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Preface 

Rogue waves, also known as freak waves, monster waves, killer waves, extreme 

waves, and abnormal waves, are unusually large and suddenly appearing surface 

waves in the sea (Dysthe et al. 2008; Kharif et al. 2009). Since they appear and 

disappear without warning, they can be dangerous to ships, even to large ones. 

The famous Japanese print, The Great Wave Of Kanagawa, by Katsushika Hokusai 

(see cover of this book) can be viewed as an artistic rendering of a rogue wave. 

In the old days, sailors often talked about rogue waves that they saw in the sea, 

but such stories were often dismissed as myths or folklore. The first verified 

measurement of a rogue wave was on January 1, 1995, on the Draupner platform 

in the North Sea, where a 25.6 m wave was observed—much larger than the 

background wave field. Subsequently, rogue wave events have been observed in 

water tanks, thus allowing their physical mechanisms to be better understood. While 

there could be multiple mechanisms for the appearance of rogue waves, one of them 

is modulation instability, also called Benjamin-Feir instability, where a uniform 

nonlinear wavetrain (Stokes wavetrain) is unstable. When this Stokes wavetrain 

breaks up, it could generate rogue waves if the instability perturbation is seeded 

properly. 

The study of rogue waves has spread from oceanography to other branches of 

physics such as nonlinear optics, plasma and Bose-Einstein condensates (BEC) 

because the mathematical model for one-dimensional surface waves in the ocean— 

the nonlinear Schrödinger (NLS) equation, also governs wave phenomena in those 

other systems. The NLS equation admits explicit rational solutions that exhibit 

rogue-wave-like behaviors, which is the underlying mathematical reason for the 

appearance of rogue water waves in laboratory experiments and possibly in the 

ocean as well. Since the NLS equation also governs those other physical systems, 

optical rogue waves, plasma rogue waves, and BEC rogue waves would be expected. 

Indeed, such rogue waves have been observed in laboratories of optics, plasma, and 

BEC, thus widening rogue occurrences in the natural world. 

It should be recognized that there are also other physical settings where wave 

behaviors are governed not by the NLS equation but by other model equations

v
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such as the Manakov system and the three-wave resonant interaction system. Such 

model equations turn out to admit rogue wave solutions as well, due to modulation 

instability of a uniform background wave. Then, rogue events can be expected in 

even more diverse physical systems. 

Rogue waves can be studied both experimentally and theoretically. In the 

theoretical approach, one can derive and analyze rogue wave solutions in physically 

relevant mathematical models in order to gain insight into properties of rogue 

events. What makes this theoretical treatment possible is that, many physically 

relevant mathematical models, such as the NLS equation, the Manakov system, 

the three-wave resonant interaction system, and the long-wave-short-wave resonant 

interaction system, are all integrable, meaning that they can be solved analytically. 

Due to their integrability, we are able to derive explicit rogue wave solutions in 

those systems, which provide us with detailed quantitative information on rogue 

wave dynamics. In addition, due to the explicitness of these rogue wave solutions, 

we are able to perform various asymptotic analysis on these solutions, which 

results in asymptotic predictions of very fascinating rogue wave patterns. These 

rogue patterns turn out to be closely related to root structures of certain special 

polynomials, such as the Yablonskii-Vorob’ev polynomial hierarchy, the Okamoto 

polynomial hierarchies, and Adler-Moser polynomials. This beautiful connection 

between rogue patterns and special polynomials is a testament of the rich structure 

of rogue waves in integrable systems. 

This book summarizes the current state of knowledge on rogue waves in 

physically important integrable systems. The first chapter derives many of these 

integrable systems in physical settings such as water waves, optics, and plasma. 

This chapter provides physical motivations for our mathematical studies in later 

chapters. The second chapter derives rogue wave solutions in a wide array of 

integrable systems, including those obtained in Chap. 1 and much beyond. In 

the literature, rogue waves in many of those integrable systems were originally 

derived by generalized Darboux transformation. We will derive these rogue waves 

almost exclusively by the bilinear method, since rogue wave expressions by the 

bilinear method are much more explicit than those by Darboux transformation. The 

third chapter analyzes patterns of rogue waves in certain asymptotic limits such as 

large internal parameters. Connections between rogue patterns and root structures 

of special polynomials will be revealed, and universality of these rogue patterns 

in integrable systems will be established. The fourth chapter describes laboratory 

experiments on rogue waves in physical settings such as optical fibers, water tanks, 

plasma, and BEC. The last chapter covers topics that are closely related to rogue 

waves of the earlier chapters, such as rogue waves arising from a nonuniform 

background, robustness of rogue waves, partial-rogue waves, and lump patterns in 

the Kadomtsev-Petviashvili I equation. 

This book is intended as a monograph on the theoretical treatments of rogue 

waves. Its intended readership is researchers and graduate students in diverse
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mathematical and physical fields, where rogue waves are an interest of study. Most 

derivations are self-contained, and the reader should be able to follow them without 

much help from other sources. 

We would like to thank our families for strong support during the writing of this 

book. 

Ningbo, China Bo Yang 

Burlington, VT, USA Jianke Yang
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Chapter 1 

Physical Derivation of Integrable 

Nonlinear Wave Equations 

In this beginning chapter, we derive many integrable systems as governing equations 

for diverse physical processes. Examples include the nonlinear Schrödinger equa-

tion for wave packet propagation in deep water, optical fibers, and unmagnetized 

plasma, the derivative nonlinear Schrödinger equation for nonlinear Alfvén waves 

in magnetized plasma, Manakov equations for light transmission in randomly-

birefringent optical fibers, the long-wave-short-wave interaction model in water 

of finite depth, the three-wave resonant interaction system in water waves and 

optics, and Davey-Stewartson equations for two-dimensional wave packets in water 

of finite depth. Our method of derivation is the multi-scale perturbation method, 

the only exception being the optical-fiber case. These physical backgrounds of 

the underlying integrable systems will not only motivate our mathematical studies 

of rogue waves in these integrable systems in Chaps. 2 and 3, but also link our 

mathematical rogue solutions to physical experiments which we will also describe 

in Chap. 4. 

We start with the nonlinear Schrödinger equation. 

1.1 Nonlinear Schrödinger Equation 

The nonlinear Schrödinger (NLS) equation 

.iut + 1

2
uxx + |u|2u = 0 (1.1) 

is one of the most important equations that arise in a wide variety of physical 

processes. In general, this equation governs the evolution of a weakly nonlinear 

and dispersive wave packet that depends on a single spatial dimension. It was first 

derived by Benney and Newell (1967) in a general setting. Zakharov (1968) and 

Hasimoto and Ono (1972) derived this equation for water wave packets on a free 
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2 1 Physical Derivation of Integrable Nonlinear Wave Equations

surface. Shimizu and Ichikawa (1972) derived this equation for ion wave packets 

in an unmagnetized plasma. Hasegawa and Tappert (1973) showed that this same 

equation governs light pulse propagation in an optical fiber. The integrability of this 

equation was revealed by Zakharov and Shabat (1971). 

In this section, we derive this NLS equation in water waves, optical fibers, and 

plasma. 

1.1.1 In Deep Water 

We consider the irrotational two-dimensional motion of an inviscid, incompressible, 

and homogeneous deep water with a free surface, subject to a constant gravitational 

force g. We take the x axis in the horizontal direction, and z axis in the vertical 

direction, with .z = 0 set at the unperturbed free surface. Since the motion is 

irrotational, the velocity field . u has a potential .φ(x, z, t), where .u = ∇φ. The free 

surface is at .z = ζ(x, t). Surface tension will be assumed small and ignored. Waves 

under gravity and no surface tension are called gravity waves. 

The governing equations for these two-dimensional deep-water gravity waves are 

(Benney and Roskes 1969; Davey and Stewartson 1974) 

. φxx + φzz = 0, −∞ < z ≤ ζ, . (1.2) 

ζt + φxζx = φz, z  = ζ, . (1.3) 

φt + gζ + 
1 

2 
(φ2 

x 
+ φ2 

z ) = 0, z  = ζ. (1.4) 

The Laplace equation (1.2) is due to the incompressibility of the fluid, Eq. (1.3) is  

the kinematic condition on the surface, and Eq. (1.4) is the dynamic condition on 

the surface. In addition, we impose the bottom condition 

.φz → 0, z → −∞, (1.5) 

i.e., the water has zero vertical velocity at the infinite bottom. 

Derivation of the NLS Equation 

We study a progressive wavetrain of wavenumber k and frequency . ω travelling in 

the positive x direction (both k and . ω are assumed positive). In the linear theory, 

valid when the wave amplitude is infinitesimal, this wave can be written as 

.ζ(x, t) = ζ11 ei(kx−ωt) + c.c., φ(x, z, t) = φ11 ei(kx−ωt)+kz + c.c., (1.6) 

where . ζ11 and .φ11 are infinitesimal complex constants, and ‘c.c.’ represents complex 

conjugates. This . ζ function can be rewritten as
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.ζ(x, t) = 2|ζ11| cos (kx − ωt + arg(ζ11)) . (1.7) 

Thus, the wave amplitude of the free surface is .2|ζ11|. 
The potential function in (1.6) satisfies the Laplace equation (1.2) automatically. 

Substituting . ζ and . φ in (1.6) into the two surface boundary conditions (1.3)–(1.4) 

and ignoring nonlinear terms, we get 

.

⎾
−iω −k

g −iω

⎤ ⎾
ζ11

φ11

⎤
=
⎾

0

0

⎤
. (1.8) 

Nontrivial solutions for this linear homogeneous system are possible only when the 

determinant of the coefficient matrix is zero, which yields the dispersion relation 

.ω =
√

gk. (1.9) 

Now, we consider this progressive wavetrain whose amplitude parameters . ζ11

and .φ11 are small but not infinitesimal, while the wavenumber k is treated as an 

.O(1) quantity (the latter can be achieved by choosing an appropriate length unit 

corresponding to the characteristic wavelength of the problem). Physically, this 

situation is where the surface wave’s amplitude is small compared to the wavelength, 

i.e., the slope of the surface wave is small. We also allow these amplitudes .ζ11 and 

.φ11 to slowly vary in space and time. In this case, we use the multiscale perturbation 

theory to derive the temporal and spatial evolutions of these amplitude functions. 

In Benney and Roskes (1969) and Davey and Stewartson (1974), such derivations 

were given for water of finite depth. In deep water, a significant difference is that the 

amplitude function .φ11 of the potential depends not only on the slow x variable, but 

also on the slow z variable. As a consequence, our derivation below is noticeably 

different from those in Benney and Roskes (1969) and Davey and Stewartson (1974) 

(and in Sect. 1.4 for a higher-dimensional generalization). 

We write solutions to Eqs. (1.2)–(1.4) as perturbation series 

. ζ = ϵ
⎛
ζ01 + ζ11e

iθ + c.c.
⎞

+ ϵ2
⎛
ζ02 + ζ12e

iθ + ζ22e
2iθ + c.c.

⎞
+

+ ϵ3
⎛
ζ03 + ζ13e

iθ + ζ23e
2iθ + ζ33e

3iθ + c.c.
⎞

+ · · · , . (1.10) 

φ = ϵ
⎛
φ01 + φ11e

iθ+kz + c.c.
⎞

+ ϵ2
⎛
φ02 + φ12e

iθ+kz + φ22e
2iθ+2kz + c.c.

⎞
+ 

+ ϵ3
⎛
φ03 + φ13e

iθ+kz + φ23e
2iθ+2kz + φ33e

3iθ+3kz + c.c.
⎞

+ · · ·  , (1.11) 

where .θ = kx − ωt , 

.ζnj = ζnj (ξ, τ ), φnj = φnj (ξ, Z, τ), (1.12) 

.ξ = ϵ(x − cgt), Z = ϵz, τ = ϵ2t, (1.13)
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.cg = ω'(k) = ω/(2k) is the group velocity, ‘. c.c.’ represents complex conjugates 

of only the .einθ or .einθ+nkz terms, and . ζ0j , .φ0j are real functions. Here, . ϵ is a 

small positive parameter measuring the slope of the wavy surface. Notice the slow-z 

dependence of .φnj here, which is absent in water of finite depth (Benney and Roskes 

1969; Davey and Stewartson 1974). 

We first substitute the expansion (1.11) for . φ into the Laplace equation (1.2) and 

equate coefficients of .ϵjeinθ+nkz to zero. The results are: 

. ϵ3e0 : φ01,ξξ + φ01,ZZ = 0; . (1.14)

ϵ2eiθ+kz : φ11,Z = −iφ11,ξ ; . (1.15)

ϵ3eiθ+kz : φ12,Z = −iφ12,ξ . (1.16) 

At other orders of .ϵj einθ+nkz, we get additional relations, but they are not needed 

for our purpose. 

Next, we consider the surface boundary conditions (1.3)–(1.4). Expanding the . φ

function in these boundary conditions around the mean surface level .z = 0, these 

boundary conditions up to .O(ϵ3) become 

. ζt + ζx(φx + φxzζ ) = φz + φzzζ + 1

2
φzzzζ

2, z = 0, . (1.17) 

φt + φtzζ + 
1 

2 
φtzzζ

2 + gζ + 
1 

2 
(φ2 

x 
+ φ2 

z ) + ζ(φxφxz + φzφzz) = 0, z  = 0. 

(1.18) 

Then, we substitute the above .(ζ, φ) expansions (1.10)–(1.11) into these new 

boundary conditions and equate coefficients of .ϵjeinθ to zero. At order . ϵe0, the  

second boundary condition (1.18) gives  

.ζ01(ξ, τ ) = 0. (1.19) 

Utilizing this result, the first boundary condition (1.17) at order .ϵ2e0 gives 

.φ01,Z = 0, Z = 0. (1.20) 

This condition, together with the Laplace equation (1.14) for .φ01 and boundary 

condition (1.5) at deep bottom, yields 

.φ01(ξ, Z, τ) = φ01(τ ), (1.21) 

i.e., the function .φ01 is independent of . ξ and Z. This result is important, as it shows 

that the horizontal velocity . φx from the expansion (1.11) has no .O(ϵ2e0) mean flow. 

In water of finite depth, however, this .O(ϵ2e0) mean flow would exist, as was shown 

in Benney and Roskes (1969) and Davey and Stewartson (1974) (see also Sect. 1.4 

later).
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At .O(ϵeiθ ), the two surface boundary conditions (1.17)–(1.18) give two relations 

on .ζ11 and .φ11 at .Z = 0, which are the same as those in Eq. (1.8). Thus, those 

relations yield the dispersion relation (1.9), as well as the relation 

.ζ11 = (iω/g)φ11|Z=0. (1.22) 

At .O(ϵ2e0), the second boundary condition (1.18) leads to 

.ζ02(ξ, τ ) = 0. (1.23) 

At .O(ϵ2eiθ ), the two boundary conditions give the following two equations 

.

⎾
−iω −k

g −iω

⎤ ⎾
ζ12

φ12

⎤
=
⎾

φ11,Z + cgζ11,ξ

cgφ11,ξ

⎤
, Z = 0. (1.24) 

Here, the . cg terms come from our choice of the moving coordinate . ξ = ϵ(x −
cgt). This is a linear inhomogeneous system. Since its coefficient matrix has a zero 

determinant due to the dispersion relation (1.9), this system is solvable only if it 

satisfies a compatibility condition, which is 

.cgφ11,ξ = (iω/g)(φ11,Z + cgζ11,ξ ), Z = 0. (1.25) 

Inserting relations (1.15) and (1.22) into this condition and utilizing the dispersion 

relation (1.9), we find that this condition is satisfied automatically. This fact simply 

indicates that the wavepacket indeed travels at the group velocity . cg , i.e., our choice 

of the moving coordinate . ξ is appropriate. 

At .O(ϵ2e2iθ ), the two boundary conditions (1.17)–(1.18) give the following two 

equations 

.

⎾
−2iω −2k

g −2iω

⎤ ⎾
ζ22

φ22

⎤
=
⎾

2k2φ11ζ11

ikωφ11ζ11

⎤
, Z = 0. (1.26) 

The determinant of its coefficient matrix is nonzero, thus this system has a unique 

solution, which is 

.ζ22 = −(k2/g)φ2
11|Z=0, φ22|Z=0 = 0. (1.27) 

Here, the formula (1.22) for . ζ11 has been utilized. 

Lastly, we look at .O(ϵ3eiθ ). At this order, the two boundary conditions give the 

following two equations 

.

⎾
−iω −k

g −iω

⎤ ⎾
ζ13

φ13

⎤
=
⎾

F1

F2

⎤
, Z = 0, (1.28)
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where . F1 and . F2 are certain functions. Utilizing Eqs. (1.22), (1.27), as well as the 

dispersion relation (1.9), . F1 and . F2 can be reduced to 

. F1 = φ12,Z + cgζ12,ξ − ζ11,τ − 5

2
ik2ω|ζ11|2ζ11, . (1.29) 

F2 = cgφ12,ξ − φ11,τ − 
3 

2 
k2g |ζ11|2ζ11. (1.30) 

Due to the zero determinant of its coefficient matrix, the linear inhomogeneous sys-

tem (1.28) has a solvability condition .F2 = (iω/k)F1. Utilizing the relation (1.16) to  

replace the .φ12,Z term in . F1, and utilizing the relation (1.22) as well as the dispersion 

relation (1.9), this solvability condition becomes 

.iζ11,τ − (i/4ω)(−iωφ12 + gζ12)ξ − 2k2ω|ζ11|2ζ11 = 0. (1.31) 

Here, the .φ12 term is evaluated at .Z = 0. Finally, we use the second equation 

in (1.24) to replace the middle term in the above equation and apply the rela-

tion (1.22) again. Then we get 

.i
∂ζ11

∂τ
− ω

8k2

∂2ζ11

∂ξ2
− 2k2ω |ζ11|2ζ11 = 0. (1.32) 

This is a NLS equation in temporal-evolution form, and it governs the evolution of 

the wave envelope .ζ11 on the free surface. In this equation, .−ω/(8k2) in front of 

.ζ11,ξξ is called the dispersion coefficient, and .−2k2ω in front of .|ζ11|2ζ11 is called 

the nonlinear coefficient. 

To put Eq. (1.32) into a physically more recognizable form, we denote . ϵζ11 =
u/2. Then, from Eqs. (1.10) and (1.19) we see that the water surface elevation . ζ(x, t)

is related to .u(x, t) as 

.ζ(x, t) = Re{u(x, t)exp[i(kx − ωt)]} (1.33) 

to the leading order of wave steepness . ϵ. A more accurate relation between . ζ(x, t)

and .u(x, t), up to the second order of wave steepness . ϵ, can be obtained from 

Eqs. (1.10), (1.19), (1.22), (1.23) and (1.27) as  

. ζ(x, t) = Re

⎧
u(x, t)ei(kx−ωt) + 1

2
ku2(x, t)e2i(kx−ωt)

⎫
. (1.34) 

Here, the .ϵ2ζ12e
i(kx−ωt) term in the . ζ expansion (1.10) can be lumped into the 

.ϵζ11e
i(kx−ωt) term and is thus dropped. 

The temporal-evolution equation for .u(x, t) in physical units can be obtained 

from Eq. (1.32) as  

.i
∂u

∂t
− ω

8k2

∂2u

∂x̂2
− 1

2
k2ω |u|2u = 0, (1.35)
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where .x̂ = x − cgt , .cg = ω/2k, and .ω =
√

gk. Introducing nondimensional 

variables 

.ũ = u/a, x̃ =
√

2ak2x̂, t̃ = −a2k2ωt/2, (1.36) 

where a is a representative wave-amplitude parameter, the above equation is then 

reduced to the standard NLS equation 

.i
∂ũ

∂t̃
+ 1

2

∂2ũ

∂x̃2
+ |ũ|2ũ = 0, (1.37) 

which is Eq. (1.1) in tilde notations. 

Universal Formula for the Dispersion Coefficient 

It is important to notice that, in the above NLS equation (1.32) for . ζ11, the dispersion 

coefficient .−ω/(8k2) is equal to .ω''(k)/2, where .ω(k) is the dispersion relation 

given in Eq. (1.9). Thus, this NLS equation can be rewritten as 

.iζ11,τ + 1

2
ω''(k)ζ11,ξξ − 2k2ω |ζ11|2ζ11 = 0. (1.38) 

The fact of this dispersion coefficient being equal to .ω''(k)/2 is definitely not an 

accident. Rather, it is a necessity so that the linear evolution of the free surface 

function . ζ11 in Eq. (1.38) matches the linear dispersion relation (1.9). To show this, 

let us write the linear dispersion relation as .ω̂ = ω̂(k̂), where . ̂k and . ω̂ are the 

wavenumber and frequency of a general linear monochromatic wavetrain (these 

hatted quantities are introduced to distinguish them from the wavenumber k and 

frequency . ω of the present wavetrain). Here, the exact functional form (1.9) of the  

dispersion relation, i.e., .ω̂(k̂) = (gk̂)1/2, is not needed. Then, when . ̂k is near the 

wavenumber k of the present wavetrain, i.e., .k̂ = k + k̃, where .|k̃| ⪡ 1, we have  

.ω̃ ≡ ω̂(k̂) − ω(k) = ω'(k)k̃ + 1

2
ω''(k)k̃2 + · · · . (1.39) 

The linear partial differential equation for the free surface 

.ζ(x, t) = ζ11(x, t)ei(kx−ωt) + c.c. (1.40) 

which features the above dispersion relation (1.39) for the wavetrain . ζ11 ∼ ei(k̃x−ω̃t)

(up to . O(k̃2)) is  

. (i∂t )ζ11 =
⎛

ω'(k)(−i∂x) + 1

2
ω''(k)(−i∂x)

2

⎞
ζ11. (1.41) 

In terms of the coordinates .ξ = ϵ(x − cgt) and .η = ϵ2t that we have introduced 

earlier in Eq. (1.13), this equation then becomes
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.iζ11,τ + 1

2
ω''(k)ζ11,ξξ = 0, (1.42) 

which matches the linear part of the .ζ11 equation (1.38). Since this derivation did 

not use the specific form of the dispersion relation (1.9), the dispersion coefficient of 

the NLS equation (1.32) being .ω''(k)/2 is then valid for any physical system where 

the NLS equation is derived. This certainly includes optical fibers and plasma which 

we will treat in subsequent subsections. Using similar considerations, one can also 

write down the linear parts of other nonlinear wave equations derived in physical 

systems from the linear dispersion relation. 

NLS Equation in Spatial Evolution Form 

The NLS equation (1.32) for .ζ11 is written as a temporal evolution equation. In 

water-tank experiments, a wave-maker (paddle) generates a time-dependent wave 

at a fixed spatial location (say .x = 0), and we need to predict how this wave will 

evolve and deform as it propagates down the water tank. In such a case, it is more 

convenient to write the NLS equation as a spatial evolution equation. To do so, we 

define new slow variables 

.T = ϵ

⎛
t − x

cg

⎞
, X = ϵ2x. (1.43) 

It can be seen that these new slow variables are related to the previous slow variables 

. ξ and . τ as .X = cgτ + ϵξ and .T = −ξ/cg . Then for .ξ, τ = O(1), X is 

asymptotically equal to . cgτ . Thus the derivatives to . τ and . ξ in Eq. (1.32) can 

be converted to derivatives to X and T , and we get the NLS equation in spatial-

evolution form 

.i
∂ζ11

∂X
− 1

g

∂2ζ11

∂T 2
− 4k3|ζ11|2ζ11 = 0. (1.44) 

This spatial-evolution form of the NLS equation for . ζ11 can also be derived directly 

from the previous multiscale perturbation analysis if we write .ζnj as a function of 

.(X, T ) as defined in Eq. (1.43) rather than as a function of .(ξ, τ ) as in Eq. (1.12). 

Solutions .ζ11 out of the two forms (1.32) and (1.44) of the NLS equation are often 

asymptotically equivalent in the physical .(x, t) plane (Chabchoub and Grimshaw 

2016) 

For the u variable defined through .ϵζ11 = u/2 as before, the above NLS 

equation (1.44) in explicit physical units becomes 

.i
∂u

∂x
− 1

g

∂2u

∂t̂2
− k3|u|2u = 0, (1.45) 

where .t̂ = t − x/cg , .cg = ω/2k, and .ω =
√

gk. The water surface elevation 

.ζ(x, t) is related to the variable .u(x, t) as (1.33) to the first order of wave steepness
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and as (1.34) to the second order of wave steepness. Introducing nondimensional 

variables 

.ũ = u/a, x̃ = −k3a2x, t̃ =
/

gk3a2/2 t̂ , (1.46) 

where a is a representative wave-amplitude parameter, the above equation is reduced 

to the standard NLS equation 

.i
∂ũ

∂x̃
+ 1

2

∂2ũ

∂ t̃2
+ |ũ|2ũ = 0, (1.47) 

which is Eq. (1.1) in tilde notations. 

Stokes Wave 

A special space-independent solution to the NLS equation (1.32) in temporal 

evolution form is 

.ζ11(ξ, τ ) = 1

2
a0 e− 1

2 ik2ωa2
0 τ , (1.48) 

where . a0 is a positive constant. Then, the free-surface elevation .ζ(x, t) from the 

expansion (1.10) is  

. ζ(x, t) = a cos

⎾
kx − ω

⎛
1 + 1

2
k2a2

⎞
t

⎤
+ O(a2), (1.49) 

where .a ≡ ϵa0 is small [here the fact of .ζ01 = 0 from Eq. (1.19) has been used]. 

This solution describes a nonlinear progressive wavetrain of wavenumber k and 

amplitude a, whose frequency is amplitude-dependent. The phase velocity of this 

nonlinear wavetrain is 

.cp = ω

k

⎛
1 + 1

2
k2a2

⎞
. (1.50) 

This solution was first derived by Stokes (1847). 

The counterpart of the Stokes wave in the NLS equation (1.44) in spatial 

evolution form is the time-independent solution 

.ζ11(X, T ) = 1

2
a0 e−ik3a2

0 X. (1.51) 

In this case, the free-surface elevation .ζ(x, t) from the expansion (1.10) is  

. ζ(x, t) = a cos
⎾
k
⎛

1 − k2a2
⎞

x − ωt
⎤

+ O(a2), (1.52) 

where .a ≡ ϵa0 is small.



10 1 Physical Derivation of Integrable Nonlinear Wave Equations

Benjamin-Feir Instability 

The value of the above NLS equations (1.32) and (1.44) for gravity wavepackets 

goes far beyond the rederivation of the Stokes wavetrain. Another success of these 

equations is that they can be used to show that this (uniform) Stokes wavetrain is 

unstable—an instability which was predicted theoretically by Benjamin and Feir 

(1967) and is often called Benjamin-Feir instability in the literature. Benjamin-Feir 

instability is equivalent to the modulation instability of monochromatic nonlinear 

waves in other physical fields such as optics and plasma. In a water tank, this 

instability means that, the uniform Stokes wave (1.52) generated at the wavemaker 

(.x = 0), under weak perturbations, will eventually break up as it propagates down 

the tank. 

To show this instability, we only need to show the time-independent wave 

envelope solution (1.51) is unstable in the NLS equation (1.32) in spatial evolution 

form. For this purpose, we perturb this solution by normal modes as 

.ζ11(X, T ) =
⎛

1

2
a0 + α eΛX+iΩT + β∗eΛ∗X−iΩT

⎞
e−ik3a2

0 X, (1.53) 

where .ϵΩ is the frequency of the perturbation in the sideband of the wave’s domi-

nant frequency . ω, . Λ is the spatial exponent of this perturbation, and .(α, β) are small 

complex constants. Stokes waves will be linearly unstable if there exist sideband 

frequencies .ϵΩ of perturbations, such that their corresponding spatial exponents 

. Λ have positive real parts giving rise to exponentially growing perturbations upon 

propagation down the tank. We insert the perturbed solution (1.53) into the NLS 

equation (1.44). Dropping nonlinear terms of . α and . β since they are smaller, and 

performing simple algebra, we find that .(α, β) satisfy the following system of linear 

homogeneous equations 

.

⎾
Ω2g−1 − k3a2

0 + iΛ −k3a2
0

−k3a2
0 Ω2g−1 − k3a2

0 − iΛ

⎤ ⎾
α

β

⎤
=
⎾

0

0

⎤
. (1.54) 

For this system to admit nontrivial solutions, the determinant of its coefficient matrix 

must be zero, which leads to the expression for the spatial exponent . Λ as 

.Λ2 = Ω2

g

⎛
2k3a2

0 − Ω2

g

⎞
. (1.55) 

For sideband frequencies . Ω where the right side of the above equation is positive, 

i.e., .|Ω| <
√

2ka0ω, . Λ would have a positive part, which makes the uniform Stokes 

wavetrain (1.52) linearly unstable. In more explicit physical terms, this means for 

infinitesimal disturbances with frequencies .ω(1 ± δ) to the Stokes wavetrain (1.52), 

if .0 < δ <
√

2ka, where k and a are the wavenumber and amplitude of 

the wavetrain, then such disturbances would grow exponentially, leading to the
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wavetrain’s destruction. This sideband instability is what Benjamin and Feir (1967) 

showed using a different method. 

The Stokes wavetrains also exist in water of finite depth. In this case, these 

uniform wavetrains are unstable only if .kh > 1.363, where h is the mean depth 

of water (Benjamin 1967; Whitham 1967). More will be said on this in Sect. 1.4. 

The Benjamin-Feir instability of the Stokes wavetrain has been observed in water 

tanks. In a water tank, an oscillating paddle can make a uniform Stokes wave (1.52). 

Its instability predicts that this Stokes wave, under sideband-frequency perturbations 

at the wave maker, will eventually disintegrate as it propagates down the tank. 

Photographs illustrating this disintegration were shown in Benjamin (1967) and are 

reproduced in Fig. 1.1. In this experiment, .h = 25 ft, and .k = 2π/7.2 ≈ 0.873/ft, 

which gives .kh ≈ 21.8. Thus, instability of the Stokes wavetrain is expected to 

occur. In fact, since .kh ⪢ 1 here, the deep-water theory presented in this section 

applies. Fig. 1.1a shows the wavetrain close to the wavemaker at one end of the 

basin. Here, the wavetrain is manifestly in a regular periodic condition, except for 

Fig. 1.1 Photographs illustrating the instability and disintegration of Stokes wavetrains in deep 

water: (a) view near to wavemaker; (b) view at 200 ft. farther from wavemaker. Fundamental 

wavelength, 7.2 ft. Depth of water: 25 ft. Taken from Benjamin (1967)
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small-scale roughness which is inevitably present when waves are produced on this 

scale and which is insignificant to the process under question. In contrast, Fig. 1.1b 

shows the same wavetrain at a distance of 200 ft farther along the tank, and it can be 

seen that drastic distortions have occurred. 

It is important to recognize that disintegration of the Stokes wavetrain is not the 

only scenario of evolution following the Benjamin-Feir instability. Depending on 

initial perturbations, other evolution scenarios can also occur. One such example is 

rogue water waves that arise from the Stokes wavetrain, develop into a localized 

wave excitation with a much higher amplitude, and then recede back to the same 

Stokes wavetrain. Such rogue waves will be the focus of this book, and their 

observations in water tanks will be presented in Chap. 4. 

The theory we presented in this section for two-dimensional gravity waves in 

deep water can be readily generalized to three dimensions. In this case, we still 

consider the motion of a progressive wavetrain along the horizontal x direction, but 

allow its amplitudes to also slowly vary along the transverse y direction. In other 

words, .ζ ∼ ϵ ζ11(ξ, η, τ )ei(kx−ωt) now, where .η = ϵy is the slow variable in y. 

By slightly modifying the above perturbation calculations, we can show that the 

envelope function .ζ11(ξ, η, τ ) is still governed by the NLS equation (1.32), except 

that an additional linear term .γ ζ11,ηη/2 is added to its left side, where . γ = ω/(2k2)

is the dispersion constant along the y direction. 

1.1.2 In Optical Fibers 

An optical fiber is a flexible, transparent cylinder of glass (silica) that comprises a 

central core surrounded by a cladding whose refractive index is slightly lower than 

the core index. The core diameter is typically on the order of 10 . µm, the cladding 

diameter typically on the order of 100 . µm, and their refractive index difference 

typically less than 0.5%. Light is kept in the core by the phenomenon of total 

internal reflection which causes the fiber to act as a waveguide. Optical fibers are 

used most often in fiber-optic communications, where they permit transmission over 

longer distances and at higher data transfer rates than electrical cables. Fibers are 

used instead of metal wires because the attenuation rates of fibers are much lower, 

down to only 0.2 dB/km (or about 5% power loss per kilometer) in the 1.55-. µm 

wavelength region. In addition, fibers are immune to electromagnetic interference, a 

problem metal wires suffer. The response of optical fibers to light becomes nonlinear 

when the light intensity becomes high, and nonlinear effects are often important in 

practical situations. 

In this subsection, we derive the NLS equation for light transmission in an optical 

fiber. The NLS equation for optical fibers was first written down by Hasegawa and 

Tappert (1973), and derived more rigorously by Kodama and Hasegawa (1987). Our 

treatment follows Agrawal (2001) with some modifications. 

Like all electromagnetic phenomena, light transmission in an optical fiber 

is governed by Maxwell’s equations. Since the optical fiber is charge-free and
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nonmagnetic, the Maxwell equations take the form 

. ∇ × E = −∂B

∂t
, . (1.56) 

∇ ×  H = 
∂D 

∂t 
, . (1.57) 

∇ ·  D = 0, . (1.58) 

∇ ·  B = 0, (1.59) 

and the corresponding medium equations are 

. D = ϵ0E + P, . (1.60) 

B = μ0H. (1.61) 

Here, . E and . H are the electric and magnetic field vectors, . D and . B are the electric 

and magnetic displacement vectors, . ϵ0 and .μ0 are the dielectric constant and 

the medium’s permeability in vacuum respectively, and . P is the induced electric 

polarization. 

By taking the curl of Eq. (1.56) and using Eqs. (1.57), (1.60), and (1.61), one can 

eliminate . B and . D in favor of . E and . P and obtain 

.∇ × (∇ × E) = − 1

c2

∂2E

∂t2
− μ0

∂2P

∂t2
, (1.62) 

where .c = 1/
√

μ0ϵ0 is the speed of light in vacuum. 

To complete the description, a relation between the induced polarization . P and 

the electric field . E is needed. A phenomenological relation between them can 

be used far from medium resonances, which is the case for optical fibers in the 

wavelength range 0.5-2 . µm that is of interest for the study of nonlinear effects. Since 

optical fibers are made of silica glass and display inversion symmetry, second-order 

nonlinear effects vanish identically. Thus, this phenomenological relation up to the 

third-order nonlinear effects is 

.P(r, t) = PL(r, t) + PNL(r, t), (1.63) 

where . r is the spatial vector, .PL(r, t) is the linear part of the relation with 

.PL(r, t) = ϵ0

⎰ ∞

−∞
χ (1)(r, t − t ') · E((r, t ')dt ', (1.64) 

.PNL(r, t) is the nonlinear (cubic) part of the relation with
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. PNL(r, t) = ϵ0

⎰ ⎰ ⎰ ∞

−∞
χ (3)(r, t − t1, t − t2, t − t3)

... E((r, t1)E((r, t2)E((r, t3)dt1dt2dt3, (1.65) 

and .χ (j) is a tensor with rank .j + 1. 

Equation (1.62) can be simplified under certain conditions. Using a vector 

identity, its left side can be written as 

.∇ × (∇ × E) = ∇(∇ · E) − ∇2E. (1.66) 

In many cases, such as weakly guided fibers where the refractive index variation 

between the core and cladding is small, .∇ · E can be shown to be small and can be 

neglected (Agrawal 2001). Under this approximation, Eq. (1.62) reduces to 

.∇2E = 1

c2

∂2E

∂t2
+ μ0

∂2PL

∂t2
+ μ0

∂2PNL

∂t2
, (1.67) 

where Eq. (1.63) has been utilized. 

To solve Eq. (1.67), we will make a few more assumptions. First, the nonlinear 

response is assumed to be instantaneous so that the time dependence of .χ (3) in 

Eq. (1.65) is given by the product of three delta functions of the form .δ(t − t1). In  

this case, Eq. (1.65) reduces to 

.PNL(r, t) = ϵ0 χ (3)(r)
...E(r, t)E(r, t)E(r, t). (1.68) 

The assumption of instantaneous nonlinear response amounts to neglecting the 

contribution of molecular vibrations to .χ (3) (the Raman effect), which is approx-

imately valid for pulse widths . > 1 ps. Second, . PNL is assumed to be a small  

perturbation to . PL, which is justified because nonlinear changes in the refractive 

index are less than .10−6 in practice. Third, the optical field is assumed to maintain 

its polarization along the fiber length so that a scalar approach is valid. This is 

the case in polarization-maintaining fibers, or when birefringence of the fiber is 

negligible. Fourth, the optical field is assumed to be quasi-monochromatic, i.e., the 

pulse spectrum, centered at . ω0, is assumed to have a spectral width .Δω such that 

.Δω/ω0 ⪡ 1. Since .ω0 ∼ 1015s−1, the last assumption is valid for pulses as short 

as 0.1 ps. 

Under quasi-monochromatic approximation (i.e., slowly varying envelope 

approximation), it is useful to separate the rapidly varying part of the electric 

field by writing it in the form 

.E(r, t) = 1

2
x̂
⎾
E(r, t)e−iω0t + c.c.

⎤
, (1.69)
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where . x̂ is the polarization unit vector in the transverse plane that is orthogonal to the 

propagation direction z, and .E(r, t) is a slowly varying function of time (relative to 

the optical period). The polarization components . PL and .PNL can also be expressed 

in a similar way by writing 

. PL(r, t) = 1

2
x̂
⎾
PL(r, t)e−iω0t + c.c.

⎤
, . (1.70) 

PNL(r, t)  = 
1 

2 
x̂
⎾
PNL(r, t)e−iω0t + c.c.

⎤
. (1.71) 

When Eq. (1.69) is substituted in Eq. (1.68), .PNL(r, t) is found to have a term 

oscillating at . ω0 and another term oscillating at the third-harmonic frequency .3ω0. 

The latter term requires phase matching and is generally negligible in optical fibers. 

By making use of Eq. (1.71), .PNL(r, t) is given by 

.PNL(r, t) ≈ ϵ0ϵNL(r, t)E(r, t), (1.72) 

where the nonlinear contribution to the dielectric constant is 

.ϵNL = 3

4
χ (3)

xxxx(r) |E(r, t)|2 . (1.73) 

To solve Eq. (1.67) and obtain the wave equation for the slowly varying amplitude 

.E(r, t), it is more convenient to work in the Fourier domain (with respect to time). 

This is generally not possible as Eq. (1.67) is nonlinear in .E(r, t) due to the intensity 

dependence of .ϵNL, and .E(r, t) is time-dependent. However, due to the slowly 

varying envelope approximation and the perturbative nature of .PNL(r, t), we will 

treat .E(r, t), and hence .ϵNL, as time-independent during the derivation of the 

propagation equation. One way to understand this treatment is that, we can first 

consider the monochromatic case where .E(r, t) is time-independent. In this case, 

there is only nonlinearity but no dispersion, and our treatment of .ϵNL being time-

independent would be valid. This treatment would yield the correct nonlinear parts 

of the wave equation for .E(r, t). To obtain the linear parts of the wave equation for 

a quasi-monochromatic wave packet .E(r, t), we can ignore .ϵNL altogether. These 

two separate treatments of the nonlinear and linear parts of the wave equation can 

be done together by treating .ϵNL as time-independent, which justifies our approach. 

A more rigorous derivation of the wave equation for .E(r, t) using multiscale 

perturbation methods can be found in Kodama and Hasegawa (1987) and Hasegawa 

and Kodama (1995). 

To work in the Fourier domain, we introduce the Fourier transform of an arbitrary 

function .f (r, t) as 

.f̃ (r, ω) =
⎰ ∞

−∞
f (r, t)eiωtdt. (1.74)
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Applying this transform to Eq. (1.67), we find that the Fourier transform . Ẽ(r, ω −
ω0) satisfies the Helmholtz equation 

.∇2Ẽ + ϵ(r, ω)k2Ẽ = 0, (1.75) 

where .k = ω/c, 

.ϵ(r, ω) = 1 + χ̃ (1)
xx (r, ω) + ϵNL(r), (1.76) 

and .χ̃ (1) is the Fourier transform of .χ (1). In deriving Eq. (1.75), the treatment of 

.ϵNL being time-independent has been used. The dielectric constant . ϵ can be used 

to define the refractive index n. Assuming . ϵ is real (i.e., neglecting absorption), we 

define .ϵ = n2. Then for small .ϵNL, n can be approximated as 

.n(r, ω) ≈ n0(r, ω) + n2(r, ω)|E|2, (1.77) 

where .n0 = [1 + χ̃
(1)
xx (r, ω)]1/2 is the linear refractive index, and 

.n2 = 3

8n0
χ (3)

xxxx (1.78) 

is the nonlinear index of refraction which is called the Kerr coefficient. Using 

refractive indices, the dielectric constant . ϵ can be approximated as 

.ϵ ≈ n2
0 + 2n0n2|E|2. (1.79) 

The Helmholtz equation (1.75) can be solved by the method of separation of 

variables. We assume a solution of the form 

.Ẽ(r, ω − ω0) = F̄ (x, y)Ã(z, ω − ω0)e
iβ0z, (1.80) 

where .F̄ (x, y) is a real-valued modal function, .Ã(z, ω − ω0) is a slowly varying 

complex function of z, and . β0 is the linear propagation constant for frequency 

.ω0 which will be determined shortly. Substituting this form into the Helmholtz 

equation (1.75), this equation can be split into two equations for .F̄ (x, y) and 

.Ã(z, ω − ω0): 

. ∇2
⊥F̄ + (ϵk2 − β̄2)F̄ = 0, . (1.81) 

2iβ0 
∂ Ã 

∂z 
+ ( β̄2 − β2 

0 ) Ã = 0, (1.82) 

where .∇2
⊥ = ∂2

x + ∂2
y . In obtaining these equations, the second derivative . ∂2Ã/∂z2

was neglected since .Ã(z, ω − ω0) is assumed to be a slowly varying function 

of z. Here, . β̄ is a propagation constant to be determined from the eigenvalue
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problem (1.81), subject to the boundary condition of .F̄ → 0 as .(x, y) → ∞. 

This . β̄ contains both linear and nonlinear effects of the fiber. After . β̄ is obtained, 

the z-evolution of .Ã(z, ω − ω0) would be derived from Eq. (1.82). 

We will solve Eq. (1.81) by perturbation methods, treating the second term of 

the dielectric constant . ϵ in Eq. (1.79) as a small perturbation. The corresponding 

propagation constant . β̄ and modal function .F̄ (x, y) can be written as 

.β̄(ω) = β(ω) + Δβ, F̄ (x, y) = F(x, y) + ΔF, (1.83) 

where .|Δβ| ⪡ |β|, and .|ΔF | ⪡ |F |. 
At the leading order of Eq. (1.81), we get the eigenvalue equation 

.∇2
⊥F + (n2

0k
2 − β2)F = 0, (1.84) 

with .F(x, y) → 0 as .(x, y) → ∞. This is the standard equation for the linear 

propagation constant .β(ω) and its corresponding linear modal profile .F(x, y), 

which can be solved numerically or analytically depending on the geometry and 

material property of the fiber (Agrawal 2001). 

At the next order, we get the governing equation for the small correction terms 

.Δβ and .ΔF as 

.

⎛
∇2

⊥ + n2
0k

2 − β2
⎞

ΔF = 2βΔβF − 2n0n2k
2|E|2F, (1.85) 

subject to the zero boundary condition for .ΔF at large .(x, y). By taking the inverse 

Fourier transform of Eq. (1.80), we get 

.E(r, t) = F̄ (x, y)A(z, t)eiβ0z, (1.86) 

where A is the inverse Fourier transform of . Ã. Thus, .|E|2 in Eq. (1.85) can be 

approximated as .|F(x, y)|2|A|2. 

The linear inhomogeneous Eq. (1.85) is solvable only if it satisfies the Fredholm 

condition, which is that the right side of this equation is orthogonal to the linear 

solution .F(x, y). This Fredholm condition yields a formula for the correction term 

.Δβ as 

.Δβ =
k2
⎰ ⎰∞

−∞ n0n2|F(x, y)|4dxdy

β
⎰ ⎰∞

−∞ |F(x, y)|2dxdy
|A|2. (1.87) 

Due to the quasi-monochromatic approximation, parameters k (i.e., .ω/c), .β(ω), 

.n0(ω), .n2(ω) and the modal function .F(x, y;ω) here are all evaluated at the central 

frequency . ω0. 

Now we solve Eq. (1.82). The assumption of . Ã slowly varying in z requires . β̄2 −
β2

0 in (1.82) to be relatively small. To achieve that, we choose .β0 = β(ω0), which
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is the linear propagation constant of the center frequency . ω0. We also expand . β(ω)

around the center frequency . ω0 as 

.β(ω) = β0 + β1(ω − ω0) + 1

2
β2(ω − ω0)

2 + 1

6
β3(ω − ω0)

3 + · · · , (1.88) 

where 

.βm = dmβ

dωm

||||
ω=ω0

(m = 1, 2, · · · ). (1.89) 

Here, .β1 = 1/cg , . cg is the group velocity at frequency . ω0, and . β2 is called the group-

velocity-dispersion parameter. The case of .β2 > 0 is called normal dispersion and 

the case of .β2 < 0 is called anomalous dispersion. 

The cubic and higher-order terms in the above expansion are generally negligible 

under the quasi-monochromatic approximation, where .|ω−ω0| ⪡ ω0. In the special 

case where .β2 ≈ 0 (in the vicinity of the zero-dispersion wavelength of the fiber), it 

may be necessary to include the cubic term. In this subsection, we will not consider 

that special case; thus we will neglect the cubic and higher terms in the above 

expansion below. 

Substituting the .β̄(ω) expression in Eq. (1.83) and the above .β(ω) expansion into 

Eq. (1.82), this equation for .Ã(z, ω − ω0) becomes 

. i
∂Ã

∂z
+
⎾
β1(ω − ω0) + 1

2
β2(ω − ω0)

2 + Δβ

⎤
Ã = 0. (1.90) 

Inserting the .Δβ formula in (1.87) into this equation and taking its inverse Fourier 

transform, and recalling our treatment of .E(r, t) (and hence .A(z, t)) being time-

independent, we find the equation for .A(z, t) as 

.i
∂A

∂z
+ iβ1

∂A

∂t
− 1

2
β2

∂2A

∂t2
+ γ |A|2A = 0, (1.91) 

where 

.γ =
ω2

0

⎰ ⎰∞
−∞ n0n2|F(x, y)|4dxdy

c2β0

⎰ ⎰∞
−∞ |F(x, y)|2dxdy

. (1.92) 

In this formula, . n0 and . n2 are kept inside the integral since their values generally 

depend on the transverse .(x, y) coordinates due to different materials in the core and 

cladding of the fiber. But in many cases such as weakly guided fibers, their values 

vary very little in the transverse plane, in which case they can be taken out of the 

integral above. 

By recalling Eqs. (1.69) and (1.86), we can write the electric field .E(r, t) in a 

more compact form
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. E(r, t) = 1

2
x̂
⎾
A(z, t)ei(β0z−ω0t) + c.c.

⎤
F̄ (x, y). (1.93) 

So, .A(z, t) is the slowly varying envelope of the electric field whose evolution is 

governed by the NLS equation (1.91). 

Finally, we introduce the moving coordinate .τ = t − β1z, upon which the above 

Eq. (1.91) becomes 

.i
∂A

∂z
− 1

2
β2

∂2A

∂τ 2
+ γ |A|2A = 0, (1.94) 

which is a NLS equation. In this equation, . γ > 0, but . β2 can be positive or negative 

depending on the type of fiber. Modulation instability and rogue waves will arise 

when .β2 < 0, i.e., in the anomalous-dispersion regime. In this case, introducing 

nondimensional variables 

. u = P
−1/2
0 A, ξ = γP0z, T = (γP0/|β2|)1/2τ, (1.95) 

where . P0 is a characteristic light power, then the dimensional NLS equation (1.94) 

becomes the normalized one 

.iuξ + 1

2
uT T + |u|2u = 0, (1.96) 

which is Eq. (1.1) in different notations. 

Modulation instability in this NLS equation (1.96) can be seen by noticing that 

it admits a special monochromatic constant-intensity solution .u(ξ, T ) = a0e
ia2

0ξ , 

where . a0 is a real constant. But this monochromatic solution is linearly unstable 

under frequency modulations, following calculations which are very similar to those 

for Benjamin-Feir instability in the previous subsection. Due to this modulation 

instability, this monochromatic constant-intensity light under perturbations will 

break up upon propagation down the fiber. For certain types of perturbations, this 

light will break up into rogue waves. 

1.1.3 In Unmagnetized Plasma 

Plasma is called the fourth state of matter after solid, liquid, and gas. It is the most 

abundant form of ordinary matter in the universe, being mostly associated with stars, 

including the Sun. It can also be artificially generated by heating a neutral gas or 

subjecting it to a strong electromagnetic field. A plasma is characterized by the 

presence of a significant portion of charged unbounded particles in any combination 

of ions or electrons, with the net charge roughly zero. These charged particles are 

highly electrically conductive, and long-range electric and magnetic fields dominate
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their behaviours. Collective motion of particles is ubiquitous in plasma, resulting in 

various waves and other types of collective phenomena. 

Ion waves in a plasma with no magnetic field has been studied in the physics 

literature. Shimizu and Ichikawa (1972) showed that the motion of low-amplitude 

ion wave packets in an unmagnetized plasma comprising isothermal electrons and 

cold positive ions is governed by a NLS equation. The dispersion coefficient in this 

NLS equation is always negative for any wavenumber, but the nonlinear coefficient 

is negative only at high wavenumbers (when the nonlinear coefficient is negative 

as the dispersion coefficient, modulation instability and rogue waves could arise). 

However, ion waves with high wavenumbers suffer strong Landau damping, which 

makes it impossible to observe its modulation instability or rogue waves. 

However, if negative ions are also introduced into the plasma, the situation is 

very different. In this case, Saito et al. (1984) showed that ion wavepackets are still 

governed by a NLS equation with a negative dispersion coefficient, but its nonlinear 

coefficient can be negative for all wavenumbers if the negative-ion density is chosen 

properly. In this setting, modulation instability of ion waves and ion rogue waves 

can be observed (Bailung and Nakamura 1993; Bailung et al. 2011). 

Below, we derive the NLS equation for a wave packet in an unmagnetized 

plasma comprising electrons and cold positive and negative ions. In this derivation, 

we use the fluid model, where the positive and negative ions are represented by 

their densities . nα , . nβ , and mean velocities . uα , . uβ , with all fluctuations about the 

mean velocities neglected. In this model, the dynamical equations for ions are 

just continuity and momentum balance. Since ions are assumed cold (i.e., their 

temperatures are much lower than the temperature of electrons), their pressures are 

small or zero and thus the pressure gradient terms in the momentum equations are 

dropped. The electron density is assumed to behave according to the Boltzmann 

relation. 

The continuity equations for the positive and negative ions are 

.
∂nα

∂t
+ ∇ · (nαuα) = 0, . (1.97) 

∂nβ 

∂t 
+ ∇ ·  (nβuβ) = 0. (1.98) 

Since there is no magnetic field and ions are cold, the momentum equations for the 

ions are 

. mα

⎛
∂

∂t
+ uα · ∇

⎞
uα = eE, . (1.99) 

mβ

⎛
∂ 

∂t 
+ uβ · ∇

⎞
uβ = −eE, (1.100) 

where . E is the electric field, .mα the mass of the positive ion, .mβ the mass of the 

negative ion, and e the charge of the electron (it is assumed that a positive ion has 

electric charge e and a negative ion has electric charge . −e). Due to the absence of
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the magnetic field, the Maxwell equations for the electric field, in the international 

system of units, reduce to 

. ∇ × E = 0, . (1.101) 

∇ ·  E = 
e

ϵ0 
(nα − nβ − ne), (1.102) 

where . ne is the electron density, and . ϵ0 the vacuum permittivity. The first of these 

two equations indicates that the electric field is conservative, allowing it to be 

represented as the gradient of a scalar electrostatic potential . φ as 

.E = −∇φ. (1.103) 

Inserting this equation into (1.102), we get the Poisson equation for the electrostatic 

potential . φ as 

.∇2φ = e

ϵ0
(ne + nβ − nα). (1.104) 

In terms of this electrostatic potential . φ, the Boltzmann relation is 

.ne = ne0 exp(eφ/κTe), (1.105) 

where .ne0 is the central (unperturbed) electron density, . κ the Boltzmann constant, 

and . Te the absolute temperature of electrons (in Kelvin scale). 

If the plasma motion is one-dimensional, the above governing equations would 

be simplified. If we further normalize the densities . nα , . nβ and . ne by the unper-

turbed electron density . ne0, the time t by the ion plasma inverse frequency 

.ω−1
pi ≡ (ϵ0mα/ne0e

2)1/2, the distance x by the electron Debye length . λD ≡
(ϵ0κTe/ne0e

2)1/2, the electrostatic potential . φ by .κTe/e, then the one-dimensional 

governing equations would reduce to (Saito et al. 1984) 

.
∂nα

∂t
+ ∂

∂x
(nαuα) = 0, . (1.106) 

∂nβ 

∂t 
+ 

∂ 

∂x 
(nβuβ) = 0, . (1.107) 

∂uα 

∂t 
+ uα 

∂uα 

∂x 
= −∂φ 

∂x 
, . (1.108) 

∂uβ 

∂t 
+ uβ 

∂uβ 

∂x 
= 

1 

Q 

∂φ 

∂x 
, . (1.109) 

ne = eφ , . (1.110) 

∂2φ 

∂x2 
= ne + nβ − nα, (1.111) 

where .Q ≡ mβ/mα is the mass ratio of the two ions.
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Next, we derive the NLS equation for a wave packet in the above plasma by the 

multiscale perturbation method, following Saito et al. (1984). 

First, we expand solutions to the above equations as follows: 

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

nα

nβ

ne

uα

uβ

φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

nα0

nβ0

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
∞⎲

j=1

ϵj

∞⎲

l=−∞

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
(j)
α,l (ξ, τ )

n
(j)

β,l(ξ, τ )

n
(j)
e,l (ξ, τ )

u
(j)
α,l (ξ, τ )

u
(j)

β,l(ξ, τ )

φ
(j)
l (ξ, τ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

eil(kx−ωt), (1.112) 

where . ϵ is a small real parameter, 

.ξ = ϵ(x − λt), τ = ϵ2t, (1.113) 

. λ is the velocity of the wavepacket to be determined, and all quantities satisfy the 

reality condition such as .n
(j)∗
α,−l = n

(j)

α,l , where the asterisk denotes the complex 

conjugate. 

Inserting the above expansions into Eqs. (1.106)–(1.111), at .O(1) we get the 

charge neutrality condition 

.nα0 = 1 + nβ0, (1.114) 

where .nα0 and .nβ0 are the undisturbed positive-ion and negative-ion densities. 

At .O(ϵ), we get a set of linear homogeneous equations 

. −ilωn
(1)
α,l + ilknα0u

(1)
α,l = 0, . (1.115) 

−ilωn 
(1) 
β,l + ilknβ0u 

(1) 
β,l = 0, . (1.116) 

−ilωn 
(1) 
α,l + ilkφ 

(1) 
l = 0, . (1.117) 

−ilωn 
(1) 
β,l − Q−1ilkφ 

(1) 
l = 0, . (1.118) 

n 
(1) 
e,l − φ 

(1) 
l = 0, . (1.119) 

−l2k2φ 
(1) 
l − n 

(1) 
e,l − n 

(1) 
β,l + n 

(1) 
α,l = 0. (1.120) 

Setting .l = 1 or . −1, existence of nonzero solutions in this system requires the 

determinant of its coefficient matrix to be zero, which yields the dispersion relation 

.ω2 = k2

1 + k2

⎛
nα0 + nβ0

Q

⎞
. (1.121)
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In addition, we get the following relations between its solutions 

. n
(1)
α,±1 = nα0

⎛
k

ω

⎞2

φ
(1)
±1, n

(1)
β,±1 = −nβ0

Q

⎛
k

ω

⎞2

φ
(1)
±1, . (1.122) 

u 
(1) 
α,±1 =

⎛
k 

ω

⎞
φ 

(1) 
±1, u  

(1) 
β,±1 = −  

1 

Q

⎛
k 

ω

⎞
φ 

(1) 
±1, n  

(1) 
e,±1 = φ 

(1) 
±1. (1.123) 

All components with .|l| ≥ 2 such as .n
(1)
α,±2 vanish because the determinant of the 

coefficient matrix of the above homogeneous system (1.115)–(1.120) is nonzero. 

At .O(ϵ2), the components of .l = ±1 determine . λ to be 

.λ = ω3

k3

⎛
nα0 + nβ0

Q

⎞−1

, (1.124) 

which is simply the group velocity .cg = ω'(k), i.e., .λ = cg . This means that our 

frame . ξ is moving at the group velocity, which is the same as in water waves and 

optical waves before. 

From the components of .l = 2 in order . ϵ2, we obtain . n
(2)
α,2, n

(2)
β,2, u

(2)
α,2, u

(2)
β,2

and .φ
(2)
2 as a function of the first order quantities with .l = 1. Utilizing the 

above relations (1.122)–(1.123) between first-order quantities, all these second-

order quantities are found to be proportional to .(φ
(1)
1 )2, with coefficients involving 

.k, ω, Q, .nα0 and . nβ0. 

From the components of .l = 0 in order . ϵ3, we obtain .n
(2)
α,0, n

(2)
β,0, u

(2)
α,0, u

(2)
β,0 and 

.φ
(2)
0 , which are found to be proportional to .|φ(1)

1 |2, with coefficients again involving 

.k, ω, Q, .nα0 and . nβ0. 

Finally, the equations of .l = 1 of order . ϵ3 give rise to the NLS equation 

.i
∂φ

(1)
1

∂τ
+ p

∂2φ
(1)
1

∂ξ2
+ q

|||φ(1)
1

|||
2
φ

(1)
1 = 0, (1.125) 

where the dispersion coefficient p is 

.p = 1

2
ω''(k) = −3

2

ω5

k4

⎛
nα0 + nβ0

Q

⎞−2

, (1.126) 

and the nonlinear coefficient q is 

. q = ω3

2k4(k4 + 3k2 + 3)

⎾
A1k

16 + 12A1k
14 + 61

2
A1k

12 +
⎛

152A1 − 1

2
A2

⎞
k10

+
⎛

477

2
A1 − A4

⎞
k8 +

⎛
225A1 + 15

2
A3 − 7A4 + 1

2
A5

⎞
k6
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+
⎛

245 

2 
A1 + 

35 

2 
A3 − 14A4 + 

4 

3 
A5

⎞
k4 

+
⎛

75 

2 
A1 + 15A3 − 11A4 + A5

⎞
k2 + 

9 

2 
A2 − 3A4 + 

1 

2 
A5

⎤
. (1.127) 

Here, 

.A1 = b2

a5
− bc

a4
, A2 = b2

a5
, A3 = bc

a4
, A4 = b

a3
, A5 = 1

a
, (1.128) 

and 

.a ≡ nα0 + nβ0

Q
, b ≡ nα0 − nβ0

Q2
, c ≡ nα0 + nβ0

Q3
. (1.129) 

To connect the function .φ
(1)
1 to more physical quantities, we first denote . ϵφ

(1)
1 =

ψ/2. Then, Eq. (1.125) can be written as 

.i
∂ψ

∂t
+ p

∂2ψ

∂x̂2
+ q

4
|ψ |2 ψ = 0, (1.130) 

where .x̂ = x − cgt is the normalized distance in moving frame. Notice that . ne =
1+2ϵRe

⎾
n

(1)
e,1e

i(kx−ωt)
⎤

to .O(ϵ) from Eq. (1.112) and .n
(1)
e,1 = φ

(1)
1 from Eq. (1.119). 

Thus, defining .δne ≡ ne − 1, which is the normalized deviation of the electron 

density from its unperturbed value, we get 

.δne = Re[ψei(kx−ωt)] (1.131) 

to the leading order approximation. This .δne can be experimentally measured and 

compared to the prediction based on the NLS equation (1.130) for . ψ . 

The dispersion coefficient p in the NLS equation (1.130) is always negative, but 

the sign of the nonlinear coefficient .q/4 depends on the mass ratio Q, density ratio 

.N ≡ nβ0/nα0, and the wavenumber k. When . q < 0, Eq. (1.130) can be normalized 

to the standard NLS equation (1.1) and thus exhibit modulation instability and rogue 

waves. If we consider the case where the positive ion is Ar. + and the negative ion 

is F. 
−, then the mass ratio .Q = mβ/mα ≈ 0.476. In this case, when .N = 0 (i.e., 

the negative ion is absent), q would be positive when .k < 1.47 and negative when 

.k > 1.47. Although carrier waves with .k > 1.47 support modulation instability and 

rogue waves, their observation is difficult due to strong Landau damping associated 

with high-wavenumber waves. But at the critical density when .N ≈ 0.102, i.e., 

.nβ0 ≈ 0.114, q would be negative for all nonzero wavenumbers k. This critical 

negative-ion density would facilitate the observation of modulation instability and 

rogue waves.
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1.2 Derivative Nonlinear Schrödinger Equation in 

Magnetized Plasma 

Derivative nonlinear Schrödinger equations have several different forms. One of 

them is 

.iφt + 1

2
φxx + i

⎛
|φ|2φ

⎞
x

= 0. (1.132) 

This equation was shown to govern wave packet propagation in a magnetized plasma 

(Mio et al. 1976; Spangler and Sheerin 1982), and was shown to be integrable by 

Kaup and Newell (1978). We derive this equation in a magnetized plasma below. 

In a magnetized plasma where an external magnetic field is present, waves in the 

plasma would behave differently. In such a plasma, Alfvén (1942) first suggested 

the existence of linear electromagnetic-hydromagnetic waves, which were observed 

later in lab experiments and space plasmas. These Alfvén waves have since found 

applications in various parts of plasma physics, including the explanation of why 

the temperature of the solar corona is hot (about 1 million Kelvins) compared to its 

surface, which is only a few thousand Kelvins. For the discovery of these waves, 

Alfvén received the 1970 Nobel Prize in Physics. Our theory below is a nonlinear 

version of Alfvén’s wave theory. 

We consider the motion of cold plasma comprising electrons and positive ions in 

the presence of a magnetic field. We again use the fluid model, where the electrons 

and ions are represented by their densities and mean velocities. Their governing 

equations, often referred to as the magnetohydrodynamic (MHD) equations in the 

literature, are (Kakutani et al. 1968) 

.
∂ne

∂t
+ ∇ · (neve) = 0, . (1.133) 

∂ni 

∂t 
+ ∇ ·  (nivi) = 0, . (1.134) 

m

⎛
∂ 

∂t 
+ ve · ∇

⎞
ve = −e

⎛
E + 

1 

c 
ve × B

⎞
, . (1.135) 

M

⎛
∂ 

∂t 
+ vi · ∇

⎞
vi = e

⎛
E + 

1 

c 
vi × B

⎞
, . (1.136) 

∇ ×  B − (1/c)∂E/∂t = (4πe/c)(nivi − neve), . (1.137) 

∇ ×  E + (1/c)∂B/∂t = 0, . (1.138) 

∇ ·  B = 0, . (1.139) 

∇ ·  E = 4πe(ni − ne). (1.140)
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Here, m is the electron’s mass, . ne its density, . ve its velocity field, M the ion’s 

mass, . ni its density, . vi its velocity field, . E the electric field, . B the magnetic field, 

e the elementary charge, and c the speed of light. The first two equations are 

the continuity equations for electrons and ions. The next two equations are their 

momentum equations, where the terms on the right hand sides are the Lorentz forces 

(in Gaussian units), which are a combination of electric and magnetic force on a 

point charge due to electromagnetic fields. The last four equations are the Maxwell 

equations in Gaussian units. Since the plasma is cold, pressure gradient terms in 

Eqs. (1.135) and (1.136) are absent. 

One may notice that in the above governing equations for a magnetized plasma, 

we did not use the Boltzman relation (1.105). The reason is simply that the Boltzman 

relation is not valid in a magnetized plasma. In fact, the electrostatic potential in this 

relation does not even exist since the electric field is not conservative here. 

We assume that the charge separation can be neglected, i.e., we assume . ni =
ne ≡ n, which results in charge neutrality. Under this assumption, one of the 

two equations (1.133) and (1.134) becomes redundant, since it can be derived 

from the other equation together with (1.137) and (1.140). We also assume that 

the displacement current is negligible, i.e., the .(1/c)∂E/∂t term in (1.137) can be 

dropped. This assumption is valid when the Alfvén wave speed (see below) is much 

less than c, which is generally the case. In addition, using Eq. (1.138), we can readily 

show that Eq. (1.139) would be automatically satisfied if it is initially valid. Equation 

(1.140) is used as a criterion for the validity of the neglect of the charge separation. 

Then, we are left with the following five governing equations 

.
∂n

∂t
+ ∇ · (nvi) = 0, . (1.141) 

m

⎛
∂ 

∂t 
+ ve · ∇

⎞
ve = −e

⎛
E + 

1 

c 
ve × B

⎞
, . (1.142) 

M

⎛
∂ 

∂t 
+ vi · ∇

⎞
vi = e

⎛
E + 

1 

c 
vi × B

⎞
, . (1.143) 

∇ × B = (4πe/c)n(vi − ve), . (1.144) 

∇ × E + (1/c)∂B/∂t = 0. (1.145) 

We now eliminate . ve and . E from these equations. The expression for . ve can 

be obtained from Eq. (1.144), and the expression for . E can be obtained from 

Eq. (1.142). Substituting these . ve and . E expressions into the other three equations, 

we get a complete system for n, . vi and . B as (Kakutani et al. 1968) 

.
∂n

∂t
+ ∇ · (nvi) = 0, . (1.146) 

∂B 

∂t 
− ∇ ×  (vi × B) + (Mc/e)∇ ×  

dvi 

dt 
= 0, . (1.147)
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dvi 

dt 
= (1/4π)(M + m)−1n−1(∇ × B) × B 

+ (mc/4πe)(M + m)−1
⎾
{(n−1∇ ×  B) · ∇}vi 

+ 
d 

dt 
(n−1∇ ×  B)

⎤

− {mc2/(4πe)2}(M + m)−1n−1{(∇ × B) · ∇}(n−1∇ × B), 

(1.148) 

where .d/dt = ∂/∂t + (vi · ∇). 

When all quantities depend on x and t only, the above equations simplify. The 

reduced equations are 

.
∂n

∂t
+ ∂(nu)

∂x
= 0, . (1.149) 

du 

dt 
+ 1 

4πn(M  + m) 

∂ 

∂x 

1 

2 
(B2 

2 + B2 
3 ) = 0, . (1.150) 

dv 

dt 
− 1 

4πn(M  + m) 
B1 

∂B2 

∂x 
= − mc 

4πe(M  + m) 

d 

dt

⎛
n−1 ∂B3 

∂x

⎞
, . (1.151) 

dw 

dt 
− 1 

4πn(M  + m) 
B1 

∂B3 

∂x 
= mc 

4πe(M  + m) 

d 

dt

⎛
n−1 ∂B2 

∂x

⎞
, . (1.152) 

dB2 

dt 
− B1 

∂v 

∂x 
+ B2 

∂u 

∂x 
= 

Mc 

e 

∂ 

∂x 

dw 

dt 
, . (1.153) 

dB3 

dt 
− B1 

∂w 

∂x 
+ B3 

∂u 

∂x 
= −Mc 

e 

∂ 

∂x 

dv 

dt 
, (1.154) 

where .d/dt = ∂/∂t + u∂/∂x, .(u, v,w) are the .(x, y, z) components of . vi , 

.(B1, B2, B3) are the .(x, y, z) components of . B, and .B1 is a constant due to 

Eq. (1.145). 

We first consider small-amplitude (linear) ion waves propagating in a static and 

uniform magnetic field, whose strength is . B0 and whose direction is along the x-axis 

(i.e., the wave is propagating in the direction of the magnetic field). The undisturbed 

ion density is denoted as . n0. Writing 

. n = n0 + n̄, u = ū, v = v̄, w = w̄, B2 = B̄2, B3 = B̄3, (1.155) 

where the barred quantities are small, inserting them into the above governing equa-

tions and linearizing, we get the following equations for the linear perturbations, 

.
∂n̄

∂t
+ n0

∂ū

∂x
= 0, . (1.156)
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∂ū 

∂t 
= 0, . (1.157) 

4πn0(M + m)B−1 
0 

∂ ̄v 

∂t 
− 

∂ B̄2 

∂x 
= −ω−1 

ec 

∂2 B̄3 

∂x∂t 
, . (1.158) 

4πn0(M + m)B−1 
0 

∂ w̄ 

∂t 
− 

∂ B̄3 

∂x 
= ω−1 

ec 

∂2 B̄2 

∂x∂t 
, . (1.159) 

B−1 
0 

∂ B̄2 

∂t 
− 

∂v̄ 

∂x 
= ω−1 

ic 

∂2 w̄ 

∂x∂t 
, . (1.160) 

B−1 
0 

∂ B̄3 

dt 
− 

∂ w̄ 

∂x 
= −ω−1 

ic 

∂2v̄ 

∂x∂t 
, (1.161) 

where .ωec = eB0/mc and .ωic = eB0/Mc are the electron gyrofrequency and ion 

gyrofrequency, i.e., the angular frequencies of circular motions of an electron and 

an ion in the plane perpendicular to the magnetic field. 

If the frequency of these linear waves is small compared to .ωec and . ωic, then the 

terms on the right sides of the above equations (1.158)–(1.161) can be dropped. In 

this case, it is easy to see that quantities .(v̄, w̄, B̄2, B̄3) all satisfy the linear wave 

equation of the form 

.

⎛
∂2

∂t2
− V 2

A

∂2

∂x2

⎞
F = 0, (1.162) 

where F is any of .(v̄, w̄, B̄2, B̄3), and 

.VA = B0√
4πn0(M + m)

(1.163) 

is the wave speed. These linear waves are the ones that Alfvén (1942) first suggested. 

Now we develop a nonlinear theory for these Alfvén waves when their ampli-

tudes are small but finite. For this purpose, we first nondimensionalize the governing 

equations (1.149)–(1.154). Introducing dimensionless quantities designated by the 

upper hats through normalizations 

. n = n0n̂, B = B0B̂, vi = VAv̂i, (x, y, z) = L(x̂, ŷ, ẑ), t = ω−1
0 t̂ ,

(1.164) 

where . n0 is the mean ion density, .B0 the static magnetic field, .VA the velocity 

of the linear Alfvén wave given above, L a characteristic length, .ω0 = VA/L a 

characteristic frequency, and dropping the hats, we obtain dimensionless governing 

equations as 

.
∂n

∂t
+ ∂(nu)

∂x
= 0, . (1.165)
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du 

dt 
+ n−1 ∂ 

∂x 

1 

2 
(B2 

2 + B2 
3 ) = 0, . (1.166) 

dv 

dt 
− n−1B1 

∂B2 

∂x 
= −R−1 

e 

d 

dt

⎛
n−1 ∂B3 

∂x

⎞
, . (1.167) 

dw 

dt 
− n−1B1 

∂B3 

∂x 
= R−1 

e 

d 

dt

⎛
n−1 ∂B2 

∂x

⎞
, . (1.168) 

dB2 

dt 
− B1 

∂v 

∂x 
+ B2 

∂u 

∂x 
= R−1 

i 

∂ 

∂x 

dw 

dt 
, . (1.169) 

dB3 

dt 
− B1 

∂w 

∂x 
+ B3 

∂u 

∂x 
= −R−1 

i 

∂ 

∂x 

dv 

dt 
, (1.170) 

where .d/dt = ∂/∂t + u∂/∂x, .Re ≡ ωec/ω0, and .Ri ≡ ωic/ω0. Notice that 

in this general theory, we do not assume the characteristic frequency . ω0 of these 

waves to be small compared to .ωec and . ωic, i.e., we do not assume . Re and . Ri to 

be large. Thus, the terms on the right sides of Eqs. (1.167)–(1.170) will be kept 

in our treatment. A consequence of this is that, while linear Alfvén waves under 

such assumptions are dispersion-less [i.e., their velocities are a constant .VA that is 

independent of wave frequencies, see Eq. (1.162)], linear Alfvén waves without such 

assumptions will be dispersive (i.e., the wave velocity will depend on frequency), as 

we will quickly see below. 

We confine our attention to the propagation of Alfvén waves along a static 

magnetic field. Then, .B1 = 1 due to the magnetic field scaling. In addition, we 

assume that the ion density n fluctuates weakly around its mean value 1 (under the 

above scaling of n). 

The linear dispersion relation of the above system (1.165)–(1.170) will be helpful 

in our development of the weakly nonlinear theory. Thus, we derive it first. For this 

purpose, we take 

. n = 1 + ñ ei(kx−ωt), (u, v,w,B2, B3) = (ũ, ṽ, w̃, ~B2, ~B3)e
i(kx−ωt), (1.171) 

where .(ñ, ũ, ṽ, w̃, ~B2, ~B3) are infinitesimal constants. Inserting these expressions 

into Eqs. (1.165)–(1.170), we get .ñ = ũ = 0. In the linear homogeneous system 

for .(ṽ, w̃, ~B2, ~B3), the requirement of its matrix’ determinant being zero yields the 

following relation between wavenumber k and frequency . ω, 

.

⎛
1 + R−1

e R−1
i k2

⎞2
ω4 − k2

⎾
2 +

⎛
R−2

e + R−2
i

⎞
k2
⎤
ω2 + k4 = 0, (1.172) 

which can be used to determine the dispersion relation .ω = ω(k). Clearly, this 

dispersion relation will not be . ω being proportional to k, which indicates that the 

present waves are dispersive. For long waves (with small . |k|) propagating along the 

positive x direction (i.e., .cp = ω/k > 0), this dispersion relation can be expanded 

as
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.ω(k) = k ∓ μk2 + · · · , (1.173) 

where .μ = (R−1
i − R−1

e )/2. In this dispersion relation, the upper and lower signs 

denote, respectively, the left and right Alfvén waves. 

Now, we consider the nonlinear evolution of small but finite-amplitude Alfvén 

waves. If these waves are a wavepacket with a nonzero dominant wavenumber k, 

then the evolution of this wavepacket will be governed by a NLS equation, as was 

shown in a generic nonlinear system by Benney and Newell (1967). However, for 

long Alfvén waves (.|k| ⪡ 1), the situation will be very different. In this case, a 

different multiscale calculation is needed, and the resulting governing equation will 

be a derivative NLS equation rather than the NLS equation. We will show this below, 

following Mio et al. (1976). 

For long Alfvén waves, their group velocity is .cg = ω'(0) = 1 (under velocity 

normalization introduced before). Thus, we expand solutions to Eqs. (1.165)– 

(1.170) as the following perturbation series 

. n = 1 + ϵn1 + ϵ2n2 + · · · , . (1.174) 

u = ϵu1 + ϵ2u2 + · · ·  , . (1.175) 

v = ϵ
1 
2 (v1 + ϵv2 + · · ·  ), . (1.176) 

w = ϵ
1 
2 (w1 + ϵw2 + · · ·  ), . (1.177) 

B2 = ϵ
1 
2 (B21 + ϵB22 + · · ·  ) , . (1.178) 

B3 = ϵ
1 
2 (B31 + ϵB32 + · · ·  ) , (1.179) 

where . ϵ is a small positive parameter, 

.ξ = ϵ(x − t), τ = ϵ2t, (1.180) 

and all variables .ni, ui, vi, wi, B2i, B3i are functions of . ξ and . τ . Notice that the 

moving coordinate . ξ is moving with the group velocity .ω'(0) = 1 of long waves. 

To simplify the analysis, we assume that the plasma is in equilibrium state at 

.ξ → ±∞, so that all variables .ni, ui, vi, wi, B2i, B3i approach zero there. 

Now, we substitute the above perturbation expansions into Eqs. (1.165)–(1.170). 

At .O(ϵ
3
2 ), we find from Eqs. (1.167)–(1.168) that 

.v1 = −B21, w1 = −B31. (1.181) 

At .O(ϵ2), we find from Eqs. (1.165)–(1.166) that 

.n1 = u1 = 1

2
(B2

21 + B2
31). (1.182)
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At .O(ϵ
5
2 ), we find from Eqs. (1.167)–(1.170) that 

. v2,ξ + B22,ξ = v1,τ − R−1
e B31,ξξ , . (1.183) 

w2,ξ + B32,ξ = w1,τ + R−1 
e 

B21,ξξ , . (1.184) 

B22,ξ + v2,ξ = B21,τ + (u1B21)ξ + R−1 
i w1,ξξ , . (1.185) 

B32,ξ + w2,ξ = B31,τ + (u1B31)ξ − R−1 
i v1,ξξ . (1.186) 

These equations show that 

. v1,τ − R−1
e B31,ξξ = B21,τ + (u1B21)ξ + R−1

i w1,ξξ , . (1.187) 

w1,τ + R−1 
e 

B21,ξξ = B31,τ + (u1B31)ξ − R−1 
i v1,ξξ . (1.188) 

Substituting Eqs. (1.181)–(1.182) into the above two equations, we then obtain two 

equations for .B21 and .B31 as 

. B21,τ + 1

4

⎾
(B2

21 + B2
31)B21

⎤
ξ

− μB31,ξξ = 0, . (1.189) 

B31,τ + 
1 

4

⎾
(B2 

21 + B2 
31)B31

⎤
ξ 

+ μB21,ξξ = 0. (1.190) 

Finally, we define a complex variable 

.φ ≡ (B21 + iB31) /2. (1.191) 

Then the above two equations can be combined as 

.iφτ − μφξξ + i
⎛
|φ|2φ

⎞
ξ

= 0. (1.192) 

If .μ < 0, i.e., .Ri > Re, then after variable rescalings of .φ =
√

2φ̂, .ξ = |μ|ξ̂ , and 

.τ = |μ|τ̂ /2, and dropping the hats, the above equation reduces to 

.iφτ + 1

2
φξξ + i

⎛
|φ|2φ

⎞
ξ

= 0, (1.193) 

which is the derivative NLS equation (1.132) in different notations. If . μ >

0, Eq. (1.192) can also be reduced to (1.193) under slightly different variable 

rescalings. 

The above analysis was restricted to cold plasma, where the plasma pressure was 

small or zero and thus ignored. The more general case of finite plasma pressure was 

considered by Spangler and Sheerin (1982), where a derivative NLS equation of the 

same form (1.192) but with a modified nonlinear coefficient was derived.
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For short-pulse propagation in a frequency-doubling crystal, the interplay of 

quadratic and cubic nonlinearities could give rise to a slightly different derivative 

NLS equation (Moses et al. 2007), 

.iφτ + 1

2
φξξ + i|φ|2φξ = 0. (1.194) 

This equation was shown to be integrable by Chen et al. (1979). 

1.3 Manakov Equations in Randomly-Birefringent Optical 

Fibers 

The Manakov system is 

.
(i∂t + ∂2

x )u1 + ϵ(|u1|2 + |u2|2)u1 = 0,

(i∂t + ∂2
x )u2 + ϵ(|u1|2 + |u2|2)u2 = 0,

⎫
(1.195) 

where . u1 and . u2 are complex variables, and .ϵ = ±1. This system was shown to 

be integrable by Manakov (1973). The Manakov system governs many physical 

processes, such as light propagation in randomly birefringent optical fibers (Menyuk 

1987; Evangelides et al. 1992; Agrawal 2001), the nonlinear interaction of two 

incoherent light beams in crystals (Kang et al. 1996; Chen et al. 1979), and evolution 

of two-component Bose-Einstein condensates (Kevrekidis et al. 2008; Hoefer et 

al. 2011). In this section, we derive the Manakov system in randomly-birefringent 

optical fibers. 

In the derivation of the NLS equation in optical fibers in Sect. 1.1.2, we assumed 

that the polarization state of the incident light was preserved during its propagating 

inside an optical fiber. That is the case only in polarization-maintaining fibers, or 

in ideal fibers maintaining perfect cylindrical symmetry along its entire length. 

In practical communication fibers, unintentional variations in the core shape and 

anisotropic stresses along the fiber length give rise to two orthogonal polarizations 

along which light propagates at slightly different speeds (i.e., propagation constants 

along these two polarizations are slightly different). This phenomenon is called 

modal birefringence. In addition, the degree of modal birefringence and the 

orientation of the two polarization axes change randomly over a length scale . ∼ 10 m 

unless special precautions are taken. In this section, we derive governing equations 

in randomly birefringent fibers, following Menyuk (1987), Evangelides et al. (1992), 

and Agrawal (2001). 

Fixed-Polarization Case 

First, we assume the two polarization axes do not change upon propagation. In this 

case, the electric field can be written as



1.3 Manakov Equations in Randomly-Birefringent Optical Fibers 33

.E(r, t) = 1

2

⎾
x̂Ex(r, t) + ŷEy(r, t)

⎤
e−iω0t + c.c., (1.196) 

where . x̂ and . ŷ are the two orthogonal polarization unit vectors on the transverse 

plane, and . Ex , . Ey are complex amplitudes along the two polarizations with carrier 

frequency . ω0. 

The nonlinear part of the induced polarization .PNL in Eq. (1.63) is obtained by 

substituting Eq. (1.196) into Eq. (1.68), i.e., into 

.PNL(r, t) = ϵ0 χ (3)(r)
...E(r, t)E(r, t)E(r, t). (1.197) 

This induced polarization inside a dielectric medium (such as the present optical 

fiber) by an electromagnetic field should not be confused with the state of 

polarization of that field in Eq. (1.196). In general, the third-order susceptibility 

.χ (3) is a fourth-rank tensor with 81 elements. In an isotropic medium such as 

silica glass, only three elements are independent of one another, and the third-order 

susceptibility can be written in terms of them as (Boyd 2008) 

.χ
(3)
ijkl = χ (3)

xxyyδij δkl + χ (3)
xyxyδikδj l + χ (3)

xyyxδilδjk, (1.198) 

where . δij is the Kronecker delta function defined such that .δij = 1 when .i = j and 

zero otherwise. Using this result, .PNL in Eq. (1.197) can be written as 

.PNL(r, t) = 1

2

⎾
x̂Px(r, t) + ŷPy(r, t)

⎤
e−iω0t + c.c., (1.199) 

where . Px and . Py are given by 

. Pi = 3ϵ0

4

⎲

j

⎛
χ (3)

xxyyEiEjE
∗
j + χ (3)

xyxyEjEiE
∗
j + χ (3)

xyyxEjEjE
∗
i

⎞
, (1.200) 

and .i, j = x or y. From (1.198), we also obtain the relation 

.χ (3)
xxxx = χ (3)

xxyy + χ (3)
xyxy + χ (3)

xyyx, (1.201) 

where .χ
(3)
xxxx is the element appearing in Eq. (1.73) of the scalar theory in Sect. 1.1.2 

and used in Eq. (1.78) to define the Kerr coefficient . n2. 

The relative magnitudes of the three components in Eq. (1.198) depend on the 

physical mechanisms that contribute to .χ (3). In the case of silica fibers, the dominant 

contribution is of nonresonant electronic origin (Agrawal 2001; Boyd  2008), and 

the three components have the same magnitude. In this case the polarization 

components . Px and . Py in Eq. (1.200) take the form
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. Px = 3ϵ0

4
χ (3)

xxxx

⎾⎛
|Ex |2 + 2

3
|Ey |2

⎞
Ex + 1

3
E∗

xE2
y

⎤
, . (1.202) 

Py = 
3ϵ0 

4 
χ (3) 

xxxx

⎾⎛
|Ey |2 + 

2 

3
|Ex |2

⎞
Ey + 

1 

3 
E∗

yE2 
x

⎤
. (1.203) 

The propagation equations governing evolution of the two polarization com-

ponents in Eq. (1.196) can be obtained following the method of Sect. 1.1.2. As in  

Eq. (1.86), the electric fields . Ex and . Ey can be factored as 

.Ej (r, t) = F̄j (x, y)Aj (z, t)e
iβ0j z, (1.204) 

where .j = x, y, . F̄j is the spatial distribution of the fiber mode, .β0j is the linear 

propagation constant at frequency . ω0, and .Aj (z, t) is the slowly varying amplitude 

function, all along the j -polarization. Repeating the calculations of Sect. 1.1.2 for 

each of the two polarization axes and utilizing Eqs. (1.202)–(1.203), we find that . Ax

and . Ay satisfy the following evolution equations 

. i
∂Ax

∂z
+iβ1x

∂Ax

∂t
− 1

2
β2x

∂2Ax

∂t2
+ γx

⎛
|Ax |2 + 2

3
|Ay |2

⎞
Ax

+γx

3
A∗

xA
2
ye

−2iΔβ0z = 0, . (1.205) 

i 
∂Ay 

∂z 
+iβ1y 

∂Ay 

∂t 
− 

1 

2 
β2y 

∂2Ay 

∂t2 
+ γy

⎛
|Ay |2 + 

2 

3
|Ax |2

⎞
Ay 

+γy 

3 
A∗

yA
2 
xe

2iΔβ0z = 0. (1.206) 

Here, .βj (ω) is the linear propagation constant at frequency . ω along the j -

polarization, which is obtained from the eigenvalue problem 

.∇2
⊥Fj + (n2

0jk
2 − β2

j )Fj = 0, j = x, y, (1.207) 

with .n0j = [1 + χ̃
(1)
jj (r, ω)]1/2, .k = ω/c, under the zero boundary condition of 

.Fj (x, y) → 0 as .(x, y) → ∞, 

.β0j = βj (ω0), β1j = β '
j (ω0), β2j = β ''

j (ω0), (1.208) 

the prime represents differentiation, .Δβ0 ≡ β0x − β0y = 2π/LB , .LB is the beat 

length of the birefringent fiber, 

.γj =
ω2

0

⎰ ⎰∞
−∞ n0jn2j |Fj (x, y)|4dxdy

c2β0j

⎰ ⎰∞
−∞ |Fj (x, y)|2dxdy

, (1.209)



1.3 Manakov Equations in Randomly-Birefringent Optical Fibers 35

and 

.n2j = 3

8n0j

χ (3)
xxxx . (1.210) 

In most cases of fiber optics, .β2x ≈ β2y and .γx ≈ γy . Thus, we will set 

.β2x = β2y = β2, γx = γy = γ (1.211) 

in Eqs. (1.205)–(1.206). 

If we further write 

.Ax = u1e
−iΔβ0z/2, Ay = u2e

iΔβ0z/2, (1.212) 

and introduce the shifted time variable 

.τ = t − β̂1z, (1.213) 

where .β̂1 ≡ (β1x + β1y)/2, then Eqs. (1.205)–(1.206) would become 

. i
∂u1

∂z
+ bu1 + iδ

∂u1

∂τ
− 1

2
β2

∂2u1

∂τ 2
+ γ

⎛
|u1|2 + 2

3
|u2|2

⎞
u1 + γ

3
u∗

1u
2
2 = 0,

. (1.214) 

i 
∂u2 

∂z 
− bu2 − iδ 

∂u2 

∂τ 
− 

1 

2 
β2 

∂2u2 

∂τ 2 
+ γ

⎛
|u2|2 + 

2 

3
|u1|2

⎞
u2 + 

γ 

3 
u∗

2u
2 
1 = 0, 

(1.215) 

where .b = Δβ0/2, and .δ = (β1x − β1y)/2. 

Random-Polarization Case 

In real communication fibers, the two polarization axes and the degree of modal 

birefringence change randomly over a length scale . ∼ 10 m due to random variations 

in the core shape and anisotropic stresses along the fiber length. Next, we consider 

the leading-order effect of this random birefringence on the evolution equations 

(1.214)–(1.215). 

We first rewrite these coupled equations into a single vector equation, 

.i
∂U

∂z
+ σ1

⎛
bU + iδ

∂U

∂τ

⎞
− 1

2
β2

∂2U

∂τ 2
+ γ s0U − 1

3
γ s3σ3U = 0, (1.216) 

where .U = (u1, u2)
T , i.e., the transpose of .(u1, u2), .σ1, σ2, σ3 are Pauli matrices
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.σ1 =
⎛

1 0

0 −1

⎞
, σ2 =

⎛
0 1

1 0

⎞
, σ3 =

⎛
0 −i

i 0

⎞
, (1.217) 

.s0, s1, s2, s3 are Stokes parameters defined as 

. s0 = U†U = |u1|2 + |u2|2, s1 = U†σ1U = |u1|2 − |u2|2, . (1.218) 

s2 = U†σ2U = u∗
1u2 + u1u

∗
2, s3 = U†σ3U = −i(u∗

1u2 − u1u
∗
2), (1.219) 

and .U† is the conjugate transpose of . U. These Stokes parameters satisfy two 

identities, 

. s2
1 + s2

2 + s2
3 = s2

0 , . (1.220) 

s1σ1U + s2σ2U + s3σ3U = s0U. (1.221) 

Now, we consider how the polarization state varies in the course of propagation 

in a fiber. The three-dimensional Stokes vector .(s1, s2, s3) is a vector whose 

length equals . s0, and whose end lies on the Poincaré sphere. The phase velocity 

birefringence, the b term in the propagation Eq. (1.216), only affects the phases of 

. u1 and . u2 on a length scale . ∼ 1 m (the beat length). This variation leaves . s0 and 

. s1 invariant, and so rotates the Stokes vector rapidly around the . s1 axis. Changes 

in the orientation of the birefringence axes occur randomly over a length scale . ∼
10 m. Such changes leave . s0 and . s3 unchanged and thus rotate the Stokes vector 

around the . s3 axis. The combination of these two types of rotations allows the Stokes 

vector to sample uniformly all directions on the Poincaré sphere on a length scale . ∼
1 km. Then, when we average Eq. (1.216) over random birefringence changes, this 

average on the phase velocity birefringence b is zero. In addition, this average on 

the group velocity term . δ is also zero, since . δ is as often negative as positive. Thus, 

the two terms containing . σ1 in Eq. (1.216) average out to zero. The last term in 

Eq. (1.216) requires the average of .s3σ3U. This average turns out to be .s0U/3 when 

the identity (1.221) is utilized (Evangelides et al. 1992). A more rigorous derivation 

of this average value can be found in Wai and Menyuk (1996). After this averaging, 

Eq. (1.216) reduces to 

.i
∂U

∂z
− 1

2
β2

∂2U

∂τ 2
+ 8

9
γ s0U = 0. (1.222) 

This equation, in scaler form, is 

.i
∂u1

∂z
− 1

2
β2

∂2u1

∂τ 2
+ 8

9
γ
⎛
|u1|2 + |u2|2

⎞
u1 = 0, . (1.223) 

i 
∂u2 

∂z 
− 

1 

2 
β2 

∂2u2 

∂τ 2 
+ 

8 

9 
γ
⎛
|u2|2 + |u1|2

⎞
u2 = 0, (1.224)
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and the corresponding electric field can be obtained from Eqs. (1.196), (1.204) 

and (1.212) as  

. E(r, t) = 1

2

⎾
x̂ F̄x(x, y)u1(z, τ ) + ŷ F̄y(x, y)u2(z, τ )

⎤
ei(β̂0z−ω0t) + c.c.,

(1.225) 

where .β̂0 ≡ (β0x + β0y)/2. 

Equations (1.223)–(1.224) can be normalized. Introducing nondimensional vari-

ables 

. ̂u1 = P
−1/2
0 u1, û2 = P

−1/2
0 u2, ẑ = 8γ dP0z/9, τ̂ = (16γP0/9|β2|)1/2τ,

(1.226) 

where . P0 is a representative total power of the solutions and .d = −sgn(β2), these 

normalized variables (with hats dropped) satisfy the system of equations 

.i
∂u1

∂z
+ ∂2u1

∂τ 2
+ d

⎛
|u1|2 + |u2|2

⎞
u1 = 0, . (1.227) 

i 
∂u2 

∂z 
+ 

∂2u2 

∂τ 2 
+ d

⎛
|u2|2 + |u1|2

⎞
u2 = 0. (1.228) 

This is the Manakov system (1.195) in different notations. 

1.4 Davey-Stewartson Equations in Water of Finite Depth 

The Davey-Stewartson (DS) equations are 

.
iAt = Axx + σ0Ayy + (ϵ|A|2 − 2Q)A,

Qxx − σ0Qyy = ϵ(|A|2)xx,

⎫
(1.229) 

where .A(x, y, t) is a complex function, .Q(x, y, t) is a real function, .σ0 = ±1, and 

.ϵ = ±1. They are called DS-I when .σ0 = 1 and DS-II when .σ0 = −1. The . ϵ

value is the sign of nonlinearity (.ϵ = 1 for focusing and .ϵ = −1 for defocusing). 

Integrability of these equations can be found in Ablowitz and Segur (1981). 

Equations of Davey-Stewartson types were first derived by Benney and Roskes 

(1969) and Davey and Stewartson (1974) for three-dimensional gravity waves in 

water of finite depth. Such equations were generalized to include surface tension 

by Djordjevic and Redekopp (1977) and Ablowitz and Segur (1981). Under certain 

conditions on the wavenumber and surface tension, those equations can be reduced 

to the above DS equations.
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1.4.1 Derivation of Benney-Roskes-Davey-Stewartson 

Equations 

In this subsection, we derive Benney-Roskes-Davey-Stewartson equations in three-

dimensional water waves of finite depth with surface tension. Water waves under 

both gravity and surface tension are called capillary-gravity waves. Our derivation 

follows Benney and Roskes (1969), Davey and Stewartson (1974), Djordjevic and 

Redekopp (1977), and Ablowitz and Segur (1979), using the multiscale perturbation 

method. 

We consider the irrotational motion of a progressive capillary-gravity wave 

moving on the free surface of an inviscid and incompressible liquid of constant 

depth h. The undisturbed free surface is set as the .z = 0 plane, and the bottom is 

located at .z = −h. The remaining Cartesian coordinates .(x, y) are in the plane of 

the undisturbed free surface, and we choose x to point in the direction of the wave 

propagation. Since the fluid motion is irrotational, the velocity field . u has a potential 

.φ(x, y, z, t), where .u = ∇φ. 

The governing equations for these three-dimensional capillary-gravity waves are 

(Djordjevic and Redekopp 1977) 

. φxx + φyy + φzz = 0, −h < z ≤ ζ, . (1.230) 

φz = 0, z  = −h, . (1.231) 

ζt + φxζx + φyζy = φz, z  = ζ, . (1.232) 

φt + gζ + 
1 

2 
(φ2 

x 
+ φ2 

y 
+ φ2 

z ) 

= T 

ζxx(1 + ζ 2 
y 
) + ζyy(1 + ζ 2 

x 
) − 2ζxyζxζy 

(1 + ζ 2 
x 

+ ζ 2 
y 
) 

3 
2 

, z  = ζ, (1.233) 

where .ζ(x, y, t) denotes the position of the undulating free surface, g is the 

gravitational constant, and T is the ratio of the surface tension coefficient to the 

fluid density. 

We examine a progressive wavetrain of wavenumber k and frequency . ω travelling 

in the x direction. In the linear theory, this wave can be written as 

. ζ(x, y, t) = ζ11 ei(kx−ωt) + c.c., . (1.234) 

φ(x, y, z, t) = φ11 
cosh k(z + h) 

cosh kh 
ei(kx−ωt) + c.c., (1.235) 

where .ζ11 and .φ11 are infinitesimal complex constants. The z dependence in this 

.φ(x, y, z, t) expression is derived from the Laplace equation (1.230) together with 

the bottom condition (1.231). Inserting these expressions into the two surface 

boundary conditions (1.232)–(1.233) and dropping nonlinear terms, the compati-
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bility condition between the two equations yields the dispersion relation 

.ω = {(gk + T k3) tanh kh}1/2, (1.236) 

or 

.ω = {gkσ(1 + T̃ )}1/2, (1.237) 

where .T̃ = k2T/g, and .σ = tanh kh. 

Now, we consider the evolution of this wavetrain whose amplitude is small and 

slowly modulated in both space and time. We treat .k = O(1); hence the slope of the 

surface wave is small. In addition, we treat .kh = O(1). Then, we use the multiscale 

perturbation theory to derive the temporal and spatial evolutions of this wavetrain. 

We write solutions to Eqs. (1.230)–(1.233) as perturbation series 

. ζ = ϵ
⎛
ζ01 + ζ11e

iθ + c.c.
⎞

+ ϵ2
⎛
ζ02 + ζ12e

iθ + ζ22e
2iθ + c.c.

⎞
+

+ϵ3
⎛
ζ03 + ζ13e

iθ + ζ23e
2iθ + ζ33e

3iθ + c.c.
⎞

+ · · · , . (1.238) 

φ = ϵ
⎛
φ01 + φ11e

iθ + c.c.
⎞

+ ϵ2
⎛
φ02 + φ12e

iθ + φ22e
2iθ + c.c.

⎞
+ 

+ϵ3
⎛
φ03 + φ13e

iθ + φ23e
2iθ + φ33e

3iθ + c.c.
⎞

+ · · ·  , (1.239) 

where .θ = kx − ωt , 

.ζnj = ζnj (ξ, η, τ ), φnj = φnj (ξ, η, z, τ ), (1.240) 

.ξ = ϵ(x − cgt), η = ϵy, τ = ϵ2t, (1.241) 

.cg = ω'(k) is the group velocity, ‘. c.c.’ represents complex conjugates of only the 

.einθ terms, and . ζ0j , .φ0j are real functions. Here, . ϵ is a small positive parameter 

measuring the slope of the wavy surface. Unlike the deep-water case considered in 

Sect. 1.1.1, .φnj here does not depend on the slow z variable . ϵz since the water is of 

finite depth. 

We also expand the . φ function in surface boundary conditions (1.232)–(1.233) 

around the unperturbed surface level . z = 0. Up to .O(ϵ3), these boundary conditions 

are 

. ζt + ζx(φx + φxzζ ) + ζy(φy + φyzζ ) = φz + φzzζ + 1

2
φzzzζ

2, z = 0,

. (1.242) 

φt + φtzζ + 
1 

2 
φtzzζ

2 + gζ + 
1 

2 
(φ2 

x 
+ φ2 

y 
+ φ2 

z ) + ζ(φxφxz + φyφyz + φzφzz)
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= T 

ζxx(1 + ζ 2 
y 
) + ζyy(1 + ζ 2 

x 
) − 2ζxyζxζy 

(1 + ζ 2 
x 

+ ζ 2 
y 
) 

3 
2 

, z  = 0. (1.243) 

We first substitute the . φ expansion (1.239) into the Laplace equation (1.230) and 

the bottom condition (1.231). Equating coefficients of .ϵjeinθ to zero and solving the 

resulting equations for . φnj , we get 

. φ01 = φ01(ξ, η, τ ), φ11 = A(ξ, η, τ )
cosh k(z + h)

cosh kh
, . (1.244) 

φ02 = φ02(ξ, η, τ ), . (1.245) 

φ12 = D(ξ, η, τ) 
cosh k(z + h) 

cosh kh 
− i 

(z + h) sinh k(z + h) 

cosh kh 
Aξ , . (1.246) 

φ22 = F(ξ,  η,  τ)  
cosh 2k(z + h) 

cosh 2kh 
, . (1.247) 

φ03,z = −(z + h)
(
φ01,ξξ + φ01,ηη

)
, . (1.248) 

φ13 = G(ξ, η, τ) 
cosh k(z + h) 

cosh kh 
− 

(z + h) sinh k(z + h) 

2k cosh kh

(
2ikDξ + Aηη

)
− 

− (z + h)2 cosh k(z + h) 

2 cosh kh 
Aξξ . (1.249) 

Compared to Davey and Stewartson (1974) and Djordjevic and Redekopp (1977), 

we have lumped all .cosh k(z + h) terms in .φ12 together, which makes its expression 

simpler. Then, we substitute these .φnj solutions and the . ζ expansion (1.238) into the 

two surface boundary conditions (1.242)–(1.243). Equating coefficients of .ϵjeinθ to 

zero we get 

. ζ01 = 0, gζ11 = iω

1 + T̃
A, gζ02 = cgφ01,ξ − k2(1 − σ 2)|A|2, .(1.250) 

gζ12 = 
iω 

1 + T̃ 

D + 
cp 

1 + T̃

⎛
σkh  + 

cg 

cp 

− 
2T̃ 

1 + T̃

⎞
Aξ , . (1.251) 

gζ22 = 
k2 

2 

σ 2 − 3 

σ 2 − T̃ (3 − σ 2) 
A2, . (1.252) 

F(ξ,  η,  τ)  = 
3ik2 

4ω 

(1 + σ 2)[1 − σ 2 + T̃ (3 − σ 2)] 
σ 2 − T̃ (3 − σ 2) 

A2, (1.253) 

where .cp = ω/k is the phase velocity. Here, .ζ12 is derived from the . O(ϵ2eiθ )

terms of either of the two surface boundary conditions (1.242)–(1.243), and the 

other surface boundary condition at .O(ϵ2eiθ ) is satisfied automatically utilizing the 

group velocity expression
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.cg = cp

⎾
σ + kh(1 − σ 2)

2σ
+ T̃

1 + T̃

⎤
, (1.254) 

which can be derived by differentiating the dispersion relation (1.236). 

Notice that the second harmonic terms .φ22 and .ζ22 are singular when . T̃ =
σ 2/(3 − σ 2), which for deep water (.σ = 1) yields .T̃ = 1/2, i.e., .k = [g/(2T )]1/2. 

For water, .T ≈ 72 × 10−6m3/s2. Thus, the corresponding wavelength is about 

2.4 cm. Wavenumbers satisfying this condition have the property that the phase 

speeds of the first and second harmonic match, resulting in the phenomenon 

known as ‘second-harmonic resonance’. The above analysis breaks down at this 

wavenumber and a new scaling is required (McGoldrick 1970). 

Assuming that the wavenumber k is not close to that for which .T̃ = σ 2/(3−σ 2), 

we can continue the analysis. Equating the coefficient of .ϵ3e0 to zero in the first 

surface boundary condition (1.242) and utilizing the .φ03,z formula in (1.248), we 

get the equation 

. (gh − c2
g)φ01,ξξ + ghφ01,ηη = −k2cp

⎛
cg

cp

(1 − σ 2) + 2

1 + T̃

⎞⎛
|A|2

⎞
ξ
.

(1.255) 

This equation shows that the horizontal velocity field .(φx, φy) from the expan-

sion (1.239) has an .O(ϵ2e0) mean flow that is generated by the self-interaction of 

the progressive wavetrain. In deep water, this mean flow is absent (see later text as 

well as Sect. 1.1.1). Stokes (1847) first pointed out the existence of this mean flow. 

But he said it existed in deep water, which is incorrect. 

Equating the coefficients of .ϵ3eiθ to zero in the two surface boundary condi-

tions (1.242)–(1.243) and utilizing the .φ13 solution in (1.249), we get two equations 

for . ζ13, whose compatibility condition gives the following equation for the time 

evolution of .A(ξ, η, τ ), 

. iAτ + 1

2
ω''(k)Aξξ + cg

2k
Aηη = k

⎾
1 + cg

2cp

(1 − σ 2)(1 + T̃ )

⎤
φ01,ξA +

+ k4

4ω

⎾
(1 − σ 2)(9 − σ 2) + T̃ (3 − σ 2)(7 − σ 2)

σ 2 − T̃ (3 − σ 2)
+

+8σ 2 − 2(1 − σ 2)2(1 + T̃ ) − 3σ 2T̃

1 + T̃

⎤
|A|2A. (1.256) 

These two equations (1.255) and (1.256) govern the evolution of a progressive 

capillary-gravity wavetrain in water of finite depth, and we will call them Benney-

Roskes-Davey-Stewartson (BRDS) equations. 

The case of .cg = (gh)1/2 is very special, since this is the case where the 

.φ01 equation (1.255) changes from hyperbolic to elliptic. In this case, the group
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velocity of this progressive (short) wavetrain matches the phase velocity of the long 

wave, and a long-wave/short-wave resonant interaction occurs. Under this condition, 

the above analysis breaks down, and a different analysis and scaling are required. 

Relevant equations describing this resonant interaction will be presented in Sect. 1.5. 

In deep water, this resonance disappears. 

In the absence of y-direction variation, we can solve for .φ01,ξ from Eq. (1.255) 

and then insert it into Eq. (1.256), resulting in a single equation for .A(ξ, τ ), 

.iAτ + 1

2
ω''(k)Aξξ = ν|A|2A, (1.257) 

where . ν is a certain constant. A Stokes wavetrain corresponds to a special solution 

.A(ξ, τ ) = a0e
−ia2

0ντ in this equation, where . a0 is a real constant. Performing a 

linear stability analysis to this special solution similar to what we did in Sect. 1.1.1, 

we find that this solution is linearly unstable if .ω''(k)ν < 0. Without surface tension 

(.T̃ = 0), .ω''(k) is always negative when .kh > 0, but . ν is negative when . kh < 1.363

and positive when .kh > 1.363. Thus, the Stokes wavetrain is unstable when . kh >

1.363—a result which was first reported by Benjamin (1967) and Whitham (1967). 

In the deep-water limit (.gh ⪢ 1 and .kh ⪢ 1), the .φ01 equation (1.255) reduces 

to a Laplace equation, whose solution is .φ01,ξ = φ01,η = 0. Thus, the .O(ϵ2) mean 

flow of the horizontal velocity field disappears. In this case, Eq. (1.256) reduces to 

.iAτ + 1

2
ω''(k)Aξξ + cg

2k
Aηη = k4

4ω

8 + T̃ + 2T̃ 2

(1 − 2T̃ )(1 + T̃ )
|A|2A. (1.258) 

If we further take the limit of negligible surface tension (.T̃ = 0) and restrict to the 

two-dimensional case (independent of the transverse . η direction), we get 

.iAτ + 1

2
ω''(k)Aξξ − 2k4

ω
|A|2A = 0. (1.259) 

In this .T̃ = 0 limit, we see from Eq. (1.250) that .A = gζ11/(iω). Inserting this 

expression into the above equation and utilizing the present dispersion relation . ω =
(gk)1/2, we then recover the evolution equation (1.32) that was derived earlier in 

Sect. 1.1.1 for the two-dimensional motion of a gravity-wave train in deep water. 

1.4.2 Reduction to Davey-Stewartson Equations 

Next, we nondimentionalize the BRDS equations (1.255) and (1.256). Introducing 

nondimensional variables 

.ξ̂ = kξ, η̂ = kη, τ̂ = ωτ, Â = (k2/ω)A, φ̂01 = (k2/ω)φ01, (1.260)
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dropping the hats, and setting .Q = φ01,ξ , Eqs. (1.255) and (1.256) become 

.
iAτ + λAξξ + μAηη = χ |A|2A + χ1QA,

αQξξ + Qηη = −β(|A|2)ξξ ,

⎫
(1.261) 

where 

. λ = k2ω''(k)

2ω
, μ = cg

2cp

> 0, . (1.262) 

χ = 
1 

4

⎾
(1 − σ 2)(9 − σ 2) + T̃ (3 − σ 2)(7 − σ 2) 

σ 2 − T̃ (3 − σ 2)
+ 

+8σ 2 − 2(1 − σ 2)2(1 + T̃ ) − 
3σ 2 T̃ 

1 + T̃

⎤
, . (1.263) 

χ1 = 1 + 
cg 

2cp 

(1 − σ 2)(1 + T̃ )  >  0, . (1.264) 

α = 

gh − c2 
g 

gh 
, β  = 

c2 
p 

gh

⎛
cg 

cp 

(1 − σ 2) + 
2 

1 + T̃

⎞
> 0. (1.265) 

Now we determine under what conditions the above BRDS equations can be 

reduced to the integrable Davey-Stewartson equations (1.229). Through variable 

scalings 

. ξ = |α| 1
2 ξ̃ , τ = −|α|

λ
τ̃ , Q = 2λ

χ1|α|Q̃, A =
⎛

2|λ|
χ1β

⎞ 1
2

Ã, (1.266) 

dropping the tildes, and recalling .μ, χ1, β all positive, we find that under parameter 

conditions of 

.λ = −μα, 2χα = χ1β, (1.267) 

the BRDS equations (1.261) would become 

.
iAτ = Aξξ + σ0Aηη + (|A|2 − 2Q)A,

Qξξ − σ0Qηη = (|A|2)ξξ ,

⎫
(1.268) 

where .σ0 = sgn(λ). These are the DS equations (1.229) with .ϵ = 1 under different 

notations. 

In the shallow water limit of .kh → 0, defining .T̂ ≡ T̃ /(kh)2 = T/(gh2), we  

find that
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. λ → 1

2

⎛
−1 + 3T̂

⎞
k2h2, μ → 1

2
, χ → 9

4(1 − 3T̂ )k2h2
, . (1.269) 

χ1 → 
3 

2 
, α  → (1 − 3T̂ )k2h2, β  → 3. (1.270) 

Thus, conditions (1.267) are satisfied, and the BRDS equations (1.261) reduce to 

the integrable DS equations (1.229) with .σ0 = sgn(T̂ − 1
3
) and .ϵ = 1. 

Interestingly, conditions (1.267) are also satisfied at finite .(T̃ , kh) values of 

.T̃ ≈ 0.001959, kh ≈ 0.1670. (1.271) 

In this case, the BRDS equations (1.261) also reduce to the integrable DS equa-

tions (1.229), with .σ0 = sgn(λ) = −1 and .ϵ = 1. There are no other .(T̃ , kh) values 

or regions where parameter conditions (1.267) are met.  

1.5 Long-Wave-Short-Wave Interaction Model in Water of 

Finite Depth 

The Benney-Roskes-Davey-Stewartson equation (1.255) is singular when .c2
g = gh, 

where the group velocity . cg of the progressive (short) wavetrain matches the phase 

velocity .(gh)1/2 of the long wave. In this case, a stronger and faster interaction 

between the short and long waves is expected. Indeed, this can be anticipated since 

it is a limiting case of the three-wave resonant interaction (Benney 1977). The 

governing equations for this interaction were derived by Djordjevic and Redekopp 

(1977) for capillary-gravity waves in water of finite depth. Similar equations were 

also derived by Grimshaw (1977) and Funakoshi and Oikawa (1983) for the  

interaction between long and short internal waves. After scalings, these equations 

can be written as 

.
iAt − Axx + LA = 0,

Lt = −4(|A|2)x,

⎫
(1.272) 

where L is a real function and A a complex one. For the interaction of a Langmuir 

wave with an ion-sound wave in a plasma, Yajima and Oikawa (1976) derived a 

system of model equations which can be reduced to the above equations through a 

coordinate and gauge transformation (Funakoshi and Oikawa 1983). They further 

showed that the system they derived is integrable. 

In this section, we derive the above long-wave-short-wave interaction model 

for capillary-gravity waves in water of finite depth by the multiscale perturbation 

method, following Djordjevic and Redekopp (1977) with some corrections. 

We consider the irrotational two-dimensional motion of a progressive capillary-

gravity wavetrain moving on the free surface of an inviscid and incompressible
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liquid of constant depth h. The governing equations for these capillary-gravity 

waves are (1.230)–(1.233) with the y direction removed, i.e., 

. φxx + φzz = 0, −h < z ≤ ζ, . (1.273) 

φz = 0, z  = −h, . (1.274) 

ζt + φxζx = φz, z  = ζ, . (1.275) 

φt + gζ + 
1 

2 
(φ2 

x 
+ φ2 

z ) = T 
ζxx 

(1 + ζ 2 
x 
) 

3 
2 

, z  = ζ, (1.276) 

where .φ(x, z, t) is the velocity potential, and .ζ(x, z, t) is the position of the free 

surface. The linear dispersion relation is (1.237), i.e., .ω = {gkσ(1 + T̃ )}1/2, where 

.T̃ = k2T/g and .σ = tanh kh. The group velocity of a short wavetrain with 

wavenumber k is .cg = ω'(k). The phase velocity of a long wave (with .|k| ⪡ 1) 

is .ω/k ≈ (gh)1/2. When 

.cg = (gh)1/2, (1.277) 

which occurs on a certain curve in the .(T̃ , kh) plane (Djordjevic and Redekopp 

1977; Ablowitz and Segur 1979), this short wave would interact strongly with the 

long wave. We derive the model equation for this strong interaction below. 

We write solutions to Eqs. (1.273)–(1.276) as perturbation series 

. ζ = ϵ
⎛
ζ01 + ζ11e

iθ + c.c.
⎞

+ ϵ
4
3

⎛
ζ02 + ζ12e

iθ + c.c.
⎞

+

+ϵ
5
3

⎛
ζ03 + ζ13e

iθ + c.c.
⎞

+ ϵ2
⎛
ζ04 + ζ14e

iθ + ζ24e
2iθ + c.c.

⎞
+

+ϵ
7
3

⎛
ζ05 + ζ15e

iθ + ζ25e
2iθ + c.c.

⎞
+ ϵ

8
3

⎛
ζ06 + ζ16e

iθ + ζ26e
2iθ + c.c.

⎞
+

+ · · · , . (1.278) 

φ = ϵ
2 
3 φ00 + ϵ

⎛
φ01 + φ11e

iθ + c.c.
⎞

+ ϵ
4 
3

⎛
φ02 + φ12e

iθ + c.c.
⎞

+ 

+ϵ
5 
3

⎛
φ03 + φ13e

iθ + c.c.
⎞

+ ϵ2
⎛
φ04 + φ14e

iθ + φ24e
2iθ + c.c.

⎞
+ 

+ϵ
7 
3

⎛
φ05 + φ15e

iθ + φ25e
2iθ + c.c.

⎞
+ ϵ

8 
3

⎛
φ06 + φ16e

iθ + φ26e
2iθ + c.c.

⎞
+ 

· · ·  , (1.279) 

where .θ = kx − ωt , 

.ζnj = ζnj (ξ, τ ), φnj = φnj (ξ, z, τ ), ξ = ϵ
2
3 (x − cgt), τ = ϵ

4
3 t, (1.280)



46 1 Physical Derivation of Integrable Nonlinear Wave Equations

.cg = ω'(k) is the group velocity of the short wave, ‘. c.c.’ represents complex 

conjugates of only the .einθ terms, and . ζ0j , .φ0j are real functions. In these 

expansions, the short wave corresponds to the . eiθ modes and their higher harmonics, 

and the long wave corresponds to the .(ζ0j , φ0j ) terms. These unconventional 

perturbation expansions are needed in order to balance the short wave’s dispersion 

and its nonlinear interaction with the long wave, and to allow the self-interaction of 

the short wave to drive the long wave’s evolution. The small positive parameter . ϵ

is the order of the short-wave’s amplitude, or equivalently, the order of the slope of 

the short wave’s surface. The mean velocity flow is approximately .ϵ2/3φ00,x , which 

is .O(ϵ4/3). This mean flow is much stronger than that of the non-resonant case 

treated in Sect. 1.4, which was .O(ϵ2). The current slow time scale of .O(ϵ−4/3) is 

also much shorter than .O(ϵ−2) of the non-resonant case, meaning that the present 

long-wave-short-wave interaction is much faster. 

We also expand the . φ function in surface boundary conditions (1.275)–(1.276) 

around the unperturbed surface level . z = 0. Up to .O(ϵ8/3), these boundary 

conditions are 

. ζt + ζxφx = φz + φzzζ, z = 0, . (1.281) 

φt + φtzζ + gζ + 
1 

2 
(φ2 

x 
+ φ2 

z ) = T ζxx, z  = 0. (1.282) 

We first substitute the . φ expansion (1.279) into the Laplace equation (1.273) and 

the bottom condition (1.274). Equating coefficients of .ϵjeinθ to zero and solving the 

resulting equations for . φnj , we get 

.φ00 = φ00(ξ, τ ),

φ01 = φ01(ξ, τ ), φ11 = A(ξ, τ )
cosh k(z + h)

cosh kh
,

φ02 = φ02(ξ, τ ), φ12 = F(ξ, τ )
cosh k(z + h)

cosh kh
,

φ03 = φ03(ξ, τ ), φ13 = D(ξ, τ )
cosh k(z + h)

cosh kh
− i

(z + h) sinh k(z + h)

cosh kh
Aξ ,

φ04,z = −(z + h)φ00,ξξ ,

φ14 = H(ξ, τ )
cosh k(z + h)

cosh kh
− i

(z + h) sinh k(z + h)

cosh kh
Fξ ,

φ05,z = −(z + h)φ01,ξξ , φ15 = G(ξ, τ )
cosh k(z + h)

cosh kh

− i
(z + h) sinh k(z + h)

cosh kh
Dξ − (z + h)2 cosh k(z + h)

2 cosh kh
Aξξ ,

φ06,z = −(z + h)φ02,ξξ .



1.5 Long-Wave-Short-Wave Interaction Model in Water of Finite Depth 47

Then, we substitute these .φnj solutions and the . ζ expansion (1.278) into the 

dynamic surface boundary condition (1.282). Equating coefficients of orders up to 

.ϵ2e0 and .ϵ2eiθ to zero we get 

. ζ01 = 0, gζ11 = iω

1 + T̃
A, gζ02 = cgφ00,ξ , gζ12 = iω

1 + T̃
F,

gζ03 = cgφ01,ξ , gζ13 = iω

1 + T̃
D + cp

1 + T̃

⎛
σkh + cg

cp

− 2T̃

1 + T̃

⎞
Aξ ,

gζ04 = −φ00,τ + cgφ02,ξ − k2(1 − σ 2)|A|2,

gζ14 = iω

1 + T̃
H + cp

1 + T̃

⎛
σkh + cg

cp

− 2T̃

1 + T̃

⎞
Fξ ,

where .cp = ω/k is the phase velocity of the short wave. When these . ζnj

solutions and the above .φnj expressions are inserted into the kinematic boundary 

condition (1.281), we find that this condition up to .O(ϵ2e0) and .O(ϵ2eiθ ) is satisfied 

automatically due to the dispersion relation, the group-velocity formula (1.254), as 

well as the resonance condition (1.277). 

At .O(ϵ7/3eiθ ), the two surface boundary conditions (1.281)–(1.282) give two  

linear inhomogeneous equations for . ζ15 and G. Due to the dispersion relation, these 

two linear equations are compatible only if a certain condition is satisfied. Utilizing 

the group-velocity formula (1.254), we find that the .Dξ terms in this compatibility 

condition cancel out, and the remaining condition becomes 

. iAτ + 1

2
ω''(k)Aξξ = k

⎾
1 + cg

2cp

(1 − σ 2)(1 + T̃ )

⎤
φ00,ξA. (1.283) 

At .O(ϵ8/3e0), the kinematic boundary condition (1.281) gives another equation. 

Substituting the above .φnj and .ζnj expressions into this equation and utilizing the 

resonance condition (1.277) to cancel its .φ02,ξξ terms, this equation reduces to 

.φ00,ξτ = −1

2
k2

⎾
1 − σ 2 + 2cp

cg(1 + T̃ )

⎤
(|A|2)ξ . (1.284) 

Notice that the coefficient in this equation differs from that in Djordjevic and 

Redekopp (1977). Equations (1.283)–(1.284) are the model equations governing the 

resonant interaction between a long wave and a short wave. 

Finally, we denote .L ≡ φ00,ξ and employ variable scalings of 

. A = |ω''|√
|αβ|

Ã, L = ω''

2α
L̃, ξ = sgn(αβ) ξ̃ , τ = − 2

ω'' τ̃ , (1.285)
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where . α and . β are the coefficients of the nonlinear terms on the right sides of 

Eqs. (1.283)–(1.284), respectively. Then dropping the tildes, the rescaled equations 

become 

.
iAτ − Aξξ + LA = 0,

Lτ = −4(|A|2)ξ ,

⎫
(1.286) 

which are in the standard form (1.272) under different notations. 

1.6 Three-Wave Resonant Interaction System 

The three-wave resonant interaction system is 

.

∂tu1 + (c1 · ∇) u1 = iγ1u
∗
2u

∗
3,

∂tu2 + (c2 · ∇) u2 = iγ2u
∗
1u

∗
3,

∂tu3 + (c3 · ∇) u3 = iγ3u
∗
1u

∗
2,

⎫
⎬
⎭ (1.287) 

where .(u1, u2, u3) are complex envelope functions of the three waves, . ∇ = (∂x, ∂y)

is the gradient operator in the .(x, y) plane, .(c1, c2, c3) are vector velocities of 

the three waves, and .(γ1, γ2, γ3) are real nonlinear coefficients. These nonlinear 

coefficients can be normalized though. Indeed, employing variable scalings 

.u1 = − i√|γ2γ3|
û1, u2 = − i√|γ1γ3|

û2, u3 = − i√|γ1γ2|
û3, (1.288) 

and dropping the hats, Eqs. (1.287) reduce to 

.

∂tu1 + (c1 · ∇) u1 = ϵ1u
∗
2u

∗
3,

∂tu2 + (c2 · ∇) u2 = ϵ2u
∗
1u

∗
3,

∂tu3 + (c3 · ∇) u3 = ϵ3u
∗
1u

∗
2,

⎫
⎬
⎭ (1.289) 

where .ϵj = sgn(γj ). 

The three-wave interaction system (1.287) arises in a wide variety of physical 

systems. Below, we derive them in water waves and optics. 

1.6.1 In Water Waves 

We consider the irrotational capillary-gravity wave motion of an inviscid, incom-

pressible, and homogeneous fluid in deep water, subject to a constant gravitational 

force g. Since the motion is irrotational, the velocity field . u has a potential 

.φ(x, y, z, t), where .u = ∇φ. The fluid has a free surface at .z = ζ(x, y, t), under 

the effect of surface tension.
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The governing equations for these deep-water capillary-gravity waves are 

(Djordjevic and Redekopp 1977; Ablowitz and Segur 1979) 

. ∇2φ = 0, −∞ < z ≤ ζ, . (1.290) 

ζt + φxζx + φyζy = φz, z  = ζ, . (1.291) 

φt + gζ + 
1 

2
|∇φ|2 = T 

ζxx(1 + ζ 2 
y 
) + ζyy(1 + ζ 2 

x 
) − 2ζxζyζxy 

(1 + ζ 2 
x 

+ ζ 2 
y 
)3/2

, 

z = ζ, (1.292) 

where T is the ratio of the surface tension coefficient to the fluid density. The 

Laplace equation here is due to the incompressibility of the fluid, the second 

equation is the kinematic condition on the surface, and the third equation is the 

dynamic condition on the surface. 

For small-amplitude waves (.ζ ⪡ 1), the kinematic and dynamic conditions at 

the free surface may be approximated by conditions at the mean level .z = 0 through 

Taylor expansion about this value. Assuming the surface slope is of the same order 

as . ζ , i.e., the wavenumbers are .O(1), these surface conditions up to the first two 

order terms become 

. ζt − φz = φzzζ − φxζx − φyζy, z = 0, . (1.293) 

φt − T (ζxx + ζyy) + gζ = −1 

2
|∇φ|2 − φztζ, z = 0. (1.294) 

Linear capillary-gravity waves are of the form 

. ζ(x, t) = uei(k·x−ωt) + c.c., φ(x, z, t) = ψ(z)ei(k·x−ωt) + c.c., (1.295) 

where .x ≡ (x, y) is the horizontal space vector, .k ≡ (k, l) is the wavenumber 

vector, . ω is the wave frequency, and u is the wave amplitude on the water 

surface. Substitution of these expressions into Eqs. (1.290) and (1.293)–(1.294) and 

omission of nonlinear terms give us .ψ(z) = −i(ω/κ)ueκz, as well as the dispersion 

relation 

.ω2 = gκ + T κ3, (1.296) 

where .κ ≡ |k| =
√

k2 + l2. 

Now, we consider the nonlinear interaction of three low-amplitude linear waves 

with wave vectors .(k1, k2, k3) and frequencies .(ω1, ω2, ω3). For this interaction 

to be the strongest, these wave vectors and frequencies must satisfy the resonance 

conditions 

.k1 + k2 + k3 = 0, ω1 + ω2 + ω3 = 0. (1.297)
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McGoldrick (1965) showed that these conditions can be satisfied for capillary-

gravity waves. Indeed, if these three linear waves propagate in the same horizontal 

direction, say, x direction, with wavenumbers .(k1, k2, k3) respectively, then these 

conditions will be met if . k1 and . k2 are related by (Craik 1985) 

.
(1 + r2) + (1 + r)(1 + 7r + r2)1/2

r(9 + 14r + 9r2)
= T

2g
k2

1, (1.298) 

where .r ≡ k2/k1. For waves propagating in different horizontal directions, 

techniques to find wave vectors . k1 and . k2 to satisfy the resonance conditions (1.297) 

can be found in McGoldrick (1965) and Simmons (1969). 

When these three low-amplitude linear waves interact nonlinearly under reso-

nance conditions (1.297), their amplitudes will be slowly modulated in time, space, 

or both. To derive their evolution equations, we employ the multi-scale perturbation 

technique, along the lines of Case and Chiu (1977) but with modifications. 

We first consider the case when their amplitudes are slowly varying in time only. 

Then, the interacting solutions can be written as a multi-scale perturbation series 

.ζ(x, t) = ϵζ1 + ϵ2ζ2 + · · · , φ(x, z, t) = ϵφ1 + ϵ2φ2 + · · · , (1.299) 

where . ϵ is a small wave-amplitude parameter, 

. ζ1(x, t) =
3⎲

j=1

uj (τ )ei(kj ·x−ωj t) + c.c., . (1.300) 

φ1(x, z, t)  = 

3⎲

j=1 

−i 
ωj 

κj 

uj (τ )eκj z ei(kj ·x−ωj t)  + c.c., (1.301) 

.κj ≡ |kj |, .ωj = ω(κj ), and .τ = ϵt is the slow time scale. Substituting 

these expansions into Eqs. (1.293)–(1.294), the equations at .O(ϵ) are satisfied 

automatically since the first terms of the expansions are slowly-modulated linear 

modes. At .O(ϵ2), we get 

. ζ2t − φ2z = −ζ1τ + φ1zzζ1 − φ1xζ1x − φ1yζ1y, z = 0, . (1.302) 

φ2t − T (ζ2xx + ζ2yy) + gζ2 = −φ1τ − 
1 

2
|∇φ1|2 − φ1ztζ1, z  = 0. 

(1.303) 

Inserting the .(ζ1, φ1) expressions (1.300)–(1.301) into the right sides of the above 

equations and utilizing resonance conditions (1.297), we get 

.ζ2t − φ2z =
3⎲

j=1

Fje
i(kj ·x−ωj t) + c.c. + other harmonics, . (1.304)
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φ2t − T (ζ2xx + ζ2yy) + gζ2 = 

3⎲

j=1 

Gj e
i(kj ·x−ωj t)  + c.c. + other harmonics, 

(1.305) 

where the . φ2 function is evaluated at .z = 0, 

. Fj = −ujτ + iu∗
j+1u

∗
j+2

⎾
ωj+1κj+1 + ωj+2κj+2

+
⎛
ωj+1κ

−1
j+1 + ωj+2κ

−1
j+2

⎞
kj+1 · kj+2

⎤
,

Gj = iωjκ
−1
j ujτ + u∗

j+1u
∗
j+2

⎾
ω2

j+1 + ω2
j+2 + ωj+1ωj+2

−ωj+1ωj+2κ
−1
j+1κ

−1
j+2kj+1 · kj+2

⎤
,

.j = 1, 2, 3, .uj+3 ≡ uj , .ωj+3 ≡ ωj , .κj+3 ≡ κj , and .kj+3 ≡ kj . The . (ζ2, φ2)

solutions should not contain secular growth (terms growing linearly in time t). Thus, 

they have the solution forms 

. ζ2(x, t, τ ) =
3⎲

j=1

ξje
i(kj ·x−ωj t) + c.c. + other harmonics, . (1.306) 

φ2(x, t, τ )  = 

3⎲

j=1 

ηje
i(kj ·x−ωj t)  + c.c. + other harmonics. (1.307) 

Inserting these solution forms into Eqs. (1.304)–(1.305) and matching the harmon-

ics, we get 

.

⎛
−iωj −κj

g + T κ2
j −iωj

⎞⎛
ξj

ηj

⎞
=
⎛

Fj

Gj

⎞
. (1.308) 

The matrix in the above linear nonhomogeneous equation is singular, i.e., its 

determinant is zero, due to the dispersion relation (1.296). Thus, the above linear 

system is solvable only if it satisfies a solvability condition. Indeed, multiplying its 

first equation by .−iωj/κj and adding it to the second equation, the left side of the 

resulting equation becomes zero. Thus, its right side .Gj − (iωj/κj )Fj should be 

zero too. This solvability condition gives us the following evolution equations for 

the three waves’ amplitudes, 

.duj/dτ = iγju
∗
j+1u

∗
j+2, j = 1, 2, 3, (1.309) 

where
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. γj = 1

2

⎾
ωj+1κj+1 + ωj+2κj+2 + (κj/ωj )

⎛
ω2

j+1 + ω2
j+2 + ωj+1ωj+2

⎞⎤

+1

2

⎾
(ωj+1/κj+1) + (ωj+2/κj+2)

−(κj/ωj )(ωj+1ωj+2/κj+1κj+2)
⎤

kj+1 · kj+2. (1.310) 

Some sign differences between this . γj formula and that in Case and Chiu (1977) 

are due to our choices of the resonance conditions (1.297), where sums of the three 

wavenumbers and wave frequencies are zero, while they were .k2 = k1 + k3 and 

.ω2 = ω1 + ω3 in Case and Chiu (1977). 

Interestingly, Simmons (1969) has derived the above three-wave resonant inter-

action equations (1.309) and calculated their . γj coefficients earlier by a different 

method—the variational method, and his . γj formulae are much simpler. After 

converting to our notations, his . γj formulae are 

. γj = κj

ωj

Γ, Γ ≡ −1

2

3⎲

i=1

ωiωi+1

⎛
1 + ki · ki+1

κi κi+1

⎞
, (1.311) 

for .j = 1, 2, 3. It can be checked that, under resonance conditions (1.297), the 

above two forms of . γj formulae are indeed equivalent. Simmons’ formulae clearly 

show that, the three . γj coefficients cannot all have the same sign, because the three 

. ωj frequencies cannot all have the same sign due to resonance conditions (1.297). 

Now, we generalize the wave interaction equations (1.309) to cases where 

amplitudes of the three waves are slowly modulated in both time and space, i.e., 

wave envelope functions . uj in Eq. (1.300) depend on both slow time .τ = ϵt and 

slow space .X = ϵx. In this case, nonlinear parts of Eq. (1.309) remain the same, but 

the linear parts are modified. The generalized equations are 

.

∂τu1 + (c1 · ∇) u1 = iγ1u
∗
2u

∗
3,

∂τu2 + (c2 · ∇) u2 = iγ2u
∗
1u

∗
3,

∂τu3 + (c3 · ∇) u3 = iγ3u
∗
1u

∗
2,

⎫
⎬
⎭ (1.312) 

where .∇ ≡ [∂X, ∂Y ], .(X, Y ) = ϵ(x, y), and .(c1, c2, c3) are group velocities of the 

three waves, which are .[∂ω/∂k, ∂ω/∂l] evaluated at the three wavenumber vectors 

.kj = (kj , lj ) for .j = 1, 2, 3. These group-velocity terms can be derived by the 

multi-scale perturbation method utilized above, taking into account the slow spatial 

dependence of envelope functions . uj . But such derivations are generally not needed, 

since these terms are linear and can be obtained directly from the dispersion relation. 

Indeed, let us consider a linear plane wave whose wavenumber vector is perturbed 

from . k1 to .k1 + ϵk̂1, where .ϵ ⪡ 1, and . ̂k1 is an .O(1) vector. Then, in view of the 

dispersion relation, the corresponding frequency of this linear wave is .ω(k1 + ϵk̂1), 

which can be approximated as
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.ω(k1 + k̂1) ≈ ω(k1)+ϵk̂1
∂ω

∂k

||||
k=k1

+ϵl̂1
∂ω

∂l

||||
k=k1

= ω(k1)+ϵk̂1 ·c1. (1.313) 

Using these results, the corresponding linear plane wave is then 

.ei[(k1+k̂1)·x−ω(k1+k̂1)t] ≈ u1(τ, X) ei[k1·x−ω(k1)t], (1.314) 

where the envelope function is .u1(τ, X) = eik̂1·(X−c1τ). Thus, . ∂τu1 + (c1 · ∇) u1 =
0. This equation is derived from linear wave propagation. When nonlinear inter-

actions are brought in, the . u1 equation in (1.312) then appears. The . u2 and . u3

equations in (1.312) can be understood in a similar way. 

The above three-wave interaction equations (1.312) are just Eqs. (1.287) in  

different notations. 

It is easy to see that the three-wave interaction equations (1.312) admit two 

independent conserved quantities, 

. 

⎰ ∞

−∞

⎰ ∞

−∞

⎛ |u1|2
γ1

− |u2|2
γ2

⎞
dXdY,

⎰ ∞

−∞

⎰ ∞

−∞

⎛ |u1|2
γ1

− |u3|2
γ3

⎞
dXdY.

(1.315) 

These conserved quantities, combined with the fact that .(γ1, γ2, γ3) cannot all have 

the same sign, indicate that .

⎰ ⎰
|uj |2dXdY is bounded for each wave, as one would 

expect for capillary-gravity waves. 

Experiments on three-wave resonant interactions in capillary-gravity waves can 

be found in McGoldrick (1970), Phillips (1974), Banerjee and Korpel (1982), and 

Henderson and Hammack (1987). 

1.6.2 In Optics 

In this subsection, we derive three-wave resonant interaction equations in optical 

media exhibiting quadratic nonlinearities. One of the most striking nonlinear 

optics experiments—a red beam turning blue after passing through a crystal (see 

photograph in Yariv (1975) and Ablowitz and Segur (1981)), is a special case of this 

interaction. Our derivation is based on Yariv (1975). 

In a charge-free dielectric medium that is nonmagnetic and homogeneous, the 

Maxwell equations take the form 

. ∇ × E = −∂B

∂t
, . (1.316) 

∇ ×  H = 
∂D 

∂t 
, . (1.317)
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∇ · D = 0, . (1.318) 

∇ ·  B = 0, (1.319) 

and the corresponding medium equations are 

. D = ϵ0E + P, . (1.320) 

B = μ0H. (1.321) 

Here, . E and . H are the electric and magnetic field vectors, . D and . B are the 

electric and magnetic displacement vectors, . ϵ0 and . μ0 are the electric and magnetic 

permeabilities of vacuum, and . P is the electric polarization of the medium. The 

polarization . P is made up of a linear and a nonlinear term 

.P = ϵ0 χ (1)E + PNL, (1.322) 

where the tensor aspect of the linear susceptibility .χ (1) is ignored here. In general, 

.χ (1) will depend on the wave frequency . ω. This can be accommodated by using the 

linear part of the above equation after the time dependence .e−iωt has been taken out. 

The nonlinear part of the polarization .PNL, for a quadratically nonlinear material 

such as a noncentrosymmetric crystal, is 

.PNL = χ
(2) : EE, (1.323) 

where .χ (2) is a third-rank nonlinear susceptibility tensor. In most of the nonlinear 

experiments, .χ (2) is independent of frequency. 

The Maxwell equations (1.316)–(1.317) and medium equations (1.320)–(1.321) 

can be combined as 

.∇ × (∇ × E) = −μ0
∂2

∂t2
(ϵE + PNL) , (1.324) 

where .ϵ = ϵ0(1 + χ (1)). The left side of the above equation can be rewritten as 

.∇ × (∇ × E) = ∇(∇ · E) − ∇2E, (1.325) 

which is a vector identity. Since the nonlinear contribution .PNL to . P in (1.322) is  

generally much smaller than the linear contribution, the Maxwell equation (1.318), 

combined with our scalar approximation of .χ (1), then leads to .∇ · E ≈ 0. Thus, 

Eq. (1.324) reduces to 

.∇2E = μ0
∂2

∂t2
(ϵE + PNL) . (1.326)
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We now consider the interaction of three waves with center frequencies . ω1, ω2

and . ω3 in this medium. First, we consider the one-dimensional case, where the three 

waves are propagating in the same direction z, and .∂/∂x = ∂/∂y = 0. In addition, 

we assume that each wave has a single frequency .ωj .(j = 1, 2, 3). Then, due to the 

weak nonlinearity .PNL in the medium, the total electric field . E can be approximated 

as a sum of three linear modes with their amplitudes slowly varying in z, i.e., 

.E(z, t) ≈ E1(z, t) + E2(z, t) + E3(z, t), (1.327) 

where 

. Ej (z, t) = 1

2

⎾
Ej (z)e

i(kj z−ωj t) + c.c.
⎤

ej , j = 1, 2, 3, (1.328) 

. kj is the wavevector of the j -th wave, . ej is the unit constant vector representing its 

direction, and .Ej (z) is its scalar envelope function. The constant . ej vectors imply 

that all three waves are linearly polarized, which is the case for admitted linear 

modes in the medium (see Yariv (1975), Sec. 5.2). Since .∇ · E ≈ 0, the . ej vectors 

are orthogonal to the z axis, i.e., they lie on the transverse plane. The wavevector 

. kj is related to the frequency . ωj through the dispersion relation .k = k(ω), which 

can be obtained from the linear part of Eq. (1.326). In order for both . e±i(kj z−ωj t)

in (1.328) to be admissible linear modes, the dispersion relation should satisfy the 

symmetry .k(−ω) = −k(ω). If the tensor aspect of the linear susceptibility . χ (1)(ω)

is ignored, then the dispersion relation is 

.k = ω
√

μ0ϵ = ω

/
μ0ϵ0(1 + χ (1)). (1.329) 

The strongest interaction of these three waves occurs when they form a resonant 

triad, where 

.ω1 + ω2 + ω3 = 0, k1 + k2 + k3 = 0. (1.330) 

These are called phase-matching conditions in nonlinear optics. These conditions 

will limit the degrees of freedom that are available in choosing the directions of 

polarization . ej in (1.328). Several techniques for choosing . ej to satisfy these phase-

matching conditions are described in Sec. 16.5 of Yariv (1975). 

When these resonance conditions are met, we derive evolution equations for the 

scalar envelope functions .Ej (z) of the three waves. To do so, we first substitute 

Eqs. (1.327)–(1.328) into Eq. (1.326). Since the variation of .Ej (z) with z is small, 

we can neglect the .d2Ej/dz2 term. Then, picking out the .ei(kj z−ωj t) components, 

we get 

.

⎛
−1

2
k2
jEj + ikj

dEj

dz

⎞
ej = −μ0ϵ(ωj )

1

2
ω2

jEj ej + μ0
∂2

∂t2
(PNL)j , (1.331)



56 1 Physical Derivation of Integrable Nonlinear Wave Equations

where .(PNL)j is the .ei(kj z−ωj t) component of vector .PNL projected to the . ej

direction. Due to the dispersion relation mentioned above, the first terms on the two 

sides of the above equation cancel out. Then, calculating .(PNL)j from Eqs. (1.323) 

and (1.327)–(1.328) and utilizing the resonance conditions (1.330), we get 

.
dE1

dz
= iγ1E

∗
2E∗

3 , . (1.332) 

dE2 

dz 
= iγ2E

∗
1E∗

3 , . (1.333) 

dE3 

dz 
= iγ3E

∗
1E∗

2 , (1.334) 

where 

.γ1 =
μ0ω

2
1

2k1
d123, γ2 =

μ0ω
2
2

2k2
d213, γ3 =

μ0ω
2
3

2k3
d312, (1.335) 

and 

.dijk = ei ·
⎛
χ

(2) : ej ek

⎞
(1.336) 

is the effective quadratic susceptibility coefficient for the electric field of frequency 

.ωj +ωk in the . ei direction when electric fields of frequencies . ωj and . ωk are launched 

along directions . ej and . ek , respectively. The . γj formulae (1.335) show that these 

nonlinear coefficients cannot all have the same sign, because the three wavenumbers 

. kj cannot due to resonance conditions (1.330). 

If the electric fields . Ej of the three waves are also slowly varying in time, i.e., 

their frequency spectrum contains not just the frequency . ωj , but also a narrow 

sideband around it, then the nonlinear parts of the above interaction equations do 

not change, but the linear parts do to account for the temporal modulation. The new 

equations read 

.
∂E1

∂z
+ k'(ω1)

∂E1

∂t
= iγ1E

∗
2E∗

3 , . (1.337) 

∂E2 

∂z 
+ k'(ω2) 

∂E2 

∂t 
= iγ2E

∗
1E∗

3 , . (1.338) 

∂E3 

∂z 
+ k'(ω3) 

∂E3 

∂t 
= iγ3E

∗
1E∗

2 , (1.339) 

where the prime in .k'(ω) denotes differentiation. These linear parts come about 

so that the linear plane-wave solution .ei[k'(ωj )z−t]Δωj of these equations, when 

combined with the carrier plane-wave .ei(kj z−ωj t) in Eq. (1.328), is consistent with 

the linear plane-wave .ei[k(ωj +Δωj )z−(ωj +Δωj )t] of the medium for small .Δωj under 

the expansion
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.k(ωj + Δωj ) = k(ωj ) + k'(ωj )Δωj + · · · . (1.340) 

Equations (1.337)–(1.339) are a special case of the more general three-wave 

interaction equations (1.287) under different notations. 

A special case of the three-wave interaction is the second harmonic generation, 

where two of the three waves have the same frequencies, and the third frequency 

is double those two (second harmonic), i.e., .ω1 = ω2 and .ω3 = −2ω1. In this  

context, the first nonlinear optics experiment was performed by Franken et al. 

(1961). In their experiment, an intense ruby laser beam at wavelength .0.6943 . μm 

was launched through a quartz crystal. The radiation exiting the crystal was found 

to contain the second harmonic at wavelength .0.3471 . μm. Since their experiment 

did not meet the phase-matching condition of .k3 = −2k1, the conversion efficiency 

was low. Later experiments, using more efficient materials, higher intensity lasers, 

and phase matching techniques, have greatly improved the conversion efficiency. A 

beautiful photograph of this, showing a ruby light (red) turning near ultraviolet (blue 

in photograph) after passing through an ADP (ammonium dihydrogen phosphate) 

crystal, can be found in Yariv (1975) and Ablowitz and Segur (1981). 

In addition to gravity-capillary water waves and optical waves, the three-wave 

interaction equations (1.287) have also been derived for internal water waves 

(Ablowitz and Segur 1981; Craik  1985), plasma (Davidson 1972; Kaup et al. 1979), 

and others. 

It is noted that in water waves, optics, and internal waves with no background 

shear flows, .(γ1, γ2, γ3) in the three-wave interaction equations (1.287) cannot all 

have the same sign. In such cases, all three waves will remain bounded due to 

integrals of motion such as those in Eq. (1.315). However, in plasma and internal 

waves with shear flows, .(γ1, γ2, γ3) can all have the same sign, giving rise to the 

explosive case, where the three resonant waves extract energy from the background 

to produce a singularity in a finite time (Sugaya et al. 1977; Cairns 1979; Craik and 

Adam 1979). 

In addition to the above six integrable systems which have been derived from 

physical contexts in the above six sections, there are also many others, such as 

the Boussinesq equation, the complex modified Korteweg-de Vries equation, the 

massive-Thirring model, and the complex short pulse equation, which would arise 

in other physical situations. A common feature of all these integrable systems is that 

constant-amplitude background waves in them exhibit modulation instability (also 

called Benjamin-Feir instability in water waves). Thus, these constant-amplitude 

waves are unstable and will break up upon perturbations. For proper perturbations, 

these constant-amplitude waves will develop into localized waves with significantly 

higher amplitudes, but will eventually retreat back to those constant-amplitude 

waves again miraculously. These waves that “come from nowhere and disappear 

with no trace” (Akhmediev et al. 2009b) are the rogue wave solutions whose 

behaviors resemble physical rogue wave events. In the next chapter, we will derive 

these rogue wave solutions in a wide variety of integrable systems.



Chapter 2 

Derivation of Rogue Waves in Integrable 
Systems 

In this chapter, we derive general rogue waves in a wide variety of integrable 

systems, including those obtained in Chap. 1, but also many others, such as 

the Boussinesq equation, the Ablowitz-Ladik equation, the complex modified 

Korteweg-de Vries equation, the complex short pulse equation, the massive Thirring 

model, the Sasa-Satsuma equation, and the parity-time-symmetric NLS equation. 

We will use the bilinear method in all our derivations, since general rogue wave 

expressions out of this method are simpler and more explicit than those out of 

other methods. For the NLS equation, derivation of rogue waves by Darboux 

transformation is also presented, so that the reader can compare the two methods 

and their results. Dynamics of low-order rogue waves in these integrable systems 

are also graphically illustrated. 

The bilinear method for the study of integrable systems was developed by R. 

Hirota and the Japanese school in 1970s–1980s (see Hirota 2004). Its application 

to derive rogue wave solutions was first performed by Ohta and Yang (2012a) for  

the nonlinear Schrödinger equation and then extended to many other integrable 

equations. 

In the bilinear derivation of rogue waves, some notations need to be introduced 

first. One is Hirota’s bilinear differential operator D, which is defined by 

. P
(
Dx,Dy,Dt , . . .

)
F(x, y, t, . . .) · G(x, y, t, . . .)

= P
(
∂x − ∂x' , ∂y − ∂y' , ∂t − ∂t ' , . . .

)

×F(x, y, t, . . .)G(x', y', t ', . . .)|x'=x,y'=y,t '=t,..., (2.1) 

where P is a polynomial of . Dx , . Dy , . Dt ,  . . . .  This  D operator is the starting point of 

the bilinear method. 

Another is the Schur polynomial .Sk(x), with .x = (x1, x2, . . .), which are defined 

by the generating function 
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.

∞⎲

k=0

Sk(x)ϵk = exp

⎛ ∞⎲

k=1

xkϵ
k

⎞
, (2.2) 

or more explicitly, 

.Sk(x) =
⎲

l1+2l2+···+mlm=k

⎛
⎝

m∏

j=1

x
lj
j

lj !

⎞
⎠ . (2.3) 

For example we have 

.S0(x) = 1, S1(x) = x1, S2(x) = 1

2
x2
1+x2, S3(x) = 1

6
x3
1+x1x2+x3. (2.4) 

In addition, we define .Sk(x) = 0 if .k < 0. Schur polynomials .Sk(x) will be used in 

the explicit expressions of rogue wave solutions. 

2.1 Nonlinear Schrödinger Equation 

The nonlinear Schrödinger (NLS) equation 

.iut + 1

2
uxx + |u|2u = 0 (2.5) 

arises in numerous physical situations such as water waves, optics and plasma 

(see Sect. 1.1). Constant-amplitude continuous-wave solutions to this equation are 

modulation unstable to perturbations. Out of this instability, rogue waves may 

arise. These waves are rational solutions which approach a constant-amplitude 

continuous-wave background as .x, t → ±∞, but rise to significantly higher 

transient amplitudes with localized waveforms at intermediate times. Notice that 

this NLS equation is Galilean invariant, i.e., if .u(x, t) is its solution, so is . u(x −
ct, t)eicx− 1

2 ic
2t , where c is an arbitrary velocity parameter. In addition, this equation 

is also scaling invariant, i.e., if .u(x, t) is its solution, so is .αu(|α|x, |α|2t), where . α

is an arbitrary complex constant. Using these two invariances, we can normalize the 

boundary conditions of these rogue waves as 

.u(x, t) → eit , x, t → ±∞, (2.6) 

without loss of generality. 

Rogue waves in the NLS equation have been derived by many researchers 

using different techniques (Peregrine 1983; Akhmediev et al. 2009a; Dubard et al. 

2010; Kedziora et al. 2011; Guo et al. 2012; Ohta and Yang 2012a; Bilman and 

Miller 2019). Such waves have also been observed in many experiments in water
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tanks, optical fibers, plasma, and Bose-Einstein condensates (Kibler et al. 2010; 

Chabchoub et al. 2011; Bailung et al. 2011; Chabchoub et al. 2012a,b; Xu et al.  

2019; Romero-Ros et al. 2024). 

2.1.1 Derivation by the Bilinear Method 

Rogue waves in the NLS equation have been derived before by Darboux transfor-

mation (Akhmediev et al. 2009a; Guo et al. 2012), the bilinear method (Ohta and 

Yang 2012a), the inverse scattering transformmethod (Bilman andMiller 2019), and 

others (Dubard et al. 2010). Of these solutions, the ones by the bilinear method in 

Ohta and Yang (2012a) are the most explicit. Those bilinear solutions can be further 

simplified by incorporating a new parameterization into the bilinear derivation 

(Yang et al. 2020). These simpler expressions of bilinear rogue waves were reported 

in Yang and Yang (2021a) and are given in the following theorem. 

Theorem 2.1 The NLS equation (2.5) under boundary conditions (2.6) admits the 

following nonsingular rational rogue wave solutions 

. uN (x, t) = σ1

σ0
eit , (2.7) 

where the positive integer N represents the order of the rogue wave, 

.σn = det
1≤i,j≤N

⎛
φ

(n)
2i−1,2j−1

⎞
, (2.8) 

the matrix elements in . σn are defined by 

.φ
(n)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(n) + νs) Sj−ν(x
−(n) + νs), (2.9) 

vectors .x
±(n) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

.x±
1 = x ± it ± n, x+

2k+1 = x + 22k(it)

(2k + 1)! + a2k+1, x−
2k+1 = (x+

2k+1)
∗, (2.10) 

with .k ≥ 1 and the asterisk * representing complex conjugation, . s =
(0, s2, 0, s4, · · · ) are coefficients from the expansion 

.

∞⎲

k=1

skλ
k = ln

⎾
2

λ
tanh

⎛
λ

2

⎞⏋
, (2.11) 

and .a2k+1 (k = 1, 2, · · · , N − 1) are free irreducible complex constants.
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Since the order N and internal complex parameters .(a3, a5, · · · , a2N−1) are all 

free, the above solutions contain a wide variety of rogue waves depending on the 

values of these free parameters. Physically, these rogue waves arise from a uniform 

background due to modulation instability (see boundary conditions (2.6)). But to 

generate rogue waves, perturbations to the uniform background need to be seeded 

properly according to the above exact solutions; otherwise what is created may not 

be a rogue wave. This point is important for experimental realizations of rogue 

waves (see Chap. 4). 

We note by passing that another index choice in the above . σn determinant, 

.σn = det
1≤i,j≤N

⎛
φ

(n)
2i−2,2j−2

⎞
, (2.12) 

would also give NLS rogue waves. But as we have shown in a different but similar 

context (Yang et al. 2020), this other index choice would lead to solutions which are 

equivalent to those from (2.8). 

Next, we derive the NLS rogue wave solutions and prove Theorem 2.1. Since this 

is our first bilinear derivation of rogue waves, we will provide all details so that the 

reader can follow it. For later derivations of rogue waves in other integrable systems, 

we will be more brief. 

Proof of Theorem 2.1 Through the variable transformation 

.u = g

f
eit , (2.13) 

where f is a real variable and g a complex one, the NLS equation (2.5) can be 

transformed into the following bilinear form 

.

(
D2

x + 2
)
f · f = 2|g|2,(

D2
x + 2iDt

)
g · f = 0,

⎫
(2.14) 

where D is Hirota’s bilinear differential operator defined in Eq. (2.1). 

The basic idea of our proof is the following. First, we consider a (2+1)-

dimensional generalization of the above bilinear equations, 

.
(DxDy + 2)f · f = 2gh,

(D2
x + 2iDt )g · f = 0,

⎫
(2.15) 

where h is another complex variable. This is in fact the bilinear form of the 

Davey-Stewartson equations, which is a (2+1)-dimensional generalization of the 

NLS equation. We construct a wide class of solutions for Eq. (2.15) in the form of 

Gram determinants. Among these Gram determinant solutions, we extract algebraic 

solutions satisfying the dimension reduction condition 

.(∂x − ∂y)f = Cf, (2.16)
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where C is a certain constant. Under this dimension reduction condition, such 

algebraic solutions would satisfy the (1+1)-dimensional system 

.
(D2

x + 2)f · f = 2gh,

(D2
x + 2iDt )g · f = 0.

⎫
(2.17) 

Finally, we impose the complex conjugacy conditions 

.f = f ∗, h = g∗. (2.18) 

Then, the bilinear system (2.17) reduces to the bilinear NLS equation (2.14); hence 

Eq. (2.13) gives the general rogue wave solutions for the NLS equation (2.5). 

Next, we follow the above outline to prove Theorem 2.1. 

(a) Gram determinant solution for the (2+1)-dimensional system 

We first derive the Gram determinant solution for the (2+1)-dimensional bilinear 

equations (2.15). 

Lemma 2.1 Let .m
(n)
i,j , .ϕ

(n)
i and .ψ

(n)
j be functions of . x1, . x2 and .x−1 satisfying the 

following differential and difference relations, 

.
∂x1m

(n)
i,j = ϕ

(n)
i ψ

(n)
j ,

∂xk
ϕ

(n)
i = ϕ

(n+k)
i , ∂xk

ψ
(n)
j = −ψ

(n−k)
j , (k = 1, 2,−1),

⎫
(2.19) 

and 

.

∂x2m
(n)
i,j = ϕ

(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j ,

∂x−1
m

(n)
i,j = −ϕ

(n−1)
i ψ

(n+1)
j ,

m
(n+1)
i,j = m

(n)
i,j + ϕ

(n)
i ψ

(n+1)
j .

⎫
⎪⎬
⎪⎭

(2.20) 

Then the determinant 

.τn = det
1≤i,j≤N

⎛
m

(n)
i,j

⎞
(2.21) 

satisfies the bilinear equations 

.
(Dx1Dx−1

− 2)τn · τn = −2τn+1τn−1,

(D2
x1

− Dx2)τn+1 · τn = 0.

⎫
(2.22) 

Note that the two bilinear equations in (2.22) belong to an extension of the KP-

Toda hierarchy (KP stands for Kadomtsev-Petviashvili). Specifically, the first one is 

the bilinear form of the two-dimensional Toda lattice, and the second one belongs 

to the first modified KP hierarchy (Jimbo and Miwa 1983).
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Proof of Lemma 2.1 First of all, we note that utilizing the former part (2.19) of the  

differential and difference relations, we can show that the . x1 derivatives of the latter 

part (2.20) of these relations are automatically satisfied, i.e., 

.

∂x1

⎾
∂x2m

(n)
i,j

⏋
= ∂x1

⎾
ϕ

(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j

⏋
,

∂x1

⎾
∂x−1

m
(n)
i,j

⏋
= ∂x1

⎾
−ϕ

(n−1)
i ψ

(n+1)
j

⏋
,

∂x1

⎾
m

(n+1)
i,j

⏋
= ∂x1

⎾
m

(n)
i,j + ϕ

(n)
i ψ

(n+1)
j

⏋

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23) 

automatically hold. For instance, for the first of those latter equations in (2.20), we 

see from the former relations (2.19) that 

. ∂x1

⎾
∂x2m

(n)
i,j

⏋
= ∂x2[ϕ

(n)
i ψ

(n)
j ] = ϕ

(n+2)
i ψ

(n)
j − ϕ

(n)
i ψ

(n−2)
j ,

and 

. ∂x1

⎾
ϕ

(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j

⏋

= ϕ
(n+2)
i ψ

(n)
j − ϕ

(n+1)
i ψ

(n−1)
j + ϕ

(n+1)
i ψ

(n−1)
j − ϕ

(n)
i ψ

(n−2)
j

= ϕ
(n+2)
i ψ

(n)
j − ϕ

(n)
i ψ

(n−2)
j .

Thus, the first equation in (2.23) is valid. The other two equations in (2.23) can 

be similarly verified. However, the validity of the . x1 derivative equations in (2.23) 

does not guarantee the validity of the original equations in (2.20). This is why we 

still need to list (2.20) as part of our conditions in addition to (2.19) in Lemma 2.1. 

With that said, the fact of the . x1 derivative of the latter relations (2.20) being 

valid [when (2.19) are valid] does suggest that, in practice, if choices of .m
(n)
i,j , 

.ϕ
(n)
i and .ψ

(n)
j satisfy the former relations (2.19), then they often satisfy the latter 

relations (2.20) automatically as well. This fact can be helpful when one looks for 

appropriate .m
(n)
i,j , .ϕ

(n)
i and .ψ

(n)
j functions to meet all these differential and difference 

relations. 

We start with the differential formula of determinant, 

.∂x det
1≤i,j≤N

(aij ) =
N⎲

i,j=1

Δij∂xaij , (2.24) 

and the expansion formula of bordered determinant, 

. det

⎛
aij bi

cj d

⎞
= −

⎲

i,j

Δijbicj + d det(aij ), (2.25)
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where .Δij is the .(i, j)-cofactor of the matrix .(aij ). By using these determinant 

formulae as well as the relations (2.19) and (2.20) repeatedly, we can verify that 

the derivatives and shifts of the . τ function (2.21) are expressed by the bordered 

determinants as follows, 

. ∂x1τn =
|||||

m
(n)
i,j ϕ

(n)
i

−ψ
(n)
j 0

||||| ,

∂2x1τn =
|||||

m
(n)
i,j ϕ

(n+1)
i

−ψ
(n)
j 0

||||| +
|||||

m
(n)
i,j ϕ

(n)
i

ψ
(n−1)
j 0

||||| ,

∂x2τn =
|||||

m
(n)
i,j ϕ

(n+1)
i

−ψ
(n)
j 0

||||| −
|||||

m
(n)
i,j ϕ

(n)
i

ψ
(n−1)
j 0

||||| ,

∂x−1
τn =

|||||
m

(n)
i,j ϕ

(n−1)
i

ψ
(n+1)
j 0

||||| ,

(∂x1∂x−1
− 1)τn =

|||||||

m
(n)
i,j ϕ

(n−1)
i ϕ

(n)
i

ψ
(n+1)
j 0 −1

−ψ
(n)
j −1 0

|||||||
,

τn+1 =
|||||

m
(n)
i,j ϕ

(n)
i

−ψ
(n+1)
j 1

||||| ,

τn−1 =
|||||
m

(n)
i,j ϕ

(n−1)
i

ψ
(n)
j 1

||||| ,

∂x1τn+1 =
|||||

m
(n)
i,j ϕ

(n+1)
i

−ψ
(n+1)
j 0

||||| ,

∂2x1τn+1 =
|||||

m
(n)
i,j ϕ

(n+2)
i

−ψ
(n+1)
j 0

||||| +

|||||||

m
(n)
i,j ϕ

(n)
i ϕ

(n+1)
i

−ψ
(n)
j 0 0

−ψ
(n+1)
j 1 0

|||||||
,

∂x2τn+1 =
|||||

m
(n)
i,j ϕ

(n+2)
i

−ψ
(n+1)
j 0

||||| −

|||||||

m
(n)
i,j ϕ

(n)
i ϕ

(n+1)
i

−ψ
(n)
j 0 0

−ψ
(n+1)
j 1 0

|||||||
.

From the Jacobi formula of determinants, 

.

||||||

aij bi ci

dj e f

gj h k

||||||
×

||aij

|| =
||||
aij ci

gj k

|||| ×
||||
aij bi

dj e

|||| −
||||
aij bi

gj h

|||| ×
||||
aij ci

dj f

|||| ,
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we immediately obtain the identities, 

. (∂x1∂x−1
− 1)τn × τn = ∂x1τn × ∂x−1

τn − (−τn−1)(−τn+1),

1

2
(∂2x1 − ∂x2)τn+1 × τn = ∂x1τn+1 × ∂x1τn − τn+1

1

2
(∂2x1 + ∂x2)τn,

which are the bilinear equations (2.22). This completes the proof. ⨅⨆

Notice from the first equation in (2.19) that the matrix element .m
(n)
i,j can be 

written as 

.m
(n)
i,j =

⎰ x1

ϕ
(n)
i ψ

(n)
j dx1. (2.26) 

For this reason, the determinant (2.21) is often called the Gram determinant. Let us 

define 

.f = τ0, g = τ1, h = τ−1, (2.27) 

then these are the Gram determinant solutions to the (2+1)-dimensional system, 

.
(Dx1Dx−1

− 2)f · f = −2gh,

(D2
x1

− Dx2)g · f = 0,

⎫
(2.28) 

which is nothing but the bilinear equations (2.15) by writing .x1 = x, .x2 = it/2 and 

.x−1 = −y. 

(b) Dimensional reduction 

Next we derive algebraic solutions satisfying both the (2+1)-dimensional bilinear 

equations (2.15) and the dimension reduction condition (2.16), hence satisfying 

the (1+1)-dimensional system (2.17). These solutions are obtained by choosing the 

matrix elements appropriately in the Gram determinant solution in Lemma 2.1. 

Lemma 2.2 We define matrix elements .m
(n)
i,j by 

.m
(n)
i,j = AiBjm

(n)|p=1,q=1, m(n) = (p + 1)(q + 1)

p + q

⎛
−p

q

⎞n

eξ+η, . (2.29) 

ξ = 
1 

p 
x−1 + px1 + p2x2 + ξ0(p), η = 

1 

q 
x−1 + qx1 − q2x2 + η0(q), (2.30) 

where . Ai and . Bj are differential operators with respect to p and q as 

.Ai = 1

i!
(
p∂p

)i
, Bj = 1

j !
(
q∂q

)j
, (2.31)
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and .ξ0(p), .η0(q) are arbitrary functions of p, q, respectively. Then the determinant 

.τn = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

⎞
(2.32) 

satisfies the bilinear equations 

.

(
D2

x1
+ 2

)
τn · τn = 2τn+1τn−1,(

D2
x1

− Dx2

)
τn+1 · τn = 0.

⎫
(2.33) 

Proof First let us introduce .ϕ(n) and .ψ (n) as 

.ϕ(n) = (p + 1)pneξ , ψ (n) = (q + 1)(−q)−neη, (2.34) 

where . ξ and . η are as given in Eq. (2.30). Then, it is easy to see that these functions, 

together with .m(n) in Eq. (2.29), satisfy the differential and difference relations 

.
∂x1m

(n) = ϕ(n)ψ (n),

∂xk
ϕ(n) = ϕ(n+k), ∂xk

ψ (n) = −ψ (n−k), (k = 1, 2,−1),

⎫
(2.35) 

and 

.

∂x2m
(n) = ϕ(n+1)ψ (n) + ϕ(n)ψ (n−1),

∂x−1
m(n) = −ϕ(n−1)ψ (n+1),

m(n+1) = m(n) + ϕ(n)ψ (n+1).

⎫
⎬
⎭ (2.36) 

Therefore, by defining 

.m̃
(n)
i,j = AiBjm

(n), ϕ
(n)
i = Aiϕ

(n), ψ
(n)
j = Bjψ

(n), (2.37) 

we see that these .m̃
(n)
i,j , .ϕ

(n)
i and .ψ

(n)
j obey the differential and difference rela-

tions (2.19)–(2.20) since operators . Ai and . Bj commute with differentials . ∂xk
. 

Lemma 2.1 then tells us that for an arbitrary sequence of indices . (i1, i2, · · · ,

.iN ; j1, j2, · · · , jN ), the determinant 

.τn = det
1≤ν,μ≤N

⎛
m̃

(n)
iν ,jμ

⎞
(2.38) 

satisfies the (2+1)-dimensional bilinear equations (2.22). 

Next we constrain the above determinant . τn so that it satisfies the dimension 

reduction condition (2.16). From the Leibniz rule, we have the general operator 

equation
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.(p∂p)if (p) =
i⎲

l=0

⎛
i

l

⎞⎾
(p∂p)lf (p)

⏋
(p∂p)i−l (2.39) 

for any function .f (p). Since 

.(p∂p)l(p + 1

p
) = p + (−1)l

p
, (2.40) 

the above operator equation then gives 

.(p∂p)i(p + 1

p
) =

i⎲

l=0

⎛
i

l

⎞⎛
p + (−1)l

p

⎞
(p∂p)i−l . (2.41) 

Thus, 

. Ai(p + 1

p
) = 1

i!

i⎲

l=0

⎛
i

l

⎞⎛
p + (−1)l

p

⎞
(p∂p)i−l

=
i⎲

l=0

1

l! (i − l)!

⎛
p + (−1)l

p

⎞
(p∂p)i−l =

i⎲

l=0

1

l!

⎛
p + (−1)l

p

⎞
Ai−l,

(2.42) 

and similarly 

.Bj (q + 1

q
) =

j⎲

l=0

1

l!

⎛
q + (−1)l

q

⎞
Bj−l . (2.43) 

By using these relations, we find that 

. (∂x1 + ∂x−1
)m̃

(n)
i,j = AiBj (∂x1 + ∂x−1

)m(n) = AiBj

⎛
p + q + 1

p
+ 1

q

⎞
m(n)

=
i⎲

l=0

1

l!

⎛
p + (−1)l

p

⎞
Ai−lBjm

(n) +
j⎲

l=0

1

l!

⎛
q + (−1)l

q

⎞
AiBj−lm

(n)

=
i⎲

l=0

1

l!

⎛
p + (−1)l

p

⎞
m̃

(n)
i−l,j +

j⎲

l=0

1

l!

⎛
q + (−1)l

q

⎞
m̃

(n)
i,j−l . (2.44) 

Now let us take .p = 1 and .q = 1. Then the above equation shows that . m̃
(n)
i,j

|||
p=1,q=1

satisfies the contiguity relation,
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. (∂x1 + ∂x−1
) m̃

(n)
i,j

|||
p=q=1

= 2

i⎲

l=0
l:even

1

l! m̃
(n)
i−l,j

|||
p=q=1

+ 2

j⎲

l=0
l:even

1

l! m̃
(n)
i,j−l

|||
p=q=1

.

(2.45) 

By using this relation and the formula (2.24), the differential of the determinant 

.τ̃n = det
1≤i,j≤N

⎛
m̃

(n)
2i−1,2j−1

|||
p=1,q=1

⎞
(2.46) 

is calculated as 

. (∂x1 + ∂x−1
)τ̃n =

N⎲

i=1

N⎲

j=1

Δij (∂x1 + ∂x−1
)

⎛
m̃

(n)
2i−1,2j−1

|||
p=q=1

⎞

=
N⎲

i=1

N⎲

j=1

Δij

⎛
⎜⎝2

2i−1⎲

l=0
l:even

1

l! m̃
(n)
2i−1−l,2j−1

|||
p=q=1

+2

2j−1⎲

l=0
l:even

1

l! m̃
(n)
2i−1,2j−1−l

|||
p=q=1

⎞
⎟⎠

= 2

N⎲

i=1

2i−1⎲

l=0
l:even

1

l!

N⎲

j=1

Δij m̃
(n)
2i−1−l,2j−1

|||
p=q=1

+2

N⎲

j=1

2j−1⎲

l=0
l:even

1

l!

N⎲

i=1

Δij m̃
(n)
2i−1,2j−1−l

|||
p=q=1

,

where .Δij is the .(i, j)-cofactor of the matrix .(m̃
(n)
2i−1,2j−1|p=1,q=1). In the first term 

on the right-hand side of the above equation, only the term with .l = 0 survives and 

the other terms vanish, since for .l = 2, 4, · · · , the summation with respect to j is 

a determinant with two identical rows. Similarly in the second term, only the term 

with .l = 0 remains. Thus the right side of the above equation becomes 

. 2

N⎲

i=1

N⎲

j=1

Δij m̃
(n)
2i−1,2j−1

|||
p=q=1

+ 2

N⎲

j=1

N⎲

i=1

Δij m̃
(n)
2i−1,2j−1

|||
p=q=1

= 4Nτ̃n.

(2.47) 

Therefore . ̃τn satisfies the dimension reduction condition 

.(∂x1 + ∂x−1
)τ̃n = 4Nτ̃n. (2.48) 

We note that the above derivation of Eq. (2.48) using cofactor expansions can also 

be done using just determinant notations, which would look simpler. Since . ̃τn is
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a special case of . τn in Eq. (2.38), it also satisfies the bilinear equations (2.22) 

with . τn replaced by . ̃τn. From (2.22) and (2.48), we see that . ̃τn satisfies the (1+1)-

dimensional bilinear equations (2.33). Now we can take .x−1 = 0; then . m̃
(n)
i,j |p=1,q=1

and . ̃τn reduce to .m
(n)
i,j and . τn in Lemma 2.2, and this . τn satisfies the bilinear 

equations (2.33). This completes the proof of Lemma 2.2. 

The above proof uses the technique of dimension reduction. This reduction is a 

procedure to derive solutions of a lower dimensional system from those of a higher 

dimensional one. By using the reduction condition (2.48), the derivative with respect 

to a variable .x−1 is replaced by the derivative with respect to another variable . x1. 

Then in the solution, .x−1 is just a parameter to which we can substitute any value 

(such as zero as we did above). 

It is remarkable that the determinant expression of the solution (2.32) has a 

quite unique structure: the indices of matrix elements, which label the degree of 

polynomial, have the step of 2. This comes from the requirement of the dimension 

reduction condition (2.48), i.e., since the contiguity relation (2.45) relates matrix 

elements with indices shifted by even numbers, a determinant with indices of step 2 

could satisfy that dimension reduction condition. 

From Lemma 2.2, by writing .x1 = x and .x2 = it/2, we find that .f = τ0, . g = τ1
and .h = τ−1 satisfy the (1+1)-dimensional system (2.17). 

To introduce explicit free parameters into these .(f, g, h) solutions, we expand 

free functions .ξ0(p) and .η0(q) in Eq. (2.30) as power series of .lnp and . ln q, i.e., 

.ξ0(p) =
∞⎲

k=1

ak(lnp)k, η0(q) =
∞⎲

k=1

bk(ln q)k, (2.49) 

where . ak and . bk are free complex constants. This introduction of free parameters 

is different from the original one in Ohta and Yang (2012a), and this new way will 

lead to simpler expressions of rogue waves. 

(c) Complex conjugacy conditions and regularity 

Now we consider the complex conjugate conditions (2.18). These conditions are 

.τ0 = τ ∗
0 , τ−1 = τ ∗

1 . (2.50) 

Since .x1 = x is real and .x2 = it/2 is pure imaginary, the above condition is easily 

satisfied by taking 

.bk = a∗
k . (2.51) 

Indeed, under the condition (2.51) we have  

.(m
(n)
i,j )∗ = m

(n)
i,j

|||
ak↔bk,x2↔−x2

= m
(−n)
j,i , (2.52)
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and therefore 

.τ ∗
n = τ−n. (2.53) 

As a result, .f = τ0 and .g = τ1 satisfy the bilinear equations (2.14) of the  NLS  

equation, and hence the function .u = (g/f )eit is a solution to the NLS equation. In 

this solution, .g/f is a rational function. 

We can further show that this u solution is nonsingular, i.e., .f = τ0 is nonzero for 

all .(x, t). To prove it, we notice that . τ0 is the determinant of a Hermitian matrix . M =
mat

1≤i,j≤N

⎛
m

(0)
2i−1,2j−1

⎞
. For any non-zero column vector .v = (v1, v2, · · · , vN )T and 

. v
† being its complex transpose, we have 

. v
†Mv =

N⎲

i,j=1

v∗
i m

(0)
2i−1,2j−1vj

=
N⎲

i,j=1

v∗
i vj A2i−1B2j−1

(p + 1)(q + 1)

p + q
eξ+η

||||
p=q=1

=
N⎲

i,j=1

v∗
i vj A2i−1B2j−1

⎰ x

−∞
(p + 1)(q + 1)eξ+ηdx

||||
p=q=1

=
⎰ x

−∞

N⎲

i,j=1

v∗
i vjA2i−1B2j−1(p + 1)(q + 1)eξ+η

||
p=q=1

dx

=
⎰ x

−∞

|||||

N⎲

i=1

v∗
iA2i−1(p + 1)eξ

||
p=1

|||||

2

dx > 0, (2.54) 

which proves that the Hermitian matrix M is positive definite. Therefore the 

denominator .f = detM > 0, so the solution u is nonsingular. 

(d) Rogue wave solutions in differential operator form 

Summarizing the above results, we obtain the following intermediate result on 

rogue wave solutions in the NLS equation. 

Lemma 2.3 The NLS equation (2.5) admits the following nonsingular rational 

solutions in differential form, 

.uN (x, t) = τ1

τ0
eit , (2.55) 

where 

.τn = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

⎞
, (2.56)
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the matrix elements are defined by 

.m
(n)
i,j = AiBjm

(n)|p=1,q=1, m(n) = (p + 1)(q + 1)

p + q

⎛
−p

q

⎞n

eξ+η, . (2.57) 

ξ = px + 
1 

2 
p2it + 

∞⎲

k=1 

ak(ln p)k , η  = qx − 
1 

2 
q2it + 

∞⎲

k=1 

a∗
k (ln q)k , (2.58) 

operators . Ai and . Bj are defined in Eq. (2.31), and .a1, a2, · · · , a2N−1 are arbitrary 

complex constants. 

Compared to the choice of .m(n) in Ohta and Yang (2012a), our choice of . m(n)

in Eq. (2.57) contains an extra factor of .(p + 1)(q + 1). This factor is optional for 

the above differential form of rogue wave solutions, i.e., functions .uN (x, t) with 

or without this extra factor both give true rogue wave solutions. The benefit of this 

extra factor is that it will facilitate our derivation of explicit rogue wave expressions 

through Schur polynomials, which we will do next. 

(e) Explicit rogue wave solutions through Schur polynomials 

Finally we simplify the rogue wave solutions in Lemma 2.3 and derive the 

solution formulae given in Theorem 2.1. 

The generator . G of the differential operator .(p∂p)i(q∂q)j is 

. G =
∞⎲

i=0

∞⎲

j=0

κ i

i!
λj

j ! (p∂p)i(q∂q)j = exp(κp∂p + λq∂q) = exp(κ∂lnp + λ∂ln q).

(2.59) 

Thus, for any function .F(p, q), we have  

.GF(p, q) = F(eκp, eλq). (2.60) 

This relation can also be seen by expanding its right hand side into Taylor series of 

.(κ, λ) around the point .(0, 0). By applying this relation to .m(n) in Eq. (2.57), we get 

. Gm(n) = (eκp + 1)(eλq + 1)

eκp + eλq
(−eκp

eλq
)n

× exp

⎛
(eκp + eλq)x + 1

2
(e2κp2 − e2λq2)it

⎞

× exp

⎛ ∞⎲

k=1

ak[ln(eκp)]k +
∞⎲

k=1

a∗
k [ln(eλq)]k

⎞
. (2.61) 

Thus,
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. 
1

m(n)
Gm(n)

||||
p=q=1

= (eκ + 1)(eλ + 1)

2(eκ + eλ)
en(κ−λ)

× exp

⎛
(eκ + eλ − 2)x + 1

2
(e2κ − e2λ)it

⎞

× exp

⎛ ∞⎲

k=1

akκ
k +

∞⎲

k=1

a∗
kλk

⎞

= 1

1 − (eκ−1)(eλ−1)

(eκ+1)(eλ+1)

exp
(
n(κ − λ) + (eκ + eλ − 2)x

+1

2
(e2κ − e2λ)it

⎞

× exp

⎛ ∞⎲

k=1

akκ
k +

∞⎲

k=1

a∗
kλk

⎞
. (2.62) 

On the right-hand side of this equation, the exponent can be rewritten as 

. n(κ − λ) +
∞⎲

k=1

κk

k! (x + 2k−1it) +
∞⎲

k=1

λk

k! (x − 2k−1it) +
∞⎲

k=1

akκ
k +

∞⎲

k=1

a∗
kλk

=
∞⎲

k=1

x̂+
k κk +

∞⎲

k=1

x̂−
k λk, (2.63) 

where 

.
x̂+
1 = x + it + n + a1, x̂−

1 = x − it − n + a∗
1 ,

x̂+
k = 1

k! (x + 2k−1it) + ak, x̂−
k = (x̂+

k )∗, k ≥ 2,

⎫
(2.64) 

and the prefactor can be rewritten as 

. 

∞⎲

ν=0

⎛
(eκ − 1)(eλ − 1)

(eκ + 1)(eλ + 1)

⎞ν

=
∞⎲

ν=0

⎛
κλ

4

⎞ν

exp

⎛
ν ln

⎛
4

κλ
tanh

κ

2
tanh

λ

2

⎞⎞

=
∞⎲

ν=0

⎛
κλ

4

⎞ν

exp

⎛
ν

∞⎲

k=1

sk(κ
k + λk)

⎞
, (2.65) 

where . sk is defined in (2.11). Therefore we obtain 

.
1

m(n)
Gm(n)

||||
p=1,q=1

=
∞⎲

ν=0

⎛
κλ

4

⎞ν

exp

⎛ ∞⎲

k=1

(x̂+
k + νsk)κ

k +
∞⎲

k=1

(x̂−
k + νsk)λ

k

⎞
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= 

∞⎲

ν=0

⎛
κλ 

4

⎞ν ∞⎲

i=0 

Si(x̂
+ + νs)κ i 

∞⎲

j=0 

Sj (x̂
− + νs)λj 

= 

∞⎲

i=0 

∞⎲

j=0 

∞⎲

ν=0 

1 

4ν 
Si(x̂

+ + νs)Sj (x̂
− + νs)κ i+ν λj+ν , (2.66) 

and taking the coefficient of .κ iλj of both sides, we find 

.

AiBjm
(n)

||
p=1,q=1

m(n)
||
p=1,q=1

=
min(i,j)⎲

ν=0

1

4ν
Si−ν(x̂

+ + νs)Sj−ν(x̂
− + νs) ≡ φ̂

(n)
i,j , (2.67) 

where . ̂x
±
are defined in Eq. (2.64). Thus, .m

(n)
i,j in Lemma 2.3 is calculated as 

.m
(n)
i,j = m(n)

|||
p=1,q=1

φ̂
(n)
i,j , (2.68) 

and the . τn determinent in Lemma 2.3 is found to be 

.τn =
⎛

m(n)
|||
p=1,q=1

⎞N

σ̂n, (2.69) 

where 

.σ̂n = det
1≤i,j≤N

⎛
φ̂

(n)
2i−1,2j−1

⎞
. (2.70) 

Substituting this relation into Eq. (2.55), and recalling that the NLS equation is 

invariant if u is changed to . −u, we see that function .uN (x, t) = (σ̂1/σ̂0)e
it satisfies 

the NLS equation as well. 

Now, we simplify . σ̂n and show that it can be replaced by . σn in Theorem 2.1. 

Through a shift of the x and t axes, we normalize .a1 = 0 without loss of generality. 

Then, .x̂±
1 = x±

1 , where . x±
1 are as defined in Theorem 2.1. In addition, we can show 

that . x̂±
2k are dummy variables that do not affect the value of . σ̂n and can thus be set 

as zero, so that . ̂x
±
can be replaced by . x± of Theorem 2.1, hence . σ̂n becoming . σn

of Theorem 2.1. To show this, we split the vectors .x̂
±
(n) into .x±(n) + w

±, where 
.x

±(n) is as defined in Theorem 2.1 (see Eq. (2.10)), and .w
± = (0, x̂±

2 , 0, x̂±
4 , · · · ). 

Since .x̂
±
(n) + νs = x

±(n) + νs + w
±, it is easy to show from the definition of 

Schur polynomials (2.2) that 

.Sk(x̂
±
(n) + νs) =

[k/2]⎲

j=0

Sj (ŵ
±
)Sk−2j (x

±(n) + νs), (2.71)
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where .ŵ
± = (x̂±

2 , x̂±
4 , · · · ). To proceed further, we repeatedly use the formula 

. det(aij + bicj ) = det

⎛
aij bi

−cj 1

⎞
, (2.72) 

which allows us to rewrite the determinant . σ̂n in Eq. (2.70) into the following . 3N ×
3N determinant, 

.σ̂n =
||||

ON×N Φ̂N×2N

−Ψ̂2N×N I2N×2N

|||| , (2.73) 

where . O and . I are the zero and unit matrices, . Φ̂i,j = 2−(j−1)S2i−j

⎾
x̂

+
(n)

.+(j − 1)s], and .Ψ̂i,j = 2−(i−1)S2j−i

⎾
x̂

−
(n) + (i − 1)s

⏋
. Then, utilizing the 

relation (2.71), we can apply row and column manipulations to eliminate all terms 

involving .ŵ
±
in this .3N × 3N determinant. The remaining .3N × 3N determinant 

then becomes 

.

||||
ON×N ΦN×2N

−Ψ2N×N I2N×2N

|||| , (2.74) 

where 

.
Φi,j = 2−(j−1)S2i−j

⎾
x

+(n) + (j − 1)s
⏋
,

Ψi,j = 2−(i−1)S2j−i

⎾
x

−(n) + (i − 1)s
⏋
.

⎫
(2.75) 

This new .3N × 3N determinant (2.74) is nothing but . σn in Eq. (2.8) of Theo-

rem 2.1, whose matrix element .φ
(n)
i,j is as given in Eq. (2.9), again by virtue of the 

formula (2.72). Thus, we have proved that the function .uN (x, t) = (σ1/σ0)e
it in 

Eq. (2.7) of Theorem 2.1 satisfies the NLS equation (2.5). 

(f) Boundary conditions 

Finally, we prove that the solution (2.7) satisfies the boundary conditions (2.6) 

and is thus a rogue wave. 

As we have shown above, . σn in Eq. (2.8) can be written as the . 3N × 3N

determinant (2.74), i.e., 

.σn =
||||

ON×N ΦN×2N

−Ψ2N×N I2N×2N

|||| , (2.76) 

where .Φi,j and .Ψi,j are given in Eq. (2.75). Applying the Laplace expansion to this 

determinant, we get
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. σn =
⎲

0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x+(n) + νj s)

⏋

× det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x−(n) + νj s)

⏋
. (2.77) 

In order to show the boundary asymptotics (2.6), let us estimate the degree of 

polynomials of the denominator . σ0 and numerator . σ1 in (2.7). The degree of the 

polynomial .Sk(x
± + νs) in .(x, t) is k and its leading term appears in the monomial 

.(x±
1 )k/k!, i.e., the leading term is given by .(x ± it)k/k!. Therefore both of the 

degrees of determinants inside the summation of the Laplace expansion (2.77) are  

given by .1 + 3 + · · · + (2N − 1) − ν1 − ν2 − · · · − νN . Then, the highest degree 

term in (2.77) comes from the lowest possible . νj choices of .νj = j − 1, i.e., 

.ν = (0, 1, · · · , N −1). For this choice, the highest degree term in . σn is nonzero and 

can be calculated explicitly as (Ohta and Yang 2012a) 

.

⎛
0!1! · · · (N − 1)!
1!3! · · · (2N − 1)!

⎞2

(x2 + t2)N(N+1)/2, (2.78) 

which is independent of n. Hence the .uN (x, t) solution (2.7) satisfies the boundary 

conditions (2.6). 

By now, Theorem 2.1 is fully proved. 

Illustration of Low-Order Rogue Waves 

Now we graphically illustrate some low-order rogue waves in the NLS equation. 

Taking .N = 1 in Theorem 2.1, we get the first-order (fundamental) rogue wave 

in the NLS equation as 

.u1(x, t) =
⎛
1 − 4(1 + 2it)

1 + 4x2 + 4t2

⎞
eit . (2.79) 

This is the rogue wave first reported by Peregrine (1983) and is often called 

the Peregrine wave in the literature. This Peregrine wave is displayed in Fig. 2.1 

(left column). This wave rises from the unit-amplitude background, reaches a 

maximum amplitude of three times the background, and then retreats back to the 

unit background again. In addition, its wave profile features a high hump in the 

middle, flanked by two dips on the sides. 

Taking .N = 2 in Theorem 2.1, we get second-order rogue waves in the NLS 

equation as 

.u2(x, t; a3) =
⎛
1 − G2

F2

⎞
eit . (2.80) 

where



2.1 Nonlinear Schrödinger Equation 77

Fig. 2.1 Graphs of NLS rogue waves. Left column: the fundamental rogue (Peregrine) wave in 

Eq. (2.79); middle column: a second-order rogue wave with .a3 = 0 (second-order super rogue 

wave); right column: a second-order rogue wave with .a3 = 100 (a rogue triplet). Upper row: 3D 

plots; lower row: density plots 

. F2 = 9 + 396t2 + 432t4 + 64t6 + 108x2 − 288t2x2 + 192t4x2 + 48x4

+192t2x4 + 64x6 + 48a3[−4it3 + 3x + 12t2x − 4x3 + 3it (−3 + 4x2)]
+48a∗

3 [4it3 + 3x + 12t2x − 4x3 − 3it (−3 + 4x2)] + 576|a3|2, (2.81) 

and 

. G2 = 12
⎾
−3 − 30it + 72t2 + 16it3 + 80t4 + 32it5 + 24x2

−48itx2 + 96t2x2 + 64it3x2 + 16x4 + 32itx4

+12(−i + 2t + 2ix)2a3 − 12(i − 2t + 2ix)2a∗
3

⏋
. (2.82) 

For two values of .a3 = 0 and 100, these two second-order rogue waves are plotted 

in the middle and right columns of Fig. 2.1, respectively. The solution with . a3 = 0

reaches a peak amplitude of five times the background level, which is the highest 

possible peak value that can be attained among all second-order rogue waves. In the 

literature, this special N -th order rogue wave that reaches the highest possible peak 

amplitude among all rogue waves of the N -th order is called a N -th order super 

rogue wave. Thus, this solution with .a3 = 0 in Fig. 2.1 is a second-order super 

rogue wave. The solution with .a3 = 100 in Fig. 2.1 shows a rogue triplet, where this 

second-order rogue wave splits into three approximate Peregrine waves appearing 

at different locations in the space-time plane forming a triangle.
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2.1.2 Peak Amplitude of the N -th Order Super Rogue Wave 

A super rogue wave has the highest possible peak amplitude among rogue waves of 

the same order. In this subsection, we calculate this maximum peak amplitude of a 

super rogue wave in the NLS equation, using bilinear expressions of rogue waves in 

Theorem 2.1. 

A super rogue wave of the NLS equation is obtained when all its internal 

parameters .a3, a5, · · · are set as zero. In this case, we can easily see that 

.x
±(n)|x→−x = −x

∓(n), x
±(n)|t→−t = [x±(n)]∗. (2.83) 

Using this symmetry, we get the spatial-temporal symmetry of a super rogue wave 

as 

.uN (−x, t) = uN (x, t), uN (x,−t) = u∗
N (x, t), (2.84) 

i.e., a super rogue wave is symmetric in x and parity-time-symmetric in t . The super 

rogue wave has a single large hump located at .x = t = 0, flanked by small 

and oscillatorily decaying tails (see Fig. 2.1). Due to the above spatial-temporal 

symmetry, the peak amplitude of a super rogue wave is attained at the origin 

.(x, t) = (0, 0). Now, we calculate this peak amplitude. 

First of all, we notice that when .x = t = n = 0, .x±(n) = (0, 0, . . . ). Thus, 

.Sodd(x±(n) + νs) = Sodd(νs) = 0. In this case, we can calculate . σ0 directly from 

that .3N × 3N determinant (2.76) as  

.σ0|x=t=0 = (−1)N

22N
2

. (2.85) 

When .x = t = 0 and .n = 1, .x±(n) = (±1, 0, 0, . . . ). In this case, it can be 

proved that .Φi,j and .Ψi,j as defined in Eq. (2.75) satisfy the following relations 

. Φi,2j = 1

2

(
Φi,2j−1 + Φi,2j+1

)
, i, j = 1, 2, . . . , . (2.86) 

Ψ2i,j = −1 

2

(
Ψ2i−1,j + Ψ2i+1,j

)
, i,  j  = 1, 2, . . . , (2.87) 

i.e., even columns of the . Φ matrix are averages of their two neighbor columns, and 

even rows of the . Ψ matrix are averages of their two neighbor rows. As a special 

case of these two general relations, we have 

.Φi,2i = 1

2
Φi,2i−1, Ψ2j,j = −1

2
Ψ2j−1,j , (2.88) 

since .Φi,2i+1 = Ψ2j+1,j = 0. In addition, since .Φi,2i = 2−(2i−1) and . Ψ2j,j =
2−(2j−1), we get
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. Φi,2i−1 = 2−(2i−2), Ψ2j−1,j = −2−(2j−2), i, j = 1, 2, . . . . (2.89) 

Proofs for the two relations (2.86)–(2.87) are similar; so we will only do 

so for (2.86). Using the definition (2.75) of the  . Φ matrix, we can see that the 

relation (2.86) is equivalent to the relation 

.S2i
(
x

+ + (2j − 1)s
)

= S2i+1

(
x

+ + (2j − 2)s
)
+ 1

4
S2i−1

(
x

+ + 2js
)
, (2.90) 

where .x
+ = (1, 0, 0, . . . ), and .i, j = 1, 2, . . . . To prove this relation, we first recall 

from the definition (2.2) of Schur polynomials and definition (2.11) of . sk coefficients 

that 

. 

∞⎲

i=0

Si

(
x

+ + (2j − 1)s
)
ϵi = eϵ+(2j−1)(s2ϵ

2+s4ϵ
4+... )

= eϵ
⎛
es2ϵ

2+s4ϵ
4+...

⎞2j−1
= eϵ

⎛
2

ϵ
tanh

ϵ

2

⎞2j−1

. (2.91) 

Similar equations can be written down for the summation series involving 

.Si

(
x

+ + 2js
)
and .Si

(
x

+ + (2j − 2)s
)
. Properly combining these three equations, 

we get the equation 

. 

∞⎲

i=−1

⎾
Si+1

(
x

+ + (2j − 2)s
)
+ 1

4
Si−1

(
x

+ + 2js
)
− Si

(
x

+ + (2j − 1)s
)⏋

ϵi

= eϵ

ϵ

⎛
2

ϵ
tanh

ϵ

2

⎞2j−2

+ ϵeϵ

4

⎛
2

ϵ
tanh

ϵ

2

⎞2j

− eϵ

⎛
2

ϵ
tanh

ϵ

2

⎞2j−1

= 1

ϵ

⎛
2

ϵ
tanh

ϵ

2

⎞2j−2

sech2
ϵ

2
. (2.92) 

Since the right side of this equation is an odd function of . ϵ, its even-power expansion 

coefficients on the left side must be zero. This quickly results in the relation (2.90), 

and hence (2.86). 

Utilizing the relations (2.86)–(2.87) to eliminate even columns of the matrix . Φ

and even rows of the matrix . Ψ in the .3N × 3N determinant (2.76) through row 

and column operations, and recalling the results in Eq. (2.89), we can reduce this 

.3N × 3N determinant to 

.σ1|x=t=0 = (−1)N

22N
2

AN , (2.93) 

where
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.AN =

|||||||||||||||

−2 1 0 · · · 0 0

1 −2 1 · · · 0 0

0 1 −2
. . .

...
...

...
...

. . .
. . . 1 0

0 0 · · · 1 −2 1

0 0 · · · 0 1 −3

|||||||||||||||

(2.94) 

is a .N × N determinant with .N − 1 number of . −2’s on the diagonal. Adding 

the second row of .AN to its first row, and then adding the first row of the 

resulting determinant to its second row, we find that .AN is equal to .−AN−1, plus a  

determinant which can be found by simple row operations to be .2(−1)N , i.e., 

.AN = −AN−1 + 2(−1)N . (2.95) 

From this relation and the fact of .A1 = −3, we readily find that . AN = (−1)N (2N +
1). Therefore, 

.σ1|x=t=0 = 2N + 1

22N
2

, (2.96) 

and 

.uN (0, 0) = eit
σ1

σ0

||||
x=t=0

= (−1)N (2N + 1)eit . (2.97) 

So, the peak amplitude of the N -th order super rogue wave is .2N + 1. 

We note that this peak amplitude of NLS super rogue waves has been previously 

obtained by Wang et al. (2017) by using rogue wave expressions out of Darboux 

transformation. 

2.1.3 Derivation by Darboux Transformation 

In the literature, rogue waves in integrable systems were often derived by Darboux 

transformation. For instance, rogue waves in the NLS equation (2.5) were derived 

by Darboux transformation in Akhmediev et al. (2009a) and Guo et al. (2012). To 

compare rogue wave derivations and their expressions from the bilinear method and 

Darboux transformation, we present derivation of NLS rogue waves by Darboux 

transformation below. 

Darboux transformation is a technique that allows one to obtain new solutions of 

an integrable system from the old ones (Matveev and Salle 1991). The scheme we 

will use for rogue wave derivations is based on the generalized Darboux transforma-

tion first proposed by Matveev and Salle (1991) and then further developed by Guo
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et al. (2012). But rogue solutions from that earlier work were not explicit. Here, we 

will go beyond the earlier work in that we will also derive completely explicit NLS 

rogue wave solutions through Schur polynomials, similar to what we have done for 

rogue waves by the bilinear method. 

Explicit expressions of NLS rogue waves from Darboux transformation are given 

by the following theorem. 

Theorem 2.2 The N -th order rogue waves of the NLS equation (2.5) from Darboux 

transformation are given by the formula 

.uN (x, t) = eit
⎛
1 + 2i

τ1

τ0

⎞
, (2.98) 

where 

. τ0 = det
1≤i,j≤N

⎛
m(i−1,j−1)

⎞
, τ1 = det

⎛(
m(i−1,j−1)

)
1≤i,j≤N

η†

μ 0

⎞
, . (2.99) 

m(i−1,j−1) = 

min{i−1,j−1}⎲

ν=0 

4−ν 

2i

⎛⎾
S2i−1−2ν(X

+)
⏋∗ 

S2j−1−2ν(X
+) 

+
⎾
S2i−1−2ν(X

−)
⏋∗ 

S2j−1−2ν(X
−)

⎞
, . (2.100) 

X
±(ν) =

(
X± 

1 , X
± 

2 , . . .
)
, . (2.101) 

X± 

2k+1 =
√
2 

⎡ 

⎣ 

k⎲

j=0 

±(δj,0x + δ[j/2],0it + aj )

⎛ 1 
2 

k − j

⎞⎛
1 

2

⎞k−j 

+ 
(2k)! 

23k+1(k!)2 
(−1)k 

(2k + 1)

⏋
, . (2.102) 

X± 

2k(ν) = (ν + 1)

⎾
(−1)k 

k · 2k

⏋
, . (2.103) 

μ = (μ1, μ2, · · ·  , μN ), η = (η1, η2, · · ·  , ηN ), . (2.104) 

μj = S2j−1(Y
+), ηj = S2j−1(Y

−), Y
± =

(
Y± 

1 , Y
± 

2 , . . .
)
, . (2.105) 

Y± 

2k+1 = X± 

2k+1, Y± 

2k 
= 0, (2.106) 

.δj,0 is the Kronecker delta notation (i.e., .δ0,0 = 1 and zero otherwise), . [j/2]
represents the integer part of . j/2, 

.

⎛
α

n

⎞
≡ α(α − 1) · · · (α − n + 1)

n! ,

⎛
α

0

⎞
≡ 1, (2.107) 

and .a0, a1, · · · , aN−1 are free complex constants.
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Notice that these rogue wave expressions from Darboux transformation are very 

different from those presented in Theorem 2.1 by the bilinear method. 

Proof We begin with the Lax pair of the NLS equation (Zakharov and Shabat 1971), 

. Φx = U(Q, λ)Φ, . (2.108) 

Φt = V (Q,  λ)Φ, (2.109) 

where 

. U(Q, λ) = −iλσ3 + Q, . (2.110) 

V (Q,  λ)  = −iλ2σ3 + λQ + 
1 

2 
iσ3

⎛
Qx − Q2

⎞
, . (2.111) 

Q(x, t) =
⎛

0 u(x, t) 

−u∗(x, t) 0

⎞
, σ3 = diag(1,−1). (2.112) 

The compatibility condition of this Lax pair is the zero-curvature equation 

.Ut − Vx + [U,V ] = 0, (2.113) 

which yields the NLS equation (2.5). 

To construct the Darboux transformation, we also introduce the adjoint-spectral 

problem for (2.108)–(2.109): 

. Ψx = −Ψ U(Q, λ), . (2.114) 

Ψt = −Ψ V (Q, λ). (2.115) 

Due to the symmetry of the potential matrix Q in Eq. (2.112), it is easy to see 

that matrices U and V admit the symmetries 

.U†(x, t, λ∗) = −U(x, t, λ), V †(x, t, λ∗) = −V (x, t, λ), (2.116) 

where . † represents Hermitian, i.e., complex transpose. Using these .U,V symmetries 

and the Lax pair equations (2.108)–(2.109), we get 

.

⎾
Φ†(x, t)

⏋
x

=
⎾
Φ†(x, t)

⏋
U(x, t, λ∗), (2.117) 

and 

.

⎾
Φ†(x, t)

⏋
t
=

⎾
Φ†(x, t)

⏋
V (x, t, λ∗). (2.118)
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Thus, if .Φ(x, t) is a wave function of the original Lax pair system (2.108)– 

(2.109) at  . λ, then .Φ†(x, t) would be an adjoint wave function of the adjoint linear 

system (2.114)–(2.115) at . λ∗. 
For the Lax pair (2.108)–(2.109), its Darboux transformation is (Guo et al. 2012) 

.T = I −
λ1 − λ∗

1

λ − λ∗
1

P1, P1 =
Φ1Φ

†
1

Φ
†
1Φ1

, (2.119) 

where . Φ1 is a (column vector) solution of the original Lax pair (2.108)–(2.109) 

with spectral parameter .λ = λ1. This Darboux transformation closely mimics 

the dressing matrix in the Riemann-Hilbert formulation of the inverse scattering 

transform for the NLS equation (Novikov et al. 1984; Yang 2010). Under this 

transformation, if .Φ(x, t, λ) satisfies the original Lax pair equations (2.108)– 

(2.109), then the new function 

.Φ[1] = T Φ (2.120) 

would satisfy the same equations, except that the potential matrix Q is transformed 

to 

.Q[1] = Q + i(λ∗
1 − λ1) [σ3, P1] , (2.121) 

where .[σ3, P1] ≡ σ3P1 − P1σ3 is the commutator. In other words, a new NLS 

solution 

.u[1] = u + 2i(λ∗
1 − λ1)(P1)1,2 (2.122) 

is obtained from the old solution u, where .(P1)1,2 is the first row, second column 

element of matrix . P1. This relation between the old and new NLS solutions is the 

Bäcklund transformation for the NLS equation. 

The N -fold Darboux transformation is N iterations of the above elementary 

Darboux transformation. These N iterations can be lumped together into a single N -

fold Darboux matrix, which would yield a concise algebraic expression for the new 

solutions. There are two different versions of this N -fold Darboux transformation 

for the NLS equation, one in Guo et al. (2012), and the other in Huang and 

Ling (2016). The latter version closely resembles the N -fold dressing matrix in 

the Riemann-Hilbert formulation of the inverse scattering transform for the NLS 

equation (Novikov et al. 1984; Yang 2010), and this version is presented below. 

Lemma 2.4 The N -fold Darboux transformation matrix for the NLS equation (2.5) 

is 

.TN = I − YM−1D−1Y †, (2.123)
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where 

. Y = [ Φ1, Φ2, . . . , ΦN ]2×N , . (2.124) 

M =
(
mi,j

)
1≤i,j≤N 

, mi,j = 
Φ

† 
i Φj 

λj − λ∗
i 

, . (2.125) 

D = diag
(
λ − λ∗

1, λ  − λ∗
2, . . . , λ  − λ∗

N

)
, (2.126) 

.λk ∈ C+ (i.e., . λk in upper complex plane), and .Φk ≡ Φ(x, t, λk) solves the Lax 

pair equations (2.108)–(2.109) at .λ = λk . The Bäcklund transformation relating the 

new NLS solution .u[N ] to the old solution u is 

.u[N ] = u − 2i
⎛
YM−1Y †

⎞
1,2

= u + 2i

||||
M Y

†
2

Y1 0

||||
|M| , (2.127) 

where . Y1 and . Y2 are the first and second rows of matrix Y , respectively. 

This N -fold Darboux transformation has been reported by Huang and Ling 

(2016), and the last expression in Eq. (2.127) can be found in Yang (2010). The 

proof of this lemma can be given along the lines of Yang (2010) and Bian et al. 

(2015). 

To derive rogue waves, we need general eigenfunctions for the Lax pair 

system (2.108)–(2.109). Choosing a plane wave solution .u[0] = eit as the seed 

solution and introducing a diagonal matrix .D = diag
(
eit/2, e−it/2

)
, we can derive 

the general wave function for this linear system as 

.Φ(x, t) = Dφ(x, t), (2.128) 

where 

. φ(x, t) =
⎛

c1e
A + c2e

−A

c3e
A + c4e

−A

⎞
, . (2.129) 

A =
√

−λ2 − 1(x + λt), . (2.130) 

c3 = c1

⎛
iλ +

√
−λ2 − 1

⎞
, c4 = c2

⎛
iλ −

√
−λ2 − 1

⎞
, (2.131) 

and . c1, . c2 are arbitrary complex constants. Here, .A /= 0, i.e., .λ /= ±i, in order 

for (2.128) to be a general wavefunction of the linear system (2.108)–(2.109). 

Rogue waves are rational solutions. To derive rogue waves from the above 

wavefunctions, we need to choose spectral parameters . λ so that the exponent A 

approaches zero under certain limits. These exponents would vanish when .λ = i. 

Thus, we will set .λ = ih and take the limit of .h → 1.
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The wavefunction .φ(x, t) in (2.129) can be put in a more convenient form. With 

a scaling to this wavefunction, one of its two free complex parameters . c1 and . c2 can 

be removed. Its other free complex parameter can be absorbed into the exponent A. 

Then, with .λ = ih, the wavefunction .φ(x, t) in (2.129) can be written equivalently 

as 

. φ(x, t;h) = 1√
h − 1

⎛
⎝ sinh

⎾
A + 1

2
ln

⎛
h +

√
h2 − 1

⎞⏋

sinh
⎾
−A + 1

2
ln

⎛
h +

√
h2 − 1

⎞⏋
⎞
⎠ , . (2.132) 

A =
√

h2 − 1(x + iht + θ), (2.133) 

where .θ = θ(h) is an arbitrary complex parameter. Here, the scaling constant 

.1/
√

h − 1 in the wavefunction .φ(x, t) is introduced so that this wavefunction does 

not approach zero in the limit of .h → 1 (i.e., .λ → i). This scaling of the 

wavefunction clearly does not affect the solution. 

In the N -fold Darboux transformation in Lemma 2.4, there are N spectral 

parameters .(λ1, λ2, · · · , λN ), and we want all of them to approach . i. Corresponding 

to these N spectral parameters, there would be N wavefunctions . (φ1, φ2, · · · , φN )

with their own . θ parameters .(θ1, θ2, · · · , θN ). Since .θj (hj ) is an arbitrary complex 

parameter, we can expand .θj (hj ) through parameters in . hj as well. Thus, we set 

.λj = ihj , hj = 1 + ϵj , θj =
∞⎲

k=0

akϵ
k
j , 1 ≤ j ≤ N, (2.134) 

where .a0, a1, . . . are free complex constants. It is important that these complex 

constants . ak are j -independent, i.e., independent of the spectral parameter . λj . This  

fact is needed as we will quickly see below. 

We also expand the wave function .φj (x, t) in (2.132) at . hj and the adjoint wave 

function .φ
†
j (x, t) at . h∗

j as 

.φj (x, t) =
∞⎲

k=0

φ(k)(x, t)ϵk
j , φ

†
j (x, t) =

∞⎲

k=0

(φ(k))†(x, t) (ϵ∗
j )k, (2.135) 

and expand the matrix element .mi,j in Lemma 2.4 as 

.mi,j =
Φ

†
i Φj

λj − λ∗
i

=
φ
†
i φj

2i + ϵj − ϵ∗
i

=
∞⎲

k=0

∞⎲

l=0

m(k,l) (ϵ∗
i )kϵl

j . (2.136) 

Since expansion coefficients . ak in (2.134) for . θj are j -independent, we can see that 

expansions (2.135)–(2.136) for different j or .(i, j) are really the same expansions, 

except for the differences in . ϵj and . ϵ∗
j values. Thus, expansion coefficients 

in (2.135)–(2.136) are  simply
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.φ(k) = 1

k!
∂kφ(x, t; 1 + ϵ)

∂ϵk

||||
ϵ=0

, (2.137) 

and 

.m(k,l) = 1

k!l!

⎾
∂k+l

(∂ϵ∗)k∂ϵl

⎛
φ†(x, t; 1 + ϵ∗)φ(x, t; 1 + ϵ)

2i + ϵ − ϵ∗

⎞⏋

ϵ=ϵ∗=0

, (2.138) 

where . θ in Eq. (2.132) of the  .φ(x, t;h) function is given by the expansion . θ =∑∞
k=0 akϵ

k . These expansion coefficients .φ(k) and .m(k,l) are also j -independent or 

.(i, j)-independent (i.e., independent of spectral parameters . λi and . λj ), which is 

crucial. 

Substituting expansions (2.135)–(2.136) into each matrix element in the Back-

lünd transformation (2.127), performing determinant manipulations, and taking the 

limits of .ϵj , ϵ
∗
j → 0, we obtain rogue waves which are summarized in the following 

lemma. 

Lemma 2.5 General N -th order rogue waves in the NLS equation (2.5) are given 

by the formula 

.uN (x, t) = eit
⎛
1 + 2i

τ1

τ0

⎞
, (2.139) 

where 

.τ0 = det
1≤i,j≤N

⎛
m(i−1,j−1)

⎞
, τ1 = det

⎛(
m(i−1,j−1)

)
1≤i,j≤n

η†

μ 0

⎞
, (2.140) 

.m(i−1,j−1) is given by Eq. (2.138), 

.μ =
⎾
φ

(0)
1 , φ

(1)
1 , . . . , φ

(n−1)
1

⏋
, η =

⎾
φ

(0)
2 , φ

(1)
2 , . . . , φ

(n−1)
2

⏋
, (2.141) 

.φ
(k)
1 and .φ

(k)
2 are the first and second elements of the vector function .φ(k) given 

in Eq. (2.137), .φ(x, t;h) in (2.137)–(2.138) is given in Eq. (2.132) with . θ =∑∞
k=0 akϵ

k , and .(a0, a1, a2, · · · , aN−1) are free complex parameters. 

The above solutions are NLS rogue waves in differential form by Darboux trans-

formation. They are the counterparts of bilinear NLS rogue waves in differential 

form in Lemma 2.3. Just as in the bilinear case, we can derive explicit NLS rogue 

waves from Darboux transformation by calculating matrix elements .m(k,l) and . φ(k)

in Eqs. (2.137)–(2.138) through Schur polynomials. This derivation is very similar 

to that in Yang and Yang (2020b) for rogue waves in the parity-time-symmetric NLS 

equation by Darboux transformation. The idea is that, since the matrix elements in 

the . τ0 and . τ1 determinants of Eq. (2.140) are certain-order derivatives of some .φ-

related functions with respect to . ϵ and . ϵ∗ in view of Eqs. (2.137)–(2.138), all we
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have to do is to convert those .φ-related functions into proper exponential forms, 

whose exponents are power series of . ϵ and . ϵ∗. Then, derivatives of those .φ-related 
functions would just be Schur polynomials of vectors in those exponents. Following 

such calculations, explicit NLS rogue waves from Darboux transformation as 

presented in Theorem 2.2 can be obtained. This completes the proof of Theorem 2.2. 

Of the free complex constants .(a0, a1, · · · , aN−1) in Theorem 2.2, . a0 can be 

normalized to zero by a shift in the .(x, t) axes. So, the irreducible free complex 

constants are .(a1, · · · , aN−1). 

When we take .N = 1, Theorem 2.2 (with .a0 = 0) gives the fundamental rogue 

wave as 

.u1(x, t) =
⎛

−1 + 4(1 + 2it)

1 + 4x2 + 4t2

⎞
eit . (2.142) 

This rogue wave differs from the Peregrine solution (2.79) by a sign. But the NLS 

equation (2.5) is invariant under a sign change in .u(x, t); thus this rogue wave is 

equivalent to the Peregrine wave. 

When we take higher values of N , we will get higher-order rogue waves. Details 

are omitted. 

Compared to explicit rogue wave expressions by the bilinear method in The-

orem 2.1, we can see that these expressions by Darboux transformation in Theo-

rem 2.2 are more complicated. Thus, their asymptotic analysis is expected to be 

more involved too. For this reason, we will derive explicit rogue wave expressions 

for all the other integrable systems by only the bilinear method in later sections. 

2.2 Derivative Nonlinear Schrödinger Equations 

The generalized derivative NLS (GDNLS) equations are (Kundu 1984; Clarkson 

and Cosgrove 1987) 

.iφt + φξξ + ρ|φ|2φ + iaφφ∗φξ + ibφ2φ∗
ξ + 1

4
b(2b − a)|φ|4φ = 0, (2.143) 

where .ρ, a, b are arbitrary real constants, and the superscript ‘*’ represents complex 

conjugation. In fiber optics, these equations model the propagation of short light 

pulses where, in addition to dispersion and Kerr (cubic) nonlinearity, self-steepening 

and fifth-order nonlinearity are also accounted for, even though the Raman effect 

and third-order dispersion are omitted (Hasegawa and Kodama 1995; Agrawal 

2001). When .ρ = 0 and .a = 2b, these equations reduce to the DNLS equation 

of Kaup-Newell type (Kaup and Newell 1978), which governs the propagation of 

nonlinear Alfvén waves in magnetized plasmas (see Sect. 1.2). When .ρ = b = 0, 

these equations reduce to the DNLS equation of Chen-Lee-Liu type (Chen et 

al. 1979), which models short-pulse propagation in a frequency-doubling crystal
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through the interplay of quadratic and cubic nonlinearities (Moses et al. 2007). Due 

to these physical applications, rogue wave formation in these GDNLS equations is 

a physically significant issue. 

There have been a number of studies on rogue waves in these GDNLS equations. 

For instance, for the Kaup-Newell equation (with .ρ = 0 and .a = 2b), special types 

of rogue waves were derived by Darboux transformation in Xu et al. (2011) and 

Guo et al. (2013). For the Chen-Lee-Liu equation, with .ρ = b = 0 in (2.143), the 

fundamental rogue wave was derived by the bilinear method in Chan et al. (2014), 

and higher-order rogue waves were derived by Darboux transformation in Zhang et 

al. (2017). For the Gerdjikov-Ivanov equation (Gerdjikov and Ivanov 1983), with 

.ρ = a = 0 in (2.143), fundamental and higher-order rogue waves were derived by 

Darboux transformation in Xu and He (2012) and Guo et al. (2014). For the GDNLS 

equations (2.143), general rogue waves were derived by Darboux transformation in 

Chen et al. (2019) and by the bilinear method in Yang et al. (2020). 

In this section, we derive general rogue waves in the GDNLS equations (2.143) 

with .a /= b by the bilinear method, following Yang et al. (2020) (treatment for the 

case of .a = b can be found in the appendix of Yang et al. (2020)). 

First, through a gauge transformation (Kakei et al. 1995) 

.φ(ξ, t) =
/

2

a − b
u(x, t) exp

⎧
i

ρ

a − b
x + i

ρ2

(a − b)2
t

⎫
, (2.144) 

where .x = ξ − 2ρt/(a − b), together with a time scaling, the GDNLS equa-

tions (2.143) with .a /= b reduce to 

.iut + 1

2
uxx + iγ |u|2ux + i(γ − 1)u2u∗

x + 1

2
(γ − 1)(γ − 2)|u|4u = 0, (2.145) 

where .γ = a/(a − b). We will work with these normalized GDNLS equa-

tions (2.145) in the remainder of this section. These equations become the Kaup-

Newell equation when .γ = 2, the Chen-Lee-Liu equation when .γ = 1, and the 

Gerdjikov-Ivanov equation when .γ = 0. 

Rogue waves in the GDNLS equations (2.145) approach a constant-amplitude 

continuous wave background at large x and t . By simple variable scalings, this 

constant amplitude can be normalized to be unity. Then, these rogue waves 

approach the unit-amplitude continuous wave background .eiκx−iωt , where . κ is a free 

wavenumber, and .ω = [κ2 + 2κ − (γ − 1)(γ − 2)]/2 is the frequency. In order for 
rogue waves to arise, these backgrounds must be unstable to perturbations. Simple 

modulation instability calculations show that these backgrounds are unstable when 

.κ < 1 − γ . Thus, rogue waves in the GDNLS equations (2.145) should approach 

the following background as .x, t → ±∞: 

. u(x, t) → ei(1−γ−α)x− 1
2 i

⎾
α2+2(γ−2)α+1−γ

⏋
t , (2.146)
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where .α > 0 is a wavenumber parameter. Unlike the NLS equation, the GDNLS 

equations (2.145) do not admit Galilean invariance. Thus, . α is an irreducible 

parameter in its rogue waves. 

General rogue waves to the GDNLS equations (2.145) are given in the following 

theorem (Yang et al. 2020). 

Theorem 2.3 The generalized derivative NLS equations (2.145) under boundary 

conditions (2.146) admit rogue wave solutions 

. uN (x, t) = ei(1−γ−α)x− 1
2 i

⎾
α2+2(γ−2)α+1−γ

⏋
t (f ∗

N )γ−1gN

f
γ

N

, (2.147) 

where the positive integer N represents the order of the rogue wave, 

.fN (x, t) = σ0,0, gN (x, t) = σ−1,1, (2.148) 

.σn,k = det
1≤i,j≤N

⎛
φ

(n,k)
2i−1,2j−1

⎞
, (2.149) 

the matrix elements in .σn,k are defined by 

.φ
(n,k)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(n, k) + νs) Sj−ν(x
−(n, k) + νs), (2.150) 

vectors .x
±(n, k) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

. x+
1 = k +

⎛
n + 1

2

⎞⎛
h1 + 1

2

⎞
+

√
αx +

√
α
⎾
(α − 1) + i

√
α
⏋
t, . (2.151) 

x− 

1 = −k −
⎛

n + 
1 

2

⎞⎛
h∗
1 + 

1 

2

⎞
+

√
αx +

√
α
⎾
(α − 1) − i

√
α
⏋
t, . (2.152) 

x+ 

2r+1 = (n + 
1 

2 
)h2r+1 + 1 

(2r + 1)!
{√

αx +
⎾√

α(α − 1) + 22r iα
⏋
t
}

+ a2r+1, 

. (2.153) 

x− 

2r+1 = −(n + 
1 

2 
)h∗

2r+1 + 1 

(2r + 1)!
{√

αx +
⎾√

α(α − 1) − 22r iα
⏋
t
}

+ a∗
2r+1, 

(2.154) 

.r ≥ 1, .s = (0, s2, 0, s4, · · · ) is as defined in Eq. (2.11), .hr(α) are coefficients from 

the expansion
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.

∞⎲

r=1

hr(α)λr = ln

⎛
ieλ/2 + √

αe−λ/2

i + √
α

⎞
, (2.155) 

and .a3, a5, · · · , a2N−1 are free irreducible complex constants. 

Proof We first introduce the variable transformation 

.u = ei(1−γ−α)x− 1
2 i

⎾
α2+2(γ−2)α+1−γ

⏋
t (f ∗)γ−1g

f γ
, (2.156) 

where f and g are complex functions. Under this transformation, the GDNLS 

equations (2.145) can be decomposed into the following system of four bilinear 

equations: 

.

⎛
2iDt + D2

x + 2i(1 − α)Dx

⎞
g · f ∗ = 0, . (2.157)

⎛
2iDt + D2 

x 
+ 2iDx

⎞
f · f 

∗ = 0, . (2.158) 

(iDx − 1) f · f 
∗ + |g|2 = 0, . (2.159) 

D2 
xf · f 

∗ − iDxg · g∗ + (2α + 1)(|f |2 − |g|2) = 0, (2.160) 

where D is Hirota’s bilinear differential operator. It is important to notice that 

these bilinear equations are independent of the equation parameter . γ . This means 

that rogue waves in the whole family of GDNLS equations (2.145), for different 

values of . γ , are given by the same f and g solutions, and the .γ -dependence of the 

rogue waves only appears through the bilinear transformation (2.156). This is a big 

advantage of the bilinear method for solving the GDNLS equations (2.145). 

Interestingly, under the same variable transformation (2.156), the GDNLS 

equations (2.145) can also be decomposed into a different bilinear system, where 

the first bilinear equation (2.157) is replaced by a new bilinear equation, while the 

other three bilinear equations (2.158)–(2.160) remain the same (Yang et al. 2020). 

Derivations of rogue waves from these two bilinear systems are different, and we 

will use the above bilinear system (2.157)–(2.160) to derive rogue waves below 

(derivation from the second bilinear system can be found in Yang et al. (2020)). 

Our proof below follows the same idea as in Sect. 2.1.1 for the bilinear derivation 

of rogue waves in the NLS equation. We first derive algebraic solutions to a higher-

dimensional bilinear system. Then we restrict those algebraic solutions so that 

they satisfy dimension reduction conditions and complex conjugacy conditions. 

Under those conditions, the restricted algebraic solutions would satisfy the lower-

dimensional bilinear system (2.158)–(2.160) of the GDNLS equations.
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(a) Gram determinant solutions for a higher-dimensional bilinear system 

First, we need to derive algebraic solutions to a higher-dimensional bilinear 

system, which can reduce to the original lower-dimensional bilinear system (2.157)– 

(2.160) under certain reductions. 

From Lemma 2 of Chen et al. (2018b), section 3.2 of Feng et al. (2017) 

and additional calculations, we learn that if functions .m
(n,k)
i,j , .ϕ

(n,k)
i and .ψ

(n,k)
j of 

variables (. x−1, . x1, . x2) satisfy the following differential and difference relations, 

.

∂x1m
(n,k)
i,j = ϕ

(n,k)
i ψ

(n,k)
j ,

∂x1ϕ
(n,k)
i = ϕ

(n+1,k)
i , ∂x1ψ

(n,k)
j = −ψ

(n−1,k)
j ,

∂x1ϕ
(n,k)
i = cϕ

(n,k)
i + ϕ

(n,k+1)
i , ∂x1ψ

(n,k)
j = −cψ

(n,k)
j − ψ

(n,k−1)
j ,

∂x2ϕ
(n,k)
i = ∂2x1ϕ

(n,k)
i , ∂x2ψ

(n,k)
j = −∂2x1ψ

(n,k)
j ,

∂x−1
ϕ

(n,k)
i = ϕ

(n,k−1)
i , ∂x−1

ψ
(n,k)
j = −ψ

(n,k+1)
j ,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.161) 

and 

.

∂x2m
(n,k)
i,j = ϕ

(n+1,k)
i ψ

(n,k)
j + ϕ

(n,k)
i ψ

(n−1,k)
j ,

∂x2m
(n,k)
i,j = ϕ

(n,k+1)
i ψ

(n,k)
j + ϕ

(n,k)
i ψ

(n,k−1)
j + 2cϕ

(n,k)
i ψ

(n,k)
j ,

∂x−1
m

(n,k)
i,j = −ϕ

(n,k−1)
i ψ

(n,k+1)
j ,

m
(n+1,k)
i,j = m

(n,k)
i,j + ϕ

(n,k)
i ψ

(n+1,k)
j ,

m
(n,k+1)
i,j = m

(n,k)
i,j + ϕ

(n,k)
i ψ

(n,k+1)
j ,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.162) 

where c is an arbitrary complex constant, then the determinant 

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
i,j

⎞
(2.163) 

would satisfy the following bilinear equations in the extended KP hierarchy 

.

⎛
Dx2 − D2

x1
− 2cDx1

⎞
τn−1,k+1 · τn−1,k = 0, . (2.164)

⎛
Dx2 − D2 

x1

⎞
τn,k · τn−1,k = 0, . (2.165)

(
cDx−1 

− 1
)
τn,k · τn−1,k + τn−1,k+1τn,k−1 = 0, . (2.166) 

(cDx1Dx−1 
− Dx1 − 2c)τn,k · τn−1,k + (Dx1 + 2c)τn−1,k+1 · τn,k−1 = 0. 

(2.167) 

We note that utilizing the former part (2.161) of the differential and difference 

relations, we can show that the . x1 derivatives of the latter part (2.162) of these 

relations are automatically satisfied. This situation is similar to that for the NLS 

equation in Sect. 2.1.1.
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Now, we introduce functions .m(n,k), .ϕ(n,k) and .ψ (n,k) as 

. m(n,k) = ip

p + q

⎛
−p

q

⎞n ⎛
−p − c

q + c

⎞k

eξ+η, . (2.168) 

ϕ(n,k) = (ip)pn (p − c)k eξ , . (2.169) 

ψ (n,k) = (−q)−n [−(q + c)]−k eη , (2.170) 

where 

. ξ = 1

p − c
x−1 + px1 + p2x2 + ξ0(p), . (2.171) 

η = 
1 

q + c 
x−1 + qx1 − q2x2 + η0(q), (2.172) 

.p, q are arbitrary variables, and .ξ0(p), .η0(q) are arbitrary complex functions of p 

and q respectively. It is easy to see that these functions satisfy the differential and 

difference relations (2.161)–(2.162) with indices i and j ignored. Then, by defining 

.m
(n,k)
i,j = AiBjm

(n,k), ϕ
(n,k)
i = Aiϕ

(n,k), ψ
(n,k)
j = Bjψ

(n,k), (2.173) 

where . Ai and . Bj are differential operators with respect to p and q respectively as 

.Ai = 1

i!
⎾
(p − c)∂p

⏋i
, Bj = 1

j !
⎾
(q + c)∂q

⏋j
, (2.174) 

these functions would also satisfy the differential and difference relations (2.161)– 

(2.162) since operators . Ai and . Bj commute with differentials . ∂xk
. Consequently, for 

an arbitrary sequence of indices .(i1, i2, · · · , iN ; j1, j2, · · · , jN ), the determinant 

.τn,k = det
1≤ν,μ≤N

⎛
m

(n,k)
iν ,jμ

⎞
(2.175) 

satisfies the higher-dimensional bilinear system (2.164)–(2.167). 

We note that without the factor of . ip in Eqs. (2.168)–(2.169), the above . τn,k

function (2.175) would also satisfy the higher-dimensional bilinear system (2.164)– 

(2.167). However, this . ip factor in (2.168)–(2.169) is needed in order for the 

resulting .τn,k to satisfy the complex conjugation condition (2.198), which is coming 

up in the later text. That complex conjugation condition is also necessary in order 

for .τn,k to satisfy the original bilinear equations (2.157)–(2.160) of the GDNLS 

equations. 

Next, we will reduce the higher-dimensional bilinear system (2.164)–(2.167) 

to the original bilinear system (2.157)–(2.160), so that the higher-dimensional 

solutions (2.175) become rogue wave solutions to the GDNLS equations (2.145).
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In this reduction, we will need to set 

.c = −iα, (2.176) 

where c is the parameter in the higher-dimensional system (2.164)–(2.167), and . α

is the wavenumber parameter in the original bilinear system (2.157)–(2.160). 

(b) Dimensional reduction 

Next, we reduce the higher-dimensional bilinear system (2.164)–(2.167) to a  

lower-dimensional one. This reduction will restrict the indices in the determi-

nant (2.175), and select the .(p, q) values in its matrix element .m
(n,k)
iν ,jμ

. 

The dimension reduction condition we impose is 

.

(
∂x1 + ic∂x−1

)
τn,k = Cτn,k, (2.177) 

where C is some constant. Denoting .p̂ ≡ p − c and .q̂ ≡ q + c, then . Ai and . Bj in 

Eq. (2.174) can be rewritten as 

.Ai = 1

i!
(
p̂∂p̂

)i
, Bj = 1

j !
(
q̂∂q̂

)j
. (2.178) 

In addition, 

. 

(
∂x1 + ic∂x−1

)
m

(n,k)
i,j = AiBj

(
∂x1 + ic∂x−1

)
m(n,k)

= AiBj

⎾
p̂ + ic

p̂
+ q̂ + ic

q̂

⏋
m(n,k). (2.179) 

Using the Leibnitz rule as in Sect. 2.1.1, the above equation reduces to 

. 

(
∂x1 + ic∂x−1

)
m

(n,k)
i,j =

i⎲

μ=0

1

μ!

⎛
p̂ + (−1)μ

ic

p̂

⎞
m

(n,k)
i−μ,j

+
j⎲

l=0

1

l!

⎛
q̂ + (−1)l

ic

q̂

⎞
m

(n,k)
i,j−l . (2.180) 

Recalling .c = −iα from (2.176), we see that when .p̂ = p̂0 and .q̂ = q̂0, where 

.p̂0 = q̂0 =
√

α, (2.181) 

then .p̂0 − ic/p̂0 = q̂0 − ic/q̂0 = 0. Thus, the above equation would further simplify 

to
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. 

(
∂x1 + ic∂x−1

)
m

(n,k)
i,j

|||
p̂=p̂0, q̂=q̂0

= 2
√

α

⎛
⎜⎜⎝

i⎲

μ=0,
μ:even

1

μ!m
(n,k)
i−μ,j +

j⎲

l=0,
l:even

1

l!m
(n,k)
i,j−l

⎞
⎟⎟⎠

||||||||p̂=p̂0,
q̂=q̂0

. (2.182) 

Now, we restrict the general determinant (2.175) to  

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
2i−1,2j−1

|||
p̂=p̂0, q̂=q̂0

⎞
. (2.183) 

Then, using the contiguity relation (2.182) similar to what we did in Sect. 2.1.1, we  

get 

.

(
∂x1 + ic∂x−1

)
τn,k = 4

√
αN τn,k, (2.184) 

which shows that the .τn,k function (2.183) satisfies the dimension reduction 

condition (2.177). 

When this dimension reduction equation is used to eliminate .x−1 from the 

higher-dimensional bilinear system (2.164)–(2.167), and in view of the parameter 

connection (2.176), we get 

.

⎛
Dx2 − D2

x1
+ 2iαDx1

⎞
τn−1,k+1 · τn−1,k = 0, . (2.185)

⎛
Dx2 − D2 

x1

⎞
τn,k · τn−1,k = 0, . (2.186)

(
iDx1 − 1

)
τn,k · τn−1,k + τn−1,k+1τn,k−1 = 0, . (2.187) 

(D2 
x1 

+ iDx1 + 2α)τn,k · τn−1,k − (iDx1 + 2α)τn−1,k+1 · τn,k−1 = 0. 

(2.188) 

In addition, using Eq. (2.187), we can replace the last bilinear equation (2.188) by  

. D2
x1

τn,k · τn−1,k − iDx1τn−1,k+1 · τn,k−1

+(2α + 1)(τn,k · τn−1,k − τn−1,k+1 · τn,k−1) = 0. (2.189) 

In these reduced bilinear equations, the .x−1 derivative disappears. 

To further reduce the bilinear system (2.185)–(2.187) and (2.189) to the original 

system (2.157)–(2.160), we set 

.x1 = x − t, x2 = it/2. (2.190) 

Under this variable relation, we have
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.∂x1 = ∂x, ∂x2 = −2i∂t − 2i∂x . (2.191) 

Inserting these equations into the bilinear system (2.185)–(2.187) and (2.189), and 

setting .n = k = 0, we get 

.

⎛
2iDt + D2

x + 2i(1 − α)Dx

⎞
g · f̄ = 0, . (2.192)

⎛
2iDt + D2 

x 
+ 2iDx

⎞
f · f̄ = 0, . (2.193) 

(iDx − 1)f · f̄ + gḡ = 0, . (2.194) 

D2 
xf · f̄ − iDxg · ḡ + (2α + 1)(f f̄ − gḡ) = 0, (2.195) 

where .f, f̄ , g and . ḡ are defined as 

.f = τ0,0, f̄ = τ−1,0, g = τ−1,1, ḡ = τ0,−1. (2.196) 

(c) Complex conjugacy conditions 

Next, we need to impose complex conjugacy conditions .f̄ = f ∗ and .ḡ = g∗, 
i.e., 

.τ−1,0 = τ ∗
0,0, τ0,−1 = τ ∗

−1,1, (2.197) 

so that the bilinear system (2.192)–(2.195) would reduce to the original bilinear 

system (2.157)–(2.160). These complex conjugacy conditions would be satisfied if 

.τ ∗
n,k = τ−n−1,−k. (2.198) 

To satisfy this condition, we impose the parameter constraint .ξ0 = η∗
0 . In this case, 

since .x1 = x − t is real, .x2 = it/2 and .c = −iα are pure imaginary, and .q̂0 = p̂∗
0 , 

we can easily show that 

.

⎾
m

(n,k)
i,j

|||
p̂=p̂0, q̂=q̂0

⏋∗
= m

(−n−1,−k)
j,i

|||
p̂=p̂0, q̂=q̂0

. (2.199) 

Thus, the complex conjugacy condition (2.198) holds. In meeting Eq. (2.199), the 

factor . ip in Eqs. (2.168)–(2.169) plays an important role. 

(d) Rogue wave solutions in differential operator form 

Finally, we need to introduce free parameters into rogue waves. As we did in 

Sect. 2.1.1 for the NLS equation, we will introduce free parameters through the 

arbitrary constant . ξ0 in Eq. (2.171). Specifically, we choose . ξ0 as
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.ξ0(p) =
∞⎲

r=1

âr ln
r

⎛
p̂

p̂0

⎞
=

∞⎲

r=1

âr ln
r

⎛
p + iα√

α

⎞
, (2.200) 

where . ̂ar are free complex constants. 

Putting all the above results together, setting .x−1 = 0, and writing the matrix 

element in the . τ function (2.183) through . p̂ and . q̂, rational solutions to the GDNLS 

equations (2.145) in differential form are then given by the following theorem. 

Lemma 2.6 The GDNLS equations (2.145) admit rational solutions 

.uN (x, t) = ei(1−γ−α)x− 1
2 i

⎾
α2+2(γ−2)α+1−γ

⏋
t (f ∗

N )γ−1gN

f
γ

N

, (2.201) 

where 

.fN (x, t) = τ0,0, gN (x, t) = τ−1,1, (2.202) 

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
2i−1,2j−1

⎞
, (2.203) 

the matrix elements in .τn,k are defined by 

. m
(n,k)
i,j =

(
p̂∂p

)i

i!

(
q̂∂q

)j

j ! m(n,k)

|||||
p̂=p̂0, q̂=q̂0

, (2.204) 

.m(n,k) = i(p̂ − iα)

p̂ + q̂

⎛
− p̂ − iα

q̂ + iα

⎞n ⎛
− p̂

q̂

⎞k

eΘ(x,t), (2.205) 

. Θ(x, t) =
(
p̂ + q̂

)
(x − t) + 1

2

⎾
p̂2 − q̂2 − 2iα(p̂ + q̂)

⏋
it

+
∞⎲

r=1

⎛
âr ln

r

⎛
p̂

p̂0

⎞
+ â∗

r ln
r

⎛
q̂

q̂0

⎞⎞
, (2.206) 

.p̂0 = q̂0 = √
α, .α > 0, and .â1, â2, · · · , â2N−1 are free complex constants. 

(e) Explicit rogue wave solutions through Schur polynomials 

Now, we derive explicit rogue wave expressions in Theorem 2.3 from the above 

differential form in Lemma 2.6. 

Introducing the generator . G as
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.G =
∞⎲

i=0

∞⎲

j=0

ζ i

i!
λj

j !
⎾
p̂∂p̂

⏋i ⎾
q̂∂q̂

⏋j
, (2.207) 

and utilizing the formula (2.60), i.e., 

.GF(p̂, q̂) = F
(
eζ p̂, eλq̂

)
, (2.208) 

we find that for the .m(n,k) function in Lemma 2.6, 

. Gm(n,k)
|||
p̂=p̂0, q̂=q̂0

= eζ/2(ieζ/2 + √
αe−ζ/2)

eζ + eλ

×(−1)ke(k+ n
2 )(ζ−λ)

⎛
ieζ/2 + √

αe−ζ/2

−ieλ/2 + √
αe−λ/2

⎞n

× exp

⎧√
α
(
eζ + eλ

)
(x − t + αt) + 1

2
α
⎛
e2ζ − e2λ

⎞
it

+
∞⎲

r=1

(
ârζ

r + â∗
r λr

)
⎫

. (2.209) 

Thus, 

. 
1

m(n,k)
Gm(n,k)

||||
p̂=p̂0, q̂=q̂0

= 2

eζ + eλ

⎛
ieζ/2 + √

αe−ζ/2

i + √
α

⎞n+1

×
⎛ −i + √

α

−ieλ/2 + √
αe−λ/2

⎞n

× exp

⎛
1

2
ζ + (k + n

2
)(ζ − λ) +

√
α
(
eζ + eλ − 2

)

× (x − t + αt) + 1

2
α
⎛
e2ζ − e2λ

⎞
it

⎞

× exp

⎛ ∞⎲

r=1

(ârζ
r + â∗

r λr)

⎞
. (2.210) 

Now, we need to expand the right side of the above equation into power series of . ζ

and . λ. Writing 

.
2

eζ + eλ
= 1

1 − (eζ −1)(eλ−1)

(eζ +1)(eλ+1)

exp

⎛
− ln

(eζ + 1)(eλ + 1)

4

⎞
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= 

∞⎲

ν=0

⎛
(eζ − 1)(eλ − 1) 

(eζ + 1)(eλ + 1)

⎞ν 

exp

⎛
− ln 

e(ζ+λ)/2(eζ/2 + e−ζ/2)(eλ/2 + e−λ/2) 

4

⎞

= 

∞⎲

ν=0

⎛
ζλ  

4

⎞ν 

exp

⎾
ν ln

⎛
4 

ζλ  
tanh 

ζ 

2 
tanh 

λ 

2

⎞
− ln

⎛
cosh 

ζ 

2 
cosh 

λ 

2

⎞
− 

ζ 

2 
− 

λ 

2

⏋

= 

∞⎲

ν=0

⎛
ζλ  

4

⎞ν 

exp

⎛ ∞⎲

r=1 

(νsr − cr)
(
ζ r + λr

)
− 

ζ 

2 
− 

λ 

2

⎞
, (2.211) 

where . sr are as defined in Eq. (2.11), and . cr are Taylor coefficients of . λr in the 

expansion of .ln cosh(λ/2), then using the . hr expansion in Eq. (2.155), we get 

. 
1

m(n,k)
Gm(n,k)

||||p̂=p̂0,
q̂=q̂0

=
∞⎲

ν=0

⎛
ζλ

4

⎞ν

exp

⎛ ∞⎲

r=1

(
x+
r + νsr

)
ζ r

+
∞⎲

r=1

(
x−
r + νsr

)
λr

⎞
, (2.212) 

where .x±
r (n, k) are defined as 

.x+
1 (n, k) =

√
α(x − 2t + 2αt) + 2iαt + (n + 1)h1 + k + n

2
− c1 + â1, . (2.213) 

x− 

1 (n, k) =
√

α(x − 2t + 2αt) − 2iαt − nh∗
1 − k − 

1 

2 
(n + 1) − c1 + â∗

1 , .(2.214) 

x+
r (n, k) = 

1 

r!
⎾√

α(x − 2t + 2αt) + 2r iαt
⏋
+ (n + 1)hr − cr + âr , . (2.215) 

x−
r (n, k) = 

1 

r!
⎾√

α(x − 2t + 2αt) − 2r iαt
⏋
− nh∗

r − cr + â∗
r . (2.216) 

We further define shifted parameters 

.a1 = â1 − c1 + 1

2
h1 − 1

4
, ar = âr − cr + 1

2
hr (r ≥ 2). (2.217) 

Notice that the . ar parameters are linearly related to the . ̂ar parameters. Then, the 

above .x±
r (n, k) reduce to those in Theorem 2.3, except that the above definitions 

for .x±
r (n, k) apply for all r indices, including those where . r is even. Taking the 

coefficients of .ζ iλj on both sides of Eq. (2.212), we get 

. m
(n,k)
i,j = m(n,k)

|||
p̂=p̂0,q̂=q̂0

×
min(i,j)⎲

ν=0

1

4ν
Si−ν

(
x

+ + νs
)
Sj−ν

(
x

− + νs
)
,

(2.218)
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where .m
(n,k)
i,j is the matrix element defined in Lemma 2.6. Finally, we define 

.σn,k = τn,k⎛
m(n,k)

||
p̂=p̂0,q̂=q̂0

⎞N
. (2.219) 

One can see that this .σn,k satisfies the same bilinear equations as . τn,k . Then the 

matrix element in .σn,k is as given in Theorem 2.3, and the function in Eq. (2.147) is  

a rational solution to the GDNLS equations (2.145). 

By the same technique as in Sect. 2.1.1, we can show that .x±
2r are dummy 

variables which can be set to zero without affecting the solution. In addition, by 

a shift of the .(x, t) axes, we can normalize .a1 = 0. Thus, irreducible parameters in 

these solutions are .a3, a5, · · · , a2N−1. 

Regarding boundary conditions of these rational solutions, using the Schur 

polynomial expressions in Theorem 2.3 and the same technique as in Sect. 2.1.1, 

we can show that when x or t approaches infinity, .fN (x, t) and .gN (x, t) have the 

same leading term, which is also real. Thus, the rational solution (2.147) satisfies the 

boundary condition (2.146) and is thus a rogue wave. Theorem 2.3 is then proved. 

A remark we would like to make is that, when . a3 = a5 = · · · = a2N−1 =
0, the rogue wave in Theorem 2.3 is parity-time-symmetric, i.e., . u∗

N (−x,−t) =
uN (x, t). The significance of this property is that, this parity-time-symmetric rogue 

wave happens to possess the maximum peak amplitude among rogue waves of that 

order and is thus a super rogue wave. In addition, this maximum peak amplitude is 

located at the center of this super rogue wave, i.e., at .x = t = 0. Thus, to derive the 

maximum peak amplitude of a GDNLS super rogue wave, we only need to set all its 

internal parameters . ar as well as .(x, t) to zero. Doing so, our explicit calculations 

for .N = 1, 2, . . . , 6 show that (Yang et al. 2020) 

. |fN (0, 0)|ar=0 = αN(N+1)/2

22N
2
(α + 1)N(N+1)/2

, |gN (0, 0)|ar=0 = (2N + 1)αN(N+1)/2

22N
2
(α + 1)N(N+1)/2

,

(2.220) 

and thus the maximum peak amplitude is 

.|uN (0, 0)|ar=0 = |gN (0, 0)|ar=0

|fN (0, 0)|ar=0
= 2N + 1, (2.221) 

which is the same as that in the NLS equation (see Sect. 2.1.2). Remarkably, this 

maximum peak amplitude does not depend on the background wavenumber . α, 

although .|fN | and .|gN | in its numerator and denominator do. While these formulae 

were obtained for .N ≤ 6, we believe they hold for .N > 6 as well. 

When setting .N = 1 in Theorem 2.3, we get the fundamental GDNLS rogue 

wave as 

.|u1(x, t;α)| =
|||||

α(x + αt)2 + (x − t)2 − i(x + 3αt) − 3
4

α(x + αt)2 + (x − t)2 + i(x + αt) − 2it + 1
4

||||| . (2.222)
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Fig. 2.2 Fundamental GDNLS rogue wave .|u1(x, t)| from Eq. (2.222) for .α = 0.5, 1 and 2 (from 

left to right), respectively. Upper row: 3D plots; lower row: density plots 

For three different . α values of 0.5, 1 and 2, these amplitude fields are plotted 

in Fig. 2.2. It is seen that . α strongly affects the orientation and duration of the 

rogue wave. Specifically, as the . α value increases, the orientation angle (relative 

to the positive x axis) also increases, but the duration of the rogue wave decreases. 

However, the peak amplitudes of these rogue waves for different . α values are all 

equal to 3, which are attained at the center .x = t = 0. Physically, the longer 

duration of rogue waves at smaller . α values can be understood, because in this case, 

the growth rates of modulation instability can be shown to be smaller, which causes 

the rogue wave to take longer time to rise from the unit-amplitude background to 

its peak amplitude of 3. The dependence of the orientation angle on . α can also be 

heuristically understood. It is known that the phase gradient of a pulse generally 

causes the pulse to move at a velocity which is proportional to this phase gradient. 

In the present case, the phase gradient of the rogue wave can be estimated from 

Eq. (2.147) as the wavenumber .1 − γ − α. Then, for a fixed equation parameter . γ , 

larger . α causes the velocity to be smaller or negative, leading to a larger orientation 

angle. To put these results in perspective, we note that for the NLS equation, since 

the constant-background wavenumber of its rogue waves can be normalized to 

zero by a Galilean transformation, the background wavenumber only affects the 

orientation, but not duration, of its rogue waves. 

Second-order GDNLS rogue waves can be obtained by setting .N = 2 in 

Theorem 2.3. These rogue waves contain one irreducible complex free parameter 

. a3, in addition to the background wavenumber parameter . α and equation parameter 

. γ (the last parameter does not affect the amplitude fields of rogue waves). When 

we set .α = 1, then the amplitude fields of rogue waves at three . a3 values of 0, . 1/3

and 30 are displayed in the three panels of Fig. 2.3 (from left to right), respectively. 

The rogue wave at .a3 = 0 is a super rogue wave that is parity-time-symmetric, and 

it reaches peak amplitude 5 at the center .x = t = 0. The rogue wave at .a3 = 1/3
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Fig. 2.3 Second-order GDNLS rogue waves .|u2(x, t)| with .α = 1 and three . a3 values of 0, . 1/3, 

and 30 (from left to right), respectively 

exhibits a complex profile with peak amplitude of about 3.3714. The one at . a3 = 30

splits into three separate first-order rogue waves and is thus a rogue triplet. This 

splitting phenomenon is similar to second-order rogue waves of the NLS equation 

(see Fig. 2.1, third column). 

2.3 Boussinesq Equation 

In 1871, Boussinesq introduced an equation which governs the propagation of long 

surface waves on water of constant depth (Boussinesq 1871, 1872; see also Ursell 

1953). After variable normalizations, this equation can be written as (Clarkson and 

Dowie 2017) 

.ut t + uxx − (u2)xx − 1

3
uxxxx = 0. (2.223) 

This equation also arises in many other physical contexts, such as continuum 

approximations of certain Fermi-Pasta-Ulam chains (Zabusky 1967; Zakharov 

1973; Toda 1975), and ion sound waves in a plasma (Scott 1975; Infeld and 

Rowlands 1990). Remarkably, this equation is integrable. Indeed, its multi-soliton 

solutions and Lax pair were reported almost simultaneously by Hirota and Zakharov 

in 1973, respectively (Hirota 1973; Zakharov 1973). 

The zero solution in this normalized Boussinesq equation is unstable. As a 

consequence, rogue waves may arise. Boundary conditions to these rogue waves 

are then 

.u(x, t) → 0, x, t → ±∞. (2.224) 

Fundamental (first-order) rogue waves to the Boussinesq equation (2.223) were  

derived in Tajiri and Murakami (1991) and Rao et al. (2017) by taking a long-wave 

limit of the two-soliton solution. Higher-order rogue waves to this equation were 

considered by Clarkson and Dowie (2017). Converting this equation into a bilinear 

one, assuming certain polynomial forms for the bilinear solution, equating powers 

of .x, t in the bilinear equation and solving the resulting algebraic equations for the
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polynomial coefficients, the authors obtained second- to fifth-order rogue waves 

with two free real parameters at each order. General rogue waves to this equation 

were derived by Yang and Yang (2020a) using the bilinear method. However, those 

bilinear expressions of rogue waves are not in the simplest form. Below, we present 

simpler expressions of Boussinesq rogue waves using a new parameterization 

technique as described in Sect. 2.1.1 for the NLS equation. 

Theorem 2.4 The Boussinesq equation (2.223) under boundary conditions (2.224) 

admits the following general nonsingular rogue waves 

.uN (x, t) = 2∂2x ln σ, (2.225) 

where 

.σ(x, t) = det
1≤i,j≤N

(
φ2i−1,2j−1

)
, (2.226) 

.φi,j =
min(i,j)⎲

ν=0

⎛−1

12

⎞ν

Si−ν(x
+ + νs) Sj−ν(x

− + νs), (2.227) 

vectors .x
± =

(
x±
1 , 0, x±

3 , 0, · · ·
)
and .s = (s1, s2, · · · ) are defined by 

.x+
2r+1 =

√
3i

2 · 32r+1 · (2r + 1)!
⎛
x + 22r it

⎞
+ a2r+1, r = 0, 1, 2, · · · , .(2.228) 

x− 

2r+1 = 

√
3i  

2 · 32r+1 · (2r + 1)!
⎛
x − 22r it

⎞
− a∗

2r+1, r  = 0, 1, 2, · · ·  , . (2.229) 

∞⎲

r=1 

srλ
r = ln

⎾
2i

√
3 

λ 
tanh 

λ 

6 
tanh

⎛
λ 

6 
+ 

2iπ 

3

⎞⏋
, (2.230) 

.a1 = 0, and .a3, a5, · · · , a2N−1 are free irreducible complex constants. 

Note The function .f (λ) on the right side of Eq. (2.230) satisfies the symmetry 

.f ∗(λ) = f (−λ), where . λ is considered real. Because of that, all .seven values are 

real, and all .sodd values are purely imaginary. The first few . sk values are 

.s1 = 2i

3
√
3
, s2 = − 5

108
, s3 = − 5i

243
√
3
. (2.231) 

Proof First, we introduce the variable transformation 

.u(x, t) = 2∂2x ln σ(x, t), (2.232)
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where .σ(x, t) is a real variable. Under this transformation, the Boussinesq equa-

tion (2.223) is converted into the bilinear form 

.

⎛
D4

x − 3D2
x − 3D2

t

⎞
σ · σ = 0. (2.233) 

In order to derive solutions to this bilinear equation, we consider a higher-

dimensional bilinear equation 

.

⎛
D4

x1
− 4Dx1Dx3 + 3D2

x2

⎞
σ · σ = 0, (2.234) 

which is the bilinear form of the KP equation. We first construct a wide class of 

algebraic solutions for this higher-dimensional bilinear equation in the form of Gram 

determinants. Then, we restrict these solutions so that they satisfy the dimensional 

reduction condition 

.

(
∂x3 − 3∂x1

)
σ = Cσ, (2.235) 

where C is some constant (our choice of the coefficient 3 in front of . ∂x1 is for con-

venience). Under this condition, the higher-dimensional bilinear equation (2.234) 

would reduce to 

.

⎛
D4

x1
− 12D2

x1
+ 3D2

x2

⎞
σ · σ = 0. (2.236) 

Finally, we define 

.x1 = 1

2
x, x2 = −1

4
it, (2.237) 

and impose the reality condition 

.σ ∗ = σ. (2.238) 

Then, the bilinear equation (2.236) becomes the bilinear equation (2.233) of the  

Boussinesq equation, and .u = 2∂2x ln σ becomes the rational rogue wave solution of 

the Boussinesq equation. Next, we execute this strategy. 

(a) Gram determinant solutions for a higher-dimensional bilinear system 

First, it is well known that when functions .mi,j , . ϕi and . ψj satisfy the following 

differential equations 

.

∂x1mi,j = ϕiψj ,

∂xnϕi = ∂n
x1

ϕi, ∂xnψj = (−1)n−1∂n
x1

ψj , n = 1, 2, 3,

⎫
(2.239)
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then the . τ function 

.τ = det
1≤i,j≤N

(
mi,j

)
(2.240) 

would satisfy the bilinear equation (2.234) of the KP equation, i.e., 

.

⎛
D4

x1
− 4Dx1Dx3 + 3D2

x2

⎞
τ · τ = 0. (2.241) 

Indeed, substituting the solutions (2.240) into KP’s bilinear equation (2.241), this 

equation reduces to the Jacobi identity of determinants (Hirota 2004). 

Now, we introduce functions 

.mi,j = AiBjm, ϕi = Aiϕ, ψj = Bjψ, (2.242) 

where . Ai and . Bj are differential operators with respect to p and q respectively as 

.Ai = 1

i!
⎾
f1(p)∂p

⏋i
, Bj = 1

j !
⎾
f2(q)∂q

⏋j
, (2.243) 

.f1(p), .f2(q) are arbitrary functions of p and q, 

.m = (p − 1)(q − 1)

p + q
eξ+η, ϕ = (p − 1)eξ , ψ = (q − 1)eη, (2.244) 

.ξ = px1 + p2x2 + p3x3 + ξ0(p), η = qx1 − q2x2 + q3x3 + η0(q), (2.245) 

and .ξ0(p), η0(q) are arbitrary functions of p and q. The factor of . (p − 1)(q − 1)

in m above is introduced to simplify later calculations, similar to the factor of . (p +
1)(q + 1) in the .m(n) function (2.29) in the NLS case. It is easy to see that these 

.mi,j , . ϕi and . ψj functions satisfy the differential equations (2.239), since .mi,j = m, 

.ϕi = ϕ and .ψj = ψ satisfy them, and operators . Ai , . Bj commute with differentials 

. ∂xk
. 

Next, we restrict the . τ solution (2.240) so that it satisfies the dimension reduction 

condition (2.235) and the reality condition (2.238). 

(b) Dimensional reduction by the .W-p treatment 

To facilitate the satisfaction of the dimensional reduction condition (2.235), 

we will utilize the freedom of the .f1(p) and .f2(q) functions and choose them 

judiciously. This is the so-called .W-p treatment we introduced in Yang and Yang 

(2020a) for the Boussinesq equation and generalized in Yang and Yang (2021b) for  

the three-wave resonant interaction system. 

We start from the dimensional reduction condition (2.235), i.e., 

.

(
∂x3 − 3∂x1

)
τ = Cτ, (2.246)
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where C is a certain constant. In order to calculate the left side of the above equation, 

we notice from the definitions (2.242) and (2.244) of  m and .mi,j that 

.

(
∂x3 − 3∂x1

)
mi,j = AiBj [Q1(p) + Q2(q)]m, (2.247) 

where 

.Q1(p) = p3 − 3p, Q2(q) = q3 − 3q. (2.248) 

To proceed further, we utilize the general Leibnitz-type operator relation, 

.AiQ1(p) =
i⎲

l=0

1

l!
⎾(

f1∂p

)l
Q1(p)

⏋
Ai−l . (2.249) 

Note that on the right side of this relation, the operator .
(
f1∂p

)l
only applies to 

the function .Q1(p), not to the operator .Q1(p)Ai−l . Another relation similar to the 

above can also be written for .BjQ2(q). Using these relations, Eq. (2.247) becomes 

. 

(
∂x3 − 3∂x1

)
mi,j =

i⎲

μ=0

1

μ!
⎾(

f1∂p

)μ
Q1(p)

⏋
mi−μ,j

+
j⎲

l=0

1

l!
⎾(

f2∂q

)l
Q2(q)

⏋
mi,j−l . (2.250) 

In order to satisfy the dimensional reduction condition (2.235), we need to 

select functions .[f1(p), f2(q)] as well as values of .(p, q), so that coefficients of 

certain indices on the right side of the above relation vanish. Here, we will require 

coefficients of all odd-indexed terms on the right side of the above relation to vanish. 

In such a case, this relation would relate matrix elements with indices shifted by 

even numbers. Then, by choosing indices of matrix elements with jumps of two 

in the higher-dimensional . τ function (2.240), such a . τ function would satisfy the 

dimensional reduction condition (2.235). This situation is similar to that in the NLS 

case, see Sect. 2.1.1. 

To make coefficients of all odd-indexed terms on the right side of the contiguity 

relation (2.250) to vanish, we first select . p0 to be a root of the following algebraic 

equation 

.Q'
1(p0) = 3p2

0 − 3 = 0. (2.251) 

There are two roots, .p0 = ±1. We will choose .p0 = −1 without loss of generality. 

Similarly, we choose . q0 to be a root of .Q'
2(q0) = 0, which gives .q0 = p0 = −1. 

At these .(p0, q0) values, the .μ = l = 1 terms on the right side of Eq. (2.250) will 

vanish.
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To make higher odd terms on the right side of Eq. (2.250) to vanish, we impose 

a further condition on .f1(p) as 

.

(
f1∂p

)2
Q1(p) = Q1(p), (2.252) 

and a similar one on .f2(q). Note that these are differential equations, not operator 

equations. The reason for this imposition is that under these conditions, as well 

as the earlier conditions on . p0 and . q0, all odd-. μ and l terms on the right side of 

Eq. (2.250), when evaluated at .p = p0 and .q = q0, would vanish. 

To solve this differential Eq. (2.252), we put .f1(p) in the form 

.f1(p) = W1(p)

W'
1(p)

, (2.253) 

where .W1(p) is to be determined. The motivation behind this form of .f1(p) is that, 

under this form, 

.f1(p)∂p = W1(p)

W'
1(p)

∂p =W1(p)∂W1(p) = ∂lnW1
. (2.254) 

Thus, the condition (2.252) becomes 

.∂2lnW1
Q1(p) = Q1(p). (2.255) 

Scaling .W1(p0) = 1, which does not affect the .f1(p) function, the unique solution 

to the above equation under the condition of .Q'
1(p0) = 0 is 

.Q1(p) = 1

2
Q1(p0)

⎛
W1(p) + 1

W1(p)

⎞
. (2.256) 

From this equation, we can solve for .W1(p) and then get .f1(p) from Eq. (2.253). 

Explicitly, we get 

. W1(p) =
Q1(p) +

/
Q21(p) − Q21(p0)

Q1(p0)
, f1(p) =

/
Q21(p) − Q21(p0)

Q'
1(p)

.

(2.257) 

Note that the sign in front of the square root in .W1(p) can also be minus, in which 

case the above .f1(p) would change sign; but that would lead to the same rogue 

wave solutions and thus does not need to be considered. Interestingly, these explicit 

.W1(p) and .f1(p) expressions actually will not be needed in our later derivation of 

rogue expressions through Schur polynomials. A similar treatment can be applied 

to the q variable, and the formulae for .W2(q) and .f2(q) are similar to those in 

Eq. (2.257) for  the  p variable, except that the subscripts 1 change to 2, and . (p, p0)

change to .(q, q0).
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Under the above choices of .p, q values and .f1(p) and .f2(q) functions, the 

relation (2.250) simplifies to 

. 

(
∂x3 − 3∂x1

)
mi,j

||
p=q=−1

= 2

i⎲

k=0,
k:even

1

k! mi−k,j

||
p=q=−1

+ 2

j⎲

l=0,
l:even

1

l! mi,j−l

||
p=q=−1

. (2.258) 

This relation is similar to that we obtained earlier for the NLS equation (see 

Sect. 2.1.1). Due to this relation, if we choose indices . (i1, i2, · · ·, iN ; j1, j2, · · ·, jN )

in the determinant (2.240) as  

.τ = det
1≤i,j≤N

⎛
m2i−1,2j−1

||
p=q=−1

⎞
, (2.259) 

then the same calculation as in Sect. 2.1.1 would show that this . τ function satisfies 

the dimension reduction condition 

.

(
∂x3 − 3∂x1

)
τ = 4Nτ. (2.260) 

Substituting this condition into the higher-dimensional bilinear KP equation (2.234) 

and utilizing Eq. (2.237), we see that this . τ function (2.259) would satisfy the 

bilinear equation (2.233) of the Boussinesq equation. At this point, we can set 

.x3 = 0 in this . τ function since . x3 has become a dummy variable now. 

Next, we introduce free parameters in this . τ function by choosing 

.ξ0(p) =
∞⎲

r=1

ar [lnW1(p)]r , η0(q) =
∞⎲

r=1

br [lnW2(q)]r (2.261) 

in Eq. (2.245), where . ar and . br are complex constants. In order to meet the reality 

condition (2.238), i.e., .σ ∗ = σ , these . ar and . br constants need to be properly 

constrained. 

Now, we briefly summarize our results above. We have found that, the Boussi-

nesq equation (2.223) would admit rational solutions of differential form 

.uN (x, t) = 2∂2x ln τ, (2.262) 

where 

.τ = det
1≤i,j≤N

(
m2i−1,2j−1

)
, (2.263)
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the matrix elements in . τ are defined by 

. mi,j = 1

i! [f1(p)∂p]i 1
j ! [f2(q)∂q ]jm

||||
p=q=−1

, (2.264) 

.m = (p − 1)(q − 1)

p + q
exp (ξ + η) , (2.265) 

. ξ = 1

2
px − 1

4
p2it +

∞⎲

r=1

ar [lnW1(p)]r , (2.266) 

. η = 1

2
qx + 1

4
q2it +

∞⎲

r=1

br [lnW2(q)]r , (2.267) 

.f1(p), .W1(p) are functions given by Eqs. (2.253) and (2.256), .f2(q), .W2(q) are 

.f1(p), .W1(p)with p changing to q and index 1 changing to 2, if complex constants 

.ar , br are properly constrained so that the above . τ function is real. 

(c) The reality condition 

The parameter constraints between . ar and . br to meet the reality condition are 

difficult to derive from the above rogue wave expressions in differential form. In 

addition, we will want to reduce the above differential form to an explicit algebraic 

form anyway (as we have done before for the other integrable systems). Thus, we 

will do this form conversion first, and then use the algebraic form to find constraints 

between . ar and . br so that . τ is real. 

The basic idea of this derivation for the explicit solution form is the same as 

that in Sect. 2.1.1, except that we will work with variables .W1(p) and . W2(q)

instead of p and q. Introducing the generator . G of the differential operators 

.

(
f1(p)∂p

)k (
f2(q)∂q

)l
as 

.G =
∞⎲

k=0

∞⎲

l=0

κk

k!
λl

l!
⎾
f1(p)∂p

⏋k ⎾
f2(q)∂q

⏋l
, (2.268) 

and utilizing Eq. (2.254), we get 

.G =
∞⎲

k=0

∞⎲

l=0

κk

k!
λl

l!
⎾
∂lnW1

⏋k ⎾
∂lnW2

⏋l = exp
(
κ∂lnW1

+ λ∂lnW2

)
. (2.269) 

Thus, for any function .F(W1,W2), we have  

.GF(W1,W2) = F(eκW1, e
λW2). (2.270)
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Next, we will apply this generator on the function m in Eq. (2.265). To utilize 

Eq. (2.270), we need to express p and q in this m as functions of .W1 and . W2. 

Eq. (2.256) tells us that 

.p3 − 3p =W1 + 1

W1
. (2.271) 

This equation can be solved and there are three roots. Due to our earlier scaling of 

.W1(p0) = 1, i.e., .W1(−1) = 1, the suitable root for p is 

.p(W1) = c1W
1/3
1 + c∗

1W
−1/3
1 , (2.272) 

where .c1 = exp (2iπ/3). Similarly, we have 

.q(W2) = c1W
1/3
2 + c∗

1W
−1/3
2 , (2.273) 

Now, we apply Eq. (2.270) on  m and get 

. Gm = [p(eκW1) − 1] [q(eκW2) − 1]

p(eκW1) + q(eλW2)

× exp

⎛
1

2

⎾
p(eκW1) + q(eλW2)

⏋
x − 1

4

⎾
p2(eκW1) − q2(eλW2)

⏋
it

⎞

× exp

⎛ ∞⎲

r=1

ar [ln eκW1(p)]r +
∞⎲

r=1

br [ln eλW2(q)]r
⎞

. (2.274) 

Since .W1|p=−1 =W2|q=−1 = 1, then 

. 
1

m
Gm|p=q=−1 = [p(eκ) − 1][q(eλ) − 1]

−2[p(eκ ) + q(eλ)]

× exp

⎛
1

2

⎾
p(eκ ) + q(eλ) + 2

⏋
x − 1

4

⎾
p2(eκ ) − q2(eλ)

⏋
it

⎞

× exp

⎛ ∞⎲

r=1

ar κr +
∞⎲

r=1

br λr

⎞
. (2.275) 

We need to expand the right side of this equation into double Taylor series in . κ and 

. λ. To expand the fraction in front of the exponential term, we notice that for any 

functions .f (κ) and .g(λ), 

.
[f (κ) + g(0)][g(λ) + f (0)]

−2[f (κ) + g(λ)] = f (0) + g(0)

−2

1

1 − f (κ)−f (0)
f (κ)+g(0)

g(λ)−g(0)
g(λ)+f (0)
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= 
f (0) + g(0) 

−2 

∞⎲

ν=0

⎾
f (κ) − f (0) 

f (κ) + g(0) 

g(λ) − g(0) 

g(λ) + f (0)

⏋ν 

. (2.276) 

Thus, substituting 

. f (κ) = p(eκ ) = c1e
κ/3 + c∗

1e
−κ/3, g(λ) = q(eλ) = c1e

λ/3 + c∗
1e

−λ/3,

(2.277) 

and noticing .f (0) = g(0) = −1, we get 

. 
[p(eκ) − 1][q(eλ) − 1]

−2[p(eκ) + q(eλ)] =
∞⎲

ν=0

⎾
f (κ) − f (0)

f (κ) + g(0)

g(λ) − g(0)

g(λ) + f (0)

⏋ν

=
∞⎲

ν=0

⎛
−κλ

12

⎞ν

exp

⎛
ν ln

⎾
2i

√
3

κ
tanh

κ

6
tanh

⎛
κ

6
+ 2iπ

3

⎞⏋⎞

× exp

⎛
ν ln

⎾
2i

√
3

λ
tanh

λ

6
tanh

⎛
λ

6
+ 2iπ

3

⎞⏋⎞

=
∞⎲

ν=0

⎛
−κλ

12

⎞ν

exp

⎛
ν

∞⎲

r=1

sr
(
κr + λr

)
⎞

, (2.278) 

where . sr are defined by (2.230) in Theorem 2.4. Regarding the first exponential term 

in Eq. (2.275), when functions .p(·) and .q(·) from Eqs. (2.272)–(2.273) are inserted, 

and after simple Taylor expansions, we find that this first exponential term reduces to 

. exp

⎛ ∞⎲

r=1

κr

r!
c1 + (−1)rc∗

1

2 · 3r

⎾
x + (−2)r−1it

⏋

+
∞⎲

r=1

λr

r!
c1 + (−1)rc∗

1

2 · 3r

⎾
x − (−2)r−1it

⏋⎞
.

The second exponential term in Eq. (2.275) does not need further treatment. 

Combining all these results, Eq. (2.275) reduces to 

. 
1

m
Gm|p=q=−1 =

∞⎲

ν=0

⎛
−κλ

12

⎞ν

exp

⎛ ∞⎲

r=1

(
x+
r + νsr

)
κr +

∞⎲

r=1

(
x−
r + νsr

)
λr

⎞
,

(2.279) 

where
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.x+
r = e2iπ/3 + (−1)re−2iπ/3

2 · 3r · r!
⎾
x + (−2)r−1it

⏋
+ ar , r ≥ 1, . (2.280) 

x−
r = 

e2iπ/3 + (−1)r e−2iπ/3 

2 · 3r · r!
⎾
x − (−2)r−1it

⏋
+ br , r  ≥ 1. (2.281) 

Taking the coefficients of .κkλl on both sides of this equation and noticing 

.m|p=q=−1 = −2e−x , we get 

.mi,j = −2e−x

min(k,l)⎲

ν=0

⎛
− 1

12

⎞ν

Sk−ν

(
x

+ + νs
)
Sl−ν

(
x

− + νs
)
, (2.282) 

where .mi,j is as defined in Eq. (2.264). The exponential term .−2e−x in this 

.mi,j eventually drops out after the . τ function (2.263) with this matrix element is 

substituted into the variable transformation (2.262). 

The . τ function (2.263) with the above explicit .mi,j elements has a structure 

that is identical to that of the . τ function (2.69) for the NLS equation. Using the 

same techniques as those from Eqs. (2.71) to (2.74), we can show that even-indexed 

.x±
2r elements of the .x± vectors do not contribute to the determinant of the . τ

function (2.226) and thus can be set to zero. Then, the above . x± vectors become 

.

(
x±
1 , 0, x±

3 , 0, · · ·
)
as in Theorem 2.4. As a consequence, this . τ function contains 

only odd-indexed parameters .a2r+1, .b2r+1—there are no even-indexed parameters 

. a2r , . b2r . 

Then, we have established that the Boussinesq equation (2.223) would admit 

rational solutions 

.uN (x, t) = 2∂2x ln σ, (2.283) 

where 

.σ(x, t) = det
1≤i,j≤N

(
φ2i−1,2j−1

)
, (2.284) 

.φi,j =
min(i,j)⎲

ν=0

⎛−1

12

⎞ν

Si−ν(x
+ + νs) Sj−ν(x

− + νs), (2.285) 

vectors . x
± are as given in Theorem 2.4, and the vector .s = (s1, s2, · · · ) is as defined 

by Eq. (2.230), if complex constants .ar , br are properly constrained so that the above 

. σ function is real. 

Now, we determine constraints between . ar and . br so that . σ is real. Notice that 

all .seven values are real, and all .sodd values are purely imaginary (see the note right 

below Theorem 2.4). Thus, if we constrain parameters .a2r+1 and .b2r+1 by 

.b2r+1 = −a∗
2r+1, (2.286)
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then 

.[(x++νs)odd ]∗ = −(x−+νs)odd , [(x++νs)even]∗ = (x−+νs)even, (2.287) 

where the subscripts ‘odd’ and ‘even’ represent the odd-indexed and even-indexed 

elements of the underlying vectors, respectively. Because of this, 

.

⎾
Sj (x

+ + νs)
⏋∗ = (−1)jSj (x

− + νs). (2.288) 

Thus, we get from Eq. (2.285) that 

.

⎾
φi,j

⏋∗ = (−1)i+jφj,i, (2.289) 

which leads to .σ ∗ = σ . Thus, the reality condition is met, and the resulting 

function (2.283) then satisfies the Boussinesq equation (2.223). 

Under the parameter constraint (2.286), the . x± vectors above become the same 

as those defined in Theorem 2.4. Thus, the function (2.225) of Theorem 2.4 is a 

rational solution of the Boussinesq equation. This function contains free parameters 

.a1, a3, · · · , a2N−1. But  . a1 can be removed by a shift of the .(x, t) axes. Thus, 

irreducible free complex parameters are .a3, · · · , a2N−1. 

Using the same techniques as those in Sect. 2.1.1 for the NLS equation, we 

can also show that these rational solutions (2.225) satisfy the boundary condi-

tions (2.224) and are thus rogue waves. In addition, .σ(x, t) > 0, and thus . uN (x, t)

is nonsingular. Theorem 2.4 is then proved. 

Setting .N = 1 in Theorem 2.4, we get the fundamental Boussinesq rogue wave 

. u1(x, t) = 2∂2x ln
⎛
x2 + t2 + 1

⎞
= 4(1 − x2 + t2)

1 + x2 + t2
. (2.290) 

This solution is plotted in the left panel of Fig. 2.4. It rises from the zero background 

with a single main hump and reaches the peak amplitude 4 and then decays to the 

zero background again. 

Setting .N = 2 in Theorem 2.4, we get the second-order Boussinesq rogue wave, 

whose expression is 

.u2(x, t) = 2∂2x ln [F2(x, t)] , (2.291) 

where 

. F2(x, t) = t6 + 3t4x2 + 3t2x4 + x6 + 8t4x + 16t2x3 + 8x5 + 11t4 +
35x4 + 62t2x2 + 120t2x + 88x3 + 131t2 + 107x2 + 48x + 73 +

144ℜ(a3)
⎛√

3t3 − 3
√
3tx2 − 8

√
3tx − 7

√
3t + 108ℜ(a3)

⎞
+
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Fig. 2.4 Boussinesq rogue waves .uN (x, t). Left: the fundamental rogue wave. Middle: a second-

order rogue wave with .a3 = 0. Right: another second-order rogue wave with . a3 = −30

144𝔍(a3)
⎛√

3x3 − 3
√
3t2x − 4

√
3t2 + 4

√
3x2 + 5

√
3x + 108𝔍(a3)

⎞
. 

(2.292) 

For two parameter values of .a3 = 0 and .−30, this second-order rogue wave is 

displayed in the right two panels of Fig. 2.4. The .a3 = 0 solution exhibits two main 

humps, while the .a3 = −30 solution splits into a rogue triplet. 

2.4 Complex Modified Korteweg-de Vries Equation 

The complex modified Korteweg-de Vries (CMKdV) equation is 

.ut + uxxx + 6|u|2ux = 0. (2.293) 

This equation governs transverse nonlinear waves in a one-dimensional lattice with 

elastic bonds under longitudinal stress (Gorbacheva and Ostrovsky 1983). In fiber 

optics, this equation can be gauge-transformed from the Hirota equation (Sasa 

and Satsuma 1991), which is a modified nonlinear Schrödinger equation for short 

pulse propagation that takes into account the third-order linear dispersion and self-

steepening effects (Hasegawa and Kodama 1995; Agrawal 2001). The CMKdV 

equation belongs to the Ablowitz-Kaup-Newell-Segur (AKNS) integrable hierarchy 

(Yang 2010). 

Rogue waves up to the third order in the CMKdV equation (2.293) have been 

derived by Darboux transformation in Zhaqilao (2013) and He et al. (2014). Rogue 

waves up to the second order in the Hirota equation have also been derived by 

Darboux transformation in Ankiewicz et al. (2010b). Here, we will derive general 

rogue waves in the CMKdV equation by the bilinear method. 

The CMKdV equation (2.293) is invariant under the scaling of . u → Au, x →
x/|A| and .t → t/|A|3 for an arbitrary complex number A. Thus, we can normalize 

the background amplitude to unity and write the background as 

.u(x, t) → ei(αx−ωt), x, t → ±∞, (2.294)
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where . α and . ω are the background’s wavenumber and frequency. Requiring this 

background to satisfy Eq. (2.293), we find that .ω = 6α − α3. We seek rogue waves 

satisfying this boundary condition, i.e., 

.u(x, t) → ei[α(x−6t)+α3t], x, t → ±∞. (2.295) 

Explicit expressions of general rogue waves in this CMKdV equation are given 

by the following theorem. 

Theorem 2.5 The complex modified KdV equation (2.293) under boundary condi-

tions (2.295) admits rogue wave solutions of the following form 

.uN (x, t) = gN (x, t)

fN (x, t)
ei[α(x−6t)+α3t], (2.296) 

where N is the order of the rogue wave, 

.fN = σ0, gN = σ1, (2.297) 

.σk = det
1≤i,j≤N

⎛
m

(k)
2i−1,2j−1

⎞
, (2.298) 

the matrix elements in . σk are defined by 

.m
(k)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(k) + νs) Sj−ν(x
−(k) + νs), (2.299) 

vectors .x
±(k) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

. 
x+
1 = (x − 3t) − β1t + k, x−

1 = (x − 3t) − β∗
1 t − k,

x+
2r+1 = 1

(2r+1)! (x − 3t) − β2r+1t + a2r+1, x−
2r+1 = (x+

2r+1)
∗, r ≥ 1,

⎫

(2.300) 

the vector .s = (0, s2, 0, s4, · · · ) is defined by Eq. (2.11), . βr are coefficients from the 

expansion 

.

(
eκ + iα

)3 − (1 + iα)3 =
∞⎲

r=1

βrκ
r , (2.301) 

and .a3, a5, . . . , a2N−1 are free irreducible complex constants. 

Proof We first perform a bilinear variable transformation,
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.u(x, t) = g(x, t)

f (x, t)
ei[α(x−6t)+α3t], (2.302) 

where f is a real function and g a complex one. Under this transformation, the 

CMKdV equation (2.293) can be converted to a system of bilinear equations 

.

⎛
D2

x + 2
⎞

f · f = 2|g|2, . (2.303)

⎛
Dt + D3 

x 
+ 3iαD2 

x 
+ (6 − 3α2)Dx

⎞
g · f = 0. (2.304) 

These two equations can be reduced from the following bilinear equations in the KP 

hierarchy 

.

(
DrDx1 − 2

)
τk · τk = −2τk+1τk−1, . (2.305)

⎛
D2 

x1 
− Dx2 + 2aDx1

⎞
τk+1 · τk = 0, . (2.306)

⎛
D3 

x1 
+ 3Dx1Dx2 − 4Dx3 + 3a(D2 

x1 
+ Dx2) + 6a2Dx1

⎞
τk+1 · τk = 0, . (2.307)

⎛
Dr

⎛
D2 

x1 
− Dx2 + 2aDx1

⎞
− 4Dx1

⎞
τk+1 · τk = 0, (2.308) 

under the dimensional reduction condition of 

.

(
∂x1 + ∂r

)
τk = Cτk. (2.309) 

where C is some constant. Indeed, under this dimension reduction, the KP-bilinear 

equations (2.305) and (2.308) become 

.

⎛
D2

x1
+ 2

⎞
τk · τk = 2τk+1τk−1, . (2.310)

⎛
D3 

x1 
− Dx1Dx2 + 2aD2 

x1 
+ 4Dx1

⎞
τk+1 · τk = 0. (2.311) 

Then, (2.307)+ . 3× (2.311) + .(3a)×(2.306) gives  

.

⎾
D3

x1
+ (3a)D2

x1
+ (3a2 + 6)Dx1 − Dx3 − 3Dx1

⏋
τk+1 · τk = 0. (2.312) 

The original bilinear system (2.303)–(2.304) can be obtained from Eqs. (2.310) 

and (2.312) by setting 

.f = τ0, g = τ1, h = τ−1, (2.313) 

.x1 = x − 3t, x3 = −t, a = iα, (2.314)



116 2 Derivation of Rogue Waves in Integrable Systems

.x2 = x−1 = 0, and imposing the conjugation condition 

.τ−k = τ ∗
k . (2.315) 

We first construct solutions to the higher-dimensional bilinear system (2.305)– 

(2.308). Introducing functions .m
(k)
i,j , .ϕ

(k)
i and .ψ

(k)
j of variables . x1, . x2, . x3 and r 

satisfying the following differential and difference relations 

.

∂x1m
(k)
i,j = ϕ

(k)
i ψ

(k)
j ,

∂x1ϕ
(k)
i = aϕ

(k)
i + ϕ

(k+1)
i , ∂x1ψ

(k)
j = −aψ

(k)
j − ψ

(k−1)
j ,

∂xnϕ
(k)
j = ∂n

x1
ϕ

(k)
j , ∂xnψ

(k)
j = (−1)n−1∂n

x1
ψ

(k)
j , (n = 2, 3),

∂rϕ
(k)
i = ϕ

(k−1)
i , ∂rψ

(k)
j = −ψ

(k+1)
j ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.316) 

.

∂x2m
(k)
i,j = ϕ

(k+1)
i ψ

(k)
j + ϕ

(k)
i ψ

(k−1)
j + 2aϕ

(k)
i ψ

(k)
j ,

∂x3m
(k)
i,j = ϕ

(k+2)
i ψ

(k)
j + 3aϕ

(k+1)
i ψ

(k)
j + ϕ

(k+1)
i ψ

(k−1)
j +

+3a2ϕ
(k)
i ψ

(k)
j + 3aϕ

(k+1)
i ψ

(k−1)
j + ϕ

(k)
i ψ

(k−2)
j ,

∂rm
(k)
i,j = −ϕ

(k−1)
i ψ

(k+1)
j ,

m
(k+1)
i,j = m

(k)
i,j + ϕ

(k)
i ψ

(k+1)
j ,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.317) 

where a is an arbitrary complex constant, then the . τ function 

.τk = det
1≤μ,ν≤N

⎛
m

(k)
iμ,jν

⎞
(2.318) 

for an arbitrary sequence of indices .(i1, i2, · · · , iN ; j1, j2, · · · , jN ) would satisfy 

the higher-dimensional bilinear equations (2.305)–(2.308). This result is a special 

case of that reported in Feng et al. (2022b). Again, the former differential and 

difference relations (2.316) imply the . x1 derivatives of the latter differential and 

difference relations (2.317) are automatically valid, but not (2.317) themselves. 

To get rational solutions, we define matrix elements in the . τ function (2.318) as  

.m
(k)
i,j = AiBjm

(k), ϕ
(k)
i = Aiϕ

(k), ψ
(k)
j = Bjψ

(k), (2.319) 

where 

. m(k) = 1

p + q

⎛
−p − a

q + a

⎞k

eξ(p)+η(q), (2.320) 

.ϕ(k) = (p − a)keξ(p), ψ (k) = [−(q + a)]−keη(q), (2.321) 

.ξ(p) = px1 + p2x2 + p3x3 + 1

p − a
r + ξ0(p), (2.322)
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.η(q) = qx1 − q2x2 + q3x3 + 1

q + a
r + η0(q), (2.323) 

.Ai = 1

i!
⎾
(p − a)∂p

⏋i
, Bj = 1

j !
⎾
(q + a)∂q

⏋j
, (2.324) 

and .ξ0(p), .η0(q) are arbitrary functions. It is easy to see that these .m
(k)
i,j , .ϕ

(k)
i and 

.ψ
(k)
j functions satisfy the differential and difference relations (2.316) and (2.317), 

and thus the corresponding . τk function (2.318) satisfies the higher-dimensional 

bilinear equations (2.305)–(2.308). 

Next, we consider the dimension reduction condition (2.309). Denoting . p̂ ≡
p − a and .q̂ ≡ q + a, then . Ai and . Bj can be rewritten as 

.Ai = 1

i!
(
p̂∂p̂

)i
, Bj = 1

j !
(
q̂∂q̂

)j
, (2.325) 

and 

. (∂x1+∂r)m
(k)
i,j = AiBj (∂x1+∂r)m

(k) = AiBj

⎾
p̂ + 1

p̂
+ q̂ + 1

q̂

⏋
m(k). (2.326) 

Using the Leibnitz rule as in Sect. 2.1.1, the above equation reduces to 

. (∂x1 + ∂r)m
(k)
i,j =

i⎲

μ=0

1

μ!

⎛
p̂ + (−1)μ

p̂

⎞
m

(k)
i−μ,j +

j⎲

l=0

1

l!

⎛
q̂ + (−1)l

q̂

⎞
m

(k)
i,j−l .

(2.327) 

Then, when we take .p̂ = q̂ = 1, the above equation gives the contiguity relation 

. (∂x1 + ∂r) m
(k)
i,j

|||
p̂=q̂=1

= 2

i⎲

l=0
l:even

1

l! m
(k)
i−l,j

|||
p̂=q̂=1

+ 2

j⎲

l=0
l:even

1

l! m
(k)
i,j−l

|||
p̂=q̂=1

.

(2.328) 

Utilizing this relation and repeating the same algebra as in Sect. 2.1.1, we find that 

when we restrict the general determinant (2.318) to  

.τk = det
1≤i,j≤N

⎛
m

(k)
2i−1,2j−1

|||
p̂=q̂=1

⎞
, (2.329) 

then 

.(∂x1 + ∂r)τk = 4N τk. (2.330)
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Thus, the dimension reduction condition (2.309) is satisfied. 

Now, we introduce free parameters in the determinant (2.329). As before, we 

introduce them through .ξ0(p) and .η0(q) of Eqs. (2.322)–(2.323) as  

. ξ0(p) =
∞⎲

r=1

ar ln
r p̂, η0(q) =

∞⎲

r=1

br ln
r q̂, (2.331) 

where .ar , br are complex constants. 

Regarding the conjugation condition (2.315), it can be satisfied when we take 

.(x1, x3, a) as in Eq. (2.314) and constrain .br = a∗
r . Indeed, in this case, . [m

(k)
i,j ]∗ =

m
(k)
j,i when evaluated at .p̂ = q̂ = 1. Thus, .τ ∗

k = τk . 

The above results can be summarized in the following lemma. 

Lemma 2.7 The complex modified KdV equation (2.293) under boundary condi-

tions (2.295) admits rational rogue wave solutions of the following form 

.uN (x, t) = gN (x, t)

fN (x, t)
ei[α(x−6t)+α3t], (2.332) 

where N is the order of the rogue wave, 

.fN = σ0, gN = σ1, (2.333) 

.σk = det
1≤i,j≤N

⎛
m

(k)
2i−1,2j−1

⎞
, (2.334) 

the matrix elements in . σk are defined by 

.m
(k)
i,j =

(p̂∂p̂)i

i!
(q̂∂q̂)j

j ! m(k)

|||||
p̂=q̂=1

, (2.335) 

.m(k) = 1

p̂ + q̂

⎛
− p̂

q̂

⎞k

eξ(p̂)+η(q̂), (2.336) 

. ξ(p̂) = (p̂ + iα)(x − 3t) − (p̂ + iα)3t +
∞⎲

r=1

âr ln
r p̂, (2.337) 

. η(q̂) = (q̂ − iα)(x − 3t) − (q̂ − iα)3t +
∞⎲

r=1

â∗
r ln

r q̂, (2.338) 

and .â1, â2, â3, . . . are free complex constants.
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Lastly, we remove the differential operators in the matrix elements and derive 

more explicit expressions of rogue waves through Schur polynomials. This deriva-

tion is similar to that for the generalized derivative NLS equations in Sect. 2.2, and 

the resulting expressions are as given in Theorem 2.5, where parameters . ar are 

linearly related to . ̂ar in the above lemma. This derivation would be a bit simpler 

if we introduce a factor of .(p̂ + 1)(q̂ + 1) into Eq. (2.336), in which case this 

derivation would closely resemble that for the NLS equation in Sect. 2.1.1, and 

parameters . ar in Theorem 2.5 would be identical to . ̂ar in the above lemma. Using 

the same techniques as in Sect. 2.1.1, we can also set .x±
2r = 0 in the resulting Schur 

polynomial expressions. Furthermore, the parameter . a1 can be normalized to zero 

through a shift of the .(x, t) axes. Following these maneuvers, explicit rogue wave 

expressions as presented in Theorem 2.5 for the CMKdV equation would be derived. 

This completes the proof of Theorem 2.5. 

The fundamental rogue wave can be obtained from the above theorem by setting 

.N = 1, and we get 

. u1(x, t) =
⎛
1 + 12iαt − 1

x2 + 9
(
α4 + 4

)
t2 + 6

(
α2 − 2

)
tx + 1

4

⎞
ei[α(x−6t)+α3t].

(2.339) 

This rogue wave reaches peak amplitude of 3 at .x = t = 0. Its graph for .α = 1 is 

plotted in the left column of Fig. 2.5. 

Second-order rogue waves can be obtained from Theorem 2.5 by setting .N = 2. 

These rogue waves contain a free complex parameter . a3, as well as the background 

wavenumber . α. For  .α = 1 and two . a3 values of 0 and .30 + 30i, the resulting two 

second-order rogue waves are plotted in the middle and right columns of Fig. 2.5, 

Fig. 2.5 Rogue waves in the complex modified KdV equation (2.293) for .α = 1. Left column: the 

fundamental rogue wave .|u1(x, t)| in Eq. (2.339). Middle and right columns: second-order rogue 

waves .|u2(x, t; a3)| with .a3 = 0 and .30 + 30i, respectively. Upper row: 3D plots. Lower row: 

density plots
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respectively. In the former case, this rogue wave reaches a peak amplitude of 5 at 

.(x, t) = (0, 0). In the latter case, it splits into three fundamental rogue waves as a 

rogue triplet. 

2.5 Complex Short Pulse Equation 

The complex short pulse (CSP) equation 

. uxt + u + 1

2

⎛
|u|2ux

⎞
x

= 0 (2.340) 

was proposed by Feng (2015) as a model equation to describe ultra-short pulse 

propagation in optical fibers. Here, .u = u(x, t) is a complex-valued function. Since 

this equation is invariant under the scaling of .u → Au, x → |A|x and . t → t/|A|
for an arbitrary complex number A, we can normalize the background amplitude to 

unity and thus write the background as 

.u(x, t) → ei(κx−ωt), x, t → ±∞, (2.341) 

where . κ and . ω are the background’s wavenumber and frequency. Requiring this 

background to satisfy Eq. (2.340), we find that .ω = κ/2 − 1/κ . 

Rogue waves in the CSP equation (2.340) have been derived by Feng et al. 

(2022a) using the bilinear method. Here, we follow that paper but with some 

modifications in the solution expressions. 

General rogue waves in the CSP equation are given by the following theorem. 

Theorem 2.6 The complex short pulse equation (2.340) under boundary condi-

tions (2.341) admits rogue wave solutions 

.uN (x, t) = gN (y, z)

fN (y, z)
exp[i(y − 1

κ
z)], (2.342) 

where coordinates .(x, t) are related to new coordinates .(y, z) through the hodo-

graph transformation 

.x = 1

κ
y − 1

2
z − 2(ln fN )z, t = −z, (2.343) 

N is the order of the rogue wave, 

.fN = σ0, gN = σ1, (2.344) 

.σn = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

⎞
, (2.345)
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.fN > 0, the matrix elements in . σn are given by 

.m
(n)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(n) + νs) Sj−ν(x
−(n) + νs), (2.346) 

vectors .x
±(n) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

. x±
1 (n) = 1

2
z − α

(1 ∓ iα)2
y ± n, . (2.347) 

x+ 

2r+1 = β2r+1z + γ2r+1y + a2r+1, x− 

2r+1 = (x+ 

2r+1)
∗, (2.348) 

.βr ≡ 1/(2r!), . γr are coefficients from the expansion 

.
α

eλ − iα
− α

1 − iα
=

∞⎲

r=1

γrλ
r , (2.349) 

the parameter . α is related to the background wavenumber . κ through . κ =
2α/(α2 − 1), the vector .s = (0, s2, 0, s4, · · · ) is defined in Eq. (2.11), and 

.a3, a5, a7, . . . , a2N−1 are free irreducible complex parameters. 

Proof Through a variable transformation 

.u(x, t) = g(y, z)

f (y, z)
exp[i(y − 1

κ
z)], (2.350) 

along with the hodograph transformation 

.x = 1

κ
y − 1

2
z − 2(ln f )z, t = −z, (2.351) 

where .f > 0 and g is a complex function, the CSP equation (2.340) can be 

converted into the bilinear form 

.

⎛
DyDz + iDz − 1

κ
iDy

⎞
g · f = 0,

(
2D2

z + 1
)
f · f = |g|2.

⎫
(2.352) 

To derive rogue wave solutions, we first consider a higher-dimensional general-

ization of the above bilinear equations,
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. 

(
Dx1Dx−1

− 2
)
τn,k,l · τn,k,l = −2τn+1,k,lτn−1,k,l,

(aDr − 1) τn+1,k,l · τn,k,l = −τn+1,k−1,lτn,k+1,l,(
Dx1 (aDr − 1) − 2a

)
τn+1,k,l · τn,k,l =

(
Dx1 − 2a

)
τn+1,k−1,lτn,k+1,l,(

Dx1 (bDs − 1) − 2b
)
τn+1,k,l · τn,k,l =

(
Dx1 − 2b

)
τn+1,k,l−1τn,k,l+1,

⎫
⎪⎪⎬
⎪⎪⎭

(2.353) 

where .x1, x−1, r, s are four independent variables, and .a, b are complex constants. 

We will construct a large class of rational solutions to this system. Then, we restrict 

those solutions so that they satisfy the dimensional reduction conditions 

.

⎾
∂x1 + ∂x−1

⏋
τn,k,l = C1τn,k,l, . (2.354)

⎾
a2∂r − ∂s

⏋
τn,k,l = C2τn,k,l, (2.355) 

and the index-reduction condition 

.τn−1,k+1,l+1 = C3τn,k,l, (2.356) 

where . C1, . C2, . C3 are certain constants. In this case, the first bilinear equation 

in (2.353) under the condition (2.354) becomes 

.

⎛
D2

x1
+ 2

⎞
τn,k,l · τn,k,l = 2τn+1,k,lτn−1,k,l . (2.357) 

In addition, by letting .b = 1/a, the fourth bilinear equation in (2.353) under 

conditions (2.355)–(2.356) becomes 

. 

⎛
Dx1 (aDr − 1) − 2

a

⎞
τn+1,k,l · τn,k,l = −

⎛
Dx1 + 2

a

⎞
τn+1,k−1,lτn,k+1,l .

(2.358) 

Adding this equation to the third equation of (2.353) and utilizing the second 

equation of (2.353), we get 

. 

⎛
Dx1 (aDr − 1) − a − 1

a

⎞
τn+1,k,l · τn,k,l =

⎛
a + 1

a

⎞
(aDr − 1)τn+1,k,l · τn,k,l,

(2.359) 

which simplifies to 

.

⎛
aDx1Dr − Dx1 − (a2 + 1)Dr

⎞
τn+1,k,l · τn,k,l = 0. (2.360) 

Now, we define
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.f = τ0,0,0, g = τ1,0,0, h = τ−1,0,0. (2.361) 

Then, Eqs. (2.357) and (2.360) would become 

.

(
aDx1Dr − Dx1 − (a2 + 1)Dr

)
g · f = 0,(

D2
x1

+ 2
)
f · f = 2gh.

⎫
(2.362) 

Finally, we impose the complex conjugate condition 

.τ ∗
n,0,0 = τ−n,0,0, (2.363) 

which yields f real and .h = g∗. In addition, we set 

.x1 = 1

2
z, r = αy, a = iα, κ = 2α

α2 − 1
, (2.364) 

where . α is a real constant determined by the background wavenumber . κ . Then, 

the above bilinear equations (2.362) would become those of the CSP equation in 

Eq. (2.352), and the corresponding solutions (2.350) would give rogue waves of the 

CSP equation. 

Next, we execute the above plan. 

(a) Gram determinant solution for the higher-dimensional system 

First, we present Gram determinant solutions for the higher-dimensional bilinear 

system (2.353). 

Lemma 2.8 Let .m
(n,k,l)
i,j , .ϕ

(n,k,l)
i and .ψ

(n,k,l)
j be functions of . x1, . x−1, r and s 

satisfying the following differential and difference relations, 

. 

∂x1m
(n,k,l)
i,j = ϕ

(n,k,l)
i ψ

(n,k,l)
j ,

∂x1ϕ
(n,k,l)
i = ϕ

(n+1,k,l)
i , ∂x−1

ϕ
(n,k,l)
i = ϕ

(n−1,k,l)
i ,

∂rϕ
(n,k,l)
i = ϕ

(n,k−1,l)
i , ∂sϕ

(n,k,l)
i = ϕ

(n,k,l−1)
i ,

ϕ
(n,k+1,l)
i = ϕ

(n+1,k,l)
i − aϕ

(n,k,l)
i , ϕ

(n,k,l+1)
i = ϕ

(n+1,k,l)
i − bϕ

(n,k,l)
i ,

∂x1ψ
(n,k,l)
j = −ψ

(n−1,k,l)
j , ∂x−1

ψ
(n,k,l)
j = −ψ

(n+1,k,l)
j ,

∂rψ
(n,k,l)
j = −ψ

(n,k+1,l)
j , ∂sψ

(n,k,l)
j = −ψ

(n,k,l+1)
j ,

ψ
(n,k−1,l)
j = ψ

(n−1,k,l)
j − aψ

(n,k,l)
j , ψ

(n,k,l−1)
j = ψ

(n−1,k,l)
j − bψ

(n,k,l)
j .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.365) 

Then the determinant 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
i,j

⎞
(2.366) 

would satisfy the higher-dimensional bilinear system (2.353).
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The proof of this lemma is along the lines of the proof of Lemma 2.1 in 

Sect. 2.1.1; see Feng et al. (2022a) for details (note that the last two equations 

of (2.365) in Feng et al. (2022a) have typos in the signs in front of the a and b 

coefficients which we have corrected here). 

(b) Dimensional and index reductions 

Next we derive algebraic solutions satisfying both the higher-dimensional bilin-

ear equations (2.353), the dimension reduction conditions (2.354)–(2.355), and 

the index reduction condition (2.356), hence satisfying the (1+1)-dimensional 

system (2.362). These solutions are obtained by choosing the matrix elements 

appropriately in the Gram determinant solution in Lemma 2.8. 

Lemma 2.9 We define matrix elements .m
(n,k,l)
i,j by 

.m
(n,k,l)
i,j = AiBjm

(n,k,l)
|||
p=q=1

, (2.367) 

where 

. Ai = 1

i!
(
p∂p

)i
, Bj = 1

j !
(
q∂q

)j
, . (2.368) 

m(n,k,l) = 
1 

p + q

⎛
−p 

q

⎞n ⎛
−p − a 

q + a

⎞k ⎛
−p − b 

q + b

⎞l 

eξ(p)+η(q) , . (2.369) 

ξ(p) = 
1 

p 
x−1 + px1 + 

1 

p − a 
r + 

1 

p − b 
s + ξ0(p), . (2.370) 

η(q) = 
1 

q 
x−1 + qx1 + 

1 

q + a 
r + 

1 

q + b 
s + η0(q), (2.371) 

.b = 1/a, and .ξ0(p), .η0(q) are arbitrary functions of p, q, respectively. Then the 

determinant 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

⎞
(2.372) 

would satisfy the bilinear system 

.

(
aDx1Dr − Dx1 − (a2 + 1)Dr

)
τn+1,k,l · τn,k,l = 0,(

D2
x1

+ 2
)
τn,k,l · τn,k,l = 2τn+1,k,lτn−1,k,l .

⎫
(2.373) 

Proof It is easy to see that the .m(n,k,l) function in (2.369), together with its 

corresponding .ϕ(n,k,l) and .ψ (n,k,l) functions, satisfy the differential and difference 

system (2.365) without indices i and j . Then, since operators . Ai and . Bj commute 

with differentials . ∂x1 , .∂x−1
, . ∂r and . ∂s , then .AiBjm

(n,k,l), with its corresponding 

.ϕ
(n,k,l)
i and .ψ

(n,k,l)
j functions, satisfy the differential and difference system (2.365).
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Thus, from Lemma 2.8, we know that for an arbitrary sequence of indices 

.(i1, i2, · · · , iN ; j1, j2, · · · , jN ), the determinant 

.τn,k,l = det
1≤ν,μ≤N

⎛
m

(n,k,l)
iν ,jμ

⎞
(2.374) 

satisfies the higher-dimensional bilinear system (2.353). 

Next, we consider dimension reduction conditions (2.354)–(2.355). Introducing 

linear differential operators . L1 and . L2 as 

.L1 = ∂x1 + ∂x−1
, L2 = a2∂r − ∂s, (2.375) 

then we have 

.L1m
(n,k,l)
i,j = AiBjL1m

(n,k,l) = AiBj [Q11(p) + Q12(q)]m(n,k,l), (2.376) 

and 

.L2m
(n,k,l)
i,j = AiBjL1m

(n,k,l) = AiBj [Q21(p) + Q22(q)]m(n,k,l), (2.377) 

where 

.Q11(p) = p + 1

p
, Q12(q) = q + 1

q
. (2.378) 

.Q21(p) = a2

p − a
− 1

p − b
, Q22(q) = a2

q + a
− 1

q + b
, (2.379) 

and .b = 1/a. 

We select . p0 and . q0 values to be roots of the following algebraic equations 

.Q'
11(p) = 0, Q'

12(q) = 0. (2.380) 

These equations have simple roots . ±1. Without loss of generality, we take 

.p0 = 1, q0 = 1. (2.381) 

Importantly, one can verify that these . p0 and . q0 are simple roots of equations 

.Q'
21(p) = 0 and .Q'

22(q) = 0 as well, i.e., 

.Q'
21(p0) = 0, Q'

22(q0) = 0. (2.382) 

This fact guarantees that both dimension reduction conditions (2.354) and (2.355) 

will be satisfied simultaneously. A general proof for this using the Faà di Bruno 

formula can be found in Feng et al. (2022a), and we will use that general proof to
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handle a similar situation in the massive Thirring model in Sect. 2.12. Below, we  

will provide a simpler but less general proof for the simultaneous satisfaction of 

both dimension reduction conditions (2.354)–(2.355). 

Regarding the first dimension reduction condition (2.354), using the Leibnitz 

rule, we have the operator relation 

. AiQ11(p) =
i⎲

l=0

1

l!
⎾
(p∂p)lQ11(p)

⏋
Ai−l =

i⎲

l=0

1

l!

⎛
p + (−1)l

p

⎞
Ai−l .

(2.383) 

This relation is the same as that we encountered in Sect. 2.1.1 for the NLS equation. 

Using this relation and a similar one for .BjQ12(q), and following similar steps as 

in Sect. 2.1.1, we get 

. L1m
(n,k,l)
i,j =

i⎲

l=0

1

l!

⎛
p + (−1)l

p

⎞
m

(n,k,l)
i−l,j +

j⎲

l=0

1

l!

⎛
q + (−1)l

q

⎞
m

(n,k,l)
i,j−l .

(2.384) 

Evaluating this relation at .p = q = 1, we arrive at the first contiguity relation 

. L1 m
(n,k,l)
i,j

|||
p=q=1

= 2

i⎲

l=0
l:even

1

l! m
(n,k,l)
i−l,j

|||
p=q=1

+ 2

j⎲

l=0
l:even

1

l! m
(n,k,l)
i,j−l

|||
p=q=1

.

(2.385) 

Regarding the second dimension reduction condition (2.355), using the Leibnitz 

rule, we have the operator relation 

.AiQ21(p) =
i⎲

l=0

1

l!
⎾
(p∂p)lQ21(p)

⏋
Ai−l . (2.386) 

A similar relation can be written for .BjQ22(q). Thus, 

. L2m
(n,k,l)
i,j =

i⎲

l=0

1

l!
⎾
(p∂p)lQ21(p)

⏋
m

(n,k,l)
i−l,j +

j⎲

l=0

1

l!
⎾
(q∂q)lQ22(q)

⏋
m

(n,k,l)
i,j−l .

(2.387) 

Notice that 

.(p∂p)lQ21(p) = ∂ l
lnpQ21(p) = ∂ l

ϵQ21(e
ϵ)

|||
ϵ=lnp

. (2.388)



2.5 Complex Short Pulse Equation 127

Then, defining 

.ζl ≡ (p∂p)lQ21(p)

|||
p=1

, (2.389) 

we see that 

.ζl = ∂ l
ϵQ21(e

ϵ)

|||
ϵ=0

. (2.390) 

But 

.Q21(e
ϵ) = a2

eϵ − a
− 1

eϵ − a−1
= a(1 − a2)(

eϵ/2 − ae−ϵ/2
) (

e−ϵ/2 − aeϵ/2
) (2.391) 

is an even function of . ϵ. Thus, .ζl = 0 when the index l is odd. Similarly, defining 

.θl ≡ (q∂q)lQ22(q)

|||
q=1

, (2.392) 

we can show that .θl = 0 when its index l is odd as well. Then, evaluating Eq. (2.387) 

at .p = q = 1, we get the second contiguity relation 

. L2 m
(n,k,l)
i,j

|||
p=q=1

=
i⎲

l=0
l:even

ζl

l! m
(n,k,l)
i−l,j

|||
p=q=1

+
j⎲

l=0
l:even

θl

l! m
(n,k,l)
i,j−l

|||
p=q=1

.

(2.393) 

Both contiguity relations (2.385) and (2.393) relate matrix elements with indices 

shifted by even numbers. Then, if we restrict the general . τ solutions (2.366) as  

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

|||
p=q=1

⎞
, (2.394) 

then for the same reasons as explained in Sect. 2.1.1, we will find that 

.L1τn,k,l = 4N τn,k,l, L2τn,k,l = (ζ0 + θ0)N τn,k,l, (2.395) 

or equivalently, 

. L1τn,k,l = [Q11(p0) + Q12(q0)] N τn,k,l, . (2.396) 

L2τn,k,l = [Q21(p0) + Q22(q0)] N τn,k,l . (2.397) 

So both dimensional reduction conditions (2.354)–(2.355) are satisfied simultane-

ously.
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Next, we consider the index-reduction condition (2.356). We start with 

. m
(n−1,k+1,l+1)
i,j = AiBjm

(n−1,k+1,l+1) = AiBj

⎾
H1(p)H2(q)

⏋
m(n,k,l),

(2.398) 

where 

. H1(p) = (p − a)(p − b)

p
, H2(q) = −q

(q + b)(q + a)
. (2.399) 

Applying the Leibnitz rule and following similar calculations as above, we have 

. m
(n−1,k+1,l+1)
i,j

|||
p=q=1

=
i⎲

r=0

j⎲

s=0

1

r!
1

s!H1,rH2,s m
(n,k,l)
i−r,j−s

|||
p=q=1

, (2.400) 

where .H1,r and .H2,s are constants defined as 

.H1,r = (p∂p)rH1(p)
||
p=1

, H2,s = (q∂q)sH2(q)
||
q=1

. (2.401) 

Since .b = 1/a, using the same technique as that from Eqs. (2.388)–(2.391), we can 

show that .H1,r and .H2,s are zero when their indices r and s are odd. Thus, we arrive 

at the contiguity relation for index reduction 

. m
(n−1,k+1,l+1)
i,j

|||
p=q=1

=
i⎲

r=0
r:even

j⎲

s=0
s:even

1

r!
1

s!H1,rH2,s m
(n,k,l)
i−r,j−s

|||
p=q=1

. (2.402) 

Applying this contiguity relation, we can show that 

. 

⎛
m

(n−1,k+1,l+1)
2i−1,2j−1

|||
p=q=1

⎞

1≤i,j≤N

= L

⎛
m

(n,k,l)
2i−1,2j−1

|||
p=q=1

⎞

1≤i,j≤N

U,

(2.403) 

where L and U are lower and upper triangular matrices with diagonal entries as . H1,0

and .H2,0, respectively. Then, taking the determinant on both sides of this equation, 

we get 

.τn−1,k+1,l+1 = KNτn,k,l, K ≡ H1,0H2,0 = (1 − a)2

(1 + a)2
. (2.404) 

Thus, the index-reduction condition (2.356) is satisfied. 

Since our . τ function (2.394), i.e., Eq. (2.372) in Lemma 2.9, now satisfies 

the dimension-reduction conditions (2.354)–(2.355) and the index-reduction con-
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dition (2.356), they then satisfy the bilinear system (2.373). Thus, Lemma 2.9 is 

proved. 

Regarding free parameters, they are introduced through .ξ0(p) and .η0(q) in 

Eqs. (2.370)–(2.371) as  

.ξ0(p) =
∞⎲

r=1

âr ln
rp, η0(q) =

∞⎲

r=1

b̂r ln
rq, (2.405) 

where . ̂ar and .b̂r . (r = 1, 2, . . . ) are complex constants. 

Finally, we impose the complex conjugate condition (2.363), i.e., . τ ∗
n,0,0 =

τ−n,0,0. After the dimension reduction, we can set .x−1 = s = 0 in the .ξ(p) and 

.η(q) expressions (2.370)–(2.371). In this case, if we set a to be purely imaginary 

and denote .a = iα, where . α is a real parameter, and constrain the parameters in 

.ξ0(p) and .η0(q) above as .b̂r = â∗
r , then .[m(n,0,0)

i,j ]∗ = m
(−n,0,0)
j,i . Thus, the conjugate 

condition (2.363) is satisfied. After assigning . x1 and r variables and parameter . α as 

in Eq. (2.364), the . τ function (2.372) then would give rational solutions to the CSP 

equation (2.340) through transformations (2.350) and (2.351). 

We can also show by the technique of Sect. 2.1.1 that .τ0,0,0 > 0. In addition, 

these rational solutions are rogue waves satisfying the boundary conditions (2.341). 

Summarizing the above results, we have the following lemma on rogue waves of 

the CSP equation in differential operator form. 

Lemma 2.10 The complex short pulse equation (2.340) under boundary condi-

tions (2.341) admits rogue wave solutions of the following form 

.uN (x, t) = gN (y, z)

fN (y, z)
exp[i(y − 1

κ
z)], (2.406) 

where coordinates .(x, t) are related to new coordinates .(y, z) through the hodo-

graph transformation 

.x = 1

κ
y − 1

2
z − 2(ln fN )z, t = −z, (2.407) 

N is the order of the rogue wave, 

.fN = τ0, gN = τ1, (2.408) 

.τn = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

⎞
, (2.409) 

.fN > 0, the matrix elements in . τn are defined by 

.m
(n)
i,j =

(
p∂p

)i

i!

(
q∂q

)j

j ! m(n)
|||
p=q=1

, (2.410)
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.m(n) =
⎛

1

p + q

⎞⎛
−p

q

⎞n

eξ(p)+η(q), (2.411) 

.ξ(p) = 1

2
pz + α

p − iα
y +

∞⎲

r=1

âr ln
rp, (2.412) 

.η(q) = 1

2
qz + α

q + iα
y +

∞⎲

r=1

â∗
r ln

rq, (2.413) 

. α is related to the background wavenumber . κ through .κ = 2α/(α2 − 1), and 

.â1, â2, â3, . . . , â2N−1 are free complex constants. 

Next, we remove differential operators in the above lemma and derive more 

explicit expressions of rogue waves through Schur polynomials. For the current 

choice of the .m(n) function in Eq. (2.411), this derivation is similar to that for the 

generalized derivative NLS equations in Sect. 2.2, and the resulting expressions are 

as given in Theorem 2.6, where parameters . ar are linearly related to . ̂ar in the 

above lemma. This derivation would be a bit simpler if we introduce a factor of 

.(p + 1)(q + 1) into the .m(n) function in Eq. (2.411), in which case this derivation 

would resemble that for the NLS equation in Sect. 2.1.1, and parameters . ar in 

Theorem 2.6 would be identical to . ̂ar in the above lemma. In addition, using the 

same techniques as in Sect. 2.1.1, we can set .x±
2r = 0 in the resulting Schur 

polynomial expressions. Skipping these calculations, we arrive at explicit rogue 

wave expressions of the CSP equation in Schur polynomial form as presented in 

Theorem 2.6. This completes the proof of Theorem 2.6. 

The fundamental rogue wave can be derived from Theorem 2.6 by setting .N = 1, 

and we get 

. u1(x, t) =
⎾
1 + 16iα2y − 4(1 + α2)2

(1 + α2)2z2 − 4α(1 − α2)yz + 4α2y2 + (1 + α2)2

⏋

× exp[i(y − 1

κ
z)]. (2.414) 

This fundamental rogue wave reaches a peak amplitude of 3 at .x = t = 0. When 

.α = 4, its graph is displayed in Fig. 2.6. 

Second-order rogue waves can be obtained from Theorem 2.6 by setting .N = 2. 

These solutions have a free complex parameter . a3. For .α = 4 and two choices of the 

. a3 values 0 and 50, the corresponding rogue solutions are displayed in Fig. 2.7. In the  

former case, the rogue wave reaches a peak amplitude of approximately 4.287267. 

In the latter case, it splits into a rogue triplet.
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Fig. 2.6 Graph of the fundamental rogue wave (2.414) with .α = 4 in the complex short pulse 

equation (2.340). Left: 3D plot; right: density plot 

Fig. 2.7 Second-order rogue wave solutions in the complex short pulse equation (2.340) with 

.α = 4. Upper row: .a3 = 0; lower  row: .a3 = 50. Left column: 3D plots; right column: density plots 

2.6 Sasa-Satsuma Equation 

The Sasa-Satsuma equation was proposed as a higher-order nonlinear Schödinger 

equation for optical pulses that includes some additional physical effects such as
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third-order dispersion and self-steepening (Sasa and Satsuma 1991; Hasegawa and 

Kodama 1995; Agrawal 2001). Through a variable transformation, this equation can 

be written as 

.ut = uxxx + 6|u|2ux + 3u(|u|2)x . (2.415) 

Sasa and Satsuma (1991) showed that this equation is integrable. 

Through a simple scaling, continuous-wave backgrounds of the Sasa-Satsuma 

equation can be normalized to have unit amplitude. Hence they can be written as 

.u(x, t) = ei(αx−ωt), where . α and . ω are the wave number and frequency parameters. 

Inserting this background wave into the Sasa-Satsuma equation (2.415), we find that 

.ω = α3 − 6α. We seek rogue waves which approach this background at large time 

and space, i.e., 

.u(x, t) → ei[α(x+6t)−α3t], x, t → ±∞. (2.416) 

Rogue waves in the Sasa-Satsuma equation have been derived before by Chen 

(2013), Mu and Qin (2016), Ling (2016), Mu et al. (2020), Feng et al. (2022b), and 

Wu et al. (2022), by Darboux transformation or the bilinear method. We will use the 

bilinear method, following Wu et al. (2022) but with modifications in the solution 

expressions. 

General rogue waves in the Sasa-Satsuma equation are given by the following 

theorem. 

Theorem 2.7 When .|α| > 1/2 where the algebraic equation .Q'
1(p) = 0 with 

.Q1(p) = 1

p − iα
+ 1

p + iα
+ p (2.417) 

admits a pair of simple complex conjugate roots .(p0,1, p0,2) with .p0,2 = p∗
0,1, the  

Sasa-Satsuma equation (2.415) under boundary conditions (2.416) admits rogue 

wave solutions 

.uN (x, t) = σ1,0

σ0,0
ei[α(x+6t)−α3t], (2.418) 

where N is the order of the rogue wave, .σk,l is a .2 × 2 block determinant 

.σk,l = det

⎛
σ
[1,1]
k,l σ

[1,2]
k,l

σ
[2,1]
k,l σ

[2,2]
k,l

⎞
, (2.419) 

.σ
[I,J ]
k,l =

⎛
m

(k,l,I,J )
2i−1,2j−1

⎞
1≤i,j≤N

, (2.420) 

the matrix elements in .σ
[I,J ]
k,l are defined by
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. m
(k,l,I,J )
i,j =

min(i,j)⎲

ν=0

⎛
1

p0,I + p0,J

⎞⎾
p1,Ip1,J

(p0,I + p0,J )2

⏋ν

× Si−ν

⎛
x

+
I,J (k, l) + νsI,J

⎞
Sj−ν

⎛
x

−
J,I (k, l) + νsJ,I

⎞
, (2.421) 

vectors .x
±
I,J (k, l) =

⎛
x±
1,I,J , x±

2,I,J , · · ·
⎞
are defined by 

. x+
r,I,J (k, l) = pr,I (x + 6t) + βr,I t + kθr,I + lλr,I − br,I,J + ar,I , . (2.422) 

x− 

r,I,J 
(k, l) = pr,I (x + 6t)  + βr,I t − kλr,I − lθr,I − br,I,J + ar,I , (2.423) 

. pr,I , . βr,I , . θr,I , .λr,I and .br,I,J are coefficients from the expansions 

. pI (κ) =
∞⎲

r=0

pr,Iκ
r , [pI (κ)]3 −

(
p0,I

)3 =
∞⎲

r=1

βr,Iκ
r , . (2.424) 

ln

⎾
pI (κ) − iα 

p0,I − iα

⏋
= 

∞⎲

r=1 

θr,Iκ
r , ln

⎾
pI (κ) + iα 

p0,I + iα

⏋
= 

∞⎲

r=1 

λr,Iκ
r , . (2.425) 

ln

⎾
pI (κ) + p0,J 

p0,I + p0,J

⏋
= 

∞⎲

r=1 

br,I,J κ
r , (2.426) 

the function .pI (κ) is defined by the equation 

.Q1 [pI (κ)] = Q1(p0,I ) cosh(κ), (2.427) 

the vector .sI,J = (s1,I,J , s2,I,J , · · · ) is defined by the expansion 

. ln

⎾
1

κ

⎛
p0,I + p0,J

p1,I

⎞⎛
pI (κ) − p0,I

pI (κ) + p0,J

⎞⏋
=

∞⎲

r=1

sr,I,J κr , (2.428) 

.ar,2 = a∗
r,1, and .ar,1 .(r = 1, 2, . . . , 2N − 1) are free complex constants. 

Proof Through a variable transformation, 

.u(x, t) = g(x, t)

f (x, t)
ei[α(x+6t)−α3t], (2.429) 

where f is real function and g a complex one, the Sasa-Satsuma equation (2.415) 

can be converted into a set of bilinear equations
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.

(
D2

x + 4
)
f · f = 4|g|2,

(Dx + 2iα) g · g∗ = 2iαf h,(
D3

x − Dt + 3iαD2
x − 3(α2 − 4)Dx + 6iα

)
g · f = 6iαgh,

⎫
⎬
⎭ (2.430) 

where h is an auxiliary function. 

To get rational solutions, we begin our reduction from the following higher-

dimensional bilinear equations in the extended KP hierarchy 

.

(
DrDx1 − 2

)
τk,l · τk,l = −2τk+1,lτk−1,l, . (2.431)

(
DsDx1 − 2

)
τk,l · τk,l = −2τk,l+1τk,l−1, . (2.432)

⎛
D2 

x1 
− Dx2 + 2aDx1

⎞
τk+1,l · τk,l = 0, . (2.433)

⎛
D2 

x1 
− Dx2 + 2bDx1

⎞
τk,l+1 · τk,l = 0, . (2.434)

⎛
D3 

x1 
+ 3Dx1Dx2 − 4Dx3 + 3a(D2 

x1 
+ Dx2) + 6a2Dx1

⎞
τk+1,l · τk,l = 0, .(2.435)

⎛
D3 

x1 
+ 3Dx1Dx2 − 4Dx3 + 3b(D2 

x1 
+ Dx2) + 6b2Dx1

⎞
τk,l+1 · τk,l = 0, . (2.436)

⎛
Dr

⎛
D2 

x1 
− Dx2 + 2aDx1

⎞
− 4Dx1

⎞
τk+1,l · τk,l = 0, . (2.437)

⎛
Ds

⎛
D2 

x1 
− Dx2 + 2bDx1

⎞
− 4Dx1

⎞
τk,l+1 · τk,l = 0, . (2.438)

⎛
Ds

⎛
D2 

x1 
− Dx2 + 2aDx1

⎞
− 4(Dx1 + a − b)

⎞
τk+1,l · τk,l + 

+4(a − b)τk+1,l+1τk,l−1 = 0, . (2.439)
⎛
Dr

⎛
D2 

x1 
− Dx2 + 2bDx1

⎞
− 4(Dx1 + b − a)

⎞
τk,l+1 · τk,l + 

+4(b − a)τk+1,l+1τk−1,l = 0, . (2.440)
(
Dx1 + a − b

)
τk+1,l · τk,l+1 = (a − b)τk+1,l+1τk,l . (2.441) 

We will construct a broad class of algebraic solutions to this bilinear system. Then, 

we introduce the dimension reduction condition 

.(∂r + ∂s + ∂x1)τk,l = Cτk,l, (2.442) 

where C is some constant. Under this condition, adding Eqs. (2.431) and (2.432) 

gives 

.(D2
x1

+ 4)τk,l · τk,l = 2(τk+1,lτk−1,l + τk,l+1τk,l−1). (2.443) 

In addition, performing
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.3a × Eq. (2.433) + Eq. (2.435) + 3 × (Eq. (2.437) + Eq. (2.439)) (2.444) 

would eliminate . x2 and yield the equation 

. 

⎛
D3

x1
− Dx3 + 3aD2

x1
+ 3(a2 + 2)Dx1 + 3(a − b)

⎞
τk+1,l

· τk,l = 3(a − b)τk+1,l+1τk,l−1. (2.445) 

Similarly, performing 

.3b × Eq. (2.434) + Eq. (2.436) + 3 × (Eq. (2.438) + Eq. (2.440)) (2.446) 

would yield the equation 

. 

⎛
D3

x1
− Dx3 − 3aD2

x1
+ 3(a2 + 2)Dx1 − 3(a − b)

⎞
τk,l+1

· τk,l = −3(a − b)τk+1,l+1τk−1,l . (2.447) 

Now we set .b = −a and .k = l = 0. Then the bilinear equations (2.441), (2.443), 

(2.445) and (2.447) become 

.(D2
x1

+ 4)τ0,0 · τ0,0 = 2(τ1,0τ−1,0 + τ0,1τ0,−1), . (2.448)

(
Dx1 + 2a

)
τ1,0 · τ0,1 = 2aτ1,1, . (2.449)

⎛
D3 

x1 
− Dx3 + 3aD2 

x1 
+ 3(a2 + 2)Dx1 + 6a

⎞
τ1,0 · τ0,0 = 6aτ1,1τ0,−1, 

. (2.450)
⎛
D3 

x1 
− Dx3 − 3aD2 

x1 
+ 3(a2 + 2)Dx1 − 6a

⎞
τ0,1 · τ0,0 = −6aτ1,1τ−1,0. 

(2.451) 

Then, if we set 

.x1 = x + 6t, x3 = t, a = iα, f = τ0,0, g = τ1,0, h = τ1,1, (2.452) 

and impose the conjugation and index conditions 

.τ ∗
k,k = τk,k, τ ∗

0,k = τk,0, τk,l = τ−l,−k (2.453) 

for .k, l = 0, 1, the above bilinear system (2.448)–(2.451) would become the 

bilinear system (2.430) of the Sasa-Satsuma equation, and algebraic solutions to the 

higher-dimensional bilinear system (2.431)–(2.441) would give rational rogue wave 

solutions of the Sasa-Satsuma equation through the bilinear transformation (2.429).
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Next, we execute the above plan. 

First, we construct a broad class of algebraic solutions to the higher-dimensional 

bilinear system (2.431)–(2.441). Introducing functions .m
(k,l)
i,j , .ϕ

(k,l)
i and . ψ

(k,l)
j

depending on variables . x1, . x2, . x3, r and s, satisfying differential and difference 

relations 

.

∂x1m
(k,l)
i,j = ϕ

(k,l)
i ψ

(k,l)
j ,

∂x1ϕ
(k,l)
i = aϕ

(k,l)
i + ϕ

(k+1,1)
i = bϕ

(k,l)
i + ϕ

(k,1+1)
i ,

∂x1ψ
(k,l)
j = −aψ

(k,l)
j − ψ

(k−1,1)
j = −bψ

(k,l)
j − ψ

(k,1−1)
j ,

∂xnϕ
(k,l)
j = ∂n

x1
ϕ

(k,l)
j , ∂xnψ

(k,l)
j = (−1)n−1∂n

x1
ψ

(k,l)
j , n = 2, 3,

∂rϕ
(k,l)
i = ϕ

(k−1,l)
i , ∂rψ

(k,l)
j = −ψ

(k+1,l)
j ,

∂sϕ
(k,l)
i = ϕ

(k,l−1)
i , ∂sψ

(k,l)
j = −ψ

(k,l+1)
j ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.454) 

. 

∂x2m
(k,l)
i,j = ϕ

(k+1,l)
i ψ

(k,l)
j + ϕ

(k,l)
i ψ

(k−1,l)
j + 2aϕ

(k,l)
i ψ

(k,l)
j ,

∂x2m
(k,l)
i,j = ϕ

(k,l+1)
i ψ

(k,l)
j + ϕ

(k,l)
i ψ

(k,l−1)
j + 2bϕ

(k,l)
i ψ

(k,l)
j ,

∂x3m
(k,l)
i,j = ϕ

(k+2,l)
i ψ

(k,l)
j + 3aϕ

(k+1,l)
i ψ

(k,l)
j + ϕ

(k+1,l)
i ψ

(k−1,l)
j +

+3a2ϕ
(k,l)
i ψ

(k,l)
j + 3aϕ

(k+1,l)
i ψ

(k−1,l)
j + ϕ

(k,l)
i ψ

(k−2,l)
j ,

∂x3m
(k,l)
i,j = ϕ

(k,l+2)
i ψ

(k,l)
j + 3bϕ

(k,l+1)
i ψ

(k,l)
j + ϕ

(k,l+1)
i ψ

(k,l−1)
j +

+3b2ϕ
(k,l)
i ψ

(k,l)
j + 3bϕ

(k,l+1)
i ψ

(k,l−1)
j + ϕ

(k,l)
i ψ

(k,l−2)
j ,

∂rm
(k,l)
i,j = −ϕ

(k−1,l)
i ψ

(k+1,l)
j , ∂rm

(k,l)
i,j = −ϕ

(k,l−1)
i ψ

(k,l+1)
j ,

m
(k+1,l)
i,j = m

(k,l)
i,j + ϕ

(k,l)
i ψ

(k+1,l)
j , m

(k,l+1)
i,j = m

(k,l)
i,j + ϕ

(k,l)
i ψ

(k,l+1)
j ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.455) 

where a and b are arbitrary complex constants, then the . τ function 

.τk,l = det
1≤i,j≤N

⎛
m

(k,l)
i,j

⎞
(2.456) 

would satisfy the higher-dimensional bilinear system (2.431)–(2.441) (Ohta and 

Yang 2012a; Yang and Yang 2021b; Wu et al.  2022). 

To get algebraic solutions to this bilinear system, we define matrix elements in 

the . τ function (2.456) as  

.m
(k,l)
i,j = AiBjm

(k,l), (2.457) 

where 

.m(k,l) = 1

p + q

⎛
−p − a

q + a

⎞k ⎛
−p − b

q + b

⎞l

eξ(p)+η(q), (2.458)
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. ξ(p) = px1 + p2x2 + p3x3 + 1

p − a
r + 1

p − b
s + ξ0(p), . (2.459) 

η(q) = qx1 − q2x2 + q3x3 + 
1 

q + a 
r + 

1 

q + b 
s + η0(q). (2.460) 

.Ai = [f1(p)∂p]i
i! , Bj = [f2(q)∂q ]j

j ! , (2.461) 

and .f1(p), .f2(q), .ξ0(p) and .η0(q) are arbitrary functions. It is easy to see that these 

.m
(k,l)
i,j functions and their .ϕ

(k,l)
i and .ψ

(k,l)
j counterparts satisfy the differential and 

difference relations (2.454), and thus the . τ function 

.τk,l = det
1≤ν,μ≤N

⎛
m

(k,l)
iν ,jμ

⎞
(2.462) 

for an arbitrary sequence of indices .(i1, i2, · · · , iN ; j1, j2, · · · , jN ) would satisfy 

the higher-dimensional bilinear system (2.431)–(2.441). 

Next, we consider the dimensional reduction condition (2.442), following the 

.W-p treatment (see Sect. 2.3). Introducing .L0 = ∂r + ∂s + ∂x1 , it is easy to see that 

.L0m
(k,l)
i,j = AiBjL0m

(k,l) = AiBj [Q1(p) + Q2(q)]m(k,l), (2.463) 

where 

.Q1(p) = 1

p − a
+ 1

p + a
+ p, Q2(q) = 1

q − b
+ 1

q + b
+ q. (2.464) 

We will select . p0 and . q0 values to be roots of the following algebraic equations 

.Q'
1(p) = 0, Q'

2(q) = 0. (2.465) 

From the text below Eq. (2.447) as well as from Eq. (2.452), we know that 

.a = −b = iα. (2.466) 

Thus, the function .Q1(p) above is the same as that in Eq. (2.417) of Theorem 2.7. 

The algebraic equation .Q'
1(p) = 0 can be written out as 

.p4 + 2(α2 − 1)p2 + α2(α2 + 2) = 0, (2.467) 

whose roots are 

.p0 = ±
/

(1 − α2) ±
√
1 − 4α2. (2.468)
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When .|α| < 1/2, this equation has two pairs of simple real roots. When .|α| = 1/2, 

it has one pair of double real roots. When .|α| > 1/2, it has four simple complex 

roots which form a quartet of .(p0, p
∗
0,−p0,−p∗

0). The  . q0 roots of the . Q'
2(q) = 0

equation are the same as these . p0’s. 

The types of Sasa-Satsuma solutions we will get depend on the structure of these 

four roots. For simple .(p0, q0) roots, following the .W-p treatment for dimension 

reduction (see Eq. (2.257) in Sect. 2.3), functions .f1(p) and .f2(q) in differential 

operators . Ai and . Bj would be chosen as 

.f1(p) =

/
Q21(p) − Q21(p0)

Q'
1(p)

, f2(q) =

/
Q22(q) − Q22(q0)
Q'
2(q)

. (2.469) 

In this case, we can restrict indices of the general determinant (2.456) to  

.τk,l = det
1≤i,j≤N

⎛
m

(k,l)
2i−1,2j−1

|||
p=p0, q=q0

⎞
. (2.470) 

Then, repeating the calculations of Sect. 2.3, we get 

.L0τk,l = [Q1(p0) + Q2(q0)] N τk,l . (2.471) 

Thus, this . τk,l function satisfies the dimension reduction condition (2.442). 

However, this single block . τ function (2.470) would only yield a rational solitary 

wave solution, not a rogue wave. To get rogue waves, roots of the algebraic 

equation (2.467) should form a quartet of .(p0, p
∗
0,−p0,−p∗

0) which are distinct 

from each other, which happens when .|α| > 1/2. In that case, we need to use a pair 

of its complex conjugate roots .(p0,1, p0,2), where 

.p0,2 = p∗
0,1, (2.472) 

and a pair of q’s simple complex conjugate roots .(q0,1, q0,2) where 

.q0,I = p0,I , I = 1, 2. (2.473) 

Then, we construct a .2 × 2 block determinant, 

.τk,l = det

⎛
τ
[1,1]
k,l τ

[1,2]
k,l

τ
[2,1]
k,l τ

[2,2]
k,l

⎞
, (2.474) 

where 

.τ
[I,J ]
k,l = mat1≤i,j≤N

⎛
m

(k,l)
2i−1,2j−1

|||
p=p0,I , q=q0,J

⎞
, 1 ≤ I, J ≤ 2, (2.475)
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.m
(k,l)
i,j is given by Eq. (2.457) with .[f1(p), f2(q)] such as in (2.469) replaced by 

.[f (I )
1 (p), f

(J )
2 (q)] and .(p0, q0) replaced by .(p0,I , q0,J ), . ξ0 is replaced by . ξ0,I , . η0

is replaced by .η0,J , and N is an arbitrary positive integer. In this case, calculations 

similar to that in Sect. 2.3 show that 

.L0τk,l =
{
Q1(p0,1) + Q2(q0,1) + Q1(p0,2) + Q2(q0,2)

}
Nτk,l . (2.476) 

Thus, this .2 × 2 block determinant (2.474) also satisfies the dimension reduction 

condition (2.442). 

Next, we consider the conjugation and index conditions (2.453), i.e., 

.τ ∗
k,k = τk,k, τ ∗

0,k = τk,0, τk,l = τ−l,−k. (2.477) 

If we take 

.q = p, η0(q) = ξ0(p) (2.478) 

in .m
(k,l)
2i−1,2j−1 of Eq. (2.475) after the differential operation, then we can see that the 

resulting . τk,l would satisfy the condition 

.τk,l = τ−l,−k (2.479) 

due to the .(p, q) symmetry in .m
(k,l)
2i−1,2j−1 when .b = −a and .(x2, r, s) being set to 

zero after dimensional reduction. 

Regarding the remaining conjugation conditions in Eq. (2.477), they can be 

satisfied when we impose the constraint 

.ξ0,2 = ξ∗
0,1 (2.480) 

in Eq. (2.475). This constraint, together with .p0,2 = p∗
0,1 in Eq. (2.472) and the fact 

of .b = −a being purely imaginary, guarantees that 

.

⎾
m

(k,l,3−I,3−J )
i,j

|||
p=p0,3−I , q=p0,3−J

⏋∗
= m

(l,k,I,J )
i,j

|||
p=p0,I , q=p0,J

(2.481) 

for .I, J = 1, 2. Thus, 

.τ ∗
k,l = τl,k, (2.482) 

which means that the remaining conjugation conditions in Eq. (2.477) are satisfied. 

As a result, the .2 × 2 block determinant (2.474), under Eq. (2.452) and the bilinear 

transformation (2.429), would provide Sasa-Satsuma’s rational solutions which turn 

out to be rogue waves.
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Free parameters in these rogue waves can be introduced by expanding the 

arbitrary function .ξ0,1(p) as 

.ξ0,1(p) =
∞⎲

r=1

ar,1 ln
rW

(1)
1 (p), (2.483) 

where .W
(1)
1 (p) is given from Eq. (2.257) as  

.W
(1)
1 (p) =

Q1(p) +
/
Q21(p) − Q21(p0,1)

Q1(p0,1)
, (2.484) 

which is related to .f
(1)
1 (p) through the equation 

.f
(1)
1 (p) =

W
(1)
1 (p)

∂p[W(1)
1 (p)]

, (2.485) 

and .a1,1, a2,1, . . . are free complex parameters. This way of introducing free 

parameters in the .W-p treatment has been seen in Sect. 2.3. 

Putting all the above results together, general rogue wave solutions for the Sasa-

Satsuma equation in differential form would be obtained, and these results are 

summarized in the following lemma (Wu et al. 2022). 

Lemma 2.11 When .|α| > 1/2 where the algebraic equation .Q'
1(p) = 0 in 

Eq. (2.465) admits a pair of simple complex conjugate roots .(p0,1, p0,2) with 

.p0,2 = p∗
0,1, the Sasa-Satsuma equation (2.415) admits rogue wave solutions 

.uN (x, t) = τ1,0

τ0,0
ei[α(x+6t)−α3t], (2.486) 

where N is the order of the rogue wave, . τk,l is a .2 × 2 block determinant 

.τk,l = det

⎛
τ
[1,1]
k,l τ

[1,2]
k,l

τ
[2,1]
k,l τ

[2,2]
k,l

⎞
, (2.487) 

.τ
[I,J ]
k,l =

⎛
m

(k,l,I,J )
2i−1,2j−1

⎞
1≤i,j≤N

, (2.488) 

matrix elements in .τ
[I,J ]
k,l are defined by 

. m
(k,l,I,J )
i,j =

⎾
f

(I )
1 (p)∂p

⏋i

i!

⎾
f

(J )
2 (q)∂q

⏋j

j ! m(k,l,I,J )
|||
p=p0,I ,q=p0,J

, . (2.489)



2.6 Sasa-Satsuma Equation 141

f 
(I ) 
1 (p) =

/
Q2 1(p) − Q2 1(p0,I ) 

Q'
1(p) 

, f  
(J ) 
2 (q) =

/
Q2 2(q) − Q2 2(q0,J ) 

Q'
2(q) 

, .(2.490) 

m(k,l,I,J ) = 
1 

p + q

⎛
−p − iα 

q + iα

⎞k ⎛
−p + iα 

q − iα

⎞l 

eξI (p)+ξJ (q) , . (2.491) 

ξI (p) = p(x + 6t) + p3t + ξ0,I (p), . (2.492) 

ξ0,1(p) = 

∞⎲

r=1 

ar,1 ln
r W

(1) 
1 (p), ξ0,2(p) = 

∞⎲

r=1 

a∗
r,1 ln

r W
(2) 
1 (p), . (2.493) 

W
(I ) 
1 (p) = 

Q1(p) +
/
Q2 1(p) − Q2 1(p0,I ) 

Q1(p0,I ) 
, (2.494) 

and .a1,1, a2,1, . . . , a2N−1,1 are free complex constants. 

More explicit Schur-polynomial expressions for these rogue waves can be further 

derived by methods we have used earlier, and the corresponding results are as 

presented in Theorem 2.7. This completes the proof of Theorem 2.7. 

Note that for reasons similar to those in Theorem 2.1, .aeven,1 constants in 

this theorem are dummy variables which do not contribute to the solutions. 

True free complex parameters in rogue waves of this theorem are only 

.a1,1, a3,1, a5,1, . . . , a2N−1,1. In addition, .a1,1 can be normalized to zero through a 

shift of the .(x, t) axes. Thus, the irreducible free parameters in these rogue waves 

are .a3,1, a5,1, . . . , a2N−1,1. 

To get the fundamental rogue wave of the Sasa-Satsuma equation, we take . N = 1

in Theorem 2.7. Then, graphs of this fundamental rogue wave for .α = 2 and 1 are  

plotted in Fig. 2.8. It is seen that the rogue wave with .α = 2 has a single hump (with 

peak amplitude of approximately 2.4495), while the one with .α = 1 has two humps 

(with peak amplitude of approximately 2.5671 each). 

Second-order rogue waves of the Sasa-Satsuma equation can be obtained by 

taking .N = 2 in Theorem 2.7. Four such waves, with .α = 2 or 1 and .a3,1 = 0 or 

Fig. 2.8 The fundamental 

rogue wave .|u1(x, t)| in the 
Sasa-Satsuma equation 

(2.415). Left: .α = 2; right: 

.α = 1
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Fig. 2.9 Second-order rogue 

waves .|u2(x, t)| in the 
Sasa-Satsuma equation 

(2.415). Upper left: . α = 2

and .a3,1 = 0; upper right: 

.α = 1 and .a3,1 = 0; lower  

left: .α = 2 and 

.a3,1 = 30 − 30i; lower right: 

.α = 1 and . a3,1 = 30 − 30i

.30−30i, are plotted in Fig. 2.9. It is seen that when .a3,1 = 0, the rogue waves exhibit 

complicated profiles. But when .a3,1 = 30 − 30i, they split into three fundamental 

rogue waves. 

2.7 Parity-Time-Symmetric Nonlinear Schrödinger Equation 

The nonlocal NLS equation 

.iut (x, t) = uxx(x, t) + 2u2(x, t)u∗(−x, t) (2.495) 

was introduced by Ablowitz and Musslimani (2013). The nonlinearity in this 

equation is nonlocal and parity-time (. PT) symmetric (Konotop et al. 2016). Thus, 

it is called the .PT-symmetric NLS equation. A potential physical application of 

this equation has also been identified in the context of an unconventional system 

of magnetics (Gadzhimuradov and Agalarov 2016). Since its introduction, this 

nonlocal NLS equation has been heavily studied (Ablowitz and Musslimani 2016; 

Wen et al. 2016; Huang and Ling 2016; Gerdjikov and Saxena 2017; Yang 2018; 

Feng et al. 2018; Santini 2018; Yang and Yang 2019, 2020b). In particular, three 

families of its rogue waves were derived by Darboux transformation in Yang and 

Yang (2019), and its more general rogue waves were derived by the bilinear method 

in Yang and Yang (2020b).



2.7 Parity-Time-Symmetric Nonlinear Schrödinger Equation 143

In this section, we derive its rogue waves, using a bilinear method that is based on 

Yang and Yang (2020b) but is significantly improved. The improvement comes from 

a better paramaterization (as in Sect. 2.1.1) that leads to much simpler expressions 

of rogue wave solutions than those in Yang and Yang (2020b). 

Through a variable scaling, we can normalize the continuous-wave background 

to have unit amplitude. Thus, we consider rogue waves with the following boundary 

conditions 

.u(x, t) → e−2it , x, t → ±∞. (2.496) 

Our explicit expressions of general rogue wave solutions in the .PT-symmetric 

NLS equation (2.495) are summarized in the following theorem. 

Theorem 2.8 The .PT-symmetric nonlinear Schrödinger equation (2.495) under 

boundary conditions (2.496) admits the following rogue wave solutions 

.uN (x, t) = e−2it τ1

τ0
, (2.497) 

where 

.τn =
|||||
Γ

(n)
1,1 Γ

(n)
1,2

Γ
(n)
2,1 Γ

(n)
2,2

||||| , (2.498) 

.Γ
(n)
i,j are .Ni × Mj block matrices defined by 

.Γ
(n)
i,j =

⎛
m

(n)
2k−i, 2l−j

⎞
1≤k≤Ni , 1≤l≤Mj

, (2.499) 

.N1, N2,M1 and . M2 are arbitrary non-negative integers with the constraint of . N1 +
N2 = M1 + M2 = N , the matrix elements in .Γ

(n)
i,j are defined by 

. m
(n)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(n) + νs) Sj−ν(x
−(n) + νs), (2.500) 

vectors .x
±(n) =

(
x±
1 (n), 0, x±

3 , 0, . . .
)
are defined by 

. x+
1 (n) = x − 2it + n + a1, x−

1 (n) = x + 2it − n + b1, . (2.501) 

x+ 

2k+1 = 
x − 22kit 

(2k + 1)! + a2k+1, x− 

2k+1 = 
x + 22kit 

(2k + 1)! + b2k+1, (k  ≥ 1), 

(2.502)
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the vector .s = (0, s2, 0, s4, . . .) is defined in Eq. (2.11), .a2k−1, .b2k−1 are complex 

constants with 

.ℜ(a2k−1) = ℜ(b2k−1) = 0, (2.503) 

. ℜ and . 𝔍 represent the real and imaginary parts of a complex number, and 

. {𝔍(a2k−1), 1 ≤ k ≤ max(2N1 − 1, 2N2 − 2)},
{𝔍(b2k−1), 1 ≤ k ≤ max(2M1 − 1, 2M2 − 2)}

are free real parameters. 

Remark The degrees of polynomials .σn(x, t) in both x and t for rogue waves in 

Theorem 2.8 are 

. deg(σn) = 1

2

⎾
(N1 − N2)

2 + (N1 − N2) + (M1 − M2)
2 + (M1 − M2)

⏋
.

(2.504) 

Proof of Theorem 2.8 First, via the variable transformation 

.u = e−2it g

f
, (2.505) 

the .PT-symmetric NLS equation (2.495) is transformed into the bilinear form, 

.
(D2

x + 2)f · f = 2gḡ,

(D2
x − iDt )g · f = 0,

⎫
(2.506) 

where the overbar on a function .g(x, t) is defined as 

.ḡ(x, t) ≡ g∗(−x, t), (2.507) 

and f is a complex function satisfying the condition 

.f̄ (x, t) = f (x, t). (2.508) 

In order to derive algebraic solutions to the bilinear equations (2.506), we 

consider a solution reduction from higher-dimensional bilinear equations in the KP-

hierarchy. We introduce a Gram determinant 

.τn = det
1≤i,j≤N

⎛
m

(n)
i,j

⎞
, (2.509) 

where the matrix element .m
(n)
i,j is a function of . x−1, . x1 and . x2 defined as
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.m
(n)
i,j = AiBjm

(n)|p=1,q=1, m(n) = (p + 1)(q + 1)

p + q

⎛
−p

q

⎞n

eξ+η, . (2.510) 

ξ = 
1 

p 
x−1 + px1 + p2x2 + ξ0(p), η(q) = 

1 

q 
x−1 + qx1 − q2x2 + η0(q), 

(2.511) 

. Ai and . Bj are differential operators with respect to p and q as 

.Ai = 1

i!
(
p∂p

)i
, Bj = 1

j !
(
q∂q

)j
, (2.512) 

.ξ0(p), .η0(q) are arbitrary functions of p and q which can be expanded as 

.ξ0(p) =
∞⎲

k=1

ak(lnp)k, η0(q) =
∞⎲

k=1

bk(ln q)k, (2.513) 

and .ak, bk are arbitrary complex constants. Then we have known from Sect. 2.1.1 

that for arbitrary sequences of indices .(i1, i2, . . . , iN ; j1, j2, . . . , jN ), the determi-

nant 

.τn = det
1≤ν,μ≤N

⎛
m

(n)
iν ,jμ

⎞
(2.514) 

would satisfy the higher-dimensional bilinear equations 

.

(
Dx1Dx−1

− 2
)
τn · τn = −2τn+1τn−1(

D2
x1

− Dx2

)
τn+1 · τn = 0.

⎫
(2.515) 

In addition, the matrix element .m
(n)
i,j with .p = q = 1 satisfies the contiguity 

relation (2.45), i.e., 

. (∂x1 + ∂x−1
) m

(n)
i,j

|||
p=q=1

= 2

i⎲

l=0
l:even

1

l! m
(n)
i−l,j

|||
p=q=1

+ 2

j⎲

l=0
l:even

1

l! m
(n)
i,j−l

|||
p=q=1

.

(2.516) 

Using this contiguity relation, we can show as in Sect. 2.1.1 that any one of the four 

determinants 

. τ (1)
n = det

1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

|||
p=q=1

⎞
, τ (2)

n = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−2

|||
p=q=1

⎞
,

. (2.517)
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τ (3) 
n 

= det 
1≤i,j≤N

⎛
m 

(n) 
2i−2,2j−1

|||
p=q=1

⎞
, τ (4) 

n 
= det 

1≤i,j≤N

⎛
m 

(n) 
2i−2,2j−2

|||
p=q=1

⎞
, 

(2.518) 

satisfies the dimension reduction condition 

.(∂x1 + ∂x−1
)τn = 4Nτn. (2.519) 

But more importantly, if we combine the matrix elements of these four determi-

nants into a .2 × 2-block determinant 

. τn =

||||||

⎛
m

(n)
2i−1,2j−1

⎞
1≤i≤N1,1≤j≤M1

⎛
m

(n)
2i−1,2j−2

⎞
1≤i≤N1,1≤j≤M2⎛

m
(n)
2i−2,2j−1

⎞
1≤i≤N2,1≤j≤M1

⎛
m

(n)
2i−2,2j−2

⎞
1≤i≤N2,1≤j≤M2

||||||
p=q=1

,

(2.520) 

where .[N1, N2,M1,M2] are arbitrary non-negative integers with . N1 + N2 = M1 +
M2, then this . τn would still satisfy the dimension reduction condition 

.(∂x1 + ∂x−1
)τn = 4(N1 + N2)τn. (2.521) 

This more general block determinant solution fulfilling the dimension reduction 

condition allows us to derive a wider class of rogue waves in the .PT-symmetric 

NLS equation (2.495) than in the NLS equation (2.5). 

Applying this dimension reduction condition (2.521) to the higher-dimensional 

bilinear equations (2.515), we see that the block determinant (2.520) would satisfy 

the .(1 + 1)-dimensional bilinear equations 

.

(
D2

x1
+ 2

)
τn · τn = 2τn+1τn−1(

D2
x1

− Dx2

)
τn+1 · τn = 0.

⎫
(2.522) 

Then, if we set .n = 0 in the above bilinear equations and take 

.f = σ0, g = σ1, ḡ = σ−1, x1 = x, x2 = −it, (2.523) 

.x−1 = 0, and impose the nonlocal reduction condition 

.τ̄n = τ−n, (2.524) 

these bilinear equations would reduce to the bilinear equations (2.506) of the  .PT-

symmetric NLS equation (2.495). 

Before imposing the nonlocal reduction condition (2.524), we first remove the 

differential operators in the expression (2.510) of the matrix element .m
(n)
i,j and derive



2.7 Parity-Time-Symmetric Nonlinear Schrödinger Equation 147

its explicit expressions. Following the same technique as in Sect. 2.1.1, we find that 

.m
(n)
i,j in the block determinant (2.520) can be written as 

.m
(n)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(n) + νs) Sj−ν(x
−(n) + νs), (2.525) 

where vectors .x±(n) =
(
x±
1 (n), 0, x±

3 , 0, . . .
)
are as given in Eqs. (2.501)–(2.502), 

and the vector .s = (s1, s2, · · · ) are coefficients from the expansion (2.11). 

Finally, we impose the nonlocal reduction condition (2.524), which will constrain 

the parameters .a2k−1 and .b2k−1 in Eqs. (2.501)–(2.502). Given the above algebraic 

expression of .m
(n)
i,j , if we impose the following constraints on these parameters, 

. ℜ(a2k−1) = ℜ(b2k−1) = 0, k = 1, 2, . . . , (2.526) 

then 

. x±
1 (−n) = −x±

1 (n), x±
2k−1 = −x±

2k−1, (k > 1). (2.527) 

Thus, 

.x
±(−n) + ν s = y±(n) + ν s, (2.528) 

where vectors . y± are defined as 

.y±(n) =
(
−x±

1 (n), 0,−x±
3 , 0, . . .

)
. (2.529) 

Using the fact of .s1 = s3 = · · · = sodd = 0, we have  

.Sk

(
x

±(−n) + ν s
)

= (−1)kSk(x
±(n) + νs). (2.530) 

Then, we see that the block determinant . τn in Eq. (2.520) satisfies the condition 

.τ−n = (−1)N2+M2τn. (2.531) 

Thus, by redefining .(−1)(N2+M2)/2τn as a new . τn function, which still satisfies the 

same bilinear equations (2.522), the nonlocal reduction condition (2.524) would be 

satisfied. This new . τn leads to the same solution as the original . τn from Eq. (2.497). 

Theorem 2.8 is then proved. ⨅⨆
The fundamental singular rogue wave can be obtained by setting .N = 1 with 

.N1 = M2 = 1 and .N2 = M1 = 0, and we get 

.u1(x, t) =
⎾
1 + 1

x − 2it + a1

⏋
e−2it . (2.532)
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Fig. 2.10 Fundamental rogue waves (with .N = 1) in the  .PT-symmetric NLS equation (2.495). 

Left: the fundamental singular rogue wave (2.532) with .a1 = 0. Right: the fundamental non-

singular rogue wave (2.533) with . x0 = 0

Since . a1 is imaginary, it can be normalized to zero through a shift of the t axis. The 

graph of the resulting solution is plotted in Fig. 2.10 (left panel). 

The fundamental nonsingular rogue wave can be obtained by setting .N = 1 with 

.N1 = M1 = 1 and .N2 = M2 = 0, and we get 

.u1(x, t) =
⎾
1 + 4(4it̂ − 1)

4 (x + ix0)
2 + 16t̂2 + 1

⏋
e−2it , (2.533) 

where 

.t̂ = t + 𝔍(a1) − 𝔍(b1)

2
, x0 = 𝔍(a1) + 𝔍(b1)

2
. (2.534) 

This nonsingular rogue wave’s peak amplitude is .x0-dependent, ranging between 1 

and 3, with 3 reached when .x0 = 0. This rogue wave with .x0 = 0 is plotted in 

Fig. 2.10 (right panel). 

When we take .N = 2 in Theorem 2.8, we get second-order rogue waves. 

Three of these these solutions are displayed in Fig. 2.11. In this figure, all lumps 

are nonsingular in the left panel, while some lumps are singular in the middle and 

right panels. Notice that these rogue waves exhibit various geometric shapes such 

as triangles, diamonds and so on. 

2.8 Ablowitz-Ladik Equation 

Almost all wave equations considered in this book are continuous wave equations. 

But discrete wave equations are also important since they can model various 

physical systems such as wave dynamics in optical lattices (Christodoulides and
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Fig. 2.11 Second order rogue waves in the .PT-symmetric NLS equation (2.495) with 

.[N1, N2,M1,M2] = [2, 0, 2, 0]. Left:  .a1 = b1 = 0, a3 = 50i, b3 = −50i. Middle: 

.a1 = b1 = 3i, a3 = b3 = 70i. Right: . a1 = b1 = 5i, a3 = b3 = −40i

Joseph 1988). Then an interesting question is rogue wave behaviors in discrete wave 

systems. In this section, we derive rogue waves in an integrable discrete model— 

the Ablowitz-Ladik (AL) equation. This equation was proposed by Ablowitz and 

Ladik (1976) as an integrable discretization of the continuous NLS equation. For the 

focusing AL equation, non-traveling fundamental rogue waves and special second-

order rogue waves were presented by Ankiewicz et al. (2010a). For both focusing 

and defocusing AL equations, general traveling arbitrary-order rogue waves were 

derived by Ohta and Yang (2014) using the bilinear method. We follow Ohta and 

Yang (2014) below, but with a new parameterization as in Sect. 2.1.1 so that the 

resulting rogue wave expressions are simpler. 

The focusing AL equation is 

.i
d

dt
un = (1 + |un|2)(un+1 + un−1), (2.535) 

and the defocusing AL equation is 

.i
d

dt
un = (1 − |un|2)(un+1 + un−1). (2.536) 

These equations admit constant-amplitude background wave solutions 

.u[b]
n (t) = ρ√

1 − ρ2
ei(θn−ωt), (2.537) 

where . ρ, . θ are free real constants and .ω = 2 cos θ/(1 − ρ2). This background 

wave solution satisfies the focusing AL equation (2.535) when .|ρ| < 1 and the 

defocusing AL equation (2.536) when .|ρ| > 1. However, this background solution 

is modulation unstable. As a consequence, rogue waves can arise from it. Thus,
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boundary conditions for these rogue waves are 

.un(t) → ρ√
1 − ρ2

ei(θn−ωt), n, t → ±∞. (2.538) 

General rogue waves in these AL equations (2.535)–(2.536) are given in the 

following theorem. 

Theorem 2.9 General N -th order rogue waves under boundary conditions (2.538) 

in the Ablowitz-Ladik equations (2.535)–(2.536) are  

.u[N ]
n (t) = ρ√

1 − ρ2

σn,1,0

σn,0,0
ei(θn−ωt), (2.539) 

where . ρ and . θ are free real constants, .ω = 2 cos θ/(1 − ρ2), 

.σn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

⎞
, (2.540) 

the matrix elements in .σn,k,l are defined by 

. m
(n,k,l)
i,j =

min(i,j)⎲

ν=0

⎛
1 − ρ

1 + ρ

⎞ν
1

4ν
Si−ν(x

+(n, k, l) + νs) Sj−ν(x
−(n, k, l) + νs

∗),

(2.541) 

vectors .x
±(n, k, l) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

. x+
r = ρ

r!x + (1 − ρ2)(r + 1)gr+1(ρ)x∗ + (n + k)gr(ρ) + lgr(1/ρ) − kδr1 + ar ,

. (2.542) 

x−
r = 

ρ 

r!x
∗ + (1 − ρ2)(r + 1)gr+1(ρ)x + (n + l)gr(ρ) + kgr(1/ρ) − lδr1 + a∗

r , 

(2.543) 

.x ≡ ite−iθ/(1− ρ2), . δr1 denotes the Kronecker delta function which is equal to 1 if 

.r = 1 and 0 otherwise, . gr are coefficients from the expansion 

. ln
1 + ρeλ

1 + ρ
=

∞⎲

r=1

gr(ρ)λr , (2.544) 

the vector .s = (0, s2, 0, s4, · · · ) is defined in Eq. (2.11), and . (a1, a3, · · · , a2N−1)

are free complex parameters, with .𝔍(a1) = 0 through a time shift normalization. 

These rogue waves satisfy the boundary conditions
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.u[N ]
n (t) → ρ√

1 − ρ2
ei(θn−ωt), t → ±∞, (2.545) 

uniformly for all n as long as .cos θ /= 0. In addition, when .|ρ| < 1, they satisfy the 

focusing AL equation (2.535) and are nonsingular; and when .|ρ| > 1, they satisfy 

the defocusing AL equation (2.536) and may be singular. 

Proof Through the variable transformation 

.un = ρ√
1 − ρ2

gn

fn

ei(θn−ωt), (2.546) 

where .ω = 2 cos θ/(1 − ρ2), the AL equations 

.i
d

dt
un = (1 + ϵ|un|2)(un+1 + un−1) (2.547) 

with .ϵ = sgn(1 − ρ2) can be transformed to the bilinear equations 

.

⎾
i(1 − ρ2)Dt + c + c∗⏋ gn · fn = cgn−1fn+1 + c∗gn+1fn−1,

fn+1fn−1 − (1 − ρ2)fnfn = ρ2gng
∗
n,

⎫
(2.548) 

where .c = e−iθ . Thus, when .|ρ| < 1, the underlying AL equation (2.547) is  

focusing; and when .|ρ| > 1, it is defocusing. 

The bilinear equations (2.548) can be reduced from the following higher-

dimensional bilinear equations of the KP hierarchy, 

. 

(Dx + 1) τn,k−1,l · τn,k,l = τn+1,k−1,lτn−1,k,l,(
Dy − 1

)
τn,k,l+1 · τn,k,l = −τn−1,k,l+1τn+1,k,l,

τn+1,k−1,l τn−1,k,l+1 − (1 − ρ2)τn,k−1,l τn,k,l+1 = ρ2τn,k−1,l+1 τn,k,l .

⎫
⎬
⎭

(2.549) 

We will construct a wide class of algebraic solutions to this higher-dimensional 

system. Then we constrain these solutions so that they admit the index-reduction 

condition 

.τn,k+1,l+1 = Cτn,k,l, (2.550) 

where C is a certain real positive constant. In this case, .τn,k,l would satisfy the 

following bilinear equations
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.

(Dx + 1) τn,k,l · τn,k+1,l = τn+1,k,lτn−1,k+1,l,

(Dx + 1) τn,k,l+1 · τn,k,l = τn+1,k,l+1τn−1,k,l,(
Dy − 1

)
τn,k,l+1 · τn,k,l = −τn−1,k,l+1τn+1,k,l,(

Dy − 1
)
τn,k,l · τn,k+1,l = −τn−1,k,lτn+1,k+1,l,

τn+1,k,l τn−1,k,l − (1 − ρ2)τn,k,l τn,k,l = ρ2C−1τn,k+1,l τn,k,l+1.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.551) 

We now substitute .x = ict/(1 − ρ2) and .y = −ic∗t/(1 − ρ2), where .c = e−iθ . 

Then the time derivative becomes .i(1 − ρ2)∂t = −c∂x + c∗∂y , and we obtain from 

the above bilinear equations that 

. 

⎾
i(1 − ρ2)Dt + c + c∗⏋

τn,k+1,l · τn,k,l = cτn−1,k+1,lτn+1,k,l + c∗τn+1,k+1,lτn−1,k,l,⎾
−i(1 − ρ2)Dt + c + c∗⏋

τn,k,l+1 · τn,k,l = cτn+1,k,l+1τn−1,k,l + c∗τn−1,k,l+1τn+1,k,l,

τn+1,k,l τn−1,k,l − (1 − ρ2)τn,k,l τn,k,l = ρ2C−1τn,k+1,l τn,k,l+1.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Then, we further impose the complex conjugacy condition 

.τn,l,k = τ ∗
n,k,l, (2.552) 

and define 

.fn = τn,0,0, gn = C−1/2τn,1,0. (2.553) 

In this case, . fn is real, and .C−1/2τn,0,1 = g∗
n, and the above bilinear equations yield 

AL’s bilinear equations (2.548), and the corresponding . τ solutions would satisfy the 

AL equations. 

Now, we follow the above plan. First, we construct a wide class of solutions to 

the higher-dimensional bilinear system (2.549), which are given in the following 

lemma. 

Lemma 2.12 Let .m
(n,k,l)
i,j , .ϕ

(n,k,l)
i and .ψ

(n,k,l)
j be functions of continuous indepen-

dent variables x, y satisfying the following differential and difference relations, 

. 

∂xm
(n,k,l)
i,j = ϕ

(n,k,l)
i ψ

(n−1,k,l)
j , ∂ym

(n,k,l)
i,j = ϕ

(n−1,k,l)
i ψ

(n,k,l)
j ,

m
(n+1,k,l)
i,j = (1 − ρ2)m

(n,k,l)
i,j + ϕ

(n,k,l)
i ψ

(n,k,l)
j ,

m
(n,k+1,l)
i,j = (1 − ρ2)m

(n,k,l)
i,j − ϕ

(n−1,k+1,l)
i ψ

(n,k,l)
j ,

m
(n,k,l+1)
i,j = (1 − ρ2)m

(n,k,l)
i,j − ϕ

(n,k,l)
i ψ

(n−1,k,l+1)
j ,

∂xϕ
(n,k,l)
i = ϕ

(n+1,k,l)
i , ∂yϕ

(n,k,l)
i = −(1 − ρ2)ϕ

(n−1,k,l)
i ,

ϕ
(n,k−1,l)
i = ϕ

(n,k,l)
i − ϕ

(n−1,k,l)
i , ϕ

(n,k,l+1)
i = (1 − ρ2)ϕ

(n,k,l)
i − ϕ

(n+1,k,l)
i ,

(∂x + 1)ψ
(n,k,l)
j = −ψ

(n−1,k+1,l)
j , (∂y − 1)ψ

(n,k,l)
j = ψ

(n+1,k,l−1)
j ,

ψ
(n,k+1,l)
j = (1 − ρ2)ψ

(n,k,l)
j − ψ

(n+1,k,l)
j , ψ

(n,k,l−1)
j = ψ

(n,k,l)
j − ψ

(n−1,k,l)
j .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.554)
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Then the determinant 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
i,j

⎞
(2.555) 

satisfies the bilinear system (2.549). 

The proof of this lemma is along the same lines as the proof of Lemma 2.1, and 

the details can be found in Ohta and Yang (2014). 

A wide class of algebraic solutions to the bilinear system (2.549) can be obtained 

when we define matrix elements .m
(n,k,l)
i,j by 

.m
(n,k,l)
i,j = AiBjm

(n,k,l), (2.556) 

where 

.m(n,k,l) = 1

pq − 1 + ρ2
(pq)n

⎛
1 − ρ2 − q

1 − 1/p

⎞k ⎛
1 − ρ2 − p

1 − 1/q

⎞l

eξ+η, (2.557) 

.ξ = px − 1 − ρ2

p
y + ξ0(p), η = −1 − ρ2

q
x + qy + η0(q), (2.558) 

. Ai and . Bj are differential operators with respect to p and q as 

. Ai = 1

i!
⎾
(p − 1)∂p

⏋i
, Bj = 1

j !
⎾
(q − 1)∂q

⏋j
, (2.559) 

and .ξ0(p), .η0(q) are arbitrary functions of p and q. It is easy to see that the above 

.m(n,k,l) and 

.ϕ(n,k,l) = pn(1 − 1/p)−k(1 − ρ2 − p)leξ , (2.560) 

.ψ (n,k,l) = qn(1 − ρ2 − q)k(1 − 1/q)−leη (2.561) 

satisfy the differential and difference relations (2.554) without i and j indices. Then, 

since the differential operators . Ai and . Bj commute with . ∂x and . ∂y , the above 

.m
(n,k,l)
i,j and 

.ϕ
(n)
i (k, l) = Aiϕ

(n)(k, l), ψ
(n)
j (k, l) = Bjψ

(n)(k, l) (2.562) 

would satisfy the differential and difference relations (2.554). Lemma 2.12 then 

shows that, for any sequences of indices .(I1, I2, · · · , IN ) and .(J1, J2, · · · , JN ), the  

determinant
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.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
Ii ,Jj

⎞
(2.563) 

would satisfy the bilinear equations (2.549). 

In order for the above .τn,k,l function to satisfy the index-reduction condi-

tion (2.550), we restrict its matrix elements further as 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

|||
p=q=1+ρ

⎞
. (2.564) 

Following the calculation in Ohta and Yang (2014), this determinant satisfies the 

index-reduction condition (2.550) with .C = (1 + ρ)4N , i.e., 

.τn,k+1,l+1 = (1 + ρ)4Nτn,k,l . (2.565) 

By reparameterizing .p = 1 + ρP and .q = 1 + ρQ, the  .τn,k,l determinant 

in (2.564) can be rewritten as 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

|||
P=Q=1

⎞
, (2.566) 

where 

.m
(n,k,l)
i,j = AiBjm

(n,k,l), (2.567) 

. m(n,k,l) = (−1)k+lρ−1

P + Q + ρ(1 + PQ)
(1 + ρP )n+k

× (1 + ρQ)n+l

⎛
ρ + Q

P

⎞k ⎛
ρ + P

Q

⎞l

eξ(P )+η(Q), (2.568) 

. ξ(P ) + η(Q) =
⎛
1 + ρP − 1 − ρ2

1 + ρQ

⎞
x +

⎛
1 + ρQ − 1 − ρ2

1 + ρP

⎞
y

+ ξ0(P ) + η0(Q), (2.569) 

and 

.Ai = 1

i! (P ∂P )i , Bj = 1

j !
(
Q∂Q

)j
. (2.570) 

As in Sect. 2.1.1, we introduce free parameters in the .τn,k,l solution by expanding 

free functions .ξ0(P ) and .η0(Q) as
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.ξ0(P ) =
∞⎲

r=1

ar ln
r P, η0(Q) =

∞⎲

r=1

br ln
r Q, (2.571) 

where .ar , br are complex constants. Then, if we impose the parameter conditions 

of .br = a∗
r , we can readily see that the .τn,k,l function would satisfy the complex 

conjugacy condition (2.552). Hence, the .fn, gn functions in Eq. (2.553) would give 

AL’s rogue wave solutions through the variable transformation (2.546). 

Summarizing the above results, we have the following result on AL’s rogue waves 

in differential operator form. 

Lemma 2.13 General N -th order rogue waves in differential form in the AL 

equations (2.535)–(2.536) are  

.u[N ]
n (t) = ρ√

1 − ρ2

gn

fn

ei(θn−ωt), (2.572) 

where . ρ and . θ are free real constants, .ω = 2 cos θ/(1 − ρ2), 

.fn = τn,0,0, gn = τn,1,0/(1 + ρ)2N , (2.573) 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

⎞
, (2.574) 

the matrix elements in . τn are defined by 

.m
(n,k,l)
i,j = (P ∂P )i

i!

(
Q∂Q

)j

j ! m(n,k,l)
|||
P=Q=1

, (2.575) 

.m(n,k,l) is defined by 

. m(n,k,l) = (−1)k+lρ−1

P + Q + ρ(1 + PQ)
(1 + ρP )n+k

× (1 + ρQ)n+l

⎛
ρ + Q

P

⎞k ⎛
ρ + P

Q

⎞l

eΘ , (2.576) 

. Θ =
⎛
1 + ρP − 1 − ρ2

1 + ρQ

⎞
x +

⎛
1 + ρQ − 1 − ρ2

1 + ρP

⎞
y

+
∞⎲

r=1

âr ln
r P +

∞⎲

r=1

â∗
r ln

r Q, (2.577) 

and .âr (r = 1, 2, . . . , 2N − 1) are free complex constants.
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Lastly, we remove the differential operators in the above lemma and derive more 

explicit expressions of rogue waves through Schur polynomials. This calculation is 

similar to that in Sect. 2.1.1 (see Ohta and Yang (2014) for details). The explicit 

expressions out of this calculation are as shown in Theorem 2.9, where parameters 

. ar are linearly related to . ̂ar of the above lemma as .ar = âr − gr(1). This completes 

the proof of Theorem 2.9. 

The fundamental rogue wave expression can be derived from Theorem 2.9 by 

setting .N = 1 and we get 

.u[1]
n (t) = ρ√

1 − ρ2
ei(θn−ωt)

⎾
1 +

2iρ2ωt + (1 + ρ)(a1 − a∗
1) − 1

ρ2(1 + ρ)2|R|2 + 1
4
(1 − ρ2)

⏋
, (2.578) 

where 

.R = 1

1 + ρ

⎾
n + i

⎛
e−iθ

1 + ρ
− eiθ

1 − ρ

⎞
t

⏋
+

a∗
1

ρ
. (2.579) 

Since the AL equation is invariant under a time shift, we can normalize . 𝔍(a1) = 0

through such a time shift (as stated in Theorem 2.9). In this case, by defining a new 

parameter .n0 = −(1 + ρ)ℜ(a1)/ρ, the above fundamental rogue waves can be 

rewritten as 

. u[1]
n (t) = ρ√

1 − ρ2
ei(θn−ωt)

×
⎾
1 + 2iρ2ωt − 1

ρ2 (n + ωt tan θ − n0)
2 + ρ4ω2t2 + 1

4
(1 − ρ2)

⏋
, (2.580) 

where .ρ, θ and . n0 are free real parameters. One can see from Eq. (2.580) that . θ

can be viewed as a velocity parameter of this rogue wave, with the velocity being 

.−ω tan θ , i.e., .2 sin θ/(ρ2 − 1). Thus rogue waves with .sin θ = 0 can be called 

non-traveling, and those with other . θ values called traveling. 

When .|ρ| < 1, these fundamental rogue waves satisfy the focusing AL 

equation (2.535). Two such solutions, one non-traveling and the other traveling, 

are displayed in Fig. 2.12. Compared to NLS’s fundamental rogue waves (Peregrine 

solutions), the present rogue waves can reach much higher peak amplitudes (relative 

to the background amplitude). 

When .|ρ| > 1, these fundamental rogue waves satisfy the defocusing AL 

equation (2.536). Two such solutions, both non-traveling, are displayed in Fig. 2.13. 

The left solution reaches peak amplitudes at two lattice sites, because we chose 

.n0 = 1/2. The right solution is unbounded and blows up to infinity in finite time. 

This solution blowup occurs in the defocusing AL equation, but not in the focusing 

one. 

Second-order rogue waves in the AL equations can be obtained by taking . N = 2

in Theorem 2.9. Such solutions in the focusing case, for .ρ = 1/2, .θ = 0, . a1 = 0

and four different . a3 values of 0, .1/20, . 10i and 10, are shown in Fig. 2.14. It is seen
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Fig. 2.12 Fundamental rogue waves .u
[1]
n (t) from Eq. (2.580) in the focusing Ablowitz-Ladik 

equation (2.535) with  .ρ = 0.8 and .n0 = 0. (a) A non-traveling rogue wave where .θ = 0; (b) 

a traveling rogue wave where . θ = −1.2

Fig. 2.13 Fundamental rogue waves .u
[1]
n (t) from Eq. (2.580) in the defocusing Ablowitz-Ladik 

equation (2.536) with .ρ = 2 and .θ = 0. Left: .n0 = 1/2; right: . n0 = 0

Fig. 2.14 Second-order rogue waves .u
[2]
n (t) in the focusing Ablowitz-Ladik equation (2.535) for  

.ρ = 1/2, .θ = 0 and .a1 = 0. (a) .a3 = 0; (b) .a3 = 1/20; (c) .a3 = 10i; (d) .a3 = 10
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that when . a3 is small, the solution concentrates near the origin. When . a3 is large, it 

splits into three fundamental rogue waves with different peak amplitudes. 

2.9 Manakov System 

The Manakov system is 

.
(i∂t + ∂2x )u1 + (ϵ1|u1|2 + ϵ2|u2|2)u1 = 0,

(i∂t + ∂2x )u2 + (ϵ1|u1|2 + ϵ2|u2|2)u2 = 0,

⎫
(2.581) 

where .ϵ1 = ±1 and .ϵ2 = ±1. These equations govern many physical processes 

such as the transmission of light in a randomly birefringent optical fiber (see 

Sect. 1.3), the interaction of two incoherent light beams in crystals (Kang et al. 1996; 

Chen et al. 1997), and the evolution of two-component Bose-Einstein condensates 

(Kevrekidis et al. 2008; Hoefer et al. 2011). Integrability of this system for . ϵ1 = ϵ2
was reported by Manakov (1973). Integrability of this system for general . ϵ1 and . ϵ2
values was reported in Wang et al. (2010). 

This Manakov system admits plane wave solutions 

.u1,0(x, t) = ρ1e
i(k1x+ω1t), u2,0(x, t) = ρ2e

i(k2x+ω2t), (2.582) 

where .(k1, k2) and .(ω1, ω2) are the wavenumbers and frequencies of the two 

components, and .(ρ1, ρ2) are their amplitudes which will be set real using phase 

invariance of the system. Parameters of these plane waves satisfy the following 

relations, 

.ω1 = ϵ1ρ
2
1 + ϵ2ρ

2
2 − k21, ω2 = ϵ1ρ

2
1 + ϵ2ρ

2
2 − k22 . (2.583) 

Then, boundary conditions for rogue waves in the Manakov system are 

.uj (x, t) → uj,0(x, t), x, t → ±∞, j = 1, 2. (2.584) 

Rogue waves in the Manakov system have been derived by Baronio et al. (2012, 

2014), Ling et al. (2014), Chen and Mihalache (2015), and Zhao et al. (2016a) 

by Darboux transformation, and by Yang and Yang (2021c, 2023a) by the bilinear 

method. Here, we will derive these rogue waves by the bilinear method, following 

Yang and Yang (2021c, 2023a). 

From a mathematical point of view, there are several types of Manakov rogue 

waves whose expressions have different determinant structures. In the bilinear 

framework, these rogue types are determined by non-imaginary roots and their 

multiplicities of the following algebraic equation 

.Q'
1(p) = 0, (2.585)
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where 

.Q1(p) =
ϵ1ρ

2
1

p − ik1
+

ϵ2ρ
2
2

p − ik2
+ 2p. (2.586) 

The reason for this will be seen later. Thus, we will discuss roots of Eq. (2.585) first.  

The algebraic equation (2.585) can be rewritten as 

.2(p − ik1)
2(p − ik2)

2 − ϵ1ρ
2
1(p − ik2)

2 − ϵ2ρ
2
2(p − ik1)

2 = 0, (2.587) 

which is a quartic equation for p. Thus, it has four roots (counting multiplicity). 

These roots are dependent on the parameters in the Manakov system (2.581) and in 

the boundary conditions (2.584). Notice that if p is  a root, so is  .−p∗. Thus, non-
imaginary roots appear as pairs of .(p,−p∗). Writing .p = ip̃, Eq. (2.587) becomes 

a quartic equation for . p̃ with real coefficients, whose root structure depends only on 

the sign of its discriminant 

. Δ = 32ϵ1ϵ2ρ
2
1ρ

2
2 (k1 − k2)

2

⎧⎾
2 (k1 − k2)

2 + ϵ1ρ
2
1 + ϵ2ρ

2
2

⏋3

−27
⎾
2 (k1 − k2)

2 ϵ1ϵ2ρ
2
1ρ

2
2

⏋}
. (2.588) 

Below, we delineate this root structure for the three cases of .(ϵ1, ϵ2) values 

. (ϵ1, ϵ2) = (1, 1), (focusing case). (2.589) 

(ϵ1, ϵ2) = (−1,−1), (defocusing case). (2.590) 

(ϵ1, ϵ2) = (1,−1). (focusing-defocusing case) (2.591) 

1. In the focusing case (2.589), using the inequality of .(a+b+c)3 ≥ 27abc for any 

non-negative real values of .a, b and c, with the equal sign realized if and only if 

.a = b = c, it is easy to see that .Δ ≥ 0, and .Δ = 0 if and only if 

.ρ1 = ρ2 =
√
2 |k1 − k2| , k1 /= k2. (2.592) 

When .Δ = 0, i.e., under the above parameter conditions (2.592), Eq. (2.587) 

admits a pair of double roots: 

.(p̂0, p̂0,−p̂∗
0,−p̂∗

0), (2.593) 

where 

.p̂0 =
√
3

2
(k1 − k2) + i

2
(k1 + k2). (2.594) 

When .Δ > 0, i.e., the parameter conditions (2.592) are not met, there cannot 

be any repeated root. In addition, Eq. (2.587) cannot admit any purely-imaginary 

root, because such a root would make all terms on the left side of Eq. (2.587) to



160 2 Derivation of Rogue Waves in Integrable Systems

have the same sign, whose sum cannot be zero. Thus, the root structure in this 

case is 

.(p0,1, p0,2,−p∗
0,1,−p∗

0,2), (2.595) 

where .p0,1 /= p0,2, i.e., there are two pairs of non-imaginary simple roots here. 

We see that in the focusing case, there are always non-imaginary roots in 

Eq. (2.585), and such roots can be simple or have multiplicity two. This will 

imply that rogue waves exist in all parameter regimes in the focusing case. In 

addition, multiple types of rogue waves exist depending on the multiplicity of 

those non-imaginary roots. 

2. In the defocusing case (2.590) and focusing-defocusing case (2.591), Eq. (2.587) 

always admits at least two simple imaginary roots. The reason can be seen by 

dividing that equation with .(p − ik1)
2(p − ik2)

2 and setting .p = ip̃, which 

results in a real equation for . p̃ with two rational terms and one constant term. 

By examining the signs of these terms at .p̃ = ±∞ and near the singularities 

at .p̃ = k1 and . k2, and utilizing the intermediate value theorem, we can readily 

see that this real . p̃ equation has at least two simple real roots, and thus the p 

equation (2.587) admits at least two simple imaginary roots. The nature of the 

other two roots of p can be obtained by putting .p = ip̃ into Eq. (2.587), which 

results in a real quartic equation for . p̃. Combining the classical results on the root 

structure of a real quartic equation with the current information of . p̃ admitting at 

least two simple real roots, we see that the nature of the other two roots of . p̃ (and 

hence p) depends only on the sign of the discriminant . Δ in Eq. (2.588). Putting 

these results together, root structures of the p equation (2.587) in the defocusing 

and focusing-defocusing cases are summarized as follows. 

. Δ > 0 : four imaginary simple roots;

Δ < 0 : a pair of non-imaginary simple roots (p0,−p∗
0) and two imaginary

simple roots;

Δ = 0 : one imaginary double root and two imaginary simple roots.

Since only non-imaginary roots could generate rogue waves, we see that in 

the defocusing and focusing-defocusing cases, the condition of .Δ < 0 must 

be met. Importantly, this condition can indeed be met in both the defocusing 

and focusing-defocusing cases, albeit in certain parameter regimes only. This 

means that we can have rogue waves in these two cases under certain parameter 

conditions. Since these non-imaginary roots are simple, these rogue waves are of 

a single type. The existence of these rogue waves, especially in the defocusing 

case, is surprising, since the scalar case of the defocusing NLS equation does not 

admit rogue waves. 

Next, we present three types of Manakov rogue waves according to non-

imaginary roots and their multiplicities in the algebraic equation (2.585).
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2.9.1 Rogue Waves for a Simple Non-Imaginary Root 

Theorem 2.10 If the algebraic equation (2.585) admits a non-imaginary simple 

root p0, then the Manakov system (2.581) under boundary conditions (2.584) would 

admit nonsingular rogue wave solutions 

.u1,N (x, t) = ρ1
g1,N

fN

ei(k1x+ω1t), u2,N (x, t) = ρ2
g2,N

fN

ei(k2x+ω2t), (2.596) 

where N is an arbitrary positive integer which represents the order of the rogue 

wave, 

.fN = σ0,0, g1,N = σ1,0, g2,N = σ0,1, (2.597) 

.σn,k = det
1≤i,j≤N

⎛
φ

(n,k)
2i−1,2j−1

⎞
, (2.598) 

the matrix elements in σn,k are defined by 

. φ
(n,k)
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν(x
+(n, k) + νs) Sj−ν(x

−(n, k) + νs
∗),

(2.599) 

vectors x±(n, k) = (x± 

1 , 0, x
± 

3 , 0, · · ·  ) are defined by 

. x+
r (n, k) = prx +

⎛
r⎲

i=0

pipr−i

⎞
(it) + nθr + kλr + ar , . (2.600) 

x−
r (n, k) = p∗

r x −
⎛

r⎲

i=0 

p∗
i p

∗
r−i

⎞
(it) − nθ∗

r − kλ∗
r + a∗

r , (2.601) 

s = (s1, s2, · · ·  ), (pr , θr , λr , sr ) are coefficients from the expansions 

. p(κ) =
∞⎲

r=0

prκ
r , ln

⎾
p (κ) − ik1

p0 − ik1

⏋
=

∞⎲

r=1

θrκ
r , . (2.602) 

ln

⎾
p (κ) − ik2 

p0 − ik2

⏋
= 

∞⎲

r=1 

λrκ
r , . (2.603) 

ln

⎾
1 

κ

⎛
p0 + p∗

0 

p1

⎞⎛
p (κ) − p0 

p (κ) + p∗
0

⎞⏋
= 

∞⎲

r=1 

srκ
r , (2.604)
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the function p (κ) is defined by the equation 

.Q1 [p (κ)] = Q1(p0) cosh(κ), (2.605) 

a1 = 0, and a3, a5, · · ·  , a2N−1 are free irreducible complex constants. 

The proof of this theorem will be presented in Sect. 2.9.4. 

As we have explained earlier, this type of rogue waves exists in the focusing case 

when Δ >  0 and in the defocusing and focusing-defocusing cases when Δ <  0. 

The simplest rogue wave of this type can be obtained by setting N = 1 in the  

above theorem and is given by 

.u1,1(x, t) = û1(x, t)ei(k1x+ω1t), u2,1(x, t) = û2(x, t)ei(k2x+ω2t), (2.606) 

where 

.û1(x, t) = ρ1
[p1x + 2p0p1 (it) + θ1]

⎾
p∗
1x − 2p∗

0p
∗
1 (it) − θ∗

1

⏋
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
, (2.607) 

.û2(x, t) = ρ2
[p1x + 2p0p1 (it) + λ1]

⎾
p∗
1x − 2p∗

0p
∗
1 (it) − λ∗

1

⏋
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
, (2.608) 

.θ1 = p1

p0 − ik1
, λ1 = p1

p0 − ik2
, ζ0 = |p1|2

(p0 + p∗
0)

2
. (2.609) 

This rogue wave is ratios of second-degree polynomials in x and t , which are 

the lowest polynomial degrees possible for rogue waves in the Manakov system. 

Thus, we will call it the fundamental rogue wave of the Manakov system. Note 

that p1 actually cancels out in the above formulae; we retain p1 here so that the 

reader can easily see how these formulae are obtained from Theorem 2.10. In  

Fig. 2.15, we plot this fundamental rogue wave in the focusing, focusing-defocusing 

and defocusing cases under system parameters which are listed in that figure’s 

captions. Interestingly, in the focusing and focusing-defocusing cases, these vector 

rogue waves are bright in the u1 component but dark in the u2 component. In the 

defocusing case, both components are dark rogue waves. These dark rogue waves 

strongly contrast the bright Peregrine rogue waves of the NLS equation. 

Second-order rogue waves of this type can be obtained by setting N = 2 in the  

above theorem. In these solutions, f2, g1,2 and g2,2 are degree-6 polynomials in 

both x and t . For the same parameter values as in Fig. 2.15, with the additional 

parameter value of a3 = 50 in the focusing case, a3 = 30i in the focusing-

defocusing case, and a3 = 10i in the defocusing case, the corresponding rogue 

waves are plotted in Fig. 2.16. In all three cases, the second-order rogue wave splits 

into three fundamental rogue waves.
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Fig. 2.15 Density plots of the fundamental rogue wave |u1,1(x, t)| and |u2,1(x, t)| in Eq. (2.606) 
in the Manakov equations with boundary parameters ρ1 = ρ2 = 1 and  k1 = −k2 = 1/2. Upper 

row: focusing case (ϵ1 = ϵ2 = 1), with p0 ≈ 0.6360 + 0.3931i. Middle row: focusing-defocusing 

case (ϵ1 = 1, ϵ2 = −1), with p0 ≈ 0.7276+0.6053i. Lower row: defocusing case (ϵ1 = ϵ2 = −1), 

with p0 = [2
√
3 − 3]1/2/2 

2.9.2 Rogue Waves for Two Simple Non-Imaginary Roots 

Theorem 2.11 If the algebraic equation (2.585) admits two non-imaginary simple 

roots p0,1 and p0,2 with p0,2 /= −p∗
0,1, which occurs only in the focusing Manakov 

system (with ϵ1 = ϵ2 = 1) when parameter conditions (2.592) are not met, then 

this focusing Manakov system (2.581) under boundary conditions (2.584) admits 

nonsingular (N1, N2)-th order rogue wave solutions
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Fig. 2.16 Density plots of the second-order rogue wave |u1,2(x, t)| and |u2,2(x, t)| in Theo-
rem 2.10 in the Manakov equations. Parameter values are the same as in Fig. 2.15, with the 

additional parameter value as a3 = 50 in the focusing case (upper row), a3 = 30i in the focusing-

defocusing case (middle row), and a3 = 10i in the defocusing case (lower row) 

. u1,N1,N2
(x, t) = ρ1

g1,N1,N2

fN1,N2

ei(k1x+ω1t), u2,N1,N2
(x, t) = ρ2

g2,N1,N2

fN1,N2

ei(k2x+ω2t),

(2.610) 

where N1, N2 are arbitrary positive integers, 

.fN1,N2
= σ0,0, g1,N1,N2

= σ1,0, g2,N1,N2
= σ0,1, (2.611) 

σn,k is a 2 × 2 block determinant
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.σn,k = det

⎛
σ
[1,1]
n,k σ

[1,2]
n,k

σ
[2,1]
n,k σ

[2,2]
n,k

⎞
, (2.612) 

.σ
[I,J ]
n,k =

⎛
φ

(n,k,I,J )
2i−1,2j−1

⎞
1≤i≤NI ,1≤j≤NJ

, (2.613) 

the matrix elements in σ
[I,J ] 
n,k 

are defined by 

. φ
(n,k,I,J )
i,j =

min(i,j)⎲

ν=0

⎛
1

p0,I + p∗
0,J

⎞⎾
p1,Ip

∗
1,J

(p0,I + p∗
0,J )2

⏋ν

×Si−ν

⎛
x

+
I,J (n, k) + νsI,J

⎞
Sj−ν

⎛
x

−
J,I (n, k) + νs

∗
J,I

⎞
,

(2.614) 

vectors x± 

I,J 
(n, k) =

⎛
x± 

1,I,J 
, x± 

2,I,J 
, · · ·

⎞
are defined by 

. x+
r,I,J (n, k) = pr,Ix +

⎛
r⎲

i=0

pi,Ipr−i,I

⎞
(it) + nθr,I + kλr,I − br,I,J + ar,I ,

. (2.615) 

x− 

r,I,J 
(n, k) = p∗

r,Ix −
⎛

r⎲

i=0 

p∗
i,Ip

∗
r−i,I

⎞
(it)  − nθ∗

r,I − kλ∗
r,I − b∗

r,I,J 
+ a∗

r,I , 

(2.616) 

sI,J =
(
s1,I,J , s2,I,J , · · ·

)
, pr,I , θr,I , λr,I , br,I,J and sr,I,J are coefficients from the 

expansions 

. pI (κ) =
∞⎲

r=0

pr,Iκ
r , ln

⎾
pI (κ) − ik1

p0,I − ik1

⏋
=

∞⎲

r=1

θr,Iκ
r , . (2.617) 

ln

⎾
pI (κ) − ik2 

p0,I − ik2

⏋
= 

∞⎲

r=1 

λr,Iκ
r , ln

⎾
pI (κ) + p∗

0,J 

p0,I + p∗
0,J

⏋
= 

∞⎲

r=1 

br,I,J κ
r , . (2.618) 

ln

⎾
1 

κ

⎛
p0,I + p∗

0,J 

p1,I

⎞⎛
pI (κ) − p0,I 

pI (κ) + p∗
0,J

⎞⏋
= 

∞⎲

r=1 

sr,I,J κ
r , (2.619)
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pI (κ) is defined by the equation 

.Q1 [pI (κ)] = Q1(p0,I ) cosh(κ), (2.620) 

and (a1,1, . . . , a2N1−1, 1), (a1,2, . . . , a2N2−1, 2) are free complex constants. 

The proof of this theorem will be presented in Sect. 2.9.4. 

The simplest rogue waves of this type can be obtained by setting N1 = N2 = 1 in  

the above theorem. These rogue waves contain two free internal complex parameters 

a1,1 and a1,2. Through a shift of the (x, t) axes, we normalize a1,1 = 0. Then, 

this rogue wave for two different values of a1,2 = 0 and 2 is plotted in Fig. 2.17 

under system and boundary parameters which are listed in the figure’s captions. The 

rogue wave at a1,2 = 2 (lower row) comprises two separate simpler rogue waves, 

which turn out to be fundamental rogue waves (2.606) for the two individual p0,1 

and p0,2 values. Thus, rogue waves in Theorem 2.11 can be viewed as a nonlinear 

superposition of rogue waves of Theorem 2.10 with two different p0 values. The 

rogue wave at a1,2 = 0 (upper row) in Fig. 2.17 can be regarded as the merging of 

the two fundamental rogue waves in the lower row. It has a new composite structure. 

Fig. 2.17 Density plots of the (1, 1)-th order rogue wave |u1,1,1(x, t)| and |u2,1,1(x, t)| in 
Theorem 2.11 in the focusing Manakov equations with parameter values of ϵ1 = ϵ2 = 1, 

ρ1 = ρ2 = 1, k1 = −k2 = 1/2, p0,1 ≈ 0.6360 + 0.3931i and p0,2 ≈ 0.6360 − 0.3931i. 

Upper row: a1,2 = 0. Lower row: a1,2 = 2
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2.9.3 Rogue Waves for a Double Non-Imaginary Root 

Rogue waves given above for a simple root and two simple roots in the . Q'
1(p) = 0

equation feature . τ functions that involve Schur polynomials with index jumps of 2. 

If that root is a double root (which only arises in the focusing case), the Manakov 

system would admit rogue waves whose . τ functions involve Schur polynomials with 

index jumps of 3. These latter rogue waves are given below. 

Theorem 2.12 If the algebraic equation (2.585) admits a non-imaginary double 

root . p0, which occurs only in the focusing Manakov system (with .ϵ1 = ϵ2 = 1) 

under parameter conditions (2.592), i.e., 

.ρ1 = ρ2 =
√
2 |k1 − k2| , k1 /= k2, (2.621) 

then this focusing Manakov system (2.581) under boundary conditions (2.584) 

would admit nonsingular .(N1, N2)-th order rogue wave solutions 

. u1,N1,N2
(x, t) = ρ1

g1,N1,N2

fN1,N2

ei(k1x+ω1t), . (2.622) 

u2,N1,N2
(x, t) = ρ1 

g2,N1,N2 

fN1,N2 

ei(k2x+ω2t)  , (2.623) 

where . N1 and . N2 are arbitrary non-negative integers, 

.fN1,N2
= σ0,0, g1,N1,N2

= σ1,0, g2,N1,N2
= σ0,1, (2.624) 

.σn,k is given by the following .2 × 2 block determinant 

.σn,k = det

⎛
σ

[1,1]
n,k σ

[1,2]
n,k

σ
[2,1]
n,k σ

[2,2]
n,k

⎞
, (2.625) 

.σ
[I,J ]
n,k =

⎛
φ

(n,k, I,J )
3i−I, 3j−J

⎞
1≤i≤NI , 1≤j≤NJ

, (2.626) 

the matrix elements in .σ
[I,J ]
n,k are defined by 

. φ
(n,k,I,J )
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν(x
+
I (n, k) + νs) Sj−ν(x

−
J (n, k) + νs

∗),

(2.627) 

vectors .x+
I (n, k) =

⎛
x+
1,I , x

+
2,I , · · ·

⎞
and .x−

J (n, k) =
⎛
x−
1,J , x−

2,J , · · ·
⎞
are defined 

by
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. x+
r,I (n, k) = prx +

⎛
r⎲

l=0

plpr−l

⎞
(it) + nθr + kλr + ar,I , if r mod3 /= 0,

. (2.628) 

x− 

r,J 
(n, k) = p∗

r x −
⎛

r⎲

l=0 

p∗
l p

∗
r−l

⎞
(it)  − nθ∗

r − kλ∗
r + a∗

r,J 
, if r mod3 /= 0, 

. (2.629) 

x+ 

r,I (n, k) = x− 

r,J 
(n, k) = 0, if r mod3 = 0, 

(2.630) 

.s = (s1, s2, · · · ), (. pr , . θr , . λr , . sr ) are coefficients from the expansions 

. p(κ) =
∞⎲

r=0

prκ
r , ln

⎾
p (κ) − ik1

p0 − ik1

⏋
=

∞⎲

r=1

θrκ
r , . (2.631) 

ln

⎾
p (κ) − ik2 

p0 − ik2

⏋
= 

∞⎲

r=1 

λrκ
r , . (2.632) 

ln

⎾
1 

κ

⎛
p0 + p∗

0 

p1

⎞⎛
p (κ) − p0 

p (κ) + p∗
0

⎞⏋
= 

∞⎲

r=1 

srκ
r , (2.633) 

the function .p (κ) is defined by the equation 

. Q1 [p (κ)] = Q1(p0)

3

⎾
eκ + 2e−κ/2 cos

⎛√
3

2
κ

⎞⏋
, (2.634) 

and 

. (a1,1, a2,1, a4,1, a5,1, . . . , a3N1−1, 1), (a1,2, a2,2, a4,2, a5,2, . . . , a3N2−2, 2)

are free complex constants. 

The proof of this theorem will be presented in Sect. 2.9.4. 

Rogue waves in the above theorem contain a wide variety of solutions. For 

simplicity, we only illustrate solutions with either .N1 = 0 or .N2 = 0, so that the 

.2 × 2-block determinant in the . τ function (2.625) degenerates to a single block. In 

this case, we introduce the terminology: 

• Q-type N -th order rogue waves: rogue waves when .N1 = N (> 0) and .N2 = 0; 

• R-type N -th order rogue waves: rogue waves when .N1 = 0 and .N2 = N (> 0).
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The reason for the word choices of ‘Q-type’ and ‘R-type’ here is that patterns 

of the underlying rogue waves at large internal parameters will be related to 

Okamoto hierarchy polynomials .Q
[m]
N (z) and .R

[m]
N (z) respectively, as we will show 

in Sect. 3.3 of the next chapter. 

For Q-type N -th order rogue waves, .σn,k becomes 

.σ
(Q)
n,k =

⎛
φ

(n,k)
3i−1, 3j−1

⎞
1≤i,j≤N

, (2.635) 

and for R-type N -th order rogue waves, .σn,k is 

.σ
(R)
n,k =

⎛
φ

(n,k)
3i−2, 3j−2

⎞
1≤i,j≤N

, (2.636) 

where .φ
(n,k)
i,j is given by Eq. (2.627) but with indices I and J removed. 

Internal parameters are .(a1, a2, a4, a5, · · · , a3N−1) for Q-type waves, and 

.(a1, a2, a4, a5, · · · , a3N−2) for R-type waves. We normalize .a1 = 0 by a shift 

of the .(x, t) axes. Then, internal complex parameters in these rogue waves are 

.(a2, a4, a5, · · · , a3N−1) for Q-type, and .(a2, a4, a5, · · · , a3N−2) for R-type. 

The first (lowest) order Q-type and R-type rogue waves are those with .N = 1. 

The first-order R-type rogue wave is 

.u1,1(x, t) = û1(x, t)ei(k1x+ω1t), u2,1(x, t) = û2(x, t)ei(k2x+ω2t), (2.637) 

where 

.û1(x, t) = ρ1
[p1x + 2p0p1 (it) + θ1]

⎾
p∗
1x − 2p∗

0p
∗
1 (it) − θ∗

1

⏋
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
, (2.638) 

.û2(x, t) = ρ2
[p1x + 2p0p1 (it) + λ1]

⎾
p∗
1x − 2p∗

0p
∗
1 (it) − λ∗

1

⏋
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
, (2.639) 

.θ1 = p1

p0 − ik1
, λ1 = p1

p0 − ik2
, ζ0 = |p1|2

(p0 + p∗
0)

2
. (2.640) 

This rogue wave is the fundamental Manakov rogue wave given in Eq. (2.606), 

except that the background parameters here are under the constraints of (2.621). 

If we choose background wavenumbers as .k2 = −k1, which is always possi-

ble through a Galilean transformation, then . p0 would be real in this case (see 

Eq. (2.593)). As a result, we can see that this rogue wave admits the symmetry of 

.û2(x, t) = û1(−x, t), i.e., .û2(x, t) would be a mirror image of .û1(x, t) around the 

t-axis in the .(x, t) plane. To illustrate, let we take .k1 = −k2 = 1/
√
12, which yields 

.p0 = 1/2. Then, the explicit expression of this first-order R-type rogue wave is
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. u1,1(x, t) =
/
2

3

x2 + t2 − i(3t −
√
3x) − 2

x2 + t2 + 1
ei

(
12−1/2x+5t/4

)
, . (2.641) 

u2,1(x, t) =
/
2 

3 

x2 + t2 − i(3t +
√
3x) − 2 

x2 + t2 + 1 
ei

(
−12−1/2x+5t/4

)
. (2.642) 

This solution is plotted in the left column of Fig. 2.18. It is seen that both the .|u1| and 
.|u2| components of this solution have a single elongated hump of equal amplitude, 

and orientations of these two humps are opposite of each other with respect to the 

vertical t-axis. 

The first-order Q-type Manakov rogue wave can also be obtained from Theo-

rem 2.12. This solution is a ratio of polynomials of degree four in x and t , and it 

contains an irreducible free complex parameter . a2. When we choose . k1 = −k2 =
1/

√
12 and .p0 = 1/2, this solution with .a2 = 0 is 

.u1(x, t) = ρ1
g1(x, t)

f (x, t)
ei(k1x+ω1t), u2(x, t) = ρ1

g2(x, t)

f (x, t)
ei(k2x+ω2t), (2.643) 

where .ρ1 =
√
2/3, .ω1 = ω2 = 5/4, and 

. f (x, t) = 4 + t4 + 8x2 + 4x3 + x4 + 2t2
⎛
10 + 6x + x2

⎞
,

g1(x, t) = −2 − 6i
√
3 − 6it3 + t4 − 4i

√
3x +

⎛
−1 + 3i

√
3
⎞

x2

+
⎛
4 + 2i

√
3
⎞

x3 + x4

+6t
⎾
−i + 3

√
3 +

⎛
−3i +

√
3
⎞

x − ix2
⏋

+t2
⎾
5 + 9i

√
3 + 2

⎛
6 + i

√
3
⎞

x + 2x2
⏋
,

g2(x, t) = −2 + 6i
√
3 − 6it3 + t4 + 4i

√
3x

+
⎛
−1 − 3i

√
3
⎞

x2 +
⎛
4 − 2i

√
3
⎞

x3 + x4

−6t
⎾
i + 3

√
3 +

⎛
3i +

√
3
⎞

x + ix2
⏋

+t2
⎾
5 − 9i

√
3 + 2

⎛
6 − i

√
3
⎞

x + 2x2
⏋
.

This solution is plotted in the middle column of Fig. 2.18. It is seen that the profile 

of this solution is more complicated. If .a2 /= 0, the expression for this first-order 

Q-type solution will be more lengthy and will not be produced here. When we take 

.a2 = 5 + 5i, this solution is plotted in the right column of Fig. 2.18. We can see 

that this solution splits approximately into two fundamental Manakov rogue waves. 

This splitting always occurs when the internal parameter .|a2| is large.
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Fig. 2.18 First-order Q-type and R-type rogue waves with .k1 = −k2 = 1/
√
12 in the focusing 

Manakov system. Left column: R-type in Eqs. (2.641)–(2.642). Middle column: Q-type with . a2 =
0 in Eq. (2.643). Right column: Q-type with .a2 = 5 + 5i. In all panels, . −15 ≤ x, t ≤ 15

2.9.4 Derivation of Rogue Wave Expressions 

Next, we derive Manakov bilinear rogue waves presented in the above three 

theorems. 

Under the transformation 

.u1(x, t) = ρ1
g

f
ei(k1x+ω1t), u2(x, t) = ρ2

h

f
ei(k2x+ω2t), (2.644) 

where f is a real function and .(g, h) complex ones, the Manakov system (2.581) 

can be converted into the following bilinear equations, 

.

(
D2

x + ϵ1ρ
2
1 + ϵ2ρ

2
2

)
f · f = ϵ1ρ

2
1gg∗ + ϵ2ρ

2
2hh∗,(

iDt + D2
x + 2ik1Dx

)
g · f = 0,(

iDt + D2
x + 2ik2Dx

)
h · f = 0.

⎫
⎬
⎭ (2.645) 

This bilinear system can be reduced from the following higher-dimensional bilinear 

system in the 2-component KP hierarchy (Ohta et al. 2011)
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.

( 1
2
DxDr − 1)τn,k · τn,k = −τn+1,k τn−1,k,

(D2
x − Dy + 2aDx)τn+1,k · τn,k = 0,

( 1
2
DxDs − 1)τn,k · τn,k = −τn,k+1 τn,k−1,

(D2
x − Dy + 2bDx)τn,k+1 · τn,k = 0,

⎫
⎪⎪⎬
⎪⎪⎭

(2.646) 

where .n, k are integers, .τn,k is a function of four independent variables .(x, y, r, s), 

and 

.a = ik1, b = ik2. (2.647) 

The solution .τn,k to these higher-dimensional bilinear equations was given by 

a certain Gram determinant in Ohta et al. (2011), but that Gram solution was 

appropriate only for the derivation of dark solitons. For the derivation of rogue 

waves here, the solution .τn,k should be chosen as 

.τn,k = det
1≤ν,μ≤N

⎛
φ

(n,k)
iν ,jμ

⎞
, (2.648) 

where .(i1, i2, · · · , iN ) and .(j1, j2, · · · , jN ) are arbitrary sequences of indices, the 

matrix element .φ
(n,k)
i,j is defined as 

.φ
(n,k)
i,j = AiBjφ

(n,k), (2.649) 

.φ(n,k) = 1

p + q

⎛
−p − a

q + a

⎞n ⎛
−p − b

q + b

⎞k

eξ+η, (2.650) 

.ξ = px + p2y + 1

p − a
r + 1

p − b
s + ξ0(p), (2.651) 

.η = qx − q2y + 1

q + a
r + 1

q + b
s + η0(q), (2.652) 

.Ai = 1

i!
⎾
f1(p)∂p

⏋i
, Bj = 1

j !
⎾
f2(q)∂q

⏋j
, (2.653) 

.p, q are arbitrary complex constants, and .ξ0(p), η0(q), f1(p), f2(q) are arbitrary 

functions of p and q respectively. The reason these functions also satisfy the 

higher-dimensional bilinear system (2.646) is that these functions satisfy the same 

differential and difference relations in Ohta et al. (2011). 

It is easy to see that the higher-dimensional bilinear system (2.646) is reduced to 

the original system (2.645) if we set  

.f = τ0,0, g = τ1,0, h = τ0,1, y = it, (2.654)
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impose the dimension reduction condition 

.L0τn,k = C τn,k, (2.655) 

where 

.L0 = 2∂x + ϵ1ρ
2
1∂r + ϵ2ρ

2
2∂s, (2.656) 

and C is some constant, and impose the conjugation condition 

.τ−n,−k = τ ∗
n,k. (2.657) 

These two reductions proceed as follows. 

To meet the dimensional reduction (2.655), we follow the .W-p treatment (see 

sections 2.3 and 2.6). We first see that 

.L0φ
(n,k)
i,j = AiBj [Q1(p) + Q2(q)]φ(n,k), (2.658) 

where 

.Q1(p) =
ϵ1ρ

2
1

p − a
+

ϵ2ρ
2
2

p − b
+ 2p, (2.659) 

which is the same as the earlier expression (2.586) in view of Eq. (2.647), and 

.Q2(q) is the above .Q1(p) function with p switching to q and .(a, b) switching to 

.(−a,−b). To meet the dimensional reduction condition (2.655), we start with the 

general Leibnitz-type operator relation, 

.AiQ1(p) =
i⎲

l=0

1

l!
⎾(

f1∂p

)l
Q1(p)

⏋
Ai−l, (2.660) 

which we have seen before in Eq. (2.249). Another relation similar to the above can 

also be written for .BjQ2(q). Using these relations, Eq. (2.658) gives  

. L0 φ
(n,k)
i,j =

i⎲

μ=0

1

μ!
⎾(

f1∂p

)μ
Q1(p)

⏋
φ

(n,k)
i−μ,j +

j⎲

l=0

1

l!
⎾(

f2∂q

)l
Q2(q)

⏋
φ

(n,k)
i,j−l .

(2.661) 

In order to satisfy the dimensional reduction condition (2.655), we need to select 

functions .[f1(p), f2(q)] as well as values of .(p, q) so that coefficients of certain 

indices on the right side of the above equation vanish (see Sect. 2.1.1). For that 

purpose, we will select . p0 and . q0 values to be roots of the following algebraic 

equations
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.Q'
1(p0) = 0, Q'

2(q0) = 0. (2.662) 

At these .(p0, q0) values, the .μ = l = 1 terms on the right side of Eq. (2.661) will 

vanish. Notice that the .Q'
1(p0) = 0 equation above is the same as (2.585), whose 

root structure has been delineated earlier in this section. Roots of the . Q'
2(q0) = 0

equation are related to those of .Q'
1(p0) = 0 as .q0 = p∗

0 . Since the .φ
(n,k) function 

in (2.650) has a factor of .1/(p + q), in order for .φ
(n,k)
i,j in (2.649) to be nonsingular 

when evaluated at .(p, q) = (p0, q0), the . p0 value cannot be purely imaginary. 

To select .f1(p) and .f2(q) functions optimally, we need to impose further 

conditions, and these conditions will depend on the multiplicity of the root . p0 in 

the .Q'
1(p) = 0 equation. 

(a) A Simple Root Case 

If . p0 is a simple nonimaginary root of the .Q'
1(p) = 0 equation, the condition on 

.f1(p) we impose will be 

.

(
f1∂p

)2
Q1(p) = Q1(p). (2.663) 

The reason for this imposition is that under this condition, as well as the earlier 

condition (2.662), all odd-. μ terms on the right side of Eq. (2.661), when evaluated 

at .p = p0, would vanish. Indeed, under this condition and .Q
'
1(p0) = 0, as well as  

similar ones for the q variable, we find from Eq. (2.661) that 

. L0 φ
(n,k)
i,j

|||
p=p0, q=q0

= Q1(p0)

i⎲

μ=0
μ:even

1

μ! φ
(n,k)
i−μ,j

|||
p=p0, q=q0

+ Q2(q0)
j⎲

l=0
l:even

1

l! φ
(n,k)
i,j−l

|||
p=p0, q=q0

. (2.664) 

Then, when we restrict indices of the general determinant (2.648) to  

.τn,k = det
1≤i,j≤N

⎛
φ

(n,k)
2i−1,2j−1

|||
p=p0, q=q0

⎞
, (2.665) 

and use the above contiguity relation (2.664) as was done in Sect. 2.1.1, we get 

.L0τn,k = [Q1(p0) + Q2(q0)] N τn,k. (2.666) 

Thus, the .τn,k function (2.665) satisfies the dimensional reduction condition (2.655). 

The differential equation (2.663) is the same as Eq. (2.252) in Sect. 2.3. So  

the .f1(p) solution is as given in Eq. (2.257). In addition, by writing . f1(p) =
W1(p)/W'

1(p), the corresponding .W1(p) function is given in Eq. (2.257) as well.
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A similar treatment can be applied to the q variable, and the results for .f2(q) and 

.W2(q) are the same as in Eq. (2.257), except that the subscript 1 changes to 2, and 

.(p, p0) change to .(q, q0). 

The complex conjugacy condition (2.657) can be met when we choose .ξ0(p) and 

.η0(q) as 

.ξ0(p) =
∞⎲

r=1

âr ln
rW1(p), η0(q) =

∞⎲

r=1

â∗
r ln

rW2(q), (2.667) 

where . ̂ar are free complex constants. The reason is that due to .q0 = p∗
0 and . (a, b)

being purely imaginary, we can show that in this case 

. φ
(−n,−k)
j,i

|||
p=p0, q=q0

=
⎛

φ
(n,k)
i,j

|||
p=p0, q=q0

⎞∗
, (2.668) 

thus .τ−n,−k = τ ∗
n,k . The resulting .τn,k function (2.665) then gives rogue waves of 

the Manakov system through Eqs. (2.644) and (2.654). 

Lastly, we remove the differential operators in the matrix elements of Eq. (2.665) 

and derive more explicit expressions of rogue waves through Schur polynomials. 

This derivation is along the lines for the generalized derivative NLS equations in 

Sect. 2.2 and is very similar to that for the three-wave interaction system in Yang 

and Yang (2021b). Following such steps, we then obtain the rogue wave expressions 

given in Theorem 2.10 for the Manakov system, except that the definitions for 

.x±
r (n, k) are as given in Eqs. (2.600)–(2.601) for all r indices, including those where 

.r mod2 = 0. Parameters . ar in Theorem 2.10 can be found to be linearly related to 

. ̂ar in Eq. (2.667). We note that this derivation would be a bit simpler if we introduce 

an extra factor of .(p +p0)(q + q0) into .φ(n,k) of Eq. (2.650), similar to what we did 

in Eq. (2.29) for the NLS equation. In this latter case, parameters . ar in Theorem 2.10 

would be identical to those . ̂ar in Eq. (2.667). 

Using the same techniques as in Sect. 2.1.1, we can further set .x±
2r = 0 in 

the resulting Schur polynomial expressions. In addition, the parameter . a1 can be 

normalized to zero through a shift of the .(x, t) axes. This completes the proof of 

Theorem 2.10. 

(b) Two-Simple-Root Case 

If the .Q'
1(p) = 0 equation admits two distinct non-imaginary simple roots . p0,1

and .p0,2 with .p0,2 /= −p∗
0,1, then we can construct a more general .2 × 2 block 

determinant 

.τn,k = det

⎛
τ
[1,1]
n,k τ

[1,2]
n,k

τ
[2,1]
n,k τ

[2,2]
n,k

⎞
, (2.669) 

where
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. τ
[I,J ]
n,k = mat1≤i≤NI ,1≤j≤NJ

⎛
φ

(n,k)
2i−1,2j−1

|||
p=p0,I ,q=q0,J

⎞
, 1 ≤ I, J ≤ 2,

(2.670) 

.φ
(n,k)
i,j is given by Eq. (2.649) with .[f1(p), f2(q)] replaced by .[f (I )

1 (p), f
(J )
2 (q)], 

the function .f
(I )
1 (p) is provided by Eq. (2.257) with . p0 replaced by .p0,I , the  

function .f
(J )
2 (q) is the same as (2.257) but with the subscript 1 changing to 2 and 

.(p, p0) changing to .(q, q0,J ), with 

.q0,J = p∗
0,J , (2.671) 

. ξ0 is replaced by . ξ0,I , . η0 is replaced by .η0,J , and .N1, N2 are arbitrary positive 

integers. It is easy to see that this .2 × 2 block determinant (2.669) also satisfies the 

higher-dimensional bilinear system (2.646). 

In the present case, the contiguity relation (2.664) becomes 

.

L0 φ
(n,k)
i,j

|||
p=p0,I , q=q0,J

= Q1(p0,I )

i⎲

μ=0
μ:even

1

μ! φ
(n,k)
i−μ,j

|||
p=p0,I , q=q0,J

+

+ Q2(q0,J )

j⎲

l=0,
l:even

1

l! φ
(n,k)
i,j−l

|||
p=p0,I , q=q0,J

.

(2.672) 

Utilizing this contiguity relation similar to what we did in Sect. 2.1.1, we get 

. L0τn,k =
{⎾
Q1(p0,1) + Q2(q0,1)

⏋
N1 +

⎾
Q1(p0,2) + Q2(q0,2)

⏋
N2

}
τn,k.

(2.673) 

Thus, the .2 × 2 block determinant (2.669) also satisfies the dimensional reduction 

condition (2.655). 

The complex conjugacy condition (2.657) can be met when we choose . ξ0,I (p)

and .η0,J (q) as 

. ξ0,I (p) =
∞⎲

r=1

ar,I ln
rW

(I )
1 (p), η0,J (q) =

∞⎲

r=1

a∗
r,J lnrW

(J )
2 (q), I, J = 1, 2,

(2.674) 

where .W
(I )
1 (p) is as defined in Eq. (2.257) with . p0 replaced by .p0,I , .W

(J )
2 (q) is 

defined similar to Eq. (2.257) except that the subscript 1 changes to 2 and . (p, p0)

change to .(q, q0,J ), and .ar,1, ar,2 (r = 1, 2, . . . ) are free complex constants. Indeed,
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since .q0,I = p∗
0,I and .(a, b) purely imaginary, we can show that 

. φ
(−n,−k)
i,j

|||
p=p0,I , q=q0,J

=
⎛

φ
(n,k)
j,i

|||
p=p0,J , q=q0,I

⎞∗
, (2.675) 

so that 

.τ
[I,J ]
−n,−k =

⎛
τ
[J,I ]
n,k

⎞∗
, (2.676) 

and hence .τ−n,−k = τ ∗
n,k . The resulting .τn,k function (2.669) then gives rogue waves 

of the Manakov system through Eqs. (2.644) and (2.654). 

Lastly, we remove differential operators in matrix elements of Eq. (2.669) and 

derive more explicit expressions of rogue waves through Schur polynomials. This 

derivation is very similar to that for the three-wave interaction system in Yang and 

Yang (2021b). Following such steps, we then obtain the rogue wave expressions 

given in Theorem 2.11 for the Manakov system, where parameters .ar,1 and .ar,2 in 

that theorem are identical to .ar,1 and .ar,2 in Eq. (2.674). This completes the proof of 

Theorem 2.11. 

(c) A Double-Root Case 

If the algebraic equation .Q'
1(p) = 0 admits a non-imaginary double root . p0, 

i.e., .Q'
1(p0) = Q''

1(p0) = 0, the dimension reduction condition (2.655) would be 

satisfied if we choose .f1(p) to satisfy the differential equation 

.

(
f1(p)∂p

)3
Q1(p) = Q1(p), (2.677) 

choose .f2(q) to satisfy a similar equation except to change the index above from 1 

to 2 and change p to q, and choose the .τn,k determinant as 

.τn,k = det

⎛
τ

[1,1]
n,k τ

[1,2]
n,k

τ
[2,1]
n,k τ

[2,2]
n,k

⎞
, (2.678) 

where 

. τ
[I,J ]
n,k = mat1≤i≤NI ,1≤j≤NJ

⎛
m

(n,k)
3i−I, 3j−J

|||
p=p0, q=q0, ξ0=ξ0,I , η0=η0,J

⎞
,

1 ≤ I, J ≤ 2, (2.679) 

.q0 = p∗
0 , .ξ0,I (p), .η0,J (q) are arbitrary functions of p and q respectively, and . N1, N2

are arbitrary non-negative integers. The reason is that, in this case, 

.

(
f1(p)∂p

)
Q1(p)

||
p=p0

=
(
f1(p)∂p

)2
Q1(p)

|||
p=p0

= 0. (2.680)
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Thus, combined with the condition (2.677) and similar ones for .Q2(q), Eq. (2.661) 

reduces to 

.

L0 m
(n,k)
i,j

|||
p=p0, q=q0

= Q1(p0)

i⎲

μ=0
μ≡0(mod3)

1

μ! m
(n,k)
i−μ,j

|||
p=p0, q=q0

+

+ Q2(q0)
j⎲

l=0
l≡0(mod3)

1

l! m
(n,k)
i,j−l

|||
p=p0, q=q0

.

(2.681) 

Using this contiguity relation, we can show as in Sect. 2.1.1 that the .2 × 2 block 

determinant (2.678) satisfies the dimensional reduction condition (2.655). 

The differential equation (2.677) for  .Q1(p) is linear and homogeneous. Writing 

.f1(p) =W1(p)/W'
1(p), this equation becomes 

.∂3lnW1
Q1(p) = Q1(p). (2.682) 

Scaling .W1(p0) = 1, the unique solution to this equation under the condition of . p0

being a double root of .Q'
1(p) = 0 is 

.Q1(p) = Q1(p0)

3

⎛
W1(p) + 2√

W1(p)
cos

⎾√
3

2
lnW1(p)

⏋⎞
. (2.683) 

From this equation, one can solve for .W1(p) from .Q1(p) and then obtain .f1(p). A  

similar equation can be derived for .W2(q) by replacing p by q and the subscript 1 

by  2 in Eq. (2.683). But it turns out the explicit solving for .W1,2(p) and .f1,2(p) is 

not necessary for our goal of obtaining explicit expressions for matrix elements in 

Eq. (2.678). 

Regarding the conjugation condition (2.657), it can be satisfied when we choose 

. ξ0,I (p) =
∞⎲

r=1

âr,I ln
rW1(p), η0,J (q) =

∞⎲

r=1

â∗
r,J lnrW2(q), I = 1, 2,

(2.684) 

where .âr,I are free complex constants. Indeed, in this case, we can show that 

.τ
[I,J ]
−n,−k =

⎛
τ
[J,I ]
n,k

⎞∗
, (2.685) 

and hence .τ−n,−k = τ ∗
n,k . The resulting .τn,k function (2.678) then gives rogue waves 

of the Manakov system through Eqs. (2.644) and (2.654).
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Next, we remove the differential operators in the matrix elements of (2.678) and 

derive more explicit expressions of rogue waves through Schur polynomials. This 

derivation is very similar to that for the three-wave interaction system in Yang and 

Yang (2021b). Following such steps, we then obtain the rogue wave expressions 

given in Theorem 2.12 for the Manakov system, except that the definitions for 

.x+
r,I (n, k) and .x−

r,J (n, k) are as given in Eqs. (2.628)–(2.629) for all r indices, 

including those where .r mod3 = 0. And those .x+
r,I (n, k) and .x−

r,J (n, k) with 

.r mod3 = 0 can be removed from the solution, for reasons similar to those 

in Sect. 2.1.1 where we removed . x±
2r terms in the NLS case. In this calculation, 

parameters .ar,1 and .ar,2 in Theorem 2.12 are linearly related to .âr,1 and .âr,2 in 

Eq. (2.684). If we had introduced an extra factor of .(p + p0)(q + q0) into .φ(n,k) of 

Eq. (2.650), similar to what we did in Eq. (2.29) for the NLS equation, this derivation 

would have been a bit simpler, and parameters .ar,1 and .ar,2 in Theorem 2.12 

would be identical to those .âr,1 and .âr,2 in Eq. (2.684). This completes the proof 

of Theorem 2.12. 

2.10 Three-Wave Resonant Interaction System in 

(1+1)-Dimensions 

The (1+1)-dimensional three-wave resonant interaction system is 

.

(∂t + c1∂x) u1 = ϵ1u
∗
2u

∗
3,

(∂t + c2∂x) u2 = ϵ2u
∗
1u

∗
3,

(∂t + c3∂x) u3 = ϵ3u
∗
1u

∗
2,

⎫
⎬
⎭ (2.686) 

where .(c1, c2, c3) are group velocities of the three waves, .(ϵ1, ϵ2, ϵ3) are real-valued 

nonlinear coefficients, and the asterisk ‘*’ represents complex conjugation. This 

system arises in many physical contexts such as water waves, optics and others (see 

Sect. 1.6). To remove ambiguity, we order the three group velocities as . c1 > c2 >

c3, and make .c3 = 0 by choosing a coordinate system that moves with velocity 

. c3. The nonlinear coefficients . ϵn can be normalized to . ±1 by variable scalings (see 

Sect. 1.6). In addition, we can fix .ϵ1 = 1 without loss of generality. 

This interaction system (with .c3 = 0) is invariant under the gauge transformation 

.

u1(x, t) → u1(x, t) ei(kx−kc1t),

u2(x, t) → u2(x, t) ei[−(kc1/c2)x+kc1t],
u3(x, t) → u3(x, t) e−i(k−kc1/c2)x,

⎫
⎬
⎭ (2.687) 

where k is an arbitrary real constant. In addition, it is invariant under the phase 

transformation 

. uk(x, t) → uk(x, t) eiθk , k = 1, 2, 3, (2.688)
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where .θ3 = −(θ1+θ2), and . θ1, . θ2 are arbitrary real constants. These two invariances 

can help us reduce free parameters in the system. 

There are three types of three-wave interaction models, which are termed the 

soliton exchange case, the explosive case, and the stimulated backscatter case in 

Kaup et al. (1979). These three cases correspond to the following signs of the 

nonlinear coefficients, 

. (ϵ1, ϵ2, ϵ3) = (1,−1, 1), (soliton-exchange case). (2.689) 

(ϵ1, ϵ2, ϵ3) = (1, 1, 1), (explosive case). (2.690) 

(ϵ1, ϵ2, ϵ3) = (1,−1,−1), (stimulated backscatter case). (2.691) 

(ϵ1, ϵ2, ϵ3) = (1, 1,−1). (stimulated backscatter case) (2.692) 

Note that the .(1,−1,−1) case can be converted to the .(1, 1,−1) case by flipping 

the sign of x, reordering the .(u1, u2, u3) equations in decreasing order of their group 

velocities, and renormalizing the nonlinear coefficients; thus these two cases belong 

to the same stimulated backscatter case. Below, we will treat all these cases by 

allowing .(ϵ1, ϵ2, ϵ3) to be arbitrary real parameters. 

The above three-wave interaction system (2.686) admits plane wave solutions 

.

u1,0(x, t) = ρ1e
i(k1x+ω1t),

u2,0(x, t) = ρ2e
i(k2x+ω2t),

u3,0(x, t) = iρ3e
−i[(k1+k2)x+(ω1+ω2)t],

⎫
⎬
⎭ (2.693) 

where .(k1, k2) and .(ω1, ω2) are the wavenumbers and frequencies of the first two 

waves, and .(ρ1, ρ2, ρ3) are the complex amplitudes of the three waves. Parameters 

of these plane waves satisfy the following relations, 

.

ρ1 (ω1 + c1k1) = −ϵ1ρ
∗
2ρ

∗
3 ,

ρ2 (ω2 + c2k2) = −ϵ2ρ
∗
1ρ

∗
3 ,

ρ3 (ω1 + ω2) = ϵ3ρ
∗
1ρ

∗
2 .

⎫
⎬
⎭ (2.694) 

Below, we assume . ρ1, . ρ2 and . ρ3 all non-zero. In view of the phase invari-

ance (2.688), we can normalize . ρ1 and . ρ2 to be real positive. Then the above 

relations show that . ρ3 is real as well. In addition, the gauge invariance (2.687) 

allows us to impose a restriction on the four parameters .(k1, k2, ω1, ω2), such 

as fixing one of them as zero, or equating .k1 = k2, or equating .ω1 = ω2, 

without any loss of generality. Under such a restriction, wavenumber and fre-

quency parameters .(k1, k2, ω1, ω2) would be fully determined from the three real 

background-amplitude parameters .(ρ1, ρ2, ρ3) through equations (2.694). 

Rogue waves in the three-wave interaction system (2.686) are rational solutions 

which approach plane-wave solutions (2.693) as  .x, t → ±∞. From the above 

discussions on plane-wave solutions, we can set the boundary conditions for these 

rogue waves as
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.

u1(x, t) → ρ1e
i(k1x+ω1t), x, t → ±∞,

u2(x, t) → ρ2e
i(k2x+ω2t), x, t → ±∞,

u3(x, t) → iρ3e
−i[(k1+k2)x+(ω1+ω2)t], x, t → ±∞,

⎫
⎬
⎭ (2.695) 

where .(ρ1, ρ2, ρ3) are free real amplitudes, .ρ1 > 0, ρ2 > 0, and the other 

parameters .(k1, k2, ω1, ω2) are determined by these real amplitudes through equa-

tions (2.694) and an extra restriction on them from the gauge invariance (2.687). 

Special types of rogue waves in the three-wave system have been derived by 

Darboux transformation in Baronio et al. (2013), Degasperis and Lombardo (2013), 

Chen et al. (2015), Wang et al. (2015), and Zhang et al. (2018). General rogue waves 

in this system were derived by the bilinear method in Yang and Yang (2021b). We 

will follow Yang and Yang (2021b) below. 

In the bilinear framework, rogue-wave expressions will depend on the root 

structure of the following algebraic equation 

.Q'
1(p) = 0, (2.696) 

where 

.Q1(p) =
⎛

γ1c2

γ3(c2 − c1)

⎞
1

p
−

⎛
γ2c1

γ3(c2 − c1)

⎞
1

p − i
− p, (2.697) 

and 

.γ1 ≡ ϵ1
ρ2ρ3

ρ1
, γ2 ≡ ϵ2

ρ1ρ3

ρ2
, γ3 ≡ ϵ3

ρ1ρ2

ρ3
. (2.698) 

This .Q1(p) function and the associated algebraic equation (2.696) will appear in the 

dimension reduction of our bilinear derivation of rogue waves. 

The algebraic equation (2.696) can be rewritten as 

.γ3(c1 − c2)p
2(p − i)2 − γ1c2(p − i)2 + γ2c1p

2 = 0, (2.699) 

which is a quartic equation for p. Thus, it has four roots (counting multiplicity). 

Notice that if p is a root, so is .−p∗. Thus, non-imaginary roots appear as pairs of 

.(p,−p∗). This quartic equation is similar to Eq. (2.587) of the Manakov system. 

Using similar techniques, we can obtain the following results on the root structure 

of this quartic equation for the four cases of .(ϵ1, ϵ2, ϵ3) values in Eqs.(2.689)– 

(2.692). 

1. In the soliton-exchange case (2.689), .(ϵ1, ϵ2, ϵ3) = (1,−1, 1). In this case, if 

.ρ2 =
/

c1

c2
ρ1, ρ3 = ±

/
c1 − c2

c2
ρ1, (2.700) 

then the roots of Eq. (2.696) are
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.(p̂0, p̂0,−p̂∗
0,−p̂∗

0), (2.701) 

where 

.p̂0 = (
√
3 + i)/2, (2.702) 

which are a pair of non-imaginary double roots. For other .(ρ1, ρ2, ρ3) values not 

satisfying the conditions (2.700), the root structure of Eq. (2.696) is  

.(p0,1, p0,2,−p∗
0,1,−p∗

0,2), (2.703) 

where all roots are nonimaginary and simple with .p0,1 /= p0,2. 

2. In the explosive and stimulated backscatter cases with .(ϵ1, ϵ2, ϵ3) values given 

in Eqs.(2.690)–(2.692), root structures of Eq. (2.696) are  

. Δ > 0 : four imaginary simple roots;

Δ < 0 : a pair of non-imaginary simple roots (p0,−p∗
0) and two imaginary

simple roots;

Δ = 0 : one imaginary double root and two imaginary simple roots,

where 

. Δ = −16c1c2 (c1 − c2) γ1γ2γ3

{
[γ1c2 + γ3(c1 − c2) − γ2c1]

3

+27c1c2 (c1 − c2) γ1γ2γ3} . (2.704) 

We can see that these root structure results bear strong similarities to those in 

the Manakov case. This explains why rogue wave structures in the three-wave 

system will be very similar to those in the Manakov system. 

Now, we present our general rogue-wave solutions in the three-wave interaction 

system (2.686) according to the root structure of the algebraic equation (2.696). 

2.10.1 General Rogue Waves and Their Derivations 

Three types of rogue waves in the three-wave system, corresponding to a simple 

root, two simple roots and a double root of the algebraic equation (2.696), are 

presented in the following three theorems. 

Theorem 2.13 If the algebraic equation (2.696) admits a non-imaginary simple 

root . p0, then the three-wave interaction system (2.686) under boundary condi-

tions (2.695) would admit nonsingular N -th order rogue-wave solutions
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. u1,N (x, t) = ρ1
g1,N

fN

ei(k1x+ω1t), . (2.705) 

u2,N (x, t) = ρ2 
g2,N 

fN 

ei(k2x+ω2t)  , . (2.706) 

u3,N (x, t) = iρ3 
g3,N 

fN 

e−i[(k1+k2)x+(ω1+ω2)t], (2.707) 

where N is an arbitrary positive integer, 

.fN = σ0,0, g1,N = σ1,0, g2,N = σ0,−1, g3,N = σ−1,1, (2.708) 

.σn,k = det
1≤i,j≤N

⎛
m

(n,k)
2i−1,2j−1

⎞
, (2.709) 

the matrix elements in .σn,k are defined by 

. m
(n,k)
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν(x
+(n, k) + νs) Sj−ν(x

−(n, k) + νs
∗),

(2.710) 

vectors .x
±(n, k) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

. x+
r (n, k) = (αr − βr) x + (c1βr − c2αr) t + nθr + kλr + ar , . (2.711) 

x−
r (n, k) =

(
α∗

r − β∗
r

)
x +

(
c1β

∗
r − c2α

∗
r

)
t − nθ∗

r − kλ∗
r + a∗

r , (2.712) 

. αr , . βr , . θr and . λr are coefficients from the expansions 

.
γ1

c1 − c2

⎛
1

p (κ)
− 1

p0

⎞
=

∞⎲

r=1

αrκ
r , . (2.713) 

γ2 

c1 − c2

⎛
1 

p (κ) − i 
− 

1 

p0 − i

⎞
= 

∞⎲

r=1 

βrκ
r , . (2.714) 

ln 
p (κ) 

p0 
= 

∞⎲

r=1 

λrκ
r , ln 

p (κ) − i 

p0 − i 
= 

∞⎲

r=1 

θrκ
r , (2.715) 

the vector .s = (s1, s2, · · · ) is defined by the expansion 

. ln

⎾
1

κ

⎛
p0 + p∗

0

p1

⎞⎛
p (κ) − p0

p (κ) + p∗
0

⎞⏋
=

∞⎲

r=1

srκ
r , (2.716) 

the function .p (κ) is defined by the equation
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.Q1 [p (κ)] = Q1(p0) cosh(κ), (2.717) 

with .Q1(p) given in Eq. (2.697), .p1 ≡ (dp/dκ)|κ=0, .a1 = 0, and . a3, a5, . . . , a2N−1

are free irreducible complex constants. 

Theorem 2.14 If the algebraic equation (2.696) admits two distinct non-imaginary 

simple roots .p0,1 and .p0,2 with .p0,2 /= −p∗
0,1, which is only possible in the 

soliton-exchange case (2.689) with background amplitudes not satisfying con-

ditions (2.700), then the three-wave interaction system (2.686) under boundary 

conditions (2.695) would admit nonsingular .(N1, N2)-th order rogue-wave solu-

tions 

. u1,N1,N2
(x, t) = ρ1

g1,N1,N2

fN1,N2

ei(k1x+ω1t), . (2.718) 

u2,N1,N2
(x, t) = ρ2 

g2,N1,N2 

fN1,N2 

ei(k2x+ω2t)  , . (2.719) 

u3,N1,N2
(x, t) = iρ3 

g3,N1,N2 

fN1,N2 

e−i[(k1+k2)x+(ω1+ω2)t], (2.720) 

where .N1, N2 are arbitrary positive integers, 

. fN1,N2
= σ0,0, g1,N1,N2

= σ1,0, g2,N1,N2
= σ0,−1, g3,N1,N2

= σ−1,1,

(2.721) 

.σn,k is a .2 × 2 block determinant 

.σn,k = det

⎛
σ
[1,1]
n,k σ

[1,2]
n,k

σ
[2,1]
n,k σ

[2,2]
n,k

⎞
, (2.722) 

.σ
[I,J ]
n,k =

⎛
m

(n,k,I,J )
2i−1,2j−1

⎞
1≤i≤NI ,1≤j≤NJ

, (2.723) 

the matrix elements in .σ
[I,J ]
n,k are defined by 

. m
(n,k,I,J )
i,j =

min(i,j)⎲

ν=0

⎛
1

p0,I + p∗
0,J

⎞⎾
p1,Ip

∗
1,J

(p0,I + p∗
0,J )2

⏋ν

×

× Si−ν

⎛
x

+
I,J (n, k) + νsI,J

⎞
Sj−ν

⎛
x

−
J,I (n, k) + νs

∗
J,I

⎞
, (2.724) 

vectors .x±
I,J (n, k) =

⎛
x±
1,I,J , x±

2,I,J , · · ·
⎞

and .sI,J =
(
s1,I,J , s2,I,J , · · ·

)
are 

defined by
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. x+
r,I,J (n, k) =

(
αr,I − βr,I

)
x +

(
c1βr,I − c2αr,I

)
t

+nθr,I + kλr,I − br,I,J + ar,I , . (2.725) 

x− 

r,I,J 
(n, k) =

(
α∗

r,I − β∗
r,I

)
x +

(
c1β

∗
r,I − c2α

∗
r,I

)
t 

−nθ∗
r,I − kλ∗

r,I − b∗
r,I,J 

+ a∗
r,I , (2.726) 

. αr,I , . βr,I , . θr,I , .λr,I and .sr,I,J are coefficients from the expansions (2.713)–(2.716) 

with . p0 replaced by .p0,I , . p1 replaced by .p1,I , . p
∗
0 replaced by .p∗

0,J , .p(κ) replaced 

by .pI (κ) which is defined by Eq. (2.717) with . p0 replaced by .p0,I , . p1,I ≡
(dpI /dκ)|κ=0, .br,I,J is the coefficient from the expansion 

. ln

⎾
pI (κ) + p∗

0,J

p0,I + p∗
0,J

⏋
=

∞⎲

r=1

br,I,J κr , (2.727) 

and .ar,1, ar,2 .(r = 1, 2, . . . ) are free complex constants. 

Theorem 2.15 If the algebraic equation (2.696) admits a non-imaginary dou-

ble root . p0, which is only possible in the soliton-exchange case (2.689) with 

background amplitudes satisfying conditions (2.700), then the three-wave interac-

tion system (2.686) under boundary conditions (2.695) would admit nonsingular 

.(N1, N2)-th order rogue-wave solutions .ui,N1,N2
(x, t) .(1 ≤ i ≤ 3), where . N1 and 

. N2 are arbitrary non-negative integers, and .ui,N1,N2
(x, t) are of the same forms 

as (2.718)–(2.721), except that their .σn,k is given by the following .2 × 2 block 

determinant 

.σn,k = det

⎛
σ

[1,1]
n,k σ

[1,2]
n,k

σ
[2,1]
n,k σ

[2,2]
n,k

⎞
, (2.728) 

where 

.σ
[I,J ]
n,k =

⎛
m

(n,k, I,J )
3i−I, 3j−J

⎞
1≤i≤NI , 1≤j≤NJ

, (2.729) 

the matrix elements in .σ
[I,J ]
n,k are defined by 

. m
(n,k,I,J )
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν(x
+
I (n, k) + νs) Sj−ν(x

−
J (n, k) + νs

∗),

(2.730) 

vectors .x
±
I (n, k) =

⎛
x±
1,I , x

±
2,I , · · ·

⎞
.(I = 1, 2) are given by 

.x+
r,I (n, k) = (αr − βr) x + (c1βr − c2αr) t
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+nθr + kλr + ar,I , if r mod3 /= 0, . (2.731) 

x− 

r,J 
(n, k) =

(
α∗

r − β∗
r

)
x +

(
c1β

∗
r − c2α

∗
r

)
t 

−nθ∗
r − kλ∗

r + a∗
r,J 

, if r mod3 /= 0, . (2.732) 

x+ 

r,I (n, k) = x− 

r,J 
(n, k) = 0, if r mod3 = 0, (2.733) 

. αr , . βr , . θr and . λr are defined in Eqs. (2.713)–(2.715), .s = (s1, s2, · · · ) is defined in 
Eq. (2.716), the function .p (κ) which appears in Eqs. (2.713)–(2.716) is defined by 

the equation 

.Q1 [p (κ)] = Q1(p0)

3

⎾
eκ + 2e−κ/2 cos

⎛√
3

2
κ

⎞⏋
, (2.734) 

.Q1(p) is given by Eq. (2.697), or equivalently 

.Q1(p) = −
⎛
1

p
+ 1

p − i
+ p

⎞
(2.735) 

in view of the parameter restrictions (2.700), .p1 ≡ (dp/dκ)|κ=0, and . ar,1, ar,2

.(r = 1, 2, . . . ) are free complex constants. 

Proof First, we introduce a variable transformation 

.

u1(x, t) = ρ1
g1

f
ei(k1x+ω1t),

u2(x, t) = ρ2
g2

f
ei(k2x+ω2t),

u3(x, t) = iρ3
g3

f
e−i[(k1+k2)x+(ω1+ω2)t],

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.736) 

where f is a real function, and .g1, g2, g3 are complex functions. Using this 

transformation and parameter relations (2.694), the three-wave system (2.686) is  

converted into the following three bilinear equations 

.

(Dt + c1Dx − iγ1) g1 · f = −iγ1g
∗
2g

∗
3 ,

(Dt + c2Dx − iγ2) g2 · f = −iγ2g
∗
1g

∗
3 ,

(Dt − iγ3) g3 · f = −iγ3g
∗
1g

∗
2 .

⎫
⎬
⎭ (2.737) 

Next, we introduce a coordinate transformation 

.x = c1

γ1
r + c2

γ2
s, t = 1

γ1
r + 1

γ2
s, (2.738) 

or equivalently,
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.r = γ1

c1 − c2
(x − c2t) , s = γ2

c2 − c1
(x − c1t) . (2.739) 

Under this coordinate transformation, the bilinear equations (2.737) reduce to 

.

(iDr + 1) g1 · f = g∗
2g

∗
3 ,

(iDs + 1) g2 · f = g∗
1g

∗
3 ,⎾

γ1c2

γ3(c2 − c1)
iDr − γ2c1

γ3(c2 − c1)
iDs + 1

⏋
g3 · f = g∗

1g
∗
2 .

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(2.740) 

Bilinear equations (2.740) can be reduced from the following lowest-order 

bilinear equations in the extended KP hierarchy 

.

[(b − a)Dr + 1] τn+1,k · τn,k = τn,k+1τn+1,k−1,

[(b − a)Ds + 1] τn,k−1 · τn,k = τn−1,kτn+1,k−1,⎾
Dx1 + (a − b)

⏋
τn−1,k+1 · τn,k = (a − b)τn−1,kτn,k+1,

⎫
⎬
⎭ (2.741) 

where we set .a = 0 and .b = i. To reduce (2.741) to (2.740), we impose the 

dimension reduction condition 

.L0τn,k = Cτn,k, (2.742) 

where 

.L0 = γ1c2

γ3(c2 − c1)
∂r − γ2c1

γ3(c2 − c1)
∂s − ∂x1 , (2.743) 

and C is some constant. We also impose the complex conjugation condition 

.τ−n,−k = τ ∗
n,k. (2.744) 

Under these two conditions, when we set 

.f = τ0,0, g1 = τ1,0, g2 = τ0,−1, g3 = τ−1,1, (2.745) 

then the bilinear system (2.741) with .n = k = 0 would reduce to the original 

bilinear system (2.740). 

A wide class of solutions to the higher-dimensional bilinear system (2.741) can 

be obtained from the following lemma. 

Lemma 2.14 If functions .m
(n,k)
i,j , .ϕ

(n,k)
i and .ψ

(n,k)
j of variables (. x1, r , s) satisfy the 

following differential and difference relations,
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. 

∂x1m
(n,k)
i,j = ϕ

(n,k)
i ψ

(n,k)
j ,

∂x1ϕ
(n,k)
i = ϕ

(n+1,k)
i , ∂x1ψ

(n,k)
j = −ψ

(n−1,k)
j ,

∂rϕ
(n,k)
i = ϕ

(n,k−1)
i , ∂rψ

(n,k)
j = −ψ

(n,k+1)
j ,

∂sϕ
(n,k)
i = ϕ

(n−1,k)
i , ∂sψ

(n,k)
j = −ψ

(n+1,k)
j ,

ϕ
(n+1,k)
i = (a − b)ϕ

(n,k)
i + ϕ

(n,k+1)
i , ψ

(n−1,k)
j = (a − b)ψ

(n,k)
j + ψ

(n,k−1)
j ,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.746) 

where a and b are arbitrary complex constants, then the . τ function 

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
i,j

⎞
(2.747) 

would satisfy the higher-dimensional bilinear system (2.741). 

This lemma can be proved using results in Yang et al. (2020) and some additional 

similar calculations. 

Now, we construct a wide class of algebraic solutions to the bilinear sys-

tem (2.741) from the above lemma. To do so, we introduce functions .m(n,k), . ϕ(n,k)

and .ψ (n,k) as 

. m(n,k) = 1

p + q

⎛
−p − a

q + a

⎞k ⎛
−p − b

q + b

⎞n

eξ+η, . (2.748) 

ϕ(n,k) = (p + 1)(p − a)k (p − b)n eξ , . (2.749) 

ψ (n,k) = (q + 1) [−(q + a)]−k [−(q + b)]−n eη , (2.750) 

where 

. ξ = 1

p − a
r + 1

p − b
s + (p − b)x1 + ξ0(p), . (2.751) 

η = 
1 

q + a 
r + 

1 

q + b 
s + (q + b)x1 + η0(q), (2.752) 

and .p, q are arbitrary complex constants, and .ξ0(p), .η0(q) are arbitrary functions 

of p and q respectively. It is easy to see that these functions satisfy the differential 

and difference relations (2.746) with indices i and j ignored. Then, by defining 

functions 

.m
(n,k)
i,j = AiBjm

(n,k), ϕ
(n,k)
i = Aiϕ

(n,k), ψ
(n,k)
j = Bjψ

(n,k), (2.753) 

where . Ai and . Bj are differential operators with respect to p and q respectively as 

.Ai = 1

i!
⎾
f1(p)∂p

⏋i
, Bj = 1

j !
⎾
f2(q)∂q

⏋j
, (2.754)
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and .f1(p), .f2(q) are arbitrary functions, these functions would also satisfy the dif-

ferential and difference relations (2.746) since operators . Ai and . Bj commute with 

differentials. Consequently, for an arbitrary sequence of indices .(i1, i2, · · · , iN ) and 

.(j1, j2, · · · , jN ), the determinant 

.τn,k = det
1≤ν,μ≤N

⎛
m

(n,k)
iν ,jμ

⎞
(2.755) 

satisfies the higher-dimensional bilinear system (2.741). 

Next, we need to restrict the above solutions so that they satisfy the dimen-

sion reduction condition (2.742). To do so, we follow the .W-p treatment (see 

Sects. 2.3, 2.6 and 2.9). We first see that 

.L0m
(n,k)
i,j = AiBjL0m

(n,k) = AiBj [Q1(p) + Q2(q)]m(n,k), (2.756) 

where .Q1(p) is as defined in Eq. (2.697), and .Q2(q) is .Q1(p) with p changing to q 

and . i to . −i. To meet the dimensional reduction condition (2.742), we start with the 

relation, 

. L0 m
(n,k)
i,j =

i⎲

μ=0

1

μ!
⎾(

f1∂p

)μ
Q1(p)

⏋
m

(n,k)
i−μ,j +

j⎲

l=0

1

l!
⎾(

f2∂q

)l
Q2(q)

⏋
m

(n,k)
i,j−l,

(2.757) 

which is the same as Eq. (2.661) for the Manakov case in the previous section. In 

order to satisfy the dimensional reduction condition (2.742), we select functions 

.[f1(p), f2(q)] as well as values of .(p, q) so that coefficients of certain indices on 

the right side of the above equation vanish (see Sect. 2.1.1). For that purpose, we 

will select . p0 and . q0 values to be roots of the following algebraic equations 

.Q'
1(p0) = 0, Q'

2(q0) = 0. (2.758) 

At these .(p0, q0) values, the .μ = l = 1 terms on the right side of Eq. (2.757) will 

vanish. Notice that the .Q'
1(p0) = 0 equation above is the same as (2.696), whose 

root structure has been delineated earlier in this section. Roots of the . Q'
2(q0) = 0

equation are related to those of .Q'
1(p0) = 0 as .q0 = p∗

0 . Since the .m
(n,k) function 

in (2.748) has a factor of .1/(p + q), in order for .m
(n,k)
i,j in (2.753) to be nonsingular 

when evaluated at .(p, q) = (p0, q0), the . p0 value cannot be purely imaginary. 

To select .f1(p) and .f2(q) functions, we need to impose further conditions, and 

these conditions will depend on the multiplicity of the root . p0 in the . Q'
1(p) = 0

equation. The present situation is very similar to the Manakov case of the previous 

section; so our discussions will be brief (the reader can see Yang and Yang (2021b) 

for details).
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A Simple Root Case 

If . p0 is a simple nonimaginary root to the .Q'
1(p) = 0 equation, the condition on 

.f1(p) we impose will be 

.

(
f1∂p

)2
Q1(p) = Q1(p). (2.759) 

This differential equation is the same as Eq. (2.252) in Sect. 2.3. So the  . f1(p)

solution is as given in Eq. (2.257). In addition, by writing .f1(p) =W1(p)/W'
1(p), 

the corresponding .W1(p) function is given in Eq. (2.257) as well. A similar 

treatment can be applied to the q variable. In this case, when we restrict indices 

of the general determinant (2.755) to  

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
2i−1,2j−1

|||
p=p0, q=q0

⎞
, (2.760) 

we will get 

. L0τn,k = [Q1(p0) + Q2(q0)] N τn,k.

(2.761) 

Thus, the .τn,k function (2.760) satisfies the dimensional reduction condition (2.742). 

The complex conjugacy condition (2.744) can be met when we choose .ξ0(p) and 

.η0(q) as 

.ξ0(p) =
∞⎲

r=1

âr ln
rW1(p), η0(q) =

∞⎲

r=1

â∗
r ln

rW2(q), (2.762) 

where . ̂ar are free complex constants. The resulting .τn,k function (2.760) then gives 

rogue waves of the three-wave system through Eqs. (2.736) and (2.745). 

Lastly, we remove differential operators in matrix elements of Eq. (2.760) and 

derive more explicit expressions of rogue waves through Schur polynomials, using 

techniques we have demonstrated in earlier sections (see Yang and Yang (2021b) 

for details). Following such steps, we then obtain the rogue wave expressions given 

in Theorem 2.13 for the three-wave system, where parameters . ar are linearly related 

to . ̂ar in Eq. (2.762). In addition, the parameter . a1 can be normalized to zero through 

a shift of the .(x, t) axes. 

Two-Simple-Root Case 

If the .Q'
1(p) = 0 equation admits two distinct non-imaginary simple roots . p0,1

and .p0,2 with .p0,2 /= −p∗
0,1, then we can construct a more general .2 × 2 block 

determinant
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.τn,k = det

⎛
τ
[1,1]
n,k τ

[1,2]
n,k

τ
[2,1]
n,k τ

[2,2]
n,k

⎞
, (2.763) 

where 

. τ
[I,J ]
n,k = mat1≤i≤NI ,1≤j≤NJ

⎛
m

(n,k)
2i−1,2j−1

|||
p=p0,I ,q=q0,J

⎞
, 1 ≤ I, J ≤ 2,

(2.764) 

.m
(n,k)
i,j is given by Eqs. (2.748)–(2.753) with .[f1(p), f2(q)] replaced by 

.[f (I )
1 (p), f

(J )
2 (q)], the function .f

(I )
1 (p) is provided by Eq. (2.257) with . p0 replaced 

by .p0,I , the function .f
(J )
2 (q) is the same as (2.257) but with the subscript 1 changing 

to 2 and .(p, p0) changing to .(q, q0,J ), with 

.q0,J = p∗
0,J , (2.765) 

. ξ0 is replaced by . ξ0,I , . η0 is replaced by .η0,J , and .N1, N2 are arbitrary positive 

integers. This .2 × 2 block determinant (2.763) also satisfies the higher-dimensional 

bilinear system (2.741). 

In the present case, Eq. (2.761) becomes 

. L0τn,k =
{⎾
Q1(p0,1) + Q2(q0,1)

⏋
N1 +

⎾
Q1(p0,2) + Q2(q0,2)

⏋
N2

}
τn,k.

(2.766) 

Thus, the .2 × 2 block determinant (2.763) also satisfies the dimensional reduction 

condition (2.742). 

The complex conjugacy condition (2.744) can be met when we choose . ξ0,I (p)

and .η0,J (q) as 

. ξ0,I (p) =
∞⎲

r=1

ar,I ln
rW

(I )
1 (p), η0,J (q) =

∞⎲

r=1

a∗
r,J lnrW

(J )
2 (q), I, J = 1, 2,

(2.767) 

where .W
(I )
1 (p) is as defined in Eq. (2.257) with . p0 replaced by .p0,I , .W

(J )
2 (q) is 

defined similar to Eq. (2.257) except that the subscript 1 changes to 2 and . (p, p0)

change to .(q, q0,J ), and .ar,1, ar,2 (r = 1, 2, . . . ) are free complex constants. The 

resulting .τn,k function (2.763) then gives rogue waves of the three-wave system 

through Eqs. (2.736) and (2.745). 

Lastly, we remove differential operators in matrix elements of Eq. (2.763) and 

derive more explicit expressions of rogue waves through Schur polynomials, using 

techniques we have demonstrated in earlier sections (see Yang and Yang (2021b)
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for details). Following such steps, we then obtain the rogue wave expressions given 

in Theorem 2.14 for the three-wave system. 

A Double Root Case 

If the algebraic equation .Q'
1(p) = 0 admits a non-imaginary double root . p0, the  

dimension reduction condition (2.742) would be satisfied if we choose .f1(p) to 

satisfy the differential equation 

.

(
f1(p)∂p

)3
Q1(p) = Q1(p), (2.768) 

choose .f2(q) to satisfy a similar equation except to change the index above from 1 

to 2 and change p to q, and choose the .τn,k determinant as 

.τn,k = det

⎛
τ

[1,1]
n,k τ

[1,2]
n,k

τ
[2,1]
n,k τ

[2,2]
n,k

⎞
, (2.769) 

where 

. τ
[I,J ]
n,k = mat1≤i≤NI ,1≤j≤NJ

⎛
m

(n,k)
3i−I, 3j−J

|||
p=p0, q=q0, ξ0=ξ0,I , η0=η0,J

⎞
,

1 ≤ I, J ≤ 2, (2.770) 

.q0 = p∗
0 , .ξ0,I (p), .η0,J (q) are arbitrary functions of p and q respectively, and . N1, N2

are arbitrary non-negative integers. The differential equation (2.768) is the same as 

Eq. (2.677) of the Manakov case, and its solution for .Q1(p) is as given in Eq. (2.683) 

there. 

Regarding the conjugation condition (2.657), it can be satisfied when we choose 

. ξ0,I (p) =
∞⎲

r=1

âr,I ln
rW1(p), η0,J (q) =

∞⎲

r=1

â∗
r,J lnrW2(q), I = 1, 2,

(2.771) 

where .âr,I are free complex constants. 

Lastly, we remove differential operators in matrix elements of Eq. (2.770) using  

techniques we have demonstrated in earlier sections. Doing so gives explicit 

rogue wave expressions given in Theorem 2.15 for the three-wave system, where 

parameters .ar,1 and .ar,2 are linearly related to .âr,1 and .âr,2 above (see Yang and 

Yang (2021b) for details).
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2.10.2 Dynamics of Various Types of Rogue Waves 

(a) Rogue Waves for a Simple Root 

We first consider rogue waves in Theorem 2.13, which are associated with a non-

imaginary simple root in Eq. (2.696). To get the simplest rogue wave in this solution 

family, we take N = 1 in that theorem. Then, we readily find that 

.|ui,1(x, t)| =
||||ρi

gi,1

f1

|||| , i = 1, 2, 3, (2.772) 

where 

. f1 = |(α1 − β1) x + (c1β1 − c2α1)t |2 + ζ0,

g1,1 = [(α1 − β1) x + (c1β1 − c2α1)t + θ1]

×
⎾(

α∗
1 − β∗

1

)
x + (c1β

∗
1 − c2α

∗
1)t − θ∗

1

⏋
+ ζ0,

g2,1 = [(α1 − β1) x + (c1β1 − c2α1)t − λ1]

×
⎾(

α∗
1 − β∗

1

)
x + (c1β

∗
1 − c2α

∗
1)t + λ∗

1

⏋
+ ζ0,

g3,1 = [(α1 − β1) x + (c1β1 − c2α1)t − θ1 + λ1]

×
⎾(

α∗
1 − β∗

1

)
x + (c1β

∗
1 − c2α

∗
1)t + θ∗

1 − λ∗
1

⏋
+ ζ0,

and 

. α1 = − p1ϵ1ρ2ρ3

p2
0(c1 − c2)ρ1

, β1 = − p1ϵ2ρ1ρ3

(p0 − i)2(c1 − c2)ρ2
,

θ1 = p1

p0 − i
, λ1 = p1

p0
, ζ0 = |p1|2

(p0 + p∗
0)

2
.

This rogue wave is ratios of second-degree polynomials in x and t , which are the 

lowest polynomial degrees possible for rogue waves in the three-wave system. Thus, 

we will call it the fundamental rogue wave of the three-wave system. Notice that p1 

cancels out in these ui,1 solutions, and thus its formula is not needed here. 

To get second-order rogue waves, we take N = 2 in Theorem 2.13. These 

second-order rogue waves have a single free complex parameter a3. In these 

solutions, f2 and gi,2 are degree-6 polynomials in both x and t . 

To illustrate the dynamics of these rogue waves, we first consider the soliton-

exchange case (2.689), i.e., ϵ1 = −ϵ2 = ϵ3 = 1. For the background and velocity 

values of 

.c1 = 1, c2 = 0.5, ρ1 = 1, ρ2 = 2, ρ3 = 1, (2.773)
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Fig. 2.19 Rogue waves in Theorem 2.13 corresponding to a non-imaginary simple root in the 

three-wave interaction system in the soliton-exchange case with background and velocity values 

in Eq. (2.773). Top row: the fundamental rogue wave (2.772); middle row: the second-order rogue 

wave with a3 = 0; bottom row: the second-order rogue wave with a3 = 10 + 10i 

the roots of Eq. (2.696) are  (p0,1, p0,2,−p∗
0,1,−p∗

0,2), where p0,1 ≈ 0.521005 + 

0.853553i, and p0,2 ≈ 0.989219+0.146447i. Choosing p0 = p0,1, the fundamental 

rogue wave (2.772) is displayed in Fig. 2.19 (top row). We see that the intensity 

variation of each component in this rogue wave is along a slanted angle in the (x, t) 

plane. In addition, while the first and third components peak at the origin x = t = 0, 

the second component bottoms there. Because of this, we can say the first and third 

components of this rogue wave are bright, but the second component is dark. If we 

choose p0 = p0,2, the intensity pattern of the resulting rogue wave would also be 

slanted, but extremely slender, like a needle, in all three components. In addition, 

the first and third components are now dark, while the second component bright, in 

this latter case.
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The second-order rogue waves involve p1 and the free parameter a3. For  the  

chosen value of p0 = p0,1, we find that p1 ≈ ±(0.550798−0.289323i), and choose 

the plus sign. Then, at two a3 values of 0 and 10 + 10i, the corresponding rogue 

waves are displayed in Fig. 2.19 (middle and bottom rows respectively). The rogue 

wave at a3 = 0 exhibits new patterns and higher peak amplitudes. The rogue wave 

at a3 = 10+10i splits into three separate fundamental rogue waves—a phenomenon 

common in integrable systems. 

Next, we illustrate dynamics of rogue waves in the same Theorem 2.13 for a 

simple root, but for non-soliton-exchange cases. For brevity, we only consider the 

stimulated backscatter case with ϵ1 = −ϵ2 = −ϵ3 = 1. For the background and 

velocity values of 

.c1 = 5, c2 = 2, ρ1 = ρ2 = ρ3 = 2, (2.774) 

Eq. (2.696) admits a non-imaginary simple root p0 ≈ 0.391016 + 0.338012i. The 

corresponding fundamental rogue wave (2.772) is plotted in Fig. 2.20 (upper row). 

In this rogue wave, the first component is dark, the second a saddle, and the third 

bright. 

In second-order rogue waves, if we choose a3 = 0, the resulting rogue solution 

is displayed in Fig. 2.20 (middle row). This rogue wave develops strong dips in its 

first and second components and a strong peak in its third component at the wave 

center. If we choose a3 = 5+ 5i, the resulting solution, shown in the bottom row of 

Fig. 2.20, splits into three separate fundamental rogue waves as a rogue triplet. 

(b) Rogue Waves for Two Non-Imaginary Simple Roots 

Rogue waves in Theorem 2.14 are associated with two non-imaginary simple roots 

p0,1 and p0,2 in Eq. (2.696), with p0,2 /= −p∗
0,1. These solutions only appear in the 

soliton-exchange case of ϵ1 = −ϵ2 = ϵ3 = 1 when the background amplitudes do 

not satisfy conditions (2.700). The simplest rogue waves in this family correspond 

to N1 = N2 = 1, which contain two free complex parameters a1,1 and a1,2. To  

illustrate these rogue waves, we choose background and velocity values as 

.c1 = 1, c2 = 0.5, ρ1 = ρ2 = ρ3 =
√
2. (2.775) 

The roots of Eq. (2.696) for this set of values are (p0,1, p0,2,−p∗
0,1,−p∗

0,2), where 

.p0,1 ≈ 0.529086 + 0.257066i, p0,2 ≈ 1.52909 + 0.742934i. (2.776) 

Regarding free complex parameters a1,1 and a1,2, one of them can be normalized to 

zero by a shift of  x and t , and the other is irreducible. We will normalize a1,1 = 0. 

Then, at two a1,2 values of 0 and (2− i)p1,2, the resulting rogue waves are displayed 

in Fig. 2.21 (the latter choice of a1,2 as a multiple of p1,2 is because in this case, 

the parameter p1,2 would cancel out in the solution’s expression). The rogue wave 

at a1,2 = (2 − i)p1,2 (lower row) comprises two separate simpler rogue waves, 

which turn out to be fundamental rogue waves (2.772) of Theorem 2.13 for the
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Fig. 2.20 Rogue waves in Theorem 2.13 corresponding to a non-imaginary simple root in the 

three-wave interaction system in the stimulated backscatter case with background and velocity 

values in Eq. (2.774). Upper row: the fundamental rogue wave (2.772); middle row: the second-

order rogue wave with a3 = 0; bottom row: the second-order rogue wave with a3 = 5 + 5i 

two individual p0 values in Eq. (2.776). Thus, rogue waves in Theorem 2.14 for 

two simple roots can be viewed as a nonlinear superposition of rogue waves of 

Theorem 2.13 for the two simple roots. The rogue wave at a1,2 = 0 (upper row) is 

formed by merging the two fundamental rogue waves of the lower row. It has a new 

composite structure and higher peak amplitude. 

(c) Rogue Waves for a Double Root 

Rogue waves in Theorem 2.15 for a nonimaginary double root only arise in the 

soliton-exchange case of ϵ1 = −ϵ2 = ϵ3 = 1 when the background amplitudes 

satisfy conditions (2.700), i.e.,
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Fig. 2.21 Density plots of the (1, 1)-th order rogue waves in Theorem 2.14 corresponding to two 

non-imaginary simple roots in the three-wave interaction system in the soliton-exchange case with 

background and velocity values in Eq. (2.775). Upper row: a1,2 = 0; lower row, a1,2 = (2− i)p1,2 

.ρ2 =
/

c1

c2
ρ1, ρ3 = ±

/
c1 − c2

c2
ρ1. (2.777) 

In this case, Eq. (2.696) admits a pair of non-imaginary double roots p0 = (±
√
3+ 

i)/2. We will choose p0 = (
√
3 + i)/2. Regarding p1, which is any one of the 

three cubic roots of (3
√
3 + i)/12, we pick the one in the first quadrant, which is 

p1 ≈ 0.759614 + 0.0482053i. We also normalize a1,1 = 0 through a shift in the 

(x, t) axes. 

Rogue waves in Theorem 2.15 are given through a 2 × 2 block determinant. As 

in the Manakov case, we will consider only Q-type (N1 = N,  N2 = 0) and R-type 

(N1 = 0 and N2 = N ) rogue waves for simplicity. 

The first (lowest) order R-type rogue wave can be obtained from Theorem 2.15 

by setting N1 = 0 and N2 = 1. This rogue wave is 

.|ui,0,1(x, t)| =
||||ρi

gi,1

f1

|||| , 1 ≤ i ≤ 3, (2.778) 

where f1(x, t) and gi,1(x, t) are given in equations below (2.772) under the 

parameter constraints of Eq. (2.777). Thus, this first-order R-type rogue wave is 

the fundamental rogue wave (2.772) under parameter constraints (2.777). For the 

background and velocity choices of c1 = 1, c2 = 0.5, and ρ1 = 1, this rogue wave
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Fig. 2.22 R-type rogue waves in the three-wave interaction system in the soliton-exchange case, 

with background and velocity values of c1 = 1, c2 = 0.5, ρ1 = 1 under conditions (2.777). Upper 

row: the first-order rogue wave; middle row: the second-order rogue wave with a2,2 = a4,2=0; 

lower row: the second-order rogue wave with a2,2 = 0 and  a4,2 = 50i 

is plotted in Fig. 2.22 (top row). In this rogue wave, all three components are bright 

at the wave center x = t = 0. 

Second-order rogue waves of R-type can be obtained from Theorem 2.15 by 

setting N1 = 0 and N2 = 2. These rogue waves are ratios of degree-eight 

polynomials in x and t , and they contain three free complex parameters, a1,2, a2,2 
and a4,2. We normalize a1,2 = 0 by a shift in the  (x, t) axes. Then, for two choices 

of (a2,2, a4,2) = (0, 0) and (0, 50i), the corresponding solutions are displayed in the 

middle and bottom rows of Fig. 2.22, respectively. The solution in the middle row 

has higher amplitudes, and its three components form a three-needle structure. The 

solution in the bottom row splits into four fundamental rogue waves. 

The first-order Q-type rogue wave in the three-wave system can be obtained from 

Theorem 2.15 by setting N1 = 1 and N2 = 0. As in the Manakov case, this solution
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is a ratio of polynomials of degree four in x and t , and it contains two free complex 

parameter a1,1 and a2,1. By a shift of the  (x, t) axes, we normalize a1,1 = 0. For 

parameter values of c1 = 1, c2 = 0.5 and ρ1 = 1, this solution with a2,1 = 10+10i 

has been plotted in Yang and Yang (2021b). It was seen that this solution splits into 

two fundamental rogue waves, similar to the Manakov case. When a2,1 = 0, these 

two fundamental rogue waves merge together and form a composite structure. 

2.11 Long-Wave-Short-Wave Resonant Interaction System 

The long-wave-short-wave (LWSW) resonant interaction system is 

.
iSt − Sxx + SL = 0,

Lt = −4(|S|2)x .

⎫
(2.779) 

This system governs the resonant interaction between long and short waves in 

many physical systems, such as capillary-gravity waves (Djordjevic and Redekopp 

1977), internal waves (Grimshaw 1977; Funakoshi and Oikawa 1983), plasma 

waves (Yajima and Oikawa 1976), and optical waves (Kivshar 1992; Chowdhury 

and Tataronis 2008), see Sect. 1.5. Here, S is the complex envelope function of 

a short wave, and L is the real long-wave function. This system was shown to 

be integrable by Yajima and Oikawa (1976) and is sometimes called the Yajima-

Oikawa system in the literature. 

This LWSW system admits a constant-amplitude continuous-wave solution in 

the S component and zero solution in the L component. Through a simple variable 

scaling, we can normalize the amplitude of the S component to unity. Then, this 

solution can be written as .S(x, t) = ei(αx+α2t) and .L(x, t) = 0, where . α is a real 

wavenumber parameter. This background solution is modulation unstable, and rogue 

waves can arise from it. Thus, we set the boundary conditions of rogue waves as 

.S(x, t) → ei(αx+α2t), L(x, t) → 0, x, t → ±∞. (2.780) 

Fundamental rogue waves in the LWSW system (2.779) were derived by Chow 

et al. (2013) using the Hirota method, and by Chen et al. (2014a) and Chen 

(2014) using Darboux transformation. General rogue waves in the LWSW system 

were derived by Chen et al. (2018a) using the bilinear method. Rogue wave 

expressions in Chen et al. (2018a) were complicated though due to their choices 

of differential operators and parameterizations in the bilinear procedure. Simpler 

rogue expressions were obtained by He et al. (2023) using  the  .W-p treatment 

for dimensional reduction (see Sect. 2.3) as well as the new parameterization (see 

Sect. 2.1.1). Below, we derive general rogue waves in the LWSW system, following 

Chen et al. (2018a) and He et al. (2023). 

General rogue waves in this LWSW system are given in the following theorem.
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Theorem 2.16 The long-wave-short-wave interaction system (2.779) under bound-

ary conditions (2.780) admits N -th order rogue wave solutions 

.SN = gN

fN

ei
(
αx+α2t

)
, LN = −2

∂2

∂x2
ln fN , (2.781) 

where N is an arbitrary positive integer, 

.fN = σ0, gN = σ1, (2.782) 

.σn = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

⎞
, (2.783) 

the matrix elements in . σn are defined by 

.m
(n)
i,j =

min(i,j)⎲

ν=0

⎛ |p1|2
(p0 + p∗

0)
2

⎞ν

Si−ν(x
+(n)+ νs) Sj−ν(x

−(n)+ νs
∗), (2.784) 

vectors .x
±(n) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by 

. x+
r (n) = prx − αr it + nθr + ar , . (2.785) 

x−
r (n) = p∗

r x + α∗
r it − nθ∗

r + a∗
r , (2.786) 

. pr , . αr and . θr are coefficients from the expansions 

. p(κ) =
∞⎲

r=0

prκ
r , p2(κ) − p2

0 =
∞⎲

r=1

αrκ
r , ln

⎾
p (κ) − iα

p0 − iα

⏋
=

∞⎲

r=1

θrκ
r ,

(2.787) 

the vector .s = (s1, s2, · · · ) is defined by the expansion 

. ln

⎾
1

κ

⎛
p0 + p∗

0

p1

⎞⎛
p (κ) − p0

p (κ) + p∗
0

⎞⏋
=

∞⎲

r=1

srκ
r , (2.788) 

the function .p (κ) is defined by the equation 

.Q1 [p (κ)] = Q1(p0) cosh(κ), (2.789) 

with .Q1(p) given by 

.Q1(p) = p2 + 2i

p − iα
, (2.790)
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.p0 is a nonimaginary root of the equation .Q'
1(p) = 0, .a1 = 0, and 

.(a3, a5, . . . , a2N−1) are free irreducible complex constants. 

Proof To derive rogue waves in the LWSW system, we first introduce variable 

transformations 

.S = g

f
ei

(
αx+α2t

)
, L = −2

∂2

∂x2
ln f, (2.791) 

where f is a real-valued function, and g a complex-valued function. Under this 

transformation, the LWSW system (2.779) is converted into the following bilinear 

equations, 

.

(
D2

x + 2iαDx − iDt

)
g · f = 0,

(DxDt + 4) f · f = 4gg∗.

⎫
(2.792) 

This bilinear system can be reduced from the following higher-dimensional bilinear 

equations of the KP hierarchy, 

.

(
D2

x1
+ 2aDx1 − Dx2

)
τn+1 · τn = 0,(

Dx1Dx−1
− 2

)
τn · τn = −2τn+1τn−1,

⎫
(2.793) 

which is very similar to the higher-dimensional bilinear system (2.22) of the  NLS  

equation, except for the extra .2aDx1 term. When we impose the dimensional 

reduction condition 

.

(
∂x2 + 2i∂x−1

)
τn = Cτn, (2.794) 

where C is some constant, then this system (2.793) would reduce to the (1+1)-

dimensional bilinear system 

.

(
D2

x1
+ 2aDx1 − Dx2

)
τn+1 · τn = 0,(

iDx1Dx2 − 4
)
τn · τn = −4τn+1τn−1.

⎫
(2.795) 

Then, by setting 

.x1 = x, x2 = −it, a = iα, (2.796) 

.f = τ0, g = τ1, h = τ−1, (2.797) 

and imposing the complex conjugate condition 

.τ ∗
n = τ−n, (2.798)
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the bilinear system (2.795) would reduce to the bilinear system (2.792) of the  

LWSW equations. 

First, we construct solutions to the higher-dimensional bilinear system (2.793). 

We have the following lemma. 

Lemma 2.15 Let .m
(n)
i,j , .ϕ

(n)
i and .ψ

(n)
j be functions of . x1, . x2 and .x−1 satisfying the 

following differential and difference relations, 

.

∂x1m
(n)
i,j = ϕ

(n)
i ψ

(n)
j ,

ϕ
(n+1)
i = (∂x1 − a)ϕ

(n)
i , ψ

(n−1)
j = −(∂x1 + a)ψ

(n)
j ,

∂x2ϕ
(n)
i = ∂2x1ϕ

(n)
i , ∂x2ψ

(n)
j = −∂2x1ψ

(n)
j ,

∂x−1
ϕ

(n)
i = ϕ

(n−1)
i , ∂x−1

ψ
(n)
j = −ψ

(n+1)
j ,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.799) 

and 

.

∂x2m
(n)
i,j = [∂x1ϕ

(n)
i ]ψ (n)

j − ϕ
(n)
i [∂x1ψ

(n)
j ],

∂x−1
m

(n)
i,j = −ϕ

(n−1)
i ψ

(n+1)
j ,

m
(n+1)
i,j = m

(n)
i,j + ϕ

(n)
i ψ

(n+1)
j .

⎫
⎪⎬
⎪⎭

(2.800) 

Then the determinant 

.τn = det
1≤i,j≤N

⎛
m

(n)
i,j

⎞
(2.801) 

satisfies the bilinear system (2.793). 

This lemma is similar to Lemma 2.1, and its proof can be found in Chen et al. 

(2018a). As in Lemma 2.1, if the former part (2.799) of these differential and 

difference relations hold, then we can show that the . x1 derivatives of the latter 

part (2.800) of these relations are automatically satisfied. 

Based on this lemma, a wide class of algebraic solutions to the higher-

dimensional bilinear system (2.793) is  

.τn = det
1≤ν,μ≤N

⎛
m

(n)
iν ,jμ

⎞
, (2.802) 

where 

.m
(n)
i,j = AiBjm

(n), (2.803) 

.m(n) = 1

p + q

⎛
−p − a

q + a

⎞n

eξ(p)+η(q), (2.804)
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.ξ(p) = px1 + p2x2 + 1

p − a
r + ξ0(p), (2.805) 

.η(q) = qx1 − q2x2 + 1

q + a
r + η0(q), (2.806) 

.Ai =
⎾
f1(p)∂p

⏋i

i! , Bj =
⎾
f2(q)∂q

⏋j

j ! , (2.807) 

.f1(p), .f2(q), .ξ0(p), .η0(q) are arbitrary functions, and . (i1, i2, · · · , iN ; j1, j2, · · · ,

.jN ) are arbitrary sequences of indices. 

Next, we adopt the .W-p treatment to meet the dimensional reduction condi-

tion (2.794) . Introducing the linear differential operator . L0 as 

.L0 = ∂x2 + 2i∂x−1
, (2.808) 

then we have 

.L0m
(n)
i,j = AiBjL0m

(n) = AiBj [Q1(p) + Q2(q)]m(n), (2.809) 

where 

.Q1(p) = p2 + 2i

p − a
, Q2(p) = −q2 + 2i

q + a
. (2.810) 

Note that this .Q1(p) is the same as that in Theorem 2.16. 

To meet the dimensional reduction condition (2.794), we will select . p0 and . q0
values to be roots of the following algebraic equations 

.Q'
1(p) = 0, Q'

2(q) = 0. (2.811) 

Recalling .a = iα from Eq. (2.796), the equation .Q'
1(p) = 0 can be rewritten as 

.p(p − iα)2 = i. (2.812) 

When .α > −3/
3
√
4, this equation has one imaginary simple root and a pair of 

nonimaginary simple complex roots. When .α < −3/
3
√
4, this equation has three 

imaginary simple roots. When .α = −3/
3
√
4, this equation has one imaginary simple 

root and another imaginary double root. Only nonimaginary roots can lead to rogue 

waves. Thus, rogue waves can only be obtained when .α > −3/
3
√
4. In this case, the 

pair of complex roots are 

.p0 = ±
√
3(K2 − 4α2)

12K
+ K2 + 8Kα + 4α2

12K
i, (2.813)
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where .K = (8α3 + 108 + 12
√
12α3 + 81)1/3. Since these complex roots are 

simple, there can only be one type of rogue waves corresponding to a simple 

nonimaginary root (which is the counterpart of Theorem 2.10 for the Manakov 

system and Theorem 2.13 for the three-wave system). The . τn function for this type 

of rogue waves is 

.τn = det
1≤i,j≤N

⎛
m

(n)
2i−1,2j−1

|||
p=p0, q=p∗

0

⎞
, (2.814) 

where . p0 is a nonimaginary root of Eq. (2.812), and .f1(p), .f2(q), .ξ0(p), .η0(q) are 

as given in Eqs. (2.257) and (2.667). Lastly, we remove the differential operators in 

the matrix elements by techniques described in earlier sections, and the final explicit 

solutions are as given in Theorem 2.16. This completes the proof of Theorem 2.16. 

Taking .N = 1 in Theorem 2.16, we get the fundamental rogue wave 

.S1 = g1

f1
ei

(
αx+α2t

)
, L1 = −2

∂2

∂x2
ln f1, (2.815) 

where 

. f1 = |p1x − 2p0p1it |2 + |p1|2
(p0 + p∗

0)
2
,

g1 = (p1x − 2p0p1it + θ1)
(
p∗
1x+2p∗

0p
∗
1 it − θ∗

1

)
+ |p1|2

(p0 + p∗
0)

2
, θ1 = p1

p0 − iα
.

Notice that . p1 cancels out in the . S1 and . L1 solutions; thus its expression is 

not needed. Graphs of this rogue wave with .α = 1 and .−1 are plotted in the 

upper and lower rows of Fig. 2.23, respectively. Here, the plus sign is taken in the 

formula (2.813) for . p0. It is seen that the . α value significantly affects the shapes and 

orientations of this fundamental rogue wave. 

Second-order rogue waves can be obtained from Theorem 2.16 by setting .N = 2. 

For .α = 1 and two values of .a3 = 0 and 30, the corresponding rogue waves are 

plotted in the upper and lower rows of Fig. 2.24, respectively (here the plus sign 

is taken in the formula (2.813) for  . p0 as well). In the former case, the rogue wave 

exhibits an x-shape in its two components. In the latter case, the rogue wave splits 

into three fundamental rogue waves. 

2.12 Massive Thirring Model 

The massive Thirring (MT) model arose in the quantum field theory as a com-

pletely integrable nonlinear model (Taneda 1958; Mikhailov 1976; Kuznetsov and 

Mikhailov 1977). In the light-cone coordinates, this model is
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Fig. 2.23 Density plots of the fundamental rogue waves .|S1(x, t)| and .L1(x, t) in the long-wave-

short-wave interaction system. Upper row: .α = 1; lower  row:  .α = −1. Left column: .|S1(x, t)|; 
right column: . L1(x, t)

Fig. 2.24 Density plots of second-order rogue waves in the long-wave-short-wave interaction 

system for .α = 1. Upper row: .a3 = 0; lower  row: .a3 = 30
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.
iux + v + ϵu|v|2 = 0,

ivt + u + ϵv|u|2 = 0,

⎫
(2.816) 

where .ϵ = ±1. Note that this model is invariant under the transformation of . v →
−v, x → −x, t → −t and .ϵ → −ϵ. Thus, it would suffice to treat one of the 

.ϵ = ±1 values only. In the laboratory coordinates .(ξ, η) where .ξ = c(x − t) and 

.η = x + t , with c being a velocity constant, the . ux term above would become 

.uη + cuξ and . vt become .vη − cvξ . The MT model in these laboratory coordinates 

is a particular case of the coupled mode equations that describe nonlinear pulse 

propagation in Bragg optical media (Winful and Cooperman 1982; Christodoulides 

and Joseph 1989; Aceves and Wabnitz 1989; Eggleton et al. 1999). 

Rogue waves in the MT model have been derived in Degasperis (2015), 

Degasperis et al. (2015), Guo et al. (2017), and Ye et al. (2021) by Darboux 

transformation, and in Chen et al. (2023) by the bilinear method. Here, we follow 

Chen et al. (2023). 

General rogue waves in the MT system (2.816) are given by the following 

theorem. 

Theorem 2.17 The massive Thirring model (2.816) admits nonsingular N -th order 

rogue wave solutions 

. uN = ρ1
gN

f ∗
N

e
i(1+ϵρ1ρ2)

⎛
ρ2
ρ1

x+ ρ1
ρ2

t
⎞

, vN = ρ2
hN

fN

e
i(1+ϵρ1ρ2)

⎛
ρ2
ρ1

x+ ρ1
ρ2

t
⎞

,

(2.817) 

where .ρ1, ρ2 are free real parameters which satisfy the conditions of . −1 < ρ1ρ2 <

0 for .ϵ = 1 or .0 < ρ1ρ2 < 1 for .ϵ = −1, 

.fN = σ0,0,0, gN = C−1
0 σ−1,1,0, hN = σ−1,0,1, (2.818) 

. C0 =
⎾
−p0

p∗
0

⎛
p0 − i

p∗
0 + i

⎞⏋N

, p0 =
√

−ϵρ1ρ2(1 + ϵρ1ρ2) + i(1 + ϵρ1ρ2),

(2.819) 

.σn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

⎞
, (2.820) 

the matrix elements in .σn,k,l are defined by 

.m
(n,k,l)
i,j =

min(i,j)⎲

ν=0

⎛
1

4

⎞ν

Si−ν(x
+(n, k, l)+νs) Sj−ν(x

−(n, k, l)+νs), (2.821) 

vectors .x
±(n, k, l) =

(
x±
1 , 0, x±

3 , 0, · · ·
)
are defined by
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. x+
r (n, k, l) = αrx + βr t + (n + 1

2
)θr + kλr + l δr1 + ar , . (2.822) 

x−
r (n, k, l)  = αrx + β∗

r t − (n + 
1 

2 
)θ∗

r − kλ∗
r − l δr1 + a∗

r , (2.823) 

. αr , . βr , . θr , and . λr are coefficients from the expansions 

. 
ρ2

ρ1
[ρ̂(eκ − 1)] =

∞⎲

r=1

αrκ
r ,

ρ1ρ

ρ2

⎾
1

ρ̂ + iρ
− 1

eκ ρ̂ + iρ

⏋
=

∞⎲

r=1

βrκ
r ,

. (2.824) 

ln 
eκ ρ̂ + iρ 

ρ̂ + iρ 
= 

∞⎲

r=1 

θrκ
r , ln 

eκ ρ̂ + iϵρ1ρ2 

ρ̂ + iϵρ1ρ2 
= 

∞⎲

r=1 

λrκ
r , (2.825) 

with .ρ = 1+ ϵρ1ρ2 and .ρ̂ = √−ϵρ1ρ2ρ, . δr1 is the Kronecker delta function which 

is equal to 1 if .r = 1 and 0 otherwise, the vector .s = (0, s2, 0, s4, · · · ) is defined in 
Eq. (2.11), .a1 = 0, and and .a3, a5, a2N−1 are free irreducible complex constants. 

Proof Through variable transformations 

.u = ρ1
g

f ∗ e
i(1+ϵρ1ρ2)

⎛
ρ2
ρ1

x+ ρ1
ρ2

t
⎞

, v = ρ2
h

f
e
i(1+ϵρ1ρ2)

⎛
ρ2
ρ1

x+ ρ1
ρ2

t
⎞

, (2.826) 

where .f, g, h are complex functions and .ρ1, ρ2 real constants, theMTmodel (2.816) 

is transformed into the following bilinear equations 

. (iDx − ρ2

ρ1
)g · f = −ρ2

ρ1
hf ∗ , . (2.827) 

(iDx − ϵρ2 
2)f · f 

∗ = −ϵρ2 
2hh∗ , . (2.828) 

(iDt − 
ρ1 

ρ2 
)h · f 

∗ = −ρ1 

ρ2 
gf , . (2.829) 

(iDt − ϵρ2 
1)f 

∗ · f = −ϵρ2 
1gg∗. (2.830) 

These bilinear equations can be reduced from the following higher-dimensional 

bilinear equations in the extended KP hierarchy, 

.

(
Dx1 + a

)
τn,k+1,l · τn+1,k,l = aτn+1,k+1,lτn,k,l,(

bDx−1
+ 1

)
τn,k,l+1 · τn,k,l = τn−1,k,l+1τn+1,k,l,

(aDr − 1) τn+1,k,l · τn,k,l = −τn+1,k−1,lτn,k+1,l,

(bDs − 1) τn+1,k,l · τn,k,l = −τn+1,k,l−1τn,k,l+1.

⎫
⎪⎪⎬
⎪⎪⎭

(2.831) 

Indeed, for these higher-dimensional equations, if we impose the dimensional 

reduction conditions



208 2 Derivation of Rogue Waves in Integrable Systems

.

⎾
∂x1 − b(a − b)∂s

⏋
τn,k,l = C1τn,k,l, . (2.832)

⎾
∂x−1 

+
⎛

a − b 

b

⎞
∂r

⏋
τn,k,l = C2τn,k,l, (2.833) 

as well as the index-reduction condition 

.τn+1,k+1,l−1 = C0τn,k,l, (2.834) 

where . C1, . C2 are real constants and . C0 a complex constant with .|C0| = 1, then the 

higher-dimensional system (2.831) would reduce to the (1+1)-dimensional system 

.

(
Dx1 + a

)
τn,k+1,l · τn+1,k,l = a C0 τn,k,l+1τn,k,l, . (2.835)

(
bDx−1 

+ 1
)
τn,k,l+1 · τn,k,l = C∗

0 τn,k+1,lτn+1,k,l, . (2.836)
⎛

ab 

a − b 
Dx−1 

+ 1

⎞
τn+1,k,l · τn,k,l = τn+1,k−1,lτn,k+1,l, . (2.837)

⎛
1 

a − b 
Dx−1 

− 1

⎞
τn+1,k,l · τn,k,l = −τn+1,k,l−1τn,k,l+1. (2.838) 

Then, by setting 

. x1 = − ρ2

iaρ1
x, x−1 = −ρ1b

iρ2
t, a = i, b = i(1 + ϵρ1ρ2), . (2.839) 

f = τ0,0,0, f  
∗ = τ−1,0,0, C0g = τ−1,1,0, . (2.840) 

h = τ−1,0,1, h∗ = τ0,0,−1, C∗
0g

∗ = τ0,−1,0, (2.841) 

and imposing the complex conjugate condition 

.τ ∗
n,k,l = τ−1−n,−k,−l, (2.842) 

we get the original bilinear equations (2.827)–(2.830). 

A wide class of algebraic solutions to the higher-dimensional bilinear sys-

tem (2.831) is (Chen et al. 2023) 

.τn,k,l = det
1≤ν,μ≤N

⎛
m

(n,k,l)
iν ,jμ

⎞
, (2.843) 

where 

.m
(n,k,l)
i,j = AiBjm

(n,k,l), (2.844)
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.Ai =
⎾
f1(p)∂p

⏋i

i! , Bj =
⎾
f2(q)∂q

⏋j

j ! , (2.845) 

.m(n,k,l) = ip

p + q

⎛
−p

q

⎞n ⎛
−p − a

q + a

⎞k ⎛
−p − b

q + b

⎞l

eξ(p)+η(q), (2.846) 

.ξ(p) = 1

p
x−1 + px1 + 1

p − a
r + 1

p − b
s + ξ0(p), (2.847) 

.η(q) = 1

q
x−1 + qx1 + 1

q + a
r + 1

q + b
s + η0(q), (2.848) 

.f1(p), .f2(q), .ξ0(p), .η0(q) are arbitrary functions, and . (i1, i2, · · · , iN ; j1, j2, · · · ,

.jN ) are arbitrary sequences of indices. The factor . ip in Eq. (2.846) is needed in 

order for the resulting .m
(n,k,l)
i,j to satisfy the complex conjugacy condition (2.842) 

(see later text). 

Dimensional Reduction 

First, we introduce linear differential operators 

.L1 = ∂x1 − b(a − b)∂s, L2 = ∂x−1
+ a − b

b
∂r , (2.849) 

by which the dimensional reduction conditions (2.832) and (2.833) become 

.L1τn,k,l = C1τn,k,l, L2τn,k,l = C2τn,k,l . (2.850) 

It is straightforward to see that 

. L1m
(n,k,l)
i,j = AiBjL1m

(n,k,l) = AiBj [Q11(p) + Q12(q)]m(n,k,l),

. (2.851) 

L2m 
(n,k,l) 
i,j 

= AiBjL2m
(n,k,l) = AiBj [Q21(p) + Q22(q)] m(n,k,l) , 

(2.852) 

where 

. Q11(p) = p − b + b(b − a)

p − b
, Q12(q) = q + b + b(b − a)

q + b
, . (2.853) 

Q21(p) = 
1 

p 
+ 

a − b 

b(p − a) 
, Q22(q) = 

1 

q 
+ 

a − b 

b(q + a) 
. (2.854) 

Using the general Leibnitz-type operator relation (2.249), we get
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. Lsm
(n,k,l)
i,j =

i⎲

μ=0

1

μ!
⎾(

f1∂p

)μ
Qs,1(p)

⏋
m

(n,k,l)
i−μ,j +

j⎲

ν=0

1

ν!
⎾(

f2∂q

)ν
Qs,2(q)

⏋
m

(n,k,l)
i,j−ν ,

(2.855) 

where .s = 1, 2. 

Next, the specific functions .[f1(p), f2(q)] and values of .(p, q) need to be 

determined to guarantee that coefficients of certain indices vanish in the above 

summation. To this end, we solve the first two algebraic equations 

.Q'
11(p) = 0, Q'

12(q) = 0, (2.856) 

and get the following simple roots: 

.p0 =
√

b(b − a) + b, q0 =
√

b(b − a) − b. (2.857) 

Using the a and b values in Eq. (2.839), these roots are 

.
p0 =

√
−ϵρ1ρ2(1 + ϵρ1ρ2) + i(1 + ϵρ1ρ2),

q0 =
√

−ϵρ1ρ2(1 + ϵρ1ρ2) − i(1 + ϵρ1ρ2).

⎫
(2.858) 

Since rogue waves can be obtained only when .(p0, q0) are nonimaginary, the 

condition for the existence of rogue wave solution is then .−1 < ρ1ρ2 < 0 for 

.ϵ = 1, or .0 < ρ1ρ2 < 1 for .ϵ = −1. Under these conditions, .q0 = p∗
0 . 

It is important to note that . p0 and . q0 are also simple roots of the equations 

.Q'
21(p) = 0, Q'

22(q) = 0, (2.859) 

respectively. The reason is that .Q21(p) and .Q22(q) are associated with .Q11(p) and 

.Q12(q) through the simple relations 

.Q21(p) = a

b
[Q11(p) − a + 2b]−1, Q22(q) = a

b
[Q12(q) + a − 2b]−1. (2.860) 

As a consequence, the terms with .μ = ν = 1 on the right side of Eq. (2.855) vanish 

at .(p0, q0) for both .s = 1 and 2. 

Following the steps in Sect. 2.3 and the simple root’s case in Sects. 2.9 and 2.10, 

we need to solve the differential equations 

.

(
f1∂p

)2
Q11(p) = Q11(p),

(
f2∂q

)2
Q12(q) = Q12(q). (2.861) 

From our previous formulae (2.257), the following functions can be derived, 

.W1(p) = p − b√
b(b − a)

, W2(q) = q + b√
b(b − a)

, (2.862)
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and 

.f1(p) = W1(p)

W'
1(p)

= p − b, f2(q) = W2(p)

W'
2(p)

= q + b. (2.863) 

From the conditions (2.856) and (2.861), we can find that 

. L1m
(n,k,l)
i,j

|||p=p0,
q=q0

= Q11(p0)

i⎲

μ=0,
μ:even

1

μ! m
(n,k,l)
i−μ,j

|||p=p0,
q=q0

+ Q12(q0)
j⎲

ν=0,
ν:even

1

ν! m
(n,k,l)
i,j−ν

|||p=p0,
q=q0

, (2.864) 

From this contiguity relation and similar calculations in Sects. 2.1.1 and 2.3, we then 

find that if we restrict the general determinant (2.843) to  

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

|||
p=p0,q=q0

⎞
, (2.865) 

then 

.L1τn,k,l = [Q11(p0) + Q12(q0)]Nτn,k,l = 4
√

b(b − a)Nτn,k,l . (2.866) 

Thus, the first dimensional reduction condition (2.832) is satisfied. 

Now, we prove that the second dimensional reduction condition (2.833) simul-

taneously holds. The key is that . p0 and . q0 in Eq. (2.857) are simple roots of both 

Eqs. (2.856) and (2.859) which arise in the two dimension reductions. When this 

happens, both dimension reduction conditions would hold simultaneously. A similar 

situation has appeared in the complex short pulse equation in Sect. 2.5, where we 

proved this fact using a simpler but less general approach. Here, we will prove this 

fact using a more general approach. 

We notice from Eq. (2.860) that .Q21(p) can be expressed as a function of .Q11(p). 

Then, let us consider a general function of . Q11, .F [Q11(p)] ≡ F(Q11). By using  the  

Faà di Bruno formula and the relation .f1∂p = ∂lnW1
, we obtain 

. 

(
f1∂p

)l
F(Q11) = ∂ l

lnW1
F(Q11)

=
⎲

m1+2m2+···+lml=l

dm̂F(Q11)

dQm̂
11

∏l
j=1

⎾
(f1∂p)jQ11

⏋mj

(l!)−1
∏l

i=1 mi !(i!)mi

, (2.867)
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where .m̂ =
∑l

i=1 mi . Furthermore, by using the conditions (2.856) and (2.861), 

one finds that 

.

(
f1∂p

)l
F [Q11(p0)] = 0, (l is odd), . (2.868)

(
f1∂p

)l 
F [Q11(p0)] =

⎲

2m2+···+lml=l, 
m1=m3=···=0 

d 
m̂ F(Q11) 

dQm̂ 

11

∏l 
j=1

⎾
(f1∂p)jQ11

⏋mj 

(l!)−1
∏l 

i=1 mi !(i!)mi

||||||||
p=p0

≜ C1,l (F [Q11(p0)]) , (l  is even). (2.869) 

The similar calculation for a general function .F [Q12(q)] ≡ F(Q12) gives 

.

(
f2∂q

)l
F [Q12(q0)] = 0, (l is odd), . (2.870)

(
f2∂q

)l 
F [Q12(q0)] =

⎲

2m2+···+lml=l, 
m1=m3=···=0 

d 
m̂ F(Q12) 

dQm̂ 

12

∏l 
j=1

⎾
(f2∂q)jQ12

⏋mj 

(l!)−1
∏l 

i=1 mi !(i!)mi

||||||||
p=p0

≜ C2,l (F [Q12(q0)]) , (l  is even). (2.871) 

Applying the above formulae (2.868)–(2.871) to the specific functions . F [Q11(p)] =
Q21(p) and .F [Q12(q)] = Q22(q), it follows that 

. L2m
(n,k,l)
i,j

|||p=p0,
q=q0

=
i⎲

μ=0,
μ:even

C1,μ[Q21(p0)]
μ! m

(n,k,l)
i−μ,j

|||p=p0,
q=q0

+
j⎲

ν=0,
ν:even

C2,ν[Q22(q0)]
ν! m

(n,k,l)
i,j−ν

|||p=p0,
q=q0

. (2.872) 

On the right side of the above equation, the coefficients in the first term of two sum-

mations are .C1,0[Q21(p0)] = Q21(p0) and .C2,0[Q22(q0)] = Q22(q0), respectively. 
This contiguity relation for .L2m

(n,k,l)
i,j is similar to (2.864) for  .L1m

(n,k,l)
i,j . From it, 

we then find that for the .τn,k,l function defined in Eq. (2.865), 

.L2τn,k,l = [Q21(p0) + Q22(q0)]Nτn,k,l = −4
√

b(b − a)

ab
Nτn,k,l, (2.873) 

and thus the second dimensional reduction condition (2.833) is also satisfied.
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Index Reduction 

Now we consider the index reduction condition (2.834). From the definition of 

.m
(n,k,l)
i,j , we get 

. m
(n+1,k+1,l−1)
i,j = AiBjm

(n+1,k+1,l−1) = AiBj [Q31(p)Q32(q)]m(n,k,l),

(2.874) 

where 

.Q31(p) = p(p − a)

p − b
= Q11(p) − (a − 2b), (2.875) 

and 

.Q32(q) = − q + b

q(q + a)
= − [Q12(q) + (a − 2b)]−1 . (2.876) 

From these connections of .[Q31(p),Q32(q)] to .[Q11(p),Q12(q)], we get 

.Q'
31(p0) = 0, Q'

32(q0) = 0. (2.877) 

Furthermore, applying the above formulae (2.868)–(2.871) to the specific functions 

.F [Q11(p)] = Q31(p) and .F [Q12(q)] = Q32(q) and utilizing general operator 

relations (2.249), we arrive at 

. m
(n+1,k+1,l−1)
i,j

|||
p=p0,q=q0

=

⎡
⎢⎢⎣

i⎲

μ=0,
μ:even

C1,μ[Q31(p0)]
μ!

⎤
⎥⎥⎦

×

⎡
⎢⎣

j⎲

ν=0,
ν:even

C2,ν[Q32(q0)]
ν!

⎤
⎥⎦ m

(n,k,l)
i−μ,j−ν

|||
p=p0,q=q0

.

(2.878) 

It is easy to see that the coefficients of the first term in the above summations are 

.C1,0[Q31(p0)] = Q31(p0) and .C2,0[Q32(q0)] = Q32(q0). Thus, Eq. (2.878) leads to 
the following matrix relation 

. 

⎛
m

(n+1,k+1,l−1)
2i−1,2j−1

|||
p=p0, q=q0

⎞

1≤i,j≤N

= L

⎛
m

(n,k,l)
2i−1,2j−1

|||
p=p0, q=q0

⎞

1≤i,j≤N

U,

(2.879)
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where L and U are lower and upper triangular matrices with diagonal entries 

as .Q31(p0) and .Q32(q0), respectively. Taking determinant on both sides of this 

equation, we get 

. τn+1,k+1,l−1 = C0τn,k,l, C0 = [Q31(p0)Q32(q0)]
N =

⎾
−p0

q0

⎛
p0 − a

q0 + a

⎞⏋N

.

(2.880) 

Recalling .q0 = p∗
0 and .a = i is imaginary, .|C0| = 1. Thus, the index reduction 

condition (2.834) is proved. 

Complex Conjugacy Condition 

We have known that .q0 = p∗
0 . Then, by imposing the parameter constraint of 

.η0 = ξ∗
0 and noticing that the coordinate transformations .x1 = ρ2

ρ1
x and . x−1 =

−ρ1(1+ϵρ1ρ2)
ρ2

t are real, one can find that 

.

⎾
m

(n,k,l)
i,j

⏋∗|||
p=p0,q=q0

=
⎾
m

(−n−1,−k,−l)
j,i

⏋|||
p=p0,q=q0

, (2.881) 

which implies .τ ∗
n,k,l = τ−n−1,−k,−l . Thus, the complex conjugation condi-

tion (2.842) is satisfied. 

Finally, we introduce free parameters by expanding .ξ0(p) as 

.ξ0 =
∞⎲

r=1

âr ln
rW1(p) =

∞⎲

r=1

âr ln
r

⎛
p − b√
b(b − a)

⎞
, (2.882) 

where . ̂ar are arbitrary complex parameters. 

Summarizing the above results, we have the following lemma on rogue waves of 

the MT system in differential operator form. 

Lemma 2.16 The massive Thirring model (2.816) admits N -th order rogue wave 

solutions 

.uN = ρ1
gN

f ∗
N

e
i(1+ϵρ1ρ2)

⎛
ρ2
ρ1

x+ ρ1
ρ2

t
⎞

, vN = ρ2
hN

fN

e
i(1+ϵρ1ρ2)

⎛
ρ2
ρ1

x+ ρ1
ρ2

t
⎞

, (2.883) 

where 

.fN = τ0,0,0, gN = C−1
0 τ−1,1,0, hN = τ−1,0,1, (2.884) 

. C0 =
⎾
−p0

p∗
0

⎛
p0 − i

p∗
0 + i

⎞⏋N

, p0 =
√

−ϵρ1ρ2(1 + ϵρ1ρ2) + i(1 + ϵρ1ρ2),

(2.885) 

.τn,k,l = det
1≤i,j≤N

⎛
m

(n,k,l)
2i−1,2j−1

⎞
, (2.886)
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. m
(n,k,l)
i,j =

⎾
(p − b)∂p

⏋i

i!

⎾
(q + b)∂q

⏋j

j ! m(n,k,l)
|||
p=p0, q=p∗

0

, (2.887) 

.m(n,k,l) =
⎛

ip

p + q

⎞⎛
−p

q

⎞n ⎛
−p − i

q + i

⎞k ⎛
−p − b

q + b

⎞l

eΘ , (2.888) 

. Θ = ρ2

ρ1
(p + q)x + ibρ1

ρ2

⎛
1

p
+ 1

q

⎞
t +

∞⎲

r=1

âr ln
r

⎛
p − b√
b(b − i)

⎞

+
∞⎲

r=1

â∗
r ln

r

⎛
q + b√
b(b − i)

⎞
, (2.889) 

.b = i(1 + ϵρ1ρ2), and .âr (r = 1, 2, . . . ) are free complex constants. 

Lastly, we remove the differential operators in the above lemma, using the same 

technique we have described in earlier sections (see Sect. 2.2 for instance). The final 

explicit expressions of these rogue waves are then as given in Theorem 2.17, where 

parameters . ar in that theorem are linearly related to . ̂ar in the above lemma. This 

completes the proof of Theorem 2.17. 

Taking .N = 1 in Theorem 2.17, we obtain the fundamental rogue wave solution 

as 

. u = ρ1e
iφ0

C0

⎡
⎣1 −

d∗
2 (L1 − d1) − d2(L

∗
1 + d∗

1 ) + |d2|2

(L1 − d1)(L
∗
1 + d∗

1 ) + d20
4

⎤
⎦ , . (2.890) 

v = ρ2e
iφ0 

⎡ 

⎣1 + 
(2d∗

1 − d0)(L1 + d1) − (2d1 − d0)(L
∗
1 − d∗

1 ) − |2d1 − d0|2 

(L1 + d1)(L
∗
1 − d∗

1 ) + 
d2 0 
4 

⎤ 

⎦ , 

(2.891) 

where 

. L1 = ρ2

ρ1
x +

4ρρ1d
2
1

ρ2
t, d1 = 1

2(ρ̂ + iρ)
, d2 = 1

(ρ̂ + iϵρ1ρ2)
, d0 = 1

ρ̂
,

φ0 = ρ

⎛
ρ2

ρ1
x + ρ1

ρ2
t

⎞
, ρ̂ =

√
−ϵρ1ρ2ρ, ρ = 1 + ϵρ1ρ2,

C0 = −p0

p∗
0

⎛
p0 − i

p∗
0 + i

⎞
.
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Fig. 2.25 Density plots of 

the fundamental and a 

second-order rogue waves in 

the massive Thirring model 

(2.816) for  

.ϵ = −1, ρ1 = 1/2 and 

.ρ2 = 1. Left column: the 

fundamental rogue wave 

(2.890). Right column: a 

second-order rogue wave 

with . a3 = 50

Second-order rogue waves can be obtained from Theorem 2.17 by taking .N 

. 

= 2, 

which contains a free complex parameter a3. Graphs for the fundamental and a 

second-order rogue wave with .a3 = 50 for .ϵ = −1, ρ1 = 1/2 and .ρ2 = 1 are 

plotted in Fig. 2.25. The fundamental rogue wave has a single elongated hump in 

both the u and v components, and the humps in the two components are oriented 

in different directions. The second-order rogue wave splits into three fundamental 

rogue waves. 

2.13 Davey-Stewartson Equations 

Evolution of a two-dimensional wave packet on water of finite depth is governed by 

the Benney-Roskes-Davey-Stewartson equations; and in the shallow water limit, this 

equation is integrable (see Sect. 1.4). This integrable equation is sometimes called 

the Davey-Stewartson (DS) equations in the literature. The DS equations are 

.
iAt = Axx − σAyy + (ϵ|A|2 − 2Q)A,

Qxx + σQyy = ϵ(|A|2)xx,

⎫
(2.892)
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where .A(x, y, t) is a complex function, and .Q(x, y, t) is a real function. When 

.σ = −1, they are called DSI, and when .σ = 1, they are called DSII. The parameter 

.ϵ = ±1 is the sign of nonlinearity. 

Fundamental rogue waves in the DSI system have been derived in Tajiri and 

Arai (1999) by taking a limit to DSI’s homoclinic solutions. General rogue waves 

in DSI and DSII equations have been derived in Ohta and Yang (2012b, 2013) by  

the bilinear method. However, solution expressions in Ohta and Yang (2012b, 2013) 

involve differential operators and are not explicit. In addition, parameterizations in 

them are not optimal. In this section, we derive explicit and simpler expressions of 

rogue wave solutions in DSI and DSII, following Ohta and Yang (2012b, 2013) but  

with major improvements. 

Under the variable transformation 

.A =
√
2

g

f
, Q = ϵ − (2 ln f )xx, (2.893) 

where f is a real variable and g a complex one, DS equations (2.892) are reduced 

to the following bilinear forms 

.
(D2

x − σD2
y − iDt )g · f = 0,

(D2
x + σD2

y)f · f = 2ϵ(f 2 − |g|2).

⎫
(2.894) 

With the invertible coordinate transform 

.

x1 = 1
2
(x + σ 'y), x−1 = 1

2
ϵ(x − σ 'y),

x2 = − 1
2
it, x−2 = 1

2
it,

⎫
(2.895) 

where .σ ' =
√

−σ , the bilinear equations (2.894) can be split into the following 

system 

.

(D2
x1

+ Dx2)f · g = 0,

(D2
x−1

− Dx−2
)f · g = 0,

Dx1Dx−1
f · f = 2(f 2 − gg∗).

⎫
⎪⎬
⎪⎭

(2.896) 

This bilinear system belongs to the extended KP hierarchy, 

.

(D2
1 + D2) τk · τk+1 = 0,

(D2
−1 − D−2) τk · τk+1 = 0,

D1D−1 τk · τk = 2(τ 2k − τk+1τk−1).

⎫
⎬
⎭ (2.897) 

General Gram solutions to these extended KP hierarchy equations can be found in 

Ohta and Yang (2012b) and Yang and Yang (2022c). To derive rogue wave solutions 

(which are rational solutions), we specialize those Gram solutions as
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.τk = det
1≤i,j≤K

⎛
m

(k)
i,j

⎞
, (2.898) 

where 

.m
(k)
i,j = AiBj

1

p + q
(−p

q
)keξi+ηj

||||
p=pi , q=qj

, (2.899) 

.Ai = 1

ni !
(p∂p)ni , Bj = 1

mj !
(q∂q)mj , (2.900) 

.ξi = 1

p2
x−2 + 1

p
x−1 + px1 + p2x2 +

∞⎲

r=1

ar,i ln
r

⎾
p

pi

⏋
, (2.901) 

.ηj = − 1

q2
x−2 + 1

q
x−1 + qx1 − q2x2 +

∞⎲

r=1

br,j ln
r

⎾
q

qj

⏋
, (2.902) 

.(n1, n2, . . . , nK), .(m1,m2, . . . , mK) are arbitrary nonnegative integers, and .pi, qj , 

. ar,i , .br,j are free complex constants. Rogue waves (2.893) would be given through 

these . τ functions as 

.f = τ0, g = τ1, g∗ = τ−1, (2.903) 

if the above . τk also satisfies the conjugation condition 

.τ−k = τ ∗
k . (2.904) 

This conjugation condition can be met in different ways for DSI and DSII, which 

will be treated separately below. 

2.13.1 Davey-Stewartson-I Equations 

For DSI where .σ = −1, the coordinate transform (2.895) reduces to 

.

x1 = 1
2
(x + y), x−1 = 1

2
ϵ(x − y),

x2 = − 1
2
it, x−2 = 1

2
it,

⎫
(2.905) 

where .(x1, x−1) are real and .(x2, x−2) purely imaginary. In this case, for . τn

in (2.898) to satisfy conjugacy conditions (2.904), we constrain the parameters as 

.K = N, mj = nj , qj = p∗
j , br,j = a∗

r,j . (2.906)
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Then, 

.ξ∗
j = ηj ,

⎛
m

(k)
i,j

⎞∗
= m

(−k)
j,i , τ ∗

k = τ−k. (2.907) 

Thus, conjugation conditions (2.904) are met. The corresponding solutions (2.898)– 

(2.903) then give DSI rational solutions in differential form. 

More explicit expressions of these solutions can be derived by eliminating the 

differential operators in Eq. (2.900) in favor of Schur polynomials. This is a step 

which has been taken for every integrable equation covered in previous sections, 

using a technique carefully explained in Sect. 2.1.1. These more explicit solution 

expressions are presented in the following theorem (the proof is skipped for brevity). 

Theorem 2.18 The Davey-Stewartson I eqaution admits general rational solutions 

.A(x, y, t) =
√
2

g

f
, Q(x, y, t) = 1 − 2ϵ (log f )xx , (2.908) 

where 

.f = τ0, g = τ1, τk = det
1≤i,j≤N

⎛
m

(k)
i,j

⎞
, (2.909) 

N is a positive integer, the matrix elements .m
(k)
i,j of . τk are defined by 

. m
(k)
i,j =

min(ni ,nj )⎲

ν=0

⎛
1

pi + p∗
j

⎞⎾
pip

∗
j

(pi + p∗
j )

2

⏋ν

× Sni−ν[x+
i,j (k) + νsi,j + ai] Snj −ν[x−

j,i(k) + νs
∗
j,i + a

∗
j ], (2.910) 

.(n1, n2, . . . , nN ) are nonnegative integers, vectors . x±
i,j (k) =

⎛
x±
1,i,j , x

±
2,i,j , · · ·

⎞

are defined by 

.x+
r,i,j (k) = (−1)r

r!pi

x−1 + (−2)r

r!p2
i

x−2 + 1

r!pix1 + 2r

r! p
2
i x2 + kδr,1 − cr,i,j , . (2.911) 

x− 

r,i,j (k) = 
(−1)r 

r!p∗
i 

x−1 + 
(−2)r 

r!(p∗
i )

2 
x2 + 

1 

r!p
∗
i x1 + 

2r 

r! (p
∗
i )

2x−2 − kδr,1 − c∗
r,i,j , 

(2.912) 

.x1 = 1

2
(x + y), x−1 = 1

2
ϵ(x − y), x2 = −1

2
it, x−2 = 1

2
it, (2.913) 

. pi are free complex constants, .δr,1 is the Kronecker delta function, vectors .si,j are 

.(s1,i,j , s2,i,j , · · · ), .cr,i,j and .sr,i,j are coefficients from the expansions
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. ln

⎾
pie

κ + p∗
j

pi + p∗
j

⏋
=

∞⎲

r=1

cr,i,jκ
r , ln

⎾
pi + p∗

j

κ

⎛
eκ − 1

pieκ + p∗
j

⎞⏋
=

∞⎲

r=1

sr,i,jκ
r ,

(2.914) 

vectors . ai are 

.ai =
(
ai,1, ai,2, . . . , ai,ni

)
, (2.915) 

and .ai,j (1 ≤ i ≤ N, 1 ≤ j ≤ ni) are free complex constants. 

The fundamental rational solution is obtained from this theorem by taking . N = 1

and .n1 = 1. In this case, through a simple shift in two of the .(x, y, t) axes to remove 

the .a1,1 and .c1,1,1 constants, the corresponding rational solution .A(x, y, t) can be 

written as 

.A(x, y, t) =
√
2
τ1

τ0
, (2.916) 

where 

.τk = 1

p1 + p∗
1

⎾
(ξ + k)(ξ∗ − k) + Δ

⏋
, (2.917) 

.ξ = ax + by + ωt, Δ =
p1p

∗
1

(p1 + p∗
1)

2
, (2.918) 

and 

. a =
p1 − ϵp−1

1

2
, b =

p1 + ϵp−1
1

2
, ω =

p2
1 + p−2

1

i
. (2.919) 

If we separate the real and imaginary part of a, b and . ω as 

. a = a1 + ia2, b = b1 + ib2, ω = ω1 + iω2, (2.920) 

then 

. A(x, y, t) =
√
2

⎾
1 − 2i(a2x + b2y + ω2t) + 1

(a1x + b1y + ω1t)2 + (a2x + b2y + ω2t)2 + Δ

⏋
.

(2.921) 

This fundamental rational solution has three distinctly different dynamical 

behaviors depending on the parameter value of . p2
1 . 

• If . p2
1 is not real, then the solution is a localized soliton moving on a constant 

background.
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Fig. 2.26 Density plots of the fundamental line-rogue wave .|A(x, y, t)| from Eq. (2.921) in the  

DSI equation at different times for .ϵ = 1 and . p1 = 3/2

Fig. 2.27 Density plots of a rogue wave solution .|A(x, y, t)| in the DSI equation that describes 
the interaction of two line rogue waves. Parameter choices are . ϵ = 1, N = 2, n1 = n2 = 1, p1 =
1, p2 = 3/2, and . a1,1 = a1,2 = 0

• If .p2
1 < 0, then the solution is a line soliton moving on a constant background. 

• If .p2
1 > 0, i.e., . p1 is real, then the solution is a line rogue wave which “appears 

from nowhere and disappears with no trace”. 

This line rogue wave with .ϵ = 1 and .p1 = 3/2 is plotted in Fig. 2.26. 

If .N > 1, rational solutions in Theorem 2.18 could describe the interaction 

between line rogue waves if the . pi values are real. Such an example is shown in 

Fig. 2.27. In the region of interaction, the solution exhibits a stem connecting two 

well-separated curvy rogue fronts. 

2.13.2 Davey-Stewartson-II Equations 

For DSII where .σ = 1, the coordinate transform (2.895) becomes 

.

x1 = 1
2
(x + iy), x−1 = 1

2
ϵ(x − iy),

x2 = − 1
2
it, x−2 = 1

2
it,

⎫
(2.922)
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where .(x1, x−1) are complex and .(x2, x−2) purely imaginary. This variable trans-

formation means that 

.x−1 = ϵx∗
1 , x−2 = x∗

2 . (2.923) 

To derive rogue waves in DSII, we need to constrain parameters in the . τk

solution (2.898) blockwise, so that . τk becomes a .2×2 block determinant with certain 

symmetry. Specifically, we constrain the parameters as 

. K = 2N, nN+i = ni mN+j = mj , pN+i = ϵ

p∗
i

, qN+j = ϵ

q∗
j

,

(2.924) 

where N is a positive integer. The matrix element .m
(k)
i,j in Eq. (2.898) can be 

rewritten as 

.m
(k)
i,j = ÂiB̂j

1

pi + qj

(−pi

qj

)keξi+ηj

||||
p=pi , q=qj

, (2.925) 

where 

.Âi = 1

ni !
(pi∂pi

)ni , B̂j = 1

mj !
(qj∂qj

)mj , (2.926) 

.ξi = 1

p2
i

x−2 + 1

pi

x−1 + pix1 + p2
i x2 +

∞⎲

r=1

ar,i ln
r

⎾
pi

p

⏋
, (2.927) 

.ηj = − 1

q2
j

x−2 + 1

qj

x−1 + qjx1 − q2
j x2 +

∞⎲

r=1

br,j ln
r

⎾
qj

q

⏋
. (2.928) 

Then, 

.

⎾
m

(k)
i,j

⏋∗
= Â∗

i B̂
∗
j

1

p∗
i + q∗

j

⎛
−

p∗
i

q∗
j

⎞k

e
ξ∗
i +η∗

j

||||||
p=p∗

i , q=q∗
j

. (2.929) 

Using Eqs. (2.923)–(2.924) and (2.926)–(2.928), we find that 

. ̂A
∗
i = 1

ni !
(p∗

i ∂p∗
i
)ni = 1

ni !
∂

ni

lnp∗
i

= 1

ni !
∂

ni

ln(ϵ/pN+i )

= (−1)ni

ni !
∂

ni

ln(pN+i )
= (−1)ni ÂN+i, (2.930)
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. ̂B
∗
j = 1

mj !
(q∗

j ∂q∗
j
)mj = 1

mj !
∂

mj

lnp∗
j

= 1

mj !
∂

mj

ln(ϵ/qN+j )

= (−1)mj

mj !
∂

mj

ln(qN+j )
= (−1)mj B̂N+j , (2.931) 

. 

⎾
m

(k)
i,j

⏋∗
= (−1)ni+mj ÂN+iB̂N+j

ϵpN+iqN+j

pN+i + qN+j

⎛
−pN+i

qN+j

⎞−k

e
ξ∗
i +η∗

j

|||||p=pN+i
q=qN+j

,

(2.932) 

where . ξ∗
i and . η∗

j can be written as 

. ξ∗
i = 1

p2
N+i

x−2 + 1

pN+i

x−1 + pN+ix1 + p2
N+ix2 +

∞⎲

r=1

(−1)ra∗
r,i ln

r

⎛
pN+i

p

⎞
,

(2.933) 

. η∗
j = − 1

q2
N+j

x−2 + 1

qN+j

x−1 + qN+jx1 − q2
N+jx2 +

∞⎲

r=1

(−1)rb∗
r,j ln

r

⎛
qN+j

q

⎞
.

(2.934) 

The above .

⎾
m

(k)
i,j

⏋∗
can be further written as 

.

⎾
m

(k)
i,j

⏋∗
= (−1)ni+mj (ϵpN+iqN+j )ÂN+iB̂N+j

1

pN+i + qN+j

×

×
⎛

−pN+i

qN+j

⎞−k

e
ξ∗
i +η∗

j +ln
⎛

pN+i
p

⎞
+ln

⎛
qN+j

q

⎞|||||p=pN+i
q=qN+j

.

(2.935) 

Then, by constraining internal parameters as 

.a1,N+i = 1 − a∗
1,i, b1,N+j = 1 − b∗

1,j , . (2.936) 

ar,N+i = (−1)r a∗
r,i, br,N+j = (−1)r b∗

r,j , r  ≥ 2, (2.937) 

we have
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. 

ξ∗
i + ln

⎛
pN+i

p

⎞
= 1

p2
N+i

x−2 + 1
pN+i

x−1 + pN+ix1 + p2
N+ix2

+
∑∞

r=1 ar,N+i ln
r
⎛

pN+i

p

⎞
= ξN+i,

η∗
j + ln

⎛
qN+j

q

⎞
= − 1

q2N+j

x−2 + 1
qN+j

x−1 + qN+jx1 − q2
N+jx2

+
∑∞

r=1 br,N+j ln
r
⎛

qN+j

q

⎞
= ηN+j .

Thus, 

.

⎾
m

(k)
i,j

⏋∗
= (−1)ni+mj (ϵpN+iqN+j )m

(−k)
N+i,N+j , 1 ≤ i, j ≤ N. (2.938) 

Similarly, 

.

⎾
m

(k)
N+i,j

⏋∗
= (−1)ni+mj (ϵpiqN+j )m

(−k)
i,N+j , 1 ≤ i, j ≤ N. (2.939) 

Since the . τk solution can be scaled by an arbitrary constant, we define a scaled . τk

function as 

.τk/

N∏

i=1

(−1)ni+mi ϵp∗
i q

∗
i → τk. (2.940) 

This scaled . τk function can be written as 

. τk =

||||||

m
(k)
i,j

(−1)
mj

q∗
j

m
(k)
i,N+j

(−1)ni

ϵp∗
i

m
(k)
N+i,j

(−1)
ni+mj

ϵp∗
i q∗

j
m

(k)
N+i,N+j

||||||
1≤i,j≤N

. (2.941) 

Utilizing Eqs. (2.938)–(2.939) as well as the parameter constraints (2.924), this . τk

can be rewritten as 

.τk =

||||||
m

(k)
i,j m̂

(k)
i,j

ϵ
⎛
m̂

(−k)
i,j

⎞∗ ⎛
m

(−k)
i,j

⎞∗

||||||
1≤i,j≤N

, (2.942) 

where .m̂
(k)
i,j ≡ (−1)mj m

(k)
i,N+j/q

∗
j . We can see from this form of . τk that 

.τk = τ ∗
−k. (2.943) 

Thus, the conjugation condition (2.904) is met. The corresponding solu-

tions (2.898)–(2.903) then give DSII rational solutions (in differential form), which 

are summarized in the following lemma. 

Lemma 2.17 The Davey-Stewartson II eqaution admits rational solutions
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.A(x, y, t) =
√
2

g

f
, Q(x, y, t) = ϵ − 2 (ln f )xx , (2.944) 

where 

.f = τ0, g = τ1, (2.945) 

. τk is the determinant of a .2 × 2 block matrix 

.τk = det
1≤i,j≤2N

⎛
m

(k)
i,j

⎞
=

||||||

⎛
m

(k)
i,j

⎞
1≤i,j≤N

⎛
m

(k)
i,N+j

⎞
1≤i,j≤N⎛

m
(k)
i+N,j

⎞
1≤i,j≤N

⎛
m

(k)
i+N,j+N

⎞
1≤i,j≤N

||||||
, (2.946) 

N is a positive integer, the matrix elements in . τk are defined by 

. m
(k)
i,j =

(
p∂p

)ni

(ni)!

(
q∂q

)mj

(mj )!

⎾
1

p + q

⎛
−p

q

⎞k

eΘi,j (x,y,t)

⏋ |||||
p=pi , q=qj

, . (2.947) 

Θi,j (x, y, t)  =
⎛

1 

p2 
− 

1 

q2

⎞
x−2 +

⎛
1 

p 
+ 

1 

q

⎞
x−1 + (p + q)x1 + (p2 − q2)x2 

+ 

∞⎲

r=1 

ar,i ln
r

⎾
p 

pi

⏋
+ br,j ln

r

⎾
q 

qj

⏋
, . (2.948) 

x1 = 
1 

2 
(x + iy), x−1 = 

1 

2
ϵ(x − iy), x2 = −1 

2 
it, x−2 = 

1 

2 
it, (2.949) 

.ni,mj (1 ≤ i, j ≤ 2N) are nonnegative integers, . pi, qj , ar,i, br,j (1 ≤ i, j ≤ 2N)

are complex constants, and they satisfy the following parameter constraints, 

. nN+i = ni mN+j = mj , pN+i = ϵ

p∗
i

, qN+j = ϵ

q∗
j

, . (2.950) 

a1,N+i = 1 − a∗
1,i, b1,N+j = 1 − b∗

1,j , . (2.951) 

ar,N+i = (−1)r a∗
r,i, br,N+j = (−1)r b∗

r,j , r  ≥ 2. (2.952) 

More explicit expressions of these solutions can be derived by eliminating the 

differential operators in Eq. (2.947) in favor of Schur polynomials, using techniques 

which have been explained in earlier sections (such as Sect. 2.1.1). These more 

explicit solution expressions are presented in the following theorem (the proof is 

skipped for brevity). 

Theorem 2.19 The Davey-Stewartson II eqaution admits rational solutions 

.A(x, y, t) =
√
2

g

f
, Q(x, y, t) = ϵ − 2 (ln f )xx , (2.953)
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where 

.f = τ0, g = τ1, (2.954) 

. τk is the determinant of a .2 × 2 block matrix 

.τk = det
1≤i,j≤2N

⎛
m

(k)
i,j

⎞
=

||||||

⎛
m

(k)
i,j

⎞
1≤i,j≤N

⎛
m

(k)
i,N+j

⎞
1≤i,j≤N⎛

m
(k)
i+N,j

⎞
1≤i,j≤N

⎛
m

(k)
i+N,j+N

⎞
1≤i,j≤N

||||||
, (2.955) 

N is a positive integer, the matrix elements in . τk are defined by 

. m
(k)
i,j =

min(ni ,mj )⎲

ν=0

⎛
1

pi + qj

⎞⎾
piqj

(pi + qj )2

⏋ν

× Sni−ν[x+
i,j (k) + νsi,j ] Smj −ν[x−

j,i(k) + ν s̄j,i], (2.956) 

vectors .x
±
i,j (k) =

⎛
x±
1,i,j , x

±
2,i,j , · · ·

⎞
are defined by 

. x+
r,i,j (k) = (−1)r

r!pi

x−1 + (−2)r

r!p2
i

x−2 + 1

r!pix1 + 2r

r! p
2
i x2 + kδr,1 − cr,i,j + ar,i,

. (2.957) 

x− 

r,i,j (k) = 
(−1)r 

r!qi 

x−1 + 
(−2)r 

r!q2 
i 

x2 + 
1 

r!qix1 + 
2r 

r! q
2 
i x−2 − kδr,1 − c̄r,i,j + br,i, 

. (2.958) 

x1 = 
1 

2 
(x + iy), x−1 = 

1 

2
ϵ(x − iy), x2 = −1 

2 
it, x−2 = 

1 

2 
it, 

(2.959) 

.δr,1 denotes Kronecker delta function, .si,j = (s1,i,j , s2,i,j , · · · ), . ̄si,j =
(s̄1,i,j , s̄2,i,j , · · · ), coefficients .cr,i,j , .c̄r,i,j , .sr,i,j and .s̄r,i,j are obtained from the 

expansions 

. ln

⎾
pie

κ + qj

pi + qj

⏋
=

∞⎲

r=1

cr,i,jκ
r , ln

⎾
qie

κ + pj

qi + pj

⏋
=

∞⎲

r=1

c̄r,i,jκ
r , . (2.960) 

ln

⎾
pi + qj 

κ

⎛
eκ − 1 

pieκ + qj

⎞⏋
= 

∞⎲

r=1 

sr,i,jκ
r , . (2.961) 

ln

⎾
qi + pj 

κ

⎛
eκ − 1 

qieκ + pj

⎞⏋
= 

∞⎲

r=1 

s̄r,i,jκ
r , (2.962)
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.ni,mj (1 ≤ i, j ≤ 2N) are nonnegative integers, . pi, qj , ar,i, br,j (1 ≤ i, j ≤ 2N)

are complex constants, and they satisfy the following parameter constraints, 

. nN+i = ni mN+j = mj , pN+i = ϵ

p∗
i

, qN+j = ϵ

q∗
j

, . (2.963) 

a1,N+i = 1 − a∗
1,i, b1,N+j = 1 − b∗

1,j , . (2.964) 

ar,N+i = (−1)r a∗
r,i, br,N+j = (−1)r b∗

r,j , r  ≥ 2. (2.965) 

The simplest rational solution is obtained when .N = 1, .n1 = 1 and .m1 = 0. In  

this case, 

.τk =
|||||
m

(k)
1,1 m

(k)
1,2

m
(k)
2,1 m

(k)
2,2

||||| , (2.966) 

where 

. m
(k)
1,1 = 1

p1 + q1

(
ξ + θ1,1 + k

)
, m

(k)
1,2 = 1

p1 + q2

(
ξ + θ1,2 + k

)
,

. m
(k)
2,1 = (−ϵp∗

1q
∗
2 )

⎾
m

(−k)
1,2

⏋∗
, m

(k)
2,2 = (−ϵp∗

1q
∗
1 )

⎾
m

(−k)
1,1

⏋∗
,

. ξ = ax + by + ωt, a =
p1 − ϵp−1

1

2
, b =

p1 + ϵp−1
1

2
i, ω =

p2
1 + p−2

1

i
,

. θ1,1 = a1,1 − p1

p1 + q1
, θ1,2 = a1,2 − p1

p1 + q2
,

.q2 = ϵ/q∗
1 , and .a1,2 = −a∗

1,1. This solution seems to have three free complex 

parameters . p1, . q1 and . a1,1, but . q1 can be absorbed into .a1,1 by a reparametrization. 

Indeed, by defining 

. θ = a1,1 − p1

(|p1|2 − ϵ)(|q1|2 − ϵ)

⎾
|p1q

∗
1 + ϵ|2

p1 + q1
−

ϵq∗
1 |p1 + q1|2
ϵ + p1q

∗
1

⏋
,

then . τk can be reduced to 

.τk = [(ξ + θ) + k][(ξ + θ)∗ − k] + Δ, Δ = −ϵ|p1|2(
|p1|2 − ϵ

)2 (2.967) 

up to a constant multiplication; thus this new . τk yields the same solution, and it 

contains only two free complex parameters . p1 and . θ now. If we separate the real 

and imaginary part of a, b, . ω and . θ as
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Fig. 2.28 Density plots of the fundamental line rogue wave .|A(x, y, t)| from Eq. (2.969) in the  

Davey-Stewartson II equation for .ϵ = −1, .p1 = eiπ/6 and .θ = 0 at different times 

.a = a1 + ia2, b = b1 + ib2, ω = ω1 + iω2, θ = θ1 + iθ2, (2.968) 

then the explicit expressions for the fundamental rational solution are: 

. A(x, y, t) =
√
2

⎾
1 − 2i(a2x + b2y + ω2t + θ2) + 1

f

⏋
. (2.969) 

Q(x, y, t) = ϵ − (2 ln  f )xx 
, (2.970) 

where 

.f = (a1x + b1y + ω1t + θ1)
2 + (a2x + b2y + ω2t + θ2)

2 + Δ. (2.971) 

This fundamental rational solution is nonsingular when .ϵ = −1. In this case, the 

solution exhibits two distinctly different dynamics depending on the parameter value 

of . p1. 

• If .|p1| /= 1, then the solution is a two-dimensional lump moving on a constant 

background. 

• If .|p1| = 1, then this line wave is a line rogue wave which “appears from nowhere 

and disappears with no trace”. 

This line rogue wave with .ϵ = −1, .p1 = eiπ/6 and .θ = 0 is plotted in Fig. 2.28. 

If .N > 1, rational solutions in Theorem 2.19 could describe the interaction 

between line rogue waves. Such an example is shown in Fig. 2.29. 

2.14 Three-Wave Resonant Interaction System in 

(2+1)-Dimensions 

The (2+1)-dimensional three-wave resonant interaction system is (see Sect. 1.6)
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Fig. 2.29 Density plots of a rogue wave solution .|A(x, y, t)| in the Davey-Stewartson II equation 
that describes the interaction of two line rogue waves. Parameter choices are .ϵ = −1, .N = 2, 

.n1 = n2 = 1, .m1 = m2 = 0, .p1 = i, .p2 = 1, .q1 = 1/2, q2 = 2, and . a1,1 = a1,2 = 0

.

(∂t + V1 · ∇) q1(x, y, t) = ϵ1q
∗
2 (x, y, t)q∗

3 (x, y, t),

(∂t + V2 · ∇) q2(x, y, t) = ϵ2q
∗
1 (x, y, t)q∗

3 (x, y, t),

(∂t + V3 · ∇) q3(x, y, t) = ϵ3q
∗
1 (x, y, t)q∗

2 (x, y, t).

⎫
⎬
⎭ (2.972) 

Here, .∇ =
(
∂x, ∂y

)
is the gradient operator in the .(x, y) space, and . Vk =(

Vk,1, Vk,2

)
are group-velocity vectors of the three waves. Adopting a coordinate 

system that moves at the speed of the third wave, we make .V3 = (0, 0) without 

loss of generality. In addition, we assume that . V1 and . V2 are not parallel to each 

other, i.e., .V11V22 − V12V21 /= 0. Parameters . ϵj are nonlinear coefficients that can 

be scaled to . ±1. In addition, one can fix .ϵ1 = 1. 

The above three-wave system admits plane-wave solutions 

.

q1,0(x, y, t) = ρ1e
i(k1x+λ1y+ω1t),

q2,0(x, y, t) = ρ2e
i(k2x+λ2y+ω2t),

q3,0(x, y, t) = iρ3e
i(k3x+λ3y+ω3t),

⎫
⎬
⎭ (2.973) 

where wave vectors and frequencies satisfy the resonance relations 

.ω1 + ω2 + ω3 = 0, λ1 + λ2 + λ3 = 0, k1 + k2 + k3 = 0, (2.974) 

and wave amplitudes .(ρ1, ρ2, ρ3) satisfy the following conditions 

.

ρ1
(
ω1 + V1,1k1 + V1,2λ1

)
= −ϵ1ρ

∗
2ρ

∗
3 ,

ρ2
(
ω2 + V2,1k2 + V2,2λ2

)
= −ϵ2ρ

∗
1ρ

∗
3 ,

ρ3 (ω1 + ω2) = ϵ3ρ
∗
1ρ

∗
2 .

⎫
⎬
⎭ (2.975) 

These plane-wave solutions have constant amplitudes in the .(x, y) space; so we will 

also call them constant-background solutions. 

Below, we assume that the three wave amplitudes .|ρ1|, |ρ2| and .|ρ3| are nonzero. 
Then, using phase invariance of the three-wave system, we can normalize . ρ1, . ρ2 and 

. ρ3 to be all real. Thus, in the later text, we assume .(ρ1, ρ2, ρ3) real. In addition, we
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define three real constants 

.γ1 ≡ ϵ1
ρ2ρ3

ρ1
, γ2 ≡ ϵ2

ρ1ρ3

ρ2
, γ3 ≡ ϵ3

ρ1ρ2

ρ3
. (2.976) 

Rogue waves in the three-wave system (2.972) are solutions that approach the 

above plane-wave solution when .x, t → ±∞. These rogue waves were first derived 

by Yang and Yang (2022a) by the bilinear method, and those results are presented 

below. 

Rogue waves are rational solutions. The general rational solutions to the 

(2+1)-dimensional three-wave system (2.972) in differential form are given in the 

following lemma. 

Lemma 2.18 The (2+1)-dimensional three-wave system (2.972) admits rational 

solutions 

.

q1(x, y, t) = ρ1
g1

f
ei(k1x+λ1y+ω1t),

q2(x, y, t) = ρ2
g2

f
ei(k2x+λ2y+ω2t),

q3(x, y, t) = iρ3
g3

f
ei(k3x+λ3y+ω3t),

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.977) 

where 

.f = τ0,0, g1 = τ1,0, g2 = τ0,−1, g3 = τ−1,1, (2.978) 

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
i,j

⎞
, (2.979) 

N is an arbitrary positive integer, the matrix elements in .τn,k are defined by 

. m
(n,k)
i,j =

(
p∂p

)ni

(ni)!

(
q∂q

)nj

(nj )!

⎾
1

p + q

⎛
−p

q

⎞k ⎛
−p − i

q + i

⎞n

eΘi,j (x,y,t)

⏋ |||||
p=pi , q=qj

,

. (2.980) 

Θi,j (x, y, t)  =
⎛
1 

p 
+ 

1 

q

⎞
z1 +

⎛
1 

p − i 
+ 

1 

q + i

⎞
z2 + (p + q)z3 

+ 

∞⎲

r=1 

ar,i ln
r

⎾
p 

pi

⏋
+ 

∞⎲

r=1 

a∗
r,j ln

r

⎾
q 

qj

⏋
, (2.981) 

.(n1, n2, . . . , nN ) are arbitrary nonnegative integers, .(p1, p2, . . . , pN ) are free non-

imaginary complex constants, .qj = p∗
j , variables .(z1, z2, z3) are related to . (x, y, t)

as
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. z1 = γ1
V22x − V21y

V11V22 − V12V21
, . (2.982) 

z2 = γ2 
V11y − V12x 

V11V22 − V12V11 
, . (2.983) 

z3 = γ3

⎾
(V12 − V22) x + (V21 − V11) y 

V11V22 − V12V21 
+ t

⏋
, (2.984) 

and .ar,i (r = 1, 2, . . . , ni; i = 1, 2, . . . , N) are free complex constants. 

Proof Due to the boundary conditions (2.973), we first introduce the bilinear 

transformation 

.

q1(x, y, t) = ρ1
g1

f
ei(k1x+λ1y+ω1t),

q2(x, y, t) = ρ2
g2

f
ei(k2x+λ2y+ω2t),

q3(x, y, t) = iρ3
g3

f
ei(k3x+λ3y+ω3t),

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.985) 

where .f (x, y, t) is a real function, and .gk(x, y, t) (k = 1, 2, 3) are complex 

functions. Under this transformation, the three-wave system (2.972) is converted 

into the following system of bilinear equations 

.

(
Dt + V1,1Dx + V1,2Dy − iγ1

)
g1 · f = −iγ1g

∗
2g

∗
3 ,(

Dt + V2,1Dx + V2,2Dy − iγ2
)
g2 · f = −iγ2g

∗
1g

∗
3 ,

(Dt − iγ3) g3 · f = −iγ3g
∗
1g

∗
2 .

⎫
⎬
⎭ (2.986) 

Next, we introduce the coordinate transformation 

.

⎛
⎝

x

y

t

⎞
⎠ =

⎛
⎜⎝

V1,1

γ1

V2,1

γ2
0

V1,2

γ1

V2,2

γ2
0

1
γ1

1
γ2

1
γ3

⎞
⎟⎠

⎛
⎝

z1

z2

z3

⎞
⎠ , (2.987) 

which is equivalent to Eqs. (2.982)–(2.984) in Lemma 2.18. Under this coordinate 

transformation, we have 

.

∂t + V1 · ∇ = γ1∂z1 ,

∂t + V2 · ∇ = γ2∂z2 ,

∂t = γ3∂z3 .

⎫
⎬
⎭ (2.988) 

Thus, the bilinear system (2.986) reduces to
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.

(
iDz1 + 1

)
g1 · f = g∗

2g
∗
3 ,(

iDz2 + 1
)
g2 · f = g∗

1g
∗
3 ,(

iDz3 + 1
)
g3 · f = g∗

1g
∗
2 .

⎫
⎬
⎭ (2.989) 

Below, we will first construct algebraic solutions to the more general bilinear 

system 

.

(
iDz1 + 1

)
g1 · f = h2h3,(

iDz2 + 1
)
g2 · f = h1h3,(

iDz3 + 1
)
g3 · f = h1h2,

⎫
⎬
⎭ (2.990) 

where .h1, h2 and . h3 are also complex functions. Afterwards, we will impose the 

reality conditon for f and complex conjugation conditions 

.h∗
k = gk, k = 1, 2, 3. (2.991) 

Then, the bilinear system (2.990) will become the bilinear system (2.989), and 

the corresponding algebraic solutions will give rational solutions of the three-wave 

system (2.972) through the above variable and coordinate transformations (2.985) 

and (2.987). 

The bilinear system (2.990) is a special case of the slightly more general bilinear 

system (2.741) in Sect. 2.10 with .a = 0 and .b = i. Gram solutions to the 

system (2.741) have been given in Lemma 2.14. Based on that lemma, we see that 

the . τ function 

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
i,j

⎞
, (2.992) 

where 

. m
(n,k)
i,j =

(
p∂p

)ni

(ni)!

(
q∂q

)nj

(nj )!
1

p + q

⎛
−p

q

⎞k ⎛
−p − i

q + i

⎞n

eξi+ηj

|||||
p=pi , q=qj

,

(2.993) 

.ξi = 1

p
z1 + 1

p − i
z2 + (p − i)z3 +

∞⎲

r=1

ar,i ln
r

⎾
p

pi

⏋
, (2.994) 

.ηj = 1

q
z1 + 1

q + i
z2 + (q + i)z3 +

∞⎲

r=1

br,j ln
r

⎾
q

qj

⏋
, (2.995) 

.ni, nj are free nonnegative integers, and .pi, qj , . ar,i , .br,j are free complex constants, 

would satisfy the following bilinear system
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.

⎾
iDz1 + 1

⏋
τn+1,k · τn,k = τn,k+1τn+1,k−1,⎾

iDz2 + 1
⏋
τn,k−1 · τn,k = τn−1,kτn+1,k−1,⎾

iDz3 + 1
⏋
τn−1,k+1 · τn,k = τn−1,kτn,k+1.

⎫
⎬
⎭ (2.996) 

Thus, if we define 

. f = τ0,0, g1 = τ1,0, g2 = τ0,−1, g3 = τ−1,1, (2.997) 

and 

.h1 = τ−1,0, h2 = τ0,1, h3 = τ1,−1, (2.998) 

the above bilinear system (2.996) would reduce to (2.990), and these . τ functions 

would be solutions to that bilinear system (2.990). 

In order to reduce that more general bilinear system (2.990) to the original one 

in (2.989), we still need to impose the f -reality condition as well as the complex 

conjugacy conditions of .hi = g∗
i . All these conditions would be satisfied if 

.τn,k =
⎾
τ−n,−k

⏋∗
. (2.999) 

To realize this condition, we set 

.qj = p∗
j , br,j = a∗

r,j . (2.1000) 

In this case, we can readily show that 

.m
(−n,−k)
j,i =

⎾
m

(n,k)
i,j

⏋∗
. (2.1001) 

Thus, the condition (2.999) holds, and the . τ functions (2.997) then become 

solutions to the original bilinear system (2.989). Inserting the above parameter 

conditions (2.1000) into the matrix element expression (2.993), we then obtain the 

rational solutions in Lemma 2.18 for the three-wave system (2.972). 

More explicit expressions of these solutions can be derived by eliminating the 

differential operators in Eq. (2.980) in favor of Schur polynomials, using techniques 

that have been introduced in earlier sections of this chapter. These more explicit 

solution expressions are presented in the following theorem, and its proof can be 

found in Yang and Yang (2022a). 

Theorem 2.20 The (2+1)-dimensional three-wave system (2.972) admits rational 

solutions



234 2 Derivation of Rogue Waves in Integrable Systems

.

q1(x, y, t) = ρ1
g1

f
ei(k1x+λ1y+ω1t),

q2(x, y, t) = ρ2
g2

f
ei(k2x+λ2y+ω2t),

q3(x, y, t) = iρ3
g3

f
ei(k3x+λ3y+ω3t),

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1002) 

where 

.f = τ0,0, g1 = τ1,0, g2 = τ0,−1, g3 = τ−1,1, (2.1003) 

.τn,k = det
1≤i,j≤N

⎛
m

(n,k)
i,j

⎞
, (2.1004) 

N is an arbitrary positive integer, the matrix elements in .τn,k are defined by 

. m
(n,k)
i,j =

min(ni ,nj )⎲

ν=0

⎛
1

pi + p∗
j

⎞⎾
pip

∗
j

(pi + p∗
j )

2

⏋ν

× Sni−ν[x+
i,j (n, k) + νsi,j ] Snj −ν[x−

j,i(n, k) + νs
∗
j,i], (2.1005) 

.(n1, n2, . . . , nN ) are arbitrary nonnegative integers, .(p1, p2, . . . , pN ) are free non-

imaginary complex constants, vectors .x±
i,j (n, k) =

⎛
x±
1,i,j , x

±
2,i,j , · · ·

⎞
are defined 

by 

. x+
r,i,j (n, k) = (−1)r

r!pi

z1 + βr,iz2 + 1

r!piz3 + ngr,i + kδ1r − cr,i,j + ar,i,

. (2.1006) 

x− 

r,i,j (n, k) = 
(−1)r 

r!p∗
i 

z1 + β∗
r,iz2 + 

1 

r!p
∗
i z3 − ng∗

r,i − kδ1r − c∗
r,i,j + a∗

r,i, 

(2.1007) 

. δ1r is the Kronecker delta function, .si,j = (s1,i,j , s2,i,j , · · · ), coefficients . βr,i , . gr,i , 

.cr,i,j and .sr,i,j are obtained from the expansions 

.
1

pieκ − i
− 1

pi − i
=

∞⎲

r=1

βr,iκ
r , ln

⎛
pie

κ − i

pi − i

⎞
=

∞⎲

r=1

gr,iκ
r , . (2.1008) 

ln

⎾
pie

κ + p∗
j 

pi + p∗
j

⏋
= 

∞⎲

r=1 

cr,i,jκ
r , ln

⎾
pi + p∗

j 

κ

⎛
eκ − 1 

pieκ + p∗
j

⎞⏋
= 

∞⎲

r=1 

sr,i,jκ
r , 

(2.1009) 

and .ar,i (r = 1, 2, . . . , ni; i = 1, 2, . . . , N) are free complex constants.
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The above rational solutions contain rogue waves that arise from and decay back 

to the constant background (2.973), as well as algebraic localized (lump) solitons 

moving on this constant background and a mixture between these two types of 

solutions. To get rogue waves, we need to impose conditions on . pi . 

To derive these conditions, we consider the fundamental rational solution, where 

we take .N = 1 and .n1 = 1 in Theorem 2.20. In addition, we normalize . a1,1 −
c1,1,1 = 0 by a coordinate shift. Performing simple calculations, we can reduce the 

.τn,k function to 

.τn,k = m
(n,k)
1,1 = ξ ξ̄ + Δ, Δ = |p1|2

(p1 + p∗
1)

2
, (2.1010) 

where 

.ξ = ax + by + ct + θ(n, k), ξ̄ = a∗x + b∗y + c∗t − θ∗(n, k), (2.1011) 

and a, b, c, . θ are complex coefficients given by 

. a = 1

V11V22 − V12V21

⎾
− 1

p1
γ1V22 + p1

(p1 − i)2
γ2V12 + p1γ3(V12 − V22)

⏋
,

b = 1

V11V22 − V12V21

⎾
1

p1
γ1V21 − p1

(p1 − i)2
γ2V11 + p1γ3(V21 − V11)

⏋
,

c = γ3p1, θ(n, k) = k + np1

p1 − i
.

To derive the condition for rogue waves, we separate the real and imaginary parts 

of the above complex variables as 

. p1 = p1,1 + ip1,2, a = a1 + ia2, b = b1 + ib2, c = c1 + ic2, θ = θ1 + iθ2.

(2.1012) 

Then, the .τn,k solution (2.1010) can be rewritten as 

.τn,k = ξ21 + ξ22 − 2iθ1ξ2 + 2iθ2ξ1 − θ21 − θ22 + Δ, (2.1013) 

where 

.ξ1 = a1x + b1y + c1t, ξ2 = a2x + b2y + c2t. (2.1014) 

We can readily show that under the velocity assumption of .V11V22 − V12V21 /= 0, 

the three ratios of .a1/a2, b1/b2 and .c1/c2 cannot be all the same. Then, the above 

fundamental rational solution has two distinctively different dynamical behaviours 

depending on the ratio relations between .a1/a2 and .b1/b2.
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1. If .
a1
a2

/= b1
b2
, then along the .[x(t), y(t)] trajectory where 

.a1x + b1y = −c1t, a2x + b2y = −c2t, (2.1015) 

the above .τn,k is a constant. The corresponding solution .(q1, q2, q3) is an 

algebraic localized lump soliton moving on the constant background (2.973). 

2. If . a1
a2

= b1
b2

/= c1
c2
, then the . a1

a2
= b1

b2
equation yields the following parameter 

condition 

. 

(p1,2 − 1)(p2
1,1 + p2

1,2)
2

γ1
−

p1,2[p2
1,1 + (p1,2 − 1)2]2

γ2

−
p2
1,1 + p2

1,2 − p1,2

γ3
= 0. (2.1016) 

In this case, the corresponding solution .(q1, q2, q3) approaches the constant 

background (2.973) in the entire .(x, y) plane when .t → ±∞. In the intermediate 

times, it rises to a higher amplitude. Since .a1/a2 = b1/b2, this solution depends 

on .(x, y) through the combination of .a1x + b1y. Thus, this is a line rogue wave. 

For non-fundamental rational solutions in Theorem 2.20, in order for them 

to be rogue waves that arise from the constant background (2.973), we need to 

require all parameters .pi .(1 ≤ i ≤ N) to satisfy the above condition (2.1016), 

where .p1,1 is replaced by .pi,1 and .p1,2 replaced by . pi,2, with .(pi,1, pi,2) being 

the real and imaginary parts of the complex parameter . pi . 

The condition (2.1016) can be further simplified. When .(p1,1, p1,2) are 

replaced by the more general .(pi,1, pi,2), the simplified condition can be 

expressed as a quartic equation for .pi,1 as 

.χ0p
4
i,1 + χ1p

2
i,1 + χ2 = 0, (2.1017) 

where the coefficients are 

. χ0 = (pi,2 − 1)γ −1
1 − pi,2γ

−1
2 ,

χ1 = 2
(
pi,2 − 1

)
p2

i,2γ
−1
1 − 2pi,2

(
pi,2 − 1

)2
γ −1
2 − γ −1

3 ,

χ2 = pi,2

(
pi,2 − 1

) ⎾
p3

i,2γ
−1
1 −

(
pi,2 − 1

)3
γ −1
2 − γ −1

3

⏋
.

The fundamental rogue wave is given by Eq. (2.1010), with . p1 satisfying the 

condition (2.1017). This fundamental rogue wave can be written more explicitly as 

.|qi(x, t)| =
||||ρi

gi

f

|||| , i = 1, 2, 3, (2.1018)
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where 

. f = (a1x + b1y + c1t)
2 + 1

ζ 2
0

(a1x + b1y + ζ0c2t)
2 + |p1|2

(p1 + p∗
1)

2
,

g1 = f − 2iθ̂1

ζ0
(a1x + b1y + ζ0c2t) + 2iθ̂2(a1x + b1y + c1t) − θ̂21 − θ̂22 ,

g2 = f + 2i

ζ0
(a1x + b1y + ζ0c2t) − 1,

g3 = f + 2i(θ̂1 − 1)

ζ0
(a1x + b1y + ζ0c2t)

−2iθ̂2(a1x + b1y + c1t) − (θ̂1 − 1)2 − θ̂22 ,

parameters .(a1, b1, c1, c2) are given by Eq. (2.1012), and 

. ζ0 = a1

a2
, θ̂1 = ℜ

⎛
p1

p1 − i

⎞
, θ̂2 = 𝔍

⎛
p1

p1 − i

⎞
.

Here, . ℜ and . 𝔍 represent the real and imaginary parts of a complex number 

respectively. 

To demonstrate this fundamental rogue wave, we choose nonlinear coefficients, 

background amplitudes and velocity values as 

. ϵ1 = −ϵ2 = ϵ3 = 1, ρ1 = ρ2 = ρ3 = 1, V1,1 = 6, V1,2 = 5, V2,1 = 4, V2,2 = 3.

(2.1019) 

In addition, we choose .p1 = 0.5 + 0.5i, which satisfies the condition (2.1017). For 

these choices of parameters, the corresponding rogue wave is displayed in Fig. 2.30. 

It is seen that this is a line rogue wave with a single dominant peak. 

To get multi-rogue waves, we set .N > 1 and . n1 = n2 = · · · = nN = 1

in the rational solutions of Theorem 2.20, and require all . pi values to satisfy 

condition (2.1017). To demonstrate, we choose .N = 2 and the same nonlinear 

coefficients, background amplitudes and velocity values as in (2.1019). In addition, 

we choose 

. p1 = −0.539770966 + 0.3i, p2 = 1.904662796 + 0.65i, a1,1 = a1,2 = 0.

(2.1020)
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Fig. 2.30 A fundamental line rogue wave in the two-dimensional three-wave system (2.972) with 

parameter choices (2.1019) and .p = 0.5 + 0.5i. In all panels, . −10 ≤ x, y ≤ 10

Notice that these .(p1, p2) values satisfy conditions (2.1017), because we obtained 

their real parts by solving the quartic equation (2.1017), with their imaginary parts 

set as .0.3 and .0.65 respectively. The corresponding two-rogue wave solution is 

displayed in Fig. 2.31. We see that this rogue wave features two intersecting lines, 

indicating that this solution describes the interaction between two fundamental line 

rogue waves. Interestingly, at the intersection point between the two line rogue 

waves, the .|q2| component has higher amplitude, but the .(|q1|, |q3|) components 

have lower amplitudes.
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Fig. 2.31 A two-rogue wave 

solution in the 

two-dimensional three-wave 

system (2.972) with  

parameter choices 

(2.1019)–(2.1020). In these 

panels, .−100 ≤ x ≤ 0 and 

.−50 ≤ y ≤ 0 in the first row, 

.−50 ≤ x ≤ 50 and 

.−25 ≤ y ≤ 25 in the second 

to fourth rows, and 

.0 ≤ x ≤ 100, .0 ≤ y ≤ 50 in 

the last row. These . (x, y)

intervals in different rows are 

different because the 

intersection point of the two 

line rogue waves is moving



Chapter 3 

Rogue Wave Patterns  

In this chapter, we study rogue wave patterns. This is an important question, because 

if such patterns are known, this information would allow for the prediction of later 

rogue wave events from earlier wave forms, providing an opportunity for proactive 

action in the face of damaging natural events. In the literature, graphs of low-order 

rogue waves have been plotted for many integrable equations, and simple patterns 

such as triangles (i.e., rogue triplets) have been reported (see Chap. 2). But richer 

patterns arising from higher-order rogue wave solutions have been challenging to 

predict, partially because higher-order rogue wave solutions have more complicated 

expressions and even their numerical plotting can be difficult. In this chapter, we 

will develop analytical frameworks to predict rogue patterns for arbitrary orders. 

Our basic observation is that, clear rogue patterns would appear when certain 

internal parameters in the rogue wave solutions get large. The resulting patterns 

manifest as triangles, pentagons, heptagons, rings, and other shapes, in the spatial-

temporal plane or just the spatial plane. Since these patterns arise under large 

internal parameters, we will develop an asymptotic theory for their prediction. We 

will show that these patterns can be asymptotically predicted by root structures of 

certain special polynomials, such as the Yablonskii-Vorob’ev polynomial hierarchy, 

Adler-Moser polynomials, and Okamoto polynomial hierarchies, in the (1+1)-

dimensional case, and by root curves of certain double-real-variable polynomials 

in the (2+1)-dimensional case. In addition, these patterns are often universal in 

the sense that they would arise in many different integrable systems. If all internal 

parameters are zero but the order of the rogue wave is large, one often gets super 

rogue waves of high order. Asymptotic profiles of super rogue waves at high order in 

the nonlinear Schrödinger equation will also be presented at the end of this chapter. 

We start with universal rogue patterns associated with root structures of the 

Yablonskii-Vorob’ev polynomial hierarchy. 
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3.1 Rogue Patterns Associated with the Yablonskii-Vorob’ev 

Polynomial Hierarchy 

In many integrable systems, patterns of rogue waves under a single large internal 

parameter are predicted by root structures of the Yablonskii-Vorob’ev polynomial 

hierarchy. This finding was first reported by Yang and Yang (2021a) for  the  

nonlinear Schrödinger equation and then extended to several other integrable 

systems in Yang and Yang (2021c). Such rogue patterns are studied in this section. 

3.1.1 The Yablonskii-Vorob’ev Polynomial Hierarchy and 

Their Root Structures 

Yablonskii-Vorob’ev polynomials arose in rational solutions of the second Painlevé 

(. PII) equation 

.w'' = 2w3 + zw + α, (3.1) 

where . α is an arbitrary constant. This . PII equation admits rational solutions if and 

only if .α = N is an integer (Umemura and Watanabe 1998). In this case, the rational 

solution is unique and is expressed by Yablonskii (1959) and Vorob’ev (1965) as  

. w(z;N) = d

dz
ln

QN−1(z)

QN (z)
, N ≥ 1, . (3.2) 

w(z; 0) = 0, w(z;−N)  = −w(z; N), (3.3) 

where polynomials .QN (z), now called the Yablonskii-Vorob’ev polynomials, are 

constructed by the following recurrence relation 

.QN+1QN−1 = zQ2
N − 4

⎾
QNQ''

N − (Q'
N )2

⏋
, (3.4) 

with .Q0(z) = 1, .Q1(z) = z, and the prime denoting the derivative. Later, a 

determinant expression for these polynomials was found by Kajiwara and Ohta 

(1996). Let .pk(z) be the special Schur polynomial defined by 

.

∞⎲

k=0

pk(z)ϵ
k = exp

⎛
zϵ − 4

3
ϵ3
⎞

. (3.5) 

Then, Yablonskii-Vorob’ev polynomials .QN (z) are given by the .N ×N determinant 

(Kajiwara and Ohta 1996)
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. QN (z) = cN

|||||||||

p1(z) p0(z) · · · p2−N (z)

p3(z) p2(z) · · · p4−N (z)
...

...
...

...

p2N−1(z) p2N−2(z) · · · pN (z)

|||||||||
, (3.6) 

where .cN =
∏N

j=1(2j − 1)!!, and .pk(z) = 0 if .k < 0. This determinant is a 

Wronskian since it is easy to see from Eq. (3.5) that .pk(z) = p'
k+1(z). These 

polynomials are monic with integer coefficients (Clarkson and Mansfield 2003). 

The first few Yablonskii-Vorob’ev polynomials are 

. Q1(z) = z,

Q2(z) = z3 + 4,

Q3(z) = z6 + 20z3 − 80,

Q4(z) = z(z9 + 60z6 + 11200).

To define the Yablonskii-Vorob’ev polynomial hierarchy, we let .p
[m]
k (z) be the 

generalized Schur polynomial defined by 

.

∞⎲

k=0

p
[m]
k (z)ϵk = exp

⎛
zϵ − 22m

2m + 1
ϵ2m+1

⎞
, (3.7) 

where m is a positive integer. Then, the Yablonskii-Vorob’ev hierarchy .Q
[m]
N (z) are 

given by the .N × N determinant (Clarkson and Mansfield 2003) 

. Q
[m]
N (z) = cN

||||||||||

p
[m]
1 (z) p

[m]
0 (z) · · · p

[m]
2−N (z)

p
[m]
3 (z) p

[m]
2 (z) · · · p

[m]
4−N (z)

...
...

...
...

p
[m]
2N−1(z) p

[m]
2N−2(z) · · · p

[m]
N (z)

||||||||||

, (3.8) 

where .p
[m]
k (z) = 0 if .k < 0. When .m = 1, .Q

[1]
N (z) are the original Yablonskii-

Vorob’ev polynomials .QN (z). When .m > 1, .Q
[m]
N (z) give higher members of this 

polynomial hierarchy. All these .Q
[m]
N (z) polynomials were conjectured to be monic 

polynomials with integer coefficients as well (Clarkson and Mansfield 2003). The 

first few .Q
[2]
N (z) polynomials are 

. Q
[2]
1 (z) = z,

Q
[2]
2 (z) = z3,

Q
[2]
3 (z) = z(z5 − 144),
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Q
[2] 
4 (z) = z10 − 1008z5 − 48384. 

These .Q
[m]
N (z) polynomials, through relations similar to (3.2)–(3.3), provide the 

unique rational solution for the . PII hierarchy (Clarkson and Mansfield 2003; Balogh 

et al. 2016). It is noted that the determinant (3.8) for  .Q
[m]
N (z) is also a Wronskian, 

because it is easy to see from Eq. (3.7) that 

.p
[m]
k (z) = [p[m]

k+1]
'(z). (3.9) 

Root structures of the Yablonskii-Vorob’ev polynomial hierarchy have been 

studied before (Fukutani et al. 2000; Taneda 2000; Clarkson and Mansfield 2003; 

Buckingham and Miller 2014; Balogh et al. 2016). Regarding the zero root, its 

multiplicities in .QN (z), .Q
[2]
N (z) and .Q

[3]
N (z) were presented in Taneda (2000) and 

Clarkson and Mansfield (2003). Generalizing those results, we have the following 

theorem (Yang and Yang 2021a). 

Theorem 3.1 The Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) has degree 

.N(N + 1)/2, and is of the form 

.Q
[m]
N (z) = zN0(N0+1)/2q

[m]
N (ζ ), ζ = z2m+1, (3.10) 

where .q
[m]
N (ζ ) is a polynomial with a nonzero constant term, and the integer . N0 is 

determined from .(N,m) by the formula 

.N0 =
⎧

N mod (2m + 1), if 0 ≤ N mod (2m + 1) ≤ m,

2m − [N mod (2m + 1)] , if N mod (2m + 1) > m.
(3.11) 

This theorem gives the multiplicity of the root zero in any .Q
[m]
N (z) polynomial. It 

also shows that the root structure of .Q
[m]
N (z) is invariant under .2π/(2m + 1)-angle 

rotation in the complex z plane. In the particular case of the original Yablonskii-

Vorob’ev polynomials .QN (z) where .m = 1, the above theorem shows that . 0 ≤
N0 ≤ 1. This means that zero is either not a root or a simple root of .QN (z), in  

agreement with previous results in Fukutani et al. (2000) and Taneda (2000). 

Regarding nonzero roots, it was shown by Fukutani et al. (2000) that for the 

original Yablonskii-Vorob’ev polynomials .QN (z), all nonzero roots are simple. For 

the higher Yablonskii-Vorob’ev hierarchy polynomials .Q
[m]
N (z), it was conjectured 

by Clarkson and Mansfield (2003) that all nonzero roots are also simple. In view of 

Theorem 3.1, this conjecture implies that the polynomial .Q
[m]
N (z) has 

.Np = 1

2
[N(N + 1) − N0(N0 + 1)] (3.12) 

nonzero simple roots.
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Fig. 3.1 Plots of the roots of the Yablonskii-Vorob’ev polynomial hierarchy .Q
[m]
N (z) in the 

complex z plane for .2 ≤ N ≤ 5 and .1 ≤ m ≤ N − 1. In all panels, the real and imaginary 

axes of z are on the same .[−7, 7] interval 

Roots of many .Q
[m]
N (z) polynomials were plotted in Clarkson and Mansfield 

(2003), and highly regular and symmetric patterns were observed. Due to the 

importance of these root structures to our work, we reproduce those root plots in 

Fig. 3.1 for .2 ≤ N ≤ 5 and .1 ≤ m ≤ N − 1. It is seen that the exteriors of these 

roots form triangles, pentagons, heptagons, and so on, depending on the value of 

m. In addition, all nonzero roots are simple, while the zero root may have higher 

multiplicity according to the above formula (3.10). Boundaries of these roots in 

.Q
[m]
N (z) in the large-N limit are analytically determined by Buckingham and Miller 

(2014) and Balogh et al. (2016). 

It turns out that these Yablonskii-Vorob’ev hierarchy polynomials and their root 

structures play an important role in the prediction of rogue wave patterns in many 

integrable systems. This will be elaborated in the rest of this section.
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3.1.2 Nonlinear Schrödinger Equation 

The nonlinear Schrödinger (NLS) equation is 

.iut + 1

2
uxx + |u|2u = 0. (3.13) 

Rogue patterns in this equation have been studied by Kedziora et al. (2011), He et al. 

(2013) and Kedziora et al. (2013) through Darboux transformation and numerical 

simulations. It was observed by Kedziora et al. (2011) that if a N -th order rogue 

wave exhibits a single-shell ring structure, then the center of the ring is a .(N − 2)-

th order rogue wave. This observation was explained analytically by He et al. 

(2013). Kedziora et al. (2013) observed that NLS rogue patterns could be classified 

according to the order of the rogue waves and the parameter shifts applied to the 

Akhmediev breathers in the rogue-wave limit. This latter observation allowed the 

authors to extrapolate the shapes of rogue waves beyond order six, where numerical 

plotting of rogue waves became difficult. Rogue patterns in the NLS equation 

were analytically investigated by Yang and Yang (2021a) when one of the internal 

parameters in the rogue wave solutions gets large. It was discovered that such 

rogue patterns could be predicted by root structures of the Yablonskii-Vorob’ev 

polynomial hierarchy. Those results in Yang and Yang (2021a) are described below. 

General rogue waves in the NLS equation (3.13) satisfying the boundary 

conditions of .u(x, t) → eit as .x, t → ±∞ have been presented in Sect. 2.1.1. 

For the convenience of the reader, we reproduce those solutions first. 

Lemma 3.1 General nonsingular rogue waves in the NLS equation (3.13) are  

given by 

. uN (x, t) = σ1

σ0
eit , (3.14) 

where the positive integer N represents the order of the rogue wave, 

.σn = det
1≤i,j≤N

⎛
φ

(n)
2i−1,2j−1

⎞
, (3.15) 

.φ
(n)
i,j =

min(i,j)⎲

ν=0

1

4ν
Si−ν(x

+(n) + νs) Sj−ν(x
−(n) + νs), (3.16) 

vectors .x±(n) =
(
x±
1 , 0, x±

3 , 0, · · ·
)

are defined by 

.x±
1 = x ± it ± n, x+

2k+1 = x + 22k(it)

(2k + 1)! + a2k+1, x−
2k+1 = (x+

2k+1)
∗, (3.17)
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with .k ≥ 1 and the asterisk * representing complex conjugation, . s =
(0, s2, 0, s4, · · · ) are coefficients from the expansion 

.

∞⎲

k=1

skλ
k = ln

⎾
2

λ
tanh

⎛
λ

2

⎞⏋
, (3.18) 

and .a3, a5, . . . , a2N−1 are free irreducible complex constants. 

Rogue wave solutions in this theorem contain .N − 1 free internal complex 

parameters .a3, a5, · · · , a2N−1. In this section, we consider asymptotic patterns of 

these rogue solutions when one of these internal parameters is large (in amplitude), 

while the other parameters remain .O(1). 

Suppose .|a2m+1| is large for a certain integer m, where .1 ≤ m ≤ N − 1, 

and the other .a2j+1 parameters are .O(1). Then, large-.a2m+1 asymptotics of rogue 

waves .uN (x, t) in Lemma 3.1 were obtained by Yang and Yang (2021a) and are 

summarized in the following two theorems. 

Theorem 3.2 If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial 

.Q
[m]
N (z) are all simple, then far away from the origin of the .(x, t) plane, with 

.

√
x2 + t2 = O

(
|a2m+1|1/(2m+1)

)
, the  N -th order rogue wave .uN (x, t) would split 

into .Np fundamental (Peregrine) rogue waves, where .Np is given in Eq. (3.12). 

These Peregrine waves are .û1(x − x̂0, t − t̂0) eit , where 

.û1(x, t) = 1 − 4(1 + 2it)

1 + 4x2 + 4t2
, (3.19) 

and their positions .(x̂0, t̂0) are given by 

. x̂0 + i t̂0 = Ωz0, (3.20) 

where 

.Ω = [−(2m + 1)2−2ma2m+1]1/(2m+1), (3.21) 

and . z0 is any one of the .Np simple nonzero roots of .Q
[m]
N (z). The error of this 

Peregrine wave approximation is .O(|a2m+1|−1/(2m+1)). Expressed mathematically, 

when .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the following solution asymptotics 

. uN (x, t; a3, a5, · · · , a2N−1) = û1(x − x̂0, t − t̂0) eit + O
⎛
|a2m+1|−1/(2m+1)

⎞
.

(3.22) 

When .(x, t) is not in the neighborhood of any of these .Np Peregrine waves, or 

.

√
x2 + t2 is larger than .O

(
|a2m+1|1/(2m+1)

)
, .uN (x, t) asymptotically approaches 

the constant background . eit as .|a2m+1| → ∞.
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Theorem 3.3 In the neighborhood of the origin, where .x2 + t2 = O(1), . uN (x, t)

is approximately a lower .N0-th order rogue wave .uN0
(x, t), where .N0 is given 

in Eq. (3.11), .0 ≤ N0 ≤ N − 2, and .uN0
(x, t) is given by Eq. (3.14) with 

its internal parameters .a3, a5, · · · , a2N0−1 being the first .N0 − 1 values in the 

parameter set .(a3, a5, · · · , a2N−1) of the original rogue wave .uN (x, t). The error of 

this lower-order rogue wave approximation .uN0
(x, t) is .O(|a2m+1|−1). Expressed 

mathematically, when .x2 + t2 = O(1), 

. uN (x, t; a3, a5, · · · , a2N−1) = uN0
(x, t; a3, a5, · · · , a2N0−1) + O

⎛
|a2m+1|−1

⎞
.

(3.23) 

If .N0 = 0, then there will not be such a lower-order rogue wave in the neighborhood 

of the origin, and .uN (x, t) asymptotically approaches the constant background . eit

there as .|a2m+1| → ∞. 

These two theorems will be proved later in this section. 

Remark 3.1 Theorem 3.2 predicts that when .|a2m+1| is large, the N -th order rogue 

wave (3.14) far away from the origin comprises . Np Peregrine waves. The rogue 

pattern formed by these Peregrine waves has the same geometric shape as the root 

structure of the polynomial .Q
[m]
N (z), and thus this rogue pattern has .2π/(2m + 1)-

angle rotational symmetry. The only difference between the predicted rogue pattern 

and the root structure of .Q
[m]
N (z) is a dilation and rotation between them due to the 

multiplication factor on the right side of Eq. (3.20). The angle of rotation is equal to 

the angle of the complex number .−a2m+1 divided by .2m+1, and the dilation factor 

is equal to .[(2m + 1)2−2m|a2m+1|]1/(2m+1). 

Remark 3.2 In Eq. (3.21), we can pick any one of the .(2m + 1)-th root of . −(2m +
1)2−2ma2m+1 as . Ω , because roots . z0 of the polynomial .Q

[m]
N (z) in Eq. (3.20) have  

.2π/(2m + 1)-angle rotational symmetry, see the comment in the paragraph below 

Theorem 3.1. 

Comparison Between True Rogue Patterns and Analytical Predictions 

Now, we compare true rogue patterns with our analytical predictions in the 

above two theorems. For this purpose, we first show in Fig. 3.2 true rogue wave 

solutions (3.14) from the 2rd to 7th order, with large . a3, . a5, . a7, . a9, .a11 and . a13
in the first to sixth columns respectively. The specific value of the large parameter 

in each panel of this figure is listed in Table 3.1, and the other parameters in each 

solution are chosen as zero. 

It is seen from Fig. 3.2 that these rogue waves comprise a number of Peregrine 

waves forming triangular patterns for large . a3, pentagon patterns for large . a5, 

heptagon patterns for large . a7, nonagon patterns for large . a9, hendecagon (eleven-

sided polygon) patterns for large . a11, and tridecagon (thirteen-sided polygon) 

patterns for large . a13. In addition to these Peregrine waves away from the origin, 

some of the rogue waves also contain a lower-order rogue wave at their centers.
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Fig. 3.2 True NLS rogue wave patterns .|uN (x, t; a3, a5, · · · , a2N−1)| from solutions (3.14) when  

N ranges from 2 to 7 and one of the solution parameters is large (the other parameters are set as 

zero). The large parameter is labeled on top of each column, and its value for each panel is listed 

in Table 3.1. The center of each panel is always the origin .x = t = 0, but  the .(x, t) intervals differ 

slightly from panel to panel. For instance, in the bottom row, the left-most panel has . −18.5 ≤
x, t ≤ 18.5, and the right-most panel has . −16 ≤ x, t ≤ 16

Table 3.1 Value of the large parameter for NLS rogue waves in Fig. 3.2 

N .a3 .a5 .a7 .a9 .a11 . a13

2 . −100i

3 .−60i . −1000i

4 .−30i .−300i . −3000i

5 .−20i .−100i .−2000i . −12,000i

6 .−20i .−200i .−2000i .−20,000i . −80,000i

7 .−20i .−200i .−2000i .−30,000i .−100,000i .−300,000i
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Table 3.2 Predicted 

.(Np, N0) values for true NLS 

rogue waves of Fig. 3.2 

N .m = 1 .m = 2 .m = 3 .m = 4 .m = 5 . m = 6

2 (3, 0) 

3 (6, 0) (5, 1) 

4 (9, 1) (10, 0) (7, 2) 

5 (15, 0) (15, 0) (14, 1) (9, 3) 

6 (21, 0) (20, 1) (21, 0) (18, 2) (11, 4) 

7 (27, 1) (25, 2) (28, 0) (27, 1) (22, 3) (13, 5) 

For instance, for the 7-th order rogue waves in the bottom row of Fig. 3.2, the first 

and fourth panels (with large . a3 and . a9 respectively) exhibit a Peregrine wave in 

their centers; the second panel (with large . a5) exhibits a second-order rogue wave 

in the center; the fifth panel (with large . a11) exhibits a third-order rogue wave in 

the center; and the last panel (with large . a13) exhibits a fifth-order rogue wave in 

the center. For our choices of parameters in rogue waves of Fig. 3.2, these lower-

order rogue waves in the center are all super-rogue waves, i.e., rogue waves with the 

highest peak amplitude of their orders. 

Now, we compare these true rogue patterns in Fig. 3.2 with our analytical 

predictions. Our prediction .|u(p)
N (x, t)| from Theorems 3.2 and 3.3 can be assembled 

into a simple formula, 

.

|||u(p)
N (x, t)

||| =
||uN0

(x, t)
||+

Np⎲

j=1

⎛|||û1(x − x̂
(j)

0 , t − t̂
(j)

0 )

|||− 1
⎞

, (3.24) 

where .û1(x, t) is the Peregrine wave given in (3.19), their positions . (x̂
(j)

0 , t̂
(j)

0 )

given by (3.20) with . z0 being every one of the .Np simple nonzero roots of 

.Q
[m]
N (z), and .uN0

(x, t) is the lower-order rogue wave in Eq. (3.23) whose internal 

parameters .(a3, a5, · · · , a2N0−1) are the first .N0 − 1 values in the parameter set 

.(a3, a5, · · · , a2N−1) of the original rogue wave .uN (x, t). For true rogue waves in 

Fig. 3.2, all internal parameters except for .a2m+1 were chosen as zero, and .N0 ≤ m. 

Then, all internal parameters in the predicted lower-order rogue wave .uN0
(x, t) at 

the origin are zero, which give super rogue waves (see Sect. 2.1.2). 

Our predicted .(Np, N0) values for rogue waves of Fig. 3.2 are displayed in 

Table 3.2, where .m = 1, 2, · · · , 6 correspond to large .a3, a5, · · · , a13 respectively. 

These .(Np, N0) values provide our predictions for the number of Peregrine waves 

away from the origin .(x, t) = (0, 0), as well as the order of the reduced rogue wave 

in the neighborhood of the origin. Visual comparison between Table 3.2 and Fig. 3.2 

shows complete agreement. 

We further compare our predicted whole solutions (3.24) with the true solutions 

of Fig. 3.2 for the same sets of .(a3, a5, · · · ) parameter values. These predicted 

whole solutions (3.24) are displayed in Fig. 3.3, with identical .(x, t) intervals as 

in Fig. 3.2’s true solutions. It is seen that the predicted patterns are strikingly similar 

to the true ones. In particular, since our predicted Peregrine locations (3.20) in
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Fig. 3.3 Analytical predictions (3.24) for true rogue waves in Fig. 3.2. The  x and t intervals here 

are identical to those in Fig. 3.2 

the .(x, t) plane are given by all the non-zero roots of the Yablonskii-Vorob’ev 

polynomials .Q
[m]
N (z), multiplied by a fixed complex constant, predicted patterns 

formed by these Peregrine waves then are simply the root structures of these 

Yablonskii-Vorob’ev polynomials under certain rotation and dilation, as is evident 

by comparing predicted rogue waves in Fig. 3.3 to the Yablonskii-Vorob’ev root 

structures in Fig. 3.1. These predicted Peregrine patterns clearly match the true ones 

in Fig. 3.2 very well. This visual agreement shows the deep connection between 

NLS rogue patterns and root structures of the Yablonskii-Vorob’ev hierarchy, as our 

Theorem 3.2 reveals. 

Regarding our predictions .uN0
(x, t) for centers of the rogue waves .uN (x, t) in 

Fig. 3.2, we have shown that they are all lower-order super-rogue waves, which 

agree with centers of true solutions in Fig. 3.2.
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Fig. 3.4 Decay of errors in our prediction (3.20) for the Peregrine location as .|a3| or .|a5| increases. 
(a) A triangle pattern of 3rd-order rogue waves when .|a3| is large and arg.(a3) = −π/4. (b) Error  

versus .|a3| for the Peregrine location marked by an arrow in (a). (c) A pentagon pattern of 3rd-

order rogue waves when .|a5| is large with arg.(a5) = −π/4. (b) Error versus .|a5| for the Peregrine 
location marked by an arrow in (c) 

Next, we make quantitative comparisons between true rogue waves and our pre-

dictions for large .a2m+1, and verify the error decay rate of .O(|a2m+1|−1/(2m+1)) for 

the prediction of Peregrine-wave locations far away from the origin in Theorem 3.2, 

and the error decay rate of .O(|a2m+1|−1) for the prediction of the lower-order rogue 

wave at the center in Theorem 3.3. 

For the quantitative comparison on Peregrine-wave locations away from the 

origin, we choose two patterns of 3rd-order rogue waves. One is a triangle pattern 

from large . a3, and we set arg.(a3) = −π/4; and the other is a pentagon pattern 

from large . a5, and we set . a5 to be real positive. In each pattern, we choose all other 

parameters of the rogue wave solutions to be zero. These triangul and pentagon 

patterns are shown schematically in Fig. 3.4a and c respectively. In each of these 

two patterns, we pick one of its Peregrine waves, which is marked by an arrow, and 

quantitatively compare its true .(x0, t0) location with our analytical prediction (3.20) 

as .|a3| or .|a5| increases. Here, the true location of the Peregrine wave is defined as 
the .(x0, t0) location where this Peregrine wave attains its maximum amplitude, and 

the error of our asymptotic prediction .(x̂0, t̂0) in Eq. (3.20) is defined as 

.error of Peregrine location =
/(

x̂0 − x0
)2 +

(
t̂0 − t0

)2
. (3.25) 

These errors of Peregrine locations versus .|a3| or .|a5| are plotted as solid lines in 
panels (b) and (d) of Fig. 3.4 for the triangular and pentagon patterns respectively. 

For comparison, the decay rates of .|a3|−1/3 and .|a5|−1/5 are also displayed in these 

panels as dashed lines. We see that these errors of Peregrine locations indeed decay 

at the rate of .|a2m+1|−1/(2m+1), thus confirming the analytical error estimates (3.22) 

in Theorem 3.2. 

To quantitatively compare our prediction in Theorem 3.3 on the lower-order 

rogue wave at the center with the true solution, we choose a fifth-order rogue wave 

.u5(x, t) with large . a9 and the other internal parameters set as zero. This . |u5(x, t)|
solution with .a9 = −5000i is displayed in Fig. 3.5a. The center region of this wave 

marked by a dashed-line box in panel (a) is amplified and replotted in panel (b).
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Fig. 3.5 Decay of errors in our prediction .u
[p]
3 (x, t) for the center region of the rogue wave 

.u5(x, t) with large . a9. (a) A true 5-th order rogue wave .|u5(x, t)| with .a9 = −5000i and the 

other parameters being zero; the .(x, t) intervals here are .−12 ≤ x, t ≤ 12. (b) Zoomed-in plot of 

the center region of the true solution marked by a dashed-line box in panel (a). (c) Our prediction 

.|u[p]
3 (x, t)| for the center region with the same .(x, t) intervals as in (b). (d) Error decay of our 

predicted solution at the .(x, t) location of .(0.5, 0.5) as . a9 increases in size with arg. (a9) = −π/2

In the present case, .N = 5 and .m = 4. Since .5 ≡ −4 mod 9, we get . N0 = 3

from Eq. (3.11). Thus, according to Theorem 3.3, this  .u5(x, t) solution contains a 

3rd-order rogue wave .u
[p]
3 (x, t) in its center region, where all internal parameters 

.(a3, a5) in this .u
[p]
3 (x, t) solution are zero. Such a .u

[p]
3 (x, t) solution is a third-order 

super rogue wave. This predicted .|u[p]
3 (x, t)| solution is displayed in Fig. 3.5c, with 

the same .(x, t) internals as in the true center-region solution displayed in panel (b). 

Visually, this predicted center solution in (c) is identical to the true center solution 

in (b). Quantitatively, we have also obtained the errors in our predicted solution 

.u
[p]
3 (x, t) at .x = t = 0.5 of the center region as . a9 increases in magnitude with 

arg.(a9) = −π/2. Our error is defined as 

.error of center region prediction =
|||u5(x, t) − u

[p]
3 (x, t)

|||
x=t=0.5

. (3.26) 

The dependence of this error on .|a9| is plotted in Fig. 3.5d. Comparison of this error 

decay with the .|a9|−1 decay [shown as a dashed line in panel (d)] indicates that this 

error is indeed of .O(|a9|−1), confirming the error prediction (3.23) in Theorem 3.3. 

Proofs of Pattern Predictions 

Below, we prove the analytical predictions on NLS rogue patterns in Theorems 3.2 

and 3.3. Our proof is based on an asymptotic analysis of the rogue wave solu-

tion (3.14), or equivalently, the determinant . σn in Eq. (3.15), in the large . a2m+1

limit. 

Proof When .a2m+1 is large and the other parameters .O(1) in the rogue wave 

solution (3.14), at .(x, t) where .

√
x2 + t2 = O

(
|a2m+1|1/(2m+1)

)
, by denoting 

.λ = a
−1/(2m+1)
2m+1 (3.27)
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and recalling the definition of Schur polynomials in Eq. (2.2), we have 

. Sk(x
+(n) + νs) = Sk

(
x+
1 , νs2, x

+
3 , νs4, · · ·

)

= λ−kSk

⎛
x+
1 λ, νs2λ

2, x+
3 λ3, νs4λ

4, · · ·
⎞

∼ λ−kSk [(x + it)λ, 0, · · · , 0, 1, 0, · · · ]
= Sk (x + it, 0, · · · , 0, a2m+1, 0, · · · ) . (3.28) 

Thus, 

.Sk(x
+(n) + νs) ∼ Sk(v), |a2m+1| ⪢ 1, (3.29) 

where 

.v = (x + it, 0, · · · , 0, a2m+1, 0, · · · ). (3.30) 

From the definition of Schur polynomials, .Sk(v) is given by 

.

∞⎲

k=0

Sk(v)ϵk = exp
⎾
(x + it)ϵ + a2m+1ϵ

2m+1
⏋
. (3.31) 

Thus, it is related to the polynomial .p
[m]
k (z) in (3.7) as  

.Sk(v) = Ωkp
[m]
k (z), (3.32) 

where . Ω is as defined in Eq. (3.21), and 

.z = Ω−1(x + it). (3.33) 

Using these formulae, we find that 

. det
1≤i,j≤N

⎾
S2i−j (x

+(n) + νs)
⏋

∼ c−1
N ΩN(N+1)/2Q

[m]
N (z), |a2m+1| ⪢ 1.

(3.34) 

Similarly, 

. det
1≤i,j≤N

⎾
S2i−j (x

−(n) + νs)
⏋

∼ c−1
N

(
Ω∗)N(N+1)/2

Q
[m]
N (z∗), |a2m+1| ⪢ 1.

(3.35) 

To proceed further, we use determinant identities and the Laplace expansion to 

rewrite . σn in Eq. (3.15) as
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. σn =
⎲

0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x+(n) + νj s)

⏋

× det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x−(n) + νj s)

⏋
, (3.36) 

see Eq. (2.77) in Sect. 2.1.1. Since the highest order term of .a2m+1 in this . σn comes 

from the index choices of .νj = j − 1, then 

.σn ∼ |α|2 |a2m+1|
N(N+1)
2m+1

|||Q[m]
N (z)

|||
2
, |a2m+1| ⪢ 1, (3.37) 

where 

.α = 2−N(N−1)/2c−1
N ΩN(N+1)/2. (3.38) 

Since . α is independent of n, the above equation shows that for large .a2m+1, . σ1/σ0 ∼
1, i.e., the solution .u(x, t) is on the unit-amplitude background . eit , except at or near 

.(x, t) locations .

(
x̂0, t̂0

)
where 

.z0 = Ω−1(x̂0 + it̂0) (3.39) 

is a root of the polynomial .Q
[m]
N (z), when this highest order term (3.37) vanishes. 

Such .

(
x̂0, t̂0

)
locations are given by Eq. (3.20) in view of Eq. (3.33). 

Next, we show that when .(x, t) is in the neighborhood of each of the . 
(
x̂0, t̂0

)

locations given by Eq. (3.20), i.e., when .(x − x̂0)
2 + (t − t̂0)

2 = O(1), the rogue 

wave .uN (x, t) in Eq. (3.14) approaches a Peregrine wave .û1(x − x̂0, t − t̂0) eit for 

large .a2m+1. The asymptotic analysis above indicates that when .(x, t) is in the 

neighborhood of .

(
x̂0, t̂0

)
, the highest power term .|a2m+1|

N(N+1)
2m+1 in .σ(x, t) vanishes. 

Thus, in order to determine the asymptotics of .uN (x, t) in that .(x, t) region, we 

need to derive the leading order term of .a2m+1 in Eq. (3.36) whose order is lower 

than .|a2m+1|
N(N+1)
2m+1 . For this purpose, we notice from Eq. (3.28) that when .(x, t) is in 

the neighborhood of .
(
x̂0, t̂0

)
, we have a more refined asymptotics for . Sk(x

+(n)+νs)

as 

. Sk(x
+(n) + νs) = λ−kSk

(
x+
1 λ, 0, · · · , 0, 1, 0, · · ·

) ⎾
1 + O(λ2)

⏋

= Sk

(
x+
1 , 0, · · · , 0, a2m+1, 0, · · ·

) ⎾
1 + O(λ2)

⏋
, (3.40) 

i.e., 

. Sk(x
+(n) + νs) = Sk(v̂)

⎾
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⏋
, (3.41) 

where
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.v̂ = (x + it + n, 0, · · · , 0, a2m+1, 0, · · · ). (3.42) 

The polynomials .Sk(v̂) are related to .p
[m]
k (z) in (3.7) as  

.Sk(v̂) = Ωkp
[m]
k (ẑ), (3.43) 

where . Ω is as given in Eq. (3.21), and .ẑ = Ω−1(x + it + n). 

Now, we derive the leading order term of .a2m+1 in the Laplace expansion (3.36). 

This leading order term comes from two index choices, one being . ν =
(0, 1, · · · , N − 1), and the other being .ν = (0, 1, · · · , N − 2, N). 

With the first index choice, in view of Eqs. (3.41) and (3.43), the determinant 

involving .x+(n) in Eq. (3.36) is  

.α a
N(N+1)
2(2m+1)

2m+1 Q
[m]
N (ẑ)

⎾
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⏋
, (3.44) 

where . α is given in Eq. (3.38). Expanding .Q
[m]
N (ẑ) around .ẑ = z0, where . z0 is given 

in Eq. (3.39), and recalling .Q
[m]
N (z0) = 0, we have  

. Q
[m]
N (ẑ) = Ω−1

⎾
(x − x̂0) + i(t − t̂0) + n

⏋ ⎾
Q

[m]
N

⏋'
(z0)

⎾
1 + O

⎛
Ω−1

⎞⏋
.

(3.45) 

Inserting this equation into (3.44), the determinant involving .x+(n) in Eq. (3.36) 

becomes 

. 

⎾
(x − x̂0) + i(t − t̂0) + n

⏋
α̂ a

N(N+1)−2
2(2m+1)

2m+1

⎾
Q

[m]
N

⏋'
(z0)

⎾
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⏋
,

(3.46) 

where .α̂ = α [−(2m + 1)2−2m]−1/(2m+1). Similarly, the determinant involving 

.x−(n) in Eq. (3.36) becomes 

. 

⎾
(x − x̂0) − i(t − t̂0)−n

⏋
α̂∗ (a∗

2m+1)
N(N+1)−2
2(2m+1)

⎾
Q

[m]
N

⏋'
(z∗

0)
⎾
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⏋
.

(3.47) 

Next, we consider the contribution in Eq. (3.36) from the second index choice of 

.ν = (0, 1, · · · , N − 2, N). For this index choice, the determinant involving . x+(n)

in Eq. (3.36) is  

. det
1≤i≤N

⎾
S2i−1(x

+),
1

2
S2i−2(x

+ + s), · · · ,
1

2N−2
S2i−(N−1)[x+ + (N − 2) s],

1

2N
S2i−(N+1)(x

+ + N s)

⏋
. (3.48)
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Utilizing Eqs. (3.41)–(3.43), this determinant is 

. 2−N(N−1)/2−1Ω(N(N+1)−2)/2 det
1≤i≤N

⎾
p

[m]
2i−1(ẑ), p

[m]
2i−2(ẑ), · · · , p

[m]
2i−(N−1)(ẑ), p

[m]
2i−(N+1)(ẑ)

⏋

×
⎾
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⏋
. (3.49) 

Recalling Eq. (3.9), we see that .p
[m]
2i−(N+1)(ẑ) = [p[m]

2i−N ]'(ẑ). Thus, the determinant 

in the above expression is equal to .c−1
N

⎾
Q

[m]
N

⏋'
(ẑ), so that the determinant (3.48) 

becomes 

.
1

2
α̂ a

N(N+1)−2
2(2m+1)

2m+1

⎾
Q

[m]
N

⏋'
(ẑ)

⎾
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⏋
. (3.50) 

When .(x, t) is in the neighborhood of .(x̂0, t̂0), we expand .

⎾
Q

[m]
N

⏋'
(ẑ) around . ̂z = z0

to reduce this expression further to 

.
1

2
α̂ a

N(N+1)−2
2(2m+1)

2m+1

⎾
Q

[m]
N

⏋'
(z0)

⎾
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⏋
. (3.51) 

Similarly, the determinant involving .x−(n) in Eq. (3.36) becomes 

.
1

2
α̂∗ (a∗

2m+1)
N(N+1)−2
2(2m+1)

⎾
Q

[m]
N

⏋'
(z∗

0)
⎾
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⏋
. (3.52) 

Summarizing the above two contributions, we find that 

. σn(x, t) = |α̂|2
||||
⎾
Q

[m]
N

⏋'
(z0)

||||
2

|a2m+1|
N(N+1)−2

(2m+1)

×
⎾(

x − x̂0
)2 +

(
t − t̂0

)2 − (2i)n
(
t − t̂0

)
− n2 + 1

4

⏋ ⎾
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⏋
.

(3.53) 

Finally, we recall our assumption that nonzero roots of .Q
[m]
N (z) are all simple. 

Then, .
⎾
Q

[m]
N

⏋'
(z0) /= 0. This indicates that the above leading-order asymptotics 

for .σn(x, t) never vanishes. Therefore, when .|a2m+1| is large and .(x, t) in the 

neighborhood of .

(
x̂0, t̂0

)
, we get from (3.53) that
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. uN (x, t) = σ1

σ0
eit = eit

⎛
1 − 4[1 + 2i(t − t̂0)]

1 + 4(x − x̂0)2 + 4(t − t̂0)2

⎞
+ O

⎛
a

−1/(2m+1)
2m+1

⎞
,

(3.54) 

which is a Peregrine wave .û1(x − x̂0, t − t̂0) eit , and the error of this Peregrine 

prediction is .O
⎛
a

−1/(2m+1)
2m+1

⎞
. Theorem 3.2 is then proved. 

Proof To analyze the large-.a2m+1 behavior of the rogue wave .uN (x, t) in the 

neighborhood of the origin, where .x2 + t2 = O(1), we first rewrite the . σn

determinant (3.15) into a .3N × 3N determinant (Ohta and Yang 2012a) 

.σn =
||||

ON×N ΦN×2N

−Ψ2N×N I2N×2N

|||| , (3.55) 

where .Φi,j = 2−(j−1)S2i−j

⎾
x+(n) + (j − 1)s

⏋
, and . Ψi,j = 2−(i−1)S2j−i

.

⎾
x−(n) + (i − 1)s

⏋
. Defining .y± to be the vector .x± without the .a2m+1 term, 

i.e., let 

. x+ = y+ + (0, · · · , 0, a2m+1, 0, · · · ), x− = y− + (0, · · · , 0, a∗
2m+1, 0, · · · ),

(3.56) 

we find that the Schur polynomials of . x± are related to those of . y± as 

. Sj (x
+ + νs) =

⎾
j

2m+1

⏋

⎲

i=0

ai
2m+1

i! Sj−(2m+1)i(y
+ + νs), . (3.57) 

Sj (x
− + νs) =

⎾
j 

2m+1

⏋

⎲

i=0 

(a∗
2m+1)

i 

i! Sj−(2m+1)i(y
− + νs), (3.58) 

where . [a] represents the largest integer less than or equal to a. Using this relation, 
we express matrix elements of . Φ and . Ψ in Eq. (3.55) through Schur polynomials 

.Sk(y
± + νs) and powers of .a2m+1 and .a∗

2m+1. 

We need to determine the highest power term of .a2m+1 in the determinant (3.55). 

For that purpose, it may be tempting to retain only the highest power term of . a2m+1

and .a∗
2m+1 in each element of this determinant. That does not work though because 

it would result in multiple rows (and columns) which are proportional to each other, 

making the reduced determinant zero. The correct way is to first judiciously remove 

certain leading power terms of .a2m+1 and .a
∗
2m+1 from elements of the determinant 

through row and column manipulations, so that the remaining determinant, after 

retaining only the highest power term of .a2m+1 and .a
∗
2m+1 in each element, would 

be nonzero. These row and column manipulations are described below.
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Suppose .N ≡ N0 mod (2m + 1), i.e., .N = k(2m + 1) + N0 for some positive 

integer k, with .0 ≤ N0 ≤ m. We perform the following series of row operations 

to the matrix . Φ so that certain high-power terms of .a2m+1 in its lower rows are 

eliminated. In the first round, we use the 1st to m-th rows of . Φ to eliminate the 

highest-power term .a2ν2m+1 from the .[ν(2m+1)+1]-th up to the .[ν(2m+1)+m]-th 
rows for each .1 ≤ ν ≤ k, so that the remaining terms in those rows have the highest 

power .a2ν−1
2m+1. We also use the .(m + 1)-th to .(2m + 1)-th rows of . Φ to eliminate 

the highest-power term .a2ν+1
2m+1 from the .[ν(2m + 1) + m + 1]-th to the .[ν(2m +

1) + 2m + 1]-th rows for each .1 ≤ ν ≤ k − 1, with the remaining terms in those 

rows having the highest power .a2ν2m+1. In each step, the highest power terms . a2ν2m+1

or .a2ν+1
2m+1 of each row are eliminated simultaneously, because the coefficient vector 

of those highest power terms in each row below the .(2m + 1)-th is proportional to 

the coefficient vector of the highest power terms in the corresponding upper row 

between the 1st and .(2m + 1)-th due to the relation (3.57). 

In the second round, we use the .(2m + 1 + 1)-th to .(2m + 1 + m)-th rows of 

the remaining matrix . Φ to eliminate the highest-power term .a2ν+1
2m+1 from the .[(ν +

1)(2m+1)+1]-th up to the .[(ν +1)(2m+1)+m]-th rows for each .1 ≤ ν ≤ k −1, 

so that the remaining terms in those rows have the highest power .a2ν2m+1. We also  

use the .(2m + 1 + m + 1)-th to .(2m + 1 + 2m + 1)-th rows of . Φ to eliminate 

the highest-power term .a2ν+2
2m+1 from the .[(ν + 1)(2m + 1) + m + 1]-th up to the 

.[(ν + 1)(2m + 1) + 2m + 1]-th rows for each .1 ≤ ν ≤ k − 2, with the remaining 

terms in those rows having the highest power .a2ν+1
2m+1. This process is repeated k 

rounds. 

At the end of this process, the i-th row of the remaining matrix . Φ has the highest 

power .a
[(i+m)/(2m+1)]
2m+1 . Then, we keep only the highest power terms of .a2m+1 in 

each row. Similar column operations are also performed on the matrix . Ψ . With 

these manipulations, we find that . σn is asymptotically reduced to 

. σn = β |a2m+1|k
2(2m+1)+k(2N0+1)

||||
ON×N

~ΦN×2N

−~Ψ2N×N I2N×2N

||||
⎾
1 + O

⎛
a−1
2m+1

⎞⏋
,

(3.59) 

where . β is a .(m,N)-dependent nonzero constant, matrices .~ΦN×2N and .~Ψ2N×N have 

the structures 

.~ΦN×2N =
⎛

L(N−N0)×(N−N0) O(N−N0)×2N0
O(N−N0)×(N−N0)

MN0×(N−N0) Φ̂N0×2N0
ON0×(N−N0)

⎞
, (3.60) 

.~Ψ2N×N =

⎛
⎝

U(N−N0)×(N−N0) M̂(N−N0)×N0

O2N0×(N−N0) Ψ̂2N0×N0

O(N−N0)×(N−N0) O(N−N0)×N0

⎞
⎠ , (3.61) 

.Li,j = Si−j

⎾
y+ + (j − 1)s

⏋
, Ui,j = Sj−i

⎾
y− + (i − 1)s

⏋
, (3.62)
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. Φ̂i,j = 2−(j−1)S2i−j

⎾
y+(n) + (j − 1 + ν0)s

⏋
, . (3.63)

Ψ̂i,j = 2−(i−1) S2j−i

⎾
y−(n) + (i − 1 + ν0)s

⏋
, (3.64) 

.ν0 = k(2m + 1), and . M, . ̂M are matrices of elements .Sj (y
+ + νs) and . Sj (y

− + νs)

respectively. Since . L and . U are respectively lower triangular and upper triangular 

matrices with unit elements on the diagonal in view that .S0 = 1 and .Sj = 0 for 

.j < 0, . σn in Eq. (3.59) then is 

. σn = β |a2m+1|k
2(2m+1)+k(2N0+1)

||||
ON0×N0

Φ̂N0×2N0

−Ψ̂2N0×N0
I2N0×2N0

||||
⎾
1 + O

⎛
a−1
2m+1

⎞⏋
.

(3.65) 

Finally, we notice that .Sj

⎾
y± + (ν + ν0)s

⏋
is related to .Sj

(
y± + νs

)
through 

.Sj

⎾
y± + (ν + ν0)s

⏋
=

[j/2]⎲

i=0

S2i(ν0s)Sj−2i(y
± + νs), (3.66) 

the reason being that the odd elements of the vector . s are zero (see Lemma 3.1). 

Using this relation, the determinant in (3.65) can be reduced to one where . ν0 is set 

to zero in the above . Φ̂ and . ̂Ψ matrices given in Eq. (3.63). Such a determinant for 

. σn gives a .N0-th order rogue wave, whose internal parameters . (a3, a5, · · · , a2N0−1)

are the first .N0 − 1 values in the original parameter set .(a3, a5, · · · , a2N−1). Thus, 

in the neighborhood of the origin , 

. uN (x, t; a3, a5, · · · , a2N−1) = σ1

σ0
eit

= uN0
(x, t; a3, a5, · · · , a2N0−1)

⎾
1 + O

⎛
a−1
2m+1

⎞⏋
, (3.67) 

which means that the original N -th order rogue wave .uN (x, t) is approximated by a 

lower .N0-th order rogue wave .uN0
(x, t), with the approximation error .O

⎛
a−1
2m+1

⎞
. 

If .N ≡ −N0 −1 mod (2m+1) with .0 ≤ N0 ≤ m, Eq. (3.67) can also be derived 

by similar analysis, and thus the same conclusion holds. 

Lastly, we recall that .1 ≤ m ≤ N − 1. In addition, .0 ≤ N0 ≤ m in view 

of Theorem 3.1. Furthermore, when .m = N − 1, we find from Eq. (3.11) of  

Theorem 3.1 that .N0 = N − 2. As a consequence, .0 ≤ N0 ≤ N − 2. Theorem 3.3 

is then proved. 

3.1.3 Derivative Nonlinear Schrödinger Equations 

The generalized derivative NLS (GDNLS) equations are
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.iut + 1

2
uxx + iγ |u|2ux + i(γ − 1)u2u∗

x + 1

2
(γ − 1)(γ − 2)|u|4u = 0, (3.68) 

where . γ is a real constant (see Sect. 2.2). These equations contain the Kaup-Newell 

equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation as special 

cases. Boundary conditions of rogue waves in these GDNLS equations are 

. u(x, t) → ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t , x, t → ±∞, (3.69) 

where .α > 0 is a free background wave number parameter. Explicit expressions 

of these rogue waves have been presented in Theorem 2.3 of Sect. 2.2 and will not 

be repeated here. Importantly, those rogue waves are expressed by determinants of 

Schur polynomials with index jumps of 2, just like the NLS case. In addition, those 

rogue waves contain free internal complex parameters .a3, a5, · · · , a2N−1 as well. 

We will consider asymptotics of those rogue solutions when one of their internal 

parameters is large (in amplitude), while the other parameters remain .O(1). 

Suppose .|a2m+1| is large, where .1 ≤ m ≤ N −1, and the other .a2j+1 parameters 

are .O(1). Then, large-.a2m+1 asymptotics of rogue waves in the GDNLS equations 

were derived by Yang and Yang (2021b) and are summarized in the following 

theorem. 

Theorem 3.4 For the GDNLS rogue wave .uN (x, t) in Theorem 2.3, when .|a2m+1| is 

large and the other internal parameters .O(1), then the following statements hold. 

1. If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) are 

all simple, then far away from the origin, with .

√
x2 + t2 = O

(
|a2m+1|1/(2m+1)

)
, 

this .uN (x, t) asymptotically would split into . Np fundamental rogue waves, where 

.Np is given in Eq. (3.12). These fundamental rogue waves are . ̂u1(x − x̂0, t −
t̂0) ei(1−γ−α)x− i

2

⎾
α2+2(γ−2)α+1−γ

⏋
t , where 

.|û1(x, t)| =
|||||

α(x + αt)2 + (x − t)2 − i(x + 3αt) − 3
4

α(x + αt)2 + (x − t)2 + i(x + αt) − 2it + 1
4

||||| , (3.70) 

and their positions .(x̂0, t̂0) are given by 

.x̂0 = 1√
α
ℜ [z0Ω] − α − 1

α
𝔍 [z0Ω] , t̂0 = 1

α
𝔍 [z0Ω] , (3.71) 

.Ω =
⎛
− 2m+1

22m
a2m+1

⎞ 1
2m+1

, . z0 is any of the .Np non-zero simple roots of .Q
[m]
N (z), 

and .(ℜ,𝔍) represent the real and imaginary parts of a complex number. The 

error of this fundamental rogue wave approximation is .O(|a2m+1|−1/(2m+1)). 

Expressed mathematically, when .|a2m+1| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), 

we have the following solution asymptotics
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. uN (x, t; a3, a5, · · · , a2N−1)

= û1(x − x̂0, t − t̂0) ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t

+O
⎛
|a2m+1|−1/(2m+1)

⎞
. (3.72) 

When .(x, t) is not in the neighborhood of any of these .Np fundamental waves, 

or .
√

x2 + t2 is larger than .O
(
|a2m+1|1/(2m+1)

)
, then .uN (x, t) asymptotically 

approaches the constant-amplitude background . ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t

as .|a2m+1| → ∞. 

2. In the neighborhood of the origin, where .x2 + t2 = O(1), .uN (x, t) is approxi-

mately a lower .N0-th order rogue wave .uN0
(x, t), where . N0 is determined from 

.(N,m) by Eq. (3.11), .0 ≤ N0 ≤ N − 2, and .uN0
(x, t) is given in Theorem 2.3 

with its internal parameters .(a3, a5, · · · , a2N0−1) being the first .N0 −1 values in 

the parameter set .{a3, a5, · · · , a2N−1} of the original rogue wave .uN (x, t). The 

error of this lower-order rogue wave approximation .uN0
(x, t) is .O(|a2m+1|−1). 

Expressed mathematically, when .|a2m+1| ⪢ 1 and .x2 + t2 = O(1), 

. uN (x, t; a3, a5, · · · , a2N−1) = uN0
(x, t; a3, a5, · · · , a2N0−1) + O

⎛
|a2m+1|−1

⎞
.

(3.73) 

If .N0 = 0, then there will not be such a lower-order rogue wave in the neigh-

borhood of the origin, and .uN (x, t) asymptotically approaches the constant-

amplitude background .ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t there as .|a2m+1| → ∞. 

The proof of this theorem is along the same lines as the proofs of Theorems 3.2– 

3.3 for the NLS equation and will be omitted here (see Yang and Yang (2021b) for  

details). 

Comparison Between Predictions and True Solutions 

According to Theorem 3.4, our predictions for GDNLS’ rogue patterns under a large 

internal parameter .a2m+1 can be assembled into a single formula 

. |uN (x, t)| ≈
||uN0

(x, t)
||+

Np⎲

k=1

⎛|||û1(x − x̂
(k)
0 , t − t̂

(k)
0 )

|||− 1
⎞

, (3.74) 

where . N0 is given from .(N,m) by Eq. (3.11), .uN0
(x, t) is the lower-order rogue 

wave at the center whose internal parameters .(a3, a5, · · · a2N0−1) are inherited 

directly from those of the original rogue wave .uN (x, t), the function .û1(x, t) is 

the fundamental rogue wave given in Eq. (3.70), with its position .(x̂
(k)
0 , t̂

(k)
0 ) given 

by Eq. (3.71) for every one of the nonzero simple roots .z
(k)
0 of .Q

[m]
N (z), and . Np is 

the number of such fundamental rogue waves whose value is given by Eq. (3.12). 

Then, when we choose .α = 16/9 in the background (3.69), the above solution 

approximation (3.74) for  .2 ≤ N ≤ 5, with the large internal parameter .a2m+1
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Table 3.3 Value of the large 

parameter for GDNLS rogue 

waves in Fig. 3.6 with 

. α = 16/9

N .a3 .a5 .a7 . a9

2 . −30i

3 .−28i . −500i

4 .−20i .−300i . −1500i

5 .−15i .−250i .−1000i . −3000i

Fig. 3.6 Predicted GDNLS rogue patterns .|uN (x, t)| for the orders .2 ≤ N ≤ 5 and the large 

parameter .a2m+1 from .m = 1 to .N − 1 [the background wavenumber parameter in Eq. (3.69) is  

chosen as .α = 16/9]. For each panel, the large parameter .a2m+1 in the rogue wave is displayed 

in Table 3.3, with the other internal parameters set as zero. The center of each panel is always the 

origin .x = t = 0, but  the  .(x, t) intervals differ slightly from panel to panel. For instance, in the 

bottom row, the left-most panel has .−12 ≤ x, t ≤ 12, and the right-most panel has . −10 ≤ x, t ≤
10

ranging from .m = 1 to .N − 1 and its value taken as in Table 3.3, and with the other 

internal parameters taken as zero, are displayed in Fig. 3.6. Notice that the predicted 

patterns are stretched triangles in the first column (for large . a3), stretched pentagons 

in the second column (for large . a5), stretched heptagons in the third column (for 

large . a7), and so on.
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Fig. 3.7 True GDNLS rogue patterns .|uN (x, t)| for .N = 5. The . α value, internal parameters and 

.(x, t) intervals for these true solutions are identical to those in the theoretically predicted patterns 

shown in the bottom row of Fig. 3.6 

Now, we compare these predicted rogue patterns with true ones. For brevity, we 

only show this comparison for .N = 5. Under identical . α and internal parameter 

choices and identical .(x, t) intervals as in the bottom row of Fig. 3.6, true rogue 

patterns are displayed in Fig. 3.7. It is seen that the true rogue patterns are almost 

indistinguishable from the predictions in the bottom row of Fig. 3.6 on all aspects, 

from the locations of individual fundamental rogue waves, to the overall shapes 

formed by these fundamental waves, and to the fine details of the lower-order 

rogue waves at the center. Similar agreements hold for the other panels of Fig. 3.6 

as well. These apparent visual agreements testify to the power of our theoretical 

predictions. The error estimates of .O(|a2m+1|−1/(2m+1)) away from the origin and 

.O(|a2m+1|−1) in the neighborhood of the origin from Theorem 3.4 have been 

confirmed numerically too. 

3.1.4 Boussinesq Equation 

The Boussinesq equation is 

.ut t + uxx − (u2)xx − 1

3
uxxxx = 0, (3.75) 

where u is a real variable for water surface elevation. Its rogue waves under 

boundary conditions of 

.u(x, t) → 0, x, t → ±∞ (3.76) 

have been given in Theorem 2.4 of Sect. 2.3. These rogue waves contain free 

complex parameters .a3, a5, · · · , a2N−1. 

Suppose .|a2m+1| is large, where .1 ≤ m ≤ N − 1, and the other parameters 

are .O(1). Then, large-.a2m+1 asymptotics of these rogue waves in the Boussinesq 

equation were derived by Yang and Yang (2021b) and are summarized in the 

following theorem.
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Theorem 3.5 For the Boussinesq rogue wave .uN (x, t) in Theorem 2.4, when 

.|a2m+1| is large and the other .a2j+1 parameters .O(1), then the following statements 

hold. 

1. If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) are all 

simple, then far away from the origin, with .
√

x2 + t2 = O
(
|a2m+1|1/(2m+1)

)
, 

this .uN (x, t) asymptotically splits into .Np fundamental rogue waves, where . Np

is given in Eq. (3.12). These fundamental rogue waves are .u1(x − x̂0, t − t̂0), 

where 

.u1(x, t) = 2∂2x ln
⎛
x2 + t2 + 1

⎞
, (3.77) 

and their positions .(x̂0, t̂0) are given by 

.x̂0 = ℜ
⎾⎛

−2i
√
3
⎞

z0Ω
⏋

+ ΔB , t̂0 = 𝔍
⎾⎛

−2i
√
3
⎞

z0Ω
⏋
, (3.78) 

.Ω =
⎛
− 2m+1

22m
a2m+1

⎞ 1
2m+1

, . z0 is any of the .Np non-zero simple roots of 

.Q
[m]
N (z), and .ΔB = −4(N − 1)/3. The error of this fundamental rogue 

wave approximation is .O(|a2m+1|−1/(2m+1)). Expressed mathematically, when 

.|a2m+1| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the following solution 

asymptotics 

. uN (x, t; a3, a5, · · · , a2N−1) = u1(x − x̂0, t − t̂0) + O
⎛
|a2m+1|−1/(2m+1)

⎞
.

(3.79) 

When .(x, t) is not in the neighborhood of any of these .Np fundamental waves, 

or .
√

x2 + t2 is larger than .O
(
|a2m+1|1/(2m+1)

)
, then .uN (x, t) asymptotically 

approaches the zero background as .|a2m+1| → ∞. 

2. In the neighborhood of the origin, where .x2 + t2 = O(1), .uN (x, t) is approxi-

mately a lower .N0-th order rogue wave .uN0
(x, t), where . N0 is determined from 

.(N,m) by Eq. (3.11), .0 ≤ N0 ≤ N − 2, and .uN0
(x, t) is given in Theorem 2.4 

with its new internal parameters .(â1, â3, · · · , â2N0−1) related to the original 

parameters of .uN (x, t) as 

.â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, · · · , N0. (3.80) 

The error of this lower-order rogue wave approximation .uN0
(x, t) is 

.O(|a2m+1|−1). Expressed mathematically, when .|a2m+1| ⪢ 1 and . x2 + t2 =
O(1), 

. uN (x, t; a1, a3, a5, · · · , a2N−1) = uN0
(x, t; â1, â3, â5, · · · , â2N0−1)

+ O
⎛
|a2m+1|−1

⎞
. (3.81)
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Note that while .a1 = 0 in the original rogue wave .uN (x, t) (see Theorem 2.4 

in Sect. 2.3), its counterpart . ̂a1 in the lower-order rogue wave .uN0
(x, t) will not 

be zero. If .N0 = 0, then there will not be such a lower-order rogue wave in 

the neighborhood of the origin, and .uN (x, t) asymptotically approaches the zero 

background there as .|a2m+1| → ∞. 

The proof of this theorem is along similar lines as the proofs of Theorems 3.2–3.3 

for the NLS equation and will be omitted (see Yang and Yang (2021b) for details). 

Comparison Between Predictions and True Solutions 

Next, we present comparisons between predictions and true solutions for the Boussi-

nesq equation. In this case, our prediction from Theorem 3.5 for the Boussinesq 

rogue pattern under a large internal parameter .a2m+1 can be assembled into the 

formula 

.uN (x, t) ≈ uN0
(x, t) +

Np⎲

k=1

u1

⎛
x − x̂

(k)
0 , t − t̂

(k)
0

⎞
, (3.82) 

where .uN0
(x, t) is the lower-order rogue wave at the center whose new internal 

parameters .(â1, â3, · · · , â2N0−1) are given by Eq. (3.80), the function .u1(x, t) is the 

fundamental Boussinesq rogue wave given in Eq. (3.77), with its position . (x̂
(k)
0 , t̂

(k)
0 )

given by Eq. (3.78) for every one of the nonzero simple roots . z
(k)
0 of .Q

[m]
N (z), and . Np

is the number of such fundamental rogue waves whose value is given by Eq. (3.12). 

When the large internal parameter .a2m+1 is selected as in Table 3.4 for . 2 ≤ N ≤ 5

and .1 ≤ m ≤ N − 1, with the other internal parameters set as zero, the predicted 

rogue solutions (3.82) are illustrated in Fig. 3.8. 

Now, we compare these predicted Boussinesq rogue patterns in Fig. 3.8 to the 

true solutions. Again, for brevity, we only do the comparison for the fifth-order 

rogue waves (.N = 5). Under the same internal parameter choices and . (x, t)

intervals as those in the bottom row of Fig. 3.8, the true Boussinesq rogue patterns 

are displayed in Fig. 3.9. It is seen that again, the true rogue patterns are visually 

indistinguishable from our theoretical predictions on all aspects, from locations 

of fundamental rogue waves away from the center, to fine details of lower-order 

rogue waves at the center, and to the amounts of x-position shifts to the whole 

structure. Order of accuracy of our predictions as stated in Theorem 3.5 has also 

been confirmed numerically, with the details omitted. 

Table 3.4 Value of the large 

parameter for Boussinesq 

rogue waves in Fig. 3.8 

N .a3 .a5 .a7 . a9

2 . −20

3 .−16 . 150

4 .−10 .50 . −100

5 .−5 .20 .−80 .200
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Fig. 3.8 Predicted Boussinesq rogue patterns .uN (x, t) for the orders .2 ≤ N ≤ 5 and the large 

parameter .a2m+1 from .m = 1 to .N−1. For each panel, the large parameter .a2m+1 in the rogue wave 

is displayed in Table 3.4, with the other internal parameters set as zero. The center of each panel is 

always the origin .x = t = 0, but  the .(x, t) intervals differ slightly from panel to panel. For instance, 

in the bottom row, the first two panels have .−32.25 ≤ x, t ≤ 32.25 and . −35.25 ≤ x, t ≤ 35.25

respectively 

Fig. 3.9 True Boussinesq rogue patterns .uN (x, t) for .N = 5. The internal parameters and . (x, t)

intervals for these true solutions are identical to those in the theoretically predicted patterns shown 

in the bottom row of Fig. 3.8
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3.1.5 Manakov System 

The Manakov system is 

.
(i∂t + ∂2x )u1 + (ϵ1|u1|2 + ϵ2|u2|2)u1 = 0,

(i∂t + ∂2x )u2 + (ϵ1|u1|2 + ϵ2|u2|2)u2 = 0,

⎫
(3.83) 

where .ϵ1 = ±1 and .ϵ2 = ±1. Under the boundary conditions of 

.u1(x, t) → ρ1e
i(k1x+ω1t), u2(x, t) → ρ2e

i(k2x+ω2t), x, t → ±∞, (3.84) 

where parameters .ρj , kj , ωj satisfy algebraic relations (2.583), rogue waves cor-

responding to a simple root of a certain algebraic equation have been given in 

Theorem 2.10 of Sect. 2.9. For the convenience of the reader, we reproduce such 

solutions here. 

Lemma 3.2 If the algebraic equation .F'
1(p) = 0, with 

.F1(p) =
ϵ1ρ

2
1

p − ik1
+

ϵ2ρ
2
2

p − ik2
+ 2p (3.85) 

and the prime denoting differentiation, admits a non-imaginary simple root . p0, then 

the Manakov system (3.83) under boundary conditions (3.84) admits rogue wave 

solutions 

.u1,N (x, t) = ρ1
g1,N

fN

ei(k1x+ω1t), u2,N (x, t) = ρ2
g2,N

fN

ei(k2x+ω2t), (3.86) 

where N is an arbitrary positive integer which represents the order of the rogue 

wave, 

.fN = σ0,0, g1,N = σ1,0, g2,N = σ0,1, (3.87) 

.σn,k = det
1≤i,j≤N

⎛
φ

(n,k)
2i−1,2j−1

⎞
, (3.88) 

the matrix elements in .σn,k are defined by 

. φ
(n,k)
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν(x
+(n, k) + νs) Sj−ν(x

−(n, k) + νs∗),

(3.89) 

the vectors .x±(n, k) = (x±
1 , 0, x±

3 , 0, · · · ) are defined by
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. x+
r (n, k) = prx +

⎛
r⎲

i=0

pipr−i

⎞
(it) + nθr + kλr + ar , . (3.90) 

x−
r (n, k) = p∗

r x −
⎛

r⎲

i=0 

p∗
i p

∗
r−i

⎞
(it)  − nθ∗

r − kλ∗
r + a∗

r , (3.91) 

.s = (s1, s2, · · · ), .pr , θr , . λr , and . sr are coefficients from the expansions 

.p(κ) =
∞⎲

r=0

prκ
r , ln

⎾
p (κ) − ik1

p0 − ik1

⏋
=

∞⎲

r=1

θrκ
r , . (3.92) 

ln

⎾
p (κ) − ik2 

p0 − ik2

⏋
= 

∞⎲

r=1 

λrκ
r , ln

⎾
1 

κ

⎛
p0 + p∗

0 

p1

⎞⎛
p (κ) − p0 

p (κ) + p∗
0

⎞⏋
= 

∞⎲

r=1 

srκ
r , 

(3.93) 

the function .p (κ) is defined by the equation 

.F1 [p (κ)] = F1(p0) cosh(κ), (3.94) 

.a1 = 0, and .a3, a5, · · · , a2N−1 are free irreducible complex constants. 

The . τ functions of these rogue waves have index jumps of 2 in their matrix 

elements, and they contain free complex parameters .a3, a5, · · · , a2N−1. 

Suppose .|a2m+1| is large, where .1 ≤ m ≤ N − 1, and the other parameters are 

.O(1). Then large-.a2m+1 asymptotics of these Manakov rogue waves in Lemma 3.2 

were derived by Yang and Yang (2021b) and are summarized in the following 

theorem. 

Theorem 3.6 For the Manakov rogue wave .[u1,N (x, t), u2,N (x, t)] in Lemma 3.2, 

when .|a2m+1| is large and the other .a2j+1 parameters .O(1), then the following 

statements hold. 

1. If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) are all 

simple, then far away from the origin, with .
√

x2 + t2 = O
(
|a2m+1|1/(2m+1)

)
, 

this .[u1,N (x, t), u2,N (x, t)] asymptotically would split into .Np fundamental 

rogue waves, where .Np is given in Eq. (3.12). These fundamental rogue waves 

are .[û1,1(x − x̂0, t − t̂0) ei(k1x+ω1t), û2,1(x − x̂0, t − t̂0) ei(k2x+ω2t)], where 

. ̂u1,1(x, t) = ρ1
[p1x + 2p0p1 (it) + θ1]

⎾
p∗
1x − 2p∗

0p
∗
1 (it) − θ∗

1

⏋
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
,

(3.95) 

. ̂u2,1(x, t) = ρ2
[p1x + 2p0p1 (it) + λ1]

⎾
p∗
1x − 2p∗

0p
∗
1 (it) − λ∗

1

⏋
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
,

(3.96)
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.θ1 = p1

p0 − ik1
, λ1 = p1

p0 − ik2
, ζ0 = |p1|2

(p0 + p∗
0)

2
, (3.97) 

and their positions .(x̂0, t̂0) are given by 

.x̂0 = 1

ℜ(p0)
ℜ

⎾
z0Ω

p1
p∗
0

⏋
+Δ1M , t̂0 = 1

2ℜ(p0)
𝔍

⎾
z0Ω

p1

⏋
+Δ2M , (3.98) 

.Ω =
⎛
− 2m+1

22m
a2m+1

⎞ 1
2m+1

, . z0 is any of the .Np non-zero simple roots of .Q
[m]
N (z), 

and 

. Δ1M = − 1

ℜ(p0)
ℜ

⎾
(N − 1)s1

p1
p∗
0

⏋
, Δ2M = − 1

2ℜ(p0)
𝔍

⎾
(N − 1)s1

p1

⏋
.

(3.99) 

The error of this fundamental rogue wave approximation is .O(|a2m+1|−1/(2m+1)). 

Expressed mathematically, when .|a2m+1| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), 

we have the following solution asymptotics 

. uj,N (x, t; a3, a5, · · · , a2N−1) = ûj,1(x − x̂0, t − t̂0) ei(kj x+ωj t)

+ O
⎛
|a2m+1|−1/(2m+1)

⎞
, (3.100) 

where .j = 1, 2. When .(x, t) is not in the neighborhood of any of these 

.Np fundamental waves, or .
√

x2 + t2 is larger than .O
(
|a2m+1|1/(2m+1)

)
, then 

the solution .[u1,N (x, t), u2,N (x, t)] asymptotically approaches the constant-

amplitude background .[ρ1ei(k1x+ω1t), ρ2e
i(k2x+ω2t)] as .|a2m+1| → ∞. 

2. In the neighborhood of the origin, where .x2+t2 = O(1), . [u1,N (x, t), u2,N (x, t)]
is approximately a lower .N0-th order rogue wave .[u1,N0

(x, t), u2,N0
(x, t)], 

where .N0 is determined from .(N,m) by Eq. (3.11), .0 ≤ N0 ≤ N − 2, 

and .[u1,N0
(x, t), u2,N0

(x, t)] is given by Lemma 3.2 with its new internal 

parameters .(â1, â3, · · · , â2N0−1) related to the original parameters of 

.[u1,N (x, t), u2,N (x, t)] as 

.â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, · · · , N0. (3.101) 

The error of this lower-order rogue wave approximation is .O(|a2m+1|−1). 

Expressed mathematically, when .|a2m+1| ⪢ 1 and .x2 + t2 = O(1), 

. uj,N (x, t; a1, a3, a5, · · · , a2N−1) = uj,N0
(x, t; â1, â3, â5, · · · , â2N0−1)

+ O
⎛
|a2m+1|−1

⎞
, (3.102)
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where .j = 1, 2. Note that .a1 = 0 in the original rogue wave . [u1,N (x, t),

.u2,N (x, t)], but its counterpart . ̂a1 in the lower-order rogue wave . [u1,N0
(x, t),

.u2,N0
(x, t)] will not be zero. If .N0 = 0, then there will not be such a 

lower-order rogue wave in the neighborhood of the origin, and the solution 

.[u1,N (x, t), u2,N (x, t)] asymptotically approaches the constant-amplitude back-

ground .[ρ1ei(k1x+ω1t), ρ2e
i(k2x+ω2t)] there as .|a2m+1| → ∞. 

The proof of this theorem is along similar lines as the proofs of Theorems 3.2– 

3.3 for the NLS equation and will be omitted here (see Yang and Yang (2021b) for  

details). 

Comparison Between Predictions and True Solutions 

Our prediction from Theorem 3.6 for Manakov rogue patterns can be assembled into 

the formulae 

. 

||uj,N (x, t)
||
≈

||uj,N0
(x, t)

||+
Np⎲

k=1

⎛|||ûj,1(x − x̂
(k)
0 , t − t̂

(k)
0 )

|||− ρj

⎞
, j = 1, 2,

(3.103) 

where .[u1,N0
(x, t), u2,N0

(x, t)] is the lower-order rogue wave at the center whose 
new internal parameters .(â1, â3, · · · , â2N0−1) are given by Eq. (3.101), the func-

tions .[û1,1(x, t), û2,1(x, t)] are the fundamental Manakov rogue wave given in 

Eqs. (3.95)–(3.96), with their positions .(x̂
(k)
0 , t̂

(k)
0 ) given by Eq. (3.98) for every 

one of the nonzero simple roots .z
(k)
0 of .Q

[m]
N (z), and .Np is the number of such 

fundamental rogue waves whose value is given by Eq. (3.12). Since the Manakov 

waves have two components, to show both components, we will make the prediction 

and comparison for .N = 5 only. With the system and background parameters 

chosen as 

. ϵ1 = 1, ϵ2 = 1, k1 = 1

2
, k2 = −1

2
, ρ1 = 1, ρ2 = 1, p0 = 1

2

√
1 + 2i,

(3.104) 

and with the large internal parameter .a2m+1 taken as 

.(a3, a5, a7, a9) = (40, 400, 3000, 20,000) (3.105) 

respectively, and with the other internal parameters set as zero, the predicted rogue 

solutions (3.103) are plotted in Fig. 3.10. 

Now, we compare these predicted fifth-order Manakov rogue patterns to the true 

solutions. Under identical system and internal parameter choices and .(x, t) intervals 

as those in Fig. 3.10, the true Manakov rogue patterns are displayed in Fig. 3.11. It  

is seen that the true rogue patterns closely mimic the predicted ones on all major 

aspects such as the overall shapes, orientations, and center-rogue-wave profiles.
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Fig. 3.10 Predicted patterns of fifth-order rogue waves in the Manakov equations under system 

parameters (3.104) (upper row: .|u1,5|; lower  row: .|u2,5|). The large internal parameter is as shown 

in Eq. (3.105), i.e., .a3 = 40 in the first column, .a5 = 400 in the second column, .a7 = 3000 in the 

third column, .a9 = 20,000 in the fourth column, and the other internal parameters are set as zero 

Some minor differences do exist, such as the three sides of the triangular true-rogue 

patterns in the first column of Fig. 3.11 are a little more curvy than the predicted 

ones in the first column of Fig. 3.10. But those differences will diminish if the large 

parameter . a3 in those panels gets larger. Quantitatively, we have also verified the 

order of accuracy of our analytical predictions as stated in Theorem 3.6, with details 

omitted. 

3.1.6 Three-Wave Resonant Interaction System 

The general (1+1)-dimensional three-wave resonant interaction system is 

.

(∂t + c1∂x) u1 = ϵ1u
∗
2u

∗
3,

(∂t + c2∂x) u2 = ϵ2u
∗
1u

∗
3,

(∂t + c3∂x) u3 = ϵ3u
∗
1u

∗
2,

⎫
⎬
⎭ (3.106) 

where .(c1, c2, c3) are group velocities of the three waves, and .(ϵ1, ϵ2, ϵ3) are real-

valued nonlinear coefficients which can be normalized to .±1 with .ϵ1 = 1. To  

remove ambiguity, we also order the three group velocities as .c1 > c2 > c3, and 

make .c3 = 0 by choosing a coordinate system that moves with velocity . c3. 

Under boundary conditions of
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Fig. 3.11 True fifth-order Manakov rogue patterns for system parameters, internal parameters and 

.(x, t) intervals the same as those in the theoretically predicted patterns shown in Fig. 3.10 

.

u1(x, t) → ρ1e
i(k1x+ω1t), x, t → ±∞,

u2(x, t) → ρ2e
i(k2x+ω2t), x, t → ±∞,

u3(x, t) → iρ3e
−i[(k1+k2)x+(ω1+ω2)t], x, t → ±∞,

⎫
⎬
⎭ (3.107) 

where background parameters .ρj , kj , ωj satisfy algebraic conditions (2.694) in  

Sect. 2.10, rogue waves in the above three-wave system corresponding to a simple 

root of a certain algebraic equation have been given in Theorem 2.13 of Sect. 2.10. 

The . τ functions of those rogue waves have index jumps of 2 in their matrix elements, 

and they contain free complex parameters .a3, a5, . . . , a2N−1. 

Suppose .|a2m+1| is large, where .1 ≤ m ≤ N − 1, and the other parameters 

are .O(1). Then our results on the large-.a2m+1 asymptotics of those rogue waves in 

Theorem 2.13 are summarized in the following theorem. 

Theorem 3.7 For the rogue wave .[u1,N (x, t), u2,N (x, t), u3,N (x, t)] of the three-

wave system in Theorem 2.13, when .|a2m+1| is large and the other internal 

parameters .O(1), then the following statements hold. 

1. If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) are all 

simple, then far away from the origin, with .
√

x2 + t2 = O
(
|a2m+1|1/(2m+1)

)
, 

this .[u1,N (x, t), u2,N (x, t), u3,N (x, t)] asymptotically would split into 

.Np fundamental rogue waves, where .Np is given in Eq. (3.12). These 

fundamental rogue waves are . [û1,1(x − x̂0, t − t̂0) ei(k1x+ω1t), û2,1(x − x̂0, t −
t̂0) ei(k2x+ω2t), û3,1(x − x̂0, t − t̂0) e−i[(k1+k2)x+(ω1+ω2)t]], where functions 

.[û1,1(x, t), û2,1(x, t), û3,1(x, t)] are given in Eq. (2.772) of Sect. 2.10, and 

positions .(x̂0, t̂0) of these fundamental rogue waves are given by
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.x̂0 =
𝔍

⎾
z0Ω−ΔM

c1β1−c2α1

⏋

𝔍

⎾
α1−β1

c1β1−c2α1

⏋ , t̂0 =
𝔍

⎾
z0Ω−ΔM

α1−β1

⏋

𝔍

⎾
c1β1−c2α1

α1−β1

⏋ , (3.108) 

.Ω =
⎛
− 2m+1

22m
a2m+1

⎞ 1
2m+1

, . z0 is any of the .Np non-zero simple roots of .Q
[m]
N (z), 

and .ΔM = (N − 1)s1. The error of this fundamental rogue wave approximation 

is .O(|a2m+1|−1/(2m+1)). Expressed mathematically, when .|a2m+1| ⪢ 1 and . (x −
x̂0)

2 + (t − t̂0)
2 = O(1), we have the following solution asymptotics 

. uj,N (x, t; a3, a5, · · · , a2N−1) = ûj,1(x − x̂0, t − t̂0) ei(kj x+ωj t)

+O
⎛
|a2m+1|−1/(2m+1)

⎞
, j = 1, 2, 3. (3.109) 

When .(x, t) is not in the neighborhood of any of these .Np funda-

mental waves, or .

√
x2 + t2 is larger than .O

(
|a2m+1|1/(2m+1)

)
, then 

.[u1,N (x, t), u2,N (x, t), u3,N (x, t)] would asymptotically approach the constant-

amplitude background (3.107) as .|a2m+1| → ∞. 

2. In the neighborhood of the origin, where .x2 + t2 = O(1), this  N -th order rogue 

wave .[u1,N (x, t), u2,N (x, t), u3,N (x, t)] is approximately a lower .N0-th order 

rogue wave .[u1,N0
(x, t), u2,N0

(x, t), u3,N0
(x, t)], where .N0 is determined from 

.(N,m) by Eq. (3.11), .0 ≤ N0 ≤ N −2, and . [u1,N0
(x, t), u2,N0

(x, t), u3,N0
(x, t)]

is given by Theorem 2.13 with its new internal parameters . (â1, â3, · · · , â2N0−1)

related to the original parameters of .[u1,N (x, t), u2,N (x, t), u3,N (x, t)] as 

.â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, · · · , N0. (3.110) 

The error of this lower-order rogue wave approximation is .O(|a2m+1|−1). 

Expressed mathematically, when .|a2m+1| ⪢ 1 and .x2 + t2 = O(1), 

. uj,N (x, t; a1, a3, a5, · · · , a2N−1) = uj,N0
(x, t; â1, â3, â5, · · · , â2N0−1)

+O
⎛
|a2m+1|−1

⎞
, j = 1, 2, 3. (3.111) 

Note that .a1 = 0 in the original rogue wave .[u1,N (x, t), u2,N (x, t), u3,N (x, t)], 
but its counterpart . ̂a1 in the lower-order rogue wave . [u1,N0

(x, t), u2,N0
(x, t),

.u3,N0
(x, t)] will not be zero. If .N0 = 0, then there will not be such a lower-order 

rogue wave in the neighborhood of the origin, and . [u1,N (x, t), u2,N (x, t),

.u3,N (x, t)] would asymptotically approach the constant-amplitude back-

ground (3.107) there as .|a2m+1| → ∞.
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These results have not been reported before to the authors’ knowledge. The proof 

of this theorem is along similar lines as the proofs of Theorems 3.2–3.3 for the NLS 

equation and will be omitted here. 

Comparison Between Predictions and True Solutions 

Our prediction from Theorem 3.7 on rogue patterns in the three-wave system can be 

assembled into the formulae 

. 

||uj,N (x, t)
||
≈

||uj,N0
(x, t)

||+
Np⎲

k=1

⎛|||ûj,1(x − x̂
(k)
0 , t − t̂

(k)
0 )

|||− ρj

⎞
, j = 1, 2, 3,

(3.112) 

where .{uj,N0
(x, t)(j = 1, 2, 3)} is the lower-order rogue wave at the center whose 

new internal parameters .(â1, â3, · · · , â2N0−1) are given by Eq. (3.110), the functions 

.ûj,1(x, t) (j = 1, 2, 3) are the fundamental rogue wave given in Eq. (2.772) of  

Sect. 2.10, with their positions .(x̂
(k)
0 , t̂

(k)
0 ) given by Eq. (3.108) for every one of the 

nonzero simple roots .z
(k)
0 of .Q

[m]
N (z), and . Np is the number of such fundamental 

rogue waves whose value is given by Eq. (3.12). For the fourth-order rogue waves 

(.N = 4), with the system and background parameters chosen as 

.
(ϵ1, ϵ2, ϵ3) = (1,−1, 1), (c1, c2) = (1, 0.5),

(ρ1, ρ2, ρ3) = (1, 2, 1), k1 = 0, p0 ≈ 0.521005 + 0.853553i,

⎫
(3.113) 

and with the large internal parameter .a2m+1 taken as 

.(a3, a5, a7) = (50, 500, 5000) (3.114) 

respectively, and with the other internal parameters set as zero in each case, the 

predicted rogue solutions (3.112) are plotted in Fig. 3.12. 

Now, we compare these predicted fourth-order rogue patterns to the true solu-

tions. Under identical system and internal parameter choices and .(x, t) intervals as 

those in Fig. 3.12, the true rogue patterns are displayed in Fig. 3.13. It is seen that 

the true rogue patterns closely mimic the predicted ones on all major aspects such 

as the overall shapes, orientations, and center-rogue-wave profiles. Quantitatively, 

we have also verified the order of accuracy of our analytical predictions as stated in 

Theorem 3.7, with details omitted. 

3.1.7 Long-Wave-Short-Wave Resonant Interaction System 

The long-wave-short-wave (LWSW) resonant interaction system is (see Sect. 2.11) 

.
iSt − Sxx + SL = 0,

Lt = −4(|S|2)x .

⎫
(3.115)
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Fig. 3.12 Predicted patterns of fourth-order rogue waves in the three-wave resonant interaction 

system under system parameters (3.113). The large internal parameter is as shown in Eq. (3.114), 

i.e., .a3 = 50 in the first column, .a5 = 500 in the second column, .a7 = 5000 in the third column, 

and the other internal parameters are set as zero in each case. The .(x, t) intervals in the three 

columns are .−15 ≤ x, t ≤ 15, .−14 ≤ x, t ≤ 14, and .−12 ≤ x, t ≤ 12, respectively 

Under the boundary conditions of 

.S(x, t) → ei(αx+α2t), L(x, t) → 0, x, t → ±∞, (3.116) 

where . α is a real background wavenumber parameter, rogue waves in this system 

have been presented in Theorem 2.16 of Sect. 2.11. These rogue waves contain free 

complex parameters .a3, a5, . . . , a2N−1. When one of these complex parameters is 

large, rogue patterns in the LWSW system are given in the following theorem. 

Theorem 3.8 For the rogue wave .[SN (x, t), LN (x, t)] in the LWSW system (3.115) 

in Theorem 2.16, when .|a2m+1| is large and the other internal parameters .O(1), 

then the following statements hold. 

1. If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) are all 

simple, then far away from the origin, with .
√

x2 + t2 = O
(
|a2m+1|1/(2m+1)

)
, 

this .[SN (x, t), LN (x, t)] asymptotically would split into .Np fundamental rogue
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Fig. 3.13 True fourth-order rogue patterns in the three-wave resonant interaction system for 

system parameters, internal parameters and .(x, t) intervals the same as those in the theoretically 

predicted patterns shown in Fig. 3.12 

waves, where .Np is given in Eq. (3.12). These fundamental rogue waves are 

.

⎾
Ŝ1(x − x̂0, t − t̂0) ei(αx+α2t), L̂1(x − x̂0, t − t̂0)

⏋
, where 

.Ŝ1(x, t) =
(p1x − 2p0p1it + θ1)

(
p∗
1x + 2p∗

0p
∗
1 it − θ∗

1

)
+ |p1|2

(p0+p∗
0 )

2

|p1x − 2p0p1it |2 + |p1|2
(p0+p∗

0 )
2

, .(3.117) 

L̂1(x, t) = −2∂2 x 
ln

⎾
|p1x − 2p0p1it |2 + 

|p1|2 
(p0 + p∗

0)
2

⏋
, (3.118) 

.θ1 = p1/(p0 − iα), and their positions .(x̂0, t̂0) are given by 

.x̂0 = 1

ℜ(
p1

α1
)
ℜ

⎾
z0Ω − Δ

α1

⏋
, t̂0 = − 1

ℜ( α1
p1

)
𝔍

⎾
z0Ω − Δ

p1

⏋
, (3.119)
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.Ω =
⎛
− 2m+1

22m
a2m+1

⎞ 1
2m+1

, . z0 is any of the .Np non-zero simple roots of .Q
[m]
N (z), 

and .Δ = (N − 1)s1. The error of this fundamental rogue wave approximation is 

.O(|a2m+1|−1/(2m+1)). Expressed mathematically, when .|a2m+1| ⪢ 1 and . (x −
x̂0)

2 + (t − t̂0)
2 = O(1), we have the following solution asymptotics 

. SN (x, t; a3, a5, · · · , a2N−1) = Ŝ1(x − x̂0, t − t̂0) ei(αx+α2t)

+O
⎛
|a2m+1|−1/(2m+1)

⎞
,

LN (x, t; a3, a5, · · · , a2N−1) = L̂1(x − x̂0, t − t̂0) + O
⎛
|a2m+1|−1/(2m+1)

⎞
.

When .(x, t) is not in the neighborhood of any of these .Np fundamental waves, 

or .

√
x2 + t2 is larger than .O

(
|a2m+1|1/(2m+1)

)
, then . [SN (x, t), LN (x, t)]

asymptotically approaches the constant-amplitude background .[ei(αx+α2t), 0] as 

.|a2m+1| → ∞. 

2. In the neighborhood of the origin, where .x2 + t2 = O(1), . [SN (x, t), LN (x, t)]
is approximately a lower .N0-th order rogue wave .[SN0

(x, t), LN0
(x, t)], where 

. N0 is determined from .(N,m) by Eq. (3.11), .0 ≤ N0 ≤ N − 2, and new internal 

parameters .(â1, â3, · · · , â2N0−1) in this .N0-th order rogue wave are related to 

the original internal parameters of .[SN (x, t), LN (x, t)] as 

.â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, · · · , N0. (3.120) 

The error of this lower-order rogue wave approximation is .O(|a2m+1|−1). 

Expressed mathematically, when .|a2m+1| ⪢ 1 and .x2 + t2 = O(1), 

. SN (x, t; a1, a3, a5, · · · , a2N−1) = SN0
(x, t; â1, â3, â5, · · · , â2N0−1)

+O
⎛
|a2m+1|−1

⎞
,

LN (x, t; a1, a3, a5, · · · , a2N−1) = LN0
(x, t; â1, â3, â5, · · · , â2N0−1)

+O
⎛
|a2m+1|−1

⎞
.

Note that .a1 = 0 in the original rogue wave .[SN (x, t), LN (x, t)], but its 

counterpart . ̂a1 in the lower-order rogue wave .[SN0
(x, t), LN0

(x, t)] will not 

be zero. If .N0 = 0, then there will not be such a lower-order rogue wave in 

the neighborhood of the origin, and .[SN (x, t), LN (x, t)] asymptotically would 

approach the constant-amplitude background .[ei(αx+α2t), 0] there as . |a2m+1| →
∞. 

These results have not been reported before to the authors’ knowledge. The proof 

of this theorem is along similar lines as the proofs of Theorems 3.2–3.3 for the NLS 

equation and will be omitted here.
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Comparison Between Predictions and True Solutions 

Our prediction for rogue patterns in .SN (x, t) from Theorem 3.8 can be assembled 

into the formulae 

. |SN (x, t)| ≈
||SN0

(x, t)
||+

Np⎲

k=1

⎛|||Ŝ1(x − x̂
(k)
0 , t − t̂

(k)
0 )

|||− 1
⎞

, (3.121) 

where .SN0
(x, t) is the lower-order rogue wave at the center whose new internal 

parameters .(â1, â3, · · · , â2N0−1) are given by Eq. (3.120), the function .Ŝ1(x, t) is 

the fundamental rogue wave given in Eq. (3.117), with their positions . (x̂
(k)
0 , t̂

(k)
0 )

given by Eq. (3.119) for every one of the nonzero simple roots .z
(k)
0 of .Q

[m]
N (z), 

and . Np is the number of such fundamental rogue waves whose value is given by 

Eq. (3.12). A similar prediction formula for .LN (x, t) can also be written down. 

Now, we compare these predictions with true solutions for fourth-order rogue 

waves (.N = 4). For this purpose, we take .α = 1/2 and the plus sign in . p0 from 

Eq. (2.813) in Sect. 2.11. We also take the  large .a2m+1 parameter respectively as 

.a3 = −30, a5 = −500, a7 = −5000, (3.122) 

with the other internal parameters set as zero in each case. True .|S4(x, t)| solutions 
for these parameter choices are displayed in the upper row of Fig. 3.14. The  

predicted solutions from Eq. (3.121) are displayed in the lower row of Fig. 3.14. 

It is seen that the predicted rogue patterns closely match true rogue patterns on 

all major aspects such as the overall shapes, orientations, and center-rogue-wave 

profiles. Quantitatively, we have also verified the order of accuracy of our analytical 

predictions as stated in Theorem 3.8, with details omitted. 

3.1.8 Ablowitz-Ladik Equation 

The Ablowitz-Ladik (AL) equation is 

.i
d

dt
un = (1 + ϵ|un|2)(un+1 + un−1), (3.123) 

where .ϵ = ±1. Its general N -th order rogue waves .u
[N ]
n (t) under boundary 

conditions 

.un(t) → ρ√
1 − ρ2

ei(θn−ωt), n, t → ±∞, (3.124) 

have been presented in Theorem 2.9 of Sect. 2.8. Here, . ρ, . θ are real background 

parameters and .ω = 2 cos θ/(1 − ρ2). These rogue waves .u
[N ]
n (t) contain free
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Fig. 3.14 Comparison between true rogue solutions .|S4(x, t)| (upper row) and their analytical 
predictions (lower row) in the long-wave-short-wave interaction system (3.115) with .α = 1/2, 

.p0 ≈ 0.844701 + 0.848715i and parameters .(a3, a5, a7) from the left to right columns as 

.(−30, 0, 0), .(0,−500, 0), and  .(0, 0,−5000), respectively. In all panels, . −27 ≤ x ≤ 27, −11 ≤
t ≤ 11

internal real parameter .ℜ(a1) and complex parameters .a3, a5, . . . , a2N−1 (note that 

.𝔍(a1) has been normalized to zero through a time shift). The real parameter . ℜ(a1)

can be kept .O(1) through a lattice shift (i.e., a shift of the lattice index n). Then, 

when one of the complex internal parameters .{a3, a5, . . . , a2N−1} is large, rogue 

patterns in the AL system are given by the following theorem. 

Theorem 3.9 For the N -th order rogue wave .u
[N ]
n (t) in the AL equation (3.123) 

with .𝔍(a1) = 0, when .|a2m+1| is large (.m ≥ 1) and the other internal parameters 

.O(1), then the following statements hold. 

1. If nonzero roots of the Yablonskii-Vorob’ev hierarchy polynomial .Q
[m]
N (z) are all 

simple, then far away from the origin, with .

√
t2 + n2 = O

(
|a2m+1|1/(2m+1)

)
, the  

N -th order rogue wave .u
[N ]
n (t) splits into .Np fundamental rogue waves, where 

.Np is given in Eq. (3.12). These fundamental rogue waves are . ei(θn−ωt)ûn−n̂0(t −
t̂0), where 

. ̂un(t) = ρ√
1 − ρ2

⎾
1 + 2iρ2ωt − 1

ρ2 (n + ωt tan θ)2 + ρ4ω2t2 + 1
4
(1 − ρ2)

⏋
,

(3.125)
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and their temporal and spatial positions .(t̂0, n̂0) are given by 

. t̂0 = (1 + ρ)(1 − ρ2)

2ρ2 cos θ
𝔍 (z0Ω) , . (3.126) 

n̂0 = 
1 + ρ 

ρ

⎾
ℜ (z0Ω) − 

tan θ 

ρ
𝔍 (z0Ω) −ℜ(a1)

⏋
, (3.127) 

.Ω =
⎛
− 2m+1

22m
a2m+1

⎞ 1
2m+1

, and . z0 is any one of the .Np simple nonzero roots 

of .Q
[m]
N (z). The error of this approximation is .O(|a2m+1|−1/(2m+1)). Expressed 

mathematically, when .(t − t̂0)
2 + (n − n̂0)

2 = O(1), we have the following 

solution asymptotics 

. u[N ]
n (t; a1, a3, a5, · · · , a2N−1) = ei(θn−ωt)ûn−n̂0(t − t̂0)

+ O
⎛
|a2m+1|−1/(2m+1)

⎞
. (3.128) 

When .(t, n) is not in the neighborhood of any of these .Np fundamental rogue 

waves, or .
√

t2 + n2 is larger than .O
(
|a2m+1|1/(2m+1)

)
, .u

[N ]
n (t) asymptotically 

approaches the constant background .
ρ√
1−ρ2

ei(θn−ωt) as .|a2m+1| → ∞. 

2. In the neighborhood of the origin, where .t2 + n2 = O(1), .u
[N ]
n (t) is approx-

imately a lower .N0-th order rogue wave .u
[N0]
n (t), where .N0 is determined 

from .(N,m) by Eq. (3.11), .0 ≤ N0 ≤ N − 2, and the internal parameters 

.a1, a3, a5, · · · , a2N0−1 in .u
[N0]
n (t) are the first .N0 values in the parameter set 

.(a1, a3, a5, · · · , a2N−1) of the original rogue wave .u
[N ]
n (t). The error of this 

lower-order rogue wave approximation .u
[N0]
n (t) is .O(|a2m+1|−1). Expressed 

mathematically, when .t2 + n2 = O(1), 

. u[N ]
n (t; a1, a3, a5, · · · , a2N−1) = u[N0]

n (t; a1, a3, a5, · · · , a2N0−1)

+ O
⎛
|a2m+1|−1

⎞
. (3.129) 

If .N0 = 0, then there will not be such a lower-order rogue wave in the 

neighborhood of the origin, and .u
[N ]
n (t) asymptotically approaches the constant 

background .
ρ√
1−ρ2

ei(θn−ωt) there as .|a2m+1| → ∞. 

Since the results in this theorem have not been reported before, and the AL 

equation is very different from the other fully-continuous integrable equations 

covered in earlier sections, we will give a proof of this theorem here. 

Proof of Theorem 3.9 The proof of this theorem is along similar lines as proofs of 

Theorems 3.2–3.3 for the NLS equation. Thus, our proof will be brief. 

First, we prove the statement in the outer region. Suppose .|a2m+1| is large, where 
.1 ≤ m ≤ N − 1, and the other parameters are .O(1). It is easy to see that
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.g1(ρ) = ρ

1 + ρ
, g1(1/ρ) = 1

1 + ρ
, g2(ρ) = ρ

2(1 + ρ)2
. (3.130) 

Thus, 

. x+
1 (n, k, 0) = ρ

1 + ρ

⎾
n + it

⎛
e−iθ

1 − ρ
− eiθ

1 + ρ

⎞
+ 1 + ρ

ρ
ℜ(a1) − k

ρ

⏋

= ρ

1 + ρ

⎾
n − n0a + it

⎛
e−iθ

1 − ρ
− eiθ

1 + ρ

⎞
− k

ρ

⏋
, (3.131) 

where .n0a ≡ −(1 + ρ)ℜ(a1)/ρ. Similarly, 

.x−
1 (n, k, 0) = ρ

1 + ρ

⎾
n − n0a − it

⎛
eiθ

1 − ρ
− e−iθ

1 + ρ

⎞
+ k

ρ

⏋
. (3.132) 

When .|a2m+1| ⪢ 1 and .
√

t2 + n2 = O
(
|a2m+1|1/(2m+1)

)
, we have the  

asymptotics 

.Sj (x
+(n, k, 0) + νs) = Sj (v

+)
⎛
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⎞
, (3.133) 

where 

.v+ =
⎾
x+
1 (n, k, 0), 0, · · · , 0, a2m+1, 0, · · ·

⏋
. (3.134) 

We can write .Sj (v
+) as 

.Sj (v
+) = Ωjp

[m]
k (z+), z+ ≡ Ω−1x+

1 (n, k, 0), (3.135) 

where . Ω is as defined in Theorem 3.9. Thus, 

.Sj (x
+(n, k, 0) + νs) = Ωjp

[m]
k (z+)

⎛
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⎞
. (3.136) 

Similarly, 

.Sj (x
−(n, k, 0) + νs) = Ω∗jp

[m]
k (z−)

⎛
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⎞
, (3.137) 

where .z− ≡ (Ω∗)−1x−
1 (n, k, 0). Using these formulae, we find that 

. det
1≤i,j≤N

⎾
S2i−j (x

+(n, k, 0) + (j − 1)s)
⏋

= c−1
N ΩN(N+1)/2Q

[m]
N (z+)

⎛
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⎞
, (3.138)
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and 

. det
1≤i,j≤N

⎾
S2i−j (x

−(n, k, 0) + (j − 1)s)
⏋

= c−1
N Ω∗N(N+1)/2Q

[m]
N (z−)

⎛
1 + O

⎛
a

−2/(2m+1)
2m+1

⎞⎞
. (3.139) 

Defining real parameters . ̂t0 and . n0b through the equation 

.z0Ω = ρ

1 + ρ

⎾
n0b + it̂0

⎛
e−iθ

1 − ρ
− eiθ

1 + ρ

⎞⏋
, (3.140) 

where . z0 is a root of .Q
[m]
N (z), then 

.z+ = z0 + Ω−1 ρ

1 + ρ

⎾
n − n̂0 + i(t − t̂0)

⎛
e−iθ

1 − ρ
− eiθ

1 + ρ

⎞
− k

ρ

⏋
, (3.141) 

where .n̂0 = n0a + n0b. Note that this . ̂n0 and the above . ̂t0 can be found to be given 

in Eqs. (3.126)–(3.127). Similarly, 

. z− = z∗
0 + (Ω∗)−1 ρ

1 + ρ

⎾
n − n̂0 − i(t − t̂0)

⎛
eiθ

1 − ρ
− e−iθ

1 + ρ

⎞
+ k

ρ

⏋
.

(3.142) 

Inserting these equations into (3.138) and (3.139), expanding .Q
[m]
N (z±) around . z0

and . z∗
0 respectively, and recalling that . z0 is a root of .Q

[m]
N (z), we get 

. det
1≤i,j≤N

⎾
S2i−j (x

+(n, k, 0) + (j − 1)s)
⏋

= 2−N(N−1)/2c−1
N ΩN(N+1)/2

⎾
Q

[m]
N

⏋'
(z0)

× ρ

1 + ρ

⎾
n − n̂0 − i(t − t̂0)

⎛
eiθ

1 − ρ
− e−iθ

1 + ρ

⎞
− k

ρ

⏋

×
⎛
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⎞
, (3.143) 

and 

. det
1≤i,j≤N

⎾
S2i−j (x

−(n, k, 0) + (j − 1)s)
⏋

= 2−N(N−1)/2c−1
N Ω∗N(N+1)/2

⎾
Q

[m]
N

⏋'
(z∗

0)
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× 
ρ 

1 + ρ

⎾
n − n̂0 + i(t − t̂0)

⎛
e−iθ 

1 − ρ 
− 

eiθ 

1 + ρ

⎞
+ 

k 

ρ

⏋

×
⎛
1 + O

⎛
a

−1/(2m+1) 
2m+1

⎞⎞
. (3.144) 

Using these formulae and the Laplace expansion [see Eq. (2.77)] 

. σn,k,0 =
⎲

0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x+(n, k, 0) + νj s)

⏋

× det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x−(n, k, 0) + νj s)

⏋
, (3.145) 

we find that the leading order contributions to .σn,k,0 come from two index choices, 

one being .ν = (0, 1, · · · , N − 1), and the other being .ν = (0, 1, · · · , N − 2, N), 

and their combined contributions are 

. σn,k,0 = 2−N(N−1)c−2
N ΩN(N+1)

||||
⎾
Q

[m]
N

⏋'
(z0)

||||
2

× ρ2

(1 + ρ)2

⎧⎾
n − n̂0 − i(t − t̂0)

⎛
eiθ

1 − ρ
− e−iθ

1 + ρ

⎞
− k

ρ

⏋

×
⎾
n − n̂0 + i(t − t̂0)

⎛
e−iθ

1 − ρ
− eiθ

1 + ρ

⎞
+ k

ρ

⏋
+ 1 − ρ2

4ρ2

⎫

×
⎛
1 + O

⎛
a

−1/(2m+1)
2m+1

⎞⎞
. (3.146) 

According to our assumption of . z0 being a simple root of .Q
[m]
N (z), . 

⎾
Q

[m]
N

⏋'
(z0) /=

0. Thus, the above leading order asymptotics of .σn,k,0 does not vanish. Inserting 

this asymptotics into the formula .u
[N ]
n (t) = (ρ/

√
1 − ρ2)ei(θn−ωt)σn,1,0/σn,0,0 and 

simplifying, we then get 

. u[N ]
n (t) = ei(θn−ωt)ûn−n̂0(t − t̂0) + O

⎛
|a2m+1|−1/(2m+1)

⎞
, (3.147) 

where .ûn(t) is as given in Eq. (3.125). This completes the proof in the outer region. 

The proof for the inner region is almost identical to that for Theorem 3.3 of the 

NLS equation. This completes the proof of Theorem 3.9. ⨅⨆

Comparison Between True Rogue Patterns and Analytical Predictions 

From Theorem 3.9, we get predictions for rogue patterns in .u
[N ]
n (t), which can be 

assembled into the formula
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.

|||u[N ]
n (t)

||| ≈
|||u[N0]

n (t)

|||+
Np⎲

k=1

⎛|||û
n−n̂

(k)
0

(t − t̂
(k)
0 )

|||− 1
⎞

, (3.148) 

where .ûn(t) is the fundamental AL rogue wave given in Eq. (3.125), their positions 

.(n̂
(j)

0 , t̂
(j)

0 ) given by (3.126)–(3.127) with . z0 being every one of the .Np simple 

nonzero roots of .Q
[m]
N (z), and .u

[N0]
n (t) is the lower-order rogue wave at the center 

with its internal parameters .a3, a5, · · · , a2N0−1 being the first .N0 − 1 values in the 

parameter set .(a3, a5, · · · , a2N−1) of the original rogue wave .u
[N ]
n (t). 

Now, we compare these predictions with true solutions for the fourth-order rogue 

waves (.N = 4). For this purpose, we take .ρ = 0.5 and .θ = 0 in the boundary 

conditions (3.124). We also take the large .a2m+1 parameter respectively as 

.a3 = 30, a5 = 500 (3.149) 

with the other internal parameters set as zero in each case. True .|u[4]
n (t)| solutions for 

these parameter choices are displayed in the upper row of Fig. 3.15. The predicted 

solutions from Eq. (3.148) are displayed in the lower row of Fig. 3.15. It can be seen 

that the predicted and true patterns match well. Differences between the predicted 

and true solutions are also visible, but we have verified that such differences 

would gradually disappear as the .|a2m+1| value in these solutions gets larger, which 
quantitatively confirms the correctness of Theorem 3.9. 

Fig. 3.15 Comparison between true rogue solutions .|u[4]
n (t)| (upper row) and their analytical 

predictions (lower row) in the Ablowitz-Ladik equation (3.123), for parameters . (a3, a5, a7) =
(30, 0, 0) in the left column and .(0, 500, 0) in the right column. The other parameter values are 

.ρ = 0.5, .θ = 0, and .ℜ(a1) = 0
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3.1.9 Universality of Rogue Patterns Associated with the 

Yablonskii-Vorob’ev Polynomial Hierarchy 

One can clearly see from theorems in the previous subsections that rogue patterns 

under the large-parameter limit in these integrable systems have a lot in common. 

In all cases, the center of the wave pattern is a lower-order rogue wave, and the 

order of this center rogue wave depends only on the order of the original rogue 

wave and the index of the large internal parameter. Away from the center, the rogue 

pattern comprises fundamental rogue waves, whose number is equal to the number 

of nonzero simple roots of the Yablonskii-Vorob’ev polynomial .Q
[m]
N (z), and whose 

.(x, t) or .(n, t) locations are linearly dependent on the real and imaginary parts of 

these nonzero simple roots. To put it mathematically, the location .(x̂0, t̂0) of each 

fundamental rogue wave inside the rogue structure is given by the real and imaginary 

parts of each nonzero simple root . z0 of .Q
[m]
N (z) through a linear transformation 

.

⎾
x̂0

t̂0

⏋
= B

⎾
ℜ(z0)

𝔍(z0)

⏋
+
⎾

Δ1

Δ2

⏋
, (3.150) 

where . B is a constant matrix and .(Δ1,Δ2) a constant vector (for the Ablowitz-

Ladik equation, . x̂0 in this transformation will be replaced by its counterpart . ̂n0). For 

example, for the NLS equation, we can see from Eq. (3.20) of Theorem 3.2 that 

.B =
⎾
ℜ(Ω) −𝔍(Ω)

𝔍(Ω) ℜ(Ω)

⏋
,

⎾
Δ1

Δ2

⏋
=
⎾
0

0

⏋
, (3.151) 

where .Ω = [−(2m + 1)2−2ma2m+1]1/(2m+1). For the GDNLS equations, we can 

see from Eq. (3.71) of Theorem 3.4 that 

. B =
⎾

1√
α
ℜ(Ω) − α−1

α
𝔍(Ω) − 1√

α
𝔍(Ω) − α−1

α
ℜ(Ω)

1
α
𝔍(Ω) 1

α
ℜ(Ω)

⏋
,

⎾
Δ1

Δ2

⏋
=
⎾
0

0

⏋
.

(3.152) 

For the Boussinesq equation, Eq. (3.78) of Theorem 3.5 gives 

.B = 2
√
3

⎾
𝔍(Ω) ℜ(Ω)

−ℜ(Ω) 𝔍(Ω)

⏋
,

⎾
Δ1

Δ2

⏋
=
⎾

ΔB

0

⏋
, (3.153) 

where .ΔB is provided in Theorem 3.5. For the Manakov system, Eq. (3.98) of  

Theorem 3.6 gives 

.B = 1

ℜ(p0)

⎡
⎣ℜ

⎛
p∗
0Ω

p1

⎞
−𝔍

⎛
p∗
0Ω

p1

⎞

1
2
𝔍

⎛
Ω
p1

⎞
1
2
ℜ

⎛
Ω
p1

⎞
⎤
⎦ ,

⎾
Δ1

Δ2

⏋
=
⎾

Δ1M

Δ2M

⏋
, (3.154)
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where .(Δ1M ,Δ2M) are provided by Eq. (3.99). This linear transformation can be 

similarly written down for the other three integrable systems covered in earlier 

subsections, namely, the three-wave system, the long-wave-short-wave resonant 

interaction system, and the Ablowitz-Ladik equation. For the massive Thirring 

model not covered in this section, this linear transformation has been derived by 

Chen et al. (2023) as well. 

It is important to notice that the constant matrix . B and the constant vector 

.(Δ1,Δ2) are both independent of the root . z0, which is why (3.150) is a linear trans-

formation from the z-plane to the .(x, t) or .(n, t) plane. This linear transformation 

means that the whole rogue pattern formed by fundamental rogue waves in the . (x, t)

or .(n, t) plane is just a linear transformation matrix . B applied to the root structure of 

the Yablonskii-Vorob’ev polynomial .Q
[m]
N (z) in the complex z plane, plus a constant 

position shift .(Δ1,Δ2). 

To get a visual impression of the linear transformation (3.150), we plot in 

Fig. 3.16 its effects on the root structures of .Q
[m]
5 (z) with .1 ≤ m ≤ 4 for the 

NLS equation, the GDNLS equations, the Boussinesq equation, and the Manakov 

system. The reader is reminded that these root structures of .Q
[m]
5 (z) have been 

plotted in the bottom row of Fig. 3.1. In the first row of Fig. 3.16, images of the 

transformation (3.150) on these root structures are displayed for the NLS equation 

with the large internal parameter .a2m+1 respectively as 

.(a3, a5, a7, a9) = (−20i,−100i,−2000i,−12,000i). (3.155) 

These parameter values are the same as those in NLS’ predicted rogue patterns 

shown in Fig. 3.3 for .N = 5. In the second row of Fig. 3.16, images of this 

transformation are displayed for the GDNLS equations with the background 

wavenumber .α = 16/9 and the large internal parameter .a2m+1 respectively as 

.(a3, a5, a7, a9) = (−15i,−250i,−1000i,−3000i). (3.156) 

These parameter values are the same as those in GDNLS’ predicted rogue patterns 

shown in Fig. 3.6 for .N = 5. The third row of Fig. 3.16 are images of this trans-

formation for the Boussinesq equation with the large parameter .a2m+1 respectively 

as 

.(a3, a5, a7, a9) = (−5, 20,−80, 200). (3.157) 

These parameter values are the same as those in Boussinesq’ predicted rogue 

patterns shown in Fig. 3.8 for .N = 5. In the last row of Fig. 3.16, images of 

this transformation for the Manakov equations are illustrated under system and 

background parameter choices in Eq. (3.104), with the large parameter .a2m+1 as in 

Eq. (3.105) respectively. These parameter values are the same as those in Manakov’s 

predicted rogue patterns shown in Fig. 3.10 (for .N = 5).
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Fig. 3.16 The .(x, t) plane images of the linear transformation (3.150) on the root structures of 

.Q
[m]
5 (z) with .1 ≤ m ≤ 4, for the NLS equation, the GDNLS equations, the Boussinesq equation, 

and the Manakov system, with the respective large internal parameter .a2m+1 and other system 

parameters provided by Eqs. (3.155)–(3.157) and  (3.104)–(3.105). First row: images for the NLS 

equation, where .−15 ≤ x, t ≤ 15. Second row: images for the GDNLS equations, where . −13 ≤
x, t ≤ 13. Third row: images for the Boussinesq equation, where .−35 ≤ x, t ≤ 35. Fourth row: 

images for the Manakov system, where . −28 ≤ x, t ≤ 28

By comparing these images to the original root structures at the bottom row of 

Fig. 3.1, we can see that in the NLS and Boussinesq cases, the images have the 

same shapes of the root structures. In the GDNLS and Manakov cases, however, the 

images are stretched versions of the root structures. The reasons for these different 

shapes of images are due to the properties of the underlying transformation matrix . B. 

By comparing these images to the predicted and true rogue patterns shown in 

Figs. 3.2 and 3.3 and Figs. 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 under the same parameter 

values and .(x, t) intervals, we can see clearly that the predicted and true rogue 

patterns are simply the flesh-out of the images of the linear transformation (3.150) 

on the Yablonskii-Vorob’ev root structures, where the image of each nonzero root 

is replaced by a fundamental rogue wave, and the image of the zero root is replaced
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by a lower-order rogue wave. This fact is true not only for the NLS, GDNLS, 

Boussinesq and Manakov equations, but also for other integrable equations covered 

in this section, namely, the three-wave system, the long-wave-short-wave resonant 

interaction system, and the Ablowitz-Ladik equation. In addition, it has been shown 

to be true for the massive Thirring model as well (Chen et al. 2023). Furthermore, 

numerical evidence indicates that this fact should also hold for the Sasa-Satsuma 

equation and the complex short pulse equation (Wu et al. 2022, Feng et al. 2022a). 

A common feature of all these integrable systems is that their rogue waves can be 

expressed by . τ functions whose matrix elements are Schur polynomials with index 

jumps of two. In such cases, rogue patterns in shapes of the Yablonskii-Vorob’ev 

hierarchy’s root structures under linear transformations would always appear, and 

they constitute a class of universal rogue patterns in integrable systems. 

3.2 Rogue Patterns Associated with Adler-Moser 

Polynomials 

The previous section showed that rogue patterns under a single large internal 

parameter are predicted by root structures of the Yablonskii-Vorob’ev polynomial 

hierarchy. When multiple internal parameters in rogue wave solutions are large, new 

rogue patterns would appear, and their shapes could be predicted asymptotically by 

root structures of Adler-Moser polynomials. We study these rogue patterns below, 

following Yang and Yang (2024a). 

3.2.1 Adler-Moser Polynomials and Their Root Structures 

Adler-Moser polynomials were proposed by Adler and Moser (1978), who 

expressed rational solutions of the Korteweg-de Vries equation in terms of those 

polynomials. In a different context of point vortex dynamics, it was discovered 

unexpectedly that the zeros of these polynomials also form stationary vortex 

configurations when the vortices have the same strength but positive or negative 

orientations, and the numbers of those positive and negative vortices are consecutive 

triangular numbers (Aref 2007; Clarkson  2009). 

Adler-Moser polynomials .ΘN (z) can be written as a determinant (Clarkson 

2009) 

.ΘN (z) = cN

|||||||||

θ1(z) θ0(z) · · · θ2−N (z)

θ3(z) θ2(z) · · · θ4−N (z)
...

...
...

...

θ2N−1(z) θ2N−2(z) · · · θN (z)

|||||||||
, (3.158)
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where .θk(z) are Schur polynomials defined by 

.

∞⎲

k=0

θk(z)ϵ
k = exp

⎛
⎝zϵ +

∞⎲

j=1

κj ϵ
2j+1

⎞
⎠ , (3.159) 

.θk(z) ≡ 0 if .k < 0, .cN =
∏N

j=1(2j − 1)!!, and .(κ1, κ2, . . . , κN−1) are 

arbitrary complex constants. Note that our . κj constant is slightly different from 

that in Clarkson (2009) by a factor of .−1/(2j + 1), and this different parameter 

definition will be more convenient for our purpose. The determinant in (3.158) is  

a Wronskian since we can see from Eq. (3.159) that .θ '
k(z) = θk−1(z), where the 

prime denotes differentiation. In addition, these .ΘN (z) polynomials are monic with 

degree .N(N + 1)/2, which can be seen by noticing that the highest z term of . θk(z)

is .zk/k!, and the determinant in (3.158) with .θk(z) replaced by its highest z term 

can be explicitly calculated as .zN(N+1)/2 (Ohta and Yang 2012a). Adler-Moser 

polynomials reduce to the Yablonskii-Vorob’ev polynomial hierarchy when all . κj

constants are set as zero except for one of them (see Sect. 3.1.1). Thus, Adler-Moser 

polynomials are generalizations of the Yablonskii-Vorob’ev polynomial hierarchy. 

The first few Adler-Moser polynomials are 

. Θ1(z) = z,

Θ2(z) = z3 − 3κ1,

Θ3(z) = z6 − 15κ1z
3 + 45κ2z − 45κ2

1 ,

Θ4(z) = z10 − 45κ1z
7 + 315κ2z

5 − 1575κ3z
3

+4725κ1κ2z
2 − 4725κ3

1z − 4725κ2
2 + 4725κ1κ3.

Root structures of Adler-Moser polynomials are important to us, since we will 

link them to rogue wave patterns in the later text. Due to the free complex parameters 

.{κj } in them, their root structures will be understandably very diverse—much more 

diverse than root structures of Yablonskii-Vorob’ev hierarchy polynomials. Indeed, 

when setting all .{κj } as zero except for one of them, we get root structures of 

Yablonskii-Vorob’ev hierarchy polynomials which are in the shape of triangles, 

pentagons, heptagons, and so on. When we continuously change those .{κj } values, 
we will get root structures which smoothly deform from one type of Yablonskii-

Vorob’ev root structure to another, such as from a triangle to a pentagon. In this 

process, uncountably infinite new root shapes will be generated. These roots are 

generically simple roots. Indeed, if a root happens to be a multiple root, it will split 

into simple roots when the complex parameters .{κj } are slightly perturbed. For this 
reason, we will focus on the case when all roots of .ΘN (z) are simple in this article. 

In this case, .ΘN (z) will have .N(N + 1)/2 roots. 

Of the uncountably infinite root structures of Adler-Moser polynomials, we illus-

trate only three of them for brevity. These three samples are for .Θ5(z; κ1, κ2, κ3, κ4),
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Fig. 3.17 Three sample root structures of the Adler-Moser polynomial .Θ5(z) for parameter values 

.(κ1, κ2, κ3, κ4) given in Eq. (3.160). In all panels, . −7 ≤ Re(z), Im(z) ≤ 7

with three sets of .(κ1, κ2, κ3, κ4) values as 

.(i, i, i, i), (5i/3,−i, 5i/7,−5i/9), (1, 1, 1, 1). (3.160) 

Their root structures are displayed in Fig. 3.17a–c, respectively. In these panels, 

every root is a simple root. The (a) panel shows a heart-shaped structure, (b) shows 

a fan-shaped circular sector, and (c) shows a two-arc structure combined with a 

triangle. 

It turns out that root structures of Adler-Moser polynomials describe rogue 

patterns in many integrable systems when multiple internal parameters in their rogue 

waves are large. We present detailed results for two such integrable systems below. 

3.2.2 Nonlinear Schrödinger Equation 

For the NLS equation 

.iut + 1

2
uxx + |u|2u = 0, (3.161) 

its rogue wave solutions .uN (x, t) have been presented in Theorem 2.1 of Chap. 2 

(see also Lemma 3.1 of this chapter). These solutions contain .N − 1 free internal 

complex parameters .a3, a5, · · · , a2N−1. If only one of those parameters is large, 

then the resulting rogue pattern is predicted by root structures of Yablonskii-

Vorob’ev hierarchy polynomials, see the previous section. In this section, we 

consider patterns of these rogue solutions when multiple of these internal parameters 

are large. 

Specifically, suppose parameters .a3, a5, · · · , a2N−1 in .uN (x, t) are of the fol-

lowing form 

.a2j+1 = κj A2j+1, 1 ≤ j ≤ N − 1, (3.162)
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where .A ⪢ 1 is a large positive constant, and .(κ1, κ2, . . . , κN−1) are .O(1) complex 

constants not being all zero. Suppose also that roots of the Adler-Moser polynomial 

.ΘN (z) with parameters .(κ1, κ2, . . . , κN−1) are all simple. Then, our analytical 

prediction on the pattern of this rogue wave solution .uN (x, t) is given by the 

following theorem. 

Theorem 3.10 If all roots of .ΘN (z) with parameters .(κ1, κ2, . . . , κN−1) are sim-

ple, then the N -th order rogue wave .uN (x, t) of the NLS equation in Eq. (3.14) with 

its internal large parameters as given by Eq. (3.162) would asymptotically split into 

.N(N +1)/2 fundamental (Peregrine) rogue waves of the form .û1(x − x̂0, t − t̂0) eit , 

where .û1(x, t) is given in Eq. (3.19), and positions .(x̂0, t̂0) of these Peregrine waves 

are given by 

.x̂0 + i t̂0 = z0A, (3.163) 

with . z0 being every one of the .N(N + 1)/2 simple roots of .ΘN (z). The error of this 

Peregrine wave approximation is .O(A−1). Expressed mathematically, when . (x −
x̂0)

2 + (t − t̂0)
2 = O(1), we have the following solution asymptotics 

.uN (x, t; a3, a5, · · · , a2N−1) = û1(x − x̂0, t − t̂0) eit + O
⎛
A−1

⎞
. (3.164) 

When .(x, t) is not in the neighborhood of any of these Peregrine waves, . uN (x, t)

would asymptotically approach the constant-amplitude background . eit as . A →
+∞. 

This theorem indicates that the rogue pattern is asymptotically a simple dilation 

of the root structure of the underlying Adler-Moser polynomial by a factor of A, with 

each root predicting the location of a Peregrine wave in the .(x, t) plane according 

to Eq. (3.163). Thus, this theorem establishes a direct connection between rogue 

patterns and root structures of Adler-Moser polynomials. 

One may notice that in the present case of multiple large parameters, the rogue 

pattern is a simple dilation of the root structure of an Adler-Moser polynomial 

(by a factor of A), while in the case of a single large parameter as studied in 

Sect. 3.1.2, the rogue pattern was a dilation and rotation of the root structure of 

a Yablonskii-Vorob’ev hierarchy polynomial (see Theorem 3.2). The reason our 

current rogue pattern does not involve rotation to the root structure is that, the Adler-

Moser polynomial contains free complex constants .{κj }, which automatically put 

its root structure in proper orientation to match the rogue pattern. Comparatively, 

a Yablonskii-Vorob’ev hierarchy polynomial does not contain such free complex 

constants, and thus the orientation of its root structure is fixed. In this case, in order 

for its root structure to match the orientation of the rogue wave, a proper rotation is 

needed. 

Proof of Theorem 3.10 The main idea of our proof resembles that for Theorem 3.2 

for a single large internal parameter case, and we will only sketch the main 

differences below.
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To derive the large-parameter asymptotics of the rogue wave solution .uN (x, t) in 

Eq. (3.14), we need asymptotic expressions for the determinant . σn in Eq. (3.15). As 

before, we first use determinant identities and the Laplace expansion to rewrite . σn

as 

. σn =
⎲

0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x+(n) + νj s)

⏋

× det
1≤i,j≤N

⎾
1

2νj
S2i−1−νj

(x−(n) + νj s)

⏋
, (3.165) 

see Eqs. (2.77) and (3.36). 

When internal parameters .(a3, a5, · · · , a2N−1) are of the form (3.162) with . A ⪢
1, and .x, t = O(A) or smaller, we have 

. Sk(x
+(n) + νs) = Sk

(
x+
1 , νs2, x

+
3 , νs4, · · ·

)

= Sk

⎛
x+
1 , 0, κ1A

3, 0, κ2A
5, · · ·

⎞ ⎾
1 + O(A−2)

⏋

= Sk(v̂)
⎾
1 + O(A−2)

⏋
, (3.166) 

where .v̂ =
(
x + it + n, 0, κ1A

3, 0, κ2A
5, 0, · · ·

)
. From the definition (2.2) of Schur 

polynomials, one can see that the polynomial .Sk(v̂) is related to .θk(z) in (3.159) as  

.Sk(v̂) = Akθk(ẑ), (3.167) 

where .ẑ ≡ A−1(x + it + n). 

The dominant contribution in the Laplace expansion (3.165) of  . σn comes from 

two index choices, .ν = (0, 1, · · · , N − 1), and .ν = (0, 1, · · · , N − 2, N). 

With the first index choice, in view of Eqs. (3.41)–(3.43), the determinant 

involving .x+(n) inside the summation of (3.165) is asymptotically 

.α A
N(N+1)

2 ΘN (ẑ)
⎾
1 + O

⎛
A−2

⎞⏋
, (3.168) 

where .α = 2−N(N−1)/2c−1
N . Let us define .(x̂0, t̂0) by Eq. (3.163), i.e., . z0 =

A−1(x̂0 + it̂0), where . z0 is a simple root of the Adler-Moser polynomial .ΘN (z). 

Then, when .(x, t) is in the .O(1) neighborhood of .(x̂0, t̂0), we expand .ΘN (ẑ) around 

.ẑ = z0. Recalling .ΘN (z0) = 0, we get 

.ΘN (ẑ) = A−1
⎾
(x − x̂0) + i(t − t̂0) + n

⏋
Θ '

N (z0)
⎾
1 + O

⎛
A−1

⎞⏋
. (3.169) 

Inserting this equation into (3.168), the determinant involving .x+(n) inside the 

summation of (3.165) becomes
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.

⎾
(x − x̂0) + i(t − t̂0) + n

⏋
α A

N(N+1)
2 Θ '

N (z0)
⎾
1 + O

⎛
A−1

⎞⏋
. (3.170) 

Similarly, the determinant involving .x−(n) inside this summation becomes 

.

⎾
(x − x̂0) − i(t − t̂0) − n

⏋
α A

N(N+1)
2 Θ '

N (z∗
0)
⎾
1 + O

⎛
A−1

⎞⏋
. (3.171) 

Next, we consider the contribution from the second index choice of . ν =
(0, 1, · · · , N −2, N). For this index choice, the determinant involving .x+(n) inside 

the summation of (3.165) becomes 

.
1

2
α A

N(N+1)−2
2 Θ '

N (ẑ)
⎾
1 + O

⎛
A−2

⎞⏋
. (3.172) 

When .(x, t) is in the .O(1) neighborhood of .(x̂0, t̂0), the above term is asymptoti-

cally equal to 

.
1

2
α A

N(N+1)−2
2 Θ '

N (z0)
⎾
1 + O

⎛
A−1

⎞⏋
. (3.173) 

Similarly, the determinant involving .x−(n) inside the summation of (3.165) 

becomes 

.
1

2
α A

N(N+1)−2
2 Θ '

N (z∗
0)
⎾
1 + O

⎛
A−1

⎞⏋
. (3.174) 

Summarizing the above two dominant contributions in the Laplace expan-

sion (3.165), we find that 

. σn(x, t) = α2
||Θ '

N (z0)
||2 AN(N+1)−2

×
⎾(

x − x̂0
)2 +

(
t − t̂0

)2 − 2in
(
t − t̂0

)
− n2 + 1

4

⏋

×
⎾
1 + O

⎛
A−1

⎞⏋
. (3.175) 

Since the root . z0 has been assumed simple, .Θ '
N (z0) /= 0. Thus, the above leading-

order asymptotics for .σn(x, t) does not vanish. Therefore, when A is large and . (x, t)

in the O(1) neighborhood of .

(
x̂0, t̂0

)
, we get from (3.175) that 

. uN (x, t) = σ1

σ0
eit = eit

⎛
1 − 4[1 + 2i(t − t̂0)]

1 + 4(x − x̂0)2 + 4(t − t̂0)2

⎞
+ O

⎛
A−1

⎞
,

(3.176)
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which is a Peregrine wave .û1(x − x̂0, t − t̂0) eit , and the error of this Peregrine 

prediction is .O
(
A−1

)
. Theorem 3.10 is then proved. ⨅⨆

Numerical Confirmation 

Now, we numerically verify Theorem 3.10 by comparing its predictions with 

true rogue-wave solutions. This comparison will be done only for fifth-order 

rogue waves .u5(x, t) for brevity. Such fifth-order solutions have internal complex 

parameters .(a3, a5, a7, a9). 

We will do this comparison on three examples. Internal parameter values in these 

three examples are of the form (3.162) with .A = 5, which is large as desired, 

and their .(κ1, κ2, κ3, κ4) values are given in Eq. (3.160). These . κj values are used 

since root structures of Adler-Moser polynomials .Θ5(z) for these values have been 

displayed in Fig. 3.17. For these three sets of internal parameters, true rogue wave 

solutions are plotted in the upper three panels of Fig. 3.18, respectively. It is seen 

that each panel comprises 15 lumps (Peregrine waves) in the .(x, t) plane. In the first 

panel, these 15 Peregrine waves form a heart-shaped structure, with another mini-

heart in its interior. In the second panel, these 15 Peregrine waves form a fan-shaped 

structure. In the third panel, these 15 Peregrine waves form two vertically-oriented 

arcs plus a smaller triangle on their right side. 

Our analytical predictions .|u(p)

5 (x, t)| for these rogue waves from Theorem 3.10 

can be assembled into a simple formula, 

.

|||u(p)

5 (x, t)

||| = 1 +
15⎲

j=1

⎛|||û1(x − x̂
(j)

0 , t − t̂
(j)

0 )

|||− 1
⎞

, (3.177) 

where .û1(x, t) is the Peregrine wave given in (3.19), and their positions . (x̂
(j)

0 , t̂
(j)

0 )

are given by (3.163) with . z0 being every one of the .N(N + 1)/2 = 15 simple 

roots of the Adler-Moser polynomial .Θ5(z). These predicted solutions for the same 

.(a3, a5, a7, a9) values as in the true solutions are plotted in the lower three panels 

of Fig. 3.18. When compared to the root structures of the Adler-Moser polynomial 

.Θ5(z) in Fig. 3.17, our predicted rogue patterns in these lower panels are obviously 

a simple dilation of those root structures, by a factor of .A = 5, with each root 

replaced by a Peregrine wave, as Theorem 3.10 says. 

When comparing the true rogue solutions in the upper row to their analytical 

predictions in the lower row, we can clearly see that they agree with each other 

very well. In fact, one can hardly notice the difference between them, which is an 

indication that our prediction in Theorem 3.10 is highly accurate. 

Quantitatively, we have also measured the error of our analytical predictions 

versus the A value, similar to what we did in Fig. 3.4 for the NLS equation under 

a single large internal parameter. That error analysis confirmed that the error does 

decay in proportion to .A−1, as Theorem 3.10 predicts. Thus, Theorem 3.10 is fully 

confirmed numerically. Details of this quantitative comparison are omitted here for 

brevity.
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Fig. 3.18 Comparison between true rogue waves .|u5(x, t)| (upper row) and their analytical 

predictions (lower row) in the NLS equation under multiple large parameters (3.162) with .A = 5. 

From left to right columns: .(κ1, κ2, κ3, κ4) = (i, i, i, i), (5i/3,−i, 5i/7,−5i/9), (1, 1, 1, 1). In all  

panels, . −30 ≤ x, t ≤ 30

3.2.3 Derivative Nonlinear Schrödinger Equations 

The normalized generalized derivative nonlinear Schrödinger (GDNLS) equations 

are 

.iut + 1

2
uxx + iγ |u|2ux + i(γ − 1)u2u∗

x + 1

2
(γ − 1)(γ − 2)|u|4u = 0, (3.178) 

where . γ is a real constant (see Sect. 2.2). These equations contain the Kaup-Newell 

equation (.γ = 2), the Chen-Lee-Liu equation (.γ = 1) and the Gerdjikov-

Ivanov equation (.γ = 0) as special cases. Rogue waves in the GDNLS equations 

have been presented in Theorem 2.3 of Sect. 2.2. Those rogue waves contain free 

internal complex parameters .a3, a5, · · · , a2N−1. Suppose these parameters are of 

the form (3.162), i.e., 

.a2j+1 = κj A2j+1, 1 ≤ j ≤ N − 1, (3.179)
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where .A ⪢ 1 is a large positive constant, and .(κ1, κ2, . . . , κN−1) are .O(1) complex 

constants not being all zero. Then, we have the following theorem on the pattern of 

these rogue waves. 

Theorem 3.11 If all roots of .ΘN (z) with parameters .(κ1, κ2, . . . , κN−1) are 

simple, then the GDNLS rogue wave .uN (x, t) with its large internal parameters 

as given by Eq. (3.179) would asymptotically split into .N(N + 1)/2 fundamental 

rogue waves of the form .û1(x − x̂0, t − t̂0) ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t , where 

.|û1(x, t)| =
|||||

α(x + αt)2 + (x − t)2 − i(x + 3αt) − 3
4

α(x + αt)2 + (x − t)2 + i(x + αt) − 2it + 1
4

||||| , (3.180) 

and their positions .(x̂0, t̂0) are given by 

.x̂0 = 1√
α
ℜ [z0A] − α − 1

α
𝔍 [z0A] , t̂0 = 1

α
𝔍 [z0A] , (3.181) 

with . z0 being any one of the .N(N + 1)/2 simple roots of .ΘN (z). The error of 

this fundamental rogue wave approximation is .O(A−1). Expressed mathematically, 

when .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the following solution asymptotics 

. uN (x, t; a3, a5, · · · , a2N−1) = û1(x − x̂0, t − t̂0) ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t

+ O
⎛
A−1

⎞
. (3.182) 

When .(x, t) is not in the neighborhood of any of these fundamental waves, then 

.uN (x, t) would asymptotically approach the constant-amplitude background wave 

.ei(1−γ−α)x− i
2

⎾
α2+2(γ−2)α+1−γ

⏋
t as .A → +∞. 

The proof of this theorem is similar to that for Theorem 3.10 and will be omitted. 

Numerical Confirmation 

Next, we numerically verify Theorem 3.11 by comparing its predictions with 

true rogue-wave solutions. This comparison will be done for fifth-order rogue 

waves .u5(x, t). Such fifth-order solutions have internal complex parameters 

.(a3, a5, a7, a9). Our analytical predictions .|u(p)

5 (x, t)| for these rogue waves from 

Theorem 3.11 can be assembled into a simple formula, 

.

|||u(p)

5 (x, t)

||| ≈ 1 +
15⎲

j=1

⎛|||û1(x − x̂
(j)

0 , t − t̂
(j)

0 )

|||− 1
⎞

, (3.183) 

where .û1(x, t) is the fundamental rogue wave given by Eq. (3.180), and their 

positions .(x̂
(j)

0 , t̂
(j)

0 ) are given by Eq. (3.181) with . z0 being every one of the 

.N(N + 1)/2 = 15 simple roots of the Adler-Moser polynomial .Θ5(z).
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We will do this comparison on three different patterns. Internal parameter values 

in these three examples are of the form (3.179) with .A = 5, which is large as desired, 

and their .(κ1, κ2, κ3, κ4) values are given in Eq. (3.160). These . κj values are used 

since root structures of Adler-Moser polynomials .Θ5(z) for these values have been 

displayed in Fig. 3.17. Then, when we choose .α = 16/9 in the background wave, 

true rogue wave solutions for these three sets of internal parameters are plotted in 

the upper three panels of Fig. 3.19, respectively. It is seen that each panel comprises 

15 lumps (fundamental rogue waves) in the .(x, t) plane. In the first panel, these 

15 fundamental rogue waves form a heart-shaped structure, with another mini-heart 

in its interior. In the second panel, these 15 fundamental rogue waves form a fan-

shaped structure. In the third panel, these 15 fundamental rogue waves form two 

vertically-oriented arcs plus a smaller triangle on their right side. 

Predicted rogue solutions from Theorem 3.10 for the same .(a3, a5, a7, a9) values 

as in the true solutions are plotted in the lower three panels of Fig. 3.19. When 

comparing these predictions to the true solutions, we can clearly see that they agree 

with each other very well. In fact, one can hardly notice the difference between 

them, which is an indication that our prediction in Theorem 3.11 is highly accurate. 

When comparing these rogue patterns to root structures of Adler-Moser polynomials 

.Θ5(z) in Fig. 3.17, we see that these rogue patterns are stretched from Adler-Moser 

Fig. 3.19 Comparison between true rogue solutions .|u5(x, t)| (upper row) and their ana-

lytical predictions (lower row) in the GDNLS equations under multiple large parameters 

(3.179) with  .A = 5 and .α = 16/9. From left to right columns: . (κ1, κ2, κ3, κ4) =
(i, i, i, i), (5i/3,−i, 5i/7,−5i/9), (1, 1, 1, 1). In the first column, .−33 ≤ x, t ≤ 33. In the second 

and third columns, .−30 ≤ x, t ≤ 30
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root structures, because the linear transformation from the root-z plane to the . (x, t)

plane in Eq. (3.181) involves stretching. 

Quantitatively, we have also measured the error of our analytical predictions 

versus the A value. That error analysis confirmed that the error does decay in 

proportion to .A−1, as Theorem 3.11 predicts. Thus, Theorem 3.11 is fully confirmed 

numerically. Details of this quantitative comparison are omitted for brevity. 

To conclude this section, we point out that these rogue patterns associated 

with Adler-Moser polynomials are also universal and would arise in many other 

integrable systems as well if their rogue waves can be expressed by . τ functions 

whose matrix elements are Schur polynomials with index jumps of two, and 

when multiple internal parameters in their rogue waves are large as in Eq. (3.162). 

Examples include the Boussinesq equation, the Manakov system, the three-wave 

interaction system, the long-wave-short-wave interaction system, the Ablowitz-

Ladik equation, the massive Thirring model, and others. Details are omitted. 

3.3 Rogue Patterns Associated with Okamoto Polynomial 

Hierarchies 

Yablonskii-Vorob’ev polynomial hierarchies and Adler-Moser polynomials are 

associated with rogue patterns in integrable systems whose rogue waves can be 

expressed by . τ functions whose matrix elements are Schur polynomials with index 

jumps of two. However, there exist other rogue waves in certain integrable systems 

whose . τ functions do not feature Schur polynomials with index jumps of two. 

For example, the Manakov system and three-wave interaction system admit rogue 

waves whose . τ functions contain Schur polynomials with index jumps of three. 

In such cases, rogue patterns would be associated with another type of special 

polynomials—the Okamoto polynomial hierarchies (Yang and Yang 2023a). This 

prospect will be examined in this section. 

3.3.1 Okamoto Polynomials and Their Hierarchies 

Okamoto polynomials first arose in Okamoto’s study of rational solutions to the 

Painlevé IV equation (Okamoto 1986). He showed that a class of such rational solu-

tions can be expressed as the logarithmic derivative of certain special polynomials, 

which are now called Okamoto polynomials. Later, determinant expressions of these 

polynomials were discovered by Kajiwara and Ohta (1998). Let .pj (z) be Schur 

polynomials defined by 

.

∞⎲

j=0

pj (z)ϵ
j = exp

⎛
zϵ + ϵ2

⎞
, (3.184)
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with .pj (z) ≡ 0 for .j < 0. Then, the monic Okamoto polynomials .QN (z) and 

.RN (z) with .N ≥ 1 are defined as (Kajiwara and Ohta 1998; Clarkson 2003) 

.QN (z) = cN

|||||||||

p2(z) p1(z) · · · p3−N (z)

p5(z) p4(z) · · · p6−N (z)
...

...
...

...

p3N−1(z) p3N−2(z) · · · p2N (z)

|||||||||
, (3.185) 

and 

.RN (z) = dN

|||||||||

p1(z) p0(z) · · · p2−N (z)

p4(z) p3(z) · · · p5−N (z)
...

...
...

...

p3N−2(z) p3N−3(z) · · · p2N−1(z)

|||||||||
, (3.186) 

where 

.cN = 3− 1
2N(N−1) 2!5! · · · (3N − 1)!

0!1! · · · (N − 1)! , (3.187) 

and 

.dN = 3− 1
2N(N−1) 1!4! · · · (3N − 2)!

0!1! · · · (N − 1)! . (3.188) 

Note that these two determinants are both Wronskians, because . p'
j+1(z) = pj (z)

from the definition of .pj (z) in Eq. (3.184), where the prime denotes differentiation. 

The first three .QN (z) and .RN (z) polynomials are 

. Q1(z) = z2 + 2,

Q2(z) = z6 + 10z4 + 20z2 + 40,

Q3(z) = z12 + 28z10 + 260z8 + 1120z6 + 2800z4 + 11200z2 + 11200,

R1(z) = z,

R2(z) = z4 + 4z2 − 4,

R3(z) = z(z8 + 16z6 + 56z4 − 560).

Compared to the Okamoto polynomials introduced in Okamoto (1986), Kajiwara 

and Ohta (1998) and Clarkson (2003), the polynomials above are related to them 

through a simple scaling in z and .(QN , RN ). 

Like the Yablonskii-Vorob’ev polynomials, these Okamoto polynomials can 

also be generalized to hierarchies (Yang and Yang 2023a). Let .p
[m]
j (z) be Schur
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polynomials defined by 

.

∞⎲

j=0

p
[m]
j (z)ϵj = exp

(
zϵ + ϵm

)
, (3.189) 

where m is a positive integer larger than one, and .p
[m]
j (z) ≡ 0 if .j < 0. Then, 

we define the monic Okamoto polynomial hierarchies .R
[m]
N (z) and .Q

[m]
N (z) by the 

Wronskians 

.Q
[m]
N (z) = cN

||||||||||

p
[m]
2 (z) p

[m]
1 (z) · · · p

[m]
3−N (z)

p
[m]
5 (z) p

[m]
4 (z) · · · p

[m]
6−N (z)

...
...

...
...

p
[m]
3N−1(z) p

[m]
3N−2(z) · · · p

[m]
2N (z)

||||||||||

, (3.190) 

and 

.R
[m]
N (z) = dN

||||||||||

p
[m]
1 (z) p

[m]
0 (z) · · · p

[m]
2−N (z)

p
[m]
4 (z) p

[m]
3 (z) · · · p

[m]
5−N (z)

...
...

...
...

p
[m]
3N−2(z) p

[m]
3N−3(z) · · · p

[m]
2N−1(z)

||||||||||

. (3.191) 

If .m mod 3 = 0, then .Q
[m]
N (z) = zN(N+1) and .R

[m]
N (z) = zN2

(Yang and Yang 

2023a). But such m values turn out to be irrelevant to our rogue pattern problem. 

Thus, we require .m mod 3 /= 0, i.e., .m = 2, 4, 5, 7, 8, 10, · · · . When .m = 2, 

.Q
[2]
N (z) and .R

[2]
N (z) are the Okamoto polynomials .QN (z) and .RN (z). When .m > 2, 

.Q
[m]
N (z) and .R

[m]
N (z) give higher members of Okamoto hierarchies. 

3.3.2 Root Structures of Okamoto Polynomial Hierarchies 

Root structures of Okamoto-hierarchy polynomials will play a key role in our 

analytical study of rogue wave patterns. For Okamoto polynomials .QN (z) and 

.RN (z), their root structures have been investigated by Kametaka (1983), Fukutani 

et al. (2000) and Clarkson (2003). It has been shown that for every positive integer 

N , .QN (z) and .RN (z) have simple roots (Kametaka 1983; Fukutani et al. 2000). 

In addition, graphs of root locations for many .QN (z) and .RN (z) polynomials have 

been plotted, and double-triangle as well as rhombus-shaped root structures have 

been observed (Clarkson 2003). 

In this subsection, we examine root structures of Okamoto hierarchies . Q
[m]
N (z)

and .R
[m]
N (z). Defining integer . N0 as the remainder of N divided by m, i.e.,
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.N0 ≡ N mod m, (3.192) 

and denoting . [a] as the largest integer less than or equal to a real number a, then our 

results are summarized by the following two theorems (Yang and Yang 2023a). 

Theorem 3.12 The Okamoto hierarchy polynomial .Q
[m]
N (z) is monic with degree 

.N(N + 1), and is of the form 

.Q
[m]
N (z) = zNQq

[m]
N (ζ ), ζ ≡ zm, (3.193) 

where .q
[m]
N (ζ ) is a monic polynomial of . ζ with all-real coefficients and a nonzero 

constant term. The non-negative integer .NQ is the multiplicity of the zero root in 

.Q
[m]
N (z) and is given by the formula 

.NQ = N1Q(N1Q − N2Q + 1) + N2
2Q, (3.194) 

where .N1Q and .N2Q are non-negative integers. If .m > 1 and .m mod 3 = 1, these 

.(N1Q, N2Q) values are 

. (N1Q, N2Q) =

⎧
⎨
⎩

(N0, 0), when 0 ≤ N0 ≤
⎾

m
3

⏋
,(⎾

m
3

⏋
, N0 −

⎾
m
3

⏋)
, when

⎾
m
3

⏋
+ 1 ≤ N0 ≤ 2

⎾
m
3

⏋
,

(m − 1 − N0, m − 1 − N0), when 2
⎾

m
3

⏋
+ 1 ≤ N0 ≤ m − 1;

(3.195) 

and if .m mod 3 = 2, these .(N1Q, N2Q) values are 

. (N1Q, N2Q) =

⎧
⎨
⎩

(N0, 0), when 0 ≤ N0 ≤
⎾

m
3

⏋
,(

N0 −
⎾

m
3

⏋
− 1,

⎾
m
3

⏋)
, when

⎾
m
3

⏋
+ 1 ≤ N0 ≤ 2

⎾
m
3

⏋
,

(m − 1 − N0, m − 1 − N0), when 2
⎾

m
3

⏋
+ 1 ≤ N0 ≤ m − 1.

(3.196) 

If .NQ = 0, then zero is not a root of .Q
[m]
N (z). 

Theorem 3.13 The Okamoto hierarchy polynomial .R
[m]
N (z) is monic with degree 

. N2, and is of the form 

.R
[m]
N (z) = zNR r

[m]
N (ζ ), ζ ≡ zm, (3.197) 

where .r
[m]
N (ζ ) is a monic polynomial of . ζ with all-real coefficients and a nonzero 

constant term. The non-negative integer .NR is the multiplicity of the zero root in 

.R
[m]
N (z) and is given by the formula 

.NR = N1R(N1R − N2R + 1) + N2
2R, (3.198)
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where .N1R and .N2R are non-negative integers. If .m > 1 and .m mod 3 = 1, these 

.(N1R, N2R) values are 

. (N1R, N2R) =

⎧
⎨
⎩

(0, N0), when 0 ≤ N0 ≤
⎾

m
3

⏋
,(⎾

m
3

⏋
− 1, N0 − 1 −

⎾
m
3

⏋)
, when

⎾
m
3

⏋
+ 1 ≤ N0 ≤ 2

⎾
m
3

⏋
,

(m − 1 − N0, m − N0), when 2
⎾

m
3

⏋
+ 1 ≤ N0 ≤ m − 1;

(3.199) 

and if .m mod 3 = 2, these .(N1R, N2R) values are 

. (N1R, N2R) =

⎧
⎨
⎩

(0, N0), when 0 ≤ N0 ≤
⎾

m
3

⏋
,(

N0 − 1 −
⎾

m
3

⏋
,
⎾

m
3

⏋
+ 1

)
, when

⎾
m
3

⏋
+ 1 ≤ N0 ≤ 2

⎾
m
3

⏋
,

(m − 1 − N0, m − N0), when 2
⎾

m
3

⏋
+ 1 ≤ N0 ≤ m − 1.

(3.200) 

If .NR = 0, then zero is not a root of .R
[m]
N (z). 

Proofs of these two theorems can be found in Yang and Yang (2023a). 

The most significant piece of information in these two theorems is the formulae 

for .NQ and . NR , which give the multiplicities of the zero root in .Q
[m]
N (z) and 

.R
[m]
N (z) polynomials. These root-multiplicity formulae are particularly important 

for the analysis of rogue waves in the inner region under a large parameter (see 

later text). Compared to the multiplicity formula of the zero root in the Yablonskii-

Vorob’ev polynomial hierarchy as given in Theorem 3.1, the present multiplicity 

formulae for Okamoto hierarchies are more involved, but their connection to 

the multiplicity formula of the Yablonskii-Vorob’ev hierarchy is still visible. For 

Okamoto polynomials .QN (z) and .RN (z) (where .m = 2), these multiplicity 

formulae show that .NQ = 0 for all N values, and .NR = 0 if N is even and . NR = 1

if N is odd. This means that for any N , zero is not a root of .QN (z). In addition, for 

.RN (z), zero is not a root when N is even and is a simple root when N is odd. 

Another piece of information from formulae (3.193) and (3.197) of these theo-

rems is that, root structures of both .Q
[m]
N (z) and .R

[m]
N (z) polynomials are invariant 

under .2π/m-angle rotation in the complex z plane. This rotational symmetry of the 

root structures will have implications on shapes of rogue patterns away from the 

origin under a large parameter, as we will see later. 

The only major piece of information missing from the above two theorems 

is multiplicities of nonzero roots in these .Q
[m]
N (z) and .R

[m]
N (z) polynomials. For 

Okamoto polynomials .QN (z) and .RN (z) (where .m = 2), it has been shown that all 

their roots are simple (Kametaka 1983; Fukutani et al. 2000). For higher members 

of these hierarchies, their zero root clearly can be non-simple in view of the above 

. NQ and . NR formulae. However, it is unclear whether their nonzero roots can also be 

non-simple. Our numerical evidence suggests that their nonzero roots are all simple. 

Assuming this is true, then from Theorems 3.12–3.13, numbers of nonzero roots in 

.Q
[m]
N (z) and .R

[m]
N (z) would be
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Fig. 3.20 Root structures of the .Q
[m]
N (z) polynomial hierarchy for .2 ≤ N ≤ 4 and .m = 2, 4, 5, 7. 

In all panels, . −8 ≤ Re(z), Im(z) ≤ 8

.MQ = N(N + 1) − NQ, MR = N2 − NR, (3.201) 

respectively, where .NQ and . NR are given in Eqs. (3.194) and (3.198). 

To get a visual impression of root structures in Okamoto polynomial hierarchies, 

we plot in Figs. 3.20 and 3.21 roots of the .Q
[m]
N (z) and .R

[m]
N (z) hierarchies in 

the complex z plane with .2 ≤ N ≤ 4 and .m = 2, 4, 5, 7. The first column 

of Fig. 3.20 (with .m = 2), for roots of Okamoto polynomials .QN (z), exhibit 

“double triangles” as reported in Clarkson (2003). We caution the reader that 

sides of these double triangles are not exactly straight; thus our use of the term 

“double triangles” is only in an approximate sense. The second column of this 

figure, for roots of .Q
[4]
N (z) polynomials, exhibit a “square” shape with curved sides, 

intricate interiors, and some very close roots. The third column, for roots of .Q
[5]
N (z), 

exhibit a pentagon shape; while the fourth column, for roots of .Q
[7]
N (z), exhibit a 

heptagon shape. Compared to root shapes of the Yablonskii-Vorob’ev polynomial 

hierarchy, the present double-triangle and square shapes are new. The pentagon and 

heptagon shapes are not new, as they have appeared in the Yablonskii-Vorob’ev 

hierarchy before (see Fig. 3.1). However, compared to pentagons and heptagons 

of Yablonskii-Vorob’ev-hierarchy roots, the current pentagons and heptagons of 

Okamoto-hierarchy roots have different interiors.
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Fig. 3.21 Root structures of the .R
[m]
N (z) polynomial hierarchy for .2 ≤ N ≤ 4 and .m = 2, 4, 5, 7. 

In all panels, . −7 ≤ Re(z), Im(z) ≤ 7

In Fig. 3.21 for the .R
[m]
N (z) hierarchy, shapes of their roots are somewhat similar 

to their counterparts for .Q
[m]
N (z) in the previous figure, but plenty of differences also 

exist between them. One difference is that, while the first column of Fig. 3.20 exhibit 

two separate triangles, the first column of the current figure exhibit two triangles 

that are joined together at the base to form a rhombus. Another difference is that, 

interior roots in the second column of the current figure are more orderly than their 

counterparts in Fig. 3.20. A third difference is that, even though shapes of roots in 

the fourth columns of the two figures are quite similar to each other, zero roots in 

corresponding panels actually have different multiplicities. For example, the zero 

root has multiplicity 5 in the upper panel of the fourth column of Fig. 3.20, but has 

multiplicity 2 in the corresponding panel of Fig. 3.21. 

Geometric shapes of rogue waves in certain integrable systems are closely related 

with root structures of Okamoto polynomial hierarchies. We consider two such 

integrable systems below. 

3.3.3 Manakov System 

The Manakov system of focusing type is
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.
(i∂t + ∂2x )u1 + (|u1|2 + |u2|2)u1 = 0,

(i∂t + ∂2x )u2 + (|u1|2 + |u2|2)u2 = 0.

⎫
(3.202) 

Under the boundary conditions of 

.
u1(x, t) → ρ1e

i(k1x+ω1t), x, t → ±∞,

u2(x, t) → ρ2e
i(k2x+ω2t), x, t → ±∞,

⎫
(3.203) 

where 

.ρ1 = ρ2 =
√
2 |k1 − k2| , k1 /= k2, (3.204) 

and 

.ω1 = ϵ1ρ
2
1 + ϵ2ρ

2
2 − k21, ω2 = ϵ1ρ

2
1 + ϵ2ρ

2
2 − k22, (3.205) 

this Manakov system admits a class of rogue waves whose . τ functions are made 

of Schur polynomials with index jumps of three, and such rogue waves have been 

presented in Theorem 2.12 of Chap. 2. For the convenience of the reader, those 

results are reproduced in the following lemma. 

Lemma 3.3 Under parameter conditions (3.204), the focusing Manakov sys-

tem (3.202) admits the following rogue wave solutions 

. u1,N1,N2
(x, t) = ρ1

g1,N1,N2

fN1,N2

ei(k1x+ω1t), u2,N1,N2
(x, t) = ρ1

g2,N1,N2

fN1,N2

ei(k2x+ω2t),

(3.206) 

where . N1 and . N2 are arbitrary nonnegative integers, 

.fN1,N2
= σ0,0, g1,N1,N2

= σ1,0, g2,N1,N2
= σ0,1, (3.207) 

.σn,k is a .2 × 2 block determinant 

.σn,k = det

⎛
σ

[1,1]
n,k σ

[1,2]
n,k

σ
[2,1]
n,k σ

[2,2]
n,k

⎞
, σ

[I,J ]
n,k =

⎛
φ

(n,k, I,J )
3i−I, 3j−J

⎞
1≤i≤NI , 1≤j≤NJ

, (3.208) 

the matrix elements in .σ
[I,J ]
n,k are defined by 

. φ
(n,k,I,J )
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν(x
+
I (n, k) + νs) Sj−ν(x

−
J (n, k) + νs∗),

(3.209)
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vectors .x+
I (n, k) =

⎛
x+
1,I , x

+
2,I , · · ·

⎞
and .x−

J (n, k) =
⎛
x−
1,J , x−

2,J , · · ·
⎞

are defined 

by 

. x+
r,I (n, k) = prx +

⎛
r⎲

l=0

plpr−l

⎞
(it) + nθr + kλr + ar,I , if r mod3 /= 0,

. (3.210) 

x− 

r,J 
(n, k) = p∗

r x −
⎛

r⎲

l=0 

p∗
l p

∗
r−l

⎞
(it)  − nθ∗

r − kλ∗
r + a∗

r,J 
, if r mod3 /= 0, 

. (3.211) 

x+ 

r,I (n, k) = x− 

r,J 
(n, k) = 0, if r mod3 = 0, (3.212) 

.s = (s1, s2, · · · ), (. pr , . θr , . λr , . sr ) are coefficients from the expansions 

. p(κ) =
∞⎲

r=0

prκ
r , ln

⎾
p (κ) − ik1

p0 − ik1

⏋
=

∞⎲

r=1

θrκ
r , . (3.213) 

ln

⎾
p (κ) − ik2 

p0 − ik2

⏋
= 

∞⎲

r=1 

λrκ
r , . (3.214) 

ln

⎾
1 

κ

⎛
p0 + p∗

0 

p1

⎞⎛
p (κ) − p0 

p (κ) + p∗
0

⎞⏋
= 

∞⎲

r=1 

srκ
r , (3.215) 

the function .p (κ) is defined by the equation 

.Q1 [p (κ)] = Q1(p0)

3

⎾
eκ + 2e−κ/2 cos

⎛√
3

2
κ

⎞⏋
, (3.216) 

and .(a1,1, a2,1, a4,1, a5,1, . . . , a3N1−1, 1), .(a1,2, a2,2, a4,2, a5,2, . . . , a3N2−2, 2) are 

free complex constants. 

Regarding coefficients . sr in Eq. (3.215), we can show that .sr = 0 when 

.r mod 3 /= 0 (Yang and Yang 2023a). This fact will be useful in the determination 

of rogue patterns in the inner regions below. 

In the special cases where these block determinants degenerate to a single block, 

i.e., when .(N1, N2) = (N, 0) or .(0, N), the resulting rogue waves are called Q-type 

and R-type of N -th order respectively. For these special waves, .σn,k in Eq. (3.208) 

becomes 

.σ
(Q)
n,k =

⎛
φ

(n,k)
3i−1, 3j−1

⎞
1≤i,j≤N

, σ
(R)
n,k =

⎛
φ

(n,k)
3i−2, 3j−2

⎞
1≤i,j≤N

, (3.217)
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where .φ
(n,k)
i,j is given by Eq. (3.209) but with indices I and J removed. Inter-

nal free complex parameters are .(a1, a2, a4, a5, · · · , a3N−1) for Q-type waves, 

and .(a1, a2, a4, a5, · · · , a3N−2) for R-type waves. We normalize .a1 = 0 by 

a shift of the .(x, t) axes. Then, internal parameters in these rogue waves are 

.(a2, a4, a5, · · · , a3N−1) for Q-type, and .(a2, a4, a5, · · · , a3N−2) for R-type. 

When one of these internal parameters is large, patterns of these rogue waves are 

summarized in the following two theorems (Yang and Yang 2023a). 

Theorem 3.14 For the Q-type rogue wave .[u1,N,0(x, t), u2,N,0(x, t)] in the Man-

akov system (3.202), suppose .|am| ⪢ 1 and all other internal parameters .O(1). 

In addition, suppose all nonzero roots of .Q
[m]
N (z) are simple. Then, the following 

statements for this rogue wave hold. 

1. In the outer region on the .(x, t) plane, where .
√

x2 + t2 = O(|am|1/m), this  

rogue wave asymptotically separates into .MQ isolated fundamental rogue waves, 

where .MQ is given in Eq. (3.201). These fundamental rogue waves are . [û1(x −
x̂0, t − t̂0) ei(k1x+ω1t), û2(x − x̂0, t − t̂0) ei(k2x+ω2t)], where . [û1(x, t), û2(x, t)]
are given in Eqs. (3.95)–(3.96), and their positions .(x̂0, t̂0) are given by 

.

x̂0 = 1
ℜ(p0)

ℜ

⎾
p∗
0

p1

⎛
z0a

1/m
m − ΔQ

⎞⏋
,

t̂0 = 1
2ℜ(p0)

𝔍

⎾
1
p1

⎛
z0a

1/m
m − ΔQ

⎞⏋
,

⎫
⎪⎬
⎪⎭

(3.218) 

where . ℜ and . 𝔍 represent the real and imaginary parts of a complex number, . z0
is each of the .MQ nonzero simple roots of .Q

[m]
N (z), and .ΔQ is a .z0-dependent 

.O(1) quantity whose formula will be given by Eq. (3.246) in later text. The 

error of this fundamental rogue wave approximation is .O(|am|−1/m). Expressed 

mathematically, when .|am| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the 

following solution asymptotics 

.
u1,N,0(x, t) = û1(x − x̂0, t − t̂0) ei(k1x+ω1t) + O(|am|−1/m),

u2,N,0(x, t) = û2(x − x̂0, t − t̂0) ei(k2x+ω2t) + O(|am|−1/m).

⎫
(3.219) 

2. If zero is a root of the Okamoto-hierarchy polynomial .Q
[m]
N (z), then in the 

neighborhood of the origin (the inner region), where .x2 + t2 = O(1), 

this rogue wave is approximately a lower .
(
N1Q, N2Q

)
-th order rogue wave 

.[u1,N1Q,N2Q
(x, t), u2,N1Q,N2Q

(x, t)] as given in Lemma 3.3, where . 
(
N1Q, N2Q

)

are provided in Theorem 3.12. Internal parameters . (â1,1, â2,1, . . . , â3N1Q−1, 1)

and .(â1,2, â2,2, . . . , â3N2Q−2, 2) in this lower-order rogue wave are the same as 

those in the original rogue wave, i.e., 

.âj,1 = âj,2 = aj , j = 1, 2, 4, 5, · · · . (3.220)
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The error of this lower-order rogue wave approximation is .O(|am|−1). Expressed 

mathematically, when .|am| ⪢ 1 and .x2 + t2 = O(1), 

. 

u1,N,0(x, t; a2, a4, a5, · · · ) = u1,N1Q,N2Q
(x, t; âj,1, âj,2, j = 1, 2, 4, 5, . . . )

+O(|am|−1),

u2,N,0(x, t; a2, a4, a5, · · · ) = u2,N1Q,N2Q
(x, t; âj,1, âj,2, j = 1, 2, 4, 5, . . . )

+O(|am|−1).

⎫
⎪⎪⎬
⎪⎪⎭

(3.221) 

If zero is not a root of .Q
[m]
N (z), then in the inner region, this rogue 

wave approaches the uniform background .[ρ1ei(k1x+ω1t), ρ1e
i(k2x+ω2t)] when 

.|am| ⪢ 1. 

Theorem 3.15 For the R-type rogue wave .[u1,0,N (x, t), u2,0,N (x, t)] in the Man-

akov system (3.202), suppose .|am| ⪢ 1 and all other internal parameters .O(1). 

In addition, suppose all nonzero roots of .R
[m]
N (z) are simple. Then, the following 

asymptotics for this rogue wave holds. 

1. In the outer region, where .
√

x2 + t2 = O(|am|1/m), this rogue wave asymp-

totically separates into .MR isolated fundamental rogue waves, where .MR is 

given in Eq. (3.201). These fundamental rogue waves are . [û1(x − x̂0, t −
t̂0) ei(k1x+ω1t), û2(x − x̂0, t − t̂0) ei(k2x+ω2t)], where .[û1(x, t), û2(x, t)] are given 

in Eqs. (3.95)–(3.96), and their positions .(x̂0, t̂0) are given by 

.

x̂0 = 1
ℜ(p0)

ℜ

⎾
p∗
0

p1

⎛
z0a

1/m
m − ΔR

⎞⏋
,

t̂0 = 1
2ℜ(p0)

𝔍

⎾
1
p1

⎛
z0a

1/m
m − ΔR

⎞⏋
,

⎫
⎪⎬
⎪⎭

(3.222) 

where . z0 is each of the .MR nonzero simple roots of .R
[m]
N (z), and .ΔR is a .z0-

dependent .O(1) quantity given by Eq. (3.264) in later text. The error of this 

fundamental rogue wave approximation is .O(|am|−1/m). Expressed mathemat-

ically, when .|am| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the following 

solution asymptotics 

.
u1,0,N (x, t) = û1(x − x̂0, t − t̂0) ei(k1x+ω1t) + O(|am|−1/m),

u2,0,N (x, t) = û2(x − x̂0, t − t̂0) ei(k2x+ω2t) + O(|am|−1/m).

⎫
(3.223) 

2. If zero is a root of the Okamoto-hierarchy polynomial .R
[m]
N (z), then in the 

inner region, where .x2 + t2 = O(1), this rogue wave is approximately a 

lower .(N1R, N2R)-th order rogue wave .[u1,N1R,N2R
(x, t), .u2,N1R,N2R

(x, t)] as 

given in Lemma 3.3, where .(N1R, N2R) are provided in Theorem 3.13. Internal 

parameters .(â1,1, â2,1, . . . , â3N1R−1, 1) and .(â1,2, â2,2, . . . , â3N2R−2, 2) in this 

lower-order rogue wave are the same as those in the original rogue wave, i.e., 

.âj,1 = âj,2 = aj , j = 1, 2, 4, 5, · · · . (3.224)
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The error of this lower-order rogue wave approximation is .O(|am|−1). Expressed 

mathematically, when .|am| ⪢ 1 and .x2 + t2 = O(1), 

. 

u1,0,N (x, t; a2, a4, a5, · · · ) = u1,N1R,N2R
(x, t; âj,1, âj,2, j = 1, 2, 4, 5, . . . )

+O(|am|−1),

u2,0,N (x, t; a2, a4, a5, · · · ) = u2,N1R,N2R
(x, t; âj,1, âj,2, j = 1, 2, 4, 5, . . . )

+O(|am|−1).

⎫
⎪⎪⎬
⎪⎪⎭

(3.225) 

If zero is not a root of .R
[m]
N (z), then in the inner region, this rogue 

wave approaches the uniform background .[ρ1ei(k1x+ω1t), ρ1e
i(k2x+ω2t)] when 

.|am| ⪢ 1. 

Proofs of these two theorems will be provide later in this section. 

Theorems 3.14 and 3.15 show that, when the internal parameter .|am| is large, 
then in the outer region, patterns of Q- and R-type Manakov rogue waves comprise 

isolated fundamental rogue waves, which are the same with each other, except 

for their locations that are determined by root structures of .Q
[m]
N (z) and . R

[m]
N (z)

polynomials through formula (3.218) and (3.222). To the leading order of these 

positions, i.e., to .O(|am|1/m), rogue patterns formed by these fundamental rogue 

waves are linear transformations of the underlying root structures. However, the 

next-order corrections of size .O(1) to these leading-order terms, induced by . ΔQ

and .ΔR in Eqs. (3.218) and (3.222), depend on the root . z0 in a nonlinear way 

(see Eqs. (3.246) and (3.264) in later text). These next-order nonlinear corrections 

will introduce deformations to rogue patterns and make them look different from 

linear transformations of root structures, as we will see graphically below. This 

behavior contrasts rogue patterns reported in Sect. 3.1 for some other types of 

rogue waves, where those patterns are just linear transformations of root structures 

of the Yablonskii-Vorob’ev polynomial hierarchy, even after next-order position 

corrections are included. We do note, though, that these nonlinear deformations of 

rogue patterns in the present case are subdominant compared to the leading-order 

term, and will become less significant as .|am| gets larger. In other words, as . |am|
increases, rogue patterns for Q- and R-type Manakov rogue waves will look more 

and more like the linear transformation of root structures of .Q
[m]
N (z) and .R

[m]
N (z). 

Theorems 3.14 and 3.15 also show that, when the internal parameter .|am| is large, 
then in the inner region, the original rogue wave reduces to a lower-order rogue 

wave, or to the uniform background, depending on whether zero is a root of . Q
[m]
N (z)

or .R
[m]
N (z). If zero is a root, then its multiplicity will determine the order of this 

reduced rogue wave. 

In these theorems, which internal parameter . am is taken to be large has profound 

consequences on the prediction of rogue patterns. Once the index m of the large 

parameter . am is fixed, that choice would determine not only the size of the outer 

region and the convergence rates of predictions, but also the polynomial .Q
[m]
N (z) or
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.R
[m]
N (z) whose roots predict the locations of isolated fundamental rogue waves in 

the outer region. 

It may be interesting to notice from these theorems that in the outer region, both 

the Q-type and R-type rogue waves, under a large internal parameter, split into a 

number of the lowest-order R-type rogue waves (the fundamental rogue waves) only, 

never to the lowest-order Q-type rogue waves. There are two ways to understand 

this. An intuitive way is that, the lowest-order R-type rogue wave (with . N1 = 0

and .N2 = 1) is the fundamental rogue wave with degree-two polynomials. The 

lowest-order Q-type rogue wave (with .N1 = 1 and .N2 = 0), however, is a ratio of 

degree-four polynomials. This latter solution should be viewed as a composition of 

two fundamental rogue waves, and it would split up into two separate fundamental 

rogue waves when its internal parameter . a2 is large (see Fig. 2.18 in the previous 

chapter). A mathematical way to understand this is that, as long as the nonzero roots 

in .Q
[m]
N (z) and .R

[m]
N (z) are simple, then under a large internal parameter, both the 

Q-type and R-type rogue waves in the outer region would reduce to ratios of degree-

two polynomials (see later text), which can only be the fundamental Manakov rogue 

waves, not the lowest-order Q-type rogue waves of degree-four polynomials. 

Comparison Between Predictions and True Solutions 

Now, we compare predictions from Theorems 3.14–3.15 with true solutions. For 

this purpose, we choose background wavenumbers .k1 = −k2 = 1/
√
12. Then 

background amplitudes are obtained from conditions (3.204) as  .ρ1 = ρ2 =
√
2/3, 

and background wave frequencies can be obtained from equations (3.205). 

Q-Type 

First, we consider Q-type Manakov rogue waves. Specifically, we take .N = 2; thus 

these are second-order waves with three internal parameters .(a2, a4, a5). We set  

one of these parameters large and the other parameters zero. Then, when that large 

parameter is chosen as one of 

.a2 = 30i, a4 = 400, a5 = 3000i, (3.226) 

the three predicted rogue waves from Theorem 3.14 are displayed in the three 

columns of Fig. 3.22, respectively. The top row of this figure shows the predicted 

.(x̂0, t̂0) locations by formulae (3.218) applied to all roots of .Q
[m]
2 (z). In these 

formulae, .p0 = 1/2, .(p1, p2) =
(
12−1/3, 144−1/3

)
, and .ΔQ is calculated from 

Eq. (3.246). Note that these .(x̂0, t̂0) predictions contain not only the dominant 

.O(|am|1/m) contribution, but also the subdominant .O(1) contribution. 

According to Theorem 3.14, at each of the .(x̂0, t̂0) locations obtained from 

formulae (3.218) for nonzero roots of .Q
[m]
2 (z), a fundamental Manakov rogue wave 

is predicted. The amplitude fields of these predicted fundamental rogue waves in 

the outer region are plotted in the middle and bottom rows of Fig. 3.22, for .|u1| and 
. |u2|, respectively.
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Fig. 3.22 Predicted patterns of Q-type second-order Manakov rogue waves from Theorem 3.14. 

Each column is for a rogue wave with a single large parameter . am, whose value is indicated on top, 

and all other internal parameters are set as zero. Top row: predicted .(x̂0, t̂0) locations by formulae 

(3.218) applied to all roots of .Q
[m]
2 (z). Middle row: predicted .|u1(x, t)|. Bottom row: predicted 

.|u2(x, t)|. These  .(|u1|, |u2|) predictions are assembled as . |u(p)
k (x, t)| = |uk,N1Q,N2Q

(x, t)| +
∑MQ

j=1

⎛
|ûk(x − x̂

(j)

0 , t − t̂
(j)

0 )| − ρk

⎞
, where  .k = 1, 2, .uk,N1Q,N2Q

(x, t) are the predicted inner 

solutions on the right sides of Eqs. (3.221), .MQ is given in Eq. (3.201), .[û1(x, t), û2(x, t)] are 

given in Eqs. (3.95)–(3.96), and .[x̂(j)

0 , t̂
(j)

0 ] are the predicted locations (3.218) of outer fundamental 

rogue waves in the top row (with .z0 /= 0). In all panels, . −40 ≤ x, t ≤ 40

Theorem 3.14 also predicts that, if zero is a root of .Q
[m]
2 (z), as is the case for 

.m = 4 and 5, then in the inner region, i.e., the region near the .(x̂0, t̂0) location 

from formulae (3.218) with .z0 = 0, a lower .(N1Q, N2Q)-th order rogue wave would 

appear. These .(N1Q, N2Q) values are calculated from Theorem 3.12 as 

.(N1Q, N2Q) = (0, 0), (1, 1), (0, 1), (3.227) 

for the three solutions in Fig. 3.22, respectively. The first set .(0, 0) indicates that 

zero is not a root of .Q
[2]
2 (z), hence no lower-order rogue wave in the inner region. 

The third set .(0, 1) indicates that the lower-order rogue wave in the inner region is 

a fundamental rogue wave, while the second set .(1, 1) indicates that the rogue wave
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Fig. 3.23 True Q-type second-order Manakov rogue waves for the same parameters and . (x, t)

intervals as in Fig. 3.22 

in the inner region is a non-fundamental rogue wave. Internal parameters in these 

predicted lower .(N1Q, N2Q)-th order rogue waves are all zero, due to our choices of 

internal parameters in the original rogue waves. Plotting these .(N1Q, N2Q)-th order 

rogue waves, we get the center-region predictions for rogue waves in the middle and 

bottom rows of Fig. 3.22. 

Looking at these predicted rogue solutions in Fig. 3.22, we see that the large-. a2
solution exhibits a skewed double-triangle, reminiscent of the double-triangle root 

structure of .Q
[2]
2 (z) in Fig. 3.20. The large-. a4 solution exhibits a square, reminiscent 

of the square-shaped root structure of .Q
[4]
2 (z) in Fig. 3.20. The large-. a5 solution 

exhibits a pentagon, reminiscent of the pentagon-shaped root structure of .Q
[5]
2 (z) in 

Fig. 3.20. This pentagon-shaped rogue pattern has been seen in the NLS and other 

equations before (see Sect. 3.1), but the double-triangle and square patterns are new. 

Now, we compare these predictions to true solutions. The corresponding true 

solutions are plotted directly from Lemma 3.3 and displayed in Fig. 3.23. Compar-

ing these true solution graphs with the predicted ones in Fig. 3.22, they clearly match 

each other very well. 

To quantitatively compare our prediction with the true solution and verify 

Theorem 3.14’s error decay rates with the large parameter . am, we choose . a4 to 

be the large parameter, corresponding to the second-column solution in Figs. 3.22 

and 3.23. For simplicity, we choose all . a4 to be real. As before, the other two internal 

parameters .(a2, a5) in the rogue wave will be set as zero. We will vary this . a4 value, 

from 400 to .400,000, and for each value, we measure the errors of our prediction in 

the outer and inner regions and then plot these errors versus . a4. In the outer region, 

this error is defined as the distance in the .(x, t) plane between the predicted and true 

positions of the fundamental rogue wave marked by the lower arrow in panel (a) of
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Fig. 3.24 Decay of errors in our predictions of Theorem 3.14 for the outer and inner regions of 

the Q-type second-order Manakov rogue wave with various large real values of . a4, while the other 

internal parameters are set as zero. (a) .|u1(x, t)| of the true rogue wave with .a4 = 400. (b) Decay 

of error versus . a4 for the outer fundamental rogue wave marked by the lower arrow in panel (a), 

together with the .|a4|−1/4 decay for comparison. (c) Decay of error versus . a4 at .x = t = 0 of the 

inner region marked by the upper arrow in panel (a), together with the .|a4|−1 decay for comparison 

Fig. 3.24. In the inner region, marked by the upper arrow in panel (a), the error is 

defined as the magnitude of the difference between the predicted and true solution 

values at the origin .x = t = 0. These error curves are plotted in panels (b) and (c), 

for the outer and inner regions, respectively. For comparison, decay rates of . |a4|−1/4

and .|a4|−1 are also plotted in the corresponding panels. These error curves clearly 

show that, the error decay rate is .|a4|−1/4 in the outer region and .|a4|−1 in the inner 

region, which fully agree with our theoretical predictions in Theorem 3.14. 

R-Type 

Next, we compare R-type rogue waves. Here, we set .N = 3. Thus, these are 

third-order waves with internal parameters .(a2, a4, a5, a7). We choose one of these 

parameters large and the other parameters zero. Then, when that large parameter is 

chosen as one of 

. a2 = 30i, a4 = 300, a5 = 1000i, a7 = 3000, (3.228) 

the four predicted rogue waves from Theorem 3.15 are displayed in the four columns 

of Fig. 3.25, respectively. The top row of this figure shows the predicted . (x̂0, t̂0)

locations by formulae (3.222) applied to all roots of .R
[m]
3 (z). At each of the 

.(x̂0, t̂0) locations resulting from nonzero roots of .R
[m]
3 (z), Theorem 3.15 predicts 

a fundamental Manakov rogue wave, whose amplitude fields .|u1| and .|u2| are 

plotted in the middle and bottom rows of Fig. 3.25, respectively. Our prediction 

for the center regions in these rows is based on Eq. (3.225) of Theorem 3.15. In this  

prediction, the .(N1R, N2R) values for these four rogue solutions are obtained from 

Theorem 3.13 as 

. (N1R, N2R) = (0, 1), (0, 1), (1, 2), (1, 0), (3.229) 

respectively. These values show that the center region of the first two rogue solutions 

hosts a fundamental rogue wave, while that region in the last two rogue solutions
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Fig. 3.25 Predicted R-type third-order Manakov rogue waves from Theorem 3.15. Each column 

is for a rogue wave with a single large parameter . am, whose value is indicated on top, and all 

other internal parameters are set as zero. Top row: predicted .(x̂0, t̂0) locations by formulae (3.222) 

applied to all roots of .R
[m]
3 (z). Middle row: predicted .|u1(x, t)|. Bottom row: predicted .|u2(x, t)|. 

The .(x, t) intervals in the four columns are .−46 ≤ x, t ≤ 46, .−41 ≤ x, t ≤ 41, .−35 ≤ x, t ≤ 35, 

and .−28 ≤ x, t ≤ 28, respectively 

hosts a non-fundamental rogue wave. Internal parameters in these predicted lower 

.(N1R, N2R)-th order rogue waves of the center region are all zero, due to our choices 

of internal parameters in the original rogue waves. Plotting these .(N1R, N2R)-th 

order rogue waves from Lemma 3.3, we get the center-region predictions for rogue 

waves in the middle and bottom rows of Fig. 3.25. 

These predicted rogue solutions in Fig. 3.25 exhibit various patterns, such as a 

skewed and deformed rhombus (first column), a deformed square (second column), 

a deformed pentagon (third column), and a heptagon (last column). Of these 

patterns, rhombus-shaped and square-shaped ones are new. 

Now, we compare these predictions to true solutions. The corresponding true 

solutions are plotted directly from Lemma 3.3 and displayed in Fig. 3.26. These 

true solutions clearly match the predicted ones in Fig. 3.25 very well. 

In addition to this visual agreement, we have also performed error analysis for 

predictions of these R-type waves, similar to what we have done for Q-type waves 

in Fig. 3.24. This error analysis confirmed the error decay rates we predicted in 

Theorem 3.15 for the outer and inner regions. Details are omitted for brevity.
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Fig. 3.26 True R-type third-order Manakov rogue waves for the same parameters and . (x, t)

intervals as in Fig. 3.25 

Effect of Parameter Size on Rogue Shapes 

From the above comparisons, we have established that Manakov rogue patterns 

can be accurately predicted by root structures of Okamoto-hierarchy polynomials 

through mappings (3.218) and (3.222). The reader may have noticed that, rogue 

shapes in the above figures are often twisted and less orderly, even though their 

corresponding root structures of Okamoto-hierarchy polynomials are very orderly. 

For example, in the R-type third-order rogue wave of Figs. 3.25–3.26 with large . a4, 

the upper-left and lower-left sides of rogue patterns are strongly bent in, resulting 

in an irregular square, but the corresponding root structure of .R
[4]
3 (z) in Fig. 3.21 is 

like a regular square. 

The reason for this irregularity in rogue patterns is apparently due to the next-

order correction term in mappings (3.218) and (3.222) from the root structure of 

Okamoto-hierarchy polynomials to rogue peak positions in the .(x, t) plane. While 

the leading term of .O(|am|1/m) in those formulae is a linear mapping, the next-

order correction term of .O(1) is a nonlinear mapping in view of formulae (3.246) 

and (3.264). This nonlinear part of the mappings causes deformations in rogue 

shapes and makes them irregular even if the underlying root structures are. But 

this next-order correction term is subdominant, and its relative effect should get 

weaker when .|am| gets larger. In other words, if we increase .|am|, this irregularity 
in rogue shape should diminish. To confirm this prediction, we take that R-type 

third-order rogue wave of Figs. 3.25–3.26 with large . a4, and vary its . a4 value, with 

other internal parameters still set as zero. For three . a4 values of 30, 300 and 3000, 

predicted rogue locations .(x̂0, t̂0) from formulae (3.222) of Theorem 3.15 are plotted 

in the upper row of Fig. 3.27, and true solutions (only the .|u1| part) are plotted in 
the lower row. We see that when .a4 = 30, both the predicted and true solutions
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Fig. 3.27 Effect of parameter size . a4 on R-type third-order Manakov rogue shapes (all other 

internal parameters are set as zero). Upper row: predicted .(x̂0, t̂0) locations by formulae (3.222) 

applied to all roots of .R
[4]
3 (z). Lower  row:  true .|u1(x, t)|. The .(x, t) intervals in the three columns 

are .−41 ≤ x, t ≤ 41, .−41 ≤ x, t ≤ 41, and .−70 ≤ x, t ≤ 70, respectively 

are highly irregular, almost random-like. But as . a4 increases to 300, this irregularity 

is significantly reduced and is visible only at the upper-left and lower-left sides of 

the figure. When . a4 further increases to 3000, this irregularity is almost completely 

gone, and the rogue shape closely resembles the root structure of .R
[4]
3 (z) as shown 

in Fig. 3.21. 

Proofs of Theorems 3.14–3.15 

Now we prove the Q-type and R-type Manakov rogue patterns presented in 

Theorems 3.14–3.15. Our proof is based on an asymptotic analysis of rogue wave 

solutions, or equivalently, the determinant .σ
(Q,R)
n,k in Eq. (3.217), in the large . |am|

limit. 

(1) Proof of Theorem 3.14 for the outer region 

First, we use determinant identities and the Laplace expansion to rewrite .σ
(Q)
n,k in 

Eq. (3.217) as  

. σ
(Q)
n,k =

⎲

0≤ν1<ν2<···<νN≤3N−1

det
1≤i,j≤N

⎾
(h0)

νj S3i−1−νj
(x+(n, k) + νj s)

⏋

× det
1≤i,j≤N

⎾
(h∗

0)
νj S3i−1−νj

(x−(n, k) + νj s
∗)
⏋
, (3.230) 

similar to what we did in Eq. (2.77). Here, .h0 = p1/(p0+p∗
0). We need to derive the 

asymptotics of this .σ
(Q)
n,k when .|am| is large and the other parameters .O(1). In this
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parameter regime, when .(x, t) is in the outer region of .
√

x2 + t2 = O(|am|1/m), we  

have 

. Sj (x
+(n, k) + νs) = Sj (x

+
1 , x+

2 , νs3, x
+
4 , x+

5 , νs6, · · · , x+
m + νsm, · · · ) ∼ Sj (v),

(3.231) 

where 

.v = (p1x + 2p0p1it, 0, · · · , 0, am, 0, · · · ). (3.232) 

Here, the fact of .sr = 0 for .r mod 3 /= 0 has been used (Yang and Yang 2023a). 

Next, we see from the definition of Schur polynomials that 

.

∞⎲

j=0

Sj (v)ϵj = eϵ(p1x+2p0p1it)+ϵmam . (3.233) 

Introducing the scaled variable .ϵ̂ = ϵ a
1/m
m , we can write the right side of the above 

equation as .eϵ̂ z+ϵ̂m
, where 

.z = a
−1/m
m (p1x + 2p0p1it). (3.234) 

This .eϵ̂ z+ϵ̂m
term is the same as the right side of Eq. (3.189), except for a notational 

change of . ϵ to . ̂ϵ. Using that Eq. (3.189) with . ϵ changed to . ̂ϵ and combining the 

result with the above Eq. (3.233), we get 

.

∞⎲

j=0

Sj (v)ϵj =
∞⎲

j=0

p
[m]
j (z) ϵ̂j . (3.235) 

Then, recalling .ϵ̂ = ϵ a
1/m
m , we arrive at the relation 

.Sj (v) = a
j/m
m p

[m]
j (z). (3.236) 

To proceed further, we notice that the highest order term of . am in Eq. (3.230) for  

.σ
(Q)
n,k comes from the index choice of .νj = j − 1. For this index choice, using the 

formulae (3.231) and (3.236), as well as the definition of .Q
[m]
N (z) in Eq. (3.190), we 

find that 

. det
1≤i,j≤N

⎾
S3i−1−νj

(x+(n, k) + νj s)
⏋

= det
1≤i,j≤N

⎾
S3i−j

(
x+(n, k) + (j − 1)s

)⏋

∼ c−1
N a

N(N+1)/m
m Q

[m]
N (z). (3.237) 

Similarly,
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. det
1≤i,j≤N

⎾
S3i−1−νj

(x−(n, k) + νj s
∗)
⏋

∼ c−1
N

(
a∗
m

)N(N+1)/m
Q

[m]
N (z∗). (3.238) 

Thus, 

.σ
(Q)
n,k ∼ |α|2 |am|2N(N+1)/m

|||Q[m]
N (z)

|||
2
, (3.239) 

where .α = (h0)
N(N−1)/2c−1

N . Since this leading-order asymptotics of .σ
(Q)
n,k is 

independent of n and k, it implies that, for .|am| ⪢ 1, we would have . σ1,0/σ0,0 ∼ 1

and .σ0,1/σ0,0 ∼ 1, i.e., the solution .[u1,N,0(x, t), u2,N,0(x, t)] would be on the 

uniform background .[ρ1ei(k1x+ω1t), ρ1e
i(k2x+ω2t)], except when z is near a root . z0 of 

the polynomial .Q
[m]
N (z), where this leading-order asymptotics in (3.239) vanishes. 

In terms of x and t , this means that the solution .[u1,N,0(x, t), u2,N,0(x, t)] would be 
on the uniform background, except when .(x, t) is in an .O(1) neighborhood of the 

location .

(
x̃0, t̃0

)
, where 

.z0 = a
−1/m
m (p1x̃0 + 2ip0p1 t̃0). (3.240) 

Such .
(
x̃0, t̃0

)
locations are the leading-order terms of .(x̂0, t̂0) in Eqs. (3.218) of  

Theorem 3.14. Due to the requirement of .
√

x2 + t2 = O(|am|1/m), . z0 should not 

be zero here. 

Next, we show that when .(x, t) is in an .O(1) neighborhood of each of the 

.

(
x̃0, t̃0

)
locations given by Eq. (3.240), the Q-type Manakov rogue wave approaches 

a fundamental Manakov rogue wave that is located within .O(1) distance from 

.

(
x̃0, t̃0

)
. In order to derive this more refined asymptotics, we need to calculate terms 

in Eq. (3.230) whose order is lower than .|am|2N(N+1)/m, since that highest order 

term (3.239) vanishes at .
(
x̃0, t̃0

)
. 

First, we denote 

.x̂+
2 (x, t) = p2x + (2p0p2 + p2

1)(it), (3.241) 

which are the dominant terms of .x+
2 (x, t) from Lemma 3.3 with the index ‘I ’ 

removed when .(x, t) is in the outer region. Then, for .(x, t) in the .O(1) neighborhood 

of .

(
x̃0, t̃0

)
, we have a more refined asymptotics for .Sj (x

+(n, k) + νs) as 

. Sj (x
+(n, k) + νs) = Sj (x

+
1 , x+

2 , νs3, x
+
4 , x+

5 , νs6, · · · , x+
m + νsm, · · · )

=
⎾
Sj (v̂) + x̂+

2 (x̃0, t̃0)Sj−2(v̂)
⏋ ⎾

1 + O(|am|−2/m)
⏋
, |am| ⪢ 1, (3.242) 

where 

. ̂v =
(
x+
1 , 0, · · · , 0, am, 0, · · ·

)

= (p1x + 2p0p1it + nθ1 + kλ1, 0, · · · , 0, am, 0, · · · ) . (3.243)
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Here, the normalization of .a1 = 0 in . x+
1 has been used, and the second equation 

in (3.242) is obtained by using the definition of Schur polynomials and splitting the 

.x+(n, k)+ νs vector into . ̂v and the rest. Polynomials .Sj (v̂) are related to .p
[m]
j (z) in 

Eq. (3.189) as  

.Sj (v̂) = a
j/m
m p

[m]
j (ẑ), (3.244) 

where .ẑ = a
−1/m
m (p1x + 2p0p1it + nθ1 + kλ1). 

Now, we derive leading order terms of . am in the Laplace expansion (3.230) when 

.(x, t) is in the .O(1) neighborhood of .
(
x̃0, t̃0

)
. These leading order terms come from 

two index choices, the first being .ν = (0, 1, · · · , N − 1), and the second being 

.ν = (0, 1, · · · , N − 2, N). 

With the first index choice, applying the more refined asymptotics (3.242) to the  

Laplace expansion (3.230), the determinant involving .x+(n, k) in Eq. (3.230) can 

be found as (Yang and Yang 2023a) 

. α a
[N(N+1)−1]/m
m

⎾
p1(x − x̃0) + 2p0p1i(t − t̃0) + nθ1 + kλ1 + ΔQ

⏋

×
⎾
Q

[m]
N

⏋'
(z0)

⎾
1 + O(|am|−1/m)

⏋
, (3.245) 

where 

. ΔQ =
x̂+
2 (x̃0, t̃0)

a
1/m
m

∑N
j=1 det1≤i≤N

⎾
p

[m]
3i−1(z0), · · · , p

[m]
3i−j−2(z0), · · · , p

[m]
3i−N (z0)

⏋

⎾
Q

[m]
N

⏋'
(z0)

.

(3.246) 

Here, the determinant inside the summation is the determinant of .Q
[m]
N (z0), i.e., 

.det1≤i,j≤N

⎾
p

[m]
3i−j (z0)

⏋
, except that the sub-indices of its j -th column are reduced 

by two. Using the .(x̃0, t̃0) expressions as obtained from Eq. (3.240), we have 

.
x̂+
2 (x̃0, t̃0)

a
1/m
m

= p2

p1
z0 +

ip2
1

2ℜ(p0)

𝔍
(
z0 eiϕm/p1

)

eiϕm
, (3.247) 

where .ϕm ≡ arg
⎛
a
1/m
m

⎞
. This  .ΔQ is an .O(1) quantity. Absorbing it into . (x̃0, t̃0)

in Eq. (3.245), we find that the contribution to the first determinant in the Laplace 

expansion (3.230) under the index choice of .ν = (0, 1, · · · , N − 1) is 

.α a
[N(N+1)−1]/m
m

⎾
p1(x − x̂0) + 2p0p1i(t − t̂0) + nθ1 + kλ1

⏋ ⎾
Q

[m]
N

⏋'
(z0)

×
⎾
1 + O(|am|−1/m)

⏋
,
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where .(x̂0, t̂0) are given in Eqs. (3.218) of Theorem 3.14. Similarly, the second 

determinant involving .x−(n, k) in Eq. (3.230) under the index choice of . ν =
(0, 1, · · · , N − 1) is found to be 

. α∗ (a∗
m)[N(N+1)−1]/m

⎾
p∗
1(x − x̂0) − 2p∗

0p
∗
1 i(t − t̂0) − nθ∗

1 − kλ∗
1

⏋ ⎾
Q

[m]
N

⏋'
(z∗

0) ×

×
⎾
1 + O(|am|−1/m)

⏋
.

Under the second index choice of .ν = (0, 1, · · · , N − 2, N) in the Laplace 

expansion (3.230), the leading-order contribution to the first determinant involving 

.x+(n, k) can be calculated from the asymptotics (3.231) and the relation (3.236) as  

. h0α a
[N(N+1)−1]/m
m

⎾
Q

[m]
N

⏋'
(z0)

⎾
1 + O(|am|−1/m)

⏋
.

Similarly, the second determinant involving .x−(n, k) in Eq. (3.230) contributes 

. h∗
0α∗(a∗

m)[N(N+1)−1]/m
⎾
Q

[m]
N

⏋'
(z∗

0)
⎾
1 + O(|am|−1/m)

⏋
.

Summarizing the above contributions to the Laplace expansion (3.230) of  .σ
(Q)
n,k , 

we find that 

. σ
(Q)
n,k = |α|2

||||
⎾
Q

[m]
N

⏋'
(z0)

||||
2

|am|[N(N+1)−1]/m

×
(⎾

p1(x − x̂0) + 2ip0p1(t − t̂0) + nθ1 + kλ1
⏋

× [p∗
1(x − x̂0) − 2ip∗

0p
∗
1(t − t̂0) − nθ∗

1 − kλ∗
1] + |h0|2

⎞

×
⎾
1 + O(|am|−1/m)

⏋
. (3.248) 

Under our assumption of all nonzero roots of .Q
[m]
N (z) being simple, . 

⎾
Q

[m]
N

⏋'
(z0) /=

0. Thus, the above leading-order asymptotics for .σ
(Q)
n,k (x, t) does not vanish. It is 

easy to see that this expression of .σ
(Q)
n,k gives a fundamental rogue wave . [û1(x −

x̂0, t − t̂0) ei(k1x+ω1t), û2(x − x̂0, t − t̂0) ei(k2x+ω2t)] as given in Theorem 3.14, and 

the error of this fundamental rogue wave prediction is .O(|am|−1/m). This completes 

the proof of Theorem 3.14 for the outer region. 

(2) Proof of Theorem 3.14 for the inner region 

To analyze the large-. am behavior of Q-type Manakov rogue waves in the inner 

region, where .x2 + t2 = O(1), we first rewrite the .σ
(Q)
n,k determinant (3.217) into a  

.4N × 4N determinant
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.σ
(Q)
n,k =

||||
ON×N ΦN×3N

−Ψ3N×N I3N×3N

|||| , (3.249) 

where 

. Φi,j =
⎛

p1

p0 + p∗
0

⎞j−1

S3i−j

⎾
x+(n, k) + (j − 1)s

⏋
, . (3.250) 

Ψi,j =
⎛

p∗
1 

p0 + p∗
0

⎞i−1 

S3j−i

⎾
x−(n, k) + (i − 1)s∗⏋ . (3.251) 

Defining . y± to be the vector . x± without the . am term, i.e., let 

. x+ = y+ + (0, · · · , 0, am, 0, · · · ), x− = y− + (0, · · · , 0, a∗
m, 0, · · · ),

(3.252) 

it is easy to see from the definition of Schur polynomials that the Schur polynomials 

of . x± are related to those of . y± as 

.

Sj (x
+ + νs) =

∑[j/m]
l=0

al
m

l! Sj−lm(y+ + νs),

Sj (x
− + νs∗) =

∑[j/m]
l=0

(a∗
m)l

l! Sj−lm(y− + νs∗).

⎫
⎬
⎭ (3.253) 

The notation of . [a] here represents the largest integer less than or equal to a. Using  

these relations, we express matrix elements of . Φ and . Ψ in Eq. (3.249) through Schur 

polynomials .Sj (y
+ + νs), .Sj (y

− + νs∗), and powers of . am and . a∗
m. 

Next, we perform row operations to the . Φ matrix in order to remove certain 

power terms of . am. For this purpose, we notice that when .m = 3j + 1 .(j ≥ 1), 

coefficients of the highest . am power terms in . Φ’s first column are proportional to 

.Ŝ2, Ŝ5, · · · , Ŝ3j−1, Ŝ1, Ŝ4, · · · , Ŝ3j−2, Ŝ0, Ŝ3, · · · , Ŝ3j , (3.254) 

and repeating, where .Ŝj ≡ Sj (y
+ + νs). When .m = 3j + 2 .(j ≥ 0), these 

coefficients of the highest . am power terms in . Φ’s first column are proportional to 

.Ŝ2, Ŝ5, · · · , Ŝ3j−1, Ŝ0, Ŝ3, · · · , Ŝ3j , Ŝ1, Ŝ4, · · · , Ŝ3j+1, (3.255) 

and repeating. In the second and higher columns of . Φ, elements are of the same form 

as those in the first column, except that the index j of every . Ŝj in them decreases 

by one with each higher column, and .Ŝj ≡ 0 for .j < 0. Using the first m rows, 

we perform row operations to remove the highest powers of . am from the second m 

rows, leaving the second-highest power terms of . am with coefficients proportional 

to .Ŝj+m, where . Ŝj is the highest .am-power coefficient of each element just being 

removed. Then, we use the first m rows and the resulting second m rows to eliminate
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the highest and second-highest power terms of . am from the third m rows, leaving 

the third-highest power terms of . am with coefficients proportional to .Ŝj+2m in them. 

This process is continued to all later rows of . Φ. Similar column operations are also 

applied to the matrix . Ψ in Eq. (3.249). 

After these row and column operations, we then keep only the highest remaining 

power of . am in each matrix element of . Φ and the highest remaining power of . a∗
m in 

each matrix element of . Ψ . Using these manipulations and the sequence structures 

in Eqs. (3.254) and (3.255), we find that .σ
(Q)
n,k in (3.249) is asymptotically reduced 

to 

. σ
(Q)
n,k = β̂ |am|K̂

|||||
O(N1Q+N2Q)×(N1Q+N2Q) Φ̂(N1Q+N2Q)×N̂

−Ψ̂N̂×(N1Q+N2Q) IN̂×N̂

|||||
⎾
1 + O(|am|−1)

⏋
,

(3.256) 

where . ̂β is an .(m,N)-dependent nonzero constant, . K̂ is an .(m,N)-dependent 

positive integer, .(N1Q, N2Q) are nonnegative integers given in Theorem 3.12, 

.N̂ = max(3N1Q, 3N2Q − 1), 

. Φ̂ =

⎛
⎜⎜⎝

Φ̂
(1)

N1Q×N̂

Φ̂
(2)

N2Q×N̂

⎞
⎟⎟⎠ , Ψ̂ =

⎛
Ψ̂

(1)

N̂×N1Q
Ψ̂

(2)

N̂×N2Q

⎞
, . (3.257)

Φ̂ 
(I ) 
i,j 

= (h0)
−(j−1) S3i−I

⎾
y+(n, k) + (j − 1 + ν0)s

⏋
, . (3.258)

Ψ̂ 
(J ) 
i,j 

= (h∗
0)

−(i−1) S3j−J

⎾
y−(n, k) + (i − 1 + ν0)s

∗⏋ , (3.259) 

and .ν0 = N − N1Q − N2Q. Since the constant factor .β̂ |am|K̂ in (3.256) does not 

affect the solution and can be dropped, the remaining determinant in (3.256) can be 

rewritten as 

. σ
(Q)
n,k = det

⎛
σ

[1,1]
n,k σ

[1,2]
n,k

σ
[2,1]
n,k σ

[2,2]
n,k

⎞⎾
1 + O(|am|−1)

⏋
, (3.260) 

.σ
[I,J ]
n,k =

⎛
φ

(n,k, I,J )
3i−I, 3j−J

⎞
1≤i≤NIQ, 1≤j≤NJQ

, (3.261) 

where the matrix elements in .σ
[I,J ]
n,k are defined by 

. φ
(n,k,I,J )
i,j =

min(i,j)⎲

ν=0

⎾ |p1|2
(p0 + p∗

0)
2

⏋ν

Si−ν

(
y+(n, k) + ν0s + νs

)

× Sj−ν

(
y−(n, k) + ν0s

∗ + νs∗) . (3.262)
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The largest index j of . Sj involved in the above reduced solution is . max(3N1Q −
1, 3N2Q −2). It is easy to see from Theorem 3.12 that . max(3N1Q −1, 3N2Q −2) <

m. Thus, the above solution only depends on . Sj polynomials with .j < m, and 

hence only depends on .y±
j (n, k) with .j < m. From the definition (3.252), we 

see that .y±
j (n, k) = x±

j (n, k) when .j < m. This means that in Eq. (3.262), 

.y±(n, k) can be replaced by .x±(n, k). Finally, we lump each constant .ν0sj into . aj

of .x+
j (n, k), and similarly lump each .ν0s

∗
j into . a∗

j of .x−
j (n, k). When .j mod 3 = 0, 

.x±
j (n, k) = 0 per Lemma 3.3 and does not contain . aj . In such a case, we just 

lump .ν0sj into .x+
j (n, k) and .ν0s

∗
j into .x−

j (n, k), which eventually can be eliminated 

from the solution for the same reason as in Lemma 3.3. After these treatments, the 

above determinant in (3.260) becomes a .

(
N1Q, N2Q

)
-th order Manakov rogue wave 

.[u1,N1Q,N2Q
(x, t), u2,N1Q,N2Q

(x, t)] as given in Lemma 3.3, whose internal parame-

ters .(â1,1, â2,1, â4,1, â5,1, . . . , â3N1Q−1, 1) and . (â1,2, â2,2, â4,2, â5,2, . . . , â3N2Q−2, 2)

are related to those in the original rogue wave as 

. âj,1 = âj,2 = aj + ν0sj , j = 1, 2, 4, 5, · · · , (3.263) 

which is the same as the relation (3.220) in Theorem 3.14 since .sj = 0 for 

.j mod 3 /= 0. The error of this lower-order rogue wave approximation is . O(|am|−1)

in view of Eq. (3.260). This completes the proof of Theorem 3.14 for the inner 

region. 

(3) Proof of Theorem 3.15 

The proof of Theorem 3.15 for R-type Manakov rogue waves is very similar to that 

for Theorem 3.14. For that reason, we will only list the differences here. 

In the outer region, due to the different matrix indices in Eq. (3.217) for  R-

type rogue waves, the corresponding polynomials whose roots give leading-order 

locations of fundamental rogue waves are naturally R-type Okamoto hierarchy 

polynomials .R
[m]
N (z). The remaining difference is the calculation of the next-order 

position shift, i.e., the formula for . ΔR in Eqs. (3.222). Repeating earlier calculations 

for the different R-type matrix indices, we can easily find that 

. ΔR =
⎛

p2

p1
z0 +

ip2
1

2ℜ(p0)

𝔍
(
z0 eiϕm/p1

)

eiϕm

⎞

×
∑N

j=1 det1≤i≤N

⎾
p

[m]
3i−1−1(z0), · · · , p

[m]
3i−j−1−2(z0), · · · , p

[m]
3i−N−1(z0)

⏋

⎾
R

[m]
N

⏋'
(z0)

.

(3.264) 

Here, the determinant inside the summation of the above formula is the determinant 

of .R
[m]
N (z0), i.e., .det1≤i,j≤N

⎾
p

[m]
3i−j−1(z0)

⏋
, except that sub-indices of its j -th 

column are reduced by two.
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In the inner region, where .x2 + t2 = O(1), we also rewrite the .σ
(R)
n,k determi-

nant (3.217) into a  .4N × 4N determinant, and then use relations (3.253) to rewrite 

every matrix element of . Φ and . Ψ into powers of . am and . a∗
m respectively. For R-type 

rogue waves, when .m = 3j + 1 .(j ≥ 1), coefficients of the highest . am power terms 

in . Φ’s first column are proportional to 

.Ŝ1, Ŝ4, · · · , Ŝ3j−2, Ŝ0, Ŝ3, · · · , Ŝ3j , Ŝ2, Ŝ5, · · · , Ŝ3j−1, (3.265) 

and repeating, and when .m = 3j + 2 .(j ≥ 0), these coefficients are proportional to 

.Ŝ1, Ŝ4, · · · , Ŝ3j+1, Ŝ2, Ŝ5, · · · , Ŝ3j−1, Ŝ0, Ŝ3, · · · , Ŝ3j , (3.266) 

and repeating. Using these sequence structures and performing the same row and 

column operations as described earlier to remove certain high powers of . am in the . Φ

and . Ψ matrices, we find that .σ
(R)
n,k can be asymptotically reduced to (3.256)–(3.259), 

except that .(N1Q, N2Q) are replaced by .(N1R, N2R) as given in Theorem 3.13, and 

.(β̂, K̂) are different constants. The rest of the proof is the same as before, and 

Theorem 3.15 is then proved. 

3.3.4 Three-Wave Resonant Interaction System 

The (1+1)-dimensional three-wave resonant interaction system of soliton-exchange 

case is 

.

(∂t + c1∂x) u1 = u∗
2u

∗
3,

(∂t + c2∂x) u2 = −u∗
1u

∗
3,

(∂t + c3∂x) u3 = u∗
1u

∗
2,

⎫
⎬
⎭ (3.267) 

where .(c1, c2, c3) are group velocities of the three waves. In this soliton-exchange 

case, under the boundary conditions 

.

u1(x, t) → ρ1e
i(k1x+ω1t), x, t → ±∞,

u2(x, t) → ρ2e
i(k2x+ω2t), x, t → ±∞,

u3(x, t) → iρ3e
−i[(k1+k2)x+(ω1+ω2)t], x, t → ±∞,

⎫
⎬
⎭ (3.268) 

and parameter constraints 

.ρ2 =
/

c1

c2
ρ1, ρ3 = ±

/
c1 − c2

c2
ρ1, (3.269) 

the above three-wave system admits a class of rogue waves whose . τ functions are 

.2×2 block determinants of Schur polynomials with index jumps of 3, similar to the
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focusing Manakov case. These rogue waves have been presented in Theorem 2.15 

of Chap. 2. When those .2 × 2 block determinants degenerate to single blocks, we 

also get Q-type and R-type rogue waves. Patterns of these rogue waves under a large 

internal parameter are summarized in the following two theorems (Yang and Yang 

2023a). 

Theorem 3.16 For the Q-type rogue wave . [u1,N,0(x, t), u2,N,0(x, t), u3,N,0(x, t)]
in the three-wave resonant interaction system (3.267), suppose .|am| ⪢ 1 and all 

other internal parameters .O(1). In addition, suppose all nonzero roots of . Q
[m]
N (z)

are simple. Then, the following statements for this rogue wave hold. 

1. In the outer region, where .

√
x2 + t2 = O(|am|1/m), this rogue wave 

asymptotically separates into .MQ isolated fundamental rogue waves, 

where .MQ is given in Eq. (3.201). These fundamental rogue waves are 

. [û1(x − x̂0, t − t̂0) ei(k1x+ω1t), û2(x − x̂0, t − t̂0) ei(k2x+ω2t), û3(x − x̂0, t −
t̂0) e−i[(k1+k2)x+(ω1+ω2)t]], where functions .ûj (x, t) are given in Eq. (2.772) of  

Sect. 2.10, and their positions .(x̂0, t̂0) are given by 

.x̂0 =
𝔍

⎾
z0a

1/m
m −Δ̂Q

c1β1−c2α1

⏋

𝔍

⎾
α1−β1

c1β1−c2α1

⏋ , t̂0 =
𝔍

⎾
z0a

1/m
m −Δ̂Q

α1−β1

⏋

𝔍

⎾
c1β1−c2α1

α1−β1

⏋ , (3.270) 

where . z0 is each of the .MQ nonzero simple roots of .Q
[m]
N (z), .(α1, β1) are given 

in the expansions of Theorem 2.15, and .Δ̂Q is a .z0-dependent .O(1) quantity. The 

error of this fundamental rogue wave approximation is .O(|am|−1/m). Expressed 

mathematically, when .|am| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the 

following solution asymptotics 

. 

u1,N,0(x, t) = û1(x − x̂0, t − t̂0) ei(k1x+ω1t) + O(|am|−1/m),

u2,N,0(x, t) = û2(x − x̂0, t − t̂0) ei(k2x+ω2t) + O(|am|−1/m),

u3,N,0(x, t) = û3(x − x̂0, t − t̂0) e−i[(k1+k2)x+(ω1+ω2)t] + O(|am|−1/m).

⎫
⎬
⎭

(3.271) 

2. If zero is a root of the Okamoto-hierarchy polynomial .Q
[m]
N (z), then in 

the inner region, where .x2 + t2 = O(1), this rogue wave is approx-

imately a lower .

(
N1Q, N2Q

)
-th order rogue wave . [u1,N1Q,N2Q

(x, t),

.u2,N1Q,N2Q
(x, t), u3,N1Q,N2Q

(x, t)], where .
(
N1Q, N2Q

)
are provided in Theo-

rem 3.12. Internal parameters in this lower-order rogue wave, . (â1,1, â2,1, . . . ,

.â3N1Q−1, 1) and .(â1,2, â2,2, . . . , .â3N2Q−2, 2), are the same as those in the original 

rogue wave, i.e., 

.âj,1 = âj,2 = aj , j = 1, 2, 4, 5, · · · . (3.272) 

The error of this lower-order rogue wave approximation is .O(|am|−1). Expressed 

mathematically, when .|am| ⪢ 1 and .x2 + t2 = O(1),
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. uk,N,0(x, t; a2, a4, a5, · · · ) = uk,N1Q,N2Q
(x, t; âj,1, âj,2, j = 1, 2, 4, 5, . . . )

+ O(|am|−1), (3.273) 

where .k = 1, 2, 3. If zero is not a root of .Q
[m]
N (z), then in the inner region, this 

rogue wave approaches the uniform background . [ρ1ei(k1x+ω1t), ρ2e
i(k2x+ω2t),

.iρ3e
−i[(k1+k2)x+(ω1+ω2)t]] when .|am| ⪢ 1. 

Theorem 3.17 For the R-type rogue wave . [u1,0,N (x, t), u2,0,N (x, t), u3,0,N (x, t)]
in the three-wave resonant interaction system (3.267), suppose .|am| ⪢ 1 and all 

other internal parameters .O(1). In addition, suppose all nonzero roots of . R
[m]
N (z)

are simple. Then, the following statements for this rogue wave hold. 

1. In the outer region, where .

√
x2 + t2 = O(|am|1/m), this rogue wave 

asymptotically separates into .MR isolated fundamental rogue waves, 

where .MR is given in Eq. (3.201). These fundamental rogue waves are 

. [û1(x − x̂0, t − t̂0) ei(k1x+ω1t), û2(x − x̂0, t − t̂0) ei(k2x+ω2t), û3(x − x̂0, t −
t̂0) e−i[(k1+k2)x+(ω1+ω2)t]], where functions .ûj (x, t) are given in Eq. (2.772) of  

Sect. 2.10, and their positions .(x̂0, t̂0) are given by 

.x̂0 =
𝔍

⎾
z0a

1/m
m −Δ̂R

c1β1−c2α1

⏋

𝔍

⎾
α1−β1

c1β1−c2α1

⏋ , t̂0 =
𝔍

⎾
z0a

1/m
m −Δ̂R

α1−β1

⏋

𝔍

⎾
c1β1−c2α1

α1−β1

⏋ , (3.274) 

where . z0 is each of the .MR nonzero simple roots of .R
[m]
N (z), .(α1, β1) are given 

in the expansions of Theorem 2.15, and .Δ̂R is a .z0-dependent .O(1) quantity. The 

error of this fundamental rogue wave approximation is .O(|am|−1/m). Expressed 

mathematically, when .|am| ⪢ 1 and .(x − x̂0)
2 + (t − t̂0)

2 = O(1), we have the 

following solution asymptotics 

. 

u1,0,N (x, t) = û1(x − x̂0, t − t̂0) ei(k1x+ω1t) + O(|am|−1/m),

u2,0,N (x, t) = û2(x − x̂0, t − t̂0) ei(k2x+ω2t) + O(|am|−1/m),

u3,0,N (x, t) = û3(x − x̂0, t − t̂0) e−i[(k1+k2)x+(ω1+ω2)t] + O(|am|−1/m).

⎫
⎬
⎭

(3.275) 

2. If zero is a root of the Okamoto-hierarchy polynomial .R
[m]
N (z), then in the 

inner region, where .x2 + t2 = O(1), this rogue wave is approximately 

a lower .(N1R, N2R)-th order rogue wave . [u1,N1R,N2R
(x, t), u2,N1R,N2R

(x, t),

.u3,N1R,N2R
(x, t)], where .(N1R, N2R) are provided in Theorem 3.13. Internal 

parameters .(â1,1, â2,1, . . . , â3N1R−1, 1) and .(â1,2, â2,2, . . . , .â3N2R−2, 2) in this 

lower-order rogue wave are the same as those in the original rogue wave, i.e., 

.âj,1 = âj,2 = aj , j = 1, 2, 4, 5, · · · . (3.276)
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The error of this lower-order rogue wave approximation is .O(|am|−1). Expressed 

mathematically, when .|am| ⪢ 1 and .x2 + t2 = O(1), 

. uk,0,N (x, t; a2, a4, a5, · · · ) = uk,N1R,N2R
(x, t; âj,1, âj,2, j = 1, 2, 4, 5, . . . )

+ O(|am|−1), (3.277) 

where .k = 1, 2, 3. If zero is not a root of .R
[m]
N (z), then in the inner region, this 

rogue wave approaches the uniform background . [ρ1ei(k1x+ω1t), ρ2e
i(k2x+ω2t),

.iρ3e
−i[(k1+k2)x+(ω1+ω2)t]] when .|am| ⪢ 1. 

Proofs of these theorems are very similar to those for the Manakov system and are 

omitted here (see Yang and Yang (2023a) for details). 

These theorems indicate that, similar to the Manakov case, patterns of Q- and 

R-type rogue waves in the three wave system are also linear transformations of root 

structures of .Q
[m]
N (z) and .R

[m]
N (z) polynomials to the leading order, but are nonlinear 

transformations of those root structures when the next-order position corrections are 

included. 

Comparison Between Predictions and True Solutions 

Now, we compare predictions from Theorems 3.16–3.17 to true solutions. For this 

purpose, we choose velocity values as .(c1, c2, c3) = (1, 9/20, 0), and the first 

wave’s background amplitude .ρ1 = 1. Then, the other two waves’ background 

amplitudes can be derived from Eq. (3.269) as  .ρ2 = 2
√
5/3 and .ρ3 =

√
11/3 (we 

have taken the plus signs). 

Q-Type 

We first compare Q-type rogue waves of the three-wave system and set .N = 2. 

Regarding their three internal parameters .(a2, a4, a5), we choose one of them large 

and the other two zero. Then, when that large parameter is taken as one of 

.a2 = 40i, a4 = 300, a5 = 3000i, (3.278) 

the three predicted rogue waves from Theorem 3.16 are displayed in the three 

columns of Fig. 3.28, respectively. The first row of this figure shows the predicted 

.(x̂0, t̂0) locations from formulae (3.270) applied to all roots of .Q
[m]
2 (z). At each of 

the .(x̂0, t̂0) locations resulting from nonzero roots of .Q
[m]
2 (z), a fundamental rogue 

wave of the three-wave system is predicted. Our prediction for the center regions is 

based on Eq. (3.273) of Theorem 3.16. In this prediction, the .(N1Q, N2Q) values for 

these three rogue waves are the same as those given in Eq. (3.227) earlier. Internal 

parameters in these predicted lower .(N1Q, N2Q)-th order rogue waves in the center 

region are all zero due to our choices of internal parameters in the original rogue 

waves. These predictions for .(|u1|, |u2|, |u3|) in the outer and inner regions are
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Fig. 3.28 Predicted Q-type second-order rogue waves from Theorem 3.16 in the three-wave 

system. Each column shows a predicted rogue wave with a single large parameter . am, whose 

value is indicated on top, and all other internal parameters are set as zero. First row: predicted 

.(x̂0, t̂0) locations from formulae (3.270) applied to all roots of .Q
[m]
2 (z). Second row: predicted 

.|u1(x, t)|. Third row: predicted .|u2(x, t)|. Last row: predicted .|u3(x, t)|. The .(x, t) intervals in the 

three columns are .−19 ≤ x, t ≤ 19, .−23 ≤ x, t ≤ 23, and .−25 ≤ x, t ≤ 25, respectively 

assembled together similar to that explained in the caption of Fig. 3.22 and plotted 

in the second to fourth rows of Fig. 3.28, respectively. 

It is easy to see that these predicted rogue patterns in Fig. 3.28, although being 

produced from the root structures of .Q
[m]
2 (z) polynomials in Fig. 3.20, look totally 

different from those root structures. The reason is the nonlinear mapping of the next-

order correction term in formulae (3.270), which induces strong deformations to the 

linearly mapped result from the leading-order term in (3.270). These deformations, 

under our current velocity choices of .(c1, c2, c3), are much stronger than in the 

previous Manakov case, at comparable . am values. However, as we have explained
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Fig. 3.29 True Q-type second-order rogue waves of the three-wave system for the same parame-

ters and .(x, t) intervals as in Fig. 3.28 

in the previous subsection, if we increase the .|am| values, these deformations 

will become weaker, and rogue patterns will approach linearly transformed root 

structures of Okamoto-hierarchy polynomials and will thus be more recognizable 

To compare these predictions to true solutions, we plot in Fig. 3.29 the corre-

sponding true solutions. It is easy to see that the agreement is excellent, confirming 

the validity of Theorem 3.16. This agreement also indicates that, predictions from 

our Theorem 3.16 are highly accurate, even when rogue patterns are strongly 

deformed from Okamoto-hierarchy root structures. 

R-Type 

Next, we consider R-type rogue waves, and set .N = 3. Regarding their internal 

parameters .(a2, a4, a5, a7), we choose one of them large, and the others zero. Then, 

when that large parameter . am is taken as one of 

.a2 = 30i, a4 = 200, a5 = 600i, a7 = 5000, (3.279) 

predicted rogue waves from Theorem 3.17 are displayed in the first two rows of 

Fig. 3.30. The first row of this figure shows the predicted .(x̂0, t̂0) locations by 

formulae (3.274) applied to all roots of .R
[m]
3 (z). The second row shows the predicted



3.3 Rogue Patterns Associated with Okamoto Polynomial Hierarchies 331

Fig. 3.30 Comparison between predicted and true R-type third-order rogue waves of the three-

wave system. Each column is for a rogue wave with a single large parameter . am, whose value 

is indicated on top, and all other internal parameters are set as zero. Top row: predicted . (x̂0, t̂0)

locations by formulae (3.274) applied to all roots of .R
[m]
3 (z). Middle row: predicted .|u1(x, t)|. 

Third row: true .|u1(x, t)|. The  .(x, t) intervals in the four columns are .−21 ≤ x, t ≤ 21, . −23 ≤
x, t ≤ 27, .−24 ≤ x, t ≤ 24, and .−23 ≤ x, t ≤ 23, respectively 

amplitude fields .|u1| (the other two fields .|u2| and .|u3| are not shown for brevity). 
These amplitude fields in the outer region are predicted by the fundamental rogue 

waves in Theorem 3.17, and these fields in the inner region are predicted by the 

lower .(N1R, N2R)-th order rogue waves with all-zero internal parameters, and their 

.(N1R, N2R) values are as given in Eq. (3.229). 

As in the earlier Q-case, predicted rogue patterns in Fig. 3.30 also look very 

different from the underlying root structures of .R
[m]
3 (z) polynomials in Fig. 3.21. 

In the bottom row of this same figure, the corresponding true solutions . |u1|
are plotted. Again, perfect agreement is seen between our predictions and the true 

solutions, confirming the predictive power of our Theorem 3.17.
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3.4 Rogue Curves Associated with Double-Real-Variable 

Polynomials in the Davey-Stewartson I Equation 

The Davey-Stewartson I equation admits a class of rogue wave solutions whose 

wave crests form closed or open curves in the spatial plane, which we call rogue 

curves. These rogue curves come in various striking shapes, such as rings, double 

rings, and many others. They emerge from a uniform background (possibly with a 

few lumps on it), reach high amplitude in such striking shapes, and then disappear 

into the same background again. These rogue curves would arise when an internal 

parameter in bilinear expressions of the rogue waves is real and large, and they can 

be predicted by root curves of certain types of double-real-variable polynomials. 

These results were first reported in Yang and Yang (2024b) and will be described 

below. 

3.4.1 Rogue Curves in the Davey-Stewartson I Equation 

The Davey-Stewartson-I (DSI) equation is 

.
iAt = Axx + Ayy + (ϵ|A|2 − 2Q)A,

Qxx − Qyy = ϵ(|A|2)xx,

⎫
(3.280) 

where .ϵ = ±1 is the sign of nonlinearity. Explicit rogue wave solutions in this 

equation have been presented in Theorem 2.18 of Chap. 2. Those rogue waves 

contain various types of solutions, such as multi-rogue waves and higher-order 

rogue waves, depending on whether the spectral parameters in them are the same 

or different. In addition, those solutions contain many free internal parameters. 

In this section, we consider the higher-order rogue waves where all the spectral 

parameters are the same, and their internal parameters are under certain restrictions. 

Expressions of such higher-order rogue waves are simpler and are given in the 

following lemma. 

Lemma 3.4 The Davey-Stewartson I eqaution (3.280) admits higher-order rogue 

wave solutions 

.AΛ(x, y, t) =
√
2

g

f
, QΛ(x, y, t) = 1 − 2ϵ (log f )xx , (3.281) 

where .Λ = (n1, n2, . . . , nN ) is an order-index vector, N is the length of . Λ, each . ni

is a nonnegative integer, .n1 < n2 < · · · < nN , 

.f = τ0, g = τ1, τk = det
1≤i,j≤N

⎛
m

(k)
i,j

⎞
, (3.282)
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the matrix elements .m
(k)
i,j of . τk are given by 

.m
(k)
i,j =

min(ni ,nj )⎲

ν=0

1

4ν
Sni−ν[x+(k) + νs] Snj −ν[x−(k) + νs], (3.283) 

vectors .x±(k) =
(
x±
1 , x±

2 , · · ·
)

are defined as 

.x+
r (k) = (−1)r

r!p x−1 + (−2)r

r!p2
x−2 + 1

r!px1 + 2r

r! p
2x2 + kδr,1 + ar , . (3.284) 

x−
r (k) = 

(−1)r 

r!p 
x−1 + 

(−2)r 

r!p2 
x2 + 

1 

r!px1 + 
2r 

r! p
2x−2 − kδr,1 + a∗

r , . (3.285) 

x1 = 
1 

2 
(x + y), x−1 = 

1 

2
ϵ(x − y), x2 = −1 

2 
it, x−2 = 

1 

2 
it, (3.286) 

p is a real constant, .δr,1 is the Kronecker delta function which is equal to 1 when 

.r = 1 and 0 otherwise, .s = (0, s2, 0, s4, · · · ) are coefficients from the expansion 

.

∞⎲

k=1

skλ
k = ln

⎾
2

λ
tanh

⎛
λ

2

⎞⏋
, (3.287) 

and .a1, a2, . . . , anN
are free complex constants. 

Derivation of this lemma from Theorem 2.18 is simple and can be found in Yang 

and Yang (2024b). 

Notice that the free internal complex parameter . a1 can be absorbed into .(x, t) or 

.(y, t) through a coordinate shift. In addition, under the variable transformation of 

.Q → Q+ϵ|A|2, x ↔ y, and .ϵ → −ϵ, the DSI equation (3.280) is invariant. Thus, 

we will set 

.ϵ = 1, a1 = 0, (3.288) 

in this section without loss of generality. In addition, we denote . a =
(0, a2, . . . , anN

). 

To demonstrate rogue curves in DSI, we show two examples. In the first example, 

we choose 

. p = 1, Λ = (1, 4), a = (0, 0, 0, 5000). (3.289) 

The corresponding solution .|A| from Lemma 3.4 at four time values of . t =
−3,−1, 0 and 3 is shown in Fig. 3.31. It is seen that a rogue wave in the shape 

of two separate open curves symmetric with respect to the x-axis arises from the 

uniform background in the .(x, y) plane. This rogue curve reaches peak amplitude 

of .3
√
2 at .t = 0, and then retreats to the same uniform background again. The
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Fig. 3.31 A rogue curve (. |A|) in the DSI equation (3.280) at four time values of . t = −3,−1, 0

and 3 for parameter choices in Eq. (3.289). In all panels, .−500 ≤ x ≤ 500, and . −30 ≤ y ≤ 30

Fig. 3.32 A rogue ring (. |A|) in the DSI equation (3.280) at four time values of .t = −4,−2, 0 and 

4 for parameter choices in Eq. (3.290). In all panels, .−500 ≤ x ≤ 500, and . −10 ≤ y ≤ 40

shape of this rogue curve is not parabolas but more complex, and its appearance is 

mysterious. 

An even more interesting example comes when we choose 

.p = 1, Λ = (2, 3), a = (0, 0, 2000), (3.290) 

and the corresponding solution .|A| from Lemma 3.4 at four time values of . t =
−4,−2, 0 and 4 is shown in Fig. 3.32. It is seen that at large times (.t = ±4), the 

solution contains two lumps on the uniform background. But at the intermediate 

time of .t = −2, a rogue wave whose crests form a closed curve in the .(x, y) plane 

starts to appear between the two lumps (we call this rogue closed curve a rogue 

ring). This rogue ring reaches peak amplitude of .3
√
2 at .t = 0, after which it starts 

to disappear and becomes invisible when .t = 4. The appearance of this rogue ring 

is more mysterious. 

How can we understand these rogue curves? In particular, how can we analyti-

cally predict the shapes and locations of these rogue curves? This will be done in 

the next subsections.
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3.4.2 A Class of Double-Real-Variable Polynomials and Their 

Root Curves 

It turns out that the rogue curves such as those in Figs. 3.31 and 3.32 can be predicted 

through a certain class of double-real-variable polynomials and their root curves. 

Such polynomials and their root curves are described below. 

We introduce a class of special polynomials in two real variables .(z1, z2), which 

can be written as a determinant 

. P
[m]
Λ (z1, z2) =

||||||||||

S
[m]
n1

(z1, z2) S
[m]
n1−1(z1, z2) · · · S[m]

n1−N+1(z1, z2)

S
[m]
n2

(z1, z2) S
[m]
n2−1(z1, z2) · · · S[m]

n2−N+1(z1, z2)

...
...

...
...

S
[m]
nN

(z1, z2) S
[m]
nN−1(z1, z2) · · · S[m]

nN−N+1(z1, z2)

||||||||||

, (3.291) 

where .S
[m]
k (z1, z2) are Schur polynomials in two variables defined by 

.

∞⎲

k=0

S
[m]
k (z1, z2)ϵ

k = exp
⎛
z2ϵ + z1ϵ

2 + ϵm
⎞

, m ≥ 3, (3.292) 

.Λ = (n1, n2, . . . , nN ) is an order-index vector, and .S
[m]
k (z1, z2) ≡ 0 if .k < 0. This  

determinant is a Wronskian (in . z2) since we can see from Eq. (3.292) that 

.
∂

∂z2
S

[m]
k (z1, z2) = S[m]

k−1(z1, z2). (3.293) 

A few such polynomials are given below by choosing specific m and . Λ values, 

.m = 4,Λ = (1, 4) : P[m]
Λ (z1, z2) =

⎛
z42 + 4z1z

2
2 − 4z21 − 8

⎞
/8, . (3.294) 

m = 3,Λ  = (2, 3) : P[m] 
Λ 

(z1, z2) =
⎛
z4 2 + 12z2 1 − 12z2

⎞
/12, . (3.295) 

m = 4,Λ  = (2, 4) : P[m] 
Λ 

(z1, z2) = z2

⎛
z4 2 + 4z1z

2 
2 + 12z2 1 − 24

⎞
/24, . (3.296) 

m = 5,Λ  = (4, 5) : P[m] 
Λ 

(z1, z2) = 
1 

2880

⎛
z8 2 + 16z1z

6 
2 + 120z2 1z

4 
2 

+720z4 1 − 480z3 2 − 2880z1z2

⎞
. (3.297) 

By setting 

.P
[m]
Λ (z1, z2) = 0 (3.298)
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Fig. 3.33 Root curves .z2 = RΛ,m(z1) of the double-real-variable polynomial .P
[m]
Λ (z1, z2) in the 

.(z1, z2) plane for parameter choices in Eqs. (3.294)–(3.297), from left to right, respectively 

for real values of .(z1, z2), we get root curves of this equation in the .(z1, z2) plane. 

Let us denote these root curve solutions as 

.z2 = RΛ,m(z1). (3.299) 

For the above four examples of .P
[m]
Λ (z1, z2), their root curves are displayed in 

Fig. 3.33. As one can see, these root curves may be an open curve, as in the first 

example, or a closed curve, as in the second and fourth examples, or a mixture of 

open and closed curves, as in the third example. For closed curves, they can be a 

single loop as in the second example, or a connected double loop as in the fourth 

example. Other varieties of these curves are also possible for other examples of 

.P
[m]
Λ (z1, z2), such as disconnected double loops and so on. 

On a root curve, there may exist some special points where 

.
∂P

[m]
Λ (z1, z2)

∂z2
= 0. (3.300) 

Such special points will be important to us, and we will call them exceptional points 

of the root curve. These exceptional points satisfy both Eqs. (3.298) and (3.300). To 

easily see where these exceptional points are located on a root curve, it is helpful to 

consider the dynamical system 

.
dz2

dt
= P[m]

Λ (z1, z2), (3.301) 

where . z2 is treated as a real function of time t , and . z1 is treated as a real parameter. 

For this dynamical system, the root curve (3.299) gives its bifurcation diagram, 

while Eq. (3.300) is the bifurcation condition on this diagram. From this point of 

view, it is then clear that the exceptional points of the root curve are the bifurcation 

points of this root curve (when this root curve is viewed as a bifurcation diagram). 

This realization then makes it very easy to identify exceptional points of the root 

curve. For example, on the root curve in the second panel of Fig. 3.33, the  left  

and right edge points of the curve are exceptional points because saddle-node
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bifurcations occur there. The root curve in the third panel of Fig. 3.33 has four 

exceptional points. Two of them are in the lower and upper half planes where saddle-

node bifurcations occur, while the other two are on the . z1 axis where pitchfork 

bifurcations occur. The root curve in the fourth panel of Fig. 3.33 also has four 

exceptional points; three of them are where saddle-node bifurcations occur, while 

the fourth one is at the intersection between the upper and lower loops where a 

transcritical bifurcation occurs. The first panel of Fig. 3.33 does not have exceptional 

points since no bifurcation occurs here. 

One may notice that the first two root curves in Fig. 3.33 resemble the shapes of 

rogue curves in Figs. 3.31 and 3.32. Indeed, the root curve of .P
[m]
Λ (z1, z2) turns out 

to be closely related to rogue curves in DSI, as we will show in the next subsection. 

3.4.3 Analytical Prediction of Rogue Curves Through Root 

Curves 

In this subsection, we analytically predict the shapes of rogue waves in DSI. For this 

purpose, we make the following restrictions on parameters in DSI’s rogue waves in 

Lemma 3.4. 

1. We set .p = 1. 

2. For a certain .m ≥ 3, . am is real, .am ⪢ 1 when m is even and .|am| ⪢ 1 when m 

is odd, and the other . aj values in . a are .O(1) and complex. 

The other cases of .p /= 1 and large negative . am when m is even will be briefly 

discussed at the end of this subsection. 

One may notice that the parameter choices (3.289)–(3.290) for Figs. 3.31 and 

3.32 meet these restrictions. In both cases, .p = 1. In addition, in (3.289), . a4 = 5000

is large positive. In (3.290), .a3 = 2000 is large. 

Under the above parameter restrictions, we will show that rogue curves in DSI 

would appear, and their shapes in the .(x, y) plane would be predicted by the root 

curves of .P
[m]
Λ (z1, z2). To present these results, we first introduce some definitions. 

Let us define a curve .y = yc(x) in the .(x, y) plane, which we call the critical 

curve, as 

.x = 2z1a
2/m
m , yc(x) = z2a

1/m
m , (3.302) 

where .(z1, z2) is every point on the root curve of .P
[m]
Λ (z1, z2). Alternatively, the 

critical curve can be defined by the equation 

.P
[m]
Λ

⎛
x

2a
2/m
m

,
yc(x)

a
1/m
m

⎞
= 0, (3.303) 

or
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.yc(x) = a
1/m
m RΛ,m

⎛
x

2a
2/m
m

⎞
, (3.304) 

using the notation in Eq. (3.299). This critical curve may also contain exceptional 

points where 

.
∂

∂yc

P
[m]
Λ

⎛
x

2a
2/m
m

,
yc

a
1/m
m

⎞
= 0. (3.305) 

Such points are also bifurcation points of the critical curve when this curve is 

viewed as a bifurcation diagram, because a dynamical system point of view similar 

to Eq. (3.301) also applies here. It is easy to see that an exceptional point . (x(e), y
(e)
c )

of the critical curve is related to an exceptional point .(z
(e)
1 , z

(e)
2 ) of the root curve as 

.x(e) = 2a
2/m
m z

(e)
1 , y(e)

c = a
1/m
m z

(e)
2 . (3.306) 

Thus, the two exceptional points are simply related by a stretching along the 

horizontal and vertical axes. 

Under these definitions, we have the following theorem. 

Theorem 3.18 Let .AΛ(x, y, t) be a DSI’s rogue wave with order-index vector . Λ =
(n1, n2, . . . , nN ) in Eq. (3.281) of Lemma 3.4. Under the parameter restrictions 

mentioned above and when time .t = O(1), we have the following asymptotic result 

on the solution .AΛ(x, y, t) in the .(x, y) plane for large .|am|. 
1. If .(x, y) is not in the .O(1) neighborhood of the critical curve .y = yc(x), then the 

solution .AΛ(x, y, t) approaches the constant background .
√
2 as .|am| → +∞. 

2. If .(x, y) is in the .O(1) neighborhood of the critical curve .y = yc(x), but not in 

the .O(1) neighborhood of its exceptional points, then the solution . AΛ(x, y, t)

at large .|am| would asymptotically form a rogue curve .AR(x, y, t), whose 

expression is 

.AR(x, y, t) =
√
2

⎾
1 + 4it − 1

[y − yc(x)]2 + 4t2 + 1
4

⏋
. (3.307) 

The error of this rogue curve approximation is .O(a
−1/m
m ). Expressed mathe-

matically, when .(x, yc(x)) is not an exceptional point of the critical curve and 

.|y(x) − yc(x)| = O(1), we have the following solution asymptotics 

.AΛ(x, y, t) = AR(x, y, t) + O
⎛
|am|−1/m

⎞
. (3.308) 

The proof of this theorem can be found in Yang and Yang (2024b).
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Notice that .AR(x, y, t) in Eq. (3.307) is the same as the Peregrine rogue wave of 

the nonlinear Schrödinger equation (along the y direction), except for a y-directional 

shift. The peak location of .|AR(x, y, t)| at each y value is at .y = yc(x). All these 

peak locations from different x values fall precisely on the critical curve .y = yc(x). 

Thus, we can say the critical curve .y = yc(x) predicts the spatial location of the 

rogue curve. The full rogue curve surrounding that critical curve is predicted by 

the function .AR(x, y, t). The root curves of .P
[m]
Λ (z1, z2) involved in Eq. (3.302) for  

those predictions are precisely the ones shown in the left two panels of Fig. 3.33. 

In cases where the root curve is closed so that . z1 of the root curve is only on a 

limited interval (see the second panel of Fig. 3.33 for an example), this . AR(x, y, t)

prediction would be only for a limited x interval as well in view of Eq. (3.302). 

Outside that x interval, our prediction of .AΛ(x, y, t) would be the background value 

. 

√
2 as long as .(x, y) is not in the .O(1) neighborhood of the critical curve .y = yc(x), 

according to the first statement of Theorem 3.18. 

The only .(x, y) places where Theorem 3.18 does not make a solution prediction 

are .O(1) neighborhoods of the exceptional points on the critical curve .y = yc(x). In  

such special neighborhoods, a more elaborate analysis is needed in order to predict 

the solution behavior there. 

Next, we compare analytical predictions of rogue curves in Theorem 3.18 to true 

solutions. Since parameter choices (3.289)–(3.290) for Figs. 3.31 and 3.32 meet the 

assumptions of Theorem 3.18, we will compare Theorem 3.18’s predictions on them 

to the true solutions in Figs. 3.31 and 3.32. 

For the first parameter choices (3.289), .m = 4, am = 5000, Λ = (1, 4). In  

this case, the corresponding root curve of .P
[m]
Λ (z1, z2) has been plotted in the first 

panel of Fig. 3.33. Using that root curve, we can obtain the predicted rogue curve 

.AR(x, y, t) from Eqs. (3.302) and (3.307). At four time values of .t = −3,−1, 0 and 

3, corresponding to the time values chosen in Fig. 3.31, this  .AR(x, y, t) prediction 

is plotted in Fig. 3.34. Comparing this figure to Fig. 3.31, we see that they closely 

match each other. 

Fig. 3.34 Analytical predictions of the rogue curve in the DSI equation (3.280) for the parameter 

choices of (3.289) at four time values of .t = −3,−1, 0 and 3. The .(x, y) intervals here are the 

same as those in Fig. 3.31 for easy comparison
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Fig. 3.35 Analytical predictions of the rogue ring in the DSI equation (3.280) for the parameter 

choices of (3.290) at four time values of .t = −4,−2, 0 and 4. The .(x, y) intervals here are the 

same as those in Fig. 3.32 for easy comparison 

For the second parameter choices (3.290), .m = 3, am = 2000, Λ = (2, 3). 

In this case, the corresponding root curve of .P
[m]
Λ (z1, z2) has been plotted in the 

second panel of Fig. 3.33. Using that root curve, we obtain the predicted rogue 

curve .AR(x, y, t) from Eqs. (3.302) and (3.307). This .AR(x, y, t) prediction only 

holds for the x interval of .
⎛
2z1,La

2/m
m , 2z1,Ra

2/m
m

⎞
, where .(z1,L, z1,R) is the . z1

interval of the underlying root curve in the second panel of Fig. 3.33. For this root 

curve, .z1,R = −z1,L = 32/3/2 ≈ 1.0400. Thus, the x interval of this . AR(x, y, t)

prediction is .|x| < 60002/3 ≈ 330.19. Outside this x interval, we will use the 

uniform background . 
√
2 prediction for .AΛ(x, y, t) according to the first statement 

of Theorem 3.18. At four time values of .t = −4,−2, 0 and 4, corresponding to the 

time values chosen in Fig. 3.32, this  .AR(x, y, t) prediction is plotted in Fig. 3.35. 

Note that in this example, the critical curve .y = yc(x) contains two exceptional 

points, which correspond to the left and right edge points of the rogue ring seen in 

the second and third panels of Fig. 3.35. According to Theorem 3.18, our predicted 

solutions in all four panels of Fig. 3.35 are not expected to be valid in the . O(1)

neighborhoods of those edge points. 

Comparing our predicted solution in Fig. 3.35 to the true one in Fig. 3.32, we see  

that the predicted rogue ring closely matches the true one in its shape and location. 

The predicted solution in Fig. 3.35 and the true one in Fig. 3.32 also have notable 

differences though, and those differences are mostly at or near the left and right 

edges of the rogue ring. At those edges, the true solution shows a lump there, which 

is very narrow and hardly visible at .t = 0 but becomes wider and more visible as . |t |
increases. The predicted solution, however, does not exhibit such lumps. The reason 

for this difference is clearly due to the fact that those edge points are exceptional 

points of the critical curve, where our predicted solution does not hold according to 

Theorem 3.18. So, there are no contradictions between the analytical theory and the 

true solution here. 

The results of Theorem 3.18 are for the case of .p = 1 in rogue waves of 

Lemma 3.4. If  .p /= 1, rogue curves can also be predicted, and such rogue curves
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would be a linear transformation of those for .p = 1 in the .(x, y) plane (see Yang 

and Yang (2024b) for details). 

The results of Theorem 3.18 also exclude the case of large negative . am when m is 

even. In that case, rogue curves can also arise, but they will be predicted analytically 

through root curves of slightly modified double-real-variable polynomials, where 

the matrix elements .S
[m]
k (z1, z2) in Eq. (3.291) are replaced by .Ŝ

[m]
k (z1, z2), which 

are defined slightly differently as 

.

∞⎲

k=0

Ŝ
[m]
k (z1, z2)ϵ

k = exp
⎛
z2ϵ + z1ϵ

2 − ϵm
⎞

, m ≥ 3. (3.309) 

See Yang and Yang (2024b) for details. 

3.5 Super Rogue Wave of High Order in the Nonlinear 

Schrödinger Equation 

In previous sections, the rogue patterns occur when certain internal parameters in 

the rogue wave solutions were large. In (1+1)-dimensional systems, such as the 

NLS equation and many others, those rogue waves under large internal parameters 

would often split into a number of fundamental rogue waves, plus possibly a lower-

order rogue wave at the center. Because of such splitting, rogue waves with large 

internal parameters are generally not the super rogue waves, i.e., rogue waves with 

the highest peak amplitude among all rogue waves of a certain order. 

Super rogue waves are important, because they would cause the greatest damage 

should they occur in nature. For this reason, profiles of super rogue waves are of 

great interest. At low order, such profiles can be numerically plotted. At high order, 

it is possible to analytically determine such profiles by asymptotic methods. So far, 

this large-order asymptotic profile of the super rogue wave has been derived for the 

NLS equation by Bilman et al. (2020), and their results are described below. 

The NLS equation (3.13), under a gauge transformation of .u(x, t) = eitψ(x, t), 

can be rewritten as 

.iψt + 1

2
ψxx + (|ψ |2 − 1)ψ = 0. (3.310) 

Super rogue waves in this equation were derived by Guo et al. (2012) using Darboux 

transformation, and their expressions are as follows. Let quantities .Fl(x, t) and 

.Gl(x, t) be defined by generating functions 

.(1 − iλ)
sin

⎾
(x + λt)

√
λ2 + 1

⏋

√
λ2 + 1

=
∞⎲

l=0

⎛
1

2
i

⎞l

Fl(x, t)(λ − i)l, (3.311)
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. cos
⎾
(x + λt)

√
λ2 + 1

⏋
=

∞⎲

l=0

⎛
1

2
i

⎞l

Gl(x, t)(λ − i)l . (3.312) 

Define a .k × k matrix .K(k)(x, t) by 

. K(k)
pq (x, t) =

p−1⎲

μ=0

q−1⎲

ν=0

⎛
μ + ν

μ

⎞ (
Fq−ν−1(x, t)∗Fp−μ−1(x, t)

+Gq−ν−1(x, t)∗Gp−μ−1(x, t)
)
, (3.313) 

where .1 ≤ p, q ≤ k, and a .k × k rank-one perturbation .H (k)(x, t) by 

. H (k)
pq (x, t) = −2

(
Fp−1(x, t) + Gp−1(x, t)

) (
Fq−1(x, t)∗

−Gq−1(x, t)∗
)
, 1 ≤ p, q ≤ k. (3.314) 

Then, the super rogue wave of order k in Eq. (3.310) is  

.ψk(x, t) = (−1)k
det

(
K(k)(x, t) + H (k)(x, t)

)

det
(
K(k)(x, t)

) . (3.315) 

It can be shown that (Bilman et al. 2020) 

.ψk(0, 0) = (−1)k(2k + 1). (3.316) 

Thus, the peak amplitude of the k-th order super rogue wave is .2k + 1. This result is 

consistent with Eq. (2.97) that was obtained for super rogue waves from the bilinear 

method. 

Using the determinant formula (3.315), the first four super rogue waves are 

plotted in Fig. 3.36. One can see that the amplitude of the super rogue wave of order 

k increases with k, and the extreme amplitude is achieved at a central peak located at 

the origin. In addition, the solution near the origin changes more and more rapidly 

in x and t as k increases. Furthermore, the solution becomes more complex as k 

increases, with the formation of more and more subordinate peaks in amplitude. 

The above determinant solution (3.315) allows a representation via a Riemann-

Hilbert Problem. In this latter formulation, the asymptotic description of the solution 

.ψ(x, t) at high order k can be obtained in the near-field limit, i.e., for .(x, t) in a small  

neighborhood of the origin that is shrinking in size as .k → ∞. This asymptotic 

near-field profile is given in the following theorem (Bilman et al. 2020). 

Theorem 3.19 Let .ψk(x, t) be the super rogue wave (3.315) of the NLS equa-

tion (3.310). Then, if .k = 2n, 

.n−1ψ2n(n
−1X, n−2T ) = Ψ +(X, T ) + O(n−1), n → ∞, (3.317)
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Fig. 3.36 The NLS super rogue waves .|ψk(x, t)| for .k = 1, 2, 3, 4. Taken from Bilman et al. 

(2020) 

while if .k = 2n − 1, 

.n−1ψ2n−1(n
−1X, n−2T ) = Ψ −(X, T ) + O(n−1), n → ∞. (3.318) 

The functions .Ψ ±(X, T ), called super rogue waves of infinite order, are global 

solutions of the NLS equation 

.iΨT + 1

2
ψXX + |Ψ |2Ψ = 0, (3.319) 

and they are given by 

.Ψ ±(X, T ) = 2i lim
Λ→∞

ΛP ±
12(Λ;X, T ), (3.320) 

where .P ±
12(Λ;X, T ) is the first row, second column of a .2 × 2 matrix function 

.P ±(Λ;X, T ) that is analytic in the complex . Λ plane for .|Λ| /= 1. Across the unit 

circle .|Λ| = 1, .P ±(Λ;X, T ) are connected by the jump condition 

. P ±
+(Λ;X, T ) = P ±

−(Λ;X, T )e−i(ΛX+Λ2T )σ3Qe∓2iΛ−1σ3Q−1ei(ΛX+Λ2T )σ3 ,

|Λ| = 1, (3.321)
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Fig. 3.37 Graphs of Re(.Ψ (X, T )) (blue) and Im(.Ψ (X, T )) (maize), from left to right for . T =
0, 0.2, 0.4, 0.6, 0.8. Taken from Bilman et al. (2020) 

where 

.Q = 1√
2

⎛
1 −1

1 1

⎞
, σ3 =

⎛
1 0

0 −1

⎞
. (3.322) 

At infinity of the complex . Λ plane, the normalization condition of .P ±(Λ;X, T ) is 

.P ±(Λ;X, T ) → I , Λ → ∞, (3.323) 

where . I is the identity matrix. 

The functions .Ψ +(X, T ) and .Ψ −(X, T ) are related as 

.Ψ −(X, T ) = −Ψ +(X, T ). (3.324) 

In addition, they satisfy the following symmetry relations, 

.Ψ ±(−X, T ) = Ψ ±(X, T ), Ψ ±(X,−T ) = Ψ ±(X, T )∗. (3.325) 

Furthermore, .Ψ ±(0, 0) = ±4. Graphs of .Ψ +(X, T ) at various T values are 

displayed in Fig. 3.37. These super rogue waves of infinite order . Ψ ±(X, T )

give the asymptotic predictions of super rogue waves at high order through the 

scalings (3.317)–(3.318).



Chapter 4 

Experiments on Rogue Waves 

Rogue waves predicted by the nonlinear Schrödinger equation and the Manakov 

equations have been observed in various physical systems such as optical fibers, 

water waves, plasma, and Bose-Einstein condensates. In this chapter, we describe 

these observations. 

4.1 Observation of NLS Rogue Waves in Optical Fibers 

Evolution of light transmission in optical fibers in the anomalous-dispersion regime 

is described by the normalized NLS equation (1.96), i.e., 

.iuξ + 1

2
uT T + |u|2u = 0, (4.1) 

where u is the complex envelope of the light’s electric field normalized by .P
1/2
0 , 

. ξ is the propagation distance z normalized by .(γP0)
−1, and .T ≡ t − β1z is 

the retarded time normalized by .(|β2|/γP0)
1/2. Here, . P0 is a characteristic light 

power, .β−1
1 is the carrier wave’s group velocity, . β2 is the group-velocity-dispersion 

parameter which is negative in the anomalous-dispersion regime, and . γ is the 

nonlinear coefficient. 

The Peregrine rogue wave in Eq. (4.1) is  

.u(ξ, T ) =
⎾

1 − 4(1 + 2iξ)

1 + 4T 2 + 4ξ2

⎤

eiξ . (4.2) 

This wave in physical units can be obtained from the above variable normalizations. 

It was first observed in optical fibers as a limit of the Akhmediev breather by 

Kibler et al. (2010). Akhmediev breathers are a family of T -periodic and .ξ -localized 
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waves in the NLS equation (4.1) and were first reported by Akhmediev and Korneev 

(1986). Their expressions are 

.u(ξ, T ) =
⎾

(1 − 4a) cosh(bξ) + ib sinh(bξ) +
√

2a cos(ΩT )√
2a cos(ΩT ) − cosh(bξ)

⎤

eiξ , (4.3) 

where .b = [8a(1 − 2a)]1/2, .Ω = [4(1 − 2a)]1/2, and .0 < a < 1/2 is a free 

parameter. When .|ξ | ⪢ 1, this breather’s tail behaves as 

.u(ξ, T ) ≈
⎾

4a − 1 − ib sgn(ξ) + α cos(ΩT )
⎤

eiξ , (4.4) 

where . α is a .ξ -related small parameter. At .ξ = 0, this wave reaches a peak amplitude 

of .1 + 2
√

2a. Importantly, when .a → 1/2, this Akhmediev breather approaches the 

Peregrine wave (4.2). 

The experimental setup by Kibler et al. (2010) is shown in Fig. 4.1 (left panel). 

The initial signals (pump and seed) were generated from two telecommunications-

grade external-cavity lasers, with the pump laser at wavenumber .λp = 1554.53 nm 

and the seed laser at a nearby wavenumber . λs . The fiber used was 900 m of highly 

nonlinear fiber with .β2 = −8.85 × 10−28s2m−1 and .γ = 0.01W−1m−1 at . λp. 

The fiber was dispersion-flattened to have low third-order dispersion. Fibre loss was 

1 dB/km. A phase modulator was used to broaden the narrow intrinsic external-

cavity-laser linewidths so as to suppress Brillouin scattering in the fiber at the power 

levels used in our experiments. Both the pump and the seed were then amplified 

to the power levels used in the experiments by means of an erbium-doped fiber 

amplifier. The injection set-up was all-polarization maintaining to maximize the 

modulation-instability process occurring in the optical fiber. A low-noise amplifier 

was used so as to clearly favour the induced wave dynamics over spontaneous 

broadband modulation instability. 

In the experiment, an input field . A(z = z0, τ ) =
√

P0[1 + αmod exp(iωmodτ)]
was injected into the fiber. The input power was . P0, and .αmod , .ωmod were the 

modulation strength and frequency. By comparing this input field with the tail (4.4) 

of the Akhmediev breather, we see that the frequency .ωmod here is related to the 

modulation parameter a of Eq. (4.4) by .a = [1 −ω2
mod/(4γP0/|β2|)]/2. To observe 

the Peregrine rogue wave, a should be made as close to .1/2 as possible. It is 

acknowledged that this experimental input is not the ideal one for the Peregrine 

rogue wave (it is not even ideal for the Akhmediev breather, see Eq. (4.4)). Thus, 

deviations between experiments and the true Peregrine wave should be expected, 

especially at longer distances (these deviations were later studied in Hammani et al. 

(2011) and Erkintalo et al. (2011)). 

When the input field was taken as .P0 = 0.30 W, .ωmod = 241 GHz . = 1.514 ×
1012 rad/s, and .αmod = 0.225, the measured temporal intensity profile of the 

maximally compressed pulse (at nondimensional propagation distance .ξ = 2.5) 

is displayed as the blue line with markers in Fig. 4.1 (right panel). The peak power 

of the retrieved profile was calculated from the measured output power with no free
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Fig. 4.1 Observation of Peregrine rogue wave in an optical fiber. Left panel: experimental 

setup. ECL: external-cavity laser; EDFA: erbium-doped fiber amplifier; HNLF: highly nonlinear 

fiber; OSA: optical spectrum analyser; FROG: frequency-resolved optical gating. Right panel: 

experimental results showing the measured temporal intensity profile of the maximally compressed 

pulse (blue line with circles), and comparison with the NLS simulation result (red) and the ideal 

Peregrine wave (grey). Taken from Kibler et al. (2010) 

parameters. At these . P0 and .ωmod values, .a ≈ 0.42, which is close to the Peregrine 

wave condition. Indeed, the observed peak intensity of the maximally compressed 

pulse is seen from this figure as close to 9 times that of the input field (i.e., the 

observed peak amplitude is close to 3 times that of the input field), which matches 

the Peregrine wave. The observed intensity profile of the maximally compressed 

pulse was also compared to the maximal-intensity profile of the Peregrine wave (4.2) 

(grey line), and they match as well. These measurements confirm the expected 

temporal features of the Peregrine wave—a temporally localized peak (400 fs 

duration) surrounded by a non-zero background. The FROG measurements also 

confirm the different signs of the peak and background amplitudes through the 

measured relative . π phase difference. 

Due to the imperfect initial excitation in the above experiment, after the first stage 

of growth the return to the initial stage is only partial and the nonlinear structure 

tends to split into several higher-order structures (Hammani et al. 2011; Erkintalo et 

al. 2011), which contrasts the Peregrine dynamics. To better observe the Peregrine 

wave, a more advanced experiment was performed by Xu et al. (2019). Their 

experimental setup is shown in Fig. 4.2. A frequency comb centered at wavenumber 

.λp = 1550 nm with a 20-GHz line spacing is first generated by the nonlinear 

evolution of a sinusoidal beating in a fiber. In order to have input conditions as close 

as possible to the ideal Peregrine wave, the discrete spectral components are then 

spectrally shaped in amplitude as well as in phase using a liquid crystal on a silicon 

based programmable filter (Waveshaper device). This method is able to synthesize 

as an initial condition a close-to-ideal Peregrine wave at any propagation length. 

Note that a phase modulator is also inserted in the initial comb source, in order to 

prevent the deleterious effects of Brillouin backscattering. Next, the resulting shaped 

wave is amplified by a high-power erbium doped fiber amplifier up to average
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Fig. 4.2 A more advanced experimental setup for observation of the Peregrine rogue wave in a 

standard single-mode optical fiber. PM: phase modulator; IM: intensity modulator; EDFA: erbium-

doped fiber amplifier. Taken from Xu et al. (2019) 

powers of 28.5 dBm (i.e., 0.708 W). The propagation takes place in a combination 

of segments of variable lengths made of the most standard fiber that is currently 

available, i.e., the single-mode fiber SMF-28, where .β2 = −2.1 × 10−26s2m−1 and 

.γ = 0.0011W−1m−1 at . λp. Given the high value of . β2, the impact of third-order 

dispersion is negligible in the spectral bandwidth under study. After propagation 

into the fiber, the output field is recorded in the temporal domain taking advantage 

of an optical sampling oscilloscope that allows a temporal resolution of the order 

of picoseconds. The output spectral properties are also recorded using an optical 

spectrum analyzer with a spectral resolution of 2.5 GHz. 

In the experiment of Xu et al. (2019), longitudinal evolution of temporal and 

spectral intensity profiles of the synthesized initial waveform was investigated in 

detail. The input profile programmed on the spectral waveshaper corresponded to 

the Peregrine-like structure (4.2) at a normalized distance of . ξ = γP0z = −1.2

and is shown as the red curve in Fig. 4.3b. A total of 22 longitudinal measurements 

were carried out, involving fiber lengths up to 3 km, corresponding to a normalized 

length from .ξ = −1.2 to 1.2. Spatiotemporal intensity measurements are shown in 

Fig. 4.3a1. These experimental measurements nicely reproduce the spatiotemporal 

localization of the ideal Peregrine wave (Fig. 4.3a2) and are in excellent agreement 

with the analytical Peregrine evolution. The point of maximum temporal com-

pression occurs after 1.5 km of nonlinear propagation. It is worth mentioning that 

contrary to previous experimental realizations in Kibler et al. (2010), Hammani et 

al. (2011), and Erkintalo et al. (2011), which were based on approximate sinusoidal 

inputs, the input here is much closer to the initial ideal Peregrine wave. As a result, 

the recorded longitudinal evolution in Fig. 4.3a1 is rather symmetric and does not 

show any sign of pulse splitting. 

Details of the temporal phase and intensity profiles at the point of maximum 

temporal compression are provided in Fig. 4.3b and c. The temporal profile retrieved 

at a distance .z = 1.5 km exhibits the typical signatures of the Peregrine wave. 

Compared to the initial localized perturbation (red line) obtained after accurate 

phase and amplitude sculpturing of the frequency comb, the wave has been
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Fig. 4.3 A more advanced observation of Peregrine rogue wave in a standard single mode 

fiber. (a1) Measured longitudinal evolution of temporal intensity profiles. (a2) Analytical inten-

sity evolution of an ideal Peregrine wave (4.2) using dimensional units of experiments. (b) 

Experimental intensity and phase profiles (solid and dash-dotted lines, respectively) obtained for 

the generated Peregrine-like wave. Black colors: experimental results retrieved at the point of 

maximum compression. Red colors: the initial synthesized waveform input. (c) Real part of the 

amplitude profile at the point of maximum compression. Black circles: experimental results; blue 

lines: analytical shape of the corresponding Peregrine wave. Taken from Xu et al. (2019) 

significantly compressed down to a full width at half maximum of 3 ps. The ratio 

between the background and the central peak is up to 8, which is close to 9 

of the Peregrine wave. The sharp phase shift between the central part and the 

continuous background has also increased up to a value that becomes close to 

. π . Therefore, the reconstructed field passes twice through the zero value and is 

in convincing agreement with the typical Peregrine profile corresponding to the 

parameters involved in the experiment. 

4.2 Observation of NLS Rogue Waves in Water Tanks 

Evolution of one-dimensional gravity-wave packets in deep water with a free surface 

is described by the NLS equation, see Sect. 1.1.1. This NLS equation has two 

forms, the temporal-evolution form (1.32) and the spatial-evolution form (1.44). 

For experiments in a water tank where the temporal movement of the wave-
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maker at one end of the tank is prescribed, the spatial-evolution form (1.44) is  

more natural. However, to observe special solutions of the NLS equation such as 

rogue waves, explicit dimensional expressions of such solutions in the physical 

.(x, t) space are available from either form of the NLS equation. In addition, those 

explicit dimensional expressions out of the two forms of the NLS equation are often 

asymptotically equivalent (Chabchoub and Grimshaw 2016). In such a case, it does 

not matter which NLS form is used, as long as the motion of the wave-maker at 

its spatial location is prescribed according to the explicit .(x, t) expression of that 

special solution. 

In most papers of water wave experiments on rogue waves, the temporal-

evolution form of the NLS equation was used. In nondimensional variables, this 

NLS equation is (1.37), i.e., 

.i
∂ũ

∂t̃
+ 1

2

∂2ũ

∂x̃2
+ |ũ|2ũ = 0, (4.5) 

where 

.ũ = u/a, x̃ =
√

2ak2(x − cgt), t̃ = −a2k2ωt/2, (4.6) 

.cg = ω/2k, .ω =
√

gk, and a is a representative wave-amplitude parameter which 

we will set as the amplitude of the background wave in rogue wave experiments. 

The variable .u(x, t) is related to the water surface elevation .ζ(x, t) as (1.33), i.e., 

.ζ(x, t) = Re{u(x, t)exp[i(kx − ωt)]}, (4.7) 

to the first order of wave steepness, and as (1.34), i.e., 

.ζ(x, t) = Re

⎧

u(x, t)ei(kx−ωt) + 1

2
ku2(x, t)e2i(kx−ωt)

⎫

, (4.8) 

to the second order of wave steepness. 

4.2.1 Peregrine Rogue Wave 

The Peregrine (fundamental) rogue wave in the NLS equation (4.5) on a uniform 

background is (2.79), which can be written equivalently as 

.ũ(x̃, t̃ ) =
⎛

−1 +
4
(

1 + 2it̃
)

1 + 4x̃2 + 4t̃2

⎞

ei t̃ . (4.9) 

Converting to physical units through Eq. (4.6), this Peregrine wave is
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Fig. 4.4 Schematic illustration of the water tank for rogue wave observation. Taken from Xu et al. 

(2020) 

.u(x, t) = a

⎛

−1 +
4
(

1 − ia2k2ωt
)

1 + 8a2k4(x − cgt)2 + a4k4ω2t2

⎞

e−ia2k2ωt/2. (4.10) 

The experiment to observe this Peregrine rogue wave was performed by Chab-

choub et al. (2011). The water tank used in this experiment was 15 m long, 1.6 m 

wide, and 1.5 m deep, and the tank was filled with water with mean height of 1 m. 

A schematic illustration of the water tank setup is shown in Fig. 4.4. A single-flap 

paddle activated by a hydraulic cylinder is located at one end of the tank. To avoid 

wave reflections from the opposite end of the tank, there is a wave-absorbing beach 

there. The surface elevation of water at a given point is measured by a capacitance 

wave gauge with a sensitivity of 1.06 V/cm and a sampling frequency of 500 Hz. 

In the experiment, the dimensional far-field amplitude of the background was 

selected to be .a = 0.01m. The wavelength . λ of the carrier was set to 0.54 m, 

corresponding to a wave number .k = 2π/λ ≈ 11.63/m and frequency . ω =
√

gk ≈
10.7/s. These values have been chosen in order to ensure that the wavelength is large 

enough to ignore effects of surface tension but still small enough to have sufficient 

tank length to develop the wave evolution described by Eq. (4.10). The wavelength 

also has to be small enough for the whole arrangement to be sufficiently close to the 

deep water limit. 

The position where the rogue wave develops its maximum amplitude depends 

on the initial conditions at the wave maker. In order to demonstrate the evolution 

of a nearly periodic Stokes wave towards the most extreme wave state, the position 

of the maximum was chosen 9 m along the tank. Water surface-height data was 

collected at ten positions, with equal separations of 1 m, along the direction of wave 

propagation. 

Under these experimental conditions, the nondimensional Peregrine wave (4.9) is  

displayed in the left panel of Fig. 4.5, and the theoretical leading-order water surface 

elevation Re.{u(x, t)exp[i(kx − ωt)]} associated with the dimensional Peregrine 

wave (4.10) versus time at spatial locations of .x = −9, . −8, . · · · , 0 m are displayed 

in the right panel of Fig. 4.5.
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Fig. 4.5 Left: the nondimensional Peregrine solution .|ũ(x̃, t̃ )| in Eq. (4.9). Right: theoretical 

leading-order water surface elevation Re.{u(x, t)exp[i(kx − ωt)]} associated with the dimensional 

Peregrine wave (4.10) versus time at spatial locations of .x = −9, . −8, . · · · , 0 m under experimental 

conditions of Chabchoub et al. (2011) 

Experimentally, prescribing the initial condition at the wave maker to resemble 

the one in Fig. 4.5 (right panel) with .x = −9 m, the measurement results of 

water surface elevations down the tank are displayed in the left panel of Fig. 4.6. 

This figure shows that the wave is essentially sinusoidal when close to the flap. 

This can be seen from the wave profile measured at 10 cm next to the mean flap 

position. The flap motion produces a periodic wave with about 1 cm amplitude, 

with a brief increase of modulation above that level to about 1.4 cm in the middle 

of the packet. Measurements at further distances from the wave maker show the 

process of amplitude growth of this perturbation which remains strongly localized 

and moves along with group velocity, confirming the existence of rogue waves “that 

appear from nowhere”. These experimental results agree well with the theoretical 

predictions as shown in Fig. 4.5. 

The theoretical prediction from the Peregrine solution suggests that the carrier 

wave surface elevation should be amplified by a factor of 3. The measurements 

came very close to this value. The right panel of Fig. 4.6 represents a surface-height 

measurement at a position close to the presumed maximum envelope amplitude. 

While the carrier wave has an amplitude of about one centimeter, the surface height 

of the “maximum wave” almost exactly reaches a value of three centimeters. By 

comparing the measured time series (solid line) with the curve predicted by the 

Peregrine solution (dashed line), good agreement can be seen.
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Fig. 4.6 Observation of the Peregrine rogue wave in a water tank. Left: temporal evolution of the 

water surface height at various distances from the wave maker. Right: comparison of measured 

surface height at the position of maximum rogue wave amplitude (solid line) with the theoretical 

Peregrine solution (dashed line) at maximum wave amplitude. Taken from Chabchoub et al. (2011) 

4.2.2 Higher-Order Rogue Waves 

Second-order NLS rogue waves have also been observed in water tanks. Analyt-

ical expressions of these 2nd-order waves have been displayed in Eq. (2.80) of  

Sect. 2.1.1. Their equivalent expressions for Eq. (4.5) are (Ankiewicz et al. 2011) 

.ũ(x̃, t̃ ) =
⎛

1 + G2(x̃, t̃ ) + iK2(x̃, t̃ )

D2(x̃, t̃ )

⎞

eit̃ , (4.11) 

where 

. G2 = 12
⎾

3 − 16x̃4 − 24x̃2(4t̃2 + 1) − 4βx̃ − 80t̃4 − 72t̃2 + 4γ t̃
⎤

,

K2 = 24
⎾

t̃ (15 − 16x̃4 + 24x̃2 − 4βx̃) − 8(4x̃2 + 1)t̃3

−16t̃5 + γ

⎛

2t̃2 − 2x̃2 − 1

2

⎞⎤

,

D2 = 64x̃6 + 48x̃4(4t̃2 + 1) + 12x̃2(3 − 4t̃2)2 + 64t̃6 + 432t̃4 + 396t̃2 + 9 +

+β
⎾

β + 4x̃(12t̃2 − 4x̃2 + 3)
⎤

+ γ
⎾

γ + 4t̃ (12x̃2 − 4t̃2 − 9)
⎤

,

and .β, γ are arbitrary real constants. These solutions in physical units can be 

obtained through Eq. (4.6). Since these waves contain free parameters, they can 

exhibit various shapes depending on the choices of parameter values. For two 

choices of .(β, γ ) = (0, 0) and .(50,−50), the corresponding solutions are shown
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Fig. 4.7 Second-order NLS rogue waves (4.11) in Eq. (4.5) with .(β, γ ) = (0, 0) in (a) and  

.(β, γ ) = (50,−50) in (b) 

in Fig. 4.7. The solution with .(β, γ ) = (0, 0) is the super rogue wave which 

has the highest amplitude 5 among this family of solutions, and the one with 

.(β, γ ) = (50,−50) gives a rogue triplet, where three Peregrine waves appear at 

different space-time locations. 

These second-order NLS rogue waves have also been observed in water tanks. 

Observation of the super rogue wave was performed by Chabchoub et al. (2012a). 

The water tank and its setup here are the same as those in the Peregrine experiment 

of Chabchoub et al. (2011) described in the earlier text (see Fig. 4.4). As before, 

the analytical solution (4.11) is written in dimensional form and shifted in space 

in order to observe the formation of the rogue wave at a desired location in the 

wave tank. This furnishes the solution at the wave maker and consequently the 

signal that drives the paddle. However, a significant difference from the previous 

Peregrine experiment is that, since the present super rogue wave is steeper than the 

Peregrine wave, in order to get a good agreement between theory and experiment, 

the theoretical surface elevation .ζ(x, t) used to drive the wave maker needs to be 

calculated from the solution .u(x, t) of the NLS equation (4.5) to the second order 

in steepness through Eq. (4.8). 

The experiment of the super rogue wave was conducted for a carrier amplitude 

of .a = 0.001 m. The carrier wavenumber was .k = 30/m, corresponding to a 

frequency of .ω =
√

gk ≈ 17.2/s. Close to the wave maker, at a distance of 

1 m, the regular background wave was locally perturbed in the middle of the wave 

train. The limited length of the wave tank, however, was not long enough to directly 

observe the full evolution of the super rogue wave from a very small amplitude to its 

maximum in a single run. As the growth of the amplitude was algebraic rather than 

exponential, even the use of longer wave tanks remained problematic. To overcome 

this difficulty, the experiment was split into several stages. Namely, starting the 

wave generation repetitively with different boundary conditions given from theory, 

the wave profile at the other end of the tank was measured. Each time, the final 

profile was checked and found to follow the theoretical prediction. Deviations 

between theoretical and experimental profiles were minimal and mainly manifested
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Fig. 4.8 Observation of the second-order super NLS rogue wave in a water tank by the split-

propagation technique. The left panel shows experimental profiles at the end of each split 

propagation, while the right panel shows theoretical ones. The time axis of each wave profile 

is shifted by the amount of .x/cg , so that the shifted time follows the wave center. Taken from 

Chabchoub et al. (2012a) 

in their left-right asymmetry. This process was repeated 7 times, thus multiplying 

the propagation length of 9 meters 8 times. This way, the propagation distance of 

72 m was reached, which corresponded to the point of maximum amplitude. The 

left panel in Fig. 4.8 shows the profiles measured at the end of each propagation 

segment. The right panel of this figure shows the corresponding theoretical curves. 

The comparison between the measured wave profiles and the theoretical curves 

shows very good agreement and justifies the experimental approach. 

Observation of rogue triplets such as the one in Fig. 4.7b was performed by 

Chabchoub and Akhmediev (2013). The experimental facility is the same as that 

used to observe the second-order super rogue wave in the earlier text. Here, the 

theoretical surface elevation .ζ(x, t) is also calculated from the solution .u(x, t) of the 

NLS equation (4.5) to the second order in steepness by the formula (4.8). To observe 

these triplets, the propagation distance needed is also significantly longer than the 

actual length of the water tank—the same difficulty that was encountered in the 

observation of super rogue waves. To overcome this difficulty, the experiment was 

also done in sequences, but with minor technical differences from that in the super 

rogue experiment. Here, the tank’s length was effectively increased by recording a 

signal measured at a specific position from the paddle in the first part of the sequence 

and regenerating the measured wave profile in the second part of the sequence. 

Repeating this procedure with sufficiently high accuracy, the effective tank length 

could be increased multiple times.
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Fig. 4.9 Water-tank observation of the NLS rogue wave triplet in Fig. 4.7b by the split-propagation 

and profile-regeneration techniques. Upper blue curves show experimental profiles of surface 

elevations at the end of each split propagation, while the lower red curves show the corresponding 

theoretical predictions expected at the same positions. The time axis of each wave profile is shifted 

by the amount of .x/cg . Taken from Chabchoub and Akhmediev (2013) 

The set of experiments was conducted for a carrier amplitude of .a = 0.005 m. 

The carrier wavenumber was .k = 16/m, corresponding to a frequency of . ω =√
gk ≈ 12.53/s. To observe the rogue triplet shown in Fig. 4.7b, the corresponding 

physical solution .u(x, t) was first obtained through Eq. (4.6), which yielded the 

theoretical surface elevation .ζ(x, t) through Eq. (4.8). In the first experiment, the 

theoretical surface elevation profile at .xinitial = −30 m was used to drive the 

paddle of the wave maker. After 9 m of propagation down the tank, the profile 

was recorded, and this recorded profile was then used as the initial condition for 

the second experiment. This process was repeated 5 times, resulting in 54 m of 

effective propagation. The recorded profiles at the end of each propagation are 

shown in Fig. 4.9 (blue curves). This evolution shows clearly the appearance of three 

Peregrine waves at various positions in the space-time domain, which is the main 

feature of a rogue triplet. The corresponding theoretical predictions of wave profiles 

at the same positions are shown as red curves in the same figure. Good agreement 

between the experiment and the theory can be seen. 

NLS rogue waves of even higher orders, up to the fifth order, have also been 

observed in water tanks; see Chabchoub et al. (2012b) for details.
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4.3 Observation of NLS Rogue Waves in Plasma 

Propagation of low-amplitude ion-acoustic wave packets in a plasma comprising 

electrons, cold positive ions and negative ions is governed by the NLS equa-

tion (1.130), i.e., 

.i
∂ψ

∂t
+ p

∂2ψ

∂x̂2
+ q

4
|ψ |2 ψ = 0, (4.12) 

where the envelop function . ψ is related to the normalized deviation .δne of the 

electron density from its unperturbed value as 

.δne = Re[ψei(kx−ωt)] (4.13) 

to the leading order approximation, t is the time normalized by the ion plasma period 

.ω−1
pi ≡ (ϵ0mα/ne0e

2)1/2, .x̂ = x−cgt is the distance in moving frame normalized by 

the electron Debye length .λD ≡ (ϵ0κTe/ne0e
2)1/2, .mα is the positive ion mass, . ne0

is the unperturbed electron density, . ϵ0 is the vacuum permittivity, . κ is Boltzmann 

constant, . Te is the absolute temperature of electrons, e is the charge of the electron, 

.cg = ω'(k) is the group velocity, .p = ω''(k)/2 is the dispersion coefficient, .ω(k) is 

the dispersion relation given in Eq. (1.121), k is the normalized wavenumber of the 

carrier wave, and q is the nonlinear coefficient given in Eq. (1.127). 

In the NLS equation (4.12), the dispersion coefficient p is always negative. When 

the nonlinear coefficient q is also negative, which is the case for all wavenumbers 

k at a critical negative-ion density value, this NLS equation admits the Peregrine 

rogue wave 

.ψ(x̂, t) = 2|q|−1/2

⎛

−1 + 4 (1 − 2it)

1 + 2x̂2/|p| + 4t2

⎞

e−it . (4.14) 

This solution, when substituted into Eq. (4.13), gives a predicted plasma Peregrine 

rogue wave for the normalized electron density perturbation which can be measured. 

This plasma Peregrine rogue wave was observed by Bailung et al. (2011). The 

experiment was carried out in a multidipole double-plasma machine. The diameter 

of the device was 30 cm and its total length was 120 cm. The device was separated 

into a source and a target section with a floating grid. The grid consisted of a 

stainless steel mesh 50 lines/inch with 83% transparency. The cathodes consisted 

of 0.1 mm diameter tungsten filaments and were placed 6 cm from the surface of 

the anode. Each section had five filaments with a length of 6 cm. The chamber 

was evacuated down to .2.0 × 10−4 Pa with an oil diffusion pump. Argon (Ar) and 

sulfur hexafluoride (SF. 6) were introduced independently into the chamber under 

continuous pumping. The pressure of Ar was .5.7 × 10−2 Pa and the pressure 

of SF. 6 was varied from 0 to .1 × 10−3 Pa. The discharge voltage was 70 V and 

the discharge currents of the two sections were 10-50 mA. Plasma parameters as
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measured with a Langmuir probe of 6 mm diameter were: the electron temperature 

. Te was approximately 1.1 eV (i.e., .1.28 × 104 K) and the electron density .ne0 was 

approximately .3.8 × 108 cm. 
−3. The mass .mα of the positive Ar. + ion is 39.9 Dalton 

(or .6.63 × 10−26 kg), and the mass .mβ of the negative F. 
− ion is 19.0 Dalton. Wave 

signals were detected with the axially movable Langmuir probe which was biased 

positively with respect to the plasma potential (.≈ 1.5 V) to collect the electron 

saturation current and was therefore sensitive to the perturbed electron density. 

In the experiment, both Ar and SF. 6 were introduced into the chamber so that 

the density ratio between F. 
− and Ar. + was 0.1, which is approximately the critical 

density where the nonlinear coefficient q is always negative for all wavenumbers 

(see Sect. 1.1.3). Then, a slowly varying amplitude-modulated continuous sinusoidal 

signal was applied to the source anode and ion-acoustic perturbations were excited. 

Examples of observed signals at different distances from the separation grid for fixed 

carrier amplitude (5.4 V peak to peak) are shown in Fig. 4.10. The carrier frequency 

is 350 kHz and modulation frequency is 31 kHz. Close to the grid the observed 

signals resemble the applied signal. With increasing distance the compression of 

the wave packet sets in and the first Peregrine wave emerges at 10.5 cm. The 

perturbation grows in amplitude and reaches a maximum at 12.5 cm. The observed 

maximum amplitude is 2.5 times the nearby carrier wave. At further distances 

(.≥ 14.5 cm) the perturbation decays. The perturbation moves with group velocity 

measured to be .2.1×105 cm/s. These observations are in reasonable agreement with 

theoretical Peregrine wave predictions in plasma. 

Fig. 4.10 Observation of the Peregrine rogue wave in plasma. The figure shows observed signals 

of normalized electron density perturbation at different probe positions from the separation grid. 

The top trace is the applied signal with carrier and modulation frequencies 350 and 31 kHz, 

respectively. Peak to peak amplitude of the applied carrier wave (. Vc) is fixed at 5.4 V. Signals 

observed at 10.5–14.5 cm are shown with different amplitude scale (0.10/div) for better resolution. 

Taken from Bailung et al. (2011)
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4.4 Observation of NLS Rogue Waves in Bose-Einstein 

Condensates 

A Bose-Einstein condensate (BEC) is a dilute gas of weakly interacting boson 

particles confined in an external potential and cooled to temperatures very close to 

absolute zero. Under such conditions, a large fraction of the bosons collapse into the 

lowest quantum state of the external potential, and all wave functions overlap each 

other, at which point quantum effects become apparent on a macroscopic scale. This 

state of matter was first predicted by S.N. Bose and A. Einstein in 1924–1925, and 

then experimentally observed by E. Cornell, W. Ketterle and C. Wieman in 1995 

[Anderson et al. (1995), Davis et al. (1995)]. For their work, Cornell, Ketterle and 

Wieman jointly won the Nobel Prize in Physics in 2001. 

In quantum mechanics, the motion of a boson in a potential well is described 

by a wave function satisfying a linear Schödinger equation. But since many bosons 

in a BEC are in the same lowest quantum state and their wave functions overlap, 

the state of BEC can be described by a collective wave function .ψ(x, t), where . x is 

the three-dimensional spatial coordinate, .|ψ |2 is interpreted as the particle density, 

and the total number of atoms is .
⎰

|ψ |2dx. In addition, due to interactions between 

bosons which give rise to nonlinear effects, this collective wave function . ψ(x, t)

satisfies a NLS equation with an external potential: 

.ih̄ψt =
⎾

− h̄2

2m
∇2 + V (x) + g|ψ |2

⎤

ψ, (4.15) 

where . ̄h is the Planck constant, m is the mass of the boson, .V (x) is the external 

potential, .g = 4πh̄2as/m is the nonlinear coefficient, and . as is the scattering 

length of two interacting bosons. This equation was first derived by Gross (1961) 

and Pitaevskii (1961) and is now called the Gross-Pitaevskii equation. It provides a 

good description of the collective behavior of a single-component BEC. 

If the potential .V (x) is slowly varying in . x, then it may be approximated as a 

constant and scaled to zero. In this case, the Gross-Pitaevskii equation (4.15), when 

restricted to one spatial dimension x, becomes 

.ih̄ψt + h̄2

2m
ψxx − g|ψ |2ψ = 0. (4.16) 

Since .g > 0, this is a defocusing NLS equation, which does not admit modulation 

instability or rogue waves. 

In order to derive a focusing NLS model in BEC, an idea was proposed by Dutton 

and Clark (2005), Bakkali-Hassani et al. (2021) and Romero-Ros et al. (2022). 

This idea is based on a two-component Bose gas, where the minority component 

immersed in a bath defined by the other component is well described by an effective 

single-component NLS equation with focusing nonlinearity.
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We consider atoms of mass m in states . |1〉 and . |2〉 with repulsive interactions. 

The intracomponent (. g11, . g22) and intercomponent (. g12) interaction parameters are 

thus all positive, where .gij = 4πh̄2aij/m, and . aij are the s-wave scattering lengths 

for binary collisions between atoms in internal states . |i〉 and . |j 〉. Such a mixture is 

well described in the zero-temperature limit by two coupled nonlinear Schrödinger 

equations. In the weak depletion regime, one can assume that the dynamics of the 

dense bath of atoms in state . |1〉 occurs on a short timescale compared to the minority 

component dynamics. The bath is then always at equilibrium on the timescale of 

the evolution of the minority component in state . |2〉. In this case, based on some 

approximations and numerical evidence, the collective wave function .ψ2 for the 

minority component can be approximated by the following NLS equation ((Dutton 

and Clark 2005; Bakkali-Hassani et al. 2021)) 

.ih̄
∂ψ2

∂t
=

⎾

− h̄2

2m
∇2 + Veff(x) + geff|ψ2|2

⎤

ψ2, (4.17) 

where .Veff(x) is an effective potential, and .geff is an effective nonlinear coefficient 

that is determined by .g11, g12 and . g22. This .geff value was quoted as 

. g
[DC]

eff
= g11 + g22 − 2g12, g

[BH]

eff
= g22 −

g2
12

g11
, (4.18) 

in Dutton and Clark (2005) and Bakkali-Hassani et al. (2021), respectively. In 

physical situations, . g11, .g22 and .g12 are very close to each other within a few 

percent. In such a case, these two different formulae for .geff give approximately the 

same effective nonlinear coefficients. For example, for . 
87Rb atoms, if we take the . |1〉

state as .|F,mF 〉 = |1, 0〉 and the . |2〉 state as .|F,mF 〉 = |2, 0〉, then .g12 = 0.98g11, 

and .g22 = 0.94g11 (Altin et al. 2011). In this case, the two .geff formulae in (4.18) 

give .−0.02g11 and .−0.0204g11 respectively, which differ by only 2%. 

The formulae in Eq. (4.18) show that the effective nonlinearity in the NLS 

model (4.17) for the minority component can be negative, as is the case in the above 

. 
87Rb example. In this case, if the effective potential .Veff(x) is slowly varying in . x, 

then the effective NLS model (4.17) restricted to one dimension would reduce to 

.ih̄ψ2t + h̄2

2m
ψ2xx − geff|ψ2|2ψ2 = 0, (4.19) 

which is a focusing NLS equation that admits rogue waves. 

Employing this approach, the formation of Peregrine rogue waves in a . 87Rb 

BEC of approximately .N = 9 × 105 atoms were experimentally demonstrated by 

Romero-Ros et al. (2024). In the experiment, the atoms initially occupied the single 

hyperfine state .|F,mF 〉 = |1,−1〉. The BEC was confined in a highly elongated, 

cigar-shaped harmonic trap where a .100 : 1 aspect ratio ensures effectively one-

dimensional dynamics. An additional attractive optical potential was present in the
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Fig. 4.11 Observation of Peregrine rogue wave in a two-component . 87Rb Bose-Einstein conden-

sate. Panels (a)–(d) are cross sections corresponding to panels (e)–(h) showing absorption images 

after 10, 30, 50, and 80 ms of evolution, respectively. Taken from Romero-Ros et al. (2024) 

central part of the BEC producing a small density hump in the center of the cloud. 

This optical potential was radially uniform but has a Gaussian shape along the long 

axis of the BEC. From this static initial condition, instability was induced by rapidly 

transferring a small fraction (typically 15%) of the atoms to the . |F,mF 〉 = |2, 0〉
hyperfine state with a brief, 55 . µs microwave pulse, and transferring the remaining 

atoms to the .|F,mF 〉 = |1, 0〉 state in a 102 . µs RF pulse. Both pulses were applied 

uniformly across the whole BEC. 

Dynamics of the .|F,mF 〉 = |2, 0〉 hyperfine state (minority component) was 

the focus of study, for which an effective self-focusing NLS model (4.19) applies. 

Experimental snapshots of its density distributions at four evolution times are 

presented in Fig. 4.11. The experimental images are taken after 9 ms of time-of-

flight to avoid image saturation of the high density peak. The initially prepared 

Gaussian hump in the center of the BEC is seen to evolve into a narrow, high peak 

after approximately 50 ms of evolution (Fig. 4.11c and g). The peak is flanked by 

two clear dips on either side. These dips are a characteristic feature of a Peregrine 

wave and are related to the formation of a . π phase jump of the wave function in 

the peak region relative to the surrounding BEC, leading to destructive interference 

at the position of the dips. Subsequently, the peak height decreases, leading to 

the emergence of side peaks and excitations on either side as shown in Fig. 4.11d 

and h after 80 ms of evolution. We note that the observed timescales are highly 

reproducible, indicating that the dynamics are not triggered by a random instability, 

but rather are a consequence of the initial conditions prepared in the experiment. 

Numerical simulations were also performed by Romero-Ros et al. (2024) using a
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system of two coupled three-dimensional Gross-Pitaevskii equations under exper-

imental conditions, and good agreement was obtained between simulation results 

and experimental observations. 

4.5 Observation of Manakov Dark Rogue Waves in Optical 

Fibers 

Light propagation in randomly birefringent optical fibers is governed by the 

Manakov equations (1.227)–(1.228) in Sect. 1.3, i.e., 

.i
∂u1

∂ξ
+ ∂2u1

∂τ 2
+ d

⎛

|u1|2 + |u2|2
⎞

u1 = 0, . (4.20) 

i 
∂u2 

∂ξ 
+ 

∂2u2 

∂τ 2 
+ d

⎛

|u2|2 + |u1|2
⎞

u2 = 0. (4.21) 

Here, .(u1, u2) are slowly varying envelopes of the light’s electric field at center 

frequency . ω0 along two transverse orthogonal polarizations, normalized by . P
1/2
0

where .P0 is a representative total power of the solutions, .ξ = d γ̂ P0z is the 

normalized distance, .τ = (2γ̂ P0/|β2|)1/2(t − β̂1z) is the normalized retarded 

time, .β̂1 = (β1x + β1y)/2, .(β1x, β1y) are inverse group velocities along the two 

polarizations, . β2 is the group velocity dispersion, .γ̂ = 8γ /9 is the effective Kerr 

nonlinear coefficient, and .d = −sgn(β2). 

We note that in the two experimental papers Frisquet et al. (2016) and Baronio et 

al. (2018) to be quoted below, the Manakov system was written for envelopes . (U, V )

of the light’s electric field at frequencies .ω0 ± Δω/2 along the two polarizations. 

Thus, our .(u1, u2) variables are related to their .(U, V ) by .u1 = Ue−i(Δω/2)t and 

.u2 = V ei(Δω/2)/t in physical units. 

Rogue waves in the above Manakov system have been derived in Sect. 2.9. Dark  

rogue waves (in both components) exist in the defocusing Manakov equations, 

where .d = −1 (the normal dispersion regime). Unlike most other bright rogue 

waves (such as Peregrine waves in the focusing NLS equation), where the solution 

reaches transient higher intensity from a uniform background, a dark rogue wave 

is the opposite. It develops a transient hole of almost zero intensity from a uniform 

background instead. Both fundamental and second-order dark rogue waves have 

been observed in the above optical setting in the normal dispersion regime. 

4.5.1 Fundamental Dark Rogue Wave 

Assuming the background waves of the two components have equal amplitudes 

. ρ, analytical expressions of fundamental dark rogue waves in the Manakov sys-
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tem (4.20)–(4.21) can be obtained from Eq. (2.606) after proper change of variable 

notations and a little simplification as 

.u1(τ, ξ) = û1(τ, ξ)ei(k1ξ−ω1τ), u2(τ, ξ) = û2(τ, ξ)ei(k2ξ−ω2τ), (4.22) 

where 

.û1(τ, ξ) = ρ

⎾

τ + 2p0 (iξ) + θ̂1

⎤ ⎾

τ − 2p∗
0 (iξ) − θ̂∗

1

⎤

+ ζ̂0

|τ + 2p0 (iξ)|2 + ζ̂0

, (4.23) 

.û2(τ, ξ) = ρ

⎾

τ + 2p0 (iξ) + λ̂1

⎤ ⎾

τ − 2p∗
0 (iξ) − λ̂∗

1

⎤

+ ζ̂0

|τ + 2p0 (iξ)|2 + ζ̂0

, (4.24) 

.θ̂1 = 1

p0 + iω1
, λ̂1 = 1

p0 + iω2
, ζ̂0 = 1

(p0 + p∗
0)2

, (4.25) 

and . p0 is a nonimaginary root of the algebraic equation 

.
ρ2

(p + iω1)2
+ ρ2

(p + iω2)2
+ 2 = 0. (4.26) 

This equation admits a pair of non-imaginary simple roots .(p0,−p∗
0) only when 

.Δ < 0 (see Sect. 2.9), i.e., when .|ω2 − ω1| < 2ρ in the present situation. The 

total power of this solution is .|u1|2 + |u2|2 = 2ρ2. Converting this solution 

into physical units using the variable normalizations described above, then under 

physical parameters of the total power of .P = 1.9 W, .β2 = 18ps2 km−1, . γ̂ =
2.4W−1 km−1, and a pump spacing of 100 GHz (i.e., . ω1 = −ω2 = 3.14 × 1011

rad/s in dimensional units), this solution is plotted in Fig. 4.12. In nondimensional 

units, this solution corresponds to (4.22) with .ρ = 1/
√

2 and .ω1 = −ω2 ≈ 0.44. 

This fundamental dark rogue wave was observed in randomly birefringent optical 

fibers by Frisquet et al. (2016). The experimental setup is shown in Fig. 4.13. Two  

pump waves with 100 GHz frequency spacing were superposed with a polarization 

maintaining fiber optical coupler with a 50:50 coupling ratio. An intensity modulator 

(EOM1) driven by a 35-GHz RF clock was used to generate sidebands on 

either side of both pumps. An erbium-doped fiber amplifier (EDFA1) was used 

to compensate the insertion loss introduced by the electro-optic modulator. The 

sinusoidal perturbation on each pump with adjustable frequency and amplitude then 

seeds the modulation-instability process. The perturbation frequency (35 GHz) was 

chosen to be half of the value that leads to peak modulation-instability gain for 2.5 

W total input power. This choice stems from the trade-off of imposing the slowest 

modulation on the one side, while still having sufficient sideband gain to observe 

the emergence of dark rogue waves within the 3 km fiber length. Such value of 

fiber length was chosen to satisfy the requirement that fiber losses have virtually no
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Fig. 4.12 Spatio-temporal intensity fields of the optical fundamental dark rogue wave in the 

Manakov system for .P = 1.9 W, .β2 = 18ps2 km−1, .γ̂ = 2.4 W−1km−1, and a pump spacing 

of 100 GHz. The horizontal axis (time) refers to the retarded time .t − β̂1z. Taken from Frisquet et 

al. (2016) 

Fig. 4.13 Schematic illustration of the experimental setup for observation of Manakov dark rogue 

waves in randomly birefringent optical fibers. Red and green lines depict the two wavelength-

division-multiplexed and orthogonally polarized pumps. ECL: external-cavity diode laser; 50:50 

& 90:10: fiber couplers; EOM: (intensity or phase) electro-optic modulator; EDFA: Erbium doped 

fiber amplifier; PRBS: pseudo-random binary sequence generator; PC: polarization controller; PM: 

power-meter; OSO: optical sampling oscilloscope; OSA: optical spectrum analyzer. Taken from 

Frisquet et al. (2016) 

impact on the propagation dynamics. The perturbation amplitude of the continuous-

wave field was set properly in order to observe the dark rogue wave at precisely 

3 km in the fiber with the available pump power. To suppress stimulated Brillouin 

scattering (SBS) that may occur in the optical fiber, a phase modulator (EOM3) was 

inserted into the setup in order to increase the spectral linewidth of the two pump 

waves. The phase modulator was driven by a 67-MHz RF signal, thus enabling one
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to work at relatively high pump powers, still being far below the SBS threshold. 

The two pump waves were spectrally separated by means of a programmable 

optical filter (DEMUX). A pair of polarization controllers (PCs) were used to 

obtain two pumps with orthogonal linear states of polarization. The pumps were 

finally recombined after their independent amplification by high power erbium-

doped fiber amplifiers (EDFA3&4) and before injection into the optical fiber. The 

optical fiber used in the experiment was a reverse-TrueWave fiber with the chromatic 

dispersion of .β2 = 18ps2 km−1 (or .D = −14 ps/nm/km), the effective nonlinear 

coefficient .γ̂ = 2.4 W−1km−1 and the attenuation of 0.25 dB/km at wavelength 

.λ0 = 1554.7 nm. At the fiber output, a polarization beam splitter (PBS) selects the 

output light propagating in the two orthogonal linear polarizations. The output light 

was simultaneously analyzed both in the spectral and temporal domain by means of 

an optical spectrum analyzer (OSA) and an optical sampling oscilloscope (OSO). 

Spectral measurements were carried out with 0.02 nm resolution bandwidth. The 

optical sampling oscilloscope had 0.8 ps resolution. 

The experimental results are displayed in Fig. 4.14. Here, the input and output 

intensities (after 3 km of optical fiber propagation) are shown from the experiments 

with an input periodic intensity modulation, together with their corresponding 

analytical dark rogue wave solutions. As can be seen, an overall excellent quan-

titative agreement (with no adjustable parameters) is obtained between theory and 

Fig. 4.14 Experimental observation of fundamental Manakov dark rogue waves in randomly 

birefringent optical fibers. Upper row: temporal intensity profiles in the . u1 and . u2 polarization 

axes at the fiber input. Lower row: output intensities after 3 km of optical fiber. Red solid traces: 

experimental measurements; black solid lines: analytical dark rogue wave solution. Physical 

parameters are .P = 2.5 W (total power), .β2 = 18 ps2 km−1, .γ̂ = 2.4 W−1km−1, and a pump 

spacing of 100 GHz. Taken from Frisquet et al. (2016)
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experiments. Only slight discrepancies appear due to the non-ideal initial conditions 

used in the experimental generation of dark rogue waves. 

Cut-back measurements were also done by Frisquet et al. (2016) to verify the 

kinematics of the dark rogue wave generation and disappearance at distances before 

and after the rogue center point (3 km). 

4.5.2 Second-Order Dark Rogue Waves 

The defocusing Manakov system (4.20)–(4.21) (with .d = −1) admits not only 

fundamental dark rogue waves but also higher-order dark rogue waves. General 

expressions of these higher-order dark rogue waves can be found in Sect. 2.9. 

For second-order dark rogue waves, their alternative expressions can be found 

in Chen et al. (2014b). Assuming the background waves of the two polarization 

components have equal amplitudes . ρ, then these higher-order dark rogue waves 

would exist under the same condition of .|ω2 − ω1| < 2ρ of fundamental dark 

rogue waves. In addition, they contain irreducible free parameters that affect their 

shapes. For physical parameters of the total power of .P = 2.5 W, .β2 = 18ps2 km−1, 

.γ̂ = 2.4 W−1km−1, and a pump spacing of 100 GHz, a second-order dark rogue 

solution was shown in Baronio et al. (2013) and is reproduced in Fig. 4.15. This  

solution exhibits a nonlinear superposition of three fundamental dark rogue waves 

arising at different space-time locations and is a dark rogue triplet. 

Such a dark rogue triplet was observed in randomly birefringent optical fibers 

by Baronio et al. (2018). Their experimental setup is similar to Fig. 4.13. Two  

external-cavity diode lasers generated the pump waves at frequencies . ω1 and . ω2, 

which were fixed around the central frequency .ω0 (with .ω0 = 2πc/λ0 and 

.λ0 = 1554.7 nm), and the frequency spacing was .Δω = 2πΔf , where . Δf =
100 GHz. The two pumps were superimposed with a polarization maintaining fiber 

Fig. 4.15 Spatial-temporal amplitude fields of a theoretical optical dark rogue triplet in the 

Manakov system for .P = 2.5 W, .β2 = 18 ps2 km−1, .γ̂ = 2.4 W−1km−1, and a pump spacing 

of 100 GHz. (a) . |u1|; (b) .|u2|. The horizontal axis .t ' ≡ t − β̂1z is the retarded time. Taken from 

Baronio et al. (2018)
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optical coupler with a 50:50 coupling ratio. An electro-optic modulator, driven 

by a 35-GHz RF clock, was used to induce the initial sinusoidal perturbations to 

the pumps. A pair of polarization controllers were used to manage two pumps 

with orthogonal linear states of polarization, amplified independently by erbium-

doped fiber amplifiers, and finally recombined and injected into the fiber. The total 

input power was .P = 2.5 W. The optical fiber used in the experiment was a 

reverse-TrueWave fiber with the chromatic dispersion of .β2 = 18 ps2 km−1 (or 

.D = −14 ps/nm/km), the effective nonlinear coefficient .γ̂ = 2.4 W−1km−1 and 

the attenuation of 0.25 dB/km at wavelength .λ0 = 1554.7 nm. Two fiber spans 

were used in the experiments: a 3 km-long span, and a 5 km-long span. In these 

experimental conditions, higher-order dispersion, material absorption and Raman 

effects can be safely neglected. 

In the experiments, the initial perturbations to the uniform background waves 

were sinusoidal, unlike such perturbations in true dark rogue triplets. Thus, Baronio 

et al. (2018) first investigated numerically the possibility to experimentally generate 

the dark rogue triplet under realistic (non-ideal) experimental conditions at the input 

of the optical fiber. To this end, the Manakov system (4.20)–(4.21) in physical units 

were simulated, using physical parameters as quoted above. Corresponding to the 

experiments, the initial conditions were taken as 

. u1(t
', z = 0) =

⎾

√

P/2 − ϵ cos(2πfmt ')
⎤

e−i(Δω/2)t , . (4.27) 

u2(t
', z  = 0) =

⎾

√

P/2 − ϵ cos(2πfmt ')
⎤

ei(Δω/2)t , (4.28) 

where .t ' ≡ t − β̂1z is the retarded time, .P = 2.5 W is the total power, . Δω = 2πΔf

is the frequency detuning between the two polarizations with .Δf = 100 GHz, . ϵ =
0.13 is the perturbation strength, and .fm = 35 GHz is the modulation frequency of 

the perturbation. These initial conditions differ from those quoted in Baronio et al. 

(2018) by the exponential factors, the reason being notational differences in writing 

the Manakov system as explained at the beginning of this section. 

Simulation results of the Manakov system (4.20)–(4.21) under the above physical 

parameters and initial conditions are shown in Fig. 4.16. As can be seen, one 

observes the generation of time-periodic notch structures, which are localized both 

in time and in space. This figure shows that each individual dark structure within 

the periodic wave train closely matches the shape of the dark rogue triplet that 

was previously presented in Fig. 4.15 (with a 3 km translation of the longitudinal 

z coordinate). Thus, these dark rogue triplets are observable under experimental 

conditions. 

Observation results of these dark rogue triplets are presented in Fig. 4.17, 

where the measured temporal traces of wave amplitudes emerging from orthogonal 

polarizations are displayed at the fiber input, after 3 km, and after 5 km. The 

corresponding numerical simulation results from Fig. 4.16 are also shown for com-

parison. Quite remarkably, experimental observations are in excellent quantitative 

agreement, with no adjustable parameters, with theoretical predictions.
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Fig. 4.16 Contour plots of the two orthogonal polarization waves (a) .u1(t
', z) and (b) . u2(t

', z)
describing the numerical excitation of a dark rogue triplet under experimental conditions in the 

Manakov system (4.20)–(4.21). Physical parameters used are .P = 2.5 W (total power), . β2 =
18 ps2 km−1, .γ̂ = 2.4 W−1km−1, and a pump spacing of 100 GHz. The initial modulated condition 

is given in Eqs. (4.27)–(4.28). The horizontal axis .t ' ≡ t − β̂1z is the retarded time. Taken from 

Baronio et al. (2018) 

Fig. 4.17 Observation of optical dark rogue triplets in randomly birefringent fibers. Shown are 

temporal profiles of .|u1| (left column) and .|u2| (right column) at the input (upper row), after 3 km 

of optical fiber (middle row), and after 5 km of optical fiber (bottom row). Green solid lines are 

experimental measurements, and black dashed lines are numerical simulations from the Manakov 

system (these numerical solutions refer to those in Fig. 4.16). Physical parameters are .P = 2.5 W 

(total power), .β2 = 18 ps2 km−1, .γ̂ = 2.4 W−1km−1, and a pump spacing of 100 GHz. The 

horizontal axis .t ' ≡ t − β̂1z is the retarded time. Taken from Baronio et al. (2018)



Chapter 5 

Related Topics 

In this chapter, we cover several topics which are different from rogue waves in 

previous chapters but yet are closely related to them. One topic is rogue waves on 

a nonuniform-amplitude background, which contrasts such rogue waves in earlier 

chapters which sit on a uniform-amplitude background. Another topic is robustness 

of rogue waves under perturbations, which is a physically important question. 

The third topic is partial-rogue waves, which “come from nowhere but leave with 

a trace”, as opposed to rogue waves which “come from nowhere and disappear 

with no trace”. The last topic is patterns of higher-order lumps in the Kadomtsev-

Petviashvili I equation. Although this last topic is very different from rogue patterns, 

the phenomena and mathematical treatments of the two have a lot in common. 

We start with rogue waves on a nonuniform-amplitude background, using the 

nonlinear Schrödinger (NLS) equation as an example. 

5.1 Rogue Waves on Nonuniform-Amplitude Background in 

the NLS Equation 

Rogue waves in the NLS equation as described in Sect. 2.1 arise from a background 

that has uniform amplitude. It turns out that NLS rogue waves can also arise from 

nonuniform-amplitude backgrounds. Such rogue waves are described in this section. 

5.1.1 Solution Derivation by Darboux Transformation 

Rogue waves on a nonuniform-amplitude background in the NLS equation have 

been studied either analytically or numerically by Kedziora et al. (2014), Agafontsev 

and Zakharov (2016), Wright (2016), Bertola and Tovbis (2016), Bertola and Tovbis 
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(2017), Calini and Schober (2017), and Chen and Pelinovsky (2018). Below, we 

analytically derive fundamental NLS rogue waves on a stationary spatially-periodic 

background through Darboux transformation, following Chen and Pelinovsky 

(2018). 

The NLS equation 

.iut + uxx + 2|u|2u = 0 (5.1) 

appears as a compatibility condition of the following Lax pair of linear equations on 

. ϕ: 

.ϕx = Uϕ, U =
⎛

λ u

−u∗ −λ

⎞
, (5.2) 

and 

.ϕt = V ϕ, V = i

⎛
2λ2 + |u|2 ux + 2λu

u∗
x − 2λu∗ −2λ2 − |u|2

⎞
. (5.3) 

The basic idea to derive fundamental rogue waves on a periodic-amplitude 

background is to use onefold Darboux transformation 

.ũ = u +
4Re(λ1)p̂1q̂

∗
1

|p̂1|2 + |q̂1|2
, (5.4) 

where u is a x-periodic background solution of the NLS equation, .ϕ = (p̂1, q̂1)
T is 

a non-periodic solution of the linear system (5.2)–(5.3) for the periodic background 

solution u, ‘Re’ represents the real part of a complex number, and .λ = λ1 is a 

branch point of the band-gap spectrum in the linear spectral problem (5.2) associated 

with the periodic background wave u. Note that at a branch point . λ1, the linear 

system (5.2)–(5.3) admits one periodic solution and one non-periodic solution. 

The periodic solution, when inserted into the above Darboux transformation, only 

leads to a trivial NLS solution . ̃u. Only that non-periodic solution of the linear 

system (5.2)–(5.3) leads to the desired rogue waves on a periodic background. 

First, we look for standing x-periodic background solutions of the NLS equation 

in the form 

.u(x, t) = U(x)eict, (5.5) 

where the periodic function .U(x) is real and satisfies the equation 

.Uxx + 2U3 = cU, (5.6) 

and c is a real constant. This equation can be integrated once to give
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.U2
x + U4 = cU2 + d, (5.7) 

where d is another real constant. This latter equation admits two particular families 

of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. 

The positive-definite dn-periodic waves are 

.U(x) = dn(x; k), c = 2 − k2, d = k2 − 1, k ∈ (0, 1), (5.8) 

and the sign-indefinite cn-periodic waves are 

.U(x) = k cn(x; k), c = 2k2 − 1, d = k2(1 − k2), k ∈ (0, 1). (5.9) 

Below, we will derive rogue waves on these dn- and cn-periodic backgrounds. We 

will focus on the dn-waves, and will only quote the results for the cn-waves for 

brevity. 

Using differential constraints on the periodic potential that are obtained from the 

Lax pair (5.2)–(5.3), it can be found that the branch points of the band-gap spectrum 

in the linear spectral problem (5.2) associated with the dn periodic wave are 

.λ± = 1

2
(1 ±

√
1 − k2) (5.10) 

in the right-half plane, and two symmetric points .−λ± in the left half-plane. If we 

take .λ1 = λ+, then the periodic solution .(p1, q1)
T of the linear system (5.2)–(5.3) 

is of the form 

.p1(x, t) = P1(x)eict/2, q1(x, t) = Q1(x)e−ict/2, (5.11) 

where .P1(x) and .Q1(x) are real and periodic functions. Substituting these expres-

sions into the linear system (5.2)–(5.3), we obtain the following relations 

.P1(x)Q1(x) = − 1

4λ+

⎾
U2(x) +

√
1 − k2

⎤
, (5.12) 

and 

.P 2
1 (x) + Q2

1(x) = U(x), 2λ+[P 2
1 (x) − Q2

1(x)] = U '(x). (5.13) 

Next, we construct the nonperiodic solution .(p̂1, q̂1)
T of the linear system (5.2)– 

(5.3) at the periodic potential u and branch point . λ1. These nonperiodic solutions 

can be set as 

.p̂1 = θ − 1

q1
, q̂1 = θ + 1

p1
, (5.14)
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where .θ(x, t) is a new function. Substituting these expressions into (5.2), we get an 

equation for .∂θ/∂x that can be simplified to 

.
∂θ

∂x
= θU

Q2
1 − P 2

1

P1Q1
+ U

Q2
1 + P 2

1

P1Q1
. (5.15) 

For the dn-periodic wave .U(x) = dn(x; k), substituting Eqs. (5.12)–(5.13) 

into (5.15) and solving for .θ(x, t), we get 

. θ(x, t) =
⎾
U2(x) +

√
1 − k2

⎤
⎡
⎢⎣−4λ+

⎰ x

0

U2(y)
⎛
U2(y) +

√
1 − k2

⎞2
dy + θ0(t)

⎤
⎥⎦ ,

(5.16) 

where . θ0 is a constant of integration in x that may depend on t . To determine 

.θ0(t), we substitute expressions (5.14) into (5.3) and obtain an equation for .∂θ/∂t . 

Utilizing relations (5.13), this .∂θ/∂t equation reduces to 

.
∂θ

∂t
= 8iRe(λ1)P1(x)Q1(x). (5.17) 

Substituting the relation (5.12) into the above equation, we get .θ '
0(t) = −2i. Thus, 

.θ0(t) = −2it, (5.18) 

where the constant of integration in t is neglected due to translational invariance of 

the NLS equation with respect to t . 

Finally, we substitute the above nonperiodic solution .(p̂1, q̂1)
T into the onefold 

Darboux transformation (5.4) and obtain a new solution to the NLS equation as 

.ũ(x, t) =
⎾

dn(x, k) + F(x, t)

G(x, t)

⎤
ei
(
2−k2

)
t , (5.19) 

where 

. F(x, t) =
⎾
1 − 2i Im{θ(x, t)} − |θ(x, t)|2

⎤ ⎾
dn(x, k)2 +

√
1 − k2

⎤
,

G(x, t) =
⎾
|θ(x, t)|2 + 1

⎤
dn(x, k)

+2
⎛

1 −
√

1 − k2
⎞

Re{θ(x, t)}sn(x, k)cn(x, k),

θ(x, t) = −
⎾
dn(x, k)2 +

√
1 − k2

⎤
×

×
⎾

2(1 +
√

1 − k2)

⎰ x

0

dn(τ, k)2

[dn(τ, k)2 +
√

1 − k2]2
dτ + 2it

⎤
,
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Fig. 5.1 The fundamental rogue wave (5.19) on a dn-periodic background in the NLS equation 

(5.1) for .k = 0.5 (a) and .k = 0.999 (b). Taken from Chen and Pelinovsky (2018) 

and .sn(x, k) is another Jacobian elliptic function (elliptic sine). This solution is 

nonperiodic in x but approaches a spatially translated dn wave when .x, t → ±∞. 

Thus, it is a rogue wave on the dn-periodic background. One can show that the 

maximum of .|ũ(x, t)| occurs at .(x, t) = (0, 0), where .|ũ(0, 0)| = 2 +
√

1 − k2. As  

the maximum of .dn(x; k) is one, the magnification factor of the rogue dn-periodic 

wave is .2+
√

1 − k2. This solution for two values of .k = 0.5 and 0.999 are displayed 

in Fig. 5.1. 

Using similar techniques, fundamental rogue waves on cn-periodic backgrounds 

can also be derived, and their expressions are 

.ũ(x, t) =
⎾
k cn(x; k) + F̂ (x, t)

Ĝ(x, t)

⎤
ei
(
2k2−1

)
t , (5.20) 

where 

. ̂F(x, t) = k
⎛

1 − 2iIm{θ(x, t)} − |θ(x, t)|2
⎞

×
⎛

cn(x; k)dn(x; k) + i
√

1 − k2sn(x; k)
⎞

,

Ĝ(x, t) =
⎛
|θ(x, t)|2 + 1

⎞
dn(x; k) + 2Re{θ(x, t)}k sn(x; k)cn(x; k),

θ(x, t) = −
⎾
k2cn(x; k)2 + ik

√
1 − k2

⎤
×

×

⎡
⎢⎣2(k + i

√
1 − k2)

⎰ x

0

k2cn(y; k)2

⎛
k2cn(y; k)2 + ik

√
1 − k2

⎞2
dy + 2it

⎤
⎥⎦ .

One can show that the maximum of this .|ũ(x, t)| occurs at .(x, t) = (0, 0), where 

.|ũ(0, 0)| = 2k. As the maximum of .cn(x; k) is one, the magnification factor of this 

fundamental rogue cn-periodic wave is 2 uniformly for all .k ∈ (0, 1). This solution 

for two values of .k = 0.5 and 0.999 are displayed in Fig. 5.2.
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Fig. 5.2 The fundamental rogue wave (5.20) on a cn-periodic background in the NLS equation 

(5.1) for .k = 0.5 (a) and .k = 0.999 (b). Taken from Chen and Pelinovsky (2018) 

Second-order rogue waves on dn- and cn-periodic backgrounds can also be 

derived by employing twofold Darboux transformation; see Chen and Pelinovsky 

(2018) for details. 

5.1.2 Experimental Observation in Water tanks 

Rogue waves that were observed in the water-tank experiments of Sect. 4.2 were all 

arising from the uniform background (i.e., from waves with constant amplitudes). 

The above rogue waves arising from nonuniform dn- and cn-backgrounds have 

been observed in water tanks as well by Xu et al. (2020), and their experiments 

are described below. 

For these experiments, the spatial-evolution form of the NLS equation for water 

surface elevations was used to make theoretical predictions. This NLS equation 

is (1.44), i.e., 

.i
∂ũ

∂x̃
+ 1

2

∂2ũ

∂ t̃2
+ |ũ|2ũ = 0, (5.21) 

where 

. ũ = u/a, x̃ = −k3a2x, t̃ = (gk3a2/2)1/2 (t − x/cg), (5.22) 

.cg = ω/2k, .ω =
√

gk, and a is a representative wave-amplitude parameter which 

we will set as the peak amplitude of the background nonuniform wave. The water 

surface elevation .ζ(x, t) is related to the variable .u(x, t) as (1.34) to the second 

order of wave steepness, i.e., 

. ζ(x, t) = Re

⎧
u(x, t)ei(kx−ωt) + 1

2
ku2(x, t)e2i(kx−ωt)

⎫
. (5.23)
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By converting the notations of the NLS equation (5.1) to those in (5.21), we see 

that Eq. (5.21) admits a nonuniform .t̃-periodic background solution 

.ũ(t̃ , x̃) = dn(t̃ , α)ei(1−α2/2)x̃, (5.24) 

where . α is a background parameter, and dn is a Jacobi elliptic function. Note that 

this background solution’s peak amplitude .|ũ|max is unity due to our normaliza-

tion (5.22). From this nonuniform background, rogue waves can arise. The simplest 

such rogue wave has been given in Eq. (5.19) of the previous subsection. Converting 

to the present notations, this rogue wave is 

.ũ(t̃ , x̃) =
⎾

dn(t̃ , α) + F(t̃, x̃)

G(t̃, x̃)

⎤
ei(1−α2/2)x̃, (5.25) 

where 

. F(t̃, x̃) =
⎾
1 − 2i Im{θ(t̃, x̃)} − |θ(t̃, x̃)|2

⎤ ⎾
dn(t̃ , α)2 +

√
1 − α2

⎤
,

G(t̃, x̃) =
⎾
|θ(t̃, x̃)|2 + 1

⎤
dn(t̃ , α)

+ 2
⎛

1 −
√

1 − α2
⎞

Re{θ(t̃, x̃)}sn(t̃ , α)cn(t̃ , α),

θ(t̃ , x̃) = −
⎾
dn(t̃ , α)2 +

√
1 − α2

⎤
×

×
⎾

2(1 +
√

1 − α2)

⎰ t̃

0

dn(τ, α)2

[dn(τ, α)2 +
√

1 − α2]2
dτ + ix̃

⎤
.

For two parameter choices of .α = 0.3 and 0.9, this rogue solution is plotted in 

Fig. 5.3a and b respectively. From this analytical solution as well as the variable 

scalings (5.22), the physical solution .u(x, t) in Eq. (5.21) would be obtained. 

The experiments to observe these rogue waves were conducted in a . 30×1×1m3

water tank under deep-water conditions (Xu et al. 2020). The initial periodic wave 

profiles were shaped with a piston wave generator located at one end of the tank. An 

electric signal drove the piston to directly modulate the surface height in the time 

domain according to the exact mathematical expression for the surface elevation. 

A wave-absorbing beach is installed at the opposite end to avoid the influence of 

reflected waves. Seven wave gauges were then placed at distinct distances from 

the wave excitation to record the evolution of surface elevation in the longitudinal 

direction of wave propagation. A key to successful experiments is to accurately 

generate the surface elevation profile in the boundary condition, as described by the 

theory. The theoretical surface elevation is calculated from the NLS wave envelope 

.u(x, t) of Eq. (5.21) to the second order in steepness by the formula (5.23). 

In the experiments, the carrier amplitude was chosen as .a = 0.01 m. The carrier 

frequency was chosen as .ω = 10.68 rad/s, which corresponds to a carrier wave
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Fig. 5.3 Theoretical space-time dynamics .|ũ(t̃ , x̃)| of the rogue solution (5.25) on a periodic dn 

background in the NLS equation (5.21). (a) .α = 0.3; (b) .α = 0.9. Taken from Xu et al. (2020) 

Fig. 5.4 Observation of rogue waves on dn-periodic backgrounds in a water tank. Left panels: 

evolution of time series of surface elevation measurement with propagation distance. Right panels: 

corresponding theory. (a), (b) Rogue dn-periodic wave (.α = 0.8). (c), (d) Rogue dn-periodic wave 

(.α = 0.99). The time axis of each wave profile is shifted by the amount of .x/cg . Taken from Xu et 

al. (2020) 

number .k = 11.63/m. The attenuation rate was estimated about 0.25% per meter (in 

amplitude). 

Figure 5.4 shows the results of experiments by shaping an initial localized 

perturbation centered at .t = 0 onto the dn-periodic waves for .x̃ = −2.6. The two  

cases in panels (a) and (c) report the longitudinal evolution of perturbation for these
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periodic waves when .α = 0.8 and 0.99 until reaching the maximal amplification 

after 16.8 m. For both cases, theoretical predictions of surface elevations at the 

same positions are shown in panels (b) and (d) respectively. It can be seen that 

the measurements agree very well with theory. 

Rogue waves arising from cn-periodic backgrounds in the NLS equation (5.21) 

were also observed by Xu et al. (2020), and details are omitted. 

5.1.3 Experimental Observation in Optical Fibers 

Rogue waves on dn- and cn-periodic backgrounds of the NLS equation have also 

been observed in optical fibers by Xu et al. (2020). In this case, the normalized NLS 

equation is (1.96), i.e., 

.iuξ + 1

2
uT T + |u|2u = 0, (5.26) 

where u is the complex envelope of the light’s electric field normalized by .P
1/2
0 , . ξ

is the propagation distance z normalized by .(γP0)
−1, .T ≡ t − β1z is the retarded 

time normalized by .(|β2|/γP0)
1/2, . P0 is a characteristic light power, .β−1

1 is the 

carrier wave’s group velocity, . β2 is the group-velocity-dispersion parameter which 

is negative in the anomalous-dispersion regime, and . γ is the nonlinear coefficient. 

Rogue waves on dn- and cn-periodic backgrounds of this NLS equation have been 

presented in an earlier subsection (after change of notations). 

The experimental setup by Xu et al. (2020) is given in Fig. 5.5. It is based on 

the propagation of arbitrarily shaped light waves in optical fibers, and is capable 

of synthesizing nontrivial exact periodic wave profiles in the temporal domain. The 

initial state is obtained through the optical pulse shaping with phase and amplitude 

controls in the spectral domains. This specific processing of a home-made optical 

frequency comb source (centered at wavenumber .λp = 1550 nm) allows generation 

of exact wave profiles with a specific period fixed by the frequency spacing of 

the optical comb. Nonlinear propagation is then studied in different lengths of 

the same standard single-mode fiber SMF-28 (with . β2 = −2.1 × 10−26s2m−1

and .γ = 0.0012W−1m−1 at . λp) by an appropriate choice of the input average 

power. The fiber loss is about 5% per kilometer (in power). At fiber output, the 

power profiles are characterized in both time and frequency domains by means of 

an ultrafast optical sampling oscilloscope (with subpicosecond resolution) and an 

optical spectrum analyzer (with 2.5 GHz resolution). 

To observe rogue waves on the dn-periodic background, the exact solution (5.19) 

with .k = 0.7 was used to shape the input periodic wave with the correct localized 

perturbation. According to the maximal propagation distance that can be reached, 

suitable initial conditions (at a normalized . ξ value) were chosen to observe the 

maximum amplification. Specifically, a 13-GHz frequency comb was used to shape 

the exact solution (5.19) with .ξ = −2.3 at fiber input. The frequency interval for
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Fig. 5.5 Experimental setup for observation of rogue waves on dn-periodic background in optical 

fibers. Taken from Xu et al. (2020) 

Fig. 5.6 Experimental observation of a rogue wave on a dn-periodic background (. k = 0.7) in  

an optical fiber. Plotted are longitudinal evolution of the optical envelope .|u(z, t)| obtained from 

experiment (a) and theory (b). Taken from Xu et al. (2020) 

the dn-periodic wave was 78 GHz. Figure 5.6a presents spatiotemporal evolution 

measured for the rogue wave on the dn-periodic wave. This figure clearly reveals 

that the localized perturbation (centered at .t = 0) grows as predicted by the 

theory in Fig. 5.6b. After 1.4 km propagation, the optical rogue wave reaches a 

maximum amplitude nearly 3 W. 
1/2, which is close to the theoretical prediction 

.

√
P0(2+

√
1 − k2) despite fiber losses (here .P0 = 1.38 W). Subsequently, the rogue 

wave’s decay just before 2 km is also seen. 

5.2 Robustness of Rogue Waves Under Perturbations 

One important question we need to ask is, how robust are rogue waves under per-

turbations? Since rogue waves can only arise from linearly-unstable backgrounds, 

the instability of those backgrounds will necessarily affect the evolution of rogue 

waves and render them unstable. This instability of rogue waves has been further 

examined by Cuevas-Maraver et al. (2017) from the point of view of spectral 

stability. However, rogue waves have been observed in experiments of various 

physical systems as we have shown in Chap. 4. Then, how can we understand the 

observability of rogue waves given that they are supposed to be unstable?
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In this section, we will numerically simulate the evolution of rogue waves under 

random-noise perturbations in order to determine how robust they are. For brevity, 

we will only show this for several rogue waves in the NLS equation. 

The NLS equation we will numerically simulate is 

.iut + 1

2
uxx + |u|2u = 0. (5.27) 

The numerical scheme we will use is the pseudo-spectral method, together with the 

fourth-order Runge-Kutta method to advance in time (Yang 2010). The x-interval is 

taken as .−50 ≤ x ≤ 50, which is discretized by 1024 grid points. The time-step is 

taken as .Δt = 0.002, which satisfies the numerical-stability condition. 

The first rogue wave we will consider is the Peregrine wave, which is 

.up(x, t) =
⎛

1 − 4(1 + 2it)

1 + 4x2 + 4t2

⎞
eit . (5.28) 

We will take this Peregrine wave at .t0 = −3, and perturb it by random noise. 

Specifically, the initial condition of our simulation is 

.u(x, t0) = up(x, t0) + ϵ R(x), (5.29) 

where .R(x) is a random complex function of x with unit peak amplitude, and . ϵ is 

the strength of this random-noise perturbation. 

When .ϵ = 0.015, i.e., with 1.5% random-noise perturbation, the simulation 

result for one typical realization of the random-noise function .R(x) is displayed 

in the left column of Fig. 5.7. Panel (a) displays the undisturbed initial Peregrine 

wave .|up(x, t0)| at .t0 = −3. Panel (b) displays the disturbed initial Peregrine wave 

.|u(x, t0)| from Eq. (5.29), which is our initial condition. Notice that this perturbation 

is clearly visible even though it is only 1.5%. Panel (c) displays the evolution 

result for this perturbed state. We can see that instability eventually develops on 

the background, which is not surprising since the uniform background is linearly 

unstable. However, the instability on the background becomes noticeable only after 

the Peregrine wave has run its dynamical course and is ready to disappear. For this 

reason, the Peregrine wave is observable even though it is unstable. 

What if the perturbation is stronger? To answer this question, we next choose 

.ϵ = 0.05, i.e., with 5% random-noise perturbation. The simulation result under 

one typical realization of the random-noise function .R(x) is displayed in the right 

column of Fig. 5.7. It is seen that even though the perturbation is now much 

stronger, the qualitative feature of the simulation result remains the same. That is, 

the Peregrine wave still runs its course before the background instability shows up. 

Two other rogue waves we will consider are the two second-order rogue waves 

as shown in Fig. 4.7 of the previous chapter, one being a super rogue wave, and 

the other being a rogue triplet. For these two rogue waves, we also take them at 

.t0 = −3, and perturb them by random noises similar to Eq. (5.29), with .ϵ = 0.03,
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Fig. 5.7 Evolution of the 

Peregrine wave under 

perturbations. The 

perturbation is a random 

noise imposed on the 

Peregrine wave at .t = −3, 

see Eq. (5.29). Left column: 

1.5% perturbation; right 

column: 5% perturbation. Top 

row: unperturbed Peregrine 

waves at .t = −3; middle row: 

perturbed Peregrine waves; 

bottom row: evolutions of 

perturbed Peregrine waves in 

the NLS equation 

Fig. 5.8 Evolutions of two 

2nd-order NLS rogue waves 

under perturbations. The 

perturbations are 3% random 

noises imposed on these 

rogue waves at . t = −3. Left  

column: the super rogue wave 

case; right column: a rogue 

triplet case. Top row: 

unperturbed rogue waves at 

.t = −3; middle row: 

perturbed rogue waves; 

bottom row: evolutions of 

perturbed rogue waves in the 

NLS equation 

i.e., with 3% random noise perturbations. Evolution results of these perturbed rogue 

waves are displayed in the left and right columns of Fig. 5.8, respectively. As can 

be seen, despite perturbations, these two rogue waves are also able to display their 

key dynamical features before background instabilities kick in. In physical terms, 

this means that in the presence of perturbations, rogue waves can still appear and 

disappear in nature, consistent with experiments of the previous chapter. 

It is noted that this type of robustness simulations for rogue waves have been 

done before in many articles for a wide array of integrable systems, such as the 

long-wave-short-wave interaction model (Chen et al. 2014a), the coupled Hirota 

equations (Chan and Chow 2017), generalized derivative NLS equations (Chen et
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al. 2019), the NLS equation (Calini et al. 2019), a system of nonconventionally 

coupled NLS equations (Sun et al. 2021), and others. Our conclusions above are 

consistent with those earlier articles. 

In situations where two spatial dimensions are involved, then the transverse 

stability of one-dimensional rogue waves with respect to the second spatial dimen-

sion is also an issue to consider. For example, in deep water where there are 

two spatial dimensions on the water surface, the (2+1)-dimensional NLS equation 

is the appropriate mathematical model. In this case, while rogue waves in the 

(1+1)-dimensional NLS equation (5.27) also satisfy this (2+1)-dimensional model, 

whether they are stable or robust against transverse perturbations in this (2+1)-

dimensional model remains a question. For the Peregrine wave, its transverse 

stability in the (2+1)-dimensional NLS equation was investigated by Ablowitz and 

Cole (2021). It was found that the Peregrine wave suffers transverse instability, and 

this instability coincides with that of the background plane wave. In optical fibers 

and narrow water tanks where many of the rogue experiments have been performed, 

the second spatial dimension either does not exist or can be ignored. In such cases, 

transverse instability of rogue waves is irrelevant. 

5.3 Partial-Rogue Waves in the Sasa-Satsuma Equation 

Rogue waves is the focus of this book. These are “waves that come from nowhere 

and leave without a trace” (Akhmediev et al. 2009b), i.e., they are localized 

wave excitations that arise from the constant-amplitude background, reach higher 

amplitude, and then retreat back to the same background, as time progresses. 

However, there exists another type of waves that are different from but closely 

related to rogue waves. These other waves “come from nowhere but leave with a 

trace”. Specifically, these waves also arise from the constant-amplitude background 

(thus “come from nowhere”), stay localized, and reach higher amplitude. After-

wards, instead of retreating back to the same constant background with no trace, 

they evolve into localized waves on the constant background that persist at large 

time, thus leaving a trace. Such peculiar waves were first reported by Ohta and Yang 

(2013) for the Davey-Stewartson-II equation, where a two-dimensional localized 

wave arose from the constant background and then split into two localized lumps at 

large time (see Fig. 4 of that paper). Later, a similar but one-dimensional solution 

was reported by Zhao et al. (2016b) for the Sasa-Satsuma equation. These peculiar 

waves resemble rogue waves in the first half of evolution, but contrast them in the 

second half of evolution. Due to these peculiar behaviors, we call them partial-rogue 

waves. 

Asymptotic prediction of such partial-rogue waves was made by Yang and Yang 

(2023b) in the Sasa-Satsuma equation. It was shown that among a class of rational 

solutions in this equation that can be expressed through determinants of Schur 

polynomials with index jumps of three, partial-rogue waves arise if and only if these 

rational solutions are of certain orders, where the associated generalized Okamoto
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polynomials have real but no purely-imaginary roots, or have purely-imaginary but 

no real roots (we will call such purely-imaginary roots simply as imaginary roots for 

brevity in later text). It was further shown that at large negative time, these partial-

rogue waves approach the constant-amplitude background, but at large positive time, 

they split into several fundamental rational solitons, whose numbers are determined 

by the number of real or imaginary roots in the underlying generalized Okamoto 

polynomial. We present partial-rogue waves and their asymptotic predictions in the 

Sasa-Satsuma equation below. 

The Sasa-Satsuma equation was proposed as a higher-order nonlinear Schödinger 

equation for optical pulses that includes some additional physical effects such as 

third-order dispersion and self-steepening (Kodama and Hasegawa 1987; Sasa and 

Satsuma 1991). Through a variable transformation, this equation can be written as 

.ut = uxxx + 6|u|2ux + 3u(|u|2)x . (5.30) 

Sasa and Satsuma (1991) showed that this equation is integrable. 

5.3.1 A Class of Rational Solutions 

Soliton solutions on the zero background in this equation were derived by Sasa and 

Satsuma (1991). Later, rational solutions on a nonzero background, including rogue 

waves, were also derived (Bandelow and Akhmediev 2012; Chen 2013; Zhao et al. 

2014, 2016b; Ling  2016; Mu and Qin 2016; Mu et al. 2020; Feng et al. 2022b; 

Wu et al. 2022). The solutions that are relevant to partial-rogue waves are a certain 

class of rational solutions, whose . τ functions are determinants of Schur polynomials 

with index jumps of three (which will be called determinants of 3-reduced Schur 

polynomials). These solutions are different from Sasa-Satsuma rogue waves derived 

by Feng et al. (2022b) and Wu et al. (2022), which are determinants of 2-reduced 

Schur polynomials. These determinant solutions of 3-reduced Schur polynomials 

in the bilinear framework correspond to the solutions with the scattering matrix 

admitting a triple eigenvalue in the framework of Darboux transformation. Such 

solutions from Darboux transformation have been studied by Zhao et al. (2016b) and 

Ling (2016). However, their solutions are not general nor explicit for our purpose. 

For this reason, we will first present general and explicit expressions for this class 

of rational solutions through Schur polynomials. 

These rational solutions are sitting on a nonzero constant-amplitude background. 

Through variable scalings, we can normalize the background amplitude to be unity. 

Then, this background can be written as 

.ubg(x, t) = ei[α(x+6t)−α3t], (5.31) 

where . α is a wavenumber parameter. When .α = 1/2, the Sasa-Satsuma equa-

tion (5.30) admits general rational solutions whose . τ functions are determinants of
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3-reduced Schur polynomials, and such solutions are given by the following theorem 

(Yang and Yang 2023b). 

Theorem 5.1 When .α = 1/2, the Sasa-Satsuma equation (5.30) admits bounded 

.(N1, N2)-th order rational solutions 

.uN1,N2
(x, t) = gN1,N2

fN1,N2

ei[α(x+6t)−α3t], (5.32) 

where . N1 and . N2 are arbitrary non-negative integers, 

.fN1,N2
= σ0,0, gN1,N2

= σ1,0, (5.33) 

.σk,l = det

⎛
σ

[1,1]
k,l σ

[1,2]
k,l

σ
[2,1]
k,l σ

[2,2]
k,l

⎞
, (5.34) 

.σ
[I,J ]
k,l =

⎛
φ

(k,l I,J )
3i−I, 3j−J

⎞
1≤i≤NI , 1≤j≤NJ

, (5.35) 

matrix elements in .σ
[I,J ]
k,l are defined by 

.φ
(k,l,I,J )
i,j =

min(i,j)⎲

ν=0

⎛
p2

1

4p2
0

⎞ν

Si−ν(x
+
I (k, l) + νs) Sj−ν(x

−
J (k, l) + νs), (5.36) 

vectors .x±
I (k, l) = (x±

1,I , x
±
2,I , · · · ) are given by 

.x+
r,I (k, l) = pr(x + 6t) + βr t + kθr + lθ∗

r + ar,I , . (5.37) 

x− 

r,J 
(k, l) = pr(x + 6t) + βr t − kθ∗

r − lθr + ar,J , (5.38) 

. βr and . θr are coefficients from expansions 

.p3(κ) =
∞⎲

r=0

βrκ
r , ln

⎾
p (κ) − iα

p0 − iα

⎤
=

∞⎲

r=1

θrκ
r , (5.39) 

the function .p (κ) with expansion .p (κ) =
∑∞

r=0 prκ
r and real expansion 

coefficients . pr is defined by the equation 

.Q1 [p (κ)] = Q1(p0)

3

⎾
eκ + 2e−κ/2 cos

⎛√
3

2
κ

⎞⎤
, (5.40) 

with
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.Q1(p) ≡ 1

p − iα
+ 1

p + iα
+ p, (5.41) 

.p0 = ±
√

3/2, the real vector .s = (s1, s2, · · · ) is defined by the expansion 

. ln

⎾⎛
2p0

p1κ

⎞⎛
p (κ) − p0

p (κ) + p0

⎞⎤
=

∞⎲

r=1

srκ
r , (5.42) 

the asterisk ‘*’ represents complex conjugation, and 

.(a1,1, · · · , a3N1−1,1), (a1,2, · · · , a3N2−2,2) (5.43) 

are free real constants. 

The proof of this theorem can be found in Yang and Yang (2023b). 

Note 1 When we choose .p0 =
√

3/2, the first few coefficients of . pr , . βr , . θr , and . sr
are 

.p1 = 121/6

2
, p2 = 12−1/6

2
, p3 = 1

4
√

3
, (5.44) 

.β1 = 9

8
121/6, β2 = 9

8
· 35/6

21/3
, β3 = 19

√
3

16
, (5.45) 

.θ1 = 121/6

√
3 − i

, θ2 = −i

121/6
⎛√

3 − i
⎞2

, θ3 = 0, (5.46) 

.s1 = 0, s2 = 0, s3 = − 1

40
. (5.47) 

If we choose .p0 = −
√

3/2, then . pr and . βr would switch sign, . θr change to . θ∗
r , and 

. sr remain the same. 

Note 2 If we choose .p0 = −
√

3/2 and keep all internal parameters . (ar,1, ar,2)

unchanged, then the resulting solution .ũ(x, t) would be related to the solution 

.u(x, t) with .p0 =
√

3/2 as .ũ(x, t) = u∗(−x,−t). 

Note 3 Internal parameters .a3n,1 and .a3n,2 .(n = 1, 2, · · · ) do not affect solutions 

in Theorem 5.1, for reasons which can be found in Yang and Yang (2021b). Thus, 

we will set them as zero in later text. 

The simplest solution of this class—the fundamental rational soliton, is obtained 

when we set .N1 = 0 and .N2 = 1 in Theorem 5.1. In this case, the solution has a 

single real parameter .a1,2, which can be normalized to zero through a shift of the x 

axis. The resulting solution, for both .p0 = ±
√

3/2, is
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Fig. 5.9 Graph of the fundamental rational soliton (5.48) in the Sasa-Satsuma equation (5.30). 

Left: 3D plot. Right: density plot. The horizontal axes are . ̂x = x + (33/4)t

.u1(x, t) = û1(x, t)ei[ 1
2 (x+6t)− 1

8 t], (5.48) 

where 

.û1(x, t) = 3x̂2 + 3ix̂ − 2

3x̂2 + 1
, (5.49) 

and 

.x̂ ≡ x + (33/4)t (5.50) 

is a moving coordinate. The graph of this solution is plotted in Fig. 5.9. This solution 

is a rational soliton moving on the constant-amplitude background (5.31) with 

velocity .−33/4. Its height, i.e., max(.|u1|), is 2. 

5.3.2 Generalized Okamoto Polynomials 

We will show in later text that rational solutions in Theorem 5.1 contain partial-

rogue waves but are not all partial-rogue waves. The question of what solutions in 

Theorem 5.1 are partial-rogue waves turns out to be closely related to root properties 

of generalized Okamoto polynomials. So, we will introduce these polynomials and 

examine their root structures next. 

Original Okamoto polynomials arose in Okamoto’s study of rational solutions 

to the Painlevé IV equation (Okamoto 1986). He showed that a class of such 

rational solutions can be expressed as the logarithmic derivative of certain special 

polynomials, which are now called Okamoto polynomials. These original polyno-

mials were later generalized, and the generalized Okamoto polynomials provide a 

more complete set of rational solutions to the Painlevé IV equation. In addition, 

determinant expressions for the original and generalized Okamoto polynomials
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were discovered (Kajiwara and Ohta 1998; Noumi and Yamada 1999; Clarkson 

2003, 2006). 

Let .pj (z) be Schur polynomials defined by 

.

∞⎲

j=0

pj (z)ϵ
j = exp

⎛
zϵ + ϵ2

⎞
, (5.51) 

with .pj (z) ≡ 0 for .j < 0. Then, generalized Okamoto polynomials .QN1,N2
(z), 

with .N1, N2 being nonnegative integers, are defined as 

.QN1,N2
(z) = Wron[p2, p5, · · · , p3N1−1, p1, p4, · · · , p3N2−2], (5.52) 

or equivalently, 

.QN1,N2
(z) =

|||||||||||||||

p2 p1 · · · p3−N1−N2

...
...

...
...

p3N1−1 p3N1−2 · · · p2N1−N2

p1 p0 · · · p2−N1−N2

...
...

...
...

p3N2−2 p3N2−3 · · · p2N2−N1−1

|||||||||||||||

, (5.53) 

since .p'
j+1(z) = pj (z) from the definition of .pj (z) in Eq. (5.51), where the prime 

represents differentiation. The first few .QN1,N2
(z) polynomials are 

. Q1,0(z) = 1

2
(z2 + 2),

Q2,0(z) = 1

80
(z6 + 10z4 + 20z2 + 40),

Q0,1(z) = z,

Q1,1(z) = 1

2
(−z2 + 2)

Q2,1(z) = 1

20
z(z4 − 20),

Q0,2(z) = 1

8
(z4 + 4z2 − 4),

Q1,2(z) = 1

8
(−z4 + 4z2 + 4),

Q2,2(z) = 1

80
(−z6 + 10z4 − 20z2 + 40).



5.3 Partial-Rogue Waves in the Sasa-Satsuma Equation 387

Note that our definition of generalized Okamoto polynomials is different from that 

by Clarkson (2003, 2006). Denoting the .Qm,n(z) polynomial introduced in Clarkson 

(2003, 2006) as .Q
[C]
m,n(z), then our polynomial .QN1,N2

(z) is related to .Q
[C]
m,n(z) as 

.QN1,N2
(z) =

⎧
⎨
⎩

γ
(1)
N1,N2

Q
[C]
N2−N1,−N2

⎛√
3 z/2

⎞
, N1 ≥ N2,

γ
(2)
N1,N2

Q
[C]
N2−N1,N1+1

⎛√
3 z/2

⎞
, N1 ≤ N2,

(5.54) 

where .γ
(1)
N1,N2

and .γ
(2)
N1,N2

are certain real constants. 

Clarkson (2003) observed an interesting symmetry relation between . Q
[C]
n,m(z)

and .Q
[C]
m,n(iz) based on examples. Using that symmetry and the above polynomial 

connection (5.54), we obtain symmetry relations for our polynomials .QN1,N2
(z) as 

.QN1,N1−N2
(z) = b1 e− 1

2 iπ dN1,N2 QN1,N2
(iz), N1 ≥ N2, (5.55) 

.QN2−N1−1,N2
(z) = b2 e− 1

2 iπ dN1,N2 QN1,N2
(iz), N1 < N2, (5.56) 

where 

.dN1,N2
= N2

1 + N2
2 − N1N2 + N1 (5.57) 

is the degree of the .QN1,N2
(z) polynomial, .b1 = ±1 is the sign of the ratio between 

coefficients of the highest z-power terms in .QN1,N2
(z) and .QN1,N1−N2

(z), while 

.b2 = ±1 is the sign of the ratio between coefficients of the highest z-power terms in 

.QN1,N2
(z) and .QN2−N1−1,N2

(z). In the special case of .N2 = 0, the symmetry (5.55) 

further reduces to 

.QN1,N1
(z) = QN1,0(iz). (5.58) 

Root properties of generalized Okamoto polynomials .QN1,N2
(z) are important 

for our partial-rogue wave problem. It is easy to see from Eq. (5.51) that . pj (−z) =
(−1)jpj (z). Thus, .QN1,N2

(−z) = (−1)γ QN1,N2
(z), where . γ is a certain integer. 

As a result, roots of .QN1,N2
(z) come in . ±z pairs. In addition, since the polynomial 

.QN1,N2
(z) has real coefficients, roots of .QN1,N2

(z) also come as complex-conjugate 

pairs. 

For our partial-rogue wave problem, it turns out from later text that we need 

generalized Okamoto polynomials which have either real or imaginary roots, but not 

both. In addition, zero cannot be a root. Multiplicity of these real or imaginary roots 

also has important consequences. These root questions of generalized Okamoto 

polynomials were answered by Roffelsen and Stokes (2024), who obtained the 

following results. 

Theorem 5.2 Every root of the generalized Okamoto polynomial .QN1,N2
(z) is 

simple. In addition, treating zero as both a real root and an imaginary root, then
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the numbers of real and imaginary roots of .QN1,N2
(z) are 

.ρre(N1, N2) =

⎧
⎪⎪⎨
⎪⎪⎩

N2, if N1 even and N1 ≤ N2 − 1,

N1 + 1, if N1 odd and N1 ≤ N2 − 1,

N2, if N2 even and N2 ≤ N1,

N1 + 1, if N2 odd and N2 ≤ N1,

(5.59) 

and 

.ρim(N1, N2) =

⎧
⎪⎪⎨
⎪⎪⎩

N2 − N1, if N2 − N1 even and N1 ≤ N2 − 1,

N2, if N2 − N1 odd and N1 ≤ N2 − 1,

N1 − N2, if N1 − N2 even and N2 ≤ N1,

N1 + 1, if N1 − N2 odd and N2 ≤ N1.

(5.60) 

From this theorem, we can easily see that the only .QN1,N2
(z) polynomials which 

have real but no imaginary roots are .QN1,N1
(z), where the number of real roots 

is .N1 when .N1 is even and .N1 + 1 when .N1 is odd; and the only . QN1,N2
(z)

polynomials which have imaginary but no real roots are .QN1,0(z), where the number 

of imaginary roots is . N1 when . N1 is even and .N1 + 1 when . N1 is odd. 

To verify these results, we plot in Fig. 5.10 roots of .QN1,N2
(z) in the complex 

z plane for .0 ≤ N1, N2 ≤ 3. We can see from this figure that the . QN1,0(z)

polynomials in the first column have only imaginary roots but no real roots. The 

.QN1,N1
(z) polynomials on the diagonal have only real roots but no imaginary 

roots, which is not surprising given the connection between .QN1,N1
and . QN1,0

polynomials in Eq. (5.58). For both polynomials, zero is not a root. All other 

polynomials in Fig. 5.10 have both real and imaginary roots, and are thus not 

useful for the partial-rogue problem. These root structures in Fig. 5.10 are consistent 

with Theorem 5.2 and the two symmetries of generalized Okamoto polynomials in 

Eqs. (5.55)–(5.56). 

We have also checked that every root in Fig. 5.10 is simple, consistent with 

Theorem 5.2. 

5.3.3 Large-Time Predictions of Partial-Rogue Waves 

According to our definition, partial-rogue waves are localized waves that “come 

from nowhere but leave with a trace”. Thus, we impose the following boundary 

conditions 

.u(x, t) → ei[α(x+6t)−α3t], t → −∞ or x → ±∞, (5.61) 

where .α = 1/2. In addition, we require .u(x, t) not to approach this constant-

amplitude background as .t → +∞.
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Fig. 5.10 Roots of generalized Okamoto polynomials .QN1,N2
(z) in the complex z plane for . 0 ≤

N1, N2 ≤ 3. In all panels, . −5 ≤ Re(z), Im(z) ≤ 5

Only a small portion of rational solutions in Theorem 5.1 are partial-rogue waves. 

This is not surprising, since the fundamental rational soliton in Fig. 5.9 is not a 

partial-rogue wave already. We will show that a rational solution in Theorem 5.1 

is a partial-rogue wave only if the associated generalized Okamoto polynomial 

has either imaginary or real roots, but not both. This result is summarized in the 

following two theorems, for imaginary roots and real roots, respectively (Yang and 

Yang 2023b). 

Theorem 5.3 If the generalized Okamoto polynomial .QN1,N2
(z) has imaginary but 

no real roots, then the rational solution .uN1,N2
(x, t) in Theorem 5.1 with . p0 =

−
√

3/2 is a partial-rogue wave. In addition, when .t ⪢ 1, this solution splits into n 

fundamental rational solitons .û1(x − x
(k)
0 , t)ei[ 1

2 (x+6t)− 1
8 t], where n is the number 

of imaginary roots in .QN1,N2
(z), and .1 ≤ k ≤ n. The location .x

(k)
0 of the k-th 

fundamental rational soliton is given by 

.x
(k)
0 = −33

4
t − iz

(k)
0

33/4

21/2
t1/2 + 2

121/6
Δ(k), (5.62) 

where .z
(k)
0 is the k-th imaginary root of .QN1,N2

(z), and .Δ(k) is a .z
(k)
0 -dependent 

.O(1) quantity. The error of this fundamental rational soliton approximation is
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.O(|t |−1/2). Expressed mathematically, if .t ⪢ 1, and x is in an .O(1) neighborhood 

of a certain . x
(k)
0 , i.e., .|x − x

(k)
0 | = O(1), then 

.uN1,N2
(x, t) = û1(x − x

(k)
0 , t) ei[ 1

2 (x+6t)− 1
8 t] + O(|t |−1/2). (5.63) 

When .t → +∞ and x is not in an .O(1) neighborhood of any . x
(k)
0 , or when . t →

−∞ for all x, the solution approaches the constant-amplitude background (5.31), 

i.e., 

.uN1,N2
(x, t) → ei[ 1

2 (x+6t)− 1
8 t]. (5.64) 

Theorem 5.4 If the generalized Okamoto polynomial .QN1,N2
(z) has real but 

no imaginary roots, and each real root is nonzero, then the rational solution 

.uN1,N2
(x, t) in Theorem 5.1 with .p0 =

√
3/2 is a partial-rogue wave. In addition, 

when .t ⪢ 1, this solution splits into n fundamental rational solitons . ̂u1(x −
x

(k)
0 , t)ei[ 1

2 (x+6t)− 1
8 t], where n is the number of real roots in .QN1,N2

(z), and . 1 ≤
k ≤ n. The location .x

(k)
0 of the k-th fundamental rational soliton is given by 

.x
(k)
0 = −33

4
t + z

(k)
0

33/4

21/2
t1/2 − 2

121/6
Δ(k), (5.65) 

where .z
(k)
0 is the k-th real root of .QN1,N2

(z), and .Δ(k) is a .z
(k)
0 -dependent . O(1)

quantity. The error of this fundamental rational soliton approximation is .O(|t |−1/2). 

Mathematical expressions of these results are the same as in Eqs. (5.63)–(5.64) of  

Theorem 5.3, except for the different formula (5.65) for the soliton’s location . x
(k)
0 . 

Proofs of these two theorems can be found in Yang and Yang (2023b). 

These two theorems, together with Theorem 5.2 and Fig. 5.10 on root properties 

of generalized Okamoto polynomials, immediately lead to the following corollary. 

Corollary 5.1 Rational solutions .uN1,0(x, t) .(N1 ≥ 1) with .p0 = −
√

3/2, and 

.uN1,N1
(x, t) .(N1 ≥ 1) with .p0 =

√
3/2, in the Sasa-Satsuma equation (5.30) are  

partial-rogue waves. As .t → +∞, these solutions split into several fundamental 

rational solitons, whose number is equal to . N1 when . N1 is even and .N1 + 1 when 

. N1 is odd. 

The results in this corollary are not dependent on values of internal parameters 

.ar,1, ar,2 .(r = 1, 2, · · · ). This is not surprising, since when .|t | ⪢ 1, those internal 

parameters in the solution will play a less significant role.
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5.3.4 Numerical Verification of Theoretical Predictions 

The simplest partial-rogue wave in the .uN1,0(x, t) family is .u1,0(x, t) with . p0 =
−

√
3/2. This solution contains two free real parameters .a1,1 and .a2,1. Through a 

shift of the .(x, t) axes, we can normalize 

.a1,1 = a2,1 = 0 (5.66) 

without loss of generality. In fact, this zero normalization of .a1,1 and .a2,1 can 

be achieved for all partial-rogue waves .uN1,0(x, t) and .uN1,N1
(x, t). Under this 

parameter normalization, the .u1,0(x, t) solution can be written out as 

.u1,0(x, t) = σ1,0(x̂, t)

σ0,0(x̂, t)
ei[ 1

2 (x+6t)− 1
8 t], (5.67) 

where 

. σ0,0(x̂, t) = 4 + 243t2 + 24x̂2 − 12
√

3x̂3 + 9x̂4 + 54t x̂
⎛

2 −
√

3x̂
⎞

, . (5.68) 

σ1,0(x̂, t) = −2 + 6i
√

3 + 243t2 − 12ix̂ −
⎛

3 + 9i
√

3
⎞

x̂2 + 6
⎛

3i − 2
√

3
⎞

x̂3 

+9x̂4 − 27t
⎾
i +

√
3 + 2i

⎛
2i +

√
3
⎞

x̂ + 2
√

3x̂2
⎤
, (5.69) 

and .x̂ = x + (33/4)t . The graph of this solution, in the .(x̂, t) plane, is plotted in 

Fig. 5.11a. As one can see, this is indeed a partial-rogue wave. As .t → +∞, it splits 

into two fundamental rational solitons, consistent with Corollary 5.1. 

The next two solutions in the .uN1,0(x, t) family are .u2,0(x, t) and .u3,0(x, t) with 

.p0 = −
√

3/2. Under the parameter normalization (5.66), the .u2,0(x, t) solution 

contains additional free real parameters .(a4,1, a5,1), while the .u3,0(x, t) solution 

contains additional free real parameters .(a4,1, a5,1, a7,1, a8,1). When we choose 

.a4,1 = 2, a5,1 = −3 (5.70) 

Fig. 5.11 Density plots of partial-rogue waves .|u1,0(x, t)| (a), .|u2,0(x, t)| (b), and .|u3,0(x, t)| (c), 

with .p0 = −
√

3/2 in the Sasa-Satsuma equation (5.30). Parameter values in (b) and (c) are given  

in Eqs. (5.70) and (5.71) respectively. The horizontal axes are .x̂ = x + (33/4)t
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in .u2,0(x, t) and 

.a4,1 = 2, a5,1 = −3, a7,1 = a8,1 = 0 (5.71) 

in .u3,0(x, t), the corresponding true solutions are plotted from Theorem 5.1 and 

displayed in Fig. 5.11b and c respectively. Again, these are indeed partial-rogue 

waves. When .t → +∞, they split into two and four fundamental rational solitons 

respectively, consistent with Corollary 5.1 as well. 

The reader may notice that individual fundamental solitons at large time in 

Fig. 5.11 appear to have different heights, while Theorem 5.3 predicts these funda-

mental solitons should approach the same height. It turns out that this discrepancy is 

due to the fact that the time shown in Fig. 5.11 is not large enough. We have checked 

that as time increases further, all these humps indeed approach the same height 2, 

which is the height of the fundamental rational soliton (5.48). 

The simplest partial-rogue wave in the .uN1,N1
(x, t) family is .u1,1(x, t) with . p0 =√

3/2. Under parameter normalization (5.66), this .u1,1(x, t) solution still contains 

a free real parameter .a1,2. However, we have found that this .u1,1(x, t) solution can 

be written as 

.u1,1(x, t) = σ1,0(x̃, t̃ )

σ0,0(x̃, t̃ )
ei[ 1

2 (x+6t)− 1
8 t], (5.72) 

where functions .σ0,0 and .σ1,0 are as given in Eqs. (5.68)–(5.69), and 

.x̃ = x̂ + 22/3

31/6
a1,2, t̃ = t − 25/3

313/6
a1,2 + 24/3

311/6
a2

1,2. (5.73) 

Thus, after a shift of the .(x̂, t) axes, this .u1,1(x, t) solution with free parameter . a1,2

is equivalent to the .u1,0(x, t) solution given in Eqs. (5.67)–(5.69). This . u1,1(x, t)

solution, in the .(x̂, t) plane with .a1,2 = 3, is plotted in Fig. 5.12a. This is certainly 

a partial-rogue wave. 

The next two solutions in the .uN1,N1
(x, t) family are .u2,2(x, t) and . u3,3(x, t)

with .p0 =
√

3/2. Under parameter normalization (5.66), these solutions still contain 

a number of free real parameters. When we choose 

.a4,1 = a5,1 = 0, a1,2 = a2,2 = a4,2 = 3 (5.74) 

in .u2,2(x, t) and 

.a4,1 = a5,1 = a7,1 = a8,1 = 0, a1,2 = a2,2 = a4,2 = a5,2 = a7,2 = 3 (5.75) 

in .u3,3(x, t), the corresponding true solutions are plotted from Theorem 5.1 and 

displayed in Fig. 5.12b and c respectively. Again, these are indeed partial-rogue 

waves. When .t → +∞, they split into two and four fundamental rational solitons 

respectively, consistent with Corollary 5.1.
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Fig. 5.12 Density plots of partial-rogue waves .|u1,1(x, t)| (a), .|u2,2(x, t)| (b), and .|u3,3(x, t)| (c), 

with .p0 =
√

3/2 in the Sasa-Satsuma equation (5.30). In (a), .a1,2 = 3. Parameter values in (b) 

and (c) are given in Eqs. (5.74) and (5.75), respectively. The horizontal axes are . ̂x = x + (33/4)t

5.4 Large-Time Patterns of Higher-Order Lumps in the 

Kadomtsev-Petviashvili I Equation 

In this section, we discuss large-time patterns of higher-order lumps in the 

Kadomtsev-Petviashvili (KP) I equation. This topic seems quite different from 

rogue waves. However, we will show that these higher-order lumps exhibit 

interesting patterns which are also described asymptotically by root structures 

of certain types of polynomials, analogous to rogue wave patterns. In addition, 

analytical treatments for lump patterns and rogue patterns have a lot in common. 

The KP equation arose in Kadomtsev and Petviashvili’s (1970) investigation 

on the stability of a Korteweg-de Vries soliton with respect to long transverse 

perturbations. This equation has two types, KP-I and KP-II, and our interest here 

is KP-I. This KP-I equation is 

. (ut + 6uux + uxxx)x − 3uyy = 0. (5.76) 

It models two-dimensional evolution of weakly nonlinear shallow water waves 

under large surface tension (Ablowitz and Segur 1979). It also arises in other 

branches of physics, such as nonlinear optics (Pelinovsky et al. 1995) and Bose-

Einstein condensates (Barashenkov and Makhankov 1988; Tsuchiya et al. 2008). 

The KP-I equation (5.76) is solvable by the inverse scattering transform (Novikov 

et al. 1984; Ablowitz and Clarkson 1991). It admits stable fundamental lump 

solutions that are bounded rational functions decaying in all spatial directions 

(Petviashvili 1976; Manakov et al. 1977; Satsuma and Ablowitz 1979). It also 

admits a broad class of rational solutions that describe the interactions of these 

lumps. If individual lumps have distinct asymptotic velocities, then they would pass 

through each other without change in velocities or phases (Manakov et al. 1977; 

Satsuma and Ablowitz 1979). But if they have the same asymptotic velocities, 

they would undergo novel anomalous scattering, where the lumps would separate 

from each other in new spatial directions that are very different from their original 

incoming directions (Gorshkov et al. 1993; Ablowitz and Villarroel 1997; Ablowitz 

et al. 2000). In this section, we are concerned with this latter type of solutions, which
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we call higher-order lumps. They are also called multi-pole lumps in the literature 

(Ablowitz and Villarroel 1997; Ablowitz et al. 2000). 

5.4.1 Higher-Order Lump Solutions 

Analytical expressions of higher-order lumps have been derived by a wide variety of 

methods before (Pelinovsky and Stepanyants 1993; Gorshkov et al.  1993; Ablowitz 

and Villarroel 1997; Ablowitz et al. 2000; Dubard et al. 2010; Dubard and Matveev 

2013; Clarkson and Dowie 2017). Most of those solutions were special solutions, 

except for Ablowitz et al. (2000) where general higher-order lump solutions were 

derived by Darboux transformation. Those general solutions were given through 

determinants whose matrix elements involve differential operators with respect to 

the spectral parameter. More explicit expressions of general higher-order lumps 

were derived by Yang and Yang (2022b) using the bilinear method, and those 

explicit expressions are given in the following theorem. 

Theorem 5.5 General N -th order lumps of the KP-I equation (5.76) are  

. uΛ(x, y, t) = 2∂2
x ln σ, (5.77) 

where 

.σ(x, y, t) = det
1≤i,j≤N

(
mi,j

)
, (5.78) 

. mi,j =
min(ni ,nj )⎲

ν=0

⎛ |p|2
(p + p∗)2

⎞ν

Sni−ν

(
x+ + νs + ai

)
Snj −ν

⎛
(x+)∗ + νs∗ + a∗

j

⎞
,

(5.79) 

N is an arbitrary positive integer, .Λ ≡ (n1, n2, · · · nN ) is a vector of arbitrary 

positive integers, p is an arbitrary non-imaginary complex number, the asterisk ‘*’ 

represents complex conjugation, the vector .x+ =
(
x+

1 , x+
2 , · · ·

)
is defined by 

.x+
k = p

1

k!x + p2 2k

k! iy + p3 3k

k! (−4)t, (5.80) 

the vector .s = (s1, s2, · · · ) is defined through the expansion 

. ln

⎛
eκ − 1

κ

p + p∗

p eκ + p∗

⎞
=

∞⎲

j=1

sj κj , (5.81) 

vectors . ai are 

.ai =
(
ai,1, ai,2, · · · , ai,ni

)
, (5.82)
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and .ai,j (1 ≤ i ≤ N, 1 ≤ j ≤ ni) are free complex constants. 

The proof of this theorem can be found in Yang and Yang (2022b). 

The fundamental lump can be obtained from Theorem 5.5 by taking .N = 1 and 

.n1 = 1. Through a shift of the .(x, y) axes, we can normalize .a1,1 = 0. In addition, 

we can take .p = 1 without loss of generality (Yang and Yang 2022b). In this case, 

the fundamental lump’s expression is 

.u1(x, y, t) = 2∂2
x ln

⎛
(x − 12t)2 + 4y2 + 1

4

⎞
. (5.83) 

This is a single lump with peak amplitude 16 that is moving at velocity 12. 

5.4.2 Wronskian-Hermite Polynomials and Their Root 

Structures 

At large time, patterns of higher-order lumps turn out to be closely related 

to root structures of Yablonskii-Vorob’ev polynomials and Wronskian-Hermite 

polynomials. Yablonskii-Vorob’ev polynomials and their root structures have been 

introduced in Sect. 3.1.1. Here, we introduce Wronskian-Hermite polynomials and 

their root structures. 

Let .qk(z) be polynomials defined by 

.

∞⎲

k=0

qk(z)ϵ
k = exp

⎛
zϵ + ϵ2

⎞
. (5.84) 

These .qk(z) polynomials are related to Hermite polynomials through simple variable 

scalings. Then, for any positive integer N and index vector .Λ = (n1, n2, . . . , nN ), 

where .{ni} are positive and distinct integers in ascending order, i.e., . n1 < n2 <

· · · < nN , the Wronskian-Hermite polynomial .WΛ(z) is defined as the Wronskian 

.WΛ(z) = Wron
⎾
qn1

(z), qn2
(z), . . . , qnN

(z)
⎤
, (5.85) 

or equivalently, 

.WΛ(z) =

|||||||||

qn1
(z) qn1−1(z) · · · qn1−N+1(z)

qn2
(z) qn2−1(z) · · · qn2−N+1(z)
...

...
...

...

qnN
(z) qnN−1(z) · · · qnN−N+1(z)

|||||||||
, (5.86) 

since we can see .q '
k+1(z) = qk(z) from the definition (5.84). In the above 

determinant, .qk(z) ≡ 0 when .k < 0.
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Regarding root structures of Wronskian-Hermite polynomials . WΛ(z), we have  

the following facts. 

1. The degree of the polynomial .WΛ(z) is 

.ρ =
N⎲

i=1

ni − N(N − 1)

2
. (5.87) 

This fact can be seen from the definition (5.86). 

2. The multiplicity of the zero root in .WΛ(z) is a triangular number and equal to 

.d(d + 1)/2, where 

.d = kodd − keven, (5.88) 

and .kodd , .keven are the numbers of odd and even elements in the index vector 

.(n1, n2, . . . , nN ) respectively. This fact was mentioned in Felder et al. (2012) and 

García-Ferrero and Gómez-Ullate (2015) and proved in Bonneux et al. (2020). If 

.d(d + 1)/2 = 0, i.e., .d = 0 or . −1, then zero is not a root of .WΛ(z). 

3. The polynomial .WΛ(z) can be factored as .WΛ(z) = zd(d+1)/2f (ζ ), where d is 

given in Eq. (5.88), .ζ ≡ z2, and .f (ζ ) is a polynomial of . ζ with real coefficients 

and a nonzero constant term (Bonneux et al. 2020). 

4. If . z0 is a root of . WΛ(z), so are .−z0, z
∗
0 and .−z∗

0. This quartet root symmetry can 

be seen from the above factorization of .WΛ(z) and the fact that the coefficients 

of the polynomial .WΛ(z) are real. As a consequence of this quartet symmetry, 

the root structure of .WΛ(z) is non-triangular. This contrasts Yablonskii–Vorob’ev 

polynomials, which feature triangular root structures. 

5. The polynomial .WΛ(z) has only zero roots if and only if . (n1, n2, . . . , nN ) =
(1, 3, 5, · · · , 2N − 1) (Yang and Yang 2022b). 

On roots of Wronskian-Hermite polynomials, beside the above facts, it has also 

been conjectured that all roots of every Wronskian-Hermite polynomial .WΛ(z) are 

simple, except possibly the zero root (Felder et al. 2012). If this conjecture holds, 

then the number of nonzero roots in .WΛ(z) would be 

.NW = ρ − d(d + 1)

2
, (5.89) 

where . ρ is the degree of polynomial .WΛ(z) given in Eq. (5.87). 

To illustrate root structures of Wronskian-Hermite polynomials, we choose two 

index vectors 

.Λ1 = (2, 3, 4, 5), Λ2 = (3, 4, 5, 7, 9). (5.90) 

For . Λ1, .d = 2 − 2 = 0, and thus zero is not a root of .WΛ1
(z) according to the 

second fact in the earlier text. For . Λ2, .d = 4 − 1 = 3, and thus zero is a root of
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Fig. 5.13 Root structures of Wronskian-Hermite polynomials .WΛ1
(z) (left) and .WΛ2

(z) (right) in 

the complex plane z, where index vectors . Λ1 and . Λ2 are given in Eq. (5.90) 

multiplicity six in .WΛ2
(z). Indeed, the full expressions of these two polynomials are 

. WΛ1
(z) = z8 − 16z6 + 120z4 + 720

2880
,

WΛ2
(z) = −

z6
(
z12 − 12z10 + 180z8 + 672z6 − 7056z4 − 181440z2 − 1270080

)

2743372800
,

where we can clearly see zero is not a root of .WΛ1
(z) and is a root of multiplicity 

six in .WΛ2
(z). Full root structures of these two polynomials are plotted in Fig. 5.13. 

It is seen that for the first polynomial, its root structure is rectangular (it is not 

an exact rectangle, but close). For the second polynomial, its root structure is quasi-

rectangular with a zero root in the center. All nonzero roots in these two polynomials 

are simple. 

5.4.3 Large-Time Patterns of Higher-Order Lumps 

Now, we consider patterns of higher-order lumps at large times. In this study, we 

will set .n1 < n2 < · · · < nN and .p = 1 without loss of generality (Yang and Yang 

2022b). In this case, the constant factor in Eq. (5.79) simplifies to .1/4ν . 

It turns out that pattern analysis of lumps depends on whether vector elements 

.ai,j of internal parameters .{ai} depend on the i index. Here, we only consider the 

case where .ai,j is independent of the i index. In this case, since the length of vector 

. ai is . ni , and .n1 < n2 < · · · < nN , then, each . ai for .i < N is just a truncation of the 

longest vector . aN . Since every . ai can be extended to the full . aN , and the extended 

parts are dummy parameters which do not appear in the actual solution formulae, 

by performing this . ai extension, we can say all .{ai} vectors are the same in this case 

and thus denote .ai = a. The first element . a1 of . a can be further absorbed into . (x, y)

through a coordinate shift of
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.x + ℜ(a1) → x, y + 1

2
𝔍(a1) → y, (5.91) 

where . ℜ and . 𝔍 represent the real and imaginary parts of a complex number. Then, 

our parameter choices will be 

.ai = a = (0, a2, a3, · · · ). (5.92) 

Under these parameters, our theorem on patterns of higher-order lumps at large 

times is stated below (Yang and Yang 2022b). 

Theorem 5.6 For .|t | ⪢ 1, the following asymptotics on the higher-order lump 

solution .uΛ(x, y, t) holds. 

1. If .WΛ(z) has nonzero roots that are all simple, then there will be an outer 

region that is .O
(
|t |1/2

)
away from the wave center of .(x, y) = (12t, 0), or  

.

√
(x − 12t)2 + y2 = O

(
|t |1/2

)
. In this outer region, the higher-order lump 

.uΛ(x, y, t) asymptotically separates into .NW fundamental lumps . u1(x −x0, y −
y0, t), where .NW is given in Eq. (5.89), .u1(x, y, t) is given in Eq. (5.83), the lump 

positions .(x0, y0) are given by 

.x0 = ℜ

⎛
z0(−12t)1/2

⎞
− ℜ(Δ), y0 =

𝔍
(
z0(−12t)1/2

)

2
− 𝔍(Δ)

2
, (5.93) 

. z0 is each of the .NW nonzero simple roots of .WΛ(z), and .Δ = Δ(Λ, z0) is an 

.O(1) complex constant given by 

. Δ = 1

W '
Λ(z0)

⎧
⎨
⎩λ

N⎲

j=1

det
1≤i≤N

(
qni

, · · · , qni−(j−2),

qni−(j−1)−2, qni−j , · · · , qni−(N−1)

)
z=z0

+4

3

N⎲

j=1

det
1≤i≤N

(
qni

, · · · , qni−(j−2), qni−(j−1)−3,

qni−j , · · · , qni−(N−1)

)
z=z0

}
, (5.94) 

and 

.λ =
⎧

1
2
ℜ(z0) + i𝔍(z0), when t < 0,

ℜ(z0) + 1
2

i𝔍(z0), when t > 0.
(5.95) 

The absolute error of this fundamental-lump approximation is .O(|t |−1/2). 

Expressed mathematically, when .(x, y) is in the neighborhood of each of these 

outer fundamental lumps, i.e., .(x − 12t − x0)
2 + (y − y0)

2 = O(1) with .(x0, y0)
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given in (5.93), we have the following solution asymptotics 

.uΛ(x, y, t) = u1(x − x0, y − y0, t) + O
⎛
|t |−1/2

⎞
, |t | ⪢ 1. (5.96) 

2. If .WΛ(z) has a zero root, i.e., .d /= 0 and .d /= −1, where d is as defined in 

Eq. (5.88), then there will be an inner region that is within .O(|t |1/3) of the wave 

center .(x, y) = (12t, 0), or .

√
(x − 12t)2 + y2 ≤ O

(
|t |1/3

)
. In this inner region 

lies .d(d + 1)/2 fundamental lumps .u1(x − x0, y − y0, t), where .u1(x, y, t) is 

given in Eq. (5.83), the lump positions .(x0, y0) are given by 

.x0 = ℜ(z0) (12t)1/3 − ℜ(Δ̂), y0 = 𝔍(z0)

2
(12t)1/3 − 1

2
𝔍(Δ̂), (5.97) 

. z0 is each of the .d(d + 1)/2 simple roots of the Yablonskii–Vorob’ev polynomial 

.Q
d̂
(z), with . d̂ defined as 

.d̂ =
⎧

d, when d ≥ 0,

|d| − 1, when d ≤ −1,
(5.98) 

and .Δ̂ = Δ̂(Λ, z0) is an .O(1) complex constant whose expression can be 

found in Yang and Yang (2022b). The absolute error of this fundamental-lump 

approximation is .O(|t |−1/3) when .z0 /= 0 and .O(t−1) when zero is a root of 

.Q
d̂
(z) and .z0 = 0. Expressed mathematically, when .(x, y) is in the neighborhood 

of each of these inner fundamental lumps, i.e., .(x−12t−x0)
2+(y−y0)

2 = O(1), 

with .(x0, y0) given in (5.97), we have the following solution asymptotics for 

.|t | ⪢ 1, 

.uΛ(x, y, t) =
⎧

u1(x − x0, y − y0, t) + O
(
|t |−1/3

)
, if z0 /= 0,

u1(x − x0, y − y0, t) + O
(
t−1
)
, if z0 = 0.

(5.99) 

3. When .(x, y) is not in the neighborhood of any of the above fundamental lumps 

specified by Eqs. (5.93) and (5.97) in the  .(x, y) plane, including when .(x, y) is 

between the outer and inner regions, .uΛ(x, y, t) asymptotically approaches zero 

as .|t | → ∞. 

Now, we explain what Theorem 5.6 says regarding solution patterns at large 

times. The theorem indicates that, the whole wave field is generically split up into 

two regions featuring different patterns. 

1. The outer region is the region that is .O(|t |1/2) away from the wave center 

.(x, y) = (12t, 0). This region would exist if .WΛ(z) has nonzero roots, i.e., 

when .Λ /= (1, 3, 5, . . . , 2N − 1). In this region, there are .NW well-separated 

fundamental lumps. Relative to the moving frame of x-direction velocity 12, 

positions .(x0, y0) of these fundamental lumps, to the leading order of large time, 

are just a linear transformation of .WΛ(z)’s nonzero-root structure. When t is
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large negative, these fundamental-lump positions to the leading order are 

.

⎛
x−

0

y−
0

⎞
= (12|t |)1/2

⎛
1 0

0 1
2

⎞⎛
ℜ(z0)

𝔍(z0)

⎞
, (5.100) 

where . z0 is any nonzero root of .WΛ(z). However, when t is large positive, these 

lump positions become 

.

⎛
x+

0

y+
0

⎞
= (12|t |)1/2

⎛
0 −1
1
2

0

⎞⎛
ℜ(z0)

𝔍(z0)

⎞
. (5.101) 

In the former case, the wave pattern formed by these fundamental lumps is 

simply a stretching of the Wronskian-Hermite nonzero-root structure along both 

horizontal and vertical directions. But in the latter case, on top of this stretching, 

the horizontal and vertical directions are also swapped. In both cases, the 

resulting wave patterns from transformations (5.100)–(5.101) are non-triangular 

since the root structure of .WΛ(z) is non-triangular. 

From the above two transformations, we see that fundamental lumps at large 

negative time . −t and large positive time . +t in the outer region are related as 

.

⎛
x+

0

y+
0

⎞
=
⎛

0 −2
1
2

0

⎞⎛
x−

0

y−
0

⎞
. (5.102) 

Thus, when time goes from large negative to large positive, outer-region lump 

patterns in the .(x, y) plane have swapped horizontal and vertical directions. 

In addition, stretching of different amounts has also occurred along the two 

directions. For certain single-line patterns of fundamental lumps, a change from a 

vertical line to a horizontal line in the .(x, y) plane has been graphically reported 

in Chen et al. (2016) and analytically explained in Chang (2018). Here, we 

proved this fact for the general case. 

In this outer region, fundamental lumps separate from each other in proportion 

to .|t |1/2 at large time. 

2. The inner region is the region that is within .O(|t |1/3) of the wave center . (x, y) =
(12t, 0). This region would exist if .WΛ(z) has a zero root, whose multiplicity is 

necessarily a triangular number of the form .d(d + 1)/2 for an integer d defined 

in Eq. (5.88) that is not 0 and . −1. In this inner region, the solution . uΛ(x, y, t)

at large time would comprise .d(d + 1)/2 well-separated fundamental lumps. 

Relative to the moving frame of x-direction velocity 12, positions .(x0, y0) of 

these fundamental lumps, to the leading order of large time, are just a linear 

transformation of .Q
d̂
(z)’s root structure, i.e., 

.

⎛
x0

y0

⎞
= (12t)1/3

⎛
1 0

0 1
2

⎞⎛
ℜ(z0)

𝔍(z0)

⎞
, (5.103)
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where . d̂ is defined in Eq. (5.98), and . z0 is each of the .d(d + 1)/2 simple roots of 

.Q
d̂
(z). The reader is reminded that .d̂(d̂+1)/2 = d(d+1)/2. Thus, the pattern of 

these .d(d + 1)/2 fundamental lumps in the inner region at large time is a simple 

stretching of .Q
d̂
(z)’s root structure, which is triangular if .d̂ > 1. In addition, as 

time evolves from large negative to large positive, these triangular lump patterns 

would reverse direction along the x-axis. Furthermore, fundamental lumps in this 

inner region separate from each other in proportion to .|t |1/3 at large time. 

The above results reveal that, the pattern of the solution .uΛ(x, y, t) at large 

time generically comprises an outer region featuring the non-triangular shape of 

the stretched nonzero-root structure of the Wronskian-Hermite polynomial .WΛ(z), 

and an inner region featuring the triangular shape of the stretched root structure of 

the Yablonskii–Vorob’ev polynomial .Q
d̂
(z). As time changes from large negative to 

large positive, the outer pattern swaps horizontal and vertical directions with certain 

stretching, while the inner pattern reverses the horizontal direction. These different 

types of pattern transformations in the outer and inner regions of the same solution 

are fascinating. 

When .Λ = (1, 3, 5, . . . , 2N − 1), the outer pattern disappears. When .d = 0 or 

. −1, the inner region disappears. In other situations, both regions would arise. 

Ablowitz et al. (2000) reported that at large time, fundamental lumps in the 

higher-order lump complex separate from each other in proportion to . |t |q , where 

.
1
3

≤ q ≤ 1
2

. Our results indicate that when . ai = a, this q value can only be .1/3 or 

. 1/2, nothing in between. 

5.4.4 Comparison Between True Lump Patterns and Analytical 

Predictions 

Next, we compare our analytical predictions of lump patterns with true solutions. 

As an example, we choose .N = 5 and .Λ = (3, 4, 5, 7, 9). In this case, .d = 3, and 

thus zero is a root of multiplicity six in .WΛ(z), and the inner region is present. Since 

.Λ /= (1, 3, 5, . . . , 2N − 1), the outer region exists as well. 

Root structure of the corresponding Wronskian-Hermite polynomial has been 

displayed in Fig. 5.13 (right panel). It is seen that this .WΛ(z) admits 12 simple 

nonzero roots which form a quasi-rectangular shape, plus the zero root of multiplic-

ity six at the center of the quasi-rectangle. Using formula (5.94), we find that for 

these twelve nonzero roots . z0 of .WΛ(z) in the right panel of Fig. 5.13, from the left 

to right, 

. Δ(Λ, z0) ≈ −3.9717 ± 0.4315i,−3.6158,−2.0475 ± 1.0544i,−0.6449,

−0.6449,−2.0475 ± 1.0544i,−3.6158,−3.9717 ± 0.4315i

when .t > 0, and
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Fig. 5.14 Predicted solutions .uΛ(x, y, t) with .Λ = (3, 4, 5, 7, 9) at time values of .t = −10 (left) 

and .t = 10 (right) in the KP-I equation 

. Δ(Λ, z0) ≈ 0.1826 ± 0.4315i,−0.6956,−0.1160 ± 1.0544i, 1.0043,

1.0043,−0.1160 ± 1.0544i,−0.6956, 0.1826 ± 0.4315i

when .t < 0. Since these . Δ values are different for different roots, outer lumps would 

experience different amounts of .O(1) position shifts according to formula (5.93). 

The zero root of multiplicity six in .WΛ(z) gives rise to an inner region of six 

fundamental lumps, whose positions are predicted by the roots of .Q3(z) from 

Eq. (5.97). Here, we find from . Δ̂’s formula in Yang and Yang (2022b) that 

. Δ̂ = 8/7,

which is independent of the root . z0 of .Q3(z). Since this . Δ̂ value is the same for 

all six roots of .Q3(z), the six lumps in the inner region would experience the same 

amount of .O(1) position shift from formula (5.97). 

Using the nonzero roots of .WΛ(z) and roots of .Q3(z), together with the above 

. Δ and . Δ̂ values, we can predict fundamental-lump locations from formulae (5.93) 

and (5.97) of Theorem 5.6, for the outer and inner regions, respectively. From that, 

we can draw the predicted solution in the .(x, y) plane at any large time. When 

.t = ±10, these predicted solutions are plotted in the left and right panels of 

Fig. 5.14, respectively. The predicted patterns contain twelve fundamental lumps 

which form a quasi-rectangular pattern in the outer region of the .(x, y) plane, plus 

six fundamental lumps which form a triangle in the inner region. At .t = −10, 

the outer lump pattern is roughly a stretching of .WΛ(z)’s nonzero-root structure, 

while the inner lump pattern is a stretching of .Q3(z)’s root structure. At .t = 10, 

however, the predicted outer lump pattern has swapped its .(x, y) axes from the 

.t = −10 state [plus additional .(x, y)-direction stretching], while the predicted inner 

triangular lump pattern has reversed its direction along the x-axis. 

To confirm these asymptotic predictions, we plot in Fig. 5.15 the corresponding 

true solutions .uΛ(x, y, t) at six time values of .t = −10,−2,−0.2, 0, 2 and 10.
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Fig. 5.15 True solutions .uΛ(x, y, t) with .Λ = (3, 4, 5, 7, 9) and .a = (0, 0, 0, 0, 0, 0, 0, 0, 0), at  

various times whose values are shown inside the panels 

In these true solutions, we have selected all-zero internal parameters of . a =
(0, 0, 0, 0, 0, 0, 0, 0, 0). It is seen that at large times of .t = ±10, the true solutions 

closely resemble our predictions in the previous figure. Specifically, the true 

solutions at these large times also split into outer and inner regions, with outer
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patterns quasi-rectangular and inner patterns triangular; and as time changes from 

.t = −10 to .t = 10, the outer pattern swaps its .(x, y) orientations, while the inner 

pattern reverses in x-direction. All these features of the true solution match exactly 

our predictions in Fig. 5.14. 

True solution graphs at intermediate time values in Fig. 5.15 reveal how these 

striking pattern transformations in outer and inner regions take place. It is seen that 

all fundamental lumps in the inner and outer regions at large negative time first move 

toward each other. Then they merge and coalesce at .t ≈ 0. Afterwards, all these 

fundamental lumps re-emerge and move away from each other, but not returning 

to their pre-merging state. Instead, the quasi-rectangular outer lumps have swapped 

their x and y directions, and the triangular inner lumps have reversed the x-direction. 

These pattern transformations are visually miraculous and mysterious. But due to 

our Theorem 5.6, they can now be completely understood from a mathematical point 

of view. 

Error decay rates in the outer and inner regions as predicted in Theorem 5.6 have 

also been numerically verified. See Yang and Yang (2022b) for details.



References 

M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering 
(Cambridge University Press, Cambridge, 1991) 

M.J. Ablowitz, J.T. Cole, Transverse instability of rogue waves. Phys. Rev. Lett. 127, 104101 
(2021) 

M.J. Ablowitz, J.F. Ladik, A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 
55, 213 (1976) 

M.J. Ablowitz, Z.H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. 
Lett. 110, 064105 (2013) 

M.J. Ablowitz, Z.H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear 
Schrödinger equation. Nonlinearity 29, 915 (2016) 

M.J. Ablowitz, H. Segur, On the evolution of packets of water waves. J. Fluid Mech. 92, 691 (1979) 
M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 

1981) 
M.J. Ablowitz, J. Villarroel, Solutions to the time dependent Schrödinger and the Kadomtsev-

Petviashvili equations. Phys. Rev. Lett. 78, 570 (1997) 
M.J. Ablowitz, S. Chakravarty, A.D. Trubatch, J. Villarroel, A novel class of solutions of the non-

stationary Schrödinger and the Kadomtsev-Petviashvili I equations. Phys. Lett. A 267, 132 
(2000) 

A.B. Aceves, S.Wabnitz, Self-induced transparency solitons in nonlinear refractive periodic media. 
Phys. Lett. A 141, 37 (1989) 

M. Adler, J. Moser, On a class of polynomials associated with the Korteweg de Vries equation. 
Commun. Math. Phys. 61, 1 (1978) 

D.S. Agafontsev, V.E. Zakharov, Integrable turbulence generated from modulational instability of 
cnoidal waves. Nonlinearity 29, 3551 (2016) 

G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 2001) 
N. Akhmediev, V.I. Korneev, Modulation instability and periodic solutions of the nonlinear 

Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986) 
N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Rogue waves and rational solutions of the 

nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009a) 
N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a 

trace. Phys. Lett. A 373, 675 (2009b) 
H. Alfvén, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405 (1942) 
P.A. Altin, G. McDonald, D. Döring, J.E. Debs, T.H. Barter, J.D. Close, N.P. Robins, S.A. Haine, 

T.M. Hanna, R.P. Anderson, Optically trapped atom interferometry using the clock transition 
of large . 

87Rb Bose-Einstein condensates. New J. Phys. 13, 065020 (2011) 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
B. Yang, J. Yang, Rogue Waves in Integrable Systems, 
https://doi.org/10.1007/978-3-031-66793-0

405

https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0


406 References

M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-
Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995) 

A. Ankiewicz, N. Akhmediev, J.M. Soto-Crespo, Discrete rogue waves of the Ablowitz-Ladik and 
Hirota equations. Phys. Rev. E 82, 026602 (2010a) 

A. Ankiewicz, J.M. Soto-Crespo, N. Akhmediev, Rogue waves and rational solutions of the Hirota 
equation. Phys. Rev. E 81, 046602 (2010b) 

A. Ankiewicz, D.J. Kedziora, N. Akhmediev, Rogue wave triplets. Phys. Lett. A 375, 2782 (2011) 
H. Aref, Vortices and polynomials. Fluid Dynam. Res. 39, 5 (2007) 
H. Bailung, Y. Nakamura, Observation of modulational instability in a multi-component plasma 

with negative ions. J. Plasma Phys. 50, 231 (1993) 
H. Bailung, S.K. Sharma, Y. Nakamura, Observation of Peregrine solitons in a multicomponent 

plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011) 
B. Bakkali-Hassani, C. Maury, Y.Q. Zou, É. Le Cerf, R. Saint-Jalm, P.C.M. Castilho, S. 

Nascimbene, J. Dalibard, J. Beugnon, Realization of a Townes soliton in a two-component 
planar Bose gas. Phys. Rev. Lett. 127, 023603 (2021) 

F. Balogh, M. Bertola, T. Bothner, Hankel determinant approach to generalized Vorob’ev-
Yablonski polynomials and their roots. Constr. Approx. 44, 417 (2016) 

U. Bandelow, N. Akhmediev, Sasa-Satsuma equation: Soliton on a background and its limiting 
cases. Phys. Rev. E 86, 026606 (2012) 

P.P. Banerjee, A. Korpel, Subharmonic generation by resonant three-wave interaction of deep-water 
capillary waves. Phys. Fluids 25, 1938 (1982) 

I.V. Barashenkov, V.G. Makhankov, Soliton-like bubbles in the system of interacting bosons. Phys. 
Lett. A 128, 52 (1988) 

F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, Solutions of the vector nonlinear Schrödinger 
equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012) 

F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, Rogue waves emerging from the resonant 
interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013) 

F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, S. Wabnitz, Vector rogue waves 
and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 
(2014) 

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, B. Kibler, Observation of a group of dark 
rogue waves in a telecommunication optical fiber. Phys. Rev. A 97, 013852 (2018) 

T.B. Benjamin, Instability of periodic wavetrains in nonlinear dispersive systems. Proc. R. Soc. 
Lond. A 299, 59 (1967) 

T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water Part 1. Theory. J. Fluid 
Mech. 27, 417 (1967) 

D.J. Benney, A general theory for interactions between short and long waves. Stud. Appl. Math. 
56, 81 (1977) 

D.J. Benney, A.C. Newell, Nonlinear wave envelopes. J. Math. Phys. 46, 133 (1967) 
D.J. Benney, G.J. Roskes, Wave instabilities. Stud. Appl. Math. 48, 377 (1969) 
M. Bertola, G.A. El, A. Tovbis, Rogue waves in multiphase solutions of the focusing nonlinear 

Schrödinger equation. Proc. R. Soc. A 472, 20160340 (2016) 
M. Bertola, A. Tovbis, Maximal amplitudes of finite-gap solutions for the focusing nonlinear 

Schrödinger equation. Commun. Math. Phys. 354, 525 (2017) 
D. Bian, B.L. Guo, L.M. Ling, High-order soliton solution of Landau-Lifshitz equation. Stud. 

Appl. Math. 134, 181 (2015) 
D. Bilman, P.D. Miller, A robust inverse scattering transform for the focusing nonlinear 

Schrödinger equation. Commun. Pure Appl. Math. 72, 1722 (2019) 
D. Bilman, L.M. Ling, P.D. Miller, Extreme superposition: Rogue waves of infinite order and the 

Painlevé-III hierarchy. Duke Math. J. 169, 671 (2020) 
N. Bonneux, C. Dunning, M. Stevens, Coefficients of Wronskian Hermite polynomials. Stud. Appl. 

Math. 144, 245 (2020) 
J. Boussinesq, Theorie de I’intumescence Liquid, Appleteonde Solitaire au de Translation, se 

Propageantdansun Canal Rectangulaire. Comptes Rendus 72, 755 (1871)



References 407

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire 
horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement 
pareilles de la surface au fond. J. Pure Appl. 17, 55 (1872) 

R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008) 
R.J. Buckingham, P.D. Miller, Large-degree asymptotics of rational Painlevé-II functions: noncrit-

ical behaviour. Nonlinearity 27, 2489 (2014) 
R.A. Cairns, The role of negative energy waves in some instabilities of parallel flows. J. Fluid 

Mech. 92, 1 (1979) 
A. Calini, C.M. Schober, Characterizing JONSWAP rogue waves and their statistics via inverse 

spectral data. Wave Motion 71, 5 (2017) 
A. Calini, C.M. Schober, M. Strawn, Linear instability of the Peregrine breather: numerical and 

analytical investigations. Appl. Numer. Math. 141, 36 (2019) 
K.M. Case, S.C. Chiu, Three-wave resonant interactions of gravity-capillary waves. Phys. Fluids 

20, 742 (1977) 
A. Chabchoub, N. Akhmediev, Observation of rogue wave triplets in water waves. Phys. Lett. A 

377, 2590 (2013) 
A. Chabchoub, R. Grimshaw, The hydrodynamic nonlinear Schrödinger equation: space and time. 

Fluids 1, 23 (2016) 
A. Chabchoub, N. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank. Phys. 

Rev. Lett. 106, 204502 (2011) 
A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Super rogue waves: observation of a 

higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012a) 
A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, N. Akhmediev, 

Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 
056601 (2012b) 

H.N. Chan, K.W. Chow, Rogue waves for an alternative system of coupled Hirota equations: 
structural robustness and modulation instabilities. Stud. Appl. Math. 139, 78 (2017) 

H.N. Chan, K.W. Chow, D.J. Kedziora, R. Grimshaw, E. Ding, Rogue wave modes for a derivative 
nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014) 

J.H. Chang, Asymptotic analysis of multilump solutions of the Kadomtsev-Petviashvili-I equation. 
Theor. Math. Phys. 195, 676 (2018) 

S. Chen, Twisted rogue-wave pairs in the Sasa-Satsuma equation. Phys. Rev. E 88, 023202 (2013) 
S. Chen, Darboux transformation and dark rogue wave states arising from two-wave resonance 

interaction. Phys. Lett. A 378, 1095 (2014) 
S. Chen, D. Mihalache, Vector rogue waves in the Manakov system: diversity and compossibility. 

J. Phys. A 48, 215202 (2015) 
J. Chen, D. Pelinovsky, Rogue periodic waves of the focusing nonlinear Schrödinger equation. 

Proc. R. Soc. A 474, 20170814 (2018) 
H.H. Chen, Y.C. Lee, C.S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering 

method. Phys. Scr. 20, 490 (1979) 
Z. Chen, M. Segev, T.H. Coskun, D.N. Christodoulides, Y.S. Kivshar, Coupled photorefractive 

spatial-soliton pairs. J. Opt. Soc. Am. B 14, 3066 (1997) 
S. Chen, P. Grelu, J.M. Soto-Crespo, Dark- and bright-rogue-wave solutions for media with long-

wave-short-wave resonance. Phys. Rev. E 89, 011201 (2014a) 
S. Chen, J.M. Soto-Crespo, P. Grelu, Dark three-sister rogue waves in normally dispersive optical 

fibers with random birefringence. Opt. Express 22, 27632 (2014b) 
S. Chen, J.M. Soto-Crespo, P. Grelu, Watch-hand-like optical rogue waves in three-wave interac-

tions. Optics Express 23, 349 (2015) 
S. Chen, P. Grelu, D. Mihalache, F. Baronio, Families of rational soliton solutions of the 

Kadomtsev-Petviashvili I equation. Rom. Rep. Phys. 68, 1407 (2016) 
J. Chen, Y. Chen, B.F. Feng, K. Maruno, Y. Ohta, General high-order rogue waves of the (1+1)-

dimensional Yajima-Oikawa system. J. Phys. Soc. Jpn. 87, 094007 (2018a) 
J. Chen, B.F. Feng, K. Maruno, Y. Ohta, The derivative Yajima-Oikawa system: bright, dark soliton 

and breather solutions. Stud. Appl. Math. 141, 145 (2018b)



408 References

S. Chen, Y. Zhou, L. Bu, F. Baronio, J.M. Soto-Crespo, D. Mihalache, Super chirped rogue waves 
in optical fibers. Opt. Express 27, 11370 (2019) 

J. Chen, B. Yang, B.F. Feng, Rogue waves in the massive Thirring model. Stud. Appl. Math. 151, 
1020 (2023) 

K.W. Chow, H.N. Chan, D.J. Kedziora, R. Grimshaw, Rogue wave modes for the long wave short 
wave resonance model. J. Phys. Soc. Jpn. 82, 074001 (2013) 

A. Chowdhury, J.A. Tataronis, Long wave short wave resonance in nonlinear negative refractive 
index media. Phys. Rev. Lett. 100, 153905 (2008) 

D.N. Christodoulides, R.I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveg-
uides. Opt. Lett. 13, 794 (1988) 

D.N. Christodoulides, R.I. Joseph, Slow bragg solitons in nonlinear periodic structures. Phys. Rev. 
Lett. 62, 1746 (1989) 

P.A. Clarkson, The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44, 
5350 (2003) 

P.A. Clarkson, Special polynomials associated with rational solutions of the defocusing nonlinear 
Schrödinger equation and the fourth Painlevé equation. Eur. J. Appl. Math. 17, 293 (2006) 

P.A. Clarkson, Vortices and polynomials. Stud. Appl. Math. 123, 37 (2009) 
P.A. Clarkson, C.M. Cosgrove, Painlevé analysis of the nonlinear Schrödinger family of equations. 

J. Phys. A 20, 2003 (1987) 
P.A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue 

waves. Trans. Math. Appl. 1, 1 (2017) 
P.A. Clarkson, E.L. Mansfield, The second Painlevé equation, its hierarchy and associated special 

polynomials. Nonlinearity 16, R1 (2003) 
A.D. Craik, Wave Interactions and Fluid Flows (Cambridge University Press, Cambridge, 1985) 
A.D. Craik, J.A. Adam, Explosive resonant wave interactions in a three-layer fluid flow. J. Fluid 

Mech. 92, 15 (1979) 
J. Cuevas-Maraver, P.G. Kevrekidis, D.J. Frantzeskakis, N.I. Karachalios, M. Haragus, G. James, 

Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves. 
Phys. Rev. E 96, 012202 (2017) 

A. Davey, K. Stewartson, On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A. 
338, 101 (1974) 

B.C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, New York, 1972) 
K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, 

Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995) 
A. Degasperis, Darboux polynomial matrices: the classical massive Thirring model as a study case. 

J. Phys. A 48, 235204 (2015) 
A. Degasperis, S. Lombardo, Rational solitons of wave resonant-interaction models. Phys. Rev. E 

88, 052914 (2013) 
A. Degasperis, S. Wabnitz, A.B. Aceves, Bragg grating rogue wave. Phys. Lett. A 379, 1067 (2015) 
V.D. Djordjevic, L.G. Redekopp, On two-dimensional packets of capillary-gravity waves. J. Fluid 

Mech. 79, 703 (1977) 
P. Dubard, V.B. Matveev, Multi-rogue waves solutions: from the NLS to the KP-I equation. 

Nonlinearity 26, R93 (2013) 
P. Dubard, P. Gaillard, C. Klein, V.B. Matveev, On multi-rogue wave solutions of the NLS equation 

and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247 (2010) 
Z. Dutton, C.W. Clark, Effective one-component description of two-component Bose-Einstein 

condensate dynamics. Phys. Rev. A 71, 063618 (2005) 
K. Dysthe, H.E. Krogstad, P. Müller, Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287 (2008) 
B.J. Eggleton, C.M. de Sterke, R.E. Slusher, Bragg solitons in the nonlinear Schrödinger limit: 

experiment and theory. J. Opt. Soc. Am. B 16, 587 (1999) 
M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J.M. Dudley, G. Genty, Higher-

order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901 (2011) 
S.G. Evangelides, L.F. Mollenauer, J.P. Gordon, N.S. Bergano, Polarization multiplexing with 

solitons. J. Lightwave Technol. 10, 28 (1992)



References 409

G. Felder, A.D. Hemery, A.P. Veselov, Zeros of Wronskians of Hermite polynomials and Young 
diagrams. Physica D 241, 2131 (2012) 

B.F. Feng, Complex short pulse and coupled complex short pulse equations. Physica D 297, 62  
(2015) 

B.F. Feng, K. Maruno, Y. Ohta, Geometric formulation and multi-dark soliton solution to the 
defocusing complex short pulse equation. Stud. Appl. Math. 138, 343 (2017) 

B.F. Feng, X.D. Luo, M.J. Ablowitz, Z.H. Musslimani, General soliton solution to a nonlocal 
nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 
5385 (2018) 

B.F. Feng, R. Ma, Y. Zhang, General breather and rogue wave solutions to the complex short pulse 
equation. Physica D 439, 133360 (2022a) 

B.F. Feng, C. Shi, G. Zhang, C. Wu, Higher-order rogue wave solutions of the Sasa-Satsuma 
equation. J. Phys. A 55, 235701 (2022b) 

P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. 
Lett. 7, 118 (1961) 

B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Optical dark rogue 
waves. Sci. Rep. 6, 20785 (2016) 

S. Fukutani, K. Okamoto, H. Umemura, Special polynomials and the Hirota bilinear relations of 
the second and the fourth Painlevé equations. Nagoya Math. J. 159, 179 (2000) 

M. Funakoshi, M. Oikawa, The resonant interaction between a long internal gravity wave and a 
surface gravity wave packet. J. Phys. Soc. Jpn. 52, 1982 (1983) 

T.A. Gadzhimuradov, A.M. Agalarov, Towards a gauge-equivalent magnetic structure of the 
nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016) 

M. García-Ferrero, D. Gómez-Ullate, Oscillation theorems for the Wronskian of an arbitrary 
sequence of eigenfunctions of Schrödinger’s equation. Lett. Math. Phys. 105, 551 (2015) 

V.S. Gerdjikov, I. Ivanov, A quadratic pencil of general type and nonlinear evolution equations. II. 
Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130 (1983) 

V.S. Gerdjikov, A. Saxena, Complete integrability of nonlocal nonlinear Schrödinger equation. J. 
Math. Phys. 58, 013502 (2017) 

O. Gorbacheva, L. Ostrovsky, Nonlinear vector waves in a mechanical model of a molecular chain. 
Physica D 8, 223 (1983) 

K.A. Gorshkov, D.E. Pelinovsky, Y.A. Stepanyants, Normal and anomalous scattering, formation 
and decay of bound states of two-dimensional solitons described by the Kadomtsev-Petviashvili 
equation. J. Exp. Theor. Phys. 77, 237 (1993) 

R. Grimshaw, The modulation of an internal gravity-wave packet and the resonance with the mean 
motion. Stud. Appl. Math. 56, 241 (1977) 

E.P. Gross, Structure of a quantized vortex in boson systems. Il Nuovo Cimento 20, 454 (1961) 
B.L. Guo, L.M. Ling, Q.P. Liu, Nonlinear Schrödinger equation: generalized Darboux transforma-

tion and rogue wave solutions. Phys. Rev. E 85, 026607 (2012) 
B.L. Guo, L.M. Ling, Q.P. Liu, High-order solutions and generalized Darboux transformations of 

derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317 (2013) 
L.J. Guo, Y.S. Zhang, S.W. Xu, Z.W. Wu, J.S. He, The higher order rogue wave solutions of the 

Gerdjikov-Ivanov equation. Phys. Scr. 89, 035501 (2014) 
L. Guo, L.Wang, Y. Cheng, J. He, High-order rogue wave solutions of the classical massive 

Thirring model equations. Commun. Nonlinear Sci. Numer. Simulat. 52, 11 (2017) 
K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J.M. Dudley, G. Millot, Peregrine soliton 

generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112 (2011) 
A. Hasegawa, Y. Kodama, Solitons in Fiber Communications (Clarendon Press, Oxford, 1995) 
A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive 

dielectric fibers. Appl. Phys. Lett. 23, 142 (1973) 
H. Hasimoto, J. Ono, Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805 (1972) 
J.S. He, H.R. Zhang, L.H. Wang, K. Porsezian, A.S. Fokas, Generating mechanism for higher-order 

rogue waves. Phys. Rev. E 87, 052914 (2013)



410 References

J.S. He, L. Wang, L. Li, K. Porsezian, R. Erdélyi, Few-cycle optical rogue waves: complex 
modified Korteweg de Vries equation. Phys. Rev. E 89, 062917 (2014) 

A. He, P. Huang, G. Zhang, J. Huang, Revisit of rogue wave solutions in the Yajima-Oikawa 
system. Nonlinear Dyn. 111, 9439 (2023) 

D.M. Henderson, J.L. Hammack, Experiments on ripple instabilities. Part 1. Resonant triads. J. 
Fluid Mech. 184, 15 (1987) 

R. Hirota, Exact N -soliton solutions of the wave equation of long waves in shallow-water and in 
nonlinear lattices. J. Math. Phys. 14, 810 (1973) 

R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004) 
M.A. Hoefer, J.J. Chang, C. Hamner, P. Engels, Dark-dark solitons and modulational instability in 

miscible two-component Bose-Einstein condensates. Phys. Rev. A 84, 041605(R) (2011) 
X. Huang, L.M. Ling, Soliton solutions for the nonlocal nonlinear Schrodinger equation. Eur. Phys. 

J. Plus 131, 148 (2016) 
E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University Press, 

Cambridge, 1990) 
M. Jimbo, T. Miwa, Solitons and infinite dimensional Lie algebras. Publ. RIMS, Kyoto Univ. 19, 

943 (1983) 
B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersive media. 

Sov. Phys. Dokl. 15, 539 (1970) 
K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé II equation. 

J. Math. Phys. 37, 4693 (1996) 
K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé IV equation. 

J. Phys. A 31, 2431 (1998) 
S. Kakei, N. Sasa, J. Satsuma, Bilinearization of a generalized derivative nonlinear Schrödinger 

equation. J. Phys. Soc. Jpn. 64, 1519 (1995) 
T. Kakutani, H. Ono, T. Taniuti, C.C. Wei, Reductive perturbation method in nonlinear wave 

propagation II. Application to hytromagnetic waves in cold plasma. J. Phys. Soc. Jpn. 24, 1159 
(1968) 

Y. Kametaka, On poles of the rational solution of the Toda equation of Painlevé-IV type. Proc. Jpn. 
Acad. A 59, 453 (1983) 

J.U. Kang, G.I. Stegeman, J.S. Aitchison, N. Akhmediev, Observation of Manakov spatial solitons 
in AlGaAs planar waveguides. Phys. Rev. Lett. 76, 3699 (1996) 

D.J. Kaup, A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation. J. Math. 
Phys. 19, 798 (1978) 

D.J. Kaup, A. Reiman, A. Bers, Space-time evolution of nonlinear three-wave interactions. I. 
Interaction in a homogeneous medium. Rev. Mod. Phys. 51, 275 (1979) 

D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Circular rogue wave clusters. Phys. Rev. E 84, 
056611 (2011) 

D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Classifying the hierarchy of nonlinear-Schrödinger-
equation rogue-wave solutions. Phys. Rev. E 88, 013207 (2013) 

D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Rogue waves and solitons on a cnoidal background. 
Eur. Phys. J. Spec. Topics 223, 43 (2014) 

P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzalez, Emergent Nonlinear Phenomena in 
Bose-Einstein Condensates: Theory and Experiment (Springer, Berlin, 2008) 

C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009) 
B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The 

Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010) 
Y.S. Kivshar, Stable vector solitons composed of bright and dark pulses. Opt. Lett. 17, 1322 (1992) 
Y. Kodama, A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. 

Quantum Electron. 23, 510 (1987) 
V.V. Konotop, J. Yang, D.A. Zezyulin, Nonlinear waves in .PT-symmetric systems. Rev. Mod. 

Phys. 88, 035002 (2016) 
A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear 

Schrödinger-type equations. J. Math. Phys. 25, 3433 (1984)



References 411

E.A. Kuznetsov, A.V. Mikhailov, On the completely integrability of the two-dimensional classical 
Thirring model. Teor. Mat. Fiz. 30, 193 (1977) 

L.M. Ling, The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete 
Contin. Dyn. Syst. S 9, 1975 (2016) 

L.M. Ling, B.L. Guo, L.C. Zhao, High-order rogue waves in vector nonlinear Schrödinger 
equations. Phys Rev E, 89, 041201(R) (2014) 

S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic 
waves. Zh. Eksp. Teor. Fiz. 65, 505 (1973). Sov. Phys. J. Exp. Theor. Phys. 38, 248 (1974) 

S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev, Two-dimensional solitons of 
the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977) 

V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer-Verlag, Berlin, 1991) 
L.F. McGoldrick, Resonant interactions among capillary-gravity waves. J. Fluid Mech. 21, 305 

(1965) 
L.F. McGoldrick, An experiment on second order capillary-gravity resonant interactions. J. Fluid 

Mech. 40, 251 (1970) 
C.R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quantum 

Electron. 23, 174 (1987) 
A.V. Mikhailov, Integrability of the two-dimensional Thirring model. J. Exp. Theor. Phys. Lett. 23, 

320 (1976) 
K. Mio, T. Ogino, K. Minami, S. Takeda, Modified nonlinear Schrödinger equation for Alfvén 

waves propagating along the magnetic field in cold plasma. J. Phys. Soc. Jpn. 41, 265 (1976) 
J. Moses, B.A. Malomed, F.W. Wise, Self-steepening of ultrashort optical pulses without self-

phase-modulation. Phys. Rev. A 76, 021802(R) (2007) 
G. Mu, Z. Qin, Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation. Nonlinear 

Anal. Real World Appl. 31, 179 (2016) 
G. Mu, Z. Qin, R. Grimshaw, N. Akhmediev, Intricate dynamics of rogue waves governed by the 

Sasa-Satsuma equation. Physica D 402, 132252 (2020) 
M. Noumi, Y. Yamada, Symmetries in the fourth Painlevé equation and Okamoto polynomials. 

Nagoya Math. J. 153, 53 (1999) 
S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse 

Scattering Method (Plenum, New York, 1984) 
Y. Ohta, J. Yang, General high-order rogue waves and their dynamics in the nonlinear Schrödinger 

equation. Proc. R. Soc. A 468, 1716 (2012a) 
Y. Ohta, J. Yang, Rogue waves in the Davey-Stewartson-I equation. Phys. Rev. E 86, 036604 

(2012b) 
Y. Ohta, J. Yang, Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A 46, 

105202 (2013) 
Y. Ohta, J. Yang, General rogue waves in the focusing and defocusing Ablowitz-Ladik equations. 

J. Phys. A 47, 255201 (2014) 
Y. Ohta, D. S. Wang, J. Yang, General N -dark-dark solitons in the coupled nonlinear Schrödinger 

equations. Stud. Appl. Math. 127, 345 (2011) 
K. Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, .PII and 

.PIV . Math. Ann. 275, 221 (1986) 
D.E. Pelinovsky, Y.A. Stepanyants, New multisoliton solutions of the Kadomtsev-Petviashvili 

equation. J. Exp. Theor. Phys. Lett. 57, 24 (1993) 
D.E. Pelinovsky, Y.A. Stepanyants, Y.A. Kivshar, Self-focusing of plane dark solitons in nonlinear 

defocusing media. Phys. Rev. E 51, 5016 (1995) 
D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. 

Soc. B 25, 16 (1983) 
V.I. Petviashvili, Equation of an extraordinary soliton. Sov. J. Plasma Phys. 2, 257 (1976) 
O.M. Phillips, Nonlinear dispersive waves. Ann. Rev. Fluid Mech. 6, 93 (1974) 
L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. J. Exp. Theor. Phys. 13, 451 

(1961)



412 References

J. Rao, Y. Liu, C. Qian, J.S. He, Rogue waves and hybrid solutions of the Boussinesq equation. Z. 
Naturforsch. A 72, 307 (2017) 

P. Roffelsen, A. Stokes, On real and imaginary roots of generalised Okamoto polynomials (2024). 
arXiv:2402.15887 [nlin.SI] 

A. Romero-Ros, G.C. Katsimiga, S.I. Mistakidis, B. Prinari, G. Biondini, P. Schmelcher, P.G. 
Kevrekidis, Theoretical and numerical evidence for the potential realization of the Peregrine 
soliton in repulsive two-component Bose-Einstein condensates. Phys. Rev. A 105, 053306 
(2022) 

A. Romero-Ros, G.C. Katsimiga, S.I. Mistakidis, S. Mossman, G. Biondini, P. Schmelcher, P. 
Engels, P.G. Kevrekidis, Experimental realization of the Peregrine soliton in repulsive two-
component Bose-Einstein condensates. Phys. Rev. Lett. 132, 033402 (2024) 

M. Saito, S. Watanabe, H. Tanaca, Modulation instability of ion wave in plasma with negative ion. 
J. Phys. Soc. Jpn. 53, 2304 (1984) 

P.M. Santini, The periodic Cauchy problem for .PT-symmetric NLS, I: the first appearance of rogue 
waves, regular behavior or blow up at finite times. J. Phys. A 51, 495207 (2018) 

N. Sasa, J. Satsuma, New-type of solutions for a higher-order nonlinear evolution equation. J. Phys. 
Soc. Jpn. 60, 409 (1991) 

J. Satsuma, M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 
20, 1496 (1979) 

A.C. Scott, The application of Bäcklund transforms to physical problems, in Bäcklund Transfor-
mations, ed. by R.M. Miura. Lecture Notes in Mathematics, vol. 515 (Springer-Verlag, Berlin, 
1975), pp. 80–105 

K. Shimizu, Y.H. Ichikawa, Automodulation of ion oscillation modes in plasma. J. Phys. Soc. Jpn. 
33, 789 (1972) 

W.F. Simmons, A variational method for weak resonant wave interactions. Proc. R. Soc. Lond. A 
309, 551 (1969) 

S.R. Spangler, J.P. Sheerin, Properties of Alfvén solitons in a finite-Beta plasma. J. Plasma Phys. 
27, 193 (1982) 

G.G. Stokes, On the theory of oscillatory waves. Trans. Cambridge Philos. Soc. 8, 441 (1847) 
R. Sugaya, M. Sugawa, H. Nomoto, Experimental observation of explosive instability due to a 

helical electron beam. Phys. Rev. Lett. 39, 27 (1977) 
W. Sun, L. Liu, P.G. Kevrekidis, Rogue waves of ultra-high peak amplitude: a mechanism for 

reaching up to a thousand times the background level. Proc. R. Soc. A 477, 20200842 (2021) 
M. Tajiri, T. Arai, Growing-and-decaying mode solution to the Davey-Stewartson equation. Phys. 

Rev. E 60, 2297 (1999) 
M. Tajiri, Y. Murakami, Rational growing mode: exact solutions to the Boussinesq equation. J. 

Phys. Soc. Jpn. 60, 2791 (1991) 
W.E. Thirring, A soluble relativistic field theory. Ann. Phys. 3, 91 (1958) 
M. Taneda, Remarks on the Yablonskii-Vorob’ev polynomials. Nagoya Math. J. 159, 87 (2000) 
M. Toda, Studies of a nonlinear lattice. Phys. Rep. 8, 1 (1975) 
S. Tsuchiya, F. Dalfovo, L.P. Pitaevskii, Solitons in two-dimensional Bose-Einstein condensates. 

Phys. Rev. A 77, 045601 (2008) 
H. Umemura, H. Watanabe, Solutions of the second and fourth Painlevé equations. Nagoya Math. 

J. 151, 1 (1998) 
F. Ursell, The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. Soc. 49, 685 

(1953) 
A.P. Vorob’ev, On rational solutions of the second Painlevé equation. Differ. Eqn. 1, 58 (1965) 
P.K.A. Wai, C.R. Menyuk, Polarization mode dispersion, decorrelation, and diffusion in optical 

fibers with randomly varying birefringence. J. Lightwave Technol. 14, 148 (1996) 
D. Wang, D. Zhang, J. Yang, Integrable properties of the general coupled nonlinear Schrödinger 

equations. J. Math. Phys. 51, 023510 (2010) 
X. Wang, J. Cao, Y. Chen, Higher-order rogue wave solutions of the three-wave resonant 

interaction equation via the generalized Darboux transformation. Phys. Scr. 90, 105201 (2015)



References 413

L. Wang, C.H. Yang, J. Wang, J.S. He, The height of an nth-order fundamental rogue wave for the 
nonlinear Schrödinger equation. Phys. Lett. A 381, 1714 (2017) 

X.Y. Wen, Z. Yan, Y. Yang, Dynamics of higher-order rational solitons for the nonlocal nonlinear 
Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 
(2016) 

G.B. Whitham, Nonlinear dispersion of water waves. J. Fluid Mech. 27, 399 (1967) 
H.G. Winful, G.D. Cooperman, Self-pulsing and chaos in distributed feedback bistable optical 

devices. Appl. Phys. Lett. 40, 298 (1982) 
O.C. Wright, Effective integration of ultra-elliptic solutions of the focusing nonlinear Schrödinger 

equation. Physica D 321, 16 (2016) 
C. Wu, G. Zhang, C. Shi, B.F. Feng, General rogue wave solutions to the Sasa-Satsuma equation 

(2022). arXiv:2206.02210 [nlin.SI] 
S.W. Xu, J.S. He, The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J. Math. 

Phys. 53, 063507 (2012) 
S.W. Xu, J.S. He, L.H. Wang, The Darboux transformation of the derivative nonlinear Schrödinger 

equation. J. Phys. A 44, 305203 (2011) 
G. Xu, K. Hammani, A. Chabchoub, J.M. Dudley, B. Kibler, C. Finot, Phase evolution of Peregrine-

like breathers in optics and hydrodynamics. Phys. Rev. E 99, 012207 (2019) 
G. Xu, A. Chabchoub, D.E. Pelinovsky, B. Kibler, Observation of modulation instability and rogue 

breathers on stationary periodic waves. Phys. Rev. Res. 2, 033528 (2020) 
A.I. Yablonskii, On rational solutions of the second Painlevé equation. Vesti Akad. Navuk. BSSR 

Ser. Fiz. Tkh. Nauk. 3, 30 (1959) (in Russian) 
N. Yajima, M. Oikawa, Formation and interaction of sonic-Langmuir solitons: inverse scattering 

method. Prog. Theor. Phys. 56, 1719 (1976) 
J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010) 
J. Yang, General N -solitons and their dynamics in several nonlocal nonlinear Schrödinger 

equations. Phys. Lett. A 383, 328 (2018) 
B. Yang, J. Yang, Rogue waves in the nonlocal .PT-symmetric nonlinear Schrödinger equation. 

Lett. Math. Phys. 109, 945 (2019) 
B. Yang, J. Yang, General rogue waves in the Boussinesq equation. J. Phys. Soc. Jpn. 89, 024003 

(2020a) 
B. Yang, J. Yang, On general rogue waves in the parity-time-symmetric nonlinear Schrödinger 

equation. J. Math. Anal. Appl. 124023 (2020b) 
B. Yang, J. Yang, Rogue wave patterns in the nonlinear Schrödinger equation. Physica D 419, 

132850 (2021a) 
B. Yang, J. Yang, General rogue waves in the three-wave resonant interaction systems. IMA J. 

Appl. Math. 86, 378 (2021b) 
B. Yang, J. Yang, Universal rogue wave patterns associated with the Yablonskii-Vorob’ev 

polynomial hierarchy. Physica D 425, 132958 (2021c) 
B. Yang, J. Yang, Rogue waves in (2+1)-dimensional three-wave resonant interactions. Physica D 

432, 133160 (2022a) 
B. Yang, J. Yang, Pattern transformation in higher-order lumps of the Kadomtsev-Petviashvili I 

equation. J. Nonl. Sci. 32, 52 (2022b) 
B. Yang, J. Yang, Overview of the Kadomtsev-Petviashvili-hierarchy reduction method for 

solitons. Partial Differ. Equ. Appl. Math. 5, 100346 (2022c) 
B. Yang, J. Yang, Rogue wave patterns associated with Okamoto polynomial hierarchies. Stud. 

Appl. Math. 151, 60 (2023a) 
B. Yang, J. Yang, Partial-rogue waves that come from nowhere but leave with a trace in the Sasa-

Satsuma equation. Phys. Lett. A 458, 128573 (2023b) 
B. Yang, J. Yang, Rogue wave patterns associated with Adler-Moser polynomials in the nonlinear 

Schrödinger equation. Appl. Math. Lett. 148, 108871 (2024a) 
B. Yang, J. Yang, Rogue curves in the Davey-Stewartson I equation (2024b). Chaos 34, 073148 

(2024)



414 References

B. Yang, J. Chen, J. Yang, Rogue waves in the generalized derivative nonlinear Schrödinger 
equations. J. Nonl. Sci. 30, 3027 (2020) 

A. Yariv, Quantum Electronics, 2nd edn. (John Wiley & Sons, New York, 1975) 
Y.L. Ye, L.L. Bu, C.C. Pan, S.H. Chen, D. Mihalache, F. Baronio, Super rogue wave states in the 

classical massive Thirring model system. Rom. Rep. Phys. 73, 117 (2021) 
N.J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and 

interaction, in Nonlinear Partial Differential Equations, ed. by W.F. Ames (Academic Press, 
New York, 1967), pp. 233–258 

V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. 
Prikl. Mekh. Tekh. Fiz 9, 86 (1968) (Transl. in J. Appl. Mech. Tech. Phys. 9, 190) 

V.E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators. Zh. Eksp. 
Teor. Fiz. 65, 219 (1973). Sov. Phys. J. Exp. Theor. Phys. 38, 108 (1974) 

V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional 
self-modulation of waves in nonlinear media. Zh. E’ksp. Teor. Fiz. 61, 118 (1971). Sov. Phys. 
J. Exp. Theor. Phys. 34, 62 (1972) 

Y.S. Zhang, L.J. Guo, A. Chabchoub, J.S. He, Higher-order rogue wave dynamics for a derivative 
nonlinear Schrödinger equation. Rom. J. Phys. 62, 102 (2017) 

G. Zhang, Z. Yan, X.Y. Wen, Three-wave resonant interactions: Multi-dark-dark-dark solitons, 
breathers, rogue waves, and their interactions and dynamics. Physica D 366, 27 (2018) 

L.C. Zhao, S.C. Li, L.M. Ling, Rational W-shaped solitons on a continuous-wave background in 
the Sasa-Satsuma equation. Phys. Rev. E 89, 023210 (2014) 

L.C. Zhao, B.L. Guo, L.M. Ling, High-order rogue wave solutions for the coupled nonlinear 
Schrödinger equations-II. J. Math. Phys. 57, 043508 (2016a) 

L.C. Zhao, S.C. Li, L.M. Ling, W-shaped solitons generated from a weak modulation in the Sasa-
Satsuma equation. Phys. Rev. E 93, 032215 (2016b) 

Zhaqilao, N th-order rogue wave solutions of the complex modified Korteweg-de Vries equation. 
Phys. Scr. 87, 065401 (2013)



Index 

A 

Ablowitz-Ladik equation, 148, 279 
Adler-Moser polynomials, 289 

B 

Benjamin-Feir instability, 10 
Benney-Roskes-Davey-Stewartson equations, 

38 
Boussinesq equation, 101, 264 

C 

Chen-Lee-Liu equation, 87 
Complex modified KdV equation, 113 
Complex short pulse equation, 120 

D 

Darboux transformation, 80, 369 
Davey-Stewartson equations, 37, 216, 332 

Davey-Stewartson-I, 218, 332 
Davey-Stewartson-II, 221 
in water, 37 

Derivative nonlinear Schrödinger equation, 25, 
87, 260, 296 

in magnetized plasma, 25 
Dimensional reduction, 66, 93, 104, 209 

by .W-p treatment, 104, 137, 173, 189, 203, 
209 

Double-real-variable polynomials, 335 

F 

Faà di Bruno formula, 211 

G 

Gerdjikov-Ivanov equation, 88 

H 

Hirota’s bilinear differential operator, 59 

K 

Kadomtsev-Petviashvili equation, 393 
Kaup-Newell equation, 87 

L 

Laplace expansion, 75 
Long-wave-short-wave interaction model, 44, 

199, 275 
in water, 44 

M 

Manakov equations, 32, 158, 268, 305 
in optical fibers, 32, 362 

Massive Thirring model, 204 
Maxwell equations, 13, 21, 26, 53 

N 

Nonlinear Schrödinger equation, 1, 60, 246, 
291, 341, 369, 379 

in Bose-Einstein condensates, 359 
in deep water, 2, 349 
in optical fibers, 12, 345 
parity-time-symmetric, 142 
spatial-evolution form, 8 
temporal-evolution form, 6 
in unmagnetized plasma, 19, 357 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 
Springer Nature Switzerland AG 2024 
B. Yang, J. Yang, Rogue Waves in Integrable Systems, 
https://doi.org/10.1007/978-3-031-66793-0

415

https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0
https://doi.org/10.1007/978-3-031-66793-0


416 Index

O 

Okamoto polynomials, 299, 385 
generalized, 385 
hierarchies, 299 

P 

Painlevé equations, 242, 299, 385 
. PII, 242 
. PIV, 299, 385 

Partial-rogue waves, 381 

R 

Robustness of rogue waves, 378 
Rogue curves, 332 
Rogue waves of infinite order, 343 

S 

Sasa-Satsuma equation, 131, 381 
Schur polynomial, 59 

Stokes waves, 9 
Super rogue waves, 78, 99, 341 

T 

Three-wave resonant interaction system, 48 
in (1+1)-dimensions, 179, 272, 325 
in (2+1)-dimensions, 228 
in optics, 53 
in water, 48 

U 

Universality of rogue patterns, 286 

W 

Wronskian-Hermite polynomials, 395 

Y 

Yablonskii-Vorob’ev polynomial hierarchy, 
242, 286, 399


	Preface
	Contents
	1 Physical Derivation of Integrable Nonlinear Wave Equations
	1.1 Nonlinear Schrödinger Equation
	1.1.1 In Deep Water
	1.1.2 In Optical Fibers
	1.1.3 In Unmagnetized Plasma

	1.2 Derivative Nonlinear Schrödinger Equationin Magnetized Plasma
	1.3 Manakov Equations in Randomly-Birefringent Optical Fibers
	1.4 Davey-Stewartson Equations in Water of Finite Depth
	1.4.1 Derivation of Benney-Roskes-Davey-Stewartson Equations
	1.4.2 Reduction to Davey-Stewartson Equations

	1.5 Long-Wave-Short-Wave Interaction Model in Water of Finite Depth
	1.6 Three-Wave Resonant Interaction System
	1.6.1 In Water Waves
	1.6.2 In Optics


	2 Derivation of Rogue Waves in Integrable Systems
	2.1 Nonlinear Schrödinger Equation
	2.1.1 Derivation by the Bilinear Method
	2.1.2 Peak Amplitude of the N-th Order Super Rogue Wave
	2.1.3 Derivation by Darboux Transformation

	2.2 Derivative Nonlinear Schrödinger Equations
	2.3 Boussinesq Equation
	2.4 Complex Modified Korteweg-de Vries Equation
	2.5 Complex Short Pulse Equation
	2.6 Sasa-Satsuma Equation
	2.7 Parity-Time-Symmetric Nonlinear Schrödinger Equation
	2.8 Ablowitz-Ladik Equation
	2.9 Manakov System
	2.9.1 Rogue Waves for a Simple Non-Imaginary Root
	2.9.2 Rogue Waves for Two Simple Non-Imaginary Roots
	2.9.3 Rogue Waves for a Double Non-Imaginary Root
	2.9.4 Derivation of Rogue Wave Expressions

	2.10 Three-Wave Resonant Interaction System in (1+1)-Dimensions
	2.10.1 General Rogue Waves and Their Derivations
	2.10.2 Dynamics of Various Types of Rogue Waves

	2.11 Long-Wave-Short-Wave Resonant Interaction System
	2.12 Massive Thirring Model
	2.13 Davey-Stewartson Equations
	2.13.1 Davey-Stewartson-I Equations
	2.13.2 Davey-Stewartson-II Equations

	2.14 Three-Wave Resonant Interaction System in (2+1)-Dimensions

	3 Rogue Wave Patterns
	3.1 Rogue Patterns Associated with the Yablonskii-Vorob'ev Polynomial Hierarchy
	3.1.1 The Yablonskii-Vorob'ev Polynomial Hierarchy and Their Root Structures
	3.1.2 Nonlinear Schrödinger Equation
	3.1.3 Derivative Nonlinear Schrödinger Equations
	3.1.4 Boussinesq Equation
	3.1.5 Manakov System
	3.1.6 Three-Wave Resonant Interaction System
	3.1.7 Long-Wave-Short-Wave Resonant Interaction System
	3.1.8 Ablowitz-Ladik Equation
	3.1.9 Universality of Rogue Patterns Associated with the Yablonskii-Vorob'ev Polynomial Hierarchy

	3.2 Rogue Patterns Associated with Adler-Moser Polynomials
	3.2.1 Adler-Moser Polynomials and Their Root Structures
	3.2.2 Nonlinear Schrödinger Equation
	3.2.3 Derivative Nonlinear Schrödinger Equations

	3.3 Rogue Patterns Associated with OkamotoPolynomial Hierarchies
	3.3.1 Okamoto Polynomials and Their Hierarchies
	3.3.2 Root Structures of Okamoto Polynomial Hierarchies
	3.3.3 Manakov System
	3.3.4 Three-Wave Resonant Interaction System

	3.4 Rogue Curves Associated with Double-Real-Variable Polynomials in the Davey-Stewartson I Equation
	3.4.1 Rogue Curves in the Davey-Stewartson I Equation
	3.4.2 A Class of Double-Real-Variable Polynomials and Their Root Curves
	3.4.3 Analytical Prediction of Rogue Curves Through Root Curves

	3.5 Super Rogue Wave of High Order in the Nonlinear Schrödinger Equation

	4 Experiments on Rogue Waves
	4.1 Observation of NLS Rogue Waves in Optical Fibers
	4.2 Observation of NLS Rogue Waves in Water Tanks
	4.2.1 Peregrine Rogue Wave
	4.2.2 Higher-Order Rogue Waves

	4.3 Observation of NLS Rogue Waves in Plasma
	4.4 Observation of NLS Rogue Waves in Bose-Einstein Condensates
	4.5 Observation of Manakov Dark Rogue Waves in Optical Fibers
	4.5.1 Fundamental Dark Rogue Wave
	4.5.2 Second-Order Dark Rogue Waves


	5 Related Topics
	5.1 Rogue Waves on Nonuniform-Amplitude Background in the NLS Equation
	5.1.1 Solution Derivation by Darboux Transformation
	5.1.2 Experimental Observation in Water Tanks
	5.1.3 Experimental Observation in Optical Fibers

	5.2 Robustness of Rogue Waves Under Perturbations
	5.3 Partial-Rogue Waves in the Sasa-Satsuma Equation
	5.3.1 A Class of Rational Solutions
	5.3.2 Generalized Okamoto Polynomials
	5.3.3 Large-Time Predictions of Partial-Rogue Waves
	5.3.4 Numerical Verification of Theoretical Predictions

	5.4 Large-Time Patterns of Higher-Order Lumps in the Kadomtsev-Petviashvili I Equation
	5.4.1 Higher-Order Lump Solutions
	5.4.2 Wronskian-Hermite Polynomials and TheirRoot Structures
	5.4.3 Large-Time Patterns of Higher-Order Lumps
	5.4.4 Comparison Between True Lump Patterns and Analytical Predictions


	References
	Index

