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Preface

The theory of nonlinear control systems attracts much attention with the recent rapid
development of digital equipment. The linearization problem of a nonlinear control
system is to find the state transformation and feedback such that a nonlinear system
satisfies, in the new state, a linear system equation. It is well known as one of the
effective control techniques if applicable. In addition to linear algebra, differen-
tial geometry is essential to understanding the linearization problems of the control
nonlinear systems. However, according to the author’s experience, the basics of
differential geometry are hard to learn for engineering students. In this book, the
basics of differential geometry and Lie algebra formulas needed in linearization are
explained for the students who are not accustomed to differential geometry. Standard
definitions in differential geometry are also found in the Appendix.

The conditions in the linearization problems are complicated to check because
the Lie bracket calculation of vector fields by hand needs much attention. This book
provides the MATLAB programs for most of the theorems. TheMATLAB programs
in this book might be helpful for further research in nonlinear control problems.

The book’s contents are organized as follows: Chap. 2 gives the mathematical
background for understanding the linearization problem. Conditions of linearization
problems cannot be understood without differential geometry. Chapters 3–6 consider
the continuous-time systems. State equivalence to a linear system (LS) and feedback
linearization are discussed in Chaps. 3 and 4, respectively. In Chap. 5, the state equa-
tion and the output equation are considered for linearization. It is shown, in Chap. 6,
that we can enlarge the class of linearizable systems by using dynamic feedback
instead of static feedback. Chapter 7 deals with the discrete version of Chaps. 3–
5. The conditions for linearization of discrete-time systems are quite different from
those for continuous-time cases. The discrete version of Chap. 6 can also be found,
even though it is omitted in this book. Chapter 8 deals with the observer lineariza-
tion problem. If we find a state transformation that transforms the nonlinear system
into a nonlinear observer canonical form, then a Luenberger-like observer design
is possible. Finally, input-output decoupling is explained in Chap. 9. MATLAB
programs are provided for examples and problems at the end of every chapter. I
like to refer to the book [A3] by A. Isidori and the book [A5] by H. Nijmeijer and
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Chapter 1
Introduction

For the control of complex nonlinear systems such as robots and aircraft, more
advanced control techniques are required. Thus, the theory of nonlinear control sys-
tems has developed rapidly over the past several decades. This book deals with
linearization, one of the significant trends in modern nonlinear control system the-
ory.

1.1 Trends of Nonlinear Control System Theory

Consider the following state equation and output equation of the control system:

ẋ = F(x, u) ; y = h(x, u).

If F(x, u) and h(x, u) are linear functions of state x and control input u, then it is a
linear control system. Otherwise, it is a nonlinear system. For example, system (1.2)
and system (1.3) are nonlinear control systems.

ẋ = Ax + Bu ; y = Cx + Du (1.1)

[
ẋ1
ẋ2

]
=

[
2x1x2 − 2x32 + (1 + 2x2)u

x1 − x22 + u

]
; y = x1 − x22 + x2 (1.2)

[
ẋ1
ẋ2

]
=

[
x2

−2x1 − 2x2 + x21 + x22 + (1 + x21 )u

]
; y = x1 (1.3)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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2 1 Introduction

For linear control system (1.1), it is clear that t ≥ 0,

y(t) = CeAt x(0) +
∫ t

0
CeA(t−τ)Bu(τ )dτ + Du(t) (1.4)

and the transfer function G(s) can be defined such that Y (s) = G(s)U (s). For a
nonlinear system, y(t) cannot be expressed in the closed-form, such as (1.4). Instead,
it can be expressed as a series, called the Volterra series (See (5.66)). The transfer
function cannot even be defined. Thus, the nonlinear systems are more complicated
to analyze and control than the linear systems. The classical method of controlling a
nonlinear system is the first-order approximate linearization (See Sect. 1.2.) In other
words, the linear system can be obtained by ignoring all terms above the second
order in the Taylor series of F(x, u) about the nominal trajectory. In other words, if
the nominal trajectory of system (1.2) is the origin, the system can be linearized, by
ignoring 2x1x2, −2x32 , 2x2u, −x22 , and −x22 , as follows:

[
ẋ1
ẋ2

]
=

[
0 0
1 0

] [
x1
x2

]
+

[
1
1

]
u

y = [
1 1

] [
x1
x2

]

If the nominal trajectory of system (1.3) is the origin, the system (1.3) can also be
linearized approximately, by ignoring x21 , x

2
2 , and x21u, as follows:

[
ẋ1
ẋ2

]
=

[
0 1

−2 −2

] [
x1
x2

]
+

[
0
1

]
u

y = [
1 0

] [
x1
x2

]

One of the nonlinear control research trends is to extend the results for the lin-
ear systems to the nonlinear systems. For example, the input-output decoupling (or
diagonalization) problem has been considered for the linear system. Suppose that
the number of the outputs and the inputs are the same. If the transfer function is a
diagonal matrix, each output can be controlled independently.

Example 1.1.1 Consider the following MIMO linear system:

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ 0 1 0

−2 −3 −4
0 0 −3

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦ +

⎡
⎣0 0
1 0
0 1

⎤
⎦ [

u1
u2

]
= Ax + Bu

[
y1
y2

]
=

[
1 0 0
0 0 1

] ⎡
⎣x1
x2
x3

⎤
⎦ = Cx
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Find out a nonsingular linear feedback such that the transfer function matrix of the
closed-loop system is a diagonal matrix.

Solution It is easy to see that ẏ1 = x2

[
ÿ1
ẏ2

]
=

[−2 −3 −4
0 0 −3

] ⎡
⎣x1
x2
x3

⎤
⎦ +

[
1 0
0 1

] [
u1
u2

]

and

G(s) = C(s I − A)−1B =
[ 1
s2+3s+2

−4
(s2+3s+2)(s+3)

0 1
s+3

]
.

If we let

[
u1
u2

]
=

[
2 3 4
0 0 3

] ⎡
⎣x1
x2
x3

⎤
⎦ +

[
v1
v2

]
= Fx + Gv

then we have that
[
ÿ1
ẏ2

]
=

[
v1
v2

]

or

Y (s) = Gc(s)V (s) =
[ 1
s2 0
0 1

s

]
V (s).

�

Example 1.1.2 Consider the following MIMO nonlinear system:

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2
x21 + u1 + u2
(1 + x22 )u2

⎤
⎦ ;

[
y1
y2

]
=

[
x1
x3

]
.

Find out the nonsingular feedback u = γ (x, v), such that

[
ÿ1
ẏ2

]
=

[
v1
v2

]
.

Solution It is easy to see that ẏ1 = x2 and
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[
ÿ1
ẏ2

]
=

[
x21
0

]
+

[
1 1
0 1 + x22

] [
u1
u2

]
=

[
v1
v2

]
.

Therefore, it is clear that

[
u1
u2

]
= −

[
1 1
0 1 + x22

]−1 [
x21
0

]
+

[
1 1
0 1 + x22

]−1 [
v1
v2

]

=
[−x21

0

]
+

[
1 − 1

1+x22
0 1

1+x22

] [
v1
v2

]
= γ (x, v).

�

Example1.1.2 is the nonlinear version of Example1.1.1. In other words, the non-
linear version of the input-output decoupling problem can be defined. (See Chap.9.)
Similarly, many researchers have studied the nonlinear version of controllability,
observability, noninteracting control, disturbance decoupling, controlled invariant
distribution, adaptive control, optimal control, etc.

Another research trend is feedback linearization, which transforms a nonlinear
system into a linear system using nonlinear state transformation and feedback. If a
given nonlinear system is feedback linearizable, it is possible to use a well-developed
linear system theory to control the nonlinear system. Thus, the feedback linearization
problem has attracted tremendous interest from many researchers. In Sect. 1.3, the
linearization problems are briefly introduced.

1.2 Approximate Linearization of the Nonlinear Systems

In this section, the classical approximate linearizationmethod is introduced.Consider
the following nonlinear control system:

dx(t)

dt
= f (x(t), u(t)), x ∈ R

n, u ∈ R
m (1.5)

Suppose that the nominal trajectory x0(t) and nominal input u0(t) satisfies

ẋ0(t) = f (x0(t), u0(t)) ; x0(0) = x(0). (1.6)

If we expand the right-hand side of (1.5) into a Taylor series about (x0(t), u0(t)),
then we have
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dx(t)

dt
= f (x0(t), u0(t)) + ∂ f

∂x

∣∣∣∣ x=x0(t)
u=u0(t)

(x(t) − x0(t))

+ ∂ f

∂u

∣∣∣∣ x=x0(t)
u=u0(t)

(u(t) − u0(t)) + · · ·
(1.7)

Let

�x(t) � x(t) − x0(t) ; �u(t) � u(t) − u0(t). (1.8)

If ‖�x(t)‖ and ‖�u(t)‖ are very small, then it is clear, by Taylor Theorem, that

d

dt
(�x(t)) = ẋ(t) − ẋ0(t)

∼= ∂ f

∂x

∣∣∣∣ x=x0(t)
u=u0(t)

�x(t) + ∂ f

∂u

∣∣∣∣ x=x0(t)
u=u0(t)

�u(t)

� A(t)�x(t) + B(t)�u(t).

(1.9)

Example 1.2.1 Find a nominal trajectory x0(t), which is the solution to system

(1.3) with initial conditions x0(0) =
[
0
0

]
and input u0(t) = 0, t ≥ 0. Also, linearize

system (1.3) about the nominal trajectory x0(t) and nominal input u0(t).

Solution Omitted. �

Example 1.2.2 Find a nominal trajectory x0(t) and input u0(t), which is the solution

to system (1.3)with initial conditions x0(0) =
[
1
1

]
.Also, linearize system (1.3) about

the nominal trajectory x0(t) and nominal input u0(t).

Solution Omitted. �

In Example1.2.2, it is not easy to find the nominal trajectory for the first-order
approximation linearization. Besides, if the state is far from the nominal trajectory,
the approximation becomes inaccurate, and the new approximation equation about
the new nominal trajectory must be obtained for accurate control.

1.3 Exact Linearization of the Nonlinear Systems

In the previous section, we studied the approximate linearization. This section
introduces the exact linearization problem. This method has been defined in the
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early 80s and has attracted much attention. For example, if we consider nonlin-
ear control system (1.3), then the closed-loop system with nonlinear state feedback

u = − x21+x22
1+x21

+ 1
1+x21

v satisfies the following linear system equation:

[
ẋ1
ẋ2

]
=

[
0 1

−2 −2

] [
x1
x2

]
+

[
0
1

]
v.

The above equation is not an approximation, but an exact one. In other words, nonlin-
ear feedback could eliminate some nonlinear terms of the state equation. However,
for nonlinear control system (1.2), there is no feedback to remove all the nonlinear
terms. Another way to linearize a nonlinear system is to use a nonlinear coordinate
transformation. To understand this, consider the following example.

Example 1.3.1 Consider the following linear system:

[
ż1
ż2

]
=

[
0 0
1 0

] [
z1
z2

]
+

[
1
1

]
u (1.10)

Let us define nonlinear state transform x = S(z) by

[
x1
x2

]
= S(z) =

[
z1 + z22

z2

]
or z = S−1(x) =

[
x1 − x22

x2

]
. (1.11)

Show that the new state x satisfies Eq. (1.2).

Solution It is easy to see that

ẋ1 = ż1 + 2z2 ż2 = u + 2z2(z1 + u) = 2x1x2 − 2x32 + (1 + 2x2)u

and

ẋ2 = ż2 = z1 + u = x1 − x22 + u.

Thus, we have

[
ẋ1
ẋ2

]
=

[
2x1x2 − 2x32
x1 − x22

]
+

[
1 + 2x2

1

]
u.

�

As shown in Example1.3.1, when the nonlinear coordinate transformation of
Eq. (1.11) is applied to linear system (1.10), the system becomes nonlinear system
(1.2) in the new coordinate system. In other words, when the nonlinear coordinate
transformation of Eq. (1.11) is applied to nonlinear system (1.2), the system becomes
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linear system (1.10) in the new coordinate system. Thus, nonlinear system (1.2) is
linearizable by a state transformation.

So far, it has been shown that nonlinear feedback and nonlinear state transforma-
tion can be used to linearize nonlinear systems. Linearization techniques, if appli-
cable, are known to be very powerful techniques for developing effective control
laws for nonlinear systems. Several linearization problems can be defined. These are
discussed in turn, starting with the linearization by state transformation. The next
chapter introduces basicmathematics necessary to understand linearization problems
and conditions. Chapter2 would be useful not only for linearization theory, but also
for other fields of nonlinear control system theory.



Chapter 2
Basic Mathematics for Linearization

2.1 Vector Calculus

We define the partial derivative of scalar function h(x) = h(x1, . . . , xn) with respect

to vector variable x =
⎡
⎢⎣
x1
...

xn

⎤
⎥⎦ by

∂h(x)

∂x
�

[
∂h(x)
∂x1

. . . ∂h(x)
∂xn

]
. (2.1)

In other words, ∂h(x)
∂x is a 1 × n matrix. Then it is easy to see that for scalar functions

h(x) and η(x)

∂{h(x)η(x)}
∂x

= η(x)
∂h(x)

∂x
+ h(x)

∂η(x)

∂x
. (2.2)

Example 2.1.1 Let x = [
x1 · · · xn

]T
. Suppose that C and A are 1 × n constant

matrix and n × n constant matrix, respectively. Show that

(a) ∂
∂x (Cx) = C

(b) ∂
∂x (x

TCT) = C
(c) ∂

∂x

(
xTAx

) = xT(AT + A).

Solution Omitted. (Problem 2-1, 4.) �

With (2.1), the derivative with respect to a vector variable can be expressed as
simple as the derivative with respect to a scalar variable, as shown in (a) of the above
example. However, (b) and (c) require some care. We can also define the partial
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derivative of m × 1 column vector function h(x) =
⎡
⎢⎣
h1(x)

...

hm(x)

⎤
⎥⎦ with respect to vector

variable x = [
x1 · · · xn

]T
by

∂h(x)

∂x
�

⎡
⎢⎣

∂h1(x)
∂x
...

∂hm (x)
∂x

⎤
⎥⎦ =

⎡
⎢⎣

∂h1(x)
∂x1

. . . ∂h1(x)
∂xn

...
. . .

...
∂hm (x)

∂x1
. . . ∂hm (x)

∂xn

⎤
⎥⎦ .

Example 2.1.2 Let x = [
x1 · · · xn

]T
. Suppose that h(x) is a scalar matrix. Show

that ∂
∂x

(
∂h(x)
∂x

)T
is a symmetric n × n matrix.

Solution Omitted. (Problem 2-2.) �

Example 2.1.3 Let x = [
x1 · · · xn

]T
. Suppose that b(x) and c(x) are 1 × m matrix

and m × 1 matrix, respectively. Show that

∂

∂x
{b(x)c(x)} = c(x)T

∂b(x)T

∂x
+ b(x)

∂c(x)

∂x
. (2.3)

Solution Omitted. (Problem 2-3.) �

Example 2.1.4 Let x = [
x1 · · · xn

]T
. Suppose that A(x) and b(x) are q × m matrix

and m × 1 matrix, respectively. Show that

∂

∂x
(A(x)b(x)) =

⎡
⎢⎢⎣
b(x)T ∂A1(x)T

∂x
...

b(x)T ∂Aq (x)T

∂x

⎤
⎥⎥⎦ + A(x)

∂b(x)

∂x
(2.4)

where Ai (x) is the i th row of A(x).

Solution Omitted. (Problem 2-5.) �

To define the partial differentiation of a matrix function with respect to a vector
variable, it is difficult to effectively arrange it on two-dimensional paper. In this case,
the Kronecker product ⊗ can be used. Let

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1q B
a21B a22B · · · a2q B

...
... · · · ...

ap1B ap2B · · · apq B

⎤
⎥⎥⎥⎦
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where ai j is (i, j) element of p × q matrix A and B is am × n matrix. Similarly, we
can define ∂B

∂A by

∂B

∂A
=

⎡
⎢⎢⎢⎢⎣

∂
∂a11

B ∂
∂a12

B · · · ∂
∂a1q

B
∂

∂a21
B ∂

∂a22
B · · · ∂

∂a2q
B

...
... · · · ...

∂
∂ap1

B ∂
∂ap2

B · · · ∂
∂apq

B

⎤
⎥⎥⎥⎥⎦

(mp)×(nq)

.

Theorem 2.1 (Chain rule) Suppose that f (x) : Rn → R
m and g(y) : Rm → R

� are
smooth functions. Then the derivative of the composite function satisfies

∂(g ◦ f )(x)

∂x
= ∂g( f (x))

∂x
= ∂g(y)

∂y

∣∣∣∣
y= f (x)

∂ f (x)

∂x
.

For example, if S(x) : Rn → R
n and x(t) : R → R

n , then it is clear, by chain
rule, that

dS(x(t))

dt
= ∂S(x)

∂x

dx(t)

dt
=

n∑
i=1

∂S(x)

∂xi

dxi (t)

dt
.

Example 2.1.5 (a) Find out d
dx (e

x2).

(b) Find out ∂g( f (x))
∂x , where g(y) =

[
ey1 cos y3
y2 sin y1

]
and f (x) =

⎡
⎣

x21
x1 + x2
ex3

⎤
⎦.

Solution (a) d
dx e

x2 = dey

dy

∣∣∣
y=x2

d
dx x

2 = 2xex
2
.

(b) Since

∂g(y)

∂y
=

[
ey1 cos y3 0 −ey1 sin y3
y2 cos y1 sin y1 0

]
; ∂ f (x)

∂x
=

⎡
⎣
2x1 0 0
1 1 0
0 0 ex3

⎤
⎦

we have, by chain rule, that

∂g( f (x))

∂x
= ∂g(y)

∂y

∣∣∣∣
y= f (x)

∂ f (x)

∂x

=
[

2x1ex
2
1 cos(ex3) 0 −ex3+x21 sin(ex3)

2x1(x1 + x2) cos(x21 ) + sin(x21 ) sin(x
2
1 ) 0

]
.

�
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2.2 State Transformation

In short, a state coordinate change is differentiable bijective (1-1 and onto) func-
tion z = S(x) : Rn → R

n . Thus, inverse function x = S−1(z) exists. We can assume
without loss of generality that S(0) = 0, if necessary. The precise definition of state
transformation is given in Definition2.4.

Definition 2.1 (Cr and C∞)

(a) A function S(x) : U ⊂ R
n → R defined on an open setU of Rn is said to be of

class C0 if it is continuous onU . A function S(x) : U ⊂ R
n → R

m is said to be
of class C0 if Si (x) is of class C0 for 1 ≤ i ≤ m.

(b) Let r be a positive integer. A function S(x) : U ⊂ R
n → R defined on an open

set U of Rn is said to be of class Cr (or r -times continuously differentiable) on
U if all partial derivatives

∂λS(x)

∂xλ1
1 ∂xλ2

2 · · · ∂xλn
n

exist and are continuous on U , for every λ1, λ2, . . . , λn nonnegative integers,
such that λ = λ1 + λ2 + · · · + λn ≤ r . A function S(x) : U ⊂ R

n → R
m is said

to be of class Cr if Si (x) is of class Cr for 1 ≤ i ≤ m.
(c) A function S(x) : U ⊂ R

n → R
m defined on an open set U of Rn is said to be

of class C∞, or smooth, onU if S(x) is of class Cr onU for all positive integer
r .

Definition 2.2 (homeomorphism) A function S(x) : U ⊂ R
n → R

n defined on an
open setU ofRn is said to be a homeomorphism if S(x) is bijective (or 1-1 and onto)
and functions S(x) and S−1(z) : S(U ) → R

n are continuous (or of class C0).

Definition 2.3 (diffeomorphism) A function S(x) : U ⊂ R
n → R

n defined on an
open setU of Rn is said to be a diffeomorphism if S(x) is bijective (or 1-1 and onto)
and functions S(x) and S−1(z) : S(U ) → R

n are smooth (or of class C∞).

Definition 2.4 (state transformation) A function S(x) : U ⊂ R
n → R

n defined on
an open set U of Rn is said to be a state transformation on U (⊂ R

n) if S(x) is a
diffeomorphism.

For example
[
z1
z2

]
= S(x) =

[
x1 + x2

x2

]
=

[
1 1
0 1

] [
x1
x2

]
and

[
z1
z2

]
= S(x) =

[
x1 + x22

x2

]

are state transformations on R
2.

Example 2.2.1 (Similarity Transformation) Consider the following linear system:

ẋ = Ax + Bu ; y = Cx (2.5)

Suppose that state transformation z = S(x) = P−1x is linear. Show that system (2.5)
satisfies, in z-coordinates, a new linear system equation.
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Solution It is easy to see that

ż = P−1 ẋ = P−1(Ax + Bu) = P−1APz + P−1Bu

� Ãz + B̃u.

and

y = Cx = CPz = C̃z.

�

In the linear system theory, the linear state transformation (or similarity transfor-
mation) of Example2.2.1 is used to transform system (2.5) into various canonical
forms such as controllable canonical form (CCF), observable canonical form (OCF),
Jordan canonical form (JCF), etc.

An open setU (⊂ R
n) is said to be a neighborhood of a point p(∈ R

n), if p ∈ U .

It is easy to see that z = S(x) = [
x1 + x22 x2

]T
is invertible and thus it is a state

transformation. But, it is not easy to see whether z = S(x) = [
x1 + x22 x2 + x21

]T
is

an invertible function (or local state transformation) or not. The following theorem
gives the condition for a smooth function to be invertible on a neighborhood of a
point.

Theorem 2.2 (inverse function theorem) Suppose that S(x) : Rn → R
n is a smooth

function. If ∂S(x)
∂x

∣∣∣
x=a

is a nonsingular matrix, then there exists a neighborhood U of

a such that S(x) : U → S(U ) is a diffeomorphism.

Theorem2.2 means that if det
(

∂S(x)
∂x

∣∣∣
x=a

)
	= 0, smooth function z = S(x) is a

local state transformation (or diffeomorphism) on a neighborhood of x = a.

Example 2.2.2 Show that z = S(x) =
[
x1 + 1

2 x
2
2

x2 + 1
2 x

2
1

]
is a local state transformation

on a neighborhood of the origin.

Solution Note that

det

(
∂S(x)

∂x

∣∣∣∣
x=0

)
= det

([
1 0
0 1

])
= 1

which implies, by inverse function theorem, that z = S(x) is a local state transfor-
mation (or diffeomorphism) on a neighborhood of the origin. �

Example 2.2.3 Show that

[
z1
z2

]
= S(x) =

[
ex1 cos x2
ex1 sin x2

]
is a local state transforma-

tion. Is it a global state transformation?
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Solution Note that

det

(
∂S(x)

∂x

)
= det

([
ex1 cos x2 −ex1 sin x2
ex1 sin x2 ex1 cos x2

])
= e2x1 	= 0

which implies, by inverse function theorem, that z = S(x) is a local state transforma-
tion.But, since z = S(x) is not injective in the entire region (S([0 0]T) = S([0 2π ]T)),
it is not a global state transformation. �

Theorem 2.3 (implicit function theorem) Suppose that f (x, y) : Rn+m → R
m is a

smooth function with f (x0, y0) = 0. If ∂ f (x,y)
∂y

∣∣∣
(x,y)=(x0,y0)

is a m × m nonsingular

matrix, then there exist a neighborhood V (⊂ R
n) and a unique smooth function

g(x) : V → R
m such that g(x0) = y0 and

f (x, g(x)) = 0, for all x ∈ V .

Given implicit equation f (x, y) = Om×1, y ∈ R
m , implicit function theorem

gives the condition for the existence of explicit function y = g(x).

2.3 Nonsingular State Feedback

In this book, we consider the following nonlinear systems:

ẋ = F(x, u) ; y = h(x) (2.6)

and

ẋ = f (x) + g(x)u ; y = h(x) (2.7)

where x ∈ R
n , u ∈ R

m , and y ∈ R
q . Also, we assume that F(x, u), f (x), g(x), and

h(x) are smooth functions with F(0, 0) = 0, f (0) = 0, and h(0) = 0. In this book,
we assume that (0, 0) is the equilibrium point of the system. System (2.7) is said
to be an affine system. F(x, u), f (x), and g(x) are said to be vector fields. (See
the next section.) The solution of differential equation (2.6) depends on the vector
field F(x, u) and the initial state x(0). Vector field F(x, u) can be changed by state
feedback u = γ (x, v), where v(∈ R

m) is the new input.We assume that γ (0, 0) = 0,
so that (0, 0) is the equilibrium point of the closed-loop system. With state feedback
u = γ (x, v), we have the closed-loop system

ẋ = F(x, γ (x, v)) � F̄(x, v).
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State feedback

u = α(x) + β(x)v; α(0) = 0

is said to be an affine feedback. For affine system (2.7), we have, with affine state
feedback u = α(x) + β(x)v, the affine closed-loop system

ẋ = f (x) + g(x)α(x) + g(x)β(x)v � f̄ (x) + ḡ(x)v.

Consider
⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣
x2
x3
0

⎤
⎦ +

⎡
⎣
1 + x21
1 + x22
1 + x23

⎤
⎦ u

If we let state feedback u = α(x) + β(x)v = 0, then it is clear that the closed-loop
system is linear. However, we cannot control the closed-loop system. Therefore, the
nonsingular (or regular) state feedback is used in this book.

Definition 2.5 (nonsingular state feedback) A state feedback u = α(x) + β(x)v (or
u = γ (x, v)) is said to be nonsingular if

rank (β(0)) = rank
(
β(0)−1

) = m

(
or rank

(
∂γ (x, v)

∂v

∣∣∣∣
(0,0)

)
= rank

(
∂γ (x, v)

∂v

∣∣∣∣
(0,0)

−1
)

= m

)
.

For system (2.7), if we consider the dynamic feedback

u = c(x, z) + d(x, z)v

ż = a(x, z) + b(x, z)v
(2.8)

then we have the extended system

ẋE =
[
ẋ
ż

]
=

[
f (x) + g(x)c(x, z)

a(x, z)

]
+

[
g(x)d(x, z)
b(x, z)

]
v

= fE (xE ) + gE (xE )v.

(2.9)

where z ∈ R
d and xE =

[
x
z

]
.
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Definition 2.6 (regular dynamic feedback) A dynamic feedback (2.8) is said to be
regular if the extended system (2.9) with output u = c(x, z) + d(x, z)v is dynamic
input-output decouplable (Refer to Chap.9 for dynamic i-o decoupling).

The regular dynamic state feedback is considered in Chap.6 for dynamic feedback
linearization.

2.4 Vector Field and Tangent Vector

In this section, vector field and tangent vector on subsets of Euclidean space will be
studied. Vector field and tangent vector on manifolds can be found in Appendix. The
right-hand side of the state equation in (2.7) is called a vector field on R

n . Suppose
that U be an open subset of Rn . A function f : U (⊂ R

n) → R is said to belong to
C∞(U ), if f is C∞ (or smooth). In other words, C∞(U ) is the set of all smooth
scalar functions on U .

Definition 2.7 (smooth vector field on Euclidean space) A vector-valued function

f : U (⊂ R
n) → R

n is said to be a smooth vector field on U , if f (x) =
⎡
⎢⎣
f1(x)

...

fn(x)

⎤
⎥⎦

and fi ∈ C∞(U ) for 1 ≤ i ≤ n.

Suppose that x � [x1 x2 · · · xn]T is a Cartesian coordinate system of Rn . Then a
vector field f (x) can be expressed by

f (x) =

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...

fn(x)

⎤
⎥⎥⎥⎦ = f1(x)

∂

∂x1
+ f2(x)

∂

∂x2
+ · · · + fn(x)

∂

∂xn

where

∂

∂x1
�

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ ,

∂

∂x2
�

⎡
⎢⎢⎢⎣

0
1
...

0

⎤
⎥⎥⎥⎦ , · · · , and

∂

∂xn
�

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦ .

For system (2.7), f (x), g(x), and f (x) + g(x)u are smooth vector fields on R
n ,

if f (x) and g(x) are smooth functions on R
n . Addition of vector fields and scalar

multiplication are defined by
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⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...

fn(x)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

g1(x)
g2(x)

...

gn(x)

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

f1(x) + g1(x)
f2(x) + g2(x)

...

fn(x) + gn(x)

⎤
⎥⎥⎥⎦ (2.10)

and

r(x)

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...

fn(x)

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

r(x) f1(x)
r(x) f2(x)

...

r(x) fn(x)

⎤
⎥⎥⎥⎦ , ∀ r(x) ∈ C∞(Rn). (2.11)

Example 2.4.1 Show that the set of all smooth vector fields on Rn is a vector space
over field R.

Solution Omitted. (Problem 2-9.) �

Example 2.4.2 Consider the following control system:

[
ẋ1
ẋ2

]
=

[−x2
x1

]
= f (x)

Let x(0) =
[
1
0

]
. Then it is easy to see that x(t) =

[
cos t
sin t

]
and dx(t)

dt =
[− sin t
cos t

]
.

Note that x( π
4 ) =

[
1√
2
1√
2

]
and

dx(t)

dt

∣∣∣∣
t=0

=
[
0
1

]
= f

([
1
0

]) ; dx(t)

dt

∣∣∣∣
t= π

4

=
[− 1√

2
1√
2

]
= f

([
1√
2
1√
2

])
.

Thus, f (x̄) is a tangent vector of solution curve x(t) at point x = x̄(∈ R
2) (See

Fig. 2.1).

Given smooth vector field f (x) on R
n

f (x̄) = [ f1(x̄) f2(x̄) · · · fn(x̄)]T =
n∑

i=1

fi (x̄)
∂

∂xi

∣∣∣∣
x̄

is said to be a tangent vector at point x̄(∈ R
n) that is a vector starting at point p. The

vector at Rn has a magnitude and direction. The tangent vector at point x̄(∈ R
n) is a

vector starting at point x̄ . If x̄ 	= x̂ , then f (x̄) + f (x̂) can not be defined or required.
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Fig. 2.1 Tangent vectors of
Example2.4.2

Suppose that f (x) and g(x) are smooth vector fields on R
n . Also, let h(x) ∈

C∞(Rn). The following two operations (Lie bracket and Lie derivative) will be used
very often in this book.

Definition 2.8 (Lie bracket) The Lie bracket of vector field f (x) and vector field
g(x) is defined by

[ f (x), g(x)] � ∂g(x)

∂x
f (x) − ∂ f (x)

∂x
g(x). (2.12)

Definition 2.9 (Lie derivative) The Lie derivative of scalar function h(x) with
respect to vector field f (x) is defined by

L f (x)h(x) � ∂h(x)

∂x
f (x) =

n∑
i=1

fi (x)
∂h(x)

∂xi
. (2.13)

In engineering mathematics, it is learned that the directional derivative of h(x)

at x = p in the direction of f (p) is given by
{

1
‖ f (x)‖ L f h(x)

}∣∣∣
x=p

. It is clear, by

Definition2.8, that

[ f (x), f (x)] = 0 and [ f (x), 0] = 0.

For simplicity, we use 0 instead of On×1. Also, if b1 and b2 are constant vector fields
on Rn , it is clear that

[b1, b2] = 0. (2.14)
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For ∀h(x), β(x) ∈ C∞(Rn), it is easy to see that

L f (x)+g(x)h(x) = L f (x)h(x) + Lg(x)h(x) (2.15)

Lβ(x)g(x)h(x) = β(x)Lg(x)h(x). (2.16)

∂ f (x)
∂x can be calculated via jacobian(f,x) or diff(·,·) of Matlab program. Thus, Lie

bracket [ f (x), g(x)] and Lie derivative L f h(x) can also be easily calculated by
Matlab program (See adfg(f,g,x) and Lfh(f,h,x) in AppendixC).

Example 2.4.3 Let h(x) = x1x2, f (x) =
[
x2
1

]
, and g(x) =

[
1
x1

]
. Find out [ f (x), g(x)] and

L f h(x).

Solution

[ f (x), g(x)] = ∂g(x)

∂x
f (x) − ∂ f (x)

∂x
g(x)

=
[
0 0
1 0

] [
x2
1

]
−

[
0 1
0 0

] [
1
x1

]
=

[−x1
x2

]

and

L f h(x) = ∂h(x)

∂x
f (x) = [

x2 x1
] [x2

1

]
= x22 + x1.

�
Example 2.4.4 Let h1(x), h2(x) ∈ C∞(Rn). Show the following:

(a) linearity

L f {r1h1(x) + r2h2(x)} = r1L f h1(x) + r2L f h1(x), ∀r1, r2 ∈ R

(b) Leibniz rule

L f {h1(x)h2(x)} = h2(x)L f h1(x) + h1(x)L f h2(x).

Solution It is clear, by (2.2), that

L f {h1(x)h2(x)} = ∂ {h1(x)h2(x)}
∂x

f =
(
h2(x)

∂h1(x)

∂x
+ h1(x)

∂h2(x)

∂x

)
f (x)

= h2(x)L f h1(x) + h1(x)L f h2(x).

�
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Example 2.4.5 Use Example2.1.3 to show that for all h(x) ∈ C∞(Rn)

L [ f,g]h(x) = L f Lgh(x) − LgL f h(x). (2.17)

Solution

L f Lgh(x) − LgL f h(x) = L f

(
∂h

∂x
g

)
− Lg

(
∂h

∂x
f

)

= ∂

∂x

(
∂h

∂x
g

)
f − ∂

∂x

(
∂h

∂x
f

)
g

=
(
gT

∂

∂x

(
∂h

∂x

)T

+ ∂h

∂x

∂g

∂x

)
f −

(
f T

∂

∂x

(
∂h

∂x

)T

+ ∂h

∂x

∂ f

∂x

)
g

= (
gThxx f − f Thxx g

) + ∂h

∂x

(
∂g

∂x
f − ∂ f

∂x
g

)

= ∂h(x)

∂x
[ f (x), g(x)] = L [ f,g]h(x)

where hxx � ∂
∂x

(
∂h
∂x

)T = hTxx . �

The relation in (2.17) is used very often in this book. In fact, it is used as the
definition of Lie bracket [ f (x), g(x)] for the vector fields on manifolds. (See (B.1)
in Appendix.)

Example 2.4.6 Suppose that f (x), g(x), and τ(x) are smooth vector fields on R
n .

Show the following:

(a) bilinear

[r1 f (x) + r2g(x), τ (x)] = r1 [ f (x), τ (x)] + r2 [g(x), τ (x)] , ∀r1, r2 ∈ R

[τ(x), r1 f (x) + r2g(x)] = r1 [τ(x), f (x)] + r2 [τ(x), g(x)] , ∀r1, r2 ∈ R

(b) anticommutativity or skew-commutative

[ f (x), g(x)] = − [g(x), f (x)]

(c) Jacobi identity

[ f (x), [g(x), τ (x)]] + [g(x), [τ(x), f (x)]] + [τ(x), [ f (x), g(x)]] = 0
(2.18)
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Solution It is obvious that (a) and (b) are satisfied. Note that if L f h(x) = 0 for
∀h(x) ∈ C∞(Rn), then fi (x) = L f xi = 0 for 1 ≤ i ≤ n or f (x) = 0. It is easy, by
(2.15) and (2.17), to show that for ∀h(x) ∈ C∞(Rn)

L [ f,[g,τ ]]+[g,[τ, f ]]+[τ,[ f,g]]h = L [ f,[g,τ ]]h + L [g,[τ, f ]]h + L [τ,[ f,g]]h

= L f L [g,τ ]h − L [g,τ ]L f h + LgL [τ, f ]h − L [τ, f ]Lgh + Lτ L [ f,g]h − L [ f,g]Lτh

= L f LgLτh − L f Lτ Lgh − LgLτ L f h + Lτ LgL f h + LgLτ L f h − LgL f Lτh

− Lτ L f Lgh + L f Lτ Lgh + Lτ L f Lgh − Lτ LgL f h − L f LgLτh + LgL f Lτh

= 0.

Therefore, (2.18) is satisfied. Of course, (2.18) can also be shown directly by using
(2.4) and (2.12) (See Problem 2-11). For example

[τ, [ f, g]] =
[
τ,

(
∂g

∂x
f − ∂ f

∂x
g

)]
= ∂

∂x

(
∂g

∂x
f − ∂ f

∂x
g

)
τ − ∂τ

∂x

(
∂g

∂x
f − ∂ f

∂x
g

)

=
⎡
⎢⎣
f T(g1)xxτ

...

f T(gn)xxτ

⎤
⎥⎦ + ∂g

∂x

∂ f

∂x
τ −

⎡
⎢⎣
gT( f1)xxτ

...

gT( fn)xxτ

⎤
⎥⎦ − ∂ f

∂x

∂g

∂x
τ − ∂τ

∂x

(
∂g

∂x
f − ∂ f

∂x
g

)
.

�

It is easy, by Examples2.4.1 and 2.4.6, to show that the set of all smooth vector
fields on R

n is a Lie algebra over field R. The set of all n × n real matrices is a
(linear) algebra over field R. Lie algebra can be used in the nonlinear system theory,
whereas linear algebra can be used in the linear system theory.

Definition 2.10 (differential map of tangent vector) Suppose that z = S(x) : Rn →
R

m is a smooth function. Differential map S∗ of z = S(x) is a linear map from the set
of tangent vectors at x0 in Rn to the set of tangent vectors at z0(= S(x0)) in Rm .The
differential map S∗( f (x0)) of tangent vector f (x0) is defined by

S∗( f (x0)) = ∂S

∂x

∣∣∣∣
x0

f (x0).

Example 2.4.7 Let z = S(x) =
[

x1
(1 + x1)x2 + 2x3

]
, f (x) =

⎡
⎣
1
0
x2

⎤
⎦, and g(x) =

⎡
⎣
0
1
x1

⎤
⎦. Find the tangent vectors S∗( f (x0)), S∗( f (x1)), S∗(g(x0)), and S∗(g(x1)),

where x0 =
⎡
⎣
1
1
0

⎤
⎦ and x1 =

⎡
⎣
1
0
1

⎤
⎦.
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Solution Note that z0 = S(x0) = S(x1) =
[
1
2

]
. Thus, S∗( f (x0)), S∗( f (x1)),

S∗(g(x0)), and S∗(g(x1)) are tangent vectors at z =
[
1
2

]
∈ R

2.

S∗( f (x0)) = ∂S

∂x

∣∣∣∣
x=x0

f (x0) =
[
1 0 0
1 2 2

]⎡
⎣
1
0
1

⎤
⎦ =

[
1
3

]

= ∂

∂z1

∣∣∣∣[ 1
2

] + 3
∂

∂z2

∣∣∣∣[ 1
2

]

Similarly, it is easy to see that

S∗( f (x1)) =
[
1
0

]
, S∗(g(x0)) =

[
0
4

]
, and S∗(g(x1)) =

[
0
4

]
.

�

Definition 2.11 (well-defined vector field of differential map) Suppose that smooth
function z = S(x) : Rn → R

m is surjective (or onto). Let f (x) is a vector field on
R

n . S∗( f (x)) is said to be a well-defined vector field onRm , if S∗( f (x)) = S∗( f (x̄))
whenever S(x) = S(x̄).

It is easy to see that if z = S(x) : Rn → R
n is a state transformation (or dif-

feomorphism), then f̃ (z) � S∗( f (x)) is a well-defined vector field on R
n . By

Definition2.11, S∗( f (x)) in Example2.4.7 is not a well-defined vector field on R
2,

whereas S∗(g(x)) in Example2.4.7 might be a well-defined vector field on R2. (See
Fig. 2.2.) If S(x) is surjective andm < n, there exists a constant (n − m) × n matrix

A such that

[
∂S
∂x

∣∣
x=0
A

]
is an invertible matrix. Thus, if we let

z̄ �
[
z
z̃

]
=

[
S(x)
S̃(x)

]
�

[
S(x)
Ax

]
� S̄(x) (2.19)

then it is clear, by Theorem2.2, that z̄ = S̄(x) has an inverse function x = S̄−1(z̄)

locally. In Example2.4.7, if we let z̄ �
[
z
z̃1

]
=

[
S(x)
x3

]
= S̄(x), then we have that

x = S̄−1(z̄) =
[
z1

z2−2z̃1
1+z1

z̃1
]T
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Fig. 2.2 S∗( f (x)) of Example2.4.7

∂S

∂x
f (x)

∣∣∣∣
x=S̄−1(z̄)

=
[
1 0 0
x2 1 + x1 2

]⎡
⎣
1
0
x2

⎤
⎦
∣∣∣∣∣∣
x=S̄−1(z̄)

=
[
1
3x2

]∣∣∣∣
x=S̄−1(z̄)

=
[

1
3z2−6z̃1
1+z1

]

and

∂S

∂x
g(x)

∣∣∣∣
x=S̄−1(z̄)

=
[

0
1 + 3x1

]∣∣∣∣
x=S̄−1(z̄)

=
[

0
1 + 3z1

]
. (2.20)

Since ∂S
∂x g(x)

∣∣
x=S̄−1(z̄)

depends on z only, S∗(g(x)) is a well-defined vector field on

R
m . But, since ∂S

∂x f (x)
∣∣
x=S̄−1(z̄)

does not depend on z only, S∗( f (x)) is not a well-
defined vector field on Rm . Geometric condition for well-defined vector field can be
also found in Theorem2.6.

Definition 2.12 (differential map of vector field) Suppose that f (x) is a smooth
vector field on R

n and smooth function z = S(x) : Rn → R
m is surjective. Also,

suppose that S∗( f (x)) is a well-defined vector field in R
m . The differential map

S∗( f (x)) of vector field f (x) under smooth function z = S(x) is defined by

S∗( f (x)) =
{

∂S(x)

∂x
f (x)

}∣∣∣∣
x=S̄−1(z̄)

where z̄ = S̄(x) is defined in (2.19).
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If z = S(x) is a state transformation, then

S∗( f (x)) =
{

∂S(x)

∂x
f (x)

}∣∣∣∣
x=S−1(z)

. (2.21)

Also, it is easy to see that

(T ◦ S)∗( f (x)) = T∗ ◦ S∗( f (x)) (2.22)

and

S−1
∗ (S∗( f (x))) = f (x) (2.23)

where w = T (z) and z = S(x) are state transformations.

Example 2.4.8 Consider the following control system:

ẋ = f (x) +
m∑
i=1

ui gi (x) = f (x) + g(x)u

y = h(x)

(2.24)

where x ∈ R
n , u ∈ R

m , and y ∈ R
q . Suppose that z = S(x) : Rn → R

n is a state
transformation and system (2.24) satisfies, in z-coordinates,

ż = f̃ (z) +
m∑
i=1

ui g̃i (z) = f̃ (z) + g̃(z)u

y = h̃(z).

Show that for 1 ≤ i ≤ m

f̃ (z) = S∗( f (x)) ; g̃i (z) = S∗(gi (x))

h̃(z) = h ◦ S−1(z).

In other words, f (x) and f̃ (z)(= S∗( f (x)) are the same vector fields expressed in
x-coordinates and z-coordinates, respectively.

Solution It is easy to see that
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ż = d

dt
S(x(t)) = ∂S(x)

∂x
ẋ = ∂S(x)

∂x

{
f (x) +

m∑
i=1

ui gi (x)

}

= ∂S(x)

∂x
f (x)

∣∣∣∣
x=S−1(z)

+
m∑
i=1

ui
∂S(x)

∂x
gi (x)

∣∣∣∣
x=S−1(z)

= S∗( f (x)) +
m∑
i=1

ui S∗(gi (x))

and

y = h(x) = h ◦ S−1(z).

�

In Example2.2.1, since z = S(x) = P−1x , then it is easy to see that f̃ (z) =
S∗(Ax) = P−1APz, g̃(z) = S∗(B) = P−1B, and h̃(z) = Cx |x=S−1(z) = CPz.

Example 2.4.9 Suppose that

[
z1
z2

]
= S(x) =

[
x1

x1 + x2

]
.

Find out S∗
([

1
0

])
and S∗

([
0
1

])
.

Solution It is clear that

S∗
([

1
0

])
=

[
1 0
1 1

] [
1
0

]∣∣∣∣
x=S−1(z)

=
[
1
1

]
; S∗

([
0
1

])
=

[
0
1

]

or
[
1
0

]∣∣∣∣
x

= ∂

∂x1
= ∂

∂z1
+ ∂

∂z2
=

[
1
1

]∣∣∣∣
z

(2.25)

and
[
0
1

]∣∣∣∣
x

= ∂

∂x2
= ∂

∂z2
=

[
0
1

]∣∣∣∣
z

. (2.26)

See Fig. 2.3. �

Suppose that z = S(x) is a state transformation. Then, by chain rule (Theo-
rem2.1), we have with a slight abuse of notation that
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Fig. 2.3 Unit vectors of
Example2.4.9

∂

∂xi
h(z) = ∂

∂xi
h(z(x)) =

n∑
j=1

∂h

∂z j

∂z j
∂xi

=
n∑
j=1

∂z j
∂xi

∂

∂z j
h(z)

or

∂

∂xi
=

n∑
j=1

∂z j
∂xi

∂

∂z j
. (2.27)

We can use (2.27) to show that (2.25) and (2.26) are satisfied. Vector fields in (2.21)
can be written in the operator form as follows:

n∑
i=1

fi (x)
∂

∂xi
=

n∑
i=1

n∑
j=1

fi (x)
∂z j
∂xi

∂

∂z j
.

Example 2.4.10 Use Example2.4.8 to solve Example1.3.1.

Solution Note that f̃ (z) =
[
0
z1

]
and g̃(z) =

[
1
1

]
.

f (x) = S∗( f̃ (z)) = ∂S(z)

∂z
f̃ (z)

∣∣∣∣
z=S−1(x)

=
[
1 2z2
0 1

] [
0
z1

]∣∣∣∣
z=S−1(x)

=
[
2x1x2 − 2x32
x1 − x22

]

and
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g(x) = S∗(g̃(z)) = ∂S(z)

∂z
g̃(z)

∣∣∣∣
z=S−1(x)

=
[
1 2z2
0 1

] [
1
1

]∣∣∣∣
z=S−1(x)

=
[
1 + 2x2

1

]
.

�

The following two theorems show that Lie bracket and Lie derivative defined in
Definitions2.8 and 2.9 are coordinate free. They are very important and are used
very often in the rest of this book.

Theorem 2.4 Suppose that f (x)and g(x)are smooth vector fields onRn and smooth
function z = S(x) : Rn → R

m is surjective (or onto). Also, suppose that (S∗( f (x))
and S∗(g(x)) are well-defined vector fields on R

m. Then the following is satisfied:

S∗ ([ f (x), g(x)]) = [(S∗( f (x)), S∗(g(x))] . (2.28)

Proof If ∂
∂ z̃

{
�(x)|x=S̄−1(z̄)

} = On×(n−m), then we have that

∂

∂z

{
�(x)|x=S̄−1(z̄)

}
Sx (x)|x=S̄−1(z̄)

= [
∂
∂z

{
�(x)|x=S̄−1(z̄)

}
On×(n−m)

] [Sx (x)
S̃x (x)

]∣∣∣∣
x=S̄−1(z̄)

= ∂

∂ z̄

{
�(x)|x=S̄−1(z̄)

}
S̄x (x)

∣∣
x=S̄−1(z̄)

= ∂�(x)

∂x

∣∣∣∣
x=S̄−1(z̄)

∂ S̄−1(z̄)

∂ z̄

∂ S̄(x)

∂x

∣∣∣∣
x=S̄−1(z̄)

= ∂�(x)

∂x

∣∣∣∣
x=S̄−1(z̄)

∂
{
S̄−1 ◦ S̄(x)

}
∂x

∣∣∣∣∣
x=S̄−1(z̄)

= ∂�(x)

∂x

∣∣∣∣
x=S̄−1(z̄)

.

(2.29)

Thus, if we denote ∂S(x)
∂x = Sx (x), then we have, by (2.29), that

[
(S∗ f )(z), (S∗g)(z)

] = [
(Sx (x) f (x))|x=S̄−1(z̄) , (Sx (x)g(x))|x=S̄−1(z̄)

]

= ∂

∂z

{
(Sx (x)g(x))|x=S̄−1(z̄)

}
Sx (x)|x=S̄−1(z̄) f (x)|x=S̄−1(z̄)

− ∂

∂z

{
(Sx (x) f (x))|x=S̄−1(z̄)

}
Sx (x)|x=S̄−1(z̄) g(x)|x=S̄−1(z̄)

=
{

∂ (Sx (x)g(x))

∂x
f (x) − ∂ (Sx (x) f (x))

∂x
g(x)

}∣∣∣∣
x=S̄−1(z̄)

.
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Thus, it is easy to see, by (2.4), that

[
(S∗ f )(z), (S∗g)(z)

]

=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
g(x)T ∂

∂x

(
∂S1
∂x

)T
...

g(x)T ∂
∂x

(
∂Sn
∂x

)T

⎤
⎥⎥⎦ f (x) + ∂S(x)

∂x

∂g(x)

∂x
f (x)

⎫⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣∣
x=S̄−1(z̄)

−

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
f (x)T ∂

∂x

(
∂S1
∂x

)T
...

f (x)T ∂
∂x

(
∂Sn
∂x

)T

⎤
⎥⎥⎦ g(x) − ∂S(x)

∂x

∂ f (x)

∂x
g(x)

⎫⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣∣
x=S̄−1(z̄)

=
{

∂S(x)

∂x

∂g(x)

∂x
f (x) − ∂S(x)

∂x

∂ f (x)

∂x
g(x)

}∣∣∣∣
x=S̄−1(z̄)

=
{

∂S(x)

∂x
[ f (x), g(x)]

}∣∣∣∣
x=S̄−1(z̄)

= S∗ ([ f (x), g(x)])

since
(

∂
∂x

(
∂S1
∂x

)T)T = ∂
∂x

(
∂S1
∂x

)T
and gT ∂

∂x

(
∂S1
∂x

)T
f = f T ∂

∂x

(
∂S1
∂x

)T
g. �

Theorem 2.5 Suppose that f (x) is a smooth vector field on R
n and z = S(x) is a

state transformation. Then for ∀h(x) ∈ C∞(Rn),

L f̃ (z)h̃(z) = L f h(x)
∣∣
x=S−1(z) (2.30)

where f̃ (z) = S∗( f (x)) and h̃(z) = h ◦ S−1(z).

Proof Note, by chain rule, that

L f̃ (z)h̃(z)
∣∣∣
z=S(x)

= ∂
(
h ◦ S−1(z)

)
∂z

∣∣∣∣∣
z=S(x)

f̃ (z)
∣∣∣
z=S(x)

= ∂h(x)

∂x

∂S−1(z)

∂z

∣∣∣∣
z=S(x)

∂S(x)

∂x
f (x)

= ∂h(x)

∂x

∂
(
S−1 ◦ S(x)

)
∂x

f (x) = L f h(x)

which implies that (2.30) is satisfied. �

Consider state transformation z = S(x) and vector fields f (x), f̃ (z), g(x), and
g̃(z), where f̃ (z) = S∗( f (x)) and g̃(z) = S∗(g(x)). Thus, f (x) and f̃ (z) are the
same vector fields expressed in the different coordinates. Theorem2.4 means that
[ f (x), g(x)] and [ f̃ (z), g̃(z)] are also the same vector fields expressed in the different
coordinates. In other words, Lie bracket operation of vector fields is coordinate free.
Also, since h(x) and h̃(z)

(= h ◦ S−1(z)
)
are the same scalar functions expressed
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in the different coordinates, Theorem2.5 means that L f h(x) and L f̃ (z)h̃(z) are also
the same scalar functions expressed in the different coordinates. In other words, Lie
derivative operation of scalar function with respect to vector field is also coordinate
free.

Example 2.4.11 Consider the scalar function h(x) = x1x2 and vector fields

f (x) =
[
x2
1

]
and g(x) =

[
1
x1

]
given in Example2.4.3. Let z = S(x) =

[
x1 + x22

x2

]

be a state transformation. Find out h̃(z)
(
� h ◦ S−1(z)

)
, f̃ (z)

(
� S∗( f (x))

)
,

g̃(z)
(
� S∗(g(x))

)
, [ f̃ (z), g̃(z)], and L f̃ (z)h̃(z). Also, show that S∗([ f (x), g(x)]) =

[ f̃ (z), g̃(z)] and L f̃ (z)h̃(z) = L f h(x)
∣∣
x=S−1(z).

Solution Note, by Example2.4.3, that [ f (x), g(x)] =
[−x1
x2

]
and L f h(x) = x1 +

x22 . Also, it is easy to see that

x = S−1(z) =
[
z1 − z22

z2

]
; h̃(z) = h ◦ S−1(z) = z2(z1 − z22)

f̃ (z) = S∗( f (x)) = ∂S

∂x
f (x)

∣∣∣∣
x=S−1(z)

=
[
1 2x2
0 1

] [
x2
1

]∣∣∣∣
x=S−1(z)

=
[
3z2
1

]
= 3z2

∂

∂z1
+ ∂

∂z2

g̃(z) = S∗(g(x)) =
[
1 + 2x1x2

x1

]∣∣∣∣
x=S−1(z)

=
[
1 + 2z2(z1 − z22)

z1 − z22

]

[ f̃ (z), g̃(z)] = ∂ g̃(z)

∂z
f̃ (z) − ∂ f̃ (z)

∂z
g̃(z) =

[−z1 + 3z22
z2

]

S∗([ f (x), g(x)]) =
[−x1 + 2x22

x2

]∣∣∣∣
x=S−1(z)

=
[−z1 + 3z22

z2

]

L f̃ h̃(z) = ∂ h̃(z)

∂z
f̃ (z) = [

z2 z1 − 3z22
] [3z2

1

]
= z1
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and

L f h(x)
∣∣
x=S−1(z) = z1.

�

Theorem2.6 gives geometric necessary and sufficient conditions for a well-
defined vector field.

Theorem 2.6 (geometric condition for a well-defined vector field) Suppose that
smooth function y = S(x) : Rn → R

m is surjective and f (x) is a vector field onRn.
S∗( f (x)) is a well-defined vector field on Rm, if and only if

[ f (x), kerS∗] ⊂ kerS∗ (2.31)

where kerS∗ � {τ(x) | S∗ (τ (x)) = 0}.
Proof Necessity. Suppose that S∗( f (x)) is a well-defined vector field on R

m . Let
τ(x) ∈ kerS∗. Then it is clear, by Theorem2.4, that

S∗ ([ f (x), τ (x)]) = [S∗( f (x)), S∗(τ (x))] = [S∗( f (x)), 0] = 0

which implies that (2.31) is satisfied.
Sufficiency. Suppose that (2.31) is satisfied. Let S(x̄) = S(x). Let γt (x) be a

smooth parameterized curve such that γ0(x) = x , γ1(x) = x̄ , and

S(γt (x)) = S(x), 0 ≤ t ≤ 1. (2.32)

(For example, in Example2.4.7, γt (x) = [x1 x2 + t (x̄2 − x2) x3 − t
2 (1 + x1)(x̄2 −

x2)]T.) If we can show that for 0 ≤ t ≤ 1

{
∂S(x)

∂x
f (x)

}∣∣∣∣
x=γt (x)

= ∂S(x)

∂x
f (x)

or

d

dt

({
∂S(x)

∂x
f (x)

}∣∣∣∣
x=γt (x)

)∣∣∣∣∣
t=0

= 0

then S∗( f (x)) is a well-defined vector field on R
m . Note, by (2.32), that

dS(γt (x))

dt

∣∣∣∣
t=0

= ∂S(x)

∂x

dγt (x)

dt

∣∣∣∣
t=0

= 0
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or

b(x) � dγt (x)

dt

∣∣∣∣
t=0

∈ kerS∗. (2.33)

Thus, it is clear, by (2.31) and (2.33), that

∂S(x)

∂x

∂b(x)

∂x
f (x) − ∂S(x)

∂x

∂ f (x)

∂x
b(x) = ∂S(x)

∂x
[ f (x), b(x)] = 0

which implies, together with (2.4), that

d

dt

({
∂S(x)

∂x
f (x)

}∣∣∣∣
x=γt (x)

)∣∣∣∣∣
t=0

= ∂

∂x

{
∂S(x)

∂x
f (x)

}
dγt (x)

dt

∣∣∣∣
t=0

=

⎡
⎢⎢⎢⎢⎣

f (x)T ∂
∂x

(
∂S1(x)

∂x

)T
b(x)

...

f (x)T ∂
∂x

(
∂Sm (x)

∂x

)T
b(x)

⎤
⎥⎥⎥⎥⎦

+ ∂S(x)

∂x

∂ f (x)

∂x
b(x)

=

⎡
⎢⎢⎢⎢⎣

b(x)T ∂
∂x

(
∂S1(x)

∂x

)T
f (x)

...

b(x)T ∂
∂x

(
∂Sm (x)

∂x

)T
f (x)

⎤
⎥⎥⎥⎥⎦

+ ∂S(x)

∂x

∂b(x)

∂x
f (x)

= ∂

∂x

{
∂S(x)

∂x
b(x)

}
f (x) = 0.

�

If z = S(x) is a diffeomorphism on a neighborhoodU of the origin, then ker S∗ =
span{0}. Thus, S∗( f (x)) is, by Theorem2.6, a well-defined vector field as (2.21), for
any smooth vector field f (x).

Example 2.4.12 Consider Example2.4.7 again. Let

f (x) =
⎡
⎣
1
0
x2

⎤
⎦ , g(x) =

⎡
⎣
0
1
x1

⎤
⎦ , and z = S(x) =

[
x1

(1 + x1)x2 + 2x3

]
.

Use Theorem2.6 to show that S∗( f (x)) is not a well-defined vector field on R2 and
S∗(g(x)) is a well-defined vector field on R

2.
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Solution Note that

∂S(x)

∂x
=

[
1 0 0
x2 1 + x1 2

]
and kerS∗ = span

⎧⎨
⎩

⎡
⎣

0
−2

1 + x1

⎤
⎦
⎫⎬
⎭ .

Thus, we have that

⎡
⎣ f (x),

⎡
⎣

0
−2

1 + x1

⎤
⎦
⎤
⎦ =

⎡
⎣
0
0
3

⎤
⎦ /∈ kerS∗ and

⎡
⎣g(x),

⎡
⎣

0
−2

1 + x1

⎤
⎦
⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ ∈ kerS∗.

Hence, it is clear, by Theorem2.6, that S∗( f (x)) is not a well-defined vector field on
R

2 and S∗(g(x)) is a well-defined vector field on R
2. Vector field S∗(g(x)) is given

by (2.20). �

Let us define

L0
f h(x) � h(x) ; Lk+1

f h(x) � L f
(
Lk

f h(x)
)
, for k ≥ 0 (2.34)

and

ad0f g(x) � g(x) ; adk+1
f g(x) �

[
f (x), adkf g(x)

]
, for k ≥ 0. (2.35)

For example, we write L4
f h(x) and ad3f (x)g(x) instead of L f (L f (L f (L f h(x)))) and

[ f (x), [ f (x), [ f (x), g(x)]]], respectively.
Example 2.4.13 (a) Consider the following linear system:

ẋ(t) = Ax(t) ; y(t) = Cx(t), x ∈ R
n, y ∈ R.

Use chain rule to show that for k ≥ 0

y(k)(t) � dk

dtk
y(t) = CAkx(t).

(b) Consider the following nonlinear system:

ẋ(t) = f (x(t)) ; y(t) = h(x(t)), x ∈ R
n, y ∈ R.

Use chain rule to show that for k ≥ 0

y(k)(t) � dk

dtk
y(t) = Lk

f h(x(t)). (2.36)
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Solution (a) Omitted.
(b) Note that

ẏ(t) = ∂h(x)

∂x
ẋ = ∂h(x)

∂x
f (x) = L f h(x(t))

ÿ(t) = ∂
(
L f h(x)

)
∂x

ẋ = ∂L f h(x)

∂x
f (x) = L f L f h(x) = L2

f h(x(t)).

It is easy to show, by mathematical induction, that (2.36) is satisfied. �

Example 2.4.14 Suppose that

f̃ (z) = S∗( f (x)), g̃(z) = S∗(g(x)), and h̃(z) = h ◦ S−1(z)

where z = S(x) is a state transformation.

(a) Show that for k ≥ 0

adk
f̃
g̃(z) = S∗

(
adkf g(x)

)
or adkf g(x) = S−1

∗
(
adk

f̃
g̃(z)

)
(2.37)

(b) Show that if f̃ (z) = Az and g̃(z) = b, then

adk
f̃
g̃(z) = (−1)k Akb, k ≥ 0 (2.38)

and

[adif g(x), ad j
f g(x)] = 0, i ≥ 0, j ≥ 0.

(c) Show that for k ≥ 0

Lk
f̃
h̃(z) = Lk

f h(x)
∣∣
x=S−1(z)

or Lk
f h(x) = Lk

f̃
h̃(z)

∣∣∣
z=S(x)

(2.39)

(d) Show that if f̃ (z) = Az, g̃(z) = b, and h̃(z) = cz, then for k ≥ 0

Lk
f̃
h̃(z) = cAkz or Lk

f h(x) = cAk S(x) (2.40)

and

LgL
k
f h(x) = cAkb. (2.41)
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Solution Since f̃ (z) = S∗( f (x)) and g̃(z) = S∗(g(x)), it is easy to show, by (2.23),
(2.28), (2.35), and mathematical induction, that (2.37) is satisfied. It is obvious that
(2.38) is satisfied for k = 0. Assume that (2.38) is satisfied for k ≤ i and i ≥ 0. Then
we have that

adi+1
f̃

g̃(z) =
[
f̃ (z), adi

f̃
g̃(z)

]
= (−1)i

{
∂
(
Aib

)
∂z

Az − ∂(Az)

∂z
Aib

}

= (−1)i+1Ai+1b

which implies, by mathematical induction, that (2.38) is satisfied for k ≥ 0. There-
fore, it is easy to see, by (2.14), (2.28), (2.37), and (2.38), that for i ≥ 0 and j ≥ 0

[
adif g(x), ad

j
f g(x)

]
=

[
S−1

∗
(
adi

f̃
g̃(z)

)
, S−1

∗
(
ad j

f̃
g̃(z)

)]

= S−1
∗

([
adi

f̃
g̃(z), ad j

f̃
g̃(z)

])

= S−1
∗

([
(−1)i Aib, (−1) j A jb

]) = S−1
∗ (0) = 0.

Since f̃ (z) = S∗( f (x)) and h̃(z) = h ◦ S−1(z), it is easy to show, by (2.30) and
mathematical induction, that (2.39) is satisfied (See Problem 2-20). It is also clear,
by Example2.4.13 and (2.39), that (2.40) is satisfied. Finally, we have, by (2.30) and
(2.40), that

LgL
k
f h(x) = Lg

(
cAk S(x)

) = Lg̃
(
cAk S ◦ S−1(z)

)∣∣
z=S(x)

= cAkb
∣∣
z=S(x) = cAkb.

�

Example 2.4.15 Show the following useful properties for any scalar functions λ(x)
and a(x) and vector fields f (x) and g(x).

(a)

[ f (x), λ(x)g(x)] = λ(x)[ f (x), g(x)] + (L f λ(x))g(x) (2.42)

(b)

[a(x) f (x), λ(x)g(x)] = a(x)λ(x)[ f (x), g(x)] + a(x)(L f λ(x))g(x)

− λ(x)(Lga(x)) f (x) (2.43)
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(c)

adif (x){λ(x)g(x)} =
i∑

k=0

(
i

k

)
Lk

f λ(x) adi−k
f g(x), i ≥ 0 (2.44)

(d)

Ladif g
h(x) =

i∑
k=0

(−1)k
(
i

k

)
Li−k

f LgL
k
f h(x), i ≥ 0 (2.45)

where
(i
k

)
� i !

k!(i−k)! and
( i
k−1

) + (i
k

) = (i+1
k

)
.

Solution (a)

[ f (x), λ(x)g(x)] = ∂(λg)

∂x
f − ∂ f

∂x
λg = g

∂λ

∂x
f + λ

∂g

∂x
f − λ

∂ f

∂x
g

= (L f λ)g + λ[ f, g]

(b)

[a f, λg] = (La f λ)g + λ[a f, g] = a(L f λ)g − λ[g, a f ]
= a(L f λ)g − λ

(
a[g, f ] + (Lga) f

)

= aλ[ f, g] + a(L f λ)g − λ(Lga) f

(c)

adi+1
f (λg) = [

f, adif (λg)
] =

i∑
k=0

(
i

k

) [
f, Lk

f λ adi−k
f g

]

=
i∑

k=0

(
i

k

)
Lk

f λ adi−k+1
f g +

i∑
k=0

(
i

k

)
Lk+1

f λ adi−k
f g

= adi+1
f g +

i∑
k=1

(
i

k

)
Lk

f λ adi−k+1
f g

+
i∑

k=1

(
i

k − 1

)
Lk

f λ adi−k+1
f g + Li+1

f λ g

=
i+1∑
k=0

(
i + 1

k

)
Lk

f λ adi+1−k
f g
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(d)

Ladi+1
f gh = L [ f,adif g]h = L f Ladif g

h − Ladif g
L f h

=
i∑

k=0

(−1)k
(
i

k

)
Li−k+1

f LgL
k
f h −

i∑
k=0

(−1)k
(
i

k

)
Li−k

f LgL
k+1
f h

= Li+1
f Lg +

i∑
k=1

(−1)k
(
i

k

)
Li−k+1

f LgL
k
f h

+
i∑

k=1

(−1)k
(

i

k − 1

)
Li−k+1

f LgL
k
f h − (−1)i LgL

i+1
f h

=
i+1∑
k=0

(−1)k
(
i + 1

k

)
Li+1−k

f LgL
k
f h.

�
Example 2.4.16 By using (2.45), show that the following statements are equivalent.

(a)

LgL
i
f h(x) =

{
ai , 0 ≤ i < N − 1

c(x), i = N − 1
(2.46)

(b)

Ladif g
Lk

f h(x) =
{

(−1)i ai+k, i + k < N − 1

(−1)i c(x), i + k = N − 1
(2.47)

(c)

Ladif g
h(x) =

{
(−1)i ai , i < N − 1

(−1)i c(x), i = N − 1
(2.48)

where ai , 0 ≤ i ≤ N − 1 are constants.

Solution Suppose that (2.46) is satisfied. Then we have, by (2.45), that

Ladif g
Lk

f h(x) =
i∑

j=0

(−1) j
(
i

j

)
Li− j

f LgL
k+ j
f h(x)

=
{
0, k + i < N − 1

(−1)i LgL
k+i
f h(x), k + i = N − 1
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which implies that (2.47) is satisfied. Suppose that (2.47) is satisfied. Then it is
obvious, with k = 0, that (2.48) is satisfied. Suppose that (2.48) is satisfied. Then
it is obvious that (2.46) is satisfied when i = 0. Assume that (2.46) is satisfied for
i ≤ k and 0 ≤ k ≤ N − 2. Then we have, by (2.45), that

Ladk+1
f gh(x) =

k+1∑
j=0

(−1) j
(
k + 1

j

)
Lk+1− j

f LgL
j
f h(x) = (−1)k+1LgL

k+1
f h(x)

which implies that (2.46) is satisfied for i ≤ k + 1.Therefore, bymathematical induc-
tion, (2.46) is satisfied. �

Example 2.4.17 Let z = S(x) be a state coordinates change. Show the following
useful property for any scalar function λ(x) and vector field g(x).

S∗ (λ(x)g(x)) = λ ◦ S−1(z) S∗ (g(x)) (2.49)

Solution

S∗ (λ(x)g(x)) = ∂S(x)

∂x
λ(x)g(x)

∣∣∣∣
x=S−1(z)

= λ(x)
∂S(x)

∂x
g(x)

∣∣∣∣
x=S−1(z)

= λ
(
S−1(z)

)
S∗ (g(x)) .

�

Example 2.4.18 By using Jacobi identity, show that the following statements are
equivalent:

(a)

[adif g(x), adkf g(x)] = 0, 0 ≤ i ≤ s1 and 0 ≤ k ≤ s2 (2.50)

(b)

[adif g(x), adkf g(x)] = 0, 0 ≤ i + k ≤ s1 + s2. (2.51)

Solution If (2.51) holds, then (2.50) is obviously satisfied. Suppose that (2.50) is
satisfied. Then, it is easy to see, by (2.18), that for 0 ≤ i ≤ s1 and 0 ≤ k ≤ s2

[adif g, adkf g] =
[
[ f, adi−1

f g], adkf g
]

= −
[
[adi−1

f g, adkf g], f
]

−
[
[adkf g, f ], adi−1

f g
]

= 0 − [adi−1
f g, adk+1

f g].
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In this manner, it is easy to see that for 0 ≤ i ≤ s1, 0 ≤ k ≤ s2, and −k ≤ j ≤ i

[adi− j
f g, adk+ j

f g] = (−1) j [adif g, adkf g] = 0

which implies that (2.51) is satisfied. �

Example 2.4.19 Let m(≥ 3) be odd. Suppose that for 2 ≤ i + k ≤ m

[
adi−1

f g(x), adk−1
f g(x)

]
= 0. (2.52)

Show that (2.52) is satisfied for 2 ≤ i + k ≤ m + 1.

Solution Suppose that (2.52) is satisfied for 2 ≤ i + k ≤ m. Then, by Exam-
ple2.4.18, it is clear that (2.52) is satisfied for 1 ≤ i ≤ m−1

2 and 1 ≤ k ≤ m+1
2 .

Since
[
ad

m+1
2 −1

f g(x), ad
m+1
2 −1

f g(x)
]

= 0, (2.52) is satisfied for 1 ≤ i ≤ m+1
2 and

1 ≤ k ≤ m+1
2 . Hence, it is clear, by Example2.4.18, that (2.52) is satisfied for

2 ≤ i + k ≤ m + 1. �

Example 2.4.20 Suppose that
{
Y 1(x),Y 2(x), . . . ,Y n(x)

}
is a set of linearly inde-

pendent vector fields on a neighborhood of 0 ∈ R
n . Let

Y n+1(x) =
n∑

i=1

ai (x)Y
i (x).

Show that if for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1

[
Y i (x),Y j (x)

] = 0,

then

Y n+1(x) =
n∑

i=1

aiY
i (x)

for some constants ai ∈ R, 1 ≤ i ≤ n.

Solution Let Y n+1(x) =
n∑

i=1

ai (x)Y
i (x). Then we have that for 1 ≤ j ≤ n

0 = [
Y j (x),Y n+1(x)

] =
n∑

i=1

[
Y j (x), ai (x)Y

i (x)
]

=
n∑

i=1

ai (x)
[
Y j (x),Y i (x)

] +
n∑

i=1

LY j ai (x) Y
i (x) =

n∑
i=1

LY j ai (x) Y
i (x)
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which implies that for 1 ≤ i ≤ n

O1×n = [
LY 1ai (x) · · · LYnai (x)

] = ∂ai (x)

∂x

[
Y 1(x) · · · Y n(x)

]
.

Since ∂ai (x)
∂x = O1×n for 1 ≤ i ≤ n, it is clear that ai (x) is a constant for 1 ≤ i ≤ n.

�

2.5 Covector Field and One Form

A covector field on Euclidean space is the transpose of a vector field. Suppose that
U be an open subset of Rn .

Definition 2.13 (smooth covector field on Euclidean space) A vector-valued func-
tion w : U (⊂ R

n) → R
n is said to be a smooth covector field on U , if w =

[w1 w2 · · · wn] and wi ∈ C∞(U ) for 1 ≤ i ≤ n.

Suppose that x � [x1 x2 · · · xn]T is a Cartesian coordinate system of Rn . Then a
covector field w(x) can be expressed by

w(x) = [
w1(x) w2(x) · · · wn(x)

]

= w1(x)dx1 + w2(x)dx2 + · · · + wn(x)dxn

where

dx1 � [1 0 · · · 0], dx2 � [0 1 0 · · · 0], · · · , and dxn � [0 · · · 0 1].

Addition of covector fields and scalar multiplication are defined by the transpose of
(2.10) and (2.11).

Example 2.5.1 Show that the set of all smooth covector fields on R
n is a vector

space over field R.

Solution Omitted. (Problem 2-15.) �

Let us define 〈w(x), f (x)〉 by
〈

n∑
i=1

wi (x)dxi ,
n∑
j=1

f j (x)
∂

∂x j

〉
�

n∑
i=1

wi (x) fi (x) = w(x) f (x).

With the operator 〈w(x), ·〉, a smooth covector fieldw(x) can be thought of a function
from the set of smooth vector fields toC∞(Rn). For example, dxi is a linear function
such that
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〈
dxi ,

∂

∂x j

〉
=

{
1, if j = i

0, if j 	= i.

The differential (or total derivative) dh(x) of h(x) ∈ C∞(Rn) is defined by

dh(x) �
[
∂h(x)

∂x1

∂h(x)

∂x2
· · · ∂h(x)

∂xn

]
=

n∑
i=1

∂h

∂xi
dxi .

A smooth covector field w(x) is obtained when a scalar function is differentiated
once, so it is also called a differential one form, or simply a one form. The Lie
derivative of h(x) with respect to f (x) can also be written by

L f h(x) = ∂h(x)

∂x
f (x) = 〈dh(x), f (x)〉 .

Definition 2.14 (exact one form) One form w(x) is said to be an exact one form, if
there exists a scalar function h(x) such that w(x) = ∂h

∂x or w(x) = dh(x).

Note that ∂2h(x)
∂xi ∂x j

= ∂2h(x)
∂x j ∂xi

, for 1 ≤ i ≤ n and 1 ≤ j ≤ n. If w(x) is an exact one

form, then wi (x) = ∂h(x)
∂xi

, 1 ≤ i ≤ n for some scalar function h(x). Thus, it is clear
that

∂w j (x)

∂xi
= ∂wi (x)

∂x j
, 1 ≤ i ≤ n, 1 ≤ j ≤ n (2.53)

or

∂w(x)T

∂x
=

(
∂w(x)T

∂x

)T

.

Conversely, if (2.53) is satisfied, then w(x) is an exact one form (See Lemma2.1).

Lemma 2.1 Let 1 ≤ k ≤ n, x =
[
x1

x2

]
, x1 =

⎡
⎢⎣
x1
...

xk

⎤
⎥⎦, and x2 =

⎡
⎢⎣
xk+1

...

xn

⎤
⎥⎦. Suppose

that wi (x) ∈ C∞(Rn) for 1 ≤ i ≤ k. There exists a function h(x) ∈ C∞(Rn) such
that h(0, x2) = 0 and ∂h(x)

∂x1 = [w1(x) · · · wk(x)] � w1(x), if and only if for 1 ≤
i ≤ k and 1 ≤ j ≤ k

∂w j (x)

∂xi
= ∂wi (x)

∂x j
(2.54)

or
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∂w1(x)T

∂x1
=

(
∂w1(x)T

∂x1

)T

.

We denote

h(x) =
∫

[w1(x) · · · wk(x)]d(x1 · · · xk)

�
∫

w1(x)dx1.

Proof Necessity. Obvious.

Sufficiency. Suppose that (2.54) is satisfied. Let

h(x) =
k∑
j=1

Q j (x) (2.55)

where

Q1(x) =
∫

w1(x)dx1

Qi (x) =
∫

wi (x)dxi −
i−1∑
j=1

∫
∂Q j (x)

∂xi
dxi , 2 ≤ i ≤ k.

(2.56)

Then it is easy to see, by (2.56), that

∂

∂xi

⎛
⎝

i∑
j=1

Q j (x)

⎞
⎠ = wi (x), 1 ≤ i ≤ k. (2.57)

Now we will show, by mathematical induction, that for 2 ≤ i ≤ k

∂Qi (x)

∂x�

= 0, 1 ≤ � ≤ i − 1. (2.58)

Since Q2(x) = ∫
w2(x)dx2 − ∫ ∫

∂w1(x)
∂x2

dx1dx2, we have, by (2.54), that

∂Q2(x)

∂x1
=

∫
∂w2(x)

∂x1
dx2 −

∫
∂w1(x)

∂x2
dx2 =

∫ (
∂w2(x)

∂x1
− ∂w1(x)

∂x2

)
dx2 = 0

which implies that (2.58) is satisfied when i = 2. Assume that (2.58) is satisfied for
2 ≤ i ≤ p and 2 ≤ p ≤ k − 1. Let 1 ≤ q ≤ p. Then we have, by (2.54), (2.56), and
(2.57), that
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∂Qp+1(x)

∂xq
=

∫
∂wp+1(x)

∂xq
dxp+1 −

∫ ∂2
(∑p

j=1 Q j (x)
)

∂xp+1∂xq
dxp+1 (by (2.56))

=
∫

∂wp+1(x)

∂xq
dxp+1 −

∫ ∂2
(∑q

j=1 Q j (x)
)

∂xp+1∂xq
dxp+1 (by assumption)

=
∫

∂wp+1(x)

∂xq
dxp+1 −

∫
∂wq (x)

∂xp+1
dxp+1 (by (2.57))

=
∫ (

∂wp+1(x)

∂xq
− ∂wq (x)

∂xp+1

)
dxp+1 = 0 (by (2.54))

which implies that (2.58) is satisfied for i = p + 1. Therefore, (2.58) is, by mathe-
matical induction, satisfied for 2 ≤ i ≤ k. Hence, it is easy to see, by (2.55), (2.57),
and (2.58), that for 1 ≤ i ≤ k

∂h(x)

∂xi
= ∂

∂xi

⎛
⎝

k∑
j=1

Q j (x)

⎞
⎠ = ∂

∂xi

⎛
⎝

i∑
j=1

Q j (x)

⎞
⎠ = wi (x).

�

Example 2.5.2 Show that one form w(x) = [
1 x1

]
is not exact.

Solution Since

∂w1(x)

∂x2
= 0 	= 1 = ∂w2(x)

∂x1
or

∂w(x)T

∂x
=

[
0 0
1 0

]
	=

(
∂w(x)T

∂x

)T

(2.53) is not satisfied. Thus, w(x) = [
1 x1

]
is not an exact one form. �

Example 2.5.3 Show thatw(x) = [
x2 x1 + x3 x2 + 2x3

]
is an exact one form. Find

out scalar function h(x) such that w(x) = dh(x) and h(0) = 0.

Solution Since

∂w1

∂x2
= 1 = ∂w2

∂x1
; ∂w1

∂x3
= 0 = ∂w3

∂x1
; ∂w2

∂x3
= 1 = ∂w3

∂x2

or

∂w(x)T

∂x
=

⎡
⎣
0 1 0
1 0 1
0 1 2

⎤
⎦ =

(
∂w(x)T

∂x

)T

(2.53) is satisfied. Therefore, one form w(x) = [
x2 x1 x3

]
is exact. We have

h(x) = x1x2 + R1(x2, x3) from
∂h(x)
∂x1

= w1(x) = x2. (or Q1(x) = x1x2.) Also, since
∂h(x)
∂x2

= w2(x) = x1 + x3, we have
∂R1(x2,x3)

∂x2
= x3 and R1(x2, x3) = x2x3 + R2(x3).
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(or Q2(x) = x2x3.) Finally, since
∂h(x)
∂x3

= w3(x) = x2 + 2x3, we have
∂R2(x3)

∂x3
= 2x3

and R2(x3) = x23 + const. (or Q3(x) = x23 .) Hence, we have h(x) = x1x2 + x2x3 +
x23 (= Q1(x) + Q2(x) + Q3(x)). �

2.6 Distribution and Frobenius Theorem

When vector field f (x) and a state transformation z = S(x) are given, vector field
f̃ (z)(= S∗( f (x))), that is the same vector field expressed in z-coordinates, can be
found as in Example2.4.11. In this section, we first try to find a state transformation
z = S(x) such that for 1 ≤ i ≤ n

S∗( fi (x)) = ∂

∂zi
(2.59)

when { f1(x), · · · , fn(x)} are a set of linearly independent vector fields.

Example 2.6.1 Consider vector fields f (x) =
[
x2
1

]
and τ(x) =

[
1
0

]
. Find a state

transformation z = S(x) such that S∗( f (x)) = ∂
∂z1

=
[
1
0

]
and S∗(τ (x)) = ∂

∂z2
=

[
0
1

]
.

Solution We need to find a state transformation z = S(x) such that

[
S∗( f (x)) S∗(τ (x))

] = [
∂S(x)

∂x f (x) ∂S(x)
∂x τ(x)

]∣∣
x=S−1(z)

=
[
1 0
0 1

]
.

Since

∂S(x)

∂x

[
f (x) τ (x)

] = ∂S(x)

∂x

[
x2 1
1 0

]
= I

we have that
[

∂S1(x)
∂x

∂S2(x)
∂x

]
= ∂S(x)

∂x
=

[
x2 1
1 0

]−1

=
[
0 1
1 −x2

]
.

Since one forms
[
0 1

]
and

[
1 −x2

]
are exact, there exist scalar functions S1(x) and

S2(x) such that ∂S1(x)
∂x = [

0 1
]
and ∂S2(x)

∂x = [
1 −x2

]
. By easy calculation, we have

S(x) =
[

x2
x1 − 1

2 x
2
2

]
. �
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Example 2.6.2 Consider vector fields f (x) =
[
x2
1

]
and g(x) =

[
ex1

0

]
. Can we find

a state transformation z = S(x) such that S∗( f (x)) = ∂
∂z1

=
[
1
0

]
and S∗(g(x)) =

∂
∂z2

=
[
0
1

]
?

Solution A state transformation z = S(x) should satisfy

[
∂S1(x)

∂x
∂S2(x)

∂x

]
= [

f (x) g(x)
]−1 =

[
0 1

e−x1 −x2e−x1

]
.

Since one form
[
e−x1 −x2e−x1

]
is not exact, there does not exist a scalar function

S2(x) such that ∂S2(x)
∂x = [

e−x1 −x2e−x1
]
. �

In the above Examples, it can be easily shown that [ f (x), τ (x)] = 0 and
[ f (x), g(x)] 	= 0. Theorem2.7 gives the conditions for the existence of a state trans-
formation z = S(x) such that (2.59) holds. The following Theorem is often used in
this book.

Theorem 2.7 Suppose that { f1(x), . . . , fn(x)} is a set of linearly independent
smooth vector fields on open set U of Rn. There exists a state transformation
z = S(x) : U → R

n such that for 1 ≤ i ≤ n

S∗( fi (x)) = ∂

∂zi
(2.60)

if and only if for 1 ≤ i ≤ n and 1 ≤ j ≤ n

[ fi (x), f j (x)] = 0. (2.61)

Furthermore, state transformation z = S(x) satisfies

∂S(x)

∂x
= [

f1(x) · · · fn(x)
]−1

. (2.62)

Proof Theorem2.7 is a special case of Theorem2.9 with k = n. Since Frobenius
Theorem (Theorem2.8) is needed to prove the sufficiency part of Theorem2.9 when
k ≤ n − 1, Theorem2.9 is considered after Theorem2.8. However, Theorem2.7 can
be proven without Frobenius Theorem. The proof is omitted, since it is very sim-
ilar to that of Theorem2.9 with k = n. It is easy to see, by (2.71), that (2.62) is
satisfied. �
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From now on, we try to find a state transformation z = S(x) such that for k + 1 ≤
p ≤ n

L fi (x)Sp(x) = 0, 1 ≤ i ≤ k

or

∂Sp(x)

∂x

[
f1(x) · · · fk(x)

] = [
0 · · · 0]

when k ≤ n − 1 and { f1(x), · · · , fk(x)} are a set of linearly independent vector
fields.

Example 2.6.3 Let f1(x) =
⎡
⎣
1
0
0

⎤
⎦ and f2(x) =

⎡
⎣
x21
1
x2

⎤
⎦. Find a state transformation

z = S(x) such that L f1 S3(x) = 0 and L f2 S3(x) = 0.

Solution Since
[
0 0

] = [
L f1 S3(x) L f2 S3(x)

] = [
∂S3(x)

∂x f1(x)
∂S3(x)

∂x f2(x)
]

= ∂S3(x)

∂x

[
f1(x) f2(x)

] = ∂S3(x)

∂x

⎡
⎣
1 x21
0 1
0 x2

⎤
⎦

we have that ∂S3(x)
∂x = [

0 −x2a(x) a(x)
]
, where a(x) is a smooth nonzero function.

If we let a(x) = 1, then one form
[
0 −x2a(x) a(x)

]
is exact and it is easy to see that

S3(x) = x3 − 1
2 x

2
2 . We can choose any smooth functions S1(x) and S2(x) such that

{dS1(x), dS2(x), dS3(x)} are linearly independent. For example, let S1(x) = x1 and

S2(x) = x2. Then it is clear that z = S(x) =
⎡
⎣

x1
x2

x3 − 1
2 x

2
2

⎤
⎦ is a state transformation

such that L f1 S3(x) = 0 and L f2 S3(x) = 0. �

Example 2.6.4 Let g1(x) =
⎡
⎣
1
0
0

⎤
⎦ and g2(x) =

⎡
⎣
0
1
x1

⎤
⎦. Show that there does not exist

a state transformation z = S(x) such that Lg1S3(x) = 0 and Lg2 S3(x) = 0.

Solution Since
[
0 0

] = [
Lg1S3(x) Lg2 S3(x)

] = [
∂S3(x)

∂x g1(x)
∂S3(x)

∂x g2(x)
]

= ∂S3(x)

∂x

[
g1(x) g2(x)

] = ∂S3(x)

∂x

⎡
⎣
1 0
0 1
0 x1

⎤
⎦
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we have that ∂S3(x)
∂x = [

0 −x1a(x) a(x)
]

�
[
w1(x) w2(x) w3(x)

]
, where a(x) is a

smooth nonzero function. Note that ∂w3(x)
∂x1

= ∂a(x)
∂x1

, ∂w2(x)
∂x1

= −a(x) − x1
∂a(x)
∂x1

, and
∂w1(x)

∂x3
= ∂w1(x)

∂x2
= 0. In order for one form

[
w1(x) w2(x) w3(x)

]
to be exact, it is clear

that ∂w3(x)
∂x1

= ∂w1(x)
∂x3

and ∂w2(x)
∂x1

= ∂w1(x)
∂x2

. Thus we have that a(x) = 0 and S3(x) = 0.
Therefore, there does not exist a state transformation z = S(x) such that Lg1S3(x) =
0 and Lg2 S3(x) = 0. �

In Examples2.6.3 and 2.6.4, note that

[ f1, f2] =
⎡
⎣
2x1
0
0

⎤
⎦ ∈ {c1(x) f1 + c2(x) f2 | c1(x), c2(x) ∈ C∞(R3)}

[g1, g2] =
⎡
⎣
0
0
1

⎤
⎦ /∈ {c1(x)g1 + c2(x)g2 | c1(x), c2(x) ∈ C∞(R3)}.

For simplicity, we let

span { f1(x), . . . , fk(x)} �
{

k∑
i=1

ci (x) fi (x)
∣∣∣ ci (x) ∈ C∞(Rn), 1 ≤ i ≤ k

}
.

Definition 2.15 (distribution) D(x) is said to be a k-dimensional distribution on
open set U of Rn , if D(x) is k-dimensional subspace of Rn for any x ∈ U .

Let p1, p2 ∈ U ⊂ R
n and p1 	= p2. If dim D(p1) 	= dim D(p2), then D(x) is not

a distribution. For example, let

D(x) = span

{[
1 + x2

0

]
,

[
0
1

]}
.

Since D([ 0−1 ]) = span

{[
0
0

]
,

[
0
1

]}
, we have that dim(D([ 0−1 ])) = 1. Thus, D(x) is

a 2-dimensional distributionnot onR2 but onopen setU � {(x1, x2) ∈ R
2 | x2 	= −1}

of R2.

Definition 2.16 (smooth distribution) D(x) is said to be a k-dimensional smooth
distribution on open set U of Rn , if there exists a set of smooth vector fields { f1(x),
. . ., fk(x)}, defined on a neighborhood Ū of p ∈ U , such that for any x ∈ Ū

D(x) = span { f1(x), . . . , fk(x)} .

Here { f1(x), . . ., fk(x)} is called a local basis of distribution D(x).
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Definition 2.17 (involutive distribution) Smooth distribution D(x) is said to be invo-
lutive, if for any smooth vector fields f (x) ∈ D(x) and g(x) ∈ D(x)

[ f (x), g(x)] ∈ D(x).

In other words, smooth distribution D(x) is said to be involutive, if D(x) is closed
under bracket operation.

Example 2.6.5 Show that smooth distribution D(x) = span{g1(x), g2(x)} is not

involutive, where g1(x) = ∂
∂x1

=
⎡
⎣
1
0
0

⎤
⎦ and g2(x) = ∂

∂x2
+ x1

∂
∂x3

=
⎡
⎣
0
1
x1

⎤
⎦.

Solution D(x) = span{g1(x), g2(x)} is not involutive, since

[g1(x), g2(x)] = ∂

∂x3
=

⎡
⎣
0
0
1

⎤
⎦ /∈ D(x).

�

Example 2.6.6 Let D(x) = span{ f1(x), . . . , fk(x)}, where { f1(x), . . ., fk(x)} is
a set of linearly independent smooth vector fields. Show that distribution D(x) is
involutive, if and only if for 1 ≤ i ≤ k and 1 ≤ j ≤ k

[
fi (x), f j (x)

] ∈ D(x).

Solution Omitted. (Problem 2-22.) �

By Example2.6.6, only a finite number of brackets of vector fields belonging to
the basis are needed to check in order to know whether the distribution is involutive
or not.

Example 2.6.7 Show that smooth distribution D(x) = span{ f1(x), f2(x)} is invo-

lutive, where f1(x) =
⎡
⎣

1
x1x2
x1x3

⎤
⎦ and f2(x) =

⎡
⎣
0
1
1

⎤
⎦.

Solution It is easy to see that

[ f1(x), f2(x)] =
⎡
⎣

0
−x1
−x1

⎤
⎦ = −x1 f2(x) ∈ D(x).

Thus, by Example2.6.6, D(x) is an involutive distribution. �
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Definition 2.18 (completely integrable distribution) Suppose that D(x) =
span{ f1(x), . . . , fk(x)} is a k-dimensional smooth distribution on open set U of
R

n . Distribution D(x) is said to be completely integrable, if there exists a state
transformation z = S(x) : U → R

n such that

D̃(z) = S∗(D(x)) � span {S∗( f1(x)), . . . , S∗( fk(x))}
= span

{
∂

∂z1
, . . . ,

∂

∂zk

} (2.63)

or for k + 1 ≤ j ≤ n

L f (x)Sj (x) = 0, ∀ f (x) ∈ D(x). (2.64)

Theorem 2.8 (Frobenius Theorem) A distribution D(x) is completely integrable, if
and only if D(x) is involutive.

Proof Omitted. (Refer to [A1].) �
Suppose that {Sk+1(x), . . . , Sn(x)} is a set of scalar functions such that (2.64) is

satisfied. Let {S1(x), . . . , Sk(x)} be any set of scalar functions such that z = S(x) is
a state transformation or {dS1(x), . . . , dSn(x)} are linearly independent. Then (2.63)
is also satisfied, even though it may not be true that S∗( fi (x)) = ∂

∂zi
, 1 ≤ i ≤ k.

Example 2.6.8 For involutive distribution D(x) in Example2.6.7, find out a scalar

function h(x) (or S3(x)) such that h(0) = 0, ∂h(x)
∂x

∣∣∣
x=0

	= 0, and

L f (x)h(x) = 0, ∀ f (x) ∈ D(x).

Also, find out a state transformation z = S(x) such that

D̃(z) � span {S∗( f1(x)), S∗( f2(x))} = span

{
∂

∂z1
,

∂

∂z2

}
. (2.65)

Solution Note that

[
0 0

] = ∂h(x)

∂x

[
f1(x) f2(x)

] = ∂h(x)

∂x

⎡
⎣

1 0
x1x2 1
x1x3 1

⎤
⎦

which implies that a(0) 	= 0 and

∂h(x)

∂x
=

[
∂h(x)
∂x1

∂h(x)
∂x2

∂h(x)
∂x3

]
= [

x1(x2 − x3)a(x) −a(x) a(x)
]

� ω(x).

Thus,weneed tofinda(x) such thatω(x) is an exact one form (or ∂ωi (x)
∂x j

= ∂ω j (x)
∂xi

, i 	=
j). Since distribution D(x) is involutive, there exists, by Theorem2.8, a scalar func-
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tion a(x) such that ω(x) is an exact one form. In general, a scalar function a(x) is
complicated to find.

∂ω1(x)

∂x2
= x1a(x) + x1(x2 − x3)

∂a(x)

∂x2
; ∂ω2(x)

∂x1
= −∂a(x)

∂x1
∂ω1(x)

∂x3
= −x1a(x) + x1(x2 − x3)

∂a(x)

∂x3
; ∂ω3(x)

∂x1
= ∂a(x)

∂x1
∂ω2(x)

∂x3
= −∂a(x)

∂x3
; ∂ω3(x)

∂x2
= ∂a(x)

∂x2

If we let ∂a(x)
∂x2

= ∂a(x)
∂x3

= 0, we can obtain scalar functions a(x) = e− 1
2 x

2
1 and h(x) =

e− 1
2 x

2
1 (−x2 + x3). Of course, we may be able to obtain a different a(x) without

∂a(x)
∂x2

= ∂a(x)
∂x3

= 0. We can choose any smooth functions S1(x) and S2(x) such that
{dS1(x), dS2(x), dS3(x)} are linearly independent. For example, let S1(x) = x1 and

S2(x) = x2. Then it is clear that z = S(x) =
⎡
⎣

x1
x2

e− 1
2 x

2
1 (−x2 + x3)

⎤
⎦ is a state transfor-

mation. Since x = S−1(z) =
⎡
⎣

z1
z2

z3e
1
2 z

2
1 + z2

⎤
⎦, we have

S∗( f1(x)) =
{

∂S(x)

∂x
f1(x)

}∣∣∣∣
x=S−1(z)

=
⎡
⎣

1
z1z2
0

⎤
⎦ = ∂

∂z1
+ z1z2

∂

∂z2

S∗( f2(x)) =
⎧⎨
⎩

⎡
⎣

1 0 0
0 1 0

−x1e− 1
2 x

2
1 (−x2 + x3) −e− 1

2 x
2
1 e− 1

2 x
2
1

⎤
⎦
⎡
⎣
0
1
1

⎤
⎦
⎫⎬
⎭

∣∣∣∣∣∣
x=S−1(z)

=
⎡
⎣
0
1
0

⎤
⎦ = ∂

∂z2

which implies that (2.65) is satisfied. �

Theorem 2.9 Suppose that { f1(x), . . ., fk(x)} is a set of linearly independent smooth
vector fields on open setU ofRn. There exists a state transformation z = S(x) : U →
R

n such that for 1 ≤ i ≤ k,

S∗( fi (x)) = ∂

∂zi
(2.66)

if and only if for 1 ≤ i ≤ k and 1 ≤ j ≤ k

[
fi (x), f j (x)

] = 0. (2.67)
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Proof Necessity. Suppose that there exists a state transformation z = S(x) such that
(2.66) is satisfied. Then, it is clear, by Theorem2.4, that for 0 ≤ i ≤ k and 0 ≤ j ≤ k

[
fi (x), f j (x)

] =
[
S−1

∗

(
∂

∂zi

)
, S−1

∗

(
∂

∂z j

)]
= S−1

∗

([
∂

∂zi
,

∂

∂z j

])
= 0.

Sufficiency. Suppose that (2.67) is satisfied. Then, distribution D(x) is involutive,
where

D(x) � span{ f1(x), · · · , fk(x)}.

Thus, it is clear, by Frobenius Theorem (Theorem2.8), that there exists a state trans-
formation x̃ = T (x) such that

D̃(x̃) � span
{
f̃1(x̃), . . . , f̃k(x̃)

}
= span

{
∂

∂ x̃1
, . . . ,

∂

∂ x̃k

}
(2.68)

where f̃i (x̃) � T∗( fi (x)) for 1 ≤ i ≤ k (If k = n, we can let x̃ = T (x) = x). Thus,
we can let

f̃i (x̃) �
[

f̂i (x̃)
O(n−k)×1

]
, 1 ≤ i ≤ k. (2.69)

Also, it is clear, by Theorem2.4, that for 1 ≤ i ≤ k and 1 ≤ j ≤ k

[ f̃i (x̃), f̃ j (x̃)] = 0 or
∂ f̂i (x̃)

∂ x̃1
f̂ j (x̃) − ∂ f̂ j (x̃)

∂ x̃1
f̂i (x̃) = Ok×1. (2.70)

Let x̃ =
[
x̃1

x̃2

]
, x̃1 =

⎡
⎢⎣
x̃1
...

x̃k

⎤
⎥⎦, and x̃2 =

⎡
⎢⎣
x̃k+1

...

x̃n

⎤
⎥⎦. Also, define 1 × k matrixwi (x̃), 1 ≤

i ≤ k by

⎡
⎢⎣

w1(x̃)
...

wk(x̃)

⎤
⎥⎦ �

[
f̂1(x̃) · · · f̂k(x̃)

]−1
(2.71)

or
⎡
⎢⎣

w1(x̃)
...

wk(x̃)

⎤
⎥⎦[

f̂1(x̃) · · · f̂k(x̃)
] =

⎡
⎢⎣
1 · · · 0
...

...

0 · · · 1

⎤
⎥⎦ .
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In other words, wp(x̃) f̂i (x̃) = δp,i for 1 ≤ p ≤ k and 1 ≤ i ≤ k, where δp,i is the
Kronecker delta function. Thus, we have, by (2.3), that for 1 ≤ p ≤ k and 1 ≤ i ≤ k

∂
(
wp(x̃) f̂i (x̃)

)

∂ x̃1
= wp(x̃)

∂ f̂i (x̃)

∂ x̃1
+ f̂i (x̃)

T ∂
(
wp(x̃)T

)
∂ x̃1

= O1×k .

Therefore, we have that for 1 ≤ p ≤ k, 1 ≤ i ≤ k, and 1 ≤ j ≤ k

wp(x̃)
∂ f̂i (x̃)

∂ x̃1
f̂ j (x̃) + f̂i (x̃)

T ∂
(
wp(x̃)T

)

∂ x̃1
f̂ j (x̃) = 0

and

wp(x̃)
∂ f̂ j (x̃)

∂ x̃1
f̂i (x̃) + f̂ j (x̃)

T ∂
(
wp(x̃)T

)
∂ x̃1

f̂i (x̃) = 0

which imply that

wp

(
∂ f̂i
∂ x̃1

f̂ j − ∂ f̂ j
∂ x̃1

f̂i

)
+ f̂ Ti

⎧⎨
⎩

∂
(
wT

p

)

∂ x̃1
−

(
∂
(
wT

p

)

∂ x̃1

)T
⎫⎬
⎭ f̂ j = 0.

Therefore, it is easy to see, by (2.70), that for 1 ≤ p ≤ k

⎡
⎢⎣
f̂1(x̃)T

...

f̂k(x̃)T

⎤
⎥⎦
⎧⎨
⎩

∂
(
wp(x̃)T

)
∂ x̃1

−
(

∂
(
wp(x̃)T

)
∂ x̃1

)T
⎫⎬
⎭

[
f̂1(x̃) · · · f̂k(x̃)

] = Ok×k .

Since
[
f̂1(x̃) · · · f̂k(x̃)

]
has rank k, we have

∂(wp(x̃)T)
∂ x̃1 =

(
∂(wp(x̃)T)

∂ x̃1

)T
for 1 ≤ p ≤ k

and thus there exists, by Lemma2.1, a scalar function S̃p(x̃) for 1 ≤ p ≤ k such

that ∂ S̃p(x̃)
∂ x̃1 = wp(x̃). Let S̃(x̃) � [S̃1(x̃) · · · S̃k(x̃) x̃k+1 · · · x̃n]T �

[
S̃1(x̃)
x̃2

]
. Since

∂ S̃1(x̃)
∂ x̃1 =

⎡
⎢⎣

w1(x̃)
...

wk(x̃)

⎤
⎥⎦, it is easy to see, by (2.71), that z = S̃(x̃) is a state transformation.

Therefore, we have, by (2.69) and (2.71), that



52 2 Basic Mathematics for Linearization

[
S̃∗( f̃1(x̃)) · · · S̃∗( f̃k(x̃))

] =
[

∂ S̃(x̃)
∂ x̃ f̃1(x̃) · · · ∂ S̃(x̃)

∂ x̃ f̃k(x̃)
]∣∣∣

x̃=S̃−1(z)

=
{

∂ S̃(x̃)

∂ x̃

[
f̃1(x̃) · · · f̃k(x̃)

]}
∣∣∣∣∣
x̃=S̃−1(z)

=
{[

∂ S̃1(x̃)
∂ x̃1

∂ S̃1(x̃)
∂ x̃2

O(n−k)×k In−k

] [
f̂1(x̃) · · · f̂k(x̃)

O(n−k)×1 · · · O(n−k)×1

]}∣∣∣∣
x̃=S̃−1(z)

=
[

Ik
O(n−k)×k

]

which implies that S̃∗( f̃i (x̃)) = ∂
∂zi

for 1 ≤ i ≤ k. Hence, it is clear that for 1 ≤ i ≤ k

S∗( fi (x)) = S̃∗ ◦ T∗( fi (x)) = S̃∗( f̃i (x̃)) = ∂

∂zi

where z = S(x) � S̃ ◦ T (x). �

Corollary 2.1 Let x =
[
x1

x2

]
, x1 =

⎡
⎢⎣
x1
...

xk

⎤
⎥⎦, and x2 =

⎡
⎢⎣
xk+1

...

xn

⎤
⎥⎦. Suppose that { f1(x),

. . ., fk(x)} is a set of linearly independent smooth vector fields on open set U of Rn

and that

span { f1(x), · · · , fk(x)} = span

{
∂

∂x1
, · · · ,

∂

∂xk

}
. (2.72)

There exists a state transformation z = S(x) : U → R
n such that for 1 ≤ i ≤ k

S∗( fi (x)) = ∂

∂zi
(2.73)

if and only if for 1 ≤ i ≤ k and 1 ≤ j ≤ k

[
fi (x), f j (x)

] = 0. (2.74)

Furthermore, a state transformation z = S(x) �
[
S1(x)
x2

]
satisfies

∂S1(x)

∂x
= [

f̂1(x) · · · f̂k(x)
]−1 (2.75)

where fi (x) �
[

f̂i (x)
O(n−k)×1

]
for 1 ≤ i ≤ k.
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Proof If (2.72) is satisfied, Frobenius Theorem is not needed. In other words, the
proof of Corollary2.1 is the same as the proof of Theorem2.9 with x̃ = T (x) = x .

�

The annihilator D(x)⊥ of distribution D(x) in open set U of Rn is defined by

D(x)⊥ � {w(x) | 〈w(x), X〉 = 0, ∀X ∈ D(x)} .

In other words, D(x)⊥ is the set of all one forms which are perpendicular to all vector
fields in D(x). Thus, it is easy to see that dim(D(x)⊥) = n − dim(D(x)).

Example 2.6.9 Let D(x) be the smooth distribution in Example2.6.7. Find the anni-
hilator D(x)⊥ of D(x).

Solution It is easy to see that

D(x)⊥ = span
{[
x1(x2 − x3) −1 1

]}
.

Since D(x) is involutive, there exists a scalar function h(x) = e− 1
2 x

2
1 (−x2 + x3) such

that D(x)⊥ = span{dh(x)} (Refer to Example2.6.8) �.

Suppose that S : Rn → R
m is a smooth surjective function and D(x) =

span { f1(x), . . . , fk(x)} is a k-dimensional smooth distribution on R
n . Define the

set S∗(D(x)) of tangent vectors on R
m by

S∗(D(x)) �
{
S∗

(
k∑

i=1

ai (x) fi (x)

) ∣∣∣∣∣ ai (x) ∈ C∞(Rn)

}
.

Example 2.6.10 Suppose that x ∈ R
3 and z = S(x) =

[
x1

(1 + x1)x2 + 2x3

]
. Con-

sider the following smooth distributions:

D1(x) = span

⎧⎨
⎩

⎡
⎣
0
1
x1

⎤
⎦
⎫⎬
⎭ = span { f1(x)}

D2(x) = span

⎧⎨
⎩

⎡
⎣

0
ex3

x1ex3

⎤
⎦
⎫⎬
⎭ = span { f2(x)}

D3(x) = span

⎧⎨
⎩

⎡
⎣
1
0
x2

⎤
⎦
⎫⎬
⎭ = span { f3(x)}

D4(x) = span

⎧⎨
⎩

⎡
⎣
0
1
x1

⎤
⎦ ,

⎡
⎣

0
−2

1 + x1

⎤
⎦
⎫⎬
⎭ = span { f1(x), f4(x)} .
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Let x̄ =
⎡
⎣

x1
a

x3 + 1
2 (1 + x1)x2 − 1

2a(1 + x1)

⎤
⎦. Then it is clear that S(x̄) = S(x) for

all a ∈ R. Find S∗(Di (x)), 1 ≤ i ≤ 4 and S∗(Di (x̄)), 1 ≤ i ≤ 4.

Solution Note that S∗(Di (x)), 1 ≤ i ≤ 4 and S∗(Di (x̄)), 1 ≤ i ≤ 4 are the sets of

tangent vectors at z =
[

x1
(1 + x1)x2 + 2x3

]
∈ R

2. It is clear that

S∗( f1(x)) = ∂S

∂x
f1(x) =

[
1 0 0
x2 1 + x1 2

]⎡
⎣
0
1
x1

⎤
⎦ =

[
0

1 + 3x1

]

S∗( f2(x)) =
[

0
(1 + 3x1)ex3

]
; S∗( f3(x)) =

[
1
3x2

]

S∗( f4(x)) =
[
0
0

]

Also, we have that

S∗( f1(x̄)) = ∂S

∂x
f1(x)

∣∣∣∣
x=x̄

=
[

0
1 + 3x1

]

S∗( f2(x̄)) =
[

0
(1 + 3x1)ex3+

1
2 (1+x1)x2− 1

2 a(1+x1)

]

S∗( f3(x̄)) =
[
1
3a

]
; S∗( f4(x̄)) =

[
0
0

]
.

Thus, it is easy to see that

S∗(D1(x̄)) = span

{[
0

1 + 3x1

]}
= S∗(D1(x))

S∗(D2(x̄)) = span

{[
0

(1 + 3x1)ex3+
1
2 (1+x1)x2− 1

2 a(1+x1)

]}

= span

{[
0

1 + 3x1

]}
= S∗(D2(x))

S∗(D3(x̄)) = span

{[
1
3a

]}
	= span

{[
1
3x2

]}
= S∗(D3(x))
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and

S∗(D4(x̄)) = span

{[
0

1 + 3x1

]}
= span

{[
0

1 + 3x1

]}
= S∗(D4(x)).

�

In the above Example, since S∗( f1(x)) is a well-defined vector field f̃1(z) �
S∗( f1(x)) =

[
0

1 + 3z1

]
= (1 + 3z1) ∂

∂z2
, it is clear that D̃1(z) � S∗(D1(x)) =

span

{[
0

1 + 3z1

]}
is a distribution on a neighborhoodU = {‖z‖ < 1

3

}
of the origin

[
0
0

]
∈ R

2. Even though S∗( f2(x)) is not a well-defined vector field, S∗(e−x3 f2(x)) is

a well-defined vector field S∗(e−x3 f2(x)) =
[

0
1 + 3z1

]
= (1 + 3z1) ∂

∂z2
and D2(x) =

span { f2(x)} = span
{
e−x3 f2(x)

} = D1(x). Thus, D̃2(z) � S∗(D2(x)) = D̃1(z) =
span

{[
0

1 + 3z1

]}
is also a distribution on a neighborhoodU of the origin

[
0
0

]
∈ R

2.

Both of S∗( f3(x)) and S∗( f3(x̄)) are the set of tangent vectors on z = S(x) = S(x̄).
However, since S∗(D3(x)) 	= S∗(D3(x̄)) unless a = x2, it is clear that S∗(D3(x)) is
not a distribution on R2. Since S∗(D4(x)) = S∗(D4(x̄)), it is clear that S∗(D4(x)) is
a distribution on R

2.
Suppose that D(x) = span { f1(x), . . . , fk(x)} is a k-dimensional smooth distri-

bution on R
n . If S : Rn → R

n is a state transformation (or diffeomophism), then
S∗( fi (x)), 1 ≤ i ≤ k are well-defined vector fields and

D̃(z) � S∗(D(x)) = span {S∗( f1(x)), . . . , S∗( fk(x))}
� span

{
f̃1(z), . . . , f̃k(z)

}

is a smooth distribution.

Definition 2.19 (well-defined smooth distribution) Suppose that S : Rn → R
m is a

smooth surjective function and D(x) is a smooth distribution onRn . S∗(D(x)) is said
to be a well-defined smooth distribution on R

m , if S∗(D(x̄)) = S∗(D(x)) whenever
S(x̄) = S(x).

A geometric condition for the differential map of the distribution to be a well-
defined distribution is given in the following Theorem.

Theorem 2.10 (geometric condition for well-defined distribution) Suppose that
S : Rn → R

m is a smooth surjective function. Also, suppose that D(x) =
span { f1(x), . . . , fk(x)} is a k-dimensional smooth distribution on R

n. Then
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S∗(D(x)) is a well-defined distribution on a neighborhood of z(= S(x)) in R
m,

if and only if

[ fi (x), ker S∗] ⊂ D(x) + ker S∗, 1 ≤ i ≤ k. (2.76)

Proof Necessity. Let z = S(x). Suppose that S∗(D(x)) is a well-defined k̄-
dimensional distribution on a neighborhood of z(= S(x)) in R

m . Without loss of
generality, assume that for k̄ + 1 ≤ i ≤ k

fi (x) ∈ ker S∗ or S∗( fi (x)) = 0. (2.77)

Let z = S(x). Then we have that

D̃(z) = S∗(D(x)) = S∗
(
span

{
f1(x), . . . , fk̄(x)

})

= span
{
f̄1(z), . . . , f̄k̄(z)

}

and for 1 ≤ j ≤ k̄

f̄ j (z) = S∗

⎛
⎝

k̄∑
i=1

a ji (x) fi (x)

⎞
⎠

for some smooth functions a ji (x). Let τ(x) ∈ ker S∗. Thus, it is clear, by Theorem2.6
and (2.42), that for 1 ≤ j ≤ k̄

[
k∑

i=1

a ji (x) fi (x), τ (x)

]
∈ ker S∗

or

k∑
i=1

a ji (x) [ fi (x), τ (x)] −
k∑

i=1

Lτa ji (x) fi (x) ∈ ker S∗

which implies that for 1 ≤ j ≤ k̄

k∑
i=1

a ji (x) [ fi (x), τ (x)] ∈ D(x) + ker S∗. (2.78)
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Since rank

⎛
⎜⎝

⎡
⎢⎣
a11 · · · a1k̄
...

...

ak̄1 · · · ak̄k̄

⎤
⎥⎦

⎞
⎟⎠ = k̄, it is clear, by (2.78), that (2.76) is satisfied for

1 ≤ i ≤ k̄. Since ker S∗ is involutive, (2.76) is, by (2.77), satisfied for k̄ + 1 ≤ i ≤ k.
Sufficiency. Suppose that (2.76) is satisfied. Let S(x̄) = S(x). Let γt (x) be a

smooth parameterized curve such that γ0(x) = x , γ1(x) = x̄ , and

S(γt (x)) = S(x), 0 ≤ t ≤ 1. (2.79)

(For example, in Example2.4.7, γt (x) =
⎡
⎣

x1
x2 + t (x̄2 − x2)

x3 − t
2 (1 + x1)(x̄2 − x2)

⎤
⎦.) Note that

S∗(D(γt (x))) = span

{{
∂S(x)

∂x
f1(x)

}∣∣∣∣
x=γt (x)

, . . . ,

{
∂S(x)

∂x
fk(x)

}∣∣∣∣
x=γt (x)

}
.

If we can show that for 0 ≤ t ≤ 1

S∗(D(γt (x))) = S∗(D(x))

= span

{
∂S(x)

∂x
f1(x), . . . ,

∂S(x)

∂x
fk(x)

}

or for 1 ≤ i ≤ k

d

dt

({
∂S(x)

∂x
fi (x)

}∣∣∣∣
x=γt (x)

)∣∣∣∣∣
t=0

∈ S∗(D(x)) (2.80)

then S∗(D(x)) is a well-defined distribution on a neighborhood of z(= S(x)) in Rm .
Note, by (2.79), that

dS(γt (x))

dt

∣∣∣∣
t=0

= ∂S(x)

∂x

dγt (x)

dt

∣∣∣∣
t=0

= 0

or

b(x) � dγt (x)

dt

∣∣∣∣
t=0

∈ kerS∗. (2.81)

Thus, it is easy to see, by (2.76) and (2.81), that there exists f̃i (x) ∈ D(x) such that
for 1 ≤ i ≤ k



58 2 Basic Mathematics for Linearization

∂S(x)

∂x
([ fi (x), b(x)]) = ∂S(x)

∂x

∂b(x)

∂x
fi (x) − ∂S(x)

∂x

∂ fi (x)

∂x
b(x)

= ∂S(x)

∂x
f̃i (x)

which implies, together with (2.4) and (2.81), that for 1 ≤ i ≤ k,

d

dt

({
∂S(x)

∂x
fi (x)

}∣∣∣∣
x=γt (x)

)∣∣∣∣∣
t=0

= ∂

∂x

{
∂S(x)

∂x
fi (x)

}
dγt (x)

dt

∣∣∣∣
t=0

=

⎡
⎢⎢⎢⎢⎣

fi (x)T
∂
∂x

(
∂S1(x)

∂x

)T
b(x)

...

fi (x)T
∂
∂x

(
∂Sm (x)

∂x

)T
b(x)

⎤
⎥⎥⎥⎥⎦

+ ∂S(x)

∂x

∂ fi (x)

∂x
b(x)

=

⎡
⎢⎢⎢⎢⎣

b(x)T ∂
∂x

(
∂S1(x)

∂x

)T
fi (x)

...

b(x)T ∂
∂x

(
∂Sm (x)

∂x

)T
fi (x)

⎤
⎥⎥⎥⎥⎦

+ ∂S(x)

∂x

∂b(x)

∂x
fi (x) − ∂S(x)

∂x
f̃i (x)

= ∂

∂x

{
∂S(x)

∂x
b(x)

}
fi (x) − ∂S(x)

∂x
f̃i (x)

= −∂S(x)

∂x
f̃i (x) ∈ S∗(D(x)).

In other words, (2.80) is satisfied. Hence, S∗(D(x)) is a well-defined distribution on
a neighborhood of z(= S(x)) in Rm . �

Example 2.6.11 Suppose that D(x) is involutive distribution onRn and S∗(D(x)) is
a well-defined smooth distribution on Rm . Show that S∗(D(x)) is also an involutive
distribution.

Solution Omitted. (Problem 2-24.) �

Example 2.6.12 Suppose that x ∈ R
3 and z = S(x) =

[
x1

(1 + x1)x2 + 2x3

]
. Con-

sider the following smooth distributions:

D1(x) = span

⎧⎨
⎩

⎡
⎣
0
1
x1

⎤
⎦
⎫⎬
⎭ = span { f1(x)}

D2(x) = span

⎧⎨
⎩

⎡
⎣

0
ex3

x1ex3

⎤
⎦
⎫⎬
⎭ = span { f2(x)}
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D3(x) = span

⎧⎨
⎩

⎡
⎣
1
0
x2

⎤
⎦
⎫⎬
⎭ = span { f3(x)}

D4(x) = span

⎧⎨
⎩

⎡
⎣
0
1
x1

⎤
⎦ ,

⎡
⎣

0
−2

1 + x1

⎤
⎦
⎫⎬
⎭ = span { f1(x), f4(x)}

D5(x) = span

⎧⎨
⎩

⎡
⎣
1
0
0

⎤
⎦ ,

⎡
⎣
0
1
0

⎤
⎦
⎫⎬
⎭ = span { f5(x), f6(x)} .

Use Theorem2.10 to find whether S∗(D(x)) is a well-defined smooth distribution on
a neighborhood of the origin in R2 or not. If it is a well-defined smooth distribution,
then express it in terms of z-coordinates.

Solution Since ∂S(x)
∂x =

[
1 0 0
x2 1 + x1 2

]
, it is clear that

ker S∗ = span

{
−2

∂

∂x2
+ (1 + x1)

∂

∂x3

}
= span

⎧⎨
⎩

⎡
⎣

0
−2

1 + x1

⎤
⎦
⎫⎬
⎭ � span {τ(x)} .

Thus, it is easy to see that

[ f1(x), τ (x)] = 0 ∈ ker S∗ ⊂ D1(x) + ker S∗

[ f2(x), τ (x)] = −(1 + x1)

⎡
⎣

0
ex3

x1ex3

⎤
⎦ ∈ D2(x) + ker S∗

[ f3(x), τ (x)] =
⎡
⎣
0
0
3

⎤
⎦ /∈ D3(x) + ker S∗

[ f4(x), τ (x)] = 0 ∈ ker S∗ ⊂ D4(x) + ker S∗

[ f5(x), τ (x)] =
⎡
⎣
0
0
1

⎤
⎦ ∈ D5(x) + ker S∗

[ f6(x), τ (x)] = 0 ∈ ker S∗ ⊂ D5(x) + ker S∗[
f5(x) − x2

1 + x1
f6(x), τ (x)

]
= 1

1 + x1
τ(x) ∈ ker S∗

which imply that S∗(D3(x)) is not a well-defined smooth distribution on a neighbor-
hood of the origin in R

2 and
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S∗(D1(x)) = S∗(D2(x)) = S∗(D4(x)) = span

{[
0

1 + 3z1

]}

S∗(D5(x)) = span

{[
1
0

]
,

[
0

1 + 3z1

]}
= span

{[
1
0

]
,

[
0
1

]}
.

�

If �(x) is a distribution and f (x) − g(x) ∈ �(x), we denote

f (x) ≡ g(x) mod �(x).

For example, suppose that

f (x) =
⎡
⎣

0
3

1 + x1

⎤
⎦ , g(x) =

⎡
⎣
0
1
x3

⎤
⎦ , and �(x) =

⎡
⎣
0
0
2

⎤
⎦ .

Then we have that
f (x) ≡ g(x) mod �(x).

2.7 State Equivalence and Feedback Equivalence

The concept of an equivalence relation is important in mathematics and will be
used in the form of state equivalence or feedback equivalence. In mathematics, an
equivalence relation is a binary relation that is reflexive, symmetric, and transitive.
So the equivalence relationship divides the set into separate equivalence classes.

Definition 2.20 (equivalence relation) Binary relation ∼ on a set A is said to be an
equivalence relation, if for all elements a, b, c of A

(a) a ∼ a (reflexivity)
(b) a ∼ b ⇒ b ∼ a (symmetry)
(c) a ∼ b and b ∼ c ⇒ a ∼ c (transitivity).

Example 2.7.1 Suppose that a ∼ b if a − b is even for a ∈ Z and b ∈ Z. Show that
binary relation ∼ on a set Z is an equivalence relation.

Solution Omitted. (Problem 2-25.) �

Definition 2.21 (equivalence class) Suppose that a binary relation ∼ on a set A is
an equivalence relation. The equivalence class of an element x in A is defined to be
the set [x] � {a ∈ A | a ∼ x}.
Example 2.7.2 For the equivalence relation defined in Example2.7.1, show that
[1] = [−3] and [0] = [6].
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Solution Omitted. (Problem 2-27.) �

Consider the following systems:

�1 : ẋ = f (x) + g(x)u = f (x) +
m∑
i=1

ui gi (x) (2.82)

�2 : ż = f̃ (z) + g̃(z)u = f̃ (z) +
m∑
i=1

ui g̃i (z) (2.83)

where x ∈ R
n , z ∈ R

n , u ∈ R
m , and f (0) = f̃ (0) = 0.

Definition 2.22 (state equivalence of the systems) System (2.82) is said to be state
equivalent to system (2.83), if there exists a state transformation z = S(x) such that
system (2.82) satisfies, in z-coordinates, the state equation of system (2.83). In other
words, for all u(∈ R

m)

S∗ ( f (x) + g(x)u) = f̃ (z) + g̃(z)u.

Example 2.7.3 Show that the relation of Definition2.22 is equivalence relation.

Solution We need to prove that the conditions of Definition2.20 are satisfied.

(a) Reflexivity is obviously satisfied with S(x) = x .
(b) Suppose that �1 ∼ �2. Then there exists a state transformation z = S(x) such

that S∗( f (x) + g(x)u) = f̃ (z) + g̃(z)u. Since S−1∗
(
f̃ (z) + g̃(z)u

)
= f (x) +

g(x)u, it is clear that �2 ∼ �1.
(c) Suppose that �1 ∼ �2 and �2 ∼ �3, where

�3 : ξ̇ = f̄ (ξ) + ḡ(ξ)u.

Then there exist state transformations z = S1(x) and ξ = S2(z) such that
S1∗( f (x) + g(x)u) = f̃ (z) + g̃(z)u and S2∗( f̃ (z) + g̃(z)u) = f̄ (ξ) + ḡ(ξ)u.
Since (S2 ◦ S1)∗( f (x) + g(x)u) = S2∗ ◦ S1∗( f (x) + g(x)u) = f̄ (ξ) + ḡ(ξ)u
and ξ = S2 ◦ S1(x) is a state transformation, it is clear that �1 ∼ �3. �

ByExample2.7.3, the binary relationship of Definition2.22 can be called the state
equivalence.

Example 2.7.4 Show that if system �1 and system �2 are state equivalent, then the

eigenvalues of ∂ f (x)
∂x

∣∣∣
x=0

are the same as the eigenvalues of ∂ f̃ (z)
∂z

∣∣∣
z=0

.

Solution Since

f̃ (z) = S∗( f (x))(z) = ∂S(x)

∂x
f (x)

∣∣∣∣
x=S−1(z)
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we have, by chain rule, that

∂ f̃ (z)

∂z
= ∂

∂x

(
∂S(x)

∂x
f (x)

)∣∣∣∣
x=S−1(z)

∂S−1(z)

∂z

and

∂ f̃ (z)

∂z

∣∣∣∣∣
z=0

= ∂

∂x

(
∂S(x)

∂x
f (x)

)∣∣∣∣
x=0

∂S−1(z)

∂z

∣∣∣∣
z=0

.

If we let the i th row of ∂S(x)
∂x by Ai (x), then it is easy, by (2.4), to see that

∂

∂x

(
∂S(x)

∂x
f (x)

)∣∣∣∣
x=0

=

⎡
⎢⎢⎣
f (0)T ∂A1(x)T

∂x
...

f (0)T ∂An(x)T

∂x

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
x=0

+ ∂S(x)

∂x

∣∣∣∣
x=0

∂ f (x)

∂x

∣∣∣∣
x=0

= ∂S(x)

∂x

∣∣∣∣
x=0

∂ f (x)

∂x

∣∣∣∣
x=0

.

Therefore, we have

∂ f̃ (z)

∂z

∣∣∣∣∣
z=0

= ∂S(x)

∂x

∣∣∣∣
x=0

∂ f (x)

∂x

∣∣∣∣
x=0

∂S−1(z)

∂z

∣∣∣∣
z=0

= P
∂ f (x)

∂x

∣∣∣∣
x=0

P−1

where P = ∂S(x)
∂x

∣∣∣
x=0

. Since ∂ f (x)
∂x

∣∣∣
x=0

and ∂ f̃ (z)
∂z

∣∣∣
z=0

are similar, it is clear that the

eigenvalues of them are the same. �

Example 2.7.5 Use Example2.7.4 to show that system (1.2) is not state equivalent
to the following system:

[
ż1
ż2

]
=

[
0 0
1 1

] [
z1
z2

]
+

[
1
1

]
u

Solution Omitted. (See Problem 2-28.) �

Example 2.7.6 Show that the following two systems are state equivalent with z =
S(x) =

[
x2 + 1

2 x
2
1−x1

]
:
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[
ẋ1
ẋ2

]
=

[
x2 + 1

2 x
2
1

−x1x2 − 1
2 x

3
1

]
+

[
0
1

]
v (2.84)

[
ż1
ż2

]
=

[
0 0

−1 0

] [
z1
z2

]
+

[
1
0

]
v (2.85)

Solution It is clear that x = S−1(z) =
[ −z2
z1 − 1

2 z
2
2

]
and

S∗
([

x2 + 1
2 x

2
1

−x1x2 − 1
2 x

3
1 + v

])
=

[
x1 1
−1 0

] [
x2 + 1

2 x
2
1

−x1x2 − 1
2 x

3
1 + v

]∣∣∣∣
x=S−1(z)

=
[

v

−x2 − 1
2 x

2
1

]∣∣∣∣
x=S−1(z)

=
[

v

−z1

]
.

Therefore, system (2.84) is state equivalent to system (2.85) via z = S(x) =[
x2 + 1

2 x
2
1−x1

]
. �

Consider the following systems:

�1 : ẋ = f (x) + g(x)u = f (x) +
m∑
i=1

ui gi (x) (2.86)

and

�2 : ż = f̃ (z) + g̃(z)v = f̃ (z) +
m∑
i=1

vi g̃i (z) (2.87)

where x ∈ R
n , z ∈ R

n , and f (0) = f̃ (0) = 0.

Definition 2.23 (feedback equivalence of the systems) System (2.86) is said to be
feedback equivalent to system (2.87), if there exist a nonsingular feedback u =
α(x) + β(x)v and a state transformation z = S(x) such that the closed-loop system
of (2.86) satisfies, in z-coordinates, the state equation of system (2.87) or

S∗ ( f (x) + g(x)α(x) + g(x)β(x)v) = f̃ (z) + g̃(z)v.

In other words, system (2.86) is said to be feedback equivalent to system (2.87)
if there exists a nonsingular feedback u = α(x) + β(x)v such that the closed-loop
system of (2.86) is state equivalent to system (2.87).

Example 2.7.7 Show that the relation of Definition2.23 is equivalence relation.

Solution We need to prove that the conditions of Definition2.20 are satisfied.



64 2 Basic Mathematics for Linearization

(a) Reflexivity is obviously satisfied with state transformation z = S(x) = x and
feedback u = v.

(b) Suppose that �1 ∼ �2. Then there exist a state transformation z = S(x) and
feedback u = α(x) + β(x)v such that S∗ ( f (x) + g(x)α(x) + g(x)β(x)v) =
f̃ (z) + g̃(z)v. Since g̃(z) = S∗ (g(x)β(x)) = S∗ (g(x))

(
β ◦ S−1(z)

)
, we have

that g̃(z)
(
β ◦ S−1(z)

)−1 = S∗ (g(x)) and S−1∗
(
g̃(z)

(
β ◦ S−1(z)

)−1
)

= g(x).

Since f̃ (z) = S∗ ( f (x) + g(x)α(x)) = S∗ ( f (x)) + S∗ (g(x))
(
α ◦ S−1(z)

)
, it

is easy to see that

S∗ ( f (x)) = f̃ (z) − S∗ (g(x))
(
α ◦ S−1(z)

)

= f̃ (z) − g̃(z)
(
β ◦ S−1(z)

)−1 (
α ◦ S−1(z)

)

Therefore, it is clear that

S∗ ( f (x) + g(x)u) = f̃ (z) − g̃(z)
(
β ◦ S−1(z)

)−1 (
α ◦ S−1(z)

)

+ g̃(z)
(
β ◦ S−1(z)

)−1
u

or

S−1
∗

(
f̃ + g̃

(
β ◦ S−1(z)

)−1 (−α ◦ S−1(z) + u
)) = f (x) + g(x)u.

Hence, �2 ∼ �1 with state transformation x = S−1(z) and feedback v =(
β ◦ S−1(z)

)−1 (−α ◦ S−1(z) + u
)
.

(c) Suppose that �1 ∼ �2 with state transformations z = S1(x) and feedback u =
α1(x) + β1(x)v and�2 ∼ �3 with state transformations ξ = S2(z) and feedback
v = α2(z) + β2(z)w, where

�3 : ξ̇ = f̄ (ξ) + ḡ(ξ)w.

In other words,

S1∗ ( f (x) + g(x)α1(x) + g(x)β1(x)v) = f̃ (z) + g̃(z)u

and

S2∗
(
f̃ (z) + g̃(z)α2(z) + g̃(z)β2(z)w

)
= f̄ (ξ) + ḡ(ξ)w.

Thus, it is easy to see that
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(S2 ◦ S1)∗ ( f (x) + g(x){α1(x) + β1(x)(α2 ◦ S1(x) + β2 ◦ S1(x)w)})
= S2∗

(
S1∗ ({ f (x) + g(x)α1(x)} + g(x)β1(x) {α2 ◦ S1(x) + β2 ◦ S1(x)w}))

= S2∗
(
f̃ (z) + g̃(z){α2(z) + β2(z)w}

)

= f̄ (ξ) + ḡ(ξ)w

Since ξ = S2 ◦ S1(x) is a state transformation, it is clear that�1 ∼ �3 with state
transformations ξ = S2 ◦ S1(x) and feedback

u = α1(x) + β1(x) {α2 ◦ S1(x) + β2 ◦ S1(x)w} .

�

By Example2.7.7, the binary relationship of Definition2.23 can be called the
feedback equivalence.

Definition 2.24 (feedback equivalent to a linear system) System (2.86) is said to
be feedback equivalent to a linear system, if there exist a nonsingular feedback
u = α(x) + β(x)v and a state transformation z = S(x) such that for all v(∈ R

m),

S∗ ( f (x) + g(x)α(x) + g(x)β(x)v) = Az + Bv

for some constant n × n matrix A and n × m matrix B.

The feedback may change the eigenvalues of ∂ f (x)
∂x

∣∣∣
x=0

. Thus, the eigenvalues of

∂ f (x)
∂x

∣∣∣
x=0

and ∂ f̃ (z)
∂z

∣∣∣
z=0

may not be the same when system �1 and system �2 are

feedback equivalent.

Example 2.7.8 Suppose that system �1 and system �2 are feedback equivalent.
Show that for k ≥ 1,

rank

([
g̃(0) ∂ f̃ (z)

∂z

∣∣∣
z=0

g̃(0) · · ·
(

∂ f̃ (z)
∂z

∣∣∣
z=0

)k−1
g̃(0)

])

= rank

([
g(0) ∂ f (x)

∂x

∣∣∣
x=0

g(0) · · ·
(

∂ f (x)
∂x

∣∣∣
x=0

)k−1
g(0)

])
.

Solution Omitted. (See Problem 2-29.) �

Example 2.7.9 Show that a single input controllable linear system is feedback
equivalent to the following Brunovsky canonical form:
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ż =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

v = A0z + b0v (2.88)

Solution Consider the following single input controllable linear system:

ζ̇ = Aζ + bw (2.89)

where rank
([
b Ab · · · An−1b

]) = n and

Anb =
n∑

i=1

ai A
i−1b.

Let z = P−1ζ , where

P = [
b Ab · · · An−1b

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a2 −a3 · · · −an 1
−a3 −a4 · · · 1 0

...
...

...
...

−an−1 −an · · · 0 0
−an 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then it is easy to see that

ż = P−1APz + P−1bw

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
a1 a2 a3 · · · an−1 an

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

w = Āz + b0w.
(2.90)

Therefore, system (2.89) is feedback equivalent to system (2.90) with state trans-
formation z = P−1ζ and nonsingular feedback w = w. Also, system (2.90) is feed-
back equivalent to system (2.88) with state transformation z = z and nonsingu-
lar feedback w = − [

a1 a2 · · · an
]
z + v. Hence, system (2.89) is feedback equiva-

lent to system (2.88) with state transformation z = P−1ζ and nonsingular feedback
w = − [

a1 a2 · · · an
]
P−1ζ + v. �

ByExample2.7.9, it is clear that if a single input system is feedback equivalent to a
controllable linear system, then it is feedback equivalent to the Brunovsky canonical
form. It is also true for the multi-input system.
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Example 2.7.10 Show that a multi-input controllable linear system is feedback
equivalent to the following Brunovsky canonical form:

ż =

⎡
⎢⎢⎢⎣

A11 O · · · O
O A22 · · · O
...

...
. . .

...

O O · · · Amm

⎤
⎥⎥⎥⎦ z +

⎡
⎢⎢⎢⎣

B11 O · · · O
O B22 · · · O
...

...
. . .

...

O O · · · Bmm

⎤
⎥⎥⎥⎦ v

= Az + Bv

where
m∑
i=1

κi = n and

Aii =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(κi × κi ) ; Bii =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(κi × 1).

Solution Omitted. (Problem 2-31.) �

2.8 MATLAB Programs

In this section, the following subfunctions in AppendixC are needed:
adfg, ChZero, ChCommute, ChExact, ChInverseF,
Codi, Lfh, sstarmap

The followingMATLAB program is for Examples2.4.3, 2.4.7, 2.4.10, and 2.4.11.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real

EX=2403
% EX=2407
% EX=2410
% EX=2411

if EX==2403
f=[x2; 1]; g=[1; x1]; h=x1*x2
n=size(f,1); x=sym(’x’,[n,1]);
out1=adfg(f,g,x)
out2=Lfh(f,h,x)

end
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if EX==2407
S=[x1; (1+x1)*x2+2*x3]
f=[1; 0; x2]; g=[0; 1; x1]
p0=[1; 1; 0]; p1=[1; 0; 1]
n=size(f,1); x=sym(’x’,[n,1]);
dS=jacobian(S,x)
Sf=dS*f
Sg=dS*g
ans1=subs(Sf,x,p0)
ans2=subs(Sf,x,p1)
ans3=subs(Sg,x,p0)
ans4=subs(Sg,x,p1)

end

if EX==2410
S=[z1+z2ˆ2; z2]
iS=[x1-x2ˆ2; x2]
fz=[0; z1]; gz=[1; 1]
n=size(fz,1); x=sym(’x’,[n,1]); z=sym(’z’,[n,1]);
dS=jacobian(S,z)
Tfz=dS*fz
fx=subs(Tfz,z,iS)
Tgz=dS*gz
gx=subs(Tgz,z,iS)

end

if EX==2411
S=[x1+x2ˆ2; x2]; iS=[z1-z2ˆ2; z2]
fx=[x2; 1]; gx=[1; x1]; h=x1*x2;
n=size(fx,1); x=sym(’x’,[n,1]); z=sym(’z’,[n,1]);
hz=subs(h,x,iS)
dS=jacobian(S,x);
Tfx=dS*fx;
fz=subs(Tfx,x,iS)
Tgx=dS*gx;
gz=subs(Tgx,x,iS)
adfzgz=adfg(fz,gz,z)
adfxgx=adfg(fx,gx,x)
Sadfxgx=subs(dS*adfg(fx,gx,x),x,iS)
Lfzhz=Lfh(fz,hz,z)
LfxhxiS=subs(Lfh(fx,h,x),x,iS)

end

return
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The following MATLAB program is for Examples2.6.1, 2.6.5, 2.6.7, and 2.6.8.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real

EX=2601
% EX=2605
% EX=2607
% EX=2608

if EX==2601
f=[x2; 1]; tau=[1; 0];
n=size(f,1); x=sym(’x’,[n,1]);
idS=[f tau]
if ChCommute(idS,x)==0
return

end
dS=simplify(inv(idS))
S=Codi(dS,x)

end

if or(EX==2605,EX==2607)
g1=[1; 0; 0]; g2=[0; 1; x1];
f1=[1; x1*x2; x1*x3]; f2=[0; 1; 1];
n=length(g1); x=sym(’x’,[n,1]);
if EX==265
D=[g1 g2]

else
D=[f1 f2]

end
T12=adfg(D(:,1),D(:,2),x)
if rank([T12 D]) > rank(D)
display(’NOT Involutive.’)
return

end
display(’Involutive.’)

end

if EX==2608
f1=[1; x1*x2; x1*x3]; f2=[0; 1; 1];
n=length(f1); x=sym(’x’,[n,1]); z=sym(’z’,[n,1]);
D=[f1 f2]
e3=[0; 0; 1]
bD=[D e3]
Tomega=e3’*inv(bD)
if ChExact(Tomega,x)==0
display(’Find out a(x) without MATLAB.’)
ax=exp(-x1ˆ2/2)

else
ax=1

end
omega=ax*Tomega
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if ChExact(omega,x)==0
display(’a(x) is not correct.’)
return

end
S3=Codi(omega,x)
S=[x1; x2; S3]
iS=[x1; x2; x3*exp(x1ˆ2/2)+x2]
if ChInverseF(S,iS,x)==0
display(’Inverse function iS is not correct.’)
return

end
Tf1z=sstarmap(S,iS,f1,x)
f1z=subs(Tf1z,x,z)
Tf2z=sstarmap(S,iS,f2,x)
f2z=subs(Tf2z,x,z)
Dz=[f1z f2z]
Dz2=[[1; 0; 0] [0; 1; 0]]
r1=rank(Dz)
r2=rank(Dz2)
r3=rank([Dz Dz2])

end

return

The following MATLAB program is for Problem 2-12, 16, 17, 19, and 21.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real

EX=2912
% EX=2916
% EX=2917
% EX=2919
% EX=2921

if EX==2912
x=sym(’x’,[2,1]); z=sym(’z’,[2,1]);
S=[x1; x2+x1ˆ2]; iS=[z1; z2-z1ˆ2]
f1=[1; 0]; f2=[x2; 1]
Tf1x=jacobian(S,x)*f1
f1z=subs(Tf1x,x,iS)
Tf2x=jacobian(S,x)*f2
f2z=subs(Tf2x,x,iS)

end

if EX==2916
x=sym(’x’,[2,1]); z=sym(’z’,[2,1]);
f=[2*x1*x2-2*x2ˆ3; x1-x2ˆ2]
g=[1+2*x2; 1]
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X2=adfg(f,g,x)
ANSa=adfg(g,X2,x)
idS=[g X2]
dS=inv(idS)
S=Codi(dS,x)
Tfz=simplify(dS*f)
Tgz=simplify(dS*g)

end

if EX==2917
x=sym(’x’,[3,1]); z=sym(’z’,[3,1]);
f=[-2*x2*(x1+x2+x2ˆ2); x1+x2+x2ˆ2; -2*x2*(x1+x2+x2ˆ2)]
g=[1 0; 0 0; 0 1]
X2=adfg(f,g(:,1),x)
idS=[g(:,1) X2 g(:,2)]
r1=rank(idS)
ANSa=ChCommute(idS,x)
dS=inv(idS)
S=Codi(dS,x)
Tfz=simplify(dS*f)
Tgz=simplify(dS*g)

end

if EX==2919
syms a real
x=sym(’x’,[3,1]); z=sym(’z’,[3,1]);

Sab=[x2-x1ˆ2; x1]; dSab=jacobian(Sab,x)
kerSab=[0; 0; 1]
fa=[1; 0; 0]
Ta=adfg(fa,kerSab,x)
if rank([Ta kerSab])>rank(kerSab)
display(’S_*(fa) is NOT a well-defined vector field.’)

end
Tfax=dSab*fa
iSab=[z2; z1+z2ˆ2; a]
faz=subs(Tfax,x,iSab)

fb=[0; 0; 1]
Tb=adfg(fb,kerSab,x)
if rank([Tb kerSab])>rank(kerSab)
display(’S_*(fb) is NOT a well-defined vector field.’)

end
Tfbx=dSab*fb
fbz=subs(Tfbx,x,iSab)

Sc=[x2-x1ˆ2; x3*(1+x1)]; dSc=jacobian(Sc,x)
kerSc=[1; 2*x1; -x3/(1+x1)]; fc=[0; 0; 1]
Tc=adfg(fc,kerSc,x)
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if rank([Tc kerSc])>rank(kerSc)
display(’S_*(fc) is NOT a well-defined vector field.’)

end

Sde=[x2-x1*(x2ˆ2+x3); x2ˆ2+x3]; dSde=jacobian(Sde,x)
kerSde=[1; x2ˆ2+x3; -2*x2*(x2ˆ2+x3)];
fd=[1; 0; 0]
Td=adfg(fd,kerSde,x)
if rank([Td kerSde])>rank(kerSde)
display(’S_*(fd) is NOT a well-defined vector field.’)

end
Tfdx=dSde*fd
iSde=[a; z1+a*z2; z2-(z1+a*z2)ˆ2]
fbz=subs(Tfdx,x,iSde)

fe=[0; 1; 0]
Te=adfg(fe,kerSde,x)
if rank([Te kerSde])>rank(kerSde)
display(’S_*(fe) is NOT a well-defined vector field.’)

end
end

if EX==2921
omegaA=[1 -2*x2]
x=sym(’x’,[2,1]);
Ta=jacobian(omegaA’,x)
ha=Codi(omegaA,x)
omegaB=[x2 x1 x3 1]
x=sym(’x’,[4,1]);
Tb=jacobian(omegaB’,x)
hb=Codi(omegaB,x)

end

return

2.9 Problems

2-1. Solve Example2.1.1.
2-2. Solve Example2.1.2.
2-3. Solve Example2.1.3.
2-4. By using Example2.1.3, solve Example2.1.1(c).
2-5. By using Example2.1.3, solve Example2.1.4.
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2-6. Prove that (2.15) and (2.16) are satisfied.
2-7. Prove the following:

(a) L f +guh(x) = L f h(x) + Lgh(x) u
(b) L2

f +guh(x) = L2
f h(x) + (LgL f h(x) + L f Lgh(x))u + L2

gh(x) u2

2-8. Consider the following nonlinear control system:

ẋ(t) = f (x(t)) + g(x(t))u(t), u ∈ R

y(t) = h(x(t))

(a) Show that

y(2)(t) � d2y(t)

dt2
= L2

f h + (LgL f h + L f Lgh)u + L2
gh u2 + Lgh u̇(t)

(b) Find out y(3)(t).
(c) Define natural number ρ by LgL�

f h(x) = 0, � ≤ ρ − 2 and LgL
ρ−1
f h(x) 	=

0. Show that

y(i)(t) = Li
f h(x), 0 ≤ i ≤ ρ − 1

y(ρ)(t) = Lρ

f h(x) + LgL
ρ−1
f h(x) u.

2-9. Solve Example2.4.1.
2-10. Find f (x), g(x), h1(x), and h2(x) such that

L f Lg(h1(x)h2(x)) 	= h2(x)L f Lg(h1(x)) + h1(x)L f Lg(h2(x)).

In other words, L f Lg(·) does not satisfy Leibniz rule in Example2.4.4(b).
2-11. Use (2.4) and (2.12) to show that (2.18) is satisfied.
2-12. Define state transformation z = S(x) by

z =
[
z1
z2

]
= S(x) =

[
x1

x2 + x21

]
.

Find out S∗( ∂
∂x1

) and S∗
(
x2

∂
∂x1

+ ∂
∂x2

)
.
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2-13. Let

f̂ (ξ) =
[

A1ξ
1

�̂(ξ 1, ξ 2)

]
, ĝ(ξ) =

[
b1

�̂(ξ 1, ξ 2)

]
, ξ =

[
ξ 1

ξ 2

]

A1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(ρ × ρ), b1 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(ρ × 1)

ξ 1 =
⎡
⎢⎣

ξ 1
1
...

ξ 1
ρ

⎤
⎥⎦ , ξ 2 =

⎡
⎢⎣

ξ 2
1
...

ξ 2
n−ρ

⎤
⎥⎦ .

Show that for k ≥ 0

adk
f̂
ĝ(ξ) =

[
(−1)k Ak

1b1∗
]

or

adk
f̂
ĝ(ξ) ≡

[
(−1)k Ak

1b1
O(n−ρ)×1

]
mod span

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

Oρ×1

1
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

, . . . ,

⎡
⎢⎢⎢⎢⎢⎣

Oρ×1

0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

2-14. Suppose that {g(x), ad f g(x), . . . , ad
n−1
f g(x)} is a set of linearly independent

vector fields on a neighborhood of 0 ∈ R
n . Let z = S(x) be a state transfor-

mation such that

S∗
(
adi−1

f g(x)
)

= ∂

∂zi
.

Show that if for 1 ≤ i ≤ n and 1 ≤ j ≤ n

[
adi−1

f g(x), ad j−1
f g(x)

]
= 0

then

S∗
(
adnf g(x)

) =
n∑

i=1

ai (zn)S∗
(
adi−1

f g(x)
)

(2.91)

for some scalar functions ai (zn), 1 ≤ i ≤ n.
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2-15. Solve Example2.5.1.
2-16. Consider the following nonlinear control system:

[
ẋ1
ẋ2

]
=

[
2x1x2 − 2x32
x1 − x22

]
+

[
1 + 2x2

1

]
u = f (x) + g(x)u.

(a) Show that [g(x), ad f g(x)] = 0.
(b) Find out state coordinates change z = S(x) such that S∗(g(x)) = ∂

∂z1
and

S∗
(
ad f g(x)

) = ∂
∂z2

.
(c) Find out the state equation that the new state z in (b) satisfies.

2-17. Consider the following nonlinear control system:

⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣

−2x2(x1 + x2 + x22 )
x1 + x2 + x22−2x2(x1 + x2 + x22 )

⎤
⎦ +

⎡
⎣
1 0
0 0
0 1

⎤
⎦
[
u1
u2

]

= f (x) + g1(x)u1 + g2(x)u2

(a) Let X1(x) = g1(x), X2(x) = ad f g1(x), and X3(x) = g2(x). Show that
{X1(x), X2(x), X3(x)} satisfies (2.61) of Theorem2.7.

(b) Find out state coordinates change z = S(x) such that S∗ (Xi (x)) = ∂
∂zi

, 1 ≤
i ≤ 3.

(c) Find out the state equation for the new state z in (b).

2-18. Suppose that z = S(x) is a state coordinates change. By using that ∂S(x)
∂x is a

nonsingular matrix, show that if { f1(x), . . . , fk(x)} is a set of linearly inde-
pendent vector fields, then {S∗( f1(x)), . . . , S∗( fk(x))} is also a set of linearly
independent vector fields.

2-19. Consider the following smooth functions z = S(x) : R3 → R
2. Use

Theorem2.6 to determine whether S∗( f (x)) is a well-defined vector field
on a neighborhood of 0 ∈ R

2 or not. If it is a well-defined vector field, then
find S∗( f (x)).

(a) S(x) =
[
x2 − x21

x1

]
, f (x) = ∂

∂x1
=

⎡
⎣
1
0
0

⎤
⎦

(b) S(x) =
[
x2 − x21

x1

]
, f (x) = ∂

∂x3

(c) S(x) =
[
x2 − x21
x3 + x1x3

]
, f (x) = ∂

∂x3

(d) S(x) =
[
x2 − x1(x22 + x3)

x22 + x3

]
, f (x) = ∂

∂x1

(e) S(x) =
[
x2 − x1(x22 + x3)

x22 + x3

]
, f (x) = ∂

∂x2
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2-20. Suppose that

f̃ (z) = S∗( f (x)) and h̃(z) = h ◦ S−1(z)

where z = S(x) is a state transformation.

(a) Show that for k ≥ 0,

Lk
f̃
h̃(z) = Lk

f h(x)
∣∣
x=S−1(z)

(b) Show that if f̃ (z) = Az and h̃(z) = cz, then

Lk
f h(x) = cAk S(x), k ≥ 0.

2-21. Show that one form w(x) is exact and find the scalar function h(x) such that
dh(x) = w(x) and h(0) = 0.

(a) w(x) = [
1 −2x2

]
(b) w(x) = [

x2 x1 x3 1
]
.

2-22. Solve Example2.6.6 by using (2.43).
2-23. Find out annihilator D(x)⊥ of distribution

D(x) = span

{
x3

∂

∂x1
+ ∂

∂x3
,

∂

∂x2
+ ∂

∂x3

}
= span

⎧⎨
⎩

⎡
⎣
x3
0
1

⎤
⎦ ,

⎡
⎣
0
1
1

⎤
⎦
⎫⎬
⎭ .

2-24. Solve Example2.6.11.
2-25. Solve Example2.7.1.
2-26. Suppose that a ∼ b if a − b is odd for a ∈ Z and b ∈ Z. Show that binary

relation ∼ on Z is not an equivalence relation.
2-27. Solve Example2.7.2.
2-28. Solve Example2.7.5.
2-29. Solve Example2.7.8.
2-30. Suppose that � f (x)

t (x0) is the solution of the following differential equation:

ẋ = f (x); x(0) = x0.
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In other words,

d

dt
�

f (x)
t (x0) = f (� f (x)

t (x0)); �
f (x)
0 (x0) = x0.

Show that

L f h(x)
∣∣
x=x0

= d

dt
h(�

f
t (x0))

∣∣∣∣
t=0

.

2-31. Solve Example2.7.10.



Chapter 3
Linearization by State Transformation

3.1 Introduction

In Example1.3.1, we have obtained a nonlinear state equation by a nonlinear state
transformation from a linear state equation. Conversely, we could have a linear state
equation by a nonlinear state transformation from a nonlinear state equation. It moti-
vates the linearization problem by state transformation. Consider the following non-
linear control system:

ẋ = f (x) + g(x)u = f (x) +
m∑

i=1

ui gi (x) (3.1)

where x ∈ R
n , u ∈ R

m , and f (0) = 0.

Definition 3.1 (state equivalence to a linear system) System (3.1) is said to be
(locally) state equivalent to a linear system (or linearizable by state transformation), if
there exist a neighborhoodU of origin and a state transformation z = S(x) : U → R

n

such that system (3.1) satisfies, in z-coordinates, the following linear controllable
system:

ż = Az + Bu, z ∈ R
n, u ∈ R

m . (3.2)

In other words, system (3.1) is said to be state equivalent to a linear system (or
linearizable by state transformation), if there exists a controllable linear system that is
state equivalent to system (3.1). Thus, linearization problem by state transformation
is to find the equivalence class of the set of all controllable linear systems. IfU = R

n

in the above definition, we call it the global linearization problem. Throughout the
book, we consider the local linearization problems only. In almost all references, the
(A, B)matrix of the linear system (3.2) is assumed to be a controllable pair, because
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Fig. 3.1 state equivalence to a linear system

it is difficult to solve the above problem without this assumption. Therefore, in this
book, the linear system (3.2) in the above definition is assumed to be controllable.
The state equivalence to a linear system is shown, in Fig. 3.1, as a block diagram.
If nonlinear system (3.1) is linearizable by state transformation, then system (3.1)
can be controlled as easily as linear system (3.2). For example, if we want to find
a control input u(t) which steers the state x(t) from the initial state x0 at t = 0 to
the final state x f at t = t f , it is enough to find a control input u(t) for linear system
(3.2) which steers the state z(t) from the initial state z0 = S(x0) to the final state
z f = S(x f ). Also, note that S(0) = 0. Thus, if A − BK is asymptotically stable (or
Hurwitz) and feedback control u(t) = α(x) = −K S(x) is applied to system (3.1),
then we obtain that lim

t→∞ x(t) = 0.

3.2 Single Input Nonlinear Systems

This section deals with the linearization problem of the following smooth single
input nonlinear system:

ẋ = f (x) + g(x)u, x ∈ R
n, u ∈ R. (3.3)

We can assume, without loss of generality, that f (0) = 0. Let z = S(x) be a state
transformation. Then system (3.3) satisfies, in z-coordinates, that

ż = ∂S(x)

∂x
ẋ = ∂S(x)

∂x
( f (x) + g(x)u)

=
{

∂S(x)

∂x
f (x)

}∣∣∣∣
x=S−1(z)

+
{

∂S(x)

∂x
g(x)

}∣∣∣∣
x=S−1(z)

u

= S∗( f (x)) + S∗(g(x))u = f̃ (z) + g̃(z)u.

(3.4)

Therefore, the linearization by state transformation is to find a state transformation
z = S(x) such that
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f̃ (z) = S∗( f (x)) = Az and g̃(z) = S∗(g(x)) = b (3.5)

where

rank
([
b Ab · · · An−1b

]) = n. (3.6)

Theorem 3.1 (necessary and sufficient condition) System (3.3) is state equivalent
to a linear system with state transformation z = S(x), if and only if

(i) rank
([

g(x) ad f g(x) · · · adn−1
f g(x)

]∣∣∣
x=0

)
= n

(ii)
[
adi−1

f g(x), ad j−1
f g(x)

]
= 0, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1.

Furthermore, a state transformation z = S(x) can be obtained by

∂S(x)

∂x
= [

g(x) ad f g(x) · · · adn−1
f g(x)

]−1
. (3.7)

Proof Necessity. Suppose that system (3.3) is state equivalent to a linear system.
Then there exists a state transformation z = S(x) such that (3.5) is satisfied. It is
easy to see, by Example2.4.14, that for i ≥ 0,

S∗
(
adif g(x)

) = (−1)i Aib (3.8)

and for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1,

[
adi−1

f g(x), ad j−1
f g(x)

]
= 0 (3.9)

which implies that condition (ii) is satisfied. Also, we have, by (3.8), that

[
b −Ab · · · (−1)n−1An−1b

]

=
{

∂S(x)

∂x

[
g(x) ad f g(x) · · · adn−1

f g(x)
]}∣∣∣∣

x=S−1(z)

= ∂S(x)

∂x

∣∣∣∣
x=0

[
g(x) ad f g(x) · · · adn−1

f g(x)
]∣∣

x=0

(3.10)

which implies, together with (3.6), that condition (i) is satisfied.

Sufficiency. Suppose that condition (i) and (ii) are satisfied. Then, by
Theorem2.7, there exists a state transformation z = S(x) such that for 1 ≤ i ≤ n,

S∗
(
adi−1

f g(x)
)

= ∂

∂zi
(3.11)

or
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∂S(x)

∂x

[
g(x) ad f g(x) · · · adn−1

f g(x)
] = I.

Thus, it is clear that g̃(z) � S∗(g(x)) = ∂
∂z1

= [
1 0 · · · 0]T � b. We will show that

f̃ (z) � S∗( f (x)) = Az for some constant matrix A. It is easy to see, by (2.28) and
(3.11), that for 1 ≤ i ≤ n − 1,

−∂ f̃ (z)

∂zi
=

[
f̃ (z),

∂

∂zi

]
=

[
S∗( f (x)), S∗

(
adi−1

f g(x)
)]

= S∗
(
adif g(x)

) = ∂

∂zi+1

which implies that for 1 ≤ j ≤ n and 1 ≤ i ≤ n − 1,

∂ f̃ j (z)

∂zi
=

{
−1, if j = i + 1

0. otherwise.

Also, it is clear, by Example2.4.20 and condition (i) and (ii), that there exist some
constants ai ∈ R, 1 ≤ i ≤ n such that

adnf g(x) =
n∑

i=1

aiad
i−1
f g(x).

Thus, we have, by (2.28) and (3.11), that

−∂ f̃ (z)

∂zn
=

[
f̃ (z),

∂

∂zn

]
=

[
S∗( f (x)), S∗

(
adn−1

f g(x)
)]

= S∗
(
adnf g(x)

)

=
n∑

i=1

ai S∗
(
adi−1

f g(x)
)

=
n∑

i=1

ai
∂

∂zi
= [

a1 · · · an
]T

.

Since f̃ (0) = 0, it is clear that

∂ f̃ (z)

∂z
= −

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 a1
1 0 0 · · · 0 a2
0 1 0 · · · 0 a3
...

...
...

...
...

0 0 0 · · · 1 an

⎤

⎥⎥⎥⎥⎥⎦
= A (3.12)

and f̃ (z) � S∗( f (x)) = Az. �

We say that vector field f (x) and vector field g(x) commute if [ f (x), g(x)] =
0. Condition (ii) of Theorem3.1 is that

{
g, ad f g, . . . , ad

n−1
f g, adnf g

}
is a set of
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commuting vector fields. If we replace condition (ii) by that
{
g, ad f g, . . . , ad

n−1
f g

}

is a set of commuting vector fields, then the state transformation z = S(x) in (3.7)
still exists. However, vector field S∗( f (x)) may not be linear in z.

Example 3.2.1 Suppose that
{
g(x), ad f g(x), . . . , ad

n−1
f g(x)

}
is a set of commut-

ing linearly independent vector fields. Let z = S(x) be the state transformation in
(3.7). Use (2.91) to show that

f̃ (z) � S∗( f (x)) = −

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎦
z + γ (zn)

for some vector function γ : R → R
n .

Solution Omitted. (Problem 3-1.) �

Since f (0) = 0, it is clear that

(ad f g)(0) = ∂g

∂x

∣∣∣∣
x=0

f (0) − ∂ f

∂x

∣∣∣∣
x=0

g(0) = − ∂ f

∂x

∣∣∣∣
x=0

g(0) (3.13)

and

(adif g)(0) = (−1)i
(

∂ f

∂x

∣∣∣∣
x=0

)i

g(0), i ≥ 0. (3.14)

Therefore, condition (i) of Theorem3.1 is satisfied on a neighborhood of the origin,
if and only if

(i)′ rank

([
g(0)

∂ f

∂x

∣∣∣∣
x=0

g(0) · · ·
(

∂ f

∂x

∣∣∣∣
x=0

)n−1

g(0)

])
= n. (3.15)

Example 3.2.2 Show, by using the Jacobi identity of vector fields, that condition
(ii) of Theorem3.1 can also be expressed as follows.

(ii)′ adgad
k
f g(x) = 0, 0 ≤ k ≤ 2n − 1. (3.16)

Solution By Examples2.4.18 and 2.4.19, it is easy to show. (Problem 3-2.) �
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Example 3.2.3 Consider the nonlinear system (1.2).

[
ẋ1
ẋ2

]
=

[
2x1x2 − 2x32
x1 − x22

]
+

[
1 + 2x2

1

]
u = f (x) + g(x)u. (3.17)

In Example1.3.1, we have obtained system (1.2) from linear system

[
ż1
ż2

]
=

[
0 0
1 0

] [
z1
z2

]
+

[
1
1

]
u

by nonlinear state transformation

[
z1
z2

]
= S(x) =

[
x1 − x22

x2

]
.

Show that system (1.2) satisfies the conditions of Theorem3.1. Also, find the state
transformation in (3.7).

Solution Since

ad f g(x) = ∂g(x)

∂x
f (x) − ∂ f (x)

∂x
g(x)

=
[
0 2
0 0

] [
2x1x2 − 2x32
x1 − x22

]
−

[
2x2 2x1 − 6x22
1 −2x2

] [
1 + 2x2

1

]

=
[−2x2

−1

]

and

ad2f g(x) = ∂
(
ad f g(x)

)

∂x
f (x) − ∂ f (x)

∂x
ad f g(x) =

[
0
0

]

it is easy to see that condition (i) and (ii) of Theorem3.1 are satisfied. Therefore,
system (1.2) is state equivalent to a linear system. It is clear, by (3.7), that

∂S(x)

∂x
=

[
1 + 2x2 −2x2

1 −1

]−1

=
[
1 −2x2
1 −1 − 2x2

]

and
[
z1
z2

]
= S(x) =

[
x1 − x22

x1 − x2 − x22

]
. (3.18)

It is easy to see that
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[
ż1
ż2

]
= S∗( f (x)) + S∗(g(x))u =

[
0 0

−1 0

] [
z1
z2

]
+

[
1
0

]
u. (3.19)

Note that system (3.19) is state equivalent to system (1.10) with a linear state trans-
formation (i.e., similarity transformation). �

Example 3.2.4 Consider the nonlinear system (1.2).

(a) Let x(0) =
[
1
1

]
. Find an input u(t), 0 ≤ t ≤ t f such that t f = 2 and x(t f ) =

[
0
0

]
.

(b) Find a nonlinear feedback u = α(x) such that lim
t→∞ x(t) = 0 for the nonlinear

system (1.2).

Solution The controllability Gramian of linear system (3.19) can be calculated as
follows:

W (0, t) �
∫ t

0
e−AτbbT(e−Aτ )Tdτ

=
∫ t

0

[
1 0
τ 1

] [
1
0

] [
1 0

] [1 τ

0 1

]
dτ =

[
t 1

2 t
2

1
2 t

2 1
3 t

3

]
.

Note that z(0) = S(x(0)) =
[
0

−1

]
and z(t f ) = S(x(t f )) =

[
0
0

]
, where z = S(x) is

given in (3.18). Thus,

u(t) = −bT(e−At )TW (0, t f )
−1z(0) = − [

1 0
] [1 t

0 1

] [
2 2
2 8

3

]−1 [
0

−1

]

= 3

2
(t − 1), 0 ≤ t ≤ 2

is an input such that z(2) =
[
0
0

]
and x(2) =

[
0
0

]
. If we let u = α̃(z) = −2z1 + 2z2,

then the closed-loop system of system (3.19) satisfies the following asymptotically
stable linear system:

[
ż1
ż2

]
=

[−2 2
−1 0

] [
z1
z2

]

and lim
t→∞ z(t) = 0. Thus,

u = α̃ ◦ S(x) = −2(x1 − x22 ) + 2(x1 − x2 − x22 ) = −2x2

is a nonlinear feedback such that lim
t→∞ x(t) = 0. �
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Example 3.2.5 Show that the followingnonlinear system is (locally) state equivalent
to a linear system.

[
ẋ1
ẋ2

]
=

[
0

x1 cos2 x2

]
+

[
1
0

]
u = f (x) + g(x)u. (3.20)

Solution It is easy to see that

ad f g(x) = ∂g(x)

∂x
f (x) − ∂ f (x)

∂x
g(x) =

[
0

− cos2 x2

]

and

ad2f g(x) = ∂ad f g(x)

∂x
f (x) − ∂ f (x)

∂x
ad f g(x) =

[
0
0

]
.

Therefore, condition (i) and (ii) of Theorem3.1 are satisfied and thus system (3.20)
is state equivalent to a linear system. It is clear, by (3.7), that

∂S(x)

∂x
=

[
1 0
0 − cos2 x2

]−1

=
[
1 0
0 − sec2 x2

]

and
[
z1
z2

]
= S(x) =

[
x1

− tan x2

]
.

Then we have that
[
ż1
ż2

]
= S∗( f (x)) + S∗(g(x))u =

[
0 0

−1 0

] [
z1
z2

]
+

[
1
0

]
u.

Note that
(

∂S(x)
∂x

)−1
is not nonsingular when x2 = π

2 . Thus, S(x) is a state transfor-

mation on
{
x ∈ R

2 | |x2| < π
2

}
. In other words, the state equivalence does not work

on the entire state space R2. It is called the local linearization. �

Example 3.2.6 Show that the following nonlinear system is not state equivalent to
a linear system.

[
ẋ1
ẋ2

]
=

[
x2
x21

]
+

[
0
1

]
u = f (x) + g(x)u. (3.21)

Solution It is easy to see that
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g(x) =
[
0
1

]
, ad f g(x) =

[−1
0

]
, ad2f g(x) =

[
0
2x1

]

and

[
ad f g(x), ad2f g(x)

] =
[
0

−2

]

=

[
0
0

]
.

Therefore, condition (ii) of Theorem3.1 is not satisfied and thus system (3.21) is not
state equivalent to a linear system. �

If we use feedback u = −x21 + v for system (3.21), we have the following linear
closed-loop system

[
ẋ1
ẋ2

]
=

[
x2
0

]
+

[
0
1

]
v = fc(x) + gc(x)v. (3.22)

In other words, system (3.21) can be linearized by using feedback u = −x21 + v.

Example 3.2.7 Show that the following nonlinear system is not state equivalent to
a linear system.

[
ẋ1
ẋ2

]
=

[
2x1x2 − x32 − x1(1 + 2x2)

−x22

]
+

[
1 + 2x2

1

]
u = f (x) + g(x)u. (3.23)

Solution It is easy to see that

g(x) =
[
1 + 2x2

1

]
, ad f g(x) =

[
1 + 2x2 + 4x22

2x2

]

and

[
g(x), ad f g(x)

] =
[
2 + 4x2

2

]

=

[
0
0

]
.

Therefore, condition (ii) of Theorem3.1 is not satisfied and thus system (3.23) is not
state equivalent to a linear system. �

If we use feedback u = x1 + v for system (3.23), we have

[
ẋ1
ẋ2

]
=

[
2x1x2 − 2x32
x1 − x22

]
+

[
1 + 2x2

1

]
v = fc(x) + gc(x)v (3.24)

that is state equivalent to a linear system. (Refer to Example3.2.3) In other words,
system (3.23) can be linearized by using state transformation (3.18) and feedback
u = x1 + v. The linearization by using both state transformation and feedback will
be discussed in the next chapter.
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3.3 Multi Input Nonlinear Systems

In this section,we extend the single input results of the previous section tomulti-input
systems. Consider the following smooth multi-input control systems:

ẋ = f (x) +
m∑

i=1

gi (x)ui = f (x) + g(x)u (3.25)

where x ∈ R
n , u ∈ R

m , and f (0) = 0. We want to find a state transformation z =
S(x) such that

ż = Az +
m∑

i=1

biui = Az + Bu (3.26)

or

S∗( f (x)) = Az and S∗(gi (x)) = bi , 1 ≤ i ≤ m (3.27)

where

rank
([
b1 Ab1 · · · Aκ1−1b1 · · · bm · · · Aκm−1bm

]) = n. (3.28)

Definition 3.2 (Kronecker indices) For the list of mn constant vector fields of the
form

(
g1, . . . , gm, ad f g1, . . . , ad f gm, . . . , adn−1

f g1, . . . , ad
n−1
f gm

)∣∣∣
x=0

delete all vector fields that are linearly dependent on the set of preceding vector fields
and obtain the unique set of linearly independent constant vector fields

{
g1, ad f g1, . . . , ad

κ1−1
f g1, . . . , gm, ad f gm, . . . , adκm−1

f gm
}∣∣∣

x=0
.

(κ1, . . . , κm) are said to be the Kronecker indices of system (3.25).

In other words, κi is the smallest nonnegative integer such that

adκi
f gi (x)

∣∣∣
x=0

∈span{ ad�−1
f g j (x)

∣∣∣
x=0

∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ κi }
+ span{ adκi

f g j (x)
∣∣∣
x=0

∣∣∣ 1 ≤ j ≤ i − 1}.
(3.29)
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If
m∑

i=1

κi = n, system (3.25) is said to be reachable on a neighborhood of the origin.

Example 3.3.1 Show that the Kronecker indices are invariant under state transfor-
mation. In other words, the Kronecker indices of system (3.25) are the same as the
Kronecker indices of system (3.26).

Solution Suppose that f̃ (z) = S∗( f (x)) and g̃(z) = S∗(g(x)), where z = S(x) is a

state transformation. Since rank
(

∂S(x)
∂x

∣∣∣
x=0

)
= n and

[
g̃1 · · · , g̃m ad f̃ g̃1 · · · ad f̃ g̃m · · · adn−1

f̃
g̃1 · · · adn−1

f̃
g̃m

]∣∣∣
z=0

= ∂S(x)

∂x

∣∣∣∣
x=0

[
g1 · · · gm ad f g1 · · · , ad f gm · · · adn−1

f g1 · · · adn−1
f gm

]∣∣∣
x=0

we obtain, after deletion of Definition3.2, the unique set of linearly independent
constant vector fields

{
g̃1, ad f̃ g̃1, . . . , ad

κ1−1
f̃

g̃1, . . . , g̃m, ad f̃ g̃m, . . . , adκm−1
f̃

g̃m
}∣∣∣

z=0
.

Therefore, the Kronecker indices of system (3.26) are (κ1, . . . , κm). �

Theorem 3.2 (necessary and sufficient condition) System (3.25) is state equivalent
to a linear system, if and only if

(i)
m∑

i=1

κi = n.

(ii) for 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ �i ≤ κi + 1, and 1 ≤ � j ≤ κ j + 1,

[ad�i−1
f gi (x), ad

� j−1
f g j (x)] = 0. (3.30)

Furthermore, a state transformation z = S(x) can be obtained by

∂S(x)

∂x
=

[
g1 ad f g1 · · · adκ1−1

f g1 · · · gm · · · adκm−1
f gm

]−1
. (3.31)

Proof Necessity. Suppose that system (3.25) is state equivalent to a linear system.
Then there exists a state transformation z = S(x) such that (3.27) is satisfied. It is
easy to see, by Example2.4.14, that for 1 ≤ i ≤ m and k ≥ 0,

S∗(adkf gi (x)) = (−1)k Akbi . (3.32)
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Thus, it is easy to see that for 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ �i ≤ κi + 1, and 1 ≤ � j ≤
κ j + 1,

[
ad�i−1

f gi (x), ad
� j−1
f g j (x)

]
= [S−1

∗ {(−1)�i−1A�i−1bi }, S−1
∗ {(−1)� j−1A� j−1bi }]

= S−1
∗ {[(−1)�i−1A�i−1bi , (−1)� j−1A� j−1bi ]} = 0

and condition (ii) is satisfied. Also, we have, by (3.32), that

[
b1 −Ab1 · · · (−1)κ1−1Aκ1−1b1 · · · bm · · · (−1)κm−1Aκm−1bm

]

=
{

∂S(x)

∂x

[
g1 · · · adκ1−1

f g1 · · · gm · · · adκm−1
f gm

]}∣∣∣∣
x=S−1(z)

= ∂S(x)

∂x

[
g1 · · · adκ1−1

f g1 · · · gm · · · adκm−1
f gm

]

which implies, together with (3.28), that condition (i) is satisfied.

Sufficiency. Suppose that condition (i) and (ii) are satisfied. Then, by
Theorem2.7, there exists a state transformation z = S(x) such that for 1 ≤ i ≤ m
and 1 ≤ � ≤ κi ,

S∗
(
ad�−1

f gi (x)
)

= ∂

∂zi�

z =
⎡

⎢⎣
z1

...

zm

⎤

⎥⎦ , zi =
⎡

⎢⎣
zi1
...

ziκi

⎤

⎥⎦
(3.33)

or

∂S(x)

∂x

[
g1 ad f g1 · · · adκ1−1

f g1 · · · gm · · · adκm−1
f gm

]
= I.

Thus, it is clear that S∗(gi (x)) = ∂

∂zi1
� bi for 1 ≤ i ≤ m. We will show that

S∗( f (x)) = Az for some constant matrix A. Let

S∗( f (x)) =
m∑

i=1

κi∑

j=1

f̃ ij (z)
∂

∂zij
. (3.34)

Then, it is easy to see, by (3.33), (3.34), and condition (ii), that for 1 ≤ k1 ≤ m,
1 ≤ k2 ≤ m, 1 ≤ �1 ≤ κk1 , 1 ≤ �2 ≤ κk2 ,
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0 = S∗
([

[ f (x), ad�1−1
f gk1(x)], ad�2−1

f gk2(x)
])

=
[[
S∗( f (x)), S∗(ad�1−1

f gk1(x))
]
, S∗(ad�2−1

f gk2(x))
]

=
⎡

⎣

⎡

⎣
m∑

i=1

κ j∑

j=1

f̃ ij (z)
∂

∂zij
,

∂

∂zk1�1

⎤

⎦ ,
∂

∂zk2�2

⎤

⎦

=
m∑

i=1

κ j∑

j=1

∂2 f̃ ij (z)

∂zk1�1∂z
k2
�2

∂

∂zij
.

(3.35)

Since ∂
∂z (

∂ f̃ ij (z)

∂z )T = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ κi , it is clear that

f̃i (z) = f̃i (0) + Ai z, 1 ≤ i ≤ n.

Since f (0) = 0 and S(0) = 0, it is clear that f̃ (0) = S∗( f (0)) = 0. Therefore, we
have that f̃i (z) = Ai

j z and

S∗( f (x)) =
m∑

i=1

κ j∑

i=1

Ai
j z

∂

∂zij
= Az (3.36)

where

A =
⎡

⎢⎣
A1

...

Am

⎤

⎥⎦ , Ai =
⎡

⎢⎣
Ai
1
...

Ai
κi

⎤

⎥⎦ , 1 ≤ i ≤ m.

�

Example 3.3.2 Show, by using the Jacobi identity of vector fields, that condition
(ii) of Theorem3.2 can also be expressed as follows.

(ii)′ adgi ad
�
f g j (x) = 0 for 0 ≤ � ≤ κi + κ j . (3.37)

Solution By Example2.4.18, it is easy to show. (See Problem 3-8.) �

Example 3.3.3 Show that the following nonlinear system is state equivalent to a
linear system. Also, find out the state transformation z = S(x) in (3.31).

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
−2x2(x1 + x2 + x22 )

x1 + x2 + x22−2x2(x1 + x2 + x22 )

⎤

⎦ +
⎡

⎣
1 0
0 0
0 1

⎤

⎦
[
u1
u2

]

= f (x) + g1(x)u1 + g2(x)u2.

(3.38)
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Solution By simple calculation, we have that (κ1, κ2) = (2, 1) and

ad f g1(x) =
⎡

⎣
2x2
−1
2x2

⎤

⎦ , ad f g2(x) =
⎡

⎣
0
0
0

⎤

⎦ , ad2f g1(x) =
⎡

⎣
−2x2
1

−2x2

⎤

⎦ .

It is easy to see that condition (i) and (ii) of Theorem3.2 are satisfied. Therefore,
system (3.38) is state equivalent to a linear system. It is clear, by (3.31), that

∂S(x)

∂x
=

⎡

⎣
1 2x2 0
0 −1 0
0 2x2 1

⎤

⎦
−1

=
⎡

⎣
1 2x2 0
0 −1 0
0 2x2 1

⎤

⎦

and
⎡

⎣
z1
z2
z3

⎤

⎦ = S(x) =
⎡

⎣
x1 + x22−x2
x3 + x22

⎤

⎦ .

Then we have that
[
ż1
ż2

]
= S∗( f (x)) + S∗(g1(x))u1 + S∗(g2(x))u2

=
⎡

⎣
0 0 0

−1 1 0
0 0 0

⎤

⎦

⎡

⎣
z1
z2
z3

⎤

⎦ +
⎡

⎣
1 0
0 0
0 1

⎤

⎦
[
u1
u2

]
.

�

Example 3.3.4 Show that the following nonlinear system is not state equivalent to
a linear system.

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
x2

−x1 + x22
x23

⎤

⎦ +
⎡

⎣
0 0

1 + x21 0
0 1

⎤

⎦
[
u1
u2

]

= f (x) + g1(x)u1 + g2(x)u2

(3.39)

Solution By simple calculation, we have that (κ1, κ2) = (2, 1) and

ad f g1(x) =
⎡

⎣
−1 − x21

2x2(x1 − 1 − x21 )
0

⎤

⎦ .

Since [g1(x), ad f g1(x)] 
= 0, condition (ii) of Theorem3.2 is not satisfied. Therefore,
system (3.39) is not state equivalent to a linear system. �
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3.4 MATLAB Programs

In this section, the following subfunctions in AppendixC are needed:
adfg, adfgk, adfgM, adfgkM, ChCommute, ChZero,
Codi, Delta, Kindex0, TauFG

MATLAB program for Theorem3.1:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[2*x1*x2-2*x2ˆ3; x1-x2ˆ2]; g=[1+2*x2 ; 1]; %Ex:3.2.3

% f=[0; x1*cos(x2)ˆ2]; g=[1; x1-x1]; %Ex:3.2.5

% f=[x2; x1ˆ2]; g=[x1-x1; 1]; %Ex:3.2.6

% f=[2*x1*x2-2*x2ˆ3-x1*(1+2*x2); -x2ˆ2];
% g=[1+2*x2; 1]; %Ex:3.2.7

% f=[x1*x2+x2-x2ˆ3; 0]; g=[2*x2; 1]; %P:3-3

% f=[2*x2-2*x1*x2+2*x2ˆ2+2*x2ˆ3; -x1+x2+x2ˆ2];
% g=[1; x1-x1]; %P:3-4

% f=[x2+(1/2)*x1ˆ2; x1ˆ2]; g=[x1-x1; 1]; %P:3-5

% f=[x2+x3ˆ2; x3; 0]; g=[2*x3; -2*x3; 1]; %P:3-6

% f=[x1-x1]; g=[1+x1]; %P:3-7

f=simplify(f)
g=simplify(g)

[n,m]=size(g);
x=sym(’x’,[n,1]);

T(:,1)=g;
for k=2:n+1

T(:,k)=adfg(f,T(:,k-1),x);
end

T=simplify(T)
BD=T(:,1:n)
BD0=subs(BD,x,x-x);

if rank(BD0) < n
display(’condition (i) of Thm 3.1 is not satisfied.’)
display(’System is NOT state equivalent to a LS.’)
return
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end

if ChCommute(T,x) == 0
display(’condition (ii) of Thm 3.1 is not satisfied.’)
display(’System is NOT state equivalent to a LS.’)
return

end

display(’System is state equivalent to a LS with’)

dS=simplify(inv(BD))
S=Codi(dS,x)

AS=simplify(dS*f);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)

return

MATLAB program for Theorem3.2:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[-2*x2*(x1+x2+x2ˆ2); x1+x2+x2ˆ2; -2*x2*(x1+x2+x2ˆ2)];
g=[1 x1-x1; 0 0; 0 1]; %Ex:3.3.3

% f=[x2; -x1+x2ˆ2; x3ˆ2];
% g=[0 x1-x1; 1+x1ˆ2 0; 0 1]; %Ex:3.3.4

% f=[x2; x4; x4+3*x2ˆ2*x4; 0];
% g=[0 2*x4; 1 0; 3*x2ˆ2 0; 0 1]; %P:3-9

% f=[-x1+x2ˆ2; -2*x2+sin(x2)];
% g=[1 x1-x1; 0 1]; %P:3-10

f=simplify(f)
g=simplify(g)
[n,m]=size(g);
x=sym(’x’,[n,1]);

[kappa,D]=Kindex0(f,g,x)

if sum(kappa)<n
display(’condition (i) of Thm 3.2 is not satisfied.’)
return

end

BDD=TauFG(f,g,x,kappa+1)
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if ChCommute(BDD,x) == 0
display(’condition (ii) of Thm 3.2 is not satisfied.’)
return

end

display(’System is state equivalent to a LS with’)

BD=TauFG(f,g,x,kappa)
dS=simplify(inv(BD))
S=Codi(dS,x)

AS=simplify(dS*f)
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)

return

3.5 Problems

3-1. Solve Example3.2.1.

3-2. Solve Example3.2.2.

3-3. Show that the following nonlinear system is state equivalent to a linear system.
Also, find the state transformation in (3.7).

ẋ =
[
x1x2 + x2 − x32

0

]
+

[
2x2
1

]
u.

3-4. Show that the following nonlinear system is state equivalent to a linear system.
Also, find the state transformation z = S(x) and the linear system.

ẋ =
[
2x2 − 2x1x2 + 2x22 + 2x32−x1 + x2 + x22

]
+

[
1
0

]
u.

3-5. Show that the following nonlinear system is not state equivalent to a linear
system.

[
ẋ1
ẋ2

]
=

[
x2 + 1

2 x
2
1

x21

]
+

[
0
1

]
u. (3.40)
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3-6. Find a nonlinear feedback u = α(x) such that lim
t→∞ x(t) = 0 for the following

nonlinear control system.

ẋ =
⎡

⎣
x2 + x23

x3
0

⎤

⎦ +
⎡

⎣
2x3

−2x3
1

⎤

⎦ u.

3-7. Linearize the following nonlinear control system by state transformation.

ẋ = (1 + x)u

Find the subset (containing the origin of the state) where this linearization
technique is effective. Also, linearize the above nonlinear control system by
using feedback.

3-8. Solve Example3.3.2.

3-9. Linearize the following nonlinear system by state transformation.

ẋ =

⎡

⎢⎢⎣

x2
x4

x4 + 3x22 x4
0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 2x4
1 0
3x22 0
0 1

⎤

⎥⎥⎦ u.

3-10. Show that the following nonlinear system is not state equivalent to a linear
system.

ẋ =
[ −x1 + x22−2x2 + sin x2

]
+

[
1
0

]
u1 +

[
0
1

]
u2.

3-11. Consider the nonlinear system in Example3.2.3.

[
ẋ1
ẋ2

]
=

[
2x1x2 − 2x32
x1 − x22

]
+

[
1 + 2x2

1

]
u.

Find the state transformation z = S(x) such that

[
ż1
ż2

]
=

[
0 1
0 0

] [
z1
z2

]
+

[
0
1

]
u.

3-12. Suppose that system (3.3) is state equivalent to a linear system.

(a) Show that
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adnf g(x) =
n∑

i=1

(−1)i ci−1ad
i−1
f g(x)

for some constants c0, c1, . . . , cn−1.
(b) Find out the state transformation z = S(x) such that the system satisfies, in

z-coordinates, the following controllable canonical form:

ẋ =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−c0 −c1 −c2 · · · −cn−2 −cn−1

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤

⎥⎥⎥⎥⎥⎦
u.

3-13. Suppose that condition (i) of Theorem3.1 is satisfied. Show that condition (ii)
of Theorem3.1 is equivalent to the following condition.

(ii)′′
[
adi−1

f g(x), ad j−1
f g(x)

]
= 0, i ≥ 1, j ≥ 1.



Chapter 4
Feedback Linearization

4.1 Introduction

In Chap.3, we considered the linearization by state transformation only. This chapter
deals with the linearization problems by both state transformation and feedback.
In Example3.2.6, we have shown that a nonlinear system (3.21), that is not state
equivalent to a linear system, can be linearized by using nonlinear feedback u =
−x21 + v. Consider

[
ẋ1
ẋ2

]
=

[
x2 + 1

2 x
2
1

x21

]
+

[
0
1

]
u = f (x) + g(x)u. (4.1)

that is not linearizable by state transformation (See Problem 3-3.5). We cannot elim-
inate the nonlinear term 1

2 x
2
1 by feedback. If we let

u = −x21 − x1x2 − 1

2
x31 + v (4.2)

then we have the following closed-loop system:

[
ẋ1
ẋ2

]
=

[
x2 + 1

2 x
2
1

−x1x2 − 1
2 x

3
1

]
+

[
0
1

]
v = fc(x) + gc(x)v. (4.3)

If we let z = S(x) =
[
x2 + 1

2 x
2
1−x1

]
, then we have

[
ż1
ż2

]
=

[
0 0

−1 0

] [
z1
z2

]
+

[
1
0

]
v. (4.4)

(See Example2.7.6). System (4.1) is not linearizable by state transformation. How-
ever, we can transform system (4.1) into a linear system by using both feedback (4.2)
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and state transformation z = S(x) =
[
x2 + 1

2 x
2
1−x1

]
. In other words, the larger class of

the nonlinear systems can be linearized by using both feedback and state transforma-
tion. It motivates the linearization problem by state transformation and feedback (or
simply feedback linearization problem). Consider the following nonlinear control
system:

ẋ = f (x) + g(x)u = f (x) +
m∑
i=1

ui gi (x) (4.5)

where x ∈ R
n , u ∈ R

m , and f (0) = 0.

Definition 4.1 (Feedback linearization) System (4.5) is said to be feedback lin-
earizable. If there exist a state transformation z = S(x) and a nonsingular feedback
u = α(x) + β(x)v such that the closed-loop system satisfies, in z-coordinates, the
following Brunovsky canonical form:

ż =

⎡
⎢⎢⎢⎣
A11 O · · · O
O A22 · · · O
...

...
. . .

...

O O · · · Amm

⎤
⎥⎥⎥⎦ z +

⎡
⎢⎢⎢⎣
B11 O · · · O
O B22 · · · O
...

...
. . .

...

O O · · · Bmm

⎤
⎥⎥⎥⎦ v

= Az + Bv

or

S∗ ( f (x) + g(x)α(x) + g(x)β(x)v) = Az + Bv (4.6)

where
m∑
i=1

κi = n, z =
⎡
⎢⎣
z1

...

zm

⎤
⎥⎦, zi =

⎡
⎢⎣
zi1
...

ziκi

⎤
⎥⎦, and

Aii =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(κi × κi ), Bii =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(κi × 1).

For the same reason as in Chap.3, we assume that
m∑
i=1

κi = n or

dim
([
B AB · · · An−1B

]) = n. (4.7)
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Fig. 4.1 Feedback linearization

Fig. 4.2 Relation of feedback linearization and state equivalence to a linear system

Figure4.1 gives the block diagram of feedback linearization. If a system is state
equivalent to a linear system, it is also feedback linearizable with u = v. Figure4.2
shows the relationship between linearization by state transformation and feedback
linearization.

4.2 Single Input Nonlinear Systems

This section deals with the feedback linearization problem of the following smooth
single input nonlinear system:

ẋ = f (x) + g(x)u, x ∈ R
n, u ∈ R (4.8)

We can assume, without loss of generality, that f (0) = 0.
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Definition 4.2 (Feedback linearization) System (4.8) is said to be feedback lin-
earizable. if there exist a state transformation z = S(x) and a nonsingular feedback
u = α(x) + β(x)v such that the closed-loop system satisfies, in z-coordinates, the
following Brunovsky canonical form:

ż =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

v = Az + bv (4.9)

or

S∗ ( f (x) + g(x)α(x) + gβ(x)v) = Az + bv. (4.10)

Example 4.2.1 Suppose that

LgL
i
f S1(x) = 0, 0 ≤ i ≤ n − 2 ; LgL

n−1
f S1(x)

∣∣∣
x=0

�= 0. (4.11)

Show that

rank

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

∂S1(x)
∂x

∂L f S1(x)
∂x
...

∂Ln−1
f S1(x)

∂x

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎟⎟⎟⎠

= n (4.12)

and

rank
([

g(x) ad f g(x) · · · adn−1
f g(x)

]∣∣
x=0

)
= n. (4.13)

Solution It is easy to see, by Example2.4.16, that

⎡
⎢⎢⎢⎢⎢⎣

∂S1(x)
∂x

∂L f S1(x)
∂x
...

∂Ln−1
f S1(x)

∂x

⎤
⎥⎥⎥⎥⎥⎦
[
g(x) ad f g(x) · · · adn−1

f g(x)
]
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=

⎡
⎢⎢⎢⎢⎣

LgS1(x) Lad f g S1(x) · · · Ladn−1
f g S1(x)

...
...

...

LgL
n−2
f S1(x) Lad f g L

n−2
f S1(x) · · · Ladn−1

f g L
n−2
f S1(x)

LgL
n−1
f S1(x) Lad f g L

n−1
f S1(x) · · · Ladn−1

f g L
n−1
f S1(x)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 · · · (−1)n−1LgL
n−1
f S1(x)

...
... ∗

0 −LgL
n−1
f S1(x) · · · ∗

LgL
n−1
f S1(x) ∗ · · · ∗

⎤
⎥⎥⎥⎦ .

Since the matrix of the right-hand side has rank n, it is clear that (4.12) and (4.13)
are satisfied. �

Lemma 4.1 System (4.8) is feedback linearizable with state transformation z =
S(x) = [S1(x) · · · Sn(x)]T and feedback u = α(x) + β(x)v, if and only if there
exists a scalar function S1(x) such that

(i) LgLi
f S1(x) = 0, 0 ≤ i ≤ n − 2

(ii) LgL
n−1
f S1(x)

∣∣∣
x=0

�= 0 .

Furthermore, state transformation z = S(x) and feedback u = α(x) + β(x)v satisfy

z = S(x) = [
S1(x) L f S1(x) · · · Ln−1

f S1(x)
]T

. (4.14)

and

α(x) = − Ln
f S1(x)

LgL
n−1
f S1(x)

; β(x) = 1

LgL
n−1
f S1(x)

. (4.15)

Proof Necessity. Suppose that system (4.8) is feedback linearizable. Then, there
exist a state transformation z = S(x) and a nonsingular feedback u = α(x) + β(x)v
(β(x) �= 0) such that (4.10) is satisfied. Thus, we have that

⎡
⎢⎢⎢⎣

∂S1(x)
∂x
...

∂Sn−1(x)
∂x

∂Sn(x)
∂x

⎤
⎥⎥⎥⎦ { f (x) + g(x)α(x) + g(x)β(x)v} = AS(x) + bv =

⎡
⎢⎢⎢⎣
S2(x)

...

Sn(x)
v

⎤
⎥⎥⎥⎦ .

In other words, for 1 ≤ i ≤ n − 1

Si+1(x) = L f +g(α+βv)Si (x) = L f Si (x) + LgSi (x){α(x) + β(x)v}

and
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v = L f +g(α+βv)Sn(x) = L f Sn(x) + LgSn(x){α(x) + β(x)v}.

Since β(0) �= 0, it is easy to see that for 1 ≤ i ≤ n − 1

Si+1(x) = L f Si (x) ; LgSi (x) = 0 (4.16)

and

L f Sn(x) + LgSn(x)α(x) = 0 ; LgSn(x)β(x) = 1 (4.17)

which imply that (4.14) is satisfied. Therefore, it is easy to see, by (4.16) and (4.17),
that condition (i), (ii) and (4.15) are satisfied.

Sufficiency. Suppose that there exists a scalar function S1(x) such that condition
(i)–(ii) are satisfied. Let us define z = S(x) = [S1(x) · · · Sn(x)]T and feedback u =
α(x) + β(x)v as (4.14) and (4.15), respectively. Then it is clear, from Example4.2.1,
that z = S(x) is a state transformation. Also, it is easy to see, by condition (i), (4.14),
and (4.15), that

S∗ ( f (x) + g(x)(α(x) + β(x)v)) = ∂S(x)

∂x
( f + g(α + βv))

∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎣

∂S1(x)
∂x

∂L f S1(x)
∂x
...

∂Ln−1
f S1(x)

∂x

⎤
⎥⎥⎥⎥⎦ { f + g(α + βv)}

∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎣

L f S1(x) + LgS1(x)(α + βv)
...

Ln−1
f S1(x) + LgL

n−2
f S1(x)(α + βv)

Ln
f S1(x) + LgL

n−1
f S1(x)(α + βv)

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎣

L f S1(x)
...

Ln−1
f S1(x)

v

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎣
z2
...

zn
v

⎤
⎥⎥⎥⎦ .

�

By using Lemma4.1, the verifiable necessary and sufficient conditions can be
obtained as follows.

Theorem 4.1 (Conditions for feedback linearization) System (4.8) is feedback lin-
earizable, if and only if

(i) rank
([

g(x) ad f g(x) · · · adn−1
f g(x)

]∣∣∣
x=0

)
= n.
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(ii) Distribution �n−2(x) is involutive, where

�n−2(x) � span
{
g(x), ad f g(x), . . . , ad

n−2
f g(x)

}
.

Proof Necessity. Suppose that system (4.8) is feedback linearizable. Then, by
Lemma4.1, there exists a smooth function S1(x) such that

LgL
i
f S1(x) = 0, 0 ≤ i ≤ n − 2 ; LgL

n−1
f S1(x)

∣∣∣
x=0

�= 0.

Thus, by Example4.2.1, condition (i) is satisfied. Also, it is clear, by Example2.4.16,
that

Ladif g
S1(x) = 0, 0 ≤ i ≤ n − 2 ; Ladn−1

f g S1(x)
∣∣∣
x=0

�= 0.

Therefore, by Frobenius Theorem (or Theorem2.8), distribution �n−2(x) is involu-
tive and condition (ii) is satisfied.

Sufficiency. Suppose that condition (i) and (ii) are satisfied. Then, there exists, by
Frobenius Theorem (or Theorem2.8), a smooth function S1(x) such that S1(0) = 0
and

Ladif g
S1(x) = 0, 0 ≤ i ≤ n − 2 ; Ladn−1

f g S1(x)
∣∣∣
x=0

�= 0. (4.18)

Then, it is clear, from Example2.4.16, that

LgL
i
f S1(x) = 0, 0 ≤ i ≤ n − 2 ; LgL

n−1
f S1(x)

∣∣∣
x=0

�= 0. (4.19)

Therefore, it is clear that S1(x) satisfies condition (i) and (ii) of Lemma4.1. Hence,
by Lemma4.1, system (4.8) is feedback linearizable. �

(i) of Theorem4.1 is called the controllability (or more precisely, reachability)
condition, and (ii) is called the involutivity condition. If n = 2, then �0 = span{g}
and condition (ii) of Theorem4.1 is obviously satisfied. Thus, when n = 2, we need
to check the controllability condition only for feedback linearizability.

Suppose that conditions of Theorem4.1 are satisfied. Then we need to find S1(x),
that satisfies (4.18), in order to find a state transformation z = S(x) and a nonsingular
feedback u = α(x) + β(x)v. In other words

∂S1(x)

∂x

[
g(x) ad f g(x) · · · adn−2

f g(x) adn−1
f g(x)

∣∣∣
x=0

]

= c(x)
[
0 0 · · · 0 (−1)n−1

] (4.20)
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where c(0) �= 0 (For example, c(0) = 1). Thus, we have

∂S1(x)

∂x
= c(x)

[
0 · · · 0 (−1)n−1

] [
g(x) · · · adn−2

f g(x) adn−1
f g(x)

∣∣∣
x=0

]−1

� c(x)ω(x).

If one form ω(x) = [
ω1(x) · · · ωn(x)

]
is exact, then we can let c(x) = 1. Oth-

erwise, we need to find a scalar function c(x) such that c(x)ω(x) is exact. By
Theorem2.8 (Frobenius Theorem), we know the existence of such c(x). Thus, we
have, by Lemma2.1, that

∂
(
c(x)ω(x)T

)
∂x

=
(

∂
(
c(x)ω(x)T

)
∂x

)T

or

c(x)
∂ω(x)T

∂x
+ ω(x)T

∂c(x)

∂x
= c(x)

(
∂ω(x)T

∂x

)T

+
(

∂c(x)

∂x

)T

ω(x)

which implies that

(
∂ ln c(x)

∂x

)T

ω(x) − ω(x)T
∂ ln c(x)

∂x
= ∂ω(x)T

∂x
−

(
∂ω(x)T

∂x

)T

� Q(x).

(4.21)

Since the both sides of (4.21) are skew-symmetric matrix, we have the following
(n
2

)
equations:

∂ ln c(x)

∂x

[
W1(x) W2(x) · · · Wn−1(x)

]
� ∂ ln c(x)

∂x
W̄ (x) = Q̄(x) (4.22)

where Q(x) = {qi j (x)} and for 1 ≤ i ≤ n − 1,

Wi (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O(i−1)×1 O(i−1)×1 · · · O(i−1)×1

ωi+1(x) ωi+2(x) · · · ωn(x)
−ωi (x) 0 · · · 0

0 −ωi (x) · · · 0
...

...
...

0 0 · · · −ωi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(n × (n − i) matrix)

and

Q̄(x) = [
q12(x) · · · q1n(x) q23(x) · · · q2n(x) · · · q(n−1)n(x)

]
.
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For example, if n = 4, then we have

∂ ln c(x)

∂x

⎡
⎢⎢⎣

ω2(x) ω3(x) ω4(x) 0 0 0
−ω1(x) 0 0 ω3(x) ω4(x) 0

0 −ω1(x) 0 −ω2(x) 0 ω4(x)
0 0 −ω1(x) 0 −ω2(x) −ω3(x)

⎤
⎥⎥⎦

= [
q12(x) q13(x) q14(x) q23(x) q24(x) q34(x)

]
.

Then it is easy to see that

ω(x)W̄ (x) = O.

Since ω(0) �= 0, it is easy to see that rank
(
W̄ (x)

) = rank
(
W̄ (0)

) = n − 1 and
∂ ln c(x)

∂x = −1
ωK (x)

[
qK1(x) qK2(x) · · · qKn(x)

] = −1
ωK (x)qK (x) is a particular solution

of linear algebraic equation (4.22), where ωK (0) �= 0 and qK (x) is the K th row of
Q(x). Therefore, the general solution of linear equation (4.22) is

∂ ln c(x)

∂x
= −1

ωK (x)
qK (x) + d(x)ω(x) (4.23)

where d(x) is a smooth function on a neighborhood of the origin. If one form
−1

ωK (x)qK (x) is exact, then we can find easily ln c(x), c(x), and S1(x) such that

∂ ln c(x)

∂x
= −1

ωK (x)
qK (x) (4.24)

and

∂S1(x)

∂x
= c(x)ω(x) (4.25)

(See MATLAB function S1( f, g, x) and CXexact(ω, x) in AppendixC.) However,
if one form −1

ωK (x)qK (x) is not exact, we need to find c(x)without MATLAB program
such that c(x)ω(x) is exact.

Example 4.2.2 In Example3.2.6, it is shown that system (3.21) is not state equiva-
lent to a linear system. Show that system (3.21) is feedback linearizable.

[
ẋ1
ẋ2

]
=

[
x2
x21

]
+

[
0
1

]
u = f (x) + g(x)u (4.26)

Solution Since

g(x) =
[
0
1

]
and ad f g(x) =

[−1
0

]
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condition (i) and (ii) of Theorem4.1 are satisfied. Therefore, system (3.21) is feed-
back linearizable. A state transformation (4.14) and feedback (4.15) can be found as
follows. By (4.20), we have

c(x)
[
0 −1

] =
[

∂S1(x)
∂x1

∂S1(x)
∂x2

] [0 −1
1 0

]

which implies that
[

∂S1(x)
∂x1

∂S1(x)
∂x2

]
= c(x)

[
1 0

]
. We need to find a scalar function

c(x)( �= 0) such that ∂
∂x2

(
∂S1(x)

∂x1

)
= ∂

∂x1

(
∂S1(x)

∂x2

)
or ∂c(x)

∂x2
= 0. Since one form

[
1 0

]
is exact, we have that c(x) = 1 and S1(x) = x1. (c(x) is not unique. c(x) = 1 + 2x1
and S1(x) = x1 + x21 also work.) Thus, it is easy to see that

[
z1
z2

]
=

[
S1(x)

L f S1(x)

]
=

[
x1
x2

]

and

u = − L2
f S1(x)

LgL f S1(x)
+ 1

LgL f S1(x)
v = −x21 + v.

It is easy to see that

[
ż1
ż2

]
=

[
0 1
0 0

] [
z1
z2

]
+

[
0
1

]
v.

�

Example 4.2.3 Find out a state transformation z = S(x) and a feedback u = α(x) +
β(x)v such that the closed-loop system of system (3.23) in Example3.2.7 satisfies
the Brunovsky canonical form

[
ẋ1
ẋ2

]
=

[−2x32 − x1
−x22

]
+

[
1 + 2x2

1

]
u = f (x) + g(x)u

Solution Since

det
([
g(x) ad f g(x)

]) = det

([
1 + 2x2 1 + 2x2 + 4x22

1 2x2

])
= 1

controllability condition (i) of Theorem4.1 is satisfied. Since n = 2, involutivity
condition (ii) of Theorem4.1 is trivially satisfied. Therefore, by Theorem4.1, system
(3.23) is feedback linearizable. By (4.20), we have
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c(x)
[
0 −1

] = ∂S1(x)

∂x

[
g(x) ad f g(x)

∣∣
x=0

]

=
[

∂S1(x)
∂x1

∂S1(x)
∂x2

] [1 + 2x2 1
1 0

]

which implies that
[

∂S1(x)
∂x1

∂S1(x)
∂x2

]
= c(x)

[−1 1 + 2x2
]
. We need to find a scalar

function c(x)( �= 0) such that ∂
∂x2

(
∂S1(x)

∂x1

)
= ∂

∂x1

(
∂S1(x)

∂x2

)
or− ∂c(x)

∂x2
= (1 + 2x2)

∂c(x)
∂x1

.

Since one form
[−1 1 + 2x2

]
is exact, we have that c(x) = 1 and S1(x) = −x1 +

x2 + x22 . Thus, we have that

[
z1
z2

]
=

[
S1(x)

L f S1(x)

]
=

[−x1 + x2 + x22
x1 − x22

]

and

u = − L2
f S1(x)

LgL f S1(x)
+ 1

LgL f S1(x)
v = x1 + v.

Then, it is easy to see that

[
ż1
ż2

]
=

[
0 1
0 0

] [
z1
z2

]
+

[
0
1

]
v.

�

Example 4.2.4 Show that the following nonlinear control system is feedback lin-
earizable. Also, find a linearizing state transformation and feedback.

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2

x1
x2 + x1x3

⎤
⎦ +

⎡
⎣10
0

⎤
⎦ u = f (x) + g(x)u (4.27)

Solution By simple calculation, we have

ad f g(x) =
⎡
⎣ 0

−1
−x3

⎤
⎦ and ad2f g(x) =

⎡
⎣ 1

0
1 − x2

⎤
⎦

which implies that condition (i) of Theorem4.1 is satisfied. Since [g(x), ad f g(x)] =
0, distribution �1(x) = span{g(x), ad f g(x)} is involutive and condition (ii) is also
satisfied. Therefore, by Theorem4.1, system (4.27) is feedback linearizable. By
(4.20), we have
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c(x)
[
0 0 1

] =
[
LgS1(x) Lad f g S1(x) L ad2f g|x=0

S1(x)
]

=
[

∂S1(x)
∂x1

∂S1(x)
∂x2

∂S1(x)
∂x3

]⎡⎣1 0 1
0 −1 0
0 −x3 1

⎤
⎦

which implies that
[

∂S1(x)
∂x1

∂S1(x)
∂x2

∂S1(x)
∂x3

]
= c(x)

[
0 −x3 1

]
� c(x)ω(x). Note that

one form ω(x) is not exact. We need to find a scalar function c(x) (c(0) = 1) such

that ∂
∂x j

(
∂S1(x)

∂xi

)
= ∂

∂xi

(
∂S1(x)
∂x j

)
for i �= j or

∂c(x)

∂x1
= 0

∂c(x)

∂x2
= ∂ (−c(x)x3)

∂x3
= −c(x) − ∂c(x)

∂x3
x3.

We have, by (4.24) and (4.25), that ω3(0) = 1 �= 0

Q(x) � ∂ω(x)T

∂x
−

(
∂ω(x)T

∂x

)T

=
⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦

∂ ln c(x)

∂x
= −1

ω3(0)
q3(x) = [

0 −1 0
]
.

Since one form −1
ω3(0)

q3(x) is exact, we have ln c(x) = −x2, c(x) = e−x2 , and S1(x) =
x3e−x2 . Thus, we have that

⎡
⎣z1
z2
z3

⎤
⎦ =

⎡
⎣ S1(x)
L f S1(x)
L2

f S1(x)

⎤
⎦ =

⎡
⎣ x3e−x2

x2e−x2

x1(1 − x2)e−x2

⎤
⎦

and

u = − L3
f S1(x)

LgL2
f S1(x)

+ 1

LgL2
f S1(x)

v = x21 x2 − 2x21 − x22 + x2
x2 − 1

+ ex2

1 − x2
v.

Then, it is easy to see that

⎡
⎣ż1
ż2
ż3

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣z1
z2
z3

⎤
⎦ +

⎡
⎣00
1

⎤
⎦ v.

�
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Example 4.2.5 Feedback linearize the following nonlinear system:

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2 − x21

x3 + 2x1x2 − x31
x21 − 3x21 x2 + 3x41

⎤
⎦ +

⎡
⎣ 0

0
1 + x1

⎤
⎦ u = f (x) + g(x)u (4.28)

Solution By simple calculation, we have

ad f g(x) =
⎡
⎣ 0

−1 − x1
x2 − x21

⎤
⎦ and ad2f g(x) =

⎡
⎣ 1 + x1
4x21 + 2x1 − 2x2
−2x31 − 3x21 + x3

⎤
⎦

which implies that condition (i) of Theorem4.1 is satisfied. Since [g(x), ad f g(x)] =
0, distribution �1(x) = span{g(x), ad f g(x)} is involutive and condition (ii) is also
satisfied. Therefore, by Theorem4.1, system (4.28) is feedback linearizable. By
(4.20), we have

c(x)
[
0 0 1

] =
[

∂S1(x)
∂x1

∂S1(x)
∂x2

∂S1(x)
∂x3

]⎡⎣ 0 0 1
0 −1 − x1 0

1 + x1 x2 − x21 0

⎤
⎦

which implies that
[

∂S1(x)
∂x1

∂S1(x)
∂x2

∂S1(x)
∂x3

]
= c(x)

[
1 0 0

]
. Since one form

[
1 0 0

]
is

exact, we can let c(x) = 1 and S1(x) = x1. Thus, we have

⎡
⎣z1
z2
z3

⎤
⎦ =

⎡
⎣ S1(x)
L f S1(x)
L2

f S1(x)

⎤
⎦ =

⎡
⎣ x1
x2 − x21
x3 + x31

⎤
⎦ (4.29)

and

u = − L3
f S1(x)

LgL2
f S1(x)

+ 1

LgL2
f S1(x)

v = − x21
1 + x1

+ 1

1 + x1
v. (4.30)

Then, it is easy to see that

⎡
⎣ż1
ż2
ż3

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣z1
z2
z3

⎤
⎦ +

⎡
⎣00
1

⎤
⎦ v. (4.31)

�

Brunovsky canonical form (4.31) is not asymptotically stable, because all eigen-
values are zero. In Example4.2.5, if we use the feedback
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Fig. 4.3 Feedback linearization with the compensator

u = − x21
1 + x1

+ 1

1 + x1
{−a0z1 − a1z2 − a2z3 + w}

= − x21
1 + x1

+ 1

1 + x1
{−a0S1(x) − a1S2(x) − a2S3(x) + w}

instead of (4.30), then we have

⎡
⎣ż1
ż2
ż3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−a0 −a1 −a2

⎤
⎦
⎡
⎣z1
z2
z3

⎤
⎦ +

⎡
⎣00
1

⎤
⎦w

whose characteristic equation is s3 + a2s2 + a1s + a0 = 0. In other words, once the
nonlinear system is feedback linearized, we can use the well-known linear system
theory to control it. Figure4.3 shows the block diagram of feedback linearization
with the compensation.

In Example4.2.5, state transformation (4.29) is valid for all x, but feedback
(4.30) works only when x1 �= −1. Therefore, the nonlinear system (4.28) is not
globally feedback linearizable. System (4.28) is locally feedback linearizable (on{
x ∈ R

3 | x1 > −1
}
). Theneighborhoodof theorigin, for local linearization, depends

on how far the state transformation and feedback are valid.
For system (4.8), let us define the following distributions:

�0(x) = span{g(x)}
�i (x) = �i−1(x) + [

f (x),�i−1(x)
]
, i ≥ 1

(4.32)

or for i ≥ 0,

�i (x) � span
{
adkf g(x)

∣∣ 0 ≤ k ≤ i
}

= span
{
g(x), ad f g(x), . . . , ad

i
f g(x)

}
.

(4.33)
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With nonsingular feedback u = α(x) + β(x)v, we have the following closed-loop
system:

ẋ = f (x) + g(x)α(x) + g(x)β(x)v

� f̂ (x) + ĝ(x)v.
(4.34)

It is clear that

f (x) = f̂ (x) + ĝ(x)α̂(x) ; g(x) = ĝ(x)β̂(x) (4.35)

where β̂(x) = β(x)−1 and α̂(x) = −β̂(x)α(x). For the closed-loop system (4.47),
we can also define the following distributions:

�̂0(x) = span{ĝ(x)}
�̂i (x) = �̂i−1(x) + ad f̂ �̂i−1(x), i ≥ 1

(4.36)

or for i ≥ 0,

�̂i (x) � span
{
adk

f̂
ĝ(x)

∣∣∣ 0 ≤ k ≤ i
}

= span
{
ĝ(x), ad f̂ ĝ(x), . . . , ad

i
f̂
ĝ(x)

}
.

(4.37)

Example 4.2.6 Suppose that dim(�n−1(x)) = n and 0 ≤ k ≤ n − 2. Show that if
distribution �k(x) is involutive, then �k−1(x) is also involutive.

Solution Suppose that �k(x) is involutive. Assume that �k−1(x) is not involutive.
Then, there exists i and j such that j < i ≤ k − 1 and

[
adif g(x), ad

j
f g(x)

]
= c(x)adkf g(x) + Y (x)

where c(x) �= 0 and Y (x) ∈ �k−1(x). By Jacobi identity (or (2.18)), it is clear that

[
f,
[
adif g, ad

j
f g

]]
=

[
adif g, ad

j+1
f g

]
−

[
ad j

f g, ad
i+1
f g

]
.

Thus, we have, by (2.42), that

[
ad j

f g, ad
i+1
f g

]
=

[
adif g, ad

j+1
f g

]
−

[
f,
[
adif g, ad

j
f g

]]

=
[
adif g, ad

j+1
f g

]
− c(x)adk+1

f g − L f c(x)ad
k
f g − [ f,Y (x)]

� −c(x)adk+1
f g + Z(x)
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where Z(x) =
[
adif g, ad

j+1
f g

]
− L f c(x)adkf g − [ f,Y (x)] ∈ �k(x). Since ad

k+1
f g

/∈ �k(x), c(x) �= 0, and j < i + 1 ≤ k,
[
ad j

f g, ad
i+1
f g

]
/∈ �k(x) and thus �k(x) is

not involutive. It contradicts. Hence, �k−1(x) is involutive. �

Theorem 4.2 (Conditions for feedback linearization) System (4.8) is feedback lin-
earizable, if and only if

(i) dim(�n−1(x)) = n
(ii) �k(x), 0 ≤ k ≤ n − 2 are constant dimensional involutive distributions.

Proof Obvious by Theorem4.1 and Example4.2.6. �

Example 4.2.7 Show that the following nonlinear system is not feedback lineariz-
able.

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2
x3 + x22

0

⎤
⎦ +

⎡
⎣01
1

⎤
⎦ u = f (x) + g(x)u (4.38)

Solution By simple calculation, we have

ad f g(x) =
⎡
⎣ −1

−1 − 2x2
0

⎤
⎦ and ad2f g(x) =

⎡
⎣ 1 + 2x2
2x22 + 2x2 − 2x3

0

⎤
⎦

which implies that condition (i) of Theorem4.1 is satisfied. However, since

[g(x), ad f g(x)] = [
0 −2 0

]T
/∈ �1(x), distribution �1(x) = span{g(x), ad f g(x)}

is not involutive and condition (ii) is not satisfied. Therefore, by Theorem4.1, sys-
tem (4.28) is not feedback linearizable. �

4.3 Multi-input Nonlinear Systems

In this section,we extend the single input results of the previous section tomulti-input
systems. Consider the following smooth multi-input control systems:

ẋ = f (x) +
m∑
i=1

gi (x)ui = f (x) + g(x)u (4.39)

where x ∈ R
n , u ∈ R

m , and f (0) = 0. Let us define the following set of vector fields:

�0(x) = span{gi (x) | 1 ≤ i ≤ m}
�i (x) = �i−1 + [

f (x),�i−1(x)
]
, i ≥ 1

(4.40)
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or

�i (x) � span
{
adkf g j (x)

∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}
, i ≥ 0. (4.41)

Then it is clear that

�0(x) ⊂ �1(x) ⊂ �2(x) ⊂ · · · ⊂ �n−1(x) = �n(x) = · · · (4.42)

Example 4.3.1 Suppose that dim(�i (x)) = dim(�i (0)), i ≥ 0 on a neighborhood
U of 0 ∈ R

n . In other words, �i (x), i ≥ 0 are distributions on a neighborhood U
of 0 ∈ R

n . Show that for i ≥ 0,

�i (x) = span
{
adkf g j (x)

∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ min(i, κ j − 1)
}

(4.43)

and

dim(�i (x)) =
m∑
j=1

min(i + 1, κ j ). (4.44)

Solution Suppose that 1 ≤ p ≤ m, � ≥ κp, and i ≤ κp − 1. If

ad�
f gp(x) /∈ span

{
adkf g j (x)

∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ min(i, κ j − 1)
}

then we have that

ad�
f gp(x)

∣∣
x=0

/∈ span
{
adkf g j (x)

∣∣
x=0

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ min(i, κ j − 1)
}

which contradicts the definition of the Kronecker indices. Thus, it is clear that for
1 ≤ p ≤ m and � ≥ κp

ad�
f gp(x) ∈ span

{
adkf g j (x)

∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ min(i, κ j − 1)
}
.

Therefore, it is easy to see that (4.43) and (4.44) are satisfied. �

Definition 4.3 (g-invariant distribution) For system (4.39), distribution D(x) is said
to be g-invariant, if for 1 ≤ i ≤ m

[gi (x), D(x)] ⊂ D(x). (4.45)

Definition 4.4 (( f, g)-invariant distribution) For system (4.39), distribution D(x)
is said to be ( f, g)-invariant, if for 1 ≤ i ≤ m

[ f (x), D(x)] ⊂ D(x) and [gi (x), D(x)] ⊂ D(x). (4.46)
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With nonsingular feedback u = α(x) + β(x)v, we have the following closed-loop
system:

ẋ = f (x) + g(x)α(x) + g(x)β(x)v

� f̂ (x) + ĝ(x)v.
(4.47)

It is clear that

f (x) = f̂ (x) + ĝ(x)α̂(x) ; g(x) = ĝ(x)β̂(x) (4.48)

where β̂(x) = β(x)−1 and α̂(x) = −β̂(x)α(x). For the closed-loop system (4.47),
we can also define the following distributions:

�̂0(x) = span{ ĝ j (x)
∣∣ 1 ≤ j ≤ m}

�̂i (x) = �̂i−1(x) +
[
f̂ (x), �̂i−1(x)

]
, i ≥ 1

(4.49)

or

�̂i (x) � span
{
adk

f̂
ĝ j (x)

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}

, i ≥ 0. (4.50)

Example 4.3.2 Show that if �i (x), i ≥ 0 are g-invariant, then

�̂i (x) = �i (x), i ≥ 0. (4.51)

Solution Suppose that for i ≥ 0,

[
g j (x),�i (x)

] ⊂ �i (x), 1 ≤ j ≤ m. (4.52)

Letβk j (x) and β̂k j (x)be the k j-element ofβ(x) and β̂(x), respectively. Since ĝ j (x) =
m∑

k=1

βk j (x)gk(x) and g j (x) =
m∑

k=1

βk j (x)ĝk(x), we have that �̂0(x) ⊂ �0(x) and

�0(x) ⊂ �̂0(x), respectively. Thus, it is clear that �̂0(x) = �0(x). Assume that
i ≥ 1 and �̂i−1(x) = �i−1(x). Then it is easy to see, by (2.42), (4.40), (4.42), and
(4.52), that
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�̂i (x) = �̂i−1(x) +
[
f̂ (x), �̂i−1(x)

]

= �i−1(x) +
[
f (x) +

m∑
k=1

αk(x)gk(x),�i−1(x)

]

⊂ �i−1(x) + [
f,�i−1

] +
m∑

k=1

αk(x)
[
gk,�i−1

] + �0

⊂ �i (x).

Similarly, we can show that �i (x) ⊂ �̂i (x). Thus, we have �̂i (x) = �i (x). There-
fore, by mathematical induction, (4.51) is satisfied. �
Lemma 4.2 If system (4.39) is feedback linearizable, then

dim(�n−1(x)) = n.

Proof Suppose that system (4.39) is feedback linearizable with state transformation
z = S(x) and nonsingular feedback u = α(x) + β(x)v. Then it is clear, by (4.6),
that

S∗( f̂ (x)) = Az ; S∗(ĝ j (x)) = b j

where f̂ (x) = f (x) + g(x)α(x), ĝ(x) = g(x)β(x), f (x) = f̂ (x) + ĝ(x)α̂(x), and
g(x) = ĝ(x)β̂(x). It is easy to see, by (2.28) and Example2.4.14, that for i ≥ 0,
1 ≤ j ≤ m, 1 ≤ � ≤ m, and 0 ≤ k ≤ i

[
ĝ j (x), ad

k
f̂
ĝ�(x)

]
= [

S−1
∗ (b j ), S

−1
∗ (Akb�)

] = S−1
∗

([
b j , A

kb�

])
= 0 ∈ �̂i (x)

which implies that �̂i (x), i ≥ 0 are g-invariant. Therefore, it is clear, from Exam-
ple4.3.2, that �̂i (x) = �i (x), i ≥ 0. Since for i ≥ 0,

�̂i (x) � span
{
adk

f̂
ĝ j (x)

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}

= span
{
S−1

∗ (Akb�)
∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i

}

it is easy to see that dim(�n−1(x)) = dim(�̂n−1(x)) =
m∑
i=1

κi = n. �

Example 4.3.3 Let 1 ≤ j ≤ m. Suppose that for 1 ≤ i ≤ j

LgL
k
f Si1(x) = 0, 0 ≤ k ≤ κi − 2 (4.53)
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and

rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

LgL
κ1−1
f S11(x)

LgL
κ2−1
f S21(x)

...

LgL
κ j−1
f S j1(x)

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎟⎟⎠ = j (4.54)

Show that
{
d
(
L�

f Si1(x)
)∣∣

x=0
| 1 ≤ i ≤ j, 0 ≤ � ≤ κi − 1

}

is a set of linearly independent 1-forms.

Solution We can assume, without loss of generality, that κ1 ≥ κ2 ≥ · · · ≥ κ j . Let

κ1 = · · · = κm1 > κm1+1 = · · · = κm2 > · · · > κmp−1+1 = · · · = κmp

and for 1 ≤ q ≤ p

Sq(x) �

⎡
⎢⎣
S(mq−1+1)1(x)

...

Smq1(x)

⎤
⎥⎦

where mp = j and m0 � 0. Suppose that

p−1∑
i=1

κmi −κmi+1−1∑
�=0

ci�

⎡
⎢⎢⎢⎢⎢⎢⎣

d
(
L

�+κm1−κmi
f S1(x)

)
d
(
L

�+κm2−κmi
f S2(x)

)
...

d
(
L�

f S
i (x)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
x=0

+
κmp−1∑
�=0

cp�

⎡
⎢⎢⎢⎢⎢⎢⎣

d
(
L

�+κm1−κmp

f S1(x)
)

d
(
L

�+κm2−κmp

f S2(x)
)

...

d
(
L�

f S
p(x)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
x=0

= O1×n

(4.55)

where ci�, 1 ≤ i ≤ p are 1 × mi vectors for all �. If we postmultiply (4.55) by[
g1(x) · · · gm(x)

]∣∣
x=0, then we have, by (4.53), that
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O1×mp = cpκmp−1

⎡
⎢⎢⎢⎢⎣

LgL
κm1−1
f S1(x)

LgL
κm2−1
f S2(x)

...

LgL
κmp−1
f S p(x)

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=0

which implies, together with (4.54), that cpκmp−1 = O1×mp . If κmp ≥ 2, then we can

show that cqκmp−2 = O1×mp by post-multiplying (4.55) by[
ad f g1(x) · · · ad f gm(x)

]∣∣
x=0. In this manner, it can be easily shown that cp� =

O1×mp for 0 ≤ � ≤ κmp − 1. Similarly, we can show that cp−1
κmp−1−κmp−1 = O1×mp−1 by

post-multiplying (4.55) by
[
ad

κmp

f g1(x) · · · adκmp

f gm(x)
]∣∣∣

x=0
. In this manner, it can

be easily shown that ci� = O1×mi for 1 ≤ i ≤ p − 1 and 0 ≤ � ≤ κmi − κmi+1 − 1.

Therefore,
{
d
(
L�

f Si1(x)
)∣∣∣

x=0
| 1 ≤ i ≤ j, 0 ≤ � ≤ κi − 1

}
is a set of linearly

independent 1-forms. �

The following Lemma is the multi-input version of Lemma4.1.

Lemma 4.3 System (4.39) is feedback linearizable with state transformation z =
S(x) = [S11(x) · · · S1κ1(x) · · · Sm1(x) · · · Smκm (x)]T and feedback u = α(x) +
β(x)v, if and only if for 1 ≤ i ≤ m

(i) LgLk
f Si1(x) = 0, 0 ≤ k ≤ κi − 2

(ii) rank

⎛
⎜⎜⎝
⎡
⎢⎣
LgL

κ1−1
f S11(x)

...

LgL
κm−1
f Sm1(x)

⎤
⎥⎦
∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎠ = m.

Furthermore, state transformation z = S(x) = [S11(x) · · · S1κ1(x) · · · Sm1(x) · · ·
Smκm (x)]T and feedback u = α(x) + β(x)v satisfy that for 1 ≤ i ≤ m,

Sik(x) = Lk−1
f Si1(x), 2 ≤ k ≤ κi (4.56)

and

β(x) =
⎡
⎢⎣
LgL

κ1−1
f S11(x)

...

LgL
κm−1
f Sm1(x)

⎤
⎥⎦

−1

; α(x) = −β(x)

⎡
⎢⎣
Lκ1

f S11(x)
...

Lκm
f Sm1(x)

⎤
⎥⎦ . (4.57)
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Proof Necessity. Suppose that system (4.39) is feedback linearizablewith state trans-
formation z = S(x) = [S11(x) · · · S1κ1(x) · · · Sm1(x) · · · Smκm (x)]T and
feedback u = α(x) + β(x)v. Then, we have, by (4.6), that for 1 ≤ i ≤ m and
1 ≤ k ≤ κi − 1

Si(k+1)(x) = L f +g(α+βv)Sik(x)

= L f Sik(x) + LgSik(x){α(x) + β(x)v}

and
⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ =

⎡
⎢⎣
L f +g(α+βv)S1κ1(x)

...

L f +g(α+βv)Smκm (x)

⎤
⎥⎦

=
⎡
⎢⎣
L f S1κ1(x)

...

L f Smκm (x)

⎤
⎥⎦ +

⎡
⎢⎣
LgS1κ1(x)

...

LgSmκm (x)

⎤
⎥⎦ {α(x) + β(x)v}.

Since det(β(0)) �= 0, it is easy to see that for 1 ≤ i ≤ m and 1 ≤ k ≤ κi − 1

Si(k+1)(x) = L f Sik(x) ; LgSik(x) = O1×m (4.58)

and
⎡
⎢⎣
L f S1κ1(x)

...

L f Smκm (x)

⎤
⎥⎦ +

⎡
⎢⎣
LgS1κ1(x)

...

LgSmκm (x)

⎤
⎥⎦α(x) = 0 ;

⎡
⎢⎣
LgS1κ1(x)

...

LgSmκm (x)

⎤
⎥⎦β(x) = Im (4.59)

which imply that (4.56) is satisfied. Therefore, it is easy to see, by (4.58) and (4.59),
that condition (i), condition (ii) and (4.57) are satisfied.

Sufficiency. Suppose that there exist scalar functions Si1(x), 1 ≤ i ≤ m such that
condition (i) and condition (ii) are satisfied. Let us define

z � [z11 · · · z1κ1 · · · zm1 · · · zmκm ]T
= S(x) = [S11(x) · · · S1κ1(x) · · · Sm1(x) · · · Smκm (x)]T

and feedback u = α(x) + β(x)v as (4.56) and (4.57), respectively. Then it is clear, by
Example4.3.3, that z = S(x) is a state transformation. It is easy to see, by condition
(i) and (4.56), that
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S∗ ( f + g(α + βv)) = ∂S(x)

∂x
( f + g(α + βv))

∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂S11(x)
∂x

∂L f S11(x)
∂x
...

∂L
κ1−1
f S11(x)

∂x
...

∂Sm1(x)
∂x
...

∂Lκm−1
f Sm1(x)

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{ f + g(α + βv)}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L f S11(x) + LgS11(x)(α + βv)
...

Lκ1−1
f S11(x) + LgL

κ1−2
f S11(x)(α + βv)

Lκ1
f S11(x) + LgL

κ1−1
f S11(x)(α + βv)

...

L f S11(x) + LgSm1(x)(α + βv)
...

Lκm
f Sm1(x) + LgL

κm−1
f Sm1(x)(α + βv)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L f S11(x)
...

Lκ1−1
f S11(x)

v1
...

L f Sm1(x)
...

Lκm−1
f Sm1(x)

vm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z12
...

z1κ1
v1
...

zm2
...

zmκm

vm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�

Suppose that (κ1, κ2, . . . , κm) is the Kronecker indices of system (4.39). If we let
κmax � max{κi , 1 ≤ i ≤ m}, it is clear, by the definition of the Kronecker indices,
that �κmax−1(x) = �n−1(x).

Lemma 4.4 Suppose that system (4.39) satisfies
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(i) dim(�κmax−1(x)) = n
(ii) �i (x), 0 ≤ i ≤ κmax − 2 are involutive distributions on a neighborhood of 0 ∈

R
n.

Then there exist scalar functions {S11(x), . . . , Sm1(x)} such that for 1 ≤ i ≤ m and
1 ≤ j ≤ m, Si1(0) = 0

∂Si1(x)

∂x
adk−1

f g j (x) = 0, 1 ≤ k ≤ κi − 1 (4.60)

∂Si1(x)

∂x

∣∣∣∣
x=0

adκi−1
f g j (x)

∣∣∣
x=0

= (−1)κi−1δi, j , if κ j ≥ κi (4.61)

and

�i (x)
⊥ � span

{
d
(
Lk

f S j1(x)
) ∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ κ j − i − 2

}
.

In other words, there exist scalar functions {S11(x), . . . , Sm1(x)} such that condition
(i) and condition (ii) of Lemma4.3 are satisfied.

Proof Suppose that condition (i) and condition (ii) of Lemma4.4 are satisfied. We
can assume, without loss of generality, that κ1 ≥ κ2 ≥ · · · ≥ κm . Let

κ1 = · · · = κm1 > κm1+1 = · · · = κm2 > · · · > κmp−1+1 = · · · = κmp

and

gi (x) �
[
gmi−1+1(x) · · · gmi (x)

]

where mp = m and m0 � 0. Note, by Example4.3.1, that

dim(�κm1−2(x)) =
m∑
j=1

min(κm1 − 1, κ j ) =
m1∑
j=1

(κm1 − 1) +
m∑

j=m1+1

κ j

=
m∑
j=1

κ j − m1 = n − m1.

(4.62)

Thus, there exist, by Frobenius Theorem (or Theorem2.8), smooth functions Si1(x),
1 ≤ i ≤ m1 such that Si1(0) = 0 and

�κm1−2(x)
⊥ = span {dSi1(x) | 1 ≤ i ≤ m1} (4.63)

or for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m
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Ladkf g j
Si1(x) = 0, 0 ≤ k ≤ κm1 − 2

Lg1L
κm1−1
f S1(x)

∣∣∣
x=0

= Im1

(4.64)

where S1(x) �

⎡
⎢⎣

S11(x)
...

Sm11(x)

⎤
⎥⎦. It is clear, by (4.64) and Example2.4.16, that for 1 ≤

i ≤ m1 and 1 ≤ j ≤ m

Ladkf g j
L�

f Si1(x) = 0, 0 ≤ k + � ≤ κm1 − 2. (4.65)

which implies, together with (4.41), that for 1 ≤ i ≤ m1 and 0 ≤ � ≤ κm1 − κm2

d
(
L�

f Si1(x)
) ∈ �κm2−2(x)

⊥. (4.66)

Also, it is easy to show, by (4.64) and Example4.3.3, that

dim
(
span

{
d
(
L�

f Si1(x)
) | 1 ≤ i ≤ m1, 0 ≤ � ≤ κi − 1

}) = m1κm1 . (4.67)

Similarly, we have, by Example4.3.1, that

dim(�κm2−2(x)) =
m∑
j=1

min(κm2 − 1, κ j ) =
m2∑
j=1

(κm2 − 1) +
m∑

j=m2+1

κ j

=
m∑
j=1

κ j −
m1∑
j=1

(κm1 − κm2) − m2

= n − m1(κm1 − κm2) − m2.

(4.68)

Thus, there exist, by Frobenius Theorem (or Theorem2.8), smooth functions hi (x),
1 ≤ i ≤ m1(κm1 − κm2) + m2 such that hi (0) = 0 and

�κm2−2(x)
⊥ = span

{
dhi (x) | 1 ≤ i ≤ m1(κm1 − κm2) + m2

}
. (4.69)

By (4.66) and (4.69), there exist at least (m2 − m1) functions hs j (x), 1 ≤ j ≤ m2 −
m1 such that

dhs j (x) /∈ span
{
d
(
L�

f Si1(x)
) ∣∣ 1 ≤ i ≤ m1, 0 ≤ � ≤ κm1 − κm2

}
.

Let Sm1+ j (x) = hs j (x) for 1 ≤ j ≤ m2 − m1. Then, it is easy to see that

�κm2−2(x)
⊥ = span

{
d
(
L�

f Si1(x)
) ∣∣ 1 ≤ i ≤ m2. 0 ≤ � ≤ κi − κm2

}
.
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In other words, there exist smooth functions Si1(x), m1 + 1 ≤ i ≤ m2 such that for
m1 + 1 ≤ i ≤ m2 and 1 ≤ j ≤ m

Ladkf g j
Si1(x) = 0, 0 ≤ k ≤ κi − 2 (4.70)

and
[
Lg1L

κm2−1
f L

κm1−κm2
f S1(x) Lg2L

κm2−1
f L

κm1−κm2
f S1(x)

Lg1L
κm2−1
f S2(x) Lg2L

κm2−1
f S2(x)

]∣∣∣∣∣
x=0

=
[
Lg1L

κm1−1
f S1(x) Lg2L

κm1−1
f S1(x)

Lg1L
κm2−1
f S2(x) Lg2L

κm2−1
f S2(x)

]∣∣∣∣∣
x=0

= C =
[
Im1 C12

O Im2−m1

] (4.71)

where

S1(x) �

⎡
⎢⎣

S11(x)
...

Sm11(x)

⎤
⎥⎦ and S2(x) �

⎡
⎢⎣
S(m1+1)1(x)

...

Sm21(x)

⎤
⎥⎦ .

(
If C =

[
Im1 C12

C21 C22

]
�=

[
Im1 C12

O Im2−m1

]
, then use new scalar functions

S̄2(x) = (C22 − C21C12)
−1

{
S2(x) − C21L

κm1−κm2
f S1(x)

}

instead of S2(x).

)
Also, it is easy to show, by (4.64), (4.70), (4.71), and

Example4.3.3, that

dim
(
span

{
d
(
L�

f Si1(x)
) | 1 ≤ i ≤ m2, 0 ≤ � ≤ κi − 1

})

= m1κm1 + (m2 − m1)κm2 =
m2∑
i=1

κi .

Let�−1(x) � span{On×1}. In thismanner, we can find smooth functions Si1(x), 1 ≤
i ≤ mp = m such that Si1(0) = 0 and for 1 ≤ q ≤ p

�κmq −2(x)
⊥ = span

{
d
(
L�

f Si1(x)
) ∣∣ 1 ≤ i ≤ mq . 0 ≤ � ≤ κi − κmq

}
.

In other words, there exist smooth functions Si1(x), mq−1 + 1 ≤ i ≤ mq such that
for mq−1 + 1 ≤ i ≤ mq and 1 ≤ j ≤ m

Ladkf g j
Si1(x) = 0, 0 ≤ k ≤ κi − 2 (4.72)
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and

⎡
⎢⎢⎢⎢⎣

Lg1L
κm1−1
f S1(x) Lg2L

κm1−1
f S1(x) · · · Lgq L

κm1−1
f S1(x)

Lg1L
κm2−1
f S2(x) Lg2L

κm2−1
f S2(x) · · · Lgq L

κm2−1
f S2(x)

...
...

...

Lg1L
κmq −1
f Sq(x) Lg2L

κmq −1
f Sq(x) · · · Lgq L

κmq −1
f Sq(x)

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=0

=

⎡
⎢⎢⎢⎣
Im1 C12 · · · C1q

O Im2−m1 · · · C2q
...

...
...

O O · · · Imq−mq−1

⎤
⎥⎥⎥⎦

(4.73)

where m0 = 0 and for 1 ≤ q ≤ p

Sq(x) �

⎡
⎢⎣
S(mq−1+1)1(x)

...

Smq1(x)

⎤
⎥⎦ .

Also, it is easy to show, by (4.72), (4.73), and Example4.3.3, that

dim
(
span

{
d
(
L�

f Si1(x)
) | 1 ≤ i ≤ mq , 0 ≤ � ≤ κi − 1

}) =
mq∑
i=1

κi . (4.74)

In this manner, we can find smooth functions Si1(x), 1 ≤ i ≤ mp = m such that
Si1(0) = 0

Ladkf g
Si1(x) = 0, 0 ≤ k ≤ κi − 2 (4.75)

rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣
Lad

κ1−1
f g1

S11(x) · · · Lad
κ1−1
f gm

S11(x)
...

...

Ladκm−1
f g1

Sm1(x) · · · Ladκm−1
f gm

Sm1(x)

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= rank

⎛
⎜⎝
⎡
⎢⎣
LgL

κ1−1
f S11(x)

...

LgL
κm−1
f Sm1(x)

⎤
⎥⎦
⎞
⎟⎠ = m

(4.76)



126 4 Feedback Linearization

and

dim
(
span

{
d
(
L�

f Si1(x)
) | 1 ≤ i ≤ m, 0 ≤ � ≤ κi − 1

}) =
m∑
i=1

κi = n.

�

The proof of Lemma4.4 seems more complicated than the sufficiency proof of
Theorem4.1. For example, let n = 7, m = 3, and (κ1, κ2, κ3) = (4, 2, 1). Then we
can find a scalar function S11(x) such that

dS11(x) ∈ (
span

{
g1, g2, g3, ad f g1, ad f g2, ad

2
f g1

})⊥
and

Lad3f g1
S11(x)

∣∣∣
x=0

= −1
(
or Lg1L

3
f S11(x)

∣∣
x=0

= 1
)

.

Also, we can find a scalar function S21(x) such that

dS21(x) ∈ (span {g1(x), g2(x), g3(x)})⊥ and[
Lad f g1S21(x) Lad f g2 S21(x)

]∣∣
x=0 = [

0 −1
]
.

Finally, we can find a scalar function S31(x) such that

[
Lg1S31(x) Lg2 S31(x) Lg3S31(x)

]∣∣
x=0 = [

0 0 1
]
.

Then it is easy to see that Si1(x), 1 ≤ i ≤ 3 satisfy

LgL
k
f Si1(x) = 0, 1 ≤ i ≤ 3 and 0 ≤ k ≤ κi − 2

and
⎡
⎣LgL3

f S11(x)
LgL f S21(x)
LgS31(x)

⎤
⎦
∣∣∣∣∣∣
x=0

=
⎡
⎣1 ∗ ∗
0 1 ∗
0 0 1

⎤
⎦ .

Theorem 4.3 (Conditions for feedback linearization) System (4.39) is locally feed-
back linearizable, if and only if

(i) dim
(
�κmax−1(0)

) = n
(ii) �i (x), 0 ≤ i ≤ κmax − 2 are involutive distributions on a neighborhood of 0 ∈

R
n.

Proof Necessity. Suppose that system (4.39) is feedback linearizable. Then, by
Lemma4.2, condition (i) of Theorem4.3 is satisfied. Also, by Lemma4.3, there exist
smooth functions Si1(x), 1 ≤ i ≤ m such that condition (i) and (ii) of Lemma4.3 are
satisfied. Thus, we have that for 1 ≤ i ≤ m
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LgL
k
f Si1(x) = 0, 0 ≤ k ≤ κi − 2

and

rank

⎛
⎜⎜⎝
⎡
⎢⎣
LgL

κ1−1
f S11(x)

...

LgL
κm−1
f Sm1(x)

⎤
⎥⎦
∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎠ = m.

Then, it is clear, by Example2.4.16, that for 1 ≤ i ≤ m and 1 ≤ j ≤ m

Ladkf g j
Si1(x) = 0, 0 ≤ k ≤ κi − 2

and

rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣
Lad

κ1−1
f g1

S11(x) · · · Lad
κ1−1
f gm

S11(x)
...

...

Ladκm−1
f g1

Sm1(x) · · · Ladκm−1
f gm

Sm1(x)

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎠ = m.

Thus, it is easy to see, by (4.41), Examples4.3.3, and 2.4.16, that for i ≥ 0

�i (x)
⊥ = span

{
dLk

f S j1(x)
∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ κ j − 2 − i

}

and

dim(�i (x)
⊥) =

m∑
j=1

max(κ j − 1 − i, 0) =
m∑
j=1

{
κ j − min(i + 1, κ j )

}

= n −
m∑
j=1

min(i + 1, κ j ).

Therefore, by Frobenius Theorem (or Theorem2.8), �i (x), 0 ≤ i ≤ κmax − 2 are

involutive distributions with dimension
m∑
j=1

min(i + 1, κ j ) and condition (ii) of

Theorem4.3 is satisfied.
Sufficiency. Suppose that conditions (i) and (ii) of Theorem4.3 are satisfied. Then,

by Lemma4.4, there exist scalar functions {S11(x), . . . , Sm1(x)} such that conditions
(i) and (ii) of Lemma4.3 are satisfied. Therefore, by Lemma4.3, system (4.39) is
feedback linearizable. �

Example 4.3.4 In Example3.3.4, it is shown that system (3.39) is not state equiva-
lent to a linear system. Show that system (3.39) is feedback linearizable.
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⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2

−x1 + x22
x23

⎤
⎦ +

⎡
⎣ 0 0
1 + x21 0

0 1

⎤
⎦
[
u1
u2

]

= f (x) + g1(x)u1 + g2(x)u2

Solution By simple calculation, we have that (κ1, κ2) = (2, 1) and

ad f g1(x) =
⎡
⎣ −1 − x21
2x2(x1 − 1 − x21 )

0

⎤
⎦ .

Since κ1 + κ2 = 3, condition (i) of Theorem4.3 is satisfied. Since dim (�0(0)) =
dim (�0(x)) = dim (span{g1(x), g2(x)}) = 2,�0(x) is a distribution.Also, it is easy
to see that distribution �0(x) = span{g1(x), g2(x)} is involutive and condition (ii)
of Theorem4.3 is satisfied. Therefore, by Theorem4.3, system (3.39) is feedback
linearizable. We need to find scalar functions S11(x) and S21(x) such that

span{dS11(x)} = �0(x)
⊥ = span{g1(x), g2(x)}⊥

span{dS11(x), dL f S11(x), dS21(x)} = �−1(x)
⊥ � R

3.

In other words, we have, by (4.60) and (4.61), that c1(0) = 1 and

c1(x)
[
0 0 −1

] = ∂S11(x)

∂x

[
g1(x) g2(x) ad f g1(x)

∣∣
x=0

]

=
[

∂S11(x)
∂x1

∂S11(x)
∂x2

∂S11(x)
∂x3

]⎡⎣ 0 0 −1
1 + x21 0 0

0 1 0

⎤
⎦

which implies that ∂S11(x)
∂x = c1(x)

[
1 0 0

]
. Since

[
1 0 0

]
is exact, we have c1(x) = 1

and S11(x) = x1. (S11(x) is not unique.) Also, we have, by (4.60) and (4.61), that
c2(0) = 1 and

c2(x)
[
0 1

] = ∂S21(x)

∂x

[
g1(0) g2(0)

]

=
[

∂S21(x)
∂x1

∂S21(x)
∂x2

∂S21(x)
∂x3

]⎡⎣0 0
1 0
0 1

⎤
⎦

which implies that ∂S21(x)
∂x = c2(x)

[
d(x) 0 1

]
. (d(x) is a smooth function.) Since[

0 0 1
]
is exact, we have d(x) = 0, c2(x) = 1, and S21(x) = x3. (S21(x) is not

unique.) Then, it is clear, by (4.56) and (4.57), that
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⎡
⎣z1
z2
z3

⎤
⎦ = S(x) =

⎡
⎣ S11(x)
L f S11(x)
S21(x)

⎤
⎦ =

⎡
⎣x1
x2
x3

⎤
⎦

and

[
u1
u2

]
=

[
LgL f S11(x)
LgS21(x)

]−1 (
−
[
L2

f S11(x)
L f S21(x)

]
+

[
v1
v2

])

=
[
1 + x21 0

0 1

]−1 (
−
[−x1 + x22

x23

]
+

[
v1
v2

])

=
[

x1−x22
1+x21−x23

]
+

[
1

1+x21
0

0 1

][
v1
v2

]
= α(x) + β(x)v.

It is easy to see that

⎡
⎣ż1
ż2
ż3

⎤
⎦ = S∗ ( f (x) + g(x)α(x) + g(x)β(x)v)

=
⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣z1
z2
z3

⎤
⎦ +

⎡
⎣0 0
1 0
0 1

⎤
⎦[

v1
v2

]
.

�

Example 4.3.5 Show that the following nonlinear system is feedback linearizable.

ẋ =

⎡
⎢⎢⎢⎢⎣

x2 + 2x4x5
x3
0
x5
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0 0
0 0
1 x1
0 0
0 1

⎤
⎥⎥⎥⎥⎦
[
u1
u2

]

= f (x) + g1(x)u1 + g2(x)u2

(4.77)

Also, find a state transformation and feedback.

Solution By simple calculation, we have

[
ad f g1(x) ad f g2(x)

] =

⎡
⎢⎢⎢⎢⎣

0 −2x4
−1 −x1
0 x2 + 2x4x5
0 −1
0 0

⎤
⎥⎥⎥⎥⎦ and ad2f g1(x) =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ .



130 4 Feedback Linearization

It is clear that dim (�0(0)) = dim (�0(x)) = dim (span{g1(x), g2(x)}) = 2,
dim (�1(0)) = dim (�1(x)) = dim

(
span{g1(x), g2(x), ad f g1(x), ad f g2(x)}

) = 4,
and (κ1, κ2) = (3, 2). Since κ1 + κ2 = 5, condition (i) of Theorem4.3 is satisfied.
Also, it is easy to see that �0(x) and �1(x) are involutive distributions and thus
condition (ii) of Theorem4.3 is satisfied. Therefore, by Theorem4.3, system (4.77)
is feedback linearizable. We need to find scalar functions S11(x) and S21(x) such that

span{dS11(x)} = �1(x)
⊥

span{dS11(x), dL f S11(x), dS21(x)} = �0(x)
⊥.

In other words, we have, by (4.60) and (4.61), that c1(0) = 1, c2(0) = 1

c1(x)
[
0 0 0 0 1

] = ∂S11(x)

∂x

⎡
⎢⎢⎢⎢⎣

0 0 0 −2x4 1
0 0 −1 −x1 0
1 x1 0 x2 + 2x4x5 0
0 0 0 −1 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

and

c2(x)
[
0 0 0 −1

] = ∂S21(x)

∂x

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 −1 0
1 x1 0 0
0 0 0 −1
0 1 0 0

⎤
⎥⎥⎥⎥⎦

which imply that

∂S11(x)

∂x
= c1(x)

[
1 0 0 −2x4 0

]

and

∂S21(x)

∂x
= c2(x)

[
d2(x) 0 0 1 0

]
.

Since
[
1 0 0 −2x4 0

]
is exact, we have c1(x) = 1 and S11(x) = x1 − x24 . (S11(x) is

not unique.) Since
[
d2(x) 0 0 1 0

]
is exact with d2(x) = 0, we have c2(x) = 1 and

S21(x) = x4. (S21(x) is not unique.) Then, it is clear, by (4.56) and (4.57), that
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⎡
⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5

⎤
⎥⎥⎥⎥⎦ = S(x) =

⎡
⎢⎢⎢⎢⎣

S11(x)
L f S11(x)
L2

f S11(x)
S21(x)

L f S21(x)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x1 − x24
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦

and

[
u1
u2

]
=

[
LgL2

f S11(x)
LgL f S21(x)

]−1 (
−
[
L3

f S11(x)
L2

f S21(x)

]
+

[
v1
v2

])

=
[
1 x1
0 1

]−1 (
−
[
0
0

]
+

[
v1
v2

])

=
[
1 −x1
0 1

] [
v1
v2

]
= α(x) + β(x)v.

It is easy to see that

⎡
⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 1

⎤
⎥⎥⎥⎥⎦
[
v1
v2

]

= S∗ ( f (x) + g(x)α(x) + g(x)β(x)v) .

�

Example 4.3.6 Show that the following nonlinear system is feedback linearizable:

ẋ =

⎡
⎢⎢⎣
x2 − x4(x3 + x4)

0
x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 x1
0 1

−1 −x1
1 x1

⎤
⎥⎥⎦
[
u1
u2

]

= f (x) + g1(x)u1 + g2(x)u2

(4.78)

Solution By simple calculation, we have that (κ1, κ2) = (2, 2) and

[
ad f g1(x) ad f g2(x)

] =

⎡
⎢⎢⎣
x3 + x4 x2 + (x1 − x4)(x3 + x4) − 1

0 0
−1 x4(x3 + x4) − x2 − x1
0 x2 − x4(x3 + x4)

⎤
⎥⎥⎦ .

Since κ1 + κ2 = 4, condition (i) of Theorem4.3 is satisfied. It is clear that
dim (�0(0)) = dim (�0(x)) = dim (span{g1(x), g2(x)}) = 2. Also, it is easy to see
that distribution �0(x) is involutive and thus condition (ii) of Theorem4.3 is
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satisfied. Therefore, by Theorem4.3, system (4.78) is feedback linearizable. We
need to find scalar functions S11(x) and S21(x) such that

span{dS11(x), dS21(x)} = �0(x)
⊥

= span
{[
1 −x1 0 0

]
,
[
0 0 1 1

]}
= span{dx1 − x1dx2, dx3 + dx4}

In other words, we have, by (4.60) and (4.61), that c1(0) = 1, c2(0) = 1

c1(x)
[
0 0 −1 0

] = ∂S11(x)

∂x

⎡
⎢⎢⎣

0 x1 0 −1
0 1 0 0

−1 −x1 −1 0
1 x1 0 0

⎤
⎥⎥⎦

and

c2(x)
[
0 0 0 −1

] = ∂S21(x)

∂x

⎡
⎢⎢⎣

0 x1 0 −1
0 1 0 0

−1 −x1 −1 0
1 x1 0 0

⎤
⎥⎥⎦

which imply that

∂S11(x)

∂x
= c1(x)

[
0 0 1 1

]

and

∂S21(x)

∂x
= c2(x)

[
1 −x1 0 0

]
.

Since
[
0 0 1 1

]
is exact, we have c1(x) = 1 and S11(x) = x3 + x4. (S11(x) is

not unique.) Since
[
1 −x1 0 0

]
is not exact, we need to find c2(x) such that

c2(x)
[
1 −x1 0 0

]
is exact. It is easy to see, by (4.24) and (4.25), that c2(x) = e−x2

and S21(x) = x1e−x2 work. (S21(x) is not unique.) Then, it is clear, by (4.56) and
(4.57), that

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ = S(x) =

⎡
⎢⎢⎣

S11(x)
L f S11(x)
S21(x)

L f S21(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x3 + x4
x4

x1e−x2

(x2 − x4(x3 + x4)) e−x2

⎤
⎥⎥⎦

and
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[
u1
u2

]
=

[
LgL f S11(x)
LgL f S21(x)

]−1 (
−
[
L2

f S11(x)
L2

f S21(x)

]
+

[
v1
v2

])

=
[

1 x1
−(x3 + x4)e−x2 (1 − x2 − (x1 − x4)(x3 + x4)) e−x2

]−1

·
([

0
x24e

−x2

]
+

[
v1
v2

])

=
[
− x1x24

1−x2+x4(x3+x4)
x24

1−x2+x4(x3+x4)

]
+

[
1−x2−(x1−x4)(x3+x4)

1−x2+x4(x3+x4)
− x1ex2

1−x2+x4(x3+x4)
x3+x4

1−x2+x4(x3+x4)
ex2

1−x2+x4(x3+x4)

][
v1
v2

]

= α(x) + β(x)v.

It is easy to see that

⎡
⎢⎢⎣
ż1
ż2
ż3
ż4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎥⎦
[
v1
v2

]

= S∗ ( f (x) + g(x)α(x) + g(x)β(x)v) .

�

Example 4.3.7 Show that the following nonlinear system is not feedback lineariz-
able.

ẋ =

⎡
⎢⎢⎣
x2
x3
x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
x1
0
0
1

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2 (4.79)

Solution By simple calculation, we have that (κ1, κ2) = (3, 1) and

[
ad f g1(x) ad f g2(x) ad2f g1(x) ad

2
f g2(x)

] =

⎡
⎢⎢⎣

0 x2 1 x3
−1 0 0 1
0 −1 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Sinceκ1 + κ2 = 4, condition (i) ofTheorem4.3 is satisfied. Since4 = dim(�1(x)) �=
dim(�1(0)) = 3, it is clear that

�1(x)
(
� span{g1(x), g2(x), ad f g1(x), ad f g2(x)}

)

is not a distribution on a neighborhood of the origin and condition (ii) of Theorem4.3
is not satisfied. Therefore, byTheorem4.3, system (4.79) is not feedback linearizable.
If we consider the local linearization on a neighborhood of x0 (x02 �= 0) instead of a
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neighborhood of 0, we have that (κ1, κ2) = (2, 2) on a neighborhood of x0 (x02 �= 0)
and system (4.79) is feedback linearizable with

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ = S(x) =

⎡
⎢⎢⎣

S11(x)
L f S11(x)
S21(x)

L f S21(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2
x3

x1e−x4

x2e−x4

⎤
⎥⎥⎦

and

[
u1
u2

]
=

[
LgL f S11(x)
LgL f S21(x)

]−1 (
−
[
L2

f S11(x)
L2

f S21(x)

]
+

[
v1
v2

])

=
[
1 0
0 −x2e−x4

]−1 (
−
[

x4
x3e−x4

]
+

[
v1
v2

])

=
[−x4

x3
x2

]
+

[
1 0
0 − ex4

x2

] [
v1
v2

]
= α(x) + β(x)v.

�

Example 4.3.8 Show that the following nonlinear system is not feedback lineariz-
able:

ẋ =
⎡
⎣x2
0
0

⎤
⎦ +

⎡
⎣01
0

⎤
⎦ u1 +

⎡
⎣x22
0
1

⎤
⎦ u2 = f (x) + g1(x)u1 + g2(x)u2 (4.80)

Solution By simple calculation, we have that (κ1, κ2) = (2, 1) and

[
ad f g1(x) ad f g2(x)

] =
⎡
⎣−1 0

0 0
0 0

⎤
⎦ .

Since κ1 + κ2 = 3, condition (i) of Theorem4.3 is satisfied. Since dim(�0(x)) =
dim(�0(0)) = 2, it is clear that �0(x) is a distribution on a neighborhood of the
origin. However, since

[g1(x), g2(x)] =
⎡
⎣2x20

0

⎤
⎦ /∈ �0(x) = span{g1(x), g2(x)}

it is clear that distribution�0(x) = span{g1(x), g2(x)} is not involutive and condition
(ii) of Theorem4.3 is not satisfied. Therefore, by Theorem4.3, system (4.80) is not
feedback linearizable. �
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4.4 Applications of Feedback Linearization

As seen in Example4.3.8, even a simple nonlinear system may not be feedback
linearizable. That is, the class of control systems that is feedback linearizable is
relatively small. However, many control systems, including robots, aircraft, and AC
motors, belong to this class. For this reason, the problem of feedback linearization
has attracted considerable attention.

Example 4.4.1 (magnetic-ball-suspension system) The dynamic equations of the
magnetic-ball-suspension system in Fig. 4.4 are

M
d2y(t)

dt2
= Mg − i(t)2

y(t)

L
di(t)

dt
+ Ri(t) = e(t)

where y(t), M , g, R, L , i(t), and e(t) are steel ball position, steel ball mass, gravi-
tational acceleration, winding resistance, winding inductance, winding current, and
input voltage, respectively. With the state variables x1(t) = y(t), x2(t) = ẏ(t), and
x3(t) = i(t), we can obtain the following state equation:

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎢⎣

x2
g − 1

M
x23
x1− R

L x3

⎤
⎥⎦ +

⎡
⎣0
0
1
L

⎤
⎦ e � F(x, e) (4.81)

Fig. 4.4 Magnetic-ball-
suspension system of
Example4.4.1
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Note that F(0, 0) �= 0. Let x0 = [
y0 0

√
Mgy0

]T
and e0 = R

√
Mgy0, where y0 > 0.

Then F(x0, e0) = 0 and (x0, e0) is an equilibrium point of system (4.81). Since
ξ̇ = F(ξ + x0, u + e0), we have

⎡
⎣ξ̇1

ξ̇2
ξ̇3

⎤
⎦ =

⎡
⎢⎣

ξ2

g − 1
M

(ξ3+x03 )
2

ξ1+y0− R
L ξ3

⎤
⎥⎦ +

⎡
⎣0
0
1
L

⎤
⎦ u � f̄ (ξ) + ḡ(ξ)u (4.82)

where x03 �
√
Mgy0,

⎡
⎣ξ1

ξ2
ξ3

⎤
⎦ � x − x0 =

⎡
⎣ x1 − y0

x2
x3 − √

Mgy0

⎤
⎦ and u � e − e0 = e − R

√
Mgy0. (4.83)

Note that f̄ (0) = 0. By simple calculation, we have

[
ad f̄ ḡ(ξ) ad2

f̄
ḡ(ξ)

]
=

⎡
⎢⎣

0 − 2(ξ3+x03 )
LM(ξ1+y0)

2(ξ3+x03 )
LM(ξ1+y0)

2x03 (Rξ1+Ry0−Lξ2)−2Lξ2ξ3
L2M(ξ1+y0)2

R
L2

R2

L3

⎤
⎥⎦

which implies that condition (i) of Theorem4.1 is satisfied. Since

[ḡ(ξ), ad f̄ ḡ(ξ)] =
⎡
⎣ 0

2
L2M(ξ1+y0)

0

⎤
⎦ = 1

L(ξ3 + x03 )

(
ad f̄ ḡ(ξ) − R

L
ḡ(ξ)

)

distribution�1(x) = span{ḡ(ξ), ad f̄ ḡ(ξ)} is involutive and condition (ii) is satisfied.
Therefore, byTheorem4.1, system (4.82) is feedback linearizable.By (4.20),wehave

c(ξ)
[
0 0 1

] = ∂S1(ξ)

∂ξ

[
ḡ(ξ) ad f̄ ḡ(ξ) ad2

f̄
ḡ(ξ)

∣∣∣
ξ=0

]

=
[

∂S1(ξ)

∂ξ1

∂S1(ξ)

∂ξ2

∂S1(ξ)

∂ξ3

]
⎡
⎢⎣
0 0 − 2x03

LMy0

0 2(ξ3+x03 )
LM(ξ1+y0)

2Rx03
L2My0

1
L

R
L2

R2

L3

⎤
⎥⎦

which implies that
[

∂S1(ξ)

∂ξ1

∂S1(ξ)

∂ξ2

∂S1(ξ)

∂ξ3

]
= c(ξ)

[
− LMy0

2x03
0 0

]
. Since one form[

− LMy0
2x03

0 0
]
is exact, we can let c(ξ) = − 2x03

LMy0
and S1(ξ) = ξ1. Thus, we have

that
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⎡
⎣z1
z2
z3

⎤
⎦ =

⎡
⎣ S1(ξ)

L f̄ S1(ξ)

L2
f̄
S1(ξ)

⎤
⎦ =

⎡
⎢⎣

ξ1
ξ2

g − 1
M

(ξ3+x03 )
2

ξ1+y0

⎤
⎥⎦

and

u = −
L3

f̄
S1(ξ)

LgL2
f̄
S1(ξ)

+ 1

LḡL2
f̄
S1(ξ)

v

= Rξ3 + Lξ2(ξ3 + x03 )

2(ξ1 + y0)
− LM(ξ1 + y0)

2(ξ3 + x03 )
v.

Then, it is easy to see that

⎡
⎣ż1
ż2
ż3

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣z1
z2
z3

⎤
⎦ +

⎡
⎣00
1

⎤
⎦ v.

Refer to the MATLAB program in Sect. 4.5. �

Example 4.4.2 (robot arm) The dynamic equation of the robot arm with p degrees
of freedom (or p joints) is

M(q)q̈ + B(q, q̇)q̇ + G(q) + F(q, q̇) = τ (4.84)

where q is a p × 1 vector representing the position (distance or angle) of each joint.
Here, the input τ is a p × 1 vector representing the force or the torque. With the state
variables x1 � q and x2 � q̇ , we can obtain the following state equation.

[
ẋ1

ẋ2

]
=

[
x2

−M(x1)−1{B(x1, x2)x2 + G(x1) + F(x1, x2)}
]

+
[

0
M(x1)−1

]
τ

(4.85)

If we consider nonlinear feedback

τ = B(x1, x2)x2 + G(x1) + F(x1, x2) + M(x1)v

= α(x) + β(x)v
(4.86)

then we have the linear closed-loop system

ẋ =
[
ẋ1

ẋ2

]
=

[
O Ip
O O

] [
x1

x2

]
+

[
O
Ip

]
v

where Ip is the p × p identity matrix. Therefore, system (4.85) is linearizable with
feedback (4.86).
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Example 4.4.3 (induction motor) In the d − q coordinate frame rotating syn-
chronously with an angular speed ws , the dynamic equations of a p-pole pair induc-
tion motor are

i̇ds = −a1ids + ws iqs + a2�dr + pa3wr�qr + cVds

i̇qs = −ws ids − a1iqs − pa3wr�dr + a2�qr + cVqs

�̇dr = a5ids − a4�dr + (ws − pwr )�qr

�̇qr = a5iqs − (ws − pwr )�dr − a4�qr

ẇr = −Dwr + KT (�dr iqs − �qr ids) − TL
J

Here, Vds , Vqs , and ws are the control inputs. The constants c, D, J , KT and ai , i =
1, . . . , 5 are the parameters of the induction motor.

Va , Vb, Vc stator phase voltages
ia , ib, ic stator phase currents
Vds(Vqs) d-axis (q-axis) stator voltage
ids(iqs) d-axis (q-axis) stator current
�dr (�qr ) d-axis (q-axis) rotor flux
wr rotor angular speed
ws slip angular speed
Rs(Rr ) stator (rotor) resistance
Ls(Lr ) stator (rotor) self-inductance
M stator/rotor mutual inductance
p number of pole pairs
σ leakage coefficient (= 1 − M2

Ls Lr
)

c = 1
σ Ls

a1 = c
(
Rs + M2Rr

L2
r

)
; a2 = cMRr

L2
r
; a3 = cM

Lr
; a4 = Rr

Lr
; a5 = MRr

Lr

J rotor inertia of the MG set
D damping coefficient of the MG set
KT torque constant (= 3pM

2Lr
)

Te = KT (�dr iqs − �qr ids) generated torque
TL disturbance torque

Refer to (F6) for the symbol meaning. With the state variables

x �
[
ids iqs �dr �qr wr

]T
we obtain the following state equation.
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⎡
⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a2x3 − a1x1 + pa3x4x5
a2x4 − a1x2 − pa3x3x5
a5x1 − a4x3 − px4x5
a5x2 − a4x4 + px3x5
KT (x2x3−x1x4)−TL−Dx5

J

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

c 0 x2
0 c −x1
0 0 x4
0 0 −x3
0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎣Vds

Vqs

ws

⎤
⎦

� f (x) + g(x)u

(4.87)

Since

[
ad f g1(x) ad f g2(x) ad f g3(x)

] =

⎡
⎢⎢⎢⎢⎣

a1c 0 0
0 a1c 0

−a5c 0 0
0 −a5c 0

KT cx4
J

−KT cx3
J 0

⎤
⎥⎥⎥⎥⎦

we have that (κ1, κ2, κ3) = (2, 2, 1) on a neighborhood of x = x0( �= 0). Since 3 =
dim(�0(x)) �= dim(�0(0)) = 2 for x �= 0, �0(x)

(
� span{g1(x), g2(x), g3(x)}

)
is

not a distribution on a neighborhood of x = 0 and condition (ii) of Theorem4.3 is
not satisfied. Therefore, by Theorem4.3, system (4.87) is not feedback linearizable
on a neighborhood of x = 0. If we consider the local linearization on a neighborhood
of x = x0( �= 0) instead of a neighborhood of 0, we have that κ1 + κ2 + κ3 = 5 on
a neighborhood of x = x0 and condition (i) of Theorem4.3 is satisfied. Also, it

is clear that �0(x)
(
� span{g1(x), g2(x), g3(x)}

)
is a involutive distribution on a

neighborhood of x = x0 and thus condition (ii) of Theorem4.3 is satisfied. Hence,
system (4.87) is feedback linearizable with

S =

⎡
⎢⎢⎢⎢⎣

x23 + x24−2a4x23 + 2a5x1x3 − 2a4x24 + 2a5x2x4
x5

KT (x2x3−x1x4)−TL−Dx5
J
x1

⎤
⎥⎥⎥⎥⎦

and

⎡
⎣Vds
Vqs
ws

⎤
⎦ =

⎡
⎣LgL f S11(x)
LgL f S21(x)
LgS31(x)

⎤
⎦

−1
⎛
⎜⎝−

⎡
⎢⎣
L2f S11(x)

L2f S21(x)

L f S31(x)

⎤
⎥⎦ +

⎡
⎣v1

v2
v3

⎤
⎦
⎞
⎟⎠

=
⎡
⎣ 2a5cx3 2a5cx4 0

−KT cx4
J

KT cx3
J 0

c 0 x2

⎤
⎦

−1 ⎛
⎜⎝−

⎡
⎢⎣
L2f S11(x)

L2f S21(x)

L f S31(x)

⎤
⎥⎦ +

⎡
⎣v1

v2
v3

⎤
⎦
⎞
⎟⎠

=
⎡
⎣α1(x)

α2(x)
α3(x)

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

x3
2a5c(x

2
3+x24 )

−J x4
KT c(x

2
3+x24 )

0

x4
2a5c(x

2
3+x24 )

J x3
KT c(x

2
3+x24 )

0

−x3
2a5x2(x

2
3+x24 )

J x4
KT x2(x

2
3+x24 )

1
x2

⎤
⎥⎥⎥⎥⎦
⎡
⎣v1

v2
v3

⎤
⎦ = α(x) + β(x)v
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where

L2
f S11(x) = 2a5x3 f1(x) + 2a5x4 f2(x) + (2a5x1 − 4a4x3) f3(x)

+ (2a5x2 − 4a4x4) f4(x)

L2
f S21(x) = KT (−x4 f1(x) + x3 f2(x) + x2 f3(x) − x1 f4(x))

J
− Df5(x)

J
L f S31(x) = a2x3 − a1x1 + a3 px4x5

and

α(x) = −
⎡
⎢⎣

x3
2a5c(x23+x24 )

−J x4
KT c(x23+x24 )

0
x4

2a5c(x23+x24 )
J x3

KT c(x23+x24 )
0

−x3
2a5x2(x23+x24 )

J x4
KT x2(x23+x24 )

1
x2

⎤
⎥⎦
⎡
⎣L2

f S11(x)
L2

f S21(x)
L f S31(x)

⎤
⎦

Then it is easy to see that⎡
⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣v1

v2
v3

⎤
⎦

= Az + Bv.

Refer to the MATLAB program in Sect. 4.5.

Example 4.4.4 (the aircraft) The dynamic equations for the aircraft model can be
written as follows: (Refer to (E3).)

ẋ = u cosψ cos θ + v(cosψ sin θ sin φ − sinψ cosφ)

+ w(cosψ sin θ cosφ + sinψ sin φ)

ẏ = u sinψ cos θ + v(sinψ sin θ sin φ + cosψ cosφ)

+ w(sinψ sin θ cosφ − cosψ sin φ)

ż = −u sin θ + v cos θ sin φ + w cos θ cosφ

u̇ = −g sin θ + rv − qw + X (ξ)

m
+ Jρ

m

v̇ = g cos θ sin φ + pw − ru + Y (ξ)

m

ẇ = g cos θ cosφ + qu − pv + Z(ξ)

m
φ̇ = p + tan θ(q sin φ + r cosφ)

θ̇ = q cosφ − r sin φ

ψ̇ = q sin φ + r cosφ

cos θ
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where
(x, y, z) the center of mass in an absolute frame
(u, v, w) the velocity components in a relative frame
(φ, θ, ψ) roll, pitch, and yaw angles
(p, q, r) the components of the kinetic moment in the relative frame
ρ the thrust
g gravitational acceleration
(X (ξ) + Jρ,Y (ξ), Z(ξ)) the components of the force vector excepting gravity.

With the state variables

ξ �
[
x y z u v w φ θ ψ

]T
we obtain the following state equation.

ξ̇ = f (ξ) + g1(ξ)p + g2(ξ)q + g3(ξ)r + g4(ξ)ρ (4.88)

f (ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(ξ)

f2(ξ)

−ξ4 sin ξ8 + ξ5 cos ξ8 sin ξ7 + ξ6 cos ξ8 cos ξ7
−g sin ξ8

g cos ξ8 sin ξ7
g cos ξ8 cos ξ7

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

X (ξ)

m
Y (ξ)

m
Z(ξ)

m
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� f 0(ξ) + f̃ (ξ)

[
g1(ξ) g2(ξ) g3(ξ) g4(ξ)

] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 −ξ6 ξ5

J
m

ξ6 0 −ξ4 0
−ξ5 ξ4 0 0
1 tan ξ8 sin ξ7 tan ξ8 cos ξ7 0
0 cos ξ7 − sin ξ7 0
0 sin ξ7

cos ξ8

cos ξ7
cos ξ8

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

f1(ξ) = ξ4 cos ξ9 cos ξ8 + ξ5(cos ξ9 sin ξ8 sin ξ7 − sin ξ9 cos ξ7)

+ ξ6(cos ξ9 sin ξ8 cos ξ7 + sin ξ9 sin ξ7)

and

f2(ξ) = ξ4 sin ξ9 cos ξ8 + ξ5(sin ξ9 sin ξ8 sin ξ7 + cos ξ9 cos ξ7)

+ ξ6(sin ξ9 sin ξ8 cos ξ7 − cos ξ9 sin ξ7).

Since

[g2(ξ), g4(ξ)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
J
m
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/∈ �0(x) = span{g1(x), g2(x), g3(x), g4(x)}

it is clear that �0(x) is not an involutive distribution and thus condition (ii) of
Theorem4.3 is not satisfied. Therefore, byTheorem4.3, system (4.88) is not feedback
linearizable. Consider system (4.88) with ρ = 0. It is easy to see that

[
ad f g1(ξ) ad f g2(ξ) ad f g3(ξ)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

− Lg1 X (ξ)

m − Z(ξ)

m − Lg2 X (ξ)

m
Y (ξ)

m − Lg3 X (ξ)

m

Z(ξ)

m − Lg1Y (ξ)

m − Lg2Y (ξ)

m − X (ξ)

m − Lg3Y (ξ)

m

− Y (ξ)

m − Lg1 Z(ξ)

m
X (ξ)

m − Lg2 Z(ξ)

m − Lg3 Z(ξ)

m
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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[
ad2f g1(ξ) ad2f g2(ξ) ad2f g3(ξ)

]∣∣
ξ=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lg1 X (ξ)

m
Z(ξ)

m + Lg2 X (ξ)

m − Y (ξ)

m + Lg3 X (ξ)

m

− Z(ξ)

m + Lg1Y (ξ)

m
Lg2Y (ξ)

m
X (ξ)

m + Lg3Y (ξ)

m

Y (ξ)

m + Lg1 Z(ξ)

m − X (ξ)

m + Lg2 Z(ξ)

m
Lg3 Z(ξ)

m
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ=0

mod span
{
g1(ξ), g2(ξ), g3(ξ), ad f g1(ξ), ad f g2(ξ), ad f g3(ξ)

}

which imply that (κ1, κ2, κ3) = (3, 3, 3) and thus condition (i) of Theorem4.3
is satisfied. Also, it is easy to see that �0(x) (= span {g1(ξ), g2(ξ), g3(ξ)}) and
�1(x)

(= span
{
g1(ξ), g2(ξ), g3(ξ), ad f g1(ξ), ad f g2(ξ), ad f g3(ξ)

})
are involutive

distributions and thus condition (ii) of Theorem4.3 is satisfied. Therefore, by
Theorem4.3, system (4.88) is feedback linearizable with

z = S(ξ) = m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
f1(ξ)

L f f1(ξ)

ξ2
f2(ξ)

L f f2(ξ)

ξ3
f3(ξ)

L f f3(ξ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
f1(ξ)

L f̃ f1(ξ)

ξ2
f2(ξ)

L f̃ f2(ξ)

ξ3
f3(ξ)

g + L f̃ f3(ξ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎣p
q
r

⎤
⎦ =

⎡
⎣Lg1L f̃ f1 Lg2L f̃ f1 Lg3L f̃ f1
Lg1L f̃ f2 Lg2L f̃ f2 Lg3L f̃ f2
Lg1L f̃ f3 Lg2L f̃ f3 Lg3L f̃ f3

⎤
⎦

−1 ⎛
⎝−

⎡
⎣L f L f̃ f1(ξ)

L f L f̃ f2(ξ)

L f L f̃ f3(ξ)

⎤
⎦ + 1

m

⎡
⎣v1

v2
v3

⎤
⎦
⎞
⎠

= α(ξ) + β(ξ)v

where

L f 0 f1(ξ) = 0; L f 0 f2(ξ) = 0; L f 0 f3(ξ) = g.

Refer to the MATLAB program in Sect. 4.5. Then it is easy to see that



144 4 Feedback Linearization

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5
ż6
ż7
ż8
ż9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6
z7
z8
z9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣v1

v2
v3

⎤
⎦

= Az + Bv.

Suppose that the system is not feedback linearizable. Then we can consider the
approximate linearization(Problem 4-12), the partial linearization(Problem 4-13),
and the dynamic feedback linearization(Problem 4-14). In fact, system (4.88) with
ρ �= 0 is dynamic feedback linearizable (Refer to Problem 4-15). The dynamic feed-
back linearization is considered in more detail in Chap. 6.

4.5 MATLAB Programs

In this section, the following subfunctions in AppendixC are needed:
adfg, adfgk, adfgM, adfgkM, ChExact, ChInvolutive, ChZero,
Codi, CXexact, Delta, Kindex0, Kindex, Lfh, Lfhk, S1, S1M

MATLAB program for Theorem4.1:

clear all syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[x2; x1ˆ2]; g=[x1-x1; 1]; %Ex:4.2.2

% f=[-x1-2*x2ˆ3; -x2ˆ2]; g=[1+2*x2; 1]; %Ex:4.2.3

% f=[x2; x1; x2+x1*x3]; g=[1; x1-x1; 0]; %Ex:4.2.4

% f=[x2-x1ˆ2; x3+2*x1*x2-x1ˆ3; x1ˆ2-3*x1ˆ2*x2+3*x1ˆ4];
% g=[0; 0; 1+x1]; %Ex:4.2.5

% f=[x2; x3+x2ˆ2; 0]; g=[x1-x1; 1; 1]; %Ex:4.2.7

% f=[x2+2*x3*x1ˆ2; x3; x1ˆ2];
% g=[2*x3*(1+x2ˆ2); 0; 1+x2ˆ2]; %P:4-1

% f=[x2; 0]; g=[x1; 1]; %P:4-3(a)

% f=[x2+x3ˆ2; x3; 0]; g=[x1-x1; 0; 1]; %P:4-3(b)

% f=[x2+x3ˆ2; x3; x4; 0]; g=[x1-x1; 0; 0; 1]; %P:4-3(c)
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% f=[x2; x3ˆ2; x4; 0]; g=[x1-x1; 0; 0; 1]; %P:4-4

f=simplify(f)
g=simplify(g)

[n,m]=size(g);
x=sym(’x’,[n,1]);

T(:,1)=g;
for k=2:n
T(:,k)=adfg(f,T(:,k-1),x);

end
T=simplify(T)
T0=simplify(subs(T,x,x-x));
TD=T(:,1:n-1);

if rank(T0) < n
display(’condition (i) of Thm 4.1 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end

if ChInvolutive(TD,x) == 0
display(’condition (ii) of Thm 4.1 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end

display(’System is feedback linearizable.’)

[flag,S1]=S1(f,g,x)

if flag==0
display(’Find out z=S(x) without MATLAB.’)
return

end

S=x-x;
for k=1:n
S(k)=Lfhk(f,S1,x,k-1);

end
S=simplify(S)
beta=simplify(inv(Lfh(g,S(n),x)))
alpha=simplify(-beta*Lfh(f,S(n),x))

hg=simplify(g*beta)
hf=simplify(f+g*alpha)

dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
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B=simplify(dS*hg)

return

MATLAB program for Theorem4.3:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[x2; -x1+x2ˆ2; x3ˆ2]; g=[0 0; 1+x1ˆ2 0; 0 1]; %Ex:4.3.4

% f=[x2+2*x4*x5; x3; 0; x5; 0];
% g=[0 0; 0 0; 1 x1; 0 0; 0 1]; %Ex:4.3.5

% f=[x2-x4*(x3+x4); 0; x4; 0];
% g=[0 x1; 0 1; -1 -x1; 1 x1]; %Ex:4.3.6

% f=[x2; x3; x4; 0]; g=[0 x1; 0 0; 1 0; 0 1]; %Ex:4.3.7

% f=[x2; 0; 0]; g=[0 x2ˆ2; 1 0; 0 1]; %Ex:4.3.8

% f=[x2; x4; x4+3*x2ˆ2*x4; 0];
% g=[2*x1*x4 2*x4; 1 0; 3*x2ˆ2 0; x1 1]; %P:4-5

% f=[-x1+x2ˆ2; -2*x2+sin(x2)]; g=[1 x1-x1; 0 1]; %P:4-6

% g=[1 0 1; 2*(x1-x5) 0 0; 0 1 x3; -2*(x1-x5) 0 0; 0 0 1];
% f=[x1ˆ2; x3; 0; x5; x1ˆ2]; %P:4-7

% g=[0 x3; 0 0; 1 0; 0 1]; f=[0; x3; 0; 0]; %P:4-8(a)

% g=[0 x3; 0 0; 1 0; 0 0]; f=[x2; x3; 0; x1]; %P:4-8(b)

% g=[0 x3; 0 0; 1 0; 0 1]; f=[x2; x3; 0; 0]; %P:4-8(c)

% f=[x2; x3; 0; 0]; g=[2*x1 0; 2*x2 0; 1 0; 0 1]; %P:4-9

% f=[x2; 0; x4; 0]; g=[0 0; 1+x2 0; 0 0; 0 1]; %P:4-10

% f=[x2; 0; x4; 0]; g=[0 x2ˆ3; 1+x2 0; 0 0; 0 1]; %P:4-11

% fo=[x2; 0; x4; 0]; go=[0 x2ˆ3; 1+x2 0; 0 0; 0 1];
% f=[fo+x5*go(:,2); 0]; g(:,1)=[go(:,1); 0]
% g(:,2)=[go(:,2)-go(:,2); 1]; %P:4-14 (x5=eta)

f=simplify(f)
g=simplify(g)

[n,m]=size(g);
x=sym(’x’,[n,1]);

[kappa,D]=Kindex0(f,g,x)
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if sum(kappa) < n
display(’condition (i) of Thm 4.3 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end

for k=1:max(kappa)-1
TD=D(:,1:k*m);
if rank(TD) ˜= rank(subs(TD,x,x-x))
display(’NOT (constant dimensional) distribution.’)
display(’condition (ii) of Thm 4.3 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end
if ChInvolutive(TD,x) == 0
display(’condition (ii) of Thm 4.3 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end
end

display(’System is feedback linearizable.’)

[flag,S1]=S1M(f,g,x,kappa);

if flag==0
display(’Find out z=S(x) without MATLAB.’)
return

end

S=x1-x1;
for k1=1:m
for k=1:kappa(k1)
t1=Lfhk(f,S1(k1),x,k-1);
S=[S; t1];

end
end
S=simplify(S(2:n+1))
t2=S1-S1;
for k1=1:m
t2(k1)=Lfhk(f,S1(k1),x,kappa(k1)-1);

end
t2=simplify(t2);

ibeta=simplify(Lfh(g,t2,x));
beta=simplify(inv(ibeta))
t3=simplify(Lfh(f,t2,x));
alpha=simplify(-beta*t3)

hg=simplify(g*beta)
hf=simplify(f+g*alpha)

dS=simplify(jacobian(S,x));
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idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)

return

MATLAB program for Example4.4.1:

clear all
syms x1 x2 x3 x4 x5 real
syms R L M g y0 real

bg=[x1-x1; 0; 1/L];
bf=[x2; g-(1/M)*((x3+sqrt(M*g*y0))ˆ2)/(x1+y0); -(R/L)*x3];

[n,m]=size(bg);
x=sym(’x’,[n,1]);

bf=simplify(bf)
bg=simplify(bg)

T(:,1)=bg;
for k=2:n
T(:,k)=adfg(bf,T(:,k-1),x);

end
T=simplify(T)
T0=simplify(subs(T,x,x-x));
TD=T(:,1:n-1);

if rank(T0) < n
display(’condition (i) of Thm 4.1 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end

if ChInvolutive(TD,x) == 0
display(’condition (ii) of Thm 4.1 is not satisfied.’)
display(’System is NOT feedback linearizable.’)
return

end

display(’System is feedback linearizable.’)

[flag,S1]=S1(bf,bg,x)

if flag==0
display(’Find out z=S(x) without MATLAB.’)
return

end
S1=-(2*(M*g*y0)ˆ(1/2))/(L*M*y0)*S1
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S=x-x;
for k=1:n
S(k)=Lfhk(bf,S1,x,k-1);

end
S=simplify(S)
beta=simplify(inv(Lfh(bg,S(n),x)))
alpha=simplify(-beta*Lfh(bf,S(n),x))

hg=simplify(bg*beta)
hf=simplify(bf+bg*alpha)

dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)

return

MATLAB program for Example4.4.3:

clear all
syms x1 x2 x3 x4 x5 real
syms u1 u2 u3 real
syms a1 a2 a3 a4 a5 real
syms p c J D Te TL KT real

g=[c 0 x2; 0 c -x1; 0 0 x4; 0 0 -x3; 0 0 0];
[n,m]=size(g);
x=sym(’x’,[n,1]);
f=x-x; f(5)=(-D*x5+KT*(x2*x3-x1*x4)-TL)/J;
f(1:2)=[-a1*x1+a2*x3+p*a3*x4*x5; -a1*x2-p*a3*x3*x5+a2*x4];
f(3:4)=[a5*x1-a4*x3-p*x4*x5; a5*x2+p*x3*x5-a4*x4];

f=simplify(f)
g=simplify(g)

[ka,D]=Kindex(f,g,x)

if sum(ka) < n
display(’condition (i) of Thm 4.3 is not satisfied.’)
return

end

for k=1:max(ka)-1
if ChInvolutive(D(:,1:k*m),x) == 0
display(’condition (ii) of Thm 4.3 is not satisfied.’)
return

end
end

display(’System is feedback linearizable.’)
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S1=[x3ˆ2+x4ˆ2; x5; x1]

S=x1-x1;
for k1=1:m
for k=1:ka(k1)
t1=Lfhk(f,S1(k1),x,k-1);
S=[S; t1];

end
end
S=simplify(S(2:n+1))

t2=S1-S1;
for k1=1:m
t2(k1)=Lfhk(f,S1(k1),x,ka(k1)-1);

end
t2=simplify(t2);

ibeta=simplify(Lfh(g,t2,x))
beta=simplify(inv(ibeta))
t3=simplify(Lfh(f,t2,x))
alpha=simplify(-beta*t3)

hg=simplify(g*beta)
hf=simplify(f+g*alpha)

dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)

return

MATLAB program for Example4.4.4 and Problem 4-15:

clear all
syms E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 real
syms U1 U2 U3 real
syms a1 a2 a3 a4 a5 real
syms g J m X Y Z real
syms X11 X12 X13 Y11 Y12 Y13 Z11 Z12 Z13 real

G1=[0 0 0 0; 0 0 0 0; 0 0 0 0];
G2=[0 -E6 E5 J/m; E6 0 -E4 0; -E5 E4 0 0];
G3=[1 tan(E8)*sin(E7) tan(E8)*cos(E7) 0; 0 cos(E7) -sin(E7) 0;

0 sin(E7)/cos(E8) cos(E7)/cos(E8) 0];
TG=[G1; G2; G3];

f0=TG(:,1)-TG(:,1); f0t1=sin(E8)*sin(E7);
f0(1)=E4*cos(E9)*cos(E8)+E5*(cos(E9)*f0t1-sin(E9)*cos(E7));
f0(1)=f0(1)+E6*(cos(E9)*sin(E8)*cos(E7)+sin(E9)*sin(E7)) ;
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f0(2)=E4*sin(E9)*cos(E8)+E5*(sin(E9)*f0t1+cos(E9)*cos(E7));
f0(2)=f0(2)+E6*(sin(E9)*sin(E8)*cos(E7)-cos(E9)*sin(E7));
f0(3)=-E4*sin(E8)+E5*cos(E8)*sin(E7)+E6*cos(E8)*cos(E7);
f0(4)= -g*sin(E8);
f0(5)= g*cos(E8)*sin(E7);
f0(6)= g*cos(E8)*cos(E7);

G=TG; %Ex:4.4.4 (bm=4)
[n,bm]=size(G);
E=sym(’E’,[n,1]);
EYE=jacobian(E,E)

t1=adfg(G(:,2),G(:,4),E)

if rank([t1 G]) > rank(G)
display(’condition (ii) of Thm 4.3.1 is not satisfied.’)
display(’The system with rho is NOT FB linearizable.’)

end

G=TG(:,1:3); %Ex:4.4.4 (bm=3, rho=0)
[n,bm]=size(G);

tf=(X/m)*EYE(:,4)+(Y/m)*EYE(:,5)+(Z/m)*EYE(:,6)
f=f0+tf;
f=simplify(f)
G=simplify(G)

D=G
temp1=adfgM(f,G,E)
t11=(X11/m)*EYE(:,4)+(Y11/m)*EYE(:,5)+(Z11/m)*EYE(:,6);
t12=(X12/m)*EYE(:,4)+(Y12/m)*EYE(:,5)+(Z12/m)*EYE(:,6);
t13=(X13/m)*EYE(:,4)+(Y13/m)*EYE(:,5)+(Z13/m)*EYE(:,6);
temp2=[t11 t12 t13]
D=[D temp1-temp2]

temp3=adfgM(f,D(:,4:6),E)
temp30=subs(temp3,E,E-E)

Flag1=ChInvolutive(D(:,1:3),E)
Flag2=ChInvolutive(D(:,1:6),E)

display(’System with rho=0 is feedback linearizable.’)

ANS1=simplify(Lfh(f0,f(1),E))
ANS2=simplify(Lfh(f0,f(2),E))
ANS3=simplify(Lfh(f0,f(3),E))

display(’Problem 4-15’)

G=TG;
[n,bm]=size(G);
E=sym(’E’,[n+1,1]);
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FE=[f+E(10)*G(:,4); 0]
GE=[G(:,1:3) G(:,4)-G(:,4)];
GE=[GE; [0 0 0 1]]

Flag1E=ChInvolutive(D(:,1:4),E)
Flag2E=ChInvolutive(D(:,1:8),E)

display(’Extended system (4.6.4) is feedback linearizable.’)

return

4.6 Problems

4-1. Show that the following nonlinear control system is feedback linearizable.
Also, find a linearizing state transformation and feedback.

ẋ =
⎡
⎣x2 + 2x3x21

x3
x21

⎤
⎦ +

⎡
⎣2x3(1 + x22 )

0
1 + x22

⎤
⎦ u

4-2. Find a nonlinear feedback u = α(x) that causes lim
t→∞ x(t) = 0 for the nonlin-

ear control system of Problem 4-1.
4-3. Find out whether the following nonlinear control system is feedback lineariz-

able. If it is feedback linearizable, find a linearizing state transformation and
feedback.

(a)

ẋ =
[
x2
0

]
+

[
x1
1

]
u

(b)

ẋ =
⎡
⎣x2 + x23

x3
0

⎤
⎦ +

⎡
⎣00
1

⎤
⎦ u

(c)

ẋ =

⎡
⎢⎢⎣
x2 + x23

x3
x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ u
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4-4. Show that the following nonlinear control system is not locally feedback
linearizable on a neighborhood of the origin:

ẋ =

⎡
⎢⎢⎣
x2
x23
x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ u

4-5. Linearize the following nonlinear control system by state transformation and
feedback.

ẋ =

⎡
⎢⎢⎣

x2
x4

x4 + 3x22 x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
2x1x4 2x4
1 0
3x22 0
x1 1

⎤
⎥⎥⎦ u

4-6. Show that the following nonlinear control system is feedback linearizable:

ẋ =
[ −x1 + x22−2x2 + sin x2

]
+

[
1
0

]
u1 +

[
0
1

]
u2

4-7. Find out whether the following nonlinear control system is feedback lineariz-
able. If it is feedback linearizable, find a linearizing state transformation and
feedback.

ẋ =

⎡
⎢⎢⎢⎢⎣

x21
x3
0
x5
x21

⎤
⎥⎥⎥⎥⎦ + u1

⎡
⎢⎢⎢⎢⎣

1
2(x1 − x5)

0
−2(x1 − x5)

0

⎤
⎥⎥⎥⎥⎦ + u2

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ + u3

⎡
⎢⎢⎢⎢⎣

1
0
x3
0
1

⎤
⎥⎥⎥⎥⎦

4-8. Show that the following nonlinear control systems are not locally feedback
linearizable on a neighborhood of the origin:

(a)

ẋ =

⎡
⎢⎢⎣
0
x3
0
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
x3
0
0
1

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

(b)
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ẋ =

⎡
⎢⎢⎣
x2
x3
0
x1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
x3
0
0
0

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

(c)

ẋ =

⎡
⎢⎢⎣
x2
x3
0
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
x3
0
0
1

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

4-9. Show that the following nonlinear control system is feedback linearizable.
Also, find a linearizing state transformation and feedback.

ẋ =

⎡
⎢⎢⎣
x2
x3
0
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
2x1
2x2
1
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

4-10. Show that the following nonlinear control system is feedback linearizable.
Also, find a linearizing state transformation and feedback.

ẋ =

⎡
⎢⎢⎣
x2
0
x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
1 + x2

0
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2 (4.89)

4-11. Show that the following nonlinear control system is not feedback linearizable:

ẋ =

⎡
⎢⎢⎣
x2
0
x4
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
1 + x2

0
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣
x32
0
0
1

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2 (4.90)

4-12. Big O notation can be used to describe the error term in an approxima-
tion to a mathematical function. The most significant terms are written
explicitly, and then the least-significant terms are summarized in a single
big O term. For example, ex = 1 + x + 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · = 1 + x +

1
2 x

2 + O(x3) = 1 + x + O(x2). Show that if the state transformation and
nonsingular feedback of Problem 4-10 are used, then system (4.90) satisfies,
in z-coordinates
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ż(t) = Az(t) + Bv(t) + O
(
(z, v)4

)

In other words, system (4.90) is not feedback linearizable. But, it can be
approximated to a linear system (up to the third-order) more accurately than
the classical first-order approximation technique, by using feedback and state
transformation. It is called the approximate linearization.

4-13. For system (4.90), find a state transformation z = S(x) and nonsingular feed-
back u = α(x) + β(x)v such that

ż1 = Az1 + Bv

ż2 = φ(z1, z2) + ψ(z1, z2)v

where z =
[
z1

z2

]
, z1 ∈ R

d , and z2 ∈ R
n−d . Find the maximum of d. It is called

the partial linearization.
4-14. Consider system (4.90). With the dynamic feedback

[
u1
u2

]
=

[
w1

η1

]
; η̇1 = w2

we have the extended system

ẋE =
[
ẋ
η̇1

]
=

[
f (x) + η1g2(x)

0

]
+

[
g1(x) 0
0 1

]
w

= fE (xE ) + gE(xE )w

(4.91)

where xE =
[
x
η1

]
. Show that the extended system (4.91) is feedback lineariz-

able. Also, find the extended state transformation zE = SE (xE ) and nonsin-
gular feedback w = α(xE ) + β(xE )v. In other words, system (4.90) is lin-
earizable by the extended state transformation zE = SE (xE ) and the dynamic
feedback

[
u1
u2

]
=

[
0
η1

]
+

[
1 0
0 0

]
α(xE ) +

[
1 0
0 0

]
β(xE )v

η̇1 = [
0 1

]
α(xE ) + [

0 1
]
β(xE )v.

It is called the dynamic feedback linearization.
4-15. Consider system (4.88) in Example4.4.4. With the dynamic feedback

p = w1; q = w2; r = w3; ρ = η

η̇ = w4
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we have the extended system

ξ̇E =
[
ξ̇

η̇

]
=

[
f (ξ) + ηg4(ξ)

0

]
+

[
g1(ξ) g2(ξ) g3(ξ) 0
0 0 0 1

]
w

= fE (ξE ) + gE(ξE )w

(4.92)

where ξE =
[
ξ

η

]
. Show that the extended system (4.92) is feedback lineariz-

able.



Chapter 5
Linearization with Output Equation

In Chaps. 3 and 4, only the state equation is considered for linearizing the system, and
the output equation is still a nonlinear function of the new state variable. Here, we can
also find the more restrictive problem that the output equation should also be a linear
function for the new state variable. In this chapter, we discuss the linearization of
a nonlinear control system with output. Linearization with output equation requires
that both input-state and input-output relationships are linear.

5.1 Introduction

Consider the following smooth nonlinear control system with output:

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.1)

where x ∈ R
n , u ∈ R

m , and y ∈ R
p.

Example 5.1.1 Consider system (1.2) once again.

[
ẋ1
ẋ2

]
=
[
2x1x2 − 2x32 + (1 + 2x2)u

x1 − x22 + u

]

y = x1 − x22 + x2.

(5.2)

It is shown, in Example 3.2.3, that system (5.2) is state equivalent, with state trans-

formation

[
z1
z2

]
= S(x) =

[
x1 − x22

x2

]
, to the following linear system:
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[
ż1
ż2

]
=
[
0 0
1 0

] [
z1
z2

]
+
[
1
1

]
u

Since h ◦ S−1(z) = z1 + z2, we have the following linear output equation:

y = [1 1
] [z1

z2

]
.

But, if output equation is y = x1 instead of y = x1 − x22 + x2, then output equation
is y = z1 + z22 which is nonlinear in z-coordinates.

As in the above Example, if not only state equation but also output equation is
linearizedby state transformation, thenboth the states and theoutput canbe controlled
very easily.

Definition 5.1 (state equivalence to a LS with output)
System (5.1) is said to be state equivalent to a linear system (LS) with output,
if there exists a state transformation z = S(x) such that system (5.1) satisfies, in
z−coordinates, the following controllable linear system:

ż = Az + Bu

y = Cz.
(5.3)

In other words,

S∗( f (x)) = Az,
[
S∗(g1(x)) · · · S∗(gm(x))

] = B

h ◦ S−1(z) = Cz.
(5.4)

That is, not only is the state equation of the system linear in the new coordinate
system, but the output equation must also be linear in the new coordinate system. By
using feedback in addition to state transformation, we can linearize the larger class
of nonlinear control systems with output.

Definition 5.2 (Feedback linearization with output)
System (5.1) is said to be feedback linearizable with output, if there exist a feedback
u = α(x) + β(x)v and a state transformation z = S(x) such that the closed-loop
system satisfies, in z−coordinates, the following controllable linear system:

ż = Az + Bv

y = Cz.
(5.5)
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Fig. 5.1 State equivalence to a linear system with output

Fig. 5.2 Feedback linearization with output

In other words,

S∗( f (x) + g(x)α(x)) = Az ; h ◦ S−1(z) = Cz[
S∗(g(x)β1(x)) · · · S∗(g(x)βm(x))

] = B
(5.6)

where β(x) = [β1(x) · · · βm(x)
]
.

Figures5.1 and 5.2 give the block diagrams of the two linearization problems with
output in Definitions 5.1 and 5.2. It is obvious that the conditions for the lineariza-
tion problems with output would be more restricted than those for the linearization
problems without output. In the next sections, the conditions for the linearization
problems with output are considered.
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5.2 State Equivalence to a SISO Linear System

In this section, we consider the following single input single output (SISO) nonlinear
system:

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.7)

where x ∈ R
n , u ∈ R, y ∈ R, and f (x), g(x), and h(x) are smooth functions with

f (0) = 0 and h(0) = 0.

Example 5.2.1 Consider the following linear system:

ż = Az + bu ; y = cz.

Use mathematical induction to show that

y(�) = cA�z +
�−1∑
j=0

cA�−1− j bu( j), � ≥ 1.

Solution Omitted. (See Problem 5–1.) �
Theorem 5.1 (conditions for state equivalence to a LS with output)
System (5.7) is state equivalent to a LS with output, if and only if

(i) rank
([

g(x) ad f g(x) · · · adn−1
f g(x)

]∣∣∣
x=0

)
= n.

(ii)
[
adi−1

f g(x), ad j−1
f g(x)

]
= 0, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1.

(iii) Ladk−1
f gh(x) = const, 1 ≤ k ≤ n.

Furthermore, a state transformation z = S(x) can be obtained by

∂S(x)

∂x
= [g(x) ad f g(x) · · · adn−1

f g(x)
]−1

. (5.8)

Proof Necessity. Suppose that system (5.7) is state equivalent to a linear system
with output. Then there exists a state transformation z = S(x) such that

f̃ (z) � S∗( f (x)) = Az ; g̃(z) � S∗(g(x)) = b

h̃(z) � h ◦ S−1(z) = cz.
(5.9)

It is clear, by Theorem 3.1, that condition (i) and (ii) of Theorem 5.1 are satisfied. It
is easy to see, by Example 2.4.14, that for k ≥ 0,

S∗(adkf g(x)) = adk
f̃
g̃(z) = (−1)k Akb.
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Thus, we have, by Theorem 2.5, that for 1 ≤ k ≤ n,

Ladk−1
f gh(x) = Ladk−1

f̃
g̃ h̃(z)

∣∣∣
z=S(x)

= (−1)k−1cAk−1b.

Therefore, condition (iii) is satisfied.
Sufficiency. Suppose that condition (i)–(iii) are satisfied. Then, by Theorem 2.7,

there exists a state transformation z = S(x) such that for 1 ≤ i ≤ n,

S∗
(
adi−1

f g(x)
)

= ∂

∂zi
(5.10)

or

∂S(x)

∂x

[
g(x) ad f g(x) · · · adn−1

f g(x)
] = I.

It is easy to see, by (3.11)–(3.12), that S∗(g(x)) = ∂
∂z1

= [1 0 · · · 0]T � b and
S∗( f (x)) = Az for some constant matrix A. (For this, refer to the sufficiency proof of
Theorem 3.1.) Let h̃(z) = h ◦ S−1(z). Then we have, by (2.30), (5.10) and condition
(iii), that for 1 ≤ k ≤ n,

∂ h̃(z)

∂zk
= LS∗(adk−1

f g)h̃(z) = Ladk−1
f gh(x)

∣∣∣
x=S−1(z)

= const � ck .

Since h̃(0) = 0, it is clear that h̃(z) � h ◦ S−1(z) = [c1 · · · cn
]
z. Therefore, system

(5.7) is state equivalent to a linear system via z = S(x) in (5.8). �

Example 5.2.2 Show that the following nonlinear system is state equivalent to a LS
with output:

[
ẋ1
ẋ2

]
=
[

0
x1 cos2 x2

]
+
[
1
0

]
u = f (x) + g(x)u

y = 2x1 + tan x2 = h(x).

(5.11)

Also, find a state transformation z = S(x) in (5.8).

Solution It is easy to see that

ad f g(x) =
[

0
− cos2 x2

]
, ad2f g(x) =

[
0
0

]

and

Lgh(x) = 2, Lad f gh(x) = −1.
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(Refer to Example 3.2.5.) It is easy to see that condition (i)–(iii) of Theorem 5.1 are
satisfied. Therefore, by Theorem 5.1, system (5.11) is state equivalent to a LS with
output. It is clear, by (5.8), that

∂S(x)

∂x
=
[
1 0
0 − cos2 x2

]−1

=
[
1 0
0 − sec2 x2

]

and
[
z1
z2

]
= S(x) =

[
x1

− tan x2

]
.

Then we have that
[
ż1
ż2

]
= S∗( f (x)) + S∗(g(x))u =

[
0 0

−1 0

] [
z1
z2

]
+
[
1
0

]
u

y = h ◦ S−1(z) = [2 −1
] [z1

z2

]
. �

Example 5.2.3 Show that the following nonlinear system is not state equivalent to
a LS with output:

[
ẋ1
ẋ2

]
=
[

0
x1 cos2 x2

]
+
[
1
0

]
u = f (x) + g(x)u

y = x2 = h(x).

(5.12)

Solution It is easy to see that

ad f g(x) =
[

0
− cos2 x2

]
, ad2f g(x) =

[
0
0

]

and

Lgh(x) = 0, Lad f gh(x) = − cos2 x2.

Since condition (iii) of Theorem 5.1 is not satisfied, system (5.12) is not state equiv-
alent to a LS with output. �

Example 5.2.4 Show that the following nonlinear system is not state equivalent to
a LS with output:
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[
ẋ1
ẋ2

]
=
[
x2
x21

]
+
[
0
1

]
u = f (x) + g(x)u

y = x1 = h(x).

(5.13)

Solution It is easy to see that

ad f g(x) =
[−1
0

]
, ad2f g(x) =

[
0
2x1

]

and

[
ad f g(x), ad2f g(x)

] =
[
0

−2

]
�= 0

which implies that condition (ii) of Theorem 5.1 is not satisfied. Therefore, by The-
orem 5.1, system (5.13) is not state equivalent to a LS with output. �

It is clear that system (5.13) becomes a linear system with nonsingular feed-
back u = −x21 + v. In other words, the larger class of input output systems can be
linearized by using nonsingular feedback. It will be discussed in Sect. 5.4.

5.3 State Equivalence to a MIMO Linear System

In this section,we consider the followingmulti-inputmulti-output (MIMO)nonlinear
system:

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.14)

where x ∈ R
n , u ∈ R

m , y ∈ R
q , and f (x), g(x), and h(x) are smooth functions

with f (0) = 0 and h(0) = 0. Suppose that (κ1, . . . , κm) is the Kronecker indices of
system (5.14).

Theorem 5.2 (conditions for state equivalence to a LS with output)
System (5.14) is state equivalent to a LS with output via state transformation z =
S(x), if and only if

(i)
∑m

i=1 κi = n
(ii) for 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ �i ≤ κi + 1, and 1 ≤ � j ≤ κ j + 1,

[ad�i−1
f gi (x), ad

� j−1
f g j (x)] = 0 (5.15)
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(iii) for 1 ≤ i ≤ m, 1 ≤ j ≤ q, and 1 ≤ k ≤ κi ,

Ladk−1
f gi h j (x) = constant. (5.16)

Furthermore, a state transformation z = S(x) can be obtained by

∂S(x)

∂x
=
[
g1 ad f g1 · · · adκ1−1

f g1 · · · gm · · · adκm−1
f gm

]−1
. (5.17)

Proof Necessity. Suppose that system (5.14) is state equivalent to a linear system.
Then there exists a state transformation z = S(x) such that for 1 ≤ i ≤ m and 1 ≤
j ≤ q,

f̃ (z) � S∗( f (x)) = Az ; g̃i (z) � S∗(gi (x)) = bi

h̃ j (z) � h j ◦ S−1(z) = c j z
(5.18)

where A, B �
[
b1 · · · bm

]
, and C �

⎡
⎢⎣
c1

...

cq

⎤
⎥⎦ are constant matrices. It is clear, by

Theorem 3.2, that condition (i) and (ii) of Theorem 5.2 are satisfied. It is easy to see,
by Example 2.4.14, that for 1 ≤ i ≤ m and k ≥ 0,

adk
f̃
g̃i (z) = S∗(adkf gi (x)) = (−1)k Akbi . (5.19)

Thus, we have, by Theorem 2.5, that for 1 ≤ i ≤ m, 1 ≤ j ≤ q, and 1 ≤ k ≤ κi ,

Ladk−1
f gi h j (x) = Ladk−1

f̃
g̃i h̃ j (z)

∣∣∣
z=S(x)

= c j Ak−1bi .

Therefore, condition (iii) is satisfied.
Sufficiency. Suppose that condition (i)–(iii) are satisfied. Then, by Theorem 2.7,

there exists a state transformation z = S(x) such that for 1 ≤ i ≤ m and 1 ≤ � ≤ κi ,

S∗
(
ad�−1

f gi (x)
)

= ∂

∂zi�

z =
⎡
⎢⎣
z1

...

zm

⎤
⎥⎦ , zi =

⎡
⎢⎣
zi1
...

ziκi

⎤
⎥⎦

(5.20)

or



5.3 State Equivalence to a MIMO Linear System 165

∂S(x)

∂x

[
g1 ad f g1 · · · adκ1−1

f g1 · · · gm · · · adκm−1
f gm

]
= I.

It is easy to see, by (3.36), that S∗(gi (x)) = ∂

∂zi1
� bi and S∗( f (x)) = Az for some

constant matrix A. (For this, refer to the sufficiency proof of Theorem 3.2.) Let
h̃ j (z) = h j ◦ S−1(z) for 1 ≤ j ≤ q. Then we have, by (2.30), (5.20) and condition
(iii), that for 1 ≤ i ≤ m, 1 ≤ j ≤ q, and 1 ≤ k ≤ κi ,

∂ h̃ j (z)

∂zik
= LS∗(adk−1

f gi )h̃ j (z) = Ladk−1
f gi h j (x)

∣∣∣
x=S−1(z)

= const � c j
ik .

Since h̃(0) = 0, it is clear that h̃(z) � h ◦ S−1(z) = Cz, where C �

⎡
⎢⎣
c1

...

cq

⎤
⎥⎦ and c j �

[
c j
11 · · · c j

1κ1 · · · c j
m1 · · · c j

mκm

]
. Therefore, system (5.14) is state equivalent to a linear

system via z = S(x) in (5.17). �

Example 5.3.1 Show that the following nonlinear system is state equivalent to a LS
with output:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣−2x2(x2 + x2 + x22 )

x1 + x2 + x22−2x2(x1 + x2 + x22 )

⎤
⎦+

⎡
⎣1 0
0 0
0 1

⎤
⎦[u1

u2

]

= f (x) + g1(x)u1 + g2(x)u2[
y1
y2

]
=
[

x1 + x22
x2 + x22 + x3

]
=
[
h1(x)
h2(x)

]
= h(x).

(5.21)

Also, find a state transformation z = S(x) in (5.17).

Solution By simple calculation, we have that (κ1, κ2) = (2, 1) and

ad f g1(x) =
⎡
⎣2x2−1
2x2

⎤
⎦ , ad f g2(x) =

⎡
⎣00
0

⎤
⎦ , ad2f g1(x) =

⎡
⎣−2x2

1
−2x2

⎤
⎦ .

(Refer to Example 3.3.3.) Also, we have that

Lg1h(x) =
[
1
0

]
, Lg2h(x) =

[
0
1

]
, Lad f g1h(x) =

[
0

−1

]
.

It is easy to see that condition (i)–(iii) of Theorem 5.2 are satisfied. Therefore, by
Theorem 5.2, system (5.21) is state equivalent to a LS with output. It is clear, by
(5.17), that
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∂S(x)

∂x
=
⎡
⎣1 2x2 0
0 −1 0
0 2x2 1

⎤
⎦

−1

=
⎡
⎣1 2x2 0
0 −1 0
0 2x2 1

⎤
⎦

and
⎡
⎣z1z2
z3

⎤
⎦ = S(x) =

⎡
⎣x1 + x22−x2
x3 + x22

⎤
⎦ .

Then we have that
[
ż1
ż2

]
= S∗( f (x)) + S∗(g1(x))u1 + S∗(g2(x))u2

=
⎡
⎣ 0 0 0

−1 1 0
0 0 0

⎤
⎦
⎡
⎣z1z2
z3

⎤
⎦+

⎡
⎣1 0
0 0
0 1

⎤
⎦[u1

u2

]

y = h ◦ S−1(z) =
[
1 0 0
0 −1 1

]⎡
⎣z1z2
z3

⎤
⎦ .

�

5.4 Feedback Linearization with Output of SISO Systems

In this section, we consider the following single input single output (SISO) nonlinear
system:

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.22)

where x ∈ R
n , u ∈ R, y ∈ R, and f (x), g(x), and h(x) are smooth functions with

f (0) = 0 and h(0) = 0.

Definition 5.3 (feedback linearization with output)
System (5.22) is said to be feedback linearizable with output, if there exist a feedback
u = α(x) + β(x)v and a state transformation z = S(x) such that the closed-loop
satisfies, in z−coordinates, the following Brunovsky canonical form:
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ż =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

v = Az + bv

y = cz.

(5.23)

In other words,

S∗ ( f (x) + g(x)α(x)) = Az ; S∗ (g(x)β(x)) = b

h ◦ S−1(z) = cz.
(5.24)

Definition 5.4 (characteristic number)
The characteristic number ρ of the output is defined as the smallest natural number
such that LgL

ρ−1
f h(x) �= 0. In other words,

LgL
k−1
f h(x) = 0, 1 ≤ k ≤ ρ − 1 and LgL

ρ−1
f h(x) �= 0 (5.25)

or (by Example 2.4.16)

Ladk−1
f gh(x) = 0, 1 ≤ k ≤ ρ − 1 and Ladρ−1

f gh(x) �= 0. (5.26)

If LgLk
f h(x) = 0 for k ≥ 0, then we let ρ � ∞.

It is easy to see, by mathematical induction, that

Lk
f +gαh(x) = Lk

f h(x), 1 ≤ k ≤ ρ − 1

Lρ

f +gαh(x) = Lρ

f h(x) + LgL
ρ−1
f h(x) α(x).

(5.27)

Example 5.4.1 Suppose that ρ is the characteristic number of the system output.
Let ρ ≤ n. Find the nonsingular feedback u = α(x) + β(x)v such that the transfer
function of the closed-loop system is

Gc(s) � Y (s)

V (s)
= 1

sρ + aρ−1sρ−1 + · · · + a1s + a0
.

Solution It is easy to see, by (5.27), that

y(k)(t) � dk y(t)

dtk
= Lk

f h(x), 1 ≤ k ≤ ρ − 1

y(ρ)(t) = L f +gu L
ρ−1
f h(x) = Lρ

f h(x) + LgL
ρ−1
f h(x) u.
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We need to find the feedback such that

y(ρ) = −aρ−1y
ρ−1 − · · · − a1 ẏ − a0y + v

= −aρ−1L
ρ−1
f h(x) − · · · − a1L f h(x) − a0h(x) + v.

Thus, we have

u = −Lρ

f h(x) − aρ−1L
ρ−1
f h(x) − · · · − a1L f h(x) − a0h(x) + v

LgL
ρ−1
f h(x)

.

�

Example 5.4.2 Show that if ρ = n and LgL
ρ−1
f h(x)

∣∣∣
x=0

�= 0, then system (5.22)

is feedback linearizable with output.

Solution Suppose that ρ = n and LgL
ρ−1
f h(x)

∣∣∣
x=0

�= 0. Then, we have, by (5.25),

that

LgL
k−1
f h(x) = 0, 1 ≤ k ≤ n − 1 and LgL

n−1
f h(x) �= 0.

Thus, conditions of Lemma 4.1 are satisfied with S1(x) = h(x). Therefore, by
Lemma 4.1, system (5.22) is feedback linearizable with state transformation

z = S(x) =

⎡
⎢⎢⎢⎣

h(x)
L f h(x)

...

Lρ−1
f h(x)

⎤
⎥⎥⎥⎦ (5.28)

and feedback

u = − Lρ

f h(x)

LgL
ρ−1
f h(x)

+ 1

LgL
ρ−1
f h(x)

v = α(x) + β(x)v. (5.29)

Since h̃ = h ◦ S−1(z) = z1, it is easy to see that (5.23) is satisfied with c =[
1 0 · · · 0]. �

Suppose that ρ < n. Let z = S(x) =
[
z1

z2

]
, where z2 ∈ R

n−ρ and

z1 =
[
h(x) L f h(x) · · · Lρ−1

f h(x)
]T

.
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Then, the closed-loop system with state feedback (5.29) satisfies, in z-coordinates,
the following system:

[
ż1(t)
ż2(t)

]
=
[
Aρz1(t)
f̃ 2(z(t))

]
+
[

bρ

g̃2(z(t))

]
v(t)

y(t) = [1 0 · · · 0] z(t).
Theorem 5.3 (conditions for feedback linearization with output)
Let ρ ≤ n. System (5.22) is feedback linearizable with output, if and only if

(i) rank
([

g(x) ad f g(x) · · · adn−1
f g(x)

]∣∣
x=0

)
= n

(ii) Ladρ−1
f gh(x)

∣∣∣
x=0

�= 0

(iii) one form ω(x) is exact or ∂ω(x)T

∂x =
(

∂ω(x)T

∂x

)T
.

(iv) Lĝ L
k−1
f̂

h(x) = const for ρ ≤ k ≤ n,

where

ω(x) �
[
0 · · · 0 (−1)n−1

β(x)

] [
g(x) ad f g(x) · · · adn−1

f g(x)
]−1

(5.30)

∂S1(x)

∂x
= ω(x) (5.31)

ĝ(x) � 1

LgL
ρ−1
f h(x)

g(x) = g(x)β(x) (5.32)

f̂ (x) � f (x) − Ln
f S1(x)

LgL
ρ−1
f h(x)

g(x) = f (x) + g(x)α(x). (5.33)

Furthermore, a state transformation z = S(x) is given by

S(x) = [S1(x) L f S1(x) · · · Ln−1
f S1(x)

]T
. (5.34)

Proof Necessity. Suppose that system (5.22) is feedback linearizable with output.
Then there exist a state transformation z = S(x) and a nonsingular feedback u =
α(x) + β(x)v such that

f̃ (z) � S∗( f (x) + g(x)α(x)) = Az ; g̃(z) � S∗(g(x)β(x)) = b

h̃(z) � h ◦ S−1(z) = cz = [c1 c2 · · · cn
]
z

(5.35)
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where f̂ (x) = f (x) + g(x)α(x) and ĝ(x) = g(x)β(x). It is clear, by Theorem 4.1,
that condition (i) of Theorem 5.3 is satisfied. Since S∗( f (x) + g(x)α(x)+
g(x)β(x)v) = Az + bv by (5.35), it is clear that

∂S(x)

∂x
{ f (x) + g(x)α(x) + g(x)β(x)v} = AS(x) + bv =

⎡
⎢⎢⎢⎣
S2(x)

...

Sn(x)
v

⎤
⎥⎥⎥⎦ .

Thus, we have that for 1 ≤ i ≤ n − 1,

Si+1(x) = ∂Si (x)

∂x
{ f (x) + g(x)α(x) + g(x)β(x)v} = L f +gα+gβvSi (x)

= L f Si (x) + LgSi (x){α(x) + β(x)v}

and

v = L f +g(α+βv)Sn(x) = L f Sn(x) + LgSn(x){α(x) + β(x)v}.

Since β(0) �= 0, it is easy to see that for 1 ≤ i ≤ n − 1,

Si+1(x) = L f Si (x) ; LgSi (x) = 0

and

L f Sn(x) + LgSn(x)α(x) = 0 ; LgSn(x) β(x) = 1

which imply that

LgL
i
f S1(x) = 0, 0 ≤ i ≤ n − 2 ; LgL

n−1
f S1(x)β(x) = 1

α(x) = −β(x)Ln
f S1(x).

Then, it is clear, by Example 2.4.16, that

Ladif g
S1(x) = 0, 0 ≤ i ≤ n − 2 ; Ladn−1

f g(x)S1(x) = (−1)n−1

β(x)

or

∂S1(x)

∂x

[
g(x) ad f g(x) · · · adn−1

f g(x)
] =

[
0 · · · 0 (−1)n−1

β(x)

]
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which implies that (5.30) and (5.31) are satisfied. Since ω(x) = ∂S1(x)
∂x , it is clear that

condition (ii) is satisfied. Also, it is easy to see, by Example 2.4.14 and (5.35), that
for 1 ≤ k ≤ n,

LĝL
k−1
f̂

h(x) = Lg̃L
k−1
f̃

h̃(z)
∣∣∣
z=S(x)

= cAk−1b = cn+1−k (5.36)

which implies that condition (iv) is satisfied. Note, by (5.27), that ck = 0, n + 2 −
ρ ≤ k ≤ n. Finally, it is easy to see, by (2.16) and (5.36), that

cn+1−ρ = LgβL
ρ−1
f h(x) = LgL

ρ−1
f h(x) β(x)

which implies that (5.32) is satisfied. (Without loss of generality, we can let cn+1−ρ =
1.) Since β(0) �= 0 and 1

β(0) �= 0, condition (ii) is satisfied.
Sufficiency. Suppose that condition (i)–(iv) are satisfied. Then, it is clear that

∂S1(x)

∂x

[
g(x) ad f g(x) · · · adn−1

f g(x)
] =

[
0 · · · 0 (−1)n−1

β(x)

]
(5.37)

or

Ladif g
S1(x) = 0, 0 ≤ i ≤ n − 2 ; Ladn−1

f g S1(x) = (−1)n−1

β(x)
. (5.38)

Thus, it is easy to see, by Example 2.4.16, that

LgL
i
f S1(x) = 0, 0 ≤ i ≤ n − 2 ; LgL

n−1
f S1(x)β(x) = 1. (5.39)

By mathematical induction, it is easy to see that

Li
f̂
S1(x) = Li

f S1(x), 0 ≤ i ≤ n − 1 (5.40)

which implies that

Ln
f̂
S1(x) = L f̂ L

n−1
f S1(x) = Ln

f S1(x) + LgL
n−1
f S1(x)α(x)

= Ln
f S1(x) + 1

β(x)
α(x) = 0.

(5.41)

Let Si (x) = Li−1
f S1(x) = Li−1

f̂
S1(x), 2 ≤ i ≤ n. Then, we have, by (5.39), (5.40),

and (5.41), that
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S∗
(
f̂ + ĝv

)
= ∂S(x)

∂x

(
f̂ + ĝv

)∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎣

∂S1(x)
∂x

∂L f̂ S1(x)

∂x
...

∂Ln−1
f̂

S1(x)

∂x

⎤
⎥⎥⎥⎥⎦
(
f̂ + ĝv

)
∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎣

L f̂ S1(x) + LĝS1(x)v
...

Ln−1
f̂

S1(x) + LĝL
n−2
f S1(x)v

Ln
f̂
S1(x) + LĝL

n−1
f S1(x)v

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎣

L f S1(x)
...

Ln−1
f S1(x)

v

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎣
z2
...

zn
v

⎤
⎥⎥⎥⎦ = Az + bv

(5.42)

which implies that

S∗
(
f̂ (x)

)
= Az and S∗

(
ĝ(x)

) = b. (5.43)

It is easy to see, by Example 2.4.14, that for 1 ≤ k ≤ n,

S∗
(
adk−1

f̂
ĝ(x)

)
= adk−1

f̃
g̃(z) = (−1)k−1Ak−1b = (−1)k−1 ∂

∂zn+1−k
. (5.44)

Let h̃(z) = h ◦ S−1(z). Then we have, by (2.30), (5.26), (5.44), Example 2.4.16, and
condition (iv), that for 1 ≤ k ≤ n,

(−1)k−1 ∂ h̃(z)

∂zn+1−k
= L

S∗
(
adk−1

f̂
ĝ
)h̃(z) = Ladk−1

f̂
ĝh(x)

∣∣∣
x=S−1(z)

=
{
0, 1 ≤ k ≤ ρ − 1

const � (−1)k−1cn+1−k, ρ ≤ k ≤ n
.

(5.45)

Since h̃(0) = 0, it is clear that

h̃(z) � h ◦ S−1(z) = [c1 · · · cn+1−ρ 0 · · · 0] z. (5.46)

Hence, system (5.22) is feedback linearizable with output. �



5.4 Feedback Linearization with Output of SISO Systems 173

Theorem 5.4 (conditions for feedback linearization with output)
Let ρ ≤ n. System (5.22) is feedback linearizable with output, if and only if

(i) rank
([

g(x) ad f g(x) · · · adn−1
f g(x)

]∣∣
x=0

)
= n

(ii) Ladρ−1
f gh(x)

∣∣∣
x=0

�= 0

(iii) for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1,

[
adi−1

f̄
ĝ(x), ad j−1

f̄
ĝ(x)

]
= 0 (5.47)

where

ĝ(x) � 1

LgL
ρ−1
f h(x)

g(x) = g(x)β(x) (5.48)

and

f̄ (x) � f (x) − Lρ

f h(x)

LgL
ρ−1
f h(x)

g(x). (5.49)

Proof Necessity. Suppose that system (5.22) is feedback linearizable with output.
Then, by Theorem 5.3, condition (i) and (ii) of Theorem 5.4 are satisfied. Also, there
exists a scalar function S1(x) such that

∂S1(x)

∂x

[
g ad f g · · · adn−1

f g
] =

[
0 · · · 0 (−1)n−1LgL

ρ−1
f h(x)

]

and

Ladk−1
f̂

ĝh(x) =
{
0, 1 ≤ k ≤ ρ − 1

(−1)k−1cn+1−k = const, ρ ≤ k ≤ n
(5.50)

where

ĝ(x) � 1

LgL
ρ−1
f h(x)

g(x) = g(x)β(x) (5.51)

and

f̂ (x) � f (x) − Ln
f S1(x)

LgL
ρ−1
f h(x)

g(x) = f (x) − Ln
f S1(x)ĝ(x). (5.52)
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Thus, it is easy to see, by (5.37)–(5.46), that

S∗
(
f̂ (x)

)
= Az ; S∗

(
ĝ(x)

) = b (5.53)

and

h̃(z) � h ◦ S−1(z) = [c1 · · · cn+1−ρ 0 · · · 0] z (5.54)

where

z = S(x) = [S1(x) L f S1(x) · · · Ln−1
f S1(x)

]T
.

It is clear, by Example 2.4.16, (5.26), and (5.50)–(5.52), that

cn+1−ρ = (−1)ρ−1Ladρ−1

f̂
ĝh(x) = LĝL

ρ−1

f̂
h(x) = LgL

ρ−1
f h(x)β(x) = 1.

Thus, we have, by (5.54), that

h(x) = Ln−ρ

f S1(x) +
n−ρ∑
i=1

ci L
i−1
f S1(x)

which implies, together with (5.49), that

Lρ

f h(x) = Ln
f S1(x) +

n−ρ∑
i=1

ci L
i−1+ρ

f S1(x)

and

f̄ (x) � f̂ (x) −
(

n−ρ∑
i=1

ci L
i−1+ρ

f S1(x)

)
ĝ(x). (5.55)

Therefore, it is easy to see, by (2.49), (5.53), and (5.55), that

S∗
(
f̄ (x)

) = S∗
(
f̂ (x)

)
−
(

n−ρ∑
i=1

ci L
i−1+ρ

f S1(x)

)∣∣∣∣∣
x=S−1(z)

S∗
(
ĝ(x)

)

= Az − b
[
0 · · · 0 c1 · · · cn−ρ

]
z

� (A − bc̄)z � Āz.

Hence, by Example 2.4.14, condition (iii) of Theorem 5.4 is satisfied.
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Sufficiency. Suppose that condition (i)–(iii) of Theorem 5.4 are satisfied. Then, it
is clear, by (4.51), condition (i), and condition (iii), that

rank
([

ĝ(x) ad f̄ ĝ(x) · · · adn−1
f̄

ĝ(x)
]∣∣∣

x=0

)
= n.

Also, it is easy to see, by (5.25) and (5.49), that for 1 ≤ k ≤ ρ,

Lk−1
f̄

h(x) = Lk−1
f h(x)

and

Lρ

f̄
h(x) = L

f − L
ρ
f h(x)

Lg L
ρ−1
f h

g
Lρ−1

f h(x) = 0

which imply, together with (5.48), that for k ≥ 1,

LĝL
k−1
f̄

h(x) =
{
1, k = ρ

0, k �= ρ

or

Ladk−1
f̄

ĝh(x) = constant, 1 ≤ k ≤ n. (5.56)

Hence, by Theorem 5.1, the closed-loop system of system (5.22) with nonsingular

feedback u = − Lρ

f h(x)

Lg L
ρ−1
f h(x)

+ 1
Lg L

ρ−1
f h(x)

w is state equivalent to a LS with output and

thus system (5.22) is feedback linearizable with output. �

If LgL
ρ−1
f h(x)

∣∣∣
x=0

�= 0, then we have nonsingular feedback

u = − Lρ

f h(x)

LgL
ρ−1
f h(x)

+ 1

LgL
ρ−1
f h(x)

w (5.57)

such that the closed-loop system

ẋ = f̄ (x) + ĝ(x)w

y = h(x)
(5.58)

has linear input-output relation y(ρ) = w, where ĝ(x) and f̄ (x) are given in (5.48) and
(5.49). (Refer to Example 5.4.1.) Theorem 5.4 shows that system (5.22) is feedback
linearizablewith output, if andonly if the closed-loop system (5.58) is state equivalent
to a linear system (without feedback).
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Example 5.4.3 Use Theorem 5.3 to show that the following nonlinear system is
feedback linearizable with output:

[
ẋ1
ẋ2

]
=
[

0
x1 cos2 x2

]
+
[
1
0

]
u = f (x) + g(x)u

y = x2 = h(x).

(5.59)

Solution It is easy to see that

ad f g(x) =
[

0
− cos2 x2

]
, Lgh(x) = 0, Lad f gh(x) = − cos2 x2.

Thus, we have that ρ = 2, LgL f h(x) = −Lad f gh(x) = cos2 x2, β(x) = 1
Lg L f h(x) =

1
cos2 x2

, and

ω(x) �
[
0 −1

β(x)

] [
g(x) ad f g(x)

]−1 = [0 − cos2 x2
] [1 0

0 − cos2 x2

]−1

= [0 − cos2 x2
] [1 0

0 − 1
cos2 x2

]
= [0 1

]
.

Since ∂ω(x)T

∂x = O2×2 is symmetric, condition (iii) of Theorem 5.3 is satisfied. Since
∂S1(x)

∂x = ω(x) = [0 1
]
, it is clear that S1(x) = x2. Also, it is clear that condition (i)

and (ii) of Theorem 5.3 are satisfied. We have, by (5.32) and (5.33), that α(x) =
− L2

f S1(x)

Lg L f h(x) = −−2x21 cos
3 x2 sin x2

cos2 x2
= x21 sin 2x2 and

f̂ (x) = f (x) + g(x)α(x) =
[
x21 sin 2x2
x1 cos2 x2

]
; ĝ(x) = g(x)β(x) =

[ 1
cos2 x2
0

]
.

By simple calculation, we have that

ad f̂ ĝ(x) =
[− 2x1 sin x2

cos x2−1

]
, Lĝh(x) = 0, Lad f̂ ĝh(x) = −1

which implies that (iv) of Theorem 5.3 is satisfied. Hence, by Theorem 5.3,
system (5.59) is feedback linearizable with output via state transformation z =
S(x) =

[
S1(x)

L f S1(x)

]
=
[

x2
x1 cos2 x2

]
and nonsingular feedback u = α(x) + β(x)v =

x21 sin 2x2 + 1
cos2 x2

v. It is easy to see that
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[
ż1
ż2

]
= S∗( f̂ (x)) + S∗(ĝ(x))v =

[
0 1
0 0

] [
z1
z2

]
+
[
0
1

]
v

y = h ◦ S−1(z) = [1 0
] [z1

z2

]
.

�

Example 5.4.4 Consider the following nonlinear system:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x3
x21

⎤
⎦+

⎡
⎣ 0

0
ex1

⎤
⎦ u = f (x) + g(x)u

y = 2x1 + x2 = h(x).

(5.60)

(a) Use Theorem 5.3 to show that the above system is feedback linearizable with
output.

(b) Use Theorem 5.4 to show that the above system is feedback linearizable with
output.

Solution (a) It is easy to see that

ad f g(x) =
⎡
⎣ 0

−ex1

x2ex1

⎤
⎦ , ad2f g(x) =

⎡
⎣ ex1

−2x2ex1

(x22 + x3)ex1

⎤
⎦ (5.61)

and

Lgh(x) = 0, Lad f gh(x) = −ex1 .

Thus, condition (i) and (ii) of Theorem 5.3 are satisfied. Also, we have that
ρ = 2, LgL f h(x) = −Lad f gh(x) = ex1 , β(x) = 1

Lg L f h(x) = e−x1 , and

ω(x) �
[
0 0 1

β(x)

] [
g(x) ad f g(x) ad2f g(x)

]−1

= [0 0 ex1
]⎡⎣ 0 0 ex1

0 −ex1 −2x2ex1

ex1 x2ex1 (x22 + x3)ex1

⎤
⎦

−1

= [0 0 ex1
]
⎡
⎣(x22 − x3)e−x1 x2e−x1 e−x1

−2x2e−x1 −e−x1 0
e−x1 0 0

⎤
⎦ = [1 0 0

]
.
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Since ∂ω(x)T

∂x = O3×3 is symmetric, condition (iii) of Theorem 5.3 is satisfied.
Since ∂S1(x)

∂x = ω(x) = [1 0 0
]
, it is clear that S1(x) = x1. We have, by (5.32)

and (5.33), that α(x) = − L3
f S1(x)

Lg L f h(x) = − x21
ex1 = −x21e

−x1 and

f̂ (x) = f (x) + g(x)α(x) =
⎡
⎣x2x3
0

⎤
⎦ ; ĝ(x) = g(x)β(x) =

⎡
⎣00
1

⎤
⎦ .

By simple calculation, we have that

ad f̂ ĝ(x) =
⎡
⎣ 0

−1
0

⎤
⎦ , ad2

f̂
ĝ(x) =

⎡
⎣10
0

⎤
⎦

and

Lĝh(x) = 0, Lad f̂ ĝh(x) = −1, Lad2
f̂
ĝh(x) = 2

which implies that (iv) of Theorem 5.3 is satisfied. Hence, by Theorem 5.3,
system (5.60) is feedback linearizable with output via state transformation z =

S(x) =
⎡
⎣ S1(x)
L f S1(x)
L2

f S1(x)

⎤
⎦ =

⎡
⎣x1x2
x3

⎤
⎦ and nonsingular feedback u = α(x) + β(x)v =

−x21e
−x1 + e−x1v. It is easy to see that

⎡
⎣ż1ż2
ż3

⎤
⎦ = S∗( f̂ (x)) + S∗(ĝ(x))v =

⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣z1z2
z3

⎤
⎦+

⎡
⎣00
1

⎤
⎦ v

y = h ◦ S−1(z) = [2 1 0
]⎡⎣z1z2

z3

⎤
⎦ .

(5.62)

(b) Since ρ = 2, LgL f h(x) = ex1 , and L2
f h(x) = x21 + 2x3, we have, by (5.48) and

(5.49), that

ĝ(x) � 1

LgL
ρ−1
f h(x)

g(x) =
⎡
⎣00
1

⎤
⎦

and
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f̄ (x) � f (x) − Lρ

f h(x)

LgL
ρ−1
f h(x)

g(x) =
⎡
⎣ x2

x3
−2x3

⎤
⎦ .

By simple calculation, we have that

[
ad f̄ ĝ(x) ad

2
f̄
ĝ(x) ad3

f̄
ĝ(x)

]
=
⎡
⎣ 0 1 2

−1 −2 −4
2 4 8

⎤
⎦

which implies that (iii) of Theorem 5.4 is satisfied. Hence, by Theorem 5.4,
system (5.60) is feedback linearizable with output.

�

Example 5.4.5 Use Theorem 5.3 to show that the following nonlinear system is not
feedback linearizable with output:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x3
x21

⎤
⎦+

⎡
⎣ 0

0
ex1

⎤
⎦ u = f (x) + g(x)u

y = 2x1 + ex2 − 1 = h(x).

(5.63)

Solution By simple calculation, we have

Lgh(x) = 0, Lad f gh(x) = −ex1+x2

where ad f g(x) and ad2f g(x) are given by (5.61). Thus, condition (i) and (ii) of
Theorem 5.3 are satisfied. Also, we have that ρ = 2, LgL f h(x) = −Lad f gh(x) =
ex1+x2 , β(x) = 1

Lg L f h(x) = e−x1−x2 , and

ω(x) �
[
0 0 1

β(x)

] [
g(x) ad f g(x) ad2f g(x)

]−1

= [0 0 ex1+x2
]⎡⎣(x22 − x3)e−x1 x2e−x1 e−x1

−2x2e−x1 −e−x1 0
e−x1 0 0

⎤
⎦ = [ex2 0 0

]
.

Since

∂ω(x)T

∂x
=
⎡
⎣0 ex2 0
0 0 0
0 0 0

⎤
⎦ �=

(
∂ω(x)T

∂x

)T

ω(x) is not exact and condition (iii) of Theorem 5.3 is not satisfied. Hence, by
Theorem 5.3, system (5.63) is not feedback linearizable with output. �
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Example 5.4.6 Consider the following nonlinear system:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x3
x21

⎤
⎦+

⎡
⎣ 0

0
ex1

⎤
⎦ u = f (x) + g(x)u

y = sin x1 + x2 = h(x).

(5.64)

(a) Use Theorem 5.3 to show that the above system is not feedback linearizable with
output.

(b) Use Theorem 5.4 to show that the above system is not feedback linearizable with
output.

Solution (a) By simple calculation, we have

Lgh(x) = 0, Lad f gh(x) = −ex1

where ad f g(x) and ad2f g(x) are given by (5.61). Thus, condition (i) and
(ii) of Theorem 5.3 are satisfied. Also, we have that ρ = 2, LgL f h(x) =
−Lad f gh(x) = ex1 , β(x) = 1

Lg L f h(x) = e−x1 , and

ω(x) �
[
0 0 1

β(x)

] [
g(x) ad f g(x) ad2f g(x)

]−1

= [0 0 ex1
]
⎡
⎣(x22 − x3)e−x1 x2e−x1 e−x1

−2x2e−x1 −e−x1 0
e−x1 0 0

⎤
⎦ = [1 0 0

]
.

Since ∂ω(x)T

∂x = O3×3 =
(

∂ω(x)T

∂x

)T
, condition (iii) of Theorem 5.3 is satisfied.

Since ∂S1(x)
∂x = ω(x) = [1 0 0

]
, it is clear that S1(x) = x1. We have, by (5.32)

and (5.33), that α(x) = − L3
f S1(x)

Lg L f h(x) = − x21
ex1 = −x21e

−x1 and

f̂ (x) = f (x) + g(x)α(x) =
⎡
⎣x2x3
0

⎤
⎦ ; ĝ(x) = g(x)β(x) =

⎡
⎣00
1

⎤
⎦ .

By simple calculation, we have that

ad f̂ ĝ(x) =
⎡
⎣ 0

−1
0

⎤
⎦ , ad2

f̂
ĝ(x) =

⎡
⎣10
0

⎤
⎦
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and

Lĝh(x) = 0, Lad f̂ ĝh(x) = −1, Lad2
f̂
ĝh(x) = cos x1

which implies that (iv) of Theorem 5.3 is not satisfied. Hence, by Theorem 5.3,
system (5.64) is not feedback linearizable with output.

(b) Since ρ = 2, LgL f h(x) = ex1 , and L2
f h(x) = x3 cos x1 − x22 sin x1 + x21 , we

have, by (5.48) and (5.49), that

ĝ(x) � 1

LgL
ρ−1
f h(x)

g(x) =
⎡
⎣00
1

⎤
⎦

and

f̄ (x) � f (x) − Lρ

f h(x)

LgL
ρ−1
f h(x)

g(x) =
⎡
⎣ x2

x3
x22 sin x1 − x3 cos x1

⎤
⎦ .

By simple calculation, we have that

[
ad f̄ ĝ(x) ad

2
f̄
ĝ(x)

]
=
⎡
⎣ 0 1

−1 − cos x1
cos x1 x2 sin x1 − sin2 x1 + 1

⎤
⎦

ad3f̄ ĝ(x) =
⎡
⎣ cos x1

sin2 x1 − 1
x2 sin(2x1)

2 + cos3 x1

⎤
⎦

and

[
ad2f̄ ĝ(x), ad

3
f̄ ĝ(x)

]
=
⎡
⎣ − sin x1

sin(2x1)
2− sin x1

(
x2 sin x1 − sin2 x1 + 1

)
⎤
⎦ �= 0

which implies that (iii) of Theorem 5.4 is not satisfied. Hence, by Theorem 5.4,
system (5.64) is not feedback linearizable with output.

�
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5.5 Input-Output Linearization of MIMO Systems

5.5.1 Introduction

The feedback linearization problem of the nonlinear system with output is to obtain
feedback thatmakes both the relationship between the state variable and the input and
the relationship between the output and the input linear. In the previous section, we
considered feedback linearization with the output for the single input single output
nonlinear system. For the single input system, the state and output expressions must
be made linear with one input. For the multi-input system, if we use only a part of
the inputs to linearize the input-output relation, we could use the remaining inputs
to linearize the state equation. Therefore, it is a less restrictive problem than the
single input problem. First, the input-output linearization problem of a multi-input
multi-output system is explained. Consider the following nonlinear systems:

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.65)

where x ∈ R
n , u ∈ R

m , y ∈ R
q , and f (x), g(x), and h(x) are analytic functions with

f (0) = 0 and h(0) = 0. The input-output relation of system (5.65) is expressed in
the following Volterra series:

y(t) = w(0)(t, x) +
m∑

i1=1

∫ t

0
w

(1)
i1

(t, τ1, x)ui1(τ1)dτ1

+
m∑

i1,i2=1

∫ t

0

∫ τ1

0
w

(2)
i1,i2

(t, τ1, τ2, x)ui1(τ1)ui2(τ2)dτ2dτ1 + · · ·
(5.66)

where j-th triangular Volterra kernel w( j)
i1,i2,··· ,i j satisfies the following Taylor series:

w(0)(t, x) =
∞∑
k=0

Lk
f h(x)

t k

k!

w
(1)
i (t, τ1, x) =

∞∑
k1=0

∞∑
k2=0

Lk2
f Lgi L

k1
f h(x)

(t − τ1)
k1

k1!
τ
k2
1

k2!

w
(2)
i1,i2

(t, τ1, τ2, x) =
∞∑

k3,k2,k1=0

Lk3
f Lgi2

Lk2
f Lgi1

Lk1
f h(x)

(t − τ1)
k1(τ1 − τ2)

k2τ
k3
2

k1!k2!k3!
...

(5.67)
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The first term on the right-hand side of (5.66) is the zero input response, whereas
the rest is the part of the output depending on the input. System (5.65) is said to have
a linear input-output relation if the following is satisfied:

y(t) = w(0)(t, x) +
m∑
i=1

∫ t

0
w

(1)
i (t − τ)ui (τ )dτ. (5.68)

Example 5.5.1 By using (5.66) and (5.67), show that linear time-invariant system

ż(t) = Az(t) + Bv(t)

y(t) = Cz(t)
(5.69)

has the following input-output relation:

y(t) = CeAt z(0) +
∫ t

0
CeA(t−τ)Bv(τ)dτ. (5.70)

Solution Omitted. (See Problem 5–6.) �

Example 5.5.2 Show the following:

(a) The first Volterra kernel w(1)(t, τ, x) depends only on t − τ , if and only if

LgL
k
f h(x) = const, k ≥ 0. (5.71)

(b) If w(1)(t, τ, x) depends only on t − τ , then w(i) = 0 for i ≥ 2.

Solution (a) Suppose that w(1)(t, τ, x) depends only on t − τ . Then it is clear that
w(1)(t, 0, x) depends only on t . Thus, we have, by (5.67), that

w
(1)
i (t, τ1, x) =

∞∑
k1=0

Lgi L
k1
f h(x)

(t − τ1)
k1

k1!

+
∞∑

k1=0

∞∑
k2=1

Lk2
f Lgi L

k1
f h(x)

(t − τ1)
k1

k1!
τ
k2
1

k2!

(5.72)

which implies that

w
(1)
i (t, 0, x) =

∞∑
k1=0

Lgi L
k1
f h(x)

t k1

k1!

and (5.71) is satisfied. Conversely, suppose that (5.71) is satisfied. Then
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w
(1)
i (t, τ1, x) =

∞∑
k1=0

Lgi L
k1
f h(x)

(t − τ1)
k1

k1! .

Since Lgi L
k1
f h(x) = constant for k1 ≥ 0, it is clear that w(1)(t, τ, x) depends

only on t − τ .
(b) Suppose that w(1)(t, τ, x) depends only on t − τ . Then, it is clear, by (a), that

Lgi L
k1
f h(x) = constant for k1 ≥ 0. Thus, it is easy to see, by (5.67), that for

k1 ≥ 0 and k2 ≥ 0,

Lgi2
Lk2

f Lgi L
k1
f h(x) = 0

which implies that w(i) = 0 for i ≥ 2.
�

The input-output linearization problemof a nonlinear system is to find nonsingular
state feedback u = α(x) + β(x)v such that the closed-loop system

ẋ(t) = f (x) + g(x)α(x) + g(x)β(x)v(t) = f̂ (x(t)) + ĝ(x(t))v(t)

y(t) = h(x(t))
(5.73)

satisfies

y(t) = ŵ(0)(t, x) +
m∑
i=1

∫ t

0
ŵ

(1)
i (t − τ)vi (τ )dτ (5.74)

where

ŵ(0)(t, x) =
∞∑
k=0

Lk
f̂
h(x)

t k

k!

ŵ
(1)
i (t − τ1) =

∞∑
k1=0

Lĝi L
k1
f̂
h(x)

(t − τ1)
k1

k1! .

(5.75)

Definition 5.5 (input-output linearization)
System (5.65) is said to be locally input-output linearizable, if there exists a nonsin-
gular state feedback u = α(x) + β(x)v on a neighborhood U of 0 ∈ R

n such that
input-output relation of the closed-loop system of system (5.65) satisfies (5.74). In
other words,

LĝL
k
f̂
h(x) = const, k ≥ 0 (5.76)

where f̂ (x) = f (x) + g(x)α(x) and ĝ(x) = g(x)β(x).
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We use the nonsingular feedback (i.e., nonsingular β(x)) for input-output lin-
earization. If we use singular feedback, we are giving up some of the input. For
example, the feedback u = α(x) + β(x)v = α(x) + Ov obtains the linear relation
between the output and the new input v. In the previous section, the characteristic
number of the output has been defined for the single output system. For multi-output
systems, each output can have a different characteristic number.

Definition 5.6 (relative degree of output yi )
The relative degree ρi of the output yi is defined as the smallest integer such that
LgL

ρi−1
f hi (x) �= 0, where

Lghi (x) � ∂hi (x)

∂x
g(x) = [Lg1hi (x) · · · Lgmhi (x)

]
.

In other words, ρi is the characteristic number of yi such that

LgL
�−1
f hi (x) = 0, � ≤ ρi − 1 ; LgL

ρi−1
f hi (x) �= 0 (5.77)

or

L�−1
f +guhi (x) = L�−1

f hi (x), � ≤ ρi ; ∂

∂u

(
Lρi

f +guhi (x)
)

�= 0. (5.78)

ρ � min(ρ1, . . . , ρq) is said to be the characteristic number of the output. (Refer
to Definition 5.4.) Suppose that ρi is the relative degree of the output yi . Then, it is
clear that

⎡
⎢⎣
y(ρ1)
1
...

y
(ρq )
q

⎤
⎥⎦ =

⎡
⎢⎣
Lρ1

f h1(x)
...

Lρm
f hq(x)

⎤
⎥⎦+

⎡
⎢⎣
LgL

ρ1−1
f h1(x)

...

LgL
ρm−1
f hq(x)

⎤
⎥⎦ u

� E(x) + D(x)u.

(5.79)

If q = m and m × m matrix D(0) is invertible, then the closed-loop system has
decoupled input-output relationship

⎡
⎢⎣
y(ρ1)
1
...

y(ρm )
m

⎤
⎥⎦ =

⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ (5.80)

with static feedback

u = −D(x)−1E(x) + D(x)−1v. (5.81)

Therefore, D(x) is called the decoupling matrix of system (5.65). (Refer to Chap. 9.)
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Lemma 5.1 Suppose that V is a q × q nonsingular constant matrix. If system (5.65)
is locally input-output linearizable, then

ẋ(t) = f (x(t)) + g(x(t))u(t)

ỹ(t) = Vh(x(t)) = h̃(x(t))
(5.82)

is also locally input-output linearizable with the same feedback, and vice versa.

Proof Omitted. (See Problem 5–8.) �

Example 5.5.3 Find out a state feedback for input-output linearization of the fol-
lowing nonlinear system.

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x

2
2
x3
0

⎤
⎦+

⎡
⎣1 + x1 0

0 0
0 1

⎤
⎦ u = f (x) + g(x)u

y =
[
x1
x2

]
= h(x).

(5.83)

Solution By simple calculation, we have (ρ1, ρ2) = (1, 2) and

[
ẏ1
ÿ2

]
=
[
x22
0

]
+
[
1 + x1 0

0 1

] [
u1
u2

]
. (5.84)

Therefore, it is easy to see that system (5.83) is input-output linearizable by nonsin-
gular state feedback

[
u1
u2

]
=
[

−x22
1+x1
0

]
+
[ 1
1+x1

0
0 1

] [
v1
v2

]
. (5.85)

�

Example 5.5.4 Find out a state feedback for input-output linearization of the fol-
lowing nonlinear system.

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x

2
2
x3
0

⎤
⎦+

⎡
⎣1 + x1 0

0 0
0 1

⎤
⎦ u = f (x) + g(x)u

y =
[

x1
x1 + x2

]
= h(x).

(5.86)

Solution By simple calculation, we have (ρ1, ρ2) = (1, 1) and

[
ẏ1
ẏ2

]
=
[

x22
x22 + x3

]
+
[
1 + x1 0
1 + x1 0

] [
u1
u2

]
� E(x) + D(x)u. (5.87)
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Since D(0) is not invertible, there is no nonsingular feedback such that ẏ1 = v1
and ẏ2 = v2 as in Example 5.5.3. By premultiplying equation (5.87) by constant

nonsingular matrix

[
1 0

−1 1

]
, we have

[ ˙̃y1˙̃y2

]
=
[
x22
x3

]
+
[
1 + x1 0

0 0

] [
u1
u2

]
(5.88)

where
[
ỹ1
ỹ2

]
=
[
1 0

−1 1

] [
y1
y2

]
. (5.89)

Since the relative degree of ỹ2 is not 1 but 2, we have

[ ˙̃y1¨̃y2

]
=
[
x22
0

]
+
[
1 + x1 0

0 1

] [
u1
u2

]
� Ẽ(x) + D̃(x)u. (5.90)

Since D̃(0) is invertible, the new output ỹ and the new input v has linear input-output
relation with nonsingular feedback (5.85). Therefore, by Lemma 5.1, it is clear that
system (5.86) is also input-output linearizable by nonsingular feedback (5.85). �

As in (5.89) of Example 5.5.4, we can find the linear transformation ỹ of the output
y (and its derivatives) such that the decoupling matrix D̃(x) of ỹ has the maximal
rank. We call the above procedure the structure algorithm and introduce it in the next
section.

5.5.2 Structure Algorithm

We define the structure algorithm for system (5.65).

5.5.2.1 Structure Algorithm of the Nonlinear System

Step 1:Let ρ � min(ρ1, . . . , ρq) and rank
(
LgL

ρ−1
f h(x)

∣∣∣
x=0

)
= σ1. If σ1 = q, then

the algorithm terminates with P1 = Iq (or V1 = I ) and γ1(x) = Lρ−1
f h(x). Other-

wise, we can find, by elementary row operations, a nonsingular constant matrix

V1 =
[
P1
K 1

1

]
such that

V1 LgL
ρ−1
f h(x)

∣∣∣
x=0

=
[

E1(0)
O(q−σ1)×m

]
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and

V1LgL
ρ−1
f h(x) =

[
E1(x)
Ê1(x)

]
�
[
Ē1(x)
Ê1(x)

]

where P1 and K 1
1 are σ1 × q matrix and (q − σ1) × q matrix, respectively. Let

γ1(x) = P1L
ρ−1
f h(x) and γ̄1(x) = K 1

1 L
ρ−1
f h(x). (5.91)

In other words, we have that Ê1(0) = O(q − σ1) × 1,

[
Lgγ1(x)
Lg γ̄1(x)

]
=
[
E1(x)
Ê1(x)

]
and rank (E1(x)) = rank (E1(0)) = σ1.

If Ê1(x) �= O , then the algorithm terminates. (System (5.65) is not, by Theorem 5.5,
locally input-output linearizable.)

Step i: Suppose that

rank

([
Ēi−1(x)

LgL f γ̄i−1(x)

]∣∣∣∣
x=0

)
=

i∑
j=1

σ j � σ̄i .

If σ̄i = q, then the algorithm terminates with Pi = Iσi (or Vi = I ) and γi (x) =
Pi L f γ̄i−1(x) = L f γ̄i−1(x). In this case, γ̄i (x) is not defined. Otherwise, we can
find, by elementary row operations, a nonsingular constant matrix

Vi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Iσ1 0 · · · 0 0
0 Iσ2 0 0
...

. . .
...

0 0 Iσi−1 0
0 0 · · · 0 Pi
K i

1 K i
2 · · · K i

i−1 K i
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎣ Iσ̄i−1 Oσ̄i−1×(q−σ̄i−1)

Oσi×σ̄i−1 Pi
K̄i K i

i

⎤
⎦

such that

Vi

[
Ēi−1(x)

LgL f γ̄i−1(x)

]∣∣∣∣
x=0

=
⎡
⎣ Ēi−1(0)

Ei (0)
O(q−σ̄i )×m

⎤
⎦

and

Vi

[
Ēi−1(x)

LgL f γ̄i−1(x)

]
=
⎡
⎣Ēi−1(x)

Ei (x)
Êi (x)

⎤
⎦ �

[
Ēi (x)
Êi (x)

]
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where Pi and K i
i are σi × (q − σ̄i−1) matrix and (q − σ̄i ) × (q − σ̄i−1) matrix,

respectively. Let

γi (x) = Pi L f γ̄i−1(x)

γ̄i (x) = K i
1γ1(x) + · · · + K i

i−1γi−1(x) + K i
i L f γ̄i−1(x)

= K̄i�i−1(x) + K i
i L f γ̄i−1(x)

(5.92)

where K̄i �
[
K i

1 K i
2 · · · K i

i−1

]
and

�i (x) �

⎡
⎢⎢⎢⎣

γ1(x)
γ2(x)

...

γi (x)

⎤
⎥⎥⎥⎦ (σ̄i × 1).

In other words, we have that

Lg�i (x) = Ēi (x) ; rank
(
Ēi (x)

) = rank
(
Ēi (0)

) = σ̄i

Lg γ̄i (x) = Êi (x) ; Êi (0) = O(q−σ̄i )×m .
(5.93)

Ifσi = 0, the step is said to be degeneratedwith Ēi (x) = Ēi−1(x) and 0 × (q − σ̄i−1)

matrix Pi . If Êi (x) �= O , then the algorithm terminates. (System (5.65) is not, by
Theorem 5.5, locally input-output linearizable.)

If the algorithm terminates at finite step k̄, then we obtain �k̄(x) such that
rank

(
Lg�k̄(x)

) = rank
(
Ēk̄(x)

) = σ̄k̄ = q. If the algorithm does not end in a finite
step, we define k as the last nondegenerate step k̄, and we obtain �k̄(x) and γ̄k̄(x).
In other words, there exist (q − σ̄k̄) × σ̄k̄ matrices K̄k̄+i such that for i ≥ 1,

γ̄k̄+i (x) = K̄k̄+i�k̄(x) + L f γ̄k̄+i−1(x)

Lg γ̄k̄+i (x) = O(q−σ̄k̄ )×m .
(5.94)

Structure algorithm can be found in (A3) and (G13). Structure algorithm for the
discrete time nonlinear systems can also be found in (G14).

Example 5.5.5 For system (5.86) in Example 5.5.4, use the structure algorithm to
find out �k̄(x) and γ̄k̄(x).

Solution It is easy to see that (ρ1, ρ2) = (1, 1) and

Lgh(x) =
[
1 + x1 0
1 + x1 0

]
. (5.95)

Since rank
(
Lgh(x)

∣∣
x=0

) = 1 = σ1 < 2, we obtain, by elementary row operations,
constant matrix V1 such that
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V1 Lgh(x)
∣∣
x=0 =

[
1 0

−1 1

] [
1 0
1 0

]
=
[
1 0
0 0

]
=
[
Ē1(0)
O1×2

]

which implies that P1 = [1 0
]
and K 1

1 = [−1 1
]
. Let

[
γ1(x)
γ̄1(x)

]
= V1

[
h1(x)
h2(x)

]
=
[
P1
K 1

1

] [
x1

x1 + x2

]
=
[
x1
x2

]
.

Since Ê1(x) � Lg γ̄1(x) = O1×2, we go to step 2. Note that

rank

([
Ē1(x)

LgL f γ̄1(x)

]∣∣∣∣
x=0

)
= rank

([
1 0
0 1

])
= 2 = σ̄2.

Since σ̄2 = q = 2, the algorithm terminates with P2 = I1 (or V2 = I ) and γ2(x) =
P2L f γ̄1(x) = x3. Since σ̄2 = q, γ̄2(x) is not defined. In other words, we have

�2(x) =
[
γ1(x)
γ2(x)

]
=
[
x1
x3

]
such that rank

(
Lg�2(x)

∣∣
x=0

) = 2 = q, where

d

dt
�2(x) = L f �2(x) + Lg�2(x)u.

�

Example 5.5.6 Use the structure algorithm to find out �k̄(x) and γ̄k̄(x) for the
following system.

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x

2
1
x1
x23

⎤
⎦+

⎡
⎣1 + x1 1

0 0
0 1

⎤
⎦ u = f (x) + g(x)u

y =
[

x1
x1 + x2

]
= h(x)

(5.96)

Solution It is easy to see that (ρ1, ρ2) = (1, 1) and

Lgh(x) =
[
1 + x1 1
1 + x1 1

]
.

Since rank
(
Lgh(x)

∣∣
x=0

) = 1 = σ1 < 2, we obtain, by elementary row operations,
constant matrix V1 such that

V1 Lgh(x)
∣∣
x=0 =

[
1 0

−1 1

] [
1 1
1 1

]
=
[
1 1
0 0

]
=
[
Ē1(0)
O1×2

]

which implies that P1 = [1 0
]
, K 1

1 = [−1 1
]
, and



5.5 Input-Output Linearization of MIMO Systems 191

[
γ1(x)
γ̄1(x)

]
= V1

[
h1(x)
h2(x)

]
=
[
P1
K 1

1

] [
x1

x1 + x2

]
=
[
x1
x2

]
. (5.97)

Since Ê1(x) � Lg γ̄1(x) = O1×2, we go to step 2. Note that

rank

([
Ē1(x)

LgL f γ̄1(x)

]∣∣∣∣
x=0

)
= rank

([
1 1
1 1

])
= 1 = σ̄2.

Since σ̄2 < q = 2, we obtain, by elementary row operations, constant matrix V2 such
that

V2

[
Ē1(x)

LgL f γ̄1(x)

]∣∣∣∣
x=0

=
[
1 0

−1 1

] [
1 1
1 1

]
=
[
1 1
0 0

]
=
[
Ē2(0)
O1×2

]
.

Since σ2 = 0, step 2 is degenerated with Ē2(x) = Ē1(x), 0 × 1 matrix P2, and

γ̄2(x) = [−1 1
] [ γ1(x)

L f γ̄1(x)

]
= [−1 1

] [x1
x1

]
= 0.

Since Ê2(x) � Lg γ̄2(x) = O1×2, we go to step 3. In this manner, it is easy to see
that step i is also degenerated for i ≥ 3. Therefore, k̄ = 1 is the last nondegenerated
step with γ1(x) and γ̄1(x) in (5.97). �
Remark 5.1 The structure algorithm is state transformation invariant. Suppose that
z = S(x) is a state transformation for system (5.65). Then we have the following
system:

ż(t) = f̃ (z(t)) + g̃(z(t))u(t)

y(t) = h̃(z(t))
(5.98)

where h̃(z) = h ◦ S−1(z), f̃ (z) = S∗ ( f (x)), and

g̃(z) = [S∗ (g1(x)) · · · S∗ (gm(x))
]

� S∗ (g(x)) .

Thus, it is easy to see, by Example 2.4.14, that for k ≥ 0,

Lg̃L
k
f̃
h̃(z) = LS∗(g)L

k
S∗( f )h̃(z) = LgL

k
f h(x)

∣∣
x=S−1(z)

.

Therefore, if we obtain Vi , 1 ≤ i ≤ k̄, �k̄(x), and γ̄k̄(x) by the structure algorithm
for system (5.65), then we also have Vi , 1 ≤ i ≤ k̄, �k̄ ◦ S−1(z), and γ̄k̄ ◦ S−1(z) by
the structure algorithm for system (5.98).

Remark 5.2 The structure algorithm is feedback invariant. Suppose thatu = α(x) +
β(x)v is a nonsingular feedback for system (5.65). Then we have the following
closed-loop system:
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ẋ(t) = f̂ (x(t)) + ĝ(x(t))v(t)

y(t) = h(x(t))
(5.99)

where f̂ (x) = f (x) + g(x)α(x) and ĝ(x) = g(x)β(x). Note, by Definition 5.4,
that Lρ−1

f +gαh(x) = Lρ−1
f h(x). Since LĝL

ρ−1

f̂
h(x) = LgL

ρ−1
f h(x)β(x), it is clear, by

(5.91), that

γ̂1(x) � P1L
ρ−1

f̂
h(x) = P1L

ρ−1
f h(x) = γ1(x)

and

¯̂γ 1(x) � K 1
1 L

ρ−1

f̂
h(x) = K 1

1 L
ρ−1
f h(x) = γ̄1(x).

Since Lg γ̄i−1(x) = O for 2 ≤ i ≤ k̄, we have, by (5.92), that for 2 ≤ i ≤ k̄,

γ̂i (x) = Pi L f̂ γ̄i−1(x) = Pi L f γ̄i−1(x) = γi (x)

¯̂γ i (x) = K̄i�i−1(x) + K i
i L f̂ γ̄i−1(x) = K̄i�i−1(x) + K i

i L f γ̄i−1(x) = γ̄i (x)

and

rank

([
Lĝ�̂i−1(x)

LĝL f̂
¯̂γ i−1(x)

])
= rank

([
Lg�i−1(x)

LgL f γ̄i−1(x)

]
β(x)

)

= rank

([
Lg�i−1(x)

LgL f γ̄i−1(x)

])
.

Therefore, if we obtain Vi , 1 ≤ i ≤ k̄, �k̄(x), and γ̄k̄(x) by the structure algorithm
for system (5.65), then we also have Vi , 1 ≤ i ≤ k̄,�k̄(x), and γ̄k̄(x) by the structure
algorithm for system (5.99).

5.5.3 Conditions for Input-Output Linearization

Suppose that the structure algorithm for system (5.65) satisfies

Êi (x) � Lg γ̄i (x) = O(q−σ̄i )×m, 1 ≤ i ≤ k̄.

Then, by structure algorithm, we have
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�k̄(x) =

⎡
⎢⎢⎢⎣

γ1(x)
γ2(x)

...

γk̄(x)

⎤
⎥⎥⎥⎦

such that

rank
(
Lg�k̄(x)

∣∣
x=0

) = rank
(
Ēk̄(0)

) =
k̄∑

i=1

σi = σ̄k̄ .

By column operation, we can obtain a m × m permutation matrix R1 such that

Lg�k̄(x)R1 = Ēk̄(x)R1 = [Ē1
k̄
(x) Ē2

k̄
(x)
]

where σ̄k̄ × σ̄k̄ matrix Ē1
k̄
(0) is invertible. Let

β̄(x) = R1

[(
Ē1
k̄
(x)
)−1 −

(
Ē1
k̄
(x)
)−1

Ē2
k̄
(x)

O(m−σ̄k̄ )×σ̄k̄
Im−σ̄k̄

]
� R1R2(x)

ᾱ(x) = −β̄(x)

[
L f �k̄(x)
O(m−σ̄k̄ )×1

]
.

(5.100)

Then, it is easy to see that

Lḡ�k̄(x) = Lg�k̄(x)β̄(x) = [Iσ̄k̄
Oσ̄k̄×(m−σ̄k̄ )

]
L f̄ �k̄(x) = L f �k̄(x) + Lg�k̄(x)ᾱ(x) = Oσ̄k̄×1

(5.101)

where f̄ (x) = f (x) + g(x)ᾱ(x) and ḡ(x) = g(x)β̄(x). In other words, we have that
for 1 ≤ i ≤ k̄,

L f̄ γi (x) = L f +gᾱγi (x) = Oσi×1. (5.102)

Example 5.5.7 Show that for 1 ≤ i ≤ k̄,

ViVi−1 · · · V1L
ρ−2+i
f +gα h(x) =

⎡
⎢⎢⎢⎢⎢⎣

Li−1
f +gαγ1(x)

...

L f +gαγi−1(x)
γi (x)

γ̄i (x) + Qi−1(x)

⎤
⎥⎥⎥⎥⎥⎦

�
[

�̃i (x)
γ̄i (x) + Qi−1(x)

]
(5.103)
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ViVi−1 · · · V1L
ρ−2+i
f +gᾱ h(x) =

⎡
⎣ Oσ̄i−1×1

γi (x)
γ̄i (x) − K̄i�i−1

⎤
⎦ (5.104)

and for i ≥ 1,

Li
f +gᾱ γ̄k̄(x) = γ̄k̄+i (x) − K̄k̄+i�k̄(x) (5.105)

where σ̄0 = 0, Q0(x) = O(q−σ̄1)×1, and for 1 ≤ j ≤ k̄ − 1,

Q j (x) = K̄ j+1L f +gα�̃ j (x) − K̄ j+1� j (x) + K j+1
j+1 L f +gαQ j−1(x). (5.106)

Solution It is clear, by (5.27) and (5.91), that

V1L
ρ−1
f +gᾱh(x) = V1L

ρ−1
f h(x) =

[
γ1(x)
γ̄1(x)

]
.

Thus, (5.103) is satisfied when i = 1. Assume that (5.103) is satisfied when i = j
and 1 ≤ j ≤ k̄ − 1. Then it is easy to see, by (5.92), (5.93), and (5.106), that

Vj+1Vj · · · V1L
ρ−1+ j
f +gα h(x) = Vj+1L f +gα

(
Vj · · · V1L

ρ−2+ j
f +gα h(x)

)

= Vj+1L f +gα

([
�̃ j (x)

γ̄ j (x) + Q j−1(x)

])
= Vj+1

[
L f +gα�̃ j (x)

L f γ̄ j (x) + L f +gαQ j−1(x)

]

=
⎡
⎣ L f +gα�̃ j (x)

γ j+1(x)
K̄ j+1L f +gα�̃ j (x) + K j+1

j+1 L f γ̄ j (x) + K j+1
j+1 L f +gαQ j−1(x)

⎤
⎦

=
[

�̃ j+1(x)
K̄ j+1L f +gα�̃ j (x) + γ̄ j+1(x) − K̄ j+1� j (x) + K j+1

j+1 L f +gαQ j−1(x)

]

=
[

�̃ j+1(x)
γ̄ j+1(x) + Q j (x)

]

which implies that (5.103) is satisfied when i = j + 1. Therefore, by mathematical
induction, (5.103) is satisfied for 1 ≤ i ≤ k̄. It is clear, by (5.102), (5.103), and
(5.106), that for 1 ≤ i ≤ k̄,

ViVi−1 · · · V1L
ρ−2+i
f +gᾱ h(x) =

⎡
⎢⎢⎢⎢⎢⎣

Li−1
f +gᾱγ1(x)

...

L f +gᾱγi−1(x)
γi (x)

γ̄i (x) + Qi−1(x)

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎣ Oσ̄i−1×1

γi (x)
γ̄i (x) + Qi−1(x)

⎤
⎦

and for 2 ≤ i ≤ k̄,
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Qi−1(x) = K̄i L f +gᾱ�̃i−1(x) − K̄i�i−1(x) + K i
i L f +gᾱQi−2(x)

= −K̄i�i−1(x)

which imply that (5.104) is satisfied for 1 ≤ i ≤ k̄. Since Lg γ̄k̄(x) = 0, it is clear,
by (5.94), that

L f +gᾱ γ̄k̄(x) = L f γ̄k̄(x) = γ̄k̄+1(x) − K̄k̄+1�k̄(x)

which implies that (5.105) is satisfied when i = 1. Assume that (5.105) is satisfied
when i = j and j ≥ 1. Then it is easy to see, by (5.94) and (5.101), that

L j+1
f +gᾱ γ̄k̄(x) = L f +gᾱ

(
γ̄k̄+ j (x) − K̄k̄+ j�k̄(x)

)
= L f +gᾱ γ̄k̄+ j (x) − K̄k̄+ j L f +gᾱ�k̄(x) = L f γ̄k̄+ j (x)

= γ̄k̄+ j+1(x) − K̄k̄+ j+1�k̄(x)

which implies that (5.105) is satisfied when i = j + 1. Therefore, by mathematical
induction, (5.105) is satisfied for i ≥ 1. �

Theorem 5.5 (conditions for input-output linearization)
System (5.65) is locally input-output linearizable, if and only if for 1 ≤ i ≤ k̄,

Êi (x) � Lg γ̄i (x) = O(q−σ̄i )×m . (5.107)

Proof Necessity. Suppose that system (5.65) is input-output linearizable on a neigh-
borhood U of 0 ∈ R

n . Then, by Definition 5.5, there exists a nonsingular feedback
u = α(x) + β(x)v on a neighborhood U of 0 ∈ R

n such that for k ≥ 0,

LgβL
k
f +gαh(x) = LgL

k
f +gαh(x) β(x) = const

on x ∈ U . Thus, it is clear that for k ≥ 0,

LgβL
k
f +gαγ1(x) = P1LgβL

k
f +gαL

ρ−1
f h(x)

= P1LgβL
k
f +gαL

ρ−1
f +gαh(x) = const

and

LgβL
k
f +gαγ̄1(x) = K 1

1 LgβL
k
f +gαL

ρ−1
f h(x)

= K 1
1 LgβL

k+ρ−1
f +gα h(x) = const

(5.108)

on x ∈ U . Thus, we have, by (5.108) with k = 0, that on x ∈ U ,

Ê1(x)β(x) = Lgβ γ̄1(x) � Ẽ1 = const.
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Since Ê1(0) = O(q−σ̄1)×m and β(x) is nonsingular on x ∈ U , it is clear that Ẽ1 =
Ê1(0)β(0) = O(q−σ̄1)×m and

Ê1(x) = Ẽ1β(x)−1 = O(q−σ̄1)×m

which implies that (5.107) is satisfied when i = 1. We will show, by induction, that
for 1 ≤ i ≤ k̄ and k ≥ 0,

LgβL
k
f +gαγi (x) = const and LgβL

k
f +gαγ̄i (x) = const (5.109)

on x ∈ U . Assume that (5.107) and (5.109) are satisfied for 1 ≤ i ≤ � − 1 and 2 ≤
� ≤ k̄. Then, it is clear, by (5.92) and (5.109), that for k ≥ 0,

LgβL
k
f +gαγ�(x) = P�LgβL

k
f +gαL f γ̄�−1(x)

= P�LgβL
k
f +gαL f +gαγ̄�−1(x) = const

and

LgβL
k
f +gαγ̄�(x) =

�−1∑
j=1

K �
j LgβL

k
f +gαγ j (x) + K �

� LgβL
k
f +gαL f γ̄�−1(x)

=
�−1∑
j=1

K �
j LgβL

k
f +gαγ j (x) + K �

� LgβL
k
f +gαL f +gαγ̄�−1(x) = const

(5.110)

which imply that (5.109) is satisfied for i = �. Thus, we have, by (5.110) with k = 0,
that on x ∈ U ,

Ê�(x)β(x) = Lgβ γ̄�(x) � Ẽ� = const.

Since Ê�(0) = O(q−σ̄�)×m and β(x) is nonsingular on x ∈ U , it is clear that Ẽ� =
Ê�(0)β(0) = O(q−σ̄�)×m and

Ê�(x) = Ẽ�β(x)−1 = O(q−σ̄�)×m

which implies that (5.107) is also satisfied when i = �. Therefore, (5.107) is, by
mathematical induction, satisfied for 1 ≤ i ≤ k̄.

Sufficiency. Let u = ᾱ(x) + β̄(x)v, where ᾱ(x) and β̄(x) are defined by (5.100).
Also, let f̄ (x) = f (x) + g(x)ᾱ(x) and ḡ(x) = g(x)β̄(x). It will be shown that for
i ≥ 0,

LḡL
i
f̄
h(x) = LgL

i
f +gᾱh(x) β̄(x) = const. (5.111)
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It is clear, by (5.25) and (5.27), that (5.111) is satisfied for 0 ≤ i ≤ ρ − 2. Also, it
is easy to see, by (5.93), (5.101), and (5.104), that for 1 ≤ i ≤ k̄,

ViVi−1 · · · V1Lgβ̄L
ρ−2+i
f +gᾱ h(x) = Lgβ̄

(
ViVi−1 · · · V1L

ρ−2+i
f +gᾱ h(x)

)

=
⎡
⎣ Oσ̄i−1×m

Lgβ̄γi (x)
Lgβ̄ γ̄i (x)

⎤
⎦ =

⎡
⎣Oσ̄i−1×σ̄i−1 Oσ̄i−1×σi Oσ̄i−1×(m−σ̄i )

Oσi×σ̄i−1 Iσi Oσi×(m−σ̄i )

−K̄i O(q−σ̄i )×σi O(q−σ̄i )×(m−σ̄i )

⎤
⎦

which implies that (5.111) is satisfied for ρ − 1 ≤ i ≤ ρ − 2 + k̄. Finally, we have,
by (5.94), (5.101), (5.104), and (5.105), that for i ≥ 1,

Vk̄Vk̄−1 · · · V1Lgβ̄L
ρ−2+k̄+i
f +gᾱ h(x) = Lgβ̄L

i
f +gᾱ

(
Vk̄Vk̄−1 · · · V1L

ρ−2+k̄
f +gᾱ h(x)

)

=
⎡
⎣ Oσ̄i−1×m

Lgβ̄L
i
f +gᾱγk̄(x)

Lgβ̄L
i
f +gᾱ γ̄k̄(x)

⎤
⎦ =

⎡
⎣ Oσ̄i−1×m

Oσi×m

Lgβ̄ γ̄k̄+i (x) − Lgβ̄ K̄k̄+i�k̄(x)

⎤
⎦

=
[
Oσ̄k̄×σ̄k̄

Oσ̄k̄×(m−σ̄k̄ )−K̄k̄+i O(q−σ̄k̄ )×(m−σ̄k̄ )

]

which implies that (5.111) is satisfied for i ≥ ρ − 1 + k̄. Since (5.76) is satisfied,
system (5.65) is input-output linearizable. �

Example 5.5.8 Find the nonsingular feedback u = α(x) + β(x)v for the input-
output linearization of system (5.96) in Example 5.5.6.

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x

2
1
x1
x23

⎤
⎦+

⎡
⎣1 + x1 1

0 0
0 1

⎤
⎦ u = f (x) + g(x)u

y =
[

x1
x1 + x2

]
= h(x).

(5.112)

Solution In Example 5.5.6, we have, by structure algorithm, that k̄ = 1 and

[
�1(x)
γ̄1(x)

]
=
[
γ1(x)
γ̄1(x)

]
=
[
x1
x2

]
.

Since

Lg�1(x) = [1 + x1 1
]

we have, by (5.100), that R1 = I and
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β(x) =
[ 1
1+x1

− 1
1+x1

0 1

]

α(x) = −β(x)

[
x21
0

]
=
[
− x21

1+x1
0

]
.

Then, it is easy to see that⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ 0
x1
x23

⎤
⎦+

⎡
⎣1 0
0 0
0 1

⎤
⎦ v = f̂ (x) + ĝ(x)v

y =
[

x1
x1 + x2

]
= h(x)

and for i ≥ 0,

LĝL
i
f̂
h(x) = constant.

�

Example 5.5.9 Show that the following system is not locally input-output lineariz-
able:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x

2
1
x3
x22

⎤
⎦+

⎡
⎣ 1 0
x1 0
0 1

⎤
⎦ u = f (x) + g(x)u

y =
[

x1
x1 + x2

]
= h(x).

(5.113)

Solution It is easy to see that (ρ1, ρ2) = (1, 1) and

Lgh(x) =
[

1 0
1 + x1 0

]
.

Since rank
(
Lgh(x)

∣∣
x=0

) = 1 = σ1 < 2, we obtain, by elementary row operations,
constant matrix V1 such that

V1 Lgh(x)
∣∣
x=0 =

[
1 0

−1 1

] [
1 0
1 0

]
=
[
1 0
0 0

]
=
[
Ē1(0)
O1×2

]

which implies that P1 = [1 0
]
, K 1

1 = [−1 1
]
, and

[
γ1(x)
γ̄1(x)

]
= V1

[
h1(x)
h2(x)

]
=
[
P1
K 1

1

] [
x1

x1 + x2

]
=
[
x1
x2

]
.
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Since Ê1(x) � Lg γ̄1(x) = [x1 0] �= O1×2, system (5.113) is, by Theorem 5.5, not
input-output linearizable. �

5.6 Feedback Linearization with Multi Output

In this section, we deal with the multi output version of Sect. 5.4. Consider the
following nonlinear systems.

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.114)

where x ∈ R
n , u ∈ R

m , y ∈ R
q , and f (x), g(x), and h(x) are analytic functions

with f (0) = 0 and h(0) = 0. Suppose that (κ1, . . . , κm) is the Kronecker indices of
system (5.114).

Definition 5.7 (feedback linearization with output)
System (5.114) is said to be feedback linearizablewith output, if there exist a feedback
u = α(x) + β(x)v and a state transformation z = S(x) such that the closed-loop
system satisfies, in z−coordinates, the following Brunovsky canonical form:

ż =

⎡
⎢⎢⎢⎣
Â11 O · · · O
O Â22 · · · O
...

...
. . .

...

O O · · · Âmm

⎤
⎥⎥⎥⎦ z +

⎡
⎢⎢⎢⎣
B̂11 O · · · O
O B̂22 · · · O
...

...
. . .

...

O O · · · B̂mm

⎤
⎥⎥⎥⎦ v

= Az + Bv

y = Cx

(5.115)

or

S∗ ( f (x) + g(x)α(x)) + S∗ (gβ(x)v) = Az + Bv

h ◦ S−1(z) = Cz
(5.116)

where
m∑
i=1

κi = n and

Âii =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(κi × κi ) ; B̂ii =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(κi × 1).
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Theorem 5.6 Suppose that q = m and
n∑

i=1

ρi = n. If

rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣
LgL

ρ1−1
f h1(x)

...

LgL
ρq−1
f hq(x)

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎠ = m (5.117)

then system (5.114) is feedback linearizable with output.

Proof Suppose that q = m,
n∑

i=1

ρi = n, and (5.117) is satisfied. Then, we have, by

(5.77), that for 1 ≤ i ≤ q and 1 ≤ k ≤ ρi − 1,

LgL
k−1
f hi (x) = 0 and rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣
LgL

ρ1−1
f h1(x)

...

LgL
ρq−1
f hq(x)

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
x=0

⎞
⎟⎟⎠ = m.

Thus, conditions of Lemma 4.3 are satisfied with Si1(x) = hi (x) and κi = ρi for
1 ≤ i ≤ m = q. Therefore, by Lemma 4.3, system (5.114) is feedback linearizable
with state transformation

z = S(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(x)
...

Lρ1−1
f h1(x)

...

hq(x)
...

L
ρq−1
f hq(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
...

z1ρ1

...

zq1
...

zqρq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and feedback

u =

⎡
⎢⎢⎣
LgL

ρ1−1
f h1(x)

...

LgL
ρq−1
f hq(x)

⎤
⎥⎥⎦

−1⎛
⎜⎝−

⎡
⎢⎣
Lρ1

f h1(x)
...

L
ρq

f hq(x)

⎤
⎥⎦+ v

⎞
⎟⎠

= α(x) + β(x)v.
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Since h̃i = hi ◦ S−1(z) = zi1, 1 ≤ i ≤ q, it is easy to see that (5.116) is satisfied

with C =
⎡
⎢⎣
1 0 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 · · · 1 0 · · · 0

⎤
⎥⎦. �

Example 5.6.1 Use Theorem 5.6 to show that the following nonlinear system is
feedback linearizable with output:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x22
x3 + x21

0

⎤
⎦+

⎡
⎣1 + x1 0

0 0
0 1

⎤
⎦ u = f (x) + g(x)u

y =
[
x1
x2

]
= h(x).

(5.118)

Solution It is easy to see that L f +guh2(x) = x3 + x21 and

[
y(1)
1

y(2)
2

]
=
[
L f h1(x)
L2

f h2(x)

]
+
[

Lgh1(x)
LgL f h2(x)

] [
u1
u2

]

=
[

x22
2x1x22

]
+
[

1 + x1 0
2x1(1 + x1) 1

] [
u1
u2

]

which implies that (ρ1, ρ2) = (1, 2), ρ1 + ρ2 = 3 = n, and (5.117) is satisfied.
Hence, by Theorem 5.6, system (5.118) is feedback linearizable with output. Let

z = S(x) =
⎡
⎣ h1(x)

h2(x)
L f h2(x)

⎤
⎦ =

⎡
⎣ x1

x2
x3 + x21

⎤
⎦

and

u =
[

1 + x1 0
2x1(1 + x1) 1

]−1 (
−
[

x22
2x1x22

]
+
[
v1
v2

])

=
[
− x22

1+x1
0

]
+
[ 1

1+x1
0

−2x1 1

] [
v1
v2

]
= α(x) + β(x)v.

Then we have that
⎡
⎣ż1ż2
ż3

⎤
⎦ =

⎡
⎣0 0 0
0 0 1
0 0 0

⎤
⎦ z +

⎡
⎣1 0
0 0
0 1

⎤
⎦
[
v1
v2

]

y =
[
1 0 0
0 1 0

]
z.

�
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Lemma 5.2 System (5.114) is feedback linearizable with output via state transfor-
mation z = S(x) and nonsingular feedback u = α(x) + β(x)v, if and only if

(i) system (5.114) is input-output linearizable.
(ii)

ẋ = f (x) + g(x)u

ȳ = �k̄(x) � h̄(x)
(5.119)

is feedback linearizable with output via state transformation z = S(x) and
nonsingular feedback u = α(x) + β(x)v.

Proof Necessity. Suppose that system (5.114) is feedback linearizable with output
via state transformation z = S(x) and feedback u = α(x) + β(x)v. In other words,
we have that

f̃ (z) + g̃(z)v � S∗
(
f̂ (x) + ĝ(x)v

)
= Az + Bv

h̃(z) � h ◦ S−1(z) = Cz

where f̂ (x) = f (x) + g(x)α(x) and ĝ(x) = g(x)β(x). Then system (5.114) is
input-output linearizable. It is also clear, by Remark 5.1, that

˜̄h(z) � h̄ ◦ S−1(z) = �k̄ ◦ S−1(z) = C̄z

where C̄z is the function �k̄(z) that is obtained by the structure algorithm for linear
system

ż = Az + Bv ; y = Cz.

Hence, system (5.119) is feedback linearizable with output via state transformation
z = S(x) and feedback u = α(x) + β(x)v.

Sufficiency. Suppose that system (5.114) is input-output linearizable and system
(5.119) is feedback linearizable with output via state transformation z = S(x) and
feedback u = α(x) + β(x)v. In other words, we have that

f̃ (z) + g̃(z)v � S∗
(
f̂ (x) + ĝ(x)v

)
= Az + Bv

˜̄h(z) � h̄ ◦ S−1(z) = �k̄ ◦ S−1(z) = C̄z
(5.120)

where f̂ (x) = f (x) + g(x)α(x) and ĝ(x) = g(x)β(x). Thus, it is clear, by (2.30),
that for 1 ≤ i ≤ k̄ and j ≥ 0,

LĝL
j

f̂
h̄(x) = Lg̃L

j

f̃
˜̄h(z)

∣∣∣
z=S(x)

= C̄ A j B = const
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and

LĝL
j

f̂
γi (x) = const. (5.121)

We need to show that

h̃(z) � h ◦ S−1(z) = Cz. (5.122)

It will be shown that for i ≥ 0,

LĝL
i
f̂
h(x) = const. (5.123)

It is clear, by (5.25) and (5.27), that (5.123) is satisfied for 0 ≤ i ≤ ρ − 2. Also, it
is easy to see, by (5.93), (5.103), (5.106), and (5.121), that for 2 ≤ i ≤ k̄,

LĝQi−1(x) = K̄i L ĝ L f̂ �̃i−1(x) − K̄i L ĝ�i−1(x) + K i
i L ĝ L f̂ Qi−2(x)

= const

and for 1 ≤ i ≤ k̄,

ViVi−1 · · · V1LĝL
ρ−2+i

f̂
h(x) = Lĝ

(
ViVi−1 · · · V1L

ρ−2+i

f̂
h(x)

)

=
[

Lĝ�̃i (x)
Lĝ γ̄i (x) + LĝQi−1(x)

]
=
[

Lĝ�̃i (x)
LĝQi−1(x)

]
= const

which implies that (5.123) is satisfied for ρ − 1 ≤ i ≤ ρ − 2 + k̄. It is easy to see,
by (5.94) and mathematical induction, that for i ≥ 1,

Li
f̂
γ̄k̄(x) = γ̄k̄+i (x) −

i∑
j=1

K̄k̄+ j L
i− j

f̂
�k̄(x)

which implies, together with (5.94) and (5.121), that for i ≥ 1,

LĝL
i
f̂
γ̄k̄(x) = Lg γ̄k̄+i (x)β(x) −

i∑
j=1

K̄k̄+ j L ĝ L
i− j

f̂
�k̄(x) = const. (5.124)

Finally, we have, by (5.103), (5.106), (5.121), and (5.124), that for i ≥ 1,

LĝL
i
f̂
Qk̄−1(x) = K̄i L ĝ L

i+1
f̂

�̃k̄−1(x) − K̄i L ĝ L
i
f̂
�k̄−1(x) + K i

i L ĝ L
i+1
f̂

Qk̄−2(x)

= const

and



204 5 Linearization with Output Equation

Vk̄Vk̄−1 · · · V1LĝL
ρ−2+k̄+i

f̂
h(x) = LĝL

i
f̂

(
Vk̄Vk̄−1 · · · V1L

ρ−2+k̄
f +gᾱ h(x)

)

=
[

LĝLi
f̂
�̃k̄(x)

LĝLi
f̂
γ̄k̄(x) + LĝLi

f̂
Qk̄−1(x)

]
= const

which implies that (5.123) is satisfied for i ≥ ρ − 1 + k̄. Since (5.123) is satisfied,
it is clear, by Example 2.4.16, that for 1 ≤ j ≤ m and i ≥ 0,

Ladi
f̂
ĝ j
h(x) = const

which implies, together with (2.30), that for 1 ≤ j ≤ m and i ≥ 0,

LS∗(adif̂ ĝ j )
h̃(z) = Ladi

f̂
ĝ j
h(x)

∣∣∣
x=S−1(z)

= const. (5.125)

Note, by (2.38), (5.115), and (5.120), that

[
(−1)κ1−1S∗(adκ1−1

f̂
ĝ1(x)) · · · S∗(ĝ1(x)) · · ·

(−1)κm−1S∗(adκm−1
f̂

ĝm(x)) · · · S∗(ĝm(x))
]

=
[
Aκ1−1b1 · · · b1 · · · Aκm−1bm · · · bm

]
= In

which implies, together with (5.125), that

∂ h̃(z)

∂z
= ∂ h̃(z)

∂z

[
(−1)κ1−1S∗(adκ1−1

f̂
ĝ1(x)) · · · S∗(ĝ1(x)) · · ·

(−1)κm−1S∗(adκm−1
f̂

ĝm(x)) · · · S∗(ĝm(x))
]

=
[
(−1)κ1−1LS∗(ad

κ1−1

f̂
ĝ1)
h̃(z) · · · LS∗(ĝ1)h̃(z) · · ·

(−1)κm−1LS∗(adκm−1
f̂

ĝm )h̃(z) · · · LS∗(ĝm )h̃(z)
]

= const � C.

Therefore, (5.122) is satisfied. Hence, system (5.114) is feedback linearizable with
output via state transformation z = S(x) and feedback u = α(x) + β(x)v. �

Suppose that system (5.114) is feedback linearizable with output. Then, it is clear
that system (5.114) is input-output linearizable. Thus, by structure algorithm, we can
obtain

�k̄(x) =

⎡
⎢⎢⎢⎣

γ1(x)
γ2(x)

...

γk̄(x)

⎤
⎥⎥⎥⎦
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such that

rank
(
Lg�k̄(x)

∣∣
x=0

) = rank
(
Ēk̄(0)

) =
k̄∑

i=1

σi = σ̄k̄ . (5.126)

By column operation, we can obtain a nonsingular constant m × m matrix R1 such
that

Lg�k̄(x)R1 = Ēk̄(x)R1 = [Ē1
k̄
(x) Ē2

k̄
(x)
]

(5.127)

where σ̄k̄ × σ̄k̄ matrix Ē1
k̄
(0) is invertible. Let

u = ᾱ(x) + β̄(x)w (5.128)

where

β̄(x) = R1

[(
Ē1
k̄
(x)
)−1 −

(
Ē1
k̄
(x)
)−1

Ē2
k̄
(x)

O(m−σ̄k̄ )×σ̄k̄
Im−σ̄k̄

]
� R1R2(x) (5.129)

and

ᾱ(x) = −β̄(x)

[
L f �k̄(x)
O(m−σ̄k̄ )×σ̄k̄

]
. (5.130)

Then, it is easy to see that

Lḡ�k̄(x) = Lg�k̄(x)β̄(x) = [Iσ̄k̄
Oσ̄k̄×(m−σ̄k̄ )

]
(5.131)

and

L f̄ �k̄(x) = L f �k̄(x) + Lg�k̄(x)ᾱ(x) = O (5.132)

where

f̄ (x) = f (x) + g(x)ᾱ(x) (5.133)

and

ḡ(x) = g(x)β̄(x) �
[
ḡ1(x) ḡ2(x)

]
. (5.134)

In other words, we have that
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d

dt
�k̄(x(t)) = L f̄ �k̄(x) + Lḡ�k̄(x)w

= [Iσ̄k̄
Oσ̄k̄×(m−σ̄k̄ )

] [w1

w2

]
= w1.

Consider the following closed-loop system with output ȳ and nonsingular feedback
u = ᾱ(x) + β̄(x)w:

ẋ = f̄ (x) + ḡ(x(t))w

ȳ = �k̄(x) � h̄(x).
(5.135)

Suppose that (κ̄1, . . . , κ̄m) is the Kronecker indices of system (5.135). The following
Corollary is a direct consequence of Lemma 5.2.

Corollary 5.1 System (5.114) is feedback linearizable with output via state trans-
formation z = S(x) and nonsingular feedback u = α(x) + β(x)v, if and only if

(i) system (5.114) is input-output linearizable.
(ii) system (5.135) is feedback linearizable with output via state transformation

z = S(x) and nonsingular feedback

w = β̄(x)−1 (α(x) − ᾱ(x)) + β̄(x)−1β(x)v

� α̂(x) + β̂(x)v.
(5.136)

Theorem 5.7 (conditions for feedback linearization with output)
Let σ̄k̄ = m. System(5.114) is feedback linearizable with output, if and only if

(i) system (5.114) is input-output linearizable or for 1 ≤ i ≤ k̄,

Êi (x) � Lg γ̄i (x) = O(q−σ̄i )×m

(ii)
∑m

j=1 κ̄ j = n
(iii) for 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ �i ≤ κ̄i + 1, and 1 ≤ � j ≤ κ̄ j + 1,

[
ad�i−1

f̄
ḡi (x), ad

� j−1

f̄
ḡ j (x)

]
= 0 (5.137)

where f̄ (x) and ḡ(x) are given in (5.133) and (5.134).

Proof Necessity. Suppose that system (5.114) is feedback linearizable with out-
put via state transformation z = S(x) and nonsingular feedback u = α(x) + β(x)v.
Then, by Corollary 5.1, condition (i) is satisfied and system (5.135) is feedback lin-
earizable with output via state transformation z = S(x) and nonsingular feedback
(5.136). Thus, it is clear that condition (ii) is satisfied and
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f̃ (z) � S∗( f̂ (x)) = Az ; g̃(z) �
[
S∗(ĝ1(x)) · · · S∗(ĝm(x))

] = B

˜̄h(z) � h̄ ◦ S−1(z) = C̄z
(5.138)

where

f̂ (x) = f̄ (x) + ḡ(x)α̂(x) and ĝ(x) = ḡ(x)β̂(x). (5.139)

Let

z = S(x) = [S11(x) · · · S1κ1(x) · · · Sm1(x) · · · Smκm (x)
]T

.

Since S∗( f̄ (x) + ḡ(x)α̂(x) + ḡ(x)β̂(x)v) = Az + Bv by (5.138), it is clear that for
1 ≤ i ≤ m,

⎡
⎢⎢⎢⎢⎣

∂Si1(x)
∂x
...

∂Si(κi−1)(x)
∂x

∂Siκi (x)
∂x

⎤
⎥⎥⎥⎥⎦
{
f̄ (x) + ḡ(x)α̂(x) + ḡ(x)β̂(x)v

}
=

⎡
⎢⎢⎢⎣
Si2(x)

...

Siκi (x)
vi

⎤
⎥⎥⎥⎦ .

Thus, it is easy to see that for 1 ≤ i ≤ m and 2 ≤ k ≤ κi ,

Sik(x) = Lk−1
f̄

Si1(x); LḡL
k−2
f̄

Si1(x) = 0 (5.140)

and

β̂(x) =
⎡
⎢⎣
LḡS1κ1(x)

...

LḡSmκm (x)

⎤
⎥⎦

−1

; α̂(x) = −β̂(x)

⎡
⎢⎣
L f̄ S1κ1(x)

...

L f̄ Smκm (x)

⎤
⎥⎦ . (5.141)

(Refer to Lemma 4.3.) Also, it is easy to see, by Example 2.4.14, (5.131), (5.138),
and (5.139), that

β̂(x) = Lḡh̄(x)β̂(x) = Lĝh̄(x) = Lg̃
˜̄h(z)

∣∣∣
z=S(x)

= C̄ B =
⎡
⎢⎣
c̄11κ1 · · · c̄1mκm
...

...

c̄m1κ1 · · · c̄mmκm

⎤
⎥⎦

(5.142)

and

ḡ(x) = ĝ(x)
(
C̄ B
)−1 (5.143)
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where

C̄ =
⎡
⎢⎣
c̄111 · · · c̄11κ1 · · · c̄1m1 · · · c̄1mκm
...

...

c̄m11 · · · c̄m1κ1 · · · c̄mm1 · · · c̄mmκm

⎤
⎥⎦ . (5.144)

Thus, we have, by (5.138), that

h̄(x) = C̄ S(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

κi∑
j=1

c̄1i j Si j (x)

...
m∑
i=1

κi∑
j=1

c̄mi j Si j (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
c̄11κ1 · · · c̄1mκm
...

...

c̄m1κ1 · · · c̄mmκm

⎤
⎥⎦
⎡
⎢⎣
S1κ1(x)

...

Smκm (x)

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

κi−1∑
j=1

c̄1i j Si j (x)

...
m∑
i=1

κi−1∑
j=1

c̄mi j Si j (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

which implies, together with (5.139)–(5.144), that

0 = L f̄ h̄(x) = C̄ B

⎡
⎢⎣
L f̄ S1κ1(x)

...

L f̄ Smκm (x)

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

κi−1∑
j=1

c̄1i j Si( j+1)(x)

...
m∑
i=1

κi−1∑
j=1

c̄mi j Si( j+1)(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −α̂(x) + C̄ AS(x)

and

f̄ (x) = f̂ (x) − ḡ(x)α̂(x)

= f̂ (x) − ĝ(x)
(
C̄ B
)−1

C̄ AS(x).
(5.145)

Therefore, it is easy to see, by (2.49), (5.143), and (5.145), that
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[
S∗(ḡ1(x)) · · · S∗(ḡm(x))

] = [S∗(ĝ1(x)) · · · S∗(ĝm(x))
] (
C̄ B
)−1

= B
(
C̄ B
)−1 � B̄

(5.146)

and

S∗
(
f̄ (x)

) = S∗
(
f̂ (x)

)

− [S∗(ĝ1(x)) · · · S∗(ĝm(x))
] (

C̄ B
)−1

C̄ AS(x)
∣∣∣
x=S−1(z)

= Az − B
(
C̄ B
)−1

C̄ Az =
{
A − B

(
C̄ B
)−1

C̄ A
}
z � Āz.

(5.147)

Hence, by Example 2.4.14, (5.146), and (5.147), condition (iii) is satisfied.
Sufficiency. Suppose that condition (i)–(iii) of Theorem 5.7 are satisfied. Then,

by Theorem 2.7, there exists a state transformation z = S(x) such that for 1 ≤ i ≤ m
and 1 ≤ j ≤ κi ,

S∗
(
ad j−1

f̄
ḡi (x)

)
= ∂

∂zi j
(5.148)

or

∂S(x)

∂x

[
ḡ1 ad f̄ ḡ1 · · · adκ1−1

f̄
ḡ1 · · · ḡm · · · adκm−1

f̄
ḡm
]

= I

where

z = [z11 · · · z1κ1 · · · zm1 · · · zmκm

]T
.

Thus, it is clear that

S∗(ḡi (x)) = ∂

∂zi1
� b̄i . (5.149)

It is also easy to see that
S∗( f̄ (x)) = Āz (5.150)

for some constant matrix Ā. (Refer to the sufficiency part of Theorem 3.2.) Also, it is
easy to see, by Example 2.4.16, (5.131), and (5.132), that for 1 ≤ k ≤ m, 1 ≤ i ≤ m
and 1 ≤ j ≤ κi ,

Lḡi L
j−1
f̄

h̄k(x) =
{
1, if i = k and j = 1

0, otherwise

and
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Lad j−1
f̄

ḡi
h̄k(x) =

{
1, if i = k and j = 1

0, otherwise

which implies, together with Example 2.4.14 and (5.148), that for 1 ≤ k ≤ m, 1 ≤
i ≤ m and 1 ≤ j ≤ κi ,

∂

∂zi j
˜̄hk(z) = L

S∗
(
ad j−1

f̄
ḡi
)h̄k ◦ S−1(z) = Lad j−1

f̄
ḡi
h̄k(x)

∣∣∣
x=S−1(z)

=
{
1, if i = k and j = 1

0, otherwise

and

˜̄hk(z) = h̄k ◦ S−1(z) =
⎡
⎢⎣
z11
...

zm1

⎤
⎥⎦ � Ĉz (5.151)

where ˜̄h(z) � h̄ ◦ S−1(z). Therefore, it is clear, by (5.149), (5.150), and (5.151), that
system (5.135) is state equivalent to a controllable linear MIMO system via state
transformation z = S(x). It is well-known that there exist a nonsingular matrices P ,
G, and an m × n matrix F such that

P−1( Ā + B̄F)P = A and P−1 B̄G = B.

(Refer to Problem 5–13.) In other words, system (5.135) is feedback linearizable
with output via state transformation z = P−1S(x) and nonsingular feedback w =
FS(x) + Gv. Hence, by Corollary 5.1, system (5.114) is feedback linearizable with
output via state transformation z = P−1S(x) and nonsingular feedback

u = α(x) + β(x)v = ᾱ(x) + β̄(x) (FS(x) + Gv) .

�

Example 5.6.2 Use Theorem 5.7 to show that the following nonlinear system is
feedback linearizable with output:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x22
x1

⎤
⎦+

⎡
⎣01
0

⎤
⎦ u = f (x) + g(x)u

y =
[
x1
x2

]
= h(x).

(5.152)
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Solution Let us consider the structure algorithm for system (5.152). Since

Lgh(x) =
[
0
1

]

we have that ρ � min(ρ1, ρ2) = 1 and rank
(
Lgh(x)

∣∣
x=0

) = 1 = σ1 < 2. Thus, we
obtain, by elementary row operations, constant matrix V1 such that

V1 Lgh(x)
∣∣
x=0 =

[
0 1
1 0

] [
0
1

]
=
[
1
0

]
=
[
Ē1(0)
0

]

which implies that P1 = [0 1
]
, K 1

1 = [1 0
]
, and

[
γ1(x)
γ̄1(x)

]
= V1

[
h1(x)
h2(x)

]
=
[
P1
K 1

1

] [
x1
x2

]
=
[
x2
x1

]
.

Since

Ê1(x) � Lg γ̄1(x) = 0 (5.153)

we go to step 2. Note that L f γ̄1(x) = x2 and

rank

([
Ē1(x)

LgL f γ̄1(x)

]∣∣∣∣
x=0

)
= rank

([
1
1

])
= 1 = σ̄2.

Since σ̄2 = 1 < q, we obtain, by elementary row operations, constant matrix V2 such
that

V2

[
Ē1(x)

LgL f γ̄1(x)

]∣∣∣∣
x=0

=
[
1 0

−1 1

] [
1
1

]
=
[
1
0

]
=
[
Ē1(0)
0

]

which implies that
[
K 2

1 K 2
2

] = [−1 1
]
, and

γ̄2(x) = [K 2
1 K 2

2

] [ γ1(x)
L f γ̄1(x)

]
= [−1 1

] [x2
x2

]
= 0.

Since σ̄2 = σ̄3 = · · · , the algorithm does not end in a finite step. Thus, we have that
the final step k̄ = 1 and

[
�1(x)
γ̄1(x)

]
=
[
x2
0

]
.

It is clear, by Theorem 5.5 and (5.153), that system (5.152) is input-output lineariz-
able. Therefore, we have, by (5.129) and (5.130), that
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β̄(x) = (Lg�1(x)
)−1 = 1

and

ᾱ(x) = −β̄(x)L f �1(x) = −x22

which imply that

f̄ (x) = f (x) + g(x)ᾱ(x) =
⎡
⎣x20
x1

⎤
⎦ and ḡ(x) = g(x)β̄(x) =

⎡
⎣01
0

⎤
⎦ .

It is easy to see that

[
ad f̄ ḡ(x) ad

2
f̄
ḡ(x) ad3

f̄
ḡ(x)

]
=
⎡
⎣−1 0 0

0 0 0
0 1 0

⎤
⎦

which implies that κ̄1 = 3 = n and condition (ii) of Theorem 5.7 is satisfied. It is also
easy to see that condition (iii) of Theorem 5.7 is satisfied. Hence, by Theorem 5.7,
system (5.152) is feedback linearizable with output. �

Example 5.6.3 Use Theorem 5.7 to show that the following nonlinear system is not
feedback linearizable with output:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2

x22
x1 + x22

⎤
⎦+

⎡
⎣ 0
1
x1

⎤
⎦ u = f (x) + g(x)u

y =
[
x1
x2

]
= h(x).

(5.154)

Solution By the structure algorithm, we have that k̄ = 1 and

[
�1(x)
γ̄1(x)

]
=
[
x2
0

]
.

Therefore, we have, by (5.129) and (5.130), that

β̄(x) = (Lg�1(x)
)−1 = 1; ᾱ(x) = −β̄(x)L f �1(x) = −x22

which imply that

f̄ (x) = f (x) + g(x)ᾱ(x) =
⎡
⎣ x2

0
x1 + x22 (1 − x1)

⎤
⎦ ; ḡ(x) = g(x)β̄(x) =

⎡
⎣ 0
1
x1

⎤
⎦ .
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It is easy to see that

[
ad f̄ ḡ(x) ad

2
f̄
ḡ(x) ad3

f̄
ḡ(x)

]
=
⎡
⎣ −1 0 0

0 0 0
x2(2x1 − 1) 1 + x22 0

⎤
⎦

which implies that κ̄1 = 3 = n and condition (ii) of Theorem 5.7 is satisfied. How-
ever, we have that

[
ḡ(x), ad f̄ ḡ(x)

] =
⎡
⎣ 0

0
2x1

⎤
⎦ �=

⎡
⎣00
0

⎤
⎦

which implies that condition (iii) of Theorem 5.7 is not satisfied. Hence, by Theo-
rem 5.7, system (5.152) is not feedback linearizable with output. �

5.7 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, adfgk, adfgM, adfgkM, CharacterNum, ChExact, ChZero,
ChCommute, ChConst, Codi, Delta, Kindex0, Lfh, Lfhk,
RowReorder, TauFG

MATLAB program for Theorem 5.1:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[0; x1*cos(x2)ˆ2]; g=[1; x1-x1]; h=2*x1+tan(x2); %Ex:5.2.2

% f=[0; x1*cos(x2)ˆ2]; g=[1; x1-x1]; h=x2; %Ex:5.2.3

% f=[x2; x1ˆ2]; g=[x1-x1; 1]; h=x1; %Ex:5.2.4

% f=[x2+x3ˆ2; x3; 0]; g=[2*x3; -2*x3; 1]; h=x1; %P:5.2(a)

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]);

T(:,1)=g;
for k=2:n+1
T(:,k)=adfg(f,T(:,k-1),x);

end
T=simplify(T)
BD=T(:,1:n)
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if rank(BD) < n
display(’condition (i) of Thm 5.1 is not satisfied.’)
return

end

if ChCommute(T,x) == 0
display(’condition (ii) of Thm 5.1 is not satisfied.’)
return

end

tC=simplify(Lfh(BD,h,x))
if ChConst(tC,x) == 0
display(’condition (iii) of Thm 5.1 is not satisfied.’)
return

end

dS=simplify(inv(BD));

display(’By Thm 5.1, state equivalent to a LS with’)

S=Codi(dS,x)
AS=simplify(dS*f);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)
C=tC

return

MATLAB program for Theorem 5.2:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[-2*x2*(x1+x2+x2ˆ2); x1+x2+x2ˆ2; -2*x2*(x1+x2+x2ˆ2)];
g=[1 x1-x1; 0 0; 0 1]; h=[x1+x2ˆ2; x2+x2ˆ2+x3]; %Ex:5.3.1

% f=[x2+x3ˆ2; x3; 0];
% g=[2*x3; -2*x3; 1]; h=[x1-x3ˆ2; x3]; %P:5.2(b)

% f=[x2; x4; x4+3*x2ˆ2*x4; 0];
% g=[0 2*x4; 1 0; 3*x2ˆ2 0; 0 1]; h=x2; %P:5.2(c)

% g=[0 2*x4; 1 0; 3*x2ˆ2 0; 0 1];
% f=[x2; x4; x4+3*x2ˆ2*x4; 0]; h=[x1-x4ˆ2; x3-x2ˆ3]; %P:5.2(d)

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]);
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[ka,D]=Kindex0(f,g,x)
if sum(ka) < n
display(’condition (i) of Thm 5.2 is not satisfied.’)
return

end

BDD=TauFG(f,g,x,ka+1)
if ChCommute(BDD,x) == 0
display(’condition (ii) of Thm 5.2 is not satisfied.’)
return

end

BD=TauFG(f,g,x,ka)
tC=simplify(Lfh(BD,h,x))
if ChConst(tC,x) == 0
display(’condition (iii) of Thm 5.2 is not satisfied.’)
return

end

display(’By Thm 5.2, state equivalent to a LS with’)

dS=simplify(inv(BD));
S=Codi(dS,x)
AS=simplify(dS*f);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*BD)
B=simplify(dS*g)
C=tC

return

MATLAB program for Theorem 5.3:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[0; x1*cos(x2)ˆ2]; g=[1; x1-x1]; h=x2; %Ex:5.4.3

% f=[x2; x3; x1ˆ2]; g=[0; 0; exp(x1)]; h=2*x1+x2; %Ex:5.4.4

% f=[x2; x3; x1ˆ2]; g=[0; 0; exp(x1)];
% h=2*x1+exp(x2)-1; %Ex:5.4.5

% f=[x2; x3; x1ˆ2]; g=[0; 0; exp(x1)]; h=sin(x1)+x2; %Ex:5.4.6

% f=[x2; x1ˆ2]; g=[x1-x1; 1]; h=x1; %Ex:P:5.3

% f=[x2; x1ˆ2]; g=[x1-x1; 1]; h=x2+x1ˆ2; %Ex:P:5.4

% f=[x2+x3ˆ2; x3; 0]; g=[2*x3; -2*x3; 1]; h=x1; %P:5.5(a)

% f=[x2; x3; x1ˆ2]; g=[x1-x1; 0; 1]; h=x2; %P:5.5(b)
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% f=[x2; x3; x1ˆ2]; g=[x1-x1; 0; 1]; h=x2+x1ˆ2; %P:5.5(c)

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]);

T(:,1)=g;
for k=2:n
T(:,k)=adfg(f,T(:,k-1),x);

end
T=simplify(T)

BD=T(:,1:n)
if rank(BD) < n
display(’condition (i) of Thm 5.3 is not satisfied.’)
return

end

rho=CharacterNum(f,g,h,x)
CON2=Lfh(T(:,rho),h,x)
CON20=simplify(subs(CON2,x,x-x))
if ChZero(CON20) == 1
display(’condition (ii) of Thm 5.3 is not satisfied.’)
return

end

beta=(-1)ˆ(rho-1)/CON2
iBD=simplify(inv(BD))
omega=(-1)ˆ(n-1)/beta*iBD(n,:)
if ChExact(omega,x) == 0
display(’condition (iii) of Thm 5.3 is not satisfied.’)
return

end

S1=Codi(omega,x)
S=x-x; S(1)=S1;
for k=2:n
S(k)=Lfh(f,S(k-1),x);

end
S=simplify(S)

tt2=Lfhk(f,S1,x,n);
alpha=-tt2*beta
hf=simplify(f+alpha*g)
hg=simplify(beta*g)

hT(:,1)=hg;
for k=2:n
hT(:,k)=adfg(hf,hT(:,k-1),x);

end
hT=simplify(hT)
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CON4=simplify(Lfh(hT,h,x))
if ChConst(CON4,x) == 0
display(’condition (iv) of Thm 5.3 is not satisfied.’)
return

end

display(’By Thm 5.3, feedback linearizable with output.’)

dS=simplify(jacobian(S,x));
idS=simplify(inv(dS));
AS=simplify(dS*hf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
dh=simplify(jacobian(h,x));
C=simplify(dh*idS)

return

MATLAB program for Theorem 5.4:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[0; x1*cos(x2)ˆ2]; g=[1; x1-x1]; h=x2; %Ex:5.4.3

% f=[x2; x3; x1ˆ2]; g=[0; 0; exp(x1)]; h=2*x1+x2; %Ex:5.4.4

% f=[x2; x3; x1ˆ2]; g=[0; 0; exp(x1)];
% h=2*x1+exp(x2)-1; %Ex:5.4.5

% f=[x2; x3; x1ˆ2]; g=[0; 0; exp(x1)]; h=sin(x1)+x2; %Ex:5.4.6

% f=[x2; x1ˆ2]; g=[x1-x1; 1]; h=x1; %Ex:P:5.3

% f=[x2; x1ˆ2]; g=[x1-x1; 1]; h=x2+x1ˆ2; %Ex:P:5.4

% f=[x2+x3ˆ2; x3; 0]; g=[2*x3; -2*x3; 1]; h=x1; %P:5.5(a)

% f=[x2; x3; x1ˆ2]; g=[x1-x1; 0; 1]; h=x2; %P:5.5(b)

% f=[x2; x3; x1ˆ2]; g=[x1-x1; 0; 1]; h=x2+x1ˆ2; %P:5.5(c)

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]);

T(:,1)=g;
for k=2:n
T(:,k)=adfg(f,T(:,k-1),x);

end
T=simplify(T)
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T0=subs(T,x,x-x)
if rank(T0) < n
display(’condition (i) of Thm 5.4 is not satisfied.’)
return

end

rho=CharacterNum(f,g,h,x)
CON2=Lfh(T(:,rho),h,x)
CON20=simplify(subs(CON2,x,x-x))
if ChZero(CON20) == 1
display(’condition (ii) of Thm 5.4 is not satisfied.’)
return

end

beta=(-1)ˆ(rho-1)/CON2
talpha=Lfhk(f,h,x,rho);
alpha=-beta*talpha
bf=simplify(f+alpha*g)
hg=simplify(beta*g)

hT(:,1)=hg;
for k=2:n+1
hT(:,k)=adfg(bf,hT(:,k-1),x);

end
hT=simplify(hT)

if ChCommute(hT,x)==0
display(’condition (iii) of Thm 5.4 is not satisfied.’)
return

end

display(’By Thm 5.4, feedback linearizable with output.’)

idS=hT(:,1:n);
dS=inv(idS);
S=Codi(dS,x)

AS=simplify(dS*bf);
dAS=simplify(jacobian(AS,x));
A=simplify(dAS*idS)
B=simplify(dS*hg)
dh=simplify(jacobian(h,x));
C=simplify(dh*idS)

return
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The following is a MATLAB subfunction program for Theorem 5.5.

function [r,V]=RowOperation(D)

q=size(D,1); r=rank(D); Iq=eye(q);
if r==q
V=Iq;
return

end
R0=RowReorder(D);
D1=R0*D;
t1=D1(1:r,:);
t2=D1((r+1):q,:);
K=t2*t1’*inv(t1*t1’);
R1=Iq;
R1((r+1):q,1:r)=-K;
V=R1*R0;

The following is a MATLAB subfunction program for Theorem 5.5. (Refer to Struc-
ture Algorithm.)

function [flag,kf,GAMMA,bargammak]=StructureA(f,g,h,x)

flag=1; bargammak=x(1)-x(1);
n=size(g,1); q=length(h);
rho=CharacterNum(f,g,h,x);
T1=Lfhk(f,h,x,rho-1);
E=Lfh(g,T1,x);
E0=subs(E,x,x-x);
[s1,V]=RowOperation(E0);
VT1=V*T1;
VE=V*E;
GAMMA=VT1(1:s1);
kf=1;
if s1==q
return

end
bargamma(1:q-s1)=VT1((s1+1):q);
hatSi=VE((s1+1):q,:)
if ChZero(hatSi) == 0
flag=0;
return

end
if s1>0
oldbargammak=bargamma(1:q-s1);

end
s=s1;
for k1=2:n
T1=[GAMMA; Lfh(f,bargamma(1:q-s1),x)];
E=Lfh(g,T1,x);
E0=subs(E,x,x-x);
[s1,V]=RowOperation(E0);
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VT1=V*T1;
VE=V*E;
GAMMA=VT1(1:s1);
kf=k1;
olds=max(s);
s=[s; s1];
if s1==q
return

end
bargamma(1:q-s1)=VT1((s1+1):q);
hatSi=VE((s1+1):q,:)
if ChZero(hatSi) == 0
flag=0;
return

end
if s1>max(s)
oldbargammak=bargamma(1:q-s1);

end
s=[s; s1];

end
for k2=1:n
if s(k2)==s(n)
kf=k2;
bargammak=oldbargammak;
return

end
end

MATLAB program for Theorem 5.5:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[x2ˆ2; x3; 0];
g=[1+x1 0; 0 0; 0 1]; h=[x1; x1+x2]; %Ex:5.5.6

% f=[x1ˆ2; x1; x3ˆ2];
% g=[1+x1 1; 0 0; 0 1]; h=[x1; x1+x2]; %Ex:5.5.8

% f=[x1ˆ2; x3; x2ˆ2];
% g=[1 0; x1 0; 0 1]; h=[x1; x1+x2]; %Ex:5.5.9

% f=[x1ˆ2; x3; x3ˆ2];
% g=[1+x1 1; 0 0; x1 x2]; h=[x1; x1+x2]; %Ex:P5-10

% f=[x2; x1ˆ2; x4; x5; x3ˆ2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; x4]; %Ex:P5-11a

% f=[x2; x1ˆ2; x4; x5; x3ˆ2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; x3]; %Ex:P5-11b

% f=[x2; x1ˆ2; x4; x5; x3ˆ2];
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% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; 2*x1+x3]; %Ex:P5-11c

% f=[x2; x1ˆ2; x4; x5; x3ˆ2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1; x1ˆ2+x3]; %Ex:P5-11d

% f=[x2; x1ˆ2; x4; x5; x3ˆ2];
% g=[x1-x1 0; 1 0; 0 0; 0 0; 0 1]; h=[x1+x5; x3]; %Ex:P5-11e

% f=[x1ˆ2+x4; x3+x1*x4; x2ˆ2; 0];
% g=[x1-x1 0; 0 0; 0 1; 1 0]; h=[x1; x1+x2]; %Ex:P5-12

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]); u=sym(’u’,[m,1]);

[flag,kf,GAMMA,bargammak]=StructureA(f,g,h,x)

if flag==0
display(’By Thm 5.5, NOT locally i-o linearizable.’)
return

end

display(’By Thm 5.5, system is locally i-o linearizable.’)

bsk=length(GAMMA);
D=Lfh(g,GAMMA,x);
D0=subs(D,x,x-x);
L1=RowReorder(D0’);
R1=L1’;
bD=D*R1;
bS1=bD(:,1:bsk);
bS2=bD(:,bsk+1:m);
R2=jacobian(u,u);
R2(1:bsk,:)=[inv(bS1) -inv(bS1)*bS2];
beta=R1*R2
t3=Lfh(f,GAMMA,x);
alpha=beta(:,1)-beta(:,1);
alpha(1:bsk)=t3;
alpha=-beta*alpha

fc=simplify(f+g*alpha)
gc=simplify(g*beta)

Tc=h;
for k=2:n
Tc=[Tc; Lfhk(fc,h,x,k-1)];

end
Tc=simplify(Tc)
cc=Lfh(gc,Tc,x)

return
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5.8 Problems

5–1 Solve Example 5.2.1.
5–2 Find out whether the following nonlinear control systems are state equivalence

to a linear systemwith output or not. If it is state equivalence to a linear system
with output, find a linearizing state transformation.

(a)

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2 + x23

x3
0

⎤
⎦+

⎡
⎣ 2x3

−2x3
1

⎤
⎦ u ; y = x1

(b)

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2 + x23

x3
0

⎤
⎦+

⎡
⎣ 2x3

−2x3
1

⎤
⎦ u ;

[
y1
y2

]
=
[
x1 − x23

x3

]

(c)

⎡
⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2
x4

x4 + 3x22 x4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 2x4
1 0
3x22 0
0 1

⎤
⎥⎥⎦
[
u1
u2

]
; y = x2

(d)

⎡
⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2
x4

x4 + 3x22 x4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 2x4
1 0
3x22 0
0 1

⎤
⎥⎥⎦
[
u1
u2

]
;
[
y1
y2

]
=
[
x1 − x24
x3 − x32

]

5–3 Use Theorem 5.3 or Theorem 5.4 to show that (5.13) is feedback linearizable
with output.

5–4 Use Theorem 5.3 or Theorem 5.4 to show that (5.13) with output equation
y = h(x) = x2 + x21 is not feedback linearizable with output.

5–5 Find out whether the following nonlinear control systems are feedback lin-
earizable with output or not. If it is feedback linearizable with output, find a
linearizing state transformation and feedback.
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(a)

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2 + x23

x3
0

⎤
⎦+

⎡
⎣ 2x3

−2x3
1

⎤
⎦ u ; y = x1

(b)

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x3
x21

⎤
⎦+

⎡
⎣00
1

⎤
⎦ u ; y = x2

(c)

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x3
x21

⎤
⎦+

⎡
⎣00
1

⎤
⎦ u ; y = x2 + x21

5–6 Solve Example 5.5.1.
5–7 Show that the relative degree of system (5.65) is invariant with nonsingular

feedback.
5–8 Prove Lemma 5.1.
5–9 Show that the following system is input-output linearizable. Also, find the

nonsingular feedback u = α(x) + β(x)v for the input-output linearization.

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x2x3
x21

⎤
⎦+

⎡
⎣00
1

⎤
⎦ u ; y = x2 + x21

5–10 Show that the following system is not locally input-output linearizable.

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣x

2
1
x3
x23

⎤
⎦+

⎡
⎣1 + x1 1

0 0
x1 x2

⎤
⎦ u = f (x) + g(x)u

y =
[

x1
x1 + x2

]
= h(x)

5–11 Use Theorem 5.5 to determine whether the following system is input-output
linearizable. If it is input-output linearizable, find the nonsingular feedback
u = α(x) + β(x)v for the input-output linearization.
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⎡
⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x2
x21
x4
x5
x23

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 0
0 1

⎤
⎥⎥⎥⎥⎦ u (5.155)

(a)

[
y1
y2

]
=
[
x1
x4

]

(b)

[
y1
y2

]
=
[
x1
x3

]

(c)

[
y1
y2

]
=
[

x1
2x1 + x3

]

(d)

[
y1
y2

]
=
[

x1
x21 + x3

]

(e)

[
y1
y2

]
=
[
x1 + x5

x3

]

5–12 For the system (5.113), consider the following dynamic feedback:

u1 = η ; u2 = w2;
η̇ = w1

Then we have the following extended system:

⎡
⎢⎢⎣
ẋ1
ẋ2
ẋ3
η̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x21 + η

x3 + x1η
x22
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0
0 0
0 1
1 0

⎤
⎥⎥⎦w ;

[
y1
y2

]
=
[

x1
x1 + x2

]
. (5.156)
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Show that the extended system (5.156) is locally input-output linearizable.
Find the nonsingular feedback w = α(x, η) + β(x, η)v for the input-output
linearization. In other words, system (5.113) of Example 5.5.9 is locally input-
output linearizable not by static feedback but by dynamic feedback. It is called
the dynamic input-output linearization.

5–13 Suppose that ( Ā, B̄) is a controllable pair. By using the controllable canonical
form to show that there exist a nonsingular matrices P ,G, and anm × nmatrix
F such that

P−1( Ā + B̄F)P = A and P−1 B̄G = B

where (A, B) is a Brunovsky canonical form in (5.115).



Chapter 6
Dynamic Feedback Linearization

6.1 Introduction

In Chap. 4, we have studied feedback linearization of the following affine nonlinear
system:

ẋ = f (x) +
m∑

i=1

ui gi (x), x ∈ R
n. (6.1)

Some of the systems that cannot be linearized only by coordinate transformations
can be linearized using feedback in addition to coordinate transformations. This
chapter shows that more nonlinear systems can be linearized using the more general
dynamic feedback than the static feedback used in Chap. 4. For example, consider
system (4.80),which is not feedback linearizable, in Example 4.3.8.

ẋ =
⎡

⎣
x2
0
0

⎤

⎦+
⎡

⎣
0
1
0

⎤

⎦ u1 +
⎡

⎣
x22
0
1

⎤

⎦ u2

= f (x) + g1(x)u1 + g2(x)u2.

(6.2)

Since span{g1(x), g2(x)} is not involutive, system (6.2) is not (static) feedback lin-
earizable. Consider the following linear dynamic compensation:

ż = w2 = Adz + Bdw[
u1
u2

]
=
[
w1

z

]
= Cdz + Ddw

(6.3)

where z andw are the state and new input of the dynamic compensation, respectively.
Then the extended system of system (6.2) with dynamic compensation (6.3) is as
follows.
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⎡

⎢⎢⎣

ẋ1
ẋ2
ẋ3
ż

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

x2 + x22 z
0
z
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦w1 +

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦w2

= fE (x, z) + gE1(x, z)w1 + gE2(x, z)w2.

(6.4)

Since span{gE1(xE ), gE2(xE )} and span{gE1(xE ), gE2(xE ), ad fE gE1(xE ),
ad fE gE2(xE )} are involutive distributions, it is easy to see, by Theorem 4.3, that
extended system (6.4) is feedback linearizable with state transformation
ξ = SE (x, z) = [x1 x2 + x22 z x3 z]T and feedback

[
w1

w2

]
=
[

1
1+2x2z

−x22
1+2x2z

0 1

][
v1
v2

]
. (6.5)

Extended system (6.4) satisfies, in the extended new states ξ , the following linear
system:

⎡

⎢⎢⎣

ξ̇1
ξ̇2
ξ̇3
ξ̇4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

ξ1
ξ2
ξ3
ξ4

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦ v1 +

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ v2

= AEξ + bE1v1 + bE2v2.

(6.6)

In other words, system (6.2) can be linearized by extended state transformation
ξ = SE (x, z) = [x1 x2 + x22 z x3 z]T and dynamic feedback

ż = v2 (6.7a)
[
u1
u2

]
=
[
0
z

]
+
[

1
1+2x2z

−x22
1+2x2z

0 0

][
v1
v2

]
. (6.7b)

If we consider dynamic feedback

ż = a(x, z) + b(x, z)v, z ∈ R
d (6.8a)

u = c(x, z) + d(x, z)v, v ∈ R
m (6.8b)

then the extended system of system (6.1) can be obtained as follows.

ẋE =
[
ẋ
ż

]
=
[
f (x) + g(x)c(x, z)

a(x, z)

]
+
[
g(x)d(x, z)
b(x, z)

]
v

= fE (xE ) + gE (xE )v.

(6.9)



6.1 Introduction 229

Fig. 6.1 Dynamic feedback linearization

Fig. 6.2 Restricted dynamic feedback

Definition 6.1 (dynamic feedback linearization) System (6.1) is said to be locally
dynamic feedback linearizable, if there exist z0 ∈ R

d , a neighborhood Uz of z0, a
neighborhoodUx of 0 ∈ R

n , a regular dynamic feedback (6.8), and an extended state
transformation ξ = SE (x, z) = SE (xE ) : Ux ×Uz → R

n+d such that the extended
system (6.9) satisfies, in the new extended state ξ ,

ξ̇ = AEξ + BEv, ξ ∈ R
n+d

where AE and BE are Brunovsky canonical form.

Block diagram for dynamic feedback linearization is given in Fig. 6.1. However,
the conditions for dynamic feedback linearization problem are very complicated and
necessary and sufficient conditions have not to be known. Some results on restricted
dynamic feedback linearization have been reported and will be introduced in this
chapter.

Definition 6.2 (restricted dynamic feedback) For system (6.1), restricted dynamic
feedback with indices d = (d1, . . . , dm) is defined by the following dynamic system:
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ż = Adz + Bdw

u = Cdz + Ddw
(6.10)

w = α(x, z) + β(x, z)v (6.11)

where d �
m∑

i=1

di , Ad = diag{A1, . . . , Am}, Bd = diag{B1, . . . , Bm}, Cd =
diag{C1, . . . ,Cm}, Dd = diag{D1, . . . , Dm}, and di × di matrix Ai , di × 1 matrix
Bi , 1 × di matrix Ci , and 1 × 1 matrix Di are defined by

Ai =
[
0 I(di−1)×(di−1)

0 O1×(di−1)

]
; Bi =

[
O(di−1)×1

1

]

Ci =
{[

1 O1×(di−1)

]
, if di ≥ 1

O1×0, if di = 0
; Di =

{
0, if di ≥ 1

1, if di = 0.

Block diagram for restricted dynamic feedback is given in Fig. 6.2. For example,
if d = (1, 0, 3), then

ż = Adz + Bdw =

⎡

⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ z +

⎡

⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 0 1

⎤

⎥⎥⎦w

u = Cdz + Ddw =
⎡

⎣
1 0 0 0
0 0 0 0
0 1 0 0

⎤

⎦ z +
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦w

where z � [z11 z31 z32 z33]T, z1 � z11, z
3 � [z31 z32 z33]T, and żi = Ai zi + Biw, for

i = 1, 3. Also, it is easy to see, by (6.10), that for 1 ≤ i ≤ m,

u(di )
i = wi . (6.12)

Definition 6.3 (restricted dynamic feedback linearization) System (6.1) is said to
be locally restricted dynamic feedback linearizable with indices d = (d1, . . . , dm),
if there exist z0 ∈ R

d , a neighborhood Uz of z0, a neighborhood Ux of 0 ∈ R
n , a

restricted dynamic feedback with indices d = (d1, . . . , dm), and an extended state
transformation ξ = SE (x, z) = SE (xE ) : Ux ×Uz → R

n+d such that the extended
system satisfies, in the new extended state ξ ,

ξ̇ = AEξ + BEv, ξ ∈ R
n+d (6.13)

where AE and BE are Brunovsky canonical form.

In other words, restricted dynamic feedback linearization is to find a linear
dynamic compensator (6.10) such that the extended system



6.2 Preliminary 231

Fig. 6.3 Restricted dynamic feedback linearization

ẋE =
[
ẋ
ż

]
=
[
f (x) + g(x)Cdz

Adz

]
+
[
g(x)Dd

Bd

]
w

= F(xE ) + G(xE )w

is locally (static) feedback linearizable on a neighborhood UE (= Ux ×Uz) of
(x, z) = (0, z0) ∈ R

n+d .
Block diagram for restricted dynamic feedback linearization is given in Fig. 6.3.

Restricted dynamic feedback is composed of two parts, linear dynamic compensator
(6.10) and extended state feedback (6.11). For this reason, restricted dynamic feed-
back linearization is sometimes called linearization by pure integrators followed by
static feedback.

6.2 Preliminary

Suppose that system (6.1) is said to be restricted dynamic feedback linearizable with
indices d = (d1, . . . , dm). Then extended system of system (6.1) with linear dynamic
compensator (6.10)

ẋE =
[
ẋ
ż

]
=
[
f (x) + g(x)Cdz

Adz

]
+
[
g(x)Dd

Bd

]
w

= F(xE ) + G(xE )w

(6.14)

is (static) feedback linearizable on a neighborhood UE of (x, z) = (0, z0). If we let

d �
m∑

j=1

d j and for 1 ≤ j ≤ m,
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z =
⎡

⎢⎣
z1

...

zm

⎤

⎥⎦ , z j =

⎡

⎢⎢⎣

z j1
...

z jd j

⎤

⎥⎥⎦ , Ād �
[
On×d

Ad

]

f̄ (xE ) �
[
f (x)
Od×1

]
=

n∑

k=1

fk(x)
∂

∂xk

ḡ j (xE ) �
[
g j (x)
Od×1

]
=

n∑

k=1

g j,k(x)
∂

∂xk

then it is easy to see that

F(xE ) = f̄ (x, z) +
m∑

j=1
d j≥1

z j1 ḡ j (x, z) + Ādz

G j (xE ) =
⎧
⎨

⎩
ḡ j (xE ), if d j = 0

∂

∂z jd j
, if d j ≥ 1.

For example, if d = (0, 2), z =
[
z21
z22

]
, G1(xE ) = ḡ1(x, z), G2(xE ) = ∂

∂z22
, and

F(xE ) = f̄ (x, z) + z21 ḡ2(x, z) + z22
∂

∂z21
=
⎡

⎣
f (x) + z21g2(x)

z22
0

⎤

⎦. For extended system

(6.14), let for i ≥ 0,

Di (xE ) � span
{
adkF(xE )G j (xE )

∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}
. (6.15)

Then, by Theorem 4.3, the following two conditions are satisfied:

(i) dim
(
Dn+d−1(0, z0)

) = n + d
(ii) Di (xE ), i ≥ 0 are involutive distributions on UE .

Also, define distributions Qi (xE ), i ≥ 0 by

Q0(xE ) � span
{
ḡ j (xE ) | d j = 0

}

Qi (xE ) � Qi−1(xE ) + adF Qi−1(xE ) + span
{
ḡ j (xE ) | 1 ≤ j ≤ m, d j = i

}

= span
{
adkF ḡ j (xE ) | 1 ≤ j ≤ m, 0 ≤ k ≤ i − d j

}
.

(6.16)
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Example 6.2.1 Show the followings:

(a) for 1 ≤ j ≤ m and k ≥ 0,

adkFG j (xE ) =
⎧
⎨

⎩
(−1)k ∂

∂z jd j−k

, if 0 ≤ k < d j

(−1)d j ad
k−d j

F ḡ j (xE ), if k ≥ d j .
(6.17)

(b) for i ≥ 0,

Di (xE ) = Qi (xE ) + span

{
∂

∂z jk

∣∣∣ 1 ≤ j ≤ m, d j ≥ 1, d j − i ≤ k ≤ d j

}
.

(6.18)

(c)

Qi (xE ) ⊂ span

{
∂

∂xk

∣∣∣ 1 ≤ k ≤ n

}
. (6.19)

Solution Omitted. (See Problem 6-1.) �

Example 6.2.2 Show the followings:

(a) For 1 ≤ i ≤ m and p ≥ 1,

adp
F ḡi (xE ) = Xi

p(x, zp−1) +
m∑

j=1
d j≥p

z jpadḡ j ḡi (xE ) (6.20)

where Xi
1(x) � ad f̄ ḡi (xE ),

zp �
{
z jk | 1 ≤ j ≤ m, 1 ≤ k ≤ min(p, d j )

}

and for p ≥ 1,

Xi
p+1(x, zp) � adF X

i
p(x, zp−1) +

∑

d j≥p

z jpadFadḡ j ḡi (xE ).

(b) For 1 ≤ i ≤ m, 1 ≤ j ≤ m, p ≥ 1, and p + 1 ≤ k ≤ d j ,

[
∂

∂z jk
, adp

F ḡi (xE )

]
= 0. (6.21)
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(c) For 1 ≤ j ≤ m, i ≥ 0, and k ≥ i + 1,

[
∂

∂z jk
, Qi (xE )

]
⊂ Qi (xE ). (6.22)

Solution It is clear that (6.20) is satisfied when p = 1. Since

LF z
j
p =

{
z jp+1, if p ≤ d j − 1

0, if p = d j

it is easy to see that for p ≥ 1,

adp+1
F ḡi = adF X

i
p +

∑

d j≥p

adF
(
z jpadḡ j ḡi

)

= adF X
i
p +

∑

d j≥p

z jpadFadḡ j ḡi +
∑

d j≥p

LF (z jp)adḡ j ḡi

= Xi
p+1(x, zp) +

∑

d j≥p+1

z jp+1adḡ j ḡi

which implies that (6.20) is satisfied. Since adp
F ḡi is a function of x and

zp
(

=
{
z jk | 1 ≤ j ≤ m, k ≤ min(p, d j )

} )
only by (6.20), it is easy to see, by

(6.16), that (6.21) and (6.22) are satisfied. �

Example 6.2.3 Use (6.18) and (6.19) to show that if Di (xE ), i ≥ 0 are involutive
distributions on a neighborhood UE of (x, z) = (0, z0), then the following two con-
ditions are satisfied:

(a) Qi (xE ), i ≥ 0 are involutive distributions on UE .
(b) For 1 ≤ j ≤ m, d j ≥ 1, and d j − i ≤ k ≤ d j ,

[
∂

∂z jk
, Qi (xE )

]
⊂ Qi (xE ). (6.23)

Also, show that the converse is true.

Solution Obvious. (Refer to Problem 6-2.) �

Lemma 6.1 Suppose that σ ≥ 0, ḡ j (xE ) ∈ Qσ (xE ), and

Qσ (xE ) = Qσ+1(xE ). (6.24)

Then the followings are satisfied:
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(i) for k ≥ 1,

adkF ḡ j (xE ) ∈ Qσ (xE ). (6.25)

(ii) for 1 ≤ j ≤ m, d j ≥ σ and 1 ≤ k ≤ d j ,

[
∂

∂z jk
, Qσ (xE )

]
⊂ Qσ (xE ). (6.26)

Proof Assume that that (6.25) is satisfied for k = s and s ≥ 0. Then we have that

ads+1
F ḡ j (xE ) ∈ [F(xE ), Qσ (xE )] ⊂ Qσ+1(xE ) = Qσ (xE )

which implies that (6.25) is also satisfied for k = s + 1. Hence, by mathematical
induction, (6.25) is satisfied. It is clear, by (6.22) and (6.24), that (6.26) is satisfied
for σ ≤ k ≤ d j . Suppose that 2 ≤ s ≤ σ and (6.26) is satisfied for s ≤ k ≤ d j . In
other words,

[
∂

∂z js
, Qσ (xE )

]
⊂ Qσ (xE ). (6.27)

Since [F(xE ), Qσ (xE )] ⊂ Qσ+1(xE ) = Qσ (xE ) by (6.16), we have, by Jacobi iden-
tity (2.18) and (6.27), that for any vector field τ(xE ) ∈ Qσ (xE ),

[
∂

∂z js−1

, τ

]
= −

[[
F,

∂

∂z js

]
, τ

]
=
[[

∂

∂z js
, τ

]
, F

]
+
[
[τ, F] ,

∂

∂z js

]

= −
[
F,

[
∂

∂z js
, τ

]]
+
[

∂

∂z js
, [F, τ ]

]

∈ [F, Qσ ] +
[

∂

∂z js
, Qσ

]
⊂ Qσ (xE )

which implies that (6.26) is also satisfied for k = s − 1. Hence, by mathematical
induction, (6.26) is satisfied. �

6.3 Restricted Dynamic Feedback Linearization

In this section, we derive the conditions of the restricted dynamic feedback lineariza-
tion using the basic relations in the previous section and obtain the necessary and
sufficient conditions that can be easily checked by using them.
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Let I ⊂ {1, 2, . . . ,m}, Ī = {1, 2, . . . ,m} − I, and

d̃i =
{
di , i ∈ I
di − 1, i ∈ Ī.

In other words,

I �
{
i | 1 ≤ i ≤ m, di = d̃i

}
and Ī �

{
i | 1 ≤ i ≤ m, di > d̃i

}
.

Let us denote the extended system of system (6.1) with linear dynamic compensator
(6.10) with indices d̃ = (d̃1, . . . , d̃m) by

˙̃x E =
[
ẋ
˙̃z
]

=
[
f (x) + g(x)Cd̃ z̃

Ad̃ z̃

]
+
[
g(x)Dd̃

Bd̃

]
w

= F̃(x̃E ) + G̃(x̃E )w

(6.28)

where for 1 ≤ j ≤ m,

z̃ =
⎡

⎢⎣
z̃1

...

z̃m

⎤

⎥⎦ and z̃ j =

⎡

⎢⎢⎣

z̃ j1
...

z̃ j
d̃ j

⎤

⎥⎥⎦ .

If we let d̃ �
m∑

j=1

d̃ j and for 1 ≤ j ≤ m,

f̃ (x̃E ) �
[
f (x)
Od̃×1

]
=

n∑

k=1

fk(x)
∂

∂xk

g̃ j (x̃E ) �
[
g j (x)
Od̃×1

]
; Ād̃ �

[
On×d̃
Ad̃

]

then it is easy to see that

F̃(x̃E ) = f̃ (x, z̃) +
∑

d j≥1

z̃ j1 g̃ j (x, z̃) + Ād̃ z̃

G̃ j (x̃E ) =
⎧
⎨

⎩
g̃ j (x̃E ), if d̃ j = 0

∂

∂ z̃ j
d̃ j

, if d̃ j ≥ 1
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and for i ≥ 0,

D̃i = span
{
ad�

F̃
G̃ j (x̃E ) | 1 ≤ j ≤ m, 0 ≤ � ≤ i

}
. (6.29)

Let

[
x
z̃

]
= π(x, z) and

[
0
z̃0

]
= π(0, z0), where canonical projection map

π : Rn+d → R
n+d̃ is defined by

π(x, z11, . . . , z
1
d1 , . . . , z

m
1 , . . . , zmdm ) = (x, z11, . . . , z

1
d̃1

, . . . , zm1 , . . . , zm
d̃m

).

In other words,

π∗
(

∂

∂xk

)
= ∂

∂xk
, 1 ≤ k ≤ n

π∗

(
∂

∂z j�

)
= ∂

∂ z̃ j�
, 1 ≤ j ≤ m, 1 ≤ � ≤ d̃ j

π∗

(
∂

∂z jd j

)
= 0, j ∈ Ī

and

ker(π∗) = span

{
∂

∂z jd j

∣∣∣ j ∈ Ī

}
. (6.30)

Let z̄ � {z�
d�

| � ∈ Ī}.
Lemma 6.2 Suppose that extended system (6.14) is (static) feedback linearizable
on a neighborhood UE of (x, z) = (0, z0). Then the followings are satisfied:

(i) π∗
(
adkFG j (xE )

∣∣
z̄=0

)
, 1 ≤ j ≤ m, k ≥ 0 are well-defined vector fields on a

neighborhood ŨE (= π(UE )) of (x, z̃) = (0, z̃0)(= π(0, z0)). In other words,
for j ∈ I and k ≥ 0,

π∗
(
adkFG j (xE )

∣∣
z̄=0

)
= adk

F̃
G̃ j (x̃E ) (6.31)

and for j ∈ Ī,

π∗
(
adkFG j (xE )

∣∣
z̄=0

)
=
{
0, if k = 0

−adk−1
F̃

G̃ j (x̃E ), if k ≥ 1.
(6.32)

(ii) π∗ (Di (xE )) , i ≥ 0 are well-defined involutive distributions on a neighbor-
hood ŨE (= π(UE )) of (x, z̃) = (0, z̃0)(= π(0, z0)). In other words, for i ≥ 0,
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π∗ (Di (xE )) = span
{
adk

F̃
G̃ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i
}

+ span
{
adk

F̃
G̃ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ i − 1
}

= π∗ (Qi (xE )) + span

{
∂

∂ z̃ j�

∣∣∣ j ∈ I, d̃ j − i ≤ � ≤ d̃ j

}

+ span

{
∂

∂ z̃ j�

∣∣∣ j ∈ Ī, d̃ j + 1 − i ≤ � ≤ d̃ j

}

(6.33)

and

dim(π∗
(
Dn+d−1(0, z

0)
)
) = n + d̃. (6.34)

(iii) π∗
(
adkF ḡ j (xE )

∣∣
z̄=0

)
, 1 ≤ j ≤ m, k ≥ 0 are well-defined vector fields on ŨE

and for 1 ≤ j ≤ m and k ≥ 0,

π∗
(
adkF ḡ j (xE )

∣∣
z̄=0

)
= adk

F̃
ḡ j (x̃E ). (6.35)

(iv) π∗ (Qi (xE )) , i ≥ 0 are well-defined involutive distributions on a neighbor-
hood ŨE (= π(UE )) and for i ≥ 0,

π∗ (Qi (xE )) = span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i − d̃ j

}

+ span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ i − 1 − d̃ j

}
.

(6.36)

Proof Suppose that extended system (6.14) is (static) feedback linearizable on a
neighborhood UE of (x, z) = (0, z0). Thus, by Theorem 4.3, we have that

(a) dim
(
Dn+d−1(0, z0)

) = n + d
(b) Di (xE ), i ≥ 0 are involutive distributions on UE

where for i ≥ 0,

Di (xE ) = span
{
adkFG j (xE )

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}

= Qi (xE ) + span

{
∂

∂z jk

∣∣∣ 1 ≤ j ≤ m, d j ≥ 1, d j − i ≤ k ≤ d j

} (6.37)

and

Qi (xE ) = span
{
adkF ḡ j (xE ) | 1 ≤ j ≤ m, 0 ≤ k ≤ i − d j

}
. (6.38)
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Since ker(π∗) ⊂ D0(xE ) ⊂ Di (xE ) by (6.17), (6.30) and (6.37) and distributions
Di (xE ), i ≥ 0 are involutive onUE , it is clear that distributions ker(π∗) + Di (xE ) (=
Di (xE )), i ≥ 0 are involutive on UE . Therefore, π∗(Di (xE )), i ≥ 0 are, by
Theorem 2.10, well-defined involutive distributions on ŨE (= π∗(UE )). In other
words, we have, by Definition 2.19 and (6.37), that for i ≥ 0,

π∗ (Di (xE )) = π∗ (Di (xE |z̄=0))

= span
{
π∗
(
adkFG j (xE )

∣∣
z̄=0

) ∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}

.
(6.39)

Since for 1 ≤ j ≤ m, k ≥ 0, and i ∈ Ī,

[
∂

∂zidi
, adkFG j (xE )

∣∣
z̄=0

]
= 0

it is clear, by Theorem 2.6, that π∗
(
adkFG j (xE )

∣∣
z̄=0

)
, 1 ≤ j ≤ m, k ≥ 0 are well-

defined vector fields on ŨE . It is easy to see, by (6.17) and mathematical induction,
that for j ∈ I and 0 ≤ k ≤ d j ,

π∗
(
adkFG j (xE )

∣∣
z̄=0

)
=

⎧
⎪⎨

⎪⎩

(−1)kπ∗
(

∂

∂z jd j−k

)
, if 0 ≤ k < d j

(−1)d j π∗
(
ḡ j (xE )

)
, if k = d j

= adk
F̃
G̃ j (x̃E )

and for j ∈ I and k ≥ d j ,

π∗
(
adk+1

F G j (xE )
∣∣
z̄=0

)

= (−1)d j
∂π(xE )

∂xE

(
∂ad

k−d j

F ḡ j (xE )

∂xE
F(xE ) − ∂F(xE )

∂xE
ad

k−d j

F ḡ j (xE )

)∣∣∣∣∣
z̄=0

= (−1)d j
∂π(xE )

∂xE

∂ad
k−d j

F ḡ j (xE )

∂ x̃E

∣∣∣∣∣
z̄=0

F̃(x̃E )

− (−1)d j
∂π(xE )

∂xE

∂F( xE |z̄=0)

∂x

∂x

∂xE
ad

k−d j

F ḡ j (xE )

∣∣∣
z̄=0

=
∂π∗

(
ad

k−d j

F ḡ j (xE )

∣∣∣
z̄=0

)

∂ x̃E
F̃(x̃E ) − ∂ F̃(xE )

∂ x̃E
π∗
(
ad

k−d j

F ḡ j (xE )

∣∣∣
z̄=0

)

= ∂adk
F̃
G̃ j (x̃E )

∂ x̃E
F̃(x̃E ) − ∂ F̃(xE )

∂ x̃E
adk

F̃
G̃ j (x̃E ) = adk+1

F̃
G̃ j (x̃E )
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which imply that (6.31) is satisfied. Similarly, it can be shown, by (6.17) and math-
ematical induction, that for j ∈ Ī and 0 ≤ k ≤ d j ,

π∗
(
adkFG j (xE )

∣∣
z̄=0

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π∗
(

∂

∂z jd j

)
, if k = 0

(−1)kπ∗
(

∂

∂z jd j−k

)
, if 1 ≤ k < d j

(−1)d j π∗
(
ḡ j (xE )

)
, if k = d j

=
{
0, if k = 0

−adk−1
F̃

G̃ j (x̃E ), if 1 ≤ k ≤ d j

and for j ∈ Ī and k ≥ d j ,

π∗
(
adk+1

F G j (xE )
∣∣
z̄=0

)
= −adk

F̃
G̃ j (x̃E )

which imply that (6.32) is satisfied. Therefore, we have, by (6.31), (6.32), and (6.39),
that for i ≥ 0,

π∗ (Di (xE )) = span
{
adk

F̃
G̃ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i
}

+ span
{
adk

F̃
G̃ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ i − 1
}

= π∗ (Qi (xE )) + span

{
∂

∂ z̃ j�

∣∣∣ j ∈ I, d̃ j − i ≤ � ≤ d̃ j

}

+ span

{
∂

∂ z̃ j�

∣∣∣ j ∈ Ī, d̃ j + 1 − i ≤ � ≤ d̃ j

}
.

Also, it is clear that

dim(π∗
(
Dn+d−1(0, z

0)
)
) = n + d − dim(ker(π∗)) = n + d̃.

Since for 1 ≤ j ≤ m, k ≥ 0, and i ∈ Ī,

[
∂

∂zidi
, adkF ḡ j (xE )

∣∣
z̄=0

]
= 0

it is clear, by Theorem 2.6, that π∗
(
adkF ḡ j (xE )

∣∣
z̄=0

)
, 1 ≤ j ≤ m, k ≥ 0 are well-

defined vector fields on ŨE . It is easy to see, by (6.17), (6.31), and (6.32), that for
1 ≤ j ≤ m and k ≥ 0,
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π∗
(
adkF ḡ j (xE )

∣∣
z̄=0

)
= (−1)d j π∗

(
ad

k+d j

F G j (xE )

∣∣∣
z̄=0

)

=
{

(−1)d j ad
k+d j

F̃
G̃ j (x̃E ), j ∈ I

(−1)d j−1ad
k+d̃ j

F̃
G̃ j (x̃E ), j ∈ Ī

=
{
adk

F̃
ḡ j (x̃E ), j ∈ I

adk
F̃
ḡ j (x̃E ), j ∈ Ī

= adk
F̃
ḡ j (x̃E )

which imply that (6.35) is satisfied. Since ker(π∗) and Di (xE ), i ≥ 0 are involutive
distributions onUE , it is clear, byExample 6.2.3, that distributions ker(π∗) + Qi (xE ),
i ≥ 0 are involutive on UE . Therefore, π∗(Qi (xE )), i ≥ 0 are, by Theorem 2.10,
well-defined involutive distributions on ŨE (= π∗(UE )). In other words, we have, by
Definition 2.19, (6.35), and (6.38), that for i ≥ 0,

π∗ (Qi (xE )) = π∗ (Qi (xE |z̄=0))

= span
{
π∗
(
adkF ḡ j (xE )

∣∣
z̄=0

) ∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i − d j

}

= span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i − d j

}

which implies that (6.36) is satisfied. �

Theorem 6.1 If system (6.1) is restricted dynamic feedback linearizablewith indices
d = (d1, . . . , dm) and di ≥ 1 for 1 ≤ i ≤ m, then system (6.1) is also restricted
dynamic feedback linearizable with indices d̃ = (d̃1, . . . , d̃m), where d̃i = di − 1 for
1 ≤ i ≤ m.

Proof Suppose that system (6.1) is restricted dynamic feedback linearizable with
indices d = (d1, . . . , dm) and di ≥ 1 for 1 ≤ i ≤ m. Then extended system (6.14) is
(static) feedback linearizable on a neighborhood UE of (x, z) = (0, z0). We need to
show that extended system (6.28) with indices d̃ = (d̃1, . . . , d̃m) is (static) feedback
linearizable on a neighborhood ŨE of (x, z̃) = (0, z̃0). In other words, we need to
show, by Theorem 4.3, that

(a) dim
(
D̃n+d−2(0, z̃0)

)
= n + d̃

(b) D̃i (x̃E ), i ≥ 0 are involutive distributions on ŨE

where for i ≥ 0,

D̃i (x̃E ) = span
{
adk

F̃
G̃ j (x̃E )

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}

. (6.40)

Let

[
x
z̃

]
= π(x, z) and

[
0
z̃0

]
= π(0, z0), where canonical projection map

π : Rn+d → R
n+d̃ is defined by

π(x, z11, . . . , z
1
d1 , . . . , z

m
1 , . . . , zmdm ) = (x, z11, . . . , z

1
d1−1, . . . , z

m
1 , . . . , zmdm−1).
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In other words, let

I = φ and Ī = {1, 2, . . . ,m}.

Then, it is clear, by (6.33), that for i ≥ 0,

D̃i (x̃E ) = π∗ (Di+1(xE )) . (6.41)

Therefore, by Lemma 6.2, D̃i (x̃E ), i ≥ 0 are involutive distributions on ŨE (=
π∗(UE )) and

dim
(
D̃n+d−2

(
0, z̃0

)) = dim
(
π∗
(
Dn+d−1

(
0, z0

))) = n + d̃.

Hence, system (6.1) is also restricted dynamic feedback linearizable with indices
d̃ = (d̃1, . . . , d̃m). �

It can be easily shown that the converse of Theorem6.1 also holds. (See Problem6-
3.) The following results can be obtained by repeated use of Theorem 6.1.

Corollary 6.1 If the system (6.1) is restricted dynamic feedback linearizable with
indices d = (d1, . . . , dm), then the system (6.1) is also restricted dynamic feedback
linearizable with indices d̃ = (d̃1, . . . , d̃m), where

d̃i = di − dmin and dmin = min {d1, . . . , dm} . (6.42)

If system (6.1) is restricted dynamic feedback linearizable, then it is linearizable
without a pure integrator for at least one of the input channels (i.e., dmin = 0). Thus,
we have the following interesting results.

Corollary 6.2 If single input system (6.1) (with m = 1) is restricted dynamic feed-
back linearizable, then system (6.1) is static feedback linearizable. It is obvious that
the converse also holds.

In other words, dynamic feedback linearization is meaningful only for multi-input
nonlinear systems. Without loss of generality, we can assume that

0 = d1 ≤ d2 ≤ · · · ≤ dm

and {g1(0), g2(0), . . . , gm(0)} are linearly independent. Now we will find the upper
limit of indices di , i ≥ 2. In other words, it will be shown that, if system (6.1) is
restricted dynamic feedback linearizable, then system (6.1) is restricted dynamic
feedback linearizable with indices d = (d1, . . . , dm), dmin = 0, and di ≤ 2n − 3,
1 ≤ i ≤ m. Define the smallest positive integer σ1 by

Q0(xE ) �= · · · �= Qσ1−1(xE ) = Qσ1(xE ) (6.43)
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on a neighborhood UE of (x, z) = (0, z0). For example, if Q0(xE ) = Q1(xE ), then
σ1 = 1. It is clear that dim(Qσ1−1) = dim(Qσ1) ≥ σ1.

Lemma 6.3 Suppose that system (6.1) is restricted dynamic feedback linearizable
with indices d = (d1, . . . , dm) and d1 = 0. Also assume that

Qσ1−1(xE ) = Qσ1(xE ) = · · · = Q2(σ1−1)(xE ) (6.44)

on a neighborhood UE of (x, z) = (0, z0). Then system (6.1) is also restricted
dynamic feedback linearizable with indices d̃ = (d̃1, . . . , d̃m), where

d̃i =
{
di − 1, if di ≥ max(2σ1 − 2, 1) � d̄

di , otherwise.
(6.45)

Proof Suppose that system (6.1) is restricted dynamic feedback linearizable with
indices d = (d1, . . . , dm) and d1 = 0. Then extended system (6.14) is (static) feed-
back linearizable on a neighborhood UE of (x, z) = (0, z0). We need to show that
extended system (6.28) with indices d̃ = (d̃1, . . . , d̃m) is (static) feedback lineariz-
able on a neighborhood ŨE of (x, z̃) = (0, z̃0). In other words, we need to show, by
Theorem 4.3, that

(a) dim
(
D̃n+d−2(0, z̃0)

)
= n + d̃

(b) D̃i (x̃E ), i ≥ 0 are involutive distributions on ŨE

where for i ≥ 0,

D̃i (x̃E ) = span
{
adk

F̃
G̃ j (x̃E )

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i
}

= Q̃i (x̃E ) + span

{
∂

∂ z̃ jk

∣∣∣ j ∈ I, d̃ j − i ≤ k ≤ d̃ j

}

+ span

{
∂

∂ z̃ jk

∣∣∣ j ∈ Ī, d̃ j − i ≤ k ≤ d̃ j

}
(6.46)

and

Q̃i (x̃E ) = span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ 1 ≤ j ≤ m, 0 ≤ k ≤ i − d̃ j

}
. (6.47)

Let

I �
{
i | 1 ≤ i ≤ m, di < d̄

}
and Ī �

{
i | 1 ≤ i ≤ m, di ≥ d̄

}
.

Since Qd̄−1(xE ) = Qd̄(xE ) and ḡ j (xE ) ∈ Qd̄−1(xE ), j ∈ I, it is easy to see, by
Lemma 6.1 and (6.35), that for i ≥ 0,
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adiF ḡ j (xE ) ∈ Qd̄−1(xE )

= span
{
adkF ḡ j (xE )

∣∣∣ j ∈ I, 0 ≤ k ≤ d̄ − 1 − d j

}

and for i ≥ d̄ ,

span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i − d̃ j

}

= span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ d̄ − 1 − d̃ j

}

= span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i − 1 − d̃ j

}
.

(6.48)

Therefore, it is easy to see, by (6.36), (6.47), and (6.48), that for 0 ≤ i ≤ d̄ − 2,

π∗ (Qi (xE )) = span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i − d̃ j

}
= Q̃i (x̃E )

π∗
(
Qd̄(xE )

) = span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ d̄ − d̃ j

}

+ span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ d̄ − 1 − d̃ j

}

= span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ d̄ − 1 − d̃ j

}

+ span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ d̄ − 1 − d̃ j

}
= Q̃d̄−1(x̃E )

and for i ≥ d̄ ,

π∗ (Qi+1(xE )) = span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i + 1 − d̃ j

}

+ span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ i − d̃ j

}

= span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ I, 0 ≤ k ≤ i − d̃ j

}

+ span
{
adk

F̃
ḡ j (x̃E )

∣∣∣ j ∈ Ī, 0 ≤ k ≤ i − d̃ j

}
= Q̃i (x̃E )

which imply that

Q̃i (x̃E ) =
{

π∗ (Qi (xE )) , if 0 ≤ i ≤ d̄ − 1

π∗ (Qi+1(xE )) , if i ≥ d̄.
(6.49)

Thus, by Lemma 6.2, Q̃i (x̃E ), i ≥ 0 are involutive distributions. We also have, by
(6.33) and (6.46), that for 0 ≤ i ≤ d̄ − 1,
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D̃i (x̃E ) = π∗ (Di (xE )) + span

⎧
⎨

⎩
∂

∂ z̃ j
d̃ j−i

∣∣∣ j ∈ Ī

⎫
⎬

⎭ (6.50)

and for i ≥ d̄ ,

D̃i (x̃E ) = π∗ (Qi+1(xE )) + span

{
∂

∂ z̃ j�

∣∣∣ j ∈ I, 1 ≤ � ≤ d̃ j

}

+ span

{
∂

∂ z̃ j�

∣∣∣ j ∈ Ī, d̃ j − i ≤ � ≤ d̃ j

}
= π∗ (Di+1(xE )) .

(6.51)

It will be shown that for 0 ≤ i ≤ d̄ − 1,

[
∂

∂z jd j−i−1

, Qi (xE )

]
⊂ Qi (xE ), for j ∈ Ī (6.52)

or
⎡

⎣ ∂

∂ z̃ j
d̃ j−i

, Q̃i (x̃E )

⎤

⎦ ⊂ Q̃i (x̃E ), for j ∈ Ī. (6.53)

If d̄ = 1 or σ1 = 1, (6.52) is obviously satisfied, since Q0(xE ) = span{ḡ j (xE ) | d j =
0}. Thus, let d̄ = 2σ1 − 2 or σ1 ≥ 2. If 0 ≤ i ≤ σ1 − 2 and d j ≥ 2σ1 − 2, then d j −
i − 1 ≥ σ1 − 1 > i . Therefore, it is easy to see, by (6.22), that (6.52) holds for
0 ≤ i ≤ σ1 − 2. Also, it is clear, by Lemma 6.1 and (6.44), that (6.52) holds for
σ1 − 1 ≤ i ≤ 2σ1 − 3(= d̄ − 1). In other words, (6.53) is satisfied for 0 ≤ i ≤ d̄ −
1. Thus, by (6.50), distributions D̃i (x̃E ), 0 ≤ i ≤ d̄ − 1 are involutive. It is clear,
by Lemma 6.2 and (6.51), that Q̃i (x̃E ), i ≥ d̄ are also involutive distributions on
ŨE (= π∗(UE )) and

dim
(
D̃n+d−2

(
0, z̃0

)) = dim
(
π∗
(
Dn+d−1

(
0, z0

))) = n + d̃.

Hence, system (6.1) is also restricted dynamic feedback linearizable with indices
d̃ = (d̃1, . . . , d̃m). �

Remark 6.1 Suppose that system (6.1) is restricted dynamic feedback linearizable
with indices d = (d1, . . . , dm), where 0 = d1 ≤ d2 ≤ · · · ≤ dm , and

Q0(xE ) �= · · · �= Qσ1−1(xE ) = Qσ1(xE ). (6.54)

If dim(Qσ1−1(xE )) = n, then σ1 ≤ n and (6.44) is satisfied. Thus, it can be assumed,
by repeated use of Lemma 6.3, that di ≤ 2(σ1 − 1) − 1 ≤ 2n − 3, for 2 ≤ i ≤ m.
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If dim(Qσ1−1(xE )) < n, define index p2 (dp2 > σ1) and the smallest positive integer
σ2 by

p2 � min{ j | ḡ j (xE ) /∈ Qσ1(xE )} (6.55)

and

Q0 �= · · · �= Qσ1−1 = Qσ1 = · · · = Qdp2−1

�= Qdp2
�= · · · �= Qdp2+σ2−1 = Qdp2+σ2 .

(6.56)

If dp2 > 2(σ1 − 1), then (6.44) is satisfied. Thus, it can be assumed, by repeated use
of Lemma 6.3, that σ1 ≥ 2 and

dp2 ≤ 2σ1 − 2.

Note that

σ1 + σ2 ≤ dim(Qdp2+σ2(xE )) ≤ n. (6.57)

Let p1 = 1. In this manner, if dim(Qdpk−1+σk−1(xE )) < n, we can define, for 2 ≤ k ≤
r , index pk(dpk > dpk−1 + σk−1) and the smallest positive integer σk by

pk � min{ j | ḡ j (xE ) /∈ Qdpk−1+σk−1(xE )} (6.58)

Qdpk −1 �= Qdpk
�= · · · �= Qdpk +σk−1 = Qdpk +σk (6.59)

and

σ1 + · · · + σr ≤ dim(Qdpr +σr (xE )) = n. (6.60)

Lemma 6.4 Suppose that system (6.1) is restricted dynamic feedback linearizable

with indicesd = (d1, . . . , dm)andd1 = 0. Also, assume that k ≥ 2,μk �
k∑

j=1

2(σ j −
1), μk−2 + σk−1 + 1 ≤ dpk ≤ μk−1, and

Qdpk +σk−1(xE ) = Qdpk +σk (xE ) = · · · = Qμk (xE ). (6.61)

Then system (6.1) is also restricted dynamic feedback linearizable with indices d̃ =
(d̃1, . . . , d̃m), where

d̃i =
{
di − 1, if di ≥ μk

di , otherwise.
(6.62)
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Proof The proof of Lemma 6.4 is the same as that of Lemma 6.3 with d̄ � μk . �

Theorem 6.2 Let n > m ≥ 2. Suppose that system (6.1) is restricted dynamic feed-
back linearizable. Then system (6.1) is also restricted dynamic feedback linearizable
with indices d = (d1, . . . , dm), where dmin = 0 and for 1 ≤ i ≤ m,

di ≤ 2n − 3. (6.63)

Proof Suppose that system (6.1) is restricted dynamic feedback linearizable with
indices d = (d1, . . . , dm). We assume, without loss of generality, that d1 ≤ d2 ≤
· · · ≤ dm . Also, we can assume d1 = 0 by Theorem 6.1. Define positive integer σ1

by (6.54). If σ1 = n, then dim(Qσ1−1(xE )) = n and (6.61) is satisfied. Thus, it can be
assumed, by repeated use of Lemma 6.3, that di ≤ 2(σ1 − 1) − 1 = 2n − 3, for 2 ≤
i ≤ m. As explained in Remark 6.1, if dim(Qσ1−1(xE )) < n, define index p2(dp2 >

σ1) and the smallest positive integer σ2 such that (6.55) and (6.56) are satisfied. Note
that (6.57) is satisfied. If dp2 > 2(σ1 − 1), then (6.61) is satisfied. Thus, it can be
assumed, by repeated use of Lemma 6.4, that σ1 ≥ 2 and

dp2 ≤ 2σ1 − 2.

If dim(Qdp2+σ2(xE )) = n, then (6.61) holds for k = 2. Thus, it can be assumed, by
repeated use of Lemma 6.4, that for p2 + 1 ≤ i ≤ m,

di ≤ 2(σ1 + σ2 − 2) − 1 ≤ 2n − 5. (6.64)

If dim(Qdp2+σ2(xE )) < n, define index p3(dp2 > σ1) and the smallest positive
integer σ3 such that (6.58) and (6.59) are satisfied. Note that σ1 + σ2 + σ3 ≤
dim(Qdp3+σ3(xE )) ≤ n. If dp3 > μ2 = 2(σ1 + σ2 − 2), then (6.61) holds for k = 3.
Thus, it can be assumed, by repeated use of Lemma 6.4, that

dp3 ≤ μ2 = 2(σ1 + σ2 − 2).

If dim(Qdp3+σ3(xE )) = n, then (6.61) holds for k = 3. Thus, it can be assumed, by
repeated use of Lemma 6.4, that for p3 + 1 ≤ i ≤ m,

di ≤ 2(σ1 + σ2 + σ3 − 3) − 1 ≤ 2n − 7. (6.65)

In this manner, if dim(Qdp3+σ3(xE )) < n, we can define, for 2 ≤ k ≤ r , index
pk(dpk > dpk−1 + σk−1) and the smallest positive integer σk by

pk � min
{
j | ḡ j (xE ) /∈ Qdpk−1+σk−1(xE )

}

Qdpk −1 �= Qdpk
�= · · · �= Qdpk +σk−1 = Qdpk +σk
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dpk ≤ μk−1 =
k−1∑

j=1

2(σ j − 1)

and

σ1 + · · · + σr ≤ dim(Qdpr +σr (xE )) = n.

Finally, since dim(Qdpr−1+σr−1(xE )) = n, (6.61) holds for k = r . Thus, it can be
assumed, by repeated use of Lemma 6.4, that for pr + 1 ≤ i ≤ m,

di ≤ μr − 1 = 2(σ1 + · · · + σr − r) − 1 ≤ 2n − (2r + 1). (6.66)

�

Let n > m ≥ 2. If system (6.1) is restricted dynamic feedback linearizable, then
system (6.1) is also restricted dynamic feedback linearizable such that the number d
of extended state z satisfies

d ≤ (m − 1)(2n − 3). (6.67)

The upper limit di and d in Theorem 6.2 are sharp. When σ1 = n, d is the maximum.
It can be seen in Example 6.3.1.

Example 6.3.1 Let n ≥ m + 2. Show that the following nonlinear system is not
restricted dynamic feedback linearizable with indices d = (d1, . . . , dm) and di <

2n − 3, 1 ≤ i ≤ m. Also, show that the following nonlinear system is restricted
dynamic feedback linearizable with indices d = (d1, . . . , dm) = (0, 2n − 3, . . . ,
2n − 3).

ẋ1 = x2 + x1

m∑

i=2

ui

ẋ j = x j+1, 2 ≤ j ≤ n − m

ẋn−m+1 = u1
ẋn−m+i = (1 + xn−m+1)ui , 2 ≤ i ≤ m.

(6.68)

Solution For simplicity, we consider the case ofm = 2. Let d1 = 0 and d2 < 2n − 3.
It is easy to see that ḡ1(xE ) = ∂

∂xn−1
and for 1 ≤ k ≤ n − 2,

adkF ḡ1(xE ) = (−1)k
∂

∂xn−k−1
− z2k

∂

∂xn
. (6.69)

Let d2 is even and d2 ≤ 2n − 4. Then we have that d2
2 ≤ n − 2 and
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Q d2
2
(xE ) = span

{
adkF ḡ1(xE )

∣∣∣ 0 ≤ k ≤ d2
2

}
.

Since
⎡

⎣ ∂

∂z2d2
2

, ad
d2
2
F ḡ1(xE )

⎤

⎦ = − ∂

∂xn
/∈ Q d2

2
(xE )

Dd2
2
(xE ) is not involutive, where

Dd2
2
(xE ) = Q d2

2
(xE ) + span

{
∂

∂z2k

∣∣∣
d2
2

≤ k ≤ d2

}
.

Let d2 is odd and d2 ≤ 2n − 5. Then we have that d2+1
2 ≤ n − 2 and

Q d2+1
2

(xE ) = span

{
adkF ḡ1(xE )

∣∣∣ 0 ≤ k ≤ d2 + 1

2

}
.

Since
⎡

⎣ ∂

∂z2d2+1
2

, ad
d2+1
2

F ḡ1(xE )

⎤

⎦ = − ∂

∂xn
/∈ Q d2+1

2
(xE )

Dd2+1
2

(xE ) is not involutive, where

Dd2+1
2

(xE ) = Q d2+1
2

(xE ) + span

{
∂

∂z2k

∣∣∣
d2 − 1

2
≤ k ≤ d2

}
.

Therefore, system (6.68) is not restricted dynamic feedback linearizable with indices
d1 = 0 and d2 < 2n − 3. In the same manner, it can be shown that system (6.68) is
not restricted dynamic feedback linearizable with indices d2 = 0 and d1 < 2n − 3.
Now let d1 = 0 and d2 = 2n − 3. Then it is easy to see that

adn−1
F ḡ1(xE ) = z21

∂

∂x1
− z2n−1

∂

∂xn
(6.70)

which implies, together with (6.70), that Qn−1(xE ) is an n-dimensional involutive
distribution on UE (= {(x, z) | z21 = 0, z2n−1 �= 0}), where

Qn−1(xE ) = span

{
∂

∂xk

∣∣∣ 1 ≤ k ≤ n

}
. (6.71)
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It is clear that Qi (xE ), 0 ≤ i ≤ n − 2 is an (i + 1)-dimensional involutive distri-
butions. For 0 ≤ i ≤ n − 2 and 2n − 3 − i = d2 − i ≤ j ≤ d2, we have, by (6.22),
that i < n − 1 ≤ d2 − i ≤ j and

[
∂

∂z2j
, Qi (xE )

]
⊂ Qi (xE )

which implies that Di (xE ), 0 ≤ i ≤ n − 2 are involutive, where for 0 ≤ i ≤ n − 2,

Di (xE ) = Qi (xE ) + span

{
∂

∂z2j

∣∣∣ d2 − i ≤ j ≤ d2

}
.

Finally, It is obvious, by (6.71), that Di (xE ), 0 ≤ i ≤ n − 2 are involutive distribu-
tions on UE and

dim(D2n−4(xE )) = 3n − 3 = n + d2 for xE ∈ UE .

Hence, system (6.68) is restricted dynamic feedback linearizable with indices d =
(0, 2n − 3). �

By Corollary 6.1 and Theorem 6.2, only a finite set of indices need to be consid-
ered, in order to determine whether system (6.1) is restricted dynamic feedback lin-
earizable or not. Therefore, the conditions of Theorem 6.2 is verifiable. For example,
if m = 2, then check whether system (6.1) is restricted dynamic feedback lineariz-
able with indices d = (0, 0), (0, 1), . . . , (0, 2n − 3), (1, 0), (2, 0), . . . , (2n − 3, 0)
in sequence. If system (6.1) is not restricted dynamic feedback linearizable with the
above indices, then system (6.1) is not restricted dynamic feedback linearizable.

6.4 Examples

Example 6.4.1 Find out whether the following nonlinear system is restricted
dynamic feedback linearizable or not. If it is restricted dynamic feedback lineariz-
able, find out the restricted dynamic feedback and state transformation.

ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

0
x4
0

1 + x3

⎤

⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2. (6.72)

Solution Since [g1(x), g2(x)] = [
0 0 0 1

]T
/∈ span{g1(x), g2(x)}, system (6.72) is

not feedback linearizable. Consider the following dynamic compensator with index
(d1, d2) = (0, 1):
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u1 = w1 ; u2 = z

ż = w2.

Then we have the extended system

⎡

⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ż

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

x2
x3 + x4z

0
(1 + x3)z

0

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

0
0
1
0
0

⎤

⎥⎥⎥⎥⎦
w1 +

⎡

⎢⎢⎢⎢⎣

0
0
0
0
1

⎤

⎥⎥⎥⎥⎦
w2

= F(x, z) + G1(x, z)w1 + G2(x, z)w2.

(6.73)

Since

[
adFG1(x, z) adFG2(x, z)

] =

⎡

⎢⎢⎢⎢⎣

0 0
−1 −x4
0 0

−z −1 − x3
0 0

⎤

⎥⎥⎥⎥⎦
and ad2FG1(x, z) =

⎡

⎢⎢⎢⎢⎣

1
z2

0
0
0

⎤

⎥⎥⎥⎥⎦

it is easy to see that (κ1, κ2) = (3, 2), dim(D2(x, z)) = 5 = n + d, and distributions
D0 = span{G1,G2} and D1 = span{G1,G2, adFG1, adFG2} are involutive. Hence,
byTheorem4.3, system (6.73) is (static) feedback linearizable. Functions S11(x, z) =
x1 and S21(x, z) = x4 satisfying the conditions of Lemma 4.3 can be easily found.
Thus, extended state transformation ξ = SE (x, z) and extended static feedback w =
α(x, z) + β(x, z)v can be obtained by (4.56) and (4.57), respectively.

ξ = SE (x, z) =

⎡

⎢⎢⎢⎢⎣

S11(x, z)
LF S11(x, z)
L2
F S11(x, z)
S21(x, z)

LF S21(x, z)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

x1
x2

x3 + x4z
x4

(1 + x3)z

⎤

⎥⎥⎥⎥⎦
(6.74)

and

[
w1

w2

]
=
[
1 x4
z 1 + x3

]−1 (
−
[
(1 + x3)z2

0

]
+
[
v1
v2

])

=
[−(1+x3)2z2

1+x3−x4z
(1+x3)z3

1+x3−x4z

]
+
[

1+x3
1+x3−x4z

−x4
1+x3−x4z−z

1+x3−x4z
1

1+x3−x4z

][
v1
v2

]
.

In other words, the restricted dynamic feedback for system (6.72) is
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[
u1
u2

]
=
[

−(1+x3)2z2

1+x3−x4z
z

]
+
[ 1+x3
1+x3−x4z

−x4
1+x3−x4z

0 0

] [
v1
v2

]

ż = (1 + x3)z3

1 + x3 − x4z
+ [ −z

1+x3−x4z
1

1+x3−x4z

] [v1
v2

]
.

(6.75)

�

Example 6.4.2 Show that system (6.76) is not restricted dynamic feedback lineariz-
able.

ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
x4
1

1 + x3

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

0
x4
0

1 + x3

⎤

⎥⎥⎦ u2

= f (x) + g1(x)u1 + g2(x)u2.

(6.76)

But, system (6.76) is dynamic feedback linearizable.

Solution By simple calculation or MATLAB program in Sect. 6.5, it is easy to
see that system (6.76) is not restricted dynamic feedback linearizable with indices
d = (0, 0), (0, 1), . . . , (0, 5), (1, 0), (2, 0), . . . , (5, 0). Hence, system (6.76) is not
restricted dynamic feedback linearizable by Theorem 6.2. If we let

[
u1
u2

]
=
[
1 0

−1 1

] [
ū1
ū2

]

then we have

ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ ū1 +

⎡

⎢⎢⎣

0
x4
0

1 + x3

⎤

⎥⎥⎦ ū2

= f (x) + g′
1(x)ū1 + g′

2(x)ū2.

(6.77)

In Example 6.4.1, it is shown that system (6.77) is restricted dynamic feedback lin-
earizable. In other words, system (6.76) is linearizable by the extended state trans-
formation (6.74) and the dynamic feedback

[
u1
u2

]
=
[ −(1+x3)2z2

1+x3−x4z

z + (1+x3)2z2

1+x3−x4z

]
+
[

1+x3
1+x3−x4z

−x4
1+x3−x4z−(1+x3)

1+x3−x4z
x4

1+x3−x4z

][
v1
v2

]

ż = (1 + x3)z3

1 + x3 − x4z
+ [ −z

1+x3−x4z
1

1+x3−x4z

] [v1
v2

]
.

(6.78)

However, dynamic feedback (6.78) is not a restricted dynamic feedback. �
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Example 6.4.3 Consider system (6.79) that is not reachable on a neighborhood of
0 ∈ R

n .

ẋ =

⎡

⎢⎢⎣

0
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

x2
0
0
1

⎤

⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2. (6.79)

(a) Show that system (6.79) is restricted dynamic feedback linearizable with
d = (0, 2). Also, find out the restricted dynamic feedback and extended state
transformation.

(b) Let x(0) = [
1 1 1 1

]T
. Find an input u(t), 0 ≤ t ≤ t f such that t f = 2 and

x(t f ) = [
0 0 0 0

]T
.

Solution (a) Since (κ1, κ2) = (2, 1) andκ1 + κ2 < 4 = n, system (6.79) is not feed-
back linearizable. It is also easy to see that system (6.79) is not restricted dynamic
feedback linearizable with d = (0, 1). Consider the following dynamic compen-
sator with index (d1, d2) = (0, 2):

[
u1
u2

]
=
[
w1

z1

]
;
[
ż1
ż2

]
=
[
z2
w2

]
.

Then we have the extended system

⎡

⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ż1
ż2

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

x2z1
x3
0
z1
z2
0

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎦
w1 +

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤

⎥⎥⎥⎥⎥⎥⎦
w2

= F(x, z) + G1(x, z)w1 + G2(x, z)w2.

(6.80)

Since

[
adFG1 adFG2 ad2FG1 ad2FG2

] =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 z1 x2
−1 0 0 0
0 0 0 0
0 0 0 1
0 −1 0 0
0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
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it is easy to see that (κ1, κ2) = (3, 3) on UE
(= {

(x, z) ∈ R
6 | z1 �= 0

})
, κ1 +

κ2 = 6 = n + d, and distributions D0(x, z) and D1(x, z) are involutive distribu-
tions on UE , where

D0(x, z) = span {G1(x, z),G2(x, z)}

and

D1(x, z) = span {G1(x, z),G2(x, z), adFG1(x, z), adFG2(x, z)} .

Hence, by Theorem 4.3, system (6.80) is (static) feedback linearizable on
UE . Scalar functions S11(x, z) = x1 and S21(x, z) = x4 satisfying the condi-
tions of Lemma 4.3 can be easily found. Thus, extended state transforma-
tion ξ = SE (x, z) and extended static feedback w = α(x, z) + β(x, z)v can be
obtained by (4.56) and (4.57), respectively.

ξ = SE (x, z) �
[
S1E (x, z)
S2E (x, z)

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

S11(x, z)
LF S11(x, z)
L2
F S11(x, z)
S21(x, z)

LF S21(x, z)
L2
F S21(x, z)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

x1
x2z1

x3z1 + x2z2
x4
z1
z2

⎤

⎥⎥⎥⎥⎥⎥⎦
(6.81)

and

[
w1

w2

]
=
[
z1 x2
0 1

]−1 (
−
[
2x3z2
0

]
+
[
v1
v2

])

=
[− 2x3z2

z1
0

]
+
[ 1
z1

−x2
z1

0 1

] [
v1
v2

]
.

In other words, the restricted dynamic feedback for system (6.79) is

[
u1
u2

]
=
[− 2x3z2

z1
z1

]
+
[ 1
z1

−x2
z1

0 0

] [
v1
v2

]

[
ż1
ż2

]
=
[
z2
0

]
+
[
0 0
0 1

] [
v1
v2

] (6.82)

and the extended system of system (6.79) with the dynamic feedback (6.82)
satisfies, in ξ -coordinates, the following controllable linear system:
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⎡

⎢⎢⎢⎢⎢⎢⎣

ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5
ξ̇6

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
ξ4
ξ5
ξ6

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 0
0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

[
v1
v2

]

=
[
A11 O
O A22

]
ξ +

[
B11 O
O B22

]
v.

(6.83)

(b) Since z1(t) �= 0 for 0 ≤ t ≤ t f , we let x4(t) = 1 − 1
2 t , z1(t) = ẋ4(t) = − 1

2 ,

z2(t) = ż1(t) = 0, and v2(t) = ż2(t) = 0, for 0 ≤ t ≤ t f , where z(0) =
[− 1

2
0

]
.

In order to control {x1(t), x2(t), x3(t)} or {ξ1(t), ξ2(t), ξ3(t)}, consider the fol-
lowing controllability Gramian of linear subsystem in (6.83):

W11(0, t) �
∫ t

0
e−A11τ B11B

T
11(e

−A11τ )Tdτ =
⎡

⎢⎣

t5

20 − t4

8
t3

6

− t4

8
t3

3 − t2

2
t3

6 − t2

2 t

⎤

⎥⎦ .

Since z(0) =
[− 1

2
0

]
and z(t f ) =

[− 1
2
0

]
, it is clear that

ξ 1(0) = S1E (x(0), z(0)) =
⎡

⎣
1

− 1
2− 1
2

⎤

⎦ and ξ 1(t f ) = S1E (x(t f ), z(t f )) =
⎡

⎣
0
0
0

⎤

⎦

where ξ 1 = S1E (x, z) is given in (6.81). Thus, it is easy to see that

v1(t) = BT
11(e

−A11t )TW11(0, t f )
−1
[
e−A11t f ξ 1(t f ) − ξ 1(0)

]

= −3

4
+ 6t − 15

4
t2, 0 ≤ t ≤ 2

is an input such that ξ(2) = [
0 0 0 0 − 1

2 0
]T

and

[
x(2)
z(2)

]
= [

0 0 0 0 − 1
2 0
]T
.

�
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6.5 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, adfgk, adfgM, ChExact, ChZero, ChInvolutive, Codi,
CXexact, Delta, Kindex0, Lfh, Lfhk, S1M

The following is a MATLAB subfunction program for Theorem 6.2.

function d=dec2N(a,N,m)

d=zeros(1,m);
for k=1:m-1
d(k)=fix(a/power(N,m-k));
a=rem(a,power(N,m-k));

end
d(m)=a;

The following is a MATLAB subfunction program for Theorem 6.2.

function [kappa,D]=KindexE0z(fe,ge,xe,x)

[N,m]=size(ge);
D1=Delta(fe,ge,xe);
D0=subs(D1,x,x-x);
kappa=zeros(m,1); DD=xe-xe;
for k1=1:N
for k2=1:m
t1=[DD D0(:,m*(k1-1)+k2)];
if rank(t1)>rank(DD)
kappa(k2)=kappa(k2)+1;
DD=t1;
if rank(DD)==rank(D0)

D=D1(:,1:m*max(kappa));
return

end
end

end
end

The following is a MATLAB subfunction program for Theorem 6.2.

function [out,dd,F,G,xe]=dRDFL(d,fx,g,x)

out=0; dd=d;
[n,m]=size(g);
sumd=sum(d);
for k=1:m
s(k)=sum(d(1:k));

end
z0=sym(’z’,[2*n-3,m]);
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zz=x(1)-x(1);
for k=1:m
zz=[zz; z0(1:d(k),k)];

end
z=zz(2:sumd+1);
xe=[x; z];
F=xe-xe;
bz=xe-xe;
for k=1:m
G(:,k)=xe-xe;

end
bf=[fx; z-z];
for k=1:m
bg(:,k)= [g(:,k); z-z];

end
bz=x-x;
for k=1:m
if d(k) >= 1
bz=[bz; z0(2:d(k),k); x(1)-x(1)];

end
end
bz=simplify(bz);
F=bf;
for k=1:m
if d(k) ˜= 0
F=F+z0(1,k)*bg(:,k);
G(:,k)=xe-xe;
G(n+s(k),k)=1;

else
F=F;
G(:,k)=bg(:,k);

end
end
F=simplify(F+bz);
G=simplify(G);
[kappaE,De]=KindexE0z(F,G,xe,x);
if sum(kappaE) < n+sumd
return

end
for k=1:max(kappaE)-1
TD=De(:,1:k*m);
if rank(TD) ˜= rank(subs(TD,x,x-x))
return

end
if ChInvolutive(TD,xe)==0
return

end
end
out=1;
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MATLAB program for Theorem 6.2:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 real

fx=[x2; x3; x4; 0; 0];
g=[ 0 x1; 0 0; 0 0; 1 0; 0 (1+x4)]; %Ex:6.3.1, n=5

% fx=[x2; x3; 0; 0];
% g=[ 0 x1; 0 0; 1 0; 0 (1+x3)]; %Ex:6.3.1, n=4

% g=[ 0 x1 x1; 0 0 0; 1 0 0; 0 (1+x3) 0; 0 0 (1+x3)];
% fx=[x2; x3; 0; 0; 0]; %Ex:6.3.1, m=3

% fx=[x2; x3; 0; 0]; g=[0 0; 0 x4; 1 0; 0 1+x3]; %Ex:6.4.1

% fx=[x2; x3; 0; 0]; g=[0 0; x4 x4; 1 0; 1+x3 1+x3]; %Ex:6.4.2

% fx=[0; x3; 0; 0]; g=[0 x2; 0 0; 1 0; 0 1]; %Ex:6.4.3

% fx=[x2; x3; 0; 0]; g=[0 x1ˆ3; 0 0; 1 0; 0 1+x1]; %P:6-6(a)

% fx=[x2; x3; 0; 0]; g=[0 x2ˆ3; 0 0; 1 0; 0 1+x1]; %P:6-6(b)

% fx=[x2; x3; 0; 0]; g=[0 x3; 0 0; 1 0; 0 1+x3]; %P:6-6(c)

% fx=[x2; x3; 0; 0]; g=[0 x3ˆ2; 0 0; 1 0; 0 1+x3]; %P:6-6(d)

% fx=[x2; x3+x2ˆ2; x1ˆ2]; g=[x1-x1; 1; 1]; %P:6-6(e)

% fx=[x2; x3; 0; 0; 0];
% g=[0 0 x2ˆ2; 0 x3 0; 1 0 0; 0 1 0; 0 0 1]; %P:6-6(f)

% fx=[x1-x1; 0; 0]; g=[0 x2; 1 0; 0 1]; %P:6-7(a)

% fx=[0; x3; 0; 0]; g=[0 x3; 0 0; 1 0; 0 1]; %P:6-7(b)

fx=simplify(fx)
g=simplify(g)
[n,m]=size(g); x=sym(’x’,[n,1]);

% d=[0 1 2]
% [out,dd,F,G,xe]=dRDFL(d,fx,g,x)
% [kappaE,D]=KindexE0z(F,G,xe,x)
% return

N=2*n-2;
for k=0:Nˆm-1
d=dec2N(k,N,m)
if min(d)==0
[out,dd,F,G,xe]=dRDFL(d,fx,g,x);
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if out==1
break

end
end

end

if out ==0
display(’System is not restricted dynamic FB linearizable.’)
return

end

display(’System is restricted dynamic FB linearizable with’)
d=dd

[FLAG,dd,F,G,xe]=dRDFL(d,fx,g,x)
[kappaE,D]=KindexE0z(F,G,xe,x)

[kappa,D]=Kindex0(F,G,xe);
if sum(kappa)<length(xe)
display(’Find out xi=Se(xe) without MATLAB.’)
return

end

[flag,Se1]=S1M(F,G,xe,kappa)
if flag==0
display(’Find out xi=Se(xe) without MATLAB.’)
return

end

Se=xe(1)-xe(1);
for k1=1:m
for k=1:kappa(k1)
t1=Lfhk(F,Se1(k1),xe,k-1);
Se=[Se; t1];

end
end
Se=simplify(Se(2:length(xe)+1))
t2=Se1-Se1;
for k1=1:m
t2(k1)=Lfhk(F,Se1(k1),xe,kappa(k1)-1);

end
t2=simplify(t2);

ibeta=simplify(Lfh(G,t2,xe));
beta=simplify(inv(ibeta))
t3=simplify(Lfh(F,t2,xe));
alpha=simplify(-beta*t3)

hG=simplify(G*beta)
hF=simplify(F+G*alpha)

dSe=simplify(jacobian(Se,xe));
idSe=simplify(inv(dSe));
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AS=simplify(dSe*hF);
dAS=simplify(jacobian(AS,xe));
A=simplify(dAS*idSe)
B=simplify(dSe*hG)

return

6.6 Problems

6-1. Solve Example 6.2.1.
6-2. Solve Example 6.2.3.
6-3. Show that the converse of Theorem 6.1 also holds.
6-4. Prove Corollary 6.2.
6-5. Solve Example 6.3.1 for m ≥ 3.
6-6. Find out whether or not the following nonlinear system is restricted dynamic

feedback linearizable. If it is restricted dynamic feedback linearizable, find out
the restricted dynamic feedback and state transformation.

(a) ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

x31
0
0

1 + x1

⎤

⎥⎥⎦ u2

(b) ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

x32
0
0

1 + x1

⎤

⎥⎥⎦ u2

(c) ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

x3
0
0

1 + x3

⎤

⎥⎥⎦ u2

(d) ẋ =

⎡

⎢⎢⎣

x2
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

x23
0
0

1 + x3

⎤

⎥⎥⎦ u2

(e) ẋ =
⎡

⎣
x2

x3 + x22
x21

⎤

⎦+
⎡

⎣
0
1
1

⎤

⎦ u
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(f) ẋ =

⎡

⎢⎢⎢⎢⎣

x2
x3
0
0
0

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

0
0
1
0
0

⎤

⎥⎥⎥⎥⎦
u1 +

⎡

⎢⎢⎢⎢⎣

0
x3
0
1
0

⎤

⎥⎥⎥⎥⎦
u2 +

⎡

⎢⎢⎢⎢⎣

x22
0
0
0
1

⎤

⎥⎥⎥⎥⎦
u3

6-7. Consider the following systems that are not reachable on a neighborhood of
0 ∈ R

n . Show that they are restricted dynamic feedback linearizable. Also,
find out the restricted dynamic feedback and extended state transformation.

(a)

ẋ =
⎡

⎣
0
0
0

⎤

⎦+
⎡

⎣
0
1
0

⎤

⎦ u1 +
⎡

⎣
x2
0
1

⎤

⎦ u2

(b)

ẋ =

⎡

⎢⎢⎣

0
x3
0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ u1 +

⎡

⎢⎢⎣

x3
0
0
1

⎤

⎥⎥⎦ u2

6-8. Define the dynamic feedback linearization problem of the discrete time control
systems. In other words, obtain the discrete version of Definition 6.1.

6-9. Define the restricted dynamic feedback linearization problem of the dis-
crete time control systems. In other words, obtain the discrete version of
Definition 6.2.

6-10. Find out the necessary and sufficient conditions for the discrete time control
systems to be restricted dynamic feedback linearizable. In other words, obtain
the discrete version of Theorem 6.2.



Chapter 7
Linearization of Discrete Time Control
Systems

7.1 Introduction

In Chaps. 3–6, we have discussed the linearization of continuous nonlinear control
systems. The following four different linearization problems can be defined depend-
ing on the use of feedback and the consideration of output.

• State equivalence to a linear system without the output.
• Feedback linearization without the output.
• State equivalence to a linear system with the output.
• Feedback linearization with the output.

In this chapter, it will be shown that the idea of linearization can be applied to the
discrete time nonlinear control systems. The discrete version of Chap. 6 can also be
found in (E12).

Example 7.1.1 Consider the following discrete linear control system:

[
z1(t + 1)
z2(t + 1)

]
=
[
0 1
1 0

] [
z1(t)
z2(t)

]
+
[
0
1

]
u(t) = f̃ (z(t), u(t)). (7.1)

Find the state equation in x-coordinates with state transformation

[
x1
x2

]
=
[
z1 + z22

z2

]
� S(z). (7.2)

Solution It is clear that
[
z1
z2

]
=
[
x1 − x22

x2

]
= S−1(x). (7.3)
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Thus, we have

x1(t + 1) = z1(t + 1) + z2(t + 1)2 = z2(t) + (z1(t) + u(t))2

= x2(t) + {x1(t) − x2(t)
2 + u(t)}2

x2(t + 1) = z2(t + 1) = z1(t) + u(t) = x1(t) − x2(t)
2 + u(t)

or
[
x1(t + 1)
x2(t + 1)

]
= S ◦ f̃

(
S−1(x(t)), u(t)

)

=
[
x2(t) + {x1(t) − x2(t)2 + u(t)}2

x1(t) − x2(t)2 + u(t)

]
.

(7.4)

�
In the above example, we have obtained the nonlinear system (7.4) from a linear

system (7.1) with a state transformation (7.2). Conversely, we can obtain, by using
state transformation (7.3), the linear system (7.1) from a nonlinear system (7.4).
System (7.4) is not an affine system, whereas the system (7.1) is affine. Unlike the
continuous case, the state equivalent system to a discrete linear system may not be
affine. Therefore, for the linearization problems of the discrete systems, the general
nonlinear systems should be considered. For the feedback linearization problems,
the general feedback u = γ (x, v) should also be used rather than the affine form
u = α(x) + β(x)v. Consider the following discrete nonlinear control system:

x(t + 1) = F(x(t), u(t)) � Fu(x)

y(t) = h(x(t))
(7.5)

where x ∈ R
n , u ∈ R

m , y ∈ R
q , and F(x, u) : Rn+m → R

n and h(x) are smooth
functions with f (0, 0) = 0 and h(0) = 0.

Definition 7.1 (state equivalence to a linear system)
System (7.5) is said to be state equivalent to a linear system if there exists a state
transformation z = S(x) such that

z(t + 1) = Az(t) + Bu(t)

y(t) = h ◦ S−1(z(t))
(7.6)

or

F̃u(z) � S ◦ Fu ◦ S−1(z) = Az + Bu (7.7)

where

rank
([B AB · · · An−1B]) = n.
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Definition 7.2 (state equivalence to a linear system with output)
System (7.5) is said to be state equivalent to a linear systemwith output if there exists
a state transformation z = S(x) such that

z(t + 1) = Az(t) + Bu(t)

y(t) = Cz(t)

or

F̃u(z) � S ◦ Fu ◦ S−1(z) = Az + Bu ; h̃(z) � h ◦ S−1(z) = Cz

where

rank
([B AB · · · An−1B]) = n.

Definition 7.3 (feedback linearization)
System (7.5) is said to be feedback linearizable if there exist a nonsingular feedback

u = γ (x, v)
(
det
{

∂γ (x,v)

∂v

}
�= 0
)
and a state transformation z = S(x) such that the

closed-loop system satisfies, in z−coordinates, the following Brunovsky canonical
form:

z(t + 1) =

⎡
⎢⎢⎢⎣
A11 O · · · O
O A22 · · · O
...

...
. . .

...

O O · · · Amm

⎤
⎥⎥⎥⎦ z(t) +

⎡
⎢⎢⎢⎣
B11 O · · · O
O B22 · · · O
...

...
. . .

...

O O · · · Bmm

⎤
⎥⎥⎥⎦ v(t)

= Az(t) + Bv(t)

or

F̃v(z) � S ◦ F(S−1(z), γ (S−1(z), v)) = Az + Bv

where
m∑
i=1

κi = n, z =
⎡
⎢⎣
z1

...

zm

⎤
⎥⎦, zi =

⎡
⎢⎣
zi1
...

ziκi

⎤
⎥⎦, and

Aii =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(κi × κi ), Bii =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(κi × 1).
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Fig. 7.1 Linearization of discrete time system by state transformation

Fig. 7.2 Discrete state equivalence to a linear system with output

Definition 7.4 (feedback linearization with output)
System (7.5) is said to be feedback linearizablewith output if there exist a nonsingular

feedback u = γ (x, v)
(
det
{

∂γ (x,v)

∂v

}
�= 0
)
and a state transformation z = S(x) such

that the closed-loop system satisfies, in z−coordinates, the following Brunovsky
canonical form:

z(t + 1) = Az(t) + Bv(t)

y(t) = Cz(t)
(7.8)

or

F̃v(z) � S ◦ F(S−1(z), γ (S−1(z), v)) = Az + Bv

h̃(z) � h ◦ S−1(z) = Cz

where A and B are defined in Definition 7.3 and C is a q × n constant matrix.

Block diagrams of the linearization problems defined above are shown in Figs. 7.1,
7.2, 7.3, and 7.4. The state equation of the continuous system is a differential equation,
whereas that of the discrete system is a difference equation. Therefore, the conditions
for discrete linearization problems are very different from those for the continuous
case. Suppose that z = S(x) is a state transformation. Then, it is easy to see that
system (7.5) satisfies, in z-coordinates,
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Fig. 7.3 Feedback linearization of discrete time system

Fig. 7.4 Feedback linearization of discrete time system with output

z(t + 1) = S(x(t + 1)) = S ◦ Fu(t)(x(t))

= S ◦ Fu(t) ◦ S−1(z(t)) � F̃u(t)(z(t)).
(7.9)

For the continuous system, the vector fields f (x) and g j (x) are S∗( f (x)) and
S∗(g j (x)) in z-coordinates when z = S(x). (Refer to (3.4) and (3.27).) And we use
that S∗

(
adkf g j (x)

)
, 1 ≤ j ≤ m, k ≥ 0, are constant vector fields when linearizable.

In other words, if S∗( f (x)) = Az and S∗(g j (x)) = b j , then we have that for 1 ≤ j ≤
m and k ≥ 0,

S∗
(
adkf g j (x)

) = (−1)k Akb j .

For discrete system (7.5), the right-hand side of the state equation is, in z-coordinates,
the composite function

F̃u(z) � S ◦ Fu ◦ S−1(z).

Let F0
0 (x) = x , F̂0

u (x) = x , and for k ≥ 1,

Fk
0 = Fk−1

0 ◦ F0(x) and F̂k
u (x) = Fk−1

0 ◦ Fu(x). (7.10)
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Example 7.1.2 Show that discrete system (7.5) satisfies

x(t + k) = Fu(t+k−1) ◦ · · · ◦ Fu(t)(x(t))

y(k) = h ◦ Fu(k−1) ◦ · · · ◦ Fu(0)(x(0)).

Solution Omitted. (See Problem 7.1.) �

Example 7.1.3 Suppose that Fu(x) = Ax + Bu. Show that

Fu1 ◦ · · · ◦ Fuk (x) = Akx +
k∑

�=1

A�−1Bu�

(
Fu1 ◦ · · · ◦ Fuk (0) =

k∑
�=1

A�−1Bu�

)

and

F̂k
u (x) = Akx + Ak−1Bu.

Solution Omitted. (See Problem 7.2.) �

Example 7.1.4 Suppose that F̃u(z) = S ◦ Fu ◦ S−1(z) and S(0) = 0. Show that for
i ≥ 1,

Fu1 ◦ · · · ◦ Fui (x) = S−1 ◦ F̃u1 ◦ · · · ◦ F̃ui ◦ S(x)

Fu1 ◦ · · · ◦ Fui (0) = S−1 ◦ F̃u1 ◦ · · · ◦ F̃ui (0)

and

F̂ i
u(x) = S−1 ◦ ˆ̃F

i

u ◦ S(x).

Solution Omitted. (See Problem 7.3.) �

7.2 Single Input Discrete Time Systems

In this section, we consider the following single input discrete nonlinear system:

x(t + 1) = F(x(t), u(t)) � Fu(t)(x(t)) (7.11)

where x ∈ R
n ,u ∈ R, and F(x, u) : Rn+1 → R

n is a smooth functionwith F(0, 0) =
0. Let us define composite functions � : Rn → R

n and F : Rn+1 → R
n as follows:
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�(U ) = �(u1, . . . , un) � Fu1 ◦ Fu2 ◦ · · · ◦ Fun (0) (7.12)

F (Ũ ) = F (u1, . . . , un+1) � Fu1 ◦ · · · ◦ Fun ◦ Fun+1(0)

= Fu1 ◦ �(u2, . . . , un+1)
(7.13)

where

U �
[
u1 · · · un]T and Ũ �

[
u1 · · · un un+1

]T
.

It is clear that

�
(
u1, . . . , un

) = F (u1, . . . , un, 0) . (7.14)

If ∂�(U )

∂U

∣∣∣
U=0

is nonsingular, then ker�∗ = span{0}. Thus, it is clear, by Theorem2.6,

that �∗
(

∂
∂ui
)
, 1 ≤ i ≤ n are well-defined vector fields and

�∗
(

∂

∂ui

)
= ∂�(U )

∂ui

∣∣∣∣
U=�−1(z)

.

However, F (Ũ ) is not 1-1 and kerF∗ �= span{0}. Therefore, if
[

∂

∂ui
, ker F∗

]
�⊂ ker F∗,

thenF∗
(

∂
∂ui
)
is not awell-defined vector field. Suppose thatF∗

(
∂

∂ui
)
is awell-defined

vector field. Then, it is clear, by Definition 2.11, that

∂F (U, un+1)

∂ui
= ∂F (U, un+1)

∂ui

∣∣∣∣
Ũ=

[
U
0

]

where z = F (U, un+1) = F (U, 0) = �(U ). Therefore, we have, byDefinition 2.12,
that

F∗
(

∂

∂ui

)
= ∂F (U, un+1)

∂ui

∣∣∣∣[ U
un+1

]
=
[
�−1(z)

0

] . (7.15)

Example 7.2.1 Let Fu(x) =
[

x2
x1x2 + u

]
. Find out�∗

(
∂

∂u1
)
,�∗

(
∂

∂u2
)
,F∗

(
∂

∂u1
)
, and

F∗
(

∂
∂u3
)
. Also, show that F∗

(
∂

∂u2
)
is not a well-defined vector field.
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Solution It is clear that

F (u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) = Fu1 ◦ Fu2

([
0
u3

])

= Fu1

([
u3

u2

])
=
[

u2

u2u3 + u1

]

and

�(u1, u2) � Fu1 ◦ Fu2(0) = F (u1, u2, 0) =
[
u2

u1

]
.

Since ∂F (u1,u2,u3)
∂Ũ

=
[
0 1 0
1 u3 u2

]
, we have that

kerF∗ = span

{
−u2

∂

∂u1
+ ∂

∂u3

}

and
[

∂

∂ui
,−u2

∂

∂u1
+ ∂

∂u3

]
= 0 ∈ kerF∗, for i = 1, 3

[
∂

∂u2
,−u2

∂

∂u1
+ ∂

∂u3

]
= − ∂

∂u1
/∈ kerF∗.

Thus, it is clear, by Theorem 2.6, that F∗
(

∂
∂u2
)
is not a well-defined vector field.

Finally, it is easy to see that

�∗
(

∂

∂u1

)
= ∂�(u1, u2)

∂u1

∣∣∣∣[ u1
u2

]
=
[
z2
z1

] =
[
0
1

]
= ∂

∂z2

�∗
(

∂

∂u2

)
= ∂�(u1, u2)

∂u2

∣∣∣∣[ u1
u2

]
=
[
z2
z1

] =
[
1
0

]
= ∂

∂z1

F∗
(

∂

∂u1

)
= ∂F (u1, u2, u3)

∂u1

∣∣∣∣[ u1
u2

u3

]
=
[ z2
z1
0

] =
[
0
1

]
= ∂

∂z2

F∗
(

∂

∂u3

)
= ∂F (u1, u2, u3)

∂u3

∣∣∣∣[ u1
u2

u3

]
=
[ z2
z1
0

] =
[
0
z1

]
= z1

∂

∂z2
.

�

Example 7.2.2 Let ∂�(U )

∂U

∣∣∣
U=0

be nonsingular. Suppose that F∗
(

∂
∂ui
)
is a well-

defined vector field for 1 ≤ i ≤ n. Show that for 1 ≤ i ≤ n,
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F∗
(

∂

∂ui

)
= �∗

(
∂

∂ui

)
. (7.16)

Solution Suppose that F∗
(

∂
∂ui
)
is a well-defined vector field for 1 ≤ i ≤ n. Then,

it is easy to see, by (7.15), that for 1 ≤ i ≤ n,

F∗
(

∂

∂ui

)
= ∂F (U, un+1)

∂ui

∣∣∣∣[ U
un+1

]
=
[
�−1(z)

0

]

= ∂Fu1 ◦ · · · ◦ Fun ◦ Fun+1(0)

∂ui

∣∣∣∣[ U
un+1

]
=
[
�−1(z)

0

]

= ∂Fu1 ◦ · · · ◦ Fun (0)

∂ui

∣∣∣∣
U=�−1(z)

= �∗
(

∂

∂ui

)
.

�

Theorem 7.1 (conditions for state equivalence to a linear system)
System (7.11) is state equivalent to a linear system, if and only if

(i) ∂�(U )

∂U

∣∣∣
U=0

is nonsingular.

(ii) F∗
(

∂
∂ui
)
, 1 ≤ i ≤ n + 1, are well-defined vector fields or

[
∂

∂ui
, kerF∗

]
⊂ kerF∗, 1 ≤ i ≤ n + 1. (7.17)

Furthermore, z = S(x) = �−1(x) is a linearizing state transformation.

Proof Necessity. Suppose that system (7.11) is state equivalent to a linear system
with state transformation z = S(x). Then we have

z(t + 1) = S ◦ Fu(t) ◦ S−1(z(t))

� F̃u(t)(z(t)) = Az(t) + bu(t)
(7.18)

where

rank
([b Ab · · · An−1b]) = n. (7.19)

Since Fu(x) = S−1 ◦ F̃u ◦ S(x), F̃u(z) = Az + bu, and S(0) = 0, it is easy to see,
by Examples 7.1.3 and 7.1.4, that

�(u1, . . . , un) = S−1(An−1bun + · · · + bu1)

F (u1, . . . , un+1) = S−1(Anbun+1 + · · · + bu1)
(7.20)
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which implies that

∂�(u1, . . . , un)

∂U

∣∣∣∣
U=0

= ∂S−1(z)

∂z

∣∣∣∣
z=0

[
b Ab · · · An−1b

]

where U = [u1 u2 · · · un]T. Since ∂S−1(z)
∂z

∣∣∣
z=0

is nonsingular, it is clear, by (7.19),

that ∂�(U )

∂U

∣∣∣
U=0

is nonsingular. Also, it is clear, by (7.20), that

F∗
(

∂

∂ui

)
= (S−1)∗(Ai−1b), 1 ≤ i ≤ n + 1 (7.21)

which implies thatF∗
(

∂
∂ui
)
, 1 ≤ i ≤ n + 1, arewell-defined vector fields and (7.17)

is, by Theorem 2.6, satisfied.
Sufficiency. Suppose that system (7.11) satisfies conditions (i) and (ii). By con-

dition (i), it is clear that z = S(x) = �−1(x) is a state transformation on a neigh-
borhood of the origin. We will show that system (7.11) satisfies, in z-coordinates, a
linear system. In other words, we will show that

F̃u(z) � �−1 ◦ Fu ◦ �(z) = Az + bu (7.22)

for some constant matrices A and b. If we let

Y i = F∗
(

∂

∂ui

)
, 1 ≤ i ≤ n + 1, (7.23)

then we have, by Theorem 2.4 and (7.16), that for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1,

[Y i ,Y j ] = F∗
([

∂

∂ui
,

∂

∂u j

])
= F∗(0) = 0 (7.24)

and for 1 ≤ i ≤ n,

�∗
(

∂

∂ui

)
= Y i . (7.25)

Thus, it is clear, by condition (i), that {Y 1,Y 2, . . . ,Y n} is a set of linearly indepen-
dent vector fields on a neighborhood of the origin. Also, we have, by (7.24) and
Example 2.4.20, that

Y n+1 =
n∑

i=1

aiY
i (7.26)
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for some constant ai ∈ R. It is easy to see, by (7.13), that Fu ◦ �(z) = F (u, z) and

F̃(z, u) � F̃u(z) = �−1 ◦ Fu ◦ �(z) = �−1 ◦ F (u, z). (7.27)

Thus, we have, by (7.23), (7.25), and (7.27), that

F̃(z, u)∗(
∂

∂u
) = (�−1 ◦ F (u, z))∗(

∂

∂u
) = (�−1)∗(F (u, z))∗(

∂

∂u
)

= (�−1)∗(Y 1) = ∂

∂z1
.

(7.28)

Similarly, it is easy to see, by (7.23), (7.25), (7.26), and (7.27), that for 1 ≤ i ≤ n − 1,

F̃(z, u)∗
(

∂

∂zi

)
= (�−1 ◦ F (u, z))∗

(
∂

∂zi

)

= (�−1)∗(Y i+1) = ∂

∂zi+1

(7.29)

and

F̃(z, u)∗
(

∂

∂zn

)
= (�−1 ◦ F (u, z))∗

(
∂

∂zn

)
= (�−1)∗

(
Y n+1

)

= (�−1)∗

(
n∑

i=1

aiY
i

)
=

n∑
i=1

ai
∂

∂zi
.

(7.30)

Therefore, it is clear, by (7.28)–(7.30), that

F̃(z, u) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 a1
1 0 · · · 0 a2
0 1 · · · 0 a3
...

...
...

...

0 0 · · · 1 an

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦
u. (7.31)

It is easy to see, by (7.14), that ∂F (Ũ )

∂U

∣∣∣
Ũ=O

= ∂�(U )

∂U

∣∣∣
U=O

. Thus, if condition (i)

of Theorem 7.1 is satisfied, then it is clear that ∂F (Ũ )

∂Ũ
=
[

∂F (Ũ )

∂U
∂F (Ũ )

∂un+1

]
and

kerF∗ = span

{[
−
(

∂F (Ũ )

∂U

)−1
∂F (Ũ )

∂un+1

1

]}
. (7.32)

(Refer to MATLAB subfunction ker-sF.)
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Example 7.2.3 Show that the following discrete time system is state equivalent to
a linear system:

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) − u(t)2

u(t)

]
= F(x(t), u(t)) = Fu(t)(x(t)). (7.33)

Solution It is easy to see, by (7.13) and (7.14), that

F (u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) = Fu1 ◦ Fu2

([−(u3)2

u3

])

= Fu1

([
u3 − (u2)2

u2

])
=
[
u2 − (u1)2

u1

]

and

�(u1, u2) � Fu1 ◦ Fu2(0) = F (u1, u2, 0) =
[
u2 − (u1)2

u1

]
.

Since det
(

∂�(U )

∂U

)
= det

([−2u1 1
1 0

])
= −1 �= 0, condition (i) of Theorem 7.1 is

satisfied. Since ∂F (u1,u2,u3)
∂Ũ

=
[−2u1 1 0

1 0 0

]
, we have that

kerF∗ = span

{
∂

∂u3

}

and for 1 ≤ i ≤ 3,

[
∂

∂ui
,

∂

∂u3

]
= 0 ∈ kerF∗.

Thus, it is clear, by Theorem 2.6, that F∗
(

∂
∂ui
)
, 1 ≤ i ≤ 3, are well-defined vector

fields and condition (ii) of Theorem 7.1 is satisfied. Hence, by Theorem 7.1, system
(7.33) is state equivalent to a linear system. Let

[
z1
z2

]
= S(x) = �−1(x) =

[
x2

x1 + x22

]
.

Then it is easy to see that

F̃u(z) = S ◦ Fu ◦ S−1(z) = S

([
z1 − u2

u

])
=
[
0 0
1 0

] [
z1
z2

]
+
[
1
0

]
u.

�
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Theorem 7.1 is the discrete version of Theorem 3.1. Even though the reacha-
bility condition (i) is the same, the condition (ii) is quite different. For a discrete
system, F∗

(
∂

∂ui
)
, 1 ≤ i ≤ n + 1, may not be well-defined vector fields. If they are

well-defined vector fields, then they commute. Another difference is that the partial
differential equation must be solved to obtain a linearizing state transformation for
a continuous system. But in the case of a discrete system, it can be obtained directly
as z = S(x) = �−1(x).

Example 7.2.4 Show that the following discrete time system is not state equivalent
to a linear system:

[
x1(t + 1)
x2(t + 1)

]
=
[

x2(t)
x1(t)2 + u(t)

]
= Fu(t)(x(t)). (7.34)

Solution It is easy to see, by (7.13) and (7.14), that

F (u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) = Fu1 ◦ Fu2

([
0
u3

])

= Fu1

([
u3

u2

])
=
[

u2

u1 + (u3)2

]

and

�(u1, u2) � Fu1 ◦ Fu2(0) = F (u1, u2, 0) =
[
u2

u1

]
.

Since det
(

∂�(U )

∂U

)
= det

([−2u1 1
1 0

])
= −1 �= 0, condition (i) of Theorem 7.1 is

satisfied. Since ∂F (u1,u2,u3)
∂Ũ

=
[
0 1 0
1 0 2u3

]
, we have, by (7.32), that

kerF∗ = span

{
−2u3

∂

∂u1
+ ∂

∂u3

}

and
[

∂

∂u3
, − 2u3

∂

∂u1
+ ∂

∂u3

]
= −2

∂

∂u1
/∈ kerF∗.

Thus, it is clear, by Theorem 2.6, that F∗
(

∂
∂u3
)
is not a well-defined vector field and

condition (ii) of Theorem 7.1 is not satisfied. Hence, by Theorem 7.1, system (7.34)
is not state equivalent to a linear system. �
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It is clear that system (7.34) is linearizable by using feedback u(t) = −x1(t)2 +
v(t). In the following, the discrete version of Theorem 4.1 will be obtained.

Example 7.2.5 Suppose that for 0 ≤ i ≤ n − 1,

∂

∂u

(
S1 ◦ F̂ i

u(x)
)

= 0 ; ∂

∂u

(
S1 ◦ F̂n

u (x)
)∣∣∣∣

(0,0)

�= 0. (7.35)

Show that

rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

∂S1(x)
∂x

∂(S1◦F0(x))
∂x
...

∂(S1◦Fn−1
0 (x))

∂x

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = n (7.36)

and

rank

([
∂Fu(x)

∂u
∂F0(x)

∂x
∂Fu(x)

∂u · · ·
(

∂F0(x)
∂x

)n−1
∂Fu(x)

∂u

]∣∣∣
(0,0)

)

= rank

(
∂

∂U
�(U )

∣∣∣∣
U=0

)
= n.

(7.37)

Solution It is easy to see, by (7.12) and chain rule, that for 1 ≤ i ≤ n,

∂

∂ui
�(U )

∣∣∣∣
U=0

= ∂

∂ui
(Fu1 ◦ Fu2 ◦ · · · Fun (0))

∣∣∣∣
U=0

= ∂Fu1(x)

∂x

∣∣∣∣
(0,0)

· · · ∂Fui−1(x)

∂x

∣∣∣∣
(0,0)

∂Fui (x)

∂ui

∣∣∣∣
(0,0)

=
(

∂F0(x)

∂x

∣∣∣∣
(0,0)

)n−1
∂Fu(x)

∂u

∣∣∣∣
(0,0)

which implies that

∂

∂U
�(U )

∣∣∣∣
U=0

=
[

∂Fu(x)
∂u

∂F0(x)
∂x

∂Fu(x)
∂u · · ·

(
∂F0(x)

∂x

)n−1
∂Fu(x)

∂u

]∣∣∣
(0,0)

.

Also, it is easy to see, by (7.35) and chain rule, that
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⎡
⎢⎢⎢⎢⎣

∂S1(x)
∂x

∂S1◦F0(x)
∂x
...

∂S1◦Fn−1
0 (x)

∂x

⎤
⎥⎥⎥⎥⎦
[

∂Fu(x)
∂u

∂F0(x)
∂x

∂Fu(x)
∂u · · ·

(
∂F0(x)

∂x

)n−1
∂Fu(x)

∂u

]
∣∣∣∣∣∣∣∣∣∣
(0,0)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
(
S1◦F̂u(x)

)
∂u

∂
(
S1◦F̂2

u (x)
)

∂u · · · ∂
(
S1◦F̂n

u (x)
)

∂u
...

...
...

∂
(
S1◦F̂n−1

u (x)
)

∂u

∂
(
S1◦F̂n

u (x)
)

∂u · · · ∂
(
S1◦F̂2n−2

u (x)
)

∂u
∂
(
S1◦F̂n

u (x)
)

∂u

∂
(
S1◦F̂n+1

u (x)
)

∂u · · · ∂
(
S1◦F̂2n−1

u (x)
)

∂u

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
(0,0)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · ∂
(
S1◦F̂n

u (x)
)

∂u

∣∣∣∣
(0,0)

...
... ∗

0
∂
(
S1◦F̂n

u (x)
)

∂u

∣∣∣∣
(0,0)

· · · ∗
∂
(
S1◦F̂n

u (x)
)

∂u

∣∣∣∣
(0,0)

∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the matrix of the right-hand side has rank n, it is clear that (7.36) and (7.37)
are satisfied. �

Lemma 7.1 System (7.11) is feedback linearizable, if and only if there exists a scalar
smooth function S1(x) such that

(i) ∂
∂u

(
S1 ◦ F̂ i

u(x)
)

= 0, 1 ≤ i ≤ n − 1.

(ii) ∂
∂u

(
S1 ◦ F̂n

u (x)
)∣∣∣

(0,0)
�= 0 .

Furthermore, state transformation z = S(x) and feedback u = γ (x, v) satisfy

z = S(x) = [S1(x) S1 ◦ F0(x) · · · S1 ◦ Fn−1
0 (x)

]T
(7.38)

and

v = S1 ◦ Fn−1
0 ◦ Fγ (x,v)(x) = S1 ◦ F̂n

γ (x,v)(x). (7.39)

Proof Necessity. Suppose that system (7.11) is feedback linearizable. Then, there
exist a state transformation z = S(x) and a nonsingular feedback u = γ (x, v)(

∂γ (x,v)

∂v
�= 0
)
such that

F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z) = Az + bv.
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Thus, we have that

⎡
⎢⎢⎢⎣

S1 ◦ Fγ (x,v)(x)
...

Sn−1 ◦ Fγ (x,v)(x)
Sn ◦ Fγ (x,v)(x)

⎤
⎥⎥⎥⎦ = AS(x) + bv =

⎡
⎢⎢⎢⎣
S2(x)

...

Sn(x)
v

⎤
⎥⎥⎥⎦ .

In other words, for 1 ≤ i ≤ n − 1,

Si+1(x) = Si ◦ Fγ (x,v)(x)

and

v = Sn ◦ Fγ (x,v)(x)

which imply that for 1 ≤ i ≤ n − 1,

0 = ∂
(
Si ◦ Fγ (x,v)(x)

)
∂v

= ∂ (Si ◦ Fu(x))

∂u

∣∣∣∣
u=γ (x,v)

∂γ (x, v)

∂v

and

1 = ∂
(
Sn ◦ Fγ (x,v)(x)

)
∂v

= ∂ (Sn ◦ Fu(x))

∂u

∣∣∣∣
u=γ (x,v)

∂γ (x, v)

∂v
.

Since ∂γ (x,v)

∂v
�= 0, it is easy to see that for 1 ≤ i ≤ n − 1,

Si+1(x) = Si ◦ F0(x) ; ∂ (Si ◦ Fu(x))

∂u
= 0

and

v = Sn ◦ Fγ (x,v)(x) ; ∂ (Sn ◦ Fu(x))

∂u
�= 0.

In other words, for 1 ≤ i ≤ n − 1,

Si+1(x) = S1 ◦ Fi
0(x) = S1 ◦ F̂ i

u(x) ;
∂
(
S1 ◦ F̂ i

u(x)
)

∂u
= 0

and

v = S1 ◦ F̂n
γ (x,v)(x) ;

∂
(
S1 ◦ F̂n

u (x)
)

∂u
�= 0
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which imply that conditions (i), (ii), (7.38), and (7.39) are satisfied.
Sufficiency. Suppose that there exists a scalar function S1(x) such that conditions

(i) and (ii) are satisfied. Let us define z = S(x) = [S1(x) · · · Sn(x)]T and feedback
u = γ (x, v) as (7.38) and (7.39), respectively. Then it is clear, by Example 7.2.5, that
z = S(x) is a state transformation. Also, it is easy to see, by conditions (i), (7.38),
and (7.39), that

F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z)

=

⎡
⎢⎢⎢⎣

S1 ◦ Fγ (x,v) ◦ S−1(z)
S1 ◦ F0 ◦ Fγ (x,v) ◦ S−1(z)

...

S1 ◦ Fn−1
0 ◦ Fγ (x,v) ◦ S−1(z)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

S1 ◦ F̂γ (x,v) ◦ S−1(z)
S1 ◦ F̂2

γ (x,v) ◦ S−1(z)
...

S1 ◦ F̂n
γ (x,v) ◦ S−1(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

S1 ◦ F̂0 ◦ S−1(z)
...

S1 ◦ F̂n−1
0 ◦ S−1(z)

S1 ◦ F̂n
γ (x,v)(x)

∣∣∣
x=S−1(z)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

S1 ◦ F0 ◦ S−1(z)
...

S1 ◦ Fn−1
0 ◦ S−1(z)

S1 ◦ F̂n
γ (x,v)(x)

∣∣∣
x=S−1(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
z2
...

zn
v

⎤
⎥⎥⎥⎦ .

By Lemma 7.1, the necessary and sufficient conditions for feedback linearization
can be obtained as follows.

Theorem 7.2 (conditions for feedback linearization)
System (7.11) is feedback linearizable, if and only if

(i) ∂�(U )

∂U

∣∣∣
U=0

is nonsingular.

(ii) F∗(	i ), 1 ≤ i ≤ n − 1, are well-defined involutive distributions or

[
∂

∂ui
, kerF∗

]
⊂ kerF∗ + 	i (Ũ ), 1 ≤ i ≤ n − 1 (7.40)

where for 1 ≤ i ≤ n − 1

	i (Ũ ) = span

{
∂

∂u1
, . . . ,

∂

∂ui

}
. (7.41)

Proof Necessity. Suppose that system (7.11) is feedback linearizable. Then, by
Lemma 7.1, there exists a smooth function S1(x) such that
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∂

∂u

(
S1 ◦ F̂ i

u(x)
)

= 0 ; ∂

∂u

(
S1 ◦ F̂n

u (x)
)∣∣∣∣

(0,0)

�= 0. (7.42)

Thus, by Example 7.2.5, condition (i) is satisfied. Let F̃u(z) � S ◦ Fu ◦ S−1(z),
where

z = S(x) = [S1(x) S1 ◦ F0(x) · · · S1 ◦ Fn−1
0 (x)

]T
.

Then it is easy to see, by (7.42), that ∂αu(z)
∂u

∣∣∣
(0,0)

�= 0 and for 2 ≤ i ≤ n + 1,

F̃u(z) =

⎡
⎢⎢⎢⎣

z2
...

zn
αu(z)

⎤
⎥⎥⎥⎦ , F̃ui ◦ · · · ◦ F̃un+1(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O(i−2)×1

αun+1(0)
αun ◦ F̃un+1(0)

...

αui+1 ◦ F̃ui+2 ◦ · · · ◦ F̃un+1(0)
αui ◦ F̃ui+1 ◦ · · · ◦ F̃un+1(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F̃ (u1, . . . , un+1) � F̃u1 ◦ · · · ◦ F̃un+1(0)

=

⎡
⎢⎢⎢⎣

αun ◦ F̃un+1(0)
...

αu2 ◦ F̃u3 ◦ · · · ◦ F̃un+1(0)
αu1 ◦ F̃u2 ◦ · · · ◦ F̃un+1(0)

⎤
⎥⎥⎥⎦

where αu(z) � S1 ◦ Fn−1
0 ◦ Fu ◦ S−1(z) = S1 ◦ F̂n

u ◦ S−1(z). Thus, it is easy to see
that for 1 ≤ i ≤ n,

F̃∗(	i ) = F̃∗
(
span

{
∂

∂u1
, . . . ,

∂

∂ui

})
= span

{
∂

∂zn+1−i
, . . . ,

∂

∂zn

}

which implies that F̃∗(	i ), 1 ≤ i ≤ n, are well-defined involutive distributions. It
is clear, by Example 7.1.4, that

F (u1, . . . , un+1) = S−1 ◦ F̃ (u1, . . . , un+1)

and for 1 ≤ i ≤ n,

F∗(	i ) =
(
S−1 ◦ F̃

)
∗
(	i ) = S−1

∗

(
span

{
∂

∂zn+1−i
, . . . ,

∂

∂zn

})
.

Since x = S−1(z) is invertible, F∗(	i ), 1 ≤ i ≤ n, are also well-defined involutive
distributions and (7.40) is, by Theorem 2.10, satisfied. Therefore, condition (ii) is
satisfied.
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Sufficiency. Suppose that conditions (i) and (ii) are satisfied. Then, Di = F∗(	i )

is a i-dimensional well-defined involutive distribution for 1 ≤ i ≤ n and D1 ⊂ D2 ⊂
· · · ⊂ Dn . Thus, there exists, by the Frobenius Theorem (or Theorem 2.8), a state
transformation ξ = S̃(x) such that for 1 ≤ i ≤ n,

D̃i � S̃∗
(
F∗
(
span

{
∂

∂u1
, . . . ,

∂

∂ui

}))
= span

{
∂

∂ξ1
, . . . ,

∂

∂ξi

}
. (7.43)

Let F̃u(ξ) � S̃ ◦ Fu ◦ S̃−1(ξ). Then, we have, by Example 7.1.4, that

F̃ (u1, . . . , un+1) � F̃u1 ◦ · · · ◦ F̃un+1(0) = S̃ ◦ F (u1, . . . , un+1).

Therefore, it is easy to see, by (7.43), that for 1 ≤ i ≤ n,

∂

∂u�
F̃i (u

1, . . . , un+1) = 0, 1 ≤ � ≤ i − 1

∂

∂ui
F̃i (u

1, . . . , un+1) �= 0.

In other words, we have that

F̃ (Ũ ) =

⎡
⎢⎢⎢⎢⎢⎣

α1(u1, . . . , un+1)

α2(u2, . . . , un+1)
...

αn−1(un−1, un, un+1)

αn(un, un+1)

⎤
⎥⎥⎥⎥⎥⎦

; �̃(U ) =

⎡
⎢⎢⎢⎢⎢⎣

α̂1(u1, . . . , un)
α̂2(u2, . . . , un)

...

α̂n−1(un−1, un)
α̂n(un)

⎤
⎥⎥⎥⎥⎥⎦

(7.44)

where αi (ui , . . . , un, un+1) � F̃i (0, . . . , 0, ui , . . . , un+1) and for 1 ≤ i ≤ n,

∂

∂ui
αi (u

i , . . . , un, un+1) �= 0

α̂i (u
i , . . . , un) � αi (u

i , . . . , un, 0) ; ∂

∂ui
α̂i (u

i , . . . , un) �= 0.
(7.45)

Thus, it is clear that there exist smooth functions ᾱi (ξi , . . . , ξn) : Rn+1−i → R, 1 ≤
i ≤ n such that for 1 ≤ i ≤ n,

α̂i (ᾱi (ξi , . . . , ξn), . . . , ᾱn(ξn)) = ξi

or
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U = �̃−1(ξ) =

⎡
⎢⎢⎢⎢⎢⎣

ᾱ1(ξ1, . . . , ξn)

ᾱ2(ξ2, . . . , ξn)
...

ᾱn−1(ξn−1, ξn)

ᾱn(ξn)

⎤
⎥⎥⎥⎥⎥⎦

. (7.46)

Since F̃u ◦ �̃(U ) = F̃ (u,U ) by (7.13), we have

F̃u(ξ) = F̃ (u, �−1(ξ)) =

⎡
⎢⎢⎢⎢⎢⎣

α̃1(u, ξ1, . . . , ξn)

α̃2(ξ1, . . . , ξn)
...

α̃n−1(ξn−2, ξn−1, ξn)

α̃n(ξn−1, ξn)

⎤
⎥⎥⎥⎥⎥⎦

(7.47)

where for 2 ≤ i ≤ n,

α̃1(u, ξ1, . . . , ξn) � α1(u, ᾱ1(ξ1, . . . , ξn), . . . , ᾱn(ξn))

α̃i (ξi−1, . . . , ξn) � αi (ᾱi−1(ξi−1, . . . , ξn), . . . , ᾱn(ξn)).

Let h̃(ξ) = ξn . Then, we have that h̃ ◦ ˆ̃Fu(ξ) = α̃n(ξn−1, ξn) � H1(ξn−1, ξn) = h̃(ξ)

◦ ˆ̃F0(ξ) and

h̃ ◦ ˆ̃F
2

u(ξ) = H1(α̃n−1(ξn−2, ξn−1, ξn), α̃n(ξn−1, ξn))

� H2(ξn−2, ξn−1, ξn) = h̃(ξ) ◦ ˆ̃F
2

0(ξ).

In this manner, it is easy to show, by (7.45) and (7.47), that for 1 ≤ i ≤ n − 1,

h̃ ◦ ˆ̃F
i

u(ξ) = h̃ ◦ ˆ̃F
i

0(ξ) ; ∂

∂u

(
h̃ ◦ ˆ̃F

n

u(ξ)

)
�= 0

or

h̃ ◦ S̃ ◦ F̂ i
u(x) = h̃ ◦ S̃ ◦ F̂ i

0(x) ; ∂

∂u

(
h̃ ◦ S̃ ◦ F̂n

u (x)
)

�= 0.

Therefore, S1(x) � h̃ ◦ S̃(x) = S̃n(x) satisfies conditions (i) and (ii) of Lemma 7.1.
Hence, by Lemma 7.1, system (7.11) is feedback linearizable.

If condition (ii) of Theorem 7.1 is satisfied, then condition (ii) of Theorem 7.2
is satisfied. In other words, if the system is state equivalent to a linear system, then
it is also feedback linearizable. The following example shows that system (7.34) of
Example 7.2.4 is not state equivalent to a linear system but feedback linearizable.
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Example 7.2.6 Show that system (7.34) of Example 7.2.4 is feedback linearizable.

[
x1(t + 1)
x2(t + 1)

]
=
[

x2(t)
x1(t)2 + u(t)

]
= Fu(t)(x(t)).

Solution In Example 7.2.4, it is shown that condition (i) of Theorem 7.2 is satisfied.
Since

[
∂

∂u1
,−2u3

∂

∂u1
+ ∂

∂u3

]
= 0 ∈ kerF∗ + 	1,

it is clear, by Theorem 2.10, that F∗(	1) = F∗
(
span

{
∂

∂u1
})

is a well-defined invo-
lutive distribution and

F∗(	1) = span

{
∂

∂x2

}
.

Thus, condition (ii) of Theorem 7.2 is satisfied. Hence, by Theorem 7.2, system
(7.34) is feedback linearizable. Since dx1 ∈ (F∗(	1))

⊥, scalar function S1(x) = x1
satisfies conditions of Lemma 7.1. Thus, it is easy to see that

[
z1
z2

]
=
[

S1(x)
S1 ◦ F0(x)

]
=
[
x1
x2

]

and

v = S1 ◦ F̂2
u (x) = x21 + u or u = −x21 + v = γ (x, v).

Then it is clear that F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z) =
[
z2
v

]
and

[
z1(t + 1)
z2(t + 1)

]
=
[
0 1
0 0

] [
z1(t)
z2(t)

]
+
[
0
1

]
v(t).

�

Example 7.2.7 Show that the following discrete system is feedback linearizable:

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t) + (1 + x2(t))2u(t)2

x3(t)
(1 + x2(t))u(t)

⎤
⎦ = Fu(t)(x(t)). (7.48)
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Solution By simple calculations, we have that

F (u1, u2, u3, u4) � Fu1 ◦ Fu2 ◦ Fu3 ◦ Fu4(0) = Fu1 ◦ Fu2 ◦ Fu3

⎛
⎝
⎡
⎣(u4)2

0
u4

⎤
⎦
⎞
⎠

= Fu1 ◦ Fu2

⎛
⎝
⎡
⎣(u3)2

u4

u3

⎤
⎦
⎞
⎠ = Fu1

⎛
⎝
⎡
⎣u

4 + (u2)2(1 + u4)2

u3

u2(1 + u4)

⎤
⎦
⎞
⎠

=
⎡
⎣u

3 + (u1)2(1 + u3)2

u2(1 + u4)
u1(1 + u3)

⎤
⎦

and

�(u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) = F (u1, u2, u3, 0) =
⎡
⎣u

3 + (u1)2(1 + u3)2

u2

u1(1 + u3)

⎤
⎦ .

Since det
(

∂�(U )

∂U

∣∣∣
U=0

)
= det

⎛
⎝
⎡
⎣0 0 1
0 1 0
1 0 0

⎤
⎦
⎞
⎠ = −1 �= 0, condition (i) of Theorem 7.2

is satisfied. Since

∂F (Ũ )

∂Ũ
=
⎡
⎣2u

1(1 + u3)2 0 1 + 2(u1)2(1 + u3) 0
0 1 + u4 0 u2

1 + u3 0 u1 0

⎤
⎦ ,

we have that

kerF∗ = span

{
− u2

1 + u4
∂

∂u2
+ ∂

∂u4

}

and

[
∂

∂u1
, − u2

1 + u4
∂

∂u2
+ ∂

∂u4

]
= 0 ∈ kerF∗ + 	1

[
∂

∂u2
, − u2

1 + u4
∂

∂u2
+ ∂

∂u4

]
= − 1

1 + u4
∂

∂u2
∈ kerF∗ + 	2.

Therefore, condition (ii) of Theorem 7.2 is satisfied and F∗(	i ), i = 1, 2, are well-
defined involutive distributions with
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F∗(	1) = span

{
2x3

∂

∂x1
+ ∂

∂x3

}
= span

⎧⎨
⎩
⎡
⎣2x30

1

⎤
⎦
⎫⎬
⎭

F∗(	2) = span

⎧⎨
⎩
⎡
⎣2x30

1

⎤
⎦ ,

⎡
⎣01
0

⎤
⎦
⎫⎬
⎭ .

Hence, by Theorem 7.2, system (7.48) is feedback linearizable. Since d(x1 − x23 ) ∈
(F∗(	1))

⊥, we have that S1(x) = x1 − x23 ,

⎡
⎣z1z2
z3

⎤
⎦ =

⎡
⎣ S1(x)
S1 ◦ F0(x)
S1 ◦ F̂2

0 (x)

⎤
⎦ =

⎡
⎣x1 − x23

x2
x3

⎤
⎦ ,

and

v = S1 ◦ F̂3
u (x) = (1 + x2)u or u = v

1 + x2
= γ (x, v).

Then it is clear that F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z) =
⎡
⎣z2z3

v

⎤
⎦ and

⎡
⎣z1(t + 1)
z2(t + 1)
z3(t + 1)

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣z1(t)z2(t)
z3(t)

⎤
⎦+

⎡
⎣00
1

⎤
⎦ v(t).

�
Example 7.2.8 Show that the following discrete system is not feedback linearizable:

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) + u(t)2

x1(t) + u(t)

]
= Fu(t)(x(t)). (7.49)

Solution By simple calculations, we have that

F (u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) = Fu1 ◦ Fu2

([
(u3)2

u3

])

= Fu1

([
(u2)2 + u3

u2 + (u3)2

])
=
[
(u1)2 + u2 + (u3)2

u1 + (u2)2 + u3

]

and

�(u1, u2) � Fu1 ◦ Fu2(0) = F (u1, u2, 0) =
[
(u1)2 + u2

u1 + (u2)2

]
.
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Since det
(

∂�(U )

∂U

∣∣∣
U=0

)
= det

([
0 1
1 0

])
�= 0, condition (i) of Theorem 7.2 is satis-

fied. Since

∂F (Ũ )

∂Ũ
=
[
2u1 1 2u3

1 2u2 1

]
,

we have that

kerF∗ = span

{
1 − 4u2u3

4u1u2 − 1

∂

∂u1
+ 2(u3 − u1)

4u1u2 − 1

∂

∂u2
+ ∂

∂u3

}

and

[
∂

∂u1
, − u2

1 + u4
∂

∂u2
+ ∂

∂u4

]
= 4u2(4u2u3 − 1)

(4u1u2 − 1)2
∂

∂u1
+ 2(1 − 4u2u3)

(4u1u2 − 1)2
∂

∂u2

/∈ kerF∗ + 	1.

Therefore, (7.40) is not satisfied and F∗(	1) is not a well-defined involutive dis-
tribution. Since condition (ii) of Theorem 7.2 is not satisfied, system (7.49) is not
feedback linearizable. �

7.3 Multi-input Discrete Time Systems

In this section, we consider the following multi-input discrete nonlinear system:

x(t + 1) = F(x(t), u(t)) � Fu(x)

y(t) = h(x(t))
(7.50)

where x ∈ R
n , u ∈ R

m , y ∈ R
q , and F(x, u) : Rn+m → R

n and h(x) are smooth
functions with F(0, 0) = 0 and h(0) = 0.

Definition 7.5 (Kronecker indices)
For the list of mn vectors of the form

(
∂Fu

∂u1

∣∣∣∣
(0,0)

, . . . ,
∂Fu

∂um

∣∣∣∣
(0,0)

,
∂ F̂2

u

∂u1

∣∣∣∣∣
(0,0)

, . . . ,
∂ F̂2

u

∂um

∣∣∣∣∣
(0,0)

, . . . ,
∂ F̂n

u

∂u1

∣∣∣∣∣
(0,0)

, . . . ,

∂ F̂n
u

∂um

∣∣∣∣∣
(0,0)

)
,

delete all vector fields that are linearly dependent on the set of preceding vector fields
and obtain the unique set of linearly independent vectors
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{
∂Fu

∂u1

∣∣∣∣
(0,0)

,
∂ F̂2

u

∂u1

∣∣∣∣∣
(0,0)

, . . . ,
∂ F̂κ1

u

∂u1

∣∣∣∣∣
(0,0)

, . . . ,
∂Fu

∂um

∣∣∣∣
(0,0)

, . . . ,
∂ F̂κm

u

∂um

∣∣∣∣∣
(0,0)

}

or

{
b̄1, Āb̄1, . . . , Ā

κ1−1b̄1, . . . , b̄m, . . . , Āκm−1b̄m
}

where Ā � ∂Fu(x)
∂x

∣∣∣
(0,0)

and b̄ j � ∂Fu(x)
∂u j

∣∣∣
(0,0)

. Then, (κ1, . . . , κm) are said to be the

Kronecker indices of system (7.50).

In other words, κi is the smallest nonnegative integer such that for 1 ≤ i ≤ m,

∂ F̂κi+1
u

∂ui

∣∣∣∣∣
(0,0)

∈span
{

∂ F̂�
u

∂u j

∣∣∣∣∣
(0,0)

∣∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ κi

}

+ span

{
∂ F̂κi+1

u

∂u j

∣∣∣∣∣
(0,0)

∣∣∣∣∣ 1 ≤ j ≤ i − 1

}
.

If
n∑

i=1
κi = n, then system (7.5) is reachable on a neighborhood of the origin. Let

κmax � max{κi , 1 ≤ i ≤ m} and for 1 ≤ i ≤ κmax + 1,

ūi �
{
uij |κ j ≥ i

}
and ũi �

{
uij |κ j + 1 ≥ i

}
.

For example, if (κ1, κ2, κ3) = (3, 1, 2), then we have that ū1 = [u11 u12 u13]T = ũ1,
ū2 = [u21 u23]T, ũ2 = [u21 u22 u23]T, ū3 = u31, ũ

3 = [u31 u33]T, and ũ4 = u41. Let us define

composite functions � : Rn → R
n and F : Rm+

n∑
i=1

κi → R
n as follows:

�(U ) � Fu1 ◦ · · · ◦ Fun (0)|uij=0, i≥κ j+1

= Fu1 ◦ · · · ◦ Fuκmax (0)|uij=0, i≥κ j+1

(7.51)

F (Ũ ) � Fu1 ◦ · · · ◦ Fun ◦ Fun+1(0)|uij=0, i≥κ j+2

= Fu1 ◦ · · · ◦ Fuκmax ◦ Fuκmax+1(0)|uij=0, i≥κ j+2

(7.52)

where ui = [ui1 · · · uim]T, i ≥ 1, and

U �
[(
ū1
)T · · · (ūκmax)T

]T

Ũ �
[(
ũ1
)T · · · (ũκmax)

T (ũκmax+1
)T]T

.
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Then, it is clear that

�(U ) = F (Ũ )

∣∣∣
u

κi+1
i =0

(7.53)

and

F (Ũ ) = Fũ1 ◦ �(ũ2, . . . , ũκmax+1). (7.54)

Also, it is easy to see that for 1 ≤ j ≤ m and 1 ≤ i ≤ κ j ,

∂�(U )

∂uij

∣∣∣∣∣
U=0

=
(

∂Fu(x)

∂x

∣∣∣∣
(0,0)

)i−1
∂Fu(x)

∂u j

∣∣∣∣
(0,0)

.

Thus, it is clear that ∂�(U )

∂U

∣∣∣
U=0

is nonsingular, if and only if
m∑
j=1

κ j = n.

Example 7.3.1 Let ∂�(U )

∂U

∣∣∣
U=0

be nonsingular. Suppose that F∗
(

∂

∂uij

)
is a well-

defined vector field for 1 ≤ j ≤ m and 1 ≤ i ≤ κ j . Show that for 1 ≤ j ≤ m and
1 ≤ i ≤ κ j ,

F∗

(
∂

∂uij

)
= �∗

(
∂

∂uij

)
. (7.55)

Solution Omitted. (See Problem 7.4.) �
Example 7.3.2 The Kronecker indices of the nonlinear discrete time system are
invariant under state transformation. In other words, the Kronecker indices of system
(7.5) and those of system (7.9) are the same.

Solution Omitted. (See Problem 7.5.) �
Suppose that (κ1, . . . , κm) are the Kronecker indices of system (7.50). Then, the

multi-input version of Theorem 7.1 can be obtained as follows.

Theorem 7.3 (conditions for linearization by state transformation)
System (7.50) is state equivalent to a linear system, if and only if

(i) ∂�(U )

∂U

∣∣∣
U=0

is nonsingular or
m∑
j=1

κ j = n.

(ii) F∗
(

∂

∂uij

)
, 1 ≤ j ≤ m, 1 ≤ i ≤ κ j + 1, are well-defined vector fields or

[
∂

∂uij
, ker(F∗)

]
⊂ ker(F∗), 1 ≤ j ≤ m, 1 ≤ i ≤ κ j + 1. (7.56)
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Furthermore, z = S(x) = �−1(x) is a linearizing state transformation.

Proof Necessity. Suppose that system (7.50) is state equivalent to a linear system
with state transformation z = S(x). Then we have

z(t + 1) = S ◦ Fu(t) ◦ S−1(z(t))

� F̃u(t)(z(t)) = Az(t) + Bu(t)
(7.57)

where

rank
([b1 Ab1 · · · Aκ1−1b1 · · · bm · · · Aκm−1bm]) = n. (7.58)

Since Fu(x) = S−1 ◦ F̃u ◦ S(x), F̃u(z) = Az + Bu, and S(0) = 0, it is easy to see,
by Examples 7.1.3 and 7.1.4, that

�(U ) = S−1

⎛
⎜⎜⎝

κmax∑
i=1

m∑
j=1
κ j≥i

Ai−1b ju
i
j

⎞
⎟⎟⎠

F (Ũ ) = S−1

⎛
⎜⎜⎝

κmax+1∑
i=1

m∑
j=1

κ j+1≥i

Ai−1b ju
i
j

⎞
⎟⎟⎠

(7.59)

which implies that

∂�(U )

∂Û

∣∣∣∣
U=0

= ∂S−1(z)

∂z

∣∣∣∣
z=0

[
b1 · · · Aκ1−1b1 · · · bm · · · Aκm−1bm

]
(7.60)

where Û = [u11 · · · uκ1
1 · · · u1m · · · uκm

m ]T. Since ∂S−1(z)
∂z

∣∣∣
z=0

is nonsingular, it is clear,

by (7.58), that ∂�(U )

∂Û

∣∣∣
U=0

(or ∂�(U )

∂U

∣∣∣
U=0

) is nonsingular. Also, it is clear, by (7.59),

that for 1 ≤ j ≤ m and 1 ≤ i ≤ κ j + 1,

F∗

(
∂

∂uij

)
= (S−1)∗(Ai−1b j ) (7.61)

which implies that F∗
(

∂

∂uij

)
, 1 ≤ j ≤ m, 1 ≤ i ≤ κ j + 1, are well-defined vector

fields and (7.56) is, by Theorem 2.6, satisfied..
Sufficiency. Suppose that system (7.50) satisfies conditions (i) and (ii). By con-

dition (i), it is clear that z = S(x) = �−1(x) is a state transformation on a neigh-
borhood of the origin. We will show that system (7.50) satisfies, in z-coordinates, a
linear system. In other words, we will show that
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F̃u(z) � �−1 ◦ Fu ◦ �(z) = Az + Bu (7.62)

for some constant matrices A and B. If we let

Y i
j = F∗

(
∂

∂uij

)
, 1 ≤ j ≤ m, 1 ≤ i ≤ κ j + 1, (7.63)

then we have, by Theorem 2.4 and (7.55), that for 1 ≤ j ≤ m, 1 ≤ j̄ ≤ m, 1 ≤ i ≤
κ j + 1, and 1 ≤ ī ≤ κ j + 1,

[
Y i
j , Y ī

j̄

]
= F∗

⎛
⎝
⎡
⎣ ∂

∂uij
,

∂

∂uī
j̄

⎤
⎦
⎞
⎠ = F∗(0) = 0 (7.64)

and for 1 ≤ j ≤ m and 1 ≤ i ≤ κ j ,

�∗

(
∂

∂uij

)
= Y i

j . (7.65)

Thus, it is clear, by condition (i), that {Y i
j | 1 ≤ j ≤ m, 1 ≤ i ≤ κ j } is a set of

linearly independent vector fields on a neighborhood of the origin. Also, we have,
by Example 2.4.20, that for 1 ≤ j ≤ m,

Y
κ j+1
j =

m∑
k=1

κk∑
i=1

a j
k,i Y

i
k (7.66)

for some constant a j
k,i ∈ R. It is easy to see, by (7.13), that Fu ◦ �(z) = F (u, z) and

F̃(z, u) � F̃u(z) = �−1 ◦ Fu ◦ �(z) = �−1 ◦ F (u, z). (7.67)

Thus, we have, by (7.63), (7.65), and (7.67), that for 1 ≤ j ≤ m,

F̃(z, u)∗
(

∂

∂u j

)
= (�−1 ◦ F (u, z)

)
∗

(
∂

∂u j

)
= (�−1)∗(F (u, z))∗

(
∂

∂u j

)

= (�−1)∗
(
Y 1
j

) = ∂

∂z1j
.

(7.68)

Similarly, it is easy to see, by (7.63), (7.65), (7.66), and (7.67), that for 1 ≤ j ≤ m
and 1 ≤ i ≤ κ j − 1,
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F̃(z, u)∗

(
∂

∂zij

)
= (�−1 ◦ F (u, z))∗

(
∂

∂zij

)

= (�−1)∗(Y i+1
j ) = ∂

∂zi+1
j

(7.69)

and

F̃(z, u)∗

(
∂

∂z
κ j

j

)
= (�−1 ◦ F (u, z))∗

(
∂

∂z
κ j

j

)
= (�−1)∗

(
Y

κ j+1
j

)

= (�−1)∗

(
m∑

k=1

κk∑
i=1

a j
k,i Y

i
k

)
=

m∑
k=1

κk∑
i=1

a j
k,i

∂

∂zik
.

(7.70)

Therefore, it is clear, by (7.68)–(7.70), that

F̃(z, u) = Az + Bu

for some constant matrices A and B.

Let û = [uκ1+1
1 · · · uκm+1

m

]T
, Ū = [UT ûT

]T
, and ∂Ū

∂Ũ
= P . It is easy to see that

∂F (Ũ )

∂U

∣∣∣
Ũ=O

= ∂�(U )

∂U

∣∣∣
U=O

. Thus, if condition (i) of Theorem 7.3 is satisfied, then it

is clear that

∂F (Ũ )

∂Ũ
= ∂F (Ũ )

∂Ū

∂Ū

∂Ũ
=
[

∂F (Ũ )

∂U
∂F (Ũ )

∂ û

]
P

and

kerF∗ = span
{
Y1(Ũ ), . . . ,Ym(Ũ )

}
(7.71)

where

Y (Ũ ) = [Y1(Ũ ) · · · Ym(Ũ )
]

� P−1

[
−
(

∂F (Ũ )

∂U

)−1
∂F (Ũ )

∂ û

Im

]
.

(Refer to MATLAB subfunction ker-sF-M.)

Example 7.3.3 Show that the following discrete time system is state equivalent to
a linear system:

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t) − u1(t)2

u1(t)
u2(t) − u1(t)2

⎤
⎦ = Fu(t)(x(t)). (7.72)
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Solution Since ∂Fu(x)
∂x

∣∣∣
(0,0)

=
⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦ and ∂Fu(x)

∂u

∣∣∣
(0,0)

=
⎡
⎣0 0
1 0
0 1

⎤
⎦, we have, by sim-

ple calculation, that (κ1, κ2) = (2, 1). Since κ1 + κ2 = 3, condition (i) of Theo-
rem 7.3 is satisfied. Also, it is easy to see, by (7.51) and (7.52), that

F (u11, u
1
2, u

2
1, u

2
2, u

3
1) � Fu1 ◦ Fu2 ◦ Fu3(0)|u32=0 = Fu1 ◦ Fu2

⎛
⎝
⎡
⎣−(u31)

2

u31−(u31)
2

⎤
⎦
⎞
⎠

= Fu1

⎛
⎝
⎡
⎣u

3
1 − (u21)

2

u21
u22 − (u21)

2

⎤
⎦
⎞
⎠ =

⎡
⎣u

2
1 − (u11)

2

u11
u12 − (u11)

2

⎤
⎦

and

�(u11, u
1
2, u

2
1) � Fu1 ◦ Fu2(0)|u22=0 = F (u11, u

1
2, u

2
1, 0, 0) =

⎡
⎣u

2
1 − (u11)

2

u11
u12 − (u11)

2

⎤
⎦ .

Since ∂F (u11,u
1
2,u

2
1,u

2
2,u

3
1)

∂Ũ
=
⎡
⎣−2u11 0 1 0 0

1 0 0 0 0
−2u11 1 0 0 0

⎤
⎦, we have that

kerF∗ = span

{
∂

∂u22
,

∂

∂u31

}

and for 1 ≤ j ≤ 2 and 1 ≤ i ≤ κ j + 1,

[
∂

∂uij
,

∂

∂u22

]
= 0 ∈ kerF∗ ;

[
∂

∂uij
,

∂

∂u31

]
= 0 ∈ kerF∗.

Thus, it is clear, by Theorem 2.6, that F∗
(

∂

∂uij

)
, 1 ≤ j ≤ 2, 1 ≤ i ≤ κ j + 1, are

well-defined vector fields and condition (ii) of Theorem 7.3 is satisfied. Hence, by
Theorem 7.3, system (7.72) is state equivalent to a linear system. Let

⎡
⎣x1x2
x3

⎤
⎦ = S−1(z) = �(z) =

⎡
⎣z3 − z21

z1
z2 − z21

⎤
⎦

or
⎡
⎣z1z2
z3

⎤
⎦ = S(x) = �−1(x) =

⎡
⎣ x2
x3 + x22
x1 + x22

⎤
⎦ .
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Then it is easy to see that

F̃u(z) = S ◦ Fu ◦ S−1(z) = S

⎛
⎝
⎡
⎣z1 − u21

u1
u2 − u21

⎤
⎦
⎞
⎠ =

⎡
⎣0 0 0
0 0 0
1 0 0

⎤
⎦
⎡
⎣z1z2
z3

⎤
⎦+

⎡
⎣1 0
0 1
0 0

⎤
⎦ u.

�

Example 7.3.4 Show that the following discrete time system is not state equivalent
to a linear system:

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣ x2(t)

x1(t)2 + u1(t)
x1(t)u1(t) + u2(t)

⎤
⎦ = Fu(t)(x(t)). (7.73)

Solution Since ∂Fu(x)
∂x

∣∣∣
(0,0)

=
⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦ and ∂Fu(x)

∂u

∣∣∣
(0,0)

=
⎡
⎣0 0
1 0
0 1

⎤
⎦, we have, by sim-

ple calculation, that (κ1, κ2) = (2, 1). Since κ1 + κ2 = 3, condition (i) of Theo-
rem 7.3 is satisfied. Also, it is easy to see, by (7.52), that

F (u11, u
1
2, u

2
1, u

2
2, u

3
1) � Fu1 ◦ Fu2 ◦ Fu3(0)|u32=0 = Fu1 ◦ Fu2

⎛
⎝
⎡
⎣ 0
u31
0

⎤
⎦
⎞
⎠

= Fu1

⎛
⎝
⎡
⎣u

3
1

u21
u22

⎤
⎦
⎞
⎠ =

⎡
⎣ u21

(u31)
2 + u11

u31u
1
1 + u12

⎤
⎦ .

Since ∂F (u11,u
1
2,u

2
1,u

2
2,u

3
1)

∂Ũ
=
⎡
⎣ 0 0 1 0 0
1 0 0 0 2u31
u31 1 0 0 u11

⎤
⎦, we have that

kerF∗ = span

{
∂

∂u22
,−2u31

∂

∂u11
+ (2(u31)

2 − u11)
∂

∂u12
+ ∂

∂u31

}

= span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

−2u31
2(u31)

2 − u11
0
0
1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and
[

∂

∂u11
,−2u31

∂

∂u11
+ (2(u31)

2 − u11)
∂

∂u12
+ ∂

∂u31

]
= − ∂

∂u12
/∈ kerF∗.
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Thus, it is clear, by Theorem 2.6, that F∗
(

∂

∂u11

)
is not a well-defined vector field and

condition (ii) of Theorem 7.3 is not satisfied. Hence, by Theorem 7.3, system (7.73)
is not state equivalent to a linear system. �

It is clear that system (7.73) is linearizable by using feedback

[
u1(t)
u2(t)

]
= γ (x(t),

v(t)) =
[ −x1(t)2 + v1(t)
x1(t)3 − x1(t)v1(t) + v2(t)

]
. In the following, we consider the feedback

linearization ofmulti-input discrete time systems. In otherwords, the discrete version
of Lemma 4.3 and Theorem 4.3 will be obtained.

Example 7.3.5 Suppose that for 1 ≤ i ≤ m and 1 ≤ � ≤ κi − 1,

∂

∂u

(
Si1 ◦ F̂�

u (x)
)

= 0 ; det

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
(
S11◦F̂κ1

u (x)
)

∂u

∣∣∣∣
(0,0)

...

∂
(
Sm1◦F̂κm

u (x)
)

∂u

∣∣∣∣
(0,0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0. (7.74)

Show that

rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂S11(x)
∂x
...

∂
(
S11◦Fκ1−1

0 (x)
)

∂x
...

∂Sm1(x)
∂x
...

∂
(
Sm1◦Fκm−1

0 (x)
)

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= n (7.75)

and

rank
([
b̄1 Āb̄1, . . . , Āκ1−1b̄1 · · · b̄m · · · Āκm−1b̄m

]) = n (7.76)

where Ā � ∂Fu(x)
∂x

∣∣∣
(0,0)

and b̄ j � ∂Fu(x)
∂u j

∣∣∣
(0,0)

.

Solution Omitted. (See Problem 7.6.) �

Lemma 7.2 System (7.50) is feedback linearizable, if and only if there exist smooth
functions Si1(x) : Rn → R, 1 ≤ i ≤ m, such that for 1 ≤ i ≤ m,

(i) ∂
∂u

(
Si1 ◦ F̂�

u (x)
)

= 0, 1 ≤ � ≤ κi − 1.
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(ii) det

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
(
S11◦F̂κ1

u (x)
)

∂u

∣∣∣∣
(0,0)

...

∂
(
Sm1◦F̂κm

u (x)
)

∂u

∣∣∣∣
(0,0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0.

Furthermore, state transformation z = S(x) and feedback u = γ (x, v) satisfy

S(x) = [S11(x) · · · S11 ◦ Fκ1−1
0 (x) · · · Sm1(x) · · · Sm1 ◦ Fκm−1

0 (x)
]T

(7.77)

and

⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ =

⎡
⎢⎣
S11 ◦ F̂κ1

γ (x,v)(x)
...

Sm1 ◦ F̂κm
γ (x,v)(x)

⎤
⎥⎦ . (7.78)

Proof Necessity. Suppose that system (7.50) is feedback linearizable. Then, there
exist a state transformation z = S(x) and a nonsingular feedback u = γ (x, v)(
det

(
∂γ (x,v)

∂v

∣∣∣
(0,0)

)
�= 0

)
such that

F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z) = Az + Bv.

Thus, we have that for 1 ≤ i ≤ m,

⎡
⎢⎢⎢⎣

Si1 ◦ Fγ (x,v)(x)
...

Si(κi−1) ◦ Fγ (x,v)(x)
Siκi ◦ Fγ (x,v)(x)

⎤
⎥⎥⎥⎦ = AS(x) + Bv =

⎡
⎢⎢⎢⎣
Si2(x)

...

Siκi (x)
vi

⎤
⎥⎥⎥⎦ .

In other words, for 1 ≤ i ≤ m and 1 ≤ � ≤ κi − 1,

Si(�+1)(x) = Si� ◦ Fγ (x,v)(x)

and

vi = Siκi ◦ Fγ (x,v)(x)

which imply that for 1 ≤ i ≤ m and 1 ≤ � ≤ κi − 1,

0 = ∂
(
Si� ◦ Fγ (x,v)(x)

)
∂v

= ∂ (Si� ◦ Fu(x))

∂u

∣∣∣∣
u=γ (x,v)

∂γ (x, v)

∂v
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and

Im =

⎡
⎢⎢⎣

∂(S1κ1◦Fγ (x,v)(x))
∂v
...

∂(Smκm ◦Fγ (x,v)(x))
∂v

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂(S1κ1◦Fu(x))
∂u
...

∂(Smκm ◦Fu(x))
∂u

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
u=γ (x,v)

∂γ (x, v)

∂v
.

Since ∂γ (x,v)

∂v
�= 0, it is easy to see that for 1 ≤ i ≤ m and 1 ≤ � ≤ κi − 1,

Si(�+1)(x) = Si� ◦ F0(x) ; ∂ (Si� ◦ Fu(x))

∂u
= 0

and

⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ =

⎡
⎢⎣
S1κ1 ◦ Fγ (x,v)(x)

...

Smκm ◦ Fγ (x,v)(x)

⎤
⎥⎦ ; det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

∂(S1κ1◦Fu(x))
∂u

∣∣∣
(0,0)

...
∂(Smκm ◦Fu(x))

∂u

∣∣∣
(0,0)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ �= 0.

In other words, for 1 ≤ i ≤ m and 1 ≤ � ≤ κi − 1,

Si(�+1)(x) = Si1 ◦ F�
0 (x) = Si1 ◦ F̂�

u (x) ;
∂
(
Si1 ◦ F̂�

u (x)
)

∂u
= 0

and

⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ =

⎡
⎢⎣
S11 ◦ F̂κ1

γ (x,v)(x)
...

Sm1 ◦ F̂κm
γ (x,v)(x)

⎤
⎥⎦ ; det

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
(
S11◦F̂κ1

u (x)
)

∂u

∣∣∣∣
(0,0)

...

∂
(
Sm1◦F̂κm

u (x)
)

∂u

∣∣∣∣
(0,0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0

which imply that conditions (i), (ii), (7.77), and (7.78) are satisfied.
Sufficiency. Suppose that there exist smooth functions Si1(x), 1 ≤ i ≤ m, such

that conditions (i) and (ii) are satisfied. Let us define state transformation

z = [z11 · · · z1κ1 · · · zm1 · · · zmκm

]T = S(x)

and feedback u = γ (x, v) as (7.77) and (7.78), respectively. Then it is clear, by
Example 7.3.5, that z = S(x) is a state transformation. Also, it is easy to see, by
conditions (i), (7.77), and (7.78), that
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F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 ◦ F̂γ (x,v) ◦ S−1(z)
S11 ◦ F̂2

γ (x,v) ◦ S−1(z)
...

S11 ◦ F̂κ1
γ (x,v) ◦ S−1(z)

...

Sm1 ◦ F̂γ (x,v) ◦ S−1(z)
Sm1 ◦ F̂2

γ (x,v) ◦ S−1(z)
...

Sm1 ◦ F̂κm
γ (x,v) ◦ S−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 ◦ F̂0 ◦ S−1(z)
...

S11 ◦ F̂κ1−1
0 ◦ S−1(z)

S11 ◦ F̂κ1
γ (x,v)(x)

∣∣∣
x=S−1(z)

...

Sm1 ◦ F̂0 ◦ S−1(z)
...

Sm1 ◦ F̂κm−1
0 ◦ S−1(z)

Sm1 ◦ F̂κm
γ (x,v)(x)

∣∣∣
x=S−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z12
...

z1κ1
v1
...

z12
...

z1κ1
v1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Lemma 7.2, the necessary and sufficient conditions for feedback linearization
can be obtained as follows.

Theorem 7.4 (conditions for feedback linearization)
System (7.50) is feedback linearizable, if and only if

(i) ∂�(U )

∂U

∣∣∣
U=0

is nonsingular or
m∑
j=1

κ j = n.

(ii) F∗(	i ), 1 ≤ i ≤ κmax − 1, are well-defined involutive distributions or

[
∂

∂ui�
, kerF∗

]
⊂ kerF∗ + 	i , 1 ≤ i ≤ κmax − 1, κ� ≥ i − 1 (7.79)

where for 1 ≤ i ≤ κmax − 1,

	i � span

{
∂

∂u�
j

∣∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ min(i, κ j + 1)

}
. (7.80)

Proof Necessity. Suppose that system (7.50) is feedback linearizable. Then, by
Lemma 7.2, there exist smooth functions Si1(x), 1 ≤ i ≤ m, such that for 1 ≤ i ≤ m
and 1 ≤ � ≤ κi − 1,

∂

∂u

(
Si1 ◦ F̂�

u (x)
)

= 0 ; det

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
(
S11◦F̂κ1

u (x)
)

∂u

∣∣∣∣
(0,0)

...

∂
(
Sm1◦F̂κm

u (x)
)

∂u

∣∣∣∣
(0,0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0. (7.81)
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Thus, by Example 7.3.5, condition (i) is satisfied. Let F̃u(z) � S ◦ Fu ◦ S−1(z),
where

z �
[
z11 z12 · · · z1κ1 · · · zm1 · · · zmκm

]T = S(x)

= [S11(x) · · · S11 ◦ Fκ1−1
0 (x) · · · Sm1(x) · · · Sm1 ◦ Fκm−1

0 (x)
]T

.

Then it is easy to see, by (7.81), that for 1 ≤ i ≤ m,

det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

∂α1,u(z)
∂u

∣∣∣
(0,0)

...
∂αm,u(z)

∂u

∣∣∣
(0,0)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ �= 0 (7.82)

and

F̃u(z) �

⎡
⎢⎣
F̃1,u(z)

...

F̃m,u(z)

⎤
⎥⎦ , F̃i,u(z) =

⎡
⎢⎢⎢⎣

zi2
...

ziκi
αi,u(z)

⎤
⎥⎥⎥⎦ , F̃ (Ũ ) �

⎡
⎢⎣
F̃1(Ũ )

...

F̃m(Ũ )

⎤
⎥⎦

F̃i (Ũ ) � F̃i,u1 ◦ · · · ◦ F̃un+1(0)

=

⎡
⎢⎢⎢⎣

αi,uκi ◦ F̃uκi+1 ◦ · · · ◦ F̃un+1(0)
...

αi,u2 ◦ F̃u3 ◦ · · · ◦ F̃un+1(0)
αi,u1 ◦ F̃u2 ◦ · · · ◦ F̃un+1(0)

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
uij=0, i≥κ j+2

(7.83)

where αi,u(z) � Si1 ◦ Fκi−1
0 ◦ Fu ◦ S−1(z) = Si1 ◦ F̂κi

u ◦ S−1(z). Thus, it is clear, by
(7.82) and (7.83), that

F̃∗(	1) = F̃∗
(
span

{
∂

∂u11
, · · · ,

∂

∂u1m

})
= span

{
∂

∂z1κ1
, . . . ,

∂

∂zmκm

}
.

In this manner, we can show, by (7.82) and (7.83), that for 1 ≤ i ≤ κmax,

F̃∗(	i ) = F̃∗

(
span

{
∂

∂u�
j

∣∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ min(i, κ j + 1)

})

= span

{
∂

∂z j (κ j+1−�)

∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ min(i, κ j )

}

which implies that F̃∗(	i ), 1 ≤ i ≤ κmax, are well-defined involutive distributions.
It is clear, by Example 7.1.4, that
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F (Ũ ) = S−1 ◦ F̃ (Ũ )

and for 1 ≤ i ≤ κmax,

F∗(	i ) =
(
S−1 ◦ F̃

)
∗
(	i )

= S−1
∗

(
span

{
∂

∂z j (κ j+1−�)

∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ min(i, κ j )

})
.

Since x = S−1(z) is invertible, F∗(	i ), 1 ≤ i ≤ κmax, are also well-defined involu-
tive distributions and (7.79) is, by Theorem 2.10, satisfied. Therefore, condition (ii)
is satisfied.

Sufficiency. Suppose that conditions (i) and (ii) are satisfied. Without loss of
generality, we can assume that κmax = κ1 and

κ1 ≥ κ2 ≥ · · · κm .

Letμi � card{ j |1 ≤ j ≤ m and κ j ≥ i} for 0 ≤ i ≤ κ1. For example, if (κ1, κ2, κ3)
= (4, 2, 1), then it is clear that (μ0, μ1, μ2, μ3, μ4, μ5) = (3, 3, 2, 1, 1, 0). Then, it

is easy to see that μ0 = m,
κ1∑

�=1
μ� =

m∑
�=1

κ� = n, and for 1 ≤ i ≤ κ1,

	i � span

{
∂

∂u�
j

∣∣∣∣∣ 1 ≤ j ≤ μ�−1, 1 ≤ � ≤ i

}
.

By condition (ii), Di = F∗(	i ) is a

(
i∑

�=1
μ�

)
-dimensional well-defined involu-

tive distribution for 1 ≤ i ≤ κmax = κ1 and D1 ⊂ D2 ⊂ · · · ⊂ Dκ1 . Thus, there
exists, by the Frobenius Theorem (or Theorem 2.8), a state transformation ξ =
[ξ11 · · · ξ1κ1 · · · ξm1 · · · ξmκm ]T = S̃(x) such that for 1 ≤ i ≤ κ1,

D̃i � S̃∗

(
F∗

(
span

{
∂

∂u�
j

∣∣∣∣∣ 1 ≤ j ≤ μ�−1, 1 ≤ � ≤ i

}))

= span

{
∂

∂ξ
(κ j+1−�)

j

∣∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ min(i, κ j )

}
.

(7.84)

Let F̃u(ξ) � S̃ ◦ Fu ◦ S̃−1(ξ). Then, we have, by Example 7.1.4, that

F̃ (Ũ ) � Fũ1 ◦ · · · ◦ Fũκ1+1(0) = S̃ ◦ F (Ũ )

where for 1 ≤ i ≤ m, 1 ≤ � ≤ κ1 + 1,
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ũ� �

⎡
⎢⎢⎢⎣

u�
1
...

u�
μ�−1

O(m−μ�)×1

⎤
⎥⎥⎥⎦ �

[
Ũ �

O(m−μ�)×1

]
; Ũ �

⎡
⎢⎣

Ũ 1

...

Ũ κ1+1

⎤
⎥⎦

U � �

⎡
⎢⎣
u�
1
...

u�
μ�

⎤
⎥⎦ ; U �

⎡
⎢⎣
U 1

...

U κ1

⎤
⎥⎦ ; Ū � �

[
U �

O(μ�−1−μ�)×1

]

F̃ (Ũ ) �

⎡
⎢⎣
F̃1(Ũ )

...

F̃m(Ũ )

⎤
⎥⎦ ; F̃i (Ũ ) �

⎡
⎢⎣
F̃i,1(Ũ )

...

F̃i,κi (Ũ )

⎤
⎥⎦ .

Therefore, it is easy to see, by (7.84), that for 1 ≤ i ≤ m, 1 ≤ j ≤ κi ,

∂

∂Ũ �
F̃i j (Ũ ) = 0, 1 ≤ � ≤ j − 1 ; det

⎛
⎜⎝
⎡
⎢⎣

∂
∂U j F̃1 j (Ũ )

...
∂

∂U j F̃μ j j (Ũ )

⎤
⎥⎦
⎞
⎟⎠ �= 0.

In other words, we have that for 1 ≤ i ≤ m,

F̃i (Ũ ) =

⎡
⎢⎢⎢⎢⎢⎣

αi1(Ũ 1, . . . , Ũ κi+1)

αi2(Ũ 2, . . . , Ũ κi+1)
...

αi(κi−1)(Ũ κi−1, Ũ κi , Ũ κi+1)

αiκi (Ũ
κi , Ũ κi+1)

⎤
⎥⎥⎥⎥⎥⎦

�̃i (U ) = F̃i (Ū
1, . . . , Ū κ1 , O) =

⎡
⎢⎢⎢⎢⎢⎣

α̂i1(U 1, . . . ,U κi )

α̂i2(U 2, . . . ,U κi )
...

α̂i(κi−1)(U κi−1,U κi )

α̂iκi (U
κi )

⎤
⎥⎥⎥⎥⎥⎦

(7.85)

where αi j (Ũ j , . . . , Ũ κ1 , Ũ κ1+1) � F̃i j (O, . . . , O, Ũ j , . . . , Ũ κ1+1) and for 1 ≤ i ≤
m, 1 ≤ j ≤ κi ,

α̂i j (U
j , . . . ,U κi ) � αi j (Ū

j , . . . , Ū κi , O)

det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

∂α1 j (U j ,...,U κ1+1)

∂U j

...
∂αμ j j (U

j ,...,U
κμ j +1

)

∂U j

⎤
⎥⎥⎦

⎞
⎟⎟⎠ �= 0; det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

∂α̂1 j (U j ,...,U κ1 )

∂U j

...
∂α̂μ j j (U

j ,...,U
κμ j )

∂U j

⎤
⎥⎥⎦

⎞
⎟⎟⎠ �= 0.

(7.86)
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α̂i j (U
j , . . . ,U κi ) � αi j (Ū

j , . . . , Ū κi , O)

det

⎛
⎜⎝
⎡
⎢⎣

∂
∂U j α̂1 j (U j , . . . ,U κ1)

...
∂

∂U j α̂μ j j (U
j , . . . ,U κμ j )

⎤
⎥⎦
⎞
⎟⎠ �= 0.

Thus, it is clear that there exist smooth functions ᾱi (ξ
i , . . . , ξ κ1) : R

κ1∑
�=i

μ� → R
μi ,

1 ≤ i ≤ n, such that for 1 ≤ i ≤ κ1,

⎡
⎢⎣

α̂1i (ᾱi (ξ
i , . . . , ξ κ1), . . . , ᾱκ1(ξ

κ1))
...

α̂μi i (ᾱi (ξ
i , . . . , ξ κ1), . . . , ᾱκμi

(ξκμi , . . . , ξ κμ1 ))

⎤
⎥⎦ =

⎡
⎢⎣

ξ i
1
...

ξ i
μi

⎤
⎥⎦ � ξ i

or

⎡
⎢⎣
U 1

...

U κ1

⎤
⎥⎦ = �̃−1(ξ) =

⎡
⎢⎢⎢⎢⎢⎣

ᾱ1(ξ
1, . . . , ξ κ1)

ᾱ2(ξ
2, . . . , ξ κ1)

...

ᾱκ1−1(ξ
κ1−1, ξ κ1)

ᾱκ1(ξ
κ1)

⎤
⎥⎥⎥⎥⎥⎦

. (7.87)

Since F̃u ◦ �̃(U ) = F̃ (u,U ) by (7.54), we have that for 1 ≤ i ≤ m,

F̃i,u(ξ) = F̃i (u, �−1(ξ)) =

⎡
⎢⎢⎢⎢⎢⎣

α̃i1(u, ξ 1, . . . , ξ κi )

α̃i2(ξ
1, . . . , ξ κi )

...

α̃i(κi−1)(ξ
κi−2, ξ κi−1, ξ κi )

α̃iκi (ξ
κi−1, ξ κi )

⎤
⎥⎥⎥⎥⎥⎦

(7.88)

where for 1 ≤ i ≤ m and 2 ≤ � ≤ κi ,

α̃i1(u, ξ 1, . . . , ξ κi ) � αi1(u, ᾱ1(ξ
1, . . . , ξ κi ), . . . , ᾱκi (ξ

κi ))

α̃i�(ξ
i−1, . . . , ξ κi ) � αi�(ᾱi−1(ξ

i−1, . . . , ξ κi ), . . . , ᾱκi (ξ
κi )).

Let h̃i (ξ) = ξ
κi
i for 1 ≤ i ≤ m. Then, we have that h̃i ◦ ˆ̃Fu(ξ) = α̃iκi (ξ

κi−1, ξ κi ) �
Hi1(ξ

κi−1, ξ κi ) = h̃i (ξ) ◦ ˆ̃F0(ξ) and
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h̃i ◦ ˆ̃F
2

u(ξ) = Hi1

⎛
⎜⎝
⎡
⎢⎣

α̃1(κi−1)(ξ
κi−2, ξ κi−1, ξ κi )

...

α̃μκi−1(κi−1)(ξ
κi−2, ξ κi−1, ξ κi )

⎤
⎥⎦ ,

⎡
⎢⎣

α̃1κi (ξ
κi−1, ξ κi )
...

α̃μκi κi
(ξκi−1, ξ κi )

⎤
⎥⎦
⎞
⎟⎠

� Hi2(ξ
κi−2, ξ κi−1, ξ κi ) = h̃i ◦ ˆ̃F

2

0(ξ).

In this manner, it is easy to show, by (7.86) and (7.88), that for 1 ≤ i ≤ m and
2 ≤ � ≤ κi − 1,

h̃i ◦ ˆ̃F
�

u(ξ) = h̃i ◦ ˆ̃F
�

0(ξ) ; det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

(
h̃1◦ ˆ̃F

κ1

u (ξ)

)

∂u

∣∣∣∣∣∣
(0,0)

...

∂

(
h̃m◦ ˆ̃F

κm

u (ξ)

)

∂u

∣∣∣∣∣∣
(0,0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�= 0

or

h̃i ◦ S̃ ◦ F̂�
u (x) = h̃i ◦ S̃ ◦ F̂�

0 (x) ; det

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
(
h̃1◦S̃◦F̂κi

u (x)
)

∂u

∣∣∣∣
(0,0)

...

∂
(
h̃m◦S̃◦F̂κi

u (x)
)

∂u

∣∣∣∣
(0,0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0.

Therefore, Si1(x) � h̃i ◦ S̃(x) = S̃iκi (x), 1 ≤ i ≤ m, satisfy conditions (i) and (ii)
of Lemma 7.2. Hence, by Lemma 7.2, system (7.50) is feedback linearizable.

It is clear that if condition (ii) of Theorem 7.3 is satisfied, then condition (ii) of
Theorem 7.4 is satisfied. In other words, if a system is state equivalent to a linear
system, then it is also feedback linearizable.

Example 7.3.6 Show that system (7.73) is feedback linearizable.

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣ x2(t)

x1(t)2 + u1(t)
x1(t)u1(t) + u2(t)

⎤
⎦ = Fu(t)(x(t)).

Solution In Example 7.3.4, we have that (κ1, κ2) = (2, 1),

F (u11, u
1
2, u

2
1, u

2
2, u

3
1) =

⎡
⎣ u21

(u31)
2 + u11

u31u
1
1 + u12

⎤
⎦
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and

kerF∗ = span

{
∂

∂u22
,−2u31

∂

∂u11
+ (2(u31)

2 − u11)
∂

∂u12
+ ∂

∂u31

}
.

Since 	1 = span
{

∂

∂u11
, ∂

∂u12

}
, it is easy to see that

[
∂

∂u11
,

∂

∂u22

]
= 0 ∈ kerF∗ + 	1 ;

[
∂

∂u12
,

∂

∂u22

]
= 0 ∈ kerF∗ + 	1

[
∂

∂u11
,−2u31

∂

∂u11
+ (2(u31)

2 − u11)
∂

∂u12
+ ∂

∂u31

]
= − ∂

∂u12
∈ kerF∗ + 	1

[
∂

∂u12
,−2u31

∂

∂u11
+ (2(u31)

2 − u11)
∂

∂u12
+ ∂

∂u31

]
= 0 ∈ kerF∗ + 	1

which imply that condition (ii) of Theorem 7.4 is satisfied. Hence, system (7.73) is
feedback linearizable. Since

F∗(	1) = span

{
∂

∂x2
,

∂

∂x3

}
, (7.89)

wehave that span{dx1} = F∗(	1)
⊥ and span{dx1, d (x1 ◦ F0(x)) , dx3} = F∗(	0)

⊥,
where 	0 = span{0}. Thus, S11(x) = x1 and S21(x) = x3 satisfy the conditions of
Lemma 7.2. Let

⎡
⎣z1z2
z3

⎤
⎦ = S(x) =

⎡
⎣ S11(x)
S11 ◦ F0(x)
S21(x)

⎤
⎦ =

⎡
⎣x1x2
x3

⎤
⎦

and

[
S11 ◦ F̂2

u (x)
S11 ◦ F̂u(x)

]
=
[

x21 + u1
x1u1 + u2

]
=
[
v1
v2

]
or

[
u1
u2

]
=
[ −x21 + v1
x31 − x1v1 + v2

]
= γ (x, v).

Then it is clear that

F̃u(z) = S ◦ Fγ (x,v) ◦ S−1(z) =
⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣z1z2
z3

⎤
⎦+

⎡
⎣0 0
1 0
0 1

⎤
⎦ u.

�
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Example 7.3.7 Show that the following discrete system is not feedback linearizable:

x(t + 1) =
⎡
⎣x2(t) + x1(t)u2(t)

u1(t)
u2(t)

⎤
⎦ = Fu(t)(x(t)). (7.90)

Solution Since ∂Fu(x)
∂x

∣∣∣
(0,0)

=
⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦ and ∂Fu(x)

∂u

∣∣∣
(0,0)

=
⎡
⎣0 0
1 0
0 1

⎤
⎦, we have, by sim-

ple calculation, that (κ1, κ2) = (2, 1). Since κ1 + κ2 = 3, condition (i) of Theo-
rem 7.4 is satisfied. Also, it is easy to see, by (7.52), that

F (u11, u
1
2, u

2
1, u

2
2, u

3
1) � Fu1 ◦ Fu2 ◦ Fu3(0)|u32=0 = Fu1 ◦ Fu2

⎛
⎝
⎡
⎣ 0
u31
0

⎤
⎦
⎞
⎠

= Fu1

⎛
⎝
⎡
⎣u

3
1

u21
u22

⎤
⎦
⎞
⎠ =

⎡
⎣u

2
1 + u31u

1
2

u11
u12

⎤
⎦ .

Since ∂F (u11,u
1
2,u

2
1,u

2
2,u

3
1)

∂Ũ
=
⎡
⎣0 u31 1 0 u12
1 0 0 0 0
0 1 0 0 0

⎤
⎦, we have that

kerF∗ = span

{
∂

∂u22
,−u12

∂

∂u21
+ ∂

∂u31

}

and
[

∂

∂u12
,−u12

∂

∂u21
+ ∂

∂u31

]
= − ∂

∂u21
/∈ kerF∗ + span

{
∂

∂u11
,

∂

∂u12

}

which imply that F∗(	1) is not a well-defined vector field. Hence, condition (ii) of
Theorem 7.4 is not satisfied and system (7.90) is not feedback linearizable. �

In Example 7.3.7, it is shown that system (7.90) is not feedback linearizable. If
we consider the dynamic feedback

[
u1(t)
u2(t)

]
=
[
w1(t)
η(t)

]
(7.91)

η(t + 1) = w2(t), (7.92)

then we have the following extended system:
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⎡
⎢⎢⎣
x1(t + 1)
x2(t + 1)
x3(t + 1)
η(t + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x2(t) + x1(t)η(t)

w1(t)
η(t)
w2(t)

⎤
⎥⎥⎦ = F̄w(t)(x(t), η(t)). (7.93)

It is easy to see that extended system (7.93) is feedback linearizable with

zE = S(x, η) =

⎡
⎢⎢⎣

x1
x2 + x1η

x3
η

⎤
⎥⎥⎦ and

[
w1

w2

]
=
[
v1 − (x2 + x1η)v2

v2

]
. (7.94)

In other words, system (7.90) is not linearizable by static feedback. However, system
(7.90) is linearizable by dynamic feedback

[
u1(t)
u2(t)

]
=
[
v1(t) − (x2(t) + x1(t)η(t))v2(t)

η(t)

]

η(t + 1) = v2(t).

It is called the dynamic feedback linearization of the discrete time systems.

7.4 Linearization of Discrete Time Systems with Single
Output

In this section, we consider the following single input single output discrete nonlinear
system:

x(t + 1) = F(x(t), u(t)) � Fu(t)(x(t))

y(t) = h(x(t))
(7.95)

where x ∈ R
n , u ∈ R, y ∈ R, and F(x, u) : Rn+1 → R

n and h(x) : Rn → R are
smooth functions with F(0, 0) = 0 and h(0) = 0.

Theorem 7.5 (conditions for state equivalence to a LS with output)
System (7.95) is state equivalent to a LS with output via state transformation z =
S(x), if and only if

(i) ∂�(U )

∂U

∣∣∣
U=0

is nonsingular.

(ii) F∗
(

∂
∂ui
)
, 1 ≤ i ≤ n + 1, are well-defined vector fields.

(iii) ∂(h◦�(U ))

∂U = c̄ = const .

Furthermore, z = S(x) = �−1(x) is a linearizing state transformation.
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Proof Necessity. Suppose that system (7.95) is state equivalent to a linear system
with output. Then there exists a state transformation z = S(x) such that

F̃u(z) � S ◦ Fu ◦ S−1(z) = Az + bu

h̃(z) � h ◦ S−1(z) = cz

where

rank
([b Ab · · · An−1b]) = n.

It is clear, by Theorem 7.1, that conditions (i) and (ii) of Theorem 7.5 are satisfied.
Since F̃u(z) = S ◦ Fu ◦ S−1(z), F̃u(z) = Az + bu, and S(0) = 0, it is easy to see,
by Examples 7.1.3 and 7.1.4, that �̃(U ) = S ◦ �(U ) and

�̃(U ) � F̃u1 ◦ · · · ◦ F̃un (0) = S ◦ �(U )

h̃ ◦ �̃(U ) = c
(
An−1bun + · · · + bu1

)

which imply that

∂ (h ◦ �(U ))

∂U
= ∂

(
h ◦ S−1 ◦ S ◦ �(U )

)
∂U

=
∂
(
h̃ ◦ �̃(U )

)
∂U

= c
[
b Ab · · · An−1b

]
� c̄

where U = [u1 u2 · · · un]T. Therefore, condition (iii) is satisfied.
Sufficiency. Suppose that conditions (i)–(iii) are satisfied. Then, by

Theorem 7.1, we have that

F̃u(z) � S ◦ Fu ◦ S−1(z) = Az + bu (7.96)

where z = S(x) = �−1(x) and

rank
([b Ab · · · An−1b]) = n.

Also, it is easy to see, by condition (iii), that

h̃(z) � h ◦ S−1(z) = h ◦ �(z) = c̄z. (7.97)

Therefore, by (7.96) and (7.97), system (7.95) is state equivalent to a linear system
with output via z = S(x) = �−1(x).
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Example 7.4.1 Show that the following discrete time system is state equivalent to
a linear system with output:

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) − u(t)2

u(t)

]
= Fu(t)(x(t))

y(t) = x1(t) + x2(t) + x2(t)
2 = h(x(t)).

(7.98)

Solution In Example 7.2.3, it has been shown that condition (i) and condition (ii)
of Theorem 7.5 are satisfied with

F (u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) =
[
u2 − (u1)2

u1

]

and

�(u1, u2) � Fu1 ◦ Fu2(0) =
[
u2 − (u1)2

u1

]
.

Since

∂ (h ◦ �(U ))

∂U
= ∂

(
u2 + u1

)
∂U

= [1 1
] = c̄,

condition (iii) of Theorem 7.5 is also satisfied. Hence, by Theorem 7.5, system (7.98)
is state equivalent to a linear system with output. Let

[
z1
z2

]
= S(x) = �−1(x) =

[
x2

x1 + x22

]
.

Then it is easy to see that

F̃u(z) � S ◦ Fu ◦ S−1(z) =
[
0 0
1 0

] [
z1
z2

]
+
[
1
0

]
u

and

h̃(z) � h ◦ S−1(z) = [1 1
] [z1

z2

]
.

�

Example 7.4.2 Show that the following discrete time system is not state equivalent
to a linear system with output:
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[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) + (1 + x1(t))u(t)

(1 + x1(t))u(t)

]
= Fu(t)(x(t))

y(t) = 2x1(t) − x2(t) = h(x(t)).

(7.99)

Solution It is easy to see, by (7.13) and (7.14), that

F (u1, u2, u3) � Fu1 ◦ Fu2 ◦ Fu3(0) = Fu1 ◦ Fu2

([
u3

u3

])

= Fu1

([
u3 + u2 + u2u3

u2 + u2u3

])
=
[
(u1 + u2 + u1u2)(1 + u3)

u1(1 + u2)(1 + u3)

]

and

�(u1, u2) � Fu1 ◦ Fu2(0) = F (u1, u2, 0) =
[
u1 + u2 + u1u2

u1 + u1u2

]
.

Since det
(

∂�(U )

∂U

∣∣∣
U=0

)
= det

([
1 1
1 0

])
= −1 �= 0, condition (i) of Theorem 7.5 is

satisfied. Since

∂F (u1, u2, u3)

∂Ũ
=
[
(1 + u2)(1 + u3) (1 + u1)(1 + u3) u1 + u2 + u1u2

(1 + u2)(1 + u3) u1(1 + u3) u1(1 + u2)

]
,

we have that

kerF∗ = span

{
− u1

(1 + u2)(1 + u3)

∂

∂u1
− u2

1 + u3
∂

∂u2
+ ∂

∂u3

}

and
[

∂

∂u1
,

∂

∂u3

]
= − 1

(1 + u2)(1 + u3)

∂

∂u1
/∈ kerF∗.

Thus, it is clear, by Theorem 2.6, that F∗
(

∂
∂u1
)
is not a well-defined vector field and

condition (ii) of Theorem 7.5 is not satisfied. Hence, by Theorem 7.5, system (7.99)
is not state equivalent to a linear system with output. �

Definition 7.6 (feedback linearization with output)
System (7.95) is said to be feedback linearizable with output, if there exist a nonsin-

gular feedback u = γ (x, v)

(
∂γ (x,v)

∂v

∣∣∣
(0,0)

�= 0 and γ (0, 0) = 0

)
and a state transfor-

mation z = S(x) such that the closed-loop satisfies, in z−coordinates, the following
Brunovsky canonical form:
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z(t + 1) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
z(t) +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

v(t) = Az(t) + bv(t)

y(t) = cz(t).

In other words,

F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z) = Az + bv

h̃(z) � h ◦ S−1(z) = cz.
(7.100)

For the continuous system, the characteristic number of the output is defined as
the nonnegative integer ρ if ρth derivative of the output is a function of the input for
the first time. (See Definition 5.4.) Similarly, the characteristic number of the output
can also be defined for the discrete systems.

Definition 7.7 (characteristic number)
The characteristic number ρ of the output is defined as the smallest natural number
such that ∂

∂u

(
h ◦ F̂ρ

u (x)
) �= 0. In other words,

∂

∂u

(
h ◦ F̂k

u (x)
) = 0, 1 ≤ k ≤ ρ − 1 and

∂

∂u

(
h ◦ F̂ρ

u (x)
) �= 0. (7.101)

If ∂
∂u

(
h ◦ F̂k

u (x)
) = 0 for k ≥ 1, then we let ρ � ∞.

It is easy to see, by mathematical induction, that

y(k) = h ◦ Fu(k−1) ◦ · · · ◦ Fu(0)(x(0)) = h ◦ Fk
0 (x(0)), 1 ≤ k ≤ ρ − 1

y(ρ) = h ◦ Fu(ρ−1) ◦ · · · ◦ Fu(0)(x(0)) = h ◦ F̂ρ

u(0)(x(0)).

In other words, the output y(ρ) first becomes a function of the input u(0).

Example 7.4.3 Suppose that ρ is the characteristic number of the system (7.95)

and
∂
(
h◦F̂ρ

u (x)
)

∂u

∣∣∣∣
(0,0)

�= 0. Find the nonsingular feedback u = γ (x, v) such that the

transfer function of the closed-loop system is Gc(z) � Y (z)
V (z) = 1

zρ+aρ−1zρ−1+···+a1z+a0
.

Solution It is easy to see, by (7.101), that

y(t + k) = h ◦ Fk
0 (x(t)), 1 ≤ k ≤ ρ − 1

y(t + ρ) = h ◦ Fρ−1
0 ◦ Fu(t)(x(t)) = h ◦ F̂ρ

u(t)(x(t)).
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We need to find the feedback such that

y(t + ρ) = −aρ−1y(t + ρ − 1) − · · · − a1y(t + 1) − a0y(t) + v(t)

or

h ◦ F̂ρ

u(t)(x(t)) + aρ−1h ◦ Fρ−1
0 (x(t)) + · · · + a1h ◦ F0(x(t)) + a0h(x(t)) = v(t).

By inverse function Theorem (or Theorem 2.2), there exists a nonsingular feedback
u = γ (x, v) such that

h ◦ F̂ρ

γ (x,v)(x) + aρ−1h ◦ Fρ−1
0 (x) + · · · + a1h ◦ F0(x) + a0h(x) = v.

�

Example 7.4.4 Show that if ρ = n and
∂
(
h◦F̂ρ

u (x)
)

∂u

∣∣∣∣
(0,0)

�= 0, then system (7.95) is

feedback linearizable with output.

Solution Suppose that ρ = n and
∂
(
h◦F̂ρ

u (x)
)

∂u

∣∣∣∣
(0,0)

�= 0. Then, we have, by (7.101),

that

∂

∂u

(
h ◦ F̂ i

u(x)
)

= 0, 1 ≤ i ≤ n − 1 and
∂

∂u

(
h ◦ F̂n

u (x)
)∣∣∣∣

(0,0)

�= 0.

Thus, conditions of Lemma 7.1 are satisfied with S1(x) = h(x). Therefore, by
Lemma 7.1, system (7.95) is feedback linearizable with state transformation

z = S(x) = [h(x) h ◦ F0(x) · · · h ◦ Fn−1
0 (x)

]T

and feedback u = γ (x, v) such that

v = S1 ◦ F̂n
γ (x,v)(x).

Since h̃ = h ◦ S−1(z) = z1, it is easy to see that (7.100) is satisfied with c =[
1 0 · · · 0]. �

Theorem 7.6 (conditions for feedback linearization with output)
Let ρ ≤ n. System (7.95) is feedback linearizable with output, if and only if

(i)
∂
(
h◦F̂ρ

u (x)
)

∂u

∣∣∣∣
(0,0)

�= 0.

(ii) ∂�̄(V )

∂V

∣∣∣
V=0

is nonsingular.
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(iii) F̄∗
(

∂
∂vi

)
, 1 ≤ i ≤ n + 1, are well-defined vector fields or

[
∂

∂vi
, ker F̄∗

]
⊂ ker F̄∗, 1 ≤ i ≤ n + 1

where V � [v1 · · · vn]T,

h ◦ F̂ρ

γ̄ (x,v)(x) � v (7.102)

F̄v(x) � Fγ̄ (x,v)(x) (7.103)

F̄ (v1, . . . , vn, vn+1) � F̄v1 ◦ · · · ◦ F̄vn ◦ F̄vn+1(0) (7.104)

�̄(V ) = �̄(v1, . . . , vn) � F̄ (v1, . . . , vn, 0) = F̄v1 ◦ · · · ◦ F̄vn (0). (7.105)

Furthermore, state transformation z = S(x) and nonsingular feedback u = γ (x, v)

are given by

S(x) = P−1�̄−1(x) and γ (x, v) = γ̄ (x, v − āS(x)) (7.106)

where ā �
[
a1 a2 · · · an−1 an

]
and

F̄∗
(

∂

∂vn+1

)
=

n∑
i=1

ai F̄∗
(

∂

∂vi

)
=

n∑
i=1

ai �̄∗
(

∂

∂vi

)
(7.107)

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a2 −a3 · · · −an 1
−a3 −a4 · · · 1 0

...
...

...
...

−an−1 −an · · · 0 0
−an 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7.108)

Proof Necessity. Suppose that system (7.95) is feedback linearizable with output.
Then there exist a state transformation z = S(x) and a nonsingular feedback u =
γ (x, v) such that
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F̃v(z) � S ◦ Fγ (x,v) ◦ S−1(z) = Az + bv

h̃(z) � h ◦ S−1(z) = cz = [c1 c2 · · · cn
]
z

(7.109)

where F̄v(x) � Fγ (x,v)(x). It is easy to see, by Example 7.1.3 and Example 7.1.4,
that

h ◦ F̂ρ

γ (x,v)(x) = h̃ ◦ ˆ̃F
ρ

v ◦ S(x) = cAρS(x) + cn+1−ρv

� α(x) + cn+1−ρv
(7.110)

which implies that

∂
(
h ◦ F̂ρ

γ (x,v)(x)
)

∂v
=

∂
(
h ◦ F̂ρ

u (x)
)

∂u

∣∣∣∣∣∣
u=γ (x,v)

∂γ (x, v)

∂v
= cn+1−ρ �= 0

and

∂
(
h ◦ F̂ρ

u (x)
)

∂u

∣∣∣∣∣∣
(0,0)

∂γ (x, v)

∂v

∣∣∣∣
(0,0)

= cn+1−ρ �= 0.

Therefore, it is clear that condition (i) of Theorem 7.6 is satisfied. Without loss of
generality, we can let cn+1−ρ = 1. If we let

γ̄ (x, v) � γ (x,−α(x) + v) or γ (x, v) � γ̄ (x, α(x) + v) (7.111)

then it is clear, by (7.110), that (7.102) is satisfied. Also, we have, by (7.103), (7.109),
and (7.111), that

F̃v(z) � S ◦ Fγ̄ (x,α(x)+v) ◦ S−1(z) = S ◦ F̄α(x)+v ◦ S−1(z) = Az + bv

or

F̄v = S−1 ◦ F̃−ᾱ(z)+v(z) ◦ S(x) � S−1 ◦ F ′
v(z) ◦ S(x)

F ′
v(z) � F̃−ᾱ(z)+v(z) = Az + b(−cAρz + v) � Āz + bv

(7.112)

where ᾱ(z) � α ◦ S−1(z) = cAρz,

ā = [a1 a2 · · · an−1 an
]

� −cAρ = −[0 · · · 0 cρ+1 · · · cn−ρ],

and
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Ā � A − bcAρ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
a1 a2 a3 · · · an−1 an

⎤
⎥⎥⎥⎥⎥⎦

.

Therefore, it is easy to see, by Example 7.1.3 and Example 7.1.4, that

F̄ (Ṽ ) � F̄v1 ◦ · · · ◦ F̄vn ◦ F̄vn+1(0) = S−1 ◦ F ′
v1 ◦ · · · ◦ F ′

vn ◦ F ′
vn+1(0)

= S−1

(
n+1∑
k=1

Āk−1bvk

)

and

�̄(V ) = F̄ (V, 0) = S−1

(
n∑

k=1

Āk−1bvk

)
.

Since ∂�̄(V )

∂V

∣∣∣
V=0

= ∂S−1(z)
∂z

∣∣∣
z=0

[
b Āb · · · Ān−1b

]
, it is clear that condition (ii) of

Theorem 7.6 is satisfied. Also, it is easy to see that F̄∗
(

∂
∂vi

) = S−1∗
(
Āi−1b

)
, 1 ≤ i ≤

n + 1, are well-defined vector fields and condition (iii) of Theorem 7.6 is satisfied.
Sufficiency. Suppose that conditions (i)–(iii) are satisfied. By condition (ii), it is

clear that z̄ = S̄(x) = �̄−1(x) is a state transformation on a neighborhood of the
origin. By Theorem 7.1 or (7.31), we have that

�̄−1 ◦ F̄v̄ ◦ �̄(z̄) = Āz̄ + b̄v̄

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 a1
1 0 · · · 0 a2
0 1 · · · 0 a3
...

...
...

...

0 0 · · · 1 an

⎤
⎥⎥⎥⎥⎥⎦
z̄ +

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

v̄

where

F̄∗
(

∂

∂vn+1

)
=

n∑
i=1

ai F̄∗
(

∂

∂vi

)
=

n∑
i=1

ai �̄∗
(

∂

∂vi

)
.

Let z = S(x) � P−1 z̄ = P−1 S̄(x) = P−1�̄−1(x), where P is defined by (7.107).
Then, it is easy to see that P−1AP = A′, P−1b̄ = b, and
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S ◦ F̄v ◦ S−1(z) = P−1�̄−1 ◦ F̄v̄ ◦ �̄(Pz) = A′z + bv̄

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
a1 a2 a3 · · · an−1 an

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

v̄.

Therefore, if we let u = γ (x, v) = γ̄ (x, v − āS(x)), then we have that

F̃v(z̄) � S ◦ Fγ (x,v) ◦ S−1(z) = S ◦ F̄v−āS(x) ◦ S−1(z) = Az + bv

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

v
(7.113)

where ā �
[
a1 a2 · · · an−1 an

]
. Finally, it is easy to see, by (7.101) and (7.102), that

h ◦ �̄(V ) = h ◦ F̄v1 ◦ · · · ◦ F̄vn (0) = h ◦ F̄ρ−1
0 ◦ F̄vρ ◦ · · · ◦ F̄vn (0)

= vρ � c̄V

and

h̃ = h ◦ S−1(z) = h ◦ �̄(Pz) = c̄Pz � cz. (7.114)

Hence, by (7.113) and (7.114), system (7.95) is feedback linearizable with output
via z = S(x) = P−1�̄−1(x) and u = γ (x, v) = γ̄ (x, v − āS(x)).

Example 7.4.5 Show that system (7.99) is feedback linearizable with output.

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) + (1 + x1(t))u(t)

(1 + x1(t))u(t)

]
= Fu(t)(x(t))

y(t) = 2x1(t) − x2(t) = h(x(t)).

Solution Since h ◦ Fu(x) = 2x2 + (1 + x1)u, it is clear that ρ = 1 and

∂
(
h ◦ F̂ρ

u (x)
)

∂u

∣∣∣∣∣∣
(0,0)

= 1 �= 0
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and

h ◦ Fγ̄ (x,v)(x) = 2x2 + (1 + x1)γ̄ (x, v) = v or γ̄ (x, v) = v − 2x2
1 + x1

.

Thus, condition (i) of Theorem 7.6 is satisfied and

F̄v(x) � Fγ̄ (x,v)(x) =
[ −x2 + v

−2x2 + v

]
.

Thus, we have that

F̄ (v1, v2, v3) � F̄v1 ◦ F̄v2 ◦ F̄v3(0) = F̄v1 ◦ F̄v2

([
v3

v3

])

= F̄v1

([
v2 − v3

v2 − 2v3

])
=
[

v1 − v2 + 2v3

v1 − 2v2 + 4v3

]

and

�̄(v1, v2) � F̄v1 ◦ F̄v2(0) = F̄ (v1, v2, 0) =
[

v1 − v2

v1 − 2v2

]
.

Since det
(

∂�̄(V )

∂V

∣∣∣
V=0

)
= det

([
1 −1
1 −2

])
= −1 �= 0, condition (ii) of Theorem 7.6

is satisfied. Since

∂F̄ (Ṽ )

∂ Ṽ
=
[
1 −1 2
1 −2 4

]
,

we have that

ker F̄∗ = span

{
2

∂

∂v2
+ ∂

∂v3

}

and for 1 ≤ i ≤ 3,

[
∂

∂vi
, 2

∂

∂v2
+ ∂

∂v3

]
= 0 ∈ ker F̄∗.

Thus, it is clear, by Theorem 2.6, that F̄∗
(

∂
∂vi

)
, 1 ≤ i ≤ 3, are well-defined vector

fields and condition (iii) of Theorem 7.6 is satisfied. Hence, by Theorem 7.6, system
(7.99) is feedback linearizable with output. Note that

F̄∗
(

∂

∂v3

)
=
[
2
4

]
, �̄∗

(
∂

∂v1

)
=
[
1
1

]
, �̄∗

(
∂

∂v2

)
=
[−1
−2

]
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which imply, together with (7.107) and (7.108), that ā �
[
a1 a2

] = [0 −2
]
and

P =
[
2 1
1 0

]
.

Thus, we have, by (7.106), that

z = S(x) = P−1�̄−1(x) =
[
0 1
1 −2

] [
2x1 − x2
x1 − x2

]
=
[
x1 − x2

x2

]

and

γ (x, v) = γ̄ (x, v − āS(x)) = γ̄ (x, v + 2x2)

= (v + 2x2) − 2x2
1 + x1

= v

1 + x1
.

Then it is easy to see that

F̃v(z) � S ◦ Fγ (x,v)(x) ◦ S−1(z) = S ◦
[
x2 + v

v

]
◦ S−1(z)

= S

([
z2 + v

v

])
=
[
z2
v

]
= Az + bv

and

h̃(z) � h ◦ S−1(z) = [2 1
]
z = cz.

�

Example 7.4.6 Show that the following system is not feedback linearizable with
output:

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣ x2(t)
x3(t) + u(t)2

u(t)

⎤
⎦ = Fu(t)(x(t))

y(t) = −x1(t) + x3(t) = h(x(t)).

(7.115)

Solution Since h ◦ Fu(x) = −x2 + u, it is clear that ρ = 1 and

∂
(
h ◦ F̂ρ

u (x)
)

∂u

∣∣∣∣∣∣
(0,0)

= 1 �= 0
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and

h ◦ F̂γ̄ (x,v)(x) = −x2 + γ̄ (x, v) = v or γ̄ (x, v) = x2 + v.

Thus, condition (i) of Theorem 7.6 is satisfied and

F̄v(x) � Fγ̄ (x,v)(x) =
⎡
⎣ x2
x3 + (x2 + v)2

x2 + v

⎤
⎦ .

Thus, we have that

F̄ (Ṽ ) � F̄v1 ◦ F̄v2 ◦ F̄v3 ◦ F̄v4(0) = F̄v1 ◦ F̄v2 ◦ F̄v3

⎛
⎝
⎡
⎣ 0

v2
4

v4

⎤
⎦
⎞
⎠

= F̄v1 ◦ F̄v2

⎛
⎝
⎡
⎣ v2

4
v4 + (v2

4 + v3)
2

v2
4 + v3

⎤
⎦
⎞
⎠

= F̄v1

⎛
⎝
⎡
⎣ v4 + (v2

4 + v3)
2

v2
4 + v3 + (v4 + (v2

4 + v3)
2 + v2)

2

v4 + (v2
4 + v3)

2 + v2

⎤
⎦
⎞
⎠

=
⎡
⎣ v2

4 + v3 + (v4 + (v2
4 + v3)

2 + v2)
2

v4 + (v2
4 + v3)

2 + v2 + (v2
4 + v3 + (v4 + (v2

4 + v3)
2 + v2)

2 + v1)
2

v2
4 + v3 + (v4 + (v2

4 + v3)
2 + v2)

2 + v1

⎤
⎦

and

�̄(V ) � F̄v1 ◦ F̄v2 ◦ F̄v3(0) = F̄ (v1, v2, v3, 0)

=
⎡
⎣ v3 + (v2

3 + v2)
2

v2
3 + v2 + (v3 + (v2

3 + v2)
2 + v1)

2

v3 + (v2
3 + v2)

2 + v1

⎤
⎦

where Ṽ = [v1 v2 v3 v4
]T

and V = [v1 v2 v3
]T
. Since

det

(
∂�̄(V )

∂V

∣∣∣∣
V=0

)
= det

⎛
⎝
⎡
⎣0 0 1
0 1 0
1 0 1

⎤
⎦
⎞
⎠ = −1 �= 0,

condition (ii) of Theorem 7.6 is satisfied. By complicated calculations or MATLAB
program ker-sF(F̄ , Ṽ , n), we have that

ker F̄∗ = span

{
− ∂

∂v2
− 2v4

∂

∂v3
+ ∂

∂v4

}
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and
[

∂

∂v4
, − ∂

∂v2
− 2v4

∂

∂v3
+ ∂

∂v4

]
= −2

∂

∂v3
/∈ ker F̄∗.

Thus, it is clear, by Theorem 2.6, that F̄∗
(

∂
∂v4

)
is not a well-defined vector field

and condition (iii) of Theorem 7.6 is not satisfied. Hence, by Theorem 7.6, system
(7.115) is not feedback linearizable with output. �

7.5 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, adfgM, ChConst, ChZero, DeltaDT, HatF, ker-sF,
ker-sF-M, KindexDT0, Psi-sF, Psi-sF-M, transp

MATLAB program for Theorem 7.1.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real

Fu=[x2-uˆ2; u]; %Ex:7.2.3

%Fu=[x2; x1ˆ2+u]; %Ex:7.2.4 or Ex:7.2.6

%Fu=[x2+(1+x2)ˆ2*uˆ2; x3; (1+x2)*u]; %Ex:7.2.7

%Fu=[x2+uˆ2; x1+u]; %Ex:7.2.8

%Fu=[x2-(x1+u)ˆ2; x1+u]; %P:7-8(a)

%Fu=[x2-(x1+x2ˆ2+u)ˆ2; x1+x2ˆ2+u]; %P:7-8(b)

%Fu=[x2*exp(u); x3; u]; %P:7-8(c)

%Fu=[x2*exp(x1+u); x3; x1+u]; %P:7-8(d)

%Fu=[x2+x3ˆ2; x1+x3; u]; %P:7-8(e)

Fu=simplify(Fu)
n=length(Fu);
x=sym(’x’,[n,1]);
w=sym(’w’,[n+1,1]);
W=w(1:n);

[Psi,sF]=Psi_sF(Fu,x,u,w,n)
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dPsi=jacobian(Psi,W);
dPsi0=simplify(subs(dPsi,W,W-W))

if rank(dPsi0)<n
disp(’cond (i) of Thm 7.1 is not satisfied.’)
disp(’System is not state equivalent to a LS.’)
return

end

kersF=ker_sF(sF,w,n)

U=jacobian(w,w);
for k=1:n+1
cc=adfg(U(:,k),kersF,w);
cc1=[ kersF cc];
if rank(cc1)>rank(kersF)
disp(’cond (ii) of Thm 7.1 is not satisfied.’)
disp(’System is not state equivalent to a LS.’)
return

end
end

disp(’System is, by Thm 7.1, state equivalent to a LS.’)

return

MATLAB program for Theorem 7.2.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real

Fu=[x2-uˆ2; u]; %Ex:7.2.3

%Fu=[x2; x1ˆ2+u]; %Ex:7.2.4 or Ex:7.2.6

%Fu=[x2+(1+x2)ˆ2*uˆ2; x3; (1+x2)*u]; %Ex:7.2.7

%Fu=[x2+uˆ2; x1+u]; %Ex:7.2.8

%Fu=[x2-(x1+u)ˆ2; x1+u]; %P:7-8(a)

%Fu=[x2-(x1+x2ˆ2+u)ˆ2; x1+x2ˆ2+u]; %P:7-8(b)

%Fu=[x2*exp(u); x3; u]; %P:7-8(c)

%Fu=[x2*exp(x1+u); x3; x1+u]; %P:7-8(d)

%Fu=[x2+x3ˆ2; x1+x3; u]; %P:7-8(e)

Fu=simplify(Fu)
n=length(Fu);
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x=sym(’x’,[n,1]);
w=sym(’w’,[n+1,1]);
W=w(1:n);

[Psi,sF]=Psi_sF(Fu,x,u,w,n)

dPsi=jacobian(Psi,W);
dPsi0=simplify(subs(dPsi,W,W-W))

if rank(dPsi0)<n
disp(’cond (i) of Thm 7.2 is not satisfied.’)
disp(’System is not feedback linearizable.’)
return

end

kersF=ker_sF(sF,w,n)

U=jacobian(w,w);
for k=1:n-1
Deltak=U(:,1:k);
ccc=adfg(U(:,k),kersF,w);
ccc0=[kersF Deltak];
ccc1=[ ccc0 ccc];
if rank(ccc1)>rank(ccc0)
disp(’cond (ii) of Thm 7.2 is not satisfied.’)
disp(’System is not feedback linearizable.’)
return

end
end

disp(’System is, by Thm 7.2, feedback linearizable.’)

return

MATLAB program for Theorem 7.3.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 u6 u7 u8 u9 real

Fu=[x2-u1ˆ2; u1; u2-u1ˆ2]; m=2; %Ex:7.3.3

%Fu=[x2; x1ˆ2 + u1; x1*u1+u2]; m=2; %Ex:7.3.4 & Ex:7.3.6

%Fu=[x2+x1*u2; u1; u2]; m=2; %Ex:7.3.7

%Fu=[u1; x3+u1ˆ2; u2]; m=2; %P:7-10(a)

%Fu=[x1+u1; x3+(x1+u1)ˆ2; x1ˆ2+u2]; m=2; %P:7-10(b)

%Fu=[x2+x1*u2; x3; u1; u2]; m=2; %P:7-10(c)

n=length(Fu);
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x=sym(’x’,[n,1]);
u=sym(’u’,[m,1]);

Fu=simplify(Fu)
ka=KindexDT0(Fu,x,u)

w=sym(’w’,[m,n+1]);

[Psi,sF,W,tW,bU]=Psi_sF_M(Fu,x,u,w,m,ka)

if sum(ka)<n
disp(’cond (i) of Thm 7.3 is not satisfied.’)
disp(’System is not state equivalent to a LS.’)
return

end

kersF=ker_sF_M(sF,w,tW,ka,n,m)

U=jacobian(tW,tW);
for k=1:length(tW)
cc=adfgM(U(:,k),kersF,tW);
cc1=[ kersF cc];
if rank(cc1)>rank(kersF)
disp(’cond (ii) of Thm 7.3 is not satisfied.’)
disp(’System is not state equivalent to a LS.’)
return

end
end

disp(’System is, by Thm 7.3, state equivalent to a LS.’)

return

MATLAB program for Theorem 7.4.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 u6 u7 u8 u9 real

Fu=[x2-u1ˆ2; u1; u2-u1ˆ2]; m=2; %Ex:7.3.3

%Fu=[x2; x1ˆ2 + u1; x1*u1+u2]; m=2; %Ex:7.3.4 & Ex:7.3.6

%Fu=[x2+x1*u2; u1; u2]; m=2; %Ex:7.3.7

%Fu=[u1; x3+u1ˆ2; u2]; m=2; %P:7-10(a)

%Fu=[x1+u1; x3+(x1+u1)ˆ2; x1ˆ2+u2]; m=2; %P:7-10(b)

%Fu=[x2+x1*u2; x3; u1; u2]; m=2; %P:7-10(c)

n=length(Fu);
x=sym(’x’,[n,1]);



322 7 Linearization of Discrete Time Control Systems

u=sym(’u’,[m,1]);
w=sym(’w’,[m,n+1]);

Fu=simplify(Fu)
ka=KindexDT0(Fu,x,u)
[Psi,sF,W,tW,U]=Psi_sF_M(Fu,x,u,w,m,ka)

if sum(ka)<n
disp(’cond (i) of Thm 7.4 is not satisfied.’)
disp(’System is not feedback linearizable.’)
return

end

kersF=ker_sF_M(sF,w,tW,ka,n,m)

Delta=tW-tW;
for k2=1:max(ka)-1
bU=transp(jacobian(U(:,k2),tW));
Delta=[Delta bU];
ccc0=[kersF Delta];
for k1=1:m
ccc=adfgM(bU(:,k1),kersF,tW);
if rank([ccc0 ccc])>rank(ccc0)
disp(’cond (ii) of Thm 7.4 is not satisfied.’)
disp(’System is not feedback linearizable.’)
return

end
end

end

disp(’System is, by Thm 7.4, feedback linearizable.’)

return

MATLAB program for Theorem 7.5.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real

Fu=[x2-uˆ2; u]; h=x1+x2+x2ˆ2; %Ex:7.4.1

%Fu=[x2+(1+x1)*u; (1+x1)*u]; h=2*x1-x2; %Ex:7.4.2

%Fu=[x2-uˆ2; u]; h=x1+x2; %P:7-13(a)

%Fu=[x2*exp(u); x3; u]; h=x2+x3; %P:7-13(b)

%Fu=[x2*exp(u); x3; u]; h=x1+x2; %P:7-13(c)

%Fu=[x2*exp(u); x3; u]; h=x2ˆ2+x3; %P:7-13(d)
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Fu=simplify(Fu)
h=simplify(h)

[n,m]=size(Fu);
x=sym(’x’,[n,1]);

w=sym(’w’,[n+1,1]);
W=w(1:n);

[Psi,sF]=Psi_sF(Fu,x,u,w,n)

dPsi=jacobian(Psi,W);
dPsi0=simplify(subs(dPsi,W,W-W))

if rank(dPsi0)<n
disp(’cond (i) of Thm 7.5 is not satisfied.’)
disp(’System is NOT state equivalent to a LS with output.’)
return

end

kersF=ker_sF(sF,w,n)

U=jacobian(w,w);
for k=1:n+1
cc=adfg(U(:,k),kersF,w);
cc1=[ kersF cc];
if rank(cc1)>rank(kersF)
disp(’cond (ii) of Thm 7.5 is not satisfied.’)
disp(’System is NOT state equivalent to a LS with output.’)
return

end
end

hiS=simplify(subs(h,x,Psi));
hC=jacobian(hiS,W)
if ChConst(hC,W)==0
disp(’cond (iii) of Thm 7.5 is not satisfied.’)
disp(’System is NOT state equivalent to a LS with output.’)
return

end

disp(’System is state equivalent to a LS with output.’)

return
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MATLAB program for Theorem 7.6.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u v real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms z1 z2 z3 z4 z5 z6 z7 z8 z9 real

Fu=[x2+(1+x1)*u; (1+x1)*u]; h=2*x1-x2;
Bgamma=(v-2*x2)/(1+x1); %Ex:7.4.5

%Fu=[x2; x3+uˆ2 ; u]; h=-x1+x3; Bgamma=v+x2; %Ex:7.4.6

%Fu=[x2-uˆ2; u]; h=x1+x2;
%Bgamma=(1-sqrt(1-4*(v-x2)))/2; %P:7-13(a)

%Fu=[x2*exp(u); x3; u]; h=x2+x3; Bgamma=-x3+v; %P:7-13(b)

%Fu=[x2*exp(u); x3; u]; h=x1+x2; Bgamma=-x3+v; %P:7-13(c)

%Fu=[x2*exp(u); x3; u]; h=x2ˆ2+x3; Bgamma=-x3ˆ2+v; %P:7-13(d)

Fu=simplify(Fu)
h=simplify(h)

[n,m]=size(Fu);
x=sym(’x’,[n,1]);
xu=[x; u];

rho=CharacDT(Fu,h,x,u)
cc1=simplify(subs(h,x,HatF(Fu,x,u,rho)))
dcc1=jacobian(cc1,u)
dcc10=subs(dcc1,xu,xu-xu)
if ChZero(dcc10)==1
disp(’cond (i) of Thm 7.6 is not satisfied.’)
disp(’System is NOT feedback linearizable with output.’)
return

end

Bgam=Bgamma
bFv=simplify(subs(Fu,xu,[x;Bgam]))
ccgam=simplify(subs(h,x,HatF(bFv,x,v,rho)))
if ChZero(ccgam-v)==0
disp(’Bgamma(x,v) is not correct.’)
return

end

w=sym(’w’,[n+1,1]);
W=w(1:n);

[bPsi,bsF]=Psi_sF(bFv,x,v,w,n)

dPsi=jacobian(bPsi,W);
dPsi0=simplify(subs(dPsi,W,W-W))
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if rank(dPsi0) < n
disp(’cond (ii) of Thm 7.6 is not satisfied.’)
disp(’System is NOT feedback linearizable with output.’)
return

end

kersF=ker_sF(bsF,w,n)

U=jacobian(w,w);
for k=1:n+1
cc=adfg(U(:,k),kersF,w);
cc3=[ kersF cc];
if rank(cc3)>rank(kersF)
disp(’cond (iii) of Thm 7.6 is not satisfied.’)
disp(’System is NOT feedback linearizable with output.’)
return

end
end

disp(’System is, by Thm 7.6, FB linearizable with output.’)

ca1=jacobian(bsF,w)
ba=simplify(inv(ca1(:,1:n))*ca1(:,n+1))

P=jacobian(flip(W),W);
for k1=1:n-1
P(1:n-k1,k1)=-ba(k1+1:n);

end
P=simplify(P)

z=sym(’z’,[n,1]);
iS=simplify(subs(bPsi,W,P*z))

hiS=simplify(subs(h,x,iS))
hC=jacobian(hiS,z)

return

7.6 Problems

7-1. Solve Example 7.1.2.
7-2. Solve Example 7.1.3.
7-3. Solve Example 7.1.4.
7-4. Solve Example 7.3.1.
7-5. Solve Example 7.3.2.
7-6. Solve Example 7.3.5.
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7-7. Consider the following smooth functions z = S(x) : R3 → R
2 and distribu-

tions D(x) on R
3. Use Theorem 2.10 to determine whether S∗(D(x)) is a

well-defined distribution on a neighborhood of 0 ∈ R
2 or not. If it is a well-

defined distribution, then find S∗(D(x)).

(a) S(x) =
[
x2 − x21

x1

]
, D(x) = span{ ∂

∂x1
}.

(b) S(x) =
[
x2 − x21

x1

]
, D(x) = span{ ∂

∂x3
}.

(c) S(x) =
[
x2 − x21
x3 + x1x3

]
, D(x) = span{ ∂

∂x3
}.

(d) S(x) =
[
x2 − x1(x22 + x3)

x22 + x3

]
, D(x) = span{ ∂

∂x2
}.

(e) S(x) =
[
x2 − x1(x22 + x3)

x22 + x3

]
, D(x) = span{ ∂

∂x2
, ∂

∂x3
}.

7-8. Find out whether the following single input discrete time systems are state
equivalent to a linear system or not. If not, find out whether it is feedback
linearizable or not.

(a)

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) − (x1(t) + u(t))2

x1(t) + u(t)

]
.

(b)

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) − (x1(t) + x2(t)2 + u(t))2

x1(t) + x2(t)2 + u(t)

]
.

(c)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t)e

u(t)

x3(t)
u(t)

⎤
⎦.

(d)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t)e

x1(t)+u(t)

x3(t)
x1(t) + u(t)

⎤
⎦.

(e)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t) + x3(t)2

x1(t) + x3(t)
u(t)

⎤
⎦.

7-9. Show that system (7.93) is feedback linearizable by extended state transfor-
mation zE = S(x, η) and feedback w = γ (x, v) in (7.94).

7-10. Find out whether the following multi-input discrete time systems are state
equivalent to a linear system or not. If not, find out whether it is feedback
linearizable or not.

(a)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣ u1(t)
x3(t) + u1(t)2

u2(t)

⎤
⎦.

(b)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣ x1(t) + u1(t)
x3(t) + (x1(t) + u1(t))2

x1(t)2 + u2(t)

⎤
⎦.
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(c)

⎡
⎢⎢⎣
x1(t + 1)
x2(t + 1)
x3(t + 1)
x4(t + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x2(t) + x1(t)u2(t)

x3(t)
u1(t)
u2(t)

⎤
⎥⎥⎦.

7-11. Consider the system in Problem 7.10c. With the dynamic feedback

[
u1(t)
u2(t)

]
=
[
w1(t)
η1(t)

]
;
[
η1(t + 1)
η2(t + 1)

]
=
[
η2(t)
w2(t)

]
, (7.116)

we have the following extended system:

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t + 1)
x2(t + 1)
x3(t + 1)
x4(t + 1)
η1(t + 1)
η2(t + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x2(t) + x1(t)η1(t)
x3(t)
w1(t)
η1(t)
η2(t)
w2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

= F̄w(t)(xE (t)) (7.117)

where xE =
[
x
η

]
. Show that the extended system (7.117) is feedback lin-

earizable. In other words, the system in Problem 7.10c is restricted dynamic
feedback linearizable with indices (d1, d2) = (0, 2).

7-12. Suppose that ∂h◦F̂ρ
u (x)

∂u

∣∣∣
(0,0)

�= 0,whereρ is the characteristic number of system

(7.95). Show that

{
∂h

∂x

∣∣∣∣
x=0

,
∂h ◦ F0(x)

∂x

∣∣∣∣
x=0

, . . . ,
∂h ◦ Fρ−1

0 (x)

∂x

∣∣∣∣∣
x=0

}

is a set of linearly independent one form.
7-13. Find outwhether the following SISOdiscrete time systems are state equivalent

to a linear system with output or not. If not, find out whether it is feedback
linearizable with output or not.

(a)

[
x1(t + 1)
x2(t + 1)

]
=
[
x2(t) − u(t)2

u(t)

]
; y(t) = x1(t) + x2(t).

(b)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t)e

u(t)

x3(t)
u(t)

⎤
⎦ ; y(t) = x2(t) + x3(t).

(c)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t)e

u(t)

x3(t)
u(t)

⎤
⎦ ; y(t) = x1(t) + x2(t).

(d)

⎡
⎣x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣x2(t)e

u(t)

x3(t)
u(t)

⎤
⎦ ; y(t) = x2(t)2 + x3(t).



Chapter 8
Observer Error Linearization

8.1 Introduction

An observer is a dynamic system which estimates the state of the system from
the output and the input of the system. For the observable linear control systems,
one of the famous linear observers is Luenberger observer. Consider the following
observable linear system:

ż = Az + Bu ; ȳ = Cz. (8.1)

A Luenberger observer for system (8.1) is the following dynamic system whose
output is z̄(t):

˙̄z = (A − LC)z̄ + Bu + L ȳ (8.2)

where L is a matrix such that (A − LC) is an asymptotically stable matrix (or all the
eigenvalues of (A − LC) are in the open left half plane of the complex plane). If we
let ε(t) = z̄(t) − z(t), then we have

ε̇ = ˙̄z − ż = (A − LC)z̄ + Bu + LCz − Az − Bu

= (A − LC)(z̄ − z) = (A − LC)ε
(8.3)

which implies that lim
t→∞ ε(t) = lim

t→∞ e(A−LC)tε(0) = 0.Block diagram forLuenberger

observer of a linear system can be found in Fig. 8.1. Note that (8.3) or Luenberger
observer is still valid even if we use vector function γ (u) or γ (ȳ, u) instead of Bu,
in (8.1) and (8.2). In other words, Luenberger observer can also be designed for the
following two observable systems:

ż = Az + γ (u) ; ȳ = Cz (8.4)
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Fig. 8.1 Luenberger
observer of a linear system

and

ż = Az + γ (ȳ, u) ; ȳ = Cz (8.5)

where the pair (C, A) is observable or

rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = n.

Thus, system (8.4) and system (8.5) are called a linear observer canonical form
(LOCF) and a nonlinear observer canonical form (NOCF), respectively.

Consider the nonlinear system

ẋ = F(x, u) � Fu(x)

y = H(x)
(8.6)

where x ∈ R
n , u ∈ R

m , y ∈ R
q , and F(x, u) and H(x) are smooth functions with

F(0, 0) = 0 and H(0) = 0. If we use state transformation and output transformation
(OT), Luenberger-like observers are also feasible for some nonlinear systems. Sup-
pose that system (8.6) is equivalent toNOCF (8.5)with state transformation z = S(x)
and output transformation ȳ = ϕ(y). In other words, S∗(Fu(x)) = Az + γ (Cz, u)

and ϕ ◦ H ◦ S−1(z) = Cz. Then Luenberger-like observers of system (8.6) is given
by

˙̄z = (A − LC)z̄ + γ (ȳ, u) + L ȳ

x̄(t) = S−1(z̄(t)).

Similar arguments can be applied to LOCF. Block diagram for Luenberger-like
observers of a nonlinear system can be found in Fig. 8.2. However, not all non-
linear systems are state equivalent to a NOCF with OT. In the following sections,
the conditions for a nonlinear system to be equivalent to a NOCF or LOCF will be
found.
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Fig. 8.2 Luenberger-like observers of a nonlinear system

Definition 8.1 ( observability indices)
For the list of qn one forms of the form

∂h1(x)

∂x

∣∣∣∣
x=0

, · · · ,
∂hq(x)

∂x

∣∣∣∣
x=0

,
∂
(
LF0h1(x)

)
∂x

∣∣∣∣∣
x=0

, · · · ,
∂
(
LF0hq(x)

)
∂x

∣∣∣∣∣
x=0

,

· · · ,
∂
(
Ln−1
F0

h1(x)
)

∂x

∣∣∣∣∣
x=0

, · · · ,
∂
(
Ln−1
F0

hq(x)
)

∂x

∣∣∣∣∣
x=0

,

delete all one forms that are linearly dependent on the set of preceding one forms
and obtain the unique set of linearly independent one forms

⎧⎨
⎩

∂h1(x)

∂x
, · · · ,

∂
(
Lν1−1
F0

h1(x)
)

∂x
, · · · ,

∂hq(x)

∂x
, · · · ,

∂
(
L

νq−1
F0

hq(x)
)

∂x

⎫⎬
⎭

∣∣∣∣∣∣
x=0

or

{
c̄1, c̄1 Ā, · · · , c̄1 Ā

ν1−1, · · · , c̄q , · · · , c̄q Ā
νq−1}

where c̄ j � ∂h j (x)
∂x

∣∣∣
x=0

and Ā � ∂F0(x)
∂x

∣∣∣
x=0

. Then,
(
ν1, · · · , νq

)
are said to be the

observability indices of system (8.6).
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In other words, νi is the smallest nonnegative integer such that for 1 ≤ i ≤ q,

∂
(
h1 ◦ Fνi

0 (x)
)

∂x

∣∣∣∣∣
x=0

∈span
{

∂
(
h j ◦ F�−1

0 (x)
)

∂x

∣∣∣∣∣
x=0

∣∣∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ νi

}

+ span

{
∂
(
h j ◦ Fνi

0 (x)
)

∂x

∣∣∣∣∣
x=0

∣∣∣∣∣ 1 ≤ j ≤ i − 1

}
.

If
q∑

i=1

νi = n, then system (8.6) is said to be observable.

8.2 Single Output Observer Error Linearization

Consider a single output control system of the form

ẋ = F(x, u) � Fu(x)

y = H(x)
(8.7)

with F0(0) = 0, H(0) = 0, state x ∈ R
n , input u ∈ R

m , and output y ∈ R. By letting
u = 0 in system (8.7), we obtain the following autonomous system:

ẋ = F0(x) ; y = H(x). (8.8)

Definition 8.2 (state equivalence to a LOCF)
System (8.7) is said to be state equivalent to a LOCF, if there exist a diffeomorphism
z = S(x) : V0 → R

n , defined on some neighborhood V0 of 0 ∈ R
n , such that

ż = Az + γ (u) � S∗(Fu(x))

y = Cz � H ◦ S−1(z)

where the pair (C, A) is observable and γ (u) : Rm → R
n is a smooth vector function

with γ (0) = 0.

Definition 8.3 (state equivalence to a NOCF)
System (8.7) is said to be state equivalent to a NOCF, if there exist a diffeomorphism
z = S(x) : V0 → R

n , defined on some neighborhood V0 of 0 ∈ R
n , such that

ż = Az + γ (y, u) � f̄u(z)

y = Cz � h̄(z)
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where the pair (C, A) is observable and γ (y, u) : R × R
m → R

n is a smooth vector
function with γ (0, 0) = 0.

For single output case, if the pair (C, A) is observable, there exists a linear state
transform z = P−1x such that (Ĉ, Â)(� (CP, P−1AP)) is an observable canonical
form. In other words,

CP = Ĉ = [
1 0 0 · · · 0] = Co

P−1AP = Â =

⎡
⎢⎢⎢⎢⎢⎣

â11 1 0 · · · 0
â21 0 1 · · · 0
...

...
...

...

â(n−1)1 0 0 · · · 1
ân1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

= Ao +

⎡
⎢⎢⎢⎢⎢⎣

â11
â21
...

â(n−1)1

ân1

⎤
⎥⎥⎥⎥⎥⎦
Ĉ

where

Co = [
1 0 0 · · · 0] and Ao =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

.

Let us call (Co, Ao) a dual Brunovsky canonical form, even though the order
of the states are reversed compared to Brunovsky canonical form (4.9). Since
[â11 · · · ân1]TĈz = z1[â11 · · · ân1]T, it is clear that single output system (8.7) is
state equivalent to a NOCF, if and only if single output system (8.7) is state equiva-
lent to a dual Brunovsky NOCF which is defined by

ż = Aoz + γ (z1, u) � f̄u(z)

y = Coz � h̄(z).

Definition 8.4 (state equivalence to a dual Brunovsky NOCF with OT)
System (8.7) is said to be state equivalent to a dual Brunovsky NOCF with out-

put transformation (OT), if there exist a smooth function ϕ(y)
(

∂ϕ(y)
∂y

∣∣∣
y=0

=
1 and ϕ(0) = 0

)
and a state transformation z = S(x) such that

ż = Aoz + γ̄ u(ȳ) � f̄u(z)

ȳ = ϕ(y) = Coz � h̄(z)
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where γ̄ u(ȳ) : R × R
m → R

n is a smooth vector function with γ̄ 0(0) = 0. In other
words,

h̄(z) � ϕ ◦ H ◦ S−1(z) = Coz = z1 (8.9)

and

f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(Coz)

= Aoz + γ̄ u ◦ ϕ(y) � Aoz + γ u(y).
(8.10)

State equivalence to a dual Brunovsky NOCF for autonomous system (8.8) can be
similarly definedwith u = 0. If f̄u(z) � S∗(Fu(x)) = Aoz + γ (z1, u), then it is clear
that f̄0(z) � S∗(F0(x)) = Aoz + γ (z1, 0). Thus, we have the following remark.

Remark 8.1 If system (8.7) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), then system (8.8) is also state equivalent
to a dual Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x).
But the converse is not true.

Since observability is invariant under state transformation, we assume the observ-
ability rank condition on the neighborhood of the origin. In other words,

dim span{dH(x), d(LF0H(x)), · · · , d(Ln−1
F0

H(x))} = n

or

rank

(
∂T (x)

∂x

∣∣∣∣
x=0

)
= n

where

ξ = T (x) �

⎡
⎢⎢⎢⎣

H(x)
LF0H(x)

...

Ln−1
F0

H(x)

⎤
⎥⎥⎥⎦ .

Definition 8.5 (Canonical System)
The canonical system of system (8.7) is defined by

⎡
⎢⎢⎢⎣

ξ̇1
...

ξ̇n−1

ξ̇n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ξ2 + αu
1 (ξ)

...

ξn + αu
n−1(ξ)

αu
n (ξ)

⎤
⎥⎥⎥⎦ � fu(ξ) ; y = ξ1 � h(ξ) (8.11)
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where ξ = T (x), fu(ξ) � T∗(Fu(x)), h(ξ) � H ◦ T−1(ξ),

αu
n (ξ) � LFu L

n−1
F0

H(x)
∣∣
x=T−1(ξ)

and for 1 ≤ i ≤ n − 1,

αu
i (ξ) � LFu L

i−1
F0

H(x)
∣∣
x=T−1(ξ)

− Li
F0H(x)

∣∣
x=T−1(ξ)

.

It is clear that α0
i (ξ) = 0 for 1 ≤ i ≤ n − 1 and

f0(ξ) � T∗(F0(x)) =

⎡
⎢⎢⎢⎣

ξ2
...

ξn
α0
n(ξ)

⎤
⎥⎥⎥⎦ . (8.12)

Remark 8.2 System (8.7) is state equivalent to a dual BrunovskyNOCFwithOT (or
without OT) via z = S(x), if and only if canonical system (8.11) is state equivalent
to a dual Brunovsky NOCF with OT (or without OT) via z = S̃(ξ) (� S ◦ T−1(ξ)).
Canonical system (8.11) is more convenient to solve the observer problems than
system (8.7). Since geometric conditions are coordinate free, any geometric condition
in ξ− coordinates (for system (8.11)) can be expressed in x− coordinates (for system
(8.7)).

For system (8.7), we define vector fields {g0i (x), i ≥ 1} and {gui (x), i ≥ 1} as
follows.

Lg01(x)
Lk−1
F0

H(x) = δk,n, 1 ≤ k ≤ n
(
or g01(x) �

(
∂T (x)

∂x

)−1

[0 · · · 0 1]T = T−1
∗

(
∂

∂ξn

) ) (8.13)

and for i ≥ 2,

g0i (x) � adi−1
F0

g01(x)

gu1(x) � g01(x) ; gui (x) � adi−1
Fu

gu1(x).
(8.14)

Then it is easy to see, by Example 2.4.16, that for 1 ≤ i ≤ n and 0 ≤ k ≤ n − 1,

Lg0i (x)
Lk
F0H(x) =

{
0, i + k < n

(−1)i+1, i + k = n.
(8.15)
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Theorem 8.1 System (8.7) is state equivalent to a LOCF, if and only if

(i)

gui (x) = g0i (x), 2 ≤ i ≤ n + 1

(ii)

[g0i (x), g0k(x)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n + 1.

Furthermore, a state transformation z = S(x) can be obtained by

∂S(x)

∂x
= [

(−1)n−1g0n(x) · · · − g02(x) g01(x)
]−1

.

Proof Proof is omitted. (If u = 0, this is dual of the linearization of control system
by state coordinated change that is considered in Chap.3.) �

Example 8.2.1 Consider the following control system:

ẋ =
[
x2 + 2x2(x1 − x22 ) + 2x2u1 + u22

x1 − x22 + u1

]
= Fu(x)

y = x1 − x22 = H(x).

(8.16)

Show that the above system is state equivalent to a LOCF without OT and find a state
transformation z = S(x) and the LOCF that the new state z satisfies.

Solution Since T (x) � [H(x) LF0H(x)]T = [x1 − x22 x2]T, it is clear, by (8.13)
and (8.14), that

gu1(x) � g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
1 −2x2
0 1

]−1 [
0
1

]
=
[
2x2
1

]

gu2(x) � adFug
u
1(x) =

[−1
0

]

gu3(x) � ad2Fug
u
1(x) =

[
2x2
1

]

which imply that condition (i) and condition (ii) of Theorem 8.1 are satisfied. Hence,
system (8.16) is state equivalent to a LOCF with state transformation z = S(x) =
[x1 − x22 x2]T and γ (u) = [u22 u1]T, where

∂S(x)

∂x
= [ − g02(x) g01(x)

]−1 =
[
1 −2x2
0 1

]
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and

ż = S∗(Fu(x)) =
[
0 1
1 0

]
z +

[
u22
u1

]
; y = H ◦ S−1(z) = [

1 0
]
z.

�

Theorem 8.2 System (8.7) is state equivalent to a dual Brunovsky NOCF with state
transformation z = S(x), if and only if

(i)

gui (x) = g0i (x), 2 ≤ i ≤ n (8.17)

(ii)

[g0i (x), g0k(x)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n (8.18)

(iii)

∂S(x)

∂x
= [

(−1)n−1g0n(x) · · · − g02(x) g01(x)
]−1

. (8.19)

Proof Proof is omitted. (Special case of Lemma 8.2 with ϕ(y) = y.) �

Example 8.2.2 Consider the following control system:

ẋ =
[
x2 + 2x2u + (x1 − x22 )

2u2

u

]
= Fu(x)

y = x1 − x22 = H(x).

(8.20)

Show that system (8.20) is state equivalent to a dual Brunovsky NOCF without OT
and find a state transformation z = S(x) and the dual Brunovsky NOCF that new
state z satisfies.

Solution Since T (x) � [H(x) LF0H(x)]T = [x1 − x22 x2]T, it is clear, by (8.13)
and (8.14), that

gu1(x) � g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
2x2
1

]

gu2(x) � adFug
u
1(x) =

[−1
0

]

gu3(x) � ad2Fug
u
1(x) =

[
2(x1 − x22 )u

2

0

]
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which imply that gu3(x) 	= g03(x) and condition (i) of Theorem 8.1 is not satisfied.
Therefore, by Theorem8.1, system (8.20) is not state equivalent to a LOCF.However,
since condition (i) and condition (ii) of Theorem 8.2 are satisfied, system (8.20) is
state equivalent to a dual Brunovsky NOCF with state transformation z = S(x) =
[x1 − x22 x2]T and γ (y, u) = [y2u2 u]T, where

∂S(x)

∂x
= [ − g02(x) g01(x)

]−1 =
[
1 −2x2
0 1

]

and

ż = S∗(Fu(x)) =
[
z2
0

]
+
[
z21u

2

u

]
; y = H ◦ S−1(z) = z1.

�

Lemma 8.1 System (8.7) is state equivalent to a dual BrunovskyNOCFwithOT ȳ =
ϕ(y) and state transformation z = S(x), if and only if there exist a diffeomorphism
ȳ = ϕ(y) and smooth functions γ u

k (y) : R1+m → R, 1 ≤ k ≤ n such that for 1 ≤
i ≤ n,

Si (x) = Li−1
F0 (ϕ ◦ H(x)) −

i−1∑
k=1

Li−1−k
F0

(
γ 0
k ◦ H(x)

)
(8.21)

LFu L
n−1
F0 (ϕ ◦ H(x)) =

n−1∑
k=1

LFu L
n−1−k
F0

(
γ 0
k ◦ H(x)

)+ γ u
n ◦ H(x), (8.22)

and

LFu Si (x) − LF0 Si (x) = εui ◦ H(x) (8.23)

where for 1 ≤ i ≤ n,

γ u
i (y) � γ 0

i (y) + εui (y). (8.24)

Proof Necessity. Suppose that system (8.7) is state equivalent to a dual Brunovsky
NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then, it is clear, by
(8.9) and (8.10), that

h̄(z) � ϕ ◦ H ◦ S−1(z) = Coz = z1 (8.25)

and
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f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(z1) =

⎡
⎢⎢⎢⎣

z2 + γ̄ u
1 (z1)
...

zn + γ̄ u
n−1(z1)

γ̄ u
n (z1)

⎤
⎥⎥⎥⎦ (8.26)

which imply that for 1 ≤ k ≤ n − 1,

Sk+1(x) = LFu Sk(x) − γ̄ u
k (ϕ ◦ H(x)) = LFu Sk(x) − γ u

k ◦ H(x)

= LF0 Sk(x) − γ 0
k ◦ H(x)

(8.27)

and

LFu Sn(x) = γ̄ u
n (ϕ ◦ H(x)) = γ u

n ◦ H(x) (8.28)

where γ̄ u
k ◦ ϕ(y) � γ u

k (y) for 1 ≤ k ≤ n. Thus, it is clear, by (8.25), that (8.21) is
satisfied when i = 1. Assume that (8.21) is satisfied when 1 ≤ i ≤ � ≤ n − 1. Then
we have, by (8.27), that

S�+1(x) = LF0 S�(x) − γ 0
� ◦ H(x)

= L�
F0 (ϕ ◦ H(x)) −

�−1∑
k=1

L�−k
F0

(
γ 0
k ◦ H(x)

)− γ 0
� ◦ H(x)

= L�
F0 (ϕ ◦ H(x)) −

�∑
k=1

L�−k
F0

(
γ 0
k ◦ H(x)

)
(8.29)

which implies that (8.21) is satisfied when i = � + 1 ≤ n. Therefore, by mathemat-
ical induction, (8.21) is satisfied for 1 ≤ i ≤ n. Since

Sn(x) = Ln−1
F0 (ϕ ◦ H(x)) −

n−1∑
k=1

Ln−1−k
F0

(
γ 0
k ◦ H(x)

)
,

it is clear, by (8.28), that

LFu L
n−1
F0 (ϕ ◦ H(x)) −

n−1∑
k=1

LFu L
n−1−k
F0

(
γ 0
k ◦ H(x)

) = γ u
n ◦ H(x) (8.30)

which implies that (8.22) is satisfied. Finally, it is easy to see, by (8.27) and (8.28),
that for 1 ≤ k ≤ n,

LFu Sk(x) − LF0 Sk(x) = γ u
k ◦ H(x) − γ 0

k ◦ H(x) � εuk ◦ H(x)

which implies that (8.23) is satisfied.
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Sufficiency. Suppose that there exist a diffeomorphism ȳ = ϕ(y) and smooth
functions γ u

k (y), 1 ≤ k ≤ n such that (8.21)–(8.24) are satisfied. Let z = S(x). Since
S1(x) = ϕ ◦ H(x), it is clear that

h̄(z) � ϕ ◦ H ◦ S−1(z) = z1 = Coz (8.31)

and (8.9) is satisfied. Also, it is easy to see, by (8.21)–(8.24), that for 1 ≤ i ≤ n − 1,

LFu Si (x) = LF0 Si (x) + εui ◦ H(x)

= Li
F0 (ϕ ◦ H(x)) −

i−1∑
k=1

Li−k
F0

(
γ 0
k ◦ H(x)

)+ εui ◦ H(x)

= Si+1(x) + γ 0
i ◦ H(x) + εui ◦ H(x)

= Si+1(x) + γ u
i ◦ H(x)

and

LFu Sn(x) = LFu L
n−1
F0 (ϕ ◦ H(x)) −

n−1∑
k=1

LFu L
n−1−k
F0

(
γ 0
k ◦ H(x)

)

= γ u
n ◦ H(x)

which imply, together with (8.31), that

f̄u(z) � S∗(Fu(x)) =

⎡
⎢⎢⎢⎢⎣

LFu S1(x)
∣∣
x=S−1(z)

...

LFu Sn−1(x)
∣∣
x=S−1(z)

LFu Sn(x)
∣∣
x=S−1(z)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

z2 + γ̄1(z1)
...

zn + γ̄n−1(z1)
γ̄n(z1)

⎤
⎥⎥⎥⎦

= Aoz + γ̄ u(z1)

where γ̄ u
k ◦ ϕ(y) � γ u

k (y) for 1 ≤ k ≤ n. Therefore, (8.10) is satisfied. In other
words, system (8.7) is state equivalent to a dual Brunovsky NOCFwith OT ȳ = ϕ(y)
and state transformation z = S(x). �

Corollary 8.1 System (8.8) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), if and only if there exist a diffeomor-
phism ȳ = ϕ(y) and smooth functions γ 0

k (y) : R1+m → R, 1 ≤ k ≤ n such that for
1 ≤ i ≤ n,

Si (x) = Li−1
F0 (ϕ ◦ H(x)) −

i−1∑
k=1

Li−1−k
F0

(
γ 0
k ◦ H(x)

)
(8.32)
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and

Ln
F0 (ϕ ◦ H(x)) =

n∑
k=1

Ln−k
F0

(
γ 0
k ◦ H(x)

)
. (8.33)

Corollary 8.2 System (8.8) is state equivalent to a dual Brunovsky NOCFwith state
transformation z = S(x), if and only if there exist smooth functions γ 0

k (y) : R1+m →
R, 1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

Si (x) = Li−1
F0

H(x) −
i−1∑
k=1

Li−1−k
F0

(
γ 0
k ◦ H(x)

)
(8.34)

and

Ln
F0H(x) =

n∑
k=1

Ln−k
F0

(
γ 0
k ◦ H(x)

)
. (8.35)

Lemma 8.2 System (8.7) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), if and only if there exists a smooth
function �(y) (	= 0) such that

(i)

ḡui (x) = ḡ0i (x), 2 ≤ i ≤ n (8.36)

(ii)

[ḡ0i (x), ḡ0k(x)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n (8.37)

where

ḡu1(x) = ḡ01(x) � �(H(x))g01(x) (8.38)

ḡui (x) � adi−1
Fu

ḡ01(x), i ≥ 2 (8.39)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.40)

∂S(x)

∂x
= [

(−1)n−1ḡ0n(x) · · · − ḡ02(x) ḡ01(x)
]−1

. (8.41)
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Proof Necessity. Suppose that system (8.7) is state equivalent to a dual Brunovsky
NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then, by Lemma 8.1,
there exist a smooth function ϕ(y) and smooth functions γ u

k (y), 1 ≤ k ≤ n such that
for 1 ≤ i ≤ n,

zi = Si (x) = Li−1
F0 (ϕ ◦ H(x)) −

i−1∑
k=1

Li−1−k
F0

(
γ 0
k ◦ H(x)

)

or

S̃i (ξ) � Si ◦ T−1(ξ) = Li−1
f0(ξ)ϕ(ξ1) −

i−1∑
k=1

Li−1−k
f0(ξ) (γ̄k ◦ ϕ(ξ1)) (8.42)

where ξ = T (x) =

⎡
⎢⎢⎢⎣

H(x)
LF0H(x)

...

Ln−1
F0

H(x)

⎤
⎥⎥⎥⎦, f0(ξ) � T∗(F0(x)), and S̃(ξ) � S ◦ T−1(ξ).

Also, we have, by (8.9) and (8.10), that

h̄(z) � ϕ ◦ H ◦ S−1(z) = z1

and

f̄u(z) � S∗ (Fu(x)) = Aoz + γ̄ u(z1) =

⎡
⎢⎢⎢⎣

z2 + γ̄ u
1 (z1)
...

zn + γ̄ u
n−1(z1)

γ̄ u
n (z1)

⎤
⎥⎥⎥⎦ (8.43)

where γ̄ u
k ◦ ϕ(y) � γ u

k (y) for 1 ≤ k ≤ n. Define vector fields {ψ̄u
1 (z), · · · , ψ̄u

n (z)}
by

ψ̄u
1 (z) � ∂

∂zn
; ψ̄u

i (z) � adi−1
f̄u

ψ̄u
1 (z), i ≥ 2. (8.44)

Then, by (8.43) and (8.44), it is clear that for 1 ≤ i ≤ n,

ψ̄u
i (z) = (−1)i−1 ∂

∂zn+1−i
= ψ̄0

i (z) (8.45)

which implies that

[ψ̄u
i (z), ψ̄u

k (z)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n. (8.46)
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Note, by (8.42), that

∂ S̃i (ξ)

∂ξn
=
{
0, if 1 ≤ i ≤ n − 1
dϕ(ξ1)

dξ1
, if i = n

which implies, together with (8.44), that

S̃∗(
∂

∂ξn
) =

n∑
i=1

∂ S̃i (ξ)

∂ξn

∣∣∣∣
ξ=S̃−1(z)

∂

∂zi
= dϕ(ξ1)

dξ1

∣∣∣∣
ξ=S̃−1(z)

∂

∂zn

= dϕ(ξ1)

dξ1

∣∣∣∣
ξ=S̃−1(z)

ψ̄u
1 (z)

and

ψ̄u
1 (z) = �(ξ1)

∣∣∣∣
ξ=S̃−1(z)

S̃∗(
∂

∂ξn
)

where

1

�(ξ1)
= dϕ(ξ1)

dξ1

(
or ϕ(y) =

∫ y

0

1

�(ξ1)
dξ1

)
.

Therefore, we have, by (2.49), that

S̃−1
∗ (ψ̄u

1 (z)) = S̃−1
∗
(
�(ξ1)

∣∣∣∣
ξ=S̃−1(z)

S̃∗(
∂

∂ξn
)
)

= �(ξ1)
∂

∂ξn
. (8.47)

Hence, if we let ḡu1(x) � S−1∗ (ψ̄u
1 (z)), we have, by (2.49), (8.13), and (8.47), that

ḡu1(x) = S−1
∗ (ψ̄u

1 (z)) = T−1
∗ ◦ S̃−1

∗ (ψ̄u
1 (z)) = T−1

∗
(
�(ξ1)

∂

∂ξn

)

= �(H(x))T−1
∗

(
∂

∂ξn

)
= �(H(x))g01(x)

which implies that (8.38) is satisfied. Also, since f̄u(z) = S∗(Fu(x)) or Fu(x) =
S−1∗ ( f̄u(z)), it is clear, by (2.37), (8.39), and (8.44), that for i ≥ 2,

ḡui (x) = adi−1
Fu

ḡu1(x) = S−1
∗
{
adi−1

S∗(Fu)S∗(ḡu1(x))
}

= S−1
∗
{
adi−1

f̄u
ψ̄u

1 (z)
}

= S−1
∗ (ψ̄u

i (z))
(8.48)

and thus condition (i) and condition (ii) are satisfied by (8.45) and (8.46). Finally, it
is easy to see, by (8.45) and (8.48), that
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I = [
(−1)n−1S∗

(
ḡ0n(x)

) · · · −S∗
(
ḡ02(x)

)
S∗
(
ḡ01(x)

)]

=
(

∂S(x)

∂x

[
(−1)n−1ḡ0n(x) · · · −ḡ02(x) ḡ

0
1(x)

])

x=S−1(z)

or

I = ∂S(x)

∂x

[
(−1)n−1ḡ0n(x) · · · −ḡ02(x) ḡ

0
1(x)

]

which implies that (8.41) is satisfied.
Sufficiency. Suppose that there exists �(y) such that (8.36)–(8.40) are satisfied.

Since {ḡ01(x), ḡ02(x), · · · , ḡ0n(x)} is a set of commuting vector fields, there exists,
by Theorem 2.7, a state transformation z = S(x) such that

S∗
(
ḡ0i (x)

) = (−1)i−1 ∂

∂zn+1−i
, 1 ≤ i ≤ n. (8.49)

In fact, z = S(x) can be calculated by (8.41). Now it will be shown that

h̄(z) � ϕ ◦ H ◦ S−1(z) = z1 (8.50)

and

f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(z1). (8.51)

Note, by (8.15), that for 1 ≤ i ≤ n,

L ḡ01
Lk
F0H(x) = L�(H)g01

Lk
F0H(x) = �(H(x))Lg01

Lk
F0H(x)

=
{
0, 0 ≤ k ≤ n − 2

�(H(x)), k = n − 1

which implies, together with (2.30), (2.45), (8.14), (8.39), and (8.49), that for 1 ≤
i ≤ n,

L ḡ0i
H(x) = Ladi−1

F0
ḡ01
H(x) =

i−1∑
k=0

(−1)k
(
i − 1

k

)
Li−1−k
F0

L ḡ01
Lk
F0H(x)

=
{

0, 1 ≤ i ≤ n − 1

(−1)n−1�(H(x)), i = n

and
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∂ h̄(z)

∂zn+1−i
= (−1)i−1LS∗(ḡ0i )

(
ϕ ◦ H ◦ S−1(z)

)

= (−1)i−1
{
L ḡ0i (x)

(ϕ ◦ H(x))
}∣∣∣

x=S−1(z)

= (−1)i−1

{
∂ϕ(y)

∂y

∣∣∣∣
y=H(x)

L ḡ0i (x)
H(x)

}∣∣∣∣∣
x=S−1(z)

=

⎧⎪⎨
⎪⎩

0, 1 ≤ i ≤ n − 1{
∂ϕ(y)

∂y

∣∣∣
y=H(x)

�(H(x))

}∣∣∣∣
x=S−1(z)

, i = n

=
{
0, 1 ≤ i ≤ n − 1

1, i = n.

Therefore, h̄(z) = z1 and (8.50) is satisfied. Let

f̄u(z) �
n∑

k=1

f̄u,k(z)
∂

∂zk
=
⎡
⎢⎣
f̄u,1(z)

...

f̄u,n(z)

⎤
⎥⎦ . (8.52)

Since f̄u(z) = S∗(Fu(x)), it is clear that for 1 ≤ i ≤ n − 1,

S∗
(
ḡui+1(x)

) = S∗
(
adFu ḡ

u
i (x)

) = [
S∗(Fu(x)), S∗(ḡui (x))

]

= [
f̄u(z), S∗(ḡui (x))

]
.

(8.53)

Thus, we have, by (8.49), (8.52), and (8.53), that for 1 ≤ i ≤ n − 1,

(−1)i
∂

∂zn−i
=
[
f̄u(z), (−1)i−1 ∂

∂zn+1−i

]

= (−1)i
n∑

k=1

∂ f̄u,k(z)

∂zn+1−i

∂

∂zk

which implies that for 1 ≤ k ≤ n and 1 ≤ i ≤ n − 1,

∂ f̄u,k(z)

∂zn+1−i
=
{
1, k = n − i

0, otherwise
or

∂ f̄u,k(z)

∂zi+1
=
{
1, i = k

0, otherwise.

Therefore, it is clear that f̄u,n(z) = γ̄ u
n (z1) and f̄u,k(z) = zk+1 + γ̄ u

k (z1), 1 ≤ k ≤
n − 1, for some functions γ̄ u

k (z1), 1 ≤ k ≤ n. In other words, (8.51) is satisfied.
Hence, by (8.50) and (8.51), system (8.7) is state equivalent to a dual Brunovsky
NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). �
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Theorem 8.3 System (8.7) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), if and only if there exists a smooth
function β(y) such that

(i)

[g01(x), g0i (x)] = 0, 2 ≤ i ≤ n − 1 (8.54)

(ii)

[g01(x), g0n(x)] = −2β(H(x))g01(x), for even n (8.55)

[g02(x), g0n(x)] = nβ(H(x))g02(x) mod span{g01(x)}, for odd n (8.56)

(iii)

ḡui (x) = ḡ0i (x), 2 ≤ i ≤ n (8.57)

(iv)

[ḡ0i (x), ḡ0k(x)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n (8.58)

where

�(y) � e
∫ y
0 β(ȳ)d ȳ (8.59)

ḡu1(x) � �(H(x))g01(x) (8.60)

ḡui (x) � adi−1
Fu

ḡ01(x), i ≥ 2 (8.61)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.62)

∂S(x)

∂x
= [

(−1)n−1ḡ0n(x) · · · − ḡ02(x) ḡ01(x)
]−1

. (8.63)

Proof Necessity. Suppose that system (8.7) is state equivalent to a dual Brunovsky
NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then, by Lemma 8.2,
there exist smooth functions �(y) ( 	= 0) such that (8.36)–(8.41) are satisfied. Note,
by (2.44), (8.14), (8.38), and (8.39), that for 1 ≤ i ≤ n,
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ḡ0i (x) = adi−1
F0

ḡ01(x) = adi−1
F0

(
�(H(x))g01(x)

)

=
i−1∑
k=0

(
i − 1

k

)
Lk
F0�(H(x))adi−1−k

F0
g01(x)

=
i−1∑
k=0

(
i − 1

k

)
Lk
F0�(H(x))g0i−k(x).

(8.64)

Also note, by (8.15), that for 1 ≤ i ≤ n and 1 ≤ k ≤ n,

Lg0i (x)
Lk
F0�(H(x)) = d�(y)

dy

∣∣∣∣
y=H(x)

Lg0i (x)
Lk
F0H(x)

=
⎧⎨
⎩
0, i + k < n

(−1)i+1 d�(y)
dy

∣∣∣
y=H(x)

, i + k = n.

(8.65)

Thus, we have, by (2.43), (8.37), (8.64), and (8.65), that for 2 ≤ i ≤ n − 1,

0 = [ḡ01(x), ḡ0i (x)] =
[
�(H)g01,

i−1∑
k=1

(
i − 1

k

)
Lk
F0�(H)g0i−k + �(H)g0i

]

= �(H)

i−1∑
k=1

(
i − 1

k

)
Lk
F0�(H) [g01, g0i−k] + �(H)2[g01, g0i ].

(8.66)

Since [g01(x), g01(x)] = 0, it is easy to show, by (8.66) and mathematical induction,
that condition (i) is satisfied. Also, we have, by (2.43), (8.37), (8.54), (8.64), and
(8.65), that

0 = [ḡ01(x), ḡ0n(x)]

= [�(H)g01, L
n−1
F0

�(H)g01 +
n−2∑
k=1

(
n − 1

k

)
Lk
F0�(H)g0n−k + �(H)g0n]

= [�(H)g01, L
n−1
F0

�(H)g01] + [�(H)g01, �(H)g0n]
= �(H)Lg01

Ln−1
F0

�(H)g01 + �(H)2[g01, g0n] − �(H)Lg0n�(H)g01

which implies, together with (8.15), that

[g01(x), g0n(x)] = 1

�(H(x))

{
Lg0n�(H(x)) − Lg01

Ln−1
F0

�(H(x))
}
g01(x)

=
⎧⎨
⎩

−2
{

1
�(y)

d�(y)
dy

}∣∣∣
y=H(x)

g01(x), for even n

0, for odd n.

(8.67)
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Therefore, (8.55) and (8.59) are satisfied with β(y) = 1
�(y)

d�(y)
dy = d ln �(y)

dy for even
n. Similarly, for odd n, we have, by (2.43), (8.38), (8.54), (8.64), (8.65), and (8.67),
that

0 = [ḡ02(x), ḡ0n(x)]
= [LF0�(H)g01 + �(H)g02, L

n−1
F0

�(H)g01 + (n − 1)Ln−2
F0

�(H)g02 + · · · + �(H)g0n]
= [�(H)g02, (n − 1)Ln−2

F0
�(H)g02] + [�(H)g02, �(H)g0n] mod span{g01}

= (n − 1)�(H)Lg02
Ln−2
F0

�(H)g02 + �(H)2[g02, g0n]
− �(H)Lg0n�(H)g02 mod span{g01}

which implies, together with (8.65), that for odd n,

[g02(x), g0n(x)] = 1

�(H)

{
Lg0n�(H) + (n − 1)Lg01

Ln−1
F0

�(H)
}
g02 mod span{g01}

= n

{
1

�(y)

d�(y)

dy

}∣∣∣∣
y=H(x)

g02(x) mod span{g01(x)}

and (8.56) and (8.59) are satisfied with β(y) = 1
�(y)

d�(y)
dy = d ln �(y)

dy . Condition (iii)
and condition (iv) are obviously satisfied by (8.36) and (8.37).

Sufficiency. It is obvious by Lemma 8.2. �

Example 8.2.3 Consider the following control system:

ẋ =
[

x2
−x22 + x21e

−x1 + u

]
= Fu(x)

y = x1 = H(x).

(8.68)

Show that the above system is state equivalent to a dual Brunovsky NOCF with OT.
Also find a OT ȳ = ϕ(y), a state transformation z = S(x), and the dual Brunovsky
NOCF that new state z satisfies.

Solution Since T (x) � [H(x) LF0H(x)]T = x , it is clear, by (8.13) and (8.14), that

g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
0
1

]

gu2(x) � adFug
0
1(x) =

[−1
2x2

]

which imply that [g01(x), g02(x)] = 2g01(x) 	= 0 and condition (ii) of Theorem 8.2 is
not satisfied. Therefore, by Theorem 8.2, system (8.68) is not state equivalent to
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a dual Brunovsky NOCF without OT. Note that condition (i) and condition (ii) of
Theorem 8.3 are satisfied with β(x1) = −1. Thus, we have, by (8.59)–(8.62), that
�(y) � e

∫ y
0 β(ȳ)d ȳ = e−y and

ḡu1(x) � �(H(x))g01(x) =
[

0
e−x1

]

ḡu2(x) � adFug
0
1(x) =

[−e−x1

x2e−x1

]

ϕ(y) �
∫ y

0

1

�(ȳ)
d ȳ = ey − 1

which imply that condition (iii) and condition (iv) of Theorem 8.3 are also satisfied.
Hence, system (8.68) is state equivalent to a dual Brunovsky NOCF with OT ȳ =
ϕ(y) = ey − 1 and state transformation z = S(x) = [ex1 − 1 x2ex1 ]T, γ (ϕ(y), u) =
[0 y2 + eyu]T, and γ (ȳ, u) = [0 {ln(ȳ + 1)}2 + (ȳ + 1)u]T, where

∂S(x)

∂x
= [ − g02(x) g01(x)

]−1 =
[

e−x1 0
−x2e−x1 e−x1

]−1

and

ż = S∗(Fu(x)) =
[
z2
0

]
+
[

0
{ln(z1 + 1)}2 + (z1 + 1)u

]

ȳ = ϕ ◦ H ◦ S−1(z) = z1.

�

If n is odd, (8.56) should be used instead of (8.55) in condition (ii) of Theorem 8.3.

Example 8.2.4 Consider the following control system:

ẋ =
⎡
⎣

x2
x3

−4x1x3 − 3x22 − 6x21 x2 + u

⎤
⎦ = Fu(x)

y = x1 = H(x).

(8.69)

Show that the above system is not state equivalent to a dual Brunovsky NOCF with
OT.

Solution Since T (x) � [H(x) LF0H(x) L2
F0
H(x)]T = x , it is clear, by (8.13) and

(8.14), that
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g01(x) �
(

∂T (x)

∂x

)−1
⎡
⎣
0
0
1

⎤
⎦ =

⎡
⎣
0
0
1

⎤
⎦

gu2(x) � adFug
0
1(x) =

⎡
⎣

0
−1
4x1

⎤
⎦ ; gu3(x) � adFug

u
2(x) =

⎡
⎣

1
−4x1

10x21 − 2x2

⎤
⎦

which imply that [g02(x), g03(x)] = −2g01(x) 	= 0 and condition (ii) of Theorem 8.2
is not satisfied. Therefore, by Theorem 8.2, system (8.69) is not state equivalent
to a dual Brunovsky NOCF without OT. Note that condition (i) and condition (ii)
of Theorem 8.3 are satisfied with β(x1) = 0. Thus, we have, by (8.59)–(8.62), that
�(y) � e

∫ y
0 β(ȳ)d ȳ = 1, ϕ(y) �

∫ y
0

1
�(ȳ)d ȳ = y, and

ḡui (x) = gui (x), 1 ≤ i ≤ n

which imply that condition (iv) of Theorem 8.3 is not satisfied, even though condi-
tion (iii) is satisfied. Hence, by Theorem 8.3, system (8.69) is not state equivalent to
a dual Brunovsky NOCF with OT. �

8.3 Dynamic Observer Error Linearization

Consider the following single output control system and autonomous system:

ẋ = Fu(x) ; y = H(x) (8.70)

ẋ = F0(x) ; y = H(x) (8.71)

with F0(0) = 0, H(0) = 0, state x ∈ R
n , input u ∈ R

m , and output y ∈ R. Define
the restricted dynamic system with index d (called auxiliary dynamics) by

⎡
⎢⎢⎢⎣

ẇ1
...

ẇd−1

ẇd

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w2
...

wd

y

⎤
⎥⎥⎥⎦ � p(w, y). (8.72)

Define the extended system of system (8.70) with index d by

ẋ e �
[
ẇ

ẋ

]
=
[
p
(
w, H(x)

)
Fu(x)

]
� Fe

u (xe)

ya = w1

(8.73)

where xe � [wT xT]T ∈ R
d+n .



8.3 Dynamic Observer Error Linearization 351

Definition 8.6 (RDOEL with index d)
System (8.70) is said to be restricted dynamic observer error linearizable (RDOEL)
with index d, if there exists a local extended state transformation ze = Se(w, x) =
[wT zT]T = [wT S(w, x)T]T, which transforms (8.73), in the new states ze, to a
generalized nonlinear observer canonical form (GNOCF) with index d defined by

że = Aez
e + γ (w, y, u) ; ya = Cez

e = w1

where γ (w, y, u) : Rd+1 × R
m → R

d+n is a smooth vector function with γi = 0 for

1 ≤ i ≤ d − 1, Ce = [
1 O1×(n+d−1)

]
, and Ae =

[
O(n+d−1)×1 I(n+d−1)

0 O1×(n+d−1)

]
.

System (8.70) is said to be RDOEL, if system (8.70) is RDOEL with some index
d. If we use a general nonlinear dynamic system ẇ = p̄(w, y) in Definition 8.6
instead of restricted (or linear) dynamic system (8.72), system (8.70) is said to be
dynamic observer error linearizable (DOEL) with index d.

Let S−1(w, z) be the vector function such that S(w, S−1(w, z)) = z for all w ∈
R

d . In other words,

xe =
[
w

x

]
= (Se)−1(w, z) =

[
w

S−1(w, z)

]
.

If system (8.70) is RDOEL with index d, then we can design a state estimator

˙̄ze(t) =
[
ẇ
˙̄z
]

= (Ae − LeCe)

[
w

z̄

]
+ γ (w, y, u) + Lew1

x̄ � S−1(w, z̄)

that yields an asymptotically vanishing error, i.e., lim
t→∞‖ze(t) − z̄e(t)‖ = 0 or

lim
t→∞‖x(t) − x̄(t)‖ = 0, where (Ae − LeCe) is an asymptotically stable (d + n) ×
(d + n) matrix. Block diagram for dynamic nonlinear observer can be found in
Fig. 8.3.

RDOEL for autonomous system (8.71) can also be similarly defined with u =
0. If f̄ eu (ze) � (Se)∗(Fe

u (xe)) = Aeze + γ (w, y, u), then it is clear that f̄ e0 (z) �
(Se)∗(Fe

0 (xe)) = Aeze + γ (w, y, 0). Thus, we have the following remark.

Remark 8.3 If system (8.70) is RDOELwith index d and state transformation ze =
Se(w, x), then system (8.71) is also RDOEL with index d and state transformation
ze = Se(w, x). But the converse is not true.

Lemma 8.3 System (8.71) is RDOEL with index d(≥ 1) and state transforma-
tion ze = Se(w, x) = [wT S(w, x)T]T, if and only if there exist smooth functions
γ̄k(w, y), d ≤ k ≤ d + n such that
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Fig. 8.3 Dynamic nonlinear observer

Ln
Fe
0
H(x) =

n∑
k=0

Ln−k
Fe
0

γ̄d+k(w, H(x)) (8.74)

and for 1 ≤ i ≤ n,

Si (w, x) = Li−1
Fe
0
H(x) −

i−1∑
k=0

Li−1−k
Fe
0

γ̄d+k(w, H(x)). (8.75)

Proof Proof is obvious. �

For extended system (8.73), as in Definition 8.5, the canonical system can also
be defined by

ξ̇ e = f e0
(
ξ e
) ; ya = ξ e

1 = w1 � hE (ξ e) (8.76)

where ξ e �
[
w

ξ

]
= Te(xe) �

[
w

T (x)

]
, f eu (ξ e) � (Te)∗(Fe

u (xe)),

ξ = T (x) � [H(x) LF0H(x) · · · Ln−1
F0

H(x)]T
= [Ld

Fe
0
w1 L

d+1
Fe
0

w1 · · · Ld+n−1
Fe
0

w1]T

αe(ξ
e) � Ld+n

f e0
w1 = Ld+n

Fe
0

w1

∣∣∣
xe=T−1

e (ξ e)
= Ln

F0H(x)
∣∣
x=T−1(ξ)

= αe(0, ξ),

and

f e0 (ξ e) = [
w2 · · · wd ξ1 · · · ξn αe(ξ

e)
]T = (Te)∗(Fe

0 (xe)).
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For extended system (8.73), we define vector fields {g01(x), g02(x), · · · } and
{gu1(x), gu2(x), · · · } as follows:

Lg01(x
e)L

k−1
Fe
0

w1 = δk,d+n, 1 ≤ k ≤ d + n
(
or g01(x

e) �
(

∂Te(xe)

∂xe

)−1

[0 · · · 0 1]T = (Te)
−1
∗

(
∂

∂ξn

) ) (8.77)

and for i ≥ 2,

g0i (x
e) � adi−1

Fe
0
g01(x

e)

gu1(x
e) � g01(x

e) ; gui (x
e) � adi−1

Fe
u
gu1(x

e).
(8.78)

Then it is easy to see that for 1 ≤ i ≤ n + d and 0 ≤ k ≤ n + d − 1,

Lg0i (x
e)L

k
Fe
0
w1 =

{
0, i + k < d + n

(−1)i+1, i + k = d + n.
(8.79)

Also, since w j = L j−1
Fe
0

w1, 1 ≤ j ≤ d and H(x) = Ld
Fe
0
w1, it is clear that for 1 ≤

k ≤ n and 1 ≤ j ≤ d,

Lg0i (x
e)L

k
Fe
0
w j =

{
0, i + k < d + n + 1 − j

(−1)i+1, i + k = d + n + 1 − j

Lg0i (x
e)L

k
Fe
0
H(x) =

{
0, i + k < n

(−1)i+1, i + k = n.

(8.80)

Example 8.3.1 Let

g̃s1(x
e) =

{
�̄0(H(x))g01(x

e), s = 1

�̄s−1(wd+2−s, · · · , wd , H(x))g01(x
e), 2 ≤ s ≤ d

g̃si (x
e) � adi−1

Fe
0
g̃s1(x

e), 1 ≤ i ≤ n

for some scalar function �̄s−1(wd+2−s, · · · , wd , y). Prove the following:

(a) for 1 ≤ i ≤ n,

g0i (w, x) = g0i (0, x) (8.81)

g̃si (w, x) = g̃si (w, x)
∣∣
w j=0, 1≤ j≤d+1−s (8.82)
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(b) for 1 ≤ i ≤ n and 1 ≤ k ≤ n,

[
g0i (w, x), g0k(w, x)

] = [
g0i (w, x), g0k(w, x)

]∣∣
w=0 (8.83)

[
g̃si (w, x), g̃sk(w, x)

] = [
g̃si (w, x), g̃sk(w, x)

]∣∣
w j=0, 1≤ j≤d+1−s . (8.84)

Solution For canonical system (8.76), let r1(ξ e) � ∂
∂ξ e

d+n
= ∂

∂ξn
and ri (ξ e) �

adi−1
f e0

r1(ξ e), i ≥ 2. Since f e0 (ξ e) � (Te)∗(Fe
0 (xe)) and r1(ξ e) = (Te)∗(g01(xe)) by

(8.77), it is clear, by (2.49) and (2.37), that for 1 ≤ i ≤ n and 1 ≤ s ≤ d,

g0i (w, x) = (Te)
−1
∗ (ri (w, ξ))

g̃si (w, x) = (Te)
−1
∗ (r̃si (w, ξ))

r̃s1(w, ξ) = (Te)∗(g̃s1(w, x)) = �̄s−1(ξ
e
d+2−s, · · · , ξ e

d+1)r1(w, ξ)

where r̃s1(w, ξ) � (Te)∗(g̃s1(w, x)) and r̃si (ξ
e) � adi−1

f e0 (ξ e)r̃
s
1(ξ

e), 1 ≤ i ≤ n. Note that

r1(w, ξ) = r1(0, ξ) and r̃s1(w, ξ) = r̃s1(w, ξ)
∣∣
w j=0, 1≤ j≤d+1−s

. Since r1(w, ξ) =
r1(0, ξ), αe(w, ξ) = αe(0, ξ), ∂ f e0 (ξ e)

∂ξ e = ∂ f e0 (ξ e)

∂ξ e

∣∣∣
w=0

, and ∂r1(ξ e)

∂ξ e f e0 (ξ e) =(
∂r1(ξ e)

∂ξ e f e0 (ξ e)
)∣∣∣

w=0
, it is easy to see that

r2(w, ξ) = ad f e0 (ξ e)r1(ξ e) = ∂r1(ξ e)

∂ξ e
f e0 (ξ e) − ∂ f e0 (ξ e)

∂ξ e
r1(ξ e)

=
(

∂r1(ξ e)

∂ξ e
f e0 (ξ e)

)∣∣∣∣
w=0

− ∂ f e0 (ξ e)

∂ξ e

∣∣∣∣
w=0

r1(0, ξ)

=
(

∂r1(ξ e)

∂ξ e
f e0 (ξ e) − ∂ f e0 (ξ e)

∂ξ e
r1(ξ e)

)∣∣∣∣
w=0

= r2(0, ξ).

By mathematical induction, it can also be easily shown that ri (w, ξ) = ri (0, ξ) for

i ≥ 1. Thus, we have, by T−1
e (ξ e) =

[
w

T−1(ξ)

]
and ∂T−1

e (ξ e)

∂ξ e = ∂T−1
e (ξ e)

∂ξ e

∣∣∣
w=0

, that for

1 ≤ i ≤ n,

g0i (w, x) = (Te)
−1
∗ ri (w, ξ) =

(
∂T−1

e (ξ e)

∂ξ e
ri (w, ξ)

)∣∣∣∣
ξ=T−1(x)

=
(

∂T−1
e (ξ e)

∂ξ e
ri (w, ξ)

)∣∣∣∣
ξ=T−1(x),w=0

= g0i (0, x)
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which implies that (8.81) and (8.83) are satisfied. In the same manner, it can be
proved that (8.82) and (8.84) are also satisfied. �

Theorem 8.4 System (8.70) is RDOEL with index d(≥ 1) and state transformation
ze = Se(w, x) = [wT S(w, x)T]T, if and only if there exists a smooth function �(w, y)
( 	= 0) such that

(i)

ḡui (x
e) = ḡ0i (x

e), 2 ≤ i ≤ n (8.85)

(ii)

[ḡ0i (xe), ḡ0k(x
e)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n (8.86)

where

ḡu1(x
e) � �(w, H(x))g01(x

e) (8.87)

ḡui (x
e) � adi−1

Fe
u
ḡ01(x

e), i ≥ 2 (8.88)

∂S(w, x)

∂x
= D(xe)−1 (8.89)

[
(−1)n−1ḡ0n(x

e) · · · − ḡ02(x
e) ḡ01(x

e)
]

�
[
Od×n

D(xe)

]
. (8.90)

Proof Necessity. Suppose that system (8.70) is RDOELwith index d and state trans-
formation ze = [wT zT]T = Se(w, x) = [wT S(w, x)T]T. Then, by
Remark 8.10, autonomous system (8.71) is RDOEL with index d and state trans-
formation ze = Se(w, x). Therefore, by Lemma 8.3, there exist smooth functions
γ̄k(w, y), 1 ≤ k ≤ n such that (8.74) is satisfied and for 1 ≤ i ≤ n,

zi = Si (w, x) = Li−1
Fe
0
H(x) −

i−1∑
k=0

Li−1−k
Fe
0

γ̄d+k(w, H(x)) (8.91)

or

zi = S̃i (w, ξ) � Si
(
w, T−1(ξ)

) = ξi −
i−1∑
k=0

Li−1−k
f e0 (ξ e) γ̄d+k(w, ξ1) (8.92)
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where

ξ = T (x) �
[
H(x) LF0H(x) · · · Ln−1

F0
H(x)

]T

=
[
Ld
Fe
0
w1 Ld+1

Fe
0

w1 · · · Ld+n−1
Fe
0

w1

]T

ξ e =
[
w

ξ

]
= Te(w, x) �

[
w

T (x)

]
, f e0 (ξ e) � (Te)∗(Fe

0 (x)), and S̃e(ξ e) � Se◦
T−1
e (ξ e).Note, by (8.91) and (8.92), that z1 = H(x) − γ̄d(w, H(x)) = y − γ̄d(w, y) =

ξ1 − γ̄d(w, ξ1) = S̃1(w, ξ) = S̃1(w, ξ1, 0, · · · , 0) and ∂ S̃1(w,ξ1,0,··· ,0)
∂ξ1

	= 0. Thus, it is
clear, by implicit function theorem, that there exists a function y = q(w, z1) such
that

z1 = q(w, z1) + γ̄d(w, q(w, z1)), for all w ∈ R
d . (8.93)

In other words, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẇ1
...

ẇd−1

ẇd

ż1
...

żn−1

żn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w2
...

wd

z1 + γd(w, z1, u)

z2 + γd+1(w, z1, u)
...

zn + γd+n−1(w, z1, u)

γd+n(w, z1, u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� f̄ eu (ze)

ya = w1 = Cze � h̄E (ze)

(8.94)

where f̄ eu (ze) = (Se)∗
(
Fe
u (xe)

) = (S̃e)∗
(
f eu (ξ e)

)
and γ̄i (w, q(w, z1)) = γi (w,

z1, 0) for d ≤ i ≤ d + n. For system (8.94), we define vector fields {ψ̄u
1 (ze), · · · ,

ψ̄u
n (ze)} by

ψ̄u
1 (ze) � ∂

∂zn
= ∂

∂zed+n

; ψ̄u
i (ze) � adi−1

f̄ eu
ψ̄u

1 (ze), i ≥ 2. (8.95)

Then, by (8.94), it is clear that

ψ̄u
i (ze) = (−1)i−1 ∂

∂zn+1−i
= ψ̄0

i (z
e), 1 ≤ i ≤ n (8.96)

which implies that

[ψ̄u
i (ze), ψ̄u

k (ze)] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n. (8.97)
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It is not difficult to show, by (8.92), that

∂zei
∂ξn

= ∂ S̃e,i (ξ e)

∂ξn
=
{
0, if 1 ≤ i ≤ d + n − 1

1 − dγ̄d (w,ξ1)

dξ1
� 1

�(w,ξ1)
, if i = d + n

(8.98)

which implies, together with (8.95), that

(S̃e)∗(
∂

∂ξn
) =

n+d∑
i=1

∂ S̃e,i (ξ e)

∂ξn

∣∣∣∣
ξ e=S̃−1

e (ze)

∂

∂zei

= 1

�(w, ξ1)

∣∣∣∣
ξ e=S̃−1

e (ze)

∂

∂zn
= 1

�(w, ξ1)

∣∣∣∣
ξ e=S̃−1

e (ze)

ψ̄u
1 (ze).

Therefore

ψ̄u
1 (ze) = �(w, ξ1)

∣∣∣∣
ξ e=S̃−1

e (ze)

(S̃e)∗
(

∂

∂ξn

)

and

(S̃e)
−1
∗
(
ψ̄u

1 (ze)
) = (S̃e)

−1
∗

(
�(w, ξ1)

∣∣∣∣
ξ e=S̃−1

e (ze)

(S̃e)∗
(

∂

∂ξn

))

= �(w, ξ1)
∂

∂ξn
.

(8.99)

Hence, if we let ḡu1(x
e) � (Se)−1∗ (ψ̄u

1 (ze)), we have, by (2.49), (8.77), and (8.99),
that

ḡu1(x
e) = (Se)−1

∗ (ψ̄u
1 (ze)) = (Te)

−1
∗ ◦ (S̃e)

−1
∗ (ψ̄u

1 (ze))

= (Te)
−1
∗

(
�(w, ξ1)

∂

∂ξn

)

= �(w, H(x))(Te)
−1
∗

(
∂

∂ξn

)
= �(w, H(x))g01(x

e)

which implies that (8.87) is satisfied. Also, since f̄ eu (z) = (Se)∗(Fe
u (x)) or Fe

u (x) =
(Se)−1∗ ( f̄ eu (z)), it is clear, by (2.37), (8.88), and (8.95), that for i ≥ 2,

ḡui (x
e) = adi−1

Fe
u
ḡu1(x

e) = (Se)−1
∗
{
adi−1

(Se)∗(Fe
u )(S

e)∗(ḡu1(x
e))
}

= (Se)−1
∗
{
adi−1

f̄ eu
ψ̄u

1 (ze)
}

= (Se)−1
∗ (ψ̄u

i (ze))

and thus condition (i) and condition (ii), and (8.89) are satisfied by (8.96) and (8.97).
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Sufficiency. Suppose that condition (i) and condition (ii) are satisfied. Since
{ḡ01(xe), ḡ02(x

e), · · · , ḡ0n(x
e)} is a set of commuting vector fields, there exists,

by Corollary 2.1, a state transformation ze = Se(xe) =
[

w

S(w, x)

]
such that

(Se)∗
(
(−1)i−1ḡ0i (x

e)
) = ∂

∂zen+d+1−i

= ∂

∂zn+1−i
, 1 ≤ i ≤ n. (8.100)

In fact, ze = Se(xe) can be calculated by (8.89) and (8.90). Now we will show that
f̄ eu (ze) � (Se)∗

(
Fe
u (xe)

) = Aeze + γ (ze1, · · · , zed+1, u(xe)). Note that for 1 ≤ i ≤
n − 1,

(Se)∗
(
ḡui+1(x

e)
) = (Se)∗

(
adFe

u
ḡui (x

e)
) = [(Se)∗(Fe

u (xe)), (Se)∗
(
ḡui (x

e)
)].
(8.101)

Thus, if we let

f̄ eu (ze) =
n+d∑
k=1

ck(z
e)

∂

∂zek
=
⎡
⎢⎣

c1(ze)
...

cn+d(ze)

⎤
⎥⎦ (8.102)

then we have, by (8.100) and (8.101), that for 1 ≤ i ≤ n − 1,

(−1)i
∂

∂zen+d−i

=
[
f̄ eu (ze), (−1)i−1 ∂

∂zen+d+1−i

]

=
n+d∑
k=1

(−1)i
∂ck(ze)

∂zen+d+1−i

∂

∂zek

which implies that for 1 ≤ i ≤ n − 1 and 1 ≤ k ≤ n + d,

∂ck(ze)

∂zen+d+1−i

=
{
1, k = n + d − i

0, k 	= n + d − i

or, for d + 1 ≤ i ≤ n + d − 1 and 1 ≤ k ≤ n + d,

∂ck(ze)

∂zei+1

=
{
1, i = k

0, i 	= k.

Thus, it is clear that

ck(z
e) =

{
zek+1 + γ̃k(ze1, · · · , zed+1), 1 ≤ k ≤ n + d − 1

γ̃n+d(ze1, · · · , zed+1), k = n + d
(8.103)
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for some functions γ̃k(ze1, · · · , zed+1), 1 ≤ k ≤ n + d. Therefore, it is easy to see, by
(8.102) and (8.103), that

f̄ eu (ze) = Aez
e + γ̃ (ze1, · · · , zed+1).

Since zei = wi , 1 ≤ i ≤ d, it is easy to show, by (8.73), that γ̃i (ze1, · · · , zed+1) =
0, 1 ≤ i ≤ d − 1, y = zed+1 + γ̃d(w, zed+1), and

f̄ eu (ze) = Aez
e + γ̃ (w, q̃(w, y)) � Aez

e + γ (w, y)

where q̃(w, y) is a function such that y = q̃(w, y) + γ̃d(w, q̃(w, y)) for allw ∈ R
d .

�

Theorem 8.5 System (8.70) is RDOEL with index d(≥ 1) and state transformation
ze = Se(w, x) = [wT S(w, x)T]T, if and only if there exist some constants βi , 1 ≤
i ≤ d, and smooth function β0(y) : R → R such that

(i)

[g01, g0i ] = 0, 2 ≤ i ≤ n − 1 (8.104)

(ii)

[g01, g0n] = −2β0(H(x))g01, for even n (8.105)

[g02, g0n] = nβ0(H(x))g02 mod {g01}, for odd n (8.106)

(iii) for 1 ≤ i ≤ min(d, n − 2),

[g̃ii+1, g̃in] = (−1)n−12�̄i−1(x
e)βi g̃i1,

for even (n + i)
(8.107)

[g̃ii+2, g̃in] = (−1)n−1(n + i)�̄i−1(x
e)βi g̃i2 mod {g̃i1},

for odd (n + i)
(8.108)

(iv)

adkFe
u
g̃d+1
1 = adkFe

0
g̃d+1
1 , 1 ≤ k ≤ n − 1 (8.109)

(v)

[g̃d+1
i , g̃d+1

k ] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n (8.110)
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where S(w, x) is defined by (8.89) and (8.90), with g̃d+1
i , 1 ≤ i ≤ n instead of

ḡ0i , 1 ≤ i ≤ n, and

�̄i (x
e) �

⎧⎪⎪⎨
⎪⎪⎩

e
∫ H(x)
0 β0(ȳ)d ȳ, i = 0

e
∫ H(x)
0 β0(y)dy

i∏
k=1

eβkwd+1−k , 1 ≤ i ≤ d
(8.111)

g̃i+1
1 (xe) � �̄i (x

e)g01(x
e), 0 ≤ i ≤ d (8.112)

g̃ik(x
e) � adk−1

Fe
0
g̃i1(x

e), 1 ≤ i ≤ d + 1 and k ≥ 2. (8.113)

Proof Necessity. Suppose that system (8.70) is RDOELwith index d and state trans-
formation ze = [wT zT]T = Se(w, x) = [wT S(w, x)T]T. Then, by Theorem 8.4,
there exist smooth functions �(w, y) ( 	= 0) such that (8.85), (8.86), (8.87), and (8.88)
are satisfied. It will be shown that

ḡ01(x
e) = g̃d+1

1 (xe) or �(w, H(x)) = �̄d(x
e). (8.114)

Let �0(w) � 1, �d(w) � �(w, 0), and for 1 ≤ i ≤ d and 1 ≤ s ≤ i ,

�i (w) � �d(w1, · · · , wi , O(d−i)×1)

�̂i,s(w) �
i∏

k=s

eβkwd+1−k or g̃i+1
1 (xe) � �̂i,s(w)g̃s1(x

e). (8.115)

Note, by (8.80) and Example 2.4.16, that for 1 ≤ i ≤ n, 1 ≤ k ≤ n, 1 ≤ j ≤ d, and
s ≤ q ≤ d,

Lg0i (x
e)L

k
Fe
0
�(w, H(x)) =

d∑
j=1

∂�(w, H(x))

∂w j
Lg0i (x

e)L
k
Fe
0
w j

+ ∂�(w, y)

∂y

∣∣∣∣
y=H(x)

Lg0i (x
e)L

k
Fe
0
H(x)

=
⎧⎨
⎩
0, i + k < n

(−1)i+1 ∂�(w,y)
∂y

∣∣∣
y=H(x)

, i + k = n

(8.116)

Lg0i (x
e)L

k
Fe
0
� j (w) =

{
0, i + k < n + d + 1 − j

(−1)i+1 ∂� j (w)

∂w j
, i + k = n + d + 1 − j

(8.117)
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L g̃si L
k
Fe
0
�d+1−s(w) =

{
0, i + k < n + s

(−1)i+1�̄s−1(xe)
∂�d+1−s(w)

∂wd+1−s
, i + k = n + s,

(8.118)

and

L g̃si L
k
Fe
0
�̂q,s(w) =

{
0, i + k < n + s

(−1)i+1�̄s−1(xe)βs �̂q,s(w), i + k = n + s.
(8.119)

Also note, by (2.44), (8.78), (8.87), and (8.88), that for 1 ≤ i ≤ n,

ḡ0i (x
e) = adi−1

Fe
0
ḡ01(x

e) = adi−1
Fe
0

{
�(w, H(x))g01(x

e)
}

=
i−1∑
k=0

(
i − 1

k

)
Lk
Fe
0
�(w, H(x))adi−1−k

Fe
0

g01(x
e)

=
i−1∑
k=0

(
i − 1

k

)
Lk
Fe
0
�(w, H(x))g0i−k(x

e).

(8.120)

Thus, we have, by (2.43), (8.87), (8.116), and (8.120), that for 2 ≤ i ≤ n − 1,

0 = [ḡ01, ḡ0i ] =
[
�(w, H)g01,

i−1∑
k=1

(
i − 1

k

)
Lk
Fe
0
�(w, H)g0i−k + �(w, H)g0i

]

= �(w, H)

i−1∑
k=1

(
i − 1

k

)
Lk
Fe
0
�(w, H) [g01, g0i−k] + �(w, H)2[g01, g0i ].

(8.121)

Since [g01, g01] = 0, it is easy to show, by (8.121) and mathematical induction, that
condition (i) is satisfied. Thus, it is easy to see, by (2.43), (2.44), (8.104), (8.112),
and, (8.116), that for 1 ≤ i ≤ d + 1 and 1 ≤ k ≤ n − 1,

[g̃i1, g̃ik] =
[
�̄i−1(x

e)g01, adk−1
Fe
0

{�̄i−1(x
e)g01}

]

=
⎡
⎣�̄i−1(x

e)g01,
k−1∑
j=0

(
k − 1

j

)
L j
Fe
0
�̄i−1(x

e)g0k− j

⎤
⎦ = 0.

(8.122)

Now it will be shown, by mathematical induction, that for 1 ≤ i ≤ d + 1,

ḡ01(x
e) = �d+1−i (w)g̃i1(x

e) (8.123)
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and

[g̃qk (xe), g̃qj (x
e)] = 0, i ≤ q ≤ d + 1, 2 ≤ k + j ≤ n + i. (8.124)

Let n be even. Note, by (2.43), (8.86), (8.87), (8.104), (8.116), and (8.120), that

0 = [ḡ01, ḡ0n] =
[
�(w, H)g01, Ln−1

Fe
0

�(w, H)g01 +
n−2∑
k=1

(
n − 1

k

)
Lk
Fe
0
�(w, H)g0n−k

+ �(w, H)g0n

]
= [�(w, H)g01, L

n−1
Fe
0

�(w, H)g01] + [�(w, H)g01, �(w, H)g0n]
= �(w, H)Lg01

Ln−1
Fe
0

�(w, H)g01 + �(w, H)2[g01, g0n] − �(w, H)Lg0n�(w, H)g01

which implies, together with (8.83) and (8.116), that

[g01, g0n] = 1

�(w, H(x))

{
Lg0n�(w, H(x)) − Lg01

Ln−1
Fe
0

�(w, H(x))
}
g01

= −2

{
1

�(w, y)

∂�(w, y)

∂y

}∣∣∣∣
y=H(x)

g01

= −2

{
1

�(Od×1, y)

∂�(Od×1, y)

∂y

}∣∣∣∣
y=H(x)

g01.

Thus, condition (ii) holds with β0(y) = 1
�(O,y)

∂�(O,y)
∂y = ∂ ln �(O,y)

∂y = ∂ ln �(w,y)
∂y or

�(w, y) = �(w, 0)e
∫ y
0 β0(ȳ)d ȳ .

Therefore, it is clear that ḡ01 = �d(w)g̃11 and (8.123) holds for i = 1. Also, we have,
by (2.43), (2.44), (8.104), (8.105), (8.115), (8.116), (8.117), and (8.122), that

[g̃11, g̃1n] = [�̄0g01, �̄0g0n + · · · + Ln−1
Fe
0

�̄0g01]
= �̄ 2

0[g01, g0n] + �̄0

{
Lg01

Ln−1
Fe
0

�̄0 − Lg0n �̄0

}
g01

= �̄ 2
0[g01, g0n] + 2�̄0

∂e
∫ y
0 β0(ȳ)d ȳ

∂y

∣∣∣∣∣
y=H(x)

g01

= �̄ 2
0

{[g01, g0n] + 2β0(H(x))g01
} = 0

(8.125)

and for 1 ≤ q ≤ d,

[
g̃q+1
1 , g̃q+1

n

]
=
[
�̂q,1(w)g̃11,

n−1∑
k=0

(
n − 1

k

)
Lk
Fe
0
�̂q,1(w) g̃1n−k

]
= 0. (8.126)
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Thus, it is easy to see, by (8.122), (8.125), (8.126), and Example 2.4.18, that

[g̃qk (xe), g̃qj (x
e)] = 0, 1 ≤ q ≤ d + 1, 2 ≤ k + j ≤ n + 1.

Therefore, (8.124) also holds for i = 1. Assume that (8.123) and (8.124) hold for
i = s and s is odd with 1 ≤ s ≤ min(d, n − 2). (Even s will be considered later.) In
other words,

ḡ01(x
e) = �d+1−s(w)g̃s1(x

e) (8.127)

and

[g̃qk (xe), g̃qj (x
e)] = 0, s ≤ q ≤ d + 1, 2 ≤ k + j ≤ n + s. (8.128)

Since n + s is odd, then it is clear, by Example 2.4.19, that

[g̃qk (xe), g̃qj (x
e)] = 0, s ≤ q ≤ d + 1, 2 ≤ k + j ≤ n + s + 1 (8.129)

and (8.124) is satisfiedwhen i = s + 1.Therefore,wehave, by (2.43), (2.44), (8.113),
(8.118), (8.127), and (8.129), that

0 = [ḡ0s+2, ḡ0n] =
[
ads+1

Fe
0

(
�d+1−s(w)g̃s1

)
, adn−1

Fe
0

(
�d+1−s(w)g̃s1

)]

=
⎡
⎣

s+1∑
j=0

(
s + 1

j

)
L j
Fe
0
�d+1−s g̃ss+2− j ,

n−1∑
j=0

(
n − 1

j

)
L j
Fe
0
�d+1−s g̃sn− j

⎤
⎦

= �2d+1−s[g̃ss+2, g̃sn] + �d+1−s

{
(n − 1)L g̃ss+2

Ln−2
Fe
0

�d+1−s

− (s + 1)L g̃sn L
s
Fe
0
�d+1−s

}
g̃s2 mod{g̃s1}

= �2d+1−s[g̃ss+2, g̃sn] + (n + s)�d+1−s �̄s−1(x
e)

∂�d+1−s(w)

∂wd+1−s
g̃s2 mod{g̃s1}

which implies that

[g̃ss+2, g̃sn] = −(n + s)�̄s−1(x
e)

∂ ln �d+1−s(w)

∂wd+1−s
g̃s2 mod{g̃s1}.

Since [g̃ss+2(x
e), g̃sn(x

e)] does not depend, by (8.84), on w1, · · · , and wd+1−s , con-
dition (iii) (or (8.108)) holds with constant βs = ∂ ln �d+1−s(w)

∂wd+1−s
when i = s. Thus,

it is clear that �d+1−s(w) = �d−s(w)eβswd+1−s and ḡ01(x
e) = �d−s(w)g̃s+1

1 (xe) from
(8.115). Therefore, (8.123) is also satisfiedwhen i = s + 1. Now assume that (8.123)
and (8.124) hold for i = s and s is even with 1 ≤ s ≤ min(d, n − 2). Then, we have,
by (2.43), (2.44), (8.113), (8.118), (8.127), and (8.128),that
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0 = [ḡs+1, ḡn] =
[
adsFe

0

(
�d+1−s(w)g̃s1

)
, adn−1

Fe
0

(
�d+1−s(w)g̃s1

)]

=
⎡
⎣

s∑
j=0

(
s

j

)
L j
Fe
0
�d+1−s g̃ss+1− j ,

n−1∑
j=0

(
n − 1

j

)
L j
Fe
0
�d+1−s g̃sn− j

⎤
⎦

= �2d+1−s[g̃ss+1, g̃sn] + �d+1−s

{
L g̃ss+1

Ln−1
Fe
0

�d+1−s − L g̃sn L
s
Fe
0
�d+1−s

}
g̃s1

= �2d+1−s[g̃ss+1, g̃sn] + 2�d+1−s �̄s−1(x
e)

∂�d+1−s(w)

∂wd+1−s
g̃s1

which implies that

[g̃ss+1(x
e), g̃sn(x

e)] = −2�̄s−1(x
e)

∂ ln �d+1−s(w)

∂wd+1−s
g̃s1(x

e).

Since [g̃ss+1(x
e), g̃sn(x

e)] does not depend, by (8.84), on w1, · · · , and wd+1−s , con-
dition (iii) (or (8.107)) holds with constant βs = ∂ ln �d+1−s(w)

∂wd+1−s
when i = s. Thus,

it is clear that �d+1−s(w) = �d−s(w)eβswd+1−s and ḡ01(x
e) = �d−s(w)g̃s+1

1 (xe) from
(8.115). Thus, (8.123) is satisfied when i = s + 1. Also, we have, by (2.43), (2.44),
(8.107), (8.115), and (8.119), that for s ≤ q ≤ d,

[g̃q+1
s+1 (x

e), g̃q+1
n (xe)] =

[
adsFe

0

(
�̂q,s(w)g̃s1

)
, adn−1

Fe
0

(
�̂q,s(w)g̃s1

)]

=
⎡
⎣

s∑
j=0

(
s

j

)
L j
Fe
0
�̂q,s g̃ss+1− j ,

n−1∑
j=0

(
n − 1

j

)
L j
Fe
0
�̂q,s g̃sn− j

⎤
⎦

= �̂2q,s[g̃ss+1, g̃sn] + �̂q,s

{
L g̃ss+1

Ln−1
Fe
0

�̂q,s − L g̃sn L
s
Fe
0
�̂q,s

}
g̃s1

= �̂2q,s

{[g̃ss+1, g̃sn] + 2�̄s−1(x
e)βs g̃s1

} = 0

which implies, together with (8.128) and Example 2.4.18, that

[g̃qk (xe), g̃qj (x
e)] = 0, s + 1 ≤ q ≤ d + 1, 2 ≤ k + j ≤ n + s + 1

and (8.124) also holds for even s when i = s + 1. Hence, bymathematical induction,
(8.123), (8.124), and condition (iii) are satisfied for even n. Similarly, it can be
shown that (8.123), (8.124), and condition (iii) are satisfied for odd n. Finally, since
ḡ01(x

e) = g̃d+1
1 (xe), condition (iv) and condition (v) are satisfied by (8.85) and (8.86),

respectively.
Sufficiency. Suppose that conditions of Theorem 8.5 are satisfied. Then it is

clear that conditions of Theorem 8.4 are also satisfied with �(w, H(x)) = �̄d(xe) or
ḡ01(x

e) = g̃d+1
1 (xe). Hence, system (8.70) is, by Theorem 8.4, RDOEL with index d

and state transformation ze = Se(w, x) = [wT S(w, x)T]T where S(w, x) is defined
by (8.89) and (8.90), with g̃d+1

i (xe), 1 ≤ i ≤ n instead of ḡ0i (x
e), 1 ≤ i ≤ n. �
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By letting d = 0 in Theorem 8.5, the necessary and sufficient conditions in The-
orem 8.3 can be obtained, for the state equivalence to a dual Brunovsky NOCF with
OT.

Remark 8.4 If system (8.70) is RDOEL with index d (βi , 0 ≤ i ≤ d), then it is
RDOEL with index d + 1 (β ′

d+1 = 0 and β ′
i = βi , 0 ≤ i ≤ d). But the converse

does not hold.

If the system with n = 2 is not state equivalent to a dual Brunovsky NOCF with
OT, then the system is not RDEOL either. In the next theorem, the bound of the index
in the RDOEL problem will be given.

Theorem 8.6 If system (8.70) with n ≥ 3 is not RDOEL with index d ≤ n − 2, then
it is not RDOEL.

Proof If d ≥ n − 1, then min(d, n − 2) = n − 2 in condition (iii) of Theorem 8.5.
Therefore, the necessary and sufficient conditions of Theorem 8.5 for d ≥ n − 1 are
the same as those for d = n − 2. �
Example 8.3.2 Consider system (8.69) in Example 8.2.4 again.

ẋ =
⎡
⎣

x2
x3

−4x1x3 − 3x22 − 6x21 x2 + u

⎤
⎦ = Fu(x) ; y = x1 = H(x). (8.130)

Show that the above system is RDOEL.

Solution In Example 8.2.4, it has been shown, byTheorem8.3, that system (8.130) is
not state equivalent to a dual Brunovsky NOCFwith OT. Thus, it will be investigated
whether system (8.130) is RDOEL with index d = 1 or not. In other words, consider
the following extended system with ẇ1 = y:

⎡
⎢⎢⎣

ẇ1

ẋ1
ẋ2
ẋ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1
x2
x3

−4x1x3 − 3x22 − 6x21 x2 + u

⎤
⎥⎥⎦ = Fe

u (x) ; ya = w1.

Since Te(w, x) � [w T (x)T]T � [w H(x) LF0H(x) L2
F0
H(x)]T = [w xT]T = xe,

it is clear, by (8.77) and (8.78), that

g01(x
e) �

(
∂Te(xe)

∂xe

)−1

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

gu2(x
e) � adFe

u
g01(x

e) =

⎡
⎢⎢⎣

0
0

−1
4x1

⎤
⎥⎥⎦ ; gu3(x

e) =

⎡
⎢⎢⎣

0
1

−4x1
10x21 − 2x2

⎤
⎥⎥⎦
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which imply that [g01(xe), g02(xe)] = 0 and [g02(xe), g03(xe)] = −2g01(x
e) = 0 mod

{g01(xe)}. Therefore, condition (i) and condition (ii) of Theorem 8.5 are satisfied
with β0(y) = 0 or �̄0(xe) = 1, which implies, together with (8.111), (8.112), and
(8.113), that g̃1i (x

e) = g0i (x
e) for 1 ≤ i ≤ 3. Since [g̃12(xe), g̃13(xe)] = −2g̃11(x

e),
condition (iii) ofTheorem8.5 is satisfiedwithβ1 = −1. Since �̄1(xe) � �̄0(xe)eβ1w1 =
e−w1 by (8.111), it is clear, by (8.112), that

g̃21(x
e) � �̄1(x

e)g01(x
e) =

⎡
⎢⎢⎣

0
0
0

e−w1

⎤
⎥⎥⎦

adFe
u
g̃21(x

e) =

⎡
⎢⎢⎣

0
0

−e−w1

3x1e−w1

⎤
⎥⎥⎦ ; ad2Fe

u
g̃21(x

e) =

⎡
⎢⎢⎣

0
e−w1

−2x1e−w1

−3(x2 − x21 )e
−w1

⎤
⎥⎥⎦

which imply that adi−1
Fe
u
g̃21(x

e) = adi−1
Fe
0
g̃21(x

e) � g̃2i (x
e), 2 ≤ i ≤ 3 and thus con-

dition (iv) of Theorem 8.5 is also satisfied. Finally, it is easy to see that condi-
tion (v) of Theorem 8.5 holds. Hence, by Theorem 8.5, system (8.130) is RDOEL
with index d = 1. The extended state transformation ze = [w zT]T = Se(w, x) =
[w S(w, x)T]T = [w1 x1ew1 (x2 + x21 )e

w1 (x3 + x31 + 3x1x2)ew1]T can be obtained
by (8.89) and (8.90), with g̃2i (x

e), 1 ≤ i ≤ 3 instead of ḡ0i (x
e), 1 ≤ i ≤ 3. In other

words,

∂S(w, x)

∂x
= D(xe)−1 =

⎡
⎣

e−w1 0 0
−2x1e−w1 e−w1 0

−3(x2 − x21 )e
−w1 −3x1e−w1 e−w1

⎤
⎦

−1

=
⎡
⎣

ew1 0 0
2x1ew1 ew1 0

3(x2 + x21 )e
w1 3x1ew1 ew1

⎤
⎦ .

Finally, it is easy to see that

⎡
⎢⎢⎣

ẇ1

ż1
ż2
ż3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
z1
z2
z3
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

y(1 − ew1)

0
0

ew1(y4 + u)

⎤
⎥⎥⎦ ; ya = w1.

�

Example 8.3.3 Show that the following system is not RDOEL:
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ẋ =
⎡
⎣

x2
x3

x32 + u

⎤
⎦ = Fu(x) ; y = x1 = H(x). (8.131)

Solution It is easy to see that system (8.131) is not state equivalent to a dual
Brunovsky NOCF with OT. (See Problem 8-2.) Thus, it will be investigated whether
system (8.131) is RDOEL with index d = 1 or not. Consider the following extended
system with ẇ1 = y:

⎡
⎢⎢⎣

ẇ1

ẋ1
ẋ2
ẋ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1
x2
x3

x32 + u

⎤
⎥⎥⎦ = Fe

u (x) ; ya = w1.

Since Te(w, x) � [w T (x)T]T � [w H(x) LF0H(x) L2
F0
H(x)]T = [w xT]T = xe,

it is clear, by (8.77) and (8.78), that

g01(x
e) �

(
∂Te(xe)

∂xe

)−1

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

gu2(x
e) � adFe

u
g01(x

e) =

⎡
⎢⎢⎣

0
0

−1
0

⎤
⎥⎥⎦ ; gu3(x

e) =

⎡
⎢⎢⎣

0
1
0
3x22

⎤
⎥⎥⎦

which imply that [g01(xe), g02(xe)] = 0 and [g02(xe), g03(xe)] = −6x2g01(x
e) = 0mod

{g01(xe)}. Therefore, condition (i) and condition (ii) of Theorem 8.5 are satisfied with
β0(y) = 0 or �̄0(xe) = 1, which implies, together with (8.111), (8.112), and (8.113),
that g̃1i (x

e) = g0i (x
e) for 1 ≤ i ≤ 3. Since [g̃12(xe), g̃13(xe)] = −6x2g̃11(x

e), there does
not exist constantβ1 such that (8.107) is satisfied. Since condition (iii) of Theorem8.5
is not satisfied, system (8.131) is not, by Theorem 8.5, RDOEL with index d = 1.
Also, system (8.131) is not RDOEL by Theorem 8.6. �

8.4 Multi Output Observer Error Linearization

Consider a multi output control system of the form

ẋ = F(x, u) � Fu(x)

y = H(x)
(8.132)
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with F0(0) = 0, H(0) = 0, state x ∈ R
n , inputu ∈ R

m , and output y ∈ R
p. By letting

u = 0 in system (8.132), we obtain the following autonomous system:

ẋ = F0(x) ; y = H(x). (8.133)

Definition 8.7 (observability indices)
For the list of pn one forms of the form

∂H1(x)

∂x

∣∣∣∣
x=0

, · · · ,
∂Hq(x)

∂x

∣∣∣∣
x=0

,
∂
(
LF0H1(x)

)
∂x

∣∣∣∣∣
x=0

, · · · ,
∂
(
LF0Hp(x)

)
∂x

∣∣∣∣∣
x=0

,

· · · ,
∂
(
Ln−1
F0

H1(x)
)

∂x

∣∣∣∣∣
x=0

, · · · ,
∂
(
Ln−1
F0

Hp(x)
)

∂x

∣∣∣∣∣
x=0

,

delete all one forms that are linearly dependent on the set of preceding one forms
and obtain the unique set of linearly independent one forms

⎧⎨
⎩

∂H1(x)

∂x
, · · · ,

∂
(
Lν1−1
F0

H1(x)
)

∂x
, · · · ,

∂Hp(x)

∂x
, · · · ,

∂
(
L

νp−1
F0

Hp(x)
)

∂x

⎫⎬
⎭

∣∣∣∣∣∣
x=0

or

{
c̄1, c̄1 Ā, · · · , c̄1 Ā

ν1−1, · · · , c̄p, · · · , c̄p Ā
νp−1

}

where c̄ j � ∂Hj (x)
∂x

∣∣∣
x=0

and Ā � ∂F0(x)
∂x

∣∣∣
x=0

. Then,
(
ν1, · · · , νp

)
are said to be the

observability indices of system (8.132).

In other words, νi is the smallest nonnegative integer such that for 1 ≤ i ≤ p,

dLνi
F0
Hi (x)

∣∣
x=0

∈span
{
dL�−1

F0
Hj (x)

∣∣
x=0

∣∣∣ 1 ≤ j ≤ m, 1 ≤ � ≤ νi

}

+ span
{
dLνi

F0
Hj (x)

∣∣
x=0

∣∣∣ 1 ≤ j ≤ i − 1
}

.
(8.134)

If
p∑

i=1

νi = n, then system (8.132) is said to be observable. Since observability is

invariant under state transformation, we assume
p∑

i=1

νi = n. Also, we assume, with-

out loss of generality, that

ν1 ≥ ν2 ≥ · · · ≥ νp ≥ 1. (8.135)
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Definition 8.8 ( state equivalence to a NOCF)
System (8.132) is said to be state equivalent to a NOCF, if there exist a state trans-
formation z = S(x) such that

ż = Az + γ (y, u) = Az + γ u(y) � f̄u(z)

y = Cz � h̄(z)
(8.136)

where the pair (C, A) is observable and γ u(y) : Rp × R
m → R

n is a smooth vector
function with γ 0(0) = 0. In other words,

h̄(z) � H ◦ S−1(z) = Cz (8.137)

and

f̄u(z) � S∗(Fu(x)) = Az + γ u(Cz)

= Az + γ u(y).
(8.138)

For single output case, if the pair (C, A) is observable, there exists a linear state
transform z = P−1x such that (Ĉ, Â)(� (CP, P−1AP)) is observable canonical
form. In other words,

CP = Ĉ = [
1 0 0 · · · 0] = Co

P−1AP = Â =

⎡
⎢⎢⎢⎢⎢⎣

â11 1 0 · · · 0
â21 0 1 · · · 0
...

...
...

...

â(n−1)1 0 0 · · · 1
ân1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

= Ao +

⎡
⎢⎢⎢⎢⎢⎣

â11
â21
...

â(n−1)1

ân1

⎤
⎥⎥⎥⎥⎥⎦
Ĉ

where

Co = [
1 0 0 · · · 0] and Ao =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

.

Let us call (Co, Ao) a dual Brunovsky canonical form, even though the order of the
states are reversed compared to Brunovsky canonical form (4.9). Since

⎡
⎢⎣
â11
...

ân1

⎤
⎥⎦ Ĉz =

⎡
⎢⎣
â11z1

...

ân1z1

⎤
⎥⎦ ,
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it is clear that single output system (8.132) is state equivalent to a NOCF, if and only
if single output system (8.132) is state equivalent to a dual Brunovsky NOCF which
is defined by

ż = Aoz + γ u(z1) � f̄u(z)

y = Coz � h̄(z).

However, it is not true that if multi output system is state equivalent to a NOCF, then
multi output system is also state equivalent to a dual Brunovsky NOCF. (For this,
see Theorem 8.7.)

Definition 8.9 (state equivalence to a dual Brunovsky NOCF with OT)
System (8.132) is said to be state equivalent to a dual Brunovsky NOCF with output

transformation (OT), if there exist a smooth function ϕ(y)
(

ϕ(0) = 0 and rank(
∂ϕ(y)

∂y

∣∣∣
y=0

)
= p

)
and a state transformation z = S(x) such that

ż = Aoz + γ u(ȳ) � f̄u(z)

ȳ = ϕ(y) = Coz � h̄(z)

where Ao = blockdiag{A1
o, · · · , Ap

o }, Co = blockdiag{C1
o , · · · ,C p

o },

Ai
o =

[
O(νi−1)×1 I(νi−1)×(νi−1)

0 O1×(νi−1)

]
; Ci

o = [
1 O1×(νi−1)

]
, 1 ≤ i ≤ p

and γ u(ȳ) : Rp × R
m → R

n is a smooth vector function with γ 0(0) = 0. In other
words,

h̄(z) � ϕ ◦ H ◦ S−1(z) = Coz (8.139)

and

f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(Coz)

= Aoz + γ̄ u ◦ ϕ(y) � Aoz + γ u(y)
(8.140)

where γ̄ u(ȳ) � γ u ◦ ϕ−1(ȳ).

If system (8.132) is state equivalent to a NOCF with OT ϕ(y) = y, then system
(8.132) is state equivalent to a NOCF (without OT). State equivalence to a NOCF
for autonomous system (8.133) can be similarly defined with u = 0. If f̄u(z) �
S∗(Fu(x)) = Az + γ̄ u(Cz), then it is clear that f̄0(z) � S∗(F0(x)) = Az + γ̄ 0(Cz).
Thus, we have the following remark.
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Remark 8.5 If system (8.132) is state equivalent to a NOCF with OT ȳ = ϕ(y)
and state transformation z = S(x), then system (8.133) is also state equivalent to a
NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). But the converse is not
true.

Lemma 8.4 (observable canonical form of MO linear system)
Suppose that (A,C) is an observable pair and (8.135) is satisfied. Then there exist
a nonsingular matrix Q, a lower triangular matrix R with 1’s in the diagonal, and
an n × p matrix Ã such that

Â � QAQ−1 = Ao + ÃCo and Ĉ � CQ−1 = RCo (8.141)

where for 1 ≤ i ≤ p and 1 ≤ i ≤ νi ,

ci A
νi = −

i−1∑
�=1

r̄i�c�A
νi

mod span
{
cs A

k−1, 1 ≤ s ≤ p, 1 ≤ k ≤ min(ν j , νi )
}

(8.142)

R−1 =

⎡
⎢⎢⎢⎣

1 0 · · · 0
r̄21 1 · · · 0
...

...
. . .

...

r̄ p1 r̄ p2 · · · 1

⎤
⎥⎥⎥⎦ ; C̄ =

⎡
⎢⎣
c̄1
...

c̄p

⎤
⎥⎦ � R−1C (8.143)

c̄i A
νi =

νi∑
k=1

p∑
�=1

ã�
i(νi−k+1)c̄�A

k−1 � −
νi∑
k=1

mi(νi−k+1)C̄ Ak−1 (8.144)

Ã �

⎡
⎢⎣
Ã1
...

Ã p

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ã111 · · · ã p
11

...
...

ã11ν1 · · · ã p
1ν1

...
...

ã1p1 · · · ã p
p1

...
...

ã1pνp
· · · ã p

pνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11
...

m1ν1
...

mp1
...

mpνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
⎡
⎢⎣
m10
...

mp0

⎤
⎥⎦ = Ip×p (8.145)

Mi j = [
mi( j−1) · · · mi0 O1×(ν1− j)p

]
, (8.146)

and
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Q �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11
...

Q1ν1
...

Qp1
...

Qpνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11
...

M1ν1
...

Mp1
...

Mpνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C̄
C̄ A
...

C̄ Aν1−1

⎤
⎥⎥⎥⎦ � MV̄ . (8.147)

Proof It is easy to see, by (8.134), that there exist r̄i�, 2 ≤ i ≤ p, 1 ≤ � ≤ i − 1
such that (8.142) is satisfied. It is clear, by (8.143) and (8.145)–(8.147), that

CoQ =
⎡
⎢⎣
M11
...

Mp1

⎤
⎥⎦

⎡
⎢⎢⎢⎣

C̄
C̄ A
...

C̄ Aν1−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣
mi0 O1×(ν1−1)p
...

...

mp0 O1×(ν1−1)p

⎤
⎥⎦

⎡
⎢⎢⎢⎣

C̄
C̄ A
...

C̄ Aν1−1

⎤
⎥⎥⎥⎦

= [
Ip×p Op×(ν1−1)p

]
⎡
⎢⎢⎢⎣

C̄
C̄ A
...

C̄ Aν1−1

⎤
⎥⎥⎥⎦ = C̄ = R−1C

(8.148)

which implies that Ĉ � CQ−1 = RCo. It is easy to see, by (8.144)–(8.147), that for
1 ≤ i ≤ p and 1 ≤ j ≤ νi ,

νi+1∑
k=1

mi(νi−k+1)C̄ Ak−1 =
νi∑
k=1

mi(νi−k+1)C̄ Ak−1 + mi0C̄ Aνi

=
νi∑
k=1

mi(νi−k+1)C̄ Ak−1 + c̄i A
νi = 0

(8.149)

and

Qi j = Mi j V̄ =
j∑

k=1

mi( j−k)C̄ Ak−1. (8.150)

Thus, we have, by (8.149) and (8.150), that for 1 ≤ i ≤ p and 1 ≤ j ≤ νi − 1,

Qi j A = Mi j V̄ A =
j∑

k=1

mi( j−k)C̄ Ak =
j+1∑
k=2

mi( j+1−k)C̄ Ak−1

= Qi( j+1) − mi j C̄

and
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Qiνi A = Miνi V̄ A =
νi∑
k=1

mi(νi−k)C̄ Ak =
νi+1∑
k=2

mi(νi−k+1)C̄ Ak−1

=
νi+1∑
k=1

mi(νi−k+1)C̄ Ak−1 − miνi C̄ = −miνi C̄

which imply, together with (8.148), that for 1 ≤ i ≤ p,

⎡
⎢⎢⎢⎣

Qi1
...

Qi(νi−1)

Qiνi

⎤
⎥⎥⎥⎦ A =

⎡
⎢⎢⎢⎣

Qi2 − mi1C̄
...

Qiνi − mi(νi−1)C̄
−miνi C̄

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Qi2
...

Qiνi
0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

mi1
...

mi(νi−1)

miνi

⎤
⎥⎥⎥⎦CoQ

=
[
Oνi×∑i−1

k=1 νk
Ai
o Oνi×∑p

k=i+1 νk

]
Q + ÃiCoQ.

Hence, it is clear that

QA = AoQ + ÃCoQ or Â � QAQ−1 = Ao + ÃCo.

�

The dual version of Lemma8.4 can be found in Section IVof [H25]. The following
theorem, which can be easily proven by Lemma 8.4, shows the difference between
the equivalence of theMO system to a NOCF and the equivalence of theMO systems
to a dual Brunovsky NOCF.

Theorem 8.7 System (8.132) is state equivalent to a NOCF, if and only if,

(i) for 2 ≤ i ≤ p and some real constants r̄i j ’s,

dLνi
Fu
Hi (x) = −

i−1∑
j=1

r̄i j dL
νi
Fu
Hj (x)

mod span{dLk−1
Fu

Hj (x), 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )}.
(8.151)

(ii) System

ẋ(t) = Fu
(
x(t)

) ; ŷ(t) = Ĥ(x(t)) � R−1H(x(t)) (8.152)

is state equivalent to a dual Brunovsky NOCF, where

R−1 =

⎡
⎢⎢⎢⎣

1 0 · · · 0
r̄21 1 · · · 0
...

...
. . .

...

r̄ p1 r̄ p2 · · · 1

⎤
⎥⎥⎥⎦ . (8.153)



374 8 Observer Error Linearization

Proof Necessity. Suppose that system (8.132) is state equivalent to a NOCF with
state transformation z = S(x). Then, we have, by (8.137) and (8.138), that

h̄(z) � H ◦ S−1(z) = Cz (8.154)

and

f̄u(z) � S∗(Fu(x)) = Az + γ u(Cz) (8.155)

where (A,C) is an observable. Thus, byLemma8.4, there exists a nonsingularmatrix
Q such that

Â � QAQ−1 = Ao + ÃCo and Ĉ � CQ−1 = RCo (8.156)

where for 1 ≤ i ≤ p,

ci A
νi = −

i−1∑
�=1

r̄i�c�A
νi

mod span
{
cs A

k−1, 1 ≤ s ≤ p, 1 ≤ k ≤ min(ν j , νi )
}
.

Let ẑ � Qz = QS(x) � Ŝ(x). Then it is easy to see, by (8.154)–(8.156), that

ĥ(ẑ) � Ĥ ◦ Ŝ−1(z) = R−1h̄(Q−1 ẑ) = R−1CQ−1 ẑ = Coẑ (8.157)

and

f̂u(ẑ) � Ŝ∗(Fu(x)) = QAQ−1 ẑ + Qγ u(CQ−1 ẑ)

= Aoẑ + ÃCoẑ + Qγ u(RCoẑ) = Aoẑ + γ̂ u(Coẑ)
(8.158)

where γ̂ u(y) � Ãy + Qγ u(Ry). Therefore, system (8.152) is state equivalent to a
dual Brunovsky NOCF and condition (ii) of Theorem 8.7 is satisfied. Since ĥ(ẑ) =
R−1h̄(Q−1 ẑ), we have, by (2.30) and (8.153), that for 1 ≤ i ≤ p and k ≥ 1,

ĥi (ẑ) = h̄i (Q
−1 ẑ) +

i−1∑
j=1

r̄i j h̄ j (Q
−1 ẑ)

and

Lk
f̂u
ĥi (ẑ) = Lk

f̄u
h̄i (z)

∣∣∣
z=Q−1 ẑ

+
i−1∑
j=1

r̄i j L
k
f̄u
h̄ j (z)

∣∣∣
z=Q−1 ẑ
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which imply that for 1 ≤ i ≤ p and k ≥ 0,

dLk
f̂u
ĥi (ẑ) = ∂

∂ ẑ

(
Lk

f̂u
ĥi (ẑ)

)

=
⎛
⎝dLk

f̄u
h̄i (z) +

i−1∑
j=1

r̄i j dL
k
f̄u
h̄ j (z)

⎞
⎠
∣∣∣∣∣∣
z=Q−1 ẑ

Q−1.

(8.159)

Let
ẑ �

[
ẑ11 · · · ẑ1ν1 · · · ẑ p1 · · · ẑ pνp

]T

z̃k �
{
ẑ jk | 1 ≤ j ≤ p and ν j ≥ k

}

f̂ u(ẑ) �
[
f̂ u11(ẑ) · · · f̂ u1ν1(ẑ) · · · f̂ up1(ẑ) · · · f̂ upνp

(ẑ)
]T

and for 1 ≤ i ≤ p,

f̂ ui j (ẑ) =
{
ẑi( j+1) + γ̂ u

i j (z̃1), 1 ≤ j ≤ νi − 1

γ̂ u
iνi

(z̃1), j = νi .
(8.160)

Then it is easy to see, by (8.157), (8.158) and (8.160), that for 1 ≤ i ≤ p and 1 ≤
k ≤ νi − 1,

ĥi (ẑ) = ẑi1 (8.161)

Lk
f̂u
ĥi (ẑ) = ẑi(k+1) + φu

i,k(z̃1, · · · , z̃k) (8.162)

and
Lνi

f̂u
ĥi (ẑ) = φu

i,νi (z̃1, · · · , z̃νi ) (8.163)

where φu
i,1(z̃1) = γ̂ u

i1(z̃1) and

φu
i,k(z̃1, · · · , z̃k) = γ̂ u

ik(z̃1) +
p∑

�=1

min(k−1,ν�)∑
j=1

∂φu
i,k−1(z̃1, · · · , z̃k−1)

∂ ẑ�j
f̂ u�j (ẑ).

Therefore, it is clear, by (8.161)–(8.163), that for 1 ≤ i ≤ p,
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span

{
∂

∂ ẑ

(
Lk−1

f̂u
ĥ j (ẑ)

)
| 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )

}

= span

{
∂ ẑ jk
∂ ẑ

| 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )

}

and
∂

∂ ẑ

(
Lνi

f̂u
ĥi (ẑ)

)
∈ span

{
∂ ẑ jk
∂ ẑ

| 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )

}

which implies, together with (8.159), that for 1 ≤ i ≤ p,

dLνi

f̂u
ĥi (ẑ) ∈ span

{
dLk−1

f̂u
ĥ j (ẑ) | 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )

}

= span

{
dLk−1

f̄u
h̄ j (z̄)

∣∣∣
z=Q−1 ẑ

Q−1 | 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )

}

and

dLνi

f̄u
h̄i (z) = −

i−1∑
j=1

r̄i j dL
νi

f̄u
h̄ j (z)

mod span
{
dLk−1

f̄u
h̄ j (z̄) | 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )

}
.

(8.164)

Since

Lk
Fu H(x) = Lk

f̄u
h̄(z̄)

∣∣∣
z̄=S(x)

or dLk
Fu H(x) = dLk

f̄u
h̄(z̄)

∣∣∣
z̄=S(x)

∂S(x)

∂x
,

it is easy to see, by (8.164), that condition (i) of Theorem 8.7 is satisfied.
Sufficiency. Suppose that system (8.152) is state equivalent to a dual Brunovsky

NOCF with z = S(x). Then, we have, by (8.139) and (8.140), that

ĥ(z) � R−1H ◦ S−1(z) = Coz

and

f̂u(z) � S∗(Fu(x)) = Aoz + γ u(Coz).

Therefore, it is clear that

h̄(z) � H ◦ S−1(z) = RCoz � Cz

and
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f̄u(z) � S∗(Fu(x)) = Az + γ u(R−1Cz)

= Az + γ̄ u(y)

where γ̄ u(y) � γ u(R−1y). Hence, by Definition 8.8, system (8.132) is state equiv-
alent to a NOCF with state transformation z = S(x). �

Define a state transformation ξ = T (x) by

ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ11
ξ12
...

ξ1ν1
...

ξp1
...

ξpνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= T (x) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1(x)
LF0H1(x)

...

Lν1−1
F0

H1(x)
...

Hp(x)
...

L
νp−1
F0

Hp(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.165)

Definition 8.10 (canonical system)
The canonical system of system (8.132) is defined by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ̇11
...

ξ̇1(ν1−1)

ξ̇1ν1
...

ξ̇p1
...

ξ̇p(νp−1)

ξ̇pνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ12 + αu
11(ξ)

...

ξ1ν1 + αu
1(ν1−1)(ξ)

αu
1ν1(ξ)

...

ξp2 + αu
p1(ξ)

...

ξpνp + αu
p(νp−1)(ξ)

αu
pνp

(ξ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� fu(ξ) ; y =
⎡
⎢⎣

ξ11
...

ξp1

⎤
⎥⎦ � h(ξ) (8.166)

where ξ = T (x), fu(ξ) � T∗(Fu(x)), h(ξ) � H ◦ T−1(ξ),

αu
iνi (ξ) � LFu L

νi−1
F0

Hi (x)
∣∣∣
x=T−1(ξ)

, 1 ≤ i ≤ p

and for 1 ≤ i ≤ p and 1 ≤ k ≤ νi − 1,

αu
ik(ξ) � LFu L

k−1
F0

Hi (x)
∣∣
x=T−1(ξ)

− Lk
F0Hi (x)

∣∣
x=T−1(ξ)

.

It is clear that α0
ik(ξ) = 0, 1 ≤ i ≤ p, 1 ≤ k ≤ νi − 1 and
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f0(ξ) � T∗(F0(x)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ12
...

ξ1ν1
α0
1ν1(ξ)

...

ξp2
...

ξpνp

α0
pνp

(ξ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.167)

System (8.132) is state equivalent to a NOCF with OT (or without OT) via z =
S(x), if and only if canonical system (8.166) is state equivalent to a NOCF with
OT (or without OT) via z = S̃(ξ) (� S ◦ T−1(ξ)). Canonical system (8.166) is more
convenient to solve the observer problems than system (8.132). Since geometric
conditions are coordinate free, any geometric condition in ξ− coordinates (for system
(8.166)) can be expressed in x− coordinates (for system (8.132)).

For system (8.132), we define vector fields {g0ik(x), 1 ≤ i ≤ p, 1 ≤ k ≤ νi } and
{guik(x), 1 ≤ i ≤ p, 1 ≤ k ≤ νi } as follows.

Lg0i1
Lk−1
F0

Hj (x) = δi, j δk,νi , 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ ν j(
or g0i1(x) � T−1

∗

(
∂

∂ξiνi

)
, 1 ≤ i ≤ p

) (8.168)

and for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

gui1(x) � g0i1(x); guik(x) � adk−1
Fu

gui1(x)

g0ik(x) � adk−1
F0

g0i1(x) = guik(x)
∣∣
u=0 .

(8.169)

Then it is easy to see, by Example 2.4.16 and (8.168), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p,
1 ≤ k ≤ νi , and 0 ≤ � ≤ ν j − 1,

Lg0ik
L�
F0Hj (x) =

{
0, k + � < ν j

(−1)k+1δi, j , k + � = ν j .
(8.170)

For system (8.166), we define vector fields {τ u
ik(ξ), 1 ≤ i ≤ p, 1 ≤ k ≤ νi } by

τ u
ik(ξ) � T∗

(
guik(x)

)
, 1 ≤ i ≤ p, 1 ≤ k ≤ νi . (8.171)

Then it is easy to see, by (2.37), (8.168), (8.169), and, (8.171), that for 1 ≤ i ≤ p
and 1 ≤ k ≤ νi ,

τ u
i1(ξ) = τ 0

i1(ξ) = ∂

∂ξiνi
(8.172)
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and
τ u
ik(ξ) = T∗

(
adk−1

Fu
gui1(x)

) = adk−1
fu

τ u
i1(ξ). (8.173)

That is, τ u
ik(ξ) is the ξ -coordinates expression of vector field guik(x). It is also easy to

see, by (2.30), (8.170), and (8.171), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ νi , and
0 ≤ � ≤ ν j − 1,

Lτ 0
ik
L�

f0h j (ξ) = LT∗(g0ik )L
�
F0

(
Hj ◦ T−1(ξ)

) = Lg0ik
L�
F0Hj (x)

∣∣∣
x=T−1(ξ)

=
{
0, k + � < ν j

(−1)k+1δi, j , k + � = ν j .

(8.174)

Lemma 8.5 System (8.132) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), if and only if there exist a diffeomor-
phism ϕ(y) : Rp → R

p and smooth functions γ u
i j (y), 1 ≤ i ≤ p, 1 ≤ j ≤ νi such

that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

zik = Sik(x) = Lk−1
F0 (ϕi ◦ H(x)) −

k−1∑
j=1

Lk−1− j
F0

(
γ 0
i j ◦ H(x)

)
(8.175)

LFu L
νi−1
F0 (ϕi ◦ H(x)) =

νi−1∑
j=1

LFu L
νi−1− j
F0

(
γ 0
i j ◦ H(x)

)+ γ u
iνi ◦ H(x) (8.176)

and

LFu Sik(x) − LF0 Sik(x) = εuik ◦ H(x) (8.177)

where

z � [z11 · · · z1ν1 · · · z p1 · · · z pνp ]T

and for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

γ u
ik(y) � γ 0

ik(y) + εuik(y). (8.178)

Proof Necessity. Suppose that system (8.132) is state equivalent to a dual
Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then, it
is clear, by (8.139) and (8.140), that

h̄(z) � ϕ ◦ H ◦ S−1(z) = Coz = [z11 · · · z p1]T � z̃1 (8.179)
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and

f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(z̃1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z12 + γ̄ u
11(z̃1)

...

z1ν1 + γ̄ u
1(ν1−1)(z̃1)

γ̄ u
1ν1(z̃1)

...

z p2 + γ̄ u
p1(z̃1)

...

z pνp + γ̄ u
p(νp−1)(z̃1)

γ̄ u
pνp

(z̃1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.180)

which imply that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi − 1,

Si(k+1)(x) = LFu Sik(x) − γ̄ u
ik(ϕ ◦ H(x)) = LFu Sik(x) − γ u

ik ◦ H(x)

= LF0 Sik(x) − γ 0
ik ◦ H(x)

(8.181)

and

LFu Siνi (x) = γ̄ u
iνi (ϕ ◦ H(x)) = γ u

iνi ◦ H(x) (8.182)

where γ̄ u
ik ◦ ϕ(y) � γ u

ik(y) for 1 ≤ i ≤ p and 1 ≤ k ≤ νi . Thus, it is clear, by (8.179),
that (8.175) is satisfied when 1 ≤ i ≤ p and k = 1. Assume that (8.175) is satisfied
when 1 ≤ i ≤ p and 1 ≤ k ≤ � ≤ νi − 1. Then we have, by (8.181), that for 1 ≤
i ≤ p,

Si(�+1)(x) = LF0 Si�(x) − γ 0
i� ◦ H(x)

= L�
F0 (ϕi ◦ H(x)) −

�−1∑
j=1

L�− j
F0

(
γ 0
i j ◦ H(x)

)− γ 0
i� ◦ H(x)

= L�
F0 (ϕi ◦ H(x)) −

�∑
j=1

L�− j
F0

(
γ 0
i j ◦ H(x)

)

which implies that (8.175) is satisfied when 1 ≤ i ≤ p and k = � + 1 ≤ νi . There-
fore, by mathematical induction, (8.175) is satisfied for 1 ≤ i ≤ p and 1 ≤ k ≤ νi .
Since

Siνi (x) = Lνi−1
F0 (ϕi ◦ H(x)) −

νi−1∑
j=1

Lνi−1− j
F0

(
γ 0
i j ◦ H(x)

)
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it is clear, by (8.182), that for 1 ≤ i ≤ p,

LFu L
νi−1
F0 (ϕi ◦ H(x)) −

νi−1∑
j=1

LFu L
νi−1− j
F0

(
γ 0
i j ◦ H(x)

) = γ u
iνi ◦ H(x)

which implies that (8.176) is satisfied. Finally, it is easy to see, by (8.181) and (8.182),
that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

LFu Sik(x) − LF0 Sik(x) = γ u
ik ◦ H(x) − γ 0

ik ◦ H(x) � εuik ◦ H(x)

which implies that (8.177) is satisfied.
Sufficiency. Suppose that there exist a diffeomorphism ȳ = ϕ(y) and smooth

functions γ u
i j (y), 1 ≤ i ≤ p, 1 ≤ j ≤ νi such that (8.175)–(8.178) are satisfied. Let

z = S(x). Since S1(x) = ϕ ◦ H(x), it is clear that for 1 ≤ i ≤ p,

h̄i (z) � ϕi ◦ H ◦ S−1(z) = zi1 (8.183)

and (8.139) is satisfied. Also, it is easy to see, by (8.175)–(8.178), that for 1 ≤ i ≤ p
and 1 ≤ k ≤ νi − 1,

LFu Sik(x) = LF0 Sik(x) + εuik ◦ H(x)

= Lk
F0 (ϕi ◦ H(x)) −

k−1∑
j=1

Lk− j
F0

(
γ 0
i j ◦ H(x)

)+ εuik ◦ H(x)

= Si(k+1)(x) + γ 0
ik ◦ H(x) + εuik ◦ H(x)

= Si(k+1)(x) + γ u
ik ◦ H(x)

and

LFu Siνi (x) = LFu L
νi−1
F0 (ϕi ◦ H(x)) −

νi−1∑
j=1

LFu L
n−1− j
F0

(
γ 0
i j ◦ H(x)

)

= γ u
iνi ◦ H(x)

which imply, together with (8.183), that
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f̄u(z) � S∗(Fu(x)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LFu S11(x)
∣∣
x=S−1(z)

...

LFu S1(ν1−1)(x)
∣∣
x=S−1(z)

LFu S1ν1(x)
∣∣
x=S−1(z)

...

LFu Sp1(x)
∣∣
x=S−1(z)

...

LFu Sp(νp−1)(x)
∣∣
x=S−1(z)

LFu Spνp (x)
∣∣
x=S−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z12 + γ̄11(z̃1)
...

z1ν1 + γ̄1(ν1−1)(z̃1)
γ̄1ν1(z̃1)

...

z p2 + γ̄p1(z̃1)
...

z pνp + γ̄p(νp−1)(z̃1)
γ̄pνp (z̃1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Aoz + γ̄ u(z̃1)

where γ̄ u
ik ◦ ϕ(y) � γ u

ik(y) for 1 ≤ i ≤ p and 1 ≤ k ≤ νi . Therefore, (8.140) is sat-
isfied. In other words, system (8.132) is state equivalent to a dual Brunovsky NOCF
with OT ȳ = ϕ(y) and state transformation z = S(x). �

Corollary 8.3 System (8.132) is state equivalent to a dual Brunovsky NOCF with
state transformation z = S(x), if and only if there exist smooth functions γ u

i j (y), 1 ≤
i ≤ p, 1 ≤ j ≤ νi such that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

zik = Sik(x) = Lk−1
F0

Hi (x) −
k−1∑
j=1

Lk−1− j
F0

(
γ 0
i j ◦ H(x)

)
(8.184)

LFu L
νi−1
F0

Hi (x) =
νi−1∑
j=1

LFu L
νi−1− j
F0

(
γ 0
i j ◦ H(x)

)+ γ u
iνi ◦ H(x) (8.185)

and

LFu Sik(x) − LF0 Sik(x) = εuik ◦ H(x) (8.186)

where

z � [z11 · · · z1ν1 · · · z p1 · · · z pνp ]T

and for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

γ u
ik(y) � γ 0

ik(y) + εuik(y). (8.187)

Corollary 8.4 System (8.133) is state equivalent to a dual Brunovsky NOCF with
OT ȳ = ϕ(y) and state transformation z = S(x), if and only if there exist a diffeo-
morphism ϕ(y) : Rp → R

p and smooth functions γ 0
i j (y), 1 ≤ i ≤ p, 1 ≤ j ≤ νi

such that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,
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zik = Sik(x) = Lk−1
F0 (ϕi ◦ H(x)) −

k−1∑
j=1

Lk−1− j
F0

(
γ 0
i j ◦ H(x)

)
(8.188)

and

Lνi
F0 (ϕi ◦ H(x)) =

νi∑
j=1

Lνi− j
F0

(
γ 0
i j ◦ H(x)

)
(8.189)

where

z � [z11 · · · z1ν1 · · · z p1 · · · z pνp ]T.

Lemma 8.6 Suppose that system (8.132) is state equivalent to a dual Brunovsky
NOCF. Let c(y) be a smooth function of y(∈ R

p). Then

(i) for 1 ≤ i ≤ p and 1 ≤ k ≤ νi − 1,

Lτ 0
i1
Lk−1

f0
c(h(ξ)) = 0 (8.190)

(ii) for 1 ≤ i ≤ p,

dLνi
f0
hi (ξ) ∈ span{dLk−1

f0
h j (ξ), 1 ≤ j ≤ p, 1 ≤ k ≤ νi } (8.191)

(iii) for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

τ 0
ik ≡(−1)k−1 ∂

∂ξi(νi+1−k)

mod span{ ∂

∂ξ j�
, 1 ≤ j ≤ p, νi + 2 − k ≤ � ≤ ν j }

(8.192)

(iv)

Lτ 0
ik
L�

f0c(h(ξ)) =
{
0, k + � ≤ νi − 1

(−1)k−1 ∂c(h(ξ))

∂ξi1
, k + � = νi

(8.193)

where f0(ξ) � T∗(F0(x)) in (8.167), h(ξ) � H ◦ T−1(ξ), and

ξ � [ξ11 · · · ξ1ν1 · · · ξp1 · · · ξpνp ]T.

Proof Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF
without OT. Thus, we have, by (2.30) and (8.185), that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,
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α0
iνi (ξ) � Lνi

F0
Hi (x)

∣∣
x=T−1(ξ)

=
νi∑
j=1

Lνi− j
F0

(
γ 0
i j ◦ H(x)

)∣∣∣
x=T−1(ξ)

=
νi∑
k=1

Lνi−k
f0

γik(h(ξ)).

(8.194)

Let for 1 ≤ k ≤ ν1,
ξ̃k �

{
ξ jk | 1 ≤ j ≤ p and ν j ≥ k

}

and for 1 ≤ i ≤ p and 1 ≤ j ≤ νi ,

f 0i j (ξ) �
{

ξi( j+1), 1 ≤ j ≤ νi − 1

α0
iνi

(ξ), j = νi .

Then it is easy to see, by (8.167) and (8.194), that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

Lk−1
f0

c(h(ξ)) = φk(ξ̃1, · · · , ξ̃k) (8.195)

and

α0
iνi (ξ) =

νi∑
k=1

Lνi−k
f0

γik(h(ξ)) = ᾱ0
iνi (ξ̃1, · · · , ξ̃νi ) (8.196)

where φ1(ξ̃1) = c(ξ̃1) and for 2 ≤ k ≤ ν1,

φk(ξ̃1, · · · , ξ̃k) =
p∑

�=1

min(k−1,ν�)∑
j=1

∂φk−1(ξ̃1, · · · , ξ̃k−1)

∂ξ�j
f 0�j (ξ).

Thus, it is clear, by (8.172) and (8.195), that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi − 1,

Lτ 0
i1
Lk−1

f0
c(h(ξ)) = ∂

∂ξiνi

(
Lk−1

f0
c(h(ξ))

)
= ∂φk(ξ̃1, · · · , ξ̃k)

∂ξiνi
= 0

which implies that condition (i) of Lemma 8.6 is satisfied. We have, by (8.165) and
(8.196), that

dLνi
f0
hi (ξ) = dα0

iνi (ξ) ∈ span{dξ jk, 1 ≤ j ≤ p, 1 ≤ k ≤ min(ν j , νi )}
⊂ span{dLk−1

f0
h j (ξ), 1 ≤ j ≤ p, 1 ≤ k ≤ νi }

which implies that condition (ii) of Lemma 8.6 is satisfied. It is also easy to see, by
(8.165) and (8.174), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ νi , and 0 ≤ � ≤ ν j − 1,
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Lτ 0
ik
ξ j (�+1) = Lτ 0

ik
L�

f0h j (ξ) =
{
0, 0 ≤ � < νi − k

(−1)k−1δi, j , � = νi − k

which implies that condition (iii) of Lemma 8.6 is satisfied. Finally, we have, by
(8.192) and (8.195), that for 1 ≤ i ≤ p, 1 ≤ k ≤ νi , and � ≤ νi − 1 − k,

Lτ 0
ik
L�

f0c(h(ξ)) = 0. (8.197)

Therefore, it is easy to see, by Example 2.4.16, (8.192), and (8.197), that for 1 ≤ i ≤
p and 1 ≤ k ≤ νi ,

Lτ 0
ik
Lνi−k

f0
c(h(ξ)) = (−1)νi−k Lad

νi−k
f0

τ 0
ik (ξ)

c(h(ξ))

= (−1)νi−k Lτ 0
iνi
c(h(ξ))

= (−1)k−1 ∂c(h(ξ))

∂ξi1

which implies, together with (8.197), that condition (iv) of Lemma 8.6 is satisfied.�

Theorem 8.8 System (8.132) is state equivalent to a dual Brunovsky NOCF, if and
only if

(i) for 1 ≤ i ≤ p,

dLνi
F0
Hi (x) ∈ span{dLk−1

F0
Hj (x), 1 ≤ j ≤ p, 1 ≤ k ≤ νi } (8.198)

(ii) there exist smooth vector fields ḡu11(x), · · · , ḡup1(x) such that for 1 ≤ i ≤ p,
1 ≤ j ≤ p, 1 ≤ k ≤ νi , and 1 ≤ � ≤ ν j ,

L ḡ0i1
Lk−1
F0

Hj (x) = δi, j δk,νi (8.199)

ḡuik(x) = ḡuik(x)
∣∣
u=0 � ḡ0ik(x) (8.200)

and
[ḡ0ik(x), ḡ0j�(x)] = 0 (8.201)

where δi, j is the Kronecker delta function and for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

ḡuik(x) � adk−1
Fu

ḡ0i1(x). (8.202)

Furthermore, a state coordinates transformation z = S(x) is given by
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∂S(x)

∂x
=
[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

· · · (−1)νp−1ḡ0pνp
(x) · · · − ḡ0p2(x) ḡ

0
p1(x)

]−1
.

(8.203)

Proof Necessity. Suppose that system (8.132) is state equivalent to a dual
Brunovsky NOCF with state transformation z = S(x). Then, we have, by (8.139)
and (8.140), that

h̄(z) � H ◦ S−1(z) = Coz = [z11 · · · z p1]T � z̃1

and

f̄u(z) � S∗(Fu(x)) = Aoz + γ u(Coz) = Aoz + γ u(z̃1) (8.204)

where

z �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
z12
...

z1ν1
...

z p1
z p2
...

z pνp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; f̄ u(z) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̄ u11(z)
...

f̄ u1(ν1−1)(z)
f̄ u1ν1(z)

...

f̄ up1(z)
...

f̄ up(νp−1)(z)

f̄ upνp
(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z12 + γ u
11(z̃1)

...

z1ν1 + γ u
1(ν1−1)(z̃1)

γ u
1ν1(z̃1)

...

z p2 + γ u
p1(z̃1)

...

z pνp + γ u
p(νp−1)(z̃1)

γ u
pνp

(z̃1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since

Lk
F0Hi (x) = Lk

f0hi (ξ)
∣∣
ξ=T (x)

or dLk
F0Hi (x) = dLk

f0hi (ξ)
∣∣
ξ=T (x)

∂T (x)

∂x

for 1 ≤ j ≤ p and k ≥ 0, it is easy to see, by (8.191), that condition (i) of Theorem8.8
is satisfied. Define vector fields

{
ψ̄u
ik(z) | 1 ≤ i ≤ p, 1 ≤ k ≤ νi

}
by

ψ̄0
i1(z) � ∂

∂ziνi
; ψ̄u

ik(z) � adk−1
f̄u

ψ̄0
i1(z). (8.205)

Then, by (8.204) and (8.205), it is clear that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

ψ̄u
ik(z) = (−1)k−1 ∂

∂zi(νi+1−k)
= ψ̄0

ik(z) (8.206)
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which implies that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi , and 1 ≤ � ≤ ν j ,

[ψ̄0
ik(z), ψ̄

0
j�(z)] = 0. (8.207)

Note that f̄u(z) = S∗(Fu(x)) or Fu(x) = S−1∗ ( f̄u(z)). It is clear, by (8.205) and
(8.206), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

Ladk−1
f̄0

ψ̄0
i1(z)

h̄ j (z) = L ψ̄0
ik
h̄ j (z) = (−1)k−1 ∂z j1

∂zi(νi+1−k)

=
{
0, k ≤ νi − 1

(−1)k−1δi, j , k = νi

which implies, together with Example 2.4.16, that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and
1 ≤ k ≤ νi ,

L ψ̄0
i1
Lk−1

f̄0
h̄ j (z) = δi, j δk,νi . (8.208)

Hence, if we let

ḡui1(x) = ḡ0i1(x) � S−1
∗ (ψ̄u

i1(z)), 1 ≤ i ≤ p

then we have, by (2.30) and (8.208), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

L ḡ0i1
Lk−1
F0

Hj (x) = L ψ̄0
i1
Lk−1

f̄u
h̄ j (z)

∣∣∣
z=S(x)

= δi, j δk,νi

which implies that (8.199) is satisfied. Also, it is clear, by (2.37), (8.202), and (8.205),
that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

ḡuik(x) = adk−1
Fu

ḡ0i1(x) = S−1
∗
{
adk−1

S∗(Fu)S∗(ḡ0i1(x))
}

= S−1
∗
{
adk−1

f̄u
ψ̄0
i1(z)

}
= S−1

∗ (ψ̄u
ik(z))

(8.209)

and thus (8.200) and (8.201) are satisfied by (8.206) and (8.207). Finally, it is easy
to see, by (8.206) and (8.209), that

I =
[
(−1)ν1−1S∗

(
ḡ01ν1(x)

) · · · − S∗
(
ḡ012(x)

)
S∗
(
ḡ011(x)

)

· · · (−1)νp−1S∗
(
ḡ0pνp

(x)
)

· · · − S∗
(
ḡ0p2(x)

)
S∗
(
ḡ0p1(x)

) ]

=
(

∂S(x)

∂x

[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

· · · (−1)νp−1ḡ0pνp
(x) · · · − ḡ0p2(x) ḡ

0
p1(x)

])

x=S−1(z)
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or

I = ∂S(x)

∂x

[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

· · · (−1)νp−1ḡ0pνp
(x) · · · − ḡ0p2(x) ḡ

0
p1(x)

]

which implies that (8.203) is satisfied.
Sufficiency. Suppose that condition (i) and condition (ii) of Theorem 8.8 are

satisfied. Since {ḡ0ik(x) | 1 ≤ i ≤ p, 1 ≤ k ≤ νi } is a set of commuting vector fields,
there exists, by Theorem 2.7, a state transformation z = S(x) such that for 1 ≤ i ≤ p
and 1 ≤ k ≤ νi ,

S∗
(
ḡ0ik(x)

) = (−1)k−1 ∂

∂zi(νi+1−k)
(8.210)

where
z �

[
z11 · · · z1ν1 · · · z p1 · · · z pνp

]T
.

In fact, z = S(x) can be calculated by (8.203). Now it will be shown that for 1 ≤
j ≤ p

h̄ j (z) � ϕ ◦ H ◦ S−1(z) = z j1 (8.211)

and

f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(z11, · · · , z p1). (8.212)

It is easy to see, by (2.30), (2.45), (8.199), (8.202), and (8.210), that for 1 ≤ i ≤ p,
1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

L ḡ0ik
Hj (x) = Ladk−1

F0
ḡ0i1
Hj (x)

=
k−1∑
�=0

(−1)k
(
k − 1

�

)
Lk−1−�
F0

L ḡ0i1
L�
F0Hj (x)

= Lk−1
F0

Hj (x) = δi, j δk,νi

and

∂ h̄ j (z)

∂zi(νi+1−k)
= ∂

(
Hj ◦ S−1(z)

)
∂zi(νi+1−k)

= (−1)k−1LS∗(ḡ0ik)
(
Hj ◦ S−1(z)

)

= (−1)k−1
{
L ḡ0ik (x)

Hj (x)
}∣∣∣

x=S−1(z)
= δi, j δk,νi

which implies that h̄ j (z) = z j1 for 1 ≤ j ≤ p and thus (8.211) is satisfied. Let
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f̄u(z) �
p∑

j=1

ν j∑
�=1

f̄ uj�(z)
∂

∂z j�

=
[
f̄ u11(z) · · · f̄ u1ν1(z) · · · f̄ up1(z) · · · f̄ upνp

(z)
]T

.

(8.213)

Since f̄u(z) = S∗(Fu(x)), it is clear that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi − 1,

S∗
(
ḡui(k+1)(x)

) = S∗
(
adFu ḡ

u
ik(x)

) = [
S∗(Fu(x)), S∗(ḡuik(x))

]

= [
f̄u(z), S∗(ḡuik(x))

]
.

(8.214)

Thus, we have, by (8.210), (8.213), and (8.214), that for 1 ≤ i ≤ p and 1 ≤ k ≤
νi − 1,

(−1)k
∂

∂zi(νi−k)
=
[
f̄u(z), (−1)k−1 ∂

∂zi(νi+1−k)

]

= (−1)k
p∑

j=1

ν j∑
�=1

∂ f̄ uj�(z)

∂zi(νi+1−k)

∂

∂z j�

which implies that for 1 ≤ i ≤ p, 1 ≤ k ≤ νi − 1, 1 ≤ j ≤ p, and 1 ≤ � ≤ ν j ,

∂ f̄ uj�(z)

∂zi(νi+1−k)
=
{
1, j = i, � = νi − k

0, otherwise

or

∂ f̄ uj�(z)

∂zi(k+1)
=
{
1, j = i, � = k

0, otherwise.

Therefore, it is clear that for 1 ≤ j ≤ p and 1 ≤ � ≤ ν j ,

f̄ uj�(z) =
{
z j (�+1) + γ̄ u

j�(z11, · · · , z p1), 1 ≤ � ≤ ν j − 1

γ̄ u
jν j

(z11, · · · , z p1), � = ν j

for some functions γ̄ u
j�(z11, · · · , z p1). In other words, (8.212) is satisfied. Hence, by

(8.211) and (8.212), system (8.132) is state equivalent to a dual Brunovsky NOCF
with state transformation z = S(x). �

Remark 8.6 Condition (i) of Theorem 8.8 is needed for the existence of the vec-
tor fields {ḡ0i1(x), 1 ≤ i ≤ p} which satisfy (8.199). For example, let p = 2 and
(ν1, ν2) = (2, 1). Then, by (8.199), 3 × 1 vector fields ḡ011(x) and ḡ

0
21(x) satisfy the

following equations:
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⎡
⎢⎢⎣

dH1(x)
dLF0H1(x)
dH2(x)

dLF0H2(x)

⎤
⎥⎥⎦ ḡ011(x) =

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ (8.215)

and [
dH1(x)
dH2(x)

]
ḡ021(x) =

[
0
1

]
. (8.216)

If dLF0H2(x) /∈ span{dH1(x), dH2(x)} (or condition (i) of Theorem 8.8 is not sat-
isfied), there does not exist ḡ011(x) that satisfies equation (8.215).

A unique set of vector fields {g0i1(x), 1 ≤ i ≤ p} has been defined in (8.168)
by using 1 ≤ k ≤ ν j instead of 1 ≤ k ≤ νi in (8.199). For example, let p = 2 and
(ν1, ν2) = (2, 1). Then, we have, by (8.168), that

[
g011(x) g

0
21(x)

] =
⎡
⎣

dH1(x)
dLF0H1(x)
dH2(x)

⎤
⎦

−1⎡
⎣
0 0
1 0
0 1

⎤
⎦ (8.217)

whereas ḡ011(x) and ḡ021(x) satisfy

⎡
⎣

dH1(x)
dLF0H1(x)
dH2(x)

⎤
⎦[ḡ011(x) ḡ021(x)

] =
⎡
⎣
0 0
1 �̃(x)
0 1

⎤
⎦ =

⎡
⎣
0 0
1 0
0 1

⎤
⎦
[
1 �̃(x)
0 1

]
(8.218)

if we let L ḡ021
LF0H1(x) = �̃(x) which is not defined in (8.216). Thus, we have, by

(8.217) and (8.218), that

[
ḡ011(x) ḡ

0
21(x)

] = [
g011(x) g

0
21(x)

] [1 �̃(x)
0 1

]

= [
g011(x) g

0
21(x) + �̃(x)g011(x)

]
.

Therefore, we need to find �̃(x) such that (8.200) is satisfied. By this reason, the
conditions in Theorem 8.8 are not verifiable necessary and sufficient conditions. In
fact, we can restate condition (ii) of Theorem 8.8 as follows:

(ii)’ there exist smooth functions �̃i, j,k(x), 2 ≤ i ≤ p, 1 ≤ j ≤ i − 1, 1 ≤ k ≤
ν j − νi such that (8.200) and (8.201) are satisfied, where for 2 ≤ i ≤ p,

ḡ0i1(x) = g0i1(x) +
i−1∑
j=1

ν j−νi∑
k=1

�̃i, j,k(x)ḡ0jk(x). (8.219)
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Theorem 8.9 System (8.132) is state equivalent to a dual Brunovsky NOCF, if and
only if

(i) for 1 ≤ i ≤ p,

dLνi
F0
Hi (x) ∈ span{dLk−1

F0
Hj (x), 1 ≤ j ≤ p, 1 ≤ k ≤ νi } (8.220)

(ii) there exist smooth functions γ jr (y), 1 ≤ j ≤ p − 1, 1 ≤ r ≤ ν j − νp such
that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ νi , and 1 ≤ r ≤ ν j ,

ḡuik(x) = ḡuik(x)
∣∣
u=0 � ḡ0ik(x) (8.221)

and
[ḡ0ik(x), ḡ0jr (x)] = 0 (8.222)

where for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

�̃i, j,k(x) = (−1)k−1
ν j−νi+1−k∑

r=1

Lg0i1
L

ν j−k−r
F0

γ jr (H(x)) (8.223)

ḡ0i1(x) = g0i1(x) +
i−1∑
j=1

ν j−νi∑
k=1

�̃i, j,k(x)ḡ0jk(x) (8.224)

and
ḡuik(x) � adk−1

Fu
ḡ0i1(x). (8.225)

Furthermore, a state coordinates transformation z = S(x) is given by

∂S(x)

∂x
=
[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

· · · (−1)νp−1ḡ0pνp
(x) · · · − ḡ0p2(x) ḡ

0
p1(x)

]−1
.

(8.226)

Proof Suppose that system (8.132) is state equivalent to a dual Brunovsky NOCF
with z = S(x). Then, it is clear, by Theorem 8.8, that condition (i) of Theorem 8.9
is satisfied. Also, we have, by (8.139) and (8.140), that

h̄(z) � ϕ ◦ H ◦ S−1(z) = Coz = [z11 · · · z p1]T � z̃1 (8.227)

and
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f̄u(z) � S∗(Fu(x)) = Aoz + γ̄ u(z̃1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z12 + γ̄ u
11(z̃1)

...

z1ν1 + γ̄ u
1(ν1−1)(z̃1)

γ̄ u
1ν1(z̃1)

...

z p2 + γ̄ u
p1(z̃1)

...

z pνp + γ̄ u
p(νp−1)(z̃1)

γ̄ u
pνp

(z̃1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.228)

where
z � [z11 · · · z1ν1 · · · z p1 · · · z pνp ]T.

We define vector fields
{
ψ̄u
ik(z) | 1 ≤ i ≤ p, 1 ≤ k ≤ νi

}
by

ψ̄0
i1(z) � ∂

∂ziνi
; ψ̄u

ik(z) � adk−1
f̄u

ψ̄0
i1(z). (8.229)

Then, by (8.228) and (8.229), it is clear that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

ψ̄u
ik(z) = (−1)k−1 ∂

∂zi(νi+1−k)
= ψ̄0

ik(z) (8.230)

which implies that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi , and 1 ≤ r ≤ ν j ,

[ψ̄0
ik(z), ψ̄

0
jr (z)] = 0. (8.231)

Let ξ = T (x) and z = S̄(ξ) � S ◦ T−1(ξ). Also, we let, for 1 ≤ i ≤ p,

τ̄ 0
i1(ξ) � S̄−1

∗ (ψ̄0
i1(z)) (8.232)

and

ḡ0i1(x) � S−1
∗ (ψ̄0

i1(z)) = T−1
∗ (τ̄ 0

i1(ξ)). (8.233)

Then, it is clear, by (2.37), (8.225), and (8.229), that for 1 ≤ i ≤ p and 1 ≤ k ≤ νi ,

ḡuik(x) = adk−1
Fu

ḡ0i1(x) = S−1
∗
{
adk−1

S∗(Fu)S∗(ḡ0i1(x))
}

= S−1
∗
{
adk−1

f̄u
ψ̄0
i1(z)

}
= S−1

∗ (ψ̄u
ik(z))

(8.234)
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and thus (8.221) and (8.222) are satisfied by (8.230) and (8.231).Weneed to show that
(8.223) and (8.224) are satisfied. Note that we are assuming ν1 ≥ ν2 ≥ · · · ≥ νp ≥ 1.
Thus, we have, by (2.30) and (8.184), that for 1 ≤ j ≤ p and 1 ≤ k ≤ ν j ,

z jk � S̄ jk(ξ) = Sjk ◦ T−1(ξ)

= Lk−1
F0

Hj (x)
∣∣
x=T−1(ξ)

−
k−1∑
r=1

Lk−1−r
F0

(
γ 0
jr ◦ H(x)

)∣∣
x=T−1(ξ)

= Lk−1
f0

h j (ξ) −
k−1∑
r=1

Lk−1−r
f0

γ 0
jr (h(ξ))

= ξ jk −
k−1∑
r=1

Lk−1−r
f0

γ 0
jr (h(ξ))

(8.235)

where f0(ξ) � T∗(F0(x)) in (8.167). Note, by (8.190), that for 1 ≤ i ≤ p, 1 ≤ j ≤
p, 1 ≤ r ≤ k − 1, and k ≤ νi ,

∂

∂ξiνi

(
Lk−1−r

f0
γ 0
jr (h(ξ))

)
= Lτ 0

i1
Lk−1−r

f0
γ 0
jr (h(ξ)) = 0

which implies, togetherwith (8.235), that for 1 ≤ j ≤ p, 1 ≤ i ≤ p, and 1 ≤ k ≤ ν j ,

∂ S̄ jk(ξ)

∂ξiνi
=
{

δi, jδk,νi , 1 ≤ k ≤ νi

εi, j,k, νi + 1 ≤ k ≤ ν j (and j < i)
(8.236)

where

εi, j,k(ξ) � −
k−1∑
r=1

∂

∂ξiνi

(
Lk−1−r

f0
γ jr (h(ξ))

)

= −
k−νi∑
r=1

Lτ 0
i1
Lk−1−r

f0
γ jr (h(ξ)).

(8.237)

Now, we will express vector fields S̄∗(τ 0
i1(ξ)), 1 ≤ i ≤ p in terms of vector fields

{ψ̄0
jk(z), 1 ≤ j ≤ p, 1 ≤ k ≤ ν j }. Note, by the definition of S̄∗(τ 0

i1), that for 1 ≤
i ≤ p,

S̄∗(τ 0
i1) = S̄∗(

∂

∂ξiνi
) =

p∑
j=1

ν j∑
k=1

∂ S̄ jk(ξ)

∂ξiνi

∣∣∣∣
ξ=S−1(z)

∂

∂z jk

which implies, together with (8.230), (8.236), and (8.237), that for 1 ≤ i ≤ p,
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S̄∗(τ 0
i1(ξ)) = ∂

∂ziνi
+

i−1∑
j=1

ν j∑
k=νi+1

εi, j,k(ξ)

∣∣∣∣
ξ=S−1(z)

∂

∂z jk

= ∂

∂ziνi
+

i−1∑
j=1

ν j−νi∑
k=1

εi, j,(ν j+1−k)

∣∣∣∣
ξ=S−1(z)

∂

∂z j (ν j+1−k)

= ψ̄0
i1(z) −

i−1∑
j=1

ν j−νi∑
k=1

�i, j,k(ξ)

∣∣∣∣
ξ=S−1(z)

ψ̄0
jk(z)

(8.238)

where
�i, j,k(ξ) � (−1)kεi, j,(ν j+1−k)(ξ)

= (−1)k−1
ν j−νi+1−k∑

r=1

Lτ 0
i1
L

ν j−k−r
f0

γ jr (h(ξ)).
(8.239)

Note, by (2.49), (8.232), (8.233), and (8.239), that

S̄−1
∗

(
�i, j,k(ξ)

∣∣∣∣
ξ=S−1(z)

ψ̄0
jk(z)

)
= �i, j,k(ξ)τ̄ 0

jk(ξ)

and
T−1

∗
(
�i, j,k(ξ)τ̄ 0

jk(ξ)
) = �i, j,k(T (x)) ḡ0jk(ξ) � �̃i, j,k(x)ḡ0jk(ξ)

where

�̃i, j,k(x) = (−1)k−1
ν j−νi+1−k∑

r=1

Lτ 0
i1
L

ν j−k−r
f0

γ jr (h(ξ))

∣∣∣
ξ=T (x)

= (−1)k−1
ν j−νi+1−k∑

r=1

Lg0i1
L

ν j−k−r
F0

γ jr (H(x)).

(8.240)

Therefore, it is clear, by (8.240), that (8.223) is satisfied. Also, we have, by (8.232),
(8.233), and (8.238), that for 1 ≤ i ≤ p,

τ̄ 0
i1(ξ) = S̄−1

∗ (ψ̄0
i1(z)) = τ 0

i1(ξ) +
i−1∑
j=1

ν j−νi∑
k=1

�i, j,k(ξ)τ̄ 0
jk(ξ)

and

ḡ0i1(x) = T−1
∗ (τ̄ 0

i1(ξ)) = g0i1(x) +
i−1∑
j=1

ν j−νi∑
k=1

�̃i, j,k(x)ḡ0jk(x)

which implies that (8.224) is satisfied.
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Sufficiency. Suppose that condition (i) and condition (ii) of Theorem 8.9 are
satisfied. If we show that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

L ḡ0i1
Lk−1
F0

Hj (x) = δi, j δk,νi (8.241)

then system (8.132) is, by Theorem 8.8, state equivalent to a dual Brunovsky NOCF.
Let ξ = T (x), h(ξ) � H ◦ T−1(ξ), f0(ξ) � T∗(F0(x)), and τ 0

i1(ξ) � T∗(g0i1(x)).
First, it will be shown that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

Lτ 0
i1
Lk−1

f0
h j (ξ) = δi, j δk,νi (8.242)

or
Lg0i1

Lk−1
F0

Hj (x) = Lτ 0
i1
Lk−1

f0
h j (ξ)

∣∣∣
ξ=T (x)

= δi, j δk,νi . (8.243)

Note, by (8.174), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and 1 ≤ k ≤ ν j ,

Lτ 0
i1
Lk−1

f0
h j (ξ) = δi, j δk,νi . (8.244)

Therefore, (8.242) is satisfied when νi ≤ ν j . Let for 1 ≤ k ≤ ν1,

ξ̃k � {ξrk | 1 ≤ r ≤ p and νr ≥ k}

and for 1 ≤ i ≤ p and 1 ≤ j ≤ νi ,

f 0i j (ξ) �
{

ξi( j+1), 1 ≤ j ≤ νi − 1

α0
iνi

(ξ), j = νi .

It is easy to see, by (8.167) and (8.220), that for 1 ≤ j ≤ p,

dL
ν j

f0
h j (ξ) ∈ span{dLk−1

f0
hr (ξ), 1 ≤ r ≤ p, 1 ≤ k ≤ ν j }

∈ span{dξrk, 1 ≤ r ≤ p, 1 ≤ k ≤ min(νr , ν j )}

and
α0
jν j

(ξ) = L
ν j

f0
h j (x) � ᾱ0

jν j
(ξ̃1, · · · , ξ̃ν j ). (8.245)

Thus, we have, by (8.167) and (8.245), that for 1 ≤ j ≤ p and 1 ≤ k ≤ ν1 − ν j ,

L
ν j+k−1
f0

h j (ξ) = φ j,k(ξ̃1, · · · , ξ̃ν j+k−1) (8.246)

where φ j,1(ξ̃1, · · · , ξ̃ν j ) = ᾱ0
jν j

(ξ̃1, · · · , ξ̃ν j ) and for 2 ≤ k ≤ ν1 − ν j ,
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φ j,k(ξ̃1, · · · , ξ̃ν j+k−1) =
p∑

r=1

min(k−1,νr )∑
j=1

∂φ j,(k−1)(ξ̃1, · · · , ξ̃ν j+k−2)

∂ξr j
f 0r j (ξ).

Thus, it is clear, by (8.172) and (8.246), that for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and ν j + 1 ≤
k ≤ νi ,

Lτ 0
i1
Lk−1

f0
h j (ξ) = ∂φ j,k(ξ̃1, · · · , ξ̃k−1)

∂ξiνi
= 0

which implies that (8.242) is also satisfied when νi > ν j . Therefore, (8.242) and
(8.243) are satisfied, if condition (i) of Theorem 8.9 is satisfied. Finally, it will be
shown, by mathematical induction, that (8.241) is satisfied. Since ḡ11(x) = g11(x),
it is clear, by (8.243), that (8.241) is satisfied for i = 1. Assume that (8.241) holds
when 1 ≤ i ≤ q − 1 and 2 ≤ q ≤ p. Then, we have, by Example 2.4.16, that for
1 ≤ i ≤ q − 1, 1 ≤ j ≤ p, and 1 ≤ k ≤ νi ,

L ḡ0ir
Lk−1
F0

Hj (x) = 0, r + k − 1 ≤ νi − 1. (8.247)

Thus, it is clear, by (8.224), (8.243), and (8.247), that for 1 ≤ j ≤ p and 1 ≤ k ≤ νq ,

L ḡ0q1
Lk−1
F0

Hj (x) = Lg0q1
Lk−1
F0

Hj (x) +
q−1∑
s=1

νs−νq∑
r=1

�̃q,s,r (x)L ḡ0sr L
k−1
F0

Hj (x)

= Lg0q1
Lk−1
F0

Hj (x) = δq, j δk,νq

which implies that (8.241) is satisfied for i = q. Hence, by mathematical induction,
(8.241) is satisfied. �

Corollary 8.5 Suppose that ν1 = · · · = νp. System (8.132) is state equivalent to a
dual Brunovsky NOCF, if and only if

(i) for 1 ≤ i ≤ p, and 1 ≤ k ≤ νi

guik(x) = guik(x)
∣∣
u=0 � g0ik(x)

(ii) for 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ νi , and 1 ≤ � ≤ ν j ,

[g0ik(x), g0j�(x)] = 0.

Furthermore, a state coordinates transformation z = S(x) is given by

∂S(x)

∂x
=
[
(−1)ν1−1g01ν1(x) · · · − g012(x) g

0
11(x)

· · · (−1)νp−1g0pνp
(x) · · · − g0p2(x) g

0
p1(x)

]−1
.
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Suppose that system (8.132) is equivalent to a dual Brunovsky NOCF. Then, by
Theorem 8.9, there exist smooth functions γ jr (y), 1 ≤ j ≤ p − 1, 1 ≤ r ≤ ν j − νp

such that for 2 ≤ i ≤ p and 1 ≤ s ≤ ν1 − νi (by changing the order of summations),

ḡ0i1(x) = g0i1(x) +
i−1∑
j=1

ν j−νi∑
k=1

ν j−νi+1−k∑
r=1

(−1)k−1Lg0i1
L

ν j−k−r
F0

γ jr (H(x))ḡ0jk(x)

= g0i1(x) +
i−1∑
j=1

ν j−νi∑
r=1

ν j−νi+1−r∑
k=1

(−1)k−1Lg0i1
L

ν j−k−r
F0

γ jr (H(x))ḡ0jk(x)

= g̃s−1
i1 (x) +

i−1∑
j=1

ν j−νi∑
r=s

ν j−νi+1−r∑
k=1

(−1)k−1Lg0i1
L

ν j−k−r
F0

γ jr (H(x))ḡ0jk(x)

= g̃s−1
i1 (x) +

i−1∑
j=1

ν j−νi+1−s∑
k=1

ν j−νi+1−k∑
r=s

(−1)k−1Lg0i1
L

ν j−k−r
F0

γ jr (H)ḡ0jk

= g̃s−1
i1 (x) +

i−1∑
j=1

(−1)ν j−νi−s Lg0i1
Lνi−1
F0

γ js(H(x))ḡ0j (ν j−νi+1−s)(x)

+
i−1∑
j=1

ν j−νi−s∑
k=1

ν j−νi+1−k∑
r=s

(−1)k−1Lg0i1
L

ν j−k−r
F0

γ jr (H(x))ḡ0jk(x)

(8.248)
where, for 1 ≤ s ≤ ν1 − νi + 1,

g̃s−1
i1 (x) � g0i1(x) +

i−1∑
j=1

s−1∑
r=1

ν j−νi+1−r∑
k=1

(−1)k−1Lg0i1
L

ν j−k−r
F0

γ jr (H(x))ḡ0jk(x).

(8.249)
That is, g̃021(x) � g021(x) and, for 1 ≤ s ≤ ν1 − νi ,

g̃si1(x) � g̃s−1
i1 (x) +

i−1∑
j=1

ν j−νi+1−s∑
k=1

(−1)k−1Lg0i1
L

ν j−k−s
F0

γ js(H(x))ḡ0jk(x) (8.250)

and

ḡ0i1(x) ≡ g̃s−1
i1 (x) + (−1)ν j−νi−s Lg0i1

Lνi−1
F0

γ js(H(x))ḡ0j (ν j−νi+1−s)(x)

mod �is(x)
(8.251)

where

�is(x) � span{ḡ0jk(x), 1 ≤ j ≤ i − 1, 1 ≤ k ≤ ν j − νi − s}
= span{g0jk(x), 1 ≤ j ≤ i − 1, 1 ≤ k ≤ ν j − νi − s}. (8.252)
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Lemma 8.7 Suppose that system (8.132) is equivalent to a dual Brunovsky NOCF.
Then, there exist smooth functions γ jr (y), 1 ≤ j ≤ p − 1, 1 ≤ r ≤ ν j − νp such
that for 2 ≤ i ≤ p, 1 ≤ q ≤ i − 1, and 1 ≤ s ≤ ν j − νi ,

[ḡ0qνq
(x), g̃s−1

i1 (x)] ≡
i−1∑
j=1

(−1)ν j−νi−s+νq
∂2γ js(y)

∂yq∂yi

∣∣∣∣
y=H(x)

g0j (ν j−νi+1−s)(x)

mod �is(x)
(8.253)

where, for 2 ≤ i ≤ p and 1 ≤ s ≤ ν1 − νi ,

g̃0i1(x) � g0i1(x) (8.254)

and

g̃si1(x) � g̃s−1
i1 (x) +

i−1∑
j=1

ν j−νi+1−s∑
k=1

(−1)k−1Lg0i1
L

ν j−k−s
F0

γ js(H(x))ḡ0jk(x). (8.255)

Proof Suppose that system (8.132) is equivalent to dual BrunovskyNOCF. Note that
ξ = T (x) and h(ξ) � H ◦ T−1(ξ) = [ξ11 · · · ξp1]T � ξ̃1. Then, by (2.30), (8.192),
(8.193), and (8.224), we have that

Lτ 0
i1
Lνi−1

f0
γ js(h(ξ)) = ∂γ js(h(ξ))

∂ξi1
= ∂γ js(ξ̃1)

∂ξi1

τ̄ 0
qνq

(ξ) ≡ (−1)νq−1 ∂

∂ξq1
mod span

{
∂

∂ξi j
, 1 ≤ i ≤ p, 2 ≤ j ≤ νi

}

L τ̄ 0
qνq

Lτ 0
i1
Lνi−1

f0
γ js(h(ξ)) = L τ̄ 0

qνq

∂γ js(ξ̃1)

∂ξi1
= (−1)νq−1 ∂2γ js(ξ̃1)

∂ξq1∂ξi1

and
L ḡ0qνq

Lg0i1
Lνi−1
F0

γ js(H(x)) = L τ̄ 0
qνq

Lτ 0
i1
Lνi−1

f0
γ js(h(ξ))

∣∣∣
ξ=T (x)

= (−1)νq−1 ∂2γ js(y)

∂yq∂yi

∣∣∣∣
y=H(x)

(8.256)

where τ̄ 0
ik(ξ) � T∗

(
ḡ0ik(x)

)
, 1 ≤ i ≤ p, 1 ≤ k ≤ νi and for 1 ≤ i ≤ p,

τ̄ 0
i1(ξ) = τ 0

i1(ξ) +
i−1∑
j=1

ν j−νi∑
k=1

�̃i, j,k ◦ T−1(ξ) τ̄ 0
jk(ξ).
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Thus, we have, by (8.222), (8.251), and (8.256), that for 2 ≤ i ≤ p, 1 ≤ q ≤ i − 1,
and 1 ≤ s ≤ ν j − νi ,

0 = [ḡ0qνq
(x), ḡ0i1(x)] ≡ [ḡ0qνq

(x), g̃s−1
i1 (x)]

+
i−1∑
j=1

(−1)ν j−νi−s L ḡ0qνq
Lg0i1

Lνi−1
F0

γ js(H(x))ḡ0j (ν j−νi+1−s)(x) mod �is(x)

≡ [ḡ0qνq
(x), g̃s−1

i1 (x)]

+
i−1∑
j=1

(−1)ν j−νi−s+νq−1 ∂2γ js(y)

∂yq∂yi

∣∣∣∣
y=H(x)

ḡ0j (ν j−νi+1−s)(x) mod �is(x)

which implies that (8.253) is satisfied. �

Theorem 8.10 System (8.132) is equivalent to a dual Brunovsky NOCF, if and only
if

(i) for 1 ≤ i ≤ p,

dLνi
F0
Hi (x) ∈ span{dLk−1

F0
Hj (x), 1 ≤ j ≤ p, 1 ≤ k ≤ νi } (8.257)

(ii) there exist smooth functions γ js(y) and β
q,i
js (y) for 2 ≤ i ≤ p, 1 ≤ j ≤ i − 1,

1 ≤ s ≤ ν j − νi , and 1 ≤ q ≤ i − 1, such that for 2 ≤ i ≤ p, 1 ≤ j ≤ i − 1,
1 ≤ s ≤ ν j − νi , and 1 ≤ q ≤ i − 1,

[
ḡ0qνq

(x), g̃s−1
i1 (x)

]
≡

i−1∑
j=1

(−1)ν j−νi−s+νqβ
q,i
js (H(x))g0j (ν j−νi+1−s)

mod �is(x)

(8.258)

and
∂2γ js(y)

∂yq∂yi
= β

q,i
js (y) (8.259)

where for 1 ≤ i ≤ p and 1 ≤ s ≤ ν1 − νi ,

�is(x) � span{g0jk(x), 1 ≤ j ≤ i − 1, 1 ≤ k ≤ ν j − νi − s} (8.260)

g̃0i1(x) � g0i1(x) (8.261)
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g̃si1(x) � g̃s−1
i1 (x)

+
i−1∑
j=1

ν j−νi+1−s∑
k=1

(−1)k−1Lg0i1
L

ν j−k−s
F0

γ js(H(x))g̃ν1−ν j

jk (x)
(8.262)

and for 1 ≤ j ≤ p and 1 ≤ k ≤ ν j ,

ḡ0j1(x) � g̃ν1−ν j

j1 (x) ; ḡujk(x) � adk−1
Fu

ḡ0j1(x) (8.263)

(iii) for 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ νi , and 1 ≤ r ≤ ν j ,

ḡuik(x) = ḡ0ik(x) (8.264)

and [
ḡ0jr (x), ḡ0ik(x)

] = 0. (8.265)

Furthermore, a state coordinates transformation z = S(x) is given by

∂S(x)

∂x
=
[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

· · · (−1)νp−1ḡ0pνp
(x) · · · − ḡ0p2(x) ḡ

0
p1(x)

]−1
.

(8.266)

Proof Necessity. Suppose that system (8.132) is equivalent to a dual Brunovsky
NOCF. Then, it is clear, by Theorem 8.9, that condition (i) is satisfied. Since ḡ0i1(x) =
g̃ν1−νi
i1 (x) for 1 ≤ i ≤ p by (8.248), it is easy to see that conditions (ii) and (iii) are
satisfied by Lemma 8.7 and condition (ii) of Theorem 8.9, respectively.

Sufficiency. Suppose that conditions (i)–(iii) of Theorem 8.10 are satisfied. Then,
there exist smooth functions γ jr (y), 1 ≤ j ≤ p − 1, 1 ≤ r ≤ ν j − νp such that
the condition (ii) of Theorem 8.9 are satisfied with ḡ0i1(x) = g̃ν1−νi

i1 (x). Hence, by
Theorem 8.9, system (8.132) is state equivalent to a dual Brunovsky NOCF. �

The necessary and sufficient conditions of Theorem 8.10 are still unverifiable. For
simple explanation, assume that ν1 > ν2. Condition (ii) of Theorem 8.10 should be
considered for i = 2, 3, · · · , p − 1, in sequence. If condition (ii) for i = 2 and s = 1
is not satisfied, then system (8.132) is not equivalent to a dual Brunovsky NOCF. If
condition (ii) for i = 2 and s = 1 is satisfied, we have that

∂2γ11(y)

∂y1∂y2
= β

1,2
11 (y)
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γ 2
11(y) �

∫ y2

0

∫ y1

0
β
1,2
11 (ỹ1, ỹ2, y3, · · · , yp)d ỹ1d ỹ2

�
∫ ∫

β
1,2
11 (y)dy1dy2

(8.267)

and

γ11(y) = γ 2
11(y) + γ11(y1, 0, y3, · · · , yp) + γ11(0, y2, · · · , yp)

− γ11(0, 0, y3, · · · , yp) � γ 2
11(y) + γ̂ 2

11(y).
(8.268)

If γ11(y)
∣∣∣
y1=0

= 0 and γ11(y)
∣∣∣
y2=0

= 0, then γ11(y) = γ 2
11(y) or γ̂ 2

11(y) = 0. Thus,

g̃121(x) can be obtained by (8.262) and condition (ii) for i = 2 and s = 2 can be
checked. However, since γ̂ 2

11(y) is unknown, g̃121(x) cannot be obtained and thus
condition (ii) for i = 2 and s = 2 cannot be checked unless

ν1−ν2∑
k=1

Lg021
Lν1−k−1
F0

(
γ11(y) − γ 2

11(y)
)
ḡ01k(x) = 0

or for 1 ≤ k ≤ ν1 − ν2,

Lg021
Lν1−k−1
F0

(
γ11(y) − γ 2

11(y)
)

= 0.

When p = 2, γ1s(y) − γ 2
1s(y) � γ̂ 2

1s(y) = γ1s(y1, 0) + γ1s(0, y2) and it is easy to
see that for 1 ≤ s ≤ ν1 − ν2 and 1 ≤ k ≤ ν1 − ν2 + 1 − s,

Lg021
Lν1−k−s
F0

γ1s(y1, 0) = 0.

However, it is not always satisfied that for 1 ≤ s ≤ ν1 − ν2 and 1 ≤ k ≤ ν1 − ν2 +
1 − s,

Lg021
Lν1−k−s
F0

γ1s(0, y2) = 0.

When p = 2, a verifiable sufficient condition canbe obtained byusingγ 2
1k(y), 1 ≤

k ≤ ν1 − ν2 instead of γ1k(y), 1 ≤ k ≤ ν1 − ν2 in (8.262).

Corollary 8.6 System (8.132) with p = 2 is equivalent to a dual Brunovsky NOCF,
if

(i) dLν2
F0
H2(x) ∈ span{dLk−1

F0
Hj (x), 1 ≤ j ≤ 2, 1 ≤ k ≤ ν2}

(ii) there exist smooth functions β
1,2
1s (y) for 1 ≤ s ≤ ν1 − ν2 such that for 1 ≤ s ≤

ν1 − ν2,

[
g01ν1(x), g̃s−1

21 (x)
] ≡ (−1)ν2+sβ

1,2
1s (H(x))g01(ν1−ν2+1−s)

mod �2s(x)
(8.269)
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where
�2s(x) � span{g01k(x), 1 ≤ k ≤ ν1 − ν2 − s} (8.270)

γ 2
1s(y1, y2) �

∫ y2

0

∫ y1

0
β
1,2
1s (ỹ1, ỹ2)d ỹ1d ỹ2 (8.271)

g̃0j1(x) � g0j1(x), 1 ≤ j ≤ 2 (8.272)

g̃s21(x) � g̃s−1
21 (x)

+
ν1−ν2+1−s∑

k=1

(−1)k−1Lg021
Lν1−k−s
F0

γ 2
1s(H(x))g01k(x)

(8.273)

and for 1 ≤ j ≤ 2 and 1 ≤ k ≤ ν j ,

ḡ0j1(x) � g̃ν1−ν j

j1 (x) ; ḡujk(x) � adk−1
Fu

ḡ0j1(x) (8.274)

(iii) for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, 1 ≤ k ≤ νi , and 1 ≤ r ≤ ν j ,

ḡuik(x) = ḡ0ik(x) (8.275)

and [
ḡ0jr (x), ḡ0ik(x)

] = 0. (8.276)

Furthermore, a state coordinates transformation z = S(x) is given by

∂S(x)

∂x
=
[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

(−1)ν2−1ḡ02ν2(x) · · · − ḡ022(x) ḡ
0
21(x)

]−1
.

(8.277)

Remark 8.7 If p = 2 and γ1k(0, y2) 	= 0, then g̃s21 in (8.262) cannot be obtained by
(8.273). Therefore, the conditions in Corollary 8.6 are not necessary but sufficient
unless γ1k(0, y2) = 0. (Refer to Example 8.4.3.) For a perfect solution, we need to
find γ1k(0, y2). However, γ1k(0, y2) is very difficult and complicated to find, even
when p = 2.

Suppose that 1 ≤ k ≤ p and

∂ [Q1(y) · · · Qk(y)]
T

∂[y1 · · · yk] =
(

∂ [Q1(y) · · · Qk(y)]
T

∂[y1 · · · yk]

)T

.
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Then, by Lemma 2.1, there exists a smooth function P(y) such that for 1 ≤ i ≤ k,

∂P(y)

∂yi
= Qi (y) and P(0, · · · , 0, yk+1, · · · , yp) = 0.

We denote P(y) by

P(y) =
∫

[Q1(y) · · · Qk(y)] d(y1, · · · , yk).

For example, when p = 4,

∫
[y2y3 y1y3 + 2y2y4] d(y1, y2) = y1y2y3 + y22 y4.

Theorem 8.11 Suppose that σ0 = 0, σ p̄ = p, and

ν1 = · · · = νσ1 > νσ1+1 = · · · = νσ2 > · · · > νσ p̄−1+1 = · · · = νσ p̄ .

System (8.132) is equivalent to a dual Brunovsky NOCF, if

(i) for 1 ≤ i ≤ p,

dLνi
F0
Hi (x) ∈ span{dLk−1

F0
Hj (x), 1 ≤ j ≤ p, 1 ≤ k ≤ νi } (8.278)

(ii) there exist smooth functions β
q,i
js (y) for σ1 + 1 ≤ i ≤ p, 1 ≤ j ≤ i − 1, 1 ≤

s ≤ ν j − νi , and 1 ≤ q ≤ i − 1, such that for 2 ≤ r ≤ p̄, 1 ≤ s ≤ ν1 − νσr ,
1 ≤ q ≤ σr−1, and σr−1 + 1 ≤ i ≤ p,

[
ḡ0qνq

(x), g̃s−1
i1 (x)

]
≡

i−1∑
j=1

(−1)ν j−νi−s+νqβ
q,i
js (H(x))g0j (ν j−νi+1−s)

mod �is(x)

(8.279)

where

�is(x) � span{g0jk(x), 1 ≤ j ≤ i − 1, 1 ≤ k ≤ ν j − νi − s} (8.280)

∂
[
β
q, j+1
js (y) · · · β

q,p
js (y)

]T

∂[y j+1 · · · yp]T =
⎛
⎜⎝

∂
[
β
q, j+1
js (y) · · · β

q,p
js (y)

]T

∂[y j+1 · · · yp]T

⎞
⎟⎠

T

(8.281)
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β̃
q
js(y) �

∫ [
β
q, j+1
js (y) · · · β

q,p
js (y)

]
d(y j+1 · · · yp) (8.282)

∂
[
β̃1
js(y) · · · β̃

j
js(y)

]T

∂[y1 · · · y j ]T =
⎛
⎜⎝

∂
[
β̃1
js(y) · · · β̃

j
js(y)

]T

∂[y1 · · · y j ]T

⎞
⎟⎠

T

(8.283)

γ r
js(y) �

∫ [
β̃1
js(y) · · · β̃

j
js(y)

]
d(y1 · · · y j ) (8.284)

g̃0j1(x) � g0j1(x), 1 ≤ j ≤ p (8.285)

g̃si1(x) � g̃s−1
i1 (x)

+
i−1∑
j=1

ν j−νi+1−s∑
k=1

(−1)k−1Lg0i1
L

ν j−k−s
F0

γ r
js(H(x))g̃ν1−ν j

jk (x)
(8.286)

and for 1 ≤ j ≤ p and 1 ≤ k ≤ ν j ,

ḡ0j1(x) � g̃ν1−ν j

j1 (x) ; ḡujk(x) � adk−1
Fu

ḡ0j1(x) (8.287)

(iii) for 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ νi , and 1 ≤ r ≤ ν j ,

ḡuik(x) = ḡ0ik(x) (8.288)

and [
ḡ0jr (x), ḡ0ik(x)

] = 0. (8.289)

Furthermore, a state coordinates transformation z = S(x) is given by

∂S(x)

∂x
=
[
(−1)ν1−1ḡ01ν1(x) · · · − ḡ012(x) ḡ

0
11(x)

· · · (−1)νp−1ḡ0pνp
(x) · · · − ḡ0p2(x) ḡ

0
p1(x)

]−1
.

(8.290)

Conditions of Theorem 8.11 are verifiable. In other words, vector fields
{g̃si1(x), 1 ≤ i ≤ p, 1 ≤ s ≤ ν1 − νi } in (8.286) are uniquely determined if con-
ditions of Theorem 8.11 are satisfied. However, they are not necessary but sufficient
unless, for 2 ≤ r ≤ p̄, 1 ≤ s ≤ ν1 − νσr , 1 ≤ q ≤ σr−1, and σr−1 + 1 ≤ i ≤ p,

Lgi1L
ν j−k−s
F0

(
γ js(H(x)) − γ s

js(H(x))
)

= 0.
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�Example 8.4.1 Consider the following control system:

ẋ =

⎡
⎢⎢⎣

x2
x3 + x1u2(1 + u2)

αu
13(x)

x21 + u2

⎤
⎥⎥⎦ = Fu(x); y =

[
x1
x4

]
= H(x) (8.291)

where
αu
13(x) = x3x4 + u2(2x4x

2
1 + x4x1 + x2) + 4x21 x2 + x1x4u

2
2

+ 2x1x4(x
3
1 + x2x4) + u1.

Use Corollary 8.6 to show that system (8.291) is state equivalent to a dual Brunovsky
NOCF.

Solution By simple calculations, we have, by (8.165), that (ν1, ν2) = (3, 1) and

ξ = T (x) �

⎡
⎢⎢⎣

H1(x)
LF0H1(x)
L2
F0
H1(x)

H2(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ .

Since LF0H2(x) = x21 and

dLF0H2(x) = [
2x1 0 0 0

] = 2x1dH1(x),

it is clear that condition (i) of Corollary 8.6 is satisfied. By (8.168) and (8.169), we
have that

[
gu11(x) g

u
12(x) g

u
13(x)

] =

⎡
⎢⎢⎣
0 0 1
0 −1 x4
1 −x4 3x21 + 2x1x24 + x24
0 0 0

⎤
⎥⎥⎦ ; gu21(x) =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ .

Since g̃021(x) � g021(x) and �21(x) = span{g011(x)}, we have, by (8.269) with s = 1,
that

[
g013(x), g̃

0
21(x)

] =

⎡
⎢⎢⎣

0
−1

−2x4(2x1 + 1)
0

⎤
⎥⎥⎦ = g012(x) mod span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

which implies that condition (ii) of Corollary 8.6 is satisfied with β
1,2
11 (y) = 1 when

s = 1. Thus, we have, by (8.271), (8.272), and (8.273), that

γ 2
11(y) �

∫ y2

0

∫ y1

0
β
1,2
11 (ỹ1, ỹ2)d ỹ1d ỹ2 = y1y2
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and

g̃121(x) � g̃021(x) + Lg021
LF0γ

2
11(H(x))g011(x) + Lg021

γ 2
11(H(x))g012(x)

= g021(x) + x2g011(x) − x1g012(x) =

⎡
⎢⎢⎣

0
x1

x2 + x1x4
1

⎤
⎥⎥⎦ .

Also, it is easy to see that �22(x) = span{0} and

[
g013(x), g̃

1
21(x)

] =

⎡
⎢⎢⎣

0
0

−4x1x4
0

⎤
⎥⎥⎦ = −4x1x4g011(x) mod span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

which implies that condition (ii) of Corollary 8.6 is satisfied with β
1,2
12 (y) = 4y1y2

when s = 2(= ν1 − ν2). Thus, we have, by (8.271) and (8.273), that

γ 2
12(y) �

∫ y2

0

∫ y1

0
β
1,2
12 (ỹ1, ỹ2)d ỹ1d ỹ2 = y21 y

2
2

and
g̃221(x) � g̃121(x) + Lg021

γ 2
12(H(x))g011(x)

= g̃121(x) + 2x21 x4g
0
11(x) =

⎡
⎢⎢⎣

0
x1

x2 + x1x4 + 2x21 x4
1

⎤
⎥⎥⎦ .

Since ḡu1k(x) = gu1k(x) = ḡ01k(x) for 1 ≤ k ≤ 3(ν1) and ḡu21(x) � g̃221(x) = ḡ021(x), it
is clear that (8.275) is satisfied. It is also easy to see that

{
ḡ011(x), ḡ

0
12(x), ḡ

0
13(x), ḡ

0
21(x)

}

is a set of commuting vector fields, which implies that condition (iii) of Corollary 8.6
is satisfied. Hence, by Corollary 8.6, system (8.291) is state equivalent to a dual
Brunovsky NOCF with state transformation z = S(x). We have, by (8.277), that
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∂S(x)

∂x
= [

ḡ013(x) −ḡ012(x) ḡ
0
11(x) ḡ

0
21(x)

]−1

=

⎡
⎢⎢⎣

1 0 0 0
x4 1 0 x1

3x21 + 2x1x24 + x24 x4 1 x2 + x1x4 + 2x21 x4
0 0 0 1

⎤
⎥⎥⎦

−1

=

⎡
⎢⎢⎣

1 0 0 0
−x4 1 0 −x1

−3x21 − 2x1x24 −x4 1 −x2 − 2x21 x4
0 0 0 1

⎤
⎥⎥⎦

and

z = S(x) =

⎡
⎢⎢⎣

x1
x2 − x1x4

x3 − x2x4 − x21 (x
2
4 + x1)

x4

⎤
⎥⎥⎦ .

Then it is easy to see that

S∗ (Fu(x)) =

⎡
⎢⎢⎣
z2
z3
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

z1z4
z1(u22 + z1z24)

u1
z21 + u2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
z2
z3
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

y1y2
y1(u22 + y1y22 )

u1
y21 + u2

⎤
⎥⎥⎦

= Aoz + γ u(y).

�
Example 8.4.2 Consider the following control system:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
x3 + x1u3
αu
13(x)

x5 + u21
x1x4(x1 + u3) + x2x4x6 + x1x6(x5 + u21) + u2

x1 + u3

⎤
⎥⎥⎥⎥⎥⎥⎦

= Fu(x)

y =
⎡
⎣
x1
x4
x6

⎤
⎦ = H(x)

(8.292)

where

αu
13(x) = 3x1x2 + x1x5 + x2x4 + x3x6 + x1u

2
1 + u1 + u3x2 + x1x6u3.

Use Theorem 8.11 to show that system (8.292) is state equivalent to a dual Brunovsky
NOCF.
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Solution By simple calculations, we have, by (8.165), that (ν1, ν2, ν3) = (3, 2, 1)
and

ξ = T (x) �

⎡
⎢⎢⎢⎢⎢⎢⎣

H1(x)
LF0H1(x)
L2
F0
H1(x)

H2(x)
LF0H2(x)
H3(x)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since L2
F0
H2(x) = x21 x4 + x2x4x6 + x1x5x6, LF0H3(x) = x1,

dL2
F0H2(x) = [

2x1x4 + x5x6 x4x6 0 x21 + x2x6 x1x6 x2x4 + x1x5
]

= (2x1x4 + x5x6)dH1(x) + (x21 + x2x6)dH2(x) + (x2x4 + x1x5)dH3(x)

+ x4x6dLF0H1(x) + x1x6dLF0H2(x),

and
dLF0H3(x) = [

1 0 0 0 0 0
] = dH1(x),

it is clear that condition (i) of Theorem 8.11 is satisfied. By (8.168) and (8.169), we
have that

[
gu11(x) g

u
12(x) g

u
13(x)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 −1 x6
1 −x6 2x1 + x4 + x26
0 0 0
0 0 x4x6
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

[
gu21(x) g

u
22(x)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 −x1
0 −1
1 −x1x6
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

; gu31(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that ν1 > ν2 > ν3, σ0 = 0, (σ1, σ2, σ3) = (1, 2, 3), and p̄ = 3. Since g̃021(x) �
g021(x), g̃

0
31(x) � g031(x), �21(x) = span{0}, and �31(x) = span{g011(x)}, we have,

by (8.279) with r = 2 and s = 1, that

[
g013(x), g̃

0
21(x)

] = 0 = 0g011(x) mod span {0}
= −β

1,2
11 (H(x))g011(x) mod �21(x)



8.4 Multi Output Observer Error Linearization 409

and

[
g013(x), g̃

0
31(x)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−1

−2x6
0

−x4
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= g012(x) − x4g021(x) mod span

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= β
1,3
11 (H(x))g012(x) − β

1,3
21 (H(x))g021(x) mod �31(x)

which implies that condition (ii) of Theorem 8.11 is satisfied when r = 2 and s = 1,
with [

β
1,2
11 (y) β

1,3
11 (y)

] = [
0 1
]
.

Thus, we have, by (8.282)–(8.287), that

β̃1
11(y) �

∫ [
β
1,2
11 (y) β

1,3
11 (y)

]
d(y2 y3) = y3

γ 2
11(y) �

∫
β̃1
11(y)dy1 = y1y3

g̃121(x) � g̃021(x) + Lg021
LF0γ

2
11(H(x))g011(x) = g021(x)

and
ḡ021(x) � g̃121(x) = g021(x) ; ḡu22(x) � adFu ḡ

0
21(x) = gu22(x).

Since �31(x) = span{g011(x)}, we have, by (8.279) with r = 3 and s = 1, that

[
g013(x), g̃

0
31(x)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−1

−2x6
0

−x4
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= g012(x) − x4g021(x) mod span

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= β
1,3
11 (H(x))g012(x) − β

1,3
21 (H(x))g021(x) mod �31(x)

and
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[
ḡ022(x), g̃

0
31(x)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
x1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0g012(x) + x1g021(x) mod span

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= −β
2,3
11 (H(x))g012(x) + β

2,3
21 (H(x))g021(x) mod �31(x)

which implies that condition (ii) of Theorem 8.11 is satisfied when r = 3 and s = 1,
with [

β
1,3
11 (y)

β
2,3
11 (y)

]
=
[
1
0

]
and

[
β
1,3
21 (y)

β
2,3
21 (y)

]
=
[
y2
y1

]
.

Thus, we have, by (8.282)–(8.286), that

[
β̃1
11(y)

β̃2
11(y)

]
�
[∫

β
1,3
11 (y)dy3∫

β
2,3
11 (y)dy3

]
=
[
y3
0

]

[
β̃1
21(y)

β̃2
21(y)

]
�
[∫

β
1,3
21 (y)dy3∫

β
2,3
21 (y)dy3

]
=
[
y2y3
y1y3

]

γ 3
11(y) �

∫ [
β̃1
11(y) β̃2

11(y)
]
d(y1 y2) =

∫ [
y3 0

]
d(y1 y2) = y1y3

γ 3
21(y) �

∫ [
β̃1
21(y) β̃2

21(y)
]
d(y1 y2) =

∫ [
y2y3 y1y3

]
d(y1 y2) = y1y2y3

and

g̃131(x) � g̃031(x) + Lg031
LF0γ

3
11(H(x))g011(x) − Lg031

γ 3
11(H(x))g012(x)

+ Lg031
γ 3
21(H(x))g̃121(x)

= g031(x) + x2g011(x) − x1g012(x) + x1x4g̃121(x)

= [
0 x1 x2 + x1x6 0 x1x4 1

]T
.

Since �32(x) = span{0}, we have, by (8.279) with r = 3 and s = 2, that

[
g013(x), g̃

1
31(x)

] = 0 = 0g011(x) = −β
1,3
12 (H(x))g011(x)

and [
ḡ022(x), g̃

1
31(x)

] = 0 = 0g011(x) = β
2,3
12 (H(x))g011(x)
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which implies that condition (ii) of Theorem 8.11 is satisfied when r = 3 and s = 1,
with [

β
1,3
12 (y)

β
2,3
12 (y)

]
=
[
0
0

]
.

Thus, we have, by (8.282)–(8.286), that

[
β̃1
12(y)

β̃2
12(y)

]
�
[∫

β
1,3
12 (y)dy3∫

β
2,3
12 (y)dy3

]
=
[
0
0

]

γ 3
12(y) �

∫ [
β̃1
12(y) β̃2

12(y)
]
d(y1 y2) = 0

and
ḡ031(x) � g̃231(x) � g̃131(x) + Lg031

γ 3
12(H(x))g011(x) = g̃131(x).

Since ḡu1k(x) = gu1k(x) for 1 ≤ k ≤ 3 and

ḡuik(x) = ḡ0ik(x), 1 ≤ i ≤ 3, 1 ≤ k ≤ νi ,

it is clear that (8.288) is satisfied. It is also easy to see that

{
ḡ011(x), ḡ

0
12(x), ḡ

0
13(x), ḡ

0
21(x), ḡ

0
22(x), ḡ

0
31(x)

}

is a set of commuting vector fields, which implies that condition (iii) of Theorem 8.11
is satisfied. Hence, by Theorem 8.11, system (8.292) is state equivalent to a dual
Brunovsky NOCF with state transformation z = S(x). We have, by (8.290), that

∂S(x)

∂x
= [

ḡ013(x) −ḡ012(x) ḡ
0
11(x) −ḡ022(x) ḡ

0
21(x) ḡ

0
31(x)

]−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
x6 1 0 0 0 x1

2x1 + x4 + x26 x6 1 x1 0 x2 + x1x6
0 0 0 1 0 0

x4x6 0 0 x1x6 1 x1x4
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−x6 1 0 0 0 −x1

−2x1 − x4 −x6 1 −x1 0 −x2
0 0 0 1 0 0

−x4x6 0 0 −x1x6 1 −x1x4
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and
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z = S(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2 − x1x6

x3 − x1(x1 + x4) − x2x6
x4

x5 − x1x4x6
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then it is easy to see that

S∗ (Fu(x)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

z2
z3
0
z5
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

z1z6
z1z4
u1

z1z4z6 + u21
u2

z1 + u3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

z2
z3
0
z5
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

y1y3
y1y2
u1

y1y2y3 + u21
u2

y1 + u3

⎤
⎥⎥⎥⎥⎥⎥⎦

= Aoz + γ u(y).

�

Example 8.4.3 Consider the following control system:

ẋ =

⎡
⎢⎢⎢⎢⎣

x2
x3

x25 + u1 + x4u2
x5
u2

⎤
⎥⎥⎥⎥⎦

= Fu(x) ; y =
[
x1
x4

]
= H(x). (8.293)

(a) Show that system (8.293) does not satisfy the conditions of Corollary 8.6.
(b) Show that system (8.293) is state equivalent to a dual Brunovsky NOCF with

state transformation

z = S(x) =

⎡
⎢⎢⎢⎢⎣

x1
x2 − 1

2 x
2
4

x3 − x4x5
x4
x5

⎤
⎥⎥⎥⎥⎦

.

Solution (a) By simple calculations, we have, by (8.165), that (ν1, ν2) = (3, 2) and

ξ = T (x) �

⎡
⎢⎢⎢⎢⎣

H1(x)
LF0H1(x)
L2
F0
H1(x)

H2(x)
LF0H2(x)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦

.
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Since L2
F0
H2(x) = x5 and

dL2
F0H2(x) = [

0 0 0 0 1
] = dLF0H2(x),

it is clear that condition (i) of Corollary 8.6 is satisfied. By (8.168) and (8.169),
we have that

[
gu11(x) g

u
12(x) g

u
13(x)

] =

⎡
⎢⎢⎢⎢⎣

0 0 1
0 −1 0
1 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

and

[
gu21(x) g

u
22(x)

] =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 −2x5
0 −1
1 0

⎤
⎥⎥⎥⎥⎦

.

Since g̃021(x) � g021(x) and �21(x) = span{0}, we have, by (8.269) with s = 1,
that [

g013(x), g̃
0
21(x)

] = 0 = 0g011(x) = −β
1,2
11 (H(x))g011(x)

which implies that condition (ii) of Corollary 8.6 is satisfied with β
1,2
11 (y) = 0

when s = 1(= ν1 − ν2). Thus, we have, by (8.271), (8.272), and (8.273), that

γ 2
11(y) �

∫ y2

0

∫ y1

0
β
1,2
11 (ỹ1, ỹ2)d ỹ1d ỹ2 = 0

and

ḡ021(x) � g̃121(x) � g̃021(x) + Lg021
LF0γ

2
11(H(x))g011(x) = g021(x).

Since ḡu1k(x) � gu1k(x) = g01k(x) for 1 ≤ k ≤ 3 and

ḡu22(x) � adFu ḡ
0
21(x) = adFug

0
21(x) = gu22(x) = g022(x),

it is clear that (8.275) is satisfied. However, it is easy to see that

[ḡ021(x), ḡ022(x)] = [g021(x), g022(x)] =

⎡
⎢⎢⎢⎢⎣

0
0

−2
0
0

⎤
⎥⎥⎥⎥⎦

	= 0
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which implies that (8.276) is not satisfied. Hence, condition (iii) of Corollary 8.6
is not satisfied.

(b) It is easy to see that

S∗(Fu(x)) =
(

∂S(x)

∂x
Fu(x)

)

x=S−1(z)

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 −x4 0
0 0 1 −x5 −x4
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x2
x3

x25 + u1 + x4u2
x5
u2

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎣

x2
x3 − x4x5

u1
x5
u2

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=S−1(z)

=

⎡
⎢⎢⎢⎢⎣

z2 + 1
2 z

2
4

z3
u1
z5
u2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

z2
z3
0
z5
0

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

1
2 y

2
2

0
u1
0
u2

⎤
⎥⎥⎥⎥⎦

.

Hence, system (8.293) is state equivalent to a dual Brunovsky NOCF with state
transformation z = S(x). In fact, we have, by (8.226), that

(
∂S(x)

∂x

)−1

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 x4 0
0 0 1 x5 x4
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

= [
ḡ013(x) −ḡ012(x) ḡ

0
11(x) −ḡ022(x) ḡ

0
21(x)

]

which implies, together with (8.224), that

ḡ021(x) = g021(x) + �̃2,1,1(x)ḡ011(x) = g021(x) + x4ḡ011(x).

In other words, γ u
11(y) = 1

2 y
2
2 = γ 0

11(y) cannot be found by Corollary 8.6,

because ∂2γ 0
11(y)

∂y1∂y2
= 0. (Refer to Remark 8.7.) Therefore, the conditions of Corol-

lary 8.6 are not necessary but sufficient for state equivalence to a dual Brunovsky
NOCF. Further investigations on Corollary 8.6 and Theorem 8.11 are needed for
the verifiable necessary and sufficient conditions. �
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8.5 Discrete Time Observer Error Linearization

Consider a single output discrete time control system of the form

x(t + 1) = F
(
x(t), u(t)

)
� Fu(x(t))

y(t) = H(x(t))
(8.294)

with F0(0) = 0, H(0) = 0, state x ∈ R
n , input u ∈ R

m , and output y ∈ R. By letting
u = 0 in system (8.294), we obtain the following autonomous system:

x(t + 1) = F0(x(t)) ; y(t) = H(x(t)). (8.295)

Let F0
0 (x) = x , F̂0

u (x) = x , and for k ≥ 1,

Fk
0 � Fk−1

0 ◦ F0(x) and F̂k
u (x) � Fk−1

0 ◦ Fu(x).

Definition 8.11 (state equivalence to a LOCF)
System (8.294) is said to be state equivalent to a LOCF, if there exists a diffeomor-
phism z = S(x) : V0 → R

n , defined on some neighborhood V0 of x = 0, such that

z(t + 1) = Az + γ (u) � S ◦ Fu ◦ S−1(z)

y = Cz � H ◦ S−1(z)

where the pair (C, A) is observable and γ (u) : Rm → R
n is a smooth vector function

with γ (0) = 0.

Definition 8.12 (state equivalence to a dual Brunovsky NOCF)
System (8.294) is said to be state equivalent to a dual Brunovsky NOCF, if there
exist a diffeomorphism z = S(x) : V0 → R

n , defined on some neighborhood V0 of
x = 0, such that

z(t + 1) = Aoz + γ (y, u) � f̄u(z)

y = Coz � h̄(z)

where Ao =
[
O(n−1)×1 I(n−1)

0 O1×(n−1)

]
, Co = [

1 O1×(n−1)
]
, and γ (y, u) : R × R

m →
R

n is a smooth vector function with γ (0, 0) = 0.

Definition 8.13 (state equivalence to a dual Brunovsky NOCF with OT)
System (8.294) is said to be state equivalent to a dual Brunovsky NOCF with

output transformation (OT), if there exist a smooth function ϕ(y)
(

∂ϕ(y)
∂y

∣∣∣
y=0

=
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1 and ϕ(0) = 0
)
and a diffeomorphism z = S(x) : V0 → R

n , defined on some neigh-

borhood V0 of x = 0, such that

z(t + 1) = Aoz + γ (ȳ, u) � f̄u(z)

ȳ = ϕ(y) = Coz � h̄(z)

where γ (ȳ, u) : R × R
m → R

n is a smooth vector function with γ (0, 0) = 0.

State equivalence to a dual Brunovsky NOCF for autonomous system (8.295)
can be similarly defined with u = 0. If f̄u(z) � S ◦ Fu ◦ S−1(z) = Aoz + γ (z1, u),
then it is clear that f̄0(z) � S ◦ F0 ◦ S−1(z) = Aoz + γ (z1, 0). Thus, we have the
following remark.

Remark 8.8 If system (8.294) is state equivalent to a dual Brunovsky NOCF with
OT ȳ = ϕ(y) and state transformation z = S(x), then system (8.295) is also state
equivalent to a dual Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation
z = S(x). But the converse is not true.

Since observability is invariant under state transformation, we assume the observ-
ability rank condition on the neighborhood of the origin. In other words,

dim span{dH(x)|x=0 , d(H ◦ F0(x))|x=0 , · · · , d(H ◦ Fn−1
0 (x))

∣∣
x=0} = n.

Definition 8.14 (Canonical System)
The canonical system of system (8.294) is defined by

ξ(t + 1) =

⎡
⎢⎢⎢⎣

ξ2 + αu
1 (ξ)

...

ξn + αu
n−1(ξ)

αu
n (ξ)

⎤
⎥⎥⎥⎦ � fu(ξ) ; y = ξ1 � h(ξ) (8.296)

where

ξ = T (x) �

⎡
⎢⎢⎢⎣

H(x)
H ◦ F0(x)

...

H ◦ Fn−1
0 (x)

⎤
⎥⎥⎥⎦ (8.297)

fu(ξ) � T ◦ Fu ◦ T−1(ξ), h(ξ) � H ◦ T−1(ξ), αu
i (ξ) � H ◦ F̂ i

u ◦ T−1(ξ)−
H ◦ Fi

0 ◦ T−1(ξ), 1 ≤ i ≤ n − 1, and αu
n (ξ) � H ◦ F̂n

u ◦ T−1(ξ).

Remark 8.9 System (8.294) is state equivalent to a dual Brunovsky NOCFwith OT
ϕ(y) and state transformation z = S(x), if and only if canonical system (8.296) is
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state equivalent to a dual Brunovsky NOCF with OT ϕ(y) and state transformation
z = S̃(ξ) (� S ◦ T−1(ξ)). Canonical system (8.296) is more convenient to solve the
observer problems than system (8.294). Since geometric conditions are coordinate
free, any geometric condition in ξ− coordinates (for system (8.296)) can be expressed
in x− coordinates (for system (8.294)).

We assume that F0(x) is a diffeomorphism on a neighborhood of x = 0. In other
words, F0(x) has the inverse function (F0)

−1(x̄). For system (8.294),we define vector
fields {g01(x), g02(x), · · · } and {gu1(x), gu2(x), · · · } as follows.

Lg01(x)

(
H ◦ Fk−1

0 (x)
) = δk,n, 1 ≤ k ≤ n

(
or g01(x) �

(
∂T (x)

∂x

)−1

[0 · · · 0 1]T = T−1
∗ (

∂

∂ξn
)

) (8.298)

and for i ≥ 2,
g0i (x) � (F0)∗(g0i−1) = (Fi−1

0 )∗(g01)

gu1(x) � g01(x) ; gui (x) � (Fu)∗(gui−1).
(8.299)

Then it is easy to see, by Theorem 2.5, (8.298), and (8.299), that for 1 ≤ i ≤ n and
0 ≤ k ≤ n,

Lg0i (x)

(
H ◦ Fk

0 (x)
) =

{
0, i + k < n

1, i + k = n.
(8.300)

If F0(x) is not invertible, (F0)∗(g01(x)) might not be a well-defined vector field. Let
ξ = T (x) and for 1 ≤ i ≤ n,

rui (ξ) � T∗(gui (x)) ; r0i (ξ) � T∗(g0i (x)).

Since fu(ξ) = T ◦ Fu ◦ T−1(ξ) and f0(ξ) = T ◦ F0 ◦ T−1(ξ), it is easy to see, by
mathematical induction, (2.22), (8.298), and (8.299), that

ru1(ξ) = r01(ξ) = ∂

∂ξn
(8.301)

and for i ≥ 2,

rui (ξ) � T∗ ◦ (Fu)∗(gui−1(x)) = T∗ ◦ (Fu)∗ ◦ T−1
∗ (rui−1(x))

= ( fu)∗(rui−1(x))

r0i (ξ) = ( f0)∗(r0i−1(x)).

(8.302)
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The vector fields {gui (x), i ≥ 1} for system (8.294) are the same as the vector fields
{rui (x), i ≥ 1} for system (8.296). In otherwords, (8.298) and (8.299) are coordinates
free definition. Since

f0(ξ) = T ◦ F0 ◦ T−1(ξ) = [
ξ2 · · · ξn α0

n(ξ)
]T

,

it is also easy to see, by (8.301) and (8.302), that for 1 ≤ i ≤ n,

r0i (ξ) =

⎡
⎢⎢⎢⎢⎢⎣

O(n−i)×1

1
∗
...

∗

⎤
⎥⎥⎥⎥⎥⎦

∈ span

{
∂

∂ξn+1−i
, · · · ,

∂

∂ξn

}
. (8.303)

Theorem 8.12 System (8.294) is state equivalent to a LOCF, if and only if

(i)

gui (x) = g0i (x), 2 ≤ i ≤ n + 1

(ii)

[g01(x), g0i (x)] = 0, 2 ≤ i ≤ n + 1.

Furthermore, a state transformation z = S(x) can be obtained by

∂S(x)

∂x
= [

g0n(x) · · · g02(x) g01(x)
]−1

.

Proof Proof is omitted. (If u = 0, this is the dual of the linearization of control
system by state coordinated change that is considered in Sect. 3.2.) �

Example 8.5.1 Consider the following control system:

x(t + 1) =
[
x2 + (x1 − x22 + u1)2 + u22

x1 − x22 + u1

]
= Fu(x)

y = x1 − x22 = H(x).

(8.304)

Show that the above system is state equivalent to a LOCF without OT and find a state
transformation z = S(x) and the LOCF that new state z satisfies.

Solution Since T (x) � [H(x) LF0H(x)]T = [x1 − x22 x2]T, it is clear, by (8.298)
and (8.299), that
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gu1(x) � g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
1 −2x2
0 1

]−1 [
0
1

]
=
[
2x2
1

]

gu2(x) � (Fu)∗gu1(x) =
[
1
0

]

gu3(x) � (Fu)∗gu2(x) =
[
2x2
1

]

which imply that condition (i) and condition (ii) of Theorem8.12 are satisfied.Hence,
system (8.304) is state equivalent to a LOCF with state transformation z = S(x) =
[x1 − x22 x2]T and γ (u) = [u22 u1]T, where

∂S(x)

∂x
= [

g02(x) g01(x)
]−1 =

[
1 −2x2
0 1

]

and

z(t + 1) = S ◦ Fu ◦ S−1(z) =
[
0 1
1 0

]
z +

[
u22
u1

]

y = H ◦ S−1(z) = [
1 0
]
z.

�
Theorem 8.13 System (8.294) is state equivalent to a dual Brunovsky NOCF with
state transformation z = S(x), if and only if

(i)

gui (x) = g0i (x), 2 ≤ i ≤ n (8.305)

(ii)

[g01(x), g0i (x)] = 0, 2 ≤ i ≤ n (8.306)

(iii)

∂S(x)

∂x
= [

g0n(x) · · · g02(x) g01(x)
]−1

. (8.307)

Proof Proof is omitted. (Special case of Lemma 8.9 with ϕ(y) = y.) �
Example 8.5.2 Consider the following control system:

x(t + 1) =
[
x2 + (x1 − x22 )u

2 + (x1 − x22 + u)2

x1 − x22 + u

]
= Fu(x)

y = x1 − x22 = H(x).

(8.308)
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Show that the above system is state equivalent to a dual Brunovsky NOCF without
OT and find a state transformation z = S(x) and the dual Brunovsky NOCF that new
state z satisfies.

Solution Since T (x) � [H(x) LF0H(x)]T = [x1 − x22 x2]T, it is clear, by (8.298)
and (8.299), that

gu1(x) � g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
1 −2x2
0 1

]−1 [
0
1

]
=
[
2x2
1

]

gu2(x) � (Fu)∗gu1(x) =
[
1
0

]

gu3(x) � (Fu)∗gu2(x) =
[
2x2 + u2

1

]

which imply that gu3(x) 	= g03(x) and condition (i) of Theorem 8.12 is not satisfied.
Therefore, by Theorem 8.12, system (8.308) is not state equivalent to a LOCF. How-
ever, since condition (i) and condition (ii) of Theorem 8.13 are satisfied, system
(8.308) is state equivalent to a dual Brunovsky NOCF with state transformation
z = S(x) = [x1 − x22 x2]T and γ (y, u) = [y2u2 y + u]T, where

∂S(x)

∂x
= [

g02(x) g01(x)
]−1 =

[
1 −2x2
0 1

]

and

z(t + 1) = S ◦ Fu ◦ S−1(z) =
[
0 1
0 0

]
z +

[
z21u

2

z1 + u

]

y = H ◦ S−1(z) = [
1 0
]
z.

�
Lemma 8.8 System (8.294) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), if and only if there exist a diffeomor-
phism ȳ = ϕ(y), smooth functions γ 0

k (ȳ) : R → R, 1 ≤ k ≤ n, and smooth functions
εuk (ȳ) : R1+m → R, 1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

Si (x) = ϕ ◦ H ◦ Fi−1
0 (x) −

i−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ Fi−1−k

0 (x) (8.309)

ϕ ◦ H ◦ F̂n
u (x) =

n−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ F̂n−k

u (x) + γ u
n ◦ ϕ ◦ H(x) (8.310)

and
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Si ◦ Fu(x) − Si ◦ F0(x) = εui ◦ ϕ ◦ H(x) (8.311)

where for 1 ≤ i ≤ n,

γ u
i (ȳ) = γ 0

i (ȳ) + εui (ȳ). (8.312)

Proof Necessity. Suppose that system (8.294) is state equivalent to a dual
Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then,
it is clear that ϕ ◦ H ◦ S−1(z) = h̄(z) = z1 and S ◦ Fu ◦ S−1(z) = f̄u(z) = Aoz +
γ u(z1). Since ϕ ◦ H ◦ S−1 ◦ S(x) = h̄ ◦ S(x) = z1 ◦ S(x), it is clear that S1(x) =
ϕ ◦ H(x) and (8.309) is satisfied for i = 1. Also, since S ◦ Fu(x) = f̄u(z) ◦ S(x) =
AoS(x) + γ u(S1(x)), it is easy to see that for 1 ≤ i ≤ n − 1,

Si+1(x) = Si ◦ Fu(x) − γ u
i (S1(x))

= Si ◦ F0(x) − γ 0
i ◦ ϕ ◦ H(x)

(8.313)

and
Sn ◦ Fu(x) = γ u

n (S1(x)) = γ u
n ◦ ϕ ◦ H(x). (8.314)

Thus, it is easy to see, by mathematical induction, that for 2 ≤ i ≤ n,

Si (x) = S1 ◦ Fi−1
0 (x) −

i−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ Fi−1−k

0 (x)

which implies that (8.309) is also satisfied for 2 ≤ i ≤ n. Also, since Sn(x) = ϕ ◦
H ◦ Fn−1

0 (x) −
n−1∑
k=1

γ 0
k ◦ T 1 ◦ Fn−1−k

0 (x), we have, by (8.314), that

γ u
n ◦ ϕ ◦ H(x) = ϕ ◦ H ◦ F̂n

u (x) −
n−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ F̂n−k

u (x)

which implies that (8.310) is satisfied. Finally, it is easy to see, by (8.309), (8.310),
(8.312), and (8.313), that for 1 ≤ i ≤ n,

εui ◦ ϕ ◦ H(x) = γ u
i ◦ ϕ ◦ H(x) − γ 0

i ◦ ϕ ◦ H(x)

= Si ◦ Fu(x) − Si+1(x) − γ 0
i ◦ ϕ ◦ H(x)

= Si ◦ Fu(x) − Si ◦ F0(x)

which implies that (8.311) is satisfied.
Sufficiency. Suppose that there exist ϕ(y) and {γ 0

k (ȳ), εuk (ȳ) | 1 ≤ k ≤ n} such
that (8.309)–(8.312) are satisfied. Then it is easy to see, by (8.309), that h̄(z) �
ϕ ◦ H ◦ S−1(z) = z1 and for 1 ≤ i ≤ n − 1,
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Si ◦ F0(x) = ϕ ◦ H ◦ Fi
0(x) −

i−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ Fi−k

0 (x)

= Si+1(x) + γ 0
i ◦ ϕ ◦ H(x)

which implies, together with (8.311) and (8.312), that for 1 ≤ i ≤ n − 1,

Si ◦ Fu(x) = Si ◦ F0(x) + εui ◦ ϕ ◦ H(x)

= Si+1(x) + γ 0
i ◦ ϕ ◦ H(x) + εui ◦ ϕ ◦ H(x)

= Si+1(x) + γ u
i ◦ ϕ ◦ H(x).

Finally, we have, by (8.309) and (8.310), that

Sn ◦ Fu(x) = ϕ ◦ H ◦ F̂n
u (x) −

n−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ F̂n−k

u (x)

= γ u
n ◦ ϕ ◦ H(x).

Therefore, it is clear that

f̄u(z) � S ◦ Fu ◦ S−1(z) =

⎡
⎢⎢⎢⎣

S2(x) + γ u
1 ◦ ϕ ◦ H(x)
...

Sn−1(x) + γ u
n−1 ◦ ϕ ◦ H(x)

γ u
n ◦ ϕ ◦ H(x)

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=S−1(z)

= Aoz + γ u(z1).

(8.315)

Hence, system (8.294) is state equivalent to a dual Brunovsky NOCF with OT ȳ =
ϕ(y) and state transformation z = S(x). �

Corollary 8.7 System (8.294) is state equivalent to a dual Brunovsky NOCF with
state transformation z = S(x), if and only if there exist smooth functions γ 0

k (y) :
R → R, 1 ≤ k ≤ n and εuk (y) : R1+m → R, 1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

Si (x) = H ◦ Fi−1
0 (x) −

i−1∑
k=1

γ 0
k ◦ H ◦ Fi−1−k

0 (x)

H ◦ F̂n
u (x) =

n−1∑
k=1

γ 0
k ◦ H ◦ F̂n−k

u (x) + γ u
n ◦ H(x),

and

Si ◦ Fu(x) − Si ◦ F0(x) = εui ◦ H(x)
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where for 1 ≤ i ≤ n,

γ u
i (ȳ) = γ 0

i (ȳ) + εui (ȳ).

Corollary 8.8 System (8.295) is state equivalent to a dual Brunovsky NOCF with
OT ȳ = ϕ(y) and state transformation z = S(x), if and only if there exist a diffeo-
morphism ȳ = ϕ(y) and smooth functions γ 0

k (ȳ) : R → R, 1 ≤ k ≤ n such that for
1 ≤ i ≤ n,

Si (x) = ϕ ◦ H ◦ Fi−1
0 (x) −

i−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ Fi−1−k

0 (x)

and

ϕ ◦ H ◦ F̂n
0 (x) =

n∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ F̂n−k

0 (x).

Corollary 8.9 System (8.295) is state equivalent to a dual Brunovsky NOCF with
state transformation z = S(x), if and only if there exist smooth functions γ 0

k (y) :
R → R, 1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

Si (x) = H ◦ Fi−1
0 (x) −

i−1∑
k=1

γ 0
k ◦ H ◦ Fi−1−k

0 (x)

and

H ◦ F̂n
0 (x) =

n∑
k=1

γ 0
k ◦ H ◦ F̂n−k

0 (x).

Lemma 8.9 System (8.294) is state equivalent to a dual Brunovsky NOCF with OT
ȳ = ϕ(y) and state transformation z = S(x), if and only if there exists a smooth
function �(y) (�(0) = 1) such that

(i)

ḡui (x) = ḡ0i (x), 2 ≤ i ≤ n (8.316)

(ii)

[
ḡ01(x), ḡ0i (x)

] = 0, 2 ≤ i ≤ n (8.317)
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where

ḡu1(x) = ḡ01(x) � �
(
H ◦ Fn−1

0 (x)
)
g01(x) (8.318)

ḡui (x) � (Fu)∗
(
ḡui−1(x)

)
, i ≥ 2 (8.319)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.320)

∂S(x)

∂x
= [

ḡ0n(x) · · · ḡ02(x) ḡ01(x)
]−1

. (8.321)

Proof Necessity. Suppose that system (8.294) is state equivalent to a dual
Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). There-
fore, by Lemma 8.8, there exist a smooth function ϕ(y), smooth functions γ 0

k (ȳ),
1 ≤ k ≤ n, and smooth functions εuk (ȳ), 1 ≤ k ≤ n such that (8.309)–(8.312) are
satisfied. In other words, we have

z(t + 1) = Aoz + γ u(z1) � f̄u(z)

ȳ = ϕ ◦ H ◦ S−1(z) = z1

where

f̄u(z) � S ◦ Fu ◦ S−1(z) =

⎡
⎢⎢⎢⎣

z2 + γ u
1 (z1)
...

zn + γ u
n−1(z1)

γ u
n (z1)

⎤
⎥⎥⎥⎦ . (8.322)

(See (8.315).) We define vector fields {ψ̄u
1 (z), · · · , ψ̄u

n (z)} by

ψ̄u
1 (z) � ∂

∂zn
; ψ̄u

i (z) � ( f̄u)∗
(
ψ̄u
i−1(z)

)
, i ≥ 2. (8.323)

Then, by (8.322), it is clear that

ψ̄u
i (z) = ∂

∂zn+1−i
= ψ̄0

i (z), 1 ≤ i ≤ n (8.324)

which implies that

[
ψ̄u
i (z), ψ̄u

k (z)
] = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ n. (8.325)

Let ξ = T (x) �
[
H(x) H ◦ F0(x) · · · H ◦ Fn−1

0 (x)
]T

and S̃(ξ) � S ◦ T−1(ξ).
Then it is clear, by (8.309), that for 1 ≤ i ≤ n,
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S̃i (ξ) � Si ◦ T−1(ξ) = ϕ(ξi ) −
i−1∑
k=1

γ 0
k (ϕ(ξi−k))

which implies that

∂ S̃i (ξ)

∂ξn
=
{
0, if 1 ≤ i ≤ n − 1
dϕ(ξn)

dξn
, if i = n.

Thus, we have, by (8.323), that

S̃∗(
∂

∂ξn
) =

n∑
i=1

∂ S̃i (ξ)

∂ξn

∣∣∣∣
ξ=S̃−1(z)

∂

∂zi

= dϕ(ξn)

dξn

∣∣∣∣
ξ=S̃−1(z)

∂

∂zn
= dϕ(ξn)

dξn

∣∣∣∣
ξ=S̃−1(z)

ψ̄u
1 (z)

and

ψ̄u
1 (z) = �(ξn)

∣∣∣∣
ξ=S̃−1(z)

S̃∗
(

∂

∂ξn

)

where

1

�(ξn)
= dϕ(ξn)

dξn

(
or ϕ(y) =

∫ y

0

1

�(ξn)
dξn

)
.

Therefore, we have, by (2.49), that

S̃−1
∗ (ψ̄u

1 (z)) = S̃−1
∗

(
�(ξn)|ξ=S̃−1(z) S̃∗

(
∂

∂ξn

))
= �(ξn)

∂

∂ξn
.

Hence, if we let ḡu1(x) � S−1∗ (ψ̄u
1 (z)), we have, by (2.49) and (8.298), that

ḡu1(x) = S−1
∗ (ψ̄u

1 (z)) = T−1
∗ ◦ S̃−1

∗ (ψ̄u
1 (z)) = T−1

∗
(
�(ξn)

∂

∂ξn

)

= �
(
H ◦ Fn−1

0 (x)
)
T−1

∗

(
∂

∂ξn

)
= �

(
H ◦ Fn−1

0 (x)
)
g01(x)

which implies that (8.318) is satisfied. It is easy to show, by mathematical induction,
that for i ≥ 2,

ḡui (x) = S−1
∗
(
ψ̄u
i (z)

)
or ψ̄u

i (z) = S∗
(
ḡui (x)

)
. (8.326)
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Assume that (8.326) is satisfied for i = k − 1 and k ≥ 2. Since f̄u(z) = S ◦ Fu ◦
S−1(z) or Fu(x) = S−1 ◦ f̄u ◦ S(x), it is easy to see, by (2.22), (8.319), and (8.323),
that

ḡuk (x) = (Fu)∗
(
ḡuk−1(x)

) = S−1
∗ ◦ ( f̄u)∗ ◦ S∗

(
ḡuk−1(x)

)

= S−1
∗ ◦ ( f̄u)∗

(
ψ̄u

k−1(z)
) = S−1

∗
(
ψ̄u

k (z)
)

which implies that (8.326) is satisfied for i ≥ 2.Therefore, condition (i) ofLemma8.9
is satisfied by (8.324) and (8.326). By (8.316), (8.325), (8.326), and Theorem 2.4,
condition (ii) of Lemma 8.9 is also satisfied. Finally, since S∗

(
ḡ0i (x)

) = ψ̄0
i (z) =

∂
∂zn+1−i

, 1 ≤ i ≤ n by (8.324) and (8.326), we have that

∂S(x)

∂x

[
ḡ0n(x) · · · ḡ02(x) ḡ01(x)

] = I |z=S(x) = I

which implies that (8.321) holds.
Sufficiency. Suppose that there exists β(y) such that (8.316)–(8.320) are satisfied.

Then it is easy to see, by (2.28) and (8.317), that for 1 ≤ i < k ≤ n,

[
ḡ0i (x), ḡ

0
k(x)

] = [
(F0)

i−1
∗ (ḡ01(x)), (F0)

k−1
∗ (ḡ01(x))

]

= (F0)
i−1
∗

([
ḡ01(x), (F0)

k−i
∗ (ḡ01(x))

])

= (F0)
i−1
∗

([
ḡ01(x), ḡ

0
k−i+1(x)

]) = 0

which implies that {ḡ01(x), ḡ02(x), · · · , ḡ0n(x)} is a set of commuting vector fields.
Thus, there exists, by Theorem 2.7, a state transformation z = S(x) such that

S∗
(
ḡ0i (x)

) = ∂

∂zn+1−i
, 1 ≤ i ≤ n. (8.327)

In fact, z = S(x) can be calculated by (8.321). Now it will be shown that h̄(z) � ϕ ◦
H ◦ S−1(z) = z1 and f̄u(z) � S ◦ Fu ◦ S−1(z) = Aoz + γ u(z1). It is easy to show,
by (2.49), (8.318), (8.319), and mathematical induction, that for 1 ≤ i ≤ n,

ḡ0i (x) = �(H ◦ Fn−i
0 (x))g0i (x). (8.328)

Thus, we have, by Theorem 2.5, (8.300), (8.320), and (8.328), that for 1 ≤ i ≤ n,
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∂ h̄(z)

∂zn+1−i
= LS∗(ḡ0i )

(
ϕ ◦ H ◦ S−1(z)

) =
{
L ḡ0i (x)

(ϕ ◦ H(x))
}∣∣∣

x=S−1(z)

=
{

∂ϕ(y)

∂y

∣∣∣∣
y=H(x)

L ḡ0i (x)
H(x)

}∣∣∣∣∣
x=S−1(z)

=
{

∂ϕ(y)

∂y

∣∣∣∣
y=H(x)

�(H ◦ Fn−i
0 )Lg0i (x)

H(x)

}∣∣∣∣∣
x=S−1(z)

=

⎧⎪⎨
⎪⎩

0, 1 ≤ i ≤ n − 1{
∂ϕ(y)

∂y

∣∣∣
y=H(x)

�(H)

}∣∣∣∣
x=S−1(z)

, i = n

=
{
0, 1 ≤ i ≤ n − 1

1, i = n.

Therefore, it is clear that h̄(z) = z1. Let

f̄u(z) �
n∑

k=1

f̄u,k(z)
∂

∂zk
= [ f̄u,1(z) · · · f̄u,n(z)]T. (8.329)

Since f̄u(z) = S ◦ Fu ◦ S−1(z), it is clear, by (2.22) and (8.319), that for 1 ≤ i ≤
n − 1,

S∗
(
ḡui+1(x)

) = S∗
(
(Fu)∗(ḡui (x))

) = S∗ ◦ (Fu)∗ ◦ S−1
∗
(
S∗(ḡui (x))

)

= ( f̄u)∗
(
S∗(ḡui (x))

)
.

(8.330)

Thus, we have, by (8.316), (8.327), (8.329), and (8.330), that for 1 ≤ i ≤ n − 1,

∂

∂zn−i
= ( f̄u)∗

(
∂

∂zn+1−i

)
= ∂ f̄u(z)

∂zn+1−i

=
n∑

k=1

∂ f̄u,k(z̄)

∂ z̄n+1−i

∣∣∣∣
z̄= f̄ −1

u (z)

∂

∂zk

which implies that for 1 ≤ k ≤ n and 1 ≤ i ≤ n − 1,

∂ f̄u,k(z)

∂zn+1−i
=
{
1, k = n − i

0, otherwise

or, for 1 ≤ k ≤ n and 2 ≤ i ≤ n,

∂ f̄u,k(z)

∂zi
=
{
1, i = k + 1

0, otherwise.
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Hence, f̄u,n(z) = γ u
n (z1) and f̄u,k(z) = zk+1 + γ u

k (z1), 1 ≤ k ≤ n − 1, for some
functions γ u

k (z1), 1 ≤ k ≤ n. Thus, f̄u(z) = Aoz + γ u(z1). �

In order to find the conditions for the problem with OT, we define integer κ (2 ≤
κ ≤ n + 1) and integer σ (1 ≤ σ ≤ n). Note that Lg01

(H ◦ Fn−1
0 (x)) = 1 	= 0. Let

us define integer κ (2 ≤ κ ≤ n + 1) by the smallest integer such that

Lg0κ (H ◦ Fn−1
0 (x)) 	= 0. (8.331)

Relation (8.331) will be used in (8.342). Since Lg0i
(H ◦ Fn−1

0 (x)) = 0, 2 ≤ i ≤
κ − 1, it is easy to see, by (2.30), that for 1 ≤ i ≤ κ − 2,

Lr0i
(α0

n(ξ)) = Lr0i
(H ◦ Fn

0 ◦ T−1(ξ)) = LT∗(r0i )(H ◦ Fn
0 (x))

∣∣
x=T−1(ξ)

= Lg0i
(H ◦ Fn

0 (x))
∣∣
x=T−1(ξ)

= L(F0)∗(g0i )(H ◦ Fn−1
0 (x))

∣∣
x=T−1(ξ)

= Lg0i+1
(H ◦ Fn−1

0 (x))
∣∣
x=T−1(ξ)

= 0

which implies, together with (8.296) and r01 = ∂
∂ξn

, that

α0
n(ξ) = α0

n(ξ1, · · · , ξn+2−κ , 0, · · · , 0) (8.332)

T∗(g0i ) = r0i (ξ) = ∂

∂ξn+1−i
, 1 ≤ i ≤ κ − 1 (8.333)

∂α0
n(ξ)

∂ξn+2−κ

= Lr0κ−1
(α0

n(ξ)) = Lr0κ (ξn) 	= 0 (8.334)

and
[g01(x), g0i (x)] = T−1

∗
([r01(ξ), r0i (ξ)]) = 0, 1 ≤ i ≤ κ − 1. (8.335)

Let us define σ (1 ≤ σ ≤ n) by the largest integer such that

H ◦ F̂n−i
u (x) = H ◦ Fn−i

0 (x), 1 ≤ i ≤ σ − 1 (8.336)

or
αu
i (ξ) = 0, n + 1 − σ ≤ i ≤ n − 1 (8.337)

where αu
i (ξ) � H ◦ F̂ i

u ◦ T−1(ξ) − H ◦ Fi
0 ◦ T−1(ξ) for 1 ≤ i ≤ n − 1. Thus, if

σ < n, we have

H ◦ F̂n−σ
u (x) 	= H ◦ Fn−σ

0 (x) or
∂

∂u

(
H ◦ F̂n−σ

u (x)
)

	= 0. (8.338)

If σ = n, then it is clear that for 1 ≤ i ≤ n − 1,
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H ◦ F̂ i
u(x) = H ◦ Fi

0(x) or αu
i (ξ) = 0. (8.339)

For example, if H(x) = x1 and Fu(x) = [x2 + u x3 + u2 x1 + u]T, then σ = 1,
because H ◦ F̂n−1

u (x) = x3 + u2 	= H ◦ F̂n−1
0 (x). If H(x) = x1 and Fu(x) = [x2 +

u x3 x1 + u]T, then σ = 2, because H ◦ F̂n−1
u (x) = x3 = H ◦ F̂n−1

0 (x) and H ◦
F̂n−2
u (x) = x2 + u 	= H ◦ F̂n−2

0 (x). If H(x) = x1 and Fu(x) = [x2 x3 x1 + u]T,
then σ = 3 = n, because H ◦ F̂n−1

u (x) = x3 = H ◦ F̂n−1
0 (x) and H ◦ F̂n−2

u (x) =
x2 = H ◦ F̂n−2

0 (x).

Example 8.5.3 Let ḡu1(x) = ḡ01(x) � �
(
H ◦ Fn−1

0 (x)
)
g01(x) and σ < n. Show that

(a)

ḡ0i (x) � (F0)∗
(
ḡ0i−1(x)

) = �
(
H ◦ Fn−i

0 (x)
)
g0i (x), 1 ≤ i ≤ n (8.340)

(b)

ḡui (x) =
{

�
(
H ◦ Fn−i

0 (x)
)
gui (x), 1 ≤ i ≤ σ

�
(
H ◦ Fn−σ

0 ◦ F−1
u (x)

)
guσ+1(x), i = σ + 1

(8.341)

Solution (a) It is easy to see, by (2.22), (2.49), and (8.299), that for 1 ≤ i ≤ n,

ḡ0i (x) = (F0)
i−1
∗

(
ḡ01(x)

) = (F0)
i−1
∗

(
�
(
H ◦ Fn−1

0 (x)
)
g01(x)

)

= �
(
H ◦ Fn−i

0 (x)
)
(F0)

i−1
∗

(
g01(x)

)

= �
(
H ◦ Fn−i

0 (x)
)
g0i (x).

(b) (8.341) obviously holds when i = 1. Assume that (8.341) is satisfied when i = k
and 1 ≤ k ≤ σ − 1. Then, it is easy to see, by (2.49), (8.299), and (8.336), that

ḡuk+1(x) � (Fu)∗
(
ḡuk (x)

) = (Fu)∗
(
�
(
H ◦ Fn−k

0 (x)
)
guk (x)

)

= �
(
H ◦ Fn−k

0 ◦ F−1
u (x)

)
guk+1(x) = �

(
H ◦ Fn−k−1

0 (x)
)
guk+1(x)

which implies that (8.341) is satisfied when i = k + 1 and 1 ≤ k ≤ σ − 1. Thus,
by mathematical induction, (8.341) is satisfied when 1 ≤ i ≤ σ . Thus, we have,
by (2.49) and (8.299), that

ḡuσ+1(x) � (Fu)∗
(
ḡuσ (x)

) = (Fu)∗
(
�
(
H ◦ Fn−σ

0 (x)
)
guσ (x)

)

= �
(
H ◦ Fn−σ

0 ◦ F−1
u (x)

)
guσ+1(x).

�



430 8 Observer Error Linearization

Theorem 8.14 Suppose that κ ≤ n. System (8.294) is state equivalent to a dual
Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x), if and only
if there exists a smooth function β(y), defined on an open neighborhood of y = 0,
such that

(i)

[g01(x), g0κ (x)] = Lg0κ (H ◦ Fn−1
0 (x))β(H ◦ Fn−1

0 (x))g01(x) (8.342)

(ii)

ḡui (x) = ḡ0i (x), 2 ≤ i ≤ n (8.343)

(iii)

[ḡ01(x), ḡ0i (x)] = 0, 2 ≤ i ≤ n (8.344)

where

�(y) � e
∫ y
0 β(ȳ)d ȳ (8.345)

ḡu1(x) = ḡ01(x) � �
(
H ◦ Fn−1

0 (x)
)
g01(x) (8.346)

ḡui (x) � (Fu)∗(ḡui−1)(x), i ≥ 2 (8.347)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.348)

∂S(x)

∂x
= [

ḡ0n(x) · · · ḡ02(x) ḡ01(x)
]−1

. (8.349)

Proof Necessity. Suppose that system (8.294) is state equivalent to a dual
Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then, by
Lemma 8.9, there exist smooth functions �(y) (�(0) = 1) such that (8.316)–(8.321)
are satisfied. Since 2 ≤ κ ≤ n, it is clear, by (8.300), that

Lg01
�(H ◦ Fn−κ

0 (x)) = d�(y)

dy

∣∣∣∣
y=H◦Fn−κ

0 (x)

Lg01
(H ◦ Fn−κ

0 (x)) = 0. (8.350)

Thus, we have, by (2.43), (8.317), (8.340), and (8.350), that
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0 = [ḡ01(x), ḡ0κ (x)] = [
�
(
H ◦ Fn−1

0 (x)
)
g01(x), �

(
H ◦ Fn−κ

0 (x)
)
g0κ(x)

]

= �
(
H ◦ Fn−1

0 (x)
)
�
(
H ◦ Fn−κ

0 (x)
) [
g01(x), g0κ(x)

]

− �
(
H ◦ Fn−κ

0 (x)
)
Lg0κ �

(
H ◦ Fn−1

0 (x)
)
g01(x)

which implies that

[g01(x), g0κ (x)] = Lg0κ �
(
H ◦ Fn−1

0 (x)
)

�(H ◦ Fn−1
0 (x))

g01(x)

= 1

�(y)

d�(y)

dy

∣∣∣∣
y=H◦Fn−1

0 (x)

Lg0κ

(
H ◦ Fn−1

0 (x)
)
g01(x).

Therefore, (8.342) and (8.345) are satisfied with β(y) = 1
�(y)

d�(y)
dy = d ln �(y)

dy . Condi-
tion (ii) and condition (iii) of Theorem 8.14 are obviously satisfied by (8.316) and
(8.317).

Sufficiency. It is obvious by Lemma 8.9. �
Theorem 8.15 Suppose that σ < n. System (8.294) is state equivalent to a dual
Brunovsky NOCF with OT ϕ(y) and state transformation z = S(x), if and only if
there exist smooth scalar functions θu

σ (x), β̄u(x), and β(y), defined on an open
neighborhood of y = 0, such that

(i)

gui (x) =
{
g0i (x), 2 ≤ i ≤ σ

θu
σ (x)g0i (x), i = σ + 1

(8.351)

(ii)

ḡui (x) = ḡ0i (x), 2 ≤ i ≤ n (8.352)

(iii)

[ḡ01(x), ḡ0i (x)] = 0, 2 ≤ i ≤ n (8.353)

where

∂
(
θu
σ ◦ Fu(x)

)

∂u
= β̄u(x)

∂
(
H ◦ F̂n−σ

u (x)
)

∂u
(8.354)

β̄0(x) = β
(
H ◦ Fn−σ

0 (x)
)

(8.355)

�(y) � e
∫ y
0 β(ȳ)d ȳ (8.356)
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ḡu1(x) = ḡ01(x) � �
(
H ◦ Fn−1

0 (x)
)
g01(x) (8.357)

ḡui (x) � (Fu)∗(ḡui−1(x)), i ≥ 2 (8.358)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.359)

∂S(x)

∂x
= [

ḡ0n(x) · · · ḡ02(x) ḡ01(x)
]−1

. (8.360)

Proof Necessity. Let σ < n. Suppose that system (8.294) is state equivalent to a dual
Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation z = S(x). Then, by
Lemma 8.9, there exist smooth functions �(y) (�(0) = 1) such that (8.352), (8.353),
and (8.357)–(8.360) are satisfied. It is clear, by (8.340) and (8.341), that

ḡ0i (x) = �
(
H ◦ Fn−i

0 (x)
)
g0i (x), 2 ≤ i ≤ n

and

ḡui (x) =
{

�
(
H ◦ Fn−i

0 (x)
)
gui (x), 2 ≤ i ≤ σ

�
(
H ◦ Fn−σ

0 ◦ F−1
u (x)

)
guσ+1(x), i = σ + 1

which imply, together with (8.352), that (8.351) is satisfied with

θu
σ (x) = �

(
H ◦ Fn−σ−1

0 (x)
)

�
(
H ◦ Fn−σ

0 ◦ F−1
u (x)

) or
�
(
H ◦ F̂n−σ

u (x)
)

�
(
H ◦ Fn−σ

0 (x)
) = θu

σ ◦ Fu(x).

Since

∂
(
θu
σ ◦ Fu(x)

)

∂u
=

d�(y)
dy

∣∣∣
y=H◦F̂n−σ

u (x)

�
(
H ◦ Fn−σ

0 (x)
)
∂
(
H ◦ F̂n−σ

u (x)
)

∂u
,

it is clear that (8.354) is satisfied with

β̄u(x) =
d�(y)
dy

∣∣∣
y=H◦F̂n−σ

u (x)

�
(
H ◦ Fn−σ

0 (x)
) .

Since

β̄0 (x) = 1

�(y)

d�(y)

dy

∣∣∣∣
y=H◦Fn−σ

0 (x)

= d

dy
(ln �(y))

∣∣∣∣
y=H◦Fn−σ

0 (x)

� β
(
H ◦ Fn−σ

0 (x)
)
,

it is easy to see that (8.355) and (8.356) are satisfied.
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Sufficiency. It is obvious by Lemma 8.9. �

If κ < n + 1, Theorem 8.14 can be used to find whether system (8.294) is state
equivalent to a dual Brunovsky NOCF with OT or not. If σ < n, Theorem 8.15 can
be used to find whether system (8.294) is state equivalent to a dual Brunovsky NOCF
with OT or not. If κ = n + 1 and σ = n, we have, by (8.296), (8.332), and (8.339),
that

fu(ξ) � T ◦ Fu ◦ T−1(ξ) = [
ξ2 · · · ξn αu

n (ξ)
]T (8.361)

and
αu
n (ξ) � H ◦ F̂n

u ◦ T−1(ξ) = α0
n(ξ1, 0, · · · , 0) + α̂u

n (ξ) (8.362)

where αu
n (ξ) � α0

n(ξ) + α̂u
n (ξ) and α̂0

n(ξ) = 0.

Theorem 8.16 Suppose that κ = n + 1 and σ = n. System (8.294) is state equiva-
lent to a dual Brunovsky NOCF with OT ϕ(y) and state transformation z = S(x), if
and only if

gui (x) = g0i (x), 2 ≤ i ≤ n. (8.363)

Furthermore, ϕ(y) = y and state transformation z = S(x) is given by

∂S(x)

∂x
= [

g0n(x) · · · g02(x) g01(x)
]−1

. (8.364)

Proof Necessity. Let κ = n + 1 and σ = n. Suppose that system (8.294) is state
equivalent to a dual Brunovsky NOCF with OT ȳ = ϕ(y) and state transformation
z = S(x). Then, by Lemma 8.8, it is clear that (8.309)–(8.312) are satisfied. Since
κ = n + 1 and σ = n, it is easy to see, by (8.310), (8.339), and (8.362), that

ϕ ◦ αu
n (ξ) = ϕ ◦ H ◦ F̂n

u (x) ◦ T−1(ξ)

=
n−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ F̂n−k

u ◦ T−1(ξ) + γ u
n ◦ ϕ ◦ H ◦ T−1(ξ)

=
n−1∑
k=1

γ 0
k ◦ ϕ ◦ H ◦ F̂n−k

0 ◦ T−1(ξ) + γ u
n ◦ ϕ ◦ H ◦ T−1(ξ)

=
n−1∑
k=1

γ 0
k ◦ ϕ(ξn−k+1) + γ u

n ◦ ϕ(ξ1)

and

ϕ ◦ α0
n(ξ1, 0, · · · , 0) =

n−1∑
k=1

γ 0
k ◦ ϕ(ξn−k+1) + γ 0

n ◦ ϕ(ξ1)
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which imply that γ 0
k (y) = 0 for 1 ≤ k ≤ n − 1 and

αu
n (ξ) = ϕ−1 ◦ γ u

n ◦ ϕ(ξ1) � α̃u
n (ξ1).

In other words, we have, by (8.361), that

fu(ξ) � T ◦ Fu ◦ T−1(ξ) = [
ξ2 · · · ξn α̃u

n (ξ1)
]T

.

Therefore, it is easy to see that for 1 ≤ i ≤ n,

T∗(gui (x)) = rui (ξ) � ( fu)
i−1
∗

(
∂

∂ξn

)
= ∂

∂ξn+1−i

which implies that (8.363) is satisfied.
Sufficiency. Let κ = n + 1 and σ = n. Suppose that (8.363) is satisfied. Note, by

(8.335), that, if κ = n + 1, then (8.306) is satisfied. Therefore, by Theorem 8.13,
system (8.294) is state equivalent to a dual Brunovsky NOCF with OT ϕ(y) = y
(i.e., without OT). �
Example 8.5.4 Consider the following discrete time control system:

x(t + 1) =
[

x2
ln(1 + u + x1 + x22 )

]
= Fu(x)

y = x1 = H(x).

(8.365)

(a) Show that system (8.365) is not state equivalent to a dual Brunovsky NOCF
without OT.

(b) Show that κ = 2 ≤ n and σ = 2 = n.
(c) Use Theorem 8.14 to show that system (8.365) is state equivalent to a dual

Brunovsky NOCF with OT. Also find a OT ȳ = ϕ(y), a state transformation
z = S(x), and the dual Brunovsky NOCF that new state z satisfies.

Solution (a) It is easy to see that x̄ = F−1
u (x) =

[
ex2 − 1 − u − x21

x1

]
. Since ξ =

T (x) �
[

H(x)
H ◦ F0(x)

]
= x , it is clear, by (8.298) and (8.299), that

gu1(x) = g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
0
1

]

and

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
[

1
2x1e−x2

]
= g02(x)

which imply that
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[g01(x), g02(x)] =
[

0
−2x1e−x2

]
= −2x1e

−x2g01(x) 	= 0 (8.366)

and condition (ii) of Theorem 8.13 is not satisfied. Therefore, by Theorem 8.13,
system (8.365) is not state equivalent to a dual Brunovsky NOCF without OT.

(b) Since Lg02
(H ◦ F0(x)) = 2x1e−x2 	= 0, we have κ = 2 ≤ n by (8.331). Also,

since H ◦ Fu(x) = x2 = H ◦ F0(x), it is clear, by (8.336), that σ = 2 = n.
(c) It is clear, by (8.366), that condition (i) of Theorem 8.14 is satisfied with β(y) =

−1. From (8.345)–(8.347), we have

�(y) = e
∫ y
0 β(ȳ)d ȳ = e−y

ḡu1(x) � �(H ◦ F0(x))g01(x) =
[

0
e−x2

]

and

ḡu2(x) � (Fu)∗(ḡu1(x)) =
[

e−x1

2x1e−x1−x2

]
.

Since ḡu2(x) = ḡ02(x) and
[
ḡ01(x), ḡ

0
2(x)

] = 0, it is clear that condition (ii) and
condition (iii) of Theorem 8.14 are satisfied. Hence, by Theorem 8.14, system
(8.365) is state equivalent to a dual Brunovsky NOCF with OT

ȳ = ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ = ey − 1

and state transformation z = S(x) =
[

ex1 − 1
ex2 − 1 − x21

]
, where

∂S(x)

∂x
= [

ḡ02(x) ḡ
0
1(x)

]−1 =
[

ex1 0
−2x1 ex2

]
.

It is easy to see that ȳ = ϕ ◦ H ◦ S−1(z) = z1 and

S ◦ Fu ◦ S−1(z) =
[
z2
0

]
+
[

(ln(1 + z1))2

ln(1 + z1) + u

]
=
[
z2
0

]
+
[

y2

y + u

]
.

�
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Example 8.5.5 Consider the system

x(t + 1) =
[
(1 + x2)eu

2
2 − 1

(1 + x1)eu1 − 1

]
= Fu(x)

y = x1 = H(x).

(8.367)

(a) Show that system (8.367) is not state equivalent to a dual Brunovsky NOCF
without OT.

(b) Show that κ = 3 = n + 1 and σ = 1 < n.
(c) Use Theorem 8.15 to show that system (8.367) is state equivalent to a dual

Brunovsky NOCF with OT. Also find a OT ȳ = ϕ(y), a state transformation
z = S(x), and the dual Brunovsky NOCF that new state z satisfies.

Solution (a) It is easy to see that x̄ = F−1
u (x) =

[
(1 + x2)e−u1 − 1
(1 + x1)e−u22 − 1

]
. Since ξ =

T (x) �
[

H(x)
H ◦ F0(x)

]
= x , we have, by (8.298) and (8.299), that

gu1(x) = g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
0
1

]

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
[
eu

2
2

0

]

and

g03(x) � (F0)∗(g02(x)) = ∂F0(x̄)

∂ x̄
g02(x̄)

∣∣∣∣
x̄=F−1

0 (x)

=
[
0
1

]
.

Since gu2(x) 	= g02(x) =
[
1
0

]
, condition (i) of Theorem 8.13 is not satisfied.

Therefore, system (8.367) is, by Theorem 8.13, not state equivalent to a dual
Brunovsky NOCF without OT.

(b) Since Lg02
(H ◦ F0(x)) = 0 and Lg03

(H ◦ F0(x)) = 1 + x22 	= 0, we have κ =
3 = n + 1 by (8.331). Also, since H ◦ Fu(x) = (1 + x2)eu

2
2 − 1 	= H ◦ F0(x),

it is clear, by (8.336), that σ = 1 < n.
(c) Note that gu1(x) = g01(x) and g

u
2(x) = eu

2
2g02(x). Thus, it is clear that condition (i)

of Theorem 8.15 is satisfied with θu
1 (x) = eu

2
2 . Since

θu
1 ◦ Fu(x) = eu

2
2 ; ∂(θu

1 ◦ Fu(x))

∂u
= [

0 2u2eu
2
2
]

and
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H ◦ Fu(x) = (1 + x2)e
u22 − 1 ; ∂(H ◦ Fu(x))

∂u
= [

0 2u2(1 + x2)eu
2
2
]
,

it is easy to see that (8.354) is satisfied with β̄u(x) = 1
1+x2

. Also, since β̄0(x) =
1

1+x2
and H ◦ Fn−σ

0 (x) = H ◦ F0(x) = x2, (8.355) is satisfied with β(y) = 1
1+y .

Thus, we have, by (8.356)–(8.358), that

�(y) = e
∫ y
0 β(ȳ)d ȳ = eln(1+y) = 1 + y

ḡu1(x) � �(H ◦ F0)g01(x) =
[

0
1 + x2

]

and

ḡu2(x) � (Fu)∗(ḡu1(x)) =
[
1 + x1

0

]
= ḡ02(x)

which imply that condition (ii) and condition (iii) of Theorem 8.15 are satisfied.
Hence, by Theorem 8.15, system (8.367) is state equivalent to a dual Brunovsky
NOCFwithOT ȳ = ϕ(y) = ∫ y

0
1

�(ȳ)d ȳ = ln(1 + y) and state transformation z =
S(x) =

[
ln(1 + x1)
ln(1 + x2)

]
, where

∂S(x)

∂x
= [

ḡ02(x) ḡ
0
1(x)

]−1 =
[ 1
1+x1

0
0 1

1+x2

]
.

It is easy to see that ϕ ◦ H ◦ S−1(z) = z1 and

S ◦ Fu ◦ S−1(z) =
[
z2 + u22
z1 + u1

]
=
[
z2
0

]
+
[

u22
ln(1 + y) + u1

]
.

�

Example 8.5.6 Consider the system

x(t + 1) =
[

x2
x1 + u(1 + x2)

]
= Fu(x)

y = x1 = H(x).

(8.368)

(a) Show that κ = 3 = n + 1 and σ = 2 = n.
(b) Use Theorem 8.16 to show that system (8.368) is not state equivalent to a dual

Brunovsky NOCF with OT.
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Solution (a) It is easy to see that x̄ = F−1
u (x) =

[
x2 − u(1 + x1)

x1

]
. Since ξ =

T (x) �
[

H(x)
H ◦ F0(x)

]
= x , we have, by (8.298) and (8.299), that

gu1(x) = g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
0
1

]

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
[
1
u

]
	= g02(x)

and

g03(x) � (F0)∗(g02(x)) = ∂F0(x̄)

∂ x̄
g02(x̄)

∣∣∣∣
x̄=F−1

0 (x)

=
[
0
1

]
.

Since Lg02
(H ◦ F0(x)) = 0 and Lg03

(H ◦ F0(x)) = 1 	= 0, we have κ = 3 = n +
1 by (8.331). Also, since H ◦ Fu(x) = H ◦ F0(x), it is clear, by (8.336), that
σ = 2 = n.

(b) Since gu2(x) 	= g02(x), it is clear that (8.363) is not satisfied. Hence, by Theo-
rem 8.16, system (8.368) is not state equivalent to a dual Brunovsky NOCF with
OT. �

Example 8.5.7 Consider the following discrete time control system:

x(t + 1) =
[

x2(1 + u)

ln(1 + u + x1 + x22 )

]
= Fu(x)

y = x1 = H(x).

(8.369)

(a) Show that κ = 2 ≤ n and σ = 1 < n.
(b) Use Theorem 8.14 to show that the above system is not state equivalent to a dual

Brunovsky NOCF with OT.
(c) Use Theorem 8.15 to show that the above system is not state equivalent to a dual

Brunovsky NOCF with OT.

Solution (a) It is easy to see that x̄ = F−1
u (x) =

[
ex2 − 1 − u − x21

(1+u)2
x1
1+u

]
. Since

ξ = T (x) �
[

H(x)
H ◦ F0(x)

]
= x , it is clear, by (8.298) and (8.299), that

gu1(x) = g01(x) �
(

∂T (x)

∂x

)−1 [
0
1

]
=
[
0
1

]
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and

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
[
1 + u
2x1e−x2

1+u

]

which imply that

g02(x) =
[

1
2x1e−x2

]
.

Since Lg02
(H ◦ F0(x)) = 2x1e−x2 	= 0, we have κ = 2 by (8.331). Also, since

H ◦ Fu(x) = x2(1 + u) 	= H ◦ F0(x), it is clear, by (8.336), that σ = 1.
(b) Since Lg02

(H ◦ F0(x)) = 2x1e−x2 and

[g01(x), g02(x)] =
[

0
−2x1e−x2

]
= −2x1e

−x2g01(x),

it is clear that (8.342) is satisfied with β(y) = −1. From (8.345)–(8.347), we
have

�(y) = e
∫ y
0 β(ȳ)d ȳ = e−y

ḡu1(x) � �(H ◦ F0(x))g01(x) =
[

0
e−x2

]
,

and

ḡu2(x) � (Fu)∗(ḡu1(x)) =
[
(1 + u)e

−x1
1+u

2x1e
−x2− x1

1+u

1+u

]
.

Since ḡu2(x) 	= ḡ02(x), condition (ii) of Theorem 8.14 is not satisfied. Hence, by
Theorem 8.14, system (8.369) is not state equivalent to a dual Brunovsky NOCF
with OT.

(c) Since

g02(x) = gu2(x)
∣∣
u=0 =

[
1

2x1e−x2

]
,

there does not exist θu
1 (x) such that (8.351) is satisfied. Since condition (i) of

Theorem 8.15 is not satisfied, system (8.369) is not state equivalent to a dual
Brunovsky NOCF with OT.

�
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8.6 Discrete Time Dynamic Observer Error Linearization

Consider the following single output control system and autonomous system:

x(t + 1) = F
(
x(t), u(t)

)
� Fu(x(t))

y(t) = H(x(t))
(8.370)

x(t + 1) = F
(
x(t), 0

)
� F0(x(t))

y(t) = H(x(t))
(8.371)

with F0(0) = 0, H(0) = 0, state x ∈ R
n , input u ∈ R

m , and output y ∈ R. Define
the restricted dynamic system with index d (called auxiliary dynamics) by

⎡
⎢⎢⎢⎣

w1(t + 1)
...

wd−1(t + 1)
wd(t + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w2(t)
...

wd(t)
y(t)

⎤
⎥⎥⎥⎦ � p(w(t), y(t)). (8.372)

Define the extended system of system (8.370) with index d by

xe(t + 1) �
[
w(t + 1)
x(t + 1)

]
=
[
p
(
w(t), H(x(t))

)
Fu(x(t))

]
� Fe,u(x

e(t))

ye(t) = w1(t) � He(xe(t))

(8.373)

where xe �
[
w

x

]
∈ R

d+n .

Definition 8.15 (RDOEL with index d)
System (8.370) is said to be restricted dynamic observer error linearizable (RDOEL)

with index d, if there exist a smooth function ϕ(y)
(

∂ϕ(y)
∂y

∣∣∣
y=0

= 1 and ϕ(0) = 0
)

and a local extended state transformation ze = Se(w, x) =
[
w̄

z

]
=
[

�(w)

S(w, x)

]
such

that extended system (8.373) satisfies, in the new states ze, to a generalized nonlinear
observer canonical form (GNOCF) with index d defined by

ze(t + 1) = Aez
e(t) + γ̄ u(ze1, · · · , zed+1) � f̄u(z

e)

ȳe(t) = Cez
e(t) = ze1(t) � h̄(ze)

(8.374)

where Ae =
[
O(n+d−1)×1 I(n+d−1)

0 O1×(n+d−1)

]
, Ce = [

1 O1×(n+d−1)
]
,
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�(w) �
[
ϕ(w1) · · · ϕ(wd)

]T

and γ̄ u : Rd+1 × R
m → R

d+n is a smooth vector function with γ̄ u
i (ze1, · · · , zed+1) =

0 for 1 ≤ i ≤ d. In other words,

h̄(ze) � ϕ ◦ He ◦ (Se)−1(ze) = ze1 (8.375)

and

f̄u(z
e) � Se ◦ Fe,u ◦ (Se)−1(ze) = Aez

e + γ̄ u(ze1, · · · , zed+1)

= Aez
e + γ̄ u(ϕ(w1), · · · , ϕ(wd), ϕ(y))

� Aez
e + γ u(w1, · · · , wd , y).

(8.376)

System (8.370) is said to be RDOEL, if system (8.370) is RDOEL with some
index d. If we use a general nonlinear dynamic system w(t + 1) = p̄(w(t), y(t))
in Definition 8.15 instead of restricted (or linear) dynamic system (8.372), system
(8.370) is said to be DOEL with index d.

Let S−1(w̄, z) be the vector function such that S(w̄, S−1(w̄, z)) = z for all w̄ ∈
R

d . In other words,

xe =
[
w

x

]
= (Se)−1(w̄, z) =

[
�−1(w̄)

S−1(w̄, z)

]
.

If system (8.370) is RDOEL with index d, then we can design a state estimator

[
w̄(t + 1)
z̄(t + 1)

]
= (Ae − LeCe)

[
w̄(t)
z̄(t)

]
+ γ̄ u(w̄(t), y(t)) + Lew̄1(t)

x̄(t) � S−1(w̄(t), z̄(t))

that yields an asymptotically vanishing error, i.e., lim
t→∞‖ze(t) − z̄e(t)‖ = 0 or

lim
t→∞‖x(t) − x̄(t)‖ = 0, where z̄e �

[
w

z̄

]
and (Ae − LeCe) is an asymptotically sta-

ble (d + n) × (d + n)matrix. Block diagram for dynamic nonlinear observer can be
found in Fig. 8.4.

RDOEL for autonomous system (8.371) can also be similarly defined with u = 0.
If f̄ eu (ze) � Se ◦ Fe,u ◦ (Se)−1(ze) = Aeze + γ u(w, y), then it is clear that f̄ e0 (z) �
Se ◦ Fe

0 ◦ (Se)−1(ze) = Aeze + γ 0(w, y). Thus, we have the following remark.

Remark 8.10 If system (8.370) is RDOEL with index d and state transformation
ze = Se(w, x), then system (8.371) is also RDOEL with index d and state transfor-
mation ze = Se(w, x). But the converse is not true.
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Fig. 8.4 Restricted dynamic nonlinear observer

Definition 8.16 (state equivalence to a d-GNOCF with OT )
System (8.370) is said to be state equivalent to a d-GNOCF with output transfor-

mation (OT), if there exist a smooth function ϕ(y)
(

∂ϕ(y)
∂y

∣∣∣
y=0

= 1 and ϕ(0) = 0
)

and a local state transformation z = S̃(x) such that system (8.370) satisfies, in the
new states z, a generalized nonlinear observer canonical form (GNOCF) with index
d defined by

z(t + 1) = Aoz(t) + γ u ◦ �̄−1(z1, · · · , zd+1) � f̄u(z(t))

ȳ(t) = ϕ(y(t)) = Cz(t) = z1(t) � h̄(z(t))
(8.377)

where Ao =
[
O(n−1)×1 I(n−1)

0 O1×(n−1)

]
,C = [ 1 O1×(n−1) ], f̄u(z) = S̃ ◦ Fu ◦ S̃−1(z), h̄(z) = ϕ ◦

H ◦ S̃−1(z), γ u(z̄1, · · · , z̄d+1) : Rd+1+m → R
n is a smooth vector function with

γ u
i = 0, 1 ≤ i ≤ d, and

�̄−1(z1, · · · , zd+1) �
[
ϕ−1(z1) · · · ϕ−1(zd+1)

]T
.

In other words,

h̄(z) � ϕ ◦ H ◦ S̃−1(z) = Cz(t) = z1 (8.378)

and

f̄u(z) � S̃ ◦ Fu ◦ S̃−1(z) = Aoz + γ u ◦ �̄−1(z1)

� Aoz + γ̄ u(z1)
(8.379)

where γ̄ u
i (z1) = 0, 1 ≤ i ≤ d and

z1 �
[
z1 · · · zd+1

]T
.
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If system (8.370) is state equivalent to 0-GNOCF with OT, then system (8.370) is
said to be state equivalent to a dual Brunovsky NOCF with OT. Also, it is easy to see
that system (8.370) is RDOEL with index d, if and only if extended system (8.373)
is state equivalent to d-GNOCF with OT.

Since observability is invariant under state transformation, we assume the observ-
ability rank condition on the neighborhood of the origin. In other words,

rank

(
∂T (x)

∂x

∣∣∣∣
x=0

)
= n

where

T (x) �

⎡
⎢⎢⎢⎣

H(x)
H ◦ F0(x)

...

H ◦ Fn−1
0 (x)

⎤
⎥⎥⎥⎦ . (8.380)

For extended system (8.373), as in Definition 8.14, the canonical system can also be
defined by

ξ e(t + 1) =

⎡
⎢⎢⎢⎣

ξ e
2 + αu

1 (ξ
e)

...

ξ e
n + αu

n+d−1(ξ
e)

αu
n+d(ξ

e)

⎤
⎥⎥⎥⎦ � f eu (ξ e) ; ya = ξ e

1 = w1 � hE (ξ e)

(8.381)

where

ξ e �
[
w

ξ

]
= Te(x

e) �
[

w

T (x)

]
=

⎡
⎢⎢⎢⎢⎢⎣

w

H(x)
H ◦ F0(x)

...

H ◦ Fn−1
0 (x)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

He(xe)
He ◦ Fe,0(xe)

...

He ◦ Fn+d−1
e,0 (xe)

⎤
⎥⎥⎥⎦

(8.382)

f eu (ξ e) � Te ◦ Fe,u ◦ T−1
e (ξ e),αu

i (ξ
e) � He ◦ F̂ i

e,u ◦ T−1
e (ξ e) − He ◦ Fi

e,0 ◦ T−1
e (ξ e),

1 ≤ i ≤ n + d − 1, and αu
n+d(ξ

e) � He ◦ F̂n+d
e,u ◦ T−1

e (ξ e). It is clear that for 1 ≤
i ≤ d,

He ◦ Fi
e,u(x

e) = He ◦ Fi
e,0(x

e). (8.383)
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Lemma 8.10 System (8.370) is state equivalent to a d-GNOCF with OT ȳ = ϕ(y)
and state transformation z = S̃(x), if and only if there exist a smooth function ϕ(y)
and smooth functions γ u

k : Rd+1+m → R, d + 1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

S̃i (x) = ϕ ◦ H ◦ Fi−1
0 (x) −

i−1∑
k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x) (8.384)

ϕ ◦ H ◦ F̂n
u (x) =

n−1∑
k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ u
n ◦ T 1(x) (8.385)

and

S̃i ◦ Fu(x) − S̃i ◦ F0(x) =
{
0, 1 ≤ i ≤ d

εui ◦ T 1(x), d + 1 ≤ i ≤ n
(8.386)

where for d + 1 ≤ i ≤ n,

εui (ξ1, · · · , ξd+1) � γ u
i (ξ1, · · · , ξd+1) − γ 0

i (ξ1, · · · , ξd+1) (8.387)

and

T 1(x) �

⎡
⎢⎢⎢⎣

T1(x)
T2(x)

...

Td+1(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H(x)
H ◦ F0(x)

...

H ◦ Fd
0 (x)

⎤
⎥⎥⎥⎦ . (8.388)

Proof Necessity. Suppose that system (8.370) is state equivalent to a d-GNOCF
with OT ȳ = ϕ(y) and state transformation z = S̃(x). Then, it is clear, by (8.378)
and (8.379), that ϕ ◦ H ◦ S̃−1(z) = h̄(z) = z1 and

S̃ ◦ Fu ◦ S̃−1(z) = f̄u(z) = Aoz + γ u ◦ �̄−1(z1)

where
γ u
i (·) = 0, 1 ≤ i ≤ d. (8.389)

Let
S̃1(x) � [S̃1(x), · · · , S̃d+1(x)]T.

Since ϕ ◦ H ◦ S̃−1 ◦ S̃(x) = h̄ ◦ S̃(x) = z1 ◦ S̃(x) = S̃1(x) and

S̃ ◦ Fu(x) = f̄u ◦ S̃(x) = AoS̃(x) + γ u ◦ �̄−1 ◦ S̃1(x), (8.390)

it is easy to see, by (8.389), that S̃1(x) = ϕ ◦ H(x) and
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S̃i+1(x) = S̃i ◦ Fu(x) = S̃i ◦ F0(x), 1 ≤ i ≤ d (8.391)

which implies that S̃i (x) = ϕ ◦ H ◦ Fi−1
0 (x), 1 ≤ i ≤ d + 1 and thus (8.384) is

satisfied for 1 ≤ i ≤ d + 1. In other words,

S̃1(x) = �̄ ◦ T 1(x). (8.392)

Similarly, we have, (8.390) and (8.392), that for d + 1 ≤ i ≤ n − 1,

S̃i+1(x) = S̃i ◦ Fu(x) − γ u
i ◦ �̄−1 ◦ S̃1(x) = S̃i ◦ Fu(x) − γ u

i ◦ T 1(x)

= S̃i ◦ F0(x) − γ 0
i ◦ T 1(x)

(8.393)

and
S̃n ◦ Fu(x) = γ u

n ◦ �̄−1 ◦ S̃1(x) = γ u
n ◦ T 1(x). (8.394)

Thus, it is easy to see, by mathematical induction, that for d + 2 ≤ i ≤ n,

S̃i (x) = S̃1 ◦ Fi−1
0 (x) −

i−1∑
k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x)

which implies that (8.384) is also satisfied for d + 2 ≤ i ≤ n. Also, since S̃n(x) =
ϕ ◦ H ◦ Fn−1

0 (x) −
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ Fn−1−k

0 (x), we have, by (8.394), that

γ u
n ◦ T 1(x) = ϕ ◦ H ◦ F̂n

u (x) −
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x)

which implies that (8.385) is satisfied. Finally, it is easy to see, by (8.393) and (8.394),
that for d + 1 ≤ i ≤ n − 1,

εui ◦ T 1(x) = γ u
i ◦ T 1(x) − γ 0

i ◦ T 1(x) = S̃i ◦ Fu(x) − S̃i+1(x) − γ 0
i ◦ T 1(x)

= S̃i ◦ Fu(x) − S̃i ◦ F0(x)

and

εun ◦ T 1(x) = γ u
n ◦ T 1(x) − γ 0

n ◦ T 1(x) = S̃n ◦ Fu(x) − S̃n ◦ F0(x)

which imply, together with (8.391), that (8.386) is satisfied.
Sufficiency. Suppose that there exist ϕ(y) and {γ 0

k , εk(u) | d + 1 ≤ k ≤ n} such
that (8.384)–(8.386) are satisfied. Then it is easy to see, by (8.384), that h̄(z) �
ϕ ◦ H ◦ S̃−1(z) = z1,



446 8 Observer Error Linearization

S̃i ◦ F0(x) = ϕ ◦ H ◦ Fi
0(x) = S̃i+1(x), 1 ≤ i ≤ d (8.395)

and for d + 1 ≤ i ≤ n − 1,

S̃i ◦ F0(x) = ϕ ◦ H ◦ Fi
0(x) −

i−1∑
k=1

γ 0
k ◦ T 1 ◦ Fi−k

0 (x)

= S̃i+1(x) + γ 0
i ◦ T 1(x)

which imply, together with (8.386) and (8.387), that

S̃i ◦ Fu(x) = S̃i ◦ F0(x) = S̃i+1(x), 1 ≤ i ≤ d

and for d + 1 ≤ i ≤ n − 1,

S̃i ◦ Fu(x) = S̃i ◦ F0(x) + εui ◦ T 1(x)

= S̃i+1(x) + γ 0
i ◦ T 1(x) + εui ◦ T 1(x)

= S̃i+1(x) + γ u
i ◦ T 1(x).

Finally, we have, by (8.384) and (8.385), that

S̃n ◦ Fu(x) = ϕ ◦ H ◦ F̂n
u (x) −

n−1∑
k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x)

= γ u
n ◦ T 1(x).

Note, by (8.395), that

S̃1(x) = �̄ ◦ T 1(x) or T 1(x) = �̄−1 ◦ S̃1(x).

Therefore, it is clear that

f̄u(z) � S̃ ◦ Fu ◦ S̃−1(z) =

⎡
⎢⎢⎢⎣

S̃2(x) + γ u
1 ◦ �̄−1 ◦ S̃1(x)

...

S̃n−1(x) + γ u
n−1 ◦ �̄−1 ◦ S̃1(x)

γ u
n ◦ �̄−1 ◦ S̃1(x)

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=S̃−1(z)

=

⎡
⎢⎢⎢⎣

z2 + γ u
1 ◦ �̄−1(z1)

...

zn−1 + γ u
n−1 ◦ �̄−1(z1)

γ u
n ◦ �̄−1(z1)

⎤
⎥⎥⎥⎦ = Aoz + γ u ◦ �̄−1(z1)
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where γ u
i (·) = 0, 1 ≤ i ≤ d. Hence, system (8.370) is state equivalent to a d-

GNOCF with OT ȳ = ϕ(y) and state transformation z = S̃(x). �

Note, by (8.382) and (8.388), that

He ◦ (F̂e
u )i (xe) =

{
wi+1, 0 ≤ i ≤ d − 1

H ◦ F̂ i−d
u (x), i ≥ d

(8.396)

and
(T e)1 ◦ (F̂e

u )d+i (xe) = T 1 ◦ F̂ i
u(x), i ≥ 0 (8.397)

where (T e)1(xe) � [He He ◦ (Fe
0 ) · · · He ◦ (Fe

0 )d ]T =
[

w

H(x)

]
.

Lemma 8.11 The followings are equivalent:

(i) System (8.370) is RDOEL with index d and

H ◦ F̂ i
u(x) = H ◦ Fi

0(x), 1 ≤ i ≤ d. (8.398)

(ii) System (8.370) is state equivalent to a d-GNOCF with OT ϕ(y) and state
transformation z = S̃(x) and for some ε̄ui (y), d + 1 ≤ i ≤ n,

S̃i ◦ Fu(x) − S̃i ◦ F0(x) =
{
0, 1 ≤ i ≤ d

ε̄ui (H(x)), d + 1 ≤ i ≤ n.
(8.399)

Proof (i) ⇒ (ii): Suppose that (8.398) is satisfied and system (8.370) is RDOEL
with index d. In other words, extended system (8.373) is state equivalent to a d-
GNOCF with OT ϕ(y) and extended state transformation ze = Se(w, x). Therefore,
it is clear, by Lemma 8.10, that there exist a smooth function ϕ(y) and smooth
functions γ̂ 0

k : Rd+1 → R and ε̂uk : Rd+1+m → R, d + 1 ≤ k ≤ n + d such that for
1 ≤ i ≤ n,

Sed+i (x
e) = ϕ ◦ He ◦ (Fe

0 )d+i−1(xe) −
d+i−1∑
k=d+1

γ̂ 0
k ◦ (T e)1 ◦ (Fe

0 )d+i−1−k(xe)

(8.400)

ϕ ◦ He ◦ (F̂e
u )n+d(xe) =

n+d−1∑
k=d+1

γ̂ 0
k ◦ (T e)1 ◦ (F̂e

u )n+d−k(xe) + γ̂ u
n+d ◦ (T e)1(xe)

(8.401)
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and for 1 ≤ i ≤ n,

Sed+i ◦ F̂e
u (xe) − Sed+i ◦ Fe

0 (xe) = ε̂ud+i ◦ (T e)1(xe). (8.402)

Let
S̃i (x) � ϕ ◦ H ◦ Fi−1

0 (x), 1 ≤ i ≤ d + 1 (8.403)

and for d + 2 ≤ i ≤ n,

S̃i (x) � ϕ ◦ H ◦ Fi−1
0 (x) −

i−1∑
k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x) (8.404)

where

γ 0
k (ξ1, · · · , ξd+1) � γ̂ 0

k (ξ1, · · · , ξd+1), d + 1 ≤ k ≤ n − 1. (8.405)

Also, let for d + 1 ≤ i ≤ n,

λ0
i (w, ξ1, · · · , ξd) �

d+i−1∑
k=i

γ̂ 0
k (wd+i−k, · · · , wd , ξ1, · · · , ξd+i−k). (8.406)

Then we have, by (8.396), (8.397), (8.400), and (8.403)–(8.406), that for d + 1 ≤
i ≤ n,

Sed+i (x
e) = ϕ ◦ H ◦ Fi−1

0 (x) −
i−1∑

k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x)

−
d+i−1∑
k=i

γ̂ 0
k ◦ (T e)1 ◦ (Fe

0 )d+i−1−k(xe)

= S̃i (x) − λ0
i (w, H(x), · · · , H ◦ Fd−1

0 (x)).

(8.407)

Thus, it is easy to see, by (8.398), (8.402), (8.403), and (8.407), that for 1 ≤ i ≤ d,

S̃i ◦ Fu(x) − S̃i ◦ F0(x) = ϕ ◦ H ◦ F̂ i
u(x) − ϕ ◦ H ◦ Fi

0(x) = 0

and for d + 1 ≤ i ≤ n,

S̃i ◦ Fu(x) − S̃i ◦ F0(x) = Sed+i ◦ F̂e
u (xe) − Sed+i ◦ Fe

0 (xe)

+ λ0
i (p(w, H), H ◦ Fu, · · · , H ◦ F̂d

u ) − λ0
i (p(w, H), H ◦ F0, · · · , H ◦ Fd

0 )

= ε̂ud+i (w, H(x)) = ε̂ud+i (0, · · · , 0, H(x)) � ε̄ui (H(x))

which imply that (8.399) is satisfied. Thus, it is also clear that
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S̃i ◦ Fu(x) − S̃i ◦ F0(x) =
{
0, 1 ≤ i ≤ d

εui ◦ T 1(x), d + 1 ≤ i ≤ n
(8.408)

where for d + 1 ≤ i ≤ n,

εui (ξ1, · · · , ξd+1) � ε̄ui (ξ1).

Finally, it is clear, by (8.396)–(8.398), that for n ≤ k ≤ n + d − 1,

(T e)1 ◦ (F̂e
u )n+d−k(xe) = (T e)1 ◦ (F̂e

0 )n+d−k(xe). (8.409)

Therefore, we have, by (8.396), (8.401), and (8.409), that

ϕ◦He ◦ (F̂e
u )n+d(xe) =

n−1∑
k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ̂ u
n+d ◦ (T e)1(xe)

+
n+d−1∑
k=n

γ̂ 0
k ◦ (T e)1 ◦ (F̂e

0 )n+d−k(xe)

=
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ̂ u
n+d(w1, · · · , wd , H(x))

+
n+d−1∑
k=n

γ̂ 0
k (wn+d−k+1, · · · , wd , H(x), · · · , H ◦ F̂n+d−k

0 (x))

�
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ̃ u
n (w1, · · · , wd , ξ1, · · · , ξd+1)

∣∣
ξ=T (x)

which implies, together with (8.396), that

ϕ ◦ H ◦ F̂n
u (x) = ϕ ◦ He ◦ (F̂e

u )n+d(xe) = ϕ ◦ He ◦ (F̂e
u )n+d(xe)

∣∣∣
w=O

=
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ u
n ◦ T 1(x)

(8.410)

where

γ̃ u
n (w1, · · · , wd , ξ1, · · · , ξd+1) � γ̂ u

n+d(w1, · · · , wd , ξ1)

+
n+d−1∑
k=n

γ̂ 0
k (wn+d−k+1, · · · , wd , ξ1, · · · , ξn+d−k+1)

and
γ u
n (ξ1, · · · , ξd+1) � γ̃ u

n (Od×1, ξ1, · · · , ξd+1).
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Hence, by (8.403), (8.404), (8.408), (8.410), and Lemma 8.10, system (8.370) is state
equivalent to a d-GNOCF with OT ϕ(y) and state transformation z = S̃(x).

(ii) ⇒ (i): Suppose that system (8.370) is state equivalent to a d-GNOCF with
OT ϕ(y) and state transformation z = S̃(x) and that (8.399) is satisfied. Then, by
Lemma 8.10 and (8.399), there exist a smooth function ϕ(y) and smooth functions
γ u
k (ξ1, · · · , ξd+1), d + 1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

S̃i (x) = ϕ ◦ H ◦ Fi−1
0 (x) −

i−1∑
k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x) (8.411)

ϕ ◦ H ◦ F̂n
u (x) =

n−1∑
k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ u
n ◦ T 1(x) (8.412)

and

S̃i ◦ Fu(x) − S̃i ◦ F0(x) =
{
0, 1 ≤ i ≤ d

ε̄ui ◦ H(x), d + 1 ≤ i ≤ n
(8.413)

where for d + 1 ≤ i ≤ n,

ε̄ui (ξ1) � γ u
i (ξ1, · · · , ξd+1) − γ 0

i (ξ1, · · · , ξd+1). (8.414)

From (8.411) and (8.413), it is easy to see that S̃i (x) = ϕ ◦ H ◦ Fi−1
0 (x) and ϕ ◦ H ◦

F̂ i
u(x) = ϕ ◦ H ◦ Fi

0(x) for 1 ≤ i ≤ d. Since ϕ is a diffeomorphism and ϕ−1 exists,
(8.398) is satisfied. Let

γ̂ 0
k (w, y) �

{
γ 0
k (w, y), d + 1 ≤ k ≤ n

0, n + 1 ≤ n + d
(8.415)

ε̂ud+i (w1) �
{
0, 1 ≤ i ≤ d

ε̄ui (w1), d + 1 ≤ i ≤ n
(8.416)

and for d + 1 ≤ k ≤ n + d,

γ̂ u
k (w, y) � γ̂ 0

k (w, y) + ε̂uk (w1). (8.417)

For extended system (8.373), we let, for 1 ≤ i ≤ d,

Sei (x
e) � ϕ ◦ He ◦ (Fe

0 )i−1(xe) (8.418)

for 1 ≤ i ≤ n − d,
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Sed+i (x
e) � ϕ ◦ He ◦ (Fe

0 )d+i−1(xe) −
d+i−1∑
k=d+1

γ̂ 0
k ◦ (T e)1 ◦ (Fe

0 )d+i−1−k(xe)

(8.419)
and for n − d + 1 ≤ i ≤ n,

Sed+i (x
e) � ϕ ◦ He ◦ (Fe

0 )d+i−1(xe) −
n∑

k=d+1

γ̂ 0
k ◦ (T e)1 ◦ (Fe

0 )d+i−1−k(xe).

(8.420)
Then it is easy to see, by (8.396), (8.397), (8.411), (8.415), (8.419), and (8.420), that
for 1 ≤ i ≤ n,

Sed+i (x
e) = ϕ ◦ H ◦ Fi−1

0 (x) −
i−1∑

k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x)

−
d+i−1∑
k=i

γ̂ 0
k ◦ (T e)1 ◦ (Fe

0 )d+i−1−k(xe)

= S̃i (x) − λ0
i (w, H(x), · · · , H ◦ Fd−1

0 (x))

(8.421)

where for 1 ≤ i ≤ n,

λ0
i (w, ξ1, · · · , ξd) �

d+i−1∑
k=i

γ̂ 0
k (wd+i−k, · · · , wd , ξ1, · · · , ξd+i−k).

Since Sei (x
e) = ϕ ◦ He ◦ (Fe

0 )i−1(xe) = ϕ(wi ) for 1 ≤ i ≤ d, it is clear, by (8.396),
that

Sei ◦ F̂e
u (xe) − Sei ◦ Fe

0 (xe) = 0, 1 ≤ i ≤ d. (8.422)

Also, it is easy to see, by (8.398), (8.413), (8.416), and (8.421), that for 1 ≤ i ≤ n,

Sed+i ◦ F̂e
u (xe) − Sed+i ◦ Fe

0 (xe) = S̃i ◦ Fu(x) − S̃i ◦ F0(x)

− λ0
i (p(w, H), H ◦ Fu, · · · , H ◦ F̂d

u ) + λ0
i (p(w, H), H ◦ F0, · · · , H ◦ Fd

0 )

=
{
0, 1 ≤ i ≤ d

ε̄ui (H(x)), d + 1 ≤ i ≤ n
= ε̂ud+i (H(x)).

(8.423)
Finally, it is clear, by (8.396), (8.397), (8.412), (8.414), and (8.415), that
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ϕ ◦ He◦(F̂e
u )n+d(xe) = ϕ ◦ H ◦ F̂n

u (x) =
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ u
n ◦ T 1(x)

=
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ 0
n ◦ T 1(x) + ε̄un ◦ H(x)

=
n∑

k=d+1

γ̂ 0
k ◦ (T e)1 ◦ (Fe

u )n+d−k(xe) + ε̄un ◦ H(x)

=
n+d−1∑
k=d+1

γ̂ 0
k ◦ (T e)1 ◦ (Fe

u )n+d−k(xe) + γ̂ 0
n+d ◦ (T e)1(xe)

(8.424)
where γ̂ 0

n+d(w, y) � ε̄un (y). Therefore, by (8.418)–(8.420), (8.422)–(8.424), and
Lemma 8.10, extended system (8.373) is state equivalent to a d-GNOCF with OT
ϕ(y) and state transformation ze = Se(w, x). Hence, system (8.370) is RDOELwith
index d. �
Remark 8.11 In the proof of (ii) ⇒ (i) of Lemma 8.11, it has been shown that
if system (8.370) is state equivalent to a d-GNOCF with γ 0 and εu(H(x)), then

extended system (8.373) is state equivalent to a d-GNOCF with γ̂ 0 =
[

γ 0

Od×1

]
and

ε̂u(H(x)) =
[

Od×1

εu(H(x))

]
. In other words, if system (8.370) is state equivalent to a

d-GNOCF with OT ϕ(y) and state transformation z = S̃(x), then system (8.370) is
RDOEL with index d and extended state transformation ze = Se(w, x), defined by

Sei (w, x) =

⎧⎪⎨
⎪⎩

Ŝi (w, H(x), · · · , H ◦ Fn−1−d
0 (x)), 1 ≤ i ≤ n

Sen ◦ Fe
0 (w, x) − γ 0

n (w, H(x)), i = n + 1

Sei−1 ◦ Fe
0 (w, x), n + 2 ≤ i ≤ n + d

(8.425)

where
Ŝ(ξ) � S̃ ◦ T−1(ξ)

γ 0
n (ξ1, · · · , ξd+1) � Ŝn ◦ T ◦ F0 ◦ T−1(ξ)

= S̃n ◦ F0 ◦ T−1(ξ).

Example 8.6.1 Use (8.411) and (8.418)–(8.420) to show that (8.425) is satisfied.

Solution Solution is omitted. (Problem 8-10.) �
Autonomous system (8.371) satisfies (8.398) and (8.399). Thus, we have the

following from Lemma 8.11.

Corollary 8.10 Autonomous system (8.371) is RDOEL with index d, if and only if
autonomous system (8.371) is state equivalent to a d-GNOCF with OT.
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It is obvious, by Lemma 8.10, that autonomous system (8.371) is always state
equivalent to a (n − 1)-GNOCF with OT ϕ(y) = y and z = S̃(x) = T (x). Assume
that (8.398) is satisfied with d = n. Then it is clear that Fu(x) = F0(x) and system
(8.370) is the same as autonomous system (8.371). Therefore, system (8.370) is, by
Corollary 8.10, RDOEL with index d = n − 1. From now on, we will assume that
d ≤ n − 1.

Theorem 8.17 Suppose that (8.398) is satisfied. System (8.370) is RDOEL with
index d and extended state transformation ze = Se(w, x), if and only if there exist
smooth functions �(y) (�(0) = 1) and εui (y), d + 1 ≤ i ≤ n such that

ḡui (x) = ḡ0i (x), 1 ≤ i ≤ n − d (8.426)

[ḡ01(x), ḡ0i (x)] = 0, 1 ≤ i ≤ n − d (8.427)

and

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) =
⎡
⎢⎣

εud+1(H(x))
...

εun (H(x))

⎤
⎥⎦ (8.428)

where
ḡu1(x) = ḡ01(x) � �(H ◦ Fn−1

0 (x))g01(x) (8.429)

ḡ0i (x) � (F0)∗(ḡ0i−1(x)) ; ḡui (x) � (Fu)∗(ḡui−1(x)), i ≥ 2 (8.430)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.431)

T∗
(
ḡ0i
)

� r̄0i (ξ) =
[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d (8.432)

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[[ϕ(ξ1) · · · ϕ(ξd)]T

Ŝ2(ξ1, · · · , ξn)

]
(8.433)

and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

. (8.434)

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425).

Proof Necessity. Suppose that system (8.370) is RDOEL with index d and (8.398)
is satisfied. Then, by Lemma 8.11, system (8.370) is state equivalent to d-GNOCF
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(8.377) with OT ϕ(y) and state transformation z = S̃(x), and for some εui (y), d +
1 ≤ i ≤ n,

S̃i ◦ Fu(x) − S̃i ◦ F0(x) =
{
0, 1 ≤ i ≤ d

εui (H(x)), d + 1 ≤ i ≤ n.
(8.435)

Thus, we have, by (8.384) of Lemma 8.10, that for 1 ≤ i ≤ n,

S̃i (x) = ϕ ◦ H ◦ Fi−1
0 (x) −

i−1∑
k=d+1

γ 0
k ◦ T 1 ◦ Fi−1−k

0 (x). (8.436)

In other words, we have that ȳ = h̄(z) � ϕ ◦ H ◦ S̃−1(z) = z1 and

f̄u(z) � S̃ ◦ Fu ◦ S̃−1(z) = Aoz + γ u ◦ �̄−1(z1, · · · , zd+1). (8.437)

For d-GNOCF system (8.377), we define the following vector fields:

ψ̄u
1 (z) = ψ̄0

1 (z) � ∂

∂zn
ψ̄u
i (z) � ( f̄u)∗(ψ̄u

i−1(z)) ; ψ̄0
i (z) � ( f̄0)∗(ψ̄0

i−1(z)), i ≥ 2.
(8.438)

Then it is clear, by (8.437), that for 1 ≤ i ≤ n − d,

ψ̄u
i (z) = ψ̄0

i (z) = ∂

∂zn+1−i
(8.439)

and
[ψ̄0

1 (z), ψ̄
0
i (z)] = 0. (8.440)

If we let ξ = T (x) and z = S̃ ◦ T−1(ξ) � Ŝ(ξ), then we have, by (8.380), (8.388),
and (8.436), that

Ŝi (ξ) = ϕ(ξi ), 1 ≤ i ≤ d + 1 (8.441)

and for d + 2 ≤ i ≤ n

Ŝi (ξ) = ϕ(ξi ) −
i−1∑

k=d+1

γ 0
k (ξi−k, · · · , ξi−k+d). (8.442)

Thus, it is clear that
∂ Ŝi (ξ)

∂ξn
=
{
0, if i ≤ n − 1
dϕ(ξn)

dξn
, if i = n
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which implies, together with (2.22), (8.298), and (8.438), that

S̃∗(g01(x)) = Ŝ∗ ◦ T∗(g01(x)) = Ŝ∗
(

∂

∂ξn

)
=

n∑
i=1

∂ Ŝi (ξ)

∂ξn

∣∣∣∣
ξ=Ŝ−1(z)

∂

∂zi

= dϕ(ξn)

dξn

∣∣∣∣
ξ=Ŝ−1(z)

∂

∂zn
= dϕ(ξn)

dξn

∣∣∣∣
ξ=Ŝ−1(z)

ψ̄0
1 (z).

Thus, if we let

1

�(ξn)
= dϕ(ξn)

dξn

(
or ϕ(y) =

∫ y

0

1

�(ξn)
dξn

)

then we have, by (2.49) and (8.380), that ψ̄0
1 (z) = �(ξn)|ξ=Ŝ−1(z) S̃∗(g01(x)) and

S̃−1
∗ (ψ̄0

1 (z)) = S̃−1
∗
(
�(ξn)|ξ=Ŝ−1(z) S̃∗(g01(x))

)

= �(ξn)|ξ=T (x) g
0
1(x) = �(H ◦ Fn−1

0 (x))g01(x).

Hence, if we let ḡ01(x) � S̃−1∗ (ψ̄0
1 (z)), then (8.429) is satisfied. It will be shown, by

mathematical induction, that for 1 ≤ i ≤ n − d,

ḡui (x) = S̃−1
∗ (ψ̄u

i (z)) = S̃−1
∗

(
∂

∂zn+1−i

)
= ḡ0i (x). (8.443)

Assume that (8.443) is satisfied for i = k and 1 ≤ k ≤ n − d − 1. Since f̄u(z) =
S̃ ◦ Fu ◦ S̃−1(z) or Fu(x) = S̃−1 ◦ f̄u ◦ S̃(x), it is clear, by (2.22), (8.430), (8.438),
and (8.439), that

ḡuk+1(x) = (Fu)∗(ḡuk (x)) = S̃−1
∗ ◦ ( f̄u)∗ ◦ S̃∗(ḡuk (x)) = S̃−1

∗ ◦ ( f̄u)∗(ψ̄u
k (z))

= S̃−1
∗
(
ψ̄u

k+1(z)
) = S̃−1

∗

(
∂

∂zn−k

)
= ḡ0k+1(x)

which implies, bymathematical induction, that (8.443) is satisfied for 1 ≤ i ≤ n − d.
Thus, it is easy, by (2.28), (8.440), and (8.443), to see that (8.426) and (8.427) are

satisfied. Let T∗(ḡ0i (x)) � r̄0i (ξ) �
[
r̃0i (ξ)

r̂0i (ξ)

]
for 1 ≤ i ≤ n, where r̃0i (ξ) is a d × 1

matrix. Now it is clear, by (8.441), that (8.433) is satisfied. Since S̃ ◦ T−1(ξ) = Ŝ(ξ),
it is also clear, by (8.443), that for 1 ≤ i ≤ n − d,

Ŝ∗(r̄0i (ξ)) = Ŝ∗ ◦ T∗(ḡ0i (x)) = S̃∗(ḡ0i (x)) = ψ̄0
i (z) = ∂

∂zn+1−i

and
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[
Ŝ∗(r̄0n−d(ξ)) · · · Ŝ∗(r̄01(ξ))

] = [
ψ̄0

n−d(z) · · · ψ̄0
1 (z)

] =
[
Od×(n−d)

In−d

]

which implies, together with (8.433), that

[
∂ Ŝ1(ξ 1)

∂ξ 1 Od×(n−d)

∂ Ŝ2(ξ)

∂ξ 1
∂ Ŝ2(ξ)

∂ξ 2

][
r̃0n−d(ξ) · · · r̃01(ξ)

r̂0n−d(ξ) · · · r̂01(ξ)

]
=
[
Od×(n−d)

In−d

]

where ξ 1 � [ξ1 · · · ξd ]T and ξ 2 � [ξd+1 · · · ξn]T. Since ∂ Ŝ1(ξ 1)

∂ξ 1 is nonsingular, it is
clear that [

r̃0n−d(ξ) · · · r̃01(ξ)
] = Od×(n−d)

and
∂ Ŝ2(ξ)

∂ξ 2

[
r̂0n−d(ξ) · · · r̂01(ξ)

] = In−d .

In other words, (8.432) and (8.434) are satisfied. If we let S̃2(x) �

⎡
⎢⎣
S̃d+1(x)

...

S̃n(x)

⎤
⎥⎦, then

we have S̃2(x) = Ŝ2 ◦ T (x). Thus, it is clear, by (8.435), that (8.428) is satisfied.
Sufficiency. Assume that (8.398) is satisfied. Suppose that there exist β(y) and

εui (y), d + 1 ≤ i ≤ n such that (8.426)–(8.434) are satisfied. Let ξ = T (x), fu(ξ) �
T ◦ Fu ◦ T−1(ξ), and for 1 ≤ i ≤ n,

r̄0i (ξ) � T∗(ḡ0i (x)) ; r̄ui (ξ) � T∗(ḡui (x)). (8.444)

It will be shown, by mathematical induction, that for 2 ≤ i ≤ n,

r̄0i (ξ) = ( f0)∗(r̄0i−1) ; r̄ui (ξ) = ( fu)∗(r̄ui−1). (8.445)

Assume that (8.445) is satisfied for i = k. Since fu(ξ) = T ◦ Fu ◦ T−1(ξ)or Fu(x) =
T−1 ◦ fu ◦ T (x), it is clear, by (2.22), (8.430), and (8.444), that

r̄uk (ξ) = T∗ ◦ (Fu)∗
(
ḡuk−1(x)

) = T∗ ◦ (Fu)∗ ◦ T−1
∗
(
r̄uk−1(ξ)

)

= ( fu)∗
(
r̄uk−1(ξ)

)

which implies, by mathematical induction, that (8.445) is satisfied for 2 ≤ i ≤ n.
It is also clear, by (2.49), (8.303), (8.426), (8.427), (8.429), and (8.432), that for
1 ≤ i ≤ n − d,

r̄ui (ξ) = r̄0i (ξ)

[r̄01(ξ), r̄0i (ξ)] = T∗
([ḡ01(x), ḡ0i (x)]

) = 0 (8.446)
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r̄0i (ξ) = T∗
(
(F0)

i−1
∗

(
�(H ◦ Fn−1

0 )g01(x)
)) = T∗

(
�(H ◦ Fn−i

0 )g0i (x)
)

= �(ξn+1−i )r0i (ξ) = [O1×(n−i) �(ξn+1−i ) ∗ · · · ∗]T (8.447)

and

[
r̂0n−d(ξ) · · · r̂01(ξ)

] =

⎡
⎢⎢⎢⎣

�(ξd+1) 0 · · · 0
∗ �(ξd+2) · · · 0

∗ ∗ . . .
...

∗ ∗ · · · �(ξn)

⎤
⎥⎥⎥⎦ . (8.448)

Note, by (8.446) and (8.447), that {r̄01(ξ), r̄02(ξ), · · · , r̄0n−d(ξ)} is a set of commuting
vector fields such that

span
{
r̄01(ξ), · · · , r̄0n−d(ξ)

} = span

{
∂

∂ξd+1
, · · · ,

∂

∂ξn

}
.

Therefore, by Corollary 2.1, there exists a state transformation z = Ŝ(ξ) =[
Ŝ1(ξ1, · · · , ξd)

Ŝ2(ξ1, · · · , ξn)

]
such that

Ŝ1(ξ) = [
ϕ(ξ1) · · · ϕ(ξd)

]T (8.449)

and for 1 ≤ i ≤ n − d,

Ŝ∗
(
r̄0i (ξ)

) (= Ŝ∗
(
r̄ui (ξ)

)) = ∂

∂zn+1−i
(8.450)

which imply, together with (8.432), that

[
Od×(n−d)

In−d

]
= [

Ŝ∗(r̄0n−d(ξ)) · · · Ŝ∗(r̄01(ξ))
]

= ∂ Ŝ(ξ)

∂ξ

[
r̄0n−d(ξ) · · · r̄01(ξ)

]
∣∣∣∣∣
ξ=Ŝ−1(z)

[
∂ Ŝ1(ξ)

∂ξ 1 Od×(n−d)

∂ Ŝ2(ξ)

∂ξ 1
∂ Ŝ2(ξ)

∂ξ 2

][
Od×1 · · · Od×1

r̂0n−d(ξ) · · · r̂01(ξ)

]
=
[
Od×(n−d)

In−d

]

and
∂ Ŝ2(ξ)

∂ξ 2

[
r̂0n−d(ξ) · · · r̂01(ξ)

] = In−d
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where ξ 1 � [ξ1 · · · ξd ]T and ξ 2 � [ξd+1 · · · ξn]T. Thus, Ŝ2(ξ) can be calculated by
(8.434). Let S̃(x) � Ŝ ◦ T (x). Now we will show that

h̄(z) � ϕ ◦ H ◦ S̃−1(z) = ϕ ◦ H ◦ T−1 ◦ Ŝ−1(z) = z1 (8.451)

and
f̄u(z) � S̃ ◦ Fu ◦ S̃−1(z) = Ŝ ◦ fu ◦ Ŝ−1(z)

= Aoz + γ̄ u(z1, · · · , zd+1)
(8.452)

where γ̄i (z1, · · · , zd+1) = 0, 1 ≤ i ≤ d. Since H ◦ T−1(ξ) = ξ1, it is clear that
h̄(z) = ϕ(ξ1)|ξ=Ŝ−1(z) = z1 and thus (8.451) is satisfied.We have, by (8.431), (8.434),
and (8.448), that

d Ŝ21 (ξ)

d(ξd+1, · · · , ξn)
=
[

1
�(ξd+1)

0 · · · 0
]

=
[
dϕ(ξd+1)

dξd+1
0 · · · 0

]

or
Ŝd+1(ξ) = Ŝ21 (ξ) = ϕ(ξd+1)

which implies, together with (8.449), that for 1 ≤ i ≤ d + 1,

zi = Ŝi (ξ) = ϕ(ξi ) = ϕ ◦ H ◦ Fi−1
0 ◦ T−1(ξ). (8.453)

Therefore, if we let

f̄u(z) �
n∑

k=1

f̄u,k(z)
∂

∂zk
=
⎡
⎢⎣
f̄u,1(z)

...

f̄u,n(z)

⎤
⎥⎦ (8.454)

then it is clear, by (8.398) and (8.453), that, for 1 ≤ i ≤ d,

f̄u,i (z) = Ŝi ◦ fu ◦ Ŝ−1(z) = ϕ ◦ H ◦ Fi−1
0 ◦ T−1 ◦ T ◦ Fu ◦ T−1 ◦ Ŝ−1(z)

= ϕ ◦ H ◦ F̂ i
u ◦ T−1 ◦ Ŝ−1(z) = ϕ ◦ H ◦ Fi

0 ◦ T−1 ◦ Ŝ−1(z) = zi+1

(8.455)
which implies that γ̄ u

i (z1, · · · , zd+1) = 0, 1 ≤ i ≤ d. Since f̄u(z) = Ŝ ◦ fu ◦ Ŝ−1(z),
it is also easy to show that, for i ≥ 1,

Ŝ∗
(
r̄ui+1(ξ)

) = Ŝ∗
(
( fu)∗(r̄ui (ξ))

) = Ŝ∗ ◦ ( fu)∗ ◦ Ŝ−1
∗
(
Ŝ∗(r̄ui (ξ))

)

= ( f̄u)∗
(
Ŝ∗(r̄ui (ξ))

)
.

(8.456)

Therefore, we have, by (8.450) and (8.454)–(8.456), that, for 1 ≤ i ≤ n − d − 1,
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∂

∂zn−i
= ( f̄u)∗

(
∂

∂zn+1−i

)
=

n∑
k=1

∂ f̄u,k(z̄)

∂ z̄n+1−i

∣∣∣∣
z̄= f̄ −1

u (z)

∂

∂zk

=
n∑

k=d+1

∂ f̄u,k(z̄)

∂ z̄n+1−i

∣∣∣∣
z̄= f̄ −1

u (z)

∂

∂zk

which implies that, for d + 1 ≤ k ≤ n and 1 ≤ i ≤ n − d − 1,

∂ f̄u,k(z̄)

∂ z̄n+1−i

∣∣∣∣
z̄= f̄ −1

u (z)

=
{
1, k = n − i

0, otherwise

or, for d + 1 ≤ k ≤ n and d + 2 ≤ j ≤ n,

∂ f̄u,k(z)

∂z j
=
{
1, j = k + 1

0, otherwise.

Hence, f̄u,n(z) = γ̄ u
n (z1, · · · , zd+1) and f̄u,k(z) = zk+1 + γ̄ u

k (z1, · · · , zd+1), d +
1 ≤ k ≤ n − 1, for some functions γ̄ u

k (z1, · · · , zd+1), d + 1 ≤ k ≤ n. In other
words, (8.452) is satisfiedwith γ̄ u

i (z1, · · · , zd+1) = 0, 1 ≤ i ≤ d and system (8.370)
is, by Definition 8.16, state equivalent to d-GNOCF with OT ϕ(y) and state transfor-
mation z = S̃(x) � Ŝ ◦ T (x). Finally, it is clear, by (8.398) and (8.428), that (8.399)
is satisfied. Hence, by Lemma 8.11, system (8.370) is state equivalent to RDOEL
with index d and extended state transformation ze = Se(w, x) in (8.425). �

If we let ϕ(y) = y or �(y) = 1, the following corollary can be obtained from
Theorem 8.17.

Corollary 8.11 Suppose that (8.398) is satisfied. System (8.370) is RDOEL with
index d andOTϕ(y) = y (i.e., withoutOT), if and only if there exists smooth functions
εui (y), d + 1 ≤ i ≤ n such that

gui (x) = g0i (x), 1 ≤ i ≤ n − d (8.457)

[g01(x), g0i (x)] = 0, 1 ≤ i ≤ n − d (8.458)

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) = [εud+1(H(x)) · · · εun (H(x))]T (8.459)

where

T∗
(
g0i (x)

)
� r0i (ξ) =

[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d (8.460)

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[ [ξ1 · · · ξd ]T
Ŝ2(ξ1, · · · , ξn)

]
(8.461)
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and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

. (8.462)

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425).

If we let Fu(x) = F0(x), then (8.398) is satisfied and we can obtain the following
corollary for autonomous system (8.371) from Corollary 8.11.

Corollary 8.12 Autonomous system (8.371) is RDOEL with index d and OT ϕ(y) =
y (i.e., without OT), if and only if

[g01(x), g0i (x)] = 0, 1 ≤ i ≤ n − d. (8.463)

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425),
where

T∗
(
g0i (x)

)
� r0i (ξ) =

[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d (8.464)

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[ [ξ1 · · · ξd ]T
Ŝ2(ξ1, · · · , ξn)

]
(8.465)

and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

. (8.466)

In order to find whether the conditions of Theorem 8.17 are satisfied, �(y) or ϕ(y)
should be found. In the following, we further investigate the conditions that �(y) or
β(y) � d ln �(y)

dy = 1
�(y)

d�(y)
dy should satisfy.

Theorem 8.18 Suppose that (8.398) is satisfied and κ ≤ n − d. System (8.370) is
RDOEL with index d and extended state transformation ze = Se(w, x), if and only if
there exists smooth functions β(y), defined on an open neighborhood of y = 0, and
εui (y), d + 1 ≤ i ≤ n such that

(i)
[g01(x), g0κ (x)] = Lg0κ (H ◦ Fn−1

0 (x))β(H ◦ Fn−1
0 (x))g01(x) (8.467)

(ii)
ḡui (x) = ḡ0i (x), 1 ≤ i ≤ n − d (8.468)

(iii)
[ḡ01(x), ḡ0i (x)] = 0, 1 ≤ i ≤ n − d (8.469)
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(iv)

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) =
⎡
⎢⎣

εud+1(H(x))
...

εun (H(x))

⎤
⎥⎦ (8.470)

where
�(y) = e

∫ y
0 β(ȳ)d ȳ (8.471)

ḡu1(x) = ḡ01(x) � �(H ◦ Fn−1
0 (x))g01(x) (8.472)

ḡ0i (x) � (F0)∗(ḡ0i−1(x)) ; ḡui (x) � (Fu)∗(ḡui−1(x)), i ≥ 2 (8.473)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.474)

T∗
(
ḡ0i
)

� r̄0i (ξ) =
[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d (8.475)

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[[ϕ(ξ1) · · · ϕ(ξd)]T

Ŝ2(ξ1, · · · , ξn)

]
(8.476)

and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

. (8.477)

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425).

Proof Necessity. Let κ ≤ n − d. Suppose that system (8.370) is RDOELwith index
d and (8.398) is satisfied. Then, by Theorem 8.17, there exist smooth functions �(y)
(�(0) = 1) and εui (y), d + 1 ≤ i ≤ n such that (8.468)–(8.470) and (8.472)–(8.477)
are satisfied. Since 2 ≤ κ ≤ n − d, it is clear, by (8.300), that

Lg01
�(H ◦ Fn−κ

0 (x)) = d�(y)

dy

∣∣∣∣
y=H◦Fn−κ

0 (x)

Lg01
(H ◦ Fn−κ

0 (x)) = 0. (8.478)

Thus, we have, by (2.43), (8.340), (8.469), and (8.478), that

0 = [ḡ01(x), ḡ0κ (x)] = [�(H ◦ Fn−1
0 (x))g01(x), �(H ◦ Fn−κ

0 (x))g0κ(x)]
= �(H ◦ Fn−1

0 (x))�(H ◦ Fn−κ
0 (x))[g01(x), g0κ (x)]

− �(H ◦ Fn−κ
0 (x))Lg0κ �(H ◦ Fn−1

0 (x))g01(x)
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which implies that

[g01(x), g0κ (x)] = Lg0κ �
(
H ◦ Fn−1

0 (x)
)

�(H ◦ Fn−1
0 (x))

g01(x)

= 1

�(y)

d�(y)

dy

∣∣∣∣
y=H◦Fn−1

0 (x)

Lg0κ

(
H ◦ Fn−1

0 (x)
)
g01(x).

Therefore, (8.467) and (8.471) are satisfied with

β(y) = 1

�(y)

d�(y)

dy

(
= d ln �(y)

dy

)
.

Sufficiency. It is obvious by Theorem 8.17. �

If we let u = 0, we can obtain the following Corollary Theorem 8.18.

Corollary 8.13 Let κ ≤ n − d. Autonomous system (8.371) is RDOEL with index d
and extended state transformation ze = Se(w, x), if and only if there exists a scalar
function β(y), defined on an open neighborhood of y = 0, such that

(i)
[g01(x), g0κ (x)] = Lg0κ (H ◦ Fn−1

0 (x))β(H ◦ Fn−1
0 (x))g01(x)

(ii)
[ḡ01(x), ḡ0i (x)] = 0, 1 ≤ i ≤ n − d

where
�(y) = e

∫ y
0 β(ȳ)d ȳ

ḡ01(x) � �(H ◦ Fn−1
0 (x))g01(x)

and
ḡ0i (x) � (F0)∗(ḡ0i−1(x)), i ≥ 2.

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425),
where

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ
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T∗
(
ḡ0i (x)

)
� r̄0i (ξ) =

[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[[ϕ(ξ1) · · · ϕ(ξd)]T

Ŝ2(ξ1, · · · , ξn)

]

and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

.

Theorem 8.19 Suppose that (8.398) is satisfied and σ < n − d. System (8.370) is
RDOEL with index d and extended state transformation ze = Se(w, x), if and only if
there exist scalar functions θu

σ (x), β̄u(x), andβ(y), defined on an open neighborhood
of y = 0, such that

(i)

gui (x) =
{
g0i (x), 1 ≤ i ≤ σ

θu
σ (x)g0i (x), i = σ + 1

(8.479)

(ii)
ḡui (x) = ḡ0i (x), 1 ≤ i ≤ n − d (8.480)

(iii)
[ḡ01(x), ḡ0i (x)] = 0, 1 ≤ i ≤ n − d (8.481)

(iv)

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) =
⎡
⎢⎣

εud+1(H(x))
...

εun (H(x))

⎤
⎥⎦ (8.482)

where

∂
(
θu
σ ◦ Fu

)
∂u

= β̄u(x)
∂
(
H ◦ F̂n−σ

u (x)
)

∂u
(8.483)

β̄0(x) = β
(
H ◦ Fn−σ

0 (x)
)

(8.484)

�(y) = e
∫ y
0 β(ȳ)d ȳ (8.485)

ḡu1(x) = ḡ01(x) � �(H ◦ Fn−1
0 (x))g01(x) (8.486)
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ḡ0i (x) � (F0)∗(ḡ0i−1(x)) ; ḡui (x) � (Fu)∗(ḡui−1(x)), i ≥ 2 (8.487)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.488)

T∗
(
ḡ0i (x)

)
� r̄0i (ξ) =

[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d (8.489)

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[[ϕ(ξ1) · · · ϕ(ξd)]T

Ŝ2(ξ1, · · · , ξn)

]
(8.490)

and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

. (8.491)

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425).

Proof Necessity. Let σ < n − d. Suppose that system (8.370) is RDOELwith index
d and (8.398) is satisfied. Then, by Theorem 8.17, there exist smooth functions �(y)
(�(0) = 1) and εui (y), d + 1 ≤ i ≤ n such that (8.480)–(8.482) and (8.486)–(8.491)
are satisfied. It is clear, by (8.340) and (8.341), that

ḡ0i (x) = �
(
H ◦ Fn−i

0 (x)
)
g0i (x), 2 ≤ i ≤ n

and

ḡui (x) =
{

�
(
H ◦ Fn−i

0 (x)
)
gui (x), 2 ≤ i ≤ σ

�
(
H ◦ Fn−σ

0 ◦ F−1
u (x)

)
guσ+1(x), i = σ + 1

which imply, together with (8.480), that (8.479) is satisfied with

θu
σ (x) = �

(
H ◦ Fn−σ−1

0 (x)
)

�
(
H ◦ Fn−σ

0 ◦ F−1
u (x)

) or
�
(
H ◦ F̂n−σ

u (x)
)

�
(
H ◦ Fn−σ

0 (x)
) = θu

σ ◦ Fu(x).

Since

∂
(
θu
σ ◦ Fu

)
∂u

=
d�(y)
dy

∣∣∣
y=H◦F̂n−σ

u (x)

�
(
H ◦ Fn−σ

0 (x)
)
∂
(
H ◦ F̂n−σ

u (x)
)

∂u
,

it is clear that (8.483) is satisfied with

β̄u(x) =
d�(y)
dy

∣∣∣
y=H◦F̂n−σ

u (x)

�
(
H ◦ Fn−σ

0 (x)
) .
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Since

β̄0 (x) = 1

�(y)

d�(y)

dy

∣∣∣∣
y=H◦Fn−σ

0 (x)

= d

dy
(ln �(y))

∣∣∣∣
y=H◦Fn−σ

0 (x)

� β
(
H ◦ Fn−σ

0 (x)
)
,

it is easy to see that (8.484) and (8.485) are satisfied.
Sufficiency. It is obvious by Theorem 8.17. �

Remark 8.12 Suppose that (8.398) is satisfied and σ ≥ n − d. Then, it is easy to
see, by (8.398) and (8.336), that σ = n or for 1 ≤ i ≤ n − 1,

H ◦ F̂ i
u(x) = H ◦ Fi

0(x) and αu
i (ξ) = 0.

Theorem 8.20 Suppose that (8.398) is satisfied, κ ≤ n, andσ ≥ n − d. Let Fu(x) 	=
F0(x). System (8.370) is RDOEL with index d and extended state transformation
ze = Se(w, x), if and only if there exist scalar functions β̄u(x) and β(y), defined on
an open neighborhood of y = 0, such that

(i)
1

θu
n (ξ)

∂θu
n (ξ)

∂u
= β̄u(ξ)

∂αu
n (ξ)

∂u
(8.492)

(ii)
ḡui (x) = ḡ0i (x), 1 ≤ i ≤ n − d (8.493)

(iii)
[ḡ01(x), ḡ0i (x)] = 0, 1 ≤ i ≤ n − d (8.494)

(iv)

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) =
⎡
⎢⎣

εud+1(H(x))
...

εun (H(x))

⎤
⎥⎦ (8.495)

where αu
n (ξ) � H ◦ F̂n

u ◦ T−1(ξ),

θu
n (ξ) � ∂αu

n (ξ)

∂ξn+2−κ

(8.496)

β̄u(ξ) = β
(
αu
n (ξ)

)
(8.497)

�(y) = e
∫ y
0 β(ȳ)d ȳ (8.498)
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ḡu1(x) = ḡ01(x) � �(H ◦ Fn−1
0 (x))g01(x) (8.499)

ḡ0i (x) � (F0)∗(ḡ0i−1(x)) ; ḡui (x) � (Fu)∗(ḡui−1(x)), i ≥ 2 (8.500)

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ (8.501)

T∗
(
ḡ0i
)

� r̄0i (ξ) =
[
Od×1

r̂0i (ξ)

]
, 1 ≤ i ≤ n − d (8.502)

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[[ϕ(ξ1) · · · ϕ(ξd)]T

Ŝ2(ξ1, · · · , ξn)

]
(8.503)

and
∂ Ŝ2(ξ)

∂(ξd+1, · · · , ξn)
= [

r̂0n−d(ξ) · · · r̂02(ξ) r̂01(ξ)
]−1

. (8.504)

Furthermore, an extended state transformation ze = Se(w, x) is given by (8.425).

Proof Necessity. Suppose that (8.398) is satisfied, κ ≤ n, and σ ≥ n − d. Then, we
have, by Remark 8.12, that σ = n or for 1 ≤ i ≤ n − 1,

H ◦ F̂ i
u(x) = H ◦ Fi

0(x) and αu
i (ξ) = 0. (8.505)

Suppose that system (8.370) is RDOEL with index d. Then, by Lemma 8.11, system
(8.370) is state equivalent to a d-GNOCF with OT ϕ(y) and state transformation
z = S̃(x) and

S̃i ◦ Fu(x) − S̃i ◦ F0(x) =
{
0, 1 ≤ i ≤ d

ε̄ui (H(x)), d + 1 ≤ i ≤ n
(8.506)

for some ε̄ui (y), d + 1 ≤ i ≤ n. Thus, by Lemma 8.10 and (8.506), there exist a
smooth function ϕ(y) and smooth functions γ u

k (ξ1, · · · , ξd+1) : Rd+1+m → R, d +
1 ≤ k ≤ n such that for 1 ≤ i ≤ n,

S̃n(x) = ϕ ◦ H ◦ Fn−1
0 (x) −

n−1∑
k=d+1

γ 0
k ◦ T 1 ◦ Fn−1−k

0 (x) (8.507)
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ϕ ◦ H ◦ F̂n
u (x) =

n−1∑
k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

u (x) + γ u
n ◦ T 1(x)

=
n−1∑

k=d+1

γ 0
k ◦ T 1 ◦ F̂n−k

0 (x) + γ u
n ◦ T 1(x)

(8.508)

and
S̃n ◦ Fu(x) − S̃n ◦ F0(x) = ε̄un (H(x)) (8.509)

where ε̄0n(y) = 0. Since S̃n ◦ Fu(x) = γ u
n ◦ T 1(x) by (8.507) and (8.508), we have,

by (8.509), that
γ u
n ◦ T 1(x) = γ 0

n ◦ T 1(x) + ε̄un (H(x)). (8.510)

Thus, it is easy to see, by (8.505), (8.508), and (8.510), that

ϕ ◦ H ◦ F̂n
u =

n∑
k=d+1

γ 0
k ◦ T 1 ◦ Fn−k

0 + εun (H(x))

and
ϕ ◦ αu

n (ξ) � ϕ ◦ H ◦ F̂n
u ◦ T−1(ξ)

=
n∑

k=d+1

γ 0
k (ξn−k+1, · · · , ξn−k+1+d) + εun (ξ1)

= ϕ ◦ α0
n(ξ) + εun (ξ1).

(8.511)

It is clear, by (8.332), (8.334), and (8.511), that ∂αu
n (ξ)

∂ξn+2−κ
	= 0 and

ϕ ◦ αu
n (ξ) = ϕ ◦ α0

n(ξ1, · · · , ξn+2−κ , 0, · · · , 0) + εun (ξ1). (8.512)

Let �̄(y) � dϕ(y)
dy = 1

�(y) . It is easy to see that

1

�̄(y)

d �̄(y)

dy
= �(y)

d
(

1
�(y)

)

dy
= − 1

�(y)

d�(y)

dy
.

Since n + 2 − κ ≥ 2, we have that

0 = ∂2
(
ϕ ◦ αu

n

)
∂u∂ξn+2−κ

= ∂

∂u

(
dϕ(y)

dy

∣∣∣∣
y=αu

n (ξ)

∂αu
n (ξ)

∂ξn+2−κ

)
= ∂

∂u

(
�̄ ◦ αu

n (ξ) θu
n (ξ)

)

= d �̄(y)

dy

∣∣∣∣
y=αu

n (ξ)

∂αu
n (ξ)

∂u
θu
n (ξ) + �̄(y)

∣∣
y=αu

n (ξ)

∂θu
n (ξ)

∂u
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which implies that

1

θu
n (ξ)

∂θu
n (ξ)

∂u
= − 1

�̄(y)

d �̄(y)

dy

∣∣∣∣
y=αu

n (ξ)

∂αu
n (ξ)

∂u
= 1

�(y)

d�(y)

dy

∣∣∣∣
y=αu

n (ξ)

∂αu
n (ξ)

∂u
.

Therefore, (8.492), (8.497), and (8.498) are satisfied with

β̄u(ξ) = 1

�(y)

d�(y)

dy

∣∣∣∣
y=αu

n (ξ)

= d ln �(y)

dy

∣∣∣∣
y=αu

n (ξ)

and

β̄u(ξ) = β
(
αu
n (ξ)

)
.

Sufficiency. It is obvious by Theorem 8.17. �

Theorem 8.21 Suppose that (8.398) is satisfied, κ = n + 1, and σ ≥ n − d. (In
other words, κ = n + 1 and σ = n.) System (8.370) is RDOEL with index d, if and
only if

gui (x) = g0i (x), 2 ≤ i ≤ n. (8.513)

In other words, system (8.370) is RDOEL with index d, if and only if system (8.370)
is state equivalent to a dual Brunovsky NOCF without OT.

Proof Necessity. Let κ = n + 1 and σ = n. Suppose that system (8.370) is d-
RDOEL. Let ξ = T (x). Then, since κ = n + 1 and σ = n, it is easy to see, by
(8.505) and (8.512), that

αu
i (ξ) � H ◦ F̂ i

u ◦ T−1(ξ) − H ◦ Fi
0 ◦ T−1(ξ) = 0, 1 ≤ i ≤ n − 1

and
ϕ ◦ αu

n (ξ) = ϕ ◦ α0
n(ξ1, 0, · · · , 0) + εun (ξ1) � γ̃ u

n (ξ1)

which imply, together with (8.296), that

fu(ξ) � T ◦ Fu ◦ T−1(ξ) =

⎡
⎢⎢⎢⎣

ξ2
...

ξn
α̃u
n (ξ1)

⎤
⎥⎥⎥⎦

where α̃u
n (ξ1) � ϕ−1 ◦ γ̃ u

n (ξ1) = αu
n (ξ1, 0, · · · , 0). Therefore, it is clear, by (8.301)

and (8.302), that

T∗(gu1(x)) � ru1(ξ) = ∂

∂ξn
= r01(ξ)
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and for 2 ≤ i ≤ n,

T∗(gui (x)) � rui (ξ) = ( fu)∗(rui−1(ξ)) = ( fu)∗
(

∂

∂ξn+2−i

)
= ∂

∂ξn+1−i

which implies that (8.513) is satisfied.
Sufficiency. Let κ = n + 1 and σ = n. Suppose that (8.513) is satisfied. Then, by

Theorem 8.16, system (8.370) is state equivalent to a dual Brunovsky NOCF with
OT ϕ(y) = y (i.e., without OT). Hence, system (8.370) is RDOEL with index d. �

Example 8.6.2 Consider the system

x(t + 1) =
⎡
⎣

x2
x3

ex1+u+x2x3 − 1

⎤
⎦ = Fu(x) ; y = x1 = H(x). (8.514)

(a) Show that κ = 2 ≤ n and σ = 3 = n.
(b) Use Theorem 8.14 to show that system (8.514) is not state equivalent to a dual

Brunovsky NOCF with OT.
(c) Use Theorem 8.18 to show that system (8.514) is RDOEL with index d = 1.

Solution (a) It is easy to see that

x̄ = F−1
u (x) =

⎡
⎣
ln(x3 + 1) − x1x2 − u

x1
x2

⎤
⎦ and T (x) �

⎡
⎣

H(x)
H ◦ F0(x)
H ◦ F2

0 (x)

⎤
⎦ = x .

Thus, we have, by (8.298) and (8.299), that

gu1(x) = g01(x) = T−1
∗ (

∂

∂ξ3
) = ∂

∂x3
=
⎡
⎣
0
0
1

⎤
⎦

and

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
⎡
⎣

0
1

x1(x3 + 1)

⎤
⎦ = g02(x).

Since Lg02
(H ◦ F2

0 (x)) = Lg02
(x3) = x1(x3 + 1) 	= 0, it is clear, by (8.331), that

κ = 2. Also, since H ◦ F̂n−1
u (x) = x3 = H ◦ Fn−1

0 (x), H ◦ F̂n−2
u (x) = x2 =

H ◦ Fn−2
0 (x), and H ◦ F̂n−3

u (x) = x1 = H ◦ Fn−3
0 (x), we have, by (8.336), that

σ = 3 = n.
(b) Since Lg02

(H ◦ F2
0 (x)) = x1(x3 + 1) and
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[g01(x), g02(x)] =
⎡
⎣
0
0
x1

⎤
⎦ = Lg02

(H ◦ F2
0 (x))

1

x3 + 1
g01(x), (8.515)

it is clear that condition (i) of Theorem 8.14 is satisfied with β(y) = 1
y+1 . Thus,

we have, by (8.345)–(8.347), that

�(y) � e
∫ y
0 β(ȳ)d ȳ = e

∫ y
0

1
ȳ+1 d ȳ = eln(y+1) = y + 1 (8.516)

ḡu1(x) = ḡ01(x) � �(H ◦ F2
0 (x))g01(x) = �(x3)

⎡
⎣
0
0
1

⎤
⎦ =

⎡
⎣

0
0

x3 + 1

⎤
⎦ (8.517)

ḡu2(x) � (Fu)∗(ḡu1(x)) =
⎡
⎣

0
(x2 + 1)

x1(x2 + 1)(x3 + 1)

⎤
⎦ (8.518)

and

ḡu3(x) � (Fu)∗(ḡu2(x))

=
⎡
⎣

(x1 + 1)
(x1 + 1)(x2 + 1)(ln(x3 + 1) − x1x2 − u)

(x3 + 1){x2 + x1(x2 + 1)(ln(x3 + 1) − x1x2 − u)}

⎤
⎦ .

Since ḡu3(x) 	= ḡ03(x), condition (ii) of Theorem 8.14 is not satisfied. Therefore,
by Theorem 8.14, system (8.514) is not state equivalent to a dual Brunovsky
NOCF with OT.

(c) Let d = 1. Since H ◦ Fu(x) = x2 = H ◦ F0(x), (8.398) is satisfied. It is clear,
by (8.515), that condition (i) of Theorem 8.18 is satisfied with β(y) = 1

y+1 . It is

also clear, by (8.517) and (8.518), that ḡu1(x) = ḡ01(x) and ḡ
u
2(x) = ḡ02(x). Thus,

condition (ii) of Theorem 8.18 is satisfied. Since

[ḡ01(x), ḡ02(x)] =
⎡
⎣
⎡
⎣

0
0

x3 + 1

⎤
⎦ ,

⎡
⎣

0
(x2 + 1)

x1(x2 + 1)(x3 + 1)

⎤
⎦
⎤
⎦ = 0,

condition (iii) of Theorem 8.18 is satisfied.We have, by (8.474) and (8.516), that

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ =

∫ y

0

1

ȳ + 1
d ȳ = ln(y + 1).

Since
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[
r̄02(ξ) r̄01(ξ)

]
�
[
T∗(ḡ02(x)) T∗(ḡ01(x))

]

=
⎡
⎣

0 0
(ξ2 + 1) 0

ξ1(ξ2 + 1)(ξ3 + 1) ξ3 + 1

⎤
⎦ ,

it is clear, by (8.475) and (8.477), that

[
r̂02(ξ) r̂01(ξ)

]
�
[

(ξ2 + 1) 0
ξ1(ξ2 + 1)(ξ3 + 1) ξ3 + 1

]

and
∂ Ŝ2(ξ)

∂(ξ2, ξ3)
= [

r̂02(ξ) r̂01(ξ)
]−1 =

[
1

ξ2+1 0
−ξ1

1
ξ3+1

]

which implies, together with (8.476), that

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[
ϕ(ξ1)

Ŝ2(ξ)

]
=
⎡
⎣

ln(ξ1 + 1)
ln(ξ2 + 1)

ln(ξ3 + 1) − ξ1ξ2

⎤
⎦ .

Since

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) =
[
ln(x3 + 1)
x1 + u

]
−
[
ln(x3 + 1)

x1

]
=
[
0
u

]
,

it is clear that condition (iv) of Theorem 8.18 is satisfied. Hence, system (8.514)
is, by Theorem 8.18, RDOEL with index d = 1 and extended state transforma-
tion ze = Se(w, x). Finally, the extended state transformation ze = Se(w, x) in
(8.425) is given by

Se(w, x) =
[

Ŝ(w, x1, x2)
Se3 ◦ Fe

0 (w, x) − γ 0
3 (w, x1)

]
=

⎡
⎢⎢⎣

ln(w1 + 1)
ln(x1 + 1)

ln(x2 + 1) − w1x1
ln(x3 + 1) − x1x2 − w1

⎤
⎥⎥⎦

where

γ 0
3 (ξ1, ξ2) � Ŝ3 ◦ T ◦ F0 ◦ T−1(ξ) = ξ1 + ξ2ξ3 − ξ2ξ3 = ξ1

and

Fe
u (w, x) =

[
H(x)
Fu(x)

]
=

⎡
⎢⎢⎣

x1
x2
x3

ex1+u+x2x3 − 1

⎤
⎥⎥⎦ .
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Since He(w, x) = w, it is easy to see that ϕ ◦ He ◦ (Se)−1(ze) = ze1 and

Se ◦ Fe
u ◦ (Se)−1(ze) =

⎡
⎢⎢⎣

ze2
ze3 + (ez

e
1 − 1)(ez

e
2 − 1)

ze4 + ez
e
1 − 1

u

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ze2
ze3
ze4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
w1y
w1

u

⎤
⎥⎥⎦ .

�

Example 8.6.3 Consider the system

x(t + 1) =
⎡
⎣

x2
x3 + x1u22

u1 + x1 − x2(x3 + x1u22)

⎤
⎦ = Fu(x) ; y = x1 = H(x). (8.519)

(a) Show that κ = 2 and σ = 1.
(b) Use Theorem 8.15 to show that system (8.519) is not state equivalent to a dual

Brunovsky NOCF with OT.
(c) Use Theorem 8.19 to show that system (8.519) is RDOEL with index d = 1.
(d) Use Theorem 8.14 to show that system (8.519) is not state equivalent to a dual

Brunovsky NOCF with OT.
(e) Use Theorem 8.18 to show that system (8.519) is RDOEL with index d = 1.

Solution (a) It is easy to see that

x̄ = F−1
u (x) =

⎡
⎣

x3 − u1 + x1x2
x1

x2 − u22(x3 − u1 + x1x2)

⎤
⎦ and ξ = T (x) = x .

Thus, we have, by (8.298) and (8.299), that

gu1(x) = g01(x) = T−1
∗

(
∂

∂ξ3

)
= ∂

∂x3
=
⎡
⎣
0
0
1

⎤
⎦

and

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
⎡
⎣

0
1

−x1

⎤
⎦ = g02(x).

Since Lg02
(H ◦ F2

0 (x)) = Lg02
(x3) = −x1 	= 0, we have, by (8.331), that κ = 2.

Also, since H ◦ F̂n−1
u (x) = x3 + x1u22 	= H ◦ Fn−1

0 (x), it is clear, by (8.336),
that σ = 1.
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(b) Since

gu2(x) = g02(x) = θu
1 (x)g02(x), (8.520)

it is clear that condition (i) of Theorem 8.15 is satisfied with θu
σ (x) = 1. Since

∂
(
θu
σ ◦ Fu(x)

)

∂u
= [

0 0
]

and
∂
(
H ◦ F̂n−σ

u (x)
)

∂u
= [

0 2x1u2
]
,

it is clear that (8.354) and (8.355) are satisfied with

β̄u(x) = 0 and β(y) = 0.

Thus, we have, by (8.356)–(8.358), that

�(y) � e
∫ y
0 β(ȳ)d ȳ = e0 = 1 (8.521)

ḡu1(x) = ḡ01(x) � �(H ◦ F2
0 (x))g01 =

⎡
⎣
0
0
1

⎤
⎦ (8.522)

ḡu2(x) � (Fu)∗(ḡu1(x)) = gu2(x) =
⎡
⎣

0
1

−x1

⎤
⎦ (8.523)

and

ḡu3(x) � (Fu)∗(ḡu2(x)) =
⎡
⎣

1
u1 − x3 − x1x2

x1(x3 − u1 + x1x2) − x2

⎤
⎦ .

Since ḡu3(x) 	= ḡ03(x), condition (ii) of Theorem 8.15 is not satisfied. Therefore,
by Theorem 8.15, system (8.519) is not state equivalent to a dual Brunovsky
NOCF with OT.

(c) Let d = 1. Since H ◦ Fu(x) = x2 = H ◦ F0(x), (8.398) is satisfied. It is clear,
by (8.520), that condition (i) of Theorem 8.19 is satisfied with θu

σ (x) = 1. It is
also clear, by (8.522) and (8.523), that ḡu1(x) = ḡ01(x) and ḡ

u
2(x) = ḡ02(x). Thus,

condition (ii) of Theorem 8.19 is satisfied. Since

[ḡ01(x), ḡ02(x)] =
⎡
⎣
⎡
⎣
0
0
1

⎤
⎦ ,

⎡
⎣

0
1

−x1

⎤
⎦
⎤
⎦ = 0,
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condition (iii) of Theorem 8.19 is satisfied.We have, by (8.488) and (8.521), that

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ = y.

Since
[
r̄02(ξ) r̄01(ξ)

]
�
[
T∗(ḡ02(x)) T∗(ḡ01(x))

] =
⎡
⎣

0 0
1 0

−ξ1 1

⎤
⎦ ,

it is clear, by (8.489) and (8.491), that

[
r̂02(ξ) r̂01(ξ)

]
�
[

1 0
−ξ1 1

]

and
∂ Ŝ2(ξ)

∂(ξ2, ξ3)
= [

r̂02(ξ) r̂01(ξ)
]−1 =

[
1 0
ξ1 1

]

which implies, together with (8.490), that

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
[
ϕ(ξ1)

Ŝ2(ξ)

]
=
⎡
⎣

ξ1
ξ2

ξ3 + ξ1ξ2

⎤
⎦ .

Since

Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) =
[
x3 + x1u22
x1 + u1

]
−
[
x3
x1

]
=
[
x1u22
u1

]
,

it is clear that condition (iv) of Theorem 8.19 is satisfied. Hence, system (8.519)
is, by Theorem 8.19, RDOEL with index d = 1 and extended state transforma-
tion ze = Se(w, x). Finally, the extended state transformation ze = Se(w, x) in
(8.425) is given by

Se(w, x) =
[

Ŝ(w, x1, x2)
Se3 ◦ Fe

0 (w, x) − γ 0
3 (w, x1)

]
=

⎡
⎢⎢⎣

w1

x1
x2 + w1x1

x3 + x1x2 − w1

⎤
⎥⎥⎦

where

γ 0
3 (ξ1, ξ2) � Ŝ3 ◦ T ◦ F0 ◦ T−1(ξ) = ξ1 − ξ2ξ3 + ξ2ξ3 = ξ1

and
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Fe
u (w, x) =

[
H(x)
Fu(x)

]
=

⎡
⎢⎢⎣

x1
x2

x3 + x1u22
u1 + x1 − x2(x3 + x1u22)

⎤
⎥⎥⎦ .

Since He(w, x) = w, it is easy to see that ϕ ◦ He ◦ (Se)−1(ze) = ze1 and

Se ◦ Fe
u ◦ (Se)−1(ze) =

⎡
⎢⎢⎣

ze2
ze3 − ze1z

e
2

ze4 + ze1 + ze2u
2
2

u1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ze2
ze3
ze4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
−w1y

w1 + yu22
u1

⎤
⎥⎥⎦ .

(d) Solution is omitted. (Problem 8-11.)
(e) Solution is omitted. (Problem 8-11.) �
Example 8.6.4 Consider the system

x(t + 1) =
⎡
⎣

x2
x3

ex1x3+u1+u2x1 − 1

⎤
⎦ = Fu(x) ; y = x1 = H(x). (8.524)

(a) Show that κ = 2 and σ = 3.
(b) Use Theorem 8.18 to show that system (8.524) is not RDOEL with index d = 1.
(c) Use Theorem 8.20 to show that system (8.524) is not RDOEL with index d = 1.
(d) Use Theorem 8.20 to show that system (8.524) is RDOEL with index d = 2.

Solution (a) It is easy to see that

x̄ = F−1
u (x) =

⎡
⎣

ln(1+x3)−u1
x2+u2
x1
x2

⎤
⎦ and ξ = T (x) �

⎡
⎣

H(x)
H ◦ F0(x)
H ◦ F2

0 (x)

⎤
⎦ = x .

Thus, we have, by (8.298) and (8.299), that

gu1(x) = g01(x) = T−1
∗ (

∂

∂ξ3
) = ∂

∂x3
=
⎡
⎣
0
0
1

⎤
⎦

and

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
⎡
⎣

0
1

(1+x3)(ln(1+x3)−u1)
x2+u2

⎤
⎦

	=
⎡
⎣

0
1

(1+x3) ln(1+x3)
x2

⎤
⎦ = g02(x).
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Since Lg02
(H ◦ F2

0 (x)) = (1+x3) ln(1+x3)
x2

	= 0, we have, by (8.331), κ = 2 = n.

Also, since H ◦ F̂n−1
u (x) = x3 = H ◦ Fn−1

0 (x), H ◦ F̂n−2
u (x) = x2 = H◦

Fn−2
0 (x), and H ◦ F̂n−3

u (x) = x1 = H ◦ Fn−2
0 (x), it is clear, by (8.336), that

σ = 3 = n.
(b) Let d = 1. Then, it is clear that κ ≤ n − d. Since H ◦ Fu(x) = x2 = H◦

F0(x), (8.398) is satisfied. Note that Lg02
(H ◦ F0(x)) = (1+x3) ln(1+x3)

x2
and

[g01(x), g02(x)] =
[

0
1+ln(1+x3)

x2

]
= Lg02

(H ◦ F0(x))
1 + ln(1 + x3)

(1 + x3) ln(1 + x3)
g01(x).

Since 1+ln(1+y)
(1+y) ln(1+y) is not defined on a neighborhood of y = 0, it is clear that

condition (i) of Theorem 8.18 is not satisfied. Hence, by Theorem 8.18, system
(8.524) is not RDOEL with index d = 1.

(c) Let d = 1. Then, it is clear that κ ≤ n and σ ≥ n − d. Since H ◦ Fu(x) = x2 =
H ◦ F0(x), (8.398) is satisfied. Since

αu
3 (ξ) � H ◦ F̂3

u ◦ T−1(ξ) = eξ1ξ3+u1+u2ξ1 − 1

θu
3 (ξ) � ∂αu

3 (ξ)

∂ξn+2−κ

= ∂αu
3 (ξ)

∂ξ3
= ξ1e

ξ1ξ3+u1+u2ξ1

1

θu
3 (ξ)

∂θu
3 (ξ)

∂u
= [

1 ξ1
]

and
∂αu

3 (ξ)

∂u
= eξ1ξ3+u1+u2ξ1

[
1 ξ1

]
,

it is clear that condition (i) of Theorem 8.20 and (8.497) are satisfied with

β̄u(ξ) = 1

eξ1ξ2+u1+u2ξ1
and β(y) = 1

1 + y
.

Thus, we have, by (8.498)–(8.500), that

�(y) � e
∫ y
0 β(ȳ)d ȳ = eln(1+y) = 1 + y (8.525)

ḡu1(x) = ḡ01(x) � �(H ◦ F2
0 (x))g01 =

⎡
⎣

0
0

1 + x3

⎤
⎦ (8.526)

and
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ḡu2(x) � (Fu)∗(ḡu1(x)) = gu2(x) =
⎡
⎣

0
1 + x2

(1+x2)(1+x3)(ln(1+x3)−u1)
x2+u2

⎤
⎦ .

Since n − d = 2 and ḡu2(x) 	= ḡ02(x), it is obvious that condition (ii) of Theo-
rem 8.20 is not satisfied. Hence, by Theorem 8.20, system (8.524) is not RDOEL
with index d = 1.

(d) Let d = 2. Then, it is clear that κ ≤ n and σ ≥ n − d. Since H ◦ Fu(x) = x2 =
H ◦ F0(x) and H ◦ F̂2

u (x) = x3 = H ◦ F2
0 (x), (8.398) is satisfied. It has been

shown that condition (i) of Theorem 8.20 is satisfied. Since n − d = 1, it is
obvious, by (8.526), that condition (ii) and condition (iii) of Theorem 8.20 are
satisfied. We have, by (8.501) and (8.525), that

ϕ(y) =
∫ y

0

1

�(ȳ)
d ȳ = ln(1 + y).

Since
[
r̄01(ξ)

]
�
[
T∗(ḡ01(x))

] =
⎡
⎣

0
0

1 + ξ3

⎤
⎦ ,

it is clear, by (8.502) and (8.504), that

[
r̂01(ξ)

]
�
[
1 + ξ3

]

and
∂ Ŝ2(ξ)

∂ξ3
= [

r̂01(ξ)
]−1 = 1

1 + ξ3

which implies, together with (8.503), that

Ŝ(ξ) =
[
Ŝ1(ξ)

Ŝ2(ξ)

]
=
⎡
⎣

ϕ(ξ1)

ϕ(ξ2)

Ŝ2(ξ)

⎤
⎦ =

⎡
⎣
ln(1 + ξ1)

ln(1 + ξ2)

ln(1 + ξ3)

⎤
⎦ .

Since
Ŝ2 ◦ T ◦ Fu(x) − Ŝ2 ◦ T ◦ F0(x) = u1 + u2x1,

it is clear that condition (iv) of Theorem 8.20 is satisfied. Hence, system (8.524)
is, by Theorem 8.20, RDOEL with index d = 1 and extended state transforma-
tion ze = Se(w, x). Finally, the extended state transformation ze = Se(w, x) in
(8.425) is given by
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Se(w, x) =
⎡
⎣

Ŝ(w, x1, x2)
Se3 ◦ Fe

0 (w, x) − γ 0
3 (w, x1)

Se4 ◦ Fe
0 (w, x)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

ln(1 + w1)

ln(1 + w2)

ln(1 + x1)
ln(1 + x2) − w1x1
ln(1 + x3) − w2x2

⎤
⎥⎥⎥⎥⎦

where
γ 0
2 (ξ1, ξ2) � Ŝ2 ◦ T ◦ F0 ◦ T−1(ξ) = ξ1ξ3

and

Fe
u (w, x) =

⎡
⎣

w2

H(x)
Fu(x)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

w2

x1
x2
x3

ex1x3+u1+u2x1 − 1

⎤
⎥⎥⎥⎥⎦

.

Since He(w, x) = w, it is easy to see that ϕ ◦ He ◦ (Se)−1(ze) = ze1 and

Se ◦ Fe
u ◦ (Se)−1(ze) =

⎡
⎢⎢⎢⎢⎣

ze2
ze3

ze4 + (ez
e
1 − 1)(ez

e
3 − 1)

ze5
u1 + u2(ez

e
3 − 1)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ze2
ze3
ze4
ze5
0

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
0

w1y
0

u1 + u2y

⎤
⎥⎥⎥⎥⎦

.

�

Remark 8.13 The conditions of Theorem 8.17 without assumption (8.398) are the
necessary and sufficient conditions for (ii) of Lemma 8.11. Therefore, it is clear, by
Lemma 8.11, that Theorem 8.17–Theorem 8.21 give only sufficient conditions for
RDOEL with index d (d ≥ 1), unless (8.398) is satisfied. For example, if (8.398) is
satisfied not with d = 3 but with d = 2, then necessary and sufficient conditions for
RDOEL with index d = 0, d = 1, and d = 2 can be found in the theorems, whereas
the conditions for RDOEL with index d = 3, d = 4, etc., of the Theorems are not
necessary but sufficient. (Refer to Example 8.6.5(c) and (d).) The RDOEL problem
without assumption (8.398) is much more complicated and remains open.
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Example 8.6.5 Consider the system

x(t + 1) =
⎡
⎣

x2 + u
x3

u + x1 + x1(x2 + u)2

⎤
⎦ = Fu(x) ; y = x1 = H(x). (8.527)

(a) Show that κ = 3 and σ = 2.
(b) Use Theorem 8.15 to show that system (8.527) is not state equivalent to a dual

Brunovsky NOCF with OT.
(c) Let d = 1. Then κ ≤ n andσ ≥ n − d. Show that system (8.527) does not satisfy

the conditions of Theorem 8.20 without assumption (8.398).
(d) Show that system (8.527) is RDOEL with index d = 1 and

ze = Se(w, x) =

⎡
⎢⎢⎣

w

x1
x2

x3 − w1x21

⎤
⎥⎥⎦ .

Solution (a) It is easy to see that

x̄ = F−1
u (x) =

⎡
⎣

x3−u
1+x21

x1 − u
x2

⎤
⎦ and T (x) �

⎡
⎣

H(x)
H ◦ F0(x)
H ◦ F2

0 (x)

⎤
⎦ = x .

Thus, we have, by (8.298) and (8.299), that

gu1(x) = g01(x) = T−1
∗

(
∂

∂ξ3

)
= ∂

∂x3
=
⎡
⎣
0
0
1

⎤
⎦

gu2(x) � (Fu)∗(gu1(x)) = ∂Fu(x̄)

∂ x̄
gu1(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
⎡
⎣
0
1
0

⎤
⎦ = g02(x)

and

gu3(x) � (Fu)∗(gu2(x)) = ∂Fu(x̄)

∂ x̄
gu2(x̄)

∣∣∣∣
x̄=F−1

u (x)

=
⎡
⎣

1
0

2x1(x3−u)

x21+1

⎤
⎦ 	= g03(x).
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Since Lg02
(H ◦ F2

0 (x)) = 0 and Lg03
(H ◦ F2

0 (x)) = 2x1x3
x21+1

	= 0, we have, by

(8.331), κ = 3. Also, since H ◦ F̂n−1
u (x) = x3 = H ◦ Fn−1

0 (x) and
H ◦ F̂n−2

u (x) = x2 + u 	= H ◦ Fn−2
0 (x), it is clear, by (8.336), that σ = 2.

(b) Since

rank
([
gu3(x) g

0
3(x)

]) = rank

⎛
⎝
⎡
⎣

1 0
0 0

2x1(x3−u)

x21+1
2x1x3
x21+1

⎤
⎦
⎞
⎠ = 2 	= 1,

there does not exist β̄u(x) such that condition (i) of Theorem 8.15 is satis-
fied. Hence, by Theorem 8.15, system (8.527) is not state equivalent to a dual
Brunovsky NOCF with OT.

(c) Let d = 1. Since

αu
3 (ξ) � H ◦ F̂3

u ◦ T−1(ξ) = u + ξ1 + ξ1(ξ2 + u)2

θu
3 (ξ) � ∂αu

3 (ξ)

∂ξn+2−κ

= ∂αu
3 (ξ)

∂ξ2
= 2ξ1(ξ2 + u)

1

θu
3 (ξ)

∂θu
3 (ξ)

∂u
= 1

ξ2 + u

and
∂αu

3 (ξ)

∂u
= 1 + 2ξ1(ξ2 + u),

it is clear that condition (i) of Theorem 8.20 is satisfied with

β̄u(ξ) = 1

(ξ2 + u)(1 + 2ξ1(ξ2 + u))
.

However, there does not exist β(y) such that (8.497) is satisfied. Hence, system
(8.527) does not satisfy the conditions of Theorem 8.20 without assumption
(8.398).

(d) Let d = 1. Then it is clear that He(w, x) = w and

Fe
u (w, x) =

[
H(x)
Fu(x)

]
=

⎡
⎢⎢⎣

x1
x2 + u
x3

u + x1 + x1(x2 + u)2

⎤
⎥⎥⎦ .

Thus, it is easy to see that ϕ(y) = y, ϕ ◦ He ◦ (Se)−1(ze) = ze1 and
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Se ◦ Fe
u ◦ (Se)−1(ze) =

⎡
⎢⎢⎣

ze2
ze3 + u

ze4 + ze1(z
e
2)

2

ze2 + u

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ze2
ze3
ze4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

w1y2

y + u

⎤
⎥⎥⎦ .

Hence, by Definition 8.15, system (8.527) is RDOEL with index d = 1 and
ze = Se(w, x). �

Example 8.6.6 Consider the system

x(t + 1) =
[

x2
x1 + u(1 + x2)

]
= Fu(x)

y = x1 = H(x).

(8.528)

It is clear, by Example 8.5.6, that κ = 3 = n + 1 and σ = 2 = n. Use Theorem 8.21
to show that system (8.528) is not RDOEL.

Solution It is clear, by Example 8.5.6, that system (8.528) is not state equivalent to a
dual Brunovsky NOCF. Therefore, by Theorem 8.21, system (8.528) is not RDOEL.

�
If a system is RDOEL with index d, then it is also RDOEL with index (d + 1).

But the converse is not true. It is clear, by Corollary 8.12, that autonomous system
(8.371) is RDOEL with index d = n − 1. However, it is not true for control system
(8.370). (Refer to Example 8.6.6.)

8.7 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
adfg, ChCommute, ChConst, ChInverseF, ChZero, Lfh, Lfhk,
ObvIndex0, SpanCx, sstarmap

MATLAB program for Theorem 8.1:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 real
syms y u real

Fu=[x2+2*x2*(x1-x2ˆ2)+2*x2*u1+u2ˆ2; x1-x2ˆ2+u1];
H=x1-x2ˆ2; m=2; %Ex:8.2.1

% Fu=[x2+2*x2*u+(x1-x2ˆ2)ˆ2*uˆ2; u];
% H=x1-x2ˆ2; m=1; %Ex:8.2.2

Fu=simplify(Fu)
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H=simplify(H)

n=length(Fu);
x=sym(’x’,[n,1])
if m>1
u=sym(’u’,[m,1])

end

F0=simplify(subs(Fu,u,u-u))
T=x-x;
T(1)=H;
for k=2:n
T(k)=simplify(Lfh(F0,T(k-1),x));

end
T=simplify(T)

dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));

g0(:,1)=idT(:,n);
gu(:,1)=idT(:,n);
for k=2:n+1
g0(:,k)=adfg(F0,g0(:,k-1),x);
gu(:,k)=adfg(Fu,gu(:,k-1),x);

end

g0=simplify(g0)
gu=simplify(gu)

if ChZero(gu-g0)==0
display(’condition (i) of Thm 8.1 is not satisfied.’)
display(’System is NOT state equivalent to a LOCF.’)
return

end

if ChCommute(g0,x)==0
display(’condition (ii) of Thm 8.1 is not satisfied.’)
display(’System is NOT state equivalent to a LOCF.’)
return

end

display(’System is, by Thm 8.1, state equivalent to a LOCF.’)

for k=1:n
idS(:,k)= (-1)ˆ(n-k)*g0(:,n+1-k);

end
idS=simplify(idS)
dS=simplify(inv(idS))
S=Codi(dS,x)

ASu=simplify(dS*Fu)
dAS=simplify(jacobian(ASu,x));
A=simplify(dAS*idS)
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Gammau=ASu-subs(ASu,u,u-u)

return

MATLAB program for Theorem 8.2:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms u1 u2 u3 u4 u5 real
syms y u real

% Fu=[x2+2*x2*(x1-x2ˆ2)+2*x2*u1+u2ˆ2; x1-x2ˆ2+u1];
% H=x1-x2ˆ2; m=2; %Ex:8.2.1

Fu=[x2+2*x2*u+(x1-x2ˆ2)ˆ2*uˆ2; u]; H=x1-x2ˆ2; m=1; %Ex:8.2.2

% Fu=[x2; -x2ˆ2+x1ˆ2*exp(-x1)+u]; H=x1; m=1; %Ex:8.2.3

% Fu=[x2; x3; -4*x1*x3-3*x2ˆ2-6*x1ˆ2*x2+u];
% H=x1; m=1; %Ex:8.2.4

% Fu=[x2+x3ˆ2; x3-2*x3*exp(x1)*u; exp(x1)*u];
% H=x1; m=1; %P:8-2(a)

% Fu=[x2+x3ˆ2; x3-2*x3*exp(x1)*u2; exp(x1)*u1];
% H=x1; m=2; %P:8-2(b)

%Fu=[x2+(x1+1)*u2ˆ2;x2*log(x1+1)+x2ˆ2/(1+x1)+(x1+1)*u1+x2*u2ˆ2];
%H=x1; m=2; %P:8-2(c) or P:8-3(a)

% Fu=[x2*exp(x1); x3+x1*u; u ];
% H=x1; m=1; %P:8-2(d) or P:8-3(b)

Fu=simplify(Fu)
H=simplify(H)

n=length(Fu);
x=sym(’x’,[n,1])
if m>1
u=sym(’u’,[m,1])

end

F0=simplify(subs(Fu,u,u-u))

T=x-x;
T(1)=H;
for k=2:n
T(k)=simplify(Lfh(F0,T(k-1),x));

end
T=simplify(T)

dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
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gu(:,1)=idT(:,n);
for k=2:n
gu(:,k)=adfg(Fu,gu(:,k-1),x);

end

gu=simplify(gu)
g0=subs(gu,u,u-u)

if ChZero(gu-g0)==0
display(’condition (i) of Thm 8.2 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF.’)
return

end

if ChCommute(g0,x)==0
display(’condition (ii) of Thm 8.2 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF.’)
return

end

display(’System is, by Thm 8.2, state equivalent to a NOCF’)

for k=1:n
idS(:,k)= (-1)ˆ(n-k)*g0(:,n+1-k);

end
idS=simplify(idS)
dS=simplify(inv(idS))
S=Codi(dS,x)

NFu=simplify(dS*Fu);
Gammau=simplify(NFu-[S(2:n); 0])

return

MATLAB program for Theorem 8.3:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real

Fu=[x2; -x2ˆ2+x1ˆ2*exp(-x1)+u]; m=1; %Ex:8.2.3

% Fu=[x2; x3; -4*x1*x3-3*x2ˆ2-6*x1ˆ2*x2+u];
% m=1; %Ex:8.2.4 Or Ex:8.3.2

% Fu=[x2; x3; x2ˆ3+u]; m=1; %Ex:8.3.3 or P:8-3

%Fu=[x2+(x1+1)*u2ˆ2;x2*log(x1+1)+x2ˆ2/(1+x1)+(x1+1)*u1+x2*u2ˆ2];
%m=2; %P:8-2(c) or P:8-4(a)

% Fu=[x2*exp(x1); x3+x1*u; u ]; m=1; %P:8-2(d) or P:8-4(b)
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% aa1=(3*x2*x3)/(x1 + 1)-(2*x2ˆ3)/(x1 + 1)ˆ2;
% aa2=-x3*(x1+1)*log(x1+1)+u;
% Fu=[x2; x3; aa1+aa2]; m=1; %P:8-4(c) or P:8-5(c)

% Fu=[x2; x3; x4+uˆ2; 5*x2*x3+2*x2ˆ2+u]
% m=1; %P:8-4(d) or P:8-5(d)

H=x1
Fu=simplify(Fu)

n=length(Fu);
x=sym(’x’,[n,1])
if m>1
u=sym(’u’,[m,1])

end

F0=simplify(subs(Fu,u,u-u));

T=x-x;
T(1)=H;
for k=2:n
T(k)=simplify(Lfh(F0,T(k-1),x));

end
T=simplify(T)

dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));

gu(:,1)=idT(:,n);
for k=2:n
gu(:,k)=adfg(Fu,gu(:,k-1),x);

end

gu=simplify(gu)
g0=subs(gu,u,u-u);

for k=2:n-1
CC1=adfg(g0(:,1),g0(:,k),x);
if ChZero(CC1)==0
display(’condition (i) of Thm 8.3 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT’)
return

end
end

if n==2*round(n/2)
t1=simplify(adfg(g0(:,1), g0(:,n), x))
[flag1,Cx]=SpanCx(t1,g0(:,1))
if flag1==0
display(’condition (ii) of Thm 8.3 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT’)
return

end
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b0=-Cx/2
end

if n˜=2*round(n/2)
t1=simplify(adfg(g0(:,2), g0(:,n), x))
[flag1,Cx]=SpanCx(t1,g0(:,1:2))
if flag1==0
display(’condition (ii) of Thm 8.3 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT’)
return

end
b0=Cx(2)/n

end

bx1=x(2:n)
db0=simplify(jacobian(b0,bx1))
if ChZero(db0)==0
display(’condition (ii) of Thm 8.3 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT’)
return

end

beta=b0;
Ibeta=int(b0,x1)
Ibeta0=subs(Ibeta,x1,x1-x1);
ell=exp(Ibeta-Ibeta0)
bgu(:,1)=ell*g0(:,1);

for k1=2:n
bgu(:,k1)=adfg(Fu,bgu(:,k1-1),x);

end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));

if ChZero(bgu-bg0)==0
display(’condition (iii) of Thm 8.3 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT’)
return

end

if ChCommute(bg0,x)==0
display(’condition (iv) of Thm 8.3 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT’)
return

end

display(’System is, by Thm 8.3, state equi to a NOCF with OT’)

varphi=int(1/ell,x1);
varphi=subs(varphi,x1,y);
varphi0=subs(varphi,y,y-y);
varphi=simplify(varphi-varphi0)
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for k=1:n
idS(:,k)=(-1)ˆ(n-k)*bg0(:,n+1-k);

end
idS=simplify(idS)
dS=simplify(inv(idS))
S=Codi(dS,x)

NFu=simplify(dS*Fu);
Gammaphiu=simplify(NFu-[S(2:n); 0])

return

MATLAB program for Theorem 8.5:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms y u u1 u2 u3 u4 u5 real

d=1; Fu=[x2; x3; -4*x1*x3-3*x2ˆ2-6*x1ˆ2*x2+u];
m=1; %Ex:8.2.4 Or Ex:8.3.2

% d=1; Fu=[x2; x3; x2ˆ3+u]; m=1; %Ex:8.3.3

% d=1; Fu=[x2+x1*uˆ2; x3; 4*x3*x1+u ];
% m=1; %P:8-4(a) or P:8-5(a)

% d=2; Fu=[x2+x3*uˆ2; x3; x4; 4*x3*x1+u ]; m=1; %P:8-5(b)

% aa1=(3*x2*x3)/(x1+1)-(2*x2ˆ3)/(x1+1)ˆ2;
% aa2=-x3*(x1+1)*log(x1+1)+u;
% d=1; Fu=[x2; x3; aa1+aa2]; m=1; %P:8-4(c) or P:8-5(c)

% d=2; Fu=[x2; x3; x4+uˆ2; 5*x2*x3+2*x2ˆ2+u];
% m=1; %P:8-4(d) or P:8-5(d)

H=x1
Fu=simplify(Fu)
n=length(Fu);
N=n+d

x=sym(’x’,[n,1]);
w=sym(’w’,[d,1]);
xe=[w; x]

P=w-w;
if d>0
P=[w(2:d); x1];

end

Feu=[P; Fu]
Fe0=subs(Feu,u,u-u);
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Te=xe-xe;
Te(1)=xe(1);
for k=2:N
Te(k)=simplify(Lfh(Fe0,Te(k-1),xe));

end
Te=simplify(Te)

dTe=simplify(jacobian(Te,xe));
idTe=simplify(inv(dTe));

geu(:,1)=idTe(:,N)
for k=2:n
geu(:,k)=adfg(Feu,geu(:,k-1),xe);

end

geu=simplify(geu)
ge0=simplify(subs(geu,u,u-u))

CC1=xe-xe;
for k=2:n-1
CC1(:,k-1)=adfg(ge0(:,1),ge0(:,k),xe);

end
CC1=simplify(CC1)
if ChZero(CC1)==0
display(’condition (i) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end

if n==2*round(n/2)
t1=simplify(adfg(ge0(:,1), ge0(:,n), xe));
[flag1,Cx]=SpanCx(t1,ge0(:,1))
if flag1==0
display(’condition (ii) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end
b0=-Cx/2

end

if n˜=2*round(n/2)
t1=simplify(adfg(ge0(:,2), ge0(:,n), xe));
[flag1,Cx]=SpanCx(t1,ge0(:,1:2))
if flag1==0
display(’condition (ii) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end
b0=Cx(2)/n

end
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bx1=[xe(1:d); xe(d+2:N)]
t2=simplify(jacobian(b0,bx1))
if ChZero(t2)==0
display(’condition (ii) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end

beta=b0;
t3=int(b0,x1);
t30=subs(t3,x1,x1-x1);
Bell=exp(t3-t30)
Tg(:,1)=Bell*ge0(:,1);
for k1=2:n
Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);

end
Tg=simplify(Tg)

for k=1:min(d,n-2)
if (n+k)==2*round((n+k)/2)
t1=simplify(adfg(Tg(:,k+1),Tg(:,n),xe))
[flag1,Cx]=SpanCx(t1,Tg(:,1))
if flag1==0
display(’condition (iii) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end
b0=simplify((-1)ˆ(n-1)*Cx/(2*Bell))

end
if (n+k)˜=2*round((n+k)/2)
t1=simplify(adfg(Tg(:,k+2), Tg(:,n), xe))
[flag1,Cx]=SpanCx(t1,Tg(:,1:2))
if flag1==0
display(’condition (iii) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end
b0=simplify((-1)ˆ(n-1)*Cx(2)/((n+k)*Bell))

end
if ChConst(b0,xe)==0
display(’condition (iii) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with’)
display(d)
return

end
beta=[beta; b0]
Bell=Bell*exp(b0*w(d+1-k))
Tg(:,1)=Bell*ge0(:,1);
for k1=2:n
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Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);
end
Tg=simplify(Tg)

end

bgu(:,1)=Tg(:,1);
for k1=2:n
bgu(:,k1)=adfg(Feu,bgu(:,k1-1),xe);

end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));

CC4=simplify(bgu-bg0)
if ChZero(CC4)==0
display(’condition (iv) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with d=’)
d=d
return

end

if ChCommute(bg0,xe)==0
display(’condition (v) of Thm 8.5 is not satisfied.’)
display(’System is NOT d-RDOEL with d=’)
display(d)
return

end

display(’System is, by Thm 8.5, d-RDOEL with’)
display(d)

Bell=simplify(Bell)
varphi=int(1/Bell,x1);
varphi0=subs(varphi,xe,xe-xe);
varphi=simplify(varphi-varphi0)

for k=1:n
idS(:,k)= (-1)ˆ(n-k)*bg0(:,n+1-k);

end
idS=simplify(idS);
idS2=idS((d+1):N, 1:n)
dS2=simplify(inv(idS2))
S2=Codi(dS2,xe(d+1:N));
S2=simplify(S2);
S1=w;
Se=[S1; S2];
Se0=subs(Se,xe,xe-xe);
Se=simplify(Se-Se0)

dSe=jacobian(Se,xe);
NFeu=simplify(dSe*Feu);
Gammaeu=simplify(NFeu-[Se(2:N); 0])

return
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The following is a MATLAB subfunction program for Theorem 8.6.

function [flag,xe,Se,Gammaeu]=dRDOEL(d,Fu,H,x,u,n,m)

syms y x1 w1 w2 w3 w4 w5 w6 w7 w8 w9 real
flag=0;
N=n+d;
w=sym(’w’,[d,1]);
xe=[w; x];
Se=xe-xe;
Gammaeu=xe-xe;
P=w-w;
if d>0
P=[w(2:d); H];

end
Feu=[P; Fu];
Fe0=subs(Feu,u,u-u);
Te=xe-xe;
Te(1)=xe(1);
for k=2:N
Te(k)=simplify(Lfh(Fe0,Te(k-1),xe));

end
Te=simplify(Te);
dTe=simplify(jacobian(Te,xe));
idTe=simplify(inv(dTe));
geu(:,1)=idTe(:,N);
for k=2:n
geu(:,k)=adfg(Feu,geu(:,k-1),xe);

end
geu=simplify(geu);
ge0=simplify(subs(geu,u,u-u));
for k=2:n-1
CC1=adfg(ge0(:,1),ge0(:,k),xe);
if ChZero(CC1)==0
return

end
end
if n==2*round(n/2)
t1=simplify(adfg(ge0(:,1), ge0(:,n), xe));
[flag1,Cx]=SpanCx(t1,ge0(:,1));
if flag1==0
return

end
b0=-Cx/2;

end
if n˜=2*round(n/2)
t1=simplify(adfg(ge0(:,2), ge0(:,n), xe));
[flag1,Cx]=SpanCx(t1,ge0(:,1:2));
if flag1==0
return

end
b0=Cx(2)/n;

end
bx1=[xe(1:d); xe(d+2:N)] ;
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t2=simplify(jacobian(b0,bx1));
if ChZero(t2)==0
return

end
t3=int(b0,x1);
t30=subs(t3,x1,x1-x1);
Bell=exp(t3-t30);
Tg(:,1)=Bell*ge0(:,1);
for k1=2:n
Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);

end
Tg=simplify(Tg);
for k=1:min(d,n-2)
if (n+k)==2*round((n+k)/2)
t1=simplify(adfg(Tg(:,k+1),Tg(:,n),xe));
[flag1,Cx]=SpanCx(t1,Tg(:,1));
if flag1==0
return

end
b0=simplify((-1)ˆ(n-1)*t1(N)/(2*Bell*Tg(N,1)));

end
if (n+k)˜=2*round((n+k)/2)
t1=simplify(adfg(Tg(:,k+2), Tg(:,n), xe));
[flag1,Cx]=SpanCx(t1,Tg(:,1:2));
if flag1==0
return

end
b0=simplify((-1)ˆ(n-1)*Cx(2)/((n+k)*Bell));

end
if ChConst(b0,xe)==0
return

end
Bell=Bell*exp(b0*w(d+1-k));
Tg(:,1)=Bell*ge0(:,1);
for k1=2:n
Tg(:,k1)=adfg(Fe0,Tg(:,k1-1),xe);

end
Tg=simplify(Tg);

end
bgu(:,1)=Tg(:,1);
for k1=2:n
bgu(:,k1)=adfg(Feu,bgu(:,k1-1),xe);

end
bgu=simplify(bgu);
bg0=simplify(subs(bgu,u,u-u));
CC4=simplify(bgu-bg0);
if ChZero(CC4)==0
return

end
f ChCommute(bg0,xe)==0

return
end
Bell=simplify(Bell);
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varphi=int(1/Bell,x1);
varphi0=subs(varphi,xe,xe-xe);
varphi=simplify(varphi-varphi0);
for k=1:n
idS(:,k)= (-1)ˆ(n-k)*bg0(:,n+1-k);

end
idS=simplify(idS);
idS2=idS((d+1):N, 1:n);
dS2=simplify(inv(idS2));
S2=Codi(dS2,xe(d+1:N));
S2=simplify(S2);
S1=w;
Se=[S1; S2];
Se0=subs(Se,xe,xe-xe);
Se=simplify(Se-Se0);
dSe=jacobian(Se,xe);
NFeu=simplify(dSe*Feu);
Gammaeu=simplify(NFeu-[Se(2:N); 0]);
flag=1;
return

The following MATLAB program, that needs subfunction dRDOEL, is to check the
conditions of Theorem 8.6.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms y u u1 u2 u3 u4 u5 real

% Fu=[x2; x3; -4*x1*x3-3*x2ˆ2-6*x1ˆ2*x2+u];
% m=1; %Ex:8.2.4 or Ex:8.3.2

Fu=[x2; x3; x2ˆ3+u];
m=1; %Ex:8.3.3

% Fu=[x2+x1*uˆ2; x3; 4*x3*x1+u ];
% m=1; %P:8-4(a) or P:8-5(a)

% Fu=[x2+x3*uˆ2; x3; x4; 4*x3*x1+u ];
% m=1; %P:8-5(b)

% aa1=(3*x2*x3)/(x1 + 1)-(2*x2ˆ3)/(x1 + 1)ˆ2;
% aa2=-x3*(x1+1)*log(x1+1)+u;
% Fu=[x2; x3; aa1+aa2]; m=1; %P:8-4(c) or P:8-5(c)

% Fu=[x2; x3; x4+uˆ2; 5*x2*x3+2*x2ˆ2+u]
% m=1; %P:8-4(d) or P:8-5(d)

% Fu=[x2*exp(x1); x3+x1*u; u ];
% m=1; %P:8-2(d) or P:8-4(b)

H=x1
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Fu=simplify(Fu)
n=length(Fu);
x=sym(’x’,[n,1]);
if m>1
u=sym(’u’,[m,1])

end

for k=1:n-1
d=k-1;
[flag,xe,Se,Gammaeu]=dRDOEL(d,Fu,H,x,u,n,m);
if flag==1
display(’System is RDOEL with index’)
display(d)
display(Se)
display(’and’)
display(Gammaeu)
return

end
if flag==0
display(’System is not RDOEL with index’)
display(d)

end
end

display(’Hence, by Thm 8.6, the system is NOT RDOEL.’)

return

The following is a MATLAB subfunction program for Theorem 8.11.

function [flag,beta]
=betaJS(r,s,ki,q,bg0,Tg,iD,g0,x,y,N,bs,sigma,tx,bx)

flag=0;
beta=x-x;
Phi=x-x;
for k=1:ki-1
Phi=[Phi g0(:,1:N(k)-N(ki)-s,k)];

end
Phi=Phi(:,2:size(Phi,2));
bPhi=Phi;
for k=1:ki-1
if N(k)-N(ki)+1-s>0
bPhi=[bPhi g0(:,N(k)-N(ki)+1-s,k)];

end
end
cc=simplify(adfg(bg0(:,N(q),q),Tg(:,s,ki),x));
if rank([cc bPhi]) > rank(bPhi)
return

end
temp1=iD*cc;
for k=1:ki-1
SS=(-1)ˆ(N(k)-N(ki)-s+N(q));
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temp2=SS*temp1(bs(k)+N(k)-N(ki)+1-s);
dtemp2=jacobian(temp2,bx);
if ChZero(dtemp2)==0
return

end
beta(k)=subs(temp2,tx,y);

end
beta=beta(1:sigma(r-1));
flag=1;

return

The following MATLAB program, that needs subfunction betaJS, is to check the
conditions of Theorem 8.11.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 real
syms u u1 u2 u3 u4 u5 real
syms y y1 y2 y3 y4 y5 real

aa11=4*x2*x1ˆ2+x3*x4+2*x1*x4*(x1ˆ3+x2*x4)+u1;
aa12=x1*x4*u2ˆ2+(x2+x1*x4+2*x1ˆ2*x4)*u2;
aa1=aa11+aa12;
Fu=[x2; x3+x1*(u2+u2ˆ2); aa1; x1ˆ2+u2];
H=[x1; x4]; m=2; %Ex:8.4.1

% aa1=x1*u1ˆ2+u1+u3*x2+3*x1*x2+x1*x5+x2*x4+x3*x6+u3*x1*x6;
% aa2=u2+x1*x4*(u3+x1)+x2*x4*x6+x1*x6*(u1ˆ2+x5);
% Fu=[x2; x3+u3*x1; aa1; u1ˆ2+x5; aa2; u3+x1];
% H=[x1; x4; x6]; m=3; %Ex:8.4.2

% Fu=[x2; x3; x5ˆ2+u1+u2*x4; x5; u2];
% H=[x1; x4]; m=2; %Ex:8.4.3

% aa1=u1+sin(x1)*(u2+x1*x3)+x3*cos(x1)*(x3*u1ˆ2+x2);
% aa2=u2+x1*x3;
% Fu=[x3*u1ˆ2+x2; aa1; aa2];
% H=[x1; x3]; m=2; %P:8.5(a)

% aa1=3*x2ˆ2+2*u2*x2+u1+x3+x6+x1*x3+3*x3*x6+x4*x5+u2*x1*x5;
% aa2=u2+x2;
% Fu=[x2; x3; x4+u2*x1; aa1; x6; aa2];
% H=[x1; x5]; m=2; %P:8.5(b)

% aa1=u1+u3*x4+x4*x5+2*x5*x8+x6*x7; aa3=u3+x5;
% aa2=u2+u3*x1*x4+x1*x4*x5+2*x1*x5*x8+x1*x6*x7+2*x2*x4*x8;
% Fu=[x2; x3; aa1; x5; x6; aa2+2*x2*x5*x7+x3*x4*x7; x8; aa3];
% H=[x1; x4; x7]; m=3; %P:8.5(c)

% aa1=u1+u3*x5+x6*x7; aa2=u2+x2*x8+x1*(x1ˆ2+u4);
% aa3=u3; aa4=x1ˆ2+u4;
% Fu=[x2; u4*x7ˆ2+x3+u2*x1+u3*x4;aa1; x5+u4*x7; x6;aa2;aa3;aa4];
% H=[x1; x4; x7; x8]; m=4; %P:8.5(d)
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% aa1=u1+x1*((x2-x1*x3)*u1ˆ2+x4)+x2*x3;
% aa2=u2+2*x1*x2;
% Fu=[x2; aa1; (x2-x1*x3)*u1ˆ2+x4; aa2];
% H=[x1; x3]; m=2; %P:8.6(a)

% aa1=x2*x3+x1*(x1*u1ˆ2+x4)+u1*(x3+1)
% Fu=[x2; aa1; x1*u1ˆ2+x4; u2+2*x1*x2];
% H=[x1; x3]; m=2; %P:8.6(b)

% aa1=u1+u2*x2+2*x1*x2+x3*x4ˆ2-u2*x1*x4ˆ2+2*u2*x1*x4ˆ3;
% Fu=[x2; x3+2*u2*x1*x4; aa1+2*u2*x2*x4; u2];
% H=[x1; x4]; m=2; %P:8.6(c)

n=length(Fu); p=length(H);
x=sym(’x’,[n,1]);
if p>1
y=sym(’y’,[p,1]);

end
if m>1
u=sym(’u’,[m,1]);

end

F0=subs(Fu,u,u-u);
N=ObvIndex0(F0,H,x,n,p);

[bNu,IA]=sort(N,’descend’);
IC=zeros(p);
for k=1:p
IC(k,IA(k))=1;

end
H=IC*H
Fu=simplify(Fu)

N=ObvIndex0(F0,H,x,n,p)

barp=1;
sigma(1)=1;
for k=1:p-1
if N(k+1)-N(k)==0
sigma(barp)=sigma(barp)+1;

else
sigma=[sigma; sigma(barp)+1];
barp=barp+1;

end
end

bs(1)=0;
for k1=1:p
bs(k1+1)=sum(N(1:k1));

end

T=x-x;
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for k1=1:p
for k2=1:N(k1)
T(bs(k1)+k2)=Lfhk(F0,H(k1),x,k2-1);

end
end
T=simplify(T)

if ChZero(T-x)==0
display(’Solve the problem without MATLAB.’)
return

end

tx=H;
bx=x1-x1;
for k=1:p
bx=[bx; x(bs(k)+2:bs(k)+N(k))];

end
bx=bx(2:length(bx));

for k=2:p
C1=Lfhk(F0,H(k),x,N(k));
dC1=jacobian(C1,x);
dC2=jacobian(T(1:N(k)),x);
for k2=2:p
dC2=[dC2; jacobian(T(bs(k2)+1:bs(k2)+min(N(k),N(k2))),x)];

end
if rank([dC1; dC2]) > rank(dC2)
disp(’Condition (i) of Thm 8.11 is not satisfied’)
return

end
end

dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
for k1=1:p
gu(:,1,k1)=idT(:,bs(k1+1));
for k2=2:N(k1)
gu(:,k2,k1)=adfg(Fu,gu(:,k2-1,k1),x);

end
end
gu=simplify(gu)
g0=subs(gu,u,u-u);

for k=1:p
D(:,bs(k)+1:bs(k)+N(k))=g0(:,1:N(k),k);

end
D=simplify(D);
iD=simplify(inv(D));

for k=1:p
Tg(:,1,k)=g0(:,1,k);

end
for k1=1:sigma(1)
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bg0(:,1:N(k1),k1)=g0(:,1:N(k1),k1);
bgu(:,1:N(k1),k1)=gu(:,1:N(k1),k1);

end

ZeroM=jacobian(x,x)-jacobian(x,x);

for r=2:barp
for s=1:N(1)-N(sigma(r))
sg=0;
for k=1:p
if N(k) >= N(sigma(r))+s

sg=sg+1;
end

end
dGam=ZeroM(1:sg,1:sigma(r-1));
Gam=ZeroM(1:sg,1);
Beta=ZeroM(1:sigma(r-1),sigma(r-1)+1:p);
for q=1:sigma(r-1)
Tbeta=ZeroM(1:sigma(r-1),1);
for ki=sigma(r-1)+1:p

[fl,beta]=betaJS(r,s,ki,q,bg0,Tg,iD,g0,x,y,N,bs,sigma,tx,bx);
if fl==0
disp(’Condition (ii) of Thm 8.11 is not satisfied’)
return

end
bki=(q-1)*(p-sigma(r-1))+ki-sigma(r-1);
Beta(1:sg,bki)=beta(1:sg);

end
end
Beta=simplify(Beta);
for k3=1:sg
for k4=1:sigma(r-1)

t4=Beta(k3,(k4-1)*(p-sigma(r-1))+1:k4*(p-sigma(r-1)));
if ChExact(t4,y(sigma(r-1)+1:p))==0
return

end
Tbeta(k3,k4)=Codi(t4,y(sigma(r-1)+1:p) );

end
end
dGam=simplify(Tbeta(1:sg,:));
for k3=1:sg
if ChExact(dGam(k3,:),y(1:sigma(r-1)))==0

return
end
Gam(k3)=Codi(dGam(k3,:),y(1:sigma(r-1)));

end
Gam=simplify(Gam(1:sg,:))
GamH=subs(Gam,y,H);
for k1=sigma(r-1)+1:sigma(r)
Tg(:,s+1,k1)=Tg(:,s,k1);
for k2=1:sigma(r-1)

for k3=1:N(k2)-N(k1)+1-s
tempTg1=simplify(Lfhk(F0,GamH(k2),x,N(k2)-k3-s));
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tempTg2=simplify(Lfh(g0(:,1,k1),tempTg1,x));
tempTg3=tempTg2*bg0(:,k3,k2);
Tg(:,s+1,k1)=Tg(:,s+1,k1)+(-1)ˆ(k3-1)*tempTg3;

end
end

end
for k1=sigma(r-1)+1:sigma(r)
bg0(:,1,k1)=Tg(:,s+1,k1);
bgu(:,1,k1)=bg0(:,1,k1);
for k2=2:N(k1)

bg0(:,k2,k1)=adfg(F0,bg0(:,k2-1,k1),x);
bgu(:,k2,k1)=adfg(Fu,bgu(:,k2-1,k1),x);

end
end

end
end
bgu=simplify(bgu)

for k1=1:p
for k=1:N(k1)
idS(:,bs(k1)+k)= (-1)ˆ(N(k1)-k)*bgu(:,N(k1)+1-k,k1);

end
end
idS=simplify(idS)

for k1=1:n
if ChZero(jacobian(idS(:,k1),u))==0
disp(’Condition (iii-1) of Thm 8.11 is not satisfied’)
return

end
end

if ChCommute(idS,x)==0
disp(’Condition (iii-2) of Thm 8.11 is not satisfied’)
return

end

disp(’System is equivalent to a dual Brunovsky NOCF with z=’)

dS=simplify(inv(idS));
S=simplify(Codi(dS,x))

gammau=x-x;
for k1=1:p
for k=1:N(k1)-1
gammau(bs(k1)+k)=Lfh(Fu,S(bs(k1)+k),x)-S(bs(k1)+k+1);

end
gammau(bs(k1)+N(k1))=Lfh(Fu,S(bs(k1+1)),x);

end
gammau=simplify(gammau)

return
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MATLAB program for Theorem 8.12:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real

Fu=[x2+(x1-x2ˆ2+u1)ˆ2+u2ˆ2; x1-x2ˆ2+u1];
iFu=[x2+(x1-x2ˆ2-u2ˆ2)ˆ2-u1; x1-x2ˆ2-u2ˆ2];
H=x1-x2ˆ2; m=2; %Ex:8.5.1

% Fu=[x2+uˆ2*(-x2ˆ2+x1)+(-x2ˆ2+u+x1)ˆ2; x1-x2ˆ2+u];
% iFu=[x2+(x1-x2ˆ2-(x2-u)*uˆ2)ˆ2-u; x1-x2ˆ2-(x2-u)*uˆ2];
% H=x1-x2ˆ2; m=1; %Ex:8.5.2

Fu=simplify(Fu)
H=simplify(H)
n=length(Fu);
x=sym(’x’,[n,1])
if m>1
u=sym(’u’,[m,1])

end
F0=simplify(subs(Fu,u,u-u));

if ChInverseF(Fu,iFu,x)==0
display(’iFu is not correct.’)
return

end

T=x-x; T(1)=H;
for k=2:n
T(k)=simplify(subs(T(k-1),x,F0));

end
T=simplify(T)

dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
gu(:,1)=idT(:,n);
for k=2:n+1
gu(:,k)=sstarmap(Fu,iFu,gu(:,k-1),x);

end
gu=simplify(gu)
g0=subs(gu,u,u-u)

if ChZero(gu-g0)==0
display(’condition (i) of Thm 8.12 is not satisfied.’)
display(’System is NOT state equivalent to a LOCF.’)
return

end

if ChCommute(g0,x)==0
display(’condition (ii) of Thm 8.12 is not satisfied.’)
display(’System is NOT state equivalent to a LOCF.’)
return

end
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display(’System is, by Thm 8.12, state equiv. to a LOCF with’)

for k=1:n
idS(:,k)= g0(:,n+1-k);

end
idS=simplify(idS);
dS=simplify(inv(idS));
S=Codi(dS,x)

ASu=simplify(subs(S,x,Fu));
dAS=simplify(jacobian(ASu,x));
A=simplify(dAS*idS)
Gammau=ASu-subs(ASu,u,u-u)

return

MATLAB program for Theorem 8.13:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real

% Fu=[x2+(x1-x2ˆ2+u1)ˆ2+u2ˆ2; x1-x2ˆ2+u1]; H=x1-x2ˆ2; m=2;
% iFu=[x2+(x1-x2ˆ2-u2ˆ2)ˆ2-u1; x1-x2ˆ2-u2ˆ2]; %Ex:8.5.1

Fu=[x2+uˆ2*(-x2ˆ2+x1)+(-x2ˆ2+u+x1)ˆ2; x1-x2ˆ2+u];
iFu=[x2+(x1-x2ˆ2-(x2-u)*uˆ2)ˆ2-u; x1-x2ˆ2-(x2-u)*uˆ2];
H=x1-x2ˆ2; m=1; %Ex:8.5.2

% aa=u+x1+exp(x2)+(x3+u*x1)ˆ2-1; aai=x3-u-exp(x1)-x2ˆ2+1;
% Fu=[x2; x3+u*x1; aa];
% iFu=[aai; x1; x2-u*aai]; H=x1; m=1; %P:8.8(a)

% Fu=[x2; x3; exp(x1+u+x3ˆ2)-1]; H=x1;
% iFu=[ log(x3+1)-u-x2ˆ2; x1; x2 ]; m=1; TYPE=1; %P:8.8(b)

% Fu=[x2; (x3+1)*exp(x1*u)-1; exp(x1+u+(x3+1)*exp(x1*u)-1)-1];
% aai=log(x3+1)-u-x2; iFu=[ aai; x1; (1+x2)*exp(-aai*u)-1];
% H=x1; m=1; TYPE=2; %P:8.8(c)

Fu=simplify(Fu)
H=simplify(H);
n=length(Fu);
x=sym(’x’,[n,1]);
if m>1
u=sym(’u’,[m,1]);

end
F0=simplify(subs(Fu,u,u-u));

if ChInverseF(Fu,iFu,x)==0
display(’iFu is not correct.’)
return
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end

T=x-x; T(1)=H;
for k=2:n
T(k)=simplify(subs(T(k-1),x,F0));

end
T=simplify(T)

dT=simplify(jacobian(T,x));
idT=simplify(inv(dT));
gu(:,1)=idT(:,n);
for k=2:n
gu(:,k)=sstarmap(Fu,iFu,gu(:,k-1),x);

end
gu=simplify(gu)
g0=subs(gu,u,u-u);

if ChZero(gu-g0)==0
display(’condition (i) of Thm 8.13 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF.’)
return

end

if ChCommute(g0,x)==0
display(’condition (ii) of Thm 8.13 is not satisfied.’)
display(’System is NOT state equivalent to a NOCF.’)
return

end

display(’System is, by Thm 8.13, state equiv. to a NOCF.’)

for k=1:n
idS(:,k)= g0(:,n+1-k);

end
idS=simplify(idS);
dS=simplify(inv(idS));
S=Codi(dS,x)

ASu=simplify(subs(S,x,Fu));
gammau=simplify(ASu-[S(2:n); 0])

return

The following is a MATLAB subfunction program for Theorems 8.14 and 8.18.

function [flag,beta]=BETA_thm814(kappa,g0,x,y,n)

flag=0; beta=y-y;
TEMP1=adfg(g0(:,1),g0(:,kappa),x);
[flag1,TEMP2]=SpanCx(TEMP1,g0(:,1));
if flag1==0
return

end
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beta=simplify(TEMP2/Lfh(g0(:,kappa),x(n),x));
dbeta=simplify(jacobian(beta,x));
if ChZero(dbeta(1:n-1))==0
return

end
beta=subs(beta,x(n),y);
flag=1;
return

The following is a MATLAB subfunction program for Theorems 8.15 and 8.19.

function [flag,beta]=BETA_thm815(sigma,Fu,Tu,gu,g0,x,y,u,n,m)

flag=0; beta=y-y;
if ChZero(gu(:,1:sigma)-g0(:,1:sigma))==0
return

end
[flag2,theta]=SpanCx(gu(:,sigma+1),g0(:,sigma+1));
if flag2==0
return

end
temp1=simplify(subs(theta,x,Fu));
tempN=simplify(jacobian(temp1,u));
tempD=simplify(jacobian(Tu(n+1-sigma),u));
for k1=1:m
if ChZero(tempD(k1))==0
Betau=simplify(tempN(k1)/tempD(k1));
break

end
end
Temp=simplify(tempN-Betau*tempD);
if ChZero(Temp)==0
return

end
Beta0=simplify(subs(Betau,u,u-u));
dBeta0=simplify(jacobian(Beta0,x));
TdBeta0=[dBeta0(1:n-sigma) dBeta0(n-sigma+2:n)];
if ChZero(TdBeta0)==0
return

end
beta=subs(Beta0,x(n-sigma+1),y);
flag=1;
return
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The following MATLAB program, that needs subfunctions BETA-thm8-5-3 and
BETA-thm8-5-4, is to check the conditions of Theorems 8.14–8.16.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms y u u1 u2 u3 u4 u5 real

Fu=[ x2; log(u + x1+1 +x2ˆ2)]; m=1;
iFu=[ exp(x2)-u-1-x1ˆ2; x1]; TYPE=1; %Ex:8.5.4

% Fu=[ (1+x2)*exp(u2ˆ2)-1; (1+x1)*exp(u1)-1];
% iFu=[ (1+x2)*exp(-u1)-1; (1+x1)*exp(-u2ˆ2)-1];
% m=2; TYPE=2; %Ex:8.5.5

% Fu=[ x2; x1+u*(1+x2)];
% iFu=[ x2-u*(1+x1); x1]; m=1; TYPE=4; %Ex:8.5.6

% Fu=[ x2*(1+u); log(u + x1+1 +x2ˆ2)];
% iFu=[ exp(x2)-u-1-(x1/(1+u))ˆ2; x1/(1+u)];
% m=1; TYPE=1; %Ex:8.5.7(b)

% Fu=[ x2*(1+u); log(u + x1+1 +x2ˆ2)];
% iFu=[ exp(x2)-u-1-(x1/(1+u))ˆ2; x1/(1+u)];
% m=1; TYPE=2; %Ex:8.5.7(c)

% Fu=[ x2; x3; exp(x1+u+x2*x3)- 1];
% iFu=[ log(x3+1)-u-x1*x2; x1; x2 ];
% m=1; TYPE=1; %Ex:8.6.2(b)

% Fu=[ x2; x3+x1*u2ˆ2; u1+x1-x2*(x3+x1*u2ˆ2)];
% iFu=[ x3-u1+x1*x2; x1; x2-u2ˆ2*(x3-u1+x1*x2) ];
% m=2; TYPE=2; %Ex:8.6.3(b)

% Fu=[ x2; x3+x1*u2ˆ2; u1+x1-x2*(x3+x1*u2ˆ2)];
% iFu=[ x3-u1+x1*x2; x1; x2-u2ˆ2*(x3-u1+x1*x2) ];
% m=2; TYPE=1; %Ex:8.6.3(d)

% Fu=[ x2; exp(x1*(x2+u2)+u1)-1 ];
% iFu=[ (log(1+x2)-u1)/(x1+u2) ; x1];
% m=2; TYPE=1; %Ex:8.6.4(b)

% Fu=[ x2+u; x3; u+x1+x1*(u+x2)ˆ2];
% iFu=[ (x3-u)/(1+x1ˆ2) ; x1-u; x2];
% m=1; TYPE=2; %Ex:8.6.5(b)

% Fu=[ x2; log(x1*(x2+u2)+u1+1) ];
% iFu=[ (exp(x2)-1-u1)/(x1+u2) ; x1];
% m=2; TYPE=1; %P:8.13(b)

% Fu=[ x2; x3; exp(x1+u+x3ˆ2)- 1];
% iFu=[ log(x3+1)-u-x2ˆ2; x1; x2 ]; m=1; TYPE=1; %P:8.9(a)

% aa=exp(x1+u+(x3+1)*exp(x1*u)-1)- 1; aai=log(x3+1)-u-x2;
% Fu=[x2; (x3+1)*exp(x1*u)-1; aa];
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% iFu=[aai; x1; (1+x2)*exp(-aai*u)-1]; m=1; TYPE=2; %P:8.9(b)

% Fu=[ x2; x3; x1+u*(1+x2*x3)];
% iFu=[ x3-u*(1+x1*x2); x1; x2 ]; m=1; TYPE=4; %P:8.9(c)

% Fu=[ x2; x3; exp(x1*(x2+u2)+u1)-1]; m=2;
% iFu=[ (log(1+x3)-u1)/(x1+u2) ; x1; x2]; TYPE=1; %P:8.9(d)

n=length(Fu);
x=sym(’x’,[n,1]);
z=sym(’z’,[n,1]);
if m>1
u=sym(’u’,[m,1])

end

H=x1
Fu=simplify(Fu)
F0=simplify(subs(Fu,u,u-u));

if ChInverseF(Fu,iFu,x)==0
display(’Check inverse function once again.’)
return

end

T=x-x; T(1)=H; Tu=T;
for k=2:n
T(k)=simplify(subs(T(k-1),x,F0));
Tu(k)=simplify(subs(T(k-1),x,Fu));

end
T=simplify(T)
Tu=simplify(Tu);
alphaU=x-x;
alphaU(1:n-1)=Tu(2:n)-T(2:n);
alphaU(n)=simplify(subs(T(n),x,Fu))

dT=jacobian(T,x);
idT=inv(dT); gu(:,1)=idT(:,n);
for k=2:n+1
gu(:,k)=sstarmap(Fu,iFu,gu(:,k-1),x);

end
gu=simplify(gu)
g0=subs(gu,u,u-u);

kappa1=n+1;
for k=2:n
if ChZero(Lfh(g0(:,k),T(n),x)) == 0
kappa1=k;
break

end
end
kappa=kappa1

sigma1=n;
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for k=1:n-1
if ChZero(jacobian(Tu(n+1-k),u)) == 0
sigma1=k;
break

end
end
sigma=sigma1

if and(kappa==n+1,sigma==n)
if ChZero(gu-g0) == 0
display(’condition of Thm 8.16 is not satisfied.’)
display(’System is NOT state equiv. to a NOCF with OT.’)
return

end
end
flag=1;
beta=y-y;

if ChZero(T-x)==0
display(’Find beta(y) without MATLAB.’)
return

end
if kappa<=n
[flag1,beta1]=BETA_thm814(kappa,g0,x,y,n);

end

if sigma<n
[flag2,beta2]=BETA_thm815(sigma,Fu,Tu,gu,g0,x,y,u,n,m);

end

if TYPE==1 %Thm 8.14
flag=flag1; beta=beta1

end
if TYPE==2 %Thm 8.15
flag=flag2; beta=beta2

end

if flag==0
display(’condition (i) is not satisfied.’)
display(’System is NOT state equiv. to a NOCF with OT.’)
return

end

if ChZero(beta)==0
beta0inv=subs(1/beta,y,y-y);
if ChZero(beta0inv)==1
display(’condition (i) is not satisfied.’)
display(’System is NOT state equiv. to a NOCF with OT.’)
return

end
end

ibeta=int(beta,y);



8.7 MATLAB Programs 507

ibeta0=subs(ibeta,y,y-y);
ell = simplify(exp(ibeta-ibeta0))
vphi = simplify(int(1/ell, y));
vphi0 = subs(vphi,y,y-y);
varphi= vphi-vphi0;

bgu(:,1)= subs(ell,y,T(n))*g0(:,1);
for k=2:n
bgu(:,k)=sstarmap(Fu,iFu,bgu(:,k-1),x);

end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));

if ChZero(bgu-bg0) == 0
display(’condition (ii) is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT.’)
return

end

for k=1:n-1
bCC(:,k)=adfg(bg0(:,1),bg0(:,k+1),x);

end
bCC=simplify(bCC);

if ChZero(bCC) == 0
display(’condition (iii) is not satisfied.’)
display(’System is NOT state equivalent to a NOCF with OT.’)
return

end

display(’System is state equivalent to a NOCF with OT.’)

varphi=simplify(varphi)
for k=1:n
idS(:,k)=bg0(:,n+1-k);

end
idS=simplify(idS);
dS=simplify(inv(idS));
S=Codi(dS,x)

gammaU=x-x;
for k=1:n-1
gammaU(k)=simplify(subs(S(k),x,Fu)-S(k+1));

end
gammaU(n)=simplify(subs(S(n),x,Fu));
gammaU=simplify(gammaU)

return
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The following is a MATLAB subfunction program for Theorem 8.20.

function [flag,beta]=BETA_thm820(kappa,Fu,iFu,x,y,u,n)

flag=0; beta=y-y;
alphanu=Fu(n);
theta=jacobian(alphanu,x(n+2-kappa));
dtheta=jacobian(theta,u);
dalphanu=jacobian(alphanu,u);
Temp1=simplify((1/theta)*dtheta);
[flag2,Bbetau]=SpanCx(Temp1’,dalphanu’);
if flag2==0
return

end
Temp2=jacobian(Bbetau,x);
Temp3=jacobian(alphanu,x);
Temp4=[Temp2; Temp3];
if rank(Temp4)>1
return

end
xbeta=simplify(subs(Bbetau,x,iFu));
beta=simplify(subs(xbeta,x(n),y));
flag=1;

return

The followingMATLABprogram, that needs subfunctionsBETA-thm8-5-3,BETA-
thm8-5-4, and BETA-thm8-6-4, is to check the conditions of Theorems 8.18–8.21.

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real
syms w1 w2 w3 w4 w5 w6 w7 w8 w9 real
syms u y u1 u2 u3 real

d=1; Fu=[x2; x3; exp(x1+u+x2*x3)- 1]; m=1; TYPE=1;
iFu=[ log(x3+1)-u-x1*x2; x1; x2 ]; %Ex:8.6.2(c)

% d=1; Fu=[x2; x3+x1*u2ˆ2; u1+x1-x2*(x3+x1*u2ˆ2)]; m=2; TYPE=2;
% iFu=[ x3-u1+x1*x2; x1; x2-u2ˆ2*(x3-u1+x1*x2) ]; %Ex:8.6.3(c)

% d=1; Fu=[x2; x3+x1*u2ˆ2; u1+x1-x2*(x3+x1*u2ˆ2)]; m=2; TYPE=1;
% iFu=[ x3-u1+x1*x2; x1; x2-u2ˆ2*(x3-u1+x1*x2) ]; %Ex:8.6.3(e)

% d=1; Fu=[x2; x3; exp(x1*(x3+u2)+u1)-1]; m=2; TYPE=1;
% iFu=[(log(1+x3)-u1)/(x2+u2); x1; x2]; %Ex:8.6.4(b)

% d=1; Fu=[x2; x3; exp(x1*(x3+u2)+u1)-1]; m=2; TYPE=3;
% iFu=[(log(1+x3)-u1)/(x2+u2) ; x1; x2]; %Ex:8.6.4(c)

% d=1; Fu=[x2+u; x3; u+x1+x1*(u+x2)ˆ2]; m=1; TYPE=3;
% iFu=[(x3-u)/(1+x1ˆ2); x1-u; x2]; %Ex:8.6.5
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% d=2; Fu=[ x2; x1+u*(1+x2)];
% iFu=[ x2-u*(1+x1); x1]; m=1; TYPE=4; %Ex:8.6.6

% d=1; Fu=[x2; x3+x2*u2ˆ2; u1+x1-x2*(x3+x2*u2ˆ2)]; m=2;
% iFu=[x3-u1+x1*x2; x1; x2-u2ˆ2*x1]; TYPE=1; %P:8.12(b)

% d=1; Fu=[x2; x3+x2*u2ˆ2; u1+x1-x2*(x3+x2*u2ˆ2)]; m=2;
% iFu=[x3-u1+x1*x2; x1; x2-u2ˆ2*x1]; TYPE=2; %P:8.12(c)

% d=1; Fu=[x2; log(x1*(x2+u2)+u1+1)]; m=2; TYPE=3;
% iFu=[(exp(x2)-1-u1)/(x1+u2); x1]; %P:8.13(c)

% d=2; Fu=[x2; x3; x1+u*(1+x2*x3)]; m=1; TYPE=4;
% iFu=[x3-u*(1+x1*x2); x1; x2]; %P:8.14(a)

% d=1; Fu=[x2; x3; exp(x1*(x2+u2)+u1)-1]; m=2; TYPE=3;
% iFu=[(log(1+x3)-u1)/(x1+u2); x1; x2]; %P:8.14(b)

% d=1; Fu=[x2; x3; x1+x1*x3+u]; m=1; TYPE=3;
% iFu=[(x3-u)/(1+x2); x1; x2]; %P:8.14(c)

% d=2; Fu=[x2; x3; x1+x1*x3+u]; m=1; TYPE=3;
% iFu=[(x3-u)/(1+x2); x1; x2]; %P:8.14(c)

n=length(Fu);
x=sym(’x’,[n,1]); w=sym(’w’,[d,1]);
if m>1
u=sym(’u’,[m,1])

end

H=x1;
Fu=simplify(Fu)
iFu=simplify(iFu);
F0=simplify(subs(Fu,u,u-u));

if ChInverseF(Fu,iFu,x)==0
display(’Check inverse function once again.’)
return

end

T=x-x; T(1)=H; Tu=T;
for k=2:n
T(k)=simplify(subs(T(k-1),x,F0));
Tu(k)=simplify(subs(T(k-1),x,Fu));

end
T=simplify(T)
Tu=simplify(Tu);
alphaU=x-x;
alphaU(1:n-1)=Tu(2:n)-T(2:n);
alphaU(n)=simplify(subs(T(n),x,Fu))

if ChZero(alphaU(1:min(d,n-1)))==0
display(’Assumption is not satisfied.’)
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return
end

dT=jacobian(T,x); idT=inv(dT);
gu(:,1)=idT(:,n);
for k=2:n+1
gu(:,k)=sstarmap(Fu,iFu,gu(:,k-1),x);

end
gu=simplify(gu)
g0=subs(gu,u,u-u);

kappa1=n+1;
for k=2:n
if ChZero(Lfh(g0(:,k),T(n),x)) == 0
kappa1=k;
break

end
end
kappa=kappa1

sigma1=n;
for k=1:n-1
if ChZero(jacobian(Tu(n+1-k),u)) == 0
sigma1=k;
break

end
end
sigma=sigma1

if and(kappa==n+1,sigma==n)
if ChZero(gu-g0) == 0
display(’condition of Thm 8.21 is not satisfied.’)
display(’System is NOT RDOEL with’)
d=d
return

end
flag=1; beta=y-y;

end

if ChZero(T-x)==0
display(’Find beta(y) without MATLAB.’)
return

end

if kappa<=n-d
[flag1,beta1]=BETA_thm814(kappa,g0,x,y,n)

end
if sigma<n-d
[flag2,beta2]=BETA_thm815(sigma,Fu,Tu,gu,g0,x,y,u,n,m)

end
if and(kappa<n+1,sigma>=n-d)==1
[flag3,beta3]=BETA_thm820(kappa,Fu,iFu,x,y,u,n)

end
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if TYPE==1
flag=flag1; beta=beta1

end
if TYPE==2
flag=flag2; beta=beta2

end
if TYPE==3
flag=flag3; beta=beta3

end

if flag==0
display(’condition (i) is not satisfied.’)
display(’System is NOT RDOEL with’)
d=d
return

end
if ChZero(beta)==0
beta0inv=subs(1/beta,y,y-y)
if ChZero(beta0inv)==1
display(’condition (i) is not satisfied.’)
display(’System is NOT RDOEL with’)
d=d
return

end
end

ibeta=int(beta,y);
ibeta0=subs(ibeta,y,y-y);
ell = simplify(exp(ibeta-ibeta0))
vphi = simplify(int(1/ell, y));
vphi0 = subs(vphi,y,y-y);
varphi= vphi-vphi0

bgu(:,1)= subs(ell,y,T(n))*g0(:,1);
for k=2:n-d
bgu(:,k)=sstarmap(Fu,iFu,bgu(:,k-1),x);

end
bgu=simplify(bgu)
bg0=simplify(subs(bgu,u,u-u));

if ChZero(bgu-bg0) == 0
display(’condition (ii) is not satisfied.’)
display(’System is NOT RDOEL with’)
d=d
return

end

if ChCommute(bg0,x) == 0
display(’condition (iii) is not satisfied.’)
display(’System is NOT RDOEL with’)
d=d
return
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end

for k=1:n-d
idhS2(:,k)=bg0(:,n-d+1-k);

end
idhS2=simplify(idhS2(d+1:n,:))
dhS2=simplify(inv(idhS2))
hS2=Codi(dhS2,x(d+1:n))

TEMP41=subs(hS2,x,T);
TEMP42=subs(TEMP41,x,Fu);
TEMP43=subs(TEMP41,x,F0);
TEMP4=simplify(TEMP42-TEMP43)
if ChZero(jacobian(TEMP4,x(2:n))) == 0
display(’condition (iv) is not satisfied.’)
display(’System is NOT RDOEL with’)
d=d
return

end

display(’System is RDOEL with’)
d=d

if d>0
hS1=x(1:d)-x(1:d);
for k=1:d
hS1(k)= subs(varphi,y,x(k));

end
end

if d==0
hS = hS2

else
hS = [hS1; hS2]

end

xe=[w; x];
if d>0
He=xe(1);
Feu=[w(2:d); H; Fu];

else
He=H; Feu=Fu;

end
Feu=simplify(Feu)
Fe0=simplify(subs(Feu,u,u-u));

Se=xe-xe;
Se(1:n)=subs(hS,x,xe(1:n));
if d>0
gammaN0=simplify(subs(hS(n),x,F0))
Se(n+1)=simplify(subs(Se(n),xe,Fe0)-subs(gammaN0,x,xe(1:n)));

end
for k=n+2:n+d
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Se(k)=simplify(subs(Se(k-1),xe,Fe0));
end
Se=simplify(Se)

bfeu1=simplify(subs(Se,xe,Feu))
gammaeU=xe-xe;
for k=1:n+d-1
gammaeU(k)=simplify(subs(Se(k),xe,Feu)-Se(k+1));

end
gammaeU(n+d)=simplify(subs(Se(n+d),xe,Feu))

return

8.8 Problems

8-1. Find out whether the following nonlinear control systems are state equivalent
to a dual Brunovsky NOCF or not. If it is state equivalent to a dual Brunovsky
NOCF, find a state transformation z = S(x) and the dual Brunovsky NOCF
that new state z satisfies.

(a)

ẋ =
⎡
⎣

x2 + x23
x3 − 2x3ex1u

ex1u

⎤
⎦ ; y = x1

(b)

ẋ =
⎡
⎣

x2 + x23
x3 − 2x3ex1u2

ex1u1

⎤
⎦ ; y = x1

(c)

ẋ =
[

x2 + (x1 + 1)u22
x2 ln(x1 + 1) + x22

1+x1
+ (x1 + 1)u1 + x2u22

]
; y = x1

(d)

⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣

x2ex1

x3 + x1u
u

⎤
⎦ ; y = x1.
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8-2. Show that system (8.131) is not state equivalent to a dual Brunovsky NOCF
with OT.

8-3. Find out whether the following nonlinear control systems are state equivalent
to a dual Brunovsky NOCF with OT or not. If it is state equivalent to a dual
Brunovsky NOCF with OT, find a OT ȳ = ϕ(y), a state transformation z =
S(x), and the dual Brunovsky NOCF that new state z satisfies.

(a)

ẋ =
[

x2 + (x1 + 1)u22
x2 ln(x1 + 1) + x22

1+x1
+ (x1 + 1)u1 + x2u22

]
; y = x1

(b)

⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣

x2ex1

x3 + x1u
u

⎤
⎦ ; y = x1

(c)

ẋ =
⎡
⎣

x2
x3

u − 2x32
(x1+1)2 + 3x2x3

x1+1 − x3(x1 + 1) ln(x1 + 1)

⎤
⎦ ; y = x1

(d)

ẋ =

⎡
⎢⎢⎣

x2
x3

x4 + u2

5x2x3 + 2x22 + u

⎤
⎥⎥⎦ ; y = x1.

8-4. Find out whether the following nonlinear control systems are RDEOL or not.
If it is RDEOL, find the minimal index d and an extended state transformation
ze = Se(w, x), and the dual Brunovsky NOCF that new state ze satisfies.

(a)

ẋ =
⎡
⎣
x2 + x1u2

x3
4x1x3 + u

⎤
⎦ ; y = x1
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(b)

ẋ =

⎡
⎢⎢⎣
x2 + x3u2

x3
x4

4x1x3 + u

⎤
⎥⎥⎦ ; y = x1

(c)

ẋ =
⎡
⎣

x2
x3

u − 2x32
(x1+1)2 + 3x2x3

x1+1 − x3(x1 + 1) ln(x1 + 1)

⎤
⎦ ; y = x1

(d)

ẋ =

⎡
⎢⎢⎣

x2
x3

x4 + u2

5x2x3 + 2x22 + u

⎤
⎥⎥⎦ ; y = x1.

8-5. UseCorollary 8.6 or Theorem8.11 to show that the following nonlinear control
systems are state equivalent to a dual Brunovsky NOCF.

(a)

ẋ =
⎡
⎣

x2 + x3u21
sin(x1)(u2 + x1x3) + x3 cos(x1)(x3u21 + x2) + u1

x1x3 + u2

⎤
⎦ ; y =

[
x1
x3

]

(b)

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
x3

x4 + x1u2
3x22 + x3 + x6 + x1x3 + 3x3x6 + x4x5 + (2x2 + x1x5)u2 + u1

x6
x2 + u2

⎤
⎥⎥⎥⎥⎥⎥⎦

y =
[
x1
x5

]
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(c)

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3

x4x5 + 2x5x8 + x6x7 + u1 + x4u3
x5
x6

αu
23(x)
x8

x5 + u3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; y =
⎡
⎣
x1
x4
x7

⎤
⎦

where

αu
23(x) =x1x4x5 + 2x1x5x8 + x1x6x7 + 2x2x4x8 + 2x2x5x7

+ x3x4x7 + u2 + x1x4u3.

(d)

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3 + x1u2 + x4u3 + x27u4

x6x7 + u1 + x5u3
x5 + x7u4

x6
x2x8 + x1(x21 + u4) + u2

u3
x21 + u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; y =

⎡
⎢⎢⎣
x1
x4
x7
x8

⎤
⎥⎥⎦ .

8-6. Use Corollary 8.5 or Theorem 8.9 to find out whether the following nonlinear
control systems are state equivalent to a dual Brunovsky NOCF. If it is state
equivalent to a dual Brunovsky NOCF, find a state transformation z = S(x)
and the dual Brunovsky NOCF that new state z satisfies.

(a)

ẋ =

⎡
⎢⎢⎣

x2
x2x3 + x1x4 + u1 + x1(x2 − x1x3)u21

x4 + (x2 − x1x3)u21
2x1x2 + u2

⎤
⎥⎥⎦ ; y =

[
x1
x3

]
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(b)

ẋ =

⎡
⎢⎢⎣

x2
x2x3 + x1x4 + x21u

2
1 + (x3 + 1)u1

x1u21 + x4
2x1x2 + u2

⎤
⎥⎥⎦ ; y =

[
x1
x3

]

(c)

ẋ =

⎡
⎢⎢⎣

x2
x3 + 2x1x4u2

2x1x2 + x3x24 + u1 + (x2 − x1x24 + 2x1x34 + 2x2x4)u2
u2

⎤
⎥⎥⎦

y =
[
x1
x4

]
.

8-7. Show that (8.300) is satisfied.

8-8. Find out whether the following discrete time nonlinear control systems are
state equivalent to a dual Brunovsky NOCF or not. If it is state equivalent to
a dual Brunovsky NOCF, find a state transformation z = S(x) and the dual
Brunovsky NOCF that new state z satisfies.

(a)

x(t + 1) =
⎡
⎣

x2
x3 + x1u

u + x1 + ex2 + (x3 + x1u)2 − 1

⎤
⎦ ; y = x1

(b)

x(t + 1) =
⎡
⎣

x2
x3

ex1+x23+u − 1

⎤
⎦ ; y = x1

(c)

x(t + 1) =
⎡
⎣

x2
(x3 + 1)ex1u − 1

ex1+(x3+1)ex1u−1+u − 1

⎤
⎦ ; y = x1.

8-9. Find outwhether the following discrete time nonlinear control systems are state
equivalent to a dual BrunovskyNOCFwith OT or not. If it is state equivalent to
a dual Brunovsky NOCF with OT, find a OT ȳ = ϕ(y), a state transformation
z = S(x), and the dual Brunovsky NOCF that new state z satisfies.
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(a)

x(t + 1) =
⎡
⎣

x2
x3

ex1+x23+u − 1

⎤
⎦ ; y = x1

(b)

x(t + 1) =
⎡
⎣

x2
(x3 + 1)ex1u − 1

ex1+(x3+1)ex1u−1+u − 1

⎤
⎦ ; y = x1

(c)

x(t + 1) =
⎡
⎣

x2
x3

x1 + (x2x3 + 1)u

⎤
⎦ ; y = x1

(d)

x(t + 1) =
⎡
⎣

x2
x3

ex1x2+u1+x1u2 − 1

⎤
⎦ ; y = x1.

8-10. Solve Example 8.6.1.
8-11. Solve Example 8.6.3(d) and Example 8.6.3(e).
8-12. Consider the system

x(t + 1) =
⎡
⎣

x2
x3 + x2u22

u1 + x1 − x2(x3 + x2u22)

⎤
⎦ ; y = x1.

(a) Show that κ = 2 and σ = 1.
(b) Use Theorem 8.18 to show that the above system is not RDOEL with index

d = 1.
(c) Use Theorem 8.19 to show that the above system is not RDOEL with index

d = 1.

8-13. Consider the system

x(t + 1) =
[

x2
ln(x1x2 + u1 + u2x1 + 1)

]
; y = x1.

(a) Show that κ = 2 and σ = 2.
(b) Use Theorem 8.14 to show that the above system is not state equivalent to a

dual Brunovsky NOCF with OT.
(c) Use Theorem 8.20 to show that the above system is RDOEL with index

d = 1.
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8-14. Find out whether the following discrete time nonlinear control systems are
RDEOL or not. If it is RDEOL, find the minimal index d and an extended
state transformation ze = Se(w, x), and the dual Brunovsky NOCF that new
state ze satisfies.

(a)

x(t + 1) =
⎡
⎣

x2
x3

x1 + (x2x3 + 1)u

⎤
⎦ ; y = x1

(b)

x(t + 1) =
⎡
⎣

x2
x3

ex1x2+u1+x1u2 − 1

⎤
⎦ ; y = x1

(c)

x(t + 1) =
⎡
⎣

x2
x3

x1 + x1x3 + u

⎤
⎦ ; y = x1.



Chapter 9
Input-Output Decoupling

9.1 Introduction

The problem of input-output decoupling has been introduced briefly in Sect. 1.1. In
this chapter, the necessary and sufficient conditions will be studied. Consider the
following nonlinear input-output system.

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(9.1)

where x ∈ R
n , u ∈ R

m , y ∈ R
m , and f (x), g(x), and h(x) are analytic functions.

Let y( j)
i (t) � d j

dt j yi (t). Then we have that for 1 ≤ i ≤ m and j ≥ 1,

y( j)
i (t) = Q j

i (x(t), u(t), · · · , u( j−1)(t)) (9.2)

for some functions Q j
i , 1 ≤ i ≤ m, j ≥ 1.

Definition 9.1 (decoupled input-output relation) System (9.1) is said to have decou-
pled input-output relationship if output yi is a function of only input ui for all i , with
changing the order of the inputs.

If the MIMO system’s input-output relation is decoupled, the MIMO system has
the parallel connection of m SISO systems. Thus, we can control each output without
affecting the other outputs. In other words, we have the following equation:

y( j)
i (t) = Q j

i (x(t), ui (t), · · · , u( j−1)
i (t)), 1 ≤ i ≤ m. (9.3)

If the system does not have the decoupled input-output relation, the nonsingular
feedback could obtain the decoupled input-output relation of the closed-loop system,
which is called the input-output decoupling.
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Definition 9.2 (static input-output decoupling) System (9.1) is said to be locally
static input-output decouplable (on a neighborhood of x = x0), if there exists a non-
singular static feedback u = α(x) + β(x)v (rank (β(x0)) = m) such that the closed-
loop system

ẋ(t) = f (x) + g(x)α(x) + g(x)β(x)v(t)

= f̃ (x(t)) + g̃(x(t))v(t)

y(t) = h(x(t))

(9.4)

has the following decoupled input-output relationship:

⎡
⎢⎣
y(ρ1)
1
...

y(ρm )
m

⎤
⎥⎦ =

⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ (9.5)

where ρi is the relative degree of the output yi .

It is easy to see that the relative degree of system (9.4) is the same as that of system
(9.1). (Refer to Problem 5-7.)

Definition 9.3 (dynamic input-output decoupling) System (9.1) is said to be locally
dynamic input-output decouplable (on a neighborhood of x = x0), if there exists a
dynamic feedback

u = a(x, z) + b(x, z)w (9.6a)

ż = c(x, z) + d(x, z)w, z ∈ R
d (9.6b)

such that the extended system

[
ẋ
z

]
=
[
f (x) + g(x)a(x, z)

c(x, z)

]
+
[
g(x)b(x, z)
d(x, z)

]
w

= fE (x, z) + gE (x, z)w

y(t) = h(x(t))

(9.7)

has the decoupling matrix DE (x, z) with rank (DE (x0, 0)) = m.

In other words, if extended system (9.7) is locally static input-output decouplable,
then system (9.1) is said to be locally dynamic input-output decouplable.



9.2 Input-Output Decoupling of the Nonlinear Systems 523

9.2 Input-Output Decoupling of the Nonlinear Systems

By Definition 5.6 of the relative degree, we have

y(�)
i = L�

f hi (x), 0 ≤ � ≤ ρi − 1

y(ρi )
i = Lρi

f hi (x) + LgL
ρi−1
f hi (x)u

(9.8)

where ρi is the relative degree of the output yi . Thus, it is clear that

⎡
⎢⎣
y(ρ1)
1
...

y(ρm )
m

⎤
⎥⎦ =

⎡
⎢⎣
Lρ1

f h1(x)
...

Lρm
f hm(x)

⎤
⎥⎦+

⎡
⎢⎣
LgL

ρ1−1
f h1(x)

...

LgL
ρm−1
f hm(x)

⎤
⎥⎦ u

� E(x) + D(x)u.

(9.9)

Ifm × m matrix D(0) is invertible, then the closed-loop system has decoupled input-
output relationship

⎡
⎢⎣
y(ρ1)
1
...

y(ρm )
m

⎤
⎥⎦ =

⎡
⎢⎣

v1
...

vm

⎤
⎥⎦

with static feedback

u = −D(x)−1E(x) + D(x)−1v. (9.10)

Therefore, D(x), defined in (9.9), is called by decoupling matrix.

Theorem 9.1 (conditions for the static IO decoupling problem) System (9.1) is
locally static input-output decouplable (on a neighborhood of x = x0), if and only
if

rank (D(x0)) = m (9.11)

where D(x), defined in (9.9), is the decoupling matrix of system (9.1).

Proof Necessity. Suppose that system (9.1) is locally static input-output decouplable.
Then, by Definition 9.2 and (9.9), there exists a nonsingular static feedback u =
α(x) + β(x)v such that

E(x) + D(x)α(x) + D(x)β(x)v = v,
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which implies that

D(x)β(x) = Im .

Since D(x0)β(x0) = Im , it is clear that (9.11) is satisfied.
Sufficiency. Obvious by (9.10) and Definition 2.5. �

It is clear that system (9.1) is locally static input-output decouplable on a neigh-
borhood of x = 0, if and only if

rank (D(0)) = m.

Example 9.2.1 Show that the following nonlinear system is locally static input-
output decouplable. Also, obtain a static feedback for input-output decoupling.

ẋ =

⎡
⎢⎢⎣
x2
x3
x4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣

0
x4
0

1 + x3

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

[
y1
y2

]
=
[
x1
x3

]
= h(x).

(9.12)

Solution It is easy, by the definition of the relative degree, to see that ρ1 = 2 and
ρ2 = 2. Since

[
y(2)
1

y(2)
2

]
=
[
x3
0

]
+
[
1 x4
0 1 + x3

] [
u1
u2

]
,

it is clear that decoupling matrix D(x) is invertible. Therefore, by Theorem 9.1,
system (9.12) can be input-output decoupled by static feedback

[
u1
u2

]
=
[
1 x4
0 1 + x3

]−1 [
x3
0

]
+
[
1 x4
0 1 + x3

]−1 [
v1
v2

]

=
[
x3
0

]
+
[
1 −x4

1+x3
0 1

1+x3

] [
v1
v2

]
.

�

Example 9.2.2 Show that the following nonlinear system is not locally input-output
decouplable by static feedback:
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ẋ =

⎡
⎢⎢⎣
x2
x3
x4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
1
x4
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣

0
0
0

1 + x3

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

[
y1
y2

]
=
[
x1
x3

]
= h(x).

(9.13)

Solution By simple calculations, it is easy to see that ρ1 = 2, ρ2 = 1, and

[
y(2)
1

y(1)
2

]
=
[
x3
x4

]
+
[
1 0
x4 0

] [
u1
u2

]
. (9.14)

Note that decoupling matrix D(x) is not invertible. Therefore, by Theorem 9.1,
system (9.13) cannot be locally input-output decoupled by static feedback. �

In (9.14) of Example 9.2.2,

[
y(2)
1

y(1)
2

]
is a function of input u1 only, and thus static

input-output decoupling is not possible. That is, input u1 affects the output too early
compared to input u2. We could use integrators to input u1 and increase the relative
degree of the extended closed-loop system until the derivative of the output depends
on both of the new inputs simultaneously. In other words, we consider the dynamic
feedback

u1 = z1 ; u2 = w1
2

ż1 = w1
1

and the extended closed-loop system

⎡
⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ż1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x2
x3 + z1

x4(1 + z1)
0
0

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦

w1
1 +

⎡
⎢⎢⎢⎢⎣

0
0
0

1 + x3
0

⎤
⎥⎥⎥⎥⎦

w1
2

= F1(x) + G1
1(x)w

1
1 + G1

2(x)w
1
2.

(9.15)

For extended system (9.15), we have relative degree (ρ11, ρ
1
2) = (3, 2) and

[
y(3)
1

y(2)
2

]
=
[
x4(1 + z1)

0

]
+
[
1 0
x4 (1 + x3)(1 + z1)

] [
w1

1
w1

2

]

which implies that decoupling matrix of extended system (9.15) is nonsingular.
Therefore, extended system (9.15) is input-output decouplable by extended state
feedback
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[
w1

1
w1

2

]
=
[
1 0
x4 (1 + x3)(1 + z1)

]−1 {
−
[
x4(1 + z1)

0

]
+
[
v1
v2

]}

=
[−x4(1 + z1)

x24
1+x3

]
+
[

1 0
−x4

(1+x3)(1+z1)
1

(1+x3)(1+z1)

] [
v1
v2

]
.

In other words, system (9.13) is input-output decouplable by dynamic feedback

[
u1
u2

]
=
[

z1
x24

1+x3

]
+
[

0 0
−x4

(1+x3)(1+z1)
1

(1+x3)(1+z1)

] [
v1
v2

]

ż1 = −x4(1 + z1) + v1.

(9.16)

�

Example 9.2.3 Show that the following nonlinear system is not locally input-output
decouplable by static feedback. Also, find a dynamic feedback to decouple I-O rela-
tion.

ẋ =

⎡
⎢⎢⎣
x2
x3
x4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
1
x4
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣

0
1
x4

1 + x3

⎤
⎥⎥⎦ u2 = f (x) + g1(x)u1 + g2(x)u2

[
y1
y2

]
=
[
x1
x3

]
= h(x).

(9.17)

Solution By simple calculations, we have relative degree (ρ1, ρ2) = (2, 1) and

[
y(2)
1

y(1)
2

]
=
[
x3
x4

]
+
[
1 1
x4 x4

] [
u1
u2

]
.

Since decoupling matrix D(x) is singular, it is clear, by Theorem 9.1, that system
(9.17) is not input-output decouplable by static feedback. Unlike Example 9.2.2, the
decoupling matrix of the extended system cannot be made nonsingular by applying
an integrator to one of the inputs. If we consider static feedback

[
u1
u2

]
=
[
1 −1
0 1

] [
μ1
1

μ1
2

]
� L1(x)μ1,

we have the following closed-loop system:

ẋ =

⎡
⎢⎢⎣
x2
x3
x4
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
1
x4
0

⎤
⎥⎥⎦μ1

1 +

⎡
⎢⎢⎣

0
0
0

1 + x3

⎤
⎥⎥⎦μ1

2

= f 1(x) + g11(x)μ
1
1 + g12(x)μ

1
2

(9.18)
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which is the same as (9.13) with u = μ1. Therefore, system (9.18) is input-output
decouplable by dynamic feedback (9.16). In other words, system (9.17) is input-
output decouplable by dynamic feedback

[
u1
u2

]
= L1(x)μ1

=
[
z1 − x24

(1+x3)
x24

(1+x3)

]
+
[

x4
(1+x3)(1+z1)

−1
(1+x3)(1+z1)−x4

(1+x3)(1+z1)
1

(1+x3)(1+z1)

][
v1
v2

]

ż1 = −x4(1 + z1) + v1.

�

9.3 Dynamic Input-Output Decoupling

Suppose that input-output decoupling is not possible by static feedback. Then,
as shown in Examples 9.2.2 and 9.2.3, we could wait for other inputs to affect
the output, by using integrators to some inputs and increasing the relative degree
of the extended closed-loop system. We call this process the dynamic extension
algorithm.

Lemma 9.1 If system (9.1) is locally dynamic input-output decouplable (on a neigh-
borhood of x = x0) with dynamic feedback

u = a(x, z) + b(x, z)w (9.19a)

ż = c(x, z) + d(x, z)w, z ∈ R
d , (9.19b)

then system (9.1) is also locally dynamic input-output decouplable (on a neighbor-
hood of x = x0) with dynamic feedback

u = a(x, 0) + ∂a(x, z)

∂z

∣∣∣∣
z=0

z + b(x, 0)w (9.20a)

ż = c(x, 0) + ∂c(x, z)

∂z

∣∣∣∣
z=0

z + d(x, 0)w. (9.20b)

Proof Suppose that system (9.1) is locally dynamic input-output decouplable (on
a neighborhood of x = x0) with dynamic feedback (9.19). Then we have, by
Definition 9.3, that

rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣
LGE L

ρE
1 −1
FE

h1(x)
...

LGE L
ρE
m−1
FE

hm(x)

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
(x,z)=(x0,0)

⎞
⎟⎟⎠ = m (9.21)
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where (ρE
1 , · · · , ρE

m) are the relative degrees of the extended system

ẋE =
[
f (x) + g(x)a(x, z)

c(x, z)

]
+
[
g(x)b(x, z)
d(x, z)

]
w

= FE (xE ) + GE (xE )w.

Consider the extended system of system (9.1) with dynamic feedback (9.20):

ẋE =
⎡
⎣ f (x) + g(x)a(x, 0) + g(x) ∂a(x,z)

∂z

∣∣∣
z=0

z

c(x, 0) + ∂c(x,z)
∂z

∣∣∣
z=0

z

⎤
⎦+

[
g(x)b(x, 0)
d(x, 0)

]
w

= F0
E (xE ) + G0

E (xE )w.

Note that FE (x, 0) = F0
E (x, 0) and

∂FE (xE )

∂xE

∣∣∣∣
z=0

=
⎡
⎣

∂( f (x)+g(x)a(x,0))
∂x g(x) ∂a(x,z)

∂z

∣∣∣
z=0

∂c(x,0)
∂x

∂c(x,z)
∂z

∣∣∣
z=0

⎤
⎦

=
[

∂F0
E (xE )

∂x

∣∣∣
z=0

∂F0
E (xE )

∂z

∣∣∣
z=0

]
= ∂F0

E (xE )

∂xE

∣∣∣∣
z=0

.

(9.22)

Thus, it is easy to see, by (2.3) and (9.22), that for 1 ≤ i ≤ m,

∂
(
LFE hi (x)

)

∂xE

∣∣∣∣∣
z=0

=
∂
(

∂hi (x)
∂xE

FE (xE )
)

∂xE

∣∣∣∣∣∣
z=0

=

⎧⎪⎨
⎪⎩
FE (xE )T

∂
(

∂hi (x)
∂xE

)T

∂xE
+ ∂hi (x)

∂xE

∂FE (xE )

∂xE

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
z=0

= F0
E (xE )T

∂
(

∂hi (x)
∂xE

)T

∂xE

∣∣∣∣∣∣∣
z=0

+ ∂hi (x)

∂xE

∣∣∣∣
z=0

∂F0
E (xE )

∂xE

∣∣∣∣
z=0

=
∂
(

∂hi (x)
∂xE

F0
E (xE )

)

∂xE

∣∣∣∣∣∣
z=0

=
∂
(
LF0

E
hi (x)

)

∂xE

∣∣∣∣∣∣
z=0

.

In this manner, it is easy to show by mathematical induction that for 1 ≤ i ≤ m and
k ≥ 1,
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∂
(
Lk
FE
hi (x)

)

∂xE

∣∣∣∣∣
z=0

=
∂
(
Lk
F0
E
hi (x)

)

∂xE

∣∣∣∣∣∣
z=0

and

LGE L
k
FE
h(x)

∣∣
z=0

= ∂
(
Lk
FE
hi (x)

)

∂xE

∣∣∣∣∣
z=0

GE (x, 0)

=
∂
(
Lk
F0
E
hi (x)

)

∂xE

∣∣∣∣∣∣
z=0

GE (x, 0) = LG0
E
Lk
F0
E
h(x)

∣∣∣
z=0

which implies, together with (9.21), that

rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

LG0
E
L

ρE
1 −1
F0
E

h1(x)
...

LG0
E
L

ρE
m−1
F0
E

hm(x)

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
(x,z)=(x0,0)

⎞
⎟⎟⎟⎠ = m.

Hence, system (9.1) is also locally dynamic input-output decouplable (on a neigh-
borhood of x = x0) with dynamic feedback (9.20). �

Elementary row operations and column operations of the matrix are very useful
concepts. The following lemma, which can be proved by using elementary row and
column operations of thematrix, plays a key role in the dynamic extension algorithm.
(Refer to MATLAB subfunction Dcolumn(D, x) in Sect. 9.4.)

Lemma 9.2 Suppose that system (9.1) has the decoupling matrix D(x) with

rank (D(x)) = r < m.

There exist a m × m permutation matrix R and a m × m nonsingular matrix L(x)
such that

RD(x)L(x) =
⎡
⎣

Ir̄ Or̄×(r−r̄) Or̄×(m−r)

O(r−r̄)×r̄ Ir−r̄ O(r−r̄)×(m−r)

D̂(x) O(m−r)×(r−r̄) O(m−r)×(m−r)

⎤
⎦ (9.23)

and for 1 ≤ i ≤ r̄ ,

D̂i (x) �= O(m−r)×1 (9.24)

where D̂(x) �
[
D̂1(x) · · · D̂r̄ (x)

]
.
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Proof We can assume, by changing the order of the outputs, that the first r rows
of the matrix D(x) are linearly independent. In other words, there exists a m × m
permutation matrix R0 such that

R0D(x) =
[
D̃(x)
D̄(x)

]
and rank

(
D̃(x)

)
= r.

Thus, we can find, by elementary column operations, a m × m permutation matrix
L0 such that D̃11(x) is a r × r nonsingular matrix and

[
D̃(x)
D̄(x)

]
L0 =

[
D̃11(x) D̃12(x)
D̄21(x) D̄22(x)

]
.

If we let L1(x) =
[
D̃11(x)−1 −D̃11(x)−1 D̃12(x)

O Im−r

]
, then we have that

R0D(x)L0L1(x) =
[
D̃11(x) D̃12(x)
D̄21(x) D̄22(x)

]
L1(x) =

[
Ir Or×(m−r)

D̂21(x) O(m−r)×(m−r)

]

where D̂21(x) � D̄21(x)D̃11(x)−1. It is clear, by elementary column and row oper-
ations, that there exist a r × r permutation matrix L̄ , a m × m permutation matrix

L2 =
[
L̄ O
O Im−r

]
, and a m × m permutation matrix R1 =

[
L̄T O
O Im−r

]
such that

D̂21(x)L̄ = [D̂(x) O(m−r)×(r−r̄)

]

R1

[
Ir Or×(m−r)

D̂21(x) O(m−r)×(m−r)

]
L2 =

[
L̄T O
O Im−r

] [
Ir O

D̂21(x) O

] [
L̄ O
O Im−r

]

=
⎡
⎣

Ir̄ Or̄×(r−r̄) Or̄×(m−r)

O(r−r̄)×r̄ Ir−r̄ O(r−r̄)×(m−r)

D̂(x) O(m−r)×(r−r̄) O(m−r)×(m−r)

⎤
⎦

and for 1 ≤ i ≤ r̄ ,

D̂i (x) �= O(m−r)×1

where D̂(x) �
[
D̂1(x) · · · D̂r̄ (x)

]
. In other words, (9.23) and (9.24) are satisfied

with

R = R1R0 and L(x) = L0L1(x)L2.

�
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9.3.1 Dynamic Extension Algorithm

step 1: For system (9.1), we have

⎡
⎢⎢⎣
y

(ρ11)
1
...

y
(ρ1m )
m

⎤
⎥⎥⎦ = E1(x) + D1(x)u

where {ρ11, · · · , ρ1m} is the relative degree of system (9.1). Assume that

rank
(
D1(x)

) = r1.

If r1 = m, then the local input-output decoupling is possible by static feedback, and
thus, the algorithm terminates. If r1 < m, I-O decoupling by static feedback is not
possible. The subspace of the input to apply the integrators should be obtained, as in
Examples 9.2.2 and 9.2.3. First, we can assume, by changing the order of the outputs,
that the first r1 rows of the matrix D1(x) are linearly independent. That is, we have,
without loss of generality, that

⎡
⎢⎢⎣
y

(ρ11)
1
...

y
(ρ1m )
m

⎤
⎥⎥⎦ = E1(x) +

[
D̃1(x)
D̄1(x)

]
u

where rank
(
D̃1(x)

)
= r1. We can find, by elementary column operations and the

output order change, m × m matrix L1(x) such that

[
D̃1(x)
D̄1(x)

]
L1(x) =

⎡
⎣

Ir̄1 Or̄1×(r1−r̄1) Or̄1×(m−r1)

O(r1−r̄1)×r̄1 Ir1−r̄1 O(r1−r̄1)×(m−r1)

D̂1(x) O(m−r1)×(r1−r̄1) O(m−r1)×(m−r1)

⎤
⎦

and for 1 ≤ j ≤ m − r1 and 1 ≤ i ≤ r̄1,

D̂1
j (x) �= O1×r̄1 and D̂1i (x) �= O(m−r1)×1 (9.25)

where D̂1(x) �

⎡
⎢⎣

D̂1
1(x)
...

D̂1
m−r1(x)

⎤
⎥⎦ �

[
D̂11(x) · · · D̂1r̄1(x)

]
. Thus, we have, with the

change of the output’s order, that
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⎡
⎢⎢⎣
y

(ρ11)
1
...

y
(ρ1m )
m

⎤
⎥⎥⎦ = Ê1(x) +

⎡
⎣

Ir̄1 Or̄1×(r1−r̄1) Or̄1×(m−r1)

O(r1−r̄1)×r̄1 Ir1−r̄1 O(r1−r̄1)×(m−r1)

D̂1(x) O(m−r1)×(r1−r̄1) O(m−r1)×(m−r1)

⎤
⎦μ1 (9.26)

with static feedback

u = L1(x)μ1 �
[
L̃1(x) L̄1(x)

] [μ̃1

μ̄1

]
(9.27)

where μ̃1 ∈ R
r̄1 , μ̄1 ∈ R

m−r̄1 , and L̃1(x) and L̄1(x) are m × r̄1 and m × (m − r̄1)
matrices, respectively. Then, with dynamic feedback

u = L1(x)

[
z1

ū1

]
= L̃1(x)z1 + L̂1(x)u1 (9.28a)

ż1 = ũ1 = Īr̄1u
1 (9.28b)

we have the following extended system:

�1 :
[
ẋ
ż1

]
= F1

E (x, z1) + G1
E (x, z1)

[
ũ1

ū1

]
(9.29)

where x1E � [xT (z1)T]T, u1 �
[
ũ1

ū1

]
, L̂1(x) �

[
O L̄1(x)

]
, Īr̄1 �

[
Ir̄1 O

]
, and

F1
E (x1E ) =

[
f (x) + g(x)L̃1(x)z1

O

]
; G1

E (x1E ) =
[
O g(x)L̄1(x)
Ir̄1 O

]
.

step 2: For system (9.29), we have

⎡
⎢⎢⎣
y

(ρ21)
1
...

y
(ρ2m )
m

⎤
⎥⎥⎦ = E2(x, z1) + D2(x, z1)u1

where {ρ21, · · · , ρ2m} is the relative degree of system (9.29). Assume that

rank
(
D2(x, z1)

) = r2.

If r2 = m, then system (9.29) is input-output decouplable by static feedback, and the
algorithm terminates. Since ρ2i = ρ1i + 1, 1 ≤ i ≤ r̄1, and ρ2i = ρ1i , r̄1 + 1 ≤ i ≤
r1, it is clear that ∂

∂ũ1

(
LF1

E+G1
Eu

1 Ê1
i (x)

)
= O1×r̄1 , 1 ≤ i ≤ r̄1, and thus r2 ≥ r1. If

r2 < m, then we can assume, by changing the order of the outputs yr1+1, · · · , ym ,
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that the first r2 rows of the matrix D2(x) are linearly independent. In other words,
we have, without loss of generality, that

⎡
⎢⎢⎣
y

(ρ21)
1
...

y
(ρ2m )
m

⎤
⎥⎥⎦ = E2(x, z1),+

[
D̃2(x, z1)
D̄2(x, z1)

]
u1

where rank
(
D̃2(x, z1)

)
= r2. We can find, by elementary column operations and

the output order change, m × m matrix L2(x, z1) such that

[
D̃2(x1E )

D̄2(x1E )

]
L2(x, z1) =

⎡
⎣

Ir̄2 Or̄2×(r2−r̄2) Or̄2×(m−r2)

O(r2−r̄2)×r̄2 Ir2−r̄2 O(r2−r̄2)×(m−r2)

D̂2(x) O(m−r2)×(r2−r̄2) O(m−r2)×(m−r2)

⎤
⎦

and for 1 ≤ i ≤ r̄2,

D̂2i (x) �= O(m−r2)×1

where D̂2(x) �
[
D̂21(x) · · · D̂2r̄2(x)

]
. Thus,we have,with the change of the output’s

order, that

⎡
⎢⎢⎣
y

(ρ21)
1
...

y
(ρ2m )
m

⎤
⎥⎥⎦ =

⎡
⎣

Ir̄2 Or̄2×(r2−r̄2) Or̄2×(m−r2)

O(r2−r̄2)×r̄2 Ir2−r̄2 O(r2−r̄2)×(m−r2)

D̂2(x) O(m−r2)×(r2−r̄2) O(m−r2)×(m−r2)

⎤
⎦μ2

+ Ê2(x, z1)

with static feedback

u1 = L2(x, z1)μ2 �
[
L̃2(x, z1) L̄2(x, z1)

] [μ̃2

μ̄2

]

where μ̃2 ∈ R
r̄2 , μ̄2 ∈ R

m−r̄2 , and L̃2(x, z1) and L̄2(x, z1) arem × r̄2 andm × (m −
r̄2) matrices, respectively. Then, with dynamic feedback

u1 = L2(x, z1)

[
z2

ū2

]
= L̃2(x, z1)z2 + L̂2(x, z1)u2 (9.30a)

ż2 = ũ2 = Īr̄2u
2, (9.30b)

we have the following extended system:
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�2 :
⎡
⎣
ẋ
ż1

ż2

⎤
⎦ = ẋ2E = F2

E (x, z1, z2) + G2
E (x, z1, z2)

[
ũ2

ū2

]
(9.31)

where x2E �

⎡
⎣
x
z1

z2

⎤
⎦, u2 �

[
ũ2

ū2

]
, L̂2(x, z1) �

[
O L̄2(x, z1)

]
, Īr̄2 �

[
Ir̄2 O

]
, and

F2
E (x2E ) =

[
F1
E (x1E ) + G1

E (x1E )L̃2(x1E )z2

O

]
; G2

E (x2E ) =
[
O G1

E (x1E )L̄2(x1E )

Ir̄2 O

]
.

step k(≥ 2): At step (k − 1), we obtained the extended closed-loop system

�k−1 : ẋ k−1
E = Fk−1

E (x, z1, · · · , zk−1) + Gk−1
E (x, z1, · · · , zk−1)uk−1 (9.32)

where xk−1
E �

⎡
⎢⎢⎢⎣

x
z1

...

zk−1

⎤
⎥⎥⎥⎦ and uk−1 �

[
ũk−1

ūk−1

]
. For system (9.32), we have

⎡
⎢⎢⎣
y

(ρk1)
1
...

y
(ρkm )
m

⎤
⎥⎥⎦ = Ek(xk−1

E ) + Dk(xk−1
E )uk−1

where {ρk1, · · · , ρkm} is the relative degree of system (9.32). Assume that

rank
(
Dk(xk−1

E )
) = rk .

If rk = m, then system (9.32) is locally input-output decouplable by static feedback,
and the algorithm terminates. If rk < m, then we can assume, by changing the order
of the outputs yrk−1+1, · · · , ym , that the first rk rows of the matrix Dk(x) are linearly
independent. In other words, we have, without loss of generality, that

⎡
⎢⎢⎣
y

(ρk1)
1
...

y
(ρkm )
m

⎤
⎥⎥⎦ = Ek(xk−1

E ) +
[
D̃k(xk−1

E )

D̄k(xk−1
E )

]
uk−1

where rank
(
D̃k(xk−1

E )
)

= rk . We can find, by elementary column operations and

the output order change, m × m matrix Lk(xk−1
E ) such that
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[
D̃k(xk−1

E )

D̄k(xk−1
E )

]
Lk(xk−1

E )

=
⎡
⎣

Ir̄k Or̄k×(rk−r̄k ) Or̄k×(m−rk )

O(rk−r̄k )×r̄k Irk−r̄k O(rk−r̄k )×(m−rk )

D̂k(xk−1
E ) O(m−rk )×(rk−r̄k ) O(m−rk )×(m−rk )

⎤
⎦

and for 1 ≤ i ≤ r̄k ,

D̂ki (xk−1
E ) �= O(m−rk )×1

where D̂k(xk−1
E ) �

[
D̂k1(xk−1

E ) · · · D̂kr̄k (xk−1
E )

]
. Thus, we have, with the change of

the output’s order, that

⎡
⎢⎢⎣
y

(ρk1)
1
...

y
(ρkm )
m

⎤
⎥⎥⎦ =

⎡
⎣

Ir̄k Or̄k×(rk−r̄k ) Or̄k×(m−rk )

O(rk−r̄k )×r̄k Irk−r̄k O(rk−r̄k )×(m−rk )

D̂k(xk−1
E ) O(m−rk )×(rk−r̄k ) O(m−rk )×(m−rk )

⎤
⎦μk

+ Êk(xk−1
E )

with static feedback

uk−1 = Lk(xk−1
E )μk �

[
L̃k(xk−1

E ) L̄k(xk−1
E )

] [μ̃k

μ̄k

]

where μ̃k ∈ R
r̄k , μ̄k ∈ R

m−r̄k , and L̃k(xk−1
E ) and L̄k(xk−1

E ) are m × r̄k and m × (m −
r̄k) matrices, respectively. Then, with dynamic feedback

uk−1 = Lk(xk−1
E )

[
zk

ūk

]
= L̃k(xk−1

E )zk + L̂k(xk−1
E )uk (9.33a)

żk = ũk = Īr̄k u
k, (9.33b)

we have the following extended system:

[
ẋ k−1
E
żk

]
= ẋ kE = Fk

E (xkE ) + Gk
E (xkE )uk (9.34)

where xkE � [xT (z1)T · · · (zk−1)T (zk)T]T =
[
xk−1
E
zk

]
, uk �

[
ũk

ūk

]
, L̂k(xk−1

E ) �
[
O L̄k(xk−1

E )
]
, Īr̄k �

[
Ir̄k O

]
,

Fk
E (xkE ) =

[
Fk−1
E (xk−1

E ) + Gk−1
E (xk−1

E )L̃k(xk−1
E )zk

O

]
,
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and

Gk
E (xkE ) =

[
O Gk−1

E (xk−1
E )L̄k(xk−1

E )

Irk O

]
.

If the algorithm does not terminate at a finite step, then let step K be the final step
such that r1 ≤ r2 ≤ · · · rK−1 < rK = rK+1 = rK+2 = · · · .

The dynamic extension algorithms, which are a little different from the above
algorithm, can also be found in [A3, A5] and [G17].

Lemma 9.3 If system (9.1) is locally dynamic input-output decouplable, then the
extended system (9.29) (or �1) is also locally dynamic input-output decouplable.

Proof Suppose that system (9.1) is locally dynamic input-output decouplable. With
static feedback

u = L1(x)μ1 �
[
L̃1(x) L̄1(x)

] [μ̃1

μ̄1

]

in (9.27), we have the following system:

ẋ = f (x) + g̃(x)μ̃1 + ḡ(x)μ̄1 (9.35)

where

[
g̃(x) ḡ(x)

]
� g(x)

[
L̃1(x) L̄1(x)

]
.

Then it is clear that system (9.35) is also locally dynamic input-output decouplable.
Thus, there exists a dynamic feedback

[
μ̃1

μ̄1

]
=
[
ã(x, z)
ā(x, z)

]
+
[
b̃(x, z)
b̄(x, z)

]
v

ż = c(x, z) + d(x, z)v, z ∈ R
d

(9.36)

such that

⎡
⎢⎢⎣
LgE L

ρE
1 −1
fE

h1(x)
...

LgE L
ρE
m−1
fE

hm(x)

⎤
⎥⎥⎦ = Im (9.37)

where (ρE
1 , · · · , ρE

m) is the relative degrees of the extended system
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[
ẋ
ż

]
=
[
f (x) + g̃(x)ã(x, z) + ḡ(x)ā(x, z)

c(x, z)

]
+
[
g̃(x)b̃(x, z) + ḡ(x)b̄(x, z)

d(x, z)

]
v

= fE (x, z) + gE (x, z)v.

(9.38)

Assume that there exists i (1 ≤ i ≤ r̄1) such that b̃i (x, z) �= O1×m . Then it is clear,
by (9.26) and (9.37), that ρE

i = ρ1i and

LgE L
ρ1i −1
fE

hi (x) = Lg̃b̃+ḡb̄ L
ρ1i −1
f hi (x) = Lg̃L

ρ1i −1
f hi (x)b̃(x, z)

= ēi b̃(x, z) = b̃i (x, z) = ei

where ēi and ei are the i-th row of the identity matrix Ir̄1 and Im , respectively.
Since D̂1i (x) �= O(m−r1)×1 by (9.25), there exists j (r1 + 1 ≤ j ≤ m) such that j-th
component of D̂1i (x) is not zero. Let D̂1

j (x) = [d̂1(x) · · · d̂r̄1(x)
]
and d̂i (x) �= 0.

Then it is clear, by (9.26) and (9.37), that ρE
j+r1

= ρ1j+r1
and

LgE L
ρ1j+r1

−1

fE
h j+r1(x) = Lg̃b̃+ḡb̄ L

ρ1j+r1
−1

f h j+r1(x) = Lg̃L
ρ1j+r1

−1

f h j+r1(x)b̃(x, z)

= [d̂1(x) · · · d̂r̄1(x)
]
b̃(x, z) =

r̄1∑
k=1

d̂k(x)b̃k(x, z) = e j+r1

which implies that b̃i (x, z) = O1×m . (b̃k(x, z) = O1×m or b̃k(x, z) = ek for 1 ≤ k ≤
r̄1 and d̂i (x) �= 0.) It contradicts. Thus, there does not exist i (1 ≤ i ≤ r̄1) such that
b̃i (x, z) �= O1×m . In other words,

b̃(x, z) = 0 or μ̃1 = ã(x, z). (9.39)

We will show that

rank

(
∂ã(x, z)

∂z

∣∣∣∣
z=0

)
= r̄1. (9.40)

Suppose that rank
(

∂ã(x,z)
∂z

∣∣∣
z=0

)
= r̂1 < r̄1. Then, we can find, by elementary row

operations, a r̄1 × r̄1 matrix R(x) =
[
R1(x)
R2(x)

]
such that

[
R1(x)
R2(x)

]
∂ã(x, z)

∂z

∣∣∣∣
z=0

�

⎡
⎣

∂ã1(x,z)
∂z

∣∣∣
z=0

∂ã2(x,z)
∂z

∣∣∣
z=0

⎤
⎦ =

[
O(r̄1−r̂1)×d
∂ã2(x,z)

∂z

∣∣∣
z=0

]
(9.41)
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where

[
R1(x)
R2(x)

]
ã(x, z) �

[
ã1(x, z)
ã2(x, z)

]
. Let R(x)μ̃1 �

[
μ̃11

μ̃12

]
and g̃(x)R(x)−1 �

[
g̃1(x) g̃2(x)

]
, where μ̃11 ∈ R

r̄1−r̂1 and μ̃12 ∈ R
r̂1 . Then, it is clear, by (9.39), that

the system

ẋ = f (x) + g̃1(x)μ̃11 + g̃2(x)μ̃12 + ḡ(x)μ̄1

= f (x) + g̃1(x)μ̃11 + ĝ(x)μ̂
(9.42)

is also dynamic input-output decouplable with dynamic feedback

⎡
⎣

μ̃11

μ̃12

μ̄1

⎤
⎦ =

⎡
⎣
ã1(x, z)
ã2(x, z)
ā(x, z)

⎤
⎦+

⎡
⎣

O
O

b̄(x, z)

⎤
⎦ v

ż = c(x, z) + d(x, z)v

where μ̂ �
[
μ̃12

μ̄1

]
∈ R

m−(r̄1−r̂1) and ĝ(x) �
[
g̃2(x) ḡ(x)

]
. Therefore, it is clear, by

Lemma 9.1 and (9.41), that system (9.42) is also dynamic input-output decouplable
with dynamic feedback

⎡
⎣

μ̃11

μ̃12

μ̄1

⎤
⎦ =

⎡
⎢⎢⎣

ã1(x, 0)

ã2(x, 0) + ∂ã2(x,z)
∂z

∣∣∣
z=0

z

ā(x, 0) + ∂ā(x,z)
∂z

∣∣∣
z=0

z

⎤
⎥⎥⎦+

⎡
⎣

O
O

b̄(x, 0)

⎤
⎦ v

ż = c(x, 0) + ∂c(x, z)

∂z

∣∣∣∣
z=0

z + d(x, 0)v.

In other words, the system

ẋ = f (x) + g̃1(x)ã1(x, 0) + ĝ(x)μ̂

� f̄ (x) + ĝ(x)μ̂

is dynamic input-output decouplable with dynamic feedback

μ̂ =
[
μ̃12

μ̄1

]
=
⎡
⎣ã

2(x, 0) + ∂ã2(x,z)
∂z

∣∣∣
z=0

z

ā(x, 0) + ∂ā(x,z)
∂z

∣∣∣
z=0

z

⎤
⎦+

⎡
⎣

O
O

b̄(x, 0)

⎤
⎦ v

ż = c(x, 0) + ∂c(x, z)

∂z

∣∣∣∣
z=0

z + d(x, 0)v.

It is possible, only ifm − (r̄1 − r̂1) = m or r̂1 = r̄1. Therefore, (9.40) is satisfied and
there exists a (d − r̄1) × d constant matrix S̄0 such that
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rank

([
∂ã1(x,z)

∂z

∣∣∣
z=0

S̄0

])
= d

and

⎡
⎣
x
z1

z̄

⎤
⎦ = SE (x, z) �

⎡
⎣

x
ã1(x, z)
S̄0z

⎤
⎦ or

[
x
z

]
= S−1

E (x, z1, z̄) �
[

x
S−1
z (x, z1, z̄)

]
is

an extended state transformation. The extended system (9.38) satisfies, in (x, z1, z̄)-
coordinates, the following system:

⎡
⎣
ẋ
ż1

˙̄z

⎤
⎦ =

⎡
⎣
f (x) + g̃1(x)z1 + ḡ(x)ā1(x, z1, z̄)

c̄11(x, z1, z̄)
c̄12(x, z1, z̄)

⎤
⎦+

⎡
⎣
ḡ(x)b̄1(x, z1, z̄)
d̄11(x, z1, z̄)
d̄12(x, z1, z̄)

⎤
⎦ v

= (SE )∗ ( fE (x, z)) + (SE )∗ (gE (x, z)) v

y = h ◦ S−1
E (x, z1, z̄) = h(x)

where ā1(x, z1, z̄) � ā(x, S−1
z (x, z1, z̄)), b̄1(x, z1, z̄) � b̄(x, S−1

z (x, z1, z̄)), and

⎡
⎣

On×1

c̄11(x, z1, z̄)
c̄12(x, z1, z̄)

⎤
⎦ � (SE )∗

([
On×1

c(x, z)

])
;
⎡
⎣

On×1

d̄11(x, z1, z̄)
d̄12(x, z1, z̄)

⎤
⎦ � (SE )∗

([
On×1

d(x, z)

])
.

In other words, system (9.29) (or �1) is locally input-output decouplable with
dynamic feedback

[
ũ1

ū1

]
=
[
c̄11(x, z1, z̄)
ā1(x, z1, z̄)

]
+
[
d̄11(x, z1, z̄)
b̄1(x, z1, z̄)

]
v

˙̄z = c̄12(x, z1, z̄) + d̄12(x, z1, z̄)w, z̄ ∈ R
d−r̄1 .

�

Now, using the dynamic extension algorithm, the necessary and sufficient condi-
tions of the dynamic input-output decoupling problem can be found as follows.

Theorem 9.2 (conditions for the dynamic IO decoupling problem) System (9.1) is
locally dynamic input-output decouplable, if and only if the Dynamic Extension
Algorithm terminates in a finite step or

rank
(
DK (xK−1

E )
)

� rK = m (9.43)

where K is the final step of the Dynamic Extension Algorithm for system (9.1).
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Proof Necessity. By the Dynamic Extension Algorithm for system (9.1), we have
the final extended system

�K−1 : ẋ K−1
E = FK−1

E (xK−1
E ) + GK−1

E (xK−1
E )uK−1

= FK−1
E (xK−1

E ) + GK−1
E,1 (xK−1

E )ũK−1 + GK−1
E,2 (xK−1

E )ūK−1

where

xK−1
E �

⎡
⎢⎢⎢⎣

x
z1

...

zK−1

⎤
⎥⎥⎥⎦ and uK−1 �

[
ũK−1

ūK−1

]
.

Suppose that system (9.1) is locally dynamic input-output decouplable. Then, it is
clear, by Lemma 9.3, that the extended system (9.29) is also locally dynamic input-
output decouplable. By repeated use of Lemma 9.3, it is easy to see that the final
extended system �K−1 is locally dynamic input-output decouplable. If the Dynamic
Extension Algorithm terminates in a finite step, then it is clear that (9.43) is satisfied.
Suppose that the Dynamic Extension Algorithm does not terminate in a finite step.
Then we have that for i ≥ 0,

LGK−1
E,2

Li
FK−1
E

h(x) = 0

which implies that the final extended system �K−1 is not locally dynamic input-
output decouplable and thus system (9.1) is not locally dynamic input-output decou-
plable.

Sufficiency. Suppose that the Dynamic Extension Algorithm terminates in a finite
step K with (9.43). Then it is easy to see, by (9.28), (9.30), and (9.33), that system
�K−1 is the extended system of system (9.1) with the dynamic feedback

u =
K−1∑
i=1

⎛
⎝

i−1∏
j=1

L̂ j (x j−1
E )

⎞
⎠ L̃ i (x j−1

E )zi +
⎛
⎝

K−1∏
j=1

L̂ j (x j−1
E )

⎞
⎠ uK−1

and

⎡
⎢⎢⎢⎣

ż1

...

żK−2

żK−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Īr̄1
{
L̃2z2 + · · · + L̂2 · · · L̂ K−2 L̃ K−1zK−1 +

(∏K−1
j=2 L̂ j

)
uK−1

}

...

Īr̄K−2

{
L̃ K−1zK−1 + L̂ K−1uK−1

}

Īr̄K−1u
K−1

⎤
⎥⎥⎥⎥⎥⎦

.
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Since the decoupling matrix of extended system �K−1 is nonsingular, extended
system�K−1 is locally static input-output decouplable. Hence, system (9.1) is locally
dynamic input-output decouplable. �

Example 9.3.1 Show that the following nonlinear system is locally dynamic input-
output decouplable:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3
x4
0
x6
x7
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
x4
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
u1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
x4
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
u2 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
u3

⎡
⎣
y1
y2
y3

⎤
⎦ =

⎡
⎣
x1
x3
x5

⎤
⎦ = h(x).

(9.44)

Solution step 1: By simple calculations, we have relative degree (ρ11, ρ
1
2, ρ

1
3) =

(2, 1, 1) and

⎡
⎣
y(2)
1

y(1)
2

y(1)
3

⎤
⎦ =

⎡
⎣
x3
x4
x6

⎤
⎦+

⎡
⎣
1 1 0
x4 x4 0
1 1 0

⎤
⎦
⎡
⎣
u1
u2
u3

⎤
⎦ = E1(x) + D1(x)u

where r1 � rank
(
D1(x)

) = 1. It is easy, by elementary column operations, to find
m × m matrix L1(x) such that

D1(x)L1(x) =
⎡
⎣
1 1 0
x4 x4 0
1 1 0

⎤
⎦
⎡
⎣
1 −1 0
0 1 0
0 0 1

⎤
⎦ =

⎡
⎣
1 0 0
x4 0 0
1 0 0

⎤
⎦ .

Therefore, with

u = L1(x)

⎡
⎣
z11
u12
u13

⎤
⎦ =

⎡
⎣
1 −1 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣
z11
u12
u13

⎤
⎦

ż11 = u11,

(9.45)

we have the following extended system:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ż11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3 + z11

x4(1 + z11)

0

x6 + z11
x7
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0
0 1 0
0 0 0

0 0 0

0 0 1

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1 (9.46)

where u1 �
[
ũ1

ū1

]
, ũ1 � u11, and ū1 �

[
u12
u13

]
.

step 2: For system (9.46), we have relative degree (ρ21, ρ
2
2, ρ

2
3) = (3, 2, 2) and

⎡
⎢⎣
y(3)
1

y(2)
2

y(2)
3

⎤
⎥⎦ =

⎡
⎢⎣
x4(1 + z11)

0

x7

⎤
⎥⎦+

⎡
⎢⎣
1 0 0

x4 1 + z11 0

1 0 0

⎤
⎥⎦

⎡
⎢⎣
u11
u12
u13

⎤
⎥⎦

= E2(x, z11) + D2(x, z11)

[
ũ1

ū1

]

where r2 � rank
(
D2(x)

) = 2. It is easy, by elementary column operations, to find
m × m matrix L2(x) such that

D2(x)L2(x) =
⎡
⎢⎣
1 0 0

x4 1 + z11 0

1 0 0

⎤
⎥⎦

⎡
⎢⎣

1 0 0
−x4
1+z11

1
1+z11

0

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣
1 0 0

0 1 0

1 0 0

⎤
⎥⎦ .

Therefore, with dynamic feedback

u1 = L2(x)

⎡
⎢⎣
z21
z22
u23

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
−x4
1+z11

1
1+z11

0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
z21
u22
u23

⎤
⎥⎦

ż21 = u21,

(9.47)

we have the following extended system:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ż11
ż21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3 + z11

x4(1 + z11)
−x4z21
1+z11

x6 + z11
x7
0

z21
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0
0 1

1+z11
0

0 0 0

0 0 0

0 0 1

0 0 0

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2 (9.48)

where u2 �
[
ũ2

ū2

]
, ũ2 � u21, and ū2 �

[
u22
u23

]
.

step 3: For system (9.48), we have relative degree (ρ31, ρ
3
2, ρ

3
3) = (4, 2, 3) and

⎡
⎣
y(4)
1

y(2)
2

y(3)
3

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦+

⎡
⎣
1 1 0
0 1 0
1 0 1

⎤
⎦
⎡
⎣
u21
u22
u23

⎤
⎦

where r3 � rank
(
D3(x)

) = 3. Since r3 = 3, then the Dynamic Extension Algorithm
terminates at step 3 and thus system (9.48) is input-output decouplable by static
feedback

⎡
⎣
u21
u22
u23

⎤
⎦ =

⎡
⎣

1 −1 0
0 1 0

−1 1 1

⎤
⎦
⎡
⎣

v1
v2
v3

⎤
⎦ . (9.49)

It is easy to see, by (9.45), (9.47), (9.48), and (9.49), that

⎡
⎣
u1
u2
u3

⎤
⎦ =

⎡
⎢⎣
z11 + x4z21

1+z11−x4z21
1+z11
0

⎤
⎥⎦+

⎡
⎢⎣

0 −1
1+z11

0

0 1
1+z11

0

−1 1 1

⎤
⎥⎦
⎡
⎣

v1
v2
v3

⎤
⎦ (9.50)

and

[
ż11
ż21

]
=
[
z21
0

]
+
[
0 0 0
1 −1 0

]⎡
⎣

v1
v2
v3

⎤
⎦ . (9.51)
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In other words, the extended system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ż11
ż21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3 + z11

x4(1 + z11)
−x4z21
1+z11

x6 + z11
x7
0
z21
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 1

1+z11
0

0 0 0
0 0 0

−1 1 1
0 0 0
1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v

of system (9.44) with dynamic feedback (9.50) and (9.51) has the following input-
output decoupled relation:

⎡
⎣
y(4)
1

y(2)
2

y(3)
3

⎤
⎦ =

⎡
⎣

v1
v2
v3

⎤
⎦ .

�

Example 9.3.2 Show that the following nonlinear system is not locally dynamic
input-output decouplable:

⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣
x23
0
0

⎤
⎦+

⎡
⎣
1
1
1

⎤
⎦ u1 +

⎡
⎣
1
0
1

⎤
⎦ u2

[
y1
y2

]
=
[
x1
x3

]
= h(x).

(9.52)

Solution step 1: By simple calculations, we have relative degree (ρ11, ρ
1
2) = (1, 1)

and

[
y(1)
1

y(1)
2

]
=
[
x23
0

]
+
[
1 1
1 1

] [
u1
u2

]
= E1(x) + D1(x)u

where r1 � rank
(
D1(x)

) = 1. It is easy, by elementary column operations, to find
m × m matrix L1(x) such that

D1(x)L1(x) =
[
1 1
1 1

] [
1 −1
0 1

]
=
[
1 0
1 0

]
.
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Therefore, with

u = L1(x)

[
z11
u12

]
=
[
1 −1
0 1

] [
z11
u12

]

ż11 = u11,

we have the following extended system:

⎡
⎢⎢⎣
ẋ1
ẋ2
ẋ3
ż11

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x23 + z11

z11
z11
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0
0 −1
0 0
1 0

⎤
⎥⎥⎦ u1 (9.53)

where u1 �
[
ũ1

ū1

]
, ũ1 � u11, and ū1 � u12.

step 2: For system (9.53), we have relative degree (ρ21, ρ
2
2) = (2, 2) and

[
y(2)
1

y(2)
2

]
=
[
2x3z11
0

]
+
[
1 0
1 0

] [
u11
u12

]

= E2(x, z11) + D2(x, z11)

[
ũ1

ū1

]

where r2 � rank
(
D2(x)

) = 1. It is easy, by elementary column operations, to find
m × m matrix L2(x) such that

D2(x)L2(x) =
[
1 0
1 0

] [
1 0
0 1

]
=
[
1 0
1 0

]
.

Therefore, with dynamic feedback

u1 = L2(x)

[
z21
u22

]
=
[
1 0
0 1

] [
z21
u22

]

ż21 = u21,

we have the following extended system:

⎡
⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ż11
ż21

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x23 + z11
z11
z11
z21
0

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0
0 −1
0 0
0 0
1 0

⎤
⎥⎥⎥⎥⎦
u2
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where u2 �
[
ũ2

ū2

]
, ũ2 � u21, and ū2 � u22. In this manner, it is easy to see that the

Dynamic Extension Algorithm does not terminate at the final step with r1 = r2 =
r3 = · · · . Thus, we have the final step K = 1 and rK = rank

(
D1(x)

) = 1 �= m.
Hence, by Theorem 9.2, system (9.52) is not dynamic input-output decouplable. �

9.4 MATLAB Programs

In this section, the following subfunctions in Appendix C are needed:
CharacterNum, ChZero, Decoupling-M, Lfh, Lfhk,
RelativeDegree, Yreorder

MATLAB program for Theorem 9.1:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

f=[x2; x3; x4; 0]; g=[0 0; 1 x4; 0 0; 0 1+x3];
h=[x1; x3]; %Ex:9.2.1

% f=[x2; x3; x4; 0];
% g=[0 0; 1 0; x4 0; 0 1+x3]; h=[x1; x3]; %Ex:9.2.2

% f=[x2; x3; x4; 0];
% g=[0 0; 1 1; x4 x4; 0 1+x3]; h=[x1; x3]; %Ex:9.2.3

% g=[0 0 0; 1 1 0; x4 x4 0; 0 1 0; 1 1 0; 0 0 0; 0 0 1];
% f=[x2; x3; x4; 0; x6; x7; 0]; h=[x1; x3; x5]; %Ex:9.3.1

% f=[x3ˆ2; 0; 0]; g=[1 1; 1 x1-x1; 1 1];
% h=[x1; x3]; %Ex:9.3.2

% f=[x2; 0; x1ˆ2]; g=[0 0; 1 1; 0 1+x2ˆ2];
% h=[x1; x3]; %P:9-2(a)

% f=[x2; 0; x1ˆ2]; g=[0 0; 1 1; 0 1+x2ˆ2];
% h=[x1+x3ˆ2; x3]; %P:9-2(b)

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]);
if length(h) ˜= m
return

end

rho=RelativeDegree(f,g,h,x)
[E,D]=Decoupling_M(f,g,h,x,rho)
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if rank(D)<m
display(’By Thm 9.1, NOT locally static decoupable.’)
return

end

display(’By Thm 9.1, locally static decoupable with’)

beta=simplify(inv(D))
alpha=simplify(-beta*E)

return

The following is a MATLAB subfunction program for Theorem 9.2. (Refer to
Lemma 9.2.)

function [R,L,br]=Dcolumn(D)

m=size(D,2); u=sym(’u’,[m,1]);
L0=jacobian(u,u); L1=L0; bL=L0;
R0=RowReorder(D);
D=R0*D;
r=rank(D);
L0trans=RowReorder(D’);
L0=L0trans’;
tD=D*L0;
L1(1:r,1:r)=simplify(inv(tD(1:r,1:r)));
L1(1:r,(r+1):m)=-L1(1:r,1:r)*tD(1:r,(r+1):m);
L=simplify(L0*L1);
tD=D*L;
t1=bL(:,1)-bL(:,1); t2=t1;
for k1=1:r
if ChZero(tD(r+1:m,k1))==0
t1=[t1 bL(:,k1)];

else
t2=[t2 bL(:,k1)];

end
end
br=size(t1,2)-1;
bL(:,1:r)=[t1(:,2:br+1) t2(:,2:r-br+1)];
L=L*bL;
R=bL’*R0;
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The following is a MATLAB subfunction program for Theorem 9.2.

function [flag,L,br,R,he,fe,ge,xe]=DEAstep(k,f,g,h,x)

flag=0; [n,m]=size(g);
z=sym(’z’,[n,n]); u=sym(’u’,[m,1]);
rho=RelativeDegree(f,g,h,x);
[E,D]=Decoupling_M(f,g,h,x,rho);
if rank(D)==m
R=jacobian(u,u); L=R;
br=0; flag=1;
he=h; fe=f; ge=g, xe=x;
return

end
[R,L,br]=Dcolumn(D,x)
tL=L(:,1:br);
bL=L(:,br+1:m);
he=R*h;
zz=z(1:br,k);
xe=[x; zz];
fe=[f+g*tL*zz; zz-zz];
teye=jacobian(xe,xe);
G11=teye(1:n,1:br)-teye(1:n,1:br);
G12=g*bL;
G21=teye(1:br,1:br);
G22=teye(1:br,1:m-br)-teye(1:br,1:m-br);
ge=[G11 G12; G21 G22];

The following is a MATLAB subfunction program for Theorem 9.2.

function [Kf,LL,Br,R,he,fe,ge,xe]=DEA(f,g,h,x)

[n,m]=size(g); u=sym(’u’,[m,1]);
R=jacobian(u,u); LL=R;
for k=1:n+1
Kf=k
[flag,L,br,R1,h,f,g,x]=DEAstep(k,f,g,h,x);
R=R1*R;
fe=f; ge=g; he=h; xe=x;
LL=[LL L]
Br(k)=br;
if flag==1
return

end
end
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MATLAB program for Theorem 9.2:

clear all
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 real

% f=[x2; x3; x4; 0]; g=[0 0; 1 x4; 0 0; 0 1+x3];
% h=[x1; x3]; %Ex:9.2.1

% f=[x2; x3; x4; 0];
% g=[ 0 0; 1 0; x4 0; 0 1+x3]; h=[x1; x3]; %Ex:9.2.2

% f=[x2; x3; x4; 0];
% g=[ 0 0; 1 1; x4 x4; 0 1+x3]; h=[x1; x3]; %Ex:9.2.3

f=[x2; x3; x4; 0; x6; x7; 0];
g=[ 0 0 0; 1 1 0; x4 x4 0; 0 1 0; 1 1 0; 0 0 0; 0 0 1];
h=[x1; x3; x5]; %Ex:9.3.1
%h=[x5; x1; x3];

% f=[x3ˆ2; 0; 0]; g=[1 1; 1 x1-x1; 1 1];
% h=[x1; x3]; %Ex:9.3.2

% f=[x2; 0; x1ˆ2]; g=[0 0; 1 1; 0 1+x2ˆ2];
% h=[x1+x3ˆ2; x3]; %P:9-2(b)

% f=[0; 0; x3]; g=[1 1; 1 x1-x1; 1 1];
% h=[x1; x3]; %P:9-2(c)

% g=[x1-x1 0 0; 1 0 0; 0 0 0; 0 1 0; 1 0 0; 0 1 0; 0 0 1];
% f=[x2; x3; x4; 0; x6; x7; 0]; h=[x1; x3; x5]; %P:9-2(d)

% g=[1 x1 x1; 1 x1 x1; 0 1 x1; 1 x1 x1; 0 1 x1; 0 0 1];
% f=[0; x3; 0; x5; x6; x1ˆ2]; h=[x1; x2; x4]; %P:9-2(e)

f=simplify(f)
g=simplify(g)
h=simplify(h)
[n,m]=size(g); x=sym(’x’,[n,1]); u=sym(’u’,[m,1]);
w=sym(’w’,[m,1]); v=sym(’v’,[m,1]); z=sym(’z’,[n,n]);

rho=RelativeDegree(f,g,h,x)
[E1,D1]=Decoupling_M(f,g,h,x,rho)

if rank(D1)==m
display(’System is static decoupable with.’)
u=inv(D1)*(-E1+v)
return

end

[Kf,LL,Br,R,he,fe,ge,xe]=DEA(f,g,h,x)

display(’DEA terminates at’)
STEP=Kf
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if Kf > n
display(’By Thm 9.2, NOT locally dynamic decoupable.’)
return

end

display(’By Thm 9.2, locally dynamic decoupable.’)
Im=jacobian(u,u); Zerom=Im-Im;
LL=LL(:,m+1:length(LL));
aa=LL(:,1:Br(1))*z(1:Br(1),1);
bu=[Zerom(:,1:Br(1)) LL(:,Br(1)+1:m)]*u;
abu=aa+bu;

for k=2:Kf-1
taa=LL(:,(k-1)*m+1:(k-1)*m+Br(k))*z(1:Br(k),k);
tbu=[Zerom(:,1:Br(k)) LL(:,(k-1)*m+Br(k)+1:k*m)]*u;
tabu=taa+tbu;
abu=simplify(subs(abu,u,tabu));

end

abw=simplify(subs(abu,u,w));
fegew=fe+ge*w;
cdw=fegew(n+1:length(fegew));

rhoE=RelativeDegree(fe,ge,he,xe)
[E,D]=Decoupling_M(fe,ge,he,xe,rhoE)

W=simplify(inv(D)*(v-E))

fegev=fe+ge*W;
Ge=jacobian(fegev,v)
Fe=simplify(subs(fegev,v,v-v))
abv=subs(abw,w,W);
cdv=fegev(n+1:length(fegev));
aa=simplify(subs(abv,v,v-v))
bb=jacobian(abv,v)
cc=simplify(subs(cdv,v,v-v))
dd=jacobian(cdv,v)

rhoE=RelativeDegree(Fe,Ge,he,xe)
[Ee,De]=Decoupling_M(Fe,Ge,he,xe,rhoE)

return
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9.5 Problems

9-1. Find out whether the following nonlinear systems are locally input-output
decouplable by static feedback. If static input-output decoupling is not pos-
sible, then find out whether it is locally input-output decouplable by dynamic
feedback.

(a)

ẋ =
⎡
⎣
x2
0
x21

⎤
⎦+

⎡
⎣
0
1
0

⎤
⎦ u1 +

⎡
⎣

0
1

1 + x22

⎤
⎦ u2 ;

[
y1
y2

]
=
[
x1
x3

]
.

(b)

⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣
x2
0
x21

⎤
⎦+

⎡
⎣
0 0
1 1
0 1 + x22

⎤
⎦ u ;

[
y1
y2

]
=
[
x1 + x23

x3

]
.

(c)

⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣
0 0 1
0 0 0
0 0 0

⎤
⎦ x +

⎡
⎣
1 1
1 0
1 1

⎤
⎦ u ; y =

[
1 0 0
0 0 1

]
x .

(d)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
x3
x4
0
x6
x7
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
u1
u2
u3

⎤
⎦ ;

⎡
⎣
y1
y2
y3

⎤
⎦ =

⎡
⎣
x1
x3
x5

⎤
⎦ = h(x).

(e)

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
x3
0
x5
x6
x21

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x1 x1
1 x1 x1
0 1 x1
1 x1 x1
0 1 x1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
u1
u2
u3

⎤
⎦ ;

⎡
⎣
y1
y2
y3

⎤
⎦ =

⎡
⎣
x1
x2
x4

⎤
⎦ = h(x).
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9-2. For continuous nonlinear control systems, define the local input-output decou-
pling problem by restricted dynamic feedback, and find the necessary and suffi-
cient conditions for this problem by defining the corresponding dynamic exten-
sion algorithm.

9-3. For the discrete time nonlinear control systems, define the static and dynamic
input-output decoupling problems. In other words, find the discrete versions of
Definitions 9.2 and 9.3.

9-4. Find out a nonsingular feedback for the input-output decoupling of the follow-
ing nonlinear discrete time system.

⎡
⎣
x1(t + 1)
x2(t + 1)
x3(t + 1)

⎤
⎦ =

⎡
⎣

x2(t)
x1(t)2 + u1(t) + u2(t)2

x3(t)2 + u2(t)

⎤
⎦

[
y1(t)
y2(t)

]
=
[
x1(t)
x3(t)

]
.

9-5. Find out the necessary and sufficient conditions for local static input-output
decoupling problems of the discrete time nonlinear control systems. In other
words, obtain the discrete version of Theorem 9.1.

9-6. Find out the discrete version of Theorem 9.2.
9-7. Find out the discrete version of Problem 9.2.



Appendix A
Basics of Topology

A.1 Topology of Real Numbers

Definition A.1 (open interval, neighborhood, open set, limit point, closure, and
closed set)

(a) Open interval (a, b) is the set {x ∈ R | a < x < b}.
(b) A neighborhood of point p ∈ R is an open interval U such that p ∈ U .
(c) A set E (⊂ R) is said to be open, if, for every point p ∈ E , there exists a neigh-

borhood U ⊂ E of p.
(d) A point p is said to be a limit point of set E , if every neighborhood U of p

contains at least one point of E different from p itself.

(e) Ē
(
� E ∪ E ′

)
is said to be the closure of set E , where E ′ is the set of all limit

points of E .
(f) A set E (⊂ R) is said to be closed, if every limit point of E belongs to E or

Ē = E .

Example A.1.1 (a) E = (0, 2) is an open set. But, E is not a closed set.
(b) E = [0, 2] � {x ∈ R | 0 ≤ x ≤ 2} is a closed set. But, E is not an open set.
(c) E = (0, 1] � {x ∈ R | 0 < x ≤ 1} is neither open nor closed.
(d) E = R is both open and closed.
(e) E = φ is both open and closed.

�

As shown in the example above, open and closed sets are not the opposite. In
other words, it should not be considered a closed set unless it is an open set.

Example A.1.2 Prove the following:

(a) If the set E is a closed set, the complement Ec is an open set and vice versa.
(b) If {Gα | α ∈ A} is a collection of open sets, then

⋃
α∈A

Gα is also an open set.
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(c) If {G1, · · · ,Gn} is a finite collection of open sets, then
n⋂

i=1
Gi is also an open

set.

�

The union of infinite open sets is an open set. However, the intersection of infinite
open sets may not be an open set. See the following example.

Example A.1.3 Show that
n⋂

�=1
(0, 1 + 1

�
) is an open set.Also, show that

∞⋂
�=1

(0, 1 + 1
�
)

is not an open set. �

A.2 General Topology

Definition A.2 (topological space)
A topological space is an ordered pair (X, τ ), where X is a set and τ is a collection
of subsets of X , satisfying the following axioms:

(i) φ, X ∈ τ .
(ii) (closed under arbitrary union)

Aλ ∈ τ for λ ∈ � ⇒
⋃
λ∈�

Aλ ∈ τ.

(iii) (closed under finite intersection)

A, B ∈ τ ⇒ A ∩ B ∈ τ.

Example A.2.1 (indiscrete topology)
For some set X , let τ = {φ, X}. Prove that (X, τ ) is a topological space. �

Example A.2.2 (discrete topology)
For some set X , let τ be the collection of all subsets of X . Prove that (X, τ ) is a
topological space. �

Example A.2.3 Let X = {1, 2, 3}.
(a) Prove that (X, τ ) is a topological space when τ = {φ, {1}, {2, 3}, X}.
(b) Prove that (X, τ ) is not a topological space when τ = {φ, {1, 2}, {2, 3}, X}.

�

Definition A.3 (coarser topology and finer topology)
Let τ1 and τ2 be two topologies on a set X such that τ1 ⊂ τ2.
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(a) τ1 is said to be a coarser (or weaker) topology than τ2.
(b) τ2 is said to be a finer (or stronger) topology than τ1.

The coarsest topology on X is the indiscrete topology in Example A.2.1. The
finest topology on X is the discrete topology in Example A.2.2.

Definition A.4 (open set)
Let (X, τ ) be a topological space. A is said to be an open set, if A ∈ τ .

Definition A.5 (closed set)
Let (X, τ ) be a topological space. A is said to be a closed set, if X − A ∈ τ . In other
words, A is said to be a closed set, if the complement of A is an open set.

Definition A.6 (Hausdorff topological space)
(X, τ ) is said to be a Hausdorff topological space, if, for all x1 ∈ X and x2 ∈ X (x1 
=
x2), there exist open sets U1 and U2 such that x1 ∈ U1, x2 ∈ U2, and U1 ∩U2 = φ.

Definition A.7 (basis)
A basis B for a topological space (X, τ ) is a collection of open sets such that every
open set can be written as a union of elements of B.

For example, the collection of all open intervals in the real line forms a basis for
the usual (or standard) topology on the real numbers. However, a basis is not unique.
For example, the collection of all open intervals with rational endpoints is also a
basis for the usual real topology.

Definition A.8 (countable set)
Let N = {1, 2, 3, ...} be the set of the natural numbers. A set X is said to be count-
able, if there exists an injective (or 1 − 1) function f : X → N. X is said to be an
uncountable set, if X is not countable.

Example A.2.4 (a) Show that X = {a, b, c} is countable.
(b) Show that Z, the set of all integers, is countable.
(c) Show that Q, the set of all rational numbers, is countable.
(d) Show that R, the set of all real numbers, is uncountable.

�

Definition A.9 (second countable)
A topological space (X, τ ) is said to be second countable, if τ has a countable basis.

Definition A.10 (closure, interior, boundary, and dense subset)
Let A ⊂ X , where (X, τ ) is a topological space.

(a) Ā, the closure of A, is defined by the intersection of all closed subsets containing
A.

(b) Int(A), the interior of A, is defined by the union of all open sets contained in A.
(c) ∂A, the boundary of A, is defined by ∂A = Ā − Int(A).
(d) A is said to be a dense subset of X , if Ā = X .
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Definition A.11 (neighborhood)
Let (X, τ ) be a topological space. A setU is said to be a neighborhood of x(∈ X), if
x ∈ U and U ∈ τ . In other words, a neighborhood of x(∈ X) is an open set U such
that x ∈ U .

Let (X, τ ) and (Y, σ )be topological spaces. Suppose that f : X → Y is a function.
We define that for a subset B of Y ,

f −1(B) � {x ∈ X | f (x) ∈ B} .

Note that f −1(B) ⊂ X .

Example A.2.5 Show the following:

(a) f −1

(⋃
α∈A

Bα

)
=

⋃
α∈A

f −1(Bα).

(b) f −1

(⋂
α∈A

Bα

)
=

⋂
α∈A

f −1(Bα).

(c) f −1(Y − B) = X − f −1(B).

(d) f

(⋃
α∈A

Aα

)
=

⋃
α∈A

f (Aα).

(e) f

(⋂
α∈A

Aα

)
⊂

⋂
α∈A

f (Aα).

�

Definition A.12 (continuous function)
Let (X, τ ) and (Y, σ ) be topological spaces. Suppose that f : X → Y is a function.

(a) f is said to be continuous at point x0, if, for every neighborhood V of f (x0),
there exists a neighborhood U of x0 (∈ X) such that f (U ) ⊂ V .

(b) f is said to be continuous, if f −1(V ) ∈ τ for all V ∈ σ .

Definition A.13 (metric)
A metric (or distance function) on a set X is a function d : X × X → [0,∞) satis-
fying the following axioms:

(a) d(x, y) = d(y, x), ∀x, y ∈ X .
(b) x = y ⇔ d(x, y) = 0.
(c) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X .

Definition A.14 (metric space)
A metric space is an ordered pair (X, d) where M is a set and d is a metric on X .

The topology of R, described in Appendix A.1, can be simply defined as follows.
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Definition A.15 (usual topology of R)
If τ , the usual topology of R, is defined by the collection of arbitrary union of open
intervals, then (R, τ ) is a topological space.

For the metric space (Rn, d), the open ball Bq(x) with the center x and the radius
q is defined by

Bq(x) �
{
y ∈ R

n | d(x, y) < q
}
.

Example A.2.6 Let B = {
Bq(x) | x ∈ Q and q ∈ Q

}
whereQ is the set of all ratio-

nal numbers. Show that B is a countable basis for the usual topological space (R, τ ).
Thus, the usual topological space (R, τ ) is second countable. �

Definition A.16 (product topology)
Suppose that (S1, τ1) and (S2, τ2) are topological spaces. For the Cartesian product
S1 × S2, the product topology τ is defined by

τ = {U1 ×U2 | U1 ∈ τ1 & U2 ∈ τ2} .

Definition A.17 (usual topology of Rn)
Suppose that B is a basis for the topological space (Rn, τ ), where B is the collection
of all open balls of Rn . τ is said to be the usual topology of Rn .

Definition A.18 (subset topology)
Suppose that (S, τ ) is a topological space and S1 ⊂ S. If we define subset topology
τ1 by

τ1 = {U ∩ S1 | U ∈ τ } ,

then (S1, τ1) is also a topological space.

Usually, we use the subset topology when we define the topology for a subset of
some topological space. If a function from a topological space to another topological
space is defined, it may be used to define the following topological space.

Definition A.19 (induced topology)
Suppose that F : S1 → S2 is a continuous function, where (S1, τ1) and (S2, τ2) are
topological spaces. If we define induced topology τ by

τ = {F(U ) | U ∈ τ1} ,

then (F(S1), τ ) is also a topological space.

From the above definitions, it can be seen that two different topologies (subset
topology and induced topology) can be defined for F(S1) (⊂ S2) as needed.
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B.1 Manifold

Definition B.1 (topological manifold)
A topological space (M, τ ) is said to be an n-dimensional topological manifold, if
the following conditions are satisfied:

(i) (M, τ ) is Hausdorff.
(ii) (M, τ ) is second countable.
(iii) For every x(∈ M), there exists a neighborhood U of x such that U is homeo-

morphic to an open set of Rn .

In other words, an n-dimensional topological manifold is a locally second count-
ableHausdorff Euclidean spaceRn . Ann-dimensional topologicalmanifold is locally
homeomorphic to an open set of Rn , even though the universal set M may not be
homeomorphic to an open set of Rn .

Example B.1.1 Show that the unit circle is a one-dimensional topological
manifold. �

Example B.1.2 Show that a sphere is a two-dimensional topological manifold. �

Example B.1.3 Let τ be the usual topology of Rn . Suppose that M is open subset
of Rn . Show that (M, τ1) is an n-dimensional topological manifold where τ1 is the
subset topology. �

Let (M, τ ) be an n-dimensional topological manifold. Suppose thatUλ is an open
subset of M . An ordered pair (Uλ, ϕλ) is said to be a chart (or coordinate chart), if
ϕλ is a homeomorphism from Uλ to an open subset of Rn . An atlas for a topological
space M is a collection {(Uλ, ϕλ) | λ ∈ �} such that

⋃
λ∈�

Uλ = M .
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Definition B.2 (C∞-compatible)
Let (Uα, ϕα) and (Uβ, ϕβ) be charts of an atlas such thatUα ∩Uβ 
= φ. (Uα, ϕα) and
(Uβ, ϕβ) are said to beC∞-compatible, if transitionmap ϕβ ◦ ϕ−1

α : ϕα(Uα ∩Uβ) →
ϕβ(Uα ∩Uβ) is a smooth diffeomorphism.

Definition B.3 (differentiable structure)
An atlas U = {(Uλ, ϕλ) | λ ∈ �} is said to be a differentiable structure, if the fol-
lowing conditions are satisfied:

(i) (Uα, ϕα) and (Uβ, ϕβ) are C∞-compatible for all α(∈ �) and β(∈ �).
(ii) If (V, ψ) is C∞-compatible with every (Uα, ϕα) ∈ U, then (V, ψ) ∈ U.

Definition B.4 (smooth manifold)
A smoothmanifold is a topologicalmanifold equippedwith a differentiable structure.

That is, for a smooth manifold, coordinate transformation and differentiation can
be used. In the literature on linearization of nonlinear systems, an n-dimensional
smooth manifold can be interpreted as a locally Euclidean space Rn . If you are not
familiar with the differential geometry, you do not have to pay much attention to the
terminology of a smooth manifold.

B.2 Vector Space and Algebra

Definition B.5 (vector space or linear space)
A set V is said to be a vector space over fieldR, if there exist two operations,+ : V ×
V → V (vector addition or addition) and · : R × V → V (scalar multiplication),
which satisfy the following eight axioms:

(i) (commutativity of addition)

x + y = y + x, ∀x, y ∈ V .

(ii) (associativity of addition)

x + (y + z) = (x + y) + z, ∀x, y, z ∈ V .

(iii) There exists an element OV ∈ V , called additive identity, such that

x + OV = OV + x = x, ∀x ∈ V .

(iv) For every x ∈ V , there exists an element −x ∈ V , called the additive inverse
of x , such that

x + (−x) = OV .
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(v)

r1 · (r2 · x) = (r1r2) · x, ∀r1, r2 ∈ R, ∀x ∈ V .

(vi) (distributivity of scalar multiplication with respect to vector addition)

r · (x1 + x2) = r · x1 + r · x2, ∀r ∈ R, ∀x1, x2 ∈ V .

(vii) (distributivity of scalar multiplication with respect to field addition)

(r1 + r2) · x = r1 · x + r2 · x, ∀r1, r2 ∈ R, ∀x ∈ V .

(viii)

1 · x = x, ∀x ∈ V .

The vector space has only vector addition (+) and scalarmultiplication (·). If vector
multiplication (�) is further defined in the vector space, it becomes an algebra.

Definition B.6 (algebra)
A vector space A over field R is said to be an algebra over field R, if there exists a
vector multiplication (or product) � : A × A → A which satisfies the following:

(i)

f � (g + h) = f � g + f � h, ∀ f, g, h ∈ A

( f + g) � h = f � h + g � h, ∀ f, g, h ∈ A.

(ii)

α · ( f � g) = (α · f ) � g = f � (α · g), ∀α ∈ R, ∀ f, g ∈ A.

Definition B.7 (algebra with identity, associative algebra, and commutative alge-
bra)

(a) An algebra A is said to be an algebra with identity, if there exists an identity
element 1 ∈ A for vector multiplication� such that f � 1 = 1 � f = f, ∀ f ∈
A.

(b) An algebra A is said to be an associative algebra, if vector multiplication �
satisfies the following associative law:

f � (g � h) = ( f � g) � h, ∀ f, g, h ∈ A.
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(c) An algebra A is said to be a commutative algebra, if vector multiplication �
satisfies the following commutative law:

f � g = g � f, ∀ f, g ∈ A.

Definition B.8 (Lie algebra)
Let f � g � [ f, g]. An algebra A is said to be a Lie algebra, if vector multiplication
� satisfies the following axioms:

(i) (bilinear)

[r1 f + r2g, h] = r1[ f, h] + r2[g, h], ∀r1, r2 ∈ R, ∀ f, g, h ∈ A

[h, r1 f + r2g] = r1[h, f ] + r2[h, g], ∀r1, r2 ∈ R, ∀ f, g, h ∈ A.

(ii) (anticommutative or skew-commutative)

[ f, g] = −[g, f ], ∀ f, g ∈ A.

(iii) (Jacobi identity)

[ f, [g, h]] + [g, [h, f ]] + [h, [ f, g]] = 0, ∀ f, g, h ∈ A.

The bracket operation that satisfies the three properties of Definition B.8 is called
the Lie bracket.

B.3 Vector Field on Manifold

Let M be a smooth manifold of dimension n. A real-valued function f : M → R

is said to belong to C∞(M), if for every coordinate chart ϕ : U → R
n , the map

f ◦ ϕ−1 : ϕ(U ) (⊂ R
n) → R is C∞ (or smooth).

Definition B.9 (tangent vector)
A tangent vector at a point p ∈ M is a function v : C∞(M) → R which satisfies the
following two conditions:

(i) (linearity)

v(αh1 + βh2) = αv(h1) + βv(h2), ∀h1, h2 ∈ C∞(M), ∀α, β ∈ R.
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(ii) (Leibniz rule)

v(h1h2) = h2(p)v(h1) + h1(p)v(h2), ∀h1, h2 ∈ C∞(M).

Definition B.10 (tangent space)
We define the tangent space Tp(M) at p as the set of all tangent vectors at p.

If we define vector addition and scalar multiplication on Tp(M) by

(X p + Yp)( f ) = X p( f ) + Yp( f ), ∀ f ∈ C∞(M)

(α · X p)( f ) = αX p( f ), ∀α ∈ R, ∀ f ∈ C∞(M),

then Tp(M) is a vector space over field R.

Definition B.11 (tangent bundle)
The tangent bundle of a differentiable manifold M is a manifold T (M)which assem-
bles all the tangent vectors in M . In other words,

T (M) =
⋃
p∈M

{p} × Tp(M) = {(p, v) | p ∈ M, v ∈ Tp(M)}.

Define the projection map π : T M → M by π(p, v) = p. A smooth assignment
of a tangent vector to each point of a manifold is called a vector field.

Definition B.12 (vector field)
A vector field is a function X : M → T (M) such that X (p) ∈ {p} × Tp(M).

If we define X ( f ) for all f ∈ C∞(M) by

X ( f )(p) = X p( f ), ∀p ∈ M,

then a smooth vector field X on amanifoldM is a linearmap X : C∞(M) → C∞(M)

such that

X ( f g) = f X (g) + X ( f )g, ∀ f, g ∈ C∞(M).

If X is a smooth vector field, then X ( f ) is a smooth function on M . Note that Tp(M)

is a vector space over field R. If we define vector addition and scalar multiplication
on the set of all smooth vector fields on M by

(X + Y )p = X p + Yp, ∀p ∈ M

(α · X)p = α · X p, ∀α ∈ R, ∀p ∈ M,
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then the set of all smooth vector fields on M is also a vector space over field R. The
Lie bracket, [X, Y], of two smooth vector fields X and Y is the smooth vector field
[X, Y] such that

( f ) � X (Y ( f )) − Y (X ( f )) , ∀ f ∈ C∞(M). (B.1)

It is not difficult to see that the Lie bracket operation, defined by (B.1), satisfies the
axioms of Definition B.8. In other words, for all smooth vector fields X , Y , and Z
on M, the following conditions are satisfied:

(i) (bilinear)

[α1X + α2Y, Z ] = α1[X, Z ] + α2[Y, Z ], ∀α1, α2 ∈ R

[Z , α1X + α2Y ] = α1[Z , X ] + α2[Z ,Y ], ∀α1, α2 ∈ R.

(ii) (anticommutativity or skew-commutative)

[X,Y ] = −[Y, X ].

(iii) (Jacobi identity)

[X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = 0.

Therefore, the set of all smooth vector fields onMequippedwith the bracket operation
is a Lie algebra.

Definition B.13 (differential map)
Let M and N be smooth manifolds. Suppose that S : M → N is a smooth map
between smooth manifolds. Given some p ∈ M , the differential map S∗ : TpM →
TS(p)N of S at p is a linear map from the tangent space of M at p to the tangent
space of N at S(p) such that

S∗(X p)( f ) = X p( f ◦ S), ∀ f ∈ C∞(N ).

Definition B.14 (smooth distribution)
Suppose that Dp is a k-dimensional subspace of Tp(M) for all p ∈ M . D is said to
be a k-dimensional smooth distribution on M , if there exist a neighborhood U of p
and a set of smooth vector fields {X1, · · · , Xk} on U for any p ∈ M , such that for
any q ∈ U ,
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Dq = span {X1, · · · , Xk}

�
{

k∑
i=1

ci Xi

∣∣∣ ci ∈ C∞(U ), 1 ≤ i ≤ k

}
.

{X1, · · · , Xk} is a local basis of distribution D.

Definition B.15 (involutive distribution)
Smooth distribution D is said to be involutive, if [X,Y ] ∈ D for any smooth vec-
tor fields X ∈ D and Y ∈ D. In other words, smooth distribution D is said to be
involutive, if D is closed under bracket operation.

Definition B.16 (completely integrable distribution)
Suppose that D is a k-dimensional smooth distribution on M . Distribution D
is said to be completely integrable, if each point has a chart (U, ϕ) such that{
ϕ−1∗

(
∂

∂z1

)
, · · · , ϕ−1∗

(
∂

∂zk

)}
is a local basis on U .

Theorem B.1 (Frobenius Theorem)
A distribution D is completely integrable, if and only if D is involutive.
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In this section, MATLAB Subfunctions used in this book are introduced. The readers
who are expert in programming can improve the programs.

adfg( f, g, x) : out=ad f g(x) = [ f (x), g(x)]
function out=adfg(f,g,x)

dg=jacobian(g,x);
df=jacobian(f,x);
out=simplify(dg*f-df*g);

adfgk( f, g, x, k) : out=adkf g(x)

function out=adfgk(f,g,x,k)

out=g;
for k1=1:k
out=simplify(adfg(f,out,x));

end

adfgM( f,
[
g1(x) · · · gm(x)

]
, x) : out=

[
ad f g1(x) · · · ad f gm(x)

]

function out=adfgM(f,G,x)

out=G-G;
for k1=1:size(G,2)
out(:,k1)=adfg(f,G(:,k1),x);

end
out=simplify(out);
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adfgkM( f, g, x, k) : out=
[
adkf g1(x) · · · adkf gm(x)

]

function out=adfgkM(f,G,x,k)

out=G;
for k1=1:k
out=simplify(adfgM(f,out,x));

end

CharacterNum( f (x), g(x), h(x), x) : characteristic number
out = ρ

function rho=CharacterNum(f,g,h,x)

[n,m]=size(g);
for k=1:n
t1=simplify(Lfh(g,Lfhk(f,h,x,k-1),x));
if ChZero(t1)==0
rho=k;
return

end
end
rho=n+1;

ChCommute(T (x), x) : out =
{
1, if [Ti (x), Tj (x)] = 0, 1 ≤ i, j ≤ s

0, otherwise

function out=ChCommute(T,x)

out=0;
s=size(T,2);
for k1=1:s
for k2=k1:s
cc=adfg(T(:,k1),T(:,k2),x);
if ChZero(cc)==0
return

end
end
end

out=1;

ChConst(M(x), x) : out =
{
1, if M(x) is a constant matrix

0, otherwise
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function out=ChConst(M,x)

out=0;
s=size(M);
for k1=1:s(1)
for k2=1:s(2)
t1=jacobian(M(k1,k2),x);
if ChZero(t1) == 0
return

end
end

end
out=1;

ChExact(ω(x), x) : out =
{
1, if ω(x) is exact one form

0, otherwise

function out=ChExact(omega,x)

out=0;
Tomega=omega’;
dTomega=jacobian(Tomega,x);
t1=dTomega’-dTomega;
if ChZero(t1)==0
return

end
out=1;

ChInverseF(Fu(x),Gu(x), x) :

out =
{
1, if Fu ◦ Gu(x) = x and Gu ◦ Fu(x) = x

0, otherwise

function out=ChInverseF(F,iF,x)

out=0;
cc1=simplify(subs(F,x,iF));
if ChZero(cc1-x)==0
return

end
cc2=simplify(subs(iF,x,F));
if ChZero(cc2-x)==0
return

end
out=1;

ChInvolutive(D(x), x) :



570 Appendix C: MATLAB Subfunctions

out =
{
1, if distribution span{d1(x), · · · , ds(x)} is involutive
0, otherwise

function out=ChInvolutive(D,x)

out=0;
s=size(D,2);
r=rank(D);
for k1=1:s
for k2=k1+1:s
t1=adfg(D(:,k1),D(:,k2),x);
t2=[D t1];
if rank(t2)>r
return

end
end

end
out=1;

ChZero(M(x)) : out =
{
1, if M(x) = O

0, if M(x) 
= O

function out=ChZero(M)

out=0;
s=size(M);
for k1=1:s(1)
for k2=1:s(2)
if M(k1,k2) ˜= M(1,1)-M(1,1)
return

end
end

end
out=1;

Codi( ∂S(x)
∂x , x) : out=S(x)

function out=Codi(dS,x)

s1=size(dS,1);
out=dS(:,1)-dS(:,1);
for m=1:s1
out(m)=dS(1,1)-dS(1,1);
for k=1:length(x)
dbeta(m,k)=simplify(dS(m,k)-diff(out(m),x(k)));
beta(m,k)= simplify(int(dbeta(m,k),x(k)));
out(m)=simplify(out(m)+beta(m,k));

end
end
out=simplify(out-subs(out,x,x-x));
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CXexact(ω(x), x) :

out1 =
{
1, if −1

ωK (0)qK (x) is exact

0, otherwise
out2=c(x) such that c(x)ω(x) is exact one form when out1= 1.
One form −1

ωK (0)qK (x) is defined in (4.24).

function [flag,CX]=CXexact(omega,x)

flag=0;
CX=x(1)-x(1)+1;
n=size(x,1);
if ChExact(omega,x)==1
flag=1;
return

end
domega=jacobian(omega’,x);
bQ=domega-domega’;
omega0=subs(omega,x,x-x);
for k1=1:n
if ChZero(omega0(k1))==0
K=k1;
break

end
end
dLCX=(1/omega(K))*bQ(:,K)’;
if ChExact(dLCX,x)==0
return

end
LCX=Codi(dLCX,x);
CX=exp(LCX);
if ChExact(CX*omega,x)==0
return

end
flag=1;

Decoupling-M( f (x), g(x), h(x), x, ρ) : Decoupling matrix

out1= E(x) =
⎡
⎢⎣
Lρ1

f h1(x)
...

L
ρq

f hq(x)

⎤
⎥⎦ ; out2= D(x) =

⎡
⎢⎣
LgL

ρ1
f h1(x)
...

LgL
ρq

f hq(x)

⎤
⎥⎦

function [E,D]=Decoupling_M(f,g,h,x,rho)

t1=h-h;
for k=1:length(h)
t1(k)=Lfhk(f,h(k),x,rho(k)-1);

end
t1=simplify(t1);
D=simplify(Lfh(g,t1,x));
E=simplify(Lfh(f,t1,x));
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Delta( f (x), g(x), x) :
out=

[
g1(x) · · · gm(x) · · · adn−1

f g1(x) · · · adn−1
f gm(x)

]

function D=Delta(f,g,x)

[n,m]=size(g);
D=g;
for k=1:n-1
D=[D adfgM(f,D(:,(k-1)*m+1:k*m),x)];

end

DeltaDT(Fu(x), x, u) :

out=
[

∂Fu(x)
∂u · · · ∂ F̂max(κ)

u (x)
∂u

]

function D=DeltaDT(F,x,u)

n=size(F,1);
m=size(u,1);
xu=[x; u];
D=simplify(jacobian(F,u));
for k=2:n
t1=HatF(F,x,u,k);
t2=simplify(jacobian(t1,u));
newD=[D t2];
if rank(subs(newD,xu,xu-xu)) == rank(subs(D,xu,xu-xu))
return

end
D=newD;

end

HatF(Fu(x), x, u, k) : out=F̂k(x, u) � Fk−1
0 ◦ Fu(x)

function out=HatF(F,x,u,k)

out = x;
for n=1:k
out=simplify(subs(out,u,u-u));
out=simplify(subs(out,x,F));

end
out = simplify(out);

ker-sF(F (w),w, n) : out=kerF∗
function out=ker_sF(sF,w,n)

Y=jacobian(sF,w);
t1=Y(:,1:n);
t2=Y(:,n+1);
t3=simplify(inv(t1)*t2);
out=[-t3; 1];
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ker-sF-M(F (w),w, Ũ , κ, n,m) : out=ker F∗

function out=ker_sF_M(sF,w,tW,ka,n,m)

bW=transp(w(1,1:ka(1)));
for k1=2:m
bW=[bW; transp(w(k1,1:ka(k1)))];

end
for k1=1:m
bW=[bW; w(k1,ka(k1)+1)];

end
Y=jacobian(sF,bW);
t1=Y(:,1:n);
t2=Y(:,(n+1):(n+m));
t3=simplify(-inv(t1)*t2);
bkersF=[t3; eye(m)];
iP=jacobian(tW,bW);
out=iP*bkersF;

Kindex( f (x), g(x), x) : Kronecker indices
out1=κ = [

κ1 · · · κm
]T

on a nbhd of x = x0

out2=
[
g1(x) · · · gm(x) · · · admax(κ)−1

f g1(x) · · · admax(κ)−1
f gm(x)

]

function [kappa,D]=Kindex(f,g,x)

[n,m]=size(g);
D1=Delta(f,g,x);
kappa=zeros(m,1);
DD=x-x;
for k1=1:n
for k2=1:m
t1 =[DD D1(:,m*(k1-1)+k2)];
if rank(t1)>rank(DD)
kappa(k2)=kappa(k2)+1;
DD=t1;
if rank(DD)==rank(D1)

D=D1(:,1:m*max(kappa))
return

end
end

end
end

Kindex0( f (x), g(x), x) : Kronecker indices
out1=κ = [

κ1 · · · κm
]T

on a nbhd of x = 0

out2=
[
g1(x) · · · gm(x) · · · admax(κ)−1

f g1(x) · · · admax(κ)−1
f gm(x)

]
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function [kappa,D]=Kindex0(f,g,x)

[n,m]=size(g);
D1=Delta(f,g,x);
D0=subs(D1,x,x-x);
kappa=zeros(m,1);
DD=x-x; for k1=1:n
for k2=1:m
t1 =[DD D0(:,m*(k1-1)+k2)];
if rank(t1)>rank(DD)
kappa(k2)=kappa(k2)+1;
DD=t1;
if rank(DD)==rank(D0)

D=D1(:,1:m*max(kappa));
return

end
end

end
end

KindexDT0(Fu(x), x, u) : Kronecker indices of discrete time system

out=κ = [
κ1 · · · κm

]T
on a nbhd of x = 0

function kappa=KindexDT0(F,x,u)

n=size(F,1);
m=size(u,1);
xu=[x; u];
D=DeltaDT(F,x,u);
tD=subs(D,xu,xu-xu);
kappa=zeros(m,1);
N=size(D,2)/m;
DD=x-x; for
k1=1:N
for k2=1:m
t1 =[DD tD(:,m*(k1-1)+k2)];
if rank(t1)>rank(DD)
kappa(k2)=kappa(k2)+1;
DD=t1;
if rank(DD)==rank(tD)

return
end

end
end

end
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Lfh( f (x), h(x), x) : out=L f h(x)

function out=Lfh(f,h,x)

dh=jacobian(h,x);
out=simplify(dh*f);

Lfhk( f (x), h(x), x, k) : out=Lk
f h(x)

function out=Lfhk(f,h,x,k)

out = h;
for n=1:k

out=simplify(Lfh(f,out,x));
end
out = simplify(out);

ObvIndex0(F0(x), H(x), x, n, p) : observability indices

out=ν = [
ν1 · · · νp

]T
on a nbhd of x = 0

function nu=ObvIndex0(F0,H,x,n,p)

TM=H;
for k=1:n-1
TM=[TM; Lfh(F0,TM((k-1)*p+1:k*p),x)];

end
dTM=simplify(jacobian(TM,x));
dTM0=subs(dTM,x,x-x);
nu=zeros(p,1);
DD=dTM0(1,:)-dTM0(1,:);
for k1=1:n
for k2=1:p
t1 =[DD; dTM0(p*(k1-1)+k2,:)];
if rank(t1)>rank(DD)
nu(k2)=nu(k2)+1;
DD=t1;
if rank(DD)==rank(dTM0)

return
end

end
end

end

Psi-sF(Fu(x), x, u, w, n) :
out1 = �(w1, · · · , wn) � Fw1 ◦ Fw2 ◦ · · · ◦ Fwn (0)
out2 = F (w1, · · · , wn+1) � Fw1 ◦ · · · ◦ Fwn ◦ Fwn+1(0)
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function [Psi,sF]=Psi_sF(F,x,u,w,n)

FF(:,1)=subs(F,[x;u],[x-x;w(n+1)]);
for k=1:n
FF(:,k+1)=subs(F,[x;u],[FF(:,k);w(n+1-k)]);

end
sF=simplify(FF(:,n+1));
Psi=simplify(subs(sF,w(n+1),w(n+1)-w(n+1)));

Psi-sF-M(Fu(x), x, u, w,m, κ) :
out1 = �(w1, · · · , wn) � Fw1 ◦ · · · ◦ Fwκmax (0)|wi

j=0, i≥κ j+1

out2 = F (Ũ ) � Fw1 ◦ · · · ◦ Fwκmax ◦ Fwκmax+1(0)|wi
j=0, i≥κ j+2

out3 = U = [
w1

1 w1
2 w2

1 w3
1

]T
, when (κ1, κ2) = (3, 1)

out4 = Ũ = [
w1

1 w1
2 w2

1 w2
2 w3

1 w4
1

]T
, when (κ1, κ2) = (3, 1)

out5 =
[
w1

1 w2
1 w3

1 w4
1

w1
2 w2

2 0 0

]T

, when (κ1, κ2) = (3, 1)

function [Psi,sF,W,tW,U]=Psi_sF_M(F,x,u,w,m,ka)

kamax=max(ka);
FF(:,1)=subs(F,[x;u],[x-x;w(:,kamax+1)]);
for k=1:kamax
FF(:,k+1)=subs(F,[x;u],[FF(:,k);w(:,kamax+1-k)]);

end
BW=w-w;
BtW=w-w;
for k1=1:m
BW(k1,1:ka(k1))=w(k1,1:ka(k1));
BtW(k1,1:ka(k1)+1)=w(k1,1:ka(k1)+1);

end
sF=simplify(subs(FF(:,kamax+1),w,BtW));
Psi=simplify(subs(FF(:,kamax+1),w,BW));
W=w(1,1)-w(1,1);
tW=w(1,1)-w(1,1);
for k1=1:kamax+1
for k2=1:m
if ChZero(BW(k2,k1))==0
W=[W; BW(k2,k1)];

end
if ChZero(BtW(k2,k1))==0
tW=[tW; BtW(k2,k1)];

end
end

end
W=simplify(W(2:length(W)));
tW=simplify(tW(2:length(tW)));
U=simplify(BtW(:,1:kamax+1));
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RelativeDegree( f (x), g(x), h(x), x) : out=(ρ1, · · · , ρq)

function rho=RelativeDegree(f,g,h,x)

for k=1:length(h)
rho(k)=CharacterNum(f,g,h(k),x);

end

RowReorder(D(x)) : out=R0

where R0 is a rowpermutationmatrix such that R0D(x) =
[
R1

R2

]
D(x) =

[
D̃(x)
D̄(x)

]

and rank
(
D̃(x)

)
= rank (D(x)).

function R=RowReorder(D)

q=size(D,1); r=rank(D); R=eye(q);
id=0;
for k1=1:q
if rank(D(1:k1,:))>rank(D(1:k1-1,:))
id=[id k1];

end
end
id=id(2:r+1);
t1=R(1,:)-R(1,:);
t2=t1;
for k=1:q
if k==id(1)
t1=[t1; R(k,:)];
id=[id(2:r) 0];

else
t2=[t2; R(k,:)];

end
end
R=[t1(2:r+1,:); t2(2:q-r+1,:)];

S1( f (x), g(x), x) :

out1 =
{
1, if −1

ωK (0)qK (x) is exact

0, otherwise
out2=S1(x) in Lemma 4.1 when out1= 1.
If out1= 0, then S1(x) should be found without MATLAB function S1.
One form −1

ωK (0)qK (x) is defined in (4.24).



578 Appendix C: MATLAB Subfunctions

function [flag,S1]=S1(f,g,x)

flag=0;
S1=g(1)-g(1);
[n,m]=size(g);
T(:,1)=g;
for k=2:n
T(:,k)=adfg(f,T(:,k-1),x);

end
T=simplify(T);
BD=T(:,1:n);
BD(:,n)=subs(BD(:,n),x,x-x);
iBD=inv(BD);
Eyen=jacobian(x,x);
omega=(-1)ˆ(n-1)*Eyen(n,:)*iBD
[flagCX,CX]=CXexact(omega,x)
if flagCX==0
return

end
flag=1;
dS1=CX*omega;
S1=Codi(dS1,x);

S1M( f (x), g(x), x, κ) :

out1 =
{
1, if z = S(x) can be found by S1M

0, if z = S(x) should be found by hand calculation

out2=

⎡
⎢⎣
S11(x)

...

Sm1(x)

⎤
⎥⎦ in Lemma 4.3 when out1= 1.

function [flag,S1]=S1M(f,g,x,kappa)

flag=0;
S1=g(1,:)’-g(1,:)’;
[n,m]=size(g);
for k1=1:m
for k2=1:kappa(k1)
T(:,k2,k1)=adfgk(f,g(:,k1),x,k2-1);

end
end
T=simplify(T);
for k=1:m
BD=g(:,1)-g(:,1);
tt2=x(1)-x(1);
for k1=1:m
BD=[ BD T(:,1:min(kappa(k),kappa(k1)),k1) ];
t2=x(1:min(kappa(k),kappa(k1)));
tt2=[tt2 (t2-t2)’ ];
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if kappa(k1) >= kappa(k)
BD(:,size(BD,2))=subs(BD(:,size(BD,2)),x,x-x);
if k1==k

tt2(size(tt2,2))= (-1)ˆ(kappa(k1)-1);
end

end
BD=simplify(BD);

end
BD=simplify(BD(:,2:size(BD,2)));
tt2=simplify(tt2(:,2:size(tt2,2)));
ipBD=simplify(inv(BD’*BD));
omega=simplify(tt2*ipBD*BD’);
[flagCX,CX]=CXexact(omega,x);
if flagCX==0
return

end
dS1=CX*omega;
S1(k)=Codi(dS1,x);

end
flag=1;
S1=simplify(S1);

SpanCx(X (x),Y (x)) :

flag =
{
1, if rank ([X Y ]) = rank(Y ) = k

0, otherwise
out=c(x)

where X (x) = Y (x)c(x) =
k∑

i=1

ci (x)Yi (x) and Y (x) is a n × k matrix.

function [flag,out]=SpanCx(X,Y)

flag=0;
[n,K]=size(Y)
out=(Y(1,1:K)-Y(1,1:K))’
Z=[X Y] if rank(Y) <
K
return

end
if rank([X Y]) > rank(Y)
return

end
Z0=Z(1,:)-Z(1,:);
for k1=1:n
if rank([Z0; Z(k1,:)]) > rank(Z0)
Z0=[Z0; Z(k1,:)];

end
end
Z0=Z0(2:size(Z0,1),:)
out=simplify(inv(Z0(:,2:K+1))*Z0(:,1))
flag=1;
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sstarmap(S(x), S−1(z), f (x), x) :

out=S∗( f (x)) � ∂S(x)
∂x f (x)

∣∣∣
x=S−1(z)

function out=sstarmap(s,invs,f,x)

ds=jacobian(s,x);
out2=ds*f;
out = subs(out2,x,invs);
out=simplify(out);

TauFG( f (x), g(x), x, κ) :

out=
[
g1(x) · · · adκ1−1

f g1(x) · · · gm(x) · · · adκm−1
f gm(x)

]

function out=TauFG(f,g,x,kappa)

[n,m]=size(g);

T=x-x;
for k1=1:m
for k2=1:kappa(k1)
T=[T adfgk(f,g(:,k1),x,k2-1)];

end
end
out=simplify(T(:,2:size(T,2)));

transp(M(x)) : out=M(x)T

function out=transp(M)

s=size(M);
out=M’-M’;
for k1=1:s(1)
out(:,k1)=M(k1,:);

end
out=simplify(out);
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