}^{i}(x)\right)=0 ;\left.\quad \frac{\partial}{\partial u}\left(S_{1} \circ \hat{F}_{u}^{n}(x)\right)\right|_{(0,0)} \neq 0 \tag{7.42}
\end{equation*}
$$

Thus, by Example 7.2.5, condition (i) is satisfied. Let $\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)$, where

$$
z=S(x)=\left[S_{1}(x) S_{1} \circ F_{0}(x) \cdots S_{1} \circ F_{0}^{n-1}(x)\right]^{\top}
$$

Then it is easy to see, by (7.42), that $\left.\frac{\partial \alpha_{u}(z)}{\partial u}\right|_{(0,0)} \neq 0$ and for $2 \leq i \leq n+1$,

$$
\begin{aligned}
& \tilde{F}_{u}(z)=\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n} \\
\alpha_{u}(z)
\end{array}\right], \quad \tilde{F}_{u^{i}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0)=\left[\begin{array}{c}
O_{(i-2) \times 1} \\
\alpha_{u^{n}+1}(0) \\
\alpha_{u^{n}} \circ \tilde{F}_{u^{n+1}}(0) \\
\vdots \\
\tilde{\mathcal{F}}\left(u^{1}, \ldots, u^{n+1}\right) \triangleq \tilde{F}_{u^{1}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0) \\
\alpha_{u^{i+1}} \circ \tilde{F}_{u^{i+2}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0) \\
\alpha_{u^{i}} \circ \tilde{F}_{u^{i+1}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0)
\end{array}\right] \\
& \\
& =\left[\begin{array}{c}
\alpha_{u^{n}} \circ \tilde{F}_{u^{n+1}}(0) \\
\vdots \\
\alpha_{u^{2}} \circ \tilde{F}_{u^{3}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0) \\
\alpha_{u^{1}} \circ \tilde{F}_{u^{2}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0)
\end{array}\right]
\end{aligned}
$$

where $\alpha_{u}(z) \triangleq S_{1} \circ F_{0}^{n-1} \circ F_{u} \circ S^{-1}(z)=S_{1} \circ \hat{F}_{u}^{n} \circ S^{-1}(z)$. Thus, it is easy to see that for $1 \leq i \leq n$,

$$
\tilde{\mathcal{F}}_{*}\left(\Delta_{i}\right)=\tilde{\mathcal{F}}_{*}\left(\operatorname{span}\left\{\frac{\partial}{\partial u^{1}}, \ldots, \frac{\partial}{\partial u^{i}}\right\}\right)=\operatorname{span}\left\{\frac{\partial}{\partial z_{n+1-i}}, \ldots, \frac{\partial}{\partial z_{n}}\right\}
$$

which implies that $\tilde{\mathcal{F}}_{*}\left(\Delta_{i}\right), 1 \leq i \leq n$, are well-defined involutive distributions. It is clear, by Example 7.1.4, that

$$
\mathcal{F}\left(u^{1}, \ldots, u^{n+1}\right)=S^{-1} \circ \tilde{\mathcal{F}}\left(u^{1}, \ldots, u^{n+1}\right)
$$

and for $1 \leq i \leq n$,

$$
\mathcal{F}_{*}\left(\Delta_{i}\right)=\left(S^{-1} \circ \tilde{\mathcal{F}}\right)_{*}\left(\Delta_{i}\right)=S_{*}^{-1}\left(\operatorname{span}\left\{\frac{\partial}{\partial z_{n+1-i}}, \ldots, \frac{\partial}{\partial z_{n}}\right\}\right)
$$

Since $x=S^{-1}(z)$ is invertible, $\mathcal{F}_{*}\left(\Delta_{i}\right), 1 \leq i \leq n$, are also well-defined involutive distributions and (7.40) is, by Theorem 2.10, satisfied. Therefore, condition (ii) is satisfied.

Sufficiency. Suppose that conditions (i) and (ii) are satisfied. Then, $D_{i}=\mathcal{F}_{*}\left(\Delta_{i}\right)$ is a i-dimensional well-defined involutive distribution for $1 \leq i \leq n$ and $D_{1} \subset D_{2} \subset$ $\cdots \subset D_{n}$. Thus, there exists, by the Frobenius Theorem (or Theorem 2.8), a state transformation $\xi=\tilde{S}(x)$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
\tilde{D}_{i} \triangleq \tilde{S}_{*}\left(\mathcal{F}_{*}\left(\operatorname{span}\left\{\frac{\partial}{\partial u^{1}}, \ldots, \frac{\partial}{\partial u^{i}}\right\}\right)\right)=\operatorname{span}\left\{\frac{\partial}{\partial \xi_{1}}, \ldots, \frac{\partial}{\partial \xi_{i}}\right\} \tag{7.43}
\end{equation*}
$$

Let $\tilde{F}_{u}(\xi) \triangleq \tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(\xi)$. Then, we have, by Example 7.1.4, that

$$
\tilde{\mathcal{F}}\left(u^{1}, \ldots, u^{n+1}\right) \triangleq \tilde{F}_{u^{1}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0)=\tilde{S} \circ \mathcal{F}\left(u^{1}, \ldots, u^{n+1}\right) .
$$

Therefore, it is easy to see, by (7.43), that for $1 \leq i \leq n$,

$$
\begin{aligned}
& \frac{\partial}{\partial u^{\ell}} \tilde{\mathcal{F}}_{i}\left(u^{1}, \ldots, u^{n+1}\right)=0,1 \leq \ell \leq i-1 \\
& \frac{\partial}{\partial u^{i}} \tilde{\mathcal{F}}_{i}\left(u^{1}, \ldots, u^{n+1}\right) \neq 0 .
\end{aligned}
$$

In other words, we have that

$$
\tilde{\mathcal{F}}(\tilde{U})=\left[\begin{array}{c}
\alpha_{1}\left(u^{1}, \ldots, u^{n+1}\right) \tag{7.44}\\
\alpha_{2}\left(u^{2}, \ldots, u^{n+1}\right) \\
\vdots \\
\alpha_{n-1}\left(u^{n-1}, u^{n}, u^{n+1}\right) \\
\alpha_{n}\left(u^{n}, u^{n+1}\right)
\end{array}\right] ; \tilde{\Psi}(U)=\left[\begin{array}{c}
\hat{\alpha}_{1}\left(u^{1}, \ldots, u^{n}\right) \\
\hat{\alpha}_{2}\left(u^{2}, \ldots, u^{n}\right) \\
\vdots \\
\hat{\alpha}_{n-1}\left(u^{n-1}, u^{n}\right) \\
\hat{\alpha}_{n}\left(u^{n}\right)
\end{array}\right]
$$

where $\alpha_{i}\left(u^{i}, \ldots, u^{n}, u^{n+1}\right) \triangleq \tilde{\mathcal{F}}_{i}\left(0, \ldots, 0, u^{i}, \ldots, u^{n+1}\right)$ and for $1 \leq i \leq n$,

$$
\begin{align*}
& \frac{\partial}{\partial u^{i}} \alpha_{i}\left(u^{i}, \ldots, u^{n}, u^{n+1}\right) \neq 0 \\
& \hat{\alpha}_{i}\left(u^{i}, \ldots, u^{n}\right) \triangleq \alpha_{i}\left(u^{i}, \ldots, u^{n}, 0\right) ; \quad \frac{\partial}{\partial u^{i}} \hat{\alpha}_{i}\left(u^{i}, \ldots, u^{n}\right) \neq 0 . \tag{7.45}
\end{align*}
$$

Thus, it is clear that there exist smooth functions $\bar{\alpha}_{i}\left(\xi_{i}, \ldots, \xi_{n}\right): \mathbb{R}^{n+1-i} \rightarrow \mathbb{R}, 1 \leq$ $i \leq n$ such that for $1 \leq i \leq n$,

$$
\hat{\alpha}_{i}\left(\bar{\alpha}_{i}\left(\xi_{i}, \ldots, \xi_{n}\right), \ldots, \bar{\alpha}_{n}\left(\xi_{n}\right)\right)=\xi_{i}
$$

or

$$
U=\tilde{\Psi}^{-1}(\xi)=\left[\begin{array}{c}
\bar{\alpha}_{1}\left(\xi_{1}, \ldots, \xi_{n}\right) \tag{7.46}\\
\bar{\alpha}_{2}\left(\xi_{2}, \ldots, \xi_{n}\right) \\
\vdots \\
\bar{\alpha}_{n-1}\left(\xi_{n-1}, \xi_{n}\right) \\
\bar{\alpha}_{n}\left(\xi_{n}\right)
\end{array}\right]
$$

Since $\tilde{F}_{u} \circ \tilde{\Psi}(U)=\tilde{\mathcal{F}}(u, U)$ by (7.13), we have

$$
\tilde{F}_{u}(\xi)=\tilde{\mathcal{F}}\left(u, \Psi^{-1}(\xi)\right)=\left[\begin{array}{c}
\tilde{\alpha}_{1}\left(u, \xi_{1}, \ldots, \xi_{n}\right) \tag{7.47}\\
\tilde{\alpha}_{2}\left(\xi_{1}, \ldots, \xi_{n}\right) \\
\vdots \\
\tilde{\alpha}_{n-1}\left(\xi_{n-2}, \xi_{n-1}, \xi_{n}\right) \\
\tilde{\alpha}_{n}\left(\xi_{n-1}, \xi_{n}\right)
\end{array}\right]
$$

where for $2 \leq i \leq n$,

$$
\begin{aligned}
& \tilde{\alpha}_{1}\left(u, \xi_{1}, \ldots, \xi_{n}\right) \triangleq \alpha_{1}\left(u, \bar{\alpha}_{1}\left(\xi_{1}, \ldots, \xi_{n}\right), \ldots, \bar{\alpha}_{n}\left(\xi_{n}\right)\right) \\
& \tilde{\alpha}_{i}\left(\xi_{i-1}, \ldots, \xi_{n}\right) \triangleq \alpha_{i}\left(\bar{\alpha}_{i-1}\left(\xi_{i-1}, \ldots, \xi_{n}\right), \ldots, \bar{\alpha}_{n}\left(\xi_{n}\right)\right)
\end{aligned}
$$

Let $\tilde{h}(\xi)=\xi_{n}$. Then, we have that $\tilde{h} \circ \hat{\tilde{F}}_{u}(\xi)=\tilde{\alpha}_{n}\left(\xi_{n-1}, \xi_{n}\right) \triangleq H_{1}\left(\xi_{n-1}, \xi_{n}\right)=\tilde{h}(\xi)$ $\circ \hat{\tilde{F}}_{0}(\xi)$ and

$$
\begin{aligned}
\tilde{h} \circ \hat{\tilde{F}}_{u}^{2}(\xi) & =H_{1}\left(\tilde{\alpha}_{n-1}\left(\xi_{n-2}, \xi_{n-1}, \xi_{n}\right), \tilde{\alpha}_{n}\left(\xi_{n-1}, \xi_{n}\right)\right) \\
& \triangleq H_{2}\left(\xi_{n-2}, \xi_{n-1}, \xi_{n}\right)=\tilde{h}(\xi) \circ \hat{\tilde{F}}_{0}^{2}(\xi)
\end{aligned}
$$

In this manner, it is easy to show, by (7.45) and (7.47), that for $1 \leq i \leq n-1$,

$$
\tilde{h} \circ \hat{\tilde{F}}_{u}^{i}(\xi)=\tilde{h} \circ \hat{\tilde{F}}_{0}^{i}(\xi) ; \quad \frac{\partial}{\partial u}\left(\tilde{h} \circ \hat{\tilde{F}}_{u}^{n}(\xi)\right) \neq 0
$$

or

$$
\tilde{h} \circ \tilde{S} \circ \hat{F}_{u}^{i}(x)=\tilde{h} \circ \tilde{S} \circ \hat{F}_{0}^{i}(x) ; \quad \frac{\partial}{\partial u}\left(\tilde{h} \circ \tilde{S} \circ \hat{F}_{u}^{n}(x)\right) \neq 0 .
$$

Therefore, $S_{1}(x) \triangleq \tilde{h} \circ \tilde{S}(x)=\tilde{S}_{n}(x)$ satisfies conditions (i) and (ii) of Lemma 7.1. Hence, by Lemma 7.1, system (7.11) is feedback linearizable.

If condition (ii) of Theorem 7.1 is satisfied, then condition (ii) of Theorem 7.2 is satisfied. In other words, if the system is state equivalent to a linear system, then it is also feedback linearizable. The following example shows that system (7.34) of Example 7.2.4 is not state equivalent to a linear system but feedback linearizable.

Example 7.2.6 Show that system (7.34) of Example 7.2.4 is feedback linearizable.

$$
\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t) \\
x_{1}(t)^{2}+u(t)
\end{array}\right]=F_{u(t)}(x(t))
$$

Solution In Example 7.2.4, it is shown that condition (i) of Theorem 7.2 is satisfied. Since

$$
\left[\frac{\partial}{\partial u^{1}},-2 u^{3} \frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{1}
$$

it is clear, by Theorem 2.10 , that $\mathcal{F}_{*}\left(\Delta_{1}\right)=\mathcal{F}_{*}\left(\operatorname{span}\left\{\frac{\partial}{\partial u^{u}}\right\}\right)$ is a well-defined involutive distribution and

$$
\mathcal{F}_{*}\left(\Delta_{1}\right)=\operatorname{span}\left\{\frac{\partial}{\partial x_{2}}\right\}
$$

Thus, condition (ii) of Theorem 7.2 is satisfied. Hence, by Theorem 7.2, system (7.34) is feedback linearizable. Since $d x_{1} \in\left(\mathcal{F}_{*}\left(\Delta_{1}\right)\right)^{\perp}$, scalar function $S_{1}(x)=x_{1}$ satisfies conditions of Lemma 7.1. Thus, it is easy to see that

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(x) \\
S_{1} \circ F_{0}(x)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

and

$$
v=S_{1} \circ \hat{F}_{u}^{2}(x)=x_{1}^{2}+u \text { or } u=-x_{1}^{2}+v=\gamma(x, v)
$$

Then it is clear that $\tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=\left[\begin{array}{c}z_{2} \\ v\end{array}\right]$ and

$$
\left[\begin{array}{l}
z_{1}(t+1) \\
z_{2}(t+1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v(t)
$$

Example 7.2.7 Show that the following discrete system is feedback linearizable:

$$
\left[\begin{array}{l}
x_{1}(t+1) \tag{7.48}\\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t)+\left(1+x_{2}(t)\right)^{2} u(t)^{2} \\
x_{3}(t) \\
\left(1+x_{2}(t)\right) u(t)
\end{array}\right]=F_{u(t)}(x(t)) .
$$

Solution By simple calculations, we have that

$$
\begin{aligned}
\mathcal{F}\left(u^{1}, u^{2}, u^{3}, u^{4}\right) & \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}} \circ F_{u^{4}}(0)=F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}\left(\left[\begin{array}{c}
\left(u^{4}\right)^{2} \\
0 \\
u^{4}
\end{array}\right]\right) \\
& =F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
\left(u^{3}\right)^{2} \\
u^{4} \\
u^{3}
\end{array}\right]\right)=F_{u^{1}}\left(\left[\begin{array}{c}
u^{4}+\left(u^{2}\right)^{2}\left(1+u^{4}\right)^{2} \\
u^{3} \\
u^{2}\left(1+u^{4}\right)
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
u^{3}+\left(u^{1}\right)^{2}\left(1+u^{3}\right)^{2} \\
u^{2}\left(1+u^{4}\right) \\
u^{1}\left(1+u^{3}\right)
\end{array}\right]
\end{aligned}
$$

and
$\Psi\left(u^{1}, u^{2}, u^{3}\right) \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=\mathcal{F}\left(u^{1}, u^{2}, u^{3}, 0\right)=\left[\begin{array}{c}u^{3}+\left(u^{1}\right)^{2}\left(1+u^{3}\right)^{2} \\ u^{2} \\ u^{1}\left(1+u^{3}\right)\end{array}\right]$.
Since $\operatorname{det}\left(\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}\right)=\operatorname{det}\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\right)=-1 \neq 0$, condition (i) of Theorem 7.2 is satisfied. Since

$$
\frac{\partial \mathcal{F}(\tilde{U})}{\partial \tilde{U}}=\left[\begin{array}{cccc}
2 u^{1}\left(1+u^{3}\right)^{2} & 0 & 1+2\left(u^{1}\right)^{2}\left(1+u^{3}\right) & 0 \\
0 & 1+u^{4} & 0 & u^{2} \\
1+u^{3} & 0 & u^{1} & 0
\end{array}\right]
$$

we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{-\frac{u^{2}}{1+u^{4}} \frac{\partial}{\partial u^{2}}+\frac{\partial}{\partial u^{4}}\right\}
$$

and

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial u^{1}},-\frac{u^{2}}{1+u^{4}} \frac{\partial}{\partial u^{2}}+\frac{\partial}{\partial u^{4}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{1}} \\
& {\left[\frac{\partial}{\partial u^{2}},-\frac{u^{2}}{1+u^{4}} \frac{\partial}{\partial u^{2}}+\frac{\partial}{\partial u^{4}}\right]=-\frac{1}{1+u^{4}} \frac{\partial}{\partial u^{2}} \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{2}}
\end{aligned}
$$

Therefore, condition (ii) of Theorem 7.2 is satisfied and $\mathcal{F}_{*}\left(\Delta_{i}\right), i=1,2$, are welldefined involutive distributions with

$$
\begin{aligned}
& \mathcal{F}_{*}\left(\Delta_{1}\right)=\operatorname{span}\left\{2 x_{3} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
2 x_{3} \\
0 \\
1
\end{array}\right]\right\} \\
& \mathcal{F}_{*}\left(\Delta_{2}\right)=\operatorname{span}\left\{\left[\begin{array}{c}
2 x_{3} \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

Hence, by Theorem 7.2, system (7.48) is feedback linearizable. Since $d\left(x_{1}-x_{3}^{2}\right) \in$ $\left(\mathcal{F}_{*}\left(\Delta_{1}\right)\right)^{\perp}$, we have that $S_{1}(x)=x_{1}-x_{3}^{2}$,

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
S_{1}(x) \\
S_{1} \circ F_{0}(x) \\
S_{1} \circ \hat{F}_{0}^{2}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{3}^{2} \\
x_{2} \\
x_{3}
\end{array}\right],
$$

and

$$
v=S_{1} \circ \hat{F}_{u}^{3}(x)=\left(1+x_{2}\right) u \text { or } u=\frac{v}{1+x_{2}}=\gamma(x, v)
$$

Then it is clear that $\tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=\left[\begin{array}{c}z_{2} \\ z_{3} \\ v\end{array}\right]$ and

$$
\left[\begin{array}{l}
z_{1}(t+1) \\
z_{2}(t+1) \\
z_{3}(t+1)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t) \\
z_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] v(t)
$$

Example 7.2.8 Show that the following discrete system is not feedback linearizable:

$$
\left[\begin{array}{l}
x_{1}(t+1) \tag{7.49}\\
x_{2}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t)+u(t)^{2} \\
x_{1}(t)+u(t)
\end{array}\right]=F_{u(t)}(x(t))
$$

Solution By simple calculations, we have that

$$
\begin{aligned}
\mathcal{F}\left(u^{1}, u^{2}, u^{3}\right) & \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
\left(u^{3}\right)^{2} \\
u^{3}
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{c}
\left(u^{2}\right)^{2}+u^{3} \\
u^{2}+\left(u^{3}\right)^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
\left(u^{1}\right)^{2}+u^{2}+\left(u^{3}\right)^{2} \\
u^{1}+\left(u^{2}\right)^{2}+u^{3}
\end{array}\right]
\end{aligned}
$$

and

$$
\Psi\left(u^{1}, u^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)=\mathcal{F}\left(u^{1}, u^{2}, 0\right)=\left[\begin{array}{l}
\left(u^{1}\right)^{2}+u^{2} \\
u^{1}+\left(u^{2}\right)^{2}
\end{array}\right] .
$$

Since $\operatorname{det}\left(\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}\right)=\operatorname{det}\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right) \neq 0$, condition (i) of Theorem 7.2 is satisfied. Since

$$
\frac{\partial \mathcal{F}(\tilde{U})}{\partial \tilde{U}}=\left[\begin{array}{ccc}
2 u^{1} & 1 & 2 u^{3} \\
1 & 2 u^{2} & 1
\end{array}\right]
$$

we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{\frac{1-4 u^{2} u^{3}}{4 u^{1} u^{2}-1} \frac{\partial}{\partial u^{1}}+\frac{2\left(u^{3}-u^{1}\right)}{4 u^{1} u^{2}-1} \frac{\partial}{\partial u^{2}}+\frac{\partial}{\partial u^{3}}\right\}
$$

and

$$
\begin{aligned}
{\left[\frac{\partial}{\partial u^{1}},-\frac{u^{2}}{1+u^{4}} \frac{\partial}{\partial u^{2}}+\frac{\partial}{\partial u^{4}}\right] } & =\frac{4 u^{2}\left(4 u^{2} u^{3}-1\right)}{\left(4 u^{1} u^{2}-1\right)^{2}} \frac{\partial}{\partial u^{1}}+\frac{2\left(1-4 u^{2} u^{3}\right)}{\left(4 u^{1} u^{2}-1\right)^{2}} \frac{\partial}{\partial u^{2}} \\
& \notin \operatorname{ker} \mathcal{F}_{*}+\Delta_{1} .
\end{aligned}
$$

Therefore, (7.40) is not satisfied and $\mathcal{F}_{*}\left(\Delta_{1}\right)$ is not a well-defined involutive distribution. Since condition (ii) of Theorem 7.2 is not satisfied, system (7.49) is not feedback linearizable.

7.3 Multi-input Discrete Time Systems

In this section, we consider the following multi-input discrete nonlinear system:

$$
\begin{align*}
x(t+1) & =F(x(t), u(t)) \triangleq F_{u}(x) \\
y(t) & =h(x(t)) \tag{7.50}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{q}$, and $F(x, u): \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ and $h(x)$ are smooth functions with $F(0,0)=0$ and $h(0)=0$.

Definition 7.5 (Kronecker indices)
For the list of $m n$ vectors of the form

$$
\begin{aligned}
& \left(\left.\frac{\partial F_{u}}{\partial u_{1}}\right|_{(0,0)}, \ldots,\left.\frac{\partial F_{u}}{\partial u_{m}}\right|_{(0,0)},\left.\frac{\partial \hat{F}_{u}^{2}}{\partial u_{1}}\right|_{(0,0)}, \ldots,\left.\frac{\partial \hat{F}_{u}^{2}}{\partial u_{m}}\right|_{(0,0)}, \ldots,\left.\frac{\partial \hat{F}_{u}^{n}}{\partial u_{1}}\right|_{(0,0)}, \ldots,\right. \\
& \left.\left.\quad \frac{\partial \hat{F}_{u}^{n}}{\partial u_{m}}\right|_{(0,0)}\right),
\end{aligned}
$$

delete all vector fields that are linearly dependent on the set of preceding vector fields and obtain the unique set of linearly independent vectors

$$
\left\{\left.\frac{\partial F_{u}}{\partial u_{1}}\right|_{(0,0)},\left.\frac{\partial \hat{F}_{u}^{2}}{\partial u_{1}}\right|_{(0,0)}, \ldots,\left.\frac{\partial \hat{F}_{u}^{\kappa_{1}}}{\partial u_{1}}\right|_{(0,0)}, \ldots,\left.\frac{\partial F_{u}}{\partial u_{m}}\right|_{(0,0)}, \ldots,\left.\frac{\partial \hat{F}_{u}^{\kappa_{m}}}{\partial u_{m}}\right|_{(0,0)}\right\}
$$

or

$$
\left\{\bar{b}_{1}, \bar{A} \bar{b}_{1}, \ldots, \bar{A}^{\kappa_{1}-1} \bar{b}_{1}, \ldots, \bar{b}_{m}, \ldots, \bar{A}^{\kappa_{m}-1} \bar{b}_{m}\right\}
$$

where $\left.\bar{A} \triangleq \frac{\partial F_{u}(x)}{\partial x}\right|_{(0,0)}$ and $\left.\bar{b}_{j} \triangleq \frac{\partial F_{u}(x)}{\partial u_{j}}\right|_{(0,0)}$. Then, $\left(\kappa_{1}, \ldots, \kappa_{m}\right)$ are said to be the Kronecker indices of system (7.50).

In other words, κ_{i} is the smallest nonnegative integer such that for $1 \leq i \leq m$,

$$
\begin{gathered}
\left.\frac{\partial \hat{F}_{u}^{\kappa_{i}+1}}{\partial u_{i}}\right|_{(0,0)} \in \operatorname{span}\left\{\left.\left.\frac{\partial \hat{F}_{u}^{\ell}}{\partial u_{j}}\right|_{(0,0)} \right\rvert\, 1 \leq j \leq m, \quad 1 \leq \ell \leq \kappa_{i}\right\} \\
\quad+\operatorname{span}\left\{\left.\left.\frac{\partial \hat{F}_{u}^{\kappa_{i}+1}}{\partial u_{j}}\right|_{(0,0)} \right\rvert\, 1 \leq j \leq i-1\right\}
\end{gathered}
$$

If $\sum_{i=1}^{n} \kappa_{i}=n$, then system (7.5) is reachable on a neighborhood of the origin. Let $\kappa_{\max } \triangleq \max \left\{\kappa_{i}, 1 \leq i \leq m\right\}$ and for $1 \leq i \leq \kappa_{\max }+1$,

$$
\bar{u}^{i} \triangleq\left\{u_{j}^{i} \mid \kappa_{j} \geq i\right\} \text { and } \tilde{u}^{i} \triangleq\left\{u_{j}^{i} \mid \kappa_{j}+1 \geq i\right\}
$$

For example, if $\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)=(3,1,2)$, then we have that $\bar{u}^{1}=\left[u_{1}^{1} u_{2}^{1} u_{3}^{1}\right]^{\top}=\tilde{u}^{1}$, $\bar{u}^{2}=\left[u_{1}^{2} u_{3}^{2}\right]^{\top}, \tilde{u}^{2}=\left[u_{1}^{2} u_{2}^{2} u_{3}^{2}\right]^{\top}, \bar{u}^{3}=u_{1}^{3}, \tilde{u}^{3}=\left[u_{1}^{3} u_{3}^{3}\right]^{\top}$, and $\tilde{u}^{4}=u_{1}^{4}$. Let us define composite functions $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\mathcal{F}: \mathbb{R}^{m+\sum_{i=1}^{n} \kappa_{i}} \rightarrow \mathbb{R}^{n}$ as follows:

$$
\begin{align*}
\Psi(U) & \left.\triangleq F_{u^{1}} \circ \cdots \circ F_{u^{n}}(0)\right|_{u_{j}^{i}=0, i \geq \kappa_{j}+1} \tag{7.51}\\
& =\left.F_{u^{1}} \circ \cdots \circ F_{u^{\kappa_{\max }}}(0)\right|_{u_{j}^{i}=0, i \geq \kappa_{j}+1}
\end{align*}
$$

$$
\begin{align*}
\mathcal{F}(\tilde{U}) & \left.\triangleq F_{u^{1}} \circ \cdots \circ F_{u^{n}} \circ F_{u^{n+1}}(0)\right|_{u_{j}^{i}=0, i \geq \kappa_{j}+2} \tag{7.52}\\
& =\left.F_{u^{1}} \circ \cdots \circ F_{u^{k_{\max }}} \circ F_{u^{\max }+1}(0)\right|_{u_{j}^{i}=0, i \geq \kappa_{j}+2}
\end{align*}
$$

where $u^{i}=\left[u_{1}^{i} \cdots u_{m}^{i}\right]^{\top}, i \geq 1$, and

$$
\begin{aligned}
& U \triangleq\left[\left(\bar{u}^{1}\right)^{\top} \cdots\left(\bar{u}^{\kappa_{\max }}\right)^{\top}\right]^{\top} \\
& \tilde{U} \triangleq\left[\left(\tilde{u}^{1}\right)^{\top} \cdots\left(\tilde{u}^{\kappa_{\max }}\right)^{\top}\left(\tilde{u}^{\kappa_{\max }+1}\right)^{\top}\right]^{\top} .
\end{aligned}
$$

Then, it is clear that

$$
\begin{equation*}
\Psi(U)=\left.\mathcal{F}(\tilde{U})\right|_{u_{i}^{k_{i}+1}=0} \tag{7.53}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}(\tilde{U})=F_{\tilde{u}^{1}} \circ \Psi\left(\tilde{u}^{2}, \ldots, \tilde{u}^{K_{\max }+1}\right) . \tag{7.54}
\end{equation*}
$$

Also, it is easy to see that for $1 \leq j \leq m$ and $1 \leq i \leq \kappa_{j}$,

$$
\left.\frac{\partial \Psi(U)}{\partial u_{j}^{i}}\right|_{U=0}=\left.\left(\left.\frac{\partial F_{u}(x)}{\partial x}\right|_{(0,0)}\right)^{i-1} \frac{\partial F_{u}(x)}{\partial u_{j}}\right|_{(0,0)}
$$

Thus, it is clear that $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular, if and only if $\sum_{j=1}^{m} \kappa_{j}=n$.
Example 7.3.1 Let $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ be nonsingular. Suppose that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right)$ is a welldefined vector field for $1 \leq j \leq m$ and $1 \leq i \leq \kappa_{j}$. Show that for $1 \leq j \leq m$ and $1 \leq i \leq \kappa_{j}$,

$$
\begin{equation*}
\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right)=\Psi_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right) . \tag{7.55}
\end{equation*}
$$

Solution Omitted. (See Problem 7.4.)
Example 7.3.2 The Kronecker indices of the nonlinear discrete time system are invariant under state transformation. In other words, the Kronecker indices of system (7.5) and those of system (7.9) are the same.

Solution Omitted. (See Problem 7.5.)
Suppose that $\left(\kappa_{1}, \ldots, \kappa_{m}\right)$ are the Kronecker indices of system (7.50). Then, the multi-input version of Theorem 7.1 can be obtained as follows.

Theorem 7.3 (conditions for linearization by state transformation)
System (7.50) is state equivalent to a linear system, if and only if
(i) $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular or $\sum_{j=1}^{m} \kappa_{j}=n$.
(ii) $\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right), 1 \leq j \leq m, 1 \leq i \leq \kappa_{j}+1$, are well-defined vector fields or

$$
\begin{equation*}
\left[\frac{\partial}{\partial u_{j}^{i}}, \operatorname{ker}\left(\mathscr{F}_{*}\right)\right] \subset \operatorname{ker}\left(\mathcal{F}_{*}\right), 1 \leq j \leq m, 1 \leq i \leq \kappa_{j}+1 . \tag{7.56}
\end{equation*}
$$

Furthermore, $z=S(x)=\Psi^{-1}(x)$ is a linearizing state transformation.
Proof Necessity. Suppose that system (7.50) is state equivalent to a linear system with state transformation $z=S(x)$. Then we have

$$
\begin{align*}
z(t+1) & =S \circ F_{u(t)} \circ S^{-1}(z(t)) \\
& \triangleq \tilde{F}_{u(t)}(z(t))=A z(t)+B u(t) \tag{7.57}
\end{align*}
$$

where

$$
\begin{equation*}
\operatorname{rank}\left(\left[b_{1} A b_{1} \cdots A^{\kappa_{1}-1} b_{1} \cdots b_{m} \cdots A^{\kappa_{m}-1} b_{m}\right]\right)=n \tag{7.58}
\end{equation*}
$$

Since $F_{u}(x)=S^{-1} \circ \tilde{F}_{u} \circ S(x), \tilde{F}_{u}(z)=A z+B u$, and $S(0)=0$, it is easy to see, by Examples 7.1.3 and 7.1.4, that

$$
\begin{align*}
& \Psi(U)=S^{-1}\left(\sum_{i=1}^{\kappa_{\max }} \sum_{\substack{j=1 \\
\kappa_{j} \geq i}}^{m} A^{i-1} b_{j} u_{j}^{i}\right) \tag{7.59}\\
& \mathcal{F}(\tilde{U})=S^{-1}\left(\sum_{i=1}^{\kappa_{\max }+1} \sum_{\substack{j=1 \\
\kappa_{j}+1 \geq i}}^{m} A^{i-1} b_{j} u_{j}^{i}\right)
\end{align*}
$$

which implies that

$$
\begin{equation*}
\left.\frac{\partial \Psi(U)}{\partial \hat{U}}\right|_{U=0}=\left.\frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0}\left[b_{1} \cdots A^{\kappa_{1}-1} b_{1} \cdots b_{m} \cdots A^{\kappa_{m}-1} b_{m}\right] \tag{7.60}
\end{equation*}
$$

where $\hat{U}=\left[u_{1}^{1} \cdots u_{1}^{\kappa_{1}} \cdots u_{m}^{1} \cdots u_{m}^{\kappa_{m}}\right]^{\top}$. Since $\left.\frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0}$ is nonsingular, it is clear, by (7.58), that $\left.\frac{\partial \Psi(U)}{\partial \hat{U}}\right|_{U=0}\left(\right.$ or $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$) is nonsingular. Also, it is clear, by (7.59), that for $1 \leq j \leq m$ and $1 \leq i \leq \kappa_{j}+1$,

$$
\begin{equation*}
\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right)=\left(S^{-1}\right)_{*}\left(A^{i-1} b_{j}\right) \tag{7.61}
\end{equation*}
$$

which implies that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right), 1 \leq j \leq m, 1 \leq i \leq \kappa_{j}+1$, are well-defined vector fields and (7.56) is, by Theorem 2.6, satisfied..

Sufficiency. Suppose that system (7.50) satisfies conditions (i) and (ii). By condition (i), it is clear that $z=S(x)=\Psi^{-1}(x)$ is a state transformation on a neighborhood of the origin. We will show that system (7.50) satisfies, in z-coordinates, a linear system. In other words, we will show that

$$
\begin{equation*}
\tilde{F}_{u}(z) \triangleq \Psi^{-1} \circ F_{u} \circ \Psi(z)=A z+B u \tag{7.62}
\end{equation*}
$$

for some constant matrices A and B. If we let

$$
\begin{equation*}
Y_{j}^{i}=\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right), 1 \leq j \leq m, 1 \leq i \leq \kappa_{j}+1 \tag{7.63}
\end{equation*}
$$

then we have, by Theorem 2.4 and (7.55), that for $1 \leq j \leq m, 1 \leq \bar{j} \leq m, 1 \leq i \leq$ $\kappa_{j}+1$, and $1 \leq \bar{i} \leq \kappa_{j}+1$,

$$
\begin{equation*}
\left[Y_{j}^{i}, Y_{\bar{j}}^{\bar{i}}\right]=\mathcal{F}_{*}\left(\left[\frac{\partial}{\partial u_{j}^{i}}, \frac{\partial}{\partial u_{\bar{j}}^{i}}\right]\right)=\mathcal{F}_{*}(0)=0 \tag{7.64}
\end{equation*}
$$

and for $1 \leq j \leq m$ and $1 \leq i \leq \kappa_{j}$,

$$
\begin{equation*}
\Psi_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right)=Y_{j}^{i} \tag{7.65}
\end{equation*}
$$

Thus, it is clear, by condition (i), that $\left\{Y_{j}^{i} \mid 1 \leq j \leq m, 1 \leq i \leq \kappa_{j}\right\}$ is a set of linearly independent vector fields on a neighborhood of the origin. Also, we have, by Example 2.4.20, that for $1 \leq j \leq m$,

$$
\begin{equation*}
Y_{j}^{k_{j}+1}=\sum_{k=1}^{m} \sum_{i=1}^{k_{k}} a_{k, i}^{j} Y_{k}^{i} \tag{7.66}
\end{equation*}
$$

for some constant $a_{k, i}^{j} \in \mathbb{R}$. It is easy to see, by (7.13), that $F_{u} \circ \Psi(z)=\mathcal{F}(u, z)$ and

$$
\begin{equation*}
\tilde{F}(z, u) \triangleq \tilde{F}_{u}(z)=\Psi^{-1} \circ F_{u} \circ \Psi(z)=\Psi^{-1} \circ \mathcal{F}(u, z) \tag{7.67}
\end{equation*}
$$

Thus, we have, by (7.63), (7.65), and (7.67), that for $1 \leq j \leq m$,

$$
\begin{align*}
\tilde{F}(z, u)_{*}\left(\frac{\partial}{\partial u_{j}}\right) & =\left(\Psi^{-1} \circ \mathcal{F}(u, z)\right)_{*}\left(\frac{\partial}{\partial u_{j}}\right)=\left(\Psi^{-1}\right)_{*}(\mathcal{F}(u, z))_{*}\left(\frac{\partial}{\partial u_{j}}\right) \\
& =\left(\Psi^{-1}\right)_{*}\left(Y_{j}^{1}\right)=\frac{\partial}{\partial z_{j}^{1}} . \tag{7.68}
\end{align*}
$$

Similarly, it is easy to see, by (7.63), (7.65), (7.66), and (7.67), that for $1 \leq j \leq m$ and $1 \leq i \leq \kappa_{j}-1$,

$$
\begin{align*}
\tilde{F}(z, u)_{*}\left(\frac{\partial}{\partial z_{j}^{i}}\right) & =\left(\Psi^{-1} \circ \mathcal{F}(u, z)\right)_{*}\left(\frac{\partial}{\partial z_{j}^{i}}\right) \tag{7.69}\\
& =\left(\Psi^{-1}\right)_{*}\left(Y_{j}^{i+1}\right)=\frac{\partial}{\partial z_{j}^{i+1}}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{F}(z, u)_{*}\left(\frac{\partial}{\partial z_{j}^{\kappa_{j}}}\right) & =\left(\Psi^{-1} \circ \mathcal{F}(u, z)\right)_{*}\left(\frac{\partial}{\partial z_{j}^{\kappa_{j}}}\right)=\left(\Psi^{-1}\right)_{*}\left(Y_{j}^{\kappa_{j}+1}\right) \tag{7.70}\\
& =\left(\Psi^{-1}\right)_{*}\left(\sum_{k=1}^{m} \sum_{i=1}^{\kappa_{k}} a_{k, i}^{j} Y_{k}^{i}\right)=\sum_{k=1}^{m} \sum_{i=1}^{\kappa_{k}} a_{k, i}^{j} \frac{\partial}{\partial z_{k}^{i}} .
\end{align*}
$$

Therefore, it is clear, by (7.68)-(7.70), that

$$
\tilde{F}(z, u)=A z+B u
$$

for some constant matrices A and B.
Let $\hat{u}=\left[u_{1}^{\kappa_{1}+1} \cdots u_{m}^{\kappa_{m}+1}\right]^{\top}, \bar{U}=\left[U^{\top} \hat{u}^{\top}\right]^{\top}$, and $\frac{\partial \bar{U}}{\partial \tilde{U}}=P$. It is easy to see that $\left.\frac{\partial \mathcal{F}(\tilde{U})}{\partial U}\right|_{\tilde{U}=O}=\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=O}$. Thus, if condition (i) of Theorem 7.3 is satisfied, then it is clear that

$$
\frac{\partial \mathcal{F}(\tilde{U})}{\partial \tilde{U}}=\frac{\partial \mathcal{F}(\tilde{U})}{\partial \bar{U}} \frac{\partial \bar{U}}{\partial \tilde{U}}=\left[\frac{\partial \mathcal{F}(\tilde{U})}{\partial U} \frac{\partial \mathcal{F}(\tilde{U})}{\partial \hat{u}}\right] P
$$

and

$$
\begin{equation*}
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{Y_{1}(\tilde{U}), \ldots, Y_{m}(\tilde{U})\right\} \tag{7.71}
\end{equation*}
$$

where

$$
Y(\tilde{U})=\left[Y_{1}(\tilde{U}) \cdots Y_{m}(\tilde{U})\right] \triangleq P^{-1}\left[-\left(\frac{\partial \mathcal{F}(\tilde{U})}{\partial U}\right)^{-1} \frac{\partial \mathcal{F}(\tilde{U})}{\partial \hat{u}}\right] .
$$

(Refer to MATLAB subfunction ker-sF-M.)
Example 7.3.3 Show that the following discrete time system is state equivalent to a linear system:

$$
\left[\begin{array}{c}
x_{1}(t+1) \tag{7.72}\\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t)-u_{1}(t)^{2} \\
u_{1}(t) \\
u_{2}(t)-u_{1}(t)^{2}
\end{array}\right]=F_{u(t)}(x(t))
$$

Solution Since $\left.\frac{\partial F_{u}(x)}{\partial x}\right|_{(0,0)}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\left.\frac{\partial F_{u}(x)}{\partial u}\right|_{(0,0)}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$, we have, by simple calculation, that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$. Since $\kappa_{1}+\kappa_{2}=3$, condition (i) of Theorem 7.3 is satisfied. Also, it is easy to see, by (7.51) and (7.52), that

$$
\begin{aligned}
& \left.\mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right) \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)\right|_{u_{2}^{3}=0}=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
-\left(u_{1}^{3}\right)^{2} \\
u_{1}^{3} \\
-\left(u_{1}^{3}\right)^{2}
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{c}
u_{1}^{3}-\left(u_{1}^{2}\right)^{2} \\
u_{1}^{2} \\
u_{2}^{2}-\left(u_{1}^{2}\right)^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
u_{1}^{2}-\left(u_{1}^{1}\right)^{2} \\
u_{1}^{1} \\
u_{2}^{1}-\left(u_{1}^{1}\right)^{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\left.\Psi\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)\right|_{u_{2}^{2}=0}=\mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, 0,0\right)=\left[\begin{array}{c}
u_{1}^{2}-\left(u_{1}^{1}\right)^{2} \\
u_{1}^{1} \\
u_{2}^{1}-\left(u_{1}^{1}\right)^{2}
\end{array}\right] .
$$

Since $\frac{\partial \mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right)}{\partial \ddot{U}}=\left[\begin{array}{ccccc}-2 u_{1}^{1} & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ -2 u_{1}^{1} & 1 & 0 & 0 & 0\end{array}\right]$, we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{\frac{\partial}{\partial u_{2}^{2}}, \frac{\partial}{\partial u_{1}^{3}}\right\}
$$

and for $1 \leq j \leq 2$ and $1 \leq i \leq \kappa_{j}+1$,

$$
\left[\frac{\partial}{\partial u_{j}^{i}}, \frac{\partial}{\partial u_{2}^{2}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*} ; \quad\left[\frac{\partial}{\partial u_{j}^{i}}, \frac{\partial}{\partial u_{1}^{3}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{j}^{i}}\right), 1 \leq j \leq 2,1 \leq i \leq \kappa_{j}+1$, are well-defined vector fields and condition (ii) of Theorem 7.3 is satisfied. Hence, by Theorem 7.3, system (7.72) is state equivalent to a linear system. Let

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=S^{-1}(z)=\Psi(z)=\left[\begin{array}{c}
z_{3}-z_{1}^{2} \\
z_{1} \\
z_{2}-z_{1}^{2}
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=S(x)=\Psi^{-1}(x)=\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{2}^{2} \\
x_{1}+x_{2}^{2}
\end{array}\right] .
$$

Then it is easy to see that

$$
\tilde{F}_{u}(z)=S \circ F_{u} \circ S^{-1}(z)=S\left(\left[\begin{array}{c}
z_{1}-u_{1}^{2} \\
u_{1} \\
u_{2}-u_{1}^{2}
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] u .
$$

Example 7.3.4 Show that the following discrete time system is not state equivalent to a linear system:

$$
\left[\begin{array}{l}
x_{1}(t+1) \tag{7.73}\\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t) \\
x_{1}(t)^{2}+u_{1}(t) \\
x_{1}(t) u_{1}(t)+u_{2}(t)
\end{array}\right]=F_{u(t)}(x(t))
$$

Solution Since $\left.\frac{\partial F_{u}(x)}{\partial x}\right|_{(0,0)}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\left.\frac{\partial F_{u}(x)}{\partial u}\right|_{(0,0)}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$, we have, by simple calculation, that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$. Since $\kappa_{1}+\kappa_{2}=3$, condition (i) of Theorem 7.3 is satisfied. Also, it is easy to see, by (7.52), that

$$
\begin{aligned}
\mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right) & \left.\triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)\right|_{u_{2}^{3}=0}=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
0 \\
u_{1}^{3} \\
0
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{l}
u_{1}^{3} \\
u_{1}^{2} \\
u_{2}^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
u_{1}^{2} \\
\left(u_{1}^{3}\right)^{2}+u_{1}^{1} \\
u_{1}^{3} u_{1}^{1}+u_{2}^{1}
\end{array}\right] .
\end{aligned}
$$

Since $\frac{\partial \mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right)}{\partial \tilde{U}}=\left[\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 u_{1}^{3} \\ u_{1}^{3} & 1 & 0 & 0 & u_{1}^{1}\end{array}\right]$, we have that

$$
\begin{aligned}
\operatorname{ker} \mathcal{F}_{*} & =\operatorname{span}\left\{\frac{\partial}{\partial u_{2}^{2}},-2 u_{1}^{3} \frac{\partial}{\partial u_{1}^{1}}+\left(2\left(u_{1}^{3}\right)^{2}-u_{1}^{1}\right) \frac{\partial}{\partial u_{2}^{1}}+\frac{\partial}{\partial u_{1}^{3}}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 u_{1}^{3} \\
2\left(u_{1}^{3}\right)^{2}-u_{1}^{1} \\
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

and

$$
\left[\frac{\partial}{\partial u_{1}^{1}},-2 u_{1}^{3} \frac{\partial}{\partial u_{1}^{1}}+\left(2\left(u_{1}^{3}\right)^{2}-u_{1}^{1}\right) \frac{\partial}{\partial u_{2}^{1}}+\frac{\partial}{\partial u_{1}^{3}}\right]=-\frac{\partial}{\partial u_{2}^{1}} \notin \operatorname{ker} \mathcal{F}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u_{1}^{1}}\right)$ is not a well-defined vector field and condition (ii) of Theorem 7.3 is not satisfied. Hence, by Theorem 7.3, system (7.73) is not state equivalent to a linear system.

It is clear that system (7.73) is linearizable by using feedback $\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]=\gamma(x(t)$, $v(t))=\left[\begin{array}{c}-x_{1}(t)^{2}+v_{1}(t) \\ x_{1}(t)^{3}-x_{1}(t) v_{1}(t)+v_{2}(t)\end{array}\right]$. In the following, we consider the feedback linearization of multi-input discrete time systems. In other words, the discrete version of Lemma 4.3 and Theorem 4.3 will be obtained.

Example 7.3.5 Suppose that for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}-1$,

$$
\frac{\partial}{\partial u}\left(S_{i 1} \circ \hat{F}_{u}^{\ell}(x)\right)=0 ; \quad \operatorname{det}\left(\left[\begin{array}{c}
\left.\frac{\partial\left(S_{11} \circ \hat{F}_{u}^{k_{1}}(x)\right)}{\partial u}\right|_{(0,0)} \tag{7.74}\\
\vdots \\
\left.\frac{\partial\left(S_{m 1} \hat{F}_{u}^{k_{m}}(x)\right)}{\partial u}\right|_{(0,0)}
\end{array}\right]\right) \neq 0
$$

Show that

$$
\operatorname{rank}\left(\left[\begin{array}{c}
\frac{\partial S_{11}(x)}{\partial x} \tag{7.75}\\
\vdots \\
\frac{\partial\left(S_{11} \circ F_{0}^{k_{1}-1}(x)\right)}{\partial x} \\
\vdots \\
\frac{\partial S_{m 1}(x)}{\partial x} \\
\vdots \\
\frac{\partial\left(S_{m 1} \circ F_{0}^{k_{m}-1}(x)\right)}{\partial x}
\end{array}\right]\right)=n
$$

and

$$
\begin{equation*}
\operatorname{rank}\left(\left[\bar{b}_{1} \bar{A} \bar{b}_{1}, \ldots, \bar{A}^{\kappa_{1}-1} \bar{b}_{1} \cdots \bar{b}_{m} \cdots \bar{A}^{\kappa_{m}-1} \bar{b}_{m}\right]\right)=n \tag{7.76}
\end{equation*}
$$

where $\left.\bar{A} \triangleq \frac{\partial F_{u}(x)}{\partial x}\right|_{(0,0)}$ and $\left.\bar{b}_{j} \triangleq \frac{\partial F_{u}(x)}{\partial u_{j}}\right|_{(0,0)}$.
Solution Omitted. (See Problem 7.6.)
Lemma 7.2 System (7.50) is feedback linearizable, if and only if there exist smooth functions $S_{i 1}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}, 1 \leq i \leq m$, such that for $1 \leq i \leq m$,
(i) $\frac{\partial}{\partial u}\left(S_{i 1} \circ \hat{F}_{u}^{\ell}(x)\right)=0,1 \leq \ell \leq \kappa_{i}-1$.
(ii) $\operatorname{det}\left(\left[\begin{array}{c}\left.\frac{\partial\left(S_{11 \circ} \hat{F}_{u}^{\kappa_{1}}(x)\right)}{\partial u}\right|_{(0,0)} \\ \vdots \\ \left.\frac{\partial\left(S_{m 1} \circ \hat{F}_{u}^{\kappa 匕_{m}}(x)\right)}{\partial u}\right|_{(0,0)}\end{array}\right]\right) \neq 0$.

Furthermore, state transformation $z=S(x)$ and feedback $u=\gamma(x, v)$ satisfy

$$
\begin{equation*}
S(x)=\left[S_{11}(x) \cdots S_{11} \circ F_{0}^{\kappa_{1}-1}(x) \cdots S_{m 1}(x) \cdots S_{m 1} \circ F_{0}^{\kappa_{m}-1}(x)\right]^{\top} \tag{7.77}
\end{equation*}
$$

and

$$
\left[\begin{array}{c}
v_{1} \tag{7.78}\\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
S_{11} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{1}}(x) \\
\vdots \\
S_{m 1} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{m}}(x)
\end{array}\right] .
$$

Proof Necessity. Suppose that system (7.50) is feedback linearizable. Then, there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=\gamma(x, v)$ $\left(\operatorname{det}\left(\left.\frac{\partial \gamma(x, v)}{\partial v}\right|_{(0,0)}\right) \neq 0\right)$ such that

$$
\tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=A z+B v
$$

Thus, we have that for $1 \leq i \leq m$,

$$
\left[\begin{array}{c}
S_{i 1} \circ F_{\gamma(x, v)}(x) \\
\vdots \\
S_{i\left(\kappa_{i}-1\right)} \circ F_{\gamma(x, v)}(x) \\
S_{i \kappa_{i}} \circ F_{\gamma(x, v)}(x)
\end{array}\right]=A S(x)+B v=\left[\begin{array}{c}
S_{i 2}(x) \\
\vdots \\
S_{i \kappa_{i}}(x) \\
v_{i}
\end{array}\right] .
$$

In other words, for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}-1$,

$$
S_{i(\ell+1)}(x)=S_{i \ell} \circ F_{\gamma(x, v)}(x)
$$

and

$$
v_{i}=S_{i k_{i}} \circ F_{\gamma(x, v)}(x)
$$

which imply that for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}-1$,

$$
0=\frac{\partial\left(S_{i \ell} \circ F_{\gamma(x, v)}(x)\right)}{\partial v}=\left.\frac{\partial\left(S_{i \ell} \circ F_{u}(x)\right)}{\partial u}\right|_{u=\gamma(x, v)} \frac{\partial \gamma(x, v)}{\partial v}
$$

and

$$
I_{m}=\left[\begin{array}{c}
\frac{\partial\left(S_{1_{1},} \circ F_{\gamma(x, v)}(x)\right)}{\partial v} \\
\vdots \\
\frac{\partial\left(S_{m \kappa k_{m}} \circ F_{\gamma(x, v)}(x)\right)}{\partial v}
\end{array}\right]=\left.\left[\begin{array}{c}
\frac{\partial\left(S_{1_{1},} \circ F_{u}(x)\right)}{\partial u} \\
\vdots \\
\frac{\partial\left(S_{m \kappa \kappa_{m}} \circ F_{u}(x)\right)}{\partial u}
\end{array}\right]\right|_{u=\gamma(x, v)} \frac{\partial \gamma(x, v)}{\partial v} .
$$

Since $\frac{\partial \gamma(x, v)}{\partial v} \neq 0$, it is easy to see that for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}-1$,

$$
S_{i(\ell+1)}(x)=S_{i \ell} \circ F_{0}(x) ; \quad \frac{\partial\left(S_{i \ell} \circ F_{u}(x)\right)}{\partial u}=0
$$

and

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
S_{1 \kappa_{1}} \circ F_{\gamma(x, v)}(x) \\
\vdots \\
S_{m \kappa_{m}} \circ F_{\gamma(x, v)}(x)
\end{array}\right] ; \quad \operatorname{det}\left(\left[\begin{array}{c}
\left.\frac{\partial\left(S_{1 \kappa_{1}} \circ F_{u}(x)\right)}{\partial u}\right|_{(0,0)} \\
\vdots \\
\left.\frac{\partial\left(S_{m \kappa_{m}} \circ F_{u}(x)\right)}{\partial u}\right|_{(0,0)}
\end{array}\right]\right) \neq 0
$$

In other words, for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}-1$,

$$
S_{i(\ell+1)}(x)=S_{i 1} \circ F_{0}^{\ell}(x)=S_{i 1} \circ \hat{F}_{u}^{\ell}(x) ; \quad \frac{\partial\left(S_{i 1} \circ \hat{F}_{u}^{\ell}(x)\right)}{\partial u}=0
$$

and

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
S_{11} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{1}}(x) \\
\vdots \\
S_{m 1} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{m}}(x)
\end{array}\right] ; \quad \operatorname{det}\left(\left[\left.\begin{array}{c}
\left.\frac{\partial\left(S_{11} \circ \hat{F}_{u}^{\kappa_{1}}(x)\right)}{\partial u}\right|_{(0,0)} \\
\vdots \\
\frac{\partial\left(S_{m 1} \circ \hat{F}_{u}^{\kappa_{m}}(x)\right)}{\partial u}
\end{array}\right|_{(0,0)}\right]\right) \neq 0
$$

which imply that conditions (i), (ii), (7.77), and (7.78) are satisfied.
Sufficiency. Suppose that there exist smooth functions $S_{i 1}(x), 1 \leq i \leq m$, such that conditions (i) and (ii) are satisfied. Let us define state transformation

$$
z=\left[z_{11} \cdots z_{1 \kappa_{1}} \cdots z_{m 1} \cdots z_{m \kappa_{m}}\right]^{\top}=S(x)
$$

and feedback $u=\gamma(x, v)$ as (7.77) and (7.78), respectively. Then it is clear, by Example 7.3.5, that $z=S(x)$ is a state transformation. Also, it is easy to see, by conditions (i), (7.77), and (7.78), that

$$
\begin{aligned}
& \tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z) \\
& \quad=\left[\begin{array}{c}
S_{11} \circ \hat{F}_{\gamma(x, v)} \circ S^{-1}(z) \\
S_{11} \circ \hat{F}_{\gamma(x, v)}^{2} \circ S^{-1}(z) \\
\vdots \\
S_{11} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{1}} \circ S^{-1}(z) \\
\vdots \\
S_{m 1} \circ \hat{F}_{\gamma(x, v)} \circ S^{-1}(z) \\
S_{m 1} \circ \hat{F}_{\gamma(x, v)}^{2} \circ S^{-1}(z) \\
\vdots \\
S_{m 1} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{m}} \circ S^{-1}(z)
\end{array}\right]=\left[\begin{array}{c}
S_{11} \circ \hat{F}_{0} \circ S^{-1}(z) \\
\vdots \\
S_{11} \circ \hat{F}_{0}^{\kappa_{1}-1} \circ S^{-1}(z) \\
\left.S_{11} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{1}}(x)\right|_{x=S^{-1}(z)} \\
\vdots \\
S_{m 1} \circ \hat{F}_{0} \circ S^{-1}(z) \\
\vdots \\
S_{m 1} \circ \hat{F}_{0}^{\kappa_{m}-1} \circ S^{-1}(z) \\
\left.S_{m 1} \circ \hat{F}_{\gamma(x, v)}^{\kappa_{m}}(x)\right|_{x=S^{-1}(z)}
\end{array}\right]=\left[\begin{array}{c}
z_{12} \\
\vdots \\
z_{1 \kappa_{1}} \\
v_{1} \\
\vdots \\
z \\
z_{12} \\
\vdots \\
z_{1 \kappa_{1}} \\
v_{1}
\end{array}\right] .
\end{aligned}
$$

By Lemma 7.2, the necessary and sufficient conditions for feedback linearization can be obtained as follows.

Theorem 7.4 (conditions for feedback linearization)
System (7.50) is feedback linearizable, if and only if
(i) $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular or $\sum_{j=1}^{m} \kappa_{j}=n$.
(ii) $\mathcal{F}_{*}\left(\Delta_{i}\right), 1 \leq i \leq \kappa_{\max }-1$, are well-defined involutive distributions or

$$
\begin{equation*}
\left[\frac{\partial}{\partial u_{\ell}^{i}}, \operatorname{ker} \mathcal{F}_{*}\right] \subset \operatorname{ker} \mathcal{F}_{*}+\Delta_{i}, \quad 1 \leq i \leq \kappa_{\max }-1, \kappa_{\ell} \geq i-1 \tag{7.79}
\end{equation*}
$$

where for $1 \leq i \leq \kappa_{\max }-1$,

$$
\begin{equation*}
\Delta_{i} \triangleq \operatorname{span}\left\{\left.\frac{\partial}{\partial u_{j}^{\ell}} \right\rvert\, 1 \leq j \leq m, 1 \leq \ell \leq \min \left(i, \kappa_{j}+1\right)\right\} . \tag{7.80}
\end{equation*}
$$

Proof Necessity. Suppose that system (7.50) is feedback linearizable. Then, by Lemma 7.2, there exist smooth functions $S_{i 1}(x), 1 \leq i \leq m$, such that for $1 \leq i \leq m$ and $1 \leq \ell \leq \kappa_{i}-1$,

$$
\frac{\partial}{\partial u}\left(S_{i 1} \circ \hat{F}_{u}^{\ell}(x)\right)=0 ; \quad \operatorname{det}\left(\left[\begin{array}{c}
\left.\frac{\partial\left(S_{11} \circ \hat{F}_{u}^{\kappa_{1}}(x)\right)}{\partial u}\right|_{(0,0)} \tag{7.81}\\
\vdots \\
\left.\frac{\partial\left(S_{m 1} \circ \hat{F}_{u}^{\kappa_{m}}(x)\right)}{\partial u}\right|_{(0,0)}
\end{array}\right]\right) \neq 0 .
$$

Thus, by Example 7.3.5, condition (i) is satisfied. Let $\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)$, where

$$
\begin{aligned}
z & \triangleq\left[z_{11} z_{12} \cdots z_{1 \kappa_{1}} \cdots z_{m 1} \cdots z_{m \kappa_{m}}\right]^{\top}=S(x) \\
& =\left[S_{11}(x) \cdots S_{11} \circ F_{0}^{\kappa_{1}-1}(x) \cdots S_{m 1}(x) \cdots S_{m 1} \circ F_{0}^{\kappa_{m}-1}(x)\right]^{\top}
\end{aligned}
$$

Then it is easy to see, by (7.81), that for $1 \leq i \leq m$,

$$
\operatorname{det}\left(\left[\begin{array}{c}
\left.\frac{\partial \alpha_{1, u}(z)}{\partial u}\right|_{(0,0)} \tag{7.82}\\
\vdots \\
\left.\frac{\partial \alpha_{m, u}(z)}{\partial u}\right|_{(0,0)}
\end{array}\right]\right) \neq 0
$$

and

$$
\begin{align*}
\tilde{F}_{u}(z) & \triangleq\left[\begin{array}{c}
\tilde{F}_{1, u}(z) \\
\vdots \\
\tilde{F}_{m, u}(z)
\end{array}\right], \tilde{F}_{i, u}(z)=\left[\begin{array}{c}
z_{i 2} \\
\vdots \\
z_{i k_{i}} \\
\alpha_{i, u}(z)
\end{array}\right], \tilde{\mathcal{F}}(\tilde{U}) \triangleq\left[\begin{array}{c}
\tilde{\mathcal{F}}_{1}(\tilde{U}) \\
\vdots \\
\tilde{\mathcal{F}}_{m}(\tilde{U})
\end{array}\right] \\
\tilde{\mathcal{F}}_{i}(\tilde{U}) & \triangleq \tilde{F}_{i, u^{1}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0) \tag{7.83}\\
& =\left.\left[\begin{array}{c}
\alpha_{i, u^{k_{i}}} \circ \tilde{F}_{u^{k_{i}+1}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0) \\
\vdots \\
\alpha_{i, u^{2}} \circ \tilde{F}_{u^{3}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0) \\
\alpha_{i, u^{1}} \circ \tilde{F}_{u^{2}} \circ \cdots \circ \tilde{F}_{u^{n+1}}(0)
\end{array}\right]\right|_{u_{j}^{i}=0, i \geq \kappa_{j}+2}
\end{align*}
$$

where $\alpha_{i, u}(z) \triangleq S_{i 1} \circ F_{0}^{\kappa_{i}-1} \circ F_{u} \circ S^{-1}(z)=S_{i 1} \circ \hat{F}_{u}^{\kappa_{i}} \circ S^{-1}(z)$. Thus, it is clear, by (7.82) and (7.83), that

$$
\tilde{\mathcal{F}}_{*}\left(\Delta_{1}\right)=\tilde{\mathcal{F}}_{*}\left(\operatorname{span}\left\{\frac{\partial}{\partial u_{1}^{1}}, \cdots, \frac{\partial}{\partial u_{m}^{1}}\right\}\right)=\operatorname{span}\left\{\frac{\partial}{\partial z_{1 \kappa_{1}}}, \ldots, \frac{\partial}{\partial z_{m \kappa_{m}}}\right\} .
$$

In this manner, we can show, by (7.82) and (7.83), that for $1 \leq i \leq \kappa_{\max }$,

$$
\begin{aligned}
\tilde{\mathcal{F}}_{*}\left(\Delta_{i}\right) & =\tilde{\mathcal{F}}_{*}\left(\operatorname{span}\left\{\left.\frac{\partial}{\partial u_{j}^{\ell}} \right\rvert\, 1 \leq j \leq m, 1 \leq \ell \leq \min \left(i, \kappa_{j}+1\right)\right\}\right) \\
& =\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{j\left(\kappa_{j}+1-\ell\right)}} \right\rvert\, 1 \leq j \leq m, 1 \leq \ell \leq \min \left(i, \kappa_{j}\right)\right\}
\end{aligned}
$$

which implies that $\tilde{\mathcal{F}}_{*}\left(\Delta_{i}\right), 1 \leq i \leq \kappa_{\text {max }}$, are well-defined involutive distributions. It is clear, by Example 7.1.4, that

$$
\mathcal{F}(\tilde{U})=S^{-1} \circ \tilde{\mathcal{F}}(\tilde{U})
$$

and for $1 \leq i \leq \kappa_{\max }$,

$$
\begin{aligned}
\mathcal{F}_{*}\left(\Delta_{i}\right) & =\left(S^{-1} \circ \tilde{\mathcal{F}}\right)_{*}\left(\Delta_{i}\right) \\
& =S_{*}^{-1}\left(\operatorname{span}\left\{\left.\frac{\partial}{\partial z_{j\left(\kappa_{j}+1-\ell\right)}} \right\rvert\, 1 \leq j \leq m, 1 \leq \ell \leq \min \left(i, \kappa_{j}\right)\right\}\right)
\end{aligned}
$$

Since $x=S^{-1}(z)$ is invertible, $\mathcal{F}_{*}\left(\Delta_{i}\right), 1 \leq i \leq \kappa_{\max }$, are also well-defined involutive distributions and (7.79) is, by Theorem 2.10, satisfied. Therefore, condition (ii) is satisfied.

Sufficiency. Suppose that conditions (i) and (ii) are satisfied. Without loss of generality, we can assume that $\kappa_{\max }=\kappa_{1}$ and

$$
\kappa_{1} \geq \kappa_{2} \geq \cdots \kappa_{m}
$$

Let $\mu_{i} \triangleq \operatorname{card}\left\{j \mid 1 \leq j \leq m\right.$ and $\left.\kappa_{j} \geq i\right\}$ for $0 \leq i \leq \kappa_{1}$. For example, if $\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)$ $=(4,2,1)$, then it is clear that $\left(\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}\right)=(3,3,2,1,1,0)$. Then, it is easy to see that $\mu_{0}=m, \sum_{\ell=1}^{\kappa_{1}} \mu_{\ell}=\sum_{\ell=1}^{m} \kappa_{\ell}=n$, and for $1 \leq i \leq \kappa_{1}$,

$$
\Delta_{i} \triangleq \operatorname{span}\left\{\left.\frac{\partial}{\partial u_{j}^{\ell}} \right\rvert\, 1 \leq j \leq \mu_{\ell-1}, 1 \leq \ell \leq i\right\}
$$

By condition (ii), $D_{i}=\mathcal{F}_{*}\left(\Delta_{i}\right)$ is a $\left(\sum_{\ell=1}^{i} \mu_{\ell}\right)$-dimensional well-defined involutive distribution for $1 \leq i \leq \kappa_{\max }=\kappa_{1}$ and $D_{1} \subset D_{2} \subset \cdots \subset D_{\kappa_{1}}$. Thus, there exists, by the Frobenius Theorem (or Theorem 2.8), a state transformation $\xi=$ $\left[\xi_{11} \cdots \xi_{1 \kappa_{1}} \cdots \xi_{m 1} \cdots \xi_{m \kappa_{m}}\right]^{\top}=\tilde{S}(x)$ such that for $1 \leq i \leq \kappa_{1}$,

$$
\begin{align*}
\tilde{D}_{i} & \triangleq \tilde{S}_{*}\left(\mathcal{F}_{*}\left(\operatorname{span}\left\{\left.\frac{\partial}{\partial u_{j}^{\ell}} \right\rvert\, 1 \leq j \leq \mu_{\ell-1}, 1 \leq \ell \leq i\right\}\right)\right) \\
& =\operatorname{span}\left\{\left.\frac{\partial}{\partial \xi_{j}^{\left(\kappa_{j}+1-\ell\right)}} \right\rvert\, 1 \leq j \leq m, 1 \leq \ell \leq \min \left(i, \kappa_{j}\right)\right\} \tag{7.84}
\end{align*}
$$

Let $\tilde{F}_{u}(\xi) \triangleq \tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(\xi)$. Then, we have, by Example 7.1.4, that

$$
\tilde{\mathcal{F}}(\tilde{U}) \triangleq F_{\tilde{u}^{1}} \circ \cdots \circ F_{\tilde{u}^{\kappa_{1}+1}}(0)=\tilde{S} \circ \mathcal{F}(\tilde{U})
$$

where for $1 \leq i \leq m, 1 \leq \ell \leq \kappa_{1}+1$,

$$
\begin{aligned}
& \tilde{u}^{\ell} \triangleq\left[\begin{array}{c}
u_{1}^{\ell} \\
\vdots \\
u_{\mu_{\ell-1}}^{\ell} \\
O_{\left(m-\mu_{\ell}\right) \times 1}
\end{array}\right] \triangleq\left[\begin{array}{c}
\tilde{U}^{\ell} \\
O_{\left(m-\mu_{\ell}\right) \times 1}
\end{array}\right] ; \tilde{U} \triangleq\left[\begin{array}{c}
\tilde{U}^{1} \\
\vdots \\
\tilde{U}^{\kappa_{1}+1}
\end{array}\right] \\
& U^{\ell} \triangleq\left[\begin{array}{c}
u_{1}^{\ell} \\
\vdots \\
u_{\mu_{\ell}}^{\ell}
\end{array}\right] ; U \triangleq\left[\begin{array}{c}
U^{1} \\
\vdots \\
U^{\kappa_{1}}
\end{array}\right] ; \bar{U}^{\ell} \triangleq\left[\begin{array}{c}
U^{\ell} \\
O_{\left(\mu_{\ell-1}-\mu_{\ell}\right) \times 1}
\end{array}\right] \\
& \tilde{\mathcal{F}}(\tilde{U}) \triangleq\left[\begin{array}{c}
\tilde{\mathcal{F}}_{1}(\tilde{U}) \\
\vdots \\
\tilde{\mathcal{F}}_{m}(\tilde{U})
\end{array}\right] ; \tilde{\mathcal{F}}_{i}(\tilde{U}) \triangleq\left[\begin{array}{c}
\tilde{\mathcal{F}}_{i, 1}(\tilde{U}) \\
\vdots \\
\tilde{\mathcal{F}}_{i, \kappa_{i}}(\tilde{U})
\end{array}\right] .
\end{aligned}
$$

Therefore, it is easy to see, by (7.84), that for $1 \leq i \leq m, 1 \leq j \leq \kappa_{i}$,

$$
\frac{\partial}{\partial \tilde{U}^{\ell}} \tilde{\mathcal{F}}_{i j}(\tilde{U})=0,1 \leq \ell \leq j-1 ; \quad \operatorname{det}\left(\left[\begin{array}{c}
\frac{\partial}{\partial U^{j}} \tilde{\mathcal{F}}_{1 j}(\tilde{U}) \\
\vdots \\
\frac{\partial}{\partial U^{j}} \tilde{\mathcal{F}}_{\mu_{j} j}(\tilde{U})
\end{array}\right]\right) \neq 0
$$

In other words, we have that for $1 \leq i \leq m$,

$$
\begin{align*}
& \tilde{\mathcal{F}}_{i}(\tilde{U})=\left[\begin{array}{c}
\alpha_{i 1}\left(\tilde{U}^{1}, \ldots, \tilde{U}^{\kappa_{i}+1}\right) \\
\alpha_{i 2}\left(\tilde{U}^{2}, \ldots, \tilde{U}^{\kappa_{i}+1}\right) \\
\vdots \\
\alpha_{i\left(\kappa_{i}-1\right)}\left(\tilde{U}^{\kappa_{i}-1}, \tilde{U}^{\kappa_{i}}, \tilde{U}^{\kappa_{i}+1}\right) \\
\alpha_{i k_{i}}\left(\tilde{U}^{\kappa_{i}}, \tilde{U}^{\kappa_{i}+1}\right)
\end{array}\right] \tag{7.85}\\
& \tilde{\Psi}_{i}(U)=\tilde{\mathcal{F}}_{i}\left(\bar{U}^{1}, \ldots, \bar{U}^{\kappa_{1}}, O\right)=\left[\begin{array}{c}
\hat{\alpha}_{i 1}\left(U^{1}, \ldots, U^{\kappa_{i}}\right) \\
\hat{\alpha}_{i 2}\left(U^{2}, \ldots, U^{\kappa_{i}}\right) \\
\vdots \\
\hat{\alpha}_{i\left(\kappa_{i}-1\right)}\left(U^{\kappa_{i}-1}, U^{\kappa_{i}}\right) \\
\hat{\alpha}_{i k_{i}}\left(U^{\kappa_{i}}\right)
\end{array}\right]
\end{align*}
$$

where $\alpha_{i j}\left(\tilde{U}^{j}, \ldots, \tilde{U}^{\kappa_{1}}, \tilde{U}^{\kappa_{1}+1}\right) \triangleq \tilde{\mathcal{F}}_{i j}\left(O, \ldots, O, \tilde{U}^{j}, \ldots, \tilde{U}^{\kappa_{1}+1}\right)$ and for $1 \leq i \leq$ $m, 1 \leq j \leq \kappa_{i}$,

$$
\begin{align*}
& \hat{\alpha}_{i j}\left(U^{j}, \ldots, U^{k_{i}}\right) \triangleq \alpha_{i j}\left(\bar{U}^{j}, \ldots, \bar{U}^{k_{i}}, O\right) \\
& \operatorname{det}\left(\left[\begin{array}{c}
\frac{\partial \alpha_{1 j}\left(U^{j}, \ldots, U^{\kappa_{1}+1}\right)}{\partial U U^{j}} \\
\vdots \\
\frac{\partial \alpha_{\mu_{j} j}\left(U^{j}, \ldots, U^{\kappa_{\mu_{j}+1}}\right)}{\partial U^{j}}
\end{array}\right]\right) \neq 0 ; \operatorname{det}\left(\left[\begin{array}{c}
\frac{\partial \hat{\alpha}_{1 j}\left(U^{j}, \ldots, U^{\kappa_{1}}\right)}{\partial U U^{j}} \\
\vdots \\
\frac{\partial \hat{\alpha}_{\mu_{j} j}\left(U^{j}, \ldots, U^{\kappa_{j}}\right)}{\partial U^{j}}
\end{array}\right]\right) \neq 0 . \tag{7.86}
\end{align*}
$$

$$
\begin{gathered}
\hat{\alpha}_{i j}\left(U^{j}, \ldots, U^{\kappa_{i}}\right) \triangleq \alpha_{i j}\left(\bar{U}^{j}, \ldots, \bar{U}^{\kappa_{i}}, O\right) \\
\operatorname{det}\left(\left[\begin{array}{c}
\frac{\partial}{\partial U^{j}} \hat{\alpha}_{1 j}\left(U^{j}, \ldots, U^{\kappa_{1}}\right) \\
\vdots \\
\frac{\partial}{\partial U^{j}} \hat{\alpha}_{\mu_{j} j}\left(U^{j}, \ldots, U^{\kappa_{\mu_{j}}}\right)
\end{array}\right]\right) \neq 0 .
\end{gathered}
$$

Thus, it is clear that there exist smooth functions $\bar{\alpha}_{i}\left(\xi^{i}, \ldots, \xi^{\kappa_{1}}\right): \mathbb{R}^{\sum_{\ell=i}^{\kappa_{1}} \mu_{\ell}} \rightarrow \mathbb{R}^{\mu_{i}}$, $1 \leq i \leq n$, such that for $1 \leq i \leq \kappa_{1}$,

$$
\left[\begin{array}{c}
\hat{\alpha}_{1 i}\left(\bar{\alpha}_{i}\left(\xi^{i}, \ldots, \xi^{\kappa_{1}}\right), \ldots, \bar{\alpha}_{\kappa_{1}}\left(\xi^{\kappa_{1}}\right)\right) \\
\vdots \\
\hat{\alpha}_{\mu_{i} i}\left(\bar{\alpha}_{i}\left(\xi^{i}, \ldots, \xi^{\kappa_{1}}\right), \ldots, \bar{\alpha}_{\kappa_{\mu_{i}}}\left(\xi^{\kappa_{\mu_{i}}}, \ldots, \xi^{\kappa_{\mu_{1}}}\right)\right)
\end{array}\right]=\left[\begin{array}{c}
\xi_{1}^{i} \\
\vdots \\
\xi_{\mu_{i}}^{i}
\end{array}\right] \triangleq \xi^{i}
$$

or

$$
\left[\begin{array}{c}
U^{1} \tag{7.87}\\
\vdots \\
U^{\kappa_{1}}
\end{array}\right]=\tilde{\Psi}^{-1}(\xi)=\left[\begin{array}{c}
\bar{\alpha}_{1}\left(\xi^{1}, \ldots, \xi^{\kappa_{1}}\right) \\
\bar{\alpha}_{2}\left(\xi^{2}, \ldots, \xi^{\kappa_{1}}\right) \\
\vdots \\
\bar{\alpha}_{\kappa_{1}-1}\left(\xi_{1}^{\kappa_{1}-1}, \xi^{\kappa_{1}}\right) \\
\bar{\alpha}_{\kappa_{1}}\left(\xi^{\kappa_{1}}\right)
\end{array}\right] .
$$

Since $\tilde{F}_{u} \circ \tilde{\Psi}(U)=\tilde{\mathcal{F}}(u, U)$ by (7.54), we have that for $1 \leq i \leq m$,

$$
\tilde{F}_{i, u}(\xi)=\tilde{\mathcal{F}}_{i}\left(u, \Psi^{-1}(\xi)\right)=\left[\begin{array}{c}
\tilde{\alpha}_{i 1}\left(u, \xi^{1}, \ldots, \xi^{\kappa_{i}}\right) \tag{7.88}\\
\tilde{\alpha}_{i 2}\left(\xi^{1}, \ldots, \xi^{\kappa_{i}}\right) \\
\vdots \\
\tilde{\alpha}_{i\left(\kappa_{i}-1\right)}\left(\xi^{\kappa_{i}-2}, \xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right) \\
\tilde{\alpha}_{i \kappa_{i}}\left(\xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right)
\end{array}\right]
$$

where for $1 \leq i \leq m$ and $2 \leq \ell \leq \kappa_{i}$,

$$
\begin{aligned}
& \tilde{\alpha}_{i 1}\left(u, \xi^{1}, \ldots, \xi^{\kappa_{i}}\right) \triangleq \alpha_{i 1}\left(u, \bar{\alpha}_{1}\left(\xi^{1}, \ldots, \xi^{\kappa_{i}}\right), \ldots, \bar{\alpha}_{\kappa_{i}}\left(\xi^{\kappa_{i}}\right)\right) \\
& \tilde{\alpha}_{i \ell}\left(\xi^{i-1}, \ldots, \xi^{\kappa_{i}}\right) \triangleq \alpha_{i \ell}\left(\bar{\alpha}_{i-1}\left(\xi^{i-1}, \ldots, \xi^{\kappa_{i}}\right), \ldots, \bar{\alpha}_{\kappa_{i}}\left(\xi^{\kappa_{i}}\right)\right) .
\end{aligned}
$$

Let $\tilde{h}_{i}(\xi)=\xi_{i}^{\kappa_{i}}$ for $1 \leq i \leq m$. Then, we have that $\tilde{h}_{i} \circ \hat{\tilde{F}}_{u}(\xi)=\tilde{\alpha}_{i \kappa_{i}}\left(\xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right) \triangleq$ $H_{i 1}\left(\xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right)=\tilde{h}_{i}(\xi) \circ \hat{\tilde{F}}_{0}(\xi)$ and

$$
\begin{aligned}
\tilde{h}_{i} \circ \hat{\tilde{F}}_{u}^{2}(\xi) & =H_{i 1}\left(\left[\begin{array}{c}
\tilde{\alpha}_{1\left(\kappa_{i}-1\right)}\left(\xi^{\kappa_{i}-2}, \xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right) \\
\vdots \\
\tilde{\alpha}_{\mu_{\kappa_{i}-1}\left(\kappa_{i}-1\right)}\left(\xi^{\kappa_{i}-2}, \xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right)
\end{array}\right],\left[\begin{array}{c}
\tilde{\alpha}_{1 \kappa_{i}}\left(\xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right) \\
\vdots \\
\tilde{\alpha}_{\mu_{\kappa_{i}} \kappa_{i}}\left(\xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right)
\end{array}\right]\right) \\
& \triangleq H_{i 2}\left(\xi^{\kappa_{i}-2}, \xi^{\kappa_{i}-1}, \xi^{\kappa_{i}}\right)=\tilde{h}_{i} \circ \hat{\tilde{F}}_{0}^{2}(\xi) .
\end{aligned}
$$

In this manner, it is easy to show, by (7.86) and (7.88), that for $1 \leq i \leq m$ and $2 \leq \ell \leq \kappa_{i}-1$,

$$
\tilde{h}_{i} \circ \hat{\tilde{F}}_{u}^{\ell}(\xi)=\tilde{h}_{i} \circ \hat{\tilde{F}}_{0}^{\ell}(\xi) ; \operatorname{det}\left(\left[\begin{array}{c}
\left.\frac{\partial\left(\tilde{h}_{1} \circ \hat{F}_{u}(\xi)\right.}{\partial u}\right|_{(0,0)} \\
\vdots \\
\left.\left.\frac{\partial\left(\tilde{h}_{m} \hat{\hat{F}_{n}}\right.}{\partial u}\right|_{(\xi)}\right) \\
\left.\right|_{(0,0)}
\end{array}\right]\right) \neq 0
$$

or

$$
\tilde{h}_{i} \circ \tilde{S} \circ \hat{F}_{u}^{\ell}(x)=\tilde{h}_{i} \circ \tilde{S} \circ \hat{F}_{0}^{\ell}(x) ; \operatorname{det}\left(\left[\begin{array}{c}
\left.\frac{\partial\left(\tilde{h}_{1} \circ \tilde{S} \circ \hat{F}_{u}^{\kappa_{i}}(x)\right)}{\partial u}\right|_{(0,0)} \\
\vdots \\
\left.\frac{\partial\left(\tilde{h}_{m} \circ \tilde{S} \circ \hat{F}_{u}^{k_{i}}(x)\right)}{\partial u}\right|_{(0,0)}
\end{array}\right]\right) \neq 0
$$

Therefore, $S_{i 1}(x) \triangleq \tilde{h}_{i} \circ \tilde{S}(x)=\tilde{S}_{i \kappa_{i}}(x), 1 \leq i \leq m$, satisfy conditions (i) and (ii) of Lemma 7.2. Hence, by Lemma 7.2, system (7.50) is feedback linearizable.

It is clear that if condition (ii) of Theorem 7.3 is satisfied, then condition (ii) of Theorem 7.4 is satisfied. In other words, if a system is state equivalent to a linear system, then it is also feedback linearizable.

Example 7.3.6 Show that system (7.73) is feedback linearizable.

$$
\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t) \\
x_{1}(t)^{2}+u_{1}(t) \\
x_{1}(t) u_{1}(t)+u_{2}(t)
\end{array}\right]=F_{u(t)}(x(t)) .
$$

Solution In Example 7.3.4, we have that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$,

$$
\mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right)=\left[\begin{array}{c}
u_{1}^{2} \\
\left(u_{1}^{3}\right)^{2}+u_{1}^{1} \\
u_{1}^{3} u_{1}^{1}+u_{2}^{1}
\end{array}\right]
$$

and

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{\frac{\partial}{\partial u_{2}^{2}},-2 u_{1}^{3} \frac{\partial}{\partial u_{1}^{1}}+\left(2\left(u_{1}^{3}\right)^{2}-u_{1}^{1}\right) \frac{\partial}{\partial u_{2}^{1}}+\frac{\partial}{\partial u_{1}^{3}}\right\}
$$

Since $\Delta_{1}=\operatorname{span}\left\{\frac{\partial}{\partial u_{1}^{1}}, \frac{\partial}{\partial u_{2}^{1}}\right\}$, it is easy to see that

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial u_{1}^{1}}, \frac{\partial}{\partial u_{2}^{2}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{1} ;\left[\frac{\partial}{\partial u_{2}^{1}}, \frac{\partial}{\partial u_{2}^{2}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{1}} \\
& {\left[\frac{\partial}{\partial u_{1}^{1}},-2 u_{1}^{3} \frac{\partial}{\partial u_{1}^{1}}+\left(2\left(u_{1}^{3}\right)^{2}-u_{1}^{1}\right) \frac{\partial}{\partial u_{2}^{1}}+\frac{\partial}{\partial u_{1}^{3}}\right]=-\frac{\partial}{\partial u_{2}^{1}} \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{1}} \\
& {\left[\frac{\partial}{\partial u_{2}^{1}},-2 u_{1}^{3} \frac{\partial}{\partial u_{1}^{1}}+\left(2\left(u_{1}^{3}\right)^{2}-u_{1}^{1}\right) \frac{\partial}{\partial u_{2}^{1}}+\frac{\partial}{\partial u_{1}^{3}}\right]=0 \in \operatorname{ker} \mathcal{F}_{*}+\Delta_{1}}
\end{aligned}
$$

which imply that condition (ii) of Theorem 7.4 is satisfied. Hence, system (7.73) is feedback linearizable. Since

$$
\begin{equation*}
\mathcal{F}_{*}\left(\Delta_{1}\right)=\operatorname{span}\left\{\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\} \tag{7.89}
\end{equation*}
$$

we have that $\operatorname{span}\left\{d x_{1}\right\}=\mathcal{F}_{*}\left(\Delta_{1}\right)^{\perp}$ and $\operatorname{span}\left\{d x_{1}, d\left(x_{1} \circ F_{0}(x)\right), d x_{3}\right\}=\mathcal{F}_{*}\left(\Delta_{0}\right)^{\perp}$, where $\Delta_{0}=\operatorname{span}\{0\}$. Thus, $S_{11}(x)=x_{1}$ and $S_{21}(x)=x_{3}$ satisfy the conditions of Lemma 7.2. Let

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=S(x)=\left[\begin{array}{c}
S_{11}(x) \\
S_{11} \circ F_{0}(x) \\
S_{21}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
S_{11} \circ \hat{F}_{u}^{2}(x) \\
S_{11} \circ \hat{F}_{u}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+u_{1} \\
x_{1} u_{1}+u_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \text { or }\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{1}^{2}+v_{1} \\
x_{1}^{3}-x_{1} v_{1}+v_{2}
\end{array}\right]=\gamma(x, v)
$$

Then it is clear that

$$
\tilde{F}_{u}(z)=S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] u .
$$

Example 7.3.7 Show that the following discrete system is not feedback linearizable:

$$
x(t+1)=\left[\begin{array}{c}
x_{2}(t)+x_{1}(t) u_{2}(t) \tag{7.90}\\
u_{1}(t) \\
u_{2}(t)
\end{array}\right]=F_{u(t)}(x(t))
$$

Solution Since $\left.\frac{\partial F_{u}(x)}{\partial x}\right|_{(0,0)}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\left.\frac{\partial F_{u}(x)}{\partial u}\right|_{(0,0)}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$, we have, by simple calculation, that $\left(\kappa_{1}, \kappa_{2}\right)=(2,1)$. Since $\kappa_{1}+\kappa_{2}=3$, condition (i) of Theorem 7.4 is satisfied. Also, it is easy to see, by (7.52), that

$$
\begin{aligned}
\mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right) & \left.\triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)\right|_{u_{2}^{3}=0}=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
0 \\
u_{1}^{3} \\
0
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{c}
u_{1}^{3} \\
u_{1}^{2} \\
u_{2}^{2}
\end{array}\right]\right)=\left[\begin{array}{c}
u_{1}^{2}+u_{1}^{3} u_{2}^{1} \\
u_{1}^{1} \\
u_{2}^{1}
\end{array}\right]
\end{aligned}
$$

Since $\frac{\partial \mathcal{F}\left(u_{1}^{1}, u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{1}^{3}\right)}{\partial \tilde{U}}=\left[\begin{array}{ccccc}0 & u_{1}^{3} & 1 & 0 & u_{2}^{1} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$, we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{\frac{\partial}{\partial u_{2}^{2}},-u_{2}^{1} \frac{\partial}{\partial u_{1}^{2}}+\frac{\partial}{\partial u_{1}^{3}}\right\}
$$

and

$$
\left[\frac{\partial}{\partial u_{2}^{1}},-u_{2}^{1} \frac{\partial}{\partial u_{1}^{2}}+\frac{\partial}{\partial u_{1}^{3}}\right]=-\frac{\partial}{\partial u_{1}^{2}} \notin \operatorname{ker} \mathcal{F}_{*}+\operatorname{span}\left\{\frac{\partial}{\partial u_{1}^{1}}, \frac{\partial}{\partial u_{2}^{1}}\right\}
$$

which imply that $\mathcal{F}_{*}\left(\Delta_{1}\right)$ is not a well-defined vector field. Hence, condition (ii) of Theorem 7.4 is not satisfied and system (7.90) is not feedback linearizable.

In Example 7.3.7, it is shown that system (7.90) is not feedback linearizable. If we consider the dynamic feedback

$$
\begin{align*}
{\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
w_{1}(t) \\
\eta(t)
\end{array}\right] \tag{7.91}\\
\eta(t+1) & =w_{2}(t), \tag{7.92}
\end{align*}
$$

then we have the following extended system:

$$
\left[\begin{array}{c}
x_{1}(t+1) \tag{7.93}\\
x_{2}(t+1) \\
x_{3}(t+1) \\
\eta(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t)+x_{1}(t) \eta(t) \\
w_{1}(t) \\
\eta(t) \\
w_{2}(t)
\end{array}\right]=\bar{F}_{w(t)}(x(t), \eta(t))
$$

It is easy to see that extended system (7.93) is feedback linearizable with

$$
z_{E}=S(x, \eta)=\left[\begin{array}{c}
x_{1} \tag{7.94}\\
x_{2}+x_{1} \eta \\
x_{3} \\
\eta
\end{array}\right] \text { and }\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{c}
v_{1}-\left(x_{2}+x_{1} \eta\right) v_{2} \\
v_{2}
\end{array}\right]
$$

In other words, system (7.90) is not linearizable by static feedback. However, system (7.90) is linearizable by dynamic feedback

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
v_{1}(t)-\left(x_{2}(t)+x_{1}(t) \eta(t)\right) v_{2}(t) \\
\eta(t)
\end{array}\right] \\
\eta(t+1) & =v_{2}(t) .
\end{aligned}
$$

It is called the dynamic feedback linearization of the discrete time systems.

7.4 Linearization of Discrete Time Systems with Single Output

In this section, we consider the following single input single output discrete nonlinear system:

$$
\begin{align*}
x(t+1) & =F(x(t), u(t)) \triangleq F_{u(t)}(x(t)) \tag{7.95}\\
y(t) & =h(x(t))
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}, y \in \mathbb{R}$, and $F(x, u): \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ and $h(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth functions with $F(0,0)=0$ and $h(0)=0$.

Theorem 7.5 (conditions for state equivalence to a LS with output)
System (7.95) is state equivalent to a LS with output via state transformation $z=$ $S(x)$, if and only if
(i) $\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}$ is nonsingular.
(ii) $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{i}}\right), 1 \leq i \leq n+1$, are well-defined vector fields.
(iii) $\frac{\partial(h \circ \Psi(U))}{\partial U}=\bar{c}=\mathrm{const}$.

Furthermore, $z=S(x)=\Psi^{-1}(x)$ is a linearizing state transformation.

Proof Necessity. Suppose that system (7.95) is state equivalent to a linear system with output. Then there exists a state transformation $z=S(x)$ such that

$$
\begin{aligned}
\tilde{F}_{u}(z) & \triangleq S \circ F_{u} \circ S^{-1}(z)=A z+b u \\
\tilde{h}(z) & \triangleq h \circ S^{-1}(z)=c z
\end{aligned}
$$

where

$$
\operatorname{rank}\left(\left[b A b \cdots A^{n-1} b\right]\right)=n
$$

It is clear, by Theorem 7.1, that conditions (i) and (ii) of Theorem 7.5 are satisfied. Since $\tilde{F}_{u}(z)=S \circ F_{u} \circ S^{-1}(z), \tilde{F}_{u}(z)=A z+b u$, and $S(0)=0$, it is easy to see, by Examples 7.1.3 and 7.1.4, that $\tilde{\Psi}(U)=S \circ \Psi(U)$ and

$$
\begin{aligned}
& \tilde{\Psi}(U) \triangleq \tilde{F}_{u^{1}} \circ \cdots \circ \tilde{F}_{u^{n}}(0)=S \circ \Psi(U) \\
& \tilde{h} \circ \tilde{\Psi}(U)=c\left(A^{n-1} b u^{n}+\cdots+b u^{1}\right)
\end{aligned}
$$

which imply that

$$
\begin{aligned}
\frac{\partial(h \circ \Psi(U))}{\partial U} & =\frac{\partial\left(h \circ S^{-1} \circ S \circ \Psi(U)\right)}{\partial U}=\frac{\partial(\tilde{h} \circ \tilde{\Psi}(U))}{\partial U} \\
& =c\left[b A b \cdots A^{n-1} b\right] \triangleq \bar{c}
\end{aligned}
$$

where $U=\left[\begin{array}{llll}u^{1} & u^{2} & \cdots & u^{n}\end{array}\right]^{\top}$. Therefore, condition (iii) is satisfied.
Sufficiency. Suppose that conditions (i)-(iii) are satisfied. Then, by Theorem 7.1, we have that

$$
\begin{equation*}
\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=A z+b u \tag{7.96}
\end{equation*}
$$

where $z=S(x)=\Psi^{-1}(x)$ and

$$
\operatorname{rank}\left(\left[b A b \cdots A^{n-1} b\right]\right)=n
$$

Also, it is easy to see, by condition (iii), that

$$
\begin{equation*}
\tilde{h}(z) \triangleq h \circ S^{-1}(z)=h \circ \Psi(z)=\bar{c} z . \tag{7.97}
\end{equation*}
$$

Therefore, by (7.96) and (7.97), system (7.95) is state equivalent to a linear system with output via $z=S(x)=\Psi^{-1}(x)$.

Example 7.4.1 Show that the following discrete time system is state equivalent to a linear system with output:

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}(t)-u(t)^{2} \\
u(t)
\end{array}\right]=F_{u(t)}(x(t)) \tag{7.98}\\
y(t) & =x_{1}(t)+x_{2}(t)+x_{2}(t)^{2}=h(x(t))
\end{align*}
$$

Solution In Example 7.2.3, it has been shown that condition (i) and condition (ii) of Theorem 7.5 are satisfied with

$$
\mathcal{F}\left(u^{1}, u^{2}, u^{3}\right) \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=\left[\begin{array}{c}
u^{2}-\left(u^{1}\right)^{2} \\
u^{1}
\end{array}\right]
$$

and

$$
\Psi\left(u^{1}, u^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)=\left[\begin{array}{c}
u^{2}-\left(u^{1}\right)^{2} \\
u^{1}
\end{array}\right]
$$

Since

$$
\frac{\partial(h \circ \Psi(U))}{\partial U}=\frac{\partial\left(u^{2}+u^{1}\right)}{\partial U}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\bar{c}
$$

condition (iii) of Theorem 7.5 is also satisfied. Hence, by Theorem 7.5, system (7.98) is state equivalent to a linear system with output. Let

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=S(x)=\Psi^{-1}(x)=\left[\begin{array}{c}
x_{2} \\
x_{1}+x_{2}^{2}
\end{array}\right] .
$$

Then it is easy to see that

$$
\tilde{F}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u
$$

and

$$
\tilde{h}(z) \triangleq h \circ S^{-1}(z)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] .
$$

Example 7.4.2 Show that the following discrete time system is not state equivalent to a linear system with output:

$$
\begin{align*}
{\left[\begin{array}{c}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}(t)+\left(1+x_{1}(t)\right) u(t) \\
\left(1+x_{1}(t)\right) u(t)
\end{array}\right]=F_{u(t)}(x(t)) \tag{7.99}\\
y(t) & =2 x_{1}(t)-x_{2}(t)=h(x(t))
\end{align*}
$$

Solution It is easy to see, by (7.13) and (7.14), that

$$
\begin{aligned}
& \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right) \triangleq F_{u^{1}} \circ F_{u^{2}} \circ F_{u^{3}}(0)=F_{u^{1}} \circ F_{u^{2}}\left(\left[\begin{array}{c}
u^{3} \\
u^{3}
\end{array}\right]\right) \\
& =F_{u^{1}}\left(\left[\begin{array}{c}
u^{3}+u^{2}+u^{2} u^{3} \\
u^{2}+u^{2} u^{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\left(u^{1}+u^{2}+u^{1} u^{2}\right)\left(1+u^{3}\right) \\
u^{1}\left(1+u^{2}\right)\left(1+u^{3}\right)
\end{array}\right]
\end{aligned}
$$

and

$$
\Psi\left(u^{1}, u^{2}\right) \triangleq F_{u^{1}} \circ F_{u^{2}}(0)=\mathcal{F}\left(u^{1}, u^{2}, 0\right)=\left[\begin{array}{c}
u^{1}+u^{2}+u^{1} u^{2} \\
u^{1}+u^{1} u^{2}
\end{array}\right]
$$

Since $\operatorname{det}\left(\left.\frac{\partial \Psi(U)}{\partial U}\right|_{U=0}\right)=\operatorname{det}\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right)=-1 \neq 0$, condition (i) of Theorem 7.5 is satisfied. Since

$$
\frac{\partial \mathcal{F}\left(u^{1}, u^{2}, u^{3}\right)}{\partial \tilde{U}}=\left[\begin{array}{cc}
\left(1+u^{2}\right)\left(1+u^{3}\right)\left(1+u^{1}\right)\left(1+u^{3}\right) & u^{1}+u^{2}+u^{1} u^{2} \\
\left(1+u^{2}\right)\left(1+u^{3}\right) & u^{1}\left(1+u^{3}\right) \\
u^{1}\left(1+u^{2}\right)
\end{array}\right],
$$

we have that

$$
\operatorname{ker} \mathcal{F}_{*}=\operatorname{span}\left\{-\frac{u^{1}}{\left(1+u^{2}\right)\left(1+u^{3}\right)} \frac{\partial}{\partial u^{1}}-\frac{u^{2}}{1+u^{3}} \frac{\partial}{\partial u^{2}}+\frac{\partial}{\partial u^{3}}\right\}
$$

and

$$
\left[\frac{\partial}{\partial u^{1}}, \frac{\partial}{\partial u^{3}}\right]=-\frac{1}{\left(1+u^{2}\right)\left(1+u^{3}\right)} \frac{\partial}{\partial u^{1}} \notin \operatorname{ker} \mathcal{F}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\mathcal{F}_{*}\left(\frac{\partial}{\partial u^{1}}\right)$ is not a well-defined vector field and condition (ii) of Theorem 7.5 is not satisfied. Hence, by Theorem 7.5, system (7.99) is not state equivalent to a linear system with output.

Definition 7.6 (feedback linearization with output)
System (7.95) is said to be feedback linearizable with output, if there exist a nonsingular feedback $u=\gamma(x, v)\left(\left.\frac{\partial \gamma(x, v)}{\partial v}\right|_{(0,0)} \neq 0\right.$ and $\left.\gamma(0,0)=0\right)$ and a state transformation $z=S(x)$ such that the closed-loop satisfies, in z-coordinates, the following Brunovsky canonical form:

$$
\begin{aligned}
z(t+1) & =\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & \vdots & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right] z(t)+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] v(t)=A z(t)+b v(t) \\
y(t) & =c z(t) .
\end{aligned}
$$

In other words,

$$
\begin{align*}
& \tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=A z+b v \tag{7.100}\\
& \tilde{h}(z) \triangleq h \circ S^{-1}(z)=c z
\end{align*}
$$

For the continuous system, the characteristic number of the output is defined as the nonnegative integer ρ if ρ th derivative of the output is a function of the input for the first time. (See Definition 5.4.) Similarly, the characteristic number of the output can also be defined for the discrete systems.

Definition 7.7 (characteristic number)
The characteristic number ρ of the output is defined as the smallest natural number such that $\frac{\partial}{\partial u}\left(h \circ \hat{F}_{u}^{\rho}(x)\right) \neq 0$. In other words,

$$
\begin{equation*}
\frac{\partial}{\partial u}\left(h \circ \hat{F}_{u}^{k}(x)\right)=0,1 \leq k \leq \rho-1 \text { and } \frac{\partial}{\partial u}\left(h \circ \hat{F}_{u}^{\rho}(x)\right) \neq 0 . \tag{7.101}
\end{equation*}
$$

If $\frac{\partial}{\partial u}\left(h \circ \hat{F}_{u}^{k}(x)\right)=0$ for $k \geq 1$, then we let $\rho \triangleq \infty$.
It is easy to see, by mathematical induction, that

$$
\begin{aligned}
& y(k)=h \circ F_{u(k-1)} \circ \cdots \circ F_{u(0)}(x(0))=h \circ F_{0}^{k}(x(0)), 1 \leq k \leq \rho-1 \\
& y(\rho)=h \circ F_{u(\rho-1)} \circ \cdots \circ F_{u(0)}(x(0))=h \circ \hat{F}_{u(0)}^{\rho}(x(0)) .
\end{aligned}
$$

In other words, the output $y(\rho)$ first becomes a function of the input $u(0)$.
Example 7.4.3 Suppose that ρ is the characteristic number of the system (7.95) and $\left.\frac{\partial\left(h \circ \hat{F}_{u}^{\rho}(x)\right)}{\partial u}\right|_{(0,0)} \neq 0$. Find the nonsingular feedback $u=\gamma(x, v)$ such that the transfer function of the closed-loop system is $G_{c}(z) \triangleq \frac{Y(z)}{V(z)}=\frac{1}{z^{\rho}+a_{\rho-1} z^{\rho-1}+\cdots+a_{1} z+a_{0}}$.

Solution It is easy to see, by (7.101), that

$$
\begin{aligned}
& y(t+k)=h \circ F_{0}^{k}(x(t)), \quad 1 \leq k \leq \rho-1 \\
& y(t+\rho)=h \circ F_{0}^{\rho-1} \circ F_{u(t)}(x(t))=h \circ \hat{F}_{u(t)}^{\rho}(x(t)) .
\end{aligned}
$$

We need to find the feedback such that

$$
y(t+\rho)=-a_{\rho-1} y(t+\rho-1)-\cdots-a_{1} y(t+1)-a_{0} y(t)+v(t)
$$

or

$$
h \circ \hat{F}_{u(t)}^{\rho}(x(t))+a_{\rho-1} h \circ F_{0}^{\rho-1}(x(t))+\cdots+a_{1} h \circ F_{0}(x(t))+a_{0} h(x(t))=v(t) .
$$

By inverse function Theorem (or Theorem 2.2), there exists a nonsingular feedback $u=\gamma(x, v)$ such that

$$
h \circ \hat{F}_{\gamma(x, v)}^{\rho}(x)+a_{\rho-1} h \circ F_{0}^{\rho-1}(x)+\cdots+a_{1} h \circ F_{0}(x)+a_{0} h(x)=v .
$$

Example 7.4.4 Show that if $\rho=n$ and $\left.\frac{\partial\left(h \circ \hat{F}_{\mu}^{\rho}(x)\right)}{\partial u}\right|_{(0,0)} \neq 0$, then system (7.95) is feedback linearizable with output.

Solution Suppose that $\rho=n$ and $\left.\frac{\partial\left(h \circ \hat{F}_{u}^{\rho}(x)\right)}{\partial u}\right|_{(0,0)} \neq 0$. Then, we have, by (7.101), that

$$
\frac{\partial}{\partial u}\left(h \circ \hat{F}_{u}^{i}(x)\right)=0,1 \leq i \leq n-1 \text { and }\left.\frac{\partial}{\partial u}\left(h \circ \hat{F}_{u}^{n}(x)\right)\right|_{(0,0)} \neq 0
$$

Thus, conditions of Lemma 7.1 are satisfied with $S_{1}(x)=h(x)$. Therefore, by Lemma 7.1, system (7.95) is feedback linearizable with state transformation

$$
z=S(x)=\left[h(x) h \circ F_{0}(x) \cdots h \circ F_{0}^{n-1}(x)\right]^{\top}
$$

and feedback $u=\gamma(x, v)$ such that

$$
v=S_{1} \circ \hat{F}_{\gamma(x, v)}^{n}(x)
$$

Since $\tilde{h}=h \circ S^{-1}(z)=z_{1}$, it is easy to see that (7.100) is satisfied with $c=$ $\left[\begin{array}{llll}1 & 0 & \cdots\end{array}\right]$.

Theorem 7.6 (conditions for feedback linearization with output)
Let $\rho \leq n$. System (7.95) is feedback linearizable with output, if and only if
(i) $\left.\frac{\partial\left(h \circ \hat{F}_{u}^{f}(x)\right)}{\partial u}\right|_{(0,0)} \neq 0$.
(ii) $\left.\frac{\partial \bar{\Psi}(V)}{\partial V}\right|_{V=0}$ is nonsingular.
(iii) $\overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{i}}\right), 1 \leq i \leq n+1$, are well-defined vector fields or

$$
\left[\frac{\partial}{\partial v^{i}}, \quad \operatorname{ker} \overline{\mathcal{F}}_{*}\right] \subset \operatorname{ker} \overline{\mathcal{F}}_{*}, \quad 1 \leq i \leq n+1
$$

where $V \triangleq\left[\begin{array}{lll}v^{1} & \cdots & v^{n}\end{array}\right]^{\top}$,

$$
\begin{equation*}
h \circ \hat{F}_{\bar{\gamma}(x, v)}^{\rho}(x) \triangleq v \tag{7.102}
\end{equation*}
$$

$$
\begin{equation*}
\bar{F}_{v}(x) \triangleq F_{\bar{\gamma}(x, v)}(x) \tag{7.103}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathcal{F}}\left(v^{1}, \ldots, v^{n}, v^{n+1}\right) \triangleq \bar{F}_{v^{1}} \circ \cdots \circ \bar{F}_{v^{n}} \circ \bar{F}_{v^{n+1}}(0) \tag{7.104}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\Psi}(V)=\bar{\Psi}\left(v^{1}, \ldots, v^{n}\right) \triangleq \overline{\mathcal{F}}\left(v^{1}, \ldots, v^{n}, 0\right)=\bar{F}_{v^{1}} \circ \cdots \circ \bar{F}_{v^{n}}(0) \tag{7.105}
\end{equation*}
$$

Furthermore, state transformation $z=S(x)$ and nonsingular feedback $u=\gamma(x, v)$ are given by

$$
\begin{equation*}
S(x)=P^{-1} \bar{\Psi}^{-1}(x) \text { and } \gamma(x, v)=\bar{\gamma}(x, v-\bar{a} S(x)) \tag{7.106}
\end{equation*}
$$

where $\bar{a} \triangleq\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n-1}\end{array} a_{n}\right]$ and

$$
\begin{align*}
& \overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{n+1}}\right)= \sum_{i=1}^{n} a_{i} \overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{i}}\right)=\sum_{i=1}^{n} a_{i} \bar{\Psi}_{*}\left(\frac{\partial}{\partial v^{i}}\right) \tag{7.107}\\
& P=\left[\begin{array}{ccccc}
-a_{2} & -a_{3} \cdots & -a_{n} & 1 \\
-a_{3} & -a_{4} \cdots & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-a_{n-1} & -a_{n} & \cdots & 0 & 0 \\
-a_{n} & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] \tag{7.108}
\end{align*}
$$

Proof Necessity. Suppose that system (7.95) is feedback linearizable with output. Then there exist a state transformation $z=S(x)$ and a nonsingular feedback $u=$ $\gamma(x, v)$ such that

$$
\begin{align*}
& \tilde{F}_{v}(z) \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=A z+b v \tag{7.109}\\
& \tilde{h}(z) \triangleq h \circ S^{-1}(z)=c z=\left[c_{1} c_{2} \cdots c_{n}\right] z
\end{align*}
$$

where $\bar{F}_{v}(x) \triangleq F_{\gamma(x, v)}(x)$. It is easy to see, by Example 7.1.3 and Example 7.1.4, that

$$
\begin{align*}
h \circ \hat{F}_{\gamma(x, v)}^{\rho}(x) & =\tilde{h} \circ \hat{\tilde{F}}_{v}^{\rho} \circ S(x)=c A^{\rho} S(x)+c_{n+1-\rho} v \tag{7.110}\\
& \triangleq \alpha(x)+c_{n+1-\rho} v
\end{align*}
$$

which implies that

$$
\frac{\partial\left(h \circ \hat{F}_{\gamma(x, v)}^{\rho}(x)\right)}{\partial v}=\left.\frac{\partial\left(h \circ \hat{F}_{u}^{\rho}(x)\right)}{\partial u}\right|_{u=\gamma(x, v)} \frac{\partial \gamma(x, v)}{\partial v}=c_{n+1-\rho} \neq 0
$$

and

$$
\left.\left.\frac{\partial\left(h \circ \hat{F}_{u}^{\rho}(x)\right)}{\partial u}\right|_{(0,0)} \frac{\partial \gamma(x, v)}{\partial v}\right|_{(0,0)}=c_{n+1-\rho} \neq 0
$$

Therefore, it is clear that condition (i) of Theorem 7.6 is satisfied. Without loss of generality, we can let $c_{n+1-\rho}=1$. If we let

$$
\begin{equation*}
\bar{\gamma}(x, v) \triangleq \gamma(x,-\alpha(x)+v) \text { or } \gamma(x, v) \triangleq \bar{\gamma}(x, \alpha(x)+v) \tag{7.111}
\end{equation*}
$$

then it is clear, by (7.110), that (7.102) is satisfied. Also, we have, by (7.103), (7.109), and (7.111), that

$$
\tilde{F}_{v}(z) \triangleq S \circ F_{\bar{\gamma}(x, \alpha(x)+v)} \circ S^{-1}(z)=S \circ \bar{F}_{\alpha(x)+v} \circ S^{-1}(z)=A z+b v
$$

or

$$
\begin{gather*}
\bar{F}_{v}=S^{-1} \circ \tilde{F}_{-\bar{\alpha}(z)+v}(z) \circ S(x) \triangleq S^{-1} \circ F_{v}^{\prime}(z) \circ S(x) \\
F_{v}^{\prime}(z) \triangleq \tilde{F}_{-\bar{\alpha}(z)+v}(z)=A z+b\left(-c A^{\rho} z+v\right) \triangleq \bar{A} z+b v \tag{7.112}
\end{gather*}
$$

where $\bar{\alpha}(z) \triangleq \alpha \circ S^{-1}(z)=c A^{\rho} z$,

$$
\bar{a}=\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdots & a_{n-1} & a_{n}
\end{array}\right] \triangleq-c A^{\rho}=-\left[\begin{array}{llllll}
0 & \cdots & 0 & c_{\rho+1} & \cdots & c_{n-\rho}
\end{array}\right]
$$

and

$$
\bar{A} \triangleq A-b c A^{\rho}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{n}
\end{array}\right]
$$

Therefore, it is easy to see, by Example 7.1.3 and Example 7.1.4, that

$$
\begin{aligned}
\overline{\mathcal{F}}(\tilde{V}) & \triangleq \bar{F}_{v^{1}} \circ \cdots \circ \bar{F}_{v^{n}} \circ \bar{F}_{v^{n+1}}(0)=S^{-1} \circ F_{v^{1}}^{\prime} \circ \cdots \circ F_{v^{n}}^{\prime} \circ F_{v^{n+1}}^{\prime}(0) \\
& =S^{-1}\left(\sum_{k=1}^{n+1} \bar{A}^{k-1} b v^{k}\right)
\end{aligned}
$$

and

$$
\bar{\Psi}(V)=\overline{\mathcal{F}}(V, 0)=S^{-1}\left(\sum_{k=1}^{n} \bar{A}^{k-1} b v^{k}\right)
$$

Since $\left.\frac{\partial \bar{\Psi}(V)}{\partial V}\right|_{V=0}=\left.\frac{\partial S^{-1}(z)}{\partial z}\right|_{z=0}\left[b \bar{A} b \cdots \bar{A}^{n-1} b\right]$, it is clear that condition (ii) of Theorem 7.6 is satisfied. Also, it is easy to see that $\overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{i}}\right)=S_{*}^{-1}\left(\bar{A}^{i-1} b\right), 1 \leq i \leq$ $n+1$, are well-defined vector fields and condition (iii) of Theorem 7.6 is satisfied.

Sufficiency. Suppose that conditions (i)-(iii) are satisfied. By condition (ii), it is clear that $\bar{z}=\bar{S}(x)=\bar{\Psi}^{-1}(x)$ is a state transformation on a neighborhood of the origin. By Theorem 7.1 or (7.31), we have that

$$
\begin{aligned}
\bar{\Psi}^{-1} \circ \bar{F}_{\bar{v}} \circ \bar{\Psi}(\bar{z}) & =\bar{A} \bar{z}+\bar{b} \bar{v} \\
& =\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{1} \\
1 & 0 & \cdots & 0 & a_{2} \\
0 & 1 & \cdots & 0 & a_{3} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & a_{n}
\end{array}\right] \bar{z}+\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \bar{v}
\end{aligned}
$$

where

$$
\overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{n+1}}\right)=\sum_{i=1}^{n} a_{i} \overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{i}}\right)=\sum_{i=1}^{n} a_{i} \bar{\Psi}_{*}\left(\frac{\partial}{\partial v^{i}}\right) .
$$

Let $z=S(x) \triangleq P^{-1} \bar{z}=P^{-1} \bar{S}(x)=P^{-1} \bar{\Psi}^{-1}(x)$, where P is defined by (7.107). Then, it is easy to see that $P^{-1} A P=A^{\prime}, P^{-1} \bar{b}=b$, and

$$
\begin{aligned}
S \circ \bar{F}_{v} \circ S^{-1}(z) & =P^{-1} \bar{\Psi}^{-1} \circ \bar{F}_{\bar{v}} \circ \bar{\Psi}(P z)=A^{\prime} z+b \bar{v} \\
& =\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{n}
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \bar{v} .
\end{aligned}
$$

Therefore, if we let $u=\gamma(x, v)=\bar{\gamma}(x, v-\bar{a} S(x))$, then we have that

$$
\begin{align*}
\tilde{F}_{v}(\bar{z}) & \triangleq S \circ F_{\gamma(x, v)} \circ S^{-1}(z)=S \circ \bar{F}_{v-\bar{a} S(x)} \circ S^{-1}(z)=A z+b v \\
& =\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] v \tag{7.113}
\end{align*}
$$

where $\bar{a} \triangleq\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n-1}\end{array} a_{n}\right]$. Finally, it is easy to see, by (7.101) and (7.102), that

$$
\begin{aligned}
h \circ \bar{\Psi}(V) & =h \circ \bar{F}_{v^{1}} \circ \cdots \circ \bar{F}_{v^{n}}(0)=h \circ \bar{F}_{0}^{\rho-1} \circ \bar{F}_{v^{\rho}} \circ \cdots \circ \bar{F}_{v^{n}}(0) \\
& =v^{\rho} \triangleq \bar{c} V
\end{aligned}
$$

and

$$
\begin{equation*}
\tilde{h}=h \circ S^{-1}(z)=h \circ \bar{\Psi}(P z)=\bar{c} P z \triangleq c z . \tag{7.114}
\end{equation*}
$$

Hence, by (7.113) and (7.114), system (7.95) is feedback linearizable with output via $z=S(x)=P^{-1} \bar{\Psi}^{-1}(x)$ and $u=\gamma(x, v)=\bar{\gamma}(x, v-\bar{a} S(x))$.

Example 7.4.5 Show that system (7.99) is feedback linearizable with output.

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}(t)+\left(1+x_{1}(t)\right) u(t) \\
\left(1+x_{1}(t)\right) u(t)
\end{array}\right]=F_{u(t)}(x(t)) \\
y(t) & =2 x_{1}(t)-x_{2}(t)=h(x(t))
\end{aligned}
$$

Solution Since $h \circ F_{u}(x)=2 x_{2}+\left(1+x_{1}\right) u$, it is clear that $\rho=1$ and

$$
\left.\frac{\partial\left(h \circ \hat{F}_{u}^{\rho}(x)\right)}{\partial u}\right|_{(0,0)}=1 \neq 0
$$

and

$$
h \circ F_{\bar{\gamma}(x, v)}(x)=2 x_{2}+\left(1+x_{1}\right) \bar{\gamma}(x, v)=v \text { or } \bar{\gamma}(x, v)=\frac{v-2 x_{2}}{1+x_{1}} .
$$

Thus, condition (i) of Theorem 7.6 is satisfied and

$$
\bar{F}_{v}(x) \triangleq F_{\bar{\gamma}(x, v)}(x)=\left[\begin{array}{c}
-x_{2}+v \\
-2 x_{2}+v
\end{array}\right] .
$$

Thus, we have that

$$
\begin{aligned}
& \overline{\mathcal{F}}\left(v^{1}, v^{2}, v^{3}\right) \triangleq \bar{F}_{v^{1}} \circ \bar{F}_{v^{2}} \circ \bar{F}_{v^{3}}(0)=\bar{F}_{v^{1}} \circ \bar{F}_{v^{2}}\left(\left[\begin{array}{l}
v^{3} \\
v^{3}
\end{array}\right]\right) \\
& =\bar{F}_{v^{1}}\left(\left[\begin{array}{c}
v^{2}-v^{3} \\
v^{2}-2 v^{3}
\end{array}\right]\right)=\left[\begin{array}{c}
v^{1}-v^{2}+2 v^{3} \\
v^{1}-2 v^{2}+4 v^{3}
\end{array}\right]
\end{aligned}
$$

and

$$
\bar{\Psi}\left(v^{1}, v^{2}\right) \triangleq \bar{F}_{v^{1}} \circ \bar{F}_{v^{2}}(0)=\overline{\mathcal{F}}\left(v^{1}, v^{2}, 0\right)=\left[\begin{array}{c}
v^{1}-v^{2} \\
v^{1}-2 v^{2}
\end{array}\right] .
$$

Since $\operatorname{det}\left(\left.\frac{\partial \bar{\Psi}(V)}{\partial V}\right|_{V=0}\right)=\operatorname{det}\left(\left[\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\right]\right)=-1 \neq 0$, condition (ii) of Theorem 7.6 is satisfied. Since

$$
\frac{\partial \overline{\mathcal{F}}(\tilde{V})}{\partial \tilde{V}}=\left[\begin{array}{lll}
1 & -1 & 2 \\
1 & -2 & 4
\end{array}\right]
$$

we have that

$$
\operatorname{ker} \overline{\mathcal{F}}_{*}=\operatorname{span}\left\{2 \frac{\partial}{\partial v^{2}}+\frac{\partial}{\partial v^{3}}\right\}
$$

and for $1 \leq i \leq 3$,

$$
\left[\frac{\partial}{\partial v^{i}}, 2 \frac{\partial}{\partial v^{2}}+\frac{\partial}{\partial v^{3}}\right]=0 \in \operatorname{ker} \overline{\mathcal{F}}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{i}}\right), 1 \leq i \leq 3$, are well-defined vector fields and condition (iii) of Theorem 7.6 is satisfied. Hence, by Theorem 7.6, system (7.99) is feedback linearizable with output. Note that

$$
\overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v^{3}}\right)=\left[\begin{array}{l}
2 \\
4
\end{array}\right], \bar{\Psi}_{*}\left(\frac{\partial}{\partial v^{1}}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \bar{\Psi}_{*}\left(\frac{\partial}{\partial v^{2}}\right)=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

which imply, together with (7.107) and (7.108), that $\bar{a} \triangleq\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]=\left[\begin{array}{ll}0 & -2\end{array}\right]$ and

$$
P=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

Thus, we have, by (7.106), that

$$
z=S(x)=P^{-1} \bar{\Psi}^{-1}(x)=\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
2 x_{1}-x_{2} \\
x_{1}-x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{2} \\
x_{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
\gamma(x, v) & =\bar{\gamma}(x, v-\bar{a} S(x))=\bar{\gamma}\left(x, v+2 x_{2}\right) \\
& =\frac{\left(v+2 x_{2}\right)-2 x_{2}}{1+x_{1}}=\frac{v}{1+x_{1}}
\end{aligned}
$$

Then it is easy to see that

$$
\begin{aligned}
\tilde{F}_{v}(z) & \triangleq S \circ F_{\gamma(x, v)}(x) \circ S^{-1}(z)=S \circ\left[\begin{array}{c}
x_{2}+v \\
v
\end{array}\right] \circ S^{-1}(z) \\
& =S\left(\left[\begin{array}{c}
z_{2}+v \\
v
\end{array}\right]\right)=\left[\begin{array}{c}
z_{2} \\
v
\end{array}\right]=A z+b v
\end{aligned}
$$

and

$$
\tilde{h}(z) \triangleq h \circ S^{-1}(z)=\left[\begin{array}{ll}
2 & 1
\end{array}\right] z=c z
$$

Example 7.4.6 Show that the following system is not feedback linearizable with output:

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right] } & =\left[\begin{array}{c}
x_{2}(t) \\
x_{3}(t)+u(t)^{2} \\
u(t)
\end{array}\right]=F_{u(t)}(x(t)) \tag{7.115}\\
y(t) & =-x_{1}(t)+x_{3}(t)=h(x(t))
\end{align*}
$$

Solution Since $h \circ F_{u}(x)=-x_{2}+u$, it is clear that $\rho=1$ and

$$
\left.\frac{\partial\left(h \circ \hat{F}_{u}^{\rho}(x)\right)}{\partial u}\right|_{(0,0)}=1 \neq 0
$$

and

$$
h \circ \hat{F}_{\bar{\gamma}(x, v)}(x)=-x_{2}+\bar{\gamma}(x, v)=v \text { or } \bar{\gamma}(x, v)=x_{2}+v .
$$

Thus, condition (i) of Theorem 7.6 is satisfied and

$$
\bar{F}_{v}(x) \triangleq F_{\bar{\gamma}(x, v)}(x)=\left[\begin{array}{c}
x_{2} \\
x_{3}+\left(x_{2}+v\right)^{2} \\
x_{2}+v
\end{array}\right] .
$$

Thus, we have that

$$
\begin{aligned}
& \overline{\mathcal{F}}(\tilde{V}) \triangleq \bar{F}_{v_{1}} \circ \bar{F}_{v_{2}} \circ \bar{F}_{v_{3}} \circ \bar{F}_{v_{4}}(0)=\bar{F}_{v_{1}} \circ \bar{F}_{v_{2}} \circ \bar{F}_{v_{3}}\left(\left[\begin{array}{c}
0 \\
v_{4}^{2} \\
v_{4}
\end{array}\right]\right) \\
& =\bar{F}_{v_{1}} \circ \bar{F}_{v_{2}}\left(\left[\begin{array}{c}
v_{4}^{2} \\
v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2} \\
v_{4}^{2}+v_{3}
\end{array}\right]\right) \\
& =\bar{F}_{v_{1}}\left(\left[\begin{array}{c}
v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2} \\
v_{4}^{2}+v_{3}+\left(v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2}+v_{2}\right)^{2} \\
v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2}+v_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
v_{4}^{2}+v_{3}+\left(v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2}+v_{2}\right)^{2} \\
v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2}+v_{2}+\left(v_{4}^{2}+v_{3}+\left(v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2}+v_{2}\right)^{2}+v_{1}\right)^{2} \\
v_{4}^{2}+v_{3}+\left(v_{4}+\left(v_{4}^{2}+v_{3}\right)^{2}+v_{2}\right)^{2}+v_{1}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\Psi}(V) & \triangleq \bar{F}_{v_{1}} \circ \bar{F}_{v_{2}} \circ \bar{F}_{v_{3}}(0)=\overline{\mathcal{F}}\left(v_{1}, v_{2}, v_{3}, 0\right) \\
& =\left[\begin{array}{c}
v_{3}+\left(v_{3}^{2}+v_{2}\right)^{2} \\
v_{3}^{2}+v_{2}+\left(v_{3}+\left(v_{3}^{2}+v_{2}\right)^{2}+v_{1}\right)^{2} \\
v_{3}+\left(v_{3}^{2}+v_{2}\right)^{2}+v_{1}
\end{array}\right]
\end{aligned}
$$

where $\tilde{V}=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array} v_{4}\right]^{\top}$ and $V=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]^{\top}$. Since

$$
\operatorname{det}\left(\left.\frac{\partial \bar{\Psi}(V)}{\partial V}\right|_{V=0}\right)=\operatorname{det}\left(\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\right)=-1 \neq 0
$$

condition (ii) of Theorem 7.6 is satisfied. By complicated calculations or MATLAB program $\operatorname{ker-sF}(\overline{\mathcal{F}}, \tilde{V}, n)$, we have that

$$
\operatorname{ker} \overline{\mathcal{F}}_{*}=\operatorname{span}\left\{-\frac{\partial}{\partial v_{2}}-2 v_{4} \frac{\partial}{\partial v_{3}}+\frac{\partial}{\partial v_{4}}\right\}
$$

and

$$
\left[\frac{\partial}{\partial v_{4}},-\frac{\partial}{\partial v_{2}}-2 v_{4} \frac{\partial}{\partial v_{3}}+\frac{\partial}{\partial v_{4}}\right]=-2 \frac{\partial}{\partial v_{3}} \notin \operatorname{ker} \overline{\mathcal{F}}_{*} .
$$

Thus, it is clear, by Theorem 2.6, that $\overline{\mathcal{F}}_{*}\left(\frac{\partial}{\partial v_{4}}\right)$ is not a well-defined vector field and condition (iii) of Theorem 7.6 is not satisfied. Hence, by Theorem 7.6, system (7.115) is not feedback linearizable with output.

7.5 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, adfgM, ChConst, ChZero, DeltaDT, HatF, ker-sF, ker-sF-M, KindexDT0, Psi-sF, Psi-sF-M, transp

MATLAB program for Theorem 7.1.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
Fu=[x2-u^2; u]; %Ex:7.2.3
%Fu=[x2; x1^2+u]; %Ex:7.2.4 or Ex:7.2.6
%Fu=[x2+(1+x2)^2*u^2; x3; (1+x2)*u]; %Ex:7.2.7
%Fu=[x2+u^2; x1+u]; %Ex:7.2.8
%Fu=[x2-(x1+u)^2; x1+u]; %P:7-8(a)
%Fu=[x2-(x1+x\mp@subsup{2}{}{\wedge}2+u)^2; x1+x2^2+u]; %P:7-8(b)
%Fu=[x2*exp(u); x3; u]; %P:7-8(c)
%Fu=[x2*exp(x1+u); x3; x1+u]; %P:7-8(d)
%Fu=[x2+x3^2; x1+x3; u]; %P:7-8(e)
Fu=simplify(Fu)
n=length(Fu);
x=sym('x',[n,1]);
w=sym('w',[n+1,1]);
W=W(1:n);
[Psi,sF]=Psi_sF(Fu,x,u,w,n)
```

```
dPsi=jacobian(Psi,W);
dPsi0=simplify(subs(dPsi,W,W-W))
if rank(dPsi0)<n
    disp('cond (i) of Thm 7.1 is not satisfied.')
    disp('System is not state equivalent to a LS.')
    return
end
kersF=ker_sF(sF,w,n)
U=jacobian(w,w);
for k=1:n+1
    cc=adfg(U(:,k),kersF,w) ;
    cc1=[ kersF cc];
    if rank(cc1)>rank(kersF)
            disp('cond (ii) of Thm 7.1 is not satisfied.')
            disp('System is not state equivalent to a LS.')
            return
    end
end
disp('System is, by Thm 7.1, state equivalent to a LS.')
return
```


MATLAB program for Theorem 7.2.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
Fu=[x2-u^2; u]; %Ex:7.2.3
%Fu=[x2; x1^2+u]; %Ex:7.2.4 or Ex:7.2.6
%Fu=[x2+(1+x2)^2*u^2; x3; (1+x2)*u]; %Ex:7.2.7
%Fu=[x2+u^2; x1+u]; %Ex:7.2.8
%Fu=[x2-(x1+u)^2; x1+u]; %P:7-8(a)
%Fu=[x2-(x1+x2^2+u)^2; x1+x2^2+u]; %P:7-8(b)
%Fu=[x2*exp(u); x3; u]; %P:7-8(c)
%Fu=[x2*exp(x1+u); x3; x1+u]; %P:7-8(d)
%Fu=[x2+x3^2; x1+x3; u]; %P:7-8(e)
Fu=simplify(Fu)
n=length(Fu);
```

```
x=sym('x',[n,1]);
w=sym('w', [n+1,1]);
W=w(1:n);
[Psi,sF]=Psi_sF(Fu,x,u,w,n)
dPsi=jacobian(Psi,W);
dPsi0=simplify(subs(dPsi,W,W-W))
if rank(dPsiO)<n
    disp('cond (i) of Thm 7.2 is not satisfied.')
    disp('System is not feedback linearizable.')
    return
end
kersF=ker_sF(sF,w,n)
U=jacobian(w,w);
for k=1:n-1
    Deltak=U(:,1:k);
    ccc=adfg(U(:,k),kersF,w);
    ccc0=[kersF Deltak];
    ccc1=[ ccc0 ccc];
    if rank(ccc1)>rank(ccc0)
        disp('cond (ii) of Thm 7.2 is not satisfied.')
        disp('System is not feedback linearizable.')
        return
    end
end
disp('System is, by Thm 7.2, feedback linearizable.')
return
```

MATLAB program for Theorem 7.3.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 u6 u7 u8 u9 real
Fu=[x2-u1^2; u1; u2-u1^2]; m=2; %Ex:7.3.3
%Fu=[x2; x1^2 + u1; x1*u1+u2]; m=2; %Ex:7.3.4 & Ex:7.3.6
%Fu=[x2+x1*u2; u1; u2]; m=2; %Ex:7.3.7
%Fu=[u1; x3+u1^2; u2]; m=2; %P:7-10(a)
%Fu=[x1+u1; x3+(x1+u1)^2; x1^2+u2]; m=2; %P:7-10(b)
%Fu=[x2+x1*u2; x3; u1; u2]; m=2; %P:7-10(c)
n=length(Fu);
```

```
x=sym('x',[n,1]);
u=sym('u',[m,1]);
Fu=simplify(Fu)
ka=KindexDT0(Fu,x,u)
w=sym('w',[m,n+1]);
[Psi,sF,W,tW,bU]=Psi_sF_M(Fu,x,u,w,m,ka)
if sum(ka)<n
    disp('cond (i) of Thm 7.3 is not satisfied.')
    disp('System is not state equivalent to a LS.')
    return
end
kersF=ker_sF_M(sF,w,tW,ka,n,m)
U=jacobian(tW,tW);
for k=1:length(tW)
    cc=adfgM(U(:,k),kersF,tW);
    cc1=[ kersF cc];
    if rank(cc1)>rank(kersF)
        disp('cond (ii) of Thm 7.3 is not satisfied.')
        disp('System is not state equivalent to a LS.')
        return
    end
end
disp('System is, by Thm 7.3, state equivalent to a LS.')
return
```

MATLAB program for Theorem 7.4.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 u6 u7 u8 u9 real
Fu=[x2-u1^2; u1; u2-u1^2]; m=2; %Ex:7.3.3
%Fu=[x2; x1^2 + u1; x1*u1+u2]; m=2; %Ex:7.3.4 & Ex:7.3.6
%Fu=[x2+x1*u2; u1; u2]; m=2; %Ex:7.3.7
%Fu=[u1; x3+u1^2; u2]; m=2; %P:7-10(a)
%Fu=[x1+u1; x3+(x1+u1)^2; x1^2+u2]; m=2; %P:7-10(b)
%Fu=[x2+x1*u2; x3; u1; u2]; m=2; %P:7-10(c)
n=length(Fu);
x=sym('x',[n,1]);
```

```
u=sym('u',[m,1]);
w=sym('w', [m,n+1]);
Fu=simplify(Fu)
ka=KindexDT0 (Fu,x,u)
[Psi,sF,W,tW,U]=Psi_sF_M(Fu,x,u,w,m,ka)
if sum(ka)<n
    disp('cond (i) of Thm 7.4 is not satisfied.')
    disp('System is not feedback linearizable.')
    return
end
kersF=ker_sF_M(sF,w,tW,ka,n,m)
Delta=tW-tW;
for k2=1:max(ka)-1
    bU=transp(jacobian(U(:,k2),tW));
    Delta=[Delta bU];
    ccc0=[kersF Delta];
    for k1=1:m
            ccc=adfgM(bU(:,k1),kersF,tW);
            if rank([ccc0 ccc])>rank(ccc0)
                    disp('cond (ii) of Thm 7.4 is not satisfied.')
                    disp('System is not feedback linearizable.')
                    return
            end
    end
end
disp('System is, by Thm 7.4, feedback linearizable.')
return
```

MATLAB program for Theorem 7.5.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
Fu=[x2-u^2; u]; h=x1+x2+x2^2; %Ex:7.4.1
%Fu=[x2+(1+x1)*u; (1+x1)*u]; h=2*x1-x2; %Ex:7.4.2
%Fu=[x2-u^2; u]; h=x1+x2; %P:7-13(a)
%Fu=[x2*exp(u); x3; u]; h=x2+x3; %P:7-13(b)
%Fu=[x2*exp(u); x3; u]; h=x1+x2; %P:7-13(c)
%Fu=[x2*exp(u); x3; u]; h=x2^2+x3; %P:7-13(d)
```

```
Fu=simplify(Fu)
h=simplify(h)
[n,m]=size(Fu);
x=\operatorname{sym}('x',[n,1]);
w=sym('w',[n+1,1]);
W=w(1:n);
[Psi,sF]=Psi_sF(Fu,x,u,w,n)
dPsi=jacobian(Psi,W);
dPsi0=simplify(subs(dPsi,W,W-W))
if rank(dPsi0)<n
    disp('cond (i) of Thm 7.5 is not satisfied.')
    disp('System is NOT state equivalent to a LS with output.')
    return
end
kersF=ker_sF(sF,w,n)
U=jacobian(w,w);
for k=1:n+1
    Cc=adfg(U(:,k),kersF,w);
    cc1=[ kersF cc];
    if rank(cc1)>rank(kersF)
            disp('cond (ii) of Thm 7.5 is not satisfied.')
            disp('System is NOT state equivalent to a LS with output.')
            return
        end
end
hiS=simplify(subs(h,x,Psi));
hC=jacobian(hiS,W)
if ChConst(hC,W)==0
    disp('cond (iii) of Thm 7.5 is not satisfied.')
    disp('System is NOT state equivalent to a LS with output.')
    return
end
disp('System is state equivalent to a LS with output.')
return
```


MATLAB program for Theorem 7.6.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u v real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real
Fu=[x2+(1+x1)*u; (1+x1)*u]; h=2*x1-x2;
Bgamma=(v-2*x2)/(1+x1); %Ex:7.4.5
%Fu=[x2; x3+u^2 ; u]; h=-x1+x3; Bgamma=v+x2; %Ex:7.4.6
%Fu=[x2-u^2; u]; h=x1+x2;
%Bgamma=(1-sqrt(1-4*(v-x2)))/2; %P:7-13(a)
%Fu=[x2*exp(u); x3; u]; h=x2+x3; Bgamma=-x3+v; %P:7-13(b)
%Fu=[x2*exp(u); x3; u]; h=x1+x2; Bgamma=-x3+v; %P:7-13(c)
%Fu=[x2*exp(u); x3; u]; h=x2^2+x3; Bgamma=-x\mp@subsup{3}{}{\wedge}2+v; %P:7-13(d)
Fu=simplify(Fu)
h=simplify(h)
[n,m]=size(Fu);
x=\operatorname{sym}('x',[n,1]);
xu=[x; u];
rho=CharacDT(Fu,h,x,u)
ccl=simplify(subs(h,x,HatF(Fu,x,u,rho)))
dcc1=jacobian(cc1,u)
dcc10=subs (dcc1,xu,xu-xu)
if ChZero(dcc10)==1
    disp('cond (i) of Thm 7.6 is not satisfied.')
    disp('System is NOT feedback linearizable with output.')
    return
end
Bgam=Bgamma
bFv=simplify(subs(Fu,xu,[x;Bgam]))
ccgam=simplify(subs(h,x,HatF(bFv,x,v,rho)))
if ChZero(ccgam-v)==0
    disp('Bgamma(x,v) is not correct.')
    return
end
w=sym('w',[n+1,1]);
W=w(1:n);
[bPsi,bsF]=Psi_sF(bFv,x,v,w,n)
dPsi=jacobian(bPsi,W);
dPsi0=simplify(subs(dPsi,W,W-W))
```

```
if rank(dPsi0) < n
    disp('cond (ii) of Thm 7.6 is not satisfied.')
    disp('System is NOT feedback linearizable with output.')
    return
end
kersF=ker_sF(bsF,w,n)
U=jacobian(w,w);
for k=1:n+1
    cc=adfg(U(:,k),kersF,w);
    cc3=[ kersF cc];
    if rank(cc3)>rank(kersF)
            disp('cond (iii) of Thm 7.6 is not satisfied.')
            disp('System is NOT feedback linearizable with output.')
            return
    end
end
disp('System is, by Thm 7.6, FB linearizable with output.')
ca1=jacobian(bsF,w)
ba=simplify(inv(ca1(:,1:n))*ca1(:,n+1))
P=jacobian(flip(W),W) ;
for k1=1:n-1
    P(1:n-k1,k1)=-ba(k1+1:n);
end
P=simplify(P)
z=sym('z',[n,1]);
iS=simplify(subs(bPsi,W,P*z))
hiS=simplify(subs(h,x,iS))
hC=jacobian(hiS,z)
return
```


7.6 Problems

7-1. Solve Example 7.1.2.
7-2. Solve Example 7.1.3.
7-3. Solve Example 7.1.4.
7-4. Solve Example 7.3.1.
7-5. Solve Example 7.3.2.
7-6. Solve Example 7.3.5.

7-7. Consider the following smooth functions $z=S(x): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and distributions $D(x)$ on \mathbb{R}^{3}. Use Theorem 2.10 to determine whether $S_{*}(D(x))$ is a well-defined distribution on a neighborhood of $0 \in \mathbb{R}^{2}$ or not. If it is a welldefined distribution, then find $S_{*}(D(x))$.
(a) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}^{2} \\ x_{1}\end{array}\right], D(x)=\operatorname{span}\left\{\frac{\partial}{\partial x_{1}}\right\}$.
(b) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}^{2} \\ x_{1}\end{array}\right], D(x)=\operatorname{span}\left\{\frac{\partial}{\partial x_{3}}\right\}$.
(c) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}^{2} \\ x_{3}+x_{1} x_{3}\end{array}\right], D(x)=\operatorname{span}\left\{\frac{\partial}{\partial x_{3}}\right\}$.
(d) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}\left(x_{2}^{2}+x_{3}\right) \\ x_{2}^{2}+x_{3}\end{array}\right], D(x)=\operatorname{span}\left\{\frac{\partial}{\partial x_{2}}\right\}$.
(e) $S(x)=\left[\begin{array}{c}x_{2}-x_{1}\left(x_{2}^{2}+x_{3}\right) \\ x_{2}^{2}+x_{3}\end{array}\right], D(x)=\operatorname{span}\left\{\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\}$.

7-8. Find out whether the following single input discrete time systems are state equivalent to a linear system or not. If not, find out whether it is feedback linearizable or not.
(a) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t)-\left(x_{1}(t)+u(t)\right)^{2} \\ x_{1}(t)+u(t)\end{array}\right]$.
(b) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t)-\left(x_{1}(t)+x_{2}(t)^{2}+u(t)\right)^{2} \\ x_{1}(t)+x_{2}(t)^{2}+u(t)\end{array}\right]$.
(c) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t) e^{u(t)} \\ x_{3}(t) \\ u(t)\end{array}\right]$.
(d) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t) e^{x_{1}(t)+u(t)} \\ x_{3}(t) \\ x_{1}(t)+u(t)\end{array}\right]$.
(e) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t)+x_{3}(t)^{2} \\ x_{1}(t)+x_{3}(t) \\ u(t)\end{array}\right]$.

7-9. Show that system (7.93) is feedback linearizable by extended state transformation $z_{E}=S(x, \eta)$ and feedback $w=\gamma(x, v)$ in (7.94).
$7-10$. Find out whether the following multi-input discrete time systems are state equivalent to a linear system or not. If not, find out whether it is feedback linearizable or not.
(a) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}u_{1}(t) \\ x_{3}(t)+u_{1}(t)^{2} \\ u_{2}(t)\end{array}\right]$.
(b) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{1}(t)+u_{1}(t) \\ x_{3}(t)+\left(x_{1}(t)+u_{1}(t)\right)^{2} \\ x_{1}(t)^{2}+u_{2}(t)\end{array}\right]$.
(c) $\left[\begin{array}{c}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1) \\ x_{4}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t)+x_{1}(t) u_{2}(t) \\ x_{3}(t) \\ u_{1}(t) \\ u_{2}(t)\end{array}\right]$.

7-11. Consider the system in Problem 7.10c. With the dynamic feedback

$$
\left[\begin{array}{l}
u_{1}(t) \tag{7.116}\\
u_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
w_{1}(t) \\
\eta_{1}(t)
\end{array}\right] ; \quad\left[\begin{array}{l}
\eta_{1}(t+1) \\
\eta_{2}(t+1)
\end{array}\right]=\left[\begin{array}{c}
\eta_{2}(t) \\
w_{2}(t)
\end{array}\right]
$$

we have the following extended system:

$$
\left[\begin{array}{c}
x_{1}(t+1) \tag{7.117}\\
x_{2}(t+1) \\
x_{3}(t+1) \\
x_{4}(t+1) \\
\eta_{1}(t+1) \\
\eta_{2}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t)+x_{1}(t) \eta_{1}(t) \\
x_{3}(t) \\
w_{1}(t) \\
\eta_{1}(t) \\
\eta_{2}(t) \\
w_{2}(t)
\end{array}\right]=\bar{F}_{w(t)}\left(x_{E}(t)\right)
$$

where $x_{E}=\left[\begin{array}{l}x \\ \eta\end{array}\right]$. Show that the extended system (7.117) is feedback linearizable. In other words, the system in Problem 7.10c is restricted dynamic feedback linearizable with indices $\left(d_{1}, d_{2}\right)=(0,2)$.
7-12. Suppose that $\left.\frac{\partial h \circ \hat{F}_{u}^{\rho}(x)}{\partial u}\right|_{(0,0)} \neq 0$, where ρ is the characteristic number of system (7.95). Show that

$$
\left\{\left.\frac{\partial h}{\partial x}\right|_{x=0},\left.\frac{\partial h \circ F_{0}(x)}{\partial x}\right|_{x=0}, \ldots,\left.\frac{\partial h \circ F_{0}^{\rho-1}(x)}{\partial x}\right|_{x=0}\right\}
$$

is a set of linearly independent one form.
7-13. Find out whether the following SISO discrete time systems are state equivalent to a linear system with output or not. If not, find out whether it is feedback linearizable with output or not.
(a) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t)-u(t)^{2} \\ u(t)\end{array}\right] ; y(t)=x_{1}(t)+x_{2}(t)$.
(b) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t) e^{u(t)} \\ x_{3}(t) \\ u(t)\end{array}\right] ; y(t)=x_{2}(t)+x_{3}(t)$.
(c) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t) e^{u(t)} \\ x_{3}(t) \\ u(t)\end{array}\right] ; y(t)=x_{1}(t)+x_{2}(t)$.
(d) $\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1) \\ x_{3}(t+1)\end{array}\right]=\left[\begin{array}{c}x_{2}(t) e^{u(t)} \\ x_{3}(t) \\ u(t)\end{array}\right] ; \quad y(t)=x_{2}(t)^{2}+x_{3}(t)$.

Chapter 8
 Observer Error Linearization

8.1 Introduction

An observer is a dynamic system which estimates the state of the system from the output and the input of the system. For the observable linear control systems, one of the famous linear observers is Luenberger observer. Consider the following observable linear system:

$$
\begin{equation*}
\dot{z}=A z+B u ; \quad \bar{y}=C z . \tag{8.1}
\end{equation*}
$$

A Luenberger observer for system (8.1) is the following dynamic system whose output is $\bar{z}(t)$:

$$
\begin{equation*}
\dot{\bar{z}}=(A-L C) \bar{z}+B u+L \bar{y} \tag{8.2}
\end{equation*}
$$

where L is a matrix such that $(A-L C$) is an asymptotically stable matrix (or all the eigenvalues of $(A-L C)$ are in the open left half plane of the complex plane). If we let $\varepsilon(t)=\bar{z}(t)-z(t)$, then we have

$$
\begin{align*}
\dot{\varepsilon} & =\dot{\bar{z}}-\dot{z}=(A-L C) \bar{z}+B u+L C z-A z-B u \\
& =(A-L C)(\bar{z}-z)=(A-L C) \varepsilon \tag{8.3}
\end{align*}
$$

which implies that $\lim _{t \rightarrow \infty} \varepsilon(t)=\lim _{t \rightarrow \infty} e^{(A-L C) t} \varepsilon(0)=0$. Block diagram for Luenberger observer of a linear system can be found in Fig. 8.1. Note that (8.3) or Luenberger observer is still valid even if we use vector function $\gamma(u)$ or $\gamma(\bar{y}, u)$ instead of $B u$, in (8.1) and (8.2). In other words, Luenberger observer can also be designed for the following two observable systems:

$$
\begin{equation*}
\dot{z}=A z+\gamma(u) ; \quad \bar{y}=C z \tag{8.4}
\end{equation*}
$$

Fig. 8.1 Luenberger observer of a linear system

and

$$
\begin{equation*}
\dot{z}=A z+\gamma(\bar{y}, u) ; \quad \bar{y}=C z \tag{8.5}
\end{equation*}
$$

where the pair (C, A) is observable or

$$
\operatorname{rank}\left(\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]\right)=n
$$

Thus, system (8.4) and system (8.5) are called a linear observer canonical form (LOCF) and a nonlinear observer canonical form (NOCF), respectively.

Consider the nonlinear system

$$
\begin{align*}
\dot{x} & =F(x, u) \triangleq F_{u}(x) \tag{8.6}\\
y & =H(x)
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{q}$, and $F(x, u)$ and $H(x)$ are smooth functions with $F(0,0)=0$ and $H(0)=0$. If we use state transformation and output transformation (OT), Luenberger-like observers are also feasible for some nonlinear systems. Suppose that system (8.6) is equivalent to NOCF (8.5) with state transformation $z=S(x)$ and output transformation $\bar{y}=\varphi(y)$. In other words, $S_{*}\left(F_{u}(x)\right)=A z+\gamma(C z, u)$ and $\varphi \circ H \circ S^{-1}(z)=C z$. Then Luenberger-like observers of system (8.6) is given by

$$
\begin{aligned}
& \dot{\bar{z}}=(A-L C) \bar{z}+\gamma(\bar{y}, u)+L \bar{y} \\
& \bar{x}(t)=S^{-1}(\bar{z}(t))
\end{aligned}
$$

Similar arguments can be applied to LOCF. Block diagram for Luenberger-like observers of a nonlinear system can be found in Fig. 8.2. However, not all nonlinear systems are state equivalent to a NOCF with OT. In the following sections, the conditions for a nonlinear system to be equivalent to a NOCF or LOCF will be found.

Fig. 8.2 Luenberger-like observers of a nonlinear system

Definition 8.1 (observability indices)
For the list of $q n$ one forms of the form

$$
\begin{aligned}
& \left.\frac{\partial h_{1}(x)}{\partial x}\right|_{x=0}, \cdots,\left.\frac{\partial h_{q}(x)}{\partial x}\right|_{x=0},\left.\frac{\partial\left(L_{F_{0}} h_{1}(x)\right)}{\partial x}\right|_{x=0}, \cdots,\left.\frac{\partial\left(L_{F_{0}} h_{q}(x)\right)}{\partial x}\right|_{x=0}, \\
& \cdots,\left.\frac{\partial\left(L_{F_{0}}^{n-1} h_{1}(x)\right)}{\partial x}\right|_{x=0}, \cdots,\left.\frac{\partial\left(L_{F_{0}}^{n-1} h_{q}(x)\right)}{\partial x}\right|_{x=0}
\end{aligned}
$$

delete all one forms that are linearly dependent on the set of preceding one forms and obtain the unique set of linearly independent one forms

$$
\left.\left\{\frac{\partial h_{1}(x)}{\partial x}, \cdots, \frac{\partial\left(L_{F_{0}}^{\nu_{1}-1} h_{1}(x)\right)}{\partial x}, \cdots, \frac{\partial h_{q}(x)}{\partial x}, \cdots, \frac{\partial\left(L_{F_{0}}^{v_{q}-1} h_{q}(x)\right)}{\partial x}\right\}\right|_{x=0}
$$

or

$$
\left\{\bar{c}_{1}, \bar{c}_{1} \bar{A}, \cdots, \bar{c}_{1} \bar{A}^{v_{1}-1}, \cdots, \bar{c}_{q}, \cdots, \bar{c}_{q} \bar{A}^{v_{q}-1}\right\}
$$

where $\left.\bar{c}_{j} \triangleq \frac{\partial h_{j}(x)}{\partial x}\right|_{x=0}$ and $\left.\bar{A} \triangleq \frac{\partial F_{0}(x)}{\partial x}\right|_{x=0}$. Then, $\left(v_{1}, \cdots, v_{q}\right)$ are said to be the observability indices of system (8.6).

In other words, v_{i} is the smallest nonnegative integer such that for $1 \leq i \leq q$,

$$
\begin{gathered}
\left.\frac{\partial\left(h_{1} \circ F_{0}^{v_{i}}(x)\right)}{\partial x}\right|_{x=0} \in \operatorname{span}\left\{\left.\left.\frac{\partial\left(h_{j} \circ F_{0}^{\ell-1}(x)\right)}{\partial x}\right|_{x=0} \right\rvert\, 1 \leq j \leq m, \quad 1 \leq \ell \leq v_{i}\right\} \\
\quad+\operatorname{span}\left\{\left.\left.\frac{\partial\left(h_{j} \circ F_{0}^{v_{i}}(x)\right)}{\partial x}\right|_{x=0} \right\rvert\, 1 \leq j \leq i-1\right\}
\end{gathered}
$$

If $\sum_{i=1}^{q} v_{i}=n$, then system (8.6) is said to be observable.

8.2 Single Output Observer Error Linearization

Consider a single output control system of the form

$$
\begin{align*}
& \dot{x}=F(x, u) \triangleq F_{u}(x) \tag{8.7}\\
& y=H(x)
\end{align*}
$$

with $F_{0}(0)=0, H(0)=0$, state $x \in \mathbb{R}^{n}$, input $u \in \mathbb{R}^{m}$, and output $y \in \mathbb{R}$. By letting $u=0$ in system (8.7), we obtain the following autonomous system:

$$
\begin{equation*}
\dot{x}=F_{0}(x) ; \quad y=H(x) \tag{8.8}
\end{equation*}
$$

Definition 8.2 (state equivalence to a LOCF)
System (8.7) is said to be state equivalent to a LOCF, if there exist a diffeomorphism $z=S(x): V_{0} \rightarrow \mathbb{R}^{n}$, defined on some neighborhood V_{0} of $0 \in \mathbb{R}^{n}$, such that

$$
\begin{aligned}
& \dot{z}=A z+\gamma(u) \triangleq S_{*}\left(F_{u}(x)\right) \\
& y=C z \triangleq H \circ S^{-1}(z)
\end{aligned}
$$

where the pair (C, A) is observable and $\gamma(u): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma(0)=0$.

Definition 8.3 (state equivalence to a NOCF)
System (8.7) is said to be state equivalent to a NOCF, if there exist a diffeomorphism $z=S(x): V_{0} \rightarrow \mathbb{R}^{n}$, defined on some neighborhood V_{0} of $0 \in \mathbb{R}^{n}$, such that

$$
\begin{aligned}
& \dot{z}=A z+\gamma(y, u) \triangleq \bar{f}_{u}(z) \\
& y=C z \triangleq \bar{h}(z)
\end{aligned}
$$

where the pair (C, A) is observable and $\gamma(y, u): \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma(0,0)=0$.

For single output case, if the pair (C, A) is observable, there exists a linear state transform $z=P^{-1} x$ such that $(\hat{C}, \hat{A})\left(\triangleq\left(C P, P^{-1} A P\right)\right)$ is an observable canonical form. In other words,

$$
\begin{aligned}
& C P=\hat{C}=\left[\begin{array}{llll}
1 & 0 & 0 & \cdots
\end{array}\right]=C_{o} \\
& P^{-1} A P=\hat{A}=\left[\begin{array}{ccccc}
\hat{a}_{11} & 1 & 0 & \cdots & 0 \\
\hat{a}_{21} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\hat{a}_{(n-1) 1} & 0 & 0 & \cdots & 1 \\
\hat{a}_{n 1} & 0 & 0 & \cdots & 0
\end{array}\right]=A_{o}+\left[\begin{array}{c}
\hat{a}_{11} \\
\hat{a}_{21} \\
\vdots \\
\hat{a}_{(n-1) 1} \\
\hat{a}_{n 1}
\end{array}\right] \hat{C}
\end{aligned}
$$

where

$$
C_{o}=\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0
\end{array}\right] \text { and } A_{o}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Let us call $\left(C_{o}, A_{o}\right)$ a dual Brunovsky canonical form, even though the order of the states are reversed compared to Brunovsky canonical form (4.9). Since $\left[\begin{array}{lll}\hat{a}_{11} & \cdots & \hat{a}_{n 1}\end{array}\right]^{\top} \hat{C} z=z_{1}\left[\hat{a}_{11} \cdots \hat{a}_{n 1}\right]^{\top}$, it is clear that single output system (8.7) is state equivalent to a NOCF, if and only if single output system (8.7) is state equivalent to a dual Brunovsky NOCF which is defined by

$$
\begin{aligned}
& \dot{z}=A_{o} z+\gamma\left(z_{1}, u\right) \triangleq \bar{f}_{u}(z) \\
& y=C_{o} z \triangleq \bar{h}(z)
\end{aligned}
$$

Definition 8.4 (state equivalence to a dual Brunovsky NOCF with OT) System (8.7) is said to be state equivalent to a dual Brunovsky NOCF with output transformation (OT), if there exist a smooth function $\varphi(y) \quad\left(\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=0}=\right.$ 1 and $\varphi(0)=0)$ and a state transformation $z=S(x)$ such that

$$
\begin{aligned}
& \dot{z}=A_{o} z+\bar{\gamma}^{u}(\bar{y}) \triangleq \bar{f}_{u}(z) \\
& \bar{y}=\varphi(y)=C_{o} z \triangleq \bar{h}(z)
\end{aligned}
$$

where $\bar{\gamma}^{u}(\bar{y}): \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\bar{\gamma}^{0}(0)=0$. In other words,

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=C_{o} z=z_{1} \tag{8.9}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{u}(z) & \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(C_{o} z\right) \\
& =A_{o} z+\bar{\gamma}^{u} \circ \varphi(y) \triangleq A_{o} z+\gamma^{u}(y) \tag{8.10}
\end{align*}
$$

State equivalence to a dual Brunovsky NOCF for autonomous system (8.8) can be similarly defined with $u=0$. If $\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\gamma\left(z_{1}, u\right)$, then it is clear that $\bar{f}_{0}(z) \triangleq S_{*}\left(F_{0}(x)\right)=A_{o} z+\gamma\left(z_{1}, 0\right)$. Thus, we have the following remark.
Remark 8.1 If system (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, then system (8.8) is also state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. But the converse is not true.

Since observability is invariant under state transformation, we assume the observability rank condition on the neighborhood of the origin. In other words,

$$
\operatorname{dim} \operatorname{span}\left\{d H(x), d\left(L_{F_{0}} H(x)\right), \cdots, d\left(L_{F_{0}}^{n-1} H(x)\right)\right\}=n
$$

or

$$
\operatorname{rank}\left(\left.\frac{\partial T(x)}{\partial x}\right|_{x=0}\right)=n
$$

where

$$
\xi=T(x) \triangleq\left[\begin{array}{c}
H(x) \\
L_{F_{0}} H(x) \\
\vdots \\
L_{F_{0}}^{n-1} H(x)
\end{array}\right]
$$

Definition 8.5 (Canonical System)
The canonical system of system (8.7) is defined by

$$
\left[\begin{array}{c}
\dot{\xi}_{1} \tag{8.11}\\
\vdots \\
\dot{\xi}_{n-1} \\
\dot{\xi}_{n}
\end{array}\right]=\left[\begin{array}{c}
\xi_{2}+\alpha_{1}^{u}(\xi) \\
\vdots \\
\xi_{n}+\alpha_{n-1}^{u}(\xi) \\
\alpha_{n}^{u}(\xi)
\end{array}\right] \triangleq f_{u}(\xi) ; \quad y=\xi_{1} \triangleq h(\xi)
$$

where $\xi=T(x), f_{u}(\xi) \triangleq T_{*}\left(F_{u}(x)\right), h(\xi) \triangleq H \circ T^{-1}(\xi)$,

$$
\left.\alpha_{n}^{u}(\xi) \triangleq L_{F_{u}} L_{F_{0}}^{n-1} H(x)\right|_{x=T^{-1}(\xi)}
$$

and for $1 \leq i \leq n-1$,

$$
\left.\alpha_{i}^{u}(\xi) \triangleq L_{F_{u}} L_{F_{0}}^{i-1} H(x)\right|_{x=T^{-1}(\xi)}-\left.L_{F_{0}}^{i} H(x)\right|_{x=T^{-1}(\xi)}
$$

It is clear that $\alpha_{i}^{0}(\xi)=0$ for $1 \leq i \leq n-1$ and

$$
f_{0}(\xi) \triangleq T_{*}\left(F_{0}(x)\right)=\left[\begin{array}{c}
\xi_{2} \tag{8.12}\\
\vdots \\
\xi_{n} \\
\alpha_{n}^{0}(\xi)
\end{array}\right]
$$

Remark 8.2 System (8.7) is state equivalent to a dual Brunovsky NOCF with OT (or without OT) via $z=S(x)$, if and only if canonical system (8.11) is state equivalent to a dual Brunovsky NOCF with OT (or without OT) via $z=\tilde{S}(\xi)\left(\triangleq S \circ T^{-1}(\xi)\right)$. Canonical system (8.11) is more convenient to solve the observer problems than system (8.7). Since geometric conditions are coordinate free, any geometric condition in ξ - coordinates (for system (8.11)) can be expressed in x - coordinates (for system (8.7)).

For system (8.7), we define vector fields $\left\{\mathbf{g}_{i}^{0}(x), i \geq 1\right\}$ and $\left\{\mathbf{g}_{i}^{u}(x), i \geq 1\right\}$ as follows.

$$
\begin{gather*}
L_{\mathbf{g}_{1}^{0}(x)} L_{F_{0}}^{k-1} H(x)=\delta_{k, n}, 1 \leq k \leq n \\
\left(\text { or } \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right]^{\top}=T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{n}}\right)\right) \tag{8.13}
\end{gather*}
$$

and for $i \geq 2$,

$$
\begin{align*}
& \mathbf{g}_{i}^{0}(x) \triangleq \operatorname{ad}_{F_{0}}^{i-1} \mathbf{g}_{1}^{0}(x) \\
& \mathbf{g}_{1}^{u}(x) \triangleq \mathbf{g}_{1}^{0}(x) ; \quad \mathbf{g}_{i}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{i-1} \mathbf{g}_{1}^{u}(x) \tag{8.14}
\end{align*}
$$

Then it is easy to see, by Example 2.4.16, that for $1 \leq i \leq n$ and $0 \leq k \leq n-1$,

$$
L_{\mathbf{g}_{i}^{0}(x)} L_{F_{0}}^{k} H(x)= \begin{cases}0, & i+k<n \tag{8.15}\\ (-1)^{i+1}, & i+k=n\end{cases}
$$

Theorem 8.1 System (8.7) is state equivalent to a LOCF, if and only if
(i)

$$
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 2 \leq i \leq n+1
$$

(ii)

$$
\left[\mathbf{g}_{i}^{0}(x), \mathbf{g}_{k}^{0}(x)\right]=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq n+1
$$

Furthermore, a state transformation $z=S(x)$ can be obtained by

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{llll}
(-1)^{n-1} \mathbf{g}_{n}^{0}(x) & \cdots & -\mathbf{g}_{2}^{0}(x) & \mathbf{g}_{1}^{0}(x)
\end{array}\right]^{-1}
$$

Proof Proof is omitted. (If $u=0$, this is dual of the linearization of control system by state coordinated change that is considered in Chap. 3.)

Example 8.2.1 Consider the following control system:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
x_{2}+2 x_{2}\left(x_{1}-x_{2}^{2}\right)+2 x_{2} u_{1}+u_{2}^{2} \\
x_{1}-x_{2}^{2}+u_{1}
\end{array}\right]=F_{u}(x) \tag{8.16}\\
& y=x_{1}-x_{2}^{2}=H(x)
\end{align*}
$$

Show that the above system is state equivalent to a LOCF without OT and find a state transformation $z=S(x)$ and the LOCF that the new state z satisfies.

Solution Since $T(x) \triangleq\left[\begin{array}{ll}H(x) & L_{F_{0}} H(x)\end{array}\right]^{\top}=\left[\begin{array}{ll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$, it is clear, by (8.13) and (8.14), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{u}(x) \triangleq \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \mathbf{g}_{1}^{u}(x)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& \mathbf{g}_{3}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{2} \mathbf{g}_{1}^{u}(x)=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right]
\end{aligned}
$$

which imply that condition (i) and condition (ii) of Theorem 8.1 are satisfied. Hence, system (8.16) is state equivalent to a LOCF with state transformation $z=S(x)=$ $\left[\begin{array}{ll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$ and $\gamma(u)=\left[\begin{array}{ll}u_{2}^{2} & u_{1}\end{array}\right]^{\top}$, where

$$
\frac{\partial S(x)}{\partial x}=\left[-\mathbf{g}_{2}^{0}(x) \mathbf{g}_{1}^{0}(x)\right]^{-1}=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]
$$

and

$$
\dot{z}=S_{*}\left(F_{u}(x)\right)=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] z+\left[\begin{array}{l}
u_{2}^{2} \\
u_{1}
\end{array}\right] ; \quad y=H \circ S^{-1}(z)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] z
$$

Theorem 8.2 System (8.7) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$, if and only if
(i)

$$
\begin{equation*}
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.17}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left[\mathbf{g}_{i}^{0}(x), \mathbf{g}_{k}^{0}(x)\right]=0, \quad 1 \leq i \leq n, 1 \leq k \leq n \tag{8.18}
\end{equation*}
$$

(iii)

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{llll}
(-1)^{n-1} \mathbf{g}_{n}^{0}(x) & \cdots & -\mathbf{g}_{2}^{0}(x) & \mathbf{g}_{1}^{0}(x) \tag{8.19}
\end{array}\right]^{-1}
$$

Proof Proof is omitted. (Special case of Lemma 8.2 with $\varphi(y)=y$.)
Example 8.2.2 Consider the following control system:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
x_{2}+2 x_{2} u+\left(x_{1}-x_{2}^{2}\right)^{2} u^{2} \\
u
\end{array}\right]=F_{u}(x) \tag{8.20}\\
& y=x_{1}-x_{2}^{2}=H(x) .
\end{align*}
$$

Show that system (8.20) is state equivalent to a dual Brunovsky NOCF without OT and find a state transformation $z=S(x)$ and the dual Brunovsky NOCF that new state z satisfies.

Solution Since $T(x) \triangleq\left[\begin{array}{ll}H(x) & L_{F_{0}} H(x)\end{array}\right]^{\top}=\left[\begin{array}{ll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$, it is clear, by (8.13) and (8.14), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{u}(x) \triangleq \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \mathbf{g}_{1}^{u}(x)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& \mathbf{g}_{3}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{2} \mathbf{g}_{1}^{u}(x)=\left[\begin{array}{c}
2\left(x_{1}-x_{2}^{2}\right) u^{2} \\
0
\end{array}\right]
\end{aligned}
$$

which imply that $\mathbf{g}_{3}^{u}(x) \neq \mathbf{g}_{3}^{0}(x)$ and condition (i) of Theorem 8.1 is not satisfied. Therefore, by Theorem 8.1, system (8.20) is not state equivalent to a LOCF. However, since condition (i) and condition (ii) of Theorem 8.2 are satisfied, system (8.20) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)=$ $\left[\begin{array}{ll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$ and $\gamma(y, u)=\left[\begin{array}{ll}y^{2} u^{2} & u\end{array}\right]^{\top}$, where

$$
\frac{\partial S(x)}{\partial x}=\left[-\mathbf{g}_{2}^{0}(x) \mathbf{g}_{1}^{0}(x)\right]^{-1}=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]
$$

and

$$
\dot{z}=S_{*}\left(F_{u}(x)\right)=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
z_{1}^{2} u^{2} \\
u
\end{array}\right] ; \quad y=H \circ S^{-1}(z)=z_{1} .
$$

Lemma 8.1 System (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=$ $\varphi(y)$ and state transformation $z=S(x)$, if and only if there exist a diffeomorphism $\bar{y}=\varphi(y)$ and smooth functions $\gamma_{k}^{u}(y): \mathbb{R}^{1+m} \rightarrow \mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq$ $i \leq n$,

$$
\begin{gather*}
S_{i}(x)=L_{F_{0}}^{i-1}(\varphi \circ H(x))-\sum_{k=1}^{i-1} L_{F_{0}}^{i-1-k}\left(\gamma_{k}^{0} \circ H(x)\right) \tag{8.21}\\
L_{F_{u}} L_{F_{0}}^{n-1}(\varphi \circ H(x))=\sum_{k=1}^{n-1} L_{F_{u}} L_{F_{0}}^{n-1-k}\left(\gamma_{k}^{0} \circ H(x)\right)+\gamma_{n}^{u} \circ H(x), \tag{8.22}
\end{gather*}
$$

and

$$
\begin{equation*}
L_{F_{u}} S_{i}(x)-L_{F_{0}} S_{i}(x)=\varepsilon_{i}^{u} \circ H(x) \tag{8.23}
\end{equation*}
$$

where for $1 \leq i \leq n$,

$$
\begin{equation*}
\gamma_{i}^{u}(y) \triangleq \gamma_{i}^{0}(y)+\varepsilon_{i}^{u}(y) \tag{8.24}
\end{equation*}
$$

Proof Necessity. Suppose that system (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, it is clear, by (8.9) and (8.10), that

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=C_{o} z=z_{1} \tag{8.25}
\end{equation*}
$$

and

$$
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(z_{1}\right)=\left[\begin{array}{c}
z_{2}+\bar{\gamma}_{1}^{u}\left(z_{1}\right) \tag{8.26}\\
\vdots \\
z_{n}+\bar{\gamma}_{n-1}^{u}\left(z_{1}\right) \\
\bar{\gamma}_{n}^{u}\left(z_{1}\right)
\end{array}\right]
$$

which imply that for $1 \leq k \leq n-1$,

$$
\begin{align*}
S_{k+1}(x) & =L_{F_{u}} S_{k}(x)-\bar{\gamma}_{k}^{u}(\varphi \circ H(x))=L_{F_{u}} S_{k}(x)-\gamma_{k}^{u} \circ H(x) \\
& =L_{F_{0}} S_{k}(x)-\gamma_{k}^{0} \circ H(x) \tag{8.27}
\end{align*}
$$

and

$$
\begin{equation*}
L_{F_{u}} S_{n}(x)=\bar{\gamma}_{n}^{u}(\varphi \circ H(x))=\gamma_{n}^{u} \circ H(x) \tag{8.28}
\end{equation*}
$$

where $\bar{\gamma}_{k}^{u} \circ \varphi(y) \triangleq \gamma_{k}^{u}(y)$ for $1 \leq k \leq n$. Thus, it is clear, by (8.25), that (8.21) is satisfied when $i=1$. Assume that (8.21) is satisfied when $1 \leq i \leq \ell \leq n-1$. Then we have, by (8.27), that

$$
\begin{align*}
S_{\ell+1}(x) & =L_{F_{0}} S_{\ell}(x)-\gamma_{\ell}^{0} \circ H(x) \\
& =L_{F_{0}}^{\ell}(\varphi \circ H(x))-\sum_{k=1}^{\ell-1} L_{F_{0}}^{\ell-k}\left(\gamma_{k}^{0} \circ H(x)\right)-\gamma_{\ell}^{0} \circ H(x) \tag{8.29}\\
& =L_{F_{0}}^{\ell}(\varphi \circ H(x))-\sum_{k=1}^{\ell} L_{F_{0}}^{\ell-k}\left(\gamma_{k}^{0} \circ H(x)\right)
\end{align*}
$$

which implies that (8.21) is satisfied when $i=\ell+1 \leq n$. Therefore, by mathematical induction, (8.21) is satisfied for $1 \leq i \leq n$. Since

$$
S_{n}(x)=L_{F_{0}}^{n-1}(\varphi \circ H(x))-\sum_{k=1}^{n-1} L_{F_{0}}^{n-1-k}\left(\gamma_{k}^{0} \circ H(x)\right),
$$

it is clear, by (8.28), that

$$
\begin{equation*}
L_{F_{u}} L_{F_{0}}^{n-1}(\varphi \circ H(x))-\sum_{k=1}^{n-1} L_{F_{u}} L_{F_{0}}^{n-1-k}\left(\gamma_{k}^{0} \circ H(x)\right)=\gamma_{n}^{u} \circ H(x) \tag{8.30}
\end{equation*}
$$

which implies that (8.22) is satisfied. Finally, it is easy to see, by (8.27) and (8.28), that for $1 \leq k \leq n$,

$$
L_{F_{u}} S_{k}(x)-L_{F_{0}} S_{k}(x)=\gamma_{k}^{u} \circ H(x)-\gamma_{k}^{0} \circ H(x) \triangleq \varepsilon_{k}^{u} \circ H(x)
$$

which implies that (8.23) is satisfied.

Sufficiency. Suppose that there exist a diffeomorphism $\bar{y}=\varphi(y)$ and smooth functions $\gamma_{k}^{u}(y), 1 \leq k \leq n$ such that (8.21)-(8.24) are satisfied. Let $z=S(x)$. Since $S_{1}(x)=\varphi \circ H(x)$, it is clear that

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=z_{1}=C_{o} z \tag{8.31}
\end{equation*}
$$

and (8.9) is satisfied. Also, it is easy to see, by (8.21)-(8.24), that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
L_{F_{u}} S_{i}(x) & =L_{F_{0}} S_{i}(x)+\varepsilon_{i}^{u} \circ H(x) \\
& =L_{F_{0}}^{i}(\varphi \circ H(x))-\sum_{k=1}^{i-1} L_{F_{0}}^{i-k}\left(\gamma_{k}^{0} \circ H(x)\right)+\varepsilon_{i}^{u} \circ H(x) \\
& =S_{i+1}(x)+\gamma_{i}^{0} \circ H(x)+\varepsilon_{i}^{u} \circ H(x) \\
& =S_{i+1}(x)+\gamma_{i}^{u} \circ H(x)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{F_{u}} S_{n}(x) & =L_{F_{u}} L_{F_{0}}^{n-1}(\varphi \circ H(x))-\sum_{k=1}^{n-1} L_{F_{u}} L_{F_{0}}^{n-1-k}\left(\gamma_{k}^{0} \circ H(x)\right) \\
& =\gamma_{n}^{u} \circ H(x)
\end{aligned}
$$

which imply, together with (8.31), that

$$
\begin{aligned}
\bar{f}_{u}(z) & \triangleq S_{*}\left(F_{u}(x)\right)=\left[\begin{array}{c}
\left.L_{F_{u}} S_{1}(x)\right|_{x=S^{-1}(z)} \\
\vdots \\
\left.L_{F_{u}} S_{n-1}(x)\right|_{x=S^{-1}(z)} \\
\left.L_{F_{u}} S_{n}(x)\right|_{x=S^{-1}(z)}
\end{array}\right]=\left[\begin{array}{c}
z_{2}+\bar{\gamma}_{1}\left(z_{1}\right) \\
\vdots \\
z_{n}+\bar{\gamma}_{n-1}\left(z_{1}\right) \\
\bar{\gamma}_{n}\left(z_{1}\right)
\end{array}\right] \\
& =A_{o} z+\bar{\gamma}^{u}\left(z_{1}\right)
\end{aligned}
$$

where $\bar{\gamma}_{k}^{u} \circ \varphi(y) \triangleq \gamma_{k}^{u}(y)$ for $1 \leq k \leq n$. Therefore, (8.10) is satisfied. In other words, system (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$.

Corollary 8.1 System (8.8) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exist a diffeomorphism $\bar{y}=\varphi(y)$ and smooth functions $\gamma_{k}^{0}(y): \mathbb{R}^{1+m} \rightarrow \mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{i}(x)=L_{F_{0}}^{i-1}(\varphi \circ H(x))-\sum_{k=1}^{i-1} L_{F_{0}}^{i-1-k}\left(\gamma_{k}^{0} \circ H(x)\right) \tag{8.32}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{F_{0}}^{n}(\varphi \circ H(x))=\sum_{k=1}^{n} L_{F_{0}}^{n-k}\left(\gamma_{k}^{0} \circ H(x)\right) . \tag{8.33}
\end{equation*}
$$

Corollary 8.2 System (8.8) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$, if and only if there exist smooth functions $\gamma_{k}^{0}(y): \mathbb{R}^{1+m} \rightarrow$ $\mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{i}(x)=L_{F_{0}}^{i-1} H(x)-\sum_{k=1}^{i-1} L_{F_{0}}^{i-1-k}\left(\gamma_{k}^{0} \circ H(x)\right) \tag{8.34}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{F_{0}}^{n} H(x)=\sum_{k=1}^{n} L_{F_{0}}^{n-k}\left(\gamma_{k}^{0} \circ H(x)\right) \tag{8.35}
\end{equation*}
$$

Lemma 8.2 System (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exists a smooth function $\ell(y)(\neq 0)$ such that
(i)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.36}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{i}^{0}(x), \overline{\mathbf{g}}_{k}^{0}(x)\right]=0, \quad 1 \leq i \leq n, 1 \leq k \leq n \tag{8.37}
\end{equation*}
$$

where

$$
\begin{gather*}
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell(H(x)) \mathbf{g}_{1}^{0}(x) \tag{8.38}\\
\overline{\mathbf{g}}_{i}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{i-1} \overline{\mathbf{g}}_{1}^{0}(x), \quad i \geq 2 \tag{8.39}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.40}\\
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{lll}
(-1)^{n-1} \overline{\mathbf{g}}_{n}^{0}(x) & \cdots & -\overline{\mathbf{g}}_{2}^{0}(x)
\end{array} \overline{\mathbf{g}}_{1}^{0}(x)\right]^{-1} \tag{8.41}
\end{gather*}
$$

Proof Necessity. Suppose that system (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, by Lemma 8.1, there exist a smooth function $\varphi(y)$ and smooth functions $\gamma_{k}^{u}(y), 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
z_{i}=S_{i}(x)=L_{F_{0}}^{i-1}(\varphi \circ H(x))-\sum_{k=1}^{i-1} L_{F_{0}}^{i-1-k}\left(\gamma_{k}^{0} \circ H(x)\right)
$$

or

$$
\begin{equation*}
\tilde{S}_{i}(\xi) \triangleq S_{i} \circ T^{-1}(\xi)=L_{f_{0}(\xi)}^{i-1} \varphi\left(\xi_{1}\right)-\sum_{k=1}^{i-1} L_{f_{0}(\xi)}^{i-1-k}\left(\bar{\gamma}_{k} \circ \varphi\left(\xi_{1}\right)\right) \tag{8.42}
\end{equation*}
$$

where $\xi=T(x)=\left[\begin{array}{c}H(x) \\ L_{F_{0}} H(x) \\ \vdots \\ L_{F_{0}}^{n-1} H(x)\end{array}\right], f_{0}(\xi) \triangleq T_{*}\left(F_{0}(x)\right)$, and $\tilde{S}(\xi) \triangleq S \circ T^{-1}(\xi)$. Also, we have, by (8.9) and (8.10), that

$$
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=z_{1}
$$

and

$$
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(z_{1}\right)=\left[\begin{array}{c}
z_{2}+\bar{\gamma}_{1}^{u}\left(z_{1}\right) \tag{8.43}\\
\vdots \\
z_{n}+\bar{\gamma}_{n-1}^{u}\left(z_{1}\right) \\
\bar{\gamma}_{n}^{u}\left(z_{1}\right)
\end{array}\right]
$$

where $\bar{\gamma}_{k}^{u} \circ \varphi(y) \triangleq \gamma_{k}^{u}(y)$ for $1 \leq k \leq n$. Define vector fields $\left\{\bar{\psi}_{1}^{u}(z), \cdots, \bar{\psi}_{n}^{u}(z)\right\}$ by

$$
\begin{equation*}
\bar{\psi}_{1}^{u}(z) \triangleq \frac{\partial}{\partial z_{n}} ; \quad \bar{\psi}_{i}^{u}(z) \triangleq \operatorname{ad}_{\bar{f}_{u}}^{i-1} \bar{\psi}_{1}^{u}(z), i \geq 2 \tag{8.44}
\end{equation*}
$$

Then, by (8.43) and (8.44), it is clear that for $1 \leq i \leq n$,

$$
\begin{equation*}
\bar{\psi}_{i}^{u}(z)=(-1)^{i-1} \frac{\partial}{\partial z_{n+1-i}}=\bar{\psi}_{i}^{0}(z) \tag{8.45}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left[\bar{\psi}_{i}^{u}(z), \bar{\psi}_{k}^{u}(z)\right]=0, \quad 1 \leq i \leq n, 1 \leq k \leq n \tag{8.46}
\end{equation*}
$$

Note, by (8.42), that

$$
\frac{\partial \tilde{S}_{i}(\xi)}{\partial \xi_{n}}= \begin{cases}0, & \text { if } 1 \leq i \leq n-1 \\ \frac{d \varphi\left(\xi_{1}\right)}{d \xi_{1}}, & \text { if } i=n\end{cases}
$$

which implies, together with (8.44), that

$$
\begin{aligned}
\tilde{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right) & =\left.\sum_{i=1}^{n} \frac{\partial \tilde{S}_{i}(\xi)}{\partial \xi_{n}}\right|_{\xi=\tilde{S}^{-1}(z)} \frac{\partial}{\partial z_{i}}=\left.\frac{d \varphi\left(\xi_{1}\right)}{d \xi_{1}}\right|_{\xi=\tilde{S}^{-1}(z)} \frac{\partial}{\partial z_{n}} \\
& =\left.\frac{d \varphi\left(\xi_{1}\right)}{d \xi_{1}}\right|_{\xi=\tilde{S}^{-1}(z)} \bar{\psi}_{1}^{u}(z)
\end{aligned}
$$

and

$$
\bar{\psi}_{1}^{u}(z)=\left.\ell\left(\xi_{1}\right)\right|_{\xi=\tilde{S}^{-1}(z)} \tilde{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)
$$

where

$$
\frac{1}{\ell\left(\xi_{1}\right)}=\frac{d \varphi\left(\xi_{1}\right)}{d \xi_{1}}\left(\text { or } \varphi(y)=\int_{0}^{y} \frac{1}{\ell\left(\xi_{1}\right)} d \xi_{1}\right)
$$

Therefore, we have, by (2.49), that

$$
\begin{equation*}
\tilde{S}_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)=\tilde{S}_{*}^{-1}\left(\left.\ell\left(\xi_{1}\right)\right|_{\xi=\tilde{S}^{-1}(z)} \tilde{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)\right)=\ell\left(\xi_{1}\right) \frac{\partial}{\partial \xi_{n}} \tag{8.47}
\end{equation*}
$$

Hence, if we let $\overline{\mathbf{g}}_{1}^{u}(x) \triangleq S_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)$, we have, by (2.49), (8.13), and (8.47), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{1}^{u}(x) & =S_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)=T_{*}^{-1} \circ \tilde{S}_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)=T_{*}^{-1}\left(\ell\left(\xi_{1}\right) \frac{\partial}{\partial \xi_{n}}\right) \\
& =\ell(H(x)) T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{n}}\right)=\ell(H(x)) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

which implies that (8.38) is satisfied. Also, since $\bar{f}_{u}(z)=S_{*}\left(F_{u}(x)\right)$ or $F_{u}(x)=$ $S_{*}^{-1}\left(\bar{f}_{u}(z)\right)$, it is clear, by (2.37), (8.39), and (8.44), that for $i \geq 2$,

$$
\begin{align*}
\overline{\mathbf{g}}_{i}^{u}(x) & =\operatorname{ad}_{F_{u}}^{i-1} \overline{\mathbf{g}}_{1}^{u}(x)=S_{*}^{-1}\left\{\operatorname{ad}_{S_{*}\left(F_{u}\right)}^{i-1} S_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)\right\} \\
& =S_{*}^{-1}\left\{\operatorname{ad}_{\bar{f}_{u}}^{i-1} \bar{\psi}_{1}^{u}(z)\right\}=S_{*}^{-1}\left(\bar{\psi}_{i}^{u}(z)\right) \tag{8.48}
\end{align*}
$$

and thus condition (i) and condition (ii) are satisfied by (8.45) and (8.46). Finally, it is easy to see, by (8.45) and (8.48), that

$$
\begin{aligned}
I & =\left[(-1)^{n-1} S_{*}\left(\overline{\mathbf{g}}_{n}^{0}(x)\right) \cdots-S_{*}\left(\overline{\mathbf{g}}_{2}^{0}(x)\right) S_{*}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)\right] \\
& =\left(\frac{\partial S(x)}{\partial x}\left[(-1)^{n-1} \overline{\mathbf{g}}_{n}^{0}(x) \cdots-\overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]\right)_{x=S^{-1}(z)}
\end{aligned}
$$

or

$$
I=\frac{\partial S(x)}{\partial x}\left[(-1)^{n-1} \overline{\mathbf{g}}_{n}^{0}(x) \cdots-\overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]
$$

which implies that (8.41) is satisfied.
Sufficiency. Suppose that there exists $\ell(y)$ such that (8.36)-(8.40) are satisfied. Since $\left\{\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{2}^{0}(x), \cdots, \overline{\mathbf{g}}_{n}^{0}(x)\right\}$ is a set of commuting vector fields, there exists, by Theorem 2.7, a state transformation $z=S(x)$ such that

$$
\begin{equation*}
S_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right)=(-1)^{i-1} \frac{\partial}{\partial z_{n+1-i}}, 1 \leq i \leq n . \tag{8.49}
\end{equation*}
$$

In fact, $z=S(x)$ can be calculated by (8.41). Now it will be shown that

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=z_{1} \tag{8.50}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(z_{1}\right) \tag{8.51}
\end{equation*}
$$

Note, by (8.15), that for $1 \leq i \leq n$,

$$
\begin{aligned}
L_{\overline{\mathbf{g}}_{1}^{0}} L_{F_{0}}^{k} H(x) & =L_{\ell(H) \mathbf{g}_{1}^{0}} L_{F_{0}}^{k} H(x)=\ell(H(x)) L_{\mathbf{g}_{1}^{0}} L_{F_{0}}^{k} H(x) \\
& = \begin{cases}0, & 0 \leq k \leq n-2 \\
\ell(H(x)), & k=n-1\end{cases}
\end{aligned}
$$

which implies, together with (2.30), (2.45), (8.14), (8.39), and (8.49), that for $1 \leq$ $i \leq n$,

$$
\begin{aligned}
L_{\overline{\mathbf{g}}_{i}^{0}} H(x) & =L_{\mathrm{ad}_{F_{0}}^{i-1} \overline{\mathrm{~g}}_{1}^{0}} H(x)=\sum_{k=0}^{i-1}(-1)^{k}\binom{i-1}{k} L_{F_{0}}^{i-1-k} L_{\overline{\mathbf{g}}_{1}} L_{F_{0}}^{k} H(x) \\
& = \begin{cases}0, & 1 \leq i \leq n-1 \\
(-1)^{n-1} \ell(H(x)), & i=n\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \bar{h}(z)}{\partial z_{n+1-i}} & =(-1)^{i-1} L_{S_{*}\left(\bar{g}_{i}^{0}\right)}\left(\varphi \circ H \circ S^{-1}(z)\right) \\
& =\left.(-1)^{i-1}\left\{L_{\overline{\mathbf{g}}_{i}^{0}(x)}(\varphi \circ H(x))\right\}\right|_{x=S^{-1}(z)} \\
& =\left.(-1)^{i-1}\left\{\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=H(x)} L_{\overline{\mathbf{g}}_{i}^{0}(x)} H(x)\right\}\right|_{x=S^{-1}(z)} \\
& = \begin{cases}0, & 1 \leq i \leq n-1 \\
\left.\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=H(x)} \ell(H(x))\right\}\left.\right|_{x=S^{-1}(z)}, i=n \\
& = \begin{cases}0, & 1 \leq i \leq n-1 \\
1, & i=n\end{cases} \end{cases}
\end{aligned}
$$

Therefore, $\bar{h}(z)=z_{1}$ and (8.50) is satisfied. Let

$$
\bar{f}_{u}(z) \triangleq \sum_{k=1}^{n} \bar{f}_{u, k}(z) \frac{\partial}{\partial z_{k}}=\left[\begin{array}{c}
\bar{f}_{u, 1}(z) \tag{8.52}\\
\vdots \\
\bar{f}_{u, n}(z)
\end{array}\right]
$$

Since $\bar{f}_{u}(z)=S_{*}\left(F_{u}(x)\right)$, it is clear that for $1 \leq i \leq n-1$,

$$
\begin{align*}
S_{*}\left(\overline{\mathbf{g}}_{i+1}^{u}(x)\right) & =S_{*}\left(\operatorname{ad}_{F_{u}} \overline{\mathbf{g}}_{i}^{u}(x)\right)=\left[S_{*}\left(F_{u}(x)\right), S_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right)\right] \tag{8.53}\\
& =\left[\bar{f}_{u}(z), S_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right)\right]
\end{align*}
$$

Thus, we have, by (8.49), (8.52), and (8.53), that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
(-1)^{i} \frac{\partial}{\partial z_{n-i}} & =\left[\bar{f}_{u}(z),(-1)^{i-1} \frac{\partial}{\partial z_{n+1-i}}\right] \\
& =(-1)^{i} \sum_{k=1}^{n} \frac{\partial \bar{f}_{u, k}(z)}{\partial z_{n+1-i}} \frac{\partial}{\partial z_{k}}
\end{aligned}
$$

which implies that for $1 \leq k \leq n$ and $1 \leq i \leq n-1$,

$$
\frac{\partial \bar{f}_{u, k}(z)}{\partial z_{n+1-i}}=\left\{\begin{array}{ll}
1, & k=n-i \\
0, & \text { otherwise }
\end{array} \text { or } \frac{\partial \bar{f}_{u, k}(z)}{\partial z_{i+1}}= \begin{cases}1, & i=k \\
0, & \text { otherwise }\end{cases}\right.
$$

Therefore, it is clear that $\bar{f}_{u, n}(z)=\bar{\gamma}_{n}^{u}\left(z_{1}\right)$ and $\bar{f}_{u, k}(z)=z_{k+1}+\bar{\gamma}_{k}^{u}\left(z_{1}\right), \quad 1 \leq k \leq$ $n-1$, for some functions $\bar{\gamma}_{k}^{u}\left(z_{1}\right), 1 \leq k \leq n$. In other words, (8.51) is satisfied. Hence, by (8.50) and (8.51), system (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$.

Theorem 8.3 System (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exists a smooth function $\beta(y)$ such that
(i)

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{i}^{0}(x)\right]=0,2 \leq i \leq n-1 \tag{8.54}
\end{equation*}
$$

(ii)

$$
\begin{gather*}
{\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{n}^{0}(x)\right]=-2 \beta(H(x)) \mathbf{g}_{1}^{0}(x), \quad \text { for even } n} \tag{8.55}\\
{\left[\mathbf{g}_{2}^{0}(x), \mathbf{g}_{n}^{0}(x)\right]=n \beta(H(x)) \mathbf{g}_{2}^{0}(x) \bmod \operatorname{span}\left\{\mathbf{g}_{1}^{0}(x)\right\}, \text { for odd } n} \tag{8.56}
\end{gather*}
$$

(iii)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.57}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{i}^{0}(x), \overline{\mathbf{g}}_{k}^{0}(x)\right]=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq n \tag{8.58}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \\
\overline{\mathbf{g}}_{1}^{u}(x) \triangleq \ell(H(x)) \mathbf{g}_{1}^{0}(x) \\
\overline{\mathbf{g}}_{i}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{i-1} \overline{\mathbf{g}}_{1}^{0}(x), \quad i \geq 2 \\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \\
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{lll}
(-1)^{n-1} \overline{\mathbf{g}}_{n}^{0}(x) & \cdots & -\overline{\mathbf{g}}_{2}^{0}(x)
\end{array} \overline{\mathbf{g}}_{1}^{0}(x)\right. \tag{8.63}
\end{array}\right]^{-1} .
$$

Proof Necessity. Suppose that system (8.7) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, by Lemma 8.2, there exist smooth functions $\ell(y)(\neq 0)$ such that (8.36)-(8.41) are satisfied. Note, by (2.44), (8.14), (8.38), and (8.39), that for $1 \leq i \leq n$,

$$
\begin{align*}
\overline{\mathbf{g}}_{i}^{0}(x) & =\operatorname{ad}_{F_{0}}^{i-1} \overline{\mathbf{g}}_{1}^{0}(x)=\operatorname{ad}_{F_{0}}^{i-1}\left(\ell(H(x)) \mathbf{g}_{1}^{0}(x)\right) \\
& =\sum_{k=0}^{i-1}\binom{i-1}{k} L_{F_{0}}^{k} \ell(H(x)) \operatorname{ad}_{F_{0}}^{i-1-k} \mathbf{g}_{1}^{0}(x) \tag{8.64}\\
& =\sum_{k=0}^{i-1}\binom{i-1}{k} L_{F_{0}}^{k} \ell(H(x)) \mathbf{g}_{i-k}^{0}(x) .
\end{align*}
$$

Also note, by (8.15), that for $1 \leq i \leq n$ and $1 \leq k \leq n$,

$$
\begin{align*}
L_{\mathbf{g}_{i}^{0}(x)} L_{F_{0}}^{k} \ell(H(x)) & =\left.\frac{d \ell(y)}{d y}\right|_{y=H(x)} L_{\mathbf{g}_{i}^{0}(x)} L_{F_{0}}^{k} H(x) \\
& = \begin{cases}0, & i+k<n \\
\left.(-1)^{i+1} \frac{d \ell(y)}{d y}\right|_{y=H(x)}, & i+k=n\end{cases} \tag{8.65}
\end{align*}
$$

Thus, we have, by (2.43), (8.37), (8.64), and (8.65), that for $2 \leq i \leq n-1$,

$$
\begin{align*}
0 & =\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=\left[\ell(H) \mathbf{g}_{1}^{0}, \sum_{k=1}^{i-1}\binom{i-1}{k} L_{F_{0}}^{k} \ell(H) \mathbf{g}_{i-k}^{0}+\ell(H) \mathbf{g}_{i}^{0}\right] \\
& =\ell(H) \sum_{k=1}^{i-1}\binom{i-1}{k} L_{F_{0}}^{k} \ell(H)\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{i-k}^{0}\right]+\ell(H)^{2}\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{i}^{0}\right] . \tag{8.66}
\end{align*}
$$

Since $\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{1}^{0}(x)\right]=0$, it is easy to show, by (8.66) and mathematical induction, that condition (i) is satisfied. Also, we have, by (2.43), (8.37), (8.54), (8.64), and (8.65), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{n}^{0}(x)\right] \\
& =\left[\ell(H) \mathbf{g}_{1}^{0}, L_{F_{0}}^{n-1} \ell(H) \mathbf{g}_{1}^{0}+\sum_{k=1}^{n-2}\binom{n-1}{k} L_{F_{0}}^{k} \ell(H) \mathbf{g}_{n-k}^{0}+\ell(H) \mathbf{g}_{n}^{0}\right] \\
& =\left[\ell(H) \mathbf{g}_{1}^{0}, L_{F_{0}}^{n-1} \ell(H) \mathbf{g}_{1}^{0}\right]+\left[\ell(H) \mathbf{g}_{1}^{0}, \ell(H) \mathbf{g}_{n}^{0}\right] \\
& =\ell(H) L_{\mathbf{g}_{1}} L_{F_{0}}^{n-1} \ell(H) \mathbf{g}_{1}^{0}+\ell(H)^{2}\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right]-\ell(H) L_{\mathbf{g}_{n}^{0}} \ell(H) \mathbf{g}_{1}^{0}
\end{aligned}
$$

which implies, together with (8.15), that

$$
\begin{align*}
{\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{n}^{0}(x)\right] } & =\frac{1}{\ell(H(x))}\left\{L_{\mathbf{g}_{n}^{0}} \ell(H(x))-L_{\mathbf{g}_{1}^{0}} L_{F_{0}}^{n-1} \ell(H(x))\right\} \mathbf{g}_{1}^{0}(x) \\
& = \begin{cases}-\left.2\left\{\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right\}\right|_{y=H(x)} \mathbf{g}_{1}^{0}(x), & \text { for even } n \\
0, & \text { for odd } n .\end{cases} \tag{8.67}
\end{align*}
$$

Therefore, (8.55) and (8.59) are satisfied with $\beta(y)=\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}=\frac{d \ln \ell(y)}{d y}$ for even n. Similarly, for odd n, we have, by (2.43), (8.38), (8.54), (8.64), (8.65), and (8.67), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{2}^{0}(x), \overline{\mathbf{g}}_{n}^{0}(x)\right] \\
= & {\left[L_{F_{0}} \ell(H) \mathbf{g}_{1}^{0}+\ell(H) \mathbf{g}_{2}^{0}, L_{F_{0}}^{n-1} \ell(H) \mathbf{g}_{1}^{0}+(n-1) L_{F_{0}}^{n-2} \ell(H) \mathbf{g}_{2}^{0}+\cdots+\ell(H) \mathbf{g}_{n}^{0}\right] } \\
= & {\left[\ell(H) \mathbf{g}_{2}^{0},(n-1) L_{F_{0}}^{n-2} \ell(H) \mathbf{g}_{2}^{0}\right]+\left[\ell(H) \mathbf{g}_{2}^{0}, \ell(H) \mathbf{g}_{n}^{0}\right] \bmod \operatorname{span}\left\{\mathbf{g}_{1}^{0}\right\} } \\
= & (n-1) \ell(H) L_{\mathbf{g}_{2}^{0}}^{n-2} L_{F_{0}} \ell(H) \mathbf{g}_{2}^{0}+\ell(H)^{2}\left[\mathbf{g}_{2}^{0}, \mathbf{g}_{n}^{0}\right] \\
& -\ell(H) L_{\mathbf{g}_{n}^{0}} \ell(H) \mathbf{g}_{2}^{0} \quad \bmod \operatorname{span}\left\{\mathbf{g}_{1}^{0}\right\}
\end{aligned}
$$

which implies, together with (8.65), that for odd n,

$$
\begin{aligned}
{\left[\mathbf{g}_{2}^{0}(x), \mathbf{g}_{n}^{0}(x)\right] } & =\frac{1}{\ell(H)}\left\{L_{\mathbf{g}_{n}^{0}} \ell(H)+(n-1) L_{\mathbf{g}_{1}^{0}} L_{F_{0}}^{n-1} \ell(H)\right\} \mathbf{g}_{2}^{0} \bmod \operatorname{span}\left\{\mathbf{g}_{1}^{0}\right\} \\
& =\left.n\left\{\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right\}\right|_{y=H(x)} \mathbf{g}_{2}^{0}(x) \quad \bmod \operatorname{span}\left\{\mathbf{g}_{1}^{0}(x)\right\}
\end{aligned}
$$

and (8.56) and (8.59) are satisfied with $\beta(y)=\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}=\frac{d \ln \ell(y)}{d y}$. Condition (iii) and condition (iv) are obviously satisfied by (8.36) and (8.37).

Sufficiency. It is obvious by Lemma 8.2.

Example 8.2.3 Consider the following control system:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
-x_{2}^{2}+x_{1}^{2} e^{-x_{1}}+u
\end{array}\right]=F_{u}(x) \tag{8.68}\\
& y=x_{1}=H(x)
\end{align*}
$$

Show that the above system is state equivalent to a dual Brunovsky NOCF with OT. Also find a OT $\bar{y}=\varphi(y)$, a state transformation $z=S(x)$, and the dual Brunovsky NOCF that new state z satisfies.

Solution Since $T(x) \triangleq\left[H(x) L_{F_{0}} H(x)\right]^{\top}=x$, it is clear, by (8.13) and (8.14), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{l}
-1 \\
2 x_{2}
\end{array}\right]
\end{aligned}
$$

which imply that $\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x)\right]=2 \mathbf{g}_{1}^{0}(x) \neq 0$ and condition (ii) of Theorem 8.2 is not satisfied. Therefore, by Theorem 8.2, system (8.68) is not state equivalent to
a dual Brunovsky NOCF without OT. Note that condition (i) and condition (ii) of Theorem 8.3 are satisfied with $\beta\left(x_{1}\right)=-1$. Thus, we have, by (8.59)-(8.62), that $\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{-y}$ and

$$
\begin{gathered}
\overline{\mathbf{g}}_{1}^{u}(x) \triangleq \ell(H(x)) \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{c}
0 \\
e^{-x_{1}}
\end{array}\right] \\
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{c}
-e^{-x_{1}} \\
x_{2} e^{-x_{1}}
\end{array}\right] \\
\varphi(y) \triangleq \int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=e^{y}-1
\end{gathered}
$$

which imply that condition (iii) and condition (iv) of Theorem 8.3 are also satisfied. Hence, system (8.68) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=$ $\varphi(y)=e^{y}-1$ and state transformation $z=S(x)=\left[e^{x_{1}}-1 x_{2} e^{x_{1}}\right]^{\top}, \gamma(\varphi(y), u)=$ $\left[0 \quad y^{2}+e^{y} u\right]^{\top}$, and $\gamma(\bar{y}, u)=\left[0\{\ln (\bar{y}+1)\}^{2}+(\bar{y}+1) u\right]^{\top}$, where

$$
\frac{\partial S(x)}{\partial x}=\left[-\mathbf{g}_{2}^{0}(x) \mathbf{g}_{1}^{0}(x)\right]^{-1}=\left[\begin{array}{cc}
e^{-x_{1}} & 0 \\
-x_{2} e^{-x_{1}} & e^{-x_{1}}
\end{array}\right]^{-1}
$$

and

$$
\begin{aligned}
& \dot{z}=S_{*}\left(F_{u}(x)\right)=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
\bar{y}=\varphi \circ H \circ S^{-1}(z)=z_{1} .
\end{array} . \begin{array}{l}
\\
\left.\overline{l n}\left(z_{1}+1\right)\right\}^{2}+\left(z_{1}+1\right) u
\end{array}\right] \\
&
\end{aligned}
$$

If n is odd, (8.56) should be used instead of (8.55) in condition (ii) of Theorem 8.3.
Example 8.2.4 Consider the following control system:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
-4 x_{1} x_{3}-3 x_{2}^{2}-6 x_{1}^{2} x_{2}+u
\end{array}\right]=F_{u}(x) \tag{8.69}\\
& y=x_{1}=H(x)
\end{align*}
$$

Show that the above system is not state equivalent to a dual Brunovsky NOCF with OT.

Solution Since $T(x) \triangleq\left[H(x) L_{F_{0}} H(x) L_{F_{0}}^{2} H(x)\right]^{\top}=x$, it is clear, by (8.13) and (8.14), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{c}
0 \\
-1 \\
4 x_{1}
\end{array}\right] ; \quad \mathbf{g}_{3}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \mathbf{g}_{2}^{u}(x)=\left[\begin{array}{c}
1 \\
-4 x_{1} \\
10 x_{1}^{2}-2 x_{2}
\end{array}\right]
\end{aligned}
$$

which imply that $\left[\mathbf{g}_{2}^{0}(x), \mathbf{g}_{3}^{0}(x)\right]=-2 \mathbf{g}_{1}^{0}(x) \neq 0$ and condition (ii) of Theorem 8.2 is not satisfied. Therefore, by Theorem 8.2, system (8.69) is not state equivalent to a dual Brunovsky NOCF without OT. Note that condition (i) and condition (ii) of Theorem 8.3 are satisfied with $\beta\left(x_{1}\right)=0$. Thus, we have, by (8.59)-(8.62), that $\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=1, \varphi(y) \triangleq \int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=y$, and

$$
\overline{\mathbf{g}}_{i}^{u}(x)=\mathbf{g}_{i}^{u}(x), \quad 1 \leq i \leq n
$$

which imply that condition (iv) of Theorem 8.3 is not satisfied, even though condition (iii) is satisfied. Hence, by Theorem 8.3, system (8.69) is not state equivalent to a dual Brunovsky NOCF with OT.

8.3 Dynamic Observer Error Linearization

Consider the following single output control system and autonomous system:

$$
\begin{array}{ll}
\dot{x}=F_{u}(x) ; & y=H(x) \\
\dot{x}=F_{0}(x) ; & y=H(x) \tag{8.71}
\end{array}
$$

with $F_{0}(0)=0, H(0)=0$, state $x \in \mathbb{R}^{n}$, input $u \in \mathbb{R}^{m}$, and output $y \in \mathbb{R}$. Define the restricted dynamic system with index d (called auxiliary dynamics) by

$$
\left[\begin{array}{c}
\dot{w}_{1} \tag{8.72}\\
\vdots \\
\dot{w}_{d-1} \\
\dot{w}_{d}
\end{array}\right]=\left[\begin{array}{c}
w_{2} \\
\vdots \\
w_{d} \\
y
\end{array}\right] \triangleq p(w, y)
$$

Define the extended system of system (8.70) with index d by

$$
\begin{align*}
& \dot{x}^{e} \triangleq\left[\begin{array}{c}
\dot{w} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{c}
p(w, H(x)) \\
F_{u}(x)
\end{array}\right] \triangleq F_{u}^{e}\left(x^{e}\right) \tag{8.73}\\
& y_{a}=w_{1}
\end{align*}
$$

where $x^{e} \triangleq\left[\begin{array}{ll}w^{\top} & x^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{d+n}$.

Definition 8.6 ($R D O E L$ with index d)
System (8.70) is said to be restricted dynamic observer error linearizable (RDOEL) with index d, if there exists a local extended state transformation $z^{e}=S^{e}(w, x)=$ $\left[w^{\top} z^{\top}\right]^{\top}=\left[w^{\top} S(w, x)^{\top}\right]^{\top}$, which transforms (8.73), in the new states z^{e}, to a generalized nonlinear observer canonical form (GNOCF) with index d defined by

$$
\dot{z}^{e}=A_{e} z^{e}+\gamma(w, y, u) ; \quad y_{a}=C_{e} z^{e}=w_{1}
$$

where $\gamma(w, y, u): \mathbb{R}^{d+1} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{d+n}$ is a smooth vector function with $\gamma_{i}=0$ for $1 \leq i \leq d-1, C_{e}=\left[\begin{array}{ll}1 & O_{1 \times(n+d-1)}\end{array}\right]$, and $A_{e}=\left[\begin{array}{cc}O_{(n+d-1) \times 1} & I_{(n+d-1)} \\ 0 & O_{1 \times(n+d-1)}\end{array}\right]$.

System (8.70) is said to be RDOEL, if system (8.70) is RDOEL with some index d. If we use a general nonlinear dynamic system $\dot{w}=\bar{p}(w, y)$ in Definition 8.6 instead of restricted (or linear) dynamic system (8.72), system (8.70) is said to be dynamic observer error linearizable (DOEL) with index d.

Let $S^{-1}(w, z)$ be the vector function such that $S\left(w, S^{-1}(w, z)\right)=z$ for all $w \in$ \mathbb{R}^{d}. In other words,

$$
x^{e}=\left[\begin{array}{l}
w \\
x
\end{array}\right]=\left(S^{e}\right)^{-1}(w, z)=\left[\begin{array}{c}
w \\
S^{-1}(w, z)
\end{array}\right] .
$$

If system (8.70) is RDOEL with index d, then we can design a state estimator

$$
\begin{aligned}
\dot{\bar{z}}^{e}(t)=\left[\begin{array}{c}
\dot{w} \\
\dot{\bar{z}}
\end{array}\right] & =\left(A_{e}-L_{e} C_{e}\right)\left[\begin{array}{l}
w \\
\bar{z}
\end{array}\right]+\gamma(w, y, u)+L_{e} w_{1} \\
\bar{x} & \triangleq S^{-1}(w, \bar{z})
\end{aligned}
$$

that yields an asymptotically vanishing error, i.e., $\lim _{t \rightarrow \infty}\left\|z^{e}(t)-\bar{z}^{e}(t)\right\|=0$ or $\lim _{t \rightarrow \infty}\|x(t)-\bar{x}(t)\|=0$, where $\left(A_{e}-L_{e} C_{e}\right)$ is an asymptotically stable $(d+n) \times$ $(d+n)$ matrix. Block diagram for dynamic nonlinear observer can be found in Fig. 8.3.

RDOEL for autonomous system (8.71) can also be similarly defined with $u=$ 0. If $\bar{f}_{u}^{e}\left(z^{e}\right) \triangleq\left(S^{e}\right)_{*}\left(F_{u}^{e}\left(x^{e}\right)\right)=A_{e} z^{e}+\gamma(w, y, u)$, then it is clear that $\bar{f}_{0}^{e}(z) \triangleq$ $\left(S^{e}\right)_{*}\left(F_{0}^{e}\left(x^{e}\right)\right)=A_{e} z^{e}+\gamma(w, y, 0)$. Thus, we have the following remark.

Remark 8.3 If system (8.70) is RDOEL with index d and state transformation $z^{e}=$ $S^{e}(w, x)$, then system (8.71) is also RDOEL with index d and state transformation $z^{e}=S^{e}(w, x)$. But the converse is not true.

Lemma 8.3 System (8.71) is RDOEL with index $d(\geq 1)$ and state transformation $z^{e}=S^{e}(w, x)=\left[w^{\top} S(w, x)^{\top}\right]^{\top}$, if and only if there exist smooth functions $\bar{\gamma}_{k}(w, y), d \leq k \leq d+n$ such that

Fig. 8.3 Dynamic nonlinear observer

$$
\begin{equation*}
L_{F_{0}^{e}}^{n} H(x)=\sum_{k=0}^{n} L_{F_{0}^{e}}^{n-k} \bar{\gamma}_{d+k}(w, H(x)) \tag{8.74}
\end{equation*}
$$

and for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{i}(w, x)=L_{F_{0}^{e}}^{i-1} H(x)-\sum_{k=0}^{i-1} L_{F_{0}^{e}}^{i-1-k} \bar{\gamma}_{d+k}(w, H(x)) . \tag{8.75}
\end{equation*}
$$

Proof Proof is obvious.
For extended system (8.73), as in Definition 8.5, the canonical system can also be defined by

$$
\begin{equation*}
\dot{\xi}^{e}=f_{0}^{e}\left(\xi^{e}\right) ; \quad y_{a}=\xi_{1}^{e}=w_{1} \triangleq h_{E}\left(\xi^{e}\right) \tag{8.76}
\end{equation*}
$$

where $\xi^{e} \triangleq\left[\begin{array}{c}w \\ \xi\end{array}\right]=T_{e}\left(x^{e}\right) \triangleq\left[\begin{array}{c}w \\ T(x)\end{array}\right], f_{u}^{e}\left(\xi^{e}\right) \triangleq\left(T_{e}\right)_{*}\left(F_{u}^{e}\left(x^{e}\right)\right)$,

$$
\begin{aligned}
\xi & =T(x) \triangleq\left[\begin{array}{llll}
H(x) & L_{F_{0}} H(x) & \cdots & L_{F_{0}}^{n-1} H(x)
\end{array}\right]^{\top} \\
& =\left[\begin{array}{lll}
L_{F_{0}^{e}}^{d} w_{1} & L_{F_{0}^{e}}^{d+1} w_{1} \cdots & L_{F_{0}^{e}}^{d+n-1} w_{1}
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\alpha_{e}\left(\xi^{e}\right) \triangleq L_{f_{0}^{e}}^{d+n} w_{1}=\left.L_{F_{0}^{e}}^{d+n} w_{1}\right|_{x^{e}=T_{e}^{-1}\left(\xi^{e}\right)}=\left.L_{F_{0}}^{n} H(x)\right|_{x=T^{-1}(\xi)}=\alpha_{e}(0, \xi)
$$

and

$$
f_{0}^{e}\left(\xi^{e}\right)=\left[\begin{array}{lllll}
w_{2} & \cdots & w_{d} & \xi_{1} & \cdots
\end{array} \xi_{n} \alpha_{e}\left(\xi^{e}\right)\right]^{\top}=\left(T_{e}\right)_{*}\left(F_{0}^{e}\left(x^{e}\right)\right) .
$$

For extended system (8.73), we define vector fields $\left\{\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x), \cdots\right\}$ and $\left\{\mathbf{g}_{1}^{u}(x), \mathbf{g}_{2}^{u}(x), \cdots\right\}$ as follows:

$$
\left.\left.\left.\begin{array}{c}
L_{\mathbf{g}_{1}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k-1} w_{1}=\delta_{k, d+n}, 1 \leq k \leq d+n \\
\left(\text { or } \mathbf{g}_{1}^{0}\left(x^{e}\right) \triangleq\left(\frac{\partial T_{e}\left(x^{e}\right)}{\partial x^{e}}\right)^{-1}[0 \cdots\right. \tag{8.77}
\end{array}\right] \quad 1\right]^{\top}=\left(T_{e}\right)_{*}^{-1}\left(\frac{\partial}{\partial \xi_{n}}\right)\right), ~ l
$$

and for $i \geq 2$,

$$
\begin{align*}
& \mathbf{g}_{i}^{0}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{0}^{e}}^{i-1} \mathbf{g}_{1}^{0}\left(x^{e}\right) \\
& \mathbf{g}_{1}^{u}\left(x^{e}\right) \triangleq \mathbf{g}_{1}^{0}\left(x^{e}\right) ; \quad \mathbf{g}_{i}^{u}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{u}^{e}}^{i-1} \mathbf{g}_{1}^{u}\left(x^{e}\right) \tag{8.78}
\end{align*}
$$

Then it is easy to see that for $1 \leq i \leq n+d$ and $0 \leq k \leq n+d-1$,

$$
L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} w_{1}= \begin{cases}0, & i+k<d+n \tag{8.79}\\ (-1)^{i+1}, & i+k=d+n\end{cases}
$$

Also, since $w_{j}=L_{F_{0}^{e}}^{j-1} w_{1}, 1 \leq j \leq d$ and $H(x)=L_{F_{0}^{e}}^{d} w_{1}$, it is clear that for $1 \leq$ $k \leq n$ and $1 \leq j \leq d$,

$$
\begin{align*}
L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} w_{j} & = \begin{cases}0, & i+k<d+n+1-j \\
(-1)^{i+1}, & i+k=d+n+1-j\end{cases} \tag{8.80}\\
L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} H(x) & = \begin{cases}0, & i+k<n \\
(-1)^{i+1}, & i+k=n .\end{cases}
\end{align*}
$$

Example 8.3.1 Let

$$
\begin{aligned}
& \tilde{\mathbf{g}}_{1}^{s}\left(x^{e}\right)= \begin{cases}\bar{\ell}_{0}(H(x)) \mathbf{g}_{1}^{0}\left(x^{e}\right), & s=1 \\
\bar{\ell}_{s-1}\left(w_{d+2-s}, \cdots, w_{d}, H(x)\right) \mathbf{g}_{1}^{0}\left(x^{e}\right), & 2 \leq s \leq d\end{cases} \\
& \tilde{\mathbf{g}}_{i}^{s}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{0}^{e}}^{i-1} \tilde{\mathbf{g}}_{1}^{s}\left(x^{e}\right), 1 \leq i \leq n
\end{aligned}
$$

for some scalar function $\bar{\ell}_{s-1}\left(w_{d+2-s}, \cdots, w_{d}, y\right)$. Prove the following:
(a) for $1 \leq i \leq n$,

$$
\begin{gather*}
\mathbf{g}_{i}^{0}(w, x)=\mathbf{g}_{i}^{0}(0, x) \tag{8.81}\\
\tilde{\mathbf{g}}_{i}^{s}(w, x)=\left.\tilde{\mathbf{g}}_{i}^{s}(w, x)\right|_{w_{j}=0,1 \leq j \leq d+1-s} \tag{8.82}
\end{gather*}
$$

(b) for $1 \leq i \leq n$ and $1 \leq k \leq n$,

$$
\begin{gather*}
{\left[\mathbf{g}_{i}^{0}(w, x), \mathbf{g}_{k}^{0}(w, x)\right]=\left.\left[\mathbf{g}_{i}^{0}(w, x), \mathbf{g}_{k}^{0}(w, x)\right]\right|_{w=0}} \tag{8.83}\\
{\left[\tilde{\mathbf{g}}_{i}^{s}(w, x), \tilde{\mathbf{g}}_{k}^{s}(w, x)\right]=\left.\left[\tilde{\mathbf{g}}_{i}^{s}(w, x), \tilde{\mathbf{g}}_{k}^{s}(w, x)\right]\right|_{w_{j}=0,1 \leq j \leq d+1-s}} \tag{8.84}
\end{gather*}
$$

Solution For canonical system (8.76), let $\mathbf{r}_{1}\left(\xi^{e}\right) \triangleq \frac{\partial}{\partial \xi_{+n}^{e}}=\frac{\partial}{\partial \xi_{n}}$ and $\mathbf{r}_{i}\left(\xi^{e}\right) \triangleq$ $\operatorname{ad}_{f_{0}^{e}}^{i-1} \mathbf{r}_{1}\left(\xi^{e}\right), i \geq 2$. Since $f_{0}^{e}\left(\xi^{e}\right) \triangleq\left(T_{e}\right)_{*}\left(F_{0}^{e}\left(x^{e}\right)\right)$ and $\mathbf{r}_{1}\left(\xi^{e}\right)=\left(T_{e}\right)_{*}\left(\mathbf{g}_{1}^{0}\left(x^{e}\right)\right)$ by (8.77), it is clear, by (2.49) and (2.37), that for $1 \leq i \leq n$ and $1 \leq s \leq d$,

$$
\begin{gathered}
\mathbf{g}_{i}^{0}(w, x)=\left(T_{e}\right)_{*}^{-1}\left(\mathbf{r}_{i}(w, \xi)\right) \\
\tilde{\mathbf{g}}_{i}^{s}(w, x)=\left(T_{e}\right)_{*}^{-1}\left(\tilde{\mathbf{r}}_{i}^{s}(w, \xi)\right) \\
\tilde{\mathbf{r}}_{1}^{s}(w, \xi)=\left(T_{e}\right)_{*}\left(\tilde{\mathbf{g}}_{1}^{s}(w, x)\right)=\bar{\ell}_{s-1}\left(\xi_{d+2-s}^{e}, \cdots, \xi_{d+1}^{e}\right) \mathbf{r}_{1}(w, \xi)
\end{gathered}
$$

where $\tilde{\mathbf{r}}_{1}^{s}(w, \xi) \triangleq\left(T_{e}\right)_{*}\left(\tilde{\mathbf{g}}_{1}^{s}(w, x)\right)$ and $\tilde{\mathbf{r}}_{i}^{s}\left(\xi^{e}\right) \triangleq \operatorname{ad}_{f_{0}^{e}\left(\xi^{e}\right)}^{i-1} \tilde{\mathbf{r}}_{1}^{s}\left(\xi^{e}\right), 1 \leq i \leq n$. Note that $\mathbf{r}_{1}(w, \xi)=\mathbf{r}_{1}(0, \xi)$ and $\tilde{\mathbf{r}}_{1}^{s}(w, \xi)=\left.\tilde{\mathbf{r}}_{1}^{s}(w, \xi)\right|_{w_{j}=0,1 \leq j \leq d+1-s}$. Since $\mathbf{r}_{1}(w, \xi)=$ $\mathbf{r}_{1}(0, \xi), \quad \alpha_{e}(w, \xi)=\alpha_{e}(0, \xi), \quad \frac{\partial f_{0}^{e}\left(\xi^{e}\right)}{\partial \xi^{e}}=\left.\frac{\partial f_{0}^{e}\left(\xi^{e}\right)}{\partial \xi^{e}}\right|_{w=0}, \quad$ and $\quad \frac{\partial \mathbf{r}_{1}\left(\xi^{e}\right)}{\partial \xi^{e}} f_{0}^{e}\left(\xi^{e}\right)=$ $\left.\left(\frac{\partial \mathbf{r}_{1}\left(\xi^{e}\right)}{\partial \xi^{e}} f_{0}^{e}\left(\xi^{e}\right)\right)\right|_{w=0}$, it is easy to see that

$$
\begin{aligned}
\mathbf{r}_{2}(w, \xi) & =\operatorname{ad}_{f_{0}^{e}\left(\xi^{e}\right)} \mathbf{r}_{1}\left(\xi^{e}\right)=\frac{\partial \mathbf{r}_{1}\left(\xi^{e}\right)}{\partial \xi^{e}} f_{0}^{e}\left(\xi^{e}\right)-\frac{\partial f_{0}^{e}\left(\xi^{e}\right)}{\partial \xi^{e}} \mathbf{r}_{1}\left(\xi^{e}\right) \\
& =\left.\left(\frac{\partial \mathbf{r}_{1}\left(\xi^{e}\right)}{\partial \xi^{e}} f_{0}^{e}\left(\xi^{e}\right)\right)\right|_{w=0}-\left.\frac{\partial f_{0}^{e}\left(\xi^{e}\right)}{\partial \xi^{e}}\right|_{w=0} \mathbf{r}_{1}(0, \xi) \\
& =\left.\left(\frac{\partial \mathbf{r}_{1}\left(\xi^{e}\right)}{\partial \xi^{e}} f_{0}^{e}\left(\xi^{e}\right)-\frac{\partial f_{0}^{e}\left(\xi^{e}\right)}{\partial \xi^{e}} \mathbf{r}_{1}\left(\xi^{e}\right)\right)\right|_{w=0}=\mathbf{r}_{2}(0, \xi)
\end{aligned}
$$

By mathematical induction, it can also be easily shown that $\mathbf{r}_{i}(w, \xi)=\mathbf{r}_{i}(0, \xi)$ for $i \geq 1$. Thus, we have, by $T_{e}^{-1}\left(\xi^{e}\right)=\left[\begin{array}{c}w \\ T^{-1}(\xi)\end{array}\right]$ and $\frac{\partial T_{e}^{-1}\left(\xi^{e}\right)}{\partial \xi^{e}}=\left.\frac{\partial T_{e}^{-1}\left(\xi^{e}\right)}{\partial \xi^{e}}\right|_{w=0}$, that for $1 \leq i \leq n$,

$$
\begin{aligned}
\mathbf{g}_{i}^{0}(w, x) & =\left(T_{e}\right)_{*}^{-1} \mathbf{r}_{i}(w, \xi)=\left.\left(\frac{\partial T_{e}^{-1}\left(\xi^{e}\right)}{\partial \xi^{e}} \mathbf{r}_{i}(w, \xi)\right)\right|_{\xi=T^{-1}(x)} \\
& =\left.\left(\frac{\partial T_{e}^{-1}\left(\xi^{e}\right)}{\partial \xi^{e}} \mathbf{r}_{i}(w, \xi)\right)\right|_{\xi=T^{-1}(x), w=0}=\mathbf{g}_{i}^{0}(0, x)
\end{aligned}
$$

which implies that (8.81) and (8.83) are satisfied. In the same manner, it can be proved that (8.82) and (8.84) are also satisfied.

Theorem 8.4 System (8.70) is RDOEL with index $d(\geq 1)$ and state transformation $z^{e}=S^{e}(w, x)=\left[w^{\top} S(w, x)^{\top}\right]^{\top}$, if and only if there exists a smooth function $\ell(w, y)$ $(\neq 0)$ such that
(i)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}\left(x^{e}\right)=\overline{\mathbf{g}}_{i}^{0}\left(x^{e}\right), \quad 2 \leq i \leq n \tag{8.85}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{i}^{0}\left(x^{e}\right), \overline{\mathbf{g}}_{k}^{0}\left(x^{e}\right)\right]=0, \quad 1 \leq i \leq n, 1 \leq k \leq n \tag{8.86}
\end{equation*}
$$

where

$$
\begin{align*}
& \overline{\mathbf{g}}_{1}^{u}\left(x^{e}\right) \triangleq \ell(w, H(x)) \mathbf{g}_{1}^{0}\left(x^{e}\right) \tag{8.87}\\
& \overline{\mathbf{g}}_{i}^{u}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{u}^{e}}^{i-1} \overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right), \quad i \geq 2 \tag{8.88}\\
& \frac{\partial S(w, x)}{\partial x}=D\left(x^{e}\right)^{-1} \tag{8.89}\\
& {\left[(-1)^{n-1} \overline{\mathbf{g}}_{n}^{0}\left(x^{e}\right) \quad \cdots \quad-\overline{\mathbf{g}}_{2}^{0}\left(x^{e}\right) \quad \overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)\right] \triangleq\left[\begin{array}{c}
O_{d \times n} \\
D\left(x^{e}\right)
\end{array}\right] .} \tag{8.90}
\end{align*}
$$

Proof Necessity. Suppose that system (8.70) is RDOEL with index d and state transformation $\quad z^{e}=\left[\begin{array}{ll}w^{\top} & z^{\top}\end{array}\right]^{\top}=S^{e}(w, x)=\left[w^{\top} \quad S(w, x)^{\top}\right]^{\top}$. Then, by Remark 8.10, autonomous system (8.71) is RDOEL with index d and state transformation $z^{e}=S^{e}(w, x)$. Therefore, by Lemma 8.3, there exist smooth functions $\bar{\gamma}_{k}(w, y), 1 \leq k \leq n$ such that (8.74) is satisfied and for $1 \leq i \leq n$,

$$
\begin{equation*}
z_{i}=S_{i}(w, x)=L_{F_{0}^{e}}^{i-1} H(x)-\sum_{k=0}^{i-1} L_{F_{0}^{e}}^{i-1-k} \bar{\gamma}_{d+k}(w, H(x)) \tag{8.91}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{i}=\tilde{S}_{i}(w, \xi) \triangleq S_{i}\left(w, T^{-1}(\xi)\right)=\xi_{i}-\sum_{k=0}^{i-1} L_{f_{0}^{e}\left(\xi^{e}\right)}^{i-1-k} \bar{\gamma}_{d+k}\left(w, \xi_{1}\right) \tag{8.92}
\end{equation*}
$$

where

$$
\begin{aligned}
\xi & =T(x) \triangleq\left[H(x) L_{F_{0}} H(x) \cdots L_{F_{0}}^{n-1} H(x)\right]^{\top} \\
& =\left[L_{F_{0}^{e}}^{d} w_{1} L_{F_{0}^{e}}^{d+1} w_{1} \cdots L_{F_{0}^{e}}^{d+n-1} w_{1}\right]^{\top}
\end{aligned}
$$

$\xi^{e}=\left[\begin{array}{c}w \\ \xi\end{array}\right]=T_{e}(w, x) \triangleq\left[\begin{array}{c}w \\ T(x)\end{array}\right], \quad f_{0}^{e}\left(\xi^{e}\right) \triangleq\left(T_{e}\right)_{*}\left(F_{0}^{e}(x)\right), \quad$ and $\quad \tilde{S}_{e}\left(\xi^{e}\right) \triangleq S^{e} \circ$ $T_{e}^{-1}\left(\xi^{e}\right)$. Note, by (8.91) and (8.92), that $z_{1}=H(x)-\bar{\gamma}_{d}(w, H(x))=y-\bar{\gamma}_{d}(w, y)=$ $\xi_{1}-\bar{\gamma}_{d}\left(w, \xi_{1}\right)=\tilde{S}_{1}(w, \xi)=\tilde{S}_{1}\left(w, \xi_{1}, 0, \cdots, 0\right)$ and $\frac{\partial \tilde{S}_{1}\left(w, \xi_{1}, 0, \cdots, 0\right)}{\partial \xi_{1}} \neq 0$. Thus, it is clear, by implicit function theorem, that there exists a function $y=q\left(w, z_{1}\right)$ such that

$$
\begin{equation*}
z_{1}=q\left(w, z_{1}\right)+\bar{\gamma}_{d}\left(w, q\left(w, z_{1}\right)\right), \text { for all } w \in \mathbb{R}^{d} \tag{8.93}
\end{equation*}
$$

In other words, we have

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{w}_{1} \\
\vdots \\
\dot{w}_{d-1} \\
\dot{w}_{d} \\
\dot{z}_{1} \\
\vdots \\
\dot{z}_{n-1} \\
\dot{z}_{n}
\end{array}\right] } & =\left[\begin{array}{c}
w_{2} \\
\vdots \\
w_{d} \\
z_{1}+\gamma_{d}\left(w, z_{1}, u\right) \\
z_{2}+\gamma_{d+1}\left(w, z_{1}, u\right) \\
\vdots \\
z_{n}+\gamma_{d+n-1}\left(w, z_{1}, u\right) \\
\gamma_{d+n}\left(w, z_{1}, u\right)
\end{array}\right] \triangleq \bar{f}_{u}^{e}\left(z^{e}\right) \tag{8.94}\\
y_{a} & =w_{1}=C z^{e} \triangleq \bar{h}_{E}\left(z^{e}\right)
\end{align*}
$$

where $\quad \bar{f}_{u}^{e}\left(z^{e}\right)=\left(S^{e}\right)_{*}\left(F_{u}^{e}\left(x^{e}\right)\right)=\left(\tilde{S}_{e}\right)_{*}\left(f_{u}^{e}\left(\xi^{e}\right)\right) \quad$ and $\quad \bar{\gamma}_{i}\left(w, q\left(w, z_{1}\right)\right)=\gamma_{i}(w$, $z_{1}, 0$) for $d \leq i \leq d+n$. For system (8.94), we define vector fields $\left\{\bar{\psi}_{1}^{u}\left(z^{e}\right), \cdots\right.$, $\left.\bar{\psi}_{n}^{u}\left(z^{e}\right)\right\}$ by

$$
\begin{equation*}
\bar{\psi}_{1}^{u}\left(z^{e}\right) \triangleq \frac{\partial}{\partial z_{n}}=\frac{\partial}{\partial z_{d+n}^{e}} ; \quad \bar{\psi}_{i}^{u}\left(z^{e}\right) \triangleq \operatorname{ad}_{\bar{f}_{u}^{e}}^{i-1} \bar{\psi}_{1}^{u}\left(z^{e}\right), i \geq 2 \tag{8.95}
\end{equation*}
$$

Then, by (8.94), it is clear that

$$
\begin{equation*}
\bar{\psi}_{i}^{u}\left(z^{e}\right)=(-1)^{i-1} \frac{\partial}{\partial z_{n+1-i}}=\bar{\psi}_{i}^{0}\left(z^{e}\right), 1 \leq i \leq n \tag{8.96}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left[\bar{\psi}_{i}^{u}\left(z^{e}\right), \bar{\psi}_{k}^{u}\left(z^{e}\right)\right]=0,1 \leq i \leq n, 1 \leq k \leq n \tag{8.97}
\end{equation*}
$$

It is not difficult to show, by (8.92), that

$$
\frac{\partial z_{i}^{e}}{\partial \xi_{n}}=\frac{\partial \tilde{S}_{e, i}\left(\xi^{e}\right)}{\partial \xi_{n}}= \begin{cases}0, & \text { if } 1 \leq i \leq d+n-1 \tag{8.98}\\ 1-\frac{d \bar{\gamma}_{d}\left(w, \xi_{1}\right)}{d \xi_{1}} \triangleq \frac{1}{\ell\left(w, \xi_{1}\right)}, & \text { if } i=d+n\end{cases}
$$

which implies, together with (8.95), that

$$
\begin{aligned}
\left(\tilde{S}_{e}\right)_{*}\left(\frac{\partial}{\partial \xi_{n}}\right) & =\left.\sum_{i=1}^{n+d} \frac{\partial \tilde{S}_{e, i}\left(\xi^{e}\right)}{\partial \xi_{n}}\right|_{\xi^{e}=\tilde{S}_{e}^{-1}\left(z^{e}\right)} \frac{\partial}{\partial z_{i}^{e}} \\
& =\left.\frac{1}{\ell\left(w, \xi_{1}\right)}\right|_{\xi^{e}=\tilde{S}_{e}^{-1}\left(z^{e}\right)} \frac{\partial}{\partial z_{n}}=\left.\frac{1}{\ell\left(w, \xi_{1}\right)}\right|_{\xi^{e}=\tilde{S}_{e}^{-1}\left(z^{e}\right)} \bar{\psi}_{1}^{u}\left(z^{e}\right) .
\end{aligned}
$$

Therefore

$$
\bar{\psi}_{1}^{u}\left(z^{e}\right)=\left.\ell\left(w, \xi_{1}\right)\right|_{\xi^{e}=\tilde{S}_{e}^{-1}\left(z^{e}\right)}\left(\tilde{S}_{e}\right)_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)
$$

and

$$
\begin{align*}
\left(\tilde{S}_{e}\right)_{*}^{-1}\left(\bar{\psi}_{1}^{u}\left(z^{e}\right)\right) & =\left(\tilde{S}_{e}\right)_{*}^{-1}\left(\left.\ell\left(w, \xi_{1}\right)\right|_{\xi^{e}=\tilde{S}_{e}^{-1}\left(z^{e}\right)}\left(\tilde{S}_{e}\right)_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)\right) \tag{8.99}\\
& =\ell\left(w, \xi_{1}\right) \frac{\partial}{\partial \xi_{n}}
\end{align*}
$$

Hence, if we let $\overline{\mathbf{g}}_{1}^{u}\left(x^{e}\right) \triangleq\left(S^{e}\right)_{*}^{-1}\left(\bar{\psi}_{1}^{u}\left(z^{e}\right)\right)$, we have, by (2.49), (8.77), and (8.99), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{1}^{u}\left(x^{e}\right) & =\left(S^{e}\right)_{*}^{-1}\left(\bar{\psi}_{1}^{u}\left(z^{e}\right)\right)=\left(T_{e}\right)_{*}^{-1} \circ\left(\tilde{S}_{e}\right)_{*}^{-1}\left(\bar{\psi}_{1}^{u}\left(z^{e}\right)\right) \\
& =\left(T_{e}\right)_{*}^{-1}\left(\ell\left(w, \xi_{1}\right) \frac{\partial}{\partial \xi_{n}}\right) \\
& =\ell(w, H(x))\left(T_{e}\right)_{*}^{-1}\left(\frac{\partial}{\partial \xi_{n}}\right)=\ell(w, H(x)) \mathbf{g}_{1}^{0}\left(x^{e}\right)
\end{aligned}
$$

which implies that (8.87) is satisfied. Also, since $\bar{f}_{u}^{e}(z)=\left(S^{e}\right)_{*}\left(F_{u}^{e}(x)\right)$ or $F_{u}^{e}(x)=$ $\left(S^{e}\right)_{*}^{-1}\left(\bar{f}_{u}^{e}(z)\right)$, it is clear, by (2.37), (8.88), and (8.95), that for $i \geq 2$,

$$
\begin{aligned}
\overline{\mathbf{g}}_{i}^{u}\left(x^{e}\right) & =\operatorname{ad}_{F_{u}^{e}}^{i-1} \overline{\mathbf{g}}_{1}^{u}\left(x^{e}\right)=\left(S^{e}\right)_{*}^{-1}\left\{\operatorname{ad}_{\left(S^{e}\right)_{*}\left(F_{u}^{e}\right)}^{i-1}\left(S^{e}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}\left(x^{e}\right)\right)\right\} \\
& =\left(S^{e}\right)_{*}^{-1}\left\{\operatorname{ad}_{\bar{f}_{u}^{e}}^{i-1} \bar{\psi}_{1}^{u}\left(z^{e}\right)\right\}=\left(S^{e}\right)_{*}^{-1}\left(\bar{\psi}_{i}^{u}\left(z^{e}\right)\right)
\end{aligned}
$$

and thus condition (i) and condition (ii), and (8.89) are satisfied by (8.96) and (8.97).

Sufficiency. Suppose that condition (i) and condition (ii) are satisfied. Since $\left\{\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right), \overline{\mathbf{g}}_{2}^{0}\left(x^{e}\right), \cdots, \overline{\mathbf{g}}_{n}^{0}\left(x^{e}\right)\right\}$ is a set of commuting vector fields, there exists, by Corollary 2.1, a state transformation $z^{e}=S^{e}\left(x^{e}\right)=\left[\begin{array}{c}w \\ S(w, x)\end{array}\right]$ such that

$$
\begin{equation*}
\left(S^{e}\right)_{*}\left((-1)^{i-1} \overline{\mathbf{g}}_{i}^{0}\left(x^{e}\right)\right)=\frac{\partial}{\partial z_{n+d+1-i}^{e}}=\frac{\partial}{\partial z_{n+1-i}}, 1 \leq i \leq n \tag{8.100}
\end{equation*}
$$

In fact, $z^{e}=S^{e}\left(x^{e}\right)$ can be calculated by (8.89) and (8.90). Now we will show that $\bar{f}_{u}^{e}\left(z^{e}\right) \triangleq\left(S^{e}\right)_{*}\left(F_{u}^{e}\left(x^{e}\right)\right)=A_{e} z^{e}+\gamma\left(z_{1}^{e}, \cdots, z_{d+1}^{e}, u\left(x^{e}\right)\right)$. Note that for $1 \leq i \leq$ $n-1$,

$$
\begin{equation*}
\left(S^{e}\right)_{*}\left(\overline{\mathbf{g}}_{i+1}^{u}\left(x^{e}\right)\right)=\left(S^{e}\right)_{*}\left(\operatorname{ad}_{F_{u}^{e}} \overline{\mathbf{g}}_{i}^{u}\left(x^{e}\right)\right)=\left[\left(S^{e}\right)_{*}\left(F_{u}^{e}\left(x^{e}\right)\right),\left(S^{e}\right)_{*}\left(\overline{\mathbf{g}}_{i}^{u}\left(x^{e}\right)\right)\right] \tag{8.101}
\end{equation*}
$$

Thus, if we let

$$
\bar{f}_{u}^{e}\left(z^{e}\right)=\sum_{k=1}^{n+d} c_{k}\left(z^{e}\right) \frac{\partial}{\partial z_{k}^{e}}=\left[\begin{array}{c}
c_{1}\left(z^{e}\right) \tag{8.102}\\
\vdots \\
c_{n+d}\left(z^{e}\right)
\end{array}\right]
$$

then we have, by (8.100) and (8.101), that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
(-1)^{i} \frac{\partial}{\partial z_{n+d-i}^{e}} & =\left[\bar{f}_{u}^{e}\left(z^{e}\right),(-1)^{i-1} \frac{\partial}{\partial z_{n+d+1-i}^{e}}\right] \\
& =\sum_{k=1}^{n+d}(-1)^{i} \frac{\partial c_{k}\left(z^{e}\right)}{\partial z_{n+d+1-i}^{e}} \frac{\partial}{\partial z_{k}^{e}}
\end{aligned}
$$

which implies that for $1 \leq i \leq n-1$ and $1 \leq k \leq n+d$,

$$
\frac{\partial c_{k}\left(z^{e}\right)}{\partial z_{n+d+1-i}^{e}}= \begin{cases}1, & k=n+d-i \\ 0, & k \neq n+d-i\end{cases}
$$

or, for $d+1 \leq i \leq n+d-1$ and $1 \leq k \leq n+d$,

$$
\frac{\partial c_{k}\left(z^{e}\right)}{\partial z_{i+1}^{e}}= \begin{cases}1, & i=k \\ 0, & i \neq k\end{cases}
$$

Thus, it is clear that

$$
c_{k}\left(z^{e}\right)= \begin{cases}z_{k+1}^{e}+\tilde{\gamma}_{k}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right), & 1 \leq k \leq n+d-1 \tag{8.103}\\ \tilde{\gamma}_{n+d}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right), & k=n+d\end{cases}
$$

for some functions $\tilde{\gamma}_{k}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right), 1 \leq k \leq n+d$. Therefore, it is easy to see, by (8.102) and (8.103), that

$$
\bar{f}_{u}^{e}\left(z^{e}\right)=A_{e} z^{e}+\tilde{\gamma}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right)
$$

Since $z_{i}^{e}=w_{i}, \quad 1 \leq i \leq d$, it is easy to show, by (8.73), that $\tilde{\gamma}_{i}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right)=$ $0,1 \leq i \leq d-1, y=z_{d+1}^{e}+\tilde{\gamma}_{d}\left(w, z_{d+1}^{e}\right)$, and

$$
\bar{f}_{u}^{e}\left(z^{e}\right)=A_{e} z^{e}+\tilde{\gamma}(w, \tilde{q}(w, y)) \triangleq A_{e} z^{e}+\gamma(w, y)
$$

where $\tilde{q}(w, y)$ is a function such that $y=\tilde{q}(w, y)+\tilde{\gamma}_{d}(w, \tilde{q}(w, y))$ for all $w \in \mathbb{R}^{d}$.

Theorem 8.5 System (8.70) is RDOEL with index $d(\geq 1)$ and state transformation $z^{e}=S^{e}(w, x)=\left[w^{\top} S(w, x)^{\top}\right]^{\top}$, if and only if there exist some constants $\beta_{i}, 1 \leq$ $i \leq d$, and smooth function $\beta_{0}(y): \mathbb{R} \rightarrow \mathbb{R}$ such that
(i)

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{i}^{0}\right]=0,2 \leq i \leq n-1 \tag{8.104}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right]=-2 \beta_{0}(H(x)) \mathbf{g}_{1}^{0}, \text { for even } n \tag{8.105}
\end{equation*}
$$

$$
\begin{equation*}
\left[\mathbf{g}_{2}^{0}, \mathbf{g}_{n}^{0}\right]=n \beta_{0}(H(x)) \mathbf{g}_{2}^{0} \bmod \left\{\mathbf{g}_{1}^{0}\right\}, \text { for odd } n \tag{8.106}
\end{equation*}
$$

(iii) for $1 \leq i \leq \min (d, n-2)$,

$$
\begin{gather*}
{\left[\tilde{\mathbf{g}}_{i+1}^{i}, \tilde{\mathbf{g}}_{n}^{i}\right]=(-1)^{n-1} 2 \bar{\ell}_{i-1}\left(x^{e}\right) \beta_{i} \tilde{\mathbf{g}}_{1}^{i}} \tag{8.107}\\
\text { for even }(n+i)
\end{gather*}
$$

$$
\begin{align*}
{\left[\tilde{\mathbf{g}}_{i+2}^{i}, \tilde{\mathbf{g}}_{n}^{i}\right] } & =(-1)^{n-1}(n+i) \bar{\ell}_{i-1}\left(x^{e}\right) \beta_{i} \tilde{\mathbf{g}}_{2}^{i} \bmod \left\{\tilde{\mathbf{g}}_{1}^{i}\right\}, \\
& \text { for odd }(n+i) \tag{8.108}
\end{align*}
$$

(iv)

$$
\begin{equation*}
\operatorname{ad}_{F_{u}^{e}}^{k} \tilde{\mathbf{g}}_{1}^{d+1}=\operatorname{ad}_{F_{0}}^{k} \tilde{\mathbf{g}}_{1}^{d+1}, 1 \leq k \leq n-1 \tag{8.109}
\end{equation*}
$$

(v)

$$
\begin{equation*}
\left[\tilde{\mathbf{g}}_{i}^{d+1}, \tilde{\mathbf{g}}_{k}^{d+1}\right]=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq n \tag{8.110}
\end{equation*}
$$

where $S(w, x)$ is defined by (8.89) and (8.90), with $\tilde{\mathbf{g}}_{i}^{d+1}, 1 \leq i \leq n$ instead of $\overline{\mathbf{g}}_{i}^{0}, 1 \leq i \leq n$, and

$$
\begin{align*}
& \bar{\ell}_{i}\left(x^{e}\right) \triangleq \begin{cases}e^{\int_{0}^{H(x)} \beta_{0}(\bar{y}) d \bar{y}}, & i=0 \\
e^{\int_{0}^{H(x)} \beta_{0}(y) d y} \prod_{k=1}^{i} e^{\beta_{k} w_{d+1-k},}, & 1 \leq i \leq d\end{cases} \tag{8.111}\\
& \tilde{\mathbf{g}}_{1}^{i+1}\left(x^{e}\right) \triangleq \bar{\ell}_{i}\left(x^{e}\right) \mathbf{g}_{1}^{0}\left(x^{e}\right), 0 \leq i \leq d \tag{8.112}
\end{align*} \tilde{\tilde{\mathbf{g}}}_{k}^{i}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{0}^{e}}^{k-1} \tilde{\mathbf{g}}_{1}^{i}\left(x^{e}\right), 1 \leq i \leq d+1 \text { and } k \geq 2 . ~ \$
$$

Proof Necessity. Suppose that system (8.70) is RDOEL with index d and state transformation $z^{e}=\left[\begin{array}{ll}w^{\top} & z^{\top}\end{array}\right]^{\top}=S^{e}(w, x)=\left[\begin{array}{ll}w^{\top} & S(w, x)^{\top}\end{array}\right]^{\top}$. Then, by Theorem 8.4, there exist smooth functions $\ell(w, y)(\neq 0)$ such that (8.85), (8.86), (8.87), and (8.88) are satisfied. It will be shown that

$$
\begin{equation*}
\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\tilde{\mathbf{g}}_{1}^{d+1}\left(x^{e}\right) \text { or } \ell(w, H(x))=\bar{\ell}_{d}\left(x^{e}\right) . \tag{8.114}
\end{equation*}
$$

Let $\ell_{0}(w) \triangleq 1, \ell_{d}(w) \triangleq \ell(w, 0)$, and for $1 \leq i \leq d$ and $1 \leq s \leq i$,

$$
\begin{gather*}
\ell_{i}(w) \triangleq \ell_{d}\left(w_{1}, \cdots, w_{i}, O_{(d-i) \times 1}\right) \\
\hat{\ell}_{i, s}(w) \triangleq \prod_{k=s}^{i} e^{\beta_{k} w_{d+1-k}} \text { or } \quad \tilde{\mathbf{g}}_{1}^{i+1}\left(x^{e}\right) \triangleq \hat{\ell}_{i, s}(w) \tilde{\mathbf{g}}_{1}^{s}\left(x^{e}\right) \tag{8.115}
\end{gather*}
$$

Note, by (8.80) and Example 2.4.16, that for $1 \leq i \leq n, 1 \leq k \leq n, 1 \leq j \leq d$, and $s \leq q \leq d$,

$$
\begin{align*}
& L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} \ell(w, H(x))=\sum_{j=1}^{d} \frac{\partial \ell(w, H(x))}{\partial w_{j}} L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} w_{j} \\
& +\left.\frac{\partial \ell(w, y)}{\partial y}\right|_{y=H(x)} L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} H(x) \tag{8.116}\\
& = \begin{cases}0, & i+k<n \\
\left.(-1)^{i+1} \frac{\partial \ell(w, y)}{\partial y}\right|_{y=H(x)}, & i+k=n\end{cases} \\
& L_{\mathbf{g}_{i}^{0}\left(x^{e}\right)} L_{F_{0}^{e}}^{k} \ell_{j}(w)= \begin{cases}0, & i+k<n+d+1-j \\
(-1)^{i+1} \frac{\partial \ell_{j}(w)}{\partial w_{j}}, & i+k=n+d+1-j\end{cases} \tag{8.117}
\end{align*}
$$

$$
L_{\tilde{\mathbf{g}}_{i}} L_{F_{0}^{e}}^{k} \ell_{d+1-s}(w)= \begin{cases}0, & i+k<n+s \tag{8.118}\\ (-1)^{i+1} \bar{\ell}_{s-1}\left(x^{e}\right) \frac{\partial \ell_{d+1-s}(w)}{\partial w_{d+1-s}}, & i+k=n+s,\end{cases}
$$

and

$$
L_{\tilde{\mathbf{g}}_{i}^{s}} L_{F_{0}^{e}}^{k} \hat{\ell}_{q, s}(w)= \begin{cases}0, & i+k<n+s \tag{8.119}\\ (-1)^{i+1} \bar{\ell}_{s-1}\left(x^{e}\right) \beta_{s} \hat{\ell}_{q, s}(w), & i+k=n+s\end{cases}
$$

Also note, by (2.44), (8.78), (8.87), and (8.88), that for $1 \leq i \leq n$,

$$
\begin{align*}
\overline{\mathbf{g}}_{i}^{0}\left(x^{e}\right) & =\operatorname{ad}_{F_{0}^{e}}^{i-1} \overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\operatorname{ad}_{F_{0}^{e}}^{i-1}\left\{\ell(w, H(x)) \mathbf{g}_{1}^{0}\left(x^{e}\right)\right\} \\
& =\sum_{k=0}^{i-1}\binom{i-1}{k} L_{F_{0}^{e}}^{k}(w, H(x)) \operatorname{ad}_{F_{0}^{e}}^{i-1-k} \mathbf{g}_{1}^{0}\left(x^{e}\right) \tag{8.120}\\
& =\sum_{k=0}^{i-1}\binom{i-1}{k} L_{F_{0}^{e}}^{k} \ell(w, H(x)) \mathbf{g}_{i-k}^{0}\left(x^{e}\right) .
\end{align*}
$$

Thus, we have, by (2.43), (8.87), (8.116), and (8.120), that for $2 \leq i \leq n-1$,

$$
\begin{align*}
0 & =\left[\overline{\mathbf{g}}_{1}^{0}, \overline{\mathbf{g}}_{i}^{0}\right]=\left[\ell(w, H) \mathbf{g}_{1}^{0}, \sum_{k=1}^{i-1}\binom{i-1}{k} L_{F_{0}^{e}}^{k} \ell(w, H) \mathbf{g}_{i-k}^{0}+\ell(w, H) \mathbf{g}_{i}^{0}\right] \\
& =\ell(w, H) \sum_{k=1}^{i-1}\binom{i-1}{k} L_{F_{0}^{e}}^{k} \ell(w, H)\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{i-k}^{0}\right]+\ell(w, H)^{2}\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{i}^{0}\right] . \tag{8.121}
\end{align*}
$$

Since $\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{1}^{0}\right]=0$, it is easy to show, by (8.121) and mathematical induction, that condition (i) is satisfied. Thus, it is easy to see, by (2.43), (2.44), (8.104), (8.112), and, (8.116), that for $1 \leq i \leq d+1$ and $1 \leq k \leq n-1$,

$$
\begin{align*}
{\left[\tilde{\mathbf{g}}_{1}^{i}, \tilde{\mathbf{g}}_{k}^{i}\right] } & =\left[\bar{\ell}_{i-1}\left(x^{e}\right) \mathbf{g}_{1}^{0}, \operatorname{ad}_{F_{0}^{e}}^{k-1}\left\{\bar{\ell}_{i-1}\left(x^{e}\right) \mathbf{g}_{1}^{0}\right\}\right] \\
& =\left[\bar{\ell}_{i-1}\left(x^{e}\right) \mathbf{g}_{1}^{0}, \sum_{j=0}^{k-1}\binom{k-1}{j} L_{F_{0}^{e}}^{j} \bar{\ell}_{i-1}\left(x^{e}\right) \mathbf{g}_{k-j}^{0}\right]=0 . \tag{8.122}
\end{align*}
$$

Now it will be shown, by mathematical induction, that for $1 \leq i \leq d+1$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\ell_{d+1-i}(w) \tilde{\mathbf{g}}_{1}^{i}\left(x^{e}\right) \tag{8.123}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\tilde{\mathbf{g}}_{k}^{q}\left(x^{e}\right), \tilde{\mathbf{g}}_{j}^{q}\left(x^{e}\right)\right]=0, i \leq q \leq d+1,2 \leq k+j \leq n+i \tag{8.124}
\end{equation*}
$$

Let n be even. Note, by (2.43), (8.86), (8.87), (8.104), (8.116), and (8.120), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{1}^{0}, \overline{\mathbf{g}}_{n}^{0}\right]=\left[\ell(w, H) \mathbf{g}_{1}^{0}, L_{F_{0}^{e}}^{n-1} \ell(w, H) \mathbf{g}_{1}^{0}+\sum_{k=1}^{n-2}\binom{n-1}{k} L_{F_{0}^{e}}^{k} \ell(w, H) \mathbf{g}_{n-k}^{0}\right. \\
& \left.+\ell(w, H) \mathbf{g}_{n}^{0}\right]=\left[\ell(w, H) \mathbf{g}_{1}^{0}, L_{F_{0}^{e}}^{n-1} \ell(w, H) \mathbf{g}_{1}^{0}\right]+\left[\ell(w, H) \mathbf{g}_{1}^{0}, \ell(w, H) \mathbf{g}_{n}^{0}\right] \\
& =\ell(w, H) L_{\mathbf{g}_{1}^{0}} L_{F_{0}^{e}}^{n-1} \ell(w, H) \mathbf{g}_{1}^{0}+\ell(w, H)^{2}\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right]-\ell(w, H) L_{\mathbf{g}_{n}^{0}} \ell(w, H) \mathbf{g}_{1}^{0}
\end{aligned}
$$

which implies, together with (8.83) and (8.116), that

$$
\begin{aligned}
{\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right] } & =\frac{1}{\ell(w, H(x))}\left\{L_{\mathbf{g}_{n}^{0}} \ell(w, H(x))-L_{\mathbf{g}_{1}^{0}} L_{F_{0}^{e}}^{n-1} \ell(w, H(x))\right\} \mathbf{g}_{1}^{0} \\
& =-\left.2\left\{\frac{1}{\ell(w, y)} \frac{\partial \ell(w, y)}{\partial y}\right\}\right|_{y=H(x)} \mathbf{g}_{1}^{0} \\
& =-\left.2\left\{\frac{1}{\ell\left(O_{d \times 1}, y\right)} \frac{\partial \ell\left(O_{d \times 1}, y\right)}{\partial y}\right\}\right|_{y=H(x)} \mathbf{g}_{1}^{0} .
\end{aligned}
$$

Thus, condition (ii) holds with $\beta_{0}(y)=\frac{1}{\ell(O, y)} \frac{\partial \ell(O, y)}{\partial y}=\frac{\partial \ln \ell(O, y)}{\partial y}=\frac{\partial \ln \ell(w, y)}{\partial y}$ or

$$
\ell(w, y)=\ell(w, 0) e^{\int_{0}^{y} \beta_{0}(\bar{y}) d \bar{y}}
$$

Therefore, it is clear that $\overline{\mathbf{g}}_{1}^{0}=\ell_{d}(w) \tilde{\mathbf{g}}_{1}^{1}$ and (8.123) holds for $i=1$. Also, we have, by (2.43), (2.44), (8.104), (8.105), (8.115), (8.116), (8.117), and (8.122), that

$$
\begin{align*}
{\left[\tilde{\mathbf{g}}_{1}^{1}, \tilde{\mathbf{g}}_{n}^{1}\right] } & =\left[\bar{\ell}_{0} \mathbf{g}_{1}^{0}, \bar{\ell}_{0} \mathbf{g}_{n}^{0}+\cdots+L_{F_{0}^{e}}^{n-1} \bar{\ell}_{0} \mathbf{g}_{1}^{0}\right] \\
& =\bar{\ell}_{0}^{2}\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right]+\bar{\ell}_{0}\left\{L_{\mathbf{g}_{1}^{0}} L_{F_{0}^{e}}^{n-1} \bar{\ell}_{0}-L_{\mathbf{g}_{n}^{0}} \bar{\ell}_{0}\right\} \mathbf{g}_{1}^{0} \\
& =\bar{\ell}_{0}^{2}\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right]+\left.2 \bar{\ell}_{0} \frac{\partial e^{\int_{0}^{y} \beta_{0}(\bar{y}) d \bar{y}}}{\partial y}\right|_{y=H(x)} \mathbf{g}_{1}^{0} \tag{8.125}\\
& =\bar{\ell}_{0}^{2}\left\{\left[\mathbf{g}_{1}^{0}, \mathbf{g}_{n}^{0}\right]+2 \beta_{0}(H(x)) \mathbf{g}_{1}^{0}\right\}=0
\end{align*}
$$

and for $1 \leq q \leq d$,

$$
\left[\begin{array}{cc}
\tilde{\mathbf{g}}_{1}^{q+1}, \tilde{\mathbf{g}}_{n}^{q+1} \tag{8.126}
\end{array}\right]=\left[\hat{\ell}_{q, 1}(w) \tilde{\mathbf{g}}_{1}^{1}, \sum_{k=0}^{n-1}\binom{n-1}{k} L_{F_{0}^{e}}^{k} \hat{\ell}_{q, 1}(w) \tilde{\mathbf{g}}_{n-k}^{1}\right]=0
$$

Thus, it is easy to see, by (8.122), (8.125), (8.126), and Example 2.4.18, that

$$
\left[\tilde{\mathbf{g}}_{k}^{q}\left(x^{e}\right), \tilde{\mathbf{g}}_{j}^{q}\left(x^{e}\right)\right]=0,1 \leq q \leq d+1,2 \leq k+j \leq n+1
$$

Therefore, (8.124) also holds for $i=1$. Assume that (8.123) and (8.124) hold for $i=s$ and s is odd with $1 \leq s \leq \min (d, n-2)$. (Even s will be considered later.) In other words,

$$
\begin{equation*}
\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\ell_{d+1-s}(w) \tilde{\mathbf{g}}_{1}^{s}\left(x^{e}\right) \tag{8.127}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\tilde{\mathbf{g}}_{k}^{q}\left(x^{e}\right), \tilde{\mathbf{g}}_{j}^{q}\left(x^{e}\right)\right]=0, s \leq q \leq d+1,2 \leq k+j \leq n+s \tag{8.128}
\end{equation*}
$$

Since $n+s$ is odd, then it is clear, by Example 2.4.19, that

$$
\begin{equation*}
\left[\tilde{\mathbf{g}}_{k}^{q}\left(x^{e}\right), \tilde{\mathbf{g}}_{j}^{q}\left(x^{e}\right)\right]=0, s \leq q \leq d+1,2 \leq k+j \leq n+s+1 \tag{8.129}
\end{equation*}
$$

and (8.124) is satisfied when $i=s+1$. Therefore, we have, by (2.43), (2.44), (8.113), (8.118), (8.127), and (8.129), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{s+2}^{0}, \overline{\mathbf{g}}_{n}^{0}\right]=\left[\operatorname{ad}_{F_{0}^{e}}^{s+1}\left(\ell_{d+1-s}(w) \tilde{\mathbf{g}}_{1}^{s}\right), \operatorname{ad}_{F_{0}^{e}}^{n-1}\left(\ell_{d+1-s}(w) \tilde{\mathbf{g}}_{1}^{s}\right)\right] \\
& =\left[\sum_{j=0}^{s+1}\binom{s+1}{j} L_{F_{0}^{e}}^{j} \ell_{d+1-s} \tilde{\mathbf{g}}_{s+2-j}^{s}, \sum_{j=0}^{n-1}\binom{n-1}{j} L_{F_{0}^{e}}^{j} \ell_{d+1-s} \tilde{\mathbf{g}}_{n-j}^{s}\right] \\
& =\ell_{d+1-s}^{2}\left[\tilde{\mathbf{g}}_{s+2}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]+\ell_{d+1-s}\left\{(n-1) L_{\tilde{\mathbf{g}}_{s+2}^{s}} L_{F_{0}^{e}}^{n-2} \ell_{d+1-s}\right. \\
& \left.-(s+1) L_{\tilde{\mathbf{g}}_{n}^{s}}^{s} L_{F_{0}^{e}}^{s} \ell_{d+1-s}\right\} \tilde{\mathbf{g}}_{2}^{s} \bmod \left\{\tilde{\mathbf{g}}_{1}^{s}\right\} \\
& =\ell_{d+1-s}^{2}\left[\tilde{\mathbf{g}}_{s+2}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]+(n+s) \ell_{d+1-s} \bar{\ell}_{s-1}\left(x^{e}\right) \frac{\partial \ell_{d+1-s}(w)}{\partial w_{d+1-s}} \tilde{\mathbf{g}}_{2}^{s} \bmod \left\{\tilde{\mathbf{g}}_{1}^{s}\right\}
\end{aligned}
$$

which implies that

$$
\left[\tilde{\mathbf{g}}_{s+2}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]=-(n+s) \bar{\ell}_{s-1}\left(x^{e}\right) \frac{\partial \ln \ell_{d+1-s}(w)}{\partial w_{d+1-s}} \tilde{\mathbf{g}}_{2}^{s} \bmod \left\{\tilde{\mathbf{g}}_{1}^{s}\right\}
$$

Since $\left[\tilde{\mathbf{g}}_{s+2}^{s}\left(x^{e}\right), \tilde{\mathbf{g}}_{n}^{s}\left(x^{e}\right)\right]$ does not depend, by (8.84), on w_{1}, \cdots, and w_{d+1-s}, condition (iii) (or (8.108)) holds with constant $\beta_{s}=\frac{\partial \ln \ell_{d+1-s}(w)}{\partial w_{d+1-s}}$ when $i=s$. Thus, it is clear that $\ell_{d+1-s}(w)=\ell_{d-s}(w) e^{\beta_{s} w_{d+1-s}}$ and $\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\ell_{d-s}(w) \tilde{\mathbf{g}}_{1}^{s+1}\left(x^{e}\right)$ from (8.115). Therefore, (8.123) is also satisfied when $i=s+1$. Now assume that (8.123) and (8.124) hold for $i=s$ and s is even with $1 \leq s \leq \min (d, n-2)$. Then, we have, by (2.43), (2.44), (8.113), (8.118), (8.127), and (8.128), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{s+1}, \overline{\mathbf{g}}_{n}\right]=\left[\operatorname{ad}_{F_{0}^{e}}^{s}\left(\ell_{d+1-s}(w) \tilde{\mathbf{g}}_{1}^{s}\right), \operatorname{ad}_{F_{0}^{e}}^{n-1}\left(\ell_{d+1-s}(w) \tilde{\mathbf{g}}_{1}^{s}\right)\right] \\
& =\left[\sum_{j=0}^{s}\binom{s}{j} L_{F_{0}^{e}}^{j} \ell_{d+1-s} \tilde{\mathbf{g}}_{s+1-j}^{s}, \sum_{j=0}^{n-1}\binom{n-1}{j} L_{F_{0}^{e}}^{j} \ell_{d+1-s} \tilde{\mathbf{g}}_{n-j}^{s}\right] \\
& =\ell_{d+1-s}^{2}\left[\tilde{\mathbf{g}}_{s+1}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]+\ell_{d+1-s}\left\{L_{\tilde{\mathbf{g}}_{s+1}} L_{F_{0}^{e}}^{n-1} \ell_{d+1-s}-L_{\tilde{\mathbf{g}}_{n}^{s}} L_{F_{0}^{e}}^{s} \ell_{d+1-s}\right\} \tilde{\mathbf{g}}_{1}^{s} \\
& =\ell_{d+1-s}^{2}\left[\tilde{\mathbf{g}}_{s+1}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]+2 \ell_{d+1-s} \bar{\ell}_{s-1}\left(x^{e}\right) \frac{\partial \ell_{d+1-s}(w)}{\partial w_{d+1-s}} \tilde{\mathbf{g}}_{1}^{s}
\end{aligned}
$$

which implies that

$$
\left[\tilde{\mathbf{g}}_{s+1}^{s}\left(x^{e}\right), \tilde{\mathbf{g}}_{n}^{s}\left(x^{e}\right)\right]=-2 \bar{\ell}_{s-1}\left(x^{e}\right) \frac{\partial \ln \ell_{d+1-s}(w)}{\partial w_{d+1-s}} \tilde{\mathbf{g}}_{1}^{s}\left(x^{e}\right) .
$$

Since $\left[\tilde{\mathbf{g}}_{s+1}^{s}\left(x^{e}\right), \tilde{\mathbf{g}}_{n}^{s}\left(x^{e}\right)\right]$ does not depend, by (8.84), on w_{1}, \cdots, and w_{d+1-s}, condition (iii) (or (8.107)) holds with constant $\beta_{s}=\frac{\partial \ln \ell_{d+1-s}(w)}{\partial w_{d+1-s}}$ when $i=s$. Thus, it is clear that $\ell_{d+1-s}(w)=\ell_{d-s}(w) e^{\beta_{s} w_{d+1-s}}$ and $\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\ell_{d-s}(w) \tilde{\mathbf{g}}_{1}^{s+1}\left(x^{e}\right)$ from (8.115). Thus, (8.123) is satisfied when $i=s+1$. Also, we have, by (2.43), (2.44), (8.107), (8.115), and (8.119), that for $s \leq q \leq d$,

$$
\begin{aligned}
{\left[\tilde{\mathbf{g}}_{s+1}^{q+1}\left(x^{e}\right),\right.} & \left.\tilde{\mathbf{g}}_{n}^{q+1}\left(x^{e}\right)\right]=\left[\operatorname{ad}_{F_{0}^{e}}^{s}\left(\hat{\ell}_{q, s}(w) \tilde{\mathbf{g}}_{1}^{s}\right), \operatorname{ad}_{F_{0}^{e}}^{n-1}\left(\hat{\ell}_{q, s}(w) \tilde{\mathbf{g}}_{1}^{s}\right)\right] \\
& =\left[\sum_{j=0}^{s}\binom{s}{j} L_{F_{0}^{e}}^{j} \hat{\ell}_{q, s} \tilde{\mathbf{g}}_{s+1-j}^{s}, \sum_{j=0}^{n-1}\binom{n-1}{j} L_{F_{0}^{e}}^{j} \hat{\ell}_{q, s} \tilde{\mathbf{g}}_{n-j}^{s}\right] \\
& =\hat{\ell}_{q, s}^{2}\left[\tilde{\mathbf{g}}_{s+1}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]+\hat{\ell}_{q, s}\left\{L_{\tilde{\mathbf{g}}_{s+1}^{s}} L_{F_{0}^{e}}^{n-1} \hat{\ell}_{q, s}-L_{\tilde{\mathbf{g}}_{n}} L_{F_{0}^{s}}^{s} \hat{\ell}_{q, s}\right\} \tilde{\mathbf{g}}_{1}^{s} \\
& =\hat{\ell}_{q, s}^{2}\left\{\left[\tilde{\mathbf{g}}_{s+1}^{s}, \tilde{\mathbf{g}}_{n}^{s}\right]+2 \bar{\ell}_{s-1}\left(x^{e}\right) \beta_{s} \tilde{\mathbf{g}}_{1}^{s}\right\}=0
\end{aligned}
$$

which implies, together with (8.128) and Example 2.4.18, that

$$
\left[\tilde{\mathbf{g}}_{k}^{q}\left(x^{e}\right), \tilde{\mathbf{g}}_{j}^{q}\left(x^{e}\right)\right]=0, s+1 \leq q \leq d+1,2 \leq k+j \leq n+s+1
$$

and (8.124) also holds for even s when $i=s+1$. Hence, by mathematical induction, (8.123), (8.124), and condition (iii) are satisfied for even n. Similarly, it can be shown that (8.123), (8.124), and condition (iii) are satisfied for odd n. Finally, since $\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\tilde{\mathbf{g}}_{1}^{d+1}\left(x^{e}\right)$, condition (iv) and condition (v) are satisfied by (8.85) and (8.86), respectively.

Sufficiency. Suppose that conditions of Theorem 8.5 are satisfied. Then it is clear that conditions of Theorem 8.4 are also satisfied with $\ell(w, H(x))=\bar{\ell}_{d}\left(x^{e}\right)$ or $\overline{\mathbf{g}}_{1}^{0}\left(x^{e}\right)=\tilde{\mathbf{g}}_{1}^{d+1}\left(x^{e}\right)$. Hence, system (8.70) is, by Theorem 8.4, RDOEL with index d and state transformation $z^{e}=S^{e}(w, x)=\left[w^{\top} S(w, x)^{\top}\right]^{\top}$ where $S(w, x)$ is defined by (8.89) and (8.90), with $\tilde{\mathbf{g}}_{i}^{d+1}\left(x^{e}\right), 1 \leq i \leq n$ instead of $\overline{\mathbf{g}}_{i}^{0}\left(x^{e}\right), 1 \leq i \leq n$.

By letting $d=0$ in Theorem 8.5, the necessary and sufficient conditions in Theorem 8.3 can be obtained, for the state equivalence to a dual Brunovsky NOCF with OT.

Remark 8.4 If system (8.70) is RDOEL with index d ($\beta_{i}, 0 \leq i \leq d$), then it is RDOEL with index $d+1\left(\beta_{d+1}^{\prime}=0\right.$ and $\left.\beta_{i}^{\prime}=\beta_{i}, 0 \leq i \leq d\right)$. But the converse does not hold.

If the system with $n=2$ is not state equivalent to a dual Brunovsky NOCF with OT, then the system is not RDEOL either. In the next theorem, the bound of the index in the RDOEL problem will be given.
Theorem 8.6 If system (8.70) with $n \geq 3$ is not RDOEL with index $d \leq n-2$, then it is not RDOEL.

Proof If $d \geq n-1$, then $\min (d, n-2)=n-2$ in condition (iii) of Theorem 8.5. Therefore, the necessary and sufficient conditions of Theorem 8.5 for $d \geq n-1$ are the same as those for $d=n-2$.

Example 8.3.2 Consider system (8.69) in Example 8.2.4 again.

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{8.130}\\
x_{3} \\
-4 x_{1} x_{3}-3 x_{2}^{2}-6 x_{1}^{2} x_{2}+u
\end{array}\right]=F_{u}(x) ; \quad y=x_{1}=H(x) .
$$

Show that the above system is RDOEL.
Solution In Example 8.2.4, it has been shown, by Theorem 8.3, that system (8.130) is not state equivalent to a dual Brunovsky NOCF with OT. Thus, it will be investigated whether system (8.130) is RDOEL with index $d=1$ or not. In other words, consider the following extended system with $\dot{w}_{1}=y$:

$$
\left[\begin{array}{c}
\dot{w}_{1} \\
\dot{x}_{1} \\
x_{2} \\
x_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
\\
-4 x_{1} x_{3}-3 x_{2}^{2}-6 x_{1}^{2} x_{2}+u
\end{array}\right]=F_{u}^{e}(x) ; \quad y_{a}=w_{1} .
$$

Since $T_{e}(w, x) \triangleq\left[\begin{array}{ll}w & T(x)^{\top}\end{array}\right]^{\top} \triangleq\left[\begin{array}{ll}w & H(x) \\ L_{F_{0}} H(x) & L_{F_{0}}^{2} H(x)\end{array}\right]^{\top}=\left[\begin{array}{ll}w & x^{\top}\end{array}\right]^{\top}=x^{e}$, it is clear, by (8.77) and (8.78), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{0}\left(x^{e}\right) \triangleq\left(\frac{\partial T_{e}\left(x^{e}\right)}{\partial x^{e}}\right)^{-1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{u}^{e}} \mathbf{g}_{1}^{0}\left(x^{e}\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
4 x_{1}
\end{array}\right] ; \mathbf{g}_{3}^{u}\left(x^{e}\right)=\left[\begin{array}{c}
0 \\
1 \\
-4 x_{1} \\
10 x_{1}^{2}-2 x_{2}
\end{array}\right]
\end{aligned}
$$

which imply that $\left[\mathbf{g}_{1}^{0}\left(x^{e}\right), \mathbf{g}_{2}^{0}\left(x^{e}\right)\right]=0$ and $\left[\mathbf{g}_{2}^{0}\left(x^{e}\right), \mathbf{g}_{3}^{0}\left(x^{e}\right)\right]=-2 \mathbf{g}_{1}^{0}\left(x^{e}\right)=0 \bmod$ $\left\{\mathbf{g}_{1}^{0}\left(x^{e}\right)\right\}$. Therefore, condition (i) and condition (ii) of Theorem 8.5 are satisfied with $\beta_{0}(y)=0$ or $\bar{\ell}_{0}\left(x^{e}\right)=1$, which implies, together with (8.111), (8.112), and (8.113), that $\tilde{\mathbf{g}}_{i}^{1}\left(x^{e}\right)=\mathbf{g}_{i}^{0}\left(x^{e}\right)$ for $1 \leq i \leq 3$. Since $\left[\tilde{\mathbf{g}}_{2}^{1}\left(x^{e}\right), \tilde{\mathbf{g}}_{3}^{1}\left(x^{e}\right)\right]=-2 \tilde{\mathbf{g}}_{1}^{1}\left(x^{e}\right)$, condition (iii) of Theorem 8.5 is satisfied with $\beta_{1}=-1$. Since $\bar{\ell}_{1}\left(x^{e}\right) \triangleq \bar{\ell}_{0}\left(x^{e}\right) e^{\beta_{1} w_{1}}=$ $e^{-w_{1}}$ by (8.111), it is clear, by (8.112), that

$$
\begin{aligned}
\tilde{\mathbf{g}}_{1}^{2}\left(x^{e}\right) \triangleq \bar{\ell}_{1}\left(x^{e}\right) \mathbf{g}_{1}^{0}\left(x^{e}\right)= & {\left[\begin{array}{c}
0 \\
0 \\
0 \\
e^{-w_{1}}
\end{array}\right] } \\
\operatorname{ad}_{F_{u}^{e}} \tilde{\mathbf{g}}_{1}^{2}\left(x^{e}\right)= & {\left[\begin{array}{c}
0 \\
0 \\
-e^{-w_{1}} \\
3 x_{1} e^{-w_{1}}
\end{array}\right] ; \operatorname{ad}_{F_{u}}^{2} \tilde{\mathbf{g}}_{1}^{2}\left(x^{e}\right)=\left[\begin{array}{c}
0 \\
e^{-w_{1}} \\
-2 x_{1} e^{-w_{1}} \\
-3\left(x_{2}-x_{1}^{2}\right) e^{-w_{1}}
\end{array}\right] }
\end{aligned}
$$

which imply that $\operatorname{ad}_{F_{u}^{e}}^{i-1} \tilde{\mathbf{g}}_{1}^{2}\left(x^{e}\right)=\operatorname{ad}_{F_{0}^{e}}^{i-1} \tilde{\mathbf{g}}_{1}^{2}\left(x^{e}\right) \triangleq \tilde{\mathbf{g}}_{i}^{2}\left(x^{e}\right), 2 \leq i \leq 3$ and thus condition (iv) of Theorem 8.5 is also satisfied. Finally, it is easy to see that condition (v) of Theorem 8.5 holds. Hence, by Theorem 8.5, system (8.130) is RDOEL with index $d=1$. The extended state transformation $z^{e}=\left[w z^{\top}\right]^{\top}=S^{e}(w, x)=$ $\left[\begin{array}{ll}w & S(w, x)^{\top}\end{array}\right]^{\top}=\left[\begin{array}{lll}w_{1} & x_{1} e^{w_{1}} & \left(x_{2}+x_{1}^{2}\right) e^{w_{1}}\left(x_{3}+x_{1}^{3}+3 x_{1} x_{2}\right) e^{w_{1}}\end{array}\right]^{\top}$ can be obtained by (8.89) and (8.90), with $\tilde{\mathbf{g}}_{i}^{2}\left(x^{e}\right), 1 \leq i \leq 3$ instead of $\overline{\mathbf{g}}_{i}^{0}\left(x^{e}\right), 1 \leq i \leq 3$. In other words,

$$
\begin{aligned}
\frac{\partial S(w, x)}{\partial x} & =D\left(x^{e}\right)^{-1}=\left[\begin{array}{ccc}
e^{-w_{1}} & 0 & 0 \\
-2 x_{1} e^{-w_{1}} & e^{-w_{1}} & 0 \\
-3\left(x_{2}-x_{1}^{2}\right) e^{-w_{1}} & -3 x_{1} e^{-w_{1}} & e^{-w_{1}}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ccc}
e^{w_{1}} & 0 & 0 \\
2 x_{1} e^{w_{1}} & e^{w_{1}} & 0 \\
3\left(x_{2}+x_{1}^{2}\right) e^{w_{1}} & 3 x_{1} e^{w_{1}} & e^{w_{1}}
\end{array}\right] .
\end{aligned}
$$

Finally, it is easy to see that

$$
\left[\begin{array}{c}
\dot{w}_{1} \\
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
y\left(1-e^{w_{1}}\right) \\
0 \\
0 \\
e^{w_{1}}\left(y^{4}+u\right)
\end{array}\right] ; \quad y_{a}=w_{1}
$$

Example 8.3.3 Show that the following system is not RDOEL:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{8.131}\\
x_{3} \\
x_{2}^{3}+u
\end{array}\right]=F_{u}(x) ; \quad y=x_{1}=H(x)
$$

Solution It is easy to see that system (8.131) is not state equivalent to a dual Brunovsky NOCF with OT. (See Problem 8-2.) Thus, it will be investigated whether system (8.131) is RDOEL with index $d=1$ or not. Consider the following extended system with $\dot{w}_{1}=y$:

$$
\left[\begin{array}{c}
\dot{w}_{1} \\
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{2}^{3}+u
\end{array}\right]=F_{u}^{e}(x) ; \quad y_{a}=w_{1}
$$

Since $T_{e}(w, x) \triangleq\left[\begin{array}{ll}w & T(x)^{\top}\end{array}\right]^{\top} \triangleq\left[\begin{array}{ll}w & H(x) \\ L_{F_{0}} H(x) & L_{F_{0}}^{2} H(x)\end{array}\right]^{\top}=\left[\begin{array}{ll}w & x^{\top}\end{array}\right]^{\top}=x^{e}$, it is clear, by (8.77) and (8.78), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{0}\left(x^{e}\right) \triangleq\left(\frac{\partial T_{e}\left(x^{e}\right)}{\partial x^{e}}\right)^{-1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}\left(x^{e}\right) \triangleq \operatorname{ad}_{F_{u}^{e}} \mathbf{g}_{1}^{0}\left(x^{e}\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right] ; \mathbf{g}_{3}^{u}\left(x^{e}\right)=\left[\begin{array}{c}
0 \\
1 \\
0 \\
3 x_{2}^{2}
\end{array}\right]
\end{aligned}
$$

which imply that $\left[\mathbf{g}_{1}^{0}\left(x^{e}\right), \mathbf{g}_{2}^{0}\left(x^{e}\right)\right]=0$ and $\left[\mathbf{g}_{2}^{0}\left(x^{e}\right), \mathbf{g}_{3}^{0}\left(x^{e}\right)\right]=-6 x_{2} \mathbf{g}_{1}^{0}\left(x^{e}\right)=0 \bmod$ $\left\{\mathbf{g}_{1}^{0}\left(x^{e}\right)\right\}$. Therefore, condition (i) and condition (ii) of Theorem 8.5 are satisfied with $\beta_{0}(y)=0$ or $\bar{\ell}_{0}\left(x^{e}\right)=1$, which implies, together with (8.111), (8.112), and (8.113), that $\tilde{\mathbf{g}}_{i}^{1}\left(x^{e}\right)=\mathbf{g}_{i}^{0}\left(x^{e}\right)$ for $1 \leq i \leq 3$. Since $\left[\tilde{\mathbf{g}}_{2}^{1}\left(x^{e}\right), \tilde{\mathbf{g}}_{3}^{1}\left(x^{e}\right)\right]=-6 x_{2} \tilde{\mathbf{g}}_{1}^{1}\left(x^{e}\right)$, there does not exist constant β_{1} such that (8.107) is satisfied. Since condition (iii) of Theorem 8.5 is not satisfied, system (8.131) is not, by Theorem 8.5, RDOEL with index $d=1$. Also, system (8.131) is not RDOEL by Theorem 8.6.

8.4 Multi Output Observer Error Linearization

Consider a multi output control system of the form

$$
\begin{align*}
& \dot{x}=F(x, u) \triangleq F_{u}(x) \\
& y=H(x) \tag{8.132}
\end{align*}
$$

with $F_{0}(0)=0, H(0)=0$, state $x \in \mathbb{R}^{n}$, input $u \in \mathbb{R}^{m}$, and output $y \in \mathbb{R}^{p}$. By letting $u=0$ in system (8.132), we obtain the following autonomous system:

$$
\begin{equation*}
\dot{x}=F_{0}(x) ; \quad y=H(x) \tag{8.133}
\end{equation*}
$$

Definition 8.7 (observability indices)
For the list of $p n$ one forms of the form

$$
\begin{aligned}
& \left.\frac{\partial H_{1}(x)}{\partial x}\right|_{x=0}, \cdots,\left.\frac{\partial H_{q}(x)}{\partial x}\right|_{x=0},\left.\frac{\partial\left(L_{F_{0}} H_{1}(x)\right)}{\partial x}\right|_{x=0}, \cdots,\left.\frac{\partial\left(L_{F_{0}} H_{p}(x)\right)}{\partial x}\right|_{x=0} \\
& \cdots,\left.\frac{\partial\left(L_{F_{0}}^{n-1} H_{1}(x)\right)}{\partial x}\right|_{x=0}, \cdots,\left.\frac{\partial\left(L_{F_{0}}^{n-1} H_{p}(x)\right)}{\partial x}\right|_{x=0}
\end{aligned}
$$

delete all one forms that are linearly dependent on the set of preceding one forms and obtain the unique set of linearly independent one forms

$$
\left.\left\{\frac{\partial H_{1}(x)}{\partial x}, \cdots, \frac{\partial\left(L_{F_{0}}^{v_{1}-1} H_{1}(x)\right)}{\partial x}, \cdots, \frac{\partial H_{p}(x)}{\partial x}, \cdots, \frac{\partial\left(L_{F_{0}}^{\nu_{p}-1} H_{p}(x)\right)}{\partial x}\right\}\right|_{x=0}
$$

or

$$
\left\{\bar{c}_{1}, \bar{c}_{1} \bar{A}, \cdots, \bar{c}_{1} \bar{A}^{v_{1}-1}, \cdots, \bar{c}_{p}, \cdots, \bar{c}_{p} \bar{A}^{v_{p}-1}\right\}
$$

where $\left.\bar{c}_{j} \triangleq \frac{\partial H_{j}(x)}{\partial x}\right|_{x=0}$ and $\left.\bar{A} \triangleq \frac{\partial F_{0}(x)}{\partial x}\right|_{x=0}$. Then, $\left(v_{1}, \cdots, v_{p}\right)$ are said to be the observability indices of system (8.132).

In other words, v_{i} is the smallest nonnegative integer such that for $1 \leq i \leq p$,

$$
\begin{align*}
\left.d L_{F_{0}}^{v_{i}} H_{i}(x)\right|_{x=0} \in & \operatorname{span}\left\{\left.d L_{F_{0}}^{\ell-1} H_{j}(x)\right|_{x=0} \mid 1 \leq j \leq m, \quad 1 \leq \ell \leq v_{i}\right\} \tag{8.134}\\
& +\operatorname{span}\left\{\left.d L_{F_{0}}^{v_{i}} H_{j}(x)\right|_{x=0} \mid 1 \leq j \leq i-1\right\}
\end{align*}
$$

If $\sum_{i=1}^{p} v_{i}=n$, then system (8.132) is said to be observable. Since observability is invariant under state transformation, we assume $\sum_{i=1}^{p} v_{i}=n$. Also, we assume, without loss of generality, that

$$
\begin{equation*}
v_{1} \geq v_{2} \geq \cdots \geq v_{p} \geq 1 \tag{8.135}
\end{equation*}
$$

Definition 8.8 (state equivalence to a NOCF)
System (8.132) is said to be state equivalent to a NOCF, if there exist a state transformation $z=S(x)$ such that

$$
\begin{align*}
& \dot{z}=A z+\gamma(y, u)=A z+\gamma^{u}(y) \triangleq \bar{f}_{u}(z) \tag{8.136}\\
& y=C z \triangleq \bar{h}(z)
\end{align*}
$$

where the pair (C, A) is observable and $\gamma^{u}(y): \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma^{0}(0)=0$. In other words,

$$
\begin{equation*}
\bar{h}(z) \triangleq H \circ S^{-1}(z)=C z \tag{8.137}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{u}(z) & \triangleq S_{*}\left(F_{u}(x)\right)=A z+\gamma^{u}(C z) \tag{8.138}\\
& =A z+\gamma^{u}(y)
\end{align*}
$$

For single output case, if the pair (C, A) is observable, there exists a linear state transform $z=P^{-1} x$ such that $(\hat{C}, \hat{A})\left(\triangleq\left(C P, P^{-1} A P\right)\right)$ is observable canonical form. In other words,

$$
\begin{aligned}
C P & =\hat{C}
\end{aligned}=\left[\begin{array}{llll}
1 & 0 & 0 & \cdots
\end{array}\right]=C_{o} \quad\left[\begin{array}{cccc}
\hat{a}_{11} & 1 & 0 & \cdots
\end{array}\right)
$$

where

$$
C_{o}=\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0
\end{array}\right] \text { and } A_{o}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Let us call (C_{o}, A_{o}) a dual Brunovsky canonical form, even though the order of the states are reversed compared to Brunovsky canonical form (4.9). Since

$$
\left[\begin{array}{c}
\hat{a}_{11} \\
\vdots \\
\hat{a}_{n 1}
\end{array}\right] \hat{C} z=\left[\begin{array}{c}
\hat{a}_{11} z_{1} \\
\vdots \\
\hat{a}_{n 1} z_{1}
\end{array}\right]
$$

it is clear that single output system (8.132) is state equivalent to a NOCF, if and only if single output system (8.132) is state equivalent to a dual Brunovsky NOCF which is defined by

$$
\begin{aligned}
\dot{z} & =A_{o} z+\gamma^{u}\left(z_{1}\right) \triangleq \bar{f}_{u}(z) \\
y & =C_{o} z \triangleq \bar{h}(z)
\end{aligned}
$$

However, it is not true that if multi output system is state equivalent to a NOCF, then multi output system is also state equivalent to a dual Brunovsky NOCF. (For this, see Theorem 8.7.)

Definition 8.9 (state equivalence to a dual Brunovsky NOCF with OT)
System (8.132) is said to be state equivalent to a dual Brunovsky NOCF with output transformation (OT), if there exist a smooth function $\varphi(y)(\varphi(0)=0$ and rank $\left.\left(\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=0}\right)=p\right)$ and a state transformation $z=S(x)$ such that

$$
\begin{aligned}
& \dot{z}=A_{o} z+\gamma^{u}(\bar{y}) \triangleq \bar{f}_{u}(z) \\
& \bar{y}=\varphi(y)=C_{o} z \triangleq \bar{h}(z)
\end{aligned}
$$

where $A_{o}=\operatorname{blockdiag}\left\{A_{o}^{1}, \cdots, A_{o}^{p}\right\}, C_{o}=\operatorname{blockdiag}\left\{C_{o}^{1}, \cdots, C_{o}^{p}\right\}$,

$$
A_{o}^{i}=\left[\begin{array}{cc}
O_{\left(v_{i}-1\right) \times 1} & I_{\left(v_{i}-1\right) \times\left(v_{i}-1\right)} \\
0 & O_{1 \times\left(v_{i}-1\right)}
\end{array}\right] ; \quad C_{o}^{i}=\left[\begin{array}{ll}
1 & O_{1 \times\left(v_{i}-1\right)}
\end{array}\right], 1 \leq i \leq p
$$

and $\gamma^{u}(\bar{y}): \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma^{0}(0)=0$. In other words,

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=C_{o} z \tag{8.139}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{u}(z) & \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(C_{o} z\right) \\
& =A_{o} z+\bar{\gamma}^{u} \circ \varphi(y) \triangleq A_{o} z+\gamma^{u}(y) \tag{8.140}
\end{align*}
$$

where $\bar{\gamma}^{u}(\bar{y}) \triangleq \gamma^{u} \circ \varphi^{-1}(\bar{y})$.
If system (8.132) is state equivalent to a NOCF with OT $\varphi(y)=y$, then system (8.132) is state equivalent to a NOCF (without OT). State equivalence to a NOCF for autonomous system (8.133) can be similarly defined with $u=0$. If $\bar{f}_{u}(z) \triangleq$ $S_{*}\left(F_{u}(x)\right)=A z+\bar{\gamma}^{u}(C z)$, then it is clear that $\bar{f}_{0}(z) \triangleq S_{*}\left(F_{0}(x)\right)=A z+\bar{\gamma}^{0}(C z)$. Thus, we have the following remark.

Remark 8.5 If system (8.132) is state equivalent to a NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, then system (8.133) is also state equivalent to a NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. But the converse is not true.

Lemma 8.4 (observable canonical form of MO linear system)
Suppose that (A, C) is an observable pair and (8.135) is satisfied. Then there exist a nonsingular matrix Q, a lower triangular matrix R with 1 's in the diagonal, and an $n \times p$ matrix \tilde{A} such that

$$
\begin{equation*}
\hat{A} \triangleq Q A Q^{-1}=A_{o}+\tilde{A} C_{o} \text { and } \hat{C} \triangleq C Q^{-1}=R C_{o} \tag{8.141}
\end{equation*}
$$

where for $1 \leq i \leq p$ and $1 \leq i \leq v_{i}$,

$$
\begin{align*}
& c_{i} A^{\nu_{i}}=-\sum_{\ell=1}^{i-1} \bar{r}_{i \ell} c_{\ell} A^{v_{i}} \tag{8.142}\\
& \bmod \operatorname{span}\left\{c_{s} A^{k-1}, 1 \leq s \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\} \\
& R^{-1}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\bar{r}_{21} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\bar{r}_{p 1} & \bar{r}_{p 2} & \cdots & 1
\end{array}\right] ; \quad \bar{C}=\left[\begin{array}{c}
\bar{c}_{1} \\
\vdots \\
\bar{c}_{p}
\end{array}\right] \triangleq R^{-1} C \tag{8.143}\\
& \bar{c}_{i} A^{v_{i}}=\sum_{k=1}^{v_{i}} \sum_{\ell=1}^{p} \tilde{a}_{i\left(v_{i}-k+1\right)}^{\ell} \bar{c}_{\ell} A^{k-1} \triangleq-\sum_{k=1}^{v_{i}} \mathbf{m}_{i\left(v_{i}-k+1\right)} \bar{C} A^{k-1} \tag{8.144}\\
& \tilde{A} \triangleq\left[\begin{array}{c}
\tilde{A}_{1} \\
\vdots \\
\tilde{A}_{p}
\end{array}\right]=\left[\begin{array}{ccc}
\tilde{a}_{11}^{1} & \cdots & \tilde{a}_{11}^{p} \\
\vdots & & \vdots \\
\tilde{a}_{1 v_{1}}^{1} & \cdots & \tilde{a}_{1 v_{1}}^{p} \\
\vdots & & \vdots \\
\tilde{a}_{p 1}^{1} & \cdots & \tilde{a}_{p 1}^{p} \\
\vdots & & \vdots \\
\tilde{a}_{p v_{p}}^{1} & \cdots & \tilde{a}_{p v_{p}}^{p}
\end{array}\right] \triangleq-\left[\begin{array}{c}
\mathbf{m}_{11} \\
\vdots \\
\mathbf{m}_{1 v_{1}} \\
\vdots \\
\mathbf{m}_{p 1} \\
\vdots \\
\mathbf{m}_{p v_{p}}
\end{array}\right] ;\left[\begin{array}{c}
\mathbf{m}_{10} \\
\vdots \\
\mathbf{m}_{p 0}
\end{array}\right]=I_{p \times p} \tag{8.145}\\
& M_{i j}=\left[\begin{array}{lll}
\mathbf{m}_{i(j-1)} & \cdots & \mathbf{m}_{i 0} \\
O_{1 \times\left(\nu_{1}-j\right) p}
\end{array}\right], \tag{8.146}
\end{align*}
$$

and

$$
Q \triangleq\left[\begin{array}{c}
Q_{11} \tag{8.147}\\
\vdots \\
Q_{1 v_{1}} \\
\vdots \\
Q_{p 1} \\
\vdots \\
Q_{p v_{p}}
\end{array}\right]=\left[\begin{array}{c}
M_{11} \\
\vdots \\
M_{1 v_{1}} \\
\vdots \\
M_{p 1} \\
\vdots \\
M_{p v_{p}}
\end{array}\right]\left[\begin{array}{c}
\bar{C} \\
\bar{C} A \\
\vdots \\
\bar{C} A^{v_{1}-1}
\end{array}\right] \triangleq M \bar{V}
$$

Proof It is easy to see, by (8.134), that there exist $\bar{r}_{i \ell}, 2 \leq i \leq p, 1 \leq \ell \leq i-1$ such that (8.142) is satisfied. It is clear, by (8.143) and (8.145)-(8.147), that

$$
\begin{align*}
C_{o} Q & =\left[\begin{array}{c}
M_{11} \\
\vdots \\
M_{p 1}
\end{array}\right]\left[\begin{array}{c}
\bar{C} \\
\bar{C} A \\
\vdots \\
\bar{C} A^{v_{1}-1}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{m}_{i 0} & O_{1 \times\left(v_{1}-1\right) p} \\
\vdots & \vdots \\
\mathbf{m}_{p 0} & O_{1 \times\left(v_{1}-1\right) p}
\end{array}\right]\left[\begin{array}{c}
\bar{C} \\
\bar{C} A \\
\vdots \\
\bar{C} A^{v_{1}-1}
\end{array}\right] \tag{8.148}\\
& =\left[\begin{array}{ll}
I_{p \times p} & O_{p \times\left(v_{1}-1\right) p}
\end{array}\right]\left[\begin{array}{c}
\bar{C} \\
\bar{C} A \\
\vdots \\
\bar{C} A^{v_{1}-1}
\end{array}\right]=\bar{C}=R^{-1} C
\end{align*}
$$

which implies that $\hat{C} \triangleq C Q^{-1}=R C_{o}$. It is easy to see, by (8.144)-(8.147), that for $1 \leq i \leq p$ and $1 \leq j \leq v_{i}$,

$$
\begin{align*}
\sum_{k=1}^{v_{i}+1} \mathbf{m}_{i\left(v_{i}-k+1\right)} \bar{C} A^{k-1} & =\sum_{k=1}^{v_{i}} \mathbf{m}_{i\left(v_{i}-k+1\right)} \bar{C} A^{k-1}+\mathbf{m}_{i 0} \bar{C} A^{v_{i}} \tag{8.149}\\
& =\sum_{k=1}^{v_{i}} \mathbf{m}_{i\left(v_{i}-k+1\right)} \bar{C} A^{k-1}+\bar{c}_{i} A^{v_{i}}=0
\end{align*}
$$

and

$$
\begin{equation*}
Q_{i j}=M_{i j} \bar{V}=\sum_{k=1}^{j} \mathbf{m}_{i(j-k)} \bar{C} A^{k-1} \tag{8.150}
\end{equation*}
$$

Thus, we have, by (8.149) and (8.150), that for $1 \leq i \leq p$ and $1 \leq j \leq v_{i}-1$,

$$
\begin{aligned}
Q_{i j} A & =M_{i j} \bar{V} A=\sum_{k=1}^{j} \mathbf{m}_{i(j-k)} \bar{C} A^{k}=\sum_{k=2}^{j+1} \mathbf{m}_{i(j+1-k)} \bar{C} A^{k-1} \\
& =Q_{i(j+1)}-\mathbf{m}_{i j} \bar{C}
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{i v_{i}} A & =M_{i v_{i}} \bar{V} A=\sum_{k=1}^{v_{i}} \mathbf{m}_{i\left(v_{i}-k\right)} \bar{C} A^{k}=\sum_{k=2}^{v_{i}+1} \mathbf{m}_{i\left(v_{i}-k+1\right)} \bar{C} A^{k-1} \\
& =\sum_{k=1}^{v_{i}+1} \mathbf{m}_{i\left(v_{i}-k+1\right)} \bar{C} A^{k-1}-\mathbf{m}_{i v_{i}} \bar{C}=-\mathbf{m}_{i v_{i}} \bar{C}
\end{aligned}
$$

which imply, together with (8.148), that for $1 \leq i \leq p$,

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
Q_{i 1} \\
\vdots \\
Q_{i\left(v_{i}-1\right)} \\
Q_{i v_{i}}
\end{array}\right] A} & =\left[\begin{array}{c}
Q_{i 2}-\mathbf{m}_{i 1} \bar{C} \\
\vdots \\
Q_{i v_{i}}-\mathbf{m}_{i\left(v_{i}-1\right)} \bar{C}
\end{array}\right]=\left[\begin{array}{c}
Q_{i 2} \\
\vdots \\
-\mathbf{m}_{i v_{i}} \bar{C}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{m}_{i 1} \\
\vdots \\
Q_{i v_{i}} \\
0
\end{array}\right] C_{o} Q \\
\mathbf{m}_{i\left(v_{i}-1\right)} \\
\mathbf{m}_{i v_{i}}
\end{array}\right]=\left[O_{v_{i} \times \sum_{k=1}^{i-1} v_{k}} A_{o}^{i} O_{v_{i} \times \sum_{k i+1}}^{p} v_{k}\right] Q+\tilde{A}_{i} C_{o} Q .
$$

Hence, it is clear that

$$
Q A=A_{o} Q+\tilde{A} C_{o} Q \text { or } \hat{A} \triangleq Q A Q^{-1}=A_{o}+\tilde{A} C_{o}
$$

The dual version of Lemma 8.4 can be found in Section IV of [H25]. The following theorem, which can be easily proven by Lemma 8.4, shows the difference between the equivalence of the MO system to a NOCF and the equivalence of the MO systems to a dual Brunovsky NOCF.

Theorem 8.7 System (8.132) is state equivalent to a NOCF, if and only if,
(i) for $2 \leq i \leq p$ and some real constants $\bar{r}_{i j}$'s,

$$
\begin{align*}
& d L_{F_{u}}^{v_{i}} H_{i}(x)=-\sum_{j=1}^{i-1} \bar{r}_{i j} d L_{F_{u}}^{v_{i}} H_{j}(x) \tag{8.151}\\
& \quad \bmod \operatorname{span}\left\{d L_{F_{u}}^{k-1} H_{j}(x), 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\} .
\end{align*}
$$

(ii) System

$$
\begin{equation*}
\dot{x}(t)=F_{u}(x(t)) ; \quad \hat{y}(t)=\hat{H}(x(t)) \triangleq R^{-1} H(x(t)) \tag{8.152}
\end{equation*}
$$

is state equivalent to a dual Brunovsky NOCF, where

$$
R^{-1}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \tag{8.153}\\
\bar{r}_{21} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\bar{r}_{p 1} & \bar{r}_{p 2} & \cdots & 1
\end{array}\right] .
$$

Proof Necessity. Suppose that system (8.132) is state equivalent to a NOCF with state transformation $z=S(x)$. Then, we have, by (8.137) and (8.138), that

$$
\begin{equation*}
\bar{h}(z) \triangleq H \circ S^{-1}(z)=C z \tag{8.154}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A z+\gamma^{u}(C z) \tag{8.155}
\end{equation*}
$$

where (A, C) is an observable. Thus, by Lemma 8.4, there exists a nonsingular matrix Q such that

$$
\begin{equation*}
\hat{A} \triangleq Q A Q^{-1}=A_{o}+\tilde{A} C_{o} \text { and } \hat{C} \triangleq C Q^{-1}=R C_{o} \tag{8.156}
\end{equation*}
$$

where for $1 \leq i \leq p$,

$$
\begin{aligned}
c_{i} A^{v_{i}}= & -\sum_{\ell=1}^{i-1} \bar{r}_{i \ell} c_{\ell} A^{v_{i}} \\
& \bmod \operatorname{span}\left\{c_{s} A^{k-1}, 1 \leq s \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\}
\end{aligned}
$$

Let $\hat{z} \triangleq Q z=Q S(x) \triangleq \hat{S}(x)$. Then it is easy to see, by (8.154)-(8.156), that

$$
\begin{equation*}
\hat{h}(\hat{z}) \triangleq \hat{H} \circ \hat{S}^{-1}(z)=R^{-1} \bar{h}\left(Q^{-1} \hat{z}\right)=R^{-1} C Q^{-1} \hat{z}=C_{o} \hat{z} \tag{8.157}
\end{equation*}
$$

and

$$
\begin{align*}
\hat{f}_{u}(\hat{z}) & \triangleq \hat{S}_{*}\left(F_{u}(x)\right)=Q A Q^{-1} \hat{z}+Q \gamma^{u}\left(C Q^{-1} \hat{z}\right) \tag{8.158}\\
& =A_{o} \hat{z}+\tilde{A} C_{o} \hat{z}+Q \gamma^{u}\left(R C_{o} \hat{z}\right)=A_{o} \hat{z}+\hat{\gamma}^{u}\left(C_{o} \hat{z}\right)
\end{align*}
$$

where $\hat{\gamma}^{u}(y) \triangleq \tilde{A} y+Q \gamma^{u}(R y)$. Therefore, system (8.152) is state equivalent to a dual Brunovsky NOCF and condition (ii) of Theorem 8.7 is satisfied. Since $\hat{h}(\hat{z})=$ $R^{-1} \bar{h}\left(Q^{-1} \hat{z}\right)$, we have, by (2.30) and (8.153), that for $1 \leq i \leq p$ and $k \geq 1$,

$$
\hat{h}_{i}(\hat{z})=\bar{h}_{i}\left(Q^{-1} \hat{z}\right)+\sum_{j=1}^{i-1} \bar{r}_{i j} \bar{h}_{j}\left(Q^{-1} \hat{z}\right)
$$

and

$$
L_{\hat{f}_{u}}^{k} \hat{h}_{i}(\hat{z})=\left.L_{\tilde{f}_{u}}^{k} \bar{h}_{i}(z)\right|_{z=Q^{-1} \hat{z}}+\left.\sum_{j=1}^{i-1} \bar{r}_{i j} L_{\bar{f}_{u}}^{k} \bar{h}_{j}(z)\right|_{z=Q^{-1} \hat{z}}
$$

which imply that for $1 \leq i \leq p$ and $k \geq 0$,

$$
\begin{align*}
d L_{\hat{f}_{u}}^{k} \hat{h}_{i}(\hat{z}) & =\frac{\partial}{\partial \hat{z}}\left(L_{\hat{f}_{u}}^{k} \hat{h}_{i}(\hat{z})\right) \\
& =\left.\left(d L_{\bar{f}_{u}}^{k} \bar{h}_{i}(z)+\sum_{j=1}^{i-1} \bar{r}_{i j} d L_{\bar{f}_{u}}^{k} \bar{h}_{j}(z)\right)\right|_{z=Q^{-1} \hat{z}} Q^{-1} . \tag{8.159}
\end{align*}
$$

Let

$$
\begin{gathered}
\hat{z} \triangleq\left[\hat{z}_{11} \cdots \hat{z}_{1 v_{1}} \cdots \hat{z}_{p 1} \cdots \hat{z}_{p v_{p}}\right]^{\top} \\
\tilde{\mathbf{z}}_{k} \triangleq\left\{\hat{z}_{j k} \mid 1 \leq j \leq p \text { and } v_{j} \geq k\right\} \\
\hat{f}^{u}(\hat{z}) \triangleq\left[\hat{f}_{11}^{u}(\hat{z}) \cdots \hat{f}_{1 v_{1}}^{u}(\hat{z}) \cdots \hat{f}_{p 1}^{u}(\hat{z}) \cdots \hat{f}_{p v_{p}}^{u}(\hat{z})\right]^{\top}
\end{gathered}
$$

and for $1 \leq i \leq p$,

$$
\hat{f}_{i j}^{u}(\hat{z})= \begin{cases}\hat{z}_{i(j+1)}+\hat{\gamma}_{i j}^{u}\left(\tilde{\mathbf{z}}_{1}\right), & 1 \leq j \leq v_{i}-1 \tag{8.160}\\ \hat{\gamma}_{i v_{i}}^{u}\left(\tilde{\mathbf{z}}_{1}\right), & j=v_{i}\end{cases}
$$

Then it is easy to see, by (8.157), (8.158) and (8.160), that for $1 \leq i \leq p$ and $1 \leq$ $k \leq v_{i}-1$,

$$
\begin{gather*}
\hat{h}_{i}(\hat{z})=\hat{z}_{i 1} \tag{8.161}\\
L_{\hat{f}_{u}}^{k} \hat{h}_{i}(\hat{z})=\hat{z}_{i(k+1)}+\phi_{i, k}^{u}\left(\tilde{\mathbf{z}}_{1}, \cdots, \tilde{\mathbf{z}}_{k}\right) \tag{8.162}
\end{gather*}
$$

and

$$
\begin{equation*}
L_{\hat{f}_{u}}^{v_{i}} \hat{h}_{i}(\hat{z})=\phi_{i, v_{i}}^{u}\left(\tilde{\mathbf{z}}_{1}, \cdots, \tilde{\mathbf{z}}_{v_{i}}\right) \tag{8.163}
\end{equation*}
$$

where $\phi_{i, 1}^{u}\left(\tilde{\mathbf{z}}_{1}\right)=\hat{\gamma}_{i 1}^{u}\left(\tilde{\mathbf{z}}_{1}\right)$ and

$$
\phi_{i, k}^{u}\left(\tilde{\mathbf{z}}_{1}, \cdots, \tilde{\mathbf{z}}_{k}\right)=\hat{\gamma}_{i k}^{u}\left(\tilde{\mathbf{z}}_{1}\right)+\sum_{\ell=1}^{p} \sum_{j=1}^{\min \left(k-1, v_{\ell}\right)} \frac{\partial \phi_{i, k-1}^{u}\left(\tilde{\mathbf{z}}_{1}, \cdots, \tilde{\mathbf{z}}_{k-1}\right)}{\partial \hat{z}_{\ell j}} \hat{f}_{\ell j}^{u}(\hat{z}) .
$$

Therefore, it is clear, by (8.161)-(8.163), that for $1 \leq i \leq p$,

$$
\begin{aligned}
\operatorname{span} & \left\{\left.\frac{\partial}{\partial \hat{z}}\left(L_{\hat{f}_{u}}^{k-1} \hat{h}_{j}(\hat{z})\right) \right\rvert\, 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\} \\
& =\operatorname{span}\left\{\left.\frac{\partial \hat{z}_{j k}}{\partial \hat{z}} \right\rvert\, 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\}
\end{aligned}
$$

and

$$
\frac{\partial}{\partial \hat{z}}\left(L_{\hat{f}_{u}}^{v_{i}} \hat{h}_{i}(\hat{z})\right) \in \operatorname{span}\left\{\left.\frac{\partial \hat{z}_{j k}}{\partial \hat{z}} \right\rvert\, 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\}
$$

which implies, together with (8.159), that for $1 \leq i \leq p$,

$$
\begin{aligned}
& d L_{\hat{f}_{u}}^{v_{i}} \hat{h}_{i}(\hat{z}) \in \operatorname{span}\left\{d L_{\hat{f}_{u}}^{k-1} \hat{h}_{j}(\hat{z}) \mid 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\} \\
& \quad=\operatorname{span}\left\{\left.d L_{\bar{f}_{u}}^{k-1} \bar{h}_{j}(\bar{z})\right|_{z=Q^{-1}} Q^{-1} \mid 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\}
\end{aligned}
$$

and

$$
\begin{align*}
& d L_{\bar{f}_{u}}^{v_{i}} \bar{h}_{i}(z)=-\sum_{j=1}^{i-1} \bar{r}_{i j} d L_{\bar{f}_{u}}^{v_{i}} \bar{h}_{j}(z) \tag{8.164}\\
& \quad \bmod \operatorname{span}\left\{d L_{\bar{f}_{u}}^{k-1} \bar{h}_{j}(\bar{z}) \mid 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\} .
\end{align*}
$$

Since

$$
L_{F_{u}}^{k} H(x)=\left.L_{\bar{f}_{u}}^{k} \bar{h}(\bar{z})\right|_{\bar{z}=S(x)} \text { or } d L_{F_{u}}^{k} H(x)=\left.d L_{f_{u}}^{k} \bar{h}(\bar{z})\right|_{\bar{z}=S(x)} \frac{\partial S(x)}{\partial x},
$$

it is easy to see, by (8.164), that condition (i) of Theorem 8.7 is satisfied.
Sufficiency. Suppose that system (8.152) is state equivalent to a dual Brunovsky NOCF with $z=S(x)$. Then, we have, by (8.139) and (8.140), that

$$
\hat{h}(z) \triangleq R^{-1} H \circ S^{-1}(z)=C_{o} z
$$

and

$$
\hat{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\gamma^{u}\left(C_{o} z\right)
$$

Therefore, it is clear that

$$
\bar{h}(z) \triangleq H \circ S^{-1}(z)=R C_{o} z \triangleq C z
$$

and

$$
\begin{aligned}
\bar{f}_{u}(z) & \triangleq S_{*}\left(F_{u}(x)\right)=A z+\gamma^{u}\left(R^{-1} C z\right) \\
& =A z+\bar{\gamma}^{u}(y)
\end{aligned}
$$

where $\bar{\gamma}^{u}(y) \triangleq \gamma^{u}\left(R^{-1} y\right)$. Hence, by Definition 8.8 , system (8.132) is state equivalent to a NOCF with state transformation $z=S(x)$.

Define a state transformation $\xi=T(x)$ by

$$
\xi=\left[\begin{array}{c}
\xi_{11} \tag{8.165}\\
\xi_{12} \\
\vdots \\
\xi_{1 v_{1}} \\
\vdots \\
\xi_{p 1} \\
\vdots \\
\xi_{p v_{p}}
\end{array}\right]=T(x) \triangleq\left[\begin{array}{c}
H_{1}(x) \\
L_{F_{0}} H_{1}(x) \\
\vdots \\
L_{F_{0}}^{\nu_{1}-1} H_{1}(x) \\
\vdots \\
H_{p}(x) \\
\vdots \\
L_{F_{0}}^{v_{p}-1} H_{p}(x)
\end{array}\right] .
$$

Definition 8.10 (canonical system)
The canonical system of system (8.132) is defined by

$$
\left[\begin{array}{c}
\dot{\xi}_{11} \tag{8.166}\\
\vdots \\
\dot{\xi}_{1\left(v_{1}-1\right)} \\
\dot{\xi}_{1 v_{1}} \\
\vdots \\
\dot{\xi}_{p 1} \\
\vdots \\
\dot{\xi}_{p\left(v_{p}-1\right)} \\
\dot{\xi}_{p v_{p}}
\end{array}\right]=\left[\begin{array}{c}
\xi_{12}+\alpha_{11}^{u}(\xi) \\
\vdots \\
\xi_{1 v_{1}}+\alpha_{1\left(v_{1}-1\right)}^{u}(\xi) \\
\alpha_{1 v_{1}}^{u}(\xi) \\
\vdots \\
\xi_{p 2}+\alpha_{p 1}^{u}(\xi) \\
\vdots \\
\xi_{p v_{p}}+\alpha_{p\left(v_{p}-1\right)}^{u}(\xi) \\
\alpha_{p v_{p}}^{u}(\xi)
\end{array}\right] \triangleq f_{u}(\xi) ; \quad y=\left[\begin{array}{c}
\xi_{11} \\
\vdots \\
\xi_{p 1}
\end{array}\right] \triangleq h(\xi)
$$

where $\xi=T(x), f_{u}(\xi) \triangleq T_{*}\left(F_{u}(x)\right), h(\xi) \triangleq H \circ T^{-1}(\xi)$,

$$
\left.\alpha_{i v_{i}}^{u}(\xi) \triangleq L_{F_{u}} L_{F_{0}}^{v_{i}-1} H_{i}(x)\right|_{x=T^{-1}(\xi)}, 1 \leq i \leq p
$$

and for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}-1$,

$$
\left.\alpha_{i k}^{u}(\xi) \triangleq L_{F_{u}} L_{F_{0}}^{k-1} H_{i}(x)\right|_{x=T^{-1}(\xi)}-\left.L_{F_{0}}^{k} H_{i}(x)\right|_{x=T^{-1}(\xi)}
$$

It is clear that $\alpha_{i k}^{0}(\xi)=0,1 \leq i \leq p, 1 \leq k \leq v_{i}-1$ and

$$
f_{0}(\xi) \triangleq T_{*}\left(F_{0}(x)\right)=\left[\begin{array}{c}
\xi_{12} \tag{8.167}\\
\vdots \\
\xi_{1 v_{1}} \\
\alpha_{1 v_{1}}^{0}(\xi) \\
\vdots \\
\xi_{p 2} \\
\vdots \\
\xi_{p v_{p}} \\
\alpha_{p v_{p}}^{0}(\xi)
\end{array}\right] .
$$

System (8.132) is state equivalent to a NOCF with OT (or without OT) via $z=$ $S(x)$, if and only if canonical system (8.166) is state equivalent to a NOCF with OT (or without OT) via $z=\tilde{S}(\xi)\left(\triangleq S \circ T^{-1}(\xi)\right)$. Canonical system (8.166) is more convenient to solve the observer problems than system (8.132). Since geometric conditions are coordinate free, any geometric condition in $\xi-$ coordinates (for system (8.166)) can be expressed in x - coordinates (for system (8.132)).

For system (8.132), we define vector fields $\left\{\mathbf{g}_{i k}^{0}(x), 1 \leq i \leq p, 1 \leq k \leq v_{i}\right\}$ and $\left\{\mathbf{g}_{i k}^{u}(x), 1 \leq i \leq p, 1 \leq k \leq v_{i}\right\}$ as follows.

$$
\begin{gather*}
L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=\delta_{i, j} \delta_{k, v_{i}}, 1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq v_{j} \\
\left(\text { or } \mathbf{g}_{i 1}^{0}(x) \triangleq T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{i v_{i}}}\right), 1 \leq i \leq p\right) \tag{8.168}
\end{gather*}
$$

and for $1 \leq i \leq p$ and $1 \leq k \leq \nu_{i}$,

$$
\begin{align*}
& \mathbf{g}_{i 1}^{u}(x) \triangleq \mathbf{g}_{i 1}^{0}(x) ; \quad \mathbf{g}_{i k}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{k-1} \mathbf{g}_{i 1}^{u}(x) \\
& \mathbf{g}_{i k}^{0}(x) \triangleq \operatorname{ad}_{F_{0}}^{k-1} \mathbf{g}_{i 1}^{0}(x)=\left.\mathbf{g}_{i k}^{u}(x)\right|_{u=0} \tag{8.169}
\end{align*}
$$

Then it is easy to see, by Example 2.4.16 and (8.168), that for $1 \leq i \leq p, 1 \leq j \leq p$, $1 \leq k \leq v_{i}$, and $0 \leq \ell \leq v_{j}-1$,

$$
L_{\mathbf{g}_{i k}^{0}} L_{F_{0}}^{\ell} H_{j}(x)= \begin{cases}0, & k+\ell<v_{j} \tag{8.170}\\ (-1)^{k+1} \delta_{i, j}, & k+\ell=v_{j}\end{cases}
$$

For system (8.166), we define vector fields $\left\{\tau_{i k}^{u}(\xi), 1 \leq i \leq p, 1 \leq k \leq v_{i}\right\}$ by

$$
\begin{equation*}
\tau_{i k}^{u}(\xi) \triangleq T_{*}\left(\mathbf{g}_{i k}^{u}(x)\right), 1 \leq i \leq p, 1 \leq k \leq v_{i} \tag{8.171}
\end{equation*}
$$

Then it is easy to see, by (2.37), (8.168), (8.169), and, (8.171), that for $1 \leq i \leq p$ and $1 \leq k \leq \nu_{i}$,

$$
\begin{equation*}
\tau_{i 1}^{u}(\xi)=\tau_{i 1}^{0}(\xi)=\frac{\partial}{\partial \xi_{i \nu_{i}}} \tag{8.172}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{i k}^{u}(\xi)=T_{*}\left(\operatorname{ad}_{F_{u}}^{k-1} \mathbf{g}_{i 1}^{u}(x)\right)=\operatorname{ad}_{f_{u}}^{k-1} \tau_{i 1}^{u}(\xi) \tag{8.173}
\end{equation*}
$$

That is, $\tau_{i k}^{u}(\xi)$ is the ξ-coordinates expression of vector field $\mathbf{g}_{i k}^{u}(x)$. It is also easy to see, by (2.30), (8.170), and (8.171), that for $1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq v_{i}$, and $0 \leq \ell \leq v_{j}-1$,

$$
\begin{align*}
L_{\tau_{i k}^{0}} L_{f_{0}}^{\ell} h_{j}(\xi) & =L_{T_{*}\left(\mathbf{g}_{i k}^{0}\right)} L_{F_{0}}^{\ell}\left(H_{j} \circ T^{-1}(\xi)\right)=\left.L_{\mathbf{g}_{i k}^{0}} L_{F_{0}}^{\ell} H_{j}(x)\right|_{x=T^{-1}(\xi)} \\
& = \begin{cases}0, & k+\ell<v_{j} \\
(-1)^{k+1} \delta_{i, j}, & k+\ell=v_{j}\end{cases} \tag{8.174}
\end{align*}
$$

Lemma 8.5 System (8.132) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exist a diffeomorphism $\varphi(y): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ and smooth functions $\gamma_{i j}^{u}(y), 1 \leq i \leq p, 1 \leq j \leq \nu_{i}$ such that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{gather*}
z_{i k}=S_{i k}(x)=L_{F_{0}}^{k-1}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{k-1} L_{F_{0}}^{k-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right) \tag{8.175}\\
L_{F_{u}} L_{F_{0}}^{v_{i}-1}\left(\varphi_{i} \circ H(x)\right)=\sum_{j=1}^{v_{i}-1} L_{F_{u}} L_{F_{0}}^{v_{i}-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right)+\gamma_{i v_{i}}^{u} \circ H(x) \tag{8.176}
\end{gather*}
$$

and

$$
\begin{equation*}
L_{F_{u}} S_{i k}(x)-L_{F_{0}} S_{i k}(x)=\varepsilon_{i k}^{u} \circ H(x) \tag{8.177}
\end{equation*}
$$

where

$$
z \triangleq\left[\begin{array}{lllllll}
z_{11} & \cdots & z_{1 v_{1}} & \cdots & z_{p 1} & \cdots & z_{p v_{p}}
\end{array}\right]^{\top}
$$

and for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
\gamma_{i k}^{u}(y) \triangleq \gamma_{i k}^{0}(y)+\varepsilon_{i k}^{u}(y) \tag{8.178}
\end{equation*}
$$

Proof Necessity. Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, it is clear, by (8.139) and (8.140), that

$$
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=C_{o} z=\left[\begin{array}{lll}
z_{11} & \cdots & z_{p 1} \tag{8.179}
\end{array}\right]^{\top} \triangleq \tilde{\mathbf{z}}_{1}
$$

and

$$
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(\tilde{\mathbf{z}}_{1}\right)=\left[\begin{array}{c}
z_{12}+\bar{\gamma}_{11}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \tag{8.180}\\
\vdots \\
z_{1 v_{1}}+\bar{\gamma}_{1\left(v_{1}-1\right)}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\bar{\gamma}_{1 v_{1}}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p 2}+\bar{\gamma}_{p 1}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p v_{p}}+\bar{\gamma}_{p\left(v_{p}-1\right)}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\bar{\gamma}_{p v_{p}}^{u}\left(\tilde{\mathbf{z}}_{1}\right)
\end{array}\right]
$$

which imply that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}-1$,

$$
\begin{align*}
S_{i(k+1)}(x) & =L_{F_{u}} S_{i k}(x)-\bar{\gamma}_{i k}^{u}(\varphi \circ H(x))=L_{F_{u}} S_{i k}(x)-\gamma_{i k}^{u} \circ H(x) \tag{8.181}\\
& =L_{F_{0}} S_{i k}(x)-\gamma_{i k}^{0} \circ H(x)
\end{align*}
$$

and

$$
\begin{equation*}
L_{F_{u}} S_{i v_{i}}(x)=\bar{\gamma}_{i v_{i}}^{u}(\varphi \circ H(x))=\gamma_{i v_{i}}^{u} \circ H(x) \tag{8.182}
\end{equation*}
$$

where $\bar{\gamma}_{i k}^{u} \circ \varphi(y) \triangleq \gamma_{i k}^{u}(y)$ for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$. Thus, it is clear, by (8.179), that (8.175) is satisfied when $1 \leq i \leq p$ and $k=1$. Assume that (8.175) is satisfied when $1 \leq i \leq p$ and $1 \leq k \leq \ell \leq v_{i}-1$. Then we have, by (8.181), that for $1 \leq$ $i \leq p$,

$$
\begin{aligned}
S_{i(\ell+1)}(x) & =L_{F_{0}} S_{i \ell}(x)-\gamma_{i \ell}^{0} \circ H(x) \\
& =L_{F_{0}}^{\ell}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{\ell-1} L_{F_{0}}^{\ell-j}\left(\gamma_{i j}^{0} \circ H(x)\right)-\gamma_{i \ell}^{0} \circ H(x) \\
& =L_{F_{0}}^{\ell}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{\ell} L_{F_{0}}^{\ell-j}\left(\gamma_{i j}^{0} \circ H(x)\right)
\end{aligned}
$$

which implies that (8.175) is satisfied when $1 \leq i \leq p$ and $k=\ell+1 \leq v_{i}$. Therefore, by mathematical induction, (8.175) is satisfied for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$. Since

$$
S_{i v_{i}}(x)=L_{F_{0}}^{v_{i}-1}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{v_{i}-1} L_{F_{0}}^{v_{i}-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right)
$$

it is clear, by (8.182), that for $1 \leq i \leq p$,

$$
L_{F_{u}} L_{F_{0}}^{v_{i}-1}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{v_{i}-1} L_{F_{u}} L_{F_{0}}^{v_{i}-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right)=\gamma_{i v_{i}}^{u} \circ H(x)
$$

which implies that (8.176) is satisfied. Finally, it is easy to see, by (8.181) and (8.182), that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
L_{F_{u}} S_{i k}(x)-L_{F_{0}} S_{i k}(x)=\gamma_{i k}^{u} \circ H(x)-\gamma_{i k}^{0} \circ H(x) \triangleq \varepsilon_{i k}^{u} \circ H(x)
$$

which implies that (8.177) is satisfied.
Sufficiency. Suppose that there exist a diffeomorphism $\bar{y}=\varphi(y)$ and smooth functions $\gamma_{i j}^{u}(y), 1 \leq i \leq p, 1 \leq j \leq v_{i}$ such that (8.175)-(8.178) are satisfied. Let $z=S(x)$. Since $S_{1}(x)=\varphi \circ H(x)$, it is clear that for $1 \leq i \leq p$,

$$
\begin{equation*}
\bar{h}_{i}(z) \triangleq \varphi_{i} \circ H \circ S^{-1}(z)=z_{i 1} \tag{8.183}
\end{equation*}
$$

and (8.139) is satisfied. Also, it is easy to see, by (8.175)-(8.178), that for $1 \leq i \leq p$ and $1 \leq k \leq \nu_{i}-1$,

$$
\begin{aligned}
L_{F_{u}} S_{i k}(x) & =L_{F_{0}} S_{i k}(x)+\varepsilon_{i k}^{u} \circ H(x) \\
& =L_{F_{0}}^{k}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{k-1} L_{F_{0}}^{k-j}\left(\gamma_{i j}^{0} \circ H(x)\right)+\varepsilon_{i k}^{u} \circ H(x) \\
& =S_{i(k+1)}(x)+\gamma_{i k}^{0} \circ H(x)+\varepsilon_{i k}^{u} \circ H(x) \\
& =S_{i(k+1)}(x)+\gamma_{i k}^{u} \circ H(x)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{F_{u}} S_{i v_{i}}(x) & =L_{F_{u}} L_{F_{0}}^{v_{i}-1}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{v_{i}-1} L_{F_{u}} L_{F_{0}}^{n-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right) \\
& =\gamma_{i v_{i}}^{u} \circ H(x)
\end{aligned}
$$

which imply, together with (8.183), that

$$
\begin{aligned}
& \bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=\left[\begin{array}{c}
\left.L_{F_{u}} S_{11}(x)\right|_{x=S^{-1}(z)} \\
\vdots \\
\left.L_{F_{u}} S_{1\left(v_{1}-1\right)}(x)\right|_{x=S^{-1}(z)} \\
\left.L_{F_{u}} S_{1 v_{1}}(x)\right|_{x=S^{-1}(z)} \\
\vdots \\
\left.L_{F_{u}} S_{p 1}(x)\right|_{x=S^{-1}(z)} \\
\vdots \\
\left.L_{F_{u}} S_{p\left(v_{p}-1\right)}(x)\right|_{x=S^{-1}(z)} \\
\left.L_{F_{u}} S_{p v_{p}}(x)\right|_{x=S^{-1}(z)}
\end{array}\right]=\left[\begin{array}{c}
z_{12}+\bar{\gamma}_{11}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{1 v_{1}}+\bar{\gamma}_{1\left(v_{1}-1\right)}\left(\tilde{\mathbf{z}}_{1}\right) \\
\bar{\gamma}_{1 v_{1}}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p 2}+\bar{\gamma}_{p 1}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p v_{p}}+\bar{\gamma}_{p\left(v_{p}-1\right)}\left(\tilde{\mathbf{z}}_{1}\right) \\
\bar{\gamma}_{p v_{p}}\left(\tilde{\mathbf{z}}_{1}\right)
\end{array}\right] \\
& \quad=A_{o} z+\bar{\gamma}^{u}\left(\tilde{\mathbf{z}}_{1}\right)
\end{aligned}
$$

where $\bar{\gamma}_{i k}^{u} \circ \varphi(y) \triangleq \gamma_{i k}^{u}(y)$ for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$. Therefore, (8.140) is satisfied. In other words, system (8.132) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$.

Corollary 8.3 System (8.132) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$, if and only if there exist smooth functions $\gamma_{i j}^{u}(y), 1 \leq$ $i \leq p, 1 \leq j \leq v_{i}$ such that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{gather*}
z_{i k}=S_{i k}(x)=L_{F_{0}}^{k-1} H_{i}(x)-\sum_{j=1}^{k-1} L_{F_{0}}^{k-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right) \tag{8.184}\\
L_{F_{u}} L_{F_{0}}^{\nu_{i}-1} H_{i}(x)=\sum_{j=1}^{v_{i}-1} L_{F_{u}} L_{F_{0}}^{v_{i}-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right)+\gamma_{i v_{i}}^{u} \circ H(x) \tag{8.185}
\end{gather*}
$$

and

$$
\begin{equation*}
L_{F_{u}} S_{i k}(x)-L_{F_{0}} S_{i k}(x)=\varepsilon_{i k}^{u} \circ H(x) \tag{8.186}
\end{equation*}
$$

where

$$
z \triangleq\left[\begin{array}{lllllll}
z_{11} & \cdots & z_{1 v_{1}} & \cdots & z_{p 1} & \cdots & z_{p v_{p}}
\end{array}\right]^{\top}
$$

and for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
\gamma_{i k}^{u}(y) \triangleq \gamma_{i k}^{0}(y)+\varepsilon_{i k}^{u}(y) \tag{8.187}
\end{equation*}
$$

Corollary 8.4 System (8.133) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exist a diffeomorphism $\varphi(y): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ and smooth functions $\gamma_{i j}^{0}(y), \quad 1 \leq i \leq p, 1 \leq j \leq v_{i}$ such that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
z_{i k}=S_{i k}(x)=L_{F_{0}}^{k-1}\left(\varphi_{i} \circ H(x)\right)-\sum_{j=1}^{k-1} L_{F_{0}}^{k-1-j}\left(\gamma_{i j}^{0} \circ H(x)\right) \tag{8.188}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{F_{0}}^{v_{i}}\left(\varphi_{i} \circ H(x)\right)=\sum_{j=1}^{v_{i}} L_{F_{0}}^{v_{i}-j}\left(\gamma_{i j}^{0} \circ H(x)\right) \tag{8.189}
\end{equation*}
$$

where

$$
z \triangleq\left[\begin{array}{lllll}
z_{11} & \cdots & z_{1 v_{1}} & \cdots & z_{p 1}
\end{array} \cdots z_{p v_{p}}\right]^{\top} .
$$

Lemma 8.6 Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF. Let $c(y)$ be a smooth function of $y\left(\in \mathbb{R}^{p}\right)$. Then
(i) for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}-1$,

$$
\begin{equation*}
L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1} c(h(\xi))=0 \tag{8.190}
\end{equation*}
$$

(ii) for $1 \leq i \leq p$,

$$
\begin{equation*}
d L_{f_{0}}^{v_{i}} h_{i}(\xi) \in \operatorname{span}\left\{d L_{f_{0}}^{k-1} h_{j}(\xi), 1 \leq j \leq p, 1 \leq k \leq v_{i}\right\} \tag{8.191}
\end{equation*}
$$

(iii) for $1 \leq i \leq p$ and $1 \leq k \leq \nu_{i}$,

$$
\begin{align*}
\tau_{i k}^{0} \equiv & (-1)^{k-1} \frac{\partial}{\partial \xi_{i\left(v_{i}+1-k\right)}} \tag{8.192}\\
& \bmod \operatorname{span}\left\{\frac{\partial}{\partial \xi_{j \ell}}, 1 \leq j \leq p, v_{i}+2-k \leq \ell \leq v_{j}\right\}
\end{align*}
$$

(iv)

$$
L_{\tau_{i k}^{0}} L_{f_{0}}^{\ell} c(h(\xi))= \begin{cases}0, & k+\ell \leq v_{i}-1 \tag{8.193}\\ (-1)^{k-1} \frac{\partial c(h(\xi))}{\partial \xi_{i 1}}, & k+\ell=v_{i}\end{cases}
$$

where $f_{0}(\xi) \triangleq T_{*}\left(F_{0}(x)\right)$ in $(8.167), h(\xi) \triangleq H \circ T^{-1}(\xi)$, and

$$
\xi \triangleq\left[\begin{array}{llllll}
\xi_{11} & \cdots & \xi_{1 v_{1}} & \cdots & \xi_{p 1} & \cdots
\end{array} \xi_{p v_{p}}\right]^{\top}
$$

Proof Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF without OT. Thus, we have, by (2.30) and (8.185), that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{align*}
\alpha_{i v_{i}}^{0}(\xi) & \left.\triangleq L_{F_{0}}^{v_{i}} H_{i}(x)\right|_{x=T^{-1}(\xi)}=\left.\sum_{j=1}^{v_{i}} L_{F_{0}}^{v_{i}-j}\left(\gamma_{i j}^{0} \circ H(x)\right)\right|_{x=T^{-1}(\xi)} \\
& =\sum_{k=1}^{v_{i}} L_{f_{0}}^{v_{i}-k} \gamma_{i k}(h(\xi)) \tag{8.194}
\end{align*}
$$

Let for $1 \leq k \leq \nu_{1}$,

$$
\tilde{\xi}_{k} \triangleq\left\{\xi_{j k} \mid 1 \leq j \leq p \text { and } v_{j} \geq k\right\}
$$

and for $1 \leq i \leq p$ and $1 \leq j \leq v_{i}$,

$$
f_{i j}^{0}(\xi) \triangleq \begin{cases}\xi_{i(j+1)}, & 1 \leq j \leq v_{i}-1 \\ \alpha_{i v_{i}}^{0}(\xi), & j=v_{i}\end{cases}
$$

Then it is easy to see, by (8.167) and (8.194), that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
L_{f_{0}}^{k-1} c(h(\xi))=\phi_{k}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{k}\right) \tag{8.195}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{i v_{i}}^{0}(\xi)=\sum_{k=1}^{\nu_{i}} L_{f_{0}}^{v_{i}-k} \gamma_{i k}(h(\xi))=\bar{\alpha}_{i v_{i}}^{0}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{v_{i}}\right) \tag{8.196}
\end{equation*}
$$

where $\phi_{1}\left(\tilde{\xi}_{1}\right)=c\left(\tilde{\xi}_{1}\right)$ and for $2 \leq k \leq v_{1}$,

$$
\phi_{k}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{k}\right)=\sum_{\ell=1}^{p} \sum_{j=1}^{\min \left(k-1, \nu_{\ell}\right)} \frac{\partial \phi_{k-1}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{k-1}\right)}{\partial \xi_{\ell j}} f_{\ell j}^{0}(\xi)
$$

Thus, it is clear, by (8.172) and (8.195), that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}-1$,

$$
L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1} c(h(\xi))=\frac{\partial}{\partial \xi_{i v_{i}}}\left(L_{f_{0}}^{k-1} c(h(\xi))\right)=\frac{\partial \phi_{k}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{k}\right)}{\partial \xi_{i v_{i}}}=0
$$

which implies that condition (i) of Lemma 8.6 is satisfied. We have, by (8.165) and (8.196), that

$$
\begin{aligned}
d L_{f_{0}}^{v_{i}} h_{i}(\xi) & =d \alpha_{i v_{i}}^{0}(\xi) \in \operatorname{span}\left\{d \xi_{j k}, 1 \leq j \leq p, 1 \leq k \leq \min \left(v_{j}, v_{i}\right)\right\} \\
& \subset \operatorname{span}\left\{d L_{f_{0}}^{k-1} h_{j}(\xi), 1 \leq j \leq p, 1 \leq k \leq v_{i}\right\}
\end{aligned}
$$

which implies that condition (ii) of Lemma 8.6 is satisfied. It is also easy to see, by (8.165) and (8.174), that for $1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq \nu_{i}$, and $0 \leq \ell \leq \nu_{j}-1$,

$$
L_{\tau_{i k}^{0}} \xi_{j(\ell+1)}=L_{\tau_{i k}^{0}} L_{f_{0}}^{\ell} h_{j}(\xi)= \begin{cases}0, & 0 \leq \ell<v_{i}-k \\ (-1)^{k-1} \delta_{i, j}, & \ell=v_{i}-k\end{cases}
$$

which implies that condition (iii) of Lemma 8.6 is satisfied. Finally, we have, by (8.192) and (8.195), that for $1 \leq i \leq p, 1 \leq k \leq v_{i}$, and $\ell \leq v_{i}-1-k$,

$$
\begin{equation*}
L_{\tau_{i k}^{0}} L_{f_{0}}^{\ell} c(h(\xi))=0 \tag{8.197}
\end{equation*}
$$

Therefore, it is easy to see, by Example 2.4.16, (8.192), and (8.197), that for $1 \leq i \leq$ p and $1 \leq k \leq v_{i}$,

$$
\begin{aligned}
L_{\tau_{i k}^{0}} L_{f_{0}}^{v_{i}-k} c(h(\xi)) & =(-1)^{v_{i}-k} L_{\mathrm{ad}_{f_{0}}^{v_{i}-k} \tau_{\tau_{i k}^{0}}^{0}(\xi)} c(h(\xi)) \\
& =(-1)^{v_{i}-k} L_{\tau_{i v_{i}}^{0}} c(h(\xi)) \\
& =(-1)^{k-1} \frac{\partial c(h(\xi))}{\partial \xi_{i 1}}
\end{aligned}
$$

which implies, together with (8.197), that condition (iv) of Lemma 8.6 is satisfied.
Theorem 8.8 System (8.132) is state equivalent to a dual Brunovsky NOCF, if and only if
(i) for $1 \leq i \leq p$,

$$
\begin{equation*}
d L_{F_{0}}^{\nu_{i}} H_{i}(x) \in \operatorname{span}\left\{d L_{F_{0}}^{k-1} H_{j}(x), 1 \leq j \leq p, 1 \leq k \leq v_{i}\right\} \tag{8.198}
\end{equation*}
$$

(ii) there exist smooth vector fields $\overline{\mathbf{g}}_{11}^{u}(x), \cdots, \overline{\mathbf{g}}_{p 1}^{u}(x)$ such that for $1 \leq i \leq p$, $1 \leq j \leq p, 1 \leq k \leq v_{i}$, and $1 \leq \ell \leq v_{j}$,

$$
\begin{gather*}
L_{\overline{\mathbf{g}}_{i 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=\delta_{i, j} \delta_{k, v_{i}} \tag{8.199}\\
\overline{\mathbf{g}}_{i k}^{u}(x)=\left.\overline{\mathbf{g}}_{i k}^{u}(x)\right|_{u=0} \triangleq \overline{\mathbf{g}}_{i k}^{0}(x) \tag{8.200}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{i k}^{0}(x), \overline{\mathbf{g}}_{j \ell}^{0}(x)\right]=0 \tag{8.201}
\end{equation*}
$$

where $\delta_{i, j}$ is the Kronecker delta function and for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i k}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{i 1}^{0}(x) \tag{8.202}
\end{equation*}
$$

Furthermore, a state coordinates transformation $z=S(x)$ is given by

$$
\begin{align*}
\frac{\partial S(x)}{\partial x}=[& {\left[(1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x)\right.} \\
& \left.\cdots(-1)^{v_{p}-1} \overline{\mathbf{g}}_{p v_{p}}^{0}(x) \cdots-\overline{\mathbf{g}}_{p 2}^{0}(x) \overline{\mathbf{g}}_{p 1}^{0}(x)\right]^{-1} \tag{8.203}
\end{align*}
$$

Proof Necessity. Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$. Then, we have, by (8.139) and (8.140), that

$$
\bar{h}(z) \triangleq H \circ S^{-1}(z)=C_{o} z=\left[\begin{array}{ccc}
z_{11} & \cdots & z_{p 1}
\end{array}\right]^{\top} \triangleq \tilde{\mathbf{z}}_{1}
$$

and

$$
\begin{equation*}
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\gamma^{u}\left(C_{o} z\right)=A_{o} z+\gamma^{u}\left(\tilde{\mathbf{z}}_{1}\right) \tag{8.204}
\end{equation*}
$$

where

$$
z \triangleq\left[\begin{array}{c}
z_{11} \\
z_{12} \\
\vdots \\
z_{1 v_{1}} \\
\vdots \\
z_{p 1} \\
z_{p 2} \\
\vdots \\
z_{p v_{p}}
\end{array}\right] ; \quad \bar{f}^{u}(z) \triangleq\left[\begin{array}{c}
\bar{f}_{11}^{u}(z) \\
\vdots \\
\bar{f}_{1\left(\nu_{1}-1\right)}^{u}(z) \\
\bar{f}_{1 v_{1}}^{u}(z) \\
\vdots \\
\bar{f}_{p 1}^{u}(z) \\
\vdots \\
\bar{f}_{p\left(v_{p}-1\right)}^{u}(z) \\
\bar{f}_{p v_{p}}^{u}(z)
\end{array}\right]=\left[\begin{array}{c}
z_{12}+\gamma_{11}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{1 v_{1}}+\gamma_{1\left(v_{1}-1\right)}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\gamma_{1 v_{1}}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p 2}+\gamma_{p 1}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p v_{p}}+\gamma_{p\left(v_{p}-1\right)}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\gamma_{p v_{p}}^{u}\left(\tilde{\mathbf{z}}_{1}\right)
\end{array}\right] .
$$

Since

$$
L_{F_{0}}^{k} H_{i}(x)=\left.L_{f_{0}}^{k} h_{i}(\xi)\right|_{\xi=T(x)} \text { or } d L_{F_{0}}^{k} H_{i}(x)=\left.d L_{f_{0}}^{k} h_{i}(\xi)\right|_{\xi=T(x)} \frac{\partial T(x)}{\partial x}
$$

for $1 \leq j \leq p$ and $k \geq 0$, it is easy to see, by (8.191), that condition (i) of Theorem 8.8 is satisfied. Define vector fields $\left\{\bar{\psi}_{i k}^{u}(z) \mid 1 \leq i \leq p, 1 \leq k \leq v_{i}\right\}$ by

$$
\begin{equation*}
\bar{\psi}_{i 1}^{0}(z) \triangleq \frac{\partial}{\partial z_{i v_{i}}} ; \quad \bar{\psi}_{i k}^{u}(z) \triangleq \operatorname{ad}_{\bar{f}_{u}}^{k-1} \bar{\psi}_{i 1}^{0}(z) \tag{8.205}
\end{equation*}
$$

Then, by (8.204) and (8.205), it is clear that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
\bar{\psi}_{i k}^{u}(z)=(-1)^{k-1} \frac{\partial}{\partial z_{i\left(v_{i}+1-k\right)}}=\bar{\psi}_{i k}^{0}(z) \tag{8.206}
\end{equation*}
$$

which implies that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{i}$, and $1 \leq \ell \leq v_{j}$,

$$
\begin{equation*}
\left[\bar{\psi}_{i k}^{0}(z), \bar{\psi}_{j \ell}^{0}(z)\right]=0 \tag{8.207}
\end{equation*}
$$

Note that $\bar{f}_{u}(z)=S_{*}\left(F_{u}(x)\right)$ or $F_{u}(x)=S_{*}^{-1}\left(\bar{f}_{u}(z)\right)$. It is clear, by (8.205) and (8.206), that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{i}$,

$$
\begin{aligned}
L_{\mathrm{ad}_{\bar{F}_{0}}^{k-1} \bar{\psi}_{i 1}^{0}(z)} \bar{h}_{j}(z) & =L_{\bar{\psi}_{i k}^{0}} \bar{h}_{j}(z)=(-1)^{k-1} \frac{\partial z_{j 1}}{\partial z_{i\left(v_{i}+1-k\right)}} \\
& = \begin{cases}0, & k \leq v_{i}-1 \\
(-1)^{k-1} \delta_{i, j}, & k=v_{i}\end{cases}
\end{aligned}
$$

which implies, together with Example 2.4.16, that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq \nu_{i}$,

$$
\begin{equation*}
L_{\bar{\psi}_{i 1}^{0}} L_{\bar{f}_{0}}^{k-1} \bar{h}_{j}(z)=\delta_{i, j} \delta_{k, v_{i}} \tag{8.208}
\end{equation*}
$$

Hence, if we let

$$
\overline{\mathbf{g}}_{i 1}^{u}(x)=\overline{\mathbf{g}}_{i 1}^{0}(x) \triangleq S_{*}^{-1}\left(\bar{\psi}_{i 1}^{u}(z)\right), 1 \leq i \leq p
$$

then we have, by (2.30) and (8.208), that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq \nu_{i}$,

$$
L_{\overline{\mathbf{g}}_{i 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=\left.L_{\bar{\psi}_{i 1}^{0}} L_{\bar{f}_{u}}^{k-1} \bar{h}_{j}(z)\right|_{z=S(x)}=\delta_{i, j} \delta_{k, v_{i}}
$$

which implies that (8.199) is satisfied. Also, it is clear, by (2.37), (8.202), and (8.205), that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{align*}
\overline{\mathbf{g}}_{i k}^{u}(x) & =\operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{i 1}^{0}(x)=S_{*}^{-1}\left\{\operatorname{ad}_{S_{*}\left(F_{u}\right)}^{k-1} S_{*}\left(\overline{\mathbf{g}}_{i 1}^{0}(x)\right)\right\} \tag{8.209}\\
& =S_{*}^{-1}\left\{\operatorname{ad}_{\bar{f}_{u}}^{k-1} \bar{\psi}_{i 1}^{0}(z)\right\}=S_{*}^{-1}\left(\bar{\psi}_{i k}^{u}(z)\right)
\end{align*}
$$

and thus (8.200) and (8.201) are satisfied by (8.206) and (8.207). Finally, it is easy to see, by (8.206) and (8.209), that

$$
\begin{aligned}
I= & {\left[(-1)^{v_{1}-1} S_{*}\left(\overline{\mathbf{g}}_{1 \nu_{1}}^{0}(x)\right) \cdots-S_{*}\left(\overline{\mathbf{g}}_{12}^{0}(x)\right) S_{*}\left(\overline{\mathbf{g}}_{11}^{0}(x)\right)\right.} \\
& \left.\cdots(-1)^{v_{p}-1} S_{*}\left(\overline{\mathbf{g}}_{p v_{p}}^{0}(x)\right) \cdots-S_{*}\left(\overline{\mathbf{g}}_{p 2}^{0}(x)\right) S_{*}\left(\overline{\mathbf{g}}_{p 1}^{0}(x)\right)\right] \\
= & \left(\frac { \partial S (x) } { \partial x } \left[(-1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x)\right.\right. \\
& \left.\left.\cdots(-1)^{v_{p}-1} \overline{\mathbf{g}}_{p v_{p}}^{0}(x) \cdots-\overline{\mathbf{g}}_{p 2}^{0}(x) \overline{\mathbf{g}}_{p 1}^{0}(x)\right]\right)_{x=S^{-1}(z)}
\end{aligned}
$$

or

$$
\begin{aligned}
& I=\frac{\partial S(x)}{\partial x} {\left[(-1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x)\right.} \\
&\left.\cdots(-1)^{v_{p}-1} \overline{\mathbf{g}}_{p v_{p}}^{0}(x) \cdots-\overline{\mathbf{g}}_{p 2}^{0}(x) \overline{\mathbf{g}}_{p 1}^{0}(x)\right]
\end{aligned}
$$

which implies that (8.203) is satisfied.
Sufficiency. Suppose that condition (i) and condition (ii) of Theorem 8.8 are satisfied. Since $\left\{\overline{\mathbf{g}}_{i k}^{0}(x) \mid 1 \leq i \leq p, 1 \leq k \leq v_{i}\right\}$ is a set of commuting vector fields, there exists, by Theorem 2.7, a state transformation $z=S(x)$ such that for $1 \leq i \leq p$ and $1 \leq k \leq \nu_{i}$,

$$
\begin{equation*}
S_{*}\left(\overline{\mathbf{g}}_{i k}^{0}(x)\right)=(-1)^{k-1} \frac{\partial}{\partial z_{i\left(v_{i}+1-k\right)}} \tag{8.210}
\end{equation*}
$$

where

$$
z \triangleq\left[z_{11} \cdots z_{1 v_{1}} \cdots z_{p 1} \cdots z_{p v_{p}}\right]^{\top}
$$

In fact, $z=S(x)$ can be calculated by (8.203). Now it will be shown that for $1 \leq$ $j \leq p$

$$
\begin{equation*}
\bar{h}_{j}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=z_{j 1} \tag{8.211}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(z_{11}, \cdots, z_{p 1}\right) \tag{8.212}
\end{equation*}
$$

It is easy to see, by (2.30), (2.45), (8.199), (8.202), and (8.210), that for $1 \leq i \leq p$, $1 \leq j \leq p$, and $1 \leq k \leq \nu_{i}$,

$$
\begin{aligned}
L_{\overline{\mathbf{g}}_{i k}^{0}} H_{j}(x) & =L_{\mathrm{ad}_{F_{0}}^{k-1} \overline{\mathbf{g}}_{i 1}^{0}} H_{j}(x) \\
& =\sum_{\ell=0}^{k-1}(-1)^{k}\binom{k-1}{\ell} L_{F_{0}}^{k-1-\ell} L_{\overline{\mathbf{g}}_{i 1}^{0}} L_{F_{0}}^{\ell} H_{j}(x) \\
& =L_{F_{0}}^{k-1} H_{j}(x)=\delta_{i, j} \delta_{k, v_{i}}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \bar{h}_{j}(z)}{\partial z_{i\left(v_{i}+1-k\right)}} & =\frac{\partial\left(H_{j} \circ S^{-1}(z)\right)}{\partial z_{i\left(v_{i}+1-k\right)}}=(-1)^{k-1} L_{S_{*}\left(\overline{\bar{i}}_{i k}^{0}\right)}\left(H_{j} \circ S^{-1}(z)\right) \\
& =\left.(-1)^{k-1}\left\{L_{\overline{\mathbf{g}}_{i k}^{0}(x)} H_{j}(x)\right\}\right|_{x=S^{-1}(z)}=\delta_{i, j} \delta_{k, v_{i}}
\end{aligned}
$$

which implies that $\bar{h}_{j}(z)=z_{j 1}$ for $1 \leq j \leq p$ and thus (8.211) is satisfied. Let

$$
\begin{align*}
\bar{f}_{u}(z) & \triangleq \sum_{j=1}^{p} \sum_{\ell=1}^{v_{j}} \bar{f}_{j \ell}^{u}(z) \frac{\partial}{\partial z_{j \ell}} \tag{8.213}\\
& =\left[\bar{f}_{11}^{u}(z) \cdots \bar{f}_{1 v_{1}}^{u}(z) \cdots \bar{f}_{p 1}^{u}(z) \cdots \bar{f}_{p v_{p}}^{u}(z)\right]^{\top}
\end{align*}
$$

Since $\bar{f}_{u}(z)=S_{*}\left(F_{u}(x)\right)$, it is clear that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}-1$,

$$
\begin{align*}
S_{*}\left(\overline{\mathbf{g}}_{i(k+1)}^{u}(x)\right) & =S_{*}\left(\operatorname{ad}_{F_{u}} \overline{\mathbf{g}}_{i k}^{u}(x)\right)=\left[S_{*}\left(F_{u}(x)\right), S_{*}\left(\overline{\mathbf{g}}_{i k}^{u}(x)\right)\right] \\
& =\left[\bar{f}_{u}(z), S_{*}\left(\overline{\mathbf{g}}_{i k}^{u}(x)\right)\right] . \tag{8.214}
\end{align*}
$$

Thus, we have, by (8.210), (8.213), and (8.214), that for $1 \leq i \leq p$ and $1 \leq k \leq$ $v_{i}-1$,

$$
\begin{aligned}
(-1)^{k} \frac{\partial}{\partial z_{i\left(v_{i}-k\right)}} & =\left[\bar{f}_{u}(z),(-1)^{k-1} \frac{\partial}{\partial z_{i\left(v_{i}+1-k\right)}}\right] \\
& =(-1)^{k} \sum_{j=1}^{p} \sum_{\ell=1}^{v_{j}} \frac{\partial \bar{f}_{j \ell}^{u}(z)}{\partial z_{i\left(v_{i}+1-k\right)}} \frac{\partial}{\partial z_{j \ell}}
\end{aligned}
$$

which implies that for $1 \leq i \leq p, 1 \leq k \leq v_{i}-1,1 \leq j \leq p$, and $1 \leq \ell \leq v_{j}$,

$$
\frac{\partial \bar{f}_{j \ell}^{u}(z)}{\partial z_{i\left(v_{i}+1-k\right)}}= \begin{cases}1, & j=i, \ell=v_{i}-k \\ 0, & \text { otherwise }\end{cases}
$$

or

$$
\frac{\partial \bar{f}_{j \ell}^{u}(z)}{\partial z_{i(k+1)}}= \begin{cases}1, & j=i, \ell=k \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, it is clear that for $1 \leq j \leq p$ and $1 \leq \ell \leq v_{j}$,

$$
\bar{f}_{j \ell}^{u}(z)= \begin{cases}z_{j(\ell+1)}+\bar{\gamma}_{j \ell}^{u}\left(z_{11}, \cdots, z_{p 1}\right), & 1 \leq \ell \leq v_{j}-1 \\ \bar{\gamma}_{j v_{j}}^{u}\left(z_{11}, \cdots, z_{p 1}\right), & \ell=v_{j}\end{cases}
$$

for some functions $\bar{\gamma}_{j \ell}^{u}\left(z_{11}, \cdots, z_{p 1}\right)$. In other words, (8.212) is satisfied. Hence, by (8.211) and (8.212), system (8.132) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$.

Remark 8.6 Condition (i) of Theorem 8.8 is needed for the existence of the vector fields $\left\{\overline{\mathbf{g}}_{i 1}^{0}(x), \quad 1 \leq i \leq p\right\}$ which satisfy (8.199). For example, let $p=2$ and $\left(v_{1}, v_{2}\right)=(2,1)$. Then, by (8.199), 3×1 vector fields $\overline{\mathbf{g}}_{11}^{0}(x)$ and $\overline{\mathbf{g}}_{21}^{0}(x)$ satisfy the following equations:

$$
\left[\begin{array}{c}
d H_{1}(x) \tag{8.215}\\
d L_{F_{0}} H_{1}(x) \\
d H_{2}(x) \\
d L_{F_{0}} H_{2}(x)
\end{array}\right] \overline{\mathbf{g}}_{11}^{0}(x)=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
d H_{1}(x) \tag{8.216}\\
d H_{2}(x)
\end{array}\right] \overline{\mathbf{g}}_{21}^{0}(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

If $d L_{F_{0}} H_{2}(x) \notin \operatorname{span}\left\{d H_{1}(x), d H_{2}(x)\right\}$ (or condition (i) of Theorem 8.8 is not satisfied), there does not exist $\overline{\mathbf{g}}_{11}^{0}(x)$ that satisfies equation (8.215).

A unique set of vector fields $\left\{\mathbf{g}_{i 1}^{0}(x), 1 \leq i \leq p\right\}$ has been defined in (8.168) by using $1 \leq k \leq v_{j}$ instead of $1 \leq k \leq v_{i}$ in (8.199). For example, let $p=2$ and $\left(\nu_{1}, \nu_{2}\right)=(2,1)$. Then, we have, by (8.168), that

$$
\left[\mathbf{g}_{11}^{0}(x) \mathbf{g}_{21}^{0}(x)\right]=\left[\begin{array}{c}
d H_{1}(x) \tag{8.217}\\
d L_{F_{0}} H_{1}(x) \\
d H_{2}(x)
\end{array}\right]^{-1}\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

whereas $\overline{\mathbf{g}}_{11}^{0}(x)$ and $\overline{\mathbf{g}}_{21}^{0}(x)$ satisfy

$$
\left[\begin{array}{c}
d H_{1}(x) \tag{8.218}\\
d L_{F_{0}} H_{1}(x) \\
d H_{2}(x)
\end{array}\right]\left[\overline{\mathbf{g}}_{11}^{0}(x) \overline{\mathbf{g}}_{21}^{0}(x)\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & \tilde{\ell}(x) \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \tilde{\ell}(x) \\
0 & 1
\end{array}\right]
$$

if we let $L_{\overline{\mathbf{g}}_{21}^{0}} L_{F_{0}} H_{1}(x)=\tilde{\ell}(x)$ which is not defined in (8.216). Thus, we have, by (8.217) and (8.218), that

$$
\begin{aligned}
{\left[\overline{\mathbf{g}}_{11}^{0}(x) \overline{\mathbf{g}}_{21}^{0}(x)\right] } & =\left[\mathbf{g}_{11}^{0}(x) \mathbf{g}_{21}^{0}(x)\right]\left[\begin{array}{cc}
1 & \tilde{\ell}(x) \\
0 & 1
\end{array}\right] \\
& =\left[\mathbf{g}_{11}^{0}(x) \mathbf{g}_{21}^{0}(x)+\tilde{\ell}(x) \mathbf{g}_{11}^{0}(x)\right]
\end{aligned}
$$

Therefore, we need to find $\tilde{\ell}(x)$ such that (8.200) is satisfied. By this reason, the conditions in Theorem 8.8 are not verifiable necessary and sufficient conditions. In fact, we can restate condition (ii) of Theorem 8.8 as follows:
(ii)' there exist smooth functions $\tilde{\ell}_{i, j, k}(x), 2 \leq i \leq p, 1 \leq j \leq i-1,1 \leq k \leq$ $v_{j}-v_{i}$ such that (8.200) and (8.201) are satisfied, where for $2 \leq i \leq p$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i 1}^{0}(x)=\mathbf{g}_{i 1}^{0}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \tilde{\ell}_{i, j, k}(x) \overline{\mathbf{g}}_{j k}^{0}(x) . \tag{8.219}
\end{equation*}
$$

Theorem 8.9 System (8.132) is state equivalent to a dual Brunovsky NOCF, if and only if
(i) for $1 \leq i \leq p$,

$$
\begin{equation*}
d L_{F_{0}}^{\nu_{i}} H_{i}(x) \in \operatorname{span}\left\{d L_{F_{0}}^{k-1} H_{j}(x), 1 \leq j \leq p, 1 \leq k \leq v_{i}\right\} \tag{8.220}
\end{equation*}
$$

(ii) there exist smooth functions $\gamma_{j r}(y), 1 \leq j \leq p-1,1 \leq r \leq v_{j}-v_{p}$ such that for $1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq v_{i}$, and $1 \leq r \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i k}^{u}(x)=\left.\overline{\mathbf{g}}_{i k}^{u}(x)\right|_{u=0} \triangleq \overline{\mathbf{g}}_{i k}^{0}(x) \tag{8.221}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{i k}^{0}(x), \overline{\mathbf{g}}_{j r}^{0}(x)\right]=0 \tag{8.222}
\end{equation*}
$$

where for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{i}$,

$$
\begin{array}{r}
\tilde{\ell}_{i, j, k}(x)=(-1)^{k-1} \sum_{r=1}^{v_{j}-v_{i}+1-k} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) \\
\overline{\mathbf{g}}_{i 1}^{0}(x)=\mathbf{g}_{i 1}^{0}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \tilde{\ell}_{i, j, k}(x) \overline{\mathbf{g}}_{j k}^{0}(x) \tag{8.224}
\end{array}
$$

and

$$
\begin{equation*}
\overline{\mathbf{g}}_{i k}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{i 1}^{0}(x) \tag{8.225}
\end{equation*}
$$

Furthermore, a state coordinates transformation $z=S(x)$ is given by

$$
\begin{align*}
\frac{\partial S(x)}{\partial x}=[& (-1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x) \tag{8.226}\\
& \left.\cdots(-1)^{v_{p}-1} \overline{\mathbf{g}}_{p v_{p}}^{0}(x) \cdots-\overline{\mathbf{g}}_{p 2}^{0}(x) \overline{\mathbf{g}}_{p 1}^{0}(x)\right]^{-1} .
\end{align*}
$$

Proof Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF with $z=S(x)$. Then, it is clear, by Theorem 8.8, that condition (i) of Theorem 8.9 is satisfied. Also, we have, by (8.139) and (8.140), that

$$
\bar{h}(z) \triangleq \varphi \circ H \circ S^{-1}(z)=C_{o} z=\left[\begin{array}{lll}
z_{11} & \cdots & z_{p 1} \tag{8.227}
\end{array}\right]^{\top} \triangleq \tilde{\mathbf{z}}_{1}
$$

and

$$
\bar{f}_{u}(z) \triangleq S_{*}\left(F_{u}(x)\right)=A_{o} z+\bar{\gamma}^{u}\left(\tilde{\mathbf{z}}_{1}\right)=\left[\begin{array}{c}
z_{12}+\bar{\gamma}_{11}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \tag{8.228}\\
\vdots \\
z_{1 v_{1}}+\bar{\gamma}_{\left(1 v_{1}-1\right)}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\bar{\gamma}_{1 v_{1}}^{u}\left(\overline{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p 2}+\bar{\gamma}_{p 1}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\vdots \\
z_{p v_{p}}+\bar{\gamma}_{p\left(v_{p}-1\right)}^{u}\left(\tilde{\mathbf{z}}_{1}\right) \\
\bar{\gamma}_{p v_{p}}^{u}\left(\tilde{\mathbf{z}}_{1}\right)
\end{array}\right]
$$

where

$$
z \triangleq\left[\begin{array}{llllll}
z_{11} & \cdots & z_{1 v_{1}} & \cdots & z_{p 1} & \cdots
\end{array} z_{p v_{p}}\right]^{\top} .
$$

We define vector fields $\left\{\bar{\psi}_{i k}^{u}(z) \mid 1 \leq i \leq p, 1 \leq k \leq v_{i}\right\}$ by

$$
\begin{equation*}
\bar{\psi}_{i 1}^{0}(z) \triangleq \frac{\partial}{\partial z_{i v_{i}}} ; \quad \bar{\psi}_{i k}^{u}(z) \triangleq \operatorname{ad}_{\bar{f}_{u}}^{k-1} \bar{\psi}_{i 1}^{0}(z) \tag{8.229}
\end{equation*}
$$

Then, by (8.228) and (8.229), it is clear that for $1 \leq i \leq p$ and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
\bar{\psi}_{i k}^{u}(z)=(-1)^{k-1} \frac{\partial}{\partial z_{i\left(v_{i}+1-k\right)}}=\bar{\psi}_{i k}^{0}(z) \tag{8.230}
\end{equation*}
$$

which implies that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{i}$, and $1 \leq r \leq v_{j}$,

$$
\begin{equation*}
\left[\bar{\psi}_{i k}^{0}(z), \bar{\psi}_{j r}^{0}(z)\right]=0 \tag{8.231}
\end{equation*}
$$

Let $\xi=T(x)$ and $z=\bar{S}(\xi) \triangleq S \circ T^{-1}(\xi)$. Also, we let, for $1 \leq i \leq p$,

$$
\begin{equation*}
\bar{\tau}_{i 1}^{0}(\xi) \triangleq \bar{S}_{*}^{-1}\left(\bar{\psi}_{i 1}^{0}(z)\right) \tag{8.232}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathbf{g}}_{i 1}^{0}(x) \triangleq S_{*}^{-1}\left(\bar{\psi}_{i 1}^{0}(z)\right)=T_{*}^{-1}\left(\bar{\tau}_{i 1}^{0}(\xi)\right) . \tag{8.233}
\end{equation*}
$$

Then, it is clear, by (2.37), (8.225), and (8.229), that for $1 \leq i \leq p$ and $1 \leq k \leq \nu_{i}$,

$$
\begin{align*}
\overline{\mathbf{g}}_{i k}^{u}(x) & =\operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{i 1}^{0}(x)=S_{*}^{-1}\left\{\operatorname{ad}_{S_{*}\left(F_{u}\right)}^{k-1} S_{*}\left(\overline{\mathbf{g}}_{i 1}^{0}(x)\right)\right\} \tag{8.234}\\
& =S_{*}^{-1}\left\{\operatorname{ad}_{\bar{f}_{u}}^{k-1} \bar{\psi}_{i 1}^{0}(z)\right\}=S_{*}^{-1}\left(\bar{\psi}_{i k}^{u}(z)\right)
\end{align*}
$$

and thus (8.221) and (8.222) are satisfied by (8.230) and (8.231). We need to show that (8.223) and (8.224) are satisfied. Note that we are assuming $\nu_{1} \geq v_{2} \geq \cdots \geq v_{p} \geq 1$. Thus, we have, by (2.30) and (8.184), that for $1 \leq j \leq p$ and $1 \leq k \leq v_{j}$,

$$
\begin{align*}
z_{j k} & \triangleq \bar{S}_{j k}(\xi)=S_{j k} \circ T^{-1}(\xi) \\
& =\left.L_{F_{0}}^{k-1} H_{j}(x)\right|_{x=T^{-1}(\xi)}-\left.\sum_{r=1}^{k-1} L_{F_{0}}^{k-1-r}\left(\gamma_{j r}^{0} \circ H(x)\right)\right|_{x=T^{-1}(\xi)} \\
& =L_{f_{0}}^{k-1} h_{j}(\xi)-\sum_{r=1}^{k-1} L_{f_{0}}^{k-1-r} \gamma_{j r}^{0}(h(\xi)) \tag{8.235}\\
& =\xi_{j k}-\sum_{r=1}^{k-1} L_{f_{0}}^{k-1-r} \gamma_{j r}^{0}(h(\xi))
\end{align*}
$$

where $f_{0}(\xi) \triangleq T_{*}\left(F_{0}(x)\right)$ in (8.167). Note, by (8.190), that for $1 \leq i \leq p, 1 \leq j \leq$ $p, 1 \leq r \leq k-1$, and $k \leq v_{i}$,

$$
\frac{\partial}{\partial \xi_{i \nu_{i}}}\left(L_{f_{0}}^{k-1-r} \gamma_{j r}^{0}(h(\xi))\right)=L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1-r} \gamma_{j r}^{0}(h(\xi))=0
$$

which implies, together with (8.235), that for $1 \leq j \leq p, 1 \leq i \leq p$, and $1 \leq k \leq v_{j}$,

$$
\frac{\partial \bar{S}_{j k}(\xi)}{\partial \xi_{i v_{i}}}= \begin{cases}\delta_{i, j} \delta_{k, v_{i}}, & 1 \leq k \leq v_{i} \tag{8.236}\\ \epsilon_{i, j, k}, & v_{i}+1 \leq k \leq v_{j}(\text { and } j<i)\end{cases}
$$

where

$$
\begin{align*}
\epsilon_{i, j, k}(\xi) & \triangleq-\sum_{r=1}^{k-1} \frac{\partial}{\partial \xi_{i v_{i}}}\left(L_{f_{0}}^{k-1-r} \gamma_{j r}(h(\xi))\right) \\
& =-\sum_{r=1}^{k-v_{i}} L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1-r} \gamma_{j r}(h(\xi)) \tag{8.237}
\end{align*}
$$

Now, we will express vector fields $\bar{S}_{*}\left(\tau_{i 1}^{0}(\xi)\right), 1 \leq i \leq p$ in terms of vector fields $\left\{\bar{\psi}_{j k}^{0}(z), 1 \leq j \leq p, 1 \leq k \leq v_{j}\right\}$. Note, by the definition of $\bar{S}_{*}\left(\tau_{i 1}^{0}\right)$, that for $1 \leq$ $i \leq p$,

$$
\bar{S}_{*}\left(\tau_{i 1}^{0}\right)=\bar{S}_{*}\left(\frac{\partial}{\partial \xi_{i v_{i}}}\right)=\left.\sum_{j=1}^{p} \sum_{k=1}^{v_{j}} \frac{\partial \bar{S}_{j k}(\xi)}{\partial \xi_{i v_{i}}}\right|_{\xi=S^{-1}(z)} \frac{\partial}{\partial z_{j k}}
$$

which implies, together with (8.230), (8.236), and (8.237), that for $1 \leq i \leq p$,

$$
\begin{align*}
\bar{S}_{*}\left(\tau_{i 1}^{0}(\xi)\right) & =\frac{\partial}{\partial z_{i v_{i}}}+\left.\sum_{j=1}^{i-1} \sum_{k=v_{i}+1}^{v_{j}} \epsilon_{i, j, k}(\xi)\right|_{\xi=S^{-1}(z)} \frac{\partial}{\partial z_{j k}} \\
& =\frac{\partial}{\partial z_{i v_{i}}}+\left.\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \epsilon_{i, j,\left(v_{j}+1-k\right)}\right|_{\xi=S^{-1}(z)} \frac{\partial}{\partial z_{j\left(v_{j}+1-k\right)}} \tag{8.238}\\
& =\bar{\psi}_{i 1}^{0}(z)-\left.\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \ell_{i, j, k}(\xi)\right|_{\xi=S^{-1}(z)} \bar{\psi}_{j k}^{0}(z)
\end{align*}
$$

where

$$
\begin{align*}
\ell_{i, j, k}(\xi) & \triangleq(-1)^{k} \epsilon_{i, j,\left(v_{j}+1-k\right)}(\xi) \\
& =(-1)^{k-1} \sum_{r=1}^{v_{j}-v_{i}+1-k} L_{\tau_{i 1}^{0}} L_{f_{0}}^{v_{j}-k-r} \gamma_{j r}(h(\xi)) . \tag{8.239}
\end{align*}
$$

Note, by (2.49), (8.232), (8.233), and (8.239), that

$$
\bar{S}_{*}^{-1}\left(\left.\ell_{i, j, k}(\xi)\right|_{\xi=S^{-1}(z)} \bar{\psi}_{j k}^{0}(z)\right)=\ell_{i, j, k}(\xi) \bar{\tau}_{j k}^{0}(\xi)
$$

and

$$
T_{*}^{-1}\left(\ell_{i, j, k}(\xi) \bar{\tau}_{j k}^{0}(\xi)\right)=\ell_{i, j, k}(T(x)) \overline{\mathbf{g}}_{j k}^{0}(\xi) \triangleq \tilde{\ell}_{i, j, k}(x) \overline{\mathbf{g}}_{j k}^{0}(\xi)
$$

where

$$
\begin{align*}
\tilde{\ell}_{i, j, k}(x) & =\left.(-1)^{k-1} \sum_{r=1}^{v_{j}-v_{i}+1-k} L_{\tau_{i 1}^{0}} L_{f_{0}}^{v_{j}-k-r} \gamma_{j r}(h(\xi))\right|_{\xi=T(x)} \tag{8.240}\\
& =(-1)^{k-1} \sum_{r=1}^{v_{j}-v_{i}+1-k} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) .
\end{align*}
$$

Therefore, it is clear, by (8.240), that (8.223) is satisfied. Also, we have, by (8.232), (8.233), and (8.238), that for $1 \leq i \leq p$,

$$
\bar{\tau}_{i 1}^{0}(\xi)=\bar{S}_{*}^{-1}\left(\bar{\psi}_{i 1}^{0}(z)\right)=\tau_{i 1}^{0}(\xi)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \ell_{i, j, k}(\xi) \bar{\tau}_{j k}^{0}(\xi)
$$

and

$$
\overline{\mathbf{g}}_{i 1}^{0}(x)=T_{*}^{-1}\left(\bar{\tau}_{i 1}^{0}(\xi)\right)=\mathbf{g}_{i 1}^{0}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \tilde{\ell}_{i, j, k}(x) \overline{\mathbf{g}}_{j k}^{0}(x)
$$

which implies that (8.224) is satisfied.

Sufficiency. Suppose that condition (i) and condition (ii) of Theorem 8.9 are satisfied. If we show that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
L_{\overline{\mathbf{g}}_{i 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=\delta_{i, j} \delta_{k, v_{i}} \tag{8.241}
\end{equation*}
$$

then system (8.132) is, by Theorem 8.8, state equivalent to a dual Brunovsky NOCF. Let $\xi=T(x), h(\xi) \triangleq H \circ T^{-1}(\xi), f_{0}(\xi) \triangleq T_{*}\left(F_{0}(x)\right)$, and $\tau_{i 1}^{0}(\xi) \triangleq T_{*}\left(\mathbf{g}_{i 1}^{0}(x)\right)$. First, it will be shown that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1} h_{j}(\xi)=\delta_{i, j} \delta_{k, v_{i}} \tag{8.242}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=\left.L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1} h_{j}(\xi)\right|_{\xi=T(x)}=\delta_{i, j} \delta_{k, v_{i}} . \tag{8.243}
\end{equation*}
$$

Note, by (8.174), that for $1 \leq i \leq p, 1 \leq j \leq p$, and $1 \leq k \leq v_{j}$,

$$
\begin{equation*}
L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1} h_{j}(\xi)=\delta_{i, j} \delta_{k, v_{i}} \tag{8.244}
\end{equation*}
$$

Therefore, (8.242) is satisfied when $\nu_{i} \leq v_{j}$. Let for $1 \leq k \leq v_{1}$,

$$
\tilde{\xi}_{k} \triangleq\left\{\xi_{r k} \mid 1 \leq r \leq p \text { and } v_{r} \geq k\right\}
$$

and for $1 \leq i \leq p$ and $1 \leq j \leq v_{i}$,

$$
f_{i j}^{0}(\xi) \triangleq \begin{cases}\xi_{i(j+1)}, & 1 \leq j \leq v_{i}-1 \\ \alpha_{i v_{i}}^{0}(\xi), & j=v_{i}\end{cases}
$$

It is easy to see, by (8.167) and (8.220), that for $1 \leq j \leq p$,

$$
\begin{aligned}
d L_{f_{0}}^{\nu_{j}} h_{j}(\xi) & \in \operatorname{span}\left\{d L_{f_{0}}^{k-1} h_{r}(\xi), 1 \leq r \leq p, 1 \leq k \leq v_{j}\right\} \\
& \in \operatorname{span}\left\{d \xi_{r k}, 1 \leq r \leq p, 1 \leq k \leq \min \left(v_{r}, v_{j}\right)\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
\alpha_{j v_{j}}^{0}(\xi)=L_{f_{0}}^{v_{j}} h_{j}(x) \triangleq \bar{\alpha}_{j \nu_{j}}^{0}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{\nu_{j}}\right) \tag{8.245}
\end{equation*}
$$

Thus, we have, by (8.167) and (8.245), that for $1 \leq j \leq p$ and $1 \leq k \leq v_{1}-v_{j}$,

$$
\begin{equation*}
L_{f_{0}}^{v_{j}+k-1} h_{j}(\xi)=\phi_{j, k}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{v_{j}+k-1}\right) \tag{8.246}
\end{equation*}
$$

where $\phi_{j, 1}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{\nu_{j}}\right)=\bar{\alpha}_{j_{j}}^{0}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{\nu_{j}}\right)$ and for $2 \leq k \leq v_{1}-v_{j}$,

$$
\phi_{j, k}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{v_{j}+k-1}\right)=\sum_{r=1}^{p} \sum_{j=1}^{\min \left(k-1, v_{r}\right)} \frac{\partial \phi_{j,(k-1)}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{v_{j}+k-2}\right)}{\partial \xi_{r j}} f_{r j}^{0}(\xi)
$$

Thus, it is clear, by (8.172) and (8.246), that for $1 \leq i \leq p, 1 \leq j \leq p$, and $v_{j}+1 \leq$ $k \leq v_{i}$,

$$
L_{\tau_{i 1}^{0}} L_{f_{0}}^{k-1} h_{j}(\xi)=\frac{\partial \phi_{j, k}\left(\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{k-1}\right)}{\partial \xi_{i v_{i}}}=0
$$

which implies that (8.242) is also satisfied when $v_{i}>v_{j}$. Therefore, (8.242) and (8.243) are satisfied, if condition (i) of Theorem 8.9 is satisfied. Finally, it will be shown, by mathematical induction, that (8.241) is satisfied. Since $\overline{\mathbf{g}}_{11}(x)=\mathbf{g}_{11}(x)$, it is clear, by (8.243), that (8.241) is satisfied for $i=1$. Assume that (8.241) holds when $1 \leq i \leq q-1$ and $2 \leq q \leq p$. Then, we have, by Example 2.4.16, that for $1 \leq i \leq q-1,1 \leq j \leq p$, and $1 \leq k \leq v_{i}$,

$$
\begin{equation*}
L_{\overline{\mathbf{g}}_{i r}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=0, r+k-1 \leq v_{i}-1 . \tag{8.247}
\end{equation*}
$$

Thus, it is clear, by (8.224), (8.243), and (8.247), that for $1 \leq j \leq p$ and $1 \leq k \leq v_{q}$,

$$
\begin{aligned}
L_{\overline{\mathbf{g}}_{q 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x) & =L_{\mathbf{g}_{q 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)+\sum_{s=1}^{q-1} \sum_{r=1}^{v_{s}-v_{q}} \tilde{\ell}_{q, s, r}(x) L_{\overline{\mathbf{g}}_{s r}^{0}} L_{F_{0}}^{k-1} H_{j}(x) \\
& =L_{\mathbf{g}_{q 1}^{0}} L_{F_{0}}^{k-1} H_{j}(x)=\delta_{q, j} \delta_{k, v_{q}}
\end{aligned}
$$

which implies that (8.241) is satisfied for $i=q$. Hence, by mathematical induction, (8.241) is satisfied.

Corollary 8.5 Suppose that $v_{1}=\cdots=v_{p}$. System (8.132) is state equivalent to a dual Brunovsky NOCF, if and only if
(i) for $1 \leq i \leq p$, and $1 \leq k \leq \nu_{i}$

$$
\mathbf{g}_{i k}^{u}(x)=\left.\mathbf{g}_{i k}^{u}(x)\right|_{u=0} \triangleq \mathbf{g}_{i k}^{0}(x)
$$

(ii) for $1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq v_{i}$, and $1 \leq \ell \leq v_{j}$,

$$
\left[\mathbf{g}_{i k}^{0}(x), \mathbf{g}_{j \ell}^{0}(x)\right]=0
$$

Furthermore, a state coordinates transformation $z=S(x)$ is given by

$$
\begin{aligned}
\frac{\partial S(x)}{\partial x}=[& (-1)^{v_{1}-1} \mathbf{g}_{1 v_{1}}^{0}(x) \cdots-\mathbf{g}_{12}^{0}(x) \mathbf{g}_{11}^{0}(x) \\
& \left.\cdots(-1)^{v_{p}-1} \mathbf{g}_{p v_{p}}^{0}(x) \cdots-\mathbf{g}_{p 2}^{0}(x) \mathbf{g}_{p 1}^{0}(x)\right]^{-1} .
\end{aligned}
$$

Suppose that system (8.132) is equivalent to a dual Brunovsky NOCF. Then, by Theorem 8.9, there exist smooth functions $\gamma_{j r}(y), 1 \leq j \leq p-1,1 \leq r \leq v_{j}-v_{p}$ such that for $2 \leq i \leq p$ and $1 \leq s \leq v_{1}-v_{i}$ (by changing the order of summations),

$$
\begin{align*}
\overline{\mathbf{g}}_{i 1}^{0}(x)= & \mathbf{g}_{i 1}^{0}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}} \sum_{r=1}^{v_{j}-v_{i}+1-k}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \\
= & \mathbf{g}_{i 1}^{0}(x)+\sum_{j=1}^{i-1} \sum_{r=1}^{v_{j}-v_{i}} \sum_{k=1}^{v_{j}-v_{i}+1-r}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \\
= & \tilde{\mathbf{g}}_{i 1}^{s-1}(x)+\sum_{j=1}^{i-1} \sum_{r=s}^{v_{j}-v_{i}} \sum_{k=1}^{v_{j}-v_{i}+1-r}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \\
= & \tilde{\mathbf{g}}_{i 1}^{s-1}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}+1-s} \sum_{r=s}^{v_{j}-v_{i}+1-k}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H) \overline{\mathbf{g}}_{j k}^{0} \\
= & \tilde{\mathbf{g}}_{i 1}^{s-1}(x)+\sum_{j=1}^{i-1}(-1)^{v_{j}-v_{i}-s} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{i}-1} \gamma_{j s}(H(x)) \overline{\mathbf{g}}_{j\left(v_{j}-v_{i}+1-s\right)}^{0}(x) \\
& +\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}-s} \sum_{r=s}^{v_{j}-v_{i}+1-k}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \tag{8.248}
\end{align*}
$$

where, for $1 \leq s \leq \nu_{1}-v_{i}+1$,

$$
\begin{equation*}
\tilde{\mathbf{g}}_{i 1}^{s-1}(x) \triangleq \mathbf{g}_{i 1}^{0}(x)+\sum_{j=1}^{i-1} \sum_{r=1}^{s-1} \sum_{k=1}^{v_{j}-v_{i}+1-r}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-r} \gamma_{j r}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \tag{8.249}
\end{equation*}
$$

That is, $\tilde{\mathbf{g}}_{21}^{0}(x) \triangleq \mathbf{g}_{21}^{0}(x)$ and, for $1 \leq s \leq v_{1}-v_{i}$,

$$
\begin{equation*}
\tilde{\mathbf{g}}_{i 1}^{s}(x) \triangleq \tilde{\mathbf{g}}_{i 1}^{s-1}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}+1-s}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-s} \gamma_{j s}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \tag{8.250}
\end{equation*}
$$

and

$$
\begin{align*}
\overline{\mathbf{g}}_{i 1}^{0}(x) \equiv & \tilde{\mathbf{g}}_{i 1}^{s-1}(x)+(-1)^{v_{j}-v_{i}-s} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{i}-1} \gamma_{j s}(H(x)) \overline{\mathbf{g}}_{j\left(v_{j}-v_{i}+1-s\right)}^{0}(x) \tag{8.251}\\
& \bmod \Phi_{i s}(x)
\end{align*}
$$

where

$$
\begin{align*}
\Phi_{i s}(x) & \triangleq \operatorname{span}\left\{\overline{\mathbf{g}}_{j k}^{0}(x), 1 \leq j \leq i-1,1 \leq k \leq v_{j}-v_{i}-s\right\} \tag{8.252}\\
& =\operatorname{span}\left\{\mathbf{g}_{j k}^{0}(x), 1 \leq j \leq i-1,1 \leq k \leq v_{j}-v_{i}-s\right\}
\end{align*}
$$

Lemma 8.7 Suppose that system (8.132) is equivalent to a dual Brunovsky NOCF. Then, there exist smooth functions $\gamma_{j r}(y), 1 \leq j \leq p-1,1 \leq r \leq v_{j}-v_{p}$ such that for $2 \leq i \leq p, 1 \leq q \leq i-1$, and $1 \leq s \leq v_{j}-v_{i}$,

$$
\begin{align*}
{\left[\overline{\mathbf{g}}_{q v_{q}}^{0}(x), \tilde{\mathbf{g}}_{i 1}^{s-1}(x)\right] \equiv } & \left.\sum_{j=1}^{i-1}(-1)^{v_{j}-v_{i}-s+v_{q}} \frac{\partial^{2} \gamma_{j s}(y)}{\partial y_{q} \partial y_{i}}\right|_{y=H(x)} \mathbf{g}_{j\left(v_{j}-v_{i}+1-s\right)}^{0}(x) \\
& \bmod \Phi_{i s}(x) \tag{8.253}
\end{align*}
$$

where, for $2 \leq i \leq p$ and $1 \leq s \leq v_{1}-v_{i}$,

$$
\begin{equation*}
\tilde{\mathbf{g}}_{i 1}^{0}(x) \triangleq \mathbf{g}_{i 1}^{0}(x) \tag{8.254}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\mathbf{g}}_{i 1}^{s}(x) \triangleq \tilde{\mathbf{g}}_{i 1}^{s-1}(x)+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}+1-s}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-s} \gamma_{j s}(H(x)) \overline{\mathbf{g}}_{j k}^{0}(x) \tag{8.255}
\end{equation*}
$$

Proof Suppose that system (8.132) is equivalent to dual Brunovsky NOCF. Note that $\xi=T(x)$ and $h(\xi) \triangleq H \circ T^{-1}(\xi)=\left[\xi_{11} \cdots \xi_{p 1}\right]^{\top} \triangleq \tilde{\xi}_{1}$. Then, by (2.30), (8.192), (8.193), and (8.224), we have that

$$
\begin{gathered}
L_{\tau_{i 1}^{0}} L_{f_{0}}^{v_{i}-1} \gamma_{j s}(h(\xi))=\frac{\partial \gamma_{j s}(h(\xi))}{\partial \xi_{i 1}}=\frac{\partial \gamma_{j s}\left(\tilde{\xi}_{1}\right)}{\partial \xi_{i 1}} \\
\bar{\tau}_{q v_{q}}^{0}(\xi) \equiv(-1)^{v_{q}-1} \frac{\partial}{\partial \xi_{q 1}} \bmod \operatorname{span}\left\{\frac{\partial}{\partial \xi_{i j}}, 1 \leq i \leq p, 2 \leq j \leq v_{i}\right\} \\
L_{\tilde{\tau}_{q v q}^{0}}^{0} L_{\tau_{i 1}^{0}} L_{f_{0}}^{v_{i}-1} \gamma_{j s}(h(\xi))=L_{\tilde{\tau}_{q v q}}^{0} \frac{\partial \gamma_{j s}\left(\tilde{\xi}_{1}\right)}{\partial \xi_{i 1}}=(-1)^{v_{q}-1} \frac{\partial^{2} \gamma_{j s}\left(\tilde{\xi}_{1}\right)}{\partial \xi_{q 1} \partial \xi_{i 1}}
\end{gathered}
$$

and

$$
\begin{align*}
L_{\tilde{\mathbf{g}}_{q v_{q}}^{0}} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{i}-1} \gamma_{j s}(H(x)) & =\left.L_{\tilde{\tau}_{q v_{q}}^{0}} L_{\tau_{i 1}^{0}} L_{f_{0}}^{v_{i}-1} \gamma_{j s}(h(\xi))\right|_{\xi=T(x)} \\
& =\left.(-1)^{v_{q}-1} \frac{\partial^{2} \gamma_{j s}(y)}{\partial y_{q} \partial y_{i}}\right|_{y=H(x)} \tag{8.256}
\end{align*}
$$

where $\bar{\tau}_{i k}^{0}(\xi) \triangleq T_{*}\left(\overline{\mathbf{g}}_{i k}^{0}(x)\right), 1 \leq i \leq p, 1 \leq k \leq v_{i}$ and for $1 \leq i \leq p$,

$$
\bar{\tau}_{i 1}^{0}(\xi)=\tau_{i 1}^{0}(\xi)+\sum_{j=1}^{i-1} \sum_{k=1}^{\nu_{j}-v_{i}} \tilde{\ell}_{i, j, k} \circ T^{-1}(\xi) \bar{\tau}_{j k}^{0}(\xi)
$$

Thus, we have, by (8.222), (8.251), and (8.256), that for $2 \leq i \leq p, 1 \leq q \leq i-1$, and $1 \leq s \leq v_{j}-\nu_{i}$,

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{q v_{q}}^{0}(x), \overline{\mathbf{g}}_{i 1}^{0}(x)\right] \equiv\left[\overline{\mathbf{g}}_{q v_{q}}^{0}(x), \tilde{\mathbf{g}}_{i 1}^{s-1}(x)\right] \\
& +\sum_{j=1}^{i-1}(-1)^{v_{j}-v_{i}-s} L_{\overline{\mathbf{g}}_{q v_{q}}^{0}} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{i}-1} \gamma_{j s}(H(x)) \overline{\mathbf{g}}_{j\left(v_{j}-v_{i}+1-s\right)}^{0}(x) \bmod \Phi_{i s}(x) \\
& \equiv\left[\overline{\mathbf{g}}_{q v_{q}}^{0}(x), \tilde{\mathbf{g}}_{i 1}^{s-1}(x)\right] \\
& +\left.\sum_{j=1}^{i-1}(-1)^{v_{j}-v_{i}-s+v_{q}-1} \frac{\partial^{2} \gamma_{j s}(y)}{\partial y_{q} \partial y_{i}}\right|_{y=H(x)} \overline{\mathbf{g}}_{j\left(v_{j}-v_{i}+1-s\right)}^{0}(x) \bmod \Phi_{i s}(x)
\end{aligned}
$$

which implies that (8.253) is satisfied.
Theorem 8.10 System (8.132) is equivalent to a dual Brunovsky NOCF, if and only if
(i) for $1 \leq i \leq p$,

$$
\begin{equation*}
d L_{F_{0}}^{\nu_{i}} H_{i}(x) \in \operatorname{span}\left\{d L_{F_{0}}^{k-1} H_{j}(x), 1 \leq j \leq p, 1 \leq k \leq v_{i}\right\} \tag{8.257}
\end{equation*}
$$

(ii) there exist smooth functions $\gamma_{j s}(y)$ and $\beta_{j s}^{q, i}(y)$ for $2 \leq i \leq p, 1 \leq j \leq i-1$, $1 \leq s \leq v_{j}-v_{i}$, and $1 \leq q \leq i-1$, such that for $2 \leq i \leq p, 1 \leq j \leq i-1$, $1 \leq s \leq v_{j}-v_{i}$, and $1 \leq q \leq i-1$,

$$
\begin{align*}
{\left[\overline{\mathbf{g}}_{q v_{q}}^{0}(x), \tilde{\mathbf{g}}_{i 1}^{s-1}(x)\right] \equiv } & \sum_{j=1}^{i-1}(-1)^{v_{j}-v_{i}-s+v_{q}} \beta_{j s}^{q, i}(H(x)) \mathbf{g}_{j\left(v_{j}-v_{i}+1-s\right)}^{0} \tag{8.258}\\
& \bmod \Phi_{i s}(x)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \gamma_{j s}(y)}{\partial y_{q} \partial y_{i}}=\beta_{j s}^{q, i}(y) \tag{8.259}
\end{equation*}
$$

where for $1 \leq i \leq p$ and $1 \leq s \leq v_{1}-v_{i}$,

$$
\begin{gather*}
\Phi_{i s}(x) \triangleq \operatorname{span}\left\{\mathbf{g}_{j k}^{0}(x), 1 \leq j \leq i-1,1 \leq k \leq v_{j}-v_{i}-s\right\} \tag{8.260}\\
\tilde{\mathbf{g}}_{i 1}^{0}(x) \triangleq \mathbf{g}_{i 1}^{0}(x) \tag{8.261}
\end{gather*}
$$

$$
\begin{align*}
\tilde{\mathbf{g}}_{i 1}^{s}(x) & \triangleq \tilde{\mathbf{g}}_{i 1}^{s-1}(x) \\
& +\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}+1-s}(-1)^{k-1} L_{\mathbf{g}_{i 1}} L_{F_{0}}^{v_{j}-k-s} \gamma_{j s}(H(x)) \tilde{\mathbf{g}}_{j k}^{v_{1}-v_{j}}(x) \tag{8.262}
\end{align*}
$$

and for $1 \leq j \leq p$ and $1 \leq k \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{j 1}^{0}(x) \triangleq \tilde{\mathbf{g}}_{j 1}^{\nu_{1}-\nu_{j}}(x) ; \quad \overline{\mathbf{g}}_{j k}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{j 1}^{0}(x) \tag{8.263}
\end{equation*}
$$

(iii) for $1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq v_{i}$, and $1 \leq r \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i k}^{u}(x)=\overline{\mathbf{g}}_{i k}^{0}(x) \tag{8.264}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{j r}^{0}(x), \overline{\mathbf{g}}_{i k}^{0}(x)\right]=0 \tag{8.265}
\end{equation*}
$$

Furthermore, a state coordinates transformation $z=S(x)$ is given by

$$
\begin{align*}
\frac{\partial S(x)}{\partial x}=[& (-1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x) \tag{8.266}\\
& \left.\cdots(-1)^{v_{p}-1} \overline{\mathbf{g}}_{p v_{p}}^{0}(x) \cdots-\overline{\mathbf{g}}_{p 2}^{0}(x) \overline{\mathbf{g}}_{p 1}^{0}(x)\right]^{-1} .
\end{align*}
$$

Proof Necessity. Suppose that system (8.132) is equivalent to a dual Brunovsky NOCF. Then, it is clear, by Theorem 8.9, that condition (i) is satisfied. Since $\overline{\mathbf{g}}_{i 1}^{0}(x)=$ $\tilde{\mathbf{g}}_{i 1}^{\nu_{1}-v_{i}}(x)$ for $1 \leq i \leq p$ by (8.248), it is easy to see that conditions (ii) and (iii) are satisfied by Lemma 8.7 and condition (ii) of Theorem 8.9, respectively.

Sufficiency. Suppose that conditions (i)-(iii) of Theorem 8.10 are satisfied. Then, there exist smooth functions $\gamma_{j r}(y), 1 \leq j \leq p-1,1 \leq r \leq v_{j}-v_{p}$ such that the condition (ii) of Theorem 8.9 are satisfied with $\overline{\mathbf{g}}_{i 1}^{0}(x)=\tilde{\mathbf{g}}_{i 1}^{\nu_{1}-\nu_{i}}(x)$. Hence, by Theorem 8.9, system (8.132) is state equivalent to a dual Brunovsky NOCF.

The necessary and sufficient conditions of Theorem 8.10 are still unverifiable. For simple explanation, assume that $\nu_{1}>v_{2}$. Condition (ii) of Theorem 8.10 should be considered for $i=2,3, \cdots, p-1$, in sequence. If condition (ii) for $i=2$ and $s=1$ is not satisfied, then system (8.132) is not equivalent to a dual Brunovsky NOCF. If condition (ii) for $i=2$ and $s=1$ is satisfied, we have that

$$
\frac{\partial^{2} \gamma_{11}(y)}{\partial y_{1} \partial y_{2}}=\beta_{11}^{1,2}(y)
$$

$$
\begin{align*}
\gamma_{11}^{2}(y) & \triangleq \int_{0}^{y_{2}} \int_{0}^{y_{1}} \beta_{11}^{1,2}\left(\tilde{y}_{1}, \tilde{y}_{2}, y_{3}, \cdots, y_{p}\right) d \tilde{y}_{1} d \tilde{y}_{2} \tag{8.267}\\
& \triangleq \iint \beta_{11}^{1,2}(y) d y_{1} d y_{2}
\end{align*}
$$

and

$$
\begin{align*}
\gamma_{11}(y) & =\gamma_{11}^{2}(y)+\gamma_{11}\left(y_{1}, 0, y_{3}, \cdots, y_{p}\right)+\gamma_{11}\left(0, y_{2}, \cdots, y_{p}\right) \\
& -\gamma_{11}\left(0,0, y_{3}, \cdots, y_{p}\right) \triangleq \gamma_{11}^{2}(y)+\hat{\gamma}_{11}^{2}(y) \tag{8.268}
\end{align*}
$$

If $\left.\gamma_{11}(y)\right|_{y_{1}=0}=0$ and $\left.\gamma_{11}(y)\right|_{y_{2}=0}=0$, then $\gamma_{11}(y)=\gamma_{11}^{2}(y)$ or $\hat{\gamma}_{11}^{2}(y)=0$. Thus, $\tilde{\mathbf{g}}_{21}^{1}(x)$ can be obtained by (8.262) and condition (ii) for $i=2$ and $s=2$ can be checked. However, since $\hat{\gamma}_{11}^{2}(y)$ is unknown, $\tilde{\mathbf{g}}_{21}^{1}(x)$ cannot be obtained and thus condition (ii) for $i=2$ and $s=2$ cannot be checked unless

$$
\sum_{k=1}^{\nu_{1}-\nu_{2}} L_{\mathbf{g}_{21}^{0}} L_{F_{0}}^{\nu_{1}-k-1}\left(\gamma_{11}(y)-\gamma_{11}^{2}(y)\right) \overline{\mathbf{g}}_{1 k}^{0}(x)=0
$$

or for $1 \leq k \leq \nu_{1}-\nu_{2}$,

$$
L_{\mathbf{g}_{21}} L_{F_{0}}^{v_{1}-k-1}\left(\gamma_{11}(y)-\gamma_{11}^{2}(y)\right)=0
$$

When $p=2, \gamma_{1 s}(y)-\gamma_{1 s}^{2}(y) \triangleq \hat{\gamma}_{1 s}^{2}(y)=\gamma_{1 s}\left(y_{1}, 0\right)+\gamma_{1 s}\left(0, y_{2}\right)$ and it is easy to see that for $1 \leq s \leq \nu_{1}-\nu_{2}$ and $1 \leq k \leq \nu_{1}-\nu_{2}+1-s$,

$$
L_{\mathbf{g}_{21}^{0}} L_{F_{0}}^{\nu_{1}-k-s} \gamma_{1 s}\left(y_{1}, 0\right)=0
$$

However, it is not always satisfied that for $1 \leq s \leq \nu_{1}-\nu_{2}$ and $1 \leq k \leq \nu_{1}-\nu_{2}+$ $1-s$,

$$
L_{\mathbf{g}_{21}^{0}} L_{F_{0}}^{\nu_{1}-k-s} \gamma_{1 s}\left(0, y_{2}\right)=0 .
$$

When $p=2$, a verifiable sufficient condition can be obtained by using $\gamma_{1 k}^{2}(y), 1 \leq$ $k \leq \nu_{1}-\nu_{2}$ instead of $\gamma_{1 k}(y), 1 \leq k \leq \nu_{1}-\nu_{2}$ in (8.262).

Corollary 8.6 System (8.132) with $p=2$ is equivalent to a dual Brunovsky NOCF, if
(i) $d L_{F_{0}}^{\nu_{2}} H_{2}(x) \in \operatorname{span}\left\{d L_{F_{0}}^{k-1} H_{j}(x), 1 \leq j \leq 2,1 \leq k \leq \nu_{2}\right\}$
(ii) there exist smooth functions $\beta_{1 s}^{1,2}(y)$ for $1 \leq s \leq \nu_{1}-\nu_{2}$ such that for $1 \leq s \leq$ $\nu_{1}-\nu_{2}$,

$$
\begin{align*}
{\left[\mathbf{g}_{1 v_{1}}^{0}(x), \tilde{\mathbf{g}}_{21}^{s-1}(x)\right] \equiv } & (-1)^{v_{2}+s} \beta_{1 s}^{1,2}(H(x)) \mathbf{g}_{1\left(v_{1}-v_{2}+1-s\right)}^{0} \tag{8.269}\\
& \bmod \Phi_{2 s}(x)
\end{align*}
$$

where

$$
\begin{equation*}
\Phi_{2 s}(x) \triangleq \operatorname{span}\left\{\mathbf{g}_{1 k}^{0}(x), 1 \leq k \leq v_{1}-v_{2}-s\right\} \tag{8.270}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{1 s}^{2}\left(y_{1}, y_{2}\right) \triangleq \int_{0}^{y_{2}} \int_{0}^{y_{1}} \beta_{1 s}^{1,2}\left(\tilde{y}_{1}, \tilde{y}_{2}\right) d \tilde{y}_{1} d \tilde{y}_{2} \tag{8.271}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathbf{g}}_{j 1}^{0}(x) \triangleq \mathbf{g}_{j 1}^{0}(x), 1 \leq j \leq 2 \tag{8.272}
\end{equation*}
$$

$$
\begin{align*}
\tilde{\mathbf{g}}_{21}^{s}(x) & \triangleq \tilde{\mathbf{g}}_{21}^{s-1}(x) \\
& +\sum_{k=1}^{v_{1}-v_{2}+1-s}(-1)^{k-1} L_{\mathbf{g}_{21}^{0}} L_{F_{0}}^{\nu_{1}-k-s} \gamma_{1 s}^{2}(H(x)) \mathbf{g}_{1 k}^{0}(x) \tag{8.273}
\end{align*}
$$

and for $1 \leq j \leq 2$ and $1 \leq k \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{j 1}^{0}(x) \triangleq \tilde{\mathbf{g}}_{j 1}^{v_{1}-v_{j}}(x) ; \quad \overline{\mathbf{g}}_{j k}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{j 1}^{0}(x) \tag{8.274}
\end{equation*}
$$

(iii) for $1 \leq i \leq 2,1 \leq j \leq 2,1 \leq k \leq v_{i}$, and $1 \leq r \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i k}^{u}(x)=\overline{\mathbf{g}}_{i k}^{0}(x) \tag{8.275}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{j r}^{0}(x), \overline{\mathbf{g}}_{i k}^{0}(x)\right]=0 \tag{8.276}
\end{equation*}
$$

Furthermore, a state coordinates transformation $z=S(x)$ is given by

$$
\begin{align*}
\frac{\partial S(x)}{\partial x}= & {\left[(-1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x)\right.} \tag{8.277}\\
& \left.(-1)^{v_{2}-1} \overline{\mathbf{g}}_{2 v_{2}}^{0}(x) \cdots-\overline{\mathbf{g}}_{22}^{0}(x) \overline{\mathbf{g}}_{21}^{0}(x)\right]^{-1} .
\end{align*}
$$

Remark 8.7 If $p=2$ and $\gamma_{1 k}\left(0, y_{2}\right) \neq 0$, then $\tilde{\mathbf{g}}_{21}^{s}$ in (8.262) cannot be obtained by (8.273). Therefore, the conditions in Corollary 8.6 are not necessary but sufficient unless $\gamma_{1 k}\left(0, y_{2}\right)=0$. (Refer to Example 8.4.3.) For a perfect solution, we need to find $\gamma_{1 k}\left(0, y_{2}\right)$. However, $\gamma_{1 k}\left(0, y_{2}\right)$ is very difficult and complicated to find, even when $p=2$.

Suppose that $1 \leq k \leq p$ and

$$
\frac{\partial\left[Q_{1}(y) \cdots Q_{k}(y)\right]^{\top}}{\partial\left[y_{1} \cdots y_{k}\right]}=\left(\frac{\partial\left[Q_{1}(y) \cdots Q_{k}(y)\right]^{\top}}{\partial\left[y_{1} \cdots y_{k}\right]}\right)^{\top} .
$$

Then, by Lemma 2.1, there exists a smooth function $P(y)$ such that for $1 \leq i \leq k$,

$$
\frac{\partial P(y)}{\partial y_{i}}=Q_{i}(y) \text { and } P\left(0, \cdots, 0, y_{k+1}, \cdots, y_{p}\right)=0
$$

We denote $P(y)$ by

$$
P(y)=\int\left[Q_{1}(y) \cdots Q_{k}(y)\right] d\left(y_{1}, \cdots, y_{k}\right)
$$

For example, when $p=4$,

$$
\int\left[\begin{array}{ll}
y_{2} y_{3} & \left.y_{1} y_{3}+2 y_{2} y_{4}\right] d\left(y_{1}, y_{2}\right)=y_{1} y_{2} y_{3}+y_{2}^{2} y_{4} . . . ~
\end{array}\right.
$$

Theorem 8.11 Suppose that $\sigma_{0}=0, \sigma_{\bar{p}}=p$, and

$$
v_{1}=\cdots=v_{\sigma_{1}}>v_{\sigma_{1}+1}=\cdots=v_{\sigma_{2}}>\cdots>v_{\sigma_{\bar{p}-1}+1}=\cdots=v_{\sigma_{\bar{p}}}
$$

System (8.132) is equivalent to a dual Brunovsky NOCF, if
(i) for $1 \leq i \leq p$,

$$
\begin{equation*}
d L_{F_{0}}^{\nu_{i}} H_{i}(x) \in \operatorname{span}\left\{d L_{F_{0}}^{k-1} H_{j}(x), 1 \leq j \leq p, 1 \leq k \leq v_{i}\right\} \tag{8.278}
\end{equation*}
$$

(ii) there exist smooth functions $\beta_{j s}^{q, i}(y)$ for $\sigma_{1}+1 \leq i \leq p, 1 \leq j \leq i-1,1 \leq$ $s \leq v_{j}-v_{i}$, and $1 \leq q \leq i-1$, such that for $2 \leq r \leq \bar{p}, 1 \leq s \leq v_{1}-v_{\sigma_{r}}$, $1 \leq q \leq \sigma_{r-1}$, and $\sigma_{r-1}+1 \leq i \leq p$,

$$
\begin{align*}
{\left[\overline{\mathbf{g}}_{q v_{q}}^{0}(x), \tilde{\mathbf{g}}_{i 1}^{s-1}(x)\right] \equiv } & \sum_{j=1}^{i-1}(-1)^{v_{j}-v_{i}-s+v_{q}} \beta_{j s}^{q, i}(H(x)) \mathbf{g}_{j\left(v_{j}-v_{i}+1-s\right)}^{0} \tag{8.279}\\
& \bmod \Phi_{i s}(x)
\end{align*}
$$

where

$$
\begin{align*}
& \Phi_{i s}(x) \triangleq \operatorname{span}\left\{\mathbf{g}_{j k}^{0}(x), 1 \leq j \leq i-1,1 \leq k \leq v_{j}-v_{i}-s\right\} \tag{8.280}\\
& \frac{\partial\left[\beta_{j s}^{q, j+1}(y) \cdots \beta_{j s}^{q, p}(y)\right]^{\top}}{\partial\left[y_{j+1} \cdots y_{p}\right]^{\top}}=\left(\frac{\partial\left[\beta_{j s}^{q, j+1}(y) \cdots \beta_{j s}^{q, p}(y)\right]^{\top}}{\partial\left[y_{j+1} \cdots y_{p}\right]^{\top}}\right)^{\top} \tag{8.281}
\end{align*}
$$

$$
\begin{gather*}
\tilde{\beta}_{j s}^{q}(y) \triangleq \int\left[\beta_{j s}^{q, j+1}(y) \cdots \beta_{j s}^{q, p}(y)\right] d\left(y_{j+1} \cdots y_{p}\right) \tag{8.282}\\
\frac{\partial\left[\tilde{\beta}_{j s}^{1}(y) \cdots \tilde{\beta}_{j s}^{j}(y)\right]^{\top}}{\partial\left[y_{1} \cdots y_{j}\right]^{\top}}=\left(\frac{\partial\left[\tilde{\beta}_{j s}^{1}(y) \cdots \tilde{\beta}_{j s}^{j}(y)\right]^{\top}}{\partial\left[y_{1} \cdots y_{j}\right]^{\top}}\right)^{\top} \tag{8.283}\\
\gamma_{j s}^{r}(y) \triangleq \int\left[\tilde{\beta}_{j s}^{1}(y) \cdots \tilde{\beta}_{j s}^{j}(y)\right] d\left(y_{1} \cdots y_{j}\right) \tag{8.284}\\
\tilde{\mathbf{g}}_{j 1}^{0}(x) \triangleq \mathbf{g}_{j 1}^{0}(x), 1 \leq j \leq p \tag{8.285}\\
\tilde{\mathbf{g}}_{i 1}^{s}(x) \triangleq \tilde{\mathbf{g}}_{i 1}^{s-1}(x) \\
+\sum_{j=1}^{i-1} \sum_{k=1}^{v_{j}-v_{i}+1-s}(-1)^{k-1} L_{\mathbf{g}_{i 1}^{0}} L_{F_{0}}^{v_{j}-k-s} \gamma_{j s}^{r}(H(x)) \tilde{\mathbf{g}}_{j k}^{v_{1}-v_{j}}(x) \tag{8.286}
\end{gather*}
$$

and for $1 \leq j \leq p$ and $1 \leq k \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{j 1}^{0}(x) \triangleq \tilde{\mathbf{g}}_{j 1}^{\nu_{1}-\nu_{j}}(x) ; \quad \overline{\mathbf{g}}_{j k}^{u}(x) \triangleq \operatorname{ad}_{F_{u}}^{k-1} \overline{\mathbf{g}}_{j 1}^{0}(x) \tag{8.287}
\end{equation*}
$$

(iii) for $1 \leq i \leq p, 1 \leq j \leq p, 1 \leq k \leq v_{i}$, and $1 \leq r \leq v_{j}$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i k}^{u}(x)=\overline{\mathbf{g}}_{i k}^{0}(x) \tag{8.288}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{j r}^{0}(x), \overline{\mathbf{g}}_{i k}^{0}(x)\right]=0 \tag{8.289}
\end{equation*}
$$

Furthermore, a state coordinates transformation $z=S(x)$ is given by

$$
\begin{align*}
\frac{\partial S(x)}{\partial x}=[& (-1)^{v_{1}-1} \overline{\mathbf{g}}_{1 v_{1}}^{0}(x) \cdots-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x) \tag{8.290}\\
& \left.\cdots(-1)^{v_{p}-1} \overline{\mathbf{g}}_{p v_{p}}^{0}(x) \cdots-\overline{\mathbf{g}}_{p 2}^{0}(x) \overline{\mathbf{g}}_{p 1}^{0}(x)\right]^{-1} .
\end{align*}
$$

Conditions of Theorem 8.11 are verifiable. In other words, vector fields $\left\{\tilde{\mathbf{g}}_{i 1}^{s}(x), 1 \leq i \leq p, 1 \leq s \leq v_{1}-v_{i}\right\}$ in (8.286) are uniquely determined if conditions of Theorem 8.11 are satisfied. However, they are not necessary but sufficient unless, for $2 \leq r \leq \bar{p}, 1 \leq s \leq v_{1}-v_{\sigma_{r}}, 1 \leq q \leq \sigma_{r-1}$, and $\sigma_{r-1}+1 \leq i \leq p$,

$$
L_{\mathbf{g}_{i 1}} L_{F_{0}}^{v_{j}-k-s}\left(\gamma_{j s}(H(x))-\gamma_{j s}^{s}(H(x))\right)=0 .
$$

Example 8.4.1 Consider the following control system:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{8.291}\\
x_{3}+x_{1} u_{2}\left(1+u_{2}\right) \\
\alpha_{13}^{u}(x) \\
x_{1}^{2}+u_{2}
\end{array}\right]=F_{u}(x) ; \quad y=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=H(x)
$$

where

$$
\begin{aligned}
\alpha_{13}^{u}(x)= & x_{3} x_{4}+u_{2}\left(2 x_{4} x_{1}^{2}+x_{4} x_{1}+x_{2}\right)+4 x_{1}^{2} x_{2}+x_{1} x_{4} u_{2}^{2} \\
& +2 x_{1} x_{4}\left(x_{1}^{3}+x_{2} x_{4}\right)+u_{1} .
\end{aligned}
$$

Use Corollary 8.6 to show that system (8.291) is state equivalent to a dual Brunovsky NOCF.

Solution By simple calculations, we have, by (8.165), that $\left(\nu_{1}, \nu_{2}\right)=(3,1)$ and

$$
\xi=T(x) \triangleq\left[\begin{array}{c}
H_{1}(x) \\
L_{F_{0}} H_{1}(x) \\
L_{F_{0}}^{2} H_{1}(x) \\
H_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] .
$$

Since $L_{F_{0}} H_{2}(x)=x_{1}^{2}$ and

$$
d L_{F_{0}} H_{2}(x)=\left[\begin{array}{llll}
2 x_{1} & 0 & 0 & 0
\end{array}\right]=2 x_{1} d H_{1}(x),
$$

it is clear that condition (i) of Corollary 8.6 is satisfied. By (8.168) and (8.169), we have that

$$
\left[\mathbf{g}_{11}^{u}(x) \mathbf{g}_{12}^{u}(x) \mathbf{g}_{13}^{u}(x)\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & x_{4} \\
1 & -x_{4} & 3 x_{1}^{2}+2 x_{1} x_{4}^{2}+x_{4}^{2} \\
0 & 0 & 0
\end{array}\right] ; \mathbf{g}_{21}^{u}(x)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Since $\tilde{\mathbf{g}}_{21}^{0}(x) \triangleq \mathbf{g}_{21}^{0}(x)$ and $\Phi_{21}(x)=\operatorname{span}\left\{\mathbf{g}_{11}^{0}(x)\right\}$, we have, by (8.269) with $s=1$, that

$$
\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{21}^{0}(x)\right]=\left[\begin{array}{c}
0 \\
-1 \\
-2 x_{4}\left(2 x_{1}+1\right) \\
0
\end{array}\right]=\mathbf{g}_{12}^{0}(x) \bmod \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

which implies that condition (ii) of Corollary 8.6 is satisfied with $\beta_{11}^{1,2}(y)=1$ when $s=1$. Thus, we have, by (8.271), (8.272), and (8.273), that

$$
\gamma_{11}^{2}(y) \triangleq \int_{0}^{y_{2}} \int_{0}^{y_{1}} \beta_{11}^{1,2}\left(\tilde{y}_{1}, \tilde{y}_{2}\right) d \tilde{y}_{1} d \tilde{y}_{2}=y_{1} y_{2}
$$

and

$$
\begin{aligned}
\tilde{\mathbf{g}}_{21}^{1}(x) & \triangleq \tilde{\mathbf{g}}_{21}^{0}(x)+L_{\mathbf{g}_{21}^{0}} L_{F_{0}} \gamma_{11}^{2}(H(x)) \mathbf{g}_{11}^{0}(x)+L_{\mathbf{g}_{21}^{0}} \gamma_{11}^{2}(H(x)) \mathbf{g}_{12}^{0}(x) \\
& =\mathbf{g}_{21}^{0}(x)+x_{2} \mathbf{g}_{11}^{0}(x)-x_{1} \mathbf{g}_{12}^{0}(x)=\left[\begin{array}{c}
0 \\
x_{1} \\
x_{2}+x_{1} x_{4} \\
1
\end{array}\right]
\end{aligned}
$$

Also, it is easy to see that $\Phi_{22}(x)=\operatorname{span}\{0\}$ and

$$
\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{21}^{1}(x)\right]=\left[\begin{array}{c}
0 \\
0 \\
-4 x_{1} x_{4} \\
0
\end{array}\right]=-4 x_{1} x_{4} \mathbf{g}_{11}^{0}(x) \bmod \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

which implies that condition (ii) of Corollary 8.6 is satisfied with $\beta_{12}^{1,2}(y)=4 y_{1} y_{2}$ when $s=2\left(=v_{1}-v_{2}\right)$. Thus, we have, by (8.271) and (8.273), that

$$
\gamma_{12}^{2}(y) \triangleq \int_{0}^{y_{2}} \int_{0}^{y_{1}} \beta_{12}^{1,2}\left(\tilde{y}_{1}, \tilde{y}_{2}\right) d \tilde{y}_{1} d \tilde{y}_{2}=y_{1}^{2} y_{2}^{2}
$$

and

$$
\begin{aligned}
\tilde{\mathbf{g}}_{21}^{2}(x) & \triangleq \tilde{\mathbf{g}}_{21}^{1}(x)+L_{\mathbf{g}_{21}} \gamma_{12}^{2}(H(x)) \mathbf{g}_{11}^{0}(x) \\
& =\tilde{\mathbf{g}}_{21}^{1}(x)+2 x_{1}^{2} x_{4} \mathbf{g}_{11}^{0}(x)=\left[\begin{array}{c}
0 \\
x_{1} \\
x_{2}+x_{1} x_{4}+2 x_{1}^{2} x_{4} \\
1
\end{array}\right] .
\end{aligned}
$$

Since $\overline{\mathbf{g}}_{1 k}^{u}(x)=\mathbf{g}_{1 k}^{u}(x)=\overline{\mathbf{g}}_{1 k}^{0}(x)$ for $1 \leq k \leq 3\left(v_{1}\right)$ and $\overline{\mathbf{g}}_{21}^{u}(x) \triangleq \tilde{\mathbf{g}}_{21}^{2}(x)=\overline{\mathbf{g}}_{21}^{0}(x)$, it is clear that (8.275) is satisfied. It is also easy to see that

$$
\left\{\overline{\mathbf{g}}_{11}^{0}(x), \overline{\mathbf{g}}_{12}^{0}(x), \overline{\mathbf{g}}_{13}^{0}(x), \overline{\mathbf{g}}_{21}^{0}(x)\right\}
$$

is a set of commuting vector fields, which implies that condition (iii) of Corollary 8.6 is satisfied. Hence, by Corollary 8.6, system (8.291) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$. We have, by (8.277), that

$$
\begin{aligned}
\frac{\partial S(x)}{\partial x} & =\left[\overline{\mathbf{g}}_{13}^{0}(x)-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x) \overline{\mathbf{g}}_{21}^{0}(x)\right]^{-1} \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x_{4} & 1 & 0 & x_{1} \\
3 x_{1}^{2}+2 x_{1} x_{4}^{2}+x_{4}^{2} & x_{4} & 1 & x_{2}+x_{1} x_{4}+2 x_{1}^{2} x_{4} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-x_{4} & 1 & 0 & -x_{1} \\
-3 x_{1}^{2}-2 x_{1} x_{4}^{2}-x_{4} & 1 & -x_{2}-2 x_{1}^{2} x_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
z=S(x)=\left[\begin{array}{c}
x_{1} \\
x_{2}-x_{1} x_{4} \\
x_{3}-x_{2} x_{4}-x_{1}^{2}\left(x_{4}^{2}+x_{1}\right) \\
x_{4}
\end{array}\right] .
$$

Then it is easy to see that

$$
\begin{aligned}
S_{*}\left(F_{u}(x)\right) & =\left[\begin{array}{c}
z_{2} \\
z_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
z_{1} z_{4} \\
z_{1}\left(u_{2}^{2}+z_{1} z_{4}^{2}\right) \\
u_{1} \\
z_{1}^{2}+u_{2}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{3} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
y_{1} y_{2} \\
y_{1}\left(u_{2}^{2}+y_{1} y_{2}^{2}\right) \\
u_{1} \\
y_{1}^{2}+u_{2}
\end{array}\right] \\
& =A_{o} z+\gamma^{u}(y) .
\end{aligned}
$$

Example 8.4.2 Consider the following control system:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{1} u_{3} \\
\alpha_{13}^{u}(x) \\
x_{5}+u_{1}^{2} \\
x_{1} x_{4}\left(x_{1}+u_{3}\right)+x_{2} x_{4} x_{6}+x_{1} x_{6}\left(x_{5}+u_{1}^{2}\right)+u_{2} \\
x_{1}+u_{3}
\end{array}\right]=F_{u}(x) \tag{8.292}\\
& y=\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{6}
\end{array}\right]=H(x)
\end{align*}
$$

where

$$
\alpha_{13}^{u}(x)=3 x_{1} x_{2}+x_{1} x_{5}+x_{2} x_{4}+x_{3} x_{6}+x_{1} u_{1}^{2}+u_{1}+u_{3} x_{2}+x_{1} x_{6} u_{3} .
$$

Use Theorem 8.11 to show that system (8.292) is state equivalent to a dual Brunovsky NOCF.

Solution By simple calculations, we have, by (8.165), that $\left(v_{1}, v_{2}, v_{3}\right)=(3,2,1)$ and

$$
\xi=T(x) \triangleq\left[\begin{array}{c}
H_{1}(x) \\
L_{F_{0}} H_{1}(x) \\
L_{F_{0}}^{2} H_{1}(x) \\
H_{2}(x) \\
L_{F_{0}} H_{2}(x) \\
H_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right] .
$$

Since $L_{F_{0}}^{2} H_{2}(x)=x_{1}^{2} x_{4}+x_{2} x_{4} x_{6}+x_{1} x_{5} x_{6}, L_{F_{0}} H_{3}(x)=x_{1}$,

$$
\begin{aligned}
& d L_{F_{0}}^{2} H_{2}(x)=\left[2 x_{1} x_{4}+x_{5} x_{6} x_{4} x_{6} 0 x_{1}^{2}+x_{2} x_{6} x_{1} x_{6} x_{2} x_{4}+x_{1} x_{5}\right] \\
& =\left(2 x_{1} x_{4}+x_{5} x_{6}\right) d H_{1}(x)+\left(x_{1}^{2}+x_{2} x_{6}\right) d H_{2}(x)+\left(x_{2} x_{4}+x_{1} x_{5}\right) d H_{3}(x) \\
& \quad+x_{4} x_{6} d L_{F_{0}} H_{1}(x)+x_{1} x_{6} d L_{F_{0}} H_{2}(x),
\end{aligned}
$$

and

$$
d L_{F_{0}} H_{3}(x)=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=d H_{1}(x)
$$

it is clear that condition (i) of Theorem 8.11 is satisfied. By (8.168) and (8.169), we have that

$$
\left[\mathbf{g}_{11}^{u}(x) \mathbf{g}_{12}^{u}(x) \mathbf{g}_{13}^{u}(x)\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & x_{6} \\
1 & -x_{6} & 2 x_{1}+x_{4}+x_{6}^{2} \\
0 & 0 & 0 \\
0 & 0 & x_{4} x_{6} \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\left[\mathbf{g}_{21}^{u}(x) \mathbf{g}_{22}^{u}(x)\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & -x_{1} \\
0 & -1 \\
1 & -x_{1} x_{6} \\
0 & 0
\end{array}\right] ; \quad \mathbf{g}_{31}^{u}(x)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Note that $\nu_{1}>\nu_{2}>\nu_{3}, \sigma_{0}=0,\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=(1,2,3)$, and $\bar{p}=3$. Since $\tilde{\mathbf{g}}_{21}^{0}(x) \triangleq$ $\mathbf{g}_{21}^{0}(x), \tilde{\mathbf{g}}_{31}^{0}(x) \triangleq \mathbf{g}_{31}^{0}(x), \Phi_{21}(x)=\operatorname{span}\{0\}$, and $\Phi_{31}(x)=\operatorname{span}\left\{\mathbf{g}_{11}^{0}(x)\right\}$, we have, by (8.279) with $r=2$ and $s=1$, that

$$
\begin{aligned}
{\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{21}^{0}(x)\right] } & =0=0 \mathbf{g}_{11}^{0}(x) \bmod \operatorname{span}\{0\} \\
& =-\beta_{11}^{1,2}(H(x)) \mathbf{g}_{11}^{0}(x) \bmod \Phi_{21}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{31}^{0}(x)\right] } & =\left[\begin{array}{c}
0 \\
-1 \\
-2 x_{6} \\
0 \\
-x_{4} \\
0
\end{array}\right]=\mathbf{g}_{12}^{0}(x)-x_{4} \mathbf{g}_{21}^{0}(x) \bmod \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} \\
& =\beta_{11}^{1,3}(H(x)) \mathbf{g}_{12}^{0}(x)-\beta_{21}^{1,3}(H(x)) \mathbf{g}_{21}^{0}(x) \bmod \Phi_{31}(x)
\end{aligned}
$$

which implies that condition (ii) of Theorem 8.11 is satisfied when $r=2$ and $s=1$, with

$$
\left[\beta_{11}^{1,2}(y) \beta_{11}^{1,3}(y)\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] .
$$

Thus, we have, by (8.282)-(8.287), that

$$
\begin{gathered}
\tilde{\beta}_{11}^{1}(y) \triangleq \int\left[\beta_{11}^{1,2}(y) \beta_{11}^{1,3}(y)\right] d\left(y_{2} y_{3}\right)=y_{3} \\
\gamma_{11}^{2}(y) \triangleq \int \tilde{\beta}_{11}^{1}(y) d y_{1}=y_{1} y_{3} \\
\tilde{\mathbf{g}}_{21}^{1}(x) \triangleq \tilde{\mathbf{g}}_{21}^{0}(x)+L_{\mathbf{g}_{21}} L_{F_{0}} \gamma_{11}^{2}(H(x)) \mathbf{g}_{11}^{0}(x)=\mathbf{g}_{21}^{0}(x)
\end{gathered}
$$

and

$$
\overline{\mathbf{g}}_{21}^{0}(x) \triangleq \tilde{\mathbf{g}}_{21}^{1}(x)=\mathbf{g}_{21}^{0}(x) ; \quad \overline{\mathbf{g}}_{22}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \overline{\mathbf{g}}_{21}^{0}(x)=\mathbf{g}_{22}^{u}(x) .
$$

Since $\Phi_{31}(x)=\operatorname{span}\left\{\mathbf{g}_{11}^{0}(x)\right\}$, we have, by (8.279) with $r=3$ and $s=1$, that

$$
\begin{aligned}
{\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{31}^{0}(x)\right] } & =\left[\begin{array}{c}
0 \\
-1 \\
-2 x_{6} \\
0 \\
-x_{4} \\
0
\end{array}\right]=\mathbf{g}_{12}^{0}(x)-x_{4} \mathbf{g}_{21}^{0}(x) \bmod \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} \\
& =\beta_{11}^{1,3}(H(x)) \mathbf{g}_{12}^{0}(x)-\beta_{21}^{1,3}(H(x)) \mathbf{g}_{21}^{0}(x) \bmod \Phi_{31}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\overline{\mathbf{g}}_{22}^{0}(x), \tilde{\mathbf{g}}_{31}^{0}(x)\right] } & =\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
x_{1} \\
0
\end{array}\right]=0 \mathbf{g}_{12}^{0}(x)+x_{1} \mathbf{g}_{21}^{0}(x) \bmod \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} \\
& =-\beta_{11}^{2,3}(H(x)) \mathbf{g}_{12}^{0}(x)+\beta_{21}^{2,3}(H(x)) \mathbf{g}_{21}^{0}(x) \bmod \Phi_{31}(x)
\end{aligned}
$$

which implies that condition (ii) of Theorem 8.11 is satisfied when $r=3$ and $s=1$, with

$$
\left[\begin{array}{l}
\beta_{11}^{1,3}(y) \\
\beta_{11}^{2,3}(y)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
\beta_{21}^{1,3}(y) \\
\beta_{21}^{2,3}(y)
\end{array}\right]=\left[\begin{array}{l}
y_{2} \\
y_{1}
\end{array}\right]
$$

Thus, we have, by (8.282)-(8.286), that

$$
\begin{gathered}
{\left[\begin{array}{c}
\tilde{\beta}_{11}^{1}(y) \\
\tilde{\beta}_{11}^{2}(y)
\end{array}\right] \triangleq\left[\begin{array}{l}
\int \beta_{11}^{1,3}(y) d y_{3} \\
\int \beta_{11}^{2,3}(y) d y_{3}
\end{array}\right]=\left[\begin{array}{c}
y_{3} \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
\tilde{\beta}_{21}^{1}(y) \\
\tilde{\beta}_{21}^{2}(y)
\end{array}\right] \triangleq\left[\begin{array}{l}
\int \beta_{21}^{1,3}(y) d y_{3} \\
\int \beta_{21}^{2,3}(y) d y_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{2} y_{3} \\
y_{1} y_{3}
\end{array}\right]} \\
\gamma_{11}^{3}(y) \triangleq \int\left[\tilde{\beta}_{11}^{1}(y) \tilde{\beta}_{11}^{2}(y)\right] d\left(y_{1} y_{2}\right)=\int\left[\begin{array}{ll}
y_{3} & 0
\end{array}\right] d\left(y_{1} y_{2}\right)=y_{1} y_{3} \\
\gamma_{21}^{3}(y) \triangleq \int\left[\tilde{\beta}_{21}^{1}(y) \tilde{\beta}_{21}^{2}(y)\right] d\left(y_{1} y_{2}\right)=\int\left[\begin{array}{ll}
y_{2} y_{3} & y_{1} y_{3}
\end{array}\right] d\left(y_{1} y_{2}\right)=y_{1} y_{2} y_{3}
\end{gathered}
$$

and

$$
\left.\begin{array}{rl}
\tilde{\mathbf{g}}_{31}^{1}(x) & \triangleq \tilde{\mathbf{g}}_{31}^{0}(x)+L_{\mathbf{g}_{31}^{0}} L_{F_{0}} \gamma_{11}^{3}(H(x)) \mathbf{g}_{11}^{0}(x)-L_{\mathbf{g}_{31}^{0}} \gamma_{11}^{3}(H(x)) \mathbf{g}_{12}^{0}(x) \\
& +L_{\mathbf{g}_{31}^{0}} \gamma_{21}^{3}(H(x)) \tilde{\mathbf{g}}_{21}^{1}(x) \\
& =\mathbf{g}_{31}^{0}(x)+x_{2} \mathbf{g}_{11}^{0}(x)-x_{1} \mathbf{g}_{12}^{0}(x)+x_{1} x_{4} \tilde{\mathbf{g}}_{21}^{1}(x) \\
& =\left[\begin{array}{llll}
0 & x_{1} & x_{2}+x_{1} x_{6} & 0
\end{array} x_{1} x_{4}\right.
\end{array}\right]^{\top} .
$$

Since $\Phi_{32}(x)=\operatorname{span}\{0\}$, we have, by (8.279) with $r=3$ and $s=2$, that

$$
\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{31}^{1}(x)\right]=0=0 \mathbf{g}_{11}^{0}(x)=-\beta_{12}^{1,3}(H(x)) \mathbf{g}_{11}^{0}(x)
$$

and

$$
\left[\overline{\mathbf{g}}_{22}^{0}(x), \tilde{\mathbf{g}}_{31}^{1}(x)\right]=0=0 \mathbf{g}_{11}^{0}(x)=\beta_{12}^{2,3}(H(x)) \mathbf{g}_{11}^{0}(x)
$$

which implies that condition (ii) of Theorem 8.11 is satisfied when $r=3$ and $s=1$, with

$$
\left[\begin{array}{l}
\beta_{12}^{1,3}(y) \\
\beta_{12}^{2,3}(y)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Thus, we have, by (8.282)-(8.286), that

$$
\begin{gathered}
{\left[\begin{array}{l}
\tilde{\beta}_{12}^{1}(y) \\
\tilde{\beta}_{12}^{2}(y)
\end{array}\right] \triangleq\left[\begin{array}{l}
\int \beta_{12}^{1,3}(y) d y_{3} \\
\int \beta_{12}^{2,3}(y) d y_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\gamma_{12}^{3}(y) \triangleq \int\left[\tilde{\beta}_{12}^{1}(y) \tilde{\beta}_{12}^{2}(y)\right] d\left(y_{1} y_{2}\right)=0
\end{gathered}
$$

and

$$
\overline{\mathbf{g}}_{31}^{0}(x) \triangleq \tilde{\mathbf{g}}_{31}^{2}(x) \triangleq \tilde{\mathbf{g}}_{31}^{1}(x)+L_{\mathbf{g}_{31}^{0}} \gamma_{12}^{3}(H(x)) \mathbf{g}_{11}^{0}(x)=\tilde{\mathbf{g}}_{31}^{1}(x)
$$

Since $\overline{\mathbf{g}}_{1 k}^{u}(x)=\mathbf{g}_{1 k}^{u}(x)$ for $1 \leq k \leq 3$ and

$$
\overline{\mathbf{g}}_{i k}^{u}(x)=\overline{\mathbf{g}}_{i k}^{0}(x), 1 \leq i \leq 3,1 \leq k \leq v_{i}
$$

it is clear that (8.288) is satisfied. It is also easy to see that

$$
\left\{\overline{\mathbf{g}}_{11}^{0}(x), \overline{\mathbf{g}}_{12}^{0}(x), \overline{\mathbf{g}}_{13}^{0}(x), \overline{\mathbf{g}}_{21}^{0}(x), \overline{\mathbf{g}}_{22}^{0}(x), \overline{\mathbf{g}}_{31}^{0}(x)\right\}
$$

is a set of commuting vector fields, which implies that condition (iii) of Theorem 8.11 is satisfied. Hence, by Theorem 8.11, system (8.292) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$. We have, by (8.290), that

$$
\begin{aligned}
\frac{\partial S(x)}{\partial x} & =\left[\overline{\mathbf{g}}_{13}^{0}(x)-\overline{\mathbf{g}}_{12}^{0}(x)\right. \\
\overline{\mathbf{g}}_{11}^{0}(x) & \left.-\overline{\mathbf{g}}_{22}^{0}(x) \overline{\mathbf{g}}_{21}^{0}(x) \overline{\mathbf{g}}_{31}^{0}(x)\right]^{-1} \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
x_{6} & 1 & 0 & 0 & 0 & x_{1} \\
2 x_{1}+x_{4}+x_{6}^{2} & x_{6} & 1 & x_{1} & 0 & x_{2}+x_{1} x_{6} \\
0 & 0 & 0 & 1 & 0 & 0 \\
x_{4} x_{6} & 0 & 0 & x_{1} x_{6} & 1 & x_{1} x_{4} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-x_{6} & 1 & 0 & 0 & 0 & -x_{1} \\
-2 x_{1}-x_{4} & -x_{6} & 1 & -x_{1} & 0 & -x_{2} \\
0 & 0 & 0 & 1 & 0 & 0 \\
-x_{4} x_{6} & 0 & 0 & -x_{1} x_{6} & 1 & -x_{1} x_{4} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
z=S(x)=\left[\begin{array}{c}
x_{1} \\
x_{2}-x_{1} x_{6} \\
x_{3}-x_{1}\left(x_{1}+x_{4}\right)-x_{2} x_{6} \\
x_{4} \\
x_{5}-x_{1} x_{4} x_{6} \\
x_{6}
\end{array}\right]
$$

Then it is easy to see that

$$
\begin{aligned}
S_{*}\left(F_{u}(x)\right) & =\left[\begin{array}{c}
z_{2} \\
z_{3} \\
0 \\
z_{5} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
z_{1} z_{6} \\
z_{1} z_{4} \\
u_{1} \\
z_{1} z_{4} z_{6}+u_{1}^{2} \\
u_{2} \\
z_{1}+u_{3}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{3} \\
0 \\
z_{5} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
y_{1} y_{3} \\
y_{1} y_{2} \\
u_{1} \\
y_{1} y_{2} y_{3}+u_{1}^{2} \\
u_{2} \\
y_{1}+u_{3}
\end{array}\right] \\
& =A_{o} z+\gamma^{u}(y)
\end{aligned}
$$

Example 8.4.3 Consider the following control system:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \tag{8.293}\\
x_{3} \\
x_{5}^{2}+u_{1}+x_{4} u_{2} \\
x_{5} \\
u_{2}
\end{array}\right]=F_{u}(x) ; \quad y=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=H(x)
$$

(a) Show that system (8.293) does not satisfy the conditions of Corollary 8.6.
(b) Show that system (8.293) is state equivalent to a dual Brunovsky NOCF with state transformation

$$
z=S(x)=\left[\begin{array}{c}
x_{1} \\
x_{2}-\frac{1}{2} x_{4}^{2} \\
x_{3}-x_{4} x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

Solution (a) By simple calculations, we have, by (8.165), that $\left(\nu_{1}, \nu_{2}\right)=(3,2)$ and

$$
\xi=T(x) \triangleq\left[\begin{array}{c}
H_{1}(x) \\
L_{F_{0}} H_{1}(x) \\
L_{F_{0}}^{2} H_{1}(x) \\
H_{2}(x) \\
L_{F_{0}} H_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] .
$$

Since $L_{F_{0}}^{2} H_{2}(x)=x_{5}$ and

$$
d L_{F_{0}}^{2} H_{2}(x)=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]=d L_{F_{0}} H_{2}(x),
$$

it is clear that condition (i) of Corollary 8.6 is satisfied. By (8.168) and (8.169), we have that

$$
\left[\mathbf{g}_{11}^{u}(x) \mathbf{g}_{12}^{u}(x) \mathbf{g}_{13}^{u}(x)\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\left[\mathbf{g}_{21}^{u}(x) \mathbf{g}_{22}^{u}(x)\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & -2 x_{5} \\
0 & -1 \\
1 & 0
\end{array}\right]
$$

Since $\tilde{\mathbf{g}}_{21}^{0}(x) \triangleq \mathbf{g}_{21}^{0}(x)$ and $\Phi_{21}(x)=\operatorname{span}\{0\}$, we have, by (8.269) with $s=1$, that

$$
\left[\mathbf{g}_{13}^{0}(x), \tilde{\mathbf{g}}_{21}^{0}(x)\right]=0=0 \mathbf{g}_{11}^{0}(x)=-\beta_{11}^{1,2}(H(x)) \mathbf{g}_{11}^{0}(x)
$$

which implies that condition (ii) of Corollary 8.6 is satisfied with $\beta_{11}^{1,2}(y)=0$ when $s=1\left(=v_{1}-v_{2}\right)$. Thus, we have, by (8.271), (8.272), and (8.273), that

$$
\gamma_{11}^{2}(y) \triangleq \int_{0}^{y_{2}} \int_{0}^{y_{1}} \beta_{11}^{1,2}\left(\tilde{y}_{1}, \tilde{y}_{2}\right) d \tilde{y}_{1} d \tilde{y}_{2}=0
$$

and

$$
\overline{\mathbf{g}}_{21}^{0}(x) \triangleq \tilde{\mathbf{g}}_{21}^{1}(x) \triangleq \tilde{\mathbf{g}}_{21}^{0}(x)+L_{\mathbf{g}_{21}^{0}} L_{F_{0}} \gamma_{11}^{2}(H(x)) \mathbf{g}_{11}^{0}(x)=\mathbf{g}_{21}^{0}(x) .
$$

Since $\overline{\mathbf{g}}_{1 k}^{u}(x) \triangleq \mathbf{g}_{1 k}^{u}(x)=\mathbf{g}_{1 k}^{0}(x)$ for $1 \leq k \leq 3$ and

$$
\overline{\mathbf{g}}_{22}^{u}(x) \triangleq \operatorname{ad}_{F_{u}} \overline{\mathbf{g}}_{21}^{0}(x)=\operatorname{ad}_{F_{u}} \mathbf{g}_{21}^{0}(x)=\mathbf{g}_{22}^{u}(x)=\mathbf{g}_{22}^{0}(x)
$$

it is clear that (8.275) is satisfied. However, it is easy to see that

$$
\left[\overline{\mathbf{g}}_{21}^{0}(x), \overline{\mathbf{g}}_{22}^{0}(x)\right]=\left[\mathbf{g}_{21}^{0}(x), \mathbf{g}_{22}^{0}(x)\right]=\left[\begin{array}{c}
0 \\
0 \\
-2 \\
0 \\
0
\end{array}\right] \neq 0
$$

which implies that (8.276) is not satisfied. Hence, condition (iii) of Corollary 8.6 is not satisfied.
(b) It is easy to see that

$$
\begin{aligned}
& S_{*}\left(F_{u}(x)\right)=\left(\frac{\partial S(x)}{\partial x} F_{u}(x)\right)_{x=S^{-1}(z)} \\
& \quad=\left.\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -x_{4} & 0 \\
0 & 0 & 1 & -x_{5} & -x_{4} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{5}^{2}+u_{1}+x_{4} u_{2} \\
x_{5} \\
u_{2}
\end{array}\right]\right|_{x=S^{-1}(z)}=\left.\left[\begin{array}{c}
x_{2} \\
x_{3}-x_{4} x_{5} \\
u_{1} \\
x_{5} \\
u_{2}
\end{array}\right]\right|_{x=S^{-1}(z)}=\left[\begin{array}{c}
z_{2}+\frac{1}{2} z_{4}^{2} \\
z_{3} \\
u_{1} \\
z_{5} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
z_{3} \\
0 \\
z 5 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} y_{2}^{2} \\
0 \\
u_{1} \\
0 \\
u_{2}
\end{array}\right] .
\end{aligned}
$$

Hence, system (8.293) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$. In fact, we have, by (8.226), that

$$
\begin{aligned}
\left(\frac{\partial S(x)}{\partial x}\right)^{-1} & =\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & x_{4} & 0 \\
0 & 0 & 1 & x_{5} & x_{4} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\overline{\mathbf{g}}_{13}^{0}(x)-\overline{\mathbf{g}}_{12}^{0}(x) \overline{\mathbf{g}}_{11}^{0}(x)-\overline{\mathbf{g}}_{22}^{0}(x) \overline{\mathbf{g}}_{21}^{0}(x)\right]
\end{aligned}
$$

which implies, together with (8.224), that

$$
\overline{\mathbf{g}}_{21}^{0}(x)=\mathbf{g}_{21}^{0}(x)+\tilde{\ell}_{2,1,1}(x) \overline{\mathbf{g}}_{11}^{0}(x)=\mathbf{g}_{21}^{0}(x)+x_{4} \overline{\mathbf{g}}_{11}^{0}(x) .
$$

In other words, $\gamma_{11}^{u}(y)=\frac{1}{2} y_{2}^{2}=\gamma_{11}^{0}(y)$ cannot be found by Corollary 8.6, because $\frac{\partial^{2} \gamma_{11}^{0}(y)}{\partial y_{1} \partial y_{2}}=0$. (Refer to Remark 8.7.) Therefore, the conditions of Corollary 8.6 are not necessary but sufficient for state equivalence to a dual Brunovsky NOCF. Further investigations on Corollary 8.6 and Theorem 8.11 are needed for the verifiable necessary and sufficient conditions.

8.5 Discrete Time Observer Error Linearization

Consider a single output discrete time control system of the form

$$
\begin{align*}
x(t+1) & =F(x(t), u(t)) \triangleq F_{u}(x(t)) \tag{8.294}\\
y(t) & =H(x(t))
\end{align*}
$$

with $F_{0}(0)=0, H(0)=0$, state $x \in \mathbb{R}^{n}$, input $u \in \mathbb{R}^{m}$, and output $y \in \mathbb{R}$. By letting $u=0$ in system (8.294), we obtain the following autonomous system:

$$
\begin{equation*}
x(t+1)=F_{0}(x(t)) ; \quad y(t)=H(x(t)) . \tag{8.295}
\end{equation*}
$$

Let $F_{0}^{0}(x)=x, \hat{F}_{u}^{0}(x)=x$, and for $k \geq 1$,

$$
F_{0}^{k} \triangleq F_{0}^{k-1} \circ F_{0}(x) \text { and } \hat{F}_{u}^{k}(x) \triangleq F_{0}^{k-1} \circ F_{u}(x)
$$

Definition 8.11 (state equivalence to a LOCF)
System (8.294) is said to be state equivalent to a LOCF, if there exists a diffeomor$\operatorname{phism} z=S(x): V_{0} \rightarrow \mathbb{R}^{n}$, defined on some neighborhood V_{0} of $x=0$, such that

$$
\begin{aligned}
z(t+1) & =A z+\gamma(u) \triangleq S \circ F_{u} \circ S^{-1}(z) \\
y & =C z \triangleq H \circ S^{-1}(z)
\end{aligned}
$$

where the pair (C, A) is observable and $\gamma(u): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma(0)=0$.

Definition 8.12 (state equivalence to a dual Brunovsky NOCF)
System (8.294) is said to be state equivalent to a dual Brunovsky NOCF, if there exist a diffeomorphism $z=S(x): V_{0} \rightarrow \mathbb{R}^{n}$, defined on some neighborhood V_{0} of $x=0$, such that

$$
\begin{aligned}
z(t+1) & =A_{o} z+\gamma(y, u) \triangleq \bar{f}_{u}(z) \\
y & =C_{o} z \triangleq \bar{h}(z)
\end{aligned}
$$

where $A_{o}=\left[\begin{array}{cc}O_{(n-1) \times 1} & I_{(n-1)} \\ 0 & O_{1 \times(n-1)}\end{array}\right], C_{o}=\left[\begin{array}{ll}1 & O_{1 \times(n-1)}\end{array}\right]$, and $\gamma(y, u): \mathbb{R} \times \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{n} is a smooth vector function with $\gamma(0,0)=0$.

Definition 8.13 (state equivalence to a dual Brunovsky NOCF with OT)
System (8.294) is said to be state equivalent to a dual Brunovsky NOCF with output transformation (OT), if there exist a smooth function $\varphi(y) \quad\left(\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=0}=\right.$

1 and $\varphi(0)=0)$ and a diffeomorphism $z=S(x): V_{0} \rightarrow \mathbb{R}^{n}$, defined on some neighborhood V_{0} of $x=0$, such that

$$
\begin{aligned}
z(t+1) & =A_{o} z+\gamma(\bar{y}, u) \triangleq \bar{f}_{u}(z) \\
\bar{y} & =\varphi(y)=C_{o} z \triangleq \bar{h}(z)
\end{aligned}
$$

where $\gamma(\bar{y}, u): \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma(0,0)=0$.
State equivalence to a dual Brunovsky NOCF for autonomous system (8.295) can be similarly defined with $u=0$. If $\bar{f}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=A_{o} z+\gamma\left(z_{1}, u\right)$, then it is clear that $\bar{f}_{0}(z) \triangleq S \circ F_{0} \circ S^{-1}(z)=A_{o} z+\gamma\left(z_{1}, 0\right)$. Thus, we have the following remark.

Remark 8.8 If system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, then system (8.295) is also state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. But the converse is not true.

Since observability is invariant under state transformation, we assume the observability rank condition on the neighborhood of the origin. In other words,

$$
\operatorname{dim} \operatorname{span}\left\{\left.d H(x)\right|_{x=0},\left.d\left(H \circ F_{0}(x)\right)\right|_{x=0}, \cdots,\left.d\left(H \circ F_{0}^{n-1}(x)\right)\right|_{x=0}\right\}=n
$$

Definition 8.14 (Canonical System)
The canonical system of system (8.294) is defined by

$$
\xi(t+1)=\left[\begin{array}{c}
\xi_{2}+\alpha_{1}^{u}(\xi) \tag{8.296}\\
\vdots \\
\xi_{n}+\alpha_{n-1}^{u}(\xi) \\
\alpha_{n}^{u}(\xi)
\end{array}\right] \triangleq f_{u}(\xi) ; \quad y=\xi_{1} \triangleq h(\xi)
$$

where

$$
\xi=T(x) \triangleq\left[\begin{array}{c}
H(x) \tag{8.297}\\
H \circ F_{0}(x) \\
\vdots \\
H \circ F_{0}^{n-1}(x)
\end{array}\right]
$$

$f_{u}(\xi) \triangleq T \circ F_{u} \circ T^{-1}(\xi), \quad h(\xi) \triangleq H \circ T^{-1}(\xi), \quad \alpha_{i}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{i} \circ T^{-1}(\xi)-$ $H \circ F_{0}^{i} \circ T^{-1}(\xi), 1 \leq i \leq n-1$, and $\alpha_{n}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{n} \circ T^{-1}(\xi)$.

Remark 8.9 System (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\varphi(y)$ and state transformation $z=S(x)$, if and only if canonical system (8.296) is
state equivalent to a dual Brunovsky NOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(\xi)\left(\triangleq S \circ T^{-1}(\xi)\right)$. Canonical system (8.296) is more convenient to solve the observer problems than system (8.294). Since geometric conditions are coordinate free, any geometric condition in ξ - coordinates (for system (8.296)) can be expressed in x - coordinates (for system (8.294)).

We assume that $F_{0}(x)$ is a diffeomorphism on a neighborhood of $x=0$. In other words, $F_{0}(x)$ has the inverse function $\left(F_{0}\right)^{-1}(\bar{x})$. For system (8.294), we define vector fields $\left\{\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x), \cdots\right\}$ and $\left\{\mathbf{g}_{1}^{u}(x), \mathbf{g}_{2}^{u}(x), \cdots\right\}$ as follows.

$$
\begin{gather*}
L_{\mathbf{g}_{1}^{0}(x)}\left(H \circ F_{0}^{k-1}(x)\right)=\delta_{k, n}, 1 \leq k \leq n \\
\left(\operatorname{or} \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right]^{\top}=T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{n}}\right)\right) \tag{8.298}
\end{gather*}
$$

and for $i \geq 2$,

$$
\begin{align*}
& \mathbf{g}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\mathbf{g}_{i-1}^{0}\right)=\left(F_{0}^{i-1}\right)_{*}\left(\mathbf{g}_{1}^{0}\right) \\
& \mathbf{g}_{1}^{u}(x) \triangleq \mathbf{g}_{1}^{0}(x) ; \mathbf{g}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{i-1}^{u}\right) \tag{8.299}
\end{align*}
$$

Then it is easy to see, by Theorem 2.5, (8.298), and (8.299), that for $1 \leq i \leq n$ and $0 \leq k \leq n$,

$$
L_{\mathbf{g}_{i}^{0}(x)}\left(H \circ F_{0}^{k}(x)\right)= \begin{cases}0, & i+k<n \tag{8.300}\\ 1, & i+k=n\end{cases}
$$

If $F_{0}(x)$ is not invertible, $\left(F_{0}\right)_{*}\left(\mathbf{g}_{1}^{0}(x)\right)$ might not be a well-defined vector field. Let $\xi=T(x)$ and for $1 \leq i \leq n$,

$$
\mathbf{r}_{i}^{u}(\xi) \triangleq T_{*}\left(\mathbf{g}_{i}^{u}(x)\right) ; \quad \mathbf{r}_{i}^{0}(\xi) \triangleq T_{*}\left(\mathbf{g}_{i}^{0}(x)\right)
$$

Since $f_{u}(\xi)=T \circ F_{u} \circ T^{-1}(\xi)$ and $f_{0}(\xi)=T \circ F_{0} \circ T^{-1}(\xi)$, it is easy to see, by mathematical induction, (2.22), (8.298), and (8.299), that

$$
\begin{equation*}
\mathbf{r}_{1}^{u}(\xi)=\mathbf{r}_{1}^{0}(\xi)=\frac{\partial}{\partial \xi_{n}} \tag{8.301}
\end{equation*}
$$

and for $i \geq 2$,

$$
\begin{align*}
\mathbf{r}_{i}^{u}(\xi) & \triangleq T_{*} \circ\left(F_{u}\right)_{*}\left(\mathbf{g}_{i-1}^{u}(x)\right)=T_{*} \circ\left(F_{u}\right)_{*} \circ T_{*}^{-1}\left(\mathbf{r}_{i-1}^{u}(x)\right) \\
& =\left(f_{u}\right)_{*}\left(\mathbf{r}_{i-1}^{u}(x)\right) \tag{8.302}\\
\mathbf{r}_{i}^{0}(\xi) & =\left(f_{0}\right)_{*}\left(\mathbf{r}_{i-1}^{0}(x)\right)
\end{align*}
$$

The vector fields $\left\{\mathbf{g}_{i}^{u}(x), i \geq 1\right\}$ for system (8.294) are the same as the vector fields $\left\{\mathbf{r}_{i}^{u}(x), i \geq 1\right\}$ for system (8.296). In other words, (8.298) and (8.299) are coordinates free definition. Since

$$
f_{0}(\xi)=T \circ F_{0} \circ T^{-1}(\xi)=\left[\xi_{2} \cdots \xi_{n} \alpha_{n}^{0}(\xi)\right]^{\top}
$$

it is also easy to see, by (8.301) and (8.302), that for $1 \leq i \leq n$,

$$
\mathbf{r}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{(n-i) \times 1} \tag{8.303}\\
1 \\
* \\
\vdots \\
*
\end{array}\right] \in \operatorname{span}\left\{\frac{\partial}{\partial \xi_{n+1-i}}, \cdots, \frac{\partial}{\partial \xi_{n}}\right\}
$$

Theorem 8.12 System (8.294) is state equivalent to a LOCF, if and only if
(i)

$$
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 2 \leq i \leq n+1
$$

(ii)

$$
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{i}^{0}(x)\right]=0, \quad 2 \leq i \leq n+1 .
$$

Furthermore, a state transformation $z=S(x)$ can be obtained by

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{lll}
\mathbf{g}_{n}^{0}(x) & \cdots & \mathbf{g}_{2}^{0}(x) \\
\mathbf{g}_{1}^{0}(x)
\end{array}\right]^{-1}
$$

Proof Proof is omitted. (If $u=0$, this is the dual of the linearization of control system by state coordinated change that is considered in Sect. 3.2.)

Example 8.5.1 Consider the following control system:

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{c}
x_{2}+\left(x_{1}-x_{2}^{2}+u_{1}\right)^{2}+u_{2}^{2} \\
x_{1}-x_{2}^{2}+u_{1}
\end{array}\right]=F_{u}(x) \tag{8.304}\\
y & =x_{1}-x_{2}^{2}=H(x)
\end{align*}
$$

Show that the above system is state equivalent to a LOCF without OT and find a state transformation $z=S(x)$ and the LOCF that new state z satisfies.

Solution Since $T(x) \triangleq\left[H(x) L_{F_{0}} H(x)\right]^{\top}=\left[\begin{array}{ll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$, it is clear, by (8.298) and (8.299), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{u}(x) \triangleq \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*} \mathbf{g}_{1}^{u}(x)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \mathbf{g}_{3}^{u}(x) \triangleq\left(F_{u}\right)_{*} \mathbf{g}_{2}^{u}(x)=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right]
\end{aligned}
$$

which imply that condition (i) and condition (ii) of Theorem 8.12 are satisfied. Hence, system (8.304) is state equivalent to a LOCF with state transformation $z=S(x)=$ $\left[\begin{array}{ll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$ and $\gamma(u)=\left[\begin{array}{ll}u_{2}^{2} & u_{1}\end{array}\right]^{\top}$, where

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{ll}
\mathbf{g}_{2}^{0}(x) & \mathbf{g}_{1}^{0}(x)
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]
$$

and

$$
\begin{aligned}
z(t+1) & =S \circ F_{u} \circ S^{-1}(z)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] z+\left[\begin{array}{l}
u_{2}^{2} \\
u_{1}
\end{array}\right] \\
y & =H \circ S^{-1}(z)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] z .
\end{aligned}
$$

Theorem 8.13 System (8.294) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$, if and only if
(i)

$$
\begin{equation*}
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.305}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{i}^{0}(x)\right]=0, \quad 2 \leq i \leq n \tag{8.306}
\end{equation*}
$$

(iii)

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{llll}
\mathbf{g}_{n}^{0}(x) & \cdots & \mathbf{g}_{2}^{0}(x) & \mathbf{g}_{1}^{0}(x) \tag{8.307}
\end{array}\right]^{-1}
$$

Proof Proof is omitted. (Special case of Lemma 8.9 with $\varphi(y)=y$.)
Example 8.5.2 Consider the following control system:

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{c}
x_{2}+\left(x_{1}-x_{2}^{2}\right) u^{2}+\left(x_{1}-x_{2}^{2}+u\right)^{2} \\
x_{1}-x_{2}^{2}+u
\end{array}\right]=F_{u}(x) \tag{8.308}\\
y & =x_{1}-x_{2}^{2}=H(x)
\end{align*}
$$

Show that the above system is state equivalent to a dual Brunovsky NOCF without OT and find a state transformation $z=S(x)$ and the dual Brunovsky NOCF that new state z satisfies.
Solution Since $T(x) \triangleq\left[H(x) L_{F_{0}} H(x)\right]^{\top}=\left[\begin{array}{lll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$, it is clear, by (8.298) and (8.299), that

$$
\begin{aligned}
& \mathbf{g}_{1}^{u}(x) \triangleq \mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
1
\end{array}\right] \\
& \mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*} \mathbf{g}_{1}^{u}(x)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \mathbf{g}_{3}^{u}(x) \triangleq\left(F_{u}\right)_{*} \mathbf{g}_{2}^{u}(x)=\left[\begin{array}{c}
2 x_{2}+u^{2} \\
1
\end{array}\right]
\end{aligned}
$$

which imply that $\mathbf{g}_{3}^{u}(x) \neq \mathbf{g}_{3}^{0}(x)$ and condition (i) of Theorem 8.12 is not satisfied. Therefore, by Theorem 8.12, system (8.308) is not state equivalent to a LOCF. However, since condition (i) and condition (ii) of Theorem 8.13 are satisfied, system (8.308) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)=\left[\begin{array}{lll}x_{1}-x_{2}^{2} & x_{2}\end{array}\right]^{\top}$ and $\gamma(y, u)=\left[\begin{array}{ll}y^{2} u^{2} & y+u\end{array}\right]^{\top}$, where

$$
\frac{\partial S(x)}{\partial x}=\left[\begin{array}{ll}
\mathbf{g}_{2}^{0}(x) & \mathbf{g}_{1}^{0}(x)
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -2 x_{2} \\
0 & 1
\end{array}\right]
$$

and

$$
\begin{aligned}
z(t+1) & =S \circ F_{u} \circ S^{-1}(z)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] z+\left[\begin{array}{c}
z_{1}^{2} u^{2} \\
z_{1}+u
\end{array}\right] \\
y & =H \circ S^{-1}(z)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] z
\end{aligned}
$$

Lemma 8.8 System (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exist a diffeomorphism $\bar{y}=\varphi(y)$, smoothfunctions $\gamma_{k}^{0}(\bar{y}): \mathbb{R} \rightarrow \mathbb{R}, 1 \leq k \leq n$, and smoothfunctions $\varepsilon_{k}^{u}(\bar{y}): \mathbb{R}^{1+m} \rightarrow \mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{gather*}
S_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ \varphi \circ H \circ F_{0}^{i-1-k}(x) \tag{8.309}\\
\varphi \circ H \circ \hat{F}_{u}^{n}(x)=\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi \circ H \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ \varphi \circ H(x) \tag{8.310}
\end{gather*}
$$

and

$$
\begin{equation*}
S_{i} \circ F_{u}(x)-S_{i} \circ F_{0}(x)=\varepsilon_{i}^{u} \circ \varphi \circ H(x) \tag{8.311}
\end{equation*}
$$

where for $1 \leq i \leq n$,

$$
\begin{equation*}
\gamma_{i}^{u}(\bar{y})=\gamma_{i}^{0}(\bar{y})+\varepsilon_{i}^{u}(\bar{y}) \tag{8.312}
\end{equation*}
$$

Proof Necessity. Suppose that system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, it is clear that $\varphi \circ H \circ S^{-1}(z)=\bar{h}(z)=z_{1}$ and $S \circ F_{u} \circ S^{-1}(z)=\bar{f}_{u}(z)=A_{o} z+$ $\gamma^{u}\left(z_{1}\right)$. Since $\varphi \circ H \circ S^{-1} \circ S(x)=\bar{h} \circ S(x)=z_{1} \circ S(x)$, it is clear that $S_{1}(x)=$ $\varphi \circ H(x)$ and (8.309) is satisfied for $i=1$. Also, since $S \circ F_{u}(x)=\bar{f}_{u}(z) \circ S(x)=$ $A_{o} S(x)+\gamma^{u}\left(S_{1}(x)\right)$, it is easy to see that for $1 \leq i \leq n-1$,

$$
\begin{align*}
S_{i+1}(x) & =S_{i} \circ F_{u}(x)-\gamma_{i}^{u}\left(S_{1}(x)\right) \\
& =S_{i} \circ F_{0}(x)-\gamma_{i}^{0} \circ \varphi \circ H(x) \tag{8.313}
\end{align*}
$$

and

$$
\begin{equation*}
S_{n} \circ F_{u}(x)=\gamma_{n}^{u}\left(S_{1}(x)\right)=\gamma_{n}^{u} \circ \varphi \circ H(x) \tag{8.314}
\end{equation*}
$$

Thus, it is easy to see, by mathematical induction, that for $2 \leq i \leq n$,

$$
S_{i}(x)=S_{1} \circ F_{0}^{i-1}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ \varphi \circ H \circ F_{0}^{i-1-k}(x)
$$

which implies that (8.309) is also satisfied for $2 \leq i \leq n$. Also, since $S_{n}(x)=\varphi \circ$ $H \circ F_{0}^{n-1}(x)-\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{n-1-k}(x)$, we have, by (8.314), that

$$
\gamma_{n}^{u} \circ \varphi \circ H(x)=\varphi \circ H \circ \hat{F}_{u}^{n}(x)-\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi \circ H \circ \hat{F}_{u}^{n-k}(x)
$$

which implies that (8.310) is satisfied. Finally, it is easy to see, by (8.309), (8.310), (8.312), and (8.313), that for $1 \leq i \leq n$,

$$
\begin{aligned}
\varepsilon_{i}^{u} \circ \varphi \circ H(x) & =\gamma_{i}^{u} \circ \varphi \circ H(x)-\gamma_{i}^{0} \circ \varphi \circ H(x) \\
& =S_{i} \circ F_{u}(x)-S_{i+1}(x)-\gamma_{i}^{0} \circ \varphi \circ H(x) \\
& =S_{i} \circ F_{u}(x)-S_{i} \circ F_{0}(x)
\end{aligned}
$$

which implies that (8.311) is satisfied.
Sufficiency. Suppose that there exist $\varphi(y)$ and $\left\{\gamma_{k}^{0}(\bar{y}), \varepsilon_{k}^{u}(\bar{y}) \mid 1 \leq k \leq n\right\}$ such that (8.309)-(8.312) are satisfied. Then it is easy to see, by (8.309), that $\bar{h}(z) \triangleq$ $\varphi \circ H \circ S^{-1}(z)=z_{1}$ and for $1 \leq i \leq n-1$,

$$
\begin{aligned}
S_{i} \circ F_{0}(x) & =\varphi \circ H \circ F_{0}^{i}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ \varphi \circ H \circ F_{0}^{i-k}(x) \\
& =S_{i+1}(x)+\gamma_{i}^{0} \circ \varphi \circ H(x)
\end{aligned}
$$

which implies, together with (8.311) and (8.312), that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
S_{i} \circ F_{u}(x) & =S_{i} \circ F_{0}(x)+\varepsilon_{i}^{u} \circ \varphi \circ H(x) \\
& =S_{i+1}(x)+\gamma_{i}^{0} \circ \varphi \circ H(x)+\varepsilon_{i}^{u} \circ \varphi \circ H(x) \\
& =S_{i+1}(x)+\gamma_{i}^{u} \circ \varphi \circ H(x) .
\end{aligned}
$$

Finally, we have, by (8.309) and (8.310), that

$$
\begin{aligned}
S_{n} \circ F_{u}(x) & =\varphi \circ H \circ \hat{F}_{u}^{n}(x)-\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi \circ H \circ \hat{F}_{u}^{n-k}(x) \\
& =\gamma_{n}^{u} \circ \varphi \circ H(x) .
\end{aligned}
$$

Therefore, it is clear that

$$
\begin{aligned}
\bar{f}_{u}(z) & \triangleq S \circ F_{u} \circ S^{-1}(z)=\left.\left[\begin{array}{c}
S_{2}(x)+\gamma_{1}^{u} \circ \varphi \circ H(x) \\
\vdots \\
S_{n-1}(x)+\gamma_{n-1}^{u} \circ \varphi \circ H(x) \\
\gamma_{n}^{u} \circ \varphi \circ H(x)
\end{array}\right]\right|_{x=S^{-1}(z)} \\
& =A_{o} z+\gamma^{u}\left(z_{1}\right) .
\end{aligned}
$$

Hence, system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=$ $\varphi(y)$ and state transformation $z=S(x)$.

Corollary 8.7 System (8.294) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$, if and only if there exist smooth functions $\gamma_{k}^{0}(y)$: $\mathbb{R} \rightarrow \mathbb{R}, 1 \leq k \leq n$ and $\varepsilon_{k}^{u}(y): \mathbb{R}^{1+m} \rightarrow \mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{gathered}
S_{i}(x)=H \circ F_{0}^{i-1}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ H \circ F_{0}^{i-1-k}(x) \\
H \circ \hat{F}_{u}^{n}(x)=\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ H \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ H(x),
\end{gathered}
$$

and

$$
S_{i} \circ F_{u}(x)-S_{i} \circ F_{0}(x)=\varepsilon_{i}^{u} \circ H(x)
$$

where for $1 \leq i \leq n$,

$$
\gamma_{i}^{u}(\bar{y})=\gamma_{i}^{0}(\bar{y})+\varepsilon_{i}^{u}(\bar{y}) .
$$

Corollary 8.8 System (8.295) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exist a diffeomorphism $\bar{y}=\varphi(y)$ and smooth functions $\gamma_{k}^{0}(\bar{y}): \mathbb{R} \rightarrow \mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
S_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ \varphi \circ H \circ F_{0}^{i-1-k}(x)
$$

and

$$
\varphi \circ H \circ \hat{F}_{0}^{n}(x)=\sum_{k=1}^{n} \gamma_{k}^{0} \circ \varphi \circ H \circ \hat{F}_{0}^{n-k}(x)
$$

Corollary 8.9 System (8.295) is state equivalent to a dual Brunovsky NOCF with state transformation $z=S(x)$, if and only if there exist smooth functions $\gamma_{k}^{0}(y)$: $\mathbb{R} \rightarrow \mathbb{R}, 1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
S_{i}(x)=H \circ F_{0}^{i-1}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ H \circ F_{0}^{i-1-k}(x)
$$

and

$$
H \circ \hat{F}_{0}^{n}(x)=\sum_{k=1}^{n} \gamma_{k}^{0} \circ H \circ \hat{F}_{0}^{n-k}(x)
$$

Lemma 8.9 System (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exists a smooth function $\ell(y)(\ell(0)=1)$ such that
(i)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.316}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 2 \leq i \leq n \tag{8.317}
\end{equation*}
$$

where

$$
\begin{gather*}
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.318}\\
\overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}(x)\right), \quad i \geq 2 \tag{8.319}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.320}\\
\frac{\partial S(x)}{\partial x}=\left[\overline{\mathbf{g}}_{n}^{0}(x) \cdots \overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]^{-1} \tag{8.321}
\end{gather*}
$$

Proof Necessity. Suppose that system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Therefore, by Lemma 8.8, there exist a smooth function $\varphi(y)$, smooth functions $\gamma_{k}^{0}(\bar{y})$, $1 \leq k \leq n$, and smooth functions $\varepsilon_{k}^{u}(\bar{y}), 1 \leq k \leq n$ such that (8.309)-(8.312) are satisfied. In other words, we have

$$
\begin{aligned}
z(t+1) & =A_{o} z+\gamma^{u}\left(z_{1}\right) \triangleq \bar{f}_{u}(z) \\
\bar{y} & =\varphi \circ H \circ S^{-1}(z)=z_{1}
\end{aligned}
$$

where

$$
\bar{f}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=\left[\begin{array}{c}
z_{2}+\gamma_{1}^{u}\left(z_{1}\right) \tag{8.322}\\
\vdots \\
z_{n}+\gamma_{n-1}^{u}\left(z_{1}\right) \\
\gamma_{n}^{u}\left(z_{1}\right)
\end{array}\right]
$$

(See (8.315).) We define vector fields $\left\{\bar{\psi}_{1}^{u}(z), \cdots, \bar{\psi}_{n}^{u}(z)\right\}$ by

$$
\begin{equation*}
\bar{\psi}_{1}^{u}(z) \triangleq \frac{\partial}{\partial z_{n}} ; \quad \bar{\psi}_{i}^{u}(z) \triangleq\left(\bar{f}_{u}\right)_{*}\left(\bar{\psi}_{i-1}^{u}(z)\right), i \geq 2 \tag{8.323}
\end{equation*}
$$

Then, by (8.322), it is clear that

$$
\begin{equation*}
\bar{\psi}_{i}^{u}(z)=\frac{\partial}{\partial z_{n+1-i}}=\bar{\psi}_{i}^{0}(z), \quad 1 \leq i \leq n \tag{8.324}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left[\bar{\psi}_{i}^{u}(z), \bar{\psi}_{k}^{u}(z)\right]=0, \quad 1 \leq i \leq n, 1 \leq k \leq n \tag{8.325}
\end{equation*}
$$

Let $\quad \xi=T(x) \triangleq\left[H(x) H \circ F_{0}(x) \cdots H \circ F_{0}^{n-1}(x)\right]^{\top} \quad$ and $\quad \tilde{S}(\xi) \triangleq S \circ T^{-1}(\xi)$.
Then it is clear, by (8.309), that for $1 \leq i \leq n$,

$$
\tilde{S}_{i}(\xi) \triangleq S_{i} \circ T^{-1}(\xi)=\varphi\left(\xi_{i}\right)-\sum_{k=1}^{i-1} \gamma_{k}^{0}\left(\varphi\left(\xi_{i-k}\right)\right)
$$

which implies that

$$
\frac{\partial \tilde{S}_{i}(\xi)}{\partial \xi_{n}}= \begin{cases}0, & \text { if } 1 \leq i \leq n-1 \\ \frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}, & \text { if } i=n .\end{cases}
$$

Thus, we have, by (8.323), that

$$
\begin{aligned}
\tilde{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right) & =\left.\sum_{i=1}^{n} \frac{\partial \tilde{S}_{i}(\xi)}{\partial \xi_{n}}\right|_{\xi=\tilde{S}^{-1}(z)} \frac{\partial}{\partial z_{i}} \\
& =\left.\frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}\right|_{\xi=\tilde{S}^{-1}(z)} \frac{\partial}{\partial z_{n}}=\left.\frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}\right|_{\xi=\tilde{S}^{-1}(z)} \bar{\psi}_{1}^{u}(z)
\end{aligned}
$$

and

$$
\bar{\psi}_{1}^{u}(z)=\left.\ell\left(\xi_{n}\right)\right|_{\xi=\tilde{S}^{-1}(z)} \tilde{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)
$$

where

$$
\frac{1}{\ell\left(\xi_{n}\right)}=\frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}\left(\text { or } \varphi(y)=\int_{0}^{y} \frac{1}{\ell\left(\xi_{n}\right)} d \xi_{n}\right)
$$

Therefore, we have, by (2.49), that

$$
\tilde{S}_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)=\tilde{S}_{*}^{-1}\left(\left.\ell\left(\xi_{n}\right)\right|_{\xi=\tilde{S}^{-1}(z)} \tilde{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)\right)=\ell\left(\xi_{n}\right) \frac{\partial}{\partial \xi_{n}} .
$$

Hence, if we let $\overline{\mathbf{g}}_{1}^{u}(x) \triangleq S_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)$, we have, by (2.49) and (8.298), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{1}^{u}(x) & =S_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)=T_{*}^{-1} \circ \tilde{S}_{*}^{-1}\left(\bar{\psi}_{1}^{u}(z)\right)=T_{*}^{-1}\left(\ell\left(\xi_{n}\right) \frac{\partial}{\partial \xi_{n}}\right) \\
& =\ell\left(H \circ F_{0}^{n-1}(x)\right) T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{n}}\right)=\ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

which implies that (8.318) is satisfied. It is easy to show, by mathematical induction, that for $i \geq 2$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=S_{*}^{-1}\left(\bar{\psi}_{i}^{u}(z)\right) \text { or } \bar{\psi}_{i}^{u}(z)=S_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right) . \tag{8.326}
\end{equation*}
$$

Assume that (8.326) is satisfied for $i=k-1$ and $k \geq 2$. Since $\bar{f}_{u}(z)=S \circ F_{u} \circ$ $S^{-1}(z)$ or $F_{u}(x)=S^{-1} \circ \bar{f}_{u} \circ S(x)$, it is easy to see, by (2.22), (8.319), and (8.323), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{k}^{u}(x) & =\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{k-1}^{u}(x)\right)=S_{*}^{-1} \circ\left(\bar{f}_{u}\right)_{*} \circ S_{*}\left(\overline{\mathbf{g}}_{k-1}^{u}(x)\right) \\
& =S_{*}^{-1} \circ\left(\bar{f}_{u}\right)_{*}\left(\bar{\psi}_{k-1}^{u}(z)\right)=S_{*}^{-1}\left(\bar{\psi}_{k}^{u}(z)\right)
\end{aligned}
$$

which implies that (8.326) is satisfied for $i \geq 2$. Therefore, condition (i) of Lemma 8.9 is satisfied by (8.324) and (8.326). By (8.316), (8.325), (8.326), and Theorem 2.4, condition (ii) of Lemma 8.9 is also satisfied. Finally, since $S_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right)=\bar{\psi}_{i}^{0}(z)=$ $\frac{\partial}{\partial z_{n+1-i}}, 1 \leq i \leq n$ by (8.324) and (8.326), we have that

$$
\frac{\partial S(x)}{\partial x}\left[\overline{\mathbf{g}}_{n}^{0}(x) \cdots \overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]=\left.I\right|_{z=S(x)}=I
$$

which implies that (8.321) holds.
Sufficiency. Suppose that there exists $\beta(y)$ such that (8.316)-(8.320) are satisfied. Then it is easy to see, by (2.28) and (8.317), that for $1 \leq i<k \leq n$,

$$
\begin{aligned}
{\left[\overline{\mathbf{g}}_{i}^{0}(x), \overline{\mathbf{g}}_{k}^{0}(x)\right] } & =\left[\left(F_{0}\right)_{*}^{i-1}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right),\left(F_{0}\right)_{*}^{k-1}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)\right] \\
& =\left(F_{0}\right)_{*}^{i-1}\left(\left[\overline{\mathbf{g}}_{1}^{0}(x),\left(F_{0}\right)_{*}^{k-i}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)\right]\right) \\
& =\left(F_{0}\right)_{*}^{i-1}\left(\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{k-i+1}^{0}(x)\right]\right)=0
\end{aligned}
$$

which implies that $\left\{\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{2}^{0}(x), \cdots, \overline{\mathbf{g}}_{n}^{0}(x)\right\}$ is a set of commuting vector fields. Thus, there exists, by Theorem 2.7, a state transformation $z=S(x)$ such that

$$
\begin{equation*}
S_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right)=\frac{\partial}{\partial z_{n+1-i}}, 1 \leq i \leq n \tag{8.327}
\end{equation*}
$$

In fact, $z=S(x)$ can be calculated by (8.321). Now it will be shown that $\bar{h}(z) \triangleq \varphi \circ$ $H \circ S^{-1}(z)=z_{1}$ and $\bar{f}_{u}(z) \triangleq S \circ F_{u} \circ S^{-1}(z)=A_{o} z+\gamma^{u}\left(z_{1}\right)$. It is easy to show, by (2.49), (8.318), (8.319), and mathematical induction, that for $1 \leq i \leq n$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{0}(x)=\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{0}(x) \tag{8.328}
\end{equation*}
$$

Thus, we have, by Theorem 2.5, (8.300), (8.320), and (8.328), that for $1 \leq i \leq n$,

$$
\begin{aligned}
\frac{\partial \bar{h}(z)}{\partial z_{n+1-i}} & =L_{S_{*}\left(\overline{\mathbf{g}}_{i}^{0}\right)}\left(\varphi \circ H \circ S^{-1}(z)\right)=\left.\left\{L_{\overline{\mathbf{g}}_{i}^{0}(x)}(\varphi \circ H(x))\right\}\right|_{x=S^{-1}(z)} \\
& =\left.\left\{\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=H(x)} L_{\overline{\mathbf{g}}_{i}^{0}(x)} H(x)\right\}\right|_{x=S^{-1}(z)} \\
& =\left.\left\{\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=H(x)} \ell\left(H \circ F_{0}^{n-i}\right) L_{\mathbf{g}_{i}^{0}(x)} H(x)\right\}\right|_{x=S^{-1}(z)} \\
& =\left\{\begin{array}{l}
0, \\
\left.\left\{\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=H(x)} \ell(H)\right\}\right|_{x=S^{-1}(z)}, i=n \\
\end{array}\right. \\
& = \begin{cases}0, & 1 \leq i \leq n-1 \\
1, & i=n .\end{cases}
\end{aligned}
$$

Therefore, it is clear that $\bar{h}(z)=z_{1}$. Let

$$
\begin{equation*}
\bar{f}_{u}(z) \triangleq \sum_{k=1}^{n} \bar{f}_{u, k}(z) \frac{\partial}{\partial z_{k}}=\left[\bar{f}_{u, 1}(z) \cdots \bar{f}_{u, n}(z)\right]^{\top} \tag{8.329}
\end{equation*}
$$

Since $\bar{f}_{u}(z)=S \circ F_{u} \circ S^{-1}(z)$, it is clear, by (2.22) and (8.319), that for $1 \leq i \leq$ $n-1$,

$$
\begin{align*}
S_{*}\left(\overline{\mathbf{g}}_{i+1}^{u}(x)\right) & =S_{*}\left(\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right)\right)=S_{*} \circ\left(F_{u}\right)_{*} \circ S_{*}^{-1}\left(S_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right)\right) \\
& =\left(\bar{f}_{u}\right)_{*}\left(S_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right)\right) . \tag{8.330}
\end{align*}
$$

Thus, we have, by (8.316), (8.327), (8.329), and (8.330), that for $1 \leq i \leq n-1$,

$$
\begin{aligned}
\frac{\partial}{\partial z_{n-i}} & =\left(\bar{f}_{u}\right)_{*}\left(\frac{\partial}{\partial z_{n+1-i}}\right)=\frac{\partial \bar{f}_{u}(z)}{\partial z_{n+1-i}} \\
& =\left.\sum_{k=1}^{n} \frac{\partial \bar{f}_{u, k}(\bar{z})}{\partial \bar{z}_{n+1-i}}\right|_{\bar{z}=\bar{f}_{u}^{-1}(z)} \frac{\partial}{\partial z_{k}}
\end{aligned}
$$

which implies that for $1 \leq k \leq n$ and $1 \leq i \leq n-1$,

$$
\frac{\partial \bar{f}_{u, k}(z)}{\partial z_{n+1-i}}= \begin{cases}1, & k=n-i \\ 0, & \text { otherwise }\end{cases}
$$

or, for $1 \leq k \leq n$ and $2 \leq i \leq n$,

$$
\frac{\partial \bar{f}_{u, k}(z)}{\partial z_{i}}= \begin{cases}1, & i=k+1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence, $\bar{f}_{u, n}(z)=\gamma_{n}^{u}\left(z_{1}\right)$ and $\bar{f}_{u, k}(z)=z_{k+1}+\gamma_{k}^{u}\left(z_{1}\right), \quad 1 \leq k \leq n-1$, for some functions $\gamma_{k}^{u}\left(z_{1}\right), 1 \leq k \leq n$. Thus, $\bar{f}_{u}(z)=A_{o} z+\gamma^{u}\left(z_{1}\right)$.

In order to find the conditions for the problem with OT, we define integer $\kappa(2 \leq$ $\kappa \leq n+1)$ and integer $\sigma(1 \leq \sigma \leq n)$. Note that $L_{\mathbf{g}_{1}^{0}}\left(H \circ F_{0}^{n-1}(x)\right)=1 \neq 0$. Let us define integer $\kappa(2 \leq \kappa \leq n+1)$ by the smallest integer such that

$$
\begin{equation*}
L_{\mathbf{g}_{k}^{0}}\left(H \circ F_{0}^{n-1}(x)\right) \neq 0 \tag{8.331}
\end{equation*}
$$

Relation (8.331) will be used in (8.342). Since $L_{\mathbf{g}_{i}^{0}}\left(H \circ F_{0}^{n-1}(x)\right)=0,2 \leq i \leq$ $\kappa-1$, it is easy to see, by (2.30), that for $1 \leq i \leq \kappa-2$,

$$
\begin{aligned}
& L_{\mathbf{r}_{i}^{0}}\left(\alpha_{n}^{0}(\xi)\right)=L_{\mathbf{r}_{i}^{0}}\left(H \circ F_{0}^{n} \circ T^{-1}(\xi)\right)=\left.L_{T_{*}\left(\mathbf{r}_{i}^{0}\right)}\left(H \circ F_{0}^{n}(x)\right)\right|_{x=T^{-1}(\xi)} \\
& \quad=\left.L_{\mathbf{g}_{i}^{0}}\left(H \circ F_{0}^{n}(x)\right)\right|_{x=T^{-1}(\xi)}=\left.L_{\left(F_{0}\right)_{*}\left(\mathbf{g}_{i}^{0}\right)}\left(H \circ F_{0}^{n-1}(x)\right)\right|_{x=T^{-1}(\xi)} \\
& \quad=\left.L_{\mathbf{g}_{i+1}^{0}}\left(H \circ F_{0}^{n-1}(x)\right)\right|_{x=T^{-1}(\xi)}=0
\end{aligned}
$$

which implies, together with (8.296) and $\mathbf{r}_{1}^{0}=\frac{\partial}{\partial \xi_{n}}$, that

$$
\begin{gather*}
\alpha_{n}^{0}(\xi)=\alpha_{n}^{0}\left(\xi_{1}, \cdots, \xi_{n+2-\kappa}, 0, \cdots, 0\right) \tag{8.332}\\
T_{*}\left(\mathbf{g}_{i}^{0}\right)=\mathbf{r}_{i}^{0}(\xi)=\frac{\partial}{\partial \xi_{n+1-i}}, 1 \leq i \leq \kappa-1 \tag{8.333}\\
\frac{\partial \alpha_{n}^{0}(\xi)}{\partial \xi_{n+2-\kappa}}=L_{\mathbf{r}_{\kappa-1}^{0}}\left(\alpha_{n}^{0}(\xi)\right)=L_{\mathbf{r}_{\kappa}^{0}}\left(\xi_{n}\right) \neq 0 \tag{8.334}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{i}^{0}(x)\right]=T_{*}^{-1}\left(\left[\mathbf{r}_{1}^{0}(\xi), \mathbf{r}_{i}^{0}(\xi)\right]\right)=0,1 \leq i \leq \kappa-1 \tag{8.335}
\end{equation*}
$$

Let us define $\sigma(1 \leq \sigma \leq n)$ by the largest integer such that

$$
\begin{equation*}
H \circ \hat{F}_{u}^{n-i}(x)=H \circ F_{0}^{n-i}(x), 1 \leq i \leq \sigma-1 \tag{8.336}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha_{i}^{u}(\xi)=0, n+1-\sigma \leq i \leq n-1 \tag{8.337}
\end{equation*}
$$

where $\alpha_{i}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{i} \circ T^{-1}(\xi)-H \circ F_{0}^{i} \circ T^{-1}(\xi)$ for $1 \leq i \leq n-1$. Thus, if $\sigma<n$, we have

$$
\begin{equation*}
H \circ \hat{F}_{u}^{n-\sigma}(x) \neq H \circ F_{0}^{n-\sigma}(x) \text { or } \frac{\partial}{\partial u}\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right) \neq 0 \tag{8.338}
\end{equation*}
$$

If $\sigma=n$, then it is clear that for $1 \leq i \leq n-1$,

$$
\begin{equation*}
H \circ \hat{F}_{u}^{i}(x)=H \circ F_{0}^{i}(x) \text { or } \alpha_{i}^{u}(\xi)=0 . \tag{8.339}
\end{equation*}
$$

For example, if $H(x)=x_{1}$ and $F_{u}(x)=\left[\begin{array}{lll}x_{2}+u & x_{3}+u^{2} & x_{1}+u\end{array}\right]^{\top}$, then $\sigma=1$, because $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}+u^{2} \neq H \circ \hat{F}_{0}^{n-1}(x)$. If $H(x)=x_{1}$ and $F_{u}(x)=\left[x_{2}+\right.$ $\left.\begin{array}{lll}u & x_{3} & x_{1}+u\end{array}\right]^{\top}$, then $\sigma=2$, because $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}=H \circ \hat{F}_{0}^{n-1}(x)$ and $H \circ$ $\hat{F}_{u}^{n-2}(x)=x_{2}+u \neq H \circ \hat{F}_{0}^{n-2}(x)$. If $H(x)=x_{1}$ and $F_{u}(x)=\left[\begin{array}{lll}x_{2} & x_{3} & x_{1}+u\end{array}\right]^{\top}$, then $\sigma=3=n$, because $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}=H \circ \hat{F}_{0}^{n-1}(x)$ and $H \circ \hat{F}_{u}^{n-2}(x)=$ $x_{2}=H \circ \hat{F}_{0}^{n-2}(x)$.

Example 8.5.3 Let $\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)$ and $\sigma<n$. Show that (a)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{0}(x)\right)=\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{0}(x), 1 \leq i \leq n \tag{8.340}
\end{equation*}
$$

(b)

$$
\overline{\mathbf{g}}_{i}^{u}(x)= \begin{cases}\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{u}(x), & 1 \leq i \leq \sigma \tag{8.341}\\ \ell\left(H \circ F_{0}^{n-\sigma} \circ F_{u}^{-1}(x)\right) \mathbf{g}_{\sigma+1}^{u}(x), & i=\sigma+1\end{cases}
$$

Solution (a) It is easy to see, by (2.22), (2.49), and (8.299), that for $1 \leq i \leq n$,

$$
\begin{aligned}
\overline{\mathbf{g}}_{i}^{0}(x) & =\left(F_{0}\right)_{*}^{i-1}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)=\left(F_{0}\right)_{*}^{i-1}\left(\ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)\right) \\
& =\ell\left(H \circ F_{0}^{n-i}(x)\right)\left(F_{0}\right)_{*}^{i-1}\left(\mathbf{g}_{1}^{0}(x)\right) \\
& \left.=\ell\left(H \circ F_{0}^{n-i}(x)\right)\right) \mathbf{g}_{i}^{0}(x)
\end{aligned}
$$

(b) (8.341) obviously holds when $i=1$. Assume that (8.341) is satisfied when $i=k$ and $1 \leq k \leq \sigma-1$. Then, it is easy to see, by (2.49), (8.299), and (8.336), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{k+1}^{u}(x) & \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{k}^{u}(x)\right)=\left(F_{u}\right)_{*}\left(\ell\left(H \circ F_{0}^{n-k}(x)\right) \mathbf{g}_{k}^{u}(x)\right) \\
& =\ell\left(H \circ F_{0}^{n-k} \circ F_{u}^{-1}(x)\right) \mathbf{g}_{k+1}^{u}(x)=\ell\left(H \circ F_{0}^{n-k-1}(x)\right) \mathbf{g}_{k+1}^{u}(x)
\end{aligned}
$$

which implies that (8.341) is satisfied when $i=k+1$ and $1 \leq k \leq \sigma-1$. Thus, by mathematical induction, (8.341) is satisfied when $1 \leq i \leq \sigma$. Thus, we have, by (2.49) and (8.299), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{\sigma+1}^{u}(x) & \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{\sigma}^{u}(x)\right)=\left(F_{u}\right)_{*}\left(\ell\left(H \circ F_{0}^{n-\sigma}(x)\right) \mathbf{g}_{\sigma}^{u}(x)\right) \\
& =\ell\left(H \circ F_{0}^{n-\sigma} \circ F_{u}^{-1}(x)\right) \mathbf{g}_{\sigma+1}^{u}(x)
\end{aligned}
$$

Theorem 8.14 Suppose that $\kappa \leq n$. System (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$, if and only if there exists a smooth function $\beta(y)$, defined on an open neighborhood of $y=0$, such that
(i)

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right]=L_{\mathbf{g}_{\kappa}^{0}}\left(H \circ F_{0}^{n-1}(x)\right) \beta\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.342}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.343}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 2 \leq i \leq n \tag{8.344}
\end{equation*}
$$

where

$$
\begin{gather*}
\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \tag{8.345}\\
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.346}\\
\overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}\right)(x), i \geq 2 \tag{8.347}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.348}\\
\frac{\partial S(x)}{\partial x}=\left[\overline{\mathbf{g}}_{n}^{0}(x) \cdots \overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]^{-1} . \tag{8.349}
\end{gather*}
$$

Proof Necessity. Suppose that system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, by Lemma 8.9, there exist smooth functions $\ell(y)(\ell(0)=1)$ such that (8.316)-(8.321) are satisfied. Since $2 \leq \kappa \leq n$, it is clear, by (8.300), that

$$
\begin{equation*}
L_{\mathbf{g}_{1}^{0}} \ell\left(H \circ F_{0}^{n-\kappa}(x)\right)=\left.\frac{d \ell(y)}{d y}\right|_{y=H \circ F_{0}^{n-\kappa}(x)} L_{\mathbf{g}_{1}^{0}}\left(H \circ F_{0}^{n-\kappa}(x)\right)=0 . \tag{8.350}
\end{equation*}
$$

Thus, we have, by (2.43), (8.317), (8.340), and (8.350), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{\kappa}^{0}(x)\right]=\left[\ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x), \ell\left(H \circ F_{0}^{n-\kappa}(x)\right) \mathbf{g}_{\kappa}^{0}(x)\right] \\
= & \ell\left(H \circ F_{0}^{n-1}(x)\right) \ell\left(H \circ F_{0}^{n-\kappa}(x)\right)\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right] \\
& -\ell\left(H \circ F_{0}^{n-\kappa}(x)\right) L_{\mathbf{g}_{\kappa}^{0}} \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
{\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right] } & =\frac{L_{\mathbf{g}_{k}^{0}} \ell\left(H \circ F_{0}^{n-1}(x)\right)}{\ell\left(H \circ F_{0}^{n-1}(x)\right)} \mathbf{g}_{1}^{0}(x) \\
& =\left.\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right|_{y=H \circ F_{0}^{n-1}(x)} L_{\mathbf{g}_{k}^{0}}\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

Therefore, (8.342) and (8.345) are satisfied with $\beta(y)=\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}=\frac{d \ln \ell(y)}{d y}$. Condition (ii) and condition (iii) of Theorem 8.14 are obviously satisfied by (8.316) and (8.317).

Sufficiency. It is obvious by Lemma 8.9.
Theorem 8.15 Suppose that $\sigma<n$. System (8.294) is state equivalent to a dual Brunovsky NOCF with $O T \varphi(y)$ and state transformation $z=S(x)$, if and only if there exist smooth scalar functions $\theta_{\sigma}^{u}(x), \bar{\beta}^{u}(x)$, and $\beta(y)$, defined on an open neighborhood of $y=0$, such that
(i)

$$
\mathbf{g}_{i}^{u}(x)= \begin{cases}\mathbf{g}_{i}^{0}(x), & 2 \leq i \leq \sigma \tag{8.351}\\ \theta_{\sigma}^{u}(x) \mathbf{g}_{i}^{0}(x), & i=\sigma+1\end{cases}
$$

(ii)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.352}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 2 \leq i \leq n \tag{8.353}
\end{equation*}
$$

where

$$
\begin{gather*}
\frac{\partial\left(\theta_{\sigma}^{u} \circ F_{u}(x)\right)}{\partial u}=\bar{\beta}^{u}(x) \frac{\partial\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\partial u} \tag{8.354}\\
\bar{\beta}^{0}(x)=\beta\left(H \circ F_{0}^{n-\sigma}(x)\right) \tag{8.355}\\
\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \tag{8.356}
\end{gather*}
$$

$$
\begin{gather*}
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.357}\\
\overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}(x)\right), i \geq 2 \tag{8.358}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.359}\\
\frac{\partial S(x)}{\partial x}=\left[\overline{\mathbf{g}}_{n}^{0}(x) \cdots \overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]^{-1} \tag{8.360}
\end{gather*}
$$

Proof Necessity. Let $\sigma<n$. Suppose that system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, by Lemma 8.9, there exist smooth functions $\ell(y)(\ell(0)=1)$ such that (8.352), (8.353), and (8.357)-(8.360) are satisfied. It is clear, by (8.340) and (8.341), that

$$
\overline{\mathbf{g}}_{i}^{0}(x)=\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{0}(x), 2 \leq i \leq n
$$

and

$$
\overline{\mathbf{g}}_{i}^{u}(x)= \begin{cases}\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{u}(x), & 2 \leq i \leq \sigma \\ \ell\left(H \circ F_{0}^{n-\sigma} \circ F_{u}^{-1}(x)\right) \mathbf{g}_{\sigma+1}^{u}(x), & i=\sigma+1\end{cases}
$$

which imply, together with (8.352), that (8.351) is satisfied with

$$
\theta_{\sigma}^{u}(x)=\frac{\ell\left(H \circ F_{0}^{n-\sigma-1}(x)\right)}{\ell\left(H \circ F_{0}^{n-\sigma} \circ F_{u}^{-1}(x)\right)} \text { or } \frac{\ell\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\ell\left(H \circ F_{0}^{n-\sigma}(x)\right)}=\theta_{\sigma}^{u} \circ F_{u}(x)
$$

Since

$$
\frac{\partial\left(\theta_{\sigma}^{u} \circ F_{u}(x)\right)}{\partial u}=\frac{\left.\frac{d \ell(y)}{d y}\right|_{y=H \circ \hat{F}_{u}^{n-\sigma}(x)}}{\ell\left(H \circ F_{0}^{n-\sigma}(x)\right)} \frac{\partial\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\partial u}
$$

it is clear that (8.354) is satisfied with

$$
\bar{\beta}^{u}(x)=\frac{\left.\frac{d \ell(y)}{d y}\right|_{y=H \circ \hat{F}_{u}^{n-\sigma}(x)}}{\ell\left(H \circ F_{0}^{n-\sigma}(x)\right)} .
$$

Since

$$
\begin{aligned}
\bar{\beta}^{0}(x) & =\left.\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right|_{y=H \circ F_{0}^{n-\sigma}(x)}=\left.\frac{d}{d y}(\ln \ell(y))\right|_{y=H \circ F_{0}^{n-\sigma}(x)} \\
& \triangleq \beta\left(H \circ F_{0}^{n-\sigma}(x)\right),
\end{aligned}
$$

it is easy to see that (8.355) and (8.356) are satisfied.

Sufficiency. It is obvious by Lemma 8.9.
If $\kappa<n+1$, Theorem 8.14 can be used to find whether system (8.294) is state equivalent to a dual Brunovsky NOCF with OT or not. If $\sigma<n$, Theorem 8.15 can be used to find whether system (8.294) is state equivalent to a dual Brunovsky NOCF with OT or not. If $\kappa=n+1$ and $\sigma=n$, we have, by (8.296), (8.332), and (8.339), that

$$
f_{u}(\xi) \triangleq T \circ F_{u} \circ T^{-1}(\xi)=\left[\begin{array}{lll}
\xi_{2} & \cdots & \xi_{n} \tag{8.361}\\
\alpha_{n}^{u} \\
(\xi)
\end{array}\right]^{\top}
$$

and

$$
\begin{equation*}
\alpha_{n}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{n} \circ T^{-1}(\xi)=\alpha_{n}^{0}\left(\xi_{1}, 0, \cdots, 0\right)+\hat{\alpha}_{n}^{u}(\xi) \tag{8.362}
\end{equation*}
$$

where $\alpha_{n}^{u}(\xi) \triangleq \alpha_{n}^{0}(\xi)+\hat{\alpha}_{n}^{u}(\xi)$ and $\hat{\alpha}_{n}^{0}(\xi)=0$.
Theorem 8.16 Suppose that $\kappa=n+1$ and $\sigma=n$. System (8.294) is state equivalent to a dual Brunovsky NOCF with $O T \varphi(y)$ and state transformation $z=S(x)$, if and only if

$$
\begin{equation*}
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 2 \leq i \leq n . \tag{8.363}
\end{equation*}
$$

Furthermore, $\varphi(y)=y$ and state transformation $z=S(x)$ is given by

$$
\begin{equation*}
\frac{\partial S(x)}{\partial x}=\left[\mathbf{g}_{n}^{0}(x) \cdots \mathbf{g}_{2}^{0}(x) \mathbf{g}_{1}^{0}(x)\right]^{-1} \tag{8.364}
\end{equation*}
$$

Proof Necessity. Let $\kappa=n+1$ and $\sigma=n$. Suppose that system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=S(x)$. Then, by Lemma 8.8, it is clear that (8.309)-(8.312) are satisfied. Since $\kappa=n+1$ and $\sigma=n$, it is easy to see, by (8.310), (8.339), and (8.362), that

$$
\begin{aligned}
\varphi \circ \alpha_{n}^{u}(\xi) & =\varphi \circ H \circ \hat{F}_{u}^{n}(x) \circ T^{-1}(\xi) \\
& =\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi \circ H \circ \hat{F}_{u}^{n-k} \circ T^{-1}(\xi)+\gamma_{n}^{u} \circ \varphi \circ H \circ T^{-1}(\xi) \\
& =\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi \circ H \circ \hat{F}_{0}^{n-k} \circ T^{-1}(\xi)+\gamma_{n}^{u} \circ \varphi \circ H \circ T^{-1}(\xi) \\
& =\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi\left(\xi_{n-k+1}\right)+\gamma_{n}^{u} \circ \varphi\left(\xi_{1}\right)
\end{aligned}
$$

and

$$
\varphi \circ \alpha_{n}^{0}\left(\xi_{1}, 0, \cdots, 0\right)=\sum_{k=1}^{n-1} \gamma_{k}^{0} \circ \varphi\left(\xi_{n-k+1}\right)+\gamma_{n}^{0} \circ \varphi\left(\xi_{1}\right)
$$

which imply that $\gamma_{k}^{0}(y)=0$ for $1 \leq k \leq n-1$ and

$$
\alpha_{n}^{u}(\xi)=\varphi^{-1} \circ \gamma_{n}^{u} \circ \varphi\left(\xi_{1}\right) \triangleq \tilde{\alpha}_{n}^{u}\left(\xi_{1}\right)
$$

In other words, we have, by (8.361), that

$$
f_{u}(\xi) \triangleq T \circ F_{u} \circ T^{-1}(\xi)=\left[\begin{array}{lll}
\xi_{2} & \cdots & \xi_{n} \\
\tilde{\alpha}_{n}^{u}\left(\xi_{1}\right)
\end{array}\right]^{\top}
$$

Therefore, it is easy to see that for $1 \leq i \leq n$,

$$
T_{*}\left(\mathbf{g}_{i}^{u}(x)\right)=\mathbf{r}_{i}^{u}(\xi) \triangleq\left(f_{u}\right)_{*}^{i-1}\left(\frac{\partial}{\partial \xi_{n}}\right)=\frac{\partial}{\partial \xi_{n+1-i}}
$$

which implies that (8.363) is satisfied.
Sufficiency. Let $\kappa=n+1$ and $\sigma=n$. Suppose that (8.363) is satisfied. Note, by (8.335), that, if $\kappa=n+1$, then (8.306) is satisfied. Therefore, by Theorem 8.13, system (8.294) is state equivalent to a dual Brunovsky NOCF with OT $\varphi(y)=y$ (i.e., without OT).

Example 8.5.4 Consider the following discrete time control system:

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{c}
x_{2} \\
\ln \left(1+u+x_{1}+x_{2}^{2}\right)
\end{array}\right]=F_{u}(x) \tag{8.365}\\
y & =x_{1}=H(x)
\end{align*}
$$

(a) Show that system (8.365) is not state equivalent to a dual Brunovsky NOCF without OT.
(b) Show that $\kappa=2 \leq n$ and $\sigma=2=n$.
(c) Use Theorem 8.14 to show that system (8.365) is state equivalent to a dual Brunovsky NOCF with OT. Also find a OT $\bar{y}=\varphi(y)$, a state transformation $z=S(x)$, and the dual Brunovsky NOCF that new state z satisfies.
Solution (a) It is easy to see that $\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}e^{x_{2}}-1-u-x_{1}^{2} \\ x_{1}\end{array}\right]$. Since $\xi=$ $T(x) \triangleq\left[\begin{array}{c}H(x) \\ H \circ F_{0}(x)\end{array}\right]=x$, it is clear, by (8.298) and (8.299), that

$$
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and

$$
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
1 \\
2 x_{1} e^{-x_{2}}
\end{array}\right]=\mathbf{g}_{2}^{0}(x)
$$

which imply that

$$
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x)\right]=\left[\begin{array}{c}
0 \tag{8.366}\\
-2 x_{1} e^{-x_{2}}
\end{array}\right]=-2 x_{1} e^{-x_{2}} \mathbf{g}_{1}^{0}(x) \neq 0
$$

and condition (ii) of Theorem 8.13 is not satisfied. Therefore, by Theorem 8.13, system (8.365) is not state equivalent to a dual Brunovsky NOCF without OT.
(b) Since $L_{\mathbf{g}_{2}}\left(H \circ F_{0}(x)\right)=2 x_{1} e^{-x_{2}} \neq 0$, we have $\kappa=2 \leq n$ by (8.331). Also, since $H \circ F_{u}(x)=x_{2}=H \circ F_{0}(x)$, it is clear, by (8.336), that $\sigma=2=n$.
(c) It is clear, by (8.366), that condition (i) of Theorem 8.14 is satisfied with $\beta(y)=$ -1 . From (8.345)-(8.347), we have

$$
\begin{gathered}
\ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{-y} \\
\overline{\mathbf{g}}_{1}^{u}(x) \triangleq \ell\left(H \circ F_{0}(x)\right) \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{c}
0 \\
e^{-x_{2}}
\end{array}\right]
\end{gathered}
$$

and

$$
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)=\left[\begin{array}{c}
e^{-x_{1}} \\
2 x_{1} e^{-x_{1}-x_{2}}
\end{array}\right] .
$$

Since $\overline{\mathbf{g}}_{2}^{u}(x)=\overline{\mathbf{g}}_{2}^{0}(x)$ and $\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{2}^{0}(x)\right]=0$, it is clear that condition (ii) and condition (iii) of Theorem 8.14 are satisfied. Hence, by Theorem 8.14, system (8.365) is state equivalent to a dual Brunovsky NOCF with OT

$$
\bar{y}=\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=e^{y}-1
$$

and state transformation $z=S(x)=\left[\begin{array}{c}e^{x_{1}}-1 \\ e^{x_{2}}-1-x_{1}^{2}\end{array}\right]$, where

$$
\frac{\partial S(x)}{\partial x}=\left[\overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]^{-1}=\left[\begin{array}{cc}
e^{x_{1}} & 0 \\
-2 x_{1} & e^{x_{2}}
\end{array}\right]
$$

It is easy to see that $\bar{y}=\varphi \circ H \circ S^{-1}(z)=z_{1}$ and

$$
S \circ F_{u} \circ S^{-1}(z)=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
\left(\ln \left(1+z_{1}\right)\right)^{2} \\
\ln \left(1+z_{1}\right)+u
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
y^{2} \\
y+u
\end{array}\right] .
$$

Example 8.5.5 Consider the system

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{l}
\left(1+x_{2}\right) e^{u_{2}^{2}}-1 \\
\left(1+x_{1}\right) e^{u_{1}}-1
\end{array}\right]=F_{u}(x) \tag{8.367}\\
y & =x_{1}=H(x)
\end{align*}
$$

(a) Show that system (8.367) is not state equivalent to a dual Brunovsky NOCF without OT.
(b) Show that $\kappa=3=n+1$ and $\sigma=1<n$.
(c) Use Theorem 8.15 to show that system (8.367) is state equivalent to a dual Brunovsky NOCF with OT. Also find a OT $\bar{y}=\varphi(y)$, a state transformation $z=S(x)$, and the dual Brunovsky NOCF that new state z satisfies.

Solution (a) It is easy to see that $\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}\left(1+x_{2}\right) e^{-u_{1}}-1 \\ \left(1+x_{1}\right) e^{-u_{2}^{2}}-1\end{array}\right]$. Since $\xi=$ $T(x) \triangleq\left[\begin{array}{c}H(x) \\ H \circ F_{0}(x)\end{array}\right]=x$, we have, by (8.298) and (8.299), that

$$
\begin{gathered}
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
e^{u_{2}^{2}} \\
0
\end{array}\right]
\end{gathered}
$$

and

$$
\mathbf{g}_{3}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\mathbf{g}_{2}^{0}(x)\right)=\left.\frac{\partial F_{0}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{2}^{0}(\bar{x})\right|_{\bar{x}=F_{0}^{-1}(x)}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Since $\mathbf{g}_{2}^{u}(x) \neq \mathbf{g}_{2}^{0}(x)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, condition (i) of Theorem 8.13 is not satisfied. Therefore, system (8.367) is, by Theorem 8.13, not state equivalent to a dual Brunovsky NOCF without OT.
(b) Since $L_{\mathbf{g}_{2}}\left(H \circ F_{0}(x)\right)=0$ and $L_{\mathbf{g}_{3}^{0}}\left(H \circ F_{0}(x)\right)=1+x_{2}^{2} \neq 0$, we have $\kappa=$ $3=n+1$ by (8.331). Also, since $H \circ F_{u}(x)=\left(1+x_{2}\right) e^{u_{2}^{2}}-1 \neq H \circ F_{0}(x)$, it is clear, by (8.336), that $\sigma=1<n$.
(c) Note that $\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x)$ and $\mathbf{g}_{2}^{u}(x)=e^{u_{2}^{2}} \mathbf{g}_{2}^{0}(x)$. Thus, it is clear that condition (i) of Theorem 8.15 is satisfied with $\theta_{1}^{u}(x)=e^{u_{2}^{2}}$. Since

$$
\theta_{1}^{u} \circ F_{u}(x)=e^{u_{2}^{2}} ; \quad \frac{\partial\left(\theta_{1}^{u} \circ F_{u}(x)\right)}{\partial u}=\left[\begin{array}{lll}
0 & 2 u_{2} e^{u_{2}^{2}}
\end{array}\right]
$$

and

$$
H \circ F_{u}(x)=\left(1+x_{2}\right) e^{u_{2}^{2}}-1 ; \quad \frac{\partial\left(H \circ F_{u}(x)\right)}{\partial u}=\left[02 u_{2}\left(1+x_{2}\right) e^{u_{2}^{2}}\right]
$$

it is easy to see that (8.354) is satisfied with $\bar{\beta}^{u}(x)=\frac{1}{1+x_{2}}$. Also, since $\bar{\beta}^{0}(x)=$ $\frac{1}{1+x_{2}}$ and $H \circ F_{0}^{n-\sigma}(x)=H \circ F_{0}(x)=x_{2},(8.355)$ is satisfied with $\beta(y)=\frac{1}{1+y}$. Thus, we have, by (8.356)-(8.358), that

$$
\begin{aligned}
& \ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{\ln (1+y)}=1+y \\
& \overline{\mathbf{g}}_{1}^{u}(x) \triangleq \ell\left(H \circ F_{0}\right) \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{c}
0 \\
1+x_{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)=\left[\begin{array}{c}
1+x_{1} \\
0
\end{array}\right]=\overline{\mathbf{g}}_{2}^{0}(x)
$$

which imply that condition (ii) and condition (iii) of Theorem 8.15 are satisfied. Hence, by Theorem 8.15, system (8.367) is state equivalent to a dual Brunovsky NOCF with OT $\bar{y}=\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=\ln (1+y)$ and state transformation $z=$ $S(x)=\left[\begin{array}{l}\ln \left(1+x_{1}\right) \\ \ln \left(1+x_{2}\right)\end{array}\right]$, where

$$
\frac{\partial S(x)}{\partial x}=\left[\overline{\mathbf{g}}_{2}^{0}(x) \overline{\mathbf{g}}_{1}^{0}(x)\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{1+x_{1}} & 0 \\
0 & \frac{1}{1+x_{2}}
\end{array}\right]
$$

It is easy to see that $\varphi \circ H \circ S^{-1}(z)=z_{1}$ and

$$
S \circ F_{u} \circ S^{-1}(z)=\left[\begin{array}{c}
z_{2}+u_{2}^{2} \\
z_{1}+u_{1}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
u_{2}^{2} \\
\ln (1+y)+u_{1}
\end{array}\right] .
$$

Example 8.5.6 Consider the system

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{c}
x_{2} \\
x_{1}+u\left(1+x_{2}\right)
\end{array}\right]=F_{u}(x) \tag{8.368}\\
y & =x_{1}=H(x)
\end{align*}
$$

(a) Show that $\kappa=3=n+1$ and $\sigma=2=n$.
(b) Use Theorem 8.16 to show that system (8.368) is not state equivalent to a dual Brunovsky NOCF with OT.

Solution (a) It is easy to see that $\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}x_{2}-u\left(1+x_{1}\right) \\ x_{1}\end{array}\right]$. Since $\xi=$ $T(x) \triangleq\left[\begin{array}{c}H(x) \\ H \circ F_{0}(x)\end{array}\right]=x$, we have, by (8.298) and (8.299), that

$$
\begin{gathered}
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{l}
1 \\
u
\end{array}\right] \neq \mathbf{g}_{2}^{0}(x)
\end{gathered}
$$

and

$$
\mathbf{g}_{3}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\mathbf{g}_{2}^{0}(x)\right)=\left.\frac{\partial F_{0}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{2}^{0}(\bar{x})\right|_{\bar{x}=F_{0}^{-1}(x)}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Since $L_{\mathbf{g}_{2}}\left(H \circ F_{0}(x)\right)=0$ and $L_{\mathbf{g}_{3}}\left(H \circ F_{0}(x)\right)=1 \neq 0$, we have $\kappa=3=n+$ 1 by (8.331). Also, since $H \circ F_{u}(x)=H \circ F_{0}(x)$, it is clear, by (8.336), that $\sigma=2=n$.
(b) Since $\mathbf{g}_{2}^{u}(x) \neq \mathbf{g}_{2}^{0}(x)$, it is clear that (8.363) is not satisfied. Hence, by Theorem 8.16, system (8.368) is not state equivalent to a dual Brunovsky NOCF with OT.

Example 8.5.7 Consider the following discrete time control system:

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{c}
x_{2}(1+u) \\
\ln \left(1+u+x_{1}+x_{2}^{2}\right)
\end{array}\right]=F_{u}(x) \tag{8.369}\\
y & =x_{1}=H(x) .
\end{align*}
$$

(a) Show that $\kappa=2 \leq n$ and $\sigma=1<n$.
(b) Use Theorem 8.14 to show that the above system is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Use Theorem 8.15 to show that the above system is not state equivalent to a dual Brunovsky NOCF with OT.

Solution (a) It is easy to see that $\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}e^{x_{2}}-1-u-\frac{x_{1}^{2}}{(1+u)^{2}} \\ \frac{x_{1}}{1+u}\end{array}\right]$. Since $\xi=T(x) \triangleq\left[\begin{array}{c}H(x) \\ H \circ F_{0}(x)\end{array}\right]=x$, it is clear, by (8.298) and (8.299), that

$$
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x) \triangleq\left(\frac{\partial T(x)}{\partial x}\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and

$$
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
1+u \\
\frac{2 x_{1} e^{-x_{2}}}{1+u}
\end{array}\right]
$$

which imply that

$$
\mathbf{g}_{2}^{0}(x)=\left[\begin{array}{c}
1 \\
2 x_{1} e^{-x_{2}}
\end{array}\right] .
$$

Since $L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}(x)\right)=2 x_{1} e^{-x_{2}} \neq 0$, we have $\kappa=2$ by (8.331). Also, since $H \circ F_{u}(x)=x_{2}(1+u) \neq H \circ F_{0}(x)$, it is clear, by (8.336), that $\sigma=1$.
(b) Since $L_{\mathbf{g}_{2}}\left(H \circ F_{0}(x)\right)=2 x_{1} e^{-x_{2}}$ and

$$
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x)\right]=\left[\begin{array}{c}
0 \\
-2 x_{1} e^{-x_{2}}
\end{array}\right]=-2 x_{1} e^{-x_{2}} \mathbf{g}_{1}^{0}(x)
$$

it is clear that (8.342) is satisfied with $\beta(y)=-1$. From (8.345)-(8.347), we have

$$
\begin{gathered}
\ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{-y} \\
\overline{\mathbf{g}}_{1}^{u}(x) \triangleq \ell\left(H \circ F_{0}(x)\right) \mathbf{g}_{1}^{0}(x)=\left[\begin{array}{c}
0 \\
e^{-x_{2}}
\end{array}\right]
\end{gathered}
$$

and

$$
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)=\left[\begin{array}{c}
(1+u) e^{\frac{-x_{1}}{1+u}} \\
\frac{2 x_{1} e^{-x_{2}-\frac{x_{1}}{1+1}}}{1+u}
\end{array}\right] .
$$

Since $\overline{\mathbf{g}}_{2}^{u}(x) \neq \overline{\mathbf{g}}_{2}^{0}(x)$, condition (ii) of Theorem 8.14 is not satisfied. Hence, by Theorem 8.14, system (8.369) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Since

$$
\mathbf{g}_{2}^{0}(x)=\left.\mathbf{g}_{2}^{u}(x)\right|_{u=0}=\left[\begin{array}{c}
1 \\
2 x_{1} e^{-x_{2}}
\end{array}\right],
$$

there does not exist $\theta_{1}^{u}(x)$ such that (8.351) is satisfied. Since condition (i) of Theorem 8.15 is not satisfied, system (8.369) is not state equivalent to a dual Brunovsky NOCF with OT.

8.6 Discrete Time Dynamic Observer Error Linearization

Consider the following single output control system and autonomous system:

$$
\begin{align*}
x(t+1) & =F(x(t), u(t)) \triangleq F_{u}(x(t)) \tag{8.370}\\
y(t) & =H(x(t)) \\
x(t+1) & =F(x(t), 0) \triangleq F_{0}(x(t)) \tag{8.371}\\
y(t) & =H(x(t))
\end{align*}
$$

with $F_{0}(0)=0, H(0)=0$, state $x \in \mathbb{R}^{n}$, input $u \in \mathbb{R}^{m}$, and output $y \in \mathbb{R}$. Define the restricted dynamic system with index d (called auxiliary dynamics) by

$$
\left[\begin{array}{c}
w_{1}(t+1) \tag{8.372}\\
\vdots \\
w_{d-1}(t+1) \\
w_{d}(t+1)
\end{array}\right]=\left[\begin{array}{c}
w_{2}(t) \\
\vdots \\
w_{d}(t) \\
y(t)
\end{array}\right] \triangleq p(w(t), y(t))
$$

Define the extended system of system (8.370) with index d by

$$
\begin{align*}
x^{e}(t+1) & \triangleq\left[\begin{array}{l}
w(t+1) \\
x(t+1)
\end{array}\right]=\left[\begin{array}{c}
p(w(t), H(x(t))) \\
F_{u}(x(t))
\end{array}\right] \triangleq F_{e, u}\left(x^{e}(t)\right) \tag{8.373}\\
y^{e}(t) & =w_{1}(t) \triangleq H^{e}\left(x^{e}(t)\right)
\end{align*}
$$

where $x^{e} \triangleq\left[\begin{array}{l}w \\ x\end{array}\right] \in \mathbb{R}^{d+n}$.
Definition 8.15 (RDOEL with index d)
System (8.370) is said to be restricted dynamic observer error linearizable (RDOEL) with index d, if there exist a smooth function $\varphi(y)\left(\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=0}=1\right.$ and $\left.\varphi(0)=0\right)$ and a local extended state transformation $z^{e}=S^{e}(w, x)=\left[\begin{array}{c}\bar{w} \\ z\end{array}\right]=\left[\begin{array}{c}\Phi(w) \\ S(w, x)\end{array}\right]$ such that extended system (8.373) satisfies, in the new states z^{e}, to a generalized nonlinear observer canonical form (GNOCF) with index d defined by

$$
\begin{align*}
z^{e}(t+1) & =A_{e} z^{e}(t)+\bar{\gamma}^{u}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right) \triangleq \bar{f}_{u}\left(z^{e}\right) \\
\bar{y}^{e}(t) & =C_{e} z^{e}(t)=z_{1}^{e}(t) \triangleq \bar{h}\left(z^{e}\right) \tag{8.374}
\end{align*}
$$

where $A_{e}=\left[\begin{array}{cc}O_{(n+d-1) \times 1} & I_{(n+d-1)} \\ 0 & O_{1 \times(n+d-1)}\end{array}\right], C_{e}=\left[\begin{array}{ll}1 & O_{1 \times(n+d-1)}\end{array}\right]$,

$$
\Phi(w) \triangleq\left[\varphi\left(w_{1}\right) \cdots \varphi\left(w_{d}\right)\right]^{\top}
$$

and $\bar{\gamma}^{u}: \mathbb{R}^{d+1} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{d+n}$ is a smooth vector function with $\bar{\gamma}_{i}^{u}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right)=$ 0 for $1 \leq i \leq d$. In other words,

$$
\begin{equation*}
\bar{h}\left(z^{e}\right) \triangleq \varphi \circ H^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=z_{1}^{e} \tag{8.375}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{u}\left(z^{e}\right) & \triangleq S^{e} \circ F_{e, u} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=A_{e} z^{e}+\bar{\gamma}^{u}\left(z_{1}^{e}, \cdots, z_{d+1}^{e}\right) \\
& =A_{e} z^{e}+\bar{\gamma}^{u}\left(\varphi\left(w_{1}\right), \cdots, \varphi\left(w_{d}\right), \varphi(y)\right) \tag{8.376}\\
& \triangleq A_{e} z^{e}+\gamma^{u}\left(w_{1}, \cdots, w_{d}, y\right)
\end{align*}
$$

System (8.370) is said to be RDOEL, if system (8.370) is RDOEL with some index d. If we use a general nonlinear dynamic system $w(t+1)=\bar{p}(w(t), y(t))$ in Definition 8.15 instead of restricted (or linear) dynamic system (8.372), system (8.370) is said to be DOEL with index d.

Let $S^{-1}(\bar{w}, z)$ be the vector function such that $S\left(\bar{w}, S^{-1}(\bar{w}, z)\right)=z$ for all $\bar{w} \in$ \mathbb{R}^{d}. In other words,

$$
x^{e}=\left[\begin{array}{c}
w \\
x
\end{array}\right]=\left(S^{e}\right)^{-1}(\bar{w}, z)=\left[\begin{array}{c}
\Phi^{-1}(\bar{w}) \\
S^{-1}(\bar{w}, z)
\end{array}\right]
$$

If system (8.370) is RDOEL with index d, then we can design a state estimator

$$
\begin{aligned}
{\left[\begin{array}{c}
\bar{w}(t+1) \\
\bar{z}(t+1)
\end{array}\right] } & =\left(A_{e}-L_{e} C_{e}\right)\left[\begin{array}{c}
\bar{w}(t) \\
\bar{z}(t)
\end{array}\right]+\bar{\gamma}^{u}(\bar{w}(t), y(t))+L_{e} \bar{w}_{1}(t) \\
\bar{x}(t) & \triangleq S^{-1}(\bar{w}(t), \bar{z}(t))
\end{aligned}
$$

that yields an asymptotically vanishing error, i.e., $\lim _{t \rightarrow \infty}\left\|z^{e}(t)-\bar{z}^{e}(t)\right\|=0$ or $\lim _{t \rightarrow \infty}\|x(t)-\bar{x}(t)\|=0$, where $\bar{z}^{e} \triangleq\left[\begin{array}{c}w \\ \bar{z}\end{array}\right]$ and $\left(A_{e}-L_{e} C_{e}\right)$ is an asymptotically stable $(d+n) \times(d+n)$ matrix. Block diagram for dynamic nonlinear observer can be found in Fig. 8.4.

RDOEL for autonomous system (8.371) can also be similarly defined with $u=0$. If $\bar{f}_{u}^{e}\left(z^{e}\right) \triangleq S^{e} \circ F_{e, u} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=A_{e} z^{e}+\gamma^{u}(w, y)$, then it is clear that $\bar{f}_{0}^{e}(z) \triangleq$ $S^{e} \circ F_{0}^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=A_{e} z^{e}+\gamma^{0}(w, y)$. Thus, we have the following remark.

Remark 8.10 If system (8.370) is RDOEL with index d and state transformation $z^{e}=S^{e}(w, x)$, then system (8.371) is also RDOEL with index d and state transformation $z^{e}=S^{e}(w, x)$. But the converse is not true.

Fig. 8.4 Restricted dynamic nonlinear observer

Definition 8.16 (state equivalence to a d-GNOCF with OT)
System (8.370) is said to be state equivalent to a d-GNOCF with output transformation (OT), if there exist a smooth function $\varphi(y)\left(\left.\frac{\partial \varphi(y)}{\partial y}\right|_{y=0}=1\right.$ and $\left.\varphi(0)=0\right)$ and a local state transformation $z=\tilde{S}(x)$ such that system (8.370) satisfies, in the new states z, a generalized nonlinear observer canonical form (GNOCF) with index d defined by

$$
\begin{align*}
z(t+1) & =A_{o} z(t)+\gamma^{u} \circ \bar{\Phi}^{-1}\left(z_{1}, \cdots, z_{d+1}\right) \triangleq \bar{f}_{u}(z(t)) \tag{8.377}\\
\bar{y}(t) & =\varphi(y(t))=C z(t)=z_{1}(t) \triangleq \bar{h}(z(t))
\end{align*}
$$

where $A_{o}=\left[\begin{array}{cc}O_{(n-1) \times 1} & I_{(n-1)} \\ 0 & O_{1 \times(n-1)}\end{array}\right], C=\left[\begin{array}{ll}1 & O_{1 \times(n-1)}\end{array}\right], \bar{f}_{u}(z)=\tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z), \bar{h}(z)=\varphi \circ$ $H \circ \tilde{S}^{-1}(z), \gamma^{u}\left(\bar{z}_{1}, \cdots, \bar{z}_{d+1}\right): \mathbb{R}^{d+1+m} \rightarrow \mathbb{R}^{n}$ is a smooth vector function with $\gamma_{i}^{u}=0,1 \leq i \leq d$, and

$$
\bar{\Phi}^{-1}\left(z_{1}, \cdots, z_{d+1}\right) \triangleq\left[\varphi^{-1}\left(z_{1}\right) \cdots \varphi^{-1}\left(z_{d+1}\right)\right]^{\top}
$$

In other words,

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ \tilde{S}^{-1}(z)=C z(t)=z_{1} \tag{8.378}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{u}(z) & \triangleq \tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z)=A_{o} z+\gamma^{u} \circ \bar{\Phi}^{-1}\left(z^{1}\right) \\
& \triangleq A_{o} z+\bar{\gamma}^{u}\left(z^{1}\right) \tag{8.379}
\end{align*}
$$

where $\bar{\gamma}_{i}^{u}\left(z^{1}\right)=0,1 \leq i \leq d$ and

$$
z^{1} \triangleq\left[z_{1} \cdots z_{d+1}\right]^{\top}
$$

If system (8.370) is state equivalent to 0-GNOCF with OT, then system (8.370) is said to be state equivalent to a dual Brunovsky NOCF with OT. Also, it is easy to see that system (8.370) is RDOEL with index d, if and only if extended system (8.373) is state equivalent to d-GNOCF with OT.

Since observability is invariant under state transformation, we assume the observability rank condition on the neighborhood of the origin. In other words,

$$
\operatorname{rank}\left(\left.\frac{\partial T(x)}{\partial x}\right|_{x=0}\right)=n
$$

where

$$
T(x) \triangleq\left[\begin{array}{c}
H(x) \tag{8.380}\\
H \circ F_{0}(x) \\
\vdots \\
H \circ F_{0}^{n-1}(x)
\end{array}\right] .
$$

For extended system (8.373), as in Definition 8.14, the canonical system can also be defined by

$$
\xi^{e}(t+1)=\left[\begin{array}{c}
\xi_{2}^{e}+\alpha_{1}^{u}\left(\xi^{e}\right) \tag{8.381}\\
\vdots \\
\xi_{n}^{e}+\alpha_{n+d-1}^{u}\left(\xi^{e}\right) \\
\alpha_{n+d}^{u}\left(\xi^{e}\right)
\end{array}\right] \triangleq f_{u}^{e}\left(\xi^{e}\right) ; \quad y_{a}=\xi_{1}^{e}=w_{1} \triangleq h_{E}\left(\xi^{e}\right)
$$

where

$$
\xi^{e} \triangleq\left[\begin{array}{c}
w \tag{8.382}\\
\xi
\end{array}\right]=T_{e}\left(x^{e}\right) \triangleq\left[\begin{array}{c}
w \\
T(x)
\end{array}\right]=\left[\begin{array}{c}
w \\
H(x) \\
H \circ F_{0}(x) \\
\vdots \\
H \circ F_{0}^{n-1}(x)
\end{array}\right]=\left[\begin{array}{c}
H^{e}\left(x^{e}\right) \\
H^{e} \circ F_{e, 0}\left(x^{e}\right) \\
\vdots \\
H^{e} \circ F_{e, 0}^{n+d-1}\left(x^{e}\right)
\end{array}\right]
$$

$f_{u}^{e}\left(\xi^{e}\right) \triangleq T_{e} \circ F_{e, u} \circ T_{e}^{-1}\left(\xi^{e}\right), \alpha_{i}^{u}\left(\xi^{e}\right) \triangleq H^{e} \circ \hat{F}_{e, u}^{i} \circ T_{e}^{-1}\left(\xi^{e}\right)-H^{e} \circ F_{e, 0}^{i} \circ T_{e}^{-1}\left(\xi^{e}\right)$, $1 \leq i \leq n+d-1$, and $\alpha_{n+d}^{u}\left(\xi^{e}\right) \triangleq H^{e} \circ \hat{F}_{e, u}^{n+d} \circ T_{e}^{-1}\left(\xi^{e}\right)$. It is clear that for $1 \leq$ $i \leq d$,

$$
\begin{equation*}
H^{e} \circ F_{e, u}^{i}\left(x^{e}\right)=H^{e} \circ F_{e, 0}^{i}\left(x^{e}\right) . \tag{8.383}
\end{equation*}
$$

Lemma 8.10 System (8.370) is state equivalent to a d-GNOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=\tilde{S}(x)$, if and only if there exist a smooth function $\varphi(y)$ and smooth functions $\gamma_{k}^{u}: \mathbb{R}^{d+1+m} \rightarrow \mathbb{R}, d+1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{align*}
& \tilde{S}_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x) \tag{8.384}\\
& \varphi \circ H \circ \hat{F}_{u}^{n}(x)=\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ T^{1}(x) \tag{8.385}
\end{align*}
$$

and

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)= \begin{cases}0, & 1 \leq i \leq d \tag{8.386}\\ \varepsilon_{i}^{u} \circ T^{1}(x), & d+1 \leq i \leq n\end{cases}
$$

where for $d+1 \leq i \leq n$,

$$
\begin{equation*}
\varepsilon_{i}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \triangleq \gamma_{i}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right)-\gamma_{i}^{0}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \tag{8.387}
\end{equation*}
$$

and

$$
T^{1}(x) \triangleq\left[\begin{array}{c}
T_{1}(x) \tag{8.388}\\
T_{2}(x) \\
\vdots \\
T_{d+1}(x)
\end{array}\right]=\left[\begin{array}{c}
H(x) \\
H \circ F_{0}(x) \\
\vdots \\
H \circ F_{0}^{d}(x)
\end{array}\right] .
$$

Proof Necessity. Suppose that system (8.370) is state equivalent to a d-GNOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=\tilde{S}(x)$. Then, it is clear, by (8.378) and (8.379), that $\varphi \circ H \circ \tilde{S}^{-1}(z)=\bar{h}(z)=z_{1}$ and

$$
\tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z)=\bar{f}_{u}(z)=A_{o} z+\gamma^{u} \circ \bar{\Phi}^{-1}\left(z^{1}\right)
$$

where

$$
\begin{equation*}
\gamma_{i}^{u}(\cdot)=0,1 \leq i \leq d \tag{8.389}
\end{equation*}
$$

Let

$$
\tilde{S}^{1}(x) \triangleq\left[\tilde{S}_{1}(x), \cdots, \tilde{S}_{d+1}(x)\right]^{\top}
$$

Since $\varphi \circ H \circ \tilde{S}^{-1} \circ \tilde{S}(x)=\bar{h} \circ \tilde{S}(x)=z_{1} \circ \tilde{S}(x)=\tilde{S}_{1}(x)$ and

$$
\begin{equation*}
\tilde{S} \circ F_{u}(x)=\bar{f}_{u} \circ \tilde{S}(x)=A_{o} \tilde{S}(x)+\gamma^{u} \circ \bar{\Phi}^{-1} \circ \tilde{S}^{1}(x) \tag{8.390}
\end{equation*}
$$

it is easy to see, by (8.389), that $\tilde{S}_{1}(x)=\varphi \circ H(x)$ and

$$
\begin{equation*}
\tilde{S}_{i+1}(x)=\tilde{S}_{i} \circ F_{u}(x)=\tilde{S}_{i} \circ F_{0}(x), 1 \leq i \leq d \tag{8.391}
\end{equation*}
$$

which implies that $\tilde{S}_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x), \quad 1 \leq i \leq d+1$ and thus (8.384) is satisfied for $1 \leq i \leq d+1$. In other words,

$$
\begin{equation*}
\tilde{S}^{1}(x)=\bar{\Phi} \circ T^{1}(x) \tag{8.392}
\end{equation*}
$$

Similarly, we have, (8.390) and (8.392), that for $d+1 \leq i \leq n-1$,

$$
\begin{align*}
\tilde{S}_{i+1}(x) & =\tilde{S}_{i} \circ F_{u}(x)-\gamma_{i}^{u} \circ \bar{\Phi}^{-1} \circ \tilde{S}^{1}(x)=\tilde{S}_{i} \circ F_{u}(x)-\gamma_{i}^{u} \circ T^{1}(x) \tag{8.393}\\
& =\tilde{S}_{i} \circ F_{0}(x)-\gamma_{i}^{0} \circ T^{1}(x)
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{S}_{n} \circ F_{u}(x)=\gamma_{n}^{u} \circ \bar{\Phi}^{-1} \circ \tilde{S}^{1}(x)=\gamma_{n}^{u} \circ T^{1}(x) \tag{8.394}
\end{equation*}
$$

Thus, it is easy to see, by mathematical induction, that for $d+2 \leq i \leq n$,

$$
\tilde{S}_{i}(x)=\tilde{S}_{1} \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x)
$$

which implies that (8.384) is also satisfied for $d+2 \leq i \leq n$. Also, since $\tilde{S}_{n}(x)=$ $\varphi \circ H \circ F_{0}^{n-1}(x)-\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{n-1-k}(x)$, we have, by (8.394), that

$$
\gamma_{n}^{u} \circ T^{1}(x)=\varphi \circ H \circ \hat{F}_{u}^{n}(x)-\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)
$$

which implies that (8.385) is satisfied. Finally, it is easy to see, by (8.393) and (8.394), that for $d+1 \leq i \leq n-1$,

$$
\begin{aligned}
\varepsilon_{i}^{u} \circ T^{1}(x) & =\gamma_{i}^{u} \circ T^{1}(x)-\gamma_{i}^{0} \circ T^{1}(x)=\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i+1}(x)-\gamma_{i}^{0} \circ T^{1}(x) \\
& =\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)
\end{aligned}
$$

and

$$
\varepsilon_{n}^{u} \circ T^{1}(x)=\gamma_{n}^{u} \circ T^{1}(x)-\gamma_{n}^{0} \circ T^{1}(x)=\tilde{S}_{n} \circ F_{u}(x)-\tilde{S}_{n} \circ F_{0}(x)
$$

which imply, together with (8.391), that (8.386) is satisfied.
Sufficiency. Suppose that there exist $\varphi(y)$ and $\left\{\gamma_{k}^{0}, \varepsilon_{k}(u) \mid d+1 \leq k \leq n\right\}$ such that (8.384)-(8.386) are satisfied. Then it is easy to see, by (8.384), that $\bar{h}(z) \triangleq$ $\varphi \circ H \circ \tilde{S}^{-1}(z)=z_{1}$,

$$
\begin{equation*}
\tilde{S}_{i} \circ F_{0}(x)=\varphi \circ H \circ F_{0}^{i}(x)=\tilde{S}_{i+1}(x), 1 \leq i \leq d \tag{8.395}
\end{equation*}
$$

and for $d+1 \leq i \leq n-1$,

$$
\begin{aligned}
\tilde{S}_{i} \circ F_{0}(x) & =\varphi \circ H \circ F_{0}^{i}(x)-\sum_{k=1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-k}(x) \\
& =\tilde{S}_{i+1}(x)+\gamma_{i}^{0} \circ T^{1}(x)
\end{aligned}
$$

which imply, together with (8.386) and (8.387), that

$$
\tilde{S}_{i} \circ F_{u}(x)=\tilde{S}_{i} \circ F_{0}(x)=\tilde{S}_{i+1}(x), 1 \leq i \leq d
$$

and for $d+1 \leq i \leq n-1$,

$$
\begin{aligned}
\tilde{S}_{i} \circ F_{u}(x) & =\tilde{S}_{i} \circ F_{0}(x)+\varepsilon_{i}^{u} \circ T^{1}(x) \\
& =\tilde{S}_{i+1}(x)+\gamma_{i}^{0} \circ T^{1}(x)+\varepsilon_{i}^{u} \circ T^{1}(x) \\
& =\tilde{S}_{i+1}(x)+\gamma_{i}^{u} \circ T^{1}(x) .
\end{aligned}
$$

Finally, we have, by (8.384) and (8.385), that

$$
\begin{aligned}
\tilde{S}_{n} \circ F_{u}(x) & =\varphi \circ H \circ \hat{F}_{u}^{n}(x)-\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x) \\
& =\gamma_{n}^{u} \circ T^{1}(x) .
\end{aligned}
$$

Note, by (8.395), that

$$
\tilde{S}^{1}(x)=\bar{\Phi} \circ T^{1}(x) \text { or } T^{1}(x)=\bar{\Phi}^{-1} \circ \tilde{S}^{1}(x)
$$

Therefore, it is clear that

$$
\begin{aligned}
\bar{f}_{u}(z) & \triangleq \tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z)=\left.\left[\begin{array}{c}
\tilde{S}_{2}(x)+\gamma_{1}^{u} \circ \bar{\Phi}^{-1} \circ \tilde{S}^{1}(x) \\
\vdots \\
\tilde{S}_{n-1}(x)+\gamma_{n-1}^{u} \circ \bar{\Phi}^{-1} \circ \tilde{S}^{1}(x) \\
\gamma_{n}^{u} \circ \bar{\Phi}^{-1} \circ \tilde{S}^{1}(x)
\end{array}\right]\right|_{x=\tilde{S}^{-1}(z)} \\
& =\left[\begin{array}{c}
z_{2}+\gamma_{1}^{u} \circ \bar{\Phi}^{-1}\left(z^{1}\right) \\
\vdots \\
z_{n-1}+\gamma_{n-1}^{u} \circ \bar{\Phi}^{-1}\left(z^{1}\right) \\
\gamma_{n}^{u} \circ \bar{\Phi}^{-1}\left(z^{1}\right)
\end{array}\right]=A_{o} z+\gamma^{u} \circ \bar{\Phi}^{-1}\left(z^{1}\right)
\end{aligned}
$$

where $\gamma_{i}^{u}(\cdot)=0, \quad 1 \leq i \leq d$. Hence, system (8.370) is state equivalent to a d GNOCF with OT $\bar{y}=\varphi(y)$ and state transformation $z=\tilde{S}(x)$.

Note, by (8.382) and (8.388), that

$$
H^{e} \circ\left(\hat{F}_{u}^{e}\right)^{i}\left(x^{e}\right)= \begin{cases}w_{i+1}, & 0 \leq i \leq d-1 \tag{8.396}\\ H \circ \hat{F}_{u}^{i-d}(x), & i \geq d\end{cases}
$$

and

$$
\begin{equation*}
\left(T^{e}\right)^{1} \circ\left(\hat{F}_{u}^{e}\right)^{d+i}\left(x^{e}\right)=T^{1} \circ \hat{F}_{u}^{i}(x), i \geq 0 \tag{8.397}
\end{equation*}
$$

where $\left(T^{e}\right)^{1}\left(x^{e}\right) \triangleq\left[H^{e} H^{e} \circ\left(F_{0}^{e}\right) \cdots H^{e} \circ\left(F_{0}^{e}\right)^{d}\right]^{\top}=\left[\begin{array}{c}w \\ H(x)\end{array}\right]$.
Lemma 8.11 The followings are equivalent:
(i) System (8.370) is RDOEL with index d and

$$
\begin{equation*}
H \circ \hat{F}_{u}^{i}(x)=H \circ F_{0}^{i}(x), 1 \leq i \leq d \tag{8.398}
\end{equation*}
$$

(ii) System (8.370) is state equivalent to a d-GNOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x)$ and for some $\bar{\varepsilon}_{i}^{u}(y), d+1 \leq i \leq n$,

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)= \begin{cases}0, & 1 \leq i \leq d \tag{8.399}\\ \bar{\varepsilon}_{i}^{u}(H(x)), & d+1 \leq i \leq n\end{cases}
$$

Proof (i) \Rightarrow (ii): Suppose that (8.398) is satisfied and system (8.370) is RDOEL with index d. In other words, extended system (8.373) is state equivalent to a d GNOCF with OT $\varphi(y)$ and extended state transformation $z^{e}=S^{e}(w, x)$. Therefore, it is clear, by Lemma 8.10, that there exist a smooth function $\varphi(y)$ and smooth functions $\hat{\gamma}_{k}^{0}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ and $\hat{\varepsilon}_{k}^{u}: \mathbb{R}^{d+1+m} \rightarrow \mathbb{R}, d+1 \leq k \leq n+d$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{d+i}^{e}\left(x^{e}\right)=\varphi \circ H^{e} \circ\left(F_{0}^{e}\right)^{d+i-1}\left(x^{e}\right)-\sum_{k=d+1}^{d+i-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{0}^{e}\right)^{d+i-1-k}\left(x^{e}\right) \tag{8.400}
\end{equation*}
$$

$$
\begin{equation*}
\varphi \circ H^{e} \circ\left(\hat{F}_{u}^{e}\right)^{n+d}\left(x^{e}\right)=\sum_{k=d+1}^{n+d-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(\hat{F}_{u}^{e}\right)^{n+d-k}\left(x^{e}\right)+\hat{\gamma}_{n+d}^{u} \circ\left(T^{e}\right)^{1}\left(x^{e}\right) \tag{8.401}
\end{equation*}
$$

and for $1 \leq i \leq n$,

$$
\begin{equation*}
S_{d+i}^{e} \circ \hat{F}_{u}^{e}\left(x^{e}\right)-S_{d+i}^{e} \circ F_{0}^{e}\left(x^{e}\right)=\hat{\varepsilon}_{d+i}^{u} \circ\left(T^{e}\right)^{1}\left(x^{e}\right) \tag{8.402}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tilde{S}_{i}(x) \triangleq \varphi \circ H \circ F_{0}^{i-1}(x), \quad 1 \leq i \leq d+1 \tag{8.403}
\end{equation*}
$$

and for $d+2 \leq i \leq n$,

$$
\begin{equation*}
\tilde{S}_{i}(x) \triangleq \varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x) \tag{8.404}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{k}^{0}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \triangleq \hat{\gamma}_{k}^{0}\left(\xi_{1}, \cdots, \xi_{d+1}\right), d+1 \leq k \leq n-1 \tag{8.405}
\end{equation*}
$$

Also, let for $d+1 \leq i \leq n$,

$$
\begin{equation*}
\lambda_{i}^{0}\left(w, \xi_{1}, \cdots, \xi_{d}\right) \triangleq \sum_{k=i}^{d+i-1} \hat{\gamma}_{k}^{0}\left(w_{d+i-k}, \cdots, w_{d}, \xi_{1}, \cdots, \xi_{d+i-k}\right) \tag{8.406}
\end{equation*}
$$

Then we have, by (8.396), (8.397), (8.400), and (8.403)-(8.406), that for $d+1 \leq$ $i \leq n$,

$$
\begin{align*}
S_{d+i}^{e}\left(x^{e}\right)= & \varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x) \\
& -\sum_{k=i}^{d+i-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{0}^{e}\right)^{d+i-1-k}\left(x^{e}\right) \tag{8.407}\\
= & \tilde{S}_{i}(x)-\lambda_{i}^{0}\left(w, H(x), \cdots, H \circ F_{0}^{d-1}(x)\right) .
\end{align*}
$$

Thus, it is easy to see, by (8.398), (8.402), (8.403), and (8.407), that for $1 \leq i \leq d$,

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)=\varphi \circ H \circ \hat{F}_{u}^{i}(x)-\varphi \circ H \circ F_{0}^{i}(x)=0
$$

and for $d+1 \leq i \leq n$,

$$
\begin{aligned}
& \tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)=S_{d+i}^{e} \circ \hat{F}_{u}^{e}\left(x^{e}\right)-S_{d+i}^{e} \circ F_{0}^{e}\left(x^{e}\right) \\
& \quad+\lambda_{i}^{0}\left(p(w, H), H \circ F_{u}, \cdots, H \circ \hat{F}_{u}^{d}\right)-\lambda_{i}^{0}\left(p(w, H), H \circ F_{0}, \cdots, H \circ F_{0}^{d}\right) \\
& \quad=\hat{\varepsilon}_{d+i}^{u}(w, H(x))=\hat{\varepsilon}_{d+i}^{u}(0, \cdots, 0, H(x)) \triangleq \bar{\varepsilon}_{i}^{u}(H(x))
\end{aligned}
$$

which imply that (8.399) is satisfied. Thus, it is also clear that

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)= \begin{cases}0, & 1 \leq i \leq d \tag{8.408}\\ \varepsilon_{i}^{u} \circ T^{1}(x), & d+1 \leq i \leq n\end{cases}
$$

where for $d+1 \leq i \leq n$,

$$
\varepsilon_{i}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \triangleq \bar{\varepsilon}_{i}^{u}\left(\xi_{1}\right)
$$

Finally, it is clear, by (8.396)-(8.398), that for $n \leq k \leq n+d-1$,

$$
\begin{equation*}
\left(T^{e}\right)^{1} \circ\left(\hat{F}_{u}^{e}\right)^{n+d-k}\left(x^{e}\right)=\left(T^{e}\right)^{1} \circ\left(\hat{F}_{0}^{e}\right)^{n+d-k}\left(x^{e}\right) \tag{8.409}
\end{equation*}
$$

Therefore, we have, by (8.396), (8.401), and (8.409), that

$$
\begin{aligned}
& \varphi \circ H^{e} \circ\left(\hat{F}_{u}^{e}\right)^{n+d}\left(x^{e}\right)=\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\hat{\gamma}_{n+d}^{u} \circ\left(T^{e}\right)^{1}\left(x^{e}\right) \\
&+\sum_{k=n}^{n+d-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(\hat{F}_{0}^{e}\right)^{n+d-k}\left(x^{e}\right) \\
&= \sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\hat{\gamma}_{n+d}^{u}\left(w_{1}, \cdots, w_{d}, H(x)\right) \\
&+\sum_{k=n}^{n+d-1} \hat{\gamma}_{k}^{0}\left(w_{n+d-k+1}, \cdots, w_{d}, H(x), \cdots, H \circ \hat{F}_{0}^{n+d-k}(x)\right) \\
& \triangleq \sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\left.\tilde{\gamma}_{n}^{u}\left(w_{1}, \cdots, w_{d}, \xi_{1}, \cdots, \xi_{d+1}\right)\right|_{\xi=T(x)}
\end{aligned}
$$

which implies, together with (8.396), that

$$
\begin{align*}
\varphi \circ H \circ \hat{F}_{u}^{n}(x) & =\varphi \circ H^{e} \circ\left(\hat{F}_{u}^{e}\right)^{n+d}\left(x^{e}\right)=\left.\varphi \circ H^{e} \circ\left(\hat{F}_{u}^{e}\right)^{n+d}\left(x^{e}\right)\right|_{w=O} \\
& =\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ T^{1}(x) \tag{8.410}
\end{align*}
$$

where

$$
\begin{aligned}
\tilde{\gamma}_{n}^{u}\left(w_{1}, \cdots, w_{d}, \xi_{1}, \cdots,\right. & \left.\xi_{d+1}\right) \triangleq \hat{\gamma}_{n+d}^{u}\left(w_{1}, \cdots, w_{d}, \xi_{1}\right) \\
& +\sum_{k=n}^{n+d-1} \hat{\gamma}_{k}^{0}\left(w_{n+d-k+1}, \cdots, w_{d}, \xi_{1}, \cdots, \xi_{n+d-k+1}\right)
\end{aligned}
$$

and

$$
\gamma_{n}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \triangleq \tilde{\gamma}_{n}^{u}\left(O_{d \times 1}, \xi_{1}, \cdots, \xi_{d+1}\right)
$$

Hence, by (8.403), (8.404), (8.408), (8.410), and Lemma 8.10, system (8.370) is state equivalent to a d-GNOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x)$.
(ii) \Rightarrow (i): Suppose that system (8.370) is state equivalent to a d-GNOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x)$ and that (8.399) is satisfied. Then, by Lemma 8.10 and (8.399), there exist a smooth function $\varphi(y)$ and smooth functions $\gamma_{k}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right), d+1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{align*}
& \tilde{S}_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x) \tag{8.411}\\
& \varphi \circ H \circ \hat{F}_{u}^{n}(x)=\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ T^{1}(x) \tag{8.412}
\end{align*}
$$

and

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)= \begin{cases}0, & 1 \leq i \leq d \tag{8.413}\\ \bar{\varepsilon}_{i}^{u} \circ H(x), & d+1 \leq i \leq n\end{cases}
$$

where for $d+1 \leq i \leq n$,

$$
\begin{equation*}
\bar{\varepsilon}_{i}^{u}\left(\xi_{1}\right) \triangleq \gamma_{i}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right)-\gamma_{i}^{0}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \tag{8.414}
\end{equation*}
$$

From (8.411) and (8.413), it is easy to see that $\tilde{S}_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x)$ and $\varphi \circ H \circ$ $\hat{F}_{u}^{i}(x)=\varphi \circ H \circ F_{0}^{i}(x)$ for $1 \leq i \leq d$. Since φ is a diffeomorphism and φ^{-1} exists, (8.398) is satisfied. Let

$$
\begin{align*}
\hat{\gamma}_{k}^{0}(w, y) \triangleq \begin{cases}\gamma_{k}^{0}(w, y), & d+1 \leq k \leq n \\
0, & n+1 \leq n+d\end{cases} \tag{8.415}\\
\hat{\varepsilon}_{d+i}^{u}\left(w_{1}\right) \triangleq \begin{cases}0, & 1 \leq i \leq d \\
\bar{\varepsilon}_{i}^{u}\left(w_{1}\right), & d+1 \leq i \leq n\end{cases} \tag{8.416}
\end{align*}
$$

and for $d+1 \leq k \leq n+d$,

$$
\begin{equation*}
\hat{\gamma}_{k}^{u}(w, y) \triangleq \hat{\gamma}_{k}^{0}(w, y)+\hat{\varepsilon}_{k}^{u}\left(w_{1}\right) . \tag{8.417}
\end{equation*}
$$

For extended system (8.373), we let, for $1 \leq i \leq d$,

$$
\begin{equation*}
S_{i}^{e}\left(x^{e}\right) \triangleq \varphi \circ H^{e} \circ\left(F_{0}^{e}\right)^{i-1}\left(x^{e}\right) \tag{8.418}
\end{equation*}
$$

for $1 \leq i \leq n-d$,

$$
\begin{equation*}
S_{d+i}^{e}\left(x^{e}\right) \triangleq \varphi \circ H^{e} \circ\left(F_{0}^{e}\right)^{d+i-1}\left(x^{e}\right)-\sum_{k=d+1}^{d+i-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{0}^{e}\right)^{d+i-1-k}\left(x^{e}\right) \tag{8.419}
\end{equation*}
$$

and for $n-d+1 \leq i \leq n$,

$$
\begin{equation*}
S_{d+i}^{e}\left(x^{e}\right) \triangleq \varphi \circ H^{e} \circ\left(F_{0}^{e}\right)^{d+i-1}\left(x^{e}\right)-\sum_{k=d+1}^{n} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{0}^{e}\right)^{d+i-1-k}\left(x^{e}\right) \tag{8.420}
\end{equation*}
$$

Then it is easy to see, by (8.396), (8.397), (8.411), (8.415), (8.419), and (8.420), that for $1 \leq i \leq n$,

$$
\begin{align*}
S_{d+i}^{e}\left(x^{e}\right)= & \varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x) \\
& -\sum_{k=i}^{d+i-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{0}^{e}\right)^{d+i-1-k}\left(x^{e}\right) \tag{8.421}\\
= & \tilde{S}_{i}(x)-\lambda_{i}^{0}\left(w, H(x), \cdots, H \circ F_{0}^{d-1}(x)\right)
\end{align*}
$$

where for $1 \leq i \leq n$,

$$
\lambda_{i}^{0}\left(w, \xi_{1}, \cdots, \xi_{d}\right) \triangleq \sum_{k=i}^{d+i-1} \hat{\gamma}_{k}^{0}\left(w_{d+i-k}, \cdots, w_{d}, \xi_{1}, \cdots, \xi_{d+i-k}\right) .
$$

Since $S_{i}^{e}\left(x^{e}\right)=\varphi \circ H^{e} \circ\left(F_{0}^{e}\right)^{i-1}\left(x^{e}\right)=\varphi\left(w_{i}\right)$ for $1 \leq i \leq d$, it is clear, by (8.396), that

$$
\begin{equation*}
S_{i}^{e} \circ \hat{F}_{u}^{e}\left(x^{e}\right)-S_{i}^{e} \circ F_{0}^{e}\left(x^{e}\right)=0,1 \leq i \leq d \tag{8.422}
\end{equation*}
$$

Also, it is easy to see, by (8.398), (8.413), (8.416), and (8.421), that for $1 \leq i \leq n$,

$$
\begin{align*}
& S_{d+i}^{e} \circ \hat{F}_{u}^{e}\left(x^{e}\right)-S_{d+i}^{e} \circ F_{0}^{e}\left(x^{e}\right)=\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x) \\
& \quad-\lambda_{i}^{0}\left(p(w, H), H \circ F_{u}, \cdots, H \circ \hat{F}_{u}^{d}\right)+\lambda_{i}^{0}\left(p(w, H), H \circ F_{0}, \cdots, H \circ F_{0}^{d}\right) \\
& =\left\{\begin{array}{ll}
0, & 1 \leq i \leq d \\
\bar{\varepsilon}_{i}^{u}(H(x)), & d+1 \leq i \leq n
\end{array}=\hat{\varepsilon}_{d+i}^{u}(H(x)) .\right. \tag{8.423}
\end{align*}
$$

Finally, it is clear, by (8.396), (8.397), (8.412), (8.414), and (8.415), that

$$
\begin{align*}
& \varphi \circ H^{e} \circ\left(\hat{F}_{u}^{e}\right)^{n+d}\left(x^{e}\right)=\varphi \circ H \circ \hat{F}_{u}^{n}(x)=\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ T^{1}(x) \\
&=\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{0} \circ T^{1}(x)+\bar{\varepsilon}_{n}^{u} \circ H(x) \\
&=\sum_{k=d+1}^{n} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{u}^{e}\right)^{n+d-k}\left(x^{e}\right)+\bar{\varepsilon}_{n}^{u} \circ H(x) \\
&=\sum_{k=d+1}^{n+d-1} \hat{\gamma}_{k}^{0} \circ\left(T^{e}\right)^{1} \circ\left(F_{u}^{e}\right)^{n+d-k}\left(x^{e}\right)+\hat{\gamma}_{n+d}^{0} \circ\left(T^{e}\right)^{1}\left(x^{e}\right) \tag{8.424}
\end{align*}
$$

where $\hat{\gamma}_{n+d}^{0}(w, y) \triangleq \bar{\varepsilon}_{n}^{u}(y)$. Therefore, by (8.418)-(8.420), (8.422)-(8.424), and Lemma 8.10, extended system (8.373) is state equivalent to a d-GNOCF with OT $\varphi(y)$ and state transformation $z^{e}=S^{e}(w, x)$. Hence, system (8.370) is RDOEL with index d.
Remark 8.11 In the proof of (ii) \Rightarrow (i) of Lemma 8.11, it has been shown that if system (8.370) is state equivalent to a d-GNOCF with γ^{0} and $\varepsilon^{u}(H(x))$, then extended system (8.373) is state equivalent to a d-GNOCF with $\hat{\gamma}^{0}=\left[\begin{array}{c}\gamma^{0} \\ O_{d \times 1}\end{array}\right]$ and $\hat{\varepsilon}^{u}(H(x))=\left[\begin{array}{c}O_{d \times 1} \\ \varepsilon^{u}(H(x))\end{array}\right]$. In other words, if system (8.370) is state equivalent to a d-GNOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x)$, then system (8.370) is RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$, defined by

$$
S_{i}^{e}(w, x)= \begin{cases}\hat{S}_{i}\left(w, H(x), \cdots, H \circ F_{0}^{n-1-d}(x)\right), & 1 \leq i \leq n \tag{8.425}\\ S_{n}^{e} \circ F_{0}^{e}(w, x)-\gamma_{n}^{0}(w, H(x)), & i=n+1 \\ S_{i-1}^{e} \circ F_{0}^{e}(w, x), & n+2 \leq i \leq n+d\end{cases}
$$

where

$$
\begin{aligned}
& \hat{S}(\xi) \triangleq \tilde{S} \circ T^{-1}(\xi) \\
& \gamma_{n}^{0}\left(\xi_{1}, \cdots, \xi_{d+1}\right) \triangleq \hat{S}_{n} \circ T \circ F_{0} \circ T^{-1}(\xi) \\
&=\tilde{S}_{n} \circ F_{0} \circ T^{-1}(\xi)
\end{aligned}
$$

Example 8.6.1 Use (8.411) and (8.418)-(8.420) to show that (8.425) is satisfied.
Solution Solution is omitted. (Problem 8-10.)
Autonomous system (8.371) satisfies (8.398) and (8.399). Thus, we have the following from Lemma 8.11.

Corollary 8.10 Autonomous system (8.371) is RDOEL with index d, if and only if autonomous system (8.371) is state equivalent to a d-GNOCF with OT.

It is obvious, by Lemma 8.10, that autonomous system (8.371) is always state equivalent to a $(n-1)$-GNOCF with OT $\varphi(y)=y$ and $z=\tilde{S}(x)=T(x)$. Assume that (8.398) is satisfied with $d=n$. Then it is clear that $F_{u}(x)=F_{0}(x)$ and system (8.370) is the same as autonomous system (8.371). Therefore, system (8.370) is, by Corollary 8.10, RDOEL with index $d=n-1$. From now on, we will assume that $d \leq n-1$.

Theorem 8.17 Suppose that (8.398) is satisfied. System (8.370) is RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$, if and only if there exist smooth functions $\ell(y)(\ell(0)=1)$ and $\varepsilon_{i}^{u}(y), d+1 \leq i \leq n$ such that

$$
\begin{gather*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 1 \leq i \leq n-d \tag{8.426}\\
{\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d} \tag{8.427}
\end{gather*}
$$

and

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\begin{array}{c}
\varepsilon_{d+1}^{u}(H(x)) \tag{8.428}\\
\vdots \\
\varepsilon_{n}^{u}(H(x))
\end{array}\right]
$$

where

$$
\begin{gather*}
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.429}\\
\overline{\mathbf{g}}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{0}(x)\right) ; \overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}(x)\right), i \geq 2 \tag{8.430}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.431}\\
T_{*}\left(\overline{\mathbf{g}}_{i}^{0}\right) \triangleq \overline{\mathbf{r}}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\hat{\mathbf{r}}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \tag{8.432}\\
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
{\left[\varphi\left(\xi_{1}\right) \cdots\right.} \\
\hat{S}^{2}\left(\xi_{1}, \cdots, \xi_{n}\right)
\end{array}\right] \tag{8.433}
\end{gather*}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{lll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi) \tag{8.434}
\end{array} \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425).
Proof Necessity. Suppose that system (8.370) is RDOEL with index d and (8.398) is satisfied. Then, by Lemma 8.11 , system (8.370) is state equivalent to d-GNOCF
(8.377) with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x)$, and for some $\varepsilon_{i}^{u}(y), d+$ $1 \leq i \leq n$,

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)= \begin{cases}0, & 1 \leq i \leq d \tag{8.435}\\ \varepsilon_{i}^{u}(H(x)), & d+1 \leq i \leq n\end{cases}
$$

Thus, we have, by (8.384) of Lemma 8.10, that for $1 \leq i \leq n$,

$$
\begin{equation*}
\tilde{S}_{i}(x)=\varphi \circ H \circ F_{0}^{i-1}(x)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{i-1-k}(x) \tag{8.436}
\end{equation*}
$$

In other words, we have that $\bar{y}=\bar{h}(z) \triangleq \varphi \circ H \circ \tilde{S}^{-1}(z)=z_{1}$ and

$$
\begin{equation*}
\bar{f}_{u}(z) \triangleq \tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z)=A_{o} z+\gamma^{u} \circ \bar{\Phi}^{-1}\left(z_{1}, \cdots, z_{d+1}\right) \tag{8.437}
\end{equation*}
$$

For d-GNOCF system (8.377), we define the following vector fields:

$$
\begin{align*}
& \bar{\psi}_{1}^{u}(z)=\bar{\psi}_{1}^{0}(z) \triangleq \frac{\partial}{\partial z_{n}} \tag{8.438}\\
& \bar{\psi}_{i}^{u}(z) \triangleq\left(\bar{f}_{u}\right)_{*}\left(\bar{\psi}_{i-1}^{u}(z)\right) ; \quad \bar{\psi}_{i}^{0}(z) \triangleq\left(\bar{f}_{0}\right)_{*}\left(\bar{\psi}_{i-1}^{0}(z)\right), i \geq 2
\end{align*}
$$

Then it is clear, by (8.437), that for $1 \leq i \leq n-d$,

$$
\begin{equation*}
\bar{\psi}_{i}^{u}(z)=\bar{\psi}_{i}^{0}(z)=\frac{\partial}{\partial z_{n+1-i}} \tag{8.439}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\bar{\psi}_{1}^{0}(z), \bar{\psi}_{i}^{0}(z)\right]=0 \tag{8.440}
\end{equation*}
$$

If we let $\xi=T(x)$ and $z=\tilde{S} \circ T^{-1}(\xi) \triangleq \hat{S}(\xi)$, then we have, by (8.380), (8.388), and (8.436), that

$$
\begin{equation*}
\hat{S}_{i}(\xi)=\varphi\left(\xi_{i}\right), 1 \leq i \leq d+1 \tag{8.441}
\end{equation*}
$$

and for $d+2 \leq i \leq n$

$$
\begin{equation*}
\hat{S}_{i}(\xi)=\varphi\left(\xi_{i}\right)-\sum_{k=d+1}^{i-1} \gamma_{k}^{0}\left(\xi_{i-k}, \cdots, \xi_{i-k+d}\right) \tag{8.442}
\end{equation*}
$$

Thus, it is clear that

$$
\frac{\partial \hat{S}_{i}(\xi)}{\partial \xi_{n}}= \begin{cases}0, & \text { if } i \leq n-1 \\ \frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}, & \text { if } i=n\end{cases}
$$

which implies, together with (2.22), (8.298), and (8.438), that

$$
\begin{aligned}
& \tilde{S}_{*}\left(\mathbf{g}_{1}^{0}(x)\right)=\hat{S}_{*} \circ T_{*}\left(\mathbf{g}_{1}^{0}(x)\right)=\hat{S}_{*}\left(\frac{\partial}{\partial \xi_{n}}\right)=\left.\sum_{i=1}^{n} \frac{\partial \hat{S}_{i}(\xi)}{\partial \xi_{n}}\right|_{\xi=\hat{S}^{-1}(z)} \frac{\partial}{\partial z_{i}} \\
& \quad=\left.\frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}\right|_{\xi=\hat{S}^{-1}(z)} \frac{\partial}{\partial z_{n}}=\left.\frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}}\right|_{\xi=\hat{S}^{-1}(z)} \bar{\psi}_{1}^{0}(z)
\end{aligned}
$$

Thus, if we let

$$
\frac{1}{\ell\left(\xi_{n}\right)}=\frac{d \varphi\left(\xi_{n}\right)}{d \xi_{n}} \quad\left(\text { or } \varphi(y)=\int_{0}^{y} \frac{1}{\ell\left(\xi_{n}\right)} d \xi_{n}\right)
$$

then we have, by (2.49) and (8.380), that $\bar{\psi}_{1}^{0}(z)=\left.\ell\left(\xi_{n}\right)\right|_{\xi=\hat{S}^{-1}(z)} \tilde{S}_{*}\left(\mathbf{g}_{1}^{0}(x)\right)$ and

$$
\begin{aligned}
\tilde{S}_{*}^{-1}\left(\bar{\psi}_{1}^{0}(z)\right) & =\tilde{S}_{*}^{-1}\left(\left.\ell\left(\xi_{n}\right)\right|_{\xi=\hat{S}^{-1}(z)} \tilde{S}_{*}\left(\mathbf{g}_{1}^{0}(x)\right)\right) \\
& =\left.\ell\left(\xi_{n}\right)\right|_{\xi=T(x)} \mathbf{g}_{1}^{0}(x)=\ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

Hence, if we let $\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \tilde{S}_{*}^{-1}\left(\bar{\psi}_{1}^{0}(z)\right)$, then (8.429) is satisfied. It will be shown, by mathematical induction, that for $1 \leq i \leq n-d$,

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\tilde{S}_{*}^{-1}\left(\bar{\psi}_{i}^{u}(z)\right)=\tilde{S}_{*}^{-1}\left(\frac{\partial}{\partial z_{n+1-i}}\right)=\overline{\mathbf{g}}_{i}^{0}(x) \tag{8.443}
\end{equation*}
$$

Assume that (8.443) is satisfied for $i=k$ and $1 \leq k \leq n-d-1$. Since $\bar{f}_{u}(z)=$ $\tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z)$ or $F_{u}(x)=\tilde{S}^{-1} \circ \bar{f}_{u} \circ \tilde{S}(x)$, it is clear, by (2.22), (8.430), (8.438), and (8.439), that

$$
\begin{aligned}
\overline{\mathbf{g}}_{k+1}^{u}(x) & =\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{k}^{u}(x)\right)=\tilde{S}_{*}^{-1} \circ\left(\bar{f}_{u}\right)_{*} \circ \tilde{S}_{*}\left(\overline{\mathbf{g}}_{k}^{u}(x)\right)=\tilde{S}_{*}^{-1} \circ\left(\bar{f}_{u}\right)_{*}\left(\bar{\psi}_{k}^{u}(z)\right) \\
& =\tilde{S}_{*}^{-1}\left(\bar{\psi}_{k+1}^{u}(z)\right)=\tilde{S}_{*}^{-1}\left(\frac{\partial}{\partial z_{n-k}}\right)=\overline{\mathbf{g}}_{k+1}^{0}(x)
\end{aligned}
$$

which implies, by mathematical induction, that (8.443) is satisfied for $1 \leq i \leq n-d$. Thus, it is easy, by (2.28), (8.440), and (8.443), to see that (8.426) and (8.427) are satisfied. Let $T_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right) \triangleq \overline{\mathbf{r}}_{i}^{0}(\xi) \triangleq\left[\begin{array}{c}\tilde{\mathbf{r}}_{i}^{0}(\xi) \\ \hat{\mathbf{r}}_{i}^{0}(\xi)\end{array}\right]$ for $1 \leq i \leq n$, where $\tilde{\mathbf{r}}_{i}^{0}(\xi)$ is a $d \times 1$ matrix. Now it is clear, by (8.441), that (8.433) is satisfied. Since $\tilde{S} \circ T^{-1}(\xi)=\hat{S}(\xi)$, it is also clear, by (8.443), that for $1 \leq i \leq n-d$,

$$
\hat{S}_{*}\left(\overline{\mathbf{r}}_{i}^{0}(\xi)\right)=\hat{S}_{*} \circ T_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right)=\tilde{S}_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right)=\bar{\psi}_{i}^{0}(z)=\frac{\partial}{\partial z_{n+1-i}}
$$

and

$$
\left[\hat{S}_{*}\left(\overline{\mathbf{r}}_{n-d}^{0}(\xi)\right) \cdots \hat{S}_{*}\left(\overline{\mathbf{r}}_{1}^{0}(\xi)\right)\right]=\left[\bar{\psi}_{n-d}^{0}(z) \cdots \bar{\psi}_{1}^{0}(z)\right]=\left[\begin{array}{c}
O_{d \times(n-d)} \\
I_{n-d}
\end{array}\right]
$$

which implies, together with (8.433), that

$$
\left[\begin{array}{ccc}
\frac{\partial \hat{S}^{\prime}\left(\xi \xi^{1}\right)}{\partial \xi^{\prime}} & O_{d \times(n-d)} \\
\frac{\partial \hat{S}^{2}(\xi)}{\partial \xi^{1}} & \frac{\partial \hat{S}^{2}(\xi)}{\partial \xi^{2}}
\end{array}\right]\left[\begin{array}{ccc}
\tilde{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \tilde{\mathbf{r}}_{1}^{0}(\xi) \\
\hat{r}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{1}^{0}(\xi)
\end{array}\right]=\left[\begin{array}{c}
o_{d \times(n-d)} \\
I_{n-d}
\end{array}\right]
$$

where $\xi^{1} \triangleq\left[\begin{array}{lll}\xi_{1} & \cdots & \xi_{d}\end{array}\right]^{\top}$ and $\xi^{2} \triangleq\left[\begin{array}{lll}\xi_{d+1} & \cdots & \xi_{n}\end{array}\right]^{\top}$. Since $\frac{\partial \hat{S}^{1}\left(\xi^{1}\right)}{\partial \xi^{1}}$ is nonsingular, it is clear that

$$
\left[\tilde{\mathbf{r}}_{n-d}^{0}(\xi) \cdots \tilde{\mathbf{r}}_{1}^{0}(\xi)\right]=O_{d \times(n-d)}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial \xi^{2}}\left[\hat{\mathbf{r}}_{n-d}^{0}(\xi) \cdots \hat{\mathbf{r}}_{1}^{0}(\xi)\right]=I_{n-d}
$$

In other words, (8.432) and (8.434) are satisfied. If we let $\tilde{S}^{2}(x) \triangleq\left[\begin{array}{c}\tilde{S}_{d+1}(x) \\ \vdots \\ \tilde{S}_{n}(x)\end{array}\right]$, then we have $\tilde{S}^{2}(x)=\hat{S}^{2} \circ T(x)$. Thus, it is clear, by (8.435), that (8.428) is satisfied.

Sufficiency. Assume that (8.398) is satisfied. Suppose that there exist $\beta(y)$ and $\varepsilon_{i}^{u}(y), d+1 \leq i \leq n$ such that (8.426)-(8.434) are satisfied. Let $\xi=T(x), f_{u}(\xi) \triangleq$ $T \circ F_{u} \circ T^{-1}(\xi)$, and for $1 \leq i \leq n$,

$$
\begin{equation*}
\overline{\mathbf{r}}_{i}^{0}(\xi) \triangleq T_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right) ; \quad \overline{\mathbf{r}}_{i}^{u}(\xi) \triangleq T_{*}\left(\overline{\mathbf{g}}_{i}^{u}(x)\right) \tag{8.444}
\end{equation*}
$$

It will be shown, by mathematical induction, that for $2 \leq i \leq n$,

$$
\begin{equation*}
\overline{\mathbf{r}}_{i}^{0}(\xi)=\left(f_{0}\right)_{*}\left(\overline{\mathbf{r}}_{i-1}^{0}\right) ; \quad \overline{\mathbf{r}}_{i}^{u}(\xi)=\left(f_{u}\right)_{*}\left(\overline{\mathbf{r}}_{i-1}^{u}\right) \tag{8.445}
\end{equation*}
$$

Assume that (8.445) is satisfied for $i=k$. Since $f_{u}(\xi)=T \circ F_{u} \circ T^{-1}(\xi)$ or $F_{u}(x)=$ $T^{-1} \circ f_{u} \circ T(x)$, it is clear, by (2.22), (8.430), and (8.444), that

$$
\begin{aligned}
\overline{\mathbf{r}}_{k}^{u}(\xi) & =T_{*} \circ\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{k-1}^{u}(x)\right)=T_{*} \circ\left(F_{u}\right)_{*} \circ T_{*}^{-1}\left(\overline{\mathbf{r}}_{k-1}^{u}(\xi)\right) \\
& =\left(f_{u}\right)_{*}\left(\overline{\mathbf{r}}_{k-1}^{u}(\xi)\right)
\end{aligned}
$$

which implies, by mathematical induction, that (8.445) is satisfied for $2 \leq i \leq n$. It is also clear, by (2.49), (8.303), (8.426), (8.427), (8.429), and (8.432), that for $1 \leq i \leq n-d$,

$$
\begin{gather*}
\overline{\mathbf{r}}_{i}^{u}(\xi)=\overline{\mathbf{r}}_{i}^{0}(\xi) \\
{\left[\overline{\mathbf{r}}_{1}^{0}(\xi), \overline{\mathbf{r}}_{i}^{0}(\xi)\right]=T_{*}\left(\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]\right)=0} \tag{8.446}
\end{gather*}
$$

$$
\begin{align*}
\overline{\mathbf{r}}_{i}^{0}(\xi) & =T_{*}\left(\left(F_{0}\right)_{*}^{i-1}\left(\ell\left(H \circ F_{0}^{n-1}\right) \mathbf{g}_{1}^{0}(x)\right)\right)=T_{*}\left(\ell\left(H \circ F_{0}^{n-i}\right) \mathbf{g}_{i}^{0}(x)\right) \tag{8.447}\\
& =\ell\left(\xi_{n+1-i}\right) \mathbf{r}_{i}^{0}(\xi)=\left[O_{1 \times(n-i)} \ell\left(\xi_{n+1-i}\right) \quad * \cdots\right]^{\top}
\end{align*}
$$

and

$$
\left[\hat{\mathbf{r}}_{n-d}^{0}(\xi) \cdots \hat{\mathbf{r}}_{1}^{0}(\xi)\right]=\left[\begin{array}{cccc}
\ell\left(\xi_{d+1}\right) & 0 & \cdots & 0 \tag{8.448}\\
* & \ell\left(\xi_{d+2}\right) & \cdots & 0 \\
* & * & \ddots & \vdots \\
* & * & \cdots & \ell\left(\xi_{n}\right)
\end{array}\right]
$$

Note, by (8.446) and (8.447), that $\left\{\overline{\mathbf{r}}_{1}^{0}(\xi), \overline{\mathbf{r}}_{2}^{0}(\xi), \cdots, \overline{\mathbf{r}}_{n-d}^{0}(\xi)\right\}$ is a set of commuting vector fields such that

$$
\operatorname{span}\left\{\overline{\mathbf{r}}_{1}^{0}(\xi), \cdots, \overline{\mathbf{r}}_{n-d}^{0}(\xi)\right\}=\operatorname{span}\left\{\frac{\partial}{\partial \xi_{d+1}}, \cdots, \frac{\partial}{\partial \xi_{n}}\right\} .
$$

Therefore, by Corollary 2.1, there exists a state transformation $z=\hat{S}(\xi)=$ $\left[\begin{array}{l}\hat{S}^{1}\left(\xi_{1}, \cdots, \xi_{d}\right) \\ \hat{S}^{2}\left(\xi_{1}, \cdots, \xi_{n}\right)\end{array}\right]$ such that

$$
\begin{equation*}
\hat{S}^{1}(\xi)=\left[\varphi\left(\xi_{1}\right) \cdots \varphi\left(\xi_{d}\right)\right]^{\top} \tag{8.449}
\end{equation*}
$$

and for $1 \leq i \leq n-d$,

$$
\begin{equation*}
\hat{S}_{*}\left(\overline{\mathbf{r}}_{i}^{0}(\xi)\right)\left(=\hat{S}_{*}\left(\overline{\mathbf{r}}_{i}^{u}(\xi)\right)\right)=\frac{\partial}{\partial z_{n+1-i}} \tag{8.450}
\end{equation*}
$$

which imply, together with (8.432), that

$$
\begin{aligned}
& {\left[\begin{array}{c}
O_{d \times(n-d)} \\
I_{n-d}
\end{array}\right] }=\left[\hat{S}_{*}\left(\overline{\mathbf{r}}_{n-d}^{0}(\xi)\right) \cdots \hat{S}_{*}\left(\overline{\mathbf{r}}_{1}^{0}(\xi)\right)\right] \\
&=\left.\frac{\partial \hat{S}(\xi)}{\partial \xi}\left[\overline{\mathbf{r}}_{n-d}^{0}(\xi) \cdots \overline{\mathbf{r}}_{1}^{0}(\xi)\right]\right|_{\xi=\hat{S}^{-1}(z)} \\
& {\left[\begin{array}{cc}
\frac{\partial \hat{S}^{1}(\xi)}{\partial \xi^{1}} & O_{d \times(n-d)} \\
\frac{\partial \hat{S}^{2}(\xi)}{\partial \xi^{1}} & \frac{\partial \hat{S}^{2}(\xi)}{\partial \xi^{2}}
\end{array}\right]\left[\begin{array}{ccc}
O_{d \times 1} & \cdots & O_{d \times 1} \\
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{1}^{0}(\xi)
\end{array}\right]=\left[\begin{array}{c}
O_{d \times(n-d)} \\
I_{n-d}
\end{array}\right] }
\end{aligned}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial \xi^{2}}\left[\hat{\mathbf{r}}_{n-d}^{0}(\xi) \cdots \hat{\mathbf{r}}_{1}^{0}(\xi)\right]=I_{n-d}
$$

where $\xi^{1} \triangleq\left[\begin{array}{lll}\xi_{1} & \cdots & \xi_{d}\end{array}\right]^{\top}$ and $\xi^{2} \triangleq\left[\begin{array}{lll}\xi_{d+1} & \cdots & \xi_{n}\end{array}\right]^{\top}$. Thus, $\hat{S}^{2}(\xi)$ can be calculated by (8.434). Let $\tilde{S}(x) \triangleq \hat{S} \circ T(x)$. Now we will show that

$$
\begin{equation*}
\bar{h}(z) \triangleq \varphi \circ H \circ \tilde{S}^{-1}(z)=\varphi \circ H \circ T^{-1} \circ \hat{S}^{-1}(z)=z_{1} \tag{8.451}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{u}(z) & \triangleq \tilde{S} \circ F_{u} \circ \tilde{S}^{-1}(z)=\hat{S} \circ f_{u} \circ \hat{S}^{-1}(z) \tag{8.452}\\
& =A_{o} z+\bar{\gamma}^{u}\left(z_{1}, \cdots, z_{d+1}\right)
\end{align*}
$$

where $\bar{\gamma}_{i}\left(z_{1}, \cdots, z_{d+1}\right)=0, \quad 1 \leq i \leq d$. Since $H \circ T^{-1}(\xi)=\xi_{1}$, it is clear that $\bar{h}(z)=\left.\varphi\left(\xi_{1}\right)\right|_{\xi=\hat{S}^{-1}(z)}=z_{1}$ and thus (8.451) is satisfied. We have, by (8.431), (8.434), and (8.448), that

$$
\frac{d \hat{S}_{1}^{2}(\xi)}{d\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\frac{1}{\ell\left(\xi \xi_{d+1}\right)} 0 \cdots 0\right]=\left[\frac{d \varphi\left(\xi_{d+1}\right)}{d \xi_{d+1}} 0 \cdots \cdots 0\right]
$$

or

$$
\hat{S}_{d+1}(\xi)=\hat{S}_{1}^{2}(\xi)=\varphi\left(\xi_{d+1}\right)
$$

which implies, together with (8.449), that for $1 \leq i \leq d+1$,

$$
\begin{equation*}
z_{i}=\hat{S}_{i}(\xi)=\varphi\left(\xi_{i}\right)=\varphi \circ H \circ F_{0}^{i-1} \circ T^{-1}(\xi) \tag{8.453}
\end{equation*}
$$

Therefore, if we let

$$
\bar{f}_{u}(z) \triangleq \sum_{k=1}^{n} \bar{f}_{u, k}(z) \frac{\partial}{\partial z_{k}}=\left[\begin{array}{c}
\bar{f}_{u, 1}(z) \tag{8.454}\\
\vdots \\
\bar{f}_{u, n}(z)
\end{array}\right]
$$

then it is clear, by (8.398) and (8.453), that, for $1 \leq i \leq d$,

$$
\begin{align*}
\bar{f}_{u, i}(z) & =\hat{S}_{i} \circ f_{u} \circ \hat{S}^{-1}(z)=\varphi \circ H \circ F_{0}^{i-1} \circ T^{-1} \circ T \circ F_{u} \circ T^{-1} \circ \hat{S}^{-1}(z) \\
& =\varphi \circ H \circ \hat{F}_{u}^{i} \circ T^{-1} \circ \hat{S}^{-1}(z)=\varphi \circ H \circ F_{0}^{i} \circ T^{-1} \circ \hat{S}^{-1}(z)=z_{i+1} \tag{8.455}
\end{align*}
$$

which implies that $\bar{\gamma}_{i}^{u}\left(z_{1}, \cdots, z_{d+1}\right)=0,1 \leq i \leq d$. Since $\bar{f}_{u}(z)=\hat{S} \circ f_{u} \circ \hat{S}^{-1}(z)$, it is also easy to show that, for $i \geq 1$,

$$
\begin{align*}
\hat{S}_{*}\left(\overline{\mathbf{r}}_{i+1}^{u}(\xi)\right) & =\hat{S}_{*}\left(\left(f_{u}\right)_{*}\left(\overline{\mathbf{r}}_{i}^{u}(\xi)\right)\right)=\hat{S}_{*} \circ\left(f_{u}\right)_{*} \circ \hat{S}_{*}^{-1}\left(\hat{S}_{*}\left(\overline{\mathbf{r}}_{i}^{u}(\xi)\right)\right) \\
& =\left(\bar{f}_{u}\right)_{*}\left(\hat{S}_{*}\left(\overline{\mathbf{r}}_{i}^{u}(\xi)\right)\right) \tag{8.456}
\end{align*}
$$

Therefore, we have, by (8.450) and (8.454)-(8.456), that, for $1 \leq i \leq n-d-1$,

$$
\begin{aligned}
\frac{\partial}{\partial z_{n-i}} & =\left(\bar{f}_{u}\right)_{*}\left(\frac{\partial}{\partial z_{n+1-i}}\right)=\left.\sum_{k=1}^{n} \frac{\partial \bar{f}_{u, k}(\bar{z})}{\partial \bar{z}_{n+1-i}}\right|_{\bar{z}=\bar{f}_{u}^{-1}(z)} \frac{\partial}{\partial z_{k}} \\
& =\left.\sum_{k=d+1}^{n} \frac{\partial \bar{f}_{u, k}(\bar{z})}{\partial \bar{z}_{n+1-i}}\right|_{\bar{z}=\bar{f}_{u}^{-1}(z)} \frac{\partial}{\partial z_{k}}
\end{aligned}
$$

which implies that, for $d+1 \leq k \leq n$ and $1 \leq i \leq n-d-1$,

$$
\left.\frac{\partial \bar{f}_{u, k}(\bar{z})}{\partial \bar{z}_{n+1-i}}\right|_{\bar{z}=\bar{f}_{u}^{-1}(z)}= \begin{cases}1, & k=n-i \\ 0, & \text { otherwise }\end{cases}
$$

or, for $d+1 \leq k \leq n$ and $d+2 \leq j \leq n$,

$$
\frac{\partial \bar{f}_{u, k}(z)}{\partial z_{j}}= \begin{cases}1, & j=k+1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence, $\bar{f}_{u, n}(z)=\bar{\gamma}_{n}^{u}\left(z_{1}, \cdots, z_{d+1}\right)$ and $\bar{f}_{u, k}(z)=z_{k+1}+\bar{\gamma}_{k}^{u}\left(z_{1}, \cdots, z_{d+1}\right), d+$ $1 \leq k \leq n-1$, for some functions $\bar{\gamma}_{k}^{u}\left(z_{1}, \cdots, z_{d+1}\right), d+1 \leq k \leq n$. In other words, (8.452) is satisfied with $\bar{\gamma}_{i}^{u}\left(z_{1}, \cdots, z_{d+1}\right)=0,1 \leq i \leq d$ and system (8.370) is, by Definition 8.16, state equivalent to d-GNOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x) \triangleq \hat{S} \circ T(x)$. Finally, it is clear, by (8.398) and (8.428), that (8.399) is satisfied. Hence, by Lemma 8.11, system (8.370) is state equivalent to RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$ in (8.425).

If we let $\varphi(y)=y$ or $\ell(y)=1$, the following corollary can be obtained from Theorem 8.17.

Corollary 8.11 Suppose that (8.398) is satisfied. System (8.370) is RDOEL with indexd and $O T \varphi(y)=y$ (i.e., without $O T$), if and only if there exists smooth functions $\varepsilon_{i}^{u}(y), d+1 \leq i \leq n$ such that

$$
\begin{gather*}
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 1 \leq i \leq n-d \tag{8.457}\\
{\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d} \tag{8.458}\\
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\varepsilon_{d+1}^{u}(H(x)) \quad \cdots \varepsilon_{n}^{u}(H(x))\right]^{\top} \tag{8.459}
\end{gather*}
$$

where

$$
\left.\begin{array}{c}
T_{*}\left(\mathbf{g}_{i}^{0}(x)\right) \triangleq \mathbf{r}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\hat{\mathbf{r}}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \\
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{c}
\xi_{1} \\
\hat{S}^{2}
\end{array}\right.} & \cdots & \xi_{d}
\end{array}\right]^{\top} \tag{8.461}\\
\left(\xi_{1}, \cdots, \xi_{n}\right)
\end{array}\right] .
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{llll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi) & \hat{\mathbf{r}}_{1}^{0}(\xi) \tag{8.462}
\end{array}\right]^{-1}
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425).
If we let $F_{u}(x)=F_{0}(x)$, then (8.398) is satisfied and we can obtain the following corollary for autonomous system (8.371) from Corollary 8.11.

Corollary 8.12 Autonomous system (8.371) is RDOEL with index d and $O T \varphi(y)=$ y (i.e., without OT), if and only if

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d \tag{8.463}
\end{equation*}
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425), where

$$
\begin{gather*}
T_{*}\left(\mathbf{g}_{i}^{0}(x)\right) \triangleq \mathbf{r}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\hat{\mathbf{r}}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \tag{8.464}\\
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array} { c }
{ \xi _ { 1 } } \\
{ \hat { S } ^ { 2 } } \\
{ \hat { S } ^ { 2 } }
\end{array} \left(\xi_{d},\right.\right.} & \xi^{\top} \\
\xi_{1}, & \left.\xi_{n}\right)
\end{array}\right] \tag{8.465}
\end{gather*}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{lll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi) \tag{8.466}
\end{array} \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}
$$

In order to find whether the conditions of Theorem 8.17 are satisfied, $\ell(y)$ or $\varphi(y)$ should be found. In the following, we further investigate the conditions that $\ell(y)$ or $\beta(y) \triangleq \frac{d \ln \ell(y)}{d y}=\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}$ should satisfy.

Theorem 8.18 Suppose that (8.398) is satisfied and $\kappa \leq n-d$. System (8.370) is RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$, if and only if there exists smooth functions $\beta(y)$, defined on an open neighborhood of $y=0$, and $\varepsilon_{i}^{u}(y), d+1 \leq i \leq n$ such that
(i)

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right]=L_{\mathbf{g}_{\kappa}^{0}}\left(H \circ F_{0}^{n-1}(x)\right) \beta\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.467}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 1 \leq i \leq n-d \tag{8.468}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d \tag{8.469}
\end{equation*}
$$

(iv)

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\begin{array}{c}
\varepsilon_{d+1}^{u}(H(x)) \tag{8.470}\\
\vdots \\
\varepsilon_{n}^{u}(H(x))
\end{array}\right]
$$

where

$$
\begin{gather*}
\ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \tag{8.471}\\
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.472}\\
\overline{\mathbf{g}}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{0}(x)\right) ; \overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}(x)\right), i \geq 2 \tag{8.473}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.474}\\
T_{*}\left(\overline{\mathbf{g}}_{i}^{0}\right) \triangleq \overline{\mathbf{r}}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\mathbf{r}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \tag{8.475}\\
\hat{S}(\xi)=\left[\begin{array}{l}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{cc}
{\left[\varphi\left(\xi_{1}\right)\right.} & \cdots
\end{array} \begin{array}{c}
\left.\hat{S}^{2}\left(\xi_{1}, \cdots, \xi_{d}\right)\right]^{\top}
\end{array}\right] \tag{8.476}
\end{gather*}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{lll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi) \tag{8.477}
\end{array} \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425).
Proof Necessity. Let $\kappa \leq n-d$. Suppose that system (8.370) is RDOEL with index d and (8.398) is satisfied. Then, by Theorem 8.17, there exist smooth functions $\ell(y)$ ($\ell(0)=1)$ and $\varepsilon_{i}^{u}(y), d+1 \leq i \leq n$ such that (8.468)-(8.470) and (8.472)-(8.477) are satisfied. Since $2 \leq \kappa \leq n-d$, it is clear, by (8.300), that

$$
\begin{equation*}
L_{\mathbf{g}_{1}^{0}} \ell\left(H \circ F_{0}^{n-\kappa}(x)\right)=\left.\frac{d \ell(y)}{d y}\right|_{y=H \circ F_{0}^{n-\kappa}(x)} L_{\mathbf{g}_{1}^{0}}\left(H \circ F_{0}^{n-\kappa}(x)\right)=0 . \tag{8.478}
\end{equation*}
$$

Thus, we have, by (2.43), (8.340), (8.469), and (8.478), that

$$
\begin{aligned}
0 & =\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{\kappa}^{0}(x)\right]=\left[\ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x), \ell\left(H \circ F_{0}^{n-\kappa}(x)\right) \mathbf{g}_{\kappa}^{0}(x)\right] \\
= & \ell\left(H \circ F_{0}^{n-1}(x)\right) \ell\left(H \circ F_{0}^{n-\kappa}(x)\right)\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right] \\
& -\ell\left(H \circ F_{0}^{n-\kappa}(x)\right) L_{\mathbf{g}_{\kappa}^{0}} \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
{\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right] } & =\frac{L_{\mathbf{g}_{k}^{0}} \ell\left(H \circ F_{0}^{n-1}(x)\right)}{\ell\left(H \circ F_{0}^{n-1}(x)\right)} \mathbf{g}_{1}^{0}(x) \\
& =\left.\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right|_{y=H \circ F_{0}^{n-1}(x)} L_{\mathbf{g}_{\kappa}^{0}}\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{aligned}
$$

Therefore, (8.467) and (8.471) are satisfied with

$$
\beta(y)=\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\left(=\frac{d \ln \ell(y)}{d y}\right) .
$$

Sufficiency. It is obvious by Theorem 8.17.
If we let $u=0$, we can obtain the following Corollary Theorem 8.18.
Corollary 8.13 Let $\kappa \leq n-d$. Autonomous system (8.371) is RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$, if and only if there exists a scalar function $\beta(y)$, defined on an open neighborhood of $y=0$, such that

$$
\begin{equation*}
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{\kappa}^{0}(x)\right]=L_{\mathbf{g}_{k}^{0}}\left(H \circ F_{0}^{n-1}(x)\right) \beta\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{i}
\end{equation*}
$$

(ii)

$$
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d
$$

where

$$
\begin{gathered}
\ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \\
\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x)
\end{gathered}
$$

and

$$
\overline{\mathbf{g}}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{0}(x)\right), i \geq 2
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425), where

$$
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}
$$

$$
\begin{gathered}
T_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right) \triangleq \overline{\mathbf{r}}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\hat{\mathbf{r}}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \\
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
{\left[\varphi\left(\xi_{1}\right)\right.} \\
\hat{S}^{2}\left(\xi_{1}, \cdots,\right. \\
\left.\hat{S}^{2}, \xi_{n}\right)
\end{array}\right]
\end{gathered}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{lll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi)
\end{array} \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}
$$

Theorem 8.19 Suppose that (8.398) is satisfied and $\sigma<n-d$. System (8.370) is RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$, if and only if there exist scalar functions $\theta_{\sigma}^{u}(x), \bar{\beta}^{u}(x)$, and $\beta(y)$, defined on an open neighborhood of $y=0$, such that
(i)

$$
\mathbf{g}_{i}^{u}(x)= \begin{cases}\mathbf{g}_{i}^{0}(x), & 1 \leq i \leq \sigma \tag{8.479}\\ \theta_{\sigma}^{u}(x) \mathbf{g}_{i}^{0}(x), & i=\sigma+1\end{cases}
$$

(ii)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 1 \leq i \leq n-d \tag{8.480}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d \tag{8.481}
\end{equation*}
$$

(iv)

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\begin{array}{c}
\varepsilon_{d+1}^{u}(H(x)) \tag{8.482}\\
\vdots \\
\varepsilon_{n}^{u}(H(x))
\end{array}\right]
$$

where

$$
\begin{gather*}
\frac{\partial\left(\theta_{\sigma}^{u} \circ F_{u}\right)}{\partial u}=\bar{\beta}^{u}(x) \frac{\partial\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\partial u} \tag{8.483}\\
\bar{\beta}^{0}(x)=\beta\left(H \circ F_{0}^{n-\sigma}(x)\right) \tag{8.484}\\
\ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \tag{8.485}\\
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.486}
\end{gather*}
$$

$$
\begin{align*}
& \overline{\mathbf{g}}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{0}(x)\right) ; \quad \overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}(x)\right), i \geq 2 \tag{8.487}\\
& \varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.488}\\
& T_{*}\left(\overline{\mathbf{g}}_{i}^{0}(x)\right) \triangleq \overline{\mathbf{r}}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\hat{\mathbf{r}}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \tag{8.489}\\
& \hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\varphi\left(\xi_{1}\right)\right.} & \cdots & \left.\varphi\left(\xi_{d}\right)\right]^{\top} \\
\hat{S}^{2}\left(\xi_{1}, \cdots, \xi_{n}\right)
\end{array}\right] \tag{8.490}
\end{align*}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{lll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi) \tag{8.491}
\end{array} \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425).
Proof Necessity. Let $\sigma<n-d$. Suppose that system (8.370) is RDOEL with index d and (8.398) is satisfied. Then, by Theorem 8.17, there exist smooth functions $\ell(y)$ ($\ell(0)=1)$ and $\varepsilon_{i}^{u}(y), d+1 \leq i \leq n$ such that (8.480)-(8.482) and (8.486)-(8.491) are satisfied. It is clear, by (8.340) and (8.341), that

$$
\overline{\mathbf{g}}_{i}^{0}(x)=\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{0}(x), 2 \leq i \leq n
$$

and

$$
\overline{\mathbf{g}}_{i}^{u}(x)= \begin{cases}\ell\left(H \circ F_{0}^{n-i}(x)\right) \mathbf{g}_{i}^{u}(x), & 2 \leq i \leq \sigma \\ \ell\left(H \circ F_{0}^{n-\sigma} \circ F_{u}^{-1}(x)\right) \mathbf{g}_{\sigma+1}^{u}(x), & i=\sigma+1\end{cases}
$$

which imply, together with (8.480), that (8.479) is satisfied with

$$
\theta_{\sigma}^{u}(x)=\frac{\ell\left(H \circ F_{0}^{n-\sigma-1}(x)\right)}{\ell\left(H \circ F_{0}^{n-\sigma} \circ F_{u}^{-1}(x)\right)} \text { or } \frac{\ell\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\ell\left(H \circ F_{0}^{n-\sigma}(x)\right)}=\theta_{\sigma}^{u} \circ F_{u}(x) .
$$

Since

$$
\frac{\partial\left(\theta_{\sigma}^{u} \circ F_{u}\right)}{\partial u}=\frac{\left.\frac{d \ell(y)}{d y}\right|_{y=H \circ \hat{F}_{u}^{n-\sigma}(x)}}{\ell\left(H \circ F_{0}^{n-\sigma}(x)\right)} \frac{\partial\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\partial u}
$$

it is clear that (8.483) is satisfied with

$$
\bar{\beta}^{u}(x)=\frac{\left.\frac{d \ell(y)}{d y}\right|_{y=H \circ \hat{F}_{u}^{n-\sigma}(x)}}{\ell\left(H \circ F_{0}^{n-\sigma}(x)\right)}
$$

Since

$$
\begin{aligned}
\bar{\beta}^{0}(x) & =\left.\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right|_{y=H \circ F_{0}^{n-\sigma}(x)}=\left.\frac{d}{d y}(\ln \ell(y))\right|_{y=H \circ F_{0}^{n-\sigma}(x)} \\
& \triangleq \beta\left(H \circ F_{0}^{n-\sigma}(x)\right),
\end{aligned}
$$

it is easy to see that (8.484) and (8.485) are satisfied.
Sufficiency. It is obvious by Theorem 8.17.
Remark 8.12 Suppose that (8.398) is satisfied and $\sigma \geq n-d$. Then, it is easy to see, by (8.398) and (8.336), that $\sigma=n$ or for $1 \leq i \leq n-1$,

$$
H \circ \hat{F}_{u}^{i}(x)=H \circ F_{0}^{i}(x) \text { and } \alpha_{i}^{u}(\xi)=0
$$

Theorem 8.20 Suppose that(8.398) is satisfied, $\kappa \leq n$, and $\sigma \geq n-d$. Let $F_{u}(x) \neq$ $F_{0}(x)$. System (8.370) is RDOEL with index d and extended state transformation $z^{e}=S^{e}(w, x)$, if and only if there exist scalar functions $\bar{\beta}^{u}(x)$ and $\beta(y)$, defined on an open neighborhood of $y=0$, such that
(i)

$$
\begin{equation*}
\frac{1}{\theta_{n}^{u}(\xi)} \frac{\partial \theta_{n}^{u}(\xi)}{\partial u}=\bar{\beta}^{u}(\xi) \frac{\partial \alpha_{n}^{u}(\xi)}{\partial u} \tag{8.492}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\overline{\mathbf{g}}_{i}^{u}(x)=\overline{\mathbf{g}}_{i}^{0}(x), \quad 1 \leq i \leq n-d \tag{8.493}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{i}^{0}(x)\right]=0, \quad 1 \leq i \leq n-d \tag{8.494}
\end{equation*}
$$

(iv)

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\begin{array}{c}
\varepsilon_{d+1}^{u}(H(x)) \tag{8.495}\\
\vdots \\
\varepsilon_{n}^{u}(H(x))
\end{array}\right]
$$

where $\alpha_{n}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{n} \circ T^{-1}(\xi)$,

$$
\begin{align*}
& \theta_{n}^{u}(\xi) \triangleq \frac{\partial \alpha_{n}^{u}(\xi)}{\partial \xi_{n+2-\kappa}} \\
& \bar{\beta}^{u}(\xi)=\beta\left(\alpha_{n}^{u}(\xi)\right) \tag{8.497}\\
& \ell(y)=e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}} \tag{8.498}
\end{align*}
$$

$$
\begin{gather*}
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{n-1}(x)\right) \mathbf{g}_{1}^{0}(x) \tag{8.499}\\
\overline{\mathbf{g}}_{i}^{0}(x) \triangleq\left(F_{0}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{0}(x)\right) ; \quad \overline{\mathbf{g}}_{i}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{i-1}^{u}(x)\right), i \geq 2 \tag{8.500}\\
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y} \tag{8.501}\\
T_{*}\left(\overline{\mathbf{g}}_{i}^{0}\right) \triangleq \overline{\mathbf{r}}_{i}^{0}(\xi)=\left[\begin{array}{c}
O_{d \times 1} \\
\hat{\mathbf{r}}_{i}^{0}(\xi)
\end{array}\right], 1 \leq i \leq n-d \tag{8.502}\\
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
{\left[\varphi\left(\xi_{1}\right) \cdots\right.} \\
\hat{S}^{2}\left(\xi_{1}, \cdots, \xi_{n}\right)
\end{array}\right] \tag{8.503}
\end{gather*}
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{d+1}, \cdots, \xi_{n}\right)}=\left[\begin{array}{lll}
\hat{\mathbf{r}}_{n-d}^{0}(\xi) & \cdots & \hat{\mathbf{r}}_{2}^{0}(\xi) \tag{8.504}
\end{array} \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}
$$

Furthermore, an extended state transformation $z^{e}=S^{e}(w, x)$ is given by (8.425).
Proof Necessity. Suppose that (8.398) is satisfied, $\kappa \leq n$, and $\sigma \geq n-d$. Then, we have, by Remark 8.12, that $\sigma=n$ or for $1 \leq i \leq n-1$,

$$
\begin{equation*}
H \circ \hat{F}_{u}^{i}(x)=H \circ F_{0}^{i}(x) \text { and } \alpha_{i}^{u}(\xi)=0 \tag{8.505}
\end{equation*}
$$

Suppose that system (8.370) is RDOEL with index d. Then, by Lemma 8.11, system (8.370) is state equivalent to a d-GNOCF with OT $\varphi(y)$ and state transformation $z=\tilde{S}(x)$ and

$$
\tilde{S}_{i} \circ F_{u}(x)-\tilde{S}_{i} \circ F_{0}(x)= \begin{cases}0, & 1 \leq i \leq d \tag{8.506}\\ \bar{\varepsilon}_{i}^{u}(H(x)), & d+1 \leq i \leq n\end{cases}
$$

for some $\bar{\varepsilon}_{i}^{u}(y), d+1 \leq i \leq n$. Thus, by Lemma 8.10 and (8.506), there exist a smooth function $\varphi(y)$ and smooth functions $\gamma_{k}^{u}\left(\xi_{1}, \cdots, \xi_{d+1}\right): \mathbb{R}^{d+1+m} \rightarrow \mathbb{R}, d+$ $1 \leq k \leq n$ such that for $1 \leq i \leq n$,

$$
\begin{equation*}
\tilde{S}_{n}(x)=\varphi \circ H \circ F_{0}^{n-1}(x)-\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{n-1-k}(x) \tag{8.507}
\end{equation*}
$$

$$
\begin{align*}
\varphi \circ H \circ \hat{F}_{u}^{n}(x) & =\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{u}^{n-k}(x)+\gamma_{n}^{u} \circ T^{1}(x) \\
& =\sum_{k=d+1}^{n-1} \gamma_{k}^{0} \circ T^{1} \circ \hat{F}_{0}^{n-k}(x)+\gamma_{n}^{u} \circ T^{1}(x) \tag{8.508}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{S}_{n} \circ F_{u}(x)-\tilde{S}_{n} \circ F_{0}(x)=\bar{\varepsilon}_{n}^{u}(H(x)) \tag{8.509}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}^{0}(y)=0$. Since $\tilde{S}_{n} \circ F_{u}(x)=\gamma_{n}^{u} \circ T^{1}(x)$ by (8.507) and (8.508), we have, by (8.509), that

$$
\begin{equation*}
\gamma_{n}^{u} \circ T^{1}(x)=\gamma_{n}^{0} \circ T^{1}(x)+\bar{\varepsilon}_{n}^{u}(H(x)) . \tag{8.510}
\end{equation*}
$$

Thus, it is easy to see, by (8.505), (8.508), and (8.510), that

$$
\varphi \circ H \circ \hat{F}_{u}^{n}=\sum_{k=d+1}^{n} \gamma_{k}^{0} \circ T^{1} \circ F_{0}^{n-k}+\varepsilon_{n}^{u}(H(x))
$$

and

$$
\begin{align*}
\varphi \circ \alpha_{n}^{u}(\xi) & \triangleq \varphi \circ H \circ \hat{F}_{u}^{n} \circ T^{-1}(\xi) \\
& =\sum_{k=d+1}^{n} \gamma_{k}^{0}\left(\xi_{n-k+1}, \cdots, \xi_{n-k+1+d}\right)+\varepsilon_{n}^{u}\left(\xi_{1}\right) \tag{8.511}\\
& =\varphi \circ \alpha_{n}^{0}(\xi)+\varepsilon_{n}^{u}\left(\xi_{1}\right)
\end{align*}
$$

It is clear, by (8.332), (8.334), and (8.511), that $\frac{\partial \alpha_{n}^{\mu}(\xi)}{\partial \xi_{n+2-\kappa}} \neq 0$ and

$$
\begin{equation*}
\varphi \circ \alpha_{n}^{u}(\xi)=\varphi \circ \alpha_{n}^{0}\left(\xi_{1}, \cdots, \xi_{n+2-\kappa}, 0, \cdots, 0\right)+\varepsilon_{n}^{u}\left(\xi_{1}\right) . \tag{8.512}
\end{equation*}
$$

Let $\bar{\ell}(y) \triangleq \frac{d \varphi(y)}{d y}=\frac{1}{\ell(y)}$. It is easy to see that

$$
\frac{1}{\bar{\ell}(y)} \frac{d \bar{\ell}(y)}{d y}=\ell(y) \frac{d\left(\frac{1}{\ell(y)}\right)}{d y}=-\frac{1}{\ell(y)} \frac{d \ell(y)}{d y} .
$$

Since $n+2-\kappa \geq 2$, we have that

$$
\begin{aligned}
0 & =\frac{\partial^{2}\left(\varphi \circ \alpha_{n}^{u}\right)}{\partial u \partial \xi_{n+2-\kappa}}=\frac{\partial}{\partial u}\left(\left.\frac{d \varphi(y)}{d y}\right|_{y=\alpha_{n}^{u}(\xi)} \frac{\partial \alpha_{n}^{u}(\xi)}{\partial \xi_{n+2-\kappa}}\right)=\frac{\partial}{\partial u}\left(\bar{\ell} \circ \alpha_{n}^{u}(\xi) \theta_{n}^{u}(\xi)\right) \\
& =\left.\frac{d \bar{\ell}(y)}{d y}\right|_{y=\alpha_{n}^{u}(\xi)} \frac{\partial \alpha_{n}^{u}(\xi)}{\partial u} \theta_{n}^{u}(\xi)+\left.\bar{\ell}(y)\right|_{y=\alpha_{n}^{u}(\xi)} \frac{\partial \theta_{n}^{u}(\xi)}{\partial u}
\end{aligned}
$$

which implies that

$$
\frac{1}{\theta_{n}^{u}(\xi)} \frac{\partial \theta_{n}^{u}(\xi)}{\partial u}=-\left.\frac{1}{\bar{\ell}(y)} \frac{d \bar{\ell}(y)}{d y}\right|_{y=\alpha_{n}^{u}(\xi)} \frac{\partial \alpha_{n}^{u}(\xi)}{\partial u}=\left.\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right|_{y=\alpha_{n}^{u}(\xi)} \frac{\partial \alpha_{n}^{u}(\xi)}{\partial u}
$$

Therefore, (8.492), (8.497), and (8.498) are satisfied with

$$
\bar{\beta}^{u}(\xi)=\left.\frac{1}{\ell(y)} \frac{d \ell(y)}{d y}\right|_{y=\alpha_{n}^{u}(\xi)}=\left.\frac{d \ln \ell(y)}{d y}\right|_{y=\alpha_{n}^{u}(\xi)}
$$

and

$$
\bar{\beta}^{u}(\xi)=\beta\left(\alpha_{n}^{u}(\xi)\right)
$$

Sufficiency. It is obvious by Theorem 8.17.
Theorem 8.21 Suppose that (8.398) is satisfied, $\kappa=n+1$, and $\sigma \geq n-d$. (In other words, $\kappa=n+1$ and $\sigma=n$.) System (8.370) is RDOEL with index d, if and only if

$$
\begin{equation*}
\mathbf{g}_{i}^{u}(x)=\mathbf{g}_{i}^{0}(x), \quad 2 \leq i \leq n \tag{8.513}
\end{equation*}
$$

In other words, system (8.370) is RDOEL with index d, if and only if system (8.370) is state equivalent to a dual Brunovsky NOCF without OT.

Proof Necessity. Let $\kappa=n+1$ and $\sigma=n$. Suppose that system (8.370) is d RDOEL. Let $\xi=T(x)$. Then, since $\kappa=n+1$ and $\sigma=n$, it is easy to see, by (8.505) and (8.512), that

$$
\alpha_{i}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{i} \circ T^{-1}(\xi)-H \circ F_{0}^{i} \circ T^{-1}(\xi)=0,1 \leq i \leq n-1
$$

and

$$
\varphi \circ \alpha_{n}^{u}(\xi)=\varphi \circ \alpha_{n}^{0}\left(\xi_{1}, 0, \cdots, 0\right)+\varepsilon_{n}^{u}\left(\xi_{1}\right) \triangleq \tilde{\gamma}_{n}^{u}\left(\xi_{1}\right)
$$

which imply, together with (8.296), that

$$
f_{u}(\xi) \triangleq T \circ F_{u} \circ T^{-1}(\xi)=\left[\begin{array}{c}
\xi_{2} \\
\vdots \\
\xi_{n} \\
\tilde{\alpha}_{n}^{u}\left(\xi_{1}\right)
\end{array}\right]
$$

where $\tilde{\alpha}_{n}^{u}\left(\xi_{1}\right) \triangleq \varphi^{-1} \circ \tilde{\gamma}_{n}^{u}\left(\xi_{1}\right)=\alpha_{n}^{u}\left(\xi_{1}, 0, \cdots, 0\right)$. Therefore, it is clear, by (8.301) and (8.302), that

$$
T_{*}\left(\mathbf{g}_{1}^{u}(x)\right) \triangleq \mathbf{r}_{1}^{u}(\xi)=\frac{\partial}{\partial \xi_{n}}=\mathbf{r}_{1}^{0}(\xi)
$$

and for $2 \leq i \leq n$,

$$
T_{*}\left(\mathbf{g}_{i}^{u}(x)\right) \triangleq \mathbf{r}_{i}^{u}(\xi)=\left(f_{u}\right)_{*}\left(\mathbf{r}_{i-1}^{u}(\xi)\right)=\left(f_{u}\right)_{*}\left(\frac{\partial}{\partial \xi_{n+2-i}}\right)=\frac{\partial}{\partial \xi_{n+1-i}}
$$

which implies that (8.513) is satisfied.
Sufficiency. Let $\kappa=n+1$ and $\sigma=n$. Suppose that (8.513) is satisfied. Then, by Theorem 8.16, system (8.370) is state equivalent to a dual Brunovsky NOCF with OT $\varphi(y)=y$ (i.e., without OT). Hence, system (8.370) is RDOEL with index d.

Example 8.6.2 Consider the system

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \tag{8.514}\\
x_{3} \\
e^{x_{1}+u+x_{2} x_{3}}-1
\end{array}\right]=F_{u}(x) ; \quad y=x_{1}=H(x) .
$$

(a) Show that $\kappa=2 \leq n$ and $\sigma=3=n$.
(b) Use Theorem 8.14 to show that system (8.514) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Use Theorem 8.18 to show that system (8.514) is RDOEL with index $d=1$.

Solution (a) It is easy to see that

$$
\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}
\ln \left(x_{3}+1\right)-x_{1} x_{2}-u \\
x_{1} \\
x_{2}
\end{array}\right] \text { and } T(x) \triangleq\left[\begin{array}{c}
H(x) \\
H \circ F_{0}(x) \\
H \circ F_{0}^{2}(x)
\end{array}\right]=x .
$$

Thus, we have, by (8.298) and (8.299), that

$$
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x)=T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{3}}\right)=\frac{\partial}{\partial x_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and

$$
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
0 \\
1 \\
x_{1}\left(x_{3}+1\right)
\end{array}\right]=\mathbf{g}_{2}^{0}(x)
$$

Since $L_{\mathbf{g}_{2}}\left(H \circ F_{0}^{2}(x)\right)=L_{\mathbf{g}_{2}^{\mathbf{o}}}\left(x_{3}\right)=x_{1}\left(x_{3}+1\right) \neq 0$, it is clear, by (8.331), that $\kappa=2$. Also, since $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}=H \circ F_{0}^{n-1}(x), H \circ \hat{F}_{u}^{n-2}(x)=x_{2}=$ $H \circ F_{0}^{n-2}(x)$, and $H \circ \hat{F}_{u}^{n-3}(x)=x_{1}=H \circ F_{0}^{n-3}(x)$, we have, by (8.336), that $\sigma=3=n$.
(b) Since $L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}^{2}(x)\right)=x_{1}\left(x_{3}+1\right)$ and

$$
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x)\right]=\left[\begin{array}{c}
0 \tag{8.515}\\
0 \\
x_{1}
\end{array}\right]=L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}^{2}(x)\right) \frac{1}{x_{3}+1} \mathbf{g}_{1}^{0}(x)
$$

it is clear that condition (i) of Theorem 8.14 is satisfied with $\beta(y)=\frac{1}{y+1}$. Thus, we have, by (8.345)-(8.347), that

$$
\begin{gather*}
\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{\int_{0}^{y} \frac{1}{\bar{y}+1} d \bar{y}}=e^{\ln (y+1)}=y+1 \tag{8.516}\\
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{2}(x)\right) \mathbf{g}_{1}^{0}(x)=\ell\left(x_{3}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
x_{3}+1
\end{array}\right] \tag{8.517}\\
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)=\left[\begin{array}{c}
0 \\
\left(x_{2}+1\right) \\
x_{1}\left(x_{2}+1\right)\left(x_{3}+1\right)
\end{array}\right] \tag{8.518}
\end{gather*}
$$

and

$$
\begin{aligned}
\overline{\mathbf{g}}_{3}^{u}(x) & \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{2}^{u}(x)\right) \\
& =\left[\begin{array}{c}
\left(x_{1}+1\right) \\
\left(x_{1}+1\right)\left(x_{2}+1\right)\left(\ln \left(x_{3}+1\right)-x_{1} x_{2}-u\right) \\
\left(x_{3}+1\right)\left\{x_{2}+x_{1}\left(x_{2}+1\right)\left(\ln \left(x_{3}+1\right)-x_{1} x_{2}-u\right)\right\}
\end{array}\right]
\end{aligned}
$$

Since $\overline{\mathbf{g}}_{3}^{u}(x) \neq \overline{\mathbf{g}}_{3}^{0}(x)$, condition (ii) of Theorem 8.14 is not satisfied. Therefore, by Theorem 8.14, system (8.514) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Let $d=1$. Since $H \circ F_{u}(x)=x_{2}=H \circ F_{0}(x)$, (8.398) is satisfied. It is clear, by (8.515), that condition (i) of Theorem 8.18 is satisfied with $\beta(y)=\frac{1}{y+1}$. It is also clear, by (8.517) and (8.518), that $\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x)$ and $\overline{\mathbf{g}}_{2}^{u}(x)=\overline{\mathbf{g}}_{2}^{0}(x)$. Thus, condition (ii) of Theorem 8.18 is satisfied. Since

$$
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{2}^{0}(x)\right]=\left[\left[\begin{array}{c}
0 \\
0 \\
x_{3}+1
\end{array}\right],\left[\begin{array}{c}
0 \\
\left(x_{2}+1\right) \\
x_{1}\left(x_{2}+1\right)\left(x_{3}+1\right)
\end{array}\right]\right]=0
$$

condition (iii) of Theorem 8.18 is satisfied. We have, by (8.474) and (8.516), that

$$
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=\int_{0}^{y} \frac{1}{\bar{y}+1} d \bar{y}=\ln (y+1)
$$

Since

$$
\begin{aligned}
{\left[\overline{\mathbf{r}}_{2}^{0}(\xi) \overline{\mathbf{r}}_{1}^{0}(\xi)\right] } & \triangleq\left[T_{*}\left(\overline{\mathbf{g}}_{2}^{0}(x)\right) T_{*}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)\right] \\
& =\left[\begin{array}{cc}
0 & 0 \\
\left(\xi_{2}+1\right) & 0 \\
\xi_{1}\left(\xi_{2}+1\right)\left(\xi_{3}+1\right) & \xi_{3}+1
\end{array}\right],
\end{aligned}
$$

it is clear, by (8.475) and (8.477), that

$$
\left[\hat{\mathbf{r}}_{2}^{0}(\xi) \hat{\mathbf{r}}_{1}^{0}(\xi)\right] \triangleq\left[\begin{array}{cc}
\left(\xi_{2}+1\right) & 0 \\
\xi_{1}\left(\xi_{2}+1\right)\left(\xi_{3}+1\right) & \xi_{3}+1
\end{array}\right]
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{2}, \xi_{3}\right)}=\left[\hat{\mathbf{r}}_{2}^{0}(\xi) \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{\xi_{2}+1} & 0 \\
-\xi_{1} & \frac{1}{\xi_{3}+1}
\end{array}\right]
$$

which implies, together with (8.476), that

$$
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
\varphi\left(\xi_{1}\right) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
\ln \left(\xi_{1}+1\right) \\
\ln \left(\xi_{2}+1\right) \\
\ln \left(\xi_{3}+1\right)-\xi_{1} \xi_{2}
\end{array}\right] .
$$

Since

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\begin{array}{c}
\ln \left(x_{3}+1\right) \\
x_{1}+u
\end{array}\right]-\left[\begin{array}{c}
\ln \left(x_{3}+1\right) \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
u
\end{array}\right],
$$

it is clear that condition (iv) of Theorem 8.18 is satisfied. Hence, system (8.514) is, by Theorem 8.18 , RDOEL with index $d=1$ and extended state transformation $z^{e}=S^{e}(w, x)$. Finally, the extended state transformation $z^{e}=S^{e}(w, x)$ in (8.425) is given by

$$
S^{e}(w, x)=\left[\begin{array}{c}
\hat{S}\left(w, x_{1}, x_{2}\right) \\
S_{3}^{e} \circ F_{0}^{e}(w, x)-\gamma_{3}^{0}\left(w, x_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
\ln \left(w_{1}+1\right) \\
\ln \left(x_{1}+1\right) \\
\ln \left(x_{2}+1\right)-w_{1} x_{1} \\
\ln \left(x_{3}+1\right)-x_{1} x_{2}-w_{1}
\end{array}\right]
$$

where

$$
\gamma_{3}^{0}\left(\xi_{1}, \xi_{2}\right) \triangleq \hat{S}_{3} \circ T \circ F_{0} \circ T^{-1}(\xi)=\xi_{1}+\xi_{2} \xi_{3}-\xi_{2} \xi_{3}=\xi_{1}
$$

and

$$
F_{u}^{e}(w, x)=\left[\begin{array}{c}
H(x) \\
F_{u}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
e^{x_{1}+u+x_{2} x_{3}}-1
\end{array}\right] .
$$

Since $H^{e}(w, x)=w$, it is easy to see that $\varphi \circ H^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=z_{1}^{e}$ and

$$
S^{e} \circ F_{u}^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e}+\left(e^{z_{1}^{e}}-1\right)\left(e^{z_{2}^{e}}-1\right) \\
z_{4}^{e}+e^{z_{1}^{e}}-1 \\
u
\end{array}\right]=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e} \\
z_{4}^{e} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
w_{1} y \\
w_{1} \\
u
\end{array}\right]
$$

Example 8.6.3 Consider the system

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \tag{8.519}\\
x_{3}+x_{1} u_{2}^{2} \\
u_{1}+x_{1}-x_{2}\left(x_{3}+x_{1} u_{2}^{2}\right)
\end{array}\right]=F_{u}(x) ; \quad y=x_{1}=H(x)
$$

(a) Show that $\kappa=2$ and $\sigma=1$.
(b) Use Theorem 8.15 to show that system (8.519) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Use Theorem 8.19 to show that system (8.519) is RDOEL with index $d=1$.
(d) Use Theorem 8.14 to show that system (8.519) is not state equivalent to a dual Brunovsky NOCF with OT.
(e) Use Theorem 8.18 to show that system (8.519) is RDOEL with index $d=1$.

Solution (a) It is easy to see that

$$
\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}
x_{3}-u_{1}+x_{1} x_{2} \\
x_{1} \\
x_{2}-u_{2}^{2}\left(x_{3}-u_{1}+x_{1} x_{2}\right)
\end{array}\right] \text { and } \xi=T(x)=x .
$$

Thus, we have, by (8.298) and (8.299), that

$$
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x)=T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{3}}\right)=\frac{\partial}{\partial x_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and

$$
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
0 \\
1 \\
-x_{1}
\end{array}\right]=\mathbf{g}_{2}^{0}(x)
$$

Since $L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}^{2}(x)\right)=L_{\mathbf{g}_{2}^{0}}\left(x_{3}\right)=-x_{1} \neq 0$, we have, by (8.331), that $\kappa=2$. Also, since $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}+x_{1} u_{2}^{2} \neq H \circ F_{0}^{n-1}(x)$, it is clear, by (8.336), that $\sigma=1$.
(b) Since

$$
\begin{equation*}
\mathbf{g}_{2}^{u}(x)=\mathbf{g}_{2}^{0}(x)=\theta_{1}^{u}(x) \mathbf{g}_{2}^{0}(x) \tag{8.520}
\end{equation*}
$$

it is clear that condition (i) of Theorem 8.15 is satisfied with $\theta_{\sigma}^{u}(x)=1$. Since

$$
\frac{\partial\left(\theta_{\sigma}^{u} \circ F_{u}(x)\right)}{\partial u}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \text { and } \frac{\partial\left(H \circ \hat{F}_{u}^{n-\sigma}(x)\right)}{\partial u}=\left[\begin{array}{ll}
0 & 2 x_{1} u_{2}
\end{array}\right]
$$

it is clear that (8.354) and (8.355) are satisfied with

$$
\bar{\beta}^{u}(x)=0 \text { and } \beta(y)=0 .
$$

Thus, we have, by (8.356)-(8.358), that

$$
\begin{gather*}
\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{0}=1 \tag{8.521}\\
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{2}(x)\right) \mathbf{g}_{1}^{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \tag{8.522}\\
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)=\mathbf{g}_{2}^{u}(x)=\left[\begin{array}{c}
0 \\
1 \\
-x_{1}
\end{array}\right] \tag{8.523}
\end{gather*}
$$

and

$$
\overline{\mathbf{g}}_{3}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{2}^{u}(x)\right)=\left[\begin{array}{c}
1 \\
u_{1}-x_{3}-x_{1} x_{2} \\
x_{1}\left(x_{3}-u_{1}+x_{1} x_{2}\right)-x_{2}
\end{array}\right] .
$$

Since $\overline{\mathbf{g}}_{3}^{u}(x) \neq \overline{\mathbf{g}}_{3}^{0}(x)$, condition (ii) of Theorem 8.15 is not satisfied. Therefore, by Theorem 8.15, system (8.519) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Let $d=1$. Since $H \circ F_{u}(x)=x_{2}=H \circ F_{0}(x)$, (8.398) is satisfied. It is clear, by (8.520), that condition (i) of Theorem 8.19 is satisfied with $\theta_{\sigma}^{u}(x)=1$. It is also clear, by (8.522) and (8.523), that $\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x)$ and $\overline{\mathbf{g}}_{2}^{u}(x)=\overline{\mathbf{g}}_{2}^{0}(x)$. Thus, condition (ii) of Theorem 8.19 is satisfied. Since

$$
\left[\overline{\mathbf{g}}_{1}^{0}(x), \overline{\mathbf{g}}_{2}^{0}(x)\right]=\left[\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-x_{1}
\end{array}\right]\right]=0
$$

condition (iii) of Theorem 8.19 is satisfied. We have, by (8.488) and (8.521), that

$$
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=y
$$

Since

$$
\left[\overline{\mathbf{r}}_{2}^{0}(\xi) \overline{\mathbf{r}}_{1}^{0}(\xi)\right] \triangleq\left[T_{*}\left(\overline{\mathbf{g}}_{2}^{0}(x)\right) T_{*}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)\right]=\left[\begin{array}{rr}
0 & 0 \\
1 & 0 \\
-\xi_{1} & 1
\end{array}\right]
$$

it is clear, by (8.489) and (8.491), that

$$
\left[\hat{\mathbf{r}}_{2}^{0}(\xi) \hat{\mathbf{r}}_{1}^{0}(\xi)\right] \triangleq\left[\begin{array}{cc}
1 & 0 \\
-\xi_{1} & 1
\end{array}\right]
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial\left(\xi_{2}, \xi_{3}\right)}=\left[\hat{\mathbf{r}}_{2}^{0}(\xi) \hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
\xi_{1} & 1
\end{array}\right]
$$

which implies, together with (8.490), that

$$
\hat{S}(\xi)=\left[\begin{array}{c}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
\varphi\left(\xi_{1}\right) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\xi_{3}+\xi_{1} \xi_{2}
\end{array}\right]
$$

Since

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=\left[\begin{array}{c}
x_{3}+x_{1} u_{2}^{2} \\
x_{1}+u_{1}
\end{array}\right]-\left[\begin{array}{c}
x_{3} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
x_{1} u_{2}^{2} \\
u_{1}
\end{array}\right],
$$

it is clear that condition (iv) of Theorem 8.19 is satisfied. Hence, system (8.519) is, by Theorem 8.19, RDOEL with index $d=1$ and extended state transformation $z^{e}=S^{e}(w, x)$. Finally, the extended state transformation $z^{e}=S^{e}(w, x)$ in (8.425) is given by

$$
S^{e}(w, x)=\left[\begin{array}{c}
\hat{S}\left(w, x_{1}, x_{2}\right) \\
S_{3}^{e} \circ F_{0}^{e}(w, x)-\gamma_{3}^{0}\left(w, x_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
x_{1} \\
x_{2}+w_{1} x_{1} \\
x_{3}+x_{1} x_{2}-w_{1}
\end{array}\right]
$$

where

$$
\gamma_{3}^{0}\left(\xi_{1}, \xi_{2}\right) \triangleq \hat{S}_{3} \circ T \circ F_{0} \circ T^{-1}(\xi)=\xi_{1}-\xi_{2} \xi_{3}+\xi_{2} \xi_{3}=\xi_{1}
$$

and

$$
F_{u}^{e}(w, x)=\left[\begin{array}{c}
H(x) \\
F_{u}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}+x_{1} u_{2}^{2} \\
u_{1}+x_{1}-x_{2}\left(x_{3}+x_{1} u_{2}^{2}\right)
\end{array}\right] .
$$

Since $H^{e}(w, x)=w$, it is easy to see that $\varphi \circ H^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=z_{1}^{e}$ and

$$
S^{e} \circ F_{u}^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e}-z_{1}^{e} z_{2}^{e} \\
z_{4}^{e}+z_{1}^{e}+z_{2}^{e} u_{2}^{2} \\
u_{1}
\end{array}\right]=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e} \\
z_{4}^{e} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-w_{1} y \\
w_{1}+y u_{2}^{2} \\
u_{1}
\end{array}\right] .
$$

(d) Solution is omitted. (Problem 8-11.)
(e) Solution is omitted. (Problem 8-11.)

Example 8.6.4 Consider the system

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \tag{8.524}\\
x_{3} \\
e^{x_{1} x_{3}+u_{1}+u_{2} x_{1}}-1
\end{array}\right]=F_{u}(x) ; \quad y=x_{1}=H(x) .
$$

(a) Show that $\kappa=2$ and $\sigma=3$.
(b) Use Theorem 8.18 to show that system (8.524) is not RDOEL with index $d=1$.
(c) Use Theorem 8.20 to show that system (8.524) is not RDOEL with index $d=1$.
(d) Use Theorem 8.20 to show that system (8.524) is RDOEL with index $d=2$.

Solution (a) It is easy to see that

$$
\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}
\frac{\ln \left(1+x_{3}\right)-u_{1}}{x_{2}+u_{2}} \\
x_{1} \\
x_{2}
\end{array}\right] \text { and } \xi=T(x) \triangleq\left[\begin{array}{c}
H(x) \\
H \circ F_{0}(x) \\
H \circ F_{0}^{2}(x)
\end{array}\right]=x .
$$

Thus, we have, by (8.298) and (8.299), that

$$
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x)=T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{3}}\right)=\frac{\partial}{\partial x_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{g}_{2}^{u}(x) & \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
0 \\
1 \\
\frac{\left(1+x_{3}\right)\left(\ln \left(1+x_{3}\right)-u_{1}\right)}{x_{2}+u_{2}}
\end{array}\right] \\
& \neq\left[\begin{array}{c}
0 \\
1 \\
\frac{\left(1+x_{3}\right) \ln \left(1+x_{3}\right)}{x_{2}}
\end{array}\right]=\mathbf{g}_{2}^{0}(x) .
\end{aligned}
$$

Since $L_{\mathbf{g}_{2}}\left(H \circ F_{0}^{2}(x)\right)=\frac{\left(1+x_{3}\right) \ln \left(1+x_{3}\right)}{x_{2}} \neq 0$, we have, by (8.331), $\kappa=2=n$.
Also, since $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}=H \circ F_{0}^{n-1}(x), \quad H \circ \hat{F}_{u}^{n-2}(x)=x_{2}=H \circ$ $F_{0}^{n-2}(x)$, and $H \circ \hat{F}_{u}^{n-3}(x)=x_{1}=H \circ F_{0}^{n-2}(x)$, it is clear, by (8.336), that $\sigma=3=n$.
(b) Let $d=1$. Then, it is clear that $\kappa \leq n-d$. Since $H \circ F_{u}(x)=x_{2}=H \circ$ $F_{0}(x),(8.398)$ is satisfied. Note that $L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}(x)\right)=\frac{\left(1+x_{3}\right) \ln \left(1+x_{3}\right)}{x_{2}}$ and

$$
\left[\mathbf{g}_{1}^{0}(x), \mathbf{g}_{2}^{0}(x)\right]=\left[\begin{array}{c}
0 \\
\frac{1+\ln \left(1+x_{3}\right)}{x_{2}}
\end{array}\right]=L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}(x)\right) \frac{1+\ln \left(1+x_{3}\right)}{\left(1+x_{3}\right) \ln \left(1+x_{3}\right)} \mathbf{g}_{1}^{0}(x)
$$

Since $\frac{1+\ln (1+y)}{(1+y) \ln (1+y)}$ is not defined on a neighborhood of $y=0$, it is clear that condition (i) of Theorem 8.18 is not satisfied. Hence, by Theorem 8.18, system (8.524) is not RDOEL with index $d=1$.
(c) Let $d=1$. Then, it is clear that $\kappa \leq n$ and $\sigma \geq n-d$. Since $H \circ F_{u}(x)=x_{2}=$ $H \circ F_{0}(x),(8.398)$ is satisfied. Since

$$
\begin{gathered}
\alpha_{3}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{3} \circ T^{-1}(\xi)=e^{\xi_{1} \xi_{3}+u_{1}+u_{2} \xi_{1}}-1 \\
\theta_{3}^{u}(\xi) \triangleq \frac{\partial \alpha_{3}^{u}(\xi)}{\partial \xi_{n+2-\kappa}}=\frac{\partial \alpha_{3}^{u}(\xi)}{\partial \xi_{3}}=\xi_{1} e^{\xi_{1} \xi_{3}+u_{1}+u_{2} \xi_{1}} \\
\frac{1}{\theta_{3}^{u}(\xi)} \frac{\partial \theta_{3}^{u}(\xi)}{\partial u}=\left[1 \xi_{1}\right]
\end{gathered}
$$

and

$$
\frac{\partial \alpha_{3}^{u}(\xi)}{\partial u}=e^{\xi_{1} \xi_{3}+u_{1}+u_{2} \xi_{1}}\left[1 \xi_{1}\right]
$$

it is clear that condition (i) of Theorem 8.20 and (8.497) are satisfied with

$$
\bar{\beta}^{u}(\xi)=\frac{1}{e^{\xi_{1} \xi_{2}+u_{1}+u_{2} \xi_{1}}} \text { and } \beta(y)=\frac{1}{1+y}
$$

Thus, we have, by (8.498)-(8.500), that

$$
\begin{gather*}
\ell(y) \triangleq e^{\int_{0}^{y} \beta(\bar{y}) d \bar{y}}=e^{\ln (1+y)}=1+y \tag{8.525}\\
\overline{\mathbf{g}}_{1}^{u}(x)=\overline{\mathbf{g}}_{1}^{0}(x) \triangleq \ell\left(H \circ F_{0}^{2}(x)\right) \mathbf{g}_{1}^{0}=\left[\begin{array}{c}
0 \\
0 \\
1+x_{3}
\end{array}\right] \tag{8.526}
\end{gather*}
$$

and

$$
\overline{\mathbf{g}}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\overline{\mathbf{g}}_{1}^{u}(x)\right)=\mathbf{g}_{2}^{u}(x)=\left[\begin{array}{c}
0 \\
1+x_{2} \\
\frac{\left(1+x_{2}\right)\left(1+x_{3}\right)\left(\ln \left(1+x_{3}\right)-u_{1}\right)}{x_{2}+u_{2}}
\end{array}\right] .
$$

Since $n-d=2$ and $\overline{\mathbf{g}}_{2}^{u}(x) \neq \overline{\mathbf{g}}_{2}^{0}(x)$, it is obvious that condition (ii) of Theorem 8.20 is not satisfied. Hence, by Theorem 8.20, system (8.524) is not RDOEL with index $d=1$.
(d) Let $d=2$. Then, it is clear that $\kappa \leq n$ and $\sigma \geq n-d$. Since $H \circ F_{u}(x)=x_{2}=$ $H \circ F_{0}(x)$ and $H \circ \hat{F}_{u}^{2}(x)=x_{3}=H \circ F_{0}^{2}(x),(8.398)$ is satisfied. It has been shown that condition (i) of Theorem 8.20 is satisfied. Since $n-d=1$, it is obvious, by (8.526), that condition (ii) and condition (iii) of Theorem 8.20 are satisfied. We have, by (8.501) and (8.525), that

$$
\varphi(y)=\int_{0}^{y} \frac{1}{\ell(\bar{y})} d \bar{y}=\ln (1+y) .
$$

Since

$$
\left[\overline{\mathbf{r}}_{1}^{0}(\xi)\right] \triangleq\left[T_{*}\left(\overline{\mathbf{g}}_{1}^{0}(x)\right)\right]=\left[\begin{array}{c}
0 \\
0 \\
1+\xi_{3}
\end{array}\right]
$$

it is clear, by (8.502) and (8.504), that

$$
\left[\hat{\mathbf{r}}_{1}^{0}(\xi)\right] \triangleq\left[1+\xi_{3}\right]
$$

and

$$
\frac{\partial \hat{S}^{2}(\xi)}{\partial \xi_{3}}=\left[\hat{\mathbf{r}}_{1}^{0}(\xi)\right]^{-1}=\frac{1}{1+\xi_{3}}
$$

which implies, together with (8.503), that

$$
\hat{S}(\xi)=\left[\begin{array}{l}
\hat{S}^{1}(\xi) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{l}
\varphi\left(\xi_{1}\right) \\
\varphi\left(\xi_{2}\right) \\
\hat{S}^{2}(\xi)
\end{array}\right]=\left[\begin{array}{l}
\ln \left(1+\xi_{1}\right) \\
\ln \left(1+\xi_{2}\right) \\
\ln \left(1+\xi_{3}\right)
\end{array}\right] .
$$

Since

$$
\hat{S}^{2} \circ T \circ F_{u}(x)-\hat{S}^{2} \circ T \circ F_{0}(x)=u_{1}+u_{2} x_{1},
$$

it is clear that condition (iv) of Theorem 8.20 is satisfied. Hence, system (8.524) is, by Theorem 8.20 , RDOEL with index $d=1$ and extended state transformation $z^{e}=S^{e}(w, x)$. Finally, the extended state transformation $z^{e}=S^{e}(w, x)$ in (8.425) is given by

$$
S^{e}(w, x)=\left[\begin{array}{c}
\hat{S}\left(w, x_{1}, x_{2}\right) \\
S_{3}^{e} \circ F_{0}^{e}(w, x)-\gamma_{3}^{0}\left(w, x_{1}\right) \\
S_{4}^{e} \circ F_{0}^{e}(w, x)
\end{array}\right]=\left[\begin{array}{c}
\ln \left(1+w_{1}\right) \\
\ln \left(1+w_{2}\right) \\
\ln \left(1+x_{1}\right) \\
\ln \left(1+x_{2}\right)-w_{1} x_{1} \\
\ln \left(1+x_{3}\right)-w_{2} x_{2}
\end{array}\right]
$$

where

$$
\gamma_{2}^{0}\left(\xi_{1}, \xi_{2}\right) \triangleq \hat{S}_{2} \circ T \circ F_{0} \circ T^{-1}(\xi)=\xi_{1} \xi_{3}
$$

and

$$
F_{u}^{e}(w, x)=\left[\begin{array}{c}
w_{2} \\
H(x) \\
F_{u}(x)
\end{array}\right]=\left[\begin{array}{c}
w_{2} \\
x_{1} \\
x_{2} \\
x_{3} \\
e^{x_{1} x_{3}+u_{1}+u_{2} x_{1}}-1
\end{array}\right] .
$$

Since $H^{e}(w, x)=w$, it is easy to see that $\varphi \circ H^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=z_{1}^{e}$ and

$$
S^{e} \circ F_{u}^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e} \\
z_{4}^{e}+\left(e^{z_{1}^{e}}-1\right)\left(e^{z_{3}^{e}}-1\right) \\
z_{5}^{e} \\
u_{1}+u_{2}\left(e^{z_{3}^{e}}-1\right)
\end{array}\right]=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e} \\
z_{4}^{e} \\
z_{5}^{e} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
w_{1} y \\
0 \\
u_{1}+u_{2} y
\end{array}\right] .
$$

Remark 8.13 The conditions of Theorem 8.17 without assumption (8.398) are the necessary and sufficient conditions for (ii) of Lemma 8.11. Therefore, it is clear, by Lemma 8.11, that Theorem 8.17-Theorem 8.21 give only sufficient conditions for RDOEL with index $d(d \geq 1)$, unless (8.398) is satisfied. For example, if (8.398) is satisfied not with $d=3$ but with $d=2$, then necessary and sufficient conditions for RDOEL with index $d=0, d=1$, and $d=2$ can be found in the theorems, whereas the conditions for RDOEL with index $d=3, d=4$, etc., of the Theorems are not necessary but sufficient. (Refer to Example 8.6.5(c) and (d).) The RDOEL problem without assumption (8.398) is much more complicated and remains open.

Example 8.6.5 Consider the system

$$
x(t+1)=\left[\begin{array}{c}
x_{2}+u \tag{8.527}\\
x_{3} \\
u+x_{1}+x_{1}\left(x_{2}+u\right)^{2}
\end{array}\right]=F_{u}(x) ; \quad y=x_{1}=H(x)
$$

(a) Show that $\kappa=3$ and $\sigma=2$.
(b) Use Theorem 8.15 to show that system (8.527) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Let $d=1$. Then $\kappa \leq n$ and $\sigma \geq n-d$. Show that system (8.527) does not satisfy the conditions of Theorem 8.20 without assumption (8.398).
(d) Show that system (8.527) is RDOEL with index $d=1$ and

$$
z^{e}=S_{e}(w, x)=\left[\begin{array}{c}
w \\
x_{1} \\
x_{2} \\
x_{3}-w_{1} x_{1}^{2}
\end{array}\right]
$$

Solution (a) It is easy to see that

$$
\bar{x}=F_{u}^{-1}(x)=\left[\begin{array}{c}
\frac{x_{3}-u}{1+x_{1}^{2}} \\
x_{1}-u \\
x_{2}
\end{array}\right] \text { and } T(x) \triangleq\left[\begin{array}{c}
H(x) \\
H \circ F_{0}(x) \\
H \circ F_{0}^{2}(x)
\end{array}\right]=x .
$$

Thus, we have, by (8.298) and (8.299), that

$$
\begin{gathered}
\mathbf{g}_{1}^{u}(x)=\mathbf{g}_{1}^{0}(x)=T_{*}^{-1}\left(\frac{\partial}{\partial \xi_{3}}\right)=\frac{\partial}{\partial x_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\mathbf{g}_{2}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{1}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{1}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbf{g}_{2}^{0}(x)
\end{gathered}
$$

and

$$
\mathbf{g}_{3}^{u}(x) \triangleq\left(F_{u}\right)_{*}\left(\mathbf{g}_{2}^{u}(x)\right)=\left.\frac{\partial F_{u}(\bar{x})}{\partial \bar{x}} \mathbf{g}_{2}^{u}(\bar{x})\right|_{\bar{x}=F_{u}^{-1}(x)}=\left[\begin{array}{c}
1 \\
0 \\
\frac{2 x_{1}\left(x_{3}-u\right)}{x_{1}^{2}+1}
\end{array}\right] \neq \mathbf{g}_{3}^{0}(x)
$$

Since $L_{\mathbf{g}_{2}^{0}}\left(H \circ F_{0}^{2}(x)\right)=0$ and $L_{\mathbf{g}_{3}^{0}}\left(H \circ F_{0}^{2}(x)\right)=\frac{2 x_{1} x_{3}}{x_{1}^{2}+1} \neq 0$, we have, by (8.331), $\kappa=3$. Also, since $H \circ \hat{F}_{u}^{n-1}(x)=x_{3}=H \circ F_{0}^{n-1}(x) \quad$ and $H \circ \hat{F}_{u}^{n-2}(x)=x_{2}+u \neq H \circ F_{0}^{n-2}(x)$, it is clear, by (8.336), that $\sigma=2$.
(b) Since

$$
\operatorname{rank}\left(\left[\mathbf{g}_{3}^{u}(x) \mathbf{g}_{3}^{0}(x)\right]\right)=\operatorname{rank}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
\frac{2 x_{1}\left(x_{3}-u\right)}{x_{1}^{2}+1} & \frac{2 x_{1} x_{3}}{x_{1}^{2}+1}
\end{array}\right]\right)=2 \neq 1
$$

there does not exist $\bar{\beta}^{u}(x)$ such that condition (i) of Theorem 8.15 is satisfied. Hence, by Theorem 8.15, system (8.527) is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Let $d=1$. Since

$$
\begin{gathered}
\alpha_{3}^{u}(\xi) \triangleq H \circ \hat{F}_{u}^{3} \circ T^{-1}(\xi)=u+\xi_{1}+\xi_{1}\left(\xi_{2}+u\right)^{2} \\
\theta_{3}^{u}(\xi) \triangleq \frac{\partial \alpha_{3}^{u}(\xi)}{\partial \xi_{n+2-\kappa}}=\frac{\partial \alpha_{3}^{u}(\xi)}{\partial \xi_{2}}=2 \xi_{1}\left(\xi_{2}+u\right) \\
\frac{1}{\theta_{3}^{u}(\xi)} \frac{\partial \theta_{3}^{u}(\xi)}{\partial u}=\frac{1}{\xi_{2}+u}
\end{gathered}
$$

and

$$
\frac{\partial \alpha_{3}^{u}(\xi)}{\partial u}=1+2 \xi_{1}\left(\xi_{2}+u\right)
$$

it is clear that condition (i) of Theorem 8.20 is satisfied with

$$
\bar{\beta}^{u}(\xi)=\frac{1}{\left(\xi_{2}+u\right)\left(1+2 \xi_{1}\left(\xi_{2}+u\right)\right)}
$$

However, there does not exist $\beta(y)$ such that (8.497) is satisfied. Hence, system (8.527) does not satisfy the conditions of Theorem 8.20 without assumption (8.398).
(d) Let $d=1$. Then it is clear that $H^{e}(w, x)=w$ and

$$
F_{u}^{e}(w, x)=\left[\begin{array}{c}
H(x) \\
F_{u}(x)
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2}+u \\
x_{3} \\
u+x_{1}+x_{1}\left(x_{2}+u\right)^{2}
\end{array}\right]
$$

Thus, it is easy to see that $\varphi(y)=y, \varphi \circ H^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=z_{1}^{e}$ and

$$
S^{e} \circ F_{u}^{e} \circ\left(S^{e}\right)^{-1}\left(z^{e}\right)=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e}+u \\
z_{4}^{e}+z_{1}^{e}\left(z_{2}^{e}\right)^{2} \\
z_{2}^{e}+u
\end{array}\right]=\left[\begin{array}{c}
z_{2}^{e} \\
z_{3}^{e} \\
z_{4}^{e} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
w_{1} y^{2} \\
y+u
\end{array}\right]
$$

Hence, by Definition 8.15, system (8.527) is RDOEL with index $d=1$ and $z^{e}=S_{e}(w, x)$.

Example 8.6.6 Consider the system

$$
\begin{align*}
x(t+1) & =\left[\begin{array}{c}
x_{2} \\
x_{1}+u\left(1+x_{2}\right)
\end{array}\right]=F_{u}(x) \tag{8.528}\\
y & =x_{1}=H(x)
\end{align*}
$$

It is clear, by Example 8.5.6, that $\kappa=3=n+1$ and $\sigma=2=n$. Use Theorem 8.21 to show that system (8.528) is not RDOEL.

Solution It is clear, by Example 8.5.6, that system (8.528) is not state equivalent to a dual Brunovsky NOCF. Therefore, by Theorem 8.21, system (8.528) is not RDOEL.

If a system is RDOEL with index d, then it is also RDOEL with index $(d+1)$. But the converse is not true. It is clear, by Corollary 8.12, that autonomous system (8.371) is RDOEL with index $d=n-1$. However, it is not true for control system (8.370). (Refer to Example 8.6.6.)

8.7 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed: adfg, ChCommute, ChConst, ChInverseF, ChZero, Lfh, Lfhk, ObvIndex0, SpanCx, sstarmap

MATLAB program for Theorem 8.1:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 real
syms y u real
Fu=[x2+2*x2*(x1-x\mp@subsup{2}{}{\wedge}2)+2*x2*u1+u2^2; x1-x2^2+u1];
H=x1-x2^2; m=2; %Ex:8.2.1
% Fu=[x2+2*x2*u+(x1-x\mp@subsup{2}{}{\wedge}2)^2*u^2; u];
% H=x1-x2^2; m=1; %Ex:8.2.2
Fu=simplify(Fu)
```

```
H=simplify(H)
n=length(Fu);
x=sym('x',[n,1])
if m>1
    u=sym('u',[m,1])
end
F0=simplify(subs(Fu,u,u-u))
T=x-x;
T(1)=H;
for k=2:n
    T(k)=simplify(Lfh(F0,T(k-1),x));
end
T=simplify(T)
dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
g0(:,1)=idT(:,n);
gu(:,1)=idT(:,n);
for k=2:n+1
    g0(:,k) =adfg(F0,g0(:,k-1),x);
    gu(:,k)=adfg(Fu,gu(:,k-1),x);
end
g0=simplify(g0)
gu=simplify(gu)
if ChZero(gu-g0)==0
    display('condition (i) of Thm 8.1 is not satisfied.')
    display('System is NOT state equivalent to a LOCF.')
    return
end
if ChCommute (g0,x)==0
        display('condition (ii) of Thm 8.1 is not satisfied.')
        display('System is NOT state equivalent to a LOCF.')
        return
end
display('System is, by Thm 8.1, state equivalent to a LOCF.')
for k=1:n
    idS(:,k)=(-1)^(n-k) *g0(:,n+1-k);
end
idS=simplify(idS)
dS=simplify(inv(idS))
S=Codi (dS,x)
ASu=simplify(dS*Fu)
dAS=simplify(jacobian(ASu,x));
A=simplify(dAS*idS)
```

```
Gammau=ASu-subs (ASu,u,u-u)
return
```


MATLAB program for Theorem 8.2:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 real
syms y u real
% Fu=[x2+2*x2*(x1-x\mp@subsup{2}{}{\wedge}2)+2*x2*u1+u2^2; x1-x2^2+u1];
% H=x1-x2^2; m=2; %Ex:8.2.1
Fu=[x2+2*x2*u+(x1-x\mp@subsup{2}{}{\wedge}2)^^2*u^2; u]; H=x1-x\mp@subsup{2}{}{\wedge}2; m=1; %Ex:8.2.2
% Fu=[x2; -x\mp@subsup{2}{}{\wedge}2+x\mp@subsup{1}{}{\wedge}2*exp(-x1)+u]; H=x1; m=1; %Ex:8.2.3
% Fu=[x2; x3; -4*x1*x3-3*x2^2-6*x1^2*x2+u];
% H=x1; m=1; %Ex:8.2.4
% Fu=[x2+x3^2; x3-2*x3*exp(x1)*u; exp (x1)*u];
% H=x1; m=1; %P:8-2(a)
% Fu=[x2+x3^2; x3-2*x3*exp(x1)*u2; exp(x1)*u1];
% H=x1; m=2; %P:8-2(b)
%Fu=[x2+(x1+1)*u2^2;x2* log (x1+1) +x2^2/(1+x1) +(x1+1)*u1+x2*u2^2];
%H=x1; m=2; %P:8-2(c) or P:8-3(a)
% Fu=[x2*exp (x1); x3+x1*u; u ];
% H=x1; m=1; %P:8-2(d) or P:8-3(b)
Fu=simplify(Fu)
H=simplify(H)
n=length(Fu);
x=\operatorname{sym}('x',[n,1])
if m>1
    u=sym('u',[m,1])
end
F0=simplify(subs(Fu,u,u-u))
T=x-x;
T(1)=H;
for k=2:n
    T(k)=simplify(Lfh(F0,T(k-1),x));
end
T=simplify(T)
dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
```

```
gu(:,1)=idT(:,n);
for k=2:n
    gu(:,k)=adfg(Fu,gu(:,k-1),x);
end
gu=simplify(gu)
g0=subs(gu,u,u-u)
if ChZero(gu-g0)==0
    display('condition (i) of Thm 8.2 is not satisfied.')
    display('System is NOT state equivalent to a NOCF.')
    return
end
if ChCommute (g0,x)==0
    display('condition (ii) of Thm 8.2 is not satisfied.')
    display('System is NOT state equivalent to a NOCF.')
    return
end
display('System is, by Thm 8.2, state equivalent to a NOCF')
for k=1:n
    idS(:,k)=(-1)^(n-k)*g0(:,n+1-k);
end
idS=simplify(idS)
dS=simplify(inv(idS))
S=Codi(dS,x)
NFu=simplify(dS*Fu);
Gammau=simplify(NFu-[S(2:n); 0])
return
```


MATLAB program for Theorem 8.3:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real
Fu=[x2; -x2^2+x1^2* exp(-x1)+u]; m=1; %Ex:8.2.3
% Fu=[x2; x3; -4*x1*x3-3*x2^2-6*x1^2*x2+u];
% m=1; %Ex:8.2.4 Or Ex:8.3.2
% Fu=[x2; x3; x2^3+u]; m=1; %Ex:8.3.3 or P:8-3
%Fu=[x2+(x1+1)*u2^2;x2* log(x1+1) +x2^2/(1+x1)+(x1+1)*u1+x2*u2^2];
%m=2; %P:8-2(c) or P:8-4(a)
% Fu=[x2*exp(x1); x3+x1*u; u ]; m=1; %P:8-2(d) or P:8-4(b)
```

```
% aa1=(3*x2*x3)/(x1 + 1)-(2*x2^3)/(x1 + 1)^2;
% aa2=-x3* (x1+1)* log (x1+1) +u;
% Fu=[x2; x3; aa1+aa2]; m=1; %P:8-4(c) or P:8-5(c)
% Fu=[x2; x3; x4+u^2; 5*x2*x3+2*x2^2+u]
% m=1; %P:8-4(d) or P:8-5(d)
H=x1
Fu=simplify(Fu)
n=length(Fu);
x=sym('x',[n,1])
if m>1
    u=sym('u',[m,1])
end
F0=simplify(subs(Fu,u,u-u));
T=x-x;
T(1)=H;
for k=2:n
    T(k)=simplify(Lfh(F0,T(k-1),x));
end
T=simplify(T)
dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
gu(:,1)=idT(:,n);
for k=2:n
    gu(:,k) =adfg(Fu,gu(:,k-1),x);
end
gu=simplify(gu)
g0=subs (gu,u,u-u) ;
for k=2:n-1
    CC1=adfg(g0(:, 1),g0(:,k),x);
    if ChZero(CC1)==0
            display('condition (i) of Thm 8.3 is not satisfied.')
            display('System is NOT state equivalent to a NOCF with OT')
            return
    end
end
if n==2*round(n/2)
    t1=simplify(adfg(g0(:,1), g0(:,n), x))
    [flag1,Cx]=SpanCx(t1,g0(:,1))
    if flag1==0
        display('condition (ii) of Thm 8.3 is not satisfied.')
        display('System is NOT state equivalent to a NOCF with OT')
        return
    end
```

```
    b0=-Cx/2
end
if n~=2*round(n/2)
    t1=simplify(adfg(g0(:,2), g0(:,n), x))
    [flag1,Cx]=SpanCx(t1,g0(:,1:2))
    if flag1==0
        display('condition (ii) of Thm 8.3 is not satisfied.')
        display('System is NOT state equivalent to a NOCF with OT')
        return
    end
    b0=Cx(2)/n
end
bx1=x (2:n)
db0=simplify(jacobian(b0,bx1))
if ChZero(db0)==0
    display('condition (ii) of Thm 8.3 is not satisfied.')
    display('System is NOT state equivalent to a NOCF with OT')
    return
end
beta=b0;
Ibeta=int(b0,x1)
Ibeta0=subs(Ibeta,x1,x1-x1);
ell=exp(Ibeta-Ibeta0)
bgu(:,1)=ell*g0(:,1);
for k1=2:n
    bgu(:,k1) =adfg(Fu,bgu(:,k1-1),x);
end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));
if ChZero(bgu-bg0)==0
    display('condition (iii) of Thm 8.3 is not satisfied.')
    display('System is NOT state equivalent to a NOCF with OT')
    return
end
if ChCommute(bg0,x)==0
        display('condition (iv) of Thm 8.3 is not satisfied.')
        display('System is NOT state equivalent to a NOCF with OT')
        return
end
display('System is, by Thm 8.3, state equi to a NOCF with OT')
varphi=int(1/ell,x1);
varphi=subs(varphi,x1,y);
varphi0=subs(varphi,y,y-y);
varphi=simplify(varphi-varphi0)
```

```
for k=1:n
    idS (:,k)=(-1)^(n-k)*bg0(:, n+1-k);
end
idS=simplify(idS)
dS=simplify(inv(idS))
S=Codi(dS,x)
NFu=simplify(dS*Fu);
Gammaphiu=simplify(NFu-[S(2:n); 0])
return
```


MATLAB program for Theorem 8.5:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms y u u1 u2 u3 u4 u5 real
d=1; Fu=[x2; x3; -4*x1*x3-3*x2^2-6*x1^2*x2+u];
m=1; %Ex:8.2.4 Or Ex:8.3.2
% d=1; Fu=[x2; x3; x2^3+u]; m=1; %Ex:8.3.3
% d=1; Fu=[x2+x1*u^2; x3; 4*x3*x1+u ];
% m=1; %P:8-4(a) or P:8-5(a)
% d=2; Fu=[x2+x3*u^2; x3; x4; 4*x3*x1+u ]; m=1; %P:8-5(b)
% aa1=(3*x2*x3)/(x1+1)-(2*x2^3)/(x1+1)^2;
% aa2= -x3* (x1+1)* log (x1+1)+u;
% d=1; Fu=[x2; x3; aa1+aa2]; m=1; %P:8-4(c) or P:8-5(c)
% d=2; Fu=[x2; x3; x4+u^2; 5*x2*x3+2*x2^2+u];
% m=1; %P:8-4(d) or P:8-5(d)
H=x1
Fu=simplify(Fu)
n=length(Fu);
N=n+d
x=sym('x', [n,1]);
w=sym('w',[d,1]);
xe=[w; x]
P=w-w;
if d>0
    P=[w(2:d); x1];
end
Feu=[P; Fu]
Fe0=subs(Feu,u,u-u);
```

```
Te=xe-xe;
Te(1)=xe(1);
for k=2:N
    Te(k)=simplify(Lfh(Fe0,Te(k-1),xe));
end
Te=simplify(Te)
dTe=simplify(jacobian(Te,xe));
idTe=simplify(inv(dTe));
geu(:,1)=idTe(:,N)
for k=2:n
    geu(:,k)=adfg(Feu,geu(:,k-1),xe);
end
geu=simplify(geu)
ge0=simplify(subs(geu,u,u-u))
CC1=xe-xe;
for k=2:n-1
    CC1 (:,k-1) =adfg(ge0(:,1),ge0(:,k),xe);
end
CC1=simplify(CC1)
if ChZero(CC1)==0
        display('condition (i) of Thm 8.5 is not satisfied.')
        display('System is NOT d-RDOEL with')
        display(d)
        return
end
if n==2*round(n/2)
        t1=simplify(adfg(ge0(:,1), ge0(:,n), xe));
        [flag1,Cx]=SpanCx(t1,ge0(:,1))
        if flag1==0
            display('condition (ii) of Thm 8.5 is not satisfied.')
            display('System is NOT d-RDOEL with')
            display(d)
            return
        end
        b0=-Cx/2
end
if n~=2*round(n/2)
    t1=simplify(adfg(ge0(:,2), ge0(:,n), xe));
    [flag1,Cx]=SpanCx(t1,ge0(:,1:2))
    if flag1==0
        display('condition (ii) of Thm 8.5 is not satisfied.')
        display('System is NOT d-RDOEL with')
        display(d)
        return
    end
    b0=Cx(2)/n
end
```

```
bx1=[xe(1:d); xe(d+2:N)]
t2=simplify(jacobian(b0,bx1))
if ChZero(t2)==0
    display('condition (ii) of Thm 8.5 is not satisfied.')
    display('System is NOT d-RDOEL with')
    display(d)
    return
end
beta=b0;
t3=int(b0,x1);
t30=subs(t3,x1,x1-x1);
Bell=exp(t3-t30)
Tg(:,1)=Bell*ge0(:,1);
for k1=2:n
    Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);
end
Tg=simplify(Tg)
for k=1:min(d,n-2)
    if (n+k)==2*round((n+k)/2)
        t1=simplify(adfg(Tg(:,k+1),Tg(:,n),xe))
        [flag1,Cx]=SpanCx(t1,Tg(:,1))
        if flag1==0
            display('condition (iii) of Thm 8.5 is not satisfied.')
            display('System is NOT d-RDOEL with')
            display(d)
            return
        end
        b0=simplify((-1)^(n-1)*Cx/(2*Bell))
    end
    if (n+k)~ =2*round((n+k)/2)
        t1=simplify(adfg(Tg(:,k+2), Tg(:,n), xe))
        [flag1,Cx]=SpanCx(t1,Tg(:,1:2))
        if flag1==0
                display('condition (iii) of Thm 8.5 is not satisfied.')
                display('System is NOT d-RDOEL with')
                display(d)
                return
            end
            b0=simplify((-1)^(n-1)*Cx(2)/((n+k)*Bell))
    end
    if ChConst(b0,xe)==0
            display('condition (iii) of Thm 8.5 is not satisfied.')
            display('System is NOT d-RDOEL with')
            display(d)
            return
    end
    beta=[beta; b0]
    Bell=Bell*exp (b0*w(d+1-k))
    Tg(:,1)=Bell*ge0 (:,1);
    for k1=2:n
```

```
        Tg(:,k1) =adfg(Fe0,Tg(:,k1-1),xe);
    end
    Tg=simplify(Tg)
end
bgu (:,1)=Tg(:,1);
for k1=2:n
    bgu (:,k1)=adfg(Feu,bgu(:,k1-1),xe);
end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));
CC4=simplify(bgu-bg0)
if ChZero(CC4)==0
    display('condition (iv) of Thm 8.5 is not satisfied.')
    display('System is NOT d-RDOEL with d=')
    d=d
    return
end
if ChCommute(bg0,xe)==0
    display('condition (v) of Thm 8.5 is not satisfied.')
    display('System is NOT d-RDOEL with d=')
    display(d)
    return
end
display('System is, by Thm 8.5, d-RDOEL with')
display(d)
Bell=simplify(Bell)
varphi=int(1/Bell,x1);
varphi0=subs(varphi,xe,xe-xe);
varphi=simplify(varphi-varphi0)
for k=1:n
    idS(:,k)=(-1)^(n-k)*bg0(:,n+1-k);
end
idS=simplify(idS);
idS2=idS((d+1):N, 1:n)
dS2=simplify(inv(idS2))
S2=Codi(dS2,xe(d+1:N));
S2=simplify(S2);
S1=w;
Se=[S1; S2];
Se0=subs(Se,xe,xe-xe);
Se=simplify(Se-Se0)
dSe=jacobian(Se,xe);
NFeu=simplify(dSe*Feu);
Gammaeu=simplify(NFeu-[Se(2:N); 0])
return
```

The following is a MATLAB subfunction program for Theorem 8.6.

```
function [flag,xe,Se,Gammaeu]=dRDOEL (d,Fu,H,x,u,n,m)
syms y x1 w1 w2 w3 w4 w5 w6 w7 w8 w9 real
flag=0;
N=n+d;
w=sym('w',[d,1]);
xe=[w; x];
Se=xe-xe;
Gammaeu=xe-xe;
P=w-w;
if d>0
    P=[w(2:d); H];
end
Feu=[P; Fu];
Fe0=subs (Feu,u,u-u);
Te=xe-xe;
Te(1)=xe (1);
for k=2:N
    Te(k)=simplify(Lfh(Fe0,Te(k-1),xe));
end
Te=simplify(Te);
dTe=simplify(jacobian(Te,xe));
idTe=simplify(inv(dTe));
geu(:,1)=idTe(:,N);
for k=2:n
    geu(:,k)=adfg(Feu,geu(:,k-1),xe);
end
geu=simplify(geu);
ge0=simplify(subs(geu,u,u-u));
for k=2:n-1
    CC1=adfg(ge0(:,1),ge0(:,k),xe);
    if ChZero(CC1)==0
            return
        end
end
if n==2*round(n/2)
    t1=simplify(adfg(ge0(:,1), ge0(:,n), xe));
        [flag1,Cx]=SpanCx(t1,ge0(:,1));
    if flag1==0
            return
        end
        b0=-Cx/2;
end
if n~}=2*round(n/2
    t1=simplify(adfg(ge0(:,2), ge0(:,n), xe));
    [flag1,Cx]=SpanCx(t1,ge0(:,1:2));
    if flag1==0
            return
    end
    b0=Cx(2)/n;
end
bx1=[xe(1:d); xe(d+2:N)] ;
```

```
t2=simplify(jacobian(b0,bx1));
if ChZero(t2)==0
    return
end
t3=int(b0,x1);
t30=subs(t3,x1,x1-x1);
Bell=exp(t3-t30);
Tg(:,1)=Bell*ge0(:,1);
for k1=2:n
    Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);
end
Tg=simplify(Tg);
for k=1:min(d,n-2)
    if (n+k)==2*round ((n+k)/2)
        t1=simplify(adfg(Tg(:,k+1),Tg(:,n),xe));
            [flag1,Cx]=SpanCx(t1,Tg(:,1));
            if flag1==0
                return
            end
            b0=simplify((-1)^(n-1)*t1(N)/(2*Bell*Tg(N,1)));
    end
    if (n+k)~ =2*round((n+k)/2)
            t1=simplify(adfg(Tg(:,k+2), Tg(:,n), xe));
            [flag1,Cx]=SpanCx(t1,Tg(:,1:2));
            if flag1==0
                return
            end
            b0=simplify((-1)^(n-1)*Cx(2)/((n+k)*Bell));
    end
    if ChConst(b0,xe)==0
            return
    end
    Bell=Bell*exp (b0*W(d+1-k));
    Tg(:,1)=Bell*ge0(:,1);
    for k1=2:n
            Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);
    end
    Tg=simplify(Tg);
end
bgu (:,1)=Tg(:,1);
for k1=2:n
    bgu(:,k1)=adfg(Feu,bgu (:,k1-1),xe);
end
bgu=simplify(bgu);
bg0=simplify(subs(bgu,u,u-u));
CC4=simplify(bgu-bg0);
if ChZero(CC4)==0
    return
end
f ChCommute (bg0,xe) ==0
        return
end
Bell=simplify(Bell);
```

```
varphi=int(1/Bell,x1);
varphi0=subs(varphi,xe,xe-xe);
varphi=simplify(varphi-varphi0);
for k=1:n
    idS(:,k)=(-1)^(n-k)*bg0(:,n+1-k);
end
idS=simplify(idS);
idS2=idS((d+1):N, 1:n);
dS2=simplify(inv(idS2));
S2=Codi(dS2,xe(d+1:N));
S2=simplify(S2);
S1=w;
Se=[S1; S2];
Se0=subs(Se,xe,xe-xe);
Se=simplify(Se-Se0);
dSe=jacobian(Se,xe);
NFeu=simplify(dSe*Feu);
Gammaeu=simplify(NFeu-[Se(2:N); 0]);
flag=1;
return
```

The following MATLAB program, that needs subfunction dRDOEL, is to check the conditions of Theorem 8.6.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms y u u1 u2 u3 u4 u5 real
% Fu=[x2; x3; -4*x1*x3-3*x2^2-6*x1^2*x2+u];
% m=1; %Ex:8.2.4 or Ex:8.3.2
Fu=[x2; x3; x2^3+u];
m=1; %Ex:8.3.3
% Fu=[x2+x1*u^2; x3; 4*x3*x1+u ];
% m=1; %P:8-4(a) or P:8-5(a)
% Fu=[x2+x3*u^2; x3; x4; 4*x3*x1+u ];
% m=1; %P:8-5(b)
% aa1=(3*x2*x3)/(x1 + 1)-(2*x2^3)/(x1 + 1)^2;
% aa2 = -x3* (x1+1)* log (x1+1)+u;
% Fu=[x2; x3; aa1+aa2]; m=1; %P:8-4(c) or P:8-5(c)
% Fu=[x2; x3; x4+u^2; 5*x2*x3+2*x2^2+u]
% m=1; %P:8-4(d) or P:8-5(d)
% Fu=[x2*exp(x1); x3+x1*u; u ];
% m=1; %P:8-2(d) or P:8-4(b)
H=x1
```

```
Fu=simplify(Fu)
n=length(Fu);
x=sym('x',[n,1]);
if m>1
    u=sym('u',[m,1])
end
for k=1:n-1
    d=k-1;
        [flag,xe,Se, Gammaeu]=dRDOEL(d,Fu,H,x,u,n,m);
    if flag==1
        display('System is RDOEL with index')
        display(d)
        display(Se)
        display('and')
        display(Gammaeu)
        return
    end
    if flag==0
        display('System is not RDOEL with index')
        display(d)
    end
end
display('Hence, by Thm 8.6, the system is NOT RDOEL.')
return
```

The following is a MATLAB subfunction program for Theorem 8.11.

```
function [flag,beta]
=betaJS(r,s,ki,q,bg0,Tg,iD,g0,x,y,N,bs,sigma, tx, bx)
flag=0;
beta=x-x;
Phi=x-x;
for k=1:ki-1
    Phi=[Phi g0(:,1:N(k)-N(ki)-s,k)];
end
Phi=Phi(:,2:size(Phi,2));
bPhi=Phi;
for k=1:ki-1
    if N(k)-N(ki)+1-s>0
        bPhi=[bPhi g0(:,N(k)-N(ki)+1-s,k)];
    end
end
cc=simplify(adfg(bg0(:,N(q),q),Tg(:,s,ki),x));
if rank([cc bPhi]) > rank(bPhi)
    return
end
temp1=iD*Cc;
for k=1:ki-1
    SS=(-1)^(N(k)-N(ki)-s+N(q));
```

```
    temp2=SS*temp1(bs(k)+N(k) -N(ki) +1-s);
    dtemp2=jacobian(temp2,bx);
    if ChZero(dtemp2)==0
    return
    end
    beta(k)=subs(temp2,tx,y);
end
beta=beta(1:sigma(r-1));
flag=1;
return
```

The following MATLAB program, that needs subfunction betaJS, is to check the conditions of Theorem 8.11.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 real
syms u u1 u2 u3 u4 u5 real
syms y y1 y2 y3 y4 y5 real
aa11=4*x2*x1^2+x3*x4+2*x1*x4* (x1^3+x2*x4) +u1;
aa12=x1*x4*u2^2+(x2+x1*x4+2*x1^2*x4) *u2;
aa1=aa11+aa12;
Fu=[x2; x3+x1*(u2+u2^2); aa1; x1^2+u2];
H=[x1; x4]; m=2; %Ex:8.4.1
% aa1=x1*u1^2+u1+u3*x2+3*x1*x2+x1*x5 +x 2*x4+x3*x6+u3*x1*x6;
% aa2=u2+x1*x4* (u3+x1) +x2*x4*x6+x1*x6* (u1^2+x5);
% Fu=[x2; x3+u3*x1; aa1; u1^2+x5; aa2; u3+x1];
% H=[x1; x4; x6]; m=3; %Ex:8.4.2
% Fu=[x2; x3; x5^2+u1+u2*x4; x5; u2];
% H=[x1; x4]; m=2; %Ex:8.4.3
% aa1=u1+sin(x1) * (u2+x1*x3) +x3* cos(x1)*(x3*u1^2+x2);
% aa2=u2+x1*x3;
% Fu=[x3*u1^2+x2; aa1; aa2];
% H=[x1; x3]; m=2; %P:8.5(a)
% aa1=3*x2^2+2*u2*x 2 +u1+x x +x6+x1*x 3 + 3*x x *x6+x4*x 5 +u2*x * *x5;
% aa2=u2+x2;
% Fu=[x2; x3; x4+u2*x1; aa1; x6; aa2];
% H=[x1; x5]; m=2; %P:8.5(b)
% aa1=u1+u3*x4+x4*x5+2*x5*x8+x6*x7; aa3=u3+x5;
% aa2=u2+u3*x1*x4+x1*x4*x5+2*x1*x5*x8+x1*x6*x7+2*x2*x4*x8;
% Fu=[x2; x3; aa1; x5; x6; aa2+2*x2*x5*x7+x3*x4*x7; x8; aa3];
% H=[x1; x4; x7]; m=3; %P:8.5(c)
% aa1=u1+u3*x5+x6*x7; aa2=u2+x2*x8+x1*(x1^2+u4);
% aa3=u3; aa4=x1^2+u4;
% Fu=[x2; u4*x7^2+x3+u2*x1+u3*x4;aa1; x5+u4*x7; x6;aa2;aa3;aa4];
% H=[x1; x4; x7; x8]; m=4; %P:8.5(d)
```

```
% aa1=u1+x1*((x2-x1*x3)*u1^2+x4) +x2*x3;
% aa2=u2+2*x1*x2;
% Fu=[x2; aa1; (x2-x1*x3)*u1^2+x4; aa2];
% H=[x1; x3]; m=2; %P:8.6(a)
% aa1=x2*x3+x1*(x1*u1^2+x4)+u1* (x3+1)
% Fu=[x2; aa1; x1*u1^2+x4; u2+2*x1*x2];
% H=[x1; x3]; m=2; %P:8.6(b)
% aa1=u1+u2*x2+2*x1*x2+x3*x4^2-u2*x1*x4^2+2*u2*x1*x4^3;
% Fu=[x2; x3+2*u2*x1*x4; aa1+2*u2*x2*x4; u2];
% H=[x1; x4]; m=2; %P:8.6(c)
n=length(Fu); p=length(H);
x=sym('x', [n,1]);
if p>1
    y=sym('y',[p,1]);
end
if m>1
    u=sym('u',[m,1]);
end
F0=subs(Fu,u,u-u);
N=ObvIndex0(F0,H,x,n,p);
[bNu,IA] =sort (N,'descend');
IC=zeros(p);
for k=1:p
    IC (k,IA(k))=1;
end
H=IC*H
Fu=simplify(Fu)
N=ObvIndex0(F0,H,x,n,p)
barp=1;
sigma(1)=1;
for k=1:p-1
    if N(k+1)-N(k)==0
            sigma(barp) =sigma(barp) +1;
    else
            sigma=[sigma; sigma(barp)+1];
            barp=barp+1;
    end
end
bs(1)=0;
for k1=1:p
    bs(k1+1)=sum(N(1:k1));
end
T=x-x;
```

```
for k1=1:p
    for k2=1:N(k1)
            T(bs(k1)+k2)=Lfhk(F0,H(k1),x,k2-1);
    end
end
T=simplify(T)
if ChZero(T-x)==0
    display('Solve the problem without MATLAB.')
    return
end
tx=H;
bx=x1-x1;
for k=1:p
    bx=[bx; x(bs(k)+2:bs(k)+N(k))];
end
bx=bx(2: length(bx));
for k=2:p
    C1=Lfhk(F0,H(k),x,N(k));
    dC1=jacobian(C1,x);
    dC2=jacobian(T(1:N(k)),x);
    for k2=2:p
        dC2=[dC2; jacobian(T(bs(k2)+1:bs(k2)+min(N(k),N(k2))),x)];
    end
    if rank([dC1; dC2]) > rank(dC2)
            disp('Condition (i) of Thm 8.11 is not satisfied')
            return
    end
end
dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
for k1=1:p
    gu(:,1,k1)=idT(:,bs(k1+1));
    for k2=2:N(k1)
        gu(:,k2,k1)=adfg(Fu,gu(:, k2-1,k1),x) ;
    end
end
gu=simplify(gu)
g0=subs(gu,u,u-u) ;
for k=1:p
    D(:,bs(k) +1:bs(k) +N(k)) =g0(:, 1:N(k),k);
end
D=simplify(D);
iD=simplify(inv(D));
for k=1:p
    Tg(:, 1,k)=g0(:, 1,k);
end
for k1=1:sigma(1)
```

```
    bg0(:,1:N(k1),k1)=g0(:,1:N(k1),k1);
    bgu(:,1:N(k1),k1)=gu(:,1:N(k1),k1);
end
ZeroM=jacobian(x,x)-jacobian(x,x);
for r=2:barp
    for s=1:N(1)-N(sigma(r))
        sg=0;
        for k=1:p
            if N(k) >= N(sigma(r))+s
                sg=sg+1;
            end
        end
        dGam=ZeroM(1:sg,1:sigma(r-1));
        Gam=ZeroM(1:sg,1);
        Beta=ZeroM(1:sigma(r-1),sigma(r-1)+1:p);
        for q=1:sigma(r-1)
            Tbeta=ZeroM(1:sigma(r-1),1);
            for ki=sigma(r-1)+1:p
[fl,beta]=betaJS(r,s,ki,q,bg0,Tg,iD,g0,x,y,N,bs,sigma,tx,bx);
            if fl==0
                        disp('Condition (ii) of Thm 8.11 is not satisfied')
                        return
                end
            bki=(q-1) *(p-sigma(r-1)) +ki-sigma(r-1) ;
                Beta(1:sg,bki)=beta(1:sg);
            end
        end
        Beta=simplify(Beta);
        for k3=1:sg
            for k4=1:sigma(r-1)
            t4=Beta(k3,(k4-1)*(p-sigma(r-1))+1:k4*(p-sigma(r-1)));
            if ChExact(t4,y(sigma(r-1)+1:p))==0
                return
                    end
                    Tbeta(k3,k4)=Codi(t4,y(sigma(r-1)+1:p) );
            end
        end
        dGam=simplify(Tbeta(1:sg,:));
        for k3=1:sg
            if ChExact(dGam(k3,:),y(1:sigma(r-1)))==0
                    return
            end
            Gam(k3)=Codi(dGam(k3,:),y(1:sigma(r-1)));
        end
        Gam=simplify(Gam(1:sg,:))
        GamH=subs (Gam,Y,H);
        for k1=sigma(r-1)+1:sigma(r)
            Tg(:,s+1,k1)=Tg(:,s,k1);
            for k2=1:sigma(r-1)
                for k3=1:N(k2)-N(k1)+1-s
                tempTg1=simplify(Lfhk(F0,GamH(k2),x,N(k2)-k3-s));
```

```
                    tempTg2=simplify(Lfh(g0(:,1,k1),tempTg1,x));
                    tempTg3=tempTg2*bg0(:, k3,k2);
                    Tg}(:,s+1,k1)=Tg(:,s+1,k1)+(-1)^(k3-1)*tempTg3
            end
        end
    end
    for k1=sigma(r-1)+1:sigma(r)
            bg0(:,1,k1)=Tg(:,s+1,k1);
            bgu(:,1,k1)=bg0(:,1,k1);
            for k2=2:N(k1)
                bg0(:, k2,k1) =adfg(F0,bg0(:,k2-1,k1),x);
                bgu(:, k2,k1) =adfg(Fu,bgu(:,k2-1,k1),x);
            end
        end
    end
end
bgu=simplify(bgu)
for k1=1:p
    for k=1:N(k1)
        idS(:,bs(k1)+k)=(-1)^(N(k1)-k) *bgu(:,N(k1)+1-k,k1);
    end
end
idS=simplify(idS)
for k1=1:n
    if ChZero(jacobian(idS(:,k1),u))==0
        disp('Condition (iii-1) of Thm 8.11 is not satisfied')
        return
    end
end
if ChCommute(idS,x)==0
    disp('Condition (iii-2) of Thm 8.11 is not satisfied')
    return
end
disp('System is equivalent to a dual Brunovsky NOCF with z=')
dS=simplify(inv(idS));
S=simplify(Codi(dS,x))
gammau=x-x;
for k1=1:p
    for k=1:N(k1)-1
        gammau(bs(k1)+k)=Lfh(Fu,S(bs (k1)+k),x)-S(bs(k1)+k+1);
    end
    gammau(bs (k1) +N(k1))=Lfh(Fu,S(bs (k1+1)), x);
end
gammau=simplify(gammau)
return
```


MATLAB program for Theorem 8.12:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real
Fu=[x2+(x1-x2^2+u1)^2+u2^2; x1-x2^2+u1];
iFu=[x2+(x1-x2^2-u2^2)^^2-u1; x1-x2^2-u2^2];
H=x1-x2^2; m=2; %Ex:8.5.1
% Fu=[x2+u^2*(-x\mp@subsup{2}{}{\wedge}2+x1)+(-x\mp@subsup{2}{}{\wedge}2+u+x1)^2 2; x1-x\mp@subsup{2}{}{\wedge}2+u];
% iFu=[x2+(x1-x2^2-(x2-u)*u^2)^2-u; x1-x2^2-(x2-u)*u^2];
% H=x1-x2^2; m=1; %Ex:8.5.2
Fu=simplify(Fu)
H=simplify(H)
n=length(Fu);
x=sym('x', [n,1])
if m>1
    u=sym('u',[m,1])
end
F0=simplify(subs(Fu,u,u-u));
if ChInverseF(Fu,iFu,x)==0
    display('iFu is not correct.')
    return
end
T=x-x; T(1)=H;
for k=2:n
    T(k)=simplify(subs(T(k-1),x,F0));
end
T=simplify(T)
dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
gu(:,1)=idT(:,n);
for k=2:n+1
    gu(:,k) =sstarmap(Fu,iFu,gu(:,k-1),x);
end
gu=simplify(gu)
g0=subs(gu,u,u-u)
if ChZero(gu-g0)==0
    display('condition (i) of Thm 8.12 is not satisfied.')
    display('System is NOT state equivalent to a LOCF.')
    return
end
if ChCommute (g0,x)==0
    display('condition (ii) of Thm 8.12 is not satisfied.')
    display('System is NOT state equivalent to a LOCF.')
    return
end
```

```
display('System is, by Thm 8.12, state equiv. to a LOCF with')
for k=1:n
    idS(:,k)= g0(:,n+1-k);
end
idS=simplify(idS);
dS=simplify(inv(idS));
S=Codi (dS,x)
ASu=simplify(subs(S,x,Fu));
dAS=simplify(jacobian(ASu,x));
A=simplify(dAS*idS)
Gammau=ASu-subs (ASu,u,u-u)
return
```


MATLAB program for Theorem 8.13:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real
% Fu=[x2+(x1-x\mp@subsup{2}{}{\wedge}2+u1)^2+u2^2; x1-x\mp@subsup{2}{}{\wedge}2+u1]; H=x1-x\mp@subsup{2}{}{\wedge}2; m=2;
% iFu=[x2+(x1-x2^2-u2^2)^2-u1; x1-x2^2-u2^2]; %Ex:8.5.1
Fu=[x2+u^2*(-x\mp@subsup{2}{}{\wedge}2+x1)+(-x\mp@subsup{2}{}{\wedge}2+u+x1)^^2; x1-x\mp@subsup{2}{}{\wedge}2+u];
iFu=[x2+(x1-x2^2-(x2-u)*u^2)^2-u; x1-x2^2-(x2-u)*u^2];
H=x1-x2^2; m=1; %Ex:8.5.2
% aa=u+x1+exp (x2)+(x3+u*x1)^2-1; aai=x3-u-exp (x1)-x\mp@subsup{)}{}{\wedge}2+1;
% Fu=[x2; x3+u*x1; aa];
% iFu=[aai; x1; x2-u*aai]; H=x1; m=1; %P:8.8(a)
% Fu=[x2; x3; exp(x1+u+x3^2)-1]; H=x1;
% iFu=[ log(x3+1)-u-x2^2; x1; x2 ]; m=1; TYPE=1; %P:8.8(b)
% Fu=[x2; (x3+1)*exp(x1*u)-1; exp (x1+u+(x3+1)*exp (x1*u)-1)-1];
% aai=log(x3+1)-u-x2; iFu=[ aai; x1; (1+x2)*exp(-aai*u)-1];
% H=x1; m=1; TYPE=2; %P:8.8(c)
Fu=simplify(Fu)
H=simplify(H);
n=length(Fu);
x=sym('x', [n,1]);
if m>1
    u=sym('u',[m,1]);
end
F0=simplify(subs(Fu,u,u-u));
if ChInverseF(Fu,iFu,x)==0
    display('iFu is not correct.')
    return
```

```
end
T=x-x; T(1)=H;
for k=2:n
    T(k)=simplify(subs(T(k-1),x,F0));
end
T=simplify(T)
dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
gu(:,1)=idT(:,n);
for k=2:n
    gu(:,k)=sstarmap(Fu,iFu,gu(:,k-1),x);
end
gu=simplify(gu)
g0=subs(gu,u,u-u);
if ChZero(gu-g0)==0
    display('condition (i) of Thm 8.13 is not satisfied.')
    display('System is NOT state equivalent to a NOCF.')
    return
end
if ChCommute (g0,x)==0
    display('condition (ii) of Thm 8.13 is not satisfied.')
    display('System is NOT state equivalent to a NOCF.')
    return
end
display('System is, by Thm 8.13, state equiv. to a NOCF.')
for k=1:n
    idS(:,k)= g0(:,n+1-k);
end
idS=simplify(idS);
dS=simplify(inv(idS));
S=Codi (dS,x)
ASu=simplify(subs(S,x,Fu));
gammau=simplify(ASu-[S(2:n); 0])
return
```

The following is a MATLAB subfunction program for Theorems 8.14 and 8.18.

```
function [flag,beta]=BETA_thm814(kappa,g0,x,y,n)
flag=0; beta=y-y;
TEMP1=adfg(g0(:,1),g0(:,kappa),x);
[flag1,TEMP2]=SpanCx(TEMP1,g0(:,1));
if flag1==0
    return
end
```

```
beta=simplify(TEMP2/Lfh(g0(:,kappa),x(n),x));
dbeta=simplify(jacobian(beta,x));
if ChZero(dbeta(1:n-1))==0
    return
end
beta=subs(beta,x(n),y);
flag=1;
return
```

The following is a MATLAB subfunction program for Theorems 8.15 and 8.19.

```
function [flag,beta]=BETA_thm815(sigma,Fu,Tu,gu,g0,x,y,u,n,m)
flag=0; beta=y-y;
if ChZero(gu(:,1:sigma)-g0(:,1:sigma))==0
    return
end
[flag2,theta]=SpanCx(gu(:,sigma+1),g0(:,sigma+1));
if flag2==0
    return
end
temp1=simplify(subs(theta,x,Fu));
tempN=simplify(jacobian(temp1,u));
tempD=simplify(jacobian(Tu(n+1-sigma),u));
for k1=1:m
    if ChZero(tempD(k1))==0
            Betau=simplify(tempN(k1)/tempD(k1));
            break
        end
end
Temp=simplify(tempN-Betau*tempD);
if ChZero(Temp)==0
    return
end
Beta0=simplify(subs(Betau,u,u-u));
dBeta0=simplify(jacobian(Beta0,x));
TdBeta0=[dBeta0(1:n-sigma) dBeta0(n-sigma+2:n)];
if ChZero(TdBeta0)==0
    return
end
beta=subs(Beta0,x(n-sigma+1),y);
flag=1;
return
```

The following MATLAB program, that needs subfunctions BETA-thm8-5-3 and BETA-thm8-5-4, is to check the conditions of Theorems 8.14-8.16.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real
Fu=[ x2; log(u + x1+1 +x2^2)]; m=1;
iFu=[ exp(x2)-u-1-x1^2; x1]; TYPE=1; %Ex:8.5.4
% Fu=[ (1+x2)*exp(u2^2)-1; (1+x1)*exp (u1)-1];
% iFu=[ (1+x2)*exp(-u1)-1; (1+x1)*exp(-u2^2)-1];
% m=2; TYPE=2; %Ex:8.5.5
% Fu=[ x2; x1+u*(1+x2)];
% iFu=[ x2-u*(1+x1); x1]; m=1; TYPE=4; %Ex:8.5.6
% Fu=[ x2*(1+u); log(u + x1+1 +x2^2)];
% iFu=[ exp(x2)-u-1-(x1/(1+u))^2; x1/(1+u)];
% m=1; TYPE=1; %Ex:8.5.7(b)
% Fu=[ x2*(1+u); log(u + x1+1 +x2^2)];
% iFu=[ exp(x2)-u-1-(x1/(1+u))^2; x1/(1+u)];
% m=1; TYPE=2; %Ex:8.5.7(c)
% Fu=[ x2; x3; exp(x1+u+x2*x3)- 1];
% iFu=[ log(x3+1)-u-x1*x2; x1; x2 ];
% m=1; TYPE=1; %Ex:8.6.2(b)
% Fu=[ x2; x3+x1*u2^2; u1+x1-x2*(x3+x1*u2^2)];
% iFu=[ x3-u1+x1*x2; x1; x2-u2^2*(x3-u1+x1*x2) ];
% m=2; TYPE=2; %Ex:8.6.3(b)
% Fu=[ x2; x3+x1*u2^2; u1+x1-x2*(x3+x1*u2^2)];
% iFu=[ x3-u1+x1*x2; x1; x2-u2^2*(x3-u1+x1*x2) ];
% m=2; TYPE=1; %Ex:8.6.3(d)
% Fu=[ x2; exp(x1*(x2+u2)+u1)-1 ];
% iFu=[ (log(1+x2)-u1)/(x1+u2) ; x1];
% m=2; TYPE=1; %Ex:8.6.4(b)
% Fu=[ x2+u; x3; u+x1+x1*(u+x2)^2];
% iFu=[ (x3-u)/(1+x1^2) ; x1-u; x2];
% m=1; TYPE=2; %Ex:8.6.5(b)
% Fu=[ x2; log(x1* (x2+u2)+u1+1) ];
% iFu=[ (exp(x2)-1-u1)/(x1+u2) ; x1];
% m=2; TYPE=1; %P:8.13(b)
% Fu=[ x2; x3; exp(x1+u+x3^2)- 1];
% iFu=[ log(x3+1)-u-x2^2; x1; x2 ]; m=1; TYPE=1; %P:8.9(a)
% aa=exp(x1+u+(x3+1)*exp(x1*u)-1)- 1; aai=log(x3+1) -u-x2;
% Fu=[x2; (x3+1)*exp(x1*u)-1; aa];
```

```
% iFu=[aai; x1; (1+x2)*exp(-aai*u)-1]; m=1; TYPE=2; %P:8.9(b)
% Fu=[ x2; x3; x1+u*(1+x2*x3)];
% iFu=[ x3-u*(1+x1*x2); x1; x2 ]; m=1; TYPE=4; %P:8.9(c)
% Fu=[ x2; x3; exp(x1*(x2+u2)+u1)-1]; m=2;
% iFu=[ (log(1+x3)-u1)/(x1+u2) ; x1; x2]; TYPE=1; %P:8.9(d)
n=length(Fu);
x=\operatorname{sym}('x',[n,1]);
z=\operatorname{sym}('z',[n,1]);
if m>1
    u=sym('u',[m,1])
end
H=x1
Fu=simplify(Fu)
F0=simplify(subs(Fu,u,u-u));
if ChInverseF(Fu,iFu,x)==0
    display('Check inverse function once again.')
    return
end
T=x-x; T(1)=H; Tu=T;
for k=2:n
    T(k)=simplify(subs(T(k-1),x,F0));
    Tu(k)=simplify(subs(T(k-1),x,Fu));
end
T=simplify(T)
Tu=simplify(Tu);
alphaU=x-x;
alphaU(1:n-1)=Tu(2:n)-T(2:n);
alphaU(n)=simplify(subs(T(n),x,Fu))
dT=jacobian(T,x);
idT=inv(dT); gu(:,1)=idT(:,n);
for k=2:n+1
    gu(:,k) =sstarmap(Fu,iFu,gu(:,k-1),x) ;
end
gu=simplify(gu)
g0=subs(gu,u,u-u);
kappa1=n+1;
for k=2:n
    if ChZero(Lfh(g0(:,k),T(n),x)) == 0
            kappa1=k;
            break
        end
end
kappa=kappa1
sigma1=n;
```

```
for k=1:n-1
    if ChZero(jacobian(Tu(n+1-k),u)) == 0
        sigma1=k;
        break
    end
end
sigma=sigma1
if and(kappa==n+1,sigma==n)
    if ChZero(gu-g0) == 0
        display('condition of Thm 8.16 is not satisfied.')
        display('System is NOT state equiv. to a NOCF with OT.')
        return
    end
end
flag=1;
beta=y-y;
if ChZero(T-x)==0
    display('Find beta(y) without MATLAB.')
    return
end
if kappa<=n
    [flag1,beta1]=BETA_thm814(kappa,g0,x,y,n);
end
if sigma<n
    [flag2,beta2]=BETA_thm815(sigma,Fu,Tu,gu,g0,x,y,u,n,m);
end
if TYPE==1 %Thm 8.14
    flag=flag1; beta=beta1
end
if TYPE==2 %Thm 8.15
    flag=flag2; beta=beta2
end
if flag==0
    display('condition (i) is not satisfied.')
    display('System is NOT state equiv. to a NOCF with OT.')
    return
end
if ChZero(beta)==0
    beta0inv=subs(1/beta,y,y-y);
    if ChZero(beta0inv)==1
        display('condition (i) is not satisfied.')
        display('System is NOT state equiv. to a NOCF with OT.')
        return
    end
end
ibeta=int(beta,y);
```

```
ibeta0=subs(ibeta,y,y-y);
ell = simplify(exp(ibeta-ibeta0))
vphi = simplify(int(1/ell, y));
vphi0 = subs(vphi,y,y-y);
varphi= vphi-vphi0;
bgu(:,1)= subs(ell,y,T(n))*g0(:,1);
for k=2:n
    bgu(:,k) =sstarmap(Fu,iFu,bgu(:,k-1) ,x);
end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));
if ChZero(bgu-bg0) == 0
    display('condition (ii) is not satisfied.')
    display('System is NOT state equivalent to a NOCF with OT.')
    return
end
for k=1:n-1
    bCC(:,k) =adfg(bg0(:,1),bg0(:,k+1),x);
end
bCC=simplify(bCC);
if ChZero(bCc) == 0
    display('condition (iii) is not satisfied.')
    display('System is NOT state equivalent to a NOCF with OT.')
    return
end
display('System is state equivalent to a NOCF with OT.')
varphi=simplify(varphi)
for k=1:n
    idS(:,k)=bg0(:,n+1-k);
end
idS=simplify(idS);
dS=simplify(inv(idS));
s=Codi (dS,x)
gammaU=x-x;
for k=1:n-1
    gammaU(k)=simplify(subs(S(k),x,Fu) -S(k+1));
end
gammaU(n)=simplify(subs(S(n),x,Fu));
gammaU=simplify(gammaU)
return
```

The following is a MATLAB subfunction program for Theorem 8.20.

```
function [flag,beta]=BETA_thm820(kappa,Fu,iFu,x,y,u,n)
flag=0; beta=y-y;
alphanu=Fu(n);
theta=jacobian(alphanu,x(n+2-kappa));
dtheta=jacobian(theta,u);
dalphanu=jacobian(alphanu,u);
Temp1=simplify((1/theta)*dtheta);
[flag2,Bbetau]=SpanCx(Temp1',dalphanu');
if flag2==0
    return
end
Temp2=jacobian(Bbetau,x);
Temp3=jacobian(alphanu,x);
Temp4=[Temp2; Temp3];
if rank(Temp4)>1
    return
end
xbeta=simplify(subs(Bbetau,x,iFu));
beta=simplify(subs(xbeta,x(n),y));
flag=1;
return
```

The following MATLAB program, that needs subfunctions BETA-thm8-5-3, BETA-thm8-5-4, and BETA-thm8-6-4, is to check the conditions of Theorems 8.18-8.21.

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms u y u1 u2 u3 real
d=1; Fu=[x2; x3; exp(x1+u+x2*x3)- 1]; m=1; TYPE=1;
iFu=[ log(x3+1)-u-x1*x2; x1; x2 ]; %Ex:8.6.2(c)
% d=1; Fu=[x2; x3+x1*u2^2; u1+x1-x2*(x3+x1*u2^2)]; m=2; TYPE=2;
% iFu=[ x3-u1+x1*x2; x1; x2-u2^2*(x3-u1+x1*x2) ]; %Ex:8.6.3(c)
% d=1; Fu=[x2; x3+x1*u2^2; u1+x1-x2*(x3+x1*u2^2)]; m=2; TYPE=1;
% iFu=[ x3-u1+x1*x2; x1; x2-u2^2*(x3-u1+x1*x2) ]; %Ex:8.6.3(e)
% d=1; Fu=[x2; x3; exp(x1*(x3+u2)+u1)-1]; m=2; TYPE=1;
% iFu=[(log(1+x3)-u1)/(x2+u2); x1; x2]; %Ex:8.6.4(b)
% d=1; Fu=[x2; x3; exp(x1*(x3+u2)+u1)-1]; m=2; TYPE=3;
% iFu=[(log(1+x3)-u1)/(x2+u2) ; x1; x2]; %Ex:8.6.4(c)
% d=1; Fu=[x2+u; x3; u+x1+x1*(u+x2)^2]; m=1; TYPE=3;
% iFu=[(x3-u)/(1+x1^2); x1-u; x2]; %Ex:8.6.5
```

```
% d=2; Fu=[ x2; x1+u*(1+x2)];
% iFu=[ x2-u*(1+x1); x1]; m=1; TYPE=4; %Ex:8.6.6
% d=1; Fu=[x2; x3+x2*u2^2; u1+x1-x2*(x3+x2*u2^2)]; m=2;
% iFu=[x3-u1+x1*x2; x1; x2-u2^2*x1]; TYPE=1; %P:8.12(b)
% d=1; Fu=[x2; x3+x2*u2^2; u1+x1-x2*(x3+x2*u2^2)]; m=2;
% iFu=[x3-u1+x1*x2; x1; x2-u2^2*x1]; TYPE=2; %P:8.12(c)
% d=1; Fu=[x2; log(x1*(x2+u2)+u1+1)]; m=2; TYPE=3;
% iFu=[(exp(x2)-1-u1)/(x1+u2); x1]; %P:8.13(c)
% d=2; Fu=[x2; x3; x1+u*(1+x2*x3)]; m=1; TYPE=4;
% iFu=[x3-u*(1+x1*x2); x1; x2]; %P:8.14(a)
% d=1; Fu=[x2; x3; exp(x1*(x2+u2)+u1)-1]; m=2; TYPE=3;
% iFu=[(log(1+x3)-u1)/(x1+u2); x1; x2]; %P:8.14(b)
% d=1; Fu=[x2; x3; x1+x1*x3+u]; m=1; TYPE=3;
% iFu=[(x3-u)/(1+x2); x1; x2]; %P:8.14(c)
% d=2; Fu=[x2; x3; x1+x1*x3+u]; m=1; TYPE=3;
% iFu=[(x3-u)/(1+x2); x1; x2]; %P:8.14(c)
n=length(Fu);
x=sym('x',[n,1]); w=sym('w',[d,1]);
if m>1
    u=sym('u',[m,1])
end
H=x1;
Fu=simplify(Fu)
iFu=simplify(iFu);
F0=simplify(subs(Fu,u,u-u));
if ChInverseF(Fu,iFu,x)==0
    display('Check inverse function once again.')
    return
end
T=x-x; T(1)=H; Tu=T;
for k=2:n
    T(k)=simplify(subs(T(k-1),x,F0));
    Tu(k)=simplify(subs(T(k-1),x,Fu));
end
T=simplify(T)
Tu=simplify(Tu);
alphaU=x-x;
alphaU(1:n-1)=Tu(2:n)-T(2:n);
alphaU(n)=simplify(subs(T(n),x,Fu))
if ChZero(alphaU(1:min(d,n-1)))==0
    display('Assumption is not satisfied.')
```

```
    return
end
dT=jacobian(T,x); idT=inv(dT);
gu(:,1)=idT(:,n);
for k=2:n+1
    gu(:,k) =sstarmap (Fu,iFu,gu(:,k-1),x);
end
gu=simplify(gu)
g0=subs(gu,u,u-u) ;
kappa1=n+1;
for k=2:n
    if ChZero(Lfh(g0(:,k),T(n),x)) == 0
            kappa1=k;
            break
        end
end
kappa=kappa1
sigma1=n;
for k=1:n-1
    if ChZero(jacobian(Tu(n+1-k),u)) == 0
            sigma1=k;
            break
        end
end
sigma=sigma1
if and(kappa==n+1,sigma==n)
    if ChZero(gu-g0) == 0
        display('condition of Thm 8.21 is not satisfied.')
        display('System is NOT RDOEL with')
        d=d
        return
        end
        flag=1; beta=y-y;
end
if ChZero(T-x)==0
        display('Find beta(y) without MATLAB.')
        return
end
if kappa<=n-d
        [flag1,beta1]=BETA_thm814(kappa,g0,x,y,n)
end
if sigma<n-d
    [flag2,beta2]=BETA_thm815(sigma,Fu,Tu,gu,g0,x,y,u,n,m)
end
if and(kappa<n+1,sigma>=n-d)==1
    [flag3,beta3]=BETA_thm820(kappa,Fu,iFu,x,y,u,n)
end
```

```
if TYPE==1
    flag=flag1; beta=beta1
end
if TYPE==2
    flag=flag2; beta=beta2
end
if TYPE==3
    flag=flag3; beta=beta3
end
if flag==0
    display('condition (i) is not satisfied.')
    display('System is NOT RDOEL with')
    d=d
    return
end
if ChZero(beta)==0
    beta0inv=subs(1/beta,y,y-y)
    if ChZero(beta0inv)==1
        display('condition (i) is not satisfied.')
        display('System is NOT RDOEL with')
        d=d
        return
    end
end
ibeta=int(beta,y);
ibeta0=subs (ibeta,y,y-y);
ell = simplify(exp(ibeta-ibeta0))
vphi = simplify(int(1/ell, y));
vphi0 = subs(vphi,y,y-y);
varphi= vphi-vphi0
bgu(:,1)= subs(ell,y,T(n))*g0(:,1);
for k=2:n-d
    bgu(:,k) =sstarmap(Fu,iFu,bgu(:,k-1),x) ;
end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));
if ChZero(bgu-bg0) == 0
    display('condition (ii) is not satisfied.')
    display('System is NOT RDOEL with')
    d=d
    return
end
if ChCommute( }\textrm{bg}0,\textrm{x})== 
    display('condition (iii) is not satisfied.')
    display('System is NOT RDOEL with')
    d=d
    return
```

```
end
for k=1:n-d
    idhS2(:,k) =bg0(:,n-d+1-k);
end
idhS2=simplify(idhS2(d+1:n,:))
dhS2=simplify(inv(idhS2))
hS2=Codi(dhS2,x(d+1:n))
TEMP41=subs (hS2,x,T);
TEMP42=subs (TEMP41,x,Fu);
TEMP43=subs (TEMP41,x,F0);
TEMP4=simpli fy(TEMP42-TEMP43)
if ChZero(jacobian(TEMP4,x(2:n))) == 0
    display('condition (iv) is not satisfied.')
    display('System is NOT RDOEL with')
    d=d
    return
end
display('System is RDOEL with')
d=d
if d>0
    hS1=x(1:d)-x(1:d);
    for k=1:d
            hS1(k)= subs(varphi,y,x(k));
        end
end
if d==0
    hS = hS2
else
    hS = [hS1; hS2]
end
xe=[w; x];
if d>0
    He=xe (1);
    Feu=[w(2:d); H; Fu];
else
    He=H; Feu=Fu;
end
Feu=simplify(Feu)
Fe0=simplify(subs(Feu,u,u-u));
Se=xe-xe;
Se(1:n)=subs(hS,x,xe(1:n));
if d>0
    gammaN0=simplify(subs(hS(n),x,F0))
    Se(n+1)=simplify(subs(Se(n),xe,Fe0)-subs(gammaN0,x,xe(1:n)));
end
for k=n+2:n+d
```

```
    Se(k)=simplify(subs(Se(k-1),xe,Fe0));
end
Se=simplify(Se)
bfeu1=simplify(subs(Se,xe,Feu))
gammaeU=xe-xe;
for k=1:n+d-1
    gammaeU(k)=simplify(subs(Se(k),xe,Feu)-Se(k+1));
end
gammaeU(n+d) =simplify(subs(Se(n+d),xe,Feu))
return
```


8.8 Problems

8-1. Find out whether the following nonlinear control systems are state equivalent to a dual Brunovsky NOCF or not. If it is state equivalent to a dual Brunovsky NOCF, find a state transformation $z=S(x)$ and the dual Brunovsky NOCF that new state z satisfies.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3}-2 x_{3} e^{x_{1}} u \\
e^{x_{1}} u
\end{array}\right] ; \quad y=x_{1}
$$

(b)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3}^{2} \\
x_{3}-2 x_{3} e^{x_{1}} u_{2} \\
e^{x_{1}} u_{1}
\end{array}\right] ; \quad y=x_{1}
$$

(c)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+\left(x_{1}+1\right) u_{2}^{2} \\
x_{2} \ln \left(x_{1}+1\right)+\frac{x_{2}^{2}}{1+x_{1}}+\left(x_{1}+1\right) u_{1}+x_{2} u_{2}^{2}
\end{array}\right] ; \quad y=x_{1}
$$

(d)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} e^{x_{1}} \\
x_{3}+x_{1} u \\
u
\end{array}\right] ; \quad y=x_{1} .
$$

8-2. Show that system (8.131) is not state equivalent to a dual Brunovsky NOCF with OT.
8-3. Find out whether the following nonlinear control systems are state equivalent to a dual Brunovsky NOCF with OT or not. If it is state equivalent to a dual Brunovsky NOCF with OT, find a OT $\bar{y}=\varphi(y)$, a state transformation $z=$ $S(x)$, and the dual Brunovsky NOCF that new state z satisfies.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+\left(x_{1}+1\right) u_{2}^{2} \\
x_{2} \ln \left(x_{1}+1\right)+\frac{x_{2}^{2}}{1+x_{1}}+\left(x_{1}+1\right) u_{1}+x_{2} u_{2}^{2}
\end{array}\right] ; \quad y=x_{1}
$$

(b)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} e^{x_{1}} \\
x_{3}+x_{1} u \\
u
\end{array}\right] ; \quad y=x_{1}
$$

(c)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
u-\frac{2 x_{2}^{3}}{\left(x_{1}+1\right)^{2}}+\frac{3 x_{2} x_{3}}{x_{1}+1}-x_{3}\left(x_{1}+1\right) \ln \left(x_{1}+1\right)
\end{array}\right] ; y=x_{1}
$$

(d)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4}+u^{2} \\
5 x_{2} x_{3}+2 x_{2}^{2}+u
\end{array}\right] ; \quad y=x_{1} .
$$

8-4. Find out whether the following nonlinear control systems are RDEOL or not. If it is RDEOL, find the minimal index d and an extended state transformation $z^{e}=S^{e}(w, x)$, and the dual Brunovsky NOCF that new state z^{e} satisfies.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{1} u^{2} \\
x_{3} \\
4 x_{1} x_{3}+u
\end{array}\right] ; \quad y=x_{1}
$$

(b)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3} u^{2} \\
x_{3} \\
x_{4} \\
4 x_{1} x_{3}+u
\end{array}\right] ; \quad y=x_{1}
$$

(c)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
u-\frac{2 x_{2}^{3}}{\left(x_{1}+1\right)^{2}}+\frac{3 x_{2} x_{3}}{x_{1}+1}-x_{3}\left(x_{1}+1\right) \ln \left(x_{1}+1\right)
\end{array}\right] ; \quad y=x_{1}
$$

(d)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4}+u^{2} \\
5 x_{2} x_{3}+2 x_{2}^{2}+u
\end{array}\right] ; \quad y=x_{1}
$$

8-5. Use Corollary 8.6 or Theorem 8.11 to show that the following nonlinear control systems are state equivalent to a dual Brunovsky NOCF.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2}+x_{3} u_{1}^{2} \\
\sin \left(x_{1}\right)\left(u_{2}+x_{1} x_{3}\right)+x_{3} \cos \left(x_{1}\right)\left(x_{3} u_{1}^{2}+x_{2}\right)+u_{1} \\
x_{1} x_{3}+u_{2}
\end{array}\right] ; y=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]
$$

(b)

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4}+x_{1} u_{2} \\
3 x_{2}^{2}+x_{3}+x_{6}+x_{1} x_{3}+3 x_{3} x_{6}+x_{4} x_{5}+\left(2 x_{2}+x_{1} x_{5}\right) u_{2}+u_{1} \\
x_{6} \\
x_{2}+u_{2} \\
y
\end{array}\right] \\
&
\end{aligned}
$$

(c)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} x_{5}+2 x_{5} x_{8}+x_{6} x_{7}+u_{1}+x_{4} u_{3} \\
x_{5} \\
x_{6} \\
\alpha_{23}^{u}(x) \\
x_{8} \\
x_{5}+u_{3}
\end{array}\right] ; y=\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{7}
\end{array}\right]
$$

where

$$
\begin{aligned}
\alpha_{23}^{u}(x)= & x_{1} x_{4} x_{5}+2 x_{1} x_{5} x_{8}+x_{1} x_{6} x_{7}+2 x_{2} x_{4} x_{8}+2 x_{2} x_{5} x_{7} \\
& +x_{3} x_{4} x_{7}+u_{2}+x_{1} x_{4} u_{3} .
\end{aligned}
$$

(d)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{1} u_{2}+x_{4} u_{3}+x_{7}^{2} u_{4} \\
x_{6} x_{7}+u_{1}+x_{5} u_{3} \\
x_{5}+x_{7} u_{4} \\
x_{6} \\
x_{2} x_{8}+x_{1}\left(x_{1}^{2}+u_{4}\right)+u_{2} \\
u_{3} \\
x_{1}^{2}+u_{4}
\end{array}\right] ; y=\left[\begin{array}{c}
x_{1} \\
x_{4} \\
x_{7} \\
x_{8}
\end{array}\right] .
$$

8-6. Use Corollary 8.5 or Theorem 8.9 to find out whether the following nonlinear control systems are state equivalent to a dual Brunovsky NOCF. If it is state equivalent to a dual Brunovsky NOCF, find a state transformation $z=S(x)$ and the dual Brunovsky NOCF that new state z satisfies.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{2} x_{3}+x_{1} x_{4}+u_{1}+x_{1}\left(x_{2}-x_{1} x_{3}\right) u_{1}^{2} \\
x_{4}+\left(x_{2}-x_{1} x_{3}\right) u_{1}^{2} \\
2 x_{1} x_{2}+u_{2}
\end{array}\right] ; \quad y=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]
$$

(b)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{2} x_{3}+x_{1} x_{4}+x_{1}^{2} u_{1}^{2}+\left(x_{3}+1\right) u_{1} \\
x_{1} u_{1}^{2}+x_{4} \\
2 x_{1} x_{2}+u_{2}
\end{array}\right] ; \quad y=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]
$$

(c)

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3}+2 x_{1} x_{4} u_{2} \\
2 x_{1} x_{2}+x_{3} x_{4}^{2}+u_{1}+\left(x_{2}-x_{1} x_{4}^{2}+2 x_{1} x_{4}^{3}+2 x_{2} x_{4}\right) u_{2} \\
u_{2}
\end{array}\right] \\
& y=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right] .
\end{aligned}
$$

8-7. Show that (8.300) is satisfied.
8-8. Find out whether the following discrete time nonlinear control systems are state equivalent to a dual Brunovsky NOCF or not. If it is state equivalent to a dual Brunovsky NOCF, find a state transformation $z=S(x)$ and the dual Brunovsky NOCF that new state z satisfies.
(a)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{1} u \\
u+x_{1}+e^{x_{2}}+\left(x_{3}+x_{1} u\right)^{2}-1
\end{array}\right] ; y=x_{1}
$$

(b)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
e^{x_{1}+x_{3}^{2}+u}-1
\end{array}\right] ; y=x_{1}
$$

(c)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
\left(x_{3}+1\right) e^{x_{1} u}-1 \\
e^{x_{1}+\left(x_{3}+1\right) e^{x_{1} u}-1+u}-1
\end{array}\right] ; \quad y=x_{1}
$$

8-9. Find out whether the following discrete time nonlinear control systems are state equivalent to a dual Brunovsky NOCF with OT or not. If it is state equivalent to a dual Brunovsky NOCF with OT, find a OT $\bar{y}=\varphi(y)$, a state transformation $z=S(x)$, and the dual Brunovsky NOCF that new state z satisfies.
(a)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
e^{x_{1}+x_{3}^{2}+u}-1
\end{array}\right] ; \quad y=x_{1}
$$

(b)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
\left(x_{3}+1\right) e^{x_{1} u}-1 \\
e^{x_{1}+\left(x_{3}+1\right) e^{x_{1} u}-1+u}-1
\end{array}\right] ; \quad y=x_{1}
$$

(c)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{1}+\left(x_{2} x_{3}+1\right) u
\end{array}\right] ; \quad y=x_{1}
$$

(d)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
e^{x_{1} x_{2}+u_{1}+x_{1} u_{2}}-1
\end{array}\right] ; \quad y=x_{1}
$$

8-10. Solve Example 8.6.1.
8-11. Solve Example 8.6.3(d) and Example 8.6.3(e).
8-12. Consider the system

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3}+x_{2} u_{2}^{2} \\
u_{1}+x_{1}-x_{2}\left(x_{3}+x_{2} u_{2}^{2}\right)
\end{array}\right] ; \quad y=x_{1}
$$

(a) Show that $\kappa=2$ and $\sigma=1$.
(b) Use Theorem 8.18 to show that the above system is not RDOEL with index $d=1$.
(c) Use Theorem 8.19 to show that the above system is not RDOEL with index $d=1$.

8-13. Consider the system

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
\ln \left(x_{1} x_{2}+u_{1}+u_{2} x_{1}+1\right)
\end{array}\right] ; \quad y=x_{1}
$$

(a) Show that $\kappa=2$ and $\sigma=2$.
(b) Use Theorem 8.14 to show that the above system is not state equivalent to a dual Brunovsky NOCF with OT.
(c) Use Theorem 8.20 to show that the above system is RDOEL with index $d=1$.

8-14. Find out whether the following discrete time nonlinear control systems are RDEOL or not. If it is RDEOL, find the minimal index d and an extended state transformation $z^{e}=S^{e}(w, x)$, and the dual Brunovsky NOCF that new state z^{e} satisfies.
(a)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{1}+\left(x_{2} x_{3}+1\right) u
\end{array}\right] ; \quad y=x_{1}
$$

(b)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
e^{x_{1} x_{2}+u_{1}+x_{1} u_{2}}-1
\end{array}\right] ; \quad y=x_{1}
$$

(c)

$$
x(t+1)=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{1}+x_{1} x_{3}+u
\end{array}\right] ; \quad y=x_{1} .
$$

Chapter 9
 Input-Output Decoupling

9.1 Introduction

The problem of input-output decoupling has been introduced briefly in Sect. 1.1. In this chapter, the necessary and sufficient conditions will be studied. Consider the following nonlinear input-output system.

$$
\begin{align*}
& \dot{x}(t)=f(x(t))+g(x(t)) u(t) \\
& y(t)=h(x(t)) \tag{9.1}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{m}$, and $f(x), g(x)$, and $h(x)$ are analytic functions. Let $y_{i}^{(j)}(t) \triangleq \frac{d^{j}}{d t^{j}} y_{i}(t)$. Then we have that for $1 \leq i \leq m$ and $j \geq 1$,

$$
\begin{equation*}
y_{i}^{(j)}(t)=Q_{i}^{j}\left(x(t), u(t), \cdots, u^{(j-1)}(t)\right) \tag{9.2}
\end{equation*}
$$

for some functions $Q_{i}^{j}, \quad 1 \leq i \leq m, j \geq 1$.
Definition 9.1 (decoupled input-output relation) System (9.1) is said to have decoupled input-output relationship if output y_{i} is a function of only input u_{i} for all i, with changing the order of the inputs.

If the MIMO system's input-output relation is decoupled, the MIMO system has the parallel connection of m SISO systems. Thus, we can control each output without affecting the other outputs. In other words, we have the following equation:

$$
\begin{equation*}
y_{i}^{(j)}(t)=Q_{i}^{j}\left(x(t), u_{i}(t), \cdots, u_{i}^{(j-1)}(t)\right), 1 \leq i \leq m . \tag{9.3}
\end{equation*}
$$

If the system does not have the decoupled input-output relation, the nonsingular feedback could obtain the decoupled input-output relation of the closed-loop system, which is called the input-output decoupling.

Definition 9.2 (static input-output decoupling) System (9.1) is said to be locally static input-output decouplable (on a neighborhood of $x=x_{0}$), if there exists a nonsingular static feedback $u=\alpha(x)+\beta(x) v\left(\operatorname{rank}\left(\beta\left(x_{0}\right)\right)=m\right)$ such that the closedloop system

$$
\begin{align*}
\dot{x}(t) & =f(x)+g(x) \alpha(x)+g(x) \beta(x) v(t) \\
& =\tilde{f}(x(t))+\tilde{g}(x(t)) v(t) \tag{9.4}\\
y(t) & =h(x(t))
\end{align*}
$$

has the following decoupled input-output relationship:

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}\right)} \tag{9.5}\\
\vdots \\
y_{m}^{\left(\rho_{m}\right)}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]
$$

where ρ_{i} is the relative degree of the output y_{i}.
It is easy to see that the relative degree of system (9.4) is the same as that of system (9.1). (Refer to Problem 5-7.)

Definition 9.3 (dynamic input-output decoupling) System (9.1) is said to be locally dynamic input-output decouplable (on a neighborhood of $x=x_{0}$), if there exists a dynamic feedback

$$
\begin{align*}
u & =a(x, z)+b(x, z) w \tag{9.6a}\\
\dot{z} & =c(x, z)+d(x, z) w, \quad z \in \mathbb{R}^{d} \tag{9.6b}
\end{align*}
$$

such that the extended system

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x} \\
z
\end{array}\right] } & =\left[\begin{array}{c}
f(x)+g(x) a(x, z) \\
c(x, z)
\end{array}\right]+\left[\begin{array}{c}
g(x) b(x, z) \\
d(x, z)
\end{array}\right] w \\
& =f_{E}(x, z)+g_{E}(x, z) w \tag{9.7}\\
y(t) & =h(x(t))
\end{align*}
$$

has the decoupling matrix $D_{E}(x, z)$ with rank $\left(D_{E}\left(x_{0}, 0\right)\right)=m$.
In other words, if extended system (9.7) is locally static input-output decouplable, then system (9.1) is said to be locally dynamic input-output decouplable.

9.2 Input-Output Decoupling of the Nonlinear Systems

By Definition 5.6 of the relative degree, we have

$$
\begin{align*}
& y_{i}^{(\ell)}=L_{f}^{\ell} h_{i}(x), 0 \leq \ell \leq \rho_{i}-1 \\
& y_{i}^{\left(\rho_{i}\right)}=L_{f}^{\rho_{i}} h_{i}(x)+L_{g} L_{f}^{\rho_{i}-1} h_{i}(x) u \tag{9.8}
\end{align*}
$$

where ρ_{i} is the relative degree of the output y_{i}. Thus, it is clear that

$$
\begin{align*}
{\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}\right)}
\end{array}\right] } & =\left[\begin{array}{c}
L_{f}^{\rho_{1}} h_{1}(x) \\
\vdots \\
L_{f}^{\rho_{m}} h_{m}(x)
\end{array}\right]+\left[\begin{array}{c}
L_{g} L_{f}^{\rho_{1}-1} h_{1}(x) \\
\vdots \\
L_{g} L_{f}^{\rho_{m}-1} h_{m}(x)
\end{array}\right] u \tag{9.9}\\
& \triangleq E(x)+D(x) u
\end{align*}
$$

If $m \times m$ matrix $D(0)$ is invertible, then the closed-loop system has decoupled inputoutput relationship

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}\right)}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]
$$

with static feedback

$$
\begin{equation*}
u=-D(x)^{-1} E(x)+D(x)^{-1} v \tag{9.10}
\end{equation*}
$$

Therefore, $D(x)$, defined in (9.9), is called by decoupling matrix.
Theorem 9.1 (conditions for the static IO decoupling problem) System (9.1) is locally static input-output decouplable (on a neighborhood of $x=x_{0}$), if and only if

$$
\begin{equation*}
\operatorname{rank}\left(D\left(x_{0}\right)\right)=m \tag{9.11}
\end{equation*}
$$

where $D(x)$, defined in (9.9), is the decoupling matrix of system (9.1).
Proof Necessity. Suppose that system (9.1) is locally static input-output decouplable. Then, by Definition 9.2 and (9.9), there exists a nonsingular static feedback $u=$ $\alpha(x)+\beta(x) v$ such that

$$
E(x)+D(x) \alpha(x)+D(x) \beta(x) v=v,
$$

which implies that

$$
D(x) \beta(x)=I_{m} .
$$

Since $D\left(x_{0}\right) \beta\left(x_{0}\right)=I_{m}$, it is clear that (9.11) is satisfied.
Sufficiency. Obvious by (9.10) and Definition 2.5.
It is clear that system (9.1) is locally static input-output decouplable on a neighborhood of $x=0$, if and only if

$$
\operatorname{rank}(D(0))=m
$$

Example 9.2.1 Show that the following nonlinear system is locally static inputoutput decouplable. Also, obtain a static feedback for input-output decoupling.

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
x_{4} \\
0 \\
1+x_{3}
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} \tag{9.12}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=h(x) .}
\end{align*}
$$

Solution It is easy, by the definition of the relative degree, to see that $\rho_{1}=2$ and $\rho_{2}=2$. Since

$$
\left[\begin{array}{l}
y_{1}^{(2)} \\
y_{2}^{(2)}
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & x_{4} \\
0 & 1 \\
+x_{3}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

it is clear that decoupling matrix $D(x)$ is invertible. Therefore, by Theorem 9.1, system (9.12) can be input-output decoupled by static feedback

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{4} \\
0 & 1+x_{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & x_{4} \\
0 & 1+x_{3}
\end{array}\right]^{-1}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]} \\
& =\left[\begin{array}{c}
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & \frac{-x_{4}}{1+x_{3}} \\
0 & \frac{1}{1+x_{3}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
\end{aligned}
$$

Example 9.2.2 Show that the following nonlinear system is not locally input-output decouplable by static feedback:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
x_{4} \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
1+x_{3}
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} \tag{9.13}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=h(x) .}
\end{align*}
$$

Solution By simple calculations, it is easy to see that $\rho_{1}=2, \rho_{2}=1$, and

$$
\left[\begin{array}{l}
y_{1}^{(2)} \tag{9.14}\\
y_{2}^{(1)}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
x_{4} & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Note that decoupling matrix $D(x)$ is not invertible. Therefore, by Theorem 9.1, system (9.13) cannot be locally input-output decoupled by static feedback.

In (9.14) of Example 9.2.2, $\left[\begin{array}{l}y_{1}^{(2)} \\ y_{2}^{(1)}\end{array}\right]$ is a function of input u_{1} only, and thus static input-output decoupling is not possible. That is, input u_{1} affects the output too early compared to input u_{2}. We could use integrators to input u_{1} and increase the relative degree of the extended closed-loop system until the derivative of the output depends on both of the new inputs simultaneously. In other words, we consider the dynamic feedback

$$
\begin{aligned}
& u_{1}=z_{1} ; \quad u_{2}=w_{2}^{1} \\
& \dot{z}_{1}=w_{1}^{1}
\end{aligned}
$$

and the extended closed-loop system

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{z}_{1}
\end{array}\right] } & =\left[\begin{array}{c}
x_{2} \\
x_{3}+z_{1} \\
x_{4}\left(1+z_{1}\right) \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] w_{1}^{1}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
1+x_{3} \\
0
\end{array}\right] w_{2}^{1} \tag{9.15}\\
& =F^{1}(x)+G_{1}^{1}(x) w_{1}^{1}+G_{2}^{1}(x) w_{2}^{1}
\end{align*}
$$

For extended system (9.15), we have relative degree $\left(\rho_{1}^{1}, \rho_{2}^{1}\right)=(3,2)$ and

$$
\left[\begin{array}{l}
y_{1}^{(3)} \\
y_{2}^{(2)}
\end{array}\right]=\left[\begin{array}{c}
x_{4}\left(1+z_{1}\right) \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
x_{4}\left(1+x_{3}\right)\left(1+z_{1}\right)
\end{array}\right]\left[\begin{array}{l}
w_{1}^{1} \\
w_{2}^{1}
\end{array}\right]
$$

which implies that decoupling matrix of extended system (9.15) is nonsingular. Therefore, extended system (9.15) is input-output decouplable by extended state feedback

$$
\begin{aligned}
{\left[\begin{array}{c}
w_{1}^{1} \\
w_{2}^{1}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
x_{4}\left(1+x_{3}\right)\left(1+z_{1}\right)
\end{array}\right]^{-1}\left\{-\left[\begin{array}{c}
x_{4}\left(1+z_{1}\right) \\
0
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right\} \\
& =\left[\begin{array}{c}
-x_{4}\left(1+z_{1}\right) \\
\frac{x_{4}^{2}}{1+x_{3}}
\end{array}\right]+\left[\frac{1}{\left(1+x_{3}\right)\left(1+z_{1}\right)} \frac{0}{\left(1+x_{3}\right)\left(1+z_{1}\right)}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
\end{aligned}
$$

In other words, system (9.13) is input-output decouplable by dynamic feedback

$$
\begin{align*}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{c}
z_{1} \\
\frac{x_{4}^{2}}{1+x_{3}}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
\frac{-x_{4}}{\left(1+x_{3}\right)\left(1+z_{1}\right)} & \frac{1}{\left(1+x_{3}\right)\left(1+z_{1}\right)}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \tag{9.16}\\
\dot{z}_{1} & =-x_{4}\left(1+z_{1}\right)+v_{1} .
\end{align*}
$$

Example 9.2.3 Show that the following nonlinear system is not locally input-output decouplable by static feedback. Also, find a dynamic feedback to decouple I-O relation.

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
x_{4} \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
1 \\
x_{4} \\
1+x_{3}
\end{array}\right] u_{2}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2} \tag{9.17}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=h(x) .}
\end{align*}
$$

Solution By simple calculations, we have relative degree $\left(\rho_{1}, \rho_{2}\right)=(2,1)$ and

$$
\left[\begin{array}{l}
y_{1}^{(2)} \\
y_{2}^{(1)}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
x_{4} & x_{4}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Since decoupling matrix $D(x)$ is singular, it is clear, by Theorem 9.1, that system (9.17) is not input-output decouplable by static feedback. Unlike Example 9.2.2, the decoupling matrix of the extended system cannot be made nonsingular by applying an integrator to one of the inputs. If we consider static feedback

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{1}^{1} \\
\mu_{2}^{1}
\end{array}\right] \triangleq L^{1}(x) \mu^{1}
$$

we have the following closed-loop system:

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
x_{4} \\
0
\end{array}\right] \mu_{1}^{1}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
1+x_{3}
\end{array}\right] \mu_{2}^{1} \tag{9.18}\\
& =f^{1}(x)+g_{1}^{1}(x) \mu_{1}^{1}+g_{2}^{1}(x) \mu_{2}^{1}
\end{align*}
$$

which is the same as (9.13) with $u=\mu^{1}$. Therefore, system (9.18) is input-output decouplable by dynamic feedback (9.16). In other words, system (9.17) is inputoutput decouplable by dynamic feedback

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} & =L^{1}(x) \mu^{1} \\
& =\left[\begin{array}{c}
z_{1}-\frac{x_{4}^{2}}{\left(1+x_{3}\right)} \\
\frac{x_{4}^{2}}{\left(1+x_{3}\right)}
\end{array}\right]+\left[\begin{array}{c}
\frac{x_{4}}{\left(1+x_{3}\right)\left(1+z_{1}\right)} \\
\frac{-1}{\left(1+x_{3}\right)\left(1+z_{1}\right)}
\end{array} \frac{-1}{\left(1+x_{3}\right)\left(1+z_{1}\right)}\right. \\
\left(1+x_{3}\right)\left(1+z_{1}\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
$$

9.3 Dynamic Input-Output Decoupling

Suppose that input-output decoupling is not possible by static feedback. Then, as shown in Examples 9.2.2 and 9.2.3, we could wait for other inputs to affect the output, by using integrators to some inputs and increasing the relative degree of the extended closed-loop system. We call this process the dynamic extension algorithm.

Lemma 9.1 If system (9.1) is locally dynamic input-output decouplable (on a neighborhood of $x=x_{0}$) with dynamic feedback

$$
\begin{align*}
u & =a(x, z)+b(x, z) w \tag{9.19a}\\
\dot{z} & =c(x, z)+d(x, z) w, \quad z \in \mathbb{R}^{d} \tag{9.19b}
\end{align*}
$$

then system (9.1) is also locally dynamic input-output decouplable (on a neighborhood of $x=x_{0}$) with dynamic feedback

$$
\begin{align*}
& u=a(x, 0)+\left.\frac{\partial a(x, z)}{\partial z}\right|_{z=0} z+b(x, 0) w \tag{9.20a}\\
& \dot{z}=c(x, 0)+\left.\frac{\partial c(x, z)}{\partial z}\right|_{z=0} z+d(x, 0) w \tag{9.20b}
\end{align*}
$$

Proof Suppose that system (9.1) is locally dynamic input-output decouplable (on a neighborhood of $x=x_{0}$) with dynamic feedback (9.19). Then we have, by Definition 9.3, that

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
L_{G_{E}} L_{F_{E}}^{\rho_{1}^{E}-1} h_{1}(x) \tag{9.21}\\
\vdots \\
L_{G_{E}} L_{F_{E}}^{\rho_{E}^{E}-1} h_{m}(x)
\end{array}\right]\right|_{(x, z)=\left(x_{0}, 0\right)}\right)=m
$$

where $\left(\rho_{1}^{E}, \cdots, \rho_{m}^{E}\right)$ are the relative degrees of the extended system

$$
\begin{aligned}
\dot{x}_{E} & =\left[\begin{array}{c}
f(x)+g(x) a(x, z) \\
c(x, z)
\end{array}\right]+\left[\begin{array}{c}
g(x) b(x, z) \\
d(x, z)
\end{array}\right] w \\
& =F_{E}\left(x_{E}\right)+G_{E}\left(x_{E}\right) w .
\end{aligned}
$$

Consider the extended system of system (9.1) with dynamic feedback (9.20):

$$
\begin{aligned}
\dot{x}_{E} & =\left[\begin{array}{c}
f(x)+g(x) a(x, 0)+\left.g(x) \frac{\partial a(x, z)}{\partial z}\right|_{z=0} z \\
c(x, 0)+\left.\frac{\partial c(x, z)}{\partial z}\right|_{z=0} z
\end{array}\right]+\left[\begin{array}{c}
g(x) b(x, 0) \\
d(x, 0)
\end{array}\right] w \\
& =F_{E}^{0}\left(x_{E}\right)+G_{E}^{0}\left(x_{E}\right) w .
\end{aligned}
$$

Note that $F_{E}(x, 0)=F_{E}^{0}(x, 0)$ and

$$
\begin{align*}
\left.\frac{\partial F_{E}\left(x_{E}\right)}{\partial x_{E}}\right|_{z=0} & =\left[\begin{array}{cc}
\frac{\partial(f(x)+g(x) a(x, 0))}{\partial x} g(x) \frac{\partial a(x, z)}{\partial z} & \left.\right|_{z=0} \\
\frac{\partial c(x, 0)}{\partial x} & \left.\frac{\partial c(x, z)}{\partial z}\right|_{z=0}
\end{array}\right] \tag{9.22}\\
& =\left[\left.\left.\frac{\partial F_{E}^{0}\left(x_{E}\right)}{\partial x}\right|_{z=0} \frac{\partial F_{E}^{0}\left(x_{E}\right)}{\partial z}\right|_{z=0}\right]=\left.\frac{\partial F_{E}^{0}\left(x_{E}\right)}{\partial x_{E}}\right|_{z=0} .
\end{align*}
$$

Thus, it is easy to see, by (2.3) and (9.22), that for $1 \leq i \leq m$,

$$
\begin{aligned}
\left.\frac{\partial\left(L_{F_{E}} h_{i}(x)\right)}{\partial x_{E}}\right|_{z=0} & =\left.\frac{\partial\left(\frac{\partial h_{i}(x)}{\partial x_{E}} F_{E}\left(x_{E}\right)\right)}{\partial x_{E}}\right|_{z=0} \\
& =\left.\left\{F_{E}\left(x_{E}\right)^{\top} \frac{\partial\left(\frac{\partial h_{i}(x)}{\partial x_{E}}\right)^{\top}}{\partial x_{E}}+\frac{\partial h_{i}(x)}{\partial x_{E}} \frac{\partial F_{E}\left(x_{E}\right)}{\partial x_{E}}\right\}\right|_{z=0} \\
& =\left.F_{E}^{0}\left(x_{E}\right)^{\top} \frac{\partial\left(\frac{\partial h_{i}(x)}{\partial x_{E}}\right)^{\top}}{\partial x_{E}}\right|_{z=0}+\left.\left.\frac{\partial h_{i}(x)}{\partial x_{E}}\right|_{z=0} \frac{\partial F_{E}^{0}\left(x_{E}\right)}{\partial x_{E}}\right|_{z=0} \\
& =\left.\frac{\partial\left(\frac{\partial h_{i}(x)}{\partial x_{E}} F_{E}^{0}\left(x_{E}\right)\right)}{\partial x_{E}}\right|_{z=0}=\left.\frac{\partial\left(L_{F_{E}^{0}} h_{i}(x)\right)}{\partial x_{E}}\right|_{z=0}
\end{aligned}
$$

In this manner, it is easy to show by mathematical induction that for $1 \leq i \leq m$ and $k \geq 1$,

$$
\left.\frac{\partial\left(L_{F_{E}}^{k} h_{i}(x)\right)}{\partial x_{E}}\right|_{z=0}=\left.\frac{\partial\left(L_{F_{E}^{0}}^{k} h_{i}(x)\right)}{\partial x_{E}}\right|_{z=0}
$$

and

$$
\begin{aligned}
\left.L_{G_{E}} L_{F_{E}}^{k} h(x)\right|_{z=0} & =\left.\frac{\partial\left(L_{F_{E}}^{k} h_{i}(x)\right)}{\partial x_{E}}\right|_{z=0} G_{E}(x, 0) \\
& =\left.\frac{\partial\left(L_{F_{E}^{0}}^{k} h_{i}(x)\right)}{\partial x_{E}}\right|_{z=0} G_{E}(x, 0)=\left.L_{G_{E}^{0}} L_{F_{E}^{0}}^{k} h(x)\right|_{z=0}
\end{aligned}
$$

which implies, together with (9.21), that

$$
\operatorname{rank}\left(\left.\left[\begin{array}{c}
L_{G_{E}^{0}} L_{F_{E}^{0}}^{\rho_{1}^{E}-1} h_{1}(x) \\
\vdots \\
L_{G_{E}^{0}} L_{F_{E}^{0}}^{\rho_{E}^{E}-1} h_{m}(x)
\end{array}\right]\right|_{(x, z)=\left(x_{0}, 0\right)}\right)=m
$$

Hence, system (9.1) is also locally dynamic input-output decouplable (on a neighborhood of $x=x_{0}$) with dynamic feedback (9.20).

Elementary row operations and column operations of the matrix are very useful concepts. The following lemma, which can be proved by using elementary row and column operations of the matrix, plays a key role in the dynamic extension algorithm. (Refer to MATLAB subfunction Dcolumn (D, x) in Sect. 9.4.)

Lemma 9.2 Suppose that system (9.1) has the decoupling matrix $D(x)$ with

$$
\operatorname{rank}(D(x))=r<m
$$

There exist a $m \times m$ permutation matrix R and a $m \times m$ nonsingular matrix $L(x)$ such that

$$
R D(x) L(x)=\left[\begin{array}{ccc}
I_{\bar{r}} & O_{\bar{r} \times(r-\bar{r})} & O_{\bar{r} \times(m-r)} \tag{9.23}\\
O_{(r-\bar{r}) \times \bar{r}} & I_{r-\bar{r}} & O_{(r-\bar{r}) \times(m-r)} \\
\hat{D}(x) & O_{(m-r) \times(r-\bar{r})} & O_{(m-r) \times(m-r)}
\end{array}\right]
$$

and for $1 \leq i \leq \bar{r}$,

$$
\begin{equation*}
\hat{D}^{i}(x) \neq O_{(m-r) \times 1} \tag{9.24}
\end{equation*}
$$

where $\hat{D}(x) \triangleq\left[\hat{D}^{1}(x) \cdots \hat{D}^{\bar{r}}(x)\right]$.

Proof We can assume, by changing the order of the outputs, that the first r rows of the matrix $D(x)$ are linearly independent. In other words, there exists a $m \times m$ permutation matrix R_{0} such that

$$
R_{0} D(x)=\left[\begin{array}{c}
\tilde{D}(x) \\
\tilde{D}(x)
\end{array}\right] \text { and } \operatorname{rank}(\tilde{D}(x))=r
$$

Thus, we can find, by elementary column operations, a $m \times m$ permutation matrix L_{0} such that $\tilde{D}^{11}(x)$ is a $r \times r$ nonsingular matrix and

$$
\left[\begin{array}{l}
\tilde{D}(x) \\
\bar{D}(x)
\end{array}\right] L_{0}=\left[\begin{array}{ll}
\tilde{D}^{11}(x) & \tilde{D}^{12}(x) \\
\bar{D}^{21}(x) & \bar{D}^{22}(x)
\end{array}\right]
$$

If we let $L_{1}(x)=\left[\begin{array}{cc}\tilde{D}^{11}(x)^{-1}-\tilde{D}^{11}(x)^{-1} \tilde{D}^{12}(x) \\ O & I_{m-r}\end{array}\right]$, then we have that

$$
R_{0} D(x) L_{0} L_{1}(x)=\left[\begin{array}{cc}
\tilde{D}^{11}(x) & \tilde{D}^{12}(x) \\
\bar{D}^{21}(x) & \bar{D}^{22}(x)
\end{array}\right] L_{1}(x)=\left[\begin{array}{cc}
I_{r} & O_{r \times(m-r)} \\
\hat{D}^{21}(x) & O_{(m-r) \times(m-r)}
\end{array}\right]
$$

where $\hat{D}^{21}(x) \triangleq \bar{D}^{21}(x) \tilde{D}^{11}(x)^{-1}$. It is clear, by elementary column and row operations, that there exist a $r \times r$ permutation matrix \bar{L}, a $m \times m$ permutation matrix $L_{2}=\left[\begin{array}{cc}\bar{L} & O \\ O & I_{m-r}\end{array}\right]$, and a $m \times m$ permutation matrix $R_{1}=\left[\begin{array}{cc}\bar{L}^{\top} & O \\ O & I_{m-r}\end{array}\right]$ such that

$$
\begin{gathered}
\hat{D}^{21}(x) \bar{L}=\left[\hat{D}(x) O_{(m-r) \times(r-\bar{r})}\right] \\
R_{1}\left[\begin{array}{cc}
I_{r} & O_{r \times(m-r)} \\
\hat{D}^{21}(x) & O_{(m-r) \times(m-r)}
\end{array}\right] L_{2}=\left[\begin{array}{cc}
\bar{L}^{\top} & O \\
O & I_{m-r}
\end{array}\right]\left[\begin{array}{cc}
I_{r} & O \\
\hat{D}^{21}(x) & O
\end{array}\right]\left[\begin{array}{cc}
\bar{L} & O \\
O & I_{m-r}
\end{array}\right] \\
=\left[\begin{array}{ccc}
I_{\bar{r}} & O_{\bar{r} \times(r-\bar{r})} & O_{\bar{r} \times(m-r)} \\
O_{(r-\bar{r}) \times \bar{r}} & I_{r-\bar{r}} & O_{(r-\bar{r}) \times(m-r)} \\
\hat{D}(x) & O_{(m-r) \times(r-\bar{r})} & O_{(m-r) \times(m-r)}
\end{array}\right]
\end{gathered}
$$

and for $1 \leq i \leq \bar{r}$,

$$
\hat{D}^{i}(x) \neq O_{(m-r) \times 1}
$$

where $\hat{D}(x) \triangleq\left[\hat{D}^{1}(x) \cdots \hat{D}^{\bar{r}}(x)\right]$. In other words, (9.23) and (9.24) are satisfied with

$$
R=R_{1} R_{0} \text { and } L(x)=L_{0} L_{1}(x) L_{2}
$$

9.3.1 Dynamic Extension Algorithm

step 1: For system (9.1), we have

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{1}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{1}\right)}
\end{array}\right]=E^{1}(x)+D^{1}(x) u
$$

where $\left\{\rho_{1}^{1}, \cdots, \rho_{m}^{1}\right\}$ is the relative degree of system (9.1). Assume that

$$
\operatorname{rank}\left(D^{1}(x)\right)=r_{1}
$$

If $r_{1}=m$, then the local input-output decoupling is possible by static feedback, and thus, the algorithm terminates. If $r_{1}<m$, I-O decoupling by static feedback is not possible. The subspace of the input to apply the integrators should be obtained, as in Examples 9.2.2 and 9.2.3. First, we can assume, by changing the order of the outputs, that the first r_{1} rows of the matrix $D^{1}(x)$ are linearly independent. That is, we have, without loss of generality, that

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{1}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{1}\right)}
\end{array}\right]=E^{1}(x)+\left[\begin{array}{c}
\tilde{D}^{1}(x) \\
\bar{D}^{1}(x)
\end{array}\right] u
$$

where rank $\left(\tilde{D}^{1}(x)\right)=r_{1}$. We can find, by elementary column operations and the output order change, $m \times m$ matrix $L^{1}(x)$ such that

$$
\left[\begin{array}{c}
\tilde{D}^{1}(x) \\
\bar{D}^{1}(x)
\end{array}\right] L^{1}(x)=\left[\begin{array}{ccc}
I_{\bar{r}_{1}} & O_{\bar{r}_{1} \times\left(r_{1}-\bar{r}_{1}\right)} & O_{\bar{r}_{1} \times\left(m-r_{1}\right)} \\
O_{\left(r_{1}-\bar{r}_{1}\right) \times \bar{r}_{1}} & I_{r_{1}-\bar{r}_{1}} & O_{\left(r_{1}-\bar{r}_{1}\right) \times\left(m-r_{1}\right)} \\
\hat{D}^{1}(x) & O_{\left(m-r_{1}\right) \times\left(r_{1}-\bar{r}_{1}\right)} & O_{\left(m-r_{1}\right) \times\left(m-r_{1}\right)}
\end{array}\right]
$$

and for $1 \leq j \leq m-r_{1}$ and $1 \leq i \leq \bar{r}_{1}$,

$$
\begin{equation*}
\hat{D}_{j}^{1}(x) \neq O_{1 \times \bar{r}_{1}} \text { and } \hat{D}^{1 i}(x) \neq O_{\left(m-r_{1}\right) \times 1} \tag{9.25}
\end{equation*}
$$

where $\hat{D}^{1}(x) \triangleq\left[\begin{array}{c}\hat{D}_{1}^{1}(x) \\ \vdots \\ \hat{D}_{m-r_{1}}^{1}(x)\end{array}\right] \triangleq\left[\hat{D}^{11}(x) \cdots \hat{D}^{1 \bar{r}_{1}}(x)\right]$. Thus, we have, with the change of the output's order, that

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{1}\right)} \tag{9.26}\\
\vdots \\
y_{m}^{\left(\rho_{m}^{1}\right)}
\end{array}\right]=\hat{E}^{1}(x)+\left[\begin{array}{ccc}
I_{\bar{r}_{1}} & O_{\bar{r}_{1} \times\left(r_{1}-\bar{r}_{1}\right)} & O_{\bar{r}_{1} \times\left(m-r_{1}\right)} \\
O_{\left(r_{1}-\bar{r}_{1}\right) \times \bar{r}_{1}} & I_{r_{1}-\bar{r}_{1}} & O_{\left(r_{1}-\bar{r}_{1}\right) \times\left(m-r_{1}\right)} \\
\hat{D}^{1}(x) & O_{\left(m-r_{1}\right) \times\left(r_{1}-\bar{r}_{1}\right)} & O_{\left(m-r_{1}\right) \times\left(m-r_{1}\right)}
\end{array}\right] \mu^{1}
$$

with static feedback

$$
u=L^{1}(x) \mu^{1} \triangleq\left[\begin{array}{ll}
\tilde{L}^{1}(x) & \bar{L}^{1}(x)
\end{array}\right]\left[\begin{array}{l}
\tilde{\mu}^{1} \tag{9.27}\\
\bar{\mu}^{1}
\end{array}\right]
$$

where $\tilde{\mu}^{1} \in \mathbb{R}^{\bar{r}_{1}}, \bar{\mu}^{1} \in \mathbb{R}^{m-\bar{r}_{1}}$, and $\tilde{L}^{1}(x)$ and $\bar{L}^{1}(x)$ are $m \times \bar{r}_{1}$ and $m \times\left(m-\bar{r}_{1}\right)$ matrices, respectively. Then, with dynamic feedback

$$
\begin{align*}
& u=L^{1}(x)\left[\begin{array}{c}
z^{1} \\
\bar{u}^{1}
\end{array}\right]=\tilde{L}^{1}(x) z^{1}+\hat{L}^{1}(x) u^{1} \tag{9.28a}\\
& \dot{z}^{1}=\tilde{u}^{1}=\bar{I}_{\bar{r}_{1}} u^{1} \tag{9.28b}
\end{align*}
$$

we have the following extended system:

$$
\Sigma_{1}:\left[\begin{array}{c}
\dot{x} \tag{9.29}\\
\dot{z}^{1}
\end{array}\right]=F_{E}^{1}\left(x, z^{1}\right)+G_{E}^{1}\left(x, z^{1}\right)\left[\begin{array}{c}
\tilde{u}^{1} \\
\bar{u}^{1}
\end{array}\right]
$$

$$
F_{E}^{1}\left(x_{E}^{1}\right)=\left[\begin{array}{c}
f(x)+g(x) \tilde{L}^{1}(x) z^{1} \\
O
\end{array}\right] ; \quad G_{E}^{1}\left(x_{E}^{1}\right)=\left[\begin{array}{cc}
O & g(x) \bar{L}^{1}(x) \\
I_{\bar{r}_{1}} & O
\end{array}\right]
$$

step 2: For system (9.29), we have

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{2}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{2}\right)}
\end{array}\right]=E^{2}\left(x, z^{1}\right)+D^{2}\left(x, z^{1}\right) u^{1}
$$

where $\left\{\rho_{1}^{2}, \cdots, \rho_{m}^{2}\right\}$ is the relative degree of system (9.29). Assume that

$$
\operatorname{rank}\left(D^{2}\left(x, z^{1}\right)\right)=r_{2}
$$

If $r_{2}=m$, then system (9.29) is input-output decouplable by static feedback, and the algorithm terminates. Since $\rho_{i}^{2}=\rho_{i}^{1}+1,1 \leq i \leq \bar{r}_{1}$, and $\rho_{i}^{2}=\rho_{i}^{1}, \bar{r}_{1}+1 \leq i \leq$ r_{1}, it is clear that $\frac{\partial}{\partial \tilde{u}^{1}}\left(L_{F_{E}^{1}+G_{E}^{1} u^{1}} \hat{E}_{i}^{1}(x)\right)=O_{1 \times \bar{r}_{1}}, 1 \leq i \leq \bar{r}_{1}$, and thus $r_{2} \geq r_{1}$. If $r_{2}<m$, then we can assume, by changing the order of the outputs $y_{r_{1}+1}, \cdots, y_{m}$,
that the first r_{2} rows of the matrix $D^{2}(x)$ are linearly independent. In other words, we have, without loss of generality, that

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{\rho}^{2}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{2}\right)}
\end{array}\right]=E^{2}\left(x, z^{1}\right),+\left[\begin{array}{c}
\tilde{D}^{2}\left(x, z^{1}\right) \\
\bar{D}^{2}\left(x, z^{1}\right)
\end{array}\right] u^{1}
$$

where rank $\left(\tilde{D}^{2}\left(x, z^{1}\right)\right)=r_{2}$. We can find, by elementary column operations and the output order change, $m \times m$ matrix $L^{2}\left(x, z^{1}\right)$ such that

$$
\left[\begin{array}{l}
\tilde{D}^{2}\left(x_{E}^{1}\right) \\
\bar{D}^{2}\left(x_{E}^{1}\right)
\end{array}\right] L^{2}\left(x, z^{1}\right)=\left[\begin{array}{ccc}
I_{\bar{r}_{2}} & O_{\bar{r}_{2} \times\left(r_{2}-\bar{r}_{2}\right)} & O_{\bar{r}_{2} \times\left(m-r_{2}\right)} \\
O_{\left(r_{2}-\bar{r}_{2}\right) \times \bar{r}_{2}} & I_{r_{2}-\bar{r}_{2}} & O_{\left(r_{2}-\bar{r}_{2}\right) \times\left(m-r_{2}\right)} \\
\hat{D}^{2}(x) & O_{\left(m-r_{2}\right) \times\left(r_{2}-\bar{r}_{2}\right)} & O_{\left(m-r_{2}\right) \times\left(m-r_{2}\right)}
\end{array}\right]
$$

and for $1 \leq i \leq \bar{r}_{2}$,

$$
\hat{D}^{2 i}(x) \neq O_{\left(m-r_{2}\right) \times 1}
$$

where $\hat{D}^{2}(x) \triangleq\left[\hat{D}^{21}(x) \cdots \hat{D}^{2 \bar{r}_{2}}(x)\right]$. Thus, we have, with the change of the output's order, that

$$
\begin{aligned}
{\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{2}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{2}\right)}
\end{array}\right]=} & {\left[\begin{array}{ccc}
I_{\bar{r}_{2}} & O_{\bar{r}_{2} \times\left(r_{2}-\bar{r}_{2}\right)} & O_{\bar{r}_{2} \times\left(m-r_{2}\right)} \\
O_{\left(r_{2}-\bar{r}_{2}\right) \times \bar{r}_{2}} & I_{r_{2}-\bar{r}_{2}} & O_{\left(r_{2}-\bar{r}_{2}\right) \times\left(m-r_{2}\right)} \\
\hat{D}^{2}(x) & O_{\left(m-r_{2}\right) \times\left(r_{2}-\bar{r}_{2}\right)} & O_{\left(m-r_{2}\right) \times\left(m-r_{2}\right)}
\end{array}\right] \mu^{2} } \\
& +\hat{E}^{2}\left(x, z^{1}\right)
\end{aligned}
$$

with static feedback

$$
u^{1}=L^{2}\left(x, z^{1}\right) \mu^{2} \triangleq\left[\tilde{L}^{2}\left(x, z^{1}\right) \bar{L}^{2}\left(x, z^{1}\right)\right]\left[\begin{array}{l}
\tilde{\mu}^{2} \\
\bar{\mu}^{2}
\end{array}\right]
$$

where $\tilde{\mu}^{2} \in \mathbb{R}^{\bar{r}_{2}}, \bar{\mu}^{2} \in \mathbb{R}^{m-\bar{r}_{2}}$, and $\tilde{L}^{2}\left(x, z^{1}\right)$ and $\bar{L}^{2}\left(x, z^{1}\right)$ are $m \times \bar{r}_{2}$ and $m \times(m-$ \bar{r}_{2}) matrices, respectively. Then, with dynamic feedback

$$
\begin{align*}
& u^{1}=L^{2}\left(x, z^{1}\right)\left[\begin{array}{l}
z^{2} \\
\bar{u}^{2}
\end{array}\right]=\tilde{L}^{2}\left(x, z^{1}\right) z^{2}+\hat{L}^{2}\left(x, z^{1}\right) u^{2} \tag{9.30a}\\
& \dot{z}^{2}=\tilde{u}^{2}=\bar{I}_{\bar{r}_{2}} u^{2} \tag{9.30b}
\end{align*}
$$

we have the following extended system:

$$
\Sigma_{2}:\left[\begin{array}{c}
\dot{x} \tag{9.31}\\
\dot{z}^{1} \\
\dot{z}^{2}
\end{array}\right]=\dot{x}_{E}^{2}=F_{E}^{2}\left(x, z^{1}, z^{2}\right)+G_{E}^{2}\left(x, z^{1}, z^{2}\right)\left[\begin{array}{c}
\tilde{u}^{2} \\
\bar{u}^{2}
\end{array}\right]
$$

where $x_{E}^{2} \triangleq\left[\begin{array}{c}x \\ z^{1} \\ z^{2}\end{array}\right], u^{2} \triangleq\left[\begin{array}{c}\tilde{u}^{2} \\ \bar{u}^{2}\end{array}\right], \hat{L}^{2}\left(x, z^{1}\right) \triangleq\left[O \bar{L}^{2}\left(x, z^{1}\right)\right], \bar{I}_{\bar{r}_{2}} \triangleq\left[\begin{array}{ll}I_{\bar{r}_{2}} & O\end{array}\right]$, and

$$
F_{E}^{2}\left(x_{E}^{2}\right)=\left[\begin{array}{c}
F_{E}^{1}\left(x_{E}^{1}\right)+G_{E}^{1}\left(x_{E}^{1}\right) \tilde{L}^{2}\left(x_{E}^{1}\right) z^{2} \\
O
\end{array}\right] ; G_{E}^{2}\left(x_{E}^{2}\right)=\left[\begin{array}{cc}
O & G_{E}^{1}\left(x_{E}^{1}\right) \bar{L}^{2}\left(x_{E}^{1}\right) \\
I_{\bar{r}_{2}} & O
\end{array}\right] .
$$

step $k(\geq 2)$: At step $(k-1)$, we obtained the extended closed-loop system

$$
\begin{equation*}
\Sigma_{k-1}: \dot{x}_{E}^{k-1}=F_{E}^{k-1}\left(x, z^{1}, \cdots, z^{k-1}\right)+G_{E}^{k-1}\left(x, z^{1}, \cdots, z^{k-1}\right) u^{k-1} \tag{9.32}
\end{equation*}
$$

where $x_{E}^{k-1} \triangleq\left[\begin{array}{c}x \\ z^{1} \\ \vdots \\ z^{k-1}\end{array}\right]$ and $u^{k-1} \triangleq\left[\begin{array}{c}\tilde{u}^{k-1} \\ \bar{u}^{k-1}\end{array}\right]$. For system (9.32), we have

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{k}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{k}\right)}
\end{array}\right]=E^{k}\left(x_{E}^{k-1}\right)+D^{k}\left(x_{E}^{k-1}\right) u^{k-1}
$$

where $\left\{\rho_{1}^{k}, \cdots, \rho_{m}^{k}\right\}$ is the relative degree of system (9.32). Assume that

$$
\operatorname{rank}\left(D^{k}\left(x_{E}^{k-1}\right)\right)=r_{k}
$$

If $r_{k}=m$, then system (9.32) is locally input-output decouplable by static feedback, and the algorithm terminates. If $r_{k}<m$, then we can assume, by changing the order of the outputs $y_{r_{k-1}+1}, \cdots, y_{m}$, that the first r_{k} rows of the matrix $D^{k}(x)$ are linearly independent. In other words, we have, without loss of generality, that

$$
\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{k}\right)} \\
\vdots \\
y_{m}^{\left(\rho_{m}^{k}\right)}
\end{array}\right]=E^{k}\left(x_{E}^{k-1}\right)+\left[\begin{array}{c}
\tilde{D}^{k}\left(x_{E}^{k-1}\right) \\
\bar{D}^{k}\left(x_{E}^{k-1}\right)
\end{array}\right] u^{k-1}
$$

where $\operatorname{rank}\left(\tilde{D}^{k}\left(x_{E}^{k-1}\right)\right)=r_{k}$. We can find, by elementary column operations and the output order change, $m \times m$ matrix $L^{k}\left(x_{E}^{k-1}\right)$ such that

$$
\begin{aligned}
& {\left[\begin{array}{l}
\tilde{D}^{k}\left(x_{E}^{k-1}\right) \\
\bar{D}^{k}\left(x_{E}^{k-1}\right)
\end{array}\right] L^{k}\left(x_{E}^{k-1}\right)} \\
& \quad=\left[\begin{array}{ccc}
I_{\bar{r}_{k}} & O_{\bar{r}_{k} \times\left(r_{k}-\bar{r}_{k}\right)} & O_{\bar{r}_{k} \times\left(m-r_{k}\right)} \\
O_{\left(r_{k}-\bar{r}_{k}\right) \times \bar{r}_{k}} & I_{r_{k}-\bar{r}_{k}} & O_{\left(r_{k}-\bar{r}_{k}\right) \times\left(m-r_{k}\right)} \\
\hat{D}^{k}\left(x_{E}^{k-1}\right) & O_{\left(m-r_{k}\right) \times\left(r_{k}-\bar{r}_{k}\right)} & O_{\left(m-r_{k}\right) \times\left(m-r_{k}\right)}
\end{array}\right]
\end{aligned}
$$

and for $1 \leq i \leq \bar{r}_{k}$,

$$
\hat{D}^{k i}\left(x_{E}^{k-1}\right) \neq O_{\left(m-r_{k}\right) \times 1}
$$

where $\hat{D}^{k}\left(x_{E}^{k-1}\right) \triangleq\left[\hat{D}^{k 1}\left(x_{E}^{k-1}\right) \cdots \hat{D}^{k \bar{r}_{k}}\left(x_{E}^{k-1}\right)\right]$. Thus, we have, with the change of the output's order, that

$$
\begin{aligned}
{\left[\begin{array}{c}
y_{1}^{\left(\rho_{1}^{k}\right)} \\
\vdots \\
\vdots \\
y_{m}^{\left(\rho_{m}^{k}\right)}
\end{array}\right]=} & {\left[\begin{array}{ccc}
I_{\bar{r}_{k}} & O_{\bar{r}_{k} \times\left(r_{k}-\bar{r}_{k}\right)} & O_{\bar{r}_{k} \times\left(m-r_{k}\right)} \\
O_{\left(r_{k}-\bar{r}_{k}\right) \times \bar{r}_{k}} & I_{r_{k}-\bar{r}_{k}} & O_{\left(r_{k}-\bar{r}_{k}\right) \times\left(m-r_{k}\right)}^{\hat{D}^{k}\left(x_{E}^{k-1}\right)} \\
O_{\left(m-r_{k}\right) \times\left(r_{k}-\bar{r}_{k}\right)} & O_{\left(m-r_{k}\right) \times\left(m-r_{k}\right.}^{k}
\end{array}\right] \mu^{k} } \\
& +\hat{E}^{k}\left(x_{E}^{k-1}\right)
\end{aligned}
$$

with static feedback

$$
u^{k-1}=L^{k}\left(x_{E}^{k-1}\right) \mu^{k} \triangleq\left[\tilde{L}^{k}\left(x_{E}^{k-1}\right) \bar{L}^{k}\left(x_{E}^{k-1}\right)\right]\left[\begin{array}{c}
\tilde{\mu}^{k} \\
\bar{\mu}^{k}
\end{array}\right]
$$

where $\tilde{\mu}^{k} \in \mathbb{R}^{\bar{r}_{k}}, \bar{\mu}^{k} \in \mathbb{R}^{m-\bar{r}_{k}}$, and $\tilde{L}^{k}\left(x_{E}^{k-1}\right)$ and $\bar{L}^{k}\left(x_{E}^{k-1}\right)$ are $m \times \bar{r}_{k}$ and $m \times(m-$ \bar{r}_{k}) matrices, respectively. Then, with dynamic feedback

$$
\begin{align*}
u^{k-1} & =L^{k}\left(x_{E}^{k-1}\right)\left[\begin{array}{l}
z^{k} \\
\bar{u}^{k}
\end{array}\right]=\tilde{L}^{k}\left(x_{E}^{k-1}\right) z^{k}+\hat{L}^{k}\left(x_{E}^{k-1}\right) u^{k} \tag{9.33a}\\
\dot{z}^{k} & =\tilde{u}^{k}=\bar{I}_{\bar{r}_{k}} u^{k}, \tag{9.33b}
\end{align*}
$$

we have the following extended system:

$$
\left[\begin{array}{c}
\dot{x}_{E}^{k-1} \tag{9.34}\\
\dot{z}^{k}
\end{array}\right]=\dot{x}_{E}^{k}=F_{E}^{k}\left(x_{E}^{k}\right)+G_{E}^{k}\left(x_{E}^{k}\right) u^{k}
$$

where $x_{E}^{k} \triangleq\left[\begin{array}{lll}x^{\top} & \left(z^{1}\right)^{\top} & \cdots \\ \left(z^{k-1}\right)^{\top} & \left(z^{k}\right)^{\top}\end{array}\right]^{\top}=\left[\begin{array}{c}x_{E}^{k-1} \\ z^{k}\end{array}\right], u^{k} \triangleq\left[\begin{array}{l}\tilde{u}^{k} \\ \bar{u}^{k}\end{array}\right], \hat{L}^{k}\left(x_{E}^{k-1}\right) \triangleq$ $\left[O \bar{L}^{k}\left(x_{E}^{k-1}\right)\right], \bar{I}_{\bar{r}_{k}} \triangleq\left[I_{\bar{r}_{k}} O\right]$,

$$
F_{E}^{k}\left(x_{E}^{k}\right)=\left[\begin{array}{c}
F_{E}^{k-1}\left(x_{E}^{k-1}\right)+G_{E}^{k-1}\left(x_{E}^{k-1}\right) \tilde{L}^{k}\left(x_{E}^{k-1}\right) z^{k} \\
O
\end{array}\right.
$$

and

$$
G_{E}^{k}\left(x_{E}^{k}\right)=\left[\begin{array}{ll}
O & G_{E}^{k-1}\left(x_{E}^{k-1}\right) \bar{L}^{k}\left(x_{E}^{k-1}\right) \\
I_{r_{k}} & O
\end{array}\right] .
$$

If the algorithm does not terminate at a finite step, then let step K be the final step such that $r_{1} \leq r_{2} \leq \cdots r_{K-1}<r_{K}=r_{K+1}=r_{K+2}=\cdots$.

The dynamic extension algorithms, which are a little different from the above algorithm, can also be found in [A3, A5] and [G17].

Lemma 9.3 If system (9.1) is locally dynamic input-output decouplable, then the extended system (9.29) (or Σ_{1}) is also locally dynamic input-output decouplable.

Proof Suppose that system (9.1) is locally dynamic input-output decouplable. With static feedback

$$
u=L^{1}(x) \mu^{1} \triangleq\left[\begin{array}{ll}
\tilde{L}^{1}(x) & \bar{L}^{1}(x)
\end{array}\right]\left[\begin{array}{l}
\tilde{\mu}^{1} \\
\bar{\mu}^{1}
\end{array}\right]
$$

in (9.27), we have the following system:

$$
\begin{equation*}
\dot{x}=f(x)+\tilde{g}(x) \tilde{\mu}^{1}+\bar{g}(x) \bar{\mu}^{1} \tag{9.35}
\end{equation*}
$$

where

$$
[\tilde{g}(x) \bar{g}(x)] \triangleq g(x)\left[\tilde{L}^{1}(x) \bar{L}^{1}(x)\right]
$$

Then it is clear that system (9.35) is also locally dynamic input-output decouplable. Thus, there exists a dynamic feedback

$$
\begin{align*}
{\left[\begin{array}{l}
\tilde{\mu}^{1} \\
\bar{\mu}^{1}
\end{array}\right] } & =\left[\begin{array}{l}
\tilde{a}(x, z) \\
\bar{a}(x, z)
\end{array}\right]+\left[\begin{array}{l}
\tilde{b}(x, z) \\
\bar{b}(x, z)
\end{array}\right] v \tag{9.36}\\
\dot{z} & =c(x, z)+d(x, z) v, \quad z \in \mathbb{R}^{d}
\end{align*}
$$

such that

$$
\left[\begin{array}{c}
L_{g_{E}} L_{f_{E}}^{\rho_{1}^{E}-1} h_{1}(x) \tag{9.37}\\
\vdots \\
L_{g_{E}} L_{f_{E}}^{\rho_{m}^{E}-1} h_{m}(x)
\end{array}\right]=I_{m}
$$

where $\left(\rho_{1}^{E}, \cdots, \rho_{m}^{E}\right)$ is the relative degrees of the extended system

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right] } & =\left[\begin{array}{c}
f(x)+\tilde{g}(x) \tilde{a}(x, z)+\bar{g}(x) \bar{a}(x, z) \\
c(x, z)
\end{array}\right]+\left[\begin{array}{c}
\tilde{g}(x) \tilde{b}(x, z)+\bar{g}(x) \bar{b}(x, z) \\
d(x, z)
\end{array}\right] v \\
& =f_{E}(x, z)+g_{E}(x, z) v . \tag{9.38}
\end{align*}
$$

Assume that there exists $i\left(1 \leq i \leq \bar{r}_{1}\right)$ such that $\tilde{b}_{i}(x, z) \neq O_{1 \times m}$. Then it is clear, by (9.26) and (9.37), that $\rho_{i}^{E}=\rho_{i}^{1}$ and

$$
\begin{aligned}
L_{g_{E}} L_{f_{E}}^{\rho_{i}^{1}-1} h_{i}(x) & =L_{\tilde{g} \tilde{b}+\bar{g} \bar{b}} L_{f}^{\rho_{i}^{1}-1} h_{i}(x)=L_{\tilde{g}} L_{f}^{\rho_{i}^{1}-1} h_{i}(x) \tilde{b}(x, z) \\
& =\bar{e}_{i} \tilde{b}(x, z)=\tilde{b}_{i}(x, z)=e_{i}
\end{aligned}
$$

where \bar{e}_{i} and e_{i} are the i-th row of the identity matrix $I_{\bar{r}_{1}}$ and I_{m}, respectively. Since $\hat{D}^{1 i}(x) \neq O_{\left(m-r_{1}\right) \times 1}$ by (9.25), there exists $j\left(r_{1}+1 \leq j \leq m\right)$ such that j-th component of $\hat{D}^{1 i}(x)$ is not zero. Let $\hat{D}_{j}^{1}(x)=\left[\hat{d}_{1}(x) \cdots \hat{d}_{\bar{r}_{1}}(x)\right]$ and $\hat{d}_{i}(x) \neq 0$. Then it is clear, by (9.26) and (9.37), that $\rho_{j+r_{1}}^{E}=\rho_{j+r_{1}}^{1}$ and

$$
\begin{gathered}
L_{g_{E}} L_{f_{E}}^{\rho_{j+r_{1}}^{1}-1} h_{j+r_{1}}(x)=L_{\tilde{g} \tilde{b}+\bar{g} \bar{b}} L_{f}^{\rho_{j+r_{1}}^{1}-1} h_{j+r_{1}}(x)=L_{\tilde{g}} L_{f}^{\rho_{j+r_{1}}^{1}-1} h_{j+r_{1}}(x) \tilde{b}(x, z) \\
\quad=\left[\hat{d}_{1}(x) \cdots \hat{d}_{\bar{r}_{1}}(x)\right] \tilde{b}(x, z)=\sum_{k=1}^{\bar{r}_{1}} \hat{d}_{k}(x) \tilde{b}_{k}(x, z)=e_{j+r_{1}}
\end{gathered}
$$

which implies that $\tilde{b}_{i}(x, z)=O_{1 \times m} .\left(\tilde{b}_{k}(x, z)=O_{1 \times m}\right.$ or $\tilde{b}_{k}(x, z)=e_{k}$ for $1 \leq k \leq$ \bar{r}_{1} and $\hat{d}_{i}(x) \neq 0$.) It contradicts. Thus, there does not exist $i\left(1 \leq i \leq \bar{r}_{1}\right)$ such that $\tilde{b}_{i}(x, z) \neq O_{1 \times m}$. In other words,

$$
\begin{equation*}
\tilde{b}(x, z)=0 \text { or } \tilde{\mu}^{1}=\tilde{a}(x, z) . \tag{9.39}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\operatorname{rank}\left(\left.\frac{\partial \tilde{a}(x, z)}{\partial z}\right|_{z=0}\right)=\bar{r}_{1} . \tag{9.40}
\end{equation*}
$$

Suppose that $\operatorname{rank}\left(\left.\frac{\partial \tilde{a}(x, z)}{\partial z}\right|_{z=0}\right)=\hat{r}_{1}<\bar{r}_{1}$. Then, we can find, by elementary row operations, a $\bar{r}_{1} \times \bar{r}_{1}$ matrix $R(x)=\left[\begin{array}{l}R^{1}(x) \\ R^{2}(x)\end{array}\right]$ such that

$$
\left.\left[\begin{array}{l}
R^{1}(x) \tag{9.41}\\
R^{2}(x)
\end{array}\right] \frac{\partial \tilde{a}(x, z)}{\partial z}\right|_{z=0} \triangleq\left[\left.\begin{array}{c}
\frac{\partial \tilde{a}^{1}(x, z)}{\partial z} \\
\frac{\partial \tilde{a}^{2}(x, z)}{\partial z}
\end{array}\right|_{z=0}\right]=\left[\begin{array}{c}
O_{\left(\tilde{r}_{1}-\hat{r}_{1}\right) \times d} \\
\left.\frac{\partial \tilde{a}^{2}(x, z)}{\partial z}\right|_{z=0}
\end{array}\right]
$$

where $\left[\begin{array}{l}R^{1}(x) \\ R^{2}(x)\end{array}\right] \tilde{a}(x, z) \triangleq\left[\begin{array}{l}\tilde{a}^{1}(x, z) \\ \tilde{a}^{2}(x, z)\end{array}\right]$. Let $R(x) \tilde{\mu}^{1} \triangleq\left[\begin{array}{l}\tilde{\mu}^{11} \\ \tilde{\mu}^{12}\end{array}\right]$ and $\tilde{g}(x) R(x)^{-1} \triangleq$ $\left[\tilde{g}^{1}(x) \tilde{g}^{2}(x)\right]$, where $\tilde{\mu}^{11} \in \mathbb{R}^{\bar{r}_{1}-\hat{r}_{1}}$ and $\tilde{\mu}^{12} \in \mathbb{R}^{\hat{r}_{1}}$. Then, it is clear, by (9.39), that the system

$$
\begin{align*}
\dot{x} & =f(x)+\tilde{g}^{1}(x) \tilde{\mu}^{11}+\tilde{g}^{2}(x) \tilde{\mu}^{12}+\bar{g}(x) \bar{\mu}^{1} \\
& =f(x)+\tilde{g}^{1}(x) \tilde{\mu}^{11}+\hat{g}(x) \hat{\mu} \tag{9.42}
\end{align*}
$$

is also dynamic input-output decouplable with dynamic feedback

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{\mu}^{11} \\
\tilde{\mu}^{12} \\
\bar{\mu}^{1}
\end{array}\right] } & =\left[\begin{array}{c}
\tilde{a}^{1}(x, z) \\
\tilde{a}^{2}(x, z) \\
\bar{a}(x, z)
\end{array}\right]+\left[\begin{array}{c}
O \\
O \\
\bar{b}(x, z)
\end{array}\right] v \\
\dot{z} & =c(x, z)+d(x, z) v
\end{aligned}
$$

where $\hat{\mu} \triangleq\left[\begin{array}{c}\tilde{\mu}^{12} \\ \bar{\mu}^{1}\end{array}\right] \in \mathbb{R}^{m-\left(\bar{r}_{1}-\hat{r}_{1}\right)}$ and $\hat{g}(x) \triangleq\left[\tilde{g}^{2}(x) \bar{g}(x)\right]$. Therefore, it is clear, by Lemma 9.1 and (9.41), that system (9.42) is also dynamic input-output decouplable with dynamic feedback

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{\mu}^{11} \\
\tilde{\mu}^{12} \\
\bar{\mu}^{1}
\end{array}\right] } & =\left[\begin{array}{c}
\tilde{a}^{1}(x, 0) \\
\tilde{a}^{2}(x, 0)+\left.\frac{\partial \tilde{a}^{2}(x, z)}{\partial z}\right|_{z=0} z \\
\bar{a}(x, 0)+\left.\frac{\partial \bar{a}(x, z)}{\partial z}\right|_{z=0} z
\end{array}\right]+\left[\begin{array}{c}
O \\
O \\
\bar{b}(x, 0)
\end{array}\right] v \\
\dot{z} & =c(x, 0)+\left.\frac{\partial c(x, z)}{\partial z}\right|_{z=0} z+d(x, 0) v .
\end{aligned}
$$

In other words, the system

$$
\begin{aligned}
\dot{x} & =f(x)+\tilde{g}^{1}(x) \tilde{a}^{1}(x, 0)+\hat{g}(x) \hat{\mu} \\
& \triangleq \bar{f}(x)+\hat{g}(x) \hat{\mu}
\end{aligned}
$$

is dynamic input-output decouplable with dynamic feedback

$$
\begin{aligned}
\hat{\mu}=\left[\begin{array}{c}
\tilde{\mu}^{12} \\
\bar{\mu}^{1}
\end{array}\right] & =\left[\begin{array}{c}
\tilde{a}^{2}(x, 0)+\left.\frac{\partial \tilde{a}^{2}(x, z)}{\partial z}\right|_{z=0} z \\
\bar{a}(x, 0)+\left.\frac{\partial \bar{a}(x, z)}{\partial z}\right|_{z=0} z
\end{array}\right]+\left[\begin{array}{c}
O \\
O \\
\bar{b}(x, 0)
\end{array}\right] v \\
\dot{z} & =c(x, 0)+\left.\frac{\partial c(x, z)}{\partial z}\right|_{z=0} z+d(x, 0) v
\end{aligned}
$$

It is possible, only if $m-\left(\bar{r}_{1}-\hat{r}_{1}\right)=m$ or $\hat{r}_{1}=\bar{r}_{1}$. Therefore, (9.40) is satisfied and there exists a $\left(d-\bar{r}_{1}\right) \times d$ constant matrix \bar{S}^{0} such that

$$
\operatorname{rank}\left(\left[\frac{\left.\frac{\partial \tilde{a}^{1}(x, z)}{\partial z}\right|_{z=0}}{\bar{S}^{0}}\right]\right)=d
$$

and $\left[\begin{array}{c}x \\ z^{1} \\ \bar{z}\end{array}\right]=S_{E}(x, z) \triangleq\left[\begin{array}{c}x \\ \tilde{a}^{1}(x, z) \\ \bar{S}^{0} z\end{array}\right]$ or $\left[\begin{array}{c}x \\ z\end{array}\right]=S_{E}^{-1}\left(x, z^{1}, \bar{z}\right) \triangleq\left[\begin{array}{c}x \\ S_{z}^{-1}\left(x, z^{1}, \bar{z}\right)\end{array}\right]$ is
an extended state transformation. The extended system (9.38) satisfies, in $\left(x, z^{1}, \bar{z}\right)$ coordinates, the following system:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\dot{z}^{1} \\
\dot{\bar{z}}
\end{array}\right] } & =\left[\begin{array}{c}
f(x)+\tilde{g}^{1}(x) z^{1}+\bar{g}(x) \bar{a}^{1}\left(x, z^{1}, \bar{z}\right) \\
\bar{c}^{11}\left(x, z^{1}, \bar{z}\right) \\
\bar{c}^{12}\left(x, z^{1}, \bar{z}\right)
\end{array}\right]+\left[\begin{array}{c}
\bar{g}(x) \bar{b}^{1}\left(x, z^{1}, \bar{z}\right) \\
\bar{d}^{11}\left(x, z^{1}, \bar{z}\right) \\
\bar{d}^{12}\left(x, z^{1}, \bar{z}\right)
\end{array}\right] v \\
& =\left(S_{E}\right)_{*}\left(f_{E}(x, z)\right)+\left(S_{E}\right)_{*}\left(g_{E}(x, z)\right) v \\
y & =h \circ S_{E}^{-1}\left(x, z^{1}, \bar{z}\right)=h(x)
\end{aligned}
$$

where $\bar{a}^{1}\left(x, z^{1}, \bar{z}\right) \triangleq \bar{a}\left(x, S_{z}^{-1}\left(x, z^{1}, \bar{z}\right)\right), \bar{b}^{1}\left(x, z^{1}, \bar{z}\right) \triangleq \bar{b}\left(x, S_{z}^{-1}\left(x, z^{1}, \bar{z}\right)\right)$, and

$$
\left[\begin{array}{c}
O_{n \times 1} \\
\bar{c}^{11}\left(x, z^{1}, \bar{z}\right) \\
\bar{c}^{12}\left(x, z^{1}, \bar{z}\right)
\end{array}\right] \triangleq\left(S_{E}\right)_{*}\left(\left[\begin{array}{c}
O_{n \times 1} \\
c(x, z)
\end{array}\right]\right) ;\left[\begin{array}{c}
O_{n \times 1} \\
\bar{d}^{11}\left(x, z^{1}, \bar{z}\right) \\
\bar{d}^{12}\left(x, z^{1}, \bar{z}\right)
\end{array}\right] \triangleq\left(S_{E}\right)_{*}\left(\left[\begin{array}{c}
O_{n \times 1} \\
d(x, z)
\end{array}\right]\right) .
$$

In other words, system (9.29) (or Σ_{1}) is locally input-output decouplable with dynamic feedback

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{u}^{1} \\
\bar{u}^{1}
\end{array}\right] } & =\left[\begin{array}{c}
\bar{c}^{11}\left(x, z^{1}, \bar{z}\right) \\
\bar{a}^{1}\left(x, z^{1}, \bar{z}\right)
\end{array}\right]+\left[\begin{array}{c}
\bar{d}^{11}\left(x, z^{1}, \bar{z}\right) \\
\bar{b}^{1}\left(x, z^{1}, \bar{z}\right)
\end{array}\right] v \\
\dot{\bar{z}} & =\bar{c}^{12}\left(x, z^{1}, \bar{z}\right)+\bar{d}^{12}\left(x, z^{1}, \bar{z}\right) w, \bar{z} \in \mathbb{R}^{d-\bar{r}_{1}} .
\end{aligned}
$$

Now, using the dynamic extension algorithm, the necessary and sufficient conditions of the dynamic input-output decoupling problem can be found as follows.

Theorem 9.2 (conditions for the dynamic IO decoupling problem) System (9.1) is locally dynamic input-output decouplable, if and only if the Dynamic Extension Algorithm terminates in a finite step or

$$
\begin{equation*}
\operatorname{rank}\left(D^{K}\left(x_{E}^{K-1}\right)\right) \triangleq r_{K}=m \tag{9.43}
\end{equation*}
$$

where K is the final step of the Dynamic Extension Algorithm for system (9.1).

Proof Necessity. By the Dynamic Extension Algorithm for system (9.1), we have the final extended system

$$
\begin{aligned}
\Sigma_{K-1}: \dot{x}_{E}^{K-1} & =F_{E}^{K-1}\left(x_{E}^{K-1}\right)+G_{E}^{K-1}\left(x_{E}^{K-1}\right) u^{K-1} \\
& =F_{E}^{K-1}\left(x_{E}^{K-1}\right)+G_{E, 1}^{K-1}\left(x_{E}^{K-1}\right) \tilde{u}^{K-1}+G_{E, 2}^{K-1}\left(x_{E}^{K-1}\right) \bar{u}^{K-1}
\end{aligned}
$$

where

$$
x_{E}^{K-1} \triangleq\left[\begin{array}{c}
x \\
z^{1} \\
\vdots \\
z^{K-1}
\end{array}\right] \text { and } u^{K-1} \triangleq\left[\begin{array}{c}
\tilde{u}^{K-1} \\
\bar{u}^{K-1}
\end{array}\right]
$$

Suppose that system (9.1) is locally dynamic input-output decouplable. Then, it is clear, by Lemma 9.3, that the extended system (9.29) is also locally dynamic inputoutput decouplable. By repeated use of Lemma 9.3, it is easy to see that the final extended system Σ_{K-1} is locally dynamic input-output decouplable. If the Dynamic Extension Algorithm terminates in a finite step, then it is clear that (9.43) is satisfied. Suppose that the Dynamic Extension Algorithm does not terminate in a finite step. Then we have that for $i \geq 0$,

$$
L_{G_{E, 2}^{K-1}} L_{F_{E}^{K-1}}^{i} h(x)=0
$$

which implies that the final extended system Σ_{K-1} is not locally dynamic inputoutput decouplable and thus system (9.1) is not locally dynamic input-output decouplable.

Sufficiency. Suppose that the Dynamic Extension Algorithm terminates in a finite step K with (9.43). Then it is easy to see, by (9.28), (9.30), and (9.33), that system Σ_{K-1} is the extended system of system (9.1) with the dynamic feedback

$$
u=\sum_{i=1}^{K-1}\left(\prod_{j=1}^{i-1} \hat{L}^{j}\left(x_{E}^{j-1}\right)\right) \tilde{L}^{i}\left(x_{E}^{j-1}\right) z^{i}+\left(\prod_{j=1}^{K-1} \hat{L}^{j}\left(x_{E}^{j-1}\right)\right) u^{K-1}
$$

and

$$
\left[\begin{array}{c}
\dot{z}^{1} \\
\vdots \\
\dot{z}^{K-2} \\
\dot{z}^{K-1}
\end{array}\right]=\left[\begin{array}{c}
\bar{I}_{\bar{r}_{1}}\left\{\tilde{L}^{2} z^{2}+\cdots+\hat{L}^{2} \cdots \hat{L}^{K-2} \tilde{L}^{K-1} z^{K-1}+\left(\prod_{j=2}^{K-1} \hat{L}^{j}\right) u^{K-1}\right\} \\
\vdots \\
\bar{I}_{\bar{r}_{K-2}}\left\{\tilde{L}^{K-1} z^{K-1}+\hat{L}^{K-1} u^{K-1}\right\} \\
\bar{I}_{\bar{r}_{K-1}} u^{K-1}
\end{array}\right]
$$

Since the decoupling matrix of extended system Σ_{K-1} is nonsingular, extended system Σ_{K-1} is locally static input-output decouplable. Hence, system (9.1) is locally dynamic input-output decouplable.

Example 9.3.1 Show that the following nonlinear system is locally dynamic inputoutput decouplable:

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
0 \\
x_{6} \\
x_{7} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
x_{4} \\
0 \\
1 \\
0 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
1 \\
x_{4} \\
1 \\
1 \\
0 \\
0
\end{array}\right] u_{2}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] u_{3} \tag{9.44}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{5}
\end{array}\right]=h(x) .}
\end{align*}
$$

Solution step 1: By simple calculations, we have relative degree $\left(\rho_{1}^{1}, \rho_{2}^{1}, \rho_{3}^{1}\right)=$ $(2,1,1)$ and

$$
\left[\begin{array}{l}
y_{1}^{(2)} \\
y_{2}^{(1)} \\
y_{3}^{(1)}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{6}
\end{array}\right]+\left[\begin{array}{ccc}
1 & 1 & 0 \\
x_{4} & x_{4} & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=E^{1}(x)+D^{1}(x) u
$$

where $r_{1} \triangleq \operatorname{rank}\left(D^{1}(x)\right)=1$. It is easy, by elementary column operations, to find $m \times m$ matrix $L^{1}(x)$ such that

$$
D^{1}(x) L^{1}(x)=\left[\begin{array}{ccc}
1 & 1 & 0 \\
x_{4} & x_{4} & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{4} & 0 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

Therefore, with

$$
\begin{align*}
& u=L^{1}(x)\left[\begin{array}{l}
z_{1}^{1} \\
u_{2}^{1} \\
u_{3}^{1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1}^{1} \\
u_{2}^{1} \\
u_{3}^{1}
\end{array}\right] \tag{9.45}\\
& \dot{z}_{1}^{1}=u_{1}^{1},
\end{align*}
$$

we have the following extended system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{9.46}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6} \\
\dot{x}_{7} \\
\dot{z}_{1}^{1}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3}+z_{1}^{1} \\
x_{4}\left(1+z_{1}^{1}\right) \\
0 \\
x_{6}+z_{1}^{1} \\
x_{7} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] u^{1}
$$

where $u^{1} \triangleq\left[\begin{array}{l}\tilde{u}^{1} \\ \bar{u}^{1}\end{array}\right], \tilde{u}^{1} \triangleq u_{1}^{1}$, and $\bar{u}^{1} \triangleq\left[\begin{array}{l}u_{2}^{1} \\ u_{3}^{1}\end{array}\right]$.
step 2: For system (9.46), we have relative degree $\left(\rho_{1}^{2}, \rho_{2}^{2}, \rho_{3}^{2}\right)=(3,2,2)$ and

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{1}^{(3)} \\
y_{2}^{(2)} \\
y_{3}^{(2)}
\end{array}\right] } & =\left[\begin{array}{c}
x_{4}\left(1+z_{1}^{1}\right) \\
0 \\
x_{7}
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{4} & 1+z_{1}^{1} & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1}^{1} \\
u_{2}^{1} \\
u_{3}^{1}
\end{array}\right] \\
& =E^{2}\left(x, z_{1}^{1}\right)+D^{2}\left(x, z_{1}^{1}\right)\left[\begin{array}{c}
\tilde{u}^{1} \\
\bar{u}^{1}
\end{array}\right]
\end{aligned}
$$

where $r_{2} \triangleq \operatorname{rank}\left(D^{2}(x)\right)=2$. It is easy, by elementary column operations, to find $m \times m$ matrix $L^{2}(x)$ such that

$$
D^{2}(x) L^{2}(x)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{4} & 1+z_{1}^{1} & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{-x_{4}}{1+z_{1}^{1}} & \frac{1}{1+z_{1}^{1}} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

Therefore, with dynamic feedback

$$
\begin{aligned}
& u^{1}=L^{2}(x)\left[\begin{array}{l}
z_{1}^{2} \\
z_{2}^{2} \\
u_{3}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{-x_{4}}{1+z_{1}^{1}} \frac{1}{1+z_{1}^{1}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1}^{2} \\
u_{2}^{2} \\
u_{3}^{2}
\end{array}\right] \\
& \dot{z}_{1}^{2}=u_{1}^{2},
\end{aligned}
$$

we have the following extended system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{9.48}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6} \\
\dot{x}_{7} \\
\dot{z}_{1}^{1} \\
\dot{z}_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3}+z_{1}^{1} \\
x_{4}\left(1+z_{1}^{1}\right) \\
\frac{-x_{4} z_{1}^{2}}{1+z_{1}^{1}} \\
x_{6}+z_{1}^{1} \\
x_{7} \\
0 \\
z_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \frac{1}{1+z_{1}^{1}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] u^{2}
$$

where $u^{2} \triangleq\left[\begin{array}{l}\tilde{u}^{2} \\ \bar{u}^{2}\end{array}\right], \tilde{u}^{2} \triangleq u_{1}^{2}$, and $\bar{u}^{2} \triangleq\left[\begin{array}{l}u_{2}^{2} \\ u_{3}^{2}\end{array}\right]$.
step 3: For system (9.48), we have relative degree $\left(\rho_{1}^{3}, \rho_{2}^{3}, \rho_{3}^{3}\right)=(4,2,3)$ and

$$
\left[\begin{array}{l}
y_{1}^{(4)} \\
y_{2}^{(2)} \\
y_{3}^{(3)}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1}^{2} \\
u_{2}^{2} \\
u_{3}^{2}
\end{array}\right]
$$

where $r_{3} \triangleq \operatorname{rank}\left(D^{3}(x)\right)=3$. Since $r_{3}=3$, then the Dynamic Extension Algorithm terminates at step 3 and thus system (9.48) is input-output decouplable by static feedback

$$
\left[\begin{array}{l}
u_{1}^{2} \tag{9.49}\\
u_{2}^{2} \\
u_{3}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] .
$$

It is easy to see, by (9.45), (9.47), (9.48), and (9.49), that

$$
\left[\begin{array}{l}
u_{1} \tag{9.50}\\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
z_{1}^{1}+\frac{x_{4} z_{1}^{2}}{1+z_{1}^{1}} \\
\frac{-x_{4} z_{1}^{2}}{1+z_{1}^{1}} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & \frac{-1}{1+z_{1}^{1}} & 0 \\
0 & \frac{1}{1+z_{1}^{1}} & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
\dot{z}_{1}^{1} \tag{9.51}\\
\dot{z}_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
z_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

In other words, the extended system

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6} \\
\dot{x}_{7} \\
\dot{z}_{1}^{1} \\
\dot{z}_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3}+z_{1}^{1} \\
x_{4}\left(1+z_{1}^{1}\right) \\
\frac{-x_{4} z_{1}^{1}}{1+z_{1}^{1}} \\
x_{6}+z_{1}^{1} \\
x_{7} \\
0 \\
z_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \frac{1}{1+z_{1}^{1}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right] v
$$

of system (9.44) with dynamic feedback (9.50) and (9.51) has the following inputoutput decoupled relation:

$$
\left[\begin{array}{l}
y_{1}^{(4)} \\
y_{2}^{(2)} \\
y_{3}^{(3)}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

Example 9.3.2 Show that the following nonlinear system is not locally dynamic input-output decouplable:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{3}^{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] u_{1}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u_{2}} \tag{9.52}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=h(x)}
\end{align*}
$$

Solution step 1: By simple calculations, we have relative degree $\left(\rho_{1}^{1}, \rho_{2}^{1}\right)=(1,1)$ and

$$
\left[\begin{array}{l}
y_{1}^{(1)} \\
y_{2}^{(1)}
\end{array}\right]=\left[\begin{array}{c}
x_{3}^{2} \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=E^{1}(x)+D^{1}(x) u
$$

where $r_{1} \triangleq \operatorname{rank}\left(D^{1}(x)\right)=1$. It is easy, by elementary column operations, to find $m \times m$ matrix $L^{1}(x)$ such that

$$
D^{1}(x) L^{1}(x)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

Therefore, with

$$
\begin{aligned}
u & =L^{1}(x)\left[\begin{array}{l}
z_{1}^{1} \\
u_{2}^{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1}^{1} \\
u_{2}^{1}
\end{array}\right] \\
\dot{z}_{1}^{1} & =u_{1}^{1},
\end{aligned}
$$

we have the following extended system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{9.53}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{z}_{1}^{1}
\end{array}\right]=\left[\begin{array}{c}
x_{3}^{2}+z_{1}^{1} \\
z_{1}^{1} \\
z_{1}^{1} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & -1 \\
0 & 0 \\
1 & 0
\end{array}\right] u^{1}
$$

where $u^{1} \triangleq\left[\begin{array}{l}\tilde{u}^{1} \\ \bar{u}^{1}\end{array}\right], \tilde{u}^{1} \triangleq u_{1}^{1}$, and $\bar{u}^{1} \triangleq u_{2}^{1}$.
step 2: For system (9.53), we have relative degree $\left(\rho_{1}^{2}, \rho_{2}^{2}\right)=(2,2)$ and

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{1}^{(2)} \\
y_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{c}
2 x_{3} z_{1}^{1} \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1}^{1} \\
u_{2}^{1}
\end{array}\right] \\
& =E^{2}\left(x, z_{1}^{1}\right)+D^{2}\left(x, z_{1}^{1}\right)\left[\begin{array}{c}
\tilde{u}^{1} \\
\bar{u}^{1}
\end{array}\right]
\end{aligned}
$$

where $r_{2} \triangleq \operatorname{rank}\left(D^{2}(x)\right)=1$. It is easy, by elementary column operations, to find $m \times m$ matrix $L^{2}(x)$ such that

$$
D^{2}(x) L^{2}(x)=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

Therefore, with dynamic feedback

$$
\begin{aligned}
& u^{1}=L^{2}(x)\left[\begin{array}{l}
z_{1}^{2} \\
u_{2}^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1}^{2} \\
u_{2}^{2}
\end{array}\right] \\
& \dot{z}_{1}^{2}=u_{1}^{2}
\end{aligned}
$$

we have the following extended system:

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{z}_{1}^{1} \\
\dot{z}_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
x_{3}^{2}+z_{1}^{1} \\
z_{1}^{1} \\
z_{1}^{1} \\
z_{1}^{2} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & -1 \\
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right] u^{2}
$$

where $u^{2} \triangleq\left[\begin{array}{l}\tilde{u}^{2} \\ \bar{u}^{2}\end{array}\right], \tilde{u}^{2} \triangleq u_{1}^{2}$, and $\bar{u}^{2} \triangleq u_{2}^{2}$. In this manner, it is easy to see that the Dynamic Extension Algorithm does not terminate at the final step with $r_{1}=r_{2}=$ $r_{3}=\cdots$. Thus, we have the final step $K=1$ and $r_{K}=\operatorname{rank}\left(D^{1}(x)\right)=1 \neq m$. Hence, by Theorem 9.2, system (9.52) is not dynamic input-output decouplable.

9.4 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
CharacterNum, ChZero, Decoupling-M, Lfh, Lfhk,
RelativeDegree, Yreorder
MATLAB program for Theorem 9.1:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
f=[x2; x3; x4; 0]; g=[0 0; 1 x4; 0 0; 0 1+x3];
h=[x1; x3]; %Ex:9.2.1
% f=[x2; x3; x4; 0];
% g=[0 0; 1 0; x4 0; 0 1+x3]; h=[x1; x3]; %Ex:9.2.2
% f=[x2; x3; x4; 0];
% g=[0 0; 1 1; x4 x4; 0 1+x3]; h=[x1; x3]; %Ex:9.2.3
% g=[0 0 0; 1 1 0; x4 x4 0; 0 1 0; 1 1 0; 0 0 0; 0 0 1];
% f=[x2; x3; x4; 0; x6; x7; 0]; h=[x1; x3; x5]; %Ex:9.3.1
% f=[x3^2; 0; 0]; g=[1 1; 1 x1-x1; 1 1];
% h=[x1; x3]; %Ex:9.3.2
% f=[x2; 0; x1^2]; g=[0 0; 1 1; 0 1+x2^2];
% h=[x1; x3]; %P:9-2(a)
% f=[x2; 0; x1^2]; g=[0 0; 1 1; 0 1+x2^2];
%h=[x1+x3^2; x3]; %P:9-2(b)
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]);
if length(h) ~}=
    return
end
rho=RelativeDegree(f,g,h,x)
[E,D]=Decoupling_M(f,g,h,x,rho)
```

```
if rank(D)<m
    display('By Thm 9.1, NOT locally static decoupable.')
    return
end
display('By Thm 9.1, locally static decoupable with')
beta=simplify(inv(D))
alpha=simplify(-beta*E)
return
```

The following is a MATLAB subfunction program for Theorem 9.2. (Refer to Lemma 9.2.)

```
function [R,L,br]=Dcolumn(D)
m=size(D,2); u=sym('u',[m,1]);
L0=jacobian(u,u); L1=L0; bL=L0;
R0=RowReorder (D) ;
D=R0*D;
r=rank(D);
L0trans=RowReorder (D');
L0=L0trans';
tD=D*L0;
L1(1:r,1:r)=simplify(inv(tD(1:r,1:r)));
L1(1:r,(r+1):m)=-L1(1:r,1:r)*tD(1:r,(r+1):m);
L=simplify(L0*L1);
tD=D*L;
t1=bL(:,1)-bL(:,1); t2=t1;
for k1=1:r
    if ChZero(tD(r+1:m,k1))==0
            t1=[t1 bL(:,k1)];
    else
        t2=[t2 bL(:,k1)];
    end
end
br=size(t1,2)-1;
bL(:,1:r)=[t1(:,2:br+1) t2(:,2:r-br+1)];
L=L*bL;
R=bL'*R0;
```

The following is a MATLAB subfunction program for Theorem 9.2.

```
function [flag,L,br,R,he,fe,ge,xe]=DEAstep(k, f,g,h,x)
flag=0; [n,m]=size(g);
z=Sym('z',[n,n]); u=sym('u',[m,1]);
rho=RelativeDegree(f,g,h,x);
[E,D]=Decoupling_M(f,g,h,x,rho);
if rank(D)==m
    R=jacobian(u,u); L=R;
    br=0; flag=1;
    he=h; fe=f; ge=g, xe=x;
    return
end
[R,L,br] = Dcolumn (D,x)
tL=L(:,1:br);
bL=L (:,br+1:m);
he=R*h;
zz=z(1:br,k);
xe=[x; zz];
fe=[f+g*tL*zz; zz-zz];
teye=jacobian(xe,xe);
G11=teye(1:n,1:br)-teye(1:n,1:br);
G12=g*bL;
G21=teye(1:br,1:br);
G22=teye(1:br,1:m-br) -teye(1:br,1:m-br);
ge=[G11 G12; G21 G22];
```

The following is a MATLAB subfunction program for Theorem 9.2.

```
function [Kf,LL,Br,R,he,fe,ge,xe]=DEA(f,g,h,x)
[n,m]=size(g); u=sym('u',[m,1]);
R=jacobian(u,u); LL=R;
for k=1:n+1
    Kf=k
    [flag,L,br,R1,h,f,g,x]=DEAstep(k,f,g,h,x);
    R=R1*R;
    fe=f; ge=g; he=h; xe=x;
    LL=[LL L]
    Br}(k)=br
    if flag==1
        return
    end
end
```

MATLAB program for Theorem 9.2:

```
clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
% f=[x2; x3; x4; 0]; g=[0 0; 1 x4; 0 0; 0 1+x3];
%h=[x1; x3]; %Ex:9.2.1
% f=[x2; x3; x4; 0];
% g=[ 0 0; 1 0; x4 0; 0 1+x3]; h=[x1; x3]; %Ex:9.2.2
% f=[x2; x3; x4; 0];
% g=[ 0 0; 1 1; x4 x4; 0 1+x3]; h=[x1; x3]; %Ex:9.2.3
f=[x2; x3; x4; 0; x6; x7; 0];
g=[ 0 0 0; 1 1 0; x4 x4 0; 0 1 0; 1 1 0; 0 0 0; 0 0 1];
h=[x1; x3; x5]; %Ex:9.3.1
%h=[x5; x1; x3];
% f=[x3^2; 0; 0]; g=[1 1; 1 x1-x1; 1 1];
%h=[x1; x3]; %Ex:9.3.2
% f=[x2; 0; x1^2]; g=[0 0; 1 1; 0 1+x2^2];
% h=[x1+x3^2; x3]; %P:9-2(b)
% f=[0; 0; x3]; g=[1 1; 1 x1-x1; 1 1];
% h=[x1; x3]; %P:9-2(c)
% g=[x1-x1 0 0; 1 0 0; 0 0 0; 0 1 0; 1 0 0; 0 1 0; 0 0 1];
% f=[x2; x3; x4; 0; x6; x7; 0]; h=[x1; x3; x5]; %P:9-2(d)
% g=[1 x1 x1; 1 x1 x1; 0 1 x1; 1 x1 x1; 0 1 x1; 0 0 1];
% f=[0; x3; 0; x5; x6; x1^2]; h=[x1; x2; x4]; %P:9-2(e)
f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym('x',[n,1]); u=sym('u',[m,1]);
w=sym('w',[m,1]); v=sym('v',[m,1]); z=\operatorname{sym('z',[n,n]);}
rho=RelativeDegree(f,g,h,x)
[E1,D1]=Decoupling_M(f,g,h,x,rho)
if rank(D1)==m
    display('System is static decoupable with.')
    u=inv(D1)*(-E1+v)
    return
end
[Kf,LL,Br,R,he,fe,ge,xe]=DEA(f,g,h,x)
display('DEA terminates at')
STEP=Kf
```

```
if Kf > n
    display('By Thm 9.2, NOT locally dynamic decoupable.')
    return
end
display('By Thm 9.2, locally dynamic decoupable.')
Im=jacobian(u,u); Zerom=Im-Im;
LL=LL(:,m+1:length(LL));
aa=LL(:,1:Br(1))*z(1:Br(1),1);
bu=[Zerom(:,1:Br(1)) LL(:,Br(1)+1:m)]*u;
abu=aa+bu;
for k=2:Kf-1
    taa=LL(:, (k-1)*m+1:(k-1)*m+Br(k))*z(1:Br(k),k);
    tbu=[\operatorname{Zerom(:, 1:Br(k)) LL(:, (k-1)*m+Br(k) +1:k*m)]*u;}
    tabu=taa+tbu;
    abu=simplify(subs(abu,u,tabu));
end
abw=simplify(subs(abu,u,w));
fegew=fe+ge*w;
cdw=fegew(n+1:length(fegew));
rhoE=RelativeDegree(fe,ge,he,xe)
[E,D] =Decoupling_M(fe,ge,he,xe,rhoE)
W=simplify(inv(D)* (v-E))
fegev=fe+ge*W;
Ge=jacobian(fegev,v)
Fe=simplify(subs(fegev,v,v-v))
abv=subs (abw,w,W);
cdv=fegev(n+1:length(fegev));
aa=simplify(subs(abv,v,v-v))
bb=jacobian(abv,v)
cc=simplify(subs(cdv,v,v-v))
dd=jacobian(cdv,v)
rhoE=RelativeDegree(Fe,Ge,he,xe)
[Ee,De]=Decoupling_M(Fe,Ge,he,xe,rhoE)
return
```


9.5 Problems

9-1. Find out whether the following nonlinear systems are locally input-output decouplable by static feedback. If static input-output decoupling is not possible, then find out whether it is locally input-output decouplable by dynamic feedback.
(a)

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
0 \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] u_{1}+\left[\begin{array}{c}
0 \\
1 \\
1+x_{2}^{2}
\end{array}\right] u_{2} ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right] .
$$

(b)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
0 \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & 1 \\
0 & 1+x_{2}^{2}
\end{array}\right] u ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{3}^{2} \\
x_{3}
\end{array}\right] .
$$

(c)

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] x+\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right] u ; \quad y=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] x .
$$

(d)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6} \\
\dot{x}_{7}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
0 \\
x_{6} \\
x_{7} \\
0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] ;\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{5}
\end{array}\right]=h(x) .
$$

(e)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{c}
0 \\
x_{3} \\
0 \\
x_{5} \\
x_{6} \\
x_{1}^{2}
\end{array}\right]+\left[\begin{array}{ccc}
1 & x_{1} & x_{1} \\
1 & x_{1} & x_{1} \\
0 & 1 & x_{1} \\
1 & x_{1} & x_{1} \\
0 & 1 & x_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] ; \quad\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right]=h(x) .
$$

9-2. For continuous nonlinear control systems, define the local input-output decoupling problem by restricted dynamic feedback, and find the necessary and sufficient conditions for this problem by defining the corresponding dynamic extension algorithm.
9-3. For the discrete time nonlinear control systems, define the static and dynamic input-output decoupling problems. In other words, find the discrete versions of Definitions 9.2 and 9.3.
9-4. Find out a nonsingular feedback for the input-output decoupling of the following nonlinear discrete time system.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t) \\
x_{1}(t)^{2}+u_{1}(t)+u_{2}(t)^{2} \\
x_{3}(t)^{2}+u_{2}(t)
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
x_{1}(t) \\
x_{3}(t)
\end{array}\right] .}
\end{aligned}
$$

9-5. Find out the necessary and sufficient conditions for local static input-output decoupling problems of the discrete time nonlinear control systems. In other words, obtain the discrete version of Theorem 9.1.
9-6. Find out the discrete version of Theorem 9.2.
9-7. Find out the discrete version of Problem 9.2.

Appendix A Basics of Topology

A. 1 Topology of Real Numbers

Definition A. 1 (open interval, neighborhood, open set, limit point, closure, and closed set)
(a) Open interval (a, b) is the set $\{x \in \mathbb{R} \mid a<x<b\}$.
(b) A neighborhood of point $p \in \mathbb{R}$ is an open interval U such that $p \in U$.
(c) A set $E(\subset \mathbb{R})$ is said to be open, if, for every point $p \in E$, there exists a neighborhood $U \subset E$ of p.
(d) A point p is said to be a limit point of set E, if every neighborhood U of p contains at least one point of E different from p itself.
(e) $\bar{E}\left(\triangleq E \cup E^{\prime}\right)$ is said to be the closure of set E, where E^{\prime} is the set of all limit points of E.
(f) A set $E(\subset \mathbb{R})$ is said to be closed, if every limit point of E belongs to E or $\bar{E}=E$.

Example A.1.1 (a) $E=(0,2)$ is an open set. But, E is not a closed set.
(b) $E=[0,2] \triangleq\{x \in \mathbb{R} \mid 0 \leq x \leq 2\}$ is a closed set. But, E is not an open set.
(c) $E=(0,1] \triangleq\{x \in \mathbb{R} \mid 0<x \leq 1\}$ is neither open nor closed.
(d) $E=\mathbb{R}$ is both open and closed.
(e) $E=\phi$ is both open and closed.

As shown in the example above, open and closed sets are not the opposite. In other words, it should not be considered a closed set unless it is an open set.

Example A.1.2 Prove the following:
(a) If the set E is a closed set, the complement E^{c} is an open set and vice versa.
(b) If $\left\{G_{\alpha} \mid \alpha \in A\right\}$ is a collection of open sets, then $\bigcup_{\alpha \in A} G_{\alpha}$ is also an open set.
(c) If $\left\{G_{1}, \cdots, G_{n}\right\}$ is a finite collection of open sets, then $\bigcap_{i=1}^{n} G_{i}$ is also an open set.

The union of infinite open sets is an open set. However, the intersection of infinite open sets may not be an open set. See the following example.

Example A.1.3 Show that $\bigcap_{\ell=1}^{n}\left(0,1+\frac{1}{\ell}\right)$ is an open set. Also, show that $\bigcap_{\ell=1}^{\infty}\left(0,1+\frac{1}{\ell}\right)$ is not an open set.

A. 2 General Topology

Definition A. 2 (topological space)
A topological space is an ordered pair (X, τ), where X is a set and τ is a collection of subsets of X, satisfying the following axioms:
(i) $\phi, X \in \tau$.
(ii) (closed under arbitrary union)

$$
A_{\lambda} \in \tau \text { for } \lambda \in \Lambda \Rightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau
$$

(iii) (closed under finite intersection)

$$
A, B \in \tau \Rightarrow A \cap B \in \tau
$$

Example A.2.1 (indiscrete topology)
For some set X, let $\tau=\{\phi, X\}$. Prove that (X, τ) is a topological space.
Example A.2.2 (discrete topology)
For some set X, let τ be the collection of all subsets of X. Prove that (X, τ) is a topological space.

Example A.2.3 Let $X=\{1,2,3\}$.
(a) Prove that (X, τ) is a topological space when $\tau=\{\phi,\{1\},\{2,3\}, X\}$.
(b) Prove that (X, τ) is not a topological space when $\tau=\{\phi,\{1,2\},\{2,3\}, X\}$.

Definition A. 3 (coarser topology and finer topology)
Let τ_{1} and τ_{2} be two topologies on a set X such that $\tau_{1} \subset \tau_{2}$.
(a) τ_{1} is said to be a coarser (or weaker) topology than τ_{2}.
(b) τ_{2} is said to be a finer (or stronger) topology than τ_{1}.

The coarsest topology on X is the indiscrete topology in Example A.2.1. The finest topology on X is the discrete topology in Example A.2.2.

Definition A. 4 (open set)

Let (X, τ) be a topological space. A is said to be an open set, if $A \in \tau$.
Definition A. 5 (closed set)
Let (X, τ) be a topological space. A is said to be a closed set, if $X-A \in \tau$. In other words, A is said to be a closed set, if the complement of A is an open set.

Definition A. 6 (Hausdorff topological space)
(X, τ) is said to be a Hausdorff topological space, if, for all $x_{1} \in X$ and $x_{2} \in X\left(x_{1} \neq\right.$ x_{2}), there exist open sets U_{1} and U_{2} such that $x_{1} \in U_{1}, x_{2} \in U_{2}$, and $U_{1} \cap U_{2}=\phi$.

Definition A. 7 (basis)
A basis B for a topological space (X, τ) is a collection of open sets such that every open set can be written as a union of elements of B.

For example, the collection of all open intervals in the real line forms a basis for the usual (or standard) topology on the real numbers. However, a basis is not unique. For example, the collection of all open intervals with rational endpoints is also a basis for the usual real topology.

Definition A. 8 (countable set)

Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of the natural numbers. A set X is said to be countable, if there exists an injective (or $1-1$) function $f: X \rightarrow \mathbb{N} . X$ is said to be an uncountable set, if X is not countable.

Example A.2.4 (a) Show that $X=\{a, b, c\}$ is countable.
(b) Show that \mathbb{Z}, the set of all integers, is countable.
(c) Show that \mathbb{Q}, the set of all rational numbers, is countable.
(d) Show that \mathbb{R}, the set of all real numbers, is uncountable.

Definition A. 9 (second countable)

A topological space (X, τ) is said to be second countable, if τ has a countable basis.
Definition A. 10 (closure, interior, boundary, and dense subset)
Let $A \subset X$, where (X, τ) is a topological space.
(a) \bar{A}, the closure of A, is defined by the intersection of all closed subsets containing A.
(b) $\operatorname{Int}(A)$, the interior of A, is defined by the union of all open sets contained in A.
(c) ∂A, the boundary of A, is defined by $\partial A=\bar{A}-\operatorname{Int}(A)$.
(d) A is said to be a dense subset of X, if $\bar{A}=X$.

Definition A. 11 (neighborhood)

Let (X, τ) be a topological space. A set U is said to be a neighborhood of $x(\in X)$, if $x \in U$ and $U \in \tau$. In other words, a neighborhood of $x(\in X)$ is an open set U such that $x \in U$.

Let (X, τ) and (Y, σ) be topological spaces. Suppose that $f: X \rightarrow Y$ is a function. We define that for a subset B of Y,

$$
f^{-1}(B) \triangleq\{x \in X \mid f(x) \in B\}
$$

Note that $f^{-1}(B) \subset X$.
Example A.2.5 Show the following:
(a) $f^{-1}\left(\bigcup_{\alpha \in A} B_{\alpha}\right)=\bigcup_{\alpha \in A} f^{-1}\left(B_{\alpha}\right)$.
(b) $f^{-1}\left(\bigcap_{\alpha \in A} B_{\alpha}\right)=\bigcap_{\alpha \in A} f^{-1}\left(B_{\alpha}\right)$.
(c) $f^{-1}(Y-B)=X-f^{-1}(B)$.
(d) $f\left(\bigcup_{\alpha \in A} A_{\alpha}\right)=\bigcup_{\alpha \in A} f\left(A_{\alpha}\right)$.
(e) $f\left(\bigcap_{\alpha \in A} A_{\alpha}\right) \subset \bigcap_{\alpha \in A} f\left(A_{\alpha}\right)$.

Definition A. 12 (continuous function)
Let (X, τ) and (Y, σ) be topological spaces. Suppose that $f: X \rightarrow Y$ is a function.
(a) f is said to be continuous at point x_{0}, if, for every neighborhood V of $f\left(x_{0}\right)$, there exists a neighborhood U of $x_{0}(\in X)$ such that $f(U) \subset V$.
(b) f is said to be continuous, if $f^{-1}(V) \in \tau$ for all $V \in \sigma$.

Definition A. 13 (metric)
A metric (or distance function) on a set X is a function $d: X \times X \rightarrow[0, \infty)$ satisfying the following axioms:
(a) $d(x, y)=d(y, x), \forall x, y \in X$.
(b) $x=y \Leftrightarrow d(x, y)=0$.
(c) $d(x, z) \leq d(x, y)+d(y, z), \forall x, y, z \in X$.

Definition A. 14 (metric space)
A metric space is an ordered pair (X, d) where M is a set and d is a metric on X.
The topology of \mathbb{R}, described in Appendix A.1, can be simply defined as follows.

Definition A. 15 (usual topology of \mathbb{R})

If τ, the usual topology of \mathbb{R}, is defined by the collection of arbitrary union of open intervals, then (\mathbb{R}, τ) is a topological space.

For the metric space $\left(\mathbb{R}^{n}, d\right)$, the open ball $B_{q}(x)$ with the center x and the radius q is defined by

$$
B_{q}(x) \triangleq\left\{y \in \mathbb{R}^{n} \mid d(x, y)<q\right\} .
$$

Example A.2.6 Let $B=\left\{B_{q}(x) \mid x \in \mathbb{Q}\right.$ and $\left.q \in \mathbb{Q}\right\}$ where \mathbb{Q} is the set of all rational numbers. Show that B is a countable basis for the usual topological space (\mathbb{R}, τ). Thus, the usual topological space (\mathbb{R}, τ) is second countable.

Definition A. 16 (product topology)
Suppose that (S_{1}, τ_{1}) and (S_{2}, τ_{2}) are topological spaces. For the Cartesian product $S_{1} \times S_{2}$, the product topology τ is defined by

$$
\tau=\left\{U_{1} \times U_{2} \mid U_{1} \in \tau_{1} \& U_{2} \in \tau_{2}\right\}
$$

Definition A. 17 (usual topology of \mathbb{R}^{n})
Suppose that B is a basis for the topological space $\left(\mathbb{R}^{n}, \tau\right)$, where B is the collection of all open balls of \mathbb{R}^{n}. τ is said to be the usual topology of \mathbb{R}^{n}.

Definition A. 18 (subset topology)
Suppose that (S, τ) is a topological space and $S_{1} \subset S$. If we define subset topology τ_{1} by

$$
\tau_{1}=\left\{U \cap S_{1} \mid U \in \tau\right\},
$$

then $\left(S_{1}, \tau_{1}\right)$ is also a topological space.
Usually, we use the subset topology when we define the topology for a subset of some topological space. If a function from a topological space to another topological space is defined, it may be used to define the following topological space.

Definition A. 19 (induced topology)
Suppose that $F: S_{1} \rightarrow S_{2}$ is a continuous function, where $\left(S_{1}, \tau_{1}\right)$ and $\left(S_{2}, \tau_{2}\right)$ are topological spaces. If we define induced topology τ by

$$
\tau=\left\{F(U) \mid U \in \tau_{1}\right\}
$$

then $\left(F\left(S_{1}\right), \tau\right)$ is also a topological space.
From the above definitions, it can be seen that two different topologies (subset topology and induced topology) can be defined for $F\left(S_{1}\right)\left(\subset S_{2}\right)$ as needed.

Appendix B
 Manifold and Vector Field

B. 1 Manifold

Definition B. 1 (topological manifold)

A topological space (M, τ) is said to be an n-dimensional topological manifold, if the following conditions are satisfied:
(i) (M, τ) is Hausdorff.
(ii) (M, τ) is second countable.
(iii) For every $x(\in M)$, there exists a neighborhood U of x such that U is homeomorphic to an open set of \mathbb{R}^{n}.

In other words, an n-dimensional topological manifold is a locally second countable Hausdorff Euclidean space \mathbb{R}^{n}. An n-dimensional topological manifold is locally homeomorphic to an open set of \mathbb{R}^{n}, even though the universal set M may not be homeomorphic to an open set of \mathbb{R}^{n}.

Example B.1. 1 Show that the unit circle is a one-dimensional topological manifold.

Example B.1.2 Show that a sphere is a two-dimensional topological manifold.
Example B.1.3 Let τ be the usual topology of \mathbb{R}^{n}. Suppose that M is open subset of \mathbb{R}^{n}. Show that $\left(M, \tau_{1}\right)$ is an n-dimensional topological manifold where τ_{1} is the subset topology.

Let (M, τ) be an n-dimensional topological manifold. Suppose that U_{λ} is an open subset of M. An ordered pair $\left(U_{\lambda}, \varphi_{\lambda}\right)$ is said to be a chart (or coordinate chart), if φ_{λ} is a homeomorphism from U_{λ} to an open subset of \mathbb{R}^{n}. An atlas for a topological space M is a collection $\left\{\left(U_{\lambda}, \varphi_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ such that $\bigcup_{\lambda \in \Lambda} U_{\lambda}=M$.

Definition B. 2 (C^{∞}-compatible)
Let $\left(U_{\alpha}, \varphi_{\alpha}\right)$ and $\left(U_{\beta}, \varphi_{\beta}\right)$ be charts of an atlas such that $U_{\alpha} \cap U_{\beta} \neq \phi .\left(U_{\alpha}, \varphi_{\alpha}\right)$ and $\left(U_{\beta}, \varphi_{\beta}\right)$ are said to be C^{∞}-compatible, if transition $\operatorname{map} \varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow$ $\varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ is a smooth diffeomorphism.

Definition B. 3 (differentiable structure)
An atlas $\mathcal{U}=\left\{\left(U_{\lambda}, \varphi_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ is said to be a differentiable structure, if the following conditions are satisfied:
(i) $\left(U_{\alpha}, \varphi_{\alpha}\right)$ and $\left(U_{\beta}, \varphi_{\beta}\right)$ are C^{∞}-compatible for all $\alpha(\in \Lambda)$ and $\beta(\in \Lambda)$.
(ii) If (V, ψ) is C^{∞}-compatible with every $\left(U_{\alpha}, \varphi_{\alpha}\right) \in \mathcal{U}$, then $(V, \psi) \in \mathcal{U}$.

Definition B. 4 (smooth manifold)
A smooth manifold is a topological manifold equipped with a differentiable structure.
That is, for a smooth manifold, coordinate transformation and differentiation can be used. In the literature on linearization of nonlinear systems, an n-dimensional smooth manifold can be interpreted as a locally Euclidean space \mathbb{R}^{n}. If you are not familiar with the differential geometry, you do not have to pay much attention to the terminology of a smooth manifold.

B. 2 Vector Space and Algebra

Definition B. 5 (vector space or linear space)
A set V is said to be a vector space over field \mathbb{R}, if there exist two operations, $+: V \times$ $V \rightarrow V$ (vector addition or addition) and $\cdot: \mathbb{R} \times V \rightarrow V$ (scalar multiplication), which satisfy the following eight axioms:
(i) (commutativity of addition)

$$
x+y=y+x, \forall x, y \in V
$$

(ii) (associativity of addition)

$$
x+(y+z)=(x+y)+z, \forall x, y, z \in V
$$

(iii) There exists an element $O_{V} \in V$, called additive identity, such that

$$
x+O_{V}=O_{V}+x=x, \forall x \in V
$$

(iv) For every $x \in V$, there exists an element $-x \in V$, called the additive inverse of x, such that

$$
x+(-x)=O_{V}
$$

(v)

$$
r_{1} \cdot\left(r_{2} \cdot x\right)=\left(r_{1} r_{2}\right) \cdot x, \forall r_{1}, r_{2} \in \mathbb{R}, \forall x \in V
$$

(vi) (distributivity of scalar multiplication with respect to vector addition)

$$
r \cdot\left(x_{1}+x_{2}\right)=r \cdot x_{1}+r \cdot x_{2}, \forall r \in \mathbb{R}, \forall x_{1}, x_{2} \in V
$$

(vii) (distributivity of scalar multiplication with respect to field addition)

$$
\left(r_{1}+r_{2}\right) \cdot x=r_{1} \cdot x+r_{2} \cdot x, \forall r_{1}, r_{2} \in \mathbb{R}, \forall x \in V
$$

(viii)

$$
1 \cdot x=x, \forall x \in V
$$

The vector space has only vector addition (+) and scalar multiplication (•). If vector multiplication (\odot) is further defined in the vector space, it becomes an algebra.
Definition B. 6 (algebra)
A vector space A over field \mathbb{R} is said to be an algebra over field \mathbb{R}, if there exists a vector multiplication (or product) $\odot: A \times A \rightarrow A$ which satisfies the following:
(i)

$$
\begin{aligned}
& f \odot(g+h)=f \odot g+f \odot h, \forall f, g, h \in A \\
& (f+g) \odot h=f \odot h+g \odot h, \forall f, g, h \in A
\end{aligned}
$$

(ii)

$$
\alpha \cdot(f \odot g)=(\alpha \cdot f) \odot g=f \odot(\alpha \cdot g), \forall \alpha \in \mathbb{R}, \forall f, g \in A
$$

Definition B. 7 (algebra with identity, associative algebra, and commutative algebra)
(a) An algebra A is said to be an algebra with identity, if there exists an identity element $1 \in A$ for vector multiplication \odot such that $f \odot 1=1 \odot f=f, \forall f \in$ A.
(b) An algebra A is said to be an associative algebra, if vector multiplication \odot satisfies the following associative law:

$$
f \odot(g \odot h)=(f \odot g) \odot h, \forall f, g, h \in A
$$

(c) An algebra A is said to be a commutative algebra, if vector multiplication \odot satisfies the following commutative law:

$$
f \odot g=g \odot f, \forall f, g \in A
$$

Definition B. 8 (Lie algebra)
Let $f \odot g \triangleq[f, g]$. An algebra A is said to be a Lie algebra, if vector multiplication \odot satisfies the following axioms:
(i) (bilinear)

$$
\begin{aligned}
& {\left[r_{1} f+r_{2} g, h\right]=r_{1}[f, h]+r_{2}[g, h], \forall r_{1}, r_{2} \in \mathbb{R}, \forall f, g, h \in A} \\
& {\left[h, r_{1} f+r_{2} g\right]=r_{1}[h, f]+r_{2}[h, g], \forall r_{1}, r_{2} \in \mathbb{R}, \forall f, g, h \in A}
\end{aligned}
$$

(ii) (anticommutative or skew-commutative)

$$
[f, g]=-[g, f], \forall f, g \in A
$$

(iii) (Jacobi identity)

$$
[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0, \forall f, g, h \in A .
$$

The bracket operation that satisfies the three properties of Definition B. 8 is called the Lie bracket.

B. 3 Vector Field on Manifold

Let M be a smooth manifold of dimension n. A real-valued function $f: M \rightarrow \mathbb{R}$ is said to belong to $C^{\infty}(M)$, if for every coordinate chart $\varphi: U \rightarrow \mathbb{R}^{n}$, the map $f \circ \varphi^{-1}: \varphi(U)\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is C^{∞} (or smooth).

Definition B. 9 (tangent vector)
A tangent vector at a point $p \in M$ is a function $v: C^{\infty}(M) \rightarrow \mathbb{R}$ which satisfies the following two conditions:
(i) (linearity)

$$
v\left(\alpha h_{1}+\beta h_{2}\right)=\alpha v\left(h_{1}\right)+\beta v\left(h_{2}\right), \quad \forall h_{1}, h_{2} \in C^{\infty}(M), \quad \forall \alpha, \beta \in \mathbb{R}
$$

(ii) (Leibniz rule)

$$
v\left(h_{1} h_{2}\right)=h_{2}(p) v\left(h_{1}\right)+h_{1}(p) v\left(h_{2}\right), \quad \forall h_{1}, h_{2} \in C^{\infty}(M)
$$

Definition B. 10 (tangent space)
We define the tangent space $T_{p}(M)$ at p as the set of all tangent vectors at p.
If we define vector addition and scalar multiplication on $T_{p}(M)$ by

$$
\begin{aligned}
& \left(X_{p}+Y_{p}\right)(f)=X_{p}(f)+Y_{p}(f), \quad \forall f \in C^{\infty}(M) \\
& \left(\alpha \cdot X_{p}\right)(f)=\alpha X_{p}(f), \quad \forall \alpha \in \mathbb{R}, \quad \forall f \in C^{\infty}(M),
\end{aligned}
$$

then $T_{p}(M)$ is a vector space over field \mathbb{R}.
Definition B. 11 (tangent bundle)
The tangent bundle of a differentiable manifold M is a manifold $T(M)$ which assembles all the tangent vectors in M. In other words,

$$
T(M)=\bigcup_{p \in M}\{p\} \times T_{p}(M)=\left\{(p, v) \mid p \in M, v \in T_{p}(M)\right\}
$$

Define the projection map $\pi: T M \rightarrow M$ by $\pi(p, v)=p$. A smooth assignment of a tangent vector to each point of a manifold is called a vector field.

Definition B. 12 (vector field)

A vector field is a function $X: M \rightarrow T(M)$ such that $X(p) \in\{p\} \times T_{p}(M)$.
If we define $X(f)$ for all $f \in C^{\infty}(M)$ by

$$
X(f)(p)=X_{p}(f), \quad \forall p \in M
$$

then a smooth vector field X on a manifold M is a linear map $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
X(f g)=f X(g)+X(f) g, \quad \forall f, g \in C^{\infty}(M)
$$

If X is a smooth vector field, then $X(f)$ is a smooth function on M. Note that $T_{p}(M)$ is a vector space over field \mathbb{R}. If we define vector addition and scalar multiplication on the set of all smooth vector fields on M by

$$
\begin{gathered}
(X+Y)_{p}=X_{p}+Y_{p}, \quad \forall p \in M \\
(\alpha \cdot X)_{p}=\alpha \cdot X_{p}, \quad \forall \alpha \in \mathbb{R}, \forall p \in M
\end{gathered}
$$

then the set of all smooth vector fields on M is also a vector space over field \mathbb{R}. The Lie bracket, [X, Y], of two smooth vector fields X and Y is the smooth vector field $[\mathrm{X}, \mathrm{Y}]$ such that

$$
\begin{equation*}
(f) \triangleq X(Y(f))-Y(X(f)), \quad \forall f \in C^{\infty}(M) \tag{B.1}
\end{equation*}
$$

It is not difficult to see that the Lie bracket operation, defined by (B.1), satisfies the axioms of Definition B.8. In other words, for all smooth vector fields X, Y, and Z on M , the following conditions are satisfied:
(i) (bilinear)

$$
\begin{array}{ll}
{\left[\alpha_{1} X+\alpha_{2} Y, Z\right]=\alpha_{1}[X, Z]+\alpha_{2}[Y, Z],} & \forall \alpha_{1}, \alpha_{2} \in \mathbb{R} \\
{\left[Z, \alpha_{1} X+\alpha_{2} Y\right]=\alpha_{1}[Z, X]+\alpha_{2}[Z, Y],} & \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}
\end{array}
$$

(ii) (anticommutativity or skew-commutative)

$$
[X, Y]=-[Y, X]
$$

(iii) (Jacobi identity)

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 .
$$

Therefore, the set of all smooth vector fields on M equipped with the bracket operation is a Lie algebra.

Definition B. 13 (differential map)
Let M and N be smooth manifolds. Suppose that $S: M \rightarrow N$ is a smooth map between smooth manifolds. Given some $p \in M$, the differential map $S_{*}: T_{p} M \rightarrow$ $T_{S(p)} N$ of S at p is a linear map from the tangent space of M at p to the tangent space of N at $S(p)$ such that

$$
S_{*}\left(X_{p}\right)(f)=X_{p}(f \circ S), \quad \forall f \in C^{\infty}(N)
$$

Definition B. 14 (smooth distribution)
Suppose that D_{p} is a k-dimensional subspace of $T_{p}(M)$ for all $p \in M . D$ is said to be a k-dimensional smooth distribution on M, if there exist a neighborhood U of p and a set of smooth vector fields $\left\{X_{1}, \cdots, X_{k}\right\}$ on U for any $p \in M$, such that for any $q \in U$,

$$
\begin{aligned}
D_{q} & =\operatorname{span}\left\{X_{1}, \cdots, X_{k}\right\} \\
& \triangleq\left\{\sum_{i=1}^{k} c_{i} X_{i} \mid c_{i} \in C^{\infty}(U), 1 \leq i \leq k\right\} .
\end{aligned}
$$

$\left\{X_{1}, \cdots, X_{k}\right\}$ is a local basis of distribution D.
Definition B. 15 (involutive distribution)
Smooth distribution D is said to be involutive, if $[X, Y] \in D$ for any smooth vector fields $X \in D$ and $Y \in D$. In other words, smooth distribution D is said to be involutive, if D is closed under bracket operation.

Definition B. 16 (completely integrable distribution)
Suppose that D is a k-dimensional smooth distribution on M. Distribution D is said to be completely integrable, if each point has a chart (U, φ) such that $\left\{\varphi_{*}^{-1}\left(\frac{\partial}{\partial z_{1}}\right), \cdots, \varphi_{*}^{-1}\left(\frac{\partial}{\partial z_{k}}\right)\right\}$ is a local basis on U.

Theorem B. 1 (Frobenius Theorem)
A distribution D is completely integrable, if and only if D is involutive.

Appendix C
 MATLAB Subfunctions

In this section, MATLAB Subfunctions used in this book are introduced. The readers who are expert in programming can improve the programs.

$$
\boldsymbol{\operatorname { a d f g }}(f, g, x): \text { out }^{2} \operatorname{ad}_{f} g(x)=[f(x), g(x)]
$$

```
function out=adfg(f,g,x)
dg=jacobian(g,x);
df=jacobian(f,x);
out=simplify(dg*f-df*g);
```

```
\(\operatorname{adfgk}(f, g, x, k):\) out \(=\operatorname{ad}_{f}^{k} g(x)\)
```

```
function out=adfgk(f,g,x,k)
out=g;
for k1=1:k
    out=simplify(adfg(f,out,x));
end
```

```
\(\operatorname{adfgM}\left(f,\left[g_{1}(x) \cdots g_{m}(x)\right], x\right):\) out \(=\left[\operatorname{ad}_{f} g_{1}(x) \cdots \operatorname{ad}_{f} g_{m}(x)\right]\)
```

```
function out=adfgM(f,G,x)
out=G-G;
for k1=1:size(G,2)
    out(:,k1)=adfg(f,G(:,k1),x);
end
out=simplify(out);
```

$\operatorname{adfgkM}(f, g, x, k):$ out $=\left[\operatorname{ad}_{f}^{k} g_{1}(x) \cdots \operatorname{ad}_{f}^{k} g_{m}(x)\right]$

```
function out=adfgkM(f,G,x,k)
out=G;
for k1=1:k
    out=simplify(adfgM(f,out,x));
end
```

CharacterNum $(f(x), g(x), h(x), x)$: characteristic number out $=\rho$

```
function rho=CharacterNum(f,g,h,x)
[n,m]=size(g);
for k=1:n
    t1=simplify(Lfh(g,Lfhk(f,h,x,k-1),x));
    if ChZero(t1)==0
        rho=k;
        return
    end
end
rho=n+1;
```

$\operatorname{ChCommute}(T(x), x):$ out $= \begin{cases}1, & \text { if }\left[T_{i}(x), T_{j}(x)\right]=0,1 \leq i, j \leq s \\ 0, & \text { otherwise }\end{cases}$

```
function out=ChCommute(T,x)
out=0;
s=size(T,2);
for k1=1:s
    for k2=k1:s
    cc=adfg(T(:,k1),T(:,k2),x);
    if ChZero(cc)==0
        return
    end
    end
    end
out=1;
```

$\operatorname{ChConst}(M(x), x):$ out $= \begin{cases}1, & \text { if } M(x) \text { is a constant matrix } \\ 0, & \text { otherwise }\end{cases}$

```
function out=ChConst(M,x)
out=0;
s=size(M);
for k1=1:s(1)
    for k2=1:s(2)
        t1=jacobian(M(k1,k2),x);
        if ChZero(t1) == 0
            return
        end
    end
end
out=1;
```

$\operatorname{ChExact}(\omega(x), x):$ out $= \begin{cases}1, & \text { if } \omega(x) \text { is exact one form } \\ 0, & \text { otherwise }\end{cases}$

```
function out=ChExact(omega,x)
out=0;
Tomega=omega';
dTomega=jacobian(Tomega,x);
t1=dTomega'-dTomega;
if ChZero(t1)==0
    return
end
out=1;
```

ChInverseF $\left(F_{u}(x), G_{u}(x), x\right)$:

$$
\text { out }= \begin{cases}1, & \text { if } F_{u} \circ G_{u}(x)=x \text { and } G_{u} \circ F_{u}(x)=x \\ 0, & \text { otherwise }\end{cases}
$$

```
function out=ChInverseF(F,iF,x)
out=0;
cc1=simplify(subs(F,x,iF));
if ChZero(cc1-x)==0
    return
end
cc2=simplify(subs(iF,x,F));
if ChZero(cc2-x)==0
    return
end
out=1;
```

ChInvolutive $(D(x), x)$:
out $= \begin{cases}1, & \text { if distribution } \operatorname{span}\left\{d_{1}(x), \cdots, d_{s}(x)\right\} \text { is involutive } \\ 0, & \text { otherwise }\end{cases}$

```
function out=ChInvolutive(D,x)
out=0;
s=size(D,2);
r=rank(D);
for k1=1:s
    for k2=k1+1:s
        t1=adfg(D(:,k1),D(:,k2),x);
        t2=[D t1];
        if rank(t2)>r
            return
        end
    end
end
out=1;
```

$\operatorname{ChZero}(M(x)):$ out $= \begin{cases}1, & \text { if } M(x)=O \\ 0, & \text { if } M(x) \neq O\end{cases}$

```
function out=ChZero(M)
out=0;
s=size(M);
for k1=1:s(1)
    for k2=1:s(2)
        if M(k1,k2) ~= M(1,1)-M(1,1)
            return
        end
    end
end
out=1;
```

$\operatorname{Codi}\left(\frac{\partial S(x)}{\partial x}, x\right):$ out $=S(x)$

```
function out=Codi(dS,x)
s1=size(dS,1);
out=dS(:,1)-dS (:,1);
for m=1:s1
    out (m) = dS (1,1) -dS (1,1);
    for k=1:length(x)
        dbeta(m,k)=simplify(dS(m,k)-diff(out(m),x(k)));
        beta(m,k) = simplify(int(dbeta(m,k),x(k)));
        out(m)=simplify(out(m)+beta(m,k));
    end
end
out=simplify(out-subs(out,x,x-x));
```

$\operatorname{CXexact}(\omega(x), x):$
out1 $= \begin{cases}1, & \text { if } \frac{-1}{\omega_{K}(0)} \mathbf{q}_{K}(x) \text { is exact } \\ 0, & \text { otherwise }\end{cases}$
out $2=c(x)$ such that $c(x) \omega(x)$ is exact one form when out $1=1$.
One form $\frac{-1}{\omega_{K}(0)} \mathbf{q}_{K}(x)$ is defined in (4.24).

```
function [flag,cX]=CXexact(omega,x)
flag=0;
CX=x(1)-x(1)+1;
n=size(x,1);
if ChExact(omega,x)==1
    flag=1;
    return
end
domega=jacobian(omega',x);
bQ=domega-domega' ;
omega0=subs (omega,x,x-x);
for k1=1:n
    if ChZero(omega0(k1))==0
            K=k1;
            break
    end
end
dLCX=(1/omega(K)) *bQ (: , K)';
if ChExact(dLCX,x)==0
    return
end
LCX=Codi (dLCX,x);
CX=exp(LCX);
if ChExact(CX*omega,x)==0
    return
end
flag=1;
```

Decoupling-M $(f(x), g(x), h(x), x, \rho)$: Decoupling matrix

$$
\text { out1 }=E(x)=\left[\begin{array}{c}
L_{f}^{\rho_{1}} h_{1}(x) \\
\vdots \\
L_{f}^{\rho_{q}} h_{q}(x)
\end{array}\right] ; \text { out2 }=D(x)=\left[\begin{array}{c}
L_{g} L_{f}^{\rho_{1}} h_{1}(x) \\
\vdots \\
L_{g} L_{f}^{\rho_{q}} h_{q}(x)
\end{array}\right]
$$

```
function [E,D]=Decoupling_M(f,g,h,x,rho)
t1=h-h;
for k=1:length(h)
    t1(k)=Lfhk(f,h(k),x,rho(k)-1);
end
t1=simplify(t1);
D=simplify(Lfh(g,t1,x));
E=simplify(Lfh(f,t1,x));
```

$\operatorname{Delta}(f(x), g(x), x)$:
out $=\left[g_{1}(x) \cdots g_{m}(x) \cdots \operatorname{ad}_{f}^{n-1} g_{1}(x) \cdots \operatorname{ad}_{f}^{n-1} g_{m}(x)\right]$

```
function D=Delta(f,g,x)
[n,m]=size(g);
D=g;
for k=1:n-1
    D=[D adfgM(f,D(:,(k-1)*m+1:k*m),x)];
end
```

$\operatorname{DeltaDT}\left(F_{u}(x), x, u\right)$:
out $=\left[\frac{\partial F_{u}(x)}{\partial u} \cdots \frac{\partial \hat{F}_{u}^{\max (x)}(x)}{\partial u}\right]$

```
function D=DeltaDT(F,x,u)
n=size(F,1);
m=size(u,1);
xu=[x; u];
D=simplify(jacobian(F,u));
for k=2:n
    t1=HatF(F,x,u,k);
    t2=simplify(jacobian(t1,u));
    newD=[D t2];
    if rank(subs(newD,xu,xu-xu)) == rank(subs(D,xu,xu-xu))
        return
    end
    D=newD;
end
```

$\operatorname{HatF}\left(F_{u}(x), x, u, k\right):$ out $=\hat{F}^{k}(x, u) \triangleq F_{0}^{k-1} \circ F_{u}(x)$

```
function out=HatF(F,x,u,k)
out = x;
for n=1:k
    out=simplify(subs(out,u,u-u));
    out=simplify(subs(out,x,F));
end
out = simplify(out);
```



```
function out=ker_sF(sF,w,n)
Y=jacobian(sF,w);
t1=Y(:,1:n);
t2=Y(:,n+1);
t3=simplify(inv(t1)*t2);
out=[-t3; 1];
```

$\mathbf{k e r - s F}-\mathbf{M}(\mathcal{F}(w), w, \tilde{U}, \kappa, n, m): \operatorname{out}=\operatorname{ker} \mathcal{F}_{*}$

```
function out=ker_sF_M(sF,w,tW,ka,n,m)
bW=transp(w(1,1:ka(1)));
for k1=2:m
    bW=[bW; transp(w(k1,1:ka(k1)))];
end
for k1=1:m
    bW=[bW; w(k1,ka(k1)+1)];
end
Y=jacobian(sF,bW);
t1=Y(:,1:n);
t2=Y(:,(n+1):(n+m));
t3=simplify(-inv(t1)*t2);
bkersF=[t3; eye(m)];
iP=jacobian(tW,bW);
out=iP*bkersF;
```

$\operatorname{Kindex}(f(x), g(x), x)$: Kronecker indices
out $1=\kappa=\left[\kappa_{1} \cdots \kappa_{m}\right]^{\top}$ on a nbhd of $x=x_{0}$

$$
\text { out } 2=\left[\begin{array}{lllll}
g_{1}(x) & \cdots & g_{m}(x) & \cdots & \operatorname{ad}_{f}^{\max (\kappa)-1} g_{1}(x) \cdots \operatorname{ad}_{f}^{\max (\kappa)-1} g_{m}(x)
\end{array}\right]
$$

```
function [kappa,D]=Kindex(f,g,x)
[n,m]=size(g);
D1=Delta(f,g,x);
kappa=zeros(m,1);
DD=x-x;
for k1=1:n
    for k2=1:m
            t1 =[DD D1(:,m*(k1-1)+k2)];
            if rank(t1)>rank(DD)
                    kappa(k2)=kappa (k2)+1;
                        DD=t1;
                        if rank(DD)==rank(D1)
                        D=D1 (:,1:m*max(kappa))
                        return
                        end
            end
        end
end
```

Kindex0 $(f(x), g(x), x):$ Kronecker indices
out $1=\kappa=\left[\kappa_{1} \cdots \kappa_{m}\right]^{\top}$ on a nbhd of $x=0$
out $2=\left[g_{1}(x) \cdots g_{m}(x) \cdots \operatorname{ad}_{f}^{\max (\kappa)-1} g_{1}(x) \cdots \operatorname{ad}_{f}^{\max (\kappa)-1} g_{m}(x)\right]$

```
function [kappa,D]=Kindex0(f,g,x)
[n,m]=size(g);
D1=Delta(f,g,x);
D0=subs(D1,x,x-x);
kappa=zeros(m,1);
DD=x-x; for k1=1:n
    for k2=1:m
        t1 =[DD D0(:,m*(k1-1)+k2)];
        if rank(t1)>rank(DD)
            kappa(k2)=kappa(k2)+1;
            DD=t1;
            if rank(DD)==rank(D0)
                D=D1(:,1:m*max(kappa));
                return
            end
        end
    end
end
```

KindexDT0 $\left(F_{u}(x), x, u\right)$: Kronecker indices of discrete time system out $=\kappa=\left[\begin{array}{lll}\kappa_{1} & \cdots & \kappa_{m}\end{array}\right]^{\top}$ on a nbhd of $x=0$

```
function kappa=KindexDT0(F,x,u)
n=size(F,1);
m=size(u,1);
xu=[x; u];
D=DeltaDT(F,x,u);
tD=subs(D,xu,xu-xu);
kappa=zeros(m,1);
N=size(D,2)/m;
DD=x-x; for
k1=1:N
    for k2=1:m
        t1 =[DD tD(:,m*(k1-1)+k2)];
        if rank(t1)>rank(DD)
            kappa(k2)=kappa(k2)+1;
            DD=t1;
            if rank(DD)==rank(tD)
                return
            end
        end
    end
end
```

$\operatorname{Lfh}(f(x), h(x), x):$ out $=L_{f} h(x)$

```
function out=Lfh(f,h,x)
dh=jacobian(h,x);
out=simplify(dh*f);
```

$\operatorname{Lfhk}(f(x), h(x), x, k):$ out $=L_{f}^{k} h(x)$

```
function out=Lfhk(f,h,x,k)
out = h;
for n=1:k
    out=simplify(Lfh(f,out,x));
end
out = simplify(out);
```

ObvIndex0 $(F 0(x), H(x), x, n, p)$: observability indices out $=v=\left[\begin{array}{lll}v_{1} & \cdots & v_{p}\end{array}\right]^{\top}$ on a nbhd of $x=0$

```
function nu=ObvIndex0(F0,H,x,n,p)
TM=H;
for k=1:n-1
    TM=[TM; Lfh(F0,TM((k-1)*p+1:k*p),x)];
end
dTM=simplify(jacobian(TM,x));
dTM0=subs (dTM,x,x-x);
nu=zeros(p,1);
DD=dTM0 (1,: ) -dTM0 (1,:) ;
for k1=1:n
    for k2=1:p
        t1 =[DD; dTM0(p*(k1-1)+k2,:)];
        if rank(t1)>rank(DD)
            nu(k2) =nu(k2) +1;
            DD=t1;
            if rank(DD)==rank(dTM0)
                return
            end
        end
    end
end
```

$\operatorname{Psi}-\mathbf{s F}\left(F_{u}(x), x, u, w, n\right)$:
out1 $=\Psi\left(w_{1}, \cdots, w_{n}\right) \triangleq F_{w_{1}} \circ F_{w_{2}} \circ \cdots \circ F_{w_{n}}(0)$
out2 $=\mathcal{F}\left(w_{1}, \cdots, w_{n+1}\right) \triangleq F_{w_{1}} \circ \cdots \circ F_{w_{n}} \circ F_{w_{n+1}}(0)$

```
function [Psi,sF]=Psi_sF(F,x,u,w,n)
FF(:,1)=subs(F,[x;u],[x-x;w(n+1)]);
for k=1:n
    FF(:,k+1)=subs(F,[x;u],[FF(:,k);w(n+1-k)]);
end
sF=simplify(FF(:,n+1));
Psi=simplify(subs(sF,w(n+1),w(n+1)-w(n+1)));
```

```
Psi-sF-M( \(\left.F_{u}(x), x, u, w, m, \kappa\right)\) :
out1 \(=\left.\Psi\left(w_{1}, \cdots, w_{n}\right) \triangleq F_{w^{1}} \circ \cdots \circ F_{w^{k \max }}(0)\right|_{w_{j}^{i}=0, i \geq \kappa_{j}+1}\)
out2 \(=\left.\mathcal{F}(\tilde{U}) \triangleq F_{w^{1}} \circ \cdots \circ F_{w^{k_{\text {max }}}} \circ F_{w^{k_{\text {max }}+1}}(0)\right|_{w_{j}^{i}=0, i \geq \kappa_{j}+2}\)
out3 \(=U=\left[\begin{array}{lll}w_{1}^{1} & w_{2}^{1} & w_{1}^{2} \\ w_{1}^{3}\end{array}\right]^{\top}\), when \(\left(\kappa_{1}, \kappa_{2}\right)=(3,1)\)
out \(4=\tilde{U}=\left[w_{1}^{1} w_{2}^{1} w_{1}^{2} w_{2}^{2} w_{1}^{3} w_{1}^{4}\right]^{\top}\), when \(\left(\kappa_{1}, \kappa_{2}\right)=(3,1)\)
out5 \(=\left[\begin{array}{cccc}w_{1}^{1} & w_{1}^{2} & w_{1}^{3} & w_{1}^{4} \\ w_{2}^{1} & w_{2}^{2} & 0 & 0\end{array}\right]^{\top}\), when \(\left(\kappa_{1}, \kappa_{2}\right)=(3,1)\)
```

```
function [Psi,sF,W,tW,U]=Psi_sF_M(F,x,u,w,m,ka)
kamax=max(ka);
FF(:,1)=subs(F,[x;u],[x-x;w(:,kamax+1)]);
for k=1:kamax
    FF(:,k+1)=subs(F,[x;u],[FF(:,k);w(:,kamax+1-k)]);
end
BW=w-w;
BtW=w-w;
for k1=1:m
    BW(k1,1:ka(k1))=w(k1,1:ka(k1));
    BtW(k1,1:ka(k1)+1)=w(k1,1:ka(k1)+1);
end
sF=simplify(subs(FF(:,kamax+1),w,BtW));
Psi=simplify(subs(FF(:,kamax+1),w,BW));
W=w (1,1) -w (1,1);
tW=w (1,1) -w (1, 1);
for k1=1:kamax+1
    for k2=1:m
        if ChZero(BW(k2,k1))==0
            W=[W; BW(k2,k1)];
        end
        if ChZero(BtW(k2,k1))==0
                        tW=[tW; BtW(k2,k1)];
            end
        end
end
W=simplify(W(2:length(W)));
tW=simplify(tW(2:length(tW)));
U=simplify(BtW(:,1:kamax+1));
```

RelativeDegree $(f(x), g(x), h(x), x): \operatorname{out}=\left(\rho_{1}, \cdots, \rho_{q}\right)$

```
function rho=RelativeDegree(f,g,h,x)
for k=1:length(h)
    rho(k)=CharacterNum(f,g,h(k),x);
end
```

RowReorder $(D(x))$: out $=R_{0}$
where R_{0} is a row permutation matrix such that $R_{0} D(x)=\left[\begin{array}{l}R_{1} \\ R_{2}\end{array}\right] D(x)=\left[\begin{array}{l}\tilde{D}(x) \\ \bar{D}(x)\end{array}\right]$ and $\operatorname{rank}(\tilde{D}(x))=\operatorname{rank}(D(x))$.

```
function R=RowReorder(D)
q=size(D,1); r=rank(D); R=eye(q);
id=0;
for k1=1:q
    if rank(D(1:k1,:))>rank(D(1:k1-1,:))
        id=[id k1];
    end
end
id=id(2:r+1);
t1=R(1,:) -R(1,:);
t2=t1;
for k=1:q
    if k==id(1)
        t1=[t1; R(k,:)];
        id=[id(2:r) 0];
    else
        t2=[t2; R(k,:)];
    end
end
R=[t1(2:r+1,:); t2(2:q-r+1,:)];
```

$\mathbf{S 1}(f(x), g(x), x):$
out $1= \begin{cases}1, & \text { if } \frac{-1}{\omega_{K}(0)} \mathbf{q}_{K}(x) \text { is exact } \\ 0, & \text { otherwise }\end{cases}$
out $2=S_{1}(x)$ in Lemma 4.1 when out $1=1$.
If out $1=0$, then $S_{1}(x)$ should be found without MATLAB function $\mathbf{S 1}$.
One form $\frac{-1}{\omega_{K}(0)} \mathbf{q}_{K}(x)$ is defined in (4.24).

```
function [flag,S1]=S1(f,g,x)
flag=0;
S1=g(1)-g(1);
[n,m]=size(g);
T(:,1)=g;
for k=2:n
    T(:,k) =adfg(f,T(:,k-1),x);
end
T=simplify(T);
BD=T(:,1:n);
BD (:,n) =subs(BD (: , n), x, x-x);
iBD=inv(BD);
Eyen=jacobian(x,x);
omega=(-1)^(n-1) *Eyen (n,:) *iBD
[flagCX,CX]=CXexact (omega,x)
if flagCX==0
    return
end
flag=1;
dS1=CX*omega;
S1=Codi(dS1,x);
```

$\operatorname{S1M}(f(x), g(x), x, \kappa):$
out $1= \begin{cases}1, & \text { if } z=S(x) \text { can be found by S1M } \\ 0, & \text { if } z=S(x) \text { should be found by hand calculation }\end{cases}$
out2 $=\left[\begin{array}{c}S_{11}(x) \\ \vdots \\ S_{m 1}(x)\end{array}\right]$ in Lemma 4.3 when out $1=1$.

```
function [flag,S1]=S1M(f,g,x,kappa)
flag=0;
S1=g(1,:)'-g(1,:)';
[n,m]=size(g);
for k1=1:m
    for k2=1:kappa(k1)
        T(:,k2,k1)=adfgk(f,g(:,k1),x,k2-1);
    end
end
T=simplify(T);
for k=1:m
    BD=g(:,1)-g(:,1);
    tt2=x(1)-x(1);
    for k1=1:m
        BD=[ BD T(:,1:min(kappa(k),kappa(k1)),k1) ];
        t2=x(1:min(kappa(k),kappa(k1)));
        tt2=[tt2 (t2-t2)' ];
```

```
    if kappa(k1) >= kappa(k)
    BD(:, size(BD,2)) =subs(BD(:, size(BD,2)),x,x-x);
    if k1==k
            tt2(size(tt2,2))=(-1)^(kappa(k1)-1);
            end
        end
        BD=simplify(BD);
    end
    BD=simplify(BD(:,2:size(BD,2)));
    tt2=simplify(tt2(:,2:size(tt2,2)));
    ipBD=simplify(inv(BD'*BD));
    omega=simplify(tt2*ipBD*BD');
    [flagCX,CX]=CXexact(omega,x);
    if flagCX==0
        return
    end
    dS1=CX*omega;
    S1(k) =Codi (dS1,x);
end
flag=1;
S1=simplify(S1);
```

$\operatorname{SpanCx}(X(x), Y(x)):$
flag $= \begin{cases}1, & \text { if } \operatorname{rank}([X Y])=\operatorname{rank}(Y)=k \\ 0, & \text { otherwise }\end{cases}$
out $=c(x)$
where $X(x)=Y(x) c(x)=\sum_{i=1}^{k} c_{i}(x) Y_{i}(x)$ and $Y(x)$ is a $n \times k$ matrix.

```
function [flag,out]=SpanCx(X,Y)
flag=0;
[n,K]=size(Y)
out=(Y(1,1:K)-Y(1,1:K))'
Z=[X Y] if rank(Y) <
K
    return
end
if rank([X Y]) > rank(Y)
    return
end
Z0=Z(1,:)-Z(1,:);
for k1=1:n
    if rank([Z0; Z(k1,:)]) > rank(Z0)
        Z0=[Z0; Z(k1,:)];
    end
end
Z0=Z0(2:size(Z0,1),:)
out=simplify(inv(Z0(:, 2:K+1))*Z0(:,1))
flag=1;
```

```
\(\operatorname{sstarmap}\left(S(x), S^{-1}(z), f(x), x\right)\) :
out \(=\left.S_{*}(f(x)) \triangleq \frac{\partial S(x)}{\partial x} f(x)\right|_{x=S^{-1}(z)}\)
```

```
function out=sstarmap(s,invs,f,x)
ds=jacobian(s,x);
out2=ds*f;
out = subs(out2,x,invs);
out=simplify(out);
```

TauFG $(f(x), g(x), x, \kappa)$:

```
out \(=\left[g_{1}(x) \cdots \operatorname{ad}_{f}^{\kappa_{1}-1} g_{1}(x) \cdots g_{m}(x) \cdots \operatorname{ad}_{f}^{\kappa_{m}-1} g_{m}(x)\right]\)
```

```
function out=TauFG(f,g,x,kappa)
[n,m]=size(g);
T=x-x;
for k1=1:m
    for k2=1:kappa(k1)
        T=[T adfgk(f,g(:,k1),x,k2-1)];
    end
end
out=simplify(T(:,2:size(T,2)));
```

$\operatorname{transp}(M(x)):$ out $=M(x)^{\top}$

```
function out=transp(M)
s=size(M);
out=M'-M';
for k1=1:s(1)
    out(:,k1)=M(k1,:);
end
out=simplify(out);
```


References

Text Book

[A1] W.A. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry (Academic, New York, 1975)
[A2] C.T. Chen, Introduction to Linear System Theory (HRW, inc., 1970)
[A3] A. Isidori, Nonlinear Control Systems, 3rd ed. (London Ltd., Springer, 1995)
[A4] R. Marino, P. Tomei, Nonlinear Control Design (Prentice Hall Europe, 1995)
[A5] H. Nijmeijer, A. van der Schaft, Nonlinear Dynamical Control Systems (New York Inc., Springer, 1990)
[A6] W. Rudin, Principle of Mathematical Analysis, 3rd ed. (McGraw-Hill, Inc., 1976)
[A7] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. I (Publish or Perish, Boston, 1970)
[A8] M. Vidyasagar, Nonlinear Systems Analysis (Prentice-Hall Inc., 1978)

Linerization by state transformation

[B1] L.R. Hunt, M. Luksic, R. Su, Exact linearization of input-output systems. Int. J. Control 43, 247-255 (1986)
[B2] A.J. Krener, On the equivalence of control systems and the linearization of nonlinear systems. SIAM J. Control 11, 670-679 (1973)
[B3] H.J. Sussmann, Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, ed. by R.W. Brockett, et al. (Birkhauser, Boston, 1983), pp. 1-116

Static Feedback Linerization

[C1] A. Arapostathis, B. Jakubczyk, H.G. Lee, S.I. Marcus, E.D. Sontag, The effect of sampling on linear equivalence and feedback linearization. Syst. Control Lett. 13, 373-381 (1989)
[C2] W.M. Boothby, Some comments on global linearization of nonlinear system. Syst. Control Lett. 4, 147 (1984)
[C3] R.W. Brockett, Feedback Invariants for Nonlinear Systems (IFAC Congress, Helsinki, 1978)
[C4] L.R. Hunt, R. Su, G. Meyer, Design for multi-input nonlinear system, in Differential Geometric Control Theory, ed. by R.W. Brockett et al. (Birkhauser, Boston, 1983), pp. 268-293
[C5] I.-J. Ha, S.-J. Lee, Input-output linearization with state equivalence and decoupling. IEEE Trans. Autom. Control 39(11), 2269-2274 (1994)
[C6] B. Jakubczyk, W. Respondek, On the linearization of control systems. Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. 28, 517-522 (1980)
[C7] A.J. Krener, Linearization and bilinearization of control systems, in Proceedings of the 1974 Allerton Conference on Circuits and System Theory (1974)
[C8] A.J. Krener, W. Respondek, Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23, 197-216 (1985)
[C9] R. Su, On the linear equivalents of nonlinear systems. Syst. Control Lett. 2, 48-52 (1982)
[C10] A.J. van der Schaft, Linearization and input-output decoupling for general nonlinear systems. Syst. Control Lett. 5, 27-33 (1984)

Linearization of the Discrete Time

[D1] J.P. Barbot, S. Monaco, D. Normand-Cyrot, Discrete-time approximated linearization of SISO systems under output feedback. IEEE Trans. Autom. Control 44(9), 1729-1733 (1999)
[D2] J.W. Grizzle, Feedback linearization of discrete time systems, in Lecture Notes in Control and Information Sciences, vol. 83 (Springer, 1986), pp. 273-281
[D3] J.W. Grizzle, P.V. Kokotovic, Feedback linearization of sampled-data systems. IEEE Trans. Autom. Control 33, 857-859 (1988)
[D4] B. Jakubczyk, Feedback linearization of discrete time systems. Syst. Control Lett. 9, 411-416 (1987)
[D5] H.G. Lee, A. Arapostathis, S.I. Marcus, Linearization of discrete-time systems. Int. J. Control 45, 1803-1822 (1987)
[D6] H.G. Lee, S.I. Marcus, Approximate and local linearizability of nonlinear discrete time systems. Int. J. Control 44, 1103-1124 (1986)
[D7] K. Nam, Linearization of discrete time nonlinear systems and a canonical structure. IEEE Trans. Autom. Control 34(1), 119-122 (1989)

Dynamic Feedback Linerization

[E1] E. Aranda-Bricaire, C.H. Moog, J.B. Pomet, A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Autom. Control 40, 127-132 (1995)
[E2] B. Charlet, J. Levine, R. Marino, On dynamic feedback linearization. Syst. Control Lett. 13, 143-151 (1989)
[E3] B. Charlet, J. Levine, R. Marino, New sufficient conditions for dynamic feedback linearization, Geometric Methods in Nonlinear Control Theory, pp. 39-45 (1989)
[E4] B. Charlet, J. Levine, R. Marino, Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim. 29, 38-57 (1991)
[E5] M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of non-linear system: introductory theory and examples. Int. J. Control 61(6), 1327-1361 (1995)
[E6] M. Fliess, J. Levine, P. Martin, P. Rouchon, On differentially flat nonlinear systems, in Proceedings of the 2nd IFAC NOLCOS, Bordeaux, pp. 408-412 (1992)
[E7] R.B. Gardner, W.F. Shadwick, The GS algorithm for exact linearization to Brunovsky normal form. IEEE Trans. Autom. Control 37, 224-230 (1992)
[E8] M. Guay, P.J. Mclellan, D.W. Bacon, A condition for dynamic feedback linearization of control-affine nonlinear systems. Int. J. Control 68(1), 87-106 (1997)
[E9] L.R. Hunt, R. Su, G. Meyer, Design for multi-input nonlinear system, in Differential Geometric Control Theory, ed. by R.W. Brockett et al. (Birkhauser, Boston, 1983), pp. 268-293
[E10] B. Jakubczyk, W. Respondek, On the linearization of control systems. Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. 28, 517-522 (1980)
[E11] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in Proceedings of the 2nd IFAC NOLCOS, Bordeaux, pp. 393-397 (1992)
[E12] H. Lee, A. Arapostathis, S.I. Marcus, Linearization of discrete-time systems via restricted dynamic feedback. IEEE Trans. Autom. Control 48(9), 1646-1650 (2003)
[E13] H.G. Lee, Y.M. Kim, H.T. Jeon, On the linearization via a restricted class of dynamic feedback. IEEE Trans. Autom. Control 45(7), 1385-1391 (2000)
[E14] P. Rouchon, Necessary condition and genericity of dynamic feedback linearization. J. Math. Syst. Estim. Control 4, 1-14 (1994)
[E15] W.F. Shadwick, Absolute equivalence and dynamic feedback linearization. Syst. Control Lett. 15, 35-39 (1990)
[E16] W.M. Sluis, A necessary condition for dynamic feedback linearization. Syst. Control Lett. 21, 277-283 (1993)
[E17] W.M. Sluis, D.M. Tilbury, A bound on the number of integrators needed to linearize a control system. Syst. Control Lett. 29, 43-50 (1996)

Applications of Feedback Linearization

[F1] E. Freund, Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators, in Brady, Hollerbach, Johnson, Lozano-Perez, and Mason. ed. by R. Motion (MIT Press, Cambridge, MA, 1982)
[F2] I. Ha, A. Tugcu, N. Boustany, Feedback linearizing control of vehicle longitudinal acceleration. IEEE Trans. Automat. Control 34, 689-698 (1989)
[F3] R. Hunt, R. Su, G. Meyer, Application of nonlinear transformations to automatic flight control. Automatica 20, 103-107 (1984)
[F4] M. Ilic-Spong, F. Mak, A new class of fast nonlinear voltage controllers and their impact on improved transmission capacity, Proc. Am. Control Conf. (1989)
[F5] M. Ilic-Spong, R. Marino, S. Persada, D. Taylor, Feedback linearizing controls of switched reluctance motors. IEEE Trans. Automat. Control 32, 371-374 (1987)
[F6] D.I. Kim, I. Ha, M.S. Ko, Control of induction motors via feedback linearization with inputoutput decoupling. Int. J. Control 51(4), 863-883 (1990)
[F7] T. Tarn, A. Bejczy, A. Isidori, Y. Chen, Nonlinear feedback in robot arm control in Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, NV, pp. 736-751 (1984)
[F8] T.J. Tarn, A.K. Bejczy, and X. Yun, Coordinated control of two robot arms, in Proceedings of 25th IEEE Conference on Decision and Control, Athens, Greece, pp. 1193-1202 (1986)

Input-Output Linearization and Decoupling

[G1] R.W. Brockett, Nonlinear systems and differential geometry. Proc. IEEE 64(1), 61-72 (1976)
[G2] E. Freund, Decoupling and pole assignment in nonlinear systems. Electron. Lett. 9, 373-374 (1973)
[G3] E. Freund, The structure of decoupled non-linear systems. Int. J. Control 21, 443-450 (1975)
[G4] J.W. Grizzle, Local input-output decoupling of discrete-time nonlinear systems. Int. J. Control 43(5), 1517-1530 (1986)
[G5] J.W. Grizzle, A. Isidori, Block noninteracting control with stability via static state feedback. Math. Control Sig. Syst. 2, 315-341 (1989)
[G6] I.J. Ha, Canonical forms of decouplable and controllable linear systems. Int. J. Control 56(3), 691-701 (1992)
[G7] I.J. Ha, E.G. Gilert, A complete characterization of decoupling control laws for a general class of nonlinear systems. IEEE Trans. Autom. Control 31, 823-830 (1986)
[G8] R.M. Hirschorn, Invertibility of multivariable nonlinear control systems. IEEE Trans. Autom. Control 24(6), 855-865 (1979)
[G9] H.J.C. Huijberts, H. Nijmeijer, L.L.M. van der Wegen, Minimality of dynamic input-output decoupling for nonlinear systems. Syst. Control Lett. 18, 435-443 (1992)
[G10] A. Isidori, J.W. Grizzle, Fixed modes and nonlinear noninteracting control with stability. IEEE Trans. Autom. Control 33, 907-914 (1988)
[G11] A. Isidori, A.J. Krener, C. Gori-Giogi, S. Manaco, Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Autom. Control 26, 331-345 (1981)
[G12] A. Isidori, A.J. Krener, C. Gori-Giorgi, S. Monaco, Locally (f, g) invariant distributions. Syst. Control Lett. 1(1), 12-15 (1981)
[G13] A. Isidori, A. Ruberti, On the synthesis of linear input-output responses for nonlinear systems. Syst. Control Lett. 4, 17-22 (1984)
[G14] H.G. Lee, S.I. Marcus, On input-output linearization of discrete time nonlinear systems. Syst. Control Lett. 8, 249-259 (1987)
[G15] S. Monaco, D. Normand-Cyrot, Some remarks on the invertibility of nonlinear discrete-the systems, American Control Conference, pp. 324-327 (1983)
[G16] H. Nijmeijer, W. Respondek, Decoupling via dynamic compensation for nonlinear control systems, IEEE Conference on Decision and Control, pp. 192-197 (1986)
[G17] H. Nijmeijer, W. Respondek, Dynamic input-output decoupling of nonlinear control systems. IEEE Trans. Autom. Control 33, 1065-1070 (1988)
[G18] H. Nijmeijer, Local (dynamic) input-output decoupling of discrete time nonlinear systems. IMA J. Math. Control Inf. 4, 237-250 (1987)
[G19] W.A. Porter, Diagonalization and inverses of nonlinear system. Int. J. Control 11, 67-76 (1970)
[G20] W. Respondek, Dynamic input-output linearization and decoupling of nonlinear systems, in Proceedings of the 2nd European Control conference, Groningen, pp. 1523-1527 (1993)
[G21] L.M. Silverman, Inversion of multivariable linear systems. IEEE Trans. Autom. Control 14, 270-276 (1969)
[G22] S.N. Singh, Decoupling of invertible nonlinear systems with state feedback and precompensation. IEEE Trans. Autom. Control 25(6), 1237-1239 (1980)
[G23] S.N. Singh, A modified algorithm for invertibility in nonlinear systems. IEEE Trans. Autom. Control 26(2), 595-598 (1981)

Observer Error Linearization

[H1] J. Back, J.H. Seo, An algorithm for system immersion into nonlinear observer form. Automatica 42, 321-328 (2006)
[H2] J. Back, K.T. Yu, J.H. Seo, Dynamic observer error linearization. Automatica 42, 2195-2200 (2006)
[H3] G. Besancon, On output transformations for state linearization up to output injection. IEEE Trans. Autom. Control 44(10), 1975-1981 (1999)
[H4] D. Bestle, M. Zeitz, Canonical form observer design for non-linear time-variable systems. Int. J. Control 38(2), 419-431 (1983)
[H5] C. Califano, S. Monaco, D. Normand-Cyrot, On the observer design in discrete-time. Syst. Control Lett. 49(4), 255-265 (2003)
[H6] C. Califano, S. Monaco, D. Normand-Cyrot, Canonical observer forms for multi-output systems up to coordinate and output transformations in discrete-time. Automatica 45, 24832490 (2009)
[H7] C. Califano, C.H. Moog, The observer error linearization problem via dynamic compensation. IEEE Trans. Autom. Control 59, 2502-2508 (2014)
[H8] S.T. Chung, J.W. Grizzle, Sampled-data observer error linearization. Automatica 26(6), 9971007 (1990)
[H9] H. Hong, H. Kang, H.G. Lee, Discrete generalized nonlinear observer canonical form. J. Electr. Eng. Technol. 15, 1357-1365 (2020)
[H10] M. Hou, A.C. Pugh, Observer with linear error dynamics for nonlinear multi-output systems. Syst. Control Lett. 24(4), 291-300 (1999)
[H11] H.J.C. Huijberts, On existence of extended observers for nonlinear discrete-time systems. Lecture Notes in Control Information Science, vol. 244 (Springer, 1999), pp. 73-92
[H12] H.J.C. Huijberts, T. Lilge, H. Nijmeijer, Nonlinear discrete-time synchronization via extended observers. Int. J. Bifur. Chaos 11, 1997-2006 (2001)
[H13] P. Jouan, Immersion of nonlinear systems into linear systems modulo output injection. SIAM J. Control Optim. 41(6), 1756-1778 (2003)
[H14] H. Keller, Non-linear observer design by transformation into a generalized observer canonical form. Int. J. Control 46(6), 1915-1930 (1987)
[H15] A.J. Krener, A. Isidori, Linearization by output injection and nonlinear observers. Syst. Control Lett. 3(1), 47-52 (1983)
[H16] A.J. Krener, W. Respondek, Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23(2), 197-216 (1985)
[H17] H.G. Lee, Dynamic observer of general nonlinear control systems. J. Electr. Eng. Technol. 16(6), 3275-3287 (2021)
[H18] H.G. Lee, Verifiable conditions for multi-output observer error linearizability. IEEE Trans. Autom. Control 62(9), 4876-4883 (2017)
[H19] H.G. Lee, Verifiable conditions for discrete-time multioutput observer error linearizability. IEEE Trans. Autom. Control 64(4), 1632-1639 (2019)
[H20] H.G. Lee, A. Arapostathis, S.I. Marcus, Necessary and sufficient conditions for state equivalence to a nonlinear discrete-time observer canonical form. IEEE Trans. Autom. Control 53(11), 2701-2707 (2008)
[H21] H.G. Lee, K.D. Kim, H.T. Jeon, Restricted dynamic observer error linearizability. Automatica 53, 171-178 (2015)
[H22] W. Lee, K. Nam, Observer design for autonomous discrete-time nonlinear systems. Syst. Control Lett. 17(1), 49-58 (1991)
[H23] T. Lilge, On observer design for nonlinear discrete-time systems. Eur. J. Control 4, 306-319 (1998)
[H24] W. Lin, C.I. Byrnes, Remarks on linearization of discrete-time autonomous systems and nonlinear observer design. Syst. Control Lett. 25(1), 31-40 (1995)
[H25] D.G. Luenberger, Canonical forms for linear multivariable systems. IEEE Trans. Autom. Control 12(3), 290-293 (1967)
[H26] D. Noh, N.H. Jo, J.H. Seo, Nonlinear observer design by dynamic observer error linearization. IEEE Trans. Autom. Control 49(10), 1746-1750 (2004)
[H27] X.H. Xia, W.B. Gao, Nonlinear observer design by observer error linearization. SIAM J. Control Optim. 27(1), 199-216 (1989)

Index

A

Additive identity, 560
Additive inverse, 560
Algebra, 560, 561
Algebra with identity, 561
Annihilator, 53, 76
Anticommutativity, 20, 562
Anticommutativity or skew-commutative, 564
Approximate linearization, 4, 155
Associative algebra, 561
Associative law, 561
Associativity, 560
Auxiliary dynamics, 350, 440

B

Basis, 555
Bilinear, 20, 562, 564
Binary relation, 60, 76
Boundary, 555
Brunovsky canonical form, $65,67,100,102$, 166, 199, 225, 265, 266, 308

C

Canonical system, 352, 377, 443
Chain rule, 11, 25, 32, 62
Characteristic number, 167, 309
Chart, 559
C^{∞}-compatible, 560
Closed, 553
Closed-loop system, 87, 113, 116, 522
Closed set, 555
Closure, 553, 555

Coarser topology, 555
Commutative algebra, 562
Commutative law, 562
Commutativity, 560
Complement, 553, 555
Completely integrable distribution, 48, 565
Continuous at point $x_{0}, 556$
Continuous function, 556
Controllability condition, 105
Controllable, 65, 158
Coordinate free, 27-29, 335, 378, 417
Countable set, 555
Covector field, 39

D

Decoupled input-output relation, 521
Decoupling matrix, 185, 523-526
Dense subset, 555
Diffeomorphism, 12, 13, 560
Difference equation, 266
Differentiable structure, 560
Differential map, 21, 23, 564
Differential one form, 40
Discrete topology, 554
Distribution, 46, 53, 76, 105, 114, 279, 280, 297, 298
Distributivity, 561
Dual Brunovsky canonical form, 333
Dual Brunovsky NOCF, 333, 337, 338, 340, $341,346,370,373,379,382,383,385$, 391, 396-399, 401, 403, 415, 419, 420, 422, 423, 430
Dynamic Extension Algorithm, 543

Dynamic feedback, $15,224,227,228,252$, 304, 526, 580
Dynamic feedback linearizable, 242
Dynamic feedback linearization, 155, 229, 261, 305
Dynamic input-output decoupling, 522, 527

Dynamic input-output linearization, 225
Dynamic nonlinear observer, 352
Dynamic Observer Error Linearizable (DOEL), 351, 441
Dynamic Extension Algorithm, 531

E

Equivalence class, 60, 79
Equivalence relation, 60
Exact one form, 40
Explicit function, 14
Extended system, 227, 229-231, 236, 237, $251,253,254,304,327,350,352,365$, $367,440,443,447,452,522,525,528$, 532, 533, 535, 536, 540, 541, 545

F

Feedback, 14, 85, 87, 96, 108, 109, 129, 152$154,158,166,184,199,222,227,228$, 265, 266, 308
Feedback equivalence, 63, 65
Feedback linearization, 100-102, 227, 265, 267, 279
Feedback linearization with output, 158, $166,199,266,308,310$
(f,g)-invariant distribution, 115
Field, 17, 21, 39, 560, 561, 563, 564
Frobenius theorem, 48, 105, 127, 565

G

General topology, 554
Generalized Nonlinear Observer Canonical Form (GNOCF), 351, 440, 442-444, 447, 452
g-invariant distribution, 115

H

Hausdorff topological space, 555
Homeomorphic, 559
Homeomorphism, 12, 559

Identity element, 561
Implicit function theorem, 14
Indiscrete topology, 554
Induced topology, 557
Input-output decoupling, 4, 521, 523
Input-output linearization, 182
Interior, 555
Intersection, 555
Inverse function, 12
Inverse function theorem, 13
Involutive, 47, 105, 114, 232, 234, 238, 241, 243, 565
Involutive distribution, 122, 126
Involutivity condition, 105

J

Jacobi identity, 20, 562, 564

K

Kronecker indices, 88, 89, 121, 163, 199, 206, 286, 288

L

Leibniz rule, 19, 563
Lie algebra, 562
Lie bracket, 18
Lie derivative, 18
Limit point, 553
Linear dynamic compensation, 227
Linearity, 19, 562
Linearization with output, 266
Linear Observer Canonical Form (LOCF), 330, 332, 336, 415, 418
Linear space, 560
Local linearization, 86
Luenberger observer, 329

M

Metric, 556
Metric space, 556
Mod, 60

N

Neighborhood, 13, 553, 556
Nonlinear Observer Canonical Form (NOCF), 330, 332
Nonsingular feedback, 100, 102, 113, 116, 223
Nonsingular matrix, 13, 14, 75
Nonsingular state feedback, 15

0

Observability indices, 331, 368
Observable, 332
Observable canonical form, 371
One-form, 40, 53, 76, 327, 331, 368
Open, 553
Open ball, 557
Open interval, 553
Open set, 555
Output Transformation (OT), 330

P

Partial linearization, 155
Product topology, 557

R

RDOEL with index $d, 351,440$
Reachable, 287
Reflexivity, 60, 61, 64
Regular dynamic feedback, 16
Relative degree, 185, 223, 522, 523
Restricted dynamic feedback, 229, 252, 552
Restricted dynamic feedback linearization, 230, 231, 235, 261
Restricted Dynamic Observer Error Linearizable (RDOEL), 351, 355, 359, 365, 366, 440, 441, 443, 447, 452, 453, $459,460,462,463,465,468,478$
Restricted dynamic system, 350, 440

S

Scalar function, 76
Second countable, 555
Skew-commutative, 20, 562
Smooth, 14, 88, 105, 114, 126, 160, 163, 166, 277, 279, 294
Smooth distribution, 46, 48, 564, 565
Smooth manifold, 560
Sphere, 559
State coordinates change, 75
State equivalence, 61, 62
State equivalence to a d-GNOCF with OT, 442
State equivalence to a dual Brunovsky NOCF, 415

State equivalence to a dual Brunovsky NOCF with OT, 333, 370, 415
State equivalence to a linear system, 79, 80
State equivalence to a linear system with output, 158, 265
State equivalence to a LOCF, 332, 415
State equivalence to a NOCF, 332, 369
State equivalent to a linear system, 264
State equivalent to a NOCF, 373
State transformation, 12, 61, 84, 88, 91, 95, $97,108,109,129,152-154,157,158$, $161,165,166,199,222,228,263-266$, 271, 275, 281, 289, 299, 305, 308
Static feedback, $185,523,532,533,535$
Static input-output decoupling, 522
Subset topology, 557
Symmetry, 60

T

Tangent bundle, 563
Tangent space, 563
Tangent vector, 16, 17, 562
Topological manifold, 559
Topological space, 554
Topology, 553
Topology of real numbers, 553
Transitivity, 60

U

Uncountable set, 555
Union, 555
Unit circle, 559
Usual real topology, 555

V

Vector addition, 560
Vector calculus, 9
Vector field, 16, 563
Vector multiplication, 561
Vector space, 560, 563, 564

W

Well-defined distribution, 55, 326
Well-defined vector field, 75, 269-272, 288, 289, 305, 311

[^0]: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
 The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
 The registered company address is: 152 Beach Road, \#21-01/04 Gateway East, Singapore 189721, Singapore

