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Theodore S. Rappaport, Martin Käske and Reiner Thomä

13 Conclusions 281
Theodore S. Rappaport, Kate A. Remley, Camillo Gentile, Andreas F. Molisch and Alenka Zajić
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Preface

In 2015 something special and unusual occurred in the field of wireless commu-
nications research. Several researchers in academia and industry received an email
from Dr. Thyaga Nandagopal, a highly regarded program manager at the National
Science Foundation in the USA. The email from Thyaga (as he is known to his
friends and colleagues) contained a persuasive invitation to join a budding organi-
zation called the 5G mmWave Channel Model Alliance. Dr. Nandagopal’s invitation
further explained that this new “Alliance” was being organized by Drs. Nada Golmie
and Kate Remley of the National Institute of Standards and Technology (NIST), and
that this collaborative effort could be an excellent venue to share knowledge and
information, and to compare notes on the new area of millimeter-wave (mmWave)
channel measurement and modeling that was just beginning to spawn within industry,
academia and federal agencies across the world. Thyaga even suggested that the effort
could be complementary to the channel modeling activities that were launching in
various standards bodies for the global mobile communications industry, and could be
used to promote the academic creed of the open sharing of data, measurement best
practices, models and ideas.

The idea of sharing data with others to enable common metrics and models of
measurement is something that NIST has historically advocated, and now it seemed
that this worthy goal was being pursued through the 5G mmWave Channel Model
Alliance. In fact, Drs. Golmie and Remley made clear when establishing the 5G
mmWave Channel Model Alliance in the summer of 2015 that NIST wanted it to serve
as a neutral, open and transparent forum for fostering collaboration and tackling long-
term channel propagation measurement and modeling challenges for 5G. Indeed, as
the national metrology laboratory for the United States, NIST has always had a strong
interest in measurement science, with a passion and mission for developing sound
techniques for measurement and modeling that can be shared with organizations,
industry, academia and the public throughout the world.

From those early beginnings, at a time when the mobile communications world
had very little understanding of mmWave radio propagation, not to mention channel
measurement and modeling at those frequencies, a remarkable collaboration began
to take hold. NIST contracted with Marc Leh, a consultant from Corner Alliance,
Inc., who began to coordinate what would soon become one of the most active and
productive global collaborations in the fields of wireless communications propagation
measurements and modeling. Today, the 5G mmWave Channel Model Alliance
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xiv Preface

has expanded its mission and scope, and in 2021 was renamed as the NextG
Channel Model Alliance, involving over 183 participants from 84 organizations
worldwide (see: https://sites.google.com/a/corneralliance.com/5g-mmwave-channel-
model-alliance-wiki/home).

Over the course of five years and nearly 100 teleconference meetings, through
thousands of shared documents and discussions and countless hours of collabora-
tion, coordination, debate, editing and benchmarking, a massive body of knowledge
has been compiled through the voluntary efforts of hundreds of engineers, scientists,
researchers and students from around the world. This manuscript is an earnest attempt
by the authors to distill and compile this vast body of knowledge, and is the culmina-
tion of the massive collaborative effort undertaken by dozens of dedicated volunteers
and “spectrum explorers” who so kindly and willingly shared their knowledge and best
practices with the engineering world as it embarks on the deployment of 5G mmWave
networks globally.

It is rare to find a publication that brings together such a vast collection of experi-
ences and understanding from the world’s most active and knowledgeable researchers
who have worked in the relatively unexplored mmWave and sub-terahertz spectrum
bands. The authors have worked tirelessly to organize the vast and valuable material
to allow a newcomer to the fields of radio-propagation measurement and channel
modeling to rapidly learn the fundamentals and key findings that helped launch the
mmWave wireless revolution.

This book is roughly divided into two parts, with the first part focusing on mea-
surement and the latter part focusing on channel modeling. Chapter 1 provides con-
text and background for the work presented here, with a focus on the essential link
between measurement and modeling for mmWave and terahertz (THz) wireless sys-
tems. Chapter 2 cements this link by describing important channel metrics to be
estimated from measurement. In Chapter 3, an overview of some common chan-
nel sounder architectures is provided, including calibration and timing, which are
critical for mmWave and higher frequencies, and methods to ascertain key chan-
nel sounder system parameters. The characteristics of the participants’ state-of-the-
art in channel sounders are also provided as a useful benchmark in Chapter 3. In
Chapter 4, various methods for verifying the performance of channel sounders are
presented. Understanding the nonidealities of a channel sounder is key to providing
meaningful and accurate measurement-derived channel characteristics. Verification
techniques are illustrated with examples from the contributors’ own systems. Chapter
5 introduces important concepts in mmWave channel modeling, including the types of
models that are described in subsequent chapters. Chapter 5 provides background on
parameters used in deterministic models that focus on a specific time and/or location
for the measurements. Chapter 6 describes current approaches to modeling path loss
and shadowing, with models that are especially relevant to mmWave and sub-THz
bands. Chapter 7 provides recent progress in clustering and tracking algorithms, which
are widely used in the analysis of field data and the creation of channel models
for new communication systems. In Chapter 8, time dispersion characteristics are
described. These are the backbone of efficient, lower-complexity, geometry-based
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stochastic channel models that can quickly generate a representative impulse response
of the multipath channel. Chapter 9 briefly describes the growing field of peer-to-
peer networking, which includes device-to-device and vehicular applications. With the
increased focus on handheld wireless devices, human blockage models are becoming
increasingly important, which is the focus of Chapter 10, including both blockage but
also Doppler effects. Finally, Chapter 11 introduces important concepts in the next
generation of THz channel models, covering frequencies from 100 GHz to 3 THz.
THz wireless systems promise ultrahigh data rates and super-fast download speeds, as
well as imaging, sensing and spectroscopy applications, motivating a growing body
of research in this area. Chapters 12 and 13 conclude the entire body of work with a
cohesive discussion on the connection between measurements and models. Looking
to the future, the synergy between these two disciplines is made clear.

The mobile communications industry made a fundamental and historic shift when
it added mmWave operating carrier frequencies that moved everything higher in the
spectrum by an order of magnitude for the first time. The international cellular tele-
phone standards body, 3GPP, ratified Release 15 in 2018, and the world’s first 5G
mmWave cellular network began operation soon after that. With 5G mmWave now
a reality, the engineering advances in semiconductors, computing, materials, device
integration and packaging, antenna arrays and signal processing will surely continue
to move up in frequency, where even greater bandwidths and temporal/spatial reso-
lution will unleash new applications that we can only imagine today. It is our hope
that this book will help those future explorers understand the fundamental princi-
ples and practice that will help open up these exciting new frequency bands in the
decades to come.

Disclaimer: This book is provided “as is” and neither the editors, nor the authors, nor the contributors,
make any express or implied representations or warranties regarding the accuracy, completeness,
reliability, usability, timeliness, merchantability or goodness of fit of the content (including, but not
limited to, the information, methodologies, data and opinions) of this book, and they shall be held
harmless from any such claim.
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1 Introduction

Theodore S. Rappaport, Kate A. Remley, Camillo Gentile,
Andreas F. Molisch and Alenka Zajić

The demand for the next generation of wireless networks has been spurred by
smartphones and other data-intensive mobile devices. The popularity of these devices
has led to an exponential increase in wireless data transmission, and hence the need
to provide massive capacity increases (upwards of 1,000 times) and connectivity
(billions of users and machines) in addition to supporting an increasingly diverse set
of services and applications. It is anticipated that future generations of mobile wireless
networks will be a combination of technologies, such as those used in wireless local-
area networks (e.g., Wi-Fi) and those used in cellular communications (e.g., fifth-
generation, or 5G) operating in both licensed and unlicensed bands between 300 MHz
and 300 GHz. In particular, the use of millimeter-wave (mmWave) frequencies,
between 28 and 300 GHz, is expected to increase bandwidth by as much as 100 times
over what is currently available for cellular networks today.

To meet this challenge, several international fora have been established to explore
issues related to hardware, networks and standards [1–12]. The goal of many of these
groups is to address short-term needs that solve specific problems, as opposed to
longer-duration research efforts. For example, in ITU-R there are several groups study-
ing relevant issues in 5G general and mmWave channel modeling. As another exam-
ple, the cellular industry standards group Third Generation Partnership Project (3GPP)
has recently published its technical specifications for mmWave channel models in
Release 14 [2], and the Working Party 5D in Study Group 5 (ITU-R WP5D) is study-
ing not only the vision and requirements for 5G, but also 5G channel models for
evaluation purposes [13]. The mmWave channel models coming from this group are
almost identical to the 3GPP channel models. Study Group 3 in ITU-R [14] also
studies channel models at mmWave frequencies for outdoor short-range propagation
[15], indoor propagation [16], outdoor-to-indoor propagation [17], outdoor-to-indoor
propagation model definitions and measurement guides [18].

The 5G mmWave Channel Model Alliance was formed to take a longer view by
addressing issues related to measurement and modeling that impede progress in stan-
dards development and hardware optimization [19].1 The kick-off meeting was held
in July 2015 at the US National Institute of Standards and Technology in Boulder,
CO, USA. More than 30 participants discussed a vision for cooperative engagement
intended to fill the need for longer-term research into propagation effects specific

1 Here, “5G” refers to the next generation of mobile wireless communication systems.
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2 Theodore S. Rappaport et al.

to mobile wireless applications at mmWave frequencies and how those effects can
be translated into robust channel models. In May 2021 the 5G mmWave Channel
Model Alliance was renamed the NextG Channel Model Alliance and included 183
participants from 84 organizations worldwide. The group primarily meets through
teleconferences and currently has subgroups dedicated to measurement and channel-
modeling activities.

One key Alliance strength is that participants utilize a wide range of channel
sounders with various architectures. This allows the group to study representative
propagation environments with several different channel-sounder technologies that
will ultimately result in more robust channel models. For example, vector-network-
analyzer (VNA)-based channel sounders provide a high dynamic range, allowing
detailed insight into the fading characteristics of a specific environment, but primarily
for slowly varying or static channels. On the other hand, sampler-based channel
sounders are often fast, providing instantaneous channel information. As another
example, some sounders have active antenna arrays capable of resolving the angle
of arrival of multipath components (MPCs) in the plane of the antenna to within a
few degrees, while others have antenna coverage over a hemisphere with nominally
lower angular resolution, and yet others use lens antenna arrays for analog multi-
beamforming that can provide spatial resolution comparable to or finer than existing
phased arrays at the cost of increased physical size.

In order for Alliance members to combine measured data from sounders having
different architectures, it is essential to have confidence that each channel sounder is
performing as expected. This includes verifying that the resulting measured data and
the postprocessing routines provide results in agreement with the theory. Verified data
can then be used to extract statistically representative metrics that feed into channel
models, such as path loss and power delay profile.

The propagation channel is independent of the measurement system that samples
it. That is, the channel sounder will provide only an estimate of the characteristics of
the true channel. The extent to which the sounder captures the channel’s features will
depend on the hardware employed and how well that hardware works, which is why
verification is so important. However, there are many channel sounder architectures,
each of which may utilize various types of hardware. Such hardware is typically
selected to capture the channel effects that are of most relevance to the channel models
to be employed, which are in turn chosen to be relevant to the wireless system that will
operate in the channel. That is, the channel sounder must capture the channel features
that are required for parameterizations of the channel model and this will dictate the
type of hardware that is selected. Thus, there is a strong link between the modeling
and measurement communities.

The second part of this book describes the main mmWave models that have been
presented in the literature, including tapped delay line stochastic models, geometry-
based stochastic channel models and quasi-deterministic models. Various path loss
and shadowing models have also been included. Because the clustering of MPCs into

https://doi.org/10.1017/9781009122740.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.002


Introduction 3

groups with similar behavior is important for all of these types of models, a discussion
on this has been included.

Each of these types of models has been considered for mmWave channel modeling
by various academic and industrial groups, including members of the 5G mmWave
Channel Model Alliance. Having a compendium of these models and model types in
a single volume will allow users to compare and select the model that may be of the
most utility to their projects.
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2 Estimating Channel Characteristics
from Measurements

Kate A. Remley, Sana Salous, Theodore S. Rappaport, Ruoyu Sun,
Camillo Gentile, Andreas F. Molisch and Alenka Zajić

Many metrics used to characterize propagation-channel conditions (such as path loss
and time delay) are derived from measured data collected by channel sounders. Param-
eters extracted from these metrics are often used in channel models. Channel model
selection can have a strong influence on deployment and system performance met-
rics, such as spectral efficiency and coverage, as well as hardware/signal processing
requirements. Typically, averaged metrics and parameters are calculated from hun-
dreds or thousands of measurements made in a specific category of environment, such
as an urban canyon or an indoor office. The large number of measurements is needed
because each city and office is different. However, no measurement instrument is
ideal, so the metrics and parameters derived from each single measurement will only
approximate the true channel conditions. To emphasize this fact, we refer to channel
metrics derived from measurement as “estimated” quantities.

Estimated quantities will be affected both by known system limitations and by
unknown measurement errors. For example, all channel sounders use electronic cir-
cuits that restrict operation to a certain frequency range, frequency step, amplitude
range and time step. They also use antennas with limited angular resolution and spe-
cific polarization characteristics to capture channel characteristics. These are known
limitations arising from system design. In addition, unintentional nonidealities in the
electronic hardware (for example, amplitude compression of a power amplifier, exces-
sive noise floor of a receiver and timing errors between transmitters and receivers)
and mechanical hardware (for example, system and antenna positioning errors or
nonideal antenna machining) will also impact the accuracy of the measurement. To a
large extent, it is the goal of channel sounder verification to reveal system limitations
and unintentional errors inherent in the measurement system and procedures. This
knowledge allows uses of channel sounders having different architectures to anticipate
whether or not the metrics extracted from their data should be directly comparable.

In the next section we provide a commonly used impulse-response representation of
the propagation channel to illustrate the effects of the nonideal hardware on estimates
of channel metrics. In the subsequent chapters we define metrics of interest that are
often derived from channel sounder measurements.
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Figure 2.1 Impulse response model for characterizing a wireless propagation channel. The
measured output y(τ) is a function of the input modified by the channel as well as the nonideal
responses of the hardware and antennas.

2.1 Measuring Propagation-Channel Characteristics

We define the propagation channel as the environment between the transmitter (TX)
and receiver (RX) of the channel sounder. At a minimum, most channel sounders
try to estimate the path loss or attenuation between the transmitter and receiver, and
many do this by measuring the “impulse response” of the channel. In the impulse
response model (see Figure 2.1), propagation-channel characteristics that can impact
the propagation of a signal between the transmitter and receiver, such as diffraction,
reflection and scattering are considered. Additionally, shadowing may occur due to
movement of the transmitter, receiver and/or objects in the environment. In this model,
the received voltages, corresponding to the electromagnetic (EM) waves incident on
the RX antenna, are a superposition of the waves coming from the line-of-sight (LoS)
path and waves coming from different directions due to the scatterers in the channel.
This superposition of multiple reflections is known as multipath propagation.

An impulse-response-based model for a wireless propagation channel measurement
is given in Figure 2.1, where the goal is to estimate the complex channel impulse
response (CIR), mathematically denoted as h(τ), from a measurement y(τ). Here,
x(τ) is the input signal, gTX(τ) and gRX(τ) are the nonideal antenna responses and
hTX(τ) and hRX(τ) are the nonideal TX and RX responses, respectively. Note that
the variable τ, or “excess time delay,” is often used to denote the time dependence
of the system, as opposed to the absolute time. The excess time delay is the time
difference between a signal that arrives along an LoS path and the various multipath
components (MPCs) that arrive later. This variable, as opposed to the absolute time
delay, t , is often more useful to system designers who must compensate for multipath
with equalization.

It is important to note that, for this model, the antenna responses are part of the
measured channel response, so the impulse response, or power delay profile, measured
by a channel sounder may differ depending on the type of antenna used. For example,
a directional transmit antenna facing the receive antenna may not excite many reflec-
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tions off of surfaces within the environment, resulting in a measurement of fewer
MPCs than an omnidirectional antenna. The channel plus antenna response is denoted
as ĥ(τ) in Figure 2.1. In some cases, the gains of the antennas are de-embedded in
postprocessing. Often, gTX(τ) and gRX(τ) are assumed constant and their values are
simply subtracted (in dB) from the final path loss value.

However, to characterize directional effects, techniques for de-embedding direc-
tional antennas are used in postprocessing of channel measurements. Characterizing
directional effects is especially important at millimeter-wave (mmWave) frequencies
because mmWave applications often require that antennas are directional to overcome
path loss and minimize spatial interference between users. As a result, many mmWave
channel models require information on the antenna response as a function of the
transmitted signal’s angle of departure (AoD) and the received signal’s angle of arrival
(AoA). Methods for verifying AoA and AoD are discussed in subsequent chapters, and
channel models depending on these parameters are discussed in Chapter 7.

The model in Figure 2.1 can be used to provide an estimate of the channel response
h(τ), which we call h̃(τ) to denote that it is derived from measurement. Assuming the
system is linear, this can be written as

y(meas,uncorr)(τ) = x(τ) × hTX(τ) × gTX(τ) × h̃(τ) × gRX(τ) × hRX(τ), (2.1)

or

y(meas,uncorr)(τ) = x(τ) × hTX(τ) × ˆ̃
h(τ) × hRX(τ), (2.2)

where “uncorr” indicates that calibrations have not been applied to correct for the
nonideal response of the system hardware. In the frequency domain, the convolutions
given in eq. (2.2) correspond to multiplications and may be written as

Y (meas,uncorr)(f ) = X(f )HTX(f ) ˆ̃
H (f )HRX(f ). (2.3)

The frequency domain representation often provides a straightforward way for
mathematically applying calibrations, mismatch corrections or other corrections.
The impulse-response model described here can inform designers what conditions to
expect in deployment or it may be convolved with a signal to simulate performance.
Calibration methods and issues for single-antenna systems are discussed in Chapter 3.

2.2 Path Loss

Path loss is commonly expressed as the ratio between the transmitted power Pt and
received power Pr , both in watts. For transmit and receive antennas having gain Gt

and Gr , respectively, separated by a distance d in meters, path loss PL for an LoS
link in free space (without reflections) may be expressed as [1–5]

PL = Pt

Pr

= 1

GtGr

4πd

λ

2

, (2.4)
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where λ is the electrical wavelength at the frequency of operation in meters and d

satisfies the conditions

d � λ (2.5)

and

d > Df = 2D2

λ
, (2.6)

where Df is referred to as the Fraunhofer distance and D is the size of the antenna
aperture. Under the condition d > Df , the propagating electromagnetic wave starts
to approximate a plane wave.

Equation (2.4) is sometimes referred to as the Friis formula (although in [1] Friis
based his derivation on the ratio of the received power to the transmitted power).
However, eq. (2.4) represents the path loss as a positive quantity corresponding to the
value of attenuation. Millimeter-wave bands are the first frequencies where antenna
gains can be made sufficiently large within a small form factor such that path loss can
be dramatically reduced on a link to a mobile handset [6].

The Friis equation shows that the path loss increases as the square of the distance d.
This factor of two in the exponent of the numerator of eq. (2.4) is an important parame-
ter called the path loss exponent. Often, verification methods check whether measured
results produce a free-space path-loss exponent equal to 2 (or very close to 2). In
practice, the path-loss exponent is often used to evaluate the degree to which an
environment has propagation conditions similar to free space. For example, in highly
reflective environments, multipath reflections change the slope of a path-loss-versus-
distance curve, typically resulting in higher values of path-loss exponent. To form
a statistically accurate estimate of path loss, measurements should be repeated over
several separation distances between the transmitter and the receiver, and the results
compared with theory.

Often, the path-loss exponent is determined by applying linear regression to calcu-
late the slope of a measured path-loss-versus-distance curve. This “curve” will be a
straight line when plotted on a log–log scale. The standard deviation of the difference
between the measured points and the points on the line provides an indication of the
confidence in the estimate of the path-loss exponent. In addition to environmental
factors that may affect the path-loss exponent, the measurement process itself can
affect the estimate, including factors such as the number of points collected in the path-
loss-versus-distance curve, the positioning accuracy of those points and the channel
sounder’s amplitude resolution, as well as its repeatability. The verification process
tries to separate the measurement-process-induced factors from the environmental
factors.

In addition to the analytic expression for free-space path loss in eq. (2.4), there are
also several statistical models that can be used to describe the path-loss exponent for
other environments, such as the single-frequency, close-in (CI) free-space reference
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distance model [3]; the single-frequency floating-intercept (FI) model [2]; the multi-
frequency CI model with a frequency-dependent term (CIF) [7]; the CI model with a
height-dependent term (CIH) [8]; and the multi-frequency alpha–beta–gamma (ABG)
model [9–12]. Sensitivity analysis over several measurement campaigns suggests a
1 m free-space path-loss reference could hold over a wide range of mmWave frequen-
cies [12–14].

2.3 Delay Spread

Typically, multipath propagation is evaluated using a metric termed the root-mean-
square (RMS) delay spread, which is derived from the power delay profile (PDP). The
PDP is the magnitude squared of the channel’s complex impulse response, and may
be given as

PDP (τ) = |h(τ)|2. (2.7)

Often, to model an environment, many measurements, typically on the order of
thousands, are collected and the PDPs are averaged. The averaged PDP is often com-
puted as the spatial average of the channel’s magnitude-squared baseband impulse
response over a local area. It is important to distinguish between the instantaneous
PDP and the average PDP. The former is defined as the squared magnitude of the
instantaneous impulse response, while the latter is defined as the ensemble average
over multiple realizations of the small-scale fading. Multiple measurements for aver-
aging are generated by moving the TX and/or RX of the sounding system over dif-
ferent locations. The size of the region over which the spatial average is done is also
important. The size of the region should be large enough to span multiple wavelengths
(at least as many as the number of resolvable MPCs within the delay spread; see
Chapter 4). The larger the region, the better from the viewpoint of statistical averaging.
However, it cannot be too large. In particular, the channel parameters – delay and
AoD/AoA associated with each MPC – should not vary beyond the corresponding
resolution limits of the channel sounder (see also Chapter 4). Nor should the ampli-
tudes of the underlying MPCs change (although the phases can change), a description
that is formalized by the stationarity region [15, 16]. Averaging becomes particularly
sensitive in ultrawideband channels [17]. Satisfying these conditions will yield an esti-
mate of the “local” channel statistics, and the averaging of multiple PDP realizations
is primarily averaging over the changes in the complex path amplitude (that is, path
phases). However, we can also average the “local” PDPs over a larger area (over which
the delays, and AoAs/AoDs vary substantially) to yield an estimate of an aggregate
(global) PDP for the entire area. The local and global PDPs can be used for different
aspects of wireless network design.

We can also view the multiple spatial measurements as a long sequence of temporal
measurements in which the TX and/or RX moves over the region in which the multi-
ple spatial measurements are made. Then spatial averaging is equivalent to temporal
averaging and the local versus global aspect refers to which temporal segments are
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combined for computing the average. The spatial region/time span over which the
averaging is done defines the ensemble of channel realizations over which the channel
statistics (local versus global) are computed [18, 19]. In essence, the “local” PDP
statistics can be computed by averaging the PDPs for multiple spatial measurements
over a smaller local region, or by averaging the PDPs over multiple temporal segments
in which the TX/RX move over the same local region. Global PDP statistics can
be obtained by averaging the local PDPs corresponding to different smaller local
regions, partitioning the global coverage region. The global statistics are equivalent
to averaging multiple spatial PDP measurements over the entire global spatial region,
or by averaging the PDPs over multiple temporal segments in which the TX/RX move
over the global spatial region. Note that other kinds of statistics can be derived from
the ensemble of measured PDPs as well.

2.4 Directional Channel Impulse Response

For channel sounders with directional antenna arrays at the receiver, the spatial–
temporal channel impulse response, h(τ,θ,φ), where θ denotes elevation and φ
denotes azimuth angles, can be ideally modeled as

h(τ,θ,φ) =
Np∑
n=1

αnδ(τ − τn(θ,φ)), (2.8)

where αn is the complex path amplitude and τn(θ,φ) is the relative path delay for the
nth propagation path (out of Np total paths) coming from the direction θ and φ. In
order to develop this model, the different paths coming from different directions have
to be determined using measurements collected by the sounder antenna for different
transmitter and sounder locations.

2.5 Doppler

The Doppler power spectrum |Hp(τ,�f )|2 for a given MPC resolved along the
sounder path may be calculated from the discrete Fourier transform of the transfer
function

Hp(τ,�f ) = 1

M

M∑
m=1

hp(τ,m�t)e(−j2π�f m�t/T ), (2.9)

where, as illustrated in Figure 2.2, m denotes the PDP measurement number made
along the channel sounder’s path in time, p is the pth MPC, and �f denotes the
Doppler frequency shift associated with the channel sounder’s path [9]. The observ-
able range of the shift depends on the sampling rate as −1/2�t ≤ �f ≤ 1/2�t ,
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power delay profiles measured along the sounder’s path.

where �t is the sampling-time increment, as shown in Figure 2.2. In the above rela-
tion, τ denotes the relative delay for the pth MPC.

2.6 Final Comments

The variability and uncertainty in the quantities measured by channel sounders is
important if we wish to know whether our measured data support the conclusion that
“the channel sounder is operating within specification” or “the channel sounder is not
performing within specification.” Thus, one key goal of the measurement verification
process is to provide standardized techniques in controlled or characterized environ-
ments that allow users to determine their sounder’s variability.

However, the absolute accuracy with which channel parameters must be estimated
in order to yield useful results in wireless network design and simulation is a topic
of current research in the channel measurement community (see, for example,
[12, 20, 21]). Ultimately, the sensitivity of the final quantity of interest (such as
throughput, capacity or reliability) to the changes in metrics such as path loss, RMS
delay spread, angle of arrival or Doppler will determine the corresponding accuracy
requirements. For example, as mentioned above, in LoS measurements there are many
factors that may cause the free-space path-loss exponent to differ from 2, only some of
which are due to the accuracy of the channel sounder. As such, obtaining a path-loss
exponent of 1.9 may be acceptable in some cases, whereas a path-loss exponent of
1.98 may be required for other applications. Thus, in the chapters that follow, we
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simply provide the values of the metrics obtained in order to illustrate best practices
for verifying sounder performance, rather than judging the utility of these values.
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Channel sounders in the millimeter-wave (mmWave) bands need to meet stringent
requirements in order to provide meaningful, accurate and repeatable measurements.
Requirements include wide bandwidth to cover the frequency range of interest, fine
time delay resolution to distinguish the multipath components (MPCs), high waveform
repetition rate for Doppler coverage and multiple-antenna arrays for dual polarization
applications and to distinguish AoD and AoA. The Channel Alliance participants use
a wide variety of channel sounder architectures. Most fall into three major categories:
VNA-based, correlation-based and FMCW (chirp). Each is described here followed
by a general discussion on sounder calibration, timing synchronization and system
parameters.

3.1 Channel Sounder Architectures

3.1.1 Vector Network Analyzer

The vector network analyzer (VNA) is a ready-to-use commercial off-the-shelf
channel-measurement solution capable of providing wide bandwidths and high
dynamic range. Because VNAs acquire data in a series of narrowband, frequency-by-
frequency measurements over the desired band of frequencies, they typically have very
high dynamic range compared to instruments that sample over a wider bandwidth.
However, the slow acquisition time requires that static channels are measured. The
complex frequency response measured by the VNA can be converted to the impulse
response via the inverse Fourier transform (often implemented via the inverse fast
Fourier transform, or IFFT). The TX (i.e., the source) and the receivers used to
measure the channel’s scattering parameters are both physically located within the
VNA. They share the same internal sources, local oscillators and other timing circuits,
giving it very high accuracy.

Cables that may connect the VNA ports to the antennas at mmWave frequencies
suffer from phase instability and phase nonlinearity over a wide bandwidth that can
lead to distortion of the frequency sweep, which reduces the time delay resolution
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and may provide a time-variant response that is characteristic of the cables rather
than the radio channel. Consequently, VNAs are often employed over short links and
indoors, where the channel characteristics are assumed to be time-invariant for the
duration of the frequency sweep. To extend the range, an RF-over-fiber solution may
be used to reduce cable loss and timing errors [1]. For mmWave applications, VNAs
that operate in the lower frequency bands sometimes include up- and down-converters.
Such frequency converters may also be used for the other architecture types as well [2].

Vector network analyzers may be used as reference instruments to which other
channel sounders can be compared. There are several reasons for this. One reason
is that they have well-established calibrations and uncertainty analyses (through the
manufacturer or from external calibration packages such as the NIST Microwave
Uncertainty Framework [3]). Additionally, well-established techniques have been
developed for shifting the reference plane of the VNA from one circuit location to
another, which is useful for comparing VNA and channel sounder measurements of,
effectively, the same channel. Finally, they can acquire data over a bandwidth that is
wider than real-time sampling channel sounders. These data can then be filtered to
match the response of another sounder type. These three features allow comparison
of channel characteristics between VNAs and other sounders.

3.1.2 Correlation-Based Sounders

An alternative to frequency stepping of sinusoids is to utilize a broadband, periodic
excitation signal. Correlation processing, where the received signal is convolved with
a time-reversed copy of the transmitted one, is carried out to obtain the complex
impulse response of the channel and to improve the dynamic range. The excitation
signal may be periodic pseudo-random binary sequences (PRBS) [4–14] or another
type of periodic multicarrier signal often called a “multisine” [15–18].

At the receiver, two architectures are commonly employed for correlation-based
sounders. For the “sliding correlator,” the same wideband signal is generated with
slightly different clock rates at the transmitter and receiver. At the receiver, the replica
of the transmitted signal is multiplied, for example, with a mixer, with the incoming
received signal and low-pass filtered to enable bandwidth compression. Bandwidth
compression has the advantage that a narrowband receiver may be used. The resulting
time dilation provides near real-time channel measurements, although the time dilation
of the sliding correlator creates a slight delay in the channel measurement as the two
signals slide past each other in the correlator. The correlated signals are sampled at or
above the Nyquist rate to obtain the channel impulse response (CIR). Because multiple
correlations must be sampled, the measurement time may be extended for sequential
correlation processing. Alternatively, a hardware configuration designed for parallel
correlation may be used.

An alternative architecture known as “direct correlation” or “real-time correlation”
is based on Nyquist sampling of the received signal before correlation [7–12, 19–23].
The received signal is down-converted and directly digitized at a high sampling rate
in real time, and correlation of the received signal with the ideal transmitted signal is
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performed in postprocessing. For direct correlation, an FFT is performed on the raw,
periodic, complex channel samples. The frequency domain signal representation is
then multiplied with the conjugated frequency response of the transmitted waveform
with or without filtering. Filtering is sometimes applied to limit the occupied band or
to correct for sounder hardware nonidealities. The latter is discussed in Section 3.2.
An IFFT is then performed on the filtered response, resulting in the time-domain CIR.
The direct correlation FFT method allows for circular convolution to be performed via
multiplication in the frequency domain. Linear convolution can also be implemented
using zero-padded FFTs.

Direct correlation channel sounders support very fast acquisition of channel data.
Sampling of one PRBS/multisine signal period at the Nyquist rate or above often
supports very fast acquisition of channel data and offers fine temporal resolution for
Doppler measurements while capturing very rapid fading events [10–12, 19–22]. To
this end, the period of the transmit signal should be at least as long, but not too much
longer, than the relevant CIR excess time delay.

3.1.3 FMCW Sounders

A third architecture is the frequency-modulated, continuous-wave (FMCW) or “chirp”
sounder, which transmits a linear frequency sweep with time [24]. The spectrum of the
transmitted signal is flat over the frequency sweep for bandwidth (B, in hertz) × time
(T , in seconds) products over 100. (As noted in [25], the amount of energy outside B

is a function of the dispersion factor, where, for BT = 10 and 100, 95% and 98–99%
of the signal energy is contained within B, respectively.) The time delay resolution
of an FMCW sounder is inversely proportional to its bandwidth. The receiver either
mixes the incoming signal with a synchronized replica of the transmitted signal for
bandwidth compression or uses a quadrature down-converter as in the correlation-
based sounders. Due to the high bandwidth requirements for mmWave channel char-
acterization, quadrature or real-time sampling can be limited in terms of data transfer
to storage and, in this case, bandwidth compression enables logging of long records
of data if desirable.

3.2 Calibration Techniques and Timing Synchronization

3.2.1 Calibration Techniques

Sounder calibration is crucial for the interpretation of the data and the estimation
of the channel parameters. Calibration implies precise characterization of the sys-
tem through measurement and/or models [6]. For a channel sounder, this includes,
for example, knowledge of the frequency response function, antenna characteristics,
attenuation, noise level, and more. In general, knowledge of these (nonideal) system
characteristics allows for compensation of their influence on measured results. For
example, precise knowledge of the frequency response function and the complex array
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Transmitter Receiver

Variable 
attenuator

Figure 3.1 Setup for back-to-back tests.

radiation patterns of antenna arrays allows high-resolution estimation of delay and
direction of arrival. While both linear and nonlinear behavior have to be considered,
calibration of nonlinear distortion may be much more complicated than calibration of
linear response.

3.2.2 Back-to-Back Calibrations and Predistortion Filters

To correct for system hardware nonidealities and to characterize the linearity of a
channel sounder, back-to-back tests are performed which connect the transmitter and
receiver via a calibrated attenuator, as illustrated in Figure 3.1. The measured signal
is divided by the system response in postprocessing, reducing or eliminating measure-
ment artifacts such as spurs and other distortion. The back-to-back test also allows the
user to measure the linearity of the sounder and its dynamic range.

Starting from eq. (2.3), we can correct Y (meas,uncorr) when the antennas are removed
and a characterized variable attenuator is placed between the transmitter and receiver.
In this case, the back-to-back response is (see, e.g., [26])

Y B2B(f ) = X(f )HTX(f )HB2B(f )HRX(f ), (3.1)

where HB2B(f ) is the frequency response of the attenuator and connecting cables.
Correcting a channel measurement by the back-to-back measurement gives

Y corr(f ) = X(f ) · HTX(f ) · Ĥ (f ) · HRX(f )

X(f ) · HTX(f ) · HB2B(f ) · HRX(f )
= Y (meas,uncorr)(f )

Y B2B(f )/HB2B(f )
. (3.2)

Multiplying by the known back-to-back response yields the desired result:

Y corr(f ) = Ĥ (f ). (3.3)

Figure 3.2 shows an example of the back-to-back test in the E band (here, 72–81 GHz),
which gives the received power for each attenuator setting. The figure shows the
linearity of the sounder, where the output received signal decreases in approximately
10 dB steps corresponding to the applied attenuation.

As described above, the back-to-back test also gives the impulse response of the
sounder, which determines its time delay resolution and any spurious signals generated
within the system that need to be either corrected for or taken into account when
interpreting the measured channel data (e.g., by restricting the multipath threshold).
A typical back-to-back measurement is illustrated in Figure 3.3, which shows the
system response over the entire time delay window, where the noise floor of the system
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(a)

(b)

Figure 3.2 (a) Back-to-back test in E band (72–81 GHz) for the Durham channel sounder for
attenuator settings from 66 dB to 116 dB; (b) received power versus attenuation setting,
demonstrating a linear response.

is −110 dBm, with spurious components appearing at up to 10 dB higher than the
noise floor of the sounder.

As an alternative, or in addition to dividing out the nonideal system response as in
eq. (3.2), another method for reducing the level of distortion of the impulse response
for wideband signals is to reduce the processed bandwidth to a width over which the
system’s transfer function is flat, giving the ideal impulse response. Figure 3.4 illus-
trates a conducted measurement of the back-to-back impulse response for an FMCW
signal in the ISM band (58–64 GHz) with a 4.4 GHz bandwidth. The figure shows
that, before compensation, the impulse response is not the desired ideal response with
a single peak, but the response is dispersed in time delay, which limits the time delay
resolution of the sounder as well as its dynamic response. This effect can be reduced
by the method of eq. (3.2) or by selecting a section of the sweep for ideal channel
response. After compensation, the impulse response of the sounder hardware is closer
to an ideal delta function.

Finally, a free-field alternative to the conducted back-to-back test is to perform
the correction from a measurement in an anechoic environment, which includes the
antennas. In the case where the antennas cannot be detached from the rest of the
RF unit (which commonly occurs, since mmWave RF units often have integrated
antennas), this is actually the only viable method. Again, channel measurements are
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Figure 3.3 Back-to-back test of the Durham sounder illustrating spurious components. In this
figure, distortion was reduced by limiting the measurement to a 1 GHz bandwidth.

Figure 3.4 Durham sounder’s impulse response over a 4.4 GHz bandwidth measured in a
conducted back-to-back test.

divided by the measured system response in postprocessing, but this time the antenna
responses are included. This is shown in Figure 3.5, which displays the frequency-
limited, free-field back-to-back-corrected impulse response of that shown in Figure
3.4, which is now closer to the desired ideal response.

Some channel sounders utilize arbitrary waveform generators to create the transmit-
ted signal. An example is the correlation-based sounder that transmits a BPSK (binary
phase-shift keying) modulated signal. If the back-to-back system response is measured
prior to system deployment, a predistortion filter can be applied. This approach can
have the advantage of improving the dynamic range of the measurement since the
transmitted signal has been optimized (not to be confused with the channel’s noise
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Figure 3.5 Corrected system response from both back-to-back test and from over-the-air test
showing that the calibration eliminates system-induced multipath artifacts below a 30-dB
threshold [6].

characteristics, which do not change because they are measurement-system indepen-
dent). Calculating such a predistortion filter for a correlation-based channel sounder
can be carried out as follows: The frequency response of the B2B channel HB2B(f ) is
measured by a VNA. The predistortion filter W (f ) is then given by [27]

W (f ) = HB2B(f ) · P (f )

Y B2B(f )
= HB2B(f ) · P (f )

P (f ) · HTX(f ) · HB2B(f ) · HRX(f )
, (3.4)

where Y B2B(f ) is the received signal through the B2B channel; P (f ) is a bandpass
filter whose shape corresponds to the frequency response of the autocorrelation of the
ideal pseudo-random sequence; and HTX(f ) and HRX(f ) are the nonideal responses
of the TX and RX system hardware, respectively. The predistortion filter is applied
to the transmitted waveform, so that HTX(f ) and HRX(f ) are removed from the
calibrated received signal Y Cal(f ):

Y Cal(f ) = [P (f ) · W (f )]HTX(f ) · Ĥ (f ) · HRX(f ) = P (f ) · Ĥ (f ), (3.5)

where Ĥ (f ) is the measured estimate of H (f ), the response of the radio propagation
channel.

For the example below, the back-to-back measurement and predistortion filter cal-
culation were repeated three times to remove both linear and nonlinear distortion. The
calibrated power delay profiles (PDPs) and power spectra for one TX/RX antenna
pair in the 60 GHz sounder are presented in Figure 3.6. In Figure 3.6(a) the nonideal
sidelobes in the PDP caused by nonideal system hardware are decreased from approx-
imately 25 dB (dashed line) to over 50 dB (solid line) below the peak. The calibrated
spectrum is smooth and matches the ideal one very well, as shown by the zoomed-in
power spectrum in Figure 3.6(b). As long as the channel sounder hardware does not
change, the predistortion filter may be applied prior to a measurement in a complex
environment, just as the standard back-to-back calibration is applied afterward.
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(a) (b)

Figure 3.6 Effects of pre-distortion filter (Pre-D filter) on (a) PDP and (b) power spectrum.
© 2017 IEEE. Reprinted, with permission, from [27].

±1 Hz

Figure 3.7 Delay Doppler from back-to-back test.

3.2.3 Phase Noise

Another factor to consider is the phase noise of the sounder, which impacts the
delay Doppler function and the estimation of MIMO (multiple-input, multiple-output)
capacity. Figure 3.7 displays the delay Doppler function where the Doppler spectrum
is seen to be centered at zero frequency, which indicates the stability of the measured
response over the acquisition time [24]. The figure shows that the inner ring is between
±1 Hz, which corresponds to the acquisition time of 1 s. Other sounder calibrations
can be obtained from tests in an anechoic chamber, such as coupling between MIMO
channels, and phase noise for MIMO capacity estimation, as illustrated in Figure 3.8
[24].

Finally, Table 3.1 summarizes channel sounder calibration techniques used by
Alliance participants.

https://doi.org/10.1017/9781009122740.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.004


22 Reiner Thomä et al.

Table 3.1 Channel sounder calibrations used by Alliance participants.

Frequency response
Received power/path

loss
Antennas and

antenna arrays
TX/RX LO frequency 

synchronization

Standard VNA two-port 

calibration

N/A Anechoic chamber 

(complex radiation 

patterns, azimuth and 

elevation, full

polarization)

Remote oscillators locked

to10 MHz reference. 

(Residual phase drift

recorded and removed in

post-processing)

Back-to-back with up to

110 dB attenuation  

Anechoic chamber with antennas

Wideband Azimuth calibration Rubidium and 1 PPS GPS

ETRI, Daejeon, S. 
Korea, Juyul Lee, 
Myung-Don Kim

Correlation-based, PRBS Wideband, 80 dB range 

power level (w/o antenna)

Complex radiation 
patterns (anechoic 
chamber, vertical 
polarization, azimuth)

Training of Rb. Clock

Georgia Tech,
Atlanta, GA,
Prof. Alenka Zajic

Standard VNA two-port 

calibration

N/A

TU Ilmenau,
Ilmenau, Germany,
Prof. Reiner Thomä, 
Robert Müller

Frequency response of the
transmission system (S21),
is de-embedded in post- 
processing.
Antennas are considered part
of the CIR.
60 GHz BW, 801frequency points

Wideband, antennas included Gain provided by 

manufacturer
LO freq. = 11~17 GHz

Keysight,
Santa Rosa, CA,
Robin Wang, Sheri 
Detomasi

Free-field back-to-back system

response (antenna is included)

Bandwidth: 1 GHz

Number of frequency 

points: 5,000 Sa

Wideband.

Number of power levels: 

one or more

Antenna is included

Complex radiation 

patterns and gain

provided by antenna

vendor

GPS outdoors or separate 

operation after 1 PPS

input/output sync indoors

NIST, Boulder, CO,
Peter Papazian, 
Camillo Gentile, 
Jeanne Quimby, Kate 
Remley

Back-to-back conducted. 

2 GHz bandwidth, 

81,880 frequency points, 

13 power levels.

No AGC.

Wideband.

13 power levels

No antennas

In-house near-field

scan

PPS synchronization + GPS

North Carolina State 
University,
Raleigh, NC, Prof. 
Ismail Guvenc, Ozgur 
Ozdemir

Conducted back-to-back 

measurement.

Antennas are part of CIR. 

Gain provided by

antenna vendor

Two Rb clocks for TX/RX 

after training or single Rb 

clock used at the TX/RX

NYU WIRELESS,
New York, NY,
Prof. Ted Rappaport, 
Hangsong Yan, 
George MacCartney, 
Yunchou Xing

Antennas were included. Antenna gain

determined by the

“three antenna method”

 and verified by 

antenna specification 

sheet.

The antenna

polarization

configuration used in 

the calibration was

VP/VP.

Azimuth and elevation

angles were included.

Frequency was tuned at the 

beginning of each day and 

synchronized.

University of British 
Columbia,
Vancouver, Canada,
Prof. Dave Michelson

Standard VNA two-port 

calibration
Wideband, antennas included Manufacturer’s data

sheet

10 MHz reference

distributed by fiber/coax

University of Southern 
California and 
Samsung, 
Prof. Andy Molisch

Anechoic chamber calibration

at different power levels

Wideband, antennas included Anechoic chamber 

(complex radiation

pattern per beam, at

different power levels)

Rb clock and GPS (1 PPS)

University of 
Wisconsin–Madison,
Madison, WI,
Akbar Sayeed

Both azimuth and

elevation (2D arrays),

but single polarization

at this time. 

Full I/Q complex 

waveforms

Developed training signals 

and RX processing for

remote time–frequency

synch.

University of Wisconsin–Madison: Plan to develop algorithms to isolate different components of the channel response. We also have a digital oscilloscope with 

13 GHz bandwidth with four channels that can provide a higher-quality alternative to ADC-based RX processing.

Measurements of antenna gains

done in a particular direction

with or without the lens

(particular feed used for

excitation). 

Confirmed Friis law for path loss.

RF BW of 1 GHz, but lower

baseband bandwidths as noted

above

Wideband and narrowband 
calibration procedures. 
Calibration attenuation setting at
the receiver was from 0 dB to
70 dB with 10 dB increments for
each step.
Received power/path loss
calculated with antenna gain
removed Gain of converter flat
across 800 MHz frequency
bandwidth.
Free-space path loss calibration
conducted using a 1, 2, 3, 4 and 5
meter close-in free-space power 
measurement, and at 33 m for
narrowband

First TX power is calibrated
using power sensor. Then the
attenuation due to calibration
cable measured. 
This is used to calibrate the
received power and path loss

Frequency response with
arbitrary resolution includes
all RF elements and
DAC/ADCs. 
Alternatively, determine
frequency response of only
antennas using VNAs (up to
50GHz) for short links

Group, location, contact

Communications 
Research Centre, Canada,
Yvo de Jong, Mustapha
Bennai, Jeff Pugh

Durham University, Durham,
UK, Prof. Sana Salous
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Figure 3.8 Phase noise measured over the 2 × 2 MIMO channel in the anechoic chamber at
Durham.

3.2.4 Timing Synchronization

There are many areas where time synchronization is important in channel sounders.
For example, it is often desirable to synchronize the initial starting point of the trans-
mitted PRBS signal or chirp/frequency sweep with the receiver to measure the abso-
lute time of flight. This is significant for establishing an “absolute time reference”
for the measurements. Training-signal-based schemes may also be used to determine
the time of flight if bidirectional communication is possible between the TX and RX.
(Essentially, the RX sends back a training signal following a fixed delay after receiving
the first signal from the TX from which the roundtrip time of flight can be estimated.)
These schemes are new, and are a current area of research.

Also, frequency synchronization between the transmitter and receiver oscillators is
necessary to minimize time drift, which can impede accurate delay spread analysis
or cause artificial Doppler [28]. It is crucial that the time drift during the acquisition
should not erroneously shift the MPCs by a time-delay resolution bin. The relative
delays can be established a number of ways as long as there is good symbol timing
and frequency synchronization between the TX and the RX.

We should distinguish between long-term and short-term drift of the local oscil-
lators in the channel sounder, both between the TX and RX, but also within each
subsystem. This drift, or LO phase variance, should be considered over the period of
time corresponding to the processing interval of interest. For example, if we intend to
scan an antenna array for the purpose of high-resolution angle of arrival (AoA) esti-
mation, phase coherency will be needed over the length of this entire scan acquisition.
The resulting acquisition time can be very long for synthetic aperture scanning or very
short if fast switched-array scanning is used. For averaging over long received-signal
periods, we will need to minimize drift over that averaging time. Finally, if we intend
to resolve Doppler, the drift should be minimized over the duration required to obtain
an accurate Fourier transform. This can be estimated from the delay Doppler, where
the acquisition time duration should ensure that the Doppler spectrum is centered at
0 Hz. The concept of Allan variance is the relevant measure for phase noise/drift
characterization as it allows a proper choice of the observation time according to the
application.
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Synchronization can be achieved if the same reference or local oscillator is used
for both ends of the link. However, this limits the mobility and, possibly, range of
transmission as it requires a cable to connect both ends of the link, similar to the
VNA solution. Long-range transmission of a local oscillator signal or clock reference
signal can be achieved by radio-over-fiber transmission; this concept has been exper-
imentally verified for ultra-wideband (UWB) signals below 10 GHz [29], but not yet
for mmWave systems. A third, more common, technique uses calibrated rubidium
standards at the transmitter and at the receiver, which can be synchronized to the
“pulse-per-second” (PPS) reference signal that is output by either rubidium standards
or GPS. GPS is used for outdoor applications. However, this method provides only a
few nanoseconds of stability, which can lead to increased uncertainty due to drift for
short-duration waveforms.

Temporary direct connection of two rubidium clocks (in a leader–follower con-
figuration) can be used indoors or outdoors [10–12, 30]. For the case involving two
clocks, after the clocks have synchronized they are disconnected, typically holding
their synchronization anywhere from a few minutes to a few hours, depending on the
type of timing reference standard used at both the transmitter and receiver.

In general, rubidium frequency standards are preferred over crystal oscillators for
improved long-term timing accuracy, with orders of magnitude better phase noise and
stability. However, short-term timing accuracy is still typically accomplished with
quartz oscillators, which are often built into the rubidium clock assembly because
quartz crystal oscillators typically have better phase noise characteristics than rubid-
ium clocks. When rubidium frequency standards are locked to a GPS they may require
up to 27 hours to stabilize.

Another approach for time and frequency synchronization is to use appropriate
training signals, known at both the transmitter and the receiver, at the beginning of
each measurement block, as in an actual communication system [31]. This approach
is particularly suited for long-range measurements and when the local oscillators are
stable over sufficiently long measurement blocks.

Synchronization Example
To illustrate synchronization with rubidium clocks, the following is a description of
how ETRI conducts its sounder synchronization for long-distance outdoor measure-
ments. Figure 3.9 illustrates a diagram for timing synchronization. As can be seen,
both TX and RX parts of the sounder have rubidium clocks and auxiliary circuits for
triggering and synchronization. The former is for the absolute time reference while the
latter is to trigger or synchronize the start of the PN-code frame so that at the instant
when the PN sequences are transmitted, the receiver starts to acquire data.

To synchronize the clocks, ETRI first connects 1PPSOUT of the TX rubidium clock
to 1PPSIN of the RX clock and monitors with software until the timing difference
between the 1 PPS signal of TX and that of RX is less than 1 ns. The connections
are shown in Figure 3.9. Typically, this process takes several hours. When the timing
difference is less than 1 ns, as shown by the first vertical line in Figure 3.10, they
activate the EXTSYNC. This trigger synchronizes the frames between TX and RX as
shown by the second vertical line in Figure 3.10. Then, they disconnect the 1 PPS
connection between TX and RX and the EXTSYNC.
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Figure 3.9 ETRI channel sounder timing synchronization.
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Figure 3.10 ETRI channel sounder timing diagram.
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module #1

(Rb Clock)
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Figure 3.11 Time-dependent synchronization accuracy test. The X indicates that the cable
between the TX and RX rubidium clocks disconnects once the two units are synchronized to
within 1 ns.

The next step is to measure the time-dependent impacts on synchronization accu-
racy when the TX and RX rubidium clocks are disconnected. After synchronization
between TX and RX is within 1 ns, they compare the 10 MHz reference signals with a
frequency counter, as illustrated in Figure 3.11. The TX and RX reference signals are
then monitored for many hours (about 17 hours in Figure 3.12).
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Figure 3.12 Timing synchronization accuracy measurements. Reproduced from [30] with
permission by the Electronics and Telecommunications Research Institute.

Figure 3.12 shows typical monitoring results, where the discontinuities are simply
due to a frequency-counter-overflow reset and do not affect the results. We observe
that about 10 ns (49.6 ns per 5 hours) timing drift occurs every hour. This equates
to about 0.16 ns timing error each minute. This would be acceptable for most delay-
spread analyses.

3.3 Antenna Architectures

Radio systems in the mmWave bands often use highly adaptable and electrically
steerable antennas that rely on multiple-antenna technology [8, 10, 32]. Many chan-
nel sounders use directional and/or steerable antennas. Channel sounders may use
multiple antennas that can be enabled or selected via a single channel switched at
the transmitter and at the receiver, or parallel channels may be used. Switching can
be achieved either at IF, as in the Durham sounder [24], or at RF, as in the NIST
sounder [10]. Switching at the IF enables higher channel isolation and avoids potential
switching-related losses in the mmWave bands, while switching at RF avoids the cost
of duplicating the RF heads.

Parallel reception allows for a higher channel sampling rate and synchronized
acquisition of multiple-antenna systems, as in the University of Wisconsin’s lens-
array-based channel sounder [31]. Lens-array-based sounders also have the advantage
of RF beamforming that is accomplished by the front-end lens. Yet another method
is to have switchable phase shifters so that the sounder can switch between beams
pointing into different directions; this concept is used in [18]. It has the advantage
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of providing beamforming gain in the RF domain. Finally, alternatively, absolute
timing may be used, and a single rotatable, directional horn antenna may be used
at the transmitter and/or receiver to capture channel characteristics, while the horn
antennas are rotated to various angles. This procedure, used by NYU and others, takes
more time and assumes the channel is relatively static during the rotation [7–9, 11, 12].
Synthetic aperture techniques may also be applied to these measurements to determine
the angular characteristics of the channel [41].

The mmWave channel is much more directional and sparse than at UHF bands,
such that ray-tracing may be used as a surrogate for accurate spatial prediction and
propagation time synchronization, and, thus, absolute timing. The ray-tracing method
for determining spatial characteristics of a channel and absolute propagation delays
was performed in early mmWave channel modeling work where the measurements
lacked time synchronization [12, 22, 28].

Participants in the 5G mmWave Channel Model Alliance use a wide range of
channel sounders with various architectures and operating frequencies. These are sum-
marized in Table 3.2.

3.3.1 Antenna Calibration

Another calibration is that of the antennas used in the measurements and for the
estimation of the omnidirectional received signal from directional antennas. For this,
the antenna’s radiation pattern needs to be measured in an anechoic environment. If the
channel sounder uses a rotating platform or a switched array, it is rotated with the same
angular step as used in the measurements. For example, rotating the antenna in steps
smaller than the 3 dB beamwidth (or even the 10 dB beamwidth) leads to overlap of
the antenna beam, and the addition of the received power from the overlapped angles
gives an apparent additional antenna gain that needs to be taken into account when
estimating the received power/path loss [19].

If we intend to increase the angular resolution beyond that of the pattern corre-
sponding to each antenna element, then we need to measure the complex radiation
patterns of each antenna. We must also include the influence of the pivot point (thus,
rotation on a circle may be advantageous). The omnidirectional PDP can then be
reconstructed with a rotation step fine enough to reconstruct each individual antenna
element pattern.

For other antenna array architectures, such as a discrete antenna array (with digital
beamforming), a phased array, or a lens array, the antenna array characteristics for
a “complete” set of array configurations would need to be measured in an anechoic
chamber. The “complete set” in many cases may correspond to the finite set of (beam-
forming) array configurations that are used for channel measurements. For mmWave
channel sounders, the influence of the channel sounding hardware on the antenna
or antenna-array radiation pattern often cannot be ignored. It is instructive to measure
the antenna pattern alone and with the channel sounder to understand the overall
system effect on antenna performance. In the absence of an anechoic chamber, a
wideband channel sounder can be used in an open environment to conduct antenna
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Table 3.2 Overview of the various channel sounders used by the 5G mmWave Channel Model Alliance
participants.

Group,
location,
contact

Signal 
recording
hardware

TX/RX synch.
TX antenna 
architecture

RX antenna 
architecture

Antenna array 
architecture

Communications 
Research Centre,
Ottawa, Canada,
Yvo de Jong, 
Mustapha Bennai,
Jeff Pugh

VNA-based, 

sinusoid

VNA

frequency

sweep  

Cable synch. Either omni 

or steerable horn

(18–30˚ typical 

HPBW)

Same as TX

(several 

combinations 

possible)

N/A Full dual pol. 

(2 × 2) 

Durham University, 
Durham, UK,
Prof. Sana Salous

Multi-band, 

chirp,

FMCW

Heterodyne 

detector (BW

compression)

Rb stds. TX and 

RX, with and 

without GPS

Either omni  or 

directional (2 or 8 

antennas)

Either omni or 

directional (2, 4, 

8 antennas)

2 × 2 or 2 × 4 MIMO, in 

E and V bands and 8 × 8

MIMO in K band 

switched at TX/parallel 

at RX

With twists on 

the 2 × 2

ETRI, Daejeon,
S.Korea, Juyul Lee, 
Myung-Don Kim

Correlation-

based, PRBS

Sliding 

correlation 

(real-time in 

process)

Cable or Rb 

stds.

Either omni  or 

directional (30˚, 

60˚HPBW)

Either omni  or 

directional (10˚

HPBW)

Single 1 × 1

Georgia Tech,
Atlanta, GA,
Prof. Alenka Zajic

VNA-based,

sinusoid

VNA 

frequency 

sweep

Cable synch. Directive, single Directive, 

single

N/A Vertical

polarization

TU Ilmenau,
Ilmenau, Germany,
Prof. Reiner Thomä, 
Robert  Müller

Correlation-

based, PRBS

Periodic sub

sampling

Tethered (coax 

or optical)

Pencil-beam 

radiation pattern. 

Main beam (2˚, 

15˚, 30˚, omni 

HPBW in az. and 

el.), low sidelobes

Same as TX

(several 

combinations 

possible)

Rotated antenna (both 

sides) 

Full dual pol 

(2 × 2)

Keysight,
Santa Rosa, CA,
Robin Wang, Sheri 
Detomasi

Correlation-

based,

Keysight 

proprietary 

sequence

Real-time 

sampling

Rb/GPS 

reference

Function gen.

for trigger 

source

Omni or antenna 

array: switched 

antenna, potential 

for synthetic 

aperture

Omni or 

antenna array: 

both parallel 

and switched 

antenna, 

potential for 

support 

synthetic 

aperture

2 × 2, 4 × 4, 8 × 8 and 

16 × 16:

TXside: switched

RXside: true parallel or 

switched

HP/VP

NIST,
Boulder, CO,
Peter Papazian,  
Camillo Gentile, 
Jeanne Quimby, Kate 
Remley

Correlation-

based, PRBS

Real-time 

sampling

Rb clocks, GPS 

outdoors

28 GHz and 83 GHz :

omni or 

directive,

single antenna

60 GHz: directive 

switched array

Directive, 

switched array

Octagonal, Switched 

antenna–RX

HP/VPwith 

twists

North Carolina State 
University,
Raleigh, NC, Prof. 
Ismail Guvenc, Ozgur 
Ozdemir

Correlation-

based,

National 

Instruments (NI)

proprietary

sequence

Real time 

sampling

Averaging on 

FPGA to 

reduce the 

streamingrate 

and improve 

SNR

Rb clocks 

Either use two 

Rb clocks by 

training clocks 

or use single 

Rb clock for 

TX and RX

Single directional 

horn antenna on a 

rotatable gimbal

Single 

directional horn 

antenna on a 

rotatable 

gimbal

N/A Single 

Polarization

NYU WIRELESS,
New York, NY,
Prof. Ted Rappaport, 
Hangsong Yan,  
George MacCartney, 
Yunchou Xing

Correlation-

based, PRBS

Sliding 

correlation 

(BW 

compres-

sion)/direct-

correlation or 

real-time 

sampling

Free-running 

high-stability 

oscillator at TX 

and RX. 

Synch 1×/day or

with cable or with 

cable and Rb 

clocks synched 

to 1#PPS via 

training

Single directive 

rotatable horn 

antenna

Single directive 

rotatable horn 

antenna

Single pyramidal horn 

antenna at both TX and 

RX: Gain 24.5 dBi, AZ. 

HPBW 10.9˚ and EL. 

HPBW 8.6˚, and 

multiple other horn 

antenna options with 

various gain/HPBW

Vertical 

polarization and 

horizontal 

polarization

University of British 
Columbia,
Vancouver, Canada,
Prof. Dave Michelson

VNA-based,

sinusoid

VNA 

frequency 

sweep

Tethered via 

optical fiber 

link

Either omni or 

horn (30 GHz).

Horn (10 GHz)

Dual-polarized 

conical horn

(30 GHz).

Rectangular 

horn (10 GHz)

N/A Full dual 
polarization:
With TX twists 
(30 GHz).
With TX and RX 
twists (10 GHz)

University of Southern 
California and 
Samsung,
Prof. Andy Molisch

Correlation-

based, 

proprietory multi-

tone sequence

Real-time 

sampling, 

streaming to 

RAID array

Cable or Rb 

standards (with 

or without 

GPS)

90˚ patch 

antenna arrays

90˚ patch 

antenna arrays

16-element switched 

phased array at TX and 

RX (multiple panels at 

RX possible)

Single 

polarization

University of Wisconsin–
Madison, Madison, WI,
Akbar Sayeed

FPGA-based 

baseband 

processor:

VNA,

sinusoid;

PRBS,

Chirp FMCW,

OFDM 

Real-time 

sampling

Tethered for 

short links 

Untethered 

time/freq. 

synch. with 

training signal 

for longer links

Bidirectional 

CAP-MIMO 

transceiver for 

beamspace 

MIMO. 

TX/RX inter-

changeable

Lens antenna array: one 

sided hemisphere. Four 

multiple beams out of a 

max. of 16 (expandable).

Single 

polarization 

University of Wisconsin–Madison: Lens antenna equivalent to 600–800 half wavelength-spaced antenna arrays (40 × 40 cm aperture at 

10 GHz, 15.2 cm circular aperture at 28 GHz). In a given configuration, coverage area spanned by 4 × 4 array of feed antennas and 

measurements on four simultaneous beams can be made. Beamwidth: 4.2 degrees. The feed array can be enlarged or moved for larger angular

coverage.

Dual polarization
capability

Sounder 
architecture,

transmit signal
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pattern measurements by temporally resolving individual MPCs, such that the LoS
path is extracted and multipath with larger excess delays are eliminated [33].

While the calibration issues for single-antenna systems are fairly well understood,
as discussed in this chapter, more work needs to be done to extend the methods
to systems with multi-antenna arrays, including phased arrays or lens arrays. The
calibration aspects of multi-antenna systems are also closely related to estimation of
channel parameters from channel measurements.

3.4 Omnidirectional PDPs from Angular Data

Current channel measurements at mmWave frequencies are often carried out by
rotating directional antennas, or electronically switching phased array or lens array
beams. Such measurements give us insight into the directional structure of the channel.
Adding the PDP from the different angles can be used to synthesize the PDP and, in
some cases, the individual powers can be added as well [34].

However, the shape of the PDP and the calculated values of second-order statistics
like delay spread and Doppler spread are influenced by the directivity/beamwidth of
the measurements. In some cases, we might wish to calculate these statistics for an
antenna with a different (larger) beamwidth. This is possible based upon (noncoher-
ent) directive PDP measurements, as long as the target beamwidth is wider than the
measured beamwidth. In the same way, we can synthesize channel statistics for the
omnidirectional case [34–37].

Let PDP (φ,τ) denote the underlying joint angle–delay PDP, from which the
(azimuthally omnidirectional) PDP in delay can be obtained as PDPomni(τ) =∫

PDP (φ,τ)dφ. For the case illustrated here, without loss of generality, φ is defined
as the azimuthal angle of rotation. Let us further define the measured angular resolved
PDP as

PDPmeas(i�φ,τ) =
∫

|g(φ − i�φ)|2PDP (φ,τ)dφ, (3.6)

where |g(φ)|2 is the magnitude squared radiation pattern of the directional antenna as a
function of the angle φ;i = 0,1, . . . ,I − 1,I = 360/�φ is the number of directional
scans; and �φ is the angular step of the scans (which is on the order of the 3-dB
beamwidth of the directional antenna). The estimated synthetic omnidirectional
PDP(omni,est)(τ) is calculated as

PDP(omni,est)(τ) =
∑

i

PDPmeas(i�φ,τ)

=
∫ [∑

i

|g(φ − i�φ)|2
]
PDP (φ,τ)dφ. (3.7)

From the above relation, we can see that if the synthetic omnidirectional antenna
pattern is constant over φ:

|gomni(φ)|2 =
∑

i

|g(φ − i�φ)|2 ≈ c, (3.8)

https://doi.org/10.1017/9781009122740.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.004


30 Reiner Thomä et al.

then PDP(omni,est)(τ) = ∫ |gomni(φ)|2PDP (φ,τ)dφ ≈ cPDPomni(τ). The estima-
tion error is given by

εRipple(τ) = PDPomni(τ) − PDPomni,est(τ)

=
∫ [

1 − |gomni(φ)|2PDP (φ,τ)dφ

]
. (3.9)

In order to minimize the error, we need to make 1 − |gomni(φ)|2 → 0. First, we have
to ensure that |gomni(φ)|2 → c by choosing the right angular scan step, and then we
have to compensate for the overlapping gain c.

Figure 3.13(a) shows the measured pattern of a horn antenna at 70 GHz and
Figure 3.13(b) shows the synthetic omnidirectional pattern as the sum of shifted
patterns for different angular steps. It can be observed that for steps smaller than
the HPBW, the response is smoother than for steps equal to or larger than the
theoretical HPBW. In general, a ripple can be observed and it depends on the angular
step. For the HPBW step size the ripple is around 0.5 dB and for 20◦ it is about
1.46 dB. This ripple introduces an error and can be used as a metric to define a
maximum tolerable ripple.

In the case of highly directional rotatable horn antennas, the overlap or ripple error
leading to gain errors between a true azimuthally omnidirectional antenna pattern
and a pattern that is synthesized through the superposition of received energy from
different nonoverlapping 3-dB beamwidth pointing directions is remarkably small –
typically much less than 1 dB – as was shown using both theory and measurement
[34]. Since variability in connector losses and changes in signal strength due to the
flexing of cabling at mmWave frequencies often result in losses of a few tenths of a
decibel, [34] shows that well-characterized highly directional antennas may simply be
pointed in successive orthogonal 3-dB beamwidth directions over the 2π azimuthal
angular spread, and the received energy may be summed directly without the need for
scaling or correction factors or extensive signal-processing techniques to determine
azimuthally omnidirectional channel characteristics.

This technique may be extended to the full 4π steradians, as discussed in [34, 35],
although in practical propagation measurements, where little energy is expected to
be transmitted or received from directly overhead or directly below the antennas,
it is possible to ignore many inconsequential antenna pointing directions (and thus
save a great deal of time for measurements) in the summation of directional patterns
to achieve a very close estimate (within one or two decibels) of the omnidirectional
antenna power spectrum [35].

In summing the signals obtained from the orthogonal directional antenna patterns,
the antenna gains must be removed to scale back the total received signal to what
a unity gain omnidirectional antenna would receive [34, 35]. Note, however, that this
technique requires an antenna with a pattern that fulfills the condition above; otherwise
the ripple can increase significantly, and alternative methods have to be considered; for
a discussion of such alternatives, see, for example, [36].
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(a)

(b)

Figure 3.13 (a) Measured magnitude-squared radiation pattern plotted on a log scale for a horn
antenna at 70 GHz with 15◦ HPBW in azimuth. (b) Synthesized omnidirectional response for
different angular steps �φ.

3.5 Key Channel Sounder System Parameters

Here we describe the key technical parameters of the sounder equipment as it was
used to collect the data used by the 5G mmWave Channel Model Alliance. We also
describe common methods for estimating these parameters. In the Alliance, every set
of measured channel data includes a version of this list. These parameters support the
trustworthiness and usability of the measured propagation and channel parameter data
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Figure 3.14 Example of an instantaneous PDP taken from a back-to-back measurement
(see Section 3.2). The remaining artifacts (for example, near in time to the main peak and at
around 150 ns) result from spurious reflections in the setup and from remaining nonlinear
distortion.

set. They also indicate the potential strengths and limitations of both the data and the
setup used. Procedures applied to calculate propagation-channel-related metrics and
scenario metrics will be described elsewhere and are not included in this list.

3.5.1 Noise Floor Estimation and System Dynamic Range

3.5.1.1 Dynamic Range
There are various metrics related to dynamic range, each of which describes a param-
eter of importance in various channel measurement scenarios.

• The instantaneous dynamic range is defined with respect to the PDP and can be
extracted from a line-of-sight (LoS)-only reference signal such as the one shown
in Figure 3.14. It is specified as the ratio of the strongest PDP sample relative to
the power of the noise floor, where noise floor estimation is described below. The
single-path, LoS-only condition is required because, for multiple paths, the signal
power is spread out, which reduces the maximum signal level between the strongest
path and noise level. This and the below-defined quantities obviously depend on
the bandwidth of the receiver. If the effective noise bandwidth can be varied (as
happens, for example, with the IF bandwidth of a VNA), those settings should be
described in the experimental setup.

• The maximum instantaneous dynamic range is defined for the best case of max-
imum input power for the single-path LoS-only case above with a spurious-free
noise floor. The instantaneous dynamic range should not include further PDP aver-
aging unless stated otherwise. Note that nonlinear distortion in a wideband signal
may result in deterministic distortion that reduces the spurious-free noise floor.
These spurs may depend on the characteristics of the transmitted signal and, there-
fore, it may be difficult to identify the origin of the spurious distortion, which may
originate at RF, IF or baseband frequencies.
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• The system dynamic range adds the receiver automatic gain control (AGC) sweep
to the instantaneous dynamic range. It may be reasonable to utilize AGC at the
receiver side along with transmit power control to extend the measurable path-loss
range. The AGC can add attenuation for close-in measurements so that the receiver
does not saturate for low values of path loss. However, in this case, the noise
floor per acquisition may be variable, depending on the respective AGC setting.
Likewise, if switched or rotating directional antennas are used, we may either adjust
AGC per antenna or keep it constant. These conditions should be noted with respect
to each measurement setup.

• The maximum measurable path loss consists of the system dynamic range, with
the addition of the TX/RX antenna gains. This quantity represents the maximum
measurable path loss that is the path loss of the smallest detectable multipath com-
ponent. If AGC or averaging is used, these conditions should be noted. The max-
imum measurable path loss range is important for planning of a measurement
campaign. It describes how the system can cope with LoS and NLoS situations.
The maximum measurable path loss range relates to the receiver AGC and transmit
power sweep. For example, a user may optimize a sounder for high path loss,
such as by using high TX power. But in this case there may be problems with
overloading the RX in LoS environments. Receiver AGC may help, but AGC range
is, practically, rather limited. In this case, TX power control can extend the range.
When reporting maximum measurable path loss range, it is helpful to note these
conditions. Furthermore, multiple calibrations (for different transmit powers and
different AGC settings) might have to be performed.

3.5.1.2 Noise Floor Estimation
Every measured CIR contains additive noise introduced by the measurement system’s
receiver hardware. The receiver’s noise level limits the dynamic range of the measure-
ment and, if not properly accounted for, may cause bias to channel characteristics that
are related to received power, such as PDP, delay spread and delay window. Dominant
reasons for receiver noise are low-noise amplifier (LNA) noise figure and analog-to-
digital converter (ADC) quantization noise. Generally, the effective noise level varies
with received power and AGC setting. Therefore, the effective noise floor depends
on path loss and fading, and will also change when using directive antenna scans.
The effective noise floor also depends on polarization match between the TX and
RX antennas, since different channel noise and interference sources may be sensitive
to antenna polarization (note this is a different effect than the channel loss caused
by polarization mismatch between a transmitter and receiver). So, it is necessary to
estimate the noise level for each measurement acquisition, especially when signifi-
cant variations of received power between acquisitions and, therefore, noise level are
observed.

If we have an estimate of the noise level PN , we can apply a threshold PN�N ,
where �N is a relative threshold value applied to discard samples in the CIR that fall
below this level. This can be written as

h(t0,τ) =
{
h(t0,τ) |h(t0,τ)|2 ≥ �NPN

0 otherwise
. (3.10)
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We must first estimate the noise level PN . There are various methods for accom-
plishing this. A popular, simple and effective method to estimate the noise level and
its variation is to realize that the propagating signal, and thus the measured impulse
response, will decay in energy at large excess delay times. By observing the received
impulse response or PDP and noting the tail end where there is clearly no detectable
signal, and where a simple physics calculation verifies that energy would not likely
propagate to great delays, one may treat these late-arriving received samples as being
purely noise after the detector. The average and standard deviation of these late tails
may be used to estimate the average and standard deviation of the noise floor of the
PDP. A signal-to-noise ratio (SNR) threshold (sometimes called “noise threshold”)
may then be set relative to the average noise floor, such that the SNR must be exceeded
for a detectable MPC to be deemed to have arrived [12, 19]. A technique for finding
this threshold is described in the following paragraphs.

Typically, the SNR threshold is set from one to a few standard deviations above the
average noise level, as determined from the tail sample points. The SNR threshold, in
relation to the average noise level, determines the false-alarm and missed-signal rate
through the standard deviation of the noise, as discussed below. All samples below the
signal threshold are treated as noise, and are ignored as signal, within the PDP. Work
in [11, 19] shows how arriving multipath signals were determined by using a 5 dB
SNR threshold, where the average noise floor was computed from the latest arriving
5–10% of all time samples captured in the measured PDPs.

An alternative approach is to measure the signal level at the delays preceding the
LoS component, where physical considerations also dictate that no noise power can
be present. However, great care must be taken that sidelobes (resulting, for example,
from windowing in the frequency domain and transforming to the delay domain) do
not impact the measured signal level. In situations where there is a large dynamic
range with strong signals, however, it may be necessary to use a threshold below the
strongest MPC to remove system artifacts and pulse sidelobes. This thresholding is
typically performed simultaneously with the SNR noise floor threshold as a double
thresholding technique [12].

A common method for finding the SNR threshold is derived from the instanta-
neous PDP domain (magnitude squared CIR) by applying a “zero-hypothesis test” (H0
hypothesis). Assuming only additive white Gaussian noise (AWGN) at the receiver,
the PDP’s noise power |n(τ)|2 = |nI (τ) + jnQ(τ)|2 = |nI (τ)|2 + |nQ(τ)|2 follows
a chi-squared distribution with two degrees of freedom (as the sum of two squared
independent Gaussian variables nI and nQ ≈ N (0,PN )). In most practical cases it is
not possible to make a “noise-only” measurement that includes the antennas and the
instantaneous AGC level when conditions are changing – for example, if the antennas
are rotating or the receiver is moving. Therefore, we must estimate the noise level
from the measured (in situ) PDP. This works well if the PDP has some regions where
only noise is expected, as outlined in the preceding paragraph. This is the case if the
CIR is sparse or if enough data have been collected in the delay domain so that the
PDP decays well below the receiver’s noise floor.

According to the principles of order statistics, we apply the following procedure:
We sort the PDP samples in increasing order and calculate the mean-square summation
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(a) (b)

Figure 3.15 (a) Chi-square probability distribution function obtained from commonly available
simulation software; (b) a noise measurement; the noise floor estimates thresholds.

of these ordered samples for different window lengths, with the window length going
from 1 to, at most, the total number of samples. As soon as the next PDP sample is
bigger than the current mean-squared value scaled by some auxiliary �N we stop.
This mean-squared value is then taken as an estimate of the noise level. Finally, we
discard the CIR values (set to zero according to the equation above) whose PDP
values are smaller than the threshold. The advantage of order statistics is that we
automatically collect all PDP values that fall under the zero-hypothesis test. So, we
don’t need to identify them by visual inspection.

The auxiliary scaling factor �N controls the probability of a false detection (taking
a noise sample as a valid signal sample). It may be calculated with a chi-squared test
[38] from:

P (x > PN ) = 1 −
∫ (PN )

0
p(x)dx, (3.11)

where p(x) is the probability distribution function (PDF) x ∼ χ2
2 and

∫∞
0 p(x)dx = 1.

We first estimate the noise level PN , normalize to variance 1, and then apply the thresh-
old (quantile) which we take from tables of a normalized cumulative chi-squared dis-
tribution with two degrees of freedom. The reason for using this distribution is that we
assume that the additive noise in the complex CIR is zero mean iid complex Gaussian
(zero hypothesis). The probability of x > PN is 0.38 (for the normalized distribution)
because we assume Gaussian distributed noise limits the receiver dynamic range. If
we set a threshold of 3 dB (P (x > 2PN )) the false alarm probability decreases to 0.13
and for 6 dB to 0.02. The false alarm probability of taking noise as signal is indicated
with α in Figure 3.15(a) and Table 3.3.

For example, in a pure noise measurement with a threshold set to 6 dB, the false
alarm probability is α = 0.02. Depending on the application this may be considered
too high. Increasing �N = 10 dB would reduce the false alarm probability to almost 0.
However, as shown in Figure 3.15(b), much of the measured signal would be dis-
carded. To summarize, we can apply different values of �N for noise-level estimation
and discarding of samples. Different threshold values may be needed for different
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Table 3.3 False detection probability α for different threshold
values �N.

Threshold �N (dB) False alarm probability α∗

3 dB 0.13
5 dB 0.04
6 dB 0.02
10 dB 0
∗ Rounded to two significant digits.

Figure 3.16 Different thresholds applied to an instantaneous PDP plotted on a log scale.
The PDP was measured in a conference room at 70 GHz in an access point scenario,
15◦ half-power beamwidth (HPBW) TX antenna and 60◦ HPBW RX antenna.

applications: A low threshold increases probability that noise may be detected as
multipath, whereas a high threshold may cause the user to miss relevant MPCs. An
example in a real-world scenario is shown in Figure 3.16, where the effects of various
thresholds can be seen.

A further improvement of the estimation might be obtained by additionally delay-
gating the impulse response. In other words, if the environment ensures that MPCs
with a delay larger than a threshold cannot occur, or would have a received power
below the detection threshold, then any components with such large delay should be
discarded – this prevents false alarms from showing up in this area [12, 18].

3.5.1.3 Delay Spread and Dynamic Range
As different channel sounders may have different dynamic ranges and because the
noise level may change even during a measurement, we always have to indicate which
dynamic range was applied for the delay spread calculation. Furthermore, for compar-
ison to other systems or measurement environments, we may need to normalize the
noise level. Because delay spread may be used as a design parameter for transceiver
design (cyclic prefix, equalizer taps, predistortion), we may be forced to meet a certain
target transmission system dynamic range, �DS , where delay spread is calculated only
over MPCs that exceed the threshold PN + �N . Typical values of �DS are 10 dB,
20 dB, etc.:
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Figure 3.17 Delay spread calculated for different dynamic range target values �DS

(cf. Figure 3.16).

h(t0,τ) =
{
h(t0,τ) |h(t0,τ)|2 ≥ max(|h(t0,τ)|2)

�DS

0 otherwise
. (3.12)

Of course, the channel sounder’s dynamic range has to be better than the target trans-
mission system dynamic range. Figure 3.17 shows the influence on the number of
MPCs selected and the resulting value of delay spread by choosing different dynamic
ranges.

The above discussion highlights the importance of sounder dynamic range in deter-
mining the “effective” delay spread as measured by the sounder. It is worth noting
that this measurement/sounder-dependent definition of delay spread is different from
some “textbook” definitions of the delay spread (which assume knowledge of noise-
free CIR) and, thus, is best for practical system design only when the sounder noise
floor is lower than that of the system under design (see, e.g., [19, 39]).

It is useful for channel modeling activities to adopt a common SNR and threshold-
ing scheme as described above in order to allow repeatability and meaningful com-
parison of measurements taken with different channel sounding systems, architectures
and frequencies, or in different environments, for example. Applying an absolute SNR
threshold as described above also allows researchers to mimic the functionality of
wideband receivers that will employ AGC in the receiver chain, which is a useful
method for properly modeling and interpreting time dispersion characteristics of the
channel [19].

Note that in some cases – for example, for evaluating a certain transceiver design –
it may be desirable to mimic the power control of the transceiver chain. For instance,
if the power control of the target transceiver tries to keep the total received power at
a constant level, it may be better to define the delay spread for a dynamic range that
follows the total power in the CIR (found by integrating the PDP) rather than to the
power of the strongest path. There are different choices for different applications, with
some common ones specified in [40].

Finally, Table 3.4 summarizes the key technical parameters of sounders used by
Alliance participants.
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Table 3.4 Technical parameters for sounders used by 5G mmWave Channel Model Alliance participants.

Group,
location,
contact

Center 
frequency

(GHz)

Bandwidth (GHz)/
spectrum envelope 

shape
CIR period

TX power
(dBm)

Maximum 
instantaneous dynamic 

range (dB)

Measurable channel 
attenuation range (dB)

CIR repetition rate f
CIR 

(Hz) Averaging (number of 
averages)

Communications 
Research Centre,
Canada,
Yvo de Jong, 
Mustapha Bennai,
Jeff Pugh

2.45

3.4375

5.8

13

25.875

38

61.25

0.1

0.075

0.15

0.5

1.25

1.00

0.5

Programmable.

1.3–2.7 µs typical

15

14

13

4

15

10

–1

70

70

70

70

60

50

50

130

130

130

120

140

140

120

(with SNR of 20 dB)

Programmable.

~5 channel responses per 

second max.

Programmable,

typically 1–10 depending on 

SNR situation

Durham University, 
Durham, UK,
Prof. Sana Salous

2.2–2.9

4.4–5.9

12–18

20–40 (K)

50–75 (V)

60–90 (E)

Programmable:

0.750

1.5

1.5

3

6

9

Rectangular

16

16

16

16

6–7

6–7

14-bit ADC: maximum 

dynamic range in 

principle corresponds to 

14-bit but in practice this 

is limited by the phase 

noise and spurious 

signals

For 110 dB attenuation in 

back-to-back test:

10 dB SNR in E band 

and 15 dB in V band.

For smaller attenuation: 

up to 70 dB SNR

Depends on the programmed 

sweep duration

ETRI, Daejeon, S. 
Korea, Juyul Lee, 
Myung-Don Kim

28, 38 0.500, Sinc2 8.19 µs (122.1 kHz)

29

21

(at input port of 

antenna)

Max. 50 (peak to noise 

level of power delay 

profile)

60 dB (AGC range) with 

an SNR of 10 dB

Programmable in the range of

7.6–30.5 Hz

Programmable, typically 4–16 

depending on SNR situation

Georgia Tech,
Atlanta, GA,
Prof. Alenka Zajic

33

140

310

14 (26–40 GHz)

60 (110–170 GHz) 

20 (300–320 GHz)

(with raised cosine

filter with 0.2 roll off) 

13 ns,

40 ns

0 dBm (power at 

IF input of the TX

module)

55, noise level defined by 

thermal noise
90 dB N/A

No sweep-to-sweep averaging 

is performed due to static 

channel environment

TU Ilmenau,
Ilmenau, Germany,
Prof. Reiner Thomä, 
Robert  Müller

0.010–10

27–37

57–67

71–78

180–220

7 (null-to-null)
600 ns and

4.7 µs

38

27

24

30

–15

70–78

With 120 dB attenuation 

in back-to-back test:

- 60 dB SNR @ 10 GHz

- 45 dB SNR @ 30 GHz

- 35 dB SNR @ 60 GHz

- 35 dB SNR @ 70 GHz

Depends on the antennas,

with 15˚ HBPW = 21 

dBi around 200 dB, AGC 

in the RF chain:

10 GHz up to 40 dB

30 GHz up to 35 dB

60 GHz up to 25 dB

100 Hz

13 kHz
Variable averaging

Keysight,
Santa Rosa, CA,
Robin Wang, Sheri 
Detomasi

MIMO and 

SISO: 

0.010–44

SISO:

60–110 

or above

Time domain: constant 

Envelope

frequency domain: 

rectangular

1 GHz BW using 

multiple channel 

digitizer or 2 GHz BW 

using scope

10 µs or more

Power at input port 

of antenna:  

10 dBm (w/o PA),

30 dBm or higher 

(with PA).

Antenna gain: 

depends on 

antenna

89.9 (Thermal noise: 

–84 dBm

 @ 1 GHz bandwidth, 

12-bit quantization, 

correlation gain 30 dB, 

no correlation noise due 

to Keysight designed 

waveform

86.9 dB @ 3dB SNR 50 kHz

No averaging. Time alignment 

based on calibrated system 

delay

Time trigger for TX and RX

uses function generator

Programmable 

from ~16 µs to 1.6 ms 

Normally average 1 s of 

data

https://doi.org/10.1017/9781009122740.004 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/9781009122740.004


NIST,
Boulder, CO,
Peter Papazian, 
Camillo Gentile, 
Jeanne Quimby, Kate 
Remley

28.5
2 null-to-null, 

sinc2

2047 ns 33.5 dBm power at 

input port of 

antenna

66 dB correlation gain
140.7 dB,

SNR = 20 dB
15 kHz

Variable averaging 

Synchronization circuit

32.752 µs 90.3 dB correlation gain
152.7 dB,

SNR = 20 dB
954 Hz

60.5
4 null-to-null, 

sinc2
2047 ns

20 dBm power at 

input port of 

antenna

66 dB correlation gain
149 dB,

SNR = 20 dB
3.8 kHz

2 null-to-null, 

sinc2
2047 ns

15 dBm power at 

input port of 

antenna

66 dB correlation gain
120.2 dB,

SNR = 20 dB
15 kHz

North Carolina State
University,Raleigh, 
NC, Prof. Ismail 
Guvenc, Ozgur 
Ozdemir

2 or 1 1.33 µs

[2 GHz] or 2.67 µs

[1 GHz]

Min: –30 dBm

Max: +25 dBm

60 dB peak to noise 

ratio

170 dB (10 dB SNR, 32 

averages, 17 dBi 

antennas at TX/RX)

100 kHz Variable averaging

NYU WIRELESS,
New York, NY,
Prof. Ted Rappaport, 
Hangsong Yan,  
George MacCartney, 
Yunchou Xing

28.0

73.5

142

0.800 null-to-null,

sinc2

5,117.5 ns undilated or

40.9 ms dilated (slide 

factor of 8,000)

Power at input port 

of antenna: 30.1 dBm

Max. inst. dynamic range 

30 dB,

thermal noise and 

quantization noise (8-bit 

ADC digitizer)

Measurable channel 

attenuation range was 

170–185 dB with an SNR 

of 5 dB. Linear response 

guaranteed with selective

attenuator

24.45 Hz

Single PDP acquired by 

averaging 20

consecutive PDP samples, 

w/each sample

40.9 ms. Time alignment 

method based

on peak voltage trigger

1.000 null-to-null

sinc2
4,094 ns

30 dBm @ 28 GHz

14.9 dBm @ 73.5 GHz

0 dBm @ 142 GHz

Max. inst. dynamic range 

40 dB,

thermal noise and 

quantization noise (8-bit 

ADC digitizer)

Measurable channel 

attenuation range was up 

to 180 dB with an SNR 

of 5 dB. Linear response 

guaranteed with selective

attenuator

Max. of 15.26 kHz
Single PDP, or variable PDP 

averaging in postprocessing

University of British 
Columbia,
Vancouver, Canada,
Prof. Dave Michelson

10

30
1 500 ns

30 dBm @ 10 GHz

46 dBm @ 30 GHz

50 dB @ 10 GHz

60 dB @ 30 GHz

90 dB

SNR = 20 dB
N/A None

University of 
Southern California 
and Samsung,
Prof. Andy Molisch

27.85

0.400

(can be increased to 1)

OFDM – flat-top 

bandpass

Reconfigurable. 57 dBm EIRP

45 dB without spreading 

gain

74 dB with FFT 

processing gain

(10*log10 (#fft points/2))

159 dB without 

averaging

198 dB with 10 

averaging and FFT 

processing gain

For MIMO measurements, no 

averaging ~100 Hz; 

with 10 averages ~ 20 Hz;

For SISO > 100 kHz

Reconfigurable:

1 for dynamic measurements;

10 for slower varying channels

University of 
Wisconsin–
Madison, WI,
Akbar Sayeed

10

28

RF bandwidth:1 GHz

Baseband bandwidth: 

125 MHz, 250 MHz, 

370 MHz. Raised-

cosine with 0.2 roll off 

(DAC-pulse-shaping)

Reconfigurable. Limited 

by the coherence of 

TX/RX oscillators. 

Significantly longer than 

the delay spreads to be 

measured.

22 dBm at the 

output of PA.

Lens antenna gain 

~33 dBi. Feed-

aperture, other 

losses ~8 dB.

~65 dB w/o temporal 

averaging. Thermal,

quantization (ADC) 

noise

Function of measurement 

distance. For max 

received SNR, difference 

~ 55dB with min. SNR of 

10 dB (or higher with 

temporal averaging)

Can change arbitrarily –very long 

signaling durations and guard 

intervals possible

Possible to average an arbitrary 

number of blocks. Time 

alignment via training signals

or cable-based for short links

27.5–29.5

83.5
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4 Verification Techniques

Alenka Zajić, Kate A. Remley, Theodore S. Rappaport,
George MacCartney, Jr., Yunchou Xing, Shu Sun, Camillo Gentile,
Jeanne T. Quimby, Jelena Senic, Ruoyu Sun, Peter Papazian,
Russell W. Krueger, Reiner Thomä, Robert Müller, Christian Schneider,
Diego Dupleich, Juyul Lee, Myung-Don Kim, Jae-Joon Park,
Hyun-Kyu Chung, Robert W. Heath, Jr., Vutha Va, David Michelson,
Yvo de Jong, Mustapha Bennai, Sana Salous, Akbar Sayeed,
Ismail Guvenc, Ozgur Ozdemir and Andreas F. Molisch

4.1 Introduction to Measurement Verification

Channel sounder verification ensures that participants measure and report channel
characteristics that are due to the environment as opposed to measurement artifacts
arising from the use of a suboptimal configuration, from nonidealities in the sounder
hardware or from errors in analysis and/or post-processing. Examples of a suboptimal
configuration might be the use of a signal whose duration is so long that the envi-
ronment changes significantly before its transmission has completed, or the use of an
incorrect filter on the transmitted signal. Examples of hardware-induced measurement
artifacts include spurs or excessive noise floor introduced into the received signal
by nonideal electronic components, as well as nonflat frequency characteristics over
the typically wide bandwidth. Hardware-induced artifacts tend to occur more com-
monly in millimetre-wave (mmWave) channel sounders than for sounders operating
in microwave frequency bands. This is, in part, because mmWave channel sounders are
newer technology often designed with extremely challenging operating characteristics
in terms of center frequency, bandwidth and speed. Also, the mmWave hardware from
which the channel sounder is constructed is operating closer to the state of the art
and, consequently, may exhibit less-ideal behavior. While “ideal performance” may
be seen as a noble objective, sometimes it is enough to know and model the nonideal
behavior as we sometimes can compensate for its effect. Characterizing and, where
possible, correcting (or calibrating out) such non-idealities, is the goal of channel
sounder verification.

Channel sounder verification allows Alliance participants to confidently utilize data
from different but nominally similar environments to develop channel models. For
example, participants in the Alliance’s Measurement Subgroup have recently been
conducting measurements in a class of propagation environments termed “large-office
space,” which is similar to the indoor hotspot (InH) environment proposed for use
above 6 GHz in [1]. Such large office areas can take on many physical configura-
tions with a variety of propagation characteristics. In order for the Alliance’s Channel
Modeling Subgroup to utilize data from these related but different environments, it
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is essential that the group can confidently extract the statistics of the environmental
characteristics while understanding limitations due to hardware impairments.

For these reasons, the participants in the 5G mmWave Channel Model Alliance
have established a channel sounder verification program. The program allows labs
to compare their measured, processed data to theory or to an artifact having known
characteristics. Three types of verification have been studied: “in-situ,” “controlled
condition” and “comparison-to-reference” verification.

In-situ verification may be conducted during field tests to provide confidence that
the channel sounder is behaving as expected. Such verification is conducted in envi-
ronments that are expected to provide known propagation conditions, such as a rel-
atively open area that exhibits free-space or two-ray propagation path-loss behavior.
A second example of in-situ verification includes the prediction of power delay (angle)
profile characteristics such as individual multipath component (MPC) time delays or
angles of arrival from map-based knowledge of an environment.

Controlled-condition verification involves channel sounder measurements in which
channel conditions are determined by design. Controlled environments may simulate
free-space conditions in, for example, an anechoic chamber or an open-area test site.
The time and/or angular response of a channel sounder may be verified by placing
reflectors at known locations or suppressing unintended multipath through the use of
RF absorbers. Verification artifacts may also be used to assess the channel sounder’s
performance by providing an engineered channel such as an attenuator to simulate
path loss or an artifact made from coaxial cables of different lengths to simulate
multipath by splitting the transmitted signal, propagating each replica through coax-
ial cables providing different path delays, and then recombining. Channel emulators
could fall under the verification artifact category.

Finally, the comparison-to-reference verification technique compares channel
sounder measurements to those of a well-characterized “golden” reference instrument
for the same channel. Often, the channel to be measured is static, such as an indoor
room without movement, or very well controlled, such as a verification artifact. An
example of a reference instrument is a vector network analyzer (VNA) having a
complete uncertainty analysis. Agreement between the channel sounder and VNA
reference measurements provides confidence in the channel sounder’s hardware and
postprocessing without requiring any assumptions about the ideality of the channel.

These three verification techniques assess the ability of each channel sounder
to measure metrics such as path loss, multipath delay spread, angle-of-arrival
and Doppler by comparison to known or assumed conditions. These techniques
allow users to study channel sounder configuration, hardware nonidealities and
postprocessing.

4.2 “In-Situ” Verification Method

In-situ verification is typically conducted during field tests, and the goal is to provide
confidence that the channel sounder is behaving as expected. Measurements for in-situ
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verification are often conducted in a relatively open area that exhibits free-space or
two-ray path-loss behavior. The goal of these measurements is to verify that the path
loss agrees with “ground truth” computed from Friis transmission formula [2, 3]
and that measured power delay profile (PDP) characteristics such as individual MPC
timing delays agree with the map-based knowledge of the environment. An additional
level of confidence is added if it is verified that measured angles of arrival (AoA)
also agree with the map-based knowledge of a room. Note that map-based verification
assumes that precise maps of the environment and sufficient knowledge of the material
parameters are available. Also, the position of the sounding equipment relative to the
environment has to be precisely recorded.

4.2.1 Verification of Path-Loss Measurements

In-situ verification methods compare measured path-loss with a theoretical path-loss
model that assumes a line-of-sight (LoS) link between the transmitter and receiver and
propagation in free space (e.g., a large open area). Examples of in-situ measurement
scenarios used for path-loss exponent estimation at mmWave frequencies are shown
in Figure 4.1.

Examples of In-Situ Path-Loss Verification Results
NIST performed “in-situ” verification measurements of their 83 GHz switched-array
correlation-based channel sounder in the lobby area shown in Figure 4.1(a). The mea-
surements were performed over several antenna-separation distances between 4 m
and 13 m and the path-loss exponent was estimated from the Friis equation (eq. 2.4).
Data were collected while the channel sounder receiver was in motion. The temporal
variation of the path loss is shown in Figure 4.2(a) and the difference between the
theoretical values and measurements are shown in Figure 4.2(b) [5]. The standard
deviation of the difference between the measurements and the theoretical path-loss
values corresponds to the uncertainty in these channel sounder measurements. This
standard deviation was 1.18 dB, and the resulting path-loss exponent was 1.93. The
nominal transmitter/receiver antenna patterns from the manufacturer were used in the
SAGE algorithm [6] since the antennas have not yet been calibrated in an anechoic
chamber. We attribute deviations of the data points from the free-space path-loss line
to this lack of antenna pattern knowledge, nonidealities in the position measurements
and antenna orientations (difficult at 83 GHz) and reflections from the surfaces in the
environment.

NYU performed path-loss verification of their wideband sliding correlator chan-
nel sounder at a center frequency of 73.5 GHz [8–12], where the sliding correla-
tor channel sounder architecture and applications are detailed in [7, 12]. Received
power was measured in the open laboratory shown in Figure 4.1(b) for transmitter–
receiver (TX–RX) separation distances of 1, 2, 3, 4 and 5 m, using boresight-aligned
20 dBi, 15◦ half-power beamwidth (HPBW) horn antennas at both the TX and RX.
Additionally, narrowband continuous-wave (CW) measurements were conducted for
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(a)

TX
RX

(b)

Figure 4.1 (a) NIST lobby area, © 2017 IEEE. Reprinted, with permission, from [4]; (b) NYU
open lab space.

TX–RX separation distances of 2, 3 and 4 m in the same open laboratory, and also at
33 m during a rural outdoor measurement campaign [13]. The path-loss exponent was
estimated using the 1 m close-in (CI) free-space reference distance for the CI path-
loss model [14]. The estimated path-loss exponent was 1.99 and a standard deviation
of 0.2 dB was observed [8].

Figure 4.3 shows both wideband and narrowband path-loss measurements as a
function of distance. The results show that measured path-loss values are very similar
to free-space path loss. The results also demonstrate the usefulness of a 1 m CI
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(a)

(b)

Figure 4.2 (a) Temporal variation of the path loss; (b) the error in path-loss measurements. ©
2017 IEEE. Reprinted, with permission, from [4].

Figure 4.3 Wideband and narrowband path-loss measurements at 73.5 GHz as a function of
distance. © 2017 IEEE. Reprinted, with permission, from [7].
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free-space reference distance for the CI path-loss model when using either CW or
wideband measurements.

4.2.2 In-Situ Verification of Power Delay Profile Measurements

Two methods to verify multipath propagation include (1) free-space map-based
multipath verification and (2) two-ray map-based multipath verification.

Free-space map-based multipath verification. This method assumes an open LoS
environment, such as the ones shown in Figure 4.1. The verification steps are as
follows [2]:

• Compute the measured delay from the first peak in the PDP.

• Compute the theoretical delay from the TX–RX geometry (3D distance between
the two) assuming free-space propagation, e.g.,

τT OA = d/c. (4.1)

• Compare empirical and theoretical delays and estimate a measurement error.

Two-ray map-based multipath verification. This method assumes an open LoS
environment such as the ones shown in Figure 4.1, but where, in addition to the LoS
path, there exists a specular ground reflection path, as illustrated in Figure 4.4. The
steps are as follows [15–17]:

• Record the measured PDP and verify that any measurement artifacts are more than
20 dB below the maximum peak in a pure LoS environment without reflection.

• Compute delay times of the first arriving (LoS) and the second arriving
(ground-reflected) path from measurements.

• Compute theoretical delay times of the LoS and reflected paths from the TX–RX
geometry.

• Compare the empirical and theoretical delays and estimate a measurement error.

�

TX antenna RX antenna
4.02 m

2.79 m 2.79 m

1.94 m�1.94 m

Figure 4.4 Illustration of the two-ray multipath verification method using the sliding correlator
channel sounder. © 2017 IEEE. Reprinted, with permission, from [7].
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(a)

(b)

Figure 4.5 (a) Conference room environment at the NIST Boulder Labs used for PDP
verification; (b) RX antenna trajectory with measured data points (stars), and TX antenna
location (dot). © 2017 IEEE. Reprinted, with permission, from [4].

Examples of In-Situ PDP Verification Results
NIST performed in-situ PDP verification measurements of their 83 GHz switched-
array correlation-based channel sounder in the conference room area shown in
Figure 4.5(a) [4]. The RX antenna positioner was moving during the measurements
along the path shown in Figure 4.5(b), while the TX antenna was stationary in the
corner of the room at a height of 2.5 m. Each star corresponds to the location where
data were acquired. These points were used to calculate the delay. The measured and
computed delays are compared in Figure 4.6(a) and the difference between them is
plotted in Figure 4.6(b). Data for a single run are shown.
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(a)

(b)

Figure 4.6 (a) Comparison of measured and computed delay; (b) the error in delay. © 2017
IEEE. Reprinted, with permission, from [4].

NYU has performed PDP verification measurements in the open lab shown in
Figure 4.1(b) using a wideband sliding correlator channel sounder at a center fre-
quency of 73.5 GHz [8–12]. The channel sounder was programmed to operate with
a 500 Mcps (2 ns baseband chip width) signal using a PN code length of 2,047
chips, centered at 73.5 GHz for an RF null-to-null bandwidth of 1 GHz [7, 12].
The measurement setup is illustrated in Figure 4.4. The 73.5 GHz TX and RX both
employed 20 dBi, 15◦ HPBW horn antennas at heights of 1.94 m each. The 2D
TX–RX separation distance was 4.02 m, with each antenna adjusted for approximately
46◦ down-tilt to point toward the lab floor. Figure 4.4 also shows that the LoS path
(first arriving signal) should travel a distance of 4.02 m whereas the reflected path
(second arriving signal) from the ground should travel a distance of 2.794 + 2.794 =
5.588 m. The measurement accuracy of the measured distances was within 1 mm, as
measured with both a metal measuring tape and an electronic laser range finder.

Figure 4.7 shows the measured PDPs and absolute timing [7, 12]. The theoretical
difference in distance and the travel time between the two paths is 1.567 m and
5.223 ns, respectively [11]. The measured distance and time differences were calcu-
lated using the maximum peak time index. As shown in Figure 4.7(b). The MPC in the
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(a)

(b)

Figure 4.7 (a) LoS PDP shows that the sidelobes are below 20 dB down from the maximum
peak; (b) PDP of two-ray verification model. © 2017 IEEE. Reprinted, with permission,
from [7].

first path arrived at τ1 = 13.40 ns (LoS path), and the component in the second path
arrived at τ2 = 18.60 ns (ground-reflected path). The time dilation property of the
sliding correlator resulted in an effective sampling rate of 20 samples per nanosecond,
which is a temporal resolution of 0.05 ns, or a distance resolution of 15 mm. The
difference between theoretical and measured time/distance results in a small error of
0.023 ns and 0.007 m, well within the precision of the channel sounder sampling
resolution of 0.05 ns/15 mm.

4.2.3 Standard Uncertainty in Path-Delay Measurements
for a Two-Ray Environment

The uncertainty related to the measured estimate of the time difference in two path
delays extracted from a single PDP will consist of two components, one related to the
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repeatability of the measurement and another related to the channel sounder’s finite
sampling increment [18]. These two components would be combined in a root-sum-
of-squares (RSS) fashion as

u�τmeas =
√(

u2
repeatibility + u2

resolution

)
. (4.2)

For the case presented in Figure 4.7(b), where the channel consisted of a direct
path and a single reflection corresponding to a ground bounce from the floor, the “true”
value for both paths can be estimated from the measured geometry of the environment.
Ultimately, it would be more complete to include uncertainties in the measurements
of the path distances, but for now we assume that the time delays corresponding to
the paths are known exactly. For the case presented in Figure 4.7(b), the difference in
time delay between the two paths is

�τtheory = 5.223 ns.

The measured delay values from the channel sounder are:

• direct path: τ1 = 13.40 ns,

• ground-bounce path: τ2 = 18.60 ns,

leading to

�τmeas = 5.20 ns.

As noted in the text above, the effective sampling interval of the channel sounder is
dsounder = 0.05 ns.

The first component of uncertainty corresponds to noise introduced by the instru-
mentation. Thus, we assume only random errors here. A systematic offset (bias) would
be treated differently. It would be estimated from repeat measurements of the channel.
This component of uncertainty can be computed from the variance of the measured
difference to the known difference for N repeat measurements; that is,

s2 =
∑N

i=1(τmeas,i − 5.223)2

N
, (4.3)

and

u2
repeatibility = s2

N
ns. (4.4)

We divide by N in eq. (4.4) because we are estimating our quantity of interest, �τmeas,
from N repeat measurements. Note that a single measurement (N = 1) would corre-
spond to the difference between the measured and true values squared, which yields
the value reported in Figure 4.7(b): 0.023 ns.

The second component of uncertainty, capturing the limited resolution of the chan-
nel sounder, is based on the assumption that the true value can occur with uniform
probability anywhere within the sampling interval. For this case
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u2
resolution = d2

sounder

12
ns, (4.5)

where if

x ≈ uniform((−d)/2,(+d)/2),

then

u2(x) = d2/12,

which corresponds to the variance of the uniform distribution. Combining the two
components of uncertainty yields

u�τmeas =
√(

u2
repeatibility + u2

resolution

)
=
√

s2

N
+ d2

sounder

12
ns. (4.6)

For the example presented here, this corresponds to

u�τmeas =
√

(5.20 − 5.223)2 + 0.052/12 = √
5.290 + 2.083 × 10−2 = 0.027 ns.

(4.7)

This value would be reported as the standard uncertainty in the path-delay
measurements.

4.2.4 In-Situ Verification of Angular-Resolved Power Delay Measurements

In addition to verifying time delay of MPCs, it is useful to verify AoA for the observed
multipath rays. The free-space map-based AoA multipath verification method assumes
an open LoS environment such as the ones shown in Figure 4.1. The verification steps
are as follows:

• Compute the measured azimuthal angle from the first peak in the PDP for each RX
element.

• Compute the ground-truth AoA from the TX–RX geometry (3D angular distance
between the two) assuming free-space propagation.

• Compare the empirical and theoretical AoAs and estimate a measurement error.

An Example of Free-Space Map-Based AoA Verification Result
NIST has performed in-situ AoA verification measurements of their 83 GHz switched-
array, correlation-based channel sounder in the conference-room area shown in
Figure 4.5(a). The RX antenna consisted of an array of 16 scalar-feed-horn antennas
spaced in a ring, with approximately 22.5◦ azimuth separation. The SAGE algorithm
was used to extract AoA data on a finer grid [5, 6]. The measurements were conducted
along the path shown in Figure 4.5(b). Eight of the antennas were oriented toward the
horizon, while the other eight were oriented 45◦ upward.
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(a)

(b)

Figure 4.8 (a) Comparison of measured and computed azimuth angles of arrival; (b) the
measurement error. © 2017 IEEE. Reprinted, with permission, from [4].

The measured and computed azimuth AoA values are compared in Figure 4.8(a)
and the measurement error is plotted in Figure 4.8(b). The results show agreement
with an error of approximately 3.65◦ ± 4.81◦ between the measured and calculated
angles. While these values may seem high, it is the final use of these metrics that
dictates the significance of a particular error. For example, a 4◦ angular positioning
error may be significant for a pencil-beam antenna, but this value corresponds to an
error in distance on the order of 7 mm at 3 m, which may not be of significance for a
path-loss calculation.

4.3 Controlled-Condition Verification

A “controlled-condition” level of verification involves channel sounder measurements
in an environment or of an artifact having known characteristics. This can be accom-
plished by conducting measurements in an anechoic chamber, putting absorbers,
reflectors or transmitters in strategic places in the room, or by using specially designed
artifacts such as an artificial-multipath channel made from coaxial cables of different
lengths that can test the ability of each channel sounder to resolve well-characterized
MPCs.
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Tx
System 1

Rx
System 1

RF absorber RX moves away from TX

Figure 4.9 Illustration of the path-loss measurement setup for controlled-environment
validation.

4.3.1 Verification of Path-Loss Measurements

In this section we describe verification of path-loss measurements using a controlled
environment, as illustrated in Figure 4.9. The goal of this setup is to position absorbers
around the room such that they prevent any multipath effect in the LoS environment.
The verification steps are as follows:

• Orient the TX and RX antennas toward each other (if directional).

• Conduct LoS measurements starting at a known distance with an increasing
separation, starting at 1/4 of 1/BW , with at least 10 distances.

• The environment should introduce as few reflections as possible (a big room or
outdoors, or use RF absorbers).

• Process the path-loss measured data as described in Section 4.2.1.

• Use one of the statistical path-loss models to estimate the path-loss exponent.

• Compare the estimated path loss exponent to the theoretical value 2.

An Example of Controlled-Condition Path Loss Verification Results
Georgia Tech has performed path-loss verification of their VNA-based channel
sounders at 26–43 GHz and 110–170 GHz (D-band) [19–24]. Received power was
measured in the open laboratory shown in Figure 4.10. We can observe that both TX
and RX are covered with absorbers and the floor and surrounding elements are also
covered with absorbers. The goal was to eliminate all possible MPCs and create a true
LoS environment. The TX–RX separation distances ranged from 20 to 180 cm for
30 GHz band with at least 10 measurement points. For the D-band channel sounder,
the distances varied from 30 to 85 cm. This range was limited by the transmitted
power. The path-loss exponent was estimated using both the floating intercept (FI)
and CI free-space reference models, and the estimated path-loss exponent was
2.001 for 30 GHz band and 1.98 for the D-band measurements. Additionally, a
standard deviation of 0.2 dB in the path-loss slope was observed for both sets of
measurements [24].

Figure 4.11 shows path loss as a function of frequency for several distances across
two frequency bands (a) 26–43 GHz and (b) 110–170 GHz. It also compares the
theoretical (Friis formula (eq. 2.4)) with the measured data. Very good agreement
was observed at 30 GHz, while the D-band data fluctuate around the theoretical value.
The fluctuation with frequency becomes even more dominant at 300 GHz [20].
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(a)

(b)

Figure 4.10 Georgia Tech channel sounder. (a) 30 GHz and (b) 110–170 GHz measurement
setups. © 2017 IEEE. Reprinted, with permission, from [24].

4.3.2 Controlled-Condition Verification of PDP Measurements

In this section we describe PDP verification methods using controlled environments.
There are several methods to achieve this goal. We will describe two possible
approaches: (1) a lab setup multipath verification method; and (2) a conducted
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(a)

(b)

Figure 4.11 Path loss as a function of frequency for several separation distances for (a) 30 GHz,
and (b) D-band measurements. © 2017 IEEE. Reprinted, with permission, from [24].

verification-artifact method. Method 1 utilizes over-the-air testing, while method
2 uses a conducted channel to replicate specific multipath conditions.

Lab-setup Multipath Verification. An example of a lab setup for multipath verifica-
tion is shown in Figure 4.12. The goal of the setup is to position reflective surfaces
in strategic places within an anechoic chamber and measure delay caused by specular
reflections. The PDP derived from measured results is then compared to the theoretical
PDP, which is calculated from the positions of the reflective materials placed in the
chamber. As with in situ methods, positioning errors can be a significant source of
uncertainty in this method. The verification steps are as follows:

• In an unloaded anechoic chamber, record the measured PDP and verify that the
sidelobes are well below 20 dB from the maximum peak (see Figure 4.7(a)).

• Introduce two metal sheets between the TX and RX. One is placed vertically and
one is placed flat on the ground surface, as shown in Figure 4.12. Size and
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Tx
System 1

Rx
System 1

Metal sheets

Figure 4.12 Illustration of a multipath verification setup for controlled-condition verification of
PDP. The vertical plate is rotated until it blocks the LoS path. The horizontal plate produces a
reflected path.

orientation of the sheets will depend on the antenna type, with smaller sheets used
with directional antennas.

• Measure the PDP with the channel sounder. The vertical plate should be rotated
until the LoS component in the PDP is reduced well below the level of the reflected
signal. This blockage is difficult to achieve at lower frequencies, but is usually
obtainable for mmWave measurements, especially if directional antennas are used.

• Record the measured PDP produced by only specular reflection from the
horizontal sheet (only reflected path is significant).

• Compute the delay time from the reflected path.

• Compute the theoretical delay time of reflected path from the TX–RX geometry.

• Compare the empirical and theoretical delays and estimate a measurement error.

Note that if the time resolution of the channel sounder is sufficient, the two delays
(direct and reflected) may be measured simultaneously and compared to theoretical
ones. In this case, only the horizontal sheet is needed to produce the reflected path.
This would be similar to the two-ray method described in Section 4.3.3, without the
calculation of the phase center.

An Example of Controlled-Condition PDP Verification Results
Georgia Tech has performed PDP verification of their VNA-based channel sounder at
110–170 GHz (D-band) [19, 21]. The PDP was measured in an open laboratory space
as shown in Figure 4.13(a) and an aluminum plate of size 30.5 × 30.5 × 0.3 cm was
used as a reflector. The angular position of the RX was varied while the TX position
was fixed at 45◦. The angles φT and φR represent the offset angles of the TX and RX
measured from the LoS position, as shown in Figure 4.13(a).

The peaks that appear in the PDP shown in Figure 4.13(b) correspond to delay
times of τ = 2.7 ns and τ = 3.6 ns, respectively. After computing the theoretical
delay time of the direct and reflected path from the TX–RX geometry, we can confirm
that these two peaks correspond to the LoS and reflected paths from the aluminum
plate, with errors on the order of 5%.

Multipath Verification Artifacts. For this verification approach, participants conduct
measurements of an emulated multipath channel. Because the artifact is physically
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Figure 4.13 (a) Georgia Tech’s 110–170 GHz measurement setup with a metal sheet as a
reflective surface. (b) 110–170 GHz PDP measurements for different RX antenna angles with
aluminum and cardboard plates as reflecting surfaces. © 2015 IEEE. Reprinted, with
permission, from [19].

connected between the transmitter and receiver, this approach can only be used
if the RF ports of the channel sounder are accessible. Several coaxial cables of
different lengths may be used to create a “verification artifact.” The cables are
connected through power dividers at the TX side and power combiners at the RX side.
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Figure 4.14 A multipath verification artifact or “test-bed” created by the ETRI 5G
Giga-Communication Research Lab consisting of three coaxial cables having known time
delays. The measured time delay is compared to the expected time delays. Note that for
wideband signals, pulse arrival times would depend on group velocity rather than phase
velocity, although in high-quality cables these should be close to each other. Reproduced from
[25] with permission by the Electronics and Telecommunications Research Institute.

An example of this type of verification artifact, created by the ETRI 5G Giga-
Communication Research Lab, is shown in Figure 4.14. These verification artifacts
are used to assess system hardware performance and to verify the multipath delay
resolution of the channel sounder.

The verification steps are as follows:

• Remove the channel sounder’s antennas and connect the TX and RX output ports
to the input and output ports of the verification artifact, respectively. Add external
attenuation if necessary to prevent overdriving the receiver.

• Conduct measurements of the channel and postprocess to obtain the PDP.

• Compare the measured PDP to theory, based on the estimated time delay through
the various multipath cables.

An Example of PDP Verification Results with a Verification Artifact
The ETRI 5G Giga-Communication Research Lab verified the MPC delay resolution
of their 28 GHz correlation-based channel sounder with the verification artifact dis-
played in Figure 4.14. The results are shown in Figure 4.15. The resolution of the
channel sounder was estimated to be 2 ns, and the measured time delays were within
this resolution to the estimated values, as shown in the table in Figure 4.14. Note that
uncertainty in the manufacturer’s reported value of vp could impact the uncertainty in
the reported time delays, especially at mmWave frequencies.
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Figure 4.15 Measured, processed results of the PDP for the verification artifact. Multipath
resolution is 2 ns. Reproduced from [25] with permission by the Electronics and
Telecommunications Research Institute.

4.3.3 Precision Antenna Positioner Measurements to Estimate Path Loss
and Antenna Phase Centers

By aligning TX and RX antennas at boresight and increasing the separation with a
1D antenna positioner, it is possible to measure the two-ray lobing pattern of the path
loss caused by the change in the direct and reflected signal path lengths. This change
in path length causes the signals to add constructively or destructively over several
phase rotations or cycles, as shown in Figure 4.16(b). From the known geometry of
the path of the 1D positioner (and accounting for the antenna patterns), a comparison
of predicted and measured can be used to estimate the path loss and phase center of
the antennas, as described in [26] and summarized below.

Steps:

• Place the transmitter and receiver over a metal ground plane with RF absorber
placed vertically around the periphery of the measurement range to eliminate
undesired MPCs (see Fig. 4.16(a)).

• Align the antenna boresights (only one TX–RX antenna pair) and measure the
separation distance between antenna apertures.

• Using the precision positioner, move the receive antenna over a distance of 60 λ in
1 λ increments.

• Measure channel impulse responses (CIRs) and plot path loss versus separation
distance.

• Compare the results using the theoretical two-ray formula and antenna pattern
data, calibrating the measured path loss in postprocessing to match the theoretical
results.

• The separation offset gives the phase center locations, and the first-order
polynomial fit of measured path loss should agree with the Friis formula.
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(a)

(b)

Figure 4.16 Two-ray verification test: (a) photo of the two-ray measurement with fixed TX (left)
and RX (right) on a 1D positioner, with absorber surrounding the setup to eliminate undesired
reflections; (b) path-loss results. © 2017 IEEE. Reprinted, with permission, from [26].

A two-ray verification measurement was conducted for the NIST 60 GHz switched
array, correlation-based channel sounding system to calibrate path loss and to find
the phase center of the horn antennas. The vertically oriented TX and RX antennas
were placed on a conducting ground plane. The center of the horn antennas was
approximately 19.84 cm above the ground plane. The RX antenna was mounted on
a 1D precision positioner that could move with a manufacturer-specified accuracy of
0.006 mm. The RX antenna was moved with steps of one wavelength for 60 steps. The
distance between the edge of the horn antennas ranged from 0.99 m to 1.283 m. Note
that only one antenna in each of the TX or RX antenna arrays was used. As shown
in Figure 4.16(b), the two-ray path-loss lobes were observed, but they are slightly
different from the theoretical two-ray model. In the theoretical two-ray model, the
direct path signal is attenuated according to the Friis formula and its phase is a function
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of frequency and the LoS path length. The ground is attenuated according to the Friis
formula (with the reflected path length) multiplied by the square of the reflection coef-
ficient; its phase is calculated from the reflected path length. The reflection coefficient
for vertical polarization �v is

�v = [εr − jσ/(2πfcε0)] sin(ψ) −√
εr − jσ/(2πfcε0) − cos2(ψ)

[εr − jσ/(2πfcε0)] sin(ψ) +√
εr − jσ/(2πfcε0) − cos2(ψ)

, (4.8)

where ε0 denotes the permittivity of free space (8.854 × 10−12 F/m); εr is the relative
dielectric constant of the metal ground, which is 1; σ is the metal ground conductivity
(1.45 × 106 S/m); and ψ denotes the grazing angle. Note that the antenna gain for
the reflected path is given by the antenna pattern, which is smaller than that of the
direct path. The received signal is the vector combination of the two complex signals.
Details about the two-ray model are given in [27].

The phase center is inside the horn antenna aperture, which extends the link dis-
tance. For the results shown in Figure 4.16(b), the link distance was increased by
1 cm to compensate for the phase-center offsets from the antenna apertures. With this
increase, the estimated path loss, given by the curve with crosses in Figure 4.16(b),
matched the theoretical one, given by the curve with the circles, well. We concluded
that the phase center in each of the TX and RX horn antennas was offset from the
aperture by 5 mm. Estimating the uncertainty in these measurements is the topic of
future research.

4.3.4 Controlled Condition Verification of AoA Measurements

In this method, an antenna fixture provides known values of AoA and polarizations.
The verification steps are as follows:

• Emulate a well-defined, coherent two-path scenario with approximately equal path
lengths, where the “two propagation paths” are defined by a suitable arrangement
of two transmit antennas. See, for example, the fixture in Figure 4.17. The angular
separation should be adjustable.

• Ensure that the two paths show a clearly defined phase and polarization difference.
The best case for resolution is typically a 90◦ phase difference, whereas the worst
case would be equal and opposite phases. Applying orthogonal polarization would
reveal if the radiation pattern calibration is complete [28].

• Record the received signal that emanates from the transmission fixture described
above. Depending on the antenna array design, there should be some angular
coverage considered (e.g., boresight ±x◦ for linear arrays, 360◦ for circular
arrays; azimuth and elevation for 2D arrays). Note that circular arrays should show
uniform resolution behavior, but linear/planar arrays should have highest
resolution for boresight and reduced-dimension calibration.

• Note that because the receiver noise figure may not be easy to define for
comparison, it might be appropriate to define the effective isotropic radiated power
(EIRP) transmit power.
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Figure 4.17 Emulation of a coherent two-path scenario.

• Two cases are typically considered: (1) the assumption of two paths of equal
power, and (2) no a-priori assumption of the number of paths and amplitudes
(perhaps clipping at −20 dB and for 10 estimated paths). The latter is used to
assess the real environment in which the measurements are conducted.

Because this verification procedure utilizes multipath, one must consider the coher-
ence of the received waves. Coherence arises if MPCs fall within the same resolution
cell and if their phase difference is fixed. Therefore, to fully evaluate the performance
of the setup for angular resolution verification, the received signal should contain at
least two wideband impinging waves in the same delay cell, ideally with adjustable
angular separation and adjustable phase difference [28, 29].

If antenna arrays are used to estimate AoD, coherent processing of the output
signals acquired by the array is applied. The resulting angular resolution performance
depends on the application of correct propagation and device data models. The latter
includes calibration issues and phase stability of the device, especially related to
antenna characteristics. See further discussion in [27, 30–34]. Moreover, some high-
resolution parameter estimation (HRPE) procedures (ESPRIT, MUSIC, ML) may
only allow restricted device data models and are especially sensitive to coherency of
impinging waves [35].

Note that if rotated antennas are used for AoD estimation, the resulting angular
resolution is basically limited by the directivity of the antennas that were used. The
advantage is a simple and robust technique because no coherent-array signal process-
ing is required. Still, one is faced with some accuracy issues such as the proper choice
of the angular step size. The angular step size may have an influence on the results
if the user intends to synthesize an equivalent omnidirectional PDP. Another potential
influence on accuracy may be changing noise levels if the system’s automatic gain
control (AGC) changes when rotating the antenna.

An Example of Controlled-Condition AoA Verification Results
Refer to Figure 4.17 for the following discussion.

• Use horn antennas to emulate two paths. Apply the same transmit signal to each,
such as the sounder signal distributed by a splitter.

• Emulate various phase differences by rotating the antenna cantilever (see Figure
4.18). For example, create orthogonal polarization by rotating the antenna by 90◦

or by switching ports if dual-polarized horns are available.

• Rotate the antenna under test (AUT) in azimuth and elevation.
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Figure 4.18 (a) Coherent multipath causing a spatially static interference pattern. This
measurement shows the importance of evaluating AoA as a function of antenna element and
the phase difference introduced by rotating the TX antenna. The rotation (designated along
the lower axis) should introduce the same interference pattern for each antenna element
(designated along the vertical axis). However, the interference pattern is not identical for each
element. (b) Photograph of the measurement setup.

• Choose between synchronized and nonsynchronized TX–RX in order to keep
phase-drift effects separate. The photograph in Figure 4.18(b) shows the rotated
antenna cantilever. Note that the distance between the transmitter and receiver
should not be too small, in order to avoid any near-field curvature effects. As
shown in Figure 4.18, use of high-gain horns allows free-field test (no chamber).
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4.3.5 Controlled Condition Verification of Antenna
Cross-Polarization Discrimination

Recent wireless systems have employed dual-polarized antenna architectures to obtain
channel diversity with orthogonally polarized propagating signals [36]. Dual polariza-
tion will be of significant advantage in wireless communications as frequencies move
higher and the channel becomes more sparse and antennas with greater directionality
are used [37, 38]. Thus, characterizing the cross-polarization discrimination (XPD) of
antennas is a vital task for channel sounders that use orthogonally polarized or dual-
polarized TX and RX antennas [17]. Several participants’ channel sounders have dual
polarization capability, as noted in Table 3.2.

Verification of antenna XPD may be performed by first measuring free-space path
loss at various closely spaced distances with co-polarized antennas, followed by mea-
surements at the same distances but using cross-polarized antennas. Each of the anten-
nas is sequentially rotated by 90◦ from the other either electrically or mechanically so
that the two antenna polarizations are orthogonal. The difference in path loss between
the co-polarized and cross-polarized measurements result in the XPD of the antennas,
which should be constant over various distances, and no matter which of the antennas
is oriented orthogonally from the other. Because it is unlikely the test range is ideal,
we recommend that the method described below be performed at three or more closely
spaced distances in the far-field region to ensure measurement reliability, accuracy and
reciprocity for determining the XPD between the TX and RX antennas.

For the sake of simplicity, the following discussion regarding characterization of a
channel sounder’s antenna XPD assumes vertically polarized (electric field perpendic-
ular to the ground plane) and horizontally polarized (magnetic field perpendicular to
the ground plane) pyramidal horn antenna, but the method may be generally applied
to any type of dual-polarized antenna.

The measurements must be performed in a controlled, open and static environment
that satisfies the following three constraints (refer to Figure 4.19). First, the measure-
ment should be in LoS free space with the TX and RX antenna-separation distance
beyond the far-field or Fraunhofer distance of the antennas while also ensuring that
the TX and RX antennas are boresight aligned. A general rule-of-thumb to ensure
plane-wave propagation is to set the RX antenna at least five or more Fraunhofer
distances from the radiating TX antenna [16], where the Fraunhofer distance was
defined in eq. (2.6). Thus, the TX and RX antenna-separation distances DT R should
obey DT R ≥ 5 × Df . Note that boresight alignment of the TX and RX antennas is
necessary for both co-polarized and cross-polarized measurements.

Second, the propagation path should be free from nearby reflectors or obstructions
that might cause multipath reflections or induce fading in the measurement. Specifi-
cally, the heights and distances should be selected in conjunction with the HPBW of
the TX and RX antennas such that the projected ground bounce or other reflection
sources from the TX antennas are far outside of the HPBW angular spread of the
TX antenna and should not arrive anywhere near the HPBW viewing angle of the RX
antenna.
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Figure 4.19 Sketch of geometry and test setup for accurately measuring antenna
cross-polarization discrimination between two orthogonally polarized antennas for channel
sounder verification. © 2018 IEEE. Reprinted, with permission, from [17].

Third, the heights of the antennas and the TX and RX antenna-separation distance
should be such that ground bounces and ceiling bounces do not provide reflection or
scattering that may confuse the determination of the received power level within or just
outside the HPBW of the main lobe of the TX antenna pattern, or within or just outside
of the HPBW viewing angle of the RX antenna pattern [9–11]. Figure 4.19 shows a
sketch and geometry of a typical measurement setup. See [17] for more detail.

By solving a set of geometry equations pertaining to the sketch in Figure 4.19 to
ensure far-field radiation (beyond the Fraunhofer distance) and to ensure that there are
no MPCs induced by the surrounding environment, the heights of the antennas above
the ground (h1) and below the ceiling (h2) must satisfy:

h1,h2 >
DT R

1
tan θ1

+ 1
tan θ2

, (4.9)

where DT R is the TX and RX antenna-separation distance based on five Fraunhofer
distances of the TX antenna, h1 is the height of the TX and RX antennas above the
ground, and h2 is the distance to the antennas from the ceiling and any obstructions or
walls on either side of the straight line between the TX and RX antennas.

To calculate the XPD of the channel sounder antennas, one must follow the three
rules outlined above and then measure the path loss between the TX and RX antennas
at several different distances di that are greater than DT R (DT R ≥ 5×Df ) when they
are co-polarized (e.g., both vertically polarized) and then removing the antenna gains
such that
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PLVV(di)(dB) = P(t−V)(dBm) − P(r−V)(d)(dBm) + GTX(dBi) + GRX(dBi),
(4.10)

where P(t−V) is the transmit power into the TX antenna in dBm, P(r−V) is the received
power at the output of the RX antenna in dBm at a distance d in meters, GTX is the
gain of the TX antenna in dBi, GRX is the gain of the RX antenna in dBi, and PLVV

is the measured path loss in dB at distance d in meters. Note that antenna gains are
not necessary to calculate the XPD, but are required for accurately measuring and
calibrating far-field free-space path loss with the channel sounder.

Next, path loss for cross-polarized antennas at the same distances should be mea-
sured when the TX antenna is vertically polarized and the RX antenna is horizontally
polarized. Note that the heights and TX–RX separation distances di for both co- and
cross-polarized measurements should be as similar as possible for this comparison.
Rotating by 90◦ is commonly performed via a 90◦ waveguide twist for pyramidal
horn antennas with waveguide flanges. The cross-polarized path loss is calculated as:

PLVH(di)(dB) = P(t−V)(dBm) − P(r−H)(di)(dBm) + GTX(dBi) + GRX(dBi),
(4.11)

where the transmit power and antenna gains are identical to the values in eq. (4.9),
but where P(r−H)(di) is the received power in dBm at distance di at the output of the
horizontally polarized RX antenna, and PLVH(di) is the cross-polarized path loss in
dB at distance di .

To ensure reciprocity and to further ensure accurate characterization, an additional
set of measurements should be made for the same measurement distances and heights,
etc., where the TX antenna is rotated by 90◦ with the RX antenna fixed, if the first
set of measurements was made while rotating the RX antenna, or vice versa. Doing
so ensures that PLVH(di)(dB) is equivalent to PLVH(di)(dB) in eq. (4.11). Collect-
ing these measurements will ensure that the cross-polarization is similar at the same
nominal distances no matter which antenna is cross-polarized.

The XPD between the antennas at all distances di (in dB) is then found by subtract-
ing PLVV(di) (in dB) from PLVH(di) (in dB) at the different distances:

XPD(di)(dB) = PLVH(di)(dB) − PLVV(di)(dB), (4.12)

where XPD(di) is typically a positive value in dB that should be a constant, regardless
of distance. Since the TX–RX antenna separation distances are nominally identical for
the co- and cross-polarized free-space path-loss measurements at a particular location,
the difference between the two values may be considered the cross-polarization dis-
crimination between the arriving signals, induced by the differences in antenna polar-
ization. For measurement confidence, measurements made at all distances di should
be compared to ensure the XPD value is consistent. The mean of all i measurements
and their standard deviation may be reported.

Because the experimental procedure outlined above assumes multipath or envi-
ronmental reflections that may confuse whether the determination of received power
is significant, the measurements can be performed with a channel sounder in either
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narrowband or wideband operation. An additional step when using a wideband chan-
nel sounder can be used to ensure that no additional multipath or scattering is used to
calculate the XPD value, by measuring received power as the power in the first arriv-
ing (free-space/boresight-to-boresight) MPC for both co- and cross-polarized antenna
measurements. Ideally, there is only one significant path if the requirements and steps
outlined above are followed correctly.

4.4 Comparison-to-Reference Verification

In addition to the in-situ and controlled-condition verification methods, a third method
compares channel sounder measurements to those made by a reference instrument.
Note that for this technique the channel is not necessarily “controlled” in the sense
of providing specific characteristics, but rather it remains unchanged between the
reference system and channel sounder measurements. For the examples reported here,
a VNA serves as the reference instrument, providing traceable measurements with
uncertainties characterized by the NIST Microwave Uncertainty Framework (MUF)
[39, 40]. Uncertainties are propagated through the various steps in the measurements
and postprocessing to the final channel parameters such as path loss, PDP and RMS
delay spread.

In conjunction with the uncertainty analysis, the comparison-to-reference verifi-
cation technique requires an appropriate RF environment. A static RF environment,
either free-space or conducted, is a suitable choice when a VNA is the reference instru-
ment. For this case, limiting the movement in the channel during the measurement is
generally the main source of error for this technique. For a conducted channel, types of
movement can be disconnecting and connecting of systems to the conducted channel
during the course of the measurement campaign, cable movement and temperature
or humidity changes. For a free-space RF propagation channel, types of movement
can be personnel motion, wind, antenna and the cable movement as in the conducted
channel.

Two examples of comparison-to-reference channel verification are demonstrated
using NIST channel sounders. The first example illustrates how a portable channel
verification artifact [40, 41] is used to verify the performance of the NIST 60 GHz
switched array, correlation-based channel sounder, as shown in Figure 4.20. The
portable channel verification artifact simulates a direct path and up to two additional
MPCs using different lengths of coaxial cables and attenuators.The difference here is
that a VNA is used to characterize the artifact, rather than using the manufacturer’s
specifications for the cables, providing a reference measurement. In addition, a
temperature controller is used here to maintain phase stability and control drift for the
frequency range of 10–60 GHz.

The portable channel verification artifact is measured using a calibrated VNA. The
VNA measurement of the artifact uses “before” and “after” calibrations and physical
models of the calibration standards, combined with repeat measurements to obtain an
uncertainty analysis of the artifact. Next, the portable channel verification artifact is
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Figure 4.20 “Comparison-to-reference” channel sounder verification using a portable channel
verification artifact with the NIST 60 GHz channel sounder. © 2019 IEEE. Reprinted, with
permission, from [40].

Figure 4.21 PDP of the verification artifact in double multipath configuration, measured by the
NIST 60 GHz channel sounder (dash-dotted line) and with a NIST VNA (solid line).
The standard uncertainty in the VNA measurement is shown in the dotted line. © 2019 IEEE.
Reprinted, with permission, from [40].

measured using the NIST 60 GHz channel sounder or other channel sounders. The two
results are then plotted together and compared. Figure 4.21 shows a PDP comparison
with uncertainty between the NIST 60 GHz channel sounder and VNA measurement
of the portable channel verification artifact in a double multipath configuration. The
circles drawn with a solid line indicate locations in delay where the channel sounder
results were significantly different from the VNA results. The dashed-line circle shows
an artifact that was traced to an imperfect coax-to-waveguide adapter.

The comparison-to-reference verification technique can also be performed in any
stable free-field RF propagation channel. This channel might be quite ideal or could
include a great deal of multipath. As an example, Figure 4.22 shows the NIST 83 GHz
switched array, correlation-based channel sounder and a LoS RF propagation channel
[41]. For this RF propagation channel, the antennas were pointed directly at one
another with approximately 1 m of separation. The surface of the optical table was
covered by a rubber sheet, which was not absorbing. However, because the same
channel is measured by both the VNA and the channel sounder, the presence of
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Figure 4.22 Comparison-to-reference 83-GHz channel sounder verification for an LoS
propagation channel. A rubber sheet covers the measurement surface. © 2021 IEEE.
Reprinted, with permission, from [41].

Figure 4.23 PDP comparison of reference VNA and 83 GHz channel sounder measurements
using both scalar and complex back-to-back calibration techniques for an LoS RF propagation
channel with metal sheets placed behind the antennas. © 2021 IEEE. Reprinted, with
permission, from [41].

reflections should not substantially affect the verification comparison. To minimize
hardware movement, mechanical switches having over 55 dB of isolation were used
to connect the channel sounder and VNA to the antennas.

In the comparison-to-reference technique, the channel sounder takes a measure-
ment of the RF channel and then the user switches to the VNA and allows the VNA
to take a measurement of the test channel with as little movement of the hardware
such as cables and antennas as possible. The VNA measurements are calibrated in
postprocessing and the VNA’s reference planes are translated to those of the chan-
nel sounder, so that the two instruments effectively measure the same channel. This
requires not only calibrating the VNA but also de-embedding the switches and other
linear components in the path [41].

Figure 4.23 shows a PDP comparison result from the measurement of a controlled
multipath propagation channel in the 83 GHz band. The TX and RX antennas were
aimed toward each other with approximately 1 m of separation. To study channel
sounder performance in a controlled multipath environment, highly conducting metal
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Table 4.1 Comparison of metrics derived from an 83 GHz correlation-based channel sounder and VNA
measurements for several different multipath threshold (Mth) values for an LoS channel with metal
sheets placed directly behind the antennas.

LOSPEC RMS delay spread (ns)

M
th

 =
 0

 d
B VNA 0.00 ± 0.00 1.085 ± 0.001 1

NIST CS: Vector B2B 0.00 1.045 1

NIST CS: Scalar B2B 0.00 1.353 1

M
th

 =
  –

10
 d

B VNA 0.294 ± 0.00 1.085 ± 0.001 1

NIST CS: Vector B2B 0.283 1.045 1

NIST CS: Scalar B2B 0.314 1.353 1

M
th

 =
  –

20
 d

B VNA 0.315 ± 0.00 1.085 ± 0.001 1

NIST CS: Vector B2B 0.301 1.045 1

NIST CS: Scalar B2B 0.381 1.353 2

M
th

 =
  –

30
 d

B VNA 2.743 ± 0.054 1.085 ± 0.001 4

NIST CS: Vector B2B 2.953 1.045 5

NIST CS: Scalar B2B 3.123 1.353 8

M
th

 =
  –

40
 d

B VNA 2.864 ± 0.049 1.085 ± 0.001 5

NIST CS: Vector B2B 3.071 1.045 8

NIST CS: Scalar B2B 3.31 1.353 11

M
th

 =
 –

50
 d

B
  

VNA 2.899 ± 0.05 1.085 ± 0.001 11

NIST CS: Vector B2B 3.114 1.045 18

NIST CS: Scalar B2B 3.38 1.353 17

No. MPCsDelay window (ns)

sheets were placed directly behind the channel sounder’s TX and RX antennas. The
metal sheets were separated by approximately 1.6 m. The channel sounder PDP was
normalized to that of the VNA and time aligned with the VNA measurement of the
channel. Results are shown for both scalar (magnitude only) and vector back-to-back
calibrations of the channel sounder.

Metrics derived from these PDPs are given in Table 4.1. The uncertainty bounds
from the sensitivity analysis for RMS delay spread, delay window and number of
MPCs were derived for several different multipath threshold values ranging from 0 dB
to −50 dB. The results show that use of a scalar (power only) calibration can result in
significant errors in the estimation of these metrics.

4.5 Illustration of Verification Methods

In this section we illustrate methods that are currently used by 5G mmWave Channel
Alliance participants to verify the performance of their channel sounders. Note that
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Figure 4.24 Antenna configuration for multipath verification of CRC’s channel sounder.
Controlled-condition measurements were made in an anechoic chamber at frequencies of
26 GHz and 38 GHz.

we often provide only the values of the metrics obtained and do not include their
uncertainties. One of the goals of this book is to illustrate best practices for verifying
sounder performance, rather than to judge the utility of the specific values obtained in
these illustrative examples. For instance, in practice, one would typically use an in-situ
verification approach during field tests to determine whether a sounder was generally
operating as expected. An uncertainty analysis would not be applied to these data;
however, the user would have increased confidence in their measured results. The final
data analysis based on the measured results would likely contain uncertainties, but
these might have been found from previous controlled-condition measurements. Thus,
the lack of uncertainties reported in the following examples should not be construed
to imply that uncertainties are not necessary.

Also, because results are presented from the current version of each group’s channel
sounders, this section is, essentially, a snapshot in time, reflecting the current activities
of the groups listed below. It is anticipated that groups will extend their channel
sounders and methods of verification in future work. The motivation for this section is
to provide real-world illustrative examples of techniques and typical results achieved
by state-of-the-art labs for today’s mmWave channel sounding measurements.

4.5.1 Communications Research Centre

The CRC VNA-based channel sounder [42] was verified using a combination of con-
trolled condition, free-space map-based multipath and two-ray map-based multipath
methods. See [43] for additional detail on these measurements.

The verification method used an open LoS environment, as shown in Figure 4.24(a),
and a specular ground reflection path, as shown in Figure 4.24(b). In the LoS case, both
antennas were pointing at each other. For the ground-reflection case, the antennas were
adjusted for 24.8◦ down-tilt to point toward the anechoic chamber floor.

The 2D TX–RX separation distance, which is also the LoS signal propagation
distance, is dLoS = 6.5 m, whereas the ground path signal should travel a distance
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Table 4.2 The “empirical results” columns show the difference between
direct and reflected signals in terms of physical distance and time of
arrival for the 26 GHz and 38 GHz measurements. The “channel sounder”
columns provide the sounder’s expected resolution.

Difference between
direct and reflected rays Channel sounder

Frequency (empirical results) resolution

(GHz) d (m) τ (ns) d (m) τ (ns)

26 0.059 0.19 0.24 0.8
38 0.089 0.29 0.30 1

Figure 4.25 38 GHz PDP of free-space LoS and ground-reflection map-based MPCs.

of dRef = 2
√

h2 + (dLoS/2)2 = 7.16 m, where h = 1.5 m is the height of the antennas
and dLoS is the 2D separation distance between the TX and RX antennas. Note that
these distances have been rounded for clarity of presentation. The measurement accu-
racy of the measured distances was actually within a few millimeters, as measured
with a ribbon measuring tape supported by a lead wire. Both the LoS and ground
measurements were taken separately in the order mentioned.

Figure 4.25 shows measured results for the 38 GHz measurement, where the sym-
bols show the theoretical direct and ground-reflected ray delay times and the lines
show the measured results. The difference between the theoretical and measured val-
ues of (1) distance (estimated from measurement) and (2) excess time delay for the
direct and multipath components is shown in Table 4.2. The agreement is well within
the channel sounder’s expected resolution.

Results for the path-loss exponent for various polarizations, calculated from the
1 m CI free-space reference model,

L(d)[dB] = Li(d0) + 10η log10(d/d0) + χσ,d > d0, (4.13)

with d0 = 1 m are shown in Table 4.3. Uncertainties in the path-loss exponent are not
illustrated in this example.
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Table 4.3 Path-loss exponents for VV and HH polarizations.

Frequency (GHz) Polarization Path-loss exponent

26 VV 1.96
HH 1.92

38 VV 2.02
HH 1.99

4.5.2 Durham University

Verification for the Durham frequency swept (chirp-based) channel sounder is illus-
trated with results in the 60 GHz band in both outdoor and indoor environments [44].
Similar verification techniques are also illustrated in the 25–28 GHz band and the
50–73 GHz band, as-yet unpublished. In [44], the outdoor environment was a low-
rise urban area, and the indoor was a 38 m long office corridor containing tables and
chairs.

An in-situ path loss verification was carried out using least squares regression, from
which a path-loss exponent of 1.9 for the outdoor environment was estimated. This
exponent approximates the free space value of 2. PDP verification is illustrated by
in-situ comparison to a map-based ray-tracing model. Ray-tracing predicted a signif-
icant MPC corresponding to a 30 m reflection. The measured PDP produced a signal
component at approximately 100 ns for the indoor environment, which, assuming free-
space propagation, agrees with the 100 ns delay for a 30 m reflection.

4.5.3 ETRI

ETRI’s correlation-based channel sounder verification technique for path loss and
multipath delay at 28 GHz is illustrated in [45, 46]. Path-loss measurements were
conducted along a straight stretch of road with fields on each side over distances
ranging from 1.4 km to 1.6 km. The measurements were replicated using horn and
omnidirectional antennas, comparing the path-loss exponent of the results to that
obtained from a single frequency, CI model for a theoretical two-ray reflection (path-
loss exponent = 1.92). The path-loss exponent for the horn antenna was 1.87 and the
exponent was 1.90 for the omnidirectional antenna. Uncertainties are not reported in
these illustrative examples.

To verify multipath delay, three cables (0.5 m, 10 m, 20 m in length) were excited
from the output port of the channel sounder’s transmitter through power splitters, as
illustrated in the example on controlled-condition verification techniques and in [46].
Knowing the wave velocity in the cables allowed for comparison between the mea-
sured time delay for each cable and the expected time delay. The maximum difference
between the measured and expected time delays was 0.49 ns in the 0.5 m cable (2.0 ns
measured and 2.49 ns expected), with the measured time delay in the other two cables
both 0.04 ns longer than expected. The differences may be due to the actual versus
theoretical values of wave velocity in the cables; however, this is as yet undetermined.

https://doi.org/10.1017/9781009122740.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.005


76 Alenka Zajić et al.

Table 4.4 Path-loss exponents for the Ka-,
D-, and 300 GHz bands, determined using
the Georgia Tech channel sounder [24].

CIF PLE ABG PLE

Ka-band 2.001 1.982
D-band 1.983 1.997
300 GHz 1.997 2.005

ETRI’s channel sounder verification techniques for the AoA values are also illus-
trated using an in-situ technique at 28 GHz. In an open environment, the transmit
antenna remained stationary and the receive antenna was rotated. Two transmit anten-
nas were used; one with a HPBW of 30◦ and another with 60◦ HPBW. The directions
of the three strongest MPCs were compared, with the directions reported in the receive
antenna’s specifications. For the strongest MPC direction, the measured AoA underes-
timated the specified value by 1.3◦−1.7◦. The measured AoA of the second strongest
MPC exactly matched the specified angle. The measured angle for the third strongest
MPC direction was overestimated by 0.2◦ with the 60◦ HPBW TX antenna, and by
1.9◦ using the 30◦ HPBW TX antenna.

4.5.4 Georgia Tech

Georgia Tech’s VNA-based channel sounder in-situ verification technique was illus-
trated through comparisons with theoretical values of the free-space path-loss expo-
nent and time delay determined from multipath peak positions in the PDP [24]. Three
frequency ranges were considered in the free-space path-loss verification: Ka-band
(26–43 GHz), D-band (110–170 GHz), and 300 GHz (300–316 GHz) [19].

Kim et al. measured path loss at various distances for the different frequency ranges
in [24]. The multifrequency CI frequency (CIF) and alpha–beta–gamma (ABG) mod-
els were used to obtain path-loss exponent values for a comparison with the theoretical
free-space path-loss exponent of 2. Table 4.4 displays the path-loss exponent values
for each frequency range for the different multifrequency models.

Directional antennas and an aluminum reflector were used to illustrate controlled-
condition verification of time-delay measurements in the D-band [19]. The receive
antenna was rotated to separately obtain direct path and reflected signals. The peak
positions in the computed PDP were compared to theoretical delay calculations based
on direct measurement. The measured peak positions for the direct and reflected paths
occurred at 2.7 ns and 3.6 ns, respectively. Both measured times were within 1 ns of
the ideal theoretical delay times (2.54 ns for direct and 3.1 ns for reflected).

4.5.5 TU Ilmenau

The in-situ correlation-based channel sounder verification techniques used by the
Technical University of Ilmenau have been illustrated in different frequency bands
and measurement scenarios. The path-loss verifications were primarily conducted in
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an indoor entrance hall scenario and an outdoor rooftop-to-street environment. The
measured distances were between approximately 5 m and 70 m for the indoor scenario
and up to 100 m for the outdoor scenario [47, 48]. Using a threshold of 20 dB [49]
for the entrance hall scenario, the path loss exponent from measurement for a 7 GHz
center frequency was 1.76. For 30 GHz, the estimated path-loss exponent was 1.71
and for 60 GHz the estimated exponent was 1.77. Assuming that the directivity char-
acteristics of the antennas are approximately the same at the three frequencies (HPBW
of 30◦), the results may be compared with the theoretical path-loss exponent of 2.0.
The delay for these environments was verified in-situ by comparing calculated delay
to laser distance measurements, which had a maximum error of 90 mm. This error
was based on measurements from antenna front to antenna front. After correcting the
laser measurement, the signal delay mean error was 0.14 ns, which corresponded to a
distance of around 42 mm.

For the 70 GHz channel sounder, in-situ path-loss and delay verification was
illustrated by comparing the measured results with ray-tracing results in a small
office environment [50]. A 3D ray-tracing tool designed for indoor environments was
used. The ray-tracing tool included scattering effects from walls, openings and visible
elements, including utility installations and furniture. Two transmitter locations and
seven receiver positions were considered. The measured and predicted path loss
from both transmitter locations were compared. The root-mean-square error (RMSE)
values were 2.8 dB and 0.7 dB, averaged over all receiver positions. The predicted
RMS delay spread from the transmitter locations had average relative errors of 6.9%
and 2.3%, with worst-case errors of −15% to 37% over all of the receiver positions.

4.5.6 Keysight

Verification of Keysight’s correlation-based channel sounder was performed at
28 GHz using a 4× 4 MIMO array with a stimulus signal of 1,024 samples. Path loss,
path delay, AoA and AoD were considered [13].

With the antennas placed 2 m apart, path loss and path delay were measured and
compared to theoretical free space path loss and LoS path delay values of −67.4 dB
and 6.67 ns, respectively. The measured path loss was −66.15 dB, and the measured
path delay was 6 ns; these corresponded to differences of 1.25 dB and 0.67 ns (2% and
10% different from the theoretical values).

To test the AoA and AoD, the receive antenna array was rotated in the azimuthal
plane from −45◦ to 45◦ using a 5◦ step size. The average measured AoA measurement
error was 1.87◦, while the average AoD measurement error was 1.58◦.

4.5.7 NIST

In-Situ Verification [4, 51]
In-situ verification of the 83 GHz NIST switched array, correlation-based channel
sounder was conducted for path loss and signal delay in an indoor open lobby area.
Measurements were taken at separation distances ranging from 4 m to 13 m, and the
path-loss exponent estimation was 1.93, compared to the ideal free-space path-loss
exponent of 2. Additionally, the measured path-loss values for the separation distances
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were compared to predicted losses (again calculated with the Friis equation). The
errors between the measured and theoretical path loss values had a mean of 0.01 dB
and a standard deviation of 1.18 dB found from a Normal distribution fit.

The signal delay was measured at each separation distance and compared to values
estimated from a map of the lobby area produced by the channel sounder’s mobile
positioning robot. The signal delay mean error was 0.21 ns, with a standard deviation
of 0.06 ns based on a Normal distribution fit.

In-situ AoA verification was also carried out for the NIST channel sounder. Mea-
surements were collected in an office environment using a receive antenna consisting
of 16 scalar-feed-horn antennas. AoA results were extracted using the SAGE algo-
rithm for each location along a measurement path that circled the room. These values
were compared with calculated AoA values of the direct path for each measurement
location. The mean error between the measured and theoretical values was 3.65◦, with
a standard deviation of 4.81◦.

The theoretical Doppler frequency shift was compared to that estimated from in-
situ measurements made by the NIST mobile 83 GHz channel sounder. The receive
antenna, attached to a mobile robot, was moved approximately 6 m along a linear
trajectory toward and away from the fixed transmit antenna. The path was aligned
perpendicular to a wall so that the Doppler shift of the reflected path was also mea-
sured. The velocity was tracked internally by the robot. Measured frequency shifts of
the direct and reflected paths were 210 Hz and −210 Hz, respectively. The theoretical
Doppler shift for the recorded velocity (750 mm/s) was 209 Hz.

Comparison-to-Reference Verification [40]
The NIST 60 GHz correlation-based channel sounder was verified by comparing the
RMS delay spread of a verification artifact as measured by the channel sounder and
a VNA. The artifact contains a direct path and up to two MPCs. Acceptable delay
spread values are those that do not fall outside the VNA error bounds.

Several multipath thresholds ranging from −10 dB to −45 dB were considered in
the verification (Table 4.5). The channel-sounder-measured RMS delay spread was
generally higher than that of the VNA measurements, and exceeded the uncertainty in
the VNA for threshold values of −35 dB and below. The broadening of peaks due to
internal reflections in the channel sounder and the presence of an additional peak at
28 ns occurring 40 dB below the highest peak contributed to the higher RMS delay
spread values for the channel sounder measurements.

4.5.8 North Carolina State University

North Carolina State University’s controlled-condition correlation-based channel
sounder verification technique is illustrated by means of PDP measurements in a large
room, as shown in Figure 4.26. The transmitter and receiver were placed on tripods
at a height of 1.5 m each. The delays and signal strengths for the LoS and NLoS
paths were measured. The NLoS path consisted of a ground reflection, where two
settings were considered: a ground reflection without a metallic reflector and a ground
reflection when a metallic reflector was placed on the ground. The dimensions of
the measurement setup are illustrated in Figure 4.27. The LoS path is approximately
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Table 4.5 Wireless channel metrics for different multipath thresholds
calculated from NIST VNA and channel sounder (CS) measurements at
60.5 GHz.

Multipath τRMS τRMS Number Number
threshold VNA CS MPCs MPCs

(dB) (ns) (ns) VNA CS

−10 0.15 ± 0.00 0.15 1 1
−20 0.15 ± 0.00 0.18 1 2
−30 0.16 ± 0.00 0.19 1 1
−35 1.20 ± 0.07 1.37 4 3
−40 1.30 ± 0.06 1.46 9 7
−45 1.35 ± 0.07 1.49 13 11

Figure 4.26 NC State’s controlled-condition verification of PDP measurements is illustrated in a
large meeting room on the campus.

Figure 4.27 Measurement setup with a ground-reflected component. Transmitter and receiver
are each placed at 1.5 m height.

5.0 m (measured with a ruler), whereas the NLoS path was approximately 5.8 m
(calculated from the geometry of the setup). The measurements were repeated with
and without the metallic reflector on the ground, as shown in Figure 4.26.
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Figure 4.28 Power delay profile with and without the metallic reflector on the ground.

The results are shown in Figure 4.28. For both cases, the LoS component arrived at
16.3 ns and the NLoS component arrived at 19.5 ns. The corresponding LoS distance
calculated from the measurements was 4.88 m and the NLoS calculated distance
was 5.85 m, which are close to the distances illustrated in Figure 4.27. The LoS
received power was −86.5 dBm with the reflector and −87.6 dBm without the reflec-
tor, a difference of 1.1 dB. The NLoS component received power was −54 dBm with
the reflector and −75.9 dBm without the reflector, a difference of 21.5 dB. Addi-
tional results with metallic reflectors using the NCSU channel sounder can be found
in [52, 53].

Figure 4.29 illustrates NCSU’s free-space path-loss verification technique per-
formed in an engineering building corridor. The measurements were repeated twice
from approximately 1.0 to 5.0 m distance every 30 cm, again measured with a
ruler. For this example, the path-loss exponent was measured to be 1.9 and 1.89 for
measurement 1 and 2, respectively. The results are close to the theoretical path-loss
exponent of 2.

4.5.9 NYU WIRELESS

Free-space path-loss and time delay measurements for the NYU WIRELESS
correlation-based channel sounder were verified at a 73.5 GHz center frequency
(see Figures 4.3 and 4.7). Narrowband (CW) and wideband (1,000 MHz null-to-null
bandwidth) LoS free-space path-loss measurements were collected in an open, indoor
environment at ranges up to 5 m and up to 33 m in an open outdoor environment.
The path-loss exponent for these measurements was 1.99, and the standard deviation
from the free-space theoretical values was 0.2 dB. This path-loss exponent may be
compared to the ideal value of 2.0 based on the Friis equation [2, 7].
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Figure 4.29 Example of NC State’s free-space path loss verification measurements at 28 GHz.

To verify the accuracy of multipath time delays, the antennas were angled down-
ward to produce a ground bounce. The expected excess time delay was 5.223 ns,
based on the path difference between the LoS and ground-bounce paths. The time
delay determined from the measured PDP was 5.200 ns; the difference between the
values is within the uncertainty of the antenna positions and sampling interval of
0.05 ns [7].

NYU’s methods for verifying AoD and AoA were also illustrated at 28 and
73 GHz by synthesizing an omnidirectional antenna pattern from measurement data
using directional horn antennas [54, 55] and considering the resulting omnidirectional
received power and path loss. Using directional antennas with different beamwidths
(narrowbeam and widebeam horn antennas) yielded nearly identical received power
and path loss synthesized over a systematic incremental scan of the entire azimuth
plane. Similar verification was also performed at 38 GHz [56–58]. This method
for synthesizing omnidirectional power from directional measurements can be
used in place of sophisticated algorithms like SAGE/RiMAX. Also, at the time of
development, high-gain adaptive arrays at mmWave frequencies were not available.
The use of narrowbeam high-gain rectangular horn antennas with highly accurate 3D
mechanical rotation at both the transmitter and receiver is a simple way of determining
AoD and AoA information with a resolution equal to the HPBW of the antennas
as described in [54]. This method may be used as opposed to more complicated
algorithms that may induce artifacts and that attempt to create super-resolution by
means of an antenna array.
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4.5.10 University of British Columbia

The UBC VNA-based channel sounder has been verified through measurements con-
ducted using the NIST channel verification artifact [59], LoS path-loss measurements
conducted at street level along linear paths in street canyon environments [60] and
fully double-directional channel measurements conducted on the roof of the MacLeod
building in the presence of a wall and several discrete scatterers on the roof [61].

Comparison-to-reference verification measurements conducted using the NIST
channel verification artifact were used to assess dynamic range and temporal (delay)
accuracy, and to compare and optimize postprocessing strategies and procedures [59].
Illustrative results showed that dynamic range was reduced by about 5 dB when
the frequency upconverter used in the transmit section of the channel sounder was
operated at maximum output power. Backing off by about 6 dB to 30 dBm was
required to achieve an optimal dynamic range of approximately 45 dB with Kaiser
windowing (β = 7) applied. Averaging was not performed as it resulted in a reduced
dynamic range (approx. 10 dB) due to phase offsets in successive traces. These results
did not account for antenna performance, however.

In-situ LoS path-loss measurements conducted at street level were used to demon-
strate general system performance verification including antenna performance [60].
The results confirmed that the measurement system returned an approximately free-
space path loss characteristic with errors of less than 1 dB over the range of distances
(up to 6 m) in which the directional receiving antenna effectively rejected multipath
reflections from the ground and surrounding structures, as shown in Figure 4.30.
Beyond that range, the path loss diverged from the free-space characteristic, as shown
by the black crosses in the graph. The results also demonstrated that antenna alignment
poses significant challenges when conducting measurements when the transmitter and
receiver are deployed on uneven ground.
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Figure 4.30 Measured and theoretical (Friis) path loss for the 28 GHz UBC channel
sounder [60].
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Table 4.6 UBC rooftop measurement results [61].

Path length Meas. delay∗ Calc. delay

Beam type (m) (ns) (ns)

Direct beam 5.95 20 19.8
Side wall reflection 11.90 40 39.7
Utility pole reflection 39.4 129 131

∗Meas. delay is extracted from the impulse response
corresponding to the LoS scenario where the antennas are
pointed directly at each other.

To address such antenna alignment issues, UBC utilizes an in-house-developed
automated levelling platform upon which the azimuth-elevation positioner and
receiver front end are mounted. The platform is supported by a ball joint and two
vertically mounted linear actuators. A three-axis inclinometer is used to determine
the orientation of the platform. An Arduino-based controller samples the inclinometer
a few times per second and adjusts the extension of the linear actuators as required
to level the platform. The automatic levelling platform significantly speeds up the
measurement process by eliminating time-consuming manual levelling as the receiver
is moved from location to location.

The fully double-directional channel measurements conducted on the roof of the
MacLeod building were used to further illustrate UBC in-situ verification techniques
for AoA, AoD and delay associated with both discrete and extended reflectors when
compared to map-based predictions [61]. Discrepancies in measured and calculated
delays were around 0.3 ns for distances up to 12 m and 2 ns at 40 m, as shown in
Table 4.6. A minor issue with the antenna rotator was identified and easily corrected.

4.5.11 University of Southern California

USC’s correlation-based channel sounder in-situ verification techniques were illus-
trated using LoS path-loss measurements [62]. Path-loss measurements were con-
ducted in an open area with the transmitter and the receiver placed on scissor lifts
at the height of 5 m. The measurements were performed for distances ranging from
30 m to 122 m. The path-loss exponents were estimated at 1.997 and 2.051 for CI and
ABG models, respectively. For both models, the observed path-loss exponents were
almost equal to the free-space path-loss exponent of 2.

In-situ delay verification of the USC channel sounder was illustrated by comparing
the observed multipath delays with the distances calculated from Google Maps
[63]. By utilizing the AoA and AoD estimated from beam directionality (described
below), and the delay information, it was possible to map the significant MPCs to
the likely scatterers in the environment. The delay offsets between estimations from
measurements and from the map of the environment vary from −1.2 ns to 1.1 ns. This
is mainly caused by the 2.5 ns delay resolution of the sounder, due to its 400 MHz
bandwidth.

The USC channel sounder uses phased-antenna arrays in both the transmitter and
the receiver to form beams aiming toward different directions. During the initial
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(a)

(b)

Figure 4.31 (a) Measured and theoretical path loss for the Univ. of Wisconsin CAP-MIMO
system, according to the Friis formula; (b): measured PDP with the dominant multipath
reflection located six samples from the LoS component. © 2016 IEEE. Reprinted, with
permission, from [65].

investigations, this directional information was utilized to estimate the AoA and the
AoD, as illustrated in [62]. The accuracy of the AoA estimations was validated via
controlled-condition, in-chamber measurements when the receiver was rotated to
different azimuth angles while the transmitter was fixed, and vice versa for the AoD.
The validation was limited to 12◦ which was the 3 dB beamwidth.

4.5.12 University of Wisconsin

Illustration of in-situ path loss and multipath delay time verification techniques using
the University of Wisconsin–Madison CAP-MIMO channel sounding system, which
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uses a lens array for multi-beamforming [64], was provided at 28 GHz [65, 66]. Indoor
measurements were collected at 1 m intervals spanning a range of 1–7 m in a straight
line. The measured path-loss values for each distance were compared to theoretical
values obtained from the Friis formula and are shown in Figure 4.31(a).

During these measurements, the most significant MPC was observed in the PDP at
a 16 m separation distance, as shown in Figure 4.31(b). This multipath was attributed
to reflections from a metal cabinet and metal door frame located behind the receiver.
The metal objects and the receiver were spaced approximately 8 m apart.

4.5.13 Summary of Verification Methods

Table 4.7 summarizes the verification methods used by Alliance participants.

Table 4.7 Summary of verification methods used by 5G mmWave Channel Model Alliance participants.

Group,

location,

contact

Sounder architecture,

transmit signal
Path-loss verification

Multipath delay

verification

Angle of arrival

Verif ication

Communications

Research Centre,

Canada,

Yvo de Jong

VNA

Mulitband, 

-based,

sinusoid

In-situ, Friis Map-based N/A

Durham University,

Durham, UK,

Prof. Sana Salous

Multiband, chirp,

FMCW
In-situ, Friis Map-based N/A

ETRI, Daejeon, S. 

Korea, Juyul Lee, 

Myung-Don Kim 

Correlation-based, 

PRBS
In-situ, two-ray

Controlled-condition, 

multipath artifact
In-situ, map-based

Georgia Tech,

Atlanta, GA,

Prof. Alenka Zajic

VNA-based,

sinusoid

Controlled-condition, 

Friis
Controlled-condition N/A

TUIlmenau,

Ilmenau, Germany,

Prof. Reiner Thomä,

Robert Müller

Correlation-based,

PRBS
N/A In-situ, map-based N/A

Keysight,

Santa Rosa, CA,

Robin Wang, Sheri

Detomasi

Correlation-based,

Keysight proprietary 

sequence

In-situ, Friis In-situ, map-based In-situ, map-based

NIST,

Boulder, CO,

Peter Papazian,

Camillo Gentile,

Jeanne Quimby,

Kate Remley

Correlation-based,

PRBS
In-situ, Friis

In-situ, map-based, 

and comparison to 

reference

In-situ, map-based

North Carolina 
State University,
Raleigh, NC, Prof. 

Ismail Guvenc, 

Ozgur Ozdemir

Correlation-based,

National Instruments

proprietary sequence

In-situ, Friis Controlled-condition N/A

NYU WIRELESS

New York, NY,

Prof. Ted

Rappaport,

Hangsong Yan,

George

MacCartney,

Yunchou Xing

Correlation based,

dual architecture 

(real time and PRBS) 

Direct-correlation/ 

real time

In-situ, Friis In-situ, map-based N/A
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Table 4.7 (Continued )

University of British 

Columbia, 

Vancouver, Canada,

Prof. Dave 

Michelson 

VNA-based, sinusoid In-situ, Friis NIST artifact In-situ, map-based

University of 

Southern 

California and 

Samsung,

Prof. Andy 

Molisch

University of

Wisconsin–Madison,

Akbar Sayeed

FPGA-based 

baseband processor

sinusoid;

PRBS,

chirp FMCW,

OFDM

In-situ, Friis In-situ, map-based N/A

Correlation-based,

multitone signal
Chamber, Friis In-situ, map-based

Controlled-

environment,

anechoic chamber
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5 Introduction to Millimeter-Wave
Channel Modeling

Andreas F. Molisch, Camillo Gentile, Theodore S. Rappaport, Alenka Zajić,
Ozge Hizir Koymen and Kate A. Remley

The purpose of any propagation channel model is to represent the essential physical
propagation effects that influence system design and performance, without getting
swamped by irrelevant details. Thus, while the propagation channel itself is inde-
pendent of any system that operates in it, channel models do depend on the system.
To be more specific, both the parameterizations of a channel model, and even the
fundamental effects described in the model, depend on the system parameters. For
example, a propagation model for an AM-radio operating at <1 MHz carrier fre-
quency will need to consider over-the-horizon propagation while not concerning itself
with the surface roughness of buildings, while the reverse is true for millimeter-wave
(mmWave) cellular propagation models. Thus, while many channel models exist for
the cellular and Wi-Fi communications channels, much less is available for mmWave
channels.

Another important relationship exists between the channel models and channel
measurements. Of course, the channel models have to be parameterized by measure-
ments. On the other hand, the model structures used need to inform the measurement
campaigns about what parameters are particularly relevant, thus indirectly determining
how the measurements should be done, to what accuracy they should be done, etc.
For this reason, it is essential that measurement and modeling groups retain constant
contact. Often the interface between the two groups is a list of multipath components
(MPCs) or similar description of the channel.

The main point of this part of the book is to give a survey of the state-of-the-art in
channel modeling, covering the main modeling methods that have been presented in
the literature. Over the years, a variety of fundamental models have been developed,
which can be grouped approximately into (1) tapped delay line stochastic models,
(2) geometry-based stochastic channel models and (3) quasi-deterministic models.
Each of these groups has been considered for mmWave channel modeling by various
academic and industrial groups, in particular for the description for the dispersion in
the delay and spatial domains. Additionally, the clustering of MPCs into groups with
similar behavior is important for all of these types of models. Finally, various path-loss
and shadowing models have also been proposed, and it is interesting that a seemingly
old topic like generic path-loss modeling has drawn new interest in the past years.

We stress here that the following chapters are a compendium of existing methods.
This book refrains from any listing of pros and cons of different techniques.
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The subsequent chapters are organized as follows. The remainder of Chapter 5
covers general channel description methods and establishes notation. Chapter 6
describes path-loss and shadowing modeling methods. Chapter 7 covers various
methods for clustering of MPCs, either based on similar long-term behavior or on
grouping in the delay/angle domain. Chapter 8 discusses the three main approaches to
describing dispersion – that is tapped delay lines, GSCM and quasi-deterministic mod-
els. The unique aspects of modeling of peer-to-peer networks are covered in Chapter 9.
Chapter 10 investigates description methods for temporal variations of the channel, in
particular over time intervals in which the wide-sense stationarity (WSS) assumption
is not fulfilled. Chapter 11 discusses modeling efforts at sub-THz frequencies. Finally,
Chapter 12 covers the connection between the measurements and modeling.

5.1 Deterministic Description Methods

In this subsection we will list various methods for deterministic description of
the channels – that is, quantifying the impact of wireless propagation for a given
time/location of the transmitter (TX), receiver (RX), and interaction objects (IOs).
Such descriptions are obviously key descriptions, as they are essentially the outputs
from the measurements and form the input for all of the various modeling activities.
The connections of these quantities to the measurements is discussed in Chapter 12.

We start out with simple systems where the TX and RX have a single antenna each,
so that the system is completely described by the input x(t) and the output y(t) of the
channel. We then progress to more complicated, multi-antenna channels, which are
highly relevant for mmWave systems. The description follows closely the one in [1].

5.1.1 Time-Variant Impulse Response

In single-antenna systems, input and output of the channel are related by the “time-
variant impulse response” h(t,τ) by [2]

y(t) =
∫ ∞

−∞
x(t − τ)h(t,τ)dτ. (5.1)

This relationship is analogous to the well-explored input–output relationship in linear
time-invariant (LTI) systems; the difference lies in the fact that now the impulse
response is time-variant.

An intuitive interpretation is possible if the impulse response changes only slowly
with time. Then we can consider the behavior of the system at a particular time t ,
like that of an LTI system. The variable t can thus be viewed as “absolute” time
that tells us which impulse response h(τ) is currently valid. Such a system is also
called quasi-static. Such an interpretation is meaningful if the timescale on which
the channel impulse response (CIR) changes is much larger than the duration of the
impulse response, and furthermore much larger than the transmitted symbol duration.
These conditions are fulfilled in many practical wireless systems: Times over which
the channel stay constant are on the order of milliseconds or larger, while the duration
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Figure 5.1 Interrelation between the deterministic system functions. © 2011 IEEE Press/John
Wiley. Reprinted, with permission, from [1].

of impulse responses (and typical symbol durations) are microseconds or smaller.
More rapidly time-varying channels are discussed in detail in [3].

As the impulse response of a time-variant system, h(t,τ), depends on two variables,
τ and t , we can perform Fourier transformations with respect to either (or both)
of them. This results in four different, but equivalent, representations (Figure 5.1).
Fourier-transforming the impulse response with respect to the variable τ results in the
time-variant transfer function H (t,f ):

H (t,f ) =
∫ ∞

−∞
h(t,τ) exp(−j2πf τ)dτ. (5.2)

The input–output relationship is given by

y(t) =
∫ ∞

−∞
X(f )H (t,f ) exp(j2πf t)df . (5.3)

The interpretation is straightforward for the case of the quasi-static system – the
spectrum of the input signal is multiplied with the spectrum of the “currently valid”
transfer function, to give the spectrum of the output signal. For quasi-static channels,
the transfer function calculus Y (f ) = H (f )X(f ) is valid.

If we do a Fourier transformation with respect to t we obtain the delay–Doppler
function, also known as spreading function S(ν,τ):

S(ν,τ) =
∫ ∞

−∞
h(t,τ) exp(−j2πνt)dt . (5.4)

This function describes the spreading of the input signal in the delay/Doppler domains.
The Doppler-variant transfer function B(ν,f ) is obtained by transforming S(ν,τ)

with respect to τ:

B(ν,f ) =
∫ ∞

−∞
S(ν,τ) exp(−j2πf τ)dτ. (5.5)
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The CIR can be related to the representation of the MPCs. Assuming that the
propagation channel can be completely represented by summing up the contributions
of the different MPCs:

h(t,τ) =
Np∑
n=1

ãn(t)δ(τ − τn), (5.6)

where ãn is the complex amplitude of the nth MPC; note that this amplitude of the
MPC is the amplitude response of the “radio channel” that includes the antennas; in
other words, the channel from the TX antenna connector to the RX antenna connector
(we will discuss below the definition of the pure propagation channel, which is defined
as not including the antennas). τn is the delay associated with it.1 Note that this
impulse response is time-variant – at different absolute times t , a different impulse
response h(τ) characterizes the channel. The actual value of this impulse response is
determined by the value of the complex attenuation of the MPCs at time t . Equation
(5.6) is valid for systems with large bandwidth, so that we can resolve all the MPCs.
Thus, within a “region of stationarity” (see below for a definition) there is no small-
scale fading, and the only temporal change of the MPCs is a phase shift due to the
change of runtime between the TX and RX as the user equipment (or the interacting
objects) move around. A system with finite bandwidth produces an impulse response
that is the filtering of the CIR with the system response.

5.1.2 Directional Description and MIMO Matrix

For multi-antenna systems the directional characteristics of the MPCs play a major
role. Thus, the impulse response eq. (5.6) should be replaced by the double-directional
impulse response (DDIR) [5], which consists of a sum of contributions from the
MPCs:

h(t,xT,xR,τ,θT,θR) =
Np∑
n=1

hn(t,xT,xR,τ,θT,θR) (5.7)

=
Np∑
n=1

an(t)δ(τ − τn)δ(θT − θT
n )δ(θR − θR

n ),

where the locations of transmitter is xT and receiver is xR, the direction-of-departure
(DoD) is θT and the direction-of-arrival (DoA) is θR. The an are the complex ampli-
tudes of the physical MPCs (i.e., without any antenna effects). Just like in the case of
eq. (5.6), the phases of the an change quickly, while all other parameters (i.e., abso-
lute amplitude |a|, delay, DoA and DoD) vary slowly with the transmit and receive

1 The use of delta functions in the impulse response is a common didactic tool in the derivation of impulse
responses for “infinite bandwidth” channels, and also employed here. However, it gives rise to both
physical problems (since MPCs in reality are frequency-dependent), and mathematical issues in the
definition of the power delay profile (squares of delta functions are not defined). For a more exact
derivation, see [4].
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locations (over many wavelengths). For this reason, the time dependence is written
explicitly only for an(t). The AoD (angle of departure) and AoA (angle of arrival)
are spatial angles, which can be described by the azimuth/elevation pair. When only
propagation in the horizontal plane occurs, then representation by the azimuth alone
is sufficient. Note, however, that neglecting a nonzero elevation in measurements
not only eliminates information about the elevation, but also leads to errors in the
estimated azimuth. Similarly, neglecting polarization information leads to errors in
the overall estimated parameters [6].

The above description is not the most general one, though we will use it in the
following frequently to explain points without an excess of notation. For a completely
general formulation, the following items need to be taken into account:

• Diffuse multipath: While the “finite sum of discrete multipath” model described
above is very popular, it does not reflect the complete physical reality. Diffuse
scattering, as well as wavefront curvature from nearby scatterers, can give rise to
other components that (irrespective of their physical origin) are commonly called
diffuse multipath components (DMCs). The total impulse response is then

h(t,xT,xR,τ,θT,θR) =
Np∑
n=1

hn(t,xT,xR,τ,θT,θR) + hDMC(t,xT,xR,τ,θT,θR).

(5.8)

The DMC, due to its nature, is most efficiently not described by a sum of delta func-
tions in the delay/angle domain, but rather by a continuous version of the delay–
angle–Doppler dispersion profile. While in principle a deterministic representation
(using such continuous functions) is possible, the DMC is commonly interpreted
as a random process, and its description is limited to the parameters of this random
process; these are also the parameters extracted by high-resolution algorithms that
take the DMC into account explicitly (see Chapter 12). These random processes
can be described either by their delay–angle–Doppler characteristics, or their spa-
tiotemporal autocorrelation function. It is common to assume a Kronecker model
for the angle–delay–Doppler (i.e., the delay, DoA, and DoD are independent of each
other).2 An alternative approach models the parameters of the DMC as a function
of the discrete components (i.e., each discrete MPC has a diffuse “tail” associated
with it). Measurements in the centimeter-wave region have shown that 10–50%
of all energy is in the DMC; similar measurements currently have not yet been
made for mmWave frequencies. It must be noted that DMC can be expanded into
a sum of plane waves when a very large number of discrete MPCs is allowed. For
example, [7] measured more than 3,000 components with extreme-sized arrays in
the mmWave regime.

2 Note that this is a Kronecker model only for the diffuse component, while the discrete components
might have a non-Kronecker structure.
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• Polarization: The above description is for a single polarization direction. For a
general description, two orthogonal polarizations (assuming we are in the far-field)
should be described. In that case, the amplitude an becomes a matrix:(

a
V,V
n a

V,H
n

a
H,V
n a

H,H
n

)
, (5.9)

where superscripts V and H refer to vertical and horizontal polarization for con-
creteness, but any other set of orthogonal polarizations could be used as well.
Obviously, measurement of the polarization-resolved amplitudes requires a dual-
polarized array in the underlying channel sounder. More details are provided in the
next subsection.

• Doppler shift: In the case of movement, an additional phase-shift term occurs for
each of the MPCs, representing the Doppler shift of the component:

anδ(τ − τn)δ(θT − θT
n )δ(θR − θR

n ) exp(j2πνnt), (5.10)

where νn describes the Doppler shift of the nth MPC. It can be seen that when
describing the spreading function instead of the time-variant impulse response, a
completely symmetric formulation is achieved:

sn(ν,xT,xR,τ,θT,θR) = anδ(τ − τn)δ(θT − θT
n )δ(θR − θR

n )δ(ν − νn). (5.11)

This is the most general description that makes no statements about possible
interrelationship between the Doppler and other parameters. For the (practically
important) case that the Doppler shifts are created only by the movement of the
user equipment, the Doppler shift in this case has a strict mapping to the DoA:
νn = (v/c0) cos(γn), where γn is the angle between the velocity vector v (with
magnitude v) and the DoA of the nth MPC (implicitly assuming here that the user
equipment is the receiver). Equivalently, the Doppler shift experienced by the nth
MPCs during a time interval t is kn · vt , where kn is the wavevector of the nth
MPC (note that this includes a direction, and is thus different from the scalar wave
number).3

The discrete multipath model makes several implicit assumptions:

• Narrowband assumption: This typically means that the bandwidth is within 10%
of the carrier frequency.4 The assumption shows itself in the statement that the
impulse response of each separate MPC is a delta impulse, or equivalently, that the
transfer function of each MPC is frequency-flat. Common propagation effects such
as reflection at dielectric layers and diffraction have a frequency dependence and
thus lead to a distortion of the transfer function for each separate MPC (as opposed
to the frequency selectivity of the total transfer function created by interference

3 The wavevector is defined as a vector of magnitude 2π/λ in the direction of propagation of the wave. It
can be defined in an arbitrary coordinate system; it is just required that the velocity vector is in the same
coordinate system.

4 Note that the narrowband assumption is different from the flat-fading assumption; see [1].
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of the MPCs in a wideband system [1]). Furthermore, the narrowband assumption
is required for the Doppler effect to lead to a Doppler shift, not a scaling. The
narrowband assumption cannot be considered as a channel property alone, but
depends on the observation system, namely the bandwidth of transmission.

• Far-field assumption: This means that the distance between the TX and RX and
the scattering objects is sufficiently large that the propagation over each path can
be represented as a plane wave over the area of interest, which typically will be the
size of the antenna array aperture, and thus related to the observation system.

• Furthermore, we assume that the runtime of the signal over the size of the antenna
array is smaller than the inverse system bandwidth, which is reflected in the
assumption that τ is not a function of α or the angles of incidence.

All the parameters in the physical model depend on the location of the transmitter
and receiver measurements rT X,rRX. Furthermore, the AoAs and AoDs assume a
reference frame at the TX and RX locations. Most of the parameters vary slowly
with the location: The absolute amplitude of a single MPC changes only over the
range at which noticeable distance-dependent pathloss occurs, which is typically
around 10% of the distance between TX and RX. Change in delay and angles are tied
to the conditions of narrowband and far-field assumption, as discussed above, and
their impact on system design and performance is related to the system bandwidth
and spatial resolution. The parameter that changes most rapidly with location is the
phase of the MPC, which (when there is relative motion) changes in a completely
deterministic way in direct proportion to the change in the length of a propagation
path, relative to wavelength, in the direction of motion. Note also that the model
above furthermore assumes that the strengths of the MPCs stays constant over the
area of interest. From this follows that the “area of interest” must be within the
stationarity region.

It is noteworthy that in this representation, the MPC amplitudes reflect the complex
gain of the propagation channel only, without any consideration of the antennas. The
conventional impulse response of the radio channel (including the antennas) can be
recovered by weighting the DDIR with the antenna pattern, and then integrating over
all angles:

h(t,τ) =
∫ ∫

h(t,τ,θT,θR)gT(θT)gR(θR)dθTdθR, (5.12)

where gT and gR are the complex amplitude antenna patterns (in linear units) for the
TX and RX antenna (note that here we assume the antenna patterns as scalar functions;
the dual-polarization antenna pattern will be discussed below).

For multiple-antenna systems we are also often interested in the impulse response
or channel transfer function of the radio channel (i.e., including the antenna charac-
teristics) from each TX antenna element to each RX antenna element. This is given
by the impulse response matrix. We denote the transmit and receive element coordi-
nates, relative to an arbitrary reference position on each array, as xT

1,xT
2, . . . ,xT

NT , and
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xR
1 ,xR

2 , . . . ,xR
NR , respectively, so that the impulse response from the ith transmit to the

kth receive element becomes

hk,i(t,τ) = h
(
t,τ,xT

i ,x
R
k

)
=
∫

dτ′
∫

dθT
∫

dθRh(t,τ,θT,θR)gT
i (θT)gR

k (θR)fi,k(τ − τ′), (5.13)

where fi,k(τ) is the convolution of the transmit filter at the ith transmit antenna with
the receive filter at the kth receive antenna; in some cases this is actually independent
of i and k.

Note also that the complex antenna patterns gT
i (θT) contain the effect of a

phase shift if their location is offset from the reference location at the trans-
mitter (and similarly at the receiver). In other words, gT

i (θT) can be written as

g
T,0
i (θT) exp

(
j〈k(θT

n ),(xT
i − xT

1 )〉), that is, the antenna pattern one would measure
with the antenna phase center in the reference location, plus a phase offset given
by the offset between the reference location and the actual element location. The
location vector for a specific antenna element is, in principle, arbitrary, but commonly
uses either the phase center of the array or simply the first element in the array. If all
antenna elements are identical in type and orientation, gi

T,0(θT) becomes independent
of i. When the array itself is moving, the reference point moves with it (i.e., the term
above describes the phase difference between two elements on an array at any given
time), since the phase shift due to the antenna movement is taken into account by a
separate term exp(2jπν); alternatively the two terms can be combined.

For the case that the TX and RX arrays are uniform linear arrays with ele-
ment spacing da and steering vectors aT(θT) = 1√

Nt
[1, exp(−j2π da

λ sin(θT)), . . .

exp(−j2π(Nt − 1) da
λ sin(θT))]T (and analogously defined aR(θR); θT and θR are

measured from antenna broadside), the impulse response matrix becomes

H(t) =
∫ ∫

h(t,τ,θT,θR)gT,0(θT)gR,0(θR)aR(θR)aT†
(θT)dθRdθT, (5.14)

where we have omitted the fi,k for brevity. Note that the steering vectors take on the
form of a discrete Fourier transform (DFT) column. A more detailed discussion of this
special case can be found in Chapter 12.

5.1.3 Polarization

A further refinement of the propagation model takes the polarization characteristics
of channel and antennas into account [8]. Consider a situation in which both TX and
RX have dual-polarized antennas, that is, antennas that are capable of independently
transmitting and receiving orthogonally polarized waves (for the sake of simplicity,
we henceforth use vertically and horizontally polarized waves, V and H, though alter-
native characterizations are possible). We note that the antennas are characterized by
two (complex) antenna patterns, gT,V(θT) and gT,H(θT) AoA for the transmitter, and
analogously for the receiver. The propagation is characterized by four polarization
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channels to be considered, HH ,HV ,V H , and V V , respectively. This gives rise to
four impulse responses to be modeled. A generalization of eq. (5.7) reads

h(t,xT,xR,τ,θT,θR) =
Np∑
n=1

(
a

V,V
n a

V,H
n

a
H,V
n a

H,H
n

)
δ(τ − τn)δ(θT − θT

n )δ(θR − θR
n ) exp(j2πνnt), (5.15)

and the generalization of eq. (5.13) thus reads (suppressing time dependence for ease
of notation):

hk,i = h
(

r(m)
T ,r(l)

R

)
=
∑
n

[
gT,V(θT

n )

gT,H(θT
n )

]T [
a

V,V
n a

V,H
n

a
H,V
n a

H,H
n

][
gR,V(θR

n )

gR,H(θR
n )

]
(5.16)

exp
(
j〈k(θT

n ),(xT
i − xT

1 )〉) exp
(−j〈k(θR

n ),(xR
k − xR

1 )〉) .
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6.1 Instantaneous Path Loss versus Average Path Loss

Path-loss models are the most widely used channel propagation models. This stems
both from their simplicity and their direct application to link-layer analysis. This sec-
tion provides an overview of path-loss models with concentration on models specific
to millimeter-wave (mmWave) systems.

Instantaneous path loss is defined in eq. (6.1) as the ratio of transmit power at
position xT to receive power at position xR at some time t [1]. It represents the amount
of power loss that is incurred on the signal by the channel. The symbol → explicitly
denotes that the quantity as linear:

�PL(t,xT,xR) = PTX(t,xT)

PRX(t,xR)
. (6.1)

Given the double-directional channel impulse response (CIR) in eq. (5.7), the RX
power can be written in terms of the TX power as

PRX(t,xR) = PTX(t,xT) ·
∫ ∫ ∫

|h(t,xT,xR,τ,θT,θR)|2dτdθTdθR (6.2)

= PTX(t,xT) ·
Np∑
n=1

|an(t)|2. (6.3)

The simplification in eq. (6.3) also follows from eq. (5.7). Finally, by substituting
eq. (6.3) into (6.1), we obtain

�PL(t,xT,xR) = 1
Np∑
n=1

|an(t)|2
. (6.4)

Hence, the omnidirectional path loss – omnidirectional because the Np paths from all
angles of departure (AoD) and arrival (AoA), θT and θR respectively, are included –
can be written as the inverse of the sum over the individual MPC powers [1].

Note that the absolute or average amplitude, |an|, will vary “slowly,” but the
complex amplitude, an(t), will vary “quickly” due to phase fluctuation on the order
of wavelengths. Real channel sounders have finite resolution, and so at least some
paths will inevitably overlap in field measurements. The constructive or destructive
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interference of their phases will cause the signal to fade in a small-scale sense. To
factor out small-scale fading, we compute the average path loss:

�PL(xT,xR) = 1

T

T∫
t=0

�PL(t,xT,xR)dt . (6.5)

The period, T , over which the average path loss is computed typically corresponds to
movement up to 30–40 wavelengths [2]. Local time averaging may also be performed
over a few hundred milliseconds to a few seconds in order to determine the average
path loss in a dynamic channel environment [3]. Note that for the case of infinite
delay/angle resolution, there is no difference between eqs. (6.4) and (6.5).

6.2 The α–β Model

In this section we consider variation of the average path loss over many orders of
wavelengths, which is referred to as large-scale fading. Large-scale fading is most
commonly modeled as a function of the distance d = ||xT − xR|| between the TX and
RX according to some norm || · ||. Because the distance may be very large, the path
loss may vary by several orders of magnitude and as such is expressed in decibels as
PL(d) (without →).

A popular parameterized model for path loss, recently referred to as the floating-
intercept (FI) or α–β model within the context of 3GPP is [4–17]:

PL(d) = α · 10 log10

(
d

d0

)
+ β + S. (6.6)

As the average path loss is expressed in decibels, it is a relative value – relative to a
reference value, β, at some reference distance, d0. The reference distance is typically

set as d0 = 1 m [16] or as the Rayleigh (Fraunhofer) distance of the antenna d0 = 2D2

λ ,
where D is the physical antenna length (largest dimension of radiator) and λ is the
signal wavelength. The Rayleigh distance demarcates the boundary between the near-
and far-fields. Alternatively, d0 may be left as a floating parameter for fitting.

The path-loss exponent, α, gauges the rate of change of the path loss over

distance. The expression α · 10 log10

(
ds

d0

)
+ β can be interpreted as the path loss

at the distance ds , which is the “starting distance” for the validity of the model,
often the smallest distance at which the measurement values are available. When
non-line-of-sight (NLoS) measurements alone are used for fitting, the α–β model
can extrapolate back to a negative value of β, in particular in harsh propagation
environments for which α is high. If quasi-free-space conditions – the RX is in
line-of-sight (LoS) and in the far-field of the TX and the direct path is much more
dominant than ambient paths – at the reference distance hold (which they usually
do), the interpretation of negative β is that more power is sensed at d0 than in free
space. And so, if a lower limit is not set for the validity of the model, the model will
be inconsistent with physical reality for d < ds (i.e., outside the range for which
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underlying measurements exist). Analogously, an upper limit corresponding to the
largest distance over the measurements should also be set.

The stochastic nature of the α–β model (i.e., how for a fixed distance it varies in
direction due to shadowing from diverse obstacles) is captured in the additive com-
ponent, S, which is a zero-mean normally distributed random variable with standard
deviation σ. Implicit in the model is wide-sense stationarity – that is, by definition it is
only a function of the distance between the TX and RX and so it is independent of spe-
cific TX–RX locations. Hence the model is used to represent a wide range of different
locations as well as a wide range of distances (vis-á-vis the distance-independent σ)
without being in a specific city or tied to a specific base station. The fact that statistical
models are statistical requires an amply diverse measurement set over an ensemble of
many TX–RX locations from which to form a model.

6.2.1 Maximum-Power Path Loss versus Free-Space Path Loss

Millimeter-wave receivers (transmitters) will feature pencil beam antennas that can
be electronically steered toward the direction-of-arrival (direction-of-departure) of the
propagation path with maximum power, exploiting their high gain to compensate for
the greater path loss witnessed at mmWave frequencies [18, 19]. This begs the ques-
tion of why path-loss models assuming omnidirectional antennas are still prevalent in
the mmWave literature. One answer is that omnidirectional path-loss models can be
applied when coupled with the directional power spectrum at each measurement point
[20]; that way the angular distribution of the power is also known. Another answer
is that in order to compute the steering weights, channel-state information needs first
to be estimated. This may be accomplished by generating an quasi-omnidirectional
radiation pattern in order to see the full “picture” of the environment. Since the omni-
directional pattern will have minimal gain, the lowest bearer (modulation and coding
scheme) will be in effect such that the maximum connectivity range can be established.
Once the weights are computed, however, models for the maximum-power (BEST)
path loss combined with the gain of the directional beam may be more relevant to
determine the highest bearer attainable [21–25]. Of course, channel-state information
can also be acquired by beamscanning techniques, making the omnidirectional radia-
tion pattern obsolete.

This discussion of omnidirectional versus directional path loss brings up an impor-
tant point about the use of omnidirectional path-loss models. One may not be able to
simply apply an omnidirectional path-loss model with a directional antenna pattern
gain since the multipath energy from all directions of departure and arrival will not
be captured with the same amplification in the real world when using a directional
antenna [26]. Therefore, directional path loss models are important in order to avoid
underestimating path loss at mmWave bands and with directional antennas or beam-
forming antenna arrays [27]. The BEST path loss [5, 11, 22] is defined as

PLBEST(d) = 10 log10
1

|a1(d)|2 , (6.7)
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where |al(d)| denotes the distance-dependent average amplitude of path n and n = 1
indicates the BEST path, that is, |a1(d)|2 > |an(d)|2 ∀n,2 ≤ n ≤ Np. Some methods
to extract the strongest path – within the finite resolution of the systems – are provided
in [5, 14]. The difference between the BEST and OMNI path loss is

PLBEST(d) − PL(d) = 10 log10

⎛⎜⎜⎜⎝1 +

Np∑
n=2

|an(d)|2

|a1(d)|2

⎞⎟⎟⎟⎠ , (6.8)

and so fitting a model to eq. (6.7) will translate to a different parameter set (αBEST,
βBEST, σBEST).

The parameters of the free-space model are given through the Friis transmission
equation [28]. In deriving the theoretical equation, the received power is computed
as the TX power density – the power dissipated over the spherical surface area
whose radius is d – captured by the effective antenna area (aperture size) of the RX
[20, 29, 30]:

PRX =
(

PTX

4πd2

)
︸ ︷︷ ︸

TX power density

·

RX effective antenna area︷ ︸︸ ︷(
λ2

4π

)
. (6.9)

This equation assumes omnidirectional antennas with unity gain. Note that in free
space the power density is invariant to the wavelength and in turn invariant to the
center frequency f = c

λ , where c is the speed of light. Rather, it is the effective
antenna area that is frequency-dependent, and so the greater path loss at higher
mmWave frequencies is not due to the channel itself, but due to the reduced physical
antenna area that accompanies the effective antenna area.1 In practice, the frequency
dependency of path loss is not based on the effective antenna area alone, but
also on the properties of the channel, such as penetration loss and reflection loss
[11, 20, 31–37], oxygen-absorption loss at 60 GHz [38], etc. From eq. (6.9) it is easy
to determine the α–β parameters of the free-space model, PLFS(d), as αFS = 2.0 and

βFS = 20 log10

(
4πf

c

)
.

In LoS conditions, the maximum-power path will be the direct path between the TX
and RX and so PLBEST(d)|LoS = PLFS(d). By substituting into eq. (6.8), it is obvious
that PLFS(d) will provide a good approximation for PL(d) in quasi free-space condi-
tions, that is, in LoS when the ambient MPCs, n = 2 . . . Np, are weak compared to the
direct path. Figure 6.1 shows the OMNI path-loss model fit to measurements taken in
a lobby/hallway environment at 83.5 GHz alongside the BEST and FS models. Note
that indeed the BEST model agrees well with the free-space model in the LoS segment

1 At higher frequencies, because the antennas are smaller, more units can be packed into a given physical
space, increasing the effective area size of the RX antenna from a single unit alone. It follows that for a
constant physical antenna size, not a constant effective antenna size, path loss in free space is indeed
frequency-independent.
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Figure 6.1 Comparison between the OMNI PL (crosses), maximum-power PLBEST (circles),
and free-space PLFS (dashed) models at 83.5 GHz. In the LoS segment, (α = 1.96,
β = 69.86 dB, σ = 0.86 dB) and (αBEST = 1.97, βBEST = 71.18 dB, σBEST = 1.09 dB) ≈
(αFS = 2.00, βFS = 70.86 dB, σFS = 0.00 dB). In NLoS, from [5]. © 2017 IEEE. Reprinted,
with permission, from [5].

and that – albeit only 2.4 dB – a finite difference between the FS (BEST) and OMNI
models is observable in this environment. The 2.4 dB difference means that the direct
path represents 58% of the total received power, while the ambient paths represent the
remaining 42%. The difference would be larger in an environment with more reflective
wall materials, making the ambient MPCs relatively stronger compared to the direct
path. It is thus important to note that a received power larger than the power received
in pure free-space conditions is physically reasonable and observed in experiments.

In NLoS, the maximum-power path will likely be a reflected path for two
reasons: (1) the direct path will often go undetected due to high penetration losses
at mmWave frequencies; and (2) diffracted paths are known to play a lesser role
in mmWave propagation [20, 32, 38]. However, reflected paths can be significantly
weaker than the direct path in free space due to the longer propagation path lengths and
losses incurred by reflection. Hence, in NLoS the strongest reflected path will be more
comparable in strength to that of the ambient paths; consequently the difference in
eq. (6.8) will be much larger in NLoS compared to LoS. In fact, in the NLoS segment
in Figure 6.1, we see that the gap between the BEST and OMNI models peaks at
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7 dB, meaning that at maximum distance the strongest reflected path accounts for
only 20% of the total received power, while the ambient paths combined account for
the remaining 80%. In such cases when the power is limited, it may be beneficial
for the antennas to generate multiple beams to exploit what power is available in the
environment; this sort of information is useful for site planning [39–41].

6.2.2 Close-In Model

A variant of the α–β model is the close-in free-space reference distance (CI) path-loss
model, which can be formulated as [1, 4, 8, 9, 11, 12, 15, 27, 42–46]:

PL(d) = αCI · 10 log10

(
d

d0

)
+ βFS + S. (6.10)

The physical basis of the model is that path loss at any particular distance can
be traced to the transmitted power through a CI free-space reference distance, where
free-space propagation close to an unobstructed radiating antenna would hold true
[1, 28, 47–49]. The model is premised on the use of a free-space reference distance
d0 = 1 m, where the RX will be in LoS and at that reference distance any ambient
reflections will be insignificant compared to the direct path. Accordingly, the reference
path loss is pinned to the free-space value, βFS, and the path loss exponent, αCI, is the
sole, tunable model parameter. Figure 6.2 shows a comparison between the α–β and
CI models for omnidirectional path loss in both LoS and NLoS conditions.

Figure 6.2 Comparison between the α–β and CI models for the indoor office environment at
28 GHz. © 2015 IEEE. Reprinted, with permission, from [11]. In LoS, (α = 1.2,β = 60.4 dB,
σ = 1.8 dB) and (αCI = 1.1, βFS = 61.38 dB, σCI = 1.8 dB); in NLoS, (α = 3.5,
β = 51.3 dB, σ = 9.3 dB) and (αCI = 2.7, βFS = 61.38 dB, σCI = 9.6 dB). (Note that in the
legend α and β are reversed from the notation in this paper and n = αCI.)
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The CI model has been widely utilized historically to model path loss in various
propagation channels [1, 48], dating back to Friis and Bullington [28, 49], where the
path-loss exponent parameter offers insight into path loss based on the environment,
having a path loss exponent value of 2.0 in free space (as shown by Friis) [28]. It is
noteworthy that 10 · αCI describes path loss in dB in terms of decades of distances
beginning at d0 (making it very easy to compute power over distance in one’s mind
when d0 is set to 1 m [11, 12, 15, 27, 38, 46]. The CI model inherently has an intrinsic
frequency dependency of path loss already embedded within the free-space path loss
(FSPL) term βFS. The choice of d0 = 1 m as the CI free-space reference distance has
been shown to offer parameter stability and model accuracy for outdoor and indoor
channels across a vast range of microwave and mmWave frequencies, and creates a
standardized modeling approach [11, 15, 27, 38, 46]. Furthermore, the CI free-space
anchor point in the CI model ensures that the path-loss model (regardless of transmit
power) always has a physical tie and continuous relationship to the transmitted power
over distance [11, 15]. More recent measurements and models above 100 GHz show
this same trend [18, 50–52].

6.2.3 Distance-Dependent σ

It has been observed in [7, 10] through indoor measurements and outdoor ray-tracing
that σ increases with distance, which is also validated through measured data for
UMa LoS environments as shown in [53]. This makes intuitive sense because greater
distances admit more diversity, both in the number and type of obstacles along the
link, and hence more uncertainty. And so it also makes senses, at the expense of a
more complex model, to cast σ as a function of distance. In [10], a different standard
deviation is computed for each data point collected using a sliding window, with the
window length equal to 10 points. Measurement results for NLoS indoors are shown
in Figure 6.3(a). At 29 GHz, the standard deviation increases from 4 dB at 5.5 m to
14 dB at 70 m.

In [7], the distance dependence of σ is modeled explicitly as:

σ(d) = a · 10 log10

(
d

d0

)
+ b, (6.11)

and ray-tracing results for NLoS outdoors at 28 GHz are shown in Figure 6.3(b). The
results show that the more complex model can lead to significantly different values
not only in σ, but also in the other α and β parameters.

6.2.4 Weighted Fitting

The conventional method to determine path-loss model parameters is to perform a
least-squares fit by minimizing the weighted objective function:

Ns∑
i=1

w(di) ·
(
PLdata(di) − PL(di)

)2
, (6.12)
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(a)

(b)

Figure 6.3 (a) σ(d) computed with distance-dependent sliding window. Each point represents a
window value. © 2015 IEEE. Reprinted, with permission, from [10]. (b) Distance-dependent
model in eq. (6.11). © 2016 IEEE. Reprinted, with permission, from [7]. For the distance-
independent model (light gray), (α = 8.37, β = −53.94 dB, σ = 22.58 dB), while for the
distance-dependent model (dark gray), (α = 7.77, β = −39.87 dB, a = 1.48 dB,
b = −14.44 dB) where (σMIN = 6.52 dB, σMAX = 27.48 dB).

where Ns denotes the number of collected data points, PLdata(di), and w(di) denotes
the weights. When w(di) = 1

Ns
, all points are treated equally. While it may be ideal

to collect path-loss data at uniform distances between the TX and RX, this may not
be achievable due to practical limitations. For instance, elevator shafts or restricted
areas may present impedances indoors; outdoors, collection in a street is impossi-
ble and points must circumvent buildings if only the outdoor environment is being
modeled. These limitations force nonuniform sampling that will ultimately give rise
to different parameter values. One means to mitigate for nonuniform sampling is to
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assign nonuniform weights to the points – w(di) = 1
Nb

Ns

Ni
– by binning the data,where

Nb is the number of bins and Ni is the number of data points in point i’s bin. This
scheme assigns a heavier weight to distance bins with fewer points and vice-versa in
the attempt to normalize the data. Details of the method are provided in [6, 7], as well
as other weighting schemes.

The least-squares method above directly yields the values of the model parameters
α and β. The value of σ, however, is only a byproduct of the minimization step given
from the residuals of the fit. Because σ is not a fit parameter, it can lead to subop-
timal results. Although more computationally taxing, minimizing the log-likelihood
function,

LLF = −
Ns∑
i=1

w(di)

(
log

1

σ(di)2
+ log

(
φ

(
PLdata(di) − PL(di)

σ(di)

)))
, (6.13)

through maximum likelihood estimation (MLE) enables obtaining a better fit because
the search is over the σ space as well. Here, φ(·) is the standard normal probability
density function (PDF). Furthermore, MLE provides a means to handle more complex
models such as the distance-dependent σ(d) in eq. (6.11), extending the search space
to a and b.

6.2.5 Censored Data

An important effect in fitting path-loss models to measured data arises from those
locations at which the path-loss values are not available due to measurement noise,
that is, no path loss can be recorded if the received signal power is below the noise
(sensitivity) threshold. When the locations for such occurrences are known (but obvi-
ously the path-loss values are not), the data are called censored [54, 55]. The censored
data are typically ignored, which introduces a selection bias. Consequently, the fitted
model does not correctly represent the actual propagation conditions; the stronger is
this effect, the smaller is the dynamic range of the data.

If censored data samples are considered, the log-likelihood for these samples have
to be considered as well and are given as

LLF ∗ = −
N∗

s∑
i=1

w(di)

(
log

(
1 − Φ

(
PL∗ − PL(di)

σ(di)

)))
, (6.14)

where ∗ refers to censored data, that is, N∗
s is the number of censored data points,

the path-loss level for the censoring is PL∗ and Φ(·) is the cumulative distribution
function (CDF) of the standard normal distribution. The path-loss parameters are then
estimated as

arg min
α,β,σ

{LLF + LLF ∗}. (6.15)
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6.3 Breakpoint Model

The α–β model is based on the assumption that spatial variations are stationary, that
is, that the mean and the variance of the path-loss fit equation depend only on the
distance between TX and RX, but not the absolute position. This is enforced by
creating a large ensemble of measurement points that are parameterized only by their
Euclidean distance to the TX, and then providing a fit. Although the model can be
used to represent a wide range of TX locations by aggregating data measured from
each of them individually, it will inevitably lead to a larger standard deviation –
oftentimes much larger – than what would otherwise be witnessed at any single base
station alone. Thus, the stationarity is enforced by the procedure of the fitting. Several
papers indicate that such stationarity does not hold in the microwave regime [56–58].
Recently, [59, 60] showed that similarly the assumption does not hold in mmWave and
proposed an alternative model. Finally, since link distances will be much shorter than
for sub 6 GHz, path loss will be more localized to the TX.

One way to provide a more accurate model when path loss is TX specific, the
dual-slope or breakpoint (BP) model has been applied in some environments [5, 6, 42,
60, 61]:

PLBP(d) =
{
PL(d), d ≤ d1

PL1(d), d > d1
(6.16)

for

PL1(d) = α1 · 10 log10

(
d

d1

)
+ β1 + S1, (6.17)

where d1 is known as the breakpoint distance. For example, it can be used when the
path-loss exponent changes notably from obstructed line-of-sight conditions (OLoS)
to harsh NLoS [10]. Alternatively, the breakpoint model can characterize the transition
from LoS to NLoS [5] where d1 marks the transition point. In general, the breakpoint
can be found analytically by minimizing the sum of the least-squares errors associated
with the two separate segments [10]; although in some environments the LoS–NLoS
transition point is clear from the environment geometry. For example, in [5] the break-
point falls at a corner indoors while outdoors in [60, 62, 63] the breakpoints fall at
street intersections.

Often, continuity in path loss between the two segments is imposed [10, 60,
63], leading to a more constrained model for which β1 =PL(d1;S = 0)= α ·
10 log10

(
d1
d0

)
+ β, where PL(d,S = 0) is the expected path loss, that is, in the

absence of shadowing. Attention should be paid, however, when imposing continuity,
especially in mmWave systems. This is because penetration losses for these systems
can be particularly high, depending on the obstructing material(s), especially at
frequencies in the upper band of the spectrum. As such, in the transition to NLoS
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the direct path may abruptly either go undetected or be severely attenuated compared
to LoS, and in turn its contribution to the total received power severely diminished,
yielding a transition loss β1 − PL(d1;S = 0) > 0 or equivalently β1 > α ·
10 log10

(
d1
d0

)
+ β . In such cases, discontinuity in the path loss can be anticipated and

so should be allowed [5].
The dual-slope model may apply in strictly LoS conditions as well, for example

if beyond some breakpoint waveguiding conditions come into effect for which the
exponent shrinks below that of free space. More than a single breakpoint is possi-
ble, as seen in [60] with ray-tracing simulations with unlimited dynamic range. To
our knowledge, however, this is yet to be witnessed with real mmWave measure-
ments because the higher path loss will permit only much shorter links compared to
sub-6 GHz.

Generally speaking, a breakpoint needs to be based on some physical relationship
that occurs repeatedly across many locations, cities, base stations, etc. For example,
work in [64] showed that for LoS topographies in a microcell scenario, a single-slope
path loss model was applicable prior to the first Fresnel zone clearance breakpoint,
while a dual-slope model is necessary beyond that breakpoint, where the breakpoint
was dependent on the TX and RX antenna heights and frequency [64]. A path-loss
exponent value of 4.0 for the asymptotic two-ray ground-bounce propagation model
beyond the distance for first Fresnel zone clearance in LoS was shown by in [49]. Note
that the classical work by Bullington actually developed a breakpoint model and it was
based on the physical signal propagation property that occurred in all large cells and
which was consistently observable. Thus, a breakpoint will typically be visible in the
data when a basic physical phenomenon relating to distance and height is repeatedly
observed to impact the measurement data set (such as a ground-bounce phenomenon)
over a wide range of distances and antenna heights, and is repeatable and visible in
large data sets in many different specific locations across a vast range of locations
[53]. It is recommended to make a vast number of measurements throughout many
buildings and locations to reliably declare a breakpoint model to exist in general, and
more importantly, should be able to point to a definitive physical rationale for the
particular value of the breakpoint.

6.3.1 Floating-Breakpoint Model

Although the dual-slope model may provide a smaller fit error, it is often tied to the
breakpoint associated with a particular TX position. In fact, if multiple TX posi-
tions are included in a campaign, separate parameters for each position are usually
reported. Although it is informative to expose the range of parameter values than can
be encountered, when it comes to application it may not be clear which model to use.
Essentially, this problem is a reflection of the fact that a nonstationary channel (model
with parameters that depend on the absolute position) is fitted by a stationary model
(constant channel parameters).
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A remedy for this is to expand eq. (6.16) into a floating-breakpoint model. Specif-
ically, all data points before the respective breakpoints, d

j

1 – where j indexes the TX
positions – are combined and a single PL(d) is fit to them, yielding a single set of
parameters (α,β,σ) for the first segment. In the next step, an incremental path loss
is computed in eq. (6.18) for each TX position. It is computed by subtracting the
expected path loss at the breakpoint – its parameters (α,β) are now known – from the
path loss of the second segment:

PL1(d) − PL(dj

1 ;S = 0)= α1 · 10 log10

(
d

d
j

1

)
− α · 10 log10

(
d

j

1

d0

)
+ β1 − β + S1.

(6.18)

The incremental path loss represents only the additional path loss after the breakpoint
and so its value is not tied to any specific breakpoint. As such, the data points after the
respective breakpoints can be combined in eq. (6.18) across all TX positions, to which
a single set of parameters (α1,β1,σ1) for the second segment is fit.

As the floating-breakpoint model is breakpoint-independent, any value d1 can be
inserted when applying the model. This, together with the fact that data points from
all TX’s are utilized in the fitting, renders the model more generally applicable than
separate models per TX position. Finally, it is worth pointing out that the model allows
overlap between the first and second segments, as illustrated in Figure 6.1. As in other
cases, this is practical when the first segment represents LoS and the second NLoS.
For example, consider when the TX in some environment is located at the end of a
hallway: The RX can continue in LoS down the hallway at a longer distance in one
direction than rounding the corner in the opposite direction (the corner creates NLoS
conditions).

6.3.2 Distance Metric

The default distance metric for path-loss models is the Euclidean distance. Given that
at mmWave frequencies diffraction will be negligible, propagation will mostly take
place through free-space transmission and specular reflection. This, combined with
the geometry of some environments, such as hallways indoors or streets below the
clutter outdoors, leads to the waveguiding effect. When waveguiding occurs, most of
the energy will propagate along the direction of the virtual waveguide. Unless the TX
is also in the waveguide, this direction will not correspond to the Euclidean direction.
When applicable, more precise models can be constructed if the distance metric is
oriented along the waveguide, akin to the Manhattan distance. An example is the dual-
slope model in [5], in which the breakpoint demarcates the LoS–NLoS transition at d1

from a lobby to a hallway. In the LoS segment, the Euclidean distance is used; in the
NLOS segment, a piecewise distance d = d1 + �d is used instead, where �d is the
incremental distance along the hallway from the breakpoint to the RX. Similar metrics
are used in [63].
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Figure 6.4 (a) Path loss as a function of Euclidean distance when seven streets in an
urban-canyon environment in NLoS are grouped together in a single model. (b) By applying a
different breakpoint model to each of the streets – each with its own path-loss exponent – in
conjunction with the incremental distance along each of the streets, the standard deviation of
each model is much smaller than that of the single model alone. © 2016 IEEE. Reprinted, with
permission, from [60].

Another example is illustrated in Figure 6.4, in which waveguiding takes place in
an urban-canyon environment. Different streets are signified by different colors. Thus,
a mobile station moving along a trajectory within one street would only experience
path loss of that particular color. We can clearly observe that different streets have
greatly differing path-loss coefficients; for example, points on the NLoS2 street show
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a negligible slope, while the NLoS8 street corresponds to an almost vertical line in
Figure 6.4; these effects can be explained physically in terms of waveguiding and
diffraction [60]. Thus, the difference in path loss between two points clearly depends
not only on the difference between the points, but also on the absolute position – most
notably, which street the two points are in.

These insights can be described by a breakpoint model that is based on a combi-
nation of the typical street-by-street FI model and a corner coupling loss. Critically,
the path loss does not depend on the Euclidean distance, but rather on the distance of
the link along the street. The model bears some resemblance with the model of [65],
which was also used in the COST 259 microcell channel model.

An assumption of this model is that the path loss along the different sections of the
propagation path, down the street canyons, add up, and that there is an additional loss
when the waves couple into a new street canyon. Specifically, let us first write the α–β
model for street n + 1 using corner loss �n+1 defined as:

PLn+1(dn+1) = 10 · αn+1 · log10(dn+1) + βn+1 (6.19)

�n+1 = PLn+1(dn) − PLn(dn) (6.20)

�n+1 = 10 · αn+1 · log10(dn) + βn+1 − PLn(dn). (6.21)

Substituting βn+1 to eq. (6.19) we get

PLn+1(dn+1) = 10 · αn+1 · (log10(dn+1) − log10(dn)) + �n+1 + PLn(dn), (6.22)

where �n+1 is the corner coupling loss at the corner of street n and n+1 and PLn(dn)
is the PL model value at dn along street n.

In order to maintain meaningful physical interpretation, the corner coupling loss is
constrained:

�n+1 ≥ 0. (6.23)

A detailed parameterization of this street-by-street model, with parameter values
derived from extensive ray-tracing simulations in two different cities, is provided
in [59].

6.4 Frequency-Dependent versus Height-Dependent Models

Free-space path loss is not only distance-dependent, but also frequency-dependent.
Here, the frequency dependency is written out explicitly as

PL(d,f )FS = αFS · 10 log10

(
d

d0

)
+ β′FS + γFS · 10 log10

(
f

f0

)
︸ ︷︷ ︸

βFS

, (6.24)
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where βFS is expanded into two parts and β′FS = 20 log10

(
4πf0

c

)
, γFS = 2.0, and

f0 = 1 GHz is the reference frequency. Omnidirectional and maximum-path path loss
will have the same form, however, with generalized parameter-set values (α,β′,γ,σ)
and (αBEST,β′BEST,γBEST,σBEST), respectively, including shadowing. This model is
referred to as the α–β–γ model [4, 15, 31, 42, 45].

An alternative version to the α–β–γ model is the close-in frequency (CIF) model
[4, 31, 35, 42]:

PLCIF(d,f ) = αCI ·
(

1 + bCI ·
(

f − f0

f0

))
· 10 log10

(
d

d0

)
+ β′FS + 20 log10

(
f

f0

)
+ SCI. (6.25)

In this model, the β and γ parameters are pinned to the FS values (γFS = 2.0 is
implicit) while αCI remains the same tunable path-loss exponent as in the CI model.
Furthermore, the reference frequency in general will not be 1 GHz, but rather the
linear average of all frequencies considered. The additional parameter, bCI, which is
typically small, accounts for the joint d − f dependency around f0. Note that the CIF
model reverts to the CI model when f = f0. Figure 6.5 shows a comparison between
the α–β–γ and CIF models. The CIF model effectively scales the path-loss exponent
as a function of the carrier frequency, since certain scenarios such as indoor hotspot
have shown that path loss increases with frequency aside from the initial difference in
the first meter of free-space propagation [11, 16].

It is worth noting that the path loss may not be strictly distance- and frequency-
dependent [11], but may also depend on the TX height [66]. For example, in the
current 3GPP/ITU-R RMa path loss models [67, 68], the TX height is considered
to be from 10 m to 150 m, which would introduce an average difference of 29 dB over
all of TR distances from 10 m to 5,000 m, as shown in simulation results in figure 8 of
[66]. The CI model with a height-weighted path-loss exponent (CIH model) is suitable
in RMa scenarios for various TX heights [66, 69]. The CIH model uses the same
mathematical form as the CIF model eq. (6.25) except that the path-loss exponent is a
function of the base station height instead of frequency, as given by:

PLCIH(d,f ,hBS) = αCI

(
1 + bTX

(
hBS − hB0

hB0

))
10 log10

(
d

d0

)
+ β′FS + 20 log10

(
f

f0

)
+ SCI, (6.26)

where hBS is the base station antenna height in meters, hB0 is a default RMa base
station height, and bTX is a model parameter that is optimized and which quantifies
the linear base-station-height-dependent path-loss exponent about the default/average
base station height hB0 [66, 69].
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(a)

(b)

Figure 6.5 Comparison between the α–β–γ and CIF models for the Urban Micro Street Canyon
(UMi SC) environment in NLoS. © 2016 IEEE. Reprinted, with permission, from [15]. In (a),
α = 3.5, β′ = 24.4 dB, γ = 1.9, σ = 8.0 dB; in (b), αCI = 3.1, β′FS = 32.4 dB, γFS = 2.0,
σCI = 8.1 dB and bCI = 0.0.
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In this chapter we present some recent progress of clustering and tracking algorithm
designs for radio channels, which have been widely used in the cluster-based channel
modeling for 4G and 5G communications. Most of the chapter is based on the work
in [1–8].

7.1 Introduction

Accurate channel models are a prerequisite for the design and performance analysis
of any wireless communication system. The main goal of channel modeling is to
characterize the multipath components (MPCs) in different environments, with a
consideration of the trade-off between model accuracy and complexity.

Since 3G, 4G and the next-generation systems have larger bandwidth as well as
increasing number of multiple-input–multiple-output (MIMO) arrays, we have higher
resolutions of MPCs in both delay and angle domains, and it is thus possible to char-
acterize the behavior of MPCs in more detail. A large body of MIMO measurements
has shown that the MPCs are generally distributed in groups (i.e., clustered) in real-
world environments. Cluster-based channel modeling has been an important trend in
the development of channel models [9–14].

To parameterize cluster-based MIMO channel models, the first step is to identify
clusters from MPCs, which has been done manually by visual inspection, as the
human brain is good at the detection of patterns and structures even in noisy data
[5]. However, the procedure of visual inspection is cumbersome and tiring for a large
amount of measurement data, and is thus not feasible for many practical clustering
implementations. In addition, this approach is subjective, and different people may
provide different clustering results.

Automatic clustering of MPCs overcomes some of the drawbacks of visual inspec-
tion and has been an active area of research in the past decade. The main challenges
in automatic clustering of MPCs are as follows [5]: (1) the notion of clusters tends to
be intuitive rather than well defined; (2) the number of clusters is usually unknown;
(3) the similarity of MPCs is difficult to quantify; and (4) the cluster shapes assumed
by a specific model are difficult to incorporate into the clustering algorithm.

In this chapter we briefly introduce some classical MPC clustering algorithms and
also present some recent proposed algorithms with better performance. The results in
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this chapter can be used to cluster real-world measurement data, and can be further
used for cluster-based channel modeling for 4G/5G communications.

7.2 Clustering Algorithms

In this section we present some clustering algorithms of MPCs, which are useful for
cluster-based channel modeling.

7.2.1 K-Power Means-Based Clustering

The K-power-means (KPM) algorithm [2] is a popular algorithm that was used in the
clustering of radio channels in the past. It is based on the KMeans algorithm, which
is a hard partitional approach and directly divides data objects into some prespecified
number of clusters. KMeans is typically used with a Euclidean metric for computing
the distance between points and cluster centers; therefore, it can easily find spherical or
ball-shaped clusters in data [5]. The KPM algorithm introduces the power of the MPCs
to augment the standard KMeans concept. In the KPM algorithm, upper and lower
bounds on the number of clusters have to be known a priori. The appropriate clustering
result is finally determined based on some indices that emphasize the compactness of
each cluster and isolation between the clusters. In [15], the MPC distance (MCD) is
proposed to quantify the similarity between MPCs. A small value of MCD means
that two MPCs are close to each other and can be grouped into the same cluster. It
is found that using MCD as a distance measure can improve the performance of the
KPM algorithm [1].

The main idea of KPM can be summarized as follows [2, 8]:

Clustering

1. Initialize M cluster centroids μ1,μ2, . . . ,μM randomly.
2. Assigning each MPC x (here, all MPCs include four parameters: angles of

departure (AoD) [φT
1 , . . . ,φT

Np
], angles of arrivals (AoA) [φR

1 , . . . ,φR
Np

], delay
[τ1, . . . ,τNp ] and power [α1, . . . ,αNp ]) to the reasonable cluster centroid μj : for
each x, set

C(e) := arg min
j

{
αx · dMPC(x,μ(e)

j )
}
, (7.1)

where superscript e represents the eth iteration. C represents the store indices of
MPC clustering in the eth iteration. dMPC is the MCD.

3. Update the cluster centroids: for each j , set

μ(e+1)
j :=

∑
x∈�

1
{
C(e) = j

}
αx · x∑

x∈�

1
{
C(e) = j

}
αx

, (7.2)

where � is the set of all the MPCs for one snapshot.
4. Repeat steps 2 and 3 until convergence.
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Cluster Validation: CombinedValidate
For cluster validation, [2] uses a combination of two methods: the Calinski–Harabasz
(CH) index and the Davies–Bouldin criterion (DB). A combination of the two intro-
duced validation indices yields significant improvements of clustering performance.
The basic idea of the CombinedValidate (CV) index is to restrict valid choices of the
optimum number of clusters by a threshold set in the DB index. Subsequently, the CH
index is used to decide on the optimum number out of the restricted set of possibilities.

Note that determination of the number of clusters is actually an important part of
KPM. In [16], the performances of several cluster validity indices are evaluated and
compared to select the best estimation of the number of clusters. It is found that the
Xie–Beni index generally has the best performance, though none of the indices is able
to always predict correctly the desired number of clusters. However, mostly people
still need to use visual inspection to ascertain the optimum number of clusters when
using KPM [17]. Furthermore, manual adjustments of algorithm parameters according
to different data are usually required to improve the performance [8].

Cluster Pruning: ShapePrune
After successfully finding the optimum number of clusters, [2] uses the ShapePrune
cluster-pruning algorithm for discarding outliers. This is achieved by removing data
points that have the largest distance from their own cluster centroid. As a constraint,
cluster power and cluster spreads must not change significantly. This last condition
allows preserving the clusters’ original power and shape, which is fundamental to
achieving consistent results.

Figure 7.1 shows the measured MPCs of the MIMO channel in [2], where MPCs
are color-coded with their power. Visual inspection gives the impression of nicely
separated clusters in space. Applying the KPM clustering framework without user
interaction to this data, we obtain the result depicted in Figure 7.2. The resulting

Figure 7.1 Unclustered MIMO measurement data in NLoS (no line of sight) scenario. © 2006
IEEE. Reprinted, with permission, from [2].
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Figure 7.2 Results of KPM clustering. © 2006 IEEE. Reprinted, with permission, from [2].

partition into seven clusters realizes a good trade-off between cluster compactness and
separation. It is also found that the pruning algorithm improves the visibility without
changing cluster parameters.

7.2.2 Sparsity-Based Clustering

In this subsection, a sparsity-based method [5] is described to cluster channel impulse
response (CIR) for single-input–single-output (SISO) channels. The proposed cluster-
ing algorithm involves solving a sparsity-based optimization problem. The main idea
can be summarized as follows [5, 6]:

1. We assume that CIRs statistically follow the Saleh–Valenzuela (SV) model [18] of
eq. (7.3), that is, powers of MPCs generally decrease with delays in terms of A1
and A2: ∣∣αl,k

∣∣2 = ∣∣α0,0
∣∣2 · exp

(
−Tl

�

)
︸ ︷︷ ︸

A1

· exp

(
−τl,k

�l

)
︸ ︷︷ ︸

A2

, (7.3)

where αl,k is the amplitude gain and phase of the kth path within the lth cluster.∣∣α0,0
∣∣2 is the average power of the first MPC in the first cluster. Tl is the arrival

delay of the lth cluster. τl,k is the excess arrival delay of the kth path within the lth
cluster. A1 and A2 represent the two terms of MPC power decays with delay for
inter- and intra-cluster, respectively. �l and �l,k are the cluster and MPC power
decay constants, respectively.

2. Then, we consider the measured PDP vector P̂ as the given signal and try to recover
an original unknown signal vector

�

P, which is close to P̂ and has the formulation
of eq. (7.3) using convex optimization, where P̂ and

�

P are the vectors of P̂ (τ) and
�

P (τ), respectively. We use a method to enhance the sparsity of the solution.
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3. Finally, we use the curve of
�

P to identify the clusters. As shown in eq. (7.3), the

curve of the dB-scaled
�

P generally has a high slope at the first MPC within each
cluster, and the slope can thus be used for the cluster identifications. The above
idea can be formulated as the following optimization problem [5]:

min
P̂

∥∥∥P̂ − �

P
∥∥∥2

2
+ λ

∥∥∥�2 · �1 · �

P
∥∥∥

0
(7.4)

where ‖·‖x represents 	x norm operation and 	0 norm operation returns the
number of nonzero coefficients. P̂ and

�

P have dimension Np, and λ is a regu-
larization parameter. �1 is the finite-difference operator in the form of eq. (7.5),
where �τ represents the minimum resolvable delay difference of data. Equation

(7.5) is used to calculate the slope of
�

P. �2 is used to obtain the turning point at
which the slope changes significantly and can be expressed as [5]:

�1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�τ
|τ1−τ2 | − �τ

|τ1−τ2 | 0 · · · · · · 0

0 �τ
|τ2−τ3 | − �τ

|τ2−τ3 | · · · · · · 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . �τ

|τN−2−τN−1| − �τ
|τN−2−τN−1| 0

0 0 · · · · · · �τ
|τN−1−τN | − �τ

|τN−1−τN |

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(N−1)×N

,

(7.5)

�2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · · · · 0
0 1 −1 · · · · · · 0
...

. . .
. . .

. . .
. . .

...

0 0
. . . 1 −1 0

0 0 · · · · · · 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
(N−2)×(N−1)

. (7.6)

The term λ
∥∥∥�2 · �1 · �

P
∥∥∥

0
ensures that the recovered

�

P follows the anticipated behav-

ior of term A2 in eq. (7.3). It also implies that the proposed algorithm favors a small
number of clusters to avoid over-parameterization. The anticipated behavior of term

A1 in eq. (7.3) can be incorporated into
�

P using a clustering enhancement approach.
The detailed solutions and implementations of the above optimization problem can

be found in [5], and are not repeated in this chapter due to space limitations. To give
an example of the performance of this, we compare it with other algorithms using
the measurements in [19, 20]. Figure 7.3 shows the example plots of power delay
profile (PDP) clustering using different algorithms. It is found that: (1) the clusters
identified by the proposed algorithm are distinct, most beginning with a sharp power
peak followed by a linear decay. This means the modeling assumption of the SV model
is well reflected by the clustering results. (2) For the KMeans and KPM algorithms,
we can clearly see that the tail of one PDP cluster is grouped into the next cluster. This
may lead to a least-squared regression curve of PDPs with a positive slope (within
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Figure 7.3 Example plots of PDP clustering. Different clusters are plotted with different colors.
The black curves represent noise data and the dotted lines represents the least-squared
regression of PDPs within clusters. (a) Proposed algorithm. The first peaks in each cluster are
marked with black circles for clarity. (b) KMeans algorithm. (c) KPM algorithm. © 2016
IEEE. Reprinted, with permission, from [5].
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the cluster), which results in the parameterized intra-cluster PDP model having an
(erroneously) large delay spread. Further examples can be found in [5].

7.2.2.1 Kernel-Power-Density-Based Clustering
In this subsection we introduce a kernel-power-density (KPD)-based algorithm [8]
for MPC clustering in MIMO channels. The main feature of KPD is threefold [8]:
(1) the KPD uses the kernel density and only considers the neighboring points when
computing the density; (2) the KPD uses the relative density (i.e., normalized within
a local region) and a threshold is used to determine whether two clusters are density-
reachable; and (3) the impact of power is incorporated in the clustering. We present
KPD in the following steps [7, 8]:

1. Calculating density: For each MPC sample, say x, calculate the density ρ using
the K nearest MPCs as follows:

ρx = ∑
y∈Kx

exp(Py) · exp
(
−|τx−τy |

(στ)2

)
· exp

(
−

∣∣∣φT
x−φT

y

∣∣∣
(σφT )

)
· exp

(
−

∣∣∣φR
x −φR

y

∣∣∣
(σφR )

)
, (7.7)

where y is an arbitrary MPC that y �= x. Kx is the set of the K nearest MPCs for
the MPC x. σ(·) is the standard deviation of MPCs. In eq. (7.7) we use the
Laplacian kernel density for the angular domain as it has been widely observed
that the angle of MPC follows the Laplacian distribution [21, 22].

2. Calculating relative density: For each MPC sample, calculate the relative density
ρ∗ using the K nearest MPCs’ density, as follows:

ρ∗
x = ρx

max
y∈Kx∪{x}

{ρy} . (7.8)

By using the relative density, it is able to identify the clusters with relatively weak
power. It can be seen that ρ∗ ranges from 0 to 1.

3. Searching key MPCs: For each MPC x, if ρ∗ equals to 1, label it as the key
MPC x̂. We thus obtain the set of key MPCs as follows:

�̂ := {x|x ∈ �,ρ∗
x = 1}. (7.9)

The key MPCs can be considered as the initial cluster centroids.
4. Clustering: For each MPC x, define its high-density-neighboring MPC as:

x̃ := arg min
y∈�,ρ∗y>ρ∗x

{d(x,y)}, (7.10)

where d represents the Euclidean distance. Similar to the idea of
density-reachable in DBSCAN [23], we connect each MPC to its
high-density-neighboring MPC and the connectedness path is defined as
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px = {x → x̃}. (7.11)

We thus obtain a connectedness map, ζ1, as follows:

ζ1 := {px |x ∈ �}. (7.12)

Note that two MPCs can be connected to each other over multiple paths. Those
MPCs that are connected and reachable to the same key MPC in ζ1 are grouped as
one cluster.

5. Cluster merging: For each MPC, connect it to its K nearest MPCs and the
connectedness path is defined as

qx := {x → y,y ∈ Kx}. (7.13)

We thus obtain another connectedness map, ζ2, as follows:

ζ2 := {qx |x ∈ �}. (7.14)

If (1) two key MPCs are reachable in ζ2 and (2) any MPC in any path connecting
the two key MPCs has ρ∗ ≥ χ, where χ is a density threshold, we merge the two
key MPCs’ clusters as one new cluster. As shown in Figure 7.4(a), clusters 2 and
3, 4 and 5, and 6 and 7 are merged respectively, and we finally obtain the results in
Figure 7.4(b). Compared with the raw MPCs from measurement, the resulting
cluster in Figure 7.4(b) looks fairly convincing. Detailed analysis of KPD
parameter selection can be found in [8].

We describe the performance of the KPD algorithm under different “cluster condi-
tions.” Intuitively, a channel with a large cluster number and angular spread would
have reduced clustering performance. We use the F measure [24] to evaluate the
clustering performance, which is a robust external quality measure and ranges from
0 to 1, and a larger value indicates higher clustering quality. We test the impact of
the cluster number and angular spread on the clustering accuracy. We use the SCME
MIMO channel model to generate MPCs, and different cluster numbers are used in the
simulation. A total of 300 random channels are simulated for each cluster number and
spread case. Figure 7.5 shows that the proposed KPD algorithm, having the highest
value of the F measure, shows a fairly good performance, and the value of the F mea-
sure decreases only slightly for larger cluster numbers. Figure 7.6 shows the impact
of cluster angular spread on the F measure. It is found that the F measure generally
decreases with the increasing cluster angular spread. The KPD algorithm shows a
fairly good performance for arbitrary cluster sizes. Further performance examples can
be found in [8]. Note that the above comparisons are limited to the simulated data
in [8], and further validations with different measurements and simulations are still
necessary.

7.2.2.2 Time-Cluster-Spatial-Lobe-Based Clustering
In this subsection we describe the time-cluster-spatial lobe (TCSL) clustering algo-
rithm proposed by NYU [27], and implemented in the NYUSIM channel simulator
[28, 29]. The TCSL scheme was proposed since extensive comparison to measured
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Figure 7.4 Illustration of KPD clustering from [8]. (a) Plots of the relative density estimated
from measurement, where the grayscale bar indicates the level of relative density. The eight
solid black points are the key MPCs. (b) Clustering results with the KPD algorithm, where the
clusters are plotted with different shades of gray.

Figure 7.5 Impact of cluster number on the F measure. © 2017 IEEE. Reprinted, with
permission, from [8].
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Figure 7.6 Impact of cluster angular spread on the F measure. © 2017 IEEE. Reprinted, with
permission, from [8].

field data yielded a fit to 2D and 3D measurements using the TCSL algorithm, as
the classical joint time–space modeling did not fit the extensive measurement data
from urban NYC at millimeter wave (mmWave) using directional antennas as well
as synthesized omnidirectional antenna patterns [25–27, 30, 31]. In the TCSL frame-
work, time clusters (TCs) are composed of MPCs traveling close in time, and that
arrive from potentially different directions in a short propagation time window [27].
Spatial mainlobes (SLs), determined by the beamwidth of the antenna (horn or lens
or phased array), represent the main directions of arrival (or departure) from which
energy arrives (and is measured over several hundred nanoseconds). These definitions
decouple the time and space dimensions by extracting temporal and spatial statistics
separately.

The time-partitioning methodology is illustrated in Figure 7.7, where the begin-
ning and end times of each TC are extracted utilizing a 25-ns minimum inter-cluster
void interval. Sequentially arriving MPCs that occur within 25 ns of each other are
assumed to belong to one TC. For instance, in the omnidirectional PDP shown in
Figure 7.7 there are two TCs which consist of eight and six subpath components with
random delays, amplitudes and AoAs. The total power in one TC is also random,
as it is composed of the sum of randomly varying subpath powers, which is borne
out by field measurements. In addition, the propagation phases of each MPC can be
taken to be i.i.d., uniform between 0 and 2π [18]. This simple clustering method is
easily adjustable to resolve temporal statistics over arbitrary time resolutions using a
different minimum inter-cluster void interval. The value of 25 ns for the minimum
inter-cluster void interval was found to match the measured data in the outdoor UMi
scenario, and makes sense from a physical standpoint, since MPCs tend to arrive in
clusters at different time delays over many angular directions, most likely due to the
free-space air gaps between reflectors such as buildings, lampposts, and streets [27].
Similarly, the value of 6 ns for the minimum inter-cluster void interval was used for
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Figure 7.7 An example of measured omnidirectional PDP in the New York City measurements
at mmWave frequencies [25–27]. In the PDP there are two time clusters (TCs) consisting of
eight and six subpath components. The subpath components are found to have randomly
varying AoAs, delays and amplitudes based on a peak detection algorithm. © 2016 IEEE.
Reprinted, with permission, from [27].

the indoor office scenario since the width of a typical hallway in the measured indoor
office environment is about 1.8 m (i.e., ∼6 ns propagation delay) [32]. By counting
the number of TCs and intra-cluster subpaths, and extracting TC and subpath delays
and power levels from all available measured PDPs, measurement-based statistical
distributions are obtained and allow reconstruction of time-varying impulse responses
that embody the statistics of the collected data [27].

The concept of SLs is depicted in Figure 7.8, which shows that energy arrives
at distinct mean pointing AoAs over a contiguous range of azimuth angles and a
−10-dB power threshold with respect to the maximum received angle power [27].
The 3D spatial distribution of received power was reconstructed from the 28- and
73-GHz LoS and NLoS directional received powers [25–27] by linearly interpolating
adjacent power level segments in azimuth and elevation with a 1◦ resolution and
extracting 3D spatial angular statistics. A −10-dB threshold below maximum peak
power was employed in the 3D power spectrum in both LoS and NLoS environments
for the outdoor UMi scenario, where all power segments below this threshold were
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Figure 7.8 An example of measured power azimuth spectrum in the New York City
measurements at mmWave frequencies [25–27]. In the power spectrum, there are two spatial
lobes (SLs) using a −10-dB power threshold with respect to the maximum received angle
power [27]. An SL has well-defined properties, including its mean pointing angle, its absolute
angle spread, and its RMS angle spread. © 2016 IEEE. Reprinted, with permission, from [27].

disregarded for further processing [27]. Similarly, a −15-dB threshold was applied
for the indoor office scenario [32].

Per the definitions and illustrations given above, a TC contains MPCs that travel
close in time, but may arrive from different SL angular directions. Similarly, an SL
may contain many MPCs arriving (or departing) in a spatial beam (angular cluster)
but with different time delays. These features have been observed in real-world
propagation measurements [25, 26, 33], which have shown that MPCs belonging
to the same TC can arrive from distinct spatial angles and that energy arriving
or departing in a particular spatial direction can span hundreds or thousands of
nanoseconds in propagation delay spread, detectable due to high-gain rotatable
directional antennas. The TCSL clustering scheme is physically based, and is derived
from field observations based on about 1 terabyte of measured data over many years,
and can be used to extract TC and SL statistics for any measurement or ray-tracing
data sets [27]. The key parameters for the TCSL algorithm are the number of TCs, the
number of intra-cluster subpaths, the number of SLs, the TC and subpath delays, the
TC and subpath power levels, and the SL power levels.

7.2.2.3 Cluster Initialization Using Improved Subtractive
As described in Section 3.2.1, predefining the number of clusters and their initial
positions is critical for this algorithm to work. Therefore, in [34] a density-based
initialization algorithm is applied to MPC data sets to find the number of clusters
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and the initial centroid positions (originally proposed in [35, 36]). Afterwards, one
or more runs of the KPM algorithm assigns each MPC to the nearest centroid and
updates the power-weighted centroid positions. As a distance measure the BMCD
(balanced MCD) is used (proposed in [34]), which introduces additional normalization
factors for the angular domains, as known from the delay domain of the MCD. The
normalizers are calculated as:

δAoD/AoA = 2 · stdj (dMCD,AoD/AoA(xj,x̄))

max2
j (dMCD,AoD/AoA(xj,x̄))

, (7.15)

where stdj () provides the standard deviation of the MCD between all MPC positions
xj and the center of the data space x̄ and maxj the corresponding maximum.

The improved subtractive performs the following steps:

1. Calculate the normalization constant β:

β = N∑N
j=1 dMPC(xj,x̄)

, (7.16)

where N is the total number of MPCs and dMPC(xj,x̄) is the BMCD between
MPC position xj and the center of the data space x̄.

2. Calculate a density value for each MPC position xi :

P m
i =

N∑
j=1

exp
(− mT · β · dMPC(xi,xj )

)
. (7.17)

The product mT · β scales in fact the influence of neighboring MPCs and its
inverse is called neighborhood radius. For MPC data sets it is good practice to
find appropriate radii for direction of arrival (DoA) and direction of departure
(DoD) and delay dimensions separately. That is why m and d are vectors with
three components:

dMPC(xi,xj ) = [dMPC,DoA(xi,xj ),dMPC,DoD(xi,xj ),dMPC,Delay(xi,xj )]T. (7.18)

3. Choose the point xk with the highest density value as a new cluster centroid if its
density value is above a certain threshold. If not, stop the initialization procedure.

4. Subtract the new centroid from the data set by updating the density values:

P m
i = P m

i − P m
k · exp

(− η · mT · β · dMPC(xi,xk)
)
. (7.19)

η ε (0,1] scales the density subtraction. Return to step 3.

Afterwards, the KPM algorithm can be initialized with this cluster centroid.

Neighborhood Radius
The neighborhood radius can be found automatically by using the so-called correla-
tion self-comparison technique [34, 36]. This technique is applied for each component
of m separately.
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1. Calculate the set of density values for all MPCs P ml for an increasing ml with ml

ε {1,5,10,15,...}. Set the other components of m to 1 (e.g., m = [ml,1,1]T).
2. Calculate the correlation between P ml and P ml+1 . If the correlation rises above a

certain threshold (e.g., 0.99), choose ml as value for m in this dimension.

7.2.3 MR-DMS Clustering

MR-DMS (multi-reference detection of maximum separation) is a hierarchical cluster-
ing approach that starts with a single cluster and subsequently divides it into smaller
ones. It is described in [37, 38]. The separation is done by evaluating the distances
between all MPCs of a cluster seen from multiple reference points in the data space
to find the biggest gap. As the distance measure the BMCD is used, which is already
described for the improved subtractive. The optimum number of clusters can be found
either by applying cluster validation indices to the results or by defining a threshold
during the separation process.

The MR-DMS performs the following steps:

1. Spread N reference points over the data space. (e.g., N = 16).
2. Add all MPCs to one cluster D1.
3. If the maximum number of clusters is not reached: For each recent cluster Dk

iterate over all references rn(n = 1, . . . ,N ) and calculate the distance between all
MPC positions xi in the current cluster and the reference point and store it as a
vector:

dk
n(i) = dMPC(xi,rn). (7.20)

4. Sort all vectors dk
n in ascending order.

5. Calculate the derivative (dk
n)′ which is in fact the distance between neighboring

MPCs in cluster k seen from reference n.
6. Find the maximum distance/separation over all clusters and references max

k,n,i
((dk

n)′).

7. Split the found cluster at the position of maximum separation. Return to step 3.

Defining the Threshold
Calculating cluster results for different numbers of clusters and applying validation
indices to the results can be computationally very expensive. Therefore, threshold-
ing can be used during the separation process to automatically detect an appropriate
number of clusters.

After calculating the derivatives in step 5, only those clusters are considered for
the maximization in step 6 whose maximum derivative/separation exceeds a certain
threshold for at least one reference. For example, this threshold could be defined
dynamically by considering the distribution of (dk

n)′:

thk
n = mean((dk

n)′) + α · std((dk
n)′), (7.21)

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


136 Ruisi He et al.

Figure 7.9 Probability of correct estimated number of clusters between improved subtractive
and the MR-DMS vs. number of clusters (NCL) and the cluster angular spread of arrival
(ASA) are varied (NCL = {4,12,20},ASA = {6◦,15◦}) .

with a scaling constant α. Only those clusters whose distance between two neigh-
boring MPCs is significantly larger than the other distances in the same cluster are
considered (the cluster provides an obvious gap). Stop the algorithm if all clusters are
below the defined threshold.

In Figure 7.9 a performance comparison between both algorithms (improved sub-
tractive and the MR-DMS) is shown. The algorithms are validated over 500 drops of
the WINNER channel model scenario urban macro cell (C2), similar to [38]. Here,
six different scenarios are used where the number of clusters (NCL) and the angular
spread of arrival (ASA) are varied (NCL = {4,12,20},ASA = {6◦,15◦}). The curves
show the probability of correct estimation of the NCL (range: −2/+4) over the sim-
ulated NCL. The upper bound for the range is chosen as +4 since the two strongest
clusters are split into three subclusters, providing four additional clusters. Figure 7.10
illustrates estimated clusters by the improved subtractive and the MR-DMS algorithm
from a MIMO measurement campaign in Bonn (Germany). Details of the campaign
settings can be found in [39]. The MPCs are extracted using the RIMAX algorithm.
The figures show the azimuth–azimuth–delay dimensions of the data sets.

7.2.3.1 Other Algorithms
In [40], the fuzzy-c-means algorithm is used as an alternative to the KPM. It is found
that with random initialization, the fuzzy-c-means algorithm outperforms the KPM.
In [9], the density-based spatial clustering for applications with noise (DBSCAN)
algorithm is applied to cluster local MPCs. In [41], a fixed inter-cluster void interval,
which represents the minimum propagation time between likely reflection or scatter-
ing objects, is used to distinguish clusters in the time domain. In [42], a hierarchical
agglomerative clustering algorithm is used to search for clusters jointly in the delay–
angle-space domain and the performance is validated by ray-tracing simulation. Those
algorithms are also used in MPC clustering; however, the details are not presented due
to limited space in this chapter.
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(a)

(b)

Figure 7.10 Cluster result based on a MIMO measurement campaign in Bonn (Germany).
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7.2.4 Tracking Algorithms

In this section we present some tracking algorithms used for channel modeling. Note
that some of them are actually for tracking MPCs, which can also be used for tracking
clusters by applying for the center points of clusters.

7.2.4.1 MCD-Based Tracking
This cluster tracking mechanism is able to capture the movement of clusters with very
low complexity. The idea is based on the distance between the clusters’ centroids.
MCD is chosen as a suitable distance metric to cope with angular periodicity as well
as data scaling. The algorithm is as shown in Algorithm 7.1 [3].

Algorithm 7.1

1. Calculate the distance between any old and any new centroid using the MCD.
2. For each new centroid:

a. calculate the distance and index of the closest old centroid;
b. If smallest distance > threshold, treat the centroid as a new cluster.

3. For each old centroid:
a. check the number of close new centroids within the distance threshold;
b. If number = 1, the old cluster is moved;
c. If number > 1, the cluster is split:

– the closest new cluster is treated as if the old cluster moved;
– other close ones are treated as new clusters.

Two subsequent sets of a number of Nold old and Nnew new cluster centroids c
(old)
i

and c
(new)
j , are considered, where i = 1, . . . ,Nold and j = 1, . . . ,Nnew.

1. The distances between the centroids are arranged in the distance matrix D with
dimension Nold × Nnew, where each element is calculated as [3]

[D]i,j = MCD
(
c

(old)
i ,c

(new)
j

)
, (7.22)

that is, the distance between the ith old and j th new centroid. All further
evaluations can now easily be done by searching in the distance matrix.

2a. For each column of D, search for the smallest entry in the distance matrix. The
indices i and j of this value identifies the closest old cluster.

2b. If the distance [D]i,j between a new cluster and the closest old cluster exceeds a
specified threshold, the cluster is treated as a new cluster.

3. We now check for each old cluster, if it has moved.
3a. For each row in D count the number of elements smaller than the threshold.
3b. If only one new cluster is in the vicinity of the old cluster, the old cluster has

moved.
3c. If many new clusters are in the vicinity of the old cluster, the old cluster moved

toward the closest new one. The other close ones are treated as new.

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


Multipath Component Clustering 139

To every new cluster a unique cluster-ID (CLID) is assigned. If a movement is
identified, the moved cluster inherits the CLID from its predecessor.

7.2.4.2 Two-Way Matching Tracking
This tracking algorithm is proposed in [43, 44] for dynamic MPC tracking and also
uses MCD. The main difference compared to [3] is that it requires a two-way matching
between two consecutive snapshots in the tracking and improves the accuracy. The
main steps are as follows [43]:

1. Calculate MCD between any MPC within time i and any MPC within time i + 1
and obtain an MCD matrix D with dimension N (i) × N (i + 1), where N indicates
the number of MPCs.

2. If conditions

Du,v ≤ ε

u = arg minu

(
Du∈N (i),v

)
v = arg minv

(
Du,v∈N (i+1)

) (7.23)

are satisfied, the uth MPC at time i and the vth MPC at time i + 1 are considered
to be the same MPC. To match them, a unique MPC ID is assigned to them. ε is a
specified threshold used to measure the similarity between two MPCs.

3. Examine all other MPCs between time i and i + 1 and match all MPCs according
to eq. (7.23).

4. Calculate MCD between any MPC within i + 1 and any MPC within i + 2 and
repeating steps 1 and 2. If the wth MPC at time i + 2 is found to match the vth
MPC at time i + 1, the wth MPC (at time i + 2) inherits the MPC ID from the vth
MPC (at time i + 1), and so forth.

5. Repeat the preceding steps for the times after i + 2, and do matching in every two
consecutive indices of time windows (or quasi-stationary windows [45–47]).
Assign MPC IDs for all MPCs.

Figure 7.11 shows an example plot of MPC tracking in vehicle-to-vehicle environ-
ments [43]. We can see that only those MPCs with similar evolutions on both angular
and delay domains are grouped, and the tracking algorithm of two-way matching
generally leads to reasonable results. It is also noteworthy that the evolutions of MPCs
in angular and delay domains are independent. Furthermore, the track of evolution
(i.e., the slope of the LS fit curves) is generally independent of angle and delay. This
follows the physical insight that the scatterers are randomly distributed in the dynamic
V2V channels.

7.2.4.3 Kalman Filter-Based Tracking
This method uses a Kalman filter for tracking and predicting cluster positions [4].
Figure 7.12 shows the clustering and tracking framework.
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Figure 7.11 Example plot of tracking. (a) Detected MPCs (in dB) on delay domain. (b) MPC
tracking on delay domain. (c) Detected MPCs (in dB) on azimuth domain. (d) MPC tracking
on azimuth domain. In (b) and (d), MPCs with a lifetime of less than six quasi-stationary
windows are not plotted for clarity. © 2015 IEEE. Reprinted with permission,
from [43].
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Figure 7.12 Clustering and tracking framework. © 2007 IEEE. Reprinted, with permission,
from [4].

Cluster Data Model
Each cluster is determined by the following parameters:

1. A unique cluster-ID c.
2. The cluster power at time i. Denoting the set of path indices belonging to cluster c

at time snapshot i by �c
(i), the cluster power is calculated as γ(i)

c = ∑
l∈�

(i)
c

P
(i)
l .

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


Multipath Component Clustering 141

3. The number of paths within the clusters L
(i)
C = ∣∣�c

(i)
∣∣, where every path is

assumed to belong to one cluster, uniquely.
4. The cluster centroid position in the angle–angle–delay domain μ(i)

c . The cluster
centroid position can be calculated as

μ(i)
c =

[
τ(i)

c ϕ(i)
Rx,c ϕ(i)

T x,c

]T =

⎡⎢⎢⎢⎣
1
γ(i)

c

·∑
l∈�

(i)
c

P
(i)
l τ(i)

l

angle
(∑

l∈�
(i)
c

P
(i)
l exp

(
jϕ(i)

Rx,l

))
angle

(∑
l∈�

(i)
c

P
(i)
l exp

(
jϕ(i)

T x,l

))
⎤⎥⎥⎥⎦ ,

(7.24)

where the mean angle is calculated by averaging angles over their respective
complex representation. For tracking, the centroid speed is also of interest, so we
combine the position and speed in the cluster tracking parameter vector

θ(i)
c =

[
τ(i)

c �τ(i)
c ϕ(i)

Rx,c
�ϕ(i)

Rx,c
ϕ(i)

T x,c �ϕ(i)
T x,c

]T

. (7.25)

5. The cluster’s joint spread, which is the power-weighted covariance matrix of the
path parameters within one cluster at time i. The cluster spread matrix is
calculated by

C(i)
c =

∑
l∈�

(i)
c

P
(i)
l

(
x

(i)
c − μ(i)

c

) (
x

(i)
c − μ(i)

c

)T

γ(i)
c

. (7.26)

Kalman Cluster Model
State-space model. Only the cluster centroid position is used. The following is the
state equation:

θ(i)
c = φθ(i)

c + w(i), (7.27)

where w(i) denotes the state-noise with covariance matrix Q, and φ is the state-
transition matrix given by

φ = I3 ⊗
[

1 1
0 1

]
, (7.28)

where identity matrices are denoted by Id with d denoting the dimension, and ⊗
denotes the Kronecker matrix product. Since we can observe only the cluster centroids
and not their speed, we use the following observation model

μ(i)
c = Hθ(i)

c + v(i), (7.29)

where μ(i)
c describes the observed cluster centroid position; thus, H is given by

H = I3 ⊗ [
1 0

]
(7.30)

and v(i) denotes the observation noise with covariance matrix R.

Tracking equations. The derivation of the Kalman filter is straightforward and leads
to the following prediction and update equations:
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Prediction: θ(i|i−1)
c = φθ(i|i−1)

c

M(i|i−1) = φM(i|i−1)φT + Q.
(7.31)

Update: K(i|i) = M(i|i−1)HT
(
HM(i|i−1)HT + R

)−1

θ(i|i)
c = θ(i|i−1)

c + K(i|i)
(
μc − Hθ(i|i−1)

c

)
M(i|i) = (

I − K(i|i)H
)

M(i|i−1).

(7.32)

Cluster association. A major problem in multitarget tracking is how to associate the
predicted with the identified cluster centroids. Since we are tracking clusters that show
a certain extent in parameter space, the Euclidean distance does not provide a good
association. Instead, we use the following probability-based method. The distance
between a cluster and a cluster centroid is defined by

(
μ̃|μc,Cc

) = 1

(2π)3/2|Cc|1/2
exp

(
−1

2

(
μ̃ − μc

)T C−1
c

(
μ̃ − μc

))
. (7.33)

Since a small distance between the two centroids now corresponds to a large value of
this function, we refer to it as the closeness function.

7.2.4.4 Threshold-Based Tracking
This method was first proposed for tracking delay and amplitude changes of MPCs
in [48], and then extended to the angular domain in [49]. Consider that evaluation of
all the snapshots provides a delay matrix T ∈ RM×L, a DoA matrix � ∈ RM×L and
an amplitude matrix A ∈ CM×L. Finally, M is the number of measured snapshots. In
general, the delay and angle of one MPC change very slowly, so that the following
constraint is imposed on the delay change between snapshots:

ε = ∣∣Ti,l − τ̃i

∣∣ ≤ 1

2W
, (7.34)

where W is the measurement bandwidth, Ti,l is the estimated delay of the lth MPC in
the ith snapshot and τ̃i is the predicted value of this MPC in the ith snapshot. We add
a similar constraint on the AoA

η = ∣∣cos
(
�i,l

)− cos
(
ϕ̃i

)∣∣ ≤ 1

2NR , (7.35)

where NR is the number of the elements of the virtual array, �i,l is the estimated AoA
of the lth MPC in the ith snapshot and ϕ̃i is the value that is tracked in the (i − 1)th
or the (i + 1)th snapshot. The tracked MPCs might show “gaps,” that is, these are not
visible for certain snapshots; details of the algorithm to bridge those gaps, and when
to interpret MPCs as “new,” are given in [48].

7.2.4.5 Probability-Based Tracking
To model the MPCs in time-variant channels, a probability-based tracking algorithm
is proposed in [50]. The proposed algorithm is developed in two steps: (1) recognize
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the trajectories of MPCs; and (2) cluster MPCs based on the trajectories. Note that
the trajectories here represent the moving paths of MPCs in successive snapshots,
and one trajectory connects two MPCs in successive snapshots, which means that
these two MPCs are the same MPC in different snapshots. In the first stage, a novel
probability-based tracking process is proposed, which is conducted by maximizing the
total sum probability of all trajectories. In the second stage, a tracking based approach
is provided to cluster MPCs.

Let A1, . . . ,AM denote the MPCs in snapshot Si and B1, . . . ,BM denote the MPCs
in snapshot Si+1. l represents an ordered pair of the MPCs in successive snapshots,
that is, lAx,By , where x,y ∈ [1, . . . ,M], represents the trajectory from Ax in snapshot
Si to By in snapshot Si+1. Let L be the set of all such trajectories and if there are more
than one MPC in both snapshots, there could be many possible trajectories between
the two snapshots, whereas the ground truth is only a specific subset of trajectories
in L. The main idea of [50] is to identify the true trajectories of the MPCs in every
two successive snapshots, and trajectory lAx,By is weighted by a moving probability
P (Ax,By), as shown in Figure 7.13(a).

In [50], to accurately identify the trajectories, the truth trajectories are obtained by
maximizing the total probabilities of all selected trajectories, as follows:

p∗ = arg max
L⊂L

∑
(Ax,By )∈L

p′(Ax,By), (7.36)

where L = {(A1,By1 ),(A2,By2 ), . . . ,(AM,ByM
)} subject to y1,y2, . . . ,yM are a

permutation of integers 1,2, . . . ,M . Let U and n denote the set of parameters
[φT ,φR,τ,α] and the number of parameters, respectively. A normalized Euclidean
distance of U is used to measure the distance between Ax and By , as follows:

DAx,By =
√∑n

i=1
N [(UAx (i) − UBy (i))2]. (7.37)

Based on DAx,By , an aggregated pairwise probability is proposed to measure the
possibility of each trajectory. Generally, a shorter distance between two MPCs leads
to a higher probability of the moving path/trajectory between them, and vice versa.
Hence, the probability of trajectory p(Ax,By) can be obtained by using the reciprocal
of DAx,By . Furthermore, for each MPC, in order to ensure the sum of all the possible

trajectories’ probabilities equals to 1,
∑M

y=1 p′(Ax,By) = 1, p′(Ax,By) is obtained
by normalizing p(Ax,By) as follows:

p′(Ax,By) =

⎧⎪⎪⎨⎪⎪⎩
1 DAx,By = 0,

0 DAx,Bz = 0,y �= z,

1
DAx,By

∑M
z=1 D−1

Ax,Bz

others.
(7.38)

Note that DAx,By = 0 means MPC Ax is not moving or is remaining relatively
static with respect to both transmitter and receiver, respectively, during two snapshots.
To solve the problem in eq. (7.36), the Kuhn–Munkres algorithm (K-M) is adopted,
which is able to find the maximum weight perfect-matching in a bipartite graph of
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Figure 7.13 Illustration of the trajectories between snapshots Si and Si+1. (a) Delay and
azimuth domain. (b) Bipartite graph domain. © 2017 IEEE. Reprinted with permission,
from [50].

a general assignment problem invented by Kuhn and improved by Munkres. In the
bipartite graph, every node in two subsets links to each other and every link has its
own weight. In the algorithm, the MPCs in two successive snapshots are considered
as the two subsets in the bipartite graph, and the trajectories between each snapshot
are considered as the links between two subsets, which is weighted by the moving
probability, as shown in Figure 7.13(b). Using the K-M algorithm, the best solution
can be obtained, which indicates the most possible trajectories of MPCs in successive
snapshots.

In this algorithm, a heuristic approach is provided to cluster MPCs with the pur-
pose of comparing the moving probability of the MPCs in the same snapshot with
a preset threshold PT, where PT = 0.8 is suggested based on simulations. For MPC
Ax in snapshot Si , the moving probabilities to the MPCs in snapshot Si+1 reflect the
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similarity of these MPCs in Si+1. For example, if p′(Ax,By1 ) and p′(Ax,By2 ) are
greater than the threshold PT, it implies that the MPCs By1 and By2 are fairly similar
and belong to the same one cluster:

Kx = {By |p′(Ax,By) > PT,A ∈ Si,B ∈ Si+1}. (7.39)

As seen in eq. (7.39), different A in Si may indicate different clustering results; for
example, K1 = {B1,B2,B3}, K2 = {B1,B2}, K3 = {B1,B2}. In this case, the results
with the most occurrences can be selected, which is K = {B1,B2} in the example
above. Note that if some MPCs do not belong to any cluster in the results, these MPCs
are considered as individual clusters, although it rarely happens. In this way, MPCs can
be clustered based on their relationships during successive snapshots.

7.2.5 Multipath Fading Behavior of the Clusters

In this subsection we will highlight some of the major differences in the fading behav-
ior of the clusters as compared to the legacy narrowband channel models. Supported
with realistic small-scale fading measurements, we demonstrate that these differences
have a significant impact on the channel modeling methodology.

In contrast to the 3GPP LTE systems [51], where spatial processing is applied
to narrowband channels, mmWave systems do spatial processing of wideband
channels [52, 53]. Channel models for 3GPP LTE systems (e.g., 3GPP SCM [54],
WINNER [55] and COST 2100 [13]) are based on certain narrowband assumptions,
for example, uncorrelated scattering (US) of resolvable MPCs corresponding to a
cluster of scatterers in the space domain. In these models, fading behavior of a
multipath cluster is modeled as a zero-mean Rayleigh distributed random process
using the sum-of-sinusoids (SOS) principle. Millimeter-wave systems, on the other
hand, are supposed to operate with wider bandwidths and higher beamforming gains.
As a result, radio channels for mmWave systems behave quite differently as compared
to legacy narrowband channels. Irrespective of the carrier frequency, probing a
propagation channel with a wideband signal results in a finer resolution of multipath
echoes in the delay domain of the PDP. Different from narrowband channels, increased
resolution of MPCs in the delay domain results in reduced signal fading [56, 57].
Additionally, fading behavior of a radio channel converges from Rayleigh toward
the Rician fading regime [58]. Channels measurements presented in [59] illuminated
different scattering objects inside a classroom with directional antennas emulating
beamforming at the TX and RX. Presented results therein and in Figure 7.14 explain
that fading behavior of a cluster nearly vanishes with increased system bandwidth.
This means that channel fading behavior becomes more deterministic and in the
literature it is often termed as channel hardening [62]. Similarly, spatial filtering
of MPCs with increased beamforming gains also results in reduced fading depths, as
demonstrated in [63]. Figure 7.15 shows a summary of results presented in [63], which
shows the fading envelope of signal reflected from a wall cluster when illuminated
with different TX–RX antenna gains. It is easy to follow that the fading envelope of the
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Figure 7.14 Double bounce reflections in a classroom scenario, 34 GHz carrier frequency,
directional TX–RX antenna gains 11–12 dBi, cross-polarization setup. © 2017 IEEE.
Reprinted with permission, from [60].

RX signal power process becomes more deterministic with increased beamforming
gain. From the channel modeling perspectives, results presented in [59, 63] show
that increased system bandwidth and increased beamforming gains results in very
high Rician K-factors for the clusters. Therefore, the complex channel impulse
response does not remain a zero-mean random process. High Rician K-factor also
implies that the phase process of the received signal fading envelope also becomes
deterministic [64]. Therefore, the phase of the RX signal is not a uniformly distributed
i.i.d., random process as considered in the Rayleigh fading random process.

Large-amplitude fading of the RX signal in the narrowband channel results in a con-
siderable randomness in the TX–RX polarization setups inside the 2 × 2 polarization
coupling matrix. Therefore, in narrowband channel models like WINNER II [55], the
cross-polarization ratio (XPR) is modeled as a log-normally distributed random vari-
able with considerably high standard deviation. On the other hand, channel hardening
due to bandwidth and beamforming gain of the mmWave systems result in reduced
randomness in the polarization coupling matrix [65, 66]. Results presented in [65]
show that bandwidth has little impact on the average XPR values of the RX signal
obtained from a cluster reflection; however, the standard deviation in the XPR drops
almost exponentially with increase in system bandwidth. This implies that channel
hardening also results in a more deterministic behavior of XPR and polarization cou-
pling matrix.

From the discussion above, one may argue that the modeling of clusters in terms
of their stochastic-deterministic fading behavior has to be adopted with frequency,
bandwidth and the beamforming gain of the systems. Considering the mmWave
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Figure 7.15 Fading behavior analysis of a cluster of scatterers from a wall reflection; the cluster
is illuminated with RX antenna HPBWs (15◦,30◦,360◦) , TX antenna HPBW is 15◦, absolute
bandwidth (BW) = {0.2,1,4} GHz. © 2018 IEEE. Reprinted with permission, from [61]
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system aspects (i.e., higher bandwidth and higher beamforming gains), straight-
forward parameterization of 3GPP channel models like 3GPP SCM and WINNER II
may not be accurate.

7.3 Conclusion

In this chapter we present a brief introduction of clustering and tracking algorithms for
MPCs in radio channel modeling. Some existing algorithms and recent progress are
summarized. The multipath fading behavior of the clusters is discussed. The results
in this chapter can be used to cluster and track real-world measurement data, and
can be further used for the cluster-based (dynamic) channel modeling for 4G/5G
communications.

References

[1] N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen and J. Ylitalo, “Improving clustering
performance using multipath component distance,” Electronics Letters, vol. 42, no. 1,
pp. 33–35, 2006.

[2] N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen and J. Ylitalo, “A framework for
automatic clustering of parametric MIMO channel data including path powers,” Vehicular
Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th, IEEE, 2006, pp. 1–5.

[3] N. Czink, C. Mecklenbrauker and G. Del-Galdo, “A novel automatic cluster tracking
algorithm,” 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile
Radio Communications, IEEE, 2006, pp. 1–5.

[4] N. Czink, R. Tian, S. Wyne, F. Tufvesson, J.-P. Nuutinen, J. Ylitalo, E. Bonek and
A. F. Molisch, “Tracking time-variant cluster parameters in MIMO channel measure-
ments,” Second International Conference on Communications and Networking in China,
2007. CHINACOM’07, IEEE, 2007, pp. 1147–1151.

[5] R. He, W. Chen, B. Ai, A. F. Molisch, W. Wang, Z. Zhong, J. Yu and S. Sangodoyin, “On
the clustering of radio channel impulse responses using sparsity-based methods,” IEEE
Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2465–2474, 2016.

[6] R. He, W. Chen, B. Ai, A. F. Molisch, W. Wang, Z. Zhong, J. Yu and S. Sangodoyin,
“A sparsity-based clustering framework for radio channel impulse responses,” Proceed-
ings of IEEE VTC, IEEE, 2016, pp. 1–5.

[7] R. He, Q. Li, B. Ai, Y. Geng, A. F. Molisch, K. Vinod, Z. Zhong and J. Yu, “An
automatic clustering algorithm for multipath components based on kernel-power-density,”
Proceedings of IEEE WCNC, Mar. 2017, pp. 1–6.

[8] R. He, Q. Li, B. Ai, Y. L.-A. Geng, A. F. Molisch, K. Vinod, Z. Zhong and J. Yu,
“A kernel-power-density based algorithm for channel multipath components clustering,”
IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7138–7151, 2017.

[9] M. Gan, Z. Xu, C. F. Mecklenbräuker and T. Zemen, “Cluster lifetime characterization
for vehicular communication channels,” 2015 9th European Conference on Antennas and
Propagation (EuCAP), IEEE, 2015, pp. 1–5.

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


Multipath Component Clustering 149

[10] C. Gustafson, K. Haneda, S. Wyne and F. Tufvesson, “On mm-wave multipath clustering
and channel modeling,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 3,
pp. 1445–1455, 2014.

[11] R. He, B. Ai, A. F. Molisch, G. L. Stuber, Q. Li, Z. Zhong and J. Yu, “Clustering enabled
wireless channel modeling using big data algorithms,” IEEE Communications Magazine,
vol. 56, no. 5, pp. 177–183, May 2018.

[12] Y. Li, R. He, S. Lin, K. Guan, D. He, Q. Wang and Z. Zhong, “Cluster-based nonstationary
channel modeling for vehicle-to-vehicle communications,” IEEE Antennas and Wireless
Propagation Letters, vol. 16, pp. 408–411, 2017.

[13] L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin, F. Tufvesson and
P. De-Doncker, “The COST 2100 MIMO channel model,” IEEE Wireless Communica-
tions, vol. 19, no. 6, pp. 92–99, 2012.

[14] T. Santos, J. Karedal, P. Almers, F. Tufvesson and A. F. Molisch, “Modeling the ultra-
wideband outdoor channel: Measurements and parameter extraction method,” IEEE
Transactions on Wireless Communications, vol. 9, no. 1, pp. 282–290, 2010.

[15] M. Steinbauer, H. Ozcelik, H. Hofstetter, C. F. Mecklenbrauker and E. Bonek, “How
to quantify multipath separation,” IEICE Transactions on Electronics, vol. 85, no. 3,
pp. 552–557, 2002.

[16] S. Mota, F. Perez-Fontan and A. Rocha, “Estimation of the number of clusters in multipath
radio channel data sets,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 5,
pp. 2879–2883, 2013.

[17] S. Sangodoyin, V. Kristem, C. Bas, M. Käske, J. Lee, C. Schneider, G. Sommerkorn,
J. Zhang, R. Thomä and A. F. Molisch, “Cluster-based analysis of 3D MIMO channel
measurement in an urban environment,” Military Communications Conference, MILCOM
2015-2015 IEEE, IEEE, 2015, pp. 744–749.

[18] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”
IEEE Journal on Selected Areas in Communications, vol. 5, pp. 128–137, Feb. 1987.

[19] S. Sangodoyin, R. He, A. F. Molisch, V. Kristem and F. Tufvesson, “Ultrawideband MIMO
channel measurements and modeling in a warehouse environment,” 2015 IEEE Interna-
tional Conference on Communications (ICC), 2015 IEEE International Conference on,
IEEE, 2015, pp. 2277–2282.

[20] S. Sangodoyin, V. Kristem, A. F. Molisch, R. He, F. Tufvesson and H. M. Behairy,
“Statistical modeling of ultrawideband MIMO propagation channel in a warehouse
environment,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 9, pp. 4049–
4063, 2016.

[21] 21D. S. Baum, J. Hansen and J. Salo, “An interim channel model for beyond-3G systems:
Extending the 3GPP spatial channel model (SCM),” Vehicular Technology Conference,
2005. VTC 2005-Spring. 2005 IEEE 61st, vol. 5, IEEE, 2005, pp. 3132–3136.

[22] Q. H. Spencer, B. D. Jeffs, M. A. Jensen and A. L. Swindlehurst, “Modeling the statistical
time and angle of arrival characteristics of an indoor multipath channel,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 3, pp. 347–360, 2000.

[23] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” Kdd, vol. 96, pp. 226–231, 1996.

[24] B. Larsen and C. Aone, “Fast and effective text mining using linear-time document clus-
tering,” Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 1999, pp. 16–22.

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


150 Ruisi He et al.

[25] T. S. Rappaport, G. R. MacCartney, M. K. Samimi and S. Sun, “Wideband millimeter-
wave propagation measurements and channel models for future wireless communication
system design (invited paper),” IEEE Transactions on Communications, vol. 63, pp. 3029–
3056, Sept. 2015.

[26] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz,
M. Samimi and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It
will work!,” IEEE Access, vol. 1, pp. 335–349, May 2013.

[27] M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical channel model for
5G wireless system design,” IEEE Transactions on Microwave Theory and Techniques,
vol. 64, pp. 2207–2225, Jul. 2016.

[28] S. Sun, G. R. MacCartney and T. S. Rappaport, “A novel millimeter-wave channel
simulator and applications for 5G wireless communications,” Proceedings of IEEE ICC,
May 2017, pp. 1–7.

[29] S. Ju, O. Kanhere, Y. Xing and T. S. Rappaport, “A millimeter wave channel simulator
NYUSIM with spatial consistency and human blockage,” IEEE Global Communications
Conference (GLOBECOM), Dec. 2019.

[30] G. R. MacCartney, T. S. Rappaport, M. K. Samimi and S. Sun, “Millimeter-wave
omnidirectional path loss data for small cell 5G channel modeling,” IEEE Access, vol. 3,
pp. 1573–1580, 2015.

[31] S. Sun, G. R. MacCartney, M. K. Samimi and T. S. Rappaport, “Synthesizing omnidi-
rectional antenna patterns, received power and path loss from directional antennas for
5G millimeter-wave communications,” 2015 IEEE Global Communications Conference
(GLOBECOM), Dec. 2015, pp. 1–7.

[32] S. Ju, Y. Xing, O. Kanhere and T. S. Rappaport, “Millimeter wave and sub-terahertz spatial
statistical channel model for an indoor office building,” IEEE Journal on Selected Areas
in Communications, vol. 39, no. 6, pp. 1561–1575, June 2021.

[33] T. S. Rappaport, R. W. Heath, R. C. Daniels and J. N. Murdock, Millimeter Wave Wireless
Communications. Pearson/Prentice-Hall: Upper Saddle River, NJ, 2015.

[34] A. Yacob, Clustering of multipath parameters without predefining the number of clusters,
Techn. Univ., Masterarbeit–Ilmenau, (Supervisor C. Schneider), 2015.

[35] S. L. Chiu, “A cluster extension method with extension to fuzzy model identification,”
Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, vol. 2, June 1994,
pp. 3132–3136.

[36] M.-S. Yang and K.-L. Wu, “A modified mountain clustering algorithm,” Pattern Analysis
& Applications, vol. 8, pp. 125–138, Sept. 2005.

[37] M. Ibraheam, Clustering of multipath parameters based on multi variate Gaussian-
mixture models and alternative approaches in real and model-based multipath environ-
ments. Techn. Univ., Masterarbeit–Ilmenau (Supervisor C. Schneider), 2013.

[38] C. Schneider, M. Ibraheam, S. Häfner, M. Käske, M. Hein and R. Thomä, “On the
reliability of multipath cluster estimation in realistic channel data sets,” 8th European
Conference on Antennas and Propagation (EuCAP), Apr. 2014.

[39] G. Sommerkorn, M. Käske, C. Schneider, S. Häfner and R. Thomä, “Full 3D MIMO
channel sounding and characterization in an urban macro cell,” 2014 XXXIth URSI
General Assembly and Scientific Symposium (URSI GASS 2014), Aug. 2014.

[40] C. Schneider, M. Bauer, M. Narandzic, W. T. Kotterman and R. S. Thoma, “Clustering of
MIMO channel parameters: performance comparison,” IEEE 69th Vehicular Technology
Conference, 2009. VTC Spring 2009, IEEE, 2009, pp. 1–5.

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


Multipath Component Clustering 151

[41] M. K. Samimi and T. S. Rappaport, “3-D statistical channel model for millimeter-wave
outdoor mobile broadband communications,” 2015 IEEE International Conference on
Communications (ICC), IEEE, 2015, pp. 2430–2436.

[42] 3GPP TSG RAN WG1 R1-163115, “A hierarchical agglomerative clustering algorithm
for channel modelling,” technical report, 3GPP, 2016.

[43] R. He, O. Renaudin, V. Kolmonen, K. Haneda, Z. Zhong, B. Ai and C. Oestges,
“A dynamic wideband directional channel model for vehicle-to-vehicle communications,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7870–7882, 2015.

[44] R. He, O. Renaudin, V.-M. Kolmonen, K. Haneda, Z. Zhong, B. Ai and C. Oestges,
“Statistical characterization of dynamic multi-path components for vehicle-to-vehicle
radio channels,” in Proceedings of the IEEE VTC’15, 2015, pp. 1–6.

[45] R. He, O. Renaudin, V. Kolmonen, K. Haneda, Z. Zhong, B. Ai and C. Oestges,
“Characterization of quasi-stationarity regions for vehicle-to-vehicle radio channels,”
IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 2237–2251, 2015.

[46] R. He, O. Renaudin, V.-M. Kolmonen, K. Haneda, Z. Zhong, B. Ai and C. Oestges,
“Non-stationarity characterization for vehicle-to-vehicle channels using correlation matrix
distance and shadow fading correlation,” in Proceedings of the 35th Progress in Electro-
magnetics Research Symposium, 2014, pp. 1–5.

[47] A. Ispas, C. Schneider, G. Ascheid and R. Thomä, “Analysis of the local quasi-stationarity
of measured dual-polarized MIMO channels,” IEEE Transactions on Vehicular Technol-
ogy, vol. 64, no. 8, pp. 3481–3493, 2015.

[48] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. F. Mecklen-
brauker and A. F. Molisch, “A geometry-based stochastic MIMO model for vehicle-to-
vehicle communications,” IEEE Transactions on Wireless Communications, vol. 8, no. 7,
pp. 3646–3657, 2009.

[49] F. Luan, A. F. Molisch, L. Xiao, F. Tufvesson and S. Zhou, “Geometrical cluster-based
scatterer detection method with the movement of mobile terminal,” 2015 IEEE 81st
Vehicular Technology Conference (VTC Spring), IEEE, 2015, pp. 1–6.

[50] C. Huang, R. He, Z. Zhong, Y. L.-A. Geng, Q. Li and Z. Zhong, “A novel tracking based
multipath component clustering algorithm,” IEEE Antennas and Wireless Propagation
Letters, vol. 16, no. 1, pp. 2679–2683, 2017.

[51] 3GPP, “Evolved universal terrestrial radio access (E-UTRA) physical channels and
modulation,” release 10 3GPP TS 36.211, 3rd Generation Partnership Project (3GPP).

[52] A. Alkhateeb, G. Leus and R. W. Heath, “Limited feedback hybrid precoding for multi-
user millimeter wave systems,” IEEE Transactions on Wireless Communications, vol. 14,
pp. 6481–6494, Nov. 2015.

[53] M. Iwanow, N. Vucic, M. H. Castaneda, J. Luo, W. Xu and W. Utschick, “Some aspects
on hybrid wideband transceiver design for mmwave communication systems,” WSA 2016;
20th International ITG Workshop on Smart Antennas, Mar. 2016, pp. 1–8.

[54] 3GPP, “Spatial channel model for mimo simulations,” technical report, 2003.

[55] P. Kyosti, J. Meinila, L. Hentila, X. Zhao, T. Jamsa, C. Schneider, M. Narandzic,
M. Milojevic, A. Hong, J. Ylitalo, V.-M. Holappa, M. Alatossava, R. Bultitude, Y. de-
Jong and T. Rautiainen, “Ist-4-027756 winner ii deliverable 1.1.2. v.1.2, winner ii channel
models,” technical report, ISTWINNERII, 2007.

[56] M. V. Clark and L. J. Greenstein, “The relationship between fading and bandwidth for
multipath channels,” IEEE Transactions on Wireless Communications, vol. 4, pp. 1372–
1376, July 2005.

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


152 Ruisi He et al.

[57] W. Q. Malik, B. Allen and D. J. Edwards, “Bandwidth-dependent modelling of smallscale
fade depth in wireless channels,” IET Microwaves, Antennas Propagation, vol. 2, pp. 519–
528, Sept. 2008.

[58] A. F. Molisch, “Ultra-wide-band propagation channels,” Proceedings of the IEEE, vol. 97,
pp. 353–371, Feb. 2009.

[59] N. Iqbal, C. Schneider, J. Luo, D. Dupleich, R. Müller, S. Haefner and R. S. Thomä,
“On the stochastic and deterministic behavior of mmwave channels,” The 11th European
Conference on Antennas and Propagation (EuCAP 2017), Mar. 2017.

[60] N. Iqbal, C. Schneider, J. Luo, D. Dupleich, R. Müller and R. S. Thomä, “Modeling
of directional fading channels for millimeter wave systems,” IEEE 86th Vehicular
Technology Conference (VTC-Fall), 2017.

[61] D. Dupleich, N. Iqbal, C. Schneider, S. Häfner, R. Müller, S. Skoblikov, J. Luo,
G. Del Galdo and R. Thomä, “Influence of system aspects on fading at mmwaves,” IET
Microwaves, Antennas and Propagation, vol. 12, no. 4, pp. 516–524, Feb. 2018.

[62] B. M. Hochwald, T. L. Marzetta and V. Tarokh, “Multiple-antenna channel hardening
and its implications for rate feedback and scheduling,” IEEE Transactions on Information
Theory, vol. 50, pp. 1893–1909, Sept. 2004.

[63] D. Dupleich, N. Iqbal, C. Schneider, S. Haefner, R. Muller, S. Skoblikov, J. Luo and
R. Thoma, “Investigations on fading scaling with bandwidth and directivity at 60 GHz,”
2017 11th European Conference on Antennas and Propagation (EUCAP), Mar. 2017,
pp. 3375–3379.

[64] M. Pätzold, Mobile Radio Channels. Wiley: Chichester, 2011.
[65] N. Iqbal, J. Luo, C. Schneider, D. Dupleich, R. Müller, S. Haefner and R. S. Thomä,

“Stochastic/deterministic behavior of cross polarization discrimination in mmwave chan-
nels,” IEEE ICC Wireless Communications Symposium (ICC’17 WCS), May 2017.

[66] W. Q. Malik, “Polarimetric characterization of ultrawideband propagation channels,”
IEEE Transactions on Antennas and Propagation, vol. 56, pp. 532–539, Feb. 2008.

https://doi.org/10.1017/9781009122740.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.008


8 Dispersion Characteristics
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8.1 Introduction

When designing a wireless communication system, it is essential to have a channel
model that can quickly and accurately generate the channel impulse response (CIR)
needed for system simulations. With this objective in mind, researchers have proposed
various channel models for wireless communications [1–3]. These models are often
classified as physical or analytical channel models. The physical channel models are
further classified as deterministic and stochastic models [4].

Deterministic models such as ray-tracing (RT) offer an accurate model of the prop-
agation environment, but their high computational complexity prohibits the inten-
sive link or system-level simulations required during system design. Hence, the mod-
els with lower computational complexity that could emulate a large class of radio-
propagation environments are preferred. These requirements have led to stochastic
channel models, which are often classified into geometry-based stochastic models
(GSCMs) and nongeometrical stochastic models. In this chapter we focus on the
GSCM models such as those in [5–10].

In contrast to deterministic models, the GSCM models the physical parameters of
plane waves without directly relating them to any particular (or very detailed) radio
environment. To achieve that, the channel realizations are determined as realizations of
a multidimensional random process that attributes multipath plane waves to physical
but imaginary distribution of electromagnetic field scatterers.

The stochastic generation of plane wave parameters can be done in several different
ways. Here we distinguish two classes of GSCM models. The first class describes
generation of multipath components (MPCs) in the parametric domain, that is, the
MPCs are not related to particular scatterers [6, 10, 11]. The second class describes
generation of MPCs according to the interaction with scattering objects during the
physical model synthesis [12–14].

Typical representatives of the first class of the GSCMs are the 3GPP spatial-
channel-model [10], the channel model developed in the WINNER project [6], and
the reference model for evaluation of IMT-Advanced radio interface technologies
[7]. In this channel modeling approach, the propagation channel is characterized by
statistical parameters obtained from the radio channel measurements. This gives a
possibility of using the same framework of the model for the simulations in different
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frequencies and the different number or type of antennas. These GSMs are popular
because of their scalability and reasonably low complexity [15].

The typical representative of the second class of the GSCMs is the COST 259 model
[12, 16, 17]. In this channel modeling approach, the scattering objects are placed
on a particular geometrical structure such as a circle, ellipsoid, etc. or in a 2D/3D
coordinate system such as a plane or volume, and their abstraction is performed in the
form of multipath clusters. By assigning visibility regions to each of the clusters, a
simplified RT engine can be obtained. The randomness in this approach is attained by
random selection of visibility regions and the intra-cluster structure. In the remainder
of this chapter we focus on this type of GSCM.

8.2 Review of Theory of Geometry-Based Modeling
of Stochastic Channel Models

8.2.1 Geometry-Based Modeling of Frequency Flat Multipath
Fading Channels

Clarke [18] was the first to propose a channel model for non-line-of-sight (NLoS)
frequency flat multipath fading channels based on the statistical characteristics of the
electromagnetic fields of the received signal. The model assumes a fixed transmit-
ter with a vertically polarized antenna. The field incident on the mobile antenna is
assumed to consist of N azimuth plane waves with arbitrary carrier phases, arbitrary
azimuth angles of arrival, and all waves having equal average amplitudes. It should
be noted that the equal average amplitude assumption is based on the fact that, in the
absence of a direct line-of-sight (LoS) path, the scattered components arriving at a
receiver will experience similar attenuation over small-scale distances.

Figure 8.1 illustrates a plane wave incident on a receiver traveling with a velocity
v in the x-direction. The angle of arrival is measured in the x−y plane with respect

MS

x
a

y

z

n

Figure 8.1 Plane waves arriving at the receiver at random angles αn.

https://doi.org/10.1017/9781009122740.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.009


Dispersion Characteristics 155

to the direction of motion. Every wave that is incident on the receiver undergoes a
Doppler shift due to the motion of the receiver and arrives at the receiver at the same
time. Note that no variation in delay due to multipath is assumed in this model – this
is a consequence of the frequency flat fading assumption. For the nth wave arriving at
an angle αn to the x-axis, the Doppler shift in hertz is given by

νn = v

λ
cos αn = νd cos αn, (8.1)

where νd is the maximum Doppler frequency in hertz, λ is the carrier wavelength
and v is the speed of the receiver. The angle of arrival, αn, depends on the scattering
environment and the antenna radiation pattern.

The vertically polarized plane waves arriving at the mobile receiver have electric
and magnetic field components given by

Ez = E0

N∑
n=1

Cn cos(2πfct + 2πνnt + φn), (8.2)

Hx = −E0

η

N∑
n=1

Cn sin αn cos(2πfct + 2πνnt + φn), (8.3)

Hy = −E0

η

N∑
n=1

Cn cos αn cos(2πfct + 2πνnt + φn), (8.4)

where E0 is the real amplitude of the local average E-field (E0 is assumed to be
constant), Cn is a real random variable representing the amplitude of individual waves,
η is the intrinsic impedance of free space (377 
) and fc is the carrier frequency. The
random phase of the nth arriving component is denoted by φn.

The amplitudes of the E- and H-fields are normalized such that the ensemble aver-
age of the Cns is given by

N∑
n=1

E[C2
n] = 1. (8.5)

Since the Doppler shift is very small when compared to the carrier frequency,
the three field components may be modeled as narrowband random processes with
mutually independent random variables Cn, αn and φn. If N is sufficiently large, the
three components Ez, Hx and Hy can be approximated as Gaussian random variables
(according to the central limit theorem [19]). The phase angles φn are assumed to
have a uniform probability density function (pdf) on the interval (0,2π]. Based on the
analysis in [13], the E-field can be expressed in an in-phase and quadrature form as

Ez = hi(t) cos(2πfct) − hq (t) sin(2πfct), (8.6)

where

hi(t) = E0

N∑
n=1

Cn cos(2πνnt + φn), (8.7)
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hq (t) = E0

N∑
n=1

Cn sin(2πνnt + φn). (8.8)

Both hi(t) and hq (t) are Gaussian random processes which are denoted as hi and
hq , respectively, at any time t . Then, hi and hq are uncorrelated zero-mean Gaussian
random variables with an equal variance given by

E[h2
i ] = E[h2

q ] = E[E2
z ] = E2

0/2, (8.9)

where the E[·] denotes the ensemble average.
The envelope of the received E-field is given by

|Ez(t)| =
√

h2
i + h2

q = x(t), (8.10)

and has a Rayleigh distribution with the time-average power of the received signal
equal to σ2 = E2

0/2.
The MPC is generally modeled as a linear time-variant filter with low-pass impulse

response, as shown in eq. (8.6):

h(t,τ) =
Np∑
n=1

ãn(t)δ(τ − τn), (8.11)

where h(t,τ) is the channel response at time t due to an impulse applied at time
t − τ, and δ(·) is the Dirac delta function. Clarke’s model can be related to this
general channel model by characterizing flat frequency fading as the transmission of
an unmodulated carrier. Then, the MPC has the complex baseband impulse response

h(t,τ) = (hi(t) + jhq (t))δ(τ − τ̂) = E0

Np∑
n=1

Cne
j (2πνnt+φn)δ(τ − τ̂), (8.12)

where all time delays τn are equal to τ̂ due to flat frequency fading.
In the presence of a specular component, (i.e., LoS or a strong reflected path), the

complex baseband impulse response becomes a superposition of a strong specular
component and scattered components in eq. (8.12). To account for a specular compo-
nent, Clarke’s model needs to be modified as follows:

h(t) = E0
√

K√
K + 1

ej (2πνd t cos α0) + E0√
K + 1

N∑
n=1

Cne
j (2πνnt+φn), (8.13)

where K is the ratio of the received specular to scattered power (i.e., Rician factor),
and α0 is the angle of arrival of the specular component. The Rician distribution is
named after S.O. Rice of Bell Laboratories fame named after S.O. Rice of Bell Lab-
oratories, who, determined the distribution for the case of noise with a deterministic
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sinusoid tone added to it, and who first defined the K factor as describing the level of
the nonfading (specular) signal to the random scattered components [2].

8.2.2 Correlation Functions and Doppler Power Spectra
for Isotropic Scattering Channels

The correlation function and the Doppler spectrum are important statistics that char-
acterize temporal selectivity of a communication system. These statistics enable the
system designer to make informed decisions when choosing modulation, interleaving
and coding schemes at the transmitting end and the type of channel estimator and
decoder at the receiving end.

Assuming that the received pass-band signal r(t) is wide-sense stationary (WSS),1

the autocorrelation of r(t) is

Rrr (τ) = E[r(t)r(t + τ)]

= E[hi(t)hi(t + τ)] cos(2πfcτ) − E[hq (t)hq (t + τ)] sin(2πfcτ)

= Rhihi
(τ) cos(2πfcτ) − Rhqhq (τ) sin(2πfcτ), (8.14)

where

Rhihi
(τ) = Rhqhq (τ) (8.15)

Rhihq (τ) = −Rhqhi
(τ). (8.16)

It is reasonable to assume that the phases φn and φm are independent for m �= n

since their associated delays and Doppler shifts are independent. Furthermore, since
the phases are uniformly distributed over [0,2π), the autocorrelation Rhihi

(τ) can be
obtained as follows:

Rhihi
(τ) = Eτ,αn [hi(t)hi(t + τ)] = E2

0

2
Eαn [cos(2πνdτ cos αn)]. (8.17)

Similarly, the cross-correlation Rhihq (τ) is

Rhihq (τ) = Eτ,αn [hi(t)hq (t + τ)] = E2
0

2
Eαn [sin(2πνdτ cos αn)]. (8.18)

To evaluate the expectations in eqs. (8.17) and (8.18), statistical channel models
assume a particular distribution of incident power on the receiver antenna, p(α).
Clarke’s 2D isotropic scattering model assumes that the plane waves propagate in
the x–y plane and arrive at the receiver from all directions with equal probability,
that is, p(α) = 1/(2π), for α ∈ [0,2π), with an isotropic receiver antenna with gain
G(α) = 1. Then, the expectation in eq. (8.17) becomes:

Rhihi
(τ) = E2

0

2

∫ π

−π
cos(2πνdτ cos α)p(α)G(α)dα = E2

0

2
J0(2πνdτ), (8.19)

where J0(·) is the zeroth-order Bessel function of the first kind.

1 See Section 8.2.5 for details on WSS.
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Similarly, the cross-correlation function for 2D isotropic scattering and an isotropic
antenna with G(α) = 1 becomes

Rhihq (τ) = E2
0

2

1

2π

∫ π

−π
sin(2πνdτ cos α)dα = 0. (8.20)

This result implies that hi(t) and hq (t) are uncorrelated functions. Furthermore,
because hi(t) and hq (t) are Gaussian random variables, it means that they are also
independent random processes. However, note that the fact that hi(t) and hq (t) are
independent is a direct result of the symmetry of the 2D isotropic scattering envi-
ronment and isotropic antenna gain pattern. In case of a nonisotropic scattering
environment, hi(t) and hq (t) may not be independent random processes.

The autocorrelation of the complex baseband impulse response h(t) = hi(t) +
jhq (t) can be written as

Rhh(τ) = 1

2
E[h∗(t)h(t + τ)] = Rhihi

(τ) + jRhihq (τ). (8.21)

The autocorrelation function of the complex baseband impulse response in the
presence of both a strong specular component and a scatter component can be obtained
by substituting eq. (8.13) into (8.21) and evaluating the expectation; the result is

Rhh(τ) = 1

K + 1

E2
0

2
J0(2πνdτ) + K

K + 1

E2
0

2
cos(2πνdτ cos α0)

+ j
K

K + 1

E2
0

2
sin(2πνdτ cos α0). (8.22)

The power spectral density (PSD) of hi(t) and hq (t) is the Fourier transform of
Rhihi

(τ) or Rhqhq (τ). For autocorrelation in eq. (8.19), the corresponding PSD is

Shihi
(ν) = F[Rhihi

(τ)] =
⎧⎨⎩

E2
0

2πνd

1√
1−(ν/νd )2

|ν| ≤ νd

0 otherwise
. (8.23)

The PSD of the complex impulse response h(t) = hi(t) + jhq (t) is

Shh(ν) = Shihi
(ν) + jShihq (ν). (8.24)

Often, Shh(ν) is called the Doppler power spectrum. For 2D isotropic scattering and
an isotropic antenna, Rhihq (τ) = 0 and the Doppler power spectrum is Shh(ν) =
Shihi

(ν) (which is real and even). If both a specular component and a scattered com-
ponent are present, the Doppler power spectrum becomes

Shh(ν) =
⎧⎨⎩

1
K+1

E2
0

2πνd

1√
1−(ν/νd )2

+ K
K+1

E2
0

2 δ(ν − νd cos α0) |ν| ≤ νd

0 otherwise
. (8.25)
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The pass-band Doppler power spectrum of the received pass-band signal r(t) can
be obtained from the baseband Doppler power spectrum as follows:

Srr (ν) = 1

2
[Shh(ν − fc) + Shh(−ν − fc)]. (8.26)

For 2D isotropic scattering and an isotropic antenna, the pass-band Doppler power
spectrum becomes

Srr (ν) =
⎧⎨⎩

E2
0

4πνd

1√
1−((ν−fc)/νd )2

|ν − fc| ≤ νd

0 otherwise
. (8.27)

8.2.3 Correlation Functions and Doppler Power Spectra
for Nonisotropic Scattering Channels

One of the main assumptions in Clarke’s channel model is that scattering is isotropic,
that is, uniform distribution of angles of arrival of MPCs at the receiver. However, it
has been argued [20–24], and experimentally demonstrated [25–34] that scattering
encountered in many environments, such as suburban areas, urban areas between
buildings, street canyons, highways, etc., is nonisotropic, resulting in a nonuniform
probability density function (pdf) for angles of arrival (AoA) at the receiver. As has
been discussed in [30], the assumption of a uniform pdf for the AoAs introduces small
errors on the first-order statistics of the received signal, but a significant error on the
second-order statistics, such as correlation functions and level crossing rates.

In the literature, several different scatterer distributions, such as quadratic pdf
[35], cosine pdf [36], Laplace and Gaussian pdfs [37] and von Mises pdf [38],
have been used to characterize nonuniform scattering environments. In addition to
showing good fit to measurements [39], the von Mises pdf approximates many of
the other distributions (e.g., uniform, sinusoid, and Gaussian) and, in contrast to
most other distributions, leads to closed-form solutions for many useful statistics.
Hence, this distribution is often used to characterize nonisotropic scattering [38].

The von Mises pdf was introduced by R. von Mises in 1918 to study the deviations
of measured atomic weights from integral values [40]. This pdf plays a prominent role
in statistical modeling and analysis of angular variables [36, pp. 57–68].

The von Mises pdf is defined as [40]

p(α)
�= 1

2πI0(k)
exp [k cos(α − μ)], (8.28)

where α ∈ [−π,π) represents AoAs, I0(·) is the zeroth-order modified Bessel func-
tion of the first kind, μ ∈ [−π,π) is the mean angle at which the scatterers are dis-
tributed and k controls the spread of scatterers around the mean. When k = 0, p(α) =
1/(2π) is a uniform distribution yielding 2D isotropic scattering. As k increases,
the scatterers become more clustered around angle μ and the scattering becomes
increasingly nonisotropic. For small k , this function approximates the cardioid pdf
[41, p. 60], which is similar to the cosine pdf [36], while for large k it resembles a
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Gaussian pdf with mean μ and standard deviation 1/
√

k [41, p. 60]. In general, the
von Mises pdf can approximate the wrapped Gaussian pdf [41, p. 66]. It is interesting
to note that the von Mises pdf appears in a number of other applications in telecommu-
nications. For example, this pdf is referred to as the Tikhonov pdf in partially coherent
communications [42, p. 406] and has been used in phase-lock-loop-related problems
[43]. It also has been shown that the phase of a sine wave with Gaussian noise for
large signal to noise ratios has a von Mises pdf [44].

Assuming that the received bandpass signal r(t) is WSS, the autocorrelation of r(t)
can be evaluated starting from eq. (8.14), as in Section 8.2.2. By assuming that the
phases φn and φm are independent for m �= n and uniformly distributed over [0,2π),
the autocorrelation Rhihi

(τ) and the cross-correlation Rhihq (τ) can be written as in
eqs. (8.17) and (8.18), respectively. To evaluate the expectations in eqs. (8.17) and
(8.18), the nonisotropic scattering model assumes that the plane waves propagate in
the x–y plane and arrive at the receiver from all directions with nonequal probability,
that is, the von Mises pdf describes the angles of arrival. To simplify calculations,
the nonisotropic scattering model still assumes an isotropic receiver antenna with gain
G(α) = 1. Then, the autocorrelation function in eq. (8.17) becomes

Rhihi
(τ) = E2

0

2
�

⎧⎪⎪⎨⎪⎪⎩
I0

(√
k2 − 4π2ν2

dτ
2 + j4πkνdτ cos μ

)
I0(k)

⎫⎪⎪⎬⎪⎪⎭ , (8.29)

where �{·} denotes the real part operation. For k = 0, the von Mises pdf becomes
the uniform pdf and the autocorrelation function in eq. (8.29) becomes identical to the
autocorrelation function in eq. (8.17).

Similarly, the cross-correlation function for 2D nonisotropic scattering and an
isotropic antenna with G(α) = 1 is

Rhihq (τ) = E2
0

2
�

⎧⎪⎪⎨⎪⎪⎩
I0

(√
k2 − 4π2ν2

dτ
2 + j4πkνdτ cos μ

)
I0(k)

⎫⎪⎪⎬⎪⎪⎭ , (8.30)

where �{·} denotes the imaginary part operation. Note that the cross-correlation func-
tion is not zero in nonisotropic scattering channels.

The autocorrelation of the complex impulse response h(t) = hi(t) + jhq (t) can be
obtained as

Rhh(τ) = 1

2
E[h∗(t)h(t + τ)] = Rhihi

(τ) + jRhihq (τ)

= E2
0

2

I0

(√
k2 − 4π2ν2

dτ
2 + j4πkνdτ cos(μ)

)
I0(k)

. (8.31)

The autocorrelation function of the complex impulse response in the presence of
both specular and scattered components can be obtained by substituting eq. (8.13)
into (8.31) and evaluating the expectation; the result is [38]
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Rhh(τ) = 1

K + 1

E2
0

2

I0

(√
k2 − 4π2ν2

dτ
2 + j4πkνdτ cos(μ)

)
I0(k)

+ K

K + 1

E2
0

2
exp(j2πνdτ cos(α0)). (8.32)

The Doppler power spectrum of the complex impulse response h(t) = hi(t) +
jhq (t) can be obtained by calculating Fourier transform of the autocorrelation function
of the complex impulse response in eq. (8.32). The result of this Fourier transform
is [38]

Shh(ν) = 1

K + 1

E2
0

2πνd

√
1 − (ν/νd )2

exp(kν cos μ/νd ) cosh(k sin μ
√

1 − (ν/νd )2)

I0(k)

+ K

K + 1

E2
0

2
δ(ν − νd cos α0),|ν| ≤ νd, (8.33)

where cosh(·) is the hyperbolic cosine. For k = 0, this Doppler power spectrum
reduces to eq. (8.25), that is, the Doppler power spectrum for Clarke’s 2D isotropic
scattering.

8.2.4 Geometry-Based Modeling of Selective Multipath Fading Channels

Up to this point we have considered channel models that are appropriate for nar-
rowband transmission, where the inverse signal bandwidth is much greater than the
time spread of the propagation path delays. Such a channel introduces very little or
no distortion into the received signal and is said to exhibit flat fading. For digital
communication systems, this means that the duration of a modulated symbol is much
greater than the time spread of the propagation path delays. Under this condition, all
frequencies in the transmitted signal will experience the same random attenuation and
phase shift due to multipath fading.

In contrast, in frequency-selective fading channels, frequency components in the
transmitted signal experience different phase shifts along the different paths. As
the differences in path delays become larger, even closely separated frequencies in
the transmitted signal can experience significantly different phase shifts. This type
of propagation can be characterized by the geometrical channel model illustrated
in Figure 8.2. Considering only single reflections, all scatterers that are associated
with a particular path length are located on an ellipse, with the transmitter and
receiver located at the foci. Different delays correspond to different co-focal ellipses.
Frequency-selective channels have strong scatterers that are located on several ellipses
that represent significantly different delays (compared to a symbol duration). This
means that if the bandwidth of the signal is W , we can differentiate between signals
arriving at least �τ = 1/W s apart. As we move outward, energy reflected from
successive ellipses takes longer to get to the receiver. In this way, at the receiver,
we observe multiple copies of the transmitted signal, each copy taking progressively
longer to reach the receiver. This model does not consider second- or higher-order
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Figure 8.2 Geometrical model for frequency-selective multipath fading channels.
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Figure 8.3 Frequency-selective multipath fading channel model with discrete MPCs.

reflections, where energy is reflected between scatterers. Indeed, most RT models
(such as Jake’s model) are single-bounced scattering models – they assume that most
of the scattered energy arriving at the receiver is due to single-bounced scattering,
though [45] and the COST 273/2100 models consider multiple-scattering processes
[45–47].

This geometrical model can be described using a tapped-delay line with number
of taps at different delays. Each tap is the result of a large number of MPCs and,
therefore, the taps will experience multipath fading. If we use ŝ(t) to denote the
complex envelope of the transmitted signal, the complex envelope of the received
signal can be written as

r̂(t) =
L∑

l=1

hl(t)ŝ(t − τl), (8.34)

where L is the number of taps, and hl(t) and τl are the complex gains and path delays
associated with each tap. Sometimes it is convenient if the tap delays are multiples of
some small number τ, leading to the τ-spaced tapped delay line channel model shown
in Figure 8.3. Many of the tap coefficients in the tapped delay line are zero, that is,
no energy is received at these delays. The time-variant channel tap coefficients {hl(t)}
can be generated using the channel models described in Section 8.2.1.
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In a typical digital communication system, data symbols are sent to the transmitter
every T seconds and T -spaced samples are taken at the output of the receiver, where
T is the band duration. Hence, it is desirable to have a channel model with T -spaced
impulse response. The T -spaced channel model is similar to the τ-spaced channel
model, except that the channel taps are T -spaced. This discrete system model is by
far the most popular in the literature (e.g., [19]). This is largely due to the prevalence
of digital hardware for measuring and/or computing the CIR. Most channel sounding
devices operate in the digital domain and thus sample the PDP at discrete intervals.
Each delay bin is the sum of all energy received over the duration of that bin. This
is analogous to discrete frequency spectra, in which each frequency bin is the sum of
all energy over the bandwidth that bin occupies. Details on how the τ-spaced channel
model can be converted into a T -spaced channel model can be found in [19].

8.2.5 Correlation Functions for F-to-M Frequency-Selective Multipath
Fading Channels

For frequency-selective fading, multipath-fading channels are modeled as time-
varying in addition to being time-dispersive. The input delay-spread function h(t,τ)
is defined as the response of the channel at time t to a unit impulse at time t − τ. This
function is useful to analyze how rapidly the channel varies in time and quantify how
dispersive the channel is.

As defined in eq. (8.6), if we take the Fourier transform of h(t,τ) with respect to
time t , we can quantify how much the channel varies over time (delay), that is,

S(ν,τ) = Ft [h(t,τ)] =
∫ ∞

−∞
h(t,τ)e−j2πνt dt, (8.35)

where ν is the Doppler frequency in hertz.
On the other hand, if we take the Fourier transform of h(t,τ) with respect to delay

τ, we can quantify how dispersive the channel is at a given time. Analytically, the
time-variant transfer function H (t,f ) is defined as

H (t,f ) = Fτ[h(t,τ)] =
∫ ∞

−∞
h(t,τ)e−j2πf τdτ. (8.36)

Finally, if we take the double Fourier transform of both time and delay simultane-
ously, the Doppler variant transfer function is obtained as

B(ν,f ) = Ft,τ[h(t,τ)] =
∫ ∞

−∞

∫ ∞

−∞
h(t,τ)e−j2πνt e−j2πf τdtdτ. (8.37)

Here, we note that the CIR h(t,τ) = hi(t,τ) + jhq (t,τ) can be modeled as a
complex random process, where the in-phase and quadrature components, that is,
hi(t,τ) and hq (t,τ), are correlated random processes. Hence, all of the transmission
functions defined here are random processes. A thorough characterization of a channel
requires knowledge of the joint pdf of all the transmission functions. However, this
is a difficult task and a more reasonable approach is to obtain statistical correlation
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functions for the individual transmission functions. If the underlying process is Gaus-
sian, then a complete statistical description is provided by the means and autocorrela-
tion functions. Here, we assume zero-mean Gaussian random processes so that only
the autocorrelation functions are of interest. Since there are four transmission func-
tions, there are four autocorrelation functions that can be defined as follows [19, 48]:

Rh(t,s;τ,η) = 1

2
E[h(t,τ)h∗(s,η)], (8.38)

RS(τ,η;ν,μ) = 1

2
E[S(τ,ν)S∗(η,μ)], (8.39)

RH (f,m;t,s) = 1

2
E[H (f,t)H ∗(m,s)] (8.40)

RB (f,m;ν,μ) = 1

2
E[B(f,ν)B∗(m,μ)], (8.41)

where (·)∗ denotes the complex conjugate operation.
The channel is said to be WSS if the fading statistics remain constant over short

periods of time. This implies that the channel correlation functions depend on the
time variables t and s only through the time difference �t = s − t . Hence, for WSS
channels, the correlation functions become

Rh(t,t + �t;τ,η) = Rh(�t;τ,η), (8.42)

RS(τ,η;ν,μ) = ψS(τ,η;ν)δ(ν − μ), (8.43)

RH (f,m;t,t + �t) = RH (f,m;�t), (8.44)

RB (f,m;ν,μ) = ψB (f,m;ν)δ(ν − μ), (8.45)

where

ψS(τ,η;ν) =
∫ ∞

−∞
Rh(�t;τ,η)e−j2πν�td�t, (8.46)

ψB (f,m;ν) =
∫ ∞

−∞
RH (f,m;�t)e−j2πν�td�t, (8.47)

are Fourier transform pairs. It can be shown that WSS channels give rise to scattering
with uncorrelated Doppler shifts. This behavior suggests that signal components with
different Doppler shifts have uncorrelated attenuations and phase shifts.

Please note that channel can be wide sense stationary uncorrelated scattering
(WSSUS) without having Gaussian statistics. By adding the requirement for Gaussian
statistics, we impose the Gaussian WSSUS model for which second-order statistics
provide a complete description.

The channel is said to exhibit uncorrelated scattering (US), if the contributions
from elemental scatterers corresponding to different delays are uncorrelated. This
implies that the channel correlation functions depend on the frequency variables f and
m only through the frequency difference �f = m − f [48]. Hence, for US channels,
the correlation functions become
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Rh(t,s;τ,η) = ψh(t,s;τ)δ(η − τ), (8.48)

RS(τ,η;ν,μ) = ψS(τ;ν,μ)δ(η − τ), (8.49)

RH (f,f + �f ;t,s) = RH (�f ;t,s), (8.50)

RB (f,f + �f ;ν,μ) = RB (�f ;ν,μ), (8.51)

where

ψh(t,s;τ) =
∫ ∞

−∞
RH (�f ;t,s)ej2π�f τd�f, (8.52)

ψS(τ;ν,μ) =
∫ ∞

−∞
RB (�f ;ν,μ)ej2π�f τd�f . (8.53)

Wide-sense stationary uncorrelated scattering channels are a very special type
of multipath-fading channel. These channels display US in both the time-delay and
Doppler shift, and hence reduce to the following simple forms:

Rh(t,t + �t;τ,η) = ψh(�t;τ)δ(η − τ), (8.54)

RS(τ,η;ν,μ) = ψS(τ,ν)δ(η − τ)δ(ν − μ), (8.55)

RH (f,f + �f ;t,t + �t) = RH (�f ;�t), (8.56)

RB (f,f + �f ;ν,μ) = ψB (�f ;ν)δ(ν − μ). (8.57)

Fortunately, many radio channels can be accurately modeled as WSSUS channels.
It should be noted that stationarity is never fulfilled over arbitrarily large regions

(for WSS) or bandwidth (for US). This fact has been recognized already in [48]. The
region of stationarity and stationarity bandwidth define the spatial (temporal) and
bandwidth size within which stationarity is approximately valid [49]. A variety of
tests for the size of stationarity regions have been introduced, and it has been found
that different quantities, such as power, PDP and angular spectrum, have different-
sized regions of stationarity. Finally, the concept of WSSUS can also be generalized
to the spatial domain [50].

8.2.6 Channel Characteristic Parameters: Delay Spread,
PDP and Channel Coherence

In order to evaluate the characteristics of a propagation channel, a set of measured
impulse responses need to be analyzed. This section presents a number of parame-
ters describing different aspects of the radio channel. In general, their computation
requires the WSSUS assumption. As it is not practically feasible to collect a set of
statistical channel realizations, we generally assume that the channel system functions
are ergodic. Hence, it is for instance possible to approximate the statistical expectation
using a temporal (or spatial) average over a set of successive measurements.

A channel’s frequency selectivity is quantified by its span in the delay domain,
that is, its delay spread. As the channel’s frequency response becomes more varied,
an interacting signal will exhibit a broader envelope in the delay domain. In practice,
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delay spread is the result of different propagation delays of received signals from
reflectors at large distances compared to the LoS path between the transmitter and
receiver.

To introduce the PDP, we observe the channel for a short-period over which it is
time-invariant, that is, h(t,τ) does not depend on t and can be expressed as h(τ). The
PDP is defined as the squared envelope of h(τ) [2]:

P (τ) = |h(τ)|2. (8.58)

The root mean square (RMS) delay spread is related to the statistics of the PDP.
Specifically, the RMS delay spread σ2

τ is defined as the second central moment of
the PDP [2]:

σ2
τ = E[τ̄2] − E[τ̄]2, (8.59)

where

E[τ̄n] =
∫
τnP (τ)dτ∫
P (τ)dτ

. (8.60)

The RMS delay spread is a significant parameter for the analysis of inter-symbol
interference.

Closely related to the RMS delay spread is the concept of coherence bandwidth
Wc. Coherence bandwidth is inversely proportional to delay spread. The coherence
bandwidth is a statistical measure of the bandwidth over which the channel exhibits
approximately equal gain. In other words, the coherence bandwidth is the frequency
bandwidth Wc = f1 −f2 within which the frequency autocorrelation function crosses
a given threshold. For the 90% threshold, the coherence bandwidth can be approxi-
mated from the RMS delay spread as

Wc ≈ 1

50στ
. (8.61)

In the literature, the coherence bandwidth is most often defined for the 50% correlation
threshold, in which case

Wc ≈ 1

5στ
, (8.62)

though strictly speaking the relationship is an uncertainty relationship [51]. Further-
more, the particular numerical values of the proportionality constants depend on the
shape of the PDP as well as the correlation level.

A channel’s time variance is qualified by the Doppler spread, that is, by the span
of the channel’s Doppler spectrum, because channels that vary faster exhibit a broader
frequency range in the Doppler domain. Similar to the RMS delay spread, the RMS
Doppler spread σ2

ν is the second central moment of the Doppler spread:

σ2
ν = E[ν̄2] − E[ν̄]2, (8.63)
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where

E[ν̄n] =
∫
νnP (ν)dν∫
P (ν)dν

. (8.64)

Closely related to the Doppler spread is the coherence time Tc. The coherence time
is a statistical measure of the time period over which the channel does not change
appreciably. Put differently, the channel will affect two signals differently if the period
between their arrival times exceeds Tc. The coherence time is inversely proportional
to RMS Doppler spread. In the literature, the following ratio is used to estimate Tc:

Tc ≈ 1

5σν
. (8.65)

In mobile channels where time variation can be mainly attributed to movement at
the transmitter or receiver, the coherence time is often estimated using the maximum
Doppler shift fd :

Tc ≈ 0.423

fd

. (8.66)

8.2.7 COST 2100 MIMO Channel Model

The COST 2100 multiple-input–multiple-output (MIMO) channel model [46] is a
GSCM that was built on the framework of the earlier COST 259 [16] and COST
273 [47] models and can be extended to millimeter-wave (mmWave) frequencies. The
channel model [17] was the first GSCM considering multi-antenna base stations, while
full MIMO systems were later targeted by the COST 273 model. The COST 2100
channel model extends the COST 273 model to cover MIMO systems at large, includ-
ing multiuser, multicellular and cooperative aspects, without requiring a fundamental
shift in the original modeling philosophy.

The COST 2100 channel model was originally proposed for simulating the radio
channel between a static multiple-antenna base station (BS) and a multiple-antenna
mobile station (MS). In most cases, the MPCs are mapped to the corresponding scat-
terers, and are characterized by their delay, azimuth of departure (AoD), elevation of
departure (EoD), azimuth of arrival (AoA) and elevation of arrival (EoA). Clusters are
formed by grouping scatterers that generate MPCs with similar delays and directions
(azimuth and elevation). Figure 8.4 depicts the scattering mechanisms from the BS to
the MS. There are three types of clusters in the COST 2100 model [52], as illustrated in
Figure 8.4. Local clusters are located around the MS or the BS, and those are character-
ized by single-bounce scatterers only. Far clusters are divided into single-bounce and
multiple-bounce clusters. They are distributed throughout the simulation area, with
the number of clusters following a Poisson distribution. Given the geometrical cluster
distribution, the large-scale parameters (LSPs) of a channel are actually controlled by
the number of clusters that are active (i.e., visible to the MS) and thus contributing
to the channel. While local clusters are always visible, the visibility of a far cluster
is determined by the concept of visibility region, which confines the cluster activity
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Figure 8.4 General structure of the COST 2100 channel model. © 2012 IEEE. Reprinted, with
permission, from [46].

within a limited geographical area. The far clusters include clusters with single-bounce
scatterers and clusters with multiple-bounce scatterers. Single-bounce clusters can
explicitly be mapped to a certain position by matching their delay and angles through
a geometric approach. On the contrary, the multiple-bounce clusters are described by
two representations, as viewed from the BS and MS sides, respectively, and called
twin clusters. Visually, a twin cluster contains two identical images of one cluster,
appearing at both sides (Figure 8.4). In a specific environment, the ratio of twin to
single-bounce clusters is set to be constant [52].

The CIR is obtained by the superposition of the MPCs from all active clusters deter-
mined by the position of the MS. The amplitude of each MPC is jointly determined by
the path loss, the large-scale properties of the cluster to which it belongs, and its own
small-scale properties.

Key Modeling Concepts in COST 2100

Visibility regions. A visibility region (VR) is a circular region given fixed size in the
simulation area. It determines the visibility of only one cluster. When the MS enters a
VR, the related cluster smoothly increases its visibility, as shown in Figure 8.5. This
is accounted for mathematically by a VR gain, which grows from 0 to 1 upon entry to
the VR. Furthermore, when the MS is located in an area where multiple VRs overlap,
multiple clusters are visible simultaneously. In the COST 2100 model, the VRs are
uniformly distributed in the simulation area, the VR density is related to the average
number of visible clusters determined experimentally [16, 17, 52].

Clusters. A cluster is depicted as an ellipsoid in space as viewed from the BS and
from the MS, as illustrated in Figure 8.6. The local cluster and the far clusters are
characterized with specific positions and orientations toward the BS and MS, respec-
tively, so their spatial spreads match their corresponding delay and angular spreads.
The geometric correspondence between the cluster spatial spread and the cluster delay
and angular spreads is simple. For instance, the length aC , width bC and height hC of
the single-bounce cluster in Figure 8.6 correspond to the cluster delay, azimuth and
elevation spreads, respectively. It is important to note that the COST framework does
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VR

MSMSMS
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Figure 8.5 Illustration of the visibility region concept. The size of the circle around the MS
represents the visibility level of the cluster to the BS–MS channel; when the MS moves outside
the cluster visibility region, the related cluster becomes totally inactive in the transmission.
© 2012 IEEE. Reprinted, with permission, from [46].

BS

MS

ac

ac

ac

ac

hc
hc

hc

hc

bc

bc

bc

bc

dc,BS

dc,MS

dc,BS

dc,BS

dc,MS

MS

BS

BS

MS

(a) (b)

(c)

Figure 8.6 Spatial description of (a) local, (b) single-bounce, (c) twin clusters, respectively.
© 2012 IEEE. Reprinted, with permission, from [46].

not prescribe the specific way in which the clusters are simulated – they could be
based on geometrical clusters, or delay/angle combinations that follow the prescribed
cluster ADPSs and fading statistics. The specific implementation is up to the user,
and just has to be suitable for the bandwidth at hand. This is an important difference
to the 3GPP model, which prescribes precisely the way in which the simulation is
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to be performed, and where the implementation recipe was designed with a specific
maximum bandwidth in mind.

(1) Local cluster(s): A local cluster has an omnidirectional spread in the azimuth
plane. Its spatial spread is only determined by its delay and elevation spread.
(2) Single-bounce clusters: Single-bounce clusters have independent delay and
azimuth spreads. Each single-bounce cluster is rotated toward the BS so that its spatial
spreads along its different axes adequately fit the delay and angular spreads as viewed
from the BS. The position of a single-bounce cluster is determined by a random vector
originating from the BS and rotated with a Gaussian distributed angle relative to the
imaginary line between the BS and the center of its corresponding VR. The length of
the vector follows a lower-bounded nonnegative distribution. (3) Twin clusters [53]: In
this case, the cluster ellipsoids at the BS and MS sides are rotated toward the BS and
MS, respectively, similar to the single-bounce clusters. To determine the position of a
twin cluster, the method applied for a single-bounce cluster is performed twice: first
from the BS side and then from the VR side. This approach is used to control the delay
and angles of the twin cluster once the MS is located inside the related VR. A cluster-
link delay was introduced in the COST 273 model to compensate for the extra delay
caused by the multiple-bounce propagation via a twin cluster. The cluster-link delay is
a nonnegative random variable. Its minimum value is defined when the single-bounce
propagation between the two centers of the twin cluster occurs. Local and single-
bounce clusters can be treated as special twin clusters with a cluster-link delay always
equal to zero. Since the cluster-link delay is a large-scale property, it should be applied
to all MPCs belonging to the corresponding cluster. (4) Cluster parameterizations: The
clustering of paths enables the large-scale properties of the channel to be characterized
(i.e., the delay and angular spreads of the MPCs within each cluster, the cluster-link
delay, the random shadowing level Sn and the cluster attenuation Ln). The cluster
attenuation exponentially increases when the cluster excess delay increases, that
is, the difference between the total delay of the cluster and the delay of the LoS
component. Note that uncorrelated clustering is normally assumed, meaning that
LSPs of different clusters are statistically independent. The values of these LSPs are
tabulated in [52] for macro-, micro-, and pico-cellular scenarios.

Time evolution. The COST 2100 framework enables a time-varying channel descrip-
tion using a single realization of the clusters as long as the environment remains
static. Note that the environment (i.e., the clusters and the VRs) is generated inde-
pendent of the MS position. This is actually very similar to the generation of virtual
environments. While virtual environments reproduce the exact location and shape of
scatterers (buildings, obstacles, etc.), clusters and their visibility regions stochastically
represent a typical environment. As mentioned, a whole different approach is followed
from WINNER II, where small (stationary) pieces of MS motion are connected by
correlating the LSPs between these pieces, thereby enabling explicitly nonstationary
channels to be simulated. In the COST family of models, the whole environment is first
generated and the movement of the MS in this simulation area causes the visibility
of different clusters to change as the MS enters and leaves different VRs, resulting
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implicitly in nonstationary channel simulations. This also implies that the COST 2100
model structure and parameterization are independent of the MS speed: the higher the
speed, the faster the MS moves in and out of VRs , decreasing the stationarity length
of the channel. Thereby, scenarios involving high-speed MSs can readily be simulated
using the COST 2100 approach.

8.3 Overview of Geometry-Based Stochastic Channel Models
for mmWave and THz Communications

During the last few years there has been increased research activity in investigating
the properties of radio channels at the frequency bands above 6 GHz. The GSCM
has gained popularity as a channel modeling approach at the microwave frequencies
because of their reasonable compromise between accuracy and complexity.

The seminal work in outdoor GSCM modeling investigated fixed point-to-point
wireless links at 38 GHz [54]. The geometrical model is shown in Figure 8.7. The
estimated parameters of outdoor GSCMs at 28 and 73 GHz are presented in [55, 56].
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Figure 8.7 Fixed radio link propagation geometry [57] and geometrical model. © 2000 IEEE.
Reprinted, with permission, from [54].
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Figure 8.8 Street-canyon GSCM [61].

An extension of this model for urban scenarios at 20 GHz was proposed in [57, 58].
In these models, geometrical properties of wave-scattering objects such as a height dis-
tribution of rooftops, tilt and orientation of building surfaces and their reflectivity are
modeled as random variables. More recently, work in [59–61] proposed GSCMs for
street-canyon scenarios, as illustrated in Figure 8.8. Work in [62–64] expands urban
canyon modeling by including over-the-rooftop propagation effects into the GSCM by
characterizing buildings as rectangular and cylindrical obstacles. A hybrid uniform
theory of diffraction-physical optics approach is derived for accurate prediction of
the path loss in the vertically and horizontally polarized fields. Similar to the street-
canyon scenario, the scatterer distribution in the indoor GSCM can reflect a specific
layout of physical scatterers that characterize the propagation channel. An example
is found in the GSCM for inter-vehicular links [65], where the body and roof of
a link-shadowing car and the ground are identified as major scattering points when
simulating a channel between two vehicles. The car shape is simplified when modeled
for ease of determining the scattering points. Using the uniform theory of diffraction
to calculate the diffraction losses, the model provides good agreement of path loss in
comparison with measurements.

It is worth noting that the GSCM is not limited only to outdoor scenarios, but can
be used for indoor scenarios as well. The estimation of indoor GSCM parameters for
indoor 60 GHz channels is reported in [66].

Wireless traffic volume is expected to expand tremendously in the next few years
and wireless data rates exceeding 10 Gbit/s will be required in the near future [67]. The
opening up of carrier frequencies in the terahertz range (THz) is the most promising
approach to providing sufficient bandwidth required for ultrafast and ultra-broadband
data transmissions. Suitable frequency windows can be found around 110–170 GHz
(D-band) and 300–350 GHz. The large bandwidths paired with higher-speed wireless
links can open the door to a large number of novel applications such as ultrahigh-speed
pico-cell cellular links, wireless short-range communications, secure wireless commu-
nication for military and defense applications and on-body communication for health
monitoring systems. All these potential applications have motivated researchers to
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Figure 8.9 GSCM for THz point-to-point communications. © 2015 IEEE. Reprinted, with
permission, from [75].

model propagation beyond 100 GHz. The key difference between THz and mmWave
propagation effects is that the high antenna directivity gives rise to a scattering pattern
that is somewhat different from other indoor (GHz or mmWave) channels observed in
[68–74] and needs additional modeling.

The first RT and path-loss models for THz communications were reported in [76–
83]. Furthermore, the first statistical model for THz channels has been reported in [84].
The proposed model adapts the frequency-dependent path gains model [85] and the
indoor Saleh–Valenzuela model [86] for THz frequencies by running a large number of
RT models to extract statistical parameters needed for the model. The first THz GSCM
was proposed in [75, 87] for fixed point-to-point communications on desktop. The
geometry of the model is shown in Figure 8.9. In addition to scattering mechanisms
that are common to all indoor channels in sub-THz channels, signals may reflect off
the objects that are behind the receive (RX) antenna, travel back to the objects near
the transmit (TX) antenna and reflect back to be received by the RX antenna. This
essentially produces the second arriving path, even without any scatterers between
the TX and RX. This propagation effect has been captured in [75]. Furthermore,
as frequency increases, rough scattering effects are more pronounced, the effects of
which have been captured in [88]. Additionally, the work in [75, 87] derives relevant
correlation functions needed for system design.

8.4 Stochastic-Based Tap Delay-Line Model

8.4.1 Background

The stochastic-based tapped-delay line (TDL) models for communication channels
evolved with the rise of digital communications that began in the 1960s [48]. For
guided wave channels, such as the public switched telephone network, the channel
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Figure 8.10 Time-variant CIR.

is essentially deterministic (once the switch connections are made), and this yields a
deterministic LTI channel, which when sampled can be modeled as a deterministic
TDL [89]. As commercial wireless communication systems developed, more inves-
tigators applied TDL models [86, 90–93]. In these early cellular systems, mobility
and Doppler shift were the cause of time variation, and because of the complexity
of deterministic modeling when many time-varying MPCs exist, stochastic TDLs
were employed. Thus stochastic-based (SB) TDLs arise from the sampling required in
digital communications and the apparent randomness that results from a large number
of time-varying MPCs, and can be written as:

y(t) =
∫

x(τ)h(t,t − τ)dτ. (8.67)

Worth noting here is that this equation typically represents the complex baseband
responses, and not bandpass signals and responses [2, 94]. In principle, h(t,τ) means
a CIR that can change instantaneously, for any value of t . Yet, as previously noted, in
nearly all practical wireless systems, the CIR changes only slowly over time as com-
pared to a single transmission symbol – this is known as slow fading [2]. Figure 8.10
shows an example timeline in which ideal impulses are input periodically at times
ti , with period �t = ti+1 − ti , yielding CIRs that change over time. All CIRs have
duration less than �t . Parts (a) and (b) of Figure 8.10 show a conceptual separation
into the two axes t and τ, which yields another conceptual interpretation shown in
Figure 8.11. The interpretation here can be useful for measurement design, specifically
for the relationship between the maximum expected MPC delay τmax and the CIR
measurement repetition period �t . For unambiguous CIR estimates, τmax must be
less than �t . This requires that one know (or assume) the maximum value of CIR
delay. The measurement repetition rate is often called the snapshot rate.

Implicit in Figure 8.11 is the periodic sampling of the continuous-time CIRs of
Figure 8.10. This yields a discrete time (complex baseband) CIR that can be described
by [2]:

h(t,τ) =
Np∑
n=1

an(t)ejφn(t)δ(τ − τn(t)). (8.68)
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xk-Lxk-1

)(
0

thxy
L

i iikk S = –=

x t t tk

…

+
×a0(t)e–jf0 (t) a1(t)e–jf1 (t) aL(t)e–jfL (t)× ×

1(t) 2(t) L(t)
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In this version of the CIR we have made the complex nature explicit by including the
phase term φn(t), and have also made the time variation of the propagation delays
explicit. Ideal sampling (infinite bandwidth) is still assumed. This equation yields the
model in Figure 8.12, where the input is the discrete time sequence . . . xk,xk+1, . . .

and the output is the discrete time sequence . . . yk,yk+1 . . .. As previously noted, for
many practical cases, for signals of moderate bandwidth each of the impulses here
is composed of multiple components within the delay resolution � = 1/B, and the
variation of these components (primarily their phases) yields variation of the resolved
impulses, and this variation is termed small-scale fading. Worth pointing out is that
as signal bandwidth increases and delay resolution correspondingly decreases, the
MPCs represented by this equation and in Figure 8.11 become truly resolvable and
represent individual MPCs, and may be nonfading over time and space, as in some
ultra-wideband channel [93, 95].

The TDL embodied by eq. (8.68) and the representation in Figure 8.11 repre-
sent a finite impulse response (FIR) filter, linear but time-varying. The coefficients
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ai(t)ejφi (t) are commonly termed taps. Appealing features of such models include
their ease of use in computer simulations, and in realizing hardware channel emu-
lators. Depending upon the random models used for the MPCs, such SB TDLs also
provide repeatability in terms of channel statistics. The most common statistical model
for the taps is complex Gaussian: This yields an amplitude ai(t)with a Rician distribu-
tion and phase φi(t) with a uniform distribution (on [0,2π)). The complex Gaussian
model arises from the central limit theorem, in which a large number of MPCs of
nearly equal amplitude and uniform random phases combine.

The delay blocks in Figure 8.12 can take any value in reality, and some established
models, such as, COST 207 [92], do provide explicit real number delay values that are
separated by arbitrary values of delays. For most TDL models, though, the assump-
tion is that each delay is identical, and equal to the delay resolution �. Use of an
equal delay for each block simplifies analyses and simulations, but via a fine enough
quantization of the delay axis, arbitrary delays are easily accommodated.

A primary virtue of SB TDLs is their efficiency. Once the TDL length and tap
statistics are specified, computer implementation of the SB TDL amounts to the gen-
eration of sequences of appropriate random variable samples, and this is very easy and
efficient with modern computer simulation tools. A slight complexity increase accrues
if the taps are correlated, but the implementation is far faster than for more physically
based models such as GBSCMs [9, 14, 96]. As an example, execution time and the
number of operations required to implement a GBSCM may be a factor of tens to
hundreds of times larger than that required for an SB TDL [97].

8.4.1.1 SB TDLs and Measurements
Stochastic-based TDL channel models developed from measurements have been
widely employed. There are generally four types of signals that are used to probe
channels for estimation of CIRs: (1) short-duration pulses; (2) direct-sequence
spread spectrum; (3) multitone; and (4) chirp. Details of these measurement signals
are discussed in [2, 98, 99]. Each technique can provide an estimate of the CIR,
or equivalently, its Fourier transform the time-variant transfer function H (f,t).
Technique (1) produces a CIR estimate directly, whereas technique (2) does so via
pulse compression (correlation). Techniques (3) and (4) produce estimates of the
transfer function. A PDP, or the magnitude-squared response of the CIR, may also be
measured or modeled in order to estimate MPC power decay and time delays. While
a PDP does not offer multipath phase information, it is traditional practice to assume
that phase of each MPC be drawn from an independent and uniform probability
distribution ranging from −π to π [2, 100].

Measurements should employ a signal of bandwidth at least as large as that planned
for actual signal transmission over the channel. Given a wideband CIR estimate based
on a measurement signal bandwidth of B, CIRs appropriate for smaller values of
bandwidth can be obtained by combining the complex MPCs. For example, if a model
for bandwidth B/2 is desired, one can combine two adjacent complex components
of eq. (8.68), weighted by the response of the time-domain filters, and this will yield
a CIR of length L/2 or L/2 + 1. Alternatively, for multicarrier signals, sub-bands
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of H (f,t) could be used for narrower bandwidth channels. For actual transmission
system analysis, such as, in time-domain system simulations of single-carrier signals,
symbol-spaced taps are usually used.

The channel measurement snapshot period �t should be larger than the expected
maximum channel MPC delay τmax but smaller than – preferably much smaller than –
the channel’s coherence time tc. The coherence time is most easily estimated as the
reciprocal of the maximum expected Doppler spread fD , with fD = v/λ where v is
relative velocity and λ wavelength. To satisfy the Nyquist criterion �t should be less
than 1/(2fD). Most wireless channels, at least those that do not involve very high-
speed platforms and/or extremely long multipath delays, are underspread, such that
τmaxfD � 1. In this case, it is not difficult to select a snapshot period �t that is both
larger than τmax and smaller than tc.

As with other models, such as RT, interacting objects in the environment can be
associated with specific TDL model taps, although this connection is not often made
in the case of TDL models, and when it is, it is typically only done during actual
measurements in a specific environment. Once measurements are taken and the set of
stored CIRs is processed for the purpose of computing channel statistics and model
development, specific connections between the TDL models and the measurement
environment are absent. The most common (possibly only) exception to this is the case
where the environment has an LoS component and a strong earth surface reflection as
the first two TDL model taps.

Often, individual MPCs, or components associated with a particular propagation
path from a particular physical environment, may undergo diffraction around a build-
ing corner or may incur penetration loss due to large obstructions. In such instances,
it is useful to incorporate diffraction or partition loss modeling as a deterministic
attenuation factor on the MPCs in a TDL model. Diffraction measurements at cmWave
and mmWave bands have demonstrated that diffraction loss can be predicted well
using simple models of the physical environment [101–103], and penetration loss
measurements for common indoor partitions at 73 GHz are given in [104]. These mod-
els, such as the knife-edge diffraction (KED) and the creeping-wave linear model or
partition loss attenuation factors, may be applied to adjust individual MPC amplitudes
at cmWave and mmWave frequencies for indoor and outdoor environments [101, 103].

Diffuse scattering from rough surfaces may introduce large signal variations over
very short distances (just a few centimeters), which must be considered in TDL chan-
nel modeling [105]. Such rapid variations of the channel must be anticipated for proper
design of channel state feedback algorithms, link adaptation schemes, beamform-
ing/beamtracking algorithms, and for ensuring efficient design of MAC and network
layer transmission control protocols (TCPs) that induce retransmissions [106, 107].
Measurement of diffuse scattering at 60 GHz on several rough and smooth wall sur-
faces [107, 108] has demonstrated large signal-level variations in the first-order spec-
ular and in the nonspecular scattered components (with fade depths up to 20 dB) as a
user moved over a few centimeters.

In environments with a large number of MPCs, for modeling purposes, one may
choose to retain only the strongest components, up to some fraction of the total channel
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response energy, for example, 95%. Other alternatives for thresholding include dis-
carding all MPCs that are below some level x dB relative to the strongest MPC, and
discarding MPCs whose signal-to-noise ratio (SNR) is below some minimum value,
such as 5 dB [109]. This latter approach implies that estimation of the (measurement
receiver) noise average power is also required, such that the noise figure and operating
bandwidth are considered for interpretation of results.

8.4.2 Statistically Nonstationary TDLs

Current channel modeling research does not end with “steady state” models. In the
quest for greater model fidelity to support higher link reliability and an expanding
variety of wireless services and higher service qualities, channel models are now
more than ever taking into account transients and rapid dynamics. These effects cause
changes in local area channel statistics, and hence models that take such effects into
account are termed statistically nonstationary (NS). Traditional SB TDLs did not
account for these effects, but they can be modified to some degree to do so.

Physical mechanisms that cause so-called NS effects include the time variation
(“drift”) of MPC delays, and the appearance and disappearance of MPCs. The MPC
delay drift is typically slow with respect to signaling durations, but if needed, it can
be accounted for in SB TDLs by adjusting delays over time. Conceptually this would
appear in Figure 8.11 as having the lines associated with each MPC delay τi no longer
run parallel to the time t axis, but instead run at some moderate angle(s). If one is using
a TDL model with multiple components within each tap, these individual components
can be made to transition from one tap to another. In models with a large number
of taps, tracking and moving these subcomponents may considerably add to model
complexity.

Similarly, the appearance/disappearance of MPCs can be incorporated by switching
on or off MPCs at appropriate values of delay [110]. For stochastic realizations, dis-
crete Markov chains are convenient for these switching processes. If these “switched”
MPCs have sufficient energy with respect to existing taps, one may wish to smooth
the on–off transitions in some way, such as via interpolation.

As discussed in greater detail in Chapter 10, attenuation caused by human blockage
will greatly impact cellphone link performance, and a useful statistical model for the
effects of human blockage can be represented in a four-state Markov model, where
the four states of the model correspond to the four regions of a blockage event – the
unshadowed, shadowed, rising and decaying regions [100, 103, 111, 112]. The double
KED (DKED) model assumes a human blocker to be represented as a screen with four
sides, or as an infinitely long vertical screen with two sides [113]. A DKED antenna
gain (DKED-AG) model that incorporates directional antenna patterns to accurately
predict the upper and lower envelopes of measured received power during a blockage
better agrees with real-world measurements when compared to 3GPP/METIS block-
age models [100, 103, 112] that underpredict attenuation when a blocker is close
to either the TX or RX. Measurements have shown that when a human blocker is
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within 0.5 m of either the TX or RX, rapid fades as deep as 40 dB can occur when
using narrowbeam and directional antennas [100, 103]. Therefore, channel models at
mmWave frequencies need to represent the channel dynamics where human blockage
causes severe signal fades when a signal path is blocked and when diffraction is
no longer viable. The large fades due to diffraction loss have implications for the
design of physical-layer protocols and frame structures that incorporate phased-array
antennas to maintain a link, while finding other spatial paths [103].

8.4.3 Clustering and Mixed SB TDL and GBSCMs

As described in the previous chapter, MPCs often occur in groups or clusters that
are localized in delay. Such localizing also occurs in the spatial angular domain, and
application of combined delay–angle clustering is becoming increasingly popular.
The earliest model that described clustering in delay was developed by Saleh and
Valenzuela (SV) [86]. The SV model was developed from measurements for an indoor
office environment, but the structural features of this model have been observed in
other environments as well. The CIR for the SV model is

h(t,τ) =
M∑

k=1

Lk∑
i=1

ai,k(t)ejφi,k(t)δ(τ − τi,k(t) − Tk(t)). (8.69)

where the kth cluster of MPCs has delay Tk , and the ith MPC of the kth cluster
has additional relative delay τi,k . These MPC “inter-arrival” times are exponentially
distributed, as the initial cluster delays and intra-cluster delays are selected according
to a Poisson point process random model. In the original SV model, all parame-
ters were time-invariant. Amplitudes of the MPCs within a cluster are exponentially
decaying, and the amplitude of the envelope of clusters also takes an exponentially
decaying form versus delay. Work at mmWave frequencies [103, 114, 115] showed
Rician fading of voltage amplitudes of MPCs, as well as total received power (or
received energy under the PDP), and exponential or sinusoidally exponential decaying
trends for spatial autocorrelation (the autocorrelation coefficient function is defined as
equation (1) in [115]) at 28 GHz and 73 GHz with rapid decorrelation at approximately
0.67–33.3 wavelengths of spacing, depending on the receiver orientation with respect
to the environment and the transmitter [103, 115]. Therefore, the spatial correlation
can be modeled by a “damped oscillation” function of:

f (�X) = cos(a�X)e−b�X, (8.70)

where �X denotes the space between antenna positions, a is an oscillation distance
with units of radians/λ (wavelength), T = 2π/a can be defined as the spatial oscil-
lation period with units of λ or cm, and b is a constant with units of λ−1 whose
inverse d = 1/b is the spatial decay constant with units of λ [103]. Model param-
eters a and b in eq. (8.70) are obtained using the MMSE method to find the best
fit between the empirical spatial autocorrelation curve and theoretical exponential
model given by eq. (8.70). The “damped oscillation” pattern can be explained by
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superposition of MPCs with different phases at different linear track positions. As the
separation distance of linear track positions increases, the phase differences among
individual MPCs will oscillate as the separation distance of track positions increases
due to alternating constructive and destructive combining of the multipath phases.
This “damped oscillation” pattern is obvious in LoS environments, where phase dif-
ference among individual MPCs is not affected by shadowing effects that occurred
in NLoS environments [103]. Worth pointing out here is that small-scale fading and
spatial correlation statistics for directional measurements in [115] are focused on the
amplitude of the total received signal (i.e., by taking the square root of the square of
eq. (8.69)), whereas the spatial correlation and small-scale fading of individual MPCs
are presented in [114]. The small correlation distance in most cases is favorable for
spatial multiplexing in MIMO since it allows for uncorrelated spatial data streams
to be transmitted from closely spaced (a fraction to several wavelengths) antennas.
However, it is worth noting that in a lightly clustered environment, for example in
a rural macro-cell (RMa) scenario, measurements have shown that there is only one
cluster/spatial lobe due to lack of scattering objects, which will lead to lack of angular
diversity in the RMa channel [116, 117].

The 3GPP models utilize various forms of the TDL modeling approach and take
several forms, with the simplest being the “link level” models. These link level models
dispense with much of the geometric environment setup, to enable users to create delay
line models for several settings (e.g., urban micro, indoor office, etc.). The link level
models can be either cluster delay line (CDL) models or TDLs. For the latter, generally
applicable to SISO links, taps are specified in one of two ways: (1) via a table format
listing tap delay, fading amplitude distribution and relative power; or (2) via spatial
filtering of the more general CDL. The table format is a traditional one, similar to
the models where all taps – other than a possible LoS tap – have Clarke’s Doppler
spectrum. The assumption is Rayleigh fading on all taps (except the LoS tap) in two of
the TDL models (TDL-D and TDL-E). Hence, a large number of MPCs per delay bin
is assumed, even though the 3GPP models claim applicability up to a signal bandwidth
of 2 GHz. In the 3GPP CDL channel model, clusters are characterized by a joint
delay–angle pdf, such that a group of traveling multipaths depart and arrive from a
unique angle of departure (AoD)–angle of arrival (AoA) combination centered around
a mean propagation delay [117, 120, 121]. High-resolution parameter extraction
algorithms, such as, SAGE, and clustering, such as KPowerMeans algorithms [118,
119] that have high computational complexity, are often employed to obtain cluster
characteristics.

The 3GPP CDL creates MPCs in both the (azimuth) angular and temporal delay
domains via the following sequence of steps (see [120, section 7.7.1] for details: (1)
generate random AoAs and AoDs for each of the M rays for each of the N clusters;
(2) couple the AoAs and AoDs; (3) generate (cross-polarization ratios) XPRs for all
clusters; (4) generate random phases for each MPC of each cluster; and (5) generate
geometry-based complex amplitude coefficients.

Parameters for all the CDL generation steps are setting-specific, and are provided in
[120, section 7.7.1]. Doppler effects are incorporated via basic linear mobility models

https://doi.org/10.1017/9781009122740.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.009


Dispersion Characteristics 181

for the user terminal (UT). The TDL can also be extended for MIMO applications via
introduction of a spatial correlation matrix.

The most general and most comprehensive model in the 3GPP set is the “system-
level” model. After scenario selection, this model begins with definition of coordinate
systems, both global and local. The local coordinate systems allow for specification
of antenna array geometries for MIMO systems. Following this is specific antenna
modeling, including modeling of multiple polarizations. Then comes the modeling
of large-scale effects, such as determination of LoS or NLoS, and specification of
path loss and shadowing. In this large-scale modeling, if an indoor–outdoor link is
encountered, attenuation due to building materials (“penetration loss”) is also mod-
eled. Subsequent to the large-scale propagation modeling is small-scale parameter
modeling. This consists of generation of random delays, then generation of cluster
powers, then essentially the five steps described in CDL modeling, with the additional
specification of elevation angle parameters as well as azimuth angle parameters.

In the 3GPP channel model, the directional antenna element radiation pattern is
defined in [120, Table 7.3.1] and the channel matrix H is defined by eqs. (8.71) and
(8.72) [120, eqs. 7.5–7.29]).
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where n and m are the cluster index and the ray index (i.e., the mth ray within cluster
n), respectively, Pn is the power of the nth cluster, xT

i and xR
j are transmit and receive

antenna element indices, κ is the XPR, F is the antenna pattern, φE and φA are
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zenith and azimuth angles, d̄ is the location vector, r̂ is the spherical unit vector, v̄ is
the velocity vector, � is the initial phase, which is uniformly distributed in (−π,π)
for each ray m of each cluster n for four different polarization combinations (θθ, θφ,
φθ, φφ) and λ0 is the wavelength. The CIR is then given by adding the LoS channel
coefficient to the NLoS CIR and scaling both terms according to the desired K-factor
as in [120, eqs. 7.5–7.30]. All of the channel model parameters such as the angular
spread, delay spread, and Rician K-factor can be found in [120, Tables 7.5–7.6, parts
I and II].

The NYUSIM channel model is also an SB TDL model [11, 121], and in contrast
to the definition for “cluster” used by 3GPP, the NYUSIM model uses the definition
of a time cluster (TC) and spatial lobe (SL) to describe the multipath behavior in
omnidirectional CIRs, without forcing the requirement of a cluster to have a one-to-
one joint linkage between delay time and spatial angle. The approach in NYUSIM
defines separate clusters for time and space, such that all channel energy is fully rep-
resented both over time and space at a particular instant. Time clusters are composed
of MPCs that are bunched together in time, that is, traveling closely in time delay, and
arriving or departing from potentially different directions over a short propagation
time window [121]. Spatial lobes denote primary directions (i.e., spans) of departure
(or arrival) angles where energy arrives over the entire time delay axis, usually several
hundred nanoseconds or more [121]. Per the definitions in [121], a TC contains MPCs
traveling close in time, but may arrive from different SL angular directions, such
that the temporal and spatial statistics are decoupled and can be recovered separately
[109, 117, 121]. Similarly, an SL may contain many MPCs arriving (or departing) in a
space (angular cluster) but with different time delays. This distinguishing feature was
inspired from real-world propagation measurements [109, 121, 122], which showed
MPCs belonging to the same TC can arrive at distinct spatial pointing angles and
that energy arriving or departing in a particular pointing direction can span hundreds
or thousands of nanoseconds in propagation delay, detectable due to high-gain steer-
able directional antennas. The TCSL clustering scheme models the directionality of
mmWave channels via separate TCs that have time-delay statistics, and via SLs that
represent the strongest directions of multipath arrival and departure [121]. Another
difference between the NYUSIM model and the 3GPP model is that the 3GPP model
has large numbers of clusters (e.g., 12 and 19 clusters for the LoS and NLoS environ-
ments in the UMi street-canyon scenario, respectively, and 20 rays per cluster) which
may overpredict the diversity of mmWave channels, but NYUSIM yields only up to
six TCs and five SLs that are borne out by extensive mmWave field measurements,
and this difference has a significant impact on spectral efficiency evaluation [117].

Behavior of wideband mmWave signals as a mobile user moves around a local
area is vital for the design of handoff mechanisms and beam-steering algorithms.
Studies on properties of local area channel transition and inter-site correlation of
shadow fading were conducted in [103, 123] at 73 GHz, as summarized in Table 8.1.
These results show that wideband 73 GHz signals have a relatively stationary mean
power over slight movements but that average received power can change by more
than 25 dB as a mobile transitions around a building corner from LoS to NLoS in a
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Table 8.1 Spatial correlation model parameters in eq. (8.70) for 73 GHz, 1 GHz RF bandwidth
(λ = 0.41 cm).

Condition a (rad/λ) T = 2π/a b (λ−1) d = 1/b

LoS omnidirectional 0.45 14.0λ (5.71 cm) 0.10 10.0λ (4.08 cm)

NLoS omnidirectional 0 Not used 0.26 3.85λ (1.57 cm)

LoS directional 0.33–0.50 12.6–19.0λ
(5.14–7.76 cm)

0.03–0.15 6.67–33.3λ
(2.72–13.6 cm)

NLoS directional 0 Not used 0.04–1.49 0.67–25.0λ
(0.27–10.2 cm)

UMi environment [123, 124]. The generic model for local stationarity shows the local
mean received power varies with a log Gaussian distribution over a 5 × 10 m area,
with a 2.2 dB standard deviation for NLoS and 4.3 dB for LoS [103].

8.5 Quasi-Deterministic Channel Modeling Approach

8.5.1 Experimental Measurements and Rays Classification

The state-of-the-art for mobile communications channel characterization includes sep-
arate descriptions of the path loss models and spatiotemporal channel characteristics,
typically comprised of the clustered CIRs and angular spread statistics [125]. Latest
works for mmWave channel models also follow such an approach [126, 127] and
use different cluster analysis techniques to the experimental data processing. How-
ever, such approaches work well for NLoS conditions in rich multipath environments,
which is not the main usage case for the mmWave communication system. At the same
time, the propagation loss features of mmWave signals lead to the weakness of distant
reflections and the domination of direct path and a few strongest reflected rays. This
allows developing new approaches to characterization of the mmWave channels in the
nonstationary environment. To provide adequate modeling of the channel propagation
aspects mentioned above, the quasi-deterministic (QD) approach for channel model-
ing is proposed and was developed during the MiWEBA FP7 project [128] and IEEE
802.11ay standardization process [129].

The experimental results obtained for different outdoor environments in the
MiWEBA project [128, 130, 132–134] show that mmWave channel for complex
large area indoor and outdoor environments may not be completely described by
the deterministic RT approach. Detailed analysis of the experimental results leads to
the conclusion that realistic mmWave channel models can consist of deterministic
components, defined by the scenario and random components, representing unpre-
dictable factors or random objects appeared in this environment. Such an approach,
called quasi-deterministic, was offered for modeling access and backhaul mmWave
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D-rays R-rays F-rays

Figure 8.13 D-, R- and F-rays in the QD model illustration

channels at 60 GHz [130, 135–137]. A similar basic idea was used previously for the
modeling of ultrawideband (<10 GHz) channels in [138] and sub-6 GHz microcell
channels in [139].

The approach builds on the representation of the mmWave CIR comprised of a few
QD strong rays (D-rays), a number of relatively weak random rays (R-rays, originating
from static surface reflections) and flashing rays (F-rays, originating by reflections
from moving cars, buses and other dynamic objects) (see Figure 8.13). D-rays make
the major contribution to the signal power, are present all the time and usually can be
clearly identified as reflection from scenario-important macro objects. It is logical to
include them in the channel model as deterministic, explicitly calculated values. The
element of randomness, important for statistical channel modeling, may be introduced
at the intra-cluster level by adding a random exponentially decaying cluster to the
main D-ray.

R-rays are the reflections from random objects or objects that are not mandatory in
the scenario environment. Such rays may be included in the model in a classical statis-
tical way, as rays with parameters (AoD, AoA, PDP) selected randomly in accordance
with the predefined distributions.

F-rays may be introduced in the channel model for special nonstationary environ-
ments. These rays can appear for a short periods of time, for example, as a reflection
from moving cars and other objects. F-rays can be described in the same way as
R-rays, but taking into account the statistics of their appearance in time.

All types of rays are then combined in the single clustered CIR, schematically
shown in Figure 8.14. Here, cluster refers to MPCs with similar delay, AoD, and AoA
parameters. All of these parameters should be similar for all of these MPCs. Physically
this means that the paths belonging to the same cluster should have the same physical
propagation mechanisms (e.g., produced by one physical reflection surface) [6].
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Figure 8.14 QD channel model CIR structure. © 2014 IEEE. Reprinted, with permission,
from [140].

For each of the channel propagation scenarios, the strongest propagation paths are
determined and associated to rays which produce the substantial part of the received
useful signal power. Then the signal propagation over these paths is calculated based
on the geometry of the deployment and the locations of the transmitter and receiver,
calculating the ray parameters, such as AoD, AoA, power and polarization charac-
teristics. The signal power conveyed over each of the rays is calculated in accor-
dance with theoretical formulas taking into account free-space losses, reflections,
antenna polarization and receiver mobility effects like Doppler shift. Some of the
parameters in these calculations may be considered as random values, such as reflec-
tion coefficients, or as random processes, such as receiver motion. The number of
D-rays taken into account is scenario-dependent, and is chosen to be in line with the
channel measurement results. Additionally to the D-rays, a number of other reflected
waves are received from different directions, coming, for example, from cars, trees,
lampposts, benches, houses, etc. (for outdoor scenarios) or from room furniture and
other objects (for indoor scenarios). These rays are modeled as R-rays. These rays
are defined as random clusters with specified statistical parameters extracted from
available experimental data or RT modeling. For a given environmental scenario, the
process of the definition of D-rays, R-rays and F-rays, and their parameters, is based
both on the experimental measurements and RT reconstruction of the environment.
The experimental measurements processing includes a peak detection algorithm with
further accumulation of the peak statistics over time, identifying the percentage of
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Figure 8.15 Process of CIR generation for the QD approach. Reprinted, with permission, from
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Figure 8.16 Base steps of CIR generation. Reprinted, with permission, from [130] VDE
VERLAG, Berlin, Offenbach, Germany, 2016.

the selected ray activity during the observation period. For example, based on the
analysis of available experimental data [128], the rays with an activity percentage
above 80–90% may be classified as D-rays: strong and always present, if not blocked.
The blockage percentage for D-rays may be estimated at around 2–4%. The rays with
an activity percentage of about 40–70% are the R-rays, the reflections from far-away
static objects, weaker and more susceptible to blockage due to longer travel distances.
And finally, the rays with an activity percentage below 30% are the F-rays: the flashing
reflections from random moving objects. Such rays are not “blocked,” they actually
“appear” only for a short time. Figure 8.15 illustrates the CIR generation process.

The core of the algorithm consists of the three major steps of D-ray generation
(Section 8.5.2), R-ray generation (Section 8.5.3) and adding the thin intra-cluster
structure to the generated D- and R-rays (Section 8.5.4). These three steps are illus-
trated in Figure 8.16.

8.5.2 D-Rays Modeling

The QD rays are explicitly calculated in accordance with scenario parameters,
geometry and propagation conditions. The propagation loss is calculated by the Friis
equation, taking into account additional losses from oxygen absorption (Table 8.2,
second row). An important part of the proposed QD approach to the channel modeling
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Table 8.2 Direct ray parameters.

Parameter Value

Delay Direct ray delay is calculated from the model geometry:
τD = dD/c

dD =
√

L2 + (HT − HR)2,

where HT and HR are transmitter and receiver heights respectively, and L

is the horizontal distance between them.

Power Direct ray power calculated as free-space pathloss with oxygen absorption:

PD = 20 log10

(
λ

4πdD

)
− A0dD in dB,

where λ is the wavelength, and A0 is the oxygen absorption coefficient
(15 dB/km for 60 GHz)

Channel matrix H =
⎡⎣ 10

PD
20 0

0 10
PD
20

⎤⎦ exp
(

j2πdD
λ

)
AoA 0˚ azimuth and elevation

AoD 0˚ azimuth and elevation

is the calculation of the reflected ray parameters. The calculations are based on the
Fresnel equations, additionally taking into account losses due to surface roughness
(Table 8.3, second row). The feasibility of the proposed approach to the prediction
of the signal power is demonstrated in [141] for outdoor microcell environments and
in [142] and [65] for inter-vehicle communication modeling. In general, problems of
the signal power prediction are considered in [143]. The D-rays are strictly scenario-
dependent, but in all considered outdoor scenarios two basic D-rays are present: the
direct LoS ray and the ground-reflected ray. The calculation of those two basic ray
parameters will be the same for all scenarios.

8.5.2.1 Direct Ray
A direct LoS ray is a straight ray between TX and RX.

8.5.2.2 Ground-Reflected Ray
A ground-reflected ray presents in all considered scenarios. Its parameters are calcu-
lated based on the Friis free-space path-loss equation and the Fresnel equation to take
into account reflection and rough surface scattering factor F. Note that the horizon-
tally and vertically polarized components of the transmitted signal will be differently
reflected and, thus, the channel matrix should have different diagonal elements.

8.5.2.3 Additional D-Rays
For the open-area scenario, with no significant reflection objects other than the ground,
only two D-rays considered. However, in scenarios with richer environments, such as
a large square, or for example, a street-canyon scenario, reflection from one or more
walls should be taken into account. The principle of calculation of these additional
D-rays is the same, a detailed description may be found in [128]. The closest wall can
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Table 8.3 Ground-reflected ray parameters.

Parameter Value

Delay Ground-reflected ray delay is calculated from the model geometry:
τG = dG/c

dG =
√

L2 + (HT + HR)2

Power Ground-reflected power calculated as free-space path loss with oxygen
absorption, with additional reflection loss calculated on the base
of Fresnel equations. Reflection loss R is different for vertical and horizontal
polarization

P⊥ = 20 log10

(
λ

4πdD

)
− A0dD + R⊥ + F

P‖ = 20 log10

(
λ

4πdD

)
− A0dD + R‖ + F

F = 80
ln 10

(
πσh sinφ/λ

)2
R⊥ = 20 log10

(
sinφ−√

B⊥
sinφ+√

B⊥

)
R‖ = 20 log10

(
sinφ−√

B‖
sinφ+√

B‖

)
B‖ = εr − cos2 φ B⊥ =

(
εr − cos2 φ

)
/ε2

r in dB,

where tanφ = HT+HR
L

, and σh is a surface roughness

Channel matrix H =
⎡⎣ 10

P‖
20 ξ

ξ 10
P⊥
20

⎤⎦ exp
(

j2πdG

λ

)
AoD Azimuth: 0˚

Elevation: θAoD = arctan
(

L
HT−HR

)
− arctan

(
L

HT+HR

)
AoA Azimuth: 0˚

Elevation: θAoA = arctan
(

HT+HR
L

)
− arctan

(
HT−HR

L

)

be calculated using the geometry and positions of the transmitter and receiver. The cal-
culation of the path properties is similar to the ground ray reflection considered in the
previous section, taking into account material properties for the specific environments.

8.5.3 R-Ray Modeling

In order to take into account a number of rays that cannot be explicitly described
deterministically (reflections from objects that are not fully specified in the scenario,
objects with random or unknown placement, objects with complex geometry, higher-
order reflections, etc.) R-rays are introduced in the QD modeling methodology. R-rays
may be generated in two different ways: statistically in accordance with the predefined
PDP or as deterministic reflections from random objects.

8.5.3.1 Statistical R-Ray Definitions
A statistical approach is the basic means of R-ray generation in the QD channel
modeling methodology. The clusters (see Figure 8.14) arrive at moments τk according
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Table 8.4 R-rays parameters for open area model.

Parameter Value

Number of rays, N 3

Poisson arrival rate, λ 0.05 ns−1

Power-decay constant, γ 15 ns

K-factor 6 dB

AoA Elevation: U[−20:20˚] Azimuth: U[−180:180˚]

AoD Elevation: U[−20:20˚] Azimuth: U[−180:180˚]

to a Poisson process and have inter-arrival times that are exponentially distributed. The
cluster amplitudes A (τk) are independent Rayleigh random variables and the corre-
sponding phase angles θk are independent random variables uniformly distributed
over [0,2π].

The random ray contributions to the CIR are given by:

hcluster (t) =
Ncluster∑
k=1

A (τk) exp {jθk} δ (t − τk) , (8.73)

where τk is the arrival time of the kth cluster measured from the arrival time of the LoS
ray, A (τk), P (τk) and θk are the amplitude, power and phase of the kth cluster. The
R-rays are random, with Rayleigh-distributed amplitudes and random phases, with
exponentially decaying PDPs. The total power is determined by the K-factor with
respect to the direct LoS path:

P (τk) = P0 exp

{
−τk

γ

}
, (8.74)

K = PLOS∑
P (τk)

. (8.75)

Table 8.4 summarizes the R-ray parameters for the open area/large square models.
The PDP parameters are derived based on the available experimental data and corre-
sponding RT simulations. The AoA and AoD ranges illustrate the fact that random
reflectors can be found anywhere around the receiver, but are limited in height. Uni-
form distributions are selected for simplicity and can be further enhanced on the base
of more extensive measurements.

In the 802.11ad channel model [144], a set of approximations was proposed for
diagonal and off-diagonal elements of the channel matrix H for the first- and second-
order reflections in typical indoor environments (conference room, cubicle and living
room) as combinations of log-normal and uniform distributions on the base of exper-
imental studies [145]. In the QD model the ray amplitude is approximated by the
Rayleigh distribution (which is close to log-normal) so the simple fixed polarization
matrix Hp may be used for introducing polarization properties to R-rays (matrix H is
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obtained by multiplication of the scalar amplitudes A to the polarization matrix Hp).
The polarization matrix Hp for R-rays is defined by:

Hp =
[

aV,V aV,H

aH,V aH,H

]
=
[

1 ±0.1
0.1 ±1

]
. (8.76)

The values with the ± sign are assumed to have random sign, (+1 or −1, for
instance) with equal probability, independently from other values. The polarization
matrix is identical for all rays comprising the cluster. Flashing rays, or F-rays, are
intended to describe the reflections from fast-moving objects like vehicles and are
short in duration. Their properties require additional investigations and analysis, thus
the F-rays are not included in the considered QD modeling approach application
example.

8.5.3.2 Random Object Reflection R-Rays
The synthetic aperture processing of the experimental results [130] have shown that
the reflections from various environmental objects such as trees, lampposts, bus stops,
etc. can be clearly identified (with exact estimation of the reflector position) from the
experimental data. Such rays should be taken into account along with D-rays, which
originate from large-scale objects, but the definition of the position of each reflector
makes scenario description complex and very specific. Thus, it is proposed to generate
such type of rays (R-rays or F-rays) as reflections from the randomly placed spherical
objects, that (unlike the flat objects) can create a specular reflection path between
any two points in the 3D space. For now, based on the experimental measurements,
the R-rays as reflections from random objects are introduced for the street-canyon
scenario only, in addition to statistically generated R-rays described above. Also, the
F-rays are generated in this way, with the only difference being the path existence
period in the applications where the longer periods of time are analyzed.

8.5.4 Intra-Cluster Structure Modeling

The surface roughness and presence of various irregular objects on the considered
reflecting surfaces (bricks, windows, borders, manholes, advertisement boards on the
walls, etc.) lead to the separation of a specular reflection ray into a number of addi-
tional rays with close delays and angles: a cluster. The intra-cluster structure is intro-
duced in the QD model in the same way as R-rays: as Poisson-distributed in time,
exponentially decaying Rayleigh components, dependent on the main ray. The iden-
tification of rays inside the cluster in the angular domain requires very high angular
resolution. The “virtual antenna array” technique, where a low directional antenna
element can be used to perform measurements in multiple positions along the virtual
antenna array to form an effective antenna aperture, was used in the MEDIAN project
[131]. Note that it is reasonable to assume that different types of clusters may have
distinctive intra-cluster structures. For example, properties of the clusters reflected
from the road surface are different from the properties of the clusters reflected from
brick walls because of the different materials of the surface structure. Also, one may
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assume the properties of the first- and second-order reflected clusters to be different,
with the second-order reflected clusters having larger spreads in temporal and angular
domains. All these effects are understood to be reasonable. However, since the number
of available experimental results was limited, a common intra-cluster model for all
types of clusters was developed. Modifications with different intra-cluster models for
different types of clusters may be a subject of future channel model enhancements. In
the 802.11ay channel model the intra-cluster structure is added to the D-ray and R-ray
base structure (Figure 8.16, step 3). For every base ray, the intra-cluster structure is
given by:

hintra (t) =
Nintra∑
m=1

A (τm) exp {jθm} δ (t − τm), (8.77)

where τm is the arrival time of the mth intra-cluster component measured from the
arrival time of the base D-ray or R- ray, A (τm), P (τm) and θm are the amplitude,
power and phase of the kth intra-cluster component. The intra-cluster components are
random, with Rayleigh-distributed amplitudes and random phases, with exponentially
decaying PDP. The total power is determined by the K-factor with respect to the base
D- ray or R-ray power:

P (τm) = P0 exp

{
−τm

γ

}
, (8.78)

Kintra = Pbase ray∑
P (τm)

. (8.79)

Generally, the intra-cluster structure generation is very similar to R-ray generation,
except that for R-ray generation the LoS rays are used as a timing and power base,
and for intra-cluster structure generation the cluster-base D-ray or R-ray is used for
that purpose. Combining all D-rays, R-rays and their respective intra-cluster structure
components will give the final channel impulse response in the form of eq. (8.73).

8.5.5 Mobility Effects

The mobility effects in the QD channel model are described by directly introducing
the velocity vector for each MS. In the multipath channel the MS movement leads to
additional phase rotation for each propagation path. For the purposes of the channel
modeling, the motion effect can be introduced for D-rays and R-rays in the same way.
The additional phase rotation for the kth ray caused by Doppler frequency shift is
calculated as:

�ϕk (t) = 2πf D
k t, (8.80)

f D
k = (v,rk)

fc

c
,

where f D
k is the Doppler shift for the kth ray, v is the instantaneous vector of MS

velocity (see Figure 8.17), rk is the unity vector of the kth ray direction of arrival, fc

is the carrier frequency and (,) denotes the scalar product.
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Figure 8.17 Model for mobility effects in 3D channel model for ray r1 (circle) and r2 (square).
© 2016 IEEE. Reprinted with permission, from [144].

The velocity vector v can be represented as the sum of its scalar components
(v = vxi + vyj + vzk). For scenarios without preferred direction of motion, such
as open areas, the horizontal component of velocity may have uniformly distributed
direction and random or fixed value. For example, they may by described by 2D zero-
mean Gaussian pdf with appropriate standard deviations σx ,σy :

P
(
vx,y

) = 1

σx,y

√
2π

exp

{
− v2

x,y

2σ2
x,y

}
. (8.81)

As was shown in measurements [28], the vertical movement of the pedestrian MS
has significant impact on the channel and also should be taken into account. In the
important case when the MS is held by a human, the different models of human
gait can be applied for vertical motion expressed through variable z(t). In accordance
with the QD methodology, the vertical motion is introduced as a stationary Gaussian
random process. For the considered case of human gait, the following correlation
function of z(t) can be applied:

Kz [τ] = σ2
z exp

{
−τ

2

τ2
z

}
cos (2πf0τ) , (8.82)

with parameters adjusted to the real pedestrian motion at a speed of 3–5 km/h and f0

being maximum Doppler frequency. The vertical component vz of the velocity vector
v can be defined through the user’s vertical motion z(t) as the first derivative. With the
knowledge of the velocity vector and ray AoA, the values of the phase rotations can
be calculated from eq. (8.80) and added to the corresponding D-ray and R-ray phases.
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8.5.6 Channel Impulse Response Postprocessing

Channel impulse response postprocessing may include application of the antenna
pattern, beamsteering algorithms and sampling the CIR to the desired discrete rate (see
Figure 8.15 and also Chapter 1). These steps are the same for 802.11ad and 802.11ay
models and are presented in [144]. The MIMO processing in the case of two or more
phased antenna arrays is discussed in [129].

8.6 Map-Based Models

8.6.1 Background

The so-called map-based model developed in the METIS project is summarized in
this section. The European METIS project was initiated in late 2012. It was one of the
first larger-scale actions aiming to investigate components for the next generation,
now called 5G, mobile and wireless communication systems. This section briefly
summarizes the model; for more details the reader is referred to the references cited
in the text.

8.6.2 Introduction

One of the key activities in the METIS project was to develop a radio channel model
for the evaluation of technology components. The assumptions, use cases and scenar-
ios, including environment descriptions, are specified in [146].

The first step in the development of a channel model for evaluation purposes is to
identify requirements for the channel model. It is not feasible to define a model for
all imaginable purposes; thus, it is crucial to understand first the need and the usage
of the model. Generally speaking, the main goal of a channel model, as understood in
this section, is to generate the wave propagation coefficients in time–space–frequency
domains as accurately as possible for the applications of link-level and system-level
simulations under acceptable computation complexity. Additionally, it is desirable that
the model is straightforward and easily adapted by the engineers. The practical model
requirements were identified in the METIS project based on different technology
components of the expected 5G systems. The model requirements are defined in detail
in [147] and the main requirements are summarized as follows:

1. spatial consistency and mobility;
2. diffuse vs. specular scattering;
3. support for very large arrays;
4. mmWave frequencies (frequency consistency); and
5. flexibility for a variety of simulation needs.

The key target set by the requirements was the consistency. The channel model to
be developed had to be consistent and scalable for both spatially distributed antennas
and devices, as well as across a wide range of frequency bands to be utilized.

https://doi.org/10.1017/9781009122740.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.009


194 Alenka Zajić et al.

The original intention was to extend the long line of GSCMs for 5G purposes.
GSCMs represent a spatial radio channel with randomly drawn directional and prop-
agation parameters, without any particular definition of the environment. However,
during the process it was found that it is very difficult, or even impossible, to specify
such extensions that would meet the requirements. Therefore, two different channel
modeling approaches were selected: stochastic and map-based. This section focuses
on the map-based model specified in [148] by the METIS project and more recently
with some corrections and complements in [149]. This map-based model is determin-
istic in the sense that it uses a map or a layout in defining the particular environment
and it uses image-based RT techniques on this map or layout to calculate propagation
paths from the transmitters to the receivers. This is the difference when comparing the
map-based model to the QD model [161, 162]. Furthermore, the map-based model is
more general because it is used for both LoS and NLoS scenarios. It is used both for
front-haul and back-haul use cases; the number of paths to resolve for a transmitter–
receiver link is decided by the user.

8.6.3 Benefits of the Deterministic Model

There are several reasons why a deterministic model is considered to be suitable for
5G wireless communications:

Accuracy: real-world correspondence is better. In the deterministic model, the
real-world propagation mechanisms involving LoS, reflection and penetration on
smooth surfaces/slabs, diffraction on wedges and diffuse scattering on rough sur-
faces can be accurately emulated via a RT approach that is based on the proven
propagation theories such as geometric optics and uniform theory of diffraction,
with acceptable computation complexity.

Site-specific simulations: inherently guaranteed by the maps imported. In the
map-based model, which is a deterministic procedure to emulate channels in a spe-
cific and deterministic scenario, the properties of each ray, such as path loss, propa-
gation delay, AoA and AoD, are directly calculated by applying the RT principle to
a well-defined deployment/environment layout map. The effects of shadowing and
blockage are also inherently guaranteed.

Spatial and temporal consistency: inherently guaranteed in map-based models.
According to the propagation theories, the channel coefficient of each path is calcu-
lated mainly based on the path length, incident angle, reflected/diffracted/scattered
angle, as well as the electromagnetic property of the corresponding material. When
the TX/RX node or the surrounding object moves, the smooth transition of the
parameters leads to a consistent change on the channel coefficients, that is, spatial
and temporal consistency can be achieved naturally.

Mesh networks and D2D, massive/distributed MIMO and CoMP: correlation
between links inherently guaranteed in map-based models. Similar to the abil-
ity to fulfill spatial consistency, a map-based model can simulate the correlation
between any two communication links whose transmitters or receivers are either the
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same or nearby, where the correlation exists in both large-scale fading and small-
scale fading. This feature is crucial to support some of the 5G use cases such as
mesh networks, D2D, massive/distributed MIMO or CoMP.

Frequency dependency and large bandwidth: interaction formulas are physics
based. There is no need to have additional bandwidth handling in a RT tool as long
as the bandwidth is less than 10% of the carrier frequency. The calculation based on
center frequency can be representative for the whole bandwidth. If extremely large
channel bandwidth (>10%) is needed, the bandwidth can be partitioned into several
bins and RT is applied separately to each bandwidth bin to obtain the frequency
response, that is, channel transfer function. A discrete Fourier transformation can
be used to get the CIR from the channel transfer function.

Spherical wave and large antenna arrays beyond consistency interval: inherently
guaranteed in map-based models. Under the assumption of plane waves, the
same modeling principle and procedure as in the stochastic modeling for the nor-
mal antenna array can be reused. In addition, for large antenna arrays beyond the
consistency interval, spherical wave calculation should be taken into consideration,
where the RT can support it by calculating the propagation parameters such as
deterministic delays and arrival/departure angles per each pair of TX–RX antenna
elements.

8.6.4 Model Overview

The map-based model is deterministic, utilizing well-known RT methods on simplified
environmental maps (see [148] and references therein). The reason for deterministic
modeling is to achieve spatial consistency. With maps and a discovery process of
pathways it is possible to guarantee location-dependent radio channel coefficients
between each TX and RX antenna array (or even antenna elements in very large array
cases). Moreover, consistency across frequencies is obtained with textbook formulas
for determining reflection, diffraction, scattering, etc. coefficients. In the map-based
model the map is mainly a tool to achieve consistency.

As the map-based model is deterministic, the locations including the movement of
TX and RX and the links between the TX and RX are specific. The modeling work
starts by drawing or importing the environment, which is the map or, as an example,
the layout in the case of indoor hotspot. The METIS project defines a set of simplified
maps to be used in the analysis work, where maybe the Madrid grid is most often
used, describing a 3D irregular urban city scenario with varying building heights and
street widths. The other predefined maps are specified for indoor office and shopping
malls, stadia and open air festival environments. The simplified map, whether Madrid
grid or user-defined, can be used to simulate statistical parameters as is the case with
all mainstream channel modeling methodologies. In other words, even though the
environment is defined and the calculation method, that is, RT, is deterministic, the
output changes (is “statistical”) when the parameters in the environment are varied
and multiple runs are performed. For example, the location is varied by moving the
receiver(s). It corresponds then to the drop simulations of GSCMs. It should be noted
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Figure 8.18 Madrid grid.

that the outputs for single runs are also possible. The Madrid grid is presented in
Figure 8.18 along with an exemplary simulation case. The paths between a TX and a
RX are shown.

The map can also be site-specific. If not purely statistical parameters are searched
for but, for example, an installation in the field is studied, the map of that installation
site is imported and used as the environment. This enables, for example, network
optimization. This section does not cover how the map importing should be done; it
is only stated that to build an importer is a straightforward task and there are already
multiple softwares on the market for that purpose. The computational complexity
increases with site-specific maps as the level of detail normally increases from that
of the Madrid grid. The upper limit of the complexity is defined by the available
computational resources and the implementation. A snapshot of a tool is shown in
Figure 8.19. In that figure the buildings are simple 3D polygons, but they could be
modeled in more detail whenever necessary – with the cost of increased computational
effort. Part of this complexity definition is also the division of the surfaces into
tiles. The tile centers act as the point sources for diffuse scattering. The transceiver
locations are defined here and in that figure a BS and the user equipment are
positioned.

Once the macroscopic environment is specified, one may add random objects such
as pedestrians and vehicles – moving or static – or other blocking objects. The function
of random objects is to act as both shadowing and scattering items. Some other QD
models identify the main paths deterministically and draw randomly a set of additional
paths. The procedure to generate variation and stochastic elements of the map-based
model is different. Instead of random paths, the environment is partially defined in
a random way by introducing random objects. The concept of random objects is
described in more detail in Section 8.6.5.
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Figure 8.19 Screenshot of a map-importing tool; BS and user equipment positionings are also
shown.

Figure 8.20 Block diagram of the map-based model. In the labels the abbreviation pol. means
polarization. © 2016 IEEE. Reprinted, with permission, from [151].

The above process is the first part of the block diagram of the METIS map-based
model shown in Figure 8.20. The next parts are described below.

The determination of propagation pathways is usually the highest computational
workload. It starts by determining the coordinates of interaction points for parameter
vectors using mathematical tools of analytical geometry. The principles of this part
are intuitively easily understood, although writing an algorithmic description is com-
plicated.

The process starts either from the TX or RX locations (see Figures 8.18 and 8.19).
They are the first nodes. All possible second nodes are searched for; this is all nodes
that are visible either with a LoS path or via a single specular reflection. Possible path-
ways are identified by checking whether any obstacles are present. This procedure is
repeated to achieve any number of diffraction and specular reflection interactions. The
desired accuracy of the computational effort may be used as the limiting factor. After
the paths are determined the corresponding path lengths and arrival and departure
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angles are calculated. The directions are used in a later phase with the radiation
patterns of the TX and RX antennas.

Steps 7–11 in Figure 8.20 are for the determination of channel matrices for the path
segments found (through the nodes explained above). Each blocking or obstructing
object is approximated by a simple equivalent block. This can be a rectangular screen
or any other suitable model. The original METIS model used the screen always
perpendicular to the path blocking to avoid the use of multiple screens. This is,
however, implementation-dependent. Next, the propagation matrices are defined for
the interactions. These are complex 2×2 matrices describing the gains of polarization
components. The examples to calculate them are through the Fresnel reflection
coefficient for the specular reflections and through the uniform theory of diffraction
(UTD) in case of diffraction.

The theory for the interactions is strictly based on the physics, they are well-known
frequency-dependent formulas. However, if for example if for diffuse scattering at
mmWave a different formulation is found to be more appropriate, the implementation
is easily modified. A similar approach is valid for all steps mentioned; because the
computational complexity is high any improved and computationally more effective
formula could be used instead of those proposed in the METIS deliverable.

The last step is to compose the radio channel transfer function by embedding the
antenna radiation patterns in the losses and the composite propagation matrices. The
composed transfer function is time-dependent because of the possible motion of TX or
RX or time-dependent changes in the environment. The use of the composed transfer
function works similarly as in the case of GSCMs. The transfer function (compared
to the general format in eq. 8.14) is presented below to give an impression of the
intuitiveness of the model as the transfer function contains the antenna patterns g,
steering vectors (space angles) a, propagation transfer matrices h and divergence
factors F for the corresponding path segments. The transmitter and receiver subscripts
are left out of the formula below for simplicity; the formula is from an RX element u
to a TX element s.

H (t,τ) = �K
k=1gRx(−aRx)e

j2πdk (t)
λ

(


Ik

i=1hk,i(t)Fk,i

)
gTx(aTx)

λ

4π
δ(τ − τk). (8.83)

8.6.5 Advanced Material on Model Overview

Random objects add variation to environments defined by uncomplicated maps. The
motivation to introduce them is partially due to the severity of the blockage effect
at mmWave, partially due to identified scenarios of open-air festivals and ultradense
urban environments. A high number of people and their impact on the radio channel
has to be modeled somehow. Random objects are either dropped randomly on the
map with a predefined density or placed in a certain pattern (e.g., spectators in a sport
stadium). Objects cause both scattering and blockage (shadowing) of a propagation
path. A random object has a scenario-dependent size. The scattering effect is computed
by treating an object as a conductive sphere with a certain radar cross-section. For
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the blockage, the object is interpreted as a rectangular screen and the shadowing is
determined by KED across four edges of the screen.

Low complexity approximation of path losses utilizing Berg’s recursive model
together with identified specular reflections and LoS paths is also to be noticed.
A characteristic of the map-based model is that it does not contain a separate path-loss
model. This may be a drawback for quick field strength evaluations. On the other
hand, it was not seen as feasible to first determine the absolute path contributions
and then to normalize the gains and to utilize an empirical path-loss model on top of
that. Partially to support faster field strength predictions, the map-based model has an
option to utilize principles of Berg’s recursive model [152] for urban street canyons
and similar. It is a simpler way to approximate contributions of paths compared to, for
example, the UTD.

The map-based model has not gained a similar position as geometry-based
stochastic channel models, though the first formulas for the interactions were proposed
already decades ago, and they have been also verified multiple times by measurement.
When looking at reasons for not being widely used, the computational cost is probably
the first item to tackle. The path finding may be very time-consuming if an intelligent
algorithm is not used or the environment contains many details or the number of paths
to find is high (for high accuracy). The algorithm question is an implementation issue;
when writing the code any possible way to speed up the calculation should be used.
For example, there might be ways to deduce that not all the surfaces or scatterers are
electromagnetically visible to the transceivers, or that their electromagnetic effect is
negligible. A large set of examples are found in the literature [153–156].

The number of details to take into account defines also strongly the computation
time. The surfaces are divided into tiles, with tile centers acting as point sources for
specular or diffuse scattering. The raster of the surfaces is a factor here.

The third factor for the computational complexity is the number of paths to find.
This means how many reflections and/or diffractions should be searched for. The
reflections are calculated much faster than the diffractions. Furthermore, the diffrac-
tions are most often more lossy. Therefore, depending on the simulation application,
the appropriate number of reflections and diffractions should be defined a priori. The
path loss for the diffractions is easily so high that no multiple diffractions can be
reasonably included.

An option to speed up the simulation is to accelerate it using hardware. Graphics
card-based so-called accelerator cards are already less expensive than a laptop and
they offer significant improvements in calculation performance.

The latest 3GPP mmWave channel model TR 38.901 [120, section 8] contains an
alternative model called map-based hybrid. This model is similar to the one described
here but with differences in the random object handling and, more importantly, with
the addition of stochastic cluster creation. The idea of the hybrid is that the determin-
istic modeling suffers in certain cases from the lack of diffuse paths, and a way to
overcome this is to add random paths (clusters). Random paths are added also in cases
of missing information about the environment and when the computational complexity
is reduced through the stochastic add-ons without sacrificing accuracy. The 3GPP
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hybrid model contains rules about how to create those clusters very similar to the
primary stochastic model in the same TR 38.901. This kind of addition of components
to the model means the model is flexible for future editions. The hybrid model is not
calibrated, which means the implementations are not compared against a specific test
case; this is the reason why the use of the model is on a per-company basis whenever
“the system performance is desired to be evaluated or predicted with the use of digital
map to take into account the impacts from environmental structures and materials.”

Another way to handle the complexity of diffuse scattering is through the use of
geometric stochastic propagation graphs (GSPGs) [157–160]. The diffuse tail of the
CIR is computationally intractable and in many cases it is not calculated because the
energy level in the tail is significantly lower compared to the beginning of the CIR.
The main MPCs like the LoS path and first reflections are modeled by the map-based
model. However, if the dense MPC of the CIR (higher-order interactions) is desired,
GSPG is computationally a very attractive option. Note that the discussion for R-rays
does not use the geometry of the environment, that is, it is a random process. Here, the
creation of the channel transfer function is divided into two parts: the deterministic
part with, for example, a map-based model for the dominant paths; and the stochastic
part with GSPG for the scattering on walls (geometry-dependent, but with unknown
structures on wall surfaces). The diffuse tail may be with an unbounded number of
components.
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9.1 Background

Device-to-device (D2D) radio channels have fundamentally different properties com-
pared to those of conventional cellular (device-to-infrastructure, D2I) channels. The
main reason for this is that most often both the receive antenna and the transmit
antenna are located at low heights, and hence there is more interaction with objects
in the close neighborhood of the devices. The difference is especially pronounced for
outdoor links, where a base station (BS) would be high above ground (typically 10 m
for microcells, and up to 100 m for macrocells), while all devices are at street level.
Consequently, in D2D, over-the-rooftop propagation is not a viable mechanism, and
street-canyon propagation is more strongly affected by shadowing objects such as cars
and trucks. One important class of outdoor D2D systems is vehicle-to-vehicle (V2V)
communications, which implies strong mobility. A different class are people located
more or less stationary in outdoor cafes, plazas, etc. In indoor situations, the difference
between D2I and D2D propagation mechanisms is less pronounced, and the range of
validity for many indoor channel models includes the D2D case.

In both D2D and D2I networks, user equipment mobility, human presence and
finite multipath persistence are the principal factors that degrade link availability.
Because the reflecting surfaces in most manmade environments can be modeled as
horizontal and vertical planes, ray-based channel models used in D2D simulations in
which the user equipment is located at comparable heights are effectively 2D with
limited components above or below the horizontal plane. Ray-based channel models
used in D2I simulations in which the user equipment and base transceiver station
(BTS) are located at different heights are effectively 3D with significant elevation
angle components, and are therefore much more complex.

9.2 Path Loss

A first impact of the different propagation conditions is the path-loss model. When the
two devices are on the same street, then a conventional path-loss model, as discussed
in Chapter 5, is appropriate. If the devices are on orthogonal streets, the model of [1],
based on measurements (at 6 GHz) in and around Munich, Germany, proposes
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where dt and dr denote the distance of the transmitter (TX) and receiver (RX) to the
intersection center, respectively, wr is the width of the RX street, and xt is the distance
of the TX from the wall. The other variables are fitting factors. Note that this type of
model might also be applicable for D2I, in particular in a microcellular scenario.

Relatively little previous channel modeling work has addressed the needs of
millimeter-wave (mmWave) D2D network simulations. Representative work includes
[2], which compares measurements of angle-dependent propagation at 38 and
60 GHz and [3], which uses ray-tracing simulations to assess path-loss exponent
and shadowing variance for both line-of-sight (LoS) and indirect paths. The results
confirm that LoS channels experienced far less path loss and delay spread than indirect
(reflected) channels, and that fewer useful indirect paths are available at 60 GHz than
at 38 GHz. Measurement-based models have recently been used to characterize
path loss in cellular peer-to-peer outdoor environments and V2V scenarios [3, 4].
Measurements conducted in these scenarios are used to build upon some of the
standard path-loss models.

Device-to-device measurement and modeling analysis conducted in [5] demon-
strate that the well-known theoretical free space (FS) and Stanford University interim
(SUI) empirical path-loss models can be modified to fit the analytical results. Measure-
ments were conducted in outdoor environments (flat and dense vegetation) at 60 GHz.
The FS and SUI path-loss models were modified by applying slope correction factors
such that they match the measurement based 1 m close-in (CI) FS reference distance
path-loss model (eqs. 9.2 and 9.3):

PLFS,Mod(d)[dB] = αLOS(PLFS(d) − PLFS(d0)) + 20 log10(fGHz)

+ PL(d0) + Xσ with d0 = 1 meter,
(9.2)

PLSUI,Mod(d)[dB] = αNLOS(PLSUI(d) − PLSUI(d0)) + 20 log10(fGHz)

+ PL(d0) + Xσ.
(9.3)

The slope correction factors were calculated using the MMSE (minimum mean
square error) approach for both the LoS and non-LoS (NLoS) environments. Overall
results demonstrate that the modified models resulting from slope correction factors
match closely with the trend given by the measurement-based CI model. Similar
analysis is also conducted for D2I scenarios at 73 GHz and again the slope correction
factors are successfully computed to match SUI and FS models to the CI FS reference
distance model [5].

https://doi.org/10.1017/9781009122740.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.010


Peer-to-Peer Networking 213

9.3 Shadowing

Shadowing also requires some new and improved modeling. Traditionally, the cor-
relation of the shadowing between the different links originating at the BS has been
modeled; this can be described in a rather straightforward way through spatial corre-
lation functions.

For communication between two moving devices only (e.g., two cars), the conven-
tional shadowing model might still hold, in particular under the assumption that the
shadowing only depends on the distance between the devices. Under this assumption,
it does not matter whether the change in distance is created by the movement of one
or two devices. Alternatively, ray-tracing results also show that the autocorrelation
function can be modeled as the product of the autocorrelation functions when only the
TX and only the RX are moving, respectively [6].

Reference [7] suggests a 2D sum of sinusoids (SOS) method to generate the cellular
shadowing landscape. For the P2P case, [8] extends it to a 4D one:

s(x,y,u,v) =
N∑

n=1

cn cos[2π(fx,nx + fy,ny + fu,nu + fv,nv) + θn], (9.4)

where s(x,y,u,v) is the simulated shadowing value based on a 4D map (x,y,u,v), and
where (x,y) and (u,v) give the location of the two mobile stations (MSs) respectively.
N is the number of sinusoids we use. The random phase set {θn} with uniform distri-
bution between [0,2π] can be generated before the simulation. The spatial frequency
set {fn}, and amplitude set {cn} are computed by sampling the 4D power spectral
density of the shadowing process, which is given by

�(fx,fy,fu,fv) = F{(RP 2P (�x,�y,�u,�v)}
An =

∫ ∫ ∫ ∫
In

�(fx,fy,fu,fv) dfxdfydfudfv

cn = 2Anσ(d0d1),

(9.5)

where F indicates the spatial Fourier transform, and {In} is a sampling frequency set
of fx,fy,fu,fv with unit step size. σ is the shadowing standard deviation, which is
a function of d0d1. The exact sampling method does not play a significant role here.
Note, however, that shadowing itself is not stationary (variances change when moving
over large distances). Thus, one can dynamically update the amplitude set when d0d1

changes. Note that continuity of the shadowing realizations has to be ensured (similar
in spirit to continuous-phase frequency shift keying).

However, when multiple links are investigated, we have to describe the correlation
of the shadowing for the different links. Proper implementation of the shadowing
in a physically meaningful way can be difficult, and requires careful definition of
stationarity regions for shadowing (compare [6]). Measurements at 28 GHz conducted
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in [9], demonstrate that spatial autocorrelation of individual multipath components
(MPCs) reaches 0 after 2 and 5 wavelengths in LoS and NLoS scenarios respectively.

For communication between two pedestrians holding devices, the body shadowing
plays an important role; it is noteworthy that a “rotational” shadowing, that is, shadow-
ing depending on the orientation of the person, occurs in addition to a “translational”
shadowing as a person is moving on a trajectory (i.e., walking) (see [10, 11]).

Shadowing by building structure and furnishings, finite persistence of MPCs due
to interruptions in reflecting surfaces and human presence are the major causes of
signal blockage in both D2D and D2I mmWave links. Human presence is particularly
difficult to manage and has been extensively studied. Typical results include those
reported in [12–17]. These measurements, which together include data collected at
2, 4.7, 26, 27, and 73 GHz, demonstrate the rapid rate and considerable depth of
fading encountered when a mmWave path is blocked by a person and the possibility
of using beamswitching to mitigate the effect of such fading.

A lot of work has been done toward improving pre-existing human blockage models
based on measurement campaigns. A 73 GHz D2D human blockage measurement
campaign presented in [12, 15], demonstrates that the double knife-edge diffraction
(DKED) approximation underestimates human body shadowing, while uniform theory
of diffraction (UTD) models overestimate it. Measurement campaigns reported in
[13, 15, 18] have demonstrated that a four-state piecewise linear model can be used
to accurately model blockage events in D2D scenarios. According to the model, the
shadowing event can be described as:

SE(t)[dB] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rdecay × t, for 0 ≤ t ≤ SEmean
rdecay

SEmean, for SEmean
rdecay

≤ t ≤ tD − SEmean
rrise

SEmean − rrise × t, for tD − SEmean
rrise

≤ t ≤ tD

0, otherwise

. (9.6)

Parameters corresponding to the blockage events, such as signal strength, fade
duration, rising and decay rates and level crossing rate were extracted from the mea-
surement data and were successfully used to fit the four-state model. A very similar
human blockage parametric model based on empirical data from a comprehensive
measurement campaign was also developed for the D2I scenario in [4].

9.4 Dispersion

For the modeling of the angular and delay dispersion, the same modeling methods as
for D2I can be used (see Chapter 8). Of course, the numerical values for the delay and
angular spreads might be different, but generally there is no change in the fundamental
modeling method.
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9.5 Temporal Variations

There are two distinct groups of D2D channels, depending on the dynamics of the
nodes, that is, if the devices themselves are moving or not. In the first case, devices at
both link ends can move, sometimes very fast. In addition, scatterers and shadowing
objects can also move. This is, e.g., the case for V2V channels, for which extensive
research has shown that the channel statistics typically change over time and hence
the conventional assumption about wide-sense-stationary uncorrelated scattering
(WSSUS) is only fulfilled for rather short time intervals, and moderate frequency inter-
vals. Stationarity bandwidths and times have been measured in the centimeter-wave
range [19, 20], and for D2I links at mmWaves [21], but not for D2D links at mmWaves.

In order to handle the nonstationarities from a channel modeling perspective, the
most straightforward solution is often to use a geometry-based stochastic channel
model (GSCM), where the nonstationarities are automatically taken care of and mod-
eled by the randomly placed scatterers in the environment. Another approach is based
on tapped delay lines, such that the location (delay) of the taps is either adjusted
continuously, or a birth/death process of the taps is implemented [22].

In static or nomadic scenarios, the two nodes do not change with respect to each
other. This occurs, for example, in machine-to-machine communications (static nodes)
or peer-to-peer (WiFi direct) links between laptops (nomadic scenarios). In that case
the Doppler spectrum of the channel is determined by moving objects in the surround-
ings. Typically the Doppler spread is low as many of the dominant scatterers are static
as well, and hence the coherence time of the channel can be quite large.

9.6 Conclusions and Future Work

Ray-based channel models used in D2D simulations in which the user equipment is
located at comparable heights are effectively 2D with limited elevation angle compo-
nents. Ray-based channel models used in D2I simulations in which the user equipment
and BTS are located a different heights are effectively 3D with significant elevation
angle components, and are therefore much more complex.

If trace data from mobility models that capture the movement of both the user
equipment and people within the coverage area can be overlaid onto building outline
data, link availability can be assessed using simple ray-tracing methods. The time
required to execute such site-specific simulations may be excessive, however. This
raises the possibility that statistical simulations based upon site-general models may
be faster and more effective for the purposes of fairly comparing alternative network-
ing schemes. If such approaches are used, it may be helpful to develop correlation
models that relate path loss to delay spread and K-factor similar those developed for
macrocell environments in [23] so that the capacity of individual links can be more
efficiently estimated.
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10.1 Human Blockage Modeling Overview

Human blockage causes temporal variations to radio channels when a mobile device
is in motion and some plane waves constituting the radio channels are blocked by a
human body. Even when two sides of communications are static, moving human bod-
ies often shadow some plane waves, leading to time-varying radio channel responses.
Shadowing of plane waves due to human bodies makes the shapes of the Doppler
spectrum significantly different for the stationary and mobile links. It is most straight-
forward to incorporate human blockage effects into radio channels through their geo-
metric descriptions. This allows us to define dynamic motions of human bodies in
relation to the locations of communicating devices, from which it is possible to analyze
interactions the between the human bodies and each plane wave. Available models of
human blockage therefore are defined by the shapes and materials of blocking objects.
Blockage losses are determined by simple mathematical formulas, most of which are
motivated by diffraction of plane waves around the blocking objects. The models
are therefore physically sound, while their properties such as shapes, dimensions
and materials are statistically defined and determined to fit measurements. The main
task of modeling human blockage is therefore to choose reasonable properties of the
blocking objects. This chapter covers human blockage models with different shapes
and material properties of the blocking objects, with mathematical representations
to estimate the shadowing losses in addition to free-space losses of a plane wave.
A similar survey addressing existing human blockage models is available in the recent
literature [1].

10.2 Absorbing Screen Models

10.2.1 Double Knife-Edge Model of an Absorbing Screen

The human body has been popularly modeled as an absorbing screen. The simplest
shape of the screen is a vertically infinitesimal strip and is called a double knife-
edge model. This is illustrated in Figure 10.1 [3]. It is possible to obtain reasonable
estimates of the receive (RX) field behind the body using double knife-edge diffrac-
tion (DKED) from the absorbing screen. Diffracted fields from the two sides of the
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Figure 10.1 Popular absorbing screen models of a human body. (a) Double knife-edge model.
© 2020 IEEE. Reprinted, with permission from [2]. (b) Triple knife-edge model.
(c) Double knife edge model with a head and shoulders.

absorbing screen are considered. First, let us start from a half-plane absorbing screen
with a point transmit (TX) source and RX point, whose geometry is illustrated in
Figure 10.2. The RX field is given by

E = 1 + j

2

{(
1

2
− C(ν)

)
− j

(
1

2
− S(ν)

)}
E0, (10.1)

where E0 is the RX field when there is no absorbing knife edge; C(ν) and S(ν) are
cosine and sine Fresnel integrals given by

C(ν) + jS(ν) =
∫ ν

0
exp

(
j
π

2
t2
)
dt, (10.2)

ν = −h

√
2

λ

(
1

d1
+ 1

d2

)
, (10.3)

where λ is the wavelength. The formulas apply regardless of polarization of the inci-
dent waves. The Fresnel integral eq. (10.2) can easily be solved numerically using
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Figure 10.2 (a) A half-plane absorbing screen and (b) a wedge between two points of TX and
RX. © 2020 IEEE. Reprinted, with permission from [2].
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Figure 10.3 (a) A human body blocking the LoS between the TX and RX point sources. (b), (c)
Two subproblems for solving the shadowing effects due to a human body.

built-in functions of commonly available computational tools. Equation (10.2) works
best under the conditions that d1,d2 � h and d1,d2 � λ.

Let us consider a human body of 0.2 m width walking across 1 m distance on a
line perpendicular to the TX–RX line, as shown in Figure 10.3(a). It is possible to
calculate the relative field strength behind the body by dividing the original DKED
problem in Figure 10.3(a) into two subproblems illustrated in Figures 10.3(b) and
10.3(c). The subproblems consist of half-plane absorbing screens with top edges cor-
responding to the different sides of the body. The field from each subproblem is solved
by eq. (10.1), where the reference line-of-sight (LoS) field is given by

E0 = λ

4π(d1 + d2)
exp

(
−j2πf

d1 + d2

c

)
, (10.4)
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Figure 10.4 The normalized RX field at various radio frequencies due to human shadowing
along the walking path. The geometry of the human body and TX and RX locations are
defined in Figure 10.3.

where c is the velocity of light. The total field at the RX is expressed by the sum of
the fields solved from the two subproblems as

EDKED = Ea exp

(
−j2πf

�da

c

)
+ Eb exp

(
−j2πf

�db

c

)
, (10.5)

where Ea and Eb are diffracted fields observed at RX, and �da = dTA+dAR−d1−d2,
�db = dTB +dBR −d1 −d2 are extra propagation distances of the two diffracted paths
compared to the LoS, respectively.

The total RX field normalized to the LoS, that is, |EDKED/E0|, is illustrated in
Figure 10.4 for different radio frequencies. It must be noted that the Fresnel integral
eq. (10.2) is not necessarily valid at lower radio frequencies since the conditions
d1,d2 � h and d1,d2 � λ are not met. Still, the example illustrates possible influence
of the radio frequency on blockage losses. The wave propagation between TX and RX
points occurs in a local region defined by the Fresnel zones and is most significant in
the first Fresnel zone. As the width of Fresnel zones decreases as the radio frequency
of the link increases, the width of the first Fresnel zone becomes smaller at higher
frequencies. For the lowest frequency of 0.9 GHz in the given link, the width of the
first Fresnel zone is around 0.86 m, which is four times larger than the given width of
the human body; hence we observe a lower blockage effect compared to the highest
frequency of 60 GHz. It is also noteworthy that the total RX field fluctuates in the
shadowed region due to constructive and destructive interference of two diffracted
paths from the sides of the absorbing screen. The fluctuation is more apparent in the
higher frequencies. It is important to average this small-scale fluctuation out from
the RX field when comparing measurements and models. Thanks to its simplicity,
the DKED model is also used in estimating link attenuation when multiple human
bodies block a propagation path [4, 5]. For evaluating the human blockage attenuation
more accurately, [6] modifies the DKED model to account for the TX and RX antenna
radiation patterns.
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10.2.2 Multiple Knife-Edge Model of an Absorbing Screen

Different from the DKED models, where the human body is modeled as a single
infinitesimally long absorbing strip along the z-axis, [7] assumes that the human
blockage is characterized by two vertical absorbing strips, as illustrated in Fig-
ure 10.1(b), where the top edge height of the strip is defined as that of a human body.
The two strips intersect orthogonally and may have different widths, representing
the width and thickness of a human body. Depending on the orientation of the two
intersecting strips, only one of the two strips with the larger cross-section seen from
the TX–RX link is considered for calculating the diffracted paths. A diffracted path
from the top edge of the strip is considered in addition to the side diffracted paths,
leading to the triple knife-edge diffraction (TKED) model of a human body. As the
diffracted field eq. (10.1) does not depend on polarizations of the waves, the field at
the RX point is given by

ETKED = EDKED + Eh exp

(
−2πf

�dh

c

)
, (10.6)

where �dh = dTHR − d1 − d2, dTHR is a 3D distance between the TX source and RX
observation point through the top edge of the half-plane vertical absorbing strip.

There are more complex human body blockage models taking into account not
only a torso, but also shoulders and a head [7–9], as illustrated in Figure 10.1(c).
The models are based on an absorbing screen, making use of eq. (10.1). The multiple
knife-edge diffraction (MKED) model considers paths from each edge and estimates
the blockage losses by summing their field strength. Furthermore, the orientation of
the human body, α, defined in Figure 10.1(c), leads to variation of the human blockage
loss. When applying eq. (10.1) to calculate the fields from each edge, the height h,
distances d1 and d2 in eq. (10.1) can be set by h = h′ cos α, d1 = DTP ± h′ sin α
and d2 = DRP ± h′ sin α for h′ = hb1,hb2,hs1, hs2 for −π/2 ≤ α ≤ π/2; when the
orientation of the human body is perpendicular to the TX–RX line, that is, α ∼ ±π/2,
the thickness of the human body WT is used instead of h. It is again noted that the
diffraction coefficients do not depend on wave polarizations because the human body
model is expressed as absorbing screens.

The TKED and MKED models provide better agreement with measurements in
general at the expense of the increased complexity of the model and possibly compu-
tational load. The increased model complexity will become more apparent when the
orientation of a human body is arbitrary and when mobile and base station antenna
heights are different so that the Fresnel zones of the LoS path illuminates above the
chest of a human body.

10.2.3 Conducting Screen and Wedge Models

The authors of [9] calculate diffraction coefficients from each edge of a finitely con-
ducting human body screen by assuming that each edge is a wedge with a zero wedge
angle. The difference from the MKED model is that the screen is now conducting
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and not absorbing. In this case, the uniform theory of diffraction (UTD) is used for
deriving the RX field [10]. Given the wedge geometry depicted in Figure 10.2, the
diffracted field is given by

Ewg = E0
e−jks′

s′
D⊥‖

√
s′

s(s′ + s)
e−jks, (10.7)

where the polarization-dependent diffraction coefficient D⊥
‖ for a finitely conducting

wedge is given by eq. (10.8).

D⊥‖ = −e−jπ/4

2n
√

2πk
×
{

cot

(
π + (φ − φ′)

2n

)
· F (kLa+(φ − φ′))

+ cot

(
π − (φ − φ′)

2n

)
· F (kLa−(φ − φ′))

}
+
{
R

⊥‖
0 cot

(
π − (φ + φ′)

2n

)
· F (kLa−(φ + φ′))

+ R⊥‖
n cot

(
π + (φ + φ′)

2n

)
· F (kLa+(φ + φ′))

}
(10.8)

The function F (·) in eq. (10.8) is the Fresnel integral, given as

F (x) = 2j
√

xejx
∫ ∞
√

x

e−jτ2
dτ, (10.9)

and furthermore, in eq. (10.8),

L = ss′

s + s′
, (10.10)

a±(β) = 2 cos2
(

2nπN± − β

2

)
, (10.11)

β = φ ± φ′, (10.12)

where n defines the exterior wedge angle to be nπ and N± are the integers that most
nearly satisfy the following two equations:

2πnN+ − β = π, 2πnN− − β = −π. (10.13)

Finally, R
⊥‖
0 and R

⊥‖
n are the polarimetric Fresnel reflection coefficients of a plane

wave on the 0- and n-faces, where incident and reflecting angles are given by φ′ and
nπ − φ, respectively. Possible singularity of the cotangent functions in eq. (10.7)
around the reflection and shadowing boundaries is mitigated through the approxima-
tion

cot

(
π ± β

2n

)
· F (kLa±β) � n

[√
2πkL sgn ε − 2kLεejπ/4

]
ejπ/4, (10.14)

with ε defined by

β = 2πnN± ∓ (π − ε). (10.15)
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In this manner, it is possible to take into account realistic conductivity and permittiv-
ity of a human body. To improve the estimation of diffracted field from right-angle
wedges, [11] proposes a different approximation of the diffraction coefficients using
inverse problem theory. It is noteworthy that the wedge diffraction becomes a thin
screen when n = 2, allowing us to calculate blockage losses due to finitely conducting
screens using eq. (10.7). The diffraction coefficient from a finitely conducting wedge
is also applicable to other types of shadowing objects than human bodies, such as
building corners [12].

10.3 Cylinder Models

10.3.1 Circular Cylinder Models

Human blockage models based on cylinders have also been popularly considered in
the literature [13, 15–18]. When a cylinder is circular in cross-section and is a perfect
electric conductor (PEC), closed-form polarimetric diffracted fields from the cylinder
can be derived based on the geometrical theory of diffraction (GTD) as [19]

Ez =
∞∑

n=1

De
nEi

[
exp

{−(jk + 
e
n)τ1

}+ exp
{−(jk + 
e

n)τ2
}] exp (−jksd)√

8jπksd
,

(10.16)

where two propagation paths of distances τ1 and τ2 deliver energy between points
P1 and P2 and are attenuated according to a constant 
n. For the electric field, this
constant is given by


e
n = αn

a
Mejπ/6, (10.17)

where −αn denotes the nth root (zero) of the Airy function Ai(·) [20]. Finally, Dn and
M are given by

Dn = 2MAi′(−αn)−2
ejπ/6, (10.18)

M =
(

ka

2

)
, (10.19)

where Ai′ denotes a derivative of the Airy function and k = 2π/λ is a wave num-
ber. It must be noted that the GTD solutions have singularity around the transition
region between the lit and shadowed regions. Analytical UTD solutions for a con-
ducting cylinder are limited, for example, to a thin lossy material coating [21] and
to sufficiently far-away RX location from the cylinder [22]. The solutions are for
normal incidence of a plane wave to a cylinder, making it possible to analyze the
scattering problem in 2D space. When the scattering problem extends to 3D as oblique
incidence of a plane wave to consider, for example, scenarios with different heights
of TX and RX antennas, closed-form solutions of the scattering field do not exist.
It is necessary to rely on a numerical electromagnetic field solver [23] and more
extensive numerical integration [24] in this case.
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Figure 10.5 (a) Circular [13] and (b) elliptic cylinder models of link blockage. © 2020 IEEE.
Reprinted, with permission, from [14].

10.3.2 Elliptic Cylinder Model

Let us consider a cylinder with an elliptic cross-section. We assume that the center
of the ellipse coincides with the z-axis of the Cartesian coordinate system [14]. The
distance between the two focal points of the ellipse is assumed to be 2h. The ellip-
tical coordinates on the horizontal plane, defined by the ξ–η domain as depicted in
Figure 10.5, have a relationship with the Cartesian x–y coordinate as

x = h cosh ξ cos η,

y = h sinh ξ sin η.
(10.20)

In Figure 10.5, the locations are expressed on the elliptic coordinate system as, for
example, P (ξ,η). The ellipse representing the human cross-section is given by ξ = a.
The TX and RX antennas are located at P (ξ0,π) and Q(ξ0,0), respectively. Two
diffracting rays symmetric to the horizontal axis exist from the TX antenna at P to
the RX antenna at Q. The points of tangency where the two rays incident and leave
the cylinder are P1(a,π − η0), Q1(a,η0), P2(a,π + η0), and Q2(a, − η0). The radial
distance from the points of tangency to the TX and RX is PP1 = QQ1 = PP2 =
QQ2 = ρ. The following derives the total field at the RX Ez for vertical polarization.
First, the diffracted field at the RX due to the ray PP1Q1Q is
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E1z = A0ρ
−1 exp

{
jk(ρ + t1)

} ·
∞∑

n=0

Bn(ηP )Bn(ηQ) · exp
{

jk1/3τnα(t1)
}

[
1 − exp

{
jkT + jk1/3τnα(T )

}]−1
,

(10.21)

where ηP = π and ηQ = 0 are the η coordinates corresponding to the TX and RX
locations P and Q, respectively; k is the wave number; t1 denotes the arc length from
P1 to Q1; and T is the total arc length of the ellipse. A0 is a constant given by

A0 = ejπ/4

2π

√
λ. (10.22)

Bn(η) represents the diffraction coefficient

Bn(η) = π3/421/46−2/3ejπ/24k−1/12b1/6(η)[Ai′(qn)]−1, (10.23)

where qn denotes the nth root (zero) of the Airy function Ai(·) with Ai′ as its derivative
[20]. b(η) refers to the radius of the ellipse on the major axis as

b(η) = h(cosh a sinh a)−1(sinh2 a − sin2 η + 1)3/2. (10.24)

Furthermore, in eq. (10.21), α(x) is

α(x) =
∫ x

0
b−2/3(η)dη, (10.25)

and τn is

τn = ejπ/36−1/3qn. (10.26)

Then, the diffracted field E2z due to the ray PP2Q2Q can be evaluated in the same
way as E1z. Now the total diffracted field at the RX as a combination of the diffracted
fields from the two sides of the elliptic cylinder is given as Ez = E1z + E2z.

10.4 Other Heuristic Models

The human blockage models discussed so far estimate the extra attenuation through
calculating the diffracted fields behind blocking objects. Analytical formulas are avail-
able for the diffracted fields, either based on the GTD or UTD solutions, for simple
objects such as absorbing screens, conducting edges and PEC cylinders. The formulas
involve the Fresnel integral, which can be straightforwardly calculated thanks to built-
in functions available in many computational tools. However, the analytical formulas
may still be considered too complex to deserve implementing them in extensive radio
network simulations. Heuristic models are therefore devised to simplify the GTD and
UTD solutions using further approximations of the formulas, or observations and
modeling of measurements.
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10.4.1 Measurement-Based Models

Measurement-based models at millimeter waves include, for example, [26] that
characterize signal-level attenuation due to human shadowing observed in short-
range 60 GHz radio links using a Gaussian distribution. The work in [18] proposes a
piecewise linear approximation of time-varying shadowing at 60 GHz due to human
blockage. The approximation consists of a decreasing slope, shadowing dip and
increasing slope of the received field strength as time goes during a human blockage
event. The work in [27] models the transit rapid fading due to human blockage in
pedestrian crowds via Markov models based on measurements in a dense urban
environment at 73.5 GHz.

10.4.2 mmMAGIC Model

Simplified GTD and UTD solutions of the field behind blocking objects are pro-
posed in a European project, mmMAGIC [25]. The geometry of the blocking object
is illustrated in Figure 10.6, where the side and top views of the geometry shown on
the right side of the figure are named “projection 1 and 2” hereinafter, respectively.
The blocking object is a rectangular screen floating in the air, and is claimed to be
comprehensive enough to simulate different physical objects. The shadowing loss is
determined by diffracted fields from four edges of the screen as

EmmMAGIC =
⎛⎝1 −

2∏
i=1

2∑
j=1

sij

[
1

2
− phij

Ph
Fij

]⎞⎠E0, (10.27)

where

Fij =
{

1

2
− 1

π
tan−1

( νijπ

2

)}
cosψij, (10.28)

νij =
√
π

λ
(D1proj

ij + D2proj
ij − r

proj
i ), (10.29)

phij = exp

{−j2π

λ
(D1ij + D2ij )

}
, (10.30)

Ph = exp

(−j2π

λ
r

)
. (10.31)

Finally, sij is a sign parameter, which is 1 if the non-LoS (NLoS) condition holds
between TX and RX in projection i, while sij = sgn(D1ij + D2ij − D1ik − D2ik) if
the LoS condition is fulfilled in projection i, k = mod (j,2) + 1. When a multipath
which is subject to the present blockage is attributed to specular reflections, either the
TX or RX in Figure 10.6 should be replaced by its mirror image with respect to the
reflection surfaces. On the other hand, if a multipath which is subject to the present
blockage is not due to specular reflections, the TX and RX in the geometry should
be replaced by the previous and following interacting points of the multipath. The
term cosψij in Fij accounts for increase of diffraction loss in the shadowed zone
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Figure 10.6 Geometry of a link blockage model in [25]. The side and top views of the geometry
depicted in the top-right and bottom-right figures are called “projections 1 and 2,”
respectively in the text. Copyright © 2017 Ericsson AB, all rights reserved.

just behind the screen. When the relative distance to the screen is sufficiently large,
this factor may be neglected. The formulations fulfill Babinet’s principle, meaning
that different shapes of blocking objects such as a truck [25] may be synthesized by
combining multiple screens.

10.5 Comparison of Models

Figure 10.7 shows the human blockage loss estimated from different models covered
in this section. The comparison is made at three different radio frequencies: 15, 28
and 60 GHz. The loss is estimated for various azimuth orientations of a human body
with TX–body and RX–body distances of 2.76 m, and a body width and thickness
of 0.5 and 0.2 m, respectively. The body thickness is considered only in the elliptic
cylinder model, and otherwise only the width is adopted to define the dimension of
absorbing screens and circular cylinders. The azimuth orientation angle is defined so
that the cross-section of a human body is the largest at 0◦ and 180◦ because the human
points either to the TX or RX, while 90◦ orientation corresponds to the human body
pointing perpendicular to the TX–RX link. The human body is 1.0 m high and TX
and RX antenna heights are set such that the optical LoS of the TX–RX link hits the
center of the blocking object. The curves labeled with “UTD” are derived from eq.
(10.7) for a PEC screen of the specified dimension. All the curves are for vertically
polarized fields. It is assumed that reflections from a surrounding environment do not
exist. Measurement-based heuristic models are not shown here because they do not
consider physical dimensions of the human body.

https://doi.org/10.1017/9781009122740.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.011


Temporal Variance 229

(a)

(b)

(c)

Figure 10.7 Comparison of human blockage models for varying azimuth orientations of a
human body: (a) 15, (b) 28 and (c) 60 GHz.
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11 Terahertz Channels

Alenka Zajić, Theodore S. Rappaport, Andreas F. Molisch,
George MacCartney, Jr., Yunchou Xing, Camillo Gentile
and Kate A. Remley

11.1 Introduction

Frequencies from 100 GHz to 3 THz are promising bands for the next generation
of wireless communication systems because of the wide swaths of unused and unex-
plored spectrum [1–4]. These frequencies also offer the potential for revolutionary
applications that will be made possible by new thinking, and advances in devices,
circuits, software, signal processing, applications and systems. Work in [5] shows
that there is no fundamental physical channel impediment (e.g., rain, atmospheric
absorption) to utilizing sub-THz and THz bands up to 1 THz for future wireless
communications, and propagation on the horizon (e.g., elevation angles ≤15◦) may
not cause interference (same or adjacent bands) between passive satellite sensors and
terrestrial transmitters at frequencies above 100 GHz if the antenna patterns of the
transmitters are carefully designed to avoid radiation in space (e.g., adaptive antenna
patterns with very low sidelobes).

While 5G, IEEE 802.11ay and IEEE 802.15.3d [6, 7] are being built out for
the millimeter-wave (mmWave) spectrum and promise data rates up to 100 Gbps,
future 6G networks and wireless applications are probably a decade away from
implementation, and are sure to benefit from operation in the 100 GHz to 1 THz
frequency bands where even greater data rates will be possible [4, 8, 9]. The short
wavelengths at mmWave and THz frequencies will allow massive spatial multiplexing
in hub and backhaul communications, as well as incredibly accurate sensing, imaging,
spectroscopy and other applications described in [1, 10–13]. The THz band, which
we shall describe as being from 100 GHz through 3 THz, can also enable secure
communications over highly sensitive links, such as those needed in the military, due
to the fact that extremely small wavelengths (orders of microns) enable extremely
high-gain antennas to be made in extremely small physical dimensions [14].

The ultrahigh data rates facilitated by mmWave and THz wireless local area and cel-
lular networks will enable super-fast download speeds for computer communications,
autonomous vehicles, robotic controls, the information shower [15], high-definition
holographic gaming, entertainment, video conferencing and high-speed wireless data
distribution in data centers [4, 16]. In addition to the extremely high data rates, there
are promising applications for future mmWave and THz systems that are likely to
evolve in 6G networks and beyond. These applications can be categorized into main
areas such as wireless cognition, sensing, imaging, wireless communication and
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Table 11.1 Promising applications as mmWave and THz:PL the
potential for 6G [1].

Application Example use cases

Wireless cognition Robotic control
Drone fleet control
Autonomous vehicles
Human surrogate

Sensing Air quality detection
Personal health monitoring systems
Gesture detection
Explosive detection and gas sensing

Imaging See in the dark (mmWave camera)
High-definition video resolution radar
THz security body scan

Communication Mobile wireless communications
Wireless fiber for backhaul
Intra-device radio communication
Connectivity in data centers
Information shower (≥100 Gbps)

Positioning Centimeter-level positioning

position location/THz navigation (also called localization or positioning) [17, 18], as
summarized in Table 11.1.

There are tremendous challenges ahead for creating commercial transceivers at
THz frequencies, but global research is addressing the challenges. For example, the
DARPA T-MUSIC program is investigating SiGe HBT, CMOS/SOI and BiCMOS
circuit integration, in the hopes of achieving power amplifier threshold frequencies ft

of 500–750 GHz [19]. A survey of power amplifier capabilities since the year 2000
is given in [20]. It should be clear that the semiconductor industry will solve these
challenges, although new architectures for highly dense antenna arrays will be needed
due to the small wavelengths and physical size of RF transistors in relation to element
spacing in THz arrays.

Since there is very high atmospheric attenuation at THz band frequencies, espe-
cially at frequencies above 800 GHz, highly directional “pencil beam” antennas
(antenna arrays) will be used to compensate for the increased path loss due to the
fact that the gain and directivity increase by the square of the frequency for a fixed
physical antenna aperture size [21–23]. This feature makes THz signals exceedingly
difficult to intercept or eavesdrop [4, 14, 24, 25]. However, a narrow pencil-like beam
does not guarantee immunity from eavesdropping, and physical-layer security in THz
wireless networks and transceiver designs that incorporate new countermeasures for
eavesdropping will be needed [26].

Energy efficiency is always important for communication systems, especially as
circuitry moves up to above 100 GHz, and a theoretical framework to quantify energy
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consumption in the presence of vital device, system and network trade-offs was pre-
sented in [27, 28]. The theory, called the consumption factor theory (CF, with a metric
measured in bps/W), provides a means for enabling quantitative analysis and design
approaches for understanding power trade-offs in any communication system. It was
shown in [27, 28] that the efficiency of components of a transmitter closest to the
output, such as the antenna, have the largest impact on CF [27]. The power efficiency
increases with increasing bandwidth when most of the power used by components
that are “off,” for example, ancillary, to the signal path (e.g., the baseband processor,
oscillator or a display) is much greater than the power consumed by the components
that are in line with the transmission signal path (e.g., power amplifier, mixer, antenna)
[27, 28]. For a very simple radio transmitter, such as one that might be used in low-
cost IoT (Internet of Things) or “smart dust” applications where the power required
by the ancillary baseband processor and oscillator is small compared to the delivered
radiated power, the power efficiency is independent of the bandwidth [27, 29, 30].
Thus, contrary to conventional wisdom, the CF theory proves that for antennas with
a fixed physical aperture, it is more energy efficient to move up to mmWave and
THz frequencies which yield much wider bandwidths and better power efficiency
on a bits per second per watt (bps/W) basis, as compared to the current, sub-6 GHz
communication networks.

11.2 Challenges in Measuring and Modeling THz Channels

Terahertz wireless communications have two key advantages that can be combined to
achieve very high data rates. First, the usable frequency band around each frequency
is much larger, so each channel can have a much higher data rate. This alone can
increase data rates to several hundreds of Gbit/s, but spatial multiplexing is still needed
to reach Tbit/s data rates. Fortunately, THz frequencies allow smaller antennas and
antenna spacing, which provides for more communication channels within the same
array aperture within a chip package. However, to unlock the potential of THz wireless
communications, several challenges in channel measurements and modeling need to
be addressed.

11.2.1 Antenna Design

Directional antennas are necessary for THz communications due to the high path loss
at these frequencies [31, 32]. The high antenna directivity gives rise to a scattering
pattern that is somewhat different from other indoor (GHz or mmWave) channels
observed in [33–35]. In addition to scattering mechanisms that are common to all
indoor channels, in THz channels signals may reflect off of objects that are behind the
receive (RX) antenna, travel back to objects near the transmit (TX) antenna and reflect
back to be received by the RX antenna. This essentially produces a second arriving
path, even without any scatterers between the TX and RX. This phenomenon has
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(a) (b) (c)

Figure 11.1 Obstructed LoS measurement setups at (a) 30 GHz, (b) 140 GHz, and (c) 300 GHz.
© 2018 IEEE. Reprinted, with permission from [38].

been observed in two independent measurement campaigns [31, 36], and while these
reflections can be suppressed in channel sounding experiments by putting absorbers
around the TX and RX, in practice either antennas need to be designed to suppress
these reflections or channel models and communication systems need to account for
them. Furthermore, due to the high directionality of THz antennas, antennas should be
designed to be steerable to cover multiple directions a high number of multiple-input,
multiple-output (MIMO) antennas needs to be deployed to increase data rates.

11.2.2 Diffraction

Terahertz applications require a good understanding of propagation mechanisms
across all THz frequencies in order to determine suitable carrier frequencies and to
create reliable systems. Additional challenges arise when these systems are brought
to motion and propagation conditions vary over time. At mmWave frequencies, it
is very likely that line-of-sight (LoS) paths will be partially (or fully) obstructed
by objects in the channel as users change their positions. In contrast to lower-
frequency bands, where these objects would create multiple reflections, at mmWave
and THz frequencies, in addition to multiple reflections, diffraction can be a prevalent
propagation mechanism. Hence, it is very important to study the impact of diffraction
on channel propagation and how to properly account for this effect in channel
models [37]. To illustrate how diffraction changes across multiple frequencies,
Figure 11.1(a)–(c) shows measurement setups that allow us to study diffraction effects
at 30, 140 and 300 GHz in obstructed indoor propagation environments [38].

The cylindrical obstruction that initially blocks the LoS path was gradually moved
away from the LoS along a trajectory perpendicular to the LoS path. A ceramic mug
with a diameter of 8.5 cm was used as the obstruction for the 30 GHz and 140 GHz
bands. A metal pipe with diameter of 1.6 cm was used for the 300 GHz band in order to
accommodate the narrower beam width of the 300 GHz antennas. The obstructed LoS
(OLoS) measurements at 30 GHz had a TX–RX separation distance 40 cm and the
obstruction was diagonally moved from 0 to 200 mm off the midpoint with an offset
step of 5 mm. The OLoS measurements at 140 GHz had a TX–RX separation distance
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of 86.36 cm and the obstruction was moved from 0 to 200 mm off the midpoint of
LoS with a diagonal offset step of 2 mm. The OLoS measurements at 300 GHz had a
TX–RX separation distance 20 cm and the obstruction was moved from 0 to 34 mm
off the midpoint of LoS with a diagonal offset step of 1 mm.

To verify the existence of diffraction in the OLoS channel in the 30, 140 and
300 GHz bands, we compare the calculated uniform theory of diffraction (UTD)
diffraction gain using the method in [38, 39] to the measured diffraction gain with
respect to the cylindrical offset distances. The results in Figure 11.2(a)–(c) show
that the predicted UTD models align well with the measured diffraction gain in all
frequency bands. Note that in the shadow region of the 30 GHz channel, that is,
where the LoS channel is completely blocked by the cylindrical object, the measured
diffraction gain deviates 10 dB from the predicted UTD model. On the other hand,
this deviation is not observed in the 140 GHz and 300 GHz bands. The reason for
this deviation is the fact that cylindrical obstruction is more transparent to waves at
30 GHz than at 140 GHz and 300 GHz. Another interesting observation is that a
10 dB “dip” appears near the shadow–lit boundary in the measured diffraction gain
at 30 GHz and 140 GHz. The observed “dip,” or abrupt increase in diffraction loss is
a result of extra attenuation induced by the thickness of the ceramic mug’s wall. As
the offset distance increases to 35 mm, where the LoS path is tangent to the ceramic
mug, the fields have to propagate the longest distance through the ceramic material,
and therefore experience the largest attenuation. On the other hand, the “dip” is not
observed at 300 GHz because the increment of the offset step (i.e., 1 mm), is greater
than the thickness of the metal pipe, such that the measurement instance does not
capture the moment when the “dip” occurs.

The results show that all three frequency bands experience diffraction in obstructed
environments, but the diffraction effects become more prominent as frequency
increases and this effect needs to be carefully modeled. Furthermore, it was shown
that the UTD can be used across several frequency bands to model diffraction in OLoS
environments.

11.2.3 Reflection

The lower spectrum of mmWave (i.e., 30 GHz) can cover a longer communication
range and penetrate more easily through blockages, while the higher spectrum of THz
frequencies provides large available bandwidth along with compact antenna form fac-
tors at the cost of a shorter range and higher levels of attenuation. Material properties
are expected to impact specular reflections more at THz frequencies than at mmWave
frequencies [40]. To illustrate differences in reflection coefficient for different mate-
rials and arriving specular angles at 30 GHz and 300 GHz, Figure 11.3 plots the
magnitude of the reflection coefficient corresponding to different specular angles for
copper and aluminum plates, cardboard and wood. For wood, the magnitude of the
reflection coefficient is slightly higher in the 30 GHz channel than in the 300 GHz
channel. Metal plates and wood are observed as better reflectors at 30 GHz than
at 300 GHz, whereas cardboard is a better reflector at 300 GHz. Furthermore, the
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Figure 11.2 Comparison of modeled and measured diffraction gain at (a) 30 GHz, (b) 140 GHz
and (c) 300 GHz. © 2018 IEEE. Reprinted, with permission from [38].
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Incident angle (deg)

Copper
Cardboard
Wood

(a)

Incident angle (deg)

Aluminum
Cardboard
Wood

(b)

Figure 11.3 Measured magnitude of reflection coefficient for aluminum and copper plates,
cardboard, and wood in (a) 30 GHz and (b) 300 GHz bands.

interference from the LoS path causes more fluctuations to the reflection coefficient
measurement as the specular angle increases, and this effect is more pronounced in the
30 GHz band than in the 300 GHz band due to the wider antenna beamwidth. All of
these results indicate that careful measurements and modeling are needed to capture
the impact of reflections at THz frequencies.

Additionally, compared to THz device-to-device propagation, THz propagation in
metal enclosures (such as cameras or computer casings) experiences both traveling and
resonant waves. This yields a larger number of multiple reflections as well as a larger
multipath spread [41, 42]. Due to the resonant nature of the fields, the received power
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can vary with the transceivers’ position. To model propagation in such environments,
the casing needs to be carefully modeled.

11.2.4 Scattering

At mmWave and THz frequencies, the wavelength λ becomes small, motivating the
use of hybrid beamforming [43, 44] for “practical antenna packaging” [1, 45]. At
sub-THz frequencies, λ is comparable to or smaller than the surface roughness of
many objects, which suggests that scattering may not be neglected like it was when
compared to reflection and diffraction at microwave frequencies (300 MHz to 3 GHz)
[47–49].

Measured scattering patterns of different incident angles at 28, 73 and 142 GHz
are shown in Figures 11.4(b), 11.4(d), and 11.4(f), respectively. The peak measured
power (scattered power plus reflected power) was observed to occur at the specular
reflection angle. The peak measured power was greater at larger incident angles than
at smaller incident angles (e.g., a 9.4 dB difference between 80◦ and 10◦ at 142 GHz),
where most of the energy is due to reflection but not scattering [1]. At all angles of
incidence, measured power was within 10 dB below the peak power in a ±10◦ angle
range of the specular reflection angle, likely a function of antenna patterns. In addition,
backscattered power was observed (e.g., for 10◦ and 30◦ incidence at 142 GHz) but
was more than 20 dB below the peak received power. This means that the surface
of drywall can still be considered to be smooth even at 142 GHz and the specular
reflection is the main mechanism for indoor propagation at 142 GHz.

Comparisons between measurements and predictions made by a dual-lobe directive
scattering (DS) model (as introduced in [47, 50]) with TX incident angles of θi =
10◦, 30◦, 60◦ and 80◦ are shown in Figures 11.4(b), 11.4(d) and 11.4(f). Permittivity
εr = 4.7, 5.2 and 6.4, estimated from the reflection measurements using the Fresnel
reflection coefficient equation [51], are used in the dual-lobe DS model at 28, 73 and
142 GHz, respectively. It can be seen that simulations of peak received power (the sum
of reflection and scattering) at the specular reflection angle agrees well with measured
data (within 3 dB), confirming that scattering can be modeled approximately by a
smooth reflector with some loss (see (3)–(5) and (23) in [47]) when material properties
are known, while scattering at other scattering angles falls off rapidly.

11.3 Similarities to mmWave Propagation

There are notable differences seen at THz frequencies compared to mmWave sys-
tems (e.g., high phase noise and Doppler, limited output power and more directional
beams), which makes propagation more challenging [1, 51]. These differences can
make a fundamental impact on the channel characteristics for radio frequencies at
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(a)

(b)

(c)

Figure 11.4 Comparison between measurements and dual-lobe directive scattering (DS) model
plus reflected power using (3)–(5) and (23) in [47] at incident angles 10◦, 30◦, 60◦ and 80◦ (εr
= 4.7, 5.2 and 6.4 for drywall at 28, 73 and 142 GHz). © 2019 IEEE. Reprinted, with
permission, from [47]. (Cont. next page)
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(f)

Figure 11.4 (Cont.)
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Table 11.2 Indoor directional CI path-loss model at 28, 73 and 142 GHz for both LoS
and NLoS environments [53, 54].

28 GHz [53] 73 GHz [53] 142 GHz [51]

PLE σ PLE σ PLE σ
Env. (dB) (dB) (dB)

LoS 1.70 2.50 1.60 3.20 1.99 2.71
NLoSBest 3.00 10.80 3.40 11.80 3.03 6.91
NLoS 4.40 11.60 5.30 15.70 4.70 14.10

Figure 11.5 142 GHz directional path loss scatterplot and indoor directional CI (d0 = 1 m)
path-loss model for both LoS and non-LoS (NLoS) scenarios. Each circle represents an
LoS path-loss value, crosses represent NLoS path-loss values measured at arbitrary antenna
pointing angles between the TX and RX, and diamonds represent angles with the lowest path
loss measured for each NLoS TX–RX location combination. © 2021 IEEE. Reprinted, with
permission, from [52].

THz. However, indoor propagation measurements at 28, 73 and 142 GHz show that
the path loss after the first meter at THz frequencies (e.g., 142 GHz) is similar to
path loss at mmWave frequencies (e.g., 28 and 73 GHz) [51] and the multipath time
dispersion (time delay statistics) for mmWave and THz bands are somewhat similar
in mobile channels.

Figure 11.5 presents the directional path-loss scatterplot and best-fit CI path-loss
model [53, 55] at 142 GHz for both LoS and NLoS environments. The LoS path-
loss exponents (PLEs) are 1.7 at 28 GHz, 1.6 at 73 GHz and 2.0 at 142 GHz, as
shown in Table 11.2, showing that there is a bit more loss at 142 GHz, likely due to
atmospheric attenuation [1]. The NLoS Best PLEs and the NLoS PLEs are similar over
all three frequencies, respectively, with NLoS at 142 GHz having slightly less loss
than lower frequencies, likely due to greater reflected power as frequency increases
(see Figure 11.4).
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Table 11.3 Indoor omnidirectional CI path-loss model at 28, 73 and 142-GHz
for both LoS and NLoS environments [53, 54]

28 GHz [53] 73 GHz [53] 142 GHz

PLE
σ

PLE
σ

PLE
σ

Env. (dB) (dB) (dB)

LoS 1.10 1.80 1.30 2.40 1.75 2.88

NLoS 2.70 9.60 3.20 11.30 2.69 6.59

Figure 11.6 NYU best-fit omnidirectional CI path-loss model at 142 GHz for both LoS and
NLoS situations. The diamonds represent the measured omnidirectional path loss at 142 GHz
in NLoS environments and the circles, conversely, represent the LoS situation. © 2021 IEEE.
Reprinted, with permission, from [52].

Figure 11.6 shows the NYU best-fit omnidirectional CI path-loss model at 142 GHz
and the scatterplot of synthesized omnidirectional measured path loss at 142 GHz.
The LoS omnidirectional PLE at 142 GHz is 1.75, which is less than the directional
LoS PLE of 1.99, showing that omnidirectional antennas would capture power from
all directions as compared to directional antennas, but they would cover a shorter
link range due to the lower antenna gain. The NLoS omnidirectional PLE is 2.69,
which is close to the NLoSBest PLE of 3.03 and is less than the NLoS PLE of 4.70 at
142 GHz, indicating that accurate beamforming algorithms are required to maintain
indoor NLoS links at 142 GHz.

The omnidirectional PLE and shadowing parameters of the CI path-loss model with
1 m free space reference distance for both LoS and NLoS are summarized in Table
11.3. The indoor LoS PLEs are 1.10, 1.30 and 1.75 at 28, 73 and 142 GHz, respec-
tively, indicating that the partition loss at 142 GHz is higher than at 28 and 73 GHz. In
the NLoS case, the PLEs are 2.70, 3.20 and 2.69 at 28, 73 and 142 GHz, respectively.
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The indoor office large-scale path-loss results show that there is remarkable similar-
ity in terms of PLEs over 28, 73 and 142 GHz for both LoS and NLoS scenarios, when
referenced to the first meter free-space reference distance [52, 56]. The results imply
that THz channels are similar to today’s mmWave wireless propagation channels
except for the path loss in the first meter of propagation, when energy spreads into
the far-field.

A 3D spatial statistical channel model was presented in [52] for mmWave and
sub-THz frequencies in both LoS and NLoS scenarios based on the extensive mea-
surements at 28 and 140 GHz in an indoor office building. This work showed that
mathematical distributions of the number of multipath clusters, RMS delay spread,
the number of multipath components (MPCs) or subpaths per cluster can be applied
for frequencies above and below 100 GHz, although the statistical means of those dis-
tributions decrease with increasing frequency [52, 56]. The similarities in the wireless
channels were also observed for outdoor urban microcell environments at 28, 38, 73
and 142 GHz, as presented in [57].

11.4 New Applications and New Channels for New
Environments at THz

Terahertz signaling will be applied in a number of emerging applications. Since the
applications determine the environments in which channel measurements and models
need to be made, we will give here a brief review. In general, the applications fall
into two classes: (1) those where the extremely high data rates of THz links are
essential, and (2) those where the special propagation properties of THz frequencies
allow improved sensing of the environment.

The first type of application includes small-cell systems and Wi-Fi with extremely
high throughput – both per-user and in aggregate. The small wavelength of THz
radiation allows the construction of massive MIMO arrays (on the order of 10,000
antennas) within a reasonable form factor, which can be exploited not only for
improved range, but more importantly for increasing the number of users that can be
supplied at the same time. In this context, the angular dispersion, and thus separability,
of the MPCs is essential. This holds for both outdoor environments and indoor (Wi-Fi-
type) applications. At the same time, some indoor applications, such as virtual reality,
require data rates of up to 80 Gbit/s. The transmission of uncoded 8k video requires
similarly high data rates; this could be needed both for communication between
computers and peripherals, as well as between 8k cameras and infrastructure. This is
far beyond the capabilities of current Wi-Fi systems such as 802.11ad (operating in
the mmWave band), and constitutes an interesting area of application. Indoor office
environments have been measured at THz frequencies for a long time [32, 36, 58–
61]. The characterization of outdoor environments is more recent. The first double-
directional measurements over a larger (100 m) distance were made in [62]. They
showed considerable angular spread due to reflections as well as vegetation scattering
(see Figure 11.7).
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(a)

(b)

Figure 11.7 Photo of environment (top) and power angular spectra at 140 GHz carrier frequency
in an outdoor environment. © 2019 IEEE. Reprinted, with permission, from [62]. (Cont. next
page)

Another application for THz communication is the “information kiosk,” a TX to
which a user would step up. Since TX and RX would be close together, large amounts
of information could be downloaded wirelessly in a short time. This concept goes
back to the “infostation” proposed by Rutgers University in the late 1990s, though of
course the use of THz signaling allows much higher data rates than was envisioned 25
years ago [63]. Infostations have several advantages in the context of THz signals: (1)
the short distance allows high data rates even with small TX power, thus eliminating
the need for (expensive) high-power transmit amplifiers); (2) the typical arrangement
that a person holds an RX to a predetermined location eliminates the need for adaptive
antennas and beamtracking; and (3) the short distance between TX and RX reduces
the delay spread and thus relaxes requirements for equalizers [64].

https://doi.org/10.1017/9781009122740.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122740.012


246 Alenka Zajić et al.

(c)

(d)

Figure 11.7 (Cont.)

In a similar vein, THz signaling is also very suitable for high-speed connections in
wireless data centers [16, 65–67]. Traditionally, cables transmit data between different
servers. However, this is cumbersome when rearrangements of the server racks are to
be done, and may be subject to mechanical damage to the cables. In contrast, wireless
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connections between servers allow extremely high throughput, and the long time over
which a connection remains stationary eliminates concerns about overhead for beam
adjustment and tracking. Due to the short distances within data centers, atmospheric
attenuation is not a concern. The large number of metallic objects is, however, antici-
pated to lead to more multipath, so this environment has to be considered differently
than traditional indoor environments.

Another “classical” application for extremely high data rates is cellular backhaul
[68]. Irrespective of whether the mobile access occurs in the THz, mmWave, or sub-
6 GHz bands, the aggregate data rate for a 5G base station (BS) can easily reach tens
of Gbit/s. If wired (optical fiber) backhaul is to be avoided, then THz wireless offers
the best possibility of meeting those data rate requirements. These THz connections
have fixed location and antenna orientation, but due to the longer distances they need
to cover, they are more sensitive to atmospheric absorption and disturbances. Many of
the outdoor measurements that have been made in the past (see below) are related to
this and similar application cases.

Related to the backhaul problem are connections between “mobile base stations”
located on high-speed trains and fixed infrastructure nodes [69–72]. For example,
an in-train network might accumulate data from all passengers in a high-speed
train. Due to the large number of such passengers (several hundred), even at regular
Wi-Fi link speed for the individual users, the aggregate data rate is in the tens of
Gbit/s. Transmission of the aggregated data to fixed BSs along the train line then
constitutes the backhaul problem. Additional difficulties arise from the fact that the
target direction of the beamforming is time-variant and appropriate beamtracking
needs to be implemented. However, in contrast to standard mobile access, the
trajectory of the mobile end is highly predictable, so that only the deviations
from the nominal speed need to be compensated. A similar situation occurs in the
backhaul from drones that are used as mobile BSs to cover rural areas or temporary
hotspots [73].

As the data rates exchanged between boards in a computer, and between chips on a
board, increases, the wired connections previously used for such applications become
insufficient. In many distributed computing applications, several hundred Gbit/s needs
to be exchanged between chips and boards. Wireless THz connections are a promising
way to alleviate these bottlenecks. In addition to the requirement of high through-
put, there is also a requirement for low latency, since computations on one board
might depend on the data fetched from another. Consequently, time-consuming signal
processing, such as forward error correction (FEC) decoding for large codeblocks,
or complicated equalizers, are not an option for these applications. The links thus
must be designed in a manner that enables low error probability with simple detection
techniques. Furthermore, the links must be designed to prevent snooping by possible
interceptors. For all these purpose, detailed channel models are again required. Exten-
sive measurements and models have been performed in [31, 74, 75] and related con-
siderations on desktops [76]. Channel models for on-chip and on-board devices tend
to be stochastic models, though deterministic models can be helpful in determining
the optimum placement of the antennas or arrays [74, 77–79].
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Moving to yet smaller spatial scales, the field of nanonetworks, that is, networks
in which TX and RX are on a molecular scale, has excited considerable interest in
the literature.1 Such networks consist not only of communications links, but need to
involve sensors, actuators, storage and the capability to communicate with larger net-
works through suitable gateways. A key application for those networks is healthcare,
where the nanodevices could be injected into a human body to sense/help a diagnosis,
and also actuate treatments. Other applications include environmental monitoring and
agriculture. Challenges for practical implementation are manifold, but from a propaga-
tion channel point of view one of the biggest challenges lies in devising experimental
setups for channel measurements, and the design of suitable antennas. Note that in this
field the main advantage of the use of THz frequencies is not the high bandwidth or
data rate, but rather the small wavelength that allows the construction of antennas that
fit onto the nanodevices.

Terahertz can also be used for environmental sensing [80–82]. In this case, it is not
a high data rate that is important, but rather the presence of characteristic absorption
lines and scattering properties of various chemical compounds (including water and
oxygen) and pollutants that plays a role. Such a sensing system might set up, for exam-
ple, a long-distance fixed wireless access link, and measure the absorption/scattering
in a particular band to determine the density of pollutants in the air. It has even been
shown that (for an indoor scenario) open flames can change the transfer function of
the channel in the THz regime, thus enabling fire sensing. Backscatter from particles
can also be determined by THz transceivers, again allowing a determination of the
density of certain types of scatterers in the environment.

Finally, THz radar offers a number of advantages [83–86]. Compared to LiDAR, it
is more robust to dust, clouds, fog and other weather impairments. Compared to tradi-
tional microwave radar, it provides significantly improved resolution. Since a channel
sounder is essentially a bi-static radar, there is an obvious connection between chan-
nel investigations and radar. Applications of THz radar in the civilian space mainly
revolve around automotive radars (where they provide better resolution than the cur-
rent 24 and 73 GHz radars), and have also been investigated for body scanners for
both security (airport) and medical applications. Furthermore, air-to-ground radars
have been considered for the military space.

From this enumeration of applications, one can see that channel measurements in
a large variety of environments are required. As will be outlined next, only a few of
those cases have been analyzed in any depth. There thus will be a need in the next
years to perform extensive measurement campaigns.

11.5 What Is Known to Date

There are three main channel sounding techniques in the THz range: THz time domain
spectroscopy (THz-TDS), vector network analyzer (VNA)-based channel sounding

1 Different papers use the expression “nanonetworks” for different applications. For example, [87] uses it
for short-distance (0.1–5 m) local area networks. Others use it for networks of chip-to-chip links. We
will follow the terminology first suggested by Jornet and Akyildiz [88].
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and correlation-based sounding [22, 23, 60, 89–95]. THz-TDS is based on sending
ultrashort pulsed laser light from a common source to the TX and the RX. The TX
converts the ultrashort light pulse to the THz range and the detector at the RX trans-
forms the field strength of the received THz impulse into an electrical signal when
the optical impulse hits the detector [89, 90]. The short THz-TDS pulses cover a
huge bandwidth and are excellent for estimating electrical and scattering parameters
of sample materials. However, due to the large size of the spectrometer and the limited
output power, this approach is not suitable to be used over a wide range of indoor or
outdoor scenarios or for measuring the wireless channels at more than a few meters of
distance.

Four-port VNAs are commonly used for THz-range channel sounding, where the
two additional ports (compared to the traditional two-port VNAs used at lower fre-
quencies) are used to generate a local oscillator for the mixer in the frequency exten-
ders that are used to increase the VNA stock frequency range to much higher frequen-
cies through heterodyning [90, 91]. A VNA sweeps discrete narrowband frequency
tones across the bandwidth of interest to measure the S21 parameter of the wireless
channel. Due to the long sweep time across a broad spectrum, which can exceed the
channel coherence time, VNA-based channel sounders are typically used in a static
environment and require a cable that can be a tripping hazard over tens or hundreds of
meters [23, 91, 92].

Correlation-based channel sounder systems transmit a known wideband pseudo-
random sequence. At the RX, the received signal is cross-correlated with an identical
but slightly delayed pseudo-random sequence, providing autocorrelation gain at the
expense of a slightly longer acquisition time (on the order of tens of ms) [91, 92].
Sliding correlator chips have recently been produced that offer a 1 Gbps baseband
spread spectrum sequence [96], and sliding correlators generally enable cable-free
operation over useful mobile communication distances of up to 200 m at sub-THz
frequencies, depending on transmit power, bandwidth and antenna gain [23, 91].

Indoor 3D spatial statistical channel models for mmWave and sub-THz bands were
derived from indoor radio propagation measurements performed from 2014 to 2019 at
28, 73 and 142 GHz, with link distances up to 40 m, in an indoor office environment on
the ninth floor of 2 Metrotech Center, Brooklyn, New York, using a wideband sliding
correlation-based channel sounder with steerable horn antennas at both the transmitter
and receiver [52]. Over 15,000 power delay profiles (PDPs) were derived from the
measurements and were used to extract channel statistics such as the number of time
clusters, cluster delays and cluster powers. The resulting channel statistics enable the
establishment of a statistical channel model from 28 to 140 GHz for the indoor office
scenario. Side-by-side comparisons of propagation characteristics (e.g., large-scale
path loss, multipath time dispersion, scattering) across a wide range of frequencies
from mmWave to THz were made to study the key similarities and differences in the
propagation channels [52].

A correlation-based channel sounder at 300 GHz with 8 GHz bandwidth was pre-
sented and evaluated in [90] with the same wired clock source being connected to both
the TX and RX, which used a subsampling technique to avoid the expense of high-
speed A/D converters. A 12th-order M-sequence was used with a subsampling factor
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of 128, and the theoretical maximum measurable Doppler frequency was 8.8 kHz,
equivalent to a velocity of 31.7 km/h at 300 GHz [90].

Propagation measurements in the 140 GHz band were conducted in a shopping mall
[97, 98] using a VNA-based channel sounder with a 19 dBi horn antenna at the RX,
and a 2 dBi bicone antenna at the TX. It was shown that the numbers of clusters and
MPCs in each cluster in the 140 GHz band, an average of 5.9 clusters and 3.8 MPCs
per cluster, were fewer as compared to the 28 GHz band, which had an average of 7.9
clusters and 5.4 MPCs per cluster [97].

Work in [99, 100] presented D-band propagation measurements in a very close-
in environment around a personal computer using a VNA-based sounder. Indoor
directional path losses at 30, 140 and 300 GHz were compared using different
path-loss models in [100]. Although the LoS path loss models predicted a PLE
close to 2.0, the multifrequency close-in free-space reference distance model with
a frequency-dependent term (CIF) and alpha–beta–gamma (ABG) model had better
PLE values and standard deviation stability for these indoor environments than the
single-frequency CI and floating interception (FI) models [25, 53, 100–102].

Measurements at 100, 200, 300 and 400 GHz with a 1 GHz RF bandwidth THz-
TDS channel sounder showed that both indoor LoS and NLoS (specular reflection
from interior building walls) links could provide a data rate of 1 Gbps [103].

Propagation loss measurements for estimating the performance of a communication
link in the 350 GHz frequency band were presented in [104], where a VNA-based
system was used with 26 dBi gain co-polarized horn antennas at both the TX and RX.
The presence of water absorption lines in the spectra at 380 GHz and 448 GHz was
very evident. Data rates of 1 Gbps for a 8.5 m link and 100 Gbps for a 1 m TX–RX
separation distance were shown to be possible via wireless communication links at
350 GHz [104].

Channel and propagation measurements at 300 GHz were presented in [31, 36,
105], where a VNA-based channel system with 26 dBi gain horn antennas at both TX
and RX was used to analyze the channel characteristics at 300–310 GHz with an IF
frequency bandwidth of 10 kHz. Maximum transmission rates of several tens of Gbps
for LoS and several Gbps for NLoS paths were shown to be achievable [105].

THz-band indoor propagation measurements were conducted in [61] using a VNA-
based system covering a frequency range from 260 GHz to 400 GHz with 25 dBi
gain horn antennas at both TX and RX within a TX–RX separation range of 0.95 m.
Measurement results showed that Tbps throughput was achievable in the THz band.
However, robust beamforming algorithms will be required in THz-band communica-
tions. Acoustic ceiling panels, which were shown to be good reflectors in the THz
band, could be used as low-cost components to support NLoS links [61].

11.6 Summary

Ultra-broadband THz communication systems are expected to help satisfy the ever-
growing need for smaller devices that can offer higher-speed wireless communication
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anywhere and anytime. In the past years, it has become obvious that wireless data rates
exceeding 100 Gbit/s will be required several years from now. This large bandwidth
paired with higher-speed wireless links can open the door to a large number of
novel applications such as ultrahigh-speed picocell cellular links, wireless short-
range communications, secure wireless communications for military and defense
applications, chip-to-chip communications and on-body communications for health-
monitoring systems. To enable future THz-range wireless communications, it is
imperative to understand propagation mechanisms that govern communication and
to develop channel models that can be used to describe general channel properties
needed for system design or for algorithm testing.

The propagation mechanism of electromagnetic (EM) waves at THz frequencies is
strongly dependent on the material properties of the constituents in the propagation
channel. The high reliability required for high-data-rate and low-latency applications
demands the characterization of the impact of blockages from cables, humans and
small-scale mobility (e.g., rack vibrations) on THz propagation. It is therefore of
utmost importance that the propagation channel environment be characterized before
the development of a THz communication system that will operate in this environ-
ment. Each of the new applications that will be possible due to THz short-range com-
munications have environments that are unique in their structural layout and scatterer
(i.e., reflective objects in the environment) distribution, all of which contribute to path
loss and other system-impacting attributes. For example, the data center environment
is unique in its peculiar arrangement of server rack stalls with constituent blades
perpendicularly assembled in each rack.

The challenges often experienced with propagation channel characterization range
from difficulty in constructing channel sounders – equipment used for the wireless
channel measurements at a particular frequency – to lack of expertise in conducting
the measurement campaign, particularly in unconventional propagation channels such
as between chips on a motherboard. There are alternatives to channel measurements,
such as ray-tracing, which involves simulating the EM properties of the propagation
channel using a computer aided design (CAD) model. It is important to note that ray-
tracing suffers numerous shortcomings, as the simulation model is never a true reflec-
tion of the actual behavior of the propagation environment. Additionally, development
of statistical channel models that can be applied to all THz communication-relevant
environments are missing.

Although there is ongoing work on a physical layer design for THz communi-
cations, achieving super-low latency (<1 ms) for any wireless link implementation
remains elusive. Another challenge is how to avoid the use of power-hungry high-
resolution baseband devices such as analog-to-digital converters (ADCs) and digital-
to-analog converters (DACs). The energy efficiency of even low-resolution ADCs
in finer technology nodes is limited by more stringent thermal noise requirements.
A physical layer design that addresses the aforementioned challenges is needed for the
development of a future wireless THz data centers. Additionally, low latency and low
energy consumption channel equalization is needed. Finally, MIMO configurations
and designs need to be investigated, especially in LoS environments.
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Alenka Zajić, Theodore S. Rappaport, Martin Käske and Reiner Thomä

The parameters of the channel models are traditionally determined using the measure-
ments. Thus, it is critical to understand the connection between channel measurements
and channel models. This will address two important questions: (1) How do we use
the channel measurements in estimating model parameters to “fit” the models to the
measurements? And (2) What kind of measurements do we need to make to measure
the various model parameters? Finally, understanding this relationship will also help in
propagating the uncertainties in channel parameters obtained from the measurements
into the models. This chapter starts with a general physical model which is a special-
ization of the general model introduced in Chapter 2 to the practical case of uniform
linear arrays (ULAs). Section 12.2 discusses the sampled representation of the ULA
physical model that serves as a starting point for connecting measurements and mod-
els, as briefly discussed in Section 12.2.3. Section 12.3 discusses techniques for high-
resolution parameter estimation (HRPE) that can improve on the Fourier resolution
limits in the sampled representation of Section 12.2. Section 12.4 discusses extensions
to 2D uniform planar arrays (UPAs) and Section 12.5 introduces concepts related to
extending channel models to incorporate the hardware non-idealities related to the
channel measurement hardware. This is an important step in developing uncertainty
analyses of channel models..

12.1 Physical Channel Model for ULAs

The general model in Chapter 2 captures the physical propagation parameters (angles,
delays, Doppler shifts) more or less independent of the communication system or
channel sounder. If an antenna array is used on the transmit or receive side, the
continuous model will be sampled in the spatial domain. In this section, we outline
the specialization of the general physical model for commonly used ULAs.

Consider a system in which the transmitter (TX) and the receiver (RX) are equipped
with ULAs. In this case, the physical model can be expressed as a time-varying
transfer function as [1–4]

H(t,f ) =
∫

h(t,τ)e−j2πτf dτ =
Np∑
n=1

αnaR(θR
n )aT†(θT

n )e−j2πτnf ej2πνnt, (12.1)
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which represents a model for a multiple-input–multiple-output (MIMO) channel
connecting a multi-antenna transmitter with a multi-antenna receiver. The channel
is represented by the time-varying frequency response matrix H(t,f ) of dimension
NR × NT, where NT and NR are the number of (typically half-wavelength spaced)
antennas at the TX and the RX. The second equality in eq. (12.1) represents signal
propagation over Np paths, with αn, θT

n , θR
n , τn and νn denoting the complex

amplitude, normalized angle of departure (AoD), normalized angle or arrival (AoA),
delay and Doppler shift associated with the nth path. The normalized AoAs and AoDs
(spatial frequencies)

AoD: θT
n , AoA: θR

n ,

which are related to the physical angles, φR
n φ

T
n , defined with respect to the broadside

direction, via the relationship

θ = xA

λ
sin(φ) = 1

2
sin(φ),

where xA is the antenna spacing, and λ is the operating wavelength (corresponding
to the center of the operating frequency band). The second equality corresponds to
half-wavelength (critical) antenna spacing. The vector aT(θT) is an NT × 1 steering
vector at the TX for sending a signal in the direction θT, and aR(θR) is an NR × 1
response vector of RX array for a receiving signal coming from the direction θR.

For ULAs, the array steering and response vectors take the form of discrete spatial
sinusoids with the spatial frequencies θT,θR ∈ [−0.5,0.5] [2–4]:

aT(θT) = 1√
NT

[
1,e−j2πθT

, . . . ,e−j2πθT(NT−1)
]∗†

, (12.2)

aR(θR) = 1√
NR

[
1,e−j2πθR

, . . . ,e−j2πθR(NR−1)
]∗†

, (12.3)

where the superscript† denotes the Hermitian (complex conjugate) transpose and
∗ denotes complex conjugation. The quasi-static version of the analytical physical
model eq. (12.1) is given by

H(f ) =
Np∑
n=1

αnaR(θR
n )aT†(θT

n )e−j2πτnf , (12.4)

in which the Doppler shifts are small enough that the temporal channel variations over
the duration of measurement can be ignored.

The models of eqs. (12.1) and (12.4) are widely used for simulating wireless
channels. However, they assume knowledge of the parameters at perfect (infinite)
angle–delay–Doppler resolution. On the other hand, any sounder/system in prac-
tice has a finite resolution in the angle–delay–Doppler domains. Furthermore, the
statistical characteristics of the estimated channel parameters also depend on the
finite angle–delay–Doppler resolution of the channel sounding instrument [2, 5–7].
These challenges are accentuated at millimeter-wave (mmWave) frequencies due
to: (1) the lack of sufficient measurements in different operational environments;
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and (2) limited capabilities of existing channel sounders, for example, low spatial
resolution and/or mechanical beam pointing. Fundamentally, many technical issues
need to be addressed for estimating the angle–delay–Doppler channel parameters from
measurements collected by sounders in practice, especially for sounders equipped with
antenna arrays for directional measurements. The sampled channel representation
discussed next provides a good starting point for understanding the issues.

12.2 Sampled (Virtual) Representation of the Physical Model

A fundamental connection between the measurements made in practice and the physi-
cal model above (with continuous parameters) is revealed by a sampled representation
of the idealized model given in eq. (12.1) induced by four key parameters of the
channel sounder: (1) temporal (delay) resolution, (2) frequency (Doppler resolution),
(3) spatial resolution at the TX and (4) spatial resolution at the RX:

�τ = 1

W
, �ν = 1

T
; �θT = 1

NT , �θR = 1

NR , (12.5)

where W is the (two-sided) bandwidth of the system and T is the duration of the
probing signal (and coherent integration time of the system) [2, 7, 10]. The spatial res-
olutions are based on the assumption of critically (half-wavelength) spaced antennas,
which is generally the case for preserving all spatial information. In effect, the continu-
ous physical model in eq. (12.1) is replaced by a sampled (virtual) representation with
respect to uniformly spaced angles, delays and Doppler shifts at the above resolutions.
The impact of larger antenna spacings is discussed in [3] and smaller spacings in [9].

The sampled representation of the physical model eq. (12.1) is given by

H(t,f ) =
NR∑
i=1

NT∑
k=1

L∑
	=0

M∑
m=−M

Hv(i,k;	,m)aR(i�θR)aT†(k�θT)e−j2π	�τf ej2πm�νt,

(12.6)

where L and M represent the maximum number of resolvable delays and resolvable
Doppler shifts within the delay and Doppler spreads, τmax and νmax , respectively, and
are given by

L =
⌈τmax

�τ

⌉
= �τmaxW ; M =

⌈νmax

�ν

⌉
= �νmaxT  , (12.7)

where �· denotes the “ceiling” operation. The sampled representation is com-
pletely characterized by the angle–delay–Doppler (virtual) channel coefficients,
{Hv(i,k;	,m)}, which can be computed from the measured H(t,f ) as [2, 3]

Hv(i,k;	,m)= 1

T W

∫ T

0

∫ W/2

−W/2
aR†(i�θR)H(t,f )aT(k�θT)ej2π	�τf e−j2πm�νt dtdf .

(12.8)

In essence, the sampled channel representation eq. (12.6) is a 4D Fourier series
expansion of the time-varying spatial frequency response matrix H(t,f ) in terms
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of temporal, spectral and spatial sinusoids, with the sampled (angle–delay–Doppler)
channel coefficients serving as the Fourier series coefficients computed in eq. (12.8).
For a given system/configuration, the sampled representation is an equivalent repre-
sentation of H(t,f ) over the signaling duration T and bandwidth W and contains all
information about it. It is also an extension of the delay–Doppler sampled represen-
tation of (single-antenna) time-varying frequency response functions, introduced by
Bello [10], to include the spatial dimension.

The spatial sampling in eq. (12.6) induces an equivalent beamspace representation
of H(t,f ) given by

Hb(t,f ) = UR†H(t,f )UT ⇐⇒ H(t,f ) = URHb(t,f )UT†, (12.9)

where Hb(t,f ) is the beamspace representation, and the matrices UR and UT repre-
sent the spatial DFT matrices, corresponding to uniformly sampled directions from
eq. (12.5), which map the antenna domain into the angle domain (beamspace). The
beamspace channel representation is particularly useful at mmWave frequencies due
to the highly directional nature of propagation. It is a natural domain for representing
channel measurements made with directional antennas; for example, rotated horn
antennas or lens antenna arrays [6, 11, 12]. However, the resolution (beamwidth) of the
directional antennas needs to be carefully taken into account via their aperture/size and
their far-field patterns, as captured by eq. (12.9) for directional measurements made
with ULAs and lens arrays.

The Fourier series of H(t,f ) in eq. (12.6) can also be written in terms of delay–
Doppler component matrices as

H(t,f ) =
L∑

	=0

M∑
m=−M

HDD(	,m)e−j2π	�τf ej2πm�νt,

HDD(	,m) = 1

T W

∫ T

0

∫ W/2

−W/2
H(t,f )ej2π	�τf e−j2πm�νt dtdf . (12.10)

Similar to eq. (12.10), the beamspace time–frequency response matrix Hb(t,f ) can
also be decomposed in terms of delay–Doppler component matrices as

Hb(t,f ) =
L∑

	=0

M∑
m=−M

Hb,DD(	,m)e−j2π	�τf ej2πm�νt

Hb,DD(	,m) = 1

T W

∫ T

0

∫ W/2

−W/2
Hb(t,f )ej2π	�τf e−j2πm�νt dtdf . (12.11)

12.2.1 Partitioning of Paths Induced by the Sampled Representation

The sampled representation induces a partitioning of propagation paths that is very
useful for relating measurements to the physical channel parameters, as illustrated
in Figure 12.1. Essentially: (1) each sampled angle–delay–Doppler channel coeffi-
cient in eq. (12.6) is associated with an angle–delay–Doppler resolution bin of size
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(a) (b)

(c)

Figure 12.1 Illustration of path partitioning induced by the sampled representation. (a) path
partitioning in delay–Doppler. (b) Path partitioning in angle. (c) Path partitioning in
angle–delay–Doppler. First the paths are partitioned into different delay–Doppler resolution
bins. Then the paths in each delay–Doppler resolution bin can be further resolved in angle. Or
we could equivalently start with partitioning in angle and then further partition the paths in
each angle resolution bin in terms of delay–Doppler. Each sampled angle–delay–Doppler
channel coefficient has a distinct angle–delay–Doppler resolution bin.

defined by the system/sounder resolutions in eq. (12.5); and (2) a particular sam-
pled channel coefficient is approximately the sum of the complex path gains of all
paths whose angles (AoAs/AoDs), delays and Doppler shifts lie within the angle–
delay–Doppler resolution bin corresponding to the channel coefficient. This follows
from explicitly writing the sampled channel coefficients in eq. (12.8) for the physical
model eq. (12.1) [2]:

Hv(i,k;	,m) =
Np∑
n=1

αnfNR (θR
n − i�θR)fNT(θT

n − k�θT)

sinc(W (τn − 	�τ))sinc(T (νn − m�ν)), (12.12)
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where fN (x) = sin(πNx)
sin(πx) and sinc(x) = sin(πx)

πx
denote the Dirichlet sinc and sinc func-

tions, respectively, that are peaky at the origin and have a half-power mainlobe width
of approximately 1

N
and 1, respectively.

Delay–Doppler–angle power profiles: The sampled channel coefficients provide a
direct estimate of the power profile in angle–delay–Doppler that is commensurate with
the angle–delay–Doppler resolution of the sounder:

�ADD(i,k,	,m) = |Hv(i,k,	,m)|2, (12.13)

and from which the power profile in angle (A) only, or delay–Doppler (DD) only, can
be derived by summing over the remaining dimensions as:

�A(i,k) =
∑
	,m

�ADD(i,k,	,m) ; �DD(i,k) =
∑
i,k

�ADD(i,k,	,m). (12.14)

Similarly, the power profile in TX angle only or RX angle only can be obtained by
summing the 2D angle profile �A(i,k) over the remaining dimension, and the power
profile in delay only or Doppler only can be obtained from �DD(	,m) by summing
over the remaining dimension. In particular, an estimate of the total channel power can
be obtained by summing the angle–delay–Doppler power profile over all dimensions:

total channel power =
∑

i,k,	,m

�ADD(i,k,	,m) =
∑

i,k,	,m

|Hv(i,k,	,m)|2. (12.15)

The power profile estimates are also constrained by the resolution of the sounder,
as also implied by the path partitioning discussed above. Averaging over multiple
measurements can be used to improve the power profile estimates.

12.2.2 Matrix Channel Representation of the Physical and Sampled Models

We can also sample H(t,f ) in time and frequency at the delay (time) and Doppler
(frequency) resolutions, defined in eq. (12.5), to facilitate digital processing. The result
is two equivalent matrix channel representations, one in the time–frequency–aperture
domain, say Ht,f , obtained from H(t,f ) in eq. (12.6), and one in the Doppler–delay–
angle domain, say Gτ,ν , obtained from the virtual channel coefficients defined in
eq. (12.8) [2]. Let N = T W denote the (approximate) dimension of the temporal sig-
nal space (time–bandwidth product). The matrices Ht,f and Gτ,ν are both of dimen-
sion NNR × NNT, representing the dimensions of the spatiotemporal signal spaces
at the TX and the RX. Furthermore, the two equivalent matrix channel representations
are related through a linear transform:

Ht,f = UNNR Gτ,νV†
NNT ⇐⇒ Gτ,ν = U†

NNR Ht,f VNNT . (12.16)

The first equation is a matrix version of eq. (12.6), and the second equation is the
matrix version of eq. (12.8). For sounders with ULAs or UPAs, the linear transfor-
mations are unitary; that is, the matrices UNNR and VNNT are unitary [2]; in fact,
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they are DFT matrices induced by eqs. (12.6) and (12.8). However, the equivalent
channel representations Ht,f and Gτ,ν have very different structures. In particular,
the matrix Gτ,ν has a limited support and sparse structure due to the limited angular,
delay and Doppler spreads, and the sparse nature of propagation, mainly consisting
of line of sight (LoS) and strong (single-bounce) non-LoS (NLoS) paths, expected
at mmWave frequencies [13]. The concept of path partitioning is very useful for
relating the sparse structure of Gτ,ν to the parameters of the physical model. Further-
more, if we assume that the complex path amplitudes αn in the physical model (12.1)
are uncorrelated, then the elements of Gτ,ν (the angle–delay–Doppler coefficients in
eq. (12.8)) are approximately uncorrelated and the elements of Ht,f are samples
of a multidimensional wide sense stationary (WSS) process in time, frequency and
aperture [2]. This is an extension of the WSS uncorrelated scattering (WSSUS) model
in time and frequency introduced by Bello in [10].

12.2.3 Extracting Channel Model Parameters from Measurements

The basic idea is to exploit the fundamental multidimensional Fourier relationship
between the time–frequency–aperture channel representation Ht,f and the angle–
delay–Doppler representation Gτ,ν . Consider the quasi-static case eq. (12.4) for sim-
plicity. For channel modeling, the parameters of the physical model in eq. (12.4) – the
number of paths, and the delays, angles and complex amplitude for each path – need
to be estimated from channel measurements. At a basic level, the measurements are
limited by the Fourier resolution of the sounder as described above and captured by
the sampled representation.

As a starting point we can collect the measurements and estimate the model param-
eters using the matrix version eq. (12.16). For example, the measurements may be
in the aperture (antenna) and frequency domains to obtain Hf . We can then use
eq. (12.16) to estimate the matrix Gτ through a 2D DFT of Hf – one DFT for mapping
the frequency domain into the delay domain, and one for mapping the antenna domain
to the angle domain (beamspace). This estimate of Gτ provides a baseline estimate of
the sampled coefficients eq. (12.8) in the delay–angle domain commensurate with the
spatiotemporal resolutions of the sounder defined in eq. (12.5). In particular, depend-
ing on the noise floor and dynamic range, the entries of Gτ can be appropriately thresh-
olded to determine the “significant” angle–delay channel coefficients. This directly
leads to a baseline estimate of the physical model parameters in eq. (12.4): the number
of the “significant” thresholded coefficients is an estimate of the number of resolvable
MPCs, the coefficient values represent the complex gains of the resolvable paths, and
the delay–angle indices associated with each coefficient define the (sampled) delay
and angles associated with the corresponding MPC.

In many situations, this baseline estimate of the channel model parameters, based
on the critically sampled representation, is adequate. Oversampling in the angle–delay
(and Doppler) domains is also directly possible in the baseline estimate via eq. (12.8)
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by sampling at a finer resolution than the critical resolutions in eq. (12.5), as discussed
more concretely in the single-antenna special case in Section 12.2.4. In some cases
we may use HPRE methods, as discussed in Section 12.3, to improve the resolution of
the angle–delay–Doppler parameters even further. Based on the discussion above, we
see that it is critical to specify parameters such as the signaling duration, bandwidth,
antenna characteristics, signal-to-noise ration (SNR)-dependent threshold, sampling
resolutions and sounder dynamic range when reporting channel coefficients or extract-
ing model parameters.

We note that for some sounders the measurements may directly be in the beamspace
domain, as in the case of beamspace MIMO sounders using lens arrays from which the
angle–delay channel parameters can be estimated [6, 12, 14]. It is also worth noting
that directional measurements using mechanically rotated directional antennas (such
as horn antennas) also directly measure in the beamspace domain although typically at
a lower resolution. Such measurements can be used for channel parameter estimation
by using appropriate models for the far-field beampatterns for the horn.

12.2.4 Special Cases

12.2.4.1 Single Antenna Static Channel
Let us consider the simplest channel – a single-antenna multipath channel with no time
variation (no relative motion) – to illustrate the essential ideas behind estimating chan-
nel parameters from channel measurements and the role of sampled representation. In
this case, the physical model for the channel impulse response (CIR) is given by

h(τ) =
Np∑
n=1

αnδ(τ − τn), (12.17)

and the corresponding frequency response, defined in eq. (12.4), simplifies to

H (f ) =
Np∑
n=1

αne
−j2πτnf ≈

L∑
	=0

Hv(	)e−j2π 	
W

f , (12.18)

where the first equality represents the physical model, the physical model and the
approximate captures most of the channel power within the channel delay spread by
choosing L = τmaxW . The sampled channel coefficients can be computing from
H (f ) using eq. (12.8) as

Hv(	) = h̃(	�τ) = 1

W

∫ W/2

−W/2
H (f )ej2π	�τf df =

Np∑
n=1

αnsinc (W (τn − 	�τ)) ,

(12.19)

where the second equality represents the sampled representation in (12.6) and the
third equality corresponds to the physical model. The relation (12.19) states that due
to the finite sounder bandwidth, the “infinite resolution” physical model in eqs. (12.17)
and (12.18) is replaced by a “smoothed version” in which the delta functions in the
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idealized physical model are replaced by sinc(Wx) functions in eq. (12.19) centered
at the physical delays for different MPCs. This is illustrated in Figure 12.2, in which
the top plot shows the idealized physical MPCs. The bandlimited impulse responses
for different MPCs are illustrated in the middle plot of Figure 12.2 for a bandwidth of
W = 1 GHz. Finally, the bottom plot in Figure 12.2 shows the aggregate bandlimited
CIR (the sum of the individual bandlimited responses for different MPCs shown in
Figure 12.2 middle). The sampled (virtual) delay channel coefficients are also shown,
which are uniformly spaced samples of the “smoothed” (aggregate) impulse response
h̃(τ) (see eq. (12.19)).

Estimating delay parameters from measurements. Consider channel parameter
estimation in the context of Figure 12.2. The goal is to estimate the number of paths,
and the delay and amplitude for each path for a total of 2Np + 1 parameters. The
sampled representation provides an approximate estimate of the number of paths by
considering only the “dominant” channel coefficients – the samples whose magnitude
is above a certain threshold that depends on the SNR. For example, in the bottom
plot of Figure 12.2 five sampled coefficients (marked as “x”) are dominant. For this
case, each physical path would lead to about two dominant coefficients since the
actual physical path delays do not exactly align with the sample locations. However,
in Figure 12.2 two paths are very closely spaced – closer than the temporal resolution,
�τ = 1

W
= 1 ns – and thus cannot be distinguished in the smoothed aggregate CIR

in the bottom plot. By choosing a smaller threshold for “dominant” coefficients, the
sampled representation can include more coefficients/samples, and can approximate
the true bandlimited impulse response arbitrarily closely.

Oversampling in the sampled representation is also an attractive option. If the sam-
pling interval in eq. (12.19) is chosen smaller than the critical value (see eq. (12.5)),
then the peaks of the smoothed impulse response can be identified more accurately,
as illustrated in Figure 12.2 (bottom). These peaks correspond to the true underlying
delays for well-separated paths but one still cannot resolve paths whose delays are
within the critical delay sampling resolution of �τ = 1

W
, as is the case for the middle

two paths in Figure 12.2. The oversampling would identify three peaks in Figure 12.2:
two representing the true underlying delays of two well-separated paths, and one
representing a pair of unresolvable paths. We note that HRPE methods, discussed in
Section 12.3, are also impacted by this limitation; in particular, the maximum likeli-
hood estimation approach in Section 12.3.2 essentially corresponds to oversampling
and finding the peaks.

In essence, the oversampled representation captures the bandlimited CIR in terms
of the smallest number of nonuniformly spaced sinc(Wx) basis functions that are not
orthogonal. On the hand, the critically sampled virtual channel representation captures
the CIR in terms of a larger number of uniformly spaced sinc(Wx) basis functions
that are orthogonal. The two approaches represent different trade-offs from signal
processing, channel estimation and communication perspectives.

Path partitioning. The 	th sampled channel coefficient in eq. (12.19) is associated
with a virtual propagation delay of 	�τ = 	

W
. Since sinc(Wx) is concentrated around
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(a)

(b)

(c)

Figure 12.2 Top: Physical model represented by idealized (infinite bandwidth) MPCs. Middle:
The bandlimited impulse responses for individual MPCs. Bottom: The aggregate bandlimited
CIR and its sampled representation.
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x = 0 (with a half-power mainlobe width of approximately �τ = 1
W

), the critically
sampled virtual channel representation induces an intuitively appealing partitioning of
paths that follows from eq. (12.18) and is illustrated in Figure 12.2 (bottom plot): The
	th sampled channel coefficient represents (approximately) the sum of the responses
of all (unresolvable) MPCs whose delays lie within a resolution bin of size �τ = 1

W

centered around the 	th virtual delay. Thus, �D(	) = |Hv(	)|2 (or an oversampled
version) is also a direct estimate of the channel power delay profile (PDP).

Matrix representation. The sampled channel representation in eqs. (12.17)–(12.19)
can be further sampled in frequency with resolution �ν = 1

T
to yield a matrix repre-

sentation of the channel that is very useful for digital processing of measurements:

hf [k] = H (k�ν) =
L∑

	=0

Hv(	)e−j2π 	k
WT =

L∑
	=0

gτ[	]e−j 2π	k
N ⇐⇒ hf = UN gτ,

(12.20)

where N = T W is the (approximate) dimension of the space of signals of dura-
tion T and bandwidth W , hf and gτ are N-dimensional sampled representations of
the channel frequency response and the CIR, respectively, and UN is an N × N DFT
matrix. As is evident from eq. (12.20), the first L + 1 entries of gτ, corresponding
to the channel delay spread, carry most of the channel energy; the rest of the entries
are relatively small and can be set to zero. Note that for the matrix representation to
hold, oversampling in delay must be accompanied with a corresponding oversampling
in frequency satisfying �τ

�ν = T
W

. This simply increases the dimension of the matrix
representation to N ′ = T

�τ = W
�ν . From this matrix representation, it is clear that

the number of samples (in time or frequency or time–frequency), N = T W , must
be greater than the number of channel parameters to be estimated, 2Np + 1. Using
a larger N (by increasing T and/or W ) and/or by oversampling, the accuracy of the
estimates can be improved.

12.2.4.2 Single Antenna Delay–Doppler Channel
A time-varying single-antenna channel can be represented in terms of the delay–

Doppler spreading function h(τ,ν) = ∑Np

n=1 αnδ(τ− τn)δ(ν− τn) or equivalently by
its 2D Fourier transform, the time-varying frequency response function:

H (t,f ) =
Np∑
n=1

αne
−j2πτnf ej2πνnt ≈

L∑
	=0

M∑
m=−M

Hv(	,m)e−j2π 	
W

f e2π m
T

t, (12.21)

where the first equality is the physical model and the second approximation is the sam-
pled representation, in terms of uniformly spaced virtual delays and Doppler shifts,
whose coefficients can be computed as
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Hv(	,m) = h̃(	�τ,m�ν) = 1

T W

∫ T

0

∫ W/2

−W/2
H (t,f )ej2π	�τf e−j2πm�νt dtdf

=
Np∑
n=1

αnsinc (W (τn − 	�τ)) sinc (T ((νn − m�ν)) . (12.22)

As in the case of the static channel, the virtual delay–Doppler channel coeffi-
cients induce a partitioning of propagation paths in delay–Doppler as illustrated in
Figure 12.1(a). Analogous to eq. (12.20), a matrix representation for eq. (12.21)
can be developed by sampling H (t,f ) as ht,f [i,k] = H (i�t,k�f ), resulting in
Ht,f = UNGτ,νU†

N where Ht,f and Gτ,ν are N × N matrices representing ht,f [i,k]
and gτ,ν[	,m] = Hv(	,m), respectively, and UN is an N × N DFT matrix. Again,
the dominant nonzero entries are limited to 2M + 1 Doppler indices and L + 1 delay
indices, as reflected in eq. (12.21).

12.2.4.3 Multi-antenna Channel
Another important special case of the general model in eqs. (12.6) and (12.8) is a
multi-antenna channel that is nonselective in time and frequency; that is, there is
negligible variation in time and frequency over the duration and bandwidth of interest,
resulting in H(t,f ) = H and L = M = 0 in eq. (12.8). In this case, using eq. (12.8),
the spatial channel matrix H can be expressed as

H =
Np∑
n=1

αnaR(θR,n)aH
T (θT ,n)

=
NR∑
i=1

NT∑
k=1

Hv(i,k)aR(i�θR)aH
T (k�θT ) = UNR

HbU†
NT

, (12.23)

where the first equality represents the physical model and the second equality is the
virtual (beamspace) channel representation in terms of uniformly spaced AoAs and
AoDs at resolutions defined in eq. (12.5). The last equality is a matrix representation
of the N×N antenna-domain matrix H in terms of a 2D DFT of the N×N beamspace
channel matrix Hb whose entries are the virtual (beamspace) channel coefficients that
can be computed as

Hb(i,k) = Hv(i,k) = a†
R(i�θR)HaT (k�θT )

=
Np∑
n=1

αnfNR
(θR,n − i�θR)fNT

(θT ,n − k�θT ). (12.24)

The last equality in eq. (12.24) relates the beamspace channel coefficients to the
physical paths in terms of the Dirichlet sinc function fN (θ) = sin(πNθ)

sin(πθ) , which is
peaky around the origin with a half-power mainlobe width of approximately the spatial
resolution of the array of size N . The matrices UNR

and UNT
in eq. (12.23) repre-

sent the (unitary) spatial DFT matrices that map the antenna domain into the angle
domain (beamspace). The columns of these matrices are given by steering/response
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vectors, defined in eq. (12.3), corresponding to uniformly sampled directions with
spacings defined in eq. (12.5). The beamspace channel coefficients partition the prop-
agation paths in terms of angular resolution bins, as illustrated in Figure 12.1(b).

12.3 High-Resolution Parameter Extraction and the Physical Model

The resolutions in the sampled representation, defined in eq. (12.5), are the Fourier
resolution limits, imposed by the finite bandwidth, temporal duration and array aper-
tures of actual channel sounders or systems. Thus the sampled representation serves as
a natural bridge between the infinite resolution physical model and the finite resolution
sounder measurements. If the channel is (as is common) represented as a finite sum of
MPCs or plane waves (plus, possibly, a low-parameter-dimension diffuse component),
and the spatiotemporal signal space dimension is significantly larger than the number
of paths, then the resulting channel sparsity can be exploited to obtain estimates of
the physical parameters (angles, delays) at a higher resolution [15, 16]. This situation
usually applies in mmWave channels, since the large bandwidth and large array sizes
(in units of wavelength) imply that the number of MPCs is much smaller than the
signal space dimension, even if the number of MPCs is quite large in absolute terms.
A number of methods may be used for such HRPE, including maximum likelihood
(ML), MUSIC and ESPRIT [8, 17, 18], and compressed sensing/sparse recovery meth-
ods for sparse channel estimation [13]. Since the first application of an HRPE to
mmWave measurements in [19], a number of papers have used such techniques to
provide improved accuracy for MPC parameter estimation.

For a given channel sounder, HRPE techniques have the potential to increase the
resolution and accuracy of channel data analysis beyond the Fourier limits by exploit-
ing a-priori knowledge about the form of channel measurements for different sets of
parameters. One example is frequency estimation of two sinusoids whose separation
in frequency is less than the Fourier resolution �ν = 1

T
. In Fourier analysis, resolving

two frequencies would require two distinct peaks in the spectrum to be visible. How-
ever, the result of Fourier analysis is a spectrum with not just two distinct frequency
values. In the case of two sinusoids it would be apparent from the spectrum that
there is more than one component since the spectrum would not look like one of a
single sinusoid. But there is no direct way to determine both frequencies. In HRPE
on the other hand, the estimator exploits a-priori information about the number of
sinusoids contributing to the spectrum and the analytical form of the resulting Fourier
transform – in effect a parametric representation of the Fourier spectrum in terms of
the hypothesized frequencies of the sinusoids. The values of the parameters that result
in the “best match” (e.g., in an ML sense) to the measured signal form an estimate of
the frequencies.

A channel model usually provides a function to compute the impulse response (or
frequency) of the channel (for a given configuration, such as bandwidth and array
structure) from the physical parameters as in eq. (12.1). For example, the channel
impulse function h translates from the parameter domain to the measurement domain,
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where the measurement domain is defined as the domain in which the sounder mea-
sures the channel:

h :
{
αn,τn,νn,φ

R
n,φT

n

}
n
→ {

τ,t,xR
i ,xT

k

}
ik

, (12.25)

where
{
αn,τn,νn,φR

n,φT
n

}
n

denote the propagation path parameters that are mapped
by h to the time-varying impulse response that is a function of the time t , the delay
lag τ and depends on the position xT

k of the kth antenna at the transmitter and the
position xR

i of the ith antenna at the receiver of the channel sounder. For the ULA
model described in eq. (12.1) this model for the CIR corresponds to

hi,k(t,τ) =
Np∑
n=1

αne
−j2πθR

n iej2πθT
n kδ(τ − τn)ej2πνnt, (12.26)

where the time variation is captured by the Doppler shift νn for constant-velocity
relative motion for the nth path, or it could be captured by temporal variation in the
path amplitudes αn → αn(t) for more general relative motion for the nth path.

HRPE can be viewed as the inverse problem: Given a set of observations in the
measurement domain, the estimator tries to recover the underlying parameters of
the channel model. This corresponds to “parametric model identification” where the
impulse (or frequency) response of the linear time-invariant (LTI) system is described
by a set of parameters through a specific function for the impulse (or frequency)
response, as in eq. (12.26) (or eq. (12.1)). The inverse mapping f underlying an
HRPE technique, corresponding to the impulse response model in eq. (12.25), can
be formally described as

f :
{
τ,t,xR

i ,xT
k

}
ik

→
{
αn,τn,νn,φ

R
n ,φT

n

}
n

. (12.27)

That is, the inputs to the HRPE methods are the channel measurements made by
the sounder, for example, Hi,k(t,f ) in eq. (12.1) or hi,k(t,τ) in eq. (12.26). These
inputs are then processed by the HRPE method to extract the physical channel model
parameters by exploiting the a-priori information about the functional relationship
between the measurements and the physical model parameters, as described in eqs.
(12.1) or (12.26).

The observations required for the estimator are provided by a channel sounder.
While a mapping h from the physical parameters to the measured impulse response
in general always exists, the measured data need to satisfy certain requirements in
order for an estimator f to exist. The measurement domain has to be chosen such that
there is no ambiguity in the parameters; that is, there should be only a single set of
parameters that lead to a certain set of observations. If this is true, then the estimator
can uniquely determine the parameters from the observations. This also provides a
direct approach for exploring the parameter space and identifying the parameters that
result in the closest fit to the observed channel impulse response/transfer function.
The sampled channel representation described in Section 12.2 quantifies these require-
ments on the sounder.
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For estimation of the delay parameters in a temporal impulse response, a common
requirement is that the sounding signal is long enough in time to capture the whole
impulse response. Otherwise, a component with a delay larger than length of the
sounding signal can appear as an earlier delay in subsequent consecutive measure-
ments. One way to avoid this problem is to put sufficient spacing (longer than the
channel delay spread) between successive sounding signals.

For the case of angle estimation using a ULA, there exist an infinite number of
azimuth and elevation pairs

({
φA,φE

})
that result in the same observation (steering

vector); see, for example, [20]. Such ambiguities can be readily avoided by using a
2D UPA. If using a 2D array (e.g., a UPA) is not feasible, sometimes the ambigu-
ities can be accounted for by fixing one of the parameters (e.g., assuming a certain
elevation in the ULA example) but only if fixing one parameter does not affect the
other parameters. Another example is angular estimation using a circular array when
the estimator is designed not to estimate elevation; this can lead to false estimates
of the azimuth. Finally, the set of observations have to provide sufficient information
to enable estimation of all parameters, that is, the measurements have to be linearly
independent and their number larger than the number of parameters to be estimated.
Again, for a given channel sounder, the sampled representation helps quantify these
requirements.

12.3.1 Measurement Data Model: Measurement Equation

Any estimator requires knowledge about a function, such as in eqs. (12.25) or (12.26),
in order to solve the inverse problem stated in eq. (12.27) since it needs to know how
a given set of parameters would affect a measurement. The possibility of estimating
continuous parameters from sampled measurement data in space and time arises from
the observation that different values of parameters result in different measurements.
This observation is formalized by the sampling theorem for bandlimited signals, which
is at the heart of the sampled channel representation in angle–delay–Doppler. Fur-
thermore, while the sounder samples at discrete points in space and time that are
theoretically continuous-valued in amplitude and phase, in practice they are limited
by the finite-bit resolution of the sounder. As a result, the ability to detect small
changes in measurements is limited by measurement and/or quantization noise, and
how accurately the mapping between parameters and the measurement domain – the
channel model – is known a-priori.

While the function (12.25) is the general definition of how a channel model would
map its parameters to the measurement domain, the function/model for the estimator
is specific to the channel sounder used for making measurements, and accounts for
all relevant characteristics of the sounder components. This specific function that
maps parameters of the channel model to the sounder’s measurement domain will be
called the “measured impulse response,” hmeas. The function fi,k (τ) (see eq. (12.27))
corresponds to the sounder equipment in the measurement equation, representing
the composite impulse response of the filters for the kth transmitter antenna and
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the ith receiver antenna. For ULAs, the ideal sounder-independent CIR is given by
eq. (12.26), and it can be convolved with fi,k(τ) to yield the measured impulse
response

hmeas,i,k(t,τ) = hi,k(t,τ) ∗ fi,k(τ) = hi,k(t,τ) ∗ f (τ), (12.28)

where the last equality corresponds to the situation, also discussed in Section 12.1,
in which all antenna elements at the transmitter have the same impulse response
and all antenna elements at the receiver have the same impulse response to yield
a common composite impulse response f (τ) = fi,k(τ). In the case of a sliding-
correlator estimator, this correction also has to account for the autocorrelation function
of the sounding signal. If back-to-back-calibration is done to estimate fi,k(τ) with
subsequent deconvolution applied to hmeas, then the sounder-independent CIR would
reduce to sinc functions in delay, or rectangular functions with constant amplitude
in frequency, reflecting the finite bandwidth of the sounder; this is explicitly stated
in eq. (12.12) in the sampled channel representation and forms the basis of path
partitioning.

The complex patterns gT
k

(
φT

)
and gR

i

(
φR

)
, defined in Section 12.1, represent the

characteristics of the antennas (arrays) used during measurements. If the bandwidth is
large enough to reveal a frequency dependence of the antennas, the complex patterns
also become frequency-dependent.

The performance and accuracy of an estimator is limited by how accurately one can
model the measurement equation with respect to the actual response of the sounder.
The measurement data model or the measurement equation has, therefore, to be prop-
erly chosen to fit to the sounder used. This is the objective of sounder calibration
and verification, as discussed in Chapters 3 and 4 (see Table 3.3). For the delay- or
frequency-domain this is relatively easy if it is possible to measure the frequency
response of the RF components of the sounder (e.g., in a back-to-back calibration).
The measurement of the sounder given an MPC with a certain delay would result in
a shift by the same delay of the sounder’s impulse response. For the spatial domain
this is more challenging since the response of the antennas to an MPC with a certain
angle is in general not a shifted version of the response of another angle. For ideal
ULAs, this property holds, except for extreme angles near ∓90◦. Therefore, it is
usually necessary to measure the complex radiation pattern of the antenna arrays, in an
anechoic chamber, for example, for a number of source angles. Since the measurement
equation needs the complex radiation pattern for an arbitrary angle, but one can only
measure it at discrete angles, some form of interpolation is needed. A good method
of interpolation is based on the “effective aperture distribution function” (EADF)
introduced by [17]. The EADF is effectively a 2D discrete Fourier transform of the
measured radiation pattern for a single antenna element. Therefore, it represents a
(Fourier) series expansion of the underlying continuous complex radiation pattern
obtained from sampled data and can be used to obtain the pattern at arbitrary angles.
Obviously the sampling during measurements has to be dense enough in angle such
that the sampling theorem holds, and the interpolation accuracy is also limited by the
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SNR of the measurements. Another approach of optimal interpolation would be the
use of vector spherical harmonics [21].

The sampled representation in Section 12.2 generalizes this concept of Fourier
series expansion of radiation patterns to antenna arrays, especially ULAs, and helps
quantify the sampling requirements in angle for both single-antenna and antenna-array
radiation patterns. For individual antenna elements, the radiation pattern is relatively
smooth and thus relatively few measurements over the angular spread are needed –
essentially equal to the length of the antenna normalized by half-wavelength in each
dimension. Once the radiation pattern for each antenna element is known, the far-field
radiation patterns for an array can be computed using the radiation pattern for each
element and the relative locations of the elements in the array.

Some estimators, or better implementations thereof, do not make use of mea-
surement equations obtained from measurements but assume an analytical model
of the frequency response and complex radiation patterns. This is the essence of
the sampled representation for the ULAs, which assumes idealized omnidirectional
radiation patterns for each antenna element. It is quite common to assume constant
frequency response, omnidirectional (constant gain in, e.g., azimuth) or even isotropic
radiation (constant gain of the antenna independent of direction), no coupling
between array elements and perfect knowledge about the relative position of each
element in the array (in order to compute the phase offset due to out-of-phase-center
positioning). Those models have to be used very carefully because the estimator
might behave unpredictably if the analytical model does not match the properties of
the physical antenna array. The benefit of using measured patterns (with, e.g., the
EADF as an interpolator) is that any imperfection of the antennas is automatically
taken into account. However, the relative locations and orientations of the antenna
elements are still needed with sufficient accuracy. Estimators like ESPRIT and Root-
MUSIC require the antenna array to have certain properties (such as being a perfect
ULA), making it impossible to use them if the requirements cannot be fulfilled. We
note that while sounder calibration in the time or frequency domain is relatively
straightforward or well understood, the calibration of sounders from a spatial or
angular perspective requires additional research, which is one of the goals of the 5G
Alliance moving forward, especially in terms of interactions between measurement
and modeling.

12.3.2 Maximum-Likelihood Estimation

The class of ML estimators is attractive for HRPE as they generally pose no limitations
on the sounder/arrays used for measurements, other than the requirement of providing
ambiguity-free measurements of the propagation channel. The type of antenna array
used can also be quite general (nonuniform elements, irregular spacing, etc.), as long
as the array produces a unique output for all possible angles. However, there obviously
exist better or worse configurations with regard to the estimator performance and accu-
racy; for example, elements spaced too closely together can introduce ill-conditioning
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in the estimator. But there is no general limitation imposed by the method (such
as shift-invariance in ESPRIT). On the other hand, ML estimators do rely on the
measurement equation to be as accurate as possible. Any model mismatch in the mea-
surement equation limits the accuracy and reliability of the estimates. Finally, as in any
estimator, the accuracy of the estimates is limited by the SNR of the measurements.

Maximum-likelihood estimators are based on the principle of maximizing the like-
lihood or probability that a given channel measurement is generated by certain values
of underlying model parameters. A channel measurement can be modeled as

x̃ = hmeas (�) + n, (12.29)

where � denotes all the parameters of hmeas, the measurement model for the channel
as discussed in Section 12.3.1, which can be further decomposed into a deterministic
discrete component and a stochastic diffuse component:

hmeas = hs (�s) + hd (�d) , (12.30)

where �s are the parameters of the discrete deterministic model, such as the delays,
angles and complex amplitudes of the different paths in the ULA physical model in
eq. (12.4), and �d are the parameters of the stochastic diffuse channel component.
Assuming a Gaussian distributed and possibly correlated stochastic component hd ,
the channel measurements are distributed as

x̃ ∼ NC (hs (�s) ,R (�dan)) , (12.31)

where �dan denotes the parameters of both the diffuse channel component and the
Gaussian noise n. The corresponding likelihood function can be written as

	 (̃x|�s,R (�dan)) = 1

πMdet (R (�dan))
e−(̃x−hs(�s))

†R−1(�dan)(̃x−hs(�s)), (12.32)

which needs to be maximized for ML estimation. Equivalently, ML estimates of the
channel model parameters can be obtained by minimizing the negative log-likelihood
function

L (̃x|�s,R (�dan)) = ln (det (R (�dan))) + (̃x − hs (�s))
† R−1 (�dan) (̃x − hs (�s))

(12.33)

as (
�̂s,�̂dan

) = arg min
�s,�dan

L (̃x|�s,R (�dan)) . (12.34)

This poses a nonlinear optimization problem where estimating the parameters of the
discrete channel model is a weighted nonlinear least-squares problem.

The problem can be simplified by making assumptions about or guaranteeing
(by designing the sounder) certain properties of the measurement equation. However,
as stated above, making assumptions can be dangerous if they are not met in reality.

In general the number of MPCs and thus the number of parameters to estimate is
large (>100 components) and therefore the dimensionality of the problem is usually
large and there is no analytical solution available. There are three main challenges
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that an estimator has to address: (1) How many model parameters need to be esti-
mated from measurements, that is, the model order? (2) Can the dimensionality of
the problem be reduced? And (3) How do we find the minimum of a nonlinear func-
tion? The model order can be estimated prior to starting the estimator or iteratively
while estimating (as it is done in, e.g., RiMAX [17]). The dimensionality of the
search procedure can be reduced by assuming that certain parameters do not influence
each other, as is done in EM (expectation maximization) or SAGE (space alternating
generalized expectation maximization) algorithms by treating the problem of estimat-
ing P parameters as estimating P individual components independently. However,
this assumption is not valid in sparse multipath channels as encountered at mmWave
frequencies, in particular. However, sparsity offers other approaches to effectively
reducing the dimensionality (or the number of measurements needed) by employing
sparse estimation approaches that may be combined with ML estimation by introduc-
ing an 	1 regularization term to the least-squares optimization problem in eq. (12.34)
(see, e.g., [13]).

Finding the global minimum is generally challenging if the optimization function
eq. (12.33) is not convex in the model parameters. A brute force approach may be
applied using a grid-based search with further refinement of the grid (commonly
done in SAGE). However, this can be prohibitively expensive for a high-dimensional
parameter space. One approach to reducing complexity is found in RiMAX, where
components are grouped based on their influence on each other. Typically iterative
gradient-based algorithms are used, such a Gauss–Newton or Levenberg–Marquardt
(done in RiMAX) to reach local minima. Gradient-based methods have the benefit of
faster convergence, especially in the case of correlated parameters. However, they
require the first- and sometimes also second-order partial derivatives of the nega-
tive log-likelihood function. The gradient-based methods usually converge to a local
minimum, while one is interested in finding the global minimum. This problem can
be solved by initializing the algorithm in the vicinity of the global minimum. The
initialization could be done, for example, using the sampled representation introduced
in eq. (12.2) as a starting point.

12.4 Extension to 2D Antenna Arrays

The physical model in eq. (12.1) for 1D ULAs can be extended to 2D arrays [5, 6, 22]
consistent with the general model in Section 12.1. Consider a system with UPAs at the
TX and RX. Essentially the physical model in eq. (12.1) and the sampled represen-
tation in eq. (12.6) can be used by replacing the definitions of the steering/response
vectors and the AoDs/AoAs to include both azimuth and elevation. Specifically, the
AoDs and AoAs can be defined as

θT = (θT,A,θT,E) ,θR = (θR,A,θR,E) ;
−π

2
≤ θT,A,θT,E ≤ π

2
, − π

2
≤ θT,E,θR,E ≤ π

2
(12.35)
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θT = (θT,A,θT,E) ,θR = (θR,A,θR,E) ;

θT,A = dA

λ
sin(φT,A) , θT,E = dE

λ
sin(φT,E), (12.36)

and the array steering and response vectors are given by

aT(θT) = aT,A(θT,A) ⊗ aT,E(θT,E) , aR(θR) = aR,A(θR,A) ⊗ aR,E(θR,E) (12.37)

in terms of Kronecker products of 1D steering/response vectors in azimuth and eleva-
tion. The dimensions of the TX and RX UPAs can be factored as

NT = NT,A × NT,E ; NR = NR,A × NR,E,

representing the number of antennas in the azimuth and elevation directions. Similarly,
the spatial resolutions in azimuth and elevation are given by

�θT,A = 1

NT,A
, �θT,E = 1

NT,E ; �θR,A = 1

NR,A
, �θR,E = 1

NR,E . (12.38)

12.5 The Extended Sampled Channel Model: Hardware Nonidealities

Future work will include extending the sampled channel model to include hardware
nonidealities. At mmWave frequencies, the nonideal characteristics of the hardware,
including the antennas, filters and mixers, are significantly more pronounced due to
the high angle–delay resolution afforded by the electrically large arrays and large
bandwidths [5, 6, 11]. Thus, the ideal sampling described in eq. (12.2) needs to be
extended to account for the nonideal hardware characteristics. In effect, the measured
beam-frequency channel matrix H (in the quasi-static case) can be decomposed into
three (linear) components:

H = HTHP HR, (12.39)

where HP denotes the propagation channel and HT and HR denote the nonideal beam-
frequency responses of the sounder hardware at the TX and the RX, respectively. In
fitting measurements to models, it is important to isolate the nonideal characteristics
of the hardware from the underlying propagation characteristics. Three main research
tasks are needed to develop this extended model:

Task 1: Develop and validate the models for HT and HR that account for the nonideal
beam-frequency characteristics induced by the antenna array and the wideband
mmWave hardware. These models will combine the nonideal characteristics of
individual hardware components.

Task 2: Develop an approach for jointly estimating HP , HT and HR from mea-
surements of H. We can exploit the rich structure of HP induced by the multi-
dimensional Fourier basis waveforms underlying the angle–delay–Doppler sam-
pling [2, 7] as well as the structure of HT and HR induced by individual components.
Some key issues to address include the design of beam-frequency probing signals
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at the TX and measurements at the RX and understanding the fundamental limits
to decomposing H into HP , HT and HR.

Task 3: Refine and validate the modeling framework with actual channel measure-
ments. In particular, the calibration methods outlined in Chapter 3 address Tasks 2
and 3 for single-antenna systems and will be extended to multi-antenna systems.
Specifically, new methods for calibration of phased array and lens array antennas
are needed. The diversity of MIMO channel measurements, using horn antennas,
phased arrays and lens arrays, will play an important role in developing the channel
modeling framework.
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13 Conclusions

Theodore S. Rappaport, Kate A. Remley, Camillo Gentile,
Andreas F. Molisch and Alenka Zajić

With this book, researchers from around the globe under the common umbrella of
the 5G mmWave Channel Model Alliance have intended to provide practical guidance
on both verification of channel sounding measurements and on channel models that
must capture a wide range of channel characteristics. Throughout, our goal has been
to illustrate the important link between channel measurements and channel models
at mmWave, sub-THz, and THz frequencies. As the frequency of operation increases,
wireless device design must become more agile, dynamic and powerful. Such stringent
design criteria require channel models describing the many effects to which the device
may be subjected. Yet, the nonidealities in the channel measurement hardware can
cause issues unless care is taken to understand the metrics and verify that the hardware
is performing as desired. It is the hope of the many contributors to this book that the
measurement and modeling techniques presented here will be useful to readers from
many disciplines, from beginner to advanced practitioners and academia to industry.
We all have the common goal of advancing the state of the art in channel measurement
and modeling at mmWave and sub-THz frequencies.
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