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Preface 1

In this collection, our objective was to curate diverse contributions highlighting inno-
vative machine learning solutions to search and analyze gravitational waves. The past
few years have witnessed a significant increase in the application of machine learning
techniques within gravitational wave research, resulting in the groundbreaking use
of new methodologies.

Through COST Action CA17137, we assembled a multidisciplinary European
team of scientists from diverse backgrounds to explore and apply innovative machine
learning solutions to emerging challenges in gravitational wave research. Our work
encompassed noise analysis, control techniques, and the study of astrophysical
signals.

This collection is designed to serve as a comprehensive resource for both
newcomers and those eager to apply advanced techniques in the field. By gathering
the latest advancements and insights, we aim to deepen understanding and inspire
further innovation in gravitational wave science and demonstrate the transformative
potential of machine learning in advancing gravitational wave research.

The book features a range of contributions from our collaborative efforts,
showcasing the breadth of studies and results achieved.

Bologna, Italy Elena Cuoco
September 2024
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Preface 11

The groundbreaking discovery of gravitational waves on September 14, 2015 was an
achievement made possible by the synergy of techniques and expertise from various
scientific disciplines. This historic event marked the dawn of a new era in astronomy
and underscored the importance of interdisciplinary collaboration.

The use of Machine Learning, Deep Learning, and advanced data science tech-
niques has surged across a wide range of disciplines, from the Social Sciences to
the Natural Sciences. These fields are increasingly tackling challenges such as clas-
sification, data mining, and visualization to manage and analyze the massive and
complex datasets characteristic of the “Big Data” era. With exponential increases
in computing power and the development of advanced algorithms for rapid data
analysis, Gravitational Wave Astronomy stands on the brink of a transformative
revolution.

Specific areas of focus within gravitational wave science include the development
of control and feedback systems for next-generation detectors, noise removal, data
analysis, and data-conditioning tools. The discovery of gravitational wave signals
from colliding binary black holes has revealed the existence of a previously unob-
servable population of massive, stellar-origin black holes. This has underscored the
importance of analyzing low-frequency gravitational wave data, a mission that is
central to gravitational wave science. The performance of Earth-based gravitational
wave detectors at low frequencies is heavily influenced by the ability to suppress
ambient seismic noise, making this a critical area of research.

During COST Action CA17137, we actively fostered collaboration and knowl-
edge exchange across diverse fields to develop and enhance the techniques and tools
essential for advancing gravitational wave detection and analysis.

Bologna, Italy Elena Cuoco
September 2024
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Part I
Machine Learning for Gravitational Wave
Detector Noise Analysis

One of the primary challenges in gravitational wave science is the presence of noise
with diverse characteristics, which can complicate the detection of signals of astro-
physical origin. Consequently, substantial efforts have been devoted to enhancing the
understanding of detector noise, identifying its non-stationary and nonlinear nature,
and pinpointing the major sources of this noise.

The data we analyze from gravitational wave detectors are time series sampled
at frequencies high enough to allow for the detection of the most probable signal
sources. Among the most troublesome types of noise are the so-called glitches, tran-
sient signals caused by noise sources that can resemble the signals we aim to detect.
These glitches can, as has occurred in the past, overlap with genuine gravitational
wave signals, posing significant challenges.

For this reason, the initial applications of machine learning techniques within
our community focus on the detection, classification, and potential removal of these
transient noise signals. Through machine learning, we aim to develop robust method-
ologies that can distinguish between genuine astrophysical signals and noise, thereby
improving the accuracy and reliability of gravitational wave detections.

In addressing these challenges, our research endeavors to create a comprehen-
sive framework that integrates advanced machine learning algorithms with tradi-
tional data analysis techniques. This interdisciplinary approach not only enhances
our ability to identify and mitigate noise but also paves the way for the discovery of
new gravitational wave sources and phenomena. The ongoing collaboration among
physicists, data scientists, and engineers is crucial in driving forward the capabilities
of gravitational wave observatories and in unraveling the mysteries of the universe.

In the following, you will find a series of chapters dedicated to the study of noise,
the analysis of glitches, their classification, and proposals for innovative analytical
methods to be employed in future scientific runs of terrestrial gravitational wave
detectors.

Each chapter delves into specific aspects of noise characterization, offering a
comprehensive examination of the various sources and types of noise that can affect
gravitational wave data.



2 Part I: Machine Learning for Gravitational Wave Detector Noise Analysis

The chapters on classification present advanced techniques for distinguishing
between true astrophysical signals and noise.

Additionally, this collection features forward-looking proposals for new analyt-
ical approaches. These innovative techniques are designed to address the evolving
challenges faced by the next generation of terrestrial gravitational wave detectors.
By integrating these novel methods, we aim to improve the sensitivity and accuracy
of future scientific runs, enabling the discovery of new gravitational wave sources
and deepening our understanding of the universe.

Through this comprehensive resource, we hope to provide valuable insights and
practical tools for researchers in the field of gravitational wave science, fostering
continued advancements and breakthroughs in this exciting area of study.
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for Gravitational-Wave Searches

in Single-Detector Periods
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and N. Courty

Abstract This chapter contains a summary of the paper in Ref. [1], in which the
challenges in detecting gravitational-wave (GW) signals, especially when only one
detector is operating, are discussed. The single detector case is particularly difficult to
analyse since a very useful tool to distinguish astrophysical signals from instrumen-
tal glitches cannot be used, i.e. the temporal coincidence between detectors. Neural
network classifiers are explored, including convolutional neural networks, temporal
convolutional networks, and inception time, specifically tailored for time-series data
processing. The classifiers are trained on a subset of data from the LIGO Livingston
detector during the first observing run (O1) to identify segments containing binary
black hole merger signatures. Their performances are evaluated and compared. Sub-
sequently, these trained classifiers are applied to the remaining O1 data, particularly
focusing on single-detector times, with the most promising candidate from this search
identified at the time 2016-01-04 12:24:17 UTC.
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1.1 Introduction

The LIGO, Virgo and KAGRA Collaborations (LVK) have already detected 90 GW
events during the first 3 observing runs (called O1, O2 and O3) and more detections
are expected during the analysis of the data from the fourth observing run (O4). The
sources of these GW detections are mergers of Binary Black Holes (BBH) or Binary
Neutron Stars (BNS) or mixed systems with one Black Hole (BH) and one Neutron
Star (NS). The search for these kind of signals, for which accurate waveform models
are available, usually employs the matched filtering technique [2], which consists
in checking the correlation between the data and a set of template waveform mod-
els. The presence of non-Gaussian transient noises, called “instrumental glitches”,
that mimic astrophysical signals, represent a challenge for these searches. The use
of temporal coincidence between detectors is useful to reduce contamination from
these instrumental glitches but during periods with only one operational detector,
coincidence-based techniques are unavailable, posing difficulties in distinguishing
signals from glitches and measuring their statistical significance.

This concern is relevant because interferometers used to detect gravitational waves
are challenging instruments to operate and maintain in observing mode. Conse-
quently, it often occurs that only one detector is operational. During the O1, O2 and
O4a observing runs, when only the two LIGO detectors were active, single-detector
periods comprised roughly 30% of the observation time. With the addition of the
Virgo detector to the network during O3, this fraction decreased to about 15% in
O3aand 11% in O3b. In total, from O1 to O4a, the single-detector periods sum up to
almost 8 months.

In the last observing runs, methods to assess the significance of single-detector
triggers are starting to be used directly by pipelines like GstLAL and PyCBC nor-
mally employed by LVK to detect GW events [4, 5]. Concerning in particular O1,
the authors of Ref. [6] discuss two candidate events found in single-detector periods,
one on 2015-12-25 04:11:44 UTC observed with LIGO Hanford and the other on
2016-01-04 12:24:17 UTC observed with LIGO Livingston. This last event is ruled
out as a possible gravitational-wave source because of the excess power observed in
the residual after subtraction of the best-fit waveform.

On the other hand, as this book demonstrates, machine learning methods are
beginning to be widely used in the field of GW astronomy, showing particular promise
in terms of signal identification in the data. Previous studies in this direction have
typically employed simulated Gaussian noise, or if real noise was used, they failed to
achieve a low enough false alarm rate to be practically useful. The goal of the work
described here is to detect GW signals in real noise, aiming for a false alarm rate on
the order of two false alarms per day, which represents the minimum threshold for
issuing public alerts [3].

The methodology used is described in detail in the following sections. Three
different neural network architectures are trained and tested using data from one
month of observations by the LIGO Livingston detector (L1) during O1, where no
GW signals were detected (Sect. 1.2). Then, the best classifiers are applied to the
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three remaining months of O1 where only for one data segment all the classifiers
agrees that it contains a BBH signal (Sect. 1.3). This segment, which is consistent
with the time of the candidate event found by [6] is further investigated and it is
compatible with an astrophysical origin.

1.2 Training and Testing on One Month of O1 L1 Data

1.2.1 Datasets Description

The data used for training and testing are those recorded by the LIGO Livingston
(L1) detector in the one month between November 25, 2015 (GPS time 1132444817)
and December 25, 2015 (GPS time 1135036817). These data, publicly available via
the Gravitational Wave Open Science Center (GWOSC) [7], do not contain any
known GW signal detection. The initial data, sampled at 16 kHz, are downsam-
pled to 2048 Hz, bandpass-filtered between 20Hz and 1 kHz, and whitened using
inverse amplitude spectral density (ASD) in the frequency domain. Subsequently,
the data are divided into one-second non-overlapping segments and used to obtain
three categories of segments labeled in the following way:

e noise: the data are compatible with stationary background noise, i.e., are free of
transient instrumental artifacts (glitches) or known GW events or harware injec-
tions.

e glitch: the data include one or several transient instrumental artifacts (glitches).
The times of glitches occurrence are obtained merging the list of glitches detected
by the citizen science project Gravity Spy [8] with the loudest background
triggers from the unmodeled transient search coherent WaveBurst (cwB) [9, 10].

e signal: the data include a (simulated) astrophysical signal, added to the station-
ary background noise. The signal injections consist in BBHs with component
masses m and m; chosen randomly, with m; > m, > 10Mg and a total mass
M = m + m, uniformly distributed in 33M, < M < 60Mg. We consider non-
spinning BH, so the dimensionless spin magnitudes x; and yx, are set to 0. The
phase at coalescence and polarization angle are uniformly drawn from (0, 27),
and the inclination angle from (0, ). Right ascension and declination are fixed
to zero since focus lies on a single detector. The source’s luminosity distance is
scaled for a uniform distribution in optimal signal-to-noise ratio (SNR) between
8 and 20. The waveform model used is SEOBNRv4 [11]. Simulated signals are
added randomly within a segment, ensuring the merger part is fully contained.

The training set comprises 250, 000 segments each for the noise and signal
classes, and 70, 000 for the glitch class, with a 20% fraction reserved for validation.
The testing set includes 500, 000 samples for both the noise and signal classes, and
80, 000 for the glitch class.
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1.2.2 Classifier Architectures

We use three different types of neural networks architectures: Convolutional Neural
Network (CNN) [12], Temporal Convolutional Network (TCN) [13] and Inception
Time (IT) [14]. In all three cases, a coarse exploration of the parameter space is used
to set the hyperparameters.

The structure of the CNN is detailed in Table 1.1 and consist in four convolutional
layers and a fully connected layer.

The TCN architecture comprises a “TCN layer” [15] consisting of 6 dilated con-
volutional layers with 32 filters, a kernel size of 16, and default dilation factors of (1,
2,4, 8, 16, 32), respectively. A dropout rate of 0.1 is applied. The output of the TCN
layer feeds into a final dropout layer with a rate of 0.5, followed by a dense embed-
ding layer to complete the model. For this case only it was necessary to downsample
the data to 1024 Hz in order to have a receptive field [15] larger than the length of
input sequence.

The hyperparameters used for the IT architecture are the same suggested by the
authors of Ref. [14], i.e. an ensemble of five Inception Networks initialised randomly.
Each Inception Networks contains 10 layers each one withe 32 filters of lengths 20,
40 and 80.

1.2.3 Comparison of the Classifiers Performances

With the hyperparameters of the three networks fixed, each classifier is trained 10
times with different (random) initializations of the model weights and dropouts.
The goal of each training is to minimize the categorical cross-entropy loss func-
tion, using a standard Adam optimizer and a batch size of 24. Throughout the training
process, the area under the Receiver Operating Characteristics (ROC) curve [16] is

Table 1.1 Structure of the CNN considered in this study [1]. The type of the layer is either con-
volutional (Conv) or fully connected (Dense). The activation function is either the rectified linear
unit (relu) or the softmax function [12]

Layer number 1 2 3 4 5

Type Conv Conv Conv Conv Dense
Number of filters 256 128 64 64 -

Kernel size 16 8 8 4 -

Stride length 4 2 2 1 -
Activation function relu relu relu relu softmax
Dropout rate 0.5 0.5 0.25 0.25 -

Max pooling 4 4 2 2 -
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Fig.1.1 ROC curves for the three considered classifiers, CNN (blue), IT (orange), and TCN (green),
illustrating the classification efficiency versus the false alarm rate. Each classifier is trained 10 times.
The solid (or dashed for TCN) line represents the result obtained for the best model, while the shaded
area covers the range from the best to the worst model. The plot is a simplified version of Fig.4 of
Ref. [1]

evaluated on the validation data and stored for each epoch with the corresponding
model. The model selected is the one with the highest area under the ROC curve.

After this training phase, the selected models are tested, and in Fig. 1.1, the ROC
curves of the 10 models for each network are shown. To improve the readability of
the plot, for each classifier type, the model with the best ROC is shown, and in each
case, a shaded area covers the range from the best to the worst model.

The TCN and IT classifiers exhibit similar ROC curves, both demonstrating a
notable improvement compared to CNN.

It’s important to note that each classifier provides the probability that a given
data segment belongs to any of the three classes. The ROC plots presented above
were generated using a threshold based on the probability of being classified as
a signal, denoted as Py. For each threshold value, we calculated the fraction of
correctly classified signals (classification efficiency) and the fraction of glitches or
noise segments erroneously classified as signals (false alarm rate). This representation
of the output allows, thus, to explore better what can be achieved with the networks
with respect to, for example, a simple confusion matrix [16] which is usually built
assuming that you would decide to which class your data belong according to the
highest among the probabilities associated to each class.

For the subsequent analysis, we opt to concentrate on segments classified with
P; = 1, indicating the highest confidence in signal detection by the classifier. In the
testing dataset, we identified O, 1, and 2 segments classified as noise or glitch for
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the CNN, TCN, and IT classifiers, respectively, meeting this selection criterion. This
level of rejection power, with between 0 and 2 false alarms in 5.8 x 107 trials, aligns
with the initially targeted false alarm rate.

1.3 Application to the Remaining O1 L1 Data

The classifiers are then applied to all the remaining L1 data in O1, excluding the
month used for training and testing the classifiers (see Sect. 1.2) and intervals of +
1 s around the merger time of the three known events in O1 (GW150914, GW 151012
and GW151226). Following the same procedure described in Sect. 1.2, also in this
case the data are downsampled, bandpass-filtered, whitened and divided into one-
second non-overlapping segments.

In Table 1.2 the numbers of segments passing the selection cut P; = 1 for the
three classifiers are reported.

It’s remarkable that only one segment meets the selection criteria for all three
classifiers: GPS = 1135945474 (2016-01-04 12:24:17 UTC). We delve deeper into
this segment in the following section.

A separate analysis of the 3 known events shows that only GW150914 would
meet the requirement of Py = 1 for all the classifiers. This is probably due to the
fact that both GW 151012 and GW 151226 have single detector optimal SNRs for L1
lower than the minimum value of 8 used to train the network.

1.3.1 Detailed Analysis of the 2016-01-04 Event

To verify the possible astrophysical origin of the data in the segment starting at GPS
= 1135945474 (2016-01-04 12:24:17 UTC), we perform various checks.

First, we visually inspect the segment using the time-frequency Q transform [17,
18]. Figure 1.2 illustrates the time-frequency representation of the entire segment. A
transient appears approximately 0.37 s after the segment’s start, with a frequency of
around 150Hz. Upon closer examination, the transient’s shape strongly suggests a
frequency-modulated chirp-like characteristic.

Table 1.2 Numbers of segments passing the selection cut P = 1 for the three classifiers

Classifier type Tot. segments Segments in single-detector
time

CNN 4 2

TCN 105 14

IT 9 2
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Fig. 1.2 Figure8 from Ref. [1]. Time-frequency representation of the segment at 2016-01-04
12:24:17 UTC (GPS = 1135945474 s) recorded by the L1 detector. The top panel shows the entire
segment. The bottom panel is a detailed view that focuses on the transient signal at ¢ ~ 0.37 s.
This representation is obtained through a Q transform [17] with quality factor O = 12. To facilitate
comparison, the dynamic range is fixed, following a similar approach as described in [6], and the
colormap is saturated at a maximum value of 30 for the normalized energy

Second, we check if this GPS time existsinthe Gravity Spy database[19],and
we find that it is considered glitch of “Blip” type, a family of instrument glitches with
an uncertain origin. We apply our classifiers to all the 600 Blip glitches identified
by Gravity Spy in the part of the Ol dataset under analysis, and we find a
compatibility with the overall background distribution (see Figs.7 and Al of Ref.
[1]), except for the segment from January 4 which appears to be an outlier relative
to the other Blip glitches.

Additionally, we attempt to fit the transient signal with a gravitational wave (GW)
waveform model associated with a compact binary merger using the Bayesian infer-
ence library Bilby [20] and the IMRPhenomXPHM waveform model [21]. The
analysis yield a signal-versus-noise log Bayes factor of 47. The estimated time of
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Fig. 1.3 Figure9 from Ref. [1]. Comparison of the whitened L1 data (orange line) with the recon-
structed waveform obtained from the posterior mean (dotted blue line), and from the maximum
likelihood fit (solid green line) both computed using Bi 1by, and the 90% credible interval (blue)
along with the ML denoising convolutional autoencoder neural network described in [22] (dashed
red line)

arrival of the merger at the detector is GPS = 1135945474.3730:97°. The fit results
in the time domain are showed in Fig. 1.3 where the whitened data can be seen in
orange, the maximum likelihood fit in green, and the posterior mean with the 90%
credible belt in blue.

For an independent verification of the signal, Fig. 1.3 includes the waveform esti-
mate from the denoising convolutional autoencoder (dashed red) described in Chap. 5
of this book (see [22] for more details). Besides the general agreement of the wave-
forms, it is interesting that the SNR of the denoised waveform is found to be 9.7
which, according to the discussion in [22], is sufficiently high to suggest an astro-
physical origin.

Even more surprising is the absence of any significant residual after subtracting
the best-fitting waveform (shown in green in Fig. 1.3), as depicted in Fig. 1.4.

All the aforementioned checks align with the event having an astrophysical origin.
The 90% credible intervals for parameters found with the Bayesian analysis are: mea-
sured (redshifted) chirp mass M = 30. 18+12 2M@, (redshifted) component masses

my = 50.77%* Mo and my = 24.473%% M, binary effective spin yerr = 0.0670%

and luminosity distance d; = 5641%5 Mpc; see [23] for a definition of those phys—

ical parameters. These values align with the observed population of binary black
holes up to this point.

1.4 Conclusion

This study showcases the effectiveness of training neural network classifiers on
real data from ground-based gravitational wave detectors, particularly during single-
detector observing periods. Our findings indicate that architectures tailored for time-
series classification, such as IT or TCN, outperform conventional CNNs. Using one
month of LIGO Livingston detector data from the O1 observing run for training and
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Fig.1.4 Figure 10 from Ref. [1]. Time-frequency representation of the residual after the subtraction
of the maximum likelihood fit waveform obtained with Bi1by (green line in Fig. 1.3) from the data
segment at 2016-01-04 12:24:17 UTC (GPS = 1135945474 s). This representation adheres to the
same settings as in Fig. 1.2, utilizing a Q transform with a quality factor Q = 12 and the dynamic
range is capped at a maximum of 30 for normalized energy, aligning with [6] to facilitate comparison.
No excess power is visible in this plot

testing, these models accurately detect a potential gravitational wave signal of astro-
physical origin on January 4, 2016, when applied to the remaining three months of
O1 data. Various diagnostic tests support the plausibility of its astrophysical origin.
We propose an operational method where data from multiple detectors during
the initial month of an observing run, labeled by standard matched filtering-based
pipelines, are used to train neural network models. These classifiers can then be
deployed on data collected during subsequent single-detector periods. Once trained,
these classifiers offer low-latency triggers at a manageable computational cost.
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Chapter 2 ®)
A Simple Self Similarity-Based =T
Unsupervised Noise Monitor

for Gravitational-Wave Detectors

Marco Cavaglia

Abstract The anticipated high volume of gravitational-wave observations in the
near future will require the development of reliable, unsupervised techniques for
data quality assessment and signal detection and interpretation. We present a simple
noise monitoring pipeline for gravitational-wave detectors that uses self-similarity
analysis and an unsupervised machine learning anomaly detection algorithm. The
approach may be used in real time to detect non-astrophysical noise transients at
different time scales, as well as to identify periods of noise non-stationarity. We
demonstrate how it works with two examples of data collected by one of the LIGO
interferometers during the third observation run of the LIGO, Virgo, and KAGRA
collaborations.

2.1 Gravitational-Wave Astrophysics in the Next Decade

LIGO [1], Virgo [2], and KAGRA [3] (LVK) scientists are gathering a record num-
ber of GW signals from various astronomical compact binary coalescence (CBC)
sources [4]. Improved detector sensitivities will add thousands more gravitational
wave (GW) detections to current catalogs in the coming years, expanding our under-
standing of the universe [5]. Further down the road, proposed 3G detectors [6, 7]
will reveal hundreds of thousands of CBC signals, many of which will originate from
multi-messenger astronomical sources [8].

These discoveries will provide GW scientists with the long-sought data to
unravel some of the yet unsolved mysteries surrounding the GW sky; the origin
of the observed black hole population [9], the nature of “low-mass gap” compact
objects [10], the equation of state of neutron-rich matter at high densities and low
temperatures [11], and of course, the many “‘unknown unknowns.”
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At the same time, the sheer number of expected detections will lead to challenges
in collecting, validating, and interpreting their signals. To extract the most physics
from GW data, researchers will need to automate data quality techniques as well
as search and parameter estimation pipelines to the greatest extent feasible in the
coming years.

The demand for automation is not limited to GW science. Automation of analytical
workflows is required in all (scientific and non-scientific) efforts that generate or rely
on large amounts of data. This conclusion has resulted in the rapid development of
machine learning (ML) algorithms [12] and artificial intelligence [13], which are
now widely used in today’s society. ML research has historically been driven by
industry applications. However, the emergence of large-scale, complex experiments
such as GW detectors, high-energy colliders [14, 15], cosmic ray detectors [16—
18], and electromagnetic (EM) telescopes [19-21] has led to an explosion in the
use of ML methods in science. GW astrophysics is not immune to this [22]. While
ML cannot be the only answer to the future GW detection rate crunch (streamlining
analysis workflows and improved use of human and infrastructure resources will also
be critical), it is widely acknowledged that ML will play an increasingly important
role in GW research.

2.2 Monitoring the Noise of GW Detectors in Real Time

The analysis of instrumental and environmental noise sources is a critical component
of the GW data analysis workflows for both existing and proposed GW detectors [23,
24]. A GW detector’s noise floor is typically non-stationary and non-Gaussian [25].
Its sensitivity is limited by fundamental and technical noise sources, as well as
transient and persistent noise artifacts caused by physical disturbances and non-linear
couplings between detector subsystems and their environments [23].

Monitoring data stationarity, identifying and flagging noisy data, and potentially
leveraging this information to remove noise artifacts with other methods [26-29]
are all necessary requirements for GW detection. Excess noise in connection with a
GW from a CBC source can drastically affect the signal’s parameter estimation and
sky localization. Noise (non-)stationarity may also affect background estimation and
the significance of unmodeled GW cadidates. To complicate the matter, due to the
anticipated growth of detected signals, all detector characterization and data quality
tasks will need to be done in low-latency in the not too distant future.

In recent years, there have been great advances in the automation of noise anal-
ysis tasks that minimize human involvement and shorten the latency of the pro-
cess (see, e.g., [22] for a review). Some of the techniques that are currently in use
include signal processing tools such as omicron [30], machine learning (ML) algo-
rithms such as iDQ [31], automated checks of lock status and noise stationarity, and
monitors to determine physical couplings between the detectors and their environ-
ments. However, many of these processes still require human intervention for final
validation.



2 A Simple Self Similarity-Based Unsupervised Noise Monitor ... 15

Typically, the ML algorithms used in the GW workflow, such as neural networks,
are trained on pre-built data sets. Although these supervised algorithms have proven
useful in a wide range of applications [22], their training and testing paradigms
may be inadequate in non-stationary and real-time settings. As the detector’s power
spectral density varies over short and long timescales (either by design or due to
accidental factors), reliable predictions from supervised ML algorithms may require
frequent re-training.

In this context, developing new unsupervised methods to monitor noise variations
in the detectors is especially relevant. Along these lines, there have been a few
interesting studies of ML anomaly detection (ML-AD) algorithms [32-34]. ML-AD
may be the key to developing automated, unsupervised systems for noise monitoring.

The ML-AD paradigm is based on the idea of allowing the algorithm to learn the
noise as it evolves and report what is anomalous without any prior training. Generative
Adpversarial Network (GAN) models and Temporal Outlier Factor (TOF) algorithms
appear to be viable machine learning approaches for developing an unsupervised
noise monitor. Recently, there has been exploratory research into GAN models for
anomaly detection on time-frequency maps, detection of unmodeled GW signals
[33], and development of glitch template banks [35, 36]. TOF has been used to the
detection of noise transients, with promising results [34].

Another important aspect of designing an effective ML algorithm is the ability
to build effective, higher-level features from raw data [37]. Rapid feature generation
is one of the challenges that ML algorithms may confront within the present GW
detector software infrastructure. For example, ML image-based noise classification
in low latency may be inefficient because to the time necessary to construct time-
frequency maps, particularly when hundreds of auxiliary data channels must be
processed. Self-similarity (SSA) techniques represent a potential new approach for
rapid feature generation.

Over the years, SSA has been applied in a variety of fields [38—45]. SSA arises
naturally in nonlinear dynamical systems and may be utilized to estimate the com-
plexity of a data set [46]. This property makes it ideal for characterizing physical
devices with non-linear couplings that generate a large amount of data, such as GW
detectors.

GW detectors produce data in the form of a multidimensional series of real-
valued, discretely sampled measurements. In this scenario, the value of the SSA
(fractal) dimension is related to the data’s frequency content [47]. Therefore, the
fractal dimension varies as the GW detector’s noise changes over time.

The fractal dimension of the detector data stream may be a useful metric for
determining the instrument’s state, measuring data stationarity, and detecting non-
astrophysical excess noise in the low-latency software architecture [48].

Because SSA detects noise fluctuations on both short and long timescales, it may
be used in a number of investigations. Its output may then be passed to traditional or
ML-based methods to characterize transient noise, monitor detector stationarity, and
identify stretches of low-quality data. In addition to traditional methodologies, the
SSA measure may be utilized as input for coherence methods to reveal non-linear
couplings in detector subsystems [49]. In the context of GW interferometry, SSA
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Raw detector data
(single or multi-dimensional time series)

\J

Data conditioning
(e.g., bandpass, whitening)

v

SSA

ML-AD

v

Identification of noise transients or non-stationarity

Fig. 2.1 Workflow of the proposed unsupervised SSA+ML approach for noise monitoring in a
GW detector. Raw detector data is first conditioned before it is fed into the SSA algorithm, which
generates a set of features that describe the variability of the noise. An unsupervised machine
learning method is then used to identify anomalous fluctuations in the SSA features. The remaining
part of this article describes a basic implementation of this method

has been used to characterize the time evolution of Virgo and KAGRA seismometer
data [50-53]. A more recent example can be found in Ref. [54].

In this note, we propose integrating ML-AD with SSA to provide an unsuper-
vised tool for monitoring noise stationarity in low-latency. Figure 2.1 depicts a pro-
cess for the approach. We demonstrate this concept with a basic “out-of-the-box”
implementation.

2.3 Self-Similarity as a (Rapid) Feature Generator

SSA sets, or fractals, are sets that have a non-integer dimension less than that of their
Euclidean covering space [46]. In the case of one-parameter valued data sets, such
as time series of amplitude A(r), the covering space is R> = {r} ® {A(r)} and the
dimension of the setis 1 < Dy < 2.Forexample,asmoothcurve C(¢; ¢ € [0, T']) has
Dyp = 1 whereas the dimension of an (infinitely dense) random series R(¢; t € [0, T'])
is Dr — 2 because it covers the whole two dimensional Euclidean area T x R.
Discretely-sampled physical measurements do not strictly define a fractal set and
allow only for an approximate measure of D. In such a case, different definitions of
Dy lead to different values. As a consequence, no physical measurement allows for a
unique definition of its fractal dimensionality. However, typically, what is interesting
is the variation of Dy across the set. It is this variation that encodes all the relevant
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information for the characterization of a physical data set, such as the noise of a GW
detector. More details about the subtleties of defining D for a discretely-sampled
data set can be found in Ref. [48].

The variation (VAR) algorithm [55-57] is an efficient method for estimating the
SSA dimension of a one-parameter time series with N (equally spaced) samples A;.
The VAR estimator is calculated the functions

Fi = (Fr;); = (|max[A; ... Aj] —min[A; ... Aj]|) 2.1

i
where k =1,2,...N/2—-1,j=[k,k+1,...N —k+ 1), and then calculating
Dp =2 — S, where S is the slope of the log-log In(F;)(In(k)) curve.

Tests on white and Brownian noise, as well as known fractal sets, reveal that the
VAR estimator is accurate enough to be used for time series with ~10° or more
samples, with average errors of a few percent [48]. In our implementation of the
algorithm, the fractal dimension of white noise is typically D ~ 1.8, which is
roughly 10% lower than the theoretical value of Dp = 2.

Figure2.2 shows the variation of the fractal dimension during two ten-minute
spans of LIGO-Livingston public data collected during the LVK third observation
run. The fractal dimension is calculated using a sped-up variant of the VAR approach,
which allows Dp to be computed in real time (see Ref. [48] for details).

The variation in Dy encodes the change in detector noise over time. The left panel
shows the fractal dimension calculated from the interferometer’s raw strain output.
For the first five minutes, the value of Dy remains roughly constant, with the majority
of values falling between Dy = 1 (linear noise) and Dy = 1.2. The dimension then
rapidly transitions to values around ~1.8, indicating that the detector’s background
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Fig. 2.2 Left panel: fractal dimension for a ten-minute period of interferometer raw output data.
The interferometer is in observing mode (L1 : DMT-ANALYSIS_READY) for the first five minutes
before losing lock. Right panel: fractal dimension for a ten-minute period of whitened data. The
interferometer is in observing mode throughout the period, however a 2-second glitch appears after
300s into the plot. The data for both periods is from the LIGO-Livingston detector and was collected
during the third LVK observing run. The data is sampled at 16,384 Hz. The fractal dimension is
calculated using the VAR estimator mentioned in the text. Each point represents D for a second
of data
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Fig. 2.3 Left panel: Q-transform [58] plot centered on the stronger glitch from the right plot of
Fig.2.2. The Q-scan indicates the presence of a loud overflow glitch in the interferometer. Right
panel: Q-scan around the time of the weaker D variation, beginning at approximately 410 s into the
data stretch. In this case, as well, the variation of the fractal dimension is caused by noise transients,
specifically scattered light

noise has changed. A follow-up investigation reveals that at this point in time, the
interferometer arm cavities lose resonance (lock loss), and the detector drops out of
observing mode. The right panel depicts the variation in D calculated on whitened
strain data. As predicted, the fractal dimension is stable around ~1.8, which is the
expected value for white noise in the VAR approximation. Five minutes into the
stretch, the value of Dy drops between ~1.66 and 1.41 for two seconds. A drop
in the fractal dimension indicates the presence of a short-lived noise transient. A
follow-up investigation reveals that, in this instance, the interferometer retains lock,
but its binary neutron star inspiral range decreases by a factor of around 10 to roughly
10 Mpc. At around 410s into the data stretch, there is a weaker noise transient that
lasts a few seconds.

Figure 2.3 shows Q-transform [58] plots (“Q-scans”) centered at around the times
of the anomalous fractal dimension points from the right plot of Fig.2.2. The Q-scan
in the left panel corresponds to the time of the strong glitch with Dy ranging from
1.41 to 1.66. It indicates the presence of a significant noise transient, possibly caused
by a sensor overflow, similar to the transient that overlapped with the GW170817
binary neutron star signal [59]. The Q-scan in the right panel corresponds to the time
of the weaker glitch, which occurs ~410s after the start of the data stretch. Also in
this case, the Q-scan reveals the occurrence of noise transients caused by scattered
light in the interferometer optical systems. This noise transient is longer lived, lasting
several tens of seconds. The excess noise in its loudest portion is strong enough to
trigger a noticeable variation of the fractal dimension.

2.4 Machine-Based Anomaly Detection for Noise
Monitoring

SSA can detect excess non-astrophysical noise and measure noise non-stationarity
in real time. ML-AD can automate this procedure. Loud noise transients, like the
one in the center of the data stretch in Fig.2.2, are easily detectable. A simple
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Fig. 2.4 Additional anomalous times identified by the LOF algorithm in the data stretch from the
right panel of Fig.2.2. The Q-scan in the left panel shows a glitch at around 40 Hz. The Q-scan in
the right panel does not show any evident excess power. In this case, either the noise transient is at
lower frequency or the identification is a false positive

cut-off of Dp < 1.7 can reveal loud glitches in whitened time series. However,
weaker noise transients are harder to detect. Similarly, quantifying noise non-
stationarity on unwhitened data needs a more sophisticated method for identifying
anomalous periods in an unsupervised setting. Here, we will show how to develop
a rudimentary ML-AD technique for detecting (some of the) weaker glitches in the
Dy data stream.

In our basic application, we use the sklearn [60] implementation of the unsuper-
vised Local Outlier Factor (LOF) detection method. The LOF approach identifies
outliers in the fractal dimension series by comparing the local density of Dy values
to the local densities of adjacent data points. This method is thought to be especially
useful for fractal dimension series produced from whitened data, as Dy remains
constant throughout clean periods.

We run the sklearn LOF algorithm on a rolling 60-second window. We first stan-
dardize D by subtracting its average and dividing by its standard deviation, and then
pass the standardized data to the LOF algorithm. For the purpose of simplicity and
to demonstrate the process, we do not tune any hyperparameters and merely set the
number of neighbors to 20 and data contamination to 0.01. All other LOF parameters
are set as the default values for the sklearn implementation. Even without hyperpa-
rameter tuning, we are able to identify the scattered light noise transient in the data,
as well as two additional anomalous points. Figure 2.4 shows the Q-scans at the times
of these anomalies. The first of these two anomalous times has a glitch. The second
Q-scan does not reveal any obvious transient noise. This might be a false positive,
the result of a bad hyperparameter choice. More research is clearly needed, but the
fact that a basic, off-the-shelf ML-AD method already yields substantial results is
quite promising.

2.5 Conclusions

The identification of noise transients and noise non-stationarity is critical for enhanc-
ing the quality of GW data and extracting astrophysical information from detectors.
Over time, the application of machine learning has helped speed up and optimize
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this process. Nevertheless, integrating supervised ML techniques into the current GW
detector software framework can often be challenging. Furthermore, because to the
improved sensitivity of future detectors, the development of unsupervised machine
learning algorithms is particularly desirable. In this context, rapid feature creation
for noise characterization, as well as ML-AD methods, might be quite useful. In this
note, we have introduced a simple method for doing so that combines an SSA metric
with a basic LOF ML-AD algorithm. While further investigation is definitely neces-
sary, we hope that our work may start a discussion and pave the path for additional
in-depth studies along this line of research.
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Chapter 3 ®)
Simulation of Transient Noise Bursts ges
in Gravitational Wave Interferometers

Melissa Lopez®, Stefano Schmidt®, and Francesco di Renzo

Abstract Gravitational-wave (GW) interferometers encounter significant chal-
lenges from transient noise artefacts, known as glitches. These glitches impair the
sensitivity and data quality, complicating the detection of GW signals. To enhance
detection capabilities, better modelling and inclusion of glitches in large-scale stud-
ies are essential. In this chapter, we explore the application of Generative Adversarial
Networks (GANG5), a cutting-edge deep learning algorithm, to learn the distribution
of blip glitches and generate artificial populations. By reconstructing glitches in the
time domain, we provide a smooth input for the GAN, enabling the creation of
approximately 10° glitches from Hanford and Livingston detectors in less than one
second. The performance and quality of the generated glitches are assessed using
several metrics. We also introduce gengli, a user-friendly open-source software pack-
age that includes practical examples of the trained network’s usage. Furthermore, we
demonstrate a practical application to improve the understanding of Gravity Spy’s
performance, one of the current state-of-the-art glitch classifiers. Future work aims to
extend this methodology to other glitch classes, ultimately creating an open-source
interface for mock data generation. This will enhance stress testing of search pipelines
and increase confidence in GW signal detection.
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3.1 Introduction

As the amplitude of gravitational waves (GW) is minuscule, and thanks to the devel-
opment of technology, large detectors were constructed to measure this space-time
deformation accurately. Since the real world is full of imperfections and due to the
sensitivity of GW detectors, the main strain of the detector 4 (¢) has undesired noise
contributions. Indeed, many textbooks treat the detector noise as Gaussian and sta-
tionary, but it is a poor approximation of its data. The understanding and unbiased
modelling of the different sources of noise is fundamental to infer the significance of
GW signals and their astrophysical properties, so these efforts are a significant portion
of LIGO-Virgo-KAGRA collaboration’s work, known as detector characterization
tasks [1].

GW interferometers are complex experiments with many sub-systems, which
couple to the main detector strain /(¢) causing transient non-astrophysical bursts of
non-Gaussian noise, colloquially known as glitches [2, 3]. Glitches may be caused
by the environment (e.g., earthquakes, wind, anthropogenic noise) or couplings with
instruments (e.g., control systems, electronic components [4]), though in many cases
their causes remain unknown [5]. They come in a large variety of time-frequency
morphologies, have a typical duration of between sub-seconds and seconds, and a
high rate of occurrence (~1 per minute during the first half of the third observing
run [6]).

Glitches are problematic due to their large abundance and capability of hampering
GW data analysis. They can reduce the amount of analyzable data increasing the noise
floor, produce false positives in GW data, affect the estimation of the detector power
spectral density and reduce candidate significance in searches for short- and long-
lived GW signals [7—11]. Glitches can also bias astrophysical parameter estimation,
making it difficult to determine which part of the signal corresponds to a glitch and
which part to the actual GW event [12—-14]. Additionally, glitches can impact line-
cleaning procedures in GW searches, which rely on replacing disturbed frequency
bins with artificially generated data, consistent with their neighbours [11, 15, 16].
If the surrounding data contains elevated noise floors, the efficacy of mitigation
methods will be reduced.

Because of everything previously mentioned, there is a need for better modelling
and inclusion of glitches in large-scale studies, such as stress testing pipelines. In
this chapter, we delve into an exploration of the current state-of-the-art methods
employed to generate synthetic populations of glitches utilizing advanced Machine
Learning (ML) techniques. Additionally, we will describe the tools developed within
the g2net action and engage in a discussion regarding the future of this field.
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3.2 Background

3.2.1 Glitch Characterization

Glitch identification and characterization is a crucial first step towards their mitiga-
tion, but due to their overwhelming amount, their characterization by hand is unfea-
sible [17-19]. A promising option is then to construct ML algorithms for their iden-
tification. Most of the current approaches to glitch characterization with ML utilize
supervised classification algorithms, where models learn to identify glitches through
labelled data representations of GW strain data h(r) [20-26]. In practice, glitches
are visualized in time-frequency representations (2-dimensional input) known as Q-
transform, a modification of the standard short-time Fourier transform parameterized
by a quality factor Q [27-29]. However, this procedure presents several limitations.
Firstly, generating labelled data is an expensive task, since ML methods need a lot of
examples for training, and experts must vet the labelling procedure. Secondly, glitch
classes are highly unbalanced, biasing the models towards the most common classes.
Moreover, supervised learning needs fixed class definitions that are not exhaustive
nor representative of all glitch morphologies, as there could be many possible sub-
classes to discover [22]. Furthermore, as GW detectors are improved, novel glitch
morphologies could arise [30].

Despite these challenges, these methods have been instrumental in GW detec-
tor characterization and data analysis. The most well-known glitch classifier is
GravitySpy, which combines supervised ML and citizen science to character-
ize glitches present in LIGO data according to their morphologies in GW strain data
h(t) [20, 23]. The trained algorithm assigns glitches to a pre-defined class and gives
a confidence score that it belongs to this class.

3.2.2 Modeling Glitches

Asdiscussed in the previous subsection, glitches are commonly represented as images
where the glitch is in the centre surrounded by detector noise. For illustration in
Fig. 3.1 we present a glitch (/eft) and a binary black hole merger (right) surrounded by
noise. Although there exists an option to create synthetic time-frequency populations,
this approach presents limitations in terms of flexibility, given that the noise envelop-
ing the glitch is unique to each observing run, i.e. we could not utilize background
noise from the second observing run for third-generation analysis. Furthermore, hav-
ing a fixed surrounding background implies a fixed loudness or signal-to-noise ratio
(SNR). To gain flexibility for future applications, we can extract the glitches from
their surrounding detector noise using wavelet modelling. In this way, the input to
the ML algorithm will be 1-dimensional instead of 2-dimensional, but except for the
dimensionality of the input, the inner workings of the network remain unchanged.
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Fig. 3.1 (Left) Q-transform of a Blip glitch retrieved from Gravity Spy [20]. (Right)
Q-transform of an event with total mass 106.6ini:§M®

3.3 Methodology

3.3.1 Generative Adversarial Networks

The current state-of-the-art algorithm to generate synthetic glitches is called Gener-
ative Adversarial Networks (GAN). GAN [31] are a class of generative algorithms in
which two neural networks compete with each other to achieve realistic image gen-
eration. One network, known as the generator, generates new images from random
noise, while the other, known as the discriminator, tries to discriminate the gener-
ated images from the real training data. The generator progressively learns which
features of the real images should be mimicked to fool the discriminator and save
them into the latent space, which can be understood as a compressed representation
of the input data learnt by the generator. At the end of the training, new images are
drawn by randomly taking a latent space vector and passing it to the generator, which
has learned to translate it into a realistic image. Figure 3.2 shows an overview of the

Fig. 3.2 Typical GAN
architecture retrieved from
[34]

Discriminator

Generator

Real

False

Random
Noise

Generated Data
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original architecture of GAN for generating 2-dimensional data with convolutional
layers, but depending on the application, the neurons used can be either fully con-
nected or convolutional for 1- or 2-dimensional input. This early approach has been
shown to work well under some hyperparameter configurations [32]. However, early
GAN architecture [31] suffers from the significant problems of vanishing gradients
and meaningless loss function [33].

3.3.2 Wasserstein Generative Adversarial Networks

Wasserstein GANs [35] (WGAN) was developed to address these issues previously
mentioned by making use of the Earth’s mover distance estimator, or Wasserstein-
1 distance (W;) [36], which computes the similarities between two distributions.
W, is evaluated through the discriminator as the training progresses and increases
monotonically while never saturating, providing a meaningful loss metric even for
two disjoint distributions. Since W is continuous and differentiable, it yields reliable
gradients, allowing us to train the discriminator to optimality to obtain high-quality
generations. This change of paradigm led Arjovsky et al. [35] to reformulate the
optimization problem as:

QopIZargInginWl(Px”Pf)’ (3.1)

where W) is evaluated between the real and generated distribution P, and P;, we
rewrite Eq.3.1 as,

Oppr = argmin  max  L(¢, 0 32
Pt AR (@ 6) (G.2)

with the discriminator loss:

L($.0) = —Evp[D(x. )] + Ez-p[D(F. §)] (33)

where D and G refer to the discriminator and the generator with parameters ¢
and 6, respectively. E,~p_indicates that the expression has been averaged over a
batch of real samples x, while E;~ p. has been averaged over a batch of generated
samples x. The new condition over ¢ in expression Eq.3.2 imposes a constraint on
the discriminator D, which must be 1-Lipschitz continuous [35]. In practice, this can
be achieved in two ways: clipping the weights of the discriminator beyond a specific
value ¢ [35], or adding a regularization term to the discriminator loss.
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3.3.3 Gradienty Penalty and Consistency Term

Adding a regularization term to the discriminator loss (Eq.3.3) to enforce the Lip-
schitz condition has been widely accepted. This regularization term is known as
gradient penalty, G, and its mathematical formulation is as follows:

Lin=L$.0)+1.6@) with G@) = Exep, [ (IV:DE @) = 1)']. G

where A is the regularization parameter, || - ||, stands to the L2-norm and £ is evaluated
asx =Xt + x (1 — 1), being 7 uniformly sampled ~ [0, 1]. This method has shown
impressive applications such as [37], but it is not restricted to WGANSs [38, 39].

Nonetheless, unlike weight clipping, gradient penalty cannot enforce the Lipschitz
condition everywhere, particularly at the beginning of the training. This can prevent
the generator from converging to the optimal solution. To overcome this obstacle,
Wei et al. have proposed a second penalization term to add to the loss from Eq. 3.3,
called consistency term, C, [40]. They applied their new constraint to two perturbed
versions of the real samples x, introducing dropout layers into the discriminator
architecture. This ultimately leads to two different estimates noted D(x’) and D (x”).
The consistency term is defined as,

C(@) = Ecp [max (0, d(D(x', ¢), D(x", ¢))+

(3.5)

0.1d(D_(x', ¢), D_(x", ¢)) — M')],
where d(.,.) is the L2 metric, D_stands for the second-to-last layer output of the
discriminator, and M’ is a constant value. Wei et al. found that controlling the second-
to-last layer output helps improve the performance of the WGANSs. Thus, the final
discriminator loss is then [40]:

Lot = L(¢.0) + 11 G(9) + 12 C(@) , (3.6)

with A, being the consistency parameter. This type of WGAN was called consistency
term GAN (CT-GAN).

3.4 Synthetic Glitches in Time Series

As mentioned earlier, our focus lies in the generation of synthetic glitches within
time series data. To achieve this objective, the approach presented in [41] involved
adapting CT-GAN to train on glitch time series obtained through the wavelet mod-
elling algorithm known as BayesWave [42]. Given the resource-intensive nature
of glitch extraction, the authors opted to generate a time series for a specific class
of glitches, specifically the Blip glitches identified by Gravity Spy, extracted
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Fig. 3.3 Time series representation (top row) and Q-transform of synthetic glitches from Hanford

from Hanford and Livingston during the second observing run. These glitches are
selected with a Gravity Spy confidence 220.9 sampled at 4096 Hz, and whitened
with BayesLine [43].

After the training of the CT-GAN, and given a 100-dimensional vector drawn
from a normally distributed latent space (as it is common in other GAN-related
works), and 103 Blips can be generated in ~5 s for each detector. As an example,
we present in Fig. 3.3 different artificial Blips from Livingston in the time domain,
and for visualization, we also compute their Q-transform as in [20]. In the time-
frequency representation, we can see that CT-GAN has been able to capture the
distinct symmetric ‘teardrop’ of Blips in the expected frequency range [30, 250] Hz,
but sometimes it generated glitches that have a completely different morphology.
Indeed, as Gravity Spy has acertain degree of bias, it misclassifies some glitches
that are present in the input data set. Therefore, even if most synthetic glitches have
the characteristic ‘teardrop’ shape by visual inspection, it is necessary to perform a
statistical test to assess the performance of CT-GAN (see [41] for details).

3.5 Gengli: Open-Source Glitch Generator

The authors in [41] extended their work in [44] and provided an open-source, user-
friendly package for glitch generation known as gengli. Aside from generating
whitened glitches, gengl i provides further examples of applications, such as inject-
ing glitches, i.e. adding glitches in the detector strain, and scaling glitches to a desired
SNR, among others. Depending on our application, perhaps we would like to gen-
erate synthetic glitches similar to real ones. For this aim, to assess the degree of
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“similarity” with respect to the statistical distribution, gengli defines several dis-
tance metrics, namely Wasserstein distance (dw ), mismatch (dys) and normalized
cross-covariance (d,.) [44].

To compare against a statistical distribution we can generate a benchmark set
of N, glitches (see Fig.3.4 for N, = 1000). For each of the N,(N, — 1)/2 pairs
of glitches in the benchmark set, (dw, dy, d..) are computed. For each new glitch
being generated, gengli also computes the set of average distances (dw, dy, d.c)
between the glitch and the benchmark set, and measures the set of percentiles
(Pws Pmm, dcc) of each of the distances with respect to the benchmark distances.
The triple score (pw, Pmm, d.c) allows us to filter glitches based on an anomaly
score interval [ puin, Pmax]- The code will output only glitches for which all the three

anomaly scores lie within the given interval.

3.6 Applications: Studying Gravity Spy’s Performance

A possible application of gengli generations is to understand the confidence and
classification labels of Gravity Spy for different SNRs. For this aim, we created
a population of 10° glitches and we injected them in real whitened noise of the
third observing run with SNR p € [1.0, 50]. Note that this SNR is > ppjips ~ 20,
as we want to test the behaviour of Gravity Spy for louder signals. To avoid the
influence of the background we use the same real whitened noise from Hanford in
the GPS time range [1262540000, 1262540040] s' for every glitch realization, with
sufficient data to avoid border effects in the whitening procedure.

InFig.3.5 we present the average Gravity Spy confidence cgy for 10° artificial
Blip glitches as a function of SNR p. We can observe that cgs decreases as we
increase p, with a minimum of c5g & 0.65 at p ~ 7.5. As we will see in the next

! The data can be retrieved from https://gwosc.org/O3/.
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graphics, this minimum is because Gravity Spy isconfident thatthere is no glitch
in the input data, known as No_Glitch class, until we increase the loudness of the
glitches to p ~ 7.5. This behaviour is expected, since Gravity Spy is trained on
Omicron’s > 7.5. Furthermore, Gravity Spy performance decreases slowly with
the increase of p, which might be a symptom that Gravity Spy is biased towards
loudness. Nonetheless, further investigation is needed.

In Fig.3.6 we plot the classification labels, with maximum classification prob-
ability, for different p,,, of Hanford population. As we mentioned before, we can
observe that at p = 1.0 every glitch is classified as No_Glitch, since the signal is
below the bed of the noise. However, as we increase p = 7.43, Gravity Spy
classifies some of the glitches as Blips, and some others as Repeating_Blips. At
p = 18.32 most glitches are classified as Blips, with some misclassifications proba-
bly caused by anomalies in the data. Nevertheless, as we increase p, the number of
Blip classifications degrades, increasing the number of glitches that are classified as
Koi_Fish or Blip_Low_Frequency.

In Fig.3.7 we present the joint and marginal distribution of cgg as a function
of the mismatch dy, (see [44] for details). Note that the marginal distributions are
expressed as probability densities. For Fig.3.8a, where p = 1.0, we can see how
every glitch is classified as No_Glitch with cgs = 1.0. As we increase p = 7.43 (see
Fig.3.8b)Gravity Spy startstochange its classification towards Blip class, which
is dominant with high cg g for p = 18.43 (see Fig. 3.8c). However, for p = 45.55 and
as observed in Fig. 3.8d, while still most of the glitches are classified as Blip, we begin
to see mis-classifications of Blip_Low_Frequency and Koi_Fish with cgs > 0.6. As
a final test, we selected a glitch that was anomalous according to Gravity Spy
but not gengli (Fig.3.8a), and a glitch that was anomalous for both, Gravity
Spy and gengli (Fig.3.8b).

On one hand, in Fig.3.8a (middle panel) we can see that the glitch has a narrow
peak, but according to gengli’s metrics, its morphology is close to the rest of
the glitch population (low dy, high dj; and dj). In the top panel, we can see that
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Gravity Spy isunable to see this glitch until p = 11.89, wrongly classifying it as
Whistle with cgs ~ 1.0 for 15 < p < 40. Afterwards, cgs degrades with increasing
p. In Fig. 3.8b (bottom panel) we can see that the glitch is faint even at p = 18.32.

On the other hand, in Fig. 3.8b (middle panel) we observe that the glitch does not
have a standard Blip morphology (high dy , low dj; and dj). Since it is an anomalous
glitch, Gravity Spy is confused about its class. In Fig.3.8b (bottom panel) we
can see that the glitch at p = 18.32 does not have the characteristic “tear-drop” shape
of Blip glitches.

3.7 Discussion

As we have seen in the previous Sections, gengli is a powerful tool to further
understand current glitch identification algorithms and help enhance searches of
GW, as it was proposed in [45, 46]. Nonetheless, the main limitation of gengli is
that it can produce a single class of glitches, and according to experts in the field, 23
classesexist. Gravity Spy datasetishighly imbalance, having some classes >10°
examples, and some others <100. This is an added challenge for GANs approaches,
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since they need a lot of data to learn the underlying distribution of the population.
Furthermore, the pre-processing using BW is computationally intensive. Indeed, just
to extract the populations of Blip, Tomte and Koi_Fish glitches for the extension of
this work, we had to use ~1.2 million CPU hours.

To overcome this issue, authors in [47, 48] propose to use TorchGAN and Pro-
GAN, respectively, with Q-transforms instead of time series for all glitch classes. The
main goal of these two approaches is to tackle the imbalanced problem of Gravity
Spy. Thus, authors in [47] propose to over-sample glitch classes to 5, 000 examples,
i.e. they sample randomly from the class distribution allowing examples to occur
more than once. On the other hand, authors in [48] do not employ similar techniques
as, due to the architecture of ProGAN, the underlying distribution of the data is learnt
with a better generalization and less overfitting.
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While both algorithms proposed in [47, 48] show high performance when clas-
sifying artificially generated glitches with CNN, proving the added value of data-
augmentation approaches, these methods are less flexible for mock data challenges
as the glitch is not separated from the original background, a non-trivial task. Hence,
authors in [49, 50] continue to think about novel GAN architectures in time series,
also demonstrating that data-augmentation approaches will not only be relevant for
current detectors but also for Einstein Telescope.

3.8 Conclusion and Future Prospects

In this chapter, we have discussed the generation of glitches with ML within the
g2net action. In our work based on Refs. [41, 44], we have developed a methodology
to generate artificial Blip glitches from real data using a ML algorithm known as
GAN. To be able to generate these glitches, the input Blips need to be extracted from
their surrounding detector noise, which is an expensive task.

Due to the instability of GAN algorithms, in this particular research, we trained
a CT-GAN [40]. The network uses Wasserstein distance as a loss function, which
allows it to train its discriminator to optimality. It is also heavily penalized to avoid
training instabilities and to learn the underlying distribution of Blips accurately.
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To assess the performance of CT-GAN, we have developed several statistical
measurements to test the similarity between the input and the synthetic population.
The results of these metrics indicate that the neural network was able to learn the
underlying distribution of Blip glitches, despite the presence of some anomalous
generations due to imperfections of the input data set.

In this proof-of-concept investigation, we have demonstrated that it is possible to
isolate Blip glitches from their surrounding noise and learn their underlying distri-
bution with an ML-based method in the time domain, providing several examples of
its usage. This methodology allows us to generate better quality data, and it provides
us with flexibility that would be challenging to achieve with Q-transforms. Further-
more, we also present our open-source package gengli: it provides an easy-to-use
interface to the trained GAN output and has some additional features such as building
a glitch population with or without anomalies, resampling, re-colouring and scaling,
and further examples within the documentation. As a case study, we use gengli to
understand the behaviour of Gravity Spy, showcasing its classification task as
a function of the SNR with some possible bias towards loudness. However, further
research is needed.

The long-term goal of this investigation is to learn other classes of glitches in the
time domain. While extracting glitches from its background is an expensive task, it
could be improved via specific wavelet design for glitches, among other possibilities.
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Chapter 4 ®)
Efficient ML Algorithms for Detecting o
Glitches and Data Patterns in LIGO

Time Series

Elena-Simona Apostol® and Ciprian-Octavian Truica

Abstract The field of Gravitational Wave research has exploded in recent years.
Powerful laser interferometers like Advanced Laser Interferometer Gravitational
Wave Observatory (LIGO) and Advanced Virgo are now listening for the universe’s
most violent events. While these technological marvels have significantly improved
the precision of gravitational wave data collection, the data itself is not perfect. Noise
can still creep in, potentially leading to misinterpretations. One problematic type of
noise in Gravitational Wave data is the glitch. We define a glitch as a noise event
that can either masquerade as a real signal from space or degrade the overall quality
of the data. In this chapter, we present our current work for the task of detecting
Gravitational Wave glitches using Machine Learning and Deep Learning models.
We also establish a clear benchmark to compare their performance, highlighting the
models that achieve the best results based on three key metrics: accuracy, precision,
and recall.

4.1 Introduction

The detection and analysis of Gravitational Waves provided access to astrophysical
discoveries that were not possible through other means. Several laser interferometers
on Earth’s surface (e.g., Advanced Laser Interferometer Gravitational Wave Obser-
vatory (LIGO) [1], Advanced Virgo [2]) are used to search gravitational signals in
the frequency range from 10Hz to 10kHz. The gravitational signals that terrestrial
interferometers search for are typically mixed with a lot of background noise that
needs to be removed. Glitches, which are noises that mimic genuine astrophysical
signals and/or affect the quality of the received signal data, are the most difficult to
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remove. Thus, the main issue with the received signals from the terrestrial interfer-
ometers is that the collected data may contain a high number of glitches. To address
this, scientists have explored various detection algorithms. However, most current
methods focus on specific types of signals as they are based on matched-filtering,
making them susceptible to errors. On the other hand, Machine Learning and Deep
Learning algorithms are more versatile and offer promising solutions for handling
the complexity of gravitational wave data analysis.

In this chapter, we present our research on detecting Gravitational Wave glitches
on an annotated corpus consisting of records from the first observing run of the
Advanced LIGO detectors in Hanford and Livingston, collected between September
and December 2015. This corpus is annotated using 22 classes for transient noises,
defining our objective as a multi-class classification problem. To tackle this task,
we designed and tested a variety of models, including classical Machine Learning,
Deep Learning, and even combinations of these approaches (ensemble models). For
each of these models, we first delve into the details of the algorithms used. Then,
we analyze their performance on the LIGO dataset using several metrics like accu-
racy, precision, and recall. We also present two new architectures proposed by us,
i.e., ShallowWaves and DeepWaves Ensembles [3]. In order to test all our 24 imple-
mented Machine Learning/Deep Learning models, we divided the LIGO dataset into
training and testing sets using the Stratified K-Folds technique. For the classical
Machine Learning algorithms, we employed grid search to find the optimal settings
that maximized their performance. In general, the accuracy of the classical models
was good, while the performance of the deep learning models varied depending on
the specific network architecture used. In our experiments, the DeepWaves Ensem-
ble, which combines multiple deep learning models, achieved the highest overall
accuracy, followed closely by the ShallowWaves Ensemble. The majority of these
experiments were also presented in our original paper [3].

4.2 Problem Definition for the Detection Task

In this section, we outline the research problem by defining the Gravitation Wave
glitch detection task. This task takes as input a stream of multi-variant time series
datat; € R" collected from a Gravitational Wave generator and annotated by experts.
Each data point #; in our time series input is characterized by a set of features, denoted
byt ={X p§ }. Where p§ captures specific properties of the signal, like its frequency,
how wide its range of frequencies is, the signal-to-noise ratio (SNR), and how long
it lasts. This way of organizing the data allows us to analyze the properties of the
signals and separate the true space signals from the noise.

For the annotated dataset, we consider a collection of categories C = {c}. These
categories represent different types of glitches that might corrupt our data, like elec-
trical interference from power lines or noise caused by ground movement. Each type
of glitch has a distinct fingerprint in how its energy is distributed across different
frequencies over time, as shown in this online research [4].
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The main goal of the detection task is to build models that can classify data points
into these categories. These models, called multi-class classifiers, will take a data
point with various features (represented by a set of numbers in n-dimensional space)
and assign it to the most likely glitch category (cx € R” from set C). We want these
models to be:

1. Efficient and easy to use on different systems (i.e., efficiently implemented and
distributed);

2. Accurate even when we have a limited amount of data, especially when that data
is not evenly distributed across the different glitch categories (i.e., good statistical
performance on small to medium unbalanced datasets).

4.3 Detecting Glitches Using Classical Machine Learning
Models

In this section, we present the proposed supervised classical Machine Learning algo-
rithms used to detect anomalies, i.e., the glitches, in the annotated Gravitational
Wave dataset. Classical Machine Learning models are simpler algorithms than Deep
Learning models. They rely on statistical methods and mathematical models, such
as linear regression, support vector machines, or decision trees.

K-Nearest Neighbor (KNN)

KNN is a lazy learning method as no model is learned from the training data. A
learning process only occurs when a test example needs to be classified. Thus, it
does not produce a model but is a simple method that determines the class of an
example based on the labels of its neighbors. The algorithm uses a distance function
that computes the distance from the test example to the examples in the training set.
KNN works in three major steps:

1. Distance Measure. First, it uses a distance function to calculate the distance
between each point in the dataset.

2. Nearest Neighbors. Then, it picks a predefined number of the closest data points
(k-nearest neighbors).

3. Majority Vote. Finally, KNN looks at the categories of those nearest neighbors.
Whichever category is most frequent among those neighbors becomes the pre-
dicted category for the new data point.

Gaussian Naive Bayes (GNB)

GNB is a probabilistic classification method that uses the Bayes theorem to compute
the probability for each new data point to belong to a category, i.e., P(A|B) =
%. When dealing with numerical continuous data, GNB makes an assump-
tion: it supposes that the values for each category follow a specific bell-shaped curve,
i.e., a Gaussian distribution [5]. By analyzing these curves, GNB calculates the prob-

ability of a new data point belonging to each category.
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Thus, given a continuous variable x, we employ the following steps:

1. Segment the data by class;
2. Compute the associated mean and variance of x for each class (e.g., for class ¢,
we note p and o);

3. For some observation value v, we have

Gy )2
2r7k

X =V|C = e
p( | cx) o

Logistic Regression (LogReg)

Assuming a linear or nonlinear model of dependency, regression models are used
to predict the value of a given continuous variable based on the values of other
variables. Logistic regression analyzes the relationships between different factors
(predictor variables) and uses those relationships to estimate the probability of an
independent variable falling into a certain category given this set of predictors.
Given a set of independent variables X = {x1, x», ..., x,,} and a set of classes C =

{c1, ¢, ..., ¢}, the multinomial logistic regression model computes the probability
X80

of an element to belong to one of these classes as p (C = cj) = T e

Support Vector Machine (SVM)

SVM [6] is a supervised discriminative binary classifier that determines the best
separation hyperplane to group the labeled points in a dataset. Thus, given a dataset
with m-dimensional points X = {x|, x3, ..., x,,} and two classes C = {—1, +1}, the
algorithm tries to determine a function f(x) =< w - x > +b thatseparates the points
into the two classes. The ‘best’ hyperplane is given f(x) = 0. The theory shows
that the best plane is the one maximizing the so-called margin (Margin = ﬁ)
(the minimum orthogonal distance between a positive and negative point from the
training set), which means minimaxing w This optimization problem is solvable
by rewriting the above inequality using a Lagrangian formulation and then finding a
solution using Karush-Kuhn-Tucker (KKT) conditions.

In many situations, there is no hyperplane for separation between positive and neg-
ative examples. In such cases, it is possible to map the training data points (examples)
in another space, a higher-dimensional one. Here data points may be linearly separa-
ble. The mapping function gets examples (vectors) from the input space X and maps
them in the so-called feature space F': & : X — F. In solving the optimization
problem for finding the linear separation hyperplane in the new feature space F, all
terms containing training examples are only of the form ®(x;) - ®(x;). By replacing
this dot product with a function in both x; and x; the need for finding disappears.
Such a function is called a kernel function: K (x;, x;) = ®(x;) - ®(x;). For finding
the separation hyperplane in F, we must only replace all dot products with the chosen
kernel function and then proceed with the optimization problem like in the separable
case.

SVM is a binary classifier, to solve multi-class problems there are two strategies:
one versus one (ovo) and one versus the rest (ovr).
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Decision Trees

A Decision Tree Classifier constructs a classification model in the form of a tree
structure. It subdivides a dataset into smaller subsets while at the same time, a corre-
sponding decision tree is incrementally developed. The decision tree will consist of
decision nodes and leaf nodes. Decision nodes represent the attributes of the dataset,
while the leaf nodes indicate the final classes assigned to the data. The branches of the
tree represent conditions based on discrete values or intervals of the corresponding
attributes, determining the path to the next decision nodes or leaf nodes.

ID3 [7] is an algorithm that constructs a decision tree classifier in a top-down
manner choosing at each node the ‘best’ attribute for branching. The decision tree is
built top-down from a root node and involves partitioning the data into subsets that
contain instances with similar values (homogenous). ID3 utilizes entropy to compute
the homogeneity of a sample.

Givenasetofclasses C = {cy, ¢y, ..., ¢y} and alabeled dataset X = {x1, x7, ..., X,}
with each observation x; containing m attributes A = {ay, a, ..., a,,}, the entropy is
H(X) = Zle p (ci)logy (p(ci)), with p(c;) the probability of class ¢; in X dataset.

If attribute A, having r distinct values is considered for branching, it will par-
tition X in r disjoint sets, X = U?_, X;. The entropy of the split is given by
H (Xla) =Y, %H (X;) with % the proportion of elements in | X; | to the num-
ber of elements in the dataset | X|. Because the purity of the datasets is increasing,
H (X) is bigger than H (X|a,). The difference between them is called the informa-
tion gain /G (X, a;) = H (X) — H (X|a;). The ‘best’ attribute is determined by the
highest gain.

C4.5 [8] is the improved version of ID3 that better handles numeric (continuous)
attributes. It also performs post-pruning to deal with noisy data.

CART (Classification And Regression Tree) [9] works on the same principles as
C4.5 and ID3. The main difference is in the function used for calculating the homo-
geneity of a sample (computing the split). CART uses the Gini Impurity: GI(X) =

2
1- Zle (”‘(;I)> . The Gini Impurity for a splitis GI (X|a,) = Y i, %G[ (X)).
Unlike C4.5 where the maximum Information Gain is used to make the split, for

CART the split is done for the minimum Gini Impurity.

4.4 Detecting Glitches Using Deep Learning Models

In this section, we present the Deep Learning models that we employed to solve
the problem of detecting anomalies in the Gravitational Waves datasets. We present
the different types of layers in our experiments, i.e., the simple perceptron, multi-
layer perceptron, recurrent, and convolutional neural network. In our experiments,
we combined these layers to form more complex Deep Learning architectures.
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Perceptron

The Perceptron is a basic neural network (NN) with just one layer — the output layer.
It uses the logistic regression equations to process the input data and a threshold func-
tion, i.e., the perception activation function, is applied for classification. Depending
on the desired outcome, the most used activation functions are:

o rectified linear unit (ReLU), leaky ReL.U: appropriate for binary classification,
e hyperbolic tangent (tanh), sigmoid function: used in multi-classification when the
output must be restricted to positive values.

Multi-layer Perceptron (MLP)

The MLP is a NN algorithm that solves classification problems by stacking many
layers of perceptrons in a fully connected network. An MLP has an input layer
(receives data), optional hidden layers (process information), and an output layer
(gives the final answer). Each layer can have a different number of neurons and
computes the outcome using the input from the layer before it, except for the input
layer that has no layer before it. The number of hidden layers and neurons in each
layer can be adjusted based on the problem that needs to be solved.

Each neuron follows the perceptron model and uses parameters, represented by a
vector of weights and a bias. These are adjusted during computation and initialized
at the beginning. One method to do this is to initialize the weights with random small
values and the bias with zero. An activation function is used to compute the output.
The function is the same for each neuron of a layer and, usually, non-linear in the
middle layers and liner in the output layer.

Long Short-Term Memory Network (LSTM)

Recurrent neural networks (RNN5s) are a special type of NN. Unlike traditional NNs
that process individual pieces of information independently, RNNs can take into
account the order or relationships between elements in a sequence. There are several
variants of RNNs, e.g., Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), and Bidirectional RNN. In our experiments, we chose to implement the Long
Short-Term Memory (LSTM) variant, as it manages to avoid two of the main issues
of the other types of RNN: the vanishing and the exploding gradient.

LSTM [10] is an extension of the Recurrent Neural Network (RNN) that uses two
state components for classification. The first component is a short-term memory that
learns the short-term dependency between the prior and present states. The second
component is a long-term memory, representing a cell’s internal state that retains
long-term dependency between its prior and current states.

LSTM uses three gates to preserve the long-term memory in the state:

1. input gate (i € R");
2. forget gate (f € R");
3. output gate (0 € R").
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For each element in the input sequence, each layer computes:
ir = o (Wiix; + bii + Wpihi 1 + by;)
fi=oWirx, +big + Wyphi_1 + byy)
g = tanh(W,-gx, + b,‘g + Whgh,,1 + bhg)
0y =0 (Wipx; + bio + Wiohi 1 + bhu)
G =fixci1tirxg
h; = o, * tanh(c,)
where

h; is the hidden state at time ¢,

¢, is the cell state at time ¢,

X, is the input at time ¢,

h,_, is the hidden state of the layer at time r — 1 or the initial hidden state at time
0,

i, f7» &, 0, are the input, forget, cell, and output gates,

o is the sigmoid function, and

«x is the Hadamard product.

In a multilayer LSTM, the input x\" of the /-th layer, with [ > 2, is the hidden
state h;l_l) of the previous layer multiplied by dropout 8,(1_1), where each 8,(1_1) isa
Bernoulli random variable which is O with probability dropout, a given hyperparam-
eter.

Convolutional Neural Network (CNN)

CNN is a type of NN mostly utilized in analyzing visual images and is modeled after
the pattern of neuronal connections found in the visual cortex. One of the differences
between regular NNs and CNNs is that a CNN explicitly assumes that the input
is an image, which makes the preprocessing required much lower than for other
classification algorithms [20]. A CNN consists of an input layer. an output layer, as
well as several hidden layers, i.e., a convolutional, a pooling, and a fully connected
layer.

The fully connected layer is identical to the hidden layer in regular NNs. The
neurons in the fully connected layer have full connections to all activations in the
previous layer, so their activations can be computed with matrix multiplication fol-
lowed by a bias offset.

The convolution layer is the core building block in CNNs that does most of the
computation. The parameters considered for this layer are the learnable filters. They
extend through the whole depth of the input, even though they are spatially small in
width and height. For text classification, the depth of the input is 1. A learnable filter
can be seen as a window sliding across the input, and the only part of the input that is
analyzed at a certain time is the one inside the window. The result of the analysis is
the dot product between the entries in the filter and the input at the current position
of the window.

The function of a pooling layer in a CNN is to progressively reduce the spatial
size of the representation to lower the number of parameters and computation in
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the network, contributing also in controlling overfitting. That is why it is common
to insert a pooling layer between successive convolution layers. The pooling layer
operates independently on every depth slice of the input and resizes it spatially, using
the MAX operation.

Deep Belief Networks (DBN)

DBNSs [11] are a class of feedforward deep neural networks that consist of multiple
hidden layers with connections between the layers but not between units within each
layer. DBNs are a sophisticated and powerful type of generative neural network that
uses an unsupervised machine learning model to produce results. DBNs are essen-
tially stacks of simpler structures called Restricted Boltzmann Machines (RBMs).
Unlike traditional neural networks trained all at once, DBNSs are trained in a step-by-
step fashion. One RBM is trained at a time, uncovering elementary features in the
data. Then, the next RBM builds upon the knowledge of the previous one, learning
more intricate relationships.

4.5 Detecting Glitches Using Ensemble Models

In this section, we present the proposed Ensemble methods for detecting glitches in
a stream of Gravitational Wave data.

Ensemble methods combine several classifiers to obtain a superior one. While
combined classifiers share the same learning methodology, they differ in terms of
training datasets and weight examples. Boosting and Bagging (Bootstrap Aggrega-
tion) are used in ensemble approaches.

Bootstrap uses statistical methods (e.g., mean and standard deviation) for estimat-
ing a quantity from a data sample. Given a sample of n values X = {xy, x2, ..., x,},
it means x = % > i_; x;. If n is small, then the sample mean has an error. The esti-
mate of the mean can be improved by using bootstrap. Bootstrap will create multiple
random sub-samples of the initial sample with replacement (meaning the same value
can be selected multiple times), calculate the mean for each subsample, and calculate
the average of all the sub-samples means and use it as the estimated mean for the
initial sample.

Bagging [12] is an ensemble solution designed to improve the stability and accu-
racy of machine learning. One major property of the Bagging approach is that it
constructs a training set from the initial labeled data set by sampling with replace-
ment. Thus, it reduces the variance and helps to avoid overfitting. Bagging consists
of the following steps:

1. Starting with the original dataset, build n training datasets by sampling with
replacement (bootstrap samples),

2. For each training dataset, build a classifier using the same learning algorithm,

3. The final classifier is obtained by combining the results of each classifier (by
voting for example).
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Boosting [13] works by building a sequence of weak classifiers and adding them
to the structure of the final strong classifier. Weak learner (classifier) is a classifica-
tion algorithm with a substantial error rate in which performance is not random. In
other words, a weak learner has an accuracy only slightly better than using random
guessing. The weak classifiers are weighted based on weak learners’ accuracy. Also,
data is reweighted after each weak classifier is built such as examples that are incor-
rectly classified to gain some extra weight. The result is that the next weak classifiers
in the sequence focus more on the examples that previous weak classifiers missed.

Random Forests (RF)

RF [14, 15] is an ensemble classifier consisting of a set of decision trees. This
technique combines multiple decision trees, where each tree makes a prediction, and
the final output reflects the most frequent prediction from all the trees. RF offers an
advantage over simply bagging decision trees. The issue with decision tree algorithms
is their greedy nature. They choose the feature for splitting data points based on a
strategy that minimizes error at that specific step. This can lead to highly similar
structures across the trees in a bagged ensemble, resulting in correlated predictions.
RF addresses this by modifying how the sub-trees are built. Instead of considering
all features at each split point, the algorithm randomly selects a subset of features,
reducing the correlation between the trees’ predictions.

Extremely Randomized Trees (ERT)

ERTs take the randomization in Random Forests a step further when splitting nodes
in the decision trees. They introduce randomness in two ways:

1. Random Feature Selection. At each split point, instead of considering all fea-
tures, the ERT method randomly selects a subset of features to evaluate.

2. Random Split Point Selection. Even within the chosen feature, ERTs do not pick
the single best-split point based on error minimization. Instead, they randomly
select a possible split point from a range within the feature’s values.

In extreme cases, ERT can create entirely random trees with structures that have
no dependence on the actual data’s values. Also, by the appropriate choice of a
parameter, the strength of the randomization can be adjusted to problem specifics.

Adaptive Boosting (AdaBoost)

AdaBoost [16, 17] combines the output of weak learners into a weighted sum, which
is the classifier’s final output. It builds a linear combination of weak classifiers into a
strong classifier. AdaBoost gives a “weight” to each training example, which estab-
lishes the likelihood that each example will be included in the training set. As such,
examples with higher weights are more likely to be included in the training set, and
vice versa.

AdaBoost increases the weight of the misclassified examples after a classifier has
been trained. This way, the misclassified examples will comprise a bigger portion
of the training set of the subsequent classifier, and ideally, the next trained classifier
will perform better on them [18].
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Gradient Boosting Decision Tree (GBT)

XGBoost is a machine learning technique similar to other boosting algorithms, i.e.
creates a sequence of weak classifiers to solve a classification problem. Its main
strategy is to minimize each weak classifier’s prediction error based on the previous
ones by using the gradient descent method [19]. The weak classifiers are usually
decision trees of linear classifiers, e.g. linear regression. In our experiments, we
employ three types of boosters in conjunction with CART as the weak classifier, as
follows:

1. Gbtree booster: uses a gradient descent algorithm to minimise the loss function

2. Dart booster: is a variant of gbtree that prevents overfitting by utilizing dropout
techniques

3. Gblinear booster: substitutes generalised linear regression for decision trees

We train three distinct Gradient Boosted Trees (XGBoost-gbtree, XGBoost-dart, and
XGBoost-linear) using the CART algorithm and the three different boosters.

ShallowWaves Ensemble

In our original paper [3], we propose a new ensemble ML architecture, i.e., Shal-
lowWaves. The proposed ShallowWaves Ensemble consists of three branches and a
Hard Voting classifier (Fig.4.1).

The first branch executes a Random Forests with CART classifier (RF CART), the
second one executes an Extremely Randomized Trees with CART classifier (ERT
CART), and the final one executes a Gradient Boosted Trees with Gbtree booster
(XGBoost-gbtree). Thus, the first two algorithms grow CART trees using bagging,
while the last uses gradient boosting techniques. The classifiers for the first two
algorithms are implemented using the Sklearn library, as for the last one, we use the
XGBClassifier from the xgboost library.

In the final step, the predictor gathers the results of each model and uses a hard
voting method to make the final decision. In our experiments, we deduce that by
using this method, ShallowWaves Ensemble reduces the number of False Positive
and False Negative predictions, increasing the accuracy of anomaly identification.

Fig. 4.1 ShallowWaves
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DeepWaves Ensemble

DeepWaves Ensemble is the second proposed architecture described in our original
paper [3]. This ensemble consists of four branches, and each branch has several types
of Deep Learning networks and layers, i.e., CNN, LSTM, MapPooling (MP), Flatten,
and Dense. The output from the four branches goes into a Linear classifier which
gives the final prediction (Fig.4.2).

The first branch extracts and creates informative representations using CNN
(Sect.4.4) and MaxPolling (MP) layers. MaxPooling layers perform a downsam-
pling operation on the data, reducing its dimensionality while preserving the most
important features. A Flatten layer is used towards the end, in order to take the
multi-dimensional output from the convolutional layer and transform it into a single-
dimensional vector. Finally, the Dense layer combines the features and makes pre-
dictions about the category an input belongs to.

The next two branches are more suited in situations where the dataset size is
small and employ various CNN and LSTM layer configurations to extract additional
features and enhance the overall accuracy of the architecture. As final steps, we also
add a Flatten and a Dense layer. The final branch represents the input data’s features
hierarchically by using stacked LSTM layers. A Dense layer combines the features
and outputs the predictions.

The Deep Learning models are implemented using the Keras library.

Fig. 4.2 DeepWaves

ensemble model | Input Stream ¢; |

CNN [CNN || [enn]
4 ax ax v
mp | | [Tmp
[istm mP ol
. !
Flatten Flatten Flatten

¥ ¥
| Dense | l_ense | Dense | | Dense |

|

[ ® © 0 ]

Linear l Classifier



Keras
 23630 25322 a 23630 25322 a
 
https://keras.io/

52 E.-S. Apostol and C.-O. Truicd

4.6 Results and Discussions

This section includes the dataset description and an analysis of the results of the
detection task, as well as final discussions. The experiments for the detection task
are done using a 6-node cluster. Each node has the following specifications: Ubuntu
22.04 x 64 OS, Intel Core i7-4790S CPU with 8 cores at 3.20GHz, 16 GB RAM,
and 500GB HDD.

4.6.1 LIGO Dataset

The dataset used for training and testing consists of a set of annotated Gravitational
Waves time series, mostly labeled with different types of noises and glitches. The
original data was collected from September 2015 to December 2015, during the first
observing run (O1) [21] of the Advanced LIGO, which includes the Hanford (H),
and Livingston (L) detectors.

The dataset we used contains 6,667 entries. These entries are labeled with 22
different categories of transient noise. This noise has properties that change over time
(non-stationary) and does not follow a normal distribution (non-Gaussian). As can be
seen in Table4.1, the number of entries varies greatly between each noise category.
For example, there are many more entries classified as “Blip” (1763 entries) compared
to entries classified as “1080Lines” (only 4 entries). This uneven distribution across
categories is something we need to consider when analyzing the data.

We use the dataset’s eight features and one label for training and prediction. Each
entry has the following features: the time at which the entry was detected (GPStime),
the peak frequency of the gravitational wave spectrum (peakFreq), the signal-to-noise
ratio (snr), the central frequency of the wavelet (centralFreq), duration, bandwidth,
id, and the interferometer which captured the entry (ifo).

4.6.2 Classical Machine Learning Results

In this subsection, we present the results of the glitch-detection task when using
classical Machine Learning models, i.e., KNN, GNB, LogReg, CART, C4.5, and
SVM (for more details on these models see Sect.4.3).

To get the most out of our classical Machine Learning models, we used a tech-
nique called grid search to fine-tune their hyperparameters. This helps us identify the
configuration that works best for our data. Thus, we carefully adjusted the models’
settings and then evaluated their performance using various metrics that consider
both overall accuracy and how well they handle the uneven categories in our data.
To measure how well each model performed, we considered the following metrics:
Accuracy, Weighted Precision, Micro Precision, Weighted Recall, and Micro Recall.
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Table 4.1 Glitch classes for the detection task

Label # Description

Scattered light 427 Low-frequency, long duration, humpy

Power line 450 Narrow in frequency, last for ~# 0.2 — 0.5 s

1080Lines 4 Steady stream, around 1080 Hz

1400Ripples 83 Short-duration, around 1400 Hz

Air compressor 57 Short-duration glitches—around 50 Hz

Blip 1763 Teardrop’ shape, 30-500 HZ

Repeating blips 91 Blip glitches that repeat

Violin mode 137 Short and dot-like

Whistle 146 W or V shape

Scratchy 269 Short-duration repeating, intermediate freq.

Helix 270 Resemble a vortex, intermediate freq.

Light modulation 400 Several bright spikes in close succession

Low frequency burst 527 Loud, short-lived, low-freq.

‘Wandering line 21 Lines, long duration, meander in freq.

Koi fish 709 Similar to Blip, resemble a fish in shape

Low frequency lines 494 Horizontal lines at low freq.

Chirp 60 Sweeping upwards in freq. over time

Extremely loud 448 From a major disturbance in the detectors

Paired doves 26 Repeating glitches, alternate increasing-decreasing
freq.

Tomte 93 Lower-freq., usually triangular in shape

No glitch 41 No apparent transient noise structure

None of the above 151 A catch-all for glitches that do not fit

Table 4.2 Classical machine learning models—results

Algorithm Accuracy Weighted Micro Weighted Micro
precision precision recall recall
KNN 0.70+£0.01 |0.70£0.01 [0.70£0.01 |0.70£0.01 |0.70£0.01
GNB 0.63+£0.01 |0.66+£0.01 [0.63+0.01 |0.63£0.01 |0.63+0.01
LogReg 0.61+0.01 |052+£0.02 [0.61+0.01 |0.61+£0.01 |0.61=£0.01
CART 0.78+0.01 |0.78+0.01 [0.78+0.01 |0.78+0.01 |0.78£0.01
C4.5 0.79+0.01 |0.79£0.01 [0.794+0.01 |0.79£0.01 |0.79£0.01
SVM 0.58+£0.01 |0.58+£0.01 [0.58+0.01 |0.58+£0.01 0.58 £0.01

Table4.2 shows the performance of our classical Machine Learning models. As
a first point, the decision tree algorithms, i.e., CART and C4.5, achieved high accu-
racy for our glitch detection task. Secondly, Gaussian Naive Bayes (GNB), Logistic
Regression (LogReg), and Support Vector Machine (SVM) had the worst perfor-

mance.
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4.6.3 Deep Learning Results

In this subsection, we analyze the results obtained by the employed Deep Learning
models.

Deep Neural Networks have a large number of parameters which increase expo-
nentially with the layer added to the architecture. Due to the size of such architectures,
it is not feasible to use techniques such as hyperparameter tuning. Although fine-
tuning the hyperparameters is not done, we employ other methods to better determine
the performances of the proposed model. Firstly, we use Stratified K-Folds with a
k = 10 to split the data into training and test sets for all our experiments. Secondly,
we perform ablation testing, analyzing each individual model to determine the impact
of each NN on the overall architecture.

Table4.3 presents the results obtained by employing Stratified K-Folds with a
k = 10 on each individual Deep Learning model. Furthermore, we conduct a compar-
ative analysis of the performance of the Deep models to evaluate their effectiveness
in detecting glitches. The Multi-Layer Perceptron (MLP) uses 5 layers and a single
output layer. The first and fifth layers contain 8 neurons and use the ReL.U activation
function. The second and fourth layers have 16 neurons and use the softmax activa-
tion function. The middle layer, i.e., the third layer, uses 32 neurons and the ReLLU
activation function. The output layer has a neuron for each class and uses the softmax
activation function. Based on the obtained results, we see no real difference between
the Perceptron, which contains only one layer, and the MLP. For the Deep Belief
Network (DBN), we use a hidden layer structure containing 256 by 256 units and the
ReLU activation function for neurons. With this configuration, the DBN obtains the
overall worse results in our experiments. Based on the results obtained by the DBN

Table 4.3 Deep learning models—results

Algorithm Accuracy Weighted Micro Weighted Micro
precision precision recall recall
Perceptron 0.74+0.09 |0.77£0.04 [0.74+0.09 [0.74£0.09 |0.74=+0.09
MLP 0.74+£0.03 [0.63+0.07 |0.744+0.03 |0.74+0.03 |0.74£0.03
DBN 0.60+£0.01 [0.53+0.02 |0.60+0.01 |0.60+0.01 |0.6040.01
LSTM 0.81+£0.03 |0.74£0.07 [0.81+£0.03 |0.81+£0.03 |0.81=£0.03
CNN 0.71+£0.05 |0.63£0.07 [0.71+£0.05 |0.71£0.05 |0.71 £0.05
5 x LSTM 0.83+0.01 [0.73+£0.02 |0.83+0.01 |0.83+0.01 |0.83+0.01
4 x(CNN+ |081+£0.02 [0.75+0.03 |0.814+0.02 |0.814+0.02 |0.81+0.02
MP)
4 x(CNN+ |0.84+0.03 |0.80+0.06 |0.844+0.03 |0.84+0.03 |0.84£0.03
LSTM + MP)
4 x(CNN+ |0.86+0.03 [0.81+0.06 |0.864+0.03 |0.86+0.03 |0.86=+0.03
MP + LSTM)
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architecture, we can conclude that such a complex Deep Learning architecture does
not manage to find the best representation of the input data to classify the glitches
accurately.

Out of all the Deep Neural Network architectures we tested, the best performer
was one that combined a Convolutional Neural Network (CNN), a Max Pooling layer
(MP), and an LSTM layer four times in a sequence, i.e., 4 x (CNN + MP + LSTM).

Interestingly, increasing the number of LSTM layers stacked together resulted in
a slight decrease in performance. However, it still did better than using just a single
LSTM layer.

The CNN-based architectures use a MaxPooling Layer (MP) to calculate the
downsampled feature maps. From the experimental evaluation, we observed that the
worst-performing architectures have a CNN layer followed by an MP one. As the
number of layers increases, we also observe that the performance increases signifi-
cantly, i.e., CNN versus 4 x (CNN + MP). The performance is further increased by
adding LSTM layers to the CNN architecture, i.e., 4 x (CNN + LSTM + MP) and
4 x (CNN + MP + LSTM). Thus, we can conclude that by alternative layer CNN +
MP layers with LSTM layers, the performance increases significantly.

4.6.4 Ensembles Results

Finally, we present our results for the ensemble models.

Table4.4 dives into the performance of the tested ensemble models. Similar to
the single models, we see some interesting trends. Ensemble methods that combine
multiple decision trees, like AdaBoost, Random Forests, Extremely Randomized

Table 4.4 Ensembles models—results

Algorithm Accuracy Weighted Micro Weighted Micro
precision precision recall recall

AdaBoost CART 0.78+0.01 |0.79+£0.01 |0.78£0.01 |0.78+0.01 |0.78 +0.01
AdaBoost C4.5 0.79+0.01 |0.79£0.01 |0.79+£0.01 |0.794+0.01 |0.79 £0.01

RF CART 0.84 £0.01 |0.83£0.01 |0.84+0.01 |0.844+0.01 |0.84 £0.01
RF C4.5 0.84 £0.01 |0.84£0.01 |0.84+£0.01 |0.844+0.01 |0.84 £0.01
ERT CART 0.84 £0.01 |0.83£0.01 |0.84+0.01 |0.844+0.01 [0.84£0.01
ERT C4.5 0.84 £0.01 |0.83£0.01 |0.84+£0.01 |0.84+0.01 [0.84£0.01

XGBoost-gbtrees 0.84 £0.01 |0.84£0.01 |0.84+£0.01 |0.844+0.01 |0.84 £0.01
XGBoost-gblinear | 0.61 £0.01 [0.53+£0.02 |0.61 £0.01 |0.61 £0.01 |0.61+0.01

XGBoost-dart 0.84 £0.01 [0.84+0.01 |0.84+0.01 |0.84+0.01 [0.84 £0.01
ShallowWaves 0.89+0.02 |0.88+0.03 |0.894+0.02 |0.894+0.02 |0.89 +0.02
ensemble

DeepWaves 0.91+0.03 |0.874+0.05 [0914+0.03 |0.91+0.03 [0.91£0.03

ensemble
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Trees, and XGBoost with gradient boosting trees (XGBoost-gbtree), again achieve
high accuracy. Notably, XGBoost-gbtree and XGBoost with tree boosting (XGBoost-
dart) perform identically, while the linear model (XGBoost-gblinear) falls behind.

The ShallowWaves ensemble, built using classical Machine Learning techniques,
has the best accuracy among all the other classical ensembles we tested. However,
the DeepWaves Ensemble surpasses all the other models, including ShallowWaves,
demonstrating superior performance in glitch detection.

4.6.5 Discussions

As a final discussion point, we summarized the results of the best models for our
glitch detection task (Table4.5).

The DeepWaves Ensemble truly shines among the models we tested. Through the
integration of various deep learning architectures, we have implemented a powerful
ensemble that achieves several key improvements:

1. Reduced Errors: DeepWaves Ensemble minimizes both false positives (mistak-
ing noise for glitches) and false negatives (missing actual glitches). This leads to
better scores on all the evaluation metrics we used.

2. Enhanced Feature Understanding: The ensemble learns a more comprehensive
picture of the data (feature space) by leveraging the strengths of different deep
learning models.

Table 4.5 Best classification models—results summary

Algorithm Accuracy Weighted Micro Weighted Micro
precision precision recall recall

RF CART 0.84+0.01 [0.83+0.01 |0.84+0.01 |0.844+0.01 |0.84+0.01

RF C4.5 0.84+0.01 [0.84+0.01 |0.844+0.01 |0.844+0.01 |0.8440.01

ERT CART 0.84 +0.01 0.83 +0.01 0.84 +0.01 0.84 +0.01 0.84 +0.01
ERT C4.5 0.84 £ 0.01 0.83 +0.01 0.84 £ 0.01 0.84 +0.01 0.84 £ 0.01
XGBoost- 0.84 +£0.01 0.84 +0.01 0.84 +£0.01 0.84 +0.01 0.84 +0.01
gbtree
XGBoost-dart | 0.84 £ 0.01 0.84 +0.01 0.84 £ 0.01 0.84 +0.01 0.84 +0.01
4 x (CNN+ [0.84+0.03 0.80 + 0.06 0.84 +0.03 0.84 +0.03 0.84 +0.03
LSTM + MP)
4 x (CNN+ [0.86+0.03 0.81 +0.06 0.86 +0.03 0.86 +0.03 0.86 +0.03
MP + LSTM)
ShallowWaves | 0.89 £ 0.02 0.88 +0.03 0.89 +0.02 0.89 +0.02 0.89 +0.02
Ensemble

DeepWaves 0.91+£0.03 0.87 +0.05 0.91 +£0.03 0.91+£0.03 0.91 £0.03
Ensemble
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3. Unveiling Hidden Patterns: DeepWaves Ensemble can identify subtle charac-
teristics within the data (hidden features) that help it distinguish between different
glitch types more effectively.

As final thoughts, the most important points to take from our experiments are as
follows:

1. Not all complex models are best: For datasets like ours with uneven categories
(highly unbalanced), simpler Machine Learning models can sometimes outper-
form even Deep Learning models. This is because Deep Learning models might
struggle to find the right settings, i.e., parameters, for the data.

2. Tailor-made solutions are key: The best approach depends on the specific data
we are working with. We need a data-driven strategy to pick the most effective
model and its hyperparameters.

3. Strength in numbers: In our experiments, combining multiple models into an
ensemble proved to be the most successful strategy.

4.7 Conclusions

Gravitational wave hunters face a challenge: glitches. These bursts of noise can mimic
real gravitational waves, potentially hiding the true signals from space. To tackle this
problem, this chapter investigates the use of Machine Learning approaches to solve
the problem of efficiently detecting glitches in Gravitational Wave data streams.
In our research, we explored multiple classical Machine Learning, Deep Learning,
and ensemble models to see if they can effectively distinguish glitches from real
gravitational waves in the data.

Our experiments revealed that the champion glitch detector among all the mod-
els we tested is the DeepWaves Ensemble, achieving the highest overall accuracy.
Following closely behind is the ShallowWaves Ensemble.

References

1. Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Ackley, K., Adams, C., Adams,
T., Addesso, P., Adhikari, R.X., Adya, V.: Advanced ligo. Class. Quantum Grav. 32(7), 074001
(2015)

2. Acernese, FA., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., Amarni,
J., Astone, P., Balestri, G., Ballardin, G., Barone, F.: Advanced Virgo: a second-generation
interferometric gravitational wave detector. Class. Quantum Grav. 32(2), 024001 (2014)

3. Apostol, E.S., Truica, C.O.: Efficient machine learning ensemble methods for detecting grav-
itational wave glitches in LIGO time series. In: 2023 IEEE 19th International Conference on
Intelligent Computer Communication and Processing (ICCP), pp. 79-86. IEEE (2023)

4. LIGO: Virgo Data Characterization and Impact on Gravitational Wave Searches. https://www.
ligo.org/science/Publication- VirgoDetchar/ (2024)

5. Strickland, J.: Data Analytics Using Open-source Tools. Lulu.com (2016)


https://www.ligo.org/science/Publication-VirgoDetchar/
https://www.ligo.org/science/Publication-VirgoDetchar/
https://www.ligo.org/science/Publication-VirgoDetchar/
https://www.ligo.org/science/Publication-VirgoDetchar/
https://www.ligo.org/science/Publication-VirgoDetchar/
https://www.ligo.org/science/Publication-VirgoDetchar/
https://www.ligo.org/science/Publication-VirgoDetchar/

58

O 0N

11.

12.
13.
14.

15.
16.

17.

18.

19.

20.

21.

E.-S. Apostol and C.-O. Truicd

Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)

Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.
Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1984)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735-1780
(1997)

Hua, Y., Guo, J., Zhao, H.: Deep belief networks and deep learning. In: Proceedings of 2015
International Conference on Intelligent Computing and Internet of Things, pp. 1-4. IEEE
(2015)

Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)

Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197-227 (1990)

Ho, T.K.: Random decision forests. In: International Conference on Document Analysis and
Recognition, pp. 278-282 (1995)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Con-
ference on Machine Learning, pp. 148—-156 (1996)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci. 55(119), 23-37 (1997)

Akerkar, R., Sajja, P.S.: Intelligent Techniques for Data Science. Springer International Pub-
lishing (2016)

Mason, L., Baxter, J., Bartlett, P.L., Frean, M.: Boosting algorithms as gradient descent. In:
Advances in Neural Information Processing Systems, vol. 12, pp. 512-518. MIT Press (1999)
Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Adv. Neural Inf. Process. Syst. 1097-1105 (2012)

LIGO Scientific Collaboration: LIGO O1 Data Release. Gravitational Wave Open Science
Center (2016)



Chapter 5 ®)
Denoising Gravitational-Wave Signals Shhae
from Binary Black Holes with Dilated
Convolutional Autoencoder

Michat Bejger®, Philippe Bacon®, and Agata Trovato

Abstract Broadband frequency output of gravitational-wave detectors is a non-
stationary and non-Gaussian time series data stream populated by local disturbances
and transient artifacts, which evolve on the same timescale as the gravitational-wave
signals and may corrupt the astrophysical information. This contribution presents a
denoising algorithm dedicated to expose the astrophysical signals by employing a
convolutional neural network in the encoder-decoder configuration. The denoising
procedure is applied to coalescing binary black hole signals in the publicly available
LIGO O1 time series strain data. The denoising convolutional autoencoder neural
network is trained on a dataset of simulated astrophysical signals injected into the real
detector’s noise and a dataset of detector noise artifacts (“glitches”), and its fidelity
is tested on real gravitational-wave events from O1 and O2 LIGO-Virgo observing
runs.

5.1 Introduction

Raw GW strain data are fundamentally noisy time series in which the GW signals are
hidden; for the detailed description of the GW data, see [4, 6]. Classically, in order to
confirm the existence of a signal in the data time-series, one has to apply a matched
filtering methods (e.g., [19, 21, 32]). This is an optimal technique only when the
background noise is Gaussian and stationary. It requires substantial computational
resources and a fine grid of filter templates build from GW signals parameters to find
the match.
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Here we are studying an enhancement to the established data-processing methods
in order to facilitate a trigger generation process or simply be one of the first parts of
a GW data-analysis pipeline. Denoising of the GW data was applied in the past using
the total-variation method [25, 27], with the split Bergman regularization to obtain
the total-variation regularization [26], and with the dictionary learning [28]. From the
deep neural network (NN) point-of-view, denoising methods were applied in [31]
with the WaveNet implementation [30], as well as using the auto-encoder (AE)
architecture [23, 24] to perform the denoising task, i.e. as a denoising auto-encoder
(DAE) [13]: instead of encoding and subsequently decoding an input sequence to
itself, the training consists of feeding the noisy (“corrupted”) input and expecting a
noiseless (“‘clean’) output. Recent works that apply this paradigm include [22] with
the concept of Long Short-Term Memory/ recurrent neural networks (LSTM/RNN,
see e.g. [14, 15, 20]), as well as [10], which used a combination of the convo-
Iutional NN (CNN, see e.g. [11, 12]) and LSTM; simple artificial NN [18] were
also employed to denoise GW signals overlapping with instrumental glitches. An
algorithm implemented in [17], based on the local polynomial approximation com-
bined with the relative intersection of confidence intervals rule for the filter support
selection is applied to denoise the GW burst signals emitted during core collapse
supernova events.

In [8], on which this chapter is based, a purposefully simple version of the DAE,
based on one-dimensional input CNN paradigm, was implemented and applied to the
noisy (“corrupted”) time series GW data containing astrophysical signals immersed
in the real noise, in order to study limitations in recovering the noiseless (“clean”)
GW signals in this realistic setup. The CNN-DAE approach has advantages over
implementations of DAE already existing in the literature, the primary being the fact
that the CNN implementation is smaller and trains faster than recurrent NN. It is
demonstrated that a relatively small CNN DAE with a few dilated decoder layers
[33] is able to train on the GW signal waveforms injected to realistic LIGO data
time series, and recover real GW events. This type of a lightweight algorithm can be
considered a potentially useful trigger generator, performing a role of rapid initial
classification of GW signals, and/or data characterization tasks.

5.2 Denoising AE Model

CNN is a type of NNs that applies a set of convolutions (by means of the kernel
filters) to the network’s input [11, 12]. In the context of denoising, training a CNN
consists in finding the filters weights which optimally extract the preferable features
in input data and are present in clean (noise-free) data. The CNN layers in this work
adopt the AE architecture. In general, the AE NN represents an identity function
by compressing the representation of input data and then decompressing it. During
the training, the overall network will learn its own sparse representation of the input
signals. AE are composed of two networks: an encoder g4, and a decoder fy. A
denoising AE (DAE) procedure consists in training an AE with a corrupted version
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Fig. 5.1 Data flow diagram of a DAE architecture. The clean input data x is corrupted (denoted
by X) and fed to the encoder part; for the well-trained network, the decoded output (reconstructed
clean input) X" should be a close analogue of the clean input X, i.e. X' ~ x. The middle part of the
DAE—the latent space—is denoted by z. In case of x = X the DAE becomes a classical AE

of the input signal (i.e. clean signal immersed in the noisy time series), denoted by X,
and by demanding that the recovered output X’ is as close to the original clean input
x as possible. A schematic representation of a DAE is presented in Fig.5.1.

For the DAE loss function, the following was chosen:

N

Lpae@.¢) =Y (xi — fo(gs(G))’. (5.1)

i=1

where fy(gs(X)) = X’ is the DAE output, and x is the ground-truth (clean) signal
waveform input. The network structure is described in detail in Sect.2.2, Table 1
of [8].

5.3 Training and Testing Data

The input “clean” signals used in this project are simulated astrophysical GW sig-
nals from binary BHs (BBHs). In general, astrophysical GW signals from close
binary compact systems exhibit a characteristic increase of GW amplitude and fre-
quency during the inspiral (the “chirp”), followed by the merger of the binary com-
ponents, and the ringdown GW emission from the remnant [2]. Approximately, the
GW inspiral frequency evolves as [1]

e Bm)SP (GMC

5/3
aw @) = 5 3 ) (t. —t) + higher order corrections, (5.2)
C

where 7, is the time of coalescence, and the M, is a function of component masses
M, and M,, called the chirp mass:
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For production runs, it was assumed that signal waveforms—the amplitude-
frequency evolution & ( f) or, equivalently, 4 (f)—are well-modeled using general rel-
ativity. For the sake of this study the SEOBNRv4 waveform model [9] was employed,
assuming non-spinning components with masses randomly chosen from a uniform
distribution in the range M, M, € (10, 30) M, compatible with the current state
of observational knowledge on the binary BH population [3]. An optimal sky local-
ization is assumed for a given time segment. Other parameters describing the source
were selected randomly: coalescence phase and polarization angle from a range of
(0, 27), and the inclination angle from a range of (0, 7). The “corrupted” input is
obtained injecting these astrophysical GW signals in pre-selected only-noise time
series segments from the science-quality data stream of the LIGO Livingston detec-
tor, collected during the O1 observing run (see the Gravitational Wave Open Science
Center [6] for details).

Working under the assumption of the additive property of the noise (i.e., the time
series d containing the GW signal # immersed in noise n is d = n + h), then the
signal-to-noise ratio (SNR) p, corresponding to the best matching filter (template &
equals the signal) is

) B d(f)h*(f)
p—m, where (d|h)—4§ﬁ/4sn(f) df, 5.4)

with d (f) a Fourier transform of the time series d(t), and S, (f) the power spectral
density (PSD) of the detector; the asterisk denotes complex conjugation [19]. The
detector’s PSD S, ( f) represents the frequency-dependent sensitivity in a broad range
of frequencies, and is quantified by its sensitivity curve (for details on how the PSD
is computed see, e.g., [4]). From the astrophysical perspective, the SNR is a function
of the waveform amplitude and, since the waveform describes the evolution of the
GW amplitude, is inversely proportional to the luminosity (“loudness”) distance. The
data set instances are labelled with their optimal matched-filter SNR

* |h(f)I?
opt — hh = 4 d N 5.5
Popt =/ (h|h) /0 5.0 f (5.5)

which approximates p, assuming that the noise effect is negligible, d ~ h. The
optimal matched-filter SNR p,,; is a good first order approximation to the actual
matched-filter SNR p in e.g. stationary Gaussian noise [16].

Subsequently, a synthetic distribution of source luminosity distances was pro-
duced such that the p,,; distribution is uniform in the range of (5, 20) in order to
consider a wide range of signals during the training. Additionally, the dependence of
signals’ strength at different frequencies was normalized by performing the whiten-
ing of the time series data with added signals: the Fourier representation of the time
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domain data was divided by an estimate of the amplitude spectral density of the noise
/'S:(f) (ASD, square root of the PSD) to ensure that the data has equal significance
in each frequency bin [5]. The network is trained on 7000 data time series containing
injected astrophysical signals. In addition, the training set contains 1000 time series
from the O1 LIGO Livingston data when known instrumental artifacts (“glitches”)
are present in the data.

5.4 Selected Results

The training is evaluated using the figure of merit commonly used in the GW astron-
omy, the waveform overlap O, which compares the original (“clean”, ground truth)
waveform / and the denoised waveform h“ obtained at the output of the DAE:
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Fig. 5.2 Denoised SNR (calculated from the DAE output analogously to Eq. 5.5, but with denoised
output waveform h¢ instead of the originally-injected signal /, vertical axis) as a function of the
injected SNR (horizontal axis) for a testing dataset of 1000 data instances with added astrophysical
GW waveforms. Points are colored by their corresponding overlap values (Eq. 5.6). Orange dashed
line denotes the denoised SNR equal to injected SNR. Side histograms (in logarithmic scale) show
the distribution of the injected SNR (upper plot), and SNRs denoised from samples containing
added GW waveforms (blue histogram), and—for comparison—not containing GW signals (i.e.
pure noise, red histogram), respectively
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Fig. 5.3 Evaluation of the DAE on instrumental glitches. The logarithmic vertical scale plot shows
histograms of denoised output SNR for a selection of 38 Low Frequency Burst glitches, 5 Koi
Fish type glitches, 80 Blips and 7 Whistle glitches. Blue line marks the evaluation on 792 assorted
various types of glitches. All the glitches data are obtained from the Gravity Spy database [34].
The glitches have their estimated intrinsic SNR > 10

-1

N N
O= | hh! > hihi | (5.6)
i=0 i=0

where N = 2048 is the number of points in the time series. Figure5.2 shows the
comparison between the injected SNR p,,, and the recovered (denoised) output
SNR p,u:.4, both calculated using the optimal matched filter SNR formula (Eq.5.5),
for 1000 instances from the validation set. The color code indicates the waveforms
overlap. As expected, in cases of high overlap the denoised SNR approximates quite
well the injected one. The cases of lower overlap have a denoised SNR close to zero.
The distribution follows the ideal p,,; = pour.4 relation with a root-mean-square of
residuals of 1.9 and variance of residuals of 3.8. The denoised SNR may be used as an
approximate proxy for detection criterion: 8.2% of the output signals have o, < 5,
whereas 1.3% of signals have both p,,; > 8 and p,,;.4 < 5,1.e. are potentially strong
enough to detect with the standard methods, but incorrectly recovered by the DAE.
Additionally, the denoising procedure was performed on the same detector time series
samples but without injected GW signals, to study the output signals. The distribution
of output SNR in that case is depicted by the red histogram; only a few noise-only
samples have p,,; 4 > 5.
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Noisy = Template = Denoised Aleatoric uncert.

Strain amplitude
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Fig. 5.4 Denoising applied to the O2 data GW 170104 event for the H1 detector. The green curve is
the best matched filter result of the parameter estimation, red curve is the DAE output, and orange

region denotes aleatoric uncertainty estimate (see [8] for details). Component masses are 30.8f;:g

Mg and 20.0f3:2 M, and the single-detector optimal SNRs is 9.5ﬂ:2

The DAE is also evaluated on known instrumental glitches, extracted from the
Gravity Spy database [34]. The corresponding 1 s LIGO data segments centered
at these GPS times have been downloaded via the Gravitational Wave Open Science
Center [6]. Results are shown in Fig. 5.3. Last, but not least, the trained DAE network
was validated on real events. Here, the LIGO-Virgo O2 significant event detected by
the Hanford detector, GW 170104, is presented. The result of denoising is shown in
Fig.5.4; see the published article [8] for more details, examples and discussion.

5.5 Conclusions

The DAE method presented here is potentially a versatile pre-processing tool prior to
detection and/or source parameter estimation pipelines used to analyse data collected
by ground based instruments. As an example of its usefulness, it was employed for
denoising of a 1-detector trigger, found in O1 LIGO data with deep neural network
algorithms developed in [29], see Chap. 1 in this book; the DAE produced an output
consistent with the standard parameter estimation method, bilby [7].
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Chapter 6 ®)
A Fast and Time-Efficient Glitch Shhae
Classification Method: A Deep

Learning-Based Visual Feature Extractor

for Machine Learning Algorithms

Osman Tayfun Biskin(®), ismail Kirbas®, and Ali Celik

Abstract Glitches, non-Gaussian transient waves which mimic gravitational-wave
signals, are abundant in detectors and impact data quality. Therefore, identifying
glitch type and eliminating them is crucial to unveil true astrophysical events. In this
study, we evaluate the performance of logistic regression, extreme gradient boost, and
support vector machines for glitch classification using features extracted via trans-
fer learning on Inception-v3 and ResNet-50 models. We used two transfer learning
strategies: fine-tuning pre-trained models with our dataset and using pre-trained mod-
els as feature extractors. Our results show that transfer learning significantly reduces
training time compared to fine-tuning. The transfer learning method achieved a classi-
fication accuracy of 93.98% with the lowest training time of 37.6 s. Transfer learning
resulted in 24 and 31 times faster training for ResNet-50 and Inception-v3, respec-
tively, proving highly beneficial for glitch classification in the LIGO experiment.
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6.1 Introduction

In 1916, Albert Einstein predicted the existence of gravitational waves, disturbances
in space-time caused by massive accelerating objects like black holes and neutron
stars [1]. The first proof of gravitational waves came with the GW150914 event,
reported by the Laser Interferometer Gravitational Wave Observatory (LIGO) col-
laboration in September 2015, which detected waves from two colliding black holes
1.3 billion light-years away [2]. Since then, LIGO has recorded over 90 gravitational
waves, marking significant progress in the field [3].

LIGO’s interferometers, consisting of two 4km long perpendicular arms [4, 5],
are designed to detect extremely small signals resulting from gravitational waves.
However, gravitational waves are small due to gravity being a weak force, their
effects on space-time are smaller than the size of an atomic nucleus [6]. Consequently,
LIGO’s detectors must be highly sensitive, not only to gravitational waves but also to
various environmental noises, instrumental disturbances, and seismic activities that
can interfere with the signals. Among these interferences, non-Gaussian transient
waves known as glitches can mimic gravitational wave signals and degrade the data
quality. Successfully identifying and eliminating glitches is crucial to improve the
accuracy of gravitational wave observations.

Machine learning (ML) and deep learning techniques have become essential tools
in image classification and time series analysis over the past decade [7-16]. Specifi-
cally, convolutional neural networks (CNNs) using Q-transform and wavelet methods
have been preferred for analyzing gravitational wave signals to obtain meaningful
information by analysing them in time-frequency domain [17, 18]. This study aims
to classify the ten most common glitch types using deep learning methods applied
to images generated through Q-transform. Traditional manual methods for glitch
classification are inadequate, necessitating the development of rapid and accurate
automated techniques. Previous works have introduced various algorithms for glitch
classification, including those based on principal component analysis, machine learn-
ing, and wavelet detection [19], showing promising results in both simulated and real
data [20].

While several machine learning models [19-23] have been promising in classify-
ing specific glitch morphologies, covering the entire range of glitch types remains a
significant challenge. Human eyes are still the best classifiers, leading to the develop-
ment of the Gravity Spy project on Zooniverse.org, which enlists citizen scientists to
help physicists and astronomers label data. This hand-labeled dataset is then used to
train machine learning algorithms to identify new, unseen glitch categories. Various
glitches from numerous sources have been identified, with over twenty morphologies
recognized and named based on structure and shape, as shown in Fig. 6.1. For exam-
ple, “whistle” glitches are caused by radio transmissions, “blip” glitches by unknown
causes, and the “tomte” class is named for its resemblance to a tomte gnome hat.
Unclassified glitches are tagged as “none of the above,” and a new class is created if
many similar glitches appear in this category. More details on common glitch types
are in [24].
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Fig. 6.1 Q-transformed image of each glitch class used in this study

Whistle

Despite the success of these methods, the challenge of covering the entire range
of glitch types remains. The Gravity Spy project addresses this by utilizing citizen
scientists to label glitches, which are then used to train machine learning models
for identifying new data categories [23]. The process requires periodic retraining of
models with new data, especially after upgrades to the measurement system, which
can introduce new types of glitches. Therefore, reducing training time without com-
promising accuracy is essential. This study focuses on using transfer learning with
pre-trained deep models as feature extractors for machine learning algorithms. By
comparing the classification results and training times of transfer learning and fine-
tuning approaches, we demonstrate that transfer learning significantly reduces com-
putational costs while maintaining high classification accuracy, making it a valuable
approach for LIGQO’s glitch classification process.

6.2 Methods

In this work, we utilize deep learning models together with machine learning algo-
rithms to classify glitches efficiently. One of the main factors that prolong training
time in deep learning networks is the dense and non-freezing layers near the out-
put layer. Therefore, we propose eliminating the training of non-freezing layers and
instead using fast-trainable machine learning algorithms such as SVM, Extreme
Gradient Boost (XGBoost), and logistic regression (LR).

Our strategy consists of two stages. In the first stage, pre-trained deep learning
models extract features from Q-transformed images of glitches. In the second stage,
we reduce the dimension of features by selecting the first 100 principal components
with the highest variance using principal component analysis (PCA). Then, SVM,
LR, and XGBoost algorithms are used to train the machine learning models.
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6.2.1 Inception-V3 and ResNet-50 Pre-Trained Deep
Learning Models

Inception-v3 is the third version of Google’s Inception Convolutional Neural Net-
work with 48 deep layers [25]. It was designed for image classification with a deeper
network without increasing the number of parameters and is commonly used as a
pre-trained deep neural network.

ResNet-50 is a 50-layer deep convolutional neural network proposed as a residual
learning framework [26]. It addresses the problem of vanishing/exploding gradients
in deeper networks by using residual connections, allowing for deeper networks
without performance degradation.

Both models have been pre-trained on the ImageNet database [27], which contains
over one million images and 1000 different object categories.

6.2.2 Transfer Learning and Fine-Tuning

In the literature, various transfer learning methods are employed for deep models,
with definitions and taxonomies explored based on their strategies [28-30]. A com-
monly used method is fine-tuning, but not all transfer learning techniques utilize
it. Feature extraction from pre-trained networks, as used in this study, is another
approach [31]. These methods can exhibit different performance levels [32].

Transfer learning often involves using pre-trained models like Inception-v3 and
ResNet-50 to extract feature vectors, which are then used to train machine learning
classifiers such as SVM [33, 34]. On the other hand, the fine-tuning method, the most
prevalent technique [31], involves freezing the earlier layers of pre-trained models
and training the remaining layers for the new task. For a model with L layers, fine-
tuning involves training the last k layers and freezing the first L — k layers, with k
determined by the dataset size and model depth [35]. Both methods replace the final
layer of the model; however, fine-tuning re-trains the last k layers with new data,
requiring more computational resources and training time, dependent on k [31].

In this study, Inception-v3 and ResNet-50 models pre-trained on the ImageNet
dataset are used as feature extractors without further training. The extracted fea-
tures are then used to classify glitches using machine learning algorithms, and the
performance of fine-tuned networks is compared with the proposed approach.

6.2.3 PCA

PCA is adimension reduction technique that transforms data into a lower-dimensional
space [36]. Let M denote the data dimension. First, the M x M covariance matrix is
calculated. Then, the eigenvalues of the covariance matrix are sorted in descending
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order, and the eigenvectors corresponding to the k largest eigenvalues are selected as
the principal components. The data is mapped onto the principal components using
the transformation equation:

x=AT(x—w

Here, u is the mean vector, A is the k x k transformation matrix, and 7" denotes
the transpose operation. The columns of A consist of the largest k eigenvectors of
the covariance matrix.

6.2.4 Constant Q-Transform (CQT)

The constant Q-transform (hereafter referred to as Q-transform), introduced by [37],
is a signal transform method similar to the short-time Fourier transform (STFT).
CQT transforms a signal from the time domain to the time-frequency domain. While
both CQT and STFT are similar, the center frequency of the frequency bins in CQT
is geometrically spaced.

Let the CQT of a signal be defined as follows [38]:

n+(Ny/2)
Gk,my= > glaj(j—n+Ne/2), (6.1)
Jj=n—(Ni/2)
where g(j) denotes a discrete time-domain signal, and k = 1,2, ..., K correspond

to frequency bins. In Eq. (6.1), aj (n) is referred to as a basis function, also known as
a time-frequency atom. The symbol (x) indicates the complex conjugate, meaning
that a (n) represents the complex conjugate of a;(n). The time-frequency atoms
ay(n) are expressed as:

U (2 oizmnsiss
= —wl— 2mnfilfs 6.2

ax(n) Nkw<Nk>€ (6.2)
In this equation, f; represents the center frequency of the k-th frequency bin, f; is
the sampling frequency, and w (¢) denotes a window function.

6.2.5 XGBoost

A scalable tree boosting system, XGBoost, introduced by [39], is an optimized ver-
sion of the Gradient Boosting algorithm. Both of them use an ensemble of weak
learners, but XGBoost utilizes parallelized boosted decision trees and is used for
regression and classification problems. It quickly converges to a stationary point
without over-fitting, improving the model at each iteration by correcting previous
errors.
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6.2.6 SVM

The statistical theory behind the support vector machine (SVM) was proposed by
[40]. Let the training dataset be given as D = {(x,, ya) | x, € RUM y, € {—1, 1}}
where n = 1, ..., N. Here, N is the total number of samples, and M is the feature
size of each sample.

Let x, € R"*M be an individual sample, and y, denote the label of the corre-
sponding sample x,,. The SVM maximizes the hyperplane margin between the near-
est samples of each group. The hyperplane in SVM, created by a kernel function,
can be calculated by solving:

min llwll®
. (6.3)
subjectto y,(W-Xx,+b)—1>0 n=1,...,N,
where b is a bias value. Minimizing w results in maximizing the margin between
classes. Using the Lagrange multiplier, the above optimization problem can be rewrit-
ten as:

N
. Lo
~ A n
min SlIwi?+ ;w 64

subjectto y,(W-X,+b)>1—-v, n=1,...,N.

Here, ¢, is a slack variable, and the objective function in (6.4) is minimized by
reducing the sum of slack variables. A is the regularization term adjusting the trade-
off between the loss function and miss classification. The optimization problem
given above can be solved using linear, sigmoid, polynomial, or radial basis function
kernels.

6.2.7 LR

Logistic regression models are widely used in medical science, social sciences, and
machine learning. Logistic models are based on the logistic function, initially used to
describe population growth and some chemical reactions [41]. The standard logistic
function is given as:

(6.5)

px) =1 e

For a given sample x,,, p, = p(x,) is the probability corresponding to the target y,.
In logistic regression, the following cost function is minimized at each iteration:
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N
C =Y (uln(y) + (1 = y)In(l = py)). (6.6)

n=1

Here, C represents the cost function.

6.2.8 Proposed Method

Our strategy consists of two stages, as shown schematically in Fig.6.2. In the first
stage, we extract features from images using Q-transform. Pre-trained Inception-v3
and ResNet-50 models serve as feature extractors. Feature maps are obtained from the
layer before the final fully connected layer, with sizes 5 x 5 x 2048 for Inception-v3
and 7 x 7 x 2048 for ResNet-50. These feature maps are then flattened into vectors
fr € RS20 apd £, e R1X100352 regpectively, representing the features extracted
by the models.

In the next stage, we reduce the dimension of the features using Principal Compo-
nent Analysis. The extracted features are transformed into the principal components
of the feature space. Using the scikit-learn library [43], we reduce the dimensions
to the first 100 components with the highest variance, resulting in feature vectors
frca € R 100 This selection helps decrease the feature dimension and conse-
quently reduces the training time for the machine learning algorithms. Figure 6.3
shows the distribution of the training data on the first four principal components with
the highest explained variance ratio (EVR).

At the final stage, the reduced feature set fpc4 € R'1% is fed into ML algorithms
to build classification models. The hyperparameters of the ML models are optimized
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Fig. 6.2 Schematic diagram of deep learning-based glitch classification pipeline. Figure from [42]



-
(o)}

O. T. Bigkin et al.

PCA 1 (EVR: % 23.67)

labels
Whistie
Scattered_Light
Bep
Light_Modidation
1040LInes
Tomte
Low_Frequency_Burst
1400Rpplas
Chirp
®  None_of the_Atove

PCA 2 (EVR: % B.02)

see0em0Be

PCA 3 (EVR: % 4.58)

PCA 4 (EVR: % 3.70)

b i
T T T T T T T T = o

-100 0 100 =100 o 100 -100 o 100 =50 0 50 100

PCA 1 (EVR: % 23.67) PCA 2 (EVR: % 8.02) PCA 3 (EVR: % 4.58) PCA 4 (EVR: % 3.70}

Fig. 6.3 Distribution of training data mapped on the principal components

using the Optuna library [44], an open-source hyperparameter optimization toolbox.
The Optuna library combines efficient searching and pruning algorithms to improve
the cost-effectiveness of optimization. In our experiments, ML models are optimized
with Optuna to ensure they perform under optimal conditions. For this study, the
kernel of the SVM and the number of estimators, maximum depth, and learning
rate of the XGBoost algorithm are determined using the Optuna framework. We
employed linear, sigmoid, and polynomial kernels for SVM, finding that the sigmoid
kernel provided the best classification performance.

6.2.9 Dataset

The dataset is sourced from the Gravity Spy project on Zooniverse.org, containing
ten classes of glitches. Formally, it is represented as D = {(x,,, Vo) | X4 € R*M
vo € {1,...,10}}, with M = 10 classes and N = 4318 total samples. The dataset
used in this study exhibits data imbalance, which is a significant factor that can sub-
stantially diminish a model’s performance. Two common approaches to addressing
imbalance are down-sampling, which reduces the sample size of each class to the
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smallest class, and up-sampling, which generates synthetic data [45]. However, in
this study, neither approach was applied because down-sampling would lead to a loss
of data and up-sampling would necessitate generating new data.

We split the dataset into 70% for training, 10% for validation, and 20% for testing,
with samples randomly selected from each class. This process was repeated five times
to average the performance results. The samples, in the form of 224 x 224 images,
were created using Q-transform on time-series signals.

6.3 Simulation Results

Simulations were run on a PC with an i7-9750H CPU (2.6 GHz, 16 GB RAM) and
an NVIDIA GTX 1660 Ti GPU (6 GB). The models were trained using NVIDIA
CUDA 10.1 Toolkit with cuDNN v7.6.5 on Windows 10, employing TensorFlow
v2.3.0 and Keras v2.4.3 for compatibility.

The first stage involved feature extraction using pre-trained models. PCA then
reduced the feature dimensions. We evaluated ML algorithms based on training
time and accuracy, selecting 100 principal components to balance training time and
accuracy. Thus, the 3454 principal components were reduced to 100 using feature
selection (FS).

Tables 6.1, 6.2, 6.3 and 6.4 summarize the results. Tables 6.1 and 6.2 show training
time, test time, and accuracy for fine-tuning and transfer learning strategies using
Inception-v3 and ResNet-50 models. Tables 6.3 and 6.4 provide precision, recall,
and F1-scores. Initially, the models are fine-tuned using our dataset. The results of
the ML algorithms in Tables 6.1 and 6.2 are derived from features extracted using
the Inception-v3 and ResNet-50 models, respectively. These results are given in
the section titled “fine-tuning”. In the section titled “visual feature extracted using
transfer learning,” we demonstrate our proposed method of extracting features from
the Inception-v3 and ResNet-50 models. The features obtained from these pre-trained
models are then utilized by machine learning algorithms, with their classification
performances detailed in Tables 6.3 and 6.4. This approach allows for a comparison of
machine learning algorithm performance using features from fine-tuning and transfer
learning strategies separately.

As illustrated in Table 6.1, the Inception-v3+PCA+FS+SVM, Inception-v3+ PCA
+ FS+XGB, and Inception-v3+PCA+FS+LR models outperform other models in
terms of training time. Additionally, the LR model exhibits higher classification
accuracy compared to the others. Reducing the number of principal components
through feature selection significantly decreases training time. The same feature
extraction method used with Inception-v3 is also applied to the ResNet-50 model for
glitch classification. Table 6.2 presents the results of ML algorithms using features
extracted by ResNet-50. Consistent with the results in Table 6.1, applying PCA fol-
lowed by feature selection enhances ML algorithms’ performance regarding training
time. All three ML algorithms train faster with features extracted by the Inception-v3
model.
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Table 6.1 Train time, test time and accuracy of models trained by image-based features extracted
by utilizing Inception-v3 model

Train Time | Test Test F1-Score
(s) Time (s) | ACC
(%)

Fine-tuning Inception-v3 1166.000 | 3.7040 95.72 0.9322
Inception-v3+PCA+SVM 11231.3087| 16.2374 | 95.49 0.9326
Inception-v3+PCA+XGB 4123.4387 | 3.9452 90.05 0.8096
Inception-v3+PCA+LR 1188.5208 | 3.7648 96.06 0.9329

Inception-v3+PCA+FS+SVM 1188.7495 | 3.7933 93.75 0.9018
Inception-v3+PCA+FS+XGB 1198.3370 | 3.7302 90.39 0.8252

Inception-v3+PCA+FS+LR 1191.7931 | 3.7127 95.72 0.9344
Visual feature Inception-v3 - 3.4360 - -
extracted using Inception-v3+PCA+SVM 91.9230 21.3061 | 94.68 0.9132
transfer learning [y "o ion-v3+PCA+XGB 1421751 | 3.6534 | 8507 | 0.7235

Inception-v3+PCA+LR 61.4758 3.5759 95.72 0.9291

Inception-v3+PCA+FS+SVM 37.7900 3.5206 92.25 0.8844
Inception-v3+PCA+FS+XGB 37.8293 3.4470 85.53 0.7387
Inception-v3+PCA+FS+LR 37.6145 3.4516 93.98 09111

Table 6.2 Train time, test time, and accuracy of models trained by image-based features extracted
by utilizing ResNet-50 model

Train Time | Test Test F1-Score
(s) Time (s) | ACC
(%)

Fine-tuning ResNet-50 989 5.1550 96.06 0.9250
ResNet-50+PCA+SVM 1216.5736 | 54.0941 | 93.87 0.8861
ResNet-50+PCA+XGB 1414.9887 | 5.5709 87.50 0.7903
ResNet-50+PCA+LR 1054.3457 | 5.4353 94.79 0.9015

ResNet-50+PCA+FS+SVM 1010.7211 | 5.2338 91.90 0.8627
ResNet-50+PCA+FS+XGB 1012.7118 | 5.1660 87.50 0.7383

ResNet-S0+PCA+FS+LR | 1010.6343 | 5.1620 | 93.40 | 0.8867
Visual feature ResNet-50 - 5.1550 - -
extracted using ResNet-504PCA+SVM 250.0836 | 56.3033 | 9236 | 0.8146
transfer learning  ["p o Ner-50+4PCA+XGB 12134106 | 55609 | 8646 | 0.7721

ResNet-50+PCA+LR 45792933 | 52573 | 93.06 | 0.8625

ResNet-50+PCA+FS+SVM 39.3270 5.2408 89.24 0.7837
ResNet-50+PCA+FS+XGB 44.7894 5.1680 89.35 0.7950
ResNet-50+PCA+FS+LR 42.3449 5.1600 92.13 0.8487
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Table 6.3 Classification performances of ML algorithms on test set by using image based features
extracted by employing pretrained Inception-v3 model

1080 | 1400 | Blip Chirp | Light |Low | None | Scat. |Tomte | Whistle
lines | ripples mod. | freq. of the | light
burst | above

Inception-v3+ | Prec. |[92.50 |87.50 |95.25 |100.00 |92.41 | 090.40 | 100.00 | 100.00 | 93.75 | 100.00
PCA+SVM Rec. |96.10 |100.00|99.45 |78.57 |82.95 |95.76 |58.82 |98.81 |93.75 | 86.36

F1-Sc. | 94.27 |93.33 |97.30 |88.00 |87.43 |93.00 |74.07 |99.40 |93.75 | 92.68
Inception-v3+ | Prec. [92.54 |65.38 |90.77 |100.00 | 53.98 |87.07 |40.00 |92.13 |9091 | 96.23
PCA+XGB Rec. |80.52 [80.95 |94.77 |35.71 |69.32 |8559 |11.76 |97.62 |62.50 | 77.27

F1-Sc. | 86.11 |72.34 |92.72 |52.63 |60.70 |86.32 |18.18 |94.80 |74.07 | 85.71
Inception-v3+ | Prec. |98.68 |91.30 |97.28 |100.00 | 86.81 |93.28 |78.57 |98.81 |100.00 | 100.00
PCA+LR Rec. |97.40 |100.00|98.62 |85.71 |89.77 |94.07 |64.71 |98.81 |93.75 | 93.94

F1-Sc. | 98.04 |95.45 |97.95 |92.31 |88.27 |93.67 |70.97 |98.81 |96.77 | 96.88
Inception-v3+ | Prec. |88.89 |90.00 |94.95 |100.00|79.35 |87.90 |90.00 |100.0093.75 | 98.11
PCA+FS+SVM | Rec. [93.51 |85.71 |98.35 |85.71 |8295 |92.37 |5294 |95.24 |93.75 | 78.79

F1-Sc. | 91.14 |87.80 |96.62 |92.31 |81.11 |90.08 |66.67 |97.56 |93.75 | 87.39
Inception-v3+ | Prec. |[88.75 |93.75 |88.35 |62.50 |66.67 |81.75 |46.15 |97.59 |66.67 | 92.45
PCA+FS+XGB | Rec. [9221 |71.43 |96.14 | 3571 |56.82 [87.29 |3529 |9643 |62.50 | 74.24

F1-Sc. | 90.45 |81.08 |92.08 |4545 |61.35 |84.43 |40.00 |97.01 |64.52 | 8235
Inception-v3+ | Prec. |98.63 |87.50 |96.47 |100.00|83.33 |91.53 |78.57 |98.78 |88.24 | 93.85
PCA+FS+LR | Rec. [93.51 |100.00|97.80 |92.86 |85.23 [91.53 |64.71 |96.43 |93.75 | 92.42

F1-Sc. | 96.00 [93.33 |97.13 |96.30 |84.27 |91.53 |70.97 |97.59 |90.91 | 93.13

Table 6.4 Classification performances of ML algorithms on test set by using image based features

extracted by employing pretrained ResNet-50 model

1080 | 1400 | Blip Chirp | Light |Low |None |Scat. | Tomte | Whistle
lines | ripples mod. |freq. |ofthe |light
burst | above
ResNet-50+ Prec. | 81.11 |85.71 |94.69 |100.00  93.67 |90.24 |66.67 |96.47 |85.71 | 98.31
PCA+SVM Rec 94.81 |57.14 |98.35 |78.57 |84.09 |94.07 |47.06 |97.62 |7500 | 87.88
F1-Sc. | 87.43 | 68.57 |96.49 |88.00 |88.62 |92.12 |55.17 |97.04 |80.00 | 92.80
ResNet-50+ Prec. |90.14 |78.95 |94.05 |100.00  58.56 |83.33 |37.50 |93.02 |83.33 | 90.16
PCA+XGB Rec 83.12 |71.43 |95.87 |85.71 |73.86 |80.51 |17.65 |95.24 |62.50 | 83.33
F1-Sc. | 86.49 |75.00 |94.95 |92.31 | 6533 |81.90 |24.00 |94.12 |71.43 | 86.61
ResNet-50+ Prec. |91.14 |79.17 |95.71 |100.00 | 90.36 |89.52 |63.64 |9535 |9231 | 96.67
PCA+LR Rec. |93.51 [90.48 |98.35 |78.57 |8523 |94.07 |41.18 |97.62 |75.00 | 87.88
F1-Sc. | 92.31 |84.44 |97.01 |88.00 |87.72 |91.74 |50.00 |96.47 |82.76 | 92.06
ResNet-50+ Prec. | 7273 |66.67 |92.99 |100.00 | 79.12 |91.53 |66.67 |98.78 |92.31 | 95.74
PCA+FS+SVM | Rec. [93.51 |28.57 |98.62 | 7857 |81.82 |91.53 |3529 |96.43 |7500 | 68.18
F1-Sc. | 81.82 |40.00 |95.72 |88.00 |80.45 |91.53 |46.15 |97.59 |82.76 | 79.65
ResNet-50+ Prec. |78.89 |91.67 |94.16 |100.00 | 79.75 |86.07 |38.46 |97.62 |75.00 | 95.00
PCA+FS+XGB | Rec. [92.21 |52.38 |97.80 | 7857 |71.59 |88.98 |29.41 |97.62 |7500 | 86.36
F1-Sc. | 85.03 | 66.67 |95.95 |88.00 | 7545 |87.50 |33.33 |97.62 |75.00 | 90.48
ResNet-50+ Prec. |85.06 |70.00 |95.71 |100.00  87.36 |92.17 |56.25 |9535 |92.31 | 98.18
PCA+FS+LR | Rec. [96.10 |66.67 |98.35 |85.71 |86.36 [89.83 |52.94 |97.62 |7500 | 81.82
F1-Sc. | 90.24 | 6829 |97.01 |92.31 |86.86 |90.99 |54.55 |96.47 |82.76 | 89.26
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When evaluating the test times of the models, it is noted that the SVM model runs
relatively slower when the number of input parameters exceeds 3400. However, after
the feature selection process reduces the input parameters to 100, the test times of
the models converge and fall below 4 s.

Hyperparameters of the ResNet-50 and Inception-v3 models are separately calcu-
lated for fine-tuned and transfer learning strategies. In order to have a fair comparison,
we ran all models up to 100 epochs. We also set the “early stopping” criterion if there
is no improvement in the validation accuracy after ten epochs. We added a fully con-
nected layer to the last layer for fine-tuning. Also, when fine-tuning, we froze the
first 275 layers in Inception-v3 and the first 185 layers in ResNet. We adjusted the
number of frozen layers by trial and picked the optimum number of frozen layers
based on the highest accuracy score at the end of every trial. The learning rate of
models is selected as 0.0001. We optimized the ML models using Optuna Library.

6.4 Conclusion

This study explores methodologies for classifying glitches across ten different
classes, evaluating training time and accuracy for each. Machine learning models
using LR, XGBoost, and SVM algorithms follow two feature extraction methods
with pre-trained Inception-v3 and ResNet-50 models. The first method fine-tunes
pre-trained models using our dataset, while the second uses them as feature extrac-
tors. Features are reduced from 51200 to 100 to accelerate training while preserving
variance. Transfer learning significantly reduces training time compared to fine-
tuning, offering 24 and 31 times faster training with ResNet-50 and Inception-v3,
respectively. Despite dataset imbalance, logistic regression achieved a classification
accuracy of 93.98% with minimal training time.
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Part 11

Machine Learning Application

for Gravitational Wave Detector Study
and Control Systems

The accurate detection and analysis of gravitational wave signals pose significant
challenges, primarily due to the pervasive noise and the need for highly sensitive and
precise control systems in gravitational wave detectors. Integrating machine learning
techniques into the study and control of gravitational wave detectors could improve
the sensitivity, reliability, and overall performance of these sophisticated instruments.
Machine learning algorithms, with their ability to learn and adapt to complex data
patterns, are ideally suited to address the many problems associated with gravitational
wave detection. Gravitational wave detectors, such as LIGO and Virgo, are suscep-
tible to various noise sources, including seismic activity, thermal fluctuations, and
instrumental imperfections. Machine learning techniques can be employed to model
and predict these noise sources, enabling more effective noise reduction strategies.
Maintaining the optimal operation of gravitational wave detectors involves complex
control systems that adjust various parameters in real time. Machine learning can
improve these control systems by predicting necessary adjustments and automating
responses to environmental changes and internal system fluctuations. This leads to
more stable and sensitive detectors, capable of operating at peak performance for
extended periods.

Significant effort and research are being dedicated to developing algorithms aimed
at suppressing noise in real time, using data from external sensors. A notable example
of this is the suppression of Newtonian noise, which arises from ground vibrations
and environmental factors that can interfere with gravitational wave detectors. By
integrating advanced sensor networks and real-time monitoring systems, these algo-
rithms are designed to accurately identify and filter out unwanted noise, improving
the sensitivity and precision of gravitational wave measurements. The ongoing study
of such techniques holds great promise for enhancing the overall performance of
gravitational wave observatories.

In this collection of chapters, we explore the latest advances and applications of
machine learning in this field.
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Federico Armato® and Andrea Chincarini

Abstract The sensitivity of gravitational waves interferometers is limited by numer-
ous sources of noise. One such source arises from the charge deposition on the test
mass, which interacts with the surrounding electrical field, introducing an undesired
non-gravitational force on the test mass. Unfortunately, very little is known about
the charge deposition and its dynamics, so that this noise is among the least mod-
eled in the detector. In this chapter, we illustrate a procedure for implementing an
effective and non-invasive charge monitoring system capable of extracting the max-
imum amount of information with minimal disturbance. Specifically, we explain the
proposed methodology and compare different possible criteria in the choice of the
monitoring system.

7.1 Introduction

The sensitivity of gravitational waves (GWs) detectors is influenced by multiple
sources of noise. One such source is associated with the deposition of charge on the
test masses (TMs) [1].

This issue arises as the deposited charge interacts with the surrounding electrical
fields, introducing an undesired non-gravitational force on the TM.

Fluctuations attributed to a charge on the TMs have been observed in both the Virgo
interferometer and the LIGO [2] and GEO [3] detectors, where charge accumulation
on the mirrors has been identified.

In particular, in Virgo, at the end of O3 preparation phase, it was discovered that
TMs exhibited electrical charging, with surface density values on the order of several
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tens of pC/cm?. Furthermore, the charge distribution was non-uniform across the
dielectric surface of the mirrors [4].

The charge accumulation has historically never been consistently monitored and
the charge dynamics during interferometer operations is unknown. Hence we pro-
pose to address this problem with a minimally-invasive array of sensors, optimally
configured to monitor some physical characteristics of the charge on the TMs [5].

7.2 Materials and Strategies

In our analysis we considered the Test Mass (TM) and the payload (PAY).

The payload is the last stage of the TM suspension, located in the lower part of
the tower. This area houses essential components such as large baffles (LBs), ring
heaters (RHs) and precision controls, specifically the coil actuators [6].

The significance of taking into account the payload stems from its proximity to
the Test Mass: the PAY is the structure surrounding the TM, thus representing the
element most likely to be closely coupled with the charge on the TM (Fig. 7.1).

The payload structure and the TM can be simulated with a finite-element (FE)
software to get the electrical field distribution given an arbitrary charge configuration.
Simulations enable us to determine the potentials and the forces generated by charge
distributions on the test mass and the surrounding field.

Our objective is to solve the reverse process, that is to ascertain the charge distribu-
tion on the TM given the electrical fields measured in an arbitrary set of coordinates
outside the TM, as illustrated in Fig. 7.2.

This task is intricately challenging, both because of the intricacy of the payload
structure, and because in practice there are significant constraints on the sensing
coordinates, where in the experimental realization one would place field sensors.
Indeed, part of our research aim to understand how to optimize sensors locations.

The combination of these spatial limitations, coupled with the heightened sensitiv-
ity of the interferometer, underscores the imperative for adopting minimally invasive
solutions.

Therefore the primary objective of our endeavor is twofold:

e Develop a methodology for deriving the charge configurations on the test mass
based on the measured fields or their potentials.

e Establish criteria for selecting sensor locations, ensuring optimal placement within
spatial constraints.

The simulations were conducted using COMSOL Multiphysics 6.0. Specifically, we
utilized the COMSOL Multiphysics CAD Import Module to import the Virgo North
End (NE) payload, provided by the Virgo Collaboration. The PAY was simplified to
facilitate the simulations (Fig. 7.3).

Furthermore, the COMSOL Multiphysics AC/DC Module was employed to sim-
ulate charge distributions on the test mass and to measure the potential generated by
these charge distributions.
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Fig.7.1 CAD drawings of the Advanced Virgo payload integrated in the Super Attenuator suspen-
sion. Image provided by the European Gravitational Observatory (EGO)

Fig.7.2 Using simulation, we move from the charge configuration space to the measurement space,
but we need a way to determine the charge configuration given the potential
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Fig. 7.3 On the left, the original NE payload model. On the right the simplified version

We employed MATLAB R2023a to analyze the simulated data and implement
the problem solution.

7.3 Methods

We examined the impact of a single Gaussian-distributed charge.

Specifically we explored 32 sensor locations candidates on the PAY (Fig. 7.4)
and we simulated more than 100,000 different Gaussian distributions on the TM
(Fig. 7.5), where we had the flexibility to choose the parameters: intensity, standard
deviation and position (Appendix 1).

We exploited Neural Networks (NNs) trained on the simulations to determine the
charge value from the measured potentials (Fig. 7.6).

To maximize information while minimizing the number of sensors, we imple-
mented sensor selection criteria.

Two methods exploit the Principal Component Analysis (PCA), which is a dimen-
sionality reduction technique where the data are linearly transformed onto a new
coordinate system, called Principal Components (PCs).

The features we are interested in are briefly summarized as follows: the PCs of
a set of n variables are linear combinations of the original variables and they are
ranked by variance explained on the data [7].
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Fig. 7.5 On the left, the simulated Gaussian positions on the front test mass face. On the right, the
simulated system with one of the possible charge location

o Importance Method

The rationale behind the Importance criterion is to keep the most informative PCs.
To reach this goal the sensors are ranked according to their contribution to the PCs
weighted on their percentage of variance explanation.

o Loadmax Method

The rationale behind the Loadmax Criterion is to preserve as many Principal
Components as possible, to accomplish this we retain the most significant sensor
for each PC.

Especially, in selecting the first sensor, we prioritize the one that contributes the
most to the first PC. Similarly, for the second sensor, priority is given to the one
that contributes the most to the second PC, and so on.
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Fig.7.6 Using simulation, we move from the charge configuration space to the measurement space;
conversely, using neural networks, we can determine the charge configuration given the potential
values on the sensors

A third criterion is the Mincorr Method, in which we choose the first sensor based
on the Importance criterion. Subsequently, the second sensor chosen is the least
correlated, followed by selecting the third sensor as the least correlated with the
previous two, and so forth. The concept driving the Mincorr criterion is to limit
information redundancy.

These criteria represent just a subset of possible methods. It is crucial to emphasize
that the selection of sensors, and consequently the criterion employed, is intricately
tied to the specific information we aim to acquire. For instance, certain sensors
may excel in determining charge value but perform poorly when ascertaining charge
position.

Furthermore, the existence of noise renders it challenging for the sensor system
to discover the precise charge configuration. Additionally, even in the absence of
noise, the constrained number of sensors precludes the possibility of achieving such
a reconstruction.

As aresult, we have opted for a simplified representation of positional information
in binary form. Specifically, we aimed to determine whether the charge was situated
on the front or back face, the upper or lower part, and the right or left side of the TM
faces, as illustrated in Fig. 7.7.

| Fa,V1a,V2a, i Vsza |

Al

Back

Fig. 7.7 The positional information of the charge is simplified into binary discriminations, such as
whether the charge is located on the front or back face of the TM
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7.4 Results

Different sensor rankings emerge for each method. In particular, Table 7.1 illustrates
the comparison between the Importance, Loadmax and Mincorr criteria.

We used different neural networks (Appendix 3) to determine the charge and
standard deviation value (Fig. 7.8). Specifically for each quantity we considered
NNs at varying Signal to Noise Ratios (SNR) and we trained them solely on the
potentials measured by the top four most informative sensors based on each criterion:
Importance, Loadmax, and Mincorr.

Table 7.1 Sensor ranking from the best sensor to the worst according to Importance, Loadmax and
Mincorr criteria. Complete table in Appendix 2

Sensor ranking
Importance Loadmax Mincorr
3f 1b 3f
2f 4f 10dx
2dx 1f 10sx
28X 3dx 11dx
5sx 2f 11sx
1dx 5sx 12dx
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1sx 12dx Tsx
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Fig. 7.8 MSE in charge value and standard deviation determination for different Neural Networks
at varying SNR, where the input data have been z-score normalized (data in Appendix 4)
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Fig.7.9 Accuracy in front-back and up-down discrimination for different neural networks at vary-
ing SNR (data in Appendix 4)

Similarly, categorical neural networks (Appendix 3) were trained to discern three
key aspects: the placement of the charge on either the front or back, the upper or
lower part, the right or left part of the test mass face (Fig. 7.9).

The SNR is defined with respect to the highest potential measured by the most
sensitive sensor among the 32 sensors.

We can observe that standard deviation is poorly determined, no matter which cri-
terion is employed; while the location accuracy is strongly dependent on the specific
neural network employed.

For instance, the NNs trained on the four sensors preferred by the Loadmax
criterion, excel in front-back discrimination, but show reduced effectiveness in other
tasks like up-down discrimination. Therefore, our criterion choice depends on which
aspect is more crucial.

To clarify this point we compared the efficiency of neural networks trained using
only one sensor. The idea was to understand which sensor brings alone more infor-
mation and which type.

The results are shown in Fig. 7.10, where it becomes evident how different sensors
provide diverse information. For example, sensors like 2dx and 3dx excel in right-left
discrimination but perform poorly in up-down discrimination. In contrast, sensors like
12dx and 12sx exhibit excellence in up-down discrimination but lack proficiency in
right-left discrimination. Lastly, sensors like 4sx and 4dx demonstrate an intermediate
capability in both aspects.

As a practical example, let us consider the situation in which we have only four
sensors and we want to understand where to locate them in order to get the best
result.

To make this choice, first of all we have to understand which physical quantity
is more significant, which is strongly linked to the discharging method we want
to employ. Indeed, techniques like high-vacuum electron gun [8] need to know the
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Fig. 7.10 The plot depicts sensor accuracy in discerning charge location on the test mass face,
distinguishing between up-down and right-left positions

charge location while other techniques like the ion-gas cloud [9] in a higher pressure
environment do not need this information. As a consequence, in the first case the
most relevant information is the charge location; while, in the second scenario, its
value.

Considering the first possibility, we choose the sensors in order to maximize the
probability to discover the charge position. To reach this goal we take into account
the neural network probability to pick the wrong face P(FB) and we compare it
with the probability to pick the correct face P (F B) which, according to the Law of
Total Probability, we splitted in the probability to pick the correct quarter P(UD N
RL N FB), the probability to pick the wrong adjacent quarters P(UD N RL N FB),
P(UD N RL N FB) and the probability to pick the wrong far quarter P(UD N RL N
FB) (Fig. 7.11).

Correct quarter

Wrong face

Wrong adjacent
quarters

Wrong far
quarter

Fig. 7.11 Schematic division of the test mass according to the probabilities introduced
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Fig. 7.12 Probability to gain correct or wrong informations utilizing different neural networks

Once we calculated these quantities we compare their value for all the criteria
(Fig. 7.12). In doing so we mostly have to consider both the probability to pick
the correct quarter and the probability to properly understand whether the charge is
located on the front or back face. Indeed, discover the face is crucial, since we are
assuming to adopt a directional discharging method.

Both Importance and Loadmax methods have a greater probability to pick the
correct quarter with respect to the Mincorr method which has also a great probability
to pick the wrong face. Therefore we can exclude this criterion.

Regarding Importance and Loadmax methods, they have a similar probability
to pick the correct quarter (the difference between the two criteria is < 1%), but
Loadmax is more efficient in picking the correct face (~5% better), therefore we
will opt for the four sensors selected by the Loadmax criterion.

7.5 Discussion

We have devised a method which has the ability to determine the charge distribu-
tion of a system exploiting the potentials measured by a certain number of sensors
(Fig. 7.13).

The remarkable feature of this operational approach lies in its flexibility since the
same procedures can be employed in different geometries. Indeed, it is sufficient to
import the model of the system of interest in a simulation, and then the same steps
seen for the model under examination can be carried out.
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Fig. 7.13 Using simulation, we move from the charge configuration space to the measurement
space; conversely, using neural networks, we can determine the charge configuration given the
potential values on the sensors

Based on the charge measurements conducted at Virgo [4], the potential measured
by the point sensors in the simulations falls below the minimum value detectable with
current technologies. Consequently, there is a need to devise a method to surpass this
limitation.

A possible solution currently under exploration involves replacing the sensors
with potential generators and measuring the resultant force. This approach would
have two virtues:

e It would allow us to transpose the same procedure by substituting measured poten-
tials with the induced forces.

e It would have an extreme precision since it would use the interferometer itself to
infer the force value.

On the other hand, in this framework the scenario becomes somewhat more intri-
cate. The NN does not perform the inverse operation, since the input potentials are
known. Consequently, the input values consist of the injected potentials and the mea-
sured force (Fig. 7.14). Furthermore, the presence of multiple potential generators
enables the possibility for distinct charge distributions to result in the same force.
Conversely, by modifying the potentials, it becomes evident that various forces can
correspond to the same charge distribution (Fig. 7.15).

We are aware of certain limitations in our study. The simulation lacks experimental
validation, which is indeed necessary for robust verifications since we should verify
that our simulations accurately reproduces the real system.

Moreover, our charge analysis is limited, as we exclusively examined Gaussian-
distributed charges and we positioned them solely on the front or back face of the
test mass. However, assuming a Gaussian distribution is a reasonable approximation,
considering our expectation of localized charge distributions.
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Appendix 1

Using COMSOL Multiphysics we simulated 124,000 symmetric Gaussian distribu-
tions. In particular, we simulated 62,000 charge distributions on the TM front face
and the same number on the back face.

The charge values were chosen taking into account the measurement made in
Virgo [4]. Indeed we simulated random charge values in a range between 1 and
800pC (Table 7.2).

Moreover we considered both positive and negative charge values. Specifically,
we simulated 74,000 positive charge distributions and 50,000 negative ones.

We considered localized charge distribution. Indeed, the simulated standard devi-
ation value fell within a range between 1 mm and 2 cm.

Regarding the Gaussian positions on the TM face, we randomly distributed them
across the entire surface of radius 17 cm (Fig. 7.16).

Table 7.2 Maximum and minimum simulated value for charge and standard deviation
Simulated data

Charge modulus Standard deviation
max 800 pC 2cm
min 1 pC 1 mm

Fig. 7.16 The considered
Gaussian locations on the
front TM face

T2 -0

o 01 0.2
X [m]
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Appendix 2

In Table 7.3 you can find the complete sensor ranking according to Importance,
Loadmax and Mincorr criteria.

Table 7.3 Sensor ranking from the best sensor to the worst according to Importance, Loadmax and
Mincorr criteria

Sensor ranking

Importance Loadmax Mincorr
3f 1b 3f
2f 4f 10dx
2dx 1f 10sx
2sXx 3dx 11dx
5sx 2f 11sx
1dx 5sx 12dx
5dx 3b 12sx
1sx 12dx 7sx
1f 1dx 4b
4f 4dx 7dx
4sx 9sx 1b
4dx 3f 9dx
6sx 2b 8sx
6dx 3sx 8dx
3sx 7dx 3b
3dx 2dx 6sx
8dx 9dx 6dx
8sx 6dx 2b
7dx 11sx 4sx
7sx 10sx 4dx
9dx 8dx 3sx
9sx 12sx 3dx
11sx 8sx 2sx
11dx 5dx 2dx
10sx 7sx 1sx
10dx 1sx 5dx
12dx 4b 9sx
12sx 11dx 4f

2b 2sx 1f

1b 10dx 1dx
4b 6sx 2f

3b 4sx 5sx
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Appendix 3

The neural networks used to determine charge and standard deviation value consist
of 1 layer with 20 neurons. The activation function is the hyperbolic tangent sigmoid
and the Levenberg-Marquardt backpropagation algorithm has been used to train the
NNG.

The categorical NNs consist of 1 layer wih 20 neurons.The activation function
is the rectified linear unit and the Broydon-Fletcher-Goldfarb-Shanno quasi-Newton
algorithm has been used to train the NNs.

Appendix 4

In Table 7.4 you can find the accuracy in charge localization for neural networks
trained using the four preferred sensors according to Importance, Loadmax and
Mincorr criteria.

Table 7.4 The reported value and error correspond respectively to the mean and standard deviation
obtained generating fifteen neural networks under the same conditions

Front-back accuracy

SNR Importance Loadmax Mincorr
200 0.7330 £ 0.0024 0.8683 £ 0.0042 0.7893 £ 0.0026
100 0.7070 £ 0.0019 0.8217 £0.0028 0.7358 £0.0017
50 0.6808 £ 0.0032 0.7708 £ 0.0026 0.6897 £ 0.0028
20 0.6455 £ 0.0036 0.6961 £ 0.0057 0.6492 £ 0.0048
10 0.6055 £ 0.0042 0.6360 £+ 0.0101 0.6127 £ 0.0038
5 0.5408 £ 0.0070 0.5762 £ 0.0101 0.5640 £ 0.0149
Up-down accuracy
SNR Importance Loadmax Mincorr
200 0.8191 £ 0.0050 0.8188 £0.0117 0.8780 £ 0.0040
100 0.7892 £ 0.0051 0.7475 £ 0.0114 0.8406 £ 0.0036
50 0.7447 £0.0113 0.6863 £ 0.0086 0.7826 £ 0.0047
20 0.6695 £ 0.0147 0.6244 £ 0.0097 0.6947 £ 0.0069
10 0.6227 £ 0.0305 0.5862 £ 0.0128 0.6468 £0.0116
5 0.5794 £+ 0.0356 0.5651 £0.0121 0.5979 £ 0.0246
Right-left accuracy
SNR Importance Loadmax Mincorr
200 0.9304 £ 0.0105 0.9054 £ 0.0081 0.8842 £0.0103
100 0.9156 £ 0.0150 0.8728 £ 0.0105 0.8393 £0.0103
50 0.8723 £ 0.0172 0.8432 £ 0.0131 0.7854 £ 0.0120
20 0.8021 £ 0.0197 0.7845 £ 0.0254 0.6763 £0.0141
10 0.7230 £ 0.0324 0.6990 £ 0.0283 0.5997 £0.0189
5 0.6625 £ 0.0448 0.6363 £ 0.0426 0.5952 £0.0175
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Table 7.5 The reported value and error correspond respectively to the mean and standard deviation
obtained generating fifteen neural networks under the same conditions. The input data have been

z-score normalized

Charge MSE

SNR Importance Loadmax Mincorr

200 0.1513 +0.0021 0.1441 £ 0.0009 0.1587 £ 0.0013
100 0.1525 4 0.0009 0.1466 + 0.0008 0.1711 £ 0.0024
50 0.1594 £ 0.0005 0.1534 £ 0.0004 0.1872 £ 0.0024
20 0.2271 £ 0.0079 0.2157 £ 0.0046 0.2469 + 0.0020
10 0.4202 £+ 0.0089 0.3844 £ 0.0124 0.4158 +0.0169
5 0.9822 +0.0018 0.9780 £ 0.0020 0.9778 + 0.0020
Standard deviation MSE

SNR Importance Loadmax Mincorr

200 0.9824 £+ 0.0056 0.9726 £ 0.0118 0.9821 + 0.0088
100 0.9808 £ 0.0082 0.9730 £ 0.0097 0.9843 + 0.0049
50 0.9774 £+ 0.0065 0.9770 £ 0.0063 0.9855 + 0.0026
20 0.9851 £ 0.0027 0.9825 £ 0.0032 0.9876 + 0.0015
10 0.9882 + 0.0009 0.9872 + 0.0009 0.9899 + 0.0005
5 0.9941 £ 0.0007 0.9935 £ 0.0003 0.9940 + 0.0003

InTable 7.5 you can find the mean square error (MSE) in charge value and standard
deviation determination for analogous neural networks.
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Chapter 8 ®)
Machine Learning to Optimize Shhae
Newtonian Noise Cancellation

in Third-Generation Gravitational Wave
Detectors

Francesca Badaracco(® and Luca Naticchioni

Abstract Newtonian noise affects gravitational wave detectors in the low frequency
band (below 20Hz). It is generated by gravity fluctuations happening nearby the
detector. Being it related to passing seismic waves, it can be predicted by monitor-
ing the seismic field. The Einstein Telescope, a third-generation gravitational-wave
detector, will be built underground and it will need a Newtonian noise cancellation
system. In this paper we discuss how a cancellation system can be designed when
the available seismic data will be scarce.

8.1 Introduction

The third generation (3G) of gravitational wave (GW) detectors will expand the
observation band to the Low Frequency (LF) band (2-10 Hz). This will enable
key astrophysical observations, such as the initial inspiral phase of merging neutron
stars, intermediate mass black hole coalescences, and isolated neutron stars. In the LF
band, the primary constraints on detector sensitivity are seismic noise and gravity
fluctuations, also known as Newtonian noise (NN) [1]. NN is caused by gravity
fluctuations resulting from density variations due to seismic waves passing near the
most sensitive parts of a GW detector (e.g. the test masses). Pressure fluctuations
(atmospheric and machinery induced) also generate a non-negligible component of
NN at low frequencies. This noise directly couples to the test masses of the detector,
therefore it is very difficult to physically reduce it with experimental techniques.
Nevertheless, the NN signal can be estimated and subtracted from the detector output
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by knowing the seismic field measured by a 3D seismometer array deployed around
the test masses. Gaussian Process (GP) regression has proven to be effective in
constructing a surrogate model of the seismic field for optimization purposes [2].
GPs integrate two key features: they are mathematically analogous to established
models, yet they can learn from data to predict new values accurately [3]. Under
certain conditions, GPs bear a strong resemblance to large neural networks. In the
realm of machine learning, GPs are a potent tool, applicable to both regression and
classification problems [4]. In the geophysical field, they are recognized as “kriging”
[5, 6].

Designing an optimal array for NN cancellation in underground GW detectors
presents several challenges. The scarcity of data may hinder meaningful GP regres-
sion, and the cost of deploying underground sensors will be substantial (see Sect. 8.4).
Therefore, research is necessary to gain insights for optimizing the array and man-
aging the associated costs. The subsequent sections will discuss the application of
GP regression in current detectors (Sect. 8.2) and its potential use in third-generation
GW detectors (Sect. 8.3). Lastly, Sect. 8.4 will detail the steps involved in borehole
installation, which is essential for data collection and the deployment of seismic
sensors post-optimization.

8.2 Gaussian Process Regression for Optimal Positioning

The initial strategy for identifying the optimal array for an underground detector like
ET is assuming a homogeneous and isotropic seismic field [7, 8]. This approach is
useful in order to inspect the properties of a NN cancellation system, such as the
reduction factor versus the number of sensors, the average distance between sensors,
how the optimal array changes with variations in the seismic field composition (shear-
and compression-wave content) and its robustness to deployment in sub-optimal
positions. Clearly, the final array configuration will have to be adapted to the real
seismic field which will likely not be exactly isotropic and homogeneous. A similar
work was conducted in Virgo to find the optimal array based on seismic data [2].
GP regression was applied starting from collected seismic data to create a surrogate
model of the cost function used in the optimization process. This approach poses
already some challenges regarding data scarcity, which was successfully solved for
Virgo. However, for ET, this problem will be even more significant since the array
will need to be optimized in a three-dimensional space, and data collection will
be both expensive and challenging. Surface seismic data are relatively simpler to
obtain, while underground seismic data need the excavation of boreholes and the
deployment and maintenance of the seismic sensors (see Sect. 8.4). For this reason,
we can already expect that the available data to perform the GP regression will
be insufficient. Some improvements to the process have already been proposed,
such as using the information of simulated cross-correlations to create priors for
the GP hyperparameters [9]. Better hyperparameters derived from data will aid in
reducing the estimation error, but if the data are too sparse we can assume that also
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the simulations will be a poor approximation of the reality, therefore the uncertainty
will remain high. The next section will outline potential future work to gain more
insights into the optimal array for NN cancellation.

8.3 Future Perspective for Optimal Positioning

The high cost of collecting underground seismic data will inevitably lead to data
scarcity, which will impact the design of the NN cancellation system in ET. However,
the impact of this data scarcity can be mitigated by leveraging simulated cross-
correlations [10] to enhance GP regression, as discussed in the previous section.
While uncertainty will persist, it could be utilized to examine potential effects on
the performance of the NN cancellation system. Once the GP model is trained,
it is possible to draw from the GP new functions representing the seismic field.
However, having scarce data will entail that the drawn seismic fields will have large
errors. Usually, the average function (i.e. the estimated seismic field) should be used
to identify the optimal array. With scarcity of data, the average function will not
represent the reality. However, such a GP could still be exploited to test the impact
of data scarcity on the optimal array and assist in determining the need for another
measurement campaign. Indeed, after determining the optimal array based on the
average function, additional seismic fields could be drawn from the GP. They could
be used to evaluate how NN cancellation performance vary when the seismic field
differs from the one assumed during the optimization. In such case, the seismic field
would still be compatible with the seismic data, but it simply would differ where
data are missing. Furthermore, this kind of GP could provide insights into the most
effective locations for new measurements.

The first step for such a GP, would be that of assuming an infinite three-dimensional
space. However, to find a balance between costs and performance, it could be bene-
ficial to examine how incorporating a surface into the underground model influences
the optimal array configuration. Indeed, there is likely to be some correlation between
the surface seismic field and the underground one. Therefore, a feasible compromise
might involve deploying a large number of sensors on the surface and in the caverns,
while limiting the number of sensors installed in boreholes.

8.4 Borehole Installation

The process of reconstructing the seismic field for NN cancellation in an under-
ground 3G gravitational wave detector necessitates the deployment of multiple tri-
axial broadband seismometers at varying depths around the test masses. These sen-
sors can be placed in dedicated boreholes drilled in the vicinity of the main caverns
that house the detector test masses. The cost of a borehole is proportional to its
diameter, particularly due to the steel lining, making the use of compact sensors a
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more cost-effective option. In traditional geophysical monitoring, only a single com-
mercial high-quality broadband seismometer is installed per borehole. However, for
the NN cancellation 3D array, considering the number of sensors required, multiple
seismometers could be installed at different depths in each borehole. This would
necessitate modifications to the commercial cabling and clamping systems. Further-
more, these compact seismometers typically have a limited tolerance to tilt relative
to the local gravitational vertical (usually within a few degrees). Therefore, the ver-
ticality should be continuously monitored and verified during the borehole drilling
process.

After the drilling of each borehole, a structural log is required to localize the
depth of the main discontinuities in the drilled rocks. These discontinuities should
be avoided in the sensor installation phase. In the following steel tube installation,
it is crucial to achieve a good cementing of the tube to the surrounding rocks. This
ensures a good mechanical transmission of seismic waves and reduces the resonances
of the steel tube.

Finally, the borehole seismometers and their DAQ electronics must be able to
observe the Earth background as represented by the New Low Noise Model (NLNM)
[11]. This is particularly important at the lower frequencies of interest for a 3G GW
detector. Therefore, they should at least posses a sensitivity of the order of 107'0
m/s/~/Hz between 2 and 10 Hz.

8.5 Conclusions

Underground GW detectors such as ET [12] will pose significant challenges. One of
these will be represented by the NN: the final limitation to Earth-bound GW detectors
at low frequencies. Current techniques aimed at designing the optimal array for an
efficient NN cancellation are based on the use of GP regression applied on seismic
data. In the future, collecting seismic data will be more challenging and expensive
as underground seismometers will require the drilling and setting-up of boreholes.
Hence, GP regression will provide a less precise optimal array. How the scarcity of
data will impact the NN array design should be further studied as the NN reduction
factor that the NN cancellation system will be able to provide will have an important
impact on the final ET sensitivity at low frequencies.
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Chapter 9 ®)
Sensor Placement Algorithms Cress
and Learning Methods for Gravitational

Wave Interferometers

Conor Muldoon

Abstract This chapter explores combinatorial optimization techniques for sensor
placement within the context of applications for gravitational wave detectors. In cases
where an objective function, being optimised subject to a cardinality constraint, is
submodular, or has a diminishing returns property, and is monotone, a simple greedy
algorithm achieves near-optimal performance. More broadly, in the context of grav-
itational wave interferometry, placing sensors requires the optimisation of objective
functions that are neither submodular nor supermodular. Such NP-hard optimisa-
tion problems can be addressed through the use of a priori hand-crafted heuristics
and meta-heuristics inspired by natural, biological, and evolutionary processes. This
chapter introduces a novel approach to address the problem by learning latent func-
tions using pointer networks within an actor-critic framework, leveraging attention
networks along with deep reinforcement learning. Preliminary implementation chal-
lenges and future directions are discussed, highlighting the potential for improved
scalability and efficiency for complex optimization tasks.

9.1 Introduction

There are a variety of applications within gravitational wave interferometry where
the optimal placement of sensors enables the removal of noise. Sources of noise,
as discussed in the other chapters in Part 2, include the deposition of charge on the
interferometer mirrors [1] and Newtonian noise [2—4], which is related to passing
seismic waves and affects detectors in the low frequency band. The buildup and
motion of surface charge on the optics of the detector is due to both abrasive contact
with materials and interaction with cosmic rays, whereas Newtonian noise or gravity
gradient noise is a result of fluctuations in the local gravitational field due to mass
density variations.

C. Muldoon ()

Department of Computing and Mathematics, Manchester Metropolitan University,
Chester St, Manchester M1 5GD, UK

e-mail: c.muldoon@mmu.ac.uk

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 107
E. Cuoco (ed.), Gravitational Wave Science with Machine Learning, Springer Series
in Astrophysics and Cosmology, https://doi.org/10.1007/978-981-96-1737-1_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1737-1_9&domain=pdf
http://orcid.org/0000-0003-1381-2561
mailto:c.muldoon@mmu.ac.uk
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9
https://doi.org/10.1007/978-981-96-1737-1_9

108 C. Muldoon

Gravitational wave observatories, such as LIGO and Virgo, consist of systems
of mirrors, which are referred to as test masses (TMs), suspended freely via multi-
stage pendulum systems. The disposition of charge on the TMs can be mitigated
using an optimised configuration of sensors to monitor physical characteristics of
the charge. The motion of the TMs is minimised to ensure, to the extent possible, that
the variations in the distance between mirrors is due to gravitational waves alone.
This is achieved passively via the pendulum systems and actively via sensors and
actuators. Newtonian noise, however, bypasses this isolation of the TMs in that there
is a gravitational coupling between the TMs and the seismic field. Fluctuations in
the field occur due to variations in atmospheric pressure, movement of the detector
infrastructure, anthropogenic activities, and so forth. Thus, Newtonian noise will be
present in the interferometer data. To address this issue, an estimate of the Newtonian
noise can be subtracted from the interferometer data by placing seismometers around
the TMs to monitor the noise source. An estimate is required in that the gradient noise
induced at the TMs cannot be measured directly.

This paper proposes the use of submodular optimisation to address the problem
of choosing sensor locations for charge monitoring and pointer networks, attention
networks, and deep reinforcement learning to monitor the Newtonian noise source.
Greedy algorithms for optimising the latter do not perform well in that the objective
function is not submodular and the number of sensors deployed must be considered
as a whole. For the former, in the case of a monotone submodular objective function,
a greedy approach will perform close to optimal with a bound of (1 — 1/e). This
is the best bound that can be achieved for a polynomial-time algorithm assuming
P # NP [6].

The remainder of the chapter is organised as follows. Section 9.2 discusses related
methods for sensor placement. Submodular optimisation is covered in Sect.9.3. The
use of sequence-to-sequence learning for sensor placement is discussed in Sect. 9.4.
Section9.5 provides an overview of the implementation, preliminary findings, and
directions for future work. Section9.6 concludes the chapter.

9.2 Related Research

Several approaches have been adopted in the literature that optimise sensor place-
ments based on Principal Component Analysis (PCA) [1, 7]. One issue with the use
of PCA in this context, however, is that the principal components represent a linear
combination of sensor locations and will not be valid for a true sensor deployment;
there cannot be a fraction of a sensor deployed for instance. Prior research on sensor
placement [8, 9] has made use of submodular optimisation and selection criteria,
such the mutual information and conditional entropy of Gaussian processes and the
mean squared prediction error to achieve near-optimal performance in certain set-
tings. This is the approach advocated here. Furthermore, submodular optimisation
has been adopted in determining sensor placements for optimal Kalman filtering [10]
and in maximising the Fisher information [11].
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Metaheuristic algorithms [13] have previously been adopted to address the prob-
lem of determining the optimal sensor deployment locations for estimating the New-
tonian noise induced on the TMs [5]. These algorithms include Particle Swarm Opti-
mization (PSO) [14], Basin-Hopping [15], and Differential Evolution [21]. PSO
simulates particle positions and velocities to optimize a given measure of quality.
Basin-Hopping combines random perturbations with local optimization to escape
local minima. Differential evolution iteratively improves candidate solutions through
search space navigation. Greedy algorithms for submodular optimisation do not per-
form well for the problem of estimating Newtonian noise and the number of sensors
deployed as a whole needs to be taken into account to achieve good performance. One
benefit of these metaheuristic algorithms over the approach discussed in this chapter
is that they do not require the space to be discretised, for instance into a grid, in con-
trast to combinatorial algorithms. The approach discussed here, however, if scaled
up, will enable the learning of heuristics and metaheuristics for sensor placement,
rather than hardcoding heuristics and metaheuristics, to improve performance in a
similar manner to how reinforcement learning can surpass anthropogenic heuristics
for games, such as Go and Chess [22, 23].

9.3 Submodular Sensor Placement

There are several alternate approaches to performing sensor placement. When there
is a single cardinality constraint and the objective function is submodular, or approx-
imately submodular, and is monotone, a greedy algorithm (see Algorithm 1 from
[8]) performs near optimally. In such cases, the algorithm has a bound of (1, —1/e),
which is the best that can be achieved for a polynomial-time algorithm assuming
P # NP [6]. The greedy algorithm performs better than this bound in practice,
even in cases whereby the data are highly correlated. Thus, there is a gap between
theory and practice, but this is explained, to a certain extent, in [16].

Submodular sensor placement represents a classic subset selection problem where
afinite set of locations is given, and the objective is to choose a subset that maximizes
utility. Utility functions, such as the conditional entropy and mutual information of
Gaussian processes and the mean squared prediction error, which is approximately
submodular, are used to evaluate the selected and unselected sets of sensor locations.
This is a special case of the NP-complete set cover problem.

A set function is submodular if it satisfies the diminishing returns property. That
is, the incremental benefit of adding a sensor decreases the more sensors are added.
Formally, a set function f: 25 — R is submodular if for A C B C S and x € S,
FAUx)) — f(A) = f(BU{x}) — f(B).

In practice, there will be locations where sensors cannot be placed. Additionally,
sensors have a physical size and can only be placed to a certain accuracy. With the
methods discussed in this section and Sect. 9.4, it is a requirement to discretise the
space, for instance into a grid. This is not a requirement for metaheuristic algorithms.
With a fine enough granularity or grid spacing, this will not be an issue in terms of
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the objective function in that arbitrary precision cannot be achieved in any case and
relatively small changes in position will not have a significant impact on utility.
Having a fine granularity is an issue in terms of scalability, however, regarding
sequence-to-sequence learning.

9.4 Sequence-To-Sequence Learning for Sensor Placement

The sensor placement problem, from a combinatorial perspective, can be considered
in terms of sequence-to-sequence learning [17]. A representation can be created with
labels for potential sensor locations and a mapping created to a subset of optimal
sensor locations given a utility function, such as the set of locations that maximise
the signal when the subtraction of an estimate of the Newtonian noise is considered.

One approach to sequence-to-sequence learning is through that of pointer net-
works (see Fig.9.1). Pointer networks, introduced by Vinyals et al. [20], are used for
problems where the output sequence length differs from the input sequence length.
Pointer networks avail of attention in using context to determine the next token to
follow in a chain in a stochastic manner.

Reinforcement learning can be adopted as tool in solving optimization problems.
Traditional handcrafted methods or heuristics for such problems often fail to scale or
adapt to new data efficiently. Deep Reinforcement Learning (DRL) enables systems
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Fig. 9.1 Pointer network [18, 19]
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Fig. 9.2 Actor-critic framework [26, 27]

to learn and improve heuristics and latent functions through interaction with the
environment.

The research discussed in this chapter draws from [25], where DRL was used
to address the Traveling Salesperson Problem (TSP). This chapter adopts a similar
approach through the use of an actor-critic architecture, but it is applied to the problem
of sensor placement rather than the TSP. The actor-critic architecture (see Fig.9.2),
as described by Sutton and Barto [26], involves two main components:

e The actor chooses actions based on the current policy.
e The critic evaluates the actions taken by the actor and provides feedback.

DRL methods employed in actor-critic frameworks and pointer networks have
shown promise in this type of setting using architectures such as recurrent neural
networks with Long Short-Term Memory (LSTM) cells or transformers, along with
optimisers, such as Adam [24]. In addition to the TSP, DRL has been used to solve the
knapsack problem [12]. This is closer to the problem discussed here than the TSP
in that a subset is chosen. Indeed, the same architecture for solving the knapsack
problem could be adopted by giving all potential sensor locations the same weight
in the knapsack and changing the objective function to be non-additive'.

11t should be noted, however, that if using dynamic programming, rather than a pointer network, to
solve the knapsack problem in this modified form, the results will be no better than using a greedy
algorithm.
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9.5 Implementation and Preliminary Findings

The initial implementation was carried out using PyTorch on an NVIDIA Tesla M10
GPU. The actor-critic framework was adopted along with a neural network architec-
ture with LSTM cells. An 80 sensor location pointer network was used. The objective
function adopted minimised the relative residual Newtonian noise spectral density
spectrum left in the interferometer data by a Wiener filter (see Eq. 2 from [5]). The
architecture worked in principle but faced challenges related to scalability and GPU
memory limitations. Specifically, the need to discretise the space for the encoding
for sequence-to-sequence learning reduced the efficacy of the proposal when using
a Tesla M 10 or a GPU with similar computational resources in comparison to state-
of-the-art metaheuristic algorithms.

A far finer grid spacing and resolution can be adopted when a greedy algorithm
is used. The performance of using the greedy algorithm when the objective function
is monotone submodular has been demonstrated in prior research [8, 11]. In the
context of determining sensor placements for estimating Newtonian noise, however,
this approach did not perform well. Preliminary results indicated that using pointer
networks worked to a certain extent with the hardware adopted but not well enough
to make it a viable alternative to current methods.

There are several lines of investigation for future research. In general, in machine
learning, overfitting is considered a problem. In the context of combinatorial optimi-
sation, however, overfitting for a given problem instance is desirable in cases where
there is no need for generalisation and the goal is to find the best solution to the
given instance. This will be the case in determining optimal sensor placements for
gravitational wave interferometers. Furthermore, algorithmic improvements could
be made to the approach discussed. For instance, beam search with truncation when
used with heuristic breadth-first search methods could be used to reduce the com-
putational complexity on average. Additionally, the use of transformers instead of
LSTM cells will likely lead to better performance for combinatorial sensor place-
ment problems given their success in large language models and other application
domains. The methods discussed in this chapter have a variety of applications in
discrete optimization problems beyond sensor placement, highlighting the potential
impact and versatility of sequence-to-sequence learning for problems of this type.
With rapid advances semiconductor technology and with the availability of additional
resources, scalability issues will be less pronounced.

9.6 Conclusion

Determining the optimal placement of sensors in the context of gravitational wave
interferometry is key to enabling the subtraction of noise in scenarios where it cannot
be mitigated through passive or active control. Depending on the objective function
adopted, various algorithms are apt to perform this task. For certain classes of prob-
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lem, where the objective function is monotone submodular, or has a diminishing
returns property, the greedy algorithm will perform in a near-optimal manner. In
other cases, however, alternative approaches must be adopted. This paper proposed
an approach to learning good sensor placements using an actor-critic framework and
pointer networks. There were issues in terms of scalability, but with rapid advances
in hardware, these issues will be alleviated in the future.
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Part 111
Machine Learning for Gravitational Wave
Signal Analysis

Gravitational wave detectors are constantly bombarded by a variety of noise sources,
ranging from seismic vibrations and thermal noise to instrumental errors. These noise
sources can obscure or mimic the signals produced by astrophysical events, making
detection an extremely challenging task. Traditional data analysis methods, while
effective, often struggle to handle the volume and complexity of data generated.
Machine learning offers a powerful alternative. Machine learning excels at pattern
recognition, making it ideally suited for detecting and classifying gravitational wave
signals. Once trained on simulated or previously observed signals, machine learning
algorithms can quickly and accurately identify signals from various astrophysical
sources, such as binary black hole mergers, neutron star collisions, and supernovae.

Machine learning algorithms can be used to estimate the parameters of gravita-
tional wave sources with high accuracy. By training on a wide range of simulated
waveforms, these models can infer the masses, spins, and orbital parameters of binary
systems, as well as the distance and orientation of the source relative to Earth. This
information is crucial for understanding the astrophysical properties and evolution
of the sources.

The ability to process and analyze data in real time is a significant advantage
of machine learning in gravitational wave detection. Traditional methods often
require extensive computational resources and time-consuming post-processing. In
contrast, machine learning algorithms can analyze incoming data streams in real
time, providing immediate alerts and enabling rapid follow-up observations with
other telescopes and detectors. This capability is particularly important for multi-
messenger astronomy, where the simultaneous detection of gravitational waves and
electromagnetic signals can yield rich scientific rewards.
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Selected Machine Learning Techniques e
for Gravitational Wave Bursts

Maxime Fays

Abstract Gravitational wave bursts, transient events lasting from milliseconds to
minutes within the frequency band of current generation detectors, originate from a
range of astrophysical phenomena, including core-collapse supernovae, neutron star
glitches, and highly eccentric black hole mergers. Due to the complexity and diversity
of these sources, their signal morphologies are often poorly modeled or completely
unknown, making traditional matched-filter techniques ineffective for many target
sources. More critically, detection methods must be sensitive to entirely unexpected
phenomena, adopting an “eyes wide open” approach to enhance detection capabilities
beyond known or predictable events. This chapter explores the integration of several
machine learning techniques in the analysis of gravitational wave bursts, addressing
the challenges posed by unmodeled and unknown signal morphologies and outlining
the strategies developed to approach these signals with minimal assumptions.

Keywords Gravitational waves + Machine learning - Bursts + Data analysis -
Convolutional neural network - Gaussian mixture model

10.1 Introduction

Gravitational wave astronomy has rapidly advanced due to recent detections. While
these advances have been driven primarily by the detection of compact binary merg-
ers, gravitational wave bursts present distinct challenges due to their transient and
often unmodeled nature. These signals require advanced data analysis techniques
that go beyond traditional approaches.

Gravitational wave bursts, unlike the well-modeled signals from binary black hole
or neutron star mergers, often do not conform to pre-existing waveform templates.
Bursts can arise from various sources, such as core-collapse supernovae, neutron
star glitches, hyperbolic encounters, or more exotic events, such as mergers involv-

M. Fays ()
Universite de Liege, Liege, Belgium
e-mail: maxime.fays @uliege.be

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 117
E. Cuoco (ed.), Gravitational Wave Science with Machine Learning, Springer Series
in Astrophysics and Cosmology, https://doi.org/10.1007/978-981-96-1737-1_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1737-1_10&domain=pdf
mailto:maxime.fays@uliege.be
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10
https://doi.org/10.1007/978-981-96-1737-1_10

118 M. Fays

ing previously unknown astrophysical objects [1, 2]. These signals are often com-
plex, short-lived, and unpredictable, making their detection and analysis a significant
challenge [3].

The primary difficulty in detecting gravitational wave bursts is due to the unpre-
dictable nature of their sources and signal morphologies. Traditional methods, such
as matched-filtering techniques, rely on well-modeled waveform templates, which
are often unavailable for events like core-collapse supernovae and neutron star
glitches [4]. While matched-filtering is optimal when theoretical models closely
match observed data [5], it is less effective for unmodeled signals [3]. This limitation
underscores the need for model-independent detection methods.

Transient noise, or “glitches,” further complicates the detection of gravitational
wave bursts. Gravitational wave detectors, such as those used by LIGO and Virgo,
are susceptible to non-Gaussian noise artifacts that can mimic burst-like signals [6].
These glitches can result from various environmental or instrumental sources, making
it challenging to distinguish true astrophysical signals from noise. Effective noise
rejection techniques are essential to mitigate false positives and improve detection
confidence.

In response to these challenges, machine learning techniques have been incorpo-
rated into gravitational wave detection frameworks. Deep learning, in particular, has
emerged as a powerful tool due to its ability to learn directly from data without requir-
ing predefined models [7]. This shift towards data-driven analysis allows algorithms
to classify complex patterns and improve sensitivity to gravitational wave bursts [6].
Methods like Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons
(MLPs) have been applied to handle the high-dimensional data from gravitational
wave detectors, significantly enhancing detection accuracy while reducing false pos-
itives.

Machine learning is also important for multi-messenger astronomy, where the
speed of detection is essential. Quick detection and classification of gravitational
wave signals allow for rapid follow-up observations with telescopes and other instru-
ments to capture complementary electromagnetic signals, neutrinos, or cosmic rays
[7]. The near-instantaneous processing capabilities of machine learning models
increase the likelihood of successful multi-messenger observations, thus enabling
more comprehensive studies of the underlying astrophysical events [3].

10.2 Short-Duration Bursts

Short-duration gravitational wave bursts typically last less than a second [6], origi-
nating from some of the most cataclysmic events in the universe. They are emitted by
a variety of astrophysical phenomena, ranging from mergers of compact objects to
asymmetric supernova explosions and encounters involving cosmic strings [8]. The
identification and analysis of such bursts are critical for advancing understanding of
cosmic events involving extreme gravitational fields.
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One primary source of short-duration bursts is the merger of compact binary
systems [9], including black holes and neutron stars. Mergers produce gravitational
waves that peak in intensity as the objects spiral closer and eventually coalesce [10].
The final moments before the merger may emit intense bursts of gravitational waves
[11], especially in cases involving lower mass or highly asymmetric systems. Events
involving compact binary systems help in understanding the properties of black holes
and neutron stars but also provide insights into the dynamics of binary systems and
the nature of their environments [3].

Another significant contributor of short-duration gravitational wave signals is
the core-collapse of massive stars, leading to supernovae [4]. Stellar explosions are
asymmetric in nature and are theorized to emit bursts of gravitational waves as
their cores implode and rebound [12]. The precise mechanism and characteristics
of gravitational emissions depend heavily on the internal structure of the collapsing
star and the dynamics of the collapse itself [1].

Cosmic strings, hypothetical one-dimensional topological defects formed during
phase transitions in the early universe, are also potential sources of short-duration
bursts [13]. Interactions such as cusp formation [14] or reconnection events within
a network of cosmic strings [15] can release bursts of gravitational waves. Signals
from cosmic strings are particularly interesting for cosmology, providing a unique
window into the conditions of the early universe and the physics of the very high
energies involved in these phase transitions [6].

Moreover, encounters and interactions of neutron stars, either with each other or
with black holes, can emit short bursts of gravitational waves [3]. Such encounters
may not always lead to immediate mergers but can result in phenomena that emit
gravitational waves detectable as short bursts [7]. Interactions involving neutron stars
are important for understanding the population and distribution of neutron stars and
black holes in galaxies, as they could offer critical data on the end stages of stellar
evolution and the dynamics of dense stellar environments [16].

10.2.1 Coherent WaveBurst (cWB)

Coherent WaveBurst (cWB) [2] is a data analysis pipeline that analyzes data from
multiple gravitational wave detectors simultaneously, leveraging the coherent nature
of gravitational wave detection. cWB does not strictly rely on predefined templates
to identify wave signatures, thus allowing for a broader detection capability.

One of the foundational techniques employed within this framework is the use of
one-dimensional Wilson-Daubechies-Meyer wavelet transformation. The Wavelets
are particularly effective because they can be easily scaled and shifted to match the
local characteristics of a signal in the time-frequency domain [7].

Moreover, cWB employs a strategy that combines data from different detectors
to enhance the signal-to-noise ratio (SNR). This approach aids in isolating potential
gravitational wave events based on their energy distribution across both time and
frequency domains.
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The core of cWB functionality revolves around the reconstruction of waveforms
using a constrained likelihood approach. The algorithm assesses the coherence of
the detected signals across the network of detectors, enhancing its ability to pinpoint
signal patterns that stand out from the typically non-Gaussian and non-stationary
noise [3]. This involves creating a time-frequency representation of the detector
data, which allows the algorithm to analyze the data in small segments, targeting
specific signal characteristics.

Following the wavelet transform, cWB engages in pattern matching, where it looks
for specific patterns in the time-frequency map that resemble expected gravitational
wave signatures. These patterns include simplistic geometric shapes such as crosses
and chirps (both ascending and descending), utilized to match the expected behaviors
of gravitational waveforms without relying on precise waveform models [12].

By applying these methods, cWB can reconstruct the signal from the noisy data by
enhancing the coherence of the waveform across the detector network. This process
involves adjusting the methods to maximize the overlap with any real signal present,
thereby improving the signal-to-noise ratio.

The selection and application of wavelets and pattern matching techniques are
adaptive; the cWB algorithm adjusts based on the characteristics of the noise and the
potential signal. This maximizes the coherent energy across the network of detectors,
focusing on parts of the signal that are consistent across multiple detectors—a strong
indicator of a true gravitational wave event as opposed to noise, which is often non-
coherent [7].

The cWB algorithm then selects potential GW events, often referred to as trig-
gers, and assigns each an individual statistical significance based on the time-shifting
method. The technique is based on artificially inducing a non-physical temporal shift
between the data streams from different detectors, thereby creating an ensemble of
simulated non-coincident datasets. The procedure starts with the identification of a
potential gravitational wave signal in the coincident dataset, which is then subjected
to multiple iterations of time-shifting. In each iteration, the data from one detector
is shifted by a predetermined interval, typically on the order of seconds or minutes,
relative to the data from the other detectors. This process creates a new set of non-
coincident datasets, each representing an alternative scenario where the observed
signal is merely a coincidental fluctuation in the noise rather than an actual gravita-
tional wave event [2]. By comparing this probability to a predetermined threshold,
typically set at 1 or 0.1%, it is possible to estimate whether the observed event is
statistically significant and therefore worthy of further investigation and potential
classification as a confirmed gravitational wave detection.

One of the key strengths of cWB is its adaptability to different types of grav-
itational wave signals and noise environments. It dynamically adjusts its analysis
parameters based on the quality and nature of the incoming data, making it extremely
robust and versatile in real-world detection scenarios [7].

c¢WB has been instrumental in numerous gravitational wave discoveries, notably
playing a crucial role in the detection of the first gravitational waves (GW150914)
[11]. Since then, it has detected gravitational waves from a variety of sources, includ-
ing binary black hole mergers [5] and neutron star collisions [6].
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10.2.2 Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) is a probabilistic model that assumes the
underlying distribution of the data is a mixture of multiple Gaussian distributions.
In this model, each Gaussian component represents a cluster or subgroup within the
overall dataset. The GMM is defined as follows:

Let X = {xq, Xp, ..., Xy } be aset of N data points in a D-dimensional space, where
each data point x; is a D-dimensional vector. The GMM assumes that the underlying
distribution of X can be modeled as a mixture of K Gaussian distributions, where
K is a predetermined number of components.

The probability density function (PDF) of the GMM is defined as:

K
pxI0) =) mN (x| py, Ze)

k=1
where 6 = (my, ..., g, Ry, ...y X1, ..., X k) 1s the set of model parameters, and:

e 7} is the mixing coefficient or weight of the kth component, such that 0 < m;, < 1
and Y& m = 1

e 11, is the mean vector of the kth Gaussian component

e Y is the covariance matrix of the kth Gaussian component

o N(x|p;, Xy) is the PDF of a multivariate Gaussian distribution with mean g, and
covariance X

The log-likelihood function of the GMM can be written as:

N N K
LOIX) =) log p(x;10) = ) _log [Z N (% zu]

i=1 i=1 k=1

The model parameters 6 can be estimated using the Expectation-Maximisation
(EM) algorithm, which iteratively updates the model parameters to maximise the
log-likelihood function. The EM algorithm consists of two stages: the Expectation
step (E-step) and the Maximization step (M-step). Both steps are alternating and
converge to a maximum likelihood estimate of the model parameters.

The Expectation step computes the expected value of the complete data log-
likelihood with respect to the current estimate of the model parameters. Specifically,
it computes:

e The probability of each observation belonging to each cluster given the current
estimates of the model parameters.
e The expected value of the cluster assignments for each observation.

The maximization step updates the estimates of the model parameters to maximize
the expected complete data log-likelihood computed in the E-step. It computes:
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e The new estimate of the mixture weights (i.e., the probability of each cluster).
e The new estimate of the mean and covariance matrix for each cluster.

Both steps are needed because the GMM likelihood function is complex and
difficult to optimize directly. The key challenge is that the cluster assignments are
latent variables, which makes it hard to compute the likelihood of the observed data.

By alternating between the E-step and M-step, the EM algorithm can iteratively
refine the estimates of the model parameters and the cluster assignments.

One major drawback of the EM algorithm is that it can get stuck in local optima,
especially when the model is complex or the data is limited. This happens because
the EM algorithm iteratively updates the parameters based on the current estimate of
the latent variables, and if the initial values are not well-chosen, the algorithm may
converge to a suboptimal solution. EM can also be computationally expensive for
large datasets, as it requires iterating over the entire dataset multiple times.

To prevent these drawbacks, several techniques can be employed. One approach
is to use different initial values or random restarts to avoid local optima. Another
technique is to use a variant of EM, such as incremental EM or online EM, which
can handle large datasets more efficiently. Regularization techniques, such as adding
penalties to the likelihood function, can also help prevent overfitting and improve
the robustness of the algorithm.

Model selection criteria such as the Bayesian Information Criterion (BIC) can be
used to select the best model from a set of candidate models. It balances the fit of
the model with its complexity, penalizing models with too many parameters, and can
prevent overfitting by selecting the most appropriate model for the data.

Once optimal model parameters and the number of Gaussian components have
been defined using the Bayesian Information Criterion (BIC), a log-likelihood-based
detection statistic, W = ln(i)| #» 1s constructed using Gaussian Mixture Models
(GMM) to differentiate between signal and noise triggers.

The approach models the signal (s) and noise (g) as two separate classes, each
represented by their respective GMMs. For each trigger, a detection statistic 7 is cal-
culated as T = W, — W,, where W, and W, represent the maximum log-likelihood
statistics for the signal and noise models, respectively [3].

The GMM-based detection strategy has been shown to extend the number of
detected events while maintaining low false alarm rates, significantly improving
detection efficiency for short-duration burst signals [16, 17].

10.2.3 Gradient Boosting

Gradient Boosting is an ensemble learning algorithm that combines multiple weak
models to create a strong predictive model. The core idea is to iteratively train deci-
sion trees on the residuals of the previous tree, which are the differences between the
predicted and actual values. This process is repeated multiple times, with each sub-
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sequent tree attempting to correct the errors of the previous one. The final prediction
is made by combining the predictions from all the individual trees [7].

Let the training dataset be {(x;, y,-)}lN: 1» Where x; represents the feature vector
and y; is the corresponding target value. Gradient Boosting initializes a prediction
model with some arbitrary values, denoted as Fy(x). Then, for each iteration m =
1,2, ..., M, it performs the following steps.

Firstly, the pseudo-residuals are computed as:

S OL(yi, Fru—1(x:))
" OFu_1(x)) |’

where L is a differentiable loss function. These residuals represent the “errors” of
the previous prediction model.

Next, a decision tree ¢,,(x) is trained on the pseudo-residuals using a squared
error loss function. The goal is to minimize the sum of the squared pseudo-residuals,
which can be expressed as:

N
D Fim — b (X))

i=1

Then, the prediction model F,,(x) is updated by adding the new decision tree
multiplied by a learning rate v, which controls how quickly the algorithm learns:

Fm(x) = Fm—l(x) +v- ¢m(x)~

Finally, the process repeats until a predetermined number of iterations M is
reached. The final prediction model is represented as Fj(x).

XGBoost [18] implements Gradient Boosting with several key modifications and
enhancements. It uses a more accurate approximation of the loss function using
second-order gradients, which helps to improve the convergence rate. Additionally,
XGBoost introduces regularization techniques, such as L1 and L2 regularization
on the weights of the decision trees, to reduce overfitting. Furthermore, it employs
an approximate algorithm for splitting the nodes in the decision trees, called the
“exact greedy algorithm”, which reduces computational complexity while maintain-
ing accuracy.

XGBoost also incorporates other enhancements, like support for sparse data, han-
dling missing values, and parallel processing capabilities, making it a highly efficient
and scalable implementation of Gradient Boosting [3].

10.3 Long-Duration Bursts

The detection of long-duration gravitational wave bursts poses several challenges,
primarily due to the unpredictable nature of these signals and the complex noise
environment. Long-duration bursts, which can last from several seconds to minutes,
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are difficult to model accurately. In contrast to Compact Binary Coalescences (CBCs),
where the waveform is well understood through general relativity, the waveforms of
long-duration bursts lack precise models. This absence of templates complicates
the search, making it necessary to develop more generalized detection algorithms,
such as the excess-power method, which focuses on identifying excess energy in the
time-frequency domain [19, 20].

Detection pipelines for long-duration bursts rely on methods capable of identi-
fying a wide range of signal morphologies without being constrained by predefined
templates. Approaches based on anomaly detection or unsupervised learning have
been proposed to handle this variety of signal shapes [21, 22].

Another key challenge is the presence of noise and transient glitches in the data.
Gravitational wave detectors like LIGO and Virgo are subject to various environ-
mental and instrumental noise sources. These noise transients, known as glitches,
can mimic or obscure true GW signals [23, 24]. Glitches are especially problematic
for long-duration bursts, which have a higher probability of overlapping with noise
transients due to their extended duration [2].

In long-duration burst searches, the extended signal duration increases the likeli-
hood of coinciding with multiple noise transients, making it difficult to distinguish
between true signals and glitches. Advanced machine learning techniques, such as
the ALBUS model, described in the sext section, are used to mitigate the impact of
these noise artifacts and improve detection efficiency.

Time-frequency (TF) analysis is currently used by all long-duration bursts search
pipelines. TF maps provide a representation of the signal’s frequency evolution over
time, essential for identifying potential burst signals. However, achieving the neces-
sary resolution in both time and frequency domains is difficult. High time resolution
is required to capture rapid changes, while high frequency resolution is necessary to
distinguish the signal from noise [25]. Improving these techniques is an active area
of research to enhance detection sensitivity [26].

The computational demands of analyzing long-duration bursts are significant.
Searching over a wide range of possible signal morphologies and durations increases
the computational load, particularly when using high-resolution TF analysis [27]. In
addition, real-time analysis is required to enable follow-up observations by electro-
magnetic observatories, placing further strain on computational resources.

The sensitivity of detectors to long-duration bursts is generally lower than for
shorter-duration events, as long-duration bursts may have lower signal-to-noise ratios
(SNRs) [28]. Glitches further degrade sensitivity, complicating the detection of true
GW signals.
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10.3.1 Anomaly Detection for Long-Duration Burst Searches
(ALBUS)

ALBUS (Anomaly Detection for Long-Duration Burst Searches) is a machine learn-
ing model developed to address the challenges of detecting long-duration GW bursts.
It employs a Convolutional Neural Network (CNN) architecture designed to process
time-frequency maps [29].

The ALBUS architecture is inspired by the U-Net model, which is well-suited for
image segmentation tasks [30]. The U-Net consists of an encoder-decoder structure:
the encoder compresses the input data into a lower-dimensional representation, and
the decoder reconstructs the data, focusing on relevant regions of interest.

The encoder reduces the dimensionality of the input TF maps while capturing
essential features of the signal. This is achieved through a series of convolutional
layers, each followed by a rectified linear unit (ReLU) activation function and pooling
layers [31]. The convolutional layers extract features such as the frequency evolution
of the signal, while the pooling layers reduce the spatial resolution, allowing the
network to focus on key features.

The operation of each convolutional layer is represented as:

hiyr = oW hy + by)

where h; is the output of the /-th layer, W; is the weight matrix, % denotes
the convolution operation, b; is the bias term, and o is the ReLU activation
function [32].

At the deepest layer, known as the bottleneck, the network captures the most
abstract features of the input data. This layer compresses the TF map into a low-
dimensional representation that retains the most critical information.

The decoder mirrors the encoder, progressively increasing the spatial resolution
while reducing the feature map depth. The goal of the decoder is to reconstruct the
TF map, highlighting areas where a GW signal is likely present. The decoder uses
transposed convolutions (also known as deconvolutions) to upsample the feature
maps, generating two outputs: the Anomaly Map, which highlights potential signals,
and the Glitch Map, which identifies regions affected by noise.

The upscaling operation is given by:

h1,1 = O'(WIT * h[ + b[)

where W/ is the transposed weight matrix used to reverse the convolution operation
[33]. A sigmoid activation function is applied to the final output to constrain the
values between 0 and 1, representing the probability of each pixel belonging to a
signal or glitch [34].

ALBUS incorporates skip connections between corresponding layers of the
encoder and decoder to retain high-resolution information from the earlier encoding
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stages [30]. These connections ensure accurate reconstruction of the signal, pixel by
pixel. The skip connections are represented as:

11 = [, bl

where £, is the concatenated feature map at layer/ + 1, and /; is the corresponding
feature map from the encoder.

ALBUS uses supervised learning, and its training dataset consists of synthetic
chirp signals injected into real LIGO noise data. These synthetic signals are designed
to mimic the expected frequency evolution of long-duration bursts and are used to
generate TF maps for training. The signals are generated using various models,
including linear, quadratic, hyperbolic, and logarithmic chirps, with parameters cho-
sen randomly to expose ALBUS to diverse signal shapes [29].

ALBUS is trained using the mean squared error (MSE) loss function, which
quantifies the difference between the predicted and target output maps. The MSE
is computed for each pixel, optimizing ALBUS to act as a noise-removal filter that
highlights signals [35].

The Adam optimizer is used during training, adjusting the learning rate based on
the gradients computed during backpropagation [34]. The model is trained iteratively,
and the version with the lowest validation loss is selected for testing.

ALBUS has been tested on various datasets, including synthetic and real-world
data, to evaluate its performance in detecting long-duration bursts. The key metrics
for evaluation include detection accuracy, glitch discrimination, and robustness to
different signal morphologies [29].

ALBUS has shown high accuracy in detecting weak signals, even in the presence
of significant noise. It is particularly effective at identifying signals with complex
frequency evolutions, such as those from eccentric compact binary coalescences
(ECBCs) or magnetar remnants . One of ALBUS’s strengths is its ability to differ-
entiate between true GW signals and noise transients. The Glitch Map helps isolate
noise artifacts, reducing false positives and improving overall detection sensitivity.
When integrated into search pipelines, ALBUS has been shown to enhance the detec-
tion of long-duration bursts relative to traditional methods, while minimizing false
positives [36].

References

1. Abbott, B.P, et al.: Observation of gravitational waves from a binary black hole merger. Phys.
Rev. Lett. 116, 061102 (2016)

2. Klimenko, S., et al.: Method for detection and reconstruction of gravitational wave transients
with networks of advanced detectors. Phys. Rev. D 93, 042004 (2016)

3. O’Brien, B. et al.: A data-driven machine learning approach to optimize gravitational wave
burst detection (2021). arXiv, eprint: 2112.10956

4. Gossan, S.E., et al.: Core-collapse supernovae: gravitational waves from realistic 3D models
and an optimal model-independent detection strategy. Phys. Rev. D 93, 042002 (2016)



10

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Selected Machine Learning Techniques for Gravitational Wave Bursts 127

Abbott, B.P. etal.: GWTC-3: compact binary coalescences observed by LIGO and Virgo during
the second part of the third observing run (2020). arXiv, eprint: 2111.03606

Abbott, B.P., et al.: All-sky search for short-duration gravitational wave bursts in the third
Advanced LIGO and Advanced Virgo observing runs. Phys. Rev. D 101, 102001 (2020)
Mishra, T. et al.: Optimization of model independent gravitational wave search using machine
learning (2021). arXiv, eprint: 2105.04739

Abbott, B.P, et al.: Constraints on cosmic strings using data from the first Advanced LIGO
observing run. Phys. Rev. D 97, 102002 (2018). https://doi.org/10.1103/PhysRevD.97.102002
Abbott, R., et al.: Phys. Rev. X 11, 021053 (2021)

Abbott, B.P, et al.: Observation of gravitational waves from a binary black hole merger. Phys.
Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

. Abbott, B.P, et al.: GW150914: the advanced LIGO detectors in the era of first discoveries.

Phys. Rev. Lett. 116, 131103 (2016)
Klimenko, S., et al.: A model-independent method for gravitational wave burst searches. Phys.
Rev. D 83, 102001 (2011)

. Siemens, X., et al.: Gravitational wave bursts from cosmic (super)string cusps. Phys. Rev. D

76, 104006 (2007)
Damour, T., Vilenkin, A.: Gravitational wave bursts from cusps and kinks on cosmic strings.
Phys. Rev. D 64, 064008 (2001)

. Abbott, B.P. et al.: Search for gravitational wave bursts associated with gamma-ray bursts

during the third observing run of LIGO-Virgo (2021). arXiv, eprint: 2010.14533

. Lopez, D., etal.: Utilizing Gaussian mixture models in all-sky searches for short-duration grav-

itational wave bursts. Phys. Rev. D 105, 063024 (2022). https://doi.org/10.1103/PhysRevD.
105.063024

. Smith, L., et al.: The enhancement of Gaussian mixture modelling as an application to the

coherent WaveBurst algorithm in the search for short gravitational wave transients (2024).
arXiv, eprint: 2407.16414

Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785-794 (2016). https://doi.org/10.1145/2939672.2939785

Anderson, W.G., et al.: Excess power statistic for detection of burst sources of gravitational
radiation. Phys. Rev. D 63, 042003 (2001)

Klimenko, S., et al.: Localization of gravitational wave sources with networks of advanced
detectors. Phys. Rev. D 83, 102003 (2011)

Macquet, A., et al.: Long-duration transient gravitational-wave search pipeline. Phys. Rev. D
104, 102005 (2021)

Abbott, R., et al.: All-sky search for long-duration gravitational-wave bursts in the third
Advanced LIGO and Advanced Virgo run. Phys. Rev. D 104, 102001 (2021). https://doi.org/
10.1103/PhysRevD.104.102001

Abbott, B.P, et al.. A guide to LIGO-Virgo detector noise and extraction of transient
gravitational-wave signals. Class. Quant. Grav. 37, 055002 (2020)

Sutton, P. J.: Gravitational-Wave Burst Detection: Sources. Banach Center School of Gravita-
tional Waves. Warsaw (2013)

Cuoco, E., et al.: Enhancing gravitational-wave science with machine learning. Machine Learn-
ing: Sci. Technol. 2, 011002 (2021)

Cornish, N.J., Littenberg, T.B.: Bayeswave: Bayesian inference for gravitational wave bursts
and instrument glitches. Class. Quant. Grav. 32, 135012 (2015)

Lopez, M., et al.: Simulating transient noise bursts in LIGO with generative adversarial net-
works. Phys. Rev. D 106, 023027 (2021)

Abbott, B.P,, et al.: All-sky search for long-duration gravitational wave transients in the first
Advanced LIGO observing run. Class. Quant. Grav. 35, 065009 (2018). https://doi.org/10.
1088/1361-6382/aaab76

Boudart, V., Fays, M.: Machine learning algorithm for minute-long burst searches. Phys. Rev.
D 105, 083007 (2022)


https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1103/PhysRevD.105.063024
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1103/PhysRevD.104.102001
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76
https://doi.org/10.1088/1361-6382/aaab76

128 M. Fays

30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional neworks for biomedical image
segmentation (2015). arXiv preprint arXiv:1505.04597

31. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of
the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 15,
pp- 315-323 (2011)

32. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86,
2278-2324 (1998)

33. Goodfellow, L., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

34. Kingma, D.P,, Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint
arXiv:1412.6980

35. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer (2009)

36. Peters, S.: Mémoire Université de Liege. Unpublished master’s thesis (2024). https://matheo.
uliege.be/handle/2268.2/20153

37. Abbott, B.P, et al.: All-sky search for long-duration gravitational-wave bursts in the third
advanced LIGO and Advanced Virgo run. Phys. Rev. D 104, 102001 (2021)

38. Klimenko, S., et al.: A model-independent method for gravitational wave burst searches. Class.
Quant. Grav. 31, 035022 (2014)

39. Szczepanczyk, M. et al.: Coherent WaveBurst: a pipeline for unmodeled gravitational-wave
data analysis (2021). arXiv, eprint: 2105.04739


http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1412.6980
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153
https://matheo.uliege.be/handle/2268.2/20153

Chapter 11 ®)
Sparse Dictionary Learning o
for Gravitational-Wave Signal Denoising,
Reconstruction and Classification

Miquel Llorens-Monteagudo®), Alejandro Torres-Forné®, José A. Font(®),
and Antonio Marquina

Abstract This chapter presents recent advancements in the application of Sparse
Dictionary Learning (SDL) to gravitational wave (GW) signal processing, specifi-
cally in denoising, glitch removal and signal classification. We outline the mathe-
matical framework of SDL and its role in improving GW data analysis by efficiently
representing signals with sparse dictionaries. The method’s effectiveness is demon-
strated in several use cases, including reducing noise in signals from core-collapse
supernovae and binary black hole mergers, as well as mitigating transient noise (e.g.,
blip glitches) in LIGO data. Additionally, we explore the use of Low-Rank Shared
Dictionary Learning for classifying GW signals with high morphological similarity,
particularly those from different supernova explosion mechanisms. The results under-
score the potential of SDL for refining signal recovery and classification, offering
new possibilities for enhancing the precision and reliability of GW detections.
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11.1 Introduction

Since the beginning of the observational campaigns of the advanced, ground-based
GW detectors (Advanced LIGO [1], Advanced Virgo [4], and KAGRA [49]) the
amount of data these instruments are collecting is increasing rapidly, along with its
complexity. As in many other scientific areas, the challenge of handling the complex-
ity and dimensionality of this data can be tackled through their sparse representation,
on the condition of losing as little information as possible.

One technique to achieve such a goal is sparse dictionary learning (SDL) in which
the sparse representation of the data is attained through the linear combination of
basic elements, atoms, composing a dictionary. The development of algorithms for
SDL has been a subject of great interest in the last decades [13, 17, 30, 61, 64].
SDL constitutes an alternative approach to traditional signal representation proce-
dures based on Fourier decomposition or modern representations based on wavelets,
chirplets, or warplets.

In this chapter we present an overview of the current status of SDL efforts for GW
signal denoising, reconstruction and classification. Generally, SDL-based methods
involve two key steps: learning and reconstruction. Initially, a dictionary is learned
from a training dataset composed of noise-free signals that are split into patches.
This dataset is assumed to approximate the targeted population of signals we aim to
recover. The training process modifies the initial dictionary to better represent the
training data, according to a proposed objective function, which balances reconstruc-
tion accuracy and sparsity of the representation. Both the learning and reconstruction
steps involve optimizing a plethora of hyperparameters, each contributing differently
to the effectiveness of the process. The reconstruction optimization step then applies
the learned dictionary to the training signals injected into detector noise, emulating
real input data. Reconstruction hyperparameters are optimized to ensure that the dic-
tionary’s reconstructions are as close as possible to the original, noise-free training
signals. This is again achieved by enforcing sparsity on the reconstruction vectors.
This two-stage process enhances signal denoising and reconstruction by leveraging
the patterns captured in the learned dictionary.

11.2 Mathematical Framework

In this section, we review the mathematical foundation upon which SDL-based meth-
ods are built. We begin by introducing signal reconstruction, formally referred to as
basis pursuit, as it serves as the basis for the learning method. The learning method
is a modified and more complex version, where the dictionary itself is introduced as
a second variable in the minimization problem.
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11.2.1 Basis Pursuit (LASSO)

Mallat and Zhang [31] defined a dictionary as a collection of signals called atoms
such that u = Da, where u is the signal to be reconstructed, D is the dictionary,
i.e. amatrix composed of a atoms of length /, and « is a sparse a-dimensional vector
which contains the coefficients of the representation.

In the context of GW data analysis, the detector strain h(t) € R’ is typically
modeled as a superposition of the actual GW signal u(z)! plus some additive noise
n(z) following a linear degradation model

h(t) = u(t) +n(). (11.1)

Given an overcomplete dictionary D € R”*¢, where the number of atoms a is greater
than their length /, there is a sparse vector & € R“ for which Da ~ u. Attention must
be drawn to the similarity symbol, for the reconstruction D& ought to be closer to the
original signal u than to the strain h. Because the original signal is usually unknown,
finding & involves imposing a limitation to its similarity to the detector’s strain. This
problem can be written as the minimization of an objective function composed by
two terms,

o = arg ming {|h — Dar[|3 + Areclleell1} - (11.2)

In this equation the first term is the error term, measuring how well the solution fits
the data through the L2-norm. The second term, weighted by a Lagrangian multiplier
Arec, 18 the regularization term. The multiplier A is subscripted to make its specific
purpose explicit; however, it can also be used for other purposes, as will be shown
in Sect.11.2.2. The use of the L'-norm provides a constraint on the number of
dictionary atoms used, and the minimization becomes a convex variational problem.
This approach is known as basis pursuit [13] or LASSO (least absolute shrinkage and
selection operator) [53]. The regularization term in the L'-norm promotes zeros in
the components of the vector coefficient « and, thus, the solution of this variational
problem is typically the sparsest one.

11.2.2 Sparse Dictionary Learning

The prototype signals of a dictionary can be chosen as a predefined set of functions,
such as a Fourier basis (frequency dictionaries), wavelet functions (wavelet dic-
tionaries) or Gabor wavelet decomposition (time-frequency dictionaries). However,
the idea of using a dictionary learned from data has led to significant improvement
in signal denoising and reconstruction [17]. Nowadays, SDL algorithms are being

! For simplicity we use GW signal to refer to any kind of targeted waveform observable in a GW
detector, including non-astrophysical transients such as glitches.
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developed along this direction [30], and very efficient methods have been devised to
solve the optimization problem inherent to learning dictionaries.

Consider a training dataset from which p patches of length / are extracted, U =
[ur,...,u,l € R>P, using a random windowing function. In general the number
of training patches is large compared with the number of atoms and their length,
p > a > [, because each signal only uses a few elements in D for the representation.
The trained dictionary is then obtained by adding the dictionary matrix D as a variable
in the minimization problem,

1
D =argmin 3 (s — Dyl + hiam o1} (11.3)
bt

where the summation index i indicates the i-th row of the matrix e € RP*¢, which
contains the coefficients of the sparse representation of each atom. The value of the
regularization parameter Aje,m in this context only affects the sparsity of the learned
atoms. Said atoms, {d; }le , are constrained to have an L2-norm less or equal to one,
d lT d; < 1, to prevent D from being arbitrarily large.

This minimization problem is solved by the algorithm proposed by Mairal et al.
in [29] with the mini-batch optimization. This is a block-coordinate descend method

which minimizes D and «; separately for each iteration 7,

(1 _
o' =argmin {Enu, - D' a5+ ananl} : (11.4)
o

t

! 1
D' =argmin — 3 | {Enuaf —ul); + xleamna,-nl} : (11.5)
D

i=1

with the advantage of being parameter-free and not requiring any learning rate.
Additionally, the minimization can be sped up by setting the initial value of the
atoms in D° to random segments of the training data.’

The Ajearn from the learning step is a separate hyperparameter, and its optimal
value is therefore not related to the A used in the sparse reconstruction, referred to
as Arec.

2 Given enough iterations, the initial conditions of both & and D do not have a significant impact
in the final performance of the method due to the convex nature of the problem.
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11.3 Overview of SDL Applications in GW Data Analysis

11.3.1 Denoising of GW Signals

SDL was first used for GW data analysis by Torres-Forné et al. in [55], where the
capabilities of learned dictionaries to denoise GW signals was assessed. The datasets
employed comprised two catalogs of GW signals, namely a catalog of 128 waveforms
from rotational core collapse supernova (CCSN) simulations [16] and a second one
from BBH simulations [33] containing 174 waveforms, from which only the first
100 were used.

Dictionaries were trained and optimized in the same way for both catalogs: each
waveform catalog was split into 3 subsets; 80% of the data was used for initializing
and training the dictionary, 15% for validation, and the remaining 5% for testing.
Signals were resampled to 16384 Hz and injected in non-white Gaussian noise with
the power spectral density (PSD) of the Advanced LIGO proposed broadband con-
figuration [1], with frequencies ranging from 10Hz to 8192 Hz. Validation and test
signals were injected at a constant signal-to-noise ratio (SNR), defined as

\h(fi) 2
S(fi)

Ny
SNR = |4A2Af > (11.6)
k=1

where / indicates the Fourier transform of signal strain &, S is the sensitivity curve
of the detector expressed as a PSD, f; is each of the components of the frequency
vector, N is the number of positive frequencies, and Az and Af are the time step
and frequency step, respectively. Test signals were injected 20 times each at 20 SNR,
with different noise realizations in order to study the variability introduced by the
background noise. The dictionary was trained selecting 30000 random patches uni-
formly distributed from all the learning subset. The hyperparameters to be optimized
were the sample length / and the number of atoms a. We define the optimal regular-
ization parameter Aop as the value that yields the best reconstructions, determined
by comparing the reconstructed signals to the original waveforms according to two
loss functions; the mean squared error (MSE) and the structural similarity index
measure (SSIM) [59]. In [55] it was found that in general the optimum size of the
dictionary was larger for the BBH dataset than for the CCSN catalog, due to BBH
waveforms being longer. Moreover, when atoms were too short w.r.t. the size of the
original signal, the reconstruction was more oscillatory due to the background noise.
On the contrary, if the window was too big, it became more difficult to reconstruct
the smallest oscillations from the original signal.

In spite of using the mean value of the regularization parameter for all signals (of
the two catalogs), and despite each one being injected into a different noise realiza-
tion, the dictionaries were able to reconstruct them relatively well. The error estimates
are summarized in Table 11.1. A visual example of the denoising is shown in Fig. 11.1,
where the best (left) and worst (right) reconstructions from the CCSN catalog are
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Table 11.1 Summary of best and worst reconstructions of CCSN and BBH signals, in terms of
MSE and SSIM as error estimators, for two SNR values. Since each signal at a given SNR was
injected with 20 different noise realizations, only the best and worst values are shown in brackets

Signal SNR 20 SNR 10

MSE (x1073) | SSIM MSE (x1073) | SSIM

CCSN Worst [0.210—0.084] | [0.83—0.72 [0.861—0.205] |[0.72—0.51]
Best [0.033—0.015] |[0.97—0.93 [1.389—0.021] |[0.96—0.74]

BBH Worst [0.060—0.027] |[0.86—0.79 [0.104—0.039] |[0.83—0.66]
Best [0.025—0.019] | [0.89—0.86 [0.084—0.027] |[0.87—0.76]
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Fig. 11.1 Denoising example of two signals from the CCSN test subset. Both are injected at
SNR 20, and reconstructed with their respective dictionary at the mean optimal hyperparameters.
Upper panels: noisy signals (blue) superimposed with the original waveform (red). Lower panels:
comparison between denoised signals (red) with the originals (blue). Their MSE and SSIM values
are 0.018 x 1073 and 0.98 for the signal on the left panel, and 0.271 x 1073 and 0.67 for the
signal on the right panel. Reproduced with permission from [55]. Copyright 2016 by the American
Physical Society

compared to the noisy injections. In the best case, the positive and negative peaks
associated with the hydrodynamical bounce following core collapse were accurately
recovered, although when the signal amplitude decreased becoming weaker than the
noise, the dictionary yielded a null reconstruction. In contrast, in the worst case the
small oscillations were missed, yet the overall morphology was properly captured.
This happened for signals containing morphological traits notably different from the
common features of the CCSN dictionary. The individual results could be improved
by lowering the value of A, effectively decreasing the sparsity of the reconstruction
and thus increasing the number of atoms used by the dictionary.

About the same conclusions were drawn for the BBH datasets; signals were well
recovered during the three distinctive parts, namely the inspiral, merger and ring-
down. In particular, the worst case depicted in Fig. 11.2 shows that the phase was
well captured and the main differences w.r.t. the original waveform appeared only
in the amplitude. This was partially due to the original signal being longer towards
the left side of the inspiral than what was intended to be captured by the dictionary.
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Fig. 11.2 Denoising example of a test signal from the BBH catalog, injected at SNR 20. The upper
panel shows the noisy signal (blue) superimposed with the original waveform (red), and the lower
panel compares the denoised signal with the original. Their MSE and SSIM values are 0.031 x 1073
and 0.86 respectively. Reproduced with permission from [55]. Copyright 2016 by the American
Physical Society

The spurious oscillations visible after the ringdown indicate that the optimum value
of Arec is probably greater than the used.

It is also worth mentioning that the results can be improved if the reconstruction
is done in more than a single step. This was shown in [55] by reconstructing a CCSN
signal at SNR 6 with a two-step process. First a lower A, than the optimum was
chosen in order to recover the signal and part of the noise. Then, the arrival time of
the signal was estimated using a spectrogram, and in the final step the denoising was
performed again through iterative reconstructions to minimize (maximize) the MSE
(SSIM). In the example shown in [55] this resulted in an accurate retrieval of the
GW signal comparable to that obtained from a injection at SNR 10.

A denoising test of SDL using real data was performed in [55] using signal
GW150914 [26]. The data was preprocessed as little as possible, performing a single
highpass above 30 Hz to remove seismic noise and applying a specific filter to remove
all spectral lines characteristic of the Advanced LIGO detector at the time of the
detection. The reconstructed signal is depicted in Fig. 11.3, setting A = 0.004 for
the BBH dictionary. While visually the denoised signal seems in remarkable good
agreement with the numerical relativity waveform in the last cycles of the inspiral, the
merger, and the ringdown, the estimators (computed at £0.15 s from the minimum of
the NR signal) indicate only a modest accuracy, MSE = 0.0075 and SSIM = 0.4901 .

Finally, we note that more recent results on the application of SDL for GW denois-
ing have been reported in [7]. This paper shows that SDL is an excellent approach to
detect and reconstruct GW signals from massive black hole binaries (in the mHz fre-
quency range accessible to LISA) buried in the Galactic foreground noise associated
with mergers of white-dwarf binaries.
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Fig. 11.3 Denoising of signal GW150914 detected by Advanced LIGO Hanford interferometer
using the BBH dictionary. The blue line indicates the NR template and the red curve corresponds
to the reconstructed signal. The amplitude of both signals has been rescaled to lie in the interval
[—1, 1]. Reproduced with permission from [55]. Copyright 2016 by the American Physical Society

11.3.2 Removal of Blip Glitches

Apart from the main noise contributions making difficult the detection in ground-
based GW detectors, such as seismic noise, thermal noise and quantum noise, which
are relevant at low (O(Hz)), medium (O(100 Hz)) and high (O(kHz)) frequen-
cies, respectively, short transient noise signals, typically referred to as glitches, also
abound. One of the main noise characterization efforts in the LVK detector network
is focused on these transient sources of noise. While their origin is instrumental and
environmental, they often mimic potential astrophysical sources with a wide variety
of morphologies [2, 3]. Even further, they can pollute actual GW signals as happened
in the case of the BNS signal GW170817 [19].

Following [55] Torres-Forné et al. [56] showed how learned dictionaries can be
applied to mitigate the impact of glitches in real data from the Advanced LIGO
detectors. The study was focused on blip glitches, a type of noise transient with a
typical duration of 10 ms and a frequency bandwidth of 100 Hz. Blip glitches are one
of the worst noise contributors in the Advanced LIGO detectors which significantly
reduce the sensitivity of searches for high-mass CBC [12]. In [56] 100 blips were
selected from the data stream of Advanced LIGO’s first observing run (O1). Each
glitch was contained in a one-second window centered at the GPS time of the glitch
as recorded in Gravity Spy [63]. Given that detector’s data is populated by a wide
variety of noise, as stated before, all data was whitened (using the autoregressive
model of [14, 15]) to remove all systematic sources of noise and flatten the data in
frequency. The study employed 85% of the data for training the dictionaries and 15%
for testing. A single denoising dictionary was sufficient for this task, initialized from a
single glitch split up into windows of 1024 samples, and trained over 30000 random
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patches from all the training signals. Dictionary hyperparameters were optimized
following the same procedure of Sect. 11.3.1, with the added difficulty of not knowing
how “original” blips are supposed to look like. To address this issue two different
estimators were introduced as loss functions; the first one defines an alternate SNR
by comparing the spectrum of the glitch segment to the average spectrum of the data,

Is
SNR = DXGM) gy =/' S(t, f)df, (11.7)
S() ;

0

and the second one measures the spectral flatness of the given sample again w.r.t. the
glitch-free background,

exp (£ [/, In(P () df )
W= L f/2 : (11.8)
7 )5 PUOHYAS

The best results were obtained with 192 atoms of 128 samples each, with an added
step consisting on smoothing the signals in order to improve the convergence of
the learning step and reduce spurious oscillations inside atoms, achieved through
the use of the rROF method [47, 54]. The optimum value of the regularization
parameter A.. was defined w.r.t. both estimators using the iterative reconstruction
procedure introduced in the previous section, with the goal of extracting the glitch
while keeping the background unaltered. For this, however, a variation was needed;
instead of waiting for the i-th reconstruction to be lower than a given threshold, the
stop condition was set to guarantee zeros at the extremes of the signal where only
background noise was present while still retrieving components of the glitch at the
center of the window.

Figure 11.4 shows the time-frequency diagram of three illustrative examples of
blip glitches from the test set reconstructed with the optimum parameters. In all
three (and for the whole test set) the background was kept almost untouched when
no glitch was present, with only the glitches themselves being partially recovered.
Their impact was significantly reduced, although some parts often remained (see
middle and right panels). We note that the recovery was not homogeneous in all
frequencies; the power was reduced for low and middle frequencies up to ~ 500 Hz,
while higher frequencies proved to be challenging for the dictionary. Furthermore,
in the right column of Fig. 11.4 the morphology of the spectral line around ~ 1300
Hz, which is clearly not part of the glitch, was left unaffected. This is a good feature
of the dictionary in situations were a blip is overlapped with an actual GW, as the
method would be capable of leaving the latter untouched. In this example, however,
the spectral line is another source of noise and thus requires an additional technique
to mitigate its impact, which motivated the next procedure.

To improve the aforementioned shortcomings an additional method was proposed
in [56] by combining the iterative reconstruction of the initial dictionary with a
second dictionary applied to the initial residuals. Being the target high-frequency
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Fig. 11.4 Time-frequency diagram (spectrogram) of three illustrative examples of blip glitches,
with data previously whitened to flatten the detector’s intrinsic background noise and spectral lines
in order to visually highlight glitches. The original data and the residuals are represented in the
upper and bottom panels, respectively. Reproduced with permission from [56]. Copyright 2020 by
the American Physical Society

components of the glitch, the second dictionary was built with smaller atoms of
16 samples, with 40 atoms sufficing for the overcomplete condition, and a lower
value of Apc. Since these settings would inevitably increase the partial recovery
of spurious oscillations from the background noise, the reconstruction window for
the second dictionary was restricted to the most significant part of the blip within
the first reconstruction. This resulted in an effective reduction of the glitch remains
up to ~ 1kHz, leaving the background noise relatively unaltered. Numerical results
from both estimators (see Table 11.2) revealed that when the first denoising did not
remove a glitch completely, the second dictionary was able to improve the results.
Therefore, glitch denoising with multiple dictionaries is a convenient strategy and
had a negligible increment in computational cost.

Finally, [56] applied their deglitching method to the BNS signal GW170817 [19].
In this detection, a short instrumental noise transient appeared in the LIGO-
Livingston detector data about 1.1s before merger, partially blocking the inspiral
segment. This unfortunate event provided a good opportunity to asses the capabili-
ties of SDL to reconstruct this glitch and to analyze the impact of the algorithm on
the actual astrophysical signal. The results are shown in Fig. 11.5. The spectrograms
were computed using the Q-transform [20] in order to facilitate the comparison with
the LVK results [19]. We note that the shape of this glitch is notoriously different
from those included in the training set used in [56]. Thus, the denoising dictionary
was not specifically tailored to deglitch this particular noise transient. Furthermore,
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Table 11.2 Quantitative assessment of the deglitching procedures. The columns report the values
of the estimators, SNR and W, for the data containing the original noise transients (subindex ‘0’)
and for the residuals after deglitching, and both for a single dictionary (subindex ‘single’) and for
multiple dictionaries (subindex ‘multi’). Reproduced with permission from [56]. Copyright 2020
by the American Physical Society

Test # SNR, SNRgingle | SNRpulti W, Wiingle Winulti
1 5.3 1.3 1.3 0.99 0.99 0.99
2 5.2 2.4 1.3 0.94 0.94 0.93
3 9.2 1.3 1.3 0.99 0.99 0.99
4 37.1 10.2 1.5 0.84 0.92 0.97
5 18.1 2.3 1.7 0.99 0.98 0.98
6 13.5 3.8 1.7 0.98 0.98 0.98
7 4.1 1.3 1.3 0.98 0.98 0.98
8 6.3 1.3 1.3 0.96 0.97 0.97
9 13.4 9.8 2.9 0.98 0.98 0.98
10 8.7 3.0 1.7 1.00 0.99 0.99
11 7.3 1.3 1.3 0.99 0.99 0.99
12 5.8 1.3 1.2 0.99 1.00 1.00
13 4.5 1.8 1.3 0.99 0.99 0.99
14 14.2 1.2 1.2 0.99 0.99 0.99
15 15.2 2.2 1.3 0.88 0.88 0.89
16 6.2 1.3 1.3 0.99 0.99 0.99
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Fig. 11.5 Time-frequency diagrams of 8s of data corresponding to the GW170817 signal. The
left panel shows the original data from LIGO-Livingston. The right panel displays the data after
subtracting the glitch using a single blip-trained dictionary with 256 samples. Reproduced with
permission from [56]. Copyright 2020 by the American Physical Society

the duration of the glitch was significantly longer. Hence, a dictionary with longer
atoms (256 samples) was employed while keeping the other hyperparameters the
same, which in turn increased the uncertainty about the dictionary used being opti-
mal. Nevertheless, as the right panel of Fig. 11.5 shows, the glitch was removed from
the data for the most part while recovering almost the totality of the inspiral signal.
The remaining bits of the glitch around frequencies ~400 Hz and below ~50 Hz
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were not removed after applying a second smaller dictionary. This could be poten-
tially improved if the dictionaries were trained with a larger set of glitches from
different morphologies.

11.3.3 Classification of Glitches in Simulated Noise

SDL has been used for classification tasks in image processing applications [28,
45] such as face recognition [60] or texture classification [37]—but also in signal
classification [18, 22]. On those fields, more complex approaches presented in recent
years have shown improved results in comparison [27, 51, 52]. In the realm of GW
data analysis, SDL algorithms have just begun to be used for classification tasks [25,
43, 48].

A simple SDL classification algorithm was presented by Llorens-Monteagudo et
al. [25] to reconstruct simulated GW glitches injected in Gaussian noise. Based on
the well-known performance of the dictionaries and the quality of their reconstruc-
tions, a first denoising step was introduced to highlight the morphological traits of a
given input signal over the background noise of the detector. This step was repeated
using as many dictionaries {D;}{_, as signal categories (c), hence obtaining slightly
different reconstructions {p;}{_, for each input signal. These are referred to as par-
ent reconstructions. The second step is where the actual discrimination takes place.
During the training phase, multiple pools of example signals were built in advance,
each corresponding to a denoising dictionary / category and all of them padded to the
same length. These collections served as generic references, illustrating the expected
reconstructions of each dictionary. For each reconstruction p; the closest n,, exam-
ples were selected from each pool of sample signals, and linearly combined into a
single one per category. After this step the number of signals is ¢ times the num-
ber of reconstructions, leaving a tree-like structure of signals per input, as shown in
Fig. 11.6. This second batch of signals was referred to as children reconstructions.

Input

Po b1 P2

NN N

Coo Co1 Co2 €10 €11 Ci2 C20 C21 €22

Fig.11.6 Example of a tree diagram of all reconstructions p; and sample signals ¢; ; which would
be generated after the second step of a given input signal if only three different categories are
considered (¢ = 3). Figure from [25]
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Fig. 11.7 Examples of each
waveform morphology
included in the data set, in
the time domain. Figure
from [25]

Sine Gaussian (SG)

Gaussian (G)

Ring-Down (RD)

The predicted category was chosen according to

1-— SSIM(pJ, Cj,')
2 9

idgie = argmin; [ | (11.9)

J

where the SSIM acts as a loss function. This allows to find the dictionary that yields
the most “verisimilar” reconstructions during step 1, under the assumption that the
dictionary whose category coincides with the input signal will produce reconstruc-
tions closer to the corresponding reference pool, while not deviating much from the
rest of pools than the rest of the dictionaries with their respective pools.

The study of [25] employed the synthetic noise transients (glitches) of [38].
The dataset comprised three different type of glitches, namely Sine Gaussian (SG),
Gaussian (G), and Ring-Down (RD), with frequencies ranging from 40 to 1500 Hz.
Figure 11.7 depicts an example of each category in the time domain. Gaussian glitches
were introduced as a simple and well differentiated morphology, while SG and RD
are relatively more complex and similar between them. The training dataset was
built by fixing the amount of training patches p to 20000 instead of the number of
complete signals. This was done because Gaussian signals are almost 2 orders of
magnitude shorter than the other two categories. Hence, if the number of signals
were set equal for all categories then Gaussian signals would be under-represented
in terms of samples. On the other hand, for the validation and test subsets a total of
300 glitches (100 per category) were generated for parameter optimization, and 3000
more for the final test, guaranteeing that the statistical work related to classification
was performed with balanced data sets.

Validation and test signals were injected into non-white Gaussian noise at SNR =
20, using the definition in Eq. (11.6). However, training signals were kept noise-
free because it was found that training the dictionaries with noisy patches produced
reconstructions bloated with spurious oscillations in the case of the Gaussian signals.
This was attributed to their short duration, which translated to being represented by
so few samples that makes them less discernible from the background noise.
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Table 11.3 Optimum values of all hyperparameters used for the final classification test in [25].
Each row corresponds to a single type of glitch

Category Alearn a l Arec np ap
Sine 0.02 512 256 0.09 1 256
Gaussian

Gaussian 0.006 256 128 0.09 1 256
Ring-Down |0.01 512 256 0.09 1 256

The optimization of the hyperparameters was done in a greedy fashion. Part of
those parameters (the learning parameter Aje,m, the length of atoms /, and the num-
ber of atoms a) were optimized to produce the best reconstructions according to
the MSE estimator. However, [25] found that classification dramatically improved
when optimizing the parameter of the reconstruction A W.r.t. the classification itself
instead of focusing on the accuracy of the denoising. In general, the optimum value
for classification turned out to be lower than the optimum for reconstruction. The
remaining hyperparameters related to the children reconstructions, namely the num-
ber of sample signals in each pool a,, and the number of sample signals used per child
n ,, were trivially chosen as those which maximized the accuracy of the classification
at a reasonable computational cost. The values are reported in Table 11.3. It is worth
noting that the optimal value for n,, was the lowest, which is consistent with the goal
of the sample pools, i.e. providing a strict discriminating selection.

Test glitches were injected in noise at random SNR values between 1 and 400 to
add more variety. From all 3000 glitches 96% were classified correctly. As shown in
the confusion matrix of Fig. 11.8, the Gaussian dictionary was the most successful
with only one lost glitch. This was attributed to the morphological simplicity of
Gaussian glitches which, added to their comparatively short duration, make them
hard to replicate by the other more complex morphologies, and conversely easier to
use for replicating those. Misclassifications between sine-Gaussian and Ring-Down
glitches were expected due to their similarity, although the asymmetry in results
is worth a mention. SG glitches of high frequency have shorter durations which,
combined to spurious oscillations of the background noise, can make them more

Fig. 11.8 Confusion matrix

showing the classification RD
results of the test set. Rows
correspond to the actual
morphology of test glitches,
and columns to the
morphology predicted by
classification dictionaries. SG
Figure from [25]

Actual
[a)

26

66

SG G RD Lost
Predicted
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similar to RD glitches when injected at low SNR. This, however, is more confusing
for the RD dictionary than for the SG dictionary because the latter will need more
atoms to replicate a sudden increase in amplitude due to its designed morphology.

11.3.4 Classification of the CCSN Explosion Mechanism

A recent application of SDL for the classification of the CCSN explosion mecha-
nism has been reported by Powell et al. [43]. A learned dictionary dubbed LRSDL
(Low-Rank Shared Dictionary Learning) [57], specifically designed for classifica-
tion, was used in this investigation. This algorithm extends the Fisher Discrimination
Dictionary Learning (FDDL) [62] by capturing shared components among diverse
waveform classes. It has demonstrated strong performance in scenarios with lim-
ited training samples, surpassing previous dictionary-based algorithms in computa-
tional efficiency. The classification dictionary D =[D D,]andreconstruction vec-
tor X = [X7, (X717 exhibit a more complex structure compared to the denoising
dictionary. The dictionary comprises two “type” of matrices; the first type represents
the class-specific features and thus there are as many as classes, {Di}iczl, while the
second type captures the shared parts among two or more classes, hence being only
one, Dy.

During the learning process, for a given input waveform Y, the method tries to
reconstruct it by linearly combining atoms from both types of dictionaries such that

Y ~ DX + DyX°, (11.10)

imposing different restrictions to each part of the dictionary. For the class-specific
part FDDL constraints are imposed, while the shared part Dy is enforced to be low-
rank in order to avoid the assimilation of class-specific features, and the components
of the shared code vector X" to be close to each other so that its contribution to each
class is as homogeneous as possible.

This leads to a total of six hyperparameters, with half of them representing
the physical size of dictionaries D. € R’ and D, € R'*%, and the remaining
half being the regularization parameters A (sparsity of X), A, (sparsity of X and
homogeneous contribution of X), and n (low-rank regularization of D).

The classification of an unknown input signal Y is performed first by reconstruct-
ing it as in (11.10), finding the coefficient vector X with the sparsity constraint and
homogeneity contribution of X. Afterwards, the contribution of the shared dictio-
nary is extracted from the input signal, ¥ =Y — DX, and finally the predicted
index of the class is determined by the class-specific dictionary which “adapted”
better to Y,

argmin<.<c (w||¥Y — DX|I3 + (1 — w)[|X — m.]3) , (11.11)
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where m, is the mean vector of X, and w is a weight to balance the contribution
between the similarity term and the homogeneity contribution term. It is worth noting
that because of how the classification is performed, the input signal cannot be split
into smaller windows. Hence, all atoms in the classification dictionary must be of
the same length of the signals to be classified, as opposed to the denoising dictionary
whose atoms’ length can be optimized.

Alongside two other algorithms (based on Bayesian model selection and convo-
Iutional neural networks), the LRSDL dictionary was used in [43] to identify the
explosion mechanism of simulated CCSN by their GW morphology alone. Several
mechanisms have been proposed and two of those were included in the datasets
of [43]. The most usual explosion mechanism is thought to be neutrino-driven [23].
GWs from massive stars that explode by this mechanism contain most of their energy
in f- or g-modes with frequencies above ~500 Hz [32, 35, 36, 39, 44], and may
also contain low-frequency modes due to the standing accretion shock instability
(SASI) [9, 58], which typically fade away before shock revival. An example is shown
in the top right spectrogram of Fig. 11.9. The second mechanism, named magneto-
rotational, is expected to be an additional contribution to the neutrino-driven mecha-
nism in rapidly rotating CCSN explosions with powerful magnetic fields [8, 34, 42].
GWs from these sources may present large broadband spikes at the time of the core
bounce (bottom left spectrogram in Fig. 11.9), and change the relationship between
the f-/g-modes and the mass and radius of the proto-neutron star. A third category
was included in [43] for the case of non exploding collapse, which corresponds to
a situation in which the shock wave does not gain enough energy to be revived.
Nevertheless, GWs are still emitted in this case before black hole formation, with
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Fig. 11.9 An time-frequency representation of each of the four types of CCSN waveforms used
in the dataset. Reproduced with permission from [43]. Copyright 2024 by the American Physical
Society
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Table 11.4 Summary of the original (noiseless) signals included in the training and test dataset.
The following abbreviations are used: Neu (neutrino-driven), Mag (magneto-rotational), Nox
(nonexploding), and Chi (chirplet). A detailed description of each model can be found in [43]

Category | Training Test
# | Models # | Models

Neu 8 s40pr [36] 3 18M¢ [39]
10Mp, 11M@, 19Mo, 60Mo [44] 12M¢ [44]
y20 [40] m39 [40]
z85_SFHo, z85_SFHx [41]

Mag 8 m39_B10 [42] 2
0,P,W[34] m39_B12 [42]
11_904d,12_gB[I1] Al13[6]
A26,A39 [6]

Nox 7 s40NR [36] 2
mesa20_gw,mesa20_pert_gw,mesa20_LR_gw s18np [40]
[35]
13Mg [44] C15 [32]
z100 (SFHo, SFHx) [41]

Chi 10 | 2x(600,650,750,800,850) Hz 2 | 700Hz

the most distinctive feature being the low-frequency SASI component lasting longer.
Finally, to study the response of the classification algorithm when confronted with a
waveform whose morphology did not match the previous classes, a fourth category
was included, namely synthetic chirplet glitches (top left spectrogram in Fig. 11.9).

Table 11.4 summarizes the train and test datasets used in [43]. In order to study dif-
ferent scenarios, test signals were injected in noise from three different GW detectors:
Advanced LIGO, Einstein Telescope and the proposed Australian high-frequency
detector NEMO. The first two were generated by recoloring real data from the LIGO
Livingston detector (during the third observing run, a segment starting at GPS time
1238179840 and spanning for 4096 s) to the respective detector’s design sensitivities
(ref. Fig. 11.10). On the other hand, the NEMO detector’s noise was simulated from
Gaussian noise because of the disparity between its frequency sensitivity and that
of the other two detectors. The signals were injected in 10s intervals at SNR values
of 25, 30, 35, 40, and 45. In total, 368 signals were injected in each detector, 92
nonexploding (Nox), 138 neutrino-driven (Neu), 92 magneto-rotational (Mag) and
46 chirplets (Chi).

Before the LRSDL dictionary was used for classification a previous pre-processing
step was applied consisting in whitening the data (as in Sect. 11.3.2) and denoising it
with a single learned dictionary. The dictionary was trained with all training signals
except chirplets (the unknown/foreign category), making no distinctions between
categories since the goal of this dictionary was only to recognize and reconstruct
any of them from within detector’s data. Furthermore, the classification dictionary
was trained by injecting the train signals into Advanced LIGO noise (also from the
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Fig. 11.10 The amplitude spectral density (ASD) curves for the Advanced LIGO design sensi-
tivity [1], Einstein Telescope [21] and NEMO [5] gravitational-wave detectors. Reproduced with
permission from [43]. Copyright 2024 by the American Physical Society
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Fig. 11.11 SDL classification results for all detectors. The corresponding accuracy is 78% for
Advanced LIGO, 65.3% for the Einstein Telescope, and 69.5% for the NEMO detector. Reproduced
with permission from [43]. Copyright 2024 by the American Physical Society

third observing run but at only two different GPS times not used for testing and with
no recoloring whatsoever) and denoising them with the aforementioned denoising
dictionary, this time with the data properly labeled. As a final note, the LRSDL
dictionary by default was not able to manage an unknown type of signal (it would
always classify any input), therefore its code was modified by adding a confidence
threshold in its loss. A signal which yielded a value surpassing this threshold would
be considered not recognized as any of the three main categories (Nox, Neu, Mag)
and thus classified (in this case) as a chirplet.

Results from the final classification are shown in the confusion matrices of
Fig.11.11. The best performance was found with the Advanced LIGO detector,
for which the algorithm was able to tell apart chirplets from CCSN GWs. On the
opposite extreme were magneto-rotational signals, with half of them misclassified
(mostly mixed into the chirplet category). This could potentially be explained by
the perhaps too simplistic criteria used to discard signals as chirplets; however, it
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must be stressed that few original test signals were available, with the total num-
ber of injections achieved by copying them at several SNR values and GPS times
(equivalent to noise realizations). The denoising dictionary proved to be effective at
recovering signals in previous sections, which in this case reduces the effectiveness
of this kind of data augmentation by providing the LRSDL dictionary with almost
exact copies. Hence, if by chance one of the original signals were confused by the
classification algorithm, most of its injected copies would be expected to meet the
same outcome. Neutrino and nonexploding signals were reasonably well differenti-
ated, with the misclassifications coinciding with injections at the lowest SNR where
it is more challenging to detect the SASI components.

In the case of the Einstein Telescope almost all nonexploding waveforms were
correctly classified, which is consistent with the increased sensitivity of the detector
especially at low frequencies. Results degraded in the case of neutrino-driven and
magneto-rotational signals, however. This was partially due to the optimization of
hyper-parameters performed with only LIGO detector’s noise (for computational
reasons), outweighing the increased sensitivity of the Einstein Telescope.

Finally, results for the NEMO detector were overall similar to the ET detector. The
accuracy for nonexploding sources decreased in all likelihood due to the reduced sen-
sitivity of NEMO at low frequencies. Magneto-rotational signals were again largely
misclassified, although this time because of the confidence threshold marking almost
half of them as chirplets. This was compensated by a slight increase in the accuracy
of neutrino-driven and chirplets, the latter ones better discriminated because of their
higher frequency.

11.4 Conclusions

In this chapter, we have presented the recent application of Sparse Dictionary Learn-
ing (SDL) techniques to gravitational wave (GW) signal processing, focused on
denoising, glitch removal, and signal classification.

Our work shows how SDL is effective in both denoising astrophysical signals
and glitch removal. Tailored dictionaries were able to reduce noise while preserving
the integrity of GW signals, particularly in core-collapse supernovae (CCSN) and
binary black hole (BBH) cases. Additionally, the removal of blip glitches in Advanced
LIGO data highlighted SDL’s potential to cleanly eliminate transients without affect-
ing the underlying signals. Moreover, the application of the state-of-the-art LRSDL
algorithm to signal classification showed that learned dictionaries could distinguish
between morphologically similar signals, such as those from neutrino-driven and
magneto-rotational supernovae, even in noisy environments.

Overall, we believe that SDL shows promise as a tool in GW data analysis. The
ability to construct and optimize dictionaries for specific tasks, whether it be denois-
ing, deglitching, or classification, opens up new possibilities for improving the accu-
racy and reliability of GW detections. We hope that the continued advancement
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of SDL techniques will contribute to the future of gravitational wave astronomy,
enhancing our ability to hear our universe.
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Chapter 12 ®)
Searching for Long-Duration Transient o
Gravitational Waves: Convolutional

Neural Networks Applied to Glitching

Pulsars

David Keitel®, Luana M. Modafferi(®, and Rodrigo Tenorio

Abstract Besides compact binary mergers and other sources, long-duration quasi-
monochromatic signals from spinning deformed neutron stars have long been one
of the prime targets of ground-based gravitational-wave detectors. Glitching pulsars
in particular can be a source of such signals that are not quite as persistent as those
from more quiescent neutron stars, but could be detectable on timescales of hours
to months. Within the framework of the g2net COST action, at the University of the
Balearic Islands a project has been pursued to develop a hybrid search approach for
such signals that combines intermediate products from a matched-filter search over
a bank of frequency-evolution templates with neural networks trained to identify
signals of varying start time, duration and amplitude evolution. Here we summarise
the motivation for this project and the results originally presented in Modafferi, Keitel
& Tenorio 2023, Physical Review D 108, 023005 [1].

Keywords Gravitational waves - Neutron stars * Pulsars - Pulsar glitches -
Convolutional neural networks

12.1 Introduction

While the LIGO-Virgo-KAGRA network [2—4] has already detected a large variety
of gravitational-wave signals from compact binary coalescences [5], the search for
the first examples of many other types of astrophysical sources is still ongoing. One
long-standing target are individual spinning deformed neutron stars, which can emit
long-duration quasi-monochromatic signals in the sensitive band of current or future
ground-based gravitational-wave detectors. The primary class of such signals are the
so-called continuous waves (CWs) [6], where the emission is powered by the gentle
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spin-down of the neutron star and will typically remain persistent for longer than an
observing run. On the other hand, newborn neutron stars or those perturbed by a strong
transient event could emit long-duration transient signals on timescales between
those from binary mergers and CWs. One class of such signals has been labeled
“transient continuous waves” (tCWs), defined as sharing the main characteristics of
true persistent CWs: at any given time, the signals are quasi-monochromatic (limited
to a narrow band in frequency), and their frequency and amplitude vary only slowly
over time.

We summarise here the motivation and recent efforts to search for tCWs from
one particular class of sources, namely glitching pulsars, over timescales of hours to
months. We focus on how neural networks can help in their detection, summarising
work that was done within the framework of the g2net COST action at the University
of the Balearic Islands and originally presented in Modafferi, Keitel & Tenorio 2023,
Physical Review D 108, 023005 [1].

12.2 Astrophysical Motivation

Pulsars are the most numerous observational manifestation of neutron stars detected
so far, with over 3500 included in the ATNF catalogue' as of 2024. They are ideal
targets for CW searches since the precise electromagnetic timing solutions allow for
highly sensitive fully-coherent single-template [7] or narrow-band [8] searches at
acceptable computational cost and low statistical trials factors. But as first suggested
by Prix, Giampanis & Messenger in 2011 [9], the subset of pulsars that experience
sudden spin-up events called glitches could also be tCW emitters. In a glitch, energy
is not created out of nowhere but likely sourced either from quakes that release
mechanical stresses in the neutron star’s crust [10, 11] or, in the preferred family of
models for most of the glitching population, from the superfluid interior of the neutron
star [12, 13]. The superfluid is expected to lag the slow-down of the observable outer
layers and can then transfer some of its excess rotational energy to those in a glitch
event.

Such tCWs from glitching pulsars are not a guaranteed source, since the emission
details, even up to orders of magnitude in amplitude, are model-dependent and have
not been predicted in detail yet. However, an indirect upper limit was derived by [9]
based on the maximum energy that can be liberated in a two-fluid interaction, and
they argued that a similar limit with only a factor of two difference holds for the
crustal quake scenario. Over an emission time 7, this energy budget translates to a
dimensionless root-mean-square amplitude upper limit

N 1 /5G T |Afy
ho < 2 [2GL1A a] (12.1)
d\ 23 T fior

Uhttps://www.atnf.csiro.au/research/pulsar/psrcat/.
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where d is the distance to the pulsar, G is Newton’s constant, c is the speed of light,
1 is the moment of inertia of the neutron star, f is its rotational frequency, and A fy
is the observed step change in frequency at the glitch. For the simple assumption of a
“rectangular” tCW signal with constant amplitude over a duration t, the upper limit
can be directly expressed in terms of the nominal amplitude parameter 4 as used in

the CW literature [6]:
1 T|A
d\ 23 T fiot

One key observation about this result is that it scales with the same factor of 1/4/T
as the typical strain amplitude sensitivity of (t)\CW searches. This means that at the
same energy budget, tCWs will be approximately equally detectable independently
of their actual length, as long as the search method can adapt efficiently to that length
scale.

This upper limit from [9] was used by Moragues et al. [ 14] to study future detection
prospects of tCWs from glitching pulsars, computing it for a set of 726 glitches from
217 pulsars observed up to that point. Those were compared with the sensitivity
curves of current and future GW detectors, which correspond to their noise spectral
densities scaled by a sensitivity depth factor for realistic narrow-band search setups.
The main result is reproduced here in Fig. 12.1 and indicates that, if any glitching
pulsars emit tCW-like radiation near the maximal allowed energy budget, there are
nonvanishing detection chances for some nearby and strongly glitching pulsars, like
Vela, already with the LIGO detectors from the current O4 observing run on. Next-
generation detectors can provide an even deeper reach into the known population
of glitching pulsars. A more detailed analysis of the differences for rectangular and
exponentially-decaying tCWs (corresponding to the two vertical axes of the figure)
can also be found in [14].

12.3 Searches so Far and Their Limitations

The first practical searches for tCWs after glitches from known pulsars were done
using the transient F-statisticmethod introduced by [9]. This is a matched-filter
method derived from the classic F-statistic for CWs [15]. It starts from a likelihood
ratio between a signal hypothesis for a CW embedded in Gaussian noise compared
with a pure Gaussian noise hypothesis, then maximises it over the four amplitude
parameters of the signal model to obtain a detection statistic that “only” remains to
be evaluated over a bank of possible frequency evolution parameters (the frequency
at areference time, one or more spindown parameters, and the pulsar’s sky position).
While the standard F-statistic for CWs is usually evaluated over a fixed duration,
e.g. afull observing run, the transient J-statistic adds on top a brute-force evaluation
of all possible start times and durations within the observation time.
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Fig. 12.1 Detection prospects for tCWs from glitching pulsars, based on the previously observed
population, from [14]. The gravitational-wave frequency is assumed to be fgw = 2 fror. Crosses
correspond to the upper limits from Eq. (12.2) and the sensitivity curves S, for each detector are
scaled by realistic sensitivity depth factors D for matched-filter searches. Reproduced from Fig. 1 of
“Prospects for detecting transient quasi-monochromatic gravitational waves from glitching pulsars
with current and future detectors”, J. Moragues et al., MNRAS 519, 5161-5176 (2023), (c) 2022
the authors, published by Oxford University Press on behalf of Royal Astronomical Society. See
that paper for additional details

The method was first applied in practice to open LIGO data from the O2 observing
run [16] in [17], to search for tCWs of up to 4 months in length after one glitch each
from the Crab and Vela pulsars. Searches for nine glitches from six pulsars during
the O3 observing run, using LIGO and in some cases Virgo data, were performed as
well [8, 18]. In no case was a promising detection candidate found, and the indirect
energy upper limit has not yet been reached for any target.

Searches with the transient JF-statistic are mainly computationally limited, since
the cost of evaluating all partial sums for different signal start times and durations
exceeds the pure F-statistic matched filter cost by orders of magnitude [9, 19]. Hence,
these practical searches so far have been limited to narrow-band searches over less
than a Hertz around the fow = 2 fior frequency of known glitching pulsars. All-sky
all-frequency all-time searches for unknown glitching pulsars would require radically
different approaches. In addition, the method is mostly only computationally feasible
when limiting to the simple rectangular amplitude evolution, while an astrophysically
more intuitive exponential signal decay makes the evaluation much more costly
again [9, 19]. These two limitations have motivated the exploration of machine-
learning approaches to tCW detection.
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12.4 Convolutional Neural Network Setup

We now focus on the approach taken in Modafferi, Keitel & Tenorio 2023 [1].
This is a hybrid matched filter—machine learning setup, in which the aim was not
to completely replace the JF-statistic based pipeline, but only to improve over its
computationally limited part: the evaluation of partial sums over different possible
start times and durations for possible tCW signals in a given data set. Keeping the
initial matched-filter stage over a bank of frequency evolution templates makes it
easier to stay close to the near-optimal sensitivity of the pure transient J-statistic
searches (for tCW signals exactly matching the assumed signal model), while for
pure machine-learning approaches, such as those based on pattern recognition in
spectrograms, it is often a much greater challenge to get into such sensitivity regimes
far below the detector noise curves. On the other hand, a central goal was to keep
flexibility in amplitude evolution while increasing computational efficiency.

The basic inputs to the neural networks are hence not the gravitational-wave strain
series, nor Fourier transforms, nor spectrograms. Instead intermediate outputs of the
JF-statistic matched filter code in LALSuite [20] are used, the so-called F-statistic
atoms as described in [9, 21]. These are evaluated for each Short Fourier Transform
(SFT) into which the data is typically divided for (t)CW searches—1800s each in
this example. They are a set of seven quantities at each SFT timestamp: three that
describe the sky-position dependent detector sensitivity in terms of antenna pattern
matrix components and four that are the real and imaginary parts of two projections
of the data. See appendix A of [1] as well as [9, 21] for details.

The network architecture chosen for this study is a convolutional neural network
(CNN) including three one-dimensional convolutional layers with rectified linear
unit (ReLU) activation functions, a flattening + dropout layer, as well as four fully
connected layers and the final output layer, all also with ReLU activations. This is
illustrated in Fig. 12.2. The output quantity of the network is trained to be a proxy
for the signal-to-noise ratio (SNR) of tCW signals in the data.

A key part of the project was to develop a training strategy that is well suited to
a realistic detection problem at hand and allowed for achieving a sensitivity close
to the full transient F-statistic method. Training is done with a mean-squared error

o

c
FC + ReLU
ReLU

Tnput

Fig. 12.2 CNN architecture used in [1]. Reprinted with permission from [1]. Copyright 2023 by
the American Physical Society. With special thanks to Vincent Boudart
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loss function and with a two-stage curriculum learning [22] strategy. The training
set was constructed to emulate the O2 Vela post-glitch search from [17]. In the first
stage, the signal part of the training set have large SNRs uniformly distributed from
6 to 40, while in the second stage a larger set of weaker signals with SNRs uniformly
distributed between 4 and 10 are added. On the first set the Adam optimiser [23]
is used, which is know for rapid convergence, and the standard stochastic gradient
descent optimiser [24] for the second stage, which was found to produce less over-
fitting in the final network state after 200 + 1000 training epochs in the two stages.
Training is done first on synthetic data (F-statistic atoms directly simulated under a
Gaussian noise assumption, without a detour via fully simulated time-series or SFT
data) and then on real O2 data [16].

Additionally, a two-stage filtering method was developed, where a subset of can-
didates with high CNN ranking are re-ranked with the most sensitive B;s,g statistic,
an improved version of the transient J-statistic that instead of maximising over start
time and duration performs Bayesian marginalisation over these two parameters [9].
This is illustrated in a flowchart in Fig. 12.3.

matched filter

atoms

partial sums CNN

two-stage filtering
----------------- PCNN

marginalize

detection?

Fig. 12.3 Comparison, as a flowchart, of the pure transient F-statistic method, the pure CNN
detection statistic (based on F-statistic atom inputs), and the two-stage filtering where a subset
of candidates with high CNN ranking are re-ranked with the most sensitive Bs,G statistic (an
improved version of the transient F-statistic using Bayesian marginalisation over start time and
duration rather than maximisation). Reprinted with permission from [1]. Copyright 2023 by the
American Physical Society
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12.5 Results

The main attraction of the CNN approach is the higher computational efficiency. In
[1] a training time of 1.8h per data set on an Nvidia Tesla V100 was reported. For a
full search setup with ~ 1.15 x 107 templates (corresponding to the O2 Vela glitch
search from [17]), the two-stage filtering pipeline took only 1.5h total, compared to
the over 4 x 10*h the CPU version of the traditional pipeline would have taken and
95h for its GPU version [19]. Speedups were more modest for rectangular signals,
but still more than a factor of 10 per template.

Detailed evaluations of the CNN performance in [1] were first presented in terms
of SNR recovery as well as receiver-operator characteristic curves (ROCs), i.e. the
detection probability as a function of false-alarm probability over a fixed test set.
These tests were done on both synthetic and real data, with both rectangular and
exponentially decaying signals. To meaningfully compare performance with a real-
istic narrow-band tCW search with hundreds of thousands to millions of frequency
evolution templates, it is necessary to cover false-alarm probabilities down to 10~
with a correspondingly large test set. The results are very promising in terms of
reaching within 10% of the detection performance of the transient F-statistic at
such low false-alarm probabilities with the CNN-estimated SNR as the only detec-
tion statistic, and with the two-stage filtering approaching it to within a few percent
(for rectangular signals) or even within measurement uncertainties (for exponential
signals).

As the most realistic end-to-end test, the full search from [17] on O2 data for tCWs
after the 2016 glitch of the Vela pulsar [25] was then reproduced with the CNN-
based pipeline, and also extended for the first time to explicitly cover exponentially-
decaying signals. The resulting upper limits based on the two-stage filtering method,
a threshold corresponding to the highest Bs/g value from the final candidate list,
and signal injections into the real data, are reproduced here in Fig. 12.4. They are
competitive with the much more costly full transient F-statistic based pipeline within
6-7%.
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Fig. 12.4 Upper limits from [1] for tCWs after the Vela glitch in O2, comparing the two-stage
filtering (ocNN + Bis/G) against the traditional ranking statistics. The left panel is for rectangular
signal amplitude windows (z;) and the right panel for exponentially decaying ones () Reprinted
with permission from [1]. Copyright 2023 by the American Physical Society
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It was also investigated how the networks can be extended to a two-parameter
output, estimating the signal duration 7 in addition to SNR. This way, beyond a pure
detection pipeline, a first level of parameter estimation by CNNs is also included.
This was only intended as a proof of principle, without full attempts to optimise
the network architecture to this new goal. Results are however already promising.
First, the SNR estimates do not suffer noticeably from the new feature. Second, after
limiting to signals with sufficient SNR to be at least marginally detectable, only a
small fraction of signals has severely misestimated durations (3% for rectangular
signals and 7% for exponentially decaying signals) and the rest have a root-mean-
square duration error of 27% for rectangular and 29% for exponential signals. These
numbers correspond to a CNN trained and evaluated on synthetic data only. Testing
the same network on real data makes recovery for rectangular signals only marginally
worse while showing more impact on exponential signals. This parameter-estimation
network was not retrained on real data, so such a step and/or further work on the
network architecture could certainly improve this performance significantly.

12.6 Discussion and Future Outlook

The work in [1] was a first step towards production-level machine-learning based
searches for long-duration quasi-monochromatic signals (tCWs) from glitching pul-
sars, demonstrating that a hybrid approach starting from intermediate matched-filter
outputs and using a final follow-up stage with a traditional Bayes factor statistic on
a small subset of the candidates that were top-ranked by the CNN can achieve sen-
sitivities approaching that of the traditional pipeline at much lower computational
cost and greater flexibility in signal amplitude evolution.

Similar ideas have been pursued for other long-duration transient signals, e.g.
for rapid-spindown signals from neutron star remnants of binary mergers in [26]. In
general, the field of long-duration gravitational-wave transients between the regimes
of explosive transients and persistent CWs is less well-explored both observationally
and in terms of algorithm development, and machine-learning approaches have a
great opportunity to have observational impact in this type of searches for novel
detections.
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Chapter 13 ®)
Core-Collapse Supernova Waveforms s
Classification

Alberto Iess®, Elena Cuoco®, Jade Powell®, and Filip Morawski

Abstract Core-collapse supernova (CCSN) are one of the sources to emit GW's that
are yet to be detected. Furthermore, they represent an interesting candidate for multi-
messenger observation, due to their neutrino and electromagnetic emissions. In this
chapter we describe and evaluate search and classification methods for gravitational
waves from CCSN explosions based on convolutional and recurrent neural network
architectures. The proposed approaches use whitened time-series and whitened time-
frequency representations as inputs to the deep learning models. We validate the
classification accuracy of the models on CCSN waveforms, derived from state-of-
the-art hydrodynamical simulations, and instrumental glitches, using both simulated
and real interferometer background noise from Virgo, LIGO and Einstein Telescope.
We show the robustness of the described methods in distinguishing CCSN and noise
transients, and derive accuracies in multi-class waveform model classification in both
a single and multi-detector setup.
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13.1 Introduction

CCSN are catastrophic stellar explosions that occur at the end of the life cycle of
massive stars, typically those exceeding 8M ©. These events are triggered when the
star exhausts its nuclear fuel, causing the core to collapse under its own gravity and
resulting in the formation of a neutron star or black hole. A CCSN is accompanied
by the release of an enormous amount of energy in the form of multi-messenger
emission of neutrinos, gravitational waves and electromagnetic radiation [1].

CCSN are crucial for understanding stellar evolution and the dynamics of massive
stars. They play a significant role in heavy element nucleosynthesis, driving galactic
chemical evolution, and influencing star formation. The study of GWs emitted by
CCSN offers valuable insight into the core-collapse mechanism, providing details
about the properties of the progenitor star, the dynamics of the collapse, and the
behaviour of matter under extreme conditions.

Recent advancements in hydrodynamical simulations have improved our under-
standing of CCSN emission mechanisms and GW detectors like Advanced LIGO [2,
3], Virgo [4], and the planned Einstein Telescope [5] will enhance the possibility to
detect and analyse these signals in the near future. To detect this type of GW signal,
however, we cannot rely on the matched filter method typically used in the context
of binary mergers. This arises from the fact that it is not possible to model the exact
emitted waveform, which is characterised by a high degree of stochasticity due to the
inherently chaotic processes involved in the collapse, such as turbulent convection
and standing accretion shock instabilities (SASI). Pipelines based on wavelet the
wavelet transform and excess power are used to detect unmodelled or poorly mod-
elled signals. Examples of such pipelines are cWB [6] and WDF [7], which rely on
the wavelet transform to capture the characteristics of a signal in the time-frequency
domain. ML techniques, such as convolutional neural networks, are increasingly
being proposed as part of CCSN detection and classification pipelines, due to their
ability to find and model non-linear patterns in complex GW data from CCSN.

13.2 Deep Learning Algorithms for CCSN Classification

ML methods can bolster analysis of GWs from CCSN, specifically tackling detection,
classification, reconstruction, and parameter estimation problems. We put our effort
and focus on classification, assuming a power excess pipeline will find triggers for
the data. While parameter estimation for CCSN signals is fairly new, some studies
have been done with the aim of defining universal relations [8]. While inspired by
recent advancements in the field of ML, specifically in computer vision and object
identification, we show how two classes of algorithms, based on convolution and
recurrent architectures, can be exploited for CCSN and transient classification.
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13.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [9] are deep learning models primarily used
for image and spatial data processing. The central component of CNNs is the convo-
lutional layer, which applies filters to input data to produce feature maps, capturing
spatial relationships and detecting patterns like edges and textures. This process
involves convolving filters across the data, preserving spatial hierarchies.

Pooling layers, such as max pooling, reduce the dimensionality of feature maps by
down-sampling, making the network more manageable and less prone to overfitting.
Fully connected layers at the end of the network aggregate features to make final
predictions.

CNNs are well suited in tasks like image classification, object detection, and
segmentation due to their ability to learn hierarchical feature representations from
data with minimal pre-processing, making them a cornerstone in computer vision
and deep learning.

13.2.2 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) are a type of recurrent neural network
designed to handle long-term dependencies in sequential data [10]. LSTMs use a
gating mechanism, comprising input, forget, and output gates, to control the flow
of information and maintain long-term memory, effectively mitigating issues like
vanishing and exploding gradients. LSTMs process data one step at a time, updating
hidden and cell states dynamically based on new inputs and previous states. This
allows them to capture complex temporal patterns and long-range dependencies.
Due to their robust learning capabilities, LSTMs are widely used in applications
such as time series prediction, natural language processing, and speech recognition,
making them a crucial tool for handling sequential data in deep learning.

The use of LSTM architectures is suited to track correlations in complex data
such as that output at gravitational wave interferometers. There are, however, a num-
ber of possible disadvantages of LSTMs compared to CNNs. LSTMs require a fine
hyperparameter tuning and, in their original formulation, have issues tracking longer
dependencies of the order of ~ 1000 time steps. This can be problematic when deal-
ing with data sampled at various kHz. A number of modifications can be introduced
to the original architecture to tackle this disadvantages, such as peephole or working
memory connections [11], or the introduction of convolutional and pooling layers in
a hybrid network design to reduce the dimensionality of the data fed to the LSTM
layer.
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13.3 Datasets

The datasets were generated by adding CCSN waveforms to interferometer noise.
We used simulated gaussian noise in Ref. [12] and real noise in the follow-up study
[13] to take into account the varying non-stationary power spectral density, which is
affected by environmental conditions that produce glitches and disturbances. For the
follow-up analysis on real data 44 segments from the O2 public science run [14] were
chosen based on data quality flags. The segments cover the GPS range from tgpg =
1185669120 to tgps = 1186070528. We leave the first 300s without injections to
allow PSD estimate with WDF and compute the whitening parameters [15]. The
CCSN model waveforms used in the two studies (s11, s13, he3.5, s18p, 525, m39,
y20, s18np) are described in [13] and references therein. A standard downsampling
and low-pass filtering procedure is applied before injecting the CCSN into 4096 Hz
gravitational wave detector data with the preferred sky distribution [16]:

h(t) = F+(Ol, 8’ )‘" 187 X 77) h+(t) + F>< (0{, (Sa )"7 ﬂv X ﬂ)hx(f), (131)

where « is the right ascension and § the declination, A, 8 the longitude and latitude of
the interferometer, x an angle that defines the orientation the detector and n the angle
between its arms. In Ref. [13] we fixed the source distance to 1kpc with a uniform
sky distribution, while in Ref. [12] we allowed for variable distances. As mentioned,
short duration noise transient, referred to as glitches, are also present in the datasets to
test the ability of ML models to distinguish them from the astrophysical counterparts.
The segments with injections are whitened with WDF and event trigger GPS times are
produced based on a threshold chosen on the normalized wavelet coefficients squared
coefficients sum. WDF and other power excess pipelines will not produce triggers
for every signal present in the data, especially at low SNRs. This has to be taken into
account in order to build a balanced dataset for training and testing. A window of
the order of 2s is chosen around the GPS times to produce whitened timeseries or
whitened time-frequency images which are the final samples in training, validation
and testing, which amount to 60, 10, and 30% of the full dataset. Associated SNRs
are computed as described in [17]:

2 foux SO [RCP)®
(E) _ 4/ [ ]zU:O i g, (13.2)
N 0 Sa(f)

where S, (f) is the one-sided noise PSD, f,,,. is the maximum cutoff frequency and
s(f) and h( f)* are the fourier and conjugate fourier transforms of the data and the
CCSN waveform template. We show examples of real noise from O2 with a glitch
and a CCSN injection in Fig. 13.1.
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Fig. 13.1 Example of a blip glitch (left) and a CCSN m39 waveform (right) added to real interfer-
ometer noise from the O2. The spectrograms are rescaled to the [0, 1] range for a 2D CNN classifier.
Image taken from [13]

13.4 CCSN Classification

The samples produced in time and time-frequency domain carry important informa-
tion about the signal phase and amplitude evolution. The spectrogram representation
is particularly useful to find patterns in the distributed power of a signal at different
frequencies. The image samples are fed to 2D CNN architectures, while the whitened
timeseries are used to train the 1D CNN and the LSTM network. Typical choices for
the network hyperparameters, such as the learning rate, number of LSTMs and convo-
lutional layers, dimensions of the filters, and batch sizes are chosen. We use the Adam
optimizer with a learning rate « = 0.001 and binary or categorical cross-entropy loss
function if we want to distinguish between glitches and CCSN or between different
CCSN models.

The architecture for the 1D CNN includes 4 convolutional layers with kernels of
size 3. The number of convolutional filters are (120, 80, 80, 40). Max pooling (2, 2)
and spatial dropout on 40% of nodes is applied after each convolutional layer. The
output from the CNN architecture is fed into two Fully Connected (FC) layers of
sizes 200 and 100 respectively. The activation function used in these layers is the
rectified linear unit (ReLU). The final layer is FC, with the number of nodes given by
the number of class labels and a softmax activation function to yield probabilities for
each class. The 2D CNN takes as inputs spectrograms centered on the samples using
multiple FFTs of 0.125 s with overlap and a kaiser window. The network is composed
of 3 convolutional layers with kernels of sizes (4, 4), (3, 3), (2, 2) followed by 2 by
2 Max pooling. The output from the CNN architecture is fed into a FC layer and
onto the output layer that yields classification probabilities. The recurrent network
used in [13] is composed of 2 bidirectional LSTM layers with dimensions of 64 and
32 and spatial dropout on 10% of the output nodes from the first LSTM layer. The
outputs are processed by 4 FC layers of decreasing size, with tanh activations. The
output layer uses a softmax function to yield probabilities for each class. We present
the classification results for simulated gaussian noise background and real O2 noise,
separately.
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13.4.1 Simulated Gaussian Background

To evaluate the CNN’s ability to generalize to different CCSN models, the networks
are trained on a custom set of signal models and tested on a fifth model not included
in the training phase, along with scattered light and sine gaussian glitch models
for binary classification. Single detector noise background data is simulated using
Advanced Virgo and ET noise budget curves. The 2-D CNN exhibits the best classi-
fication sensitivity for both Virgo O3 and ET design noise background, as shown in
Table 13.1.

Both 1-D and 2-D CNNss classify are able to correctly distinguish unseen wave-
forms from glitches, with slightly worse results for the only model which exhibits
strong SASI at low frequencies, s25. ET has slightly worse results for this wave-
form, due to the fact that the high frequency configuration sensitivity was selected to
produce the background noise. A full analysis which includes asymmetric neutrino
and mass flows will strongly benefit from a the low frequency ET sensitivity curve
configuration. The networks can also be efficiently trained to classify the signals into
the exact CCSN model class. The results improve with increasing SNRs, as shown
in Fig. 13.2.

Table 13.1 Binary classification on unknown CCSN and glitch models not included in training.
For the 1-D and 2-D CNN implementations and both detector datasets, we show the sensitivity for
the Signal class, reported as a percentage. We also report the Total accuracy, ratio of the number of
correctly classified samples in one of the two classes and the total number of test samples. Table
taken from [12]

VO3 1-D CNN accuracy 2-D CNN accuracy

Test set Signal Total Signal Total
sl 93.9 93.7 98.0 94.3

he3.5 96.2 95.5 95.2 97.6

s18 97.5 96.7 98.4 97.9

s13 94.5 94.4 944 96.9

s25 95.1 95.1 92.2 95.9

ET 1-D CNN accuracy 2-D CNN accuracy

Test set Signal Total Signal Total
sl 94.5 96.7 95.5 97.2

he3.5 98.0 97.8 98.5 97.6

s18 92.1 94.2 92.4 96.2

s13 95.9 96.6 84.5 94.1

s25 73.3 83.2 89.6 95.5
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13.4.2 02 Noise Background

While a dataset built on a simulated gaussian noise background is the first step to
assess the efficiency of a GW data analysis pipeline, processing real detector data
poses additional challenges, due to the non-stationarity of the detector PSD and the
presence of non-linear noise transients. In [13] we used real O2 noise as a background
for the injected CCSN signals. Different types of glitches naturally occur in this
dataset, so we did not simulate additional noise transients. We used three-detector data
from Advanced LIGO and Advanced Virgo to increase the robustness of our analysis.
We trained and tested our 1-D, 2-D and LSTM models for multiclass classification
of the CCSN waveforms. This time, however, we did not label the individual glitch
types and used a single class for all noise transients. As in the case of simulated
noise described in Sect. 13.4.1, we initially set ourselves the goal of classifying test
samples into the individual CCSN model class using single interferometer data. Since
we injected all waveforms at 1kpc for this study, the SNRs are then defined by: the
CCSN waveform amplitudes at such distance, the antenna pattern, the variability of
the noise background, and the segment whitening procedure. The last two points
impact Virgo data specifically for the O2 science run, since the noise PSD changes
significantly from the initial seconds used to estimate the whitening coefficients. The
first important takeaway from this classification procedure lies in the comparison of
the three chosen ML algorithms. As shown in Fig. 13.3, all three algorithms converge
to low values of the cost function computed on the validation set, but the LSTM
network is considerably slower to train. The 2-D CNN on the other hand converges
after less than 10 training epochs.

Results for the three networks are comparable, with good sensitivities for the
individual classes for the Advanded LIGO datasets. The Advanced Virgo dataset
contains less CCSN signals due to the detector’s lower sensitivity at 1kpc. For this
reason the better classified waveforms are those that represent more energetic CCSN
models, like y20 and m39. Apart from being the fastest model to train, the 2-D CNN
is also the most accurate in correctly classifying the samples, as clearly shown by
the individidual sensitivities reported in Table 13.2.

In areal case scenario there are stretches of time where multi-detector data is avail-
able. This can greatly enhance our ability to distinguish CCSN signals, since we can
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Fig. 13.3 Evolution of the 1.507
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Table 13.2 True positive rates for the noise and individual CCSN signal classes, along with the
total sensitivity, for the Advanced Virgo (V1) and Advanced LIGO Livingston (L1), and Hanford
(H1) on real data from the O2 science run. Due to its low energy the s11 model could not be detected
by WDF in Advanced Virgo data

Waveform
ITF  |Model | Noise |sl1 s18p |s18np |He3.5 |m39 |y20 s13 s25 Total
Vi LSTM |49.2 |* 3.6 584 0.0 89.5 (699 0.0 89.8 |73.7
CNN (446 |* 8.4 109 (0.0 843 |73.1 0.0 87.4 |68.3
1D
CNN [48.6 |* 9.6 39.4 3.6 923 |725 [0.0 94.6 |752
2D

Ll LSTM|90.1 |0.0 98.2 (928 |854 [98.7 |96.0 |87.1 |94.8 |93.6

CNN (994 0.0 89.5 953 (822 [99.2 (982 |755 |98.8 |959
1D

CNN [99.8 0.0 99.1 |99.3 |97.4 |100.0 |99.7 |91.6 [99.8 |99.3
2D
HI LSTM|96.2 0.0 95.5 |96.8 |89.1 [99.7 |959 |75.1 |97.6 |954
CNN [99.0 0.0 90.1 |99.3 |91.6 |98.4 |100.0 (80.6 |97.4 |96.5
1D
CNN (99.7 0.0 99.6 [99.8 96.8 [99.7 |99.8 |96.8 [99.2 |99.1
2D

leverage the full network SNR obtained by the individual SNRs in the three detec-
tors. Contrarily, glitches are not expected to exhibit correlation in different detectors,
since they are often due to local environmental noise sources. Figure 13.4 shows the
confusion matrix for multi-class classification using multi-detector data. The ML
model used merges the output probabilities obtained by the 1-D, 2-D and LSTM
networks rather than the individual architectures.

The dataset used for training, validation and testing is built on the triggers that
fall in a custom coincidence time window among the different detectors, distributed
as follows: 675 noise, 1940 m39, 1557 s25, 1139 y20, 491 s18np, 329 s18p, 115
he3.5, 76 s13, 0 s11. Note that this dataset is small because we set the coincidence
requirement. Despite the limited number of samples available, the true positive rates
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for the different CCSN model classes are still greater than 90% for waveforms with
more than 300 samples. Only the poorly represented he3.5 and s13 fall below such
threshold, while the s11 model is not present at all. The merged three detector model
is also efficient in classifying glitches.

13.5 Discussion

We investigated the possibility of applying specialized NN architectures to correctly
classify transient signals in GW data. While this is specifically intriguing when deal-
ing with unmodeled or partially modeled waveforms, such as those produced by
CCSN, the same approach can be used for other types of burst signals, such as those
associated to different types of binary mergers (stellar BBH, IMBH, NS-BH, BNS).
The speed and sensitivity of 2D-CNN models that leverage time-frequency signal
morphology is unmatched, but 1-D CNN is also a fairly good choice, as shown in
previous studies [18]. The main drawbacks for LSTMs are the long convergence
time and strong dependency on the hyperparameter choice. It should be noted that
at the time of writing many additional architectures, which present added layers of
complexity and novel elements, have been used in computer vision and time-series
classification studies. Convolutional layers, however, are still among the preferred
choices in most image classification tasks. Another important result is that the ML
algorithms are efficient and accurate also on real interferometer data, with only a
slight loss of sensitivity in multi-class classification. In conclusion, recent studies
show that the availability of large training sets will allow to effectively leverage ML
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algorithms to reduce the noise background triggers due to glitches, while also pro-
viding a useful tool to classify individual CCSN signal models. Further effort should
now be directed towards signal reconstruction and source parameter estimation.
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Chapter 14 ®)
Detecting Gravitational Waves e
as Anomalies with Convolutional

Autoencoders

Filip Morawski®, Michal Bejger®, Elena Cuoco®), and Luigia Petre

Abstract In this chapter, we summarize a generic approach to the analysis of gravi-
tational wave (GW) data: we consider the GW to be the anomaly in the signal received
by the detector and focus on detecting such anomalies. This approach works because
detectable gravitational waves are rare (at the moment), transient signals, distinct
from the slow-varying, non-stationary noise typically present in the detectors. The
anomalies under investigation arise mainly from gravitational waves produced by the
merger of binary black hole systems. However, our analysis extends beyond GW sig-
nals to encompass glitches identified within the real LIGO/Virgo dataset, accessible
through the Gravitational Waves Open Science Center. Our anomaly detection pro-
cess is based on deep learning techniques, specifically convolutional autoencoders
trained on both simulated and real detector data. We demonstrate the efficacy of
our method by reconstructing injected GW signals and explore how the detection of
anomalies is influenced by the strength of the gravitational wave, quantified via the
matched filter Signal-to-Noise Ratio (SNR). Furthermore, we apply our methodol-
ogy to localize anomalies within the temporal domain of the time-series data that
models the gravitational wave. The validity of our approach is confirmed by applying

This chapter is based on Morawski, F., Bejger, M., Cuoco, E. and Petre,
L., 2021, In: Machine Learning: Science and Technology. 2, 4, 29
p., 045014, DOI 10.1088/2632-2153/abf3d0, https://iopscience.iop.org/article/10.1088/2632-
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it to real-world data containing verified gravitational wave detections: our method is
able to generalize and identify GW events not included in the training dataset.

14.1 Introduction

The first gravitational wave (GW) detection on September 14, 2015 [1] marked a
pivotal moment in astrophysics. Since then, the collaborative efforts of the LIGO
and Virgo teams, leveraging the Advanced LIGO [2] and Virgo [3] interferometers,
have yielded 50 GW candidate signals by the end of the O3 observing run in 2020
[4-7]. These detections have provided crucial data for verifying theoretical models
of gravitational wave sources, including binary systems of black holes (BH) and
neutron stars (NS), while also probing the fundamental nature of gravity [8].

With further sensitivity enhancements in the interferometers, it is expected that
a significantly larger volume of space will be explored, increasing the frequency
of BH and NS merger detections [9]. This growing dataset offers unprecedented
opportunities to study the nature of these compact objects and space-time itself.

GW data analysis is inherently challenging due to its noise-dominated nature,
where astrophysical signals are often buried within various types of detector noise
[8, 9]. Traditional approaches like matched filtering, employed in pipelines such as
PyCBC [12] and GstLAL [13], rely on known GW templates, but are computationally
intensive and sensitive to glitches—instrumental artifacts that can mimic or obscure
GW signals. Alternative methods, for instance unmodeled GW burst searches like
the coherent Wave Burst (cWB) pipeline [14, 15], offer flexibility in detecting GWs
with unknown or partially modeled waveforms, though they remain susceptible to
short-duration glitches.

Deep learning (DL) [16] has emerged as a powerful tool in GW analysis, par-
ticularly for its ability to learn from large datasets efficiently, without explicit pro-
gramming [17]. In this work, we propose a model-independent DL-based method
to detect anomalies-defined as extra-ordinary, rare transient features distinct from
normal detector noise-in GW data. These anomalies may represent either GWs or
instrumental glitches, and our method is tested using simulated and real BBH signal
injections.

DL techniques are well-suited for anomaly detection due to their ability to model
non-linearities in the data. The method’s effectiveness is validated using confirmed
GW detections, demonstrating its potential as an efficient Event-Trigger-Generator
(ETG), especially when implemented on GPUs for real-time data processing. This
work contributes to the growing field of DL applications in GW astrophysics, where
rapid developments are enhancing the field’s analytical capabilities [18, 19].

The outline of this work is as follows: Sect. 14.2 introduces the underlying deep
learning components, Sect. 14.3 describes the data generation procedures, Sect. 14.4
presents our results, and Sect. 14.5 offers concluding remarks.
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14.2 Deep Learning Algorithms

In this section, we overview how a combination of two deep learning techniques—
convolutional neural networks (CNNs) and autoencoders (AEs)—can help us differ-
entiate between gravitational wave (GW) signals and noise. We first shortly describe
these methods and then present their application to the problem at hand.

14.2.1 CNN and AE

A convolutional neural network (CNN) [16] is a deep, feed-forward artificial neu-
ral network designed for processing structured data arrays, such as images. Unlike
standard neural networks that use matrix multiplication, CNNs utilize a convolu-
tion operator as their core feature. This operator processes the input array (e.g., of
size m x n) by sliding a smaller kernel (or filter) of dimension p x p, where typi-
cally p < min(m, n). The convolution operation inner-multiplies overlapping p x p
regions of the input with the kernel, replacing each region with the result of the inner-
multiplication (a number), thereby reducing dimensionality. A simplified illustration
of this convolution process is shown in Fig. 14.1.

Multiple layers are typically stacked sequentially in CNNs, each employing a
varying number and type of kernels. These kernels are selected to enable the net-
work to learn distinct features at each layer (e.g., edges, corners). Convolution layers
are interspersed with other specialized layers, such as pooling layers, to progres-
sively reduce the dimensionality of the data. This process continues until the final
activation function maps the last layer to a vector, where each element represents a
class probability for classifying the input. The class with the highest probability is
considered the predicted class.

The sequential convolution operations, combined with the overlapping of input
array elements and the sliding kernels, mimic the hierarchical structure of the human
visual cortex, which processes visual information in stages, identifying increasingly

- j k !
e convoluted with ! aj + bk + ¢l +do +eq + fr + gs + ht + ju
oll agd] r
il bk Il N | pEs 1 - n-p+i=3
' | & ! =
—_— do|l eq|l frjw | é / m-p+1=2 ki 4
3 | o|l q| r |
gsl| hefl iul v | A =>
I $| t] w *
! | " bi+ck+wvi+eo+fg+wr+hs+it+yu
.
. a1
elig r Convolution
Input structured array Kernel ol el u result (feature)

Fig. 14.1 The 2-dimensional 4x5 array on the left is seen as 6 overlapping 3 x3 arrays; each of
these smaller arrays is inner-multiplied with the 3 x 3 kernel, resulting in the 2 x 3 array on the right
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complex features. CNNs excel at recognizing patterns in structured data, such as
images, and have thus become the state-of-the-art approach in image classification
and computer vision.

In our approach, we leverage the benefits of CNNs by embedding them within an
autoencoder (AE) architecture [32]. An AE [16] is a specialized deep neural network
that progressively encodes and compresses the input data before reconstructing an
output based solely on the most compressed representation, known as the hidden
layer, latent representation, or bottleneck. The core assumption of an AE is that the
input data contains an underlying structure, such as correlations among input features,
which the AE learns and exploits by enforcing the passage of information through the
latent layer. When input features are independent, compression and reconstruction
become significantly more challenging.

An optimal AE achieves a balance between sensitivity to the inputs—enabling
accurate reconstruction—and insensitivity to noise or redundancies, preventing over-
fitting. This ensures that the latent representation retains only the essential variations
in the data necessary for reconstruction. In our work, we employ an undercomplete
AE, where the latent space dimension is smaller than the input dimension. This
design helps to avoid overfitting by ensuring that the model cannot trivially replicate
the input at the output.

The simple autoencoder (AE) depicted in Fig. 14.2, consisting of a single hidden
layer, functions by encoding the input y € R? into a latent representation & € R”,
where p < d. Assuming the encoder activation functionis f : R? — R?, the encod-
ing can be expressed as h = f(Wy 4 b), where f can be a sigmoid function, ReLU,
or something else, W is a weight matrix, and b represents the bias term, both initial-
ized randomly and updated during training.

The decoder activation function, denoted by g : R” — R?, maps the latent vari-
able & back to the reconstructed output y = g(Wh + b). In this case, the activation
function g, weight matrix W, and bias term b are not necessarily related to their
encoding counterparts, f, W, and b. When only ReLU is used as the activation func-
tion and a single hidden layer is present, the AE behaves as a linear autoencoder.
However, with additional hidden layers or non-linear activations, the AE becomes
non-linear, which enhances its ability to capture more abstract features. Hence, the
encoder and decoder generally constitute fully functional neural networks, not merely
individual activation functions.

Fig. 14.2 An AE with one h
hidden layer B e v —
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%. encoder ] decoder «©
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The training of an autoencoder (AE) is based on minimizing the reconstruction
loss, commonly measured using the mean squared error (MSE) function [16]:

Lo =ly—3P =y —zvrwy+m b aan

During training, the network parameters W, b, W, and b are iteratively updated until
the loss L(y, y) reaches a sufficiently low value and further training no longer reduces
it, indicating convergence. Various algorithms can be used to update these parameters,
and in this work, we employ the ADAM optimizer (adaptive moment estimation) [33],
which adjusts the learning rate dynamically during training. ADAM has demonstrated
superior performance for large datasets, high-dimensional parameter spaces, and
non-stationary input data.

The hyperparameters of the AE include the learning rate (which controls the size
of each parameter update), batch size (number of training examples used in each
update step), the optimization method (or optimizer), the architecture (number and
size of layers), and the choice of loss function. These hyperparameters critically
influence the performance of the AE.

Since the autoencoder (AE) reduces dimensionality during encoding, it is fre-
quently used for feature extraction. However, compared to traditional dimensionality
reduction techniques such as Principal Component Analysis (PCA), the AE offers a
more powerful generalization, as it can capture non-linear relationships in the input
data. While PCA seeks to identify a lower-dimensional hyperplane that approximates
the original data, the AE can learn non-linear manifolds of minimal dimensional-
ity, as illustrated in Fig. 14.3. Essentially, the AE models a vector field that maps
the input data onto lower-dimensional manifolds that represent regions of high data
density. When the learned manifold effectively characterizes the input data, the AE
has successfully captured the structure of the data.

14.2.2 Applying the CNN AE

Although convolutional neural networks (CNNs) were originally designed for ana-
lyzing 2D data such as images [16], we apply them here in a simplified 1D form, as
the signals we analyze are time series. The CNN-based autoencoder (AE) is designed
to perform two tasks. For input instances containing only detector background noise
(i.e., no anomalies), the AE is trained to reconstruct the noise as accurately as possi-
ble. However, for instances containing an anomalous signal—such as a gravitational
wave (GW) or glitch in real data—the AE is trained to ignore the anomaly and
reconstruct the data as though the signal were absent.

By comparing the input with the output reconstructed by the AE, the anomaly
within the time-series data can be effectively isolated and studied further. The use of
the AE is thus crucial, as it only reconstructs the patterns it was trained on, in this case
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Fig. 14.3 Example of the manifold concept. Non linear versus linear dimension reduction

the detector noise, while excluding any other components from the reconstruction,
such as GWs or glitches, which it treats as noise.

The loss value L(y, ¥) is expected to vary depending on the presence of anomalies
in the input data. For an anomalous input, L(y, y) will be higher compared to an
anomaly-free input, as the difference between y (containing noise or noise with
anomaly) and y (reconstructed noise) is greater. This difference correlates with the
amplitude of the anomaly, leading to the expectation that the autoencoder (AE)
trained on data with stronger anomalies will converge to a higher £(y, ¥) during
training.

The final architecture' employed in Sect. 14.4 was selected based on empirical
tests. We evaluated architectures with 1 to 8 hidden layers, and the final configura-
tion, depicted in Fig. 14.4, includes 3 hidden convolutional layers: encoding, latent
representation, and decoding, with 256, 128, and 256 neurons, respectively. The ker-
nel size for all layers was set to 3x 1. All layers except the final output layer used
ReLU as the activation function, while the final layer, responsible for reconstruct-
ing the input signal, used a sigmoid activation function. Additional hyperparameters
included the ADAM optimizer [33] with a learning rate of 0.0005 and a batch size
of 32.

The following section provides details on the datasets used for training, validation,
and testing.

' The algorithm is implemented in Python [34] using the Keras/TensorFlow library [35,
36], with GPU support. Development was carried out on an NVidia Quadro P6000 (sponsored via
the NVidia GPU seeding grant), and production runs were executed on the Prometheus cluster
(Academic Computer Centre CYFRONET AGH), equipped with Tesla K40 GPU nodes, running
CUDA 10.0 [37] and cuDNN 7.3.0 [38].
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Input data:
1D vector of length: 1024 points

Conv. layer:
256x(3x1)

Max pooling layer:
pool size: 2x1

Conv. layer:
128x(3x1)

Up pooling layer:
pool size: 2x1

Conv. layer:
256x%(3x1)

Output conv. layer:
1D vector of length: 1024 points

Fig. 14.4 Diagram shows the networks’ layer structure and architecture. The size below convo-
lutional layers correspond to the Number of filters times Kernels size of every layer. The second
dimension of all layers is equal to unity since the initial input data were 1D time-series vectors

14.3 Training Data Sets and Data Flow

We generated two types of training datasets: a simplified dataset, consisting of sim-
ulated detector strain time series based on a colored normal noise distribution, des-
ignated as DataSet 1 (DS1), and a realistic dataset derived from actual data from
the LIGO-Virgo O2 observing run [39], which is publicly accessible through the
Gravitational Waves Open Science Center (GWOSC) [40], referred to as DataSet 2
(DS2). Both datasets adhere to the same general data processing flow as depicted in
Fig.14.5.

The whitening process referenced in the workflow diagram serves to eliminate
contributions from stationary detector noise and adjusts the sensitivity across differ-
ent frequencies [41]. This results in a uniform amplitude spectral density, making
it easier to identify and compare gravitational wave (GW) signals embedded in the
data. The whitening filter was independently recalculated for DataSet 1 (DS1) and
DataSet 2 (DS2), as well as for each interferometer, to account for variations in
sensitivity. The whitening procedure applied to both datasets was performed in the
frequency domain using modules from the pyCBC Python library [42].

To simulate an astrophysical gravitational wave (GW) signal emitted by a binary
black hole (BBH) system, we employed the IMRPhenomv4 waveform model [43],
which captures the inspiral, merger, and final black hole (BH) ringdown phases.
The component BH masses m; and m, were selected to match those estimated for
the first detected event, GW 150914 [1]. Specifically, the masses m; and m, were
sampled based on the Initial Mass Function (IMF) within the ranges consistent with
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Fig. 14.5 Data flow of the project. The first step consists of data generation. GW waveforms
were injected into the detector strain, either simulated or real (e.g. public data from the GWOSC
platform). Since the raw time-series signal varied with frequency, the whitening procedure was
applied to simplify data for further training. The training of the DL algorithms aimed to recover
as many injected anomalies as possible, while limiting the false positive rate of the pipeline (noise
samples incorrectly classified as anomaly)

Noise

the uncertainties in GW150914’s mass estimation: m; in the range of 32.5—40.3
Mg and m, within 26.2—33.6 M. The IMF power law index was chosen as
a = —2.35 [44].

Luminosity distances were sampled uniformly between 200 and 800 M pc to span
a realistic range of matched filter Signal-to-Noise Ratios (SNR), ranging from 4 to
40 across different interferometers, as depicted in the bottom-right plot of Fig. 14.6.
The sky position of the source was optimized for each detector at a specific obser-
vation time. Examples of simulated GW signals are illustrated in the top-right plot
of Fig. 14.6.

The DS1 dataset was constructed based on two assumed sensitivity curves for
gravitational wave (GW) detectors. Each curve characterized the detector’s sensi-
tivity as a function of frequency, simulating realistic strain time series output. In
our analysis, we employed the designed sensitivity for the advanced Virgo (aVirgo)
detector from the O3 run (version without squeezing) [45, 46], as well as for the
advanced LIGO (aLIGO) interferometers [47]. The term ‘designed’ refers to the sen-
sitivity level these interferometers were expected to achieve following their planned
upgrades.

To prepare the data, band-pass filtering was applied to remove noise components
at high frequencies (above 1 kHz) and low frequencies (below 30 Hz, corresponding
to seismic noise), as current interferometers lack sensitivity to detect GWs outside
this range. The data was then resampled from 4096 to 1024 Hz. An example of the
DS1 output time series is shown in the bottom-left plot of Fig. 14.6. Pre-generated
GW signals were injected into the simulated strain and subsequently underwent
whitening.

The DS2 (realistic) dataset was created using publicly available data from the
LIGO-Virgo O2 observing run, accessed via the GWOSC platform [40]. The data
was sourced from three interferometers: LIGO Hanford, LIGO Livingston, and Virgo,
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Fig. 14.6 Top left: Designed sensitivity of aVirgo and aLIGO interferometers. The detectors were
expected to reach this level of sensitivity over broad range of frequencies after all planned upgrades.
Top right: Examples of generated BBH GW waveforms injected into the strain data as anomalies.
The GW were generated for the following parameters: blue signal—m1 =29 M©®, m2 =24 MO,
distance = 440 M pc; orange signal—m1 =33 MO, m2 = 27 MO, distance = 380 M pc; green
signal—m1 =28 MO, m2 =23 MQ, distance = 600 Mpc. Bottom left: Examples of the sim-
ulated data using the above sensitivity curves. Bottom right: Distributions of matched filter SNR
of simulated GW injected into the real data for detectors: LIGO Hanford (blue), LIGO Livingston
(orange) and Virgo (green) as well simulated data for: alLIGO (violet) and aVirgo (pink)

denoted as H1, L1, and V1, respectively. For each detector, we selected six hours
of data to train the deep learning models. Specifically, we used data between GPS
times 1187270656 and 1187295232 for L1, between 1174958080 and 1174982656
for H1, and between 1187672064 and 1187696640 for V 1. The same gravitational
wave signals used in the simulated dataset were injected into the real strain data.
This resulted in three distinct distributions of matched filter signal-to-noise ratio
(SNR) for the same set of injections, as each detector exhibited different sensitivity
levels. These distributions are illustrated in the bottom-right plot of Fig. 14.6. For
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comparison, we also included SNR distributions from the simulated datasets. The
real strain data, with injected anomalies, was subjected to whitening and resampled
from 4096 to 1024 Hz.

We generated five datasets in total: two simulated datasets for aVirgo and aLIGO,
and three based on real LIGO Livingston, LIGO Hanford, and Virgo O2 data. These
datasets were segmented into one-second intervals and divided into training, vali-
dation, and testing subsets, with proportions of 65, 10, and 25%, respectively. An
additional test set was created using one hour of data centered around the GPS times
of confirmed gravitational wave (GW) detections. The data was whitened and resam-
pled as described earlier. For this test set, we selected three binary black hole (BBH)
detections from the O2 run—GW150914, GW 170608, and GW170814—chosen for
their high network signal-to-noise ratio (SNR) [48].

14.4 Results

The results are organized into three subsections. The first subsection presents the
findings from anomaly searches conducted on the simulated dataset, which includes
injected gravitational wave (GW) signals. The second subsection focuses on the
results of anomaly searches in the real data from the Virgo and LIGO interferometers.
The final subsection demonstrates the effectiveness of anomaly detection in real data
containing confirmed GW detections.

14.4.1 Anomaly Searches on Simulated Data

The CNN-AE described in Sect. 14.2 was initially trained on the whitened, simulated
data containing gravitational waves (GWs). Model convergence was observed after
100 epochs, with the mean squared error (MSE) loss function reaching approximately
6 - 1073 for the aVirgo data and 10~* for the aLIGO data. Training was extended for
an additional 100 epochs to monitor for overfitting; however, no overfitting occurred,
and the MSE remained stable at the aforementioned values. The learning history of
the autoencoder (AE), trained on both simulated datasets, showing the results for
both the training and validation sets, is presented in the left plot of Fig. 14.7.

For aVirgo, the same set of GW signals covered a lower signal-to-noise ratio
(SNR) range compared to aLIGO, due to aVirgo’s reduced detector sensitivity (as
shown in the top-left plot of Fig. 14.6). Consequently, this led to the model converging
to a lower MSE for the aVirgo dataset, as the differences between the ‘anomalous’
input and the ‘anomaly-free’ reconstruction were smaller compared to the aLIGO
data (see Sect. 14.2.2 for further details).

As detailed in Sect. 14.2.2, the properly trained CNN-AE successfully recon-
structed the pure detector noise, irrespective of the presence of anomalies in the
input data. By subtracting the input from the reconstructed output, the underlying
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Fig. 14.7 The learning history of the AE trained on the whitened, simulated aVirgo and aLIGO
datasets (left plot) as well as on the whitened, real data for L1, H1 and V 1 datasets (right plot). The
convergence was achieved after 100 epochs. We trained for 200 epochs, to investigate the onset of
overfitting: it did not appear
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Fig. 14.8 The examples of signal reconstruction using the CNN-AE on aLIGO (left plot) and
aVirgo data (right plot). The plots (red curves) were generated after subtracting the input signal
from the AE predictions. For comparison, we added the expected signal using blue, dashed curve
(difference between the input signal and the ground-truth output signal)

signal was effectively recovered. The differences between the initial input data and
the autoencoder’s output reconstruction were calculated. Examples of these results
are illustrated in Fig. 14.8, where the dashed blue lines represent the expected signal,
while the red lines correspond to the values obtained from the AE reconstruction.
For the alLIGO data, the gravitational waveforms were accurately reconstructed
in most cases, with the anomalies distinctly differing from the surrounding noise.
The recovered portion predominantly corresponded to the merger phase of the grav-
itational wave, with a smaller contribution from the inspiral phase. However, for the
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aVirgo dataset, the reconstruction quality was notably poorer and often dominated
by surrounding noise. In rare instances, such as the example shown in the right plot
of Fig. 14.8, the merger phase was reconstructed. A detailed summary of the match
between the injected and reconstructed waveforms, calculated using the < x;|x; >
metric in the time domain, is provided in Appendix 14.6.1.

Given that the autoencoder (AE) successfully reconstructed the majority of
anomalies within the data (particularly for the aLIGO dataset), we next sought to
establish a metric for automatic anomaly detection. We selected the mean squared
error (MSE) as this metric, calculated between the input data and the AE output,
as described in Sect. 14.2.2. Figure 14.9 presents histograms of MSE values for two
signal types within the dataset: noise and injected GW signals. As expected, MSE
values for noise were significantly lower and approached zero, whereas the MSE val-
ues for GW signals were larger. A region of overlap between the histograms of both
signal types (marked in burgundy in Fig. 14.9) was observed. Nevertheless, most of
the instances containing injected GW signals in the aLIGO dataset, and nearly half
in the aVirgo dataset, had MSE values greater than those for noise. Furthermore, we
added a detection threshold to these histograms, indicating the number of injected
GW signals that were correctly identified as anomalies (hatched area in Fig. 14.9).
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Fig. 14.9 Distribution of MSE between the AE predictions and the input strain for two types of
studied signals: noise (blue histogram) and injected GW (red histogram). In the broad range of MSE
for aLIGO dataset the injected GW had significantly higher MSE than noise, allowing a definite
distinction between these signal types. Additional black vertical line representing anomaly DT was
added to emphasize amount of detected anomalies (hatched areas)
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The detection threshold for anomaly detection was determined by examining the
relationship between the false positive rate (FPR) and MSE. By fixing the FPR at
a predefined level, we set the detection threshold (DT') corresponding to the MSE.
In this analysis, we fixed the FPR at 5%, resulting in the following thresholds:
DT,y = 1.6 - 1072 for aVirgo and DTy, = 3.1 - 107 for aLIGO. The results of
anomaly searches at FPR = 5% are summarized in Table 14.1 as a confusion matrix.
Additionally, the comparison of anomaly detection efficiency for both interferome-
ters is illustrated in the left plot of Fig. 14.10 through Receiver Operating Charac-
teristic (ROC) curves. Across all FPR ranges, the aLIGO detector demonstrated a
significantly higher detection efficiency, or True Positive Rate (TPR).

The values presented in Table 14.1 quantitatively represent the findings from both
panels in Fig. 14.9. The ‘Anomaly’ row corresponds to the hatched regions shown
in the panels. For the aLIGO dataset, 96% of detected anomalies correctly corre-
sponded to injected gravitational waves (GW), with minimal contamination from
noise samples. In contrast, for the aVirgo dataset, 59% of samples—mostly those

Table 14.1 Results of anomaly detection of CNN-AE at FPR = 5% for aLLIGO and aVirgo dataset
in the form of confusion matrix. Columns relate to the ground-truth values whereas rows to the
predictions. For aLIGO dataset significant majority of detected anomalies corresponded to the data
samples with injected GW. However in case of aVirgo more than a half of data samples with injected
GW did not exceed the DTy, v as aresult of low SNR (see Fig. 14.6 for comparison between aLIGO
and aVirgo GW SNR distributions)

alLIGO aVirgo
Injected GW (%) | Noise (%) Injected GW (%) | Noise (%)
Anomaly 96 5 41 5
Non-anomaly 4 95 59 95
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Fig. 14.10 Receiver operating characteristic curves for simulated data (left plot) and real data (right
plot). Black vertical line corresponds to the F PR = 5% chosen as the criterion for the anomaly
detection threshold
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with low SNR (around 10 or less)—did not exceed the detection threshold (D7) and
were thus classified as non-anomalous. Further details illustrating the relationship
between the SNR of the injected GW and the MSE of the reconstructed waveform
are provided in Appendix 14.6.2.

14.4.2 Anomaly Searches on Real Data

Subsequently, the autoencoders (AEs) were trained on whitened, real data from the
02 observational run, which was collected from three interferometers: V1, L1, and
H 1, with injected binary black hole (BBH) gravitational waveforms. The right plot in
Fig. 14.7 illustrates the learning history of the AE for each detector’s dataset. Similar
to the results obtained from the simulated data, the AE reached convergence after
approximately 100 epochs. The training was extended to assess potential overfitting,
but none was observed. Since the difference between the ‘anomalous’ input and the
‘anomalous-free’ reconstruction for V1 was the smallest among the datasets, due
to the lowest SNR range, the AE converged towards the lowest mean squared error
(MSE). Correspondingly, the smaller SNR range for the H1 dataset, compared to
the L1 dataset, resulted in lower MSE values for H1 than for L1.

As with the simulated data, the AE’s ability to reconstruct the detector noise
was evaluated. The differences between the input strain and AE reconstructions
were compared against the expected values. Examples of these comparisons are
shown in Fig. 14.11. A summary of the match between the injected and reconstructed
waveforms is provided in Appendix 14.6.1. The AE trained on L1 data achieved the

L1 H1 V1
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B 0.101 i 0.04 i
D
5 0.05 0.05 | 0.02
a 0.00 0.00 0.00 ™
= ~0.05 .
£ —0.05 -0.02 1
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T —0.10] —0.04
= -0.15
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Fig. 14.11 Three examples of GW reconstruction using AE. Presented plots were generated after
subtracting from the AE predictions, input signal (red curve). For the comparison we added the
expected signal using blue, dashed curve (difference between the input signal and the ground-truth
output signal). From left to right: results for L1, H1 and V1 detectors
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best results, with the injected gravitational waves extracted predominantly during the
merger phase, and partially during the inspiral phase. Conversely, the AEs trained
on the other datasets primarily reconstructed the merger phase. In general, the AE
struggled to reconstruct the lower amplitude and frequency components of the GW
signal, such as the inspiral and ringdown phases.

To compute the anomaly detection threshold, we generated histograms of the MSE
for each detector’s dataset and compared the MSE values with the false positive rate
(FPR). The results are displayed in Fig. 14.12. The anomalies spanned a broader
range of MSE values than the noise, with an overlapping region that varied across
datasets (highlighted in burgundy in Fig. 14.12). This overlap was smallest for the
L1 dataset and largest for the V 1 dataset.

As with the simulated data, the anomaly detection threshold was defined by
assuming FPR = 5%, resulting in the following thresholds: DT;; = 1.3 - 107> for
L1, DTy, =2.2-107° for H1, and DTy, = 4.3 - 107° for V1. The results of the
anomaly searches on the real datasets are presented in Table 14.2 as a confusion
matrix. The ‘Anomaly’ row corresponds to the hatched areas shown in the panels of
Fig.14.12.

For the L1 and H 1 datasets, approximately half of the detected anomalies were
correctly associated with injected GW signals. The samples that did not exceed their
respective detection thresholds (D7) typically had low SNRs. This was also the case

L1 _ H1 _ ) V1
- 0.30 | 0.14
0.12/
0 0.25/
So0.15 I 0.10
8 0.20|
E n 0.08
N 0.15/
5 040 0.06
E 0.10
o .10
0.04/
< 0.05
0.05] £ 0.02

0'090'(’ 107 107 1073 O'G?Lé'ﬁ 107° 107* 1073 0'090'5‘ 105 10~ 10°3

Mean squared error Mean squared error Mean squared error
N Noise
0 Noise + GW
—— Anomaly detection threshold
271 Anomaly

Fig. 14.12 Distribution of MSE between the AE predictions and the input strain for two types
of studied signals: injected GW (red histograms) and noise (blue histograms). Plots correspond
to the L1 (left plot), H1 (middle plot) and V1 (right plot) datasets. Additional black vertical line
representing anomaly DT was added to emphasize amount of detected anomalies (hatched areas)
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Table 14.2 Results of anomaly detection of CNN-AE at FPR=5% for L1, H1 and V1 datasets
in the form of confusion matrix. Columns relate to the ground-truth values whereas rows to the
predictions. For all datasets significant majority of detected anomalies correctly corresponded to
the data instances with injected GW. However, more than a third part of non-anomalous class
(samples that did not exceed DT for a given detector) related to the low SNR injected GW (see
Fig. 14.6 for comparison between L1, H1 and V1 GW SNR distributions)

L1 H1 V1
Inj. GW (%) | Noise (%) |Inj. GW (%) | Noise (%) |Inj. GW (%) | Noise (%)
Anomaly 52 5 50 5 27 5
Non- 48 95 50 95 73 95
anomaly

for the V' 1 dataset, where only 27% of the samples exceeded DTy . Additional details
regarding the relationship between the SNR of the injected GW signals and the MSE
of the reconstructed waveforms for the real datasets can be found in Appendix 14.6.2.

Additionally, we conducted tests to evaluate the temporal localization of anomalies
detected by our method. We compared the known times of the GW injections into
the data with the times of the reconstructed signals. Specifically, we calculated the
time difference between the maximum amplitude peaks of both signals and plotted
histograms of these differences for all anomalies exceeding the previously computed
detection thresholds (DT). For comparison, this procedure was also applied to the
simulated datasets. The results are shown in Fig. 14.13.

In all cases examined, approximately 95% of detected anomalies were localized
within 0.05s intervals around the injection times. These findings suggest that this
feature may not only be useful for detection and reconstruction but also holds poten-
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Fig. 14.13 Anomaly localisation based on the difference in peak positions between reconstructed
and injected signals. Left plot: The results for the simulated datasets. Right plot: The results for the
real datasets



14 Detecting Gravitational Waves as Anomalies with Convolutional Autoencoders 189

tial for other applications, such as the temporal localization of signals across multiple
detectors, and consequently, the sky localization of their sources.

14.4.3 Anomaly Searches on Confirmed GW Detections

Using a selection of real gravitational wave (GW) detections provided by the LIGO-
Virgo collaboration via the GWOSC platform [40], we tested the autoencoder (AE)
on three strong signals from the GWTC-1 O1-O2 catalog [39]: GW150914 [1],
GW170608 [49], and GW 170814 [50]. The reported network signal-to-noise ratio

(SNR), pper = +/ Zi ,oiz, was approximately 24 for GW150914, 15 for GW 170608,
and 16 for GW170814 [40]. Assuming two equally sensitive detectors, each would
measure an SNR of approximately 17 for GW 150914, 10 for GW170608, and 11 for
GW170814. Notably, GW170814 was a three-detector event, with single-detector
SNRs for H1, L1,and V1 of 7.3, 13.7, and 4.4, respectively [50]. Due to differences
in detector sensitivity, these signals were registered with varying SNRs, though they
remained near the single-detector SNR detection threshold, defined by the FPR=5%
condition.

After whitening, the test data were input into the AE, and the reconstructed values
were subtracted from the input data. The results of this subtraction for GW 150914
are shown in the two upper-right plots of Fig. 14.14 for both LIGO detectors. The
computed mean squared errors (MSE) were MSE;; =3.2-10"% and MSEy, =
1.0 - 1073, For both detectors, the MSE values were significantly higher than the
respective detection thresholds set at FPR=5%.

In the case of GW170608, the AE successfully detected the event, though the
reconstructed signal was primarily limited to the merger phase for both LIGO detec-
tors, as shown in the two middle-right plots in Fig. 14.14. This weaker reconstruction
may be attributed to the different mass ranges of GW 170608 compared to the GWs
used in AE training. Specifically, the binary black hole (BBH) component masses for
GW170608 were approximately m; = 11.0 and m, = 7.6 Mg, which are notably
smaller than the masses used in the training dataset (see Sect. 14.3 for more details).
It is important to note that the H1 detector was nominally not in observing mode
during this event, but the data were included using a modified segment list, as was
done in the published analysis [40, 48, 49].

Despite this, the AE successfully detected GW 170608, demonstrating its capacity
to generalize and recognize gravitational waveforms it was not explicitly trained on,
offering a significant advantage over the matched filtering method. Furthermore,
the MSE values for both detectors were slightly above the detection thresholds at
FPR=5%, with MSE;; = 5.3 - 107 and MSEy; = 4.1-107°.

In the final test case, GW170814 was detected in both LIGO detectors, with a
significant portion of the waveform successfully recovered, as illustrated in the two
bottom-right plots of Fig. 14.14. However, for the V 1 dataset, the AE failed to detect
the event, likely due to the low reported SNR of ~4 [50]. The MSE values for the
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Fig. 14.14 Test of the CNN-AE on the dataset containing confirmed detections using L1 and H1
datasets for GW 150914 (four upper plots), GW 170608 (four middle plots) and GW 170814 (four
bottom plots). Left plots: spectrograms presenting the relation between frequency and time for the
segment of real data containing GW. Right plots: the difference between the CNN-AE predictions
and the input data
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L1 and H 1 datasets were above the detection threshold at 5%, with MSE;; = 2.2 -
10~*and MSEy, = 2.2 - 10~*, whereas for V 1, the MSE was below the threshold:
MSEy, =18 10-°.

These findings confirm that the proposed CNN-AE method for anomaly detection
is effective in identifying real gravitational wave events, even when the deep learning
model is trained on relatively simple datasets. These datasets were constructed using
information from specific GW waveform models, with limited variation in the range
of masses and distances.

14.5 Summary

In this chapter, we demonstrated that autoencoders (AEs) are a promising method
for anomaly detection in gravitational wave (GW) data. A simple AE architecture
with three hidden layers was able to identify anomalies, including transient binary
black hole (BBH) GWs and glitches in real data, whether trained on simulated or real
datasets. Additionally, the method detected all three confirmed GW events tested,
and even partially reconstructed their waveforms.

We introduced the mean squared error (MSE) as the metric for automatic anomaly
detection, with a detection threshold defined by associating MSE with a false positive
rate (FPR). At FPR=5%, nearly all injected GWs in LIGO’s simulated dataset were
detected, and around 50% of real detector data anomalies were identified. For Virgo,
half of the injected signals in the simulated data were detected, while only a quarter
were identified in real data. The poorer results on real data were due to the lower
sensitivity of detectors during the O1-O2 observational runs compared to the designed
sensitivity. However, improvements are expected with the O3 data after detector
upgrades.

Our method also demonstrated high accuracy in localizing anomalies temporally,
with all detected anomalies localized within 0.05 s of the injection time, which could
be useful for sky localization of GW sources in multi-detector analyses. However,
further study is required for such applications.

The successful detection of GW 170608 showcased the generalization capability of
the AE, detecting GWs with parameters different from those used for training, even in
data nominally outside observing mode. Future projects include exploring recurrent
neural networks (RNNs) for time-series data anomaly searches and investigating
other GW types, such as core-collapse supernova signals.
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14.6 Appendices

14.6.1 Match/Overlap Between the Injected
and Reconstructed Waveforms

14.6.1.1 Simulated Dataset

To measure the match between the injected and the reconstructed waveforms we
used the normalized scalar product < x;|x, > in the time domain resulting in values
in a range (0, 1). Zero related to no match, whereas one to full match between the
waveforms. Presented results in Fig. 14.15 corresponds to the whole studied dataset
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Fig. 14.15 Distribution of a match between the injected (x1) and the reconstructed (x;) waveforms
as a function of normalized scalar product < x1|x2 >. Scalar product equals to one relates to the full
match between waveforms whereas value of zero—no match. Left plot: results for the whole studied
dataset of particular detector; right plot: results of a match after applying the anomaly detection
threshold at FPR = 5%
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for alLIGO and aVirgo detectors (left panel) as well as samples exceeding the anomaly
detection thresholds (right panel). Applying respective DT allowed to substantially
reduce number of samples with no match between the waveforms as a result of low
SNR of injected GW. Samples exceeding DT were reconstructed to a greater extent
which resulted in < x;|x, > closer to one.

14.6.1.2 Real Dataset

The same metric as in case of simulated dataset was used to study the match between
the injected and the reconstructed waveforms for the real datasets. Presented in
Fig. 14.16 results show the similarities in the match between consecutive datasets
(L1, H1 and V1) as well as the effect of applying the anomaly detection threshold.
Samples with < x;|x; > close to zero had low SNR. As a result they were poorly
reconstructed which in turn translated into low value of MSE. Samples exceeding
respective DT were reconstructed to a greater extent as in the case of simulated data.
However, overall match was worse—the mean values of < x;|x, > for real datasets
were around 0.6, whereas for simulated data 0.8.
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Fig. 14.16 Distribution of a match between the injected (x1) and the reconstructed (x,) waveforms
as a function of normalized scalar product < xj|xp >. Scalar product equals to one relates to the full
match between waveforms whereas value of 0—no match. Left plot: results for the whole studied
dataset of particular detector; right plot: results of a match after applying the anomaly detection
threshold at FPR = 5%
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14.6.2 Signal-to-Noise Ratio Versus Mean Squared Error
14.6.2.1 Simulated Dataset

For the aLIGO dataset above SNR = 20, the MSE-SNR relation was almost linear,
with a small spread of individual data instances along MSE. Whereas with the decline
of SNR, the spread of MSE significantly increased, characterized by the non-linearity
in the MSE-SNR relation. Anomalies around the same SNR for values below 10
varied up to an order of magnitude in MSE. Manual inspection of data samples
containing anomalies of low SNR provided an explanation of this behaviour. In the
analysed samples, only the merger part of the gravitational waveform was recovered.
For lower SNRs (below 10) the recovery was partial and dependent on the variability
of the noise. If the amplitude of the noise in a given data segment was small comparing
to the injected GW signal, the resulting MSE was higher than in the case of noise
samples with larger amplitudes. Overall, for the alLIGO dataset, the susceptibility of
AE to the local variability of the noise was inversely proportional to the SNR of the
injected anomaly.

In case of the aVirgo dataset, the mentioned susceptibility was more significant.
Matched filter SNRs for all injected GWs covered a smaller range of values than for
aLIGO (compare SNR ranges on the bottom right plot in Fig. 14.6 for aLIGO and
aVirgo datasets). In the majority of studied cases, the recovery of the anomaly was
partial and limited to the merger part (Fig. 14.17).
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Fig. 14.17 Relation between MSE and matched filter SNR for aVirgo and aLIGO datasets colored
with a distance to the GW source. Black horizontal line corresponds to the detection threshold of
anomalies at FPR = 5%
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Fig. 14.18 Relation between the MSE and the matched filter SNR for L1 (left plot), H1 (middle
plot) and V'1 (right plot) datasets colored with a distance to the GW source. Black horizontal line
corresponds to the detection threshold of anomalies at FPR = 5%

14.6.2.2 Real Dataset

The relation between SNR and MSE presented similar features as for the simulated
data discussed above. The variability of MSE for samples of similar SNR was largest
among the weakest anomalies. The increase of the matched filter SNR led to the
decrease of the spread in MSE, and thus their relation became more linear. This was
the case for the AEs trained on the L1 and H 1 datasets. In contrast, the AE trained
on the V1 dataset was more susceptible to the local variability of the noise. Since
the injected anomalies had a small SNR for V'1 (majority of injected GW had SNR
below 10), their amplitude was significantly lower than the detectors noise. As a
result, the anomaly detection depended on the variability of the noise, which had a
random character (Fig. 14.18).
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Chapter 15 ®)
One-Class Learning for Gravitational s
Waves Detection

Roberto Corizzo and Eftim Zdravevski

Abstract Gravitational waves are an exceptional opportunity for studying and inter-
preting phenomena from the universe. Automatic signal processing and machine
learning techniques can provide significant support for the efficient detection and
analysis of gravitational waves from large-scale data continuously collected by inter-
ferometers. This chapter discusses two approaches involving deep auto-encoder mod-
els to analyze and classify raw time series data into noise or gravitational waves. The
goal is to provide astrophysicists with a tool that can quickly discard noisy time series
and identify time series that potentially contain an actual astrophysical phenomenon.
Experiments carried out on three datasets show that the discussed approaches imple-
mented in a scalable manner using Apache Spark represent a valuable machine learn-
ing approach for astrophysical analysis, offering competitive accuracy compared to
state-of-the-art methods.

15.1 Introduction

Gravitational Waves (GWs) represent a fascinating new frontier, offering us the
chance to explore and interpret the mysteries of the universe. However, their analysis
presents a multitude of intricate challenges, demanding specific expertise due to the
complex nature of the data collected by detectors (interferometers), which are time
series affected by environmental and instrumental noise.

Additional knowledge is required to perform other recurrent tasks, such as spec-
trogram analysis, filtering, and whitening, as outlined by [2, 3]. Furthermore, the
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sheer volume of data collected by detectors, reaching petabytes per day, underscores
the pressing need for new, automatic, and scalable methods. These methods must
be capable of analyzing data in a timely manner and performing pre-processing and
detection tasks that were traditionally executed manually.

For this reason, the adoption of automatic signal processing and machine learning
techniques has been recognized as beneficial for their detection and analysis and
reduces the effort and the cost of standard approaches such as template matching.

Machine-learning approaches for gravitational waves analysis have gained trac-
tion in recent years. However, most of the existing approaches require knowledge of
gravitational waves signals, which is possible only in a supervised learning setting
[4].

One-class learning models have widespread adoption in unsupervised and semi-
supervised learning settings, particularly in cybersecurity and industrial process mon-
itoring. Their usefulness lies in the fact that they do not require knowledge of anoma-
lous patterns for the model training phase.

This consideration is particularly relevant in gravitational waves analysis since
the majority of data collected by detectors is noise, resulting in a large amount of
imbalanced data. In this context, the noise can be considered as the background data
(abundant) used for model training, whereas the anomalous data (scarce) can be seen
as the gravitational waves we aim to detect.

This chapter addresses gravitational wave detection from a one-class learning
perspective. Specifically, we discuss two approaches involving deep auto-encoder
models to analyze time series collected from detectors and provide a classification
label (noise or an actual signal). The purpose is to accurately discard noisy time
series and identify potentially intriguing ones that could be manually inspected. Our
approaches leverage the abundance of noise time series data, which, in principle, has
the potential to empower models with a greater degree of flexibility. This would allow
them to detect gravitational waves with different morphologies without any explicit
or pre-existing knowledge of such phenomena. We show that such an approach is
effective since models trained exclusively with noise time series can detect gravita-
tional waves as out-of-distribution data points, leveraging anomaly scores extracted
from newly observed data. Moreover, our results show that these approaches are scal-
able, which is essential considering the large amount of data continuously collected
by detectors.

15.2 Related Works

Astrophysical data analysis often involves handling noisy time series data. Tech-
niques like data whitening in the time and frequency domains help remove stationary
noise to reveal weak signals [2, 5]. Machine learning methods are crucial for tasks
such as noise removal, anomaly detection, and classification of gravitational waves
(GWs). These methods include supervised convolutional neural networks (CNNs)
for glitch classification, as seen in Gravity Spy [4, 6]. Other approaches include
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using CNNs for feature extraction and unsupervised clustering to identify new glitch
classes [7, 8]. Despite the high accuracy of these methods, they rely on pre-processed
spectrograms, which assume feasible human-intensive pre-processing. In contrast,
this chapter focuses on real-time classification directly on strain data, assessing model
performance under various conditions.

Time series classification methods are supervised and fall into three categories:
feature-based, distance-based, and model-based [9]. Feature-based methods convert
time series into feature vectors for classification. Distance-based methods, such as k-
Nearest Neighbor, use similarity measures for classification. Model-based methods
employ generative models like Naive Bayes and Hidden Markov Models. Supervised
methods are useful with labeled datasets, while unsupervised methods are vital for
real-time data streams, where labels are not available. An unsupervised anomaly
detection approach can differentiate between normal and anomalous behaviors over
time [10].

Anomaly detection techniques, as outlined by [11], include point, contextual, and
collective anomalies. This chapter focuses on collective anomalies in time series
data. Auto-encoders have shown high performance in this task due to their ability to
learn low reconstruction error representations, as demonstrated by [12—14].

Auto-encoders are effective for data denoising, anomaly detection, and feature
extraction in noisy time series data. This chapter presents two approaches (unsuper-
vised and supervised) using auto-encoders combined with classification models to
analyze and classify time series as noise or real signals. The preference for classi-
fication over denoising allows for automatic analysis of continuous data, enabling
researchers to focus on potentially intriguing time series. Unlike previous approaches
requiring pre-processing steps, our methods work directly on raw data collected by
detectors.

Our methods aim to: detect GWs automatically from time series data; recognize
various noise types; and efficiently scale with data volume using a distributed imple-
mentation on the Apache Spark framework. Compared to similar works [4, 6-8, 15,
16], our approach does not require pre-processing, and we analyze real annotated
GWs events rather than simulated waveforms [17].

While models based on CNNs and RNNs are typically more complex and time-
consuming to train, we focus on simpler auto-encoders for a balance between
accuracy and scalability, facilitating efficient distributed training on computational
clusters.

15.3 Methods

In this section, we describe two approaches for GWs detection in time series. The
first approach exploits auto-encoder models to classify strain time series data with an
unsupervised anomaly detection strategy, whereas the second one uses auto-encoders
for feature extraction and performs supervised classification.



202 R. Corizzo and E. Zdravevski

15.3.1 Time Series Classification via Anomaly Detection (AE)

In this chapter, we utilize auto-encoders as outlined in [18], due to their proven
effectiveness in feature extraction and anomaly detection [13]. Our method involves
training the auto-encoder with one-class data. During prediction, a high reconstruc-
tion error indicates an anomaly, potentially signifying an actual GW signal.

The idea is to train the auto-encoder with noise data (negative or normal class),
which is abundant compared to the few GW signals. Unseen time series are classified
based on their reconstruction error. Generally, noise is continuously present, whereas
GW signals are rare and sporadic.

Each auto-encoder consists of an encoding function y and a decoding function §,
aiming to minimize reconstruction loss:

y: X —>F, §: F—= X,
y, 8 = argmin | X — 8¢y (X)), (15.1)
Y,

where X is the input space (time series) and F is the feature space.

The parametric, differentiable functions y and § are optimized to minimize recon-
struction loss through backpropagation, extracting reduced-dimensionality vectors
from raw data. The auto-encoder can have multiple hidden layers, with the final layer
reconstructing the input. For classification, typically only the encoding part is used,
as depicted in Fig. 15.1.

Fig. 15.1 Feature extraction encode encode decode decode
process performed using the
encoding function of the
trained auto-encoder [19]

Embedding features



15 One-Class Learning for Gravitational Waves Detection 203

Noise ts Unlabeled ts
E ts4 ] [
L e H>
| ts3 |
\"\-\.
Learn Anomaly
auto-encoder Detection
[ L] 1

* | @
Auto-Encoder
model

Fig. 15.2 Workflow of the AE method. Negative class time series (red) are exploited to train an
auto-encoder model that accurately reconstructs noisy time series. At prediction time, a new time
series of unknown class (yellow) is provided as input to the model, and the prediction class is
returned, depending on the reconstruction error observed [19]

1

In the AE approach, the final layer mirrors the input layer for time series recon-
struction. Conversely, the AE-FE approach uses only the encoding stage for feature
extraction, utilized by classification models.

With one hidden layer, the encoding stage of an auto-encoder maps input x € R?
to a hidden representation z € R” using o, a sigmoid or rectified linear unit,
weight matrix W, and bias vector b: z = o (Wx + b). The decoding stage recon-
structs x from z as X' = o/(W’z + b), minimizing the loss £,(x, X') = ||x — X'||> =
X — o’ (W' (o (Wx + b)) + b)),

During training, a threshold for the maximum allowed reconstruction error is
calculated to distinguish between noise and real data. Instances with errors above
this threshold are classified as actual GW time series, otherwise as noise. This process
is illustrated in Fig. 15.2.

The threshold must account for the data distribution of reconstruction errors and
possible changes over time (concept drift). It is recalculated during each training
session as € + f - 0,, following a one-tailed sigma rule from [20], where f is the
factor for standard deviation, e is the average error, and o, is the standard deviation.

This automatic threshold calculation avoids manual definition, preventing per-
formance degradation due to data distribution changes. Defining the threshold by
standard deviations from the mean allows automatic adjustment based on training
data error distribution. Threshold selection significantly impacts anomaly detection
performance, as noted by [21-24].

While reconstruction error-based anomaly detection is known, it has not been
applied to GWs before. One major drawback is the need for accurate threshold
estimation, which is resolved by our automatic method, accounting for changes in
the learned distribution.



204 R. Corizzo and E. Zdravevski

15.3.2 Feature Extraction with Supervised Classification
(AE-FE)

In deep neural networks, hidden layers capture increasingly abstract features, forming
a hierarchy of complexity. Studies by [25, 26] demonstrate that deep auto-encoders
maintain the feature extraction capabilities of traditional auto-encoders, enabling the
creation of low-dimensional embeddings as shown in [27, 28].

This approach exclusively utilizes auto-encoders for feature extraction by defining
hidden layers with fewer neurons, creating a reduced-dimensionality feature space
known as bottleneck features. The encoding function of a trained auto-encoder trans-
forms the input feature space F, with | F| features, into a new feature space H; with
|H1| < |F|. A subsequent encoding stage further reduces the dimensionality to H,
with |H2| < |H1]|.

By adopting auto-encoders, we extract a high-level, low-dimensional feature
space, mitigating collinearity among features as discussed by [14], thereby enhanc-
ing the reliability of learning tasks. Extracted features are then used by a prediction
model for classification.

We employ various prediction models, identified by a suffix in the method name.
For instance, using Gradient-Boosted Trees (GBTs) results in AE-GBT. GBTs, as
explained by [29], are ensemble-based and iteratively improve by minimizing a loss
function. They model non-linear interactions effectively and have shown high perfor-
mance in predictive tasks [30-33]. Other classifiers used include Logistic Regression
(AE-LR), ExtraTrees (AE-ERT), Random Forest (AE-RF), XGBoost (AE-XGB),
and Support Vector Machines (AE-SVM). In experiments, the AE-FE method is
denoted by the chosen classifier (e.g., AE-LR, AE-ERT, AE-GBT, AE-XGB, AE-
SVM).

Though commonly a final classification layer is added to the auto-encoder model,
this requires a two-step optimization process. Our focus on accuracy and scalability
leads us to prefer traditional machine learning methods for classification, which
achieve high predictive accuracy with lower training time.

The feature extraction process is illustrated in Fig. 15.1, and the AE-FE approach
in Fig. 15.3. This method trains supervised models on features extracted by auto-
encoders, even across different classes. Even if the auto-encoder is trained on the
negative class (noise), it can extract features for the positive class, assuming labeled
data is available. Thus, the supervised model discriminates classes based on differ-
ences in encoded vector representations.

15.4 Experiments

In this section, we describe the datasets and experimental results obtained from
two approaches: time series classification via anomaly detection (AE) and feature
extraction with supervised classification (AE-FE).
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15.4.1 Data Description

We analyze time series data representing gravitational strain collected by detectors,
which measure fractional changes in the lengths along two axes (x-arm and y-arm
cavities) h(t) = %. The raw data, available in hdf5 format, includes three
files: meta (metadata), quality (data quality), and strain (time series data).

Our dataset comprises positive class time series from four published gravitational
wave discoveries (GW150914, LVT151012, GW 151226, and GW170104) detected
by LIGO interferometers, as described in [34, 35]. These short-duration BBH (Binary
Black Hole) events are sampled at 4096 Hz, resulting in 1 and 3-second time series
(4096 and 12288 elements, respectively). Each event includes four time series: data
strain from H1 (Hanford) and L1 (Livingston) interferometers and their whitened
versions after preprocessing.

Inspired by [36, 37], we perform data augmentation by shifting time series by off-
setso € {—0.25, —0.125, 0.125, 0.25} s, generating 20 time series per event, totaling
80 time series.

To generalize over different types of noise, our dataset includes negative class
time series from 70 different noise types generated by the PyCBC Python library,
which is widely used for GWs data generation [17, 38, 39]. We also extract real
gravitational noise near real GWs events (3—15 s). Time series are normalized using
min-max normalization.
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Table 15.1 Overview of the datasets used in the experiments. All variants of GW2 with varying
noise rates present the same characteristics [19]

Dataset Class Number of time | Length of time Length of time
series series (1 s) series (3 s)

GW1/GW2 Signal 80 4096 12288

GWI1/GW2 Noise 70 4096 12288

GW3 Signal 104 4096 12288

GW3 Noise 92 4096 12288

GW4 Noise 50,000 4096 NA

We create three datasets:

e GW1I: Contains positive and negative class time series as described.

e GW2: Negative class time series from GW1, while positive class time series P
are blended from whitened signals W and noisy series N at different noise rates
(¢ = 0.1, 0.25, 0.50). For each element i, the formula is:

plil=(0 — o) -w[i] + o - n[i]. (15.2)

e GW3: Positive class time series from GW1; negative class time series sam-
pled from gravitational noise near events GW 170729, GW170809, GW170817,
GW170608, GW170814, GW170818, and GW170823, ensuring no traces of the
GW event are included in the noise data.

e GW4: For scalability experiments, this dataset replicates negative class time series
of 1 s.length (4096 feature values) from GW 1, resulting in up to 50,000 time series,
simulating the same data distribution as the original series.

An overview of the datasets is presented in Table 15.1. Gravitational waves events
considered in the GW1, GW2 and GW3 datasets, and their Signal-to-Noise Ratio
(SNR) observed at the interferometers are GW 150914 with a SNR of 24; LVT151012
with a SNR of 9.7; GW 151226 with a SNR 13; and GW170104 with a SNR of 13
[19]. Depending on the learning approach, time series are used for one-class learn-
ing and anomaly detection (AE approach) or for feature extraction and supervised
classification (AE-FE approach). The datasets (GW1, GW2, GW3) are ordered by
increasing recognition difficulty.

15.4.2 Experimental Setup

We experimented with different configurations of auto-encoder architectures, featur-
ing 1 or 2 hidden layers for both encoding and decoding. For a single hidden layer,
we used 512 or 1024 units. For two hidden layers, the first had 512 or 1024 units
and the second had 256 or 512 units. For context, considering that the time series
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analyzed are collected at a 4096 Hz sample rate, 512 hidden units correspond to %
of the 1-second time series length. A 5-fold cross-validation scheme was used for
the GW1 and GW2 datasets. For the GW3 dataset, we used a leave-one-subject-out
cross-validation scheme, resulting in 4 folds, where each fold had all representations
of a specific signal (GW event) in the test set. The auto-encoders were trained using
the LBFGS optimizer, minimizing reconstruction error on non-anomalous training
data. Training stopped after 500 iterations or when the error reduction was below
1073,

For detection, we set the standard deviation factor to f = 1.5, based on a sensi-
tivity study [19] that showed optimal classification performance in terms of F-score
at this value, except for the GW2 dataset with noise N = 0.5, where it achieved the
best recall.

We evaluated features extracted by the auto-encoders using various classifiers:
Logistic Regression (AE-LR), Gradient-Boosted Trees (AE-GBT), ExtraTrees (AE-
ERT), Random Forest (AE-RF), XGBoost (AE-XGB), and Support Vector Machines
(AE-SVM). Logistic Regression used L2 norm penalization and maxIter = 100.
Gradient-Boosted Trees had maxIter = 10 and other default Apache Spark MLIib
parameters. For ExtraTrees and Random Forest, we tested numEstimators €
{10, 100, 1000}. XGBoost used num Estimators = 1000. SVM used an RBF ker-
nel, with regularization parameter C € {1, 10, 100} and kernel coefficient gamma €
{0.1,0.01, 0.001, 0.0001}.

We compared our method with one-dimensional convolutional neural networks
(Conv1D). The first architecture had two convolutional layers (40 and 20 filters,
length 3), max-pooling of size 2, and a dense layer (sizes 512 or 1024). The second
architecture had two convolutional layers (40 and 20 filters, length 6), max-pooling
of size 2, and a three-layer MLP with dense layers (sizes 512, 256 or 1024, 512) and
a softmax classification layer.

Hyperparameters for competitor methods were selected via grid search: learning
rate [r € {10’1, 1072,1073, 1074}, dropout d € {0.1,0.3}, batch size bs €
{8, 16, 32}, and dense units du € {512, 1024}, following heuristics from [40, 41].
Optimization was done using nested cross-validation.

Additionally, we tested Deep Filtering [42], a state-of-the-art method for gravita-
tional wave analysis using one-dimensional CNNs, featuring 4 dilated convolution
layers (filter sizes 64, 128, 256, 512) and 2 fully connected layers (sizes 128, 64).

Our methods were implemented in Scala using Apache Spark, while competitors
used Python and Keras [1]. The best results, in terms of F-Score, for each method
and dataset are shown in Table 15.2.
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15.4.3 Accuracy Results

Table 15.2 presents Precision, Recall, and F-score results for AE, AE-FE, two
Conv1D implementations, and Deep Filtering.

In astrophysical data analysis, Recall is often prioritized over Precision, aiming
to detect more real gravitational waves (GW) at the expense of more False Positives,
which can be manually filtered. A model with perfect Recall would predict all posi-
tives, but this is not ideal. Since all gravitational data is stored, historical data can be
reprocessed to find missed events, making non-perfect Recall acceptable. However,
false positives can be costly, especially when they influence decisions like telescope
positioning. Therefore, Precision is also critical, necessitating a balance between
Precision and Recall. Therefore, in our study to compare the methods we utilize the
F-Score, which balances both metrics.

Results indicate that both AE and AE-FE achieve high accuracy in classifying
noise and real GWs. The AE method, trained on noise time series, effectively dis-
criminates between noise and GWs using reconstruction error with automatic thresh-
olding. Predictive accuracy is similar across different auto-encoder architectures, AE,
AE-FE, and Conv1D, with AE-FE achieving the best F-Score.

The AE approach does not assume prior knowledge of GW data distribution and
classifies based on reconstruction error, which is advantageous given the limited
observed and validated GW time series. This unsupervised method can accurately
detect new phenomena without relying on a predefined class distribution.

The results indicate that AE and AE-FE perform comparably with a 10% noise
rate, while AE and Conv1D degrade. The F-Score difference between AE-FE and
other methods is more pronounced in this dataset compared to GW1, reinforcing
AE-FE as the best approach.

AE degradation is particularly noticeable in Recall, while Precision remains rel-
atively high, suggesting AE correctly identifies the positive class when it makes
predictions but misses many positive instances due to increased false negatives. This
outcome is expected since the GW2 dataset’s positive class time series are con-
taminated with the same noise distribution learned by the auto-encoder. The strong
perturbation makes real GW signals and noise distributions more similar, reducing
reconstruction error differences among classes. Consequently, the AE approach’s
reconstruction error threshold becomes inaccurate for distinguishing classes. In con-
trast, AE-FE maintains optimal performance even with increased noise, accurately
mapping feature variations to classes using positively labeled time series for training
gradient-boosted trees.

For the AE approach, performance worsens with 3-second time series, espe-
cially at high noise rates. Here, noise contributes significantly to reconstruction error,
making the signal’s contribution negligible, thus complicating classification. Con-
versely, Deep Filtering’s convolutional filters perform better with longer time series,
though overall classification remains inferior to AE and AE-FE. AE performance
also degrades with increased network size, suggesting larger networks propagate
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noise more, reducing classification accuracy, whereas smaller networks effectively
reduce noise and produce more accurate classifications.

With the GW3 dataset, all methods show performance degradation due to increased
task complexity, but AE-FE remains the best, with satisfactory F-Score.

Table 15.2 highlights AE-FE’s favorable performance. However, AE-FE assumes
known positive class distribution, requiring data from both classes during training,
similar to Conv1lD and Deep Filtering. This assumption may be unrealistic in GW
analysis, given limited knowledge of expected phenomena. Therefore, AE could be
a viable alternative, as the context-dependent results favoring AE-FE might vary.
Additional nonparametric statistical tests in [19] show that AE-SVM has the lowest
ranking.

To evaluate the execution performance of our distributed implementation, scala-
bility experiments were conducted.

To this end, the GW4 dataset was adopted, by replicating all 1-second negative
class time series (4096 feature values) from the GW 1 dataset up to 50,000 time series.

Two Spark cluster configurations on a Microsoft Azure HDInsight cloud infras-
tructure were utilized. For the local setting, we used 2 D12 head nodes and one D12
worker node. A D12 instance has four cores and 28 GB of RAM, a D13 instance
has eight cores and 56 GB of RAM, and a D14 instance has 16 cores and 112 GB
of RAM. The first cluster had 2 D12 head nodes and 4 D13 worker nodes, providing
an 8x scale factor compared to the local setup. The second cluster had 2 D12 head
nodes and 8 D14 worker nodes, providing a 16x scale factor compared to the local
setup and a 2x scale factor compared to the first cluster.

Figure 15.4 shows the results in terms of the speedup factor (right) observed with
the best parameter values on the two clusters. The speedup graph does not contain
the last point, related to 50.000 time series, since the local execution could not be
completed successfully due to an excessive memory and CPU overhead. Figure 15.5
presents a different perspective in terms of execution time with a varying number of
worker CPUs and different amounts of processed data.

Fig. 15.4 Scalability results 12
in terms of speedup for the 11
AE approach, obtained with 10
two cluster configurations. 9
The two curves (1) and (2) § 8
refer to the different Spark & 7
cluster configurations on S 5
Azure HDInsight [19] g 5
& 4

3

2

1

0 20 40 60 80 100 120 140 160 180

Minutes of processed data

--Speedup (1) -=Speedup (2)
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Overall, it is possible to observe that the discussed implementation is capable of
scaling linearly as data increases. Moreover, the speedup factor obtained with the
distributed execution is consistently high, and it still increases with the addition of
worker cores, considering the improvement obtained by cluster configuration. This
performance confirms that the discussed approach benefits from a cluster environ-
ment and scales well with large datasets.

The distributed implementation of the proposed approaches and the datasets are
available to replicate the experiments at the following link: http://www.di.uniba.it/
~corizzo/gw/.

15.5 Final Remarks and Future Outlook

In this chapter, we discussed unsupervised and supervised approaches for GW detec-
tion from strain data time series, eliminating the need for manual pre-processing and
noise removal.

Our results showed that both AE and AE-FE outperform one-dimensional convo-
lutional neural networks and the Deep Filtering method. AE is ideal when no prior
knowledge of GW data distribution is available, which is realistic given the scarcity
of labeled time series of verified phenomena. AE models, trained on various noise
types, are sensitive to deviations and can detect interesting signals in noisy data,
potentially indicating real phenomena.

When knowledge of real GW phenomena exists, the AE-FE approach, using fea-
tures from an auto-encoder for classification models, outperforms AE. This method
excels in detecting previously observed phenomena in new time series. Experiments
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with varying noise levels revealed that AE performance degrades significantly at
25% noise or higher, while AE-FE remains more robust.

However, AE-FE relies on positive time series for training a supervised classifier,
and its near-perfect predictive performance may degrade if GW morphology changes
significantly in new, unseen time series.

Our methods, implemented using Apache Spark, show good scalability with large-
scale data, making them well-suited for high-volume GW time series analysis.

Future work could focus on glitch classification tasks with time series data and
exploring alternative neural network architectures optimized for detection.
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Chapter 16 ®)
Using Convolutional Neural Networks e

to Search Gravitational Wave Events
in LIGO-Virgo-KAGRA Data

Marc Andrés-Carcasona®, Alexis Menéndez-Vazquez(®, Mario Martinez®,
and Lluisa-Maria Mir

Abstract The detection of gravitational waves events in the data taken by the exper-
iments LIGO, Virgo and KAGRA requires an extensive computing process to extract
the signals from the noise. The traditional technique to perform this task is matched
filtering. Although powerful, it is computationally very expensive and new tech-
niques are being studied. In this chapter, the use of convolutional neural networks to
detect signals of compact binary coalescences using two-dimensional spectrograms
as input is explained. Different neural networks are used for different mass ranges.
The results of the searches in O3 data are shown.

16.1 Introduction

Gravitational waves (GW) can be produced by a variety of violent astrophysical
events, among which are the mergers of compact binary systems. Typically consist-
ing of either black holes or neutron stars, these compact binary coalescences (CBC)
generate GW strong enough to be detected by the LIGO, Virgo and KAGRA interfer-
ometers [1-3]. These systems are particularly interesting because they provide not
only direct evidence of the existence of these exotic objects, but also rich information
about their properties and the nature of gravity under extreme conditions. However,
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these experiments are subject to noise and the extraction of the GW signals requires
a dedicated set of techniques that pose a computational challenge [4].

Traditionally, to detect these signals buried in detector noise, the so-called matched
filtering technique has been used. This applies the optimal filter between the raw strain
measured and a signal waveform template. Although very effective, this procedure
requires a lot of computing resources, as an extensive set of signal templates (called
template bank) has to be used to cover a wide set of possible parameters of the signal.

In response to these challenges, new techniques are being explored. Among them,
the ones based in Machine Learning are gaining a lot of popularity [5—-11] (see
Ref. [12] for a comprehensive review). While various approaches are being studied,
this chapter introduces in particular the application of Convolutional Neural Net-
works (CNN) as a method to detect CBC signals. The data preparation stages, the
architecture of the CNNs and the learning procedure are explained and the results
for real data from the third observing run (O3) are shown.

The chapter is organized as follows. Section 16.2 introduces the data preparation
steps that are followed to generate the training images for the neural networks, and in
Sect. 16.3 the architecture and the training procedure used is explained. In Sect. 16.4
the results of an injection campaign are presented together with an estimation of the
sensitivity of this method. Finally, in Sect. 16.5 the results of a search in O3 data are
displayed, and Sect. 16.6 is devoted to conclusions.

16.2 Data Preparation

The data taken by LIGO, Virgo and KAGRA are one-dimensional time series,
typically sampled at 16 kHz. To reduce the computing power and ensure optimal
performance of the CNNs, these data are usually pre-processed.

For the detection algorithm presented here, the first step is to down-sample the
data to 4096 Hz. Afterwards, the time series is cut to contain only 5 s of data and
whitened to remove the noise bias and to enhance the detection capabilities [9—11].
Following this step, the Q-transform is applied to obtain a spectrogram [13, 14]. This
consists of a two-dimensional image in frequency and time that provides a visual
representation of the signals. The Q-transform is particularly successful at revealing
the signature chirp patterns of compact binary coalescence signals, which appear as
bright, sweeping arcs in the spectrogram. By converting the original time series into a
visual format, CNNs specialized in image and pattern recognition can be employed.
In our case, 400 bins in time and 100 bins in frequency are used as they are sufficient
to capture the signal in the spectrogram [9-11].

To train the neural network, a set of background-only and background plus signal
images are used. For the signal, the PyCBC package [15-17] is used to produce the
waveforms using the approximants IMRPhenomPv2 [18] or IMRPhenomD [19, 20].
Then, these signals are injected in real noise data from the interferometers, after
taking into account the orientations of the detectors, the antenna factors and the
different times of arrival.
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Fig. 16.1 Various regions of 102
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Table 16.1 Parameter space of the training set. All the distributions are assumed uniform in these
ranges. We additionally assume that m| > m»

Parameter Symbol | HM M LM AM Units
Mass 1 mi [25, 100] [5,25] [0.2,5] [1,20] [Mgo]
Mass 2 my [25, 100] [5,25] [0.2, 5] [0.01, 1] Mo]
Distance [100, 1400] [1,1000] |[1,100] [1, 100] [Mpc]
Right ascension | « [0, 27] [rad]
Declination* ) [0, ] [rad]
Polarization v [0, ] [rad]
angle

Inclination 05N [0, /2] [rad]
Time of te [0.5,0.9] [s]
coalescence

*For the AM, the cosine of the declination is uniformly sampled between [—1, 1] instead

Since the parameter space is very broad, four different neural networks are con-
sidered according to the mass regions. The low-mass region covers the mass range
between 0.2 and 5 M. The intermediate-mass comprises the masses between 5 and
25 Mg. The high-mass range covers the events between 25 and 100 M. Addition-
ally, we consider a highly-asymmetric mass configuration, with the primary mass
between 1 and 20 Mg, and the secondary one between 0.01 and 1 Mg. In this way,
sub-solar mass events can potentially be detected (Fig. 16.1). The approximant used
for the asymmetric-mass range is the IMRPhenomD, with a minimum frequency of
45 Hz, as otherwise the signal generation takes too long. The rest of CNNs use the
IMRPhenomPv2 waveform with a cut at a minimum frequency of 80 Hz for the low-
and intermediate-mass ranges and of 25 Hz for the high-mass.

All the parameters used to train the neural networks are summarized in Table 16.1.
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Fig.16.2 Spectrogram of an injected signal withm = 14.4 Mg, my = 0.25 My andd = 21 Mpc.
Extracted from Ref. [10]

An example of a spectrogram used for the training containing a signal with parameters
m; = 14.4 Mg, my, = 0.25 Mg and d = 21 Mpc, injected into noise is shown in
Fig.16.2.

The decision to segment the data into 5 s windows is driven by the need to
balance computational efficiency with the temporal resolution necessary to capture
the dynamics of the GW signals. Each segment is ensured to be sufficiently long to
include the inspiral, merger, and ringdown phases of the binary coalescence, yet kept
short enough to ensure a manageable computational load for the neural network.

This careful tuning of data preparation parameters is essential to optimize the
detection capabilities of the CNNs and to ensure that they can effectively learn from
and generalize across the different noise and types of signals.

16.3 Neural Network Definition and Training

The architecture employed for the detection of these CBC events is a ResNet50
model, a residual deep convolutional neural network known for its efficacy in large-
scale image recognition [21, 22]. The choice of ResNet50 for the architecture of the
CNNs in this study is motivated by its proven success in various image recognition
tasks across multiple fields. ResNet50’s ability to mitigate the vanishing gradient
problem through the use of skip connections allows it to learn effectively even from
very deep networks, which is a crucial feature when dealing with complex and noisy
data such as gravitational wave spectrograms.

The typical ResNet50 architecture includes a sequence of convolutional layers,
each followed by a batch normalization and pooling layers and a densely connected
output layer with a sigmoid activation function to perform the binary classification.
Using the Adam optimizer [23], known for its efficiency in handling sparse gradients,
and the binary cross-entropy for the loss function, the network iteratively adjusts its
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weights across multiple epochs to minimize prediction errors. A total of the order
of 10° images are used for the training. Some thousands of images are kept for the
testing and validation.

Different CNNs are trained for each mass range, using information from the
various interferometers. They cover the possible combinations of detectors: H1-L1,
H1-V1, L1-V1 and H1-L1-V1. In this case, the information coming from a single
interferometer is not considered, as it has been proven to perform considerably worse
than for the double and triple combinations [10, 11].

Each of the sixteen neural networks is trained for 12 epochs and the one having
a smaller validation loss is chosen. The model is implemented using Keras and
TensorFlow’s backend for GPUs [24]. It takes between two and three hours for each
CNN to train.

To determine whether an image contains an event, the false alarm rate (FAR)
is employed. The FAR can be computed as FAR(n) = N(n)/T, where n € [0, 1]
denotes the CNN output, N (1) the number of background images with a CNN output
greater than or equal to  and T the period of time analyzed. By using the time sliding
technique [25], many images containing only noise can be analyzed reaching lower
values of FAR. In this case, about 10° images were used, allowing to assign FAR
values as low as 1/153 years™!.

As explained in Refs. [10, 11], the outputs of the four CNNs are combined to
construct a single detection statistic by taking the mean. This is done to reduce the
number of expected false positives, as without this step, the FAR when n = 1 is still
higher than 1 year™!, which is a reasonable number to claim a detection confidently
enough. By requiring the various CNNs to be sure that the signal is present in the
data, the background is less prone to confuse it, and a higher significance to the
signals assigned.

As an example of the training evolution, in Fig. 16.3 the accuracy, loss and valida-
tion accuracy for the asymmetric mass (AM) trained with HIL1V 1 data are displayed.
The behaviour described is the one expected from a proper training; no under- or
overfitting is present.

16.4 Injection Test

The injection test is a crucial part of validating the effectiveness of the trained CNNs
in real-world scenarios. By simulating signals with the same parameters as those
described in Table 16.1, but sampled uniformly in co-moving volume, and injecting
them into real detector noise, we can assess the CNN’s detection capabilities.
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Fig.16.3 Evolution of training statistics for the asymmetric-mass CNN with HIL1V1 information.
Extracted from Ref. [10]

For each signal, the corresponding signal-to-noise ratio (o) can be estimated as

Fo (P
2 4/ — 2 df, 16.1
P S ! (16.1)

where h( f) denotes the strain of the signal in the frequency domain and S, (f) the
power spectral density of the noise. Then, the network signal-to-noise ratio can be
obtained as

Prt = D 07 (16.2)

where the index i runs over the different interferometers.

With this set of injections and setting the minimum FAR for considering a detec-
tion to 1 year", the network signal-to-noise ratio for which a 50, 80 and 99% of
signals are recovered can be computed. This is displayed in Table 16.2.

Table 16.2 Network signal-to-noise ratio for which a 50%, 80% and 99% of signals are recovered

CNN Pnet(50%) Pnet(80%) Pnet(99%)
High mass 12 15 28
Intermediate mass 14 16 28
Low mass 21 25 41
Asymmetric mass 16 22 41
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These results show that a 99% of events with a signal-to-noise ratio higher or equal
to 28 (for the high- and intermediate-mass) or 41 (for the low- and asymmetric-mass)
can be recovered. The efficiency drops for the systems with smaller masses due to
the longer, fainter and higher-frequency signals that they produce.

16.5 Results

The CNNs can be used to perform a search over O3 data. This is done by using only
the data where the three interferometers were online, making a total of about 155 days
of data, separated into images of 5 s of duration with an overlap of 2.5 s. This is,
two consecutive images have an overlap of 50% to ensure that no event is missed.
For each image the output of the four CNNs is computed and then combined. If this
is smaller than or equal to a FAR of 1 year™', the image is considered to contain
an event. Similarly, the inverse FAR (IFAR), in units of year, can be computed and
compared to the expected distribution of noise events, which is assumed to follow a
Poisson distribution. This is shown in Fig. 16.4.

The only detections reported are in the high-mass range. The rest of the results are
compatible with a Poisson background and, therefore, there is no sufficient statistical
significance to claim any other detection. The events detected can be compared to
those reported in the latest catalog: GWTC-3. There are only 50 events in the catalog
detected during O3 with the three interferometers online. Only 31 of those have
masses that fall within the mass range of the trained CNNs and 16 of these are
detected (with a FAR of 1 per year). This implies a detection efficiency of about a

*  Foregronnd

-~ Expected backgrousd

[

Cumulative Event Count
Cumulative Event Count

*  Foreground

== Expected background

Cumnlative Event Count
Cumulative Event Connt

] ' o 3
w e ! " 1 ! 1t W w?t '
IFAR [yrs] TFAR [yrs|

Fig.16.4 Cumulative event count as a function of the inverse false alarm rate for the high-mass (top-
left), low-mass (top-right), intermediate-mass (bottom-left) and asymmetric-mass (bottom-right)
ranges. Extracted from Refs. [10, 11]
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50%. Setting the FAR criterion to 1 per week, the number of events detected rises to
22, implying an efficiency of 70%. This comes at the expense of having more false
positives.

In the case of the asymmetric-mass range CNN, the results are compatible with
more sensitive searches that specifically target sub-solar mass events with matched
filtering, as no signal has yet been detected [26, 27]. Despite this, the sensitivity of
the search with the CNN is lower and the constraints to the population of such objects
less tight [10].

In total, around 2k CPU hours have been used for each mass range running on
Intel®Xeon®CPU E5-2680 v4 @ 2.40GHz. This reduces drastically the computing
cost that is usually needed for match filtering analyses.

16.6 Conclusions

The results have shown that it is possible to detect CBC events using CNNs of
a ResNet50 kind on spectrograms. This approach has proven to be less sensitive
than traditional matched filtering, but faster. The O3 scan that has been carried out
demonstrates that a third of the events of the catalog can be recovered when a cut of a
FAR < 1 years™! is applied to select the candidates. This number increases to a 50%
if the parameter space for which they have been trained is accounted for. Overall the
conclusions are that CNNs are much faster than the traditional methods but still less
sensitive.
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Chapter 17 )
Detecting Gravitational Waves From Shshee
Binary Black Hole Mergers Using Deep
Convolutional Neural Networks and

Quadratic Time-Frequency Distributions

Nikola Lopac®, Jonatan Lerga®, and Franko Hrzié¢

Abstract Detecting gravitational waves (GWs) in measured data is a challenging
task that demands advanced techniques for effective analysis due to the presence
of intensive noise and the non-stationary nature of these signals. Quadratic time-
frequency distributions (TFDs) from Cohen’s class provide valuable tools for analyz-
ing various non-stationary signals simultaneously in the time and frequency domain.
This chapter reviews a method that integrates deep convolutional neural networks
(CNNs) with these quadratic TFDs to enhance the detection of GWs from binary
black hole (BBH) mergers. The approach was validated on a comprehensive dataset of
100.000 signals combining actual Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) data with synthetically simulated GW injections. Twelve different
two-dimensional (2D) TFD representations were calculated (resulting in 1.2 mil-
lion TFDs) and used as inputs to three high-performance CNN models: ResNet-101,
Xception, and EfficientNet. The proposed approach demonstrated superior detection
performance, achieving high values across various classification metrics. Further-
more, it outperformed a CNN model using original time-series data, proving to be a
viable solution for detecting GWs in low signal-to-noise ratio (SNR) environments.

N. Lopac
Faculty of Maritime Studies, University of Rijeka, Rijeka, Croatia

N. Lopac (X)) - J. Lerga - F. Hrzi¢
Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
e-mail: nikola.lopac @pfri.uniri.hr

J. Lerga
e-mail: jonatan.lerga@riteh.uniri.hr

F. Hrzié¢
e-mail: franko.hrzic @riteh.uniri.hr

J. Lerga - F. Hrzi¢
Faculty of Engineering, University of Rijeka, Rijeka, Croatia

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 225
E. Cuoco (ed.), Gravitational Wave Science with Machine Learning, Springer Series
in Astrophysics and Cosmology, https://doi.org/10.1007/978-981-96-1737-1_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1737-1_17&domain=pdf
http://orcid.org/0000-0002-0616-1265
http://orcid.org/0000-0002-4058-8449
http://orcid.org/0000-0003-1513-0337
mailto:nikola.lopac@pfri.uniri.hr
mailto:jonatan.lerga@riteh.uniri.hr
mailto:franko.hrzic@riteh.uniri.hr
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17
https://doi.org/10.1007/978-981-96-1737-1_17

226 N. Lopac et al.

17.1 Introduction

Gravitational waves (GWs) require highly sensitive measurements due to their low
amplitudes, making GW observations susceptible to various instrumental and envi-
ronmental noise sources, even with cutting-edge equipment [1]. Consequently, GW
measurements are corrupted by non-stationary, non-white, and non-Gaussian noise,
presenting a significant challenge for detecting these signals amidst high noise levels.

GW detection methods have evolved to address these challenges, with specific
algorithms developed for different signal types. Binary black hole (BBH) merger sig-
nals are primarily detected using matched filtering, a technique that correlates noisy
measurements with a bank of waveform templates (see, e.g., [2]). However, this
method is computationally demanding and optimal only for Gaussian noise. Denois-
ing techniques, which do not require astrophysical signal information, have shown
promise in noise reduction but must be coupled with other detection algorithms [3-5].

Machine learning (ML) has gained traction in GW astronomy, with applications in
data denoising, parameter estimation, detector glitch classification, and GW detec-
tion [6]. While some studies have focused on detecting various types of GW sig-
nals using time-series data [7] or spectrograms [8], the primary focus has been on
BBH signals due to their successful observation [9—11] by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [12] and Virgo [13] detectors.

ML-based BBH signal detection has mainly utilized time-series data classifi-
cation [14]. A significant advancement in this area was the introduction of one-
dimensional (1D) deep convolutional neural networks (CNNs) for detecting BBH
signals in noise [15, 16]. Subsequent studies have further explored using CNNs for
classifying time-series BBH signals [17-19].

Despite the progress in ML-based GW detection, applying deep learning (DL)
to two-dimensional (2D) transformations of BBH signals remains underexplored.
Additionally, there has been a notable lack of approaches leveraging Cohen’s class
of time-frequency distributions (TFDs) for GW detection. These TFDs represent
signal energy distribution in the joint time-frequency domain, and have been utilized
as a powerful tool for analysis of various non-stationary signals, such as EEG, ECG,
radar, and seismic signals [20].

This chapter explores the potential of quadratic TFDs from Cohen’s class to
enhance DL detection of BBH GW signals, reviewing a method developed by Lopac
et al. [21-23]. The method involves training deep CNNs on 2D TFD representations
of GW time-series signals. The DL models utilize 12 different TFDs to transform
input data and three CNN architectures for classification. These models have been
experimentally validated on a dataset comprising real-life noise data from LIGO
detectors and simulated BBH GW signals. Additionally, the classification results are
compared to those obtained from a 1D CNN model trained on the original time-series
data. The analysis demonstrates that employing Cohen’s class TFDs achieves high
classification accuracy and significantly improves BBH GW detection performance
compared to the time-series model.
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The remainder of this chapter is organized as follows. Section 17.2 outlines the
proposed TFD-CNN method, detailing data preparation and preprocessing, TFD
calculation, and the implementation of CNNs. Section 17.3 presents and analyzes the
results obtained from the experimental validation of the method. Finally, Sect. 17.4
summarizes the key conclusions.

17.2 TFD-CNN Method for Detecting BBH GWs

The method for detecting BBH GWs in intensive noise, proposed and developed
in prior studies by Lopac et al. [21-23], combines quadratic TFDs from Cohen’s
class with 2D deep CNN architectures. This approach involves data preparation and
preprocessing, TFD calculation, and the implementation and training of DL models
used as classifiers, as illustrated in Fig. 17.1.

Fig. 17.1 Workflow of the
TFD-CNN-based BBH GW LIGO noise Simulated BBH GWs!
detection method
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17.2.1 Data Preparation and Preprocessing

The process of generating a comprehensive dataset includes acquiring real-life
noise data from the LIGO detector, generating synthetic BBH GW signals, and
preprocessing the data [19].

Real-life noise data were retrieved from the Gravitational Wave Open Science
Center (GWOSC) repositories [24], specifically from LIGO’s second observing run
(02) [25]. Data selection criteria included the operational status of LIGO detec-
tors, meeting minimum quality requirements for compact binary coalescence (CBC)
searches, and excluding segments with confirmed GW events or hardware injections.
The data were downsampled from 4096 to 2048 Hz to reduce computational costs
while maintaining sufficient frequency resolution.

Extensive simulations of BBH merger waveforms were performed using the LIGO
Algorithm Library (LALSuite) [26] and PyCBC software packages [27]. The simu-
lations employed the effective-one-body (EOB) waveform model SEOBNRv4 [28],
which models spinning, non-precessing BBH mergers, with parameters randomly
sampled from defined distributions. These synthetic waveforms, after applying a
one-sided Tukey window, were projected onto the LIGO detectors’ antenna patterns
to produce noise-free GW signals. The synthetic GW signals were then injected into
the background noise at specified network optimal matched-filter signal-to-noise
ratios (NOMF-SNRs), ranging from 8 to 30.

The generated data underwent a whitening procedure based on a local estimate
of the detector noise amplitude spectral density (ASD) calculated via the Welch
method [29]. The data were then high-pass filtered at 20 Hz to remove low-frequency
artifacts and cropped to 0.5-second segments, capturing the characteristic BBH chirp
waveforms while reducing computational load. The final dataset consisted of 100,000
time-series examples, each 1024 samples long, with half containing injected BBH
GW signals embedded in noise and half containing only noise.

17.2.2 TFD Calculation

The time-series data obtained in the previous stage were transformed into the time-
frequency (¢, f) domain using 12 TFDs from Cohen’s class. TFDs are valuable tools
for analyzing non-stationary signals, which often consist of multiple components and
are affected by noise [30, 31]. These 2D signal representations enable simultaneous
examination of both time and frequency domains [20, 32]. Below, the 12 TFDs
utilized in the proposed approach are briefly described.

The spectrogram (SP) of the signal is obtained as the squared modulus of the
short-time Fourier transform (STFT). The STFT is a linear TFD that performs the
Fourier transform on segments of the signal s(¢) within a sliding time window A (¢)
[33]:
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[ee) 2
SP(t,f):‘/ s(@h(r—0e /7 dr| . (17.1)

While the SP provides a signal representation with low interference terms, it
faces limitations in achieving high resolution in both time and frequency domains
simultaneously. This challenge arises from the use of a fixed-size window: shorter
windows offer better time resolution but poorer frequency resolution, while longer
windows improve frequency resolution at the expense of time resolution.

Quadratic TFDs from Cohen’s class are developed to address these limita-
tions. These TFDs utilize the concept of the analytic signal, which is a complex
signal obtained by applying the Hilbert transform to eliminate the negative fre-
quency components from the real-valued signal to reduce cross-terms in quadratic
distributions [20].

The Wigner—Ville distribution (WVD) is a fundamental TFD within Cohen’s class.
It is defined as the Fourier transform of the instantaneous autocorrelation function
of the signal [34]:

o0

WVDG, f) = [ s (r n %) 5* (r — %) eI (17.2)

The WVD offers high time-frequency resolution of the true signal components
(auto-terms) but suffers from interference terms (cross-terms) when dealing with
multi-component signals due to its quadratic nature. These interference terms can
complicate the visual interpretation of the TFD.

To mitigate these unwanted terms, the WVD can be smoothed using appropriate
kernels, resulting in TFDs known as reduced-interference distributions (RIDs) [20].
These kernels are designed in the 2D Doppler-lag (v, t) domain, also known as the
ambiguity domain [20]. The Doppler (v) variable, obtained by the Fourier transform
of the time (¢) variable, represents a frequency shift, whereas the lag () variable rep-
resents a time shift [20]. Specifically, the highly oscillatory cross-terms are positioned
away from the origin in the Doppler-lag domain, allowing them to be eliminated by
applying a low-pass filter [20]. Applying the low-pass filter involves balancing the
trade-off between the time-frequency resolution of the auto-terms and the extent of
cross-term attenuation [20].

The pseudo Wigner—Ville distribution (PWVD) modifies the WVD by applying
a time windowing function A (¢) to the autocorrelation function of the signal [35].
This time windowing acts as frequency smoothing, which attenuates the cross-terms
oscillating in the frequency direction. However, this smoothing also decreases the
frequency resolution of the signal’s auto-terms. The PWVD is defined as [35]:

PWVD(@, f) = /_Zh(r) s (t + %) 5* (r - %) eIty (17.3)

The PWVD faces the challenge of cross-terms oscillating in the time direction,
which are not attenuated. This limitation is addressed by the smoothed pseudo
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Wigner—Ville distribution (SPWVD), which applies an additional smoothing win-
dow g(¢) in the time direction [36]. The SPWVD enables independent control of
smoothing in both time and frequency domains by selecting appropriate lengths for
the windows % (#) and g(¢). This flexibility allows for better management of inter-
ference terms, although there is a trade-off between the level of interferences and
time-frequency resolution. The SPWVD is defined as [36]:

SPWVD(t, f) = / h(r)/ g —1)s (u n —) s* (u - —) du e 127 gy .
oo oo 2 2

(17.4)

The Choi—Williams distribution (CWD) employs an exponential kernel of width

o to suppress cross-terms while balancing resolution [37]. The parameter o allows

control over this trade-off: smaller values reduce cross-terms, while larger values

enhance the resolution of auto-terms. Despite its effectiveness, the CWD does not

offer independent control over time and frequency smoothing. The CWD is calculated
as follows [33]:

e N o2 T
CWD(, f) = e‘ms(t+u+—)
© ) /w/oozﬁm >

5* (r fu— %) du e 777y . (17.5)

The Butterworth distribution (BUD) enhances the CWD by offering improved
preservation of auto-term resolution and better suppression of low-frequency cross-
terms [38]. This is accomplished through a kernel that acts as a 2D low-pass
filter in the ambiguity domain, with adjustable pass-band and transition region
parameters [38]. The BUD is defined as follows [39]:

o ul T
BUD(, f) = //2|r| ms(,+u+§)

5 (t fu— 5) du =¥ dr | (17.6)

The Born-Jordan distribution (BJD) is an RID that preserves the time and fre-
quency supports of a signal [40]. It utilizes a narrowband sinc kernel in the ambiguity
domain, effectively suppressing cross-terms but at the expense of reduced auto-term
resolution [41]. The BJD is defined as follows [42]:

o0 t+‘%‘

1S .
BJD(, f) =/ = . s(u—i—%) 5" (u— %) du e Tdr . (17.7)
-4

—oo |7

The Zhao—Atlas—Marks distribution (ZAMD) employs a cone-shaped kernel to
achieve a balance between time and frequency resolution while effectively reducing

cross-terms. This distribution is derived by applying frequency smoothing to the BID
[43]:
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e’} t+% T T
_ - * _ - —j2nft
ZAMD(, f)_/;mh(r)/t_% s(u+ 2)s (u 2>due dr. (17.8)

The RID with a kernel based on the first kind Bessel function of order one (RIDB)
effectively suppresses cross-terms while preserving high time-frequency resolution.
The RIDB achieves this balance by leveraging the low-pass filtering characteristics
of the Bessel kernel [44, 45]:

00 t+7| _ 2
RIDB(t,f):/ h(7) 28) 1—(” t)

i~z 7Tl T

s u—}—z s* u—E du e " gt . (17.9)
(1+3)s" (w=3)

The RID with a kernel based on the binomial coefficients (RIDBN) is defined as
[45, 46]:

I7|
2)t]+1
RIDBN(t, f) = Z Z 22\r|+1 <|t|—|—u+1>

T=—00 u=—|7|

slt+u+tls [t 4+u—1t] e/, (17.10)

The RID with a kernel based on the Hanning window (RIDH) is obtained as
[42, 45]:

RIDH(, ) =/ h(z )f 8w ( 5(2”7”»

s<t+u+§>s (r+u—5)du eI g (17.11)

Finally, the RID with a kernel based on the triangular window (RIDT) is calculated
as [42, 45]:

2 2
woricn= [_ua | 52 35)

s(l+u+§)s (t+u— 5) du e 777 dr. (17.12)

Figures 17.2 and 17.3 illustrate the application of the described TFDs to time-
series GW data, presenting 12 TFDs of a sample BBH GW signal embedded in the
noise with NOMF-SNR of 20.
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17.2.3 TFD-CNN Models

After applying 12 different TFDs to the time-series dataset, 12 distinct datasets
of 100,000 TFD images of size 256 x 256 were created (total of 1.2 million TFD
images). These datasets were normalized and divided into training, validation, and
test subsets with a 70-15-15 split. Each TFD dataset was used with three advanced
CNN architectures: ResNet-101, Xception, and EfficientNet.

The ResNet-101 architecture addresses the vanishing gradient problem by incor-
porating skip connections, enabling the construction of deeper networks with higher
accuracy [47, 48]. It begins with a 7 x 7 convolutional layer with 64 channels, fol-
lowed by a 3 x 3 max-pooling layer. The network then includes four groups of
bottleneck residual blocks with 256, 512, 1024, and 2048 output channels, respec-
tively. The model ends with a global average pooling layer and a fully connected
layer. In this study, the Adam optimizer with a learning rate of 1 x 107 and a batch
size of 16 was used for training.

The Xception architecture extends the Inception module concept by utilizing
depthwise separable convolutions, which improve accuracy and convergence speed
while reducing computational costs [49]. The Xception network comprises 36 con-
volutional layers divided into 14 modules with linear residual connections, except
for the first and last modules. The initial two layers perform standard convolutions,
while the remaining layers use depthwise separable 3 x 3 convolutions followed by
batch normalization. Additionally, 3 x 3 max-pooling layers with a stride of 2 are
utilized. The training was performed using the Adam optimizer with a learning rate
of 1 x 10~* and a batch size of 32.

EfficientNet employs compound scaling to balance network width, depth, and
resolution [50]. This architecture includes mobile inverted bottleneck convolution
(MBConv) [51] and squeeze-and-excitation modules [52]. The EfficientNet-B2 vari-
ant was used in this study, with the RMSProp optimizer with a learning rate of
1 x 10~* and a batch size of 32.

For all models, the final prediction layer was modified to output a single proba-
bility value using a sigmoid activation function, facilitating binary classification to
distinguish between noise and GW signal examples. The binary cross-entropy loss
function was employed, and all hyperparameters for model training were experimen-
tally selected from a range of values defined in the original literature where the cor-
responding CNN architectures were first proposed. Figure 17.4 shows an overview
of the CNN-based binary classification approach, where the output represents the
probability that the input data example contains a BBH GW event.
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Fig. 17.4 TFD images processed by 2D CNN architectures for detecting BBH GW events

17.3 Results and Discussion

After training, the performance of each TFD-CNN model was evaluated on the test
dataset. The models demonstrated exceptional classification performance across mul-
tiple evaluation metrics, as reported in studies by Lopac et al. [21-23]. The proposed
method was also compared to a 1D CNN model adapted from [16] for classifying
original time-series GW data. This adaptation involved resizing the input layer to
match the length of the input data examples, necessitating smaller convolution ker-
nels while keeping other parameters unchanged. The final output layer was modified
to a single neuron with a sigmoid activation function to indicate the probability of a
BBH GW signal. The training utilized the binary cross-entropy loss function and the
Adam optimizer with an optimal learning rate of 1 x 107> and a batch size of 32.

The obtained classification accuracy and area under the receiver operating char-
acteristic (ROC) curve (ROC AUC) values, as reported in [21-23], are shown in
Tables 17.1 and 17.2, respectively. The TFD-CNN models achieved classification
accuracy between 96.54 and 97.10%, and ROC AUC values ranged from 0.9850
to 0.9885. Compared to the 1D CNN model utilizing time-series data, the pro-
posed approach showed substantial improvements, with gains of 3.39-3.95% in
classification accuracy and 1.71-2.06% in ROC AUC.

Furthermore, precision values were reported between 97.55 and 99.51%, recall
rates from 94.15 to0 95.87%, F1 scores between 96.46 and 97.03%, and the area under
the precision-recall curve (PR AUC) values ranging from 0.9899 to 0.9920 [21-23].
Additionally, the TFD-CNN models offered improvements of 0.35-2.31% in preci-
sion, 5.30-7.02% in recall, 3.62-4.19% in F1 score, and 1.27-1.48% in PR AUC
over the time-series CNN model.

The robustness of the proposed method was further supported by additional met-
rics such as confusion matrices, ROC curves, and precision-recall curves, which
consistently confirmed the method’s high performance [21-23]. The statistical signif-
icance of the results was validated using McNemar’s test, underscoring the reliability
and effectiveness of the developed approach.
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Table 17.1 Classification accuracy values of the evaluated TFD-CNN models

TFD CNN
ResNet-101 (%) Xception (%) EfficientNet (%)
Sp 96.91 96.95 97.10
WVD 96.54 97.04 96.82
PWVD 96.89 96.97 96.93
SPWVD 96.76 96.99 96.91
CWD 96.95 96.84 96.98
BUD 96.83 96.83 96.89
BID 96.83 96.80 96.99
ZAMD 96.81 96.82 96.57
RIDB 96.85 96.77 96.83
RIDBN 96.93 96.91 96.80
RIDH 96.79 96.87 97.00
RIDT 96.80 96.86 96.85
Time-series model 93.15
Table 17.2 ROC AUC values values of the evaluated TFD-CNN models
TFD CNN
ResNet-101 Xception EfficientNet
SP 0.9873 0.9881 0.9882
WVD 0.9854 0.9871 0.9857
PWVD 0.9865 0.9873 0.9869
SPWVD 0.9868 0.9880 0.9877
CWD 0.9870 0.9873 0.9885
BUD 0.9880 0.9867 0.9869
BID 0.9880 0.9871 0.9882
ZAMD 0.9871 0.9876 0.9875
RIDB 0.9881 0.9873 0.9864
RIDBN 0.9880 0.9878 0.9875
RIDH 0.9863 0.9875 0.9880
RIDT 0.9871 0.9862 0.9850

Time-series model

0.9679
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17.4 Conclusions

This chapter reviewed a method for detecting BBH GWs in noisy measurements
using deep CNNs as classifiers and quadratic TFDs as an alternative signal repre-
sentation. The approach involved transforming time-series data into time-frequency
representations using 12 different quadratic TFDs from Cohen’s class and using these
2D representations as inputs for three advanced CNN models: ResNet-101, Xcep-
tion, and EfficientNet. The proposed method was validated on a dataset combining
real-life LIGO data with synthetic GW signals, achieving high detection performance
with classification accuracy up to 97.10% and ROC AUC up to 0.9885. Compared to
a 1D model using original time-series data, the TFD-CNN approach demonstrated
significant improvements, with statistically significant gains across all metrics. These
results underscore the effectiveness of using TFDs from Cohen’s class to enhance
DL-based detection of BBH GW events. Future research could explore the use of
various TFDs for data augmentation, employ ensemble learning, and apply adaptive
filtering to noisy data to further refine and enhance this approach.
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Chapter 18 ®)
Deep Residual Networks for Shshee
Gravitational Wave Astronomy

Paraskevi Nousi, Alexandra Eleni Koloniari, Nikolaos Stergioulas,
and Anastasios Tefas

Abstract Gravitational wave astronomy has emerged as a new branch of observa-
tional astronomy, since the first detection of gravitational waves in 2015. The current
number of O (100) detections is expected to grow by several orders of magnitude over
the next two decades. As a result, current computationally expensive detection algo-
rithms will become impractical. A solution to this problem, which has been explored
in the last years, is the application of machine learning techniques to accelerate
the detection of gravitational wave sources. In this chapter, the application of deep
residual networks in achieving rapid detections with high sensitivity is presented.
In particular, the AresGW algorithm, implemented using a 54-layer deep residual
network, has demonstrated a remarkable ability to achieve a high detection rate in
real noise. The results of the first Machine Learning Gravitation Wave Mock Data
Challenge (MLGWSC-1) have underscored the effectiveness of the AresGW algo-
rithm, highlighting its higher sensitivity over traditional detection algorithms, such
as matched filtering or wavelet-based approaches. The introduction of Deep Adap-
tive Input Normalization (DAIN) and curriculum learning strategies has allowed
substantial improvements in the training efficiency and robustness of AresGW. This
progress is poised to bring about a new era in gravitation-wave astronomy, where
machine learning will pave new paths for exploration and discovery.
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18.1 Introduction

Ever since 2015, when the initial detection of gravitational waves (GWs) from a
binary black hole (BBH) system took place [1], the frequency of GW detections
has been on the rise, nearing a point where they could be considered commonplace.
Following the third observation run (O3), the latest catalog (GWTC-3, [2]) from the
collaboration of Advanced LIGO [3], Advanced Virgo [4] and KAGRA [5, 6] listed
90 GW events, the majority of which were BBH mergers. The fourth observation run
(04) is in progress and alerts for more BBH detections are issued [7]. The integration
of a fifth interferometer, LIGO-India [8], is projected to considerably improve both
the sensitivity and the sky localization of the network. In addition, the development
of third-generation ground-based detectors, such as the Einstein Telescope [9, 10]
and the Cosmic Explorer [11, 12], is underway, and they are expected to significantly
broaden our knowledge of astrophysical processes in the Universe [13—15].

Progressin GW astronomy, as previously outlined, has been the result of combined
efforts across various domains. Accurate descriptions of the complete coalescence
process, covering the entire inspiral, merger, and ringdown phases, can be achieved
through different approaches, with IMRPhenomXPHM [16] and SEOBNRv5PHM
[17] serving as two examples of advanced waveform models. The latest versions
of these models consider the spin-induced precession of the binary orbit and the
input from both the dominant and subdominant multipole moments of the emitted
gravitational waves. However, increasing the complexity of a waveform model also
results in significantly higher computational costs.

The Equation of State (EoS) of Neutron Stars (NSs) has been the focus of numer-
ous investigations facilitated by astronomical observations. These investigations
encompass the NICER mass and radius measurements [18-20], the evaluation of
tidal deformability via gravitational waves [21-24], and also combined constraints,
for instance, [25-28]. The discovery of the binary NS merger GW 170817 [29, 30]
has particularly stimulated additional studies in this field.

The use of machine learning techniques in the analysis of gravitational wave
data has seen a significant rise in recent years (refer to [31-33] for reviews). This
chapter offers an overview of various applications of machine learning in the field
of gravitational-wave astronomy as discussed in [34-37].

The use of conventional matched filtering methods to achieve rapid detection is
becoming progressively expensive and potentially unfeasible [38], due to both com-
putational efficiency and precision. This is particularly the case for near-threshold
systems with arbitrary spin orientations, which necessitate a significantly larger
parameter space than in the aligned-spin scenario. The situation is likely to become
even more challenging if template banks that deviate from general relativity (GR) are
incorporated. However, unmodeled search algorithms exhibit restricted sensitivity,
dependent on the specific GW source.

Lately, the application of machine-learning (ML) techniques, for instance, convo-
lutional neural networks (CNN) or auto-encoders, has been explored as a promising
approach to the challenge of identifying gravitational waves (GWs), see for example
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[39-73] and [31-33] for reviews. Assessing the effectiveness of these efforts in a
practical context has presented challenges. The inaugural Machine Learning Grav-
itational Wave Mock Data Challenge (MLGWSC-1) was successfully completed
[74], offering an objective platform to gauge the sensitivity and performance of ML
algorithms on modeled BBH injections in Gaussian and O3a detector noise, relative
to conventional algorithms (see also [75] for updated results). In [36] a compre-
hensive presentation of the leading ML algorithm (AresGW) in the context of real
O3a noise was provided and it was demonstrated that it could exceed the results
achieved by standard setups of traditional algorithms in this particular scenario. This
was achieved within a component mass range of 7—50M, (equivalent to 70% of the
events announced in the cumulative GWTC catalog [2]) and a relatively low false
alarm rate (FAR) as small as one per month.

The AresGW algorithm, as described in [36], incorporates various elements that
enhance the sensitive distance. It uses a 54-layer one-dimensional deep residual net-
work (ResNet) [76], with greater capability than a standard CNN and Deep Adaptive
Input Normalization (DAIN) [77] to tackle the non-stationary characteristics of O3a
noise. In addition, the data set was augmented during training. The execution speed
was improved with the introduction of a module-based whitening layer specific to the
framework, which calculates the power spectral density (PSD) in a batched tensor
format. Lastly, curriculum learning was utilized, enabling the network to initially
learn waveforms with the highest signal-to-noise ratio (SNR). The network was con-
structed using PyTorch [78] and underwent training (inclusive of validation) on 12
days of data in 31 h on an A6000 GPU (spanning 14 epochs). Assessment of a month
of test data on identical hardware was completed in less than 2 h. The key conclusions
of [36] are summarized below.

18.1.1 Training and Test Datasets

The data set described in [36] covered a 12-day interval, incorporating real noise
from the O3a LIGO operation along with nonaligned binary black hole waveform
injections as specified in dataset 4 of [74]. This noise originated from O3a segments
accessible through the Gravitational Wave Open Science Center (GWOSC) [79]. The
selection included only segments that were at least 2 h long, featured high-quality data
from both LIGO detectors, and omitted any 10-second periods surrounding events
recorded in GWTC-2 (see [74] for additional details). Following these selection
criteria, the dataset featured noise from the two aLLIGO detectors, Hanford (H1) and
Livingston (L1), spanning a total of 11 weeks and recorded at a sampling rate of
2048 Hz.

The training set waveforms were produced using the IMRPhenomXPHM model
[16], with an initial frequency limit of 20 Hz. The component masses, m| and m,,
ranged from 7 to 50 solar masses, leading to a maximum signal duration of about
20s. The distribution of the signals was uniform throughout the coalescence phase,
polarization, inclination, declination, and right ascension (see [ 74] for further details).
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Fig. 18.1 A 2-channel segment of data from the training set used in [36] is displayed in the left and
right panels, respectively, for the Hanford (H1) and Livingston (L1) detectors. The whitened strain
of a 1 s segment is shown around the time of coalescence. The coalescence times in the detector
frames are within the 0.5-0.7s range (indicated by the shaded area). The injected waveform is
scaled to match the difference between the whitened foreground and background segments. Figure
from [36]

Unlike volume, which was not uniformly sampled, the chirp distance d. [74] was
specifically chosen to sample the luminosity distance d, enhancing the detection of
smaller mass systems. The component spins were isotropically oriented, ranging
from 0 to 0.99. The model included all available higher-order modes up to (4, —4).
Figure 18.1 displays a typical segment of the training set data.

The initial 12 days of the 11-week dataset constituted the training data set, yielding
740k segments of background noise. Each of 38k distinct waveforms was randomly
integrated into approximately 19 different background segments, producing 740k
foreground segments with injections, thus forming a balanced training set. A valida-
tion set was also established, derived from weeks 4 to 7 of the 11-week dataset using
a unique random seed for injections. The test dataset included noise from weeks 8
to 11 and featured injections with merger times randomly distributed between 24
and 30s. The same random seed and offset as cited in [74] were applied to the test
dataset.

Initially, the training data underwent a pre-processing step involving whiten-
ing, as referenced in [39, 80], followed by normalization through the DAIN algo-
rithm [77, 81]. The DAIN model is trained by back-propagating gradients to update
its parameters. Additionally, DAIN has the capability to modify the normalization
approach used on the input during inference, enabling it to manage data that is
non-stationary.

18.1.2 Deep Residual Networks

Residual neural networks [76] utilize skip connections to enhance training effective-
ness, facilitating the flow of gradients to the initial layers of the architecture, thereby
addressing the issue of vanishing gradients [82]. Coupled with sophisticated train-
ing techniques [83], this approach results in improved training outcomes as layers
are added, enabling the development of significantly deeper networks compared to
traditional CNNss.
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The deep residual network described in [36] used 1D convolutions to classify
1-second long segments (2 x 2048-dimensional) as positive (with injection) or neg-
ative (solely noise). This network consisted of 54 layers organized into 27 blocks,
each containing two convolutional layers with different numbers of filters. Stride-2
convolutions were implemented in blocks 5, 8, 11, 14, and 17, effectively reducing
the dimensionality by half and incorporating an extra layer in the residual connec-
tion. Following each convolutional layer, batch normalization and ReL U activation
were applied. The final two convolutional layers narrowed the output to a binary
result (either noise with an injected waveform or just noise). The backpropagation
was optimized using the Adam algorithm [84], and the loss function used was the
regularized binary cross entropy, a modification of the finite cross-entropy loss func-
tion [56]. Dynamic augmentation was applied during the training phase. The network
design is depicted in Fig. 18.2.

A learning strategy was formulated where the network first learns from the
strongest injections before progressing to weaker ones. This method utilizes the
ideal signal-to-noise ratio (SNR) of the injected signal, as obtained by the following

equation
SNR =2 /Ood h(_f)2 (18.1)
0 Sn(f)

where () is the amplitude of the Fourier transform of the injected signal and S,, ()
is the power spectral density of the detector noise. Rather than employing the true
optimal SNR, an empirical formula was established based solely on the chirp mass,
the distance, and the inclination angle ¢

SNR =

1261 Mpc ([ M.
D

5/7
> [0.7 + 0.3 cos(2 0)]. (18.2)
©

Figure 18.3 illustrates a comparison between the optimal SNR (computed using
Eq.(18.1) and the PSD of the Hanford detector) for a set of 10* randomly selected
injections and the estimated SNR as calculated by Eq. (18.2). Although the two dis-
tributions appear similar, the real SNR is influenced by various additional factors
(such as the sky position and spin orientations).

Training initially started with signals that were clearly distinguishable and pos-
sessed a high estimated SNR during the initial four epochs. The network was then

Fig. 18.2 Description of the residual network architecture in [36]. The input x is 2 x 2048-
dimensional (see the text for details). Figure from [36]
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Fig. 18.3 Comparison of the 500
SNR histogram, calculated 2 epochs 2 epochs 4 epochs
with the empirical relation in
Eq. (18.2), to the optimal

SNR of 10* randomly chosen
injections. The shaded areas 3001
represent the limited SNR
values used in the first eight 200
epochs of the learning

strategy. Figure from [36] SNR real injections
SNR empirical

counts

SNR

incrementally trained on weaker signals, mastering all signals from the training set
by the tenth epoch. Figure 18.3 illustrates the comparison of the first eight epochs
with the SNR distribution. Due to the adopted training approach, the initial losses
were low. Once the network had learned all the signals by the tenth epoch, the loss
of the training set matched the loss of the validation set.

18.1.3 Detection of BBH Injections in Real Noise

The trained network analyzed test dataset segments, yielding a binary output indica-
tive of either the presence of an injection or merely noise. This initial output served
as a ranking statistic R (ranging from 0 to 1). A positive result was noted when
R > 0.5. Positives detected within a 0.3 s interval were clustered and reported as a
single event (refer to Fig. 18.4 for an illustration). Post-deployment, the output was
assessed every 0.1 s against the test dataset’s known injection times. A positive output
within 0.3 s of a specific injection’s nominal merger time was deemed a true positive;
otherwise, it was considered a false positive.

To evaluate the performance of the search algorithm, the false alarm rate is initially
computed as a function of the ranking statistic, denoted as FAR(R). Following this,
the search’s sensitivity is calculated based on the ranking statistic, establishing a
correlation between sensitivity and FAR (refer to [74] for detailed definitions and
methodology).

Figure 18.5 illustrates the sensitive distance as a function of FAR for the best
model (ResNet54d + SNR), compared to a basic model (ResNet54) and two leading
GW detection algorithms, Coherent WaveBurst (cWB) and PyCBC. cWB, a wave-
form model-independent search method for GW signals, utilizes the constrained
likelihood approach [85-87]. On the other hand, PyCBC [88] is based on a stan-
dard archival search configuration for compact-binary mergers [89]. The results for
c¢WB and PyCBC shown in Fig. 18.5 are derived from [74], where they were tested
on the same dataset. cWB employs wavelets, limiting its ability to achieve optimal
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Fig. 18.5 Comparison of the performance of the best model (ResNet54d+SNR) in [36] with the
simpler setup (ResNet54) used in [74] and two leading algorithms for GW detection, Coherent
WaveBurst (cWB) and PyCBC (which only used aligned-spin templates, see text). All codes were
tested on the same dataset established in [74]. The ResNet54d+SNR model outperformed the other
algorithms at all false alarm rates in this setting. Figure from [36]

fitting factors, but has been enhanced with machine learning strategies recently [90].
PyCBC uses matched filtering of waveform templates, but the studies [74, 89] only
used aligned spin templates, which limits its effectiveness for more complex wave-
forms due to computational constraints. The test data set in [36] used more complex
waveforms, and hence this specific PyCBC search did not achieve optimal fitting fac-
tors. As depicted in Fig. 18.5, the best model in [36], which incorporated SNR-based
curriculum learning, outperformed the specific PyCBC results at all FAR levels and
also significantly exceeded the sensitivity of the unmodeled cWB search.
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18.2 Conclusions

In this chapter, we have explored significant advancements in the field of gravitational
wave astronomy through the application of machine learning techniques, specifically
focusing on deep residual networks. The AresGW algorithm, implemented using a
54-layer deep residual network, has demonstrated remarkable ability to enhance the
detection of gravitational waves in real noise. The results of the Machine Learn-
ing Gravitational Wave Mock Data Challenge (MLGWSC-1) have underscored the
effectiveness of the AresGW model, highlighting its higher sensitivity over tradi-
tional detection algorithms, such as matched filtering or wavelet-based approaches.
This version of AresGW identified gravitational wave signals across a mass range
of 7-50 solar masses, which constitute approximately 70% of the events cataloged
in GWTC. The introduction of Deep Adaptive Input Normalization (DAIN) and
curriculum learning strategies has allowed substantial improvements in the training
efficiency and robustness of AresGW.

As we look towards the future, the integration of more advanced machine learning
techniques and the upgrades of gravitational wave detector networks promise to
deepen our understanding of the universe’s astrophysical processes. This progress
is poised to bring about a new era in gravitational wave astronomy, where machine
learning not only augments existing detection capabilities, but also opens up new
avenues for exploration and discovery.
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Convolutional Neural Networks e
for Signal Detection in Real LIGO Data

Ondfiej Zelenka®, Bernd Briigmann®, and Frank Ohme

Abstract Results of recent publications on machine-learning based gravitational-
wave searches vary greatly due to differences in evaluation procedures. The Machine
Learning Gravitational-Wave Search Challenge [1] was organized to resolve these
issues and produce a unified framework for machine-learning search evaluation.
Six teams submitted contributions, four of which are based on machine learning
methods and two are state-of-the-art production analyses. This chapter is a modified
version of [2], which describes the submission from our team titled TPI FSU Jena
and its updated variant. We also apply this algorithm to real O3b data and recover
the relevant events of the GWTC-3 catalog. Reprinted with permission from [2].
Copyright (2024) by the American Physical Society.

19.1 Introduction

One of the most powerful known sources of gravitational waves (GWs) is a compact
binary coalescence: the final stage of a binary system of compact objects, such as
black holes or neutron stars. Analyzing the signal from such an event allows us to
constrain the source parameters, such as component masses, which are relevant to
the study of the black hole population in the universe, and the mechanism by which
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supermassive black holes are formed [3, 4]. For this reason, GW observations are
crucial in expanding our understanding of the universe.

Most contemporary detection pipelines are based on matched filtering [5] and
use a template bank of expected waveforms. These pipelines are highly sensitive to
signals covered by the template bank, but less sensitive to others. Loosely modeled
searches are acomplementary approach: they do not require the advanced knowledge
of waveforms to be searched for, but they are less sensitive to compact-binary mergers
than matched-filter searches [6-8].

With the broadening of the sensitive frequency range of detectors, it becomes nec-
essary to increase the density of template banks. In addition, expanding the parameter-
space of interest typically requires more templates to cover the signal manifold. This
causes a steep rise in the size of template banks and therefore computational time of
matched-filtering based algorithms. In particular, this is an issue when incorporating
effects such as eccentricity [9], precession [10, 11], or higher-order modes [11, 12].

Moreover, matched-filter searches are optimal for an idealized Gaussian noise
distribution. However, actual detector data deviate from this assumption [13]. While
measures are taken to reduce the effect of this deviation, there are still optimizations
to be made. These are some of the driving forces behind the search for new, more
efficient methods to complement the matched-filter based analyses.

A rather new development is to use machine learning (ML) methods in GW
astronomy. This was started by two pioneering papers on the topic of GW detec-
tion [14, 15]. Their approach consisted of applying convolutional neural networks to
recognize whether individual 1 s-long whitened samples of Gaussian noise contain
a binary black hole (BBH) GW signal. Additionally, applications in parameter esti-
mation [16-18], denoising [19, 20], fast waveform generation [21], and more [22]
have also been published; we, however, remain focused on the detection problem in
this article.

Inrecent years, a multitude of new results have been achieved on this topic [22-25].
However, due to differing choices in generation of test data, results in the literature are
difficult to compare to each other. To resolve this issue, the First Machine Learning
Gravitational-Wave Search Challenge (MLGWSC-1) [1, 26] has been organized.
From 12 October 2021 until 14 April 2022, multiple teams developed ML based
algorithms for detection of GW signals originating in BBH mergers in month-long
streams of data from the two US-based Laser Interferometer Gravitational Obser-
vatory (LIGO) detectors [27]. The final test data were unknown to participants but
followed a known distribution of both noise and sources, and no scoreboard was
kept during the challenge. Eventually, 4 ML based submissions were received, as
well as 2 conventional algorithms to provide a baseline. Their performance has been
evaluated in detail and effects responsible for differing performance of submissions
have been isolated.

We have authored one of the challenge submissions, titled “TPI FSU Jena”. On
test datasets following a simplified Gaussian noise distribution, our search was the
top ML submission and performed close to the matched-filter baseline, a similar
submission being a close second. In addition, it had a comparatively short runtime.
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However, on test data generated using LIGO open data [28], non-Gaussian noise
artifacts polluted the search results to a large degree.

This section is a modified version of the work [2], which is published under the
CC BY 4.0 license. In this work, we first briefly describe the MLGWSC-1, our sub-
mission, and choices made during its development. Following that, we describe the
steps taken to further optimize the contribution after the end of the challenge, which
greatly improve its performance when non-Gaussian noise transients are present in
the data. Finally, we demonstrate the power of the developed searches by applying
them to open data from the second half of the third observing run and recovering the
GWTC-3 catalog events lying in the relevant portion of the source parameter space.

19.2 MLGWSC-1

19.2.1 Test Data

The test data consist of 2 strains from the LIGO Hanford and Livingston detectors.
The script used to generate them was available to participants of the challenge with
the option to specify its seed. For the final evaluation, a challenge dataset in the
length of one month was generated after the challenge deadline using a previously
unknown seed [1].

The test data exist in 4 levels named datasets of progressively increasing difficulty.
The first three use background noise generated by a colored Gaussian model, while
the fourth uses real noise from the O3a observing run [28]. The injection complexity is
also increasing, from non-spinning, dominant mode only, to precessing waveforms
with generic misaligned spins and multiple higher-order modes. For the sake of
brevity, we only cover datasets 3 and 4, for details see the challenge paper [1].

Test data are generated using the script generate_data.py supplied by the
MLGWSC-1 [26], which creates the background noise, generates waveforms and
injects them into the noise, forming the foreground. Both the background and the
foreground are stored in HDFS5 files [29], each containing groups titled L1 and H1
for the Livingston and Hanford detectors, with the full length of the strain split into
multiple segments labeled by their GPS start time. These segments are generated
independently of each other. All time series are sampled at a rate of 2048 Hz. A low
frequency cutoff of 15 Hz is applied to the background noise to allow for reduction
in data size of the real detector noise to be downloaded.

The injection parameters are generated by the astrophysical distribution for all
angular parameters and the distance is specified by generating the chirp distance,

defined as [30]
Mo 5/6
d.=d - | — , 19.1
( M. ) (5D
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where d is the luminosity distance, M, = (m1m2)3/ 3 / (my + I’l’lz)l/ 5 is the chirp
mass, and M. o = 1.4/2!° M, is a fiducial chirp mass. The squared chirp distance
is drawn from a uniform distribution over the interval d> € [1302 Mpc?, 3507 Mpc2] .
Component masses are drawn in the detector frame from uniform distributions over
different intervals depending on the dataset, following the primary/secondary mass
constraint m; > m,.

The events are placed at random intervals between 24 s and 30 s between
merger times. The waveforms are generated using the IMRPhenomXPHM [31] phe-
nomenological model, capable of accurate modeling of precession and higher-order
modes. They are then projected on the corresponding detectors and injected into the
background data to produce the foreground.

In the third dataset, Gaussian noise is generated using an unknown power spectral
density (PSD). From a set of 20 PSDs derived from the O3a observing run data [28],
for each detector and each individual segment, one is randomly chosen and used to
generate the noise (see Sect. 19.3.1). Component masses m, my € [7M®, SOMO]
are drawn from a uniform distribution. The magnitudes of component spins are
uniform from 0 to 0.99, and their directions are isotropically distributed. All higher-
order modes available to the IMRPhenomXPHM [31] approximant are used, and the
low frequency cutoff is chosen to be 20 Hz.

In the fourth dataset, real LIGO noise is used. A real noise file in the extent of
approximately 3 months has been prepared by the MLGWSC-1 team, the data gener-
ation script randomly chooses segments from it to comprise the dataset background,
and the L1 stream is time-shifted with respect to H1 by a random amount in order
to introduce different noise realizations. The injections are generated in a manner
identical to the third dataset.

19.2.2 Evaluation Procedure

The evaluation is done in a similar manner to [23, 24]. The submitted algorithms
are applied to background data without any injections as well as to data with BBH
injections to determine the relationship between their false-alarm rate (FAR) and
sensitive distance.

Each submitted algorithm is required to take a file in the format described in
Sect. 19.2.1 as input and produce a file containing identified candidate events as
output. It must be an HDFS5 file containing 3 datasets referring to the GPS time of
the events, the ranking statistics and the tolerance for error in time.

The evaluation is performed by the evaluate.py script supplied by the
MLGWSC-1 [26]. It requires the outputs of the submission algorithm on both the
foreground and the background files as input, identifies true positives and determines
the FAR at varying detection thresholds. The relationship between the FAR and the
sensitive distance is in principle similar to the receiver operating characteristic, which
is the relationship between the percentage of false positives and true positives as one
varies the threshold for identification of a positive.
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To obtain the sensitivity curve of an algorithm based on the identified background
and foreground events, we first count the number of background events with aranking
statistic greater than the threshold. Dividing by the total duration of the background
data analyzed (in this case 30 days = 2592000 s), we find the FAR. The sensitive
volume of the search at FAR = ¥ can be calculated by [32]

V)= /fe (F; x, A) ¢ (x, A) dxdA (19.2)

where x are an injection’s spatial coordinates, A the other injection parameters,
€ (F; x, A) is the efficiency of the search, and ¢ (x, A) is the injection parame-
ter distribution. If we denote N, the number of found injections at a FAR = #
and M.;,i =1,..., N; & the chirp masses of the found injections, the expression

simplifies to [1]
Ni#

14 (dmax) Mc i o2
Vv N — _— , 19.3
(7:) NI ; (Mc,max> ( )

where N is the total number of injections and M, .« is the upper limit of injected
chirp masses.

We then call the graph of the sensitive volume V () as a function of the FAR
the algorithm’s sensitivity curve and these are the main criterion for the challenge
evaluation.

The runtimes of submitted algorithms were also measured and are available in
the challenge paper [1]. All submitted algorithms are evaluated on standardized
hardware, provided by the challenge organizers. The hardware consists of a total of
8 Intel Xeon Silver 4215 cores at 2.5 GHz, 192 GB of RAM, and 8 nVidia RTX 2070
GPUs with CUDA support, 8 GB of VRAM each.

19.3 Experimental Setup

19.3.1 Data Processing

As described in [13], the standard noise model in LIGO detectors is correlated in
the time domain. However, using the Fourier transform, in the frequency domain the
noise is uncorrelated and described by a Gaussian distribution with zero mean and a
frequency-dependent variance called the PSD and denoted S, (f).
Let us use d to denote the Fourier transform of a time series d. Following [13],
the transformation .
d(f)

d—d,, d,(f)= 50

(19.4)
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yields a time series with a flat PSD, corresponding to white noise. This process
is called whitening and is a common method in GW data analysis. The PSDs in
GW detectors rise steeply towards both low and high frequencies and the signals
are dominated by strong noise at frequencies outside the most sensitive band of the
detectors.

Following [23], we feed whitened data to the ML model. When applying to test
data, the algorithm first estimates the PSD of the time series in question using Welch’s
method [33] with a segment duration of 0.5 s, then symmetrically truncates the time-
domain response of the S, (f)~'/? whitening filter to a width of 0.25 s, and uses this
PSD to whiten the entire time series. This is done for each segment in the input data
separately, as well as for each detector.

As the noise in LIGO detectors is not stationary over timescales on the order of
days, one must account for the PSD drift. This is addressed by slicing the data into
chunks shorter than the PSD-drift timescale in the test data generation process [26].

19.3.2 Training and Validation Data

In the training and validation datasets, the noise is taken from the real noise file
provided by the MLGWSC-1. A segment from the file is chosen at random, its PSD
is estimated and used to whiten the entire segment, and the whitened segment is sliced
into 1-second samples. While the noise generation loop is running, these slices are
used sequentially, and once all have been used, a new segment is whitened and sliced
in the same manner. The PSD is retained through the processing of the entire segment
for whitening of waveform injections.

To generate the waveform injections, we apply the Python package PyCBC [34].
The distributions of individual parameters are summarized in Table 19.1, they follow
the distributions used in test datasets 3 and 4 (see Sect. 19.2.1) with exceptions, which
we describe in the following paragraphs. A limited number of noise samples (given
for each experiment in Sect. 19.4) are injected with a waveform and assigned the
label (1, 0), the remaining ones remain pure noise and are assigned the label (0, 1).
However, the waveforms are normalized to a network optimal signal-to-noise ratio
(SNR) pnet = 1 during the data generation procedure and only injected at a randomly
generated pne € [7, 20] at each training epoch. Due to the SNR normalization, the
luminosity distance is irrelevant and a fiducial 1 Mpc value (the PyCBC default) is
passed to the approximant.

For consistency with the experiments of [23], we set the lower mass limit to
10M, instead of 7M used to generate test datasets 2—4. An additional training
run confirms that including the range [7M@, 1OM@] in the training data does not
improve the performance of the search. We suspect this is due to the increased length
of waveforms in this region of the parameter space [1], due to which a part of the
waveform’s SNR is outside the network’s input window when the merger is aligned.

Furthermore, due to an oversight on our part, the inclination angle does not follow
the astrophysical distribution cost € [—1, 1]. However, this is not expected to pose
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Table 19.1 Distributions from which waveform injection parameters are drawn. Intervals refer to

a uniform distribution

Parameter Uniform distribution
Approximant IMRPhenomXPHM
Component masses my > my € [10Mg, 50Mg]
Spin magnitudes ‘xl , Xz} € [0, 0.99]
Spin directions Isotropic

Coalescence phase g € [0, 27)
Inclination angle 1€ [0, 2]
Declination sinf € [—1, 1]

Right ascension ¢ €|—m, )
Polarization angle v e [0, 27)
Sampling rate 2048 Hz

Low frequency cutoff 20 Hz

anissue, as the dominant effect of the inclination angle on the waveforms is a constant
rescaling [35], which is lost as we normalize the waveforms to a fixed network SNR. A
rerun of the code for the MLGWSC-1 submission with the astrophysical distribution
confirms that the results are indistinguishable.

Both the training and validation data are generated by following the steps below:

1. Get noise:

a. get next slice from current segment

b. if segment finished, choose a new one at random, whiten it, slice it, and take

its first slice

2. If applicable, generate waveform:

oo op

set up parameters (see Table 19.1)

generate waveform

crop so that merger is within the given interval, append zeros
whiten using the PSD of the corresponding noise segment
normalize to optimal pnee = 1

3. Store noise and waveform separately. At each training epoch, inject at a newly

generated optimal SNR.

For the original submission, we choose the training dataset to contain 500000
pure noise samples and 500000 noise+waveform samples, the validation dataset to
contain 100000 pure noise samples and 100000 noise+waveform samples, and the
sliced real noise is used. The updated submission instead uses 750000 pure noise
samples and 250000 noise+waveform samples in the training dataset, and 150000
pure noise samples and 50000 noise+waveform samples in the validation dataset.
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19.3.3 Test Data

Test data meant for evaluation before submitting are generated using the program
generate_data.py supplied by the MLGWSC-1 [26]. For final testing, all 4
datasets are generated with the length of 2592000 s = 30 days, and the seed is set to
4261537. Dataset 4 with this seed is used to select the optimal epoch during train-
ing for the MLGWSC-1 submission (see Sect. 19.4.1) and to optimize the updated
submission in Sect. 19.4.3.

The seeds used for generating the challenge datasets to evaluate the submitted
algorithms to the MLGWSC-1 and to compute the final sensitivity curves are given
in Sect. 19.2.1.

19.3.4 Machine Learning

The MLGWSC-1 is aimed at evaluating the performance of ML algorithms. In its
simplest form, this corresponds to a model with an arbitrary number of free parame-
ters whose error is being optimized over a large dataset. This is frequently done using
gradient-descent based optimizers and their stochastic varieties, which approximate
the gradients on small batches of the dataset in their successive iterations. The error
function being optimized here is a modification of the binary cross entropy loss [23]

1 m n

C(Y, Y):—EZZYijlog((l—e) Yij+e), (19.5)

i=1 j=1

designed to remove divergences when an element of Y is zero using the regularization
parameter 0 < ¢ < 1.

Neural networks are a class of ML models built of artificial neurons, these are
functions defined as

f: R" >R, (19.62)

X > 0 (Z Wix; +b) ) (19.6b)

i=1

The parameters w; and b are called the weights and bias, respectively, and are opti-
mized through the training process. The function o is called an activation function,
a popular choice we use here is the Exponential Linear Unit [36] with o = 1

axp(z)—1) ifz<0,

ELU (z) = {Z 220, (19.7)
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A feed-forward neural network is organized in layers of independent neurons,
each of which feeds its output into neurons of the following layer. They can be
fully connected, i.e. the input of each neuron consists of the outputs of all neurons
in the previous layer, also called dense layers. In this paper, we also make use of
convolutional layers, whose structure corresponds to a set of filters sliding over a
multichannel input [37]. This reduces the number of independent connections and
thus weights in the network.

Further components are max pooling layers, which act as a downsampling oper-
ation [38], and dropout layers, which improve the training convergence through a
type of noise injection [39, 40]. For an introduction to ML and neural networks, we
refer the reader to [41, 42].

19.3.5 Model Architecture

In this work, we use a simple convolutional neural network (CNN) design, which
is an extension of the architecture used in [23]. For a simple implementation of the
method used there, we first define a CNN called the base network, which does not
have a final activation. Its architecture is shown in Table 19.2.

Unlike coincident searches such as the CNN-Coinc submission [24] to the
MLGWSC-1, wherein the streams from each detector are analyzed separately and
combined using a probability-based formula, we employ a coherent approach. The
network accepts a two-channel input to carry data from two detector streams.

The base network produces 2 outputs, which we denote x, x;. Following the
method of [23], for training we append a Softmax layer

yi = Softmax (x); = —— P (19.8)

Zj exp (xj) ’

which maps its inputs to a set of positive numbers which sum up to one. The purpose
of this activation is to represent uncalibrated probabilities [43] of different classes
in classification problems, and in this case we wish the output y, to represent the
probability that the input sample contains an astrophysical GW signal.

The networks are trained using the stochastic Adam optimizer [44] with a learning
rate of y =4 - 107%, and the other parameters set to their defaults in PyTorch [45]
(B1=0.9, B, =0.999, ¢ = 1073), for a total of 250 epochs. The training dataset is
split into batches of 32 samples, and each epoch consists of one optimizer step per
batch.

When testing in the same manner, however, a numerical issue arises. In single-
precision floating point arithmetic using PyTorch, yy, which we would like to use
as the ranking statistic of the resulting search, rounds up to 1 when xo — x; 2> 16,
which is well in the range of values encountered by the search. To resolve this, we
rewrite Eq. (19.8) fori = 0 as
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Table 19.2 Architecture of the base network. It accepts an input with 2 channels corresponding to
2 detector streams and possesses 635318 trainable weights. “KS” refers to kernel size, and “shape”
is the output shape of the corresponding layer. The batch normalization layer is only used in the
original submission to the MLGWSC-1 but not in the improved searches

Layer KS Shape Activation
Input 2 x 2048
(batch norm) 2 x 2048
Convolution 33 16 x 2016 ELU
Convolution 32 16 x 1985 ELU
Convolution 17 16 x 1969 ELU
Convolution 16 16 x 1954 ELU
Max pooling 4 16 x 488
Convolution 17 16 x 472 ELU
Convolution 16 32 x 457 ELU
Convolution 9 32 x 449 ELU
Convolution 8 32 x 442 ELU
Max pooling 3 32 x 147
Convolution 9 32 x 139 ELU
Convolution 8 64 x 132 ELU
Convolution 9 64 x 124 ELU
Convolution 8 64 x 117 ELU
Max pooling 2 64 x 58
Flatten 3712
Dense 128 ELU
Dropout 128
Dense 128 ELU
Dropout 128
Dense 2

Yo : : (199)

- 1 +exp (x; — xo) - 1 +exp(—Ax)

We see that yg is a purely growing function of Ax = xo — x;, which is therefore
an equivalent ranking statistic, without suffering from the same numerical issue.
Therefore, Ax is used as the ranking statistic in the search. This technique is called
the unbounded softmax replacement. For more detailed information see [23].

The CNN is only part of the detection algorithm following [23], as it only accepts
simple 1-second-long slices. The full algorithm consists of feeding overlapping slices
of the test data to the network, applying a threshold, and clustering the results into
candidate detections. First, the entire segment is whitened using the method described
in Sect. 19.3.1.



19 Convolutional Neural Networks for Signal Detection in Real LIGO Data 265

Then, the segment is sliced into 1-s long samples with an offset of 0.1 s, which are
fed to the network and the Ax outputs recorded. Because the networks are trained
on injections with merger time 0.6-0.8 s after the sample start time, each slice is
associated with the time 0.6 s after the start time of the slice, in order to compensate
for this alignment.

A threshold is applied to the network outputs and those which exceed it are
clustered by time, with a minimal separation of 0.35s between clusters. Each of
these clusters is then considered a candidate event to be saved in the output file. As
the ranking statistic, the maximum of the network outputs in the cluster is used, and
the time corresponding to the maximum is used as the time of the candidate event.
For all output events, the value of 0.2 s is chosen as the time uncertainty in the search
output (see Sect. 19.2.2), to match the size of the merger alignment interval in the
training data.

The value of this first threshold is largely irrelevant in the context of a gravitational-
wave search, certain ranges allowing for more events at higher FARs without com-
promising the low FAR end. The value of -8 is chosen as it maximizes the benefit in
this case. This is demonstrated in the original publication [2].

19.4 Results

19.4.1 MLGWSC-1 Submission

The training and validation losses are monitored during the training, and their evo-
Iution is shown in Fig.19.1. Out of the local minima of the validation loss, the
global minimum as well as two earlier local minima are chosen and further tested by

0.14 — training
‘ validation
0.124 e  selected epochs

Binary cross entropy loss
o
o
oo

0.02

0.00

Epoch

Fig. 19.1 Evolution of the training and validation loss values throughout the training of the
MLGWSC-1 submission



266 0. Zelenka et al.

3500 1 — 65
30001 L
; — 223
£ 2500
g D
(0]
S 2000
o]
o
E 1500 1
£ 1000
(%]
5001
0,
10° 10° 104 10° 10 101 10

False alarms [1/month]

Fig. 19.2 Sensitivity curves (sensitive distance versus false alarm rate, see Sect.19.2.2) of the
network at 3 minima of the validation loss highlighted in Fig. 19.1 used to select the final network
state for the submission. The test data used is dataset 4, generated in the length of 30 days with the
seed set to 4261537

applying to the test datasets 3 and 4, the result for dataset 4 is shown in Fig. 19.2. The
results on dataset 3 were virtually indistinguishable, for better performance on dataset
4 we choose the network state at epoch 79 for the submission to the MLGWSC-1.

19.4.2 MLGWSC-1 Results

The MLGWSC-1 received a total of six contributions, four of which are ML based.
The remaining two are conventional analyses to provide a baseline; the first is
the matched-filtering based PyCBC [32], the other is the loosely modeled search
cWB [7, 46].

Rather than an extensive coverage of the MLGWSC-1 results, which are described
in great detail in [1], this section focuses on a particular issue which occurs when
real noise is presented to our algorithm. We would like to specifically bring to the
reader’s attention the performance of our algorithm (labeled D: TPI FSU Jena) and
the algorithm labeled E: Virgo-AUTh, whose sensitivity curves on datasets 3 and 4
are shown in Fig. 19.3. Both ML submissions are plotted as dashed lines, in addition
the PyCBC submission is shown.

Both submissions use a very similar approach. In the final testing, their perfor-
mances are close to each other with D operating at a slightly higher sensitivity at
all FARs, this gap widening as we approach # = 1 month™!, on test dataset 3 (in
fact, this holds on all datasets which use Gaussian noise [1]). However, the Virgo-
AUTHh algorithm retains > 90% of the sensitive distance of the TPI FSU Jena search
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Fig. 19.3 Sensitivity curves of 3 selected submissions, along with updated versions of 2 of them,
on datasets 3 and 4 of the MLGWSC-1. Each panel contains the performance of the submissions
on one test dataset. Dashed lines mark conventional analyses and solid lines mark ML-based search
algorithms. In case of the TPI FSU Jena and Virgo-AUTh teams, the dotted lines mark the original
submissions, while the solid lines mark the updated algorithms. The remaining submissions are
shown in gray for illustration of overall challenge results

at ¥ > 2 month™!, and at # = 1000 month~! this gap narrows to a separation of
roughly 4%.

Moving to dataset 4, the performance of the Virgo-AUTh algorithm degrades
only mildly. In contrast, the performance of our submission deteriorates much more,
losing all sensitivity at 7 < 10%> month~!. This is due to omnipresent noise transients
in real detector data, which produce triggers louder than the injected waveforms.

Finally, the runtimes of our algorithm are consistently lower than those of the
other submissions. On average, the Virgo-AUTh search takes ~50% longer to run
on the challenge hardware on all 4 test datasets due to the higher complexity of its
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network architecture. On datasets 2—4 the estimated runtimes of PyCBC are ~40
times as large. We note that the given PyCBC runtimes are estimations as a different
hardware setup is used to run the search.

19.4.3 Updated Submission

The updated submission uses the same optimization procedure as the original, with
two modifications: a) the batch normalization layer is removed, b) the ratio of the
two classes in the training and validation data is shifted.

Six training runs are performed. At each epoch, the network’s sensitivity is eval-
uated on test data with real noise, and from each run the state with the highest
sensitive distance at ¥ = 1 month~! is chosen and labeled following the format
R < runnumberl — 6 > / < 4 — digitepochnumber >. Of the resulting 6
states, we choose R1/0021 for the final search algorithm as it has the highest
sensitivity. Its sensitivity curves are shown in Fig. 19.3 alongside the curves of all
submissions as well as the updated Virgo-AUTh search, called AResGW [47, 48].

The sensitivity on datasets using Gaussian noise deteriorates slightly; this is to
be expected as one optimizes for a different noise distribution, rejecting potential
glitches in data containing none. At 7 = 1 month™, the sensitive distance is reduced
by 5.4%. In the overall ranking, ours remains the most sensitive of all ML submissions
on Gaussian noise.

On real noise, the updated submission reaches the highest sensitivity of all ML
submissions at 7 < 10 month~! and is narrowly outperformed by Virgo-AUTh at
higher FARs. At ¥ = 1 month™!, our updated submission has a sensitive distance
of 1316 Mpc, and Virgo-AUTh operates at 87% of this value. At the same time, the
updated version of the Virgo-AUTh algorithm outperforms ours in both cases.

19.4.4 Application to O3b Data

The O3 LIGO observing run was split by a commissioning break into two phases,
O3a and O3b [28, 49]. The first part is used to train the CNNs above to recognize
BBH waveform injections in real LIGO noise. In this section, we apply the searches
developed above to real data recorded by LIGO through the O3b phase and cross-
reference the output with the transients recorded in the GWTC-3 catalog [5].

To query O3b data, we require a minimum segment length of one minute and the
same data quality requirements as the real noise file used in the MLGWSC-1, known
injections are not removed. This leaves us with a total of 8 228 706 s of data in a total
of 2377 segments, amounting approximately to 95 days and 6 h. In comparison, the
full O3b observing run was 147 days and 2h in length.

We apply all 6 searches trained in Sect. 19.4.3 to these data. The GWTC-3 cata-
log [5] consists of 35 confident detections and 7 marginal ones. Events lying outside
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Table 19.3 List of O3b events omitted from Table 19.4. Events listed in the first column are omitted
due to insufficient data quality in either detector, and events listed in the second column are omitted
due to being missed completely by all searches. The exception is GW191105_143521, which is
recovered at ¥ = 658 month~! by the R5 /0193 search and missed by the others

Data quality Missed

GW200302_015811 GW191129_134029

GW200129_065458

GW200115_042309

GW200112_155838

GW200202_154313

GW191216_213338

GW200316_215756

GW191105_143521
GW191219_163120
GW191103_012549
GW200210_092254
GW200220_061928

the segments of available data are excluded, leaving us with 31 confident and 4
marginal events to be found. These excluded events are listed in the left column of
Table 19.3. In addition, we confirm that none of the events contained in available
segments take place closer to either end of their respective segments than 465s.

A catalog event is marked as found, if the search output contains an event within
0.2s of the time given in the catalog, and it is assigned its corresponding ranking
statistic #. The remaining catalog events are considered missed, and the remaining
events reported by the search are considered false alarms. The catalog event is then
considered detected at a FAR of

N f>t
F = e (19.10)
where Ny, is the number of false alarms louder than #, and T is the total length of
the analyzed segments. In addition, if the FAR of an event is at least 1000 month~",
it is also considered missed.

None of the events marked marginal in the GWTC-3 catalog are found by either
of the searches. The resulting FARs of confident events in the analyzed segments
are shown in Table 19.4. The table is split into three sections: in the first, the 90%
credible intervals on both component masses lie fully in the [IOM@, SOM@] range
used for training the networks, while in the third, at least one of them lies fully out-
side [10Mq, 50M, ]. The remaining cases are contained in the second section. The
credible intervals and accompanying SNR values come from the catalog’s parameter
estimation pipeline based on Bilby [50, 51] and are supplied by GWOSC [52].

Let us comment shortly on the results of Table 19.4. Most importantly, all events
in the first section, where the search algorithms are expected to operate at a high
sensitivity, are found by all 6 tested networks at a FAR lower than 40 month™ !,
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Table 19.4 List of O3b events from the GWTC-3-confident catalog [5] and their FARs as
identified by the 6 final searches. Events which are not recovered by the given search are marked by
a hyphen. 13 events are omitted (see Table 19.3). The events are grouped into three sections based
on their estimated component masses (see text for details)

— =) ) ) IS )
= B B & & g
& & & & & &
Event name PMF F [month_l]
GW200224_222234 20.0 0.0 0.9 0.0 0.0 0.0 0.0
GW200311_115853 17.8 0.0 0.9 0.6 1.3 0.0 6.0
GW200225_060421 12.5 0.0 1.6 0.0 0.0 1.9 0.3
GW191215_223052 11.2 0.0 1.9 1.3 1.3 0.0 1.3
GW200208_130117 10.8 19.2 22 35 3.1 1.6 10.1
GW200219_094415 10.7 5.0 4.7 8.8 38.7 12.6 19.5
GW200209_085452 9.6 1.3 2.8 0.9 2.8 2.2 0.3
GW191204_110529 8.8 1.6 3.1 0.0 3.1 5.0 3.1
GW200308_173609 7.1 - - - - - -
GW191222_033537 12.5 0.0 4.1 2.5 2.5 0.3 0.3
GW200128_022011 10.6 25.5 3.1 0.0 11.7 104 22
GW191230_180458 10.4 6.6 149 19.5 98.9 36.9 5.0
GW191127_050227 9.2 38.7 2.8 44 18.6 3.1 6.6
GW200220_124850 8.5 215 517 956 96.1 695 375
GW191126_115259 8.3 - - - - - -
GW200216_220804 8.1 - 189 - - 841 -
GWI191113_071753 7.9 - 634 391 - 713 647
GW200306_093714 7.8 485 407 720 - 69.3 -
GW200208_222617 7.4 38.1 6.0 19.5 55.1 159 187
GW200322_091133 6.0 810 898 - - - -
GW191204_171526 17.5 35 8.8 4.1 44 7.6 6.0
GW191109_010717 17.3 0.0 1.9 0.9 0.6 1.3 0.9

with the exception of GW200308_173609, which is the second weakest event in the
catalog at pyr = 7.1. In the vast majority, the events are detected at # < 4 month ",

In the second and third sections the searches are expected to operate at a reduced
sensitivity as the corresponding parameter space is not fully covered in the training
dataset. This is confirmed in Table 19.4, however, louder events at pvr = 9 and
oMr 2, 17 in the second and third section, respectively, are also mostly detected at
F < 10month~! by the ML-based searches.

As a final comment, Q-scan spectrograms of the loudest false alarms in the ana-
lyzed data seem to be consistent with them being known types of glitches. Full
outputs of all 6 search algorithms as well as spectrograms of the 128 loudest events
of each are publicly available in the data release [53].
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19.5 Conclusion

We have presented a convolutional neural network-based gravitational-wave detec-
tion algorithm capable of performing comparably to conventional algorithms in spe-
cific settings, and its implementation, submitted to the MLGWSC-1. While the sub-
mission performs well on test data using Gaussian noise, the noise transients present
in the data with real noise prove to be too much of a challenge and reduce its sensi-
tivity to zero at relevant FARs. In the present work, we resolve this issue by a careful
optimization of the training parameters and demonstrate that the updated search out-
performs all other original challenge submissions besides the PyCBC matched-filter
search.

At the same time, while each independent run of the updated algorithm converges
to a state with high sensitivity of the resulting search, a detailed analysis reveals that
the sensitivity is highly non-monotonic during the training [54]. In addition, Fig. 19.1
also shows unexpected oscillations in the validation loss. This phenomenon is not
yet fully understood and warrants further investigation.

As a final application of the updated search, we analyze open data from the O3b
observing run [28] of the LIGO-Virgo collaboration and cross-reference the results
with the corresponding catalog GWTC-3 [5]. We demonstrate that in the intended
regime of BBHs with component masses between 10M and 50M, our searches
can confidently detect events with a network SNR above 8. This is in line with
contemporary matched-filter based searches, as the value 8 roughly corresponds to
1 false alarm per month [23].

Code

The code provided by the MLGWSC-1 organizers is available in [26]. The code
used in the analyses is contained in [53]. The submission to the MLGWSC-1 as
described in Sects. 19.3, 19.4.1 is stored in the directory m1gwsc-1. For the exper-
iments detailed in Sects. 19.4.3, 19.4.4, the code is available in the subdirectory
correction along with additional materials and results.
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Chapter 20 ®)
Deep Learning Methods for Accelerating | oo
Gravitational Wave Surrogate Modeling

Paraskevi Nousi, Styliani-Christina Fragkouli, Nikolaos Stergioulas,
and Anastasios Tefas

Abstract We explore the application of deep learning techniques to accelerate gravi-
tational wave surrogate modeling. We focus on two recent approaches, using artificial
neural networks (ANNs) with residual error modeling and autoencoder-driven spiral
representation learning. For the ANN method, we demonstrate that adding a second
network to learn residual errors significantly improves surrogate model accuracy.
The autoencoder approach reveals an inherent spiral structure in the latent space rep-
resentation of empirical interpolation coefficients. We take advantage of this insight
to develop a neural spiral module that can be integrated into network architectures
to accelerate training and improve performance. Comprehensive evaluations show
that these methods achieve state-of-the-art accuracy while enabling faster waveform
generation. The techniques presented have the potential to substantially accelerate
gravitational wave data analysis as detector sensitivity improves and event rates
increase.
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20.1 Introduction

Since 2015, when the first gravitational waves (GWs) from a binary black hole (BBH)
system were detected [1], GW detections have become increasingly common, moving
closer to the point of being a regular occurrence. After the third observing run (03),
the most recent catalog (GWTC-3, [2]) from the Advanced LIGO [3], Advanced
Virgo [4] KAGRA [5, 6] collaboration contained 90 GW events, almost all of which
were BBH mergers. The 4th observing run (O4) is currently underway and a larger
number of BBH detections are expected [7]. The addition of a fifth interferometer,
LIGO-India [8], is expected to significantly enhance both the sensitivity and the
sky localization of the network. Moreover, third-generation ground-based detectors
such as the Einstein Telescope [9, 10] and Cosmic Explorer [11, 12] are currently
being developed and are anticipated to greatly expand our understanding of the
astrophysical processes in the Universe [13—15].

The advances in GW astronomy described above were made possible by col-
laborative efforts in multiple areas. Accurate descriptions of the entire coalescence,
including the full inspiral, merger, and ringdown, can be obtained in different ways,
with IMRPhenomXPHM [16] and SEOBNRv5PHM [17] being two examples of wave-
form models. However, the increased complexity of the waveforms increases their
computational cost.

In recent years, there has been an increase in the utilization of machine learning
approaches for the analysis of gravitational wave data (see [18-20] for reviews). This
chapter provides a summary of deep learning applications [21, 22] to accelerate the
construction of surrogate models for gravitational-wave astronomy.

20.2 ANN-Accelerated Surrogate Models

Surrogate modeling has been provided to reduce the considerable computational
cost of evaluating waveform models [23, 24], which can significantly speed up EOB
waveforms (e.g. [23, 25-28]) while still providing high accuracy within its valid
parameter range. The SEOBNRv4 model has a three-dimensional parameter space
A; the mass ratio g between the two black holes and their spins x; and x,, assuming
that they are aligned with the orbital angular momentum. A surrogate model for this
waveform family was presented in [29]. Several machine learning techniques can be
used to interpolate or fit the projection coefficients of a reduced basis representation
of time-domain waveforms, and the most suitable method depends on the desired
accuracy and dimensionality. For low-dimensional parameter spaces, interpolation
is a viable option. However, as the dimensionality increases, interpolation becomes
difficult due to the large number of data points usually needed. Artificial Neural
Networks (ANNS5) are proposed as a solution to estimate these coefficients since this
approach allows for efficient execution on either a CPU or GPU.
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In [21], it was observed that the residual errors after training an ANN to evaluate
the coefficients of the surrogate model for the SEOBNRv4 model had a pattern with
respect to the input parameters. It was then demonstrated that a second neural network
could be trained to model these errors, leading to an improved method, in which the
maximum mismatch between SEOBNRv4 waveforms and waveforms generated by
the new surrogate model was more than one order of magnitude smaller than the
baseline method. Here, we will provide a summary of the steps taken to create the
surrogate model and the residual ANN network to accelerate the evaluation of its
coefficients, as described in [21].

20.2.1 Constructing a Surrogate Model

We express the complex gravitational wave strainas h(f; ) = hy(t; X)) — ih, (t; L),
where . and h are the two independent polarizations [30], ¢ is the time, and A is a
vector of intrinsic parameters. The SEOBNRv4 model [31] has a three-dimensional
parameter space, with each waveform characterized by the mass ratio g (the ratio of
the masses of the two black holes) and the dimensionless spins x, x of the two black
holes. Surrogate modeling is a process of approximating given signals using a reduced
model, denoted &, (¢; A), such that the approximation given by the surrogate model,
hy(t; L), accurately reconstructs the actual waveform A(¢; A) within a preset threshold
of error. When considering only the dominant, quadrupole (I = m = 2) mode [30],
the target becomes h,(¢; L) ~ hy»(¢; A) where [, m are the spherical harmonics. To
begin the surrogate modeling process, a training set of N waveforms {&; (; X))},
is created, where A; = (g, X1, x2);- The mass ratio is limited to a predetermined
interval, such as 1 < g < 8, within which the surrogate model is designed to be
accurate. The two spins can have values in the range —0.99 < x;, < 0.99.

A Reduced Order Method (ROM) basis is constructed from a training set using a
greedy algorithm [23]. This is an iterative process that selects n < N waveforms (and
their corresponding {A;}';_, values, the greedy points) that, after orthonormalization,
form the reduced basis {e; }';_,. Each A; waveform in the training set is then expressed
as a linear combination

h(t:A) ~ Y cj(h)e; (1), (20.1)

j=1

within a given error tolerance, where {c; (Xi)}’}zl = (h (t; 1), e (t)> are the orthog-
onal projection coefficients.

Next, a new Empirical Interpolation Method (EIM) basis By (t) is obtained such
that a waveform A(t; A ;) can be expressed as a linear combination of the basis, i.e.
h (t; A j) = ZZ:I ai (A ;) Bi(t). The coefficients o (A ;) are equal to the waveform at
particular times, {7} }7_,, known as the empirical time nodes, i.e. ax (A ;) = h (Tk; Xj).
For any other waveform 4 (f; A;) in the training set, the coefficients of the EIM
representation are o (A;) = h (Ty; A;). This does not require the basis By (t), so the
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coefficients can be computed much faster than the projection coefficients in the ROM
basis (which require the projection of the whole waveform).

In the end, a surrogate model is created by interpolating the coefficient matrix
oy (A;) of the training set to find the coefficients & (X) for any A, such that

h(t:2) ~ Z G (M) Bi(1). (20.2)
k=1

The complexity of this process increases with the number of parameters in A. Neural
networks can be used to speed up this part of the process, as demonstrated in [29].

In practice, the complex waveform can be expressed in terms of its amplitude A
and phase ¢, defined through

hi(t; X)) — hy (£ 1) = A(r; M)e 10D, (20.3)

which leads to a more compact EIM basis. To construct the ROM and EIM bases,
a training set of N = 2 x 10° waveforms was randomly sampled in the parameter
spaceof 1 < g <8, —0.99 < x;.2 < 0.99. The waveforms were aligned in amplitude
and initial phase, the phase was unwrapped, and the time series was truncated to a
common starting time of —20000M, with a total mass of M = 60M,. This ensured
that all waveforms began with a minimum frequency no larger than 15 Hz, and 100M
of post-peak ringdown data was kept. The ROM and EIM bases were created using
RomPy [23, 32]. To evaluate the accuracy of the reconstructed waveforms (after
the training is completed), a validation set of 3 x 10* SEOBNRv4 waveforms (not
included in the training set) was used.

For two waveforms with parameters A; and A, the inner product can be defined
[33] o

Tres (f5 AR (f; M2)

h(:; A1), h( Ap)) = 4% df, 20.4
(A (5 A1), h(5 A2)) / 5, (7) ! (20.4)

where 7( [ A) is the Fourier transform of h(¢; A), S,,(f) denotes the noise power
spectral density (PSD) of the GW detector and the star notation stands for the complex
conjugate. The inner product can be employed to normalize the Fourier transform of
a waveform in the following manner:

h(f; 1)

MED = G hGay

(20.5)

Then, the overlap between two waveforms is defined as the inner product between
normalised waveforms A(-; A1), h(-; A,), maximised over a relative time (fp) and
phase (¢y) shift between the two waveforms:

OCh(:: A1), 1)) = max(h(: ). h: Aa)). (20.6)
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and, finally the mismatch is given by
MGG M), b5 A0) = 1= OCh(5 A1), (5 12), (20.7)

The performance of the surrogate model can be evaluated by comparing the wave-
forms generated by the SEOBNRv4 model with the predictions of the surrogate,
using the mismatch defined above.

20.2.2 Accelerating the Surrogate Model Using ANNs

To construct the surrogate model, an ANN was employed to interpolate the coef-
ficients oy (A;) of the training set to find the coefficients & (A) for an arbitrary A.
The improved model was compared with a baseline model that followed the archi-
tecture of [29]. The ANN had four hidden layers with 320 neurons in each. The
batch size was 10% and the training lasted for 10° epochs. The Adam optimizer [34]
with a learning rate of 1073 and the ReLU activation function [35] were used for
the amplitude network. For the phase network, the Adamax [34] optimizer with a
learning rate of 102 and the softplus activation function [36] were employed. Pre-
processing involved using log(g) as input instead of g, which was then scaled using
the StandardScaler from Scikit-Learn [37]. At the output, the coefficients
were used raw for the amplitude network and were scaled using Scikit-Learn’s
MinMaxScaler for the phase network.

The ANN prediction of the EIM coefficients of the training set waveforms will
be referred to as ; = {@x(A;)}{_,. During training, the standard mean square error

N
1 . 5
MSE = ?:1 15; — ¥ilI3 (20.8)

was measured and minimized, where the || - ||, notation represents the Euclidean
norm of a vector. The MSEs were in the range ~ 1078 — 1077,

A second ANN was created to predict the residual errors after establishing the
baseline ANN surrogate model. This was done due to the presence of structure in
the residuals for some EIM coefficients, as seen in Fig.20.1. The final predictions
are the sum of the outputs of the two models. For all {;}_, in the training set, one
can obtain the corresponding predictions {j’(l,-)}f\': , and calculate the residual

ei =y -y, (20.9)

where, as already defined, y is the ground truth. The second network was cre-
ated with the same input and architecture as the first network, but this time it was
trained on the residuals e; (which were first scaled using the “MinMaxScaler” from
scikit-learn [37]) to make predictions for the residual é(A) at any A. When
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Fig. 20.1 The residual error for three chosen EIM coefficients for the amplitude is dependent on
the input parameters A = {1, x2, ¢} (the dependence on g is illustrated with a colormap). The
example in the left panel shows an unstructured distribution of residuals. In contrast, the example
in the center panel reveals a strong dependence on the mass ratio ¢, while the example on the right
displays a large residual error at the highest value of x;. Figure from [21]

the prediction e for the residual is added to the prediction y of the first network, an
improved prediction is obtained.

y

y+e. (20.10)

Figure 20.2 illustrates the difference in mismatches (for the validation set) between
the baseline network and the case where a second network is added that models the
residual error, as a violin plot. The median is marked by the middle horizontal line,
whereas the minimum and maximum values are shown by the extent of the lines. The
envelope of each panel is proportional to the density of points. The results in Fig. 20.2
demonstrate that adding a second network to learn the residual errors is beneficial
for constructing surrogate models for gravitational waves from BBH inspiral. This
strategy is likely to be advantageous for other types of GW template banks, such as
binary neutron star inspiral waveforms.

20.3 Efficient Surrogate Models Using Autoencoders

Autoencoders (AEs) are a type of unsupervised neural network that is trained to repro-
duce its input by first transforming it into a lower-dimensional representation [38].
Generally, an autoencoder consists of an encoding component that maps the input to
a compressed representation and a decoding component that reconstructs the input.
Encoding and decoding functions can have symmetrical or asymmetrical architec-
tures and usually comprise multiple layers of fully connected layers, convolutional
layers, or recurrent modules. AEs have been studied for a variety of tasks, such as
clustering [39, 40], classification [41, 42], and image retrieval [43, 44], due to their
ability to extract semantically meaningful representations without labels. A typical
AE architecture is shown in Fig. 20.3, with the input and output layers having the
same number of neurons.
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Fig. 20.2 A comparison of the mismatches (for the validation set) between the baseline network
and the case when a second network that models the residual error is added is shown in the violin
plots. The median is marked by the middle horizontal line, while the minimum and maximum values
are indicated by the extent of the lines. The envelope of each panel is proportional to the density of
points, and it is clear that a significant reduction of the mismatch is achieved when the network for
the residual error is added. Figure from [21]

Input Hidden layer Latent Hidden layer Output
Representation

Fig. 20.3 Single hidden layer architecture of a fully connected Autoencoder. Figure from [22]
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Fig. 20.4 Hidden representation uncovered by the AE for the empirical interpolation coefficients
of a surrogate model of EOBNRv2 waveforms that is valid for 1 < g < 2 (the color bar describes
different values of the mass ratio ¢ ). When the values at the two neurons of the hidden representation
are plotted against each other, a spiral structure emerges, along which the mass ratio appears to vary
linearly with angle. Figure from [22]

In [22] a dataset comprising pairs of mass ratio ¢; and corresponding EIM coef-
ficient a; (i = 1, ..., N), created with the EOBNRV2 nonspinning waveform model
[45], was used to train an AE, with only the coefficients as input. This unsuper-
vised process revealed a hidden relationship between each mass ratio ¢; and the
corresponding coefficients, as the mass ratios were unknown to the AE. Specifi-
cally, when choosing a two-dimensional intermediate representation, a spiral pattern
emerged when visualizing this representation as a function of the mass ratio ¢, see
Fig.20.4. Below, we summarize the main steps presented in [22] to add a learnable
spiral module to the ANN.

Following [23], a dataset of N = 1000 waveforms with mass ratios in the range
1 < g < 2 was generated and a surrogate model was built, with a tolerance of 10719,
resulting in a reduced basis of size n = 11. Next, a simple symmetric encoder-
decoder AE architecture was used, with a two-dimensional hidden representation
and two hidden fully-connected layers of 128 neurons on either side. The PReLLU
non-linearity [46] was used in all layers. The model was built using the PyTorch Deep
Learning framework [47]. The EIM coefficients were used as input and output for
this network. The AE was trained for 100 epochs with an initial learning rate of 0.001
and a batch size of 32. A multi-step multiplicative schedule was used with a gamma
value of 0.9 and a step size of 15. The visual representation of the hidden layer is
shown in Fig. 20.4, with the colors indicating the g values for each input coefficient.
The spiral manifold in the hidden layer appears to describe a linear relationship
between g and the angle 6 of the spiral. The mean squared error of the reconstruction
is 6.82 x 107°.



20 Deep Learning Methods for Accelerating Gravitational Wave ... 283

Based on the spiral pattern that emerged in Fig. 20.4, a neural spiral module was
proposed in [22], which first transforms the input g into an angle 6, defined as

0:=w-qg+b, (20.11)
and subsequently maps 6 onto a spiral structure of the form

sy =(+pB-60) -c.ose, (20.12)

sy:=(ax+pB-0)-sind,
where w, b, o and B are parameters. These parameters are learnable, since the output
is differentiable with respect to each of them. The spiral is fed to multiple, successive
fully-connected layers, each with a nonlinear activation function, before reaching
the final linear layer. An example of this architecture with two hidden layers is
illustrated in Fig.20.5. The inclusion of this module into an ANN accelerates the
training process, leading to a significant reduction of the lowest achieved MSE.

The performance of various neural network architectures with fully-connected
layers was assessed with and without the spiral module. The metrics used for eval-
uation were the waveform mismatch, inference speed, and memory requirements,
with the maximum batch size that can be processed in a single forward pass on an
NVIDIA RTX 2080 Ti GPU. All networks were trained for 2500 epochs with a batch
size of 16, using the Adam optimizer [48] and an initial learning rate of 0.001, which
was reduced by 0.95 every 150 epochs.

The inclusion of the spiral module significantly improved the mismatch achieved.
When only one hidden layer was used, the baseline network with 128 neurons pro-
duced waveforms with a very poor mismatch (1.03 x 10! median mismatch). How-
ever, with the addition of the spiral module, even with only 32 hidden neurons, the
median mismatch decreased by about 6 orders of magnitude. The best median and
95th percentile mismatch (9.41 x 107° and 3.48 x 10~%) was achieved by the S-32-
64-128-64 network, which was able to generate up to 3.4 million coefficients in a
single forward pass on the aforementioned GPU.

Finally, a spiral module was added to a neural network that was trained on a
larger dataset of N = 56000 waveforms with 1 < g < 8, where the g values were

Fig. 20.5 Fully connected Hidden layer ~ Hidden Layer
neural network with two

hidden layers and the a Spiral
included spiral module.
Figure from [22]

Coefficient
Predictions
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Fig. 20.6 Real (top) and imaginary parts (bottom) of the empirical interpolation coefficients a; (¢)
for a surrogate model of EOBNRv2 waveforms that is valid for 1 < ¢ < 8. Figure from [22]

equidistant. A validation and a test set were also created, each with 14000 waveforms,
and the g values were randomly chosen in the range of 1 < ¢ < 8. Figure20.6 shows
the real and imaginary parts of the first ten coefficients of the EIM basis, {a; (q)}}ozl.
Despite some modulation of amplitude, each coefficient has a sinusoidal dependence
with g (except near g = 1, where dq/da; = 0 for all j).

Several neural networks were trained and tested on the dataset. All networks were
trained for 5000 epochs, with a batch size of 32, and the Adam optimizer [48] with
an initial learning rate of 0.001, which was reduced by 0.9 every 30 epochs. The
training and validation loss per epoch for the 32 — 64 — 128 — 64 network and the
corresponding architecture with the addition of the spiral is shown in Fig.20.7. The
spiral addition resulted in a lower mean squared error, allowing smaller networks to
achieve the same accuracy as larger networks, leading to a larger batch size that can
be processed in a single forward pass when using a specific GPU card. For a different
application of (variational) auto-encoders in GW astronomy, see [49].

20.4 Conclusions

We reviewed the efficacy of novel deep learning approaches for accelerating grav-
itational wave surrogate modeling. The residual error modeling technique using a
second neural network provides a substantial improvement in the accuracy of sur-
rogate models, as evidenced by the significant reduction in waveform mismatches.
The autoencoder-driven spiral representation learning reveals intrinsic structure in
the gravitational wave data that can be exploited to enhance model performance.
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Fig. 20.7 Training and validation loss per epoch for the 32-64-128-64 network and the correspond-
ing architecture with the addition of the spiral. Figure from [22]

The proposed neural spiral module leverages this structure to accelerate training and
improve accuracy. Our comprehensive evaluations show that these methods not only
achieve high accuracy, but also enable rapid waveform generation, critical for future
gravitational wave data analysis. As gravitational wave astronomy advances with
more sensitive detectors and higher event rates, these machine learning techniques
offer a promising avenue for managing the increasing computational demands of
waveform modeling and data analysis. Future work should focus on extending these
methods to higher-dimensional parameter spaces and more complex waveform mod-
els, as well as exploring their application to real-time gravitational wave detection
and parameter estimation.
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