

A Practical Guide to
Verilog-A

Mastering the Modeling
Language for Analog Devices,

Circuits, and Systems

Slobodan Mijalković

A Practical Guide to Verilog-A: Mastering the Modeling Language for

Analog Devices, Circuits, and Systems

ISBN-13 (pbk): 978-1-4842-6350-1		 ISBN-13 (electronic): 978-1-4842-6351-8
https://doi.org/10.1007/978-1-4842-6351-8

Copyright © 2022 by Slobodan Mijalković
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/A-Practical-Guide-
to-Verilog-A. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Slobodan Mijalković
The Hague, Zuid-Holland, The Netherlands

https://doi.org/10.1007/978-1-4842-6351-8

To

Silva and Jona

v

About the Author���xv

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

Table of Contents

Chapter 1: �Lexical Basis��1

Character Set and Tokens��1

Comments��3

Identifiers���4

Simple Identifiers���4

Escaped Identifiers���5

Hierarchical Names��6

Reserved Words���6

System Names���7

Compiler Directives��7

Numerical Literals��8

Integer Literals���8

Real Literals��11

String Literals���13

Operators���14

Punctuators��15

https://doi.org/10.1007/978-1-4842-6351-8_1
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec14
https://doi.org/10.1007/978-1-4842-6351-8_1#Sec15

vi

Chapter 2: �Basic Types and Expressions���17

Basic Types��17

Integer Types��17

Real Types��18

String Types��19

Expressions��20

Primary Expressions���20

Arithmetic Expressions���22

Relational Expressions���23

Logical Expressions��24

Bitwise Expressions���25

Conditional Expressions���26

Concatenated Expressions���26

Expression Evaluation Order��28

Operator Precedence��28

Parenthesized Expressions���29

Short-Circuit Evaluation��30

Expression Containers���30

Assignment Patterns��30

Ranges��31

Chapter 3: �Net-Discipline Types���33

Defining Signal Natures���33

Base Natures��34

Derived Natures��37

Predefined Natures���38

Defining Net-Discipline Types��41

Nature Binding Statements��41

Domain Binding Statements���43

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_2
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec14
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec15
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec16
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec17
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec18
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec19
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec20
https://doi.org/10.1007/978-1-4842-6351-8_2#Sec21
https://doi.org/10.1007/978-1-4842-6351-8_3
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec7

vii

Nature Override Statements���43

Deriving Natures from Disciplines��44

Discipline Compatibility��44

Predefined Disciplines��46

Net Declarations��47

Scalar Nets���47

Vector Nets���48

Ground Nets��49

Net Initialization��50

Accessing Net Attributes��51

Chapter 4: �Modules and Ports���53

Defining Module Connectivity��53

Declaring Port Directions��54

Declaring Port Types���57

Connecting Modules by Instantiation���60

Explicit Port Mapping���61

Positional Port Mapping���63

Top-Level Instantiation and $root���64

Implicit Nets���66

Instantiation of SPICE Primitives��67

Chapter 5: �Parameters���69

Parameter Declarations���69

Simple Parameters���70

Array Parameters��71

Permissible Value Ranges��72

Parameter Aliases��75

Local Parameters��76

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_3#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec14
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec15
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec16
https://doi.org/10.1007/978-1-4842-6351-8_3#Sec17
https://doi.org/10.1007/978-1-4842-6351-8_4
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_4#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_5
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec6

viii

Overriding Parameters���76

Instance Parameter Override��76

Hierarchical Parameter Override��80

Hierarchical System Parameters���81

Chapter 6: �Paramsets��85

Introducing Paramsets���85

Defining Paramsets��88

Paramset Parameters���88

Parameter Override Statements���90

Other Paramset Statements���92

Paramset Instantiation���92

Chapter 7: �Procedural Programming���97

Variables��97

Simple Variables���98

Array Variables���99

Procedural Blocks��100

Analog Blocks���100

Block Procedural Statements���101

Assignment Statements���103

Scalar Assignments��104

Array Assignments���105

Conditional Statements��106

if Statement��106

case Statement��108

Looping Statements���109

while Statement���110

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_5#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_5#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_6
https://doi.org/10.1007/978-1-4842-6351-8_6#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_6#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_6#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_6#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_6#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_6#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_7
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec14

ix

for Statement���111

repeat Statement��112

Chapter 8: �Branches��115

Declaring Branches��115

Scalar Branches���115

Vector Branches���117

Port Branches���119

Branch Signals���120

Signal Directions��120

Signal Access Functions���121

Unnamed Branches��123

Contributing Branch Signals��125

Direct Contribution Statements��125

Indirect Contribution Statements��127

Probe Branches��129

Value Retention��130

Switch Branches��132

Chapter 9: �Derivative and Integral Operators������������������������������������135

Time Derivative Operator���135

Case Study: DC Motor���136

Time Integrator Operator��138

Case Study: Chemical Reaction System���139

Circular Integrator Operator���142

Case Study: Voltage-Controlled Oscillator��144

Indirect Contribution Equations��145

Case Study: Accelerometer���147

Probe Derivative Operator��149

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_7#Sec15
https://doi.org/10.1007/978-1-4842-6351-8_7#Sec16
https://doi.org/10.1007/978-1-4842-6351-8_8
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_8#Sec14
https://doi.org/10.1007/978-1-4842-6351-8_9
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_9#Sec9

x

Chapter 10: �Built-In Math Functions���153

Deterministic Functions���153

Logarithmic and Power Functions��154

Trigonometric Functions���155

Hyperbolic Functions��156

Limiting and Rounding Functions���157

Probabilistic Functions���158

Random Number Generation Function���158

Statistical Distribution Functions���160

Chapter 11: �User-Defined Functions��165

Defining Functions���165

Formal Arguments��166

A Return Variable��167

A Procedural Statement���168

Calling Functions���170

Function References���170

Using Functions in Expressions��172

Function Called As Statements���172

Chapter 12: �Lookup Tables��175

Table Data Structure��175

Jagged Array Grids���176

Preparing Table Data��178

Lookup Table Function���180

Input Variables and Data Source��181

Control String���183

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_10
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_10#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_11
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_11#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_12
https://doi.org/10.1007/978-1-4842-6351-8_12#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_12#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_12#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_12#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_12#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_12#Sec6

xi

Chapter 13: �Small-Signal Functions��189

AC Analysis��190

AC Stimulus Function���190

Noise Analysis��192

White Noise Function��193

Flicker Noise Function��194

Look-Up Table Noise Functions��195

Correlated Noise Sources���199

Chapter 14: �Filters���201

Time-Domain Filters���201

Absolute Delay Filter��201

Transition Filter���202

Slew Filter��204

Frequency-Domain Filters��205

Laplace Transform Filters���206

The Z-Transform Filters��210

Chapter 15: �Events��215

Event Control Statements��215

Global Event Functions���217

Monitored Event Functions��219

Cross Function��220

Above Function���224

Timer Function���226

Chapter 16: �Runtime Support��229

Elaboration Queries��229

Port Connections��229

Parameter Overrides��230

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_13
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_13#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_14
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_14#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_15
https://doi.org/10.1007/978-1-4842-6351-8_15#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_15#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_15#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_15#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_15#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_15#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_16
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec3

xii

Simulation Queries���231

Analysis Type��231

Kernel Parameters��233

Dynamic Probing��236

Solver Support���238

Announcing Discontinuity���238

Bounding Time Step���241

Limiting Iteration Steps��242

Simulation Control���246

Announcing Severity���246

Terminating Simulation��247

Chapter 17: �Input and Output��249

File Management���249

Opening Files��249

File Positioning���252

Error Status��254

Detecting End-of-File���254

Flushing Output��255

Closing Files���255

Reading Data��255

Reading a Line from a File��255

Reading Formatted Data���256

Displaying and Writing Data���259

Text Output���259

File Output��260

Writing Data to a String��262

Escape Sequences���263

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_16#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_16#Sec14
https://doi.org/10.1007/978-1-4842-6351-8_17
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec8
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec9
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec10
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec11
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec12
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec13
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec14
https://doi.org/10.1007/978-1-4842-6351-8_17#Sec15

xiii

Chapter 18: �Generative Programming���267

Generate Blocks���267

Generate Statements���269

Generate Regions���269

Conditional Generation���269

Looping Generation��272

Hierarchy Scope and Names��276

Order of Elaboration���278

Chapter 19: �Attributes���281

Introducing Attributes��281

Attribute Assignments��281

Attribute Instances���283

Standard Attributes��286

Simulation Reports���286

Output Variables���288

Port Discipline Override��290

Chapter 20: �Compiler Directives��293

File Inclusion��293

Macro Definition���295

Object-like Macros���295

Function-like Macros��296

Undefining Macros���298

Predefined Macros���299

Conditional Compilation���299

Default Transition Directive��302

Table of Contents

https://doi.org/10.1007/978-1-4842-6351-8_18
https://doi.org/10.1007/978-1-4842-6351-8_18
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_18#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_19
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_19#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_20
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec1
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec2
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec3
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec4
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec5
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec6
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec7
https://doi.org/10.1007/978-1-4842-6351-8_20#Sec8

xiv

�Appendix��303

�Reserved Words in Verilog-A��303

Keywords��303

Other Reserved Words��304

�SPICE Compatibility��306

�Index��309

Table of Contents

xv

About the Author

Dr. Slobodan Mijalković is a Modeling Scientist and a Senior R&D

Engineer at Silvaco, Inc., specialized in semiconductor device modeling

for electronic design automation (EDA) software tools. Before joining

Silvaco, he was a Principal Researcher in HiTeC Laboratory at the Delft

University of Technology in the Netherlands, where he led a team for the

standardization of the Mextram bipolar transistor model with Compact

Model Coalition (CMC). Formerly, he was an Assistant and an Associate

Professor with the Department of Microelectronics at the Faculty of

Electronics Engineering, University of Niš, in Serbia (Yugoslavia).

Dr. Mijalković has authored 60 cited publications including 5 book

chapters and the monograph Multigrid Methods for Process Simulation

published by Springer. In the period 2002–2006, he has set and chaired

four editions of “Compact Modeling for RF Application (CMRF)”

workshops that strongly contributed to the acceptance of Verilog-A as a

standard compact modeling language. He is a senior member of IEEE.

xvii

About the Technical Reviewer

Massimo Nardone has more than 22 years of experience in security, web/

mobile development, and cloud and IT architecture. His true IT passions

are security and Android.

He has been programming and teaching how to program with Android,

Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science degree in Computing Science from the

University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research

Engineer, Chief Security Architect, Information Security Manager, PCI/

SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for

many years.

xix

First, I would like to acknowledge the OVI and Accellera standardization

committees for tremendous work in developing and maintaining the

Verilog-A language standard over a period of almost 20 years. But also, the

Si2 Compact Model Coalition (CMC) for promoting the Verilog-A language

since its introduction as the industry standard for compact modeling, in

particular Geoffrey Coram and Colin McAndrew, the two Verilog-A gurus

and the best guardians of correct Verilog-A usage.

Thanks to everyone on the Apress team for their efforts in bringing

this manuscript to the page. Special thanks to the coordinating editor

Jessica Vakili, production coordinator Krishnan Sathyamurthy, and project

manager Linthaa Muralidharan.

Finally, I thank my parents, family, and friends for their constant

support and encouragement. I would like to express special thanks to

my fantastic wife, Silva, for professional help, but also for tolerating my

incessant disappearances into my home office, during the writing of

this book.

Acknowledgments

xxi

Introduction

The digital revolution (also known as the third industrial revolution)

made a dramatic shift from analog to digital technology and electronics.

In a world that seems dominated by digital information processing, one

may wonder if there is still room for analog functions. Of course, it is

unwise to assume that analog signal processing will go extinct. Without

analog devices, circuits, and systems, digital systems would lack the

means for interaction with the physical world. And the need for such

interfaces is only growing as we are stepping into the fourth industrial

revolution. Technologies like autonomous drive and the Internet of Things

increasingly require advanced sensors in various physical domains,

improvements in radio frequency communication, and new energy

harvesting solutions, all essentially based on analog devices, circuits, and

systems.

In the fast-evolving, socially interconnected world, we are witnessing a

seismic shift in the amount of data that needs to be processed in real time.

Moving forward, the conventional digital processing, with the separation

of data and computing, becomes critically constrained by the energy

growth of data movement. This will necessitate breaking the barriers of

digital abstractions by shifting information representation from symbolic

to physically meaningful quantities and switching from sequential

discrete-time to continuous-time dynamics. Most of these efforts to revive

analog computing borrow essential ideas from natural analog computing

processes. These include, but are not limited to, neuromorphic computing,

cellular automata, memcomputing, and Ising model–based systems.

xxii

For systems consisting wholly of analog components, analog modeling

and simulation are essential for checking a system's structural design

and for making predictions about the system behavior. But even when

the system is partially or fully digital, analog modeling and simulation

may still be necessary. Signal integrity properties, such as delays, noise,

and distortion, often cannot be disregarded in digital high-speed circuits.

Signal integrity analysis of digital circuits and systems is essentially based

on analog modeling and simulation.

Analog hardware description language Verilog-A is a particularly

suitable framework for design-oriented modeling and simulation of

analog devices, circuits, and systems. It applies to both electrical and

non-electrical as well as conservative and signal-flow system descriptions.

Both the structure and behavior of a multidiscipline analog system can

be modeled with Verilog-A on different levels of abstraction. Anything

that can be modeled with Verilog-A can also be simulated. Besides, the

standard exists for the Verilog-A language, which means that Verilog-A

models can be easily exchanged between different simulators.

�Verilog-A Language Evolution
The Verilog-A language was introduced in 1996 during the contest

between Verilog-HDL and VHDL, the two industry-standard digital

hardware description languages (HDLs), to expand into analog and

mixed analog-digital applications. The non-profit organization Open

Verilog International (OVI), which had standardized Verilog-HDL with

IEEE in 1995, took responsibility to define and standardize Verilog-AMS

as an analog and mixed-signal extension to Verilog-HDL. The release of

the Verilog-A Language Reference Manual (LRM) 1.0 in 1996 as an OVI

standard was the first step of that initiative. It was the beginning of the

Verilog-A language evolution with basic milestones shown in Figure 1.

Introduction

xxiii

Figure 1.  Timeline of the Verilog-A language evolution

Following the standardization plan, OVI released the first complete

definition of the Verilog-AMS standard in 2000. It was a combination of

the IEEE Verilog-HDL standard 1364-1995, the updated OVI Verilog-A

standard from 1996, and new language extensions providing mixed-signal

modeling features. OVI planned to merge these three parts into a single

HDL that would be eventually standardized by IEEE, but it did not happen.

Verilog-AMS continued to evolve as a superset to IEEE Verilog-HDL

defined by Accellera, the standardization body that succeeded OVI.

Fortunately, Verilog-A did not cease to exist with the birth of Verilog-

AMS. After the introduction of the Verilog-A LRM 1.0, it has become

clear that there are important applications requiring and benefiting from

Verilog-A modeling capabilities. The Verilog-A language has continued

to exist and evolve as an all-analog subset of the Verilog-AMS language. A

special annex is provided in Verilog-AMS LRMs to help users and compiler

developers clearly define Verilog-A within the Verilog-AMS language. In

the process of standardization, Verilog-AMS experienced several major

Introduction

xxiv

LRM revisions with each new LRM revision superseding the syntax and

semantics of the previous ones. Numerous language enhancements have

been introduced as well as various modifications required to resolve

conflicts with the independently developing IEEE Verilog-HDL standard.

Most of these enhancements and modifications also affected the syntax

and semantics of the analog-only subset Verilog-A.

In 2005, the IEEE Verilog-HDL was rolled into a newly introduced

hardware description and verification language SystemVerilog. Accellera

responded by releasing Verilog-AMS LRM 2.4 in 2014 as the final version

of this standard and decided to focus on defining SystemVerilog-AMS as

an analog and mixed-signal extension to SystemVerilog. Nevertheless,

Verilog-AMS started adopting some of the SystemVerilog language features

starting from LRM 2.3, affecting also to some extent the Verilog-A syntax

and semantics. At the time this book was written, the SystemVerilog-AMS

standard was not yet introduced, but it is already announced that Verilog-A

will be preserved as an analog-only subset also within the SystemVerilogh-

AMS language.

�Verilog-A and SPICE-like Simulators
The Verilog-A language was introduced with two basic objectives. The first

one was to define an analog HDL with similar syntax and related semantics

to digital Verilog-HDL as a subset of Verilog-AMS. The other objective was

to provide compatibility of Verilog-A with the SPICE simulation engine.

SPICE (Simulation Program with Integrated Circuit Emphasis) was

developed at the University of California at Berkeley in 1971 as a tool to

predict analog circuit behavior from circuit connectivity and analytical

models of circuit components. The birth and growth of the integrated

circuit industry in the 1970s led to the widespread adoption of the Berkeley

SPICE program. Furthermore, the availability of the SPICE code and

documentation from Berkeley, for a nominal fee, spurred the development

of SPICE-like simulators in academia, industry, and commercial products.

Introduction

xxv

Today, there are thousands of copies of SPICE-like circuit simulators in use

across academia and industry, and there are many commercial SPICE-like

simulators in the market.

All major commercial SPICE-like simulators support also the Verilog-A

language. The compatibility with the SPICE simulation engine was not

the only reason for the widespread adoption of Verilog-A in SPICE-like

simulators. Verilog-A was able to expand SPICE modeling and simulation

capabilities both in the level of abstraction and domain of application, as it

is schematically shown in Figure 2.

Figure 2.  SPICE and Verilog-A application domains

With the syntactic heritage from Verilog-HDL and semantics derived

from SPICE fundamentals, Verilog-A can effectively describe analog

behavior at both system high level and SPICE circuit level of abstraction. It

allows for the top-down analog design, where the starting point could be

a system described in the form of block or signal-flow diagrams, which is

Introduction

xxvi

successively partitioned and refined until the detailed SPICE circuit–level

implementation is obtained.

On the other hand, Verilog-A extends SPICE with multidiscipline

modeling capabilities. In addition to electrical discipline, being a

traditional SPICE modeling domain, Verilog-A supports other energy

domains such as magnetic, thermal, or kinematic, with the possibility to

define additional custom disciplines. With Verilog-A, the models from

different disciplines and abstraction levels can be freely mixed in the same

analog design.

�Verilog-A and Compact Modeling
SPICE circuit element models are commonly referred to as compact

models. They should be sufficiently simple to provide efficient circuit

simulation and sufficiently accurate to make the outcome of the simulation

useful to circuit designers.

Compact models were traditionally hand-coded in C, including

derivatives of the model expressions, and tightly intertwined with SPICE

solver algorithms. With continuous advances in device and circuit

technology, the number and complexity of compact models increased

dramatically, producing a burden on new compact model implementation.

As other SPICE-like simulators emerged, with different data structures and

solver algorithms, compact models had to be hand-implemented multiple

times; see Figure 3.

Introduction

xxvii

Figure 3.  Implementing every model in every SPICE-like simulator

The obvious solution to the issue of implementing every model in

every simulator was to completely separate compact model code from the

simulator code. With Verilog-A, the code of compact models has changed

from being tightly integrated within simulators to being defined in a stand-

alone manner, as demonstrated in Figure 4.

Introduction

xxviii

Figure 4.  Separating compact models from SPICE-like simulators

With the introduction of language extensions to support compact

device modeling in LRM 2.2, Verilog-A has become the de facto standard

language in the electronics industry for coding compact models of active

and passive semiconductor devices. All industry-standard compact

models released by Si2 Compact Model Coalition1 (CMC) as well as

compact models of emerging nano-electronics devices released by the

New Era Electronic Devices and Systems2 (NEEDS) initiative are coded in

Verilog-A.

1 https://si2.org/cmc/
2 https://nanohub.org/groups/needs/compact_models

Introduction

https://si2.org/cmc/
https://nanohub.org/groups/needs/compact_models

xxix

�Verilog-A Fundamentals
A general multidiscipline analog system is described in Verilog-A using

a lumped-component model. It simplifies the description of a spatially

distributed physical system into a topology of interconnected components

which are acted upon by a stimulus and produce a response. Verilog-A

provides modeling constructs for both structure and behavior of the

lumped-component system description.

�Elements of Structure
Verilog-A permits the hierarchical description of a system structure.

It allows the decomposition of a complex system into a set of smaller

manageable subsystems, being possibly further recursively decomposed

up to any appropriate level of deepness. The hierarchical system

partitioning is based on modules. The top-level module represents

the system under consideration. A hierarchical description is created

when higher-level modules create instances of lower-level modules, as

schematically shown in Figure 5.

Introduction

xxx

Figure 5.  Verilog-A structural modeling elements

A lumped-component model is implemented in Verilog-A instantiating

two-terminal components, or branches, within modules. The branch

terminals are interconnected by nets which are hierarchically extended

through module ports. Nets are topological abstractions of physical

links among system components which make the physical position and

geometry of modules and branches irrelevant. Each port is associated with

two nets, a net in the instantiating module, or upper connection, and a net

in the instantiated module, or lower connection. The lower and upper port

connections are also known as formal and actual module connectors.

A net provides connectivity within a module when it is used as

a branch terminal or port connector. Module ports extend the net

connectivity of branch terminals to upper or lower levels of the module

hierarchy. In that way, the connectivity of branch terminals can traverse

Introduction

xxxi

the module hierarchy. A junction where two or more branch terminals

hierarchically connect is called a node. It allows us to consider system

structure as a network of branches with terminals connected to nodes.

The lumped network is drawn as a collection of nodes and branches. A

node is a point of interconnection for the branches, and a branch is a path

between two nodes. As such, a branch always has two terminals and each

terminal connects to one node.

�Elements of Behavior
A unifying concept to describe the behavior of a wide range of general

multidiscipline lumped-component systems is energy. The system

components may thus be thought of as energy manipulators which process

the energy injected into the system depending upon the way they are

interconnected.

In Verilog-A, each net is declared as a data object of a net-discipline

type to define a domain in which the net supports energy exchange in

the system. The net-discipline types are defined by flow and potential, a

pair of physical quantities associated with the natures of energy exchange

among system components. The flow is an intensive quantity, typically

representing energy flux or power, like electrical current or mechanical

force. On the other hand, the potential is an extensive quantity that gives

the pitch of the energy flow, like electrical voltage or mechanical pressure.

The product of flow and potential physically represents the energy or

instantaneous power.

Branches and nodes are the model objects that carry the flow and

potential quantities. A branch is a path of flow between two nodes. All

branch terminal nets connected to a node share the same potential. The

potential of the node is in that way shared with all continuous hierarchical

nets connected via ports to the node. The branch terminals share the same

flow which is also the flow through the branch. The difference between

potentials in nodes connected by a branch is a branch potential. While

Introduction

xxxii

nodal potentials are defined relative to the global reference (or ground)

potential, branch potentials are independent of the global potential

reference. A product of the branch potential and the flow through the

branch corresponds to the instantaneous power (or energy) being

exchanged with the branch. The nodal potentials and flow in branches

define the system state and behavior at any instance of time. They are also

commonly referred to as system signals.

The behavior of a circuit is captured in Verilog-A by two sets of

relationships for nodal potentials and branch flows. The first set of

relationships is implicitly defined by the system network interconnections

using the General Kirchhoff Potential Law (GPL) and the General Kirchhoff

Flow Law (GFL). GFL and GPL state that the flow from all branches at a

node and the sum of all branch potentials around a loop of connected

branches shall sum to zero at any instant of time. These are essentially

Kirchhoff’s laws for electrical circuits generalized to any energy domain

associated with the net-disciplines. The second set of relationships is

the branch constitutive relationships. They are explicitly introduced in a

Verilog-A code by branch contribution statements defining each branch

flow or potential in terms of other potential and flow variables in the

system. The nature of nets may be abstracted either as directional signal

flows or as satisfying conservative-law relationships between quantities.

Conservative-law relationships assume the existence of both branch flow

and potential.

�Compilation and Simulation
One of the main motivations for writing a model of an analog system in

the Verilog-A language is to enable us to simulate it. The simulation is

based on the executable model produced from the Verilog-A code by

analysis and elaboration. The combined analysis and elaboration process

is commonly referred to as compilation.

Introduction

xxxiii

The analysis is the process of reading and analyzing Verilog-A source

code for lexical, syntactic, and semantic errors. From the source code, the

lexical analysis produces tokens, the words in a language, which are then

parsed to produce a syntax tree. It is first used to check if code conforms

to the syntax rules of a language. Semantic analysis is then performed

on the syntax tree to check aspects that are not related to the syntactic

form or that are not easily determined during parsing. Compilers may

execute compilation in one or more passes saving the compiled results

in intermediate formats or passing the compiled results directly to an

elaboration phase.

Elaboration is the process of binding together the components that

make up a Verilog-A executable model. Elaboration occurs after the

compilation phase and before simulation and it involves expanding

module instantiations, computing parameter values, resolving hierarchical

names, establishing net connectivity, and in general preparing the design

for simulation. Some of the Verilog-A statements are used to control the

elaboration process. The executable Verilog-A model is defined as a set

of continuous-time differential-algebraic equations (DAEs) that come

from the behavioral description of the analog system and its signal-flow or

conservative-law connection semantics.

The simulation of Verilog-A executable models is based on a time

discretization of continuous-time DAEs using discrete time-stepping

integration methods and the solution of resulting nonlinear algebraic

equations. The quality of the solution depends on tolerances that define

the discretization time step and other characteristic values related to the

numerical techniques used to solve the system of nonlinear algebraic

equations at each time point. Another important characteristic of

the simulation of continuous-time models is that a consistent initial

(quiescent) operating point is required. Without it, inaccuracies or

non-convergence issues could arise during the rest of the simulation.

Introduction

xxxiv

�About This Book
The main intention of this book is to provide a practical guide to the

Verilog-A language in its latest standard formulation. There is no doubt

that the Accellera Verilog-AMS Language Reference Manual3 provides

the most complete description of the Verilog-A(MS) language standard.

However, it is a definitional document written in a complex legalistic

style. This makes it difficult to use as a tutorial to learn the Verilog-A

language or as a guide when solving practical problems that arise in coding

Verilog-A models.

The similar goal of providing a more practical description of the

Verilog-A(MS) language than the official LRM description has been

already attained by two good books.4,5 The book by FitzPatrick and Miller,

from 1998, is based on the initial Verilog-A LRM 1.0. However, substantial

extensions and modifications of the Verilog-A language on the way from

LRM 1.0 to LRM 2.4 made this book quite outdated. The other book,

by Kundert and Zinke, describes Verilog-AMS (including the Verilog-A

language as the all-analog subset) as based on the more recent LRM 2.1,

which makes it to a lesser extent outdated. Nevertheless, it is still missing

many important language extensions and features introduced after LRM

2.1 and focuses mainly on mixed-signal hardware description capabilities

of the Verilog-AMS language. This book is again fully dedicated to the

Verilog-A language, as the book from FitzPatrick and Miller, but based on

the latest LRM 2.4 description. While the author has worked diligently to

ensure that this book provides accurate and complete descriptions of the

3 Verilog-AMS Language Reference Manual (LRM), Version 2.4.0, Accellera
Systems Initiative, May 30, 2014.
4 D. FitzPatrick and I. Miller, Analog Behavioral Modeling with the Verilog-A
Language, Springer, 1998.
5 K. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS, The Designer’s
Guide Book Series, Springer, 2004.

Introduction

xxxv

Verilog-A language, the final authority here remains to be the Accellera

Verilog-AMS LRM 2.4 manual.

The book is organized into 20 chapters introduced in a manner that

builds foundational knowledge first before moving into more complex

topics. No prior knowledge of any hardware description language is

assumed and the approach is to learn through relevant examples. This

book could be useful to both a newcomer to the Verilog-A language as well

as an experienced user who wants to refresh on a certain topic.

Introduction

1

CHAPTER 1

Lexical Basis
The most basic study of any language is lexical. Without knowing the rules

for constructing words, we cannot begin to write books or even construct

a single sentence. Likewise, before we can write a meaningful Verilog-A

code, we must learn the rules for constructing words or, more correctly,

lexical tokens.

�Character Set and Tokens
A Verilog-A source text consists of one or more source files that contain

a series of characters. The permissible characters in the Verilog-A source

files are shown in Table 1-1.

Table 1-1.  Permissible characters in the Verilog-A language

Character Name Symbols

Letters A B C D ... X Y Z

a b c d ... x y z

Digits 0 1 2 3 4 5 6 7 8 9

Graphic characters ! " # % & ` ' () * +

, - . / : ; < = > ? $

[\] ^ _ { | } ~ @

Whitespace characters Space tab newline form-feed

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_1

https://doi.org/10.1007/978-1-4842-6351-8_1#DOI

2

The source character set includes 52 upper- and lowercase letters of

the Latin alphabet, 10 decimal digits, 32 special graphic characters, and

4 non-printing or whitespace characters. The non-printing characters do

not correspond to visible marks, but typically do occupy an area in the

source text.

During lexical analysis, the Verilog-A compiler resolves the stream

of characters from the source text into a series of tokens consisting of

one or more characters. The tokens in the Verilog-A language could be

classified as

•	 Comments

•	 Identifiers

•	 Reserved words

•	 System names

•	 Compiler directives

•	 Numeric literals

•	 String literals

•	 Operators

•	 Punctuators

The whitespace characters serve as token separators and they are

not allowed in any token except in string literals. The token separation

is provided also with other tokens, like operators and punctuators,

but separation by whitespace characters is often necessary to avoid

ambiguities. In principle, any whitespace that occurs between tokens is

ignored during lexical analysis, except when a whitespace character serves

as a token separator.

Chapter 1 Lexical Basis

3

�Comments
Comments are inserted in Verilog-A code for readability and

documentation. It is an essential feature of a good coding practice.

The Verilog-A language has two forms to introduce comments. Two

forward slashes, //, indicate the start of a one-line comment, which

continues until the end of the line:

// This is a comment

x=1; // The first part of the line is not a comment

An alternative technique is to use block comments which start with /*

and end with */. Such comments can continue over many lines:

/* This is a comment */

/* This

is

a

longer

comment */

Spaces are not allowed within the two forward slashes or between /

and * characters:

/ * This is not a valid comment * /

/ / Neither is this

Two forward slashes // shall not have any special meaning inside a

block comment:

/* This is a comment with // as a comment text

 and this is a continuation */

Block comments shall not be nested:

/* /* This comment should

 not pass a Verilog-A lexical analysis */ */

Chapter 1 Lexical Basis

4

Since the comments are not relevant as tokens after lexical analysis,

each comment is replaced after resolution by a single space character.

Because of that, comments are often considered a kind of whitespace.

�Identifiers
An identifier is a user-defined token that is introduced to give an object a

unique name so it can be referenced in the Verilog-A code. Identifiers are

case sensitive; both upper- and lowercase characters in identifiers are valid

and distinct.

Note A good coding practice is to use mainly lowercase identifiers
with meaningful names. This makes Verilog-A code easily readable
and self-documented.

Verilog-A compilers may set a limit on the maximum length of

identifiers, but it should be at least 1024 characters. If an identifier exceeds

the specified length limit, an error shall be reported.

An identifier in Verilog-A shall either be a simple identifier or

an escaped identifier. Every identifier in Verilog-A has a unique

hierarchical name.

�Simple Identifiers
A simple identifier is a sequence of some combination of letters, digits,

dollar signs ($), and the underscore (_) characters. The first character of a

simple identifier shall not be a digit or a dollar sign ($). Examples of valid

simple identifiers are

initial_velocity

level_1

Chapter 1 Lexical Basis

5

merge_ab

_position

n$999

whereas invalid simple identifiers include

5velocity // Identifier cannot start with a digit

level-1 // Don’t confuse - with _

$n999 // Identifier cannot start with $

Simple identifiers can have a leading underscore. However, it is best to

avoid them, since the leading underscores are often generated and used

internally by compilers.

�Escaped Identifiers
An escaped identifier starts with the backslash character (\) and ends with

a whitespace character. It provides means of including any of the printable

ASCII characters (a letter, digit, or graphic character) in an identifier.

Examples of valid escaped identifiers are

\5$+$velocity

\level-1

water-temperature

\net1/\net2

\{a,b}

\a*(b+c)

Neither the leading backslash character nor the terminating

whitespace is considered to be part of the identifier. Therefore, an escaped

identifier \charge1 is treated the same as a non-escaped identifier

charge1.

Chapter 1 Lexical Basis

6

�Hierarchical Names
A hierarchical name is used as a reference to access an identifier in various

objects in the Verilog-A code hierarchically. It is specified by concatenating

the names of the unilaterally inclusive hierarchical instances up to the

instance that locally contains the identifier. The period character (.) is

used to separate instance names in the hierarchy. For example:

u1.struct1.field // u1 must be visible locally

is a hierarchical name for the field identifier, defined in the instance

struct1 which is instantiated in the framework of u1. The system name

$root refers to the top of the instantiated design:

$root.mymodule.u1 // absolute name

Both simple and escaped identifiers can be used as hierarchical

instance names.

An instance name can be also indexed by introducing the index

number in brackets after the instance identifier:

field[5].sum

The index number is an integer literal (or expression that evaluates a

constant integer number). In that way, multiple hierarchical instances can

share the same name.

�Reserved Words
Reserved words are similar to simple identifiers, with the restriction to use

only lowercase letter characters. The reserved words cannot be used as

simple identifiers. However, a reserved word preceded by the backslash

character becomes an escaped identifier and is not interpreted anymore as

a reserved word.

Chapter 1 Lexical Basis

7

Some of the reserved words in Verilog-A are keywords. Keywords

have a special meaning in the Verilog-A language and they are part of the

syntax defining various language constructs. The reserved words which

are not keywords have no meaning in the Verilog-A code but still it is not

allowed to use them as simple identifiers. They are reserved for use in

other languages from the Verilog family, such as Verilog-HDL or mixed-

signal extension in Verilog-AMS. The complete list of reserved words and

keywords in Verilog-A is given in the Appendix.

�System Names
A name following the dollar sign ($) character is interpreted as a system

name, which can represent a system task or a system function:

$finish;

$display ("display a message");

The $ character in a system name shall not be followed by a whitespace

character and shall not be escaped. Any valid identifier already used in

contexts other than this construct, as well as any of the reserved words, can

be used as a system name.

The Verilog-A language defines a standard set of system names which

will be introduced in the chapters describing corresponding system tasks

and functions. The simulator can provide additional system names but

they will not be part of the Verilog-A standard.

�Compiler Directives
The tokens starting with the open quote (or accent grave) character (`)

introduce a language construct used to implement compiler directives:

`define M_PI 3.14159265358979323846

Chapter 1 Lexical Basis

8

Verilog-A defines a standard set of compiler directives:

 `define `undef

`default_transition `else `endif

`ifdef `ifndef `include

`elsif

The practical usage of standard compiler directives is described in

Chapter 20.

Compiler implementations can also specify additional compiler

directives, which may be simulator specific, but not part of the Verilog-A

standard. Any valid identifier already in use in contexts other than

this construct, as well as any reserved word, can be used as a compiler

directive name.

�Numerical Literals
A numerical literal is a token that directly denotes a constant numeric

value rather than referring to it by name or using some other evaluation

rule. The Verilog-A language recognizes integer and real numerical literals.

�Integer Literals
Integer literals can be specified in decimal, hexadecimal, octal, or binary

formats. They are composed of up to three tokens.

The first and optional token is a nonzero decimal number that specifies

the size of the integer literal in terms of its exact number of bits. The

second token, a base format, is used to annotate the format and intended

usage of integer literals. The base format tokens for different integer literal

formats are given in Table 1-2.

Chapter 1 Lexical Basis

https://doi.org/10.1007/978-1-4842-6351-8_20

9

Table 1-2.  The base format tokens for integer literals

Integer Literal Type Tokens

Decimal 'd 'D 'sd 'Sd 'sD 'sD

Hexadecimal 'h 'H 'sh 'Sh 'sH 'sH

Octal 'o 'O 'so 'So 'sO 'sO

Binary 'b 'B 'sb 'Sb 'sB 'sB

All base format tokens start with the apostrophe (or acute accent)

character ('), followed by the optional single character s to indicate

a signed quantity, and a letter d, h, o, or b, specifying the base for the

number. All the letters are case insensitive and therefore 'sb 'sB 'Sb and

'SB are considered identical tokens. The numbers specified with the base

format shall be treated as signed integers if the s designator is included

or as unsigned integers if the base format only is used. The s designator

does not affect the bit pattern, only its interpretation. If the size of the

unsigned number is smaller than the size specified for the literal integer,

the unsigned number shall be padded to the left with zeros.

The third token defines the value of an integer literal being a sequence

of characters that represent the corresponding numerical system base as

shown in Table 1-3.

Table 1-3.  Characters for representation of integer literal values

Integer Literal Type Symbols

Decimal 0 1 2 3 4 5 6 7 8 9

Hexadecimal 0 1 2 3 4 5 6 7 8 9

a b c d e f A B C D E F

Octal 0 1 2 3 4 5 6 7

Binary 0 1

Chapter 1 Lexical Basis

10

Here are some examples of valid and illegal integer literals:

4'b1001 // is a 4-bit binary number

5 'D 3 // is a 5-bit decimal number

'h 837FF // is a hexadecimal number

'o7460 // is an octal number

4af // is illegal (hexadecimal format requires 'h)

The format token is optional for decimal integer literal. They can

be used without the size and the base format as simple decimal integer

literals specified as a sequence of digits 0 through 9 without embedded

spaces. For example:

15984

is a valid integer literal in the simple decimal number form but

15 984 // Embedded space is not allowed

is not. Simple decimal integer literals shall be treated as signed

integers. The simple decimal literals are also the most commonly used

format for integer literals in Verilog-A code.

The underscore character (_) is legal to use anywhere within the

sequence of characters defining integer literal value, except as the first

character:

27_195_000

32 'h 12ab_f001

_15984 // This is an identifier

The underscore characters in the integer literal value tokens are

ignored by the Verilog-A compiler. But this feature can be used to break up

long numbers for readability purposes.

Chapter 1 Lexical Basis

11

A plus or minus sign between the base format and the number is illegal

syntax. Negative integer literals, if required, shall be represented in two’s

complement form. A plus or minus sign preceding an integer literal, as in

the example:

-15984 // This is an integer expression

is an integer expression rather than an integer literal.

�Real Literals
A real literal is represented by two sequences of decimal digits (integral

and fractional) separated with a decimal point (.):

1.2

0.1

2394.26331

or with an additional exponent part:

1.2E12

1.30e-2 // The exponent symbol can be e or E

0.1e-0

The exponent part consists of an optional + or – sign followed by an

integer literal representing a decimal exponent. The value of the real

literal is obtained by multiplying the pre-exponent decimal number by the

number 10 raised to the power of decimal exponent.

Real literals shall have at least one digit on each side of the decimal

point. The following are invalid forms of real numbers because they do not

have at least one digit on each side of the decimal point:

.12

9.

4.E3

.2e-7

Chapter 1 Lexical Basis

12

A scale factor can be used instead of the exponent part:

2.5001K

25001k

No space is permitted between the number and the scale symbol.

Table 1-4 describes each of the available scale factor symbols and their

value used in scaled notation.

Table 1-4.  Scale symbols and values

Symbol Value

T 10¹2

G 109

M 106

K 103

m 10-3

u 10-6

n 10-9

p 10-¹2

f 10-¹5

a 10-¹8

The underscore character is legal anywhere in a real literal except as

the first character of the literal or the first character after the decimal point:

236.123_763_e-12 // Identical to 236.123763e-12

_236.123_763_e-12 // An identifier

236._123_763_e-12 // Not legal

Chapter 1 Lexical Basis

13

A plus or minus sign preceding a real literal, as in the example:

-2.5001e3

is a constant expression obtained as a combination of the unary

operator (in this case -) and a real literal.

�String Literals
A string literal is a sequence of characters enclosed by the double quote

character (") and contained on a single line. The whitespace characters are

significant in string literals:

"Hello world" // Not the same as "Helloworld"

Notice that the double quote (") is a single character rather than two

successive accent characters.

Certain characters are represented in string literals using escape

sequences, starting with a backslash character (\). For example, \n

signifies a new line, which cannot be otherwise introduced in a string

literal contained on a single line. Table 1-5 lists escape sequences that are

available to be used in Verilog-A string literals.

Table 1-5.  Escape sequences in Verilog-A string literals

Escape String Character Produced by Escape String

\n Newline character

\t Tab character

\\ \ character

\" " character

\o \oo \ooo Character specified with octal numbers (0 ≤ o ≤ 7)

Chapter 1 Lexical Basis

14

Note that the octal escape sequence consists of the backslash

character (\) followed by one, two, or three octal digits (o). The octal

escape sequence ends when it either contains three octal digits already or

the next character is not an octal digit.

�Operators
An operator is a language feature, represented by a single or double

character token, which instructs to perform some well-defined action.

The symbols for the Verilog-A operators are similar to those in the C

programming language. A complete list of tokens that serve as Verilog-A

operators is given in Table 1-6.

Table 1-6.  Verilog-A operator tokens

Unary Operator Binary Operator Operator Type

- + + - * / ** % Arithmetic

< <= > >= == != Relational

! && || Logical

~ & | ^ ^~ ~^ << >> Bitwise

Unary operators shall appear to the left of their operand. Binary

operators shall appear between their operands. The whitespace is not

allowed within the double character operator tokens, meaning, for

instance, that * * is not a valid operator.

Besides the operators defined by single tokens, there are additional

Verilog-A operators defined by punctuators.

Chapter 1 Lexical Basis

15

�Punctuators
The punctuators in Verilog-A are single or double character tokens that

have independent syntactic and semantic meaning to the compiler.

Table 1-7 presents all punctuators of the Verilog-A language with the

description of their syntactic roles.

Table 1-7.  Verilog-A punctuators

Punctuators Role

() Grouping, call operator

{ } Concatenation operator

'{ } Assignment pattern

[] Range, subscript operator

(* *) Attribute instances

? : Conditional operator

; Statement separator

, List separator

= Procedural and attribute assignments

<+ Direct branch contribution

== Indirect branch contribution

@ Event designator

Parameter instantiation designator

: Block name and range separator

. Hierarchical names

Chapter 1 Lexical Basis

16

Some of the punctuators always appear in pairs as shown in the first six

rows of Table 1-7.

The role of punctuators in Verilog-A code could be grouping,

separation, and designation of other language constructs. In some

cases, punctuators take a role of an operator, as is the case of the call,

concatenation, subscript, and conditional operators.

Now that we are equipped with the Verilog-A vocabulary, we are ready

to start building the first Verilog-A sentences in the form of basic type

expressions described in the next chapter.

Chapter 1 Lexical Basis

17

CHAPTER 2

Basic Types and
Expressions
Verilog-A is a typed language. The type of an object in Verilog-A code

determines its storage size, the set of values it can have, and what

operations can be performed on it. This chapter introduces Verilog-A

basic types. Expressions combine basic type objects using operators to

produce new basic type values. They serve as building blocks of all data

manipulation in a Verilog-A code.

�Basic Types
There are three basic types in the Verilog-A language: integer, real, and

string types. While the types of integer, real, and string literals are implicitly

defined, the type of identifiers referring to basic type values in Verilog-A

has to be declared before these identifiers are used in expressions.

�Integer Types
The integer type represents a range of integral numbers which can be

both positive and negative. An integral number is colloquially defined as a

number that can be written without a fractional component.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_2

https://doi.org/10.1007/978-1-4842-6351-8_2#DOI

18

The integer types are stored using 32-bit words. The signed integer

numbers that can be represented in this way range from -231 to 231-1, that

is, from -2_147_483_648 to 2_147_483_647. The negative integers are

represented via two’s complement. It means that a negative integer -y,

where 0 ≤ y ≤ 231-1, is stored as a binary representation of the positive

integer 232-y.

�Real Types
The real types are stored as 64-bit words following the IEEE Standard

STD-754-1985 for double-precision floating-point numbers as shown in

Figure 2-1.

Figure 2-1.  The storage format for a 64-bit real type in Verilog-A

In the 64-bit IEEE format, a single bit (S) is allocated as the sign

bit (0 or 1). The 11 bits in the exponent field (E) provide the maximum

exponent range from –1022 to 1023. It defines the value range of the real

type. The smallest positive number that can be represented in this way is

2-1022=2.23×10-308, while the largest number is 21023=1.80×10308. The precision

of the real type is determined by the number of bits in the fraction field (F).

The 52 bits in the fractional field correspond to approximately 16

significant decimal digits.

A real number in mathematics assumes a value of a continuous

quantity. On the other hand, the real type numbers in Verilog-A can have

only a finite subset of all real numbers between the largest and smallest

values. A commonly used measure for the gap between discrete real type

number values is the machine epsilon. It is defined as a gap between the

Chapter 2 Basic Types and Expressions

19

smallest real type number greater than 1 and 1, which is 2-52 ≈ 2.2×10-16.

In numerical computations, it is very easy to attempt to generate a

number whose absolute magnitude is too big to be represented (causing

floating-point overflow) or too small (causing floating-point underflow).

Subtracting two nearly equal real type values could result in catastrophic

cancellation and complete loss of accuracy. One should always keep in

mind that the real type numbers are not the exact representation of the real

numbers in mathematics.

�String Types
The string type in Verilog-A represents an ordered collection of characters.

The length of a string variable is defined by the number of characters

stored in the string type. There is no limit on the string size, so you do not

have to worry about running out of space to store the string. Strings use

dynamic memory allocation as their length may vary during simulation.

String types are implemented as bit arrays of a width that is a multiple

of 8 bits that hold ASCII values, that is, an individual ASCII character is

defined by 8 bits.

Note  Unlike the C programming language, there is no null character
\0 at the end of a Verilog-A string, and any attempt to use the null
character is ignored.

The string types in Verilog-A can take on the special value "", which is

the empty string.

Chapter 2 Basic Types and Expressions

20

�Expressions
An expression is a formula in which operands are linked to each other by

the use of operators to compute a value of a basic type. Expressions can

also serve as operands and can be joined together by operators into more

complex expressions.

�Primary Expressions
Primary expressions are the building blocks of more complex expressions.

The simple primary expressions are basic type literals and identifiers

declared as references to basic type values. More elaborate primary

expressions are call and subscript expressions.

�Call Expressions

A call expression in Verilog-A is passing control and arguments (if any) to a

function that returns a basic type value.

A call expression is formed by a function name followed by the call

operator introduced with parentheses () containing a comma-separated

list of call arguments:

hypot(arg1, arg2)

maxValue(val1, val2)

idtmod(freq, 0.0, 1.0, –0.5)

$rdist_normal(2, 0, 5n, "instance")

The function name is an identifier for the user-defined and signal

access functions. It could be also a keyword or system name for built-in

functions and analog operators. Any expression can be specified as an

argument in a function call but the number and the type of call arguments

Chapter 2 Basic Types and Expressions

21

must agree with the argument declaration in the function definition. Only

signal access functions can take a variable number of arguments, one or

two net-discipline type identifiers:

V(p, n)

V(d)

The function argument lists for the user-defined functions should

contain at least one argument, while some of the system built-in functions

can be used without arguments:

$random()

$temperature

with the optional use of empty parentheses.

�Subscript Expressions

A subscript operator [] can be used to access the elements of an array

of basic types. One of the two operands in a subscript expression is an

array variable name that must precede the brackets. The other, specified

within the brackets, is the index value that must be an expression of the

integer type:

in_val[5]

The subscript operator can be applied recursively to access the values

in multidimensional arrays:

x[n1][n2][n3]

The subscript expressions are associated from left to right. The leftmost

subscript operator is evaluated first.

Chapter 2 Basic Types and Expressions

22

�Arithmetic Expressions
The operands of the arithmetic expressions may be of real or integer type.

The arithmetic operators supported by the Verilog-A language are shown

in Table 2-1.

Table 2-1.  The arithmetic operators

Operator Meaning Example Result

+ Addition x + y Sum of x and y

- Subtraction x - y Difference of x and y

* Multiplication x * y Product of x and y

/ Division x / y Quotient of x by y

** Power x ** y x to the power of y

% Modulus x % y Remainder of x / y

+(unary) Positive sign + x Value of x

-(unary) Negative sign - x Arithmetic negation of x

The result of the division operator, /, with integer operands is also

an integer obtained as the algebraic quotient with any fractional part

discarded. For example, the expressions 5/2 and -5/2 are evaluated as

2 and -2, respectively. For positive quotient, the output is the greatest

integer less than or equal to the quotient (floor function of the quotient),

while for the negative quotient it is the least integer greater than or equal to

the quotient (ceiling function of the quotient).

The modulus expression x % y finds the remainder after division

x / y. If both operands are integers, the result is equivalent to the

expression:

x - (x / y) * y

Chapter 2 Basic Types and Expressions

23

For the case where either argument is real, the expression x % y is

evaluated as

x - ceil(x / y) * y

if x/y is negative and

x - floor(x / y) * y

otherwise. Here, floor() and ceil() are Verilog-A built-in floor and

ceiling functions, respectively.

For mixed real and integer operands, the integer operand is converted

to real:

1 + 3.145 // is equivalent to 1.0 + 3.145

Such implicit type conversions can often be avoided.

�Relational Expressions
An expression created using a relational operator forms a relational

expression or a condition. The six operators which can be used to form

relational expressions are shown in Table 2-2.

Chapter 2 Basic Types and Expressions

24

Table 2-2.  The relational operators

Operator Meaning Example Result: 1 (True) or 0 (False)

< Less than x < y 1 if x is less than y

<= Less than or equal to x <= y 1 if x is less than or equal to y

> Greater than x > y 1 if x is greater than y

>= Greater than or equal to x >= y 1 if x is greater than or equal to y

== Equal to x == y 1 if x is equal to y

!= Not equal to x != y 1 if x is not equal to y. In all other

cases, the result is 0

A comparison of the left and right operands is carried out and the

result is either true or false. Since there is no boolean type in Verilog-A, the

integer type is used to represent true or false. Relational expressions return

0 or 1, where 0 stands for false and 1 stands for true.

You can also compare strings with relational expressions. Both

operands can be of type string, or one of them can be a string literal which

is implicitly converted to a string type for the comparison. The integer

value of each character of the left string operand is compared to the integer

value of each character of the right string operand working from left

to right.

�Logical Expressions
The operands can be of the real or integer type. The three logical operators

in Verilog-A are shown in Table 2-3.

Chapter 2 Basic Types and Expressions

25

Table 2-3.  The logical operators

Operator Meaning Example Result: 1 (True) or 0 (False)

&& Logical AND x && y 1 if both x and y are not equal to 0

|| Logical OR x || y 1 if either of both x and y is not equal to 0

! Logical NOT !x 1 if x equals 0. In all other cases, the result is 0

Logical operators evaluate each operand in terms of its equivalence

to 0. The result of a logical expression is the integer with a value of 0 or 1.

�Bitwise Expressions
The bitwise expressions are concerned with the operations on single bits of

integer types. There are seven bitwise operators, five logical and two shift

bitwise operators, as described in Table 2-4.

Table 2-4.  The bitwise operators

Operator Meaning Example Result (for Each Bit Position)

& Bitwise AND x & y 1, if 1 in both x and y

| Bitwise OR x | y 1, if 1 is in either x or y, but not both

^ Bitwise

exclusive OR

x ^ y 1 if 1 in either x or y, but not both

~ Bitwise NOT ~x 1 if 0 in x

^~ or ~^ Bitwise

equivalence

x ^~ y

or

x ~^ y

1, if both 0 or both 1, in other cases, the

result is 0

<< Shift left x << y Each bit in x shifted y positions to the left

>> Shift right x >> y Each bit in x shifted y positions to the

right

Chapter 2 Basic Types and Expressions

26

The logical bitwise operators perform boolean bitwise manipulations

on the operands, that is, the operator combines a bit in one operand with

its corresponding bit in the other operand to calculate one bit for the

result. The logical shift operators shift the bits of their operands filling

vacated bits with zeros. They should not be used with negative operands.

If the bits are shifted beyond the size of the integer, the behavior is

undefined.

�Conditional Expressions
The conditional expression is the only ternary operator in Verilog-A. The

format for the conditional expression is

expression-1 ? expression-2 : expression-3

The purpose of the conditional expression is to select and evaluate one

of two expressions, expression-2 or expression-3, depending on the value

of the expression-1. If the value of the expression-1 is zero (0), the value of

the conditional expression is expression-3; otherwise, it is the value of the

expression-2:

x > y ? x : y // Evaluates the larger of x and y

The first operand can be any expression evaluating numeric basic type

but the logical expressions or expressions evaluating the integer value are

more reliable to use than expressions evaluating real values.

�Concatenated Expressions
Concatenated expressions are joining together bits from one or more

expressions into a single value using concatenation and replication

operators.

Chapter 2 Basic Types and Expressions

27

The concatenation operator, introduced with brace characters { },

is used to concatenate a comma-separated list of expressions within the

braces. For example, the concatenated expression

{1'b1, 3'b101}

is equivalent to the expression

{1'b1, 1'b1, 1'b0, 1'b1}

and evaluates to 4'b1101. The value of the concatenated expression

{ "hello", " ", "world" }

is "hello world".

Unsized basic type values shall not be allowed in concatenations.

This is because the size of each operand in the concatenation is needed to

calculate the complete size of the concatenation.

Note  Confusion can arise for the Verilog-A users familiar with
programming in C because { } is used to describe lists of values for
array initialization in the C language, whereas it means something
very different (concatenation) in the Verilog-A language.

A replication operator is the only operator that can be applied to

concatenated expressions. It is introduced by a concatenation preceded

by a non-negative, constant expression, called a replication constant,

enclosed together within brace characters. It indicates a joining together of

that many copies of the concatenation:

{4{w}} // This yields the same value as {w, w, w, w}

{b, {3{a, b}}} // This yields the same value as

 // {b, a, b, a, b, a, b}

result = {4{func(w)}};

Chapter 2 Basic Types and Expressions

28

When a replication expression is evaluated, the operands shall be

evaluated exactly once, even if the replication constant is zero (0).

�Expression Evaluation Order
The order in which the expressions are evaluated is defined by the operator

precedence and associativity. It can be altered using parenthesized

expressions and affected by short-circuiting evaluation.

�Operator Precedence
In expressions with more than one operator, the precedence of the

operators determines the grouping of operands with operators as listed in

Table 2-5.

Table 2-5.  Precedence of operators

Category Operator Associativity

Primary [] () Left to right

Unary ! ~ + - Right to left

Power ** Left to right

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise & Left to right

Bitwise ^ ^~ ~^ Left to right
(continued)

Chapter 2 Basic Types and Expressions

29

Category Operator Associativity

Bitwise | Left to right

Logical && Left to right

Logical || Left to right

Conditional ? : Right to left

Concatenation {} {{}} Left to right

Table 2-5.  (continued)

For example, the multiplicative arithmetic operators *, /, and % take

precedence over additive arithmetic operators + and -. Associativity

refers to the order in which the operators having the same precedence are

evaluated. If a different grouping is desired, parentheses must be used as a

grouping delimiter.

�Parenthesized Expressions
Parentheses can be used to alter the default precedence among operators

in expressions that contain multiple operators:

(a + b) / c // Not the same as a + b / c

They are also used as a syntactic aid to mix expressions in ways that

would otherwise cause syntactic ambiguities.

Parenthesized expressions could be in principle considered as primary

expressions since their values must be evaluated before the expression

containing a parenthesized expression is evaluated.

Chapter 2 Basic Types and Expressions

30

�Short-Circuit Evaluation
The logical and conditional expressions in Verilog-A use short-circuit

or minimal evaluation. Some of their operand expressions shall not be

evaluated if their value is not required to determine the final value of the

operation. For example, if in the expression

a & (b || c)

a is known to be zero, the result of the expression can be determined as

zero without evaluating the sub-expression b || c.

All other operators shall not use short-circuit evaluation and all of their

operand expressions are always evaluated.

�Expression Containers
The expression containers are Verilog-A data structures whose instances

are collections of expressions. They store expressions in an organized

way that follows specific access rules. Verilog-A supports two types of

expression containers: assignment patterns and ranges.

�Assignment Patterns
An assignment pattern provides a way to specify a list of expressions of

a particular basic type. The list of expressions is grouped as a comma-

separated list within the braces { and } prefixed with an apostrophe:

'{a, b, c, d}

'{0, 1, 2}

'{1.0, PI/2.0}

'{"first", "middle", "last"};

Chapter 2 Basic Types and Expressions

31

An assignment pattern cannot be used as operand in expressions.

Instead, it is used in an assignment-like context. It includes arguments

in call operators that are expected to be arrays, initialization of array

parameters and variables, and procedural assignments of array variables.

An assignment pattern can nest in another assignment pattern:

'{'{0.0,0.1,0.1},'{0.1,0.0,0.1},'{0.1,0.1,0.0}}

It allows to annotate a clear correspondence between a collection

of expressions and elements in assigned array data objects. A syntax

resembling replications can be used in array assignment patterns as well:

'{2 {y}} ; // same as '{y, y}

'{2{'{3{y}}}}; // same as '{'{y,y,y},'{y,y,y}}

Note O ne should be careful not to confuse assignment patterns
with a concatenation operator using a pair of braces { } instead of '{ }.

�Ranges
When an object in Verilog-A is numerically indexed, the range is used to

specify its upper and lower indices.

The range is defined by the syntax

[start-index : end-index]

Chapter 2 Basic Types and Expressions

32

where start-index and end-index are constant expressions that shall be

evaluated as integers or promoted to integers from real type expressions.

The start-index and end-index can take any positive or negative constant

integer value including zero (0):

[0 : width-2]

[-7 : 15]

[x/y : -1]

The ranges can be either ascending, if end-index is greater than

start-index, or descending if end-index is less than start-index. It is also

possible to have a trivial scalar range if start-index is equal to the

end-index. The use of ascending and descending ranges is entirely up to

the user and their conventions.

Chapter 2 Basic Types and Expressions

33

CHAPTER 3

Net-Discipline Types
In addition to the basic types, Verilog-A also introduces user-defined

net-discipline types. The objects of the net-discipline types are nets,

an abstraction of connectivity among components of various physical

disciplines in Verilog-A models. The net-discipline types encapsulate

information on the nature of flow and potential signals, a pair of physical

quantities significant for communication and energy exchange among

system components. The values of flow and potential signals are used as

state variables in system dynamics simulation.

�Defining Signal Natures
A nature is a collection of attributes that are shared by a certain class of net

signals. Natures should be defined at the top level of the Verilog-A code

and they do not nest inside other nature definitions or any other Verilog-A

constructs. Natures can be defined as base natures or derived natures

that reuse, extend, and modify the base natures. In order to support code

portability, the Verilog-A standard provides also a set of predefined nature

definitions.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_3

https://doi.org/10.1007/978-1-4842-6351-8_3#DOI

34

�Base Natures
The base natures are defined using the following syntax:

nature nature-name ;

 attribute-name = constant-expression ;

 ...

endnature

The keyword nature in the header line of the base nature definition

is followed by a unique identifier nature-name which is used as nature

reference. The terminating semicolon (;) after the nature name is optional.

A body of the nature definition, between the header line and the keyword

endnature, includes a sequence of nature attribute assignment statements.

The attribute-name could be an identifier or a keyword for standard nature

attribute names.

The assignment of three standard attribute names is required for all

base nature definitions. The keywords used as attribute names, assigned

constant expressions, and short descriptions are given in Table 3-1.

Table 3-1.  Required standard nature attributes

Attribute Name Constant Expression Description

abstol Real The maximum negligible value for signals

associated with nature

access Identifier The name for the signal access function

units String A binding between the value of the signal

access function and the units for that value

The abstol attribute specifies the maximum negligible value for

signals associated with the nature. The constant expression assigned to it

shall evaluate a constant real number. The access attribute identifies the

Chapter 3 Net-Discipline Types

35

unique name of the access function for a potential or flow signal associated

with the nature. The constant expression, in that case, shall be an identifier

given by name, not as a string. The units attribute provides a binding

between the value returned by the nature signal access function and the

physical unit for that value. It is mostly required for net compatibility

checking. Besides, simulators can use units attributes to annotate the

signals with their physical units.

Here are two examples of the base nature definitions:

nature Illuminance

 units = "Cd";

 access = LP;

 abstol = 1e-14;

endnature

nature ChemQ

 units = "-";

 access = CH;

 abstol = 1e-14;

endnature

All other nature attributes are optional and could be assigned in the

base as well as in derived natures.

The attribute names, assigned values, and short descriptions for two

optional standard nature attributes are given in Table 3-2.

Table 3-2.  Optional built-in nature attributes

Attribute Name Constant Expression Description

ddt_nature nature-name The name of nature that

represents its time derivative

idt_nature nature-name The name of nature that

represents its time integral

Chapter 3 Net-Discipline Types

36

The ddt_nature and idt_nature attributes provide a relationship

between nature using these attributes in its definition and the natures

representing the time derivative and time integral of that nature signal,

respectively. These nature attributes are used to reduce the need for

specifying numerical tolerances in differential and integral operators ddt()

and idt(). The required numerical tolerances can be taken from the ddt_

nature or idt_nature nature abstol attribute values. The value assigned

to ddt_nature and idt_nature attributes shall be the nature name given

by an identifier, not a string. A nature can reference itself in ddt_nature

and idt_nature attribute assignments, which is also the default value for

ddt_nature and idt_nature attributes if they are not assigned.

Here are examples of nature definitions including ddt_nature and

idt_nature attribute assignments:

nature Voltage;

 units = "V";

 access = V;

 idt_nature = Flux;

 abstol = 1e-6;

endnature

nature Flux;

 units = "Wb";

 access = Phi;

 ddt_nature = Voltage;

 abstol = 1e-9;

endnature

In addition to the required and optional standard nature attributes, a

nature definition can also assign optional user-defined attribute names.

Typical examples include the maximum and minimum signal values or

other numerical range signal properties:

Chapter 3 Net-Discipline Types

37

nature my_current;

 units = "A";

 access = I;

 abstol = 1u;

 reltol = 1m; // user-defined attribute

endnature

A user-defined attribute can be assigned in the same manner as

the standard attributes but using an identifier as the attribute name.

The attribute name shall be unique in the nature being defined and the

assigned values shall be constant.

�Derived Natures
A nature can be derived from a parent nature, which is an already defined

base nature or other derived nature. The derived nature inherits all the

attributes of the parent nature.

A derived nature is defined using the extended syntax for the nature

definition header line:

nature nature-name : parent-nature ;

where the derived and parent nature names are separated by a colon

(:) character.

A derived nature can assign additional attributes or override attribute

values of the parent nature:

nature new_current : my_current;

 abstol = 1m; // modified for this nature

 maxval = 10.0; // new attribute for this nature

endnature

Chapter 3 Net-Discipline Types

38

It is illegal for a derived nature to assign or change the access and

units attributes. It is possible to modify the parent’s values of ddt_nature

and idt_nature attributes if the derived nature is related (share the same

base nature) to the nature that the parent nature uses for its ddt_nature

and idt_nature attributes.

Without any new attribute assignments and attribute overrides:

nature net_current : new_current; // An alias

endnature

the derived nature is identical to the parent nature and essentially

represents an alias for the parent nature name.

�Predefined Natures
The names and attribute assignments of the Verilog-A predefined standard

natures are summarized in Table 3-3.

Chapter 3 Net-Discipline Types

39

Ta
bl

e
3-

3.
 P

re
de

fi
n

ed
 s

ta
n

da
rd

 n
at

u
re

s

Na
tu

re
 N

am
e

Un
its

Ac
ce

ss
Ab

st
ol

id
t_

na
tu

re
dd

t_
na

tu
re

Cu
rr
en
t

"A
"

I
1e
-1
2

Ch
ar
ge

-

Ch
ar
ge

"c
ou
l"

Q
1e
-1
4

Cu
rr
en
t

Vo
lt
ag
e

"V
"

V
1e
-6

Fl
ux

-

Fl
ux

"W
b"

Ph
i

1e
-9

-
Vo
lt
ag
e

Ma
gn
et
o_

Mo
ti
ve
_F
or
ce

"A
*t
ur
n"

MM
F

1e
-1
2

-
-

Te
mp
er
at

ur
e

"K
"

Te
mp

1e
-4

-
-

Po
we
r

"W
"

Pw
r

1e
-9

-
-

Po
si
ti
on

"m
"

Po
s

1e
-6

-
Ve
lo
ci
ty

Ve
lo
ci
ty

"m
/s
"

Ve
l

1e
-6

Po
si
ti
on

Ac
ce
le
ra
ti
on

Ac
ce
le
ra

ti
on

"m
/s
^2
"

Ac
c

1e
-6

Ve
lo
ci
ty

Im
pu
ls
e

Im
pu
ls
e

"m
/s
^3
"

Im
p

1e
-6

Ac
ce
le
ra
ti
on

Fo
rc
e

"N
"

F
1e
-6

-
-

An
gl
e

"r
ad
s/
s^
2"

Al
ph
a

1e
-6

-
An
gu
la
r_
 V
el
oc
it
y

(c
on

ti
n

u
ed

)

Chapter 3 Net-Discipline Types

40

Ta
bl

e
3-

3.
 (

co
n

ti
n

u
ed

)

Na
tu

re
 N

am
e

Un
its

Ac
ce

ss
Ab

st
ol

id
t_

na
tu

re
dd

t_
na

tu
re

An
gu
la
r_
Ve
lo
ci
ty

"r
ad
s/
s"

Om
eg
a

1e
-6

An
gl
e

An
gu
la
r-

Ac
ce
le
ra
ti
on

An
gu
la
r_
Ac
ce
le
ra
ti
on

"r
ad
s/
s^
2"

Al
ph
a

1e
-6

An
gu
la
r_

Ve
lo
ci
ty

-

An
gu
la
r_
Fo
rc
e

"N
m"

Ta
u

1e
-6

-
-

Chapter 3 Net-Discipline Types

41

The predefined standard natures can be accessed in discipline

definitions by including the standard disciplines.vams file as explained

in Chapter 20.

�Defining Net-Discipline Types
The net-discipline types are defined using the syntax

discipline discipline-name ;

 discipline-statement

 ...

enddiscipline

The keyword discipline in the header line of the discipline definition

is followed by a unique identifier discipline-name which is used as a net-

discipline type name in net declarations. The use of the semicolon (;) in

the discipline definition header line is optional. The discipline shall be

defined at the top level of the Verilog-A code and they do not nest inside

other discipline definitions or any other Verilog-A constructs.

A body of the discipline definition, between the header line and the

keyword enddiscipline, contains a sequence of nature binding, domain

binding, and nature override discipline statements.

�Nature Binding Statements
The nature binding statements are used to associate the discipline

potential and flow signal quantities to the corresponding natures:

potential nature-name ;

flow nature-name ;

The keywords potential and flow are used for the potential and flow

binding, respectively.

Chapter 3 Net-Discipline Types

https://doi.org/10.1007/978-1-4842-6351-8_20

42

Disciplines having both potential and flow nature bindings are known

as conservative disciplines:

discipline electrical;

 potential Voltage;

 flow Current;

enddiscipline

Conservative disciplines shall not have the same nature specified for

both the potential and the flow.

Disciplines defined with a single potential or flow nature binding

statement are signal-flow disciplines:

discipline optical_sf

 potential Illuminance;

enddiscipline

discipline chemical_sf

 potential ChemQ;

enddiscipline

In principle, it is possible to define a discipline with no nature

bindings. These are known as natureless or empty disciplines:

discipline natureless;

enddiscipline

The nets declared with empty disciplines can be used in structural

descriptions but not in signal access functions since the nature of signals

is not known. Usage of empty disciplines is highly discouraged. They are

mainly provided for backward compatibility with previous versions of the

Verilog-A standards.

Chapter 3 Net-Discipline Types

43

�Domain Binding Statements
The discipline definition syntax allows also the specification of the nature

signal domain using one of the domain binding statements:

domain discrete;

domain continuous;

The domain binding statements are optional. The default value for a

domain is continuous.

Since analog signals are always represented in continuous time, a

Verilog-A compiler shall silently ignore any definition of a discipline with a

discrete domain binding.

�Nature Override Statements
A discipline can override the value of the predefined attributes in the

bound natures using attribute override statements:

potential . attribute-name = constant-expression ;

flow . attribute-name = constant-expression ;

The attribute names are accessed using the keyword potential or

flow, followed by the hierarchical punctuator (.), and an attribute name.

In the following example, the discipline enode overrides the value of

the abstol and maxval attributes in new_current nature:

discipline enode;

 potential Voltage;

 flow new_current;

 flow.abstol = 10u;

 flow.maxval = 1K;

enddiscipline

The restrictions imposed on the attribute overrides in derived natures

hold also for nature override statements in discipline definitions.

Chapter 3 Net-Discipline Types

44

�Deriving Natures from Disciplines
A nature can be also derived from the natures bound to the potential or

flow in a discipline. It can be achieved using one of the following nature

definition headers:

nature derived-nature-name : discipline-name . potential ;

nature derived-nature-name : discipline-name . flow ;

where the parent nature name is replaced by the discipline name

followed by the hierarchical punctuator (.) and the keyword flow or

potential. The derived nature in this way inherits all the attributes of the

nature bound to the potential or the flow of the discipline. If the nature

binding to the potential or the flow of a discipline changes, the new nature

shall automatically inherit the attributes of the changing nature.

A nature derived from the flow or potential of a discipline can declare

additional attributes or override values of the attributes already declared

as any other derived nature.

nature enode_curr : enode.flow;

 reltol = 1u; // modified for this nature

 minval = 1p; // new attribute for this nature

endnature

In the preceding example, the nature enode_curr is derived from the

natures bound to flow in the discipline enode.

�Discipline Compatibility
Certain operations can be done on nets only if the two (or more) nets

are compatible. For example, if a signal access function has two nets as

arguments, they must be compatible. It shall be an error to connect two

nets with incompatible disciplines.

Chapter 3 Net-Discipline Types

45

The following rules shall apply to determine discipline compatibility:

•	 A discipline is compatible with itself.

•	 Disciplines with incompatible potential natures are

incompatible.

•	 Disciplines with incompatible flow natures are

incompatible.

The following rules shall apply to determine nature compatibility:

•	 A nature is compatible with itself.

•	 A potential or flow nature is compatible with a

nonexistent potential or flow nature binding.

•	 A derived nature is compatible with its base nature.

•	 Two natures are compatible if they are derived from the

same base nature.

•	 Two natures are compatible if they have the same value

for the units attribute.

The following examples illustrate these rules:

discipline electrical;

 potential Voltage;

 flow Current;

endnature

discipline highvolt;

 potential highvoltage;

 flow Current;

endnature

discipline sig_flow_v;

 potential Voltage;

enddiscipline

Chapter 3 Net-Discipline Types

46

nature Voltage;

 access = V;

 units = "V";

 abstol = 1u;

endnature

nature highvoltage : Voltage;

 abstol = 1;

endnature

The Voltage and highvoltage natures are compatible because

highvoltage nature is derived from Voltage nature. Similarly, electrical

and highvolt disciplines are compatible because the natures for both

potential and flow exist and are derived from the same base natures. The

disciplines electrical and sig_flow_v are compatible because the nature

for potential is the same for both disciplines and the nature for flow does

not exist in sig_flow_v.

When a net is connected to other nets with compatible disciplines,

the net shall be treated as having a potential abstol with a value equal to

the smallest abstol of all the potential natures of all the disciplines with

which it is connected. The net shall be treated as having a flow abstol with

a value equal to the smallest abstol of all the flow natures, if any, of all the

disciplines with which it is connected.

�Predefined Disciplines
Together with the predefined standard nature definitions given in

Table 3-3, Verilog-A also provides a set of predefined discipline definitions

which are summarized in Table 3-4.

Chapter 3 Net-Discipline Types

47

Table 3-4.  Predefined standard disciplines

Discipline Potential Nature Flow Nature

electrical Voltage Current

voltage Voltage -

current - Current

magnetic Magneto_Motive_Force Flux

thermal Temperature Power

kinematic Position Force

kinematic_v Velocity Force

rotational Angle Angular_Force

rotational_omega Angular_Velocity Angular_Force

The predefined standard disciplines can be used for net declaration in

Verilog-A code by including the standard disciplines.vams file using the

include compiler directive as explained in Chapter 20.

�Net Declarations
Nets are declared as objects of the net-discipline types. Nets can be

declared as scalar or vector nets.

�Scalar Nets
The scalar nets are declared using a declaration statement:

discipline-name net-name, ... ;

Chapter 3 Net-Discipline Types

https://doi.org/10.1007/978-1-4842-6351-8_20

48

Here, discipline-name is the identifier of an already defined

discipline. It is followed by a comma-separated list of net identifiers or

hierarchical names:

kinematic ki_gnd, tmass;

electrical el_gnd, tetop, tebot, tesens, tesensa,

 ttrig, tinv;

chemical_sf c_NaN3, c_Na, c_N2, c_KNO3, c_K2O,

 c_Na2O, c_SiO2, c_K2Na2SiO4;

thermal tjsrc, tjn, tjp, tjld, tjpd, top.foo.dt;

optical_sf light_out, light_prop;

In the preceding examples, kinematic, electrical, and thermal

disciplines are predefined conservative disciplines, while optical_sf and

chemical_sf are user-defined signal-flow disciplines.

�Vector Nets
Nets can be also declared as vectors specifying the vector range after the

discipline name in the declaration statement:

net-discipline-type-name range net-name, ... ;

The range specifier is associated with the net-discipline type

declaration, not the net-name identifier, and it is common for all nets in the

declaration comma-separated list.

electrical [0:width-1] in;

voltage [5:0] n2, n3;

Chapter 3 Net-Discipline Types

49

�Ground Nets
The potential of a net is always defined with respect to a global reference

net, or ground net. Scalar and vector nets can be declared to be the global

reference nets using the ground declaration statement:

ground net-name, ... ;

ground range net-name, ... ;

where net-name should be previously declared with its net-discipline:

electrical gnd;

thermal [0:1] dt;

...

ground gnd;

ground [0:1] dt;

The vector ranges in discipline and ground declaration shall be of the

same size.

The Verilog-A standard supports also an alternative and less verbose

syntax for ground declarations:

ground discipline-name net-name, ... ;

ground discipline-name range net-name, ... ;

allowing to specify ground net-discipline in the ground declaration

statements:

ground electrical gnd;

ground thermal [0:1] dt;

It avoids repeating port names and ranges in separate net-discipline

and ground declarations.

Chapter 3 Net-Discipline Types

50

�Net Initialization
Nets are allowed to have initializers as a part of their declarations. The net

initialization sets the values for the potential signal in declared nets.

The initialization is introduced into net declarations by replacing the

net-name identifiers or hierarchical names with assignments:

discipline-name net-name=initializer, ... ;

discipline-name range net-name=initializer, ... ;

For scalar nets, the initializer shall be a real type constant expression:

electrical a = 5.0;

mechanical top.foo.w = 250.0;

For vector nets, an assignment pattern with a list of real type constant

expression is used as an initializer.

electrical [0:4] pins = '{2.3,4.5, ,6.0};

A missing value in the assignment pattern list indicates that no initial

value is being specified for this element of the vector net.

If different nets in contact have conflicting initializers, then initializers

on hierarchical net declarations win. If there are multiple hierarchical

declarations, then the declaration on the highest level wins. If there

are multiple hierarchical declarations on the highest level, then it is a

race condition for which the initializer wins. If the multiple conflicting

initializers are not hierarchical, then it is also a race condition for which

the initializer wins.

Chapter 3 Net-Discipline Types

51

�Accessing Net Attributes
Net-discipline types encapsulate the values of potential and flow signal

intensities and corresponding nature attribute values. The values of

attributes attached to the potential or flow natures of the declared net can

be accessed using hierarchical names with the syntax:

net-name . potential . attribute-name

net-name . flow . attribute-name

For example, the hierarchical name

n1.flow.maxval

can be used in expressions as a value of the user-defined attribute

maxval if the net n1 is declared as enode net-discipline type.

The intensity of net potential and flow signals can be accessed only

indirectly using signal access functions described in Chapter 8.

Chapter 3 Net-Discipline Types

https://doi.org/10.1007/978-1-4842-6351-8_8

53

CHAPTER 4

Modules and Ports
Modules are fundamental building blocks for structural and behavioral

system description in the Verilog-A language. Ports provide module

connectivity and allow communication between a module and its

environment. When working on large designs, it is a common practice to

decompose a system into a set of interconnected modules representing

system components. Verilog-A supports a hierarchical system design by

allowing modules to be instantiated within other modules. Higher-level

modules create instances of lower-level modules and communicate with

them through input, output, and bidirectional ports.

�Defining Module Connectivity
Modules are basically defined using the syntax:

module module-name (module-connectivity) ;

 // Module items

 ...

endmodule

The keyword module in the module header line, ending with a

semicolon (;), is followed by a unique identifier module-name and a

specification of the module connectivity in the parentheses. The top-level

modules, without external connectivity, use header lines without, or with

empty, parentheses. The module headers can be also used to declare

module parameters, as it is described in the next chapter.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_4

https://doi.org/10.1007/978-1-4842-6351-8_4#DOI

54

Note  The keyword macromodule could be used interchangeably
with the keyword module in the module header line. A compiler
implementation may choose to treat module definitions beginning
with the macromodule keyword differently, but in principle, the
macromodule is just a synonym for a module.

Between the header line and the keyword endmodule is a module body

containing a sequence of module items that define a module. Modules

are defined at the top level of the Verilog-A code and they do not nest, that

is, one module definition does not contain the text of another module

definition. Each module definition stands alone.

Most of the Verilog-A language constructs are module items. The only

exceptions are the nature and discipline definitions described in Chapter 3

and paramset definitions that will be introduced in Chapter 6. The other

Verilog-A constructs must be defined and used only within the scope

of a module body. But before we address Verilog-A module items in the

following chapters, it is essential to first define module connectivity by

declaring port directions and types.

�Declaring Port Directions
Ports provide connectivity to a module by sending and receiving signals

from the outside world. The ports are basically declared with the direction

of the signal flow through a port. Verilog-A supports two syntax forms for

port declaration.

Chapter 4 Modules and Ports

https://doi.org/10.1007/978-1-4842-6351-8_3
https://doi.org/10.1007/978-1-4842-6351-8_6

55

In the first syntax form, the module ports are specified in a module

header and declared in a module body:

module module-name (port-name, ...);

port-declaration ; ...

 // Other module items

 ...

endmodule

In this case, the parentheses in the module header contain an ordered

list of comma-separated identifiers specifying port names. A compiler

implementation can limit the maximum number of module ports, but it

should allow at least 256 ports. The order used in defining a list of port

names can be significant when instantiating the module.

The actual port declarations are introduced as statements in the

module body together with other module items. Port can be declared as

scalar or vector ports. The syntax for scalar port-declaration is

direction port-name, ...

The direction specifier can be either input or output keyword for

unidirectional or inout keyword for bidirectional port declaration. The

direction specifier is followed by a comma-separated list of port names. All

ports listed in the module header should have a direction declaration in a

module body.

Here are examples of bidirectional and unidirectional scalar port

declarations in modules representing a MOS transistor, a light-emitting

diode (LED), and a photodiode:

module mosekv (d, g, s, b, dt);

 inout d, g, s, b, dt;

 ...

endmodule

Chapter 4 Modules and Ports

56

module led (anode, cathode, out_light);

 inout anode, cathode;

 output out_light;

 ...

endmodule

module photodiode (in_light, anode, cathode);

 input in_light,

 inout anode, cathode;

 ...

endmodule

The dots in the module body indicate that the modules contain also

other items which are not relevant for the port declaration.

The vector ports are declared similar to vector nets:

direction range port-name, ...

introducing a range specifier after the direction specifier. Here is an

example of vector port declaration in a module representing a neural

network unit:

module perceptron (in, out);

 input [10:0] in;

 output out;

 ...

endmodule

Note that the vector port names declared in the module body are listed

in the module header without range specifications.

Verilog-A supports also an alternative syntax for a port declaration that

is similar to the ANSI C style of function argument declaration:

Chapter 4 Modules and Ports

57

module module-name (port-declaration, ...);

 // Other module items

 ...

endmodule

In this syntax form, the list of port declarations is specified in the

module header instead of the module body. Note that the port declarations

in module headers do not end with a statement terminator (;) as the port

declaration statements in the module body. Ports declared in the module

header shall not be redeclared within the body of the module. It also is not

allowed to mix module body and header port declarations.

Using this syntax form, we can redefine the port declarations in mosekv

and led, photodiode, and perceptron module headers as

module mosekv (inout d, g, s, b,

 inout dt);

module led (inout anode, catode,

 output out_light);

module photodiode (input in_light,

 inout anode, catode);

module perceptron (inout [10:0] in,

 output out);

The port declaration in the module header is more concise and avoids

repeating port names in the module header and body.

�Declaring Port Types
Ports are essentially nets and therefore each declared port needs also a

net-discipline declaration in order to be used in the behavioral Verilog-A

system description. If the port type is not declared, the port can only be

used in structural descriptions of system connectivity.

Chapter 4 Modules and Ports

58

The port types can be declared in a module body using the net

declaration statements described in Chapter 3:

module mosekv (d, g, s, b, dt);

 inout d, g, s, b, dt;

 electrical d, g, s, b;

 thermal dt;

 ...

endmodule

module led (anode, cathode, out_light);

 inout anode, catode;

 output out_light;

 electrical anode, cathode;

 optical_sf olight;

 ...

endmodule

module photodiode (in_light, anode, cathode);

 input ilight,

 inout anode, cathode;

 optical_sf in_light;

 electrical anode, cathode;

 ...

endmodule

module perceptron (in, out);

 input [10:0] in;

 output out;

Chapter 4 Modules and Ports

https://doi.org/10.1007/978-1-4842-6351-8_3

59

 voltage out;

 voltage [10:0] in;

 ...

endmodule

An important difference is that it is not allowed to initialize the port

potential signal values:

thermal dt = 27.0; // illegal initialization

The ranges in the vector port direction and net-discipline declarations

should be identical:

voltage [0:10] in; // wrong range, should be [10:0]

Unidirectional ports, with input and output directions, may only be

declared as signal-flow net-discipline types, and bidirectional ports, with

inout direction, as conservative net-discipline types.

Verilog-A supports also an alternative and less verbose syntax for

direction and net-discipline declaration of scalar and vector ports:

direction net-discipline port-name, ... ;

direction net-discipline [index1 : index2] port-

name, ... ;

Basically, it allows declaring a port type within the port declaration. It

can be used in the port declaration statements in a module body:

inout electrical anode, cathode;

inout voltage [10:0] in;

but most effectively it is used for port declaration in the module

headers:

module mosekv (inout electrical d, g, s, b,

 inout thermal dt);

Chapter 4 Modules and Ports

60

module laserdiode (inout electrical anode, catode,

 output optical_sf out_light);

module photodiode (input optical_sf in_light,

 inout elecrical anode, catode);

module perceptron (inout voltage [10:0] in,

 output voltage out);

This syntax enhancement reduces the amount of code required to

declare all the information on port connectivity. It also prevents syntax

errors due to incompatible vector port ranges.

�Connecting Modules by Instantiation
The only way to connect modules is to instantiate them in higher-level

modules. A hierarchy of interconnected modules in Verilog-A is created by

recursive module instantiations.

The module instantiation statement creates one or more named

instances of a module. The basic syntax of the module instantiating

statements is

module-name module-instance, ... ;

where a module-name identifier must match exactly the name of

the previously declared module or one declared later. The comma-

separated list of module instances follows the module name. The module

instantiation statement can also include a list of parameter assignments

after the module name, as discussed in the next chapter.

The module-instance in module instantiation statements is specified as

module-instance-name (port-connection, ...)

Chapter 4 Modules and Ports

61

introducing a module-instance-name identifier and a comma-separated

list of port connections in the parentheses. A list of port connections

in parentheses is optional because it is possible to instantiate also top

modules. The parentheses, however, are always required.

The instantiations of modules can contain a range specification:

module-instance-name range (port-connection, ...)

which allows an array of instances to be created. These instances shall

have the same name and differ from each other only by the index in the

range specifier. One instance identifier shall be associated with only one

range to declare an array of instances.

The port-connection in the module instance specification provides

a mapping of a port in module definition and instance. There are two

techniques to define port-connection, explicit and positional. The explicit

and positional port mappings shall not be mixed in the same module

instantiation. The connections to the ports of a particular module instance

shall be all explicit or all positional.

�Explicit Port Mapping
The explicit way to connect module ports consists of linking the two names

for each side of the connection using the syntax:

. module-port-name (instance-mapping)

where module-port-name, preceded with a period (.), shall be the

port name specified in the module definition. The instance port mapping

is enclosed within parentheses. For scalar ports, the instance-mapping

shall be a simple net identifier or a scalar member of a vector net or port

declared within the module. For vector ports, it could be a subrange of a

vector net or port declared within the module, or a vector net formed as a

result of the concatenation operator.

Chapter 4 Modules and Ports

62

An unconnected port can be indicated by omitting it in the list of port

connections or using empty parentheses in port mapping:

. module-port-name()

The parentheses, however, are always required. In that way, the

instantiating module can document the existence of the port without

connecting it to anything. The port connections can be listed in any order

since the details of the connection (module port to instance port name)

are explicit.

The following examples illustrate the module instantiation with

explicit port mapping:

module cmos_invertor (in, out, dt, vdd, vss);

 inout in, out, dt, vdd;

 electrical in, out, vdd, vss;

 thermal dt;

 mosekv mp (.g(in),

 .d(out),

 .s(vdd),

 .dt(dt),

 .b(vdd));

 mosekv mn (.dt(dt),

 .g(in),

 .b(vss),

 .s(vss),

 .d(out));

endmodule

module opto_coupler (aled, kled, aphd, kphd)

 optical_sf ir_beam;

 electrical aled, kled, aphd, kphd;

Chapter 4 Modules and Ports

63

 led dio (.cat(kled),

 .ano(aled),

 .out_light(ir_beam));

 photodiode phd (.ano(aphd),

 .in_light(ir_beam),

 .cat(kphd));

endmodule

module nn_test (input voltage [10:0] a,

 input voltage [5:0] b

 output voltage [0:1] c);

 perceptron pct1 (.in(a),

 .out(c[0]));

 perceptron pct2 (.in('{a[4:0], b}),

 .out(c[1]));

endmodule

It is recommended to code each port connection in a separate line as

much easier to debug and resolve compilation errors.

�Positional Port Mapping
The other way to connect the ports in an instantiated module with the

ports in a module definition is via an ordered list, that is, the ports listed

for the module instance shall be in the same order as the ports listed in

the module definition. The cmos_invertor, opto_coupler, and nn_test

modules can be redefined using the positional port mapping as

module cmos_invertor (in, out, dt, vdd, vss);

 inout in, out, dt, vdd;

 electrical in, out, vdd, vss;

Chapter 4 Modules and Ports

64

 mosekv mp (out, in, vdd, vdd, dt);

 mosekv mn (out, in, vss, vss, dt);

endmodule

module opto_coupler (aled, kled, aphd, kphd)

 optical_sf ir_beam;

 electrical aled, kled, aphd, kphd;

 led dio (aled, kled, ir_beam);

 photodiode phd (ir_beam, aphd, kphd);

endmodule

module nn_test (input voltage [10:0] a,

 input voltage [5:0] b

 output voltage [0:1] c);

 perceptron pct1 (a, c[0]);

 perceptron pct2 ('{a[4:0], b}, c[1]);

endmodule

This approach requires less text to describe the connection but can

also easily lead to misconnections due to inadvertent mistakes in the port

order. The list of module connections shall be provided only for modules

defined with ports.

A blank port connection shall represent the situation where the port is

not to be connected.

�Top-Level Instantiation and $root
The hierarchy of instantiated modules can be viewed as a tree structure,

where each module instance defines a new branch of the hierarchy. The

modules that are included in the Verilog-A source text but do not appear in

any module instantiation statement are top-level modules. In the following

example, the module airbag is a top module of the airbag system:

Chapter 4 Modules and Ports

65

module airbag;

 kinematic mass, ki_gnd;

 electrical esens;

 voltage etrig, chtrig;

 ground ki_gnd;

 impact_force fsrc (mass, ki_gnd);

 sensor msens (mass, esens);

 comparator scomp (esens, etrig);

 trigger chtrg (etrig, chtrig)

 chemsys chsys (chtrig);

endmodule

A Verilog-A design shall contain at least one top-level module. A top-level

module is implicitly instantiated once, and its instance name is the same

as the module name. Such an instance is called a top-level instance.

The hierarchy of instantiated modules defines a hierarchical name

for every declared identifier in the module definitions. Any named object

can be referenced uniquely by its hierarchical name. Hierarchical names

consist of module instance names separated by periods (.), where an

instance name can be also an element of the instantiated module array.

The system name $root refers to the top of the instantiated design:

$root.airbag.mass

$root.airbag.msens.etop

If $root is not specified, a hierarchical path could be ambiguous. For

example, A.B.C can mean the local A.B.C or the top-level A.B.C, assuming

there is an instance A that contains an instance B at both the top level and

in the current module. The ambiguity is resolved by giving priority to the

local scope and thereby preventing access to the top-level path. $root

allows explicit access to the top level in those cases in which the name of

the top-level module is insufficient to uniquely identify the path.

Chapter 4 Modules and Ports

66

�Implicit Nets
Nets appearing in the connection lists of a module instantiation need not

be declared in the instantiating module. Their net-discipline type will be

determined by discipline resolution.

In the module th_network defined as follows, it is not necessary to

declare the net-discipline type of dt1 and dt2. It will be implicitly defined

by the resolution of disciplines in lower-level modules connected via dt1

and dt2:

module th_network (dtin, dtout);

 inout dtin, dtout;

 thermal dtin, dtout tref;

 ground tref

 // dt1 and dt2 are implicit nets, not declared

 resth rth1 (.p(dtin),

 .m(dt1));

 capth cth1 (.p(in),

 .m(tref));

 resth rth2 (.p(dt1),

 .m(dt2));

 capth cth2 (.p(tin),

 .m(tref));

 resth rth3 (.p(dt2),

 .t(dtout));

endmodule

Ports can be used in structural descriptions also without net

declarations. If the net-discipline type of a port is not declared, or declared

with natureless disciplines, the port can only be used in a structural

Chapter 4 Modules and Ports

67

description. It can be passed to instances of modules, but cannot be

accessed in behavioral descriptions. The use of undeclared net and ports is

not recommended practice.

�Instantiation of SPICE Primitives
If a simulator supports SPICE compatibility, it is expected to provide the

basic set of SPICE primitives for instantiation in Verilog-A modules. The

instantiation of SPICE primitives can be mixed with module instantiation.

For example, the module sensor defined as follows is instantiating

SPICE primitive vsine representing sinusoidal voltage sources:

module sensor(inout kinematic mass,

 inout electrical esens);

 electrical el_gnd, etop, ebot;

 ground el_gnd;

 accel acm (.mass(mass),

 .tmref(kin_gnd),

 .etop(etop),

 .emid(esens),

 .ebot(ebot));

 vsine vsrct (etop, el_gnd);

 vsine vsrcb (ebot, el_gnd);

endmodule

The SPICE primitives can be only instantiated with positional port

mapping. The default discipline of the ports for these primitives shall be

electrical and their direction shall be inout.

The required names for SPICE primitives and ports are shown

in Appendix in Table A-1. However, the names of the built-in SPICE

primitives and their ports can differ from simulator to simulator.

Chapter 4 Modules and Ports

https://doi.org/10.1007/978-1-4842-6351-8_#Tab1

69

CHAPTER 5

Parameters
Verilog-A provides parameters as module runtime basic type constants.

Parameters allow a module to be reused with a different specification

and to customize a module's structural and behavioral descriptions

for different functionalities. The module instantiation and hierarchical

parameter override allow changing values of parameters at the elaboration

time to have values that are different from those specified in the parameter

declarations. Verilog-A also provides system parameters that are implicitly

declared for every module.

�Parameter Declarations
A module is parameterized by introducing one or more parameter

declarations into the module definition. Parameters are declared either

in a module body, as statements terminated by a semicolon (;), or in a

module header, as a list of comma-separated parameter declarations,

grouped in parentheses preceded by a (#) punctuator:

module module-name #(parameter-declaration, ...)

 (list-of-ports-or-port-declarations);

 parameter-declaration ; ...

 // Other module items

endmodule

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_5

https://doi.org/10.1007/978-1-4842-6351-8_5#DOI

70

Parameter declaration statements could be positioned anywhere

within a module body. However, Verilog-A requires parameters to be

declared before being used in other module items. Note that parameter

declarations in a module header precede the list of ports or port

declarations. It allows the parameterization of vector port ranges declared

in the module headers.

A parameter is declared as a runtime constant of the basic type using

a syntax:

parameter basic-type parameter-assignment, ...

where the keyword parameter is followed by the basic type specifier,

which shall be a real, integer, or string keyword, and a comma-

separated list of parameter assignments.

Parameter assignments specify parameters as simple or array

quantities and assign them default values. Optionally, parameter

assignment can specify ranges of permissible parameter values. It is

possible to declare an alternate name or alias for parameters and to

declare parameters as all-time constants or local parameters.

�Simple Parameters
The syntax for the specification and default value assignment of a simple

parameter is

parameter-name = constant-expression

where parameter-name is an identifier, and the constant expression

after the equal sign (=) has a compatible basic type as the parameter type:

parameter integer size = 16;

parameter real slew_rate = 1e-3;

parameter string transistortype = "NMOS"

Chapter 5 Parameters

71

The constant expression in the parameter default value assignments

can also use values of the previously assigned parameter default values:

parameter real

 gate_width = 0.3e-6,

 gate_length = 4.0e-6,

 gate_area = gate_length * gate_width;

If the type of the parameter is specified as integer or real, and the

value assigned to the parameter conflicts with the type of the parameter,

the value is converted to the type of the parameter:

parameter real size = 10; // size is coerced to 10.0.

No conversion shall be applied for strings. It shall be an error to assign

a numeric value to a parameter declared as a string or to assign a string

value to a real parameter.

�Array Parameters
The array parameters are declared by adding one or more range specifiers

after the parameter name:

parameter-name range ... = constant-assignment-pattern

and using a constant assignment pattern to define the array parameter

default values. It is the assignment pattern containing only constant basic

type numbers and identifiers of previously declared parameters:

parameter real poles[0:3]='{ 1.0,3.198,4.554,2.00 };

parameter real c[0:2][0:2] =

 '{'{0.0,0.2,0.2},'{0.2,0.0,0.2},'{0.2,0.2,0.0}};

Since the array range in the parameter array declaration may depend

on previously declared parameters, the array size may be changed by

overriding the appropriate parameters. If the array size is changed, the

Chapter 5 Parameters

72

parameter array shall be assigned an array of the new size from the

same module as the parameter assignment that changed the parameter

array size.

�Permissible Value Ranges
A parameter assignment can contain optional specifications of the

permissible ranges of the parameter values. More than one value range can

be specified for the inclusion or exclusion of parameter permissible values.

The value of a parameter is checked against the specified permissible

value range. It shall be an error only if the value of the parameter is out of

range during simulation.

Note P arameter range checking applies to the value of the parameter
for the instance and not against the default values specified in the
parameter declaration.

The following constructs can be used for the specification of

permissible parameter values:

from start-bracket min-value : max-value end-bracket

exclude start-bracket min-value : max-value end-bracket

exclude constant-expression

where start-bracket is either (or [, while end-bracket is either) or].

Square brackets, [and], indicate the inclusion of the endpoints in

the valid range. Round brackets or parentheses, (and), indicate the

exclusion of the endpoints from the valid range. It is possible to include

one endpoint and not the other using [) and (]. The first expression

in the range shall be numerically smaller than the second expression in

the range:

Chapter 5 Parameters

73

parameter real neg_bias = -15.0 from [-50:0);

parameter integer pos_bias = 15.0 from (0:50);

parameter real gain = 1 from [1:1000];

Here, the parameter neg_bias is only allowed to acquire values within

the range of -50 <= neg_bias < 0. Similarly, the parameter pos_bias is only

allowed to acquire values within the range of 0 < pos_bias < 50. And, the

parameter gain is allowed to acquire values within the range of 1 <= gain

<= 1000.

The keyword inf can be used to indicate infinity. To specify that

the parameter has no bound on one end, the endpoint is given to either

be –inf, if it is the left endpoint, or inf if it is on the right:

parameter real val1 = 0.0 from (-inf:0];

parameter real val2 = 0.0 from [0:inf);

The exclude keyword is used to define exclusions of the permissible

ranges of parameter values. For example, the permissible values of the

parameter neg_bias can be also specified as

parameter real neg_bias = -15.0

 exclude (-inf:-50) exclude [0:inf);

A single value can be excluded from the valid values for a parameter:

parameter integer dir = 1 from [-1:1] exclude 0;

When used in array parameter declarations:

parameter real poles[0:3] =

 '{ 1.0, 3.198, 4.554, 2.00 } from [0:inf);

the same permissible value ranges apply to each element of the

parameter array.

Chapter 5 Parameters

74

Valid values of string parameters are indicated using assignment

patterns with lists of valid string values as shown in the parameter

declarations for the mosekv module:

module mosekv (d, g, s, b, dt);

 inout d, g, s, b, dt;

 electrical d, g, s, b;

 thermal dt;

 parameter string TYPE = "NMOS"

 from '{ "NMOS", "PMOS" };

 parameter real WEFF = 1.0u from (0.0:inf);

 parameter real LEFF = 0.15u from (0.0:inf);

 parameter real VT0 = 0.4;

 parameter real TCV = 1.5m;

 parameter real PHI = 0.97;

 parameter real GAMMA = 0.7 from [0.0:inf);

 parameter real KP = 150.0u;

 parameter real THETA = 50.0m;

 parameter real BEX = -1.5;

 ...

endmodule

The string parameter TYPE is permitted to have either "NMOS" or

"PMOS" value. In the example:

parameter string filename = "output.dat"

 exclude '{ "" };

the parameter filename cannot be given as an empty string.

Chapter 5 Parameters

75

�Parameter Aliases
Verilog-A allows defining parameter aliases as alternative parameter

names. Multiple aliases can point to the same parameter. The parameter

aliases shall not conflict with other parameter names. Parameter aliases

allow using different names for the same parameter when overriding

module parameter values. The other module items shall reference the

parameter only by its original name, not the alias.

The syntax of alias parameter declaration is

aliasparam alias-name = parameter-name ;

where the identifier alias-name is the alternative name for the

parameter-name:

parameter real BETA0 = 0.0 from [0:inf);

aliasparam BETAO = BETA0;

Here, the parameter alias allows to access parameter BETA0 in

parameter overrides also as BETAO, with the letter “O” in place of the

number “0”. The type of an alias shall be determined by the original

parameter, as is its range of permissible values if specified. When

overriding parameters, it shall be an error to specify an override for

a parameter using both its original name and alias (or more aliases),

regardless of how the override is done (by name or using the defparam

statement).

Chapter 5 Parameters

76

�Local Parameters
Verilog-A provides also “true” constants, called local parameters, which

cannot be directly redefined by a parameter override at the elaboration

time. The declaration of local parameters uses the same syntax as

the declaration of regular parameters and only replaces the keyword

parameter with the keyword localparam:

localparam real ttransit = 1/freq;

localparam real tox = 3e-8;

localparam Csec = Cap/N, Rsec = Res/N;

The use of local parameters in a module is identical to parameters

except that they cannot be directly redefined from outside the module.

However, a local parameter can be still assigned the default value using an

expression involving regular parameters and can therefore be indirectly

redefined.

�Overriding Parameters
Parameters can be modified at elaboration time to have values that are

different from those specified in the declaration assignments. It can be

done by the instance or hierarchical parameter override.

�Instance Parameter Override
When one module instantiates another module, it can alter the values of

any parameters declared within the instantiated module. It is achieved by

inserting a list of comma-separated parameter override assignments in

the parentheses preceded by the punctuator (#) after the module name

identifier and before the list of module instances:

module-name #(parameter-override, ...) module-instance, ... ;

Chapter 5 Parameters

77

It is not possible to override parameter aliases. The instance parameter

override construct comes in two forms, by name or by ordered list.

�Parameter Override by Name

The instance parameter override by name explicitly associates parameter

names with the overriding parameter values using the following syntax for

parameter-override:

. parameter-name (constant-expression)

The parameter-name shall be the same name specified in the

parameter declaration of the instantiated module. It is not necessary

to assign values to all the parameters within a module when using this

method. Only those parameters which are assigned new values need to

be specified. Once a parameter is assigned a new value, there shall not

be another assignment to this parameter name. The use of constant-

expression is optional:

. parameter-name ()

It allows the instantiating module to document the existence of a

parameter without assigning anything value to it. The parentheses are

required, and in this case, the parameter retains its default value. An

array assigned to an instance of a module to override the default value

of an array parameter shall be of the exact size of the parameter array, as

determined by its declaration.

In the following example of instantiating a voltage-controlled

oscillator, the parameters are overridden on a named-association basis:

module cmos_invertor (in, out, dt, vdd, vss);

 inout in, out, dt, vdd;

 electrical in, out, vdd, vss;

 thermal dt;

Chapter 5 Parameters

78

 parameter real WP = 60.0u;

 parameter real WN = 30.0u;

 parameter real LP = 0.15u;

 parameter real LN = 0.15u;

 mosekv #(.TYPE("PMOS"),

 .WEFF(WP),

 .LEFF(LP),

 .VT0(-0.4),

 .TCV(-1.5e-3))

 mp (.g(in),

 .d(out),

 .s(vdd),

 .dt(dt),

 .b(vdd));

 mosekv #(.TYPE("NMOS"),

 .WEFF(WN),

 .LEFF(LN),

 .VT0(0.4),

 .TCV(1.5e-3))

 mn (.dt(dt),

 .g(in),

 .b(vss),

 .s(vss),

 .d(out));

endmodule

Chapter 5 Parameters

79

�Parameter Override by Order

The instance parameter override by order allows parameter values to be

overridden during module instantiation in the order of their declaration

within the module. In that case, parameter-override is just a constant

expression that evaluates the parameter override value.

Consider the following example, where the parameters within module

instance mosekv are changed during instantiation:

module cmos_invertor (in, out, dt, vdd, vss);

 inout in, out, dt, vdd;

 electrical in, out, vdd, vss;

 thermal dt;

 parameter real WP = 60.0u;

 parameter real WN = 30.0u;

 parameter real LP = 0.15u;

 parameter real LN = 0.15u;

 mosekv #("PMOS", WP, LP, -0.4, -1.5e-3)

 mp (out, in, vdd, vdd, dt);

 mosekv #("NMOS", WN, LN, 0.4, 1.5e-3)

 mn (out, in, vss, vss, dt);

endmodule

It is not necessary to assign values to all of the parameters within

a module when using this method. However, the leftmost parameter

assignments cannot be skipped. Therefore, to assign values to a subset

of the parameters declared within a module, the declarations of the

parameters which make up this subset shall precede the declarations of

Chapter 5 Parameters

80

the remaining (optional) parameters. An alternative is to assign values to

all of the parameters, but use the default values (the same values assigned

in the declaration of the parameters in the module definition) for those

parameters which do not need new values.

�Hierarchical Parameter Override
Parameter values can be overridden in any module instance throughout

the design using the defparam statement:

defparam def-parameter-override, ... ;

where def-parameter-override is the hierarchical parameter

assignment:

hierarchical-parameter-name = constant-expression

The hierarchical-parameter-name is a hierarchical name of the

parameter and the constant expression shall involve only constant

numbers and references to parameters declared in the same module as the

defparam statement.

The defparam statement is particularly useful for grouping all of the

parameter value override assignments together in one module.

module tgate ();

 electrical io1,io2,control,control_bar;

 mosn m1 (io1, io2, control);

 mosp m2 (io1, io2, control_bar);

endmodule

module mosp (drain,gate,source);

 inout drain, gate, source;

 electrical drain, gate, source;

Chapter 5 Parameters

81

 parameter gate_length = 0.3e-6,

 gate_width = 4.0e-6;

 spice_pmos #(.l(gate_length),.w(gate_width))

 p (drain, gate, source);

endmodule

module mosn (drain,gate,source);

 inout drain, gate, source;

 electrical drain, gate, source;

 parameter gate_length = 0.3e-6,

 gate_width = 4.0e-6;

 spice_nmos #(.l(gate_length),.w(gate_width))

 n (drain, gate, source);

endmodule

module annotate ();

 defparam

 tgate.m1.gate_width = 5e-6,

 tgate.m2.gate_width = 10e-6;

endmodule

If a defparam override conflicts with a module instance parameter

override, the parameter in the module shall take the value specified by the

defparam override.

�Hierarchical System Parameters
In addition to the parameters explicitly declared in a module definition,

there are six system parameters that are implicitly declared for every

module: $mfactor, $xposition, $yposition, $angle, $hflip, and

$vflip. The values of these parameters may be accessed in a module (or

paramsets, introduced in the next chapter) using their system names.

Chapter 5 Parameters

82

The module’s value of implicit parameters also propagates to any module

instantiated by that module. The top-level value is the starting value at the

top of the hierarchy. The hierarchical system parameter names, their

top-level values, and allowed values are summarized in Table 5-1.

Table 5-1.  Hierarchical system parameters

Implicit Parameter Top-Level Value Allowed Values

$mfactor 1.0 $mfactor > 0

$xposition 0.0 m Any

$yposition 0.0 m Any

$angle 0 deg 0≤$angle < 360

$hflip +1 +1 or –1

$vflip +1 +1 or –1

$mfactor is the shunt multiplicity factor of the instance. The behavior

of the instantiated module in the design is identical to the behavior of

the $mfactor of identical modules with the same connections. However,

the simulator only has to evaluate the module once. Verilog-A does not

provide a method to disable the automatic $mfactor scaling. The simulator

shall issue a warning if it detects misuse of the $mfactor in a manner that

would result in double-scaling.

The values of the five geometrical system parameters, $xposition,

$yposition, $angle, $hflip, and $vflip, do not have any automatic effect

on the simulation. The module (or a paramset) may use the values of these

parameters to compute geometric layout–dependent effects. $xposition

and $yposition are the offsets, in meters, of the location of the center of

the instance. $hflip and $vflip are used to indicate that the instance has

been mirrored about its center, and $angle indicates that the instance has

Chapter 5 Parameters

83

been rotated some number of degrees in the counterclockwise directions.

Note that $angle is specified and returned in degrees, but the built-in math

trigonometric functions operate in radians.

The values of hierarchical system parameters may be overridden using

an instance parameter override by name, the defparam statement, or a

paramset. In all three methods, the system parameter identifier is prefixed

by a period (.), just as for explicitly declared parameters. Hierarchical

implicit parameters can also be used in parameter alias declarations. The

value returned for each hierarchical parameter is computed by combining

values from the top of the hierarchy down to the instance using the

parameter. If a module is instantiated without specifying a value of one of

these system parameters, then the value of that system parameter will be

unchanged from the instantiating module. If a value is specified, then its

value is obtained by combining the value specified for the instance and the

value obtained by traversing the hierarchy from the top to the instantiating

module. The values of $mfactor, $hflip, and $vflip are hierarchically

combined by multiplication while the values of $xposition, $yposition,

and $angle by addition.

In the following example, the top-level module is used to override

the values of hierarchical parameters $mfactor and $xposition in the

instantiating test_module:

 module top();

 defparam

 test_module.$mfactor = 3,

 test_module.$xposition = 1.1u;

 endmodule

 module test_module(p,n);

 inout p,n;

 electrical p,n;

 module_a A1(p,n);

 endmodule

Chapter 5 Parameters

84

 module module_a(p,n);

 inout p,n;

 electrical p,n;

 module_b #(.$mfactor(2)

 .$xposition(1u)) B1(p,n);

 endmodule

 module module_b(p,n);

 inout p,n;

 electrical p,n;

 module_c #(.$mfactor(5)

 .$xposition(2u)) C1(p,n);

 endmodule

The values of the hierarchical system parameters $mfactor and

$xposition in the module instance test_module.A1.B1.C1 are 30 and

4.1u, respectively.

Chapter 5 Parameters

85

CHAPTER 6

Paramsets
Paramset is a powerful Verilog-A language construct providing a

convenient way to collect common parameter overrides for a specific

component technology and define it independently of a particular system

design. The paramsets are not only removing the redundancy in parameter

overrides for multiple instances of the same module but they are also

promoting the exchange of common parameter overrides among different

designs.

�Introducing Paramsets
The module instantiation often requires long lists of instance parameter

overrides with a lot of redundancy among instances of the same module.

Take, for example, compact models of transistors in electronic circuit

design. Customization of the compact transistor models to certain device

geometry and fabrication technology typically requires a large number

of parameter overrides. But most of the technology-related parameter

overrides will be identical for all instances of transistors realized with

the same process technology. Only a few parameter overrides (typically

related to a device geometry and surrounding) could be specific for

a particular transistor instance. Paramsets can resolve this issue by

specifying parameter overrides once to be shared between many instances

of the same module. The concept of paramset is not quite new. The shared

storage of parameter overrides for multiple instances makes them very

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_6

https://doi.org/10.1007/978-1-4842-6351-8_6#DOI

86

similar to the SPICE simulator’s model card. Verilog-A simulators are

expected to optimize the storage of paramset values in a manner similar to

the way SPICE optimizes model parameter storage.

Paramsets are defined as separate entities from the modules but each

paramset must be hierarchically associated with a module or another

paramset as shown in Figure 6-1.

Figure 6-1.  A paramset and associated parent module or paramset

A hierarchy of paramsets may be defined in this way. However, a

module shall always be at the bottom of the hierarchy. The only restriction

imposed on such a parent module is that it should not contain a defparam

statement in or under its hierarchy.

The paramsets contain no behavioral code. All of the behavioral

descriptions can be only defined in the module at the bottom of the

paramset hierarchy. However, paramset can override the parameters of the

parent module. Moreover, a paramset may declare its own parameters that

may be overridden in the child paramsets.

Chapter 6 Paramsets

87

The main benefit of having paramsets as collections of parent module

parameter overrides is the possibility to replace the instantiation of a

parent module with the instantiation of the associated paramset as shown

in Figure 6-2.

Figure 6-2.  Paramset instantiation

Instantiation of a paramset is practically identical to the instantiation

of its parent module except that it is not necessary anymore to provide a

list of module parameter overrides since they are already defined in the

paramset. All instances of the same paramset share the same collection of

parent module parameter overrides. A simulator can use this information

to optimize data storage for the instances.

Chapter 6 Paramsets

88

The paramset instances may only provide overrides for their own

parameters. The overridden paramset parameters can be used in the

paramset definition to customize the override of related parent module

parameters specific to a particular instance.

Paramsets can be also used to assign or override the values of the

parent module output variables. This paramset feature is discussed in

more detail in Chapter 18.

�Defining Paramsets
A paramset definition is enclosed between the keywords paramset and

endparamset using the syntax:

paramset paramset-name module-or-paramset-name ;

 paramset-statement ...

endparamset

The keyword paramset in the header line, ending with a semicolon (;),

is followed by a unique identifier paramset-name, defining the name of

the paramset, and identifier module-or-paramset-name, which shall be the

name of a module or paramset with which the paramset is associated. The

paramset body, between the header line and the keyword endparamset,

contains a sequence of statements permitted in paramsets. The principle

statements permitted in paramsets are parameter declaration and

parameter override statements.

�Paramset Parameters
Paramsets permit the declaration of parameters, including local

parameters and parameter aliases. Here are examples of parameter

declaration in paramsets most, nch_most, and pch_most hierarchically

associated with the mosekv module:

Chapter 6 Paramsets

https://doi.org/10.1007/978-1-4842-6351-8_18

89

paramset most mosekv;

 parameter string MTYP = "NMOS";

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 parameter integer SHMOD = 0;

endparamset

paramset nch_most most;

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 localparam real AREA = LEFF * WEFF from [0:1p)

endparamset

paramset pch_most most;

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 aliasparam L=LEFF, W = WEFF;

endparamset

The parameter declarations in paramsets follow the same syntax

as the parameter declarations inside modules. However, the paramset

parameters are not related in any way to the parameters declared in the

parent module or parent paramset. For example, the paramset parameters

LEFF and WEFF in the nch_most are independent of the parameters declared

with the same names in the most paramset and the mosekv module. The

paramset parameters can be used only in the scope of the paramset where

they are declared. However, paramset parameters play a special role in the

process of paramset resolution.

Chapter 6 Paramsets

90

�Parameter Override Statements
The paramset override statement is used to modify the default values of

the parent module or paramset non-local parameters. It is defined with

the syntax:

. parent_parameter_name = constant-expression ;

All of the parent non-local parameters, including hierarchical system

parameters, are accessible for override from within the paramset by

preceding their names by the period (.). The constant expression on the

right-hand side can be composed of basic type literals, parameters, and

hierarchical out-of-module references to local parameters of a different

module. Hierarchical out-of-module references to non-local parameters

of a different module are not allowed in parameter override statements. If

a paramset override statement assigns a new value to a parameter in the

parent module or paramset, and this value is outside the range specified

for that module parameter, it shall be an error.

The following example illustrates the usage of parameter override

statements in the hierarchy of paramsets nch_most and pch_most defined

over the paramset most associated with the mosekv module:

paramset nch_most most;

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 localparam real AREA = LEFF * WEFF from [0:1p)

 .LEFF=LEFF;

 .WEFF=WEFF;

endparamset

paramset pch_most most;

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 aliasparam L=LEFF, W = WEFF;

Chapter 6 Paramsets

91

 .MTYP="PMOS";

 .LEFF=LEFF;

 .WEFF=WEFF;

endparamset

paramset most mosekv;

 parameter string MTYP = "NMOS";

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 parameter integer SHMOD = 0;

 .TYPE=MTYP;

 .LEFF=LEFF;

 .WEFF=WEFF;

 .SHMOD=SHMOD;

 .VT0 = 0.5;

 .TCV = 1.6m;

 .PHI=1.05;

 .GAMMA=0.8;

 .KP=tech.u0 * `P_EPS0 * tech.eps_r / tech.tox ;

 .THETA=48.0e-3;

 .BEX=-1.8;

 .mfactor = 1.0;

endparamset

module tech;

 localparam real tox = 3e-8; // oxide depth

 local parameter real eps_r=11.7;

 local parameter real u0 = 3e-2; // mobility

endmodule

Chapter 6 Paramsets

92

The module tech is a top-level module, created as a commonplace for

physical and technology constants used in paramset override statements.

Such a module is often referred to as a constant module. The declaration

of local parameters in the tech module is essential if their hierarchical

references are used in paramset override statements.

The parameter override expression may also use the stochastic built-in

functions as long as the arguments to these functions are constant. This

possibility to use paramset in probabilistic simulations will be discussed in

Chapter 10.

�Other Paramset Statements
Paramsets permit also declarations of numerical (integer or real) basic

type variables and limited use of procedural statements. The restrictions

on the procedural statements permitted in paramsets are similar to

the restrictions for statements in user-defined functions introduced in

Chapter 11. The values assigned to paramset basic type variables need not

be constant. However, these variables shall not be used in the parameter

override statements. They are mainly used to assign and override module

output variables, as described in Chapter 18.

�Paramset Instantiation
Instantiation of a paramset basically instantiates its parent module with

all parameter overrides previously defined in the associated paramset

hierarchy. The parent module parameters that are not overridden in

paramsets are assigned the default values given in the parent module

parameter declarations. The paramset and module instantiation

statements use the same syntax. However, the paramset instantiation

statement may override only the non-local paramset parameters.

Chapter 6 Paramsets

https://doi.org/10.1007/978-1-4842-6351-8_10
https://doi.org/10.1007/978-1-4842-6351-8_11
https://doi.org/10.1007/978-1-4842-6351-8_18

93

The example of the cmos_invertor module, introduced in the

previous chapter, is rewritten here using paramset instead of the module

instantiation statements:

module cmos_invertor (in, out, dt, vdd, vss);

 inout in, out, dt, vdd;

 electrical in, out, vdd, vss;

 thermal dt;

 parameter real WP = 60.0u;

 parameter real WN = 30.0u;

 parameter real LP = 0.15u;

 parameter real LN = 0.15u;

 pch_most #(.W(WP),

 .L(LP))

 mp (out, in, vdd, vdd, dt);

 nch_most #(.WEFF(WN),

 .LEFF(LN))

 mn (out, in, vss, vss, dt);

endmodule

It is also possible to use instance paramset parameter override

by order:

...

pch_most #(LP,WP) mp (out, in, vdd, vdd, dt);

nch_most #(LN,WN) mn (out, in, vss, vss, dt);

...

following the order of their declaration in the paramset definition. The

paramset instances override now only two paramset parameters WEFF and

LEFF. Note that the alias parameter declarations in the pch_most module

Chapter 6 Paramsets

94

allow using W and L instead of WEFF and LEFF for paramset parameter

override. An attempt to override any of the other parameters of the parent

paramset most or the parent module mosekv would generate an error.

Paramset names need not be unique in paramset instantiation

statements. Multiple paramsets can be declared using the same paramset

name, and they may refer to different modules or parent paramsets.

During elaboration, the simulator shall choose an appropriate paramset

from the set that shares a given name for every instance that references

that name. When choosing an appropriate paramset, the following

paramset resolution steps shall be enforced:

	 1.	 For each instance, find all paramsets for which

	 a.	 All parameters overridden on the instance are

parameters of the paramset.

	 b.	 The parameters of the paramset, with overrides

and defaults, are all within the allowed ranges

specified in the paramset parameter declaration.

	 c.	 The local parameters of the paramset, computed

from parameters, are within the allowed range

specified in the paramset.

	 d.	 The underlying module has a port declared for

each port connected to the instance line.

	 2.	 Choose the paramset which has the fewest number

of un-overridden parameters.

	 3.	 Choose the paramset with the greatest number of

local parameters with specified ranges.

	 4.	 Choose the paramset with the fewest ports not

connected in the instance line.

Chapter 6 Paramsets

95

It shall be an error if there is still more than one applicable paramset

for an instance after the application of this algorithm.

The following example illustrates some of the rules for paramset

selection. Consider a design that includes the following paramsets:

paramset nch_most most; // with SHMOD parameter

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 parameter integer SHMOD = 0;

 .LEFF=LEFF;

 .WEFF=WEFF;

 .SHMOD=SHMOD;

endparamset

paramset nch_most most; // with local parameter

 parameter real LEFF = 0.15u;

 parameter real WEFF = 1u;

 localparam real AREA = LEFF * WEFF from [0:1p)

 .LEFF=LEFF;

 .WEFF=WEFF;

endparamset

paramset nch_most most; // short-channel paramset

 parameter real LEFF = 0.15u from [0.25u:1u);

 parameter real WEFF = 1u;

 .LEFF=LEFF;

 .WEFF=WEFF;

endparamset

paramset nch_most most; // long-channel paramset

 parameter real LEFF = 1u from [1u:inf);

 parameter real WEFF = 1u;

Chapter 6 Paramsets

96

 .LEFF=LEFF;

 .WEFF=WEFF;

endparamset

The following instances might exist in the design:

nch_most #(.WEFF(2u),.LEFF(0.5u),.SHMOD(1))

 m1 (out, in, vss, vss, dt);

nch_most #(.WEFF(1u),.LEFF(0.5u))

 m2 (out, in, vss, vss, dt);

nch_most #(.WEFF(3u),.LEFF(0.5u))

 m3 (out, in, vss, vss, dt);

nch_most #(.WEFF(1u),.LEFF(5u))

 m4 (out, in, vss, vss, dt);

The instance m1 will use the paramset with the SHMOD parameter because

it is the only one for which SHMOD is a parameter. This paramset cannot be

selected by other instances because it will have always one un-overridden

parameter. The instance m2 will use the paramset defined with a local

parameter, because it has local parameters with defined ranges and the

short-channel paramset not, and the LEFF parameter is out of range for

the long-channel paramset. The instance m3 will use the short-channel

paramset because the evaluated value of AREA in the paramset with

the local parameter will be out of range as well as LEFF parameter in

the long-channel paramset. The instance m4 will use the long-channel

paramset because the AREA local parameters and LEFF parameter will

be out of range in paramsets with local parameter and short-channel

paramset.

Chapter 6 Paramsets

97

CHAPTER 7

Procedural
Programming
The backbone of behavioral description and data manipulation in the

Verilog-A language is procedural programming. It resembles in many

ways programming languages that declare a set of variables and use a

sequence of procedural statements to execute certain computations or

algorithms. While variables may be declared along with parameters in the

module body, the procedural statements in Verilog-A are encapsulated

within procedural blocks. This chapter introduces the procedural blocks

and procedural statements for variable assignment and control flow. The

control flow statements allow selection between alternative courses as well

as repetition of procedural statement execution.

�Variables
Similar to parameters, variables are containers for basic type values. Apart

from the parameters, being runtime constants, variables can be used to

store intermediary results in procedural programming.

Before any variable can be used in expressions and procedural

statements, it shall be declared. The general syntax for the variable

declaration statement is

basic-type variable-declarator, ... ;

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_7

https://doi.org/10.1007/978-1-4842-6351-8_7#DOI

98

The basic-type determines the variable type and may be one of the

keywords integer, real, and string. It is followed by a list of variable

declarators that can specify variables as simple or array variables and can

also provide variable initial values.

�Simple Variables
The variable-declarator for simple variables is just an identifier

representing the variable name:

integer count;

real alpha;

string name;

It is possible to declare several simple variables in a single declaration

statement using a list of comma-separated identifiers:

integer index, dmax;

string name1, name2, name3;

Another way to declare multiple data of the same basic type is to use

array variables.

The simple variables can be also initialized (assigned an initial value)

in their declaration statements using variable assignment construct:

variable-name = constant-expression

as the variable-declarator. The initial value can be any expression that

evaluates a basic type constant:

integer count = 0, dmax = 15;

real alpha = 2.5;

string my_daughter_name = "Jona";

Chapter 7 Procedural Programming

99

If an initial value is not specified, integer or real variables are initialized

to zero (0). The initial value for string variables can be a string literal or

a string-type constant expression. If an initial value is not specified for a

string variable, it is initialized to an empty string "".

�Array Variables
An array variable is a collection of data elements having the same basic

type. Array variables are declared using a construct:

variable-name range ...

as the variable-declarator, where one or more range specifiers are

added after a variable name. The number of range specifiers defines array

variable dimensionality. Here is an example of a one-dimensional string

array variable:

string name [1:3];

Multidimensional arrays are represented as arrays of arrays by

successively specifying the dimension ranges after the variable name:

integer d2 [0:7][0:3];

real d3 [1:50][1:20][5:10];

The two-dimensional array d2 consists of 8 one-dimensional arrays

with 4 integer elements, while the three-dimensional array d3 consists of

50 elements that are two-dimensional arrays.

The initial values for array variables are introduced using the extended

array variable declarator:

variable-name range ... = constant-assignment-pattern

Chapter 7 Procedural Programming

100

where the assignment pattern at the right-hand side contains only

constant basic type expressions:

integer n[1:2][1:3]='{ '{0,1,2}, '{4,4,3} };

real poles[0:3]='{ 1.0, 3.198, 4.554, 2.00 };

string names[1:3] = '{ "first", "middle", "last" };

Note the use of nested assignment patterns for initialization of

two-dimensional array variable n. It provides a clear correspondence

between array ranges and a collection of expressions in the assignment

pattern.

�Procedural Blocks
Procedural blocks encapsulate procedural statements within the Verilog-A

module definitions. It is essentially based on analog blocks and block

procedural statements.

�Analog Blocks
A procedural block is introduced into module definition using the analog

construct:

analog procedural-statement

where the analog keyword is followed by a definition of executable

procedural-statement. The basic procedural statements could be

assignment and control flow programming statements described later in

this chapter. However, branch contribution, event control, and system

task statements, introduced in the following chapters, can be also used

as procedural statements in analog blocks. A procedural statement in an

analog procedural block is executed at every point during simulation when

variables or signals referenced from the procedural statement are changed.

Chapter 7 Procedural Programming

101

For the purpose of simulation initialization, Verilog-A provides also a

special analog initial construct:

analog initial procedural-statement

where the keyword initial is inserted after the keyword analog.

The initial block procedural statement is executed once before the

simulation starts. At that point, values of net signals are not yet available

which restricts the procedural statements in analog initial blocks to the

basic programming and system task procedural statements. An analog

initial procedural block shall be re-executed whenever a variable that is

referenced from its procedural statement is changed during simulation.

A module may have multiple analog and analog initial blocks that shall

be executed in the order they appear in the module definition. Since the

sequence of analog and analog initial blocks are executed separately, they

can be mixed in a module definition. Syntactically, analog blocks consist

of a single procedural statement. However, procedural-statement stands

also for a block or compound procedural statement. The block statements

are grouping multiple statements, including other block statements so that

they can be treated as one statement. The use of a single block procedural

statement in an analog construct is a common practice that also justifies

the name analog block used for such constructs.

�Block Procedural Statements
In the simplest case, a block procedural statement is defined as a sequence

of procedural statements enclosed by the begin and end keywords:

begin

 procedural-statement ...

end

Chapter 7 Procedural Programming

102

A block statement does not perform any functionality in itself but

is used to group two or more procedural statements so that they can be

treated as a single procedural statement. A procedural block with a single

procedural statement can be used without the begin and end keywords.

The block procedural statement can be used anywhere a single

procedural statement is allowed and can be nested inside other block

procedural statements. During the simulation, the procedural statements

within the block statement shall be executed in sequence, one after

another in the given order, and the control shall pass out of the block after

the last statement is executed.

Verilog-A permits also a named block procedural statement using

the syntax:

begin : block-name

 variable-or-parameter-declaration ...

 procedural-statement ...

end

where a colon character (:) and identifier block-name are added after

the keyword begin. Note that the naming of a procedural block statement

allows variables and parameters to be declared for that block which is

not allowed in unnamed procedural blocks. The named procedural block

statement introduces a new scope in the module hierarchy as a region

where declared variables and parameters can have existence and beyond

which cannot be directly accessed. However, the block names give a

means of uniquely accessing all locally defined variables and parameters

in the named block by their hierarchical names. In the test_scope module

example:

module test_scope;

 parameter integer p1 = 1;

 real moduleVar;

 analog begin

Chapter 7 Procedural Programming

103

 begin: myscope

 parameter real p2 = p1;

 real localVar = 1.5 * p2;

 end

 moduleVar = myscope.localVar;

 end

endmodule

it will be an error to access the variable localVar outside the named

procedural block myscope where it is defined. But it can be still accessed

in the module scope using the hierarchical name myscope.localVar. The

block variables are often referred to as local variables in relation to global

module scope variables. The local variables in Verilog-A are static, that

is, a unique location exists for all variables, and leaving or entering the

block does not affect the values stored in them. Local variables cannot be

assigned outside the scope of the block in which they are declared.

Parameters declared within a named block have local scope and

cannot be assigned outside the scope. An instance parameter override

can only affect parameters declared at module scope. For example, in the

top module:

module top;

 test_scope #(.p1(4)) inst1(); // allowed

 test_scope #(.myscope.p2(4)) inst2(); // error endmodule

it is an error to attempt the instance override of the block parameter p2.

�Assignment Statements
An assignment statement sets and resets values stored in the variables in

the procedural blocks.

Chapter 7 Procedural Programming

104

�Scalar Assignments
The declared basic type variables are containers for the basic type values.

To change the data value stored in a variable, we use the equal sign (=) in

the assignment statement:

variable-name = expression;

which sets or resets the data value of the identifier variable-name, on

the left to the basic type value produced by the expression on the right.

The equal sign (=) is not an operator in the Verilog-A language. It

performs the assignment operation but does not return a value. It cannot

be used as an operand in the expressions:

a = b = 0.5; // Chained assignments are not possible

Also, it cannot be used in combination with other operators as a

compound assignment operator:

a += 1; // Compound assignments are not possible

Variables can be assigned initial values in their declaration statement

and reassigned in procedural statements.

Procedural assignments are used for updating the variable values

during the execution of the Verilog-A models:

real vt, ratio, vto_th;

int A[10:1];

...

vt = `P_K * temp / `P_Q + 1.0e-6;

ratio = abs(temp / tempref + 1.0e-6);

vto_th = MTYP * (VT0 - TCV * (temp - tempref));

A[5] = 1.0;

Chapter 7 Procedural Programming

105

The assigned can be any arbitrary expression, although some

restrictions may apply depending on the context in which the procedural

assignment is used.

If the type of the variable is declared as integer or real, and the value

assigned to the variable conflicts with the declared variable type, the value

is converted to the type of the variable if it is possible:

integer i, k;

...

i = 3.14; // real truncated to integer

k = 2.9979e40; // undefined

In the first case, the real constant is truncated and 3 is assigned to i.

The result in the second case is undefined since an integer cannot hold

such a large value. It shall be an error to assign a numeric value to a

variable declared as a string or to assign a string value to a real variable.

A string literal assigned to an integral variable of a different size is

either truncated to the size of the variable or padded with zeros to the left

as necessary. If a string literal is assigned to a string variable, the size of the

variable is adjusted so that neither the literal is truncated nor the variable

is padded with zeros.

�Array Assignments
Verilog-A also supports array assignment statements:

int A[10:1], B[0:9], C[24:1];

...

A = B; // ok. Compatible type and same size

A = C; // type-check error: different sizes

where arrays are used on the right-hand side of the assignment

statement.

Chapter 7 Procedural Programming

106

Array assignments shall only be done with compatible arrays. An array,

or a slice of such an array, shall be assignment compatible with any other

such array or slice if all the following conditions are satisfied:

•	 The array on the left-hand side of the assignment shall

be an array variable, a slice of an array variable.

•	 The basic types of the source and target arrays shall be

equivalent.

•	 Every dimension of the source array shall have the

same number of elements as the target array.

The array assignment cannot be used for array variable initialization.

This can be only achieved using assignment patterns.

�Conditional Statements
The model evaluation often depends on conditions that may or may not

hold during the simulation. There are two types of conditional statements

in Verilog-A: if and case statements.

�if Statement
The if statement is defined using the basic syntax:

if (condition) procedural-statement

or the extended syntax with the else clause:

if (condition)

 procedural-statement-1

else

 procedural-statement-2

Chapter 7 Procedural Programming

107

The latter is also known as the if-else statement. The condition is any

valid expression that produces a numeric value. If the condition value is

nonzero, the procedural-statement, or procedural-statement-1, if an else

clause is used, is executed. Otherwise, only the procedural-statement-2 is

executed.

For example, the following if statements:

if (i != 0) x = 1.0;

if (i == 0) x = 2.0;

can be combined into a single if statement with an else clause:

if (i != 0) x = 1.0 else x = 2.0;

Since the if statement simply tests the nonzero status of the condition

expression, certain shortcuts are possible. For example, the preceding

code fragments can be also written (perhaps more obscurely) as

if (i) x = 1.0 else x = 2.0;

The conditionally executed statements can be null. However, if any of

the conditionally executed statements contains an analog operator, the

condition expression shall be a constant expression.

Because the else part of an if-else is optional, there can be confusion

when an else is omitted from a nested if statement sequence. This is

resolved by always associating the else clause with the closest previous if

statement which lacks an else.

In the following example, the else goes with the inner if statement, as

shown by indentation:

if (index > 0)

 if (i > j)

 result = i;

 else // else applies to preceding if

 result = j;

Chapter 7 Procedural Programming

108

If that association is not desired, a begin-end block shall be used to

force the proper association, as shown in the following:

if (index > 0) begin

 if (i > j)

 result = i;

 end

 else result = j;

Nesting of if statements (known as an if-else-if construct) is the

most general way of writing a multi-way decision. The expressions are

evaluated in order. If any if statement condition is nonzero, the procedural

statement associated with it shall be executed and this action shall

terminate the whole chain.

�case Statement
The case statement takes a general form:

case (case-expression)

 case-item, ... : procedural-statement

 case-item, ... : procedural-statement

 ...

 default : procedural-statement

endcase

The case statement is a multi-way decision statement that tests if an

expression matches one of some other expressions and, if so, branches

accordingly. The default statement is optional. The use of multiple default

statements in one case statement is illegal.

The case-expression and the case-item expression can be computed at

runtime; neither expression is required to be a constant expression.

Chapter 7 Procedural Programming

109

The case-expression and case-item expressions are evaluated and

compared in the exact order in which they are given. During this

linear search, if one of the case-item expressions matches the case-

expression given in parentheses, then the procedural or block statement

associated with that case-item is executed. If all comparisons fail, and

the default item is given, then the default item statement is executed;

otherwise, none of the case-item procedural statements are executed.

Here is an example of how the case statement can be used:

case(rgeo)

 1, 2, 5:

 get_rendi = rsh * dmcg / (weffcj * nuend);

 3, 4, 6:

 get_rendi = rsh * weffcj /

 (3.0 * nuend * (dmcg + dmci));

 default:

 $strobe("specified rgeo = %d not matched", rgeo);

endcase

�Looping Statements
In the procedural Verilog-A code, it is often necessary to execute one or

more statements many times. It is tedious to repeat the statements and, in

any case, it is often impossible to predict how many times the execution

should be repeated. Such circumstances are handled by the three looping

statements: for, while, and repeat. These statements provide a means

of controlling the execution of a procedural statement zero, one, or

more times.

Looping statements shall not contain analog operators, event control

statements, and branch contribution statements.

Chapter 7 Procedural Programming

110

�while Statement
The while statement has a syntax:

while (control) procedural-statement

The expression control, which is of a numeric type, is evaluated before

each execution of the procedural-statement. The procedural-statement

is executed if the control is evaluated as nonzero and then the test of the

control expression is repeated. This cycle continues until control becomes

zero, at which point execution resumes after procedural-statement. A single

execution of the loop body is called an iteration. If the test never fails, then

the iteration never terminates:

integer n = 1;

while (n > 0)

 begin

 gamma = gamma * n;

 n = n + 1;

 end

The while statements are typically used for iterative processes as in the

following example:

real b = 1.0, c = 2.0, x = 0.0;

integer niter = 0;

while (niter < 100)

 begin

 x = (x**3 - c) / b;

 niter = niter + 1;

 end

that implements a simple fixed-point iterative method for solving the

cubic equation: x3 − bx − c = 0.

Chapter 7 Procedural Programming

111

�for Statement
The for statement has a syntax:

for (initialization ; control ; change) procedural-statement

that is equivalent to

initialization ;

while (control) begin

 procedural-statement

 change ;

end

and whether to use for-loop or its while-loop equivalent formulation is

largely a matter of personal preference.

The for-loop statement employs three actions, which are called

initialization, control, and change, to indicate their respective roles in

the conditional execution of procedural-statement. The initialization

executes a variable assignment operation, normally used to initialize an

integer index variable that controls the number of executed loops with the

procedural statement. The control evaluates an expression, and if the result

is nonzero, the for-loop statement executes procedural-statement, and

otherwise the for-loop exits. The change executes a variable assignment,

normally used to modify the value of the loop control index variable, and if

the control is still nonzero, procedural-statement is executed again. The for

statement continues to cycle between the control, procedural-statement,

and change until the control expression is zero. The control then passes

beyond the for-loop statement. In the following example:

for (i = 0; i < B4SOInf; i = i+1)

 begin : summation

 real T0;

 T0 = 1.0 / B4SOInf / (B4SOIsa

Chapter 7 Procedural Programming

112

 + 0.5 * Ldrn + i * (B4SOIsd + Ldrn));

 Inv_sa = Inv_sa + T0;

 end

the for-loop statement is used to accumulate multiple contributions to

the variable Inv_sa.

It is worth noting that there are no restrictions on the numerical type of

the control variable and control expression to evaluate as integers; they can

be also of real type:

for (x = 0.0; x != 10; x = x + 1.0)

 total = total + x;

However, a test for equality of real type is very risky since it is likely that

the finite machine precision will mean that the condition never occurs. For

this reason, it is very unusual to have a loop counter and control expression

which is a real type.

�repeat Statement
The repeat statement has the syntax:

repeat (number) procedural-statement

It executes a procedural-statement a fixed number of times. Evaluation

of the expression number determines how many times a procedural

statement is executed:

i = 0;

repeat (NF-1)

 begin

 T1 = T1 + 1.0 / (SA + 0.5 * L

 + i * (SD + L))

 + 1.0 / (SB + 0.5 * L

Chapter 7 Procedural Programming

113

 + i * (SD + L));

 i = i + 1;

 end

The expression number shall be evaluated once before the execution of

any statement to determine the number of times, if any, the statements are

executed.

Chapter 7 Procedural Programming

115

CHAPTER 8

Branches
A behavioral description of an analog system is constructed as a network

of interconnected branches. The constitutive equations of the system

component are formulated in terms of branch potential and flow signals.

This chapter describes how to declare branches as well as how to access

and contribute branch signals.

�Declaring Branches
A branch is a path between two nets representing branch terminals. A

branch can only be declared inside a module scope along with net and

port declarations and not in named procedural blocks. The branches can

be declared as scalar or vector branches. It is also possible to declare a

special type of port branch.

�Scalar Branches
The scalar branches are declared using the statement:

branch (scalar-terminal , scalar-terminal) branch-name, ... ;

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_8

https://doi.org/10.1007/978-1-4842-6351-8_8#DOI

116

where the keyword branch is followed by the specification of the

branch terminals in the parentheses and a list of identifiers representing

branch names. The scalar-terminal can be a scalar net or an element of a

vector net:

electrical p;

voltage n;

kinematic [1:3] x;

...

branch (p, n) b;

branch (x[1], x[2]) d12;

It is also possible to use hierarchical scalar net references as scalar

terminals:

branch (x[3], top.drv.y) d3

The disciplines for the specified scalar terminals shall be compatible.

The scalar branch declaration statement can specify a single scalar

terminal:

branch (scalar-terminal) branch-name, ... ;

In that case, the second scalar terminal defaults to the ground net:

thermal dt;

...

branch (dt) rth, cth;

Here, the branches rth and cth are declared between dt and ground

nets of the thermal discipline.

Chapter 8 Branches

117

�Vector Branches
Multiple branches can be declared using a vector branch declaration

statement:

branch (vector-terminal , vector-terminal) branch-name, ... ;

where vector terminals are used instead of the scalar ones. Vector

terminals can be local or hierarchical vector nets that are compatible and

of the same size:

electrical [5:3] a;

voltage [1:3] b;

...

branch (a, b) vb;

The multiple scalar branches that make the vector branch connect

to the corresponding scalar nets of the vector terminals, as shown in

Figure 8-1.

Figure 8-1.  A vector branch with two vector terminals

Chapter 8 Branches

118

For example, the scalar branch components of the vector branch vb are

(a[5],b[1]), (a[4],b[2]), and (a[3],b[3]).

Vector branches can be also declared using vector net slices as vector

terminals:

branch (a[5:4], b[1:2]) vb1;

A vector slice is a set of consecutive vector elements selected by the

range after the vector net name.

The indexing of the declared vector branches shall start at 0. It can be

changed by adding a range after the branch name:

branch (a[5:4], b[1:2]) vb2 [1:2];

Both vb1 and vb2 are declared as vector branches of size 2, but vb1 is

indexed from 0 to 1 while vb2 from 1 to 2.

The vector branches can be declared with one of the terminals being a

scalar terminal:

branch (vector-terminal , scalar-terminal) branch-name, ... ;

branch (scalar-terminal , vector-terminal) branch-name, ... ;

In that case, scalar branches that make the vector branch connect

each element of the vector terminal to the scalar terminal, as shown in

Figure 8-2.

Chapter 8 Branches

119

Figure 8-2.  A vector branch with a vector and a scalar terminal

The vector branch declaration statement can specify only one vector

terminal:

branch (vector-terminal) branch-name, ... ;

The second implicit terminal is assumed to be the scalar ground net.

�Port Branches
A port branch is a special type of branch between the upper and lower

connections of the port. A declaration statement for port branches has

the syntax:

branch (< port-reference >) branch-name, ... ;

Chapter 8 Branches

120

where port-reference is a local or hierarchical port identifier. It shall be

enclosed between < and > characters:

inout electrical p;

inout electrical [2:4] vp;

...

branch (<p>) b;

branch (<vp>) vb [1:3]

A port branch is a scalar or vector branch if the port is a scalar or

vector port, respectively. An optional range specifier can be used after the

declared vector ports. Otherwise, the indexing of the declared vector port

branches shall start at 0.

�Branch Signals
A branch is associated with potential and flow signals based on the

terminal disciplines. If both branch terminals are conservative, then the

branch is conservative and it defines both a branch potential and a branch

flow. If one of the branch terminals is a signal-flow net, then the branch

is a signal-flow branch and it is characterized by either a branch potential

or a branch flow, but not both. Signal access functions are used to access

branch signal values.

�Signal Directions
Verilog-A uses associated potential and flow signal directions. For a branch

between scalar terminals p and n:

branch (p, n) b;

the potential and flow signal directions are associated as shown in

Figure 8-3.

Chapter 8 Branches

121

Figure 8-3.  Branch potential and flow directions

The direction for potential is indicated by the plus and minus signs at

branch terminals. The branch potential is positive whenever the potential

of the first declared branch terminal, marked with a plus sign, is larger

than the potential of the second declared branch terminal, marked with a

minus sign. The arrow indicates the flow direction. A positive flow enters

a branch through the first declared terminal and exits the branch through

the second declared terminal.

�Signal Access Functions
The values of branch potential and flow signals can be accessed using

signal access functions with the syntax:

nature-access-name (branch-reference)

The nature-access-name identifier must be the value of the access

attribute defined in the potential or flow natures for the discipline

associated with the branch terminals. As an alternative, the potential and

flow keywords can be used as generic signal access function names.

potential (branch-reference)

flow (branch-reference)

Chapter 8 Branches

122

The branch-reference is a local or hierarchical name of the branch

where the signal is accessed. It shall be a scalar branch or an individual

element of a vector branch.

Note  Verilog-A allows ports, nets, and branches to be declared as
vector quantities. However, signal access functions can only access a
signal of a single branch.

The signal access functions syntactically resemble the function calls, but

essentially they are kind of handles for the branch signal values. They can be

used in expressions requiring branch signal values. But similar to variables,

they can be used to assign signal values in contribution statements.

Table 8-1 shows examples of signal access functions applied to the

previously declared scalar branch b, vector branch vb, and port branch p of

the electrical discipline.

Table 8-1.  Examples of using signal access functions

Example Accessed Signal

V(b)

potential(b)

Voltage (potential) of branch b1

I(b)

flow(b)

Current (flow) of branch b

V(vb[2])

I(vb[2])

Voltage (current) of the vector branch vb element

V(vb)

I(vb)

Error. It is illegal to use vector branches as signal access

function arguments

I(p)

flow(p)

Current flow into the module through port branch p

V(p)

potential(p)

Error. It is illegal to use port branches as arguments in potential

access functions

Chapter 8 Branches

123

Note that some restrictions apply to the access of port branch signals. It

is not allowed to use port branch references with potential signal accessing

functions. Only the nature-access-name for the flow nature or the flow

keyword can be used with port branch references.

It is allowed to access the potential and flow signals of a branch in

other module instances using hierarchical branch reference:

Temp(top.a1.b)

potential(top.a1.b)

Here, branch b is declared in the module instance a1, instantiated in

the top module.

�Unnamed Branches
The Verilog-A syntax allows signal access functions to use the branch

terminal or port references as arguments instead of declared branch

names. The branches accessed this way are called unnamed branches.

Unnamed branches can be used in addition to any number of named

branches declared with the same terminal or port references. The

unnamed branch references are specified in the parentheses of the signal

access function calls using the syntax:

(scalar-terminal , scalar-terminal)

(scalar-terminal)

(< scalar-port-reference >)

It is similar to the terminal specification that would be used in branch

declarations but restricted to scalar net terminals and ports or scalar

elements of the vector nets and ports. If only one scalar terminal is given

as the argument to a signal access function, the second terminal of the

unnamed branch is assumed to be the ground net.

Chapter 8 Branches

124

Table 8-2 shows examples of the signal access functions applied to

unnamed branches with scalar terminals n1 and n2 and a scalar port p of

the electrical discipline.

Table 8-2.  Examples of using signal access functions with

unnamed branches

Example Accessed Signal

V(n1)

potential(n1)

Voltage (potential) of the unnamed branch between net

n1 and ground net

V(n1)

potential(n1,n2)

Voltage (potential) of the unnamed branch between nets

n1 and n2

I(n1)

flow(n1)

Current (flow) of the unnamed branch from n1 to the

ground net

I(n1,n2)

flow(n1,n2)

Current (flow) of the unnamed branch between nets n1

and n2

V(n1,n1)

potential(n1,n1)

I(n1,n1)

flow(n1,n1)

Error, there is no branch

I(<p>)

flow(<p>)

Current flow into the module through port p

V(<p>)

potential(<p>)

Error. It is illegal to use an unnamed port branch as an

argument in potential access functions

It is not allowed to use two identical scalar terminals as an unnamed

branch and to access the potential signals of an unnamed port branch.

The unnamed branches can be also accessed with hierarchical

references. For example:

V(top.a1.a, top.a1.k)

Chapter 8 Branches

125

is accessing the voltage of an unnamed branch between the scalar nets

a and k declared in the module instance a1 instantiated in the top module.

Unnamed branches can be also accessed hierarchically using a

special syntax:

hierarchical-instance . branch (scalar_terminal , scalar_terminal)

hierarchical-instance . branch (scalar_terminal)

hierarchical-instance . branch (< scalar-port-reference >)

where the keyword branch precedes the specification of the unnamed

branch in the parentheses. The previous example of a hierarchically

accessed unnamed branch voltage can be also expressed as

V(top.a1.branch(a,k))

It provides a single argument to the signal access functions similar to

named branches.

�Contributing Branch Signals
Branch potential and flow signal values are assigned with contribution

statements. Contribution statements may be described in direct or indirect

as well as explicit and implicit forms. Accessing a signal of an unassigned

branch creates an implicitly assigned probe branch. The contribution

statements are used in analog procedural blocks along with other

procedural statements.

�Direct Contribution Statements
The direct contribution statements consist of a left-hand and a right-hand

side, separated by a branch contribution punctuator <+:

nature-access-function (branch-reference) <+ expression ;

potential (branch-reference) <+ expression ;

flow (branch-reference) <+ expression ;

Chapter 8 Branches

126

The left-hand side of the direct contribution statement provides access

to the assigned branch signal using a signal access function. The right-

hand side can be any expression that evaluates a numerical real value

contributed to the branch signal. The branch-reference can be a named,

unnamed, and hierarchical branch reference as described in the previous

section. The only exception is a port branch reference that cannot be used

in contribution statements.

The following examples demonstrate the application of the direct

contribution statement in the conductor module:

module conductor(p, n);

 inout p, n;

 electrical p, n;

 branch (p,n) path;

 parameter real cond = 0;

 analog

 I(path) <+ cond * V(path);

endmodule

The use of direct contribution statements with local and hierarchical

named and unnamed branch references, as well as a combination

of local and hierarchical branch terminals, is demonstrated in the

sources module:

module sources();

 electrical m;

 parameter real vref = 0.0;

 analog begin

 V(m) <+ vref;

 I(top.drv.br) <+ 1m;

Chapter 8 Branches

127

 V(top.drv.branch(x,y)) <+ 1.2;

 V(m, top.drv.y) <+ 0.9;

 end

endmodule

Here, br is the branch, while x and y are nets declared in the drv

module instance under the top module.

An important feature of direct contribution statements is that the value

of the target may be expressed in terms of itself. This is referred to as an

implicit or fixed-point formulation of the direct contribution statement.

For example, in the contribution statement:

I(diode) <+ is*(exp((V(diode)-r*I(diode))/$vt)-1);

the signal access function I(diode) is found on both sides of the

contribution statement. An alternative way to contribute branch signals

implicitly is to use indirect contribution statements.

�Indirect Contribution Statements
Indirect contribution statements allow the assignment of branch signal

values in terms of implicit equations. It consists of a left-hand and a right-

hand side, separated by a colon (:) punctuator:

nature-access-function (branch-reference) : equation ;

potential (branch-reference) : equation ;

flow (branch-reference) : equation ;

As in the direct contribution statements, the left-hand side provides

assigned branch signal using a signal access function. The right-hand side

specifies an equation defining the assigned signal value.

Chapter 8 Branches

128

The basic syntax for the equations in indirect contribution

statements is

 nature-access-name (branch-reference) == expression

 potential (branch-reference) == expression

flow (branch-reference) == expression

where the double equality punctuator (==) separates the left- and

right-hand sides of the equation. The left-hand side of the equation is

again a branch signal defined by the signal access function. However, it

can be different than the assigned branch signal. On the right-hand side of

the equation is an expression that evaluates a numerical real value. It can

depend on the equation's left-hand side signal value.

Indirect contribution statements are incompatible with direct

contribution statements across the same branch terminals. Once a value

is indirectly assigned to a branch, it cannot be contributed to using the

branch contribution operator <+. Hierarchical contributions are not

allowed to branches that have been indirectly contributed. Indirect branch

contributions shall not be used in looping and conditional statements

unless the conditional expression is constant.

As an example, consider the use of indirect contribution in the module

opamp representing a model of an ideal operational amplifier:

module opamp(out, pin, nin);

 inout out, pin, nin;

 electrical out, pin, nin;

 analog V(out) : V(pin, nin) == 0;

endmodule

The meaning of the indirect contribution here is to adjust the V(out)

signal value so that the V(in) has zero value. It is equivalent to the implicit

direct contribution statement:

V(out) <+ V(out) + V(pin, nin);

Chapter 8 Branches

129

As another example, the direct implicit contribution to I(diode) can

be expressed as an indirect contribution:

V(diode):

 I(diode) == is*(exp((V(diode)-r*I(diode))/$vt)-1);

The left-hand side of the equation in indirect contribution statements

can be also a derivative or integral operator applied to a signal access

function, which will be discussed in the next chapter.

�Probe Branches
If branch potential or flow signal values are accessed in expressions with

a signal access function but neither potential nor flow of that branch is

contributed, the branch is considered to be a probe branch. The value of

the probe branch signal which is not accessed by the signal access function

is implicitly set to 0. If the probe branch flow value is accessed in an

expression, the probe branch potential value is forced to 0. Otherwise, the

branch flow value is forced to be 0 and the branch potential is available for

use in an expression. Figure 8-4 shows a schematic representation of the

potential and flow probe branches.

Figure 8-4.  Potential and flow probe branches

Chapter 8 Branches

130

The potential and flow of a probe branch may not both appear in

expressions in a given module.

The following module defines a current-controlled current source:

module cccs (p, n, ps, ns);

 inout p, n, ps, ns;

 electrical p, n, ps, ns;

 parameter real A = 1.0;

 analog begin

 I(p,n) <+ A * I(ps,ns);

 end

endmodule

Because the branch flow I(ps,ns) appears in an expression on the

right-hand side but neither its flow nor potential is contributed, it is a

probe branch and its potential is implicitly assigned to 0.

�Value Retention
Multiple direct contributions to the same branch are additive as shown in

the following example of the amplifier module:

module amplifier (in, out);

 input in,

 output out;

 electrical in, out;

 parameter real gain = 1.0e3, rout = 1.0;

 analog begin

 // gain of amplifier

 V(out) <+ gain * V(in);

Chapter 8 Branches

131

 // output resistance

 V(out) <+ rout * I(out);

 end

endmodule

The value of the first contribution to the unnamed branch between

the port out and ground is retained and the second contribution value

is added to that retained value. The two contribution statements in the

amplifier module have the same effect as a single contribution statement:

V(out) <+ gain * V(in) + rout * I(out);

Unlike variables, contributed values of branch signals are only valid for

the current iteration. At the beginning of each iteration, the retained values

of the branches used in direct contribution statements are reset to 0.

Contributing a flow to a branch that already has a value retained for

the potential results in the potential being discarded and the branch

being converted to a flow branch. Conversely, contributing a potential to

a branch that already has a value retained for the flow results in the flow

being discarded and the branch being converted into a potential branch:

module value_ret(p, n);

 inout p, n;

 electrical p, n;

 analog begin

 // no previously-retained value, 1 is retained

 V(p,n) <+ 1.0;

 // potential discarded; flow of 2 retained

 I(p,n) <+ 2.0;

 // flow discarded; potential of 3 retained

 V(p,n) <+ 3.0;

Chapter 8 Branches

132

 // 4 added to previously-retained 3

 V(p,n) <+ 4.0;

 end

endmodule

The value retention rules specify that the preceding example will result

in an assignment of 7.0 to the potential signal of the unnamed branch

between ports p and n.

�Switch Branches
Contribution to a branch may be switched between a potential and a flow

during a simulation. To this end, contribution statements are allowed

within conditional statements as shown in the example:

module relay (p, n, ps, pn);

 inout ps, ns;

 output p, n;

 electrical p, n;

 parameter real thresh=0;

 parameter real ron=0 from [0:inf);

 parameter real goff=0 from [0:1/ron);

 analog

 if (V(ps,ns) > thresh)

 V(p,n) <+ ron * I(p,n);

 else

 I(p,n) <+ goff * V(p,n);

endmodule

Chapter 8 Branches

133

Using the switch branch between ports p and n, the module relay

could represent also an ideal relay having zero on-resistance and zero off-

conductance, set here as default.

The signals are contributed to switch branches using value retention

rules. However, the switch branch expressions shall not use analog

operators if the condition can change during a simulation. A discontinuity

in the first derivative of signal values is implicitly assumed to occur when

the branch switches and it is not necessary to explicitly announce it with

the $discontinuity system task. The use of the $discontinuity system

task is described in Chapter 16.

If a conditional contributed statement branch is not executed for any

particular iteration, and it is not a probe branch, it shall be treated as a flow

branch with a value of 0. For example, the conditional contribution:

if (closed)

 V(p,n) <+ 0;

is equivalent to

if (closed)

 V(p,n) <+ 0;

else

 I(p,n) <+ 0;

Conversely, if a flow is contributed to a branch in some iterations

(when the condition is satisfied), and in other iterations, nothing is

contributed, the branch is considered a potential branch with a value of 0.

In the following example of a resistor module, a switch branch is

controlled with the runtime constant condition:

module resistor(a, b);

 inout a, b;

 electrical a, b;

 parameter real r = 1.0 from (0:inf);

Chapter 8 Branches

https://doi.org/10.1007/978-1-4842-6351-8_16

134

 analog begin

 if (r / $mfactor < 1.0e-3)

 V(a,b) <+ 0.0;

 else

 I(a,b) <+ V(a,b) / r;

 end

endmodule

The switch branch is not switching during iterations. It will be either

a potential or a flow branch based on the value of the effective resistance

r/$mfactor evaluated in the elaboration phase. In the case that the voltage

branch is selected, the resistance is simply shorted out, and the simulator

may collapse the node to reduce the size of the system of equations.

Chapter 8 Branches

135

CHAPTER 9

Derivative and
Integral Operators
The branch potential and flow signals represent the system state space

in the Verilog-A behavioral models. The state of a system is defined at

every moment in time by a finite number of equations involving not

only algebraic relationships of signal values but also differentiation

and integration operations on the instantaneous values of the branch

signals. To this end, Verilog-A provides time derivative and integral

operators which can be used in procedural expressions. There is also a

special application of time derivative and integral operators in indirect

contribution equations. The additional probe derivative operator allows

to access the first-order partial derivatives of any expression in the model

with respect to branch signals.

�Time Derivative Operator
The syntax of the time derivative operator takes one of the following forms:

ddt (expression)

ddt (expression, abstol)

ddt (expression, nature-name)

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_9

https://doi.org/10.1007/978-1-4842-6351-8_9#DOI

136

The ddt() operator computes the time derivative of the expression

argument. At the beginning of a transient simulation and in static analyses,

ddt() returns zero.

An optional argument could be used to specify the absolute tolerance

if needed. It is specified either as a constant expression or providing the

nature identifier where the absolute tolerance is defined. Whether an

absolute tolerance is needed depends on the context in which the ddt()

operator is used. The absolute tolerance, defined by a constant expression

or derived from the nature definition, represents the largest signal level

considered negligible. The following branch contribution statement

defines the linear capacitor and inductor using the time derivative

operator:

I(p, n) <+ C * ddt(V(p, n), 1e-6);

V(p, n) <+ L * ddt(I(p, n), Current);

using the real literal and the nature name to define the optional abstol

values in the ddt() operator.

�Case Study: DC Motor
The DC motor converts electrical power to mechanical power of kinematic

rotation. Figure 9-1 shows the schematic representation of the DC motor.

Figure 9-1.  Schematic representation of the DC motor

Chapter 9 Derivative and Integral Operators

137

The DC motor is described in simple terms by the following

constitutive relations:

	
T K I B d

dt
Jm t m m m m m= − − ()θ θ 	

	
V R I d

dt
L I Kin m m m m m m= + () + θ 	

The electrical parameters of the motor model include its resistance

Rm and inductance Lm. The mechanical parameters are motor inertia Jm

and rotational friction Bm. The intrinsic motor voltage drop is Km times the

angular frequency of the motor θm, and the torque is Kt times the current

through the motor, Im. These equations are implemented in the Verilog-A

model given in the motor_ckt module.

module motor(vp, vn, shaft);

 inout vp, vn, shaft;

 electrical vp, vn;

 rotational shaft;

 parameter real Km = 4.5, Kt = 6.2;

 parameter real j = 0.004, D = 0.1;

 parameter real Rm = 5.0, Lm = 0.02;

 analog begin

 V(vp, vn) <+ Km*Theta(shaft) + Rm*I(vp, vn) +

 ddt(Lm*I(vp, vn), vp.flow.abstol);

 Tau(shaft) <+ Kt*I(vp, vn) - D*Theta(shaft) -

 ddt(j*Theta(shaft), Angle);

 end

endmodule

Chapter 9 Derivative and Integral Operators

138

Note the use of the hierarchical reference vp.flow.abstol to specify

an absolute tolerance value for the ddt() operator. This syntax shall not be

used for attributes whose value is not a constant expression.

�Time Integrator Operator
The idt() operator computes the time integral of an expression. It can be

used in one of the following syntax forms:

idt (expression)

idt (expression, ic)

idt (expression, ic , assert)

idt (expression, ic , assert , abstol)

idt (expression, ic , assert , nature)

If only the expression argument is specified, the initial condition for the

idt() operator is found by the simulator, generally, using the DC operating

point preceding the transient simulation. However, for the DC operating

point to exist, the idt() operator must be contained within a negative

feedback loop that forces expression to 0. Otherwise, the output of the

idt() operator is undefined.

The output of the integration operator can be forced to a particular

value at the start of the transient simulation by specifying the initial

condition ic. The optional numerical argument assert allows postponing

the start of the integration and resetting the integration to the ic value.

When specified with initial conditions (ic) but without assert, idt() returns

the value of the initial condition on the initial point of a transient analysis.

When specified with both initial conditions ic and assert, idt() returns

the initial condition in DC (or other static) analyses, and whenever assert

is nonzero. Once assert becomes zero, idt() returns the integral of the

expression starting from the last instant where assert was nonzero.

Chapter 9 Derivative and Integral Operators

139

The last optional parameter abstol or nature is used, similar to the

ddt() operator, to specify an absolute tolerance if needed. Whether an

absolute tolerance is needed depends on the context where idt() is used.

The absolute tolerance applies to the input of the idt() operator and is the

largest signal level considered negligible.

�Case Study: Chemical Reaction System
The inflation of airbags, once the capsule has been ignited, is commonly

described by the three concurrent chemical reactions:

	 2 2 3
3 2

NaN Na N→ + 	

	 10 2 5
3 2 2 2

Na KNO K O Na O N+ → + + 	

	 K O Na O SiO K Na SiO
2 2 2 2 2 4

+ + → 	

The chemical reaction equations can be rewritten to introduce the

necessary time parameter. Using the Van't Hoff theory on kinetic equations

results in the following set of reaction rate equations of chemical products

over time:

	

d NaN
dt

k NaN3

1 3

2

2
[]

= − [] 	

	

d Na
dt

k NaN k Na[]
= [] − []2 10

1 3

2

2

10

* 	

	

d N
dt

k NaN k Na KNO2

1 3

2

2

10

3

2

3
[]

= [] + [] [] 	

Chapter 9 Derivative and Integral Operators

140

	

d KNO
dt

k Na KNO3

2

10

3

2

2
[]

= − [] [] 	

	

d K O
dt

k Na KNO2

2

10

3

2[]
= [] [] 	

	

d Na O
dt

k Na KNO k K O Na O SiO2

2

10

3

2

3 2 2 2
5

[]
= [] [] − [][][] 	

	

d SiO
dt

k K O Na O SiO2

3 2 2 2

[]
= − [][][] 	

	

d K Na SiO
dt

k K O Na O SiO2 2 4

3 2 2 2

[]
= [][][] 	

where k1 to k3 represent reaction rate constants. The Verilog-A

implementation of the chemical reaction model is shown in the

chemsys module.

module chemsys (in);

 input electrical in;

 parameter real K1 = 14000.0;

 parameter real K2 = 1.0;

 parameter real K3 = 1.0;

 parameter thresh = 0.1;

 integer detain;

 chemical_sf c_NaN3, c_Na, c_N2, c_KNO3,

 c_K2O, c_Na2O, c_SiO2, c_K2Na2SiO4;

 analog initial detain = 1;

Chapter 9 Derivative and Integral Operators

141

 analog begin

 @(cross(V(in) - thresh, +1)) detain = 0

 CH(c_NaN3) <+ idt(-2.0*K1*pow(CH(c_NaN3),2),

 5.0/3.0, detain);

 CH(c_Na) <+ idt(2.0*K1*

 pow(CH(c_NaN3),2)-10.0*K2*

 pow(CH(c_Na),10)*

 pow(CH(c_KNO3),2),

 0.0, detain);

 CH(c_N2) <+ idt(3.0*K1*pow(CH(c_NaN3),2) +

 K2*pow(CH(c_Na),10)*

 pow(CH(c_KNO3),2),

 0.0, detain);

 CH(c_KNO3) <+ idt(-2.0*K2*pow(CH(c_Na),10)*

 pow(CH(c_KNO3),2),

 1.0/3.0, detain);

 CH(c_K2O) <+ idt(K2*pow(CH(c_Na),10)*

 pow(CH(c_KNO3),2)-

 K3*CH(c_K2O)*

 CH(c_Na2O)*CH(c_SiO2),

 0.0, detain);

 CH(c_Na2O) <+ idt(5.0*K2*pow(CH(c_Na),10)*

 pow(CH(c_KNO3),2)-

 K3*CH(c_K2O)*

 CH(c_Na2O)*CH(c_SiO2),

 0.0, detain);

 CH(c_SiO2) <+ idt(-K3*CH(c_K2O)*

 CH(c_Na2O)*CH(c_SiO2),

 1.0/6.0, detain);

Chapter 9 Derivative and Integral Operators

142

 CH(c_K2Na2SiO4) <+ idt(K3*CH(c_K2O)*

 CH(c_Na2O)*CH(c_SiO2),

 0.0, detain);

 end

endmodule // chemsys

The equations of the chemical system are implemented in its integral

form using the idt() operator. This form is preferred since it provides a

way to postpone the integration of equations until it is triggered by external

signals. It is handled by the assert argument to the idt() operator, which is

in the module implementation provided by the integer variable detain.

�Circular Integrator Operator
The idtmod() operator converts an expression argument into its

indefinitely integrated value similar to the idt() operator. The idtmod()

operator can be used in one of the syntax forms:

idtmod (expression)

idtmod (expression , ic)

idtmod (expression , ic ,modulus)

idtmod (expression , ic ,modulus, offset)

idtmod (expression , ic ,modulus, offset , const-expr)

idtmod (expression , ic , modulus, offset, nature)

The initial condition ic is used in the same way as in the idt() operator.

If idtmod() is used in a system with a feedback configuration that

forces expression to 0, the initial condition can be omitted without any

unexpected behavior during simulation.

The return value of the idtmod() operator can be expressed as

	 y t y t k mmod () = () − ⋅ 	

Chapter 9 Derivative and Integral Operators

143

where y(t) is the return value of the time integrator operator idt(), m

is the modulus, while k is an integer chosen so that the output shall remain

in the range

	 b y t b m≤ () ≤ + 	

where b is the offset. The modulus and offset shall be expressions that

evaluate real values and the value of the modulus shall be positive. If

the modulus is not specified, then idtmod() shall behave like the idt()

operator and not limit the output of the integrator. If the offset is not given,

the default value of 0 is assumed.

Figure 9-2 shows an example of idtmod() operator output.

Figure 9-2.  The output of the idtmod() operator when the input
argument is a constant α

Besides keeping its output bounded, the idtmod() operator is

implemented in such a way that its internal state variable is also bounded.

Chapter 9 Derivative and Integral Operators

144

�Case Study: Voltage-Controlled Oscillator
The circular integrator is particularly useful in cases where the time

integral can get very large. A typical example of such a system is a voltage-

controlled oscillator (VCO) shown in Figure 9-3.

Figure 9-3.  Schematic representation of the voltage-controlled
oscillator

The VCO produces an output signal whose frequency is proportional

to an input signal.

	 f K v tout in= ()vco 	

where Kvco is the VCO gain. To achieve this functionality, it is required

to integrate the input signal to compute the phase of the output signal:

	
φ π τ τ

π
t K v dvco

t

in() = ⋅ () −








 +2 0 5 0 5

2
0

mod ∫ . .

	

and then produce the output signal from the phase as

	
v tout = ()()sin φ 	

The Verilog-A code that implements this model is given in the

vco module:

module vco (out, in);

 input voltage in;

 output voltage out;

Chapter 9 Derivative and Integral Operators

145

 parameter real Vmin = 0;

 parameter real Vmax = Vmin + 1 from (Vmin:inf);

 parameter real Fmin = 1 from (0:inf);

 parameter real Fmax = 2 * Fmin from (Fmin:inf);

 parameter real ampl = 1; // output amplitude (V)

 real freq, phase;

 analog begin

 //compute the freq from the input voltage

 freq = (V(in) – Vmin)*(Fmax – Fmin) /

 (Vmax – Vmin) + Fmin;

 //phase is the integral of the freq modulo

 phase = 2*`M_PI*idtmod(freq, 0.0, 1.0, –0.5);

 //generate the output

 V(out) <+ sin(phase);

 end

endmodule

In a VCO, only the output values in the range [0,2π] of the circular

integrator are of interest. The file constants.vams supplies `M_PI defined

to be the Pi number. The use of the constants.vams file and compiler

directives is explained in Chapter 20.

�Indirect Contribution Equations
The Verilog-A syntax allows defining an indirect branch contribution with

derivative and integral operator–based expressions on the equation's left-

hand side:

derivative-or-integral-operator == expression

Chapter 9 Derivative and Integral Operators

https://doi.org/10.1007/978-1-4842-6351-8_20

146

Here, derivative-or-integral-operator is obtained by applying a

derivative or an integral operator to the branch signal access functions:

ddt(nature-access-function (branch-reference), ...)

idt(nature-access-function (branch-reference), ...)

idtmod(nature-access-function (branch-reference), ...)

with an optional argument specified if required.

The use of derivative and integral operators in indirect contribution

statements is quite useful for the description of differential and integral

equations. For example, the indirect contribution statements

Pos(velocity):ddt(Pos(y)) == Pos(velocity);

Pos(y):ddt(Pos(velocity)) == B*pow(Pos(y),3.0);

describe the nonlinear equation of motion.

For multiple indirect contribution statements, the targets frequently

can be paired with any equation. For example, the following ordinary

differential equation

	

dx
dt

f x y z= (), , 	

	

dy
dt

g x y z= (), , 	

	

dz
dt

h x y z= (), , 	

Where x, y, and z are electrical quantities, can be written as

V(x): ddt(V(x)) == f(V(x), V(y), V(z));

V(y): ddt(V(y)) == g(V(x), V(y), V(z));

V(z): ddt(V(z)) == h(V(x), V(y), V(z));

Chapter 9 Derivative and Integral Operators

147

or

V(y): ddt(V(x)) == f(V(x), V(y), V(z));

V(z): ddt(V(y)) == g(V(x), V(y), V(z));

V(x): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(z): ddt(V(x)) == f(V(x), V(y), V(z));

V(x): ddt(V(y)) == g(V(x), V(y), V(z));

V(y): ddt(V(z)) == h(V(x), V(y), V(z));

without affecting the results.

�Case Study: Accelerometer
The accelerometer has the structure shown in Figure 9-4. Similar to the

DC motor example, it mixes mechanical and electrical disciplines in

two transducers. First, the input force is converted into a mechanical

displacement using a tethered seismic mass. Then, the mechanical

displacement is converted into an electrical signal by modulating the gap

between capacitance plates.

Chapter 9 Derivative and Integral Operators

148

Figure 9-4.  Schematic representation of an accelerometer

In the first transducer, the micro-flexural structure can be modeled as a

damped harmonic oscillator using a second-order differential equation:

	
F t M d x

dt
D dx
dt

kx() = + +
2

	

where F(t) is the force applied to a seismic mass, x is the displacement

of the mass M, D is the damping coefficient, and k is spring stiffness.

The second transducer uses the seismic mass as the middle plate

of a differential capacitance circuit. The displacement of the seismic

mass modifies the gap between plates and, hence, the differential

capacitance values.

The Verilog-A code that implements this model is given in the

capsensor module:

module capsensor (mass, etop, emid, ebot);

 inout mass, mref, etop, emid, ebot;

 kinematic mass;

 electrical etop, emid, ebot;

Chapter 9 Derivative and Integral Operators

149

 // mechanical properties

 parameter real M = 0.16e-9; // seismic mass

 parameter real D = 4.0e-6; // damping coeff.

 parameter real K = 2.6455; // spring stiffness

 parameter real A = 220.0e-12; // capacitor area

 parameter real D0 = 1.5e-6; // initial position

 real ctm, cbm, tmp;

 analog begin

 // equation for displacement of comb drive

 tmp = F(mass)- K * Pos(mass);

 Pos(mass):

 ddt(Pos(mass))==(idt(tmp)-D*Pos(mass))/M;

 // compute change and current in capacitances

 ctm = A*`P_EPS0 / (D0 + Pos(mass));

 cbm = A*`P_EPS0 / (D0 - Pos(mass));

 I(etop, emid) <+ ctm * ddt(V(etop, emid));

 I(ebot, emid) <+ cbm * ddt(V(ebot, emid));

 end

endmodule

Note the use of the indirect contribution statement for the

displacement of the seismic mass Pos(mass).

�Probe Derivative Operator
The probe derivative operator provides access to symbolically computed

partial derivatives of expressions in the analog procedural blocks. The

syntax for the probe derivative operator is

ddx (expression , unknown-quantity)

Chapter 9 Derivative and Integral Operators

150

The first argument is the expression that evaluates a real numerical

value. The ddx() operator returns the partial derivative of its first argument

with respect to the second argument unknown_quantity which is the

branch probe (potential or flow probe) keeping all other unknowns fixed

and evaluated at the current operating point. If the expression does not

depend explicitly on the unknown-quantity, then ddx() returns 0. Care

must be taken when using implicit equations or indirect contributions,

for which the simulator may create internal unknowns; derivatives to

these internal unknowns cannot be accessed with ddx(). Unlike the ddt()

operator, no tolerance specifications are required for the ddx() operator

because the partial derivative is computed symbolically and evaluated at

the current operating point.

In many cases, the values of derivatives of expressions used in

contribution statements are useful quantities. It is particularly true for

compact modeling where quantities such as the transconductance of a

transistor or the capacitance of a nonlinear charge-storage element such

as a varactor are essential for the circuit and system design.

The following example of a module diode uses a ddx() operator to

obtain the conductance of the diode:

module diode(a,c);

 inout a, c;

 electrical a, c;

 parameter real IS = 1.0e-14;

 real idio;

 (* desc="small-signal conductance" *) real gdio;

 analog begin

 idio = IS * (limexp(V(a,c)/$vt) - 1);

 gdio = ddx(idio, V(a));

 I(a,c) <+ idio;

 end

endmodule

Chapter 9 Derivative and Integral Operators

151

The variable gdio is declared as an output variable (using the

attribute instance described in Chapter 19) so that its value is available for

inspection by the designer.

The next example implements a voltage-controlled dependent current

source and is used to illustrate the computations of partial derivatives:

module vccs(pout, nout, pin, nin);

 inout pout, nout, pin, nin;

 electrical pout, nout, pin, nin;

 parameter real k = 1.0;

 real vin, one, minusone, zero;

 analog begin

 vin = V(pin,nin);

 one = ddx(vin, V(pin));

 minusone = ddx(vin, V(nin));

 zero = ddx(vin, V(pout));

 I(pout,nout) <+ k * vin;

 end

endmodule

The names of the variables indicate the values of the partial

derivatives: +1, –1, or 0.

Chapter 9 Derivative and Integral Operators

https://doi.org/10.1007/978-1-4842-6351-8_19

153

CHAPTER 10

Built-In Math
Functions
There are an infinite number of possible math functions. But in practice,

there is a definite set of standard math functions that are considered

reasonable to include as primitives in expressions and that are

implemented as built-in math functions in Verilog-A. Besides the standard

deterministic functions, Verilog-A also provides a set of probabilistic

functions to support variability-aware system simulation.

�Deterministic Functions
A function is considered deterministic if it always returns the same result

when it’s called with the same input arguments. It can be invoked using

the traditional Verilog-A syntax style:

function-name (x)

function-name (x,y)

where the function-name is followed by parentheses specifying one

or two function arguments. Alternatively, one can use a system function

syntax style:

$function-name (x)

$function-name (x,y)

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_10

https://doi.org/10.1007/978-1-4842-6351-8_10#DOI

154

where the function name is preceded by the $ character. With just a few

exceptions, most of the Verilog-A built-in math functions can be used in

both syntax styles. Although the Verilog-A standard encourages if possible

the adoption of the system function style, in this book the system function

style is used only if the transitional Verilog-A function style is not possible.

�Logarithmic and Power Functions
The logarithmic and power functions supported by Verilog-A are shown in

Table 10-1. They are all available in both traditional Verilog-A and system

function styles.

Table 10-1.  Power and logarithmic functions in Verilog-A

Function Name Verilog-A Function Domain

Natural logarithm ln(x) x >0

Decimal logarithm log(x) x >0

Exponential exp(x) All x

Square root sqrt(x) x >=0

Power pow(x, y) If x >0, all y

If x =0, y >0

If x <0, int(y )

Hypot hypot(x,y) All x, all y

The ln(x) and log(x) return the natural and decimal logarithms of

a real argument whose value must be positive. The exp(x) returns the

exponential function value for a real argument x. The ln(x) is the inverse

function of exp(x).

Chapter 10 Built-In Math Functions

155

Note U nlike the C programming language where the log(x)
function is used to evaluate the natural logarithm, in Verilog-A the
natural logarithm is evaluated using the ln(x) function, while the
log(x) function evaluates decimal logarithms.

The sqrt(x) returns the square root function value for a non-negative

real argument x. The pow(x, y) returns x raised to the power of y, which can

be also achieved using expression x**y. The hypot(x,y) returns the square

root of the sum of squares of its arguments, x y2 2+ . This corresponds to

calculating the length of the hypotenuse of a right-angled triangle.

�Trigonometric Functions
The trigonometric functions supported by Verilog-A are shown in

Table 10-2. They are all available in both traditional Verilog-A and system

function styles.

Table 10-2.  Trigonometric functions in Verilog-A

Function Name Verilog-A Function Domain

Sine sin(x) All x

Cosine cos(x) All x

Tangent tan(x) x != n(π/2), n is odd

Arc-sine asin(x) -1<=x<=1

Arc-cosine acos(x) -1<=x<=1

Arc-tangent atan(x) All x

2-argument arc-tangent atan2(x,y) All x, all y

atan2(0,0)=0

Chapter 10 Built-In Math Functions

156

Arguments to the trigonometric functions (sin(), cos(), tan()) and

return values of the inverse trigonometric functions (asin(), acos(),

atan(), atan2()) are in radians. Input values outside of the valid range for

the operator shall report an error.

The function atan2(x,y) is defined as the angle in the Euclidean

plane, given in radians, between the positive y axis and the ray from the

origin to the point (x, y). For y>0, atan2(x,y) = atan(x/y). However,

for y>0 the single-argument arc-tangent function atan(x/y) cannot

distinguish between diametrically opposite directions. In addition, an

attempt to find the angle between the y axis and the vectors (x, 0), x ≠ 0

requires evaluation of arctan(x/0), which fails on division by zero. The

atan2() function calculates one unique arc-tangent value from two

variables x and y, where the signs of both arguments are used to determine

the quadrant of the result, thereby selecting the desired branch of the

arc-tangent of x/y.

�Hyperbolic Functions
The hyperbolic functions supported by Verilog-A are shown in Table 10-3.

They are all available in both traditional Verilog-A and system

function styles.

Table 10-3.  Hyperbolic functions in Verilog-A

Function Name Verilog-A Function Domain

Hyperbolic sine sinh(x) All x

Hyperbolic cosine cosh(x) All x

Hyperbolic tangent tanh(x) All x

Arc-hyperbolic sine asinh(x) All x

Arc-hyperbolic cosine acosh(x) All x

Arc-hyperbolic tangent atanh(x) All x

Chapter 10 Built-In Math Functions

157

Arguments to the hyperbolic functions (sinh(x), cosh(x), tanh(x))

and return values of the inverse hyperbolic functions (asinh(), acosh(),

atanh()) are called a hyperbolic angle.

�Limiting and Rounding Functions
A number of limiting and rounding functions supported in Verilog-A are

shown in Table 10-4. Note that the min(), max(), and abs() functions are

not available in the system function style, while the $clog2() function can

be used only in the system function syntax style.

Table 10-4.  Limiting and rounding functions in Verilog-A

Function Name Verilog-A Function Domain

Minimum min(x,y) All x, all y

Maximum max(x,y) All x, all y

Absolute abs(x) All x

Floor floor(x) All x

Ceiling ceil(x) All x

Ceiling of log base 2 $clog2(x) All x

The min(x,y) and max(x,y) return the minimum or maximum of two

integer or real numbers x and y. The abs(x) function returns the absolute

value of an argument x of type integer or real. These functions can be also

implemented using the conditional operator:

min(x,y) is equivalent to (x < y) ? x : y

max(x,y) is equivalent to (x > y) ? x : y

abs(x) is equivalent to (x > 0) ? x : –x

Chapter 10 Built-In Math Functions

158

For min(), max(), and abs() functions, the result is of type integer if

arguments are of type integer and otherwise it is real. If either operand

of min() and max() functions is real, both are converted to real, as is the

result. Note that the min(), max(), and abs() functions have discontinuous

derivatives. It is therefore necessary to define the behavior of the derivative

of these functions at the point of the discontinuity.

The floor(x) function returns the greatest integer less than or equal

to its real argument. On the other hand, the ceil(x) function returns the

least integer greater than or equal to its real argument. These functions are

piecewise constant and discontinuous.

The system function $clog2() shall return the ceiling of logarithm

base 2 of the argument. The argument can be of integer or real type and an

argument value of 0 shall produce a result of 0.

�Probabilistic Functions
Verilog-A provides a function for random number generation and a set

of statistical distribution functions. They can be only used in a system

function syntax style.

�Random Number Generation Function
The probabilistic function $arandom provides a mechanism for generating

a sequence of random numbers. It is used in one of the syntax forms:

$arandom

$arandom (seed)

$arandom (seed , type-string)

The random number returned is a 32-bit signed integer that can be

positive or negative. The $arandom functions return a new random integer

number each time it is called.

Chapter 10 Built-In Math Functions

159

The seed is an optional argument that determines the sequence of

random numbers generated. The same sequence of random numbers will

be generated every time the same seed is used. It could be important for

regression analysis where each simulation run must work with the same

sequence of random numbers. The $arandom function could be called by

the function name only, in which case the simulator picks a seed.

The seed may be specified as an integer variable, integer parameter,

or integer constant. If the seed is specified as an integer variable, it is a

bidirectional argument; that is, a value is passed to the function and a

different value is returned. The variable should be initialized prior to

calling $arandom and only updated by the $arandom function. If the seed

is specified as an integer parameter or an integer constant, the $arandom

function does not update the seed value. However, an internal seed is

created which is assigned the initial value of the parameter or constant.

The internal seed gets updated every time the call to $arandom is made.

This allows the $arandom function to be used for parameter initialization.

In order to get different random values when the seed argument is an

integer parameter, the user can override the parameter value.

The type-string is an additional optional argument of a string type. It

provides support for Monte-Carlo analysis and shall only be used in calls

to $arandom from within a paramset. If the type-string is "global" (or not

specified in a call within a paramset), then one value is generated for

each Monte-Carlo trial. If the type-string is "instance", then one value

is generated for each instance that references this value, and a new set of

values for these instances is generated for each Monte-Carlo trial.

For example, the following code fragment:

integer rand;

rand = $arandom % 60;

assigns a random number between -59 and 59 to the rand variable.

Chapter 10 Built-In Math Functions

160

�Statistical Distribution Functions
Verilog-A provides a number of statistical distribution functions which are

invoked using a generic system function syntax form:

$rdist_distribution-function-name(arg, ...)

where distribution-function-name stands for different distribution

function names given in Table 10-5.

Table 10-5.  Statistical distribution functions in Verilog-A

Name Argument List

chi_square seed, mean
seed, mean, type-string

exponential seed, mean
seed, mean, type-string

poisson seed, mean
seed, mean, type-string

uniform seed, start, end
seed, start, end, type-string

erlang seed, k-stage, mean
seed, k-stage, mean, type-string

normal seed, mean, standard-dev
seed, mean, standard-dev, type-string

t seed, degree-of-freedom
seed, degree-of-freedom, type-string

Each of these functions returns a random number whose

characteristics are described by the function name. For example,

$rdist_uniform returns random numbers uniformly distributed in the

Chapter 10 Built-In Math Functions

161

interval specified by its arguments. All probabilistic functions return a real

value. All arguments to the probabilistic functions are real values, except

for the seed which shall be an integer value. Moreover, the arguments

mean, degree-of-freedom, and k-stage shall be greater than zero. Otherwise,

an error shall be reported.

The mean argument causes the average value returned by the

statistical distribution function to approach the specified value by the

mean argument.

In $rdist_uniform, the start and end arguments are input arguments

that bound the returned function values. The start value shall be smaller

than the end value.

The standard-dev argument, used by $rdist_normal, is an input

argument that helps to determine the shape of the density function. Using

larger numbers for standard-dev spreads the returned values over a wider

range of values. Using a mean of 0 and a standard-dev of 1, the $rdist_

normal function generates the Gaussian distribution.

The degree-of-freedom argument helps determine the shape of the

density function. Using larger numbers for degree-of-freedom spreads the

returned values over a wider value range.

The use of the seed argument is the same as for the $arandom function.

The statistical distribution functions shall always return the same value

given the same seed. This facilitates debugging by making the operation

of the system repeatable. In order to get different random values when the

seed argument is a parameter, the user can override the parameter.

The use of the type-string arguments in statistical distribution

functions is the same as in the $arandom function. It provides support

for Monte-Carlo analysis and shall only be used in calls to a distribution

function from within a paramset. If the type-string is "global" (or not

specified in a call within a paramset), then one value is generated for

each Monte-Carlo trial. If the type-string is "instance", then one value

is generated for each instance that references this value, and a new set of

values for these instances is generated for each Monte-Carlo trial.

Chapter 10 Built-In Math Functions

162

The following example shows how to use the $rdist_normal function

to model two kinds of statistical variation:

module semicoCMOS ();

 localparam real tox = 3e-8;

 localparam real dtox_g =

 $rdist_normal(1,0,1n,"global");

 localparam real dtox_mm =

 $rdist_normal(2,0,5n,"instance");

endmodule

paramset nch nmos3; // mismatch paramset

 parameter real l=1u from [0.25u:inf);

 parameter real w=1u from [0.2u:inf);

 parameter integer mm=0 from (0:1];

 .l=l; .w=w; .ad=w*0.5u; .as=w*0.5u;

 .kp=5e-5; .u0=650; .nsub=1.3e17;

 .vmax=0; .tpg=1; .nfs=0.8e12;

 .tox = semicoCMOS.tox + semicoCMOS.dtox_g +

 semicoCMOS.dtox_mm;

endparamset

module top ();

 electrical d1, d2, g, vdd, gnd;

 ground gnd; nch #(.l(1u), .w(5u), .mm(1))

 m1(.d(d1), .g(g), .s(gnd), .b(gnd));

 nch #(.l(1u), .w(5u), .mm(1))

 m2(.d(d2), .g(g), .s(gnd), .b(gnd));

 resistor #(.r(1k)) R1 (vdd, d1);

 resistor #(.r(1k)) R2 (vdd, d2);

 vsine #(.dc(2.5)) Vdd (vdd, gnd);

 vsine #(.dc(0), .ampl(1.0), .offset(1.5),

 .freq(1k)) Vg (g, gnd);

endmodule

Chapter 10 Built-In Math Functions

163

Because the local parameter dtox_mm is obtained from $rdist_normal

with the string "instance", the instances m1 and m2 will get different values

of tox. Though the local variation has a smaller standard deviation than

the global variation, only the local variation will affect the differential

voltage between nodes d1 and d2.

Chapter 10 Built-In Math Functions

165

CHAPTER 11

User-Defined
Functions
Besides the predefined math functions, described in the previous chapter,

Verilog-A provides also a way to define our own functions. User-defined

functions could be used to encapsulate self-contained segments of the

code and avoid the replication of the same or very similar code sections.

Moreover, testing can be carried out on each function in isolation, rather

than on the whole module. This chapter describes the two main stages in

using the user-defined functions, first how to define a function and second

how to invoke it in the module procedural code.

�Defining Functions
User functions are defined between the keywords function and

endfunction using the syntax

analog function function-type function-name ;

 declaration-statement ...

 procedural-statement

endfunction

The function definition must be preceded by the keyword analog to

distinguish it from digital style function definitions in the Verilog-AMS

language using Verilog-A as a language subset. The header line, ending

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_11

https://doi.org/10.1007/978-1-4842-6351-8_11#DOI

166

with a semicolon, declares a function type as function-type and a function

name as an identifier function-name. The function-type can be either

real or integer but the declaration of the function type is optional. If the

function type is not specified, it is assumed to be real. The user-defined

functions can be only defined within a module body along with other two

analog constructs, namely, analog blocks and analog initial blocks. It is

not allowed to position the function definition within procedural blocks.

The body of the user-defined function definition consists of a sequence

of declaration statements followed by a single procedural statement. The

syntax allows the declaration of real and integer variables and parameters

but the declaration of nets is not permitted. The declared variables and

parameters have only local scope within a user-defined function. Some of

the declared variables shall be specified as formal arguments to provide an

interface for calling user-defined functions in the module procedural code.

�Formal Arguments
A user-defined function shall have at least one variable specified as

a formal argument. The syntax for the specification of scalar formal

arguments is

direction variable-name, ...

The direction specifier can be either an input or output keyword for

unidirectional or an inout keyword for bidirectional formal arguments. The

direction specifier is followed by a comma-separated list of variable names.

The declaration of formal arguments with the direction specifier resembles

the port declarations but here variable names are used instead of port names.

Besides, all formal arguments shall be also declared as integer or real variables:

input l, w;

output area, perim;

real l, w, area, perim;

Chapter 11 User-Defined Functions

167

Array variables can be also specified as formal arguments using

the syntax:

direction range port-name, ...

where a range specifier is introduced after the direction specifier,

similar to the declarations of the vector ports:

inout [0:1]a;

real a[0:1];

The ranges in the direction and type declarations must be identical.

If a formal argument only receives values from outside of the function,

it is specified as an input argument. The modification done to the input

arguments in the function evaluation does not reflect in the caller's scope.

An argument does not have to receive anything from outside of the

function. It can be used to pass a computation result back to the outside

world. In this case, it is specified as an output argument. All output

arguments are implicitly initialized to 0.

Finally, an argument can receive a value, use it for computation, and

hold a result so that it can be passed back to the outside world. In this

case, it is specified as an inout argument. The modification done on

inout arguments in the function evaluation is persistent and changes are

reflected in the caller's scope. The inout arguments do not get initialized

to 0 like output arguments.

�A Return Variable
The user-defined functions implicitly declare an additional variable with

local function scope. It has the same type and name as the function itself.

This local implicit variable is initialized to 0 and can be assigned within the

body of the user-defined function. It is illegal to declare another variable

with the same name inside the user-defined function scope. For example,

in the user-defined function:

Chapter 11 User-Defined Functions

168

analog function real hypsmooth;

 input x, c;

 real x, c;

 hypsmooth = 0.5 * (x + hypot(x, 2c));

endfunction

the hypsmooth is implicitly declared a return variable of type real.

The last value assigned to this variable will be the return value of the

user-defined function. If this internal variable is not assigned during the

execution of the user-defined function, then the user-defined function will

return the initialized value of 0. A user-defined function shall always return

a scalar numerical value.

�A Procedural Statement
A single procedural statement in user-defined functions could be a

procedural assignment (as in the previous example of the hypsmooth

function), but also any statements available for conditional execution,

or a single sequential block statement. Named block statements, and

corresponding block declarations, are not allowed in user-defined

functions.

The procedural statement actually evaluates the user-defined function.

It should only reference locally defined variables (including formal

arguments), locally defined parameters, but also module-level parameters.

If a locally defined parameter with the specified name does not exist, then

the module-level parameter of the specified name will be used. Since it is

not possible to declare and reference nets within user-defined functions,

access functions and analog operators are not allowed in the procedural

statement. The event control statements are not allowed, too.

The following example illustrates a user-defined function using scalar

and array arguments. The maxValue function

Chapter 11 User-Defined Functions

169

analog function real maxValue;

 input n1, n2;

 real n1, n2;

 maxValue = (n1 > n2) ? n1 : n2;

endfunction

returns the larger value of two input arguments. The distance function

analog function real distance;

 input [0:2] p;

 input [0:2] q;

 real p[0:2], q[0:2];

 distance = sqrt((p[0]-q[0])**2 +

 (p[1]-q[1])**2 +

 (p[2]-q[2])**2);

endfunction

returns the distance between two points in space. The geomcalc

function

analog function real geomcalc;

 input l, w;

 output area, perim;

 real area, w, l, perim;

 begin

 area = l * w;

 perim = 2 * (l + w);

 end

endfunction

evaluates the area and perimeter of a rectangle as output arguments.

Finally, the arrayadd function

Chapter 11 User-Defined Functions

170

analog function real arrayadd;

 inout [0:1]a;

 input [0:1]b;

 real a[0:1], b[0:1];

 integer i;

 begin

 for(i = 0; i < 2; i = i + 1) begin

 a[i] = a[i] + b[i];

 end

 end

endfunction

adds the contents of a second array argument to the first one.

�Calling Functions
The user-defined function shall only be called from an analog block or

from within another user-defined function. They shall not call themselves

directly or indirectly, which means that recursive functions are not

permitted.

The user-defined function is typically called in two styles: as

an operand in expressions or as a stand-alone statement similar to

subroutines or procedures in programming languages. Both styles are

using the same function reference syntax but could select different ways of

exchanging data by calling procedural code.

�Function References
A function call operator with the syntax

function-name (expression, ...)

Chapter 11 User-Defined Functions

171

is used as a user-defined function reference in the module procedural

code. It specifies the list of expressions in parentheses after the user-

defined function name. These expressions represent actual arguments

of the function reference. During the execution of a user-defined

function, the appropriate linkage must be established between the

actual arguments, specified in the function call operator, and the formal

arguments defined within the function. This linkage is called argument

association.

The argument association in user-defined functions is based on the

order in which the direction of the formal arguments is specified in the

function definition. For example, the function reference

geomcalc(l-dl, w-dw, ar, per);

supplies the actual arguments in the order in which the formal

argument directions are specified in the user-defined function geomcalc:

analog function real geomcalc;

 input l, w;

 output area, perim;

 real area, w, l, perim;

 ...

 endfunction

Here, it is associating l-dl with l, w-dw with w, ar with area, and per

with perim. Note that the order of arguments in their type declarations is

not relevant at all for the argument association. The order of evaluation of

actual argument expressions in the function reference is undefined.

Chapter 11 User-Defined Functions

172

�Using Functions in Expressions
One way a user-defined function may be referenced or invoked in module

procedural code is by placing the function reference with actual arguments

as an operand in an expression. In that case, a user-defined function is

typically defined to have only input arguments. The result of the function

evaluation shall be assigned to the implicitly declared return variable.

Here are examples of using user-defined functions maxValue,

hypsmooth, and distance in expressions:

V(out) <+ maxValue(V(in1), V(in2));

Vdsat = hypsmooth(Vdsat-1.0E-3, 1.0E-5) + 1.0E-3;

vel = distance('{x1, y1, z1},'{x2, y2, z2})) / time;

Any expression that evaluates a numerical value, including signal

access functions, can be used here as actual function arguments. Note the

use of assignment patterns to match up the formal array arguments in the

function distance.

�Function Called As Statements
The user-defined functions are called in a statement style if it is intended

to return more than one value from the function. In that case, the implicitly

defined return variable is not used. Instead, output and inout arguments

are used to return the values evaluated by the user-defined function.

During the execution of the function, inout and output arguments

can be assigned in the procedural statement. At the end of the function

execution, the last value assigned to the inout and output arguments is

assigned to the corresponding variable reference that was passed into

the function. If a value was not assigned to an inout argument during the

execution of the analog user-defined function, then the corresponding

Chapter 11 User-Defined Functions

173

actual argument reference is left untouched. If a value was not assigned to

an output argument, the corresponding actual argument will be reset to 0,

the initial value of output arguments.

Note  inout arguments are not “pass by reference” as it is in the
C programming language, but more closely related to “copy in” and
“copy out.” Care should be taken to avoid passing the same variable
to different inout and output arguments of the same user-defined
function as the results are undefined.

The argument passed to an inout or output argument must be a

variable reference. As an example, consider the call to geomcalc in the

statement style as

dummy = geomcalc(l-dl, w-dw, ar, per);

The first two actual arguments are expressions and match up with the

input specification of the l and w formal arguments. However, the other

two arguments must be real identifiers because they should associate with

the output formal arguments area and perim. The statement

dummy = geomcalc(l-dl, w-dw, ar/2, V(a));

incorrectly uses the geomcalc function since the third argument is

passed an expression and the fourth argument is passed the potential

probe V(a), both not the variable reference, and it will result in a

compilation error.

Note that the function reference cannot represent the statement itself.

It is still an expression and the statement is artificially created by assigning

the return function value to a dummy variable.

Chapter 11 User-Defined Functions

174

If the inout or output argument is defined as an array, then the

argument passed into the function must be an array variable or an

array assignment pattern of the equivalent size. The following example

demonstrates passing array arguments to the arrayadd user-defined

function:

x[0] = 5; x[1] = 10;

y = 3; z = 6;

dummy = arrayadd(x,'{y,z});

Here, the first and second arguments are both expecting arrays.

An array variable name x is passed for the first argument and an array

assignment pattern of two scalar variables has been used for the second

argument. Since the first argument is an inout argument, the result of

calling the arrayinit function will update the vector variable x with values

x[0] = 8 and x[1] = 16.

Chapter 11 User-Defined Functions

175

CHAPTER 12

Lookup Tables
A Verilog-A procedural block could be in principle interpreted as a

multivariate input-output mapping. It takes a set of parameters, variables,

or expressions at the input, for producing certain results at the end of the

procedural evaluation sequence. In some cases, the analytical model for

such procedural evaluation could be unavailable or too time-consuming

for implementation. One way to overcome this problem is to implement

such critical input-output procedural mappings in Verilog-A code using

lookup tables. The savings in processing time can be significant because

retrieving a value from a data table is often much faster than carrying out

expensive input-output procedural computations.

�Table Data Structure
The lookup table data are commonly generated by data acquisition

systems or precalculated by detailed simulations. Care must be taken

when preparing the table data. The Verilog-A LUT model function requires

a specific data format, and incorrectly formatted tables can cause errors in

calling the function. Worse yet, misaligned or improperly formatted data

could be interpreted incorrectly, causing subtle errors in the simulation

results.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_12

https://doi.org/10.1007/978-1-4842-6351-8_12#DOI

176

�Jagged Array Grids
A lookup table is basically an indexed multidimensional array of input-

output data values. The simplest and commonly used LUT array data

structure is a rectangular multidimensional array or grid. It is convenient

to represent the rectangular grids as a nested set of 1-D arrays, or a

recursively introduced array of arrays:

	
x i N x i N x i Ni i i

d
d

d
d1 2

1

1

1 2

2

2
1 1 1

() () () () () ()= = … = }}}{{



, , , , , ,
	

Here, N(i) is the number of grid points with respect to the ith array

dimension. The data structure of nested 1-D arrays is also compatible with

commonly used parametric sweeping schemes in analog simulators and

data acquisition systems which can be used to sample LUT data. However,

the simplicity of rectangular grid LUTs does not come without a price.

Namely, the total number of grid data points

	
N N

i

d
i=

=

()∏
1 	

grows exponentially with the table dimension. The grid-based LUTs

obviously underlie the curse of dimensionality and thus in practice they

are almost never used for d > 3.

The curse of dimensionality could be effectively overcome with

Verilog-A LUT models based on jagged (also called ragged) arrays, or

jagged grids. Similar to a multidimensional array, a jagged array is also

recursively defined as an array of arrays:

	
x i N x i N x ii i i i i i i

d
dd d1 1 2 1 1 1

1

1

1 2

2

2
1 1

() ()
()
() ()

…()
()= = … =

−
, , , , , 11

1 1
,Ni i

d
d…

()
− }}}{{




) 	

Chapter 12 Lookup Tables

177

However, each of the inner nested array elements, associated with

an outer array index, is now independent in size and distribution of grid

coordinates.

Figure 12-1 shows an example of a jagged 2-D grid structure defined as

a 1-D array of 1-D arrays (or isolines).

Figure 12-1.  Examples of 2-D ragged LUT

The advantage of jagged grid arrays is the possibility to use an

anisotropic distribution of grid points for optimal LUT data interpolation.

The structure of ragged arrays naturally leads to the implementation

of a simple recursive 1-D interpolation and extrapolation process. The

interpolation and extrapolation schemes always operate in a single

dimension analogous to how the data was originally generated, so the

interpolation and extrapolation schemes used may be specified on a per

dimension basis. The lowest requirement is to have at least two points

per isoline. In addition, the result of the bracketing, required to produce

intermediate interpolation points, must also produce at least two points

Chapter 12 Lookup Tables

178

per subsequent lower dimension. One should be aware that too few

sample points can cause interpolation errors. The number of sample

points must be sufficient to reduce the error to an acceptable level.

�Preparing Table Data
Ragged arrays are not native in Verilog-A. The lookup table data based

on ragged array grids may be stored in a file or as a sequence of one-

dimensional arrays or a single two-dimensional array. Here, we describe

the formatting of table data in a file. The table data file may contain

multiple dependent variables, all sharing the same jagged array grid.

A lookup table for m dependent variables of dimension d is laid out in

d+m data columns. The first d columns are used to specify coordinates of

the d-dimensional jagged grid. It is followed by the m columns containing

the values of dependent variables. The jagged grid coordinates are ordered

from the outermost (slowest changing) coordinate to the innermost

(fastest changing) coordinate. Though an isoline ordinate does not change

for a given isoline, in this scheme the ordinate is repeated for each point

of that isoline (thus keeping the input data as a set of data rows all with the

same number of points). The result is a sequential listing of each isoline

with the total number of rows in the listing being equal to the total number

of jagged array grid points.

As an example, let us consider a lookup table data file for a function

f(x,y)=0.5x+y:

y x f(x,y)

#y=0 isoline

 0.0 1.0 0.5

 0.0 2.0 1.0

 0.0 3.0 1.5

 0.0 4.0 2.0

Chapter 12 Lookup Tables

179

 0.0 5.0 2.5

 0.0 6.0 3.0

#y=0.5 isoline

 0.5 1.0 1.0

 0.5 3.0 2.0

 0.5 5.0 3.0

#y=1.0 isoline

 1.0 1.0 1.5

 1.0 2.0 2.0

 1.0 4.0 3.0

The table has only one dependent variable f(x,y) on a 2-D jagged grid.

There are three isolines for y values, 0.0, 0.5, and 1.0, while x is sampled

at various points on each of the three isolines. The slowly changing outer

independent variable appears to the left, while the rapidly changing inner

independent variable appears to the right. Isoline ordinates are repeated

for each sample on a given isoline. Each sample point is separated by a

newline and each column is separated by one or more spaces or tabs.

Comments in table data files begin with the # character and continue to

the end of that line. They may appear anywhere in the file. Blank lines are

ignored. The numbers in the table shall be real or integer literals.

It is suggested that the user arranges the sampled isolines in sorted

order (one isoline following another in all dimensions). However, if the

user provides the data in random order, the system will sort the data

into isolines in each dimension. Whether the data is sorted or not, the

system determines the isoline ordinate by reading its exact value from

the file or array. Any noise on the isoline ordinate may cause the system

to incorrectly generate multiple isolines where the user intended a single

isoline. Within the data table, each row shall be distinct in terms of its

jagged grid coordinate values. If there are two or more rows with the same

grid coordinates and dependent variable values, then the duplicates shall

Chapter 12 Lookup Tables

180

be ignored and the simulator may generate a warning. If there are two or

more rows with the same grid coordinate values but different dependent

values, then an error is generated.

When the data source is represented as a sequence of 1-D arrays or

a single 2-D array, the isolines are laid out conceptually the same way

with each 1-D array, or a column of the 2-D array, being just a column in

the file format described earlier. Arrays may be specified directly via the

assignment patterns or array variable names.

�Lookup Table Function
Once a data table is formatted in a file or assigned to Verilog-A arrays, it

can be used to provide a LUT mapping:

	
x x x yd1 2() () ()…()→, , , 	

where (x(1), x(2), …, x(d)) are independent input variables, while y is a

required dependent output value. The mapping is performed by searching

the data table for grid points closest to the given input and using these

points to interpolate (or extrapolate) for the corresponding output value.

To perform LUT mapping, Verilog-A provides a multidimensional

interpolation and lookup system function $table_model invoked by using

one of the syntax forms:

$table_model (input-variables, data-source)

$table_model (input-variables, data-source, control-string)

The first syntax form requires to specify a set of input variables and a

table data source. The state of the data source is captured on the first call to

the $table_model function. Any change after this point is ignored.

Chapter 12 Lookup Tables

181

The optional control string specifies how the interpolation and

extrapolation are performed in the data table. If the control string is not

specified, $table_model will perform linear interpolation and linear

extrapolation in all dimensions.

�Input Variables and Data Source
The input-variables are provided as a comma-separated list of expressions:

expression, ...

that evaluate a set of d input variables at which the lookup function

should be evaluated. Any expression that can be assigned to an analog

signal can be used here.

If the table data are stored in a file, the data-source is specified as a

string literal:

" file-name "

specifying the name of the file.

The next example illustrates a simple call to the $table_model function

using the table data file described in the previous section and stored as

sample.tbl:

module lut_example(a, b);

 electrical a, b;

 inout a, b;

 analog begin

 I(a, b) <+ $table_model(0.0, V(a,b),

 "sample.tbl");

 end

endmodule

The $table_model function is called specifying zero (0) for the y input

variable and uses a module port potential difference as the x input variable.

Chapter 12 Lookup Tables

182

Alternatively, the lookup table data source can be given as a

comma-separated list of d one-dimensional array identifiers:

array-identifier, ...

each of them providing a corresponding column of table data in a

text file. The module lut_example can be defined using one-dimensional

arrays as

module lut_example(a, b);

 electrical a, b;

 inout a, b;

 real y[0:11], x[0:11], f_xy[0:11];

 analog initial

 begin

 // y=0.0 isoline

 y[0] =0.0; x[0] =1.0; f_xy[0] =0.5;

 y[1] =0.0; x[1] =2.0; f_xy[1] =1.0;

 y[2] =0.0; x[2] =3.0; f_xy[2] =1.5;

 y[3] =0.0; x[3] =4.0; f_xy[3] =2.0;

 y[4] =0.0; x[4] =5.0; f_xy[4] =2.5;

 y[5] =0.0; x[5] =6.0; f_xy[5] =3.0;

 // y=0.5 isoline

 y[6] =0.5; x[6] =1.0; f_xy[6] =1.0;

 y[7] =0.5; x[7] =3.0; f_xy[7] =2.0;

 y[8] =0.5; x[8] =5.0; f_xy[8] =3.0;

 // y=1.0 isoline

 y[9] =1.0; x[9] =1.0; f_xy[9] =1.5;

 y[10]=1.0; x[10]=2.0; f_xy[10]=2.0;

 y[11]=1.0; x[11]=4.0; f_xy[11]=3.0;

 end

 analog

Chapter 12 Lookup Tables

183

 I(a, b)<+$table_model(0, V(a,b), y, x, f_xy);

endmodule

It is also possible to use assignment patterns here either for the array

initialization or directly as $table_model function arguments. Finally, a

single two-dimensional array identifier can be used as data-source:

real table[0:2][0:11] =

'{

 '{0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.5,0.5,1.0,1.0,1.0},

 '{1.0,2.0,3.0,4.0,5.0,6.0,1.0,3.0,5.0,1.0,2.0,4.0},

 '{0.5,1.0,1.5,2.0,2.5,3.0,1.0,2.0,3.0,1.5,2.0,3.0}

};

...

I(a, b) <+ $table_model(0, V(a,b), table);

Here, a two-dimensional array with table data is initialized using

nested assignment patterns.

�Control String
The control-string specifies how interpolations are performed in each

dimension and how they should extrapolate at the boundaries of each

dimension. It also provides some control on how to treat columns of the

input data source. It is defined by one of the string literals:

" control-character-set, ... "

" control-character-set, ... ; dependent-selector "

The control strings contain a comma-separated list of control character

sets followed by an optional semicolon and the expression dependent-

selector that should evaluate as a constant integer. The control character

sets provide control over each independent variable with the first set

applying to the outermost coordinate and so on. The optional dependent

Chapter 12 Lookup Tables

184

variable selector is an integer number allowing us to specify which

dependent variable in the data source we wish to interpolate. This number

runs from 1 to m with m being the total number of dependent variables

specified in the data source.

Each control character set associated with interpolation control string

has at most three characters. The first character controls interpolation and

as shown in the Table 12-1.

Table 12-1.  Interpolation control character

Control Character Description

I Ignore this input column

D Closest point (discrete) lookup

1 Linear interpolation (default)

2 Quadratic spline interpolation

3 Cubic spline interpolation

It is possible to ignore interpolation for the given input dimensions if

it is annotated with the I control character. The closest point interpolation

returns the closest point in the specified dimension. The linear

interpolation algorithm provides a simple linear interpolation between

the closest sample points on a given isoline. Cubic spline interpolation

generates a spline for each isoline being interpolated. Quadratic splines

are similar to cubic splines, offering more efficient evaluation with

generally less favorable interpolation results. As a general rule, cubic

splines are best applied to smoothly varying data (such as the DC I-V

characteristic of a diode), while linear interpolation is a better option for

data with abrupt transitions (such as a transient pulsed waveform).

The remaining characters in the control sub-string specify the

extrapolation behavior of a LUT model when the value of input variables

is outside the data table range. The extrapolation control characters are

described in Table 12-2.

Chapter 12 Lookup Tables

185

Table 12-2.  Extrapolation control character

Control Character Description

C Constant extrapolation

L Linear extrapolation (default)

E Error on an extrapolation request

The constant extrapolation method returns the table endpoint

value. Linear extrapolation extends linearly to the requested point from

the endpoint using a slope consistent with the selected interpolation

method. The user may also disable extrapolation by choosing the error

extrapolation method. With this method, an extrapolation error is reported

if the $table_model function is requested to evaluate a point beyond the

interpolation region.

For each dimension, users may use up to two extrapolation method

characters to specify the extrapolation method used for each end. When no

extrapolation method character is given, the linear extrapolation method

will be used for both ends as default. Error extrapolation results in a fatal

error. When one extrapolation method character is given, the specified

extrapolation method will be used for both ends. When two extrapolation

method characters are given, the first character specifies the extrapolation

method used for the end with the lower coordinate value, and the second

character is used for the end with the higher coordinate value.

The specification of the extrapolation control characters could be also

essential for the correct generation of spline interpolation coefficients.

If the constant extrapolation is specified, the endpoint derivative is set

to zero, thus avoiding a discontinuity in the first-order derivative at that

endpoint. If the user selects linear extrapolation, this leads to natural

splines.

Some examples of control strings are shown in Table 12-3.

Chapter 12 Lookup Tables

186

Table 12-3.  Example control strings

Control String Description

“” or control string

omitted

Null string, default linear interpolation, and extrapolation.

The dimensionality of the data is assumed to be N. Column

N+1 is taken as the dependent

"1L,1L" Data is 2-D, linear interpolation and extrapolation in both

dimensions

"1LL,1LL" Same as before, an extrapolation method specified for

both ends in each dimension

"1LL,1LL;1" Same as before, dependent variable 1 is specified. This is

the default behavior when there are multiple dependent

variables in the file and there is no dependent variable

selector specified in the control string

"D,1,3" Closest point lookup in the outer dimension, linear

interpolation on dimension two, and cubic spline

interpolation on the inner dimension

"I,1CC,1CC;3" Ignore column 1, linear interpolation, and constant

extrapolation in all dimensions; interpolation applies to

dependent variable 3. There are at least six columns in the

data file

"3,D,I,1;3" Cubic spline interpolation in dimension 3 (column 1),

closest lookup in dimension 2 (column 2), ignore column

3, and use linear interpolation on the innermost dimension

(dimension 1, column 4). Interpolate dependent variable 3

(column 7). This file has at least seven columns

"C,,3" Data is 3-D, equivalent to “1CC, 1LL, 3LL”

Chapter 12 Lookup Tables

187

The following example implements a simple LUT MOSFET

transistor model:

module nfet(d, g, s);

 inout d, g, s;

 electrical d, g, s;

 parameter string int_exp = "3LL,3LL";

 real Ids, Cgs, Cgd;

 analog begin

 Ids = $table_model(V(d,s), (V(g,s)),

 "Id.tbl", int_exp);

 Cgd = $table_model(V(d,s), (V(g,s)),

 "Cg.tbl", "1LL,1LL:2");

 Cgs = $table_model(V(d,s), (V(g,s)),

 "Cg.tbl", "1LL,1LL:1");

 I(d,s) <+ Ids;

 I(g,d) <+ Cgd * ddt(V(g,d));

 I(g,s) <+ Cgs * ddt(V(g,s));

 end

endmodule

Here, the two separate table data files are used for the current and

capacitance modeling. The string parameter int_exp allows external

control of the LUT control string.

Chapter 12 Lookup Tables

189

CHAPTER 13

Small-Signal
Functions
Thus far we have been focused on large signal modeling with Verilog-A

in the time domain. A large signal is any signal having enough magnitude

to reveal a branch's nonlinear behavior. A small signal analysis assumes

that variations in signal potential and flow amplitudes are so small that

the branch constitutive relationship can be assumed to behave linearly.

Practically, the small signal analysis models are obtained by linearization

of the nonlinear branch constitutive relationships near a static operation

point. It allows performing the small signal analysis in the frequency

domain solving algebraic rather than differential equations.

Because the focus of this book is the Verilog-A language and its use,

we will not go into theoretical details behind the frequency domain small-

signal analysis. Readers seeking additional information should check

the standard textbooks in this area. In this chapter, we will just introduce

Verilog-A functions that can be used to provide small-signal stimuli in the

frequency domain for the AC and noise small-signal analysis.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_13

https://doi.org/10.1007/978-1-4842-6351-8_13#DOI

190

�AC Analysis
The abbreviation AC (from Alternating Current in electrical engineering) is

commonly used to specify a sinusoidal signal waveform:

	 v t M t� � � �� �cos � � 	

where M is the amplitude, ϕ is the phase, and ω is the frequency of the

AC signal. The AC analysis assumes that a linearized small-signal model

is subjected to a one or more sinusoidal signal stimuli. In that case, all

the branch potentials and flow signals are also sinusoidal with the same

frequency as the stimulus but with their own magnitude and phase.

In the frequency domain a sinusoidal signals is represented as a phasor

	 V M� ej� 	

being a vector in a complex plane defined by the sinusoidal signal

magnitude and phase. Given the frequency provided by the simulator, AC

analysis solves a set of algebraic equation for the signals’ magnitude and

phases instead of solving differential equations for the signal waveforms in

time domain. It is important to understand that in AC analysis not only the

branch signals but also real type variables, depending on the signal values,

are implicitly converted to complex phasor variables defined by two

numbers (magnitude and phase). In order for us to be able to introduces

the sinusoidal signals into AC analysis, Verilog-A provides the AC stimulus

function.

�AC Stimulus Function
The sinusoidal stimulus in the frequency domain is provided using the

ac_stim() function. It can be used in one of the syntax forms:

ac_stim ()

ac_stim (analysis-name)

Chapter 13 Small-Signal Functions

191

ac_stim (analysis-name , mag)

ac_stim (analysis-name , mag , phase)

The argument analysis-name is a string constant specifying the name

of a small-signal analysis. The small-signal analysis name depends on

the simulator but the expected (and default) value for the analysis-name

is "ac". When the name of the simulator small-signal analysis matches

analysis-name, the AC stimulus function becomes active and returns the

phasor with the magnitude and phase defined by the function arguments

mag and phase, respectively. The magnitude argument mag has no

physical unit and has a default value of 1. The phase argument is given

in radians and its default value is 0. It makes the following calls to the AC

stimulus identical:

ac_stim();

ac_stim("ac");

ac_stim("ac", 1.0);

ac_stim("ac", 1.0, 0.0);

The AC stimulus function returns 0 during large-signal static and

transient analyses in the time domain. This allows us to use AC stimulus

functions in expressions with no effect except in small signal analysis. For

example, in the branch contribution statement:

V(p, n) <+ R * I(p, n) + ac_stim("ac", m1);

the ac_stim() function adds the AC small signal stimulus with

magnitude m1 and phase 0 in parallel to the linear resistor branch. It will

become active only during "ac" analysis and does not affect the branch

contribution statement in other analyses.

Chapter 13 Small-Signal Functions

192

We should keep in mind that the AC stimulus function returns a

phasor as a unitless complex numerical value that can be also assigned

to the module variable. The previous contribution statement can be also

defined as

v_ac = ac_stim("ac", m1);

V(p, n) <+ R * I(p, n) + v_ac;

where v_ac is previously declared real variable.

�Noise Analysis
When we model the behavior of an analog system, we often need to

analyze the system's sensitivity to various noise stimuli. The term noise,

as it is used here, denotes small-signal statistical fluctuations of branch

potential and flow values. To model and analyze the effects of the large-

signal noise fluctuations, one could consider using the $arandom system

tasks as described in Chapter 11.

The concept of phasors used in AC analysis can be also employed

for the small-signal noise analysis. However, the phase of the phasors

that effectively represent small signal noise signals are subject to random

variation from 0 to 2π radians, and the phasor magnitude is frequency

dependent. For that reason, noise stimuli stimuli are specified in noise

analysis using the power spectral density (PSD), which is the mean square

of the noise signal magnitude within a frequency interval of 1 Hz.

Verilog-A provides several noise stimuli functions to support different

noise PSD frequency dependences in noise analysis. These noise functions

are often referred to as noise sources. Similar to AC stimulus function, the

noise sources are only active in small-signal noise analysis and return 0

otherwise.

Chapter 13 Small-Signal Functions

https://doi.org/10.1007/978-1-4842-6351-8_11

193

�White Noise Function
White noise stochastic processes are those whose current value is

completely uncorrelated with any previous or future values. This

implies their PSD of the white noise does not depend on frequency.

The white noise sources are introduced in the noise analysis using the

white_noise() function in one of the syntax forms:

white_noise (pwr)

white_noise (pwr , name)

The argument pwr specifies the frequency-independent PSD of the

white noise source. The optional argument name is a string constant

that acts as a label for the noise source. It could be used by the simulator

to output the individual contribution of each noise source to the total

output noise. To this end, the contributions of noise sources with the same

name from the same instance of a module are combined in the noise

contribution summary.

In the following example, the module bridge implements the bridge

network with two noisy resistors.

module bridge(p, n);

 inout p, n;

 electrical p, n, mc, ml;

 parameter real R = 1.0 from (0:inf);

 parameter real C = 1.0p from [0:inf);

 parameter real L = 1.0p from [0:inf);

 real wnval, wnpower;

 analog begin

 wnpower = (4.0 * `P_K * $temperature) / R;

 I(p,mc) <+ V(p,mc) / R + white_noise(wnpower);

Chapter 13 Small-Signal Functions

194

 wnval = white_noise(wnpower, "thermal");

 I(p, ml) <+ V(p, ml) / R + wnval;

 I(mc, n) <+ C * ddt(V(mc, n));

 V(ml, n) <+ L * ddt(I(ml, n));

 end

endmodule

Note that the noise sources are basically functions that could be used

anywhere in the analog procedural expressions. For the first resistor, the

noise sources is introduced directly in the branch contribution expression

while for the second resistor the return value of the noise source function

is first assigned to a variable wnval, which is then used in the resistor

branch contribution statement. Although both white noise sources are

using the same PSD value, they are completely uncorrelated.

�Flicker Noise Function
The flicker_noise() function models the noise sources using one of the

syntax form:

flicker_noise (pwr , exp)

flicker_noise (pwr , exp , name)

It can be used to generates the noise with a power spectral density of

pwr which varies in proportion to 1/f exp where exp is the second argument

of the flicker noise function and f = ω/2π is the frequency. The optional

argument name is a string constant that acts as noise source label.

The use of the Flicker noise source function is demonstrated in the

noisy_diode module:

module noisy_diode(a,b);

 inout a, b;

 electrical a, b;

Chapter 13 Small-Signal Functions

195

 parameter real af = 1;

 parameter real kf = 1;

 parameter real is = 1e-14;

 real af;

 analog begin

 pwr_1 = kf * pow(abs(Id), af);

 I(a,b) <+ is * (exp(V(a,b) / $vt) - 1) +

 white_noise(2 * `P_Q * abs(Id), "shot") +

 flicker_noise(pwr_1, 1.0, "flicker");

 end

endmodule

Here the white_noise() function is used to contribute the diode shot

noise and the flicker_noise() function to add the flicker noise with 1/f

dependence of the PSD.

On should be careful with the specification of the PSD in the Flicker

noise source functions when the bias applied to the branch changes sign1.

�Look-Up Table Noise Functions
Verilog-A provides two look-up table noise functions: noise_table() and

noise_table_log() to interpolate the frequency dependent noise PSD

from the pre-defined table data.

1 G. J. Coram, C. C. McAndrew, K. K. Gullapalli and K. S. Kundert, “Flicker Noise
Formulations in Compact Models,” in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2812-2821, Oct. 2020,
doi: 10.1109/TCAD.2020.2966444.

Chapter 13 Small-Signal Functions

196

The noise_table() function interpolates a set of values to model a

process where the spectral density of the noise varies as a piecewise linear

function of frequency using the syntax:

noise-table (data)

noise-table (data , name)

On the other hand, the noise_table_log() function interpolates a set

of values to model a process where the spectral density of the noise varies

as a piecewise linear function of the base-10 logarithm of the frequency

using the syntax:

noise-table-log (data)

noise-table-log (data , name)

The data input argument can either be a real vector or a string indicating

a filename. When the input is a real vector it contains a sequence of pairs

of real numbers: the first number in each pair is the frequency in Hz and

the second is the power in W. The vector can either be specified as an array

parameter or an array assignment pattern. The optional argument name is a

string constant that acts as a noise source label.

When the data argument is a file name, the indicated file will contain

the frequency/power pairs. The filename argument shall be constant and

will be either a string literal or a string parameter. Each frequency/power

pair shall be separated by a newline and the numbers in the pair shall be

separated by one or more spaces or tabs. To increase the readability of the

data file, comments may be inserted before or after any frequency/power

pair. Comments begin with # character and end with a newline. The input

file shall be in text format only and the numbers shall be real or integer.

The following shows an example of the input file:

noise_table_input.tbl

Example of input file format for noise_table

#

freq pwr

Chapter 13 Small-Signal Functions

197

1.0e0 1.657580e-23

1.0e1 3.315160e-23

1.0e2 6.636320e-23

1.0e3 1.326064e-22

1.0e4 2.652128e-22

1.0e5 5.304256e-22

1.0e6 1.060851e-21

End of the example input file.

Although the user is encouraged to specify each noise pair in order

of ascending frequency, the simulator shall internally sort the pairs into

ascending frequency if required. Each frequency value must be unique.

The optional name argument acts as a label for the noise source as in the

other noise source functions.

The noise_table() performs piecewise linear interpolation to

compute the power spectral density generated by the function at each

frequency between the lowest and highest frequency in the set of

values. For frequencies lower than the lowest frequency in the value set,

noise_table() returns the power specified for the lowest frequency,

and for frequencies higher than the highest frequency, noise_table()

returns the power specified for the highest frequency.

The noise_table_log() interpolates the values of the power spectral

density logarithmically. For a given frequency f the noise power shall be

computed using the two pairs ( f1, p1) and ( f2, p2) in the input (whether an

array or file), where f1 is the largest frequency value in the input data less

than f and f2 is the smallest frequency larger than f (that is, f1 < f < f2). The

noise power P is interpolated as:

	
P p p p

f f

f f
� � �� � � � � �� � �(,log log log

log /

log /
10 1 2 1 1

2 1 	

Chapter 13 Small-Signal Functions

198

As with noise_table(), for frequencies lower than the lowest

frequency in the value set, noise_table_log() returns the power specified

for the lowest frequency, and for frequencies higher than the highest

frequency, noise_table_log() returns the power specified for the highest

frequency.

The difference between noise_table and noise_table_log is

illustrated in Figure 13-1.

The noise_table_log function produces a straight line on a log-log

plot from just two points:

noise_table_log('{1,1, 1e6,1e-6});

Figure 13-1.  Comparison of noise_table and noise_table_log

Chapter 13 Small-Signal Functions

199

whereas the linear interpolation of noise_table() function call:

noise_table('{1,1, 1e1, 1e-1, 1e2,

 1e-2, 1e3, 1e-3, 1e4,

 1e-4, 1e5, 1e-5, 1e6, 1e-6});

produces a series of curves between the interpolating points.

�Correlated Noise Sources
Each noise source function generates noise that is uncorrelated with the

noise generated by other noise source functions. In order to get perfectly

correlated noise in two branch contribution statements we can assign the

output of one noise function to a variable and then use the variable in the

branch contribution statements as demonstrated in the following example:

n = white_noise(pwr);

V(a,b) <+ c1 * n;

V(c,d) <+ c2 * n;

The white noise contribution in (a,b) and (c,d) branches is perfectly

correlated.

Partially correlated noise is generated by combining the output of

shared and unshared noise functions, as demonstrated in the example:

n1 = white_noise(1-corr);

n2 = white_noise(1-corr);

n12 = white_noise(corr);

V(a,b) <+ Kv*(n1 + n12);

I(b,c) <+ Ki*(n2 + n12);

The level of correlation is defined by the variable corr. For corr=1

the white noise sources in the branches (a,b) and (c,d) are perfectly

correlated while for corr=1 they are uncorrelated.

Chapter 13 Small-Signal Functions

201

CHAPTER 14

Filters
Verilog-A filters are analog operators that remove some unwanted

components or features from a signal. Similar to functions, filters take

arguments at the input and return a value. However, as with other

Verilog-A analog operators, filters also maintain their internal states and

their output is a function of both the input arguments and the internal

states. Verilog-A supports filters in the time and frequency domain.

�Time-Domain Filters
Verilog-A provides a set of time-domain filters that can be used to delay

signals and to remove discontinuity or bound rate of change of the signal

waveforms.

�Absolute Delay Filter
The absolute delay filter implements the transport delay for signal

waveforms. The syntax of the absolute delay filter is

absdelay (expression , delay)

absdelay (expression , delay, maxdelay)

The filter output is the input expression delayed by the time delay as

shown in Figure 14-1.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_14

https://doi.org/10.1007/978-1-4842-6351-8_14#DOI

202

Figure 14-1.  Absolute delay filter input-output transformation

The delay shall be specified a positive number. If the optional

argument maxdelay is not specified, the value of delay, when the

absdelay() is evaluated for the first time, will be used and any future

changes to delay will be ignored. If the argument maxdelay is specified,

then delay can be modified in the subsequent absdelay() calls. If delay is

greater than maxdelay, maxdelay will be used as a substitute for delay.

In DC and operating point analyses, absdelay() returns the value of

the expression. In frequency-domain AC and noise analyses, the absolute

delay filter shifts the phase of the input expression by the value of ω · delay
where ω is the angular frequency.

�Transition Filter
The transition filter is used to smooth out piecewise constant waveforms

by introducing transitions and delays that stretch instantaneous changes

in signals over a finite amount of time and can delay the transitions. The

syntax of the transition filter is

transition(expression)

transition(expression , delay)

transition(expression , delay, rise-time)

transition(expression , delay, rise-time, fall-time)

transition(expression , delay, rise-time, fall-time,

time-tol)

Chapter 14 Filters

203

The input arguments, delay, rise-time, fall-time, and time-tol, are

optional, but if specified shall be non-negative.

The transition filter converts a piecewise constant waveform given by

the input argument expression into a piecewise linear output waveform as

shown in Figure 14-2.

Figure 14-2.  Transition filter input-output transformation

The transition filter forces all positive transitions of the expression to

occur over rise-time and all negative transitions to occur in fall-time after

an initial time delay. If delay is not specified, it is assumed to be 0. If only a

positive rise-time value is specified, the simulator uses it for both rise and

fall times. If neither rise-time nor fall-time is specified or set to be 0, the rise

and fall times default to the value defined by the currently active `default_

transition compiler directive, which is introduced in Chapter 20.

Otherwise, the ideal behavior of a zero-duration transition using very small

but nonzero transition times shall apply. The time tolerance time-tol

argument specifies the maximum allowable error between the true

transition point and one selected by the simulator. If time-tol is not

specified, the transition function causes the simulator to assure that each

transition is adequately resolved.

Chapter 14 Filters

https://doi.org/10.1007/978-1-4842-6351-8_20

204

Note E ven though the first derivative of the transition filter
output waveform is discontinuous, it is not necessary to announce
discontinuities using the $discontinuity system task (see Chapter 16)
because the transition filter takes responsibility for notifying the
simulator of the discontinuities that it produces.

In DC analysis, transition() passes the value of the expression

directly to its output. Because the transition function cannot be linearized

in general, it is not possible to accurately represent a transition filter output

signal in AC analysis. The AC transfer function of the transition filter is

approximately modeled as having unity transmission for all frequencies in

all situations.

Since transitions take some time to complete, a new transition can

be specified before a previously specified transition is complete. In this

case, the transition function terminates the previous transition and shifts

to the new one in such a way that the continuity of the output waveform

is maintained. With different delays, a new transition can be activated

before a previously specified transition starts. The transition function

handles this by deleting any transitions which would follow a newly

scheduled transition. A transition function can have an arbitrary number

of transitions pending.

�Slew Filter
The slew analog filters bound the rate of change, or slope, of the signal

waveform. A typical use of the slew filter is to generate continuous signals

from piecewise continuous signals. The syntax of the slew filter is

slew (expression)

slew (expression , max-pos-slope)

slew (expression , max-pos-slope, max-neg-slope)

Chapter 14 Filters

https://doi.org/10.1007/978-1-4842-6351-8_16

205

The value of max-pos-slope shall be positive and max-neg-slope shall be

negative.

When applied, the slew filter forces all transitions of input expression

faster than max-pos-slope not to exceed max-pos-slope for positive

transitions and limits the negative transitions to the maximum negative

slew rate max_neg_slope as shown in Figure 14-3.

Figure 14-3.  Slew filter input-output transformation

If the max-neg-slew-rate is not specified, it defaults to the opposite of

the max-pos-slew-rate. If no rates are specified, the slew() filter passes the

signal through unchanged. If the rate of change of expression is less than

the specified maximum slew rates, slew() returns the value of the input

expression.

In DC analysis, slew() simply passes the value of the expression to

its output. During a small-signal analysis, such as AC or noise analysis,

the slew filter has a unity transfer function from the first argument to the

output when not slewing and 0 transfer function when slewing.

�Frequency-Domain Filters
It is often convenient to specify the filters in the frequency domain using

the Laplace transform or the Z-transform. The Laplace transform and

Z-transform filters are expressed as rational functions of complex variables

defined in s-plane and z-plane complex domains.

Chapter 14 Filters

206

The frequency-domain filters in the Verilog-A language are available

in the zero-pole, zero-denominator, numerator-pole, and numerator-

denominator formulations.

Some of the arguments in calls to frequency-domain filters are

expected to be arrays. An array can either be passed as an array identifier

(e.g., an array parameter or an array variable) or an array assignment

pattern. The zeros argument may be represented as a null argument.

The null argument is characterized by two adjacent commas (,,) in the

argument list.

�Laplace Transform Filters
The Laplace transform filters implement linear continuous-time network

functions. Each filter takes an optional parameter ε, which is a real number

or a nature used for deriving an absolute tolerance. Whether an absolute

tolerance is needed depends on the context where the filter is used.

�Zero-Pole Filter

The Laplace zero-pole filter form is introduced with the syntax:

laplace_zp (expr , ζ, ρ)
laplace_zp (expr , ζ, ρ, ε)

where ζ is a vector of M pairs of real numbers. Each pair represents a

zero as a complex number. The first number in the pair is the real part of

the zero and the second is the imaginary part. Similarly, ρ is the vector of

N real pairs, one for each complex pole. The poles are given in the same

manner as the zeros.

Chapter 14 Filters

207

The zero-pole transfer function is defined as

	

H s

s
j

s
j

k

M

k k
i

k

M

k k
i

() =
−

+










−
+











=

−

=

−

∏

∏
0

1

0

1

1

1

ζ ζ

ρ ρ

γ

γ 	

where ζ γ
k and ζ k

i are real and imaginary parts of the kth zero, while

ργ
k and ρk

i are the real and imaginary parts of the kth pole. If a root (a

pole or zero) is real, the imaginary part shall be specified as zero. If a root

is complex, its conjugate shall also be present. If a root is zero, then the

term associated with it is implemented as s, rather than (1 − s/γ), where r is

the root.

For example:

V(out) <+ laplace_zp(V(in), '{-1,0}, '{-1,-1,-1,1});

implements

	

H s s
s
j

s
j

() = +

+
+









 +

−










1

1
1

1
1 	

Note the use of assignment patterns to pass array arguments to the

filter function.

�Zero-Denominator Filter

The syntax for the zero-denominator Laplace filter is

laplace_zd (expr, ζ, d)
laplace_zd (expr, ζ, d, ε)

Chapter 14 Filters

208

where ζ is a vector of M pairs of real numbers. Each pair represents a

zero; the first number in the pair is the real part of the zero and the second

is the imaginary part. Similarly, d is the vector of real numbers containing

the coefficients of the denominator.

The zero-denominator transfer function is defined as

	

H s

s
j

d s

k

M

k k
i

k

N

s
k

() =
−

+










=

−

=

−

∏

∑
0

1

0

1

1
ζ ζγ

	

where ζ γ
k and ζ k

i are real and imaginary parts of the kth zero, while

dk is the coefficient of the kth power of s in the denominator. If a zero is

real, the imaginary part shall be specified as zero. If a zero is complex, its

conjugate shall also be present. If a zero has a zero value, then the term

associated with it is implemented as s, rather than (1 − s/ζ).

�Numerator-Pole Filter

The numerator-pole Laplace filter has a syntax:

laplace_np (expr, n, ρ)
laplace_np (expr, n, ρ, ε)

where n is a vector of M real numbers containing the coefficients of

the numerator. Similarly, ρ is a vector of N pairs of real numbers. Each pair

represents a pole; the first number in the pair is the real part of the pole

and the second is the imaginary part.

The numerator-pole transfer function is defined as

	

H s
n s

s
j

k

M

k
k

k

M

k k
i

() =
−

+










=

−

=

−

∑

∏
0

1

0

1

1
ρ ργ 	

Chapter 14 Filters

209

where nk is the coefficient of the kth power of s in the numerator, while

ργ
k and ρk

i are the real and imaginary parts of the kth pole. If a pole is real,

the imaginary part shall be specified with a zero value. If a pole is complex,

its conjugate shall also be present. If a pole has a zero value, then the term

associated with it is implemented as s, rather than (1 = s/ρ).

For example, a numerator-pole Laplace filter in the contribution

statement

V(out) <+ laplace_np(V(in), '{ 1 },

 '{

 -0.81, 0.59,

 -0.81, -0.59,

 -0.31, 0.95,

 -0.31, -0.95,

 -1.0, 0.0

 }

);

realizes the fifth-order Butterworth filter.

�Numerator-Denominator Filter

The numerator-denominator Laplace filter has the syntax:

laplace_nd (expr, n, d)

laplace_nd (expr, n, d, ε)

where n is a vector of M real numbers containing the coefficients of the

numerator and d is a vector of N real numbers containing the coefficients

of the denominator.

Chapter 14 Filters

210

The numerator-denominator transfer function is defined as

	

H s
n s

d s

k

M

k
k

k

M

k
k

() = =

−

=

−

∑

∑
0

1

0

1

	

where nk is the coefficient of the kth power of s in the numerator and dk

is the coefficient of the kth of s in the denominator.

For example, the contribution statement with the integral operator in

the time domain

V(out) < + idt(Ku * V(in) - Kp * V(out));

can be alternatively implemented as

V(out) <+ laplace_nd(V(in), '{ Ku }, '{ Kp, 1 });

using the Laplace numerator-denominator filter.

�The Z-Transform Filters
The Z-transform filters implement linear discrete-time filters. Each filter

supports a parameter T that specifies the sampling period of the filter. A

filter with a unity transfer function acts like a simple sample-and-hold that

samples every T second and exhibits no delay.

All Z-transform filters share three common arguments: T, τ, and t0.

T specifies the period of the filter, is mandatory, and shall be positive.

τ specifies the transition time, is optional, and shall be non-negative. If

the transition time is specified and is nonzero, the time step is controlled

to accurately resolve both the leading and the trailing corner of the

transition. If it is not specified, the transition time is defined by the

`default_transition compiler directive (introduced in Chapter 20),

and the time step is not controlled to resolve the trailing corner of the

Chapter 14 Filters

https://doi.org/10.1007/978-1-4842-6351-8_20

211

transition. If the transition time is specified as zero (0), then the output is

abruptly discontinuous. A Z-transform filter with zero transition time shall

not be directly assigned to a branch. Finally, t0 specifies the time of the

first transition and is also optional. If not given, the first transition occurs

at t = 0.

�Zero-Pole Filter

The zero-pole form of the Z-transform filter is called with the syntax:

zi_zp (expr , ζ, ρ, T)
zi_zp (expr , ζ, ρ, T, τ)
zi_zp (expr , ζ, ρ, T, τ, t0)

where ζ is a vector of M pairs of real numbers. Each pair represents a

zero; the first number in the pair is the real part of the zero and the second

is the imaginary part. Similarly, ρ is the vector of N real pairs, one for each

pole. The poles are given in the same manner as the zeros.

The zero-pole transfer function is defined as

	

H z
z j

z j

k

M

k k
i

k

N

k k
i

() =
− +()

− +()
=

−
−

=

−
−

∏

∏
0

1

1

0

1

1

1

1

ζ ζ

ρ ρ

γ

γ

	

where ζ γ
k and ζ k

i are the real and imaginary parts of the kth zero,

while ργ
k and ρk

i are real and imaginary parts of the kth pole. If a root (a

pole or zero) is real, the imaginary part shall be specified as zero. If a root

is complex, its conjugate shall also be present. If a root is zero (0), then the

term associated with it is implemented as z, rather than (1 − z/γ), where r

is the root.

Chapter 14 Filters

212

For example, the contribution statement

V(out) <+ zi_zp(V(in), {0, 0}, {–1, 0});

implements the transfer function H z z
z

() =
+

−

−

1

11
.

�Zero-Denominator Filter

The zero-denominator form of the Z-transform filter is called with

the syntax:

zi_zd (expr, ζ, d, T)
zi_zd (expr, ζ, d, T, τ)
zi_zd (expr, ζ, d, T, τ, t0)

where ζ is a vector of M pairs of real numbers. Each pair represents

a zero; the first number in the pair is the real part of the zero and the

second is the imaginary part. Similarly, d is the vector of N real numbers

containing the coefficients of the denominator.

The zero-denominator transfer function is defined as

	

H z
z j

d z

k

M

k k
i

k

N

k
k

() =
− +()

=

−
−

=

−
−

∏

∑
0

1

1

0

1

1 ζ ζγ

	

where ζ γ
k and ζ k

i are the real and imaginary parts of the kth zero,

while dk is a coefficient of the kth power of s in the denominator. If a zero is

real, the imaginary part shall be specified as zero. If a zero is complex, its

conjugate shall also be present. If a zero is zero, then the term associated

with it is implemented as z, rather than (1 − z/ζ).

Chapter 14 Filters

213

�Numerator-Pole Filter

The numerator-pole form of the Z-transform filter is called with the syntax:

zi_np (expr , n, ρ, T)
zi_np (expr , n, ρ, T, τ)
zi_np (expr , n, ρ, T, τ, t0)

where n is a vector of M real numbers containing the coefficients of

the numerator. Similarly, ρ is a vector of N pairs of real numbers. Each pair

represents a pole; the first number in the pair is the real part of the pole

and the second is the imaginary part.

The numerator-pole transfer function is defined as

	

H z
n z

z j

k

M

k
k

k

N

k k
i

() =
− +()

=

−
−

=

−
−

∑

∏
0

1

0

1

1
1 ρ ργ

	

where nk is the coefficient of the kth power of s in the numerator, while

ργ
k and ρk

i are the real and imaginary parts of the kth pole. If a pole is

real, the imaginary part shall be specified as zero. If a pole is complex, its

conjugate shall also be present. If a pole is zero, then the term associated

with it is implemented as z, rather than (1 − z/ρ).

�Numerator-Denominator Filter

The numerator-denominator form of the Z-transform filter is called with

the syntax:

zi_nd (expr , n, d, T)

zi_nd (expr , n, d, T, τ)
zi_nd (expr , n, d, T, τ, t0)

Chapter 14 Filters

214

where n is a vector of M real numbers containing the coefficients of the

numerator and d is a vector of N real numbers containing the coefficients

of the denominator.

The numerator-denominator transfer function is defined as

	

H z
n z

d z

k

M

k
k

k

N

k
k

() = =

−
−

=

−
−

∑

∑
0

1

0

1

	

where nk is the coefficient of the kth power of s in the numerator and dk

is the coefficient of the kth power of s in the denominator.

For example, the contribution statement

V(out) <+ zi_nd(V(in), '{1}, '{0, –1});

implements the transfer function H z
z

() =
− −

1
1 1 .

Chapter 14 Filters

215

CHAPTER 15

Events
The behavior of a Verilog-A component can be controlled using events.

An event is an occurrence of a particular change in the simulation stage

or state of the component. The events have the characteristics of no time

duration and events can be triggered and detected in different parts of the

Verilog-A code evaluation.

�Event Control Statements
Event control statements provide a means of watching for a change in a

value. The events are introduced into Verilog-A procedural code by event

control statements having syntax:

@ (event-expression) procedural-statement ;

An event control statement is specified with the punctuator @, or

at sign. It is followed by the specification of an event expression in

parentheses and a single procedural statement. The parentheses around

the event-expression are required. Empty event specifications

@ () procedural-statement ;

are not allowed as well as nested event control statements.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_15

https://doi.org/10.1007/978-1-4842-6351-8_15#DOI

216

An event control statement looks for the desired change in the event-

expression. When such a change (or event) occurs, an action is taken by

executing the procedural-statement. The event detection is non-blocking,

meaning the execution of the event procedural statement is skipped unless

the event has occurred.

It is allowed to use event control statements in analog procedural

blocks, along with other procedural statements, but with some restrictions.

Event control statements cannot be used inside conditional statements

unless the conditional expression is constant. Looping statements, analog

initial blocks, and paramsets shall not contain event control statements.

Similar to analog procedural blocks and user-defined functions,

event control statements are restricted to a single procedural statement.

Multiple procedural statements are possible if encapsulated within a

single procedural block statement. However, certain restrictions apply

to a procedural statement that can be specified within an event control

statement. The analog operators (derivative and integral operators, filters,

etc.) cannot be used as part of the event control statement. An event

control statement cannot maintain the internal states required by analog

operators since it is only executed intermittently when the corresponding

event is triggered. The branch contribution statements cannot be used

inside an event control block because they could introduce discontinuities

in signal waveforms.

The event expression consists of one or more event functions,

separated by keywords "OR" or "or":

event-function or event-function OR ...

where both lowercase and uppercase keywords are allowed. The event

functions can be also separated by commas:

event-function, event-function, ...

Chapter 15 Events

217

The “OR-ing” of event functions (or putting them in a comma-

separated list) indicates that the occurrence of any one of the specified

event functions shall trigger the execution of the event procedural

statement. There are two types of event functions:

•	 Global event functions

•	 Monitored event functions

defining the corresponding global and monitored events.

�Global Event Functions
Global events are generated by a simulator at various stages of the

simulation. The user model cannot generate these events. These events

are detected by using the names of the global event functions in an event

expression. There are two global event functions predefined in Verilog-A:

initial-step and final-step functions. The syntax of these functions is

initial_step

initial_step ("analysis-identifier", ...)

final_step

final_step ("analysis-identifier", ...)

Both global event functions can be used without arguments (and

parentheses) or they can take a list of strings as optional arguments.

The strings in the argument list are compared to the name of the

analysis being run. If any string matches the name of the current analysis

name, the simulator generates an event. The initial_step function

will trigger an event on the first point and the final_step function at

the last point of that particular analysis. The final_step function will

Chapter 15 Events

218

also generate a global event upon the termination of the simulation due

to a $finish() simulation control task introduced in Chapter 16. In the

examples:

initial_step("ac", "noise", "dc")

final_step("tran")

the initial_step function triggers events at the beginning of AC,

Noise, and DC analyses, while the final_step function triggers an event at

the end of a transient analysis. The supported analysis names in Verilog-A

are given in Table 16-1. If no analysis list is specified, the initial_step

global event is active during the solution of the first point of every analysis.

The final_step global event, without an analysis list, will be active during

the solution of the last point of every analysis.

The global event functions are useful when performing actions

that should only occur at the beginning or the end of an analysis. As an

example of using the initial_step function, let us consider the module

skin_effect:1

module skin_effect (p, n);

 parameter integer lumps = 10 from (1:30];

 parameter real f0=1 from (0:inf);

 parameter real f 1=10 from (f0:inf);

 parameter real r0=1 from (0:inf);

 electrical p, n;

 inout t1, t2;

 real mult, mult2, wp, wz;

 real zeros[0:2*lumps–1], poles[0:2*lumps–1);

 integer i;

1 K. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS, The Designer’s
Guide Book Series, Springer, 2004.

Chapter 15 Events

https://doi.org/10.1007/978-1-4842-6351-8_16
https://doi.org/10.1007/978-1-4842-6351-8_16#Tab1

219

 analog begin

 @ (initial_step) begin

 mult = pow(f1/f0, 1.0/(4*lumps));

 mult2 = mult*mult;

 wz = 2*`M_PI*mult*f0;

 wp = mult2*wz;

 for(i=0; i < lumps; i=i+1) begin

 zeros[2*i] = –wz;

 zeros[2*i+1] = 0;

 poles[2*i] = –wp;

 poles[2*i+1] = 0;

 wz = mult2 * wp;

 wp = mult2 * wz;

 end

 end

 V(p,n) <+ r0*laplace_zp(l(p,n),zeros,poles);

 end

endmodule

The initial_step function in the module skin_effect triggers the

calculation of the poles and zeros used by the Laplace filter. Since the

poles and zeros never change, they only need to be calculated once at the

beginning of the analysis. As such, the initial_step function is used to

increase the efficiency of the model. Without it, the poles and zeros would

be recalculated at every time point, a substantial waste of time.

�Monitored Event Functions
Monitored events are detected using event functions monitoring changes

in signals, simulation time, or other runtime conditions. The monitored

events differ from the standard control flow constructs (if-else or case) in

Chapter 15 Events

220

the Verilog-A language in that the event generation and detection require

satisfying accuracy constraints. The accuracy constraints can be either in

value or time. Verilog-A offers three event monitoring functions: cross,

above, and timer event functions.

�Cross Function
The cross function is used for generating a monitored event to detect when

an expression crosses 0 in the specified direction. In addition, the cross

function controls the time step to accurately resolve the crossing.

The cross function can be used in one of the following syntax forms:

cross (expression)

cross (expression, direction)

cross (expression, direction , time-tol)

cross (expression, direction , time-tol , expr-tol)

cross (expression, direction , time-tol , expr-tol , enable)

where expression is the required and direction, time-tol, expr-tol, and

enable are optional arguments. The expression, direction, and enable

arguments are specified as variable expressions. The tolerances (time-tol

and expr-tol) are specified as constant expressions and shall be non-

negative. Analog operators cannot be used for the direction or enable

arguments and they should evaluate integers. If the tolerances are not

specified, then the simulator sets them. If either or both tolerances are

defined, then the direction shall also be defined.

If the direction indicator direction is set to 0 or is not specified, the

cross() function event and time step control occur on both positive

and negative crossings of the signal. If direction is +1 or -1, the event and

time step control occur on rising or falling edge transitions of the signal,

respectively, as shown in Figure 15-1. For any other values of direction, the

cross() function does not generate an event and does not act to control

the time step.

Chapter 15 Events

221

Figure 15-1.  Illustration of different specifications of the direction
argument in the cross() monitored event function

The expr-tol and time-tol arguments are absolute tolerances that

represent the maximum allowable error between the true crossing point

and when the cross event actually triggers. The event shall occur after

the threshold crossing and while the signal remains in the box defined by

actual crossing and expr-tol and time-tol, as shown in Figure 15-2.

Figure 15-2.  Timing of event relative to threshold crossing

Chapter 15 Events

222

If expr-tol is specified, time-tol shall also be specified and both

tolerances shall be satisfied at the crossing.

If enable is specified and nonzero, then cross() behaves as just

described. If the enable argument is specified and it is zero, then cross()

is inactive, meaning that it does not generate an event at threshold

crossings and does not act to control the time step. Thus, there are two

ways to disable the cross() function, either by specifying enable as 0 or

giving a value other than –1, 0, or 1 to dir.

The following example of a sample-and-hold module sah:

module sah (in, out, smpl);

 parameter real thresh = 0.0;

 parameter integer dir = +1 from [-1 : +1]

 exclude 0;

 output out;

 input in, smpl;

 electrical in, out, smpl;

 real state;

 analog begin

 @(cross(V(smpl) - thresh, dir))

 state = V(in);

 V(out) <+ transition(state, 0, 10n);

 end

endmodule

illustrates how the cross() function is used to set when the

rising signal V(smpl) passes through a threshold value defined by

parameter thresh.

Related to the cross() function is the last_crossing() function

that returns a real value representing the simulation time when a signal

expression last crossed zero.

Chapter 15 Events

223

�Last Crossing Function

The syntax of the last crossing function is

last_crossing (expression)

last_crossing (expression , direction)

The optional direction argument shall evaluate to an integer expression

+1, -1, or 0. If it is set to 0, the last_crossing() will return the most recent

time the input expression had either a rising or falling edge transition. If

the direction is +1 (-1), the last_crossing() will return the last time the

input expression had a rising (falling) edge transition.

The last_crossing() function does not control the time step to get

accurate results. It uses linear interpolation to estimate the time of the last

crossing. It cannot be used as a monitoring event function. However, it can

be used in combination with the event monitoring cross() function for

improved accuracy. Before the expression crosses 0 for the first time, the

last_crossing() function returns a negative value.

The following example measures the period of its input signal using

the cross() and last_crossing() functions:

module period(in);

 input in;

 voltage in;

 integer crossings;

 real latest, previous;

 analog begin

 @(initial_step) begin

 crossings = 0;

 previous = 0;

 end

Chapter 15 Events

224

 @(cross(V(in), +1)) begin

 crossings = crossings + 1;

 previous = latest;

 end

 latest = last_crossing(V(in), +1);

 @(final_step) begin

 if (crossings < 2)

 $strobe("Could not measure period.");

 else

 $strobe("period = %g, crossings = %d",

 latest-previous, crossings);

 end

 end

endmodule

In this way, the last_crossing() function benefits from the cross()

function causing the simulator to place an evaluation point very near the

threshold crossing. Together, they are considerably more accurate than

either apart. And if the accuracy of the above is not sufficient, one can

tighten the tolerances on the cross function.

�Above Function
The above() function is almost identical to the cross() function, except

that it also triggers during initialization or DC analysis. It generates a

monitored event to detect threshold crossings when the expression crosses

0 from below. As with the cross() function, the above() function controls

the time step to accurately resolve the crossing during transient analysis.

Chapter 15 Events

225

The above function is used in one of the syntax forms:

above (expression)

above (expression , time-tol)

above (expression , time-tol , expr-tol)

above (expression , time-tol , expr-tol , enable)

where expression is a required argument. The tolerances (time-tol and

expr-tol) are optional arguments, but if specified shall be non-negative. All

arguments are real expressions. If the tolerances are not specified, then the

simulator sets them.

The above() function can generate an event during initialization. If

the expression is positive after the initial condition analysis that precedes

a transient analysis, the above() function shall generate an event. In

contrast, the cross() function can only generate an event after the

simulation time has advanced from zero. The cross() function will not

generate events for non-transient analyses, such as AC, DC, or Noise

analyses, but the above() function can. During a DC sweep, the above()

function shall also generate an event when the expression crosses zero

from below. However, the step size of the DC sweep is not controlled to

accurately resolve the crossing.

If enable is specified and nonzero, then the above() function behaves

as just described. If the enable argument is specified and it is zero, then

above() is inactive, meaning that it does not generate an event at threshold

crossings and does not act to control the time step.

The above() function maintains its internal state and has the same

restrictions on its use as the cross() function.

Chapter 15 Events

226

�Timer Function
The timer monitored event function is used to detect specific points in

time. It can take one of the syntax forms:

timer (start-time)

timer (start-time , period)

timer (start-time , period , time-tol)

timer (start-time , period , time-tol , enable)

where start-time is the required and period, time-tol, and enable

are optional arguments. The start-time and period arguments shall be

expressions. The tolerance (time-tol) is a constant expression and shall be

non-negative.

The timer() function schedules an event that occurs at an absolute

time (start-time). If the period is specified and is greater than zero, the

timer function schedules subsequent events at multiples of the period

from the start-time as shown in Figure 15-3.

Figure 15-3.  The schematic representation of events triggered by the
timer() monitoring event function

If the period expression evaluates to a value less than or equal to 0.0,

the timer shall trigger only once at the specified start-time. The simulator

places a time point within the time-tol of an event. If time-tol is not

specified, the default time point is at, or just beyond, the time of the event.

Chapter 15 Events

227

If the start-time or period expressions change value during the evaluation

of the analog block, the next event will be scheduled based on the latest

value of the start-time and period.

If enable is specified and nonzero, then timer() behaves as just

described. If the enable argument is specified and it is zero, then timer() is

inactive, meaning that it does not generate events as long as enable is zero.

However, it will start generating events once enable returns to be nonzero

as if they had never been disabled.

A pseudo-random bitstream generator:

module bitStream (out);

 output out;

 electrical out;

 parameter period = 1.0;

 integer x;

 analog begin

 @(timer(0, period))

 x = $random + 0.5;

 V(out) <+ transition(x, 0.0, period/100.0);

 end

endmodule

is an example of how the timer function can be used.

Chapter 15 Events

229

CHAPTER 16

Runtime Support
This chapter introduces system functions for querying on elaboration

status and simulation environments as well as system functions providing

runtime support to the numerical solver and control of the simulation.

�Elaboration Queries
Module ports need not be connected and module parameters may not be

overridden when the module is instantiated. In some cases, the module

evaluation could depend on the information of actual port connectivities

and the status of the parameter override. Verilog-A provides system

functions that can be used to query that information.

�Port Connections
The $port_connected() function can be used to determine whether a

connection was specified for a port. The $port_connected() function

takes one argument, which must be a port identifier. The return value shall

be 1 if the port was connected to a net (by order or by name) when the

module was instantiated, and 0 otherwise.

Note  The port may be connected to a net that has no other
connections, but $port_connected() shall still return 1.

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_16

https://doi.org/10.1007/978-1-4842-6351-8_16#DOI

230

In the following example:

if ($port_connected(vout))

 V(vout) <+ transition(q, tdel, trise, tfall);

else

 V(vout) <+ 0.0;

the $port_connected() function is used to skip the transition filter for

unconnected port vout.

�Parameter Overrides
In some cases, it is important to be able to determine whether a parameter

value was obtained from the default value in its declaration statement

or if that value was overridden. In such a case, the $param_given()

function can be used to detect parameter override. The system function

$param_given() takes a single argument, which must be a parameter

identifier. The return value shall be 1 if the parameter was overridden,

either by a defparam statement or by a module instance parameter value

assignment, and 0 otherwise.

The following example sets the variable temp to represent the device

temperature:

if ($param_given(tdevice))

 temp = tdevice + `P_CELSIUS0;

else

 temp = $temperature;

Note that $temperature is not a constant expression, so it cannot be

used as the default value of the parameter tdevice.

Chapter 16 Runtime Support

231

�Simulation Queries
Verilog-A provides system functions for querying the current analysis

type and simulation kernel parameters or for dynamically probing output

variables within sibling instances during simulation.

�Analysis Type
The analysis() query function with the syntax

analysis (analysis-name, ...)

takes one or more string arguments analysis-name and returns 1 if any

of the arguments match the current analysis type. Otherwise, it returns 0.

There is no fixed set of analysis types. Each simulator can support

its own set. However, simulators shall use the names listed in Table 16-1

to represent analyses that are similar to those provided by SPICE-like

simulators. Any unsupported type names are assumed to not be a match.

Chapter 16 Runtime Support

232

Table 16-1.  Analysis types

Analysis Name Analysis Description

"ac" Small-signal AC analysis

"dc" Operating point or DC sweep analysis

"noise" Noise analysis

"tran" Transient analysis

"ic" The initial condition analysis which precedes a transient analysis

"static" Any equilibrium point calculation, including a DC analysis as well

as those that precede another analysis, such as the DC analysis

which precedes an AC or noise analysis, or the IC analysis which

precedes a transient analysis

"nodeset" The phase during an equilibrium point calculation where

nodesets are forced

Verilog-A supports a single-point DC analysis and also a multipoint DC

sweep analysis in which multiple DC points are computed over a sweep of

parameter values. During a DC sweep analysis, the values of variables after

the operating point analysis for one DC point shall be used as the starting

values for those variables for the next DC point. However, variable values

shall not be carried over between two independent DC sweep analyses

(from the last DC point of one analysis to the first DC point of the next

analysis). Variables shall be re-initialized to zero at the start of each new

analysis.

An operating point analysis is done for each DC point in the sweep.

A single-point DC analysis is the same as an operating point analysis.

The analysis("dc") and analysis("static") query function calls shall

return true for a single-point DC analysis and also for every DC point in a

sweep analysis. The analysis("nodeset") function call shall return true

only during the phase of an operating point analysis in which nodeset

Chapter 16 Runtime Support

233

values are enforced; that phase may occur in a single-point DC analysis

or the first point of a multipoint DC sweep analysis but does not occur for

subsequent points of a DC sweep.

Note  The constant expressions in the indirect contribution equation
shall not include the analysis() function with an argument that can
result in different return values during a single analysis, such as the
“ic” or “nodeset” arguments.

Using the analysis() function, it is possible to have a module behave

differently depending on which analysis is being run. In the following

example:

if (analysis("ic"))

 V(cap) <+ initial_value;

else

 I(cap) <+ ddt(C*V(cap));

initial values of the capacitor voltage are specified using the

analysis() function and switch branches.

�Kernel Parameters
Verilog-A adds a set of system functions called the analog kernel

parameter functions. These functions return information about the current

environment parameters as a real value.

$temperature does not take any input arguments and returns the

circuit’s ambient temperature in Kelvin units.

$vt can optionally have a temperature (in Kelvin units) as an input

argument and returns the thermal voltage (kT/q) at the given temperature.

$vt without the optional input temperature argument returns the thermal

voltage using $temperature.

Chapter 16 Runtime Support

234

$abstime returns the absolute time that is a real value number

representing time in seconds.

$simparam function using a syntax

$simparam (param-name)

$simparam (param-name, expression)

queries the simulator for a real-valued simulation parameter named

param_name. The argument param-name is a string value, either a string

literal, string parameter, or a string variable. If param-name is known,

its value is returned. If param-name is not known, and the optional

expression is not supplied, then an error is generated. If the optional

expression is supplied, its value is returned if param_name is not known

and no error is generated. $simparam() shall always return a real value;

simulation parameters that have integer values shall be coerced to real.

There is no fixed list of simulation parameters. However, simulators shall

accept the strings in Table 16-2 to access commonly known simulation

parameters, if they support the parameter. Simulators can also accept

other strings to access the same parameters.

Table 16-2.  Simulation real and integer parameter names

String Units Description

gdev 1/Ohms Additional conductance to be added to

nonlinear branches for conductance

homotopy convergence algorithm

gmin 1/Ohms Minimum conductance placed in

parallel with nonlinear branches

imax Amps Branch current threshold above which

the constitutive relation of a nonlinear

branch should be linearized
(continued)

Chapter 16 Runtime Support

235

String Units Description

imelt Amps Branch current threshold indicating

device failure

iteration Solver iteration number

scale Scale factor for device instance

geometry parameters

shrink Optical linear shrink factor

simulatorSubversion Simulator subversion

simulatorVersion Simulator version

sourceScalefactor Multiplicative factor for independent

sources for source stepping homotopy

convergence algorithm

tnom Celsius Default value of temperature at which

model parameters were extracted

Table 16-2.  (continued)

The values returned by simulatorVersion and simulatorSubversion

are at the vendor’s discretion, but the values shall be monotonically

increasing for new versions or releases of the simulator, to facilitate

checking that the simulator supports features that were added in a certain

version of subversion.

In this first example, the variable gmin is set to the simulator’s

parameter named gmin, if it exists; otherwise, an error is generated.

gmin = $simparam("gmin");

In this second example, the variable sourcescale is set to the

simulator’s parameter sourceScaleFactor, if it exists; otherwise, the

value 1.0 is returned.

sourcescale = $simparam("sourceScaleFactor", 1.0);

Chapter 16 Runtime Support

236

$simparam$str is similar to $simparam. However, it is used for

returning string-valued simulation parameters. Table 16-3 gives a

list of simulation string parameter names that shall be supported by

$simparam$str.

Table 16-3.  Simulation string parameter names

Parameter Name Description

analysis_name The name of the current analysis, e.g., tran1, mydc

analysis_type The type of the current analysis, e.g., dc, tran, ac

cwd The current working directory in which the simulator

was started

module The name of the module from which $simparam$str

is called

instance The hierarchical name of the instance from which

$simparam$str is called

path The hierarchical path to the $simparam$str function

�Dynamic Probing
Verilog-A supports a system function that allows the probing of values

within a sibling instance during simulation.

$simprobe(inst-name, param-name)

$simprobe(inst-name, param-name , expression)

$simprobe() queries the simulator for an output variable named

param-name in a sibling instance called inst-name. The arguments

inst-name and param-name are string values, either a string literal, string

parameter, or a string variable.

Chapter 16 Runtime Support

237

To resolve the value, the simulator will look for an instance called

inst-name in the parent of the current instance, that is, a sibling of the

instance containing the $simprobe() expression. Once the instance is

resolved, it will then query that instance for an output variable called

param_name. If either the inst-name or param-name cannot be resolved,

and the optional expression is not supplied, then an error shall be

generated. If the optional expression is supplied, its value will be returned

instead of raising an error. The intended use of this function is to allow

dynamic monitoring of instance quantities.

module monitor;

 parameter string inst = "default";

 parameter string quant = "default";

 parameter real threshold = 0.0;

 real probe;

 analog begin

 probe = $simprobe(inst,quant);

 if (probe > threshold) begin

 $strobe("ERROR: Time %e:

 %s#%s (%g) > threshold (%e)",

 $abstime, inst, quant,

 probe, threshold);

 $finish;

 end

 end

endmodule

The module monitor will probe the quant in the instance inst. If its

value becomes larger than the threshold, then the simulation will raise an

error and stop.

module top(d,g,s);

 electrical d,g,s;

 inout d,g,s;

Chapter 16 Runtime Support

238

 electrical gnd;

 ground gnd;

 SPICE_pmos#(.w(4u),.l(0.1u),.ad(4p),.as(4p),

 .pd(10u),.ps(10u))

 mp(d,g,s,s);

 SPICE_nmos #(.w(2u),.l(0.1u),.ad(2p),.as(2p),

 .pd(6u),.ps(6u)) mn(d,g,gnd,gnd);

 monitor #(.inst("mn"), .quant("id"),

 .threshold(4.0e-3)) amonitor();

endmodule

Here, the monitor instance amonitor will keep track of the dynamic

quantity id in the mosfet instance mn. If the value of id goes above the

specified threshold of 4.0e-3 amps, then the instance amonitor will

generate the error message and stop the simulation.

�Solver Support
Verilog-A provides tasks and functions to support the nonlinear solver

during simulation.

�Announcing Discontinuity
The $discontinuity task is used to give hints to the simulator about the

behavior of the module so the simulator can control its simulation algorithms

to get accurate results in exceptional situations. This task does not directly

specify the behavior of the module. $discontinuity shall be executed

whenever the signal behavior changes discontinuously. The general form is

$discontinuity ;

$discontinuity (constant-expression) ;

Chapter 16 Runtime Support

239

where constant-expression indicates the degree of the discontinuity

if the argument to $discontinuity is non-negative, that is,

$discontinuity(i) implies a discontinuity in the ith derivative of

the constitutive equation with respect to either a signal value or time

where i must be a non-negative integer. Hence, $discontinuity(0)

indicates a discontinuity in the equation, $discontinuity(1) indicates a

discontinuity in its slope, etc. A special form of the $discontinuity task,

$discontinuity(-1), is used with the $limit() function so -1 is also a

valid argument of $discontinuity. Because discontinuous behavior can

cause convergence problems, discontinuity shall be avoided whenever

possible.

The filters (transition(), slew(), laplace(), etc.) can be used to

smooth discontinuous behavior. However, in some cases, it is not possible

to implement the desired functionality using these filters. In those cases,

the $discontinuity task shall be executed when the signal behavior

changes abruptly. Discontinuity created by switch branches and filters,

such as transition() and slew(), does not need to be announced. The

following example uses the discontinuity task to model a relay:

module relay (c1, c2, pin, nin) ;

 inout c1, c2;

 input pin, nin ;

 electrical c1, c2, pin, nin;

 parameter real r=1;

 analog begin

 @(cross(V(pin,nin))) $discontinuity;

 if (V(pin,nin) >= 0)

 I(c1,c2) <+ V(c1,c2)/r;

 else

 I(c1,c2) <+ 0 ;

 end

endmodule

Chapter 16 Runtime Support

240

In this example, cross() controls the time step so the time when

the relay changes position is accurately resolved. It also triggers the

$discontinuity task, which causes the simulator to react properly to the

discontinuity. This would have been handled automatically if the type of

the branch (c1,c2) had been switched between voltage and current.

Another example is a source that generates a triangular wave. In this

case, neither the model nor the waveforms generated by the model are

discontinuous. Rather, the waveform generated is piecewise linear with a

discontinuous slope.

module triangle(out);

 output out;

 voltage out;

 parameter real period = 10.0, amplitude = 1.0;

 integer slope; real offset;

 analog begin

 @(timer(0, period)) begin

 slope = +1;

 offset = $abstime ;

 $discontinuity;

 end

 @(timer(period/2, period)) begin

 slope = -1 ;

 offset = $abstime;

 $discontinuity;

 end

 V(out) <+ amplitude*slope*

 (4*($abstime - offset)/period - 1);

 end

endmodule

Chapter 16 Runtime Support

241

If the simulator is aware of the abrupt change in slope, it can adapt

to eliminate problems resulting from the discontinuous slope (typically

changing to a first-order integration method).

�Bounding Time Step
The $bound_step() task puts a bound on the next time step. It does

not specify exactly what the next time step is, but it bounds how far the

next time point can be from the present time point. The task takes the

maximum time step as an argument. It does not return a value. The

general form is

$bound_step (expression);

where expression is a required argument and represents the maximum

time step the simulator can advance. The expression argument shall be

non-negative. If the value is less than the simulator’s minimum allowable

time step, the simulator’s minimum time step shall be used instead. Refer

to the simulator’s documentation for further information regarding limits

on step size for time-dependent analysis.

For a given time step, the simulator shall ensure that the next time step

taken is no larger than the smallest $bound_step() argument currently

active. The $bound_step() statement shall be ignored during a non-time-

domain analysis.

The following example implements a sinusoidal voltage source and

uses the $bound_step() task to assure the simulator faithfully follows the

output signal:

module vsine(out);

 output out;

 voltage out;

 parameter real freq=1.0, ampl=1.0, offset=0.0;

Chapter 16 Runtime Support

242

 analog begin

 V(out) <+ ampl*sin(2.0*�M_PI*freq*$abstime)

 + offset;

 $bound_step(0.05/freq);

 end

endmodule

It is forcing 20 points per cycle.

�Limiting Iteration Steps
The $limit() function provides a method to indicate nonlinearities to

the simulator and, if necessary, recommends a function to use to limit the

change of its output from iteration to iteration. The general form is

$limit(access-function)

$limit(access-function ,analog-function-identifier)

$limit(access-function ,analog-function-identifier ,arg-list)

When the simulator has converged, the return value of the $limit()

function is the value of the access-function, within appropriate tolerances.

For some analysis types or solution methods, such as damped Newton-

Raphson, the return value of the $limit() function may depend on the

value of the access function and the internal state of the function. In all

cases, the simulator is responsible for determining if limiting should be

applied and what the return value is on a given iteration.

When more than one argument is supplied to the $limit() function,

the second argument recommends a function to use to compute the

return value. When the second argument is a string, it refers to a built-

in function of the simulator. The two most common such functions

are pnjlim and fetlim, which are found in SPICE and many SPICE-like

Chapter 16 Runtime Support

243

simulators. Simulators may support other built-in functions and need not

support pnjlim or fetlim. If the string refers to an unknown or unsupported

function, the simulator is responsible for determining the appropriate

limiting algorithm, just as if no string had been supplied.

pnjlim is intended for limiting arguments to exponentials, and the

limexp() function may be implemented through a function derived from

pnjlim. Two additional arguments to the $limit() function are required

when the second argument to the limit function is the string "pnjlim":

the third argument to $limit() indicates a step size vte and the fourth

argument is a critical voltage vcrit. The step size vte is usually the product

of the thermal voltage $vt and the emission coefficient of the junction.

fetlim is intended for limiting the potential across the oxide of a MOS

transistor. One additional argument to the $limit() function is required

when the second argument to the limit function is the string "fetlim": the

third argument to $limit() is generally the threshold voltage of the MOS

transistor.

In the case that none of the built-in functions of the simulator is

appropriate for limiting the potential (or flow) used in a nonlinear

equation, the second argument of the $limit() function may be an

identifier referring to a user-defined function. In this case, if the simulator

determines that limiting is needed to improve convergence, it will pass

the two quantities as arguments to the user-defined function. The first

argument of the user-defined function shall be the value of the access

function reference for the current iteration. The second argument shall

be the appropriate internal state; generally, this is the value that was

returned by the $limit() function on the previous iteration. If more than

two arguments are given to the $limit() function, then the third and

subsequent arguments are passed as the third and subsequent arguments

of the user-defined function. The arguments of the user-defined function

shall all be declared input.

Chapter 16 Runtime Support

244

In order to prevent convergence when the output of the $limit()

function is not sufficiently close to the value of the access function

reference, the user-defined function shall call $discontinuity(-1) when

its return value is not sufficiently close to the value of its first argument.

The following module defines a diode and includes an analog function

that mimics the behavior of pnjlim in SPICE. Though limexp() could have

been used for the exponential in the current, using $limit() allows the

same voltage to be used in the charge calculation.

module diode(a,c);

 inout a, c;

 electrical a, c;

 parameter real IS = 1.0e-14;

 parameter real CJO = 0.0;

 analog function real spicepnjlim;

 input vnew, vold, vt, vcrit;

 real vnew, vold, vt, vcrit, vlimit, arg;

 begin

 vlimit=vnew;

 if ((vnew > vcrit) &&

 (abs(vnew-vold) > (vt+vt)))

 begin

 if (vold > 0) begin

 arg = 1 + (vnew-vold) / vt;

 if (arg > 0)

 vlimit = vold + vt * ln(arg);

 else

 vlimit = vcrit;

 end

 else

Chapter 16 Runtime Support

245

 vlimit = vt * ln(vnew/vt);

 $discontinuity(-1);

 end

 spicepnjlim = vlimit;

 end

 endfunction

 real vdio, idio, qdio, vcrit;

 analog begin

 vcrit=0.7;

 vdio = $limit(V(a,c), spicepnjlim, $vt, vcrit);

 idio = IS * (exp(vdio/$vt) - 1);

 I(a,c) <+ idio;

 if (vdio < 0.5) begin

 qdio = 0.5 * CJO * (1-sqrt(1-V(a,c)));

 end else begin

 qdio = CJO* (2.0*(1.0-sqrt(0.5)) +

 sqrt(2.0)/2.0*(vdio*vdio+vdio-3.0/4.0));

 end

 I(a,c) <+ ddt(qdio);

 end

endmodule

The limexp() function is an analog operator whose internal state

contains information about the argument on previous iterations. The

general form is

limexp(expr)

It returns a real value which is the exponential of its single real

argument, and its apparent behavior is not distinguishable from exp().

However, limexp() internally limits the change of its output from iteration

to iteration in order to improve convergence. On any iteration where the

Chapter 16 Runtime Support

246

change in the output of the limexp() function is bounded, the simulator

is prevented from terminating the iteration. Thus, the simulator can only

converge when the output of limexp() equals the exponential of the input.

�Simulation Control
Verilog-A provides system functions for announcing severity and

terminating simulation.

�Announcing Severity
The fatal system severity task

$fatal ;

$fatal (finish_number) ;

$fatal (finish_number, message-argument, ...) ;

The severity task $fatal shall generate a runtime fatal assertion error,

which terminates the simulation with an error code. $fatal terminates the

simulation without checking whether the iteration would be rejected. If

$fatal is executed within an analog initial block, then after outputting the

message, the initialization may be aborted, and in no case shall simulation

proceed past initialization. Some of the system severity task calls may not

be executed either.

Calling $fatal results in an implicit call to $finish that terminates the

simulation. The first argument, finish-number, passed to $fatal shall be

consistent with the corresponding argument to the $finish system task,

which sets the level of diagnostic information reported by the tool. The

finish-number may be used in an implementation-specific manner.

Non-fatal system severity tasks

severity-task ;

severity-task ();

Chapter 16 Runtime Support

247

severity-task (message-argument, ...) ;

where the severity-task is one of the system tasks:

$error $warning $info

The $error shall be a runtime error. $warning shall be a runtime

warning, which can be suppressed in a tool-specific manner. $info shall

indicate that the assertion failure carries no specific severity.

Non-fatal system severity tasks called during a rejected iteration shall

have no effect. If $error is executed within an analog initial block,

then the message is issued and the initialization continues. However,

the simulation shall not proceed past initialization. The other two tasks,

$warning and $info, only output their text message but do not affect the

rest of the initialization and the simulation.

For simulation tools, these tasks shall also report the simulation

runtime at which the severity system task is called. If any of these tasks is

called during a DC sweep, the simulator shall report the current value of

the swept variable in place of the simulation runtime. If the task is called

from an analog initial block, the simulator shall report that the call was

made during initialization.

Each of these system tasks can also include additional user-specified

information using the same format as the $display function.

�Terminating Simulation
Verilog-A provides two simulation control tasks to terminate simulation,

$finish and $stop. The syntax for the $finish task is:

$finish ;

$finish (level);

If $finish is called during an accepted iteration, then the simulator

shall exit after the current solution is complete. $finish called during

a rejected iteration shall have no effect. As a result of the simulation

Chapter 16 Runtime Support

248

terminating due to a $finish task, it is expected that all appropriate

final_step blocks are also triggered. If $finish is called from an analog

initial block, the simulator shall exit without performing the simulation.

If $finish is called from within an analog initial block, the simulator

shall report that the call was made during initialization in place of the

simulation time. If $finish is called from the analog context during a DC

sweep (but outside of an analog initial block), the simulator shall report

the current value of the swept variable in place of the simulation time.

The syntax for the $stop task is:

$stop ;

$stop (level);

A call to $stop during an accepted iteration causes simulation to be

suspended at a converged time point. The $stop task shall not be used

within an analog initial block. The mechanism for resuming simulation

is left to the implementation.

The $finish and $stop tasks take an optional expression argument,

which determines what type of diagnostic message is printed. The amount

of diagnostic message output increases with the value of n as shown in

Table 16-4. The level value 1 is the default if no argument, or an argument

different than 0, 1, or 2 is supplied.

Table 16-4.  Diagnostic messages

Level Message

0 Prints nothing

1 Prints simulation time and location (default)

2 Prints simulation time, location, and statistics about the memory and

CPU time used in the simulation

Chapter 16 Runtime Support

249

CHAPTER 17

Input and Output
In this chapter, we look into Verilog-A functions and tasks for the display of

data on the console or writing to and reading data from files. Even though

your simulator will let you monitor the value of signals and variables in

your design, it is also nice to be able to output certain information beyond

the simulator reporting capabilities. This is useful when the results of a

simulation are large and need to be stored in a file or when data is to be

read from an external file and driven into a model formulation.

�File Management
Verilog-A provides various tasks and functions to deal with files. It includes

opening files, positioning files for reading and writing, detecting error

status and end of the files, and finally closing files.

�Opening Files
The files are opened and closed using $fopen and $fclose system

functions following the syntax:

mcd-or-fd = $fopen(file-name);

mcd-or-fd = $fopen(file-name , type);

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_17

https://doi.org/10.1007/978-1-4842-6351-8_17#DOI

250

The $fopen function opens the file specified with the file-name

argument. The file-name argument shall be a string literal, string data type,

or an integer number containing a character string that names the file to

be opened. The optional type argument shall be a string expression that

evaluates one of the strings given in Table 17-1.

Table 17-1.  The values of the type file descriptors

Type Argument Description

"r" or "rb" Open for reading

"w" or "wb" Truncate to zero length or create for writing

"a" or "ab" Append; open for writing at end-of-file, or create for

writing

"r+", "r+b", or "rb+" Open for update (reading and writing)

"w+", "w+b", or "wb+" Truncate or create for update

"a+", "a+b", or "ab+" Append; open or create for update at end-of-file

The type argument indicates how the file should be opened. If type is

omitted, the file is opened for writing, and a multichannel descriptor mcd

is returned. If type is supplied, the file is opened as specified by the value of

the type string. The "b" in the type strings exists to distinguish binary files

from text files. Many operating systems (such as Unix) make no distinction

between binary and text files, and on these systems, the "b" is ignored.

However, some systems (such as machines running Windows) perform

data mappings on certain binary values written to and read from files that

are opened for text access.

Chapter 17 Input and Output

251

Note  Verilog-A supports multiple analyses during the same
simulation process. If a file is opened in a write mode in the first
analysis and reopened in that write mode in the following analysis,
then content written from the following analyses shall be appended
to the content written during the previous analyses.

When called, the $fopen task returns a 32-bit integer mcd-or-fd which

is either a multichannel descriptor, mcd, or a file descriptor, fd, determined

by the absence or presence of the type argument in the $fopen function

call. If a file cannot be opened (either the file does not exist and the type

specified is "r", "rb", "r+", "r+b", or "rb+", or the permissions do not

allow the file to be opened at that path), zero is returned for the mcd-or-fd.

Applications can call the $ferror function to determine the cause of the

most recent error.

In the multichannel descriptor mcd, a single bit is set indicating which

file is opened. The least significant bit (bit 0) of mcd always refers to the

standard output. The output is directed to two or more files opened with

multichannel descriptors by bitwise OR-ing together their multichannel

descriptors and writing to the resulting value. The most significant bit (bit

31) of a multichannel descriptor is reserved and shall always be cleared,

limiting an implementation to at most 31 files opened for output via

multichannel descriptors.

Note  The number of simultaneous input and output channels that
can be opened at any one time is dependent on the operating system.

Chapter 17 Input and Output

252

The most significant bit (bit 31) of fd is reserved and shall always be

set; this allows implementations of the file input and output functions to

determine how the file was opened. The remaining bits hold a small number

indicating what file is opened. Three file descriptors are pre-opened; they

are STDIN, STDOUT, and STDERR, which have the values 32'h8000_0000,

32'h8000_0001, and 32'h8000_0002, respectively. STDIN is pre-opened

for reading, and STDOUT and STDERR are pre-opened for append. Unlike

multichannel descriptors, file descriptors cannot be combined via bitwise

OR to direct output to multiple files. Instead, files are opened via file

descriptor for input, output, and both input and output, as well as for

append operations, based on the value of type, according to Table 17-1.

�File Positioning
The three system functions can be used to get files positioned for data

input and output.

The function $ftell() used with the syntax:

offset = $ftell (fd);

tells you where you are in the file fd by returning the byte number of

the next byte which will be read or written in a file. The offset number is

always relative to the beginning of the file. If an error occurs, –1 is returned.

The $fseek() function used the syntax:

code = $fseek (fd , offset , operation);

repositions the file to a different location. The next byte to be read or

written will be at the new position. The $fseek() function requires three

arguments: the fd file descriptor; an offset number, which can be a positive

or negative integer value; and an operation code operation. The code

operation must be 0, 1, or 2, where

Chapter 17 Input and Output

253

•	 0 indicates that the file position should be set to the

offset value.

•	 1 indicates that the file position should be set to the

current position plus the offset.

•	 2 indicates that the file position should be set to the

end-of-file plus the offset.

It is legal to set the file position to beyond the end of the file. The next

write to the file will extend the file size to the new byte number, filling the

gap with zeros. A file that is opened in append mode cannot be written

to at a location before the end-of-file. If $fseek() sets the file position

to another location, the location can be read, but the next write will

automatically reposition the file position back to the current end-of-file.

The function $rewind() with the syntax

code = $rewind (fd);

repositions the file to the beginning of the file. It has the same effect as

code = $fseek (fd ,0 ,0);

If an error occurs repositioning the file, then the code is set to –1.

Otherwise, the code is set to 0. Applications can call $ferror to determine

the cause of the most recent error.

If a file is being read from during an iterative solve and if that iteration

is rejected, then the file pointer is reset to the file position that it pointed

to before the iterative solve started. The features of the underlying

implementation of file input-output (I/O) on the host system may prevent

the file position from being reset after an iteration is rejected. In this case, a

fatal error will be reported.

Chapter 17 Input and Output

254

�Error Status
Should any error be detected by one of the file input and output routines,

an error code is returned. Often, this is sufficient for normal operation

(i.e., if the opening of an optional configuration file fails, the application

typically would simply continue using default values). However,

sometimes it is useful to obtain more information about the error for

correct application operation. In this case, the $ferror function can be

used. It has a syntax:

errno = $ferror (fd, str);

The arguments supplied to the $ferror() function are a file fd and

string str which should be at least 640 bits wide. The description of the type

of error encountered by the most recent file I/O operation is written into

str. The integral value of the error code is returned in errno. If the most

recent operation did not result in an error, then the value returned shall be

zero, and the string variable str shall be empty.

�Detecting End-of-File
The function $feof() with the syntax

code = $feof (fd);

is used to detect end-of-file. It returns a nonzero value when end-of-

file has previously been detected reading the input file fd. It returns zero

otherwise.

Chapter 17 Input and Output

255

�Flushing Output
The system task $fflush() with the syntax

$fflush (mcd);

$fflush (fd);

$fflush ();

writes any buffered output to the file(s) specified by mcd or fd, or if

$fflush is invoked with no arguments, to all open files.

�Closing Files
The files are closed using $fclose system tasks following the syntax:

$fclose(mcd-or-fd);

The $fclose system task closes the file specified by fd or closes the

file(s) specified by the multichannel descriptor mcd. No further output

to or input from any file descriptor(s) closed by $fclose is allowed. The

$fopen function shall reuse channels that have been closed.

�Reading Data
Verilog-A provides the ability to read values from files and load them into

variables. Files opened using file descriptors (fd) can be read-only if they

were opened with either the r or r+ type values.

�Reading a Line from a File
One line can be read from a file using the $fgets system function. It is

based on the C language standard library function fgets. The syntax is

number-of-characters-read = $fgets (str, fd)

Chapter 17 Input and Output

256

where fd is a 32-bit integer file descriptor and str is the name of the

string variable.

The system function $fgets reads characters from the file specified by

fd into the string variable str until it is filled, the newline character is read,

or the end-of-file is reached, whichever comes first. The $fgets function

returns the number of characters read. If an error occurs reading from the

file, then the return value is set to zero. Applications can call $ferror() to

determine the cause of the most recent error.

�Reading Formatted Data
The $fscanf and $sscanf system functions can be used to format data as it

is read from a file. The syntax is

number-of-args-assigned = $fscanf (fd , format , arg , ...)

number-of-args-assigned = $sscanf (str , format , arg , ...)

$fscanf reads from the files specified by the file descriptor fd, while

$sscanf reads from the string str. The string str shall be a string variable,

string parameter, or a string literal. Both functions read characters,

interpret them according to a specified format, and store the results. Both

$fscanf and $sscanf system functions expect as arguments a control

string, format, and a set of arguments specifying where to place the results.

The arguments must be variables of the appropriate data type for

the format code. If there are insufficient arguments for the format,

the behavior is undefined. If the format is exhausted while arguments

remain, the excess arguments are ignored. If an argument is too small to

hold the converted input, then, in general, the least significant bits are

transferred. Arguments of any length that is supported by Verilog-A can be

used. However, if the destination is real, then the value +inf (or -inf) is

transferred.

Chapter 17 Input and Output

257

The format is a string data type or a string expression. The string

contains conversion specifications, which direct the conversion of input

into the arguments. The control string can contain the following:

•	 Whitespace characters (blanks, tabs, newlines, or

formfeeds) that cause input to be read up to the next

non-whitespace character. For $sscanf, null characters

shall also be considered whitespace.

•	 An ordinary character (not %) that must match the next

character of the input stream.

•	 Conversion specifications consist of the character %, an

optional assignment suppression character *, a decimal

digit string that specifies an optional numerical

maximum field width, and a conversion code.

A conversion specification directs the conversion of the next input

field. The result is placed in the variable specified in the corresponding

argument unless assignment suppression was indicated by the character *.

In this case, no argument shall be supplied. For example:

n = $fscanf(fd, "%t %d", r, i);

n = $fscanf(fd, "%t,%d", r, i);

n = $fscanf(fd, "%t*%d", r, i);

demonstrate format strings for reading values separated by a

whitespace, comma, and any character.

The suppression of assignment provides a way of describing an input

field that is to be skipped. An input field is defined as a string of nonspace

characters; it extends to the next inappropriate character or until the

maximum field width, if one is specified, is exhausted. For all descriptors

except the character c, whitespace leading an input field is ignored.

Table 17-2 describes the input field characters.

Chapter 17 Input and Output

258

Table 17-2.  Input field characters

Descriptor Description

% A single % is expected in the input at this point; no

assignment is done

d Matches an optionally signed decimal number, consisting of

the optional sign from the set + or –, followed by a sequence

of characters from the set 0,1,2,3,4,5,6,7,8,9, and _

f, e, or g Matches a floating-point number. The format of a floating-

point number is an optional sign (either + or –), followed by

a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally

containing a decimal point character (.), followed by an

optional exponent part including e or E, followed by an

optional sign, followed by a string of digits from the set

0,1,2,3,4,5,6,7,8,9

r Matches a real number in engineering notation, using the

scale factors defined in

s Matches a string, which is a sequence of non-whitespace

characters

m Returns the current hierarchical path as a string. Do not read

data from the input file or str argument

If an invalid conversion character follows the %, the results of the

operation are implementation dependent. If the end-of-file is encountered

during input, conversion is terminated. If the end-of-file occurs before

any characters matching the current directive have been read (other

than leading whitespace, where permitted), the execution of the current

directive terminates with an input failure. Otherwise, unless the execution

of the current directive is terminated with a matching failure, the execution

of the following directive (if any) is terminated with an input failure.

Chapter 17 Input and Output

259

If conversion terminates on a conflicting input character, the offending

input character is left unread in the input stream. Trailing whitespace

(including newline characters) is left unread unless matched by a directive.

The success of literal matches and suppressed assignments is not directly

determinable.

$fscanf and $fscanf return the number of successfully matched and

assigned input arguments. This number can be 0 in the event of an early

matching failure between an input character and the control string. If the

input ends before the first matching failure or conversion, the end-of-file is

returned. Applications can call $ferror to determine the cause of the most

recent error.

�Displaying and Writing Data
Verilog-A provides system tasks for displaying and writing data as text

output, file output, and writing data to strings.

�Text Output
Text output system tasks are used to print strings and variable values to

the console or transcript of a simulation tool. The text output system tasks

have a syntax:

text-output-task ();

text-output-task (arg1, ...);

where the text-output-task is one of the system tasks:

$display $write $strobe $monitor $debug

Text output system tasks display a list of arguments to the console or

transcript of a simulation tool. The arguments are displayed in the same

order as they appear in the argument list. Each argument can be a quoted

Chapter 17 Input and Output

260

string literal, an expression that returns a value, or a null argument. A null

argument is characterized by two adjacent commas (,,) in the argument

list. Any null argument produces a single space character in the display

output. If the display system task is invoked without arguments, it simply

prints a newline character.

All the text output tasks, except $debug, shall not display output unless

an iteration has been accepted. The $debug task provides the capability

to display simulation data while the analog simulator is solving the

equations. The $debug system task outputs its arguments for each iteration

of the analog solver even if the evaluation occurred during an iteration

that was rejected. The only difference between $display and $write is

that $display appends a newline after printing the arguments and $write

does not. $strobe is the same as $display, but printing occurs after the

simulator has converged on a solution for all nodes.

The $monitor task provides the ability to display the values of any

variables or expressions specified as arguments to the task only if their

values change. When a $monitor task is invoked with one or more

arguments, the simulator sets up a mechanism whereby for each accepted

iteration step, if the variable or an expression in the argument list changes

value compared with the last accepted step, except for the $abstime or

$realtime system functions, the entire argument list is displayed at the

end of the time step as if reported by the $strobe task. If two or more

arguments change the value at the same time, only one display is produced

that shows the new values.

�File Output
Each of the text output system tasks has a counterpart in the file output

system tasks, which write to specific files. The syntax is

file-output-task (mcd-or-fd);

file-output-task (mcd-or-fd , arg1 , ...);

Chapter 17 Input and Output

261

The file-output-task is one of the system tasks:

$fdisplay $fwrite $fstrobe $fmonitor $fdebug

These counterpart system tasks accept the same type of arguments

as the tasks upon which they are based, with one exception: the first

argument shall be either a multichannel descriptor or a file descriptor,

which indicates where to direct the file output. A multichannel descriptor

is either a variable or the result of an expression that takes the form of a

32-bit unsigned integer value. The file output system tasks work just like

their counterparts, except that they write to files using the file descriptor.

An example of using text and file output system tasks to multiple files is

the following module:

module f2;

 integer file1, file2;

 initial begin

 file1 = $fopen("file1");

 file2 = $fopen("file2");

 $display("The number used for file 1 is %0d",

 file1);

 $display("The number used for file 2 is %0d",

 file2);

 $fdisplay(file1, "Hello File 1");

 $fdisplay(file2, "Hello File 2");

 $fdisplay(file1 file2, "Hello both files");

 $fdisplay(file1 file2 | 1,

 "Hello files and screen");

 $fdisplay(file1, "Good Bye File 1");

 $fdisplay(file2, "Good Bye File 2");

 $fclose(file1);

 $fclose(file2);

 end

endmodule

Chapter 17 Input and Output

262

�Writing Data to a String
The system tasks for writing and formatting data to a string have a syntax:

$swrite (str);

$swrite (str , arg1, ...);

$sformat (str, format);

$sformat (str, format , arg1, ...);

The $swrite system task is based on the $fwrite system task

and accepts the same type of arguments with one exception. The first

argument to $swrite shall be a string variable to which the data shall

be written, instead of a variable specifying the file to which to write the

resulting string.

The system task $sformat is similar to the system task $swrite,

with one major difference. Unlike the text and file output system tasks,

$sformat always interprets its second argument, and only its second

argument, as a format string. This format argument can be a static string,

such as "data is %d", or can be a string variable whose content is

interpreted as the format string. No other arguments are interpreted as

format strings. $sformat supports all the format specifiers supported by

the file output system tasks. The remaining arguments to $sformat are

processed using any format specifiers in the format until all such format

specifiers are used up. If not enough arguments are supplied for the format

specifiers or too many are supplied, then the application shall issue a

warning and continue execution. The application, if possible, can statically

determine a mismatch in format specifiers and number of arguments and

issue a compile-time error message. If the format is a string variable, it

might not be possible to determine its value at compile time.

Chapter 17 Input and Output

263

�Escape Sequences
The contents of string arguments are output literally, except when certain

escape sequences are inserted to display special characters or specify the

display format for subsequent expressions. The escape sequences are

shown in Table 17-3.

Table 17-3.  Escape sequences for printing special characters

Escape Sequence Special Character

\n The newline character

\t The tab character

\\ The \ character

\" The “ character

\ddd A character specified by 1 to 3 octal

digits

%% The % character

For example:

$display("\\\t\\\n\"\123");

produces at the output:

\ \

"S

Table 17-4 shows the escape sequences used for format specifications.

The special character % indicates that the next character should be

interpreted as a format specification that establishes the display format

Chapter 17 Input and Output

264

for a subsequent expression argument. For each % character (except %m,

%%, and %l) that appears in a string, a corresponding expression argument

shall be supplied after the string.

Table 17-4.  Escape sequences for format specification

Escape Sequence Display Format

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%l or %L Display library binding information

%m or %M Display hierarchical name

%s or %S Display as a string

The formatting specification %l (or %L) is defined for displaying the

library information of the specific module. The %m format specifier does

not accept an argument. Instead, it causes the display task to print the

hierarchical name of the module, task, function, or named block which

invokes the system task containing the format specifier. This is useful when

there are many instances of the module which call the system task.

The %s format specifier is used to print ASCII codes as characters. For

each %s specification which appears in a string, a corresponding argument

shall follow the string in the argument list. The associated argument is

interpreted as a sequence of 8-bit hexadecimal ASCII codes, with every

8 bits representing a single character. If the argument is a variable, its

value shall be right-justified so the rightmost bit of the value is the least

significant bit of the last character in the string. No termination character

or value is required at the end of a string and leading zeros (0) are never

printed.

Chapter 17 Input and Output

265

The format specifications in Table 17-5 are used for real numbers

and have the full formatting capabilities available in the C language. For

example, the format specification %10.3g sets a minimum field width of 10

with three (3) fractional digits.

Table 17-5.  Format specifications for real numbers

Escape Sequence Displayed Format

%e or %E Display real in an exponential format

%f or %F Display real in a decimal format

%g or %G Display real in exponential or decimal format, whichever

format results in the shorter printed output

%r or %R Display real in engineering notation, using the scale factors

Any expression argument which has no corresponding format

specification is displayed using the default decimal format.

Chapter 17 Input and Output

267

CHAPTER 18

Generative
Programming
Generative programming is used to create conditional or multiple

instances of modules, branches, functions, variables, nets, and other

generable module items. This is a powerful tool for parameterizing and

configuring the module's architecture and simplifying its implementation.

It allows for modules with the repetitive structure to be described more

concisely and also provides the ability for parameter values to affect the

structure of Verilog-A models. Although the generate statements use

syntax very similar to the procedural conditional and looping statements,

it is important to recognize that they do not execute at simulation time.

Generate statements are executed during the elaboration of the model

which occurs after parsing and before simulation.

�Generate Blocks
A generate block is a collection of one or more generable module items

which could be conditionally or recursively instantiated using generate

programming statements. A generate block is defined by the syntax

begin : block-name

 generable-module-item ...

end

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_18

https://doi.org/10.1007/978-1-4842-6351-8_18#DOI

268

The use of the identifier block-name is optional and generate blocks

can be used unnamed:

begin

 generable-module-item ...

end

If a generate block consists of only one generable module item, it can

be used without begin and end keywords:

generable-module-item

which is the simplest form of unnamed generate block.

Most of the Verilog-A module items can be recursively or conditionally

instantiated by generate statements. It is perhaps simpler to mention

which module items are not possible to instantiate via generative

programming. The non-generable module items are port direction and

type declaration statements and module-level parameter declarations

(including parameter aliases). All other module items including the

generative statements themselves are generable and can appear in the

generate blocks.

The elaboration of a generate statement results in zero or more

instances of a generable block. An instance of a generate block is similar in

some ways to an instance of a module. It creates a new level of hierarchy.

It brings the declared objects, analog constructs, and module instances

within the generate block into existence. Names in instantiated named

generable blocks can be referenced hierarchically.

It should be mentioned that, unlike the procedural block statements,

generate blocks do not represent statements themselves. Generate blocks

can be used only within generate statements.

Chapter 18 Generative Programming

269

�Generate Statements
There are two kinds of statements that control generative instantiation:

conditional and loop statements. The conditional generate statements

instantiate only selected generable module items, while the loop generate

statements allow recursive instantiation of generable module items. The

generate statements could be defined within the module using generate

regions.

�Generate Regions
A generate region is a textual span in the module description where

generate statements may appear. The syntax of the generate region is

generate generate-statement ... endgenerate

where keywords generate and endgenerate define the scope of a

generate region. Generate regions do not nest, and they may only occur

directly within a module.

The explicit use of generate regions is optional. In principle, there is

no semantic difference in the module when generative statements are

introduced without defined generate regions. Generate regions are mainly

used to improve the readability of the code by explicitly annotating the

code segments containing generate statements.

�Conditional Generation
The conditional if-generate and case-generate statements select at most

one generate block from a set of alternative generate blocks based on

constant conditional expressions evaluated during elaboration. The

selected generate block, if any, is instantiated into the model. The syntax of

the if-generate statement is

if (const-expression) generate-block

Chapter 18 Generative Programming

270

or the extended syntax with the else clause:

if (const-expression)

 generate-block

else

 generate-block

The latter is also known as the generative if-else statement. The

syntax of the case-generate statement is

case (const-expression)

 case-item, ... : generate-block

 case-item, ... : generate-block

 ...

 default : generate-block

endcase

The syntax for conditional generate statements fully resembles that of

procedural conditional statements. It is permissible to combine if-generate

and case-generate statements in the same complex generate constructs.

However, direct nesting applies only to conditional generative statements

nested in conditional generative statements. It does not apply in any way

to loop generative statements.

Because at most one of the alternative generate blocks is instantiated,

it is permissible to have more than one block with the same name within

a single conditional generate statement. However, it is not permissible

for any of the named generate blocks to have the same name as generate

blocks in any other conditional statements in the same scope, even if

the blocks with the same name are not selected for instantiation. It is

not permissible for any of the named generate blocks to have the same

name as any other declaration in the same scope, even if that block is not

selected for instantiation.

Chapter 18 Generative Programming

271

Conditional generate constructs make it possible for a module to

contain an instantiation of itself. The same can be said of loop generate

constructs, but it is more easily done with conditional generates. With

proper use of parameters, the resulting recursion can be made to

terminate, resulting in a legitimate model hierarchy. Because of the rules

for determining top-level modules, a module containing an instantiation

of itself will not be a top-level module.

The following example of nlres module implements a nonlinear

resistor using an if-generate statement:

module nlres (inout electrical a,

 inout electrical b);

 parameter real res = 1k from (0:inf);

 parameter real coeff1 = 0.0;

 generate

 if ($param_given(coeff1) && coeff1 != 0.0)

 analog V(a, b) <+ res *

 (1.0 + coeff1 * I(a, b)) * I(a, b);

 else if (res == 0.0)

 analog V(a, b) <+ 0.0;

 else

 resistor #(.r(res)) R1(a, b);

 endgenerate

endmodule

The if-generate statement is used to select among the resistance

contribution statement, the SPICE resistor primitive, or a short if the

resistance value is 0.

Chapter 18 Generative Programming

272

For compact modeling of semiconductor devices, the introduction of

extra nodes can be controlled with if-generate statements as shown in the

module nmosfet:

module nmosfet (d, g, s, b);

 inout electrical d, g, s, b;

 parameter integer nqsMod = 0 from [0:1];

 if (nqsMod) begin : nqs

 electrical GP;

 electrical BP;

 electrical BI;

 electrical BS;

 electrical BD;

 end

 ...

endmodule

The internal electrical nodes GP, BP, BI, BS, and BD are created only if

the nqsMod parameter has a nonzero value.

�Looping Generation
The for-generate statement permits instantiating a generate block multiple

times. The syntax of the for-generate statement is

for (genvar-initialization ; genvar-control ; genvar-change)

 generate-block

Similar to the procedural for-loop statement, the for-generate

statement employs three actions, genvar-initialization, genvar-control, and

genvar-change, for the conditional instantiation of a generate-block. The

Chapter 18 Generative Programming

273

main difference is that the for-generate statement actions are composed

using a genvar index variable instead of an integer index variable used in

procedural for-loops.

Genvars are integer-valued variables declared by the syntax

genvar genvar-name, ... ;

where the keyword genvar is followed by the list of identifiers genvar-

name. A genvar variable is used as an integer index only during the

elaboration of for-generate statements. It does not exist at simulation

time and shall not be referenced anywhere other than in for-generate

statements. Both the genvar-initialization and genvar-change assignments

in the for-generate statement shall assign to the same genvar variable.

Moreover, the genvar-initialization assignment shall not reference the

genvar index variable on the right-hand side.

If the generate-block is named, the for-generate statement implicitly

declares an array of block instances. The index values in this array are the

values of the used genvar variable during elaboration. This can be a sparse

array because the genvar values do not have to form a contiguous range

of integers. The array is considered to be declared even if the for-generate

statement produces no instances of the generate block.

If the generate-block is not named, the declarations within it cannot be

referenced using hierarchical names other than from within the hierarchy

instantiated by the generate block itself. It shall be an error if the name of a

generate block instance array conflicts with any other declaration, including

any other generate block instance array. It shall be an error if the for-generate

statement does not terminate. It shall be an error if a genvar value is repeated

during the evaluation of the for-generate statement. It implies some restriction

on the usage of a defparam statement in a generate-block. It may not target a

parameter in another instantiation of the same generate block, even when the

other instantiation is created by the same loop generate construct. Similarly,

a defparam statement in one instance of an array of generated instances may

not target a parameter in another instance of the instance array.

Chapter 18 Generative Programming

274

Within a generate-block of a for-generate statement, there is an

implicitly declared local parameter. This is an integer parameter that has

the same name as genvar variable, and its value within each instance of the

generated block is the value of genvar variable at the time the instance was

elaborated. This parameter can be used anywhere within the generated

block that a normal parameter with an integer value can be used. It can be

referenced with a hierarchical name. Because this implicit local parameter

has the same name as the genvar variable, any reference to this name

inside the loop generate block will be a reference to the localparam, not

to the genvar. As a consequence, it is not possible to have two nested loop

generate constructs that use the same genvar variable.

The example of module genvarexp demonstrates the use of the genvar

variable in the for-generate statement.

module genvarexp(out, dt);

 parameter integer width = 1;

 output out;

 input [1:width] dt;

 electrical out;

 electrical [1:width] dt;

 real tmp;

 genvar k;

 analog begin

 tmp = 0.0;

 for (k = 1; k <= width; k = k + 1) begin

 tmp = tmp + V(dt[k]);

 V(out) <+ ddt(V(dt[k]));

 end

 $strobe("Summ of potentials = %e", tmp);

 end

endmodule

Chapter 18 Generative Programming

275

Note that the for-generate statement is used here within the analog

procedural block.

In the next example, the module rcline implements an interconnect

line constructed from RC sections.

module rcline (n1, n2);

 inout n1, n2;

 electrical n1, n2, gnd; ground gnd;

 parameter integer N = 10 from (0:inf);

 electrical [0:N] n;

 parameter Cap = 1p, Res = 1k;

 localparam Csec = Cap/N, Rsec = Res/(2*N);

 genvar i;

 for (i=0; i<N; i=i+1) begin : section

 electrical n_int;

 resistor #(.r(Rsec)) R1(n[i], n_int);

 resistor #(.r(Rsec)) R2(n_int, n[i+1]);

 analog

 I(n_int, gnd) <+ Csec * ddt(V(n_int));

 end

 analog begin

 V(n1, n[0]) <+ 0.0;

 V(n2, n[N]) <+ 0.0;

 end

endmodule

The resistor network is generated by replicating the resistance

module instances, while the capacitors are implemented by replicating a

contribution statement in an analog block statement.

Chapter 18 Generative Programming

276

�Hierarchy Scope and Names
Each instantiation of a generate block is considered to be a separate

hierarchy scope. If the generate block selected for instantiation is named,

then this name declares a generate block instance and is the name for

the scope it creates. Normal rules for hierarchical naming apply. For each

block instance created by the for-generate statements, the generate block

identifier for the loop is indexed by adding the genvar value to the end

of the generate block identifier. These names can be used in hierarchical

path names.

If a generate block in a conditional generate statement consists of only

one item, then this generate block is not treated as a separate scope, it is

said to be directly nested. The directly nested generate blocks are treated

as if they belong to the outer generate statement. Therefore, they can have

the same name as the generate blocks of the outer generate statement, and

they cannot have the same name as any declaration in the scope enclosing

the outer generate statements (including other generate blocks in other

generate constructs in that scope). This allows complex conditional

generate schemes to be expressed without creating unnecessary levels of

generate block hierarchy.

If the generate block selected for instantiation is not named, it still

creates a scope, but the declarations within it cannot be referenced using

hierarchical names. Although an unnamed generate block has no name

that can be used in a hierarchical name, it needs to have a name by which

external interfaces can refer to it. Each generate statement in a given scope

is assigned a number even if it does not contain any unnamed generate

blocks. The number will be 1 for the construct that appears textually first in

that scope and will increase by 1 for each subsequent generate construct

in that scope. All unnamed generate blocks will be given the name

genblk<n> where <n> is the number assigned to its enclosing generate

Chapter 18 Generative Programming

277

construct. If such a name would conflict with an explicitly declared name,

then leading zeros are added in front of the number until the name does

not conflict.

The following example demonstrates the use of hierarchical names in

a top module with generate statements:

module top ();

 parameter genblk2 = 0;

 genvar i;

 // The following generate block is implicitly

 // named genblk1

 if (genblk2) electrical a; // top.genblk1.a

 else electrical b; // top.genblk1.b

 // The following generate block is implicitly

 // named genblk02 as genblk2 is already

 // a declared identifier

 if (genblk2) electrical a; // top.genblk02.a

 else electrical b; // top.genblk02.b

 // The following generate block would have been

 // named genblk3 but is explicitly named g1

 for (i = 0; i < 1; i = i + 1)

 begin : g1 // block name

 // The following generate block is

 // implicitly named genblk1 as the first

 // nested scope inside of g1

 if (1) electrical a; // top.g1[0].genblk1.a

 end

Chapter 18 Generative Programming

278

 // The following generate block is implicitly

 // named genblk4 since it belongs to the fourth

 // generate construct in scope "top".

 // The previous generate block would have been

 // named genblk3 if it had not been explicitly

 // named g1

 for (i = 0; i < 1; i = i + 1)

 // The following generate block is implicitly

 // named genblk1 as the first nested generate

 // block in genblk4

 if (1) electrical a;

 // top.genblk4[0].genblk1.a

 // The following generate block is implicitly

 // named genblk5

 if (1) electrical a; // top.genblk5.a

endmodule

�Order of Elaboration
Elaboration is the process that occurs between parsing and simulation.

It binds modules to module instances, builds the model hierarchy,

computes parameter values, selects paramsets, resolves hierarchical

names, establishes net connectivity, resolves disciplines and inserts

connect modules, and prepares all of this for simulation. With the addition

of generate statements, the order in which these tasks occur becomes

significant. They are evaluated at elaboration time, and the result is

determined before the simulation begins. Therefore, all expressions

in generate schemes shall be constant expressions, deterministic at

elaboration time.

Chapter 18 Generative Programming

279

If a generate statement contains an instantiation of an overloaded

paramset, then the paramset selection is performed after the generate

construct has been evaluated. The evaluation of the generate construct

may influence the values and connections of the paramset instance,

and hence the selection of matching paramset and module. The use of

paramsets cannot introduce ambiguity as no defparam inside the hierarchy

below a paramset instantiation is allowed.

Because of generate constructs and paramsets, the model hierarchy

can depend on parameter values. Because defparam statements can alter

parameter values from almost anywhere in the hierarchy, the result of

elaboration can be ambiguous when generate constructs are involved. The

final model hierarchy can depend on the order in which defparams and

generate constructs are evaluated.

The following algorithm defines an order that produces the correct

hierarchy:

	 1.	 A list of starting points is initialized with the list of

top-level modules.

	 2.	 The hierarchy below each starting point is expanded

as much as possible without elaborating generate

constructs. All parameters encountered during this

expansion are given their final values by applying

initial values, parameter overrides, defparam

statements, and paramset selections.

	 3.	 In other words, any defparam statement whose

target can be resolved within the hierarchy

elaborated so far must have its target resolved

and its value applied. defparam statements whose

target cannot be resolved are deferred until the

next iteration of this step. Because no defparam

Chapter 18 Generative Programming

280

inside the hierarchy below a generate construct is

allowed to refer to a parameter outside the generate

construct, parameters can get their final values

before going to step 3.

	 4.	 Each generate construct encountered in step 2 is

revisited, and the generate scheme is evaluated. The

resulting generate block instantiations make up the

new list of starting points. If the new list of starting

points is not empty, go to step 2.

A module definition may have multiple analog blocks. The simulator

shall internally combine the multiple analog blocks into a single analog

block in the order that the analog blocks appear in the module description.

In other words, the analog blocks shall execute in the order that they are

specified in the module.

Concatenation of the analog blocks occurs after all generate statements

have been elaborated, that is, after the loop generate constructs have been

unrolled, and after the conditional generate constructs have been selected.

If an analog block appears in a loop generate statement, then the order

in which the loop is unrolled during elaboration determines the order in

which the analog blocks are concatenated to the eventual single analog

block after elaboration.

Chapter 18 Generative Programming

281

CHAPTER 19

Attributes
Verilog-A compilers and simulators often require additional information

about specific objects within a Verilog-A code, beyond what is conveyed

in the language itself. Attributes provide a mechanism for specifying

such additional properties of various objects in the Verilog-A source and

are left to be implemented by compilers that want to use them. Only

standard Verilog-A attributes shall be implemented by compilers and

simulators. Attributes may be used in various ways to control the creation

of the executable model and model elaboration before the simulation.

The concept of attributes is similar to pragma directives in programming

languages, providing a hook to extra functionality in the language.

�Introducing Attributes
An attribute is essentially defined by a name and a value associated with

it. Attribute names are specified by identifier tokens while the values

are basic type constants, associated with the attribute name by attribute

assignments.

�Attribute Assignments
The attribute assignments closely resemble the procedural assignments of

Verilog-A variables using the syntax

attribute-name = constant-expressions

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_19

https://doi.org/10.1007/978-1-4842-6351-8_19#DOI

282

where attribute-name is an identifier. For example, the attribute

assignments

channel = "N"

version = 503 + 1

revision = 1

associate string "N" and integers 504 and 1 with the attribute names

channel, version, and revision, respectively. However, unlike procedural

statements, attribute assignments do not end with a semicolon (;).

Moreover, it is illegal to use a constant expression for attribute assignment

if it contains the other attribute name:

version = 503 + revision // illegal

The identifiers representing attribute names are not declared and

cannot be used in a Verilog-A procedural code. The attribute names and

their associated values are only intended to be used by compilers in the

preparation for the simulation but not during the simulation. For that

reason, the attribute value must be only assigned to constant expressions,

which can be determined before the actual simulation starts.

The constant expression defining attribute values can also contain

parameters, as in the example:

memory_size = SIZE-1

where SIZE is a declared parameter. Since parameters can be redefined

during model elaboration, it is possible to create in this way parameterized

attributes that can be configured at the elaboration time.

The Verilog-A syntax allows specifying an attribute only by attribute-

name without the equal sign (=) and an explicitly assigned value:

revision // the same as revision=1

Chapter 19 Attributes

283

In that case, the attributes are implicitly assigned to the integer value

of 1. Such attributes could be particularly useful in the role of binary flags

(true or false). The true value could be, for example, indicated by the

attribute instantiation and the false value if the attribute is not instantiated.

�Attribute Instances
Attribute instantiation associates attributes and their values with certain

objects in the Verilog-A code to provide additional information to the

compiler and simulation tool.

Attributes are instantiated in Verilog-A code by enclosing an attribute

assignment within the token pair (* and *):

(* level = 504 *)

Multiple attributes can be instantiated within the same token pair

(* and *) using a comma-separated list of attribute assignments:

(* level = 504, channel = "N" *)

It is equivalent to the instantiation of multiple attribute instances in a

sequence:

(* level = 504 *) (* channel = "N" *)

The attribute instances can continue over many lines:

(* desc = "effective resistance",

 units = "Ohms",

 op = "yes",

 multiplicity = "divide" *)

*)

Chapter 19 Attributes

284

If the same attribute name is defined more than once, as in the

example:

(* level = 504, channel = "N", level = 505 *)

the last attribute value shall be used and a simulation tool can give a

warning that a duplicate attribute specification has occurred. Nesting of

attribute instances:

(* level = 504, (* channel = "N" *) *) // error

is not allowed.

An attribute instance is always associated with just one specific

object within a Verilog-A code. Some objects require to position attribute

instances just before the object (as a prefix) while the other objects require

to position attribute instances just after the object (as a suffix).

The objects that require attribute instantiation as a prefix are

•	 Declarations (modules, paramsets, user-defined

functions, ports, nets, parameters, and variables)

•	 Module items (module instantiations and ports in

port mappings, defparam statements, procedural

and generable blocks and statements, event control

statements)

Here are some examples of attaching attribute instances to

declarations:

(* simplified *) module mosekv (...);

(* with_binning *) paramset nch nmos3;

(* distributed *) electrical [7:0] internal;

(* type="instance" *) parameter real w = 1.0e-4;

(* drain *) inout electrical d;

Chapter 19 Attributes

285

and module items:

(* long_channel *) mosekv

 mos1 (d, g, s, b, (* thermal_port *) dt);

(* override_1 *) defparam tgate.m1.gate_width = 5e-6;

(* initial_block *) initial begin ...

(* optional_nodes *)

if (nqsMod) begin : nqs

 electrical GP;

 electrical BP;

 ...

 end

An attribute can be associated as a prefix with a module declaration or

an instance of that module. If an attribute has different values specified on

both the module declaration and an instance of that module, the attribute

on the instance will take precedence. If a net is also a module port, the

attribute may also be specified on the port declaration line (in which the

net is declared as input, inout, or output). If the attribute is specified for

the same net identifier in both the net-discipline declaration and the port

declaration, then the last attribute value shall be used and the tool can give

a warning that a duplicate attribute specification has occurred.

Attributes are instantiated as a suffix to

•	 An operator or

•	 A call to a user-defined function

Here are some examples of attaching attribute instances as a prefix:

sum = a + (* second_argument *) b;

a = b ? (* no_glitch *) c : d;

maxValue (* smooth *) (val1, val2);

Chapter 19 Attributes

286

Besides being used in modules, attributes can be also associated with

the parameters and variables in paramsets. The descriptive attributes in

paramsets can be used by the simulator when generating help messages

for the paramset.

When the compiler finds an attribute instance, the attribute names

are examined to see if they are relevant for the executable model and

simulator, and if it is, the attribute value is parsed and evaluated. If the

attribute name is not recognized by a compiler, it is ignored, and in that

case, an attribute instance is just another style of comment. However, the

Verilog-A language introduces a set of standard attributes that shall be

always processed by the Verilog-A compiler.

�Standard Attributes
A set of standard attributes is defined in Verilog-A to support the creation

of simulation reports. The simulator could use these attributes to generate

detailed reports, help messages, and warnings on module interfaces,

parameters, and variables using the standard attribute values. Standard

attributes also allow designating some of the variables as output variables.

The evolution of the output variable values is recorded during simulation

similar to signal values. Finally, some of the recommended standard

attributes are used to explicitly override module port disciplines.

�Simulation Reports
The standard Verilog-A attributes introduced to support the simulation

reports are given in Table 19-1.

Chapter 19 Attributes

287

Table 19-1.  The standard attributes supporting simulation reports

Attribute Role

desc Description of the objects the attribute is attached to. It is

used to generate help messages when attached to parameter,

variable, and net declarations within a module. The attribute

must be assigned a string

units Describing the units of parameters or variables to which it is

attached within a module. The attribute must be assigned a

string

op Indicating whether a parameter or variable should be included

in a short report of the most useful operating point values.

The attribute must be assigned a value, which must be either

“yes” or “no”

multiplicity Describing how the value of a parameter or variable should

be scaled for reporting. The attribute must be assigned one

of the following string values: "multiply", "divide", or

"none"

The most common use of desc and units attributes is in module or

paramset parameter declarations:

(* desc = "Resistance",

 units = "Ohms",

 op = "no",

 multiplicity = "none" *)

parameter real res = 1.0 from [0:inf);

Simulators can use the values of desc and units attributes for

documentation purposes and when generating help messages for

parameters. There is no dimensional analysis associated with the usage of

Chapter 19 Attributes

288

the units attribute. However, it is often important for the user to know the

units of a parameter, such as an angle that could be specified in radians or

degrees. The units and desc attributes are of particular value for compact

models, where the number of parameters is large and the description is

not always clear from the parameter names.

If the multiplicity attribute is specified with the value "multiply"

or "divide", the value for the associated parameter or variable will be

multiplied or divided by the value of $mfactor in any report of operating

point values. If the multiplicity attribute is not specified or specified with

the value "none", then no scaling will be performed in the operating point

reports.

Note T he scaling defined by the multiplicity attribute applies
to operating point value reports; it does not affect the automatic
scaling of variables and parameters with hierarchical system
parameters.

The desc attribute can be also attached to net declarations:

(* desc="drain terminal" *) electrical d;

This information can be used by the simulator to generate descriptive

help messages related to the usage of nets.

The standard attributes desc and units have a special meaning when

attached to module and paramset variables annotating them as output

variables.

�Output Variables
The variables associated with a desc or units attribute, or both, shall be

known as output variables. For example, the following declarations:

Chapter 19 Attributes

289

(* desc="gate-source capacitance", units="F" *)

real cgs;

(* desc="effective resistance", units="Ohms"

 op="yes", multiplicity="divide" *) real reff;

define the variables cgs and reff as output variables. The simulators

shall provide access to their values during simulation in a similar way the

signal values are accessible. Besides printing the names, values, units, and

descriptions of output variables in simulation reports, the output variables

are also available for plotting as a function of time or the swept variable of

a DC sweep along with the net signals.

Note T he units and desc attributes have a special meaning only
for variables with global (module or paramset) scope. The units
and desc attributes for block-level variables in modules shall be
ignored by the simulator, but can be still used for code documentation
purposes.

The standard attributes desc and units can be also used to annotate

output variables in paramsets. A few special rules apply to paramset output

variables and output variables of modules referenced by a paramset:

•	 If a paramset output variable has the same name as

an output variable of the module, the value of the

paramset output variable is the value reported for any

instance that uses the paramset.

•	 If a paramset variable without a description has the

same name as an output variable of the module, the

module output variable of that name shall not be

available for instances that use the paramset.

Chapter 19 Attributes

290

A paramset output variable’s value may be computed from values of

paramset parameters and local variables as well as any output variable

of the module. The module output variables are accessed using the

hierarchical reference:

. module-output-variable-name

The following example declares an output variable ft for instances of

the paramset smnpn:

paramset smnpn npn;

 (* desc="cut-off frequency" *) real ft;

 .is=2.0e-17; .bf=120.0; .br=10; rb=145;

 .rc=75; .re=12;

 .cje=2.0e-14; .vje=0.9; .mje=0.4;

 .cjc=3.0e-14; .vjc=0.6; .mjc=0.3; .xcjc=0.2;

 ft = .gm/(‘M_TWO_PI*(.cpi + .cmu));

endparamset

The module npn is assumed to have output variables named gm,

cpi, and cmu. If the module npn had an output variable named ft, the

paramset’s output variable would replace it.

�Port Discipline Override
The attribute port_discipline is used to define the desired discipline for

ports it is attached to. The attribute value shall be a string and the value

must be a valid Verilog-A discipline. It can be attached to a model instance:

(* port_discipline = "electrical" *)

resistor #(.r(1k)) r1 (node1, node2); // not needed as default

(* port_discipline = "rotational" *)

 resistor #(.r(1k)) r2 (node1, node2);

Chapter 19 Attributes

291

to change the basic discipline of all ports for the module instance. It

can be also attached to the particular port of the module instance:

resistor #(.r(1k)) r3

 ((* port_discipline="rotational" *) node1,

 (* port_discipline="rotational" *) node2);

to override a discipline for the specific ports. The use of these

attributes can be combined to change the basic discipline of all ports for

the module instance, but override the discipline for specific ports. The

following provides an example of this use:

(* port_discipline="electrical" *) vcvs

 #(.gain(1.45e-3)) motor1 (n1, gnd_e,

 (* port_discipline="rotational_omega" *) shaft1,

 (* port_discipline="rotational_omega" *) gnd_rot);

The preceding model uses a voltage-controlled voltage source to

model a motor as a converter from electrical potential to rotational

velocity.

If the attribute port_discipline is not found attached to the module

instance or ports, then the module ports will acquire the disciplines of

other nets connected to module ports. If no disciplines are connected to

that nets, then the default discipline is set to electrical.

Chapter 19 Attributes

293

CHAPTER 20

Compiler Directives
Compiler directives control the preprocessor part of Verilog-A compilation.

These directives are capable of performing various transformations on the

Verilog-A code but know nothing about the Verilog-A syntax and simply

make textual changes as directed. It typically involves the inclusion of the

text files, substitution of strings, conditional inclusion or exclusion of code,

and setting defaults. The scope of a compiler directive is independent of

module definitions and extends from the point where the directive occurs

to the next compiler directive that supersedes it.

The Verilog-A compiler directives are preceded by the (`) character

(grave accent) which should not be confused with the apostrophe

character ('). Whitespace characters can precede the directive but more

than one directive on the same line is not permitted. Verilog-A offers a

multitude of standard compiler directives to steer the source of your code.

�File Inclusion
Verilog-A code can be organized into different files and then compiled

together as one unit. One of the useful features for gathering Verilog-A

source code fragments into a single compilation unit is the include

compiler directive. It takes the form

`include "filename"

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_20

https://doi.org/10.1007/978-1-4842-6351-8_20#DOI

294

It instructs the preprocessor to insert the content of the file, whose

name is identified by filename, in the code at the point where the include

compiler directive appears.

The `include directive can be specified anywhere within the Verilog-A

description. Only whitespace or comment may appear on the same

line with the `include directive. A file included in the source using the

`include directive may contain other `include compiler directives.

Compiler implementation may limit the maximum number of nesting

levels for including files.

The whitespace is significant within the double quote characters of the

`include directive. An include directive

`include " fileA.inc "

will not find the required fileA.inc. The filename must be the name

of an existing file that may optionally be preceded by a full or relative

directory path specification. The syntax of directory path specifications

depends on the operating system on which the Verilog-A code is compiled.

For example, the include directive

`include "../noise.va"

on the Linux operating systems will be replaced during compilation by

the file noise.va located in the parent directory. An included file may itself

contain compiler directives.

The `include directive is particularly useful when used for the

inclusion of the standard definitions of natures, disciplines, and physical

constants:1

`include "disciplines.vams"

`include "constants.vams"

1 www.accellera.org/downloads/standards/v-ams

Chapter 20 Compiler Directives

http://www.accellera.org/downloads/standards/v-ams

295

In all the Verilog-A code presented in the previous chapters, we have

implicitly assumed the inclusion of the standard natures and disciplines

and optionally the definition of the physical constants.

�Macro Definition
A macro (short for “macro instruction”) is a fragment of code that has been

given a name. Whenever the name is used, it is replaced by the content of

macro. Macros can be defined and used both inside and outside module

definitions. There are two kinds of macros: object-like and function-

like macros.

�Object-like Macros
An object-like macro is defined by using the syntax:

`define macro-name macro-text

where the `define compiler directive is followed by an identifier

macro-name, introducing a name of the macro, and then a sequence of

token macro-text that should act as a replacement for the macro name.

The macro-text can be also blank, in which case the macro is defined to be

empty and no text is substituted when the macro is used.

If more than one line is necessary to specify macro-text, it can be

continued onto several lines by placing a backslash (\) character, without

trailing spaces, at the end of each line to be continued. The macro will be

expanded as a multiline text but without backslash characters. If a one-

line comment is included in the macro-text, then the comment shall not

become part of the substituted text.

The compiler shall substitute any occurrence of the token `macro-

name in the source description with the macro-text. The scope of the

defined macro name is from the point of its definition to the end of the

Chapter 20 Compiler Directives

296

source file being compiled. The token `macro-name can be used anywhere

in the source description. However, it shall not be split across the

lexical tokens.

A macro definition can use previous macro definitions. It shall be

an error for a macro to expand text containing another usage of itself (a

recursive macro). Basically, all compiler directives shall be considered as

being predefined macros. However, redefining a compiler directive as a

macro name is illegal.

Object-like macros are conventionally used as part of good

programming practice to create symbolic names for numeric constants:

`define SPEED_OF_LIGHT 2.997925e8

`define PI 3.141592653

It is common, but not obligatory, to use uppercase letters for constants

to distinguish them from the variables. Such definitions have no runtime

overhead during the simulation and increase the readability of the

Verilog-A code.

�Function-like Macros
A function-like macro is defined by using the syntax:

`define macro-name (formal-argument, ...) macro-text

It is similar to the definition of the object-like macros, except for the

comma-separated list of formal-argument identifiers in parentheses

after the macro-name. The formal-argument can be any valid Verilog-A

simple identifier. Such a macro definition looks like a function call and the

function-like macros basically act like functions but without the associated

calling overhead.

The preprocessor searches subsequent lines for occurrences of the

macro “call”:

`macro-name (actual-argument, ...)

Chapter 20 Compiler Directives

297

where each formal-argument is now substituted by an actual-

argument, which can be any valid Verilog-A expression. The number of

actual arguments must match the number of formal arguments in the

macro definition. When the macro is expanded, each use of a formal

argument in its macro-text is replaced by tokens of the corresponding

actual-argument.

For example, a macro definition

`define MAX(A, B) ((A) > (B) ? (A) : (B))

used in a subsequent statement as

y = `MAX(p+q, r+s);

will be replaced by the line

y = ((p+q) > (r+s) ? (p+q) : (r+s));

Note the excessive use of parentheses here because macros perform

purely textual substitution and, without these parentheses, unexpected

expansions may take place. For instance, a macro definition

`define SQUARE(X) (X * X)

y = `SQUARE(u+v);

is equivalent to

y = (u + v * u + v);

which is very different from intended

y = (u + v) * (u + v);

The function-like macros are often used to replace the user-defined

functions. For example, the following user-defined function definition and

a calling statement:

analog function real hypsmooth;

 input x,c;

Chapter 20 Compiler Directives

298

 real x, c;

 begin

 hypsmooth = 0.5*(x+sqrt(x*x + 4.0*c*c);

 end

endfunction

...

t3 = hypsmooth(t1-t2, -1.0E-6)

can be replaced with macro definition and expansion:

`define hypsmooth (x, c) \

 (0.5*((x)+sqrt((x)*(x) + 4.0*(c)*(c))))

...

t3 = `hypsmooth(t1-t2, -1.0E-6)

The use of functions is safer since the compiler can check the function

argument types. The main benefit of using macros instead of functions

could be a faster execution time. During preprocessing, a macro is

expanded (replaced by its definition) inline each time.

�Undefining Macros
A previously defined macro name can be undefined using the `undef

compiler directive as

`undef macro-name

It tells the preprocessor to remove all definitions for the specified

macro-name. An attempt to undefine a macro that was not previously

defined using the `define directive can result in a warning. An undefined

macro has no value, just as it had never been defined.

Chapter 20 Compiler Directives

299

�Predefined Macros
Verilog-A standards and simulators can also provide predefined macros

that can be used to include or exclude portions of the code specific to

a particular Verilog-A version or simulator. To avoid conflicts with the

predefined Verilog-A macros, the user-defined macros shall never begin

with __VAMS_ which is reserved for the predefined macros. The `define

compiler directive shall not affect predefined macros and the simulator

may issue a warning for an attempt to undefine predefined macros.

The Verilog-A LRM 2.2 introduced a number of extensions to support

compact modeling and also the predefined object-like macro:

__VAMS_COMPACT_MODELING__

It is implicitly defined by the compiler if and only if all the compact

modeling extensions from LRM 2.2 are supported by the simulator. It

allows to conditionally compile the code with the compact modeling

extensions if they are supported or to generate warnings or errors if they

are not.

�Conditional Compilation
It is often convenient to be able to have multiple versions of the same

code. It can be achieved by `ifdef, `ifndef, `elsif, `else, and `endif

compiler directives for the conditional compilation. They work together in

two sequences of directives, the ifdef-sequence:

`ifdef macro-name code-fragment

`elsif macro-name code-fragment

...

`else code-code fragment

`endif

Chapter 20 Compiler Directives

300

introduced with the `ifdef directive, and the ifndef-sequence:

`ifndef macro-name code-fragment

`elsif macro-name code-fragment

...

`else code-fragment

`endif

introduced with the `ifndef directive. The `endif directive signifies

the end of the conditional sequences. There cannot be more than one

`else directive (there may be none) in a sequence, although there may

be any number (including zero) of `elsif directives preceding the

`else directive. Each of the directives in the sequence (except `endif)

is associated with a code fragment, but only one or none of the code

fragments will be compiled based on the definition status of macro-name

identifiers in `ifdef, `ifndef, and `elsif directives.

The definition status of macro-name identifiers is tested sequentially

starting from the `ifdef or `ifndef directive. The code fragment of the

first directive in a sequence returning the true condition will be compiled,

ignoring the remaining directives. If the true condition is not found, and

there is an `else directive in the sequence, the `else code fragment will

be compiled; otherwise, none of the code fragments will be compiled.

Nesting of compiler directives for conditional compilation is

permitted, as it is illustrated in the following example:

`ifdef wow

 $display("wow is defined");

 `ifdef nest_one

 $display("nest_one is defined");

 `ifdef nest_two

 $display("nest_two is defined");

 `else

 $display("nest_two is not defined");

 `endif

Chapter 20 Compiler Directives

301

 `else

 $display("nest_one is not defined");

 `endif

`else

 $display("wow is not defined");

 `ifdef second_nest

 $display("second_nest is defined");

 `else

 $display("second_nest is not defined");

 `endif

`endif

The conditional compilation directives are used in the standard nature

definitions, as shown in the following example of the Current nature

definition:

nature Current;

 units = "A";

 access = I;

 idt_nature = Charge;

`ifdef CURRENT_ABSTOL

 abstol = `CURRENT_ABSTOL;

`else

 abstol = 1e-12;

`endif

endnature

It allows redefining the value of the nature abstol attribute by the user-

defined object-like macro CURRENT_ABSTOL.

The following example illustrates the usage of the predefined macro:

`ifdef __VAMS_COMPACT_MODELING__

 reff = ddx(iab, V(a));

Chapter 20 Compiler Directives

302

 I(a,b) <+ white_noise(4.0 * ‘P_K *

 $temperature * reff, "thermal");

`else

 if (analysis("noise"))

 $strobe("Noise not computed.");

`endif

The noise of a nonlinear resistor is evaluated and contributed only if

the compiler supports the use of the derivative operator ddx() introduced

as one of the compact modeling–related language extensions in Verilog-A

LRM 2.2.

�Default Transition Directive
This directive specifies the default value for rise and fall times for the

transition filter introduced in Chapter 14. The syntax for this directive is

`default_transition transition-time

where transition-time is a real value.

For all transition filters which follow a default transition directive and

do not have rise time and fall time arguments specified, transition-time

is used for their default rise and fall time values. If another `default_

transition directive is encountered in the subsequent source description,

the transition filters following the newly encountered directive derive

their default rise and fall times from the transition time value of the newly

encountered directive. In other words, the default rise and fall times for a

transition filter are derived from the transition-time value of the directive

which immediately precedes the transition filter. If a default transition

directive is not used in the description, transition-time is controlled by the

simulator as described in Chapter 14.

Chapter 20 Compiler Directives

https://doi.org/10.1007/978-1-4842-6351-8_14
https://doi.org/10.1007/978-1-4842-6351-8_14

303

�APPENDIX

�Reserved Words in Verilog-A
�Keywords

above abs absdelay

absdelta abstol acos

acosh ac_stim aliasparam

analog analysis asin

asinh atan atan2

atanh begin branch

case ceil continuous

cos cosh cross

ddt ddt_nature ddx

defpar discipline else

end endcase enddiscipline

endfunction endgenerate endmodule

endnature endparamset endtable

exclude exp final_step

flicker_noise floor flow

for from function

generate genvar ground

hypot idt idtmod

(continued)

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8

https://doi.org/10.1007/978-1-4842-6351-8#DOI

304

idt_nature if inf

initial_step inout input

integer laplace_nd laplace_np

laplace_zd laplace_zp last_crossing

limexp ln localparam

log macromodule max

min module nature

negedge noise_table noise_table_log

or output parameter

paramset potential pow

real sin sinh

slew sqrt string

table tan tanh

timer transition units

while white_noise zi_nd

zi_np zi_zd zi_zp

�Other Reserved Words

access always and

assert assign automatic

buf bufif0 bufif1

casex casez cell

cmos config connect

(continued)

APPENDIX

305

connectmodule connectrules deassign

default design disable

discrete domain driver_update

edge endconfig endconnectrules

endprimitive endspecify endtask

event force forever

fork highz0 highz1

ifnone incdir include

initial instance join

large liblist library

medium merged nand

net_resolution nmos nor

noshowcancelled not notif0

notif1 pmos primitive

pull0 pull1 pulldown

pullup pulsestyle_onevent pulsestyle_ondetect

rcmos realtime reg

release repeat resolveto

rnmos rpmos rtran

rtranif0 rtranif1 scalared

showcancelled signed small

specify specparam split

strong0 strong1 supply0

supply1 task time

(continued)

APPENDIX

306

Table A-1.  Names for primitives, parameters, and ports in SPICE

Primitive Name Port Names Parameter Names

resistor p, n r, tc1, tc2

capacitor p, n c, ic

inductor p, n l, ic

iexp p, n dc, mag, phase, val0, val1,

td0, tau0, td1, tau1

ipulse p, n dc, mag, phase, val0, val1,

td, rise, fall, width,

period

ipwl p, n dc, mag, phase, wave

(continued)

tran tranif0 tranif1

tri tri0 tri1

triand trior trireg

unsigned use uwire

vectored wait wand

weak0 weak1 wire

wor wreal xnor

xor

�SPICE Compatibility

APPENDIX

307

Primitive Name Port Names Parameter Names

isine p, n dc, mag, phase, offset,

ampl, freq, td, damp,

sinephase, ammodindex,

ammodfreq, ammodphase,

fmmodindex, fmmodfreq

vexp p, n dc, mag, phase, val0, val1,

td0, tau0, td1, tau1

vpulse p,n dc, mag, phase, val0,val1,

td, rise, fall,width,

period

vpwl p, n dc, mag, phase, wave

vsine p, n dc, mag, phase, offset,

ampl, freq, td, damp,

sinephase, ammodindex,

ammodfreq, ammodphase,

fmmodindex, fmmodfreq

tline t1, b1, t2, b2 z0, td, f, nl

vccs sink, src,ps, ns gm

vcvs p, n, ps, ns gain

diode a, c area

bjt c, b, e, s area

mosfet d, g, s, b w, l, ad, as, pd, ps, nrd,

nrs

jfet d, g, s area

msfet d, g, s area

Table A-1.  (continued)

APPENDIX

309

Index

A
Above() function, 224, 225
Absolute delay filter, 201, 202
Accelerometer, 147–149
AC transfer function, 204
Actual argument reference, 173
Actual port declarations, 55
Analog function, 165
Analog function real

hypsmooth, 168
Analysis() function, 233
Analysis types, 232
Argument association, 171
Arithmetic expressions, 22, 23
Array, 174
arrayadd function, 169
Array assignments, 105, 106
Array parameters, 31, 71
Array variables, 31, 98, 99, 167
Assignment pattern, 30, 31, 50, 71,

100, 172, 174, 183, 207
Assignment statement, 103

array assignment, 105, 106
scalar assignments, 104, 105

Attributes, 281, 291
assignments, 281
comma-separated list, 283

concept, 281
constant expression, 282
declarations, 284
instantiation, 283, 284
model and simulator, 286
modules, 285, 286
multiplicity, 288
simulation tool, 284
standard, 286, 288
suffix, 285

B
Base format tokens, 9
Base natures, 34–37, 46
Basic types, Verilog-A language, 17

integer type, 17, 18
real types, 18, 19
string types, 19

Bitwise expressions, 25, 26
Bounding time step, 241
Branch

definition, 115
port branches, 119, 120
scalar branches, 115, 116
vector branches, 117–119

Branch-reference, 122, 126

© Slobodan Mijalković 2022
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8

https://doi.org/10.1007/978-1-4842-6351-8#DOI

310

Branch signals
potential and flow signals, 120
signal access functions, 121–123
signal directions, 120, 121
signal-flow net, 120
unnamed branches, 123–125

C
Call expression, 20, 21
Case-expression, 109
Case-generate statement, 270
Case statement, 108, 109
Chemical reaction system, 139,

140, 142
Circular integrator

operator, 142–145
Close system tasks, 255
cmos_invertor module, 93
Comma-separated list, 296
Comments, 3, 4, 179, 196
Compact modeling extensions, 299
Compiler directives, 7, 8, 293, 295,

298, 300
Compiler implementations, 8, 55
Concatenation expressions, 26–28
Conditional compilation, 299
Conditional compilation

directives, 301
Conditional expression, 26
Conditional generate statement,

270, 271
Conditional statements

case statement, 108, 109

if statement, 106
Conservative disciplines, 42
Constant_expression, 239
Constant extrapolation

method, 185
Contribution statements

direct, 125–127
explicit and implicit, 125
indirect, 127–129
probe branch, 129, 130
switch branches, 132–134
value retention, 130–132

Control-strings
abrupt transitions, 184
comma-separated list, 183
control character set, 184
dependent variable selector, 183
extrapolation control

characters, 185
extrapolation method, 185
first-order derivative, 185
interpolation algorithm, 184
interpolations, 183
literals, 183
LUT model, 184
parameter, 187

Conversion specification, 257
Counterpart system, 261
Cross function, 220, 224

D
DC motor, 136, 137
ddt() operator, 136

INDEX

311

degree-of-freedom argument, 161
Dependent-selector, 183
Dependent variables, 178
Derivative/integral operator–based

expressions, 145
Derived nature, 37, 38
Deterministic functions, 153, 154
Differential equation, 146
Direct contribution

statements, 125–127
direction specifier, 166
Direction indicator, 220
Discipline compatibility, 45, 46
Discipline-name, 48
Disciplines, 42
Discontinuity task, 238, 239
Displaying and writing data

character, 260
monitor task, 260
output tasks, 260
text output, 259

Distance function, 169
Domain binding statements, 43

E
Elaboration, 278
Empty disciplines, 42
Endif directive, 300
Error code, 254
Escape sequences, 13, 263, 264
Event control statement

analog operators, 216

event-expression, 216
expression, 215
functions, 216
keywords, 216
parentheses, 215
procedural blocks, 216
types, 217
use, 216

exp(x) function, 154
Expression containers

assignment pattern, 30, 31
range, 31, 32

Expression evaluation order
parenthesized expressions, 29
precedence of operators,

28, 29
short-circuit/minimal

evaluation, 30
Expressions, 20

arithmetic expression, 22, 23
bitwise expressions, 25, 26
concatenation

expressions, 26–28
conditional expressions, 26
logical expressions, 24, 25
primary expressions

call expression, 20, 21
subscript expression, 21

relational expression, 23, 24
Expr-tol and time-tol

arguments, 221
Extrapolation control

characters, 185

INDEX

312

F
Fetlim, 243
Fifth-order Butterworth filter, 209
File output system, 261
File-output-task, 261
File positioning, 252

code operation, 252
detect end-of-file, 254
end-of-file, 253
error code, 254
flush(), 255
repositioning, 253
repositions, 252

Fil management, 249
First-order integration

method, 241
First-order partial

derivatives, 135
floor(x) function, 158
for-loop statement, 272
for-generate statements, 273,

275, 276
Formal argument, 167, 297
format code, 256
Format data, 256
Format specifications, 265
Format string, 262
Formatting specification, 264
Format token, 10
Frequency-domain filters

Laplace transform
filters, 206–210

Z-transform filters, 210–214

Function-like macro, 296, 297
Function name, 20
Function references, 170, 171
Functions, 165

G
Generable-module-item, 268
Generate-block, 273, 274, 276
Generative programming, 267

analog blocks, 280
conditional and loop

statements, 269
constructs and

paramsets, 279
endgenerate, 269
generate block, 267, 278
hierarchical names, 277
module, 268, 269
parameters, 279, 280
procedural block

statements, 268
simulation, 267
unnamed, 276

genvar-change, 272
genvar-control, 272
Module genvarexp, 274
genvar-initialization, 272
geomcalc function, 169, 173
Global events

arguments, 217
functions, 217, 218
initial_step function, 219

Grid coordinates, 179

INDEX

313

H
Hierarchical name, 6
Hierarchical system

parameters, 81–84
Highvoltage nature, 46
Hyperbolic functions, 156, 157

I
idt() operator, 138–140, 142
idtmod() operator, 142, 143
if-generate and case-generate

statements, 269
if-generate statements, 269,

271, 272
Illegal syntax, 11
Implicit/fixed-point

formulation, 127
Indexed multidimensional

array, 176
Indirect contribution

equations, 145–149
Indirect contribution

statements, 127–129
Inout argument, 167, 174
Input and output functions, 252
Input character, 259
Input field characters, 258
Integer literals, 8–10
Integer type, 17, 18
Integer-valued variables, 273
Integral equations, 146
Integration operator, 138

Intermediate interpolation
points, 177

Interpolation control character, 184
Isoline, 179

J
Jagged array grids, 176–178

K
Kelvin units, 233
k-stage argument, 161

L
Laplace transform filters

numerator-denominator
Laplace filter, 209, 210

numerator-pole Laplace filter,
208, 209

zero-denominator filter,
207, 208

zero-pole filter, 206, 207
Laplace zero-pole filter, 206, 207
Last_crossing() function, 223
Lexical, Verilog-A compiler, 2
Light-emitting diode (LED), 55
Limit() function, 242
Limiting and rounding functions,

157, 158
Linear interpolation algorithm, 184
Linux operating systems, 294
ln(x) function, 154

INDEX

314

Local parameters, 76
Logarithmic and power functions,

154, 155
Logical expressions, 24, 25
log(x) function, 154
Lookup table function

control-string, 183–185
data source, 182
input-variables, 181
LUT mapping, 180
one-dimensional arrays, 182
optional control string, 181
table data source, 180
two-dimensional arrays, 183
$table_model function, 181

Looping statements, 109
repeat statement, 112, 113
for statement, 111, 112
while statement, 110

LUT mapping, 180
LUT MOSFET transistor model, 187

M
Macro definition, 295, 296
Macro-name identifiers, 300
max() functions, 158
maxValue function, 168
mean argument, 161
Module instantiation

explicit port mapping, 61–63
implicit nets, 66, 67
module-instance-name

identifier, 61

module-name identifier, 60
port-connection, 61
positional port mapping, 63, 64
SPICE primitives, 67
top-level instantiation and

$root, 64, 65
Module-level parameter, 168
Module-port-name, 61
Module procedural code, 171
Modules, 53

definition, 53, 54
keyword module, 53
top-level modules, 53

Monitored events function, 219
Monte-Carlo trial, 159
Mosekv module, 90
MOS transistor, 55
Multichannel descriptors, 251
Multidimensional arrays, 99
Multiple aliases, 75
Multiple hierarchical

declarations, 50

N
Nature binding statements, 41, 42
Natureless/empty disciplines, 42
Nature override statements, 43
Natures, 33
Negative integer literals, 11
Net declarations

ground nets, 49
net attributes, 51
net initialization, 50

INDEX

315

scalar nets, 47, 48
vector nets, 48

Net-discipline types
definition, 41
discipline compatibility, 45, 46
domain binding statements, 43
flow and potential signals, 33
nature binding

statements, 41, 42
nature override statements, 43
potential/flow in a discipline, 44
predefined standard

nature, 46, 47
semicolon (;), 41
signal natures

base natures, 34–37
derived nature, 37, 38
natures, 33
predefined standard natures,

38, 39, 41
Net initialization, 50
noise_table vs. noise_table_log, 198
Non-generable module, 268
Nonlinear resistor, 302
Module npn, 290
Numerator-denominator filter,

213, 214
Numerator-denominator Laplace

filter, 209, 210
Numerator-denominator transfer

function, 214
Numerator-pole filter, 213
Numerator-pole Laplace filter,

208, 209

Numerator-pole transfer
function, 213

Numerical literal, 8
integer literals, 8–10
real literals, 11, 12

O
Object-like macros, 295, 296
Open and Close system

functions, 249
Operating point analysis, 232
Operator, 14–16
Output variables, 288

P, Q
Parameter aliases, 75
Parameter assignments, 70
Parameter declarations, 69

array parameters, 71
basic type, 70
local parameter, 76
parameter aliases, 75
permissible value ranges,

72–74
simple parameters, 70, 71

Parameter override
hierarchical parameter

override, 80
instance parameter override, 76

by name, 77
by order, 79

Param_name, 237

INDEX

316

Paramset instantiation
cmos_invertor module, 93
LEFF parameter, 96
multiple paramsets, 94
paramset resolution

steps, 94
parent module parameter, 92
SHMOD parameter, 96
WEFF and LEFF, 93

Paramset override
statement, 90, 92

Paramsets, 85
benefit, 87
definition, 86, 88
hierarchy, 86
identifier, 88
instantiation, 87
module instantiation, 85
overridden paramset

parameters, 88
parameter declarations, 88, 89
paramset override

statement, 90, 92
restrictions, 92

Parentheses, 29
Parenthesized expressions, 29
Partial derivatives, 151
Photodiode, 55
pnjlim, 243
Port branches, 119, 120
Port-connection, 61
Port declarations, 57
Port direction, 54–57
Port_discipline, 290

Port-reference, 120
Ports, 53

net declaration statements, 58
net-discipline declaration, 57
potential signal values, 59
unidirectional ports, 59

Positional port mapping, 63, 64
Preceding model, 291
Predefined standard natures,

38, 39, 41
Probabilistic function

random number generation,
158, 159

statistical distribution, 160–163
Probe branches, 129, 130
Probe derivative operator, 149–151
Procedural assignments, 104
Procedural blocks

analog block, 100, 101
block procedural

statement, 101–103
single block procedural

statement, 101
Procedural evaluation, 175
Procedural programming, 97

array variables, 99, 100
simple variables, 98, 99
variable declaration

statement, 97
Procedural statement, 168–170
Programming statements, 267
Pseudo-random bitstream

generator, 227
Punctuators, 15, 16

INDEX

317

R
Ragged arrays, 177
Random number generation

function, 158, 159
Range, 31, 32
Range specifier, 167
Real and integer parameter

names, 234
Real literals, 11, 12
Real types, 18, 19
Relational expression, 23, 24
Replication operator, 27
Reserved words, 6, 7
Resistor module, 133
Resistor network, 275
Runtime support

Analysis() query function, 231
device temperature, 230
module monitor, 237
module ports, 229
nonlinear solver, 238
parameter value, 230
param_name, 234
port identifier, 229
simulator supports, 235
sourcescale, 235
system functions, 229

S
$arandom function, 159
Scalar branches, 115, 116
Scalar nets, 47, 48

Scalar numerical value, 168
scalar-terminal, 116
Scale symbols, 12
Scheduled transition, 204
seed argument, 159, 161
Sequential listing, 178
Short-circuit/minimal

evaluation, 30
Signal access functions,

121–123, 172
Signal directions, 120, 121
Simulation string parameter

names, 236
Simulators, 287
Single-point DC analysis, 232
Slew analog filter, 204, 205
Specifying zero (0), 181
SPICE compatibility, 306
SPICE-like simulators, 242
sqrt(x) function, 155
$rdist_normal function, 162
$rdist_uniform, 161
$simprobe() queries, 236
$table_model function, 180,

181, 183
Standard attributes, 287, 289
standard-dev argument, 161
Standard math functions, 153
Statistical distribution

function, 160–163
String data type, 257
String literal, 13
String types, 19
Subscript expressions, 21

INDEX

318

Subscript operator [], 21
Switch branches, 132–134
System function, 256
System names, 7

T
Table data structure

data acquisition systems, 175
jagged array grids, 176–178
preparation, 178–180

Tethered seismic mass, 147
Text output system, 259
Time derivative operator, 135–138
Time-domain filters

absolute delay filter, 201, 202
slew analog filter, 204, 205
transition filter, 202–204

Time integrator operator,
138–140, 142

Timer() function schedules, 226
Timer monitored event

function, 226
Top-level module, 271
Traditional Verilog-A syntax

style, 153
Transitional Verilog-A function

style, 154
Transition filters, 202–204, 302
Transition-time, 302
Trigonometric functions, 155, 156
2-D array, 180
Type file descriptors, 250
Type-string argument, 159, 161

U
Unary operators, 14
Underscore character (_), 10
Unidirectional ports, 59
Unnamed branches, 123–125
User-defined functions, 243, 297

analog block, 170
called as statements, 172–174
calling styles, 170
defining, 165, 166
formal arguments, 166, 167
function references, 170, 171
functions in expressions, 172
module body, 166
procedural statement, 168–170
return variable, 167, 168
self-contained segments, 165

V
Vector branches, 117–119
Vector port declaration, 56
Vector terminals, 117
Verilog-A, 231–233, 236, 238, 249,

255, 281, 303
built-in math functions,

153, 154
filters, 201
lookup tables, 175
procedural block, 175
user-defined net-discipline

types (see Net-discipline
types)

INDEX

319

Verilog-A code, 284, 293, 295
Verilog-A compiler directives, 293
Verilog-A component, 215
Verilog-A description, 294
Verilog-A discipline, 290
Verilog-A expression, 297
Verilog-A functions, 249
Verilog-A language, 1, 2, 286

comments, 3, 4
compiler directives, 7, 8
expressions (see Expressions)
identifier, 4

escaped identifier, 5
hierarchical name, 6
simple identifier, 4, 5

numerical literal, 8
integer literals, 8–10
real literals, 11, 12

operator, 14
punctuators, 15, 16
reserved words, 6, 7
string literal, 13
system names, 7

Verilog-A LUT model function, 175
Verilog-A models, 267
Verilog-A module, 268
Verilog-A procedural code, 282
Verilog-A simulators, 86

Verilog-A source text, 1
Verilog-A syntax, 282, 293
Verilog-A variables, 281
Verilog-A version, 299
Voltage-controlled

oscillator (VCO),
144, 145

W, X, Y
Writing and formatting data, 262

Z
Zero-denominator filter, 212
Zero-denominator Laplace filter,

207, 208
Zero-pole form, 211, 212
Zero-pole transfer function, 207
Z-transform filters

arguments, 210
linear discrete-time filters, 210
numerator-denominator filter,

213, 214
numerator-pole filter, 213
zero-denominator filter, 212
zero-pole form, 211, 212
zero transition time, 211

INDEX

	1
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	978-1-4842-6351-8.webp
	978-1-4842-6351-8_1
	Chapter 1: Lexical Basis
	Character Set and Tokens
	Comments
	Identifiers
	Simple Identifiers
	Escaped Identifiers
	Hierarchical Names

	Reserved Words
	System Names
	Compiler Directives
	Numerical Literals
	Integer Literals
	Real Literals

	String Literals
	Operators
	Punctuators

	978-1-4842-6351-8_2
	Chapter 2: Basic Types and Expressions
	Basic Types
	Integer Types
	Real Types
	String Types

	Expressions
	Primary Expressions
	Call Expressions
	Subscript Expressions

	Arithmetic Expressions
	Relational Expressions
	Logical Expressions
	Bitwise Expressions
	Conditional Expressions
	Concatenated Expressions

	Expression Evaluation Order
	Operator Precedence
	Parenthesized Expressions
	Short-Circuit Evaluation

	Expression Containers
	Assignment Patterns
	Ranges

	978-1-4842-6351-8_3
	Chapter 3: Net-Discipline Types
	Defining Signal Natures
	Base Natures
	Derived Natures
	Predefined Natures

	Defining Net-Discipline Types
	Nature Binding Statements
	Domain Binding Statements
	Nature Override Statements
	Deriving Natures from Disciplines
	Discipline Compatibility
	Predefined Disciplines

	Net Declarations
	Scalar Nets
	Vector Nets
	Ground Nets
	Net Initialization
	Accessing Net Attributes

	978-1-4842-6351-8_4
	Chapter 4: Modules and Ports
	Defining Module Connectivity
	Declaring Port Directions
	Declaring Port Types

	Connecting Modules by Instantiation
	Explicit Port Mapping
	Positional Port Mapping
	Top-Level Instantiation and $root
	Implicit Nets
	Instantiation of SPICE Primitives

	978-1-4842-6351-8_5
	Chapter 5: Parameters
	Parameter Declarations
	Simple Parameters
	Array Parameters
	Permissible Value Ranges
	Parameter Aliases
	Local Parameters

	Overriding Parameters
	Instance Parameter Override
	Parameter Override by Name
	Parameter Override by Order

	Hierarchical Parameter Override

	Hierarchical System Parameters

	978-1-4842-6351-8_6
	Chapter 6: Paramsets
	Introducing Paramsets
	Defining Paramsets
	Paramset Parameters
	Parameter Override Statements
	Other Paramset Statements

	Paramset Instantiation

	978-1-4842-6351-8_7
	Chapter 7: Procedural Programming
	Variables
	Simple Variables
	Array Variables

	Procedural Blocks
	Analog Blocks
	Block Procedural Statements

	Assignment Statements
	Scalar Assignments
	Array Assignments

	Conditional Statements
	if Statement
	case Statement

	Looping Statements
	while Statement
	for Statement
	repeat Statement

	978-1-4842-6351-8_8
	Chapter 8: Branches
	Declaring Branches
	Scalar Branches
	Vector Branches
	Port Branches

	Branch Signals
	Signal Directions
	Signal Access Functions
	Unnamed Branches

	Contributing Branch Signals
	Direct Contribution Statements
	Indirect Contribution Statements
	Probe Branches
	Value Retention
	Switch Branches

	978-1-4842-6351-8_9
	Chapter 9: Derivative and Integral Operators
	Time Derivative Operator
	Case Study: DC Motor

	Time Integrator Operator
	Case Study: Chemical Reaction System

	Circular Integrator Operator
	Case Study: Voltage-Controlled Oscillator

	Indirect Contribution Equations
	Case Study: Accelerometer

	Probe Derivative Operator

	978-1-4842-6351-8_10
	Chapter 10: Built-In Math Functions
	Deterministic Functions
	Logarithmic and Power Functions
	Trigonometric Functions
	Hyperbolic Functions
	Limiting and Rounding Functions

	Probabilistic Functions
	Random Number Generation Function
	Statistical Distribution Functions

	978-1-4842-6351-8_11
	Chapter 11: User-Defined Functions
	Defining Functions
	Formal Arguments
	A Return Variable
	A Procedural Statement

	Calling Functions
	Function References
	Using Functions in Expressions
	Function Called As Statements

	978-1-4842-6351-8_12
	Chapter 12: Lookup Tables
	Table Data Structure
	Jagged Array Grids
	Preparing Table Data

	Lookup Table Function
	Input Variables and Data Source
	Control String

	978-1-4842-6351-8_13
	Chapter 13: Small-Signal Functions
	AC Analysis
	AC Stimulus Function

	Noise Analysis
	White Noise Function
	Flicker Noise Function
	Look-Up Table Noise Functions
	Correlated Noise Sources

	978-1-4842-6351-8_14
	Chapter 14: Filters
	Time-Domain Filters
	Absolute Delay Filter
	Transition Filter
	Slew Filter

	Frequency-Domain Filters
	Laplace Transform Filters
	Zero-Pole Filter
	Zero-Denominator Filter
	Numerator-Pole Filter
	Numerator-Denominator Filter

	The Z-Transform Filters
	Zero-Pole Filter
	Zero-Denominator Filter
	Numerator-Pole Filter
	Numerator-Denominator Filter

	978-1-4842-6351-8_15
	Chapter 15: Events
	Event Control Statements
	Global Event Functions
	Monitored Event Functions
	Cross Function
	Last Crossing Function

	Above Function
	Timer Function

	978-1-4842-6351-8_16
	Chapter 16: Runtime Support
	Elaboration Queries
	Port Connections
	Parameter Overrides

	Simulation Queries
	Analysis Type
	Kernel Parameters
	Dynamic Probing

	Solver Support
	Announcing Discontinuity
	Bounding Time Step
	Limiting Iteration Steps

	Simulation Control
	Announcing Severity
	Terminating Simulation

	978-1-4842-6351-8_17
	Chapter 17: Input and Output
	File Management
	Opening Files
	File Positioning
	Error Status
	Detecting End-of-File
	Flushing Output
	Closing Files

	Reading Data
	Reading a Line from a File
	Reading Formatted Data

	Displaying and Writing Data
	Text Output
	File Output
	Writing Data to a String
	Escape Sequences

	978-1-4842-6351-8_18
	Chapter 18: Generative Programming
	Generate Blocks
	Generate Statements
	Generate Regions
	Conditional Generation
	Looping Generation

	Hierarchy Scope and Names
	Order of Elaboration

	978-1-4842-6351-8_19
	Chapter 19: Attributes
	Introducing Attributes
	Attribute Assignments
	Attribute Instances

	Standard Attributes
	Simulation Reports
	Output Variables
	Port Discipline Override

	978-1-4842-6351-8_20
	Chapter 20: Compiler Directives
	File Inclusion
	Macro Definition
	Object-like Macros
	Function-like Macros
	Undefining Macros
	Predefined Macros

	Conditional Compilation
	Default Transition Directive

	978-1-4842-6351-8_21
	Appendix
	Reserved Words in Verilog-A
	Keywords
	Other Reserved Words

	SPICE Compatibility

	Index

