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Preface

Wave scattering by bodies, small in comparison with the wavelength, is of
interest in many applications: light scattering by cosmic and other dust,
light scattering in colloidal solutions, scattering of waves in media with
small inhomogeneities, such as holes in metal, for example, ultrasound
mammography, ocean acoustics, etc. In 1871 Rayleigh started his classical
work on wave scattering by small bodies. He understood that the main
input in the far-zone field, scattered by a dielectric body, small in compar-
ison with the wavelenghth A, is made by the dipole radiation. However, he
did not give methods for calculating this radiation for bodies of arbitrary
shapes. The body is small if ka < 0.1, where k = QT” is the wavenumber,
and a is the characteristic dimension of the body. Practically in some cases
one may consider the body small if ka < 0.2. Thomson (1893) understood
that the main part of the far-zone field, scattered by a small perfectly con-
ducting body, consists not only of the electric dipole radiation, but also
of the magnetic dipole radiation which is of the same order of magnitude.
Many papers and books dealing with the wave scattering from small bodies
and its applications have been published since then.

However only in the author’s works ([85], [112], [113]) have analytic for-
mulas for calculation with arbitrary accuracy of the electric and magnetic
polarizability tensors for bodies of arbitrary shapes been derived. These for-
mulas allow one to calculate with the desired accuracy the dipole radiation
from bodies of arbitrary shapes, and the electric and magnetic polarizability
tensors for these bodies in terms of their geometries and material properties
(dielectric permeability €, magnetic permittivity u, and conductivity o) of
the bodies. Using these formulas the author has derived analytic formulas
for the S-matrix for acoustic and electromagnetic wave scattering by small
bodies of arbitrary shapes. The author has obtained two-sided estimates

vii



viii Preface

for various functionals of practical interest in scattering theory, such as
electrical capacitances of the conductors of arbitrary shapes and elements
of the polarizability tensors of dielectric bodies of arbitrary shapes. These
results allow the author to solve the inverse radiation problem.

Iterative methods for calculating static fields play an important role
in the theory developed in this monograph. These methods are presented
for interior and exterior boundary-value problems and for various bound-
ary conditions. Boundary-value problems are reduced to boundary integral
equations, and these equations are solved by means of iterative processes.
There is a common feature of the static problems we study. Namely, these
problems are reduced to solving Fredholm integral equations at the largest
eigenvalue (smallest characteristic value, which is reciprocal to the eigen-
value) of the corresponding compact integral operator. The right-hand side
of the equation is such that this equation is solvable. The largest eigenvalue
is semisimple, that is, it is a simple pole of the resolvent of the correspond-
ing compact operator. For this class of solvable operator equations at their
largest eigenvalues the author had developed convergent iterative processes
which allow one to solve the correponding equation stably with respect
to small perturbations of the data. The above material is presented in
Chapters 1-7, which are based on monograph [113].

The Fredholm alternative and a characterization of bounded and
unbounded Fredholm operators of zero index are given in Chapter 8. The
dependence on a parameter of the resolvents of analytic and meromorphic
families of Fredholm operators is studied. Our presentation is based on
works ([88], [81], [136]). This presentation is simple, short, and can be used
in courses for graduate students.

Boundary-value problems for elliptic second-order equations are studied
in rough domains, i.e., in domains with non-smooth boundaries, far less
smooth than the Lipschitz boundaries ([103], [104], [30], [31], [107]). These
results are presented in Chapter 9.

Low frequency asymptotics for solutions of exterior boundary-value
problems are obtained (see [121], [133], [127], [142], [87], [90], [101]). These
results are presented in Chapter 10.

The inverse problem of finding small subsurface inhomogeneities from
the scattering data measured on the surface is discussed in ([105], [36]).
These results are presented in Chapter 11.

The Modified Rayleigh Conjecture (MRC) is formulated and proved
([116]). An efficient numerical method for solving obstacle scattering
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problems is proposed and justified mathematically on the basis of MRC
([34], [118], [119], [125], [37]). Part of these results is presented in
Chapter 12.

Methods, optimal with respect to accuracy, for calculating multiple inte-
grals with weakly singular integrands are developed ([10]). These results
are presented in the Appendix.

Most of the problems treated in the book are three-dimensional, because
for two-dimensional problems the specific and often powerful tool of con-
formal mapping is available. The iterative methods have some advantages
over grid methods and, to a certain extent, over variational methods:

(1) they give analytic approximate formulas for the field and for some func-
tionals of the field of practical importance (such as capacitance and
polarizability tensor),

(2) the formulas for the functionals can be used in a computer program for
calculating these functionals for bodies of arbitrary shape,

(3) iterative methods are convenient to use on computers.

From a practical point of view, the above methods reduce solving the
boundary-value problems to calculating some multiple integrals. Of spe-
cial interest is the case of integrands with weak singularities. One of the
main results of the book are analytical approximate formulas for scatter-
ing matrices for small bodies of arbitrary shapes. These formulas answer
many practical questions, for example, how the scattering depends on the
shape of the body or on the boundary conditions, how one calculates the
effective field in a medium consisting of many small particles, and many
other questions. In particular, these formulas allow one to solve the inverse
radiation problem, which can be formulated as follows: If (E, H) is the
field scattered by a small probe placed at the point x in an electromagnetic
field (Eo, Hp), how does one calculate (Eo(z), Ho(x)) from knowledge of
the scattered field (E, H)? This is an inverse problem of radiation theory
or inverse radiomeasurements problem.

We also present two-sided variational estimates of capacitances and
polarizability tensors. This book is based mostly on the author’s papers
and results. But the subject is classical and there have been many papers
and books written on this subject. Some of them are cited in the bibliog-
raphy, but the bibliography is incomplete.

Chapters 6, 8-10, 12, and Appendix A can be read independently of
other chapters. Other chapters build on each other: in Chapter 7 results
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from Chapter 5 are used, in Chapters 1-3 the results from Chapter 6
are used, in Chapter 5 the results from Chapters 1-3 are used, and in
Chapter 11 the results from Chapter 7 are used. The basic topic discussed
in the Appendix A is the many-body wave scattering problem for small bod-
ies. Based on the solution to this problem a method for creating materials
with a desired refraction coefficient is formulated.

The many-body wave scattering problem the author solved asymptoti-
cally exactly under the assumption @ < d < A. Here a is the characteristic
size of a small body, d is the minimal distance between neighboring bodies,
and A is the wavelength. Under this assumption the multiple scattering is
essential.

The practical interest of the author’s results is very high: the materials
with a desired refraction coefficient (for example, materials with negative
refraction and wave-focusing materials) are of obvious interest in practice.
The author has published his results on creating materials with a desired
refraction coefficient in several monographs and many papers cited in these
monographs. Author’s CV, list of publications and a brief description of
scientific results of the author are included. The author has tried to make
the presentation in this book essentially self-contained. The sign [ denotes
the end of a proof.
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Introduction

This book addresses largely three-dimensional problems. Scattering prob-
lems for bodies, small in comparison with the wavelength, are reduced to
static problems. Complex variable methods (conformal mappings) for solv-
ing static two-dimensional problems have been widely discussed in the liter-
ature. The problems solvable in closed form are collected in [13], [33], [43],
[58], [143], [71], [73]. The method of separation of variables has been used
to solve the static problems for ellipsoids and its limiting forms (disks, nee-
dles), for a half-plane, wedge, plane with an elliptical aperture, hyperboloid
of revolution, parabaloid of revolution, cone, thin spherical shell, spherical
segment, two conducting spheres, and some other problems. Electrostatic
fields in a flaky (layered) medium with parallel and sectorial boundaries
have been studied [33], [143]. Some of the problems were solved in closed
form using integral equations, e.g., the problems for a disk, spherical shell,
plane with a circular hole, etc. Wiener-Hopf, dual, and singular integral
equations were used [33], [143], [76], [164]. Electrostatic problems for a
finite circular hollow cylinder (tube) were studied in [158] by numerical
methods. The capacitance per unit length of the tube and the polarizabil-
ity of the tube were calculated. The authors reduced the integral equation
for the surface charge to an infinite system of linear algebraic equations
and solved the truncated system on a computer. Their method depends
heavily on the particular geometry of the problem and does not allow one
to handle any local perturbations of the shape of the tube. In [68] the
variational methods of Ritz, Trefftz, the Galerkin method, and the grid
method are discussed in connection with the static problems. However,
no specific properties of these problems are used. These methods are pre-
sented in a more general setting in [53], [66]. In practice, these methods

xvii



xviii Introduction

are time-consuming, and variational methods in three-dimensional static
problems probably have some advantages over the grid method. A vast
literature exists on the calculation of the capacitances of perfect conduc-
tors [43], [79]. In [43] there is a reference section which gives the capaci-
tances of conductors of certain shapes. In [78], [79] a systematic exposition
of variational methods for estimation of the capacitances and other func-
tionals of practical interest is given. In [153] there are some programs
for calculating the two-dimensional static fields using integral equations
method.

In [148] some geometrical properties of the lines of electrical field
strength are used for approximate calculations of the field. This approach
is empirical.

One of the objectives of this book is to present systematically the usage
of integral equations for calculating static fields and some practically use-
ful functionals of these fields, in particular, capacitances and polarizability
tensors of bodies of arbitrary shape. The method gives approximate analyt-
ical formulas for calculations of these functionals with the desired accuracy.
These formulas can be used to construct a computer program for calcu-
lating capacitances and polarizability tensors. The many-body problems
are also discussed as well as the problems for flaky-homogeneous bodies,
e.g., coated particles. Two-sided variational estimates of capacitances and
polarizability tensors are given. The problems for open thin metallic screens
are considered as well as those for perfect magnetic films. Calculating the
magnetic polarizability of perfect magnetic films is important because such
films are used as memory elements of computers. The above-mentioned for-
mulas for capacitances and polarizhbility tensors allow one to give approx-
imate analytical formulas for the scattering matrix in the problem of wave
scattering by small bodies of arbitrary shape. This is done for scalar and
electromagnetic waves. The dependence of the scattering matrix on the
boundary conditions on the surface of the scatterer is investigated. The
wave scattering in a medium consisting of many small particles is studied
and equations for the effective (self-consistent) field in such a medium are
derived. This makes it possible to discuss the inverse problem of determin-
ing the properties of such a medium from knowledge of the waves scattered
by this medium.

The theory of wave scattering by small bodies was originated by
Rayleigh (1871), who studied various aspects of this theory until his death
in 1919. During the last century many papers were published in this field,



Introduction Xix

but the first analytical approximate formulas for polarizability tensors and
the scattering matrix were derived in [110], [84], [95], [132] and summarized
in the monograph [143].

Here these and other results are presented systematically. The author
hopes that these results can be used by engineers, physicists, and persons
interested in atmospheric and ocean sciences, radiophysics, and colloidal
chemistry. Radiowave scattering by rain and hail; light scattering by cosmic
dust, muddy water, and colloidal solutions; methods of nondestructive con-
trol; ultrasound mammography; detection of mines in the water or ground;
finding small holes in metals; and radiomeasurement techniques are just a
few examples of many possible applications of the theory of wave scattering
by small bodies of arbitrary shapes.

In addition to the theory of wave scattering by small bodies, the follow-
ing topics are discussed:

(a) the Modified Rayleigh Conjecture (MRC) and its applications to solving
obstacle scattering problems [116], [34], [118], [119], [125],

(b) a characterization of Fredholm operators with index zero and the singu-
larities of the resolvent of analytic Fredholm operator-functions, [136],
(88], [81],

(¢) boundary-value and scattering problems in rough domains (less smooth
than Lipschitz domains), [104], [31], [30],

(d) low-frequency behavior of solutions to operator equations and solutions
to boundary-value problems, [87], [90], [108], [133],

(e) finding small subsurface inhomogeneities from scattering data, [105],
(36], [107],

(f) wave scattering by many small bodies, [146], [113],

(g) optimal methods for calculation of weakly singular multidimensional
integrals, [10].

The structure of the book is explained in the table of contents. A modest
background in analysis is required from the reader. The book is essentially
self-contained. There are new mathematical results in the book, but the
book is addressed not only to mathematicians, but to a wide audience that
applies mathematics. This audience includes numerical analysts, physi-
cists, engineers, and graduate students. The book can be used in graduate
courses for students in several areas of science, including integral equations
and their applications, numerical mathematics, wave scattering, electrody-
namics, and PDE.
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This monograph is based mainly on the author’s papers and some mate-
rial from his earlier monographs [113], [133], [143], [120]. Chapter 9 is based
on [144], [104], [31], and the presentation follows closely that in [31]. The
Appendix is based on [10].

The author thanks Springer Verlag, Kluwer Academic/Springer and
other publishers for permissions to use the material from his published
papers and books.



Chapter 1

Basic Problems

1.1 Statement of Electrostatic Problems for Perfect
Conductors

1. The basic equations of electrostatics are well known [58]:
curlE =0, divD=p, D=¢cE, (1.1)

where E is the electric field, D is the induction, p(z) is the charge distri-
bution, and ¢ is the dielectric constant of the medium. If the medium is
homogeneous and isotropic, then € is constant; if it is isotropic but unho-
mogeneous, then € = e(z), © = (x1, z2,x3). In the general case € = ¢;;(x),
1 <14, j <3, is a tensor. The boundary condition on the surface I' of a
conductor is of the form

Et|F =N x E|F = 07 (12)

where N is the unit outer normal to I'. If ¢ is the surface charge distribution
then

Dy = (D,N) = 0. (1.3)

The vectors F and D are to be finite and can have discontinuities only
on the surfaces of discontinuity of £(z), i.e., on the surfaces which are the
boundaries of domains with different electrical properties (interface sur-
faces). The boundary conditions on such surfaces are

Ey = FEy, Din= Doy, (1.4)

where 1 and 2 stand for the first and second medium, respectively. A
perfect conductor in electrostatics is a body with ¢ = +o00. Let us define
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an insulator in electrostatics as a body with € = 0, i.e., on its surface
Dy|r =0. (1.5)

This definition is useful because a superconductor behaves in a magnetic
field H like an insulator in the electric field F = H. Indeed, on the surface
of the superconductor the boundary condition

Bn|r=0 (1.6)

holds, where B is the magnetic induction [58].

2. Many problems of practical interest in quasistatic electrodynamics
can be reduced to static problems.

For example, let a conductor €2 be placed in a harmonic electromagnetic
field. Let the wave length A of the field be much larger than the character-
istic dimension a of , A > a. In practice A > 0.2a is often enough. If the
depth § of the skin layer is small, 6 < a, then the calculation of the field
scattered by this body can be reduced to the static problem

divB=0, curlB=0in Q,, (1.7)

By|r = —Bonlr, B(oco) =0. (1.8)

Here €. is the exterior of the domain §2, By is the magnetic induction at
the location of €2. One can assume that By is constant since a < A, i.e.,
the exterior field does not change significantly within the distance a. It is
clear that the problem of (1.7)-(1.8) is equivalent (formally) to the problem
of the insulator in the exterior electrostatic field Fy = By.

It is worthwhile to mention that many problems of thermostatics, hy-
drodynamics, and elastostatics can be reduced to static problems similar
to the above.

3. Let us formulate three basic problems of electrostatics.

Problem 1.1 A conductor is placed in a given electrostatic field. Find
the charge distribution ¢ induced on its surface.

Problem 1.2 A conductor has total charge (). Find the surface charge
distribution o.

Problem 1.3 A conductor is charged to a potential V. Find o.

In these problems the conductor may be a single body or a system of bodies.
4. In most books on electrostatics the third boundary condition is not
discussed. Nevertheless some practical problems (such as the calculation of
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the resistance of linearly polarizable electrodes, and the calculation of the
skin effect) can be reduced to the static boundary value problem with the
third boundary condition.

5. Let us formulate the basic problems of electrostatics as problems of
the potential theory. Let € be a constant. Then from (1.1) it follows that

E=-vo, Aop=—p. (1.9)
In the domain free of charge one has
A ¢p=0. (1.10)
If the given exterior field is Ey = —V ¢, then
¢ = o+, (1.11)

and v satisfies (1.10). The boundary condition (1.2) takes the form

@|r = const, (1.12)
while (1.3) takes the form
9¢
—€-—| =o. 1.1
‘on|. 77 (1.13)

Problem 1.1 can be formulated as follows:
Find the solution ¢ of (1.10) of the form (1.11), subject to condition
(1.12), such that
9¢
= d —ds = 0. 1.14
v(oc0) =0 an LN s=10 (1.14)
Condition (1.14) means that the total surface charge on the conductor is
zero (the electroneutrality condition). Since [.(8¢o/ON)ds = 0, condition
(1.14) implies:

ov

Problem 1.2 can be formulated as follows:
Find the solution ¢ of (1.10) subject to (1.12) and such that

2 B
—E/F a—Nds =Q, ¢(x)=0. (1.16)

The constant in condition (1.12) should be found in the process of solving
Problem 1.1 and Problem 1.2. This constant is the potential of the
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conductor. It is known and easy to prove that Problem 1.1 and Prob-
lem 1.2 have unique solutions. Indeed, the corresponding homogeneous
problems are A ¢ = 0 in Qe, ¢|r = 0, ¢p(c0) = 0, and A ¢ = 0 in £,
—Eg—f]h‘ = 0, ¢(c0) = 0. The only solution to the first problem is ¢ = 0
by the maximum principle, and the only solution to the second problem is
¢ = 0 by the strong maximum principle ([29]).

6. If the conductor is a thin unclosed metallic screen, then the edge
condition must be satisfied. Let F' denote the screen and L denote its edge.
Then the edge condition can be written as

()| ~ {g(x)}'/2, g(z) = min [z — . (1.17)

The function g(x) is the distance from the point z to the edge. From (1.17)
it follows that

Bl =1 = Vel ~ {g(@)} % o(s) ~ {g(s)} 71/, (1.18)

where s € F. Condition (1.17) is easy to understand if one notes that the
potential near the edge of the wedge behaves like ” sin(v), where (r, )
are polar coordinates, v = (2 — 0o 1)1, and 6 is the angle of the wedge.
If 0y = 0 (this is the case of the screen) then v = 0.5 and one obtains (1.17).

1.2 Statement of the Basic Problem for Dielectric Bodies

1. Let a dielectric body 2 with the dielectric constant ; be placed in a
medium with the dielectric constant .. A basic electrostatic problem is
to find the electric field which occurs if one places the body in the given
electrostatic field Ey = —V¢g. This problem can be formulated as

A ¢=01in 2 and Q., (1.19)

0 0
g <8_J(ff>l =&, (8—;3>e on I (1.20)
¢ =¢o+v, v(co)=0. (1.21)

Here and below (9¢/0N );() are the limiting values on I' of the normal
derivatives in the interior (exterior) domains.
For v one has the problem

A v =0in 2 and in€, (1.22)
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& (%>i =e. (%)e + (ee — &) (%) onT, wv(occ)=0. (1.23)

If the body € is inhomogeneous, then
div (e(z)V¢) =0 in Q. (1.24)

2. Let us give an example of a practical problem which leads to a
boundary value problem with the third boundary condition

o¢

(7 1)

Suppose that on the surface of a perfect conductor there is a thin film,
e.g., an oxide film. Let 1) be the potential of the conductor and let ¢ be
the potential of the exterior surface of the film. In electrochemistry it is
assumed that ¢ —1 is proportional to the current j = —yV¢, where  is the
specific conductivity of the film. Therefore ¢ — ¢ = —by(0¢/IN), where
the constant b is the coefficient of proportionality. This condition is clearly
of the form (1.25) with h = (by)~%, f = —ht. The same condition will
appear in the problem with an impedance surface or with a surface covered

= f, h=const. (1.25)
r

by a thin dielectric film.

In electrochemistry the surfaces of the metallic electrodes are not
equipotential because of the electrochemical polarizations. The potential
of the electrodes depends on the normal component of the electric current.
If this dependence is linear one gets condition (1.25).

1.3 Reduction of the Basic Problems to Fredholm’s
Integral Equations of the Second Kind

1. Let us state several formulas from potential theory which will be used
below. Let

v(z) /F%, w(x):/paimzlwlmt“(t)dt’ (1.26)

where r,; = |z — t| and Ny is the exterior (outer) unit normal to I' at the

point ¢t. Then

v _Aoto CA'uF
(8N)ie =0 Wie= 5 (1.27)
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where the upper (lower) sign corresponds to i (e), and

0 1 0 1
Ao = A*u = - 1.2
7 /F a(t) ON, 277y di, H /F i) ON; 277y di, (1.28)

where I' is the surface of €2. Unless otherwise specified we assume that I is

smooth.

In Chapter 9 a wide class of non-smooth (rough)boundaries is consid-
ered. This class includes Lioschitz boundaries as a proper subclass.

Note that

Av=0, Aw=0in{ and Q.. (1.29)

Formulas (1.26)—(1.29) are well known [38]. For smooth surfaces the fol-
lowing formula ( [38]) holds:

(%)i B (%)e' (1.30)

The above properties of the potential hold if the densities o0 and u are
continuous. If the densities are Holder continuous, the derivatives of the
potentials have additional smoothness properties, which we do not state
because they will not be used. A function f is called Holder continuous if
for some constants ¢ > 0 and «, 0 < a < 1,

[f(t) = f(s)] < clt — 5]

The potential theory is developed for Lipschitz surfaces([20], [157]).
2. In order to reduce Problem 1.1 from Section 1.1 to Fredholm’s
integral equation, let us look for a solution of this problem of the form

¢ = o +/F o(t)dt (1.31)

ATE Tt

The unknown function o(¢) has physical interpretation as the surface charge
distribution. The function ¢ in (1.31) satisfies equation (1.10), condition
(1.11), and the first condition in (1.14). Substitution of (1.31) into (1.13)
with € = e, yields

o= —AO‘—QEC%, /Fadtz(). (1.32)

The second equation is condition (1.15). If ¢ # e, and the medium has
dielectric constant €, then

Ee
0= —0 (1.33)
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where o, is the surface charge distribution in this new problem and o is
the solution of (1.32), i.e., the surface charge distribution in the original
problem.

Exercise 1.1 Prove this statement.

It is known [38] that every solution of the equation o = —Ag is of the
form o = constw(t), where w(t) > 0, [Lw(t)dt > 0. The function w(t)
is the equilibrium charge distribution on the surface I' of the conductor.
Every solution of the adjoint equation g = —A*p is of the form p = const.
From this and from Fredholm’s alternative it follows that problem (1.32)
has a unique solution. Existence is guaranteed since fF (0o /ON)ds = 0,
while uniqueness follows from the second condition in (1.32).

3. Let us look for a solution of Problem 1.2 of the form

</>=/F o(t)dt (1.34)

Ameers

where
o= —Ao, / odt =Q, (1.35)
r

Problem (1.35) has the unique solution

o= Quw(s), (1.36)

where w(s) is the solution of (1.35) corresponding to @ = 1 i.e., an equi-
librium charge distribution of the total charge @ = 1 on the surface I' of
the conductor. It is easy to prove that every solution of the first equation
(1.35) is a constant multiple of w(t). Indeed, if w; and wo are two solutions
to equation (1.35), then wy; — Aws solves this equation for any A = const.
Choose A so that fr(wl — Aws)ds = 0. Then wy; = Aws. Indeed, if o solves
(1.35), then v(o) = const in D, v = const on I, and o = *aane > 0. Thus,
if fF odt = 0, then ¢ = 0. Our argument proves that dim N(I + A) = 1,
where N(B) := {u: Bu = 0} is the null-space of an operator B.
4. Let us now consider the interior and exterior problems
9¢

99
ON

A ¢ =0in ., — hulp = f, (1.38)
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where h = hy + iha, by > 0,he <0, |h| > 0,h = const. It is easy to prove
that problems (1.37) and (1.38) have unique solutions. If one looks for a
solution of the form ¢ = v, where v is defined in (1.26), then the density o
of the potential v satisfies the equation

oc+To=—-Ac+2f (1.39)
for problem (1.37), and

o+To=Ac —-2f (1.40)
for problem (1.38). Here A is defined in (1.28) and

dt
Tozh/ o (1.41)
r 47T7'st,
For the Dirichlet problems
Au=0inQ, ulr=/F, (1.42)
Au=0in Q., ulpr=f, (1.43)

one looks for the solution of the form « = w, where w is defined in (1.26),
and for p obtains the equations

p=A"p—2f, (1.44)

p=—A"pu+2f, (1.45)

respectively.

5. In order to reduce the basic problem of electrostatics for dielectric
bodies to integral equations let us look for a solution of the form (1.31).
Using (1.27) and the boundary condition (1.23) one obtains the equation

9o i — e
o =—vAo — 2ve,——, = —, 1.46
v YNt T LT (1.46)
where ¢; is the dielectric constant of the body. If ¢; = oo then v = 1.
This is the case of a perfect conductor and in this case (1.46) is identical to
(1.32). If &; = 0 then v = —1. This is the case of an insulator and in this
case (1.46) becomes

o= Aa—i-ZEC%. (1.47)
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6. If p conductors are placed in the exterior field Fy = —V¢, then one

looks for a potential of the form

¢ = +Z/4m€e

From (1.48) and the boundary conditions

Txt

—€eqnr

ON

one obtains the system of integral equations

9 .
gj (tj) = Z TimOm — ] — 2¢e¢ aﬁf\? 1<5<p,

m=1,m#j

0 1
ijU'm = /1"m 8th m@m (t'rn)dt'rrm

1
r; 8th 27T7’tj5j

gj (Sj) de s
and the electroneutrality conditions should be satisfied

/ oj(t)dt =0, 1<j<p.
r

J

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

7. If p dielectric bodies are placed in the exterior field £y = —V¢q, then
the potential is of the form (1.48) and from the boundary conditions

5(ov).-

one obtains the system of integral equations

0¢ .
(8]\7) only, 1<j<p,

P
Ao
0j (t]) = 7:16]' Z ijO'm — ijjUj — ij&feaT,
m=1,m#j 1
where
k=20 1<j<p,

(1.54)

(1.55)

(1.56)
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g; is the dielectric constant of the jth body, T}, and A; are defined in (1.51)
and (1.52), and, unless for some j, one has €;, = oo, there are no addi-
tional conditions on ¢;. Otherwise one should impose the electroneutrality
condition (1.53) on oj,.

8. Let us consider a flaky-homogeneous (layered) body placed in the
exterior field Ey = —V¢g. Taking again the potential of the form (1.48)
and using the boundary conditions

€j<§—£>' =&j-1 (%) on F]’, (157)

one finds the system of integral equations

P

8d)()
oj (t]) = —; Z ijO'm — ’yjA]’O’j - Z’YjEeaT, (158)

m=1,m#j b

where
Ej — Ej_l

PR A 1.59
g €5+ €j-1 ( )

and Tj,,, A; are defined in (1.51), (1.52).

1.4 Reduction of the Static Problems to Fredholm’s
Integral Equations of the First Kind

If the body is an open thin metallic screen it is not easy to reduce the
static problems to a convenient Fredholm equation of the second kind, see
e.g. [24]. Nevertheless it is easy to obtain Fredholm’s integral equations of
the first kind for the problem and to solve these equations by an iterative
process.

Let us consider Problem 1.1 from Section 1.1. Looking for a poten-
tial of the form (1.31), using boundary condition (1.12) and denoting the
constant potential on the surface of the conductor by V one gets

/ M =V —¢y, sel. (160)
N

ATme st

The constant V' is to be found from the condition

/o(t)dt =0. (1.61)
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Problem 1.2 from Section 1.1 leads in a similar way to the equation

/ oMt _ o e (1.62)
I

ATE Tt

which is uniquely solvable if V' is given. If the constant V is not given, but
the total charge @) is given:

/ odt=Q, (1.63)
r

and if n(t) solves (1.62) with V' = 1, then problem (1.62)-(1.63) has the
solution
Q

o(t) = EU

(t), (1.64)
where
o :/Fn(t)dt. (1.65)

Problem 1.3 from Section 1.1 is equivalent to equation (1.62) without
additional conditions.
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Chapter 2

Iterative Processes for Solving
Fredholm’s Integral Equations for
Static Problems

2.1 An Iterative Process for Solving the Problem of
Equilibrium Charge Distribution and Charge
Distribution on a Conductor Placed in an Exterior
Static Field

1. In Section 1.3, Problem 1.1 from Section 1.1 was reduced to problem
(1.32). Tt is known [38] that the operator A in (1.32) is compact in L?(T")
and in C(T') provided that T' is smooth (it is sufficient to assume that the
equation of the surface in the local coordinates is x3 = f(x1,22) and Vf
is Holder continuous). It is also known [38] that A = —1 is the smallest
characteristic value of A which is simple. This means that A = —1 is a
simple pole of the resolvent (A — A\I)~! and the corresponding null space
is one-dimensional, i.e., every solution of the equation 0 = — Ao is of the
form o = constw(t), where w(t) is the solution normalized by the condition
fF wdt = 1. Let G1 denote the null space of the operator I+ A*, where A* is
defined in (1.28). It is known [38] and can be verified directly that u = 1is a
solution of the equation y = —A*u. By the Fredholm alternative G, is one
dimensional. Let G be the orthogonal complement to Gy in H = L?(T).
Then G5 is the set of functions satisfying the condition fF odt =0. If ¢g
is the electrostatic potential then [..(O¢o/dN )dt = 0. The theoretical basis
for the iterative processes of this chapter is given in Chapter 6. In order
to apply Theorem 6.1 from Section 6.1 one has to check that equation o =
— Ao has only the trivial solution in Gi-. Every solution to this equation
is of the form o = cw(t),c = const, [w(t)dt > 0. Therefore [odt =0
implies that ¢ = 0 and o = 0. Theorem 6.1 and the above argument show
that the following theorem holds.

Theorem 2.1  Problem 1.1 in Section 1.1 has a unique solution o, given

13
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by the iterative process

d¢9o oo L
N’ 0= —2e,—— N 0= nlg%o On. (2.1)

This process converges as a geometrical series with ratio q, 0 < q < 1,
where q depends only on the shape of I'.

On+1 = —Aoy — 26c 5+

Remark 2.1 If T is a sphere then ¢ = 1/3. The number ¢ = [M\ )5,

according to Theorem 6.1. Here A1, A2, s, ... are the characteristic values
of A (i.e., ¢; = NjAg; for some ¢; # 0) numbered so that |\] < |[A2| <
[As| < ---. One can calculate A1 and Ao, numerically using the methods

giwven in [44], [53], and find q.

2. Let us solve Problem 1.2 by the iterative process given in Theorem
6.2. Problem 1.2 was reduced to problem (1.35). Its solution is of the form
(1.36) and [ wdt = 1. Since f = 1 satisfies the condition fg, # 0 where
fa, is the projection of f onto G (note that G is spanned by the function
w) one can use Theorem 6.2 from Section 6.1. This yields

Theorem 2.2  Problem 1.2 has a unique solution o, given by the iterative
process

Ont1 = —Ao,, o00=Q/S, o= lim o,, (2.2)

n—

where s = meas". The process converges at the rate given in Theorem 2.1.

Remark 2.2 [t is easily seen that

/O’ndt:/()'nfldt:"':/O'()dt:Q. (23)
r r r

/Agdt //8Nt S, O (8)ds dt = / o(s)%
{/raiNt 27r17~5tdt}d5/110(5)ds

Here we have used the known [38] formula

0 1
— | =— ——dt =1.
/FaNt 27T7’5t

Relation (2.3) means that the iterative process (2.2) redistributes the fixed
total charge on the surface, thus causing the surface change to approach
the equilibrium distribution.

Indeed
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3. Suppose Problem 1.2 is solved and w(t) has been found. Then
it is easy to solve Problem 1.3. Indeed, let V be the potential of the

conductor with @ =1, i.e.,
w(t
/ ; ) _ .
r 2Tl st

Then the solution of Problem 1.3 is

o(t) =VVy tw(t).
One can verify this directly.

Exercise 2.1 Do it.

2.2 An Iterative Process for Solving the Problem for
Dielectric Bodies in an Exterior Static Field

1. The above problem is reduced in Section 1.3 to equation (1.46), where
—1 < v < 1, provided that e; > 0, €. > 0, g; # 0, and ¢; # co. It was al-
ready stated that all the characteristic values of A lie in the domain || > 1.
Therefore one can use Theorem 6.4 from Section 6.1. This Theorem implies
the existence and uniqueness of solution of (1.46) and the convergence of
the iterative process

On+1 = —yAo, — 2756%, og=09; 0= nlgr;o On, (2.4)
where o9 € L?(T") is arbitrary, to the solution of (1.46). The rate of con-
vergence is that of the geometrical series with ratio ¢, 0 < ¢ < |y|71. If
o9 = —27ve.(0¢g/ON) then process (2.4) converges for —1 < v < 1 and
q < |X2| 7L, where )\ is the second characteristic value of A.

2. Suppose a flaky-homogeneous body described in Section 1.3 is placed
in the exterior static field with the potential ¢y. The system of integral
equations for this problem is (1.58).

Theorem 2.3  The system (1.58) has a unique solution given by the it-
erative process

. n
o; = lim o ),
n—oo

¢ 2.5)
n+1 N T n n 9 0 (
O—](' )(tj) == fn:l,m#j ij—’E’L) PYjAjO—](' ' 25
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0
Uﬁo) _ 9y Po <j<p

jse aNt ) S]] >D, (2.6)
J

which converges as a geometrical series with ratio q, 0 < q < 1, where q
depends only on the shapes of I';.

Proof. Let us write (1.58) as

o=—Bo+ f, (2.7)
where
0 0
o= (01,...,0p), f= <256718;3? ,...,25;@%),

and B is the matrix operator of the form

A iTig - 1Ty,
B=|.....o.............. ) (2.8)

YoIpr YpTp2 - 1pAp

This operator acts in the space H = L?(T") of vector-valued functions with
inner product

(o,w) = Z /F 7 (t)w; (t)dt. (2.9)

In order to prove Theorem 2.1 it is sufficient to show that the equation
o =—ABo (2.10)

has only trivial solution for |A\| < 1 (see Theorem 6.4 from Section 6.1).
Suppose |A| < 1 and o is a nontrivial solution of (2.10). Let us rewrite
(2.10) as

p
aj:—,wj(AjajJr Z TJU) (2.11)

m=1,m#j

If

then
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and

ov ov .
N, (1—)\%‘)8—]\78 only, 1<j<p, (2.12)

Let Dg be the exterior domain with boundary I'y1, D, be the interior domain
with boundary I'y, and D; be the domain with boundary I'; UT'; ;. Let
aj, 1 < j < p, be arbitrary constants. Consider the identity

> =y n =
aj/ |Vo|“dz = / vj (aj —Gj_1 )ds (2.13)
=0 Dj j=171 ON ON.

From (2.12) and (2.13) it follows that

P p
1+ A v

g aj/ |Vo|2de = g / v(aj—aj_l ) (2.14)

=0 D; =171 1- ON;

If |vj| < 1 and |A| <1 then |Avy;| < 1. Let us set

(1 + )"YJ)

1+)‘% 1<j<p.

ag = Eey, Aj = Gj— =
1—)\7
J

Then (2.14) shows that v = 0 and therefore 0 = 0, i.e., 0, =0,1 < j <p.
If I\| =1, A # 1 then \y; # 1 and the same argument shows that o = 0.
If X\ =1and \j, = 1 then ¢j, = oo and v|p; = const. In this case one
is interested in the potential in the domain exterior to I';, and derives an
identity similar to (2.14), namely

Jjo—1

Za]/ |Vo|?da

7=0

Jo—1
- v ov v
= ;Ajv<aja —aj_ 18N )der/JU Vagj,— 18N ds (2.15)
jozl/z_) aj; — a; L+ Ay Ov ds —a; / 1_)81) ds
= 7711 =\, ON; ot L TaN,

J0

Because of the electroneutrality condition

v
/F Vs =0, (2.16)

Jo

and the boundary condition on the surface of the perfect conductor v|pjU =
const, the last integral in (2.15) vanishes. Therefore it follows from (2.15)
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that o = 0 provided that (2.16) holds. Note that (2.16) is equivalent to the
equality

/ oj,ds = 0. (2.17)
Jo

Let us prove that A = —1 is a semisimple characteristic value of the operator
B. This will be important for construction of iterative methods of solution
of equation (2.7) (cf. Theorem 6.1 in Chapter 6). A characteristic number
A is called semisimple if the equation o = ABo has nontrivial solutions and
the equation u© = ABu + ¢ has no solution for any nonzero ¢ which is a
solution of ¢ = ABo.

In Chapter 6 it is proved that if B is compact then A is semisimple if
and only if it is a simple pole of the resolvent (I — zB)~.

Suppose that

o0=—-Bo, 0#0, u=-Bu+o. (2.18)

Let [ ojdt = Q;, [ ujdt = q;. Note that [38]

0, x ¢ D,
/i LI r (2.19)
F@Nt 27Tth - —Loreld, '
-2, z€D,

where D is a bounded domain with a smooth boundary I'. Integrating
(2.18) over T yields

G=7%0G+2% Y am+Qj F=12,... 7o, (2.20)
m>j

because

o 1
dt Tm m — dt arr o Ym d
/F ] ama /Fj /Fm aNt 271'7’155 7 (S) y

0 1 0, m<j
= ds om,(s / dt—— —— = qm .
/rm (®) T, ONy 27 4 {—2, m>j
(2.21)

Therefore (2.20) is a linear system with an upper triangular matrix. We
have already showed that if [.oj,dt = Qj, = 0 then 0 = 0. Since we
assume that o # 0 we have @, # 0. Since vj, = 1 the last equation in
(2.20) reads gj, = gj, +Qj,. Thus Q;, = 0 and o = 0. This contradicts the
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assumption that ¢ # 0. Therefore A = —1 is a semisimple characteristic
value of B.

The statement of Theorem 2.3 follows now from Theorem 6.1. Note that
we need this theorem only in the case in which €, = oo because in this case
—1 is the characteristic value of B. If each ¢; is finite then the operator B
has no characteristic values in the unit disk |A| < 1 and the iterative process
(2.5) converges for any initial approximation, not necessarily satisfying the
condition

/ fdt=0. (2.22)
T

This condition is satisfied by the initial approximation (2.6). O

3. Let us consider an iterative process for solving the many-body prob-
lem in the exterior static field.

In Section 1.3 this problem was reduced to system (1.55) in the case of
dielectric bodies and to system (1.50) and conditions (1.53) for the case of
perfect conductors. Since the case of perfect conductors can be treated as
an instance of dielectric bodies with €; = oo, let us consider system (1.55)
and rewrite it as an operator equation

o0 =—Bo+ f, (2.23)

where

_ 9
Bjm = ki Tjm (1 = 0jm) + kjbjmA;, [ = 721%588%, (2.24)
tj

and k; is defined in (1.56).

Theorem 2.4 If |k;| <1, 1 < j < p, then equation (2.23) has a unique
solution o for any f € H = L*(T"), given by the iterative process

Ony1=—Bon,+ f, o= lim oy, (2.25)
n— o0

where oy € H is arbitrary. Process (2.25) converges no more slowly than
a convergent geometrical series. If k; = 1 for some j then equation (2.23)
has a solution for any f € H such that

/ fds=0. (2.26)
r

This solution satisfies the condition

/Fadt =0. (2.27)
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There is only one solution of equation (2.23) with f satisfying (2.26) in
the class of functions o € H satisfying (2.27). This solution can be found by
the iterative process (2.25) where o satisfies condition (2.27), e.g., oo = f.
The process converges at least as fast as a convergent geometrical series.

A proof of Theorem 2.4 is similar to the proof of Theorem 2.3 and can
be left to the reader as an exercise.

2.3 A Stable Iterative Process for Finding the
Equilibrium Charge Distribution

The iterative process for solution of this problem is given in Theorem 2.2.
However this process is unstable in the following sense. Consider the process
with perturbations

On+1 = _AUTL +é€n, HETLH <e. (228)

Since —1 is a characteristic value of A the operator (I +A)~! is not defined
everywhere in H and the process (2.28) can diverge. For example if &,, = f,
|fll <e, [-fds>0,and oo = f, then process (2.28) diverges. Indeed, in
this case o, = Y _(=1)™A™f. The Neumann series y ~_ (—1)"A™f
does not converge for the elements f € N(I + A), where N(I + A) is the
null space of the operator I + A.

We have already seen that o € N(I + A) has the property fradt #
0. Therefore every f such that fF fdt # 0 can be represented as f =
co + f1, where ¢ = const # 0 and fr fidt = 0. Since —1 is a semisimple
characteristic value the operator (I + A)~! is defined at f; and is not
defined at 0. Hence (I + A)~! is not defined at f and o,, does not converge
as n — 0o. One can verify this by a direct calculation using the identity

—/Aodt:—/adt (2.29)
r r

which is valid for any o € H (see Remark 2.2 in Section 2.1). Integrating
on over T yields [ ondt = q(n + 1), where ¢ = [ fdt # 0. Therefore
fF ondt — 00 and o, does not converge in H. This simple argument gives
the rate of divergence of the process (2.28).

This motivates the problem of constructing a stable iterative process
for solving the problem (1.35). Let Q =1 in (1.35), S = measT’, ¢ = S~}
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w = ¢ + h. Then from the equation w = —Aw it follows that
h=—Ah+F, F=—¢— Ag, /¢dt:1. (2.30)
r
Note that from (2.29) it follows that

/ Fdt =0. (2.31)
T

The following theorem gives a stable iterative process for solution of (2.30).
This theorem is a particular case of the abstract Theorem 6.2.

Theorem 2.5 The iterative process
1
hpy1 = —Ah, — S / hpdt + F, ho =F, (2.32)
r

where F is defined in (2.30), converges in H = L*(T") no more slowly than
a convergent geometrical series to an element h, and w = h + S~ is the
unique solution of the problem (1.35) for @ = 1. Furthermore, the process
(2.32) is stable: i.e., if

Int1 = —Agn — %/andt +F+¢e,, ho=F, ‘E”‘ <eg, (2.33)
then
linisup Hgn - hH = O(e). (2.34)
Remark 2.3  The process (2.32) converges in C(T') if T is smooth.
2.4 An Iterative Process for Calculating the Equilibrium
Charge Distribution on the Surface of a Screen

1. The basic equation (see Section 1.4) is
n(t)dt
—— =1 2.35
/F 47T567ﬂst ( )

Here T' can be the surface of a metallic body or the surface of a metallic
screen (an infinitely thin body). First consider the case of the solid body.
Let

a(t) = {/F(élmserst)_lds}_l. (2.36)
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From the abstract results given in Section 6.4 one gets the following theo-
rem:

Theorem 2.6  Let 1, = a(t)y,, where a(t) is defined in (2.36),

Ui = (I +A1)n+1, =1 (2.37)

Aﬂ/}:/r(4merst)*1a(t)¢(t)dt. (2.38)

Then 1), converges in H = L*(T), and lim,, oo 1, = 1 is the solution of
equation (2.35).

Consider now the case in which I' is the surface of a metallic screen. Let
G be the edge of T,

h(t) =g "*(t), (2.39)

where g(x) is defined in (1.17), and let

al(t)h(t){ /F Lﬁfj);‘fi}l (2.40)

Let H_ = L?*T;a;*(t)), where L*(I';p) is the L? space with the norm
A1 = Ji [ £1?pdt.

Theorem 2.7 If a(t) is replaced by ay(t) in Theorem 2.6, then the se-
quence 1, constructed in Theorem 2.6 converges in H_ to the solution of
equation (2.35).

2. Consider problem (1.60)-(1.61). If 5 solves (2.35), then V7 solves
equation (1.60) with ¢y = 0. Let 7 solve the equation

/ r(s)ds _ (2.41)

r dmeerst

This equation can be solved by the iterative processes given in Theorems
2.6 and 2.7. The constant V' can be found from condition (1.61):

V= /F T(t)dt( /F n(t)dt) o (2.42)

Let us summarize the above as a theorem.
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Theorem 2.8 The solution of problem (1.60)-(1.61) can be obtained by
the formulas:

o= lim o,, o,=Vygn="n (2.43)

n— o0

where ny, is defined in Theorem 2.6 for the case of the volume conductor
and in Theorem 2.7 for the case of the metallic screen, T, is defined by
means of the iterative processes given in Theorems 2.6 and 2.7:

Tn+1 = (I + Al)Tn + ¢07 To = ¢07 (244)

v, = /F Tn(t)dt( /F Wh:)_l. (2.45)

Remark 2.4 [t can be proved (see, e.g., [143, Appendiz 10] or [133])
that the operator Tf = [ ﬁf;ﬁf:t maps Hy(I") onto Hygy1(T'), where Hy =
W3 (), —0o < q < 00, is the Hilbert scale of Sobolev spaces and I' € C™
is a compact closed surface. The operator T is a pseudodifferential elliptic

operator of order —1 (see [56], [1]).
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Chapter 3

Calculating Electric Capacitance

3.1 Capacitance of Solid Conductors and Screens

1. Suppose that the total charge of a conductor is @) and its potential is V.
Then

Q=CV (3.1)

and the coefficient C' is called the capacitance of the conductor. If o(t) is
the surface charge distribution, then

o(t)dt
=V, el 3.2
/r ATE T gt 5 ( )
and
/ odt =Q. (3.3)
r
Thus

odt \ !
pr— . .4
¢ /r o dt (/r 47rserst) (3 )

The function o(t) can be calculated by the iterative processes given
in Section 2.3 and Section 2.4. If o, is an approximation to o then the

/F odt o) (3.5)

ATE Tt

potential

is not constant on I'. In this case we introduce the averaged potential

V,=8"" / Vi(s)ds, S :=measT. (3.6)
r

25
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If 6, = o in H = L*(") then V,, — V and

™ =Q,/V, = / U,Ldt( / / Z;Eerst) (3.7)

is an approximation to C. The iterative process (2.2) satisfies condition
(2.3)

/andt:Q, n=12,.... (3.8)
r

In this case (3.7) can be written as

1

o 4W5652(//r5t15n(t)dtd5) ; (3.9)
rJr

where §,, is the n-th approximation to the solution of the problem
§ = —AJ, / 0(s)ds = S, (3.10)
r

and A is defined as usual (see (1.28)). One can construct d,, by means of
the iterative process

Ont1 = —Abn, 0o =1. (3.11)
Theorem 2.2 and formula (3.9) imply the following theorem.
Theorem 3.1 Let

1\" dt ds
(n) — 4 2 R
¢ mes{( 2 [ L5 [ [

. (3.12)
cp(tnonsty)dty - -dtn} ,
where S = meas' and
0 1
U(ts) = g (3.13)
Then
[ea= C(n)| < cq", (3.14)

where ¢ > 0 and 0 < q < 1 depend on the shape of the conductor but do not
depend on n. The following inequality holds:

dme,S2J =00 < ¢, (3.15)
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where

J://rs_tldtds. (3.16)
rJr

Proof. The first statement of Theorem 3.1 follows from Theorem 2.2,
and the second statement will be proved in Section 3.3. 0

Remark 3.1 The following empirical method is used for calculating ca-
pacitances: they assumed that the surface charge distribution of the total
charge Q is uniform, i.e., 0 = QS™', calculated the averaged potential

-1
V:S_l/ds/LS at
T T 47T€e7’5t

and found an approximation to C' by the formula:
Cr~QV ™! =dne S%T L. (3.17)

This is the zeroth approximation (3.12). Theorem 3.1 gives additional in-
formation: first, the inequality (3.15), which says that the zeroth approxi-
mation is a lower bound for C, and second, the way to compute C with any
desired accuracy by using the n-th approximation. Therefore Theorem 3.1
gives a justification of the empirical rule described above.

Remark 3.2 One can use the iterative process given in Section 2.4 to
calculate electrical capacitances of conductors. Let n be the solution of
equation (3.2) with V=1 and n, be the approximation of the n—th order
ton. Then V, =~ 1 for large n and formula (3.7) takes the form

C,=Q,= / Nndt. (3.18)
r

The subscript n in (3.18) indicates that C, in (3.18) differs from C™ in
(3.12).

2. If the conductor is a thin metallic screen one can use formula (3.18).
The empirical method described in Remark 3.1, i.e., formula (3.17), is not
very accurate for screens. For example if the screen is a circular disk the
error in calculating the capacitance by formula (3.17) is 7.5%.
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3.2 Variational Principles and Two-Sided Estimates of
Capacitance

1. Variational principles for capacitances have been widely discussed in
the literature. The well-known book [79] should be mentioned first. A
reference book [43] on electrical capacitances is a collection of numerical
results and formulas for calculating of capacitance. Our purpose is to give
some methods for deriving two-sided estimates for capacitance. Some of
the results seem to be new, e.g., a necessary and sufficient condition for
the Schwinger stationary principle to be extremal and estimates of the
capacitance of a conductor placed in inhomogeneous dielectric medium.
2. We start with the following theorem.

Theorem 3.2 Let A be a symmetric linear operator in a Hilbert space H

with domain of definition D(A). The equality
AL )P

seD(4) (A, ¢)

holds if and only if A > 0, i.e., (A, d) > 0 for all ¢ € D(A). By definition,

[(Af, 8)[?/(Ag, ¢) = 0 if (Ag, ) = 0.

Remark 3.3 Let Af = g. In many physical problems (some examples

will be given later) the quantity (f,g) has physical significance. J. Schwinger
(see, e.g., [39]) used the stationary representation of this quantity

(g, 9)I?
(A, ¢)’

where st is the sign of the stationary value. In practice it is important

(Af. f) = (3.19)

(f,9) = stsep(a) (3.20)

to know when this representation is extremal. Theorem 3.2 answers this
question and provides a tool for deriving lower bounds for (Af, f).

Remark 3.4  For the equality

IR (7 VA
¢eD(4) (A9, 9)
to hold it is necessary and sufficient that A < 0.

Proof of Theorem 3.2. 1f A > 0then |[(Af,¢)* < (Af, f)(As, ¢) for all
fy¢ € D(A). This is just the Cauchy inequality for the nonnegative bilinear

form [f,¢] = (Af,9). Hence (Af,f) > |(Af,6)2/(A¢,6) and equality
holds for ¢ = Af, A = const. Thus (3.19) follows and the sufficiency part

s proved.

(AF, f) (3.21)
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If A<0 then —A >0 and

[(=Af,¢)?
—Af,f) = max S CLOT 3.22
CALI) = B85 " Cas.0) 52
Since max(—x) = — minz, where z is a real variable, one can see that (3.22)

is equivalent to (3.21).

Let us prove the necessity of the condition A > 0. Suppose that
(A, 1) < 0 and (Aw,w) > 0. Let ¢ = w + A\, where X is a real number,
and (3.19) holds. Then

[(Af,w)|? + 2 Re(Af,w) (¥, Af) + N2|(Af,9)|?
(Af,f) 2 (Ao, ) + 2ARe(Av, ) + N2 (A, 0)

(3.23)

Since (Aw,w)(Aw,¥) < 0, the denominator of this fraction has two real
zeros. Because the fraction is bounded from above, the numerator has
the same roots as the denominator. The product of these roots for the
denominator in (3.23) is equal to gﬁii; < 0. Therefore, the product of
these roots for the numerator is negative, and one gets the inequality:

(AL&)P _ (3.24)

[(Af,¥)?
which is a contradiction. Therefore A > 0 or A < 0. The case A < 0 is
impossible. Indeed, (3.19) implies that (Af, f) > [(Af, ¢)|?/(Ad, $), and,

if (A, 8) < 0, one gets (Af, f)(Ad, 6) < |(Af, 6. Thus

(—AL, ) (=Ad,6) < [(-Af, 9), (3.25)
which contradicts the Cauchy inequality for the nonnegative operator — A.
Therefore A > 0. The necessity part is proved. O

Remark 3.5 Let A= A*. Then

(Afis 9j) (¢4, Af))
(A¢i, 4)]) . (3.26)

If A >0 then for i =j one can replace st by max in (3.26).

(Af“ f]) = st

3. It is now easy to derive some lower bounds for capacitance. Let I" be
the surface of a perfect conductor which is charged to the potential V' = 1.
If o is the surface charge distribution, then

Ag;/ olt)dt _ (3.27)

ATE Tt
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and

C:/Fadt. (3.28)

Since the integral operator A in (3.27) is selfadjoint and positive on H =
L3(T'), Theorem 3.2 says that

com{(fors) ([[522) ) o

where the maximum is taken over all ¢ € C(T') if T is a smooth closed
surface. From (3.29) the well-known principle of Gauss [79] follows imme-
diately:

¢~ = min (Q‘2 /F a(t)u(t)dt). (3.30)

This principle says that if the total charge @ is distributed on the surface
I' with the density o(¢) and u(¢) is the potential of this charge distribution
on I, then the minimal value of the right-hand side of (3.30) is C~!
this minimal value is attained by the equilibrium charge distribution (i.e.,
by the solution of (3.27)).

From (3.29) it is easy to obtain some lower bounds for C. For example,
if o =1 then (compare with (3.15))

4 2
C>c0 = Ljs, S = measT, // ds dt (3.31)
r

Tst

One can take
Om = Z Cj¢j7 (332)
j=1

where {¢;} is a linearly independent system of functions in H and ¢; are
constants which are to be determined from the condition that the right-hand
side of (3.29) is maximal. Then o,, is an approximation to the equilibrium
charge distribution and the value of the right-hand side of (3.29) is an
approximation to C.

4. Let us formulate two classical variational principles for capacitances:
the Dirichlet and Thomson principles [79]. The Dirichlet principle gives
an upper bound for C. The Thomson principle is equivalent to the Gauss
principle. Therefore combining the Dirichlet principle and (3.29) one can
obtain two-sided estimates for C'.
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The Thomson principle is:

= min/ co|E2da, (3.33)

e

where D, is the exterior of the domain with boundary I', and the minimum
is taken over the set of vector fields satisfying the conditions

divE =0, / (N, seE)dt =1, (3.34)
r
where N is the outer unit normal to I' at the point ¢. The minimum in

(3.33) is attained at the vector E = —Vu, where

0
Au=0in D., wu|r=const, wu(cc)=0, -—& ot =1. (3.35)
r ON

The Dirichlet principle is:

C = min/ | Vul?de, (3.36)

e

where the minimum is taken over the set of functions u € C*(D,) such that
ulp =1, wu(o0) =0. (3.37)

This minimum is attained at the function w which is the solution to the
problem

Au=0inD., ulr=1, wu(co)=0. (3.38)

Both principles are particular cases of the principles formulated and
proved in the next section.

5. If T' is the surface of a screen the admissible functions in the vari-
ational principles should satisfy the edge condition: if L is the edge of T"
then

un fg@}'? o~ {g7 @)}, g(e) =minfe . (3.39)

3.3 Capacitance of Conductors in an Anisotropic and
Nonhomogeneous Medium

Let ¢ = ¢;5(x) be the tensor (a positive definite matrix) of dielectric per-
mettivity of the medium and let D be a perfect conductor with a smooth
boundary I'. The problem of finding the capacitance of this conductor
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placed in an inhomogeneous anistropic medium is of interest in many prac-
tical cases. For example, suppose a metallic body is placed partially in
water. If the characteristic dimension of the conductor is small in compar-
ison with the wavelength in the medium with large dielectric constant the
capacitance determines the scattering amplitude. We assume for simplicity
that &;;(z) € C'(D.) and ;;(z) = ;; does not depend on x for sufficiently
large x. This assumption guarantees that the basic results about existence
of solutions to static problems are the same as for the Laplace operator
corresponding to homogeneous medium. The variational principles 1 and
2, formulated below, are analogous to the classical Dirichlet and Thomson
principles:

Principle 1

C= min/ (EVu, Vu)dx, (3.40)
D

e

where the minimum is taken over the C'— functions u(z) such that
ulp =1, wu(o0) =0. (3.41)

In the statement of these principles the usual notations

3 3
(a,b) = Z a;bj, (ea); = Zsij (x)a; (3.42)

are used.

Principle 2
C~! = min / (eE, E)dx, (3.43)
De

where the minimum is taken over the set of vector fields satisfying the con-
ditions

div(eE) = 0 in D,, / (N,eE)dt = 1. (3.44)
I

Proof of Principle 1. Assume that
div(evu) =0 in D, (3.45)

and that (3.41) is valid. The Euler equation for the functional in (3.40) is
(3.45). Therefore (3.45) and (3.41) are necessary conditions for the function
which solves (3.40), (3.41). The solution of (3.45) and (3.41) exists and is
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unique. Let us show that the functional in (3.40) attains its minimum at this
solution and this minimum is equal to the capacitance C. Let n € C1(D,)
satisfy the conditions

M =0, n(o0) =0. (3.46)
Then
/ (eVu+eVn, Vu + Vn)dx
D.

:/ (eVu, Vu)da:—i—/ (evn, Vn)dx+2Re/ (eVu,Vn)dz  (3.47)
D. B, D.

2/ (eVu, Vu)dz.
D.

One can assume that u and 7 are real-valued functions, and then the
sign Re can be dropped in the above equation.
We took into consideration that the matrix ¢ is positive definite and

/ (eVu, Vn)de = — /(N, nevu)ds — / ndiv(evVu)de =0.  (3.48)
D. r D,

Furthermore,
/ (eVu, Vu)dx = —/(N, evVu)udt = /(D7 N)dt = Q, (3.49)
D. r r
where D is the electrical induction. Therefore the minimum in (3.40) is
equal to the capacitance C' if u is the solution to problem (3.41), (3.45). O

Proof of Principle 2. From (3.49) it lollows that the right-hand side
of (3.43) ss equal to C~! if E = —AVu, where u is the solution to (3.41),
(3.45) and the constant A is defined as

A= { - /F(N,eVu)dt}_l —Qt (3.50)

In (3.50) one has @ = C, because @ = Cu, and u =1 on I, see (3.41).
Let us show that any other E satisfying (3.49) gives a larger value to
functional (3.46). Indeed, let E be as above, and let E + h solve (2.44).
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Then

/ (eE+c¢ch,E+ h)dx
D.
:/ (sE,E)der/ (sh,h)da:JrQRe/ (eE, h)dx (3.51)
D. D. D.

> /D (eE, E)dx.

e

Here the following identity was used:

/ (eE,h)dx = fA/ (Vu,eh)dx
Pe De (3.52)

= A/ udiv(eh)dz + A/ u(N,eh)dt = 0.
D r

e

We have proved Principle 2. 0
Remark 3.6 If
1, i=3j
€ij = 0ij = 7
0, i#J
then principles 1 and 2 are the Dirichlet and Thomson principles.

Remark 3.7 Principles 1 and 2 give estimates of the capacitance from
above and from below.

Example 3.1 Let us take
E = —Acs vy, (3.53)

where ¢! is the inverse matrix of €, u is an arbitrary harmonic function in

D, (ie., Au=0in D.), and

A7l = f/F %dt. (3.54)

Then condition (3.44) is satisfied. Let

1 dt
== = I .
u(z) /r Sy— S = meas (3.55)
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Then the constant A, defined in (3.54), is equal to 1. Therefore it follows
from (3.43) that

-1
0247725’2{/ (5_1VU,Vv)dx} , (3.56)
D.
where
v(z) = / rotdt. (3.57)
r

If €,;(z) = e.d;5, where e, = const, i.e., the medium is isotropic and homo-
geneous, then (3.56) and Green’s formula imply that

1
dt 0 dt
> 4725%, —/ /— — . .
C > WSE{ Fds( AN Jo e (3.58)

Example 3.2 Let ¢;;(x) = e(x)d;;,

u(z) =lz|™", E=—r— (3.59)

where

A {/F (j;g)dt}l _ % (3.60)

From (3.43) it follows that

C > 16772{ /D m;jﬁ}_l. (3.61)

In particular if D, = {2 : |z| > a} and e(x) = e(|z|) = &(r), then

C> 16772{47r/:o dr%(r)}l = 477{ /:O T;ZT) } (3.62)

Actually, in this case C is equal to the right-hand side of (3.62) because

(3.59) is the electrostatic field corresponding to the equilibrium charge dis-
tribution on the sphere r = a if e(z) = e(r).

Example 3.3 Let all of the space be divided into n parts bounded by
conical surfaces. Suppose that the jth cone cuts the solid angle w; on the
unit sphere and the vertices of the cones are in the center of a metallic ball
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with radius a. Let the dielectric constant of the jth cone be gog;(r). Then
(3.61) says that

C> 167r250{ > w; /OO %T(r)} : (3.63)

j=1 7

In particular, if w; = we = 27 then

* dr * dr -1
> _ —_ . .
c > 87r€(){ /a 7“261(7“) Jr/a 7“262(7“) } (3.64)

This example covers the case of the ball halfway immersed in the water.

It is clear from the above examples that Principle 2 is easy to use in
practice: the only difficulty is of computational nature. In application of
principle 1 there is an additional difficulty of finding a set of functions which
satisfy condition (3.41). If the surface I' is a coordinate surface in some
known coordinate system it is easy to find such functions and Principle 1
gives upper bounds on C'. A more general situation is discussed in Example
3.5 below.

Example 3.4 Let us take Example 3.3 and substitute u = a/r in (3.40).
This yields
C<e ijaQ/ r2e;(r)dr. (3.65)
Jj=1 @

In particular, if wy = we = 27 one obtains

87r50{ / T2 e () + ea(r)] dr}l

- (3.66)
<C< 27T50a2/ r2. [51(7") + Eg(r)]dr,

from (3.64) and (3.65). For e1(r) = e2(r) = 1, estimate (3.66) gives the

exact value of C. One can improve the estimates taking more complicated

admissible functions.

Example 3.5 Suppose that r = F(0, ¢) is the equation of the surface of
the conductor. Set u = F(6,¢)/|z| in (3.40). Then condition (3.41) holds
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and (3.40) yields the following upper bound on C:

: = o 1EP Fel? | |Fyl?
C'See/s2 d¢df sin 0 drr ( o + " +r4sin29

e (3.67)
dodf sin 0
o /32 %(|Fl2+|}7‘9|2+sin*2 9|F¢|2); €e = const .

This formula is useful if the integral on its right-hand side converges.

3.4 Physical Analogues of Capacitance

In heat transfer theory, in quasistatic electrodynamics, and in other areas of
applied science, mathematical formulation of the problems can be reduced
to the solution of the Laplace equation. Therefore in these areas of physics
there exist some quantities analogous to the capacitance.

For example heat conductance in a homogeneous medium can be defined
as

Gr = gc, (3.68)

where k is the coefficient of thermal conductivity, e is the dielectric con-
stant, C' is the electrical capacitance of the conductor, and G is the heat
conductance of the body with the same shape as the shape of the conductor.

If Gy is the magnetic conductance and p is the magnetic constant then

G = gc. (3.69)

If G is the electric conductance and -y is the coefficient of electrical conduc-
tivity, then

G == (3.70)

3.5 Calculating the Potential Coefficients

1. Let n conductors be placed in a homogeneous medium with the dielectric
constant € = 1. Let I'; be the surface of the jth conductor. Because the
equations of electrostatics are linear there is a linear dependence between
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the potentials V; of the conductors and their total charges Q;,

n
Q=Y CiV;, 1<i<n. (3.71)
i=1
The coeflicients Cj;, i # j are called the electrical inductance coefficients
and the coefficients C}; are called the capacitance coefficients.
The quadratic form

1 n
U= pRenAY (3.72)

i,j=1

is the energy of the electrostatic field. Therefore this form is positive def-
inite. It is well known that this is the case if and only if all the principal
minors of the matrix C;; are positive (Sylvester’s criterion). In particular

ij > 0, ijCﬁ > 012], det (CIJ) >0, (373)
and
Cij =Cji, 1<i,j<n (3.74)

since the matrix Cj; is real-valued. We can rewrite (3.71) as

Vi = Zci(]fl)Qj, 1<i<n. (3.75)

Jj=1

The coefficients Ci(j_l) are called the potential coefficients. The following
inequalities hold

V>0, ciVso0 oy <o (3.76)

The first inequality in (3.76) holds because CZ-(]-*U is a positive definite ma-
trix if Cy; is. In order to prove the last inequality in (3.76) let us take
Vin = 0if m # j and V; = 1, then formula (3.71) shows that Q; = Cj;.
Therefore we must show that ; < 0. But Q; = —e. fFi (Ou/ON)ds. Thus
it is sufficient to prove that (Ou/ON)|r, > 0. Here u is the electrostatic po-
tential generated by the jth conductor, provided that the other conductors
have zero potentials. The function u is a harmonic function (i.e., A u = 0)
and u(oco) = 0, ulr; = 1. Since u is harmonic it cannot have extremal
points inside the domain of definition. Therefore 0 < u < 1 between the
conductors.



Calculating the Potential Coefficients 39

Since wu|r, = 0 according to our assumption, it is clear that
(Ou/ON)|r, > 0, and the last inequality in (3.76) is proved. The second
inequality in (3.76) can be proved similarly.

2. The problem of determining the equilibrium charge distribution on
the surfaces of a system of conductors can be reduced to the following
system of integral equations (see (2.23), where k; should be replaced by 1
and f =0):

o = —Bo,

(Bo); = Z Timom +Ajo;, 1<j<n, o= (01,...,0n), (3.77)

m#j,m=1

/ O'jdt = Qj, 1 S] <n. (378)

Ly

Here Q; is the total charge of the jth conductor. (See Section 2.2 and
Section 2.3.)

Theorem 3.3  The solution to problem (3.77)-(3.78) exists, is unique,
and can be found by the iterative process

ot tD) = —Bo®, 5 =@Q;871 1<j<n, S =measD;. (3.79)

This theorem follows from Theorem 6.2.
Let us derive some approximate formulas for the potential coefficients.
Taking QQ; = &, in (3.75) yields

cob =y (3.80)

Let us substitute in the system of integral equations

=V, 1<i<n, 3.81
Z/ 47T5e7’tt t=n ( )

(0) = Q;S; S:18, instead of o;(t). Taking into account (3.75) one obtains

C( 1) 1 dt

— 1< <n. 3.82
im 47T86S T, T, ) =N ( )

The right-hand side of this formula is not constant on I'; because 0§0)

not the exact solution to (3.81). Therefore we take as an approximation to

is
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C’i(;l) the average of the right-hand side of (3.82). This yields

_ ~(— ds dt
e O VN / / < 3.83
om o 47T86S Si Tst = (3.83)

One can improve formula (3.83) by using the higher order approxima-
tions to o; say o® defined in (3.79). In order to find some approximation
to C; one can invert the matrix Ci(j_l), using the approximate values of

C’i(;l) given above.
3. Let us derive variational principles for the potential coefficients. To
do so we take the potential energy of the electrostatic field

1 n (71)
U=; > P, (3.84)

ij=1
and set QQ; = d;y,. This yields
=c-h, (3.85)

Among various surface charge distributions such that
/ Ul(t)dt = 6i'rn7 1 < 1 < n, (386)
I

the distribution, corresponding to the actual electrostatic field, minimizes
U. Thus

dsdt
ciLb = // oilt)o;(s)ds di 3.87
mm’ = 10N ”21 47T€e7"st (3.87)

where the minimum is taken over the set of o; satisfying condition (3.86).
In order to derive a variational principle for C,,,, we take V; = d;p, in
(3.72). This yields

2U = Chum. (3.88)

The potential energy U of the electrostatic field with the potential u(z) can
be written as

1
U= —/ ge|Vuldz, (3.89)
2 Jp,

where D, is the domain outside of the conductors. Let u satisfy the condi-
tions

i#m, u(cc)=0, ueC' (D). (3.90)

u

r, =1,
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Then

Conm = min/ eo|Vu|*dz, (3.91)
D

where the minimum is taken over the set of functions u satisfying condition
(3.90).
Let m # j and assume

r;
From (3.84) and (3.92) it follows that
2U = OG0 +205 ) + ¢ (3.93)
Therefore
(1) (-1) (-1) UZ dS dt
CLY 2050 + ¢ mmzkzl ] MR o

where the minimum is taken over the set of functions o; satisfying condition
(3.92).

It Cy; (=1) , 1 <17 < n, are already calculated, then one can calculate C’,(”]l)
from (3 94)
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Chapter 4

Numerical Examples

4.1 Introduction

Given in Sections 2 and 3 algorithms for calculating electrostatic fields
and linear functionals of these fields, such as electrical capacitances, were
reduced in these sections to calculating certain multiple integrals. From
the point of view of numerical analysis one should integrate functions with
at worst weak singularities. The numerical integration of such functions
is a problem of independent interest. It has been discussed in detail for
functions of one variable [21], [55], [54], but less is known about calculating
multidimensional integrals of functions with weak singularities. The basic
idea in the one-dimensional case is to integrate explicitly the singular part
of the integer and thus to reduce the problem to the integration of a smooth
function. This problem is well understood.

In the multidimensional case the first step in the above program was
not discussed sufficiently.

In [10] optimal methods for calculating multidimensional integrals with
weakly singular integrands are developed. These methods are presented in
the Appendix.

In this chapter two problems of practical interest will be solved. First,
the capacitances of circular metallic cylinders are tabulated. Secondly, the
capacitances of metallic parallelepipeds of arbitrary dimensions are tab-
ulated. In both cases there are no closed-form analytical solutions to the
corresponding electrostatic problems, and the results are new. Special cases
of these results, such as the capacitance of a cube, disk, or very long cylin-
der, will be compared with previously published results. The numerical
results show that the formulas for calculating the capacitances, which have
been derived in Section 3, are quite efficient.

43
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4.2 Capacitance of a Circular Cylinder

Let 2L be the length and a be the radius of a metallic cylinder. Let C; =
C/(2L) and £ = La™ .

The capacitance per unit length C is given in Figure 4.1 and Figure 4.2
as a function of ¢, 0.1 < ¢ < 10. The capacitance C' was calculated using
formula (3.12) with n = 0 and n = 1. It turned out that for £ > 5, n =0
this formula gives a value which agrees within 1% with the capacitance of
a hollow metallic tube with the same geometry. Numerical calculation of
the capacitance of such a tube was given in [43]. For 1 < ¢ < 5, n = 0 the
difference (i.e., the relative error) is at most 3%. For £ > 1 and n = 1 the
difference is at most 1%, while for 0.1 < ¢ < 1, n = 1 the difference is at
most 3%. For £ < 0.1 the asymptotic formula holds

Cy =4de 7! (4.1)
with the relative error at most 3%. This formula follows from the known

formula C = 8ae, for the capacitance of the metallic disk of radius a and the
definition C; = C/(2L). As ¢ — 0 the accuracy of formula (4.1) increases.

Fig. 4.1



Capacitance of a Circular Cylinder 45

2.5 \
N\
I

1.5

0.5

lg£
a

0.5

Fig. 4.2

For ¢ > 10 the formula
Cr=4me.(Q7" +0.7107%), Q=2[In(4¢) — 1] (4.2)

holds [43] with error at most 1%. For ¢ > 4 formula (4.2) holds with the
error at most 3.5%. For 0.1 < ¢ < 4 the formula

2m3e,

G1= In(160-1)

(4.3)
holds with error at most 3.5%. Thus formulas (4.1)—(4.3) give C for any ¢
with the error at most 3.5%. An unexpected observation is that

C(1 tube 7r2 4.93
B - t<1. 4.4
Clcylinder 21n(16€—1) 11’1(166—1) ) < (4.4)

This formula follows from (4.1) and (4.3). Formula (4.3) is the asymptotic
formula for the capacitance of the tube for ¢ < 1. For £ = 0.1 the ratio
(4.4) is equal to 0.98. This ratio is equal to 0.5 for /=1 = 1250. Thus the
capacitance per unit length of the metallic cylinder is nearly equal to that
of the tube for £ > 0.1.
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4.3 Capacitances of Parallelepipeds

Let a parallelepiped have edges
A < Ay < As, (4.5)
let V' denote its volume, set
A= V13 (A4, 45)", (4.6)
and let C\ = C(A1A2A43) be its capacitance. Let
aj =AN1 1<5<3; ap <as<az, aazaz=1. (4.7)
It is clear that
Cy=X-C, (4.8)

where C' is the capacitance of the parallelepiped with sides aj, as, as and
unit volume.

Therefore it is sufficient to tabulate C(a1, a2, as), where a;, 1 < j <3
satisfy (4.7).

Some long calculations (see [95]), which are based on formula (3.12)
with n = 0, lead to the formula

Ch 52
~ — 4.9
47‘(60 J7 ( )
where
S =2(A1As + A1 Az + Az A3) (4.10)
and
1 , S 3V s, D— A4
3
4 V2 A2+A
+3;§A3AJ(3+AA2) DT a7 4,

3
*%Z (D2 A? — 2V>D2A§

3

16 » S 8 ) |4
—~ —SD+ E[d(D — 5) +3V] — §ZA1'(AZ- +35) AICE

i=l

(4.11)
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where
3 1/2 3 3
D= <2A3> Dod=) A S=20>
i=l i=l i=l
Let us describe a way to tabulate
~ c
C= .
4dme,
It follows from (4.7) that
0< aq § 1

Let

where n is an integer which defines the table. Let

ap=jn"", j>k.

Then

az = = -, k § j
a1as kj

From (4.7) it follows that jn~! < n?(kj)~!. Thus

< % < /n/k.

3|

Therefore

< < —.
al_a2_\/a_1

47

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

For fixed a; and ag, the parameter as is uniquely determined by (4.16). This
means that C' can be tabulated as a function of a1 and as. In Table 4.1
the results are given for n = 10. In the horizontal line the values of a; are
given. In the vertical line the values of ay are given. At the intersections
the values of é(al,ag) are given. If zero stands at the intersection, this

means that for the given a; the chosen as is not allowed by (4.18).

Let us formulate an algorithm for calculating C for an arbitrary par-

allelepiped.

Step 1. Order the sides of the parallelepiped as shown in (4.5) and

calculate A from (4.6) and a; and ay from (4.7).
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Table 4.1 The capacitances C' = C/(4me.) of the unit parallelepiped.

ai

ay 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1000 | 7.00313

0.2000 | 4.12588 2.47336

0.3000 | 3.08985 1.88108 1.44955

0.4000 | 2.54667 1.57289 1.22690 1.04998

0.5000 | 2.21009 1.38371 1.09186 0.94404 0.85669

0.6000 | 1.98066 1.25629 1.00224 0.87489 0.80064 0.75381

0.7000 | 1.81434 1.16528 0.93938 0.82736 0.76294 0.72320 0.69733

0.8000 | 1.68855 1.09767 0.89367 0.79366 0.73693 0.70237 0.68067 0.66708
0.9000 | 1.59040 1.04604 0.85968 0.76936 0.71883 0.68859 0.67007 0.65894 0.65278
1.0000 | 1.51203 1.00586 0.83405 0.75174 0.70633 0.67963 0.66373 0.65463 0.65011 0.6488
1.1000 | 1.44832 0.97417 0.81461 0.73906 0.69794 0.67461 0.66050 0.65312
1.2000 | 1.39582 0.94897 0.79989 0.73010 0.69264 0.67145

1.3000 | 1.35207 0.92885 0.78885 0.72404 0.68974

1.4000 | 1.31531 0.91277 0.78074 0.72029 0.68872

1.5000 | 1.28423 0.89998 0.77499 0.71837

1.6000 | 1.25784 0.88990 0.77118

1.7000 | 1.23534 0.88206 0.76896

1.8000 | 1.21614 0.87611 0.76808

1.9000 | 1.19975 0.87173

2.0000 | 1.18577 0.86878

2.1000 | 1.17387 0.86698

2.2000 | 1.16380 0.96620

2.3000 | 1.15532

2.4000 | 1.14825

2.5000 | 1.14243

2.6000 | 1.13771

2.70000 | 1.13399

2.8000 | 1.13115

2.9000 | 1.12911

3.0000 | 1.12780

3.1000 | 1.12714

Step 2. Find the numbers closest to a; and as in the horizontal and
vertical line of Table 4.1 respectively. Find C(aq,a2) in this table.

Step 3. Find C) from (4.8) and (4.12).

Example 4.1 Let A; =1, Ay =2, A3 =4. ThenV =8, A =2, a; = 0.5,
az =1, C' =0.70633. Thus Cy = 8me, - 0.70633 ~ 17.7514e,.

Example 4.2 Let Ay = Ay = A3 = 1, i.e., we have a unit cube, a1 =
az =a3 =1,V =1, A = 1. From Table 4.1 one find C = 4ne, - 0.649.

References [43] and [79] mention about 17 papers dealing with the test
problem of calculating the capacitance of a cube. The best results re-
ported in [79] and obtained by means of some complicated calculations
with harmonic polynomials with the symmetry group of a cube, state that
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the capacitance C' of the unit cube satisfies the following estimates:

C
0.632 < 1 < 0.710, ~ 0.646. (4.19)

TEe TEe

From (3.12) and (3.15) it follows that the value C'/(4me.) = 0.649 is not
only an approximation to C'/(4me.) but also a lower bound. One can see
that for a cube formula (3.12) gave a good result even for n = 0.

Example 4.3 Let A; = 0, A, = 2, A3 = 5. This is the case of a thin
rectangular metallic plate. Since the smallest a; = 0.1 in Table 4.1, we take
Ay =0.1, A, =2, A3 = 5 and find C = 4rwe. - 1.18577. This agrees with
the value given in [33].

Example 4.4 Consider the square thin plate: A; = 0.1, Ay = A3 = 1.
Let a; = 0.1, as = ag = 3.16. Then ajazaz = 1 and from Table 4.1 one
finds C/(4me.) = 1.12714. For the capacitance of the thin plate with the
unit side one finds C") /(4me.) = 1.12714/3.16 = 0.3566. This agrees with
the value 0.360 given in [43].

Remark 4.1  Table 4.1 shows that among all parallelepiped with the fized
volume the cube has the minimal capacitance. This can be proved, but
the proof (see [68]) is not elementary. The error in the calculation of the
capacitances i Table 4.1 is at most 2%.

4.4 Interaction Between Conductors

Let two conducting balls of radius a be charged to potential V' each. Then
Q = CV 4+ 0V, Q@ = O3V 4+ CyV and by symmetry C11 = Cog,
Cio = C51. Let us join these balls. The electrostatic equilibrium will be
preserved since the potentials of the balls are the same. Let C' denote the
capacitance of the joined balls. Then C = 2Q/V =2(C11+ C12). Let C be
the capacitance of a single ball. Then C'/(2C) = (C11 + C12)/C. Let d be
the distance between the centers of the balls. Then the numerical results
[43] give C'/(2C) = 0.75 if 2ad~' = 0.5; C/(2C) = 0.91 if 2ad~' = 0.2;
C/(2C) = 0.71 if 2ad~" = 0.9. Therefore one makes an error of at most
25% if one neglects the interaction of the conductors if a < 0.25d and one
makes an error of at most 10% if a < 0.1d.
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Chapter 5

Calculating Polarizability Tensors

5.1 Calculating the Polarizability Tensor of a Solid Body

1. If a solid conductor is placed in an exterior homogeneous electrostatic
field E, then the induced charge distribution o(t) appears on its surface.
Therefore the conductor acquires the dipole moment

P = /tia(t)dt, (5.1)

where t; is the ¢th coordinate of the radius vector ¢ of the point ¢ at the
surface I' of the conductor. Since the equations of electrostatics are linear,
there is a linear relation between P and E:

PL' = OzijEeVEj (52)

(summation over the repeated indices is understood), where V' is the volume
of the conductor, €. is the dielectric permittivity of the exterior medium,
the matrix a;; is called the polarizability tensor. The dipole moment is in-
teresting in many applications, especially in scattering theory (see Chapter
7).

A more general definition of the dipole moment is as follows. Let ¢g =
—(E, x) be the potential of the exterior homogeneous field, ¢ = ¢g + u be
the potential of the total field. If the obstacle is finite, then

(P, )

We assume here that the obstacle is electroneutral, that is, its total charge
is zero. The vector P is called the dipole moment induced on the obstacle

by the exterior field FE.

51
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2. Let the obstacle be a homogeneous body with dielectric constant e.
Put

£ —¢Ee

= . 5.4
7 e+ee (54)

The polarizability tensor is defined by the formula
Pi = Oy (’}/)ECVE]‘. (55)

If ¢ = oo then v = 1, (1) = «;; where «;; is the polarizability tensor
of the perfect conductor with the same shape. If ¢ = 0, then v = —1,
a;;(—1) := Bi;, where 8;; is the magnetic polarizability tensor (the polariz-
ability tensor of the insulator). Our aim is to give approximate analytical
formulas for calculating av; (7).

Let us introduce some notations. Let

1, i=3
(O) V61J7 6l] _ { I 1 j)

N (5.6)

b§j>/rfwdsdt, (5.7)

r Tst

where N;(t) is the ith component of the outer unit normal to I" at the point

t,
b = //ds dtN; (t / /
\/
(5.8)
X V(t, 1) (ta, 1) - U (tmet, tmez)dty -+ b1,
St —1
where
0 1
t -
11/}( 55) 8Nt T‘ét
Define
" 2 n (71)777, ,yn+2 m+1 m
ol (y) = VX @ 1 b, >0 (5.9)

In particular

2
v
al(v) = 2(y +4%)8i; — W—b(-l-) (5.10)
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1 1«

ol =46, — —Vbﬁj), (5.11)

s — o (5.12)
Y TV o '

Note that bl(-;”) depends only on the geometry of the body.
Theorem 5.1 The following estimate holds

lais(7) — M) < e’ 0<q<1l, —1<y<1, (5.13)

where ¢ > 0 and q are constants which depend only on the shape of I' and
on .

Remark 5.1  From (5.9) for e = 0o (i.e., v =1) it follows that
N 2 n (_1)m m
aff) = % G (- m)b, (5.14)
m=0

and for e =0 (i.e., v = —1) it follows that

n n+m 1 —1 .
B = Z —bg”). (5.15)

m:O

Proof of Theorem 5.1. Let us define

pm :/Ftiandt = alVe B, (5.16)

where aggl) is calculated below in formula (5.28), oy, is defined in (2.4) with

[ 72’)/86(8(,250/8]\7),
‘0‘”—0“ <cg", O0<g<l1 (5.17)

where ¢ > 0 and ¢ depend on I' and 7. From (2.4) it follows that

n

Op = Z(,Dm,ymAm(ny(E,N))Ee. (5.18)

m=0
From (5.16) and (5.18) one obtains

n

. 9 -1 m,merl m
P2y ((;T)m/rth (Nt Ve By, (5.19)
m=0
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where
B =2rA. (5.20)
Therefore
Vg% e e
where
g = /F t;B™(N;)dt. (5.22)
Let us prove that
T = —om g, (5.23)
where bg;n) is defined in (5.8). We have
JO = / tiN;(t)dt = / gxl = Vi =b, (5.24)
r D O

and
(1) _ B(N.)ds — N, i -
g /F siB(N,)ds /F N0 [ 55 Tstds

0s; ds
:/thNj(t)( N 27rt> // dsdt—Qﬂ'V(S”

_ (D) (0)
*bij 727'(]”4 .

(5.25)
In a similar manner, one obtains
g = /dssB’”(N) /dth(t)/dtlw(tl,t)
r r
N;(s)ds
/dtm 1¢( m— 1; m— 2)|: (7) _27T(tm—1)i (526)
I Tstym_1

_ m) (m—1)
= bij — 27TJZ-j .
From (5.26) it follows that

I =3 mym e (—ymt, (5:27)
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Using (5.27) and

—

5.21) one finds that

n 2 (_1)7”7m+1 S k m— m—
@) () =5 D g 2 by @Oy
mn:() k=0 (528)
_ z Z b(k) (71)]@ ,yn+2 _ ,.ykJrl
Ve (2m)k v—1
Estimate (5.13) follows from (5.17). Theorem 5.1 is proved. O

5.2 Polarizability Tensors of Thin Metallic Screens
Let F be a thin metallic screen. Its polarizability tensor is defined as
Pi = OéijEj{:fe, R = / tiO'(t)dt, (529)
F

where o(t) is the distribution of the charge induced by the exterior homo-
geneous electrostatic field E. Let e;, 1 < ¢ < 3, be the orthonormal unit
vectors of the coordinate system, let ' = e;, and let ¢9 = —x; be the
potential corresponding to E. Then

Pi = jj€e. (530)

Let 0, (t) be the approximate charge distribution constructed in (2.36).
Then

i ij

P = /tian(t)dtza@ee. (5.31)
I

Thus

ol = /F tion (t)dt. (5.32)

Note that the index j is implicitly present in the right-hand side of (5.32)
because oy, (t) is constructed for the initial field E = e;, or for the initial
potential ¢9 = —x;. Thus, calculating the polarizability tensor is reduced
to finding o, according to Theorem 2.8 and to the calculation of the six
integrals in (5.32), 1 < i < j < 3. The number of the integrals is six (and
not nine) because ag.l) gg).

Let I be a plane plate. Let es be orthogonal to F. Then a;3 = ag; =0
and the polarizability tensor is defined by the three numbers a1, a2 and

=

Q12 = Q2].
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5.3 Polarizability Tensors of Flaky-Homogeneous Bodies
or a System of Bodies

1. The integral equation for the surface charge densities, induced by the
initial field, is given in Theorem 2.3. The nth approximation for the po-
larizability tensor of the flaky-homogeneous body is rather cumbersome.
Therefore only the first approximation will be considered. Let A;; be the
polarizability tensor

Pi = AijEjEe- (533)

There is no factor V' in this definition of A4;; because if the body is nonhomo-
geneous the matrix a;; = A;;V ! does not depend solely on the geometry
of the body. For the dipole moment of the flaky-homogeneous body one
has the formula

Pi = zi;/r tiaj (t)dt. (534)

Substituting U](-n) from Theorem 2.3 in (5.34) in place of ¢ yields the n—th
approximation to P;,

P = Z / o\ (t)dt = ALV Eje.. (5.35)

Let us take n = 1. From (5.35) and Theorem 2.3, it follows that (E =
—Véo)

p
PZ(I) — Z ge\/r tz{Z’)/qu(t)Eq - 27_]2‘4‘7 (Equ(t))
=1 !

P

- 2%m Y ij(Equ(t))}dt (5.36)

m#j,m=1
{Z (7)) Vi + Z Z }E Eer
7j=1 j=1m=#jm=1

where Vj is the volume of the body inside I';,

aly (1) = 2614 (5 +7) — - bf?, (5.37)
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7y, is given in (1.59) (compare (5.37)) and (5.10)), and

(Gm) _ { ) Wj’jm bgg,m), Jj>m

e —20m pU) | fy iy Vi By
T iq ,YJ’YTTL mYiqs ] < ma

(5.38)

where

J,m N
by = // NilONa($) )y (5.39)

These formulas and their proof are quite similar to formulas (5.8)—(5.12).
From (5.35)—(5.39) one finds

A(1 Za (v)V; + Z Z ] ™, (5.40)

j=1m#jm=1

where az(-;)('yj) and a( ™) are defined in (5.37) and (5.38) respectively.
2. Let us derive an approximate formula for the polarizability tensor of
a system of bodies. We use Theorem 2.4 in the same manner as Theorem

2.3 was used. Let us define the polarizability tensor of a system of bodies
by

Pi = BijEjEe~ (541)
Then, using the argument given in Section 5.1, one finds
B = Z ol (k) V; + Z Z agm, (5.42)
j=1 m#j,m=1

where k; is defined in (1.56), al(-;)(kj) is defined in (5.37) with k; in place
of 5,
~Gm) _ Kk Gom)
Qi Tbiq (5.43)
and bg’m) is defined in (5.39).
If the jth body is a perfect conductor then k; = 1.

5.4 Variational Principles for Polarizability Tensors

1. The purpose of this section is to give variational principles for polariz-
ability tensors and to show how some two-sided estimates for polarizability
tensors can be obtained from these principles.
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Let E = e;, where e; is the coordinate unit vector, ¢pg = —z;, £ =
—V¢g. Suppose that the body is a perfect conductor. Then the induced
surface charge distribution o(t) satisfies the equation

(t)dt
/ & =U;+s;, Uj;=const, (5.44)
I

4TEeT st

and the electroneutrality condition

/ ojdt = 0. (5.45)
T

The quantity U; is the potential of the conductor. The induced dipole
moment of the conductor is

Pi = Oéiq{:feVEq = aijseV = / tiO'j(t)dt, (546)
r

because E, = 6;,. Therefore
Va;j = Egl/rtiaj(t)dt, Qi = Q. (5.47)
Note that (5.45) and (5.44) imply
/FUjajdt =0. (5.48)

From (5.44), (5.48), and (3.26) it follows that

fr tigjdt fr tjpidl
fF Pi(t)g;(s)dsdt’

Tst

VOéij =4 st

(5.49)

where the admissible functions satisfy (5.45). For i = j the st in (5.49) can
be replaced by max.

Vay, :max4w(/th¢jdt>2</F/FW>_l, (5.50)

where again ¢, satisfies (5.45). Principle (5.50) allows one to find lower
bounds for the diagonal elements of the polarizability tensor.

2. In order to find upper bounds for these elements we need another
variational principle. The energy U of the electrostatic field of the conduc-
tor is
Ee

V=5

v,| dz, (5.51)
D.
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where ¢; is the secondary potential corresponding to the initial field £ =
ej, D, is the exterior domain with the boundary I', and D = D; is the
conductor with the boundary I'.

On the other hand the same energy is equal to

24
2

Indeed, if P is the dipole moment, then U =
since E,, = d,, one obtains (5.52). Thus

U= Qjj. (552)

%(P, E) = %aimEmEi and

Vajj = min/ |Vul?dz, (5.53)
D.

where the admissible functions u € C*(D,) satisfy the condition
ulr =U; +s;, U; =const. (5.54)

The minimum in (5.53) is attained at the solution of the problem
, 9¢
A¢p=0inD., ulr=U;+s;,, —dt =0, ¢(c0)=0. (5.55)
r ON

The variational principle (5.53)-(5.54) allows one to obtain upper bounds
for ;.

Example 5.1 Let I' be a sphere with radius a. By symmetry one con-
cludes that o;; = ad;;, where o > 0is a scalar. Let ¢;(t) = Y;;(t), where Y;;
are the spherical harmonics, Y71 = cos 6, Y12 = sinf cos ¢, Y13 = sinfsin ¢,
and t = (1,0, ¢). From (5.49) one finds that a;; = 0 for i # j. For i = j
it follows from (5.50) that aj; = o = 3. In this example we obtained the
exact value of a because of the symmetry.

3. Suppose that V' — 0 and the body tends to a thin screen F with
the edge L. Then the variational principles (5.49), (5.50), and (5.53)-(5.54)
remain valid but the admissible functions should satisfy the edge condition.
The tensor

&1_}1110 aijV = dij (556)
is the polarizability tensor of the screen F'. Therefore the derivation of the
variational principles for the electric polarizability tensor of the metallic
screen has no new points.

4. Let us derive some variational principles for the magnetic polariz-
ability tensor 3;;. This tensor is defined as follows.
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Consider the boundary value problem

9 _ 9% _ N1, éloc)=0.  (5.57)

A¢=0in D, TN, T ON

This problem is a mathematical formulation of the physical problem of
finding the magnetic field around a superconductor (i.e., a body D inside
which the magnetic induction B = 0). On the surface I' of this body
By|r = 0. Outside the body div B =0, carl H =0, B = poH in D, where
fto is the magnetic permittivity of the exterior medium. If H =e; — V¢ =
V(x; — ¢) then the condition By|r = 0 can be written as

Izj —¢) op

N, |, =0, or — N, —N,;onT, (5.58)
which is the same condition as in (5.57). Let
O'j(t)dt
=¢;= | ——. 5.99
o= = [ P02 (5.59)
Then from (5.58) it follows that
= Ao; — 2u0N;(), A —/ 0 L otyat  (5.60)
95 = 205 T 2HosNE), 7= r ON, 27r7°st0 ’
and
9¢; _ 09;
;= — . 5.61
7 (8]\71- on. )1 (5:61)

The magnetic polarizability tensor is defined by the equation

VB = gl /F by (£)dt, (5.62)

where V' is the volume of the body D.
If we substitute (5.61) into (5.62), we obtain

- 00; 99\ gy [ oy _/ 9
Vﬁp]—/rtp(aNi ons )= | gt = | togde

0
= /F ajs;) (fbdt — 5ij = 7/ V¢pv¢jd$ — 5ij.

(5.63)

De.

In particular

VB +V = f/ |v¢>j|2dx, (5.64)
De
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VB, = ‘%P it~ V. (5.65)

The operator —9/9N, is nonnegative—deﬁnite on the set of functions
on I' which are restrictions on I' of harmonic functions defined in D, and
vanishing at infinity. This follows from the Green formula

Ju / / v
- = VuVuvder =— [ u . (5.66)
/F ON, D. r ON.
Therefore formulas (5.58) and (3.26) yield
N, (t)dt i (t)up(t)dt
~VBp; = MIAEVIOL pr Jup(dt | Vi, (5.67)
fr N, Ujdt

where the admissible functions u,;(¢) are harmonic in D, and u;(c0) = 0.
If p = j then st in (5.67) can be replaced by max, obtaining

—(V+VBj,) max{(/FNj(t)uj(t)dt)2(Ag}tujdt>l}, (5.68)
—(V+VBy) max{(/r]\fjujdt>2(/De |mj|2dx)1}. (5.69)

The maximum in (5.68), (5.69) is attained at the solution to (5.57).

Remark 5.2 Formulas (5.68), (5.69) remain valid if the admissible func-
tions u are mot mecessarily harmonic in De but are arbitrary functions
u € CY(D.), u(oo) = 0.

Proof. From (5.64) and (5.69) it follows that (5.69) can be written as

/D |VU|2daf/D Vo |*de > (/D qujwjda:) (/N qu1§> .

e e e 5 70)

The equality in (5.70) follows from Green’s formula.
Inequality (5.70) is just the Cauchy inequality and is valid for any u, ¢;

such that vu € L*(D,), V¢; € L*(D,). O
Exercise 5.1 Prove that
N (t dsdt ds dt
*QWVﬂpj:(spj‘i’SthfF P( ) Tst fFfF Tst

fr fr{ap — Aap( )}%jsdt



62 Calculating Polarizability Tensors

where A is defined in (5.60) and the admissible functions o;(t) € C(T).

Remark 5.3  Principle (5.69) allows one to obtain lower bounds for B;;.
In order to obtain some upper bounds for (;; the variational principle

-V -VB; = min/ ‘qj‘de, (5.71)
D

e

where q; are arbitrary vector fields such that the integral (5.71) converges
and

divg; =0 in De, (qj,N) = N;(t) onT. (5.72)

Proof. 1In order to prove principle (5.71)-(5.72), note that if ¢ satisfies
(5.72), then

/ ’q—qu)j’QdJc:/ |q|2da:+/ \v(pjfczm—z/ qv ¢idz  (5.73)
D, D, D,

e

and

/De QVfi)gdzf/ div (q¢;) da:—/ o dlquz*f/r(q,N)fbjdt

(5.74)

qb] At = |2

Nq“)Jdt ujdt = [ |Ve;| da.
D.
From (5.73), (5.74) and (5.64) it follows that
2 2 2
/ |q—V¢j| dx:/ lq] da:—/ ‘V(bj‘ dx
De De DC

(5.75)

provided that ¢ satisfies (5.72). Principle (5.71) follows from (5.75). The
minimum in (5.71) is attained at ¢; = V¢;, where ¢; is the solution to
(5.57). O

5. Magnetic polarizability of screens. In connection with magnetic
polarizability, the screen is a model of a thin superconductor or a perfect
magnetic film. The latter case is of interest because thin magnetic films are
parts of the memory elements of computers.

Let us denote the magnetic polarizability tensor of the screen by

Bij = lim V5. (5.76)
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This definition is similar to (5.56). The new point, in comparison with
Section 5.3, is: if I' is an unclosed surface one cannot look for a solution
to problem (5.57) of the form (5.59). Indeed the normal derivative of the
potential of a single layer (5.59) has a jump when x crosses I', while the
boundary condition in (5.57) shows that the normal derivative is continuous
when x crosses I'. Therefore in the case when the body is an unclosed thin
surface F' let us look for the solution of (5.57) of the form

0 1
L= (t) —— ———dt. 5.77
" /F 055 T (5.77)

It is known [38] that 01, /ON is continuous when x crosses F' provided that
the surface F' is smooth. We have

) (ijx)
11/}J 47T,U/0|$|3, |£E| — 9, (578)
where
M, = / 0y (DN () dt. (5.79)
F

The vector M is the induced magnetic moment. In particular,

My = [ N (5.80)
Since the initial field H corresponds to the potential ¢9 = —x;, we have
Mjj = poBjiHj = pobjj- (5.81)
Thus
iy =wi" [ m N0 (5.52)
and
s = B =" [ mON (O (5.83)

Let us consider the boundary condition

O; _
_a—N = —N] on I (584)
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as an equation for n;. The function ; must satisfy the edge condition
which can be formulated for this problem as

. o;
/5%/ Yy kds =0, (5.85)
where S, is the surface of the torus generated by a disk of radius p whose
center moves along the edge L of F' so that the disk is perpendicular to
L. Condition (5.85) allows one to integrate over F as if F' were a closed
surface. Namely [, = fF+ + [z , where Fyy (F_) is the upper (lower) side
of F. It does not matter which of the two sides is chosen as the upper one.
As V' — 0, it follows from (5.69) that

iy :max{(/FNj(t)uj(t)dt)z(/De |Vuj|2dx)1}, (5.86)

where the maximum is taken over the set of harmonic functions satisfying
the edge condition (5.85). For example, one can take the admissible func-
tions of the form (5.77). The surface F is the surface of discontinuity for
the admissible functions.

Passing to the limit V' — 0 in (5.71) yields

—Bj; = min/ ’%“2653?, (5.87)
D

e

where ¢; satisfies (5.72) and the edge condition (1.18).

Principles (5.86) and (5.87) allow one to obtain lower and upper bounds
for B;; respectively.

From (5.53), (5.84), and (3.26) it follows that

Jr Np t)dt fF np(t)dt
—JIr 6Nt{fF Tp(s 6N 47rr5tds}77J( )dt

where the admissible functions 7;(¢) should satisfy the edge condition

—Bpj = st , (5.88)

(1.17).  Principle (5.88) holds also for closed surfaces, in which case
Bpi =V Bpj-

The integral in the denominator of (5.88) can be transformed by means
of the identity [39]:

3iNt/ (s )a%r_stds /F ([Nsﬁs”}a [Ntﬁsf;l])d& (5.89)

where V is the surface gradient and [a, b] is the vector product.
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6. Polarizability tensors for plane screens. Let the x3-axis be
perpendicular to the screen. If I' = F in (5.49), (5.50) and F is a plane
domain on the (x1,x2)—plane, then &;3 = as; =0, for 1 < i < 3.

Similarly from (5.83) and (5.86) it follows that only 3 = B33 # 0 if
I' = F is a plane screen. From (5.86) it follows that

_B:max{(/Fudt)Q(/De |Vu|2dx)_1}, (5.90)

where the admissible functions u satisfy the edge condition, vanish at in-

finity, and are harmonic.
From (5.87) it follows that

-8 = min/ lq|*dx, (5.91)
D

e

where the admissible vectors satisfy the conditions
divg=01in D., g¢3|lr=1. (5.92)

Exercise 5.2 Derive from (5.67) that

Bmax{</ ) (//W 4m)d8dt> } (5.93)

7. The variational principles, i.e., principles involving a maximum or

minimum, were derived only for the diagonal elements of the polarizability
tensors. Nevertheless they allow one to obtain two-sided estimates for any
elements of the tensors.

To do so one can use the transformation properties of tensors and take
into account that any element of a selfadjoint matrix is a linear combination
of its diagonal elements in the coordinates in which the matrix is diagonal.



This page intentionally left blank



Chapter 6

Iterative Methods: Mathematical
Results

6.1 Iterative Methods of Solving the Fredholm Equations
of the Second Kind at a Characteristic Value

The aim of this chapter is to provide in abstract setting some results which
justify the iterative processes given in Chapter 2.

1. Let A be a linear compact operator on a Hilbert space H, \,, ¢,
its characteristic values and eigenelements, ¢, = A, Adn, [A1] < |A2] < |A3]
< oL Let Gy = {¢ : (I — \MA*)Y = 0} and Gi be its orthogonal
complement in H. The equation

g—MAg=f (6.1)
is solvable if and only if f € Gi.
Main assumption: \; is semisimple. (6.2)

This means that the pole A = \; of the resolvent (I — AA)~! is simple.
This also means that the root subspace of A corresponding to A1 coincides
with the eigensubspace of A corresponding to A;. The root subspace is
defined as follows. Let ¢ = A\ A¢. Consider the equations

U — X AgUTD =0 >0, ¢ =g (6.3)

Only a finite number 7 of these equations are solvable ([44]). If (6.3)
has no solution for j = 0 then A; is semisimple. If (6.3) is solvable for
0 < j <r and is not solvable for j = r 4 1 then the set {¢, o1, ..., ("}
is called the Jordan chain of length r + 1 associated with the pair (A1, ¢).
The elements ¢(1), ..., ¢ are called root vectors of A corresponding to A;.
The linear span of all eigenvectors and root vectors corresponding to Ay is

67
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called the root space corresponding to A\;. The linear span of eigenvectors
corresponding to A; is called the eigenspace corresponding to A;.

If the root space is one-dimensional then \; is called simple. If the root
space coincides with the eigenspace but has dimension greater than one
then Ay is called semisimple. It can be proved that Ay is semisimple if and
only if \; is a simple pole of (I — XA)~! ([44]). It can also be proved that
A1 is semisimple iff

(I=MA)ZH=0= (I-X\A)¢=0. (6.4)

Lemma 6.1 If \; is semisimple then equation (6.1) has at most one
solution in G .

Proof. Tt is sufficient to prove that the homogeneous equation (6.1) has
only trivial solutions in Gi. Suppose ¢ = \jAp, ¢ € G, ¢ # 0. Since
Gi = R(I — M\ A), where R(A) denotes the range of A, and since Gi is
closed, because A is compact, the condition ¢ € Gi implies that there
exists an f such that ¢ = (I — A\ A)f. Therefore (I — A\ A)?f = 0, and from
(6.4) it follows that (I — A\ A)f =0, i.e., ¢ =0. O

Remark 6.1 Equation (6.1) with semisimple A1 is important because
most of the basic equations of electrostatic, magnetostatics, elastostatics,
and hydrodynamics of the ideal incompressible fluids are of this type. In
practice f in (6.1) belongs to G so that (6.1) is solvable. On the other
hand, \1 is a characteristic value so that the resolvent (I — NA)~! does not
exist at X = A\1. Therefore solving equation (6.1) is an ill-posed problem:
small perturbations of f can produce large perturbations in the solution or
make equation (6.1) unsolvable. The theorems below show how to handle
this difficulty and how to construct a stable approzimation to the solution

of (6.1).

Let {¢;} be an orthonormal basis of N(I—X\A) = {¢: (I-\A)p =0}
and let {t;} be an orthonormal basis of G1 = N(I — MA*), 1< j<m.
Let P be the orthogonal projection of H onto GG. Define

Byg:=Ag+7 > (9,%5)0; (6.5)

=1

and

ry o= min (2, [ (14 90) 7)), (6.6)
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where « is an arbitrary number which will be so chosen that r., = |\2| e.g.,
v = -\ ! and (-,-) denotes the inner product in H.
Consider the equation

g=MByg+f, [eGi. (6.7)

It is clear that equations (6.7) and (6.1) are equivalent on Gi because the
sum in (6.5) vanishes if g € Gi. Therefore every solution g € G7 of (6.7)
is a solution of (6.1) and vice versa.

Theorem 6.1 The operator B. defined in (6.5) has no characteristic
values in the disk |\ < 7. If A\ (1 4+ yX\1) 7Y > |A2|, then the iterative
process

gni1 =MBygn +F, g=F=MAf—-f, FeGf (6.8)

converges as a geometric series with ratio q, 0 < q¢ < |A1A51|, to an element
g=¢—f, where $ € N(I — \A) and Pp = Pf. If dimGy = 1,¢ €
N(I—XA), v €Gy and ||0|| = ||¢|| =1, then ¢ = ¢(f,1)/(p,v). Process
(6.8) is stable: the sequence

hng1 =MByhy +F +en, ho=F, |ef <e (6.9)

satisfies the estimate

limsupHgfhnH = 0(e), (6.10)
n—oo
where
g= lim gn. (6.11)

Theorem 6.2 If dim G; = 1, then the iterative process
Ins1=MAfn, fo=1f (6.12)

converges as a geometrical series with ratio q = |)\1/\gl| to the element
ap, 0 € N(I —MA),a= (f,0)/(p,¢). Here f € H is arbitrary.

Proof of Theorem 6.1. If g = AB.g, then (g,v;) = A\ "(g,v;) +
M (g,15), or (9,1;)(1—= AN = Ay) = 0. If for some j,1 < j < m, (g,4;) #
0, then A = A\ (1 + Ay)~L If (g,9;) = 0 for all 1 < j < m, then B,g =
Ag,g = Mg, ie., X € 01(A), where 01(A) is the set of all characteristic
values of A except A\; . The value \; is excluded because if (g,%;) =0,1 <
j < m, then g = 0, since \; is semisimple. Therefore the disk |A| < 7,
does not contain any characteristic values of B,. Our argument shows that
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o(By) C {o(A)}U{M(1+ \y) "} If g = AB,g,9 € Gi then g = \Ag.
Let us show that every A € o1(A) belongs to o(B,). It is sufficient to
prove that if g = \,Ag,n > 1 then ¢ € Gi-. In order to prove this, we
start with the identity (g,%;) = M\ (Ag, ;) = An(g, A*;) = Ao AT (g, ).
Thus (g,%;)(1 — A ATY) = 0,1 < j < m. Since A\, A1 # 1 it follows
that ¢ € Gf. We have proved that every A\ € o(A) belongs to o(B,)
and moreover the eigenvectors of A corresponding to A\,,n > 1, are the
eigenvectors of B corresponding to A,.

Let us prove that process (6.6) converges. If v is chosen so that |A;(1+
¥A1)7' > |X2| then there are no characteristic values of B, in the disk
[A] < |A2]. Therefore process (6.8) converges as the geometric series with
ratio 0 < ¢ < |\MA;'|. Since F € Gi implies that AF = B.,F, one
can see that g := 3777, A{B%F = F 4+ M\ B,g and B,g = Ag. Therefore
g+ f=MAf+MByg = MAf + XM Ag = MA(g + f). This means that
h:=g+ f € N{—XA). Since Pg =0 we have Ph = Pf. If dimG; =1
then dim N(I — M A) = 1. Let ¢ € N(I — M A), ¢ € Gy, ]|¢]] = ||| = 1.
Then h = cg, (h, ) = c(6,¥), i.c., ¢ = (h,)/(6,1) = (£,)/(6,1). Note
that (¢,1) # 0 because \; is semisimple, and (g,v) = 0 because g € G7.
Let us prove (6.10). We have

n

hn =Y (MBy)'F+Y (\By)en1-5, |JMBy| <a<1,
j=0

=0

n—1 o'}

. ) + F n+1

R ES R WL EES =
7=0 Jj=n+1

This implies (6.10). O
Proof of Theorem 6.2. First let us formulate and prove a lemma.

Lemma 6.2  Let f(\) be a function of the complex variable A with values
in the set of linear bounded operators on a Banach space. Let f(\) be
analytic in the disk |\| < r and meromorphic in the disk |\ <r+¢e,e > 0.
Suppose that A1 is a simple pole of f(N\), Resx=x,f(A) = ¢ and f(\) =
Yoo o anA™ for |A| < r. If there are no other poles in the disk |\ <1 +e¢,
then
. n+1 _

nlingo AT an = —c. (6.13)
Proof of Lemma 6.2. The function f(A\) —c(A — A;)~! is analytic in
the disk [A| < r+e. Therefore f(A) —c(A—=X1)"t =307 (b A" [N < r+e.
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For || < r the identity > 00 by A" = > 0% (an + ey " ')A™ holds. This
identity can be analytically continued into the disk |A\| < r + e. Thus
an +cA; " 5 0 as n — co. This implies (6.13). g

Let us prove Theorem 6.2: The function (I — AA)~'f = B2 N A f is
analytic in the disk |\| < |A{], has a simple pole at A = A, and has no other
poles in the disk [A| < [A2|. Lemma 6.2 says that lim,, ., A} T A" f = —¢
with the rate of convergence O(|A\; Ay !["). Since f, = AN} A" f we conclude
that lim,, o fr, = h exists and b = A\ Ah. If dim N(I — A\ A) = 1, then
h=a¢,¢p € N(I — A A). Note that

(fn+151/}) =\ (Afnaw) = (fnﬂ/)) == (fﬂ/))
Therefore a(¢, ) = (f,¥),a = (f,¥)/(¢,v). Theorem 6.2 is proved. O

Remark 6.2  Process (6.12) is unstable in the sense that the process
hn+1 - A1Ah/n + Ena HE’ILH < 87 h’() = f (6'14)

can diverge because Ay € o(A), where o(A) is the set of characteristic values

of A.

Let ¢ € N(I — X\ A),¢ =1 + h, where 1) € G1,h € Gi-. From ¢ = \; A¢ it
follows that

h=MAh+F, F=MAyp—1, FecGi. (6.15)

A stable iterative process for solution of (6.15) is given in Theorem 6.1,
namely the process (6.8). In order to use it one must know a basis of
G1. In the case of electrostatics this basis is known explicitly (e.g., ¢ =
1 in the case of a single conductor). In the general case one can find
numerically an approximation to a basis of Gy. If {¢;}, 1 < j < m,
is an orthonormal basis of Gi and |¢;. — ¥;]| < €, then the operator
B,. = MA+ yz;’;l(,wﬁ)%s has no characteristic values in the disk
[A] < |A1]+0 where § = d(g) > 0 and 6(g) — (JA2] —|A\1]) as € — 0 provided
that v is chosen so that [A;(1 + vA1)~| > |[A2]. This follows from the
uniform convergence ||By . — By|| = 0 as ¢ — 0.

Remark 6.3 One can use the following general principle in order to
construct a stable iterative process which converges to ¢ € N(I — X\ A):
Suppose that a convergent iterative process for solutions of the equation
Bg = f is known for the exact data f. Then it is possible to construct a
stable iterative process for solving this equation with perturbed (noisy) data

fs. | fs = fIl < 6.
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Indeed, let S,,f be the nth approximation of the iterative process. We
assume that each S,, is a continuous operator. We have

8ufs = g1l < [1Suss = Suf]|+ [0S = o] (6.16)
Here g solves the equation Bg = f. By our assumption
|Snf —g|| = a(n) — 0 as n — oo (6.17)
and
|Snfs — Snf|| = b(6,n), b(6,n) — 0asd — 0. (6.18)

The last limit is not uniform in n. Let us find for any given § > 0 such n(9)
that

b(d,n) + a(n) = min := a(9) (6.19)
It follows from (6.17), (6.18) that
n(d) — ocoasd — 0, «a(d) — 0asd — 0. (6.20)
Therefore
HSn((;)f(s — gH —0asd—0. (6.21)
Let us summarize this observation.

Proposition 6.1 If a convergent iterative process for solution of the equa-
tion Bg = f is known, g, = S, f is the nth approximation of this process
and each operator S, is continuous, then ||Sy;)fs — gl — 0asd — 0
provided that n(d) is chosen from (6.19) and ||fs — f]| < 4.

In practice, if B is the linear operator I — A, then

A" -1

Sn = ZAj’ HS”H < ||A|| 1

=0

if ||Al] > 1, and ||S,|| < n+1if |A]] < 1. This gives an explicit estimate
for b(d,n) (e.g., if [|A|| < 1 then b(6,n) < d(n + 1)). To estimate a(n) in
(6.19) one must use specific information about A. For example, under the
assumptions of Theorem 6.2 one has a(n) < c|A\;\; ™.

2. The spectral radius of a linear bounded operator A on a Banach space
is defined as r(A) = lim,, o ||A"||"/" . This limit always exists ([44]). If
[A| > r(A), then (A — XI)~! exists and is bounded. Let us assume that

r(A) =1, 1¢a(A). (6.22)
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It is clear that the equation

g=Ag+f (6.23)
is equivalent to the equation
g=Bg+f(l+t)", t#-1, B=(A+th)(1+t)" " (6.24)
Consider the iterative process
gn+1=Bgn + f1+1)7", go=f(1+)"", t>0. (6.25)

Theorem 6.3 If (6.22) holds, then the solution g of equation (6.23) can
be obtained by the iterative process (6.25): g = lim, o0 gn. The process
converges as a geometric series.

Proof of Theorem 6.3. The equation
g=ABg+qo (6.26)

coincides with (6.24) if A = 1 and can be solved by iterations for sufficiently
small ||, |A] < §. Tts solution

g(A) = A"Bg (6.27)
n=0
is analytic in the disk |A| < d. If g(\) has no singular points in the disk
|A| < R, then the series (6.27) converges in this disk. If R > 1 then the
series converges for A = 1 at the rate of the geometric series with ratio R~!.
Let us prove that for some R > 1 the function g(\) is analytic in the
disk |A] < R. Let us rewrite (6.26)

A 1

—2Ag+b S S N
g=249+bf, 2= T+i— M

(6.28)

The solution of (6.28) is analytic in a domain A of the complex plane z.
This domain includes the disk |z| < 1 and a neighborhood of the point
z = 1. For any t > 0 one can find R > 1 such that the disk [A| < R is
mapped by the function z = A(1+t—\t)~! onto a disk K, CA. This implies
the conclusion of Theorem 6.3. Indeed, the function z = A\(1 +¢ — \t)~!
is analytic in the disk [A\| < R, 1 < R < 1+¢', and maps this disk onto
K, CA. The solution g(z(\)) to (6.26) is analytic in the disk |A| < R. Let
us to show that for some 1 < R < 1+¢~! the function z = A(1 +¢ — At)~!
maps the disk |A\| < R into A. Since z(\) is linear fractional it maps

disks onto disks. Note that z(\) = z(A) where the bars denote complex
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conjugation. Therefore the circle |[A\| = R is mapped onto the circle K,
with the diameter [z(—R), z(R)], r = [2(R) — 2(—R)]/2, and the center lies
on the real axis at the point [z(R) + z(—R)]/2. Hence K, C A provided
that z(—=R) > —1, |2(R) — 1] < a where a > 0 is sufficiently small. We
have z(—R) = —R(1+t+ Rt)"* > —1ift > (R—1)/(R+1). If t > 0 is
fixed, then z(—=R) > —1 when R < (1+¢)/(1—t) for t < 1,z(—R) > —1 for
any R > 0 when ¢ > 1. On the other hand, 2(R) = R(1+t—tR)"! < 1+«
if R<(1+a)(1+t)/1+t1l+a)) =1+all +t(1+«a)] ! Therefore
there exists R > 1 which satisfies the last inequality. We have proved that
for some R € (1,1+t~1) the function z()\) maps the disk |\| < R onto the
disk K, C A. This completes the proof of Theorem 6.3. One can choose
t > 0 so that R will be maximal and the rate of convergence of the process
(6.25) will be fastest in this case. O

3. Let us formulate a well known theorem whose proof is left to the
reader. Let A be a linear bounded operator on a Banach space X and o(A)
be its characteristic set (i.e., the image of the spectrum of A under the
mapping z — 2z~ 1).

Theorem 6.4 Ifo(A) C {\: |\ > 1}, then for every f € X the equation
g=Ag+f (6.29)

has a unique solution g, given by the iterative process
gnt1=Agn+f, g = lim gn (6.30)

for any initial approzimation go. If there are points of o(A) in the disk
[A| < 1 then there exists a set E C X such that E is of the second category
and the process (6.30) diverges if f € E and go = 0.

The set E is said to be of the second category if it is not a countable
union of nowhere dense sets.

6.2 Iterative Processes for Solving Some Operator
Equations

Let A be a selfadjoint linear operator on a Hilbert space H, ||A| = 1.
Consider the equation

g=Ag+f. (6.31)
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The following theorem is proved in [53].

Theorem 6.5 Suppose that —1 is not a characteristic value of A and
(6.31) is solvable. Then the iterative process

In+1 = Agn + fa (632)
converges to a solution of (6.31) for any go € H.

Proof of Theorem 6.5. Let Hi be the eigenspace of A corresponding
to A =1 and let P, be the projection on Hy. If ¢ is a solution to (6.31)
then ¢’ = g — Pyg is also a solution to (6.31) and ¢’ L H;. Let us prove
that g, — ¢ + Pigo asn — oco. Let 0 < 6 < 1 and Py := i;iadEA’
P;s=1—P, — Py, where A = f_ll M FE) is the spectral representation of A.
The operator P5 is an orthoprojection and since —1 is not a characteristic

value of A, one has
||P3fH —+ 0 as § — 0 for any fixed f € H. (6.33)

Since AP; = P;jA and P;P; = 0 for ¢ # j one can rewrite (6.32) as

Pigni1 = APign + 1 f, (6.34)
Pagni1 = APagn + Paf, (6.35)
Psgni1 = APsgn + Psf. (6.36)

Since (6.31) is solvable, P; f = 0 and (6.34) shows that Pig, = Pigo. Let
Hy; = P,H. The process (6.35) can be considered as an iterative process
for the restriction Ay of A to Hsy. Since ||Ac]] < 1 — 9§ the process (6.35)
converges to h := Pyg’ which is the solution to the equation h = Ah+ Py f.
Thus || P2gn — Pog’|| < € for n > n(e). Furthermore,

HPS(gn - g/)

HA(Psgn—1 - ng’)H < HP3 (gn-1—9")

< |l o) <<

IN

provided that ¢ is sufficiently small (see (6.33)).
Now one has

gn — (¢ + Plgo)H < HP1 (gn— 9 — go)H + HPz(gn - g’)H

+ HP3(gn —g')H < 2e
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provided that n > n(e) and § is sufficiently small. This completes the
proof. O

The following result is discussed in [53], [113] and in [107].

Theorem 6.6 Every solvable linear equation with a bounded operator in
a Hilbert space H can be solved by an iterative process.

Proof of Theorem 6.6. Let the equation
Bg=f (6.37)
be solvable in H and B be a linear bounded operator. The equation
Ag=B*"Bg=DB*f (6.38)

is equivalent to (6.37). Indeed, (6.37) implies (6.38). On the other hand,
since (6.37) is solvable f = Bh and (6.38) can be written as B*B(g—h) = 0.
Multiplying this by g — h yields B(g — h) =0, i.e., B¢ = Bh = f. That is,
(6.38) implies (6.37).
Equation (6.38) can be written as
g=(I—kAg+F, F=kB'f, (6.39)
where k£ > 0 is a constant. Suppose that

0<k<2|Al" (6.40)

Then the operator I — kA is selfadjoint, —1 is not an eigenvalue of it and
III —kA| < 1. By Theorem 6.5, equation (6.39) is solvable by the iterative
process

Int1 = (I — kA)gn + F, (6.41)
with an arbitrary initial element g9 € H. O
Remark 6.4 Assume 0 <m < A< M. Then
M—m 2
I —kA|=—— if k= )
1= kAl = 3 i b=

The following observation is useful ([143]).

Remark 6.5 Let B > 0 be a linear operator on a Hilbert space H such
that equation (6.37) is solvable. Then the iterative process

gn+1+ Bgni1 = gn + 1, (6.42)

converges to a solution of (6.37) for any initial element go € H.
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Proof of Remark 6.5. We have g,.1 = (I + B)"'g, + (I + B)"'f.
For the operator A = (I + B)~! the assumptions of Theorem 6.5 hold and
Remark 6.5 follows from this theorem. O

6.3 Iterative Processes for Solving the Exterior and
Interior Boundary Value Problems

1. Let D be a bounded domain with a smooth boundary I', and D, be the
exterior domain. Consider the problems

Au=0 inD, ulp=7Ff, (6.43)
Au=0 inD Ou =f, wu(co)=0 (6.44)
- €y 8Ne F - b - ) *
Au=0 inD,, ulr=f wu(c)=0, (6.45)
Au=0 D, 2 _; /fdt—() (6.46)
B ©ooN, T T T '
Define
o(t)dt o 1
v /F Amry’ v /Fu(t)ﬁNt 4774t di (6:47)
One has:
A pFp / 0 1
ie — ’ A= U) 5o dt. A
w ) I Fu( ) O, Trres (6.48)
v Ao +o 0 1
oN. 5 Ao = /Fo(t) N, —27T7“st dt, (6.49)

and Jw/ON; = dw/ON,, provided that T is smooth. In (6.48) and (6.49)
the upper (lower) signs correspond to the upper (lower) subscript i(e).

Let u = w(p) in (6.43) and u = v(0) in (6.44). Then, using (6.48)—
(6.49), one gets:

p= At 2f, (6.50)

o= Ao —2f. (6.51)
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It is known [38] that A and A* have no characteristic values in the disk
|A| < 1 and only one characteristic value A = —1 on the circle A = 1. The
operators A and A* are compact in C(I') and H = L*(T") if T is smooth.
We have

Proposition 6.2 Theorem 6.3 is applicable to equations (6.50) and
(6.51).

Remark 6.6 Settingt = 1,B = A* in (6.25) yields the classical Neu-
mann process for solving the interior Dirichlet problem which reduces to
equation (6.51).

From (6.46) and (6.49) it follows that problem (6.46) can be reduced to
the integral equation

o =—Ao +2f, /fdt:O. (6.52)
I

Equation (6.52) was discussed in detail in Chapter 2. Theorem 6.1 was
basic in this discussion and the crucial assumption (6.2) is fulfilled for the
operator A defined in (6.49). For this operator Ay = —1 and this A\; is
simple, i.e., dim N(I + A) = 1 and the function ¢ = 1 belongs to N(I +
A*) = G4. Condition (6.52) means that f € Gi. Therefore equation (6.52)
can be solved by the iterative process:

Opn+1 = 7A0'n + 2f, op = 2f (653)

or its modification (6.8) which guarantees the stability of the calculations
with respect to small errors.

2. Let us discuss problem (6.45). If u = w(p), then p = —A*p + 2f.
This equation may have no solutions and is not equivalent to problem (6.45)
because the solution to (6.45) is not necessarily representable by a double-
layer potential w. Therefore let us look for a solution to (6.45) of the form

a 0

1
= — t)— —dt = t 6.54
o ] Jr/Fu( )aNt yr——_— a = cons ( )

From (6.54) and (6.48) it follows that

uA*u+2<f%), (6.55)

where s is a point on the boundary T'.
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Because the equation 4 = —A*u has a non-trivial solution, let us con-
sider the equation

I/Mz/+2( ﬁ), MI/E*A*I/Jr/I/dt. (6.56)
s r

Proposition 6.3  The operator M has no characteristic values in the disk
[A| <1, so that the iterative process

Un41 = Myn+2(f_ %)7 (657)
converges (in C(I')) to the solution of equation (6.56) for an arbitrary initial

approzimation vy € C(X\). Moreover, one can choose a so that equation
(6.56) and (6.55) are equivalent, i.e., so that

/ydt ~0. (6.58)
I

This will be true if

a/FQfdt</FQ(%)ds)l, Q= (I—-M" (6.59)

Proof of Proposition 6.3. First let us prove that the disk |\ < 1
contains no characteristic values of M. Let

v=AMv=-MAv+ )\/ vdt, (6.60)
N
and
0 1
- 7 - 61
() /F V(052 o (6.61)

Then from (6.60), (6.61), and (6.48) it follows that

(T+Nue=(1—Nu; + /\/ (te — uj)dt. (6.62)
r
Multiplying (6.62) by gi]‘\‘, = 6%5 = aa—ﬁi one obtains
1+ A ou ou A
— em—dt = i dt ;) dt Y,
1—x ). ““aN, /F”aNi +1—A/ / (6.63)
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By Green’s formula
ou
Ue =
r  ON.

ou / 9 / ou
U ——dt = Vul“dz > 0, dt = 0.

From (6.64) and (6.63) it follows that (1+ A)(1—X)~! < 0. Hence X is real
and |[A| > 1. It remains to be proved that A = %1 is not a characteristic
value of M. If A = —1 then (6.63) shows that

ou 9
/Fuza—Nidtf /D |Vu|*dx = 0. (6.65)

Therefore u is constant in D, du/IN; = 0 = du/IN,. Hence u = 0 in D,
and v = u, — u; = const. Without loss of generality, suppose v = 1 is a
solution to (6.60):

dt = —/ |Vul?de <0,
Pe (6.64)

1=A4"1-5, S :=measT. (6.66)

Let vy be the electrostatic density, i.e.,
vy = 7AI/(), / vodt > 0. (667)
r

Multiplying (6.66) by v and integrating over I' one obtains

/l/()dt = (V(),A*l) - S/ I/()dt,
r r

(1 +S)/l/0dt = —/l/odt. (668)
T T

This is a contradiction. Therefore v = 1 is not a solution to (6.60).
If A\=1thenv=—-A"v + fr v dt. The solvability condition is

/l/dt/ l/()dt = 0. (669)
r r

/ vt =0 (6.70)
I

or

Thus

and

v=—-Av, (6.71)
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so that v = const # 0. This contradicts (6.70). Therefore A = 1 is not
a characteristic value of M. The other statements of Proposition 6.3 are
obvious. O

Remark 6.7 In practice, in order to find a from formula (6.59) one can
use the processes

1 1
hiir = Mhy + —,  lim hy = Q(—) (6.72)
R o
and
Un+1 = Mvn + fa hﬂm Up = Q(f)a (673)

and then find a from (6.59).

3. Consider the third boundary value problem

. ou
Au=0 in D, —8Ne+hu|r:f, u(o0) =0, (6.74)
pu=0 nD, 2= (6.75)
u = m s 8N1 ulr =1, .
h=hi+ihy, h1 >0, hy<0, |hi|+]|h2|>0. (6.76)

It is easy to prove that under the assumption (6.76) problems (6.74) and
(6.75) have at most one solution.
Let us look for the solution of (6.74) and (6.75) of the form

- / g(dt (6.77)
I

Admrg;
Then problems (6.74) is reduced to the equation
g=Ag—Tg+2f, (6.78)

where A is defined in (6.49) and

Tg= h/ g(t)dt := hTig. (6.79)
r

27'('7"515

The problem (6.75) is reduced to the equation

g=—Ag—Tg+2f. (6.80)
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Consider the problem
g+ Tg=\Ag. (6.81)

Theorem 6.7 If (6.76) holds then all the eigenvalues of (6.81) satisfy
the inequality |A| > 1 and they are real if h > 0. Moreover the equation

g+Tg=MNAg+F, \==£1 (6.82)
can be solved by the iterative process
Gn+1+ Tgni1 = ANAgn + F, (6.83)

where go € H = L*(T) is arbitrary. This method converges as a geometric
series.

Remark 6.8 The iterative process
In+1 + Tgn = Agn + F, (684)

with an arbitrary go € H converges if 0 < h < k, where

k= min{/D|Vu|2dx(/F|u|2dt> 1}. (6.85)

Proof of Theorem 6.7. Let us rewrite (6.81) as

v v

2h = (1+ N
o, T2 =0 Mg
where v is defined in (6.77). Multiplying (6.86) by © and integrating over

I' yields

(1-2X) (6.86)

1A B
where
A—/av-dwo 8*2/||2dt>0 (6.88)
= 3Niv , =2 v , .
ov _
Cf/raNevdt<0. (6.89)

If A, B, or C is zero then v = 0. Let A = a+4b. Taking real and imaginary
parts of (6.87) yields
(1 —a? = b)) A+ [hi(1+a) + heb]|B
(14 a)? +b?

=C <0, (6.90)
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and
= 91
(14 a)?+b? 0 (6.91)
Hence
(1= A?)A+ [hi(1+a)+ hod|B <0, (6.92)
hiB+2A
By — A2 T2 .
2 14+a (6.93)

Suppose that |[A\| < 1. Since hy < 0,h; < 0, and |a| < |A| < 1, it follows
from (6.92) that b < 0. Thus heb > 0. Therefore (6.92) cannot be valid.
This contradiction proves that |A| > 1. If h = hy > 0,hy = 0, then b =0,
i.e., all the eigenvalues are real-valued. In order to prove that the process
(6.83) converges, let us consider the equation

g=MAGg+Q, (*)

where G := (I +T)"'A,Q := (I + T)"'F. The operator (I +T)~! exists
and is bounded because T is compact and (I +7T')f = 0 implies that f = 0.
The latter conclusion follows immediately from the positive definiteness of
the operator Re(I+T) =TI+ h1T1,Ty > 0,hy > 0. The operator G has no
characteristic values in the disk |[A| < 1 (as was proved above). Therefore
the iterative process

In+1 = ng + Q7 (694)

with an arbitrary gy € H, converges at the rate of a geometric series to the
solution of the equation (*). The process (6.94) is equivalent to (6.83) and
equation (6.82) is equivalent to (*). Theorem 6.7 is proved. O

Proof of Remark 6.8. Consider the equation

g=X-T+ A)g. (6.95)
If the characteristic values |A;| > 1 then process (6.84) converges. Let us
find when |\;| > 1. Let us rewrite (6.95) as

ov ov
SN T2 = (LN g

(1-)) (6.96)

From (6.96) it follows that
(I—pwA+phB=(1+pu), (6.97)
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where A, B, C are defined in (6.88) and (6.89).
If h > 0 then as in the proof of Theorem 6.7 one can show that if
A = a + ib then

(1—a)A+ahB=(1+a)C, (6.98)

—bA+ bhB = IC. (6.99)

If b # 0 then from (6.99) and (6.98) it follows that A = C. This is a
contradiction because of (6.88), (6.89). Thus b =0, = a, and
1-a a

A
1+a Jr1—i-a

Suppose that |a| < 1. Then (6.100) cannot hold for 0 < a < 1. If -1 <
a < 0 then (6.100) can be written as

hB < 0. (6.100)

Vul|?dx 2lalh 1— 2|alh
I l < |_a| ol _ 2lalh (6.101)
fr |ul2dt 1—la| 1+1]a] 1+ |a

Since |a| < 1, one has 2|alh/(1 + |a|]) < h. Therefore (6.101) cannot hold if
k > h, where k is defined in (6.85).
If @ = —1 then (6.98) shows that

-1
2A = hB, /|Vu|2da:</|u|2dt> =h. (6.102)
D r

If £ > h the equality (6.102) cannot hold. This argument proves that if
kE > h > 0 then the process (6.84) converges.

If h > k then equation (6.98) does not lead to a contradiction even if
|a| < 1. In this case it is not known if the process (6.84) diverges for some
F. O

4. Consider the problem

ou

Au=0in D, wulr= fi, 8—MF2

=fo, DUl =T, (6.103)
't NTy = (), Ty # (), where # denotes the empty set. This problem was
studied probably for the first time by Zaremba (1910). It has at most one
solution. Numerical approaches to this problem have been studied recently
by many authors and by means of various techniques (see [161] and the
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bibliography in this paper). In this section a simple approach taken from
[91] is discussed. Consider the problem

8vh

Av,=0 inD, —
Uh m L, 8N1

+ h(s)up|r = F, (6.104)

h r h r
P Ji onIy . h(s) = ORI~ const > 0. (6.105)
f2 on I'y 0 only

The idea is to first solve (6.104) by an iterative process and then to
show that v, — v as h — +o00 and to establish the estimates

Hu—vh <ch™!, H“_Uthiz < ch . (6.106)

I,
Here and below ¢ > 0 denotes various constants, H; = W3 is the Sobolev
space [44], and Hy = WQQLD), where D C D is any fixed strictly inner

subdomain of D, i.e., dist([), OD) > 0 where 9D is the boundary of D and
D is the closure of D.

Theorem 6.8 The solution of (6.104) ewxists, is unique, and satisfies
(6.106) where u is the solution of (6.103). Furthermore the solution of
(6.104) can be calculated by means of the iterative process described in The-
orem 0.7.

Proof of Theorem 6.8. Let wy = v, —u. Then

awh

= in D, ——
Awp=0 1in D, N

=0, ——+ hwy

I

From this it follows that

owy, ou
—2dt+h 2dt = — —dt.
/F’wh N + . |U}h| / W

Therefore

[ (vwnaosn [ funfat < lfun] o,
D I

Thus

L2(F1).

||wh||L2(F1) <ch™h, / ‘th|2d$ <chh (6.107)
D



86 Iterative Methods for Solving Some Integral Equations

From (6.107) and the inequality

HwhHLZ(D) < Cl(vahHLZ(D) + HwhHLZ(Fl)) (6.108)

where Cy = C1(D,T'1), the first estimate (6.106) follows. The second esti-
mate (6.106) follows from the inequality

el g, < (I & wll ooy + l0llzecy)

which is valid for any function w € W#(D) and any D C D which is a
strictly inner subdomain of D [44].

It remains to be proved that problem (6.104) can be solved by an iter-
ative process.

To this end one can use a generalization of Theorem 6.7. Define T as
in (6.70) with h = h(s), where h(s) is defined in (6.105). Alternatively, one
may assume that 0 < m < h(s) < M and that h is a piecewise-continuous
function. The conclusion and the proof of Theorem 6.7 remain valid. The
only new point in the proof is the invertibility of the operator I + T'. This
new point is discussed in the following lemma. U

Lemma 6.3  Under the above assumptions on h(s), the operator (I+T)~1
is bounded and defined on all of H = L*(T).

Proof of Lemma 6.3. Since T is compact it is sufficient to prove that
()f +Tf =0 implies f = 0. If 0 < m < h(s) < M and h="2f = g then
g+ Sg =0, where S = h'/?T1h'/? and T; is defined in (6.79). Therefore
S>0and I +S5 >1. Thus g =0 and f = 0. If h(s) is defined in (6.105)
then (*) shows that f =0 on I's and

Fvydt

r, 27rs

f(s)+h 0, sely, h>0. (6.109)
Since the kernel ;' is positive semidefinite, (6.109) implies that f = 0 on
I'y. This completes the proof. 0

6.4 An Iterative Process for Solving the Fredholm
Integral Equations of the First Kind with Pointwise
Positive Kernel

In Section 2.4 a problem of practical interest was discussed, reduced to
equation (2.35), and solved by means of the iterative process (2.36). Here
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we give a theoretical justification of this process in a general setting.
Consider the equation

Kf= /D K(z.9)f(y)dy = g(z), z€DCR", (6.110)

where D is a bounded domain, the operator K : L?(D) — L?(D) is compact
and

K(z,y) >0 (6.111)

almost everywhere. Suppose there exists a function h(z) > 0 such that
Kh < ¢ and [,a(z)de < oo, where a(z) := h(x)/(Kh(z)). Let ¢ =
fa=Y(z) and Hy = L*(D,a* (), || fIIZ = [, | fI?a®! (z)dz. Let us rewrite
(6.110) as

Kip=g, K= /D K(z,y)a(y)d(y)dy = Ka ¢. (6.112)
Let
Q=1-Ki, Kifj=Xfj, M\>|X|>]|xs|> (6.113)

The first eigenvalue of the integral operators with pointwise positive kernels
is positive and simple, i.e., the corresponding eigenspace is one dimensional
(Perron-Frobenius theorem for matrices, Jentsch theorem for integral oper-
ators, Krein-Rutman theorem for abstract operators [164]). Let us assume
that

g(z) € Hy, (6.114)
0<ec(n) < / K(z,y)a(y)dy < ca(n), x € D, (6.115)
A
where AC D, meas A> 0,
equation (6.112) is solvable in H_, (6.116)
the eigenfunctions {fj} form a Riesz basis of H, (6.117)

arg ;| < 3, A A0, (6.118)
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Theorem 6.9 If the above assumptions (6.111)—(6.118) hold, then the
iterative process

¢n+1 = Q¢TL + 9, ¢O =g (6.119)

converges in Hy to a solution ¢ of (6.112), the function f = a¢ solves
(6.110), and f € H_.

Remark 6.9 A complete minimal system {f;} C H forms a Riesz basis
of the Hilbert space H if for any numbers c1, ..., c, and any n the inequality

n n
2
a E ‘Cj‘ § E ijj
Jj=1 Jj=1

holds, where a and b do not depend on n.

2 n
<b> e, a>0 (6.120)
j=1

Proof of Theorem 6.9. Let ¢ be a solution to (6.112), g, = ¢ — ¢y,.
Then g, = Q"g. Let g> .2, ¢ f;. Then

gn=>_ (1=X)"¢c;fj, and |N;| < 1if j > 2.
j=1
From (6.118) it follows that |1 — A;| < 1. Indeed, if A = rexp(iy)),r <
1,4 < /3, then |[1 — A2 =1+ 7% —2rcosy) < 1+7r%—r < 1. Hence
1 = X" = 0 as n — oo. Therefore [|gn[|* < 03277, [1— Aj[*"[¢;* — 0
as n — oo. This means that ||¢, — ¢z, — 0 as n — oo. The rest is
obvious. O

Example 6.1 Let I' = {x : |z| = 1}, m = 2. Equation (6.110) is of the
form

Af = In

—T

1

——— | f(¢')d¢ = g(¢), —T << (6.121)
2 sin %

Since fow Insinz dx = —71In 2 one has

/ln

Therefore fo = (27)~! is the solution of the homogeneous equation (6.121).

d¢’ = 0.

2 sin

=9’
2
In this example equation (6.121), if solvable, is equivalent to the equation

Bf = - / In|sin {(6 - ¢)/2}|/(#)d¢) = g(6), -m<o<m (6.122)

—T
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with the pointwise positive and selfadjoint kernel, provided that one looks
for a solution of (6.121) which satisfies the condition fo% fdu=0. In this
example a(z) = (2rIn2)~! :=a, By = aB, f = ay) and (6.119) takes the

form

U (0) = a(0) + i) [ infsin{(6 - ¢)/2)

X n(¢)dd" + g(#)ho = g(¢).
Let g(¢) = cos¢. Since

—1In |sin

LTI 5 cos{m(@' = )}

2 m

m=1

one has
Bcos¢ =mcos¢; —Bjcose=—(2In2)" ! cos .
With this in mind, one concludes from (6.123) that

P = cos¢(2 — (1114)_1) = c1COS P,
Py = (1 + cl) cos¢ — c1(In4) "' cos ¢ = ¢y cos @,

and

Ynt1 = Cpy1COS P,  Cpi1 = (1 + cn) — cn(ln4)_1.
Thus

Coy1=qcn+1, co=1, g=1—(In4)"* =0.28.
Therefore

lime, =c=1n4=2In2,
P = lim, = 2In2cos ¢,
[ — | < (1—q) "g" T,

f=n"tcoso.

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)
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Chapter 7

Wave Scattering by Small Bodies

7.1 Introduction

Wave scattering by small bodies is of great interest in theory and applica-
tions. An incomplete list of problems for which wave scattering by small
bodies is of prime importance includes: radio wave scattering by rain and
hail, light scattering by cosmic dust, light scattering in colloidal solutions,
light propagation in muddy water, wave scattering in a medium consisting
of many small particles, ultrasound mammography, finding small cracks
and holes in metals and other materials, detecting mines and other subsur-
face inhomogeneities from the scattered field, measured on the surface, etc.
We will show that the skin effect for thin wires and radiation from small
holes are a particular examples of the the theory of wave scattering by
small bodies. The number of examples is practically unlimited. The theory
was originated by Rayleigh (1871) who contributed to this field until his
death (1919). Rayleigh understood that the main term in the scattering
amplitude in the problem of wave scattering by a small body with diameter
much less than the wavelength of the incident field is the dipole radiation.
J. J. Thomson (1893) realized that for a small perfect conductor the mag-
netic dipole radiation is of the same order as the electric one. Some efforts
were made in order to develop an algorithm for finding the expansion of
the scattered field in powers of ka, where k is the wave number and a is
the characteristic dimension of the scatterer, ka < 1 ([151], [50]). Since in
many cases the first term of this expansion already provides a good approx-
imation we will only discuss this first approximation. The general idea of
our presentation is very simple. First, it will be shown that a low-frequency
approximation to the scattering matrix can be calculated if the electric and
magnetic polarizability tensors for the scatterer are known. In this chapter
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an explicit formula for the scattering matrix, S-matrix is derived. The en-
tries of this matrix are expressed in terms of the polarizability tensors, for
which approximate analytical formulas are derived in Chapter 5. These
formulas allow one to calculate the polarizability tensors with any desired
accuracy. Therefore we have derived explicit approximate analytical for-
mulas for the S-matrix, which allow one to compute this matrix with any
desired accuracy. Using these formulas one can write computer codes for
calculating the scattering matrix for small bodies of arbitrary shapes. Ex-
act solutions in closed form for the exterior problems of potential theory
for bounded bodies in the three dimensional space are not known, except
for ellipsoids.

The other important point which should be emphasized is that we study
dependence of the scattering matrix on the boundary condition.

We study wave scattering by many small bodies. Two cases are con-
sidered: first, when the number r of these bodies is of order 10, not very
large, and second, when this number is very large, say, of order 1023, so
that one has a medium consisting of many small bodies. In the first case,
the smallness of the bodies allows one to reduce the problem to a linear
algebraic system (see, e.g., equation (7.71) below), rather than to a sys-
tem of integral equations, as in the case of wave scattering by many bodies
which are not small. The scattering amplitude in the case of small bodies
of arbitrary shapes is determined by finitely many numbers, which have
physical meaning. In the second case, one derives an integro-differential
equation (see equation (7.81)), or an integral equation in the simplest case,
(see equation (7.62)), for the self-consistent field in the medium consisting
of many small particles (see [146], [113]).

7.2 Scalar Wave Scattering: The Single-Body Problem

1. Consider the problem
(V*+k*)v=0in D' := D, (7.1)

: (7.2)

r

ov ou
——h’UlFZ (—a—]\?-‘rhUQ)

|z] (ﬁ - ikv) — 0 as |z| — oo, (7.3)
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where ug is the incident field, D’ is the exterior domain with smooth bound-
ary I', h = const,h = hy +iha, ha <0, hy >0, k>0, D = R*\ D’ is the
interior bounded domain. Let us look for a solution of (7.1)—(7.3) of the
form

exp(ik|z — s|)

o) = [ alesRo(s)is. o= s (7.4)
The scattering amplitude f(n, k) is defined by the formula
v~ Wﬂn, K)ol — 00, = ala|L. (7.5)
From (7.4) and (7.5) it follows that
f(n, k) = (4m)~* / exp { — ik(n,s)}o(s)ds. (7.6)
r
Substituting (7.4) into (7.2) yields
o = A(k)o — KT (k) — 2hug + 2242, (7.7)
ON
where
A(k)o = 2 / O (5.t k) ()t (7.8)
- r aNSg » Yy ’ .
T(k)o = 2 / o(s,t, K)o (t)dt. (7.9)
r
Let us expand o, A(k), T'(k), and ug in powers of k.
702
azao—i-ikal—i-@ag—l—---, (7.10)
‘ (ik)?
A(k):A+ZkA1+TA2+"' , (7].].)
. (ik)?
T(k)=T+ikTy + 5 T4 -, (7.12)

k2
! ) Ugg + -, (713)

uo = ugo + tkuor +
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From (7.10)—(7.13) and (7.7) it follows that

Ouoo
=A hToy — 2h 2—— .14
o) og — hTog oo + N (7.14)
Ouor
01 =Aoc1 — hToy + Airog — hTio¢ — 2hugr + 2—— N’ (7.15)
09 = AO’Q — hTO'Q —+ AQO’() -+ 2A10’1 — hTQO’()
Dugs (7.16)

— 2hTyo1 — 2N 2
101 up2 + ON

From (7.15) and (7.6) it follows that

47Tf:/r[1—ik(n,s)+(“;)2(71,5)24----}{Uo—i-ikzal—l—(H;)Qag—i---- ds

:/aods—i-ik[/alds— (n,s Uods]
r r
1.)2
+@L)|:/02d82/n80'1d8+/0'0 :|
2 r r

(7.17)
Let us assume that
Uy = exp {ik(l/, z)} (7.18)
Then
ugo =1, up = (v,8), ug = (v,5)?
Augo _ Ouo1 _ Oug2 _ (7.19)
We note that the following formulas hold
o 1
= ———o(t)dt, A0=0 7.20
7 /F ON; 2775y o(t)dt, 17 =5 (7.20)
- / Aodt = / odt, (7.21)
r r
dt
To = / 7 (7.22)
T 27'('7"515
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Tio = (2m)"! / o (t)dt. (7.23)
r
Let us integrate (7.14) over I' and take into account (7.19)—(7.21). This
yields
t)dtd
/aodt —9hS — h// qo(t)dtds o _ | easT,
277t
or

/aodt:—hS—i//M. (7.24)
r am Jr Jr Tst

The exact value of og should be found from the integral equation (7.14).
An approximate value of [ oodt can be found from (7.24) if one uses the
approximation

S /dt/ L Jz//r;ldsdt. (7.25)
r Tat r et rJr

From (7.25) and (7.24) it follows that

hS
P — 2
/F"O 1+ hJ(4rS) 1 (7.26)

In Chapter 3 the approximate formula
Cr~CO =4782J71 g =1 (7.27)

was given. Combining (7.26) and (7.27) yields

/Foodt = —hS(1+hsSC™) 7 (7.28)
Therefore
f(n,k) ~ —hS(1+ hsc*)*l%):. (7.29)
If h = o0, i.e., the scatterer is a perfect conductor, then
f= L. (7.30)

47

From (7.29) and (7.30) it follows that the scattering from a small body of
arbitrary shape under the Dirichlet boundary condition (i.e., acoustically
soft body, h = c0) or under the impedance boundary condition (h < 00) is
isotropic and the scattering amplitude is of order a, where a is the charac-
teristic dimension of the scatterer.
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Note that if the scatterer is not too prolate then C' ~ a. We also
assumed above that h is not too small, e.g., h.S > C~1.

The scattering amplitude f = —<%0 (1 + ikaf; + O((ka)?)), where
ka << 1 and f; is a real number, because of the property f(—k) = f(k),
where the overbar stands for complex conjugate. Therefore, the differential
cross-section is |f|* = %(1 + O((ka)?). If ka < 0.1, then the first
term (7.30) is practically the dominant term since the next term is of order
of 1072 of the main term in the formula for the differential cross-section,
which is measured in experiments. A similar remark holds in relation to
(7.39) below.

3. Consider now the case when h = 0, i.e., the case of the acoustically
rigid body. We shall see that in this case the scattering is anisotropic, is
defined by the magnetic polarizability tensor and the scattering amplitude is
of order k*a®. If h = 0 then (7.14) takes the form og = Aoy and therefore
oo = 0 since 1 is not an eigenvalue of A. Equation (7.15) takes the form

Ouor
=A 2 . 7.31
o1 o1+ N (7.31)
Integrating (7.31) over I and using (7.21) yields
Juo1
Uldt = 8 —dt = Aumdx = O (732)
r

since Augg = 0 and Aug; = 0. The latter equations follow from the equa-
tion

(A +E)ug =0

and the asymptotic expansion (7.13).
Thus, in the case h = 0 formula (7.17) takes the form

A f(n, k) = —%Q/FUQCZS + k2 /F(n,s)alds. (7.33)

For the initial field (7.18) it follows from (7.31) that
<n,/rsc71ds> = =V BpqVqnip. (7.34)
Here and below one should sum over the repeating indices, V' denotes the

volume of the scatterer and 3,4 is the magnetic polarizability tensor defined
in Chapter 5 as V By, = 1y Jr spoq(s)ds, where o4 is the solution of the
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equation o, = Aoy, — 2N, and N is the unit outer normal to I'. In order to
calculate the term fr o2ds, let us rewrite (7.16) for h =0 as

Auoz
ON -’
Here we have used (7.20) and took into account that o9 = 0. From (7.19)
and (7.35) it follows that

o9 = Aoy + 2

(7.35)

= Aos +4(v, s)(v,N). (7.36)

Integrating (7.36) over I and taking into account (7.21) yields

/Fagdt—2/( )W, ds—2< /Nus )

- 2(1/, /D v (v, z)dz) = 2(v, V)V = 2V.

From (7.33), (7.34), and (7.37) it follows that if h = 0 and the initial field
is given by (7.18) then the scattering amplitude is:

(7.37)

KV K2V

f(n, v k) = Py ——Bpg¥qp, [~ k*a®. (7.38)

The scattering is anisotropic in this case (i.e., in the case h = 0, i.e., in the
case of acoustically hard obstacle).

4. Let us derive the following formula for the scattering amplitude in

the case h = 0 for an arbitrary initial field wug:

B ZkV 8u0 V Aug
f(n, k)= qu 8z »+ i (7.39)

The initial field satisfies the equation (A + k?)ug = 0, so Aug = —k?ug and
one has gradug = O(k) for k — 0. The main assumption is the smallness
of the scatterer. We want to derive formula (7.39) for two reasons. First,
the initial field ug is not assumed to be a plane wave. Second, we want
to isolate the dependence of the scattering amplitude on the size of the
body from its dependence on the wave number k. When the initial field
is ug = exp{ik(r,z)} and the scatterer is placed at the origin, then the
small parameter is ka, so that k — 0 is equivalent to x — 0. But if we
consider the many-body problem then the phase difference should be taken
into account. For example, if k is small but z is large then ik(v, x) is not
necessarily small, and such a situation occurs in the many-body problem if
the distance between some of the bodies is larger than the wavelength.
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As in Section 7.3 we consider the problem (7.1)—(7.3) with » = 0 and
look for the solution of the form (7.4). The integral equation for o takes
the form (7.7) with h = 0. If @ is very small we can rewrite this equation
as

o=Aoc+2—, (7.40)

where A is defined in (7.20) and the error is O(a).
Let us rewrite formula (7.6) as

fn ) = (4 [

T

o(s)ds —ik(4m)~" /(n,s)a(s)ds, (7.41)

r

where the terms of the order O(k?a?) are omitted because ka < 1. We
expand the initial field ug in the Taylor series with respect to x, assuming
that the origin is placed inside the scatterer. This yields

1
uo(x, k) = uoo + (v, z) + §(Ba:, x) + O(a3), (7.42)
Where uoo = U()(O, k),
Oug(, k)
=V E)le=0s, (B)mj =bmj = —————= 7.43
v=Tuo(w Klemo, (Bl =bny = G i (148)
Therefore
Jug -
8—N = (V,N)+(BS,N), (744)

where s € I'. Integrating (7.40) over I' and taking into account (7.21), one
obtains

/ ods = /(BS, N)dS =VirB = VA’U,()|IZ(), (745)
r r

where tr is the trace and the formula [.(v,N)ds = 0 was used. Further-
more, one obtains

fik(47r)_1nq/ 540 (8)ds = —ik(4m) " nyvy BV, (7.46)
r

where ¢ = Ao + 2v,N,, one sums up over the repeated indices,
Jr8q0(s)ds = =V vpBhq, Bpq = Bgp is the magnetic polarizability tensor

defined in Chapter 5 as

Vﬂpq:/rsqap(s)dsa (7.47)
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where o), is the solution of the equation
op = Ao, — 2N, (7.48)

Formula (7.39) follows from (7.45), (7.46), and (7.43). In calculating the
integral in (7.46) one can neglect the term (Bs, N) in the right-hand side
of (7.44) because this term is of order O(a), while (v, N) = O(1).

7.3 Scalar Wave Scattering: The Many-Body Problem

1. Consider scattering by r bodies. Let

D=
j

D;, I'=
1 J

T, D;ND;i=0, i#j Q=R\D,
1

) - (7.49)

where () denotes the empty set, R\ D denotes the complement of D in R3,
and I'; is the boundary of D;. Let

h|1“j = hj = hlj + ihgj, hlj >0, hgj <0, |h]| > 0, (750)
o= max aj, (7.51)
d=mind;;, i#j (7.52)

3

! =maxd;;, /E /, 7.53
e |2 (7.53)

where d;; is the distance between D; and D;

Consider the problem (7.1)—(7.3), which looks formally identical in the
cases r =1 and r > 1. As in Section 7.2 we look for a solution of the form
(7.4) and define the scattering amplitude by formula (7.5). The scattering
amplitude can be written as in (7.6), o = (01,...,0,) but an important
difference between cases r = 1 and r > 1 is that if » = 1 then |s| ~ a in
(7.6), while if » > 1 the magnitude |s| can be large.
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Let us denote by s; some point inside D; and rewrite (7.6) for the case
r>1as

fn, k) = (4m)~ ! i/r exp{ —ik(n, s — sj)}aj(s)ds exp{ - zk(n,sj)}

(7.54)
In (7.54) the magnitudes |s — s;| ~a if s € I'; and |s — s;| ~ d;; if s € T,
i # j. The integral equations for o;,1 < j < r, can be obtained by
substituting (7.4) into the boundary condition (7.2). This yields

i A
oj = Aj(k)o; — hiTj(k)oy + Y Ajp(k)oy, — by »_ Tjp(k)or,
! T

g (7.55)
25y ~2ho, 1SjSno } = )
p=1,p#j
where
0 exp(ikrs;,)
Ajpop = /Fp I, 27T7“sjt1 op(tp)dty, (7.56)
exp(ikrs;t,)
ijO'p = /Fp WO‘I) (tp)dtp (757)
Suppose that
d>a. (7.58)

If one neglects the terms A, and T}, for j # p in (7.55) then for o, one
obtains the same equations as for a single body in Section 7.2. Therefore
for hj # 0 the scattering amplitude can be calculated from the formula

_ 1y k(s VPaSi
f(n, k)= ~In ;exp{ ik(n, s])} = hijCj_luoj’ (7.59)

where C} is the capacitance of the jth body, S; is the area of its surface,
up; = uo(sj, k) (see formula (7.29)). If we assume that every small body
is affected by the self-consistent field u in the medium consisting of many
small bodies, then (7.59) takes the form

fou) =~ [exp{ ik }aw)ut )y, (7.60)
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where ¢(y) is the “effective potential” which is defined as

hS
=NY)———m=—-
1) =NW e
Here N(y) is the number of the small bodies (particles) per unit volume
and hS(1 + hSC™') is the average value of h;S;(1 + h;S;C;)~! in a
neighborhood of the point y. The integral in (7.60) is taken over the domain
where N (y) # 0. The self-consistent field u satisfies the equation

u(x, k) = ugp(z, k) f/

which is obtained by taking the limit » — oo in the formula

(7.61)

%‘I(ywy, k)dy, (7.62)

exp(ikle —s;])  h;S;

u(z, k) = ug(z, k) — Z

i k). 7.63
= dnle — sl T hsoTulsink). (7.63)
Equation (7.62) can be written as the Schrédinger equation
[V + k* = q(z)]u(z, k) = 0, (7.64)
exp(iklx|)
o 4| f(n, k) as |a] — oo. (7.65)

2. If the number 7 of the small scatterers is not very large (r ~ 10) then
the scattering amplitude and the scattered field can be found from a linear
system of algebraic equations. The matrix of the system has dominant main
diagonal so that the system is easily solvable by iterations. In order to prove
this statement let us look for the solution of the problem (7.1)—(7.3) (with
= |_|j 1 I'j) of the form

v = Z/ exp(iklz SDO'] (s)ds. (7.66)

47|z — s

In general, in order to find v one derives a system of integral equations for
finding 0;, 1 < j < r. In our case, when ka < 1, the scattering amplitude
depends just on finitely many numbers @);:

f(n, k) 4#2/ exp{—zkns}aJ
(7.67)
_ _Zexp{ —ik(n,55) }Q; + O(ka),

j=1
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where

Q= [ o (7.68)
L
and we assume that @; # 0, 1 < j < r This is the case when h; #
0. Consider, for example, the Dirichlet boundary condition (h; = o)
(acoustically soft particles). Then from (7.66) and (7.2) it follows that

/ exp(ik|x, — S|)0 (s)ds
Tm

47|z, — 8| 7.69)
7.69

exp(ik|z,, — s|)
———————0ids = — k 1<m<r.
’ m; / 47T|33rrb - | 7545 uo(zm’ )’ Sm=r
J,g=1

If ka < 1, then this system can be written with the accuracy O(ka) as

/ _omds = —ug(wm, k)= Y o (iklen - 51) DQJ, 1<m<r
T

Ar|x, — s i Az, — 84
(7.70)
Equation (7.70) can be considered as an equation for the electrostatic charge
distribution o, on the surface I';,, of the perfect conductor charged to the
potential given by the right-hand side of (7.70). Therefore the total charge
onl',, is

Qm = / U’rnds = C’m _UO(xm; k) - Z w@_} )
I

m miggmt  ATlEm = 5l

where C,, is the electrical capacitance of the perfect conductor with bound-
ary I';,. The above system of equations for Q = (Q1, ..., Q,) can be written
as

AQ =, (7.71)

where

exp(ik|zm — sj])

A= mj)s m:5m mT ;.
(a J) Amj JJrC 47T|xm—8j|

, (7.72)

1, m=j,

b'rrb = —CrrLuO (mma k)’ 6Tnj - {0 m # j
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If the particles are not too prolate then C), ~ a. The matrix A will have
dominant main diagonal if

(4m) trad™t <1, (7.73)

where d is defined in (7.52). If condition (7.73) holds then the system (7.71)
can be solved by iterations and the scattering amplitude can be found from
formula (7.67). The scattered field v can be found from the formula

_ Z exp(ik|z — SJ|)Qj (7.74)

Az — s

with the accuracy O(ka). If h # 0 then the scattering amplitude can be
calculated from (7.67) and (7.68), and the linear algebraic system for Q,,
can be obtained from (7.55). To this end let us integrate (7.55) over I';,
yielding

hJ]

Qj=-Q; — QJ + ZdeQp 2h;Sjuo (SJ) (7.75)

p#£j]

Here we have used arguments similar to those given in Section 7.2, subsec-
tion 2, and the following notations:

ds dt 9 exp(ikrse,) exp(ikrs: )
Jj = C = | ds — hy 25
Tst aN 27T7’5tp 27T7"Stp

Equation (7.75) can be written as

AQ = b, (7.76)

- h;J; ~ ~ d;, ~
A)) =dyy =6, < ”)d-, dip =32 = —hiSiug(s;).
(Ajp) = ajp = 0jp irS; ips Gjp = 5 j iSjuo(s;)
(7.77)
The linear system (7.76) can be solved by iterations if

ldjp|, 1<j<m (7.78)
p#j,p=1

If hj =0, 1 <j <r, then Q; = 0 and formula (7.67) for the scattering

amplitude becomes more complicated. This was shown in Section 7.2. If
we consider each of the small bodies as being affected by the self-consistent
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field u, then from (7.67) and (7.39) it follows that

f(n, k) Zexp{ —zk: n s])}{zk:VBé{I)a—np—i-V A u}, (7.79)

where Vj is the volume of the jth body and ﬁl(,z) is its magnetic polarizability
tensor. The same argument leads to the following formula for the self-
consistent field in the medium:

u:uo—i-zw{ kVﬁ %np—i—‘/jAu(sj,k)}, (7.80)
q

where s; is the radius vector of the jth body.
If one passes to the limit as 7 — oo in (7.71) then the integro-differential
equation for the field u takes the form

exp(ik|z —y

D <z‘kqu( )=—

du xp — yp yp

u(x, k) = ug(x, k) +/ pr—
q

b(y)AU> dy,

(7.81)
where one must sum over the repeating indices, the integral is taken over
the domain where b(y) # 0, b(y) is the average volume of the bodies near
the point y, and By, (y) is the average magnetic polarizability tensor. That
is, if K3 (y) is the ball of radius h centered at y, then

SV, ZVB(])
=B G P T )

dr|z — y|

(7.82)

where |Kj(y)| is the volume of K (y) and ) denotes the sum over the
bodies which are located in the ball K}, (y). The vector (x, —y,)/|z —y| in
formula (7.81) replaces n,, in formula (7.80).

7.4 Electromagnetic Wave Scattering

1. Let us consider the scattering by a single homogeneous body D with
characteristic dimension a. Let €, u, o be its dielectric permeability, mag-
netic permeability, and conductivity, €g, o, 09 = 0 be the corresponding
parameters of the exterior medium, ¢’ = ¢ + iocw™!, w be the frequency of
the initial field, Ao be its wavelength and ko = 275" Let A = Ao(|e'p|)~1/2
be the wavelength in the body, and § = (25 o3 )1/2 be the depth of the skin
layer, where we assume that ¢ << 0. We consider wave scattering under
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the following assumptions, which will be discussed separately:

gl >1, d>a, kia<1, (7.83)
gl >1, d<a, koa<1, (7.84)
(' = =o)eg™| + | (1 = o) g < 1. (7.85)

Assumption (7.83) corresponds to a small dielectric body. Assumption
(7.84) corresponds to a small well-conducting body. Assumption (7.85)
corresponds to the case when the body does not differ much from the exte-
rior medium. This assumption does not require the body to be small. Our
aim is to derive explicit analytical approximate formulas for the scattering
amplitude and for the scattering matrix.

2. The basic equations are

curl B = iwuH, curlH = —iwe'E in D, (7.86)

curl B = iwuoH, curl H = —iwegE + jo in D', (7.87)

where D’ is the exterior domain with respect to D. The boundary condi-
tions are

N x E and pH - N are continuous when crossing T, (7.88)

where I' is the boundary of D and N is the outward pointing unit normal
at the boundary.
If 0 = oo then

NxE=0onT, (7.88")

This case can occur only under assumption (7.84). In (7.87) jo is the initial
current source. Let

. exp(iko|r —
A():/G(%y)ﬁ)dy, G= M7 kg = w?eoho, /:/
dr|z — y R3
(

7.89)
and

Ey = (curl curl Ag — jo), Hy = curl Ay, (7.90)

72‘005()

The total field can be found from the formulas

F=FEy+F,, H=Hy+ H; (791)
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where
Fy = — curlcurl A — curl F,
e (7.92)
Hi = — curlcurl F' + curl A,
—iwito
and
A:/G(z,s)N x Hyds, F = f/G(z,s)N x Eyds. (7.93)
r r

Remark 7.1  Let us assume (7.84). If one tries to calculate the scattering
using the approximations N X Ey = —NxFEg onT and NxHy =0 on T, this
leads to wrong results (for example one can take the spherical scatterer D
and use the known explicit solution to check the above statement). Therefore
the above approrimations, which are used in geometrical optics, are not valid
for our low-frequency problem.

3. Let n = z|z|™1, |z| = r and

f=fenk)= lim |z| exp ( — ik|z]) E. (7.94)

|z|—o0,z|x| 1=
Let us prove, assuming (7.84), that

kg

 dweg

2 1/2
[, [Pyrl] + 32 <‘;—;’) [M,n], (7.95)

where P and M are the electric and magnetic dipole moments induced on
the body by the initial field and [A, B] = A x B is the vector product. Let
us consider the vector potential in the far-field region and keep the first two
terms of its expansion in powers of ka:

A

/D J ()G, y)dy

exp(iko|x|)

_ xplikolz]) /D dyj(y) exp { — iko(n,y)}

4|

= o] [ ity ito [ it +--- |

_ exp(iko|x|)

(7.96)

47T|x| {7ZCUP — ik()M X n},
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where
1 .
P=/ yp(y)dy, M = —/ ly, jldy, (7.97)
D 2 D

and p = (iw) "' divj. Indeed, using the condition (j, N) = 0 on I, one gets:

—iwP = —iw/ yp(y)dy = —/ ydivjdy
D D

=—/<j,N>yds+/jdy=/jdy.
T D D

/ (n,y)jdy = / ([0 9] X 7+ (. y) + y(n, ) dy = M xn,  (7.99)
D D

(7.98)

Furthermore,

2

where we have used the relations:

[ G0nw + vy + [ wndividy= [ 4G 3)mds =0,
D D r

(7.100)
and

/ y(n,y)divjdy = iw/ y(n,y)pdy =~ 0.
D D

In the far-field region, j = 0 and E; = (—iweg) ! curlcurl A. Therefore
from (7.96) and (7.94) it follows that

f= —(47riw50)_1ik:0n X {ikon x { —iwP —ikoM x n}}

7.101)

k2 ]{32 1/2 (

=% nx[Pn]+-2 Ho M x n.
4meg 4m \ €9

If the domain D shrinks to a surface S, then (7.101) still holds with

1
P= / so(s)ds, M = —/ s X jds. (7.102)
s 2 /s

Algorithms and formulas for calculating P and M are given in Chapter 5.

Under the assumption (7.83) the magnetic dipole radiation can be ne-
glected if u = pp because the eddy currents are negligible if § > a. Under
the assumption (7.84) the magnetic dipole radiation is of the order of the
electric dipole radiation even in the case p = pyg.
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In general, the magnetic polarizability vector can be calculated from the

formula
M; = Bi;VpoH;, (7.103)
where
Bij = aig(=1) + i (), = Z;ZE (7.104)
and a;;(7) is defined in Section 5.1. We denote
i (—1) == Byj. (7.105)

If = po then ayj(y,) = 0.

Remark 7.2 Suppose that D is a metallic body. In this case the current
can be calculated by the formula: j = N x H, where H is the magnetic field
on the surface of the body. Let H' denote the magnetic field on the surface
I' of the ideal magnetic insulator D, i.e., a body with p = 0. This field is
the value on T of the solution of the problem

curl H=0, divH=0inD', N-H=0onT, H(c)=H" (7.106)

where HY is a given constant field. In the quasistatic problem H? is the ini-
tial field at the point where the small body is placed. If § < a then neither
magnetic nor electric field can penetrate into the body and therefore the
body behaves like a perfect magnetic insulator in the initial homogeneous
magnetic field HY. Under the assumption (7.83) a good approximation for
N x H is N x H'. This approximation leads to the correct value of M.
On the other hand, this approximation leads to a wrong value of P. Let us
show this in the case when D is a ball of radius a. The magnetic field H*!
in this case is known explicitly:

3 HO)
ARy PLICIE b ST 7.107
2P P (100
If T is a sphere of radius a and s is a point on I', then N x s = 0. Therefore
N x H' = % [N, H], (7.108)

and

fin:/jdy:/Nledyzg/ [N, H]ds = 0,
T I 2 T
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which is wrong. Thus one can calculate M using the approximation
j=NxH' (7.109)

if the body is metallic, but this approximation cannot be used for, calcu-
lating P.

4. Let us calculate f under the assumption (7.85). Equations (7.86)
and (7.87) can be written as

curl B = iwpoH + iw(p — po)nH, (7.110)
curl H = —iweoE + jo — iw(e' —e0)nE (7.111)
where
1, eD,
n= ’ (7.112)
0, z=¢D.
Let us set
Je = —iw(e' —e0)nE, jm = —iw(u — po)nH, (7.113)

A:/G(x,y)jedy, F:/G(:v,y)jmdy, /::/D. (7.114)

Then the vectors Fy, Hy defined in formula (7.91) can be found from the
formulas

E; = f(iwso)fl(curlcurlA — je) — curl F, (7.115)

Hy = —(iwpo) " (curleurl F — j,,) 4 curl A, (7.116)

From (7.113)—(7.116) and (7.91) one gets

/

E(z) = Eo(z) + £ 0 curlcurl/G(Jc,y)E dy
; i)s (7.117)
- 0 nkE + iw(u — Mo) curl/G(z, y)H dy,
0
H = Hoy(z) + £~ Ho curlcurl/ G(xz,y)H dy
Ko D (7.118)

- %nH —iw(e’ =€) curl/G(a:,y)E dy.
0
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The system (7.117)-(7.118) can be solved by iterations if

(‘M—Mo
Ho

where a is the characteristic dimension of the domain D, say, half of its
diameter. Indeed, under the assumption (7.119) the norm in L?(D) of
the operator of system (7.117)-(7.118) is less than 1. Let us verify this
statement. We have

g — €&

+

. ) (14 kja®) < 1, (7.119)
0

!’ !’
—nEH <|E=2) ). (7.120)
€0
Here and below || - || denotes the L?(D) norm and ¢ denotes various con-
stants. Furthermore,
curl/G(Jc,y)E dyH < c(1+ koa) | E|, (7.121)
curlcurl/G(z, y)E dyH <c(1+kja®)|E]. (7.122)

Inequalities (7.121) and (7.122) can be proved as follows. Note that

. kglz —y| 3 2
4G (z,y) = P +iko — = 5— + O(kglz — y|?), (7.123)
if ko|lz — y| < 1. Hence
2 2 1 k(Q)
4rD*G =D +0 . (7.124)
|z =yl |z -yl

We have

=

_||E||(//|d‘””dj|2>12||E||0(a2), (7.125)

p. [ 4] <1E10(0),

and

< c|E|, (7.126)

Edy H
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where WP (D) = Wpe(D) are the Sobolev spaces ([29]). Inequality (7.126)
is known in the theory of elliptic boundary-value problems (see, e.g., [44]).
From the above estimates it follows that the norm of the oprator in (7.117)-
(7.118) is less than one.

Let Af := [, f(y)lx —y|~°dy, D € R™. The operator A : LP(D) —
LY(D) is bounded provided that a = n(1 —m),0 < m < 1,0 < ¢ <
p~t — ¢! < m. Moreover, I[A|lLr(Dy—>La(D) < ¢|D|™=%, where |D| is the
measure (volume) of D, ¢ = c(m,d,n) = const > 0. (see, e.g.,[29]).

Inequality (7.119) holds even if the body is large (kpa > 1) provided
that the quantity

e —¢o M= Ho

Ho

"

€o

is sufficiently small.
Let us set

g(n) = /eXp{ —iko(n,y) }dy, (7.127)

iterate once system (7.117)-(7.118) and calculate the scattering amplitude.
This yields

e —¢ ;
== S [ fesp (= bon-1) Eotu)dy
. (7.128)
_ %—uo)n X /exp ( — ikon - y)HOdy-
T

If Fy and Hj are the values of the electromagnetic field at the point where
the small body D is situated, then an approximate formula for f can be
written as

e —e kow(p —
f= (Rkﬁnx {ano} %ﬂnxﬁ))g(n).

If D is a ball of radius a, then

3sin (koa) — koa cos koa

n) = 4na 7.129
o) (s (7.120)
If D is a cylinder with radius a and length 2L, then
in(koL cos 6 koasin@
g(n) = 2Lsm( oL cos®) Ji(koasinb) (7.130)

koL cos0 koasin 6



112 Wave Scattering by Small Bodies

where 6 is the angle between the axis of the cylinder and the unit vector n,
and Jy(x) is the Bessel function.

5. Many-body electromagnetic wave scattering can be developed along
the lines of Section 7.3.

6. Let us derive the following formula for the scattering matrix for the

electromagnetic wave scattering by a single body under the assumption
(7.84):

g 2V < HoB11 + aoacosf — azasind g cos — agy sinf) — poPio
4\ a2 — fioBa1 cos O + p10B31 sin 6 aiq + poBe cosd — poBzsing )’
(7.131)
where 6 is the angle of scattering and f3;; and «;; are the polarizability
tensors defined in Chapter 5. In Chapter 5 approximate analytical formulas
for calculating these tensors are given.

If assumption (7.83) holds then one can neglect terms involving f;; in
(7.131). Let us prove (7.131). Let the origin be inside D, the initial field be
a plane wave propagating in the positive direction es of the z-axis, n be a
unit vector, and 6 be the angle between es and n (the angle of scattering).
Let Ey, E5 be the projections of the initial electric field onto the axes OX
and OY, and f;, f2 be the projections of the scattered electric field onto
the axes OX*', OY'!. The axis OZ! is assumed to be in the direction of n.
The plane (0OZ,0Y) coincides with the plane (OZ!,OY!) and is called the
plane of scattering.

The scattering matrix is defined by the formula fp = SE:

(F)=Gs) () (7.132)

Formula(7.131) gives this matrix explicitly. All the elements of the smatrix
are calculated by the same method. Let us derive in detail the formula for
Sz. Let ej(e’) be the unit vectors of the above coordinate systems. Then
(eh,e1) =0, (€5, e2) = cosB, (e5,n) = —sinb, fo = SaEs + S3E;. On the
other hand,

2

k k2 1/2
fo= (7:65) = o (I Pnll ) + 4 (22) (00,0,
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We have
([H[P, TLH ’ 6/2) = (P - TL(P, n)v 6/2) = (Pﬂ 6/2) = 5()V04ijEj (eia 6/2)

= 50V{ (OzglEl + OéQQEQ) cosf — (Oé31E1 + OzggEQ) Sine},

(7.133)
([M,n],e5) = ([n,ey], M) = —(e1, M) = —poV (BH, e1)
o\ /2
= —poV (Bi1Hy + Pr2Ha) = —poV o (= BriE2 + Bi2Er),
(7.134)
where the formulas
e\ 1/2 e\ 1/2
H, = —(—0) E,, H,= (—0) B (7.135)
Ho o
were used. From (7.133) and (7.134) we find
k2V .
Sy = e (Oégg cos @ — agpsinf + MOBH) (7.136)
T

as the coefficient of F5. Formulas for the other elements of the S-matrix
can be obtained similarly.

Knowing the S-matrix for a single small body, one can find the re-
fraction index tensor n;; = &;; + 2rNk~2S;;(0) of the rarefied medium
consisting of many small particles, the coefficient of absorption k =
No = 4rNk~'Im S(0) and the crosssection o = 2wk~ 1trIm S(0) for the
anisotropic scattering. Here N is the number of the particles per unit vol-
ume, tr denotes the trace of a matrix, and Im denotes the imaginary part
of a complex number.

7.5 Radiation from Small Apertures and the Skin Effect
for Thin Wires

1. Let F be an aperture in an infinite conducting plane, « be its coefficient
of electrical polarizability, 87,
polarizability, the x3-axis be perpendicular to the plane and e;,1 < j < 3,
be the coordinate unit vectors. We assume that the electric field in the

halfspace z3 < 0 is E{es and in the halfspace x3 > 0 the electrostatic

1 < 4,7 < r, be its tensor of magnetic
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potential ¢ ~ (P,z)/(4meo|z|?), E = —V¢. The electric dipole moment P
can be calculated from the formula.

P = OL()€()E6€3. (7137)

The magnetic field in the half-space x5 < 0 is H) = H{,e1 + Hy,eo
and its asymptotic behavior in the half-space xz3 > 0 is given by ¥ ~
(M, x)/(47uo|x|?), where 1) is the magnetostatic potential, M is is the mag-
netic dipole moment, H = —V1) for x3 > 0, and

M; = B poHy;- (7.138)

Let 3 and a;; denote the magnetic polarizability coefficient and the elec-
tric polarizability tensor of the thin magnetic film and the thin metallic
screen with the shape of F'. The following theorem is a duality principle in
electrostatics.

Theorem 7.1  The following formulas hold

ag=—PB/2, BY=—di;/2. (7.139)
Remark 7.3 Formulas for calculating the values ofﬁ~ and &y; are given
in Chapter 5. If one knows these values, one can find oy and ﬂ?j from
(7.139) and P and M from (7.137) and (7.138). Knowing P and M, one
can calculate the radiation from the aperture F from (4.13).

Proof. [Proof of Theorem 7.1] Let us formulate two principles:

(A) Let there be an initial electrostatic field Eé2) = Epes in the half-space
3 < 0 bounded by the conducting plane x3 = 0. If we cut an aperture
F in the plane x5 = 0 then the field E(2) in the half-space 23 > 0 can
be calculated from the formula E® = HO — HY where H® is the
magnetic field which is present when a magnetic plate F' with g = 0 is
placed in the initial field Ho(l) = —%Eém = —%EQ€3.

(B) Let there be a magnetostatic field HO(Q) parallel to the plane z3 = 0
in the half-space x3 < 0 bounded by the plane x3 = 0 with y = 0. If
we cut an aperture F in the plane then the field H®) in the half-space
23 > 0 can be calculated from the formula H®? = —(E®M — E{V),
where E( is the electric field which is present when the metallic plate

I is placed in the initial field E(()l) = %HéQ).
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Formula (7.139) follows immediately from these principles and from the
definition of ag, S, Bioj, &;. Both principles can be proved similarly. We
give the proof of principle (A).

Let S = R?\ F. We have E(®) = —vu, where

¢7 T3 > 07
u =
—Eors + ¢, x3 <0,

A ¢ =0 outside S, ¢|s = 0, ¢(00) = 0, and u, Ju/dz3 are continuous when
crossing F, i.e., (0¢/0x3)y = —FEp + (0¢/0x3)—. By symmetry we have
o(&,x3) = &(Z,—x3), & := (x1,22). Hence (0¢/0x3)- = —(0¢/0x3)+,
(0¢/0x3)1 = —3Ey. Here (0¢/0x3) are the limiting values of d¢/dz3 on
F for 3 — +0. So A¢ =0 for z3 > 0, ¢|s = 0, ¢(c0) =0, (0¢/0x3)+ =
—1Ey, and E® = —v¢ for z3 > 0. The field HY — H{" = —v4 for
x3 > 0, where A ¢ = 0, ¥(00) = 0, and by symmetry (&, —x3) = —(&,
x3). The magnetostatic potential v = %ono + 1) satisfies the condition
(Ov/0x3)|r = 0, where N is the outward pointing normal to F. Hence
(O /0xs)y = —%EO. As 1) is odd with respect to x3, we conclude that
Y]zs—0 = 0, ¥|s = 0. Hence ¢, are the solutions of the same boundary
value problem in the half-space x3 > 0. The solution of this problem is
unique. Hence ¢ = 9 for z3 > 0 . This means that £ = H(1) — Ho(l) for
xg > 0. Principle (A) is proved. O

Example 7.1 For disk with radius ¢ we have § = —(8/3)a® a =
(16/3)a’dij, 1 < i,j <2, ap = (4/3)a®, By = —(8/3)a’dij, 1 <i,j < 2, in
ST units.

2. In Chapter 5 some two-sided variational estimates of B and d;; were
given. In the special case in which F' is a plane aperture one can give
another variational estimate of 8. Actually we will derive the estimate for

g = 7B/2
Let S = R%\ F, be the complement of F in the plane, and let

g(s):/ rodt, a:(27r)_1/ / ry'dsdt. (7.140)
F FJF

Then the following variational principle holds:

(fs g(t)u(t)dt)?
21 [ [ —“(j)i(t) dsdt’

(7.141)

a — ap = max
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where the admissible functions should satisfy the edge condition (7.17) and
ensure convergence of the integrals in (7.141). Principle (7.141) allows one
to obtain some upper bounds for ag.

Let us derive (7.141). Let E} = Egpez be the electric field in the half
space x3 < 0 and the aperture F' is cut in the conducting plane x3 = 0.
Then the potential ¢ in the half space 3 > 0 can be written as

72/ o(t) %dt x3 > 0, (7.142)
where
Go(x,y) = (47Tr¢y)_1, (7.143)
and
= —2/ o(t) —dt — Epxs, 3 <0. (7.144)

The potential ¢(z) and its derivatives are continuous when crossing the
aperture ' and

ols = 0. (7.145)
Let |z| — oo, z3 > 0. Then

250 fF dt$3 B (P,a:)

7.146
o) ~ deg|z)?  Adme|x3 ( )
where
P = OL()€()E()€3, (7147)
and
2
Ey
Let o denote the charge density on S.
0
g = 760—(725 (7149)
8333 £3=40

P(x) = / B (rb(t)mgig’ﬂ — Go(x,t)aa—i>dt. (7.150)
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From (7.145), (7.149), and (7.150) it follows that

oG 1
$a) = | m—dt+— [ Go(a,t)odt - /GO (. t)5—dt.  (7.151)
85E3 €0 Js
Let us show that
99 Ey
o - 7.152
This follows from (7.142), (7.144), and the condition
0 0
(—¢) = (—¢) on F. (7.153)
O3 z3=+0 O3 xr3=—0

Let us take x € S in (7.151) and take into account (7.152). This yields

t)dt E
/ olt)dt __eofo o ieg (7.154)
S

Tst 2

where g(s) is defined in (7.140). Let + — s € F', 3 > 0 in (7.151). Then

¢(S) 1 / E()
= — 4 — t)odt + — Nl
QS(S) 2 + o SGO(S’ )U + 87‘('9(5), (7 55)
which is equivalent to the equation
1 O'(t)dt E()
= — — 7.156
o(s) = o [ 0% L2000 (7.156)
From (7.156) and (7.148) it follows that
1
= t)g(t)dt 7.157
o0 = —== [ ottt +o. (7157)

where « is defined in (7.140). This can be written as

1
7T50E0

a—ay=— / o(t)g(t)dt. (7.158)
s

From (7.154), (7.158), and Theorem 3.2 formula (7.141) follows. In the

derivation of (7.141) we used some ideas from [25].

3. Consider the skin effect in thin wires. Let the axis of the wire be
directed along the x3-axis I' be the boundary of the cross section D of the
wire, D’ be the plane domain extrior to D, a be the diameter of I, ka < 1.
One can consider also wires the axes of which are curves with radius of
curvature R > a. We assume that § < a where ¢ is the skin depth defined
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in Section 7.4. Let I' be the length of I', J be the total current in the wire,
and

i(t)dt (7.159)

8N Tst
where Ny is the unit outward pointing normal to I' at the point s.
Proposition 7.1  Under the above assumptions the current density on
the surface I' can be found by the iterative process
. . . J . .
Jnt1 = =Ajn, Jo=7, J= lim ju(t). (7.160)
n—oo

Proof. 1t is sufficient to note that under the above assumptions the prob-
lem about the current distribution on I' can be formulated as follows, Let
v(x1, x2)es be the vector potential of the static magnetic field corresponding
to the current J. Then

0? 0?
8—;2) + 8—:::12] =0in D', o|p = const, (7.161)
1 2
1
~ ot In SasT= (23 + 932)1/2 — 00, (7.162)
1 ov , / .
B 0, J= [ j@t. 7.163
el =i, 9= [ (7.163)

If we look for the solution of the problem (7.161)—(7.163) of the form

o(z) = £° /F In—j(#)dt, (7.164)

Txt

then from (7.163) it follows that

or
j=—Aj. (7.165)

Proposition 7.1 follows now from Theorem 6.2. 0
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7.6 An Inverse Problem of Radiation Theory

1. Suppose that we are interested in measuring the electromagnetic field
in the aperture of the mirror antenna. A possible method for making such
measurements is as follows. Let us assume that the wavelength range is
A ~ 3 cm and let us place at some point x( in the aperture of the antenna
a small probe of dimension a, ka < 1, k = 2rA~!. Let Ey, Hy denote the
electromagnetic field at the point x¢p and F, H denote the field scattered
by the probe in the far-field zone. Note that for a small probe the far-field
zone, which is defined by the condition ka?r~! < 1, is, in fact, close to
the probe. For example, if A = 3cm, a = 0.3 cm, then ka? = 0.19 cm.
Therefore if r = 2 ¢cm, then ka?r~! ~ 0.1 < 1. Let us assume for simplicity
that the probe material is such that the magnetic dipole radiation from the
probe is negligible. In this case the electric field scattered by the probe in
the direction n can be calculated from the formula (7.95) as

k2
E=— P 1
oo (o127, (7.166)
where
5/760
P, = o FEoy;, = . 1
aij(V)eoVEoj, 7= —— (7.167)

Here V is the volume of the probe, ¢ is its dielectric constant, a;;(7y) is
its electric polarizability tensor, k is the wave number of the field in the
aperture, Fj is the electric field at the point g where the probe was placed,
n is the unit vector, and one sums up over the repeated indices. Let nq
and ng be two non-collinear unit vectors, and E;, j = 1.2, be the scattered
fields corresponding to n;. We will solve the following

Problem 7.1 Find Ey, Hy from the measured EF;, j = 1.2.

We assume that the tensor a;;(7) is known. In Chapter 5 some explicit an-
alytical approximate formulas for «;;(7y) are given. From (7.166) it follows
that

k’2

Ej:b{anj(P,nj)}, b= i=12 (7.168)

Therefore

bP = E1 -+ bnl(P, nl) = E2 + bng(P, TLQ). (7169)
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Let us choose for simplicity n; perpendicular to ne. Then it follows from
(7.169) that

b(P, ’ng) = (El, ’ng), (7170)
b(P,TLl) = (Eg,nl). (7171)

Therefore
P=b""E1+b 'ni(Ezn1) = b 'Ey+ b 'y (Er,na). (7.172)

Thus, one can find vector P from the knowledge of F; and FE5. If P is
known then Ej can be found from the linear system

aij(y)eoVEy =P, 1<i<3. (7.173)

The matrix of this system is positive definite because the tensor a;;
has this property (see Chapter 5. This follows also from the fact that
%aijEOVEOjEOi is the energy of the dipole P in the field Ey). Therefore
the system (7.173) can be uniquely solved for Ey;, 1 < j < 3. We proved
that the above Problem has a unique solution and gave a simple algorithm
for the solution of this problem. The key point in the above argument is
the fact that the matrix a;(7) is known explicitly (from Chapter 5).

2. In applications the problem of finding the distribution of particles
according to their sizes is often of interest. Suppose that there is a medium
consisting of many particles and the condition (7.85) is satisfied. We assume
that the medium is rarefied, i.e., d > a, where a is the characteristic
dimension of the particles. Let us assume for simplicity that the particles
are spherical. Then the scattering amplitude for a single particle can be
calculated from formulas (7.128) and (7.129). The scattering amplitude is
the function f(n,k,r) of the radius r of the particle. Suppose that ¢(r) is
the density of the distribution of the particles according to their sizes, so
that ¢(r)dr is the number of the particles per unit volume with the radius
in the interval (r,r + dr). Then the total scattered field in the direction n
can be calculated from the formula

F(n,k) = o(r)f(n, k,r)dr. (7.174)
0
Let us assume that we can measure F'(n, k) for a fixed & and all directions

n. Then (7.174) can be considered as an integral equation of the first kind
for an unknown function ¢(r).
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3. Suppose that we can measure the electric field scattered by a small
particle (ka < 1) of an unknown shape. The initial field we denote by Ej;,
the scattered field by f;. Let us assume that the magnetic dipole radiation
is negligible. The problem is to find the shape of the small particle.

First let us note that every small particle scatters electromagnetic wave
like some ellipsoid. Indeed, the main term in the scattered field is the dipole
scattering. We have seen above that the knowledge of the scattered field al-
lows one to find the dipole moment P and that equation (7.167) holds. This
equation allows one to find the tensor «;;(y) corresponding to the particle.
This tensor is determined if one knows its diagonal form. Let oy, as, a3 be
the eigenvalues of the tensor c;(7y). Then an ellipsoid with the semiaxes
proportional to «; scatters as the above body. Therefore one can identify
the shape of the small scatterer by giving the three numbers (aq, as, as).
These numbers are the eigenvalues of the tensor «;;(vy) which can be calcu-
lated from the known initial field Fy; and the measured scattered field f;.
For example, one can take Ey; = 0;;. Then P; = ay;(v)Veg. We assume
that the particle is homogeneous and its dielectric constant € is known, so
that v in (7.167) is known. For an ellipsoid the polarizability tensor in the
diagonal form is a;; = «;d;;, where a; = (¢’ — g9)(eo + (¢ — go)nt) 1,
where ¢’ is the dielectric constant of the ellipsoid and nl/) are the depo-
larization coefficients. These coefficients are calculated explicitly with the
help of the elliptic integrals, and they are tabulated in [58].
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Chapter 8

Fredholm Alternative and a
Characterization of Fredholm
Operators

8.1 Fredholm Alternative and a Characterization of the
Fredholm Operators

Let A be a linear bounded operator in a Hilbert space H, N(A) and R(A) its
null-space and range, and A* its adjoint. The operator A is called Fredholm
with index zero iff dim N(A) = dim N(A4*) :=n < oo and R(A) and R(A*)
are closed subspaces of H. Only the Fredholm operators with index zero
are considered in this Chapter and are called Fredholm operators.

We give a simple and short proof of the following known (cf. [44]) result:
a linear bounded operator A is Fredholm if and only if A = B 4+ F, where
B is an isomorphism and F' is a finite-rank operator, that is an operator
F with dim R(F) < oo, its rank is dim R(F). We call a linear bounded
operator B on H an isomorphism if it is a bicontinuous injection of H onto
H, that is, B~! is defined on all of H and is bounded. Our proof of the
Fredholm alternative consists of a reduction to a finite-dimensional linear
algebraic system which is equivalent to the equation Au = f. For this linear
algebraic system in a finite-dimensional space the Fredholm alternative is
an elementary fact, easily proved and well-known. In Section 8.2 we give a
characterization of unbounded Fredholm operators. This result appears to
be new. In Section 8.3 the Fredholm alternative is established for operator-
functions which depend on a parameter meromorphically, and the Laurent
coefficients of their principal parts are finite-rank operators.

This chapter is based on the papers [88], [81] and [136].
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8.1.1 Introduction

We prove the Fredholm alternative and give a characterization of the class of
Fredholm operators by a reduction of the operator equation with a Fredholm
operator to a linear algebraic system in a finite dimensional space.

The Fredholm alternative is a classical result whose proof for linear
equations of the form (I + T)u = f, where T is a compact operator in a
Banach space, can be found in most texts on functional analysis, of which
we mention just [44]. A characterization of the set of Fredholm operators
is given in [44], but it is missing in most texts on functional analysis. The
proofs in [44] follow the classical Riesz argument used in the Riesz-Fredholm
theory. Though beautiful, this theory is not very simple.

Our aim is to give a short and simple proof of the Fredholm alternative
and of a characterization of the class of Fredholm operators. We give the
argument for the case of Hilbert space, but the proof can be easily adjusted
to the case of Banach space.

The idea is to reduce the problem to the one for linear algebraic systems
in finite-dimensional case, for which the Fredholm alternative is a simple
known result: in a finite-dimensional space RY property (8.4) in the Defi-
nition 8.1 of Fredholm operators is a consequence of the closedness of any
finite-dimensional linear subspace, since R(A) is such a subspace in RV,
while property (8.18) is a consequence of the simple formulas r(A) = r(A*)
and n(A) = N — r(A), valid for matrices, where r(A) is the rank of A and
n(A) is the dimension of the null-space of A.

If {e;j}1<j<n, is an orthonormal basis of R(F), then Fu =

2?21 (Fu,ej)ej, so

Fu=>(u,F*e;)e;, (8.1)
j=1
and

Fruy =
J

(u,ej)F*ej, (8.2)
1

n

where (u,v) is the inner product in H.

Definition 8.1  An operator A is called Fredholm if and only if

dim N(A) =dim N(4") :=n < oo, (8.3)
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and

R(A) = R(A), R(A") = R(A*), (8.4)
where the overline stands for the closure.

Recall that

H=TR(A) & N(A*), H=R(A")®N(A), (8.5)

for any linear densely-defined (i.e., having a domain of definition dense in
H) operator A, not necessarily bounded. For a Fredholm operator A one
has:

H=R(A) & N(A%), H=R(A")® N(A). (8.6)

Consider the equations:

Au = f, (8.7)
Aug =0, (8.8)
A*v =g, (8.9)
A*v = 0. (8.10)

Let us formulate the Fredholm alternative:

Theorem 8.1 If B is an isomorphism and F is a finite-rank operator,
then A = B+ F is Fredholm.
For any Fredholm operator A the following (Fredholm) alternative holds:

(1) either (8.8) has only the trivial solution ug = 0, and then (8.10) has
only the trivial solution, and equations (8.7) and (8.9) are uniquely
solvable for any right-hand sides [ and g,
or

(2) (8.8) has exactly n > 0 linearly independent solutions {¢;},1 < j <
n, and then (8.10) has also exactly n linearly independent solutions
{¥;},1 < j < mn, equations (8.7) and (8.9) are solvable if and only if
(f,1;) =0,1<j<n, and, respectively, (g,¢;) =0, 1< j <n. If they
are solvable, their solutions are not unique and their general solutions
are, respectively: u = up + Y 5_) a;¢;, and v = v, + 37 bjth;, where
aj and bj are arbitrary constants, and u, and v, are some particular
solutions to (8.7) and (8.9), respectively.
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Let us give a characterization of the class of Fredholm operators, that
is, a necessary and sufficient condition for A to be Fredholm.

Theorem 8.2 A linear bounded operator A is Fredholm if and only if
A =B+ F, where B is an isomorphism and F has finite rank.

We prove these theorems in the next section.

8.1.2 Proofs
Let us first prove Theorem 8.2.

Proof of Theorem 8.2. From the proof of Theorem 8.1 that follows,
we see that if A = B 4+ F, where B is an isomorphism and F' has finite
rank, then A is Fredholm. To prove the converse, choose some orthonormal
bases {¢;}1<j<n and {¢;}i<j<n, in N(A) and N(A*), respectively, using
assumption (8.3). Define

n

Bu := AufZ(u,qﬁj)l/)j = Au — Fu. (8.11)

j=1

Clearly F' has finite rank, and A = B + F. Let us prove that B is an
isomorphism. If this is done, then Theorem 8.2 is proved.

We need to prove that N(B) = {0} and R(B) = H. It is known
(Banach’s theorem), that if B is a linear bounded injection and R(B) = H,
then B~! is a bounded operator, so B is an isomorphism because B is
bounded.

Suppose Bu = 0. Then Au = 0 (so that v € N(A4)), and Fu = 0
(because, according to (8.6), Au is orthogonal to F'u). Since {9;},1 < j <
n, is a linearly independent system, the equation F'u = 0 implies (u, ¢;) = 0
for all 1 < j < n, that is, u is orthogonal to N(A). If u € N(A) and at the
same time it is orthogonal to N(A), then u = 0. So, N(B) = {0}.

Let us now prove that R(B) = H:

Take an arbitrary f € H and, using (8.6), represent it as f = f1 + fa,
where f1 € R(A) and fo € N(A*) are orthogonal. Thus there is a u, €
H and some constants ¢; such that f = Au, + >.7 ¢;;. We choose uy,
orthogonal to N(A). This is clearly possible.

We claim that Bu = f, where u := u, — Y | ¢j¢;. Indeed, us-
ing the orthonormality of the system ¢;, 1 < j < n, one gets Bu =
Aup + 327 ¢ = .

Thus we have proved that R(B) = H. O
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We now prove Theorem 8.1.

Proof of Theorem 8.1. 1If A is Fredholm, then the statements (1) and
(2) of Theorem 8.1 are equivalent to (8.3) and (8.4), since (8.6) follows from
(8.4).

Let us prove that if A = B + F, where B is an isomorphism and F
has finite rank, then A is Fredholm. Both properties (8.3) and (8.4) are
known for operators in finite-dimensional spaces. Therefore to prove that
A is Fredholm it is sufficient to prove that equations (8.7) and (8.9) are
equivalent to linear algebraic systems in a finite-dimensional space.

Let us prove this equivalence. We start with equation (8.7), denote
Bu := w, and get an equation

w+Tw=f, (8.12)

that is equivalent to (8.7). Here, T := FB~!, is a finite-rank operator
that has the same rank n as F because B is an isomorphism. Equation
(8.11) is equivalent to (8.7): each solution to (8.7) is in one-to-one corre-
spondence with a solution of (8.12) since B is an isomorphism. In par-
ticular, the dimensions of the null-spaces N(A) and N(I + T) are equal,
R(A) = R(I+T),and R(I+T) is closed. The last claim is a consequence of
the Fredholm alternative for finite-dimensional linear equations, but we give
an independent proof of the closedness of R(A) at the end of the Section.

Since T is a finite-rank operator, the dimension of N(I + T') is finite
and is not greater than the rank of T'. Indeed, if u = —Tw and T has finite
rank n, then Tu = Z?Zl(Tu,ej)ej, where {e;}i<j<n, is an orthonormal
basis of R(T), and u = — Z?Zl(u, T*ej)ej, so that u belongs to a subspace
of dimension n = r(T).

Since A and A* enter symmetrically in the statement of Theorem 8.1,
it is sufficient to prove (8.3) and (8.4) for A and check that the dimensions
of N(A) and N(A*) are equal.

To prove (8.3) and (8.4), let us reduce (8.9) to an equivalent equation
of the form

v+T"v =h, (8.13)

where T := B*~'F*, is the adjoint to T, and

h:= B*1g. (8.14)
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Since B is an isomorphism, (B~1)* = (B*)~!. Applying B*~! to equation
(8.9), one gets an equivalent equation (8.13) and T* is a finite-rank operator
of the same rank n as 7'

The last claim is easy to prove: if {e;}i<j<n is a basis in R(T'), then
Tu =37 (Tu,ej)ej, and T u = 37, (u,e;)T*ej, so r(T*) < r(T). By
symmetry one has r(T) < r(T*), so r(T) = r(T*), and the claim is proved.

Writing explicitly the linear algebraic systems, equivalent to the equa-
tions (8.12) and (8.13), one sees that the matrices of these systems are
adjoint. The system equivalent to equation (8.12) is:

ci + Ztijcj = fi; (815)
1

where
tij = (ej,T*ez'), Cj = (W,T*‘fj)a fi=(f,T"e),

and the one equivalent to (8.13) is:
&+ th& = hi, (8.16)
1

where

ti; = (T"ej,ei), & = (v,¢ej), hi = (h,e;),
and t; is the matrix adjoint to ¢;;. For linear algebraic systems (8.15) and
(8.16) the Fredholm alternative is a well-known elementary result. These
systems are equivalent to equations (8.7) and (8.9), respectively. There-
fore the Fredholm alternative holds for equations (8.7) and (8.9), so that
properties (8.3) and (8.4) are proved. O

In conclusion let us explain in detail why equations (8.12) and (8.15)
are equivalent in the following sense: every solution to (8.12) generates a
solution to (8.15) and vice versa.

It is clear that (8.12) implies (8.15): just take the inner product of
(8.12) with T*e; and get (8.15). So, each solution to (8.12) generates
a solution to (8.15). We claim that each solution to (8.15) generates a
solution to (8.12). Indeed, let ¢; solve (8.15). Define w := f — > ", cje;.
Then Tw = Tf =375 ¢jTe; = 3 [(Tf,ei)ei — > cj(Tej,ei)es] =
Yoiq cie; = f—w. Here we use (8.15) and take into account that (T'f,e;) =
fi and (Te;, e;) = t;;. Thus, the element w := f — "7 ¢;e; solves (8.12), as
claimed.
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It is easy to check that if {wy,...w;} are k linearly independent solu-
tions to the homogeneous version of equation (8.12), then the corresponding
k solutions {cim, - - - Cnm J1<m<k of the homogeneous version of the system
(8.15) are also linearly independent, and vice versa.

Let us give an independent proof of property (8.4):

R(A) is closed if A= B+ F, where B is an isomorphism and F is a
finite-rank operator.

Since A = (I +T)B and B is an isomorphism, it is sufficient to prove
that R(I + T) is closed if T has finite rank.

Let w; + Tu; := f; = f as j — oo. Without loss of generality choose
u; orthogonal to N(I +T). We want to prove that there exists a u such
that (I +T)u = f. Suppose first that sup;;, [[u;|| < oo, where | - ||
denotes the norm in H. Since T is a finite-rank operator, T'u; converges
in H for some subsequence, which is denoted by u; again. (Recall that in
finite-dimensional spaces bounded sets are precompact). This implies that
u; = f;—T'u; converges in H to an element u. Passing to the limit, one gets
(I +T)u = f. To complete the proof, let us establish that sup; ||u;|| < oo.
Assuming that this is false, one can choose a subsequence, denoted by
u; again, such that [lu;|| > j. Let z; := w;/||u;||. Then |z;|| = 1, z; is
orthogonal to N(I +T), and z; +Tz; = f;/||u;|| = 0. As before, it follows
that z; — z in H, and passing to the limit in the equation for z; one gets
z+4 Tz = 0. Since z is orthogonal to N(I 4+ T'), it follows that z = 0. This
is a contradiction since ||z|| = lim;_0||%;|| = 1. This contradiction proves
the desired estimate and the proof is completed. O

This proof is valid for any compact linear operator 7. If T' is a finite-
rank operator, then the closedness of R(I + T') follows also from a simple
observation: finite-dimensional linear spaces are closed.

8.2 A Characterization of Unbounded Fredholm Operators

8.2.1 Statement of the result

This Section is a continuation of Section 8.1, where bounded Fredholm
operators are studied.

We call a linear closed densely defined operator A : X — 'Y acting from
a Banach space X into a Banach space Y a Fredholm operator, and write
A € Fred(X,Y) if and only if

R(A) = R(4) (8.17)
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and
n(A) =n(A") :==n < oo, n(A):=dimN(A4), (8.18)

where N(A) :={u: Au=0,u € D(A)}.

In the literature the Noether operators are sometimes called Fredholm
operators. The Noether operators are operators for which (8.17) holds,
n(A) < oo, n(A*) < oo, but n(4) may be not equal to n(A*). Thus
Fred(X,Y) is a proper subset of the Noether operators.

The Noether operators are called in honor of F. Noether, who was the
first to study a class of singular integral equations with operators of this
class in 1921 [77].

In Section 8.1 a proof of the Fredholm alternative and a characterization
of Fredholm operators are given for bounded linear operators. Recall that a
linear bounded operator F' is called a finite-rank operator if dim R(F) < oo,
where R(F) is the range of F.

In this section these results are generalized to the case of closed un-
bounded linear operators. Namely, the following result is proved:

Theorem 8.3 If A is a Fredholm operator, then
A=B-F, (8.19)

where B is a linear closed operator, D(B) = D(A), R(B) = N(B) =
{0}, and F is a finite-rank operator. Conversely, if (8.19) holds where
B: X — Y is alinear closed densely defined operator, R(B) =Y, N(B) =
{0}, and F is a finite-rank operator, then A is closed, D(A) = D(B), and
(8.17) and (8.18) hold, so A is a Fredholm operator.

Below a proof of Theorem 8.3 is given. In the literature a character-
ization of unbounded Fredholm operators is not discussed, as it seems.
Theorem 8.3 is useful, for example, in the theory of elliptic boundary value
problems, but we do not go into further detail (see, e.g., [44], [45]).

8.2.2 Proof

1. Assume that A : X — Y is linear, closed, densely defined operator,

and (8.17) and (8.18) hold. Let us prove that then (8.19) holds, D(B) =

D(A),R(B) =Y,N(B) = {0}, B is closed, and F is finite-rank operator.
Let {¢;}i<j<n be a basis of N(A) and {9;}1<j<n be a basis of N(A*).
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It is known that
R(A)* = N(A"), (8.20)

where R(A)L is a set of linear functionals {t;} in Y* such that (¢;, Au) = 0
Yu € D(A), where (¢}, f) is the value of a linear functional ¢; € Y* on the
element f € Y. Clearly, ¥; € N(A*),1 <j <n.

Define

Bu = Au + Z (hj,u)yj =(A+Flu, v;ey, (8.21)

j=1

where F' is a finite-rank operator, {v;}1< <y is the set of elements of Y,
0, j#m

. ? a
L j=m

biorthogonal to the set {¥;}1<j<n, (¥, Vm) = djm = { nd

{h;}1<j<n is the set of elements of X*, biorthogonal to the set {¢;}1<j<n,
(hj,m) = djm. Existence of sets biorthogonal to finitely many linearly
independent elements of a Banach space follows from the Hahn-Banach
theorem. An arbitrary element u € X can be uniquely represented as
u=uy + Y ;_, cjp;j, where ¢; = const, and (hj,u1) =0, 1 <j <n.

Let us check that N(B) = {0} and R(B) =Y. Assume Bu = 0, that
is Au+ Z?Zl(hj, u)vj; = 0. Apply ¢, to this equation, use (¢, Au) =0,
and get

0:Z(¢m,yj)(hj,u):Z5mj(hj,u):(hm,u), 1§m§n
Jj=1 Jj=1
Therefore Au = 0. Sou € N(A), and u = > 7_, ¢;;, ¢; = const. Apply
hy, to this equation and use (A, ;) = Omj to get ¢ =0, 1 < m < n.
Thus u = 0. We have proved that N(B) = {0}.

To prove R(B) =Y, take an arbitrary element f € Y and write f =
f1+ f2, where f1 = Au; belongs to R(A), and fo = Z?Zl a;Vvj, aj = const.
Note that

Y = R(A) + L,, (8.22)
where the sum is direct, L,, is spanned by the elements {v;}1<;<n, and

a; = (¢, f). Indeed,

(wmaf) = (¢m;AU1) +Zaj(wmal/j) =am, 1<m<n.

j=1



132 Fredholm Alternative and a Characterization of Fredholm Operators

Given an arbitrary f € Y, f = Auy + Z?Zl("l/)j,f)l/j, define u = uy +
> i1 (b, flwj, where (hj,ui) = 0, 1 < j < n. Then Bu = f. Indeed,
using (8.21) one has:

B |:’U,1 —+ Z(?/}j, f)goj:| = Auq + Z (hj, Ul)l/j
j=1

j=1

+Z( Z wmvf)@'m)l/j =f.

m=1

(8.23)

Here the relations (hj, pm) = djm, and (hj,u1) = 0 are used. We have
proved the relation R(B) =Y.

2. Let us now assume that A = B — F, where B : X — Y is a linear
closed densely defined operator, D(A) = D(B), N(B) = {0}, R(B) =Y,
and F' is a finite-rank operator. We wish to prove that (8.17) and (8.18)
hold and A is closed.

Let us prove (8.17). Assume that Au, := f, — f and prove that
[ € R(A).

One has Bu,, — Fu, — f. Since N(B) = {0}, R(B) =Y, and B is
closed, B~! is bounded by Banach’s theorem. Thus

U, — B~ Fu, — B7'f. (8.24)

Since F is a finite-rank operator, B~1F is compact. Therefore, if sup,, ||
Unp, ||§ ¢, where ¢ is a constant, then a subsequence, denoted u,, again, can
be found, such that B~!'Fu,, converges in the norm of X. Consequently,
(8.24) implies u, — u, u—B 'Fu= B~'f sou € D(B) and Bu—Fu = f.

To finish the proof, let us establish the estimate sup,, ||u,|| < ¢. Assum-
ing ||uy, || — oo and denoting ny by n and B~'F by T, define v,, := T
|lvn]| = 1. Then v, — Tv, — 0 as n — oco. One may assume that v, 1is
chosen in a direct complement of N(I —T) in X. Arguing as above, one
selects a convergent in X subsequence, denoted again by v,, v, — v, and
gets v — Tv = 0. Since v belongs to the direct complement of N(I — T,
it follows that v = 0. On the other hand, since ||v] = limy, 00 ||Un]] = 1,
one gets a contradiction, which proves the desired estimate sup,, ||u,| < c.
Property (8.17) is proved.

Let us prove that A is closed. If Au,, — f and w, — u, then Bu, —
Fu,, — f, and the above argument shows that Bu — Fu = f so Au = f.
Thus A is closed.

Finally, let us prove (8.18).
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Let Au = 0, i.e., Bu— Fu = 0. Applying the bounded linear injective
operator B_l, one gets an equivalent equation

w—Tu=0 T:=B'F, T:X —X, (8.25)

with a finite-rank operator 7. It is an elementary fact that dim N(I—-T') :=
n < oo if T is a finite-rank operator. Since N(A) = N(I — T'), one has
dimN(4) =n < .

Now let A*v = 0. Then

B*v— F*v =0. (8.26)

Since (B*)~! = (B71)* is a bounded and injective linear operator, the
elements v are in one-to-one correspondence with the elements w := B*wv,
and (8.26) is equivalent to

w—Tw=0, T*=F*B*)"", (8.27)

so that T* is the adjoint to operator T := B~ F.

Since T is a finite-rank operator, it is an elementary fact that dim N (I —
T*)=dim(I —T) = n < co. Since N(A*) = N(I — T*), property (8.18) is
proved.

Theorem 8.3 is proved. U

An immediate consequence of this theorem is the Fredholm alternative
for unbounded operators A € Fred (X,Y).

8.3 Fredholm Alternative for Analytic Operators

Let X and Y be Banach spaces and A(k) : X — Y be a linear
bounded operator-function analytic in a connected domain A of a com-
plex plane k. Assume that the range R(A(k)) is closed and dim N(A(k)) =
dim N(A*(k)) =r < oo, so A(k) € Fred (X,Y) is Fredholm operator with
index zero, and Fred (X,Y") denotes the set of all such operators.

Theorem 8.4 ([136/) Under the above assumptions either A~1(k) does
not exist Vk € A, or A71(k) exists for all k € A except, possibly, for a
discrete set {k;}. The points k; are poles of A= (k), and the coefficients a,
in the expansion A=(k) = Z;ozfmj ap(k — k;)P are finite-rank operators.
This conclusion remains valid if one assumes that A(k) is a meromor-
phic operator-function of k in A, provided that b_.,, € Fred(X,Y), where

A(k)y =527 by(k — ko)? and ko € A is a pole of A(k).

p=—mo
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Proof. First we assume that A(k) is analytic in A. Choose a finite-rank
operator F' such that B(k) := A(k) + F is an isomorphism of X onto Y.
This is possible, as was shown in Section 8.2. Equation A(k)u = f is
equivalent to B(k)u = Fu + f and to u = B~'(k)Fu + B~*(k)f. Since
B(k) is analytic in A and the operator B~1(k) is bounded, it follows that
B~1(k) is analytic in A.

Therefore

u="T(k)u+h(k), T(k):=B  k)F, h(k):=B*(k)F,

where h(k) is analytic in A and T'(k) is an analytic in A finite-rank operator-
function. If d(k) := det(I — T'(k)) = 0, then the operator I — T'(k) is not
boundedly invertible for all & € A. Otherwise d(k), which is an analytic
function, may have only a discrete set of zeros in A. If d(k) = 0, then
d(k) # 0 for |k — k| < 0, where 6§ > 0 is a sufficiently small number, and,
by Kramer’s formulas, one concludes that u(k) is a meromorphic function
in A. In a neighborhood of the point x the Laurent expansion of the
operator A~(k) = (I — T'(k))"'B~1(k) has coefficients which are finite-
rank operators, because T'(k) is a finite-rank operator. This proves the first
conclusion of Theorem 8.4 (under the assumptions of analyticity of A(k) in
A and of Fredholmness of A(k): A(k) € Fred (X,Y)).

Assume now that A(k) is meromorphic in A, k is a pole of order m.
Then (k — k)™A(k) := Q(k) is analytic in a neighborhood of k. If b_,,, :=
limg_,;(k — k)"™A(k) is a bounded Fredholm operator, then Q(k) is an
analytic bounded Fredholm operator for |k — x| < ¢, for a sufficiently small
6 > 0. Thus the first conclusion of Theorem 8.4 applies and Theorem 8.4
is proved. O



Chapter 9

Boundary-Value Problems in Rough
Domains

In this chapter boundary-value problems for the Laplace and Helmholtz
operators are considered under weak assumptions on the smoothness of
the domains. The theory we develop can be easily generalized to the case
of uniformly elliptic formally self-adjoint differential operators with con-
stant coefficients near infinity. We assume nothing about smoothness of
the boundary S of a bounded domain D when the homogeneous Dirichlet
boundary condition is imposed; we assume boundedness of the embedding
i1 : HY(D) — L?(D) when the Neumann boundary condition is imposed;
we assume boundedness of the embeddings i; and of iy : HY(D) — L?(S)
when the Robin boundary condition is imposed, and, if, in addition, iy
and s are compact, then the boundary-value problems with the spectral
parameter are of Fredholm type. Here i; is the embedding of H'(D) (or
HY(D)) into L*(D) (L*(D)), D’ := R™ \ D is the exterior domain, and
D c D’ is a bounded domain whose boundary consists of two components:
S := 9D and S, where S is a smooth compact manifold. The space L?(S)
is the L? space on S with respect to Hausdorff (n — 1)-dimensional measure
on S.

Our theory is developed in such a way that the interior and exterior
boundary-value problems are studied similarly in spite of the fact that
the corresponding operators have discrete spectrum in the case of interior
boundary-value problems and continuous spectrum in the case of exterior
ones. The novel points consist of the usage of the limiting absorption prin-
ciple, the relation between closed quadratic forms and selfadjoint opera-
tors, and the construction of the theory under weak assumptions about the
boundaries of the domains, which can be much rougher than the Lipschitz
domains. We give examples of admissible bounded domains whose bound-
aries have countably many connected components and admissible domains

135
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whose boundaries are not locally representable by a graph of a Lipschitz
function . The results in this Chapter are based on the works [144], [107],
[103], [104], [31], and the presentation follows closely [31].

9.1 Introduction

An essentially self-contained presentation of a method for a study of
boundary-value problems for second-order elliptic equations in domains
with non-smooth boundary is given in this Section. The novel points include
the usage of the limiting absorption principle for the proof of the existence
of the solution. The theory of boundary-value problems for interior and
exterior domains are constructed similarly in spite of the fact that the
Dirichlet Laplacian has a discrete spectrum in the former case and a con-
tinuous spectrum in the latter case. For brevity of the presentation we
consider the boundary-value problems for Laplacian, and the three clas-
sical boundary conditions. We study interior and exterior boundary-value
problems and obtain the existence results and the Fredholm property under
weak assumptions on the smoothness of the boundary. The method we use
is applicable for general second-order elliptic equations. Elliptic boundary-
value problems were studied in numerous books and papers. We mention
[29] and [57], where many references can be found. In [65] embedding the-
orems for a variety of non-smooth domains have been studied. In [104]
the obstacle scattering problems were studied for non-smooth obstacles. In
[107] the [107] the boundary-value problems and direct and inverse obsta-
cle scattering problems have been studied. In [30] embedding theorems in
some classes of non-smooth (rough) domains were studied.
Consider the boundary-value problems

~Au=Fin D, FelL*D), (9.1)

u=0onS:=0D. (9.2)
The boundary conditions can be the Neumann one
uy =0 on S, (9.3)
where N is the outer unit normal to S, or the Robin one:
un + h(s)u=0on S, (9.4)

where h(s) > 0 is a bounded piecewise-continuous function on S.
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We are interested in similar problems in the exterior domain D’ := R™\
D, and we consider the case n = 3. The case n > 3 can be treated similarly.
If n = 2 some additional remarks are in order since the fundamental solution
in this case changes sign and tends to infinity as |z — y| := ryy — oco. If
n = 3, then g(x,y) = m, and if n = 2, then g(z,y) = 5 In i,
z,y € R", —Ag =d(z —y) in R, and §(x) is the delta-function.

Below (+,-) denotes the inner product in L?(D) := H L3(D) is the
set of L?(D) functions with compact support, LZ(D’) is the set of L?(D’)

functions which vanish near infinity, Iif Lis the closure of C§°(D) in the
H' := H*(D)—norm defined as |[u|[1 := ([, (|u[*+|Vu[*)dz)*/?. We denote
[ul| == ([, |ul*dz)'/?, and let D. := {z : z € D, dist(z,S) < &}, where
e > 0 is a small number, and dist(z, S) is the distance from the point z to
S, and DL is defined similarly.

If the boundary conditions are non-homogeneous, e.g., v = f on S, then
we assume that there exists a function v € H'(D)( HE (D), Av € L*(D),
such that v = f on S and consider w := v — v. The function w satisfies
equation (9.1) with F replaced by F + Av, and w satisfies (9.2). Similarly
one treats inhomogeneous Neumann and Robin boundary conditions. In the
case of inhomogeneous boundary conditions the smoothness assumptions on
the boundary S are more restrictive than in the case of the homogeneous
boundary conditions.

Let us reformulate problems (9.1)-(9.4) so that the assumptions on the
smoothness of S are minimal.

In the case of the Dirichlet problem (9.1)-(9.2) we use the weak formu-
lation: 5 5

u solves (9.1)-(9.2) iff u e H'(D) :=H"' and

[u, 6] := (Vu, Vo) = (F,¢) Vo cH". (9.5)

The weak formulation (9.5) of the Dirichlet problem (9.1)—(9.2) does not
require any smoothness of S, and boundedness of D is the only restriction
on D for the Dirichlet problem.

The weak formulation of the Neumann problem (9.1), (9.3) is:

[u,¢] = (F,¢) Vo€ H'. (9.6)
An obvious necessary condition on F' for (9.6) to hold is
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Although the statement of the problem (9.6) does not require any smooth-
ness assumption on .S, one has to assume that S is smooth enough for the
Poincare-type inequality to hold:

inf [lu—m| <c[|Vu|, ¢=const>0, (9.8)
meR?

see Remark 9.1 below.

The infimum in (9.8) is attained at my = ﬁ Jpudz, |D| := meas D,
and (u —mg,1) = 0. If (u,1) = 0, then (9.8) implies |ju|| < ¢||Vul|. The
role of this inequality will be clear from the proof of the existence of the
solution to (9.6) (see Section 9.2).

Finally, for the Robin boundary condition the weak formulation of the
boundary-value problem (9.1), (9.4) is:

[u, 6] + /S hudds = (F,¢) Vo € H'. (9.9)

For (9.9) to make sense, one has to be able to define u on S. For this
reason we assume that the embedding ip : H'(D.) — L?(S) is bounded.
We also assume the compactness of i, and this assumption is motivated in
the proof of the existence and uniqueness of the solution to (9.9), it yields
the Fredholm property of the boundary-value problem.

Let us formulate our results. We assume that D C R™, n = 3, is a
bounded domain and F € L?(D) is compactly supported. This assumption
will be relaxed in Remark 9.5.

Theorem 9.1  The solution uw €H'(D) of (9.5) exists and is unique.

Theorem 9.2 If D is such that (9.8) holds and F satisfies (9.7), then
there exists a solution u to (9.6), and {u + ¢}, ¢ = const, is the set of all
solutions to (9.6) in H!.

Theorem 9.3 If D is such that iy : H'(D) — L*(D) and iy : H*(D) —
L?(S) are bounded, F € L3(D) and h > 0 is a piecewise-continuous bounded
function on S, h # 0, then problem (9.9) has a solution in H*(D) and this
solution is unique. If i1 and io are compact, then the problem

[u, §] +/Shqud5 — AMu,¢) = (F,¢), A=const eR

s of Fredholm type.

Similar results are obtained in Section 9.3 for the boundary-value prob-
lems in the exterior domains (Theorem 9.4).
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9.2 Proofs

Proof of Theorem 9.1. One has
|[w, gll = [(F, )| < [ Fll[¢ll < cllFllllella (9.10)

where we have used the inequality

[e]
Il < cllglly, o eH", (9.11)
which holds for any bounded domain, i.e., without any smoothness assump-
tions on D. Note that the norm [u,u]'/? := [u] is equivalent to H' norm

on H' : ¢qf|ully < [u] < |Jull1, c1 = const > 0. Inequality (9.10) shows that
(F,¢) is a bounded linear functional in H'(D) so, by the Riesz theorem
about linear functionals in a Hilbert space, one has

[u,¢] = [BF,¢] V¢ €H",
where B is a bounded linear operator from L?(D) into H!. Thus u = BF

is the unique solution to (9.5). O

Proof of Theorem 9.2. 1If (F,1) = 0, then one may assume that (¢,1) =
0 because (F,¢) = (F,¢ —m) and the constant m can be chosen so that
(¢ —m,1) =0if D is bounded. If D is such that (9.8) holds, then

|[u, ¢l| = [(F, ¢ —m)| < [|F||inf || —m[| < c[[F[[V]. (9.12)

Thus (F, ¢) = [BF, ¢], where B : L?(D) — H' is a bounded linear operator.
Thus u = BF solves (9.6), for any constant m and u + m also solves (9.6)

because [m,¢] = 0. If u and v solve (9.6), then w := u — v solves the
equation [w,¢] =0 V¢ € H'. Take ¢ = w and get [w,w] = ||[Vwl||? = 0.
Thus Vw = 0 and w = const. Theorem 9.2 is proved. O

Remark 9.1  Necessary and sufficient conditions on D for (9.8) to hold
one can find in [65]. Inequality (9.8) is equivalent to the boundedness of
the embedding in i1 : L3(D) — L?(D). By L} the space of functions u such
that ||[Vul|| < oo is denoted.

Remark 9.2 If one wants to study the problem
—Au— Au=F, u=0onS (9.13)

where A\ = const, and a similar problem with the Neumann boundary condi-
tion (9.3) or with the Robin condition (9.4) to be of Fredholm type, then one
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has to assume the operators B in the proofs of Theorem 9.1 and Theorem

9.2 to be compact in H' and in H' respectively. Originally the operators B
[e]

were acting from L*(D) onto H' and H' (respectively in Theorem 9.1 and

in Theorem 9.2). Thus, B are defined on H' C L*(D) and on H' C L?(D)
respectively.

Proof of Theorem 9.3. 1If the embedding iy : H'(D.) — L*(S) is
bounded, then

I/ShUCBdSI < Stslp|h|||U||L2(S)||¢||L2(S) < cl¢lls- (9.14)

By Riesz’s theorem one gets

/ hugds = (Tu, $);1.
s
Equation (9.9) can be written as
(Au+Tu— BF,¢); =0 Vo€ H, (9.15)
where [ua¢] = (Aua¢)1ﬂ (Fa ¢) = (BF, ¢)1 Thus
Qu — BF := Au+ Tu— BF =0, (9.16)

where A is a bounded linear operator in H!, ||A]| < 1 because [u,u] <
(u,u)s, ||BI| < 1 because |(BE, ¢)1| = |(F.¢)| < |Fll|¢] < |Fll1]l¢]l1, and
T is a bounded operator in H'! if the embedding operator iy : H*(D.) —
L?(S) is bounded. If iy is compact, then T is compact in H!. The operator
Q := A+ T is linear, defined on all of H', and bounded. The expression

N2 {u)i= (Quuh =l + [ hluds

defines a norm N (u) equivalent to ||ul|;.
Let us prove this equivalence.
By (9.14) one has N?(u) < c||lul|?. Also

Jull} = [u,u] + (u,u) < N?(u) + (u,u) < c1N?(u)
because
[ull < eN(u),

where ¢ = const > 0 stands for various constants independent of .
Let us prove the inequality ||u]| < ¢N(u).
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Assuming that it fails, one finds a sequence u, € H', ||u,| = 1,
such that [ju,|| > nN(u,), so N(u,) < 1. Thus ||[Vu,| — 0 and
[ hlun?ds — 0. Since |Ju,|| = 1 one may assume that u,—v, where —
denotes weak convergence in L?(D). If u,—v and Vu,—0, then Vv = 0,

so v = C' = const, and

n— o0

0= lim [ hlu,|*ds = 02/ hds,
s S

so C' = 0. The inequality is proved.

Thus, the norms N(u) and |lu|l; are equivalent, the operator @ is
positive definite, selfadjoint as an operator in H', and therefore @ has
a bounded inverse in H'. Thus, equation (9.16) has a unique solution
u = Q 'BF in H'. The statement of Theorem 9.3 concerning Fredholm’s
type of problem (9.9) follows from Lemma 9.1 below.

Theorem 9.3 is proved. U

Remark 9.3  As in Remark 9.2, if B is compact in H', then the problem

[w, @] + /S hugds = N(u, ¢) + (F,¢), = const (9.17)

1s of Fredholm type. This problem can be written as Qu := Au + Tu =
ABu + BF, or

u=MQ 'Bu+Q 'BF (9.18)
where the operator Q~'B is compact in H'.

Lemma 9.1  The operator B is compact in H' if and only if the embed-
ding operator iy : H*(D) — L?(D.) is compact.

Proof. Suppose that the embedding i; : H'(D) — L?(D) is compact.
One has ||u||? = (Bu,u)1 = (u, Bu)1, so B is a linear positive, symmetric,
and bounded operator in H'. Here the inner product (Bu,u); is equivalent
to the inner product [Bu,u]. One has (u, ) = (Bu, ¢)1, so | Bull1 < |lu| <
llw]l1, so || Bllgi g1 < 1. A linear positive, symmetric, bounded operator
B, defined on all of H', is selfadjoint. The operator B2 > 0 is well
defined, B and B'/? are simultaneously compact, and |u| = ||B*/?ul;.
Thus, if 41 is compact then the inequality ||u,|l1 < 1 implies the existence
of a convergent in L?(D) subsequence, denoted again u,, so that B'/?u,,
converges in H'. Thus, B'/? is compact in H' and so is B.

Conversely, if B is compact in H' so is B'/2. Therefore, if u, is a
bounded in H' sequence, ||u,|/1 < 1, then B'/?u,, is a convergent in H*
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sequence. Denote the subsequence u,, again u,,. Then u,, is a convergent in
H® = L?(D) sequence because |[uy,|| = |B'/?u,||1. Therefore i; is compact.
Lemma 9.1 is proved. ]

Remark 9.4  We have used the assumptions h > 0 and h Z 0 in the proof
of Theorem 9.3. If h changes sign on S but the embeddings iz : H' (D) —
L2(S) and iy : HY(D) — L?(D) are compact, then problem (9.9) is still of
Fredholm’s type because T is compact in H' if i3 is compact.

9.3 Exterior Boundary-Value Problems

Consider boundary-value problems (9.1), (9.2), (9.3), (9.4) in the exterior
domain D’ = R¥\D. The closure of Hg(D’) in the norm [|ully := { [}, (Ju*+
|Vu|?)dz}/? is denoted by H' = H'(D') and H}(D') is the set of functions
vanishing near infinity and with finite norm ||ul|; < co. We assume that
D is bounded. The weak formulation of the boundary-value problems is
given similarly to (9.5), (9.6) and (9.9). The corresponding quadratic forms
Dirichlet tp, Neumann ¢5 and Robin tr, where the forms

tplu,u] = (Vu,Vu), u EI(} YD), tn[u,u] = (Vu,Vu), wec HY(D');

trlu,u] = (Vu, Vu)+(hu,u), we€ H (D), (u,v):= / uvds, 0<h<eg,
s

are nonnegative, symmetric and closable. Here and below, ¢ > 0 stands
for various constants. Nonnegativity and symmetry of the above forms are
obvious.

Let us prove their closability.

By definition a quadratic form ¢[u, u] bounded from below, i.e., t[u, u] >
—m(u,u), m = const, and densely defined in the Hilbert space H =
L?(D"), is closable if t[u, — U, un — U] — 0 and uy, 7 0 imply

n,Mm—00
t[un,u,] —> 0. The closure of the domain DJt] of the closable quadratic
n— o0
form in the norm [u] := {t[u, u]+(m+1)(u, u)}'/? is a Hilbert space H; C H
densely embedded in H. The quadratic form t[u,u] is defined on H, and
this form with the domain of definition H; is closed.
To prove the closability, consider, for example, ¢, and assume u,, ? 0,

(Vuyn, — Vi, Vi, — Vuy,) — 0 as n,m — oo. Then Vu, — f, and

(f,0) = T}Lrgo(Vun,¢) = — lim (un, Vo) =0, Vo e Cy°. (9.19)

n—oo
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Thus f = 0, so tp is closable. Similarly one checks that ty
and tr are closable.  Let us denote by Hj,(D’) the completion
of C(D)NC*(D)NH;(D') in the norm |ful| = ([Vulfsp, +
||Vu||%2(s))1/2-

For an arbitrary open set D C R? with a finite volume (| D| < oo, where
|D| := meas D is the volume of D) the inequality

lullscpy < c(IVullL2(py + lull2cs)) (9.20)

holds, and the embedding operator i : Hy 5(D) — L9(D) is compact if ¢ < 3
and |D| < oo ([65, p.258]).

If D is an extension domain, i.e., D has an extension property, then the
inequality

[ull2(s) < ellull, ()

where ¢ > 0, may have no sense because the trace on the boundary may be
not well defined, since the boundary may have Hausdorff dimension greater
than n — 1, where n is the dimension of the space.

The extension property, D C EV}f, means that there exists a linear

bounded extension operator E : V(D) — V(R?), Bu = u in D.
The space V(D) := ﬂ§ o L2(D) and L (D) is the set of functions with
the finite norm

1/2

lullpeemy = ||| D 1D%ul? , p>0.

fal= Lo(D)
If D satisfies cone property, then D is an extension domain. If D c C%!
is a Lipschitz domain, then D satisfies cone property and therefore D is
an extension domain. Inequality (9.20) may hold for some domains which
have no extension property. Estimate (*) may fail for some domains for
which (9.20) holds. If the Hausdorff 2-dimensional measure |S| := s(S) of
S is finite then a sufficient condition on D for (*) to hold is given in [65,
p.262].

Consider the closed symmetric forms tp, t 5 and tz. Each of these forms
define a unique selfadjoint operator A in H = L*(D'), D(A) Cc HY(D') C
H, (Au,v) = tlu,v], u € D(A), v € D[t], A= Ap, A= Ay, and A = Ap,
respectively.

Let Ly o == L*(D',(1+ |2))™), a € (1,2), Jull3,, = [p guld: and
L3 be the set of L?(D’) functions vanishing near infinity.
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Recall that D C D’ is a bounded domain whose boundary consists
of S := 0D and S, which is a smooth compact manifold. Assume that
it + HY(D)—L?(D) and i, : HY(D) — L*(S) are compact. Then the
following theorem holds:

Theorem 9.4  For any F € L%, each of the boundary-value problems:
Au=F, i=D, N orR, Aju=—Au, (9.21)

has a solution v = lim.o(A — ie) 'F := (A —40)"'F, u € H}

loc(Dl);
u € Ly g, a € (1,2), and this solution is unique.

Remark Equation (9.21) is understood as the weak formulation of the
exterior boundary- value problem with the Dirichlet or Neumann or Robin
boundary condition.

Similar result holds for the operator A — k2, where k = const > 0, in
which case the solution u satisfies the radiation condition at infinity:
0

Y ikul?ds = 0. (9.22)

lim | 5
”

r—00 ‘S':’I"

Proof of Theorem 9.4.

Uniqueness. If k = 0, then uniqueness follows from the maximum priciple.
If £ > 0, then uniqueness can be established with the help of the radiation
condition. We give details for the case k > 0 at the end of this chapter. O

FExistence. Since A = A; is selfadjoint, the equation
(A —ie)u. = F, e = const > 0, A=A (9.23)

has a unique solution u. € H = L?(D’). Let us prove that if ' € Ly _,,
then there exists the limit

u= Eh_% Ue, gl_% lu—uclL,, =0, (9.24)

and w solves (9.21). Thus the limiting absorption principle holds at A\ = 0.
Recall that the limiting absorption principle holds at a point A if the limit
w = lime0(A — X — is)_lF exists in some sense and solves the equation
(A= XNu=F.

To prove (9.24), assume first that

sup ||uellz.,, <c, (9.25)
1>e>0

where ¢ = const does not depend on . If (9.25) holds, then (9.24) holds,
as we will prove. Finally, we prove (9.25).
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Let us prove that (9.25) implies (9.24). Indeed, (9.25) implies
||u6||L2(D;%) <ec (9.26)

where D, := D’ (Br, Br := {z : |z| < R}, and we choose R > 0 so that
supp F' C Bj. It follows from (9.26) that there exists a sequence &,, — 0

such that w, = u., converges weakly: u, — u in L?(D%). From the

relation

t[u’m ¢] = (Fa ¢)a (927)

where the form ¢ corresponds to the operator A in (9.23) and the choice
¢ = u, is possible, it follows that

ti[un,u”] = ||VU”||L2(D/) < C, 1= D, N (928)
and

tiftn, un] = |Vl 2o +/ hlun|?ds <¢,  i=R. (9.29)
S

From (9.25) and (9.23) it follows that
[Aun|z2(py) < c (9.30)
By the known elliptic inequality:
lull zr2(py) < (D1, Do) ([ Aullzapy + lullzapyy), D1 € D2y (9.31)
where H? is the usual Sobolev space, it follows from (9.28) and (9.26) that
llun 2Dy <, (9.32)

where Dy @ D’ is any bounded strictly inner subdomain of D’. By the
embedding theorem, it follows that there exists a u such that

. o = 2
nlL)H;o ||Un — U||H1(D1) =0, DieD'. (933)

From (9.33) and (9.23) it follows that lim, . ||Au, — Aul| = 0, and by
(9.31) one concludes

. - _ -
nlL)II;O ||Un U||H2(D1) 0, DieD'. (934)

Passing to the limit in (9.23) with ¢ = ¢,, one gets equation (9.21) for u in
F’. From (9.28) or (9.29) it follows that

u, — wuforany R > 0. (9.35)
H'(D%)
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Outside the ball Br one has the equation
—Au, —iequ, = 0in By :==R*\ Bg,  u,(c0) =0, (9.36)

and, by Green’s formula, one gets

_ dun, Ign / o Lol —
up () = /SR (gn N u"(’)N) ds, x € By, Sr:={s:|s|=R},

(9.37)
whereNV is the outer normal to Si and g, = %, yi= %
By (9.34) and the embedding theorem, one has
oun, ou
li - Pln 74 — 0. 9.38
n-reo <Hu Wl + H ON 0N Lz<sR>> o
Passing to the limit in (9.37) one gets
ou dg 1
= — —u—|d B = 9.39
u(®) / (gaN “azv) s ©E€Bp gi=gm— e (939)
Sk
Thus
lu(z)| < é z € B, (9.40)

and u,(x) satisfies (9.40) with a constant ¢ independent of n.

If the Dirichlet condition is imposed, then the embedding ¢’ :]Zf YD) —
L?(D) is compact for any bounded domain D. If the Neumann condition is
imposed, then the compactness of the embedding #; : H'(D) — L?*(D) im-
poses some restriction on the smoothness of S (remember that S is assumed
smooth), and the above embedding operator is not compact for some open
bounded sets D. However, this restriction on the smoothness of S is weak:
it is satisfied for any extension domain. If the Robin condition is imposed,
then we use compactness of the operator i) : H*(D) — L?(S) for passing
to the limit

nlLI%o[(Vun, V) + (R, up)] = (Vu, Vu) + (hu, u).

If the embedding operator i} : H'(D) — L?(D) is compact, then (9.28),

(9.33) and (9.40) imply the following three conclusions:

nli)H;o ||un — U”L?(D%) =0, VR <oo, (941)

U, — uin H' (D), (9.42)



Eaxterior Boundary-Value Problems 147

nlingo lun —ullL,, = 0. (9.43)

Note that (9.43) follows from (9.41) and (9.40) if a > 1. Indeed,

/ |un, — ul?dz - / dx .

————<c¢ _ < —
o>k (14 [z)tFe wi>r (L+[z))*elz> = Re
For an arbitrary small § > 0, one can choose R so that 7 < ¢ and fix such
an R. For a fixed R one takes n sufficiently large and use (9.41) to get

n — ul?dz
/ Lun — ultde
py, (1+z[)
This implies (9.43).

The limit u solves problem (9.21). We have already proved uniqueness
of its solution. therefore not only the subsequence u,, converges to u, but
also u. — u as € — 0. We have proved that (9.25) implies (9.24).

To complete the proof of the existence of the solution to (9.21) one has

to prove (9.25). Suppose (9.25) is wrong. Then there is a sequence &,, — 0

such that ||ucy ||z, , = [|tunllL,, — 00. Let vy, := ”u:ﬂbm. Then

[vnll2a =1 (9.44)

F

lunll2,a .

Av,, — e v, = (9.45)

By the above argument, relation (9.44) implies the existence of v € Lg,
such that
nh_{r;@ [lvn, = vl2,4 =0, (9.46)
and
Av = 0. (9.47)

By the uniqueness result, established above, it follows that v = 0. Thus
(9.46) implies lim,,_, o0 ||Vn |2, = 0. This contradicts to (9.44).
This contradiction proves Theorem 9.4. 0

Remark 9.5 The above argument is valid also for solving the problem
Aiu — A = F, i=D,N,R, AeR, (9.48)

provided that problem (9.48) with F' = 0 has only the trivial solution.
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One may also weaken the assumption about F'. If F' € Ly 1, then (9.39)
should be replaced by

w) = [ (ogy —vg) i [, stenr@i @)

If a > 3, then, using the Cauchy inequality, one gets:

2

dy / 2 c
<cf FP(L+ ey < 5
oy T 0P W s, o

(9.50)
for large |z|, so that (9.40) holds if F € Lo _o, a > 3. The rest of the
argument is unchanged.

/B 9(z,y)F'dy

’
R

Remark 9.6 We want to emphasize that the assumptions on the smooth-
ness of the boundary S under which we have proved existence and unique-
ness of the solutions to boundary-value problems are weaker than the usual
assumptions for the Neumann and Robin boundary conditions. For the
Dirichlet condition w = 0 on S no assumptions, except boundedness of D,
are used. For the Neumann condition, uy = 0 on S, only compactness of
the embedding operator i, : H'(D) — L?(D) is used, and for the Robin
boundary condition, uy +hu =0 on S, 0 < h < ¢, compactness of both of
the embedding operators i, and iy : H' (D) — L?(S) is used.

Our arguments can be applied for a study of the boundary-value problems
for second-order formally selfadjoint elliptic operators and for nonselfad-
joint sectorial second-order elliptic operators. In [45] one finds the theory
of sectorial operators and the corresponding sectorial sesquilinear forms.

In conclusion let us prove the uniqueness theorem mentioned below
Theorem 9.4 in the case & > 0. Namely, if in (9.21) one has F' = 0 and
A — k? in place of A = A;, where k = const > 0, then a weak solution
to this homogeneous (9.21), which satisfies the radiation condition (9.22),
must vanish. Let us prove this for the Robin boundary condition. Define
W := w1 — us. One has:

/ graderaqudx—l—/aW&ds =0, (9.51)
D’ s

for all ¢ € H} . vanishing near infinity, and W satisfies (9.22). From (9.22)



Quasiisometrical Mappings 149

one gets
Jim o (W2 + K> |W|?) ds + Thﬁn;@ik/l_lﬂ (W, W —W,W)ds=0.
(9.52)
The second integral vanishes because of the radiation condition. Thus,
lim . (W * + E*[W|?) ds = 0. (9.53)

This and the known lemma (see e.g., [133], p. 25) imply that W = 0 near
infinity. By the unique continuation property for the solution to homoge-
neous Helmholtz equation, W = 0 in D’.

See also [104] for more details.

9.4 Quasiisometrical Mappings

The main purpose of this section is to study boundary behavior of quasi-
isometrical homeomorphisms.

9.4.1 Definitions and main properties
Let us start with some definitions.

Definition 9.1  (Quasiisometrical homeomorphisms) Let A and B be
two subsets of R™. A homeomorphism ¢ : A — B is Q—quasiisometrical if
for any point x € A there exists such a ball B(z,r) that

Q 'y — 2 < lely) — e(2)| < Qly — | (9.54)

for any y,z € B(x,r) N A. Here the constant @ > 0 does not depends on
the choice of x € A, but the radius » may depend on z.

Obviously the inverse homeomorphism ¢! : A — B is also
Q-quasiisometrical. A homeomorphism ¢ : A — B is a quasiisometrical
homeomorphism if it is a ()-quaiisometrical one for some ). Sets A and B
are quasiisometrically equivalent if there exists a quasiisometrical homeo-
morphism ¢ : A — B.

Definition 9.2  (Lipschitz Manifolds) A set M C R™ is an m-dimensional
@-lipschitz manifold if for any point a € M there exists a ()-quasiisometrical
homeomorphism ¢, : B(0,1) — R™ such that ¢(0) = a and ¢(B(0,1) N
R™)C M. Here R :=={x € R" : Typy1 = ... = T, = 0}.
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We are interested in compact lipschitz manifolds that are boundaries of
domains in R™ and/or in (n — 1)-dimensional lipschitz manifolds that are
dense subsets of boundaries in the sense of (n — 1)-dimensional Hausdorff
measure H" 1.

Definition 9.3 (Class L) We call a bounded domain U C R™ a domain
of class L if:

1. There exist a bounded smooth domain V' C R™ and a quasiisometrical
homeomorphism ¢ : V — U;

2. The boundary U of U is a (n — 1)-dimensional lipschitz manifold.

The following proposition is well known and will be useful for a study of
domains of class L and boundary behavior of quasisisometrical homeomor-
phisms.

Proposition 9.1 Let A and B be two subsets of R™. A homeomorphism
v : A = B is Q—quasiisomelrical if and only if for any point a € A the
following inequality holds:

Q7' < liminf le(@) — pla)] < limsup le(@) =~ ¢(a)]
r—a,x€A |a:—a| r—a,z€A |£E7a|

<Q.

Here the constant QQ > 0 does not depend on the choice of a € U.
This proposition is a motivation for the following definition.

Definition 9.4  (Quasilipschitz mappings) Let A be a set in R". A map-
ping ¢ : A — R™ is Q—quasilipshitz if for any a € A one has:

Jim sup lp(z) — p(a)|
r—a,x€EA |93 - a|

<@Q

Here the constant Q > 0 does not depend on the choice of a € A.

A mapping is quasilipschitz if it is Q-quasilipschitz for some Q.

A homeomorphism ¢ : A — B is a quasiisometrical homeomorphism iff
¢ and ¢~ ! are quasilipschitz.

By definition any quasilipschitz mapping is a locally lipschitz one.
A restriction of a @-quasilipshitz mapping on any subset B C A is a
quasilipschitz mapping also.

9.4.2 Interior metric and boundary metrics

Suppose A is a linearly connected set in R™. An interior metric u4 on A
can be defined by the following way:
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Definition 9.5 For any z,y C A
pa(,y) = inf 1(vz,y),
Ya,y

where 75, : [0,1] = A, 7,4(0) = 2, 72,4 (1) = y is a rectifiable curve and
1(¥z,y) is length of 7, .

As follows from Definition 9.4 a Q-quasilipschitz mapping can change the
length of a rectifiable curve by a factor @) at most. Hence a @Q-quasilipschitz
mapping ¢ : A — B of a linearly connected set A onto a linearly connected
set B is a lipschitz mapping of the metric space (A, ua) onto the metric
space (B,up). Any @Q-quasiisometrical homeomorphism ¢ : A — B is
a bilipschitz homeomorphism of the metric space (A, u4) onto the metric
space (B, up).

Because any domain U of the class L is quasiisometrically equivalent
to a smooth bounded domain and for a smooth bounded domain the inte-
rior metric is equivalent to the Euclidian metric, the interior metric uy is
equivalent to the Euclidian metric for the domain U also. It means that
for any domain U € L

K 'z —y| <pu(z,y) < Klz—y|

for any x,y € U. Here a positive constant K does not depend on the
choice of the points x,y. Therefore for any bounded domain U € L any
quasilipshitz mapping ¢ : U — V is a lipschitz mapping ¢ : (U, uy) — R™
for the interior metric.

We will use the following definition of locally connected domain U € R"
that is equivalent to the standard one.

Definition 9.6  Suppose (zx € U), (yx. € U) are two arbitrary convergent
sequences such that liminfy .~ py(zk,yx) > 0. Call a domain U € R"™
locally connected if for any such sequences one has limy_, oo T # limg_ 00 Yk

If a boundary of a bounded domain is a topological manifold then this
domain is locally connected. Therefore, domains of the class L are
locally connected domains because their boundaries are compact lipschitz
manifolds.

Definition 9.7 Let A be a closed linearly connected subset of R™ and
H"=1(A) > 0. Call the interior metric u4 a quasieuclidean metric almost
everwhere if there exists a closed set Q C A with H"~1(Q) = 0, such that
for any point € A\ @ the following condition holds:
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There exists such ball B(x,r) that for any y,z € B(z,r)

1
?|y7 Z| < HJA(y,Z) < K|y7Z|,
where K = const > 0 does not depends on choice y, z and .

By definition of lipschitz manifolds any domain of the class L is quasieu-
clidean at any boundary point.

Definition 9.8 Suppose U is a domain in R™ and xg,yo € OU. Let us
call the following quantity

fiou (o, yo) = lim inf pu(z,y)
=0 [z—zo|<e,|ly—yol<e

relative interior boundary metric.

Because boundary of any domain U of the class L is a compact lipschitz
manifold, the relative interior boundary metric on QU is equivalent to the
interior boundary metric on QU for such domains. This motivates the
following definition:

Definition 9.9 A bounded domain U C R™ has an almost quasiisomet-
rical boundary if H"~1(0U) < oo and there exists a closed set A € U with
H"~1(A) = 0 such that for any point zo € U \ A the following condition
holds:

There exists a ball B(xzg,r), B(zg,7) N A = (), such that for any z,y €
OU N B(zg, r) one has:

1 _
EuaU(%y) < pov(z,y) < Kpsu(z,y),

where K = const > 0 does not depend on the choice of zg,z and y.

We will use for the two-sided inequalities similar to the above one the
following short notation figy (z,y) ~ pov(z,y).

If a domain U has an almost quasiisometric boundary OU and this
boundary is locally almost quasieuclidian then poy (z,y) ~ |z — y| for any
x,y € OU.

Definition 9.10 We call a bounded domain U C R™ an almost quasi-
isometrical domain if H" 1(OU) < oo and there exists such a closed set
A € 90U, with H""1(A) = 0, that the following condition holds:

There exists a ball B(zg,7)NA = () such that for any x,y € QUNB(zo,7)
one has:

pou(x,y) ~ pou(z,y) ~ |z —yl.
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By the extension theorem for lipschitz mappings any quasiisometrical home-
omorphism ¢ of a smooth bounded domain in R™ onto a domain V' in R"
has a lipschitz extension 1; onto R™. Denote by 1 the restriction of a
lipschitz extension 1; on QU. By continuity, the extension v is unique.

Definition 9.11 Let U be a smooth domain in R™ and V be a domain
in R™ such that H"1(9V) < oco. A quasiisometrical homeomorphism
¢ : U — V has N~ '-property on the boundary if for any A € 9V with
H" 1(A) =0 one has H* 1 (¢p=1(A)) = 0.

The definition makes sense because the extension 1) of a quasiisometrical
homeomorphism ¢ on QU is unique.

Definition 9.12  (Class QI) Let us call a bounded domain V' a domain
of class QI if:

1) There exists a quasisiometrical homeomorphism ¢ : U — V of a
smooth bounded domain U onto the domain V that has the N~ !-property
on the boundary.

2) there exists such a closed set A € 9V, H""1(A) = 0, that 9V \ A is
a @-lipschitz manifold for some Q;

3) V is a locally connected almost quasiisometrical domain.

Remark 9.7 The class L is a subclass of the class QI.

9.4.3 Boundary behavior of quasiisometrical
homeomorphisms

Proposition 9.2  Suppose a Q-quasiisometrical homeomorphism o : U —
V' maps a smooth bounded domain U onto a locally connected domain V.
Then there exists an extension ¥ of ¢ on OU such that (OU) = OV and
the mapping Y|su is a lipshitz mapping of multiplicity one.

Proof. Because U is a smooth domain, ¢ is a lipschitz mapping. By the
extension theorem for lipschitz mappings there exists a @Q-lipschitz exten-
sion ’IZ : R™ — R™ of . This extension is not necessarily a quasiisometrical
homeomorphism. By continuity of ’IZ and because ¢ : U — V is a homeo-
morphism we have ¢(9U) = dV.

Suppose ¥ := @|gy has multiplicity more than one. Then there exist two
different points zg, yo € U, x¢ # yo such that ¥ (xg) = ¥ (yo). Choose two
sequences: xp € U and yi € U such that limg oo T = zo, limg 00 Y = Yo.
Because U is a smooth bounded domain the interior metric py is equivalent
to the Euclidean metric, i.e. there exists a positive constant () such that
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po(Te,yr) > Q1 ak —yk| > Q71 ao —yo| > 0 for all sufficiently large
k. The homeomorphism ¢ : (U, uy) — (V, py) is a bi-lipschitz homeomor-
phism. Therefore liminfy_,o pv (p(zx), ©(yr)) > 0. Because U is a locally
connected domain (o) = limg oo (k) # limg 0o ©(yr) = ¥(yo). This
contradiction proves the Proposition. O

For any lipschitz m-dimensional compact manifold M C R™ and for any
lipschitz mapping ¢ : M — R™ the set (M) is H™-measurable for the
m-~dimensional Hausdorff measure H™ and H™(p(M)) < cc.

The next theorem, dealing with area formulas, is a particular case of
the result proved in [3] and used for domains of the class Q1.

Let us start with an abstract version of this theorem.

Definition 9.13 Call a metric space X a HP"-rectifiable metric space if
there exists such finite or countable set of lipschitz mappings «; : A; = X
of mesurable sets A; C R* into X that H*(X \ U; @i(4;)) = 0.

By the definition of the class QI a boundary QU of any domain U € QI
is a H" !-rectifiable metric space.

Our next definition represents an abstract version of Jacobian for HP*-
rectifiable metric spaces.

Definition 9.14 Let X and Y be HF-rectifiable complete metric spaces
and F': X — Y be a lipschitz mapping. Call the quantity

H¥(F(B(x,r))
J(x, F):= lim ———x» 12~
(. F) = I = B )
a formal Jacobian of F' at a point z.
Theorem 9.5 Suppose X and Y are H-rectifiable complete metric
spaces and F : X —'Y 1is a lipschitz mapping of multiplicity one.
Then

1. Formal Jacobian J(x, F) exists H*—almost everywhere;
2. The following area formula holds:

/ J(z, F)dH* = / dH*:
X F(X)
3. For any u € L*(Y)

/X w(F(2))J (z, F)dHF = / w(y)dHE.

7(X)
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Corollary 9.1  If a domain V belongs to the class QI, and ¢ : V — U is
a Q-quasiisometrical homeomorphism, then H"~1(dU) < oc.

Proof. Any Q-quasiisometrical homeomorphism ¢ : V' — U of a smooth
domain V € R"™ onto a domain U of the class QI has a lipschitz extension
1; : R" — R". By definition of the class QI the domain V is a locally
connected domain. Hence by Proposition 9.2 the @-lipschitz mapping ¢ :=
1;\ OV has multiplicity one and ¢(0V) = OU. By Theorem 9.5 one gets

H"1(0U) < oc. O

9.5 Quasiisometrical Homeomorphisms and Embedding
Operators

By Corollary 9.1, H"1(dV) < oo for any domain V' € QI. Therefore we
can define Banach space L?(9V) using the Hausdorff measure H" 1.

Proposition 9.3 Let U be a smooth domain and V € QI. Any Q-
quasiisometrical homeomorphism ¢ : U — V that has N~ 'property on the
boundary induces a bounded composition operator * : L*(dV) — L*(0U)
by the rule ¥*(u) = uo .

Proof. Denote by m the (n — 1)-dimensional Lebesgue measure on 0U
and by v the extension of ¢ onto U. By Theorem 9.5 for any u € L?(9V)

| @ s odm = [ ) .
ou v

Suppose that there exists such a constant K > 0 that J(z,¢) > K~}
for almost all x € OU . Denote by A € U, with H"1(A) = 0, a set of all
points for which the previous inequality does not hold. Then

||¢*u||iQ(aU) :/ |u(¢(m))|2 danl

U\ A
B 2 J(x,7) n—1
- /6 o @
<K @ @) T B)dm = K [ul2aor: -

OVAY—1(A)

The last equality is valid because ¢ has the N~ !-property on the bound-
ary, i.e. m(¢~1(A)) = 0. Therefore * : L?(9V) — L?(9U) is a bounded
operator and |[¢*]| < K.
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To finish the proof we have to demonstrate that J(z,7) > K%
Remember that any domain of the class QI has an almost quasiisomet-
ric boundary.

It means that we can choose such a closed subset A C 0V, with
H"1(A) = 0, that the following property holds:

For any x¢ € OV \ A there exists such a ball B(zg,r) N A = () that:

1) B(zo,7) N A =0 and pay (z,y) ~ pov(z,y) ~ |z —y| for any z,y €
v n B(’I’(), T‘),

2) B(xg,r) N OV is a lipschitz manifold.

Let B := 9 !(A). Choose a point zp € OU \ B and such a ball
B(zo, R) that relations fipy(z,y) ~ pov(z,y) ~ |z — y| hold for any
x,y € ¥(B(z9, R)) N OU. This is possible because U is a smooth domain.

Because ¢ is a Q-quasiisometric, the length |y| of any curve v C V
satisfies the estimate:

%I@(v)l < Il < Qle(y)]

where |¢()| is the length of the curve ¢(y) € U. In terms of the relative
interior metric figy it means that

1
BﬁaU (:E(), aR) C Z/J(B(Z(), R) NoV C BﬁaU (33(), QR)

where xg = 1¥(z9). Without loss of generality we can suppose that
ﬁaU(xay) ~ ,U'BU(zay) ~ |£E - y| for any r,y € Bﬁ@g(x()aQR)' Flnauy

we obtain

B(zo, %R) C ¥(B(z0, R) NV C Blxo, KR) (9.55)

for some constant K that depends only on @) and constants in relations
fiou (,y) ~ pov (z,y) ~ [z —yl.

We have proved the inequality Jy(z) > K ! almost everywhere on 9U.

O

9.5.1 Compact embedding operators for rough domains

It is well known that the embedding operator H*(2) — L?(95)) is compact
for bounded smooth domains.

We will prove compactness of the embedding operator for the class Q1.
Then we extend the embedding theorem to the domains that are finite
unions of the Q/-domains. Our proof is based on the following result: a
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quasiisometrical homeomorphism ¢ : U — V induces a bounded compo-
sition operator ¢* : HY (V) — HY(U) by the rule ¢*(u) = u o ¢ (see, for
example [32] or [165]).

Definition 9.15 A domain U is a domain of class Q if it is a finite union
of elementary domains of class QI.
Let us use the following result:

Theorem 9.6 (see for example [32] or [165]) Let U and V' be domains
in R™. A quasiisometrical homeomorphism @ : U — V induces a bounded
composition operator ¢* : H*(V) = HY(U) by the rule ©*(u) = uo p.

Combining this Theorem with Theorem 9.3, one gets:

Theorem 9.7 If U is a domain of the class QI, then the embedding
operator iy : HY(U) — L?(0U) is compact.

Proof. By definition of the class QI there exist a smooth bounded
domain V' and a quasiisometrical homemorphism ¢ : V' — U. By Proposi-
tion 9.3 ¢ induces a bounded composition operator ¢* : L2(QU) — L?(9V)
by the rule ¥*(u) = u o %. Because the embedding operator iy : H*(U) —
L?(9U) is compact and the composition operator(p~1)* : HY(V) — HY(U),
induced by quasiisometrical homeomorphism ¢, is bounded the embedding
operator iy : HY (V) — L2(0V), iy = (p~1)* ody o (§)" is compact. O

To apply this result for domains of the class @@ we need the following
lemma:

Lemma 9.2 IfU andV are domains of the class QI, then the embedding
operator H*(U UV) — L%(0(U UV)) is compact.

Proof. By previous proposition operators iy : H(U) — L?(0U) and
iy : HY (V) — L?(9V) are compact. Choose a sequence {w, } C H*(UUV),
lwn || g @wuvy < 1 for all n. Let u, := wy|oy and v, := wylov. Then
tn € L2(0U) , v € LOV), lunll 2oy < livls [0allz2ov) < livl]

Because the embedding operator H'(U) — L2?(QU) is compact, we
can choose a subsequence {u,,} of the sequence {u,} which converges
in L2(QU) to a function ug € L?(QU). Because the embedding operator
H'(V) — L?(dV) is also compact we can choose a subsequence {v,, } of
the sequence {v,, } which converges in L?(9V) to a function vy € L*(9V).
One has: ug = vg almost everywhere in 0U N 9V and the function wg(x)
which is defined as wo(x) := up(z) on OU N (U U V) and wy(x) := vo(z)
on 9V NA(U UV) belongs to L*(0(U UV)).
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Hence

[wny,, —wollL2a@wuvy) < luny,, —woll2ovy + [vny,, — vollz2av)-
Therefore [[wy, —— wol|r2@@wuvy — 0 for m — oo . O

From Theorem 9.7 and Lemma 9.2 the main result of this section follows
immediately:

Theorem 9.8 If a domain ) belongs to class ) then the embedding
operator H*(Q2) — L?(9Q) is compact.

Proof. Let U be an elementary domain of class ). By Theorem 9.7 the
embedding operator iy : HY(U) — L?(9U) is compact.

Because any domain V' of class () is a finite union of domains of class
QI the result follows from Lemma 9.2. 0

9.5.2 FExzamples

Example 5.7 shows that a domain of the class Q can have unfinite number
of connected boundary components.

Example 9.1 Take two domains:

1. Let domain U is a union of rectangles Py, := {(z1, z2) : ’xl — 2_’“’ <
27k=2.0 <@y < 27F72} k =1,2,... and the square S := (0,1) x (—1,0);

2. Vi={(z1,72) : 0< 21 < 15107ty < g < 1}

In the book [65] it was proved that U is a domain of the class L. It is
obvious that V is also a domain of the class L. Therefore @ = U UV is
a domain of class Q. By Theorem 9.8 the embedding operator H()) =
L?(09) is compact.

The boundary 0f2 of the plane domain €2 contains countably many con-
nected components that are boundaries of domains

Sk = {(z1,22) : |x1 — 2_k| <27k 2107 <o < 2_k_2}.

The boundary of the rectangle Sy := {(z1,22) : 0 < 1 < 1; -1 < a9 < 1}
is also a large connected component of 9f2.

Any neighboorhood of the point {0,0} contains countably many con-
nected components of 92 and therefore can not be represented as a graph
of any continuous function.

Higher-dimensional examples can be constructed using the rotation of the
plane domain €2 around z;-axis.
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Next, we show that the class QI contains simply-connected domains
with non-trivial singularities.

Let us describe first a construction of a new quasiisometrical homeo-
morphism using a given one. Suppose that Si(z) = kz is a similarity
transformation (which is called below a similarity) of R™ with the similar-
ity coefficient k > 0, S, (x) = k1 is another similarity and ¢ : U — V is a
(Q—quasiisometrical homeomorphism. Then a composition ¢ := S, opo Sy,
is a k1kQ@Q -quasiisometrical homeomorphism.

This remark was used in [30] for construction of an example of a domain
with “spiral” boundary which is quasiisometrically equivalent to a cube. At
“the spiral vertex” the boundary of the “spiral” domain is not a graph of
any lipschitz function. Here we will show that the “spiral” domain belongs
to the class QI. Let us recall the example from [30].

Example 9.2 We can start with the triangle T := {(s,¢) : 0 < s <
1,8 <t < 2s} because T is quasiisometrically equivalent to the unit square
Q2 = (0,1) x (0,1). Hence we need to construct only a quasiisometrical
homeomorphism g from 7 into R?.

Let (p,0) be polar coordinates in the plane. Define first a mapping
¢ : R2 — R? as follows: ¢(s,t) = (p(s,t),0(s,t)), p(s,t) = s, O(s,t) =
2rln %, Here R% := {(s,1)|0 < s < 00,0 < t < oo}. An inverse mapping
can be calculated easily: ¢~1(p,0) = (s(p,0),t(p,0)), s(p,0) = p, t(p,0)) =
er%. Therefore ¢ and ¢g := ¢|T are diffeomorphisms.

The image of the ray ¢t = ks, s > 0,k > 0, is the logarithmic spiral
p = kexp(—+). Hence the image S := ¢(T) = ¢o(T) is an “elementary
spiral” plane domain, because JT is a union of two logarithmic spirals
p= exp(—%)7 p= Qexp(—%) and the segment of the circle p =1 .

The domain 7 is a union of countably many subdomains T, := {(s, ) :
et < s < e (" 5 <t <25}, n=1,2,... On the first domain T}
the diffeomorphism ¢; := ¢|T} is Q—quasiisometrical, because ; is the
restriction on 77 of a diffeomorphism ¢ defined in Rf_ and Ty C Rf_. We
do not calculate the number Q.

In [30] it was proven that any diffeomorphism ¢,, := ¢|T}, that is the
composition ¢, = S,—(m-1) 0 @1 0 Sen-1 of similarities S,—(n-1), Sen—1 and
the @@—quasiisometrical diffeomorphism ¢; is Q—quasiisometrical. There-
fore the diffeomorphism g is also @Q—quasiisometrical, and the “elemen-
tary spiral” domain U = ¢ (T') is quasiisometrically equivalent to the unit
square.
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By construction, the boundary of the domain U := ¢(T') is smooth at any
point except the point {0}. This domain is a locally connected domain.
The quasiisometrical homeomorphism ¢ has N~! property because all the
homeomorphisms ¢,, have this property. Except the point {0} the boundary
U is a Q-lipschitz manifold. All other properties of QI-domains are subject
of simple direct calculations. Therefore the domain 7T is a QI-domain.

9.6 Conclusions

In this section we combine the results about elliptic boundary-value prob-
lems with these about embedding operators.

The first result is a formulation of Theorem 9.3 for a large concrete
class of rough domains. This result follows immediately from Theorem 9.3,
Theorem 3.11 from [30] and Theorem 9.8.

Theorem 9.9 If D is a domain of the class Q, F € L3(D), and h > 0 is
a piecewise-continuous bounded function on 0D, h # 0, then problem (9.9)
has a solution in H'(D), this solution is unique, and the problem

[u, ] + /6[) hugds — A(u, ¢) = (F,$), A= const € R

is of Fredholm type.

The next result is a formulation of Theorem 9.4 for a large class of rough
exterior domains D’.

Fix a bounded domain D C D’ whose boundary consists of two parts
0D and a smooth compact manifold S. Assume that D belongs to the class
. By the definition of the class @, this assumption holds for any choice of
D because for the smooth component S the conditions defining the class @
hold.

Theorem 9.4, Theorem 3.11 from [30], and Theorem 9.8 imply the fol-
lowing result:

Theorem 9.10 For any F € L3, each of the boundary-value problems:
A;u=F, t=D,N or R, Aju = —Au, (9.56)

has a solution u = lim.o(A — ie) 'F := (A —40)"'F, u € H}

loc(Dl);
u € Ly g, a € (1,2), and this solution is unique.



Chapter 10

Low Frequency Asymptotics

10.1 Introduction

In this chapter the exterior domain D’ = D, is denoted by €2. The material
presented in this chapter is taken mainly from [90], [120], and the presen-
tation follows closely [120].

Let us consider the behavior of the solution to the problems

(V2+k2)u:OinQCR”, n>2 k=const>0 (10.1)

u=fonl, fecHY) (10.2)

where u for k£ > 0 always satisfies the radiation condition, D is a bounded
domain with Liapunov’s boundary (this means that I' € C**, A\ > 0). We
are also interested in the boundary conditions

uy =fonl (10.3)
and
un +n(s)u=fonl (10.4)

where N is the unit normal on I' pointing into 2. The case when Lu =
9;laij(x)0;u] stands in place of V* can be treated as well, provided that
a;; € C' a;j(x) = &;; for |z| sufficiently large, and the matrix a;;(z)
satisfies the ellipticity condition cit;t; < aitit; < cotit;, ¢1 and cy are
positive constants, the bar stands for complex conjugate and over repeated
indices one sums up. The function n(s) € C(I') is assumed to satisfy
conditions

Imn(s) > 0; if Imn =0 thenn <0 (10.5)

161
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Assumption (10.5) implies uniqueness of the solution to problem (10.1),
(10.4). If equation (10.1) would be nonhomogencous, say

(V*+E)u=F (10.6)
then one can consider

v=u+ / g(x,y, k)F(y)dy (10.7)

where
(V?+k%)g = —0(z —y) in R", g satisfies the radiation condition (10.8)

and for v one obtains the above problems with the homogeneous equation
(10.1).

We want to describe some methods to study the behavior as k£ — 0
of the solutions to equation (10.1) satisfying one of the conditions (10.2),
(10.3) or (10.4). Note that the limit u(x, k) as k — 0 does not always exist.
This will be clear from our results. To make it transparent without going
into detail, let us consider problem (10.1), (10.3) in R2.

Suppose that the solution of this problem has a limit in H(£2),

u(z, k) Hiﬂ) uo(x) as k — 0. (10.9)
Then
Viup=0inQ, wuyny=fonl. (10.10)

By Green’s formula one has

u(z,k):/(unggf)ds:/(uogoNfgof)dera(k)/ fds+o(1) as k — 0,
r r r

(10.11)

where a(k) = [In(2)—v]/2r+i/4 and v = 0.5572 - - - is the Euler’s constant,

9(z,y,k) = a(k) + go(z,y) + O(k*Ink) as k — 0,

go(ﬂf,t) = (27‘(‘)—1 lnr;yl, Tpy = |x _ y|

(10.12)

The estimate O(k?Ink) holds uniformly in x, y in the region 0 < ¢; <
|z —y| < ¢g, where ¢;, j = 1,2, are constants. Therefore (10.9) cannot hold
unless

/ fds=0. (10.13)
N
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It is also clear from (10.11) that if (10.13) holds then (10.9) holds and wug
solves (10.10) and satisfies the condition

ug(z) = O(|z| 1) as |x| — oco. (10.14)

Indeed, if (10.13) holds then

up(x) = /F [uo(s)goN(x,S) - 9()(9375)f(5)]d5 = O(|$|71) as |z] — oo

(10.15)
since gon(x,5) = O(|z|~") and

1 -1 -1y __ ’I‘il
[ ot 1(6) = g=talal [ 1)+ 00l ™) = Ofel ). (1016)

We give several approaches to the problem of low frequency asymp-
totics of the solutions to the exterior problem. The first approach is based
on integral equations of the first kind. It provides a detailed information
and allows one to obtain asymptotic expansion of the solution as k — 0.
Its drawback is that it works efficiently for the equation with constant co-
efficients for which the behavior of the Green function as £ — 0 is known in
detail. The second approach is rather general. It gives a convenient neces-
sary and sufficient condition for the limit (10.9) to exist, but it does not give
(at least without extra work) the rate of convergence. The third approach
is based on a priori estimates and uses the fact that for sufficiently small
k equation (10.1) in a bounded domain satisfies the maximum principle.
The first two approaches belong to the author [90], [133], [120], the third
one is due to [160]. Section 10.7 is based on the works [137], [138], and the
presentation follows [138].

Let us describe these approaches. The results obtained by the integral
equation method give necessary and sufficient conditions for the existence
of the limit (10.9) and the asymptotics of the solution as k — 0.

A discussion of low-frequency scattering is given in [19].

10.2 Integral Equation Method for the Dirichlet Problem

Let us look for the solution to (10.11), (10.12) of the form

u= /Fg(a:,s,k)a(s)ds = Q(k)o. (10.17)



164 Low Frequency Asymptotics

Consider the case n > 3 first. The method is valid in R™ for n > 2, but
the results for n = 2 are sometimes different because the Green’s function
g(x, k) = %Hél)(k|x|) does not have a finite limit as &k — 0.

Let us take n = 3. The case n > 3 is treated similarly. If n = 3 then
g = (4r|x]) "t exp(ik|z|) and (10.17) solves (10.1). To satisfy (10.2) choose
o as the solution to the equation

Q(k)o = f. (10.18)

It is known [133, p. 199], that Q : H°(I') — H'(T') is an isomorphism if
k > 0 is sufficiently small (so that k? is not a Dirichlet eigenvalue of —V?
in D). Therefore

oc=Q ' (k)f. (10.19)

The operator Q(k) depends on k analytically and Q~1(k) is analytic in k
in a sufficiently small neighborhood of k = 0. Indeed, Q(k) := Qo + B(k),
Qo = Q(0), |B(k)| mory—mr )y < clk|, Qo is an isomorphism of H(T)
onto H(T). Therefore

Q'(k) = [Qo+ B " = [1+Qg'Bk] Qg (10.20)

The operator Qp'B(k) is analytic in k as an operator in H°(I') and
1Qo " B(K)|| srory—m(ry — 0 as k| — 0. Therefore Q!(k) is an isomor-
phism of HY(I') onto H°(I') which is analytic in k in a sufficiently small
neighborhood of £ = 0. This implies that o defined by (10.19) is analytic
in k, in particular:

o(s, k) - oo(s) ask — 0, oo=Qp'fe HT). (10.21)
Thus we have

Theorem 10.1  For any f € HY(T) the limit (10.9) exists and

up(z) = /Fgo(a:,s)cfo(s)ds, oo(s) =Qp ' f (10.22)
solves the limiting problem

Vi2ug=0inQ, wuy=fonT, u(cx)=0. (10.23)
One has

u(z, k) = uo(z) + ui(x, k), ’ul(a:, k)’ =O0(k) as k — 0 (10.24)
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and the term uy(x, k) can be calculated:
(@, k) = ik/(glao 4 goo1) ds + O(k?) as k — 0, (10.25)
r

where g1 and o1 are defined by the formula

o(s, k) = oo(x) +ikoi(s) + o(k),

g(-% k/’) = go(x) + ikjgl(m) 4 O(k?), k — oo, (10.26)

so that
1
47

@) == ) =—3-Q;" [ Qq'7as (10.27)

Proof. We have already proved all but the second formula (10.27). To
prove this formula, one calculates B(k) explicitly:

B@ﬁzﬁwm—Q@UZQE/f%+O@%%k%O. (10.28)
T Jr
From (10.20) and (10.19) one gets

o=Qy'f—Qy'BR)Qy f+--- . (10.29)
From (10.28) and (10.29) the second formula (10.26) follows. Theorem 10.1
is proved. ]

Consider now the case n = 2. There are some new features in this case:
Green’s function g = %Hél) (krzy) does not have a finite limit as &k — 0, the
operator (o may have for some domains a nontrivial null-space N(Qg) so
that Q, ' does not exist for these domains. By N(A) = {u : Au = 0} we
denote the null space of an operator A.

Lemma 10.1  There exist  C R? such that N(Qo) # {0}. If N(Qo) #
{0} then dim N(Qo) =1 and one can choose ¢ € N(Qqg) so that ¢ > 0.

Proof. Let us prove that a disc D of a suitable radius a will have a non-
trivial null-space N(Qo) # {0}. The integral equation Qp¢ = 0 for the disc
of radius a can be written as

2m

In [2a” — 2a® cos(a — B3)] 1/2

P(B)dB =0

27 Jy

or

27 27 o
~ et [ oas - [T (s ) sas -0

7 0 47
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or
2m 2m ) o ﬂ
Bo: = g — — dp =0,
oi=vta) [ oz =5 [ [sin 2 o(a)as s
via): = —% In(2a).

Note that v(a) — 400 as a — 0, v(a) - —oc0 as a — oo. Since B is a
compact in L%(0,27) selfadjoint operator its spectrum is discrete. From
the variational definition of the eigenvalues \;(B) of B it follows that there
exists an a such that \;(B) = 0 for some j. More explicitly, take ¢(8) = 1,
then (10.30) reduces to

1 2m
- ln(2a) — % \A

One has fo% |sin 2521dB = 2ff_;% |siny|dy = 4, so that (10.31) becomes
2

—In(2a) = 2/x. This equation holds for a = ag = % exp(—2/m). Thus, if 2
is the disc of radius ag then N(Qo) # {0}, 1 € N(Qo).

Let us prove the second statement of Lemma 10.1. The proof is valid
also in the case of I which has m connected components. We assume m = 1
and leave the case m > 1 to the reader. We claim that if o € N(Qq), o Z 0,
then [odt # 0. Indeed, otherwise Qoo = 0 and [, odt = 0 imply o = 0.
To prove this, let w(z) := [ go(x, s)o(s) ds, go(z,s) = % In|z —s|7!. One
has

sin

b ‘ dB = 0. (10.31)

1
w(z) = —(ln |a:|_1) / odt + wy (x) (10.32)
21w r
where
V2w, =0in Q, w; = O(|z|~!), wy =0 on . (10.33)

Thus w; = 0in Q. If [Lodt = 0 then wy = w. Thus w = 0 in Q. Also
V2w =0in D, w = 0 on I, implies w = 0 in D. By the jump relation
o = wy, —wy = 0 where w}; (wy) denotes the limiting value of the normal
derivative of w on I' from D (2). The claim is proved.

Suppose now that o; € N(Qo), j = 1,2, 0; #Z 0. By the claim, fF o;dt #
0, 7 = 1,2. One can find a constant ¢ such that fp(01 — cog)dt = 0. Since
01— coy € N(Qp) one concludes that o1 = coe. Thus, dim N(Qp) = 1. Let
us finally prove that o € N(Qq) can be chosen so that o > 0. Choose o # 0,
o € N(Qo), such that [,odt > 0. This is possible (take —o if [, odt < 0).
We claim that if o € N(Qo) and fF odt > 0 then o > 0. Indeed, formulas
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(10.32) and (10.33) show that w — —o0 as || — co. By the maximum
principle w(z) < 0 in Q. Therefore wy < 0. Since w(x) = 0 in D one has
wjf, =0. Thus ¢ = w;\r, —wy > 0. In fact, in the case m = 1, the strong
maximum principle implies o(s) > 0. Lemma 10.1 is proved. O

Let n = 2. Then the following result holds.

Theorem 10.2  For the solution to problem (10.1), (10.2) the limit (10.9)
exists and uo(x) solves the limiting problem

Viug=01inQ, up = f on T, |u(co)| = O(1). (10.34)
Moreover
wo(z) = B —l—/rgo(a:,t)ao( Jdt, B = const, go — % In Tit (10.35)
where
o0 =Qy (d)f — BQy (d)1, d = const > diam D, (10.36)
and
Q@1 = 5= [ s (10.37)
One has
u(z, k) = uo(x) + O(|Ink|™*) as k — 0. (10.38)

Proof. In contrast to the case n = 3, one can have domains in R? such
that Qo is not invertible, where Qof = [ go(s,t)f(t)dt. To avoid this
complication, choose d = const > diam D and define Qo(d) by formula
(10.37). Look for the solution to (10.1), (10.2) of the form

u= / g(z,t)o(t)dt = a1 (k)(o,1) + L / In icf(t)dt +e(k)o  (10.39)
r r
where
1
oy (k) = a(k) — Py Ind, |le(k)l|gory—mrry < clk|lask— 0 (10.40)

and a(k) is defined below (10.11).

Note that Qo(d) is an isomorphism of H%(T") onto H(T') if d > diam D.
Indeed, it is injective: if Qo(d)o = 0 then Qoo = 5—:’(0,1). Since Qg
is symmetric, this equation is solvable only if the orthogonality condition
holds: 1’“d(cf 1)(00,1) = 0, where Qooo = 0, (09,1) # 0. Therefore
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(6,1)Ind = 0. If Ind # 0 then (0,1) = 0, Qoo = 0, and this implies
o = 0 by Lemma 10.1. If Ind = 0 then Qg0 = 0 and lnﬁ >0,s,tel.
This implies ¢ = 0. Indeed, by Lemma 10.1 it is sufficient to prove that
(0,1) = 0. Suppose (0,1) > 0. Without loss of generality assume o = 1407,
(6,1) = 0. One has, if lnr—i > 0, Qoo1 = —Qopl < 0. Again, using the
orthogonality condition necéssary for the solvability of the last equation,
one obtains (Qpl,0) = 0. Since ¢ > 0 and Qo1 > 0 it follows that o = 0.
The inequality o > 0 is established as in Lemma 10.1. Let us now prove that
Qo(d) is surjective as an operator from H°(T) into H'(T"). Take an arbitrary
f € HY(T). Consider the equation Qo(d)o = f. The operator Qy with the
kernel —% In |s — ] is an elliptic selfadjoint pseudodifferential operator in
HO(T) of order —1 with index 0, so that Qq(d), which differs from Qg by
a rank-one operator, has index zero as well. Since N[Qo(d)] = {0} one
concludes that Qo(d) : H°(T') — H(T') is surjective. It is now easy to
finish the proof of Theorem 10.2. Consider the equation (cf. (10.39)):

ai(k)(o,1) + Qo(d)o + €e(k)o = f. (10.41)
Write it as
o+ a1 (k) (0, QG ()1 + Qg (d)e(k)o = Q' (d) f. (10.42)
It follows from (10.42) that
(0, 1)+ a1 (k)@ 1)(@Q5 ()1, 1)+ (@5 (De(k)o, 1) = (@5 (d)f, 1). (10.43)
Thus
Qo (d)f, 1) — (@ (d)e(k)o, 1)
L+ a1 (k)(Qy ()1, 1)

We have proved earlier that ¢y := (Qy '(d)1,1) > 0. This and (10.40) imply
that

(0,1) = (10.44)

(Qy'(d)f.1)

a1 (k)(o,1) = B+ O(lay H(k)]) as k — 0, fB:= QT @LL) (10.45)
0 5
The equation
To=h, To:=oc+ai(o,)p, p:=Qy'(d)]1 (10.46)
can be solved explicitly:
h,1
IS A T (10.47)

1 +041(p,1)’
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Thus

_ aip(, 1) p -1
Tty —2 2 —1_2(1 0] k— 0.
Pl =1 Py o). ko

It follows from (10.42) that
[T+ T7Q0 (de(k)] o = T7'Q5 (@) f.
From (10.40), (10.48) and (10.49) it follows that
ok) =00 +O(|nk|™ ) as k =0
where
00 = Q (d)f = BQy (A1,

and
_ B 2
(0,1) = — +O(|lan|™7) as k — 0.
aq
Therefore by (10.39), (10.50)—(10.52),

1 d
u(z, k) =8+ — / In —oo(t)dt + O(Jay| ™) as k — 0,
2r Jp 7

xt

where o is given by (10.51). Tt follows from (10.52) that

(0’07 1) =0.

169

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

From (10.53), (10.54) and (10.51) formulas (10.35) and (10.36) follow. The-

orem 10.2 is proved.

O

Remark 10.1 Equation (10.49) can be solved by iterations since the
norm of the operator T='Qy*(d)e(k) in HY(T') goes to zero as k — 0.
Therefore this equation can be used for obtaining full asymptotic expansion
of o(s, k) and, using formula (10.39), one can obtain asymptotics of u(x, k)

as k — 0.

10.3 Integral Equation Method for the Neumann Problem

The basic result of this section is:
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Theorem 10.3  The limit (10.9) holds for the solution to problem (10.1),
(10.3) in R3 for any f € L*(T). It holds in R? iff

/ fdt =0, (10.55)
I

If (10.55) holds then the limit ug(x) solves the problem

Viug=0imQ, wun=fonl, QcR?
0 ov =f (10.56)
U()(OO) = 0

Proof. First assume n = 3. Then Green’s formula yields for the solution
to (10.1), (10.3):

u(r) = /F(ugzv —gf)dt,

exp(ik|x — t|)
dr|x — t|

(10.57)
g(a:, t) -

Taking © — s € I', x € Q, and using the well known formulas for the
limiting values of the potential of double layer on I'; one gets

I
0:A0—+0—7/g(8,t)f(t)dt, g :=u|,
2 r r
dg(s,t)
Ao = Ak)o:=2 ’ t)dt, seTl
7 (k) r ON o(t)dt, s (10.58)

or
—Aoc—2 dt.
o= Ao / g(s,0)f(t)dt

The operator I — A’(0) has a bounded inverse in L*(T") and ||A’(k) —
A'(0)|| 2ry — 0 as k — 0. Therefore ||(I—A’(k)) ™t —(I—=A'(0)) | 2y —
0 as k — 0. This and (10.58) imply that

llo(s, k) —oo(s)|| :==6(k) — 0 as k — 0. (10.59)

In fact §(k) < ck, ¢ = const > 0. The function o¢(s) in (10.59) can be
calculated from (10.58):

o = 2(IfA’(0))’1/g(s,t)f(t)dt. (10.60)

r

From (10.59) and (10.57) one obtains(10.59). It is easy to check that
uo(x) = limg_0 u(z, k) solves (10.56). Theorem 10.3 is proved in the case
n=3.
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If n = 2 the proof is basically the same. The role of condition (10.55) is
explained below formula (10.11), and, in fact, ug(x) = O(|x|~1) if (10.55)
holds, a refinement of (10.56). Theorem 10.3 is proved. O

10.4 Integral Equation Method for the Robin Problem

Consider now problem (10.1), (10.4), in © C R?. This problem is uniquely
solvable under the assumptions (10.5) [133, p. 37]. Look for its solution of
the form

u= /g(:v,t)o(t)dt, g= iHél)(k:p: —t)). (10.61)
I

The boundary condition (10.4) yields

Alk)o — o

27 n(s)Qk) = . (10.62)

where
A(k)o ::QLﬁg(s,t)Nsa(t)dt, Q(k)a:Lg(s,t)o(t)dt. (10.63)

Define Ay = A(0), Qo = Q(0),

Ag— 1T
2

B =

+1(s)Qo- (10.64)
Equation (10.62) can be written as

Bo + a(k)n(s)(o,1) + e(k)o = f (10.65)
where (k) is defined below (10.11) and [|e(k)||z2r)y— 2y — 0 as k — 0.

Theorem 10.4 If N(B) = {0} and (B~'n,1) # 0 then for the solution
to (10.1), (10.4) equation (10.9) holds. If N(B) # {0} and (10.5) holds
then dim N (B) = 1. Let (10.5) hold, h € N(B), h # 0, then (nQoh, 1) # 0,
B'Qoh = 0, and for the solution to (10.1), (10.4) equation (10.9) holds.
Conversely, if for the solution (10.1), (10.4) equation (10.9) holds, then
either N(B) = {0} and (B~'n,1) # 0, or dim N(B) = 1 and the equations
(nQoh,1) # 0, B'Qoh = 0 hold. If dim N(B) > 1, then there exists an
f € L3(T") for which (10.9) fails.

The proof of this theorem is given in a series of lemmas.
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Lemma 10.2 If N(B) = {0} then B is invertible and the condition
(B™'n, 1) #0 (10.66)

is necessary and sufficient for (10.9) to hold for the solution to (10.1),
(10.4).

Proof. The operator B is of Fredholm type. Therefore N(B) = {0}
implies that B~! is bounded and defined on all of the space L?(T"). Equation
(10.65) can be written as

o+ak)e,B~'n+ B te(k)o =B f, ¢, :=(0,1). (10.67)
Integrate (10.67) over T' to get
coll +a(k)(B 'y, )] + (B te(k)o, 1) = (B £,1). (10.68)

If (10.66) holds then one obtains from (10.68), as in the proof of Theorem
10.2, that there exists

. _ B
]11_>mo a(k)e, = B B. (10.69)

If (10.69) holds then (10.67) implies that

o(s,k) =0o(s) +O(|Ink| ') as k — 0 (10.70)
where
~1
oo(s) =B f — %Bln, (00,1) = 0. (10.71)

Therefore u(z, k) = [ g(x,t)o(t, k)dt satisfies (10.9) with

uo(z) = —i—/rgo(x,t)ao(t)dt, go(x,t) = — In— (10.72)
and
u(z, k) = up(x) + O(|Ink|™ ") as k — 0 (10.73)

where ug(x) solves the limiting problem and is bounded at infinity.
Conversely, if N(B) = {0} and (B~'n,1) = 0, then (10.9) does not hold

for some f. Indeed, one can find f € L?(T") such that (B=1f,1) # 0. For

this f equation (10.9) does not hold. To prove this, note that equations



Integral Equation Method for the Robin Problem 173

(10.67) and (10.68) and the condition (B! f,1) # 0 imply that limy_,q ¢, #
0, and

o=DB"'f - B e(k)o —a(k) B 'n[(B 1 f,1) — (B te(k)o,1)]. (10.74)
It follows from (10.74) and (10.40) that
o=—ak)B 9B~ f,1) + B 'f+o(la(k)| ') as k — 0.  (10.75)
Therefore (o,1) = (B~ f,1) + o(|a(k)|~!) and

u(z, k) = /Fg(a:,t)adt =a(k)(B7'f,1)+ /Fgo(a:,t)adt +o(1) as k — 0.

(10.76)
It is clear from (10.76) that |u(z, k)] — oo as k — 0 at least at some points
z. Lemma 10.2 is proved. 0

Lemma 10.3 If (10.5) holds and N(B) # {0} then dim N(B) = 1.
Proof. Suppose Bh = 0, h # 0. Then (h,1) # 0. Indeed, suppose
(h,1) = 0. Define
1 1
w(z) = —/ln—hdt. (10.77)
r

2 Tt
Then
V2w =0in QU D,
wy+nw=0onT (10.78)
w=O(|z|™!) as |z| — oo
Assumptions (10.5) imply that w = 0 in Q, so w =0 on I, V2w = 0 in D
and w = 0 in D. Therefore h = wjf, —wy = 0.
It is now easy to see that dim N(B) = 1. Indeed, let h; € N(B),

(hj,1) # 0, j = 1,2. Then there exists a ¢ = const such that (hy —cha,1) =
0. Since hy — chy € N(B), it follows that hy; = chy. Lemma 10.3 is proved.

O
Lemma 10.4 Ifh e N(B), h #0, then
(nQoh,1) #0 (10.79)
and
B'Qoh = 0. (10.80)

Here B’ is the transpose of B.
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Proof. Assume that

_ Aoh—h
2
Since Af = Aj{), one has (Aph,1) = (h, Aj1) = —(h,1). This and (10.80)
imply

Bh : +nQoh = 0. (10.81)

(Aoh, 1) = (. 1)

0= + (nQOha 1) = _(ha 1) + (77Q0h7 1))

2
or
(h,1) = (nQoh, 1). (10.82)
Since (h,1) # 0 equation (10.79) follows.
Note that
QoAo = A{Qo. (10.83)

Indeed, by Green’s formula

/ds'g(s,s')@g(s',t)]\fs/:/ ds'9g(s,s')Ngg(s',t) (10.84)
r r

which implies (10.83). Apply Qo to (10.81) and use (10.83) to get

Alp —
B'p:= Op2 Py Qonp =0, p:=Qoh, (10.85)
so that (10.80) is proved. Lemma 10.4 is proved. O

Lemma 10.5 If (10.5) holds and N(B) # {0} then (10.9) holds for
the solution to (10.1), (10.4). Conversely, if (10.9) holds for any f €
L3(T) for the solution to (10.1), (10.4), then dim N(B) < 1. In the case
dim N(B) =0, that is N(B) = {0}, condition (10.66) holds. In the case
dim N(B) = 1 conditions (10.79) and (10.80) hold.

Proof. The last statement is a part of Lemma 10.5. Let us prove that
(10.5) and N(B) # {0} imply (10.9) for the solution to (10.1), (10.4). By
Lemma 10.3, dim N(B) = 1 and by Lemma 10.4, equations (10.79), (10.80)
hold. To prove (10.9) it is sufficient to prove existence of the finite limits

lllg%)a(s,k) = o0(s),

. (10.86)
lim a(k)(0, 1) = 5.
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Let us prove (10.86). Define
By=B+P, P=(,h)n, heN(B), h#0. (10.87)

The operator B; has a bounded inverse since it is injective and of
Fredholm type. Its injectivity is easy to prove: if Bjo = 0 then Bo =
— (o, h)n, and, by the necessary condition for solvability of the last equation,
(o,h)(p,7) =0, where p € N(B’). Since, by (10.79), (p,7) = (np,1) # 0,
it follows that (o,h) = 0 and therefore Bo = 0. Since dim N(B) = 1, one
concludes that o = ch, ¢(h,h) =0, so that ¢ =0 and o = 0.

Write equation (10.65) as

o+ a(k)es By (k)n — By ' (k)Po = By ' (k) f,
co = (o,1), (10.88)
Bi(k) = By + (k).
Let oy, := (0,h) and ¢, = (0,1). Then it follows from (10.88) that
on + a(k)e, (By ! (k). h) = on(By " (k)n,h) = (By ' (k). h),
co +alk)es(By ' (k)n, h) — on(By (k)n, 1) = (By ' (k) f,1)

The matrix of this system for o5, and ¢, is

1= B ) o) (B W)
=1 B km D) 1+ ak)B (k1) - (10.90)

Note that
|B; (k) — By = 0ask —0 (10.91)
and
detT =1+ a(B; (k)n,1) — (B ' (k)n,h) := 14+ ab — a. (10.92)

Let us prove that b := (B; ' (k)n,1) # 0 as k — 0. Indeed, by (10.90) one
has b — (B, ', 1). Denote By'n := ¢q. We want to prove that (g,1) # 0.
One has n = Bi1q = Bq + (q,h)n. We will prove that (¢,h) = 1, so n =
Bg+n. Thus B¢ =0,q=ch,q# 0soc#0. Thus (¢,1) = ¢(h,1) # 0. Let
us prove that (¢,h) = 1. One has n = Bq + (¢, h)n, so (n,p) = (¢,h)(n, D).
Note that B'p = 0, so (Bq, p) = (¢, B’p) = 0. Therefore (0, p) = (q, h)(n, p).
Since (n,p) = (np,1) # 0 by (10.79), it follows that (¢,h) = 1. Therefore,
for all sufficiently small &,

det T # 0 (10.93)
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and the system (10.89) is uniquely solvable for o, and ¢, .
Let us solve (10.89) for ¢, and o,. One has

¢ = (det T) " { [1 = (BT (k)n, )} (BT (F) £, 1)

+ (B (k1) (BI (R)f. ) }.

Using (10.91) and taking k& — 0 one gets

lim a(k)c, = B:= (B f,h) (10.94)
k—0
where the formula
lim (B; *(k)n, h) = (10.95)
k—0
was used. Similarly,
lim Ié] By f.1) (10.96)
imop, =p— ———=:=1. .
0™ T B T

So, formula (10.86) is proved.
From (10.94) and (10.61) it follows that

u(z, k) = uo(x) + O(| lnkz|_1)

10.97
1:ﬂ+/rgo($,5)00(8) ds+O(|Ink|™") ask — 0 ( )

where o (s) is defined by (10.86) and wuo(z) solves the limiting problem.
Existence of the limit (10.86) follows immediately from (10.88), (10.91),
(10.94) and (10.96), and

oo(s) = By ' f — BBy 'n++By ', (10.98)

We have proved that N(B) # {0} and (10.5) imply (10.9) for the solution
to (10.1), (10.4).

Let us assume now that (10.9) holds for all f € L(T'), and prove that
this implies either that N(B) = {0} and (10.6) holds, or that dim N(B) = 1
and (10.79), (10.80) hold. If (10.9) holds then the limits

%i_% alk)(o,1) = 3, ]11_>mo o(s,k) = 0o(s) (10.99)
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exist. Indeed, if the limit (10.99) exists then the existence of (10.99) follows
from the formula

u(z, k) = a(k)(o,1) + / go(x, t)o(t, k)dt +o(1), k—0 (10.100)

and the assumed existence of the limit

lim w(z, k) = uo(x). (10.101)

k—0

Let us prove existence of the limit (10.99) assuming (10.101). Assume first
that B is injective. Then Lemma 10.5 yields (10.66) and the existence of
(10.99). If dim N(B) = 1, then Lemma 10.4 yields (10.79) and (10.80),
and the existence of the limits (10.99) can be established as follows. First
assume that N(Qp) = {0} and (Q;'1,1) # 0. Later we will drop these
extra assumptions. Write (10.99), with © = s € T and ¢, := (0,1), as

u(z, k) = a(k)ee + (Qo + 3)o, €0 :=(Q — Qo)o. (10.102)
For & — 0 the operator @)y + € is invertible, so
o+ a(k)er(Qoe + €)' = (Qo 4 €) tu. (10.103)

The right-hand side of (10.103) has a finite limit as & — 0 because of
(10.101) and the equation |le(k)|| g1 (ry— o)y — 0 as & — 0. Integrate
(10.103) over I to get

o[l + a(k)(Qo +¢)7'1,1)] = (Qo + €) 'u, 1). (10.104)
Since (Qg *1,1) # 0 it follows that
co = O(Ja(k)|7h), %ig})a(k)co = (Qo'u,1)/(Qy'1,1) := 3. (10.105)

Here w = ulp. If at least one of the two extra assumptions (N(Qo) = {0}
and (Q711,1) # 0) is not satisfied then find a constant ¢ > 0 such that
Q1 := Qo +c(-,1) is invertible and (Q;'1,1) # 0. This is possible as follows
from the argument given in the proof of Theorem 10.2. Equation (10.102)
can be written as

u=o1(k)ce + (Q1+¢€)o, ai(k):=a(k)—c. (10.106)

Now one can repeat the argument given below formula (10.102) and obtain
(10.105) with aq (k) in place of a(k) and @y in place of Qo. This proves
(10.99). Equations (10.103), (10.105) and (10.101) imply (10.99).
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To complete the proof of Lemma 10.5 let us prove that if dim N(B) > 1
there exists an f € L?(I") for which (10.9) does not hold for the solution to
(10.1), (10.4). Note that dim N(B) > 1 implies that (10.5) does not hold,
since we have proved in Lemma 10.3 that if (10.5) holds then dim N(B) < 1.
Suppose to the contrary that (10.9) holds for all f € L?(T"). Then the limits
(10.99) exist. Therefore the limiting form of the equation (10.65)

Bo—pn=f, B=p(c)=const (10.107)

is solvable for all f € L?(T"). Since B is a Fredholm operator, the necessary
condition for the solvability of (10.107) is

(f =Bn,p) =0 Vpe N(B). (10.108)

If dim N(B) > 2, condition (10.108) cannot be satisfied for all f € L(T")
since one has only one parameter [ to satisfy two or more conditions
(10.108). Lemma 10.5 is proved.

Theorem 10.4 follows from Lemmas 10.2-10.5. 0

10.5 The Method based on the Fredholm Property

The basic result of this section is: a necessary and sufficient condition
for the existence of the limit (10.9) is, roughly speaking, uniqueness of the
solution of the limiting problem. The approach we take is this: suppose that
the problem at hand, for example, (10.1), (10.2), or (10.1), (10.3), or (10.1),
(10.4), is of Fredholm type in the appropriate spaces. Then uniqueness of
the solution to the limiting problem implies, by the Fredholm property,
boundedness of the inverse operator.

The operator (10.1) depends continuously on k at k = 0, so its inverse
has the same property if it exists and is bounded. These ideas are used in
this section. The outlined approach allows one to handle operators with
variable coefficients since it does not use the detailed information about the
fundamental solution to equation (10.1).

Consider the problem

Lu+ku=FinQcCR", k>0, n>2 (10.109)

with one of the boundary conditions (10.2), (10.3) or (10.4) and the radia-
tion condition at infinity. Here

Lu = 0;(a;;05u) — q(z)u, (10.110)
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over the repeated indices one sums up, a;j(x) € C*(R?) is a strongly elliptic
real-valued matrix,

Aijj = (51']‘ for |$| >R

where R > 0 is an arbitrary large fixed number, ¢ € Q(3). Consider the
limiting problem

Lug = F in Q (10.111)
up satisfies (10.2) or (10.3) or (10.4) (10.112)

up(x) = 0(1) as |z] > o0 if n =2 (a); wo(co) =0ifn>2 (b)

(10.113)
Let us assume that
/ IFP(L+ |2))'de < 00, s>1, feHHT) (10.114)
Q
where f is the boundary function in (10.2), (10.3) or (10.4).
The basic assumption is:
Problem (10.111)—(10.113) has at most one solution. (10.115)

Let us introduce the space L2(9) := L? of functions with finite norm ||u|| =
(fo lul?(1 + |z|)*dz)2. Our argument is valid with obvious modifications
in R", n > 2. All Fredholm operators in this Chapter are assumed to have
index zero.

Lemma 10.6 Consider a Fredholm operator A(k) : X1 — Xz from a
Banach space X1 into a Banach space Xa, k € [0,b] is a parameter. Assume
that ||A(k)—A(K")|] = 0 ask — K, k, k" € [0,b], and N(A(0)) = {0}. Then
A~Y(k) is an isomorphism of X1 onto Xo for all k € [0,68] provided that
0 > 0 is sufficiently small and

A~ (k) = A7H(0)|| = 0 as k — 0. (10.116)

Proof. By definition of a Fredholm operator, the range R(A(k)) of A(k)
is closed and its index is zero, that is, dim N(A(k)) = codim R(A(k)).
In particular, N(A(0)) = {0} implies that R(A(0)) = Xa, so that A(0)
is an isomorphism of X; onto X5. We claim that, for sufficiently small
0 > 0, the operator A(k) is an isomorphism of X; onto X, for all k& €
[0,8]. Indeed, A(k) = A(0) + A(k) — A(0) = A(0)[I + A=1(0)B(k)] where
B(k) := A(k) — A(0), || B(k)|| — 0 as k& — 0 by the assumption. Therefore
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the operator I + A~1(0)B(k) is an isomorphism of X; onto X; and A(0)
is an isomorphism of X7 onto X5, and the claim follows. The conclusion
(10.116) of Lemma 10.6 follows from the formula

A7 k) — ATH0) = — A1 (R)[A(k) — A(0)]A1(0) (10.117)
if one takes into account that
sup [|ATH(E)|| <e. (10.118)
0<k<s
To prove (10.118), assume the contrary. Then there is a sequence k,, € [0, J]

such that ||A71(k,)|| > n. One can assume that k, — ko € [0,4], and use
the identity

A k) = {1 + A7 (ko) [A(kn) - A(ko)] }A‘l (ko). (10.119)

As ky,, — ko, it follows from (10.119) that ||A=1(k, ) — A~ (ko)|| — 0, so that
|A=Y(ko)|| < c. Therefore (10.118) is proved. This completes the proof of
Lemma 10.6. O

Define the operator £ : H2, — H,, where H? = {u : [Jul[z2 + ||Oul| 2 +
|0%u| 2} < 00, s > 1 and Hy = L? @ H(T'), by the formula

F
f

where yu is the boundary operator (10.2), (10.3), or (10.4) and L is defined
in (10.110). For example, in the case (10.4),

Lu = L(k)u = ( > , L+EkHu=F ~qu=f (10.120)

yu = un + n(s)u. (10.121)

The domain of definition of £ belongs to HZ (£2) N L2(£2). The operator £

satisfies the estimate which follows from elliptic theory

lullyz . < c(IIFllz + [ fllgam)), 0<er <Rk <e2,0<Imk <1,
(10.122)
where ¢ does not depend on u, o = % for the Dirichlet boundary condition
and o = 3 for the conditions (10.3) or (10.4). Let us consider first n > 3. In
this case using assumption (10.115) and the limiting absorption principle,
one can prove that the fundamental solution to the equation

Lg+ k%9 = —6(z — ) in R", (10.123)
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where g satisfies the radiation condition at infinity, exists and is continuous
in k at k = 0. One can look for the solution to (10.9), (10.2) of the form

u:/ngy+v, (L+k*)v=0inQ
@ (10.124)

v = / g(w,s,k)o(s)ds, Qo= f— / gF dy|.
T Q

where Qo := v|r. The operator Q(k) : H*(T') — H'(T") is norm continuous
in k in the interval 0 < k < kg, where kg > 0 is a sufficiently small number,
and Q~ (k) : HY(I') — H®(T") is bounded for k € [0, ko] by (10.115). By
lemma 10.6, it follows that [|Q~(k) — Q7*(0)|| — 0 as k — 0. We have
proved

Theorem 10.5 Ifn > 3 and (10.115) holds, then |u(z, k) — up(z)] — 0
as k — 0 uniformly on compacts in 2.

If n = 2 then the result and the basic idea of the argument are the
same, but some modifications are needed to take into account that g is no
longer continuous as k — 0. For example, if L = V? then g = %Ho(l)(k:r),
r:= |x — yl, so that (10.120) holds. However, due to the fact that the opera-
tor Q(k) : H°(T') — HY(T) acts as a differentiation, the unbounded compo-
nent of the operator Q(k)o which, for L = V2, is the constant a(k)(o, 1),
does not bring difficulties and one has [|Q(k) — Q(K')|| gory—m1(r)y — 0
as k— k', k, k' € [0,ko). As above, assumption (10.115) implies that
Q'(k) exists and, therefore, is bounded from H*(T') onto H°(T'), since
Q(k) : H°(I) — HY(T') is Fredholm-type operator. The second point
which needs a discussion is the possible unboundedness of fQ gFdy|r as
k — 0. Indeed, [, gFdy = a(k) [, Fdy + [, goFdy + o(1) as k — 0, and if
Jo Fdy # 0, this expression is O(|Ink|) as k — 0. The argument similar to
the given in the proof of Theorem 10.2 is applicable now. Indeed, equation
(10.124) can be written, for L = V2, as

alk)ee + Qoo + e(k)o = f —a(k)e — h(k), c¢5:=(0,1) (10.125)
where Qo and €(k) are as in the proof of Theorem 2.2, ¢ = [, Fdy, and

(k) —=h(0)|[c(ry — 0 as k — 0. Assume that N(Qo) = {0}. Then (10.125)
can be written as

o+ Qple(k)o + a(k)c,Qytl = Qutf — a(k)eQyt — Qo th(k). (10.126)
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Integrate (10.126) over I" to get

co |14+ a®) (@51 1)] = (@ [F = h(k) = e(k)a],1) = alk)e(Q5 ™, 1)
(10.127)
As in Section 10.2, (Qy ', 1) # 0, so that (10.127) implies

co =—c+O(la]™') as k — 0. (10.128)
From (10.126)(10.128) one gets
o=Qy'[f—h0)] —bQy" +O0(la| ), b= lim [(co+ c)a(k)]
b= Q%) (@1 — h(0)),1) + ¢}
(10.129)
Therefore o(s, k) = ao(s) + O(|a| 1) and

ula, k) = / gle, ) ds + /Q 9(e,9)F(y)dy
=a(ce+¢)+uo+O(la| ™)
=b+ ¢o(z) + O(|a|_1) = ug(x) + O(|a|_1)

where b is defined in (10.129), ¢o(z) = [.go(x,s)oo(s)ds +
Jo 90(z,y)F(y)dy, and ug(z) solves the limit problem

(10.130)

Lug=FinQ, wuy=fonT, |ug(o0)| < o0. (10.131)

The last condition (10.131) is a consequence of the equation

¢o(x) = L | |[/aods+/QF(y)dy] +o(1) as |z| = o0 (10.132)

which implies ¢o(z) = o(1) as |x| — oo, since [ oo ds + [ Fdy = 0.

In this argument we used essentially the special form of L, namely L =
V2, since the behavior of g as k& — 0 has been used essentially. In the
general case of L given by (10.2) one needs a different method of reducing
the problem to a Fredholm-type equation, a method which does not use the
properties of the fundamental solution g in a neighborhood of k& = 0.

This method is as follows. Assume that

sup Ju(z, k)| <e¢ (10.133)
0<k<ko
where u(z, k) is the solution to (10.109), (10.2) or (10.109), (10.3) or
(10.109), (10.4), and the norm in (10.133) is L? (2), s > 1. Then using the
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elliptic regularity estimate one concludes that there is a sequence u(z, k),
k, — 0, which converges to a limit ug(z) in H2_ () and in L% (). Pass-
ing to the limit &k, — 0 in (10.109) and (10.2) yields (10.111)—(10.113) for
uo(z). Therefore, the desired result (10.9) follows from (10.133).

Lemma 10.7 Inequality (10.133) follows from (10.115).

Proof. 1If (10.133) is false then there is a sequence k,, — 0 such that
|u(z, kn)|| > n. Define v, := u(, ky)/||u(z, k). Then

L'Un + k/’»,%’un = Fn = FHU(J?, kn)||_17 Un

= Fui= Sl k)|

[on|| =1
(10.134)
As above, one derives from (10.134) that
v = vo in HE (), ||vn —wo|| = 0asn — oo
o in Hie(6), o = (10.135)

Luy=0inQ, wvo=0o0onT, wy satisfies (10.113)

By the assumption (10.115), equation (10.135) imply vy = 0, and (10.135)
implies ||v,|| — 0. This contradicts to (10.29), and the contradiction proves
(10.133). O

Let us summarize the result.

Theorem 10.6 If (10.115) holds then (10.9) holds for the solution to
(10.109), (10.2) or (10.109), (10.3) or (10.109), (10.4). Conversely, if
(10.9) holds for the solution to (10.109), (10.2) or (10.109), (10.3) or
(10.109), (10.4) for any F € L(Q) and f = 0, or for F = 0 and any
f € H32(T'), then (10.115) holds.

Proof. The first part of the conclusion of Theorem 10.6 has been proved
above.

The second part follows from the solvability for all F' and f of the
limiting problem (10.111)—(10.113) in the spaces H2, — Hs, s > 2. Indeed,
a necessary condition for the solvability of (10.111)-(10.113) for some f €
H3(T') and F € L3(Q) is the orthogonality of F' to all solutions w of the
homogeneous adjoint problem. Since this condition [, Fwdz = 0 holds
for all F € L(Q), it follows that w = 0. If F = 0 then the orthogonality
condition takes the form [ fuxds =0, Vf € H%(F) This implies that
wy =0 on I'. Since w = 0 on I' by the assumption, one applies uniqueness
theorem for the solution of the Cauchy problem for elliptic equation Lw = 0
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in  and concludes that w = 0. Thus, (10.115) holds. Theorem 10.6 is
proved. ]

10.6 The Method based on the Maximum Principle

Consider the problem (10.1), (10.2) in @ € R", n > 3. Let R = k™%
Define ¢; (k) := sup |u(z, k)| where the supremum is taken over z € Q, ||
2diam D := 2rg. From the elliptic estimates it follows that [V,
cc1 (k). We will use Green’s formula

<
<

=70

u(z) = / (ugn — gun)ds, x € By, (10.136)
‘S|:7'U

Here g satisfies the radiation condition B = R™\B,,, By, = {z : |z] < o},

- pr(1)
2 2 o n i Hy ' (kl|z)) o, n—2
k*)g = —d(z — R = =
(V24 K29 = ~b(a —y) in B, gla) = { G ok, v o=
(10.137)
where H,El) is the Hankel function. One has, uniformly in 0 < r < rq,
ro2v, n>2 ) »
6] < c L o) = LED (). (10.138)
|Inr|+1, n=2 4

By ¢ we denote various positive constants independent of k. From (10.137)—
(10.138), one obtains

lgl < elz —y| "2, |Vg| <clz —y| " for |z —y| <2k~ (10.139)
Choose an arbitrary 6 € [0,27) and define

v(z, k, 0) = 8‘%{ exp(if) [u(z, k) — uo(a:)]} (10.140)

where ug(z) is the solution to problem (10.1), (10.2) with £ = 0. Note that

Av = —k*R{exp(i®)u}, v=0onT (10.141)

Vljgj=k-1 = 3‘%{ exp(if) [u(w, k) — uo(x)] }\ll_lzk,l. (10.142)
If vy == a+ Br—"* r = |z|, @ and 3 are positive constants, then

Avy =2B(=N +4)r "2 < Av for 8 = Brei(k)k? (10.143)
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where c¢1(k) was defined earlier and $; > 0 is a sufficiently large fixed
constant. Note that (10.136) and (10.139) imply that

lu(z, k)| < ccy(k)|z|~"*2 for |z| < k1. (10.144)
Note also that
Vi |jpjm—1 = V]jgjzp-1 for o = arer (k)E™ 2 (10.145)

where ap > 0 is a sufficiently large constant. By the maximum principle,
v(z, k) < wvi(w, k) for |x] < k!, Choosing 6 = 0(z, k), which was arbitrary,
in a suitable way, one concludes that

‘u(z, k) — uo(z, k)| < vi(z) for |z < kL (10.146)
One has, if n > 4 and k — 0,

vy <a+f max r"H< arer (k)" % + Brey (k)E" 2 < cey (k)k?

0<d<r<k—1
(10.147)
where d > 0 is a constant. From (10.146) and (10.147) it follows that
max |u(z, k) — uo(x)| < cer(k)k*, n> 4. (10.148)
z€Q, |z|<k-1

By the definition of ¢; (k) and from the triangle inequality one gets

ci(k) < max  |ug(z)| + cer (kK2 (10.149)
z€Q, |z|<k—1
This implies
c1(k) <cp:= mag)l<|u0(a:)|. (10.150)
re

Indeed, for n > 3, by the maximum principle, for example, one has

max luo(x)] = co < 0. (10.151)

We have assumed n > 4 so far. If n = 4 then one uses vy = a+ [lnr,
Avy = 28r72, B < 0 and |p] is sufficiently large (see (10.143)), a =
aicr(k)k?|Ink|. Equation (10.148) becomes

max |u(x, k) — uo(x)| < cer(k)E*|Ink| < ccok®|Ink]|, for n = 4.
zeQ, |z|<k—1
(10.152)
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If n =3 then vy = a+ fr, Avy = 2pr~ 1, 31 <0, |81] is sufficiently large,
a = aik and (10.148) becomes

zeﬂl,r\lj\);kfl lu(z, k) — ug(z)| < cok, forn=3. (10.153)

We leave to the reader to check that the estimates (10.148), (10.152),
(10.153) are sharp: the rates given in the right-hand sides of these equalities
occur for the function Hl(,l)(k|x|)|a:|”’[Hl(,l)(k:)]’l. Let us formulate the
results.

Theorem 10.7 Ifn > 3 then estimates (10.148), (10.152) and (10.153)
hold.

The case n = 2 can also be treated similarly. In this case one has

Theorem 10.8 Ifn =2 then

sup lu(z, k) — uo(a:)‘ <cln|z|||Ink|~t (10.154)
zeQ, |z|<k—?!

Proof. Choose vy := aln|z| + Bs(k|z|), where a = ay|Ink|™ a3 > 0 is
sufficiently large, 8 = B1]|Ink|™, B1 < 0, |31] is sufficiently large, s(r) :=
1r%(|Inr| +2), r € (0,1). Using the argument similar to the one in the
proof of Theorem 10.7, one gets (10.154). O

The case of the data f depending on k and the operator (10.110) with
q > 0 so that for this operator the maximum principle holds, can be treated
similarly. The arguments in this section are taken from [160].

Another idea based on coercivity estimates is developed in [134] and
[160] and applied to a study of the low-frequency behavior of the solutions
to dissipative Maxwell’s equations.

10.7 Continuity of Solutions to Operator Equations with
Respect to a Parameter

Let A(k)u(k) = f(k) be an operator equation in a Banach space X, k €
A C Cis a parameter, A(k) : X — Y is a map, possibly nonlinear, A C C is
a domain. Sufficient conditions are given in this Section for the continuity
of u(k) with respect to k.
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10.7.1 Introduction

Let X and Y be Banach spaces, k € A C C be a parameter, A be an open
bounded set on a complex plane C, A(k) : X — Y be a map, possibly
nonlinear, f := f(k) € Y be a function.

Consider an equation

A(k)yu(k) = f(k). (10.155)

We are interested in conditions, sufficient for the continuity of w(k) with
respect to k € A. The novel points in our presentation include neces-
sary and sufficient conditions for continuity of the solution to equation
(10.155) and sufficient conditions for its continuity when the operator A(k)
is nonlinear.

Consider separately the cases when A(k) is a linear map and when A(k)
is a nonlinear map.

Assumptions 1. A(k): X — Y is a linear bounded operator, and

(a) equation (10.155) is uniquely solvable for any k € Ag := {k : |k — ko| <
7’}, ko € A, A() C A,
(b) f(k) is continuous with respect to k € Ag, supgea, [/ (k)] < co;
(¢) limp—osupkea, [|[[A(k+h)—A(k)]v|| = 0, where M C X is an arbitrary
M

veE
bounded set,
d) suprea, [|[A71(k)f]| < 1, where N C Y is an arbitrary bounded set,
fenN

and ¢; may depend on N.
Theorem 10.9 If Assumptions 1 hold, then

lim ||u(k + h) — u(k)|| = 0. (10.156)

h—0

Proof. One has

u(k +h) —u(k) = A" (k+h)f(k+h) — A~ (k) f (k)
=AY k+h)fk+h)— AN E)f(k+h)  (10.157)
+ AT R) f(k 4+ h) — A7 (k) f(K).

HA’l(k) [f(k+R)—f(k)] H < ci|[f(k+h)—f(k)|| = 0 as h — 0. (10.158)

14724+ h) = A7 R)]| = || A7k + W) [AG + k) = AR)] A7 (k)|

< ci||A(k + h) — A(k)|| — 0 as h — 0.
(10.159)



188 Low Frequency Asymptotics

From (10.157)—(10.159) and Assumptions 1 the conclusion of Theorem
10.9 follows. O

Remark 10.2 Assumptions 1 are not only sufficient for the continuity
of the solution to (10.155), but also necessary if one requires the continuity
of u(k) uniform with respect to f running through arbitrary bounded sets.
Indeed, the necessity of the assumption a) is clear; that of the assumption
b) follows from the case A(k) =1, where I is the identity operator; that of
the assumption c) follows from the case A(k) =1, A(k+ h) =21, Vh #0,
f(k) =g # 0Vk € Ag. Indeed, in this case assumption c) fails and one
has u(k) = g, u(k +h) = 5, so ||u(k + h) —u(k)|| = @ does not tend to
zero as h — 0.

To prove the mnecessity of the assumption (d), assume that

SUpgen, [A71 (k)| = oo.  Then, by the Banach-Steinhaus theorem,
there is an element f such that supyca, [|[A7(k)f|]| = oo, so that
lim; o0 [ATH (RS = 00, k5 = k€ Do Then [lus|l = lu(k))] =

A= (k) f]l — oo, so uj does mot converge to u := u(k) = A~ (k)f,
although k; — k.

Assumptions 2. A(k) : X — Y is a nonlinear map, and (a), (b), (c)
and (d) of Assumptions 1 hold, and the following assumption holds:

(e) A=Y(k) is a homeomorphism of X ontoY for each k € Ay.

Remark 10.3  Assumption (e) is included in (d) in the case of a linear
operator A(k) because if |A(k)|| < co and |A7Y(K)|| < c1 then A(k), k €
Ay, is an isomorphism of X onto Y.

Theorem 10.10 If Assumptions 2 hold, then (10.156) holds.
Let us make the following Assumption Ag:
Assumption Ag: Assumptions 2 hold and

(£) f(k):= % is continuous in Ay,

(g) A(u, k) := % is continuous with respect to (wrt) k in Ay and wrt
u € X,

() supgea, [I[A"(u, k)]~ < c3, where A’(u, k) is the Fréchet derivative of
A(u, k) and [A’(u, k)] ! is continuous with respect to u and k. f(k) :=

k) . . .
dk) is continuous in Ag.

Remark 10.4 If Assumption A, holds, then

lim ||i(k + h) — @(k)|| = 0. (10.160)
h—0
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Remark 10.5 If Assumptions 1 hold except one: A(k) is not neces-
sarily a bounded linear operator, A(k) may be unbounded, closed, densely
defined operator-function, then the conclusion of Theorem 10.10 still holds
and its proof is the same. For example, let A(k) = L + B(k), where B(k)
18 a bounded linear operator continuous with respect to k € Ag, and L is a
closed, linear, densely defined operator from D(L) C X into Y. Then

|A(k+h) — AR)|| = |B(k+h)—B(Ek)| =0 as h—0,
although A(k) and A(k + h) are unbounded.

In Section 10.7.2 proofs of Theorem 10.10 and of Remark 10.4 are given.

10.7.2 Proofs

Proof of Theorem 10.10. One has:
A(k + hyu(k + h) — A(kyu(k) = f(k +h) — f(k) = o(1) as h— 0.
Thus

Ak)u(k + k) — A(k)u(k) = o(1) — [A(k + h)u(k + h) — A(k)u(k + h)).

Since Sup{u(k+h):”u(k+h)||§c} ||A(k + h)u(k + h) — A(k)u(k —+ h)” hj() 0, one
gets

A(k)yulk + ) — Alk)u(k) as h — 0. (10.161)

By the Assumptions 2, item (e), the operator A(k) is a homeomorphism.
Thus (10.161) implies (10.156).
Theorem 10.10 is proved. O

Proof of Remark 10.4. First, assume that A(k) is linear. Then

iA—l(lc) = —A"Nk)A(k)AT k), A= a4

o = (10.162)

Indeed, differentiate the identity A=!(k)A(k) = I and get d’q;—;(k)A(k) +
A=Y(k)A(k) = 0. This implies (10.162). This argument proves also the

existence of the deriviative M;i,:(k). Formula u(k) = A=Y(k)f(k) and the

continuity of f and of dA;;(k) yield the existence and continuity of u(k).

Remark 10.4 is proved for linear operators A(k).
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Assume now that A(k) is nonlinear, A(k)u := A(k,u). Then one can
differentiate (10.155) with respect to k and get

Ak, u) + A'(k,u)t = f, (10.163)

where A’ is the Fréchet derivative of A(k,u) with respect to u. Formally
one assumes that @ exists, when one writes (10.163), but in fact (10.163)
proves the existence of 4, because f and A(k,u) = % exist by the
Assumption A, and [A’(k,u)]~! exists and is an isomorphism by the
Assumption Ag, item (j). Thus, (10.163) implies

i =[A'(k,u)] " f — [A"(k,u)] " Ak, u). (10.164)

Formula (10.164) and Assumption A, imply (10.160).
Remark 10.4 is proved. O

Consider some application of the above results to Fredholm equations
depending on a parameter.
Let

Au i=u — / b(x,y, k)u(y)dy := [I — B(k)ju = f(k), (10.165)
D

where D C R™ is a bounded domain, b(z,y, k) is a function on D x D x
Ao, Ay = {|k — ko| < 7}, ko > 0, r > 0 is a sufficiently small number.
Assume that A(kg) is an isomorphism of H := L?(D) onto H, for example,
Ip [p Ib(@,y, ko)[Pdzdy < oo and N(I — B(k)) = {0}, where N(A) is
the null-space of A. Then, A(kg) is an isomprohism of H onto H by the
Fredholm alternative, and Assumptions 1 hold if f(k) is continuous with
respect to k € Ag and

h—0

lim/ / lb(z,y, k +h) —b(x,y,k)|*dedy =0 k€ A. (10.166)
D JD

Condition (10.166) implies that if A(kg) is an isomorphism of H onto H,
then so is A(k) for all k € Ay if |k — ko] is sufficiently small.

Remark 10.4 implies to (10.165) if f is continuous with respect to k €
Ay, and b= % is continuous with respect to £ € A as an element of
L%(D x D). Indeed, under these assumptions @ = [I — B(k)]~1(f — B(k)u)
and the right-hand side of this formula is continuous in Ag.



Chapter 11

Finding Small Inhomogeneities from
Scattering Data

A new method for finding small inhomogeneities from surface scattering
data is proposed and mathematically justified in this chapter. The presen-
tation follows [107] and is based on [105]. The method allows one to find
small holes and cracks in metallic and other objects from the observation
of the acoustic field scattered by the objects.

11.1 Introduction

In many applications one is interested in finding small inhomogeneities in
a medium from the observation of the scattered field, acoustic or electro-
magnetic, on the surface of the medium.

We have two typical examples of such problems in mind. The first one
is in the area of material science and technology. Suppose that a piece of
metal or other material is given and one wants to examine if it has small
cavities (holes or cracks) inside. One irradiates the metal by acoustic waves
and observes on the surface of the metal the scattered field. From these
data one wants to determine:

(1) are there small cavities inside the metal?

(2) if there are cavities, then where are they located and what are their
sizes?

Similar questions can be posed concerning localization not only of the
cavities, but any small in comparison with the wavelength inhomogeneities.
Our methods allow one to answer such questions.

As a second example, we mention the mammography problem. Cur-
rently x-ray mammography is widely used as a method of early diagnistics
of breast cancer in women. However, it is believed that the probability
for a woman to get a new cancer cell in her breast as a result of an x-ray
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mammography test is rather high. Therefore it is quite important to intro-
duce ultrasound mammography tests. This is being done currently. A new
cancer cells can be considered as small inhomogeneities in the healthy breast
tissue. The problem is to localize them from the observation on the surface
of the breast of the scattered acoustic field.

The purpose of this Section is to describe a new idea of solving the prob-
lem of finding inhomogeneities, small in comparison with the wavelength,
from the observation of the scattered acoustic or electromagnetic waves on
the surface of the medium.

For simplicity we present the basic ideas in the case of acoustic wave
scattering. These ideas are based on the earlier results on wave scattering
theory by small bodies presented in Chapter 7. Our objective in solving
the inverse scattering problem of finding small inhomogeneities from surface
scattering data are:

(1) to develop a computationally simple and stable method for a par-
tial solution of the above inverse scattering problem. The exact inversion
procedures (see [120], [107], and references therein) are computationally
difficult and unstable. In practice it is often quite important, and some-
times sufficient for practical purposes, to get a “partial inversion”, that is,
to answer questions of the type we asked above: given the scattering data,
can one determine if these data correspond to some small inhomogeneities
inside the body? If yes, where are these inhomogeneities located? What are
their intensities? We define the notion of intensity v, of an inhomogeneity
below formula (11.1).

Some theoretical and numerical results based on a version of the pro-
posed approach one can find in [105], [36].

11.2 Basic Equations

Let the governing equation be
(V2 + k% + k*v(z)]u=—0(x—y) in R® (11.1)

where u satisfies the radiation condition, k¥ = const > 0, and v(z) is the
inhomogeneity in the velocity profile.

Assume that sup,cps [v(z)| < co, suppv = UX By (Zim, pm) C R3 =
{x | »3) < 0}, where x(3) denotes the third component of vector x in
Cartesian coordinates, By, (Zm, pm) is a ball, centered at Z,, with radius

prms kpm < 1.
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Denote

T = /Bm o(z)dz.

Problem 11.1 (Inverse Problem (IP):) Given u(x,y, k) for all z,y €
P, P={x|x3 =0} and a fixed k£ > 0, find {Z,,, U}, 1 <m < M.

In this section we propose a numerical method for solving the (IP).
To describe this method let us introduce the following notations:

P = {l‘ | :L‘(g) = 0} (112)
(11.3)
are the points at which the data u(z;,y;, k) are collected
k > 0 is fixed (11.4)
exp(ik|z — yl)
k) = ——— 11.5
9(x,y. k) prp— (11.5)
GJ(Z) = G(f]az) = g(xjaza k)g(yjazvk) (116)
U x-,y-,k -9 x-,y-,k
f] = ( J J )kQ ( J J ) (11'7)
J M 2
D(21, .oy ZMy Vlyeevy UM) ::Z fi— Z G (2Zm)Um| - (11.8)
7j=1 m=1

The proposed method for solving the (IP) consists in finding the global
minimizer of function (11.8). This minimizer (Z1, ..., Zn, 01,...,00) gives
the estimates of the positions Z,,, of the small inhomogeneities and their
intensities U,,. This is explained in more detail below formula (11.14).
Numerical realization of the proposed method, including a numerical pro-
cedure for estimating the number M of small inhomogeneities from the
surface scattering data is described in [36].

Our approach with a suitable modification is valid in the situation when
the Born approximation fails, for example, in the case of scattering by delta-
type inhomogeneities [2], [28], [107].

In this case the basic condition

Mk?cop® < 1, (%)
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which guarantees the applicability of the Born approximation, is violated.
Here p := maxi<m<m pm and ¢y was defined below formula (11.1). We
assume throughout that M is not very large, between 1 and 15.

In the scattering by a delta-type inhomogeneity the assumption is
cop® = const := V as p — 0, so that for any fixed & > 0 one has
k2cop? = k*Vp~! — o0 as p — 0, and clearly condition (%) is violated.

In our notations this delta-type inhomogeneity is of the form k%v(z) =
2YM5,,6(x — Zp).

The scattering theory by the delta-type potentials (see [2]) requires some
facts from the theory of selfadjoint extensions of symmetric operators in
Hilbert spaces and in this section we will not go into detail (see [28]).

11.3 Justification of the Proposed Method

We start with an exact integral equation equivalent to equation (11.1) with
the radiation condition:

M
u(z,y, k) = g(x,y, k) + k? Z /B g(x, z, k)v(z)u(z, y, k)dz. (11.9)

For small inhomogeneities the integral on the right-hand side of (11.9) can
be approximately written as

k2/B g(x, z, k)v(2)u(z,y, k)dz :

m

ye / oz, 2 k)u(2)g (2 y, k)dz + €2
Bm (11.10)

= kQG(m,y,Em)/ vdz + €2
B,

= k*G(&,Zm)0m +€%, 1<m<M

where £? is defined by the first equation in formula (11.10), it is the error
due to replacing w under the sign of integral in (11.9) by g, and Z,, is a
point close to Z,.

One has |u — g| = O(Mk?cop3/d?) if z,y € P, and |u — g| =
O(Mk?cop?/d) if x € D,y € P. Thus, the error term £2 in (10.3.10) equals
to O(M?2k*c2p®/d?) if z,y € P.
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Therefore the function wu(z,y, k) under the sign of the integral in (11.9)

2
can be replaced by g(z,y, k) with a small relative error ﬁ, where y € P
and z € D, provided that:

5
chQk:Q% <1, z,yeP (11.11)
where p = maxi<m<m Pm, Co ‘= MaXgegrs |v(x)|, M is the number of
inhomogeneities, d is the minimal distance from B,,, m = 1,2,..., M to

the surface P.

A sufficient condition for the validity of the Born approximation, that
is, the approximation u(z,y, k) ~ g(x,y, k) for x,y € D, is the smallness of
the relative error W for x € D,y € P, which holds if:

Mk?cop® =5 < 1. (11.12)

One has:

if p < d and if § is not small, so that the Born approximation may be not
applicable. Note that u in (11.9) has dimension L=, where L is the length,
v(z) is dimensionless, and €2 has dimension L~'. In many applications it
is natural to assume p < d.

If the Born approximation is not valid, for example, if cop® = V # 0
as p — 0, which is the case of scattering by delta-type inhomogeneities,
then the error term &2 in formula (11.10) can still be negligible: &2 =
O(M?k*coVp?/d?), so e2 < 1 if M2k*V p?/d? < 1.

If one understands a sufficient condition for the validity of the Born
approximation as the condition which guarantees the smallness of 2 for
all z,y € R? then condition (11.12) is such a condition. However, if one
understands a sufficient condition for the validity of the Born approxima-
tion as the condition which guarantees the smallness of £2 for x,y running
only through the region where the scattered field is measured, in our case
when x,y € P, then a much weaker condition (11.11) will suffice.

In the limit p — 0 and copp® = V # 0 formula (11.10) takes the
form (11.13), (see [28]). It is shown in [28] (see also [2]) that the resolvent
kernel of the Schrodinger operator with the delta-type potential supported
on a finite set of points (in our case on the set of points Z1,. .., Zjs) has the
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form

M
w(@,y, k) = g(x, 4, k) + k> > conmrg(@, Zm)g(Y, Zmr) (11.13)

m=1

where ¢, are some constants. These constants are determined by a selfad-
joint realization of the corresponding Schrodinger operator with delta-type
potential. There is an M2-parametric family of such realizations (see [28]
for more details).

Although in general the matrix c¢,,,,’ is not diagonal, under a practi-
cally reasonable assumption (11.11) one can neglect the off-diagonal terms
of the matrix ¢y, and then formula (11.13) reduces practically to the
form (11.10) with the term &2 neglected.

We have assumed in (11.10) that the point Z,, exists such that

/ 9z, 2, K)o(2)g(z v, k)dz = G(&, 4, Zm)Tm.
B,

This is an equation of the type of mean-value theorem. However, such a
theorem does not hold, in general, for complex-valued functions. Therefore,
if one wishes to have a rigorous derivation, one has to add to the error
term €2 in (11.10) the error which comes from replacing of the integral
meg(z,z,k)v(z)g(z,y,k)dz in (11.10) by the term G(z,y,Zm)0m. The
error of such an approximation can be easily estimated. We do not give such
an estimate, because the basic conclusion that the error term is negligible
compared with the main term k%G(x,y,%y )0, remains valid under our
basic assumption kp < 1. From (11.10) and (11.7) it follows that

M
fim Y GiEn)Om,  Gi(Em) = G(&, Zm, k). (11.14)

m=1

Therefore, parameters z,, and 7, can be estimated by the least-squares
method if one finds the global minimum of the function (11.8):

D(z1,. .y 2M, V1,...,Up) = Min. (11.15)

Indeed, if one neglects the error of the approximation (11.10), then the
function (11.8) is a smooth function of several variables, namely, of
21529,y ZM, U1, V2, ..., Upr, and the global minimum of this function is
zero and is attained at the actual intensities U1, v2,...,0y and at the val-
ues z; = z;, 1 =1,2,..., M.
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This follows from the simple argument: if the error of approximation
is neglected, then the approximate equality in (11.14) becomes an exact
one. Therefore f; — Zi‘fil G (Zm)Um = 0, so that function (11.8) equals to
zero. Since this function is non-negative by definition, it follows that the
values Z,, and U, are global minimizers of the function (11.8). Therefore
we take the global minimizers of function (11.8) as approximate values of
the positions and intensities of the small inhomogeneities.

In general we do not know that the global minimizer is unique, and in
practice it is often not unique. For the case of one small inhomogeneity
(m = 1) uniqueness of the global minimizer is proved in [46] for all suffi-
ciently small p,, for a problem with a different functional. The problem
considered in [46] is the (IP) with M = 1, and the functional minimized
in [46] is specific for one inhomogeneity.

In Chapter 7 analytical formulas for the scattering matrix are derived for
acoustic and electromagnetic scattering problems. An important ingredient
of our approach from the numerical point of view is the solution of the
global minimization problem (11.14). The theory of global minimization is
developed extensively and the literature of this subject is quite large (see
[129]). In [36] a numerical implementation of the algorithm presented in
Chapter 11 is given.

The problem of detection of small inhomogeneities from boundary mea-
surements in impedance tomography is studied in [4] by a quite different
approach, see also [46].



This page intentionally left blank



Chapter 12

Modified Rayleigh Conjecture and
Applications

12.1 Modified Rayleigh Conjecture and Applications

Modified Rayleigh Conjecture (MRC) in scattering theory is proposed and
justified. MRC allows one to develop numerical algorithms for solving direct
scattering problems related to acoustic wave scattering by soft and hard
obstacles of arbitrary shapes. It gives an error estimate for solving the
direct scattering problem. It suggests a numerical method for finding the
shape of a star-shaped obstacle from the scattering data. Section 12.1 is
based on [116]. A numerical implementation of MRC method is given in
Section 12.2 and is based on the paper [119]. Section 12.2.1 is based on the
paper [117].

12.1.1 Introduction

Consider a bounded domain D C R", n = 3 with a boundary S. The
exterior domain is D’ = R3\ D. Assume that S is smooth and star-shaped,
that is, its equation can be written as

r = f(), (12.1)

where o € S? is a unit vector and S? denotes the unit sphere in R3. Smooth-
ness of S is used in (12.18) below. For solving the direct scattering problem
by the method described in the beginning of Section 12.2, the boundary S
can be Lipschitz. The acoustic wave scattering problem by a soft obstacle
D consists in finding the (unique) solution to the problem (12.2)-(12.3):

(V2+k*)u=0in D', u=0on§, (12.2)
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ikr T

1
u=1ugp +v:=1ug+ A, a) +0<—), ri=lz| 500, o i=-.
r r r
(12.3)
Here ug := e*** is the incident field, v is the scattered field, A(a/, ) is
called the scattering amplitude, its k-dependence is not shown, and & > 0

is the wavenumber. Denote
Ag(a) ::/ Ald, )Yy (o )do/, (12.4)
S2

where Yy(a) are the orthonormal spherical harmonics, Y, = Yy, —¢ <
m < L. Let hy(r) be the spherical Hankel functions, normalized so that
he(kr) ~ el:T as 7 — +oo. Let the ball Bg := {x : |z| < R} contain D.

In the region r > R the solution to (12.2)-(12.3) is:

u(z, o) = ke 4 ZAg(Oz)l/)g, Y :=Yy( Yhe(kr), r>R, o =
=0

x
r Y
(12.5)

summation includes summation with respect to m, —¢ < m < ¢, and Ay(«)
are defined in (12.4).

Rayleigh conjecture (RC): the series (12.5) converges up to the boundary
S (originally RC dealt with periodic structures, gratings). This conjecture
is wrong for many domains, although it holds for some, for example, for
a ball (see [5], [133], [120]). If n = 2 and D is an ellipse, then the series
analogous to (12.5) converges in the region r > a, where 2a is the distance
between the foci of the ellipse [5]. In the engineering literature there are
numerical algorithms, based on the Rayleigh conjecture. Our aim is to give
a formulation of a modified Rayleigh conjecture (MRC) which is correct
and can be used in numerical solution of the direct and inverse scattering
problems. We discuss the Dirichlet condition but similar argument is appli-
cable to the Neumann boundary condition, corresponding to acoustically
hard obstacles.

Fix € > 0, an arbitrary small number.

Lemma 12.1  There exist L = L(e) and ¢y = co(€) such that

L(e)

oo+ 3 exte
=0

< 12.6
s = € (12.6)
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If (12.6) and the boundary condition (12.2) hold, then

L(e)
||v6 - v||L2(S) <e€, Ve :i= Z co(€)wy. (12.7)
=0
Lemma 12.2 If (12.7) holds then
[ve = v|| = O(e) €0, (12.8)

where ||| == |||z oy + | Il 22D 12—y ¥ > 1, m > 0 ds an arbitrary

integer, and H™ is the Sobolev space.

In particular, (12.8) implies

HvévaLZ(SR) =0(e) €—0. (12.9)
Lemma 12.3 One has:
co(e) = Ap(a) Ve, e —0. (12.10)

The modified Rayleigh conjecture (MRC) is formulated as a theorem,
which follows from the above three lemmas:

Theorem 12.1 (MRC): For an arbitrary small € > 0 there exist L(e)
and c¢(€),0 < € < L(e), such that (12.6), (12.8) and (12.10) hold.

The difference between RC and MRC is: (12.7) does not hold if one
replaces v, by ZeL:o Ag(a)ipe, and let L — oo (instead of letting € — 0).

For the Neumann boundary condition one minimizes the function
||%%OC”MHL2(S) with respect to ¢,. Analogs of Lemmas 12.1-12.3
are valid and their proofs are essentially the same.

In Section 12.1.2 we discuss the usage of MRC in solving the direct scat-
tering problem, in Section 12.1.3 its usage in solving the inverse scattering

problem, and in Section 12.1.4 proofs are given.

12.1.2 Direct scattering problem and MRC

The direct problem consists in finding the scattered field v given S and
ug. To solve it using MRC, fix a small ¢ > 0 and find L(e) and c(e)
such that (12.6) holds. This is possible by Lemma 12.1 and can be done
numerically by minimizing [Jug + Zé: coe|leesy = Pler, ... cp). If the
minimum of ¢ is larger than ¢, then increase L and repeat the minimization.
Lemma 12.1 guarantees the existence of such L and ¢, that the minimum
is less than e. Choose the smallest L for which this happens and define
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Ve = Zé::o cee(x). Then v, is the approximate solution to the direct
scattering problem with the accuracy O(e) in the norm ||-|| by Lemma 12.2

In [106] representations of v and v, are proposed, which greatly simpli-
fied minimization of ¢. Namely, let ¥, solve problem

(V2 + k%)W, =0in D', ¥, = f,onS, (12.11)

and U, satisfies the radiation condition. Here {f¢},>0 is an arbitrary or-
thonormal basis of L?(S). Denote

v(@) =Y eWy(z), u(z):=uo+ov(x), o= (=0, fe) pags)- (12.12)
=0

The series (12.12) on S is a Fourier series which converges in L?(S). It
converges pointwise in D’ by the argument given in the proof of Lemma
12.2. A possible choice of f; for star-shaped S is fy = Y;//w where w :=
dS/da. Here dS and da are respectively the elements of the surface areas
of the surface S and of the unit sphere S2.

12.1.3 Inwverse scattering problem and MRC

Inverse obstacle scattering problems (IOSPa) and (IOSPb) consist of finding
S and the boundary condition on S from the knowledge of:

(IOSPa): the scattering data A(a’, o, ko) for all o/, o € S%, k = ko > 0
being fixed,

or,

(IOSPb): A(c’, g, k), known for all o’ € S? and all k > 0, a = ag € 52
being fixed.

Uniqueness of the solution to (IOSPa) is proved by the author (1985) for
the Dirichlet, Neumann and Robin boundary conditions, and of (IOSPb) by
M.Schiffer (1964), who assumed a priori the Dirichlet boundary condition.
The proofs are given in [133], [107]. The author has also proved that not
only S but the boundary condition as well is uniquely defined by the above
data in both cases, and gave stability estimates for the solution to IOSP
[133]. Later he gave a different method of proof of the uniqueness theorems
for these problems which covered the rough boundaries (Lipschitz and much
rougher boundaries: the ones with finite perimeter [144], see also [104]. In
[89] the uniqueness theorem for the solution of inverse scattering problem is
proved for a wide class of transmission problems. It is proved that not only
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the discontinuity surfaces of the refraction coefficient but also the coefficient
itself inside the body and the boundary conditions across these surfaces are
uniquely determined by the fixed-frequency scattering data. For any strictly
convex, smooth, reflecting obstacle D analytical formulas for finding .S from
the high-frequency asymptotics of the scattering amplitude are proposed by
he author, who gave error estimates of his inversion formula also [120]. The
uniqueness theorems in the above references hold if the scattering data are
given not for all o/, a € S2, but only for o/ and « in arbitrary small solid
angles, i.e., in arbitrary small open subsets of S2. The inverse scattering
problem with the data o € 52, k = ko and o = o being fixed, is open. If a
priori one knows that D is sufficiently small, so that kg > 0 is not a Dirichlet
eigenvalue of the laplacian in D, then uniqueness of the solution with the
above non-overdetermined data holds (by the usual argument [133]). There
are many parameter-fitting schemes for solving IOSP (see [120], [107]).

Let us describe a scheme, based on MRC. Suppose that the scattered
field v is observed on a sphere Sg. Calculate ¢, := (v, Yr)p2(s2)/he(kR). If
v is known exactly, then ¢, = A(). If vs are noisy data, [|v —vs|[z2(55) <
0, then ¢/ = ¢45. Choose some L, say L = 5, and find r = r(a/) as a
positive root of the equation ug + vy, = eikaa’r 4 ZeL:o cose(kr, ) ==
p(r,a/;a, k) = 0. Here ¢ and k > 0 are fixed, and we are looking for the
root r = r(a’) which is positive and is stable under changes of k and «.
In practice equation p(r,’, a, k) = 0 may have no such root, the root may
have small imaginary part. If for the chosen L such a root (that is, a root
which is positive, or has a small imaginary part, and stable with respect
to changes of k and «) is not found, then increase L, and/or decrease
L, and repeat the search of the root. Stop the search at a smallest L
for which such a root is found. The MRC justifies this method: for a
suitable L the function p(r, o/, o, k) is approximately equals zero on S, that
is, for r = r(a’), and this (o) does not depend on k and «. Moreover,
by the uniqueness theorem for (IOSPa) and (IOSPb) there is only one
such r = r(a’). Numerically one expects to find a root of the equation
p(r,a’, k) = 0 which is close to positive semiaxis r > 0 and stable with
respect to changes of k and a.

If one uses the above scheme for solving the inverse scattering problem
for an acoustically hard body (the Neumann boundary condition on 5),
then one gets not a transcendental equation p(r, o', a, k) = 0 for finding the
equation of S, r = r(a’), but a differential equation for r = r(a/), which
comes from the equation W%M =0 at r = r(a’). One has to write
the normal derivative on S in spherical coordinates and then substitute
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r = r(a’) into the result to get a differential equation for the unknown
function r = r(«’). For example, if n = 2 (the two-dimensional case), then
the role of o’ plays the polar angle ¢’ and the equation for r = r(y’) takes
the form ’, =(r )|r:r(w), and (') = r(¢’ + 2m).

12.1.4 Proofs

Proof of Lemma 12.1. This Lemma follows from the results in [133],
(p.162, Lemma 1). O

Proof of Lemma 12.2. By Green’s formula one has

Ue(z):/ve(S)GN(zﬂS)ds; Hve +u0HL2(S) (1213)
S

where N is the unit normal to S, pointing into D’, and G is the Dirichlet
Green’s function of the Laplacian in D':

(V2+k)G=-6(z—y)in D, G=0ons, (12.14)
oG ?
Tlin;o i al —ikG| ds=0 (12.15)

From (12.13) one gets (12.8) with H;? (D’)-norm immediately by the

loc
Cauchy inequality, and with the weighted norm from the estimate

c

Gn(z,s)| < ,
Grle9)] € 5

z| > R, (12.16)

and from local elliptic estimates for w, := v. — v, which imply that

[|we < ce. (12.17)

HLQ(BR\D)

Let us recall the elliptic estimate we use. Let D := Bgr\D, Sgr be the
boundary of Br, and choose R such that k? is not a Dirichlet eigenvalue of
—A in D’,. The elliptic estimate we have used is ([62], p.189):

< c{” A+k2 Jwe

e e

[[———

(12.18)
Take m = 0.5 in (12.18), use the equation (A+k?)w. = 0in D', the estimate
lwel| g (s55) = O(€), proved above, the estimate ||we|| go(sy = O(€), and get

(12.8). For m = 0.5 the space in the first term on the right-hand side

HwEHHm(D' H?—Lm 2(DY) HHm—O-S(sR)
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of formula (4.6) differs from the usual Sobolev space H™~2(D%) (cf [62],
p.189), but (A + k?)w,. = 0, so this term vanishes anyway.
Lemma 12.2 is proved. O

Proof of Lemma 12.3. Lemma 12.2 yields convergence of v, to v in
the norm || - ||. In particular, |[ve —v[|L2(s,) — 0 as € = 0. On Sk one has

v =" ,20A(@)ye and v. = ZL(B) cotpe. Multiply ve(R, o) — v(R,a’) by
Y, ('), integrate over S? and then let € — 0. The result is (12.10). O

12.2 Modified Rayleigh Conjecture Method for
Multidimensional Obstacle Scattering Problems

The Rayleigh conjecture on the representation of the scattered field in the
exterior of an obstacle D is widely used in applications. However this
conjecture is false for some obstacles. In this section, based on [119], [34],
numerical algorithms, based on the MRC, are implemented for various 2D
and 3D obstacle scattering problems. The 3D obstacles include a cube and
an ellipsoid. The MRC method is easy to implement for both simple and
complex geometries. It is shown to be a viable alternative for other obstacle
scattering methods.

12.2.1 Introduction

The basic theoretical foundation of the MRC method was developed in
[116]. The MRC has the appeal of an easy implementation for obstacles
of complicated geometry, e.g. having edges and corners. In the numerical
experiments ([34], [119], [37], [125]) the method is proved to be a competi-
tive alternative to the BIEM (boundary integral equations method). Unlike
the BIEM, the MRC-based algorithm can be applied to different obstacles
with very little additional effort. In this Section we describe, following [119],
Random Multi-point MRC implementation, which made it possible to suc-
cessfully solve numerically some 3D obstacle scattering problems. Different
implementations of MRC method are given in [125] and [37].

Earlier, in [34] the Multi-point MRC method was used for 2D obstacles
of a relatively simple geometry. In this Section an implementaion of MRC
method for 3D problems is proposed, and an improvement of our earlier
results is obtained.

We formulate the obstacle scattering problem in a 3D setting with the
Dirichlet boundary condition, but the MRC method can also be used for
the Neumann and Robin boundary conditions.
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Consider a bounded domain D C R3, with a boundary S which is
assumed to be Lipschitz continuous. Denote the exterior domain by D’ =
R3\D. Let o, ' € S? be unit vectors, and S? be the unit sphere in R3.

The acoustic wave scattering problem by a soft obstacle D consists in
finding the (unique) solution to the problem (12.2)-(12.3).

Informally, the Random Multi-point MRC algorithm can be described
as follows.

Fix a J > 0. Let z;,57 = 1,2,...,J be a batch of points randomly
chosen inside the obstacle D. For = € D’, let

o xr — :v]- N / )
o = —=, Yz, zj) =Y(a )he(k}|$7$g‘). (12.19)

|z — @]

Let g(z) = up(z), z € S, and minimize the discrepancy

B(c) = Hg@c) S o)

=1 ¢=0

, (12.20)
L2(5)

over ¢ € CV, where ¢ = {cy;}. That is, the total field u = g(x)+v is desired
to be as close to zero as possible at the boundary S, to satisfy the required
condition for the soft scattering. If the resulting residual »™" = min ® is
smaller than the prescribed tolerance ¢, than the procedure is finished, and

the sought scattered field is

If, on the other hand, the residual 7™ > ¢, than we continue by trying
to improve on the already obtained fit in (12.23). Adjust the field on the
boundary by letting g(z) := g(x) 4+ ve(z), € S. Create another batch of
J points randomly chosen in the interior of D, and minimize (12.20) with
this new g(x). Continue with the iterations until the required tolerance e
on the boundary S is attained, at the same time keeping the track of the
changing field ve.

The minimization in (12.20) is always done over the same number of
points J. However, the points z; are sought to be different in each itera-
tion to assure that the minimal values of ® are decreasing in consequent
iterations. Thus, computationally, the size of the minimization problem
remains the same. This is the new feature of the Random multi-point
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MRC method, which allows it to solve scattering problems untreatable by
previously developed in [34] MRC methods.
Below is the description of the algorithm.

Random Multi-point MRC

For z; € D, and ¢ > 0 functions vy (z, ;) are defined as in (12.22).

(1) Initialization. Fixe >0, L >0, J >0, Ny > 0. Let n =0, v =0
and g(z) = uo(z), x € S.
(2) Iteration.

(a) Let n:=n+ 1. Randomly choose J points z; € D, j =1,2,...,J.
(b) Minimize

J L
D(c) H +ZZQ]1/}4 x z]

j=1£=0

L2(S)

over ¢ € CV, where ¢ = {c/;}.
Let the minimal value of ® be 7™,
(c) Let

J L
ve(2) 1= ve(2) JrZZCzﬂ/}g z,xj), x€D.

j=1¢=0

(3) Stopping criterion.

(a) If r™" < ¢, then stop.
(b) If ™" > ¢, and n # Npag, let

J L
g(x JrZZCzﬂ/)gzzj rxe s

j=1¢=0

and repeat the iterative step (2).
(c) If r™" > ¢, and n = Nyaz, then the procedure failed.
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Direct cattering problems and the Rayleigh conjecture

Let a ball Bg := {« : |z| < R} contain the obstacle D. In the region r > R
the scattering solution is:

u(z, ) = e 4 ZAZ(Q)W, Yo :=Yo( Yhe(kr), r>R, o = %,
=0
(12.21)

where the sum includes the summation with respect to m, —¢ < m < ¢,
and Ay(«) are defined in (12.4).

The Rayleigh conjecture (RC) is: the series (12.21) converges up to the
boundary S (originally RC dealt with periodic structures, gratings). This
conjecture is false for many obstacles, but is true for some ([5], [67], [133]).
For example, if n = 2 and D is an ellipse, then the series analogous to
(12.21) converges in the region r > a, where 2a is the distance between
the foci of the ellipse [5]. In the engineering literature there are numer-
ical algorithms, based on the Rayleigh conjecture. Our aim is to give a
formulation of a Modified Rayleigh Conjecture (MRC) which holds for any
Lipschitz obstacle and can be used in numerical solution of the direct and
inverse scattering problems. We discuss the Dirichlet condition but similar
argument is applicable to the Neumann boundary condition, corresponding
to acoustically hard obstacles.

The difference between RC and MRC is: (12.7) does not hold if one
replaces v. by ZLO Ag(a)ie, and lets L — oo (instead of letting € — 0).
Indeed, the series > ,° As(a)tpy diverges at some points of the boundary
for many obstacles. Note also that the coefficients in (12.7) depend on e,
so (12.7) is not a partial sum of a series.

For the Neumann boundary condition one minimizes

Iuo + ZeL:o o]
ON

L2(S)

with respect to ¢g. Analogs of Lemmas 12.1-12.3 are valid and their proofs
are essentially the same.

See [118] for an extension of these results to scattering by periodic
structures.



Modified Rayleigh Conjecture Method 209

12.2.2 Numerical Experiments

In this section we desribe numerical results obtained by the Random Multi-
point MRC method for 2D and 3D obstacles. We also compare the 2D
results to the ones obtained by our earlier method introduced in [34]. The
method that we used previously can be described as a Multi-point MRC.
Its difference from the Random Multi-point MRC method is twofold: It is
just the first iteration of the Random method, and the interior points z;,
j=1,2,...,J were chosen deterministically, by an ad hoc method according
to the geometry of the obstacle D. The number of points J was limited by
the size of the resulting numerical minimization problem, so the accuracy
of the scattering solution (i.e. the residual r™") could not be made small
for many obstacles. The method was not capable of treating 3D obstacles.
These limitations were removed by using the Random Multi-point MRC
method. As we mentioned previously, [34] contains a favorable comparison
of the Multi-point MRC method with the BIEM, in spite of the fact that
the numerical implementation of the MRC method there is considerably
less efficient than the one presented in this paper.

A numerical implementation of the Random Multi-point MRC method
follows the same outline as for the Multi-point MRC, which was described
in [34]. In 2D case one has:

i, wy) = HY (Kl = ) %,

where (z — x;)/|x — x;] = €.
For a numerical implementation choose M nodes {t,,} on the surface S
of the obstacle D. After the interior points z;, j = 1,2,...,J are chosen,

form N vectors

= {inln) ]

n=1,2,...,N of length M. Note that N = (2L + 1).J for a 2D case, and
N = (L+1)2J for a 3D case. It is convenient to normalize the norm in R
by

1 M
||b||2:MZ |bm|27 b= (b1,b2,...,bM).
m=1

Then ||uo|| = 1.
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Now let b = {g(t,,)} M

m=1>

in the Random Multi-point MRC (see section
1), and minimize

®(c) = ||b + Ac|, (12.22)

for ¢ € CV, where A is the matrix containing vectors a, n =1,2,..., N
as its columns.

We used the Singular Value Decomposition (SVD) method (see e.g. [80])
to minimize (12.22). Small singular values s,, < Wy, of the matrix A are
used to identify and delete linearly dependent or almost linearly dependent
combinations of vectors a(™. This spectral cut-off makes the minimization
process stable, see the details in [34].

Let ™™ be the residual, i.e. the minimal value of ®(c) attained after
Ninas iterations of the Random Multi-point MRC method (or when it is
stopped). For a comparison, let r"" be the residual obtained in [34] by an
earlier method.

We conducted 2D numerical experiments for four obstacles: two ellipses
of different eccentricity, a kite, and a triangle. The M = 720 nodes t,,
were uniformly distributed on the interval [0, 27], used to parametrize the
boundary S. Each case was tested for wave numbers £ = 1.0 and k =
5.0. Each obstacle was subjected to incident waves corresponding to a =
(1.0,0.0) and o = (0.0, 1.0).

The results for the Random Multi-point MRC with J = 1 are shown

min

in the first Table, in the last column 7”". In every experiment the tar-
get residual ¢ = 0.0001 was obtained in under 6000 iterations, in about
2 minutes run time on a 2.8 MHz PC.

In [34], we conducted numerical experiments for the same four 2D
obstacles by a Multi-point MRC, as described in the beginning of this sec-
tion. The interior points z; were chosen differently in each experiment.
Their choice is indicated in the description of each 2D experiment. The
column J shows the number of these interior points. Values L = 5 and
M = 720 were used in all the experiments. These results are shown in the
first Table, column 74",

Thus, the Random Multi-point MRC method achieved a significant

improvement over the earlier Multi-point MRC.

Experiment 2D-I. The boundary S is an ellipse described by

r(t) = (2.0cost, sint), 0<t<2m. (12.23)
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Normalized residuals attained in the numerical experiments for 2D
obstacles, |lug|| = 1.

k o pmin T
1.0 0.000201  0.0001
1.0 0.000357  0.0001
5.0 0.001309  0.0001
5.0 0.007228  0.0001
II 16 1.0 0.003555  0.0001

16 1.0 0.002169  0.0001
16 5.0 0.009673  0.0001
16 5.0 0.007291  0.0001

( )
( )
( )
( )
( )
( )
( )
( )
11T 16 1.0 (1.0,0.0) 0.008281 0.0001
( )
( )
( )
( )
( )
( )
( )

Experiment

I

[ N A

16 1.0 0.007523  0.0001
16 5.0 0.021571  0.0001
16 5.0 0.024360 0.0001
v 32 1.0 0.006610  0.0001
32 1.0 0.006785  0.0001
32 5.0 0.034027  0.0001
32 5.0 0.040129 0.0001

The Multi-point MRC used J = 4 interior points z; = 0.71“(@)7 j =
1,...,4. Run time was 2 seconds.

Experiment 2D-II. The kite-shaped boundary S (see [17], Section 3.5) is
described by

r(t) = (—=0.65 + cost + 0.65 cos 2¢, 1.5sint), 0<t<2m. (12.24)

The Multi-point MRC used J = 16 interior points z; = 0.91‘(@),
7 =1,...,16. Run time was 33 seconds.

Experiment 2D-III. The boundary S is the triangle with vertices at
( 1.0,0.0) and (1.0, £1. 0) The Multi-point MRC used the interior points
=0.9r(% (= 1)) j=1,...,16. Run time was about 30 seconds.

Experiment 2D-IV. The boundary S is an ellipse described by

r(t) = (0.1cost, sint), 0<t<2m. (12.25)
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The Multi-point MRC used J = 32 interior points z; = 0.951'(%),
7 =1,...,32. Run time was about 140 seconds.

The 3D numerical experiments were conducted for 3 obstacles: a sphere,
a cube, and an ellipsoid. We used the Random Multi-point MRC with
L =0, Wmin = 1072, and J = 80. The number M of the points on the
boundary S is indicated in the description of the obstacles. The scattered
field for each obstacle was computed for two incoming directions a; = (6, ¢),
t = 1,2, where ¢ was the polar angle. The first unit vector «; is denoted
by (1) in the second Table, ay = (0.0,7/2). The second one is denoted
by (2), ag = (w/2,7/4). A typical number of iterations N, and the run
time on a 2.8 MHz PC are also shown in the second Table. For example,
in experiment I with £ = 5.0 it took about 700 iterations of the Random
Multi-point MRC method to achieve the target residual »™" = 0.001 in
7 minutes.

Experiment 3D-I. The boundary S is the sphere of radius 1, with M =
450.

Experiment 3D-II. The boundary S is the surface of the cube [—1,1]3
with M = 1350.

Experiment 3D-III. The boundary S is the surface of the ellipsoid
22/16 + y? + 22 = 1 with M = 450.

Normalized residuals attained in the numerical experiments for 3D

obstacles, ||ug|| = 1.

Experiment koo rmm Niter  TUN time
I 1.0 0.0002 1 1 sec
5.0 0.001 700 7 min

il 1.0 (1) 0001 800 16 min
1.0 (2) 0001 200 4 min

50 (1) 0.0035 2000 40 min

5.0 (2) 0.002 2000 40 min

I 10 (1) 0001 3600 37 min
1.0 (2) 0.001 3000 31 min

5.0 (1) 0.0026 5000 53 min

5.0 (2) 0.001 5000 53 min
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In the last experiment the run time could be reduced by taking a smaller
value for J. For example, the choice of J = 8 reduced the running time to
about 6-10 minutes.

Numerical experiments show that the minimization results depend on
the choice of such parameters as J, wyin, and L. They also depend on the
choice of the interior points z;. It is possible that further versions of the
MRC could be made more efficient by finding a more efficient rule for
their placement. Numerical experiments in [34] showed that the efficiency
of the minimization greatly depended on the deterministic placement of
the interior points, with better results obtained for these points placed
sufficiently close to the boundary S of the obstacle D, but not very close
to it. The current choice of a random placement of the interior points x;
reduced the variance in the obtained results, and eliminated the need to
provide a justified algorithm for their placement. The random choice of
these points distributes them in the entire interior of the obstacle, rather
than in a subset of it. In [37] an optimal (non-random) choice of these
points is proposed and implemented numerically.

12.2.3 Conclusions

For a 2D, or 3D obstacle, Rayleigh conjectured that the acoustic field u in
the exterior of the obstacle is given by

ulz,a) = e*7 3" Ag(a)e, o= Yl )h(kr), o = % (12.26)
=0

This conjecture, called the Rayleigh hypothesis or Rayleigh Conjecture
(RC), is false for many obstacles, but holds for some. The Modified Rayleigh
Conjecture (MRC) is Theorem 12.1, which is a basis for efficient algorithms
for solving obstacle scattering problems.

The author thinks that MRC-based algorithms are more efficient than
the ones currently used for solving obstacle scattering problems, such as
boundary integral equations methods, for example.

Further numerical evidence which testifies that the MRC-based algo-
rithms for solving obstacle scattering problems are efficient, one can find in
[37] and [125].

In the next section the MRC-based algorithm is described for static
problems.
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12.3 Modified Rayleigh Conjecture for Static Fields

Consider a bounded domain D C R", n = 3 with a boundary S. The
exterior domain is D’ = R3\D. Assume that S is Lipschitz. Let S? denotes
the unit sphere in R3. Consider the problem:

V2u=0in D', v=fons, (12.27)
1
v:=0 (—) ri=|z| = 0. (12.28)
r
Let 7 :=a € S2. Denote by Yy(a) the orthonormal spherical harmonics,

Yo =Y, —€ <m < { Let Hy := %, ¢ > 0, be harmonic functions in
D’. Let the ball Bg := {« : |z| < R} contain D.
In the region r > R the solution to (12.27) - (12.28) is:

v(z)=> eHy  7>R, (12.29)
=0

the summation in (12.29) and below includes summation with respect to
m, —¢ < m < ¢, and ¢; are some coefficients determined by f.

In general, the series (12.29) does not converge up to the boundary S.
Our aim is to give a formulation of an analog of the Modified Rayleigh Con-
jecture (MRC) from Section 12.1, which can be used in numerical solution
of the static boundary-value problems. The author hopes that the MRC
method for static problems can be used as a basis for an efficient numeri-
cal algorithm for solving boundary-value problems for Laplace equations in
domains with complicated boundaries. In Section 12.2 such an algorithm
is developed on the basis of MRC for solving boundary-value problems for
the Helmholtz equation. Although the boundary integral equation meth-
ods and finite elements methods are widely and successfully used for solving
these problems, the method, based on MRC, proved to be competitive and
often superior to the currently used methods.

We discuss the Dirichlet condition but a similar argument is applicable
to the Neumann and Robin boundary conditions. Boundary-value problems
and scattering problems in rough domains were studied in Chapter 9.

Let us present the basic results on which the MRC method is based.

Fix € > 0, an arbitrary small number.
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Lemma 12.4 There exist L = L(e) and ¢y = ¢¢(€) such that

L(e)
[l Z ce(€)He — fllr2(s) < e (12.30)
=0

If (12.30) and the boundary condition (12.27) hold, then

L(e)
l[ve = vllz2(s) <€, ve = Z co(e)Hy. (12.31)

Lemma 12.5 If (12.50) holds then
[lve —v]| =O(e) €—0, (12.32)

where ||| == || [|am oy + I ||2(Drs14 1))y ¥ > 1, m > 0 ds an arbitrary
integer, and H™ is the Sobolev space.
In particular, (12.32) implies

[[ve = v||z2(s55) = O(e) € —0. (12.33)

One can prove similarly to [133], p.41, that if v satisfies (12.28)-(12.29), then
max,>r |[v|[r2¢s,) = ||v||12(sx), Where S, := {x : |z| = r} is the sphere of
radius 7 > R. This is an analog of the ”integral” maximum principle, which
was first established in [133], p.41, for the solutions to Helmholtz equation,
for which the ”pointwise” maximum principle is not valid.

Let us formulate an analog of the Modified Rayleigh Conjecture (MRC):

Theorem 12.2 (MRC): For an arbitrary small € > 0 there exist L(e)
and cg(€),0 < € < L(e), such that (12.30) and (12.33) hold.

Theorem 12.2 follows from Lemmas 12.4 and 12.5

For the Neumann boundary condition one minimizes ||W -
fllz2(s) with respect to ¢;. Analogs of Lemmas 1.1-1.2 are valid and their
proofs are essentially the same.

If the boundary data f € C(S), then one can use C(S)— norm in
(12.30)-(12.33), and an analog of Theorem 12.2 then follows immediately
from the maximum principle.

Below we discuss the MRC method for solving static boundary-value
problems and give proofs of the basic results.

12.3.1 Solving boundary-value problems by MRC

To solve problem (12.27)-(12.28) using MRC, fix a small ¢ > 0 and find L(e)
and c¢(e) such that (12.30) holds. This is possible by Lemma 12.4 and can
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be done numerically by minimizing || Zé“ ceHy — fllr2s) = d(c1,onnycr).
If the minimum of ¢ is larger than e, then increase L and repeat the mini-
mization. Lemma 12.4 guarantees the existence of such L and ¢, that the
minimum is less than e. Choose the smallest L for which this happens
and define v, := ZeL:o ceHy. Then, by Lemma 12.5, v, is the approximate
solution to problem (1.1)-(1.2) with the accuracy O(e) in the norm || - |].

12.3.2 Proofs

Proof of Lemma 12.4. We start with the claim:

Claim: the restrictions of harmonic functions Hy on S form a total set
in L*(S).

Lemma 12.4 follows from this claim. Let us prove the claim. Assume
the contrary. Then there is a function g # 0 such that [ g(s)He(s)ds =0
V¢ > 0. This implies V(z) := [yg(s)lz — s|7'ds = 0Vaz € D’. Thus
V =0o0n S, and since AV = 0 in D, one concludes that V' =0 in D. Thus
g = 0 by the jump formula for the normal derivatives of the simple layer

potential V. This contradiction proves the claim. Lemma 1.1 is proved.
O

Proof of Lemma 12.5 By Green’s formula one has

we(x) = /Swe(s)GN(z,s)ds, |lwell2es) <€ we:=ve—v. (12.34)

Here N is the unit normal to S, pointing into D’, and G is the Dirichlet
Green’s function of the Laplacian in D':

V3G = ~6(x—y)in D', G=0onS, (12.35)
1
G=0 (;> r— 0. (12.36)

From (12.34) one gets (12.33) and (12.32) with H]”.(D’)-norm immediately
by the Cauchy inequality. Estimate (12.32) in the region B}, := R®\ Bp
follows from the estimate

G (,5)] < —

o kR (12.37)

1+
In the region Br\D estimate (12.32) follows from local elliptic estimates
for we := ve — v, which imply that

lwell2(Br\D) < ce. (12.38)
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Let us recall the elliptic estimate we have used. Let D%, := Br\D and Sg
be the boundary of Br. Let us use the elliptic estimate for the solution to
homogeneous Laplace equation in D':

[well o5 (Dy) < elllwellL2(sr) + [[wellL2(s))- (12.39)

R

The estimates [|we||r2(s,) = O(€), [|wel[z2(s) = O(e), and (12.39) yield
(12.32). Lemma 12.5 is proved. O
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3.1 Introduction

In this chapter, we discuss a method for creating materials with a desired refrac-
tion coefficients. This method is proposed and developed by the author and is
based on a series of his papers and on his monograph [1]. The author thinks that
these results may be new for materials science people although the results were
published in mathematical and mathematical physics Journals. This is the basic
reason for including this chapter in this book. This chapter should be useful to
materials science researchers, physicists and engineers.

Parts of this chapter are taken verbatim from the paper by the author [2]. The
author thanks Springer for permission to use verbatim parts of the author’s
paper, see also monograph [3].

There is a large literature on wave scattering by small bodies, starting from
Rayleigh’s work (1871), [4—6]. For the problem of wave scattering by one body,
an analytical solution was found only for the bodies of special shapes, for
example, for balls and ellipsoids. If the scatterer is small, then the scattered
field can be calculated analytically for bodies of arbitrary shapes, see [2, 7], and
[1] where this theory is presented.

The many-body wave scattering problem was discussed in the literature,
mostly numerically, in the cases when the number of scatterers is small or the
influence on a particular particle of the waves scattered by other particles is
negligible. This corresponds to the case when the distance d between neigh-
boring particles is much larger than the wavelength 4, and the characteristic
size a of a small body (particle) is much smaller than A, that is, d > 4 and
a < A.By k = %, the wave number is denoted.

In this chapter, the much more difficult case is considered, when a <« d
< A. In this case, the influence of the scattered field on a particular particle is
essential, that is, multiple scattering effects are essential.

Reprinted with permission. First appeared in Mathematical Analysis and Applications:
Selected Topics, First Edition. (© 2018 John Wiley & Sons, Inc. All rights reserved.
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222 Wave Scattering Theory for Small Bodies of Arbitrary Shapes

The derivations of the results, presented in this chapter, are rigorous. They
are taken from the earlier papers of the author, cited in the list of references.
Many formulas and arguments are taken from these papers, especially from
the paper by the author [2]. Large parts of this chapter are taken verbatim, and
monograph [1] is also used essentially. In this chapter, we do not discuss electro-
magnetic wave scattering by small bodies (particles). A detailed discussion of
electromagnetic wave scattering by small perfectly conducting and impedance
particles of an arbitrary shape is given in [1, 8], and also see [7].

A physically novel point in our theory is the following one:

While in the classical theory of wave scattering by small body of characteristic
size a (e.g., in Rayleigh’s theory) the scattering amplitude is O(a®) as a — 0,
in our theory for a small impedance particle the scattering amplitude is much
larger: it is of the order O(a* ), where a — 0 and k € [0, 1) are the parameters
(see the text below formula (3.22) in this chapter).

Can this result be used in technology?

The practical applications of the theory, presented in this chapter, are immedi-
ate provided that the important practical problem of preparing small particles
with the prescribed boundary impedance is solved.

The author thinks that an impedance boundary condition (BC) (condition
(3.7)) must be physically (experimentally) realizable if this condition guarantees
the uniqueness of the solution to the corresponding boundary problem. The
impedance BC (3.7) guarantees the uniqueness of the solution to the scattering
boundary problem (3.1)—(3.4) provided that Im¢; < 0.

Therefore, there should exist a practical (experimental) method for produc-
ing small particles with any boundary impedance {, satisfying the inequality
Im¢, <0.

The author asks the materials science specialists to contact him if they are
aware of a method for practical (experimental) preparing (producing) small
particles with the prescribed boundary impedance

The materials science researchers are not familiar with the author’s papers
on creating materials with a desired refraction coefficient because the author’s
theory was presented in the journals, which are not popular among materials
science researchers.

Although the author’s results were presented in many of the author’s earlier
publications, cited in references, the author hopes that they will be not only new
but practically useful for materials science researchers.

The basic results of this section consist of:

(i) Derivation of analytic formulas for the scattering amplitude for the wave
scattering problem by one small (ka < 1) impedance body of an arbitrary
shape;

(ii) Solution to many-body wave scattering problem by small particles, embed-
ded in an inhomogeneous medium, under the assumptions a < d < 4,
where d is the minimal distance between neighboring particles;
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(iii) Derivation of the equations for the limiting effective (self-consistent) field
in an inhomogeneous medium in which many small particles are embed-
ded, when a — 0 and the number M = M(a) of the small particles tends
to infinity at an appropriate rate;

(iv) Derivation of linear algebraic system (LAS) for solving many-body wave
scattering problems. These systems are not obtained in the standard way
from boundary integral equations; they have physical meaning and give an
efficient numerical method for solving many-body wave scattering prob-
lems in the case of small scatterers. In [8] for the first time, the many-body
wave scattering problems were solved for billions of particles. This was not
feasible earlier;

(v) Application of our results to creating materials with a desired refraction
coefficient.

The order of the error estimates as @ — 0 is obtained. Our presentation fol-
lows very closely that in [2], but it is essentially self-contained. Our methods
give powerful numerical methods for solving many-body wave scattering prob-
lems in the case when the scatterers are small but multiple scattering effects are
essential [9—11]. In [9], the scattering problem is solved numerically for 10
particles apparently for the first time.

In Sections 3.1-3.4 wave scattering by small impedance bodies is developed.

Let us formulate the wave scattering problems we deal with. First, let us con-
sider a one-body scattering problem. Let D, be a bounded domain in R? with
a sufficiently smooth boundary S;. The scattering problem consists of finding
the solution to the problem:

(V2+K)u=0in D) :=R3\D,, (3.1)
IT'm=0o0nS§,
Uu=uy+uv,
where
uy=e***,  aes? (34)

§? is the unit sphere in R3, i, is the incident field, v is the scattered field satis-
fying the radiation condition

Jv

< (3.5)

U,—iku:o(l), ri=lx| - oo,0, 1=
r
I'u is the BC of one of the following types
I'u=Tyu=u (Dirichlet BC), (3.6)
T'u =Tyu=uy—u, Im <0 (impedance BC),

where ¢, is a constant, N is the unit normal to S;, pointing out of D,
and

I'u =T3u =uy (NeumannBC). (3.8)

223
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It is well known [12, 13] that problem (3.1)—(3.3) has a unique solution. We
now assume that

a :=0.5diamD,, ka <1, (3.9)

which is the “smallness assumption” equivalent to a < 4, where A is the wave
length. We look for the solution to problem (3.1)—(3.3) of the form

eklx=yl

u(x) = uy(x) + /g(x, Do, (H)dt, gx,y) := (3.10)

S, drlx —y|’
where dt is the element of the surface area of S;. One can prove that the unique
solution to the scattering problem (3.1)—(3.3) with any of the BCs (3.6)—(3.8)
can be found in the form (3.10), and the function o, in (3.10) is uniquely defined
from the BC (3.2). The scattering amplitude A(f, @) = A(f, a, k) is defined by
the formula

ikr
u=e—A(ﬁ,a,k)+o(1), ro oo, fi=% (3.11)
r r r
The equations for finding o, are:
/g(s, Do, (t)dt = —uy(s), (3.12)
S
Ao, — oy
Uy — G1Uy + — ¢ | g(s, oy (H)de =0, (3.13)
S
Ao, —
oy + _"12 %y, (3.14)
respectively, for conditions (3.6)—(3.8). The operator A is defined as follows:
0
Ac =2 /S N, g(s, o, (t)dt. (3.15)

1

Equations (3.12)—(3.14) are uniquely solvable, but there are no analytic formu-
las for their solutions for bodies of arbitrary shapes. However, if the body D; is
small, ka < 1, one can rewrite (3.10) as

u(x) = uy(x) + g(x, 0)Q; + / [g(x, t) — g(x,0)]o, (£)dE, (3.16)
Sl
where
Q := /al(t)dt, (3.17)
Sl

and 0 € D, is the origin.
If ka < 1, then we prove that

|g(x, 0)Q; | > , x| > a (3.18)

/ [g(‘x’ t) - g(x’ O)]O-l(t)dt
5,

Therefore, the scattered field is determined outside D, by a single number Q.
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This number can be obtained analytically without solving (3.12) and (3.13).
The case (3.14) requires a special approach by the reason discussed in detail
later.

Let us give the results for (3.12) and (3.13) first. For (3.12), one has

Q, = /Gl(t)dt = —Cuy(0)[1 +0(1)], a—0, (3.19)
s

1

where C is the electric capacitance of a perfect conductor with the shape D, . For
(3.13), one has

Q; = =18 |up(O)[1 +0o(1)], a -0, (3.20)

where |S,]| is the surface area of S;. The scattering amplitude for problem
(3.1)-(3.3) with I" = I'; (acoustically soft particle) is

AP = =1 +o(D), (3.21)
]
since
MO(O) — eika-x|x=o =1.

Therefore, in this case, the scattering is isotropic and of the order O(a), because
the capacitance C = O(a).

The scattering amplitude for problem (3.1)-(3.3) with I'=T, (small
impedance particles) is:

sy

Ay(B,a) = e

[1+0o(D)], (3.22)

since u,(0) = 1.

In this case, the scattering is also isotropic, and of the order O({|S, ).

If ¢ =0(1), then A,=0(?), because |S,|=0@?). If & =0 (i)
k € (0,1), then A, = O(a®>7®). The case k = 1 was considered in [14].

The scattering amplitude for problem (3.1)-(3.3) with I' =T'; (acoustically
hard particles) is

kz |D1 | : ika-x
As(f,a) = — yy A+ B, B,a,). if uy=e""". (3.23)
Here and below summation is understood over the repeated indices, a, = a -
€y e, denotes the dot product of two vectors in R3, p,q = 1,2, 3, {ep} is an

orthonormal Cartesian basis of R?, |D; | is the volume of D;, §,,, is the magnetic
polarizability tensor defined as follows [7, p. 62]:

. 1
Bpy 1= ID_1| /S1 t,0 q(t)dt, (3.24)
0, is the solution to the equation

014(8) = Agoy, — 2N (5), (3.25)
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N,(s) = N(s) - e;,, N = N(s) is the unit outer normal to S, at the point s, that
is, the normal pointing out of D,, and A, is the operator A at k = 0. For small
bodies, ||A — A, = o(ka).

If uy(x) is an arbitrary field satisfying (3.1), not necessarily the plane wave
e*** then

A;(f,a) = 1B, <ikﬂ %ﬁ + Au0> ) (3.26)
47 P ox,"?

The above formulas are derived in Section 3.2. In Section 3.3 we develop a
theory for many-body wave scattering problem and derive the equations for
effective field in the medium, in which many small particles are embedded, as
a— 0.

The results, presented in this chapter, are based on the earlier works of the
author [1, 2, 7, 9, 12—34]. These results and methods of their derivation differ
much from those published by other authors.

Our approach to homogenization-type theory is also different from the
approaches of other authors [35, 36]. The differences are:

(i) no periodic structure in the problems is assumed,
(ii) the operators in our problems are non-selfadjoint and have continuous
spectrum,
(iii) the limiting medium is not homogeneous and its parameters are not
periodic,
(iv) the technique for passing to the limit is different from the one used in
homogenization theory.

Let us summarize the results for one-body wave scattering.

Theorem 3.1 The scattering amplitude for the problem (3.1)—(3.4) for small
body of an arbitrary shape is given by formulas (3.25)—(3.27), for the BCsI'; -T';,
respectively.

3.2 Derivation of the Formulas for One-Body Wave
Scattering Problems

Let us recall the known result [12]

d Ao, — 0,

X, Hdt = —— 3.27

0Ns_/s1g( )o, (2) 5 (3:27)

concerning the limiting value of the normal derivative of single-layer potential

from outside. Letx,, € D,,, t € S,,, S,, is the surface of D,,, a = 0.5 diamD,,.
In this section m = 1, and x,, = 0 is the origin.
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We assume that ka < 1,ad™! < 1,50 |x — x,,| = d > a. Then

ik|x—t| ik|x—x,,| . )
e =_° ek (140 (ka+ %) ). (3.28)
dr|lx —t|  dm|x—x,,| d
0 ka?
klx —t| = k|lx — x,,| — k(x —x,)° - (t —x,)+ O ) (3.29)
where
x—x
d=lx-x,|, x—x,)° = -,
|x —x,
and
lx £l =1+o<5) (3.30)
o=, al '

Let us derive estimate (3.19). Since |£| < a on S}, one has

£(s, 1) = gy(s, )1 + O(ka)),
1

4z|s—t|”

uy(0)| = O(a). Consequently, (3.12) can be considered as an equation for

electrostatic charge distribution o,(¢) on the surface S, of a perfect conductor
D,, charged to the constant potential —#,(0) (up to a small term of the order
O(ka)). 1t is known that the total charge Q, = /S 0,(2)dt of this conductor is
equal to 1

Q; = —Cup(0)(1 + O(ka)), (3.31)

where C is the electric capacitance of the perfect conductor with the shape D;.

Analytic formulas for electric capacitance C of a perfect conductor of an arbi-
trary shape, which allow to calculate C with a desired accuracy, are derived in
[7]. For example, the zeroth approximation formula is:

47x|S,|?

dsdt’
s Js 55

1 Ty

where gy(s,t) = Since u,(s) is a smooth function, one has |u,(s) —

CcO = re =t —sl, (3.32)

and we assume in (3.32) that ¢, = 1, where ¢, is the dielectric constant of the
homogeneous medium in which the perfect conductor is placed. Formula (3.31)
is formula (3.19). If u,(x) = e*** then uy(0) =1, and Q; = —C(1 + O(ka)). In
this case,

Q

A o) =~

which is formula (3.21).

Consider now wave scattering by an impedance particle.

Let us derive formula (3.20). Integrate (3.13) over S;, use the divergence
formula

/S Ugnds = /D Viuydx = —k* /D uydx = K*|D; |uy(0)[1 +0o(1)],  (3.33)

1

= -S04 otka)),
4
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where |D;| = O(a®), and the formula

_Cl/ upds = ={;1S; 11, (0)[1 + o(1)], (3.34)
s

which is valid because the body D, is small: in this case, uy(s) ~ u,(0).
Furthermore | fs1 g(s, t)ds| = O(a), so

4 / ds / g(s. Doy (Bt = 0(aQ,). (3.35)
s, Js

Therefore, the term (3.35) is negligible compared with Q, as @ — 0. Finally, if
ka < 1, then g(s, £) = gy(s, t)(1 + ik|s — ¢| + - - - ), and

0 0
a—ng(s, t) = ango(s, BH[1 + O(ka)]. (3.36)
Denote by A, the operator
0go(s, £)
Ao =2 /S SNS o, (t)dt. (3.37)
It is known from the potential theory [1] that
ag, (s, t
/Aoalds = —/ o, (t)dt, 2/ %Dy 1, tes, (3.38)
s, s, s, ON;
Therefore,
Ao, —
/ ds% = —Q,[1 + Oka)]. (3.39)
s,

Consequently, from formulas (3.33)-(3.39), one gets formula (3.22).
One can see that the wave scattering by an impedance particle is isotropic,
and the scattered field is of the order O((,|S,|). Since |S;| = O(a?), one has

OGS, = 0@ ™) if &, =0 (L), x € [0, 1),
Counsider now wave scattering by an acoustically hard small particle, that is,

the problem with the Neumann BC.
In this case, we will prove that:

(i) The scattering is anisotropic,
(i) Itis defined not by a single number, as in the previous two cases, but by a
tensor, and
(iii) The order of the scattered field is O(a®) as a — 0, for a fixed k > 0, that is,
the scattered field is much smaller than in the previous two cases.

Integrating over S, (3.14), one gets

Q, = / V2uydx = V2uy(0)|D,|[1 + o(1)], a — 0. (3.40)

Dl
Thus, Q, = O(a®). Therefore, the contribution of the term e~*** in formula
(3.28) with x,, = 0 will be also of the order O(a®) and should be taken into
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account, in contrast to the previous two cases. Namely,

u(x) = uy(x) + g(x, 0) / e dt, p = % =x°. (3.41)
5,
One has
/S e o, (t)dt = Q, — ikp, /S t,0,(t)dt, (3.42)

where the terms of higher order of smallness are neglected and summation over
index p is understood. The function o, solves (3.14):

0y = Aoy + 2ugy = Aoy + 2ika,Nyuy(s), s€S; (3.43)

if 1 (x) = efkr=,
Comparing (3.43) with (3.25), using (3.24), and taking into account that
ka < 1, one gets

~ikp, / t,0,(6)dt = —ikp,|D; | B, (~ika,)up(O)[1 + O(ka)]
s,

= —k?|D,1B,,B,2,15(0)[1 + O(ka)].
From (3.40), (3.42), and (3.44), one gets formula (3.23), because V2u, = —k2u,.
If u,(x) is an arbitrary function, satisfying (3.1), then ikaq in (3.43) is replaced
by %, and —k%u, = Au,, which yields formula (3.26).
This completes the derivation of the formulas for the solution of scalar wave

scattering problem by one small body on the boundary, of which the Dirichlet,
or the impedance, or the Neumann boundary condition is imposed.

(3.44)

3.3 Many-Body Scattering Problem

In this section we assume that there are M = M(a) small bodies (particles)
D,,1<m<M,a=0.5max diamD,,, ka < 1. The distance d = d(a) between
neighboring bodies is much larger than a, d > a, but we do not assume that
d > A, so there may be many small particles on the distances of the order of the
wavelength A.

This means that our medium with the embedded particles is not necessarily
diluted.

We assume that the small bodies are embedded in an arbitrary large but finite
domain D, D C R?,so D,, C D. Denote D' :=R3*\DandQ :=UY_D, .S, :=
oD,,, 0Q=UM S, . By N, we denote a unit normal to 0Q, pointing out of &;
and by |D,,| the volume of the body D,, is denoted.

The scattering problem consists of finding the solution to the following prob-

lem

(V2 +®u =0 in R3\Q, (3.45)
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I'u = 0 on 0Q, (3.46)

U=u,+v, (3.47)

where u, is the incident field, satisfying (3.45) in R3, for example, u, = e***,
a € §?, and v is the scattered field, satisfying the radiation condition (3.5). The

BC (3.46) can be of the types (3.6)—(3.8).
In the case of impedance BC (3.7), we assume that

uy=¢uonS,, 1<m<M, (3.48)
so the impedance may vary from one particle to another. We assume that
h(x
6= ) e, (3.49)
aK

where x,, € D, is a pointin D, , and h(x), x € D, is a given function, which we
can choose as we wish, subject to the condition Im#/(x) < 0. For simplicity, we
assume that /(x) is a continuous function.

Let us make the following assumption about the distribution of small parti-
cles:

If A C D is an arbitrary open subset of D, then the number N (A) of small
particles in A, assuming the impedance BC, is:

Ng(A) = #/N(x)dx[l +o(1)], a-—0, (3.50)
A

where N(x) > 0 is a given function.
If the Dirichlet BC is assumed, then

Np(d) = i / NG)dx[1 +o(1)], @ — 0. (3.51)
A

The case of the Neumann BC will not be considered in this chapter, see [2].
We look for the solution to problem (3.45)—(3.47) with the Dirichlet BC of
the form

M
u=uy+ Y /S g, o, (B)dt, (3.52)
m=1 'm

where 6,,(¢) are some functions to be determined from the boundary condition
(3.46). It is proved in [14] that problem (3.45)—(3.47) has a unique solution of the
form (3.52). For any o,,(t), function (3.52) solves (3.45) and satisfies condition
(3.47). The BC (3.46) determines o,, uniquely. However, if M > 1, then numeri-
cal solution of the system of integral equations for ,,, where 1 < m < M, which
one gets from the BC (3.52), is practically not feasible.

To avoid this principal difficulty, we prove that the solution to scattering prob-
lem (3.45)—(3.47) is determined by M numbers

Q, = / o, (t)dt, (3.53)

m
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rather than M functions o,,(t). This allows one to drastically reduce the com-
plexity of the numerical solution of the many-body scattering problems in the
case of small particles.

This is possible to prove that if the particles D,, are small. We derive analytical
formulas for Q,, asa — 0.

Let us define the effective (self-consistent) field u,(x) = ug)(x), acting on the
j-th particle, by the formula

U, (x) 1= u(x) — /g(x, t)ai(t)dt, |x—x;| ~ a. (3.54)
S.

7

Physically, this field acts on the j—th particle and is a sum of the incident field
and the fields acting from all other particles:

u,(x) = ug)(x) 1= uy(x) + Z g(x, o, (t)de. (3.55)
mj < S

Let us rewrite (3.55) as follows:

M M
() = @) + ). g%.%,)Q,, + Y, | g t) — gx.x,)lo,,()dt.  (3.56)

metj mj < S

We want to prove that the last sum is negligible compared with the first one as
a— 0.
To prove this, let us give some estimates. One has [t —x,,| <a, d=

[x =%,
1g0x, £) — g(x,%,,)| = max {o (5)-0 (%“) } . g, = O(1/d).
(3.57)
Therefore, if |x — x;| = O(a), then
| /s, l6Gs.0) = g, (01|
= < O(ad™ + ka). (3.58)
lgx, %,)Q,]
One can also prove that
)/, = Oka + ad™), (3.59)

where J is the first sum in (3.56) and J, is the second sum in (3.56). Therefore,
at any point x € Q' = R*\Q, one has

M
U, (%) = uo@) + Y g%,%,)Q,, xe€C, (3.60)

m=1

where the terms of higher order of smallness are omitted.
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3.3.1 The Case of Acoustically Soft Particles

If (3.46) is the Dirichlet condition, then, as we have proved in Section 3.2
(see formula (3.31)), one has

Qm = _Cmue(xm)' (361)
Thus,
M
U, (%) = up(®) = Y gx.%,)C,t,(%,), x€Q. (3.62)
m=1
One has
u(x) = u,(x) +o(l), a—0, (3.63)

so the full field and effective field are practically the same.
Let us write a LAS for finding unknown quantities u,(x,,):

M
U () = to(x) = Y g, %,)C,,14,(%,,). (3.64)
m#j
If M is not very large, say M = O(10%), then LAS (3.64) can be solved numeri-
cally, and formula (3.62) can be used for calculation of u,(x).
Consider the limiting case, when @ — 0. One can rewrite (3.64) as follows:

P
) = up(&) = D 8 EuE) Y Cp (3.65)
p#q xmeAp

where {A, }5 _, is a union of cubes which forms a covering of D,
max diamAp :=b=>b(a)> a,
2
lir% b(a) = 0. (3.66)

By |A,| we denote the volume (measure) of A, and &, is the center of A, or a
point x, in an arbitrary small body D,, located in A,,. Let us assume that there
exists the limit
2 G,
. x,€4,
lim
a—0 |Ap|

=CE,), & €A, (3.67)

For example, one may have
C,=cé)a (3.68)

for all m such thatx,, € Ap, where c(x) is some function in D. If all D,, are balls
of radius a, then c(x) = 4x. We have

Y C,=CaN(4,) =CNE)A, L +oD)], a0, (3.69)

x,E€A,
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so limit (3.67) exists, and
C(E,) = (&, N(E)). (3.70)
From (3.65), (3.68)—(3.70), one gets

1(E) = ug(&) — Y g ENCEINE U E)IA, . 1<p<P. (371)
pr#q
LAS (3.71) can be considered as the collocation method for solving integral
equation

u(x) = uy(x) — /g(x,y)c(y)N(y)u(y)dy. (3.72)
D

It is proved in [30] that
System (3.71) is uniquely solvable for all sufficiently small b(a), and the
function

P
up(x) 1= ) 2,(0u,(&,) (3.73)
p=1
converges in L*(D) to the unique solution of equation (3.72).

The function Xp(®) in (3.73) is the characteristic function of the cube A
it is equal to 1 in A, and vanishes outside A,. Thus, if a — 0, the solution to
the many-body wave scattering problem in the case of the Dirichlet BC is well
approximated by the unique solution of the integral equation (3.72).

Applying the operator L, := V2 +k? to (3.72), and using the formula
Log(x,y) = —6(x — y), where 6(x) is the delta-function, one gets

Viu+ Ku—qgx)u=0in R3, g(x) 1= c(x)Nx). (3.74)

The physical conclusion is:

If one embeds M(a) = O(1/a) small acoustically soft particles, which are dis-
tributed as in (3.51), then one creates, as a — 0, a limiting medium, which is
inhomogeneous and has a refraction coefficient n*(x) = 1 — k72q(x).

It is interesting from the physical point of view to note that

The limit, as a — 0, of the total volume of the embedded particles is zero.

Indeed, the volume of one particle is O(a®), the total number M of the embed-
ded particles is O(@®>M) = O(a?), and lim,_,O(a?) = 0.

The second observation is: if (3.51) holds, then on a unit length straight line,

there are O <a]17> particles, so the distance between neighboring particles is
d = 0@/?).1fd = O(a’) with y > é, then the number of the embedded parti-
cles in a subdomain A,isO <%) = O(a~%). In this case, for 3y > 1, the limit

in (3.69) is C¢,) = limaéocpaO(a‘”) = 00. Therefore, the product of this limit
by u remains finite only if # = 0 in D. Physically, this means that if the distances
between neighboring perfectly soft particles are smaller than O(a'/3), namely,
they are O(a”) with any y > %, thenu =0in D.
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On the other hand, if y < ﬁ, then the limit C(§,) = 0,and u =, in D, so that
the embedded particles do not change, in the limit 2 — 0, the properties of the
medium.

This concludes our discussion of the scattering problem for many acoustically
soft particles.

3.3.2 Wave Scattering by Many Impedance Particles
We assume now that (3.49) and (3.50) hold, use the exact BC (3.46) withI" = T',,
that is,

Amdm — O
Uy — Cylh, + - é’m/ g(s,t)o, (H)dt =0, (3.75)
S

and integrate (3.75) over S,, in order to derive an analytical asymptotic formula
forQ,, = fs o,,(t)dt.

We have
/ u,\ds = / Viu,dx = 0(a®), (3.76)
S D,
/ ¢, 1. (s)ds = h(x,,)a™™|S,, |u,(x,)[1+0(1)], a-—0, (3.77)
S
Amam — Oy
/ Tds =-Q,[1+0(1)], a-—0, (3.78)
s,

m

and
Z, / / g(s. 00, (Hdt = h(x,)a" ™ Q,, = 0(Q,), 0<kx<1l. (379
s,Js,

From (3.75) to (3.79), one finds
Q,, = —h(x,)a* ™S, lau,(x,)[1 + o(1)]. (3.80)

This yields the formula for the approximate solution to the wave scattering
problem for many impedance particles:

M
u(x) = uy(x) — a’x Zg(x, x,,)b,,h(x,)u,(x,)[1+ o(1)], (3.81)

m=1
where
b, = |Sm|a’2

are some positive numbers which depend on the geometry of S,, and are inde-
pendent of a. For example, if all D,, are balls of radius a, then b,, = 4x.
A LAS for u,(x,,), analogous to (3.64), is

M
(%) = uy(x) — a®™* Z 8, %,)b,,h(x,)u,(x,,). (3.82)

m=1,m#j

Wave Scattering Theory for Small Bodies of Arbitrary Shapes



Appendiz A1: Many-Body Wave Scattering Problems for Small Scatterers

The integral equation for the limiting effective field in the medium with embed-
ded small particles, as a — 0, is

u(x) = uy(x) — b/g(x,y)N(y)h(y)u(y)dy, (3.83)
D
where
u(x) = lin(l) u,(x), (3.84)

and we have assumed in (3.83) for simplicity that b,, = b for all m, that is, all
small particles are of the same size.

Applying operator L, = V2 + k? to equation (3.83), one finds the differential
equation for the limiting effective field u(x):

(V2 + k2 = bBN(x)h(x))u = 0 in R3, (3.85)

and u satisfies condition (3.47).
The conclusion is: the limiting medium is inhomogeneous, and its properties
are described by the function

q(x) := bN(x)h(x). (3.86)

This concludes our discussion of the wave scattering problem with many
small impedance particles.

3.4 Creating Materials with a Desired Refraction
Coefficient

Since the choice of the functions N(x) >0 and h(x), Imh(x) <0, is at
our disposal, we can create the medium with a desired refraction coef-
ficient by embedding many small impedance particles, with suitable
impedances, according to the distribution law (3.50) with a suitable N(x). The
function

my(x) — k72 q(x) = n*(x) (3.87)

is the refraction coefficient of the limiting medium, where 73 () is the refraction
coefficient of the original medium (see also Section 3.5). In (3.85), it is assumed
that #3(x) = 1. If n)(x) # 1, then the operator L, = V2 + k?n}(x).

A recipe for creating material with a desired refraction coefficient can now
be formulated.

Given a desired refraction coefficient #%(x), Im#n?(x) > 0, one can find N(x)
and /(x) so that (3.87) holds, where g(x) is defined in (3.86), that is, one can
create a material with a desired refraction coefficient by embedding into a given
material many small particles with suitable boundary impedances and suitable
distribution law.

235
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3.5 Scattering by Small Particles Embedded in an
Inhomogeneous Medium

Suppose that the operator V2 + k2 in (3.1) and in (3.45) is replaced by the oper-
ator Ly = V> + k*n3(x), where 7(x) is a known function,

Im nj(x) > 0. (3.88)

The function né (%) is the refraction coefficient of an inhomogeneous medium in
which many small particles are embedded. The results, presented in Sections
3.1-3.3 remain valid if one replaces function g(x,y) by the Green’s function
G(%,),

[V2 + Kr2®)1G, y) = —5(x — ), (3.89)
satisfying the radiation condition. We assume that
m(x)=1in D' :=R*\D. (3.90)

The function G(x,y) is uniquely defined [14]. The derivations of the results
remain essentially the same because

G(x,y) =g N1+ O(lx = yD].  [x=y[ =0, (3.91)

1
4r|x—y| :
are obtained in [14]. Smallness of particles in an inhomogeneous medium with

where g,(x, ) = Estimates of G(x,y) as [x —y| — 0 and as |[x —y| - o

refraction coefficient 73(x) is described by the relation knya < 1, where n, :=
max,.p|n,(x)|, and @ = max,,, ., diamD,, .

3.6 Conclusions

Analytic formulas for the scattering amplitudes for wave scattering by a sin-
gle small particle are derived for small acoustically soft, or hard, or impedance
particles.

The equation for the effective field in the medium, in which many small par-
ticles are embedded, is derived in the limit a — 0. The physical assumptions
a < d < Aare such that the multiple scattering effects are essential. The deriva-
tions are rigorous.

On the basis of the developed theory, efficient numerical methods are pro-
posed for solving many-body wave scattering problems in the case of small
scatterers. These methods allow one to solve the problems, which earlier were
not possible to solve.

A method for creating materials with a desired refraction coefficient is given
and rigorously justified. Its practical implementation requires development of
a method for preparing small particles with prescribed boundary impedances.
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The physically novel point, compared with the known results for wave scatter-
ing by small bodies, is the dependence on the size a of the small scatterer, which
is much larger than O(a®), the Rayleigh-type dependence, see, for example,
formula (3.22), where the dependence on a is O(¢|S;|) = O(a**). The formu-
las for the wave scattering by small particles of an arbitrary shape for various
types of the boundary conditions are new. The equations for the effective field
in the medium, in which many small particles with various BCs are embedded,
are new.

In this chapter, we did not discuss the EM (electromagnetic waves) scatter-
ing and the related problems of creating materials with a desired refraction
coefficient [1, 8, 37].
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Formulas are derived for solutions of many-body wave scattering problem by small impedance
particles embedded in a homogeneous medium. The limiting case is considered, when the size
a of small particles tends to zero while their number tends to infinity at a suitable rate. The
basic physical assumption is a < d < A, where d is the minimal distance between neighboring
particles, A is the wavelength, and the particles can be impedance balls B(x,,,a) with centers
xm located on a grid. Equations for the limiting effective (self-consistent) field in the medium
are derived. It is proved that one can create material with a desired refraction coefficient by
embedding in a free space many small balls of radius a with prescribed boundary impedances.
The small balls can be centered at the points located on a grid. A recipe for creating materials
with a desired refraction coefficient is formulated. It is proved that materials with a desired
radiation pattern, for example, wave-focusing materials, can be created.

PACS: 02.30.Rz; 02.30.Mv; 41.20.Jb
MSC: 35Q60;78A40; 78A45; T8A48;

Keywords: wave scattering by many small bodies, smart materials, grids.

1. Introduction

There is a large literature on wave scattering by small bodies, starting from
Rayleigh’s work (1871), [1, 2, 36]. For the problem of wave scattering by one body
an analytical solution was found only for the bodies of special shapes, for example,
for balls and ellipsoids. If the scatterer is small then the scattered field can be
calculated analytically for bodies of arbitrary shapes, see [5], where this theory is
presented.

The many-body wave scattering problem was discussed in the literature mostly
numerically, if the number of scatterers is small, or under the assumption that
the influence of the waves, scattered by other particles on a particular particle
is negligible (see [3], where one finds a large bibliography, 1386 entries). This
corresponds to the case when the distance d between neighboring particles is much
larger than the wavelength A, and the characteristic size a of a small body (particle)
is much smaller than A. Theoretically and practically the assumptions a < A, d >> 4

Reprinted with permission. First appeared in Reports on Mathematical Physics, 90(2),
2022, 193-202, ISSN 0034-4877. Copyright (© 2022 Polish Scientific Publishers. Pub-
lished by Elsevier Ltd. All rights reserved.
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are the simplest and they allow to neglect multiple scattering. By k = 27” the wave
number is denoted.

In contrast, in our theory the basic assumption is ¢ < d < A, and the multiple
scattering is of basic importance. We give references to our papers and monographs
in which the theory of wave scattering by small bodies of arbitrary shapes was
developed under the assumption a <« d < A, [4-34]. The novelty of the results in
this paper is in the location of the small bodies: they are placed on a grid. This
may be of practical interest. In [35] for the first time the scattering problem for 10
billions small particles is solved numerically and numerical results are presented.

This paper is a presentation of the new results under simplifying assumptions:
the small particles D,, = B(x,,a), 1| <m < M, are impedance balls with prescribed
boundary impedances ¢,,; the centers x,, of the balls are placed on a grid and are
embedded in a homogeneous space in a bounded domain D, for example, in a box.

The basic results of this paper consist of:

i) Solution to many-body wave scattering problem by small impedance particles,
embedded in a homogeneous medium, under the assumptions a < d < A4, where d
is the minimal distance between neighboring particles and A is the wavelength in
this medium.

ii) Derivation of the equations for the limiting effective (self-consistent) field in
this medium, in which many small impedance particles are embedded, when a — 0
and the number M = M(a) of the small particles tends to infinity at an appropriate
rate.

iii) Derivation of linear algebraic systems (LAS) for solving many-body wave
scattering problems. These systems are not obtained by a discretization of boundary
integral equations, and they give an efficient numerical method for solving many-
body wave scattering problems in the case of small scatterers under the assumption
a<xd< A

iv) Formulation of a recipe for creating materials with a desired refraction
coefficient.

v) Formulation of a method for creating materials with a desired radiation pattern.

Our methods give powerful numerical methods for solving many-body wave
scattering problems in the case when the scatterers are small (see [31]).

Let us formulate the wave scattering problems we deal with. Let D be a bounded
domain in R with a sufficiently smooth boundary. The scattering problem consists
of finding the solution to the problem:

(V2+kHu=0in G’ :=R*\ G, G:=U"_ D,, k=const>0, (1)
where D,, = B(x,,,a) is an impedance ball, centered at x,, and of small radius a,
ik(l/-X, ae S27 (2)

5% is the unit sphere in R3, u is the incident field, v is the scattered field satisfying
the radiation condition

u=uyg+v, uy=e

1 4
o —ikv=0 (—) r=ll oo, v 3)
p
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and u satisfies the impedance boundary condition (bc) on the boundary of G,

uny — gmu = O, on Sm’ Imévm < Oa (4)
where (, is a constant, N is the unit normal to S := UYAZZISm, pointing out of
G:=UM D, and S,, is the surface of D,, = B(x,,a).

m=1
By refraction coefficient n(x) the coefficient in the equation

(V+ ()= (V+k>-g(x)u=0 5)
is understood, where g(x) := k%(n?(x) — 1).
Let ik|x-y|
e
glx,y) = m

Then (V2 +k?)g(x,y) = —6(x —y), where §(x) is the delta function.
Let us distribute small impedance particles D,, = B(x,;,a) in D so that

N(A) = a“A|[1 + o(1)], a—0, (6)

where A C D is an arbitrary connected open subset of D, |A| is its volume, « € (0, 1)
is a number the experimenter may choose arbitrarily and N(A) is the number of
particles in A. Throughout this paper the important assumptions a < d < A and (6)
are satisfied. As @ — 0 the number of small particles N(A) in (6) tends to infinity
since k —2 < 0.

The boundary impedances ¢, are chosen by the formula

I a_Kh(xm)’ 7

where h(x) is a continuous function in D, Imh < 0.

It will be clear from Section 3 that the function h(x) can be determined by
choosing a suitable boundary impedance ¢(x). When a — 0, the ¢, and h(x,,) can
be considered as continuous functions /(x) and h(x).

The many-body scattering problem (1)-(4) has a solution and this solution is
unique, see [31]. In Section 2 a method for solving this problem is given. In Sec-
tion 3 a recipe for creating materials with a desired refraction coefficient is given.
In Section 4 a recipe for creating materials with a desired radiation pattern is given.

2. Solution of many-body scattering problem
We look for the solution of the form

M M
wmut ) [ e (s = ) g(5)0 . ®)
m=1 m m=1

where 0,,(s) are unknown, Q,, := fs om(s)ds. One may think about o, as of
charge densities on S,, and of Q,, as of total charge on the surface S,,. We prove
that

M
J = ,8) — S Xm) o (5)d.
;/Sm[gu 9) — g0 xn) |05 ds
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is negligible compared to

M
1:= Z g(x, %) O ms J< I
m=1

as a — 0.
Let us prove this claim. First, we need the following lemma.

LemMmA 1. One has:
O = —4na> Lty = —4na* hypityy, i o= h(xm), U = U(Xp). )

Proof: Let us define the effective field acting on the m-th body,
Ue :=ul :=u —/ g(x, )0 (s)ds.
Sm

If a is small, then u(x) ~ u.(x) for any x such that |x —x,| > d. Let us use the
exact boudary condition (4) for u, and the known formula for the normal derivative
of the single layer potential to get

Uen + (Ao — 0) /2 — Enlhem — {m/ g(x, s)om(s)ds = 0. (10)

Sm
Here Ao := fs gn, (t,8)om(s)ds, t € S,,. Let us integrate (10) over S,, and keep
the main term as a — 0. One knows that fs (Ao - 0)/2dt = —Q,,. Furthermore,

fS g(t,s)ds = a, as one can check by a simple calculation using the fact that S,
is a sphere of radius a. This allows one to conclude that

{m/ dscrm(s)/ g(t, 8)dt = hpa' ™ Oy, {m/ upds = —4wa®  hypttom
Sm Sm Sm

and fs uends = O(a®?) as a — 0. From the above estimates the conclusion of
Lemma 1 follows. O

Let us now check our claim J < I as a — 0. One has
g(x,xm)Qm = 0(a27kd71)

for |x —x,,| > d, a — 0. On the other hand, one derives

/ [g(t,5) — g(x, Xp) | (5)ds| < O(ad™2a*> ) = 0(%)0(&&1—').
Sm

This estimate justifies our claim since a < d. It follows that asymptotically, as
a — 0, one has

M M
u~u0+zg(x,xm)Qm ~u0_4”a2ikzg(x7xm)hmum7 (11)

m=1 m=1
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for |x — x| > a. Note that M = O(a*"?). Formula (I11) allows one to calculate
u(x) at any point x, if the numbers u,,, 1 <m < M, are known. One can use the
following linear algebraic system (LAS) for finding u,,,

M
uj =ugj — dra® " Z 8(xj, X)) Byt 1<j<M. (12)
m#j
The order M = O(a*"?) of this system is large if a is small. One can reduce this
order: consider a covering of D by nonintersecting small cubes A,, 1 < p <P,
such that d < diam(A,) < A, uy ~ up, hy ~ hyp for all x, € A,. Then formula
(12) can be written as

P P
uq=uoq—47ra2_KZg(xq,xp)hpup Z 1=uoq—4n2g(xq,xp)hpup|Ap|, (13)

pP#q Xm€Ap pP#q

where
@ 1=,
xmeAP
by formula (6). As a — 0, diam(A,) — 0 and formula (13) yields in the limit the
integral equation for u,

u(x) = uo(x) 4 /D g (e ) h()u(y)dy. (14)

Lemma 2. Eq. (14) has a solution, this solution is unique and it is a limiting
value of the solution to the scattering problem (1)—(4).

Proof: Apply the operator V> + k2 to equation (14) and get
(V2 + k®)u = 4nh(x)u(x). (15)
This is a Schrédinger equation with potential g(x) := 4mh(x); equations (2)—(3) hold.

We assumed Im# < 0. Therefore (15) has at most one solution. It is a Fredholm-type
equation, so it has a solution. Lemma 2 is proved. O

It follows from Lemma 2 that the LAS (13) for u, is solvable and its solution
is unique. Let us write Eq. (15) as

VZu + k*n?(x)u = 0, n?(x) == 1 —4nk 2h(x). (16)

ConcrusioN. Embedding small impedance balls B(x,,,a) in D results in creating
in D a new material with the refraction coefficient

n(x) = (1 -4k 2h(x))"/2. a7

If one wants to have a material with the refraction coefficient n(x), then one chooses
by (17) the function A(x). If h(x) is chosen, then one knows the boundary impedance
{(x) which generates the desired h(x). The practical problem is to prepare small
particles with the desired boundary impedance.
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3. Recipe for creating materials with a desired refraction coefficient

Let us formulate a recipe for creating materials with a desired refraction coefficient.
Formula (17) shows that if h(x) is chosen properly, then any n(x) can be obtained
in D.

Recipe for creating materials with a desired refraction coefficient:

a) Calculate by formula (17) the function h(x);

b) Distribute small impedance balls in the domain D by the distribution law (6).
The boundary impedances of these balls are defined by the function h(x).

THEOREM 1. The refraction coefficient of the resulting medium tends to the desired
coefficient n(x) as a — 0.

Let us show that a practically negative refraction coefficient n(x) can be obtained
by the above recipe. Denote b := 47k™2 > 0 and write (17) as n(x) = (1-bh(x))'/? =
|1 - bh(x)|'/?e?/?, where ¢ is the argument of 1—bh(x). Since the operator in (14)
is Fredholm, it remains Fredholm under small perturbations. Therefore one can take
h —ie, where € > 0 is sufficiently small and equation (14) will still have a unique
solution.

By choosing 4 so that Re(1 — bh) > 0 and Im(1 — bh) <0 and small, one gets
the argument ¢ =2m — 6, where ¢ > 0 is arbitrarily small if € is sufficiently small.
Then n(x) will be nearly negative: its argument will be 7 —§/2.

4. Creating materials with a desired radiation pattern

Let us define what we mean by radiation pattern. Consider the scattering problem
for Eq. (15), )
VZu+ku —g(x)u =0, u=e*rx oy (18)

where v satisfies the radiation condition. Assume that k > 0 and « € S? are fixed.
Then the scattering amplitude A(B,a, k) = A(B), where the dependence on k,« is
dropped since k and « are fixed. The formula for the scattering amplitude is known,
see, e.g. [34],

A = 4g(0) == [ 2 qutay. 19

We call A(B) the radiation pattern.
Consider an inverse problem (IP):
Given an arbitrary f(B8) € L*(S?) and an arbitrary small € > 0, can one find

a q € L*(D) such that
1 (B) = Ag (Bl 252, < €. (20)

TueoREM 2. For any f(B) € L*(S?) and an arbitrary small € > O there is
a q € L>(D) such that (20) holds.

Since small perturbations of ¢ result in small perturbations of A(f), there are
infinitely many potentials g for which inequality (20) holds.
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The conclusion of Theorem 2 follows from Lemmas 3 and 4.

LemMma 3. The set {fD e’ikﬁ‘xh(x)dx}VheLz(D) is dense in L*(S?).

CoroLLARY 1. Given f € L*(8%) and € >0, one can find h € L*(D) such that
17B)+ 3= [ e hwel <.

Lemma 4. The set {q(x)u(x, @)}y, cr2(p) is dense in L*(D).

CoROLLARY 2. Given h € L*(D) and € >0, one can find q € L*(D) such that
l7(x) — q()ulx, @)l 2(p) < €.
Since the scattering amplitude

1 R
A(,B):—E/De"‘kﬁ"‘h(x)dx

depends continuously on h, the inverse problem 1P is solved by Lemmas 3 and 4.

Proof of Lemma 3: Assume the contrary. Then 3 € L?(S?) such that

0= / dﬁz//(ﬁ)/ eI p(x)de  Vhe L¥(D).
s2 D
Thus,
/2 dBy(B)e™ ™ F* =0  VxeR.
S

Therefore, . 501k
/ A / dﬂe’i’lﬁ'x;b(ﬁ)(k—;) =0 VreR.
0 s2

By the injectivity of the Fourier transform, one gets

61—k
lﬁ(ﬁ)% =0.
Therefore, (B) =0. Lemma 3 is proved. o
Proof of Lemma 4: Given h € L*(D), define
eiklx-yl
U= ug — / g(x,y)h(y)dy, g =—, 21
D 4rlx =y
h(x
q(x) = Q 22)
u(x)

If g € L*(D), then this g solves the problem, and u, defined in (21), is the scattering
solution,

u=uo— /D g(x, y)qg(y)u(y)dy, (23)
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and

1 .
A== /D KB h(y)dy.

If g is not in L*(D), then the null set N := {x: x € D, u(x) =0} is non-void.
Let
Ns:={x: |u(x)| <8,x € D}, Ds:=D\ Ns.

/’l, in D(;,
Cramm 1. 3hs = such that ||hs = hll;2(py < ce,
0, in N§,

hs -

. u_(g’ln D5, . .

qs = ] qs € L*(D), Us i=uy — /D ghsdy.
0, in Ng,

Proof of Claim 1: The set N is, generically, a line [ = {x : u;(x) =0, uy(x) =0},
where u; = Ru and uy = Ju. Consider a tubular neighborhood of this line, p(x,1) < 6.
Let the origin O be chosen on [, s3 be the Cartesian coordinate along the tangent
to /, and s; = u;, s» = up are coordinates in the plane orthogonal to /, sj-axis is
directed along Vujl|;, j=1,2.

The Jacobian J of the transformation (xi,x,x3) > (s1,52,53) is nonsingular,
T +1T7Y < ¢, because Vu; and Vu, are linearly independent. Define

]’l,iIl D5, Z—é,in D59
hs=1{ " us=uo— [ glx,y)hs(y)dy, gs =9
0,in Ny, D 0, in Ns.

One has us =uo— [, ghdy+ [, g(x.y)(h - hs)dy,

d
lus(x)| > |u(x)|—c/ . >6-1(6), x € Ds, ¢ = max |h(x)].
N 4mlx =y xeNg
If one proves that 1(5) = 0(d), 6 = 0, Vx € Ds then g5 € L*(D), and Claim 1 is
proved. o
CLamm 2.

1(6) = O(6?|In(5))), 5—0.
Proof of Claim 2:

/Nud—yyl /Ném / /\/ﬁ

6 6 1
=cy / dppIn(s3 + /p% + s%)I(l) <c3 / pln (;) dp
0 0

< 0(8% 1n(5))).
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The condition |Vu;|; > ¢ >0, j=1,2, implies that a tubular neighborhood of

the line I, Ns = {x : \/|[u1]? + |us|? < 6}, is included in a region {x :|x| < c,6} and
includes a region {x : |x| < ¢}0}. This follows from the estimates

c3p < Ju)] = [Vu(é) - (x = §)| < cap.

Here ¢ € [, x is a point on a plane passing through ¢ and orthogonal to /,
p=|x-¢&|, and § > 0 is sufficiently small, so that the terms of order p> are
negligible, ¢, = maxg¢ [Vu(€)l, ch =ming¢ [Vu(é)|.

Claim 2, and, therefore, Lemma 4 are proved. O

Therefore, Theorem 2 is proved. O

Let us describe a numerical method for calculation of 4 given f(B) and € > 0.

Let {¢;} be a basis in L2(D), h, = 3%, "oy, () = =& [, e ™%, (x)dx.
Consider the problem

1F(B) = ¢ (B)I| = min. 24)
j=1

A necessary condition for (24) is a linear algebraic system for cﬁ.").
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1. Introduction

The aim of this paper is to give an affirmative answer to the question
in the title of this paper. This brings potentially many possibilities for
progress in technology.

There is a large literature on wave scattering by small bodies, start-
ing from Rayleigh’s work (1871)!'%], If the scatterer is small then the
scattered field can be calculated analytically for bodies of arbitrary
shapes, see reference [4].

The many-body wave scattering problem was discussed in the liter-
ature mostly numerically, if the number of scatterers was small, or under
the assumption that the influence of the waves, scattered by other parti-
cles on a particular particle is negligible®™. This corresponds to the case
when the distance d between neighbouring particles is much larger than
the wavelength 4, and the characteristic size a of a small body (particle)
is much smaller than 4. Theoretically and practically the assumptions

a<<l, d>>1,

(O]
are the simplest ones which allow one to neglect multiple scattering. By
k= 27", the wave number is denoted.

In the author’s theory, the basic assumptions are

a<<d<<],
(]
and the multiple scattering is of basic importance under these assump-

tionst“®3%, It is clear that assumption (2) can be practically realized. Its

Reprinted with permission. First appeared in Characterization and Application of Nano-
materials Volume 6 Issue 1, (2023). This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License. Copyright (¢) 2023 Alexander G.
Ramm. All rights reserved.

251



252

importance comes from the fact that the author gave
arigorous asymptotically exact solution of the many-
body scattering problem under assumption (2) when
a — 0. This solution can be well approximated nu-
merically by the particles of the size @ > 30 nm. Prac-

tically the size of a can be found by comparison of
the solution for some a and for g If these solutions

are practically close, then one considers this « as suit-
able. The aim of this paper is to show that our theory
can be used practically.

In reference [36], for the first time the author’s
theory was used for solving the scattering problem
for 10 billion small particles. This problem was
solved numerically and numerical results were pre-
sented.

Let us formulate the wave scattering problems
we deal with. Let D be a bounded domain in R?
with a sufficiently smooth boundary. The scattering
problem consists of finding the solution to the prob-
lem:

V2 +kHu=0 inG:= R3\G, G :=
k= const >0,

M
m=1Dm:

(3)
where D,, = B(xu, a) is an impedance ball, centered
at x,;, and of small radius a,

u=uy+v,uo=e""* 0 € S,

)
§? is the unit sphere in R3, u, is the incident field, v
is the scattered field satisfying the radiation condi-
tion

v =od). = il

v, — ikv = o(r), 7= x| > o0, v, P
)
and u satisfies the impedance boundary condition (bc)
on the boundary of G:
uy — Gt = 0,

onS,, Img,<0,

6
where (, is a constant, N is the unit normal to S(:=)
UM_. S, pointing out of G := UM_,D,., and S, is
the surface of D,, = B(xm, @).

By refraction coefficient n(x) the coefficient in
the equation

Wave Scattering Theory for Small Bodies of Arbitrary Shapes

(V2 + k*n2(x)u = (V> + k2 —q(x))u=0

(M
is understood, where g(x) := K(n*(x) — 1).
L = L hen (V2 + R =
et g, y) = ooy Then ( )g(x, y) =—

d(x — ), where d(x) is the delta function.

Let us distribute small impedance particles D,

= B(xm, @) in D so that
N(A) = a*?|A|[1 + o(1)], a — 0,

®)
where A — D is an arbitrary connected open subset
of D, |A| is its volume, k € (0, 1) is a number the
experimenter may choose arbitrarily and N(A) is the
number of particles in A. Throughout this paper the
important assumptions @ << d << 1 and (8) are
satisfied. As @ — 0, the number of small particles
N(A) in (8) tends to infinity since x — 2 < 0.

We assume in this paper (for simplicity only)
that the small particles are distributed in the domain
D and the refraction coefficient in D equals to 1. In
the monograph [31], it is assumed that D is filled
with the material whose refraction coefficient 7,(x) is
known and we wanted to create in D the material
with the desired refraction coefficient n(x).

The boundary impedances {,, are chosen by the
formula

Cn = a"h(xn),
&)
where A(x) is a continuous function in D, Im/ < 0.

It will be clear from Section 3 that the function
h(x) can be determined by choosing a suitable bound-
ary impedance ((x). When a — 0, the {, and A(x,)
can be considered as continuous functions {(x) and
h(x).

2. Solution of many-body scattering
problem

We look for the solution of the form

M
u=up+ Z / glx, s)om(s)ds
o Sm

m=1
M

=3 (@ 2m)Qum + .

m=1

(10
where a,(s) are unknown, Oy, := fs om(s)ds One
may think about ,, as of charge densities on S, and
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of O, as of total charge on the surface S,,. We prove
that

M
J = mz f [9005) = 9o lom (5)ds

an

is negligible compared to

M
=" gl 2)Qus
m=1

(12)

s0

J<<lasa— 0.

13)

We prove that the field u satisfies the following inte-
gral equation as a — 0:

u(x) = uy(x) — 4nf, g(x, YIR)u()dy,
(14)
where h(x,) = i—’:, and, since there are sufficiently

many points x,, € D, the function /(x) is uniquely de-

termined in D if the boundary impedances are known.

Apply the operator to V> + & to both sides of
equation (14) and get
(V2 + k% — 4mh(x) )u(x) := (V2 + k2n?(x) Ju(x)

=0

15)

Therefore,
n*(x) = 1 — 4k 2h(x).

(16)
We omit details since they can be found in the au-
thor’s publications listed in the References, in partic-
ular, in monograph [31].

If originally in D were material with the known
refraction coefficient ny(x), then formula (16) were
n’(x) = nd(x) — 4nh(x)N(x)k?, where N(x) is the
distribution density for the small particles, see refer-
ence [31]. In this paper, we assume (for simplicity
only) that N(x) = 1, see formula (8).

3. Recipe for creating materials
with a desired refraction coefficient

Let us formulate a recipe for creating materials
with a desired refraction coefficient. Formula (16)
shows that if A(x) is chosen properly, then any n(x)
can be obtained in D.

Recipe for creating materials with a desired re-
fraction coefficient:

a) Calculate by formula (16) the function h(x);

b) Distribute small impedance balls in the do-
main D by the distribution law (8). The boundary im-
pedances of these balls are defined by the function
h(x).

Theorem 1. The refraction coefficient of the re-
sulting medium tends to the desired coefficient n(x)
asa—0.

Let us show that practically negative refraction
coefficient n(x) can be obtained by the above recipe.
Denote b := 47k > 0 and write equation (16) as

n(x) = (1-bh(x))'"* = |1 = bh(x)["/2e?72,

a7
where ¢ is the argument of 1 — bA(x). Since the oper-
ator in (14) is of Fredholm type, it remains Fredholm
type under small perturbations. Therefore one can
take / — ie, where € > 0 is sufficiently small, and
equation (14) will still have a unique solution.

By choosing / so that Re(1 — b/) > 0 and Im(1
— bh) <0 and small, one gets the argument ¢ = 21 —
8, where 8 > 0 is arbitrarily small if € is sufficiently
small. Then n(x) will be nearly negative: its argument
will be - 9/2.

4. Creating materials with a desired
radiation pattern

Let us define what we mean by the radiation
pattern. Consider the scattering problem for the
equation:

V2u + k*u—q(x)u =0, u=eke* 4y,

(18)
where v satisfies the radiation condition. Assume that
k>0and a € S are fixed. Then the scattering am-
plitude A(B, a, k) = A(f)), where the dependence on &,
o is dropped since k and a are fixed. The formula for
the scattering amplitude is known, see, e.g., refer-
ence [35]:

AB): = 4,p) = == [ e *PYq(y)u(y)dy.
19)

We call A(p) the radiation pattern.

Consider an inverse problem (IP):

Given an arbitrary i) € L*(S*) and an arbi-
trary small € > 0, can one find a ¢ € L*(D) such
that

”f(ﬁ) _Aq(ﬁ)”Lz(sz) < €
(20)
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This inverse problem was not formulated and
was not studied in the works of other authors, to our
knowledge.

Our result is stated in Theorem 2.

Theorem 2. For any f() € L*(S%) and an ar-
bitrary small € > 0 there is a ¢ € L*(D) such that
(20) holds.

Since small perturbations of ¢ result in small
perturbations of A(f), there are infinitely many po-
tentials ¢ for which inequality (20) holds.

The conclusion of Theorem 2 follows from lem-
mas 3 and 4.

Lemma 3. The set
{fD e—lk/)’-xh(x)dx]vnaz(

Corollary 1. Given f € L*S?) and € > 0, one

can find 1 € L*(D) such that
”f(ﬁ) +ﬁfu e'ikﬁ’xh(x)dx“ <e.

Lemma 4. The set {q()u(x, @}yqerzpy is
dense in L*(D).

Corollary 2. Given » € L*(D)and € >0, one
can find ¢ € L*(D) such that

IhGe) = gCoux, @l 2y < €.

is dense in L*(S%).
D)

Since the scattering amplitude
AB) = —— [, e *F*h(x)dx

depends continuously on 4, the inverse problem IP
is solved by Lemmas 3 and 4.

Proofs are omitted. They can be found in refer-
ence [31].

5. Discussion

How is the theory, outlined in the previous sec-
tions, can be used practically?

To create a material with a desired refraction
coefficient, or a material with a refraction coefficient
close to the desired, is practically very important. To
my knowledge, there were no general methods for
creating material with a desired refraction coefficient.
To use the theory, outlined in this paper and in the
monographs® =3, one has to solve a technological
problem: how to prepare a small particle, say, a ball
of radius a, with the prescribed boundary impedance
. This problem should be solvable, see reference [33]
for arguments supporting this conclusions. If this
technological problem is solved, then the recipe

Wave Scattering Theory for Small Bodies of Arbitrary Shapes

outlined in this paper (and in the author’s mono-
graphs'

The problem of creating materials with a de-
sired radiation pattern, the wave focusing materials,
for example, was not investigated earlier. This prob-
lem is of great practical interest. The usual bodies
scatter waves mostly backwards, somewhat sidewise
and a little forwards. If one creates a body which
scatters waves, for example, in a given solid angle,
this would be of great practical interest. Such a body
can be created as follows from the theory outlined in
the previous Section.

The author wrote this paper in an attempt to
draw attention of the specialists in material sciences
to the theory he has developed for creating materials
with the desired refraction coefficient.

The author is not aware of the experimental re-
sults based on his theory. Such results are very desir-
able. There are numerical results, based on his theory,
see references [37] and [38].

! can be immediately used in practice.
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Appendix A4

MATERIALS WITH A DESIRED REFRACTION COEFFICIENT

ALEXANDER G. RAMM

ABSTRACT. Producing materials with a desired refraction coefficient is of great theoreti-
cal and practical interest. There was no general method for creating such materials, except
the method, developed by the author. It was not even known that such a method do ex-
ist. The theoretical basis of this method is the asymptotic solution of the many-body wave
scattering problem for many small bodies with prescribed boundary impedances. Multiple
scattering is essential in our theory. The small bodies are embedded in a bounded region
D, filled with a material with a known refraction coefficient no(z). Our basic physical
assumption is @ < d < A, where a is the characteristic size of the small particle, d
is the minimal distance between neighboring particles, and A is the wave length in D.
The asymptotic of the solution to the above many-body scattering problem is derived for
a— 0.

1. INTRODUCTION

Let D be a bounded domain in R? filled with a material with a known refraction coeffi-
cient ng(z). Let us embed into D many small particles D,, of a characteristic size a with
boundary impedances (,,, let d be the minimal distance between neighboring particles, and
A be the wavelength in D. We assume that

a<Ld< A (L.1)
‘We assume that the boundary impedance of a small body D,,, is given by the equation:
h +m
G ="0m) ey € o), (12)

where z,, is a point inside D,, and x € [0,1) is a constant that can be chosen by a
researcher. Since D,, is small, its position can be characterized by a point z,,.

Let us formulate a recipe for producing a material with a desired refraction coefficient
n(z). The refraction coefficient n(z) is defined by the wave equation

Au+ E*n?(x)u = 0, (1.3)
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258 Wave Scattering Theory for Small Bodies of Arbitrary Shapes

where u(x) is the wave field, & > 0 is the wave number. For simplicity, we assume in this
paper that u is a scalar function. We also assume that D is filled in with a material whose
refraction coefficient ng(x) is known.

Problem: We want to produce in D the material with a desired refraction coefficient n(z).
Let us formulate a recipe for solving this problem.

Step 1. Calculate
p(x) = K[ng () = n(2)]. (14)
This step is trivial.

Step 2. Given p(x), find functions h(x), Imh(z) < 0, and N(z) > 0 from the equation:
Anh(z)N(z) = p(z), N(z) >0, Imp(z)<0. (1.5)

This step is also trivial. It has many solutions. For example, one can fix N(z) > 0 and
define h(x) by the formula:
p(x)
h(r) = —= 1.6
@) = 2Nt (16)
provided that Imp(z) < 0.

Step 3. Distribute N = O((LQ%”) small particles D,, with boundary impedances (,, =
h((fi:”) in the domain D according to the law:

N(A) = %/AN(a:)dm[l Fo(l)], a—0, 1.7

where A is any open subset of D, N'(A) is the number of small bodies in the subset A,
N(z) is the function from Step 2, the boundary impedance of the body D,y is chosen by
Sformula (1.2), the function h(x) in this formula is defined in Step 2, and x.,, is an arbitrary
fixed point inside D,,,.

Our main result is the following theorem.

Theorem 1. The refraction coefficient of the material, obtained in the domain D after Step
3, tends to the desired refraction coefficient n(zx) as a — 0.

A proof of this result is not short. It is presented in the monographs [1],[2], [3], in the re-
view paper [5], and in the author’s papers cited in these references. Many other problems,
based on similar ideas and methods, are presented in the above monographs: scattering
of electromagnetic waves by many small bodies, scattering of heat waves by many small
bodies, scattering of quantum-mechanical waves by many potentials with small supports,
some inverse scattering problems, and other results.

Remark 1. One may use the spherical particles M (x.y,, a) centered at the points x., and
of radius a for the creating of the materials with a desired refraction coefficient.

Remark 2. The total volume V, of the embedded particles tends to zero when a — 0.
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A proof is easy:

1
a2—.~c

Vo = é?TCLS x O(

3 )=0('*") =0, a—0.

2. ADDITIONAL CONSIDERATIONS

It is known how to embed many small particles D,,, at the prescribed points x,,. The
size of these particles can be as small as 20 nanometers. One of the known methods is
stereolitography.

The author is not familiar with the method of producing small particles with a prescribed
boundary impedance. To use my recipe for creating materials with a desired refraction
coefficient practically, it is necessary to develop a method for creating such small particles.
Let us give some arguments showing that such particles can be prepared.

The first argument goes as follows. The wave scattering problem for one small body with
a prescribed boundary impedance is:

Au + E*nl(z)u = 0, 2.1

Uy = (. on Spy, 2.2)
u=ug+ v, (2.3)

Vjg| — tkv = o(ﬁ), |z] = oo. (2.4)

Problem (2.1)—(2.4) has a solution and this solution is unique, see [4], pp. 30-50. There-
fore, the small body with the prescribed boundary impedance should exist. The condition
Imn(z) < 0 is used for the proof of the uniqueness of the solution to the scattering prob-
lem (2.1)-(2.4).

The second argument for the existence of small bodies with a prescribed boundary impedan
goes as follows.

Problem (2.1)—(2.4) with ¢ = 0 does exist. The same is true for ( = co. The small particles
with any intermediate value of ¢ should also exist.

3. MATERIALS WITH A DESIRED RADIATION PATTERN

Suppose that
Au + E*n?(2)u := Au + k*u — g(x)u = 0, (3.1)
where
q(x) = K*[1 = n*(2)]. (3.2)
Recall that n(x) = 1 out of the bounded domain D.
The solution u to the scattering problem (3.1) exists and is unique, subject to the
condition
u=ug+ v, 3.3)
where v satisfies the radiation condition and uy is the incident plane wave.
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We assume in this section that & > 0 and o € S?, the direction of the incident wave, are
fixed. We denote the scattering amplitude A(f3),

A(B) == Ay(B) = e * Y q(y)uly)dy, (3.4)

where u(y) := u(y, o, k), and the dependence on « and k is omitted since « and k are
fixed.

A7 Jps

Choose an arbitrary f(8) € L?(S?), where S2 is the unit sphere in R?, and an arbitrary
small fixed number € > 0, and state the following new inverse problem:

Inverse problem. Given f(3) and ¢, find q € L*(D) such that
1£(B) = Ag(B)llL2(s2y < e (3.5)

It was not known if this problem has a solution. This problem was studied and solved in
[3]. We formulate the result and refer the reader to [3] for a detailed proof.

Theorem 2. For any f(3) € L%(S?) and an arbitrary small number ¢ > 0, there exists a
q € L?(D) such that inequality (3.5) holds.

Remark 3. There are infinitely many potentials satisfying (3.5). Indeed, the scattering
amplitude depends continuously on the potential in the following sense:

[Aq — Agllz2(s2) < cllar — qallz2(p), (3.6)
where ¢ > 0 is a constant depending only on the bound for the norms of the potentials and
on D. Therefore, small changes of the potential in L?(D) norm lead to small changes in

the scattering amplitude in L?(.S?) norm in the sense (3.6). Thus, if inequality (3.5) holds
for some g € L(D), it will hold for any potential sufficiently close to ¢ in L?(D) norm.

Remark 4. Theorem 2 can be of practical interest. For example, let f(3) = 1 in a narrow
cone and f(8) = 0 outside this cone. Then, the body D with such a radiation pattern will
have practical interest. The wave, scattered by this body, will be scattered mostly in the
above cone. The scattered wave can be directed not as usual to the back of the body and to
the front of the body, but mostly to the above cone.

4. CONCLUSION

A recipe is given for creating materials with a desired refraction coefficient by embed-
ding many small particles with prescribed boundary impedances into a given material. The
refraction coefficient can be so chosen that the resulting material will have a desired ra-
diation pattern for a fixed wave number and a fixed direction of the incident plane wave.
Materials with a prescribed radiation pattern can be created. For future developments, it is
desirable to do many experiments based on the author’s theory. One can change the given
refraction coefficient ng(z) in a desired direction. Theoretically, the major advance is the
author’s (asymptotical as a — 0) solution to the many-body scattering problem under the
assumption a < d < .
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Appendix 5

How to Create Materials
with a Desired Refraction
Coefficient? Wave Scattering
by Many Small Particles

Alexander G. Ramm

Mathematics Department,
Kansas State University,
ramm@ksu. edu
www.math.ksu.edu/~ramm

Abstract

The novel points in this work include:

(1) Asymptotic and numerical methods for solving wave scat-
tering problem by many small bodies embedded in a non-
homogeneous medium. Basic assumption: a < d < .

(2) Derivation of the equation for the field in the limit ¢ — 0,
where o is the characteristic size of the bodies (particles),
and their number M = M (a) tends to infinity at a suitable
rate. Multiple scattering is taken into account.

(3) A recipe for creating materials with a desired refraction coef-
ficient by embedding many small particles in a given material.

(4) Some of the many possible applications:

(a) creating materials with negative refraction,
(b) creating wave-focusing materials.

Results I have Published but Do Not Have Time to Discuss
in This Talk:

(a) electromagnetic wave scattering,
(b) creating materials with a desired magnetic permeability,

263
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(c) wave scattering by small particles of arbitrary shapes, wave scattering
by many nanowires,

(d) heat transfer in a medium in which many small bodies are embedded,

(e) quantum-mechanical scattering by many potentials with small
supports,

(f) wave scattering by small bodies with transmission boundary conditions,
and other problems.

In the author’s monograph (*) these problems are discussed in detail and
solved; in (**) the bounded domain is located inside perfectly conducting
surface. The new monograph (****) is published in 2023.

My Monographs in Which the Theory is Developed:

(*) A.G. Ramm, Scattering of Acoustic and Electromagnetic Waves
by Small Bodies of Arbitrary Shapes. Applications to Creating
New Engineered Materials, Momentum Press, New York, 2013.

(**) A.G. Ramm, Creating materials with a desired refraction
coefficient, IOP Publishing, Bristol, UK, 2020, Second edition.

(***) A.G. Ramm, Wave scattering by small bodies of arbitrary
shapes, World Sci. Publishers, Singapore, 2005.

In (**) the problem of creating material with a desired refraction coefficient
is discussed in the case when the material is located inside a bounded closed
connected surface on which the Dirichlet boundary condition is imposed.

My New Monograph:
(****) A. G. Ramm, Wave scattering by small bodies. Creating ma-
terials with a desired refraction coefficient and other applications,
World Sci. Publishers, Singapore, 2023.

Recipe for Creating Materials with a Desired Refraction
Coefficient:

To my knowledge, there are no other general methods for creating materials
with a desired refraction coefficient.

If V2u+k*n?(z)u = 0, k = const > 0, then n(x) is called the refraction
coeflicient.
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Step 1. Given the original coefficient nZ(z) and the desired coefficient
n?(z), calculate function p(z) by formula

p(x) = K*[ng(«) — n®(2)).
This step is trivial.

Step 2. Given p(x), solve the quation p(z) = 4nh(z)N(z) for h(x) and
N(x), which satisfy conditions:

Im h(z) <0, N(z)>0.

This step is also trivial and has many solutions.
For example, one can fix an arbitrary N(z) > 0, and then find h(z) =
hi(z) + iha(x), where hy = Re h, ha = Im h, by the formulas

_ pi() _ p2(x)
() = ATN(z)’ ha(z) = ATN(z)

where p; = Re p,p2 = Im p. The condition Im h < 0 holds if Im p <0, i.e.,
Im [n3(z) — n?(z)] <0.

Step 3. Prepare M = —'= [, N(z)dz[l + o(1)] small balls By, (zm,a)
with the boundary impedances (,, = %,O < k < 1, where the points
Tm,1 < m < M, are distributed in D according to the formula AV(A) =
—= [A N(z)dz[l + 0(1)], A C D is an arbitrary open subset, N'(A) is the
number of particles in A, N(z) > 0 is a continuous function of our choice.

Embed (in D) M balls By, (2m,a) with boundary impedance ¢, d =
O(a®=9/3), d = minj sy, [Ty — ;.

The material, obtained after the embedding of these M small balls, will
have the desired refraction coefficient n(z) with an error that tends to zero
as a — 0.

Step 3 is the only non-trivial step in this recipe from the practical point of
view.

Technological problems
The first technological problem is:

How can one embed many, namely M = M(a), small balls in a given
material so that the centers of the balls (points z,,) are distributed as
desired?

Physicists know how to solve this problem.
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The second technological problem is:

How does one prepare a ball By, of small radius a with a desired boundary
impedance Cp, = }L("Lm) , 0 < k < 1, where h(z), Imh < 0, is a given
function?

I argue that small particles with a prescribed boundary
impedance can be prepared practically.
Why is it possible to prepare small balls with the prescribed

boundary impedance?

(a) The scattering problem for such a ball has a solution and this solution
is unique. Therefore, such a ball can be practically prepared.

(b) The acoustically hard balls with ¢ = co do exist. The acoustically soft
balls with ¢ = 0 do exist. The balls with an intermediate boundary
impedance should be possible to prepare.

Statement of the Scattering Problem in the Absence of the
Embedded Particles

Loug = [V? + k*nd(2)]ug := [V* + k* — qo(2)]up = 0 in R,
up = eF¥T 4wy, Thﬁrgo r(vor — tkug) = 0.
Im ni(x) >0, a€S? k=const>0.
LoG(z,y) = —0(x — y) in R?.
ng(z) =1k %q(x), aolz) =k* —k*nj(z), Im g(z) <0,
n2(x) =11in D' :=R3\D, qo(x)=0in D'

Many-body Scattering Problem

M
Loups = 0 in Q' := R3\ U Dy Dy = Bp(2m,a)
=1

Ou s Cmuas on Sy, = 0Dy, (= h(zm)

— = — 7 0< 1
ON ar sr<t

Up = Uy + Vi,



Appendiz A5: How to Create Materials with a Desired Refraction Coefficient? 267

where N is the outer unit normal to S,,, and h(z) € C(D) is an arbitrary
function, such that

h =hy+1tha, hy <0,
and (,, is boundary impedance,

d := min dist(z,,, z;).

m#£j

Basic Assumptions
Our basic assumptions are:
aLd< M\

1_H /AN(:v)d:v[lJro(l)], a— 0. (%)

N@A) = > 1=

2
a
Tm EA

Here N(x)a’@*") > 0 is the density of the distribution of the particles,
d is the minimal distance between neighboring particles,

d = 0(a?=%)/3), (%)
M = M(a) ~O(a= ") 0<r<l1.

Since d—3 = O(M), relation (**) follows from (¥*).

Representation of the Solution

M
wnle) = w(@) + Y [ Gl @

m=1

M M
= UO(x) + Z G(J?,J?m)Qm + Z J’m-
m=1 m=1

O, = /S (Bt T = [S (G(2,1) — Gla, mm)|om (£)d,

m m

1, = |G($, mlm)Qm"
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Basic Result:

|J'm| < I’m > a — 07 |aj - xml > a.

Impedance Boundary Condition

For the impedance boundary condition (bc) the limiting field u = u(x) solves
the integral equation:

u(z) = uo(z) - / G, y)p(y)uly)dy |

D

where
h(zm)

aﬁ)

p(y) = 47rN(y)h(y), Imp <0; (= , 0<k<l.

If the small bodies D,,, are of an arbitrary shape and |S,,| = ca?, then the
factor 47 is replaced by the factor ¢. This factor may depend on m, if the
small bodies are not identical.

Effective Field 1

If | J;m| < Iy, then, as a — 0, one has

M
upr(x) ~ up(x) + Z G, 2m)Qm, a<1l, |z—z,]>a

m=1
Define effective (self-consistent) field acting on the m-th particle:
e = ul™ = upr(z) — G2, Ty ) Qum,s
If |x — x| > a, then ue ~up as a — 0.

‘We prove the following formula:

Qum ~ 47U (T ) M(T)a® ™%, | a — 0.

Effective Field 2

The equation for the effective field u.(z), as a — 0, is

M
Ue(x) = uo(x) — 47 Y G(&, T Yt (T ) hma® ",

m=1
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where h,, := h(z,,) and the term with z,, is dropped if |z — 2,,,| < a. Here
hm, are known, but w, := u.(z,,) are unknown.
To calculate u,, I use a linear algebraic system (LAS):

M
Uj; = uoj; — 47’(&27'{ Z G(xj,xm)hmum, 1 S] S M.
m=1,m#j

The order of this system will be substantially reduced.

Reduction of the Order of the LAS.

To reduce the order M of the LAS, consider a partition of D into a union
of small non-intersecting cubes A,, 1 < p < P, P < M, y, € A,,
diam A, > d. Then the LAS for u, is:

P
Uq = Uog — 47TZ G(yqa yp)h(yp)“pN(yp)|Ap|7 (*)
pP#q

where 1 S q S Pa P < M; Ug = U(yq)a Uoq = U()(yq)a

a®" Z 1= N(yp)|Apl

Tm EAp

The LAS (*) is used for efficient numerical solution of the many-body scat-
tering problem when the scatterers are small.

How Efficient is This Reduction?

Let the small particles be distributed in a cube with side L = 107! m,
a=10"5m, d=10"m. Then M ~ (%)* = 10'.
Let the side b of the partition cubes A, be b = al/ =103 m.
Then P = (%)3 = 10. The reduction of the order M of the LAS in this
example is from 10'° to 10 .

Of course, there is a question of the accuracy of the approrimation of
the solution of the original LAS by the solution of the reduced order LAS.

Ifb=a'/* =10"2m, then P = (%)3 = 10%. In this case the reduction
of the order M of the LAS is from 10 to 103.
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Numerical experiments allow one to find ¢ and b for which
P gives the accurate approximation of w.

Derivation of the Asymptotic Formula for Q,,

We start with the exact boundary equation:

Am Om — Om

2

A ::2/ OG() ,  ydt, Toom ::/ G(s,t)om (t)dt
s ON, S

ueN - C’mue + - C’meo-'m = O on Sm-

m

G(z,y) = [1+0(z =yl |-yl =0

dr|x — y|
'

m d
37Ta3Aue (xm) Crn47ra Ue (xm) Qm + Cm / / h

/ A omdt = ffs omdt,
S "

/ ds B
Js,, 4m|s —t| a

4
gﬂ-agAue (xm) - 47TC’rnue (m'm)a2 = Q‘m(l + C’"ba’)'

@® [4 Aue () — 4Tt (2m) Ga ™

Qm = 1+<.ma

If C’m = }L(;:I'), k<1, then

Q’m ~ —47Tue(x’m)h(mm)a’2_ﬁ'

Asymptotic Formula for o,

Qm ~ —4mue (T )h(2m)a* ",

Qm = / Omds ~ 4Ta’o,.
s
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If a — 0, then

—K

‘am ~ —h(zm)ue(zm)a

Why is I, > |Jm|?

2—kK
|G(mamm)Qm| = Im =0 <ad >7
)
d

aa®" " aa®”
J’rn—O( d2 >_O(E d )7

Thus, J, /Iy = O (%) Consequently,

I’rrL>>Jm Zfa<<d<<)\‘

Calculating the Wave Field

Formula for calculating the field ups(x) is

up(z) = uo(x) —4m Z G (2, T ) (T Ve (21 ) 025

m=1

This formula is valid everywhere outside small particles. Since the input
from one small particle into u s is not more than O(a?~*), this input tends
to zero as a — 0, x € [0, 1).

Limiting Equation for v as a — 0

M P
4T Z G(xvxm)h(mm)ue(mm)GQ_H ~ 47TZG(33, y(p))h(y(p))ue(y(p))
m=1 p=1
Y 1747TZG 2,y Py ue(yP )N ()| Ap|(1 + &)
Tm EAp
e/cxy )y, p(y) = A7h(y)N ().

mm:w@fﬁcmmwwww
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An Auxiliary Lemma
Lemma. If f € C(D) and z,, are distributed in D so that

W], a—0,

for any subdomain A C D, where ¢(a) > 0 is a continuous, monotone,
strictly growing function, ¢(0) = 0, then

lim 3 fan)ol@) = [ )N

Tm €D
Remark: This lemma holds for bounded f with the set of discontinuities

of Lebesgue’s measure zero. It can be generalized to a class of unbounded f.

Proof of the Lemma

Proof. Let D = U,/\, be a partition of D into a union of small cubes
A\p, having no common interior points. Let |A,| denote the volume of A,
0 := max, diam A\, and y®) be the center of the cube A,. One has

iig}) Z F@m)ela) _(Pg%) Z Ty Z 1

Ty €D (p)eA Tm €Ay
— 1 PN (p)
tim S £V ()] ][1 + o(1) /f

The last equality holds since the preceding sum is a Riemannian sum for
the continuous function f(z)N(x) in the bounded domain D. Thus, the
Lemma is proved. O

Equations for the Limiting Field u

u() = uo(x) — / G, y)p(w)uly)dy, plz) = dxh(z)N ().

D

‘Lu V2 + k*n®(x )uzO,‘ n?(x) = ni(z) — 55>

We have:




Appendiz A5: How to Create Materials with a Desired Refraction Coefficient? 273

Creating Materials with a Desired Refraction Coefficient

Step 1.
{n*(x),nj ()} = p(z) = k*[nf(z) — n®(z)].

Step 2. Given p(x) = p1 + ip2, find {h(z), N(z)} from the equation
4dh(z)N(x) = p(x). One has

_ pi) _ p2(2)
() = 4N (x)’ ha() = 4N (x)

There are many solutions, because N (z) > 0 can be arbitrary. For example,
one can take N(x) = const > 0.

Step 3.

Embed N (A,) = a2 - fA x)dx small particles in A, where U Ap,=D.
Physical propertles of these particles are given by their boundary

e
impedances (,, = h(i# for all z,, € A,.

The distance between neighboring particles is d = O(a2 3

Main Theorems

Theorem 1. The resulting new material has the desired function
n?(z) with the error which tends to zero as a — 0.

Denote by V,, the total volume of the embedded particles. Then

dra®

v, = N(D)

= 0(a"?™)0(a®) = O(a*), a — 0.

Theorem 2. The total volume V), of the embedded particles in the
limit ¢ — 0 is equal to zero.

Technological problems

The first technological problem is:

How can one embed many, namely M = M (a), small balls in a given
material so that the centers of the balls are points x,, distributed as desired?

The stereolitography process and chemical methods for growing small
particles solve this problem.
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The second technological problem is:

How does one prepare a ball B, of small radius a with boundary impedance

Cm = M, 0 < k <1, which has a desired frequency dependence?

a/K/
Remark: It is not necessary to have large boundary impedance: if Kk = 0, or
k=0 (;), then (,, is bounded. However, if x = 0, then M = O(a™2),

[Inal
so more particles have to be embedded.

Playing with Numbers

1
a27li

N=10% k=2/3, a=10"%*% d=10"2
N=10% rk=1/2, a=10"" d=10"2

d ~ a(2—r€)/3.

N ~10% N ~

b

The difference between the solution of the limiting integral equation for the
effective field and the solution to the linear algebraic system for ue(xy,) is
O(1/n), where 1/n is the side of a partition cube.

Spatial Dispersion. Negative Refraction

u= Za(kz)e“k"'_‘”(k)t], |k — k| + |w(k) —w(k)| <6

k
wWo
’Ugroup = ’Ug = Vk(U(k'), Uphase = 'Up — mk .
k w?n? wn
Vk:ko:_, :k27 — = |k|.
kI i — = k]
0
(E N c_v_n) Vi — &
c ¢ Ow
{vg = —const -v,, const > 0} <= negative refraction.
on
n+w—<0
w@w

Isotropic Medium
If w>0,w=uwk), k:= k|, then v, - vy = w'(k)% <0, provided that

W'(k) < 0.
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Indeed,
vy = Viw(k) = W' (B)K°, v, %ko
1Y 0
Viw(k) - v, =w (k)E’ k” :=k/k.
Terminology:

Negative refraction means vy is directed opposite to vp;
Negative index means that e < 0 and p < 0.
Wave-focusing Materials

This theory gives a method for preparing materials with a desired
radiation pattern, wave-focusing materials.

V24 k2 —q(2)u=0inR® u=e**? 4y =g+,

ikr
o= A(B)° +0<%>, r=lal >0, T =8,

r

AB) = —ﬁ i e~k Brh(z)dx,  h(x) = q(z)u(z, ).

Here « is a unit vector in the direction of propagation of the incident wave,
A(pB) is the scattering amplitude (radiation pattern). We assume that «
and k£ > 0 are fixed.

Under-determined Inverse Scattering Problem

IP (inverse problem): Given f(B) € L?(S?), a € S?, k > 0, and € > 0,
(D C R? is a bounded domain), find ¢ € L*(D) such that

[1£(8) — AB)ll L2(s2) < e (1)

A priori it is not clear that this problem has a solution. We prove
that it has a solution.

If this IP has a solution, then it has infinitely many solutions
because small variations of ¢ lead to small variations of A(f).

Theorem A. The set { [, e”**h(x is dense in L?(S?)

)dm}VhELQ(D)
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Corollary 1. Given f € L?*(5?) and € > 0, arbitrarily small, one can find
h € L?(D) such that

< €.

Hf(ﬁ) + ﬁ /D e kBT (2)da

Theorem B. The set {q(z)u(x,®)}veer2(p) is dense in L?(D).

Corollary 2. Given h € L?*(D) and € > 0, arbitrarily small, one can find
q € L?(D) such that

[h(z) — q(x)u(z, )|[L2(p) <.
Since the scattering amplitude A(8) = —ﬁ In e~ B¢ h(z)dx depends con-

tinuously on h, the inverse problem IP is solved by Theorems A
and B.

Proof of Theorem A.
Assume the contrary. Then 3¢ € L?(S?) such that
0= / dﬂw(ﬂ)/ e~ *Beh(z)dr  Vh € L3(D).

52 D
Changing the order of integration, one gets:

/ dpy(B)e P =0 Ve e D CR®,

S2
and

/OO dAAQ/ dﬁe‘“ﬁ‘lw(ﬁ)w =0 VzeR3
0 S2

By the injectivity of the Fourier transform, one gets 1 () 6(2216) = 0. There-
fore, ¥(f) = 0. Theorem A is proved. O

Proof of Theorem B.

Given h € L?(D), define
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If ¢ € L?(D), then this ¢ solves the problem, and u, defined in (2), is the
scattering solution:

w =g /D o 1)a(w)u(y)dy, (4)

and

1 _
AB)=—— [ e " Vn(y)dy.
B)=—1 | ¢ (y)dy
If ¢ is not in L?(D), then the null set
N :={x:x € D,u(x) = 0} is non-void. Let

Nsi={x: |u(@)| < b,z € D}, Ds:=D\Ny.

Claim 1. Let hy = {g: ;2 ﬁ;’ Then ||h5 - h||L2(D) < 0(1), qgs =

W D e Lo(D), g = uo — [y, ghsd

0, in N, ) . 0 p 9hsay .
Proof of Claim 1. The set N generically is a line | = {z : ui(x) = 0,
uz(x) = 0}, where u; = Ru and us = Su. Consider a tubular neighborhood
of this line, p(x,1) < . Let the origin O be chosen on [, s3 be the Cartesian
coordinate along the tangent to [, and s; = u1, s3 = uy are coordinates in
the plane orthogonal to [, sj-axis is directed along Vu;|;, j =1, 2.

The Jacobian J of the transformation (z1,z2,x3) — (81, 2, 83) is non-

singular, | 7| + |7 | < ¢, because Vu; and Vug are linearly independent.
Define

h, in D(;,
hs = Us = U */ g(I,y)hé(y)dy,
D

O, in N(;,
h
-, in D(;,
gs = { Us |h — hsllz2(py < o(1), max|h —hs| < c.
0, in N(s.

One has us = ug — [, ghdy + [, g(x,y)(h — hs)dy,

lus(z)| > Ju(x)] c/Né ﬁ >0—1(0), xz€Ds, c¢= max |h(x)|.

If one proves, that I(0) = 0(d),0 — 0, Vo € Ds then g5 € L*°(D), and
Claim 1 is proved. O

Claim 2:
1(0) = (9(52| In(d))), d—0.
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Proof of Claim 2.

/ dy / dy /625 L dsy p
~ — =C1 P —ap
Ny lz =yl N5 1Yl 0 0 \Vp*+s3
c20 co
cl/ dppln(33+\/p2+5§)|(1)§03/
0 0

< O(6%1n(6)]).

)

1
pln—dp
p

The condition |Vu;|; > ¢ > 0, j = 1,2, implies that a tubular neighborhood

of the line I, N5 = {x : \/|u1|? + |uz|? < 6}, is included in a region {x :
|z] < c20} and includes a region {z : |z| < ¢4d}. This follows from the
estimates

cop < |u(@)] = [Vu(§) - (z = )] < cap.

Here £ € [, x is a point on a plane passing through £ and orthogonal to [,
p=|z—¢&|, and § > 0 is sufficiently small, so that the terms of order p? are
negligible,

c2 = max |Vu(¢)l, ¢ = min|Vu(¢)]

gel

Claim 2, and, therefore, Theorem B are proved. ]

Calculation of h given f(8) and € > 0

Let {¢;} be a basis in L?(D),

A necessary condition for the minimum is a linear system for cgn).
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Appendix B

Optimal with Respect to Accuracy
Algorithms for Calculation of
Multidimensional Weakly Singular
Integrals and Applications to
Calculation of Capacitances of
Conductors of Arbitrary Shapes

In this appendix cubature formulas, asymptotically optimal with respect
to accuracy, are derived for calculating multidimensional weakly singular
integrals. They are used for developing a universal code for calculating
capacitances of conductors of arbitrary shapes. The presentation follows
[10].

B.1 Introduction

Asymptotically optimal and optimal with respect to order (to accuracy
and to complexity) algorithms for calculating multidimensional singular
integrals have been constructed in [12] on Hélder and Sobolev classes of
functions.

Although multidimensional weakly singular integrals are used in many
applications, optimal methods for calculating these integrals are not well
developed.

In [12] asymptotically optimal with respect to accuracy methods for
calculating integrals of the form

2m 2w

/f(01702)

0 0

Y1 v

01— S1 02 — 82

2
d0'1d0'2,

ctg

0 < 71, 72 < 1, were constructed on Hélder and Sobolev classes.

281
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Development of optimal methods for calculating multidimensional
weakly singular integrals is an important problem. Construction of efficient
cubature formulas for calculating weakly singular integrals for calculating
capacitances of conductors of arbitrary shapes by iterative methods pro-
posed in [100] and [113] is important in many applications, for example, in
wave scattering by small bodies of arbitrary shapes and in antenna theory.
A bibliography on methods for calculating capacitances and polarizability
tensors is contained in [113].

Here the method proposed in [12] is generalized to multidimensional
weakly singular integrals and applications of optimal with respect to order
cubature formulas for calculating weakly singular integrals on Lyapunov
surfaces are given. The results are used for constructing a universal code
for calculating capacitances of conductors of arbitrary shapes.

In the first part of the Appendix optimal methods for calculating inte-
grals of the types:

21 21
doid
Kf= // f(01,02)do1dos ~, 0<si,sm<2m (B
sm "1_‘51)+sin (—‘72552))
and
11 Jdrid
T1,7'2 T1GT2

T —1<t,to <1 0<A<l1
f // Tl*tl (27152)2))‘7 =rhi2 =5 <A<L

(B.2)
are constructed for Holder and Sobolev classes of functions.

Our results for integrals (B.1) can be generalized to the integrals with
other periodic kernels and functions. The development of cubature formulas
for integrals (B.1) is of considerable interest because the results are appli-
cable to integrals with weakly singular kernels defined on closed Lyapunov
surfaces.

It will be clear from our arguments, that the results can be generalized
to multidimensional integrals.

In Section B.9 of the Appendix iterative methods for calculating capaci-
tances of conductors of arbitrary shapes are developed. A general numerical
method for calculating these capacitances is developed, and some numerical
results are given.
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B.2 Definitions of Optimality

Various definitions of optimality of numerical methods and a detailed bibli-

ography can be found in [7], [154]. Let us recall the definitions of algorithms,

optimal with respect to accuracy, for calculating weakly singular integrals.
Consider the quadrature formula:

n2 P1 P2

ny
Tf= Z Z Z Zpk1k21112(t1,tz)f(ll’lz)(a:kl,ykz)

ki=1ko=11,=0ly3=0 (B.3)
+ Rn1’rb2 (f;pk1k2lll2 $ Thy s Ykos t1, tg),

where coefficients pg, k,1,1, (t1, t2) and nodes (z,,yr,) are arbitrary. Here
FU) (51, 80) = 912 f (51, 82) /D5 D5
The error of quadrature formula (B.3) is defined as

Rnlng (f;pk1k2l1l2;mk1ayk2) = sup |Rn1nz (f;pklkgllb;ﬂ?kl,ka;t1,t2)|-
(t1,t2)€[—1,1]2

The error of quadrature formula (B.3) on the class U is defined as

Rn1n2 (\Ij;plﬁkzlllz 3 Lk s ka) = Sup Rn1n2 (fapk1k2l1l2; Tk, ka)'
fev

Define the functional

C’nlng (\II) = inf Rnlng (\I/;pklkglllg;mklaylw)'

Phikolile Tk Yko
The quadrature rformula with the coefficients pj ; , ;, and the nodes
(z,”;l , y,’gz) is optimal, asymptotically optimal, optimal with respect to order
on the class U among all quadrature rules of type (B.3) provided that:
Ryyny (\I/;pzlkﬂlb;le7y;$2)
C’Nl”2 (\II)
The symbol a =< § means Aa < f < Ba, where 0 < A, B < 0.
Consider the quadrature rule

=1,~1,<1, ny,ng — oo.

Tf= Zpk(tlat2)f(Mk)+Rn(f;pk§Mk;tlat2)a (B.4)
=1

where coefficients py(t1,t2) and nodes (M) are arbitrary.
The error of quadrature formula (B.4) is defined as

Ro(f;pes M) = sup  |Rn(f;prs M t1, t2)).
(t1,t2)€[—1,1]2
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The error of quadrature rule (B.4) on the class ¥ is defined as

Ry, (V5 pr; My) = sup Ry, (f, pr; Mg).
few

Define the functional

C’rb(\ll) = inf Rn(q/;pk; Mk)-
Pre; M
The quadrature rule with the coefficients p; and the nodes (M) is
optimal, asymptotically optimal, optimal with respect to order on the class
¥ among all quadrature rules of the type (B.4) provided that:

R, (W; py: M)
Cn (W)

By Ruyn, (¥) the error of optimal cubature formulas on the class ¥ is
defined. One has Ry, n, (V) = Cuyn, (U).

=1,~1,x<1, n— oo (B.5)

B.3 Classes of Functions

In this section, we list several classes of functions which are used below (cf
(75], 63]).

A function f is defined on A = [a,b] or on A = K, where K is a unit
circle, satisfies the Holder condition with constant M and exponent «, or
belongs to the class Ho(M), M > 0, 0 < a < 1, if |f(2)) — f(2")] <
M|z" — 2"|* for any 2/, 2" € A.

Class H,,, where w(h) is a modulus of continuity, consists of all functions
f € C(A) with the property |f(x1) — f(x2)| < Mw(|x1 — x2|), 21,22 € A.

Class W7(M) consists of functions f € C(A) which have continuous
derivatives [/, f”,...,f~Y on A, and a piecewise-continuous derivative
) on A satisfying MAT ze[a,b] | (x)] < M.

Class Wy (M), r = 1,2...,1 < p < oo, consists of functions f(t), de-
fined on a segment [a,b] or on A = K, that have continuous derivatives
f,f", ..., f=Y and an integrable derivative f(") such that

1/p

/|f("')(93)|pdév <M.
A

Class Wi (M), r = 1,2...,0 < a < 1, consists of functions f(t), de-
fined on a segment [a,b] or on A = K, which have continuous derivatives
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", ..., f) such that
1F ) (@1) = fO) (22)] < M2y — 2],

A function f(z1,22,...,21),l = 2,3,..., defined on A =
[a1,b2;a9,b95...5a;,b)] or on A = K; X Ko X -+ X K, where K;,i =
1,2,...,1, are unit circles, satisfying Holder conditions with constant M
and exponent «;,7 = 1,2,...,1, or belongs to the class Hy, .. o (M), M >
0,0<a<l,i=12...1if

.....

|f(l'1,l’2,.. '7xl) - f(y15y27" '7yl)| < M(|£E1 7y1|041 +oeeet |xl 7yl|al)'

Let w,w;, where e =1,2,...,[,1=1,2,..., be moduli of continuity.
Class H,, . .. (M), consists of all functions f € C(A),A =
[a1,ba;a9,b9;5...5a;,b)] or A= K; x Ko X -+ x K, with the property

|f(:c1,x2,.. '5Il)7f(y17y25' "7yl)| < M(W1(|’I’1 7y1|)+ '+wl(|xlfyl|))'

Let H¥(A),j = 1,2,3,A = [a1,b2;a2,b2; .. .;a;,b] or A = K; x Ka X
-x K1 =2,3,..., be the class of functions f(z1,z2,...,2;) defined on
A and such that

[f(z) = fF)l <w(pi(e,y)),5 = 1,23,

where =z = (21,...,21),y = (Y1,---,0),,m(r,y) = mari<i<i(|z; —
vil)s pa(,y) = S0y |2 = il pa(a,y) = [Xiy i — w22,
Let H{'(A),j = 1,2,3,A = [a1,bz;a2,b2; .. .;a;,b1] or A = Ky x K3 X
- x Kj,1 = 2,3,..., be the class of functions f(x1,zs2,...,2;) defined on
A and such that

[f(@) = F)l < (ps(z, )", 5 = 1,2,3.

More general is the class H;B(A),j = 1,2,3. It consists of all func-
tions f(x) which can be represented as f(x) = p(x)g(z), where g(x) €
H$(A),j =1,2,3, and p(z) is a nonnegative weight function.

Let Z¢(A),j = 1,2,3, be the class of functions f(x1,72,..., ;) defined
on A and satisfying

[f(2) + f(y) = 2/ ((x +9)/2)] < wlp;(2,9)/2),5 = 1,2,3.

Let Z§'(A),j = 1,2,3, be the class of functions f(x1,x2,..., ;) defined
on A and satisfying

[f (@) + f(y) = 2f (= +v)/2)] < (pj(2,9)/2)",5 = 1,2,3.
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Class Z9:(A),j = 1,2,3, consists of all functions f(x) which can be
represented as f(z) = p(z)g(x), where g(z) € Z§(A),j = 1,2,3, and p(z)
is a nonnegative weight function.

Let Wr-"(M),l = 1,2,..., be the class of functions f(z1,22,..., ;)
defined on a domain A, which have continuous partial derivatives
M f(wy, . yw)/0x - 02),0 < Jv| < r— 1] = v+ 4, >
v, > 0,0 =1,2,...,0,r = ry 4+ --- 4+ r; and all piece-continuous deriva-
tives of order r, satisfying |0" f(z1,...,21)/027" -+ 0z)'||lc < M and
187 £(0,...,0,24,0,...,0)/0aT | < M, i=1,...,1.

Let Wytmt(M),l = 1,2,...,1 < p < oo be the class of functions
f(z1,29,...,27), defined on a domain A = [ay,bs;...;a;, b, with continu-
ous partial derivatives 91 f(z1,...,2;)/02" -+ 02,0 < [v| < v — 1, |v| =
vi+-to,r; >0, >0,0=1,2,...,l,r=r1+---+r;, and all derivatives
of order r, satisfying

8r1+v2+...+mf(zh 0,..., 0)/8171'135812}2 . ax;}l

" f(zr,... a) /02 Oz - - - D!

Y

<
Lp(A)

Ly ([a1,b1])
<M, |va| + |vs|+ -+ o <r—r — 1

guittuatrip(0,. 0,0, 2) /02y 0xy? .. Oz Oy

Let A = [a1,bo;a2,b2;...;a;,b)] or A= K; X Ko X ---x Kj. Let C"(M)
be the class of functions f(z1,22,...,z;) which are defined in A and which

Ly ([ar,bi])
< M, |vi| + |va| + -+ v < v —rog — 1.

have continuous partial derivatives of order r. Partial derivatives of order
r satisfy the conditions

8‘”']‘(3:1 xl)
) ) < M
| ozt -+ Ox)' le <

for any v = (v1,...,v;), where v; > 0,4 = 1,2,...,] are integer and
Yict b =T

By ¥ we denote the set of periodic functions of the class W.

The Lyapunov spheres ([38]) are defined as regions bounded by a finite
number of closed surfaces satisfying the three Lyapunov conditions:
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1. At each point of the surface a tangent plane (and, therefore, a normal)
exist.

2. If © is the angle between the normals at the points m, and ms, and
r is the distance between these points, then

O <A, 0<A<1,

where A and \ are positive numbers which do not depend on m; and ms.

3. For all points of the surface, a number d > 0 exists such that there
is exactly one point at which a straight line, parallel to the normal at the
surface point m, intersects the surface inside a sphere of radius d centered
at m.

Let S be a Lyapunov sphere, and N be the exterior normal to this
sphere. We introduce a local system of Cartesian coordinates (x,n, (),
whose origin is located at an arbitrary point mg of .S, the ( axis is directed
along the normal Ny at the point mg, and the x and 7 axes lie in the
tangential plane. In a sufficiently small neighborhood of mg, the equation
of the surface S in the local coordinates (x, 7, ) has the form

¢=F(x,n).

Definition B.1  The surface S belongs to the class Ly (B, «) if F(x,n) €
WZk(B), and the constants B and a do not depend on the choice of the
point my.

B.4 Auxiliary Statements

We need the following known facts from the theory of quadrature and cu-
bature formulas. These facts can be found, for example, in [75], [63], [21],
[55].

Lemma B.4  Let Wy be the class of functions Wy (1), 1,2,..., 1<p<
00, 0 <t <1, f(t) € Uy, and the quadrature rule

[ 0= (e + Ral)
0 k=1

be exact on all the polynomials of order up to p—1, and has error R, (V1) on
the class W1. Let Wy be the class of functions Wy (1), r=1,2,..., 1<
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p<oo, a<wz<b, and g(xr) € Wy(1). Then the quadrature formula

b n
/g(x)dx — (- a)> prgla+ (b—a)tx) + Ralg)

has error R, (Vs) on the class of functions Yo and
Ro(¥3) = (b—a) ' YPR, (1y).
Theorem B.2  ([75]) Among quadrature formulas
1 m e
[ @de =37 pusOwn) + R() = LU + ()
0 k=1 1=0

the best formula for the class W (1) (1 < p < o0) with p = r —1 and
r=12,---,orp=r—2andr=2,4,6,---, is the unique formula defined
by the following nodes xj and coefficients py;:

2h = h(2(k = 1) + [Reg]7), k=1,2.....m,

* r—2
pk,gv_‘_l:0(k=2,3,...,m—1;v:O,l,...,{ }),

h = 271(7” -1+ [RT'q(l)]l/r)717

r—1
and R.4(t) is the Chebyshev polynomial t" + 3 Bit', deviating least from
i=0
zero in the norm Ly(—1,1), where p~* + ¢! = 1. Here
_ Foul1)
2rel/rg + 1(m — 1+ [Ryq(1)]M/7)r

G Wy (D] = Ra[W (1))
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Let a function f(z,y) be given on a rectangle D = [a, b; ¢, d]. Consider
the cubature formula

m n

//f r,y)drdy = Zzpkz Tk Yi +Rmrb(f) (B'6)

k=1 1i=1

defined by a vector (X,Y,P) of a nodes a < 1 < 23 < -+ < Xy, < b,
c<y <y2 < -+ <yp <d, and coefficients pg;.

Theorem B.3  ([75]) Among all quadrature formulas of the form of (B.6)
the formula

//fx ydazdy—4hq22fa+ (2k — 1R, ¢+ (2i — 1)q) + Ronn(f),

k=1 1i=1

where h = 2m ,q= dQ_nC, is optimal on the classes Hy, o, (D) and HY (D).
In addition

q

h
Rywn[Hoy (D)) = 4mnlg / wr(B)dt + h / ws(B)d;

0

q h
//w t2 + 72)dtdr.
0

Consider the cubature formulas of the form:

Ryn[HS (

N
[[ e s pedy = > peson) + () (B.7)
D k=1

where p(z, y) is a nonnegative and bounded on D function, py, My (M € D)
are coeflicients and nodes.

Theorem B.4  ([75]) Let p(x,y) be a nonnegative bounded weight func-
tion. If Ry[Hy ;(D)] and Ry[Zy ;(D)], where j = 1,2,3, and 0 < a < 1,
are the errors of optimal formulas (B.7) on the classes H' (D) and
73 (D), respectively, then

lim N®2Ry|

N—o00 ;D](

D) = lim N®*2Ry([Z};(D)]
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(2+4a)/a
=D, / / (p(,9))* ** dardy . §=123,
D
/6
where Dy = 23_—%}(%)(2*&)/2 of ﬁ%, Dy =2%/(2+ «), and D3 =

21—0.5a/(2 + Oé).
If j = 2, then the conclusion holds for n-dimensional cubature formulas.

Remark B.1 Theorem B.3 is generalized to the case of unbounded
weights p(xz,y) in [11].

We will use the following result (see, e.g., [8]):

Lemma B.5 Let H be a linear metric space, F' be a bounded, closed, con-
vex, centrally symmetric set with center of symmetry 6 at the origin, and

L(f),ls(f), ..., In(f), be some linear functionals. Let S(l1(f),...,In(f))
be some method for calculating the functional L(f) using functionals

(1(f)s-- -, In(f)), and S be the set of all such methods. Then the num-
bers D1, ..., Dy exist such that

N
sup |L(f) = 3 Dils(f)| = inf sup |L() =S(D)..-. v(D)]-~ (B)
k=1 er

JeF
This means that among the best methods for calculating functional L(f):

there is a linear method.

Proof. Let us associate with each f € F a point (L(f),l1(f),...,In(f)).
Let Y be a set of all such points (yo,...,yn) for f € F.

From our assumptions, it follows that Y is a closed centrally symmetric
set with the center of symmetry at the origin.

Let (yo,0,...,0) be an extremal point of the set Y, and

Dy = sup Z =1Yo-
(2,0,...,0)€Y

Because F' is bounded, one has Dy < oo, and because F' is convex and
centrally symmetric with respect to the origin, one has Dy > 0.
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Draw the support plane for the set Y through the point (D, 0,...,0) :

N
(Yo — Do)+ »_ Cjy; = 0.

j=1

Since Y is centrally symmetric with respect to the origin, the plane

N
(yo + Do) + Y Cjy; =0

j=1

is also a support plane for Y, and Y lies between these two planes.
Hence, we have for the points of Y the inequality:

N
lyo — ZDjyj| <Dy, D;=-Cj.

Jj=1

The definition of y; implies

N
sup [L(f) =Y _ Djl;(f)| < Do. (B.10)
feF =

Let fo be an element F corresponding the point (Dg,0,...,0). Then
S (£f0), .-, In(Ef0)) = S(0,...,0). The right-hand side of (B.8) is not
less than

inf max{|Z(fo) = S(0....,0)], |L(~fo) = S(0,...,0)[}
= lgf max{|D0 — a|, |D() -+ a|} = D().

This and (B.10) imply that the right-hand side in (B.8) is not less that the
left-hand one. But the right-hand side of (B.8) can not be more than the
left-hand side of (B.8) because a set of methods S contains linear methods.
Lemma B.5 is proved. O

Corollary B.1  Among all functions for which the optimal method for
calculating L(t) has the greatest error for a given set of functionals, there
exists a function satisfying the conditions l1(f) =---=In(f) =0.

It follows from the proof that such a function is the function fy.
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B.5 Optimal Methods for Calculating Integrals of the
Form (B.1)

B.5.1 Lower bounds for the functionals (pm and (N

In this section we derive lower bounds for the functionals (,,, and (y,
defined in Section B.2 , for calculating integrals (B.1) by the cubature
formulas

1 n2 P1 P2

Kf - Z Z Z Z Pkikalals (51’ SQ)f(lhl?)(xkuxlm)

k1=1ke=11;=012=0

+Rn1n2(f;pk1kzl1lz;kaxkz;51752)a (B]-]-)

and

N

Kf =2 prl(s1,9)f(My) + Ry (f; pr; My 51, 52) (B.12)
k=1

on Holder and Sobolev classes.

Theorem B.5 Let UV = Hy,, o, (D) or ¥ = HY (D), and calculate integral
(B.1) by formula (B.11) with p1 = p2 = 0. Then the inequality

h q
Gunal¥] > Lmamalg / wr(B)dt + h / ws()dt],
0 0

where ¢ = ==, h ==, and
’ILQ’ nl’

2m 2w

dSldSQ
7'O/O/(sm?(sl/z)+Sm2(32/2))A (B.13)

is valid.

Corollary B.2 Let UV = H,,(D) or ¥ = H{(D), and calculate integral
(B.1) by formula (B.11) with ny = n2 = n and p1 = p2 = 0. Then the
imequality

(63

2y

C‘rbn[\II] Z m

s valid.
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Proof of Theorem B.5. Denote by 9(s1,s2) a nonnegative function
belonging to the class H,,w,(1) and vanishing at the nodes (g, , 2, ), 1 <
k1 <ni, 1 <ky <mo.

One has:

RTL1’!L2 (Qby Pkikos Thy sy ka)
2m 2w 2m 2w

_4”2// //Sm 01—51)(7;;Uf)s?z;éz—32)/2))]A ds1cls

0 0 0 0

2m 2w 21 2w

d51d82
47T2//¢ 01,02) // Sin%(01—51)/2) L5 (02 —s2) /2] doidos

00 00
27 27 27 27

dsidss //

,52)ds1dsa.

47r2// sm (s1/2) +sm (s2/2)]A Y(s1,52)ds1dss
0 0

From Lemma B.5 and Theorem B.3 one concludes that the following

(B.14)
inequality

h q
Ry (V5 Pk Ty s They) > 7: ning Q/Wl(t)dt+h/WQ(t)dt ,
0 0

s s

i)

ny n
holds for arbitrary weights pg, ., and nodes (zy,, zx,) and

h q

Can (W) > Fl 12 Q/W1(t)dt+h/UJ2(t)dt

0 0
Theorem B.5 is proved. U

Theorem B.6 Let ¥ = HY or ¥ = Z2*, i = 1,2,3, and calculate the

integral K f by cubature formula (B.12). Then

CNIHT) = 208[Z8) = (1 + o(1))y(4n?) >/ * DN =72,

gl—a/2
24a

where Dy = 22 (L )(a+2)/2 f —d D, =

2+a\2\/3 cos2ta 7 and D3 =

2
20 (24a)’
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Proof. The proof of Theorem B.6 is similar to the proof of Theorem 5.1,
27 2w

with some difference in the estimation of the integral [ [ ¢(s1, s2)ds1dsa,
00

where the function ¢ (s1, s2) belongs to the class HY (or Z{*), is nonnegative
in the domain D = [0, 27]?, and vanishes at N nodes My, k = 1,2,..., N.
Using Lemma B.5 and Theorem B.4, one checks that the inequalities

27 27

inf sup //1/) s1,82)dsydsy = (14 0(1))D;(4x2)He)/a y=a/2,
My e He o =0

27 27

inf sup //w 81, $2)ds1dse = (14 o1 ))2D (47r )(2+a)/aN—a/2

Mk ez p(My,)= =0/ J

hold for arbitrary M, € D, k=1,2,..., N.
Substituting these values into inequality (B.14), we complete the proof
of Theorem B.6. 0

Theorem B.7 Let U = C5(1), and calculate the integral K f by formula
(B.11) with py = p2 =0, and ny = ng = n. Then

Cnn[\I/] > (1 + 0(1))2’;{(77

where K, == 23572 (=1)70+1) (25 +1)="~1 is the Favard constant.

J
Proof. Let
Y(s1,82) = ¥1(s1) + Pa(s2),

where 0 < 91(s) € W"(1) vanishes at the nodes zy, k = 1,2,...,n, and
0 < 1o(s) € W7 (1) vanishes at the nodes yx, k =1,2,...,n.
According to [75], for arbitrary nodes xy, k = 1,2,...,n one has:

| 2K,
/wz >3 9

Thus, the inequality

27 27

ST K,
//¢(81752)d81d822 ﬂnT
00

holds for arbitrary nodes (x1,...,2,) and (y1,...,Yn).
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The conclusion of Theorem B.7 follows from this inequality and from
(B.14). O

Theorem B.8 Let V=W (1), r=1,2,..., 1 <p < oo, and calculate
the integral K f by formula (B.11) with p1 = po =r — 1 and ny = ng = n.
Then

Ql/qﬂrfl/pqu(l)
g DVi(n = 1+ [Reg (D] 77

where Ryq(t) is a polynomial of degree r, least deviating from zero in
Lq([-1,1]).
Proof. Let L = [-2]. Take an additional set of nodes (&, &), & = 22—’“,

k=01, L—1. By (vw;), ij = 0,1,...,N—1, N =+ L, denote
the union of the sets (x,y) and (&,€;). Let ¥(s1,s2) = ¥1(s1) + ¢a(s2),
where t1(s) € W, (1) vanishes with its derivatives up to the order r — 1
at the nodes v;, i = 0,1,...,N — 1, and 12(s) € WIET)(l) vanishes with

its derivatives up to order r — 1 at the nodes wj, j = 0,1,...,N — 1.
Vi41 Wi+1
Assume [ ¢1(s)ds >0, i =0,1,...,N —1, and [ a(s)ds >0, j =
w;

Ui

Crn[¥] = (1+0(1)) s

0,1,..., N — 1, where vy = 27 and wy = 27.
Let

0, if (o1,02)=(s1,52),
L otherwise,

h(51, S2,01, 02) = {
(sir12((0'1—sl)/2)+sin2((0'2—52)/2))>‘ )

[ (s1,82), if W(s1,82) >0,
W(Sl’SZ)_{ 0, if (s1,s0) <0,

_ 0, if $1,82) > 0,
v (erm) = { = (s1,52), dig 7/1(5)1782) <0.
For each value (&;,&5), 4,5 =0,1,...,N — 1, we have (with N = Ny =
Ny =1L):
o 27
//h(giafj,01702)¢(01702)d01d02

0 0

N1 N_1 Skt1&41
k

:Z Z / /h(fiafj,01702)1/1(01,02)d01d02

=0 =0 & &
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N1 N_1 &kt1&41

*ZZ / /h(&',fj,01702)?,/17(01,02)(101(102

k=0 1=0
& &
i+[(N1—1)/2] j+[(N2—1)/2] €kt &1
z Z Z h(€i7§j7§k+17€z+1)/ /w+(01,ag)dald02
he =t & &
i+[(N1—1)/2] j—1 i1 &

_ > besGna) [ [ vtonoadndo

k=i+1 I=j—[(N2—1)/2] &k &1

i—1 J+[(N2—1)/2] & 141

+ > > h(& & &1 b01) / /¢+(01,02)tb1d02

k=i—[(N1—1)/2] l=j+1 el b

i—1 j—1 k 3]

+ > > ]l(€i7§j7§k—1,€l—1)/ /¢+(U1702)d01d02

k=i—[(N1—-1)/2] I=j—[(N2—1)/2] Chr En
i+[(N1—1)/2] j+[(N2—1)/2] Ext1&i41
- Z Z h(giagjafkafl)/ /7/}7(0—170—2)d0—1d0—2
h= =i+l e &
i+[(N1—1)/2] j—1 k1 &

- Z Z h(&ia&ja&kagl)/ /w_(UI;UQ)dUIdUQ
k=it+l  I=j—[(N2—1)/2] En &1
i—1 J+H(N2—1)/2] & S
- Z Z h(Eia&ja&kagl)/ /w_(UhUz)dUldUz
k=i—[(N1—1)/2] I=j+1 ey &
i—1 j—1 & &

- ¥ 3 h@-,sj,sk,sl)/ /wol,ag)dald@

k=i=[(N1-1)/2] I=j—[(N2—1)/2]

Ek—1&—1
i+[(N1—1)/2] j+[(N2—1)/2] €kt i1
- Z Z h(&is&)s Ekt1,8141) / /w(al,ag)doldag
e = Sk &
i+[(N1—1)/2] Jj—1 Skr1 &

+ Z Z h(&';fjafkﬂ,fl—ﬁ/ /¢(01702)d01d02

k=i+1  I=j—[(N2—1)/2] €k &1
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i—1 J+H(N2—1)/2] & 141

+ Z Z h(fi,fj,fk—h&H)/ /w(al,ag)daldag

k=i—[(N1—1)/2]  l=j+1 ol 4

i—1 j—1 &k &1

. > bbb [ [ vionondndoy

k=i—|(N1—1)/2] I=j—[(N2=1)/2] e,

i+[(N1—1)/2] j+[(N2—1)/2]

- > PR ISRIR TN [(SRINIAEN AEY)
k=i+1 I=j+1
Ekt1 &i+1
X Y~ (01, 02)doydos
e &
i+[(N1—1)/2] j—1
- > (€866 8) — (6§ G, §))
k=itl  i=j—[(N2—1)/2]
e &
X Y~ (01, 09)dordos
Ek+1 &1—1
i—1 JH+I(N2—1)/2]
- >, Do (G & &) = (G & ks 1))
k=i—[(N1—1)/2] l=j+1
& 141
X Y~ (01, 09)dordos
k-1 &
i—1 I=j—1
- Yoo (&6 6 &) — 6 61, G))
k=i—[(N1—1)/2] 1=j—[(N2—1)/2]
e &
X Y~ (01,09)dordos
Ek—181-1

=h+l+ds+Du+0LH+L+ I3+ 1
Let us estimate the integral

kvt 141 k1 141
/7/17(01702)(101(102 < / /|7/17(01702)|d01d02
& & e &
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Ek+1 &1
< / /W(Ula@ |do1doay < (€41 — &)
& &
Ekt1 §141
< [ Woroldo + (6~ &) [ a(olao
k &

or\ "% 1
<2(Z= -
- <L) rl’

where we have used the fact that the functions v (s) and 2(s) on the
segments [€, k1] and [§, §41] vanish with derivatives up to order r — 1.
Now let us estimate the sum:

i+[(L=1)/2] j+[(L-1)/2]

Z |h(£i5€j5€k+17£l+1)7h(€i7£j7£k7£l)|

k=it+1 I=j+1
i+[(L—=1)/2] j+[(L—1)/2] 1
- _ Y
k=i+1 I=j+1 (sin2 ’T(kzlﬂ) + sin? ”(HLPJ))

1
2 27r(k D) 2 272(1—) \*
(sm + sin T)

i+[(L-1)/2] j+[(L-1)/2]

_c 1 ki, 1= j‘
=7 [ESY
L il =511 (SIHQ 7r(k ) + Sln2 W(IEJ)) L L
g L2+ (k=) + (1~ j)
=~ &7 i B X\
k=i+1 o (k=2 + (- 7)) L

o [ ey
SC(L) Z l2_/\+ Z kj
=1 k=1
L2 if A<l
<c(L)y{ logL if A=1
L oif A>3
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By ¢ > 0 various estimation constants are denoted. Thus

Il O(i) .
nr

The expressions s, I3, and I, are esimated similarly.
From the definition of the function (s, $2) it follows that the error of
cubature formula (B.11) for s1 = §;, s2 = &; can be estimated as follows:

R(wwgugj)
27 27 1
= //1/)(01,02)h(§i,§j,01,02)d01d02 >0 (n_7>
00
iH(L=1)/2] FHI(L=1)/2) Sepiei
+ > > b€ & &y Gi) / /w(al,@)dald@
k=i+1 I=j+1 & &
i+H(L=D/2 gl kit &
+ > > b6 G &) / /7/1(01,02)d01d02
k=it+1 1=j—[(L-1)/2] En &1
i-1 -1/ VAU
+ > > h(&',fj,&cfhfzﬂ)/ /¢(01,02)d01d02
k:i—[(L—l)/Q] I=j+1 €1 &
i—1 j—1 &k gl
+ Z Z h(ﬁiafmﬁk—lafl—l)/ /w(dhag)daldag.
k=i~ [(L-1)/2] 1=j—[(L—1)/2] el el
Averaging the above inequality over i and j, one gets:
| L=1L-l
Rnn v > Rnn IEYEEY ] > =
(V] > sup max B (1, £1:&;) LQ;Z
=0 5=0
iH(L=1)/2] HI(L=1)/2) Skt Si

x Z Z h(€i7§j7€k+17§l+1)/ /¢(U1702)d01d02

k=i+1 I=j+1 & &
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(L-1)/2] -1 Lht1 &
+ Y > h(&';fj,fkﬂ,fl—ﬁ/ /¢(01702)d01d02
k=il 1=j-[(L-1)/2] bl
i—1 J+[(L—1)/2] & S
+ > > h(giafjafkfl;€l+1)/ /¢(01,02)d01d02
k=i—[(L—1)/2] l=j+1 ol &
i—1 j—1 k &
+ Y > h(&,& &-1,81) / / (01, 02)do1dos
k=i—[(L-1)/2] 1=j~[(L-1)/2] s

n 1 S 1 +1
Onr =0 n’ L2

i+ [(L—1)/2] j+[(L—1)/2] Sk+1 &4
X Z Z (o1, 09)doydos

k=it+1 =i+l 4 g
L—-1L-1

X3 Y h(& & &k, §)
i=0 j=0

H(L-1/2) -1 S

+ Z Z / / (o1, 02)dordos

k=it+l I=j—[(L-1)/2] §{ ¢,

L—-1L-1
X3 b6 1, &)
i=0 j=0
i1 JH(L—1)/2] &k Si41

+ Z Z / / Y(o1,09)dordos

k=i—[(L=1)/2] l=j+1 " ¢

L-1L-1

X Z Z h(&i &5y Eu—1,&141)

i=0 j=0

i—1 ji—1 3 &

i Z Z / / (o1, 02)dodoy

k=i=[(L-1)/2] I=j~[(L-1)/2)¢ ¢ |

L—-1L-1

X Z Z h(&, &5, E—1,5-1)

i=0 j=0



Optimal Methods for Calculating Integrals of the Form (B.1) 301

2m 2w

—o(:)+ 15 [ [ wloroadondos

0 0
2m 2w

av / Sm 01/;Uid§fl (022 +O<(losn)2_%> |

0 0

where the following relation was used:

g2 L=1L1

S DD DUICRIN NI

1=0 5=0

2m 2w

-¢ (loin) ! / / [Sin2(ol/;)aidsz2(az/ 2

0 0

Without loss of generality one may assume k = 1,1 = 1 in the previous
equation. Let us estimate

2L1L1 27 27

Uy = Z Zh €65, 0, 0) // doidos

i=0 j—0 L (sin®(o1/2) + sin (02/2))

1
(sin®((&)/2) + sin?((&;)/2))"

IN

L—1L—1 Si1&i
>y ]
&5

i=0 j=0

&i

1

_ d0'1d0'2
(sin®(01/2) + sin2(02/2)))\]

& &

1
+ // - 5 ydovdos| = uy + ua,
0 (sin®(01/2) + sin®*(02/2))

where >~ Y/ means summation over (4, 7) # (0,0).
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Let us estimate u; and us. One has
L-1L-1 Sir&i

we| Y3 |

=0 j=0
k3

1
[(sin%(al)/z) + sin((02)/2))”
B 1
(sin®(&/2) + sin?(02/2))

J

k] dO’ldO'Q

1
(sin®((€:)/2) + sin®((02) /2))"
B 1
(sin2(§i/2) + sin2(§j/2))

)

L—-1L—-1 5”157'*1[
1=0 5=0

k‘| d0'1d0'2

= u11 + U12.

The expressions w1, and w12 can be estimated similarly. Let us estimate

U1

IN

c Lk 1
un <) > —

T (sin®((6)/2) +sin?((€5)/2)
c & 1 1
22X ZZI(ZQ +j2)1+A < Cszzm

IN

where ¢ > 0 stands for various estimation constants. Hence

__c
U1 = TN

Let us estimate us :

ISEY
) 0/ / 81112(<71/2)+1 Sin2(02/2))/\d0d02

& &

SC// dO’ldO'Q
o0 01—1—0
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Using polar coordinates, one gets:

1/L 27

1 c
< ——dpd¢ < ——~.
UQ—CJ//)Q,\—1 pdo < 7555

Thus:
¢
Uo = 12 2)

From Lemmas B.5, B.4, and Theorem B.2 it follows that

7 (1+ 0(1))(2m)™+ V9 R,y (1)
0/¢1(U1)d01 > 2l (rq + 1)V4(n — 1 1 [Ryg(L)]/7) (B.15)

where R,4(t) is a polynomial of degree r, least deviating from zero in

Lo([=1,1]).
Theorem B.8 follows from inequalities (B.5.1) and (B.15). O

B.5.2 Optimal cubature formulas for calculating
integrals (B.1)

Holder class of functions.

Let z = 2krw/n, k = 0,1,...,n, Ap; = [Tk, Tpt1, 21, 2141), k1 =
0,1,...,n—1, x;c = ($k+1 —l—xk)/Q, k=0,1,...,n—1, and (51,82) S Aij,
,j=0,1,...,n— 1.

Calculate the integral K f by the formula:

n—1ln—1
doid
Kf:ZZf(g:;wx;)// / 010d09 — YR
k=0 (=0 < (sin2 (0;%) 4 sin2 (a 29;))

(B.16)

Theorem B.9 Let ¥ = H,,(D),0 < a < 1. Among all cubature formu-
las (B.11) with p1 = p2 =0, formula (B.16), which has the error

o= ('

is asymptotically optimal. Here ~y is defined in (B.13).
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Proof. Using the periodicity of the integrand, we estimate the error of
cubature formula (B.16) as follows:

|Rnn|

”ZMZI//[ al,ag>—f<xf,ai3>

20’1751 2 09—59 A
k=0 1=0 sm + sin” =52 )

(g, ) — f (i, 25)

— X dUldUQ
201 /) 2 02—
(( sin L+ sin® —
n—1n—1 / /
O' (X Xy, T
< E E // . 1,0) f(ka ) s doydoy
0'1 S1 02 —S82
sm —+ sin
k=0 =0 A 2 )
n—1ln—1
" §:§j// (hoa}) — f (@)
k=0 =0
Akt
1 1
X 2 01—81 : 2 g9—59 A oo—1x’, A
(sm 7 TSI =5 ) (51112 TI=T0 | gin? 5 J)
dUldUQ ‘
=171+ 1re.

Let us estimate each of the sums r; and 75 separately. One has:

z+M j+M

(o1,02) — (), )
- S / / 1 2) f( k> l) dUldO'Q
sm2 0'1 s1 + Sll’12 0’22 2)

leMl_JM

n—1ln—1
) _f I7 f
S / [ o) I) g,

20’1751 2 09—583
k=0 (=0 + sin” #5 )

=711+ 2,

where >~ "/ means summation over (k,!) such that
Ap & A, A" = [2iop, Tig 415 %501, Tjena], M= [Inn).
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Furthermore
C dO’ldO'Q
< — // 5 5 X
n sm A5+ sin "2252)
271'M/n 2
< © dpd(,b clogn 1
S -1 = S etz %\ e )

Estimating 712, one can assume without loss of generality (7, j) = (0, 0),
and get:

m/nw/n n—1ln—1

19 < 4 / /(w1(01) + wa(02))doidoy Z Z hii(s1, s2,01,02)

0 0 k=0 [=0

T/n7w/n neln—1

§4/ /(U?+Ug)d01dagzthl(Sl,SQ,O—l,O—Q)

0 0 k=0 =0

n—1ln—1

< T 5 ( )2+azzhkl (s1,82,01,02)

k=0 =0
27 27

< 1to(l) 1+o0(1 // doidog
| 2 .2 A
+O‘ sm G+ sin %)

Here

hii(s1,82;01,00) = sup  h(s1,82;01,009).
(01,02)EA,

Combining the estimates of 711 and ry2, one gets:

< Lroly(my,
1+« n

Let us estimate . To this end we estimate the difference

D= [ [ IfGeiah - sl

Akt

X

1
(sin2 2181 4 gip? 2282 ))\
2 2

1
_ )\‘|d0'1d0'2 .

oy—’,
(51112 o —|— sm2 3 J)
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First, we estimate

Tg(i,j)gn%//ddlddg
Ajj

1 1
) (sin2 Q=81 4 gin? —"2’52)A I . o o=\
2 2 sin® —5— + sin 3 =
c
— n2+a72/\ :

The value ro(k,1) is estimated similarly for |k —i| <3 and |l — j| < 3.
Let us estimate ro(k, 1) for other values of k and I.
One has:

rhd) = [ [ |fahoah) = 1wl
Ak

1 1
(sin2 G181 | gip? —”2’52)/\ . 2 o1—a) . g oa—al\?
2 2 (sm —5 +sin 3 )
¢ P r |k — i -l
dO’ldO'Q < E/ / [|xk — xi|(¥ + |xl _ xj|(x] |:<T + -
Akt
« 1
(sin2 G1fxf+t921(517xf) 4 sin? 02552)1“
1
- o1—x+01(s1—x%) oo—x+02(s2—x’) 1+
. (6% . (e} - .
<L (‘Ik—ll +‘|l—3| ) (’Ik—ll +‘IZ—JID
n3 n n n n
. n’ e (k—il+li-gpt
[k — i[> + [l = j|? T et g 2 ) — g)2)

c (lk_’i|2+|l—j|2)(1+u)/2
PR (- T

c 1
— n(x+2—2k (|k _ 'L|2 + |l _j|2)1/2—a/2+k .
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To estimate ro, one sums up the last expression over k and [. Without
loss of generality assume (4, j) = (0,0). Then

[n/2]4+1 [n/2]+1

C
S na+2 2 16 +4 Z Z k2+l2 )\+1/2 /2 )
k=0 =0

where 3> 3" means summation over k and [ such that k > 3 or [ > 3.
One has:
[n/2]41 [n/2]4+1
p 1
(k2 + [2)M1/2=a/2

k=0 =0

[n/l]4+1 [n/2]4+1 [n/2]+1

1
<A Z JEIYE risa T Z Z (k2 + 12) /\+1/2 a/2

1, if 22 —a>1;
<A logn, if 22 —a=1;
nl=2A e i 2 —a < 1.

Hence

n=(@F2=23) if 2N —a > 1;
rg <A{ nllogn, if 2 —a=1;
nl, if 22—a< 1.

Thus, if a < 1, then
ro < o(n=%).

Combining the estimates of r; and ry, one gets:
(24 0(1)) /m\@
RV < y—mF—= (—) .
[T < 1+« n

Theorem B.9 follows from the comparison of this inequality with the lower
bound of the value (,n[Hq,o(D)], mentioned in the Corollary to Theorem
B.5. O

Remark B.2 If a = 1, the cubature formula (B.16) is optimal with
respect to order.
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The proof of Theorem B.9 yields also the following result
Theorem B.10 Let ¥V = H,o(D),0 < a < 1. Among all possible cuba-
ture formulas (B.11) with py = p2 = 0, formula

n—1ln—1

dordo
Kf ZZfzkvxl // Sln o’ : 2 . +Rnn7

k=0 1=0 61 +Sm (0—2&2))/\

which has the error

2 1 @

Ron[U] = (2+o(1)y (7r) ,
1+a

is asymptotically optimal.

To apply formula (B.16), one has to calculate the integrals

doyd
= [ ni (B.17)
Ay (Sln2 = +Sl ’ 022;%)

for k,1 =0,1,...,n—1. Exact values of these integrals for arbitrary values
A are apparently unknown. Therefore the procedure of numerical calcula-
tion of integrals (B.17) should be given for practical application of formula
(B.16).

Let £ =i and [ = j. Then the integral I;; is replaced by the integral

ror doydo
pij = / / —2 b , h>0,
R (sm2 2 4 gin? "22) +h

which can be calculated by cubature formulas (in particular, Gauss

quadrature rule) with arbitrary degree of accuracy because the function
1

(sin? %t +sin? 2)A4h’

parameter h is discussed in Section 8.

Let k =14,1 # j, and

has derivatives up to arbitrary order. The choice of
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Let k #14, 1 # j, and

-

Ar? R x) —
Ikl = n—T; <sin2 Lk 5 xl +Sin2 L B ]) :pzl
The integral K f is calculated by the formula
n—1ln—1
Kf=>""pif (@} a1) + Bun(f, 0k s 41). (B.18)

k=0 =0

Formula (B.18) is not optimal since it is not exact on constant functions
f(z,y) = const. But one can estimate the error of this formula:

n—1ln—1

|Rnn(f;p2bx;cayll))| <M Z Z [kt — pril + Ron(¥),

k=0 [=0

where M = max|f(z,y)|.

The values |I; — pj,| are easily estimated, and one gets the conclusion
of Theorem B.10.

Classes of smooth functions

Theorem B.11  Assume ¢ € W™ (1). Let U = W™ (1), and calculate
the integral K¢ by formula (B.11) with py =r—1, po =r —1, and ny =
no =n. Then the cubature formula

2m 2w

(p'rrm(0'170'2)d0'1d0'2
K - +Rm'n/ B-19
o= | | o s i ey i) (819

0 0
18 asymptotically optimal.

Before proving Theorem B.11, let us describe the construction of the
spline @mn. Let xp = 2kn/n, k = 0,1,...,n. Divide the sides of the
squares 2 = [0, 27; 0, 27] into n equal parts. Denote by Ay; the rectangle
Ay = [2kn/n,2(k + 1)n/n; 2w /n, 2(1+ 1)x/n], k,l = 0,1,...,n — 1. Let
(s1,82) € A;j. First we approximate ¢(o1,02) as a function of o9, and
construct a spline ¢, (01, 02) by the following rule. Let oy be an arbitrary
fixed number, 0 < o1 < 27. On the segments [2k7/n,2(k 4+ 1)7/n] for
k#j7—2,...,74+1, one has:

(o9 — 2kn/n)! + Bi6W (o1, (k+1)/n)],

i [ O ( 01,2k7r/n
01502

NM
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where

— O (0, 2k7 /)

§(o1,02) == p(o1,02) — I (o9 — 2km/n)'.
=0 ’
The coefficients B; are defined by the equation
r—1
Bl?" 27 r—l—1
(2(k +1)m/n —o92)" Z Y (27r(k:+1)/n—ag)

I=

=(=1)"Ry1 (27(2k 4+ 1)/2n;7/n;02) ,

where R,1(a, h,x) is a polynomial of degree r, least deviating from zero in
the norm of the space L on the segment [a — h,a + h]. On the segment
[27(j — 2)/n, 27(j + 2)/n] the function ¢, (01, 02) is defined by the partial
sum of the Taylor series:

. OV (g, 2705 /n .
pulo1,02) = plor, 2w fm) + £ T2 6,

07V {0y, 2mj/n)

(r—1)!

We define the function ¢,,, (01, 02) by analogy with the function ¢, (o1, 02).

o

+ (o2 — 2mj/n)"

Proof of Theorem B.11. Let (s1,s2) € A;;. The error of formula
(B.19) we estimate by the inequality

nlnl

O’ ,O’ nn\01, 0
|Rnn| § g // ! 2 ( ! 2) )\daldag
Aw sm

k=0 1=0 2 — 4 sin? R

n—1n—1

— % — o
+Z / A0 02) = fnl01:02) sdoydoy| =711 + 712,  (B.20)
k=0 1=0 |\ (sm2 2151 4 gip? ‘72252)

!
where Z means summation over (k,l) such that ¢ — 1 < k < i+ 1,
k,l
. . 1
0<I<n—-1lor0<<k<<n—-1,7—-1<1<j+1, and Z means
k,l
summation over the other values of (k,[).
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Let us estimate each of the sums r; and 7o separately. In addition
without loss of generality assume that [[(¢(01,02) — @nn(01,02))do1dos >

Apy
0. Then
— n_ll d0'1d0'2
SIS Z Z |(P(0'1,0'2) - (pnn(UI;UQ)| By
k=0 =0 e (sin2 =51 gin? 02582)
—(r+1) <
<a{" ’ A< 1/2 (B.21)
nm 220\ S 12,

i+1+[(n—1)/2] j+1+[(n—1)/2]

n<d » % 1

X
k=it+2 1=j+2 (sin2 Le—81 4 gin® %)

14 [(n—1)/2] j+1+[(n—1)/2]

X //w(al,az)daldarzl >

App k=142 l=75+2

1 1
x 2 2 A 2T —s 2T —s A
(sm Tl sin ﬂ;—”) (sm === +sin %)

// Y~ (01,02)dordos = 21 + 722, (B.22)

Akt

where (01, 02) = @(01,02) — @un(o1,02),

¥ ~ Jw(o1,02), if(or,02) 20
v (01’02){0, if (o1, o) < 0;

0, if ¢(o1,09) = 0;

Y (o1,02) = {—¢(U17U2)7 if (01, 02) <0.
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One has:

i+1+[(n—1)/2] j+1+[(n—1)/2]

D DS 1

k=it2 1=j+2 (sin2 L1 4 gin? ‘”582)

27 27
< 1+0(1)// d0'1d0'2
T 4p2 (

0 0

s 201 s 2 0o
sin” 3 —+ sin 2)

(B.23)

Let us estimate the integral

7= //w(al,ag)daldag < //((p(al,ag) — (pn(al,ag))daldag

Ay Ay

+ //(()DTL(Ulao-Q) - (P'rm(0'170'2))d0'1d0'2 =11 + i9. (B24)

Ay

Since the expressions i; and 92 are estimated similarly, we estimate only
i1. One has

Ti+1

17 < — max / ((,0(81702) —Sﬁn(51702))d02 :

n s
xy

This integral is a continuous function of s, which attains its maximum at
a point s*, and

Ti41

i1 < — / (cp(s*,ag) — gan(s*,og))dag

Zy
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Ti41
rln / |30(0,) (s* 02)| (141 — 02)"
x
Byj(xp41 — a)r! o
S Bty
) Ty re1 B ( ) |
™ 1j\Zi4+1 — T1)T r—j—1
< m (331-',-1 - 0'2 Jz_: T).(ﬂfl-ﬂ - 02) doa
)
o T 4 2
us T\
= =2 [ Ry (02)|dos < (£) " Ra().
rin /| 1(02)|do (r+ 1! \n (1)
x
(B.25)
From inequalities (B.24) and (B.25) one gets
8 m\"t2
< —— | — R.1(1
! (r+1)! (n) (1)
and
2m 2w dod
2 1
ror < (*Tog)') r 1)// neoz (B.26)
" S 00 (sin2 S+ sin? %)
One has:
rog = o(n™"). (B.27)

Estimate (B.27) follows from the inequalities:

//w_(al,ag)daldag < //’w(al,ag)‘daldag =0(n

Ay Ay

and

i+1+[(n—1)/2] j4+1+[(n—1)/2]

>

k=i+2 1=j+2

1
X

—r-2)

X
(sin2 TPl 4 sin® —1’552)

1
2 x —S 2 x —S >\
(sm ——=% +sin %)
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ki) n, A<1/2
<An2)‘zz ( __Ql + _.32))\“ <cqnlogn, A=1/2
k l ((k*l) +(li‘]) ) n2)\’ /\>1/2
The estimate
27" Ry1(1)

Ry () < (140(1
follows from inequalities (B.20), (B.21), (B.26), and (B.27).

Theorem B.9 follows from the comparison of the values (,,[¥] and
Ry, [V]. O

Let us construct cubature formulas for calculating integrals K f on
classes of functions W' (1). These formulas will be less accurate than
the ones in Theorem B.7, but they will be optimal with respect to order,
and easier to apply.

First, we investigate the smooth function

27 27
t t // 7'1,7'2 dTldTQ
17 2 A
Sln2 T1—t1 t1 +Sln2 722t2)

assuming f(t1,t9) € W™, Changing the variables 71 = 7 — t, 70 = 75 — t,
in the last integral, one gets:

27 27

T/)(t1,t2)://f(’r1+t1,7-2+t2)d,r1d7_2

0 (sm2 T 4 sin? 72)}\

2
Thus, ’lﬂ(tl, tg) e wnr.

Remark B.3 It is known (see, e.g., [6]) that Kolmogorov and Babenko
widths of the class of functions W' (1) are §,(W"™" (1)) < d,(W""(1),C) <

,/2 Hence the recovery of the function 1(t1,t2) using n functionals is not
possible with accuracy greater than O( = /2) More precise conclusions are
obtained in Theorems 5.3 and 5.4.

Thus, for recovery of a function v (t1,t2), (t1,t2) € [0,27]? with the
accuracy O(n~"/?), it is sufficient to calculate the value of the function
¥ (t1,t2) at the nodes (vg,v;), where vy, = 2kn/N, k,l = 0,1,..., N, and
N2 = n, and to use the local spline ¥y (t1,t2) of degree r with respect to
each variable.

Let us describe the construction of such spline.



Optimal Methods for Calculating Integrals of the Form T f 315

Assume for simplicity that M := N/r is an integer, and cover the do-
main [0, 27]? with the squares Ay = [wg,w;], k,l = 0,1,..., M — 1, here
wg = 2kw/M, k = 0,...,M. Approximate the function (t1,t2) in each
domain Ay; by the interpolation polynomial wN(tl, ta, Ag) constructed on
the nodes (z¥, x J) zg-O,l,...,r,mk—wk—i— i, i =0,1,...,7

Denote the local spline, which is deﬁned by the polynomials
W (t1,t2, Aki), by ¥ (t1, ta).

If the values ¢ (v, v;) are calculated by formula (B.19) with the accuracy
O(n="/?), then

7 .

||1/}(t17t2) - ¢N(t1;t2)||c § O(niT/Q).

Therefore the spline ¥y (t1,t2) is optimal with respect to order, and a
method for recovery of the function 1(t,t2), which has the error O(n="/2)
(in the sup —norm) is constructed.

B.6 Optimal Methods for Calculating Integrals of the
Form T f
B.6.1 Lower bounds for the functionals (pmyn and (N
First we get a lower bound for the error of formula (B.3) with p; = p2 =0

and n1 = ny = n, on Holder classes.

Theorem B.12 Let ¥ = H,,(D), and calculate the integral T f by for-
mula (B.3) with ny = ne =n and p1 = pa = 0. Then the estimate

11
dtidts
nn B.28
C[]_22’\1+a //Tl—i—tQ (B.28)
S5
holds.
Proof. Let n > 0 be an integer, L = [n/logn]. Let vy := —1+ 2k/L,

k=0,1,...,L. By (&,m) we denote a set which is the union of nodes
(xi,y5), 4,5 = 1,2,...,n of formula (B.3) and the nodes (v;,v;), i,7 =
1,2,...,L. Let Akl = [’Uk,’l)kJrl;’Ul,’UlJrl], k,l = 0,].,...,L — 1. Let 0 <
P(t1,t2) € Hoo(D), where D = [—1,1]?, vanishing at the nodes (&, m),
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k,l=0,1,...,N, where N =n+ L. Consider the integral

/ Z/J(Tl,TQ)dﬁdTQ
(= o)+ (= u)?)

k=0 z—'o (gfA ((k+1)2 +1 (+1)2)r / / Y(T1, T2)dT1dTe

Apgiity
L—i—1j—1 22
L 1
9 drid
! z_: — (2> ((k+1)2+(z+1)2)A/ / (11, 2)dridry
o AkJri,j—l—l
i—1 L—j—1 NP
9 )dm1d
" Z <2) (k+1)2+ l+1 / / Y(71, 72)dm1dT2
k=0 [=0 A o
1—15—1 I 2\
+ (_> / / T1,T2 dTldTQ
o1z \2 ((k+1)*+ l+1 N
L—-1L-1 2 X
L) UL—i—1-k)U(L—j— 1_1 / /
- 2 (11, T2)dT1dTo
2 E+1)24(1+1)2
=0 1=0 ((k+1)*+ ad
L—1L-1 2\ .
L U(L—i—1— k j 1,1
2 )drid
T () iy [ v
e k+l] 1—1
L—-1L-1 2\ .
L U(Gi—1-k)U(L—j— 171
2 Ydrid
+ZZ<2> (k+1)24(1+1)2 / / Y(71, 2)dT1dTo
k=0 1=0 sl
L—-1L-1 2\ .
LN UG-1-k)U( -1 —l
2 dridry.
+;;(2) ((k+1) + (I +1)2 / / (11, T2)dT1dTy

Ajg—1,j-1-1

Here U(k) =1 for k>0, and U(k) =0 for k < 0.
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Averaging the above inequality over all 4 and j, 7,5 = 0,1,..., L — 1,
one gets:
Rnn(\p pkl;xkayl)
| Lorr-n L-1L-1
To T (2]
L ZZ 6"7_] L2— 2/\22/\22 k+1 l+]_))
=0 j=0 k=01
I-1L-1
x ZZU(Lfif1fk)xU(ijflfl)// V(11,72 )M dT)
i=0 j=0 N
L-1L-1
+ZZU(L47171@)U(‘77171)/ / W71, 7o) dridry
i=0 j=0 PN
L-1L-1
+ZZU(i_1_k) (L— J—l—l/ / (71, T2)dT1dTo
=0 =0 Aj k1,541
L-1L-1
Y DN UG-1-kUG—1-1) / / V(71,72 )drdT
i=0 j=0 PN
L—1L-1
—L2 2/\22/\22 k-_|_1 l+1))
k=0 1=0
1 1 1 vp—i1-2
X //¢ T1, T2 dT1d7'2+/ / (71, T2)dTdTs
Vg Uy Vg
VL—k—2 VL—k—2VL—-1—2
/ /1/) 71772 dT1d7'2+ / / 7/1(71,72)d7'1d72
21 21
L-1L—1 11
Z L2 2/\22A ZZ ((k+1)2 (lJrl)g),\ //w(ﬁ,rg)dﬁdrg.
k=0 1=0 e}
(B.29)

From inequality (B.29) it follows that

L-1L-1

1 1
GonlHea(D)] 2 (1-+01) prmpigs . - gy | [ i
—-1-1

k=1 I=1
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1

1+0(1)
= 2274 /
—1—

From Theorem B.3 and Lemma B.5 it follows that the inequality

11

dtidt

t2+t22’\ //1/) 71, T2)dT1dTs. (B.30)
Z1 5

H\H

1 1
4 1
dridre > — B.31
[ [ otmminin > S (B.31)
—-1-1

is valid for an arbitrary vector of the weights and the nodes (X,Y, P) on
the class Hyo (D).
Theorem B.12 follows from inequalities (B.30) and (B.31). O

Theorem B.13  Let ¥ = C5(1), and calculate the integral T f by formula
(B.3) with p1 = p2 =0. If ny = na =n, then

1 1

, d51d82

Cun[¥] 2 (1 +0(1 22’\(7m // )+ 53))
—-1-1

where K, is the Faward constant.

Proof. Let

P(s1,52) = Y1(s1) + a(s2),

where 0 < 11(s) € W7 (1), vanishes at the nodes g, k = 1,2,...,n, and
0 < 1o(s) € W' (1) vanishes at the nodes yx, k =1,2,...,n.
For arbitrary nodes xy, k = 1,2,...,n, one has (see [75)):

Thus the inequality

11
8K,
//¢(51752)d31d32 > W
—1-1

holds for arbitrary nodes (x1,...,2,) and (y1,...,Yn).
Theorem B.13 follows from this estimate and inequality (B.30). O
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Theorem B.14  Let W = W' (1), r =1,2,..., 1 < p < 00, and calculate
the integral T'f by formula (B.3) with p1 = pa = r —1 and ny = ng = n.
Then the estimate

1 1
2/9R,.,(1) dsidss
wn[0] > (1 + o(1 -
Can[¥] > (1 +of ))22/\7~'(7~q+1)1/‘1(n—1+ 1/’ // 81+82
—-1-1

(B.32)
holds, where R,4(t) is a polynomial of degree r, least deviating from zero in
LQ([_L 1])

Proof. Let L = [n/logn]. Consider the nodes (v, v;), vy = 2£, k,1 =
0,1,...,L —1. By (&,n;), 4,5 = 0,1,...,N —1, N = n + L denote the
union of the nodes (zx,y;) and (&,&;). Let ©(s1,52) = ¥1(s1) + a(s2),
where 0 < 11(s) € W (1) vanishes with its derivatives up to order r — 1
at the nodes &, i = 0,1,...,N — 1, and 0 < 9»(s) € W) (1) vanishes
with its derivatives up to order r — 1 at the nodes 7;, j =0,1,..., N — 1.
Vit1 Vjt1

Assumethatfwl )ds > 0,4 =0,1,...,N — 1, and fl/)g )ds > 0,
j=0,1,...,N —1.

Using the argument similar to the one in the proof of Theorem B.12,

one gets

Con (Y, Prt; v, v1) > % Z > T () (v, v))

L-1L-1

11
1
12— 2/\22/\22 k+1)2+(1+1)?2 A//Z/}Tl;TQdTldTQ
S15h

k=0 [=0

) (B.33)

1 1 1
1+01 dtydt
S
1
—1-1

—-1-1

From Theorem B.2 and Lemma B.5 it follows that the inequality
2%74R, (1)
ri(rg + 1)Ve(n — 1+ [Rpg(1)]1/9)"

/.
(B.34)

is valid for arbitrary weights and the nodes (X,Y, P) on the class Hyo (D).
Theorem B.14 follows from inequalities (B.33)-(B.34). O

(11, 72)dT1dT2 > (14 0(1))

»—A\,_.
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B.6.2 Cubature formulas

Let us construct a cubature formula for calculating the integral T'f on the

Holder class Hyo (D). Let xp := =1+ 2k/n, k=0,1,...,n, 2} = (Tk+1 +

xk)/2,k=0,1,...,n—1,and Ay = [xk, Tht1; 21, Tit1), K, L =0,1,...,n—1.
Calculate the integral T'f by the formula

n—1ln—1

Tf Z Zf $k,$l / / 7_1 7151 dTld(TjQ 7t2)2))\ +er(f) (B35)

k=0 1=0

Consider another cubature formula for calculating the integral T'f.
Let (t1,t2) € A;j. By A, denote the union of the square A;; and of

those squares Ay; which have common points with the A;;. Consider the
formula
dridmy
T
f= f 27 J // 7'1 7t1 (TQ,tQ)Q)A
n—1ln—1 dT dT
14T
+ ) , T R (f),
kz();f k l// (11 —t1)2 + (12 — t2)2)? (f)
Akl
(B.36)

where > >/ means summation over the squares which do not belong to
A,

Theorem B.15  Among all cubature formulas (B.3) with p1 = p2 = 0 and
n1 = ng = n, formula (B.35), with the error estimate (B.42), is optimal
with respect to order.

Remark B.4  Similar statement holds for formula (B.36).

Proof of Theorem B.15. Let us estimate errors of formulas (B.35) and
(B.36).
The error of formula (B.35) can be estimated as follows:

n—1ln—1

|f(71,72) — f(, )]
an | < Z Z / / 7_1 7151 ( Ty — t2) ))\ dTldTQ

k=0 =0

n—1ln—1
f(ri,m2) — fla), x))]
+ "// | k2Ll drydry =11 + 79, B.37
k=0 1=0 (1 —t)2 + (2 —t)2)A 027 2 ( )
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where 323 means summation over k and [ such that the squares Ay
belong to A,, and 3_ 3" means summation over the other squares.
Let us estimate r1 and ry:

dTldTQ c _
= e < = o B.38
e // (11 — t1)2 + (12 — t2)2)* — n2—2Ata o(n™*), ( )

n—1ln—1

"
7”2_ 1+an2+azz hAkl (B39)

k=0 =0

Here h(Ay;) denotes the maximum value of the function ((71 —t1)? + (12 —
t2)?)7* in the square Ay;.
One has:

T (—R————

- ‘// {((71—t1)2+1(72 0P (er—h)? i @ _tQ)Q)A} drydr

7t i i
//‘ T 1+ qi(m — ) (11 xk2))A _drydr
((z *t1 +qu( — x1))? 4 (12 — t2)?) T
// ‘ 2\ — b2 + g2(m2 — 1)) (72 f:vz)Q _drydry
(zp —t1) + (x1 — t2 + g2(12 — 21))?)

2)\(7‘1 7£Ek)
< drd
- / / (i —t1 + q(1 — 21))? + (72 — t2)2)A /2 ner
Akt

2)\(7'2 — xl))
+ drd
/ / (11— t1)? + (@1 — t2 + qo(m2 — 3y))2)M1/2 71472
Ay

24\ n2Atl 24\ 1

S5 (k2 + [2)M1/2 ~ p2=2 (k2 1 [2)A+1/2”

where it was assumed that k£ > i+ 1, and [ > j+ 1. Estimates for the other
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combinations of k and [ are similar. Thus:

25 1+a n"‘k i Tl—tl (Tg—t2)2)>‘
(B.40)
1 23)\ n—1ln—1 1
T AT o e Z Z” 2 L [2)A+1/2°
(1+a)n = (k2417 /
Let us estimate the last term in the above inequality.
One has:
n—1n—1 n/2 n/2
2. "mrppa S X X mmapypan
2 L2\ 12 = 2 1 [2)AF1/2
k=0 1=0 k +l k=—[n/2]l=—[n/2] k +l
(B.41)

1, A>1/2
<cq logn, A=1/2
nl=2 . A< 1/2

where > >°* means summation over k and [, (k,1) # (0,0).

In deriving (B.41) we have used the known result ([14], Theorem 56)
which says that a number of points with integer-value coordinates, situated
in the circle 22 + y? = r?, is equal to 7r? + O(r).

From inequalities (B.40) and (B.41) it follows that

n—1ln—1

1+O d’l’ldTQ
<~ 7 " .
2="0%a (1+a) n"‘zz // (11 —t1)? + (12 — t2)2)

k=0 =0

This and (B.38) yield

1 1
1 (1) drid
RonlHoo (D)) < s sup [ [P
(1+a)n> (tl,tg ep) J (11 —t1)2 + (12 — 12)?)

11

1+ o0(1 // dridrs

(I+a)n 7'1+72
—1-1

Theorem B.15 follows from a comparison the estimates of ([Hq, o (D)]
and Ry, [Ha,o(D)]. O

(B.42)

Let us construct optimal with respect to order cubature formula for
calculating integrals T'f on the classes W'". In the derivation of formula
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(B.19) the local spline ¢, (t1, t2), approximating the function ¢(¢1,¢2) in the
domain [0, 27; 0, 27|, was constructed. A spline fy,,(t1,t2), approximating
the function f(¢1,t2) in the domain [—1,1] x [—1,1], can be constructed
analogously. Calculate the integral T'f by the formula

1 1
fnn 7-177'2)d7'1d7'2
= // (11 — t1)2 + (12 — t2)2) + B (f)- (B.43)

—-1-1

Theorem B.16 Let U = W""(1),r = 1,2,..., and calculate the integral
Tf by formula (B.3) with p1 = p2 =r—1, and ny = ng = n. Then cubature
formula (B.43), which has the error

Ron(W) < (1+ (1)) 281 (1) o / / drydr

(r+D!(n—14+[R (12 + 12)A

is optimal with respect to order. Here Ryq(t) is a polynomial of degree r,
least deviating from zero in Lq([—1,1]).
As in the proof of the Theorem B.11 one gets the following estimate

Ron (V) < (1+0(1)) 2Rna(l) EBE // dridr,

(r+Dn—-1+[R (12 + 12)*

—-1-1

Comparing this estimate with the estimate of (,,[W"™"(1)] from Theo-
rem B.14 one finishes the proof.

B.7 Calculation of Weakly Singular Integrals on
Non-Smooth Surfaces

In Sections 5 and 6 asymptotically optimal methods for calculating weakly
singular integrals defined on the squares [0,27]? or [—~1,1]?> were con-
structed.

It is of interest to study optimal methods for calculating weakly singular
integrals on piecewise-Lyapunov surfaces.

Consider the integral

Jf = // f(m1,72,73)dS ity €. Bt
Tl B tl ( T2 — t2)2 + (T3 - t3)2
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where G is a Lyapunov surface of class Ly(B, o).

We show that the results derived in Sections 5 and 6 can be partially
generalized to the integrals (B.44).

Calculate integrals (B.44) by the formula:

nop
TF =33 prof O (My) + Rulf, G, M, preos ), (B.45)

k=1 |v|=0

wher‘e‘t = (t1,ta,t3), v = (v1,v2,v3), [v] = v + va +vs, [ (t1,12,t3) =
9" f
Ot 10ty 0ty *

The error of formula (B.45) is:

Rn(fz G7 Mkzpkv) = Sug |Rn(f; Ga Mkvpk'ua t)'
te

Assume f € Uy, and G € ¥y. Then the error of formula (B.45) on the
classes U1 and Wy is:

R, (V1,¥y, My, Pry) =  sup  R,(f,G, My, piv).
feEV,,GeV,

Let

Cn[\pl;\pﬂ = inf Rn(\I/h\IjQ;Mkapkv)-
M ,pio
A cubature formula with nodes M and weights p;, is called optimal,
asymptotically optimal, optimal with respect to order on the class of func-
tions ¥y and surfaces Vs, if

Rn(\llla \IIQa M];kvpltv)
CnlW1, Wyl

=1,~1,x1,

respectively.

Let Uy = Ho(1), 0 < @ < 1, and Uy = L1(B,5) 0 < 8 < 1. Let us
construct an optimal with respect to order method for calculating integrals
(B.44) on the classes of functions ¥; and surfaces ¥y, Let S(G) be a
“square” of the surface G. Divide the surface G into n parts g, k =
1,2,...,n, so that a “square” of each of the domains g; has the area of
order |S(G)|/n, where |S(G)] is the area of S(G). We take a point M}, in
each of domains g at the center of the domain gy.



Calculation of Weakly Singular Integrals on Non-Smooth Surfaces 325

Calculate integral (B.44) by the formula

Jf = Zf My) // a5 —+ Ru(f,G).

7’1 —t1)2 4+ (12 —t2)? + (13 — t3)2)

(B.46)

Theorem B.17  Formula (B.46), has the error
R (U1, Wy) < n~ /2,

and is optimal with respect to order on the classes V1 = H,, 0 < a < 1,
and ¥y = L1(B, ), 0 < <1, among all formulas (B.45) with p = 0.

Proof. Assume for simplicity that the surface G is given by the equation

z = p(x,y), (z,9) € Go, ¢(z,y) 2 0. Let o(z,y) := p, py(z,9) == ¢
Write the integral Jf as

Jf= /fn,rz,so m1,72))y/1+ P21, 72) + ¢ (Tl’Tg)dTld? (B.47)

[71 —t1)? + (12 — t2)? + ((71, 72) — p(t1,12))?

The function f(71, 72, (71, 72)) belongs to the Holder class H, over Gy,

\V1+p%+q?

T1—t1)?+(r2—t2)2 +(p(11,72) —p(t1,t2))?]*
Let My = (m%,m5, m5) be the nodes of cubature formula (B.45). Let

() = (d(1,{M}}))*, where d(r,{M}}) is the distance between the point
7 and the set of the nodes {M}}, where the distance is measured along
the geodesics of the surface G. This distance satisfies the Hélder condition
H,(1). Hence the function *(ry,72) = ¥(71, 72, (71, 72)) belongs to the
Holder class H,(A) and vanishes at the nodes (m%,m%), k = 1,2,..
Thus,

and the function [ is positive.

: )

Cn (T, T3) >

><//// w(ﬁ,rg,ap(ﬁ,rg))\/l+p2+q2d7'1d72dt1dt2

A
G (=t (= 0)2 + (p(r,m) — (b, 12))2]

P> %/ (11, T2, ¢(T1, T2))dT1dTS
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(2 — 22 1 (p(r1m2) — (i, 02T 07

< A mn// ds
~ pa/2 ¢ (r(t, 7))’
G

where S(Gp) is the “square” of the surface Gy.
Therefore the error of formula (B.46) is estimated by the inequality
R, < 4.

Theorem B.17 is proved. 0

) // V14 p?+¢?
X min 5
t (11 —t1)2 +
Go

Remark B.5 The method of decomposition of the domain G into smaller
parts gx, k= 1,2,...,n, described below, is optimal with respect to order
for classes of functions V1 = H,, 0 < a < 1, and of surfaces Vo =
Lo(B,p3), 0< B <1 fora<p.

Remark B.6 From formula (B.47) it follows that if the function
f e W™ (1) and the surface G € Lg(B,«a), then the function
f(m1, 72, 0(m1,12)) € WYY(A), where v = min(r,s). Therefore, repeating
the above arguments, one proves that the accuracy of calculation of integral

(B.AT) by cubature formulas using n values of integrand function does not
exceed O(n="/?).

From this remark it follows that if the surface G consists of several
parts, for example of surfaces G; and G5 having common edge L, then it is
necessary to calculate the integrals for the surface GG; and the surface Go
separately. If the surface G is divided into smaller parts gi, £k =1,2,...,n,
the domains g, the curve L passes inside of these domains, should be as-
sociated with the class of surfaces Lo(B, 1). In these domains the accuracy
of calculation of the integral does not exceed than O(n; '), where ny, is the
number of nodes of the cubature formula used in the domain gy.

For this reason the cusps and the nodes, in which three or more domains
G, which are parts of the domain G touch each other, must belong to the
boundaries of the covering domains gi, £k =1,2,...,n.

The universal code for computing capacitances, described in Section B.9,
is based on optimal with respect to order cubature formulas for calculating
integrals on the classes of functions H,, 0 < « < 1, on surfaces of the class
Lo(B, ), B=const, a <, f<1.

The algorithm constructed in Section B.9 is optimal on this class of
surfaces and does not require special treatment of edges and conical points
of the surface.
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When one studies cubature formulas on the classes W"™"(A), r > 1, and
Ly(B,5), s 2 1, 0 < B < 1, one has to develop a method to compute
accurately the integrals in a neighborhood of the above singular points of
the surface.

B.8 Calculation of Weights of Cubature Formulas

In calculating weakly singular integrals by cubature formulas (B.35) it is
necessary to calculate integrals of the form of

dTldTQ

Jkl(tlatQ) - / ((7_1 _ t1)2 + (TQ - t2)2))\

Api

for different values (t1,t2) € [—1,1]%.
Let (t1,t2) € Aj;. Let us consider two possibilities:

(1) the square Ay; and the square A;; have nonempty intersection;
(2) the square Ay; is does not have common points with the square A,;.
First consider the second case, when the function
(1, m) :
©\T1,72) = N0
(1 = t1)* + (72 — £2)?)

is smooth. Here (71, 72) € Ay, and (t1,t2) € Ayj.
In this case one has

rl22r

T ()2 (e — )2

and, if the squares Ay and A;; do not have common points, one gets

9"p(11,72)
oty

2" pln2Atr

2A

87-()0(7-1 ) T2 )
ory

Similar estimates holds for partial derivative with respect to 7o.
Calculate the integral Ji;(t1,%2) by the Gauss cubature formula

1

CEDEE tQW] dridrs + R (Bsa),

Jkl(tlth): /Pmm

Ay

where P, = PI1PT™, PTi (i = 1,2) is the projection operator onto the
set of interpolation polynomials of degree m with nodes at the zeros of the
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Legendre polynomial, which maps the segment [—1,1] onto the segment
[k, 2g41] for ¢ = 1, and onto the segment [x;, 241] for i = 2.

An integer m is chosen so that |Ry,m,| < n=27% for cubature formulas
on the Holder class Hyq, and |Ry,m| < n~ "¢ for cubature formulas on the
class W'.

This requirement is made because the error of calculation of the coeffi-
cients Jy;(t1,t2) must not exceed the error of formula (B.32).

Using r derivatives of the integrand in the error Ry, (Ak), one gets:

B2yl 2\
|R'rer(Akl)| S il (_) )
m

r—1 n

where B, is the constant appearing in Jackson’s theorems. It is known
that the constants B, are bounded by a constant, denoted b, uniformly
with respect to r. In the case of periodic functions b = 1 ([51]), and in the
general case b is apparently unknown.

If r =2 and m = B,2"rIn?*, then one gets the error estimate given for
cubature formula (B.32).

Now, consider a method for calculating the integrals Jy;(t1, t2) when the
square Ay has nonempty intersection with the square A;;. For definiteness
we consider the calculation of the integral J;;(t1,t2) by the formula:

1
(1 —t1)2 + (12 — t2)2)* + I

Jij(ti,t2) = /Pmm

Ay

d’l’ldTQ -+ Rmm(A”),

where h = const > 0 will be specified below.
One has:

|Rm'm(Aij)| S h /

dTldTg
(11 = t1)? + (12— 12)*)M (11— 11)? + (T2 = 12)?)* + )

drydry = r1 4+ 1o,

Aij
1
+ / D'r”/m )\
J (i =t)* + (2 = 12)*)" +h
ij

where D,,y, = I — P, and I is an identity operator, and

dTldTQ

<h
e e e e (e e
Aij

o 27 aene (20) 0 (B.48)
T 1-A n ' '
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The function ((Tl_t1)2+(3'2_t2)2)>\+h is infinitely smooth. Using bounds

for its first derivatives for A > 1/2, one gets:

8ADB;

. B.49
~ nth2m ( )

T2
From inequality (B.48) it follows that for getting accuracy O(n=1~%)
one has to have h = n=2(2A+)/(0=%) and from inequality (B.49) it follows

that one has to have m = maz([n®AH4e)/(1=A)+a=3] 1)

B.9 [Iterative Methods for Calculating Electrical
Capacitancies of Conductors of Arbitrary Shapes

Numerical methods for solving electrostatic problems, in particular, cal-
culating capacitancies of conductors of arbitrary shapes, are of practical
interest in many applications. There exists a vast literature on calculation
of the capacitances of perfect conductors. In [43] there is a reference sec-
tion which gives the capacitance of the conductors of certain shapes (more
than 800 shapes are considered in [43]). In Chapter 3 iterative methods for
solving interior and exterior boundary value problems in electrostatics are
proposed and mathematically justified. Upper and lower estimates for some
functionals of electrostatic fields are obtained in Chapter 3 as well. Such
functionals are the capacitances of perfect conductors and the polarizability
tensors of bodies of arbitrary shape. These bodies are described by their
dielectric permittivity, magnetic permeability and conductivity. They can
be homogeneous or flaky. The main point is: these bodies have arbitrary
geometrical shapes.

The methods, developed in Chapter 3, yield analytical formulas for cal-
culation of the capacitances and polarizability tensors of bodies of arbitrary
shapes with any given accuracy. Error estimates for these formulas are ob-
tained in Chapter 3. Recall the formulas for calculating the capacitances
of the conductors of arbitrary shapes (see Chapter 3):

—1

-1 dsdt
COI— greys? ) // /u-/q,bt,t o (b, b )dty - - -dity
0 @mr JoJr rse Jro Jr (t:1) (fnmt, )y

N times s

where S is the surface area of the surface I' of the conductor, g is the
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— _0_ 1
T ONg Tt

2
C(O):@SC, Jz//det, S = meas]I'.
rJr

Tst

dielectric constant of the medium, ry := |s — t|, and (¢, s)

It is proved in Chapter 3 that

]cfc*(") < A", 0<g<1,

where A and ¢ are constants which depend only on the geometry of I'.
We use these formulas are used to construct the computer code for
calculating the capacitances of the conductors of arbitrary shapes.
It is proved in Chapter 3 that

-1

O™ = 47¢(S? //r;lan(t)dtds , (B.50)
r T
where o, is defined by the iterative process:
Ont1 = —Aop, 09 =1, /O’ndt =5, (B.51)
r

and A is defined by the formula:

g 1
Ao = —
7 /U(ﬁ)ﬁNS ZWTStdt’
T

where Ny is the outer unit normal to I' at the point s.
To use iterative process (B.51), one has to calculate the weakly singular
integral
1 0
— t
5 | o)
r

1
—dt. B.52
aA]Vs Tst ( )

Let us describe the construction of a cubature formula for calculating in-
tegral (B.52), assuming for simplicity that the domain G, bounded by the
surface I, is convex. This asumption can be removed.

Let S be the inscribed in the conductor sphere of maximal radius r*,
centered at the origin. Introduce the spherical coordinates system (r, ¢, 6),
and the set of the nodes (r*, ¢k, 0;), where ¢, = 2kn/n, k=0,1,...,n, 0, =
wl/m, 1 =0,1,...,m. Assume that m is even, and cover the sphere S with
the spherical triangles Ay, k=1,2,...,N, N =2n(m — 1).



Iterative Methods for Calculating Electrical Capacitancies 331

Let us describe the construction of the spherical triangles. For 0 < © <
7/m the triangles Ay, k = 1,2,...,n have vertices (r*,0,0), (r*, ¢r—1,01),
(r*, ¢r,01), k=1,2,...,n.

For 0, <0 <611, 1=1,2,...,m/2—1, the triangles Ay, k = n+2n(l—
1)+4, 1 < j < 2n are constructed as follows. The rectangle [0, 27; 0, 0;41] is
covered with the squares Ag; = [o, Prt1; 01, 0i41], Kk =0,1,...,n—1. Each
of the squares Ay is divided into two equal triangles A}, and A7, k =
0,1,...,n —1, I = 1,2,...,m/2 — 1. The spherical triangles A}, and
Ail, k=0,1,...,n—1,1=1,2,...,m/2 — 1, are images of triangles A,lcl
and A%, on the sphere S

As a result of these constructions the sphere S is covered with triangles
A, k=1,2,...,N.

We draw the straight lines through the origin and vertices of the triangle
Ak, k=1,2,...,N. The points of intersection of these lines with the sur-
face T' are vertices of the triangle Ay, k=1,2,..., N. As a result of these
constructions the surface I' is approximated by the surface I'y consisting
of triangle Ay, k=1,2,..., N, and integral (B.52) is approximated by the
integral

Uls) = — /a(t)aisristdt. (B.53)
I'n

We fix each triangle Ay, k =1,2,..., N, and associate with it a point
T € A, k = 1,2,..., N, equidistant from the vertices of the triangle
Ag, k=1,2,...,N. We calculate integral (B.53) at the points 7, k =
1,2,..., N, by the cubature formulas constructed in paragraphs 5-7 for the
Holder classes. After calculating the values U(7x), k =1,2,..., N by these
cubature formulas, the integral

—1

CY = —4meoS% //r;lﬁ(t)dtds
I'n

is calculated, where U(t) = U(r,) for t € Ay, k=1,2,..., N, Sy is area of
the surface I'y, C(V) is approximation to the value of C(*). The successive
iterations are calculated analogously.
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B.10 Numerical Examples

In this section the numerical results are given. As an example we calculated
the capacitances of various ellipsoids, because for ellipsoids one knows the
analytical formula for the capacitance, which makes it possible to evaluate
the accuracy of the numerical results. Consider the ellipsoid:
2 2 2

x Y 2%

P} + 2 + = 1.
It is known [43] that the exact value of the capacitance of ellipsoid with
a=bis:

C— dmegva? — 2

~ arccos(c/a)

Let a = b =1, and ¢g = 1. We have calculate the capacitance C' for
different values of the semiaxis c. The results of the calculations are given
in Table B.10.

It is known (see Chapter 3), that the capacitance of a metallic disc of
radius a is C' = 8agg, and one can see from Table 1, that asymptotically, as
¢ — 0, this formula can be used practically for the ellipsoids with ¢ < 0.001
with the error approximately equal to 0.005.
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C n m N Exact value Error Relative error | Calculation time
0.9 40 | 30 | 2320 12.144630 —0.221200 0.018212 25 sec
0.5 40 | 30 | 2320 10.392304 —0.222042 0.021366 25 sec
0.1 40 | 30 | 2320 8.5020638 —0.301189 0.035425 25 sec

0.01 40 | 30 | 2320 8.050854 0.072132 0.008959 25 sec
0.001 40 | 30 | 2320 8.005092 —0.821528 0.106374 25 sec
0.0001 | 40 | 30 | 2320 8.000509 —1.068178 0.133513 25 sec

0.9 50 | 40 | 3900 12.144630 —0.180510 0.014801 1 min 15 sec
0.5 50 | 40 | 3900 10.392304 —0.185642 0.017860 1 min 15 sec
0.1 50 | 40 | 3900 8.5020638 —0.288628 0.033947 1 min 15 sec
0.01 50 | 40 | 3900 8.050854 —0.372047 0.046212 1min 15 sec

0.001 50 | 40 | 3900 8.005092 —0.586733 0.073295 1min 15 sec
0.0001 | 50 | 40 | 3900 8.000509 —0.933288 0.116653 1min 15 sec

0.9 60 | 50 | 5880 12.144630 —0.152009 0.012516 4 min
0.5 60 | 50 | 5880 10.392304 —0.160023 0.015391 4 min
0.1 60 | 50 | 5880 8.5020638 —0.283364 0.033328 4 min
0.01 60 | 50 | 5880 8.050854 0.532250 0.061110 4 min

0.001 60 | 50 | 5880 8.005092 —0.391755 0.048939 4 min
0.0001 | 60 | 50 | 5880 8.000509 —0.880394 0.110042 4 min
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Problems

1. Write a computer program for calculating the capacitance and the
polarizability tensors for a body of arbitrary shape. According to formulas
(5.8)—(5.13) the program is to calculate multiple integrals over the surface
of the body. The integrands are functions with weak singularities, e.g.,

//r;ldsdt, //r;lNi(s)Nj(s)dsdt,
rJr rJr
oyt
rsl(/ g >dsdt,
/r/r “\Jron

where rg; := |s — t| is the Euclidean distance between points s and ¢, amd

N;(s) is the j—th component of the exterior uni normal to the surface I' at
the point s.

Finding good algorithms for calculating multiple integrals of functions
with moving weak singularities is a problem of general interest. This prob-
lem is discussed in the Appendix, but it is of great interest to develop
efficient computer codes for calculationg such integrals.

2. Carry out a numerical study of the dependence of the scattering
amplitude on: (1) the shape of the body, (2) on the boundary conditions,
(3) on the coating of the body (e.g., a flaky-homogeneous body with two
layers of which the exterior layer is thin).

3. Carry out a numerical study of the many-body problem using for-
mulas (7.59), (7.63), (7.67), (7.71), (7.72), (7.75), (7.79), and (7.80).
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4. Study the inverse problem of finding the properties of the medium
consisting of many small particles from the scattering data.

5. Develop a theory of elastic wave scattering by small bodies of
arbitrary shape similar to the theory of acoustic and electromagnetic wave
scattering given in Chapter 7.
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(non-closed surfaces). A numerical approach to problem (6.103), different
from the one given in Section 6.3, was given in [161]. In [18] the possibil-
ity of calculating the cardiac electric potential of a human body from the
potential, measured on the surface of the body, is discussed. A computer
program for calculating the elements of the polarizability tensor of rota-
tionally symmetric metallic bodies was given in [150]. In [4] some methods
for finding small subsurface inhomogeneities from the measurements on the
surface are discussed.

The main results presented in this book were obtained by the author in
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These results include:

(1) approximate analytical formulas for polarizability tensors and capac-
itances for bodies of arbitrary shapes,

(2) two-sided estimates of the polarizability tensors,

(3) approximate analytical formulas for the scattering amplitude and scat-
tering matrix in the problem of wave scattering by a small body of an
arbitrary shape and by a system of such bodies,

(4) investigation of the influence of the boundary conditions on the scat-
tering amplitude,

(5) methods for a study of obstacle scattering problems in rough domains,

(6) methods for obtaining low-frequency asymptotics of the solutions to
boundary-value problems,

(7) methods for finding small subsurface inhomogeneities from the scat-
tering data measured on the surface or in the far-field region,

(8) MRC (Modified Rayleigh Conjecture) method for solving obstacle
scattering problems and static problems,

(9) optimal methods for calculating multidimensional integrals with weak
singularities,

(10) construction of convergent iterative schemes for solving integral equa-
tions for interior and exterior boundary-value problems,

(11) equations for the self-consistent field in a medium consisting of many
small particles.
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of Science lecture), UCF, Orlando, Institute of mathematics, Yerevan, Los
Alamos CNLS, Univ. Fed. Rio de Janeiro, IMPA, Univ. of Bologna,
Pavia, Univ. of Muenster, Bonn, Giessen, Ecole Polytechnique, CNRS-
LMS, Frankfurt, Stuttgart, Linz, Chemnitz, Autonoma Univ. Mexico City,
Tokyo Metropolitan Univ., Nihon Univ., Meiji Univ., Univ. of Tokyo,
Univ of Kyoto, Polytech. Univ. of Torino, LMA/CNRS-Marseille, INRTA-
Antibes, Univ. of Nice, Luminy-theor. physics, Weizmann Inst, Rehovot,
Technion, Univ. of Haifa, Ben-Gurion Univ., Univ. of Uppsala, Univ.
of Guanajuato at Salamanca, Univ of Marseille-CMI, INRITA-Rockencourt,
Yonsei Univ., SNU (Seoul Nat. Univ), KAIST, Univ. of Dresden, Dresden
Math. Seminar, Ben-Gurion Univ., Hebrew Univ., Technion, Queen’s Univ
of Belfast, Univ. of Bath, Univ of Edinburgh, Univ. of Queen Mary, King’s
College, City Univ. of Hong Kong, Hong Kong Soc. of Theor. and Appl.
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Mechanics, Oklahoma Univ., LANL, Univ. of Giessen, Dresden, TU Darm-
stadt, GSI (Gesellshaft fiir Schwere Tons) Physics Institute, Karlsruhe, Kon-
stanz, Lyon, Charles Univ. Prague, Math. Inst., Prague, TU Delft, Univ.
of Barcelona, TU Darmstadt-EM division, IMDEA-Madrid, Bergacadem.-
Freiberg, ETH-Zuerich, Univ. of Manchester, Leicester, Birmingham,
UCL-Univ. Coll. London, UCIrvine, Oklahoma Univ., UCF Orlando, ETH,
Univ. of Konstanz, Univ. of Lausanne, ETH Zurich, Univ. of Innsbruck,
Univ. of Leicester, Birmingham, Loughborough, UCL-Univ. Coll., Impe-
rial College-London, Autonoma Univ. Madrid, Univ. of Granada, Military
Tech. Univ. of Warsaw, Inst Probl. Tech. Acad. of Sci. of Poland,
IMPAN, WIAS, Humboldt Univ., Univ. of Chemnitz, Univ. of Jena, Univ.
of Crete, BIT (Beijing Inst. of Technology), Fudan Univ. (Mathematics
Center), Fudan Univ. (Physics Institute), CCNU Wuhan, Univ of Lisbon
(Math. Department), Univ of Lisbon (Phys. Department), Univ. of Lviv,
Inst. for problems of mechanics and mathematics of Ukrainian Acad. of
Sci., Univ. of Lviv, IMPAN, TFPAN

MONOGRAPHS and BOOKS:

1. Theory and applications of some new classes of integral equations.
Springer Verlag, New York, 1980, pp. 1-356;
isbn 0-387-90540-5.

2. Tterative methods for calculating the static fields and wave scattering
by small bodies. Springer Verlag, New York, 1982, pp. 1-130;
isbn 0-387-90682-7

3. Scattering by obstacles. Reidel, Dordrecht, 1986, pp. 1-442;
isbn 90-277-2103-3

4. Random fields estimation theory. Longman Scientific & Wiley, New
York, 1990, pp. 1-281;
isbn 0-582-03768-9

5. Random fields estimation theory, Expanded Russian edition, Mir,
Moscow, 1996, pp. 1-352;
isbn 5-03-003031-X

6. Multidimensional inverse scattering problems, Longman Scientific &
Wiley, New York. 1992, pp. 1-385;
isbn 0-582-05665-9;

7. Multidimensional inverse scattering problems, Expanded Russian edi-
tion, Mir, Moscow, 1994, pp. 1-496;
isbn 5-03-002939-7
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18.

19.

20.
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The Radon transform and local tomography. CRC Press, Boca Raton,
1996, pp. 1-503 (with A. Katsevich);

isbn 0-8493-9492-9.

Spectral and scattering theory, Plenum publishers, New York, 1998
(editor A.G. Ramm)

isbn 0-306-45829-2

Inverse problems, tomography and image processing, Plenum publish-
ers, New York, 1998 (editor A.G. Ramm)

isbn 0-306-45828-4

Operator Theory and Applications, Amer. Math. Soc., Fields Insti-
tute Communications, Providence RI, 2000 (editors A.G.Ramm, P.N.
Shivakumar, A.V. Strauss).

isbn 0-8218-1990-9

Inverse problems, Springer, New York, 2005. isbn 0-387-23195-1
Wave scattering by small bodies of arbitrary shapes, World Sci. Pub-
lishers, Singapore, 2005.

isbn 981-256-186-2

Random fields estimation, World Sci. Publishers, Singapore, 2005.
isbn 981-256-536-1

Dynamical Systems Method for solving operator equations, Elsevier,
Amsterdam, 2007.

isbn 0-444-52795-8

Dynamical Systems Method and Applications. Theoretical
Developments and Numerical Examples. Wiley and Sons, Hobo-
ken, 2012. isbn 978-1-118-02428-7 (with N.S. Hoang)

Scattering of Acoustic and Electromagnetic Waves by Small
Bodies of Arbitrary Shapes. Applications to Creating New
Engineered Materials,

Momentum Press, New York, 2013.

isbn-13: 978-1-60650-621-9

Scattering by obstacles and potentials, World Sci. Publ., Singa-
pore, 2017.

isbn 9789813220966

Creating materials with a desired refraction coefficient, IOP
Concise Physics, Morgan & Claypool Publishers, San Rafael, CA, USA,
2017.

isbn 978-1-6817-4709-5

Symmetry Problems. The Navier-Stokes Problem, Morgan &
Claypool Publishers, San Rafael, CA, USA, 2019.

isbn 9781681735054
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21.

22.

23.

24.

25.

Inverse obstacle scattering with non-over-determined scatter-
ing data, Morgan & Claypool Publishers, San Rafael, CA, 2019.
isbn: 9781681735887

Creating materials with a desired refraction coefficient, IOP
Publishers, Bristol, UK, 2020. Second edition.

The Navier-Stokes problem, Morgan & Claypool Publishers, 2021.
isbn 978163639243

Analysis of the Navier-Stokes problem. Solution of a Millen-
nium Problem, Springer, 2023.

ISBN 978-3-031-30722-5 ISBN 978-3-031-30723-2 (eBook)

Wave scattering by small bodies. Creating materials with a
desired refraction coefficient and other applications, World Sci.
Publishers, Singapore, 2023.

US PATENTS:

1.

Pseudolocal tomography (with A. Katsevich), number 5,539,800 issued
July 23, 1996.

Enhanced local tomography (with A. Katsevich), number 5,550,892
issued Aug.27, 1996.

INVITED ADDRESSES:

= b=

o ot

All-union symposium on wave diffraction; Thilisi, 1964

All-union conference on numerical mathematics, Moscow, 1965
International URSI symposium, Stressa/Italy, 1968

Third all-union meeting on theoretical and applied mechanics,
Moscow, 1968

. Third all-union conference on heat and mass transfer, Minsk, 1968
All-union symposium on wave diffraction, Leningrad, 1970

7. International URSI symposium on electromagnetic waves, Thilisi,

1971

8. Fourth all-union conference on heat and mass transfer, Minsk, 1972
9. Conference on technical cybernetics, Moscow, 1972

10. International symposium on radioelectronics, Varna, 1974
11. International congress on acoustics, London, 1974
12. All-union seminar on the atom and atomic spectra theory, Tashkent,

1974

13. All-union symposium on the interaction of cosmic dust with the atmo-

sphere, Ashhabad, 1974
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38.
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International symposium on nonlinear networks, Split, Yugoslavia,
1975

International conference CVUT, Prague, 1975

All-union conference on differential equations, Rjazan, 1976
International Conference on Computer-Aided Design of Electromag-
netic and Microwave Circuits and Systems, Hull, England 1977
International symposium on approximation theory, Campinas, Brazil
1977

All-union winter mathematical school, Voronezh, 1977

International Congress on applied mathematics, Weimar, DDR, 1978
All-union 10 symposium on the representation and analysis of random
fields and processes, Suhumi, 1978

GAMM Tagung, Wiesbaden, BRD, April 1979

International symposium-workshop on wave scattering, Columbus,
Ohio, June 1979

International symposium on ill-posed problems, Newark, Delaware,
October 1979

Solutions of some inverse and ill-posed problems, Nav. Res. Lab.,
Wash. D.C., Oct. 9, 1979

A.M.S. Meeting, Kent, Ohio, Nov. 1979

A.M.S. Meeting, Boulder, Colorado, March 1980

A.M.S. Meeting, Bloomington, Indiana, April 1980

International symposium on nonlinear phenomena, Arlington, Texas,
June 1980

Symposium on real analysis, Mich. State University, June 1980
Symposium on scattering theory, Oberwolfach, FRG, August 1980
A.M.S. 1980 summer meeting, August 1980 Ann Arbor, MI
Conference on integral equations, Oberwolfach, FRG, Dec. 1980
Mathematical foundations of the singularity and eigenmode expansion
methods, Meeting at the University of Kentucky, Lexington, KY, Nov.
1980

International conference on spectral theory of differential operators,
Birmingham, Alabama, March 26-28, 1981

IEEE International symposium on circuits and systems, Chicago, IL,
April 27-29, 1981

A.M.S. Annual meeting, January 1981

7th International Dundee conference on ordinary and partial differen-
tial equations, 3-29-82 to 4-3-82
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39

40.

41.

42.

43.

44.
45.

46.
47.
48.
49.
50.
o1.

52.
53.
54.

95.
56.
o7.
o8.
99.
60.
61.

62.

63.

64.
65.

IEEE International symposium on information theory, Les Arcs.
France, 6-21-25-1982

IEEE International symposium on antennas and propagation, Univ.
of New Mexico, Albuquerque, May 1982.

AMS annual meeting, Denver, Jan. 1983, Monotone operators and
nonlinear passive systems (special session, invited talk)

1983 International symposium on the mathematical theory of net-
works and systems, June 20-24, 1983, Ben Gurion Univ., Beer Sheva,
Israel

1983 International IEEE symposium CAS, Newport Beach, California,
May 24, 1983

Conference on scattering theory, Oberwolfach, July 1983, FRG
NATO advanced research workshop on inverse scattering, Bad-
Windsheim, FRG, Sept. 1983

AMS annual meeting, January 1984, special session PDE
International conference on P. D. E., Dundee, June 1984

Conference on PDE, Oberwolfach, March, 1985

11th world IMACS congress, Oslo, August 1985, plenary talk
Finnish mathematical society meeting, May, 1985

Conference of the Chinese mathematicians, Taiwan, July 1986, ple-
nary talk

International conference on operator theory, Oct. 1986

Conference on inverse problems, Montpellier, Dec. 1986
International conference on mathematical geophysics, West Berlin,
Feb. 1987

AMS meetings March, April 1987

European Congress on Simulation, ECS-87, Sep. 1987, Plenary talk
Conference on numerical integration, Nov. 1987, Oberwolfach

AMS annual meeting, January 1988

Annual GAMM meeting, Vienna, April 1988, plenary talk
Workshop on inverse problems, Univ. of MD, March 1988

The first Woodward conference on Wave phenomena, June 1988, ple-
nary talk

International conference on inverse problems, Montpellier, France,
Dec. 1988 (2 one-hour lectures)

NSF conference on nonlinear wave equations Jan. 1989

Oberwolfach conference on differential equations (March 1989)

NSF workshop on inverse problems (July 29-August 4, 1989)
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International conference on inverse problems (Bulgaria, Sep. 1989)
Oberwolfach conference on solitons, Jan. 1990

NSF conference on inverse scattering, June 1990

SIAM annual meeting, July 1990, minisymposium on inverse scatter-
ing.

International conference “Inverse problems in science and engineer-
ing”, Osaka, Aug. 1990

International Congress of Mathematicians, Kyoto, August, 1990
Oberwolfach conference on statistical estimation, Nov. 1990

South Eastern conference on differential equations, Blacksburg, VA,
Nov. 1990

International conference on mathematical modeling, key-note speaker,
Univ. of MD, Apr. 1991

International conference on signal processing, Cetraro, Italy, plenary
speaker, May 1991

International conference on ill-posed problems, plenary speaker,
Moscow, Aug. 1991

International Workshop on inverse problems, invited speaker, Novosi-
birsk, Aug. 1991

US-Israel NSF workshop on operator theory, Beer Sheva, Feb.1992,
invited speaker.

International Conference of Computational Engineering Science,
ICES-92, invited speaker, Dec. 1992, Hong Kong.

Third Midwest conference on geometry, Columbia, Apr. 1993.
International conference on quantum inversion, Bad Honnef, FRG,
May 1993, plenary speaker.

International conference on dynamical systems, May 1993, Atlanta,
plenary speaker.

International symposium on computerized tomography, Aug. 1993,
Novosibirsk, Russia, plenary speaker.

International symposium on numerical methods, Aug. 1993, Plovdiv,
plenary speaker.

International symposium on differential equations, Aug. 1993, Plov-
div, plenary speaker.

International symposium on Inverse problems, Sept. 1993, Potsdam,
FRG, plenary speaker.

Oberwolfach conference on pseudodifferential operators, Jan. 1994,
invited speaker.

Oberwolfach conference on tomography, Sep.1994, invited speaker.
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90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

26th Midwest conference on differential equations, invited speaker,
Oct 7-8, 1994.

International ASME conference, Chicago, Nov.7-11, 1994, invited
speaker, special session on inverse problems in mechanics.
AMS-SIAM workshop on inverse problems, March 1995, invited
speaker.

Oberwolfach conference on inverse problems, Feb. 1996, invited
speaker.

World Congress of Nonlinear Analysts, WCNA-96,Jul.10-17, 1996,
Athens, plenary speaker

International conference on inverse scattering, Sep.3-7, 1996, Lake
Balaton-96, plenary speaker

International conference on inverse and ill-posed problems, ITPP-96,
Sep.9-14, Moscow, plenary speaker.

Mexican math. soc. meeting, Oct.7-11, 1996, invited speaker.
ISAAC International Congress, June 2-7, 1997, plenary speaker.
The mathematics of life sciences, Jan. 28-31, 1998, Texas Tech. Univ.,
one-hour invited speaker.

International conference MTCP-98, modern trends in comput.
physics, Joint Instit. for Nuclear Research, Dubna, June 15-20, 1998,
plenary speaker.

Oberwolfach conference on tomography, Aug. 2-8, 1998, invited
speaker.

International conference “Operator theory and applications” Win-
nipeg, Oct. 7-11, 1998, plenary speaker

Workshop on the Radon transform, Univ. of Nagoya, Nov. 1998,
key-note speaker.

Braude College PDE days, main speaker, May 18-20, 1999,

Israel Math. Union annual meeting, invited speaker, May 26, 1999.
Internat. workshop on inverse problems and wave scattering, Lvov,
Sep. 20-23, 1999, plenary speaker.

Internat. conference PDE 2000, Clausthal, Germany, July 24-28,
2000.

Internat. conference on nonlinear analysis, Korea, Pusan, Aug. 31—
Sep. 5, 2000, plenary speaker.

Internat. conference on dynamical systems and chaos, Armenia, Sep.
11-18, 2000, plenary speaker.

Mathematics and medical imaging, Frontiers of Science Lecture, FAU,
Oct. 11, 2000
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Dynamical systems and linear and nonlinear ill-posed problems, Los
Alamos Nat. Lab, CNLS colloquium, Dec. 6, 2000

Inverse and direct problems and applications, Gargnano, Apr. 2-6,
2001, main lecturer

Dynamical systems and linear and nonlinear ill-posed problems, lec-
tures at the Auton. Univ., Mexico City, Sep.17-21, 2001.

AMRTMA conference on acoustic, mechanics and related topics of
mathematical analysis, June 2002, France.

Oberwolfach conference on tomography, Aug. 11-17, 2002
Conference on mathematical modelling of wave phenomena, Vaxjo
University, Sweden, Nov. 3-8, 2002, plenary speaker

Internat. workshop on random fields, Guanajuato, Nov 27-30, 2002,
plenary speaker

International seminar on nonlinear analysis and spectral problems,
Complutense Univ., Madrid, June 14-16, 2004, invited speaker
Workshop on PDE, Hebrew Univ., June 2004, invited speaker.
IPAM conference “Mathematics of the Ear and Sound Signal Process-
ing”, January 31-February 2, 2005

Midwest Geometry Conference, Apr 28-May 1, 2005, Ohio St. Univ
LMS lectures, May 24-June 10, 2005

HKSTAM, June 18, 2005, distinguished invited speaker.

Sicipe, Cambridge, July 9-16, 2005.

ICAMO5-Internat. Conference on Appl. Math., Bandung, Aug. 22—
26, 2005, plenary speaker

ICMAAO6-Internat. Conference on Math. Anal. and Appl., Assiut,
Egypt, Jan 3-6, 2006, plenary speaker.

Midwest geometry conference, Univ. of Oklahoma, May 5-7, 2006.
ETOPIMY7, Sydney, July 9-14, 2006, plenary speaker.

IPDO-2007, Miami, Apr. 1618, 2007, key-note speaker.

World Congress of Engineering and Applied Mathematics, London,
July 24, 2007, key-note speaker.

International Conference on Inverse Quantum Scattering Theory, Aug.
27-31, 2007, Hungary, Lake Balaton-Siofok, plenary speaker.
Workshop on PDE, Darmstadt, Sep. 24-26, 2007, invited speaker
Analysis of Multiphase Problems, Prague, Oct. 8-12, 2007, special
lecture.

IMDEA-Madrid, Nov 29, 2007, invited talk.

Oberwolfach workshop, Material Theories, Dec. 16-21, 2007, invited
speaker



Curriculum Vitae of Alexander G. Ramm 365

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

International Conference Chaos-2008, Chaotic modeling and simula-
tion, June 3-6, 2008, Chania, Crete, Greece, plenary speaker.

World Congress of Nonlinear Analysts, WCNA-2008, Orlando,
Florida, July2-9, 2009, key-note speaker.

International Conference Chaos-2009, Chaotic modeling and simula-
tion, June 1-5, 2009, Chania, Crete, Greece, plenary speaker,
PanAfrican Congress of Mathematicians, PACOMT7, Aug. 3-8, 2009,
plenary one-hour speaker.

International Workshop, DIPED2009, Lvov, Sep.21-24, 2009, plenary
one-hour speaker.

International Conference Chaos-2010, June 1-5, 2010, Chania, Crete,
Greece, plenary speaker,

International Conference Computational methods in Applied Mathe-
matics, CMAM-4, June 20-26, 2010, Bedlewo, Poland,

International Conference Chaos-2011, May 31-June 3, 2011, Agios
Nikolaos, Crete, Greece, plenary speaker,

International Conference on Differential and Difference Equations and
Applications, July 4-8, 2011, Ponta Delgada, Univ of Azores, plenary
speaker.

ACEX-13, Plenary speaker, Madrid, July 1-5, 2013.

International Conference Chaos-2014, Plenary speaker, Lisbon, June
7-10, 2014

International Conference Chaos-2015, Plenary speaker, Paris, May 26—
29, 2015

International Conference MMET-2016, invited speaker, Lviv, July 5—
7, 2016

Intern. Conference Materials 2017, plenary speaker, Nov. 13-15, Las
Vegas, Renaissance Hotel.

Intern. Conference HSA-2020, Hungary, June 8-11, 2020, invited
speaker

Prague, Sep. 20-24, 2020, Internat. Conference on PDE, plenary
speaker.

Materials Science Conference, plenary speaker, Nov. 16-17, 2020,
Istanbul

How to create materials with a desired refraction coefficient? 2nd
Virtual Congress on Materials Science and Engineering, March 29-31,
2021, key-note speaker

Bremen Zoom Workshop on Light Scattering 2021, 22-23. March
2021, plenary speaker
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154. First Western Balkan Conference in Mathematics and Applications,
June 10-12, 2021, Analysis of the Navier-Stokes problem, plenary
speaker.

155. Third global webinar on Appl. Science, Engineering and Technology,
Feb. 19-20, 2022, How to create materials with a desired refraction
coefficient? Plenary talk.

156. Global Magnus group conference, March 28-30, Keynote talk, Analy-
sis of the Navier-Stokes problem.

157. “Solution of the millennium problem concerning the Navier-Stokes
equations”, Keynote talk at the World Conference on Physics and
Mathematics, May 22-23, 2023, Berlin, Germany

LIST OF COURSES TAUGHT:

Undergraduate courses:

Calculus and analytic geometry, advanced calculus, differential equations,
technical calculus, linear algebra, elementary PDE, integral equations, spe-
cial functions and their applications, mathematics:its form and impact.

Graduate courses:

Ordinary differential equations, PDE, functional analysis and its applica-
tions, spectral and scattering theory for differential equations, singular inte-
gral equations, complex analysis, theoretical numerical analysis, ill-posed
problems, integral transforms, asymptotic methods, iterative solution of
the static problems, mathematical methods for engineers, mathematics of
wave propagation, electrodynamics, quantum mechanics, integral equations
and applications, inverse scattering theory, inverse problems in analysis and
PDE, nonlinear functional analysis, theory of passive networks, entire func-
tions in antenna synthesis and optics, approximation theory, potential the-
ory, calculus of variations, distribution theory, probability theory, random
fields estimation theory.

Ph.D students

T. Miller, A. Zade-Chavoshi, Peiqing Li, A. Katsevich, Yan Chuntao,
R. Hayrapetyan, A. Smirnova, N.S. Hoang, S. Indratno, N. Tran, Cong Van.



Curriculum Vitae of Alexander G. Ramm 367

Articles for mathematical encyclopedia, Kluwer, Dordrecht, 2001,

Supplement volume 3.

© 0N OE W

>—~
e

Ordinary differential equations, property C for, pp. 295-296.
Local Tomography, pp. 241-242.

Partial Differential Equations, Property C for, pp. 298-299.
Inverse Scattering, half-axis case, pp. 209-211.

Inverse scattering, full line case, pp. 207-208.

Obstacle scattering, pp. 284-286.

Inverse scattering: multidimensional case, pp. 211-212.
Pseudolocal tomography, pp. 310-311.

Reproducing kernel, pp. 328-329.

Reproducing kernel Hilbert Space, pp. 329-331.

PROFESSIONAL PUBLICATIONS:

ih
2]

3]

On the Kotelnikow’s theorem. Electrocommunication, 10, (1962),
71-72.

A necessary and sufficient condition for compactness of embedding,
Vestnik Leningr. Univ., N1, (1963), 150-151. (Math. Rev. 27
#1808)

Investigation of the scattering problem in some domains with infinite
boundaries I, II, Vestnik 7, (1963), 45-66; 19, (1963), 67-76. 27
#483, 23 #374.

Spectral properties of the Schrédinger operator in some domains with
infinite boundaries, Doklady Acad of Sci. USSR, 152, (1963) 282—
285. 27 #3930.

Absence of the discrete positive spectrum of the Dirichlet Laplacian
in some infinite domains. Vestnik 13, (1964), 153-156; N 1, (1966),
176. 30 #1295.

On the analytic continuation of the solution of the Schrédinger equa-
tion in the spectral parameter and the behavior of the solution to the
nonstationary problem as ¢ — oo, Uspechi Mat. Nauk, 19, (1964),
192-194.

Statement of the diffraction problem in domains with infinite bound-
aries. Proc. 3 all-union wave diffraction symp., Nauka, Moscow,
(1964), 28-31.
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8]

[9.]

10.]
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Reconstruction of the shape of a domain from the scattering ampli-
tude. Proc. 3 all-union wave diffraction symp., Nauka, Moscow,
(1964), 143-144.

Conditions under which the scattering matrix is analytic, Doklady
Acad. of Sci. of USSR, 157, (1964), 1073-1075. 32 #2049.
Analytic continuation of the resolvent kernel of the Schrédinger oper-
ator in the spectral parameter and limiting amplitude principle in
some infinite domains, Doklady Acad. of Sci. Azerb. SSR, 21,
(1965), 3-7.

Spectral properties of the Schrédinger operator in some infinite
domains, Mat. Sbor. 66, (1965), 321-343. 30 #3297, 34 #7994.

On wave diffusion, Mathematics. Izvestija vuzov, 2, (1965), 136-138.
32 #1451.

On a method of solving the Dirichlet problem in some infinite
domains, Mathematics. Izvestija vuzov, 5, (1965), 124-127. 32
#7993.

On the conditions under which integral operators are nuclear and
existence of the S-matrix in the problem of scalar scattering on a
potential and surface. Ukrain. Math. Jour. 17, (1965), 92-98. 34
#1887.

Necessary and sufficient conditions for the validity of the limiting
amplitude principle. Doklady Acad of Sci. USSR, 163, (1965), 584—
586. 33 #7673.

Reconstruction of the domain shape from the scattering amplitude,
Radiotech. i Electron., 11, (1965), 2068-2070.

Reconstruction of a signal from its values on a discrete sequence of
time moments, Radiotech. i Electron., 11, (1965), 1957-1959.
Behavior of the solution to a nonstationary problem as ¢t — oo, Math-
ematics, Izvestija vuzov, 1, (1966), 124-138. 33 #7674.

Domain free from the resonances in the three-dimensional scattering
problem, Doklady Acad of Sci. USSR, 166, (1966), 1319-1322. 34
#3902.

Spectrum of Schrodinger operators with spin-orbit potential, Dok-
lady Acad of Sci. USSR, 169, (1966), 799-802. 34 #7993.

Antenna synthesis with the prescribed pattern. 22 sci. session dedi-
cated the day of radio, Moscow, 1966, section of antennas, 9-13.
Statement and numerical solution of inverse ionospheric problem, 22
sci. session dedicated the day of radio, Moscow, 1966, section wave
propagation, 3-6.
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23]

[24.]

[25]
[26]

27]

[28.]

Reconstruction of the potential and domain boundary from the scat-
tering amplitude, 22 sci. session dedicated the day of radio, Moscow,
1966, section wave propagation, 7-10.

Estimates of the temperature field for bodies of complicated shape.
In collection of papers Investigation of nonstationary heat and mass
transfer, Minsk, 1966, 64—70.

Some theorems on equations with parameters in Banach space, Dok-
lady Acad. of Sci. Azerb. SSR, 22, (1966), 3-6. 33 #7963.

Some inverse problems of wave propagation. Proc. of the 4-th all-
union wave diffraction symp., Moscow, 1967, 7-11.

Asymptotic behavior of eigenvalues in the case when the potential
depends on parameter, Math. Zametki, 1, (1967), 599-608. (with
Levitan B. M.). 37 #1817.

About estimates of the thermoresistances for bodies of complicated
shape, Eng. Phys. Journ., 13, 1967, 914-920.

On the limiting amplitude principle, Diff. eq., 4, (1968), 714-720.
37 #1759.

Estimates of the thermoresistances, Proc. of the third all-union con-
ference on heat and mass transfer, Minsk, 1968, 12-17.

Optimal solution of the antenna synthesis problem, Doklady Acad.
of Sci. USSR, 180, (1968), 1071-1074.

On numerical differentiation, Mathem., Izvestija vuzov, 11, (1968),
131-135. 40 #5130.

On equations of the first kind, Diff. eq. 4, (1968), 2056-2060. 40
#817; English transl., 1062-1064.

Asymptotic distribution of the Schrodinger operator eigenvalues
when the potential tends to infinity and the boundary is infinite,
Doklady Acad. of Sci. USSR, 183, (1968), 780-783. 40 #1827.
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Brief Description of the Work
of Alexander G. Ramm

The work of Alexander G. Ramm can be divided into several areas:

(1) PDE, ODE and integral equations,

(2) spectral and scattering theory for differential operators, especially for
the Schrodinger operators,

(3) static problems and wave scattering by small bodies of arbitrary

shapes,

random fields estimation theory,

nonlinear passive systems,

inverse scattering problems,

theoretical numerical analysis and ill-posed problems,

non-selfadjoint operators and their applications in scattering theory,

signal and image processing,

)
)
)
)
)
)
0) local tomography,
) mathematical geophysics,
) electromagnetic theory and mathematical physics,
) creating materials with a desired refraction coefficient,
) symmetry problems for PDE,
) the Navier-Stokes problem in R3,
)

integral equations with hyper-singular kernels.

The breadth and volume of the work do not allow one to describe the
work in detail. Therefore only the highlights will be mentioned.

(1) In a long series of papers starting with papers 3—7, 11, 118, 144, 190,
670, 730, (the numbers cited are from Alexander G. Ramm (AR)
list of publications), a thorough study of the spectral properties and
eigenfunction expansions is given for the first time for Schrodinger
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operators in domains with infinite boundaries; a sufficient condition is
given on the infinite boundary for the Schrodinger operators to have
no positive eigenvalues on the continuous spectrum.

Tterative methods are developed for solving interior and exterior
boundary value problems for Laplace’s equation, analytic formulas
for the S-matrix for acoustic and electromagnetic wave scattering by
small bodies of arbitrary shapes are derived and applied successfully
to numerical and physical problems (see monograph 144, 612);
analytic theory of random fields estimation is developed (monographs
246, 486), which is an original detailed study of a new class of multidi-
mensional integral equations basic in estimation theory. No results of
this type have been known. Many results known for one-dimensional
estimation theory are very particular cases of the general theory devel-
oped in the monograph 486. The theory has many application in sig-
nal processing, and in geophysics in particular. Monograph 246 was
translated into Russian by MIR publishing house in 1996.

In the pioneering papers 72 and 80 (also 125, 128, 137, 142) the math-
ematical foundations of the EEM and SEM methods are given. These
methods are now very popular in electrical engineering sciences.

This research was supported by AFOSR from 1979 till 1983;

A thorough study of existence, global stability and calculation of the
stationary regimes in passive nonlinear systems is given in paper 129.
The results are optimal as shown by examples.

A deep study of inverse scattering problems is given in a long series
of papers( see monographs 190, 313, 470, 670 and papers 252, 425,
460, where a summary of some of the author’s results is given. In
papers 584, 589, 603, and in monograph 670 the problem which has
been open for many decades is solved: uniqueness of the solution to
the basic non-over-determined inverse scattering problems is proved
by the author.

Exact inversion of the low-frequency scattering data is given in the
monographs 190, 670.

A powerful method, Property C method, based on the notion of
completeness of the set of products of solutions of PDE is developed
and applied to many important inverse problems, 407, 470, 670. In
these works several problems are solved which have been open for
decades. For example, the first global uniqueness theorems in geo-
physics and potential scattering with fixed-energy data are obtained,
the first mathematically justified method for solving the 3D inverse
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scattering problem with noisy fixed-energy data is given. and for the
first time stability estimates for the solution to the inverse scattering
problem with noisy fixed-energy data are obtained, 313, 470, 670.

The first variational principle for solving inverse scattering prob-
lems which is equivalent to the inverse problems was found; this work
is published as a monograph 313, which is an expanded version of
monograph 278, translated into Russian in 1994. In paper 393 a fun-
damentally new uniqueness theorem is obtained: it says that a com-
pactly supported real-valued square-integrable spherically symmetric
potential is uniquely defined by any part of the fixed-energy phase
shifts with the angular momenta j running through an arbitrary set
J of non-negative integers such that Zje J.j#0 % = 00.

Property C is defined and proved for ordinary differential equations
(ODE) and its many new applications are demonstrated. Most of
the known results for one-dimensional inverse problems are obtained
by using this property, and many new results (387, 402, 470, 670).
Among the classical results which are obtained by using property C
for ODE are Marchenko and Borg’s uniqueness theorems concerning
recovery of the potential from two spectra (Borg) and from scattering
data or spectral function (Marchenko).

Inverse problems for an inhomogeneous Schrodinger equation are
studied for the first time (391, 413), a non-over-determined three-
dimensional inverse problem of recovery of a potential from the diag-
onal values of the spectral function known on the boundary of a
bounded domain and all real values of the spectral parameter is con-
sidered and a uniqueness theorem is proved for this problem (412).

A new approximate method for solving the inverse scattering prob-
lem with fixed energy data is given for a spherically symmetric poten-
tials which are known for r > a but unknown for < a, where a > 0 is
an arbitrary large fixed number (394). Numerical results are obtained
by this method (400).

Krein’s method in inverse scattering is justified and its consistency
is proved for the first time, (405).

Analytical theory is given for inversion of the surface scattering data
in the ground-penetrating radar problem for two functions: permittiv-
ity and conductivity of the ground, under the assumption that these
functions depend on the vertical coordinate only (367, 380, 398).

A method for recovery of a quarkonium system from experimental
data is developed (375).
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Inverse problem of finding point scatterers from the surface scatter-
ing data is posed and solved (395, 411).

For the first time uniqueness theorems are proved for three-
dimensional scattering problems with non-overdetermined data
(papers 562, 584, 589, 603).

Stability of the Pompeiu property is established (363) and further
results are obtined (382, 535). A complete solution to the Pompeiu
problem, a proof of the Schiffer’s conjecture and a general result on
the symmetry problem for the Helmholtz equation are obtained in the
monograph (691) and numerous papers of the author on this topic.
First results on symmetry properties for harmonic analysis are in
paper 705. In paper 709 many of the author’s symmetry results for
PDE are derived.

In a series of papers, starting with (506 and cited in the monographs
635 and 699 a method for constructing “smart materials” is given. It
is proved that one can distribute small particles in a bounded domain
so that the resulting material has a desired refraction coefficient or
the a priori chosen radiation pattern (wave-focusing property).

In paper 632 theory of scalar wave scattering by one and many
small bodies of an arbitrary shape is developed for various boundary
conditions (Dirichlet, Neumann, impedance, transmission). In paper
628 theory of EM (electromagnetic) wave scattering by one and many
small impedance bodies of an arbitrary shape is developed. Methods
for creating materials with a desired refraction coefficient are given on
the basis of the above theory. These results and their generalizations
are presented in monographs 635, 674, 699.

Mathematical justification of the widely used T-matrix approach in
scattering theory is given (monograph 190).

In a series of papers (starting with 506 and cited in the monographs
635 and 699) several ill-posed problems are investigated. In particular,
the now widely used stable differentiation procedure based on the
regularization by the choice of the step size in the divided difference
formula has been introduced for the first time in paper 32.

The important feature of this and my other works on ill-posed
problems is the error estimates with explicitly written estimation
constants.

A theory for the stable solution of a class of the Fredholm equations
at a characteristic value is constructed in several papers and presented
systematically in the monograph 144. This theory was a basis for the
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theory of wave scattering by small bodies of arbitrary shapes in this
monograph.

Numerical methods were given for solving integral equations of esti-
mation theory in distributions. This theory is summarized in the
monograph 246. The basis of it is a theory, developed by the author,
of a class of multidimensional integral equations whose kernels are
kernels of positive rational functions of arbitrary self-adjoint elliptic
operators.

In a series of papers (452, 454, 456, 457, 469, 485, 491, 500-502,
522, 525, 539, 542-545, 549-550, 554, 567, 574, 575, 579, 581), some
of which are joint with Ramm’s Ph.D students, and in monographs
499, 612, a general method, Dynamical Systems Method, (DSM), for
treating linear and, especially, nonlinear ill-posed problems by solving
a suitable Cauchy problem in a Hilbert space was developed. Con-
vergence theorems are proved. Discretization of the Cauchy problem
leads to a variety of iterative methods for solving ill-posed nonlinear
problems and convergence theorems for these methods are obtained.
In monograph 612 these results are illustrated by numerical examples.
A novel approach to solving exterior and interior boundary value prob-
lems and scattering problems, based on the theorem, proved by A.G.
Ramm and called by him Modified Rayleigh Conjecture (MRC), has
been developed and tested numerically (papers 430, 461, 475, 481,
493).

The theory of weakly non-selfadjoint operators was applied to scat-
tering theory (50, 72, 80). For the first time completeness of the set
of root vectors of some non-selfadjoint integral operators arising in
diffraction and scattering theory was proved. This gave a mathemati-
cal justification of the EEM (eigenmode expansion method), a popular
method in electrical engineering;

A.G. Ramm (jointly with his Ph.D student A. Katsevich) developed
new methods in signal and image processing, edge detection, local
tomography; a very general test of randomness against fairly broad
alternatives is found and justified mathematically (348).

New methods were developed for finding jumps of functions from
local tomographic data. These methods turned to be practically
important.

These results were tested numerically and practically and
demonstrated their effectiveness. Monograph (348) contained these
results.
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Two patents (5,539,800 of July 23, 1996 and 5,550,892 of Aug.
27, 1996) have been issued by the US Patent Office to A.G. Ramm
and A.I. Katsevich “Enhanced local tomography” and “Pseudolocal
tomography”.

A systematical study of the singularities of the Radon transform is
given, a complete description of the asymptotics of the Radon trans-
form near a point of its singular support is obtained and applied to the
important problem of tomography: finding singularities of a function
from its tomographis data; these results are published in a series of
papers and appeared in the monograph 348, see also paper 414.

The basic uniqueness theorems for model inverse problems of geo-
physics have been proved, examples of non-uniqueness were con-
structed, the theory of inversion of low-frequency data has been
developed (monographs 190, 278 and 670).

Theoretical investigation of a number of antenna synthesis problems,
including a non-linear synthesis problems have been investigated.
Degree of non-uniqueness of the solution to the general synthesis
problem has been described (monograph 118, 167). There are many
other results of various nature and in different branches of mathe-
matics (general relativity, asymptotics of the spectra of linear opera-
tors and quadratic forms, approximation theory, variational estimates
of capacitances and polarizabilities, methods for calculation of reso-
nances in open systems and quantum mechanics, perturbation theory
for resonances, impedance tomography, singular perturbation of inte-
gral equations, quantum chaos, etc. The characteristic features of the
works is a systematic usage of functional analysis and classical analy-
sis,numerical methods, PDE, physics and theoretical engineering and
their combinations. Broad interests made it possible to interact with
mathematicians and engineers with quite diverse interests.

In 2007-2025 A.G. Ramm has published a series of papers (506-511,
513-516, 518-520, 523, 533, 536, 537, 540, 552, 553, 564, 590, 595, 597,
622, 632, 634, 649, 652, 654, 655, 660,719, 734, 743, and in monographs
635, 674, 699, 723) in which he has developed a method for creating
materials with a desired refraction coefficient. This method is based
on Ramm’s solution to many-body scattering problem by many small
particles embedded in an inhomogeneous medium. The refraction
coefficient can be created so that the new material has a desired wave-
focusing property, or it may have a negative refraction property, which
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(16)

(17)

means that the group velocity in this material is directed opposite to
the phase velocity. These results are presented in monographs 635
and 699. The important new mathematical problem (on which this
theory is based) is the many-body wave scattering problem for small
bodies. AGR solved this problem asymptotically, as a — 0 under the
assumption ¢ < d < A. Here a is the characteristic size of a small
body, d is the minimal distance between neighboring bodies, and A
is the wavelength. The multiple scattering is essential under these
assumptions. The a can be as small as 20nm. These results will be
immediately applicable practically if small impedance particles with
a desired refraction coefficient can be produced in practice. Using
this theory AGR gave a recipe for creating materials with a
desired refraction coefficient.
In 2017-2019 A.G. Ramm was working on symmetry problems for
PDE. His new results, including the proof of the Schiffer’s conjec-
ture and a solution to the Pompeiu problem are presented in the
monograph 691, papers 694, 705, 709, and the author’s papers cited
there.
A.G. Ramm has solved the millennium Navier-Stokes problem
in R3. His solution is published in papers 704, 725, 731, and in
monographs 707 and 722. He proved that the Navier-Stokes problem
(NSP) is contradictory and has no solution.

This follows from the NSP paradox, proved by A.G. Ramm in
paper 704 and in the monographs 707, 722).
NSP paradox: if the initial data v(x,0) # 0, the solution to the NSP
exists for all t > 0 and the exterior force f =0, then v(x,0) = 0.
In 20172019 A.G. Ramm has proved for the first time uniqueness of
the solution to the inverse scattering problem for compactly supported
potentials and non-over-determined scattering data. These results are
published in monograph 670 and in the author’s papers cited there, in
particular, in 584, 589, 603. His theory includes a proof of uniqueness
of the solution to inverse obstacle scattering problem with non-over-
determined data. These results are presented in papers 682, 690 and
in monograph 670, 695.
In 2018-2022 A.G. Ramm has developed a theory for solving convolu-
tion integral equations with hyper-singular kernels. These results are
presented in papers 698, 715, 716, 728, 736, and in the monographs
707 and 722.
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Prof. Ramm is elected a member of Electromagnetic Academy,
MIT, (June 1990), a member of New York Academy of Science, he is
an associated editor of many professional Journals.

He received many other honors.

Ramm has directed 11 Ph.D students, some of them are now pro-
fessors at various Universities.

His research has been supported by AFOSR, NSF, ONR, NATO,
USIEF, Fulbright committee, SERC of Canada and United Kingdom,
DFG, Research Councils of Italy and many Universities in Europe,
and Asia.

He was a guest of Academia Sinica in Taipei, Beijing, Shanghai
and Hefei, of Indian Institute of Science in Bangalore, of Royal Insti-
tute of Technology (Sweden), of the Universities of Bonn, Heidelberg,
Stuttgart, London, Manchester, Leicester, Paris, Florence, Rome,
Madrid, Goéteborg, Uppsala, Marcel, Novosibirsk, Milan, Cagliari,
University of Mexico UNAM, University of Grenoble, Technion in
Haifa, Tokyo Metropolitan University, Kyoto University, and gave lec-
tures at many other Universities throughout the world.

A.G. Ramm worked as a research consultant for Los Alamos
National Laboratory, oil industries and electronics industries. In 1997
he was awarded a Commerce Bank distinguished graduate faculty
member research award.

Professor A.G. Ramm was an invited Distinguished Foreigh Profes-
sor of the Academy of Science of Mexico in October 1997 and gave
lectures at UAM and UNAM in Mexico City. He was distinguished for-
eign professor at the University of Cairo in 2004 and 2006, Mercator
Professor at TU Darmstadt in 2007, Invited Plenary Speaker at 7-
th PACOM in 2009, Distinguished Visiting Professor invited by Royal
Acad. of Engineering UK in 2009, Visiting Professor at IMPAN, 2010,
MPI (Max Planck Institute) in 2011, Beijing Institute of Technology
(BIT) in 2013. Fulbright Research Professor in Israel (Technion) in
1991-1992, in Ukraine (University of Lviv) in 2015.

Professor A.G. Ramm has taught a wide variety of various courses at
all levels. He worked with MS and Ph.D. students and has experience
in designing curriculum for courses in ODE, PDE, Applied functional
analysis and theoretical numerical analysis, Integral transforms and
applications, Tomography and the Radon transform, as well as the
standard calculus sequence. His lectures are well organized, clear, and
adjusted to the level of the audience.
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Professor A.G. Ramm had worked much with engineers both from
academia and industries and because of his broad knowledge of the
basic mathematical and physical sciences and theoretical electrical
engineering, he is able to communicate easily with engineers. He has
always supported close connections between the mathematics depart-
ment and engineering school, and was interested in developing the
relations with industries.

Ramm has received Distiguished Graduate faculty award (1996).

He has received Khwarizmi Intenational Prize for mathematical
research (2004).

Ramm was a Distinguished Visiting professor supported by the UK
Royal Academy of Engineering in Sep.—Oct. 2009. He was a Mercator
Professor in 2007, Distinguished HKSTAM speaker (2005), London
Math. Society speaker (2005), research CNRS professor in France
(2003), Distinguished Visiting Professor at the University of Cairo
(2004), (2006), CNRS Professor (2003), Distinguished Foreign Profes-
sor at the Academy of Science of Mexico (1997).
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