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Introduction

The digital revolution (also known as the third industrial revolution) 

made a dramatic shift from analog to digital technology and electronics. 

In a world that seems dominated by digital information processing, one 

may wonder if there is still room for analog functions. Of course, it is 

unwise to assume that analog signal processing will go extinct. Without 

analog devices, circuits, and systems, digital systems would lack the 

means for interaction with the physical world. And the need for such 

interfaces is only growing as we are stepping into the fourth industrial 

revolution. Technologies like autonomous drive and the Internet of Things 

increasingly require advanced sensors in various physical domains, 

improvements in radio frequency communication, and new energy 

harvesting solutions, all essentially based on analog devices, circuits, and 

systems.

In the fast-evolving, socially interconnected world, we are witnessing a 

seismic shift in the amount of data that needs to be processed in real time. 

Moving forward, the conventional digital processing, with the separation 

of data and computing, becomes critically constrained by the energy 

growth of data movement. This will necessitate breaking the barriers of 

digital abstractions by shifting information representation from symbolic 

to physically meaningful quantities and switching from sequential 

discrete-time to continuous-time dynamics. Most of these efforts to revive 

analog computing borrow essential ideas from natural analog computing 

processes. These include, but are not limited to, neuromorphic computing, 

cellular automata, memcomputing, and Ising model–based systems.
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For systems consisting wholly of analog components, analog modeling 

and simulation are essential for checking a system's structural design 

and for making predictions about the system behavior. But even when 

the system is partially or fully digital, analog modeling and simulation 

may still be necessary. Signal integrity properties, such as delays, noise, 

and distortion, often cannot be disregarded in digital high-speed circuits. 

Signal integrity analysis of digital circuits and systems is essentially based 

on analog modeling and simulation.

Analog hardware description language Verilog-A is a particularly 

suitable framework for design-oriented modeling and simulation of 

analog devices, circuits, and systems. It applies to both electrical and 

non-electrical as well as conservative and signal-flow system descriptions. 

Both the structure and behavior of a multidiscipline analog system can 

be modeled with Verilog-A on different levels of abstraction. Anything 

that can be modeled with Verilog-A can also be simulated. Besides, the 

standard exists for the Verilog-A language, which means that Verilog-A 

models can be easily exchanged between different simulators.

�Verilog-A Language Evolution
The Verilog-A language was introduced in 1996 during the contest 

between Verilog-HDL and VHDL, the two industry-standard digital 

hardware description languages (HDLs), to expand into analog and 

mixed analog-digital applications. The non-profit organization Open 

Verilog International (OVI), which had standardized Verilog-HDL with 

IEEE in 1995, took responsibility to define and standardize Verilog-AMS 

as an analog and mixed-signal extension to Verilog-HDL. The release of 

the Verilog-A Language Reference Manual (LRM) 1.0 in 1996 as an OVI 

standard was the first step of that initiative. It was the beginning of the 

Verilog-A language evolution with basic milestones shown in Figure 1.
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Figure 1.  Timeline of the Verilog-A language evolution

Following the standardization plan, OVI released the first complete 

definition of the Verilog-AMS standard in 2000. It was a combination of 

the IEEE Verilog-HDL standard 1364-1995, the updated OVI Verilog-A 

standard from 1996, and new language extensions providing mixed-signal 

modeling features. OVI planned to merge these three parts into a single 

HDL that would be eventually standardized by IEEE, but it did not happen. 

Verilog-AMS continued to evolve as a superset to IEEE Verilog-HDL 

defined by Accellera, the standardization body that succeeded OVI.

Fortunately, Verilog-A did not cease to exist with the birth of Verilog-

AMS. After the introduction of the Verilog-A LRM 1.0, it has become 

clear that there are important applications requiring and benefiting from 

Verilog-A modeling capabilities. The Verilog-A language has continued 

to exist and evolve as an all-analog subset of the Verilog-AMS language. A 

special annex is provided in Verilog-AMS LRMs to help users and compiler 

developers clearly define Verilog-A within the Verilog-AMS language. In 

the process of standardization, Verilog-AMS experienced several major 
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LRM revisions with each new LRM revision superseding the syntax and 

semantics of the previous ones. Numerous language enhancements have 

been introduced as well as various modifications required to resolve 

conflicts with the independently developing IEEE Verilog-HDL standard. 

Most of these enhancements and modifications also affected the syntax 

and semantics of the analog-only subset Verilog-A.

In 2005, the IEEE Verilog-HDL was rolled into a newly introduced 

hardware description and verification language SystemVerilog. Accellera 

responded by releasing Verilog-AMS LRM 2.4 in 2014 as the final version 

of this standard and decided to focus on defining SystemVerilog-AMS as 

an analog and mixed-signal extension to SystemVerilog. Nevertheless, 

Verilog-AMS started adopting some of the SystemVerilog language features 

starting from LRM 2.3, affecting also to some extent the Verilog-A syntax 

and semantics. At the time this book was written, the SystemVerilog-AMS 

standard was not yet introduced, but it is already announced that Verilog-A 

will be preserved as an analog-only subset also within the SystemVerilogh-

AMS language.

�Verilog-A and SPICE-like Simulators
The Verilog-A language was introduced with two basic objectives. The first 

one was to define an analog HDL with similar syntax and related semantics 

to digital Verilog-HDL as a subset of Verilog-AMS. The other objective was 

to provide compatibility of Verilog-A with the SPICE simulation engine.

SPICE (Simulation Program with Integrated Circuit Emphasis) was 

developed at the University of California at Berkeley in 1971 as a tool to 

predict analog circuit behavior from circuit connectivity and analytical 

models of circuit components. The birth and growth of the integrated 

circuit industry in the 1970s led to the widespread adoption of the Berkeley 

SPICE program. Furthermore, the availability of the SPICE code and 

documentation from Berkeley, for a nominal fee, spurred the development 

of SPICE-like simulators in academia, industry, and commercial products. 
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Today, there are thousands of copies of SPICE-like circuit simulators in use 

across academia and industry, and there are many commercial SPICE-like 

simulators in the market.

All major commercial SPICE-like simulators support also the Verilog-A 

language. The compatibility with the SPICE simulation engine was not 

the only reason for the widespread adoption of Verilog-A in SPICE-like 

simulators. Verilog-A was able to expand SPICE modeling and simulation 

capabilities both in the level of abstraction and domain of application, as it 

is schematically shown in Figure 2.

Figure 2.  SPICE and Verilog-A application domains

With the syntactic heritage from Verilog-HDL and semantics derived 

from SPICE fundamentals, Verilog-A can effectively describe analog 

behavior at both system high level and SPICE circuit level of abstraction. It 

allows for the top-down analog design, where the starting point could be 

a system described in the form of block or signal-flow diagrams, which is 
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successively partitioned and refined until the detailed SPICE circuit–level 

implementation is obtained.

On the other hand, Verilog-A extends SPICE with multidiscipline 

modeling capabilities. In addition to electrical discipline, being a 

traditional SPICE modeling domain, Verilog-A supports other energy 

domains such as magnetic, thermal, or kinematic, with the possibility to 

define additional custom disciplines. With Verilog-A, the models from 

different disciplines and abstraction levels can be freely mixed in the same 

analog design.

�Verilog-A and Compact Modeling
SPICE circuit element models are commonly referred to as compact 

models. They should be sufficiently simple to provide efficient circuit 

simulation and sufficiently accurate to make the outcome of the simulation 

useful to circuit designers.

Compact models were traditionally hand-coded in C, including 

derivatives of the model expressions, and tightly intertwined with SPICE 

solver algorithms. With continuous advances in device and circuit 

technology, the number and complexity of compact models increased 

dramatically, producing a burden on new compact model implementation. 

As other SPICE-like simulators emerged, with different data structures and 

solver algorithms, compact models had to be hand-implemented multiple 

times; see Figure 3.
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Figure 3.  Implementing every model in every SPICE-like simulator

The obvious solution to the issue of implementing every model in 

every simulator was to completely separate compact model code from the 

simulator code. With Verilog-A, the code of compact models has changed 

from being tightly integrated within simulators to being defined in a stand-

alone manner, as demonstrated in Figure 4.
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Figure 4.  Separating compact models from SPICE-like simulators

With the introduction of language extensions to support compact 

device modeling in LRM 2.2, Verilog-A has become the de facto standard 

language in the electronics industry for coding compact models of active 

and passive semiconductor devices. All industry-standard compact 

models released by Si2 Compact Model Coalition1 (CMC) as well as 

compact models of emerging nano-electronics devices released by the 

New Era Electronic Devices and Systems2 (NEEDS) initiative are coded in 

Verilog-A.

1 https://si2.org/cmc/
2 https://nanohub.org/groups/needs/compact_models
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�Verilog-A Fundamentals
A general multidiscipline analog system is described in Verilog-A using 

a lumped-component model. It simplifies the description of a spatially 

distributed physical system into a topology of interconnected components 

which are acted upon by a stimulus and produce a response. Verilog-A 

provides modeling constructs for both structure and behavior of the 

lumped-component system description.

�Elements of Structure
Verilog-A permits the hierarchical description of a system structure. 

It allows the decomposition of a complex system into a set of smaller 

manageable subsystems, being possibly further recursively decomposed 

up to any appropriate level of deepness. The hierarchical system 

partitioning is based on modules. The top-level module represents 

the system under consideration. A hierarchical description is created 

when higher-level modules create instances of lower-level modules, as 

schematically shown in Figure 5.
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Figure 5.  Verilog-A structural modeling elements

A lumped-component model is implemented in Verilog-A instantiating 

two-terminal components, or branches, within modules. The branch 

terminals are interconnected by nets which are hierarchically extended 

through module ports. Nets are topological abstractions of physical 

links among system components which make the physical position and 

geometry of modules and branches irrelevant. Each port is associated with 

two nets, a net in the instantiating module, or upper connection, and a net 

in the instantiated module, or lower connection. The lower and upper port 

connections are also known as formal and actual module connectors.

A net provides connectivity within a module when it is used as 

a branch terminal or port connector. Module ports extend the net 

connectivity of branch terminals to upper or lower levels of the module 

hierarchy. In that way, the connectivity of branch terminals can traverse 
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the module hierarchy. A junction where two or more branch terminals 

hierarchically connect is called a node. It allows us to consider system 

structure as a network of branches with terminals connected to nodes. 

The lumped network is drawn as a collection of nodes and branches. A 

node is a point of interconnection for the branches, and a branch is a path 

between two nodes. As such, a branch always has two terminals and each 

terminal connects to one node.

�Elements of Behavior
A unifying concept to describe the behavior of a wide range of general 

multidiscipline lumped-component systems is energy. The system 

components may thus be thought of as energy manipulators which process 

the energy injected into the system depending upon the way they are 

interconnected.

In Verilog-A, each net is declared as a data object of a net-discipline 

type to define a domain in which the net supports energy exchange in 

the system. The net-discipline types are defined by flow and potential, a 

pair of physical quantities associated with the natures of energy exchange 

among system components. The flow is an intensive quantity, typically 

representing energy flux or power, like electrical current or mechanical 

force. On the other hand, the potential is an extensive quantity that gives 

the pitch of the energy flow, like electrical voltage or mechanical pressure. 

The product of flow and potential physically represents the energy or 

instantaneous power.

Branches and nodes are the model objects that carry the flow and 

potential quantities. A branch is a path of flow between two nodes. All 

branch terminal nets connected to a node share the same potential. The 

potential of the node is in that way shared with all continuous hierarchical 

nets connected via ports to the node. The branch terminals share the same 

flow which is also the flow through the branch. The difference between 

potentials in nodes connected by a branch is a branch potential. While 

Introduction



xxxii

nodal potentials are defined relative to the global reference (or ground) 

potential, branch potentials are independent of the global potential 

reference. A product of the branch potential and the flow through the 

branch corresponds to the instantaneous power (or energy) being 

exchanged with the branch. The nodal potentials and flow in branches 

define the system state and behavior at any instance of time. They are also 

commonly referred to as system signals.

The behavior of a circuit is captured in Verilog-A by two sets of 

relationships for nodal potentials and branch flows. The first set of 

relationships is implicitly defined by the system network interconnections 

using the General Kirchhoff Potential Law (GPL) and the General Kirchhoff 

Flow Law (GFL). GFL and GPL state that the flow from all branches at a 

node and the sum of all branch potentials around a loop of connected 

branches shall sum to zero at any instant of time. These are essentially 

Kirchhoff’s laws for electrical circuits generalized to any energy domain 

associated with the net-disciplines. The second set of relationships is 

the branch constitutive relationships. They are explicitly introduced in a 

Verilog-A code by branch contribution statements defining each branch 

flow or potential in terms of other potential and flow variables in the 

system. The nature of nets may be abstracted either as directional signal 

flows or as satisfying conservative-law relationships between quantities. 

Conservative-law relationships assume the existence of both branch flow 

and potential.

�Compilation and Simulation
One of the main motivations for writing a model of an analog system in 

the Verilog-A language is to enable us to simulate it. The simulation is 

based on the executable model produced from the Verilog-A code by 

analysis and elaboration. The combined analysis and elaboration process 

is commonly referred to as compilation.
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The analysis is the process of reading and analyzing Verilog-A source 

code for lexical, syntactic, and semantic errors. From the source code, the 

lexical analysis produces tokens, the words in a language, which are then 

parsed to produce a syntax tree. It is first used to check if code conforms 

to the syntax rules of a language. Semantic analysis is then performed 

on the syntax tree to check aspects that are not related to the syntactic 

form or that are not easily determined during parsing. Compilers may 

execute compilation in one or more passes saving the compiled results 

in intermediate formats or passing the compiled results directly to an 

elaboration phase.

Elaboration is the process of binding together the components that 

make up a Verilog-A executable model. Elaboration occurs after the 

compilation phase and before simulation and it involves expanding 

module instantiations, computing parameter values, resolving hierarchical 

names, establishing net connectivity, and in general preparing the design 

for simulation. Some of the Verilog-A statements are used to control the 

elaboration process. The executable Verilog-A model is defined as a set 

of continuous-time differential-algebraic equations (DAEs) that come 

from the behavioral description of the analog system and its signal-flow or 

conservative-law connection semantics.

The simulation of Verilog-A executable models is based on a time 

discretization of continuous-time DAEs using discrete time-stepping 

integration methods and the solution of resulting nonlinear algebraic 

equations. The quality of the solution depends on tolerances that define 

the discretization time step and other characteristic values related to the 

numerical techniques used to solve the system of nonlinear algebraic 

equations at each time point. Another important characteristic of 

the simulation of continuous-time models is that a consistent initial 

(quiescent) operating point is required. Without it, inaccuracies or  

non-convergence issues could arise during the rest of the simulation.
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�About This Book
The main intention of this book is to provide a practical guide to the 

Verilog-A language in its latest standard formulation. There is no doubt 

that the Accellera Verilog-AMS Language Reference Manual3 provides 

the most complete description of the Verilog-A(MS) language standard. 

However, it is a definitional document written in a complex legalistic 

style. This makes it difficult to use as a tutorial to learn the Verilog-A 

language or as a guide when solving practical problems that arise in coding 

Verilog-A models.

The similar goal of providing a more practical description of the 

Verilog-A(MS) language than the official LRM description has been 

already attained by two good books.4,5 The book by FitzPatrick and Miller, 

from 1998, is based on the initial Verilog-A LRM 1.0. However, substantial 

extensions and modifications of the Verilog-A language on the way from 

LRM 1.0 to LRM 2.4 made this book quite outdated. The other book, 

by Kundert and Zinke, describes Verilog-AMS (including the Verilog-A 

language as the all-analog subset) as based on the more recent LRM 2.1, 

which makes it to a lesser extent outdated. Nevertheless, it is still missing 

many important language extensions and features introduced after LRM 

2.1 and focuses mainly on mixed-signal hardware description capabilities 

of the Verilog-AMS language. This book is again fully dedicated to the 

Verilog-A language, as the book from FitzPatrick and Miller, but based on 

the latest LRM 2.4 description. While the author has worked diligently to 

ensure that this book provides accurate and complete descriptions of the 

3 Verilog-AMS Language Reference Manual (LRM), Version 2.4.0, Accellera 
Systems Initiative, May 30, 2014.
4 D. FitzPatrick and I. Miller, Analog Behavioral Modeling with the Verilog-A 
Language, Springer, 1998.
5 K. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS, The Designer’s 
Guide Book Series, Springer, 2004.
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Verilog-A language, the final authority here remains to be the Accellera 

Verilog-AMS LRM 2.4 manual.

The book is organized into 20 chapters introduced in a manner that 

builds foundational knowledge first before moving into more complex 

topics. No prior knowledge of any hardware description language is 

assumed and the approach is to learn through relevant examples. This 

book could be useful to both a newcomer to the Verilog-A language as well 

as an experienced user who wants to refresh on a certain topic.

Introduction
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CHAPTER 1

Lexical Basis
The most basic study of any language is lexical. Without knowing the rules 

for constructing words, we cannot begin to write books or even construct 

a single sentence. Likewise, before we can write a meaningful Verilog-A 

code, we must learn the rules for constructing words or, more correctly, 

lexical tokens.

�Character Set and Tokens
A Verilog-A source text consists of one or more source files that contain 

a series of characters. The permissible characters in the Verilog-A source 

files are shown in Table 1-1.

Table 1-1.  Permissible characters in the Verilog-A language

Character Name Symbols

Letters A B C D ... X Y Z

a b c d ... x y z

Digits 0 1 2 3 4 5 6 7 8 9

Graphic characters ! " # % & ` ' ( ) * +

, - . / : ; < = > ? $

[ \ ] ^ _ { | } ~ @

Whitespace characters Space tab newline form-feed
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The source character set includes 52 upper- and lowercase letters of 

the Latin alphabet, 10 decimal digits, 32 special graphic characters, and 

4 non-printing or whitespace characters. The non-printing characters do 

not correspond to visible marks, but typically do occupy an area in the 

source text.

During lexical analysis, the Verilog-A compiler resolves the stream 

of characters from the source text into a series of tokens consisting of 

one or more characters. The tokens in the Verilog-A language could be 

classified as

•	 Comments

•	 Identifiers

•	 Reserved words

•	 System names

•	 Compiler directives

•	 Numeric literals

•	 String literals

•	 Operators

•	 Punctuators

The whitespace characters serve as token separators and they are 

not allowed in any token except in string literals. The token separation 

is provided also with other tokens, like operators and punctuators, 

but separation by whitespace characters is often necessary to avoid 

ambiguities. In principle, any whitespace that occurs between tokens is 

ignored during lexical analysis, except when a whitespace character serves 

as a token separator.

Chapter 1  Lexical Basis
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�Comments
Comments are inserted in Verilog-A code for readability and 

documentation. It is an essential feature of a good coding practice.

The Verilog-A language has two forms to introduce comments. Two 

forward slashes, //, indicate the start of a one-line comment, which 

continues until the end of the line:

// This is a comment

x=1; // The first part of the line is not a comment

An alternative technique is to use block comments which start with /* 

and end with */. Such comments can continue over many lines:

/* This is a comment */

/* This

is

a

longer

comment */

Spaces are not allowed within the two forward slashes or between / 

and * characters:

/ * This is not a valid comment * /

/ / Neither is this

Two forward slashes // shall not have any special meaning inside a 

block comment:

/* This is a comment with // as a comment text

    and this is a continuation */

Block comments shall not be nested:

/* /* This comment should

      not pass a Verilog-A lexical analysis */ */

Chapter 1  Lexical Basis
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Since the comments are not relevant as tokens after lexical analysis, 

each comment is replaced after resolution by a single space character. 

Because of that, comments are often considered a kind of whitespace.

�Identifiers
An identifier is a user-defined token that is introduced to give an object a 

unique name so it can be referenced in the Verilog-A code. Identifiers are 

case sensitive; both upper- and lowercase characters in identifiers are valid 

and distinct.

Note A  good coding practice is to use mainly lowercase identifiers 
with meaningful names. This makes Verilog-A code easily readable 
and self-documented.

Verilog-A compilers may set a limit on the maximum length of 

identifiers, but it should be at least 1024 characters. If an identifier exceeds 

the specified length limit, an error shall be reported.

An identifier in Verilog-A shall either be a simple identifier or 

an escaped identifier. Every identifier in Verilog-A has a unique 

hierarchical name.

�Simple Identifiers
A simple identifier is a sequence of some combination of letters, digits, 

dollar signs ($), and the underscore (_) characters. The first character of a 

simple identifier shall not be a digit or a dollar sign ($). Examples of valid 

simple identifiers are

initial_velocity

level_1
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merge_ab

_position

n$999

whereas invalid simple identifiers include

5velocity // Identifier cannot start with a digit

level-1 // Don’t confuse - with _

$n999 // Identifier cannot start with $

Simple identifiers can have a leading underscore. However, it is best to 

avoid them, since the leading underscores are often generated and used 

internally by compilers.

�Escaped Identifiers
An escaped identifier starts with the backslash character (\) and ends with 

a whitespace character. It provides means of including any of the printable 

ASCII characters (a letter, digit, or graphic character) in an identifier. 

Examples of valid escaped identifiers are

\5$+$velocity

\level-1

\***water-temperature***

\net1/\net2

\{a,b}

\a*(b+c)

Neither the leading backslash character nor the terminating 

whitespace is considered to be part of the identifier. Therefore, an escaped 

identifier \charge1 is treated the same as a non-escaped identifier 

charge1.
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�Hierarchical Names
A hierarchical name is used as a reference to access an identifier in various 

objects in the Verilog-A code hierarchically. It is specified by concatenating 

the names of the unilaterally inclusive hierarchical instances up to the 

instance that locally contains the identifier. The period character (.) is 

used to separate instance names in the hierarchy. For example:

u1.struct1.field // u1 must be visible locally

is a hierarchical name for the field identifier, defined in the instance 

struct1 which is instantiated in the framework of u1. The system name 

$root refers to the top of the instantiated design:

$root.mymodule.u1 // absolute name

Both simple and escaped identifiers can be used as hierarchical 

instance names.

An instance name can be also indexed by introducing the index 

number in brackets after the instance identifier:

field[5].sum

The index number is an integer literal (or expression that evaluates a 

constant integer number). In that way, multiple hierarchical instances can 

share the same name.

�Reserved Words
Reserved words are similar to simple identifiers, with the restriction to use 

only lowercase letter characters. The reserved words cannot be used as 

simple identifiers. However, a reserved word preceded by the backslash 

character becomes an escaped identifier and is not interpreted anymore as 

a reserved word.
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Some of the reserved words in Verilog-A are keywords. Keywords 

have a special meaning in the Verilog-A language and they are part of the 

syntax defining various language constructs. The reserved words which 

are not keywords have no meaning in the Verilog-A code but still it is not 

allowed to use them as simple identifiers. They are reserved for use in 

other languages from the Verilog family, such as Verilog-HDL or mixed-

signal extension in Verilog-AMS. The complete list of reserved words and 

keywords in Verilog-A is given in the Appendix.

�System Names
A name following the dollar sign ($) character is interpreted as a system 

name, which can represent a system task or a system function:

$finish;

$display ("display a message");

The $ character in a system name shall not be followed by a whitespace 

character and shall not be escaped. Any valid identifier already used in 

contexts other than this construct, as well as any of the reserved words, can 

be used as a system name.

The Verilog-A language defines a standard set of system names which 

will be introduced in the chapters describing corresponding system tasks 

and functions. The simulator can provide additional system names but 

they will not be part of the Verilog-A standard.

�Compiler Directives
The tokens starting with the open quote (or accent grave) character (`) 

introduce a language construct used to implement compiler directives:

`define  M_PI 3.14159265358979323846

Chapter 1  Lexical Basis
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Verilog-A defines a standard set of compiler directives:

                      `define      `undef

`default_transition   `else        `endif

`ifdef                `ifndef      `include

`elsif

The practical usage of standard compiler directives is described in 

Chapter 20.

Compiler implementations can also specify additional compiler 

directives, which may be simulator specific, but not part of the Verilog-A 

standard. Any valid identifier already in use in contexts other than 

this construct, as well as any reserved word, can be used as a compiler 

directive name.

�Numerical Literals
A numerical literal is a token that directly denotes a constant numeric 

value rather than referring to it by name or using some other evaluation 

rule. The Verilog-A language recognizes integer and real numerical literals.

�Integer Literals
Integer literals can be specified in decimal, hexadecimal, octal, or binary 

formats. They are composed of up to three tokens.

The first and optional token is a nonzero decimal number that specifies 

the size of the integer literal in terms of its exact number of bits. The 

second token, a base format, is used to annotate the format and intended 

usage of integer literals. The base format tokens for different integer literal 

formats are given in Table 1-2.

Chapter 1  Lexical Basis
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Table 1-2.  The base format tokens for integer literals

Integer Literal Type Tokens

Decimal 'd 'D 'sd 'Sd 'sD 'sD

Hexadecimal 'h 'H 'sh 'Sh 'sH 'sH

Octal 'o 'O 'so 'So 'sO 'sO

Binary 'b 'B 'sb 'Sb 'sB 'sB

All base format tokens start with the apostrophe (or acute accent) 

character ('), followed by the optional single character s to indicate 

a signed quantity, and a letter d, h, o, or b, specifying the base for the 

number. All the letters are case insensitive and therefore 'sb 'sB 'Sb and 

'SB are considered identical tokens. The numbers specified with the base 

format shall be treated as signed integers if the s designator is included 

or as unsigned integers if the base format only is used. The s designator 

does not affect the bit pattern, only its interpretation. If the size of the 

unsigned number is smaller than the size specified for the literal integer, 

the unsigned number shall be padded to the left with zeros.

The third token defines the value of an integer literal being a sequence 

of characters that represent the corresponding numerical system base as 

shown in Table 1-3.

Table 1-3.  Characters for representation of integer literal values

Integer Literal Type Symbols

Decimal 0 1 2 3 4 5 6 7 8 9

Hexadecimal 0 1 2 3 4 5 6 7 8 9

a b c d e f A B C D E F

Octal 0 1 2 3 4 5 6 7

Binary 0 1
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Here are some examples of valid and illegal integer literals:

4'b1001 // is a 4-bit binary number

5 'D 3 // is a 5-bit decimal number

'h 837FF // is a hexadecimal number

'o7460 // is an octal number

4af // is illegal (hexadecimal format requires 'h)

The format token is optional for decimal integer literal. They can 

be used without the size and the base format as simple decimal integer 

literals specified as a sequence of digits 0 through 9 without embedded 

spaces. For example:

15984

is a valid integer literal in the simple decimal number form but

15 984 // Embedded space is not allowed

is not. Simple decimal integer literals shall be treated as signed 

integers. The simple decimal literals are also the most commonly used 

format for integer literals in Verilog-A code.

The underscore character (_) is legal to use anywhere within the 

sequence of characters defining integer literal value, except as the first 

character:

27_195_000

32 'h 12ab_f001

_15984 // This is an identifier

The underscore characters in the integer literal value tokens are 

ignored by the Verilog-A compiler. But this feature can be used to break up 

long numbers for readability purposes.
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A plus or minus sign between the base format and the number is illegal 

syntax. Negative integer literals, if required, shall be represented in two’s 

complement form. A plus or minus sign preceding an integer literal, as in 

the example:

-15984 // This is an integer expression

is an integer expression rather than an integer literal.

�Real Literals
A real literal is represented by two sequences of decimal digits (integral 

and fractional) separated with a decimal point (.):

1.2

0.1

2394.26331

or with an additional exponent part:

1.2E12

1.30e-2 // The exponent symbol can be e or E

0.1e-0

The exponent part consists of an optional + or – sign followed by an 

integer literal representing a decimal exponent. The value of the real 

literal is obtained by multiplying the pre-exponent decimal number by the 

number 10 raised to the power of decimal exponent.

Real literals shall have at least one digit on each side of the decimal 

point. The following are invalid forms of real numbers because they do not 

have at least one digit on each side of the decimal point:

.12

9.

4.E3

.2e-7
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A scale factor can be used instead of the exponent part:

2.5001K

25001k

No space is permitted between the number and the scale symbol. 

Table 1-4 describes each of the available scale factor symbols and their 

value used in scaled notation.

Table 1-4.  Scale symbols and values

Symbol Value

T 10¹2

G 109

M 106

K 103

m 10-3

u 10-6

n 10-9

p 10-¹2

f 10-¹5

a 10-¹8

The underscore character is legal anywhere in a real literal except as 

the first character of the literal or the first character after the decimal point:

236.123_763_e-12 // Identical to 236.123763e-12

_236.123_763_e-12 // An identifier

236._123_763_e-12 // Not legal
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A plus or minus sign preceding a real literal, as in the example:

-2.5001e3

is a constant expression obtained as a combination of the unary 

operator (in this case -) and a real literal.

�String Literals
A string literal is a sequence of characters enclosed by the double quote 

character (") and contained on a single line. The whitespace characters are 

significant in string literals:

"Hello world" // Not the same as "Helloworld"

Notice that the double quote (") is a single character rather than two 

successive accent characters.

Certain characters are represented in string literals using escape 

sequences, starting with a backslash character (\). For example, \n 

signifies a new line, which cannot be otherwise introduced in a string 

literal contained on a single line. Table 1-5 lists escape sequences that are 

available to be used in Verilog-A string literals.

Table 1-5.  Escape sequences in Verilog-A string literals

Escape String Character Produced by Escape String

\n Newline character

\t Tab character

\\ \ character

\" " character

\o \oo \ooo Character specified with octal numbers (0 ≤ o ≤ 7)
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Note that the octal escape sequence consists of the backslash 

character (\) followed by one, two, or three octal digits (o). The octal 

escape sequence ends when it either contains three octal digits already or 

the next character is not an octal digit.

�Operators
An operator is a language feature, represented by a single or double 

character token, which instructs to perform some well-defined action. 

The symbols for the Verilog-A operators are similar to those in the C 

programming language. A complete list of tokens that serve as Verilog-A 

operators is given in Table 1-6.

Table 1-6.  Verilog-A operator tokens

Unary Operator Binary Operator Operator Type

- + + - * / ** % Arithmetic

< <= > >= == != Relational

! && || Logical

~ & | ^ ^~ ~^ << >> Bitwise

Unary operators shall appear to the left of their operand. Binary 

operators shall appear between their operands. The whitespace is not 

allowed within the double character operator tokens, meaning, for 

instance, that * * is not a valid operator.

Besides the operators defined by single tokens, there are additional 

Verilog-A operators defined by punctuators.
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�Punctuators
The punctuators in Verilog-A are single or double character tokens that 

have independent syntactic and semantic meaning to the compiler. 

Table 1-7 presents all punctuators of the Verilog-A language with the 

description of their syntactic roles.

Table 1-7.  Verilog-A punctuators

Punctuators Role

(   ) Grouping, call operator

{   } Concatenation operator

'{  } Assignment pattern

[   ] Range, subscript operator

(*  *) Attribute instances

?   : Conditional operator

; Statement separator

, List separator

= Procedural and attribute assignments

<+ Direct branch contribution

== Indirect branch contribution

@ Event designator

# Parameter instantiation designator

: Block name and range separator

. Hierarchical names
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Some of the punctuators always appear in pairs as shown in the first six 

rows of Table 1-7.

The role of punctuators in Verilog-A code could be grouping, 

separation, and designation of other language constructs. In some 

cases, punctuators take a role of an operator, as is the case of the call, 

concatenation, subscript, and conditional operators.

Now that we are equipped with the Verilog-A vocabulary, we are ready 

to start building the first Verilog-A sentences in the form of basic type 

expressions described in the next chapter.

Chapter 1  Lexical Basis



17

CHAPTER 2

Basic Types and 
Expressions
Verilog-A is a typed language. The type of an object in Verilog-A code 

determines its storage size, the set of values it can have, and what 

operations can be performed on it. This chapter introduces Verilog-A 

basic types. Expressions combine basic type objects using operators to 

produce new basic type values. They serve as building blocks of all data 

manipulation in a Verilog-A code.

�Basic Types
There are three basic types in the Verilog-A language: integer, real, and 

string types. While the types of integer, real, and string literals are implicitly 

defined, the type of identifiers referring to basic type values in Verilog-A 

has to be declared before these identifiers are used in expressions.

�Integer Types
The integer type represents a range of integral numbers which can be 

both positive and negative. An integral number is colloquially defined as a 

number that can be written without a fractional component.
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The integer types are stored using 32-bit words. The signed integer 

numbers that can be represented in this way range from -231 to 231-1, that 

is, from -2_147_483_648 to 2_147_483_647. The negative integers are 

represented via two’s complement. It means that a negative integer -y, 

where 0 ≤ y ≤ 231-1, is stored as a binary representation of the positive 

integer 232-y.

�Real Types
The real types are stored as 64-bit words following the IEEE Standard 

STD-754-1985 for double-precision floating-point numbers as shown in 

Figure 2-1.

Figure 2-1.  The storage format for a 64-bit real type in Verilog-A

In the 64-bit IEEE format, a single bit (S) is allocated as the sign 

bit (0 or 1). The 11 bits in the exponent field (E) provide the maximum 

exponent range from –1022 to 1023. It defines the value range of the real 

type. The smallest positive number that can be represented in this way is 

2-1022=2.23×10-308, while the largest number is 21023=1.80×10308. The precision 

of the real type is determined by the number of bits in the fraction field (F).  

The 52 bits in the fractional field correspond to approximately 16 

significant decimal digits.

A real number in mathematics assumes a value of a continuous 

quantity. On the other hand, the real type numbers in Verilog-A can have 

only a finite subset of all real numbers between the largest and smallest 

values. A commonly used measure for the gap between discrete real type 

number values is the machine epsilon. It is defined as a gap between the 
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smallest real type number greater than 1 and 1, which is 2-52 ≈ 2.2×10-16. 

In numerical computations, it is very easy to attempt to generate a 

number whose absolute magnitude is too big to be represented (causing 

floating-point overflow) or too small (causing floating-point underflow). 

Subtracting two nearly equal real type values could result in catastrophic 

cancellation and complete loss of accuracy. One should always keep in 

mind that the real type numbers are not the exact representation of the real 

numbers in mathematics.

�String Types
The string type in Verilog-A represents an ordered collection of characters. 

The length of a string variable is defined by the number of characters 

stored in the string type. There is no limit on the string size, so you do not 

have to worry about running out of space to store the string. Strings use 

dynamic memory allocation as their length may vary during simulation.

String types are implemented as bit arrays of a width that is a multiple 

of 8 bits that hold ASCII values, that is, an individual ASCII character is 

defined by 8 bits.

Note  Unlike the C programming language, there is no null character 
\0 at the end of a Verilog-A string, and any attempt to use the null 
character is ignored.

The string types in Verilog-A can take on the special value "", which is 

the empty string.
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�Expressions
An expression is a formula in which operands are linked to each other by 

the use of operators to compute a value of a basic type. Expressions can 

also serve as operands and can be joined together by operators into more 

complex expressions.

�Primary Expressions
Primary expressions are the building blocks of more complex expressions. 

The simple primary expressions are basic type literals and identifiers 

declared as references to basic type values. More elaborate primary 

expressions are call and subscript expressions.

�Call Expressions

A call expression in Verilog-A is passing control and arguments (if any) to a 

function that returns a basic type value.

A call expression is formed by a function name followed by the call 

operator introduced with parentheses ( ) containing a comma-separated 

list of call arguments:

hypot(arg1, arg2)

maxValue(val1, val2)

idtmod(freq, 0.0, 1.0, –0.5)

$rdist_normal(2, 0, 5n, "instance")

The function name is an identifier for the user-defined and signal 

access functions. It could be also a keyword or system name for built-in 

functions and analog operators. Any expression can be specified as an 

argument in a function call but the number and the type of call arguments 
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must agree with the argument declaration in the function definition. Only 

signal access functions can take a variable number of arguments, one or 

two net-discipline type identifiers:

V(p, n)

V(d)

The function argument lists for the user-defined functions should 

contain at least one argument, while some of the system built-in functions 

can be used without arguments:

$random()

$temperature

with the optional use of empty parentheses.

�Subscript Expressions

A subscript operator [ ] can be used to access the elements of an array 

of basic types. One of the two operands in a subscript expression is an 

array variable name that must precede the brackets. The other, specified 

within the brackets, is the index value that must be an expression of the 

integer type:

in_val[5]

The subscript operator can be applied recursively to access the values 

in multidimensional arrays:

x[n1][n2][n3]

The subscript expressions are associated from left to right. The leftmost 

subscript operator is evaluated first.
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�Arithmetic Expressions
The operands of the arithmetic expressions may be of real or integer type. 

The arithmetic operators supported by the Verilog-A language are shown 

in Table 2-1.

Table 2-1.  The arithmetic operators

Operator Meaning Example Result

+ Addition x + y Sum of x and y

- Subtraction x - y Difference of x and y

* Multiplication x * y Product of x and y

/ Division x / y Quotient of x by y

** Power x ** y x to the power of y

% Modulus x % y Remainder of x / y

+(unary) Positive sign + x Value of x

-(unary) Negative sign - x Arithmetic negation of x

The result of the division operator, /, with integer operands is also 

an integer obtained as the algebraic quotient with any fractional part 

discarded. For example, the expressions 5/2 and -5/2 are evaluated as 

2 and -2, respectively. For positive quotient, the output is the greatest 

integer less than or equal to the quotient (floor function of the quotient), 

while for the negative quotient it is the least integer greater than or equal to 

the quotient (ceiling function of the quotient).

The modulus expression x % y finds the remainder after division  

x / y. If both operands are integers, the result is equivalent to the 

expression:

x - (x / y) * y
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For the case where either argument is real, the expression x % y is 

evaluated as

x - ceil(x / y) * y

if x/y is negative and

x - floor(x / y) * y

otherwise. Here, floor() and ceil() are Verilog-A built-in floor and 

ceiling functions, respectively.

For mixed real and integer operands, the integer operand is converted 

to real:

1 + 3.145 // is equivalent to 1.0 + 3.145

Such implicit type conversions can often be avoided.

�Relational Expressions
An expression created using a relational operator forms a relational 

expression or a condition. The six operators which can be used to form 

relational expressions are shown in Table 2-2.
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Table 2-2.  The relational operators

Operator Meaning Example Result: 1 (True) or 0 (False)

< Less than x < y 1 if x is less than y

<= Less than or equal to x <= y 1 if x is less than or equal to y

> Greater than x > y 1 if x is greater than y

>= Greater than or equal to x >= y 1 if x is greater than or equal to y

== Equal to x == y 1 if x is equal to y

!= Not equal to x != y 1 if x is not equal to y. In all other 

cases, the result is 0

A comparison of the left and right operands is carried out and the 

result is either true or false. Since there is no boolean type in Verilog-A, the 

integer type is used to represent true or false. Relational expressions return 

0 or 1, where 0 stands for false and 1 stands for true.

You can also compare strings with relational expressions. Both 

operands can be of type string, or one of them can be a string literal which 

is implicitly converted to a string type for the comparison. The integer 

value of each character of the left string operand is compared to the integer 

value of each character of the right string operand working from left 

to right.

�Logical Expressions
The operands can be of the real or integer type. The three logical operators 

in Verilog-A are shown in Table 2-3.
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Table 2-3.  The logical operators

Operator Meaning Example Result: 1 (True) or 0 (False)

&& Logical AND x && y 1 if both x and y are not equal to 0

|| Logical OR x || y 1 if either of both x and y is not equal to 0

! Logical NOT !x 1 if x equals 0. In all other cases, the result is 0

Logical operators evaluate each operand in terms of its equivalence  

to 0. The result of a logical expression is the integer with a value of 0 or 1.

�Bitwise Expressions
The bitwise expressions are concerned with the operations on single bits of 

integer types. There are seven bitwise operators, five logical and two shift 

bitwise operators, as described in Table 2-4.

Table 2-4.  The bitwise operators

Operator Meaning Example Result (for Each Bit Position)

& Bitwise AND x & y 1, if  1 in both x and y

| Bitwise OR x | y 1, if 1 is in either x or y, but not both

^ Bitwise  

exclusive OR

x ^ y 1 if 1 in either x or y, but not both

~ Bitwise NOT ~x 1 if 0 in x

^~ or ~^ Bitwise 

equivalence

x ^~ y 

or

x ~^ y

1, if both 0 or both 1, in other cases, the 

result is 0

<< Shift left x << y Each bit in x shifted y positions to the left

>> Shift right x >> y Each bit in x shifted y positions to the 

right
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The logical bitwise operators perform boolean bitwise manipulations 

on the operands, that is, the operator combines a bit in one operand with 

its corresponding bit in the other operand to calculate one bit for the 

result. The logical shift operators shift the bits of their operands filling 

vacated bits with zeros. They should not be used with negative operands. 

If the bits are shifted beyond the size of the integer, the behavior is 

undefined.

�Conditional Expressions
The conditional expression is the only ternary operator in Verilog-A. The 

format for the conditional expression is

expression-1 ? expression-2 : expression-3

The purpose of the conditional expression is to select and evaluate one 

of two expressions, expression-2 or expression-3, depending on the value 

of the expression-1. If the value of the expression-1 is zero (0), the value of 

the conditional expression is expression-3; otherwise, it is the value of the 

expression-2:

x > y ? x : y // Evaluates the larger of x and y

The first operand can be any expression evaluating numeric basic type 

but the logical expressions or expressions evaluating the integer value are 

more reliable to use than expressions evaluating real values.

�Concatenated Expressions
Concatenated expressions are joining together bits from one or more 

expressions into a single value using concatenation and replication 

operators.
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The concatenation operator, introduced with brace characters { }, 

is used to concatenate a comma-separated list of expressions within the 

braces. For example, the concatenated expression

{1'b1, 3'b101}

is equivalent to the expression

{1'b1, 1'b1, 1'b0, 1'b1}

and evaluates to 4'b1101. The value of the concatenated expression

{ "hello", " ", "world" }

is "hello world".

Unsized basic type values shall not be allowed in concatenations. 

This is because the size of each operand in the concatenation is needed to 

calculate the complete size of the concatenation.

Note  Confusion can arise for the Verilog-A users familiar with 
programming in C because { } is used to describe lists of values for 
array initialization in the C language, whereas it means something 
very different (concatenation) in the Verilog-A language.

A replication operator is the only operator that can be applied to 

concatenated expressions. It is introduced by a concatenation preceded 

by a non-negative, constant expression, called a replication constant, 

enclosed together within brace characters. It indicates a joining together of 

that many copies of the concatenation:

{4{w}} // This yields the same value as {w, w, w, w}

{b, {3{a, b}}} // This yields the same value as

               // {b, a, b, a, b, a, b}

result = {4{func(w)}};
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When a replication expression is evaluated, the operands shall be 

evaluated exactly once, even if the replication constant is zero (0).

�Expression Evaluation Order
The order in which the expressions are evaluated is defined by the operator 

precedence and associativity. It can be altered using parenthesized 

expressions and affected by short-circuiting evaluation.

�Operator Precedence
In expressions with more than one operator, the precedence of the 

operators determines the grouping of operands with operators as listed in 

Table 2-5.

Table 2-5.  Precedence of operators

Category Operator Associativity

Primary [] () Left to right

Unary ! ~ + - Right to left

Power ** Left to right

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise & Left to right

Bitwise ^ ^~ ~^ Left to right
(continued)
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Category Operator Associativity

Bitwise | Left to right

Logical && Left to right

Logical || Left to right

Conditional ? : Right to left

Concatenation {} {{}} Left to right

Table 2-5.  (continued)

For example, the multiplicative arithmetic operators *, /, and % take 

precedence over additive arithmetic operators + and -. Associativity 

refers to the order in which the operators having the same precedence are 

evaluated. If a different grouping is desired, parentheses must be used as a 

grouping delimiter.

�Parenthesized Expressions
Parentheses can be used to alter the default precedence among operators 

in expressions that contain multiple operators:

(a + b) / c // Not the same as a + b / c

They are also used as a syntactic aid to mix expressions in ways that 

would otherwise cause syntactic ambiguities.

Parenthesized expressions could be in principle considered as primary 

expressions since their values must be evaluated before the expression 

containing a parenthesized expression is evaluated.
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�Short-Circuit Evaluation
The logical and conditional expressions in Verilog-A use short-circuit 

or minimal evaluation. Some of their operand expressions shall not be 

evaluated if their value is not required to determine the final value of the 

operation. For example, if in the expression

a & (b || c)

a is known to be zero, the result of the expression can be determined as 

zero without evaluating the sub-expression b || c.

All other operators shall not use short-circuit evaluation and all of their 

operand expressions are always evaluated.

�Expression Containers
The expression containers are Verilog-A data structures whose instances 

are collections of expressions. They store expressions in an organized 

way that follows specific access rules. Verilog-A supports two types of 

expression containers: assignment patterns and ranges.

�Assignment Patterns
An assignment pattern provides a way to specify a list of expressions of 

a particular basic type. The list of expressions is grouped as a comma-

separated list within the braces { and } prefixed with an apostrophe:

'{a, b, c, d}

'{0, 1, 2}

'{1.0, PI/2.0}

'{"first", "middle", "last"};
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An assignment pattern cannot be used as operand in expressions. 

Instead, it is used in an assignment-like context. It includes arguments 

in call operators that are expected to be arrays, initialization of array 

parameters and variables, and procedural assignments of array variables.

An assignment pattern can nest in another assignment pattern:

'{'{0.0,0.1,0.1},'{0.1,0.0,0.1},'{0.1,0.1,0.0}}

It allows to annotate a clear correspondence between a collection 

of expressions and elements in assigned array data objects. A syntax 

resembling replications can be used in array assignment patterns as well:

'{2 {y}} ; // same as '{y, y}

'{2{'{3{y}}}}; // same as '{'{y,y,y},'{y,y,y}}

Note O ne should be careful not to confuse assignment patterns 
with a concatenation operator using a pair of braces { } instead of '{ }.

�Ranges
When an object in Verilog-A is numerically indexed, the range is used to 

specify its upper and lower indices.

The range is defined by the syntax

[ start-index : end-index ]
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where start-index and end-index are constant expressions that shall be 

evaluated as integers or promoted to integers from real type expressions. 

The start-index and end-index can take any positive or negative constant 

integer value including zero (0):

[0 : width-2]

[-7 : 15]

[x/y : -1]

The ranges can be either ascending, if end-index is greater than 

start-index, or descending if end-index is less than start-index. It is also 

possible to have a trivial scalar range if start-index is equal to the  

end-index. The use of ascending and descending ranges is entirely up to 

the user and their conventions.
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CHAPTER 3

Net-Discipline Types
In addition to the basic types, Verilog-A also introduces user-defined 

net-discipline types. The objects of the net-discipline types are nets, 

an abstraction of connectivity among components of various physical 

disciplines in Verilog-A models. The net-discipline types encapsulate 

information on the nature of flow and potential signals, a pair of physical 

quantities significant for communication and energy exchange among 

system components. The values of flow and potential signals are used as 

state variables in system dynamics simulation.

�Defining Signal Natures
A nature is a collection of attributes that are shared by a certain class of net 

signals. Natures should be defined at the top level of the Verilog-A code 

and they do not nest inside other nature definitions or any other Verilog-A 

constructs. Natures can be defined as base natures or derived natures 

that reuse, extend, and modify the base natures. In order to support code 

portability, the Verilog-A standard provides also a set of predefined nature 

definitions.

© Slobodan Mijalković 2022 
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_3

https://doi.org/10.1007/978-1-4842-6351-8_3#DOI


34

�Base Natures
The base natures are defined using the following syntax:

nature nature-name ;

    attribute-name = constant-expression ;

  ...

endnature

The keyword nature in the header line of the base nature definition 

is followed by a unique identifier nature-name which is used as nature 

reference. The terminating semicolon (;) after the nature name is optional. 

A body of the nature definition, between the header line and the keyword 

endnature, includes a sequence of nature attribute assignment statements. 

The attribute-name could be an identifier or a keyword for standard nature 

attribute names.

The assignment of three standard attribute names is required for all 

base nature definitions. The keywords used as attribute names, assigned 

constant expressions, and short descriptions are given in Table 3-1.

Table 3-1.  Required standard nature attributes

Attribute Name Constant Expression Description

abstol Real The maximum negligible value for signals 

associated with nature

access Identifier The name for the signal access function

units String A binding between the value of the signal 

access function and the units for that value

The abstol attribute specifies the maximum negligible value for 

signals associated with the nature. The constant expression assigned to it 

shall evaluate a constant real number. The access attribute identifies the 
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unique name of the access function for a potential or flow signal associated 

with the nature. The constant expression, in that case, shall be an identifier 

given by name, not as a string. The units attribute provides a binding 

between the value returned by the nature signal access function and the 

physical unit for that value. It is mostly required for net compatibility 

checking. Besides, simulators can use units attributes to annotate the 

signals with their physical units.

Here are two examples of the base nature definitions:

nature Illuminance

   units      = "Cd";

   access     = LP;

   abstol     = 1e-14;

endnature

nature ChemQ

   units  = "-";

   access = CH;

   abstol = 1e-14;

endnature

All other nature attributes are optional and could be assigned in the 

base as well as in derived natures.

The attribute names, assigned values, and short descriptions for two 

optional standard nature attributes are given in Table 3-2.

Table 3-2.  Optional built-in nature attributes

Attribute Name Constant Expression Description

ddt_nature nature-name The name of nature that 

represents its time derivative

idt_nature nature-name The name of nature that 

represents its time integral
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The ddt_nature and idt_nature attributes provide a relationship 

between nature using these attributes in its definition and the natures 

representing the time derivative and time integral of that nature signal, 

respectively. These nature attributes are used to reduce the need for 

specifying numerical tolerances in differential and integral operators ddt() 

and idt(). The required numerical tolerances can be taken from the ddt_

nature or idt_nature nature abstol attribute values. The value assigned 

to ddt_nature and idt_nature attributes shall be the nature name given 

by an identifier, not a string. A nature can reference itself in ddt_nature 

and idt_nature attribute assignments, which is also the default value for 

ddt_nature and idt_nature attributes if they are not assigned.

Here are examples of nature definitions including ddt_nature and 

idt_nature attribute assignments:

nature Voltage;

   units = "V";

   access = V;

   idt_nature = Flux;

   abstol = 1e-6;

endnature

nature Flux;

   units = "Wb";

   access = Phi;

   ddt_nature = Voltage;

   abstol = 1e-9;

endnature

In addition to the required and optional standard nature attributes, a 

nature definition can also assign optional user-defined attribute names. 

Typical examples include the maximum and minimum signal values or 

other numerical range signal properties:
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nature my_current;

    units = "A";

    access = I;

    abstol = 1u;

    reltol = 1m; // user-defined attribute

endnature

A user-defined attribute can be assigned in the same manner as 

the standard attributes but using an identifier as the attribute name. 

The attribute name shall be unique in the nature being defined and the 

assigned values shall be constant.

�Derived Natures
A nature can be derived from a parent nature, which is an already defined 

base nature or other derived nature. The derived nature inherits all the 

attributes of the parent nature.

A derived nature is defined using the extended syntax for the nature 

definition header line:

nature nature-name :  parent-nature ;

where the derived and parent nature names are separated by a colon 

(:) character.

A derived nature can assign additional attributes or override attribute 

values of the parent nature:

nature new_current : my_current;

    abstol = 1m; // modified for this nature

    maxval = 10.0; // new attribute for this nature

endnature
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It is illegal for a derived nature to assign or change the access and 

units attributes. It is possible to modify the parent’s values of ddt_nature 

and idt_nature attributes if the derived nature is related (share the same 

base nature) to the nature that the parent nature uses for its ddt_nature 

and idt_nature attributes.

Without any new attribute assignments and attribute overrides:

nature net_current : new_current; // An alias

endnature

the derived nature is identical to the parent nature and essentially 

represents an alias for the parent nature name.

�Predefined Natures
The names and attribute assignments of the Verilog-A predefined standard 

natures are summarized in Table 3-3.
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The predefined standard natures can be accessed in discipline 

definitions by including the standard disciplines.vams file as explained 

in Chapter 20.

�Defining Net-Discipline Types
The net-discipline types are defined using the syntax

discipline discipline-name ;

   discipline-statement

  ...

enddiscipline

The keyword discipline in the header line of the discipline definition 

is followed by a unique identifier discipline-name which is used as a net-

discipline type name in net declarations. The use of the semicolon (;) in 

the discipline definition header line is optional. The discipline shall be 

defined at the top level of the Verilog-A code and they do not nest inside 

other discipline definitions or any other Verilog-A constructs.

A body of the discipline definition, between the header line and the 

keyword enddiscipline, contains a sequence of nature binding, domain 

binding, and nature override discipline statements.

�Nature Binding Statements
The nature binding statements are used to associate the discipline 

potential and flow signal quantities to the corresponding natures:

potential  nature-name ;

flow  nature-name ;

The keywords potential and flow are used for the potential and flow 

binding, respectively.
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Disciplines having both potential and flow nature bindings are known 

as conservative disciplines:

discipline electrical;

    potential Voltage;

    flow Current;

enddiscipline

Conservative disciplines shall not have the same nature specified for 

both the potential and the flow.

Disciplines defined with a single potential or flow nature binding 

statement are signal-flow disciplines:

discipline optical_sf

   potential Illuminance;

enddiscipline

discipline chemical_sf

   potential ChemQ;

enddiscipline

In principle, it is possible to define a discipline with no nature 

bindings. These are known as natureless or empty disciplines:

discipline natureless;

enddiscipline

The nets declared with empty disciplines can be used in structural 

descriptions but not in signal access functions since the nature of signals 

is not known. Usage of empty disciplines is highly discouraged. They are 

mainly provided for backward compatibility with previous versions of the 

Verilog-A standards.
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�Domain Binding Statements
The discipline definition syntax allows also the specification of the nature 

signal domain using one of the domain binding statements:

domain discrete;

domain continuous;

The domain binding statements are optional. The default value for a 

domain is continuous.

Since analog signals are always represented in continuous time, a 

Verilog-A compiler shall silently ignore any definition of a discipline with a 

discrete domain binding.

�Nature Override Statements
A discipline can override the value of the predefined attributes in the 

bound natures using attribute override statements:

potential . attribute-name = constant-expression ;

flow . attribute-name = constant-expression ;

The attribute names are accessed using the keyword potential or 

flow, followed by the hierarchical punctuator (.), and an attribute name.

In the following example, the discipline enode overrides the value of 

the abstol and maxval attributes in new_current nature:

discipline enode;

    potential Voltage;

    flow new_current;

    flow.abstol = 10u;

    flow.maxval = 1K;

enddiscipline

The restrictions imposed on the attribute overrides in derived natures 

hold also for nature override statements in discipline definitions.
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�Deriving Natures from Disciplines
A nature can be also derived from the natures bound to the potential or 

flow in a discipline. It can be achieved using one of the following nature 

definition headers:

nature derived-nature-name : discipline-name . potential ;

nature derived-nature-name : discipline-name . flow ;

where the parent nature name is replaced by the discipline name 

followed by the hierarchical punctuator (.) and the keyword flow or 

potential. The derived nature in this way inherits all the attributes of the 

nature bound to the potential or the flow of the discipline. If the nature 

binding to the potential or the flow of a discipline changes, the new nature 

shall automatically inherit the attributes of the changing nature.

A nature derived from the flow or potential of a discipline can declare 

additional attributes or override values of the attributes already declared 

as any other derived nature.

nature enode_curr : enode.flow;

   reltol = 1u; // modified for this nature

   minval = 1p; // new attribute for this nature

endnature

In the preceding example, the nature enode_curr is derived from the 

natures bound to flow in the discipline enode.

�Discipline Compatibility
Certain operations can be done on nets only if the two (or more) nets 

are compatible. For example, if a signal access function has two nets as 

arguments, they must be compatible. It shall be an error to connect two 

nets with incompatible disciplines.
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The following rules shall apply to determine discipline compatibility:

•	 A discipline is compatible with itself.

•	 Disciplines with incompatible potential natures are 

incompatible.

•	 Disciplines with incompatible flow natures are 

incompatible.

The following rules shall apply to determine nature compatibility:

•	 A nature is compatible with itself.

•	 A potential or flow nature is compatible with a 

nonexistent potential or flow nature binding.

•	 A derived nature is compatible with its base nature.

•	 Two natures are compatible if they are derived from the 

same base nature.

•	 Two natures are compatible if they have the same value 

for the units attribute.

The following examples illustrate these rules:

discipline electrical;

    potential Voltage;

    flow Current;

endnature

discipline highvolt;

    potential highvoltage;

    flow Current;

endnature

discipline sig_flow_v;

    potential Voltage;

enddiscipline
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nature Voltage;

    access = V;

    units = "V";

    abstol = 1u;

endnature

nature highvoltage : Voltage;

    abstol = 1;

endnature

The Voltage and highvoltage natures are compatible because 

highvoltage nature is derived from Voltage nature. Similarly, electrical 

and highvolt disciplines are compatible because the natures for both 

potential and flow exist and are derived from the same base natures. The 

disciplines electrical and sig_flow_v are compatible because the nature 

for potential is the same for both disciplines and the nature for flow does 

not exist in sig_flow_v.

When a net is connected to other nets with compatible disciplines, 

the net shall be treated as having a potential abstol with a value equal to 

the smallest abstol of all the potential natures of all the disciplines with 

which it is connected. The net shall be treated as having a flow abstol with 

a value equal to the smallest abstol of all the flow natures, if any, of all the 

disciplines with which it is connected.

�Predefined Disciplines
Together with the predefined standard nature definitions given in 

Table 3-3, Verilog-A also provides a set of predefined discipline definitions 

which are summarized in Table 3-4.
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Table 3-4.  Predefined standard disciplines

Discipline Potential Nature Flow Nature

electrical Voltage Current

voltage Voltage -

current - Current

magnetic Magneto_Motive_Force Flux

thermal Temperature Power

kinematic Position Force

kinematic_v Velocity Force

rotational Angle Angular_Force

rotational_omega Angular_Velocity Angular_Force

The predefined standard disciplines can be used for net declaration in 

Verilog-A code by including the standard disciplines.vams file using the 

include compiler directive as explained in Chapter 20.

�Net Declarations
Nets are declared as objects of the net-discipline types. Nets can be 

declared as scalar or vector nets.

�Scalar Nets
The scalar nets are declared using a declaration statement:

discipline-name net-name, ... ;

Chapter 3  Net-Discipline Types

https://doi.org/10.1007/978-1-4842-6351-8_20


48

Here, discipline-name is the identifier of an already defined 

discipline. It is followed by a comma-separated list of net identifiers or 

hierarchical names:

kinematic ki_gnd, tmass;

electrical el_gnd, tetop, tebot, tesens, tesensa,

           ttrig, tinv;

chemical_sf c_NaN3, c_Na, c_N2, c_KNO3, c_K2O,

            c_Na2O, c_SiO2, c_K2Na2SiO4;

thermal tjsrc, tjn, tjp, tjld, tjpd, top.foo.dt;

optical_sf light_out, light_prop;

In the preceding examples, kinematic, electrical, and thermal 

disciplines are predefined conservative disciplines, while optical_sf and 

chemical_sf are user-defined signal-flow disciplines.

�Vector Nets
Nets can be also declared as vectors specifying the vector range after the 

discipline name in the declaration statement:

net-discipline-type-name range net-name, ... ;

The range specifier is associated with the net-discipline type 

declaration, not the net-name identifier, and it is common for all nets in the 

declaration comma-separated list.

electrical [0:width-1] in;

voltage [5:0] n2, n3;
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�Ground Nets
The potential of a net is always defined with respect to a global reference 

net, or ground net. Scalar and vector nets can be declared to be the global 

reference nets using the ground declaration statement:

ground net-name, ... ;

ground range net-name, ... ;

where net-name should be previously declared with its net-discipline:

electrical gnd;

thermal [0:1] dt;

...

ground gnd;

ground [0:1] dt;

The vector ranges in discipline and ground declaration shall be of the 

same size.

The Verilog-A standard supports also an alternative and less verbose 

syntax for ground declarations:

ground discipline-name net-name, ... ;

ground discipline-name range net-name, ... ;

allowing to specify ground net-discipline in the ground declaration 

statements:

ground electrical gnd;

ground thermal [0:1] dt;

It avoids repeating port names and ranges in separate net-discipline 

and ground declarations.
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�Net Initialization
Nets are allowed to have initializers as a part of their declarations. The net 

initialization sets the values for the potential signal in declared nets.

The initialization is introduced into net declarations by replacing the 

net-name identifiers or hierarchical names with assignments:

discipline-name net-name=initializer, ... ;

discipline-name range net-name=initializer, ... ;

For scalar nets, the initializer shall be a real type constant expression:

electrical a = 5.0;

mechanical top.foo.w = 250.0;

For vector nets, an assignment pattern with a list of real type constant 

expression is used as an initializer.

electrical [0:4] pins = '{2.3,4.5, ,6.0};

A missing value in the assignment pattern list indicates that no initial 

value is being specified for this element of the vector net.

If different nets in contact have conflicting initializers, then initializers 

on hierarchical net declarations win. If there are multiple hierarchical 

declarations, then the declaration on the highest level wins. If there 

are multiple hierarchical declarations on the highest level, then it is a 

race condition for which the initializer wins. If the multiple conflicting 

initializers are not hierarchical, then it is also a race condition for which 

the initializer wins.
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�Accessing Net Attributes
Net-discipline types encapsulate the values of potential and flow signal 

intensities and corresponding nature attribute values. The values of 

attributes attached to the potential or flow natures of the declared net can 

be accessed using hierarchical names with the syntax:

net-name . potential . attribute-name

net-name . flow . attribute-name

For example, the hierarchical name

n1.flow.maxval

can be used in expressions as a value of the user-defined attribute 

maxval if the net n1 is declared as enode net-discipline type.

The intensity of net potential and flow signals can be accessed only 

indirectly using signal access functions described in Chapter 8.
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CHAPTER 4

Modules and Ports
Modules are fundamental building blocks for structural and behavioral 

system description in the Verilog-A language. Ports provide module 

connectivity and allow communication between a module and its 

environment. When working on large designs, it is a common practice to 

decompose a system into a set of interconnected modules representing 

system components. Verilog-A supports a hierarchical system design by 

allowing modules to be instantiated within other modules. Higher-level 

modules create instances of lower-level modules and communicate with 

them through input, output, and bidirectional ports.

�Defining Module Connectivity
Modules are basically defined using the syntax:

module module-name ( module-connectivity ) ;

           // Module items

     ...

endmodule

The keyword module in the module header line, ending with a 

semicolon (;), is followed by a unique identifier module-name and a 

specification of the module connectivity in the parentheses. The top-level 

modules, without external connectivity, use header lines without, or with 

empty, parentheses. The module headers can be also used to declare 

module parameters, as it is described in the next chapter.
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Note  The keyword macromodule could be used interchangeably 
with the keyword module in the module header line. A compiler 
implementation may choose to treat module definitions beginning 
with the macromodule keyword differently, but in principle, the 
macromodule is just a synonym for a module.

Between the header line and the keyword endmodule is a module body 

containing a sequence of module items that define a module. Modules 

are defined at the top level of the Verilog-A code and they do not nest, that 

is, one module definition does not contain the text of another module 

definition. Each module definition stands alone.

Most of the Verilog-A language constructs are module items. The only 

exceptions are the nature and discipline definitions described in Chapter 3 

and paramset definitions that will be introduced in Chapter 6. The other 

Verilog-A constructs must be defined and used only within the scope 

of a module body. But before we address Verilog-A module items in the 

following chapters, it is essential to first define module connectivity by 

declaring port directions and types.

�Declaring Port Directions
Ports provide connectivity to a module by sending and receiving signals 

from the outside world. The ports are basically declared with the direction 

of the signal flow through a port. Verilog-A supports two syntax forms for 

port declaration.
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In the first syntax form, the module ports are specified in a module 

header and declared in a module body:

module module-name ( port-name, ... );

port-declaration ; ...

     // Other module items

     ...

endmodule

In this case, the parentheses in the module header contain an ordered 

list of comma-separated identifiers specifying port names. A compiler 

implementation can limit the maximum number of module ports, but it 

should allow at least 256 ports. The order used in defining a list of port 

names can be significant when instantiating the module.

The actual port declarations are introduced as statements in the 

module body together with other module items. Port can be declared as 

scalar or vector ports. The syntax for scalar port-declaration is

direction port-name,  ...

The direction specifier can be either input or output keyword for 

unidirectional or inout keyword for bidirectional port declaration. The 

direction specifier is followed by a comma-separated list of port names. All 

ports listed in the module header should have a direction declaration in a 

module body.

Here are examples of bidirectional and unidirectional scalar port 

declarations in modules representing a MOS transistor, a light-emitting 

diode (LED), and a photodiode:

module mosekv (d, g, s, b, dt);

   inout d, g, s, b, dt;

   ...

endmodule
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module led (anode, cathode, out_light);

   inout anode, cathode;

   output out_light;

   ...

endmodule

module photodiode (in_light, anode, cathode);

   input in_light,

   inout anode, cathode;

   ...

endmodule

The dots in the module body indicate that the modules contain also 

other items which are not relevant for the port declaration.

The vector ports are declared similar to vector nets:

direction range port-name,  ...

introducing a range specifier after the direction specifier. Here is an 

example of vector port declaration in a module representing a neural 

network unit:

module perceptron (in, out);

   input  [10:0] in;

   output out;

   ...

endmodule

Note that the vector port names declared in the module body are listed 

in the module header without range specifications.

Verilog-A supports also an alternative syntax for a port declaration that 

is similar to the ANSI C style of function argument declaration:
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module module-name ( port-declaration, ... );

   // Other module items

   ...

endmodule

In this syntax form, the list of port declarations is specified in the 

module header instead of the module body. Note that the port declarations 

in module headers do not end with a statement terminator (;) as the port 

declaration statements in the module body. Ports declared in the module 

header shall not be redeclared within the body of the module. It also is not 

allowed to mix module body and header port declarations.

Using this syntax form, we can redefine the port declarations in mosekv 

and led, photodiode, and perceptron module headers as

module mosekv (inout d, g, s, b,

               inout dt);

module led (inout anode, catode,

            output out_light);

module photodiode (input in_light,

                   inout anode, catode);

module perceptron (inout [10:0] in,

                   output out);

The port declaration in the module header is more concise and avoids 

repeating port names in the module header and body.

�Declaring Port Types
Ports are essentially nets and therefore each declared port needs also a 

net-discipline declaration in order to be used in the behavioral Verilog-A 

system description. If the port type is not declared, the port can only be 

used in structural descriptions of system connectivity.
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The port types can be declared in a module body using the net 

declaration statements described in Chapter 3:

module mosekv (d, g, s, b, dt);

   inout d, g, s, b, dt;

   electrical d, g, s, b;

   thermal dt;

   ...

endmodule

module led (anode, cathode, out_light);

   inout anode, catode;

   output out_light;

   electrical anode, cathode;

   optical_sf olight;

   ...

endmodule

module photodiode (in_light, anode, cathode);

   input ilight,

   inout anode, cathode;

   optical_sf in_light;

   electrical anode, cathode;

   ...

endmodule

module perceptron (in, out);

   input [10:0] in;

   output out;
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   voltage out;

   voltage [10:0] in;

   ...

endmodule

An important difference is that it is not allowed to initialize the port 

potential signal values:

thermal dt = 27.0; // illegal initialization

The ranges in the vector port direction and net-discipline declarations 

should be identical:

voltage [0:10] in; // wrong range, should be [10:0]

Unidirectional ports, with input and output directions, may only be 

declared as signal-flow net-discipline types, and bidirectional ports, with 

inout direction, as conservative net-discipline types.

Verilog-A supports also an alternative and less verbose syntax for 

direction and net-discipline declaration of scalar and vector ports:

direction net-discipline  port-name,  ... ;

direction net-discipline [  index1 : index2 ]  port-

name,  ... ;

Basically, it allows declaring a port type within the port declaration. It 

can be used in the port declaration statements in a module body:

inout electrical anode, cathode;

inout voltage [10:0] in;

but most effectively it is used for port declaration in the module 

headers:

module mosekv (inout electrical d, g, s, b,

               inout thermal dt);
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module laserdiode (inout electrical anode, catode,

                   output optical_sf out_light);

module photodiode (input optical_sf in_light,

                   inout elecrical anode, catode);

module perceptron (inout voltage [10:0] in,

                   output voltage out);

This syntax enhancement reduces the amount of code required to 

declare all the information on port connectivity. It also prevents syntax 

errors due to incompatible vector port ranges.

�Connecting Modules by Instantiation
The only way to connect modules is to instantiate them in higher-level 

modules. A hierarchy of interconnected modules in Verilog-A is created by 

recursive module instantiations.

The module instantiation statement creates one or more named 

instances of a module. The basic syntax of the module instantiating 

statements is

module-name  module-instance, ...  ;

where a module-name identifier must match exactly the name of 

the previously declared module or one declared later. The comma-

separated list of module instances follows the module name. The module 

instantiation statement can also include a list of parameter assignments 

after the module name, as discussed in the next chapter.

The module-instance in module instantiation statements is specified as

module-instance-name  ( port-connection, ... )
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introducing a module-instance-name identifier and a comma-separated 

list of port connections in the parentheses. A list of port connections 

in parentheses is optional because it is possible to instantiate also top 

modules. The parentheses, however, are always required.

The instantiations of modules can contain a range specification:

module-instance-name  range ( port-connection, ... )

which allows an array of instances to be created. These instances shall 

have the same name and differ from each other only by the index in the 

range specifier. One instance identifier shall be associated with only one 

range to declare an array of instances.

The port-connection in the module instance specification provides 

a mapping of a port in module definition and instance. There are two 

techniques to define port-connection, explicit and positional. The explicit 

and positional port mappings shall not be mixed in the same module 

instantiation. The connections to the ports of a particular module instance 

shall be all explicit or all positional.

�Explicit Port Mapping
The explicit way to connect module ports consists of linking the two names 

for each side of the connection using the syntax:

. module-port-name ( instance-mapping )

where module-port-name, preceded with a period (.), shall be the 

port name specified in the module definition. The instance port mapping 

is enclosed within parentheses. For scalar ports, the instance-mapping 

shall be a simple net identifier or a scalar member of a vector net or port 

declared within the module. For vector ports, it could be a subrange of a 

vector net or port declared within the module, or a vector net formed as a 

result of the concatenation operator.
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An unconnected port can be indicated by omitting it in the list of port 

connections or using empty parentheses in port mapping:

. module-port-name(  )

The parentheses, however, are always required. In that way, the 

instantiating module can document the existence of the port without 

connecting it to anything. The port connections can be listed in any order 

since the details of the connection (module port to instance port name) 

are explicit.

The following examples illustrate the module instantiation with 

explicit port mapping:

module cmos_invertor (in, out, dt, vdd, vss);

   inout in, out, dt, vdd;

   electrical in, out, vdd, vss;

   thermal dt;

   mosekv mp (.g(in),

              .d(out),

              .s(vdd),

              .dt(dt),

              .b(vdd));

   mosekv mn (.dt(dt),

              .g(in),

              .b(vss),

              .s(vss),

              .d(out));

endmodule

module opto_coupler (aled, kled, aphd, kphd)

   optical_sf ir_beam;

   electrical aled, kled, aphd, kphd;
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   led dio (.cat(kled),

            .ano(aled),

            .out_light(ir_beam));

   photodiode phd (.ano(aphd),

                   .in_light(ir_beam),

                   .cat(kphd));

endmodule

module nn_test (input voltage [10:0] a,

                input voltage [5:0] b

                output voltage [0:1] c);

   perceptron pct1 (.in(a),

                    .out(c[0]));

   perceptron pct2 (.in('{a[4:0], b}),

                    .out(c[1]));

endmodule

It is recommended to code each port connection in a separate line as 

much easier to debug and resolve compilation errors.

�Positional Port Mapping
The other way to connect the ports in an instantiated module with the 

ports in a module definition is via an ordered list, that is, the ports listed 

for the module instance shall be in the same order as the ports listed in 

the module definition. The cmos_invertor, opto_coupler, and nn_test 

modules can be redefined using the positional port mapping as

module cmos_invertor (in, out, dt, vdd, vss);

   inout in, out, dt, vdd;

   electrical in, out, vdd, vss;
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   mosekv mp (out, in, vdd, vdd, dt);

   mosekv mn (out, in, vss, vss, dt);

endmodule

module opto_coupler (aled, kled, aphd, kphd)

   optical_sf ir_beam;

   electrical aled, kled, aphd, kphd;

   led dio (aled, kled, ir_beam);

   photodiode phd (ir_beam, aphd, kphd);

endmodule

module nn_test (input voltage [10:0] a,

                input voltage [5:0] b

                output voltage [0:1] c);

   perceptron pct1 (a, c[0]);

   perceptron pct2 ('{a[4:0], b}, c[1]);

endmodule

This approach requires less text to describe the connection but can 

also easily lead to misconnections due to inadvertent mistakes in the port 

order. The list of module connections shall be provided only for modules 

defined with ports.

A blank port connection shall represent the situation where the port is 

not to be connected.

�Top-Level Instantiation and $root
The hierarchy of instantiated modules can be viewed as a tree structure, 

where each module instance defines a new branch of the hierarchy. The 

modules that are included in the Verilog-A source text but do not appear in 

any module instantiation statement are top-level modules. In the following 

example, the module airbag is a top module of the airbag system:
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module airbag;

   kinematic mass, ki_gnd;

   electrical esens;

   voltage etrig, chtrig;

   ground ki_gnd;

   impact_force fsrc  (mass, ki_gnd);

   sensor       msens (mass, esens);

   comparator   scomp (esens, etrig);

   trigger             chtrg (etrig, chtrig)

   chemsys      chsys (chtrig);

endmodule

A Verilog-A design shall contain at least one top-level module. A top-level 

module is implicitly instantiated once, and its instance name is the same 

as the module name. Such an instance is called a top-level instance.

The hierarchy of instantiated modules defines a hierarchical name 

for every declared identifier in the module definitions. Any named object 

can be referenced uniquely by its hierarchical name. Hierarchical names 

consist of module instance names separated by periods (.), where an 

instance name can be also an element of the instantiated module array. 

The system name $root refers to the top of the instantiated design:

$root.airbag.mass

$root.airbag.msens.etop

If $root is not specified, a hierarchical path could be ambiguous. For 

example, A.B.C can mean the local A.B.C or the top-level A.B.C, assuming 

there is an instance A that contains an instance B at both the top level and 

in the current module. The ambiguity is resolved by giving priority to the 

local scope and thereby preventing access to the top-level path. $root 

allows explicit access to the top level in those cases in which the name of 

the top-level module is insufficient to uniquely identify the path.
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�Implicit Nets
Nets appearing in the connection lists of a module instantiation need not 

be declared in the instantiating module. Their net-discipline type will be 

determined by discipline resolution.

In the module th_network defined as follows, it is not necessary to 

declare the net-discipline type of dt1 and dt2. It will be implicitly defined 

by the resolution of disciplines in lower-level modules connected via dt1 

and dt2:

module th_network (dtin, dtout);

   inout dtin, dtout;

   thermal dtin, dtout tref;

   ground tref

   // dt1 and dt2 are implicit nets, not declared

   resth  rth1  (.p(dtin),

                 .m(dt1));

   capth  cth1  (.p(in),

                 .m(tref));

   resth  rth2  (.p(dt1),

                 .m(dt2));

   capth  cth2  (.p(tin),

                 .m(tref));

   resth  rth3  (.p(dt2),

                 .t(dtout));

endmodule

Ports can be used in structural descriptions also without net 

declarations. If the net-discipline type of a port is not declared, or declared 

with natureless disciplines, the port can only be used in a structural 
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description. It can be passed to instances of modules, but cannot be 

accessed in behavioral descriptions. The use of undeclared net and ports is 

not recommended practice.

�Instantiation of SPICE Primitives
If a simulator supports SPICE compatibility, it is expected to provide the 

basic set of SPICE primitives for instantiation in Verilog-A modules. The 

instantiation of SPICE primitives can be mixed with module instantiation.

For example, the module sensor defined as follows is instantiating 

SPICE primitive vsine representing sinusoidal voltage sources:

module sensor(inout kinematic mass,

              inout electrical esens);

   electrical el_gnd, etop, ebot;

   ground el_gnd;

   accel acm (.mass(mass),

              .tmref(kin_gnd),

              .etop(etop),

              .emid(esens),

              .ebot(ebot));

   vsine vsrct (etop, el_gnd);

   vsine vsrcb (ebot, el_gnd);

endmodule

The SPICE primitives can be only instantiated with positional port 

mapping. The default discipline of the ports for these primitives shall be 

electrical and their direction shall be inout.

The required names for SPICE primitives and ports are shown 

in Appendix in Table A-1. However, the names of the built-in SPICE 

primitives and their ports can differ from simulator to simulator.
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CHAPTER 5

Parameters
Verilog-A provides parameters as module runtime basic type constants. 

Parameters allow a module to be reused with a different specification 

and to customize a module's structural and behavioral descriptions 

for different functionalities. The module instantiation and hierarchical 

parameter override allow changing values of parameters at the elaboration 

time to have values that are different from those specified in the parameter 

declarations. Verilog-A also provides system parameters that are implicitly 

declared for every module.

�Parameter Declarations
A module is parameterized by introducing one or more parameter 

declarations into the module definition. Parameters are declared either 

in a module body, as statements terminated by a semicolon (;), or in a 

module header, as a list of comma-separated parameter declarations, 

grouped in parentheses preceded by a (#) punctuator:

module module-name #( parameter-declaration, ... )

                    ( list-of-ports-or-port-declarations );

       parameter-declaration ; ...

        // Other module items

endmodule

© Slobodan Mijalković 2022 
S. Mijalković, A Practical Guide to Verilog-A, https://doi.org/10.1007/978-1-4842-6351-8_5

https://doi.org/10.1007/978-1-4842-6351-8_5#DOI


70

Parameter declaration statements could be positioned anywhere 

within a module body. However, Verilog-A requires parameters to be 

declared before being used in other module items. Note that parameter 

declarations in a module header precede the list of ports or port 

declarations. It allows the parameterization of vector port ranges declared 

in the module headers.

A parameter is declared as a runtime constant of the basic type using 

a syntax:

parameter basic-type parameter-assignment, ...

where the keyword parameter is followed by the basic type specifier, 

which shall be a real, integer, or string keyword, and a comma-

separated list of parameter assignments.

Parameter assignments specify parameters as simple or array 

quantities and assign them default values. Optionally, parameter 

assignment can specify ranges of permissible parameter values. It is 

possible to declare an alternate name or alias for parameters and to 

declare parameters as all-time constants or local parameters.

�Simple Parameters
The syntax for the specification and default value assignment of a simple 

parameter is

parameter-name =  constant-expression

where parameter-name is an identifier, and the constant expression 

after the equal sign (=) has a compatible basic type as the parameter type:

parameter integer size = 16;

parameter real slew_rate = 1e-3;

parameter string transistortype = "NMOS"
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The constant expression in the parameter default value assignments 

can also use values of the previously assigned parameter default values:

parameter real

   gate_width = 0.3e-6,

   gate_length = 4.0e-6,

   gate_area = gate_length * gate_width;

If the type of the parameter is specified as integer or real, and the 

value assigned to the parameter conflicts with the type of the parameter, 

the value is converted to the type of the parameter:

parameter real size = 10; // size is coerced to 10.0.

No conversion shall be applied for strings. It shall be an error to assign 

a numeric value to a parameter declared as a string or to assign a string 

value to a real parameter.

�Array Parameters
The array parameters are declared by adding one or more range specifiers 

after the parameter name:

parameter-name  range ... =  constant-assignment-pattern

and using a constant assignment pattern to define the array parameter 

default values. It is the assignment pattern containing only constant basic 

type numbers and identifiers of previously declared parameters:

parameter real poles[0:3]='{ 1.0,3.198,4.554,2.00 };

parameter real c[0:2][0:2] =

   '{'{0.0,0.2,0.2},'{0.2,0.0,0.2},'{0.2,0.2,0.0}};

Since the array range in the parameter array declaration may depend 

on previously declared parameters, the array size may be changed by 

overriding the appropriate parameters. If the array size is changed, the 
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parameter array shall be assigned an array of the new size from the 

same module as the parameter assignment that changed the parameter 

array size.

�Permissible Value Ranges
A parameter assignment can contain optional specifications of the 

permissible ranges of the parameter values. More than one value range can 

be specified for the inclusion or exclusion of parameter permissible values. 

The value of a parameter is checked against the specified permissible 

value range. It shall be an error only if the value of the parameter is out of 

range during simulation.

Note P arameter range checking applies to the value of the parameter  
for the instance and not against the default values specified in the 
parameter declaration.

The following constructs can be used for the specification of 

permissible parameter values:

from start-bracket min-value : max-value end-bracket

exclude start-bracket min-value : max-value end-bracket

exclude constant-expression

where start-bracket is either ( or [, while end-bracket is either ) or ].  

Square brackets, [ and ], indicate the inclusion of the endpoints in 

the valid range. Round brackets or parentheses, ( and ), indicate the 

exclusion of the endpoints from the valid range. It is possible to include 

one endpoint and not the other using [ ) and ( ]. The first expression 

in the range shall be numerically smaller than the second expression in 

the range:
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parameter real neg_bias = -15.0 from [-50:0);

parameter integer pos_bias = 15.0 from (0:50);

parameter real gain = 1 from [1:1000];

Here, the parameter neg_bias is only allowed to acquire values within 

the range of -50 <= neg_bias < 0. Similarly, the parameter pos_bias is only 

allowed to acquire values within the range of 0 < pos_bias < 50. And, the 

parameter gain is allowed to acquire values within the range of 1 <= gain 

<= 1000.

The keyword inf can be used to indicate infinity. To specify that  

the parameter has no bound on one end, the endpoint is given to either  

be –inf, if it is the left endpoint, or inf if it is on the right:

parameter real val1 = 0.0 from (-inf:0];

parameter real val2 = 0.0 from [0:inf);

The exclude keyword is used to define exclusions of the permissible 

ranges of parameter values. For example, the permissible values of the 

parameter neg_bias can be also specified as

parameter real neg_bias = -15.0

               exclude (-inf:-50) exclude [0:inf);

A single value can be excluded from the valid values for a parameter:

parameter integer dir = 1 from [-1:1] exclude 0;

When used in array parameter declarations:

parameter real poles[0:3] =

       '{ 1.0, 3.198, 4.554, 2.00 } from [0:inf);

the same permissible value ranges apply to each element of the 

parameter array.
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Valid values of string parameters are indicated using assignment 

patterns with lists of valid string values as shown in the parameter 

declarations for the mosekv module:

module mosekv (d, g, s, b, dt);

   inout d, g, s, b, dt;

   electrical d, g, s, b;

   thermal dt;

   parameter string TYPE = "NMOS"

                           from '{ "NMOS", "PMOS" };

   parameter real WEFF  = 1.0u from (0.0:inf);

   parameter real LEFF  = 0.15u from (0.0:inf);

   parameter real VT0   = 0.4;

   parameter real TCV   = 1.5m;

   parameter real PHI   = 0.97;

   parameter real GAMMA = 0.7 from [0.0:inf);

   parameter real KP    = 150.0u;

   parameter real THETA = 50.0m;

   parameter real BEX   = -1.5;

   ...

endmodule

The string parameter TYPE is permitted to have either "NMOS" or 

"PMOS" value. In the example:

parameter string filename = "output.dat"

                            exclude '{ "" };

the parameter filename cannot be given as an empty string.
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�Parameter Aliases
Verilog-A allows defining parameter aliases as alternative parameter 

names. Multiple aliases can point to the same parameter. The parameter 

aliases shall not conflict with other parameter names. Parameter aliases 

allow using different names for the same parameter when overriding 

module parameter values. The other module items shall reference the 

parameter only by its original name, not the alias.

The syntax of alias parameter declaration is

aliasparam alias-name = parameter-name ;

where the identifier alias-name is the alternative name for the 

parameter-name:

parameter real BETA0 = 0.0 from [0:inf);

aliasparam BETAO = BETA0;

Here, the parameter alias allows to access parameter BETA0 in 

parameter overrides also as BETAO, with the letter “O” in place of the 

number “0”. The type of an alias shall be determined by the original 

parameter, as is its range of permissible values if specified. When 

overriding parameters, it shall be an error to specify an override for 

a parameter using both its original name and alias (or more aliases), 

regardless of how the override is done (by name or using the defparam 

statement).
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�Local Parameters
Verilog-A provides also “true” constants, called local parameters, which 

cannot be directly redefined by a parameter override at the elaboration 

time. The declaration of local parameters uses the same syntax as 

the declaration of regular parameters and only replaces the keyword 

parameter with the keyword localparam:

localparam real ttransit = 1/freq;

localparam real tox = 3e-8;

localparam Csec = Cap/N, Rsec = Res/N;

The use of local parameters in a module is identical to parameters 

except that they cannot be directly redefined from outside the module. 

However, a local parameter can be still assigned the default value using an 

expression involving regular parameters and can therefore be indirectly 

redefined.

�Overriding Parameters
Parameters can be modified at elaboration time to have values that are 

different from those specified in the declaration assignments. It can be 

done by the instance or hierarchical parameter override.

�Instance Parameter Override
When one module instantiates another module, it can alter the values of 

any parameters declared within the instantiated module. It is achieved by 

inserting a list of comma-separated parameter override assignments in 

the parentheses preceded by the punctuator (#) after the module name 

identifier and before the list of module instances:

module-name #( parameter-override, ... ) module-instance, ... ;
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It is not possible to override parameter aliases. The instance parameter 

override construct comes in two forms, by name or by ordered list.

�Parameter Override by Name

The instance parameter override by name explicitly associates parameter 

names with the overriding parameter values using the following syntax for 

parameter-override:

. parameter-name ( constant-expression )

The parameter-name shall be the same name specified in the 

parameter declaration of the instantiated module. It is not necessary 

to assign values to all the parameters within a module when using this 

method. Only those parameters which are assigned new values need to 

be specified. Once a parameter is assigned a new value, there shall not 

be another assignment to this parameter name. The use of constant-

expression is optional:

. parameter-name ( )

It allows the instantiating module to document the existence of a 

parameter without assigning anything value to it. The parentheses are 

required, and in this case, the parameter retains its default value. An 

array assigned to an instance of a module to override the default value 

of an array parameter shall be of the exact size of the parameter array, as 

determined by its declaration.

In the following example of instantiating a voltage-controlled 

oscillator, the parameters are overridden on a named-association basis:

module cmos_invertor (in, out, dt, vdd, vss);

   inout in, out, dt, vdd;

   electrical in, out, vdd, vss;

   thermal dt;
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   parameter real WP = 60.0u;

   parameter real WN = 30.0u;

   parameter real LP = 0.15u;

   parameter real LN = 0.15u;

   mosekv #(.TYPE("PMOS"),

            .WEFF(WP),

            .LEFF(LP),

            .VT0(-0.4),

            .TCV(-1.5e-3))

        mp (.g(in),

            .d(out),

            .s(vdd),

            .dt(dt),

            .b(vdd));

   mosekv #(.TYPE("NMOS"),

            .WEFF(WN),

            .LEFF(LN),

            .VT0(0.4),

            .TCV(1.5e-3))

        mn (.dt(dt),

            .g(in),

            .b(vss),

            .s(vss),

            .d(out));

endmodule
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�Parameter Override by Order

The instance parameter override by order allows parameter values to be 

overridden during module instantiation in the order of their declaration 

within the module. In that case, parameter-override is just a constant 

expression that evaluates the parameter override value.

Consider the following example, where the parameters within module 

instance mosekv are changed during instantiation:

module cmos_invertor (in, out, dt, vdd, vss);

   inout in, out, dt, vdd;

   electrical in, out, vdd, vss;

   thermal dt;

   parameter real WP = 60.0u;

   parameter real WN = 30.0u;

   parameter real LP = 0.15u;

   parameter real LN = 0.15u;

   mosekv #("PMOS", WP, LP, -0.4, -1.5e-3)

          mp (out, in, vdd, vdd, dt);

   mosekv #("NMOS", WN, LN, 0.4, 1.5e-3)

          mn (out, in, vss, vss, dt);

endmodule

It is not necessary to assign values to all of the parameters within 

a module when using this method. However, the leftmost parameter 

assignments cannot be skipped. Therefore, to assign values to a subset 

of the parameters declared within a module, the declarations of the 

parameters which make up this subset shall precede the declarations of 
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the remaining (optional) parameters. An alternative is to assign values to 

all of the parameters, but use the default values (the same values assigned 

in the declaration of the parameters in the module definition) for those 

parameters which do not need new values.

�Hierarchical Parameter Override
Parameter values can be overridden in any module instance throughout 

the design using the defparam statement:

defparam def-parameter-override, ... ;

where def-parameter-override is the hierarchical parameter 

assignment:

hierarchical-parameter-name = constant-expression

The hierarchical-parameter-name is a hierarchical name of the 

parameter and the constant expression shall involve only constant 

numbers and references to parameters declared in the same module as the 

defparam statement.

The defparam statement is particularly useful for grouping all of the 

parameter value override assignments together in one module.

module tgate ();

    electrical io1,io2,control,control_bar;

    mosn m1 (io1, io2, control);

    mosp m2 (io1, io2, control_bar);

endmodule

module mosp (drain,gate,source);

    inout drain, gate, source;

    electrical drain, gate, source;
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    parameter gate_length = 0.3e-6,

              gate_width = 4.0e-6;

    spice_pmos #(.l(gate_length),.w(gate_width))

               p (drain, gate, source);

endmodule

module mosn (drain,gate,source);

    inout drain, gate, source;

    electrical drain, gate, source;

    parameter gate_length = 0.3e-6,

              gate_width = 4.0e-6;

    spice_nmos #(.l(gate_length),.w(gate_width))

               n (drain, gate, source);

endmodule

module annotate ();

    defparam

       tgate.m1.gate_width = 5e-6,

       tgate.m2.gate_width = 10e-6;

endmodule

If a defparam override conflicts with a module instance parameter 

override, the parameter in the module shall take the value specified by the 

defparam override.

�Hierarchical System Parameters
In addition to the parameters explicitly declared in a module definition, 

there are six system parameters that are implicitly declared for every 

module: $mfactor, $xposition, $yposition, $angle, $hflip, and 

$vflip. The values of these parameters may be accessed in a module (or 

paramsets, introduced in the next chapter) using their system names. 
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The module’s value of implicit parameters also propagates to any module 

instantiated by that module. The top-level value is the starting value at the 

top of the hierarchy. The hierarchical system parameter names, their 

top-level values, and allowed values are summarized in Table 5-1.

Table 5-1.  Hierarchical system parameters

Implicit Parameter Top-Level Value Allowed Values

$mfactor 1.0 $mfactor > 0

$xposition 0.0 m Any

$yposition 0.0 m Any

$angle 0 deg 0≤$angle < 360

$hflip +1 +1 or –1

$vflip +1 +1 or –1

$mfactor is the shunt multiplicity factor of the instance. The behavior 

of the instantiated module in the design is identical to the behavior of 

the $mfactor of identical modules with the same connections. However, 

the simulator only has to evaluate the module once. Verilog-A does not 

provide a method to disable the automatic $mfactor scaling. The simulator 

shall issue a warning if it detects misuse of the $mfactor in a manner that 

would result in double-scaling.

The values of the five geometrical system parameters, $xposition, 

$yposition, $angle, $hflip, and $vflip, do not have any automatic effect 

on the simulation. The module (or a paramset) may use the values of these 

parameters to compute geometric layout–dependent effects. $xposition 

and $yposition are the offsets, in meters, of the location of the center of 

the instance. $hflip and $vflip are used to indicate that the instance has 

been mirrored about its center, and $angle indicates that the instance has 
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been rotated some number of degrees in the counterclockwise directions. 

Note that $angle is specified and returned in degrees, but the built-in math 

trigonometric functions operate in radians.

The values of hierarchical system parameters may be overridden using 

an instance parameter override by name, the defparam statement, or a 

paramset. In all three methods, the system parameter identifier is prefixed 

by a period (.), just as for explicitly declared parameters. Hierarchical 

implicit parameters can also be used in parameter alias declarations. The 

value returned for each hierarchical parameter is computed by combining 

values from the top of the hierarchy down to the instance using the 

parameter. If a module is instantiated without specifying a value of one of 

these system parameters, then the value of that system parameter will be 

unchanged from the instantiating module. If a value is specified, then its 

value is obtained by combining the value specified for the instance and the 

value obtained by traversing the hierarchy from the top to the instantiating 

module. The values of $mfactor, $hflip, and $vflip are hierarchically 

combined by multiplication while the values of $xposition, $yposition, 

and $angle by addition.

In the following example, the top-level module is used to override 

the values of hierarchical parameters $mfactor and $xposition in the 

instantiating test_module:

    module top();

       defparam

           test_module.$mfactor = 3,

           test_module.$xposition = 1.1u;

    endmodule

    module test_module(p,n);

        inout p,n;

        electrical p,n;

        module_a A1(p,n);

    endmodule
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    module module_a(p,n);

        inout p,n;

        electrical p,n;

        module_b #(.$mfactor(2)

                   .$xposition(1u)) B1(p,n);

    endmodule

    module module_b(p,n);

        inout p,n;

        electrical p,n;

        module_c #(.$mfactor(5)

                   .$xposition(2u)) C1(p,n);

    endmodule

The values of the hierarchical system parameters $mfactor and 

$xposition in the module instance test_module.A1.B1.C1 are 30 and 

4.1u, respectively.
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CHAPTER 6

Paramsets
Paramset is a powerful Verilog-A language construct providing a 

convenient way to collect common parameter overrides for a specific 

component technology and define it independently of a particular system 

design. The paramsets are not only removing the redundancy in parameter 

overrides for multiple instances of the same module but they are also 

promoting the exchange of common parameter overrides among different 

designs.

�Introducing Paramsets
The module instantiation often requires long lists of instance parameter 

overrides with a lot of redundancy among instances of the same module. 

Take, for example, compact models of transistors in electronic circuit 

design. Customization of the compact transistor models to certain device 

geometry and fabrication technology typically requires a large number 

of parameter overrides. But most of the technology-related parameter 

overrides will be identical for all instances of transistors realized with 

the same process technology. Only a few parameter overrides (typically 

related to a device geometry and surrounding) could be specific for 

a particular transistor instance. Paramsets can resolve this issue by 

specifying parameter overrides once to be shared between many instances 

of the same module. The concept of paramset is not quite new. The shared 

storage of parameter overrides for multiple instances makes them very 
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similar to the SPICE simulator’s model card. Verilog-A simulators are 

expected to optimize the storage of paramset values in a manner similar to 

the way SPICE optimizes model parameter storage.

Paramsets are defined as separate entities from the modules but each 

paramset must be hierarchically associated with a module or another 

paramset as shown in Figure 6-1.

Figure 6-1.  A paramset and associated parent module or paramset

A hierarchy of paramsets may be defined in this way. However, a 

module shall always be at the bottom of the hierarchy. The only restriction 

imposed on such a parent module is that it should not contain a defparam 

statement in or under its hierarchy.

The paramsets contain no behavioral code. All of the behavioral 

descriptions can be only defined in the module at the bottom of the 

paramset hierarchy. However, paramset can override the parameters of the 

parent module. Moreover, a paramset may declare its own parameters that 

may be overridden in the child paramsets.
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The main benefit of having paramsets as collections of parent module 

parameter overrides is the possibility to replace the instantiation of a 

parent module with the instantiation of the associated paramset as shown 

in Figure 6-2.

Figure 6-2.  Paramset instantiation

Instantiation of a paramset is practically identical to the instantiation 

of its parent module except that it is not necessary anymore to provide a 

list of module parameter overrides since they are already defined in the 

paramset. All instances of the same paramset share the same collection of 

parent module parameter overrides. A simulator can use this information 

to optimize data storage for the instances.
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The paramset instances may only provide overrides for their own 

parameters. The overridden paramset parameters can be used in the 

paramset definition to customize the override of related parent module 

parameters specific to a particular instance.

Paramsets can be also used to assign or override the values of the 

parent module output variables. This paramset feature is discussed in 

more detail in Chapter 18.

�Defining Paramsets
A paramset definition is enclosed between the keywords paramset and 

endparamset using the syntax:

paramset paramset-name module-or-paramset-name ;

        paramset-statement ...

endparamset

The keyword paramset in the header line, ending with a semicolon (;), 

is followed by a unique identifier paramset-name, defining the name of 

the paramset, and identifier module-or-paramset-name, which shall be the 

name of a module or paramset with which the paramset is associated. The 

paramset body, between the header line and the keyword endparamset, 

contains a sequence of statements permitted in paramsets. The principle 

statements permitted in paramsets are parameter declaration and 

parameter override statements.

�Paramset Parameters
Paramsets permit the declaration of parameters, including local 

parameters and parameter aliases. Here are examples of parameter 

declaration in paramsets most, nch_most, and pch_most hierarchically 

associated with the mosekv module:
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paramset most mosekv;

   parameter string MTYP = "NMOS";

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   parameter integer SHMOD = 0;

endparamset

paramset nch_most most;

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   localparam real AREA = LEFF * WEFF from [0:1p)

endparamset

paramset pch_most most;

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   aliasparam L=LEFF, W = WEFF;

endparamset

The parameter declarations in paramsets follow the same syntax 

as the parameter declarations inside modules. However, the paramset 

parameters are not related in any way to the parameters declared in the 

parent module or parent paramset. For example, the paramset parameters 

LEFF and WEFF in the nch_most are independent of the parameters declared 

with the same names in the most paramset and the mosekv module. The 

paramset parameters can be used only in the scope of the paramset where 

they are declared. However, paramset parameters play a special role in the 

process of paramset resolution.
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�Parameter Override Statements
The paramset override statement is used to modify the default values of 

the parent module or paramset non-local parameters. It is defined with 

the syntax:

. parent_parameter_name = constant-expression ;

All of the parent non-local parameters, including hierarchical system 

parameters, are accessible for override from within the paramset by 

preceding their names by the period (.). The constant expression on the 

right-hand side can be composed of basic type literals, parameters, and 

hierarchical out-of-module references to local parameters of a different 

module. Hierarchical out-of-module references to non-local parameters 

of a different module are not allowed in parameter override statements. If 

a paramset override statement assigns a new value to a parameter in the 

parent module or paramset, and this value is outside the range specified 

for that module parameter, it shall be an error.

The following example illustrates the usage of parameter override 

statements in the hierarchy of paramsets nch_most and pch_most defined 

over the paramset most associated with the mosekv module:

paramset nch_most most;

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   localparam real AREA = LEFF * WEFF from [0:1p)

   .LEFF=LEFF;

   .WEFF=WEFF;

endparamset

paramset pch_most most;

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   aliasparam L=LEFF, W = WEFF;
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   .MTYP="PMOS";

   .LEFF=LEFF;

   .WEFF=WEFF;

endparamset

paramset most mosekv;

   parameter string MTYP = "NMOS";

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   parameter integer SHMOD = 0;

   .TYPE=MTYP;

   .LEFF=LEFF;

   .WEFF=WEFF;

   .SHMOD=SHMOD;

   .VT0 = 0.5;

   .TCV = 1.6m;

   .PHI=1.05;

   .GAMMA=0.8;

   .KP=tech.u0 * `P_EPS0 * tech.eps_r / tech.tox ;

   .THETA=48.0e-3;

   .BEX=-1.8;

   .mfactor = 1.0;

endparamset

module tech;

  localparam real tox = 3e-8; // oxide depth

  local parameter real eps_r=11.7;

  local parameter real u0 = 3e-2; // mobility

endmodule
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The module tech is a top-level module, created as a commonplace for 

physical and technology constants used in paramset override statements. 

Such a module is often referred to as a constant module. The declaration 

of local parameters in the tech module is essential if their hierarchical 

references are used in paramset override statements.

The parameter override expression may also use the stochastic built-in 

functions as long as the arguments to these functions are constant. This 

possibility to use paramset in probabilistic simulations will be discussed in 

Chapter 10.

�Other Paramset Statements
Paramsets permit also declarations of numerical (integer or real) basic 

type variables and limited use of procedural statements. The restrictions 

on the procedural statements permitted in paramsets are similar to 

the restrictions for statements in user-defined functions introduced in 

Chapter 11. The values assigned to paramset basic type variables need not 

be constant. However, these variables shall not be used in the parameter 

override statements. They are mainly used to assign and override module 

output variables, as described in Chapter 18.

�Paramset Instantiation
Instantiation of a paramset basically instantiates its parent module with 

all parameter overrides previously defined in the associated paramset 

hierarchy. The parent module parameters that are not overridden in 

paramsets are assigned the default values given in the parent module 

parameter declarations. The paramset and module instantiation 

statements use the same syntax. However, the paramset instantiation 

statement may override only the non-local paramset parameters.
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The example of the cmos_invertor module, introduced in the 

previous chapter, is rewritten here using paramset instead of the module 

instantiation statements:

module cmos_invertor (in, out, dt, vdd, vss);

   inout in, out, dt, vdd;

   electrical in, out, vdd, vss;

   thermal dt;

   parameter real WP = 60.0u;

   parameter real WN = 30.0u;

   parameter real LP = 0.15u;

   parameter real LN = 0.15u;

   pch_most #(.W(WP),

              .L(LP))

              mp (out, in, vdd, vdd, dt);

   nch_most #(.WEFF(WN),

              .LEFF(LN))

              mn (out, in, vss, vss, dt);

endmodule

It is also possible to use instance paramset parameter override 

by order:

...

pch_most #(LP,WP) mp (out, in, vdd, vdd, dt);

nch_most #(LN,WN) mn (out, in, vss, vss, dt);

...

following the order of their declaration in the paramset definition. The 

paramset instances override now only two paramset parameters WEFF and 

LEFF. Note that the alias parameter declarations in the pch_most module 
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allow using W and L instead of WEFF and LEFF for paramset parameter 

override. An attempt to override any of the other parameters of the parent 

paramset most or the parent module mosekv would generate an error.

Paramset names need not be unique in paramset instantiation 

statements. Multiple paramsets can be declared using the same paramset 

name, and they may refer to different modules or parent paramsets. 

During elaboration, the simulator shall choose an appropriate paramset 

from the set that shares a given name for every instance that references 

that name. When choosing an appropriate paramset, the following 

paramset resolution steps shall be enforced:

	 1.	 For each instance, find all paramsets for which

	 a.	 All parameters overridden on the instance are  

parameters of the paramset.

	 b.	 The parameters of the paramset, with overrides  

and defaults, are all within the allowed ranges  

specified in the paramset parameter declaration.

	 c.	 The local parameters of the paramset, computed  

from parameters, are within the allowed range  

specified in the paramset.

	 d.	 The underlying module has a port declared for  

each port connected to the instance line.

	 2.	 Choose the paramset which has the fewest number 

of un-overridden parameters.

	 3.	 Choose the paramset with the greatest number of 

local parameters with specified ranges.

	 4.	 Choose the paramset with the fewest ports not 

connected in the instance line.
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It shall be an error if there is still more than one applicable paramset 

for an instance after the application of this algorithm.

The following example illustrates some of the rules for paramset 

selection. Consider a design that includes the following paramsets:

paramset nch_most most; // with SHMOD parameter

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   parameter integer SHMOD = 0;

   .LEFF=LEFF;

   .WEFF=WEFF;

   .SHMOD=SHMOD;

endparamset

paramset nch_most most; // with local parameter

   parameter real LEFF = 0.15u;

   parameter real WEFF = 1u;

   localparam real AREA = LEFF * WEFF from [0:1p)

   .LEFF=LEFF;

   .WEFF=WEFF;

endparamset

paramset nch_most most; // short-channel paramset

   parameter real LEFF = 0.15u from [0.25u:1u);

   parameter real WEFF = 1u;

   .LEFF=LEFF;

   .WEFF=WEFF;

endparamset

paramset nch_most most; // long-channel paramset

   parameter real LEFF = 1u from [1u:inf);

   parameter real WEFF = 1u;
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   .LEFF=LEFF;

   .WEFF=WEFF;

endparamset

The following instances might exist in the design:

nch_most #(.WEFF(2u),.LEFF(0.5u),.SHMOD(1))

       m1 (out, in, vss, vss, dt);

nch_most #(.WEFF(1u),.LEFF(0.5u))

       m2 (out, in, vss, vss, dt);

nch_most #(.WEFF(3u),.LEFF(0.5u))

       m3 (out, in, vss, vss, dt);

nch_most #(.WEFF(1u),.LEFF(5u))

       m4 (out, in, vss, vss, dt);

The instance m1 will use the paramset with the SHMOD parameter because 

it is the only one for which SHMOD is a parameter. This paramset cannot be 

selected by other instances because it will have always one un-overridden  

parameter. The instance m2 will use the paramset defined with a local 

parameter, because it has local parameters with defined ranges and the 

short-channel paramset not, and the LEFF parameter is out of range for 

the long-channel paramset. The instance m3 will use the short-channel 

paramset because the evaluated value of AREA in the paramset with 

the local parameter will be out of range as well as LEFF parameter in 

the long-channel paramset. The instance m4 will use the long-channel 

paramset because the AREA local parameters and LEFF parameter will 

be out of range in paramsets with local parameter and short-channel 

paramset.
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CHAPTER 7

Procedural 
Programming
The backbone of behavioral description and data manipulation in the 

Verilog-A language is procedural programming. It resembles in many 

ways programming languages that declare a set of variables and use a 

sequence of procedural statements to execute certain computations or 

algorithms. While variables may be declared along with parameters in the 

module body, the procedural statements in Verilog-A are encapsulated 

within procedural blocks. This chapter introduces the procedural blocks 

and procedural statements for variable assignment and control flow. The 

control flow statements allow selection between alternative courses as well 

as repetition of procedural statement execution.

�Variables
Similar to parameters, variables are containers for basic type values. Apart 

from the parameters, being runtime constants, variables can be used to 

store intermediary results in procedural programming.

Before any variable can be used in expressions and procedural 

statements, it shall be declared. The general syntax for the variable 

declaration statement is

basic-type variable-declarator, ... ;
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The basic-type determines the variable type and may be one of the 

keywords integer, real, and string. It is followed by a list of variable 

declarators that can specify variables as simple or array variables and can 

also provide variable initial values.

�Simple Variables
The variable-declarator for simple variables is just an identifier 

representing the variable name:

integer count;

real alpha;

string name;

It is possible to declare several simple variables in a single declaration 

statement using a list of comma-separated identifiers:

integer index, dmax;

string name1, name2, name3;

Another way to declare multiple data of the same basic type is to use 

array variables.

The simple variables can be also initialized (assigned an initial value) 

in their declaration statements using variable assignment construct:

variable-name = constant-expression

as the variable-declarator. The initial value can be any expression that 

evaluates a basic type constant:

integer count = 0, dmax = 15;

real alpha = 2.5;

string my_daughter_name = "Jona";
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If an initial value is not specified, integer or real variables are initialized 

to zero (0). The initial value for string variables can be a string literal or 

a string-type constant expression. If an initial value is not specified for a 

string variable, it is initialized to an empty string "".

�Array Variables
An array variable is a collection of data elements having the same basic 

type. Array variables are declared using a construct:

variable-name range ...

as the variable-declarator, where one or more range specifiers are 

added after a variable name. The number of range specifiers defines array 

variable dimensionality. Here is an example of a one-dimensional string 

array variable:

string name [1:3];

Multidimensional arrays are represented as arrays of arrays by 

successively specifying the dimension ranges after the variable name:

integer d2 [0:7][0:3];

real d3 [1:50][1:20][5:10];

The two-dimensional array d2 consists of 8 one-dimensional arrays 

with 4 integer elements, while the three-dimensional array d3 consists of 

50 elements that are two-dimensional arrays.

The initial values for array variables are introduced using the extended 

array variable declarator:

variable-name  range ... =  constant-assignment-pattern
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where the assignment pattern at the right-hand side contains only 

constant basic type expressions:

integer n[1:2][1:3]='{ '{0,1,2}, '{4,4,3} };

real poles[0:3]='{ 1.0, 3.198, 4.554, 2.00 };

string names[1:3] = '{ "first", "middle", "last" };

Note the use of nested assignment patterns for initialization of 

two-dimensional array variable n. It provides a clear correspondence 

between array ranges and a collection of expressions in the assignment 

pattern.

�Procedural Blocks
Procedural blocks encapsulate procedural statements within the Verilog-A 

module definitions. It is essentially based on analog blocks and block 

procedural statements.

�Analog Blocks
A procedural block is introduced into module definition using the analog 

construct:

analog procedural-statement

where the analog keyword is followed by a definition of executable 

procedural-statement. The basic procedural statements could be 

assignment and control flow programming statements described later in 

this chapter. However, branch contribution, event control, and system 

task statements, introduced in the following chapters, can be also used 

as procedural statements in analog blocks. A procedural statement in an 

analog procedural block is executed at every point during simulation when 

variables or signals referenced from the procedural statement are changed.
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For the purpose of simulation initialization, Verilog-A provides also a 

special analog initial construct:

analog initial procedural-statement

where the keyword initial is inserted after the keyword analog. 

The initial block procedural statement is executed once before the 

simulation starts. At that point, values of net signals are not yet available 

which restricts the procedural statements in analog initial blocks to the 

basic programming and system task procedural statements. An analog 

initial procedural block shall be re-executed whenever a variable that is 

referenced from its procedural statement is changed during simulation.

A module may have multiple analog and analog initial blocks that shall 

be executed in the order they appear in the module definition. Since the 

sequence of analog and analog initial blocks are executed separately, they 

can be mixed in a module definition. Syntactically, analog blocks consist 

of a single procedural statement. However, procedural-statement stands 

also for a block or compound procedural statement. The block statements 

are grouping multiple statements, including other block statements so that 

they can be treated as one statement. The use of a single block procedural 

statement in an analog construct is a common practice that also justifies 

the name analog block used for such constructs.

�Block Procedural Statements
In the simplest case, a block procedural statement is defined as a sequence 

of procedural statements enclosed by the begin and end keywords:

begin

  procedural-statement ...

end
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A block statement does not perform any functionality in itself but 

is used to group two or more procedural statements so that they can be 

treated as a single procedural statement. A procedural block with a single 

procedural statement can be used without the begin and end keywords.

The block procedural statement can be used anywhere a single 

procedural statement is allowed and can be nested inside other block 

procedural statements. During the simulation, the procedural statements 

within the block statement shall be executed in sequence, one after 

another in the given order, and the control shall pass out of the block after 

the last statement is executed.

Verilog-A permits also a named block procedural statement using 

the syntax:

begin : block-name

   variable-or-parameter-declaration ...

   procedural-statement ...

end

where a colon character (:) and identifier block-name are added after 

the keyword begin. Note that the naming of a procedural block statement 

allows variables and parameters to be declared for that block which is 

not allowed in unnamed procedural blocks. The named procedural block 

statement introduces a new scope in the module hierarchy as a region 

where declared variables and parameters can have existence and beyond 

which cannot be directly accessed. However, the block names give a 

means of uniquely accessing all locally defined variables and parameters 

in the named block by their hierarchical names. In the test_scope module 

example:

module test_scope;

    parameter integer p1 = 1;

    real moduleVar;

    analog begin
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        begin: myscope

            parameter real p2 = p1;

            real localVar = 1.5 * p2;

        end

        moduleVar = myscope.localVar;

    end

endmodule

it will be an error to access the variable localVar outside the named 

procedural block myscope where it is defined. But it can be still accessed 

in the module scope using the hierarchical name myscope.localVar. The 

block variables are often referred to as local variables in relation to global 

module scope variables. The local variables in Verilog-A are static, that 

is, a unique location exists for all variables, and leaving or entering the 

block does not affect the values stored in them. Local variables cannot be 

assigned outside the scope of the block in which they are declared.

Parameters declared within a named block have local scope and 

cannot be assigned outside the scope. An instance parameter override 

can only affect parameters declared at module scope. For example, in the 

top module:

module top;

   test_scope #(.p1(4)) inst1();         // allowed

   test_scope #(.myscope.p2(4)) inst2(); // error endmodule

it is an error to attempt the instance override of the block parameter p2.

�Assignment Statements
An assignment statement sets and resets values stored in the variables in 

the procedural blocks.
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�Scalar Assignments
The declared basic type variables are containers for the basic type values. 

To change the data value stored in a variable, we use the equal sign (=) in 

the assignment statement:

variable-name = expression;

which sets or resets the data value of the identifier variable-name, on 

the left to the basic type value produced by the expression on the right.

The equal sign (=) is not an operator in the Verilog-A language. It 

performs the assignment operation but does not return a value. It cannot 

be used as an operand in the expressions:

a = b = 0.5; // Chained assignments are not possible

Also, it cannot be used in combination with other operators as a 

compound assignment operator:

a += 1; // Compound assignments are not possible

Variables can be assigned initial values in their declaration statement 

and reassigned in procedural statements.

Procedural assignments are used for updating the variable values 

during the execution of the Verilog-A models:

real vt, ratio, vto_th;

int A[10:1];

...

vt = `P_K * temp / `P_Q + 1.0e-6;

ratio = abs(temp / tempref + 1.0e-6);

vto_th = MTYP * (VT0 - TCV * (temp - tempref));

A[5] = 1.0;
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The assigned can be any arbitrary expression, although some 

restrictions may apply depending on the context in which the procedural 

assignment is used.

If the type of the variable is declared as integer or real, and the value 

assigned to the variable conflicts with the declared variable type, the value 

is converted to the type of the variable if it is possible:

integer i, k;

...

i = 3.14;      // real truncated to integer

k = 2.9979e40; // undefined

In the first case, the real constant is truncated and 3 is assigned to i.  

The result in the second case is undefined since an integer cannot hold 

such a large value. It shall be an error to assign a numeric value to a 

variable declared as a string or to assign a string value to a real variable.

A string literal assigned to an integral variable of a different size is 

either truncated to the size of the variable or padded with zeros to the left 

as necessary. If a string literal is assigned to a string variable, the size of the 

variable is adjusted so that neither the literal is truncated nor the variable 

is padded with zeros.

�Array Assignments
Verilog-A also supports array assignment statements:

int A[10:1], B[0:9], C[24:1];

...

A = B; // ok. Compatible type and same size

A = C; // type-check error: different sizes

where arrays are used on the right-hand side of the assignment 

statement.
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Array assignments shall only be done with compatible arrays. An array, 

or a slice of such an array, shall be assignment compatible with any other 

such array or slice if all the following conditions are satisfied:

•	 The array on the left-hand side of the assignment shall 

be an array variable, a slice of an array variable.

•	 The basic types of the source and target arrays shall be 

equivalent.

•	 Every dimension of the source array shall have the 

same number of elements as the target array.

The array assignment cannot be used for array variable initialization. 

This can be only achieved using assignment patterns.

�Conditional Statements
The model evaluation often depends on conditions that may or may not 

hold during the simulation. There are two types of conditional statements 

in Verilog-A: if and case statements.

�if Statement
The if statement is defined using the basic syntax:

if ( condition ) procedural-statement

or the extended syntax with the else clause:

if ( condition )

      procedural-statement-1

else

     procedural-statement-2
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The latter is also known as the if-else statement. The condition is any 

valid expression that produces a numeric value. If the condition value is 

nonzero, the procedural-statement, or procedural-statement-1, if an else 

clause is used, is executed. Otherwise, only the procedural-statement-2 is 

executed.

For example, the following if statements:

if (i != 0) x = 1.0;

if (i == 0) x = 2.0;

can be combined into a single if statement with an else clause:

if (i != 0) x = 1.0 else x = 2.0;

Since the if statement simply tests the nonzero status of the condition 

expression, certain shortcuts are possible. For example, the preceding 

code fragments can be also written (perhaps more obscurely) as

if (i) x = 1.0 else x = 2.0;

The conditionally executed statements can be null. However, if any of 

the conditionally executed statements contains an analog operator, the 

condition expression shall be a constant expression.

Because the else part of an if-else is optional, there can be confusion 

when an else is omitted from a nested if statement sequence. This is 

resolved by always associating the else clause with the closest previous if 

statement which lacks an else.

In the following example, the else goes with the inner if statement, as 

shown by indentation:

if (index > 0)

    if (i > j)

        result = i;

    else // else applies to preceding if

        result = j;
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If that association is not desired, a begin-end block shall be used to 

force the proper association, as shown in the following:

if (index > 0) begin

    if (i > j)

        result = i;

    end

    else result = j;

Nesting of if statements (known as an if-else-if construct) is the 

most general way of writing a multi-way decision. The expressions are 

evaluated in order. If any if statement condition is nonzero, the procedural 

statement associated with it shall be executed and this action shall 

terminate the whole chain. 

�case Statement
The case statement takes a general form:

case  ( case-expression )

   case-item, ... : procedural-statement

   case-item, ... : procedural-statement

   ...

   default : procedural-statement

endcase

The case statement is a multi-way decision statement that tests if an 

expression matches one of some other expressions and, if so, branches 

accordingly. The default statement is optional. The use of multiple default 

statements in one case statement is illegal.

The case-expression and the case-item expression can be computed at 

runtime; neither expression is required to be a constant expression.
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The case-expression and case-item expressions are evaluated and 

compared in the exact order in which they are given. During this 

linear search, if one of the case-item expressions matches the case-

expression given in parentheses, then the procedural or block statement 

associated with that case-item is executed. If all comparisons fail, and 

the default item is given, then the default item statement is executed; 

otherwise, none of the case-item procedural statements are executed. 

Here is an example of how the case statement can be used:

case(rgeo)

   1, 2, 5:

       get_rendi = rsh * dmcg / (weffcj * nuend);

   3, 4, 6:

       get_rendi = rsh * weffcj /

                   (3.0 * nuend * (dmcg + dmci));

   default:

   $strobe("specified rgeo = %d not matched", rgeo);

endcase

�Looping Statements
In the procedural Verilog-A code, it is often necessary to execute one or 

more statements many times. It is tedious to repeat the statements and, in 

any case, it is often impossible to predict how many times the execution 

should be repeated. Such circumstances are handled by the three looping 

statements: for, while, and repeat. These statements provide a means 

of controlling the execution of a procedural statement zero, one, or 

more times.

Looping statements shall not contain analog operators, event control 

statements, and branch contribution statements.
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�while Statement
The while statement has a syntax:

while ( control ) procedural-statement

The expression control, which is of a numeric type, is evaluated before 

each execution of the procedural-statement. The procedural-statement 

is executed if the control is evaluated as nonzero and then the test of the 

control expression is repeated. This cycle continues until control becomes 

zero, at which point execution resumes after procedural-statement. A single 

execution of the loop body is called an iteration. If the test never fails, then 

the iteration never terminates:

integer n = 1;

while (n > 0)

   begin

     gamma = gamma * n;

     n = n + 1;

   end

The while statements are typically used for iterative processes as in the 

following example:

real b = 1.0, c = 2.0, x = 0.0;

integer niter = 0;

while ( niter < 100 )

   begin

      x = (x**3 - c) / b;

      niter = niter + 1;

   end

that implements a simple fixed-point iterative method for solving the 

cubic equation: x3 − bx − c = 0.
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�for Statement
The for statement has a syntax:

for ( initialization ; control ; change ) procedural-statement

that is equivalent to

initialization ;

while ( control ) begin

    procedural-statement

        change ;

end

and whether to use for-loop or its while-loop equivalent formulation is 

largely a matter of personal preference.

The for-loop statement employs three actions, which are called 

initialization, control, and change, to indicate their respective roles in 

the conditional execution of procedural-statement. The initialization 

executes a variable assignment operation, normally used to initialize an 

integer index variable that controls the number of executed loops with the 

procedural statement. The control evaluates an expression, and if the result 

is nonzero, the for-loop statement executes procedural-statement, and 

otherwise the for-loop exits. The change executes a variable assignment, 

normally used to modify the value of the loop control index variable, and if 

the control is still nonzero, procedural-statement is executed again. The for 

statement continues to cycle between the control, procedural-statement, 

and change until the control expression is zero. The control then passes 

beyond the for-loop statement. In the following example:

for (i = 0; i < B4SOInf; i = i+1)

     begin : summation

        real T0;

        T0 = 1.0 / B4SOInf / (B4SOIsa
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             + 0.5 * Ldrn + i * (B4SOIsd + Ldrn));

        Inv_sa = Inv_sa + T0;

     end

the for-loop statement is used to accumulate multiple contributions to 

the variable Inv_sa.

It is worth noting that there are no restrictions on the numerical type of 

the control variable and control expression to evaluate as integers; they can 

be also of real type:

for (x = 0.0; x != 10; x = x + 1.0)

   total = total + x;

However, a test for equality of real type is very risky since it is likely that 

the finite machine precision will mean that the condition never occurs. For 

this reason, it is very unusual to have a loop counter and control expression 

which is a real type.

�repeat Statement
The repeat statement has the syntax:

repeat ( number ) procedural-statement

It executes a procedural-statement a fixed number of times. Evaluation 

of the expression number determines how many times a procedural 

statement is executed:

i = 0;

repeat (NF-1)

   begin

      T1 = T1 + 1.0 / (SA + 0.5 * L

           + i * (SD + L))

           + 1.0 / (SB + 0.5 * L
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           + i * (SD + L));

      i = i + 1;

   end

The expression number shall be evaluated once before the execution of 

any statement to determine the number of times, if any, the statements are 

executed.
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CHAPTER 8

Branches
A behavioral description of an analog system is constructed as a network 

of interconnected branches. The constitutive equations of the system 

component are formulated in terms of branch potential and flow signals. 

This chapter describes how to declare branches as well as how to access 

and contribute branch signals.

�Declaring Branches
A branch is a path between two nets representing branch terminals. A 

branch can only be declared inside a module scope along with net and 

port declarations and not in named procedural blocks. The branches can 

be declared as scalar or vector branches. It is also possible to declare a 

special type of port branch.

�Scalar Branches
The scalar branches are declared using the statement:

branch ( scalar-terminal , scalar-terminal  ) branch-name, ... ;
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where the keyword branch is followed by the specification of the 

branch terminals in the parentheses and a list of identifiers representing 

branch names. The scalar-terminal can be a scalar net or an element of a 

vector net:

electrical p;

voltage n;

kinematic [1:3] x;

...

branch (p, n) b;

branch (x[1], x[2]) d12;

It is also possible to use hierarchical scalar net references as scalar 

terminals:

branch (x[3], top.drv.y) d3

The disciplines for the specified scalar terminals shall be compatible.

The scalar branch declaration statement can specify a single scalar 

terminal:

branch ( scalar-terminal ) branch-name, ... ;

In that case, the second scalar terminal defaults to the ground net:

thermal dt;

...

branch (dt) rth, cth;

Here, the branches rth and cth are declared between dt and ground 

nets of the thermal discipline.
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�Vector Branches
Multiple branches can be declared using a vector branch declaration 

statement:

branch ( vector-terminal , vector-terminal ) branch-name, ... ;

where vector terminals are used instead of the scalar ones. Vector 

terminals can be local or hierarchical vector nets that are compatible and 

of the same size:

electrical [5:3] a;

voltage [1:3] b;

...

branch (a, b) vb;

The multiple scalar branches that make the vector branch connect 

to the corresponding scalar nets of the vector terminals, as shown in 

Figure 8-1.

Figure 8-1.  A vector branch with two vector terminals
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For example, the scalar branch components of the vector branch vb are 

(a[5],b[1]), (a[4],b[2]), and (a[3],b[3]).

Vector branches can be also declared using vector net slices as vector 

terminals:

branch (a[5:4], b[1:2]) vb1;

A vector slice is a set of consecutive vector elements selected by the 

range after the vector net name.

The indexing of the declared vector branches shall start at 0. It can be 

changed by adding a range after the branch name:

branch (a[5:4], b[1:2]) vb2 [1:2];

Both vb1 and vb2 are declared as vector branches of size 2, but vb1 is 

indexed from 0 to 1 while vb2 from 1 to 2.

The vector branches can be declared with one of the terminals being a 

scalar terminal:

branch ( vector-terminal , scalar-terminal ) branch-name, ... ;

branch ( scalar-terminal , vector-terminal ) branch-name, ... ;

In that case, scalar branches that make the vector branch connect 

each element of the vector terminal to the scalar terminal, as shown in 

Figure 8-2.
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Figure 8-2.  A vector branch with a vector and a scalar terminal

The vector branch declaration statement can specify only one vector 

terminal:

branch ( vector-terminal ) branch-name, ... ;

The second implicit terminal is assumed to be the scalar ground net.

�Port Branches
A port branch is a special type of branch between the upper and lower 

connections of the port. A declaration statement for port branches has 

the syntax:

branch (  < port-reference >  ) branch-name, ... ;
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where port-reference is a local or hierarchical port identifier. It shall be 

enclosed between < and > characters:

inout electrical p;

inout electrical [2:4] vp;

...

branch (<p>) b;

branch (<vp>) vb [1:3]

A port branch is a scalar or vector branch if the port is a scalar or 

vector port, respectively. An optional range specifier can be used after the 

declared vector ports. Otherwise, the indexing of the declared vector port 

branches shall start at 0.

�Branch Signals
A branch is associated with potential and flow signals based on the 

terminal disciplines. If both branch terminals are conservative, then the 

branch is conservative and it defines both a branch potential and a branch 

flow. If one of the branch terminals is a signal-flow net, then the branch 

is a signal-flow branch and it is characterized by either a branch potential 

or a branch flow, but not both. Signal access functions are used to access 

branch signal values.

�Signal Directions
Verilog-A uses associated potential and flow signal directions. For a branch 

between scalar terminals p and n:

branch (p, n) b;

the potential and flow signal directions are associated as shown in 

Figure 8-3.
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Figure 8-3.  Branch potential and flow directions

The direction for potential is indicated by the plus and minus signs at 

branch terminals. The branch potential is positive whenever the potential 

of the first declared branch terminal, marked with a plus sign, is larger 

than the potential of the second declared branch terminal, marked with a 

minus sign. The arrow indicates the flow direction. A positive flow enters 

a branch through the first declared terminal and exits the branch through 

the second declared terminal.

�Signal Access Functions
The values of branch potential and flow signals can be accessed using 

signal access functions with the syntax:

nature-access-name ( branch-reference )

The nature-access-name identifier must be the value of the access 

attribute defined in the potential or flow natures for the discipline 

associated with the branch terminals. As an alternative, the potential and 

flow keywords can be used as generic signal access function names.

potential ( branch-reference )

flow ( branch-reference )
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The branch-reference is a local or hierarchical name of the branch 

where the signal is accessed. It shall be a scalar branch or an individual 

element of a vector branch.

Note  Verilog-A allows ports, nets, and branches to be declared as 
vector quantities. However, signal access functions can only access a 
signal of a single branch.

The signal access functions syntactically resemble the function calls, but 

essentially they are kind of handles for the branch signal values. They can be 

used in expressions requiring branch signal values. But similar to variables, 

they can be used to assign signal values in contribution statements.

Table 8-1 shows examples of signal access functions applied to the 

previously declared scalar branch b, vector branch vb, and port branch p of 

the electrical discipline.

Table 8-1.  Examples of using signal access functions

Example Accessed Signal

V(b) 

potential(b)

Voltage (potential) of branch b1

I(b) 

flow(b)

Current (flow) of branch b

V(vb[2]) 

I(vb[2])

Voltage (current) of the vector branch vb element

V(vb) 

I(vb)

Error. It is illegal to use vector branches as signal access 

function arguments

I(p) 

flow(p)

Current flow into the module through port branch p

V(p) 

potential(p)

Error. It is illegal to use port branches as arguments in potential 

access functions
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Note that some restrictions apply to the access of port branch signals. It 

is not allowed to use port branch references with potential signal accessing 

functions. Only the nature-access-name for the flow nature or the flow 

keyword can be used with port branch references.

It is allowed to access the potential and flow signals of a branch in 

other module instances using hierarchical branch reference:

Temp(top.a1.b)

potential(top.a1.b)

Here, branch b is declared in the module instance a1, instantiated in 

the top module.

�Unnamed Branches
The Verilog-A syntax allows signal access functions to use the branch 

terminal or port references as arguments instead of declared branch 

names. The branches accessed this way are called unnamed branches. 

Unnamed branches can be used in addition to any number of named 

branches declared with the same terminal or port references. The 

unnamed branch references are specified in the parentheses of the signal 

access function calls using the syntax:

( scalar-terminal , scalar-terminal )

( scalar-terminal )

( < scalar-port-reference > )

It is similar to the terminal specification that would be used in branch 

declarations but restricted to scalar net terminals and ports or scalar 

elements of the vector nets and ports. If only one scalar terminal is given 

as the argument to a signal access function, the second terminal of the 

unnamed branch is assumed to be the ground net.
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Table 8-2 shows examples of the signal access functions applied to 

unnamed branches with scalar terminals n1 and n2 and a scalar port p of 

the electrical discipline.

Table 8-2.  Examples of using signal access functions with  

unnamed branches

Example Accessed Signal

V(n1) 

potential(n1)

Voltage (potential) of the unnamed branch between net 

n1 and ground net

V(n1) 

potential(n1,n2)

Voltage (potential) of the unnamed branch between nets 

n1 and n2

I(n1) 

flow(n1)

Current (flow) of the unnamed branch from n1 to the 

ground net

I(n1,n2) 

flow(n1,n2)

Current (flow) of the unnamed branch between nets n1 

and n2

V(n1,n1) 

potential(n1,n1) 

I(n1,n1) 

flow(n1,n1)

Error, there is no branch

I(<p>) 

flow(<p>)

Current flow into the module through port p

V(<p>) 

potential(<p>)

Error. It is illegal to use an unnamed port branch as an 

argument in potential access functions

It is not allowed to use two identical scalar terminals as an unnamed 

branch and to access the potential signals of an unnamed port branch.

The unnamed branches can be also accessed with hierarchical 

references. For example:

V(top.a1.a, top.a1.k)
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is accessing the voltage of an unnamed branch between the scalar nets 

a and k declared in the module instance a1 instantiated in the top module.

Unnamed branches can be also accessed hierarchically using a 

special syntax:

hierarchical-instance . branch ( scalar_terminal , scalar_terminal )

hierarchical-instance . branch ( scalar_terminal )

hierarchical-instance . branch ( < scalar-port-reference > )

where the keyword branch precedes the specification of the unnamed 

branch in the parentheses. The previous example of a hierarchically 

accessed unnamed branch voltage can be also expressed as

V(top.a1.branch(a,k))

It provides a single argument to the signal access functions similar to 

named branches.

�Contributing Branch Signals
Branch potential and flow signal values are assigned with contribution 

statements. Contribution statements may be described in direct or indirect 

as well as explicit and implicit forms. Accessing a signal of an unassigned 

branch creates an implicitly assigned probe branch. The contribution 

statements are used in analog procedural blocks along with other 

procedural statements.

�Direct Contribution Statements
The direct contribution statements consist of a left-hand and a right-hand 

side, separated by a branch contribution punctuator <+:

nature-access-function ( branch-reference ) <+  expression ;

potential ( branch-reference ) <+  expression ;

flow ( branch-reference ) <+  expression ;
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The left-hand side of the direct contribution statement provides access 

to the assigned branch signal using a signal access function. The right-

hand side can be any expression that evaluates a numerical real value 

contributed to the branch signal. The branch-reference can be a named, 

unnamed, and hierarchical branch reference as described in the previous 

section. The only exception is a port branch reference that cannot be used 

in contribution statements.

The following examples demonstrate the application of the direct 

contribution statement in the conductor module:

module conductor(p, n);

    inout p, n;

    electrical p, n;

    branch (p,n) path;

    parameter real cond = 0;

    analog

        I(path) <+ cond * V(path);

endmodule

The use of direct contribution statements with local and hierarchical 

named and unnamed branch references, as well as a combination 

of local and hierarchical branch terminals, is demonstrated in the 

sources module:

module sources();

    electrical m;

    parameter real vref = 0.0;

    analog begin

      V(m) <+ vref;

      I(top.drv.br) <+ 1m;
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      V(top.drv.branch(x,y)) <+ 1.2;

      V(m, top.drv.y) <+ 0.9;

    end

endmodule

Here, br is the branch, while x and y are nets declared in the drv 

module instance under the top module.

An important feature of direct contribution statements is that the value 

of the target may be expressed in terms of itself. This is referred to as an 

implicit or fixed-point formulation of the direct contribution statement. 

For example, in the contribution statement:

I(diode) <+ is*(exp((V(diode)-r*I(diode))/$vt)-1);

the signal access function I(diode) is found on both sides of the 

contribution statement. An alternative way to contribute branch signals 

implicitly is to use indirect contribution statements.

�Indirect Contribution Statements
Indirect contribution statements allow the assignment of branch signal 

values in terms of implicit equations. It consists of a left-hand and a right-

hand side, separated by a colon (:) punctuator:

nature-access-function ( branch-reference ) :  equation  ;

potential ( branch-reference ) :  equation  ;

flow ( branch-reference ) :  equation  ;

As in the direct contribution statements, the left-hand side provides 

assigned branch signal using a signal access function. The right-hand side 

specifies an equation defining the assigned signal value.
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The basic syntax for the equations in indirect contribution 

statements is

 nature-access-name ( branch-reference ) ==  expression

 potential ( branch-reference ) ==  expression

flow ( branch-reference ) ==  expression

where the double equality punctuator (==) separates the left- and 

right-hand sides of the equation. The left-hand side of the equation is 

again a branch signal defined by the signal access function. However, it 

can be different than the assigned branch signal. On the right-hand side of 

the equation is an expression that evaluates a numerical real value. It can 

depend on the equation's left-hand side signal value.

Indirect contribution statements are incompatible with direct 

contribution statements across the same branch terminals. Once a value 

is indirectly assigned to a branch, it cannot be contributed to using the 

branch contribution operator <+. Hierarchical contributions are not 

allowed to branches that have been indirectly contributed. Indirect branch 

contributions shall not be used in looping and conditional statements 

unless the conditional expression is constant.

As an example, consider the use of indirect contribution in the module 

opamp representing a model of an ideal operational amplifier:

module opamp(out, pin, nin);

    inout out, pin, nin;

    electrical out, pin, nin;

    analog V(out) : V(pin, nin) == 0;

endmodule

The meaning of the indirect contribution here is to adjust the V(out) 

signal value so that the V(in) has zero value. It is equivalent to the implicit 

direct contribution statement:

V(out) <+ V(out) + V(pin, nin);
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As another example, the direct implicit contribution to I(diode) can 

be expressed as an indirect contribution:

V(diode):

   I(diode) == is*(exp((V(diode)-r*I(diode))/$vt)-1);

The left-hand side of the equation in indirect contribution statements 

can be also a derivative or integral operator applied to a signal access 

function, which will be discussed in the next chapter.

�Probe Branches
If branch potential or flow signal values are accessed in expressions with 

a signal access function but neither potential nor flow of that branch is 

contributed, the branch is considered to be a probe branch. The value of 

the probe branch signal which is not accessed by the signal access function 

is implicitly set to 0. If the probe branch flow value is accessed in an 

expression, the probe branch potential value is forced to 0. Otherwise, the 

branch flow value is forced to be 0 and the branch potential is available for 

use in an expression. Figure 8-4 shows a schematic representation of the 

potential and flow probe branches.

Figure 8-4.  Potential and flow probe branches
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The potential and flow of a probe branch may not both appear in 

expressions in a given module.

The following module defines a current-controlled current source:

module cccs (p, n, ps, ns);

    inout p, n, ps, ns;

    electrical p, n, ps, ns;

    parameter real A = 1.0;

    analog begin

        I(p,n) <+ A * I(ps,ns);

    end

endmodule

Because the branch flow I(ps,ns) appears in an expression on the 

right-hand side but neither its flow nor potential is contributed, it is a 

probe branch and its potential is implicitly assigned to 0.

�Value Retention
Multiple direct contributions to the same branch are additive as shown in 

the following example of the amplifier module:

module amplifier (in, out);

   input in,

   output out;

   electrical in, out;

   parameter real gain = 1.0e3, rout = 1.0;

   analog begin

      // gain of amplifier

       V(out) <+ gain * V(in);
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       // output resistance

       V(out) <+ rout * I(out);

   end

endmodule

The value of the first contribution to the unnamed branch between 

the port out and ground is retained and the second contribution value 

is added to that retained value. The two contribution statements in the 

amplifier module have the same effect as a single contribution statement:

V(out) <+ gain * V(in) + rout * I(out);

Unlike variables, contributed values of branch signals are only valid for 

the current iteration. At the beginning of each iteration, the retained values 

of the branches used in direct contribution statements are reset to 0.

Contributing a flow to a branch that already has a value retained for 

the potential results in the potential being discarded and the branch 

being converted to a flow branch. Conversely, contributing a potential to 

a branch that already has a value retained for the flow results in the flow 

being discarded and the branch being converted into a potential branch:

module value_ret(p, n);

    inout p, n;

    electrical p, n;

    analog begin

      // no previously-retained value, 1 is retained

      V(p,n) <+ 1.0;

      // potential discarded; flow of 2 retained

     I(p,n) <+ 2.0;

     // flow discarded; potential of 3 retained

     V(p,n) <+ 3.0;
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     // 4 added to previously-retained 3

     V(p,n) <+ 4.0;

   end

endmodule

The value retention rules specify that the preceding example will result 

in an assignment of 7.0 to the potential signal of the unnamed branch 

between ports p and n.

�Switch Branches
Contribution to a branch may be switched between a potential and a flow 

during a simulation. To this end, contribution statements are allowed 

within conditional statements as shown in the example:

module relay (p, n, ps, pn);

   inout ps, ns;

   output p, n;

   electrical p, n;

   parameter real thresh=0;

   parameter real ron=0 from [0:inf);

   parameter real goff=0 from [0:1/ron);

   analog

      if (V(ps,ns) > thresh)

          V(p,n) <+ ron * I(p,n);

      else

          I(p,n) <+ goff * V(p,n);

endmodule
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Using the switch branch between ports p and n, the module relay 

could represent also an ideal relay having zero on-resistance and zero off-

conductance, set here as default.

The signals are contributed to switch branches using value retention 

rules. However, the switch branch expressions shall not use analog 

operators if the condition can change during a simulation. A discontinuity 

in the first derivative of signal values is implicitly assumed to occur when 

the branch switches and it is not necessary to explicitly announce it with 

the $discontinuity system task. The use of the $discontinuity system 

task is described in Chapter 16.

If a conditional contributed statement branch is not executed for any 

particular iteration, and it is not a probe branch, it shall be treated as a flow 

branch with a value of 0. For example, the conditional contribution:

if (closed)

    V(p,n) <+ 0;

is equivalent to

if (closed)

    V(p,n) <+ 0;

else

    I(p,n) <+ 0;

Conversely, if a flow is contributed to a branch in some iterations 

(when the condition is satisfied), and in other iterations, nothing is 

contributed, the branch is considered a potential branch with a value of 0.

In the following example of a resistor module, a switch branch is 

controlled with the runtime constant condition:

module resistor(a, b);

   inout a, b;

   electrical a, b;

   parameter real r = 1.0 from (0:inf);
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   analog begin

      if (r / $mfactor < 1.0e-3)

          V(a,b) <+ 0.0;

      else

          I(a,b) <+ V(a,b) / r;

   end

endmodule

The switch branch is not switching during iterations. It will be either 

a potential or a flow branch based on the value of the effective resistance 

r/$mfactor evaluated in the elaboration phase. In the case that the voltage 

branch is selected, the resistance is simply shorted out, and the simulator 

may collapse the node to reduce the size of the system of equations.
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CHAPTER 9

Derivative and  
Integral Operators
The branch potential and flow signals represent the system state space 

in the Verilog-A behavioral models. The state of a system is defined at 

every moment in time by a finite number of equations involving not 

only algebraic relationships of signal values but also differentiation 

and integration operations on the instantaneous values of the branch 

signals. To this end, Verilog-A provides time derivative and integral 

operators which can be used in procedural expressions. There is also a 

special application of time derivative and integral operators in indirect 

contribution equations. The additional probe derivative operator allows 

to access the first-order partial derivatives of any expression in the model 

with respect to branch signals.

�Time Derivative Operator
The syntax of the time derivative operator takes one of the following forms:

ddt ( expression )

ddt ( expression, abstol )

ddt ( expression, nature-name )
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The ddt() operator computes the time derivative of the expression 

argument. At the beginning of a transient simulation and in static analyses, 

ddt() returns zero.

An optional argument could be used to specify the absolute tolerance 

if needed. It is specified either as a constant expression or providing the 

nature identifier where the absolute tolerance is defined. Whether an 

absolute tolerance is needed depends on the context in which the ddt() 

operator is used. The absolute tolerance, defined by a constant expression 

or derived from the nature definition, represents the largest signal level 

considered negligible. The following branch contribution statement 

defines the linear capacitor and inductor using the time derivative 

operator:

I(p, n) <+ C * ddt(V(p, n), 1e-6);

V(p, n) <+ L * ddt(I(p, n), Current);

using the real literal and the nature name to define the optional abstol 

values in the ddt() operator.

�Case Study: DC Motor
The DC motor converts electrical power to mechanical power of kinematic 

rotation. Figure 9-1 shows the schematic representation of the DC motor.

Figure 9-1.  Schematic representation of the DC motor
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The DC motor is described in simple terms by the following 

constitutive relations:

	
T K I B d

dt
Jm t m m m m m= − − ( )θ θ 	

	
V R I d

dt
L I Kin m m m m m m= + ( ) + θ 	

The electrical parameters of the motor model include its resistance 

Rm and inductance Lm. The mechanical parameters are motor inertia Jm 

and rotational friction Bm. The intrinsic motor voltage drop is Km times the 

angular frequency of the motor θm, and the torque is Kt times the current 

through the motor, Im. These equations are implemented in the Verilog-A 

model given in the motor_ckt module.

module motor(vp, vn, shaft);

   inout vp, vn, shaft;

   electrical vp, vn;

   rotational shaft;

   parameter real Km = 4.5, Kt = 6.2;

   parameter real j = 0.004, D = 0.1;

   parameter real Rm = 5.0, Lm = 0.02;

   analog begin

      V(vp, vn) <+ Km*Theta(shaft) + Rm*I(vp, vn) +

                   ddt(Lm*I(vp, vn), vp.flow.abstol);

      Tau(shaft) <+ Kt*I(vp, vn) - D*Theta(shaft) -

                    ddt(j*Theta(shaft), Angle);

   end

endmodule
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Note the use of the hierarchical reference vp.flow.abstol to specify 

an absolute tolerance value for the ddt() operator. This syntax shall not be 

used for attributes whose value is not a constant expression.

�Time Integrator Operator
The idt() operator computes the time integral of an expression. It can be 

used in one of the following syntax forms:

idt ( expression )

idt ( expression, ic )

idt ( expression, ic , assert )

idt ( expression, ic , assert , abstol )

idt ( expression, ic , assert , nature )

If only the expression argument is specified, the initial condition for the 

idt() operator is found by the simulator, generally, using the DC operating 

point preceding the transient simulation. However, for the DC operating 

point to exist, the idt() operator must be contained within a negative 

feedback loop that forces expression to 0. Otherwise, the output of the 

idt() operator is undefined.

The output of the integration operator can be forced to a particular 

value at the start of the transient simulation by specifying the initial 

condition ic. The optional numerical argument assert allows postponing 

the start of the integration and resetting the integration to the ic value. 

When specified with initial conditions (ic) but without assert, idt() returns 

the value of the initial condition on the initial point of a transient analysis. 

When specified with both initial conditions ic and assert, idt() returns 

the initial condition in DC (or other static) analyses, and whenever assert 

is nonzero. Once assert becomes zero, idt() returns the integral of the 

expression starting from the last instant where assert was nonzero.
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The last optional parameter abstol or nature is used, similar to the 

ddt() operator, to specify an absolute tolerance if needed. Whether an 

absolute tolerance is needed depends on the context where idt() is used. 

The absolute tolerance applies to the input of the idt() operator and is the 

largest signal level considered negligible.

�Case Study: Chemical Reaction System
The inflation of airbags, once the capsule has been ignited, is commonly 

described by the three concurrent chemical reactions:

	 2 2 3
3 2

NaN Na N→ + 	

	 10 2 5
3 2 2 2

Na KNO K O Na O N+ → + + 	

	 K O Na O SiO K Na SiO
2 2 2 2 2 4

+ + → 	

The chemical reaction equations can be rewritten to introduce the 

necessary time parameter. Using the Van't Hoff theory on kinetic equations 

results in the following set of reaction rate equations of chemical products 

over time:

	

d NaN
dt

k NaN3

1 3

2

2
[ ]

= − [ ] 	

	

d Na
dt

k NaN k Na[ ]
= [ ] − [ ]2 10

1 3

2

2

10

* 	

	

d N
dt

k NaN k Na KNO2

1 3

2

2

10

3

2

3
[ ]

= [ ] + [ ] [ ] 	
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d KNO
dt

k Na KNO3

2

10

3

2

2
[ ]

= − [ ] [ ] 	

	

d K O
dt

k Na KNO2

2

10

3

2[ ]
= [ ] [ ] 	

	

d Na O
dt

k Na KNO k K O Na O SiO2

2
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3

2

3 2 2 2
5

[ ]
= [ ] [ ] − [ ][ ][ ] 	

	

d SiO
dt

k K O Na O SiO2

3 2 2 2

[ ]
= − [ ][ ][ ] 	

	

d K Na SiO
dt

k K O Na O SiO2 2 4

3 2 2 2

[ ]
= [ ][ ][ ] 	

where k1 to k3 represent reaction rate constants. The Verilog-A 

implementation of the chemical reaction model is shown in the 

chemsys module.

module chemsys (in);

   input electrical in;

   parameter real K1 = 14000.0;

   parameter real K2 = 1.0;

   parameter real K3 = 1.0;

   parameter thresh = 0.1;

   integer detain;

   chemical_sf c_NaN3, c_Na, c_N2, c_KNO3,

               c_K2O, c_Na2O, c_SiO2, c_K2Na2SiO4;

   analog initial detain = 1;

Chapter 9  Derivative and Integral Operators 



141

   analog begin

      @(cross(V(in) - thresh, +1)) detain = 0

      CH(c_NaN3) <+ idt(-2.0*K1*pow(CH(c_NaN3),2),

                        5.0/3.0, detain);

      CH(c_Na)   <+ idt(2.0*K1*

                        pow(CH(c_NaN3),2)-10.0*K2*

                        pow(CH(c_Na),10)*

                        pow(CH(c_KNO3),2),

                        0.0, detain);

      CH(c_N2)   <+ idt(3.0*K1*pow(CH(c_NaN3),2) +

                        K2*pow(CH(c_Na),10)*

                        pow(CH(c_KNO3),2),

                        0.0, detain);

      CH(c_KNO3) <+ idt(-2.0*K2*pow(CH(c_Na),10)*

                        pow(CH(c_KNO3),2),

                        1.0/3.0, detain);

      CH(c_K2O)  <+ idt(K2*pow(CH(c_Na),10)*

                        pow(CH(c_KNO3),2)-

                        K3*CH(c_K2O)*

                        CH(c_Na2O)*CH(c_SiO2),

                        0.0, detain);

      CH(c_Na2O) <+ idt(5.0*K2*pow(CH(c_Na),10)*

                        pow(CH(c_KNO3),2)-

                        K3*CH(c_K2O)*

                        CH(c_Na2O)*CH(c_SiO2),

                        0.0, detain);

      CH(c_SiO2) <+ idt(-K3*CH(c_K2O)*

                        CH(c_Na2O)*CH(c_SiO2),

                        1.0/6.0, detain);
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      CH(c_K2Na2SiO4) <+ idt(K3*CH(c_K2O)*

                             CH(c_Na2O)*CH(c_SiO2),

                             0.0, detain);

   end

endmodule  // chemsys

The equations of the chemical system are implemented in its integral 

form using the idt() operator. This form is preferred since it provides a 

way to postpone the integration of equations until it is triggered by external 

signals. It is handled by the assert argument to the idt() operator, which is 

in the module implementation provided by the integer variable detain.

�Circular Integrator Operator
The idtmod() operator converts an expression argument into its 

indefinitely integrated value similar to the idt() operator. The idtmod() 

operator can be used in one of the syntax forms:

idtmod ( expression )

idtmod ( expression , ic )

idtmod ( expression , ic ,modulus )

idtmod ( expression , ic ,modulus, offset )

idtmod ( expression , ic ,modulus, offset , const-expr )

idtmod ( expression , ic , modulus, offset, nature )

The initial condition ic is used in the same way as in the idt() operator. 

If idtmod() is used in a system with a feedback configuration that 

forces expression to 0, the initial condition can be omitted without any 

unexpected behavior during simulation.

The return value of the idtmod() operator can be expressed as

	 y t y t k mmod ( ) = ( ) − ⋅ 	
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where y(t) is the return value of the time integrator operator idt(), m 

is the modulus, while k is an integer chosen so that the output shall remain 

in the range

	 b y t b m≤ ( ) ≤ + 	

where b is the offset. The modulus and offset shall be expressions that 

evaluate real values and the value of the modulus shall be positive. If 

the modulus is not specified, then idtmod() shall behave like the idt() 

operator and not limit the output of the integrator. If the offset is not given, 

the default value of 0 is assumed.

Figure 9-2 shows an example of idtmod() operator output.

Figure 9-2.  The output of the idtmod() operator when the input 
argument is a constant α

Besides keeping its output bounded, the idtmod() operator is 

implemented in such a way that its internal state variable is also bounded.
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�Case Study: Voltage-Controlled Oscillator
The circular integrator is particularly useful in cases where the time 

integral can get very large. A typical example of such a system is a voltage-

controlled oscillator (VCO) shown in Figure 9-3.

Figure 9-3.  Schematic representation of the voltage-controlled 
oscillator

The VCO produces an output signal whose frequency is proportional 

to an input signal.

	 f K v tout in= ( )vco 	

where Kvco is the VCO gain. To achieve this functionality, it is required 

to integrate the input signal to compute the phase of the output signal:

	
φ π τ τ

π
t K v dvco

t

in( ) = ⋅ ( ) −








 +2 0 5 0 5

2
0

mod ∫ . .

	

and then produce the output signal from the phase as

	
v tout = ( )( )sin φ 	

The Verilog-A code that implements this model is given in the 

vco module:

module vco (out, in);

   input voltage in;

   output voltage out;
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   parameter real Vmin = 0;

   parameter real Vmax = Vmin + 1 from (Vmin:inf);

   parameter real Fmin = 1 from (0:inf);

   parameter real Fmax = 2 * Fmin from (Fmin:inf);

   parameter real ampl = 1; // output amplitude (V)

   real freq, phase;

   analog begin

      //compute the freq from the input voltage

      freq = (V(in) – Vmin)*(Fmax – Fmin) /

             (Vmax – Vmin) + Fmin;

      //phase is the integral of the freq modulo

      phase = 2*`M_PI*idtmod(freq, 0.0, 1.0, –0.5);

      //generate the output

      V(out) <+ sin(phase);

   end

endmodule

In a VCO, only the output values in the range [0,2π] of the circular 

integrator are of interest. The file constants.vams supplies `M_PI defined 

to be the Pi number. The use of the constants.vams file and compiler 

directives is explained in Chapter 20.

�Indirect Contribution Equations
The Verilog-A syntax allows defining an indirect branch contribution with 

derivative and integral operator–based expressions on the equation's left-

hand side:

derivative-or-integral-operator  ==  expression
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Here, derivative-or-integral-operator is obtained by applying a 

derivative or an integral operator to the branch signal access functions:

ddt( nature-access-function ( branch-reference ), ... )

idt( nature-access-function ( branch-reference ), ... )

idtmod( nature-access-function ( branch-reference ), ... )

with an optional argument specified if required.

The use of derivative and integral operators in indirect contribution 

statements is quite useful for the description of differential and integral 

equations. For example, the indirect contribution statements

Pos(velocity):ddt(Pos(y)) == Pos(velocity);

Pos(y):ddt(Pos(velocity)) == B*pow(Pos(y),3.0);

describe the nonlinear equation of motion.

For multiple indirect contribution statements, the targets frequently 

can be paired with any equation. For example, the following ordinary 

differential equation

	

dx
dt

f x y z= ( ), , 	

	

dy
dt

g x y z= ( ), , 	

	

dz
dt

h x y z= ( ), , 	

Where x, y, and z are electrical quantities, can be written as

V(x): ddt(V(x)) == f(V(x), V(y), V(z));

V(y): ddt(V(y)) == g(V(x), V(y), V(z));

V(z): ddt(V(z)) == h(V(x), V(y), V(z));
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or

V(y): ddt(V(x)) == f(V(x), V(y), V(z));

V(z): ddt(V(y)) == g(V(x), V(y), V(z));

V(x): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(z): ddt(V(x)) == f(V(x), V(y), V(z));

V(x): ddt(V(y)) == g(V(x), V(y), V(z));

V(y): ddt(V(z)) == h(V(x), V(y), V(z));

without affecting the results.

�Case Study: Accelerometer
The accelerometer has the structure shown in Figure 9-4. Similar to the 

DC motor example, it mixes mechanical and electrical disciplines in 

two transducers. First, the input force is converted into a mechanical 

displacement using a tethered seismic mass. Then, the mechanical 

displacement is converted into an electrical signal by modulating the gap 

between capacitance plates.
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Figure 9-4.  Schematic representation of an accelerometer

In the first transducer, the micro-flexural structure can be modeled as a 

damped harmonic oscillator using a second-order differential equation:

	
F t M d x

dt
D dx
dt

kx( ) = + +
2

	

where F(t) is the force applied to a seismic mass, x is the displacement 

of the mass M, D is the damping coefficient, and k is spring stiffness.

The second transducer uses the seismic mass as the middle plate 

of a differential capacitance circuit. The displacement of the seismic 

mass modifies the gap between plates and, hence, the differential 

capacitance values.

The Verilog-A code that implements this model is given in the 

capsensor module:

module capsensor (mass, etop, emid, ebot);

   inout mass, mref, etop, emid, ebot;

   kinematic mass;

   electrical etop, emid, ebot;
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   // mechanical properties

   parameter real M  = 0.16e-9; // seismic mass

   parameter real D  = 4.0e-6;  // damping coeff.

   parameter real K  = 2.6455;  // spring stiffness

   parameter real A  = 220.0e-12; // capacitor area

   parameter real D0 = 1.5e-6; // initial position

   real ctm, cbm, tmp;

   analog begin

      // equation for displacement of comb drive

      tmp = F(mass)- K * Pos(mass);

      Pos(mass):

         ddt(Pos(mass))==(idt(tmp)-D*Pos(mass))/M;

      // compute change and current in capacitances

      ctm = A*`P_EPS0 / (D0 + Pos(mass));

      cbm = A*`P_EPS0 / (D0 - Pos(mass));

      I(etop, emid) <+ ctm * ddt(V(etop, emid));

      I(ebot, emid) <+ cbm * ddt(V(ebot, emid));

   end

endmodule

Note the use of the indirect contribution statement for the 

displacement of the seismic mass Pos(mass).

�Probe Derivative Operator
The probe derivative operator provides access to symbolically computed 

partial derivatives of expressions in the analog procedural blocks. The 

syntax for the probe derivative operator is

ddx ( expression , unknown-quantity )
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The first argument is the expression that evaluates a real numerical 

value. The ddx() operator returns the partial derivative of its first argument 

with respect to the second argument unknown_quantity which is the 

branch probe (potential or flow probe) keeping all other unknowns fixed 

and evaluated at the current operating point. If the expression does not 

depend explicitly on the unknown-quantity, then ddx() returns 0. Care 

must be taken when using implicit equations or indirect contributions, 

for which the simulator may create internal unknowns; derivatives to 

these internal unknowns cannot be accessed with ddx(). Unlike the ddt() 

operator, no tolerance specifications are required for the ddx() operator 

because the partial derivative is computed symbolically and evaluated at 

the current operating point.

In many cases, the values of derivatives of expressions used in 

contribution statements are useful quantities. It is particularly true for 

compact modeling where quantities such as the transconductance of a 

transistor or the capacitance of a nonlinear charge-storage element such 

as a varactor are essential for the circuit and system design.

The following example of a module diode uses a ddx() operator to 

obtain the conductance of the diode:

module diode(a,c);

    inout a, c;

    electrical a, c;

    parameter real IS = 1.0e-14;

    real idio;

    (* desc="small-signal conductance" *) real gdio;

    analog begin

        idio = IS * (limexp(V(a,c)/$vt) - 1);

        gdio = ddx(idio, V(a));

       I(a,c) <+ idio;

    end

endmodule
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The variable gdio is declared as an output variable (using the 

attribute instance described in Chapter 19) so that its value is available for 

inspection by the designer.

The next example implements a voltage-controlled dependent current 

source and is used to illustrate the computations of partial derivatives:

module vccs(pout, nout, pin, nin);

    inout pout, nout, pin, nin;

    electrical pout, nout, pin, nin;

    parameter real k = 1.0;

    real vin, one, minusone, zero;

    analog begin

        vin = V(pin,nin);

        one = ddx(vin, V(pin));

        minusone = ddx(vin, V(nin));

        zero = ddx(vin, V(pout));

        I(pout,nout) <+ k * vin;

    end

endmodule

The names of the variables indicate the values of the partial 

derivatives: +1, –1, or 0.
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CHAPTER 10

Built-In Math 
Functions
There are an infinite number of possible math functions. But in practice, 

there is a definite set of standard math functions that are considered 

reasonable to include as primitives in expressions and that are 

implemented as built-in math functions in Verilog-A. Besides the standard 

deterministic functions, Verilog-A also provides a set of probabilistic 

functions to support variability-aware system simulation.

�Deterministic Functions
A function is considered deterministic if it always returns the same result 

when it’s called with the same input arguments. It can be invoked using 

the traditional Verilog-A syntax style:

function-name (x)

function-name (x,y)

where the function-name is followed by parentheses specifying one 

or two function arguments. Alternatively, one can use a system function 

syntax style:

$function-name (x)

$function-name (x,y)
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where the function name is preceded by the $ character. With just a few 

exceptions, most of the Verilog-A built-in math functions can be used in 

both syntax styles. Although the Verilog-A standard encourages if possible 

the adoption of the system function style, in this book the system function 

style is used only if the transitional Verilog-A function style is not possible.

�Logarithmic and Power Functions
The logarithmic and power functions supported by Verilog-A are shown in 

Table 10-1. They are all available in both traditional Verilog-A and system 

function styles.

Table 10-1.  Power and logarithmic functions in Verilog-A

Function Name Verilog-A Function Domain

Natural logarithm ln(x) x >0

Decimal logarithm log(x) x >0

Exponential exp(x) All x

Square root sqrt(x) x >=0

Power pow(x, y) If x >0, all y 

If x =0, y >0 

If x <0, int(y )

Hypot hypot(x,y) All x, all y

The ln(x) and log(x) return the natural and decimal logarithms of 

a real argument whose value must be positive. The exp(x) returns the 

exponential function value for a real argument x. The ln(x) is the inverse 

function of exp(x).
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Note U nlike the C programming language where the log(x) 
function is used to evaluate the natural logarithm, in Verilog-A the 
natural logarithm is evaluated using the ln(x) function, while the 
log(x) function evaluates decimal logarithms.

The sqrt(x) returns the square root function value for a non-negative 

real argument x. The pow(x, y) returns x raised to the power of y, which can 

be also achieved using expression x**y. The hypot(x,y) returns the square 

root of the sum of squares of its arguments, x y2 2+ . This corresponds to 

calculating the length of the hypotenuse of a right-angled triangle.

�Trigonometric Functions
The trigonometric functions supported by Verilog-A are shown in 

Table 10-2. They are all available in both traditional Verilog-A and system 

function styles.

Table 10-2.  Trigonometric functions in Verilog-A

Function Name Verilog-A Function Domain

Sine sin(x) All x

Cosine cos(x) All x

Tangent tan(x) x != n(π/2), n is odd

Arc-sine asin(x) -1<=x<=1

Arc-cosine acos(x) -1<=x<=1

Arc-tangent atan(x) All x

2-argument arc-tangent atan2(x,y) All x, all y  

atan2(0,0)=0
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Arguments to the trigonometric functions (sin(), cos(), tan()) and 

return values of the inverse trigonometric functions (asin(), acos(), 

atan(), atan2()) are in radians. Input values outside of the valid range for 

the operator shall report an error.

The function atan2(x,y) is defined as the angle in the Euclidean 

plane, given in radians, between the positive y axis and the ray from the 

origin to the point (x, y). For y>0, atan2(x,y) = atan(x/y). However, 

for y>0 the single-argument arc-tangent function atan(x/y) cannot 

distinguish between diametrically opposite directions. In addition, an 

attempt to find the angle between the y axis and the vectors (x, 0), x ≠ 0  

requires evaluation of arctan(x/0), which fails on division by zero. The 

atan2() function calculates one unique arc-tangent value from two 

variables x and y, where the signs of both arguments are used to determine 

the quadrant of the result, thereby selecting the desired branch of the  

arc-tangent of x/y.

�Hyperbolic Functions
The hyperbolic functions supported by Verilog-A are shown in Table 10-3.  

They are all available in both traditional Verilog-A and system 

function styles.

Table 10-3.  Hyperbolic functions in Verilog-A

Function Name Verilog-A Function Domain

Hyperbolic sine sinh(x) All x

Hyperbolic cosine cosh(x) All x

Hyperbolic tangent tanh(x) All x

Arc-hyperbolic sine asinh(x) All x

Arc-hyperbolic cosine acosh(x) All x

Arc-hyperbolic tangent atanh(x) All x
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Arguments to the hyperbolic functions (sinh(x), cosh(x), tanh(x)) 

and return values of the inverse hyperbolic functions (asinh(), acosh(), 

atanh()) are called a hyperbolic angle.

�Limiting and Rounding Functions
A number of limiting and rounding functions supported in Verilog-A are 

shown in Table 10-4. Note that the min(), max(), and abs() functions are 

not available in the system function style, while the $clog2() function can 

be used only in the system function syntax style.

Table 10-4.  Limiting and rounding functions in Verilog-A

Function Name Verilog-A Function Domain

Minimum min(x,y) All x, all y

Maximum max(x,y) All x, all y

Absolute abs(x) All x

Floor floor(x) All x

Ceiling ceil(x) All x

Ceiling of log base 2 $clog2(x) All x

The min(x,y) and max(x,y) return the minimum or maximum of two 

integer or real numbers x and y. The abs(x) function returns the absolute 

value of an argument x of type integer or real. These functions can be also 

implemented using the conditional operator:

min(x,y) is equivalent to (x < y) ? x : y

max(x,y) is equivalent to (x > y) ? x : y

abs(x) is equivalent to (x > 0) ? x : –x
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For min(), max(), and abs() functions, the result is of type integer if 

arguments are of type integer and otherwise it is real. If either operand 

of min() and max() functions is real, both are converted to real, as is the 

result. Note that the min(), max(), and abs() functions have discontinuous 

derivatives. It is therefore necessary to define the behavior of the derivative 

of these functions at the point of the discontinuity.

The floor(x) function returns the greatest integer less than or equal 

to its real argument. On the other hand, the ceil(x) function returns the 

least integer greater than or equal to its real argument. These functions are 

piecewise constant and discontinuous.

The system function $clog2() shall return the ceiling of logarithm 

base 2 of the argument. The argument can be of integer or real type and an 

argument value of 0 shall produce a result of 0.

�Probabilistic Functions
Verilog-A provides a function for random number generation and a set 

of statistical distribution functions. They can be only used in a system 

function syntax style.

�Random Number Generation Function
The probabilistic function $arandom provides a mechanism for generating 

a sequence of random numbers. It is used in one of the syntax forms:

$arandom

$arandom ( seed )

$arandom ( seed , type-string )

The random number returned is a 32-bit signed integer that can be 

positive or negative. The $arandom functions return a new random integer 

number each time it is called.
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The seed is an optional argument that determines the sequence of 

random numbers generated. The same sequence of random numbers will 

be generated every time the same seed is used. It could be important for 

regression analysis where each simulation run must work with the same 

sequence of random numbers. The $arandom function could be called by 

the function name only, in which case the simulator picks a seed.

The seed may be specified as an integer variable, integer parameter, 

or integer constant. If the seed is specified as an integer variable, it is a 

bidirectional argument; that is, a value is passed to the function and a 

different value is returned. The variable should be initialized prior to 

calling $arandom and only updated by the $arandom function. If the seed 

is specified as an integer parameter or an integer constant, the $arandom 

function does not update the seed value. However, an internal seed is 

created which is assigned the initial value of the parameter or constant. 

The internal seed gets updated every time the call to $arandom is made. 

This allows the $arandom function to be used for parameter initialization. 

In order to get different random values when the seed argument is an 

integer parameter, the user can override the parameter value.

The type-string is an additional optional argument of a string type. It 

provides support for Monte-Carlo analysis and shall only be used in calls 

to $arandom from within a paramset. If the type-string is "global" (or not 

specified in a call within a paramset), then one value is generated for 

each Monte-Carlo trial. If the type-string is "instance", then one value 

is generated for each instance that references this value, and a new set of 

values for these instances is generated for each Monte-Carlo trial.

For example, the following code fragment:

integer rand;

rand = $arandom % 60;

assigns a random number between -59 and 59 to the rand variable.
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�Statistical Distribution Functions
Verilog-A provides a number of statistical distribution functions which are 

invoked using a generic system function syntax form:

$rdist_distribution-function-name(arg, ... )

where distribution-function-name stands for different distribution 

function names given in Table 10-5.

Table 10-5.  Statistical distribution functions in Verilog-A

Name Argument List

chi_square seed, mean 
seed, mean, type-string

exponential seed, mean 
seed, mean, type-string

poisson seed, mean  
seed, mean, type-string

uniform seed, start, end 
seed, start, end, type-string

erlang seed, k-stage, mean 
seed, k-stage, mean, type-string

normal seed, mean, standard-dev 
seed, mean, standard-dev, type-string

t seed, degree-of-freedom 
seed, degree-of-freedom, type-string

Each of these functions returns a random number whose 

characteristics are described by the function name. For example, 

$rdist_uniform returns random numbers uniformly distributed in the 
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interval specified by its arguments. All probabilistic functions return a real 

value. All arguments to the probabilistic functions are real values, except 

for the seed which shall be an integer value. Moreover, the arguments 

mean, degree-of-freedom, and k-stage shall be greater than zero. Otherwise, 

an error shall be reported.

The mean argument causes the average value returned by the 

statistical distribution function to approach the specified value by the 

mean argument.

In $rdist_uniform, the start and end arguments are input arguments 

that bound the returned function values. The start value shall be smaller 

than the end value.

The standard-dev argument, used by $rdist_normal, is an input 

argument that helps to determine the shape of the density function. Using 

larger numbers for standard-dev spreads the returned values over a wider 

range of values. Using a mean of 0 and a standard-dev of 1, the $rdist_

normal function generates the Gaussian distribution.

The degree-of-freedom argument helps determine the shape of the 

density function. Using larger numbers for degree-of-freedom spreads the 

returned values over a wider value range.

The use of the seed argument is the same as for the $arandom function. 

The statistical distribution functions shall always return the same value 

given the same seed. This facilitates debugging by making the operation 

of the system repeatable. In order to get different random values when the 

seed argument is a parameter, the user can override the parameter.

The use of the type-string arguments in statistical distribution 

functions is the same as in the $arandom function. It provides support 

for Monte-Carlo analysis and shall only be used in calls to a distribution 

function from within a paramset. If the type-string is "global" (or not 

specified in a call within a paramset), then one value is generated for 

each Monte-Carlo trial. If the type-string is "instance", then one value 

is generated for each instance that references this value, and a new set of 

values for these instances is generated for each Monte-Carlo trial.
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The following example shows how to use the $rdist_normal function 

to model two kinds of statistical variation:

module semicoCMOS ();

    localparam real tox = 3e-8;

    localparam real dtox_g =

                    $rdist_normal(1,0,1n,"global");

    localparam real dtox_mm =

                    $rdist_normal(2,0,5n,"instance");

endmodule

paramset nch nmos3; // mismatch paramset

    parameter real l=1u from [0.25u:inf);

    parameter real w=1u from [0.2u:inf);

    parameter integer mm=0 from (0:1];

    .l=l; .w=w; .ad=w*0.5u; .as=w*0.5u;

    .kp=5e-5; .u0=650; .nsub=1.3e17;

    .vmax=0; .tpg=1; .nfs=0.8e12;

    .tox = semicoCMOS.tox + semicoCMOS.dtox_g +

           semicoCMOS.dtox_mm;

endparamset

module top ();

    electrical d1, d2, g, vdd, gnd;

    ground gnd; nch #(.l(1u), .w(5u), .mm(1))

    m1(.d(d1), .g(g), .s(gnd), .b(gnd));

    nch #(.l(1u), .w(5u), .mm(1))

          m2(.d(d2), .g(g), .s(gnd), .b(gnd));

    resistor #(.r(1k)) R1 (vdd, d1);

    resistor #(.r(1k)) R2 (vdd, d2);

    vsine #(.dc(2.5)) Vdd (vdd, gnd);

    vsine #(.dc(0), .ampl(1.0), .offset(1.5),

            .freq(1k)) Vg (g, gnd);

endmodule
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Because the local parameter dtox_mm is obtained from $rdist_normal 

with the string "instance", the instances m1 and m2 will get different values 

of tox. Though the local variation has a smaller standard deviation than 

the global variation, only the local variation will affect the differential 

voltage between nodes d1 and d2.
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CHAPTER 11

User-Defined 
Functions
Besides the predefined math functions, described in the previous chapter, 

Verilog-A provides also a way to define our own functions. User-defined 

functions could be used to encapsulate self-contained segments of the 

code and avoid the replication of the same or very similar code sections. 

Moreover, testing can be carried out on each function in isolation, rather 

than on the whole module. This chapter describes the two main stages in 

using the user-defined functions, first how to define a function and second 

how to invoke it in the module procedural code.

�Defining Functions
User functions are defined between the keywords function and 

endfunction using the syntax

analog function function-type function-name ;

  declaration-statement ...

  procedural-statement

endfunction

The function definition must be preceded by the keyword analog to 

distinguish it from digital style function definitions in the Verilog-AMS 

language using Verilog-A as a language subset. The header line, ending 
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with a semicolon, declares a function type as function-type and a function 

name as an identifier function-name. The function-type can be either 

real or integer but the declaration of the function type is optional. If the 

function type is not specified, it is assumed to be real. The user-defined 

functions can be only defined within a module body along with other two 

analog constructs, namely, analog blocks and analog initial blocks. It is 

not allowed to position the function definition within procedural blocks.

The body of the user-defined function definition consists of a sequence 

of declaration statements followed by a single procedural statement. The 

syntax allows the declaration of real and integer variables and parameters 

but the declaration of nets is not permitted. The declared variables and 

parameters have only local scope within a user-defined function. Some of 

the declared variables shall be specified as formal arguments to provide an 

interface for calling user-defined functions in the module procedural code.

�Formal Arguments
A user-defined function shall have at least one variable specified as 

a formal argument. The syntax for the specification of scalar formal 

arguments is

direction variable-name,  ...

The direction specifier can be either an input or output keyword for 

unidirectional or an inout keyword for bidirectional formal arguments. The 

direction specifier is followed by a comma-separated list of variable names. 

The declaration of formal arguments with the direction specifier resembles 

the port declarations but here variable names are used instead of port names. 

Besides, all formal arguments shall be also declared as integer or real variables:

input l, w;

output area, perim;

real l, w, area, perim;
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Array variables can be also specified as formal arguments using 

the syntax:

direction range port-name,  ...

where a range specifier is introduced after the direction specifier, 

similar to the declarations of the vector ports:

inout [0:1]a;

real a[0:1];

The ranges in the direction and type declarations must be identical.

If a formal argument only receives values from outside of the function, 

it is specified as an input argument. The modification done to the input 

arguments in the function evaluation does not reflect in the caller's scope.

An argument does not have to receive anything from outside of the 

function. It can be used to pass a computation result back to the outside 

world. In this case, it is specified as an output argument. All output 

arguments are implicitly initialized to 0.

Finally, an argument can receive a value, use it for computation, and 

hold a result so that it can be passed back to the outside world. In this 

case, it is specified as an inout argument. The modification done on 

inout arguments in the function evaluation is persistent and changes are 

reflected in the caller's scope. The inout arguments do not get initialized 

to 0 like output arguments.

�A Return Variable
The user-defined functions implicitly declare an additional variable with 

local function scope. It has the same type and name as the function itself. 

This local implicit variable is initialized to 0 and can be assigned within the 

body of the user-defined function. It is illegal to declare another variable 

with the same name inside the user-defined function scope. For example, 

in the user-defined function:
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analog function real hypsmooth;

   input x, c;

   real x, c;

   hypsmooth = 0.5 * (x + hypot(x, 2c));

endfunction

the hypsmooth is implicitly declared a return variable of type real. 

The last value assigned to this variable will be the return value of the 

user-defined function. If this internal variable is not assigned during the 

execution of the user-defined function, then the user-defined function will 

return the initialized value of 0. A user-defined function shall always return 

a scalar numerical value.

�A Procedural Statement
A single procedural statement in user-defined functions could be a 

procedural assignment (as in the previous example of the hypsmooth 

function), but also any statements available for conditional execution, 

or a single sequential block statement. Named block statements, and 

corresponding block declarations, are not allowed in user-defined 

functions.

The procedural statement actually evaluates the user-defined function. 

It should only reference locally defined variables (including formal 

arguments), locally defined parameters, but also module-level parameters. 

If a locally defined parameter with the specified name does not exist, then 

the module-level parameter of the specified name will be used. Since it is 

not possible to declare and reference nets within user-defined functions, 

access functions and analog operators are not allowed in the procedural 

statement. The event control statements are not allowed, too.

The following example illustrates a user-defined function using scalar 

and array arguments. The maxValue function

Chapter 11  User-Defined Functions



169

analog function real maxValue;

    input n1, n2;

    real n1, n2;

    maxValue = (n1 > n2) ? n1 : n2;

endfunction

returns the larger value of two input arguments. The distance function

analog function real distance;

   input [0:2] p;

   input [0:2] q;

   real p[0:2], q[0:2];

   distance = sqrt( (p[0]-q[0])**2 +

                    (p[1]-q[1])**2 +

                    (p[2]-q[2])**2 );

endfunction

returns the distance between two points in space. The geomcalc 

function

analog function real geomcalc;

    input l, w;

    output area, perim;

    real area, w, l, perim;

    begin

        area = l * w;

        perim = 2 * ( l + w );

    end

endfunction

evaluates the area and perimeter of a rectangle as output arguments. 

Finally, the arrayadd function
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analog function real arrayadd;

    inout [0:1]a;

    input [0:1]b;

    real a[0:1], b[0:1];

    integer i;

    begin

        for(i = 0; i < 2; i = i + 1) begin

            a[i] = a[i] + b[i];

        end

    end

endfunction

adds the contents of a second array argument to the first one.

�Calling Functions
The user-defined function shall only be called from an analog block or 

from within another user-defined function. They shall not call themselves 

directly or indirectly, which means that recursive functions are not 

permitted.

The user-defined function is typically called in two styles: as 

an operand in expressions or as a stand-alone statement similar to 

subroutines or procedures in programming languages. Both styles are 

using the same function reference syntax but could select different ways of 

exchanging data by calling procedural code.

�Function References
A function call operator with the syntax

function-name ( expression, ...  )
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is used as a user-defined function reference in the module procedural 

code. It specifies the list of expressions in parentheses after the user-

defined function name. These expressions represent actual arguments 

of the function reference. During the execution of a user-defined 

function, the appropriate linkage must be established between the 

actual arguments, specified in the function call operator, and the formal 

arguments defined within the function. This linkage is called argument 

association.

The argument association in user-defined functions is based on the 

order in which the direction of the formal arguments is specified in the 

function definition. For example, the function reference

geomcalc(l-dl, w-dw, ar, per);

supplies the actual arguments in the order in which the formal 

argument directions are specified in the user-defined function geomcalc:

analog function real geomcalc;

    input l, w;

    output area, perim;

    real area, w, l, perim;

    ...

  endfunction

Here, it is associating l-dl with l, w-dw with w, ar with area, and per 

with perim. Note that the order of arguments in their type declarations is 

not relevant at all for the argument association. The order of evaluation of 

actual argument expressions in the function reference is undefined.
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�Using Functions in Expressions
One way a user-defined function may be referenced or invoked in module 

procedural code is by placing the function reference with actual arguments 

as an operand in an expression. In that case, a user-defined function is 

typically defined to have only input arguments. The result of the function 

evaluation shall be assigned to the implicitly declared return variable.

Here are examples of using user-defined functions maxValue, 

hypsmooth, and distance in expressions:

V(out) <+ maxValue(V(in1), V(in2));

Vdsat = hypsmooth(Vdsat-1.0E-3, 1.0E-5) + 1.0E-3;

vel = distance('{x1, y1, z1},'{x2, y2, z2})) / time;

Any expression that evaluates a numerical value, including signal 

access functions, can be used here as actual function arguments. Note the 

use of assignment patterns to match up the formal array arguments in the 

function distance.

�Function Called As Statements
The user-defined functions are called in a statement style if it is intended 

to return more than one value from the function. In that case, the implicitly 

defined return variable is not used. Instead, output and inout arguments 

are used to return the values evaluated by the user-defined function.

During the execution of the function, inout and output arguments 

can be assigned in the procedural statement. At the end of the function 

execution, the last value assigned to the inout and output arguments is 

assigned to the corresponding variable reference that was passed into 

the function. If a value was not assigned to an inout argument during the 

execution of the analog user-defined function, then the corresponding 
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actual argument reference is left untouched. If a value was not assigned to 

an output argument, the corresponding actual argument will be reset to 0, 

the initial value of output arguments.

Note  inout arguments are not “pass by reference” as it is in the 
C programming language, but more closely related to “copy in” and 
“copy out.” Care should be taken to avoid passing the same variable 
to different inout and output arguments of the same user-defined 
function as the results are undefined.

The argument passed to an inout or output argument must be a 

variable reference. As an example, consider the call to geomcalc in the 

statement style as

dummy = geomcalc(l-dl, w-dw, ar, per);

The first two actual arguments are expressions and match up with the 

input specification of the l and w formal arguments. However, the other 

two arguments must be real identifiers because they should associate with 

the output formal arguments area and perim. The statement

dummy = geomcalc(l-dl, w-dw, ar/2, V(a));

incorrectly uses the geomcalc function since the third argument is 

passed an expression and the fourth argument is passed the potential 

probe V(a), both not the variable reference, and it will result in a 

compilation error.

Note that the function reference cannot represent the statement itself. 

It is still an expression and the statement is artificially created by assigning 

the return function value to a dummy variable.
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If the inout or output argument is defined as an array, then the 

argument passed into the function must be an array variable or an 

array assignment pattern of the equivalent size. The following example 

demonstrates passing array arguments to the arrayadd user-defined 

function:

x[0] = 5; x[1] = 10;

y = 3; z = 6;

dummy = arrayadd(x,'{y,z});

Here, the first and second arguments are both expecting arrays. 

An array variable name x is passed for the first argument and an array 

assignment pattern of two scalar variables has been used for the second 

argument. Since the first argument is an inout argument, the result of 

calling the arrayinit function will update the vector variable x with values 

x[0] = 8 and x[1] = 16.
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CHAPTER 12

Lookup Tables
A Verilog-A procedural block could be in principle interpreted as a 

multivariate input-output mapping. It takes a set of parameters, variables, 

or expressions at the input, for producing certain results at the end of the 

procedural evaluation sequence. In some cases, the analytical model for 

such procedural evaluation could be unavailable or too time-consuming 

for implementation. One way to overcome this problem is to implement 

such critical input-output procedural mappings in Verilog-A code using 

lookup tables. The savings in processing time can be significant because 

retrieving a value from a data table is often much faster than carrying out 

expensive input-output procedural computations.

�Table Data Structure
The lookup table data are commonly generated by data acquisition 

systems or precalculated by detailed simulations. Care must be taken 

when preparing the table data. The Verilog-A LUT model function requires 

a specific data format, and incorrectly formatted tables can cause errors in 

calling the function. Worse yet, misaligned or improperly formatted data 

could be interpreted incorrectly, causing subtle errors in the simulation 

results.
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�Jagged Array Grids
A lookup table is basically an indexed multidimensional array of input-

output data values. The simplest and commonly used LUT array data 

structure is a rectangular multidimensional array or grid. It is convenient 

to represent the rectangular grids as a nested set of 1-D arrays, or a 

recursively introduced array of arrays:
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Here, N(i) is the number of grid points with respect to the ith array 

dimension. The data structure of nested 1-D arrays is also compatible with 

commonly used parametric sweeping schemes in analog simulators and 

data acquisition systems which can be used to sample LUT data. However, 

the simplicity of rectangular grid LUTs does not come without a price. 

Namely, the total number of grid data points
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grows exponentially with the table dimension. The grid-based LUTs 

obviously underlie the curse of dimensionality and thus in practice they 

are almost never used for d > 3.

The curse of dimensionality could be effectively overcome with 

Verilog-A LUT models based on jagged (also called ragged) arrays, or 

jagged grids. Similar to a multidimensional array, a jagged array is also 

recursively defined as an array of arrays:
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However, each of the inner nested array elements, associated with 

an outer array index, is now independent in size and distribution of grid 

coordinates.

Figure 12-1 shows an example of a jagged 2-D grid structure defined as 

a 1-D array of 1-D arrays (or isolines).

Figure 12-1.  Examples of 2-D ragged LUT

The advantage of jagged grid arrays is the possibility to use an 

anisotropic distribution of grid points for optimal LUT data interpolation.

The structure of ragged arrays naturally leads to the implementation 

of a simple recursive 1-D interpolation and extrapolation process. The 

interpolation and extrapolation schemes always operate in a single 

dimension analogous to how the data was originally generated, so the 

interpolation and extrapolation schemes used may be specified on a per 

dimension basis. The lowest requirement is to have at least two points 

per isoline. In addition, the result of the bracketing, required to produce 

intermediate interpolation points, must also produce at least two points 
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per subsequent lower dimension. One should be aware that too few 

sample points can cause interpolation errors. The number of sample 

points must be sufficient to reduce the error to an acceptable level.

�Preparing Table Data
Ragged arrays are not native in Verilog-A. The lookup table data based 

on ragged array grids may be stored in a file or as a sequence of one-

dimensional arrays or a single two-dimensional array. Here, we describe 

the formatting of table data in a file. The table data file may contain 

multiple dependent variables, all sharing the same jagged array grid.

A lookup table for m dependent variables of dimension d is laid out in 

d+m data columns. The first d columns are used to specify coordinates of 

the d-dimensional jagged grid. It is followed by the m columns containing 

the values of dependent variables. The jagged grid coordinates are ordered 

from the outermost (slowest changing) coordinate to the innermost 

(fastest changing) coordinate. Though an isoline ordinate does not change 

for a given isoline, in this scheme the ordinate is repeated for each point 

of that isoline (thus keeping the input data as a set of data rows all with the 

same number of points). The result is a sequential listing of each isoline 

with the total number of rows in the listing being equal to the total number 

of jagged array grid points.

As an example, let us consider a lookup table data file for a function 

f(x,y)=0.5x+y:

# y x f(x,y)

#y=0 isoline

   0.0 1.0 0.5

   0.0 2.0 1.0

   0.0 3.0 1.5

   0.0 4.0 2.0
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   0.0 5.0 2.5

   0.0 6.0 3.0

#y=0.5 isoline

   0.5 1.0 1.0

   0.5 3.0 2.0

   0.5 5.0 3.0

#y=1.0 isoline

   1.0 1.0 1.5

   1.0 2.0 2.0

   1.0 4.0 3.0

The table has only one dependent variable f(x,y) on a 2-D jagged grid. 

There are three isolines for y values, 0.0, 0.5, and 1.0, while x is sampled 

at various points on each of the three isolines. The slowly changing outer 

independent variable appears to the left, while the rapidly changing inner 

independent variable appears to the right. Isoline ordinates are repeated 

for each sample on a given isoline. Each sample point is separated by a 

newline and each column is separated by one or more spaces or tabs. 

Comments in table data files begin with the # character and continue to 

the end of that line. They may appear anywhere in the file. Blank lines are 

ignored. The numbers in the table shall be real or integer literals.

It is suggested that the user arranges the sampled isolines in sorted 

order (one isoline following another in all dimensions). However, if the 

user provides the data in random order, the system will sort the data 

into isolines in each dimension. Whether the data is sorted or not, the 

system determines the isoline ordinate by reading its exact value from 

the file or array. Any noise on the isoline ordinate may cause the system 

to incorrectly generate multiple isolines where the user intended a single 

isoline. Within the data table, each row shall be distinct in terms of its 

jagged grid coordinate values. If there are two or more rows with the same 

grid coordinates and dependent variable values, then the duplicates shall 
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be ignored and the simulator may generate a warning. If there are two or 

more rows with the same grid coordinate values but different dependent 

values, then an error is generated.

When the data source is represented as a sequence of 1-D arrays or 

a single 2-D array, the isolines are laid out conceptually the same way 

with each 1-D array, or a column of the 2-D array, being just a column in 

the file format described earlier. Arrays may be specified directly via the 

assignment patterns or array variable names.

�Lookup Table Function
Once a data table is formatted in a file or assigned to Verilog-A arrays, it 

can be used to provide a LUT mapping:

	
x x x yd1 2( ) ( ) ( )…( )→, , , 	

where (x(1), x(2), …, x(d)) are independent input variables, while y is a 

required dependent output value. The mapping is performed by searching 

the data table for grid points closest to the given input and using these 

points to interpolate (or extrapolate) for the corresponding output value.

To perform LUT mapping, Verilog-A provides a multidimensional 

interpolation and lookup system function $table_model invoked by using 

one of the syntax forms:

$table_model ( input-variables, data-source )

$table_model ( input-variables, data-source, control-string )

The first syntax form requires to specify a set of input variables and a 

table data source. The state of the data source is captured on the first call to 

the $table_model function. Any change after this point is ignored.
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The optional control string specifies how the interpolation and 

extrapolation are performed in the data table. If the control string is not 

specified, $table_model will perform linear interpolation and linear 

extrapolation in all dimensions.

�Input Variables and Data Source
The input-variables are provided as a comma-separated list of expressions:

expression, ...

that evaluate a set of d input variables at which the lookup function 

should be evaluated. Any expression that can be assigned to an analog 

signal can be used here.

If the table data are stored in a file, the data-source is specified as a 

string literal:

" file-name "

specifying the name of the file.

The next example illustrates a simple call to the $table_model function 

using the table data file described in the previous section and stored as 

sample.tbl:

module lut_example(a, b);

    electrical a, b;

    inout a, b;

    analog begin

        I(a, b) <+ $table_model(0.0, V(a,b),

                                "sample.tbl");

    end

endmodule

The $table_model function is called specifying zero (0) for the y input 

variable and uses a module port potential difference as the x input variable.
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Alternatively, the lookup table data source can be given as a 

comma-separated list of d one-dimensional array identifiers:

array-identifier, ...

each of them providing a corresponding column of table data in a 

text file. The module lut_example can be defined using one-dimensional 

arrays as

module lut_example(a, b);

    electrical a, b;

    inout a, b;

    real y[0:11], x[0:11], f_xy[0:11];

    analog initial

       begin

            // y=0.0 isoline

            y[0] =0.0; x[0] =1.0; f_xy[0] =0.5;

            y[1] =0.0; x[1] =2.0; f_xy[1] =1.0;

            y[2] =0.0; x[2] =3.0; f_xy[2] =1.5;

            y[3] =0.0; x[3] =4.0; f_xy[3] =2.0;

            y[4] =0.0; x[4] =5.0; f_xy[4] =2.5;

            y[5] =0.0; x[5] =6.0; f_xy[5] =3.0;

            // y=0.5 isoline

            y[6] =0.5; x[6] =1.0; f_xy[6] =1.0;

            y[7] =0.5; x[7] =3.0; f_xy[7] =2.0;

            y[8] =0.5; x[8] =5.0; f_xy[8] =3.0;

            // y=1.0 isoline

            y[9] =1.0; x[9] =1.0; f_xy[9] =1.5;

            y[10]=1.0; x[10]=2.0; f_xy[10]=2.0;

            y[11]=1.0; x[11]=4.0; f_xy[11]=3.0;

        end

     analog
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        I(a, b)<+$table_model(0, V(a,b), y, x, f_xy);

endmodule

It is also possible to use assignment patterns here either for the array 

initialization or directly as $table_model function arguments. Finally, a 

single two-dimensional array identifier can be used as data-source:

real table[0:2][0:11] =

'{

  '{0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.5,0.5,1.0,1.0,1.0},

  '{1.0,2.0,3.0,4.0,5.0,6.0,1.0,3.0,5.0,1.0,2.0,4.0},

  '{0.5,1.0,1.5,2.0,2.5,3.0,1.0,2.0,3.0,1.5,2.0,3.0}

};

...

I(a, b) <+ $table_model(0, V(a,b), table);

Here, a two-dimensional array with table data is initialized using 

nested assignment patterns.

�Control String
The control-string specifies how interpolations are performed in each 

dimension and how they should extrapolate at the boundaries of each 

dimension. It also provides some control on how to treat columns of the 

input data source. It is defined by one of the string literals:

" control-character-set, ...  "

" control-character-set, ... ; dependent-selector "

The control strings contain a comma-separated list of control character 

sets followed by an optional semicolon and the expression dependent-

selector that should evaluate as a constant integer. The control character 

sets provide control over each independent variable with the first set 

applying to the outermost coordinate and so on. The optional dependent 
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variable selector is an integer number allowing us to specify which 

dependent variable in the data source we wish to interpolate. This number 

runs from 1 to m with m being the total number of dependent variables 

specified in the data source.

Each control character set associated with interpolation control string 

has at most three characters. The first character controls interpolation and 

as shown in the Table 12-1.

Table 12-1.  Interpolation control character

Control Character Description

I Ignore this input column

D Closest point (discrete) lookup

1 Linear interpolation (default)

2 Quadratic spline interpolation

3 Cubic spline interpolation

It is possible to ignore interpolation for the given input dimensions if 

it is annotated with the I control character. The closest point interpolation 

returns the closest point in the specified dimension. The linear 

interpolation algorithm provides a simple linear interpolation between 

the closest sample points on a given isoline. Cubic spline interpolation 

generates a spline for each isoline being interpolated. Quadratic splines 

are similar to cubic splines, offering more efficient evaluation with 

generally less favorable interpolation results. As a general rule, cubic 

splines are best applied to smoothly varying data (such as the DC I-V 

characteristic of a diode), while linear interpolation is a better option for 

data with abrupt transitions (such as a transient pulsed waveform).

The remaining characters in the control sub-string specify the 

extrapolation behavior of a LUT model when the value of input variables 

is outside the data table range. The extrapolation control characters are 

described in Table 12-2.
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Table 12-2.  Extrapolation control character

Control Character Description

C Constant extrapolation

L Linear extrapolation (default)

E Error on an extrapolation request

The constant extrapolation method returns the table endpoint 

value. Linear extrapolation extends linearly to the requested point from 

the endpoint using a slope consistent with the selected interpolation 

method. The user may also disable extrapolation by choosing the error 

extrapolation method. With this method, an extrapolation error is reported 

if the $table_model function is requested to evaluate a point beyond the 

interpolation region.

For each dimension, users may use up to two extrapolation method 

characters to specify the extrapolation method used for each end. When no 

extrapolation method character is given, the linear extrapolation method 

will be used for both ends as default. Error extrapolation results in a fatal 

error. When one extrapolation method character is given, the specified 

extrapolation method will be used for both ends. When two extrapolation 

method characters are given, the first character specifies the extrapolation 

method used for the end with the lower coordinate value, and the second 

character is used for the end with the higher coordinate value.

The specification of the extrapolation control characters could be also 

essential for the correct generation of spline interpolation coefficients. 

If the constant extrapolation is specified, the endpoint derivative is set 

to zero, thus avoiding a discontinuity in the first-order derivative at that 

endpoint. If the user selects linear extrapolation, this leads to natural 

splines.

Some examples of control strings are shown in Table 12-3.
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Table 12-3.  Example control strings

Control String Description

“” or control string 

omitted

Null string, default linear interpolation, and extrapolation. 

The dimensionality of the data is assumed to be N. Column 

N+1 is taken as the dependent

"1L,1L" Data is 2-D, linear interpolation and extrapolation in both 

dimensions

"1LL,1LL" Same as before, an extrapolation method specified for 

both ends in each dimension

"1LL,1LL;1" Same as before, dependent variable 1 is specified. This is 

the default behavior when there are multiple dependent 

variables in the file and there is no dependent variable 

selector specified in the control string

"D,1,3" Closest point lookup in the outer dimension, linear 

interpolation on dimension two, and cubic spline 

interpolation on the inner dimension

"I,1CC,1CC;3" Ignore column 1, linear interpolation, and constant 

extrapolation in all dimensions; interpolation applies to 

dependent variable 3. There are at least six columns in the 

data file

"3,D,I,1;3" Cubic spline interpolation in dimension 3 (column 1), 

closest lookup in dimension 2 (column 2), ignore column 

3, and use linear interpolation on the innermost dimension 

(dimension 1, column 4). Interpolate dependent variable 3 

(column 7). This file has at least seven columns

"C,,3" Data is 3-D, equivalent to “1CC, 1LL, 3LL”
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The following example implements a simple LUT MOSFET 

transistor model:

module nfet(d, g, s);

    inout d, g, s;

    electrical d, g, s;

    parameter string int_exp = "3LL,3LL";

    real Ids, Cgs, Cgd;

    analog begin

        Ids = $table_model(V(d,s), (V(g,s)),

                           "Id.tbl", int_exp);

        Cgd = $table_model(V(d,s), (V(g,s)),

                           "Cg.tbl", "1LL,1LL:2");

        Cgs = $table_model(V(d,s), (V(g,s)),

                           "Cg.tbl", "1LL,1LL:1");

        I(d,s) <+ Ids;

        I(g,d) <+ Cgd * ddt(V(g,d));

        I(g,s) <+ Cgs * ddt(V(g,s));

    end

endmodule

Here, the two separate table data files are used for the current and 

capacitance modeling. The string parameter int_exp allows external 

control of the LUT control string.
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CHAPTER 13

Small-Signal 
Functions
Thus far we have been focused on large signal modeling with Verilog-A 

in the time domain. A large signal is any signal having enough magnitude 

to reveal a branch's nonlinear behavior. A small signal analysis assumes 

that variations in signal potential and flow amplitudes are so small that 

the branch constitutive relationship can be assumed to behave linearly. 

Practically, the small signal analysis models are obtained by linearization 

of the nonlinear branch constitutive relationships near a static operation 

point. It allows performing the small signal analysis in the frequency 

domain solving algebraic rather than differential equations.

Because the focus of this book is the Verilog-A language and its use, 

we will not go into theoretical details behind the frequency domain small-

signal analysis. Readers seeking additional information should check 

the standard textbooks in this area. In this chapter, we will just introduce 

Verilog-A functions that can be used to provide small-signal stimuli in the 

frequency domain for the AC and noise small-signal analysis.
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�AC Analysis
The abbreviation AC (from Alternating Current in electrical engineering) is 

commonly used to specify a sinusoidal signal waveform:

	 v t M t� � � �� �cos � � 	

where M is the amplitude, ϕ is the phase, and ω is the frequency of the 

AC signal. The AC analysis assumes that a linearized small-signal model 

is subjected to a one or more sinusoidal signal stimuli. In that case, all 

the branch potentials and flow signals are also sinusoidal with the same 

frequency as the stimulus but with their own magnitude and phase.

In the frequency domain a sinusoidal signals is represented as a phasor

	 V M� ej� 	

being a vector in a complex plane defined by the sinusoidal signal 

magnitude and phase. Given the frequency provided by the simulator, AC 

analysis solves a set of algebraic equation for the signals’ magnitude and 

phases instead of solving differential equations for the signal waveforms in 

time domain. It is important to understand that in AC analysis not only the 

branch signals but also real type variables, depending on the signal values, 

are implicitly converted to complex phasor variables defined by two 

numbers (magnitude and phase). In order for us to be able to introduces 

the sinusoidal signals into AC analysis, Verilog-A provides the AC stimulus 

function.

�AC Stimulus Function
The sinusoidal stimulus in the frequency domain is provided using the 

ac_stim() function. It can be used in one of the syntax forms:

ac_stim ()

ac_stim ( analysis-name )
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ac_stim ( analysis-name , mag )

ac_stim ( analysis-name , mag , phase )

The argument analysis-name is a string constant specifying the name 

of a small-signal analysis. The small-signal analysis name depends on 

the simulator but the expected (and default) value for the analysis-name 

is "ac". When the name of the simulator small-signal analysis matches 

analysis-name, the AC stimulus function becomes active and returns the 

phasor with the magnitude and phase defined by the function arguments 

mag and phase, respectively. The magnitude argument mag has no 

physical unit and has a default value of 1. The phase argument is given 

in radians and its default value is 0. It makes the following calls to the AC 

stimulus identical:

ac_stim();

ac_stim("ac");

ac_stim("ac", 1.0);

ac_stim("ac", 1.0, 0.0);

The AC stimulus function returns 0 during large-signal static and 

transient analyses in the time domain. This allows us to use AC stimulus 

functions in expressions with no effect except in small signal analysis. For 

example, in the branch contribution statement:

V(p, n) <+ R * I(p, n) + ac_stim("ac", m1);

the ac_stim() function adds the AC small signal stimulus with 

magnitude m1 and phase 0 in parallel to the linear resistor branch. It will 

become active only during "ac" analysis and does not affect the branch 

contribution statement in other analyses.
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We should keep in mind that the AC stimulus function returns a 

phasor as a unitless complex numerical value that can be also assigned 

to the module variable. The previous contribution statement can be also 

defined as

v_ac = ac_stim("ac", m1);

V(p, n) <+ R * I(p, n) + v_ac;

where v_ac is previously declared real variable.

�Noise Analysis
When we model the behavior of an analog system, we often need to 

analyze the system's sensitivity to various noise stimuli. The term noise, 

as it is used here, denotes small-signal statistical fluctuations of branch 

potential and flow values. To model and analyze the effects of the large-

signal noise fluctuations, one could consider using the $arandom system 

tasks as described in Chapter 11.

The concept of phasors used in AC analysis can be also employed 

for the small-signal noise analysis. However, the phase of the phasors 

that effectively represent small signal noise signals are subject to random 

variation from 0 to 2π radians, and the phasor magnitude is frequency 

dependent. For that reason, noise stimuli stimuli are specified in noise 

analysis using the power spectral density (PSD), which is the mean square 

of the noise signal magnitude within a frequency interval of 1 Hz.

Verilog-A provides several noise stimuli functions to support different 

noise PSD frequency dependences in noise analysis. These noise functions 

are often referred to as noise sources. Similar to AC stimulus function, the 

noise sources are only active in small-signal noise analysis and return 0 

otherwise.
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�White Noise Function
White noise stochastic processes are those whose current value is 

completely uncorrelated with any previous or future values. This 

implies their PSD of the white noise does not depend on frequency. 

The white noise sources are introduced in the noise analysis using the 

white_noise() function in one of the syntax forms:

white_noise ( pwr )

white_noise ( pwr , name )

The argument pwr specifies the frequency-independent PSD of the 

white noise source. The optional argument name is a string constant 

that acts as a label for the noise source. It could be used by the simulator 

to output the individual contribution of each noise source to the total 

output noise. To this end, the contributions of noise sources with the same 

name from the same instance of a module are combined in the noise 

contribution summary.

In the following example, the module bridge implements the bridge 

network with two noisy resistors.

module bridge(p, n);

    inout p, n;

    electrical p, n, mc, ml;

    parameter real R = 1.0 from (0:inf);

    parameter real C = 1.0p from [0:inf);

    parameter real L = 1.0p from [0:inf);

    real wnval, wnpower;

    analog begin

        wnpower = (4.0 * `P_K * $temperature) / R;

        I(p,mc) <+ V(p,mc) / R + white_noise(wnpower);
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        wnval = white_noise(wnpower, "thermal");

        I(p, ml) <+ V(p, ml) / R + wnval;

        I(mc, n) <+ C * ddt(V(mc, n));

        V(ml, n) <+ L * ddt(I(ml, n));

    end

endmodule

Note that the noise sources are basically functions that could be used 

anywhere in the analog procedural expressions. For the first resistor, the 

noise sources is introduced directly in the branch contribution expression 

while for the second resistor the return value of the noise source function 

is first assigned to a variable wnval, which is then used in the resistor 

branch contribution statement. Although both white noise sources are 

using the same PSD value, they are completely uncorrelated.

�Flicker Noise Function
The flicker_noise() function models the noise sources using one of the 

syntax form:

flicker_noise ( pwr , exp )

flicker_noise ( pwr , exp , name )

It can be used to generates the noise with a power spectral density of 

pwr which varies in proportion to 1/f exp where exp is the second argument 

of the flicker noise function and f = ω/2π is the frequency. The optional 

argument name is a string constant that acts as noise source label.

The use of the Flicker noise source function is demonstrated in the 

noisy_diode module:

module noisy_diode(a,b);

    inout a, b;

    electrical a, b;
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    parameter real af = 1;

    parameter real kf = 1;

    parameter real is = 1e-14;

    real af;

    analog begin

        pwr_1 = kf * pow(abs(Id), af);

        I(a,b) <+ is * (exp(V(a,b) / $vt) - 1) +

             white_noise(2 * `P_Q * abs(Id), "shot") +

             flicker_noise(pwr_1, 1.0, "flicker");

    end

endmodule

Here the white_noise() function is used to contribute the diode shot 

noise and the flicker_noise() function to add the flicker noise with 1/f 

dependence of the PSD.

On should be careful with the specification of the PSD in the Flicker 

noise source functions when the bias applied to the branch changes sign1.

�Look-Up Table Noise Functions
Verilog-A provides two look-up table noise functions: noise_table() and 

noise_table_log() to interpolate the frequency dependent noise PSD 

from the pre-defined table data.

1 G. J. Coram, C. C. McAndrew, K. K. Gullapalli and K. S. Kundert, “Flicker Noise 
Formulations in Compact Models,” in IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2812-2821, Oct. 2020, 
doi: 10.1109/TCAD.2020.2966444.
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The noise_table() function interpolates a set of values to model a 

process where the spectral density of the noise varies as a piecewise linear 

function of frequency using the syntax:

noise-table ( data )

noise-table ( data , name )

On the other hand, the noise_table_log() function interpolates a set 

of values to model a process where the spectral density of the noise varies 

as a piecewise linear function of the base-10 logarithm of the frequency 

using the syntax:

noise-table-log ( data )

noise-table-log ( data , name )

The data input argument can either be a real vector or a string indicating 

a filename. When the input is a real vector it contains a sequence of pairs 

of real numbers: the first number in each pair is the frequency in Hz and 

the second is the power in W. The vector can either be specified as an array 

parameter or an array assignment pattern. The optional argument name is a 

string constant that acts as a noise source label.

When the data argument is a file name, the indicated file will contain 

the frequency/power pairs. The filename argument shall be constant and 

will be either a string literal or a string parameter. Each frequency/power 

pair shall be separated by a newline and the numbers in the pair shall be 

separated by one or more spaces or tabs. To increase the readability of the 

data file, comments may be inserted before or after any frequency/power 

pair. Comments begin with # character and end with a newline. The input 

file shall be in text format only and the numbers shall be real or integer.

The following shows an example of the input file:

# noise_table_input.tbl

# Example of input file format for noise_table

#

# freq pwr
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1.0e0 1.657580e-23

1.0e1 3.315160e-23

1.0e2 6.636320e-23

1.0e3 1.326064e-22

1.0e4 2.652128e-22

1.0e5 5.304256e-22

1.0e6 1.060851e-21

# End of the example input file.

Although the user is encouraged to specify each noise pair in order 

of ascending frequency, the simulator shall internally sort the pairs into 

ascending frequency if required. Each frequency value must be unique. 

The optional name argument acts as a label for the noise source as in the 

other noise source functions.

The noise_table() performs piecewise linear interpolation to 

compute the power spectral density generated by the function at each 

frequency between the lowest and highest frequency in the set of 

values. For frequencies lower than the lowest frequency in the value set, 

noise_table() returns the power specified for the lowest frequency, 

and for frequencies higher than the highest frequency, noise_table() 

returns the power specified for the highest frequency.

The noise_table_log() interpolates the values of the power spectral 

density logarithmically. For a given frequency f the noise power shall be 

computed using the two pairs ( f1, p1) and ( f2, p2) in the input (whether an 

array or file), where f1 is the largest frequency value in the input data less 

than f and f2 is the smallest frequency larger than f (that is, f1 < f < f2). The 

noise power P is interpolated as:

	
P p p p

f f

f f
� � �� � � � � �� � �( ,log log log

log /

log /
10 1 2 1 1

2 1 	
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As with noise_table(), for frequencies lower than the lowest 

frequency in the value set, noise_table_log() returns the power specified 

for the lowest frequency, and for frequencies higher than the highest 

frequency, noise_table_log() returns the power specified for the highest 

frequency.

The difference between noise_table and noise_table_log is 

illustrated in Figure 13-1.

The noise_table_log function produces a straight line on a log-log 

plot from just two points:

noise_table_log('{1,1, 1e6,1e-6});

Figure 13-1.  Comparison of noise_table and noise_table_log
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whereas the linear interpolation of noise_table() function call:

noise_table('{1,1, 1e1, 1e-1, 1e2,

              1e-2, 1e3, 1e-3, 1e4,

              1e-4, 1e5, 1e-5, 1e6, 1e-6});

produces a series of curves between the interpolating points.

�Correlated Noise Sources
Each noise source function generates noise that is uncorrelated with the 

noise generated by other noise source functions. In order to get perfectly 

correlated noise in two branch contribution statements we can assign the 

output of one noise function to a variable and then use the variable in the 

branch contribution statements as demonstrated in the following example:

n = white_noise(pwr);

V(a,b) <+ c1 * n;

V(c,d) <+ c2 * n;

The white noise contribution in (a,b) and (c,d) branches is perfectly 

correlated.

Partially correlated noise is generated by combining the output of 

shared and unshared noise functions, as demonstrated in the example:

n1 = white_noise(1-corr);

n2 = white_noise(1-corr);

n12 = white_noise(corr);

V(a,b) <+ Kv*(n1 + n12);

I(b,c) <+ Ki*(n2 + n12);

The level of correlation is defined by the variable corr. For corr=1 

the white noise sources in the branches (a,b) and (c,d) are perfectly 

correlated while for corr=1 they are uncorrelated.
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CHAPTER 14

Filters
Verilog-A filters are analog operators that remove some unwanted 

components or features from a signal. Similar to functions, filters take 

arguments at the input and return a value. However, as with other 

Verilog-A analog operators, filters also maintain their internal states and 

their output is a function of both the input arguments and the internal 

states. Verilog-A supports filters in the time and frequency domain.

�Time-Domain Filters
Verilog-A provides a set of time-domain filters that can be used to delay 

signals and to remove discontinuity or bound rate of change of the signal 

waveforms.

�Absolute Delay Filter
The absolute delay filter implements the transport delay for signal 

waveforms. The syntax of the absolute delay filter is

absdelay ( expression , delay )

absdelay ( expression , delay, maxdelay )

The filter output is the input expression delayed by the time delay as 

shown in Figure 14-1.

© Slobodan Mijalković 2022 
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Figure 14-1.  Absolute delay filter input-output transformation

The delay shall be specified a positive number. If the optional 

argument maxdelay is not specified, the value of delay, when the 

absdelay() is evaluated for the first time, will be used and any future 

changes to delay will be ignored. If the argument maxdelay is specified, 

then delay can be modified in the subsequent absdelay() calls. If delay is 

greater than maxdelay, maxdelay will be used as a substitute for delay.

In DC and operating point analyses, absdelay() returns the value of 

the expression. In frequency-domain AC and noise analyses, the absolute 

delay filter shifts the phase of the input expression by the value of ω · delay 
where ω is the angular frequency.

�Transition Filter
The transition filter is used to smooth out piecewise constant waveforms 

by introducing transitions and delays that stretch instantaneous changes 

in signals over a finite amount of time and can delay the transitions. The 

syntax of the transition filter is

transition( expression )

transition( expression , delay )

transition( expression , delay, rise-time )

transition( expression , delay, rise-time, fall-time )

transition( expression , delay, rise-time, fall-time, 

time-tol )
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The input arguments, delay, rise-time, fall-time, and time-tol, are 

optional, but if specified shall be non-negative.

The transition filter converts a piecewise constant waveform given by 

the input argument expression into a piecewise linear output waveform as 

shown in Figure 14-2.

Figure 14-2.  Transition filter input-output transformation

The transition filter forces all positive transitions of the expression to 

occur over rise-time and all negative transitions to occur in fall-time after 

an initial time delay. If delay is not specified, it is assumed to be 0. If only a 

positive rise-time value is specified, the simulator uses it for both rise and 

fall times. If neither rise-time nor fall-time is specified or set to be 0, the rise 

and fall times default to the value defined by the currently active `default_

transition compiler directive, which is introduced in Chapter 20.  

Otherwise, the ideal behavior of a zero-duration transition using very small 

but nonzero transition times shall apply. The time tolerance time-tol  

argument specifies the maximum allowable error between the true 

transition point and one selected by the simulator. If time-tol is not 

specified, the transition function causes the simulator to assure that each 

transition is adequately resolved.
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Note E ven though the first derivative of the transition filter 
output waveform is discontinuous, it is not necessary to announce 
discontinuities using the $discontinuity system task (see Chapter 16)  
because the transition filter takes responsibility for notifying the 
simulator of the discontinuities that it produces.

In DC analysis, transition() passes the value of the expression 

directly to its output. Because the transition function cannot be linearized 

in general, it is not possible to accurately represent a transition filter output 

signal in AC analysis. The AC transfer function of the transition filter is 

approximately modeled as having unity transmission for all frequencies in 

all situations.

Since transitions take some time to complete, a new transition can 

be specified before a previously specified transition is complete. In this 

case, the transition function terminates the previous transition and shifts 

to the new one in such a way that the continuity of the output waveform 

is maintained. With different delays, a new transition can be activated 

before a previously specified transition starts. The transition function 

handles this by deleting any transitions which would follow a newly 

scheduled transition. A transition function can have an arbitrary number 

of transitions pending.

�Slew Filter
The slew analog filters bound the rate of change, or slope, of the signal 

waveform. A typical use of the slew filter is to generate continuous signals 

from piecewise continuous signals. The syntax of the slew filter is

slew ( expression )

slew ( expression , max-pos-slope )

slew ( expression , max-pos-slope, max-neg-slope )
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The value of max-pos-slope shall be positive and max-neg-slope shall be 

negative.

When applied, the slew filter forces all transitions of input expression 

faster than max-pos-slope not to exceed max-pos-slope for positive 

transitions and limits the negative transitions to the maximum negative 

slew rate max_neg_slope as shown in Figure 14-3.

Figure 14-3.  Slew filter input-output transformation

If the max-neg-slew-rate is not specified, it defaults to the opposite of 

the max-pos-slew-rate. If no rates are specified, the slew() filter passes the 

signal through unchanged. If the rate of change of expression is less than 

the specified maximum slew rates, slew() returns the value of the input 

expression.

In DC analysis, slew() simply passes the value of the expression to 

its output. During a small-signal analysis, such as AC or noise analysis, 

the slew filter has a unity transfer function from the first argument to the 

output when not slewing and 0 transfer function when slewing.

�Frequency-Domain Filters
It is often convenient to specify the filters in the frequency domain using 

the Laplace transform or the Z-transform. The Laplace transform and 

Z-transform filters are expressed as rational functions of complex variables 

defined in s-plane and z-plane complex domains.
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The frequency-domain filters in the Verilog-A language are available 

in the zero-pole, zero-denominator, numerator-pole, and numerator-

denominator formulations.

Some of the arguments in calls to frequency-domain filters are 

expected to be arrays. An array can either be passed as an array identifier 

(e.g., an array parameter or an array variable) or an array assignment 

pattern. The zeros argument may be represented as a null argument. 

The null argument is characterized by two adjacent commas (,,) in the 

argument list.

�Laplace Transform Filters
The Laplace transform filters implement linear continuous-time network 

functions. Each filter takes an optional parameter ε, which is a real number 

or a nature used for deriving an absolute tolerance. Whether an absolute 

tolerance is needed depends on the context where the filter is used.

�Zero-Pole Filter

The Laplace zero-pole filter form is introduced with the syntax:

laplace_zp ( expr , ζ, ρ )
laplace_zp ( expr , ζ, ρ, ε )

where ζ is a vector of M pairs of real numbers. Each pair represents a 

zero as a complex number. The first number in the pair is the real part of 

the zero and the second is the imaginary part. Similarly, ρ is the vector of 

N real pairs, one for each complex pole. The poles are given in the same 

manner as the zeros.
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The zero-pole transfer function is defined as
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where ζ γ
k  and ζ k

i  are real and imaginary parts of the kth zero, while 

ργ
k  and ρk

i  are the real and imaginary parts of the kth pole. If a root (a 

pole or zero) is real, the imaginary part shall be specified as zero. If a root 

is complex, its conjugate shall also be present. If a root is zero, then the 

term associated with it is implemented as s, rather than (1 − s/γ), where r is 

the root.

For example:

V(out) <+ laplace_zp(V(in), '{-1,0}, '{-1,-1,-1,1});

implements
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Note the use of assignment patterns to pass array arguments to the 

filter function.

�Zero-Denominator Filter

The syntax for the zero-denominator Laplace filter is

laplace_zd ( expr, ζ, d )
laplace_zd ( expr, ζ, d, ε )

Chapter 14  Filters



208

where ζ is a vector of M pairs of real numbers. Each pair represents a 

zero; the first number in the pair is the real part of the zero and the second 

is the imaginary part. Similarly, d is the vector of real numbers containing 

the coefficients of the denominator.

The zero-denominator transfer function is defined as
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where ζ γ
k  and ζ k

i  are real and imaginary parts of the kth zero, while 

dk is the coefficient of the kth power of s in the denominator. If a zero is 

real, the imaginary part shall be specified as zero. If a zero is complex, its 

conjugate shall also be present. If a zero has a zero value, then the term 

associated with it is implemented as s, rather than (1 − s/ζ).

�Numerator-Pole Filter

The numerator-pole Laplace filter has a syntax:

laplace_np ( expr, n, ρ)
laplace_np ( expr, n, ρ, ε )

where n is a vector of M real numbers containing the coefficients of 

the numerator. Similarly, ρ is a vector of N pairs of real numbers. Each pair 

represents a pole; the first number in the pair is the real part of the pole 

and the second is the imaginary part.

The numerator-pole transfer function is defined as
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where nk is the coefficient of the kth power of s in the numerator, while 

ργ
k  and ρk

i  are the real and imaginary parts of the kth pole. If a pole is real, 

the imaginary part shall be specified with a zero value. If a pole is complex, 

its conjugate shall also be present. If a pole has a zero value, then the term 

associated with it is implemented as s, rather than (1 = s/ρ).

For example, a numerator-pole Laplace filter in the contribution 

statement

V(out) <+ laplace_np( V(in), '{ 1 },

          '{

            -0.81, 0.59,

            -0.81, -0.59,

            -0.31, 0.95,

            -0.31, -0.95,

            -1.0, 0.0

          }

);

realizes the fifth-order Butterworth filter.

�Numerator-Denominator Filter

The numerator-denominator Laplace filter has the syntax:

laplace_nd ( expr, n, d )

laplace_nd ( expr, n, d, ε )

where n is a vector of M real numbers containing the coefficients of the 

numerator and d is a vector of N real numbers containing the coefficients 

of the denominator.
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The numerator-denominator transfer function is defined as
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where nk is the coefficient of the kth power of s in the numerator and dk 

is the coefficient of the kth of s in the denominator.

For example, the contribution statement with the integral operator in 

the time domain

V(out) < + idt(Ku * V(in) - Kp * V(out));

can be alternatively implemented as

V(out) <+ laplace_nd(V(in), '{ Ku }, '{ Kp, 1 });

using the Laplace numerator-denominator filter.

�The Z-Transform Filters
The Z-transform filters implement linear discrete-time filters. Each filter 

supports a parameter T that specifies the sampling period of the filter. A 

filter with a unity transfer function acts like a simple sample-and-hold that 

samples every T second and exhibits no delay.

All Z-transform filters share three common arguments: T, τ, and t0. 

T specifies the period of the filter, is mandatory, and shall be positive. 

τ specifies the transition time, is optional, and shall be non-negative. If 

the transition time is specified and is nonzero, the time step is controlled 

to accurately resolve both the leading and the trailing corner of the 

transition. If it is not specified, the transition time is defined by the 

`default_transition compiler directive (introduced in Chapter 20), 

and the time step is not controlled to resolve the trailing corner of the 
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transition. If the transition time is specified as zero (0), then the output is 

abruptly discontinuous. A Z-transform filter with zero transition time shall 

not be directly assigned to a branch. Finally, t0 specifies the time of the 

first transition and is also optional. If not given, the first transition occurs 

at t = 0.

�Zero-Pole Filter

The zero-pole form of the Z-transform filter is called with the syntax:

zi_zp ( expr , ζ, ρ, T )
zi_zp ( expr , ζ, ρ, T, τ)
zi_zp ( expr , ζ, ρ, T, τ, t0)

where ζ is a vector of M pairs of real numbers. Each pair represents a 

zero; the first number in the pair is the real part of the zero and the second 

is the imaginary part. Similarly, ρ is the vector of N real pairs, one for each 

pole. The poles are given in the same manner as the zeros.

The zero-pole transfer function is defined as
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where ζ γ
k  and ζ k

i  are the real and imaginary parts of the kth zero, 

while ργ
k  and ρk

i  are real and imaginary parts of the kth pole. If a root (a 

pole or zero) is real, the imaginary part shall be specified as zero. If a root 

is complex, its conjugate shall also be present. If a root is zero (0), then the 

term associated with it is implemented as z, rather than ( 1 − z/γ ), where r 

is the root.

Chapter 14  Filters



212

For example, the contribution statement

V(out) <+ zi_zp(V(in), {0, 0}, {–1, 0});

implements the transfer function H z z
z

( ) =
+

−

−

1

11
.

�Zero-Denominator Filter

The zero-denominator form of the Z-transform filter is called with 

the syntax:

zi_zd ( expr, ζ, d, T)
zi_zd ( expr, ζ, d, T, τ)
zi_zd ( expr, ζ, d, T, τ, t0)

where ζ is a vector of M pairs of real numbers. Each pair represents 

a zero; the first number in the pair is the real part of the zero and the 

second is the imaginary part. Similarly, d is the vector of N real numbers 

containing the coefficients of the denominator.

The zero-denominator transfer function is defined as
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where ζ γ
k  and ζ k

i  are the real and imaginary parts of the kth zero, 

while dk is a coefficient of the kth power of s in the denominator. If a zero is 

real, the imaginary part shall be specified as zero. If a zero is complex, its 

conjugate shall also be present. If a zero is zero, then the term associated 

with it is implemented as z, rather than ( 1 − z/ζ ).
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�Numerator-Pole Filter

The numerator-pole form of the Z-transform filter is called with the syntax:

zi_np ( expr , n, ρ, T )
zi_np ( expr , n, ρ, T, τ)
zi_np ( expr , n, ρ, T, τ, t0 )

where n is a vector of M real numbers containing the coefficients of 

the numerator. Similarly, ρ is a vector of N pairs of real numbers. Each pair 

represents a pole; the first number in the pair is the real part of the pole 

and the second is the imaginary part.

The numerator-pole transfer function is defined as

	

H z
n z

z j

k

M

k
k

k

N

k k
i

( ) =
− +( )

=

−
−

=

−
−

∑

∏
0

1

0

1

1
1 ρ ργ

	

where nk is the coefficient of the kth power of s in the numerator, while 

ργ
k  and ρk

i  are the real and imaginary parts of the kth pole. If a pole is 

real, the imaginary part shall be specified as zero. If a pole is complex, its 

conjugate shall also be present. If a pole is zero, then the term associated 

with it is implemented as z, rather than ( 1 − z/ρ ).

�Numerator-Denominator Filter

The numerator-denominator form of the Z-transform filter is called with 

the syntax:

zi_nd ( expr , n, d, T )

zi_nd ( expr , n, d, T, τ )
zi_nd ( expr , n, d, T, τ, t0 )
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where n is a vector of M real numbers containing the coefficients of the 

numerator and d is a vector of N real numbers containing the coefficients 

of the denominator.

The numerator-denominator transfer function is defined as
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where nk is the coefficient of the kth power of s in the numerator and dk 

is the coefficient of the kth power of s in the denominator.

For example, the contribution statement

V(out) <+ zi_nd(V(in), '{1}, '{0, –1});

implements the transfer function H z
z

( ) =
− −

1
1 1 .

Chapter 14  Filters



215

CHAPTER 15

Events
The behavior of a Verilog-A component can be controlled using events. 

An event is an occurrence of a particular change in the simulation stage 

or state of the component. The events have the characteristics of no time 

duration and events can be triggered and detected in different parts of the 

Verilog-A code evaluation.

�Event Control Statements
Event control statements provide a means of watching for a change in a 

value. The events are introduced into Verilog-A procedural code by event 

control statements having syntax:

@ ( event-expression ) procedural-statement ;

An event control statement is specified with the punctuator @, or 

at sign. It is followed by the specification of an event expression in 

parentheses and a single procedural statement. The parentheses around 

the event-expression are required. Empty event specifications

@ ( ) procedural-statement ;

are not allowed as well as nested event control statements.
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An event control statement looks for the desired change in the event-

expression. When such a change (or event) occurs, an action is taken by 

executing the procedural-statement. The event detection is non-blocking, 

meaning the execution of the event procedural statement is skipped unless 

the event has occurred.

It is allowed to use event control statements in analog procedural 

blocks, along with other procedural statements, but with some restrictions. 

Event control statements cannot be used inside conditional statements 

unless the conditional expression is constant. Looping statements, analog 

initial blocks, and paramsets shall not contain event control statements.

Similar to analog procedural blocks and user-defined functions, 

event control statements are restricted to a single procedural statement. 

Multiple procedural statements are possible if encapsulated within a 

single procedural block statement. However, certain restrictions apply 

to a procedural statement that can be specified within an event control 

statement. The analog operators (derivative and integral operators, filters, 

etc.) cannot be used as part of the event control statement. An event 

control statement cannot maintain the internal states required by analog 

operators since it is only executed intermittently when the corresponding 

event is triggered. The branch contribution statements cannot be used 

inside an event control block because they could introduce discontinuities 

in signal waveforms.

The event expression consists of one or more event functions, 

separated by keywords "OR" or "or":

event-function or event-function OR ...

where both lowercase and uppercase keywords are allowed. The event 

functions can be also separated by commas:

event-function, event-function, ...
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The “OR-ing” of event functions (or putting them in a comma-

separated list) indicates that the occurrence of any one of the specified 

event functions shall trigger the execution of the event procedural 

statement. There are two types of event functions:

•	 Global event functions

•	 Monitored event functions

defining the corresponding global and monitored events.

�Global Event Functions
Global events are generated by a simulator at various stages of the 

simulation. The user model cannot generate these events. These events 

are detected by using the names of the global event functions in an event 

expression. There are two global event functions predefined in Verilog-A: 

initial-step and final-step functions. The syntax of these functions is

initial_step

initial_step ( "analysis-identifier", ... )

final_step

final_step ( "analysis-identifier", ... )

Both global event functions can be used without arguments (and 

parentheses) or they can take a list of strings as optional arguments.

The strings in the argument list are compared to the name of the 

analysis being run. If any string matches the name of the current analysis 

name, the simulator generates an event. The initial_step function 

will trigger an event on the first point and the final_step function at 

the last point of that particular analysis. The final_step function will 
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also generate a global event upon the termination of the simulation due 

to a $finish() simulation control task introduced in Chapter 16. In the 

examples:

initial_step( "ac", "noise", "dc" )

final_step( "tran" )

the initial_step function triggers events at the beginning of AC, 

Noise, and DC analyses, while the final_step function triggers an event at 

the end of a transient analysis. The supported analysis names in Verilog-A 

are given in Table 16-1. If no analysis list is specified, the initial_step 

global event is active during the solution of the first point of every analysis. 

The final_step global event, without an analysis list, will be active during 

the solution of the last point of every analysis.

The global event functions are useful when performing actions 

that should only occur at the beginning or the end of an analysis. As an 

example of using the initial_step function, let us consider the module 

skin_effect:1

module skin_effect (p, n);

   parameter integer lumps = 10 from (1:30];

   parameter real f0=1 from (0:inf);

   parameter real f 1=10 from (f0:inf);

   parameter real r0=1 from (0:inf);

   electrical p, n;

   inout t1, t2;

   real mult, mult2, wp, wz;

   real zeros[0:2*lumps–1], poles[0:2*lumps–1);

   integer i;

1 K. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS, The Designer’s 
Guide Book Series, Springer, 2004.

Chapter 15  Events

https://doi.org/10.1007/978-1-4842-6351-8_16
https://doi.org/10.1007/978-1-4842-6351-8_16#Tab1


219

   analog begin

      @ (initial_step) begin

         mult = pow(f1/f0, 1.0/(4*lumps));

         mult2 = mult*mult;

         wz = 2*`M_PI*mult*f0;

         wp = mult2*wz;

         for(i=0; i < lumps; i=i+1) begin

             zeros[2*i] = –wz;

             zeros[2*i+1] = 0;

             poles[2*i] = –wp;

             poles[2*i+1] = 0;

             wz = mult2 * wp;

             wp = mult2 * wz;

         end

      end

     V(p,n) <+ r0*laplace_zp(l(p,n),zeros,poles);

   end

endmodule

The initial_step function in the module skin_effect triggers the 

calculation of the poles and zeros used by the Laplace filter. Since the 

poles and zeros never change, they only need to be calculated once at the 

beginning of the analysis. As such, the initial_step function is used to 

increase the efficiency of the model. Without it, the poles and zeros would 

be recalculated at every time point, a substantial waste of time.

�Monitored Event Functions
Monitored events are detected using event functions monitoring changes 

in signals, simulation time, or other runtime conditions. The monitored 

events differ from the standard control flow constructs (if-else or case) in 
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the Verilog-A language in that the event generation and detection require 

satisfying accuracy constraints. The accuracy constraints can be either in 

value or time. Verilog-A offers three event monitoring functions: cross, 

above, and timer event functions.

�Cross Function
The cross function is used for generating a monitored event to detect when 

an expression crosses 0 in the specified direction. In addition, the cross 

function controls the time step to accurately resolve the crossing.

The cross function can be used in one of the following syntax forms:

cross ( expression )

cross ( expression, direction )

cross ( expression, direction , time-tol )

cross ( expression, direction , time-tol , expr-tol )

cross ( expression, direction , time-tol , expr-tol , enable )

where expression is the required and direction, time-tol, expr-tol, and 

enable are optional arguments. The expression, direction, and enable 

arguments are specified as variable expressions. The tolerances (time-tol 

and expr-tol) are specified as constant expressions and shall be non-

negative. Analog operators cannot be used for the direction or enable 

arguments and they should evaluate integers. If the tolerances are not 

specified, then the simulator sets them. If either or both tolerances are 

defined, then the direction shall also be defined.

If the direction indicator direction is set to 0 or is not specified, the 

cross() function event and time step control occur on both positive 

and negative crossings of the signal. If direction is +1 or -1, the event and 

time step control occur on rising or falling edge transitions of the signal, 

respectively, as shown in Figure 15-1. For any other values of direction, the 

cross() function does not generate an event and does not act to control 

the time step.
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Figure 15-1.  Illustration of different specifications of the direction 
argument in the cross() monitored event function

The expr-tol and time-tol arguments are absolute tolerances that 

represent the maximum allowable error between the true crossing point 

and when the cross event actually triggers. The event shall occur after 

the threshold crossing and while the signal remains in the box defined by 

actual crossing and expr-tol and time-tol, as shown in Figure 15-2.

Figure 15-2.  Timing of event relative to threshold crossing
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If expr-tol is specified, time-tol shall also be specified and both 

tolerances shall be satisfied at the crossing.

If enable is specified and nonzero, then cross() behaves as just 

described. If the enable argument is specified and it is zero, then cross() 

is inactive, meaning that it does not generate an event at threshold 

crossings and does not act to control the time step. Thus, there are two 

ways to disable the cross() function, either by specifying enable as 0 or 

giving a value other than –1, 0, or 1 to dir.

The following example of a sample-and-hold module sah:

module sah (in, out, smpl);

  parameter real thresh = 0.0;

  parameter integer dir = +1 from [-1 : +1]

                             exclude 0;

  output out;

  input in, smpl;

  electrical in, out, smpl;

  real state;

  analog begin

     @(cross(V(smpl) - thresh, dir))

       state = V(in);

     V(out) <+ transition(state, 0, 10n);

  end

endmodule

illustrates how the cross() function is used to set when the 

rising signal V(smpl) passes through a threshold value defined by 

parameter thresh.

Related to the cross() function is the last_crossing() function 

that returns a real value representing the simulation time when a signal 

expression last crossed zero.
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�Last Crossing Function

The syntax of the last crossing function is

last_crossing ( expression )

last_crossing ( expression , direction )

The optional direction argument shall evaluate to an integer expression 

+1, -1, or 0. If it is set to 0, the last_crossing() will return the most recent 

time the input expression had either a rising or falling edge transition. If 

the direction is +1 (-1), the last_crossing() will return the last time the 

input expression had a rising (falling) edge transition.

The last_crossing() function does not control the time step to get 

accurate results. It uses linear interpolation to estimate the time of the last 

crossing. It cannot be used as a monitoring event function. However, it can 

be used in combination with the event monitoring cross() function for 

improved accuracy. Before the expression crosses 0 for the first time, the 

last_crossing() function returns a negative value.

The following example measures the period of its input signal using 

the cross() and last_crossing() functions:

module period(in);

   input in;

   voltage in;

   integer crossings;

   real latest, previous;

   analog begin

      @(initial_step) begin

        crossings = 0;

        previous = 0;

     end
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     @(cross(V(in), +1)) begin

       crossings = crossings + 1;

       previous = latest;

     end

     latest = last_crossing(V(in), +1);

     @(final_step) begin

     if (crossings < 2)

         $strobe("Could not measure period.");

     else

         $strobe("period = %g, crossings = %d",

         latest-previous, crossings);

     end

   end

endmodule

In this way, the last_crossing() function benefits from the cross() 

function causing the simulator to place an evaluation point very near the 

threshold crossing. Together, they are considerably more accurate than 

either apart. And if the accuracy of the above is not sufficient, one can 

tighten the tolerances on the cross function.

�Above Function
The above() function is almost identical to the cross() function, except 

that it also triggers during initialization or DC analysis. It generates a 

monitored event to detect threshold crossings when the expression crosses 

0 from below. As with the cross() function, the above() function controls 

the time step to accurately resolve the crossing during transient analysis.
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The above function is used in one of the syntax forms:

above ( expression )

above ( expression , time-tol )

above ( expression , time-tol , expr-tol )

above ( expression , time-tol , expr-tol , enable )

where expression is a required argument. The tolerances (time-tol and 

expr-tol) are optional arguments, but if specified shall be non-negative. All 

arguments are real expressions. If the tolerances are not specified, then the 

simulator sets them.

The above() function can generate an event during initialization. If 

the expression is positive after the initial condition analysis that precedes 

a transient analysis, the above() function shall generate an event. In 

contrast, the cross() function can only generate an event after the 

simulation time has advanced from zero. The cross() function will not 

generate events for non-transient analyses, such as AC, DC, or Noise 

analyses, but the above() function can. During a DC sweep, the above() 

function shall also generate an event when the expression crosses zero 

from below. However, the step size of the DC sweep is not controlled to 

accurately resolve the crossing.

If enable is specified and nonzero, then the above() function behaves 

as just described. If the enable argument is specified and it is zero, then 

above() is inactive, meaning that it does not generate an event at threshold 

crossings and does not act to control the time step.

The above() function maintains its internal state and has the same 

restrictions on its use as the cross() function.
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�Timer Function
The timer monitored event function is used to detect specific points in 

time. It can take one of the syntax forms:

timer ( start-time )

timer ( start-time ,  period )

timer ( start-time ,  period , time-tol )

timer ( start-time ,  period , time-tol , enable )

where start-time is the required and period, time-tol, and enable 

are optional arguments. The start-time and period arguments shall be 

expressions. The tolerance (time-tol) is a constant expression and shall be 

non-negative.

The timer() function schedules an event that occurs at an absolute 

time (start-time). If the period is specified and is greater than zero, the 

timer function schedules subsequent events at multiples of the period 

from the start-time as shown in Figure 15-3.

Figure 15-3.  The schematic representation of events triggered by the 
timer() monitoring event function

If the period expression evaluates to a value less than or equal to 0.0, 

the timer shall trigger only once at the specified start-time. The simulator 

places a time point within the time-tol of an event. If time-tol is not 

specified, the default time point is at, or just beyond, the time of the event. 
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If the start-time or period expressions change value during the evaluation 

of the analog block, the next event will be scheduled based on the latest 

value of the start-time and period.

If enable is specified and nonzero, then timer() behaves as just 

described. If the enable argument is specified and it is zero, then timer() is 

inactive, meaning that it does not generate events as long as enable is zero. 

However, it will start generating events once enable returns to be nonzero 

as if they had never been disabled.

A pseudo-random bitstream generator:

module bitStream (out);

  output out;

  electrical out;

  parameter period = 1.0;

  integer x;

  analog begin

    @(timer(0, period))

      x = $random + 0.5;

      V(out) <+ transition( x, 0.0, period/100.0 );

  end

endmodule

is an example of how the timer function can be used.
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CHAPTER 16

Runtime Support
This chapter introduces system functions for querying on elaboration 

status and simulation environments as well as system functions providing 

runtime support to the numerical solver and control of the simulation.

�Elaboration Queries
Module ports need not be connected and module parameters may not be 

overridden when the module is instantiated. In some cases, the module 

evaluation could depend on the information of actual port connectivities 

and the status of the parameter override. Verilog-A provides system 

functions that can be used to query that information.

�Port Connections
The $port_connected() function can be used to determine whether a 

connection was specified for a port. The $port_connected() function 

takes one argument, which must be a port identifier. The return value shall 

be 1 if the port was connected to a net (by order or by name) when the 

module was instantiated, and 0 otherwise.

Note  The port may be connected to a net that has no other 
connections, but $port_connected( ) shall still return 1.
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In the following example:

if ($port_connected(vout))

    V(vout) <+ transition( q, tdel, trise, tfall);

else

    V(vout) <+ 0.0;

the $port_connected() function is used to skip the transition filter for 

unconnected port vout.

�Parameter Overrides
In some cases, it is important to be able to determine whether a parameter 

value was obtained from the default value in its declaration statement 

or if that value was overridden. In such a case, the $param_given() 

function can be used to detect parameter override. The system function 

$param_given() takes a single argument, which must be a parameter 

identifier. The return value shall be 1 if the parameter was overridden, 

either by a defparam statement or by a module instance parameter value 

assignment, and 0 otherwise.

The following example sets the variable temp to represent the device 

temperature:

if ($param_given(tdevice))

    temp = tdevice + `P_CELSIUS0;

else

    temp = $temperature;

Note that $temperature is not a constant expression, so it cannot be 

used as the default value of the parameter tdevice.
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�Simulation Queries
Verilog-A provides system functions for querying the current analysis 

type and simulation kernel parameters or for dynamically probing output 

variables within sibling instances during simulation.

�Analysis Type
The analysis() query function with the syntax

analysis ( analysis-name,  ... )

takes one or more string arguments analysis-name and returns 1 if any 

of the arguments match the current analysis type. Otherwise, it returns 0.

There is no fixed set of analysis types. Each simulator can support 

its own set. However, simulators shall use the names listed in Table 16-1 

to represent analyses that are similar to those provided by SPICE-like 

simulators. Any unsupported type names are assumed to not be a match.
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Table 16-1.  Analysis types

Analysis Name Analysis Description

"ac" Small-signal AC analysis

"dc" Operating point or DC sweep analysis

"noise" Noise analysis

"tran" Transient analysis

"ic" The initial condition analysis which precedes a transient analysis

"static" Any equilibrium point calculation, including a DC analysis as well 

as those that precede another analysis, such as the DC analysis 

which precedes an AC or noise analysis, or the IC analysis which 

precedes a transient analysis

"nodeset" The phase during an equilibrium point calculation where 

nodesets are forced

Verilog-A supports a single-point DC analysis and also a multipoint DC 

sweep analysis in which multiple DC points are computed over a sweep of 

parameter values. During a DC sweep analysis, the values of variables after 

the operating point analysis for one DC point shall be used as the starting 

values for those variables for the next DC point. However, variable values 

shall not be carried over between two independent DC sweep analyses 

(from the last DC point of one analysis to the first DC point of the next 

analysis). Variables shall be re-initialized to zero at the start of each new 

analysis.

An operating point analysis is done for each DC point in the sweep. 

A single-point DC analysis is the same as an operating point analysis. 

The analysis("dc") and analysis("static") query function calls shall 

return true for a single-point DC analysis and also for every DC point in a 

sweep analysis. The analysis("nodeset") function call shall return true 

only during the phase of an operating point analysis in which nodeset 
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values are enforced; that phase may occur in a single-point DC analysis 

or the first point of a multipoint DC sweep analysis but does not occur for 

subsequent points of a DC sweep.

Note  The constant expressions in the indirect contribution equation 
shall not include the analysis( ) function with an argument that can 
result in different return values during a single analysis, such as the 
“ic” or “nodeset” arguments.

Using the analysis() function, it is possible to have a module behave 

differently depending on which analysis is being run. In the following 

example:

if (analysis("ic"))

    V(cap) <+ initial_value;

else

    I(cap) <+ ddt(C*V(cap));

initial values of the capacitor voltage are specified using the 

analysis() function and switch branches.

�Kernel Parameters
Verilog-A adds a set of system functions called the analog kernel 

parameter functions. These functions return information about the current 

environment parameters as a real value.

$temperature does not take any input arguments and returns the 

circuit’s ambient temperature in Kelvin units.

$vt can optionally have a temperature (in Kelvin units) as an input 

argument and returns the thermal voltage (kT/q) at the given temperature. 

$vt without the optional input temperature argument returns the thermal 

voltage using $temperature.
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$abstime returns the absolute time that is a real value number 

representing time in seconds.

$simparam function using a syntax

$simparam (param-name)

$simparam (param-name, expression)

queries the simulator for a real-valued simulation parameter named 

param_name. The argument param-name is a string value, either a string 

literal, string parameter, or a string variable. If param-name is known, 

its value is returned. If param-name is not known, and the optional 

expression is not supplied, then an error is generated. If the optional 

expression is supplied, its value is returned if param_name is not known 

and no error is generated. $simparam() shall always return a real value; 

simulation parameters that have integer values shall be coerced to real. 

There is no fixed list of simulation parameters. However, simulators shall 

accept the strings in Table 16-2 to access commonly known simulation 

parameters, if they support the parameter. Simulators can also accept 

other strings to access the same parameters.

Table 16-2.  Simulation real and integer parameter names

String Units Description

gdev 1/Ohms Additional conductance to be added to 

nonlinear branches for conductance 

homotopy convergence algorithm

gmin 1/Ohms Minimum conductance placed in 

parallel with nonlinear branches

imax Amps Branch current threshold above which 

the constitutive relation of a nonlinear 

branch should be linearized
(continued)
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String Units Description

imelt Amps Branch current threshold indicating 

device failure

iteration Solver iteration number

scale Scale factor for device instance 

geometry parameters

shrink Optical linear shrink factor

simulatorSubversion Simulator subversion

simulatorVersion Simulator version

sourceScalefactor Multiplicative factor for independent 

sources for source stepping homotopy 

convergence algorithm

tnom Celsius Default value of temperature at which 

model parameters were extracted

Table 16-2.  (continued)

The values returned by simulatorVersion and simulatorSubversion 

are at the vendor’s discretion, but the values shall be monotonically 

increasing for new versions or releases of the simulator, to facilitate 

checking that the simulator supports features that were added in a certain 

version of subversion.

In this first example, the variable gmin is set to the simulator’s 

parameter named gmin, if it exists; otherwise, an error is generated.

gmin = $simparam("gmin");

In this second example, the variable sourcescale is set to the 

simulator’s parameter sourceScaleFactor, if it exists; otherwise, the  

value 1.0 is returned.

sourcescale = $simparam("sourceScaleFactor", 1.0);
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$simparam$str is similar to $simparam. However, it is used for 

returning string-valued simulation parameters. Table 16-3 gives a 

list of simulation string parameter names that shall be supported by 

$simparam$str.

Table 16-3.  Simulation string parameter names

Parameter Name Description

analysis_name The name of the current analysis, e.g., tran1, mydc

analysis_type The type of the current analysis, e.g., dc, tran, ac

cwd The current working directory in which the simulator 

was started

module The name of the module from which $simparam$str 

is called

instance The hierarchical name of the instance from which 

$simparam$str is called

path The hierarchical path to the $simparam$str function

�Dynamic Probing
Verilog-A supports a system function that allows the probing of values 

within a sibling instance during simulation.

$simprobe( inst-name, param-name )

$simprobe( inst-name, param-name , expression )

$simprobe() queries the simulator for an output variable named 

param-name in a sibling instance called inst-name. The arguments  

inst-name and param-name are string values, either a string literal, string 

parameter, or a string variable.
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To resolve the value, the simulator will look for an instance called 

inst-name in the parent of the current instance, that is, a sibling of the 

instance containing the $simprobe() expression. Once the instance is 

resolved, it will then query that instance for an output variable called 

param_name. If either the inst-name or param-name cannot be resolved, 

and the optional expression is not supplied, then an error shall be 

generated. If the optional expression is supplied, its value will be returned 

instead of raising an error. The intended use of this function is to allow 

dynamic monitoring of instance quantities.

module monitor;

   parameter string inst = "default";

   parameter string quant = "default";

   parameter real threshold = 0.0;

   real probe;

   analog begin

      probe = $simprobe(inst,quant);

      if (probe > threshold) begin

          $strobe("ERROR: Time %e:

              %s#%s (%g) > threshold (%e)",

              $abstime, inst, quant,

              probe, threshold);

          $finish;

      end

   end

endmodule

The module monitor will probe the quant in the instance inst. If its 

value becomes larger than the threshold, then the simulation will raise an 

error and stop.

module top(d,g,s);

  electrical d,g,s;

  inout d,g,s;
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  electrical gnd;

  ground gnd;

  SPICE_pmos#(.w(4u),.l(0.1u),.ad(4p),.as(4p),

              .pd(10u),.ps(10u))

  mp(d,g,s,s);

  SPICE_nmos #(.w(2u),.l(0.1u),.ad(2p),.as(2p),

               .pd(6u),.ps(6u)) mn(d,g,gnd,gnd);

  monitor #(.inst("mn"), .quant("id"),

            .threshold(4.0e-3)) amonitor();

endmodule

Here, the monitor instance amonitor will keep track of the dynamic 

quantity id in the mosfet instance mn. If the value of id goes above the 

specified threshold of 4.0e-3 amps, then the instance amonitor will 

generate the error message and stop the simulation.

�Solver Support
Verilog-A provides tasks and functions to support the nonlinear solver 

during simulation.

�Announcing Discontinuity
The $discontinuity task is used to give hints to the simulator about the 

behavior of the module so the simulator can control its simulation algorithms 

to get accurate results in exceptional situations. This task does not directly 

specify the behavior of the module. $discontinuity shall be executed 

whenever the signal behavior changes discontinuously. The general form is

$discontinuity ;

$discontinuity ( constant-expression ) ;
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where constant-expression indicates the degree of the discontinuity 

if the argument to $discontinuity is non-negative, that is, 

$discontinuity(i) implies a discontinuity in the ith derivative of 

the constitutive equation with respect to either a signal value or time 

where i must be a non-negative integer. Hence, $discontinuity(0) 

indicates a discontinuity in the equation, $discontinuity(1) indicates a 

discontinuity in its slope, etc. A special form of the $discontinuity task, 

$discontinuity(-1), is used with the $limit() function so -1 is also a 

valid argument of $discontinuity. Because discontinuous behavior can 

cause convergence problems, discontinuity shall be avoided whenever 

possible.

The filters (transition(), slew(), laplace(), etc.) can be used to 

smooth discontinuous behavior. However, in some cases, it is not possible 

to implement the desired functionality using these filters. In those cases, 

the $discontinuity task shall be executed when the signal behavior 

changes abruptly. Discontinuity created by switch branches and filters, 

such as transition() and slew(), does not need to be announced. The 

following example uses the discontinuity task to model a relay:

module relay (c1, c2, pin, nin) ;

    inout c1, c2;

    input pin, nin ;

    electrical c1, c2, pin, nin;

    parameter real r=1;

    analog begin

        @(cross(V(pin,nin))) $discontinuity;

        if (V(pin,nin) >= 0)

            I(c1,c2) <+ V(c1,c2)/r;

        else

            I(c1,c2) <+ 0 ;

     end

endmodule
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In this example, cross() controls the time step so the time when 

the relay changes position is accurately resolved. It also triggers the 

$discontinuity task, which causes the simulator to react properly to the 

discontinuity. This would have been handled automatically if the type of 

the branch (c1,c2) had been switched between voltage and current.

Another example is a source that generates a triangular wave. In this 

case, neither the model nor the waveforms generated by the model are 

discontinuous. Rather, the waveform generated is piecewise linear with a 

discontinuous slope.

module triangle(out);

    output out;

    voltage out;

    parameter real period = 10.0, amplitude = 1.0;

    integer slope; real offset;

    analog begin

        @(timer(0, period)) begin

            slope = +1;

            offset = $abstime ;

            $discontinuity;

        end

        @(timer(period/2, period)) begin

            slope = -1 ;

            offset = $abstime;

            $discontinuity;

        end

        V(out) <+ amplitude*slope*

            (4*($abstime - offset)/period - 1);

    end

endmodule
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If the simulator is aware of the abrupt change in slope, it can adapt 

to eliminate problems resulting from the discontinuous slope (typically 

changing to a first-order integration method).

�Bounding Time Step
The $bound_step() task puts a bound on the next time step. It does 

not specify exactly what the next time step is, but it bounds how far the 

next time point can be from the present time point. The task takes the 

maximum time step as an argument. It does not return a value. The 

general form is

$bound_step ( expression );

where expression is a required argument and represents the maximum 

time step the simulator can advance. The expression argument shall be 

non-negative. If the value is less than the simulator’s minimum allowable 

time step, the simulator’s minimum time step shall be used instead. Refer 

to the simulator’s documentation for further information regarding limits 

on step size for time-dependent analysis.

For a given time step, the simulator shall ensure that the next time step 

taken is no larger than the smallest $bound_step() argument currently 

active. The $bound_step() statement shall be ignored during a non-time-

domain analysis.

The following example implements a sinusoidal voltage source and 

uses the $bound_step() task to assure the simulator faithfully follows the 

output signal:

module vsine(out);

    output out;

    voltage out;

    parameter real freq=1.0, ampl=1.0, offset=0.0;

Chapter 16  Runtime Support



242

    analog begin

        V(out) <+ ampl*sin(2.0*�M_PI*freq*$abstime)

                  + offset;

        $bound_step(0.05/freq);

    end

endmodule

It is forcing 20 points per cycle.

�Limiting Iteration Steps
The $limit() function provides a method to indicate nonlinearities to 

the simulator and, if necessary, recommends a function to use to limit the 

change of its output from iteration to iteration. The general form is

$limit( access-function )

$limit( access-function ,analog-function-identifier )

$limit( access-function ,analog-function-identifier ,arg-list )

When the simulator has converged, the return value of the $limit() 

function is the value of the access-function, within appropriate tolerances. 

For some analysis types or solution methods, such as damped Newton-

Raphson, the return value of the $limit() function may depend on the 

value of the access function and the internal state of the function. In all 

cases, the simulator is responsible for determining if limiting should be 

applied and what the return value is on a given iteration.

When more than one argument is supplied to the $limit() function, 

the second argument recommends a function to use to compute the 

return value. When the second argument is a string, it refers to a built-

in function of the simulator. The two most common such functions 

are pnjlim and fetlim, which are found in SPICE and many SPICE-like 
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simulators. Simulators may support other built-in functions and need not 

support pnjlim or fetlim. If the string refers to an unknown or unsupported 

function, the simulator is responsible for determining the appropriate 

limiting algorithm, just as if no string had been supplied.

pnjlim is intended for limiting arguments to exponentials, and the 

limexp() function may be implemented through a function derived from 

pnjlim. Two additional arguments to the $limit() function are required 

when the second argument to the limit function is the string "pnjlim": 

the third argument to $limit() indicates a step size vte and the fourth 

argument is a critical voltage vcrit. The step size vte is usually the product 

of the thermal voltage $vt and the emission coefficient of the junction.

fetlim is intended for limiting the potential across the oxide of a MOS 

transistor. One additional argument to the $limit() function is required 

when the second argument to the limit function is the string "fetlim": the 

third argument to $limit() is generally the threshold voltage of the MOS 

transistor.

In the case that none of the built-in functions of the simulator is 

appropriate for limiting the potential (or flow) used in a nonlinear 

equation, the second argument of the $limit() function may be an 

identifier referring to a user-defined function. In this case, if the simulator 

determines that limiting is needed to improve convergence, it will pass 

the two quantities as arguments to the user-defined function. The first 

argument of the user-defined function shall be the value of the access 

function reference for the current iteration. The second argument shall 

be the appropriate internal state; generally, this is the value that was 

returned by the $limit() function on the previous iteration. If more than 

two arguments are given to the $limit() function, then the third and 

subsequent arguments are passed as the third and subsequent arguments 

of the user-defined function. The arguments of the user-defined function 

shall all be declared input.

Chapter 16  Runtime Support



244

In order to prevent convergence when the output of the $limit() 

function is not sufficiently close to the value of the access function 

reference, the user-defined function shall call $discontinuity(-1) when 

its return value is not sufficiently close to the value of its first argument.

The following module defines a diode and includes an analog function 

that mimics the behavior of pnjlim in SPICE. Though limexp() could have 

been used for the exponential in the current, using $limit() allows the 

same voltage to be used in the charge calculation.

module diode(a,c);

  inout a, c;

  electrical a, c;

  parameter real IS = 1.0e-14;

  parameter real CJO = 0.0;

  analog function real spicepnjlim;

    input vnew, vold, vt, vcrit;

    real vnew, vold, vt, vcrit, vlimit, arg;

    begin

      vlimit=vnew;

      if ((vnew > vcrit) &&

           (abs(vnew-vold) > (vt+vt)))

         begin

          if (vold > 0) begin

            arg = 1 + (vnew-vold) / vt;

            if (arg > 0)

              vlimit = vold + vt * ln(arg);

            else

              vlimit = vcrit;

         end

      else
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        vlimit = vt * ln(vnew/vt);

        $discontinuity(-1);

      end

      spicepnjlim = vlimit;

    end

  endfunction

    real vdio, idio, qdio, vcrit;

  analog begin

    vcrit=0.7;

    vdio = $limit(V(a,c), spicepnjlim, $vt, vcrit);

    idio = IS * (exp(vdio/$vt) - 1);

    I(a,c) <+ idio;

    if (vdio < 0.5) begin

      qdio = 0.5 * CJO * (1-sqrt(1-V(a,c)));

    end else begin

      qdio = CJO* (2.0*(1.0-sqrt(0.5)) +

             sqrt(2.0)/2.0*(vdio*vdio+vdio-3.0/4.0));

    end

    I(a,c) <+ ddt(qdio);

  end

endmodule

The limexp() function is an analog operator whose internal state 

contains information about the argument on previous iterations. The 

general form is

limexp( expr )

It returns a real value which is the exponential of its single real 

argument, and its apparent behavior is not distinguishable from exp(). 

However, limexp() internally limits the change of its output from iteration 

to iteration in order to improve convergence. On any iteration where the 
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change in the output of the limexp() function is bounded, the simulator 

is prevented from terminating the iteration. Thus, the simulator can only 

converge when the output of limexp() equals the exponential of the input.

�Simulation Control
Verilog-A provides system functions for announcing severity and 

terminating simulation.

�Announcing Severity
The fatal system severity task

$fatal ;

$fatal ( finish_number ) ;

$fatal ( finish_number, message-argument, ...  ) ;

The severity task $fatal shall generate a runtime fatal assertion error, 

which terminates the simulation with an error code. $fatal terminates the 

simulation without checking whether the iteration would be rejected. If 

$fatal is executed within an analog initial block, then after outputting the 

message, the initialization may be aborted, and in no case shall simulation 

proceed past initialization. Some of the system severity task calls may not 

be executed either.

Calling $fatal results in an implicit call to $finish that terminates the 

simulation. The first argument, finish-number, passed to $fatal shall be 

consistent with the corresponding argument to the $finish system task, 

which sets the level of diagnostic information reported by the tool. The 

finish-number may be used in an implementation-specific manner.

Non-fatal system severity tasks

severity-task ;

severity-task ();

Chapter 16  Runtime Support



247

severity-task (  message-argument, ...  ) ;

where the severity-task is one of the system tasks:

$error $warning $info

The $error shall be a runtime error. $warning shall be a runtime 

warning, which can be suppressed in a tool-specific manner. $info shall 

indicate that the assertion failure carries no specific severity.

Non-fatal system severity tasks called during a rejected iteration shall 

have no effect. If $error is executed within an analog initial block, 

then the message is issued and the initialization continues. However, 

the simulation shall not proceed past initialization. The other two tasks, 

$warning and $info, only output their text message but do not affect the 

rest of the initialization and the simulation.

For simulation tools, these tasks shall also report the simulation 

runtime at which the severity system task is called. If any of these tasks is 

called during a DC sweep, the simulator shall report the current value of 

the swept variable in place of the simulation runtime. If the task is called 

from an analog initial block, the simulator shall report that the call was 

made during initialization.

Each of these system tasks can also include additional user-specified 

information using the same format as the $display function.

�Terminating Simulation
Verilog-A provides two simulation control tasks to terminate simulation, 

$finish and $stop. The syntax for the $finish task is: 

$finish ;

$finish ( level );

If $finish is called during an accepted iteration, then the simulator 

shall exit after the current solution is complete. $finish called during 

a rejected iteration shall have no effect. As a result of the simulation 
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terminating due to a $finish task, it is expected that all appropriate 

final_step blocks are also triggered. If $finish is called from an analog 

initial block, the simulator shall exit without performing the simulation. 

If $finish is called from within an analog initial block, the simulator 

shall report that the call was made during initialization in place of the 

simulation time. If $finish is called from the analog context during a DC 

sweep (but outside of an analog initial block), the simulator shall report 

the current value of the swept variable in place of the simulation time.

The syntax for the $stop task is: 

$stop ;

$stop ( level );

A call to $stop during an accepted iteration causes simulation to be 

suspended at a converged time point. The $stop task shall not be used 

within an analog initial block. The mechanism for resuming simulation 

is left to the implementation.

The $finish and $stop tasks take an optional expression argument, 

which determines what type of diagnostic message is printed. The amount 

of diagnostic message output increases with the value of n as shown in 

Table 16-4. The level value 1 is the default if no argument, or an argument 

different than 0, 1, or 2 is supplied.

Table 16-4.  Diagnostic messages

Level Message

0 Prints nothing

1 Prints simulation time and location (default)

2 Prints simulation time, location, and statistics about the memory and 

CPU time used in the simulation
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CHAPTER 17

Input and Output
In this chapter, we look into Verilog-A functions and tasks for the display of 

data on the console or writing to and reading data from files. Even though 

your simulator will let you monitor the value of signals and variables in 

your design, it is also nice to be able to output certain information beyond 

the simulator reporting capabilities. This is useful when the results of a 

simulation are large and need to be stored in a file or when data is to be 

read from an external file and driven into a model formulation.

�File Management
Verilog-A provides various tasks and functions to deal with files. It includes 

opening files, positioning files for reading and writing, detecting error 

status and end of the files, and finally closing files.

�Opening Files
The files are opened and closed using $fopen and $fclose system 

functions following the syntax:

mcd-or-fd = $fopen( file-name );

mcd-or-fd = $fopen( file-name , type );
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The $fopen function opens the file specified with the file-name 

argument. The file-name argument shall be a string literal, string data type, 

or an integer number containing a character string that names the file to 

be opened. The optional type argument shall be a string expression that 

evaluates one of the strings given in Table 17-1.

Table 17-1.  The values of the type file descriptors

Type Argument Description

"r" or "rb" Open for reading

"w" or "wb" Truncate to zero length or create for writing

"a" or "ab" Append; open for writing at end-of-file, or create for 

writing

"r+", "r+b", or "rb+" Open for update (reading and writing)

"w+", "w+b", or "wb+" Truncate or create for update

"a+", "a+b", or "ab+" Append; open or create for update at end-of-file

The type argument indicates how the file should be opened. If type is 

omitted, the file is opened for writing, and a multichannel descriptor mcd 

is returned. If type is supplied, the file is opened as specified by the value of 

the type string. The "b" in the type strings exists to distinguish binary files 

from text files. Many operating systems (such as Unix) make no distinction 

between binary and text files, and on these systems, the "b" is ignored. 

However, some systems (such as machines running Windows) perform 

data mappings on certain binary values written to and read from files that 

are opened for text access.
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Note  Verilog-A supports multiple analyses during the same 
simulation process. If a file is opened in a write mode in the first 
analysis and reopened in that write mode in the following analysis, 
then content written from the following analyses shall be appended 
to the content written during the previous analyses.

When called, the $fopen task returns a 32-bit integer mcd-or-fd which 

is either a multichannel descriptor, mcd, or a file descriptor, fd, determined 

by the absence or presence of the type argument in the $fopen function 

call. If a file cannot be opened (either the file does not exist and the type 

specified is "r", "rb", "r+", "r+b", or "rb+", or the permissions do not 

allow the file to be opened at that path), zero is returned for the mcd-or-fd. 

Applications can call the $ferror function to determine the cause of the 

most recent error.

In the multichannel descriptor mcd, a single bit is set indicating which 

file is opened. The least significant bit (bit 0) of mcd always refers to the 

standard output. The output is directed to two or more files opened with 

multichannel descriptors by bitwise OR-ing together their multichannel 

descriptors and writing to the resulting value. The most significant bit (bit 

31) of a multichannel descriptor is reserved and shall always be cleared, 

limiting an implementation to at most 31 files opened for output via 

multichannel descriptors.

Note  The number of simultaneous input and output channels that 
can be opened at any one time is dependent on the operating system.
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The most significant bit (bit 31) of fd is reserved and shall always be 

set; this allows implementations of the file input and output functions to 

determine how the file was opened. The remaining bits hold a small number 

indicating what file is opened. Three file descriptors are pre-opened; they 

are STDIN, STDOUT, and STDERR, which have the values 32'h8000_0000, 

32'h8000_0001, and 32'h8000_0002, respectively. STDIN is pre-opened 

for reading, and STDOUT and STDERR are pre-opened for append. Unlike 

multichannel descriptors, file descriptors cannot be combined via bitwise 

OR to direct output to multiple files. Instead, files are opened via file 

descriptor for input, output, and both input and output, as well as for 

append operations, based on the value of type, according to Table 17-1.

�File Positioning
The three system functions can be used to get files positioned for data 

input and output.

The function $ftell() used with the syntax:

offset = $ftell ( fd );

tells you where you are in the file fd by returning the byte number of 

the next byte which will be read or written in a file. The offset number is 

always relative to the beginning of the file. If an error occurs, –1 is returned.

The $fseek() function used the syntax:

code = $fseek ( fd , offset , operation );

repositions the file to a different location. The next byte to be read or 

written will be at the new position. The $fseek() function requires three 

arguments: the fd file descriptor; an offset number, which can be a positive 

or negative integer value; and an operation code operation. The code 

operation must be 0, 1, or 2, where
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•	 0 indicates that the file position should be set to the 

offset value.

•	 1 indicates that the file position should be set to the 

current position plus the offset.

•	 2 indicates that the file position should be set to the 

end-of-file plus the offset.

It is legal to set the file position to beyond the end of the file. The next 

write to the file will extend the file size to the new byte number, filling the 

gap with zeros. A file that is opened in append mode cannot be written 

to at a location before the end-of-file. If $fseek() sets the file position 

to another location, the location can be read, but the next write will 

automatically reposition the file position back to the current end-of-file.

The function $rewind() with the syntax

code = $rewind ( fd );

repositions the file to the beginning of the file. It has the same effect as

code = $fseek ( fd ,0  ,0 );

If an error occurs repositioning the file, then the code is set to –1. 

Otherwise, the code is set to 0. Applications can call $ferror to determine 

the cause of the most recent error.

If a file is being read from during an iterative solve and if that iteration 

is rejected, then the file pointer is reset to the file position that it pointed 

to before the iterative solve started. The features of the underlying 

implementation of file input-output (I/O) on the host system may prevent 

the file position from being reset after an iteration is rejected. In this case, a 

fatal error will be reported.
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�Error Status
Should any error be detected by one of the file input and output routines, 

an error code is returned. Often, this is sufficient for normal operation 

(i.e., if the opening of an optional configuration file fails, the application 

typically would simply continue using default values). However, 

sometimes it is useful to obtain more information about the error for 

correct application operation. In this case, the $ferror function can be 

used. It has a syntax:

errno = $ferror ( fd, str );

The arguments supplied to the $ferror() function are a file fd and 

string str which should be at least 640 bits wide. The description of the type 

of error encountered by the most recent file I/O operation is written into 

str. The integral value of the error code is returned in errno. If the most 

recent operation did not result in an error, then the value returned shall be 

zero, and the string variable str shall be empty.

�Detecting End-of-File
The function $feof() with the syntax

code = $feof ( fd );

is used to detect end-of-file. It returns a nonzero value when end-of-

file has previously been detected reading the input file fd. It returns zero 

otherwise.
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�Flushing Output
The system task $fflush() with the syntax

$fflush ( mcd );

$fflush ( fd );

$fflush ( );

writes any buffered output to the file(s) specified by mcd or fd, or if 

$fflush is invoked with no arguments, to all open files.

�Closing Files
The files are closed using $fclose system tasks following the syntax:

$fclose( mcd-or-fd );

The $fclose system task closes the file specified by fd or closes the 

file(s) specified by the multichannel descriptor mcd. No further output 

to or input from any file descriptor(s) closed by $fclose is allowed. The 

$fopen function shall reuse channels that have been closed.

�Reading Data
Verilog-A provides the ability to read values from files and load them into 

variables. Files opened using file descriptors (fd) can be read-only if they 

were opened with either the r or r+ type values.

�Reading a Line from a File
One line can be read from a file using the $fgets system function. It is 

based on the C language standard library function fgets. The syntax is

number-of-characters-read = $fgets ( str, fd )
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where fd is a 32-bit integer file descriptor and str is the name of the 

string variable.

The system function $fgets reads characters from the file specified by 

fd into the string variable str until it is filled, the newline character is read, 

or the end-of-file is reached, whichever comes first. The $fgets function 

returns the number of characters read. If an error occurs reading from the 

file, then the return value is set to zero. Applications can call $ferror() to 

determine the cause of the most recent error.

�Reading Formatted Data
The $fscanf and $sscanf system functions can be used to format data as it 

is read from a file. The syntax is

number-of-args-assigned = $fscanf ( fd , format , arg , ... )

number-of-args-assigned = $sscanf ( str , format , arg , ... )

$fscanf reads from the files specified by the file descriptor fd, while 

$sscanf reads from the string str. The string str shall be a string variable, 

string parameter, or a string literal. Both functions read characters, 

interpret them according to a specified format, and store the results. Both 

$fscanf and $sscanf system functions expect as arguments a control 

string, format, and a set of arguments specifying where to place the results.

The arguments must be variables of the appropriate data type for 

the format code. If there are insufficient arguments for the format, 

the behavior is undefined. If the format is exhausted while arguments 

remain, the excess arguments are ignored. If an argument is too small to 

hold the converted input, then, in general, the least significant bits are 

transferred. Arguments of any length that is supported by Verilog-A can be 

used. However, if the destination is real, then the value +inf (or -inf) is 

transferred.
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The format is a string data type or a string expression. The string 

contains conversion specifications, which direct the conversion of input 

into the arguments. The control string can contain the following:

•	 Whitespace characters (blanks, tabs, newlines, or 

formfeeds) that cause input to be read up to the next 

non-whitespace character. For $sscanf, null characters 

shall also be considered whitespace.

•	 An ordinary character (not %) that must match the next 

character of the input stream.

•	 Conversion specifications consist of the character %, an 

optional assignment suppression character *, a decimal 

digit string that specifies an optional numerical 

maximum field width, and a conversion code.

A conversion specification directs the conversion of the next input 

field. The result is placed in the variable specified in the corresponding 

argument unless assignment suppression was indicated by the character *. 

In this case, no argument shall be supplied. For example:

n = $fscanf(fd, "%t %d", r, i);

n = $fscanf(fd, "%t,%d", r, i);

n = $fscanf(fd, "%t*%d", r, i);

demonstrate format strings for reading values separated by a 

whitespace, comma, and any character.

The suppression of assignment provides a way of describing an input 

field that is to be skipped. An input field is defined as a string of nonspace 

characters; it extends to the next inappropriate character or until the 

maximum field width, if one is specified, is exhausted. For all descriptors 

except the character c, whitespace leading an input field is ignored. 

Table 17-2 describes the input field characters.
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Table 17-2.  Input field characters

Descriptor Description

% A single % is expected in the input at this point; no 

assignment is done

d Matches an optionally signed decimal number, consisting of 

the optional sign from the set + or –, followed by a sequence 

of characters from the set 0,1,2,3,4,5,6,7,8,9, and _

f, e, or g Matches a floating-point number. The format of a floating-

point number is an optional sign (either + or –), followed by 

a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally 

containing a decimal point character (.), followed by an 

optional exponent part including e or E, followed by an 

optional sign, followed by a string of digits from the set 

0,1,2,3,4,5,6,7,8,9

r Matches a real number in engineering notation, using the 

scale factors defined in

s Matches a string, which is a sequence of non-whitespace 

characters

m Returns the current hierarchical path as a string. Do not read 

data from the input file or str argument

If an invalid conversion character follows the %, the results of the 

operation are implementation dependent. If the end-of-file is encountered 

during input, conversion is terminated. If the end-of-file occurs before 

any characters matching the current directive have been read (other 

than leading whitespace, where permitted), the execution of the current 

directive terminates with an input failure. Otherwise, unless the execution 

of the current directive is terminated with a matching failure, the execution 

of the following directive (if any) is terminated with an input failure.
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If conversion terminates on a conflicting input character, the offending 

input character is left unread in the input stream. Trailing whitespace 

(including newline characters) is left unread unless matched by a directive. 

The success of literal matches and suppressed assignments is not directly 

determinable.

$fscanf and $fscanf return the number of successfully matched and 

assigned input arguments. This number can be 0 in the event of an early 

matching failure between an input character and the control string. If the 

input ends before the first matching failure or conversion, the end-of-file is 

returned. Applications can call $ferror to determine the cause of the most 

recent error.

�Displaying and Writing Data
Verilog-A provides system tasks for displaying and writing data as text 

output, file output, and writing data to strings.

�Text Output
Text output system tasks are used to print strings and variable values to 

the console or transcript of a simulation tool. The text output system tasks 

have a syntax:

text-output-task ( );

text-output-task ( arg1, ... );

where the text-output-task is one of the system tasks:

$display $write $strobe $monitor $debug

Text output system tasks display a list of arguments to the console or 

transcript of a simulation tool. The arguments are displayed in the same 

order as they appear in the argument list. Each argument can be a quoted 
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string literal, an expression that returns a value, or a null argument. A null 

argument is characterized by two adjacent commas (,,) in the argument 

list. Any null argument produces a single space character in the display 

output. If the display system task is invoked without arguments, it simply 

prints a newline character.

All the text output tasks, except $debug, shall not display output unless 

an iteration has been accepted. The $debug task provides the capability 

to display simulation data while the analog simulator is solving the 

equations. The $debug system task outputs its arguments for each iteration 

of the analog solver even if the evaluation occurred during an iteration 

that was rejected. The only difference between $display and $write is 

that $display appends a newline after printing the arguments and $write 

does not. $strobe is the same as $display, but printing occurs after the 

simulator has converged on a solution for all nodes.

The $monitor task provides the ability to display the values of any 

variables or expressions specified as arguments to the task only if their 

values change. When a $monitor task is invoked with one or more 

arguments, the simulator sets up a mechanism whereby for each accepted 

iteration step, if the variable or an expression in the argument list changes 

value compared with the last accepted step, except for the $abstime or 

$realtime system functions, the entire argument list is displayed at the 

end of the time step as if reported by the $strobe task. If two or more 

arguments change the value at the same time, only one display is produced 

that shows the new values.

�File Output
Each of the text output system tasks has a counterpart in the file output 

system tasks, which write to specific files. The syntax is

file-output-task ( mcd-or-fd );

file-output-task ( mcd-or-fd , arg1 , ... );
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The file-output-task is one of the system tasks:

$fdisplay $fwrite $fstrobe $fmonitor $fdebug

These counterpart system tasks accept the same type of arguments 

as the tasks upon which they are based, with one exception: the first 

argument shall be either a multichannel descriptor or a file descriptor, 

which indicates where to direct the file output. A multichannel descriptor 

is either a variable or the result of an expression that takes the form of a  

32-bit unsigned integer value. The file output system tasks work just like 

their counterparts, except that they write to files using the file descriptor.

An example of using text and file output system tasks to multiple files is 

the following module:

module f2;

  integer file1, file2;

  initial begin

    file1 = $fopen("file1");

    file2 = $fopen("file2");

    $display("The number used for file 1 is %0d",

             file1);

    $display("The number used for file 2 is %0d",

             file2);

    $fdisplay(file1, "Hello File 1");

    $fdisplay(file2, "Hello File 2");

    $fdisplay(file1 file2, "Hello both files");

    $fdisplay(file1 file2 | 1,

               "Hello files and screen");

    $fdisplay(file1, "Good Bye File 1");

    $fdisplay(file2, "Good Bye File 2");

    $fclose(file1);

    $fclose(file2);

  end

endmodule
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�Writing Data to a String
The system tasks for writing and formatting data to a string have a syntax:

$swrite ( str );

$swrite ( str , arg1, ... );

$sformat ( str, format );

$sformat ( str, format , arg1, ... );

The $swrite system task is based on the $fwrite system task 

and accepts the same type of arguments with one exception. The first 

argument to $swrite shall be a string variable to which the data shall 

be written, instead of a variable specifying the file to which to write the 

resulting string.

The system task $sformat is similar to the system task $swrite, 

with one major difference. Unlike the text and file output system tasks, 

$sformat always interprets its second argument, and only its second 

argument, as a format string. This format argument can be a static string, 

such as "data is %d", or can be a string variable whose content is 

interpreted as the format string. No other arguments are interpreted as 

format strings. $sformat supports all the format specifiers supported by 

the file output system tasks. The remaining arguments to $sformat are 

processed using any format specifiers in the format until all such format 

specifiers are used up. If not enough arguments are supplied for the format 

specifiers or too many are supplied, then the application shall issue a 

warning and continue execution. The application, if possible, can statically 

determine a mismatch in format specifiers and number of arguments and 

issue a compile-time error message. If the format is a string variable, it 

might not be possible to determine its value at compile time.
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�Escape Sequences
The contents of string arguments are output literally, except when certain 

escape sequences are inserted to display special characters or specify the 

display format for subsequent expressions. The escape sequences are 

shown in Table 17-3.

Table 17-3.  Escape sequences for printing special characters

Escape Sequence Special Character

\n The newline character

\t The tab character

\\ The \ character

\" The “ character

\ddd A character specified by 1 to 3 octal 

digits

%% The % character

For example:

$display("\\\t\\\n\"\123");

produces at the output:

\    \

"S

Table 17-4 shows the escape sequences used for format specifications. 

The special character % indicates that the next character should be 

interpreted as a format specification that establishes the display format 
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for a subsequent expression argument. For each % character (except %m, 

%%, and %l) that appears in a string, a corresponding expression argument 

shall be supplied after the string.

Table 17-4.  Escape sequences for format specification

Escape Sequence Display Format

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%l or %L Display library binding information

%m or %M Display hierarchical name

%s or %S Display as a string

The formatting specification %l (or %L) is defined for displaying the 

library information of the specific module. The %m format specifier does 

not accept an argument. Instead, it causes the display task to print the 

hierarchical name of the module, task, function, or named block which 

invokes the system task containing the format specifier. This is useful when 

there are many instances of the module which call the system task.

The %s format specifier is used to print ASCII codes as characters. For 

each %s specification which appears in a string, a corresponding argument 

shall follow the string in the argument list. The associated argument is 

interpreted as a sequence of 8-bit hexadecimal ASCII codes, with every 

8 bits representing a single character. If the argument is a variable, its 

value shall be right-justified so the rightmost bit of the value is the least 

significant bit of the last character in the string. No termination character 

or value is required at the end of a string and leading zeros (0) are never 

printed.
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The format specifications in Table 17-5 are used for real numbers 

and have the full formatting capabilities available in the C language. For 

example, the format specification %10.3g sets a minimum field width of 10 

with three (3) fractional digits.

Table 17-5.  Format specifications for real numbers

Escape Sequence Displayed Format

%e or %E Display real in an exponential format

%f or %F Display real in a decimal format

%g or %G Display real in exponential or decimal format, whichever 

format results in the shorter printed output

%r or %R Display real in engineering notation, using the scale factors

Any expression argument which has no corresponding format 

specification is displayed using the default decimal format.
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CHAPTER 18

Generative 
Programming
Generative programming is used to create conditional or multiple 

instances of modules, branches, functions, variables, nets, and other 

generable module items. This is a powerful tool for parameterizing and 

configuring the module's architecture and simplifying its implementation. 

It allows for modules with the repetitive structure to be described more 

concisely and also provides the ability for parameter values to affect the 

structure of Verilog-A models. Although the generate statements use 

syntax very similar to the procedural conditional and looping statements, 

it is important to recognize that they do not execute at simulation time. 

Generate statements are executed during the elaboration of the model 

which occurs after parsing and before simulation.

�Generate Blocks
A generate block is a collection of one or more generable module items 

which could be conditionally or recursively instantiated using generate 

programming statements. A generate block is defined by the syntax

begin : block-name

      generable-module-item ...

end
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The use of the identifier block-name is optional and generate blocks 

can be used unnamed:

begin

      generable-module-item ...

end

If a generate block consists of only one generable module item, it can 

be used without begin and end keywords:

generable-module-item

which is the simplest form of unnamed generate block.

Most of the Verilog-A module items can be recursively or conditionally 

instantiated by generate statements. It is perhaps simpler to mention 

which module items are not possible to instantiate via generative 

programming. The non-generable module items are port direction and 

type declaration statements and module-level parameter declarations 

(including parameter aliases). All other module items including the 

generative statements themselves are generable and can appear in the 

generate blocks.

The elaboration of a generate statement results in zero or more 

instances of a generable block. An instance of a generate block is similar in 

some ways to an instance of a module. It creates a new level of hierarchy. 

It brings the declared objects, analog constructs, and module instances 

within the generate block into existence. Names in instantiated named 

generable blocks can be referenced hierarchically.

It should be mentioned that, unlike the procedural block statements, 

generate blocks do not represent statements themselves. Generate blocks 

can be used only within generate statements.
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�Generate Statements
There are two kinds of statements that control generative instantiation: 

conditional and loop statements. The conditional generate statements 

instantiate only selected generable module items, while the loop generate 

statements allow recursive instantiation of generable module items. The 

generate statements could be defined within the module using generate 

regions.

�Generate Regions
A generate region is a textual span in the module description where 

generate statements may appear. The syntax of the generate region is

generate generate-statement ...  endgenerate

where keywords generate and endgenerate define the scope of a 

generate region. Generate regions do not nest, and they may only occur 

directly within a module.

The explicit use of generate regions is optional. In principle, there is 

no semantic difference in the module when generative statements are 

introduced without defined generate regions. Generate regions are mainly 

used to improve the readability of the code by explicitly annotating the 

code segments containing generate statements.

�Conditional Generation
The conditional if-generate and case-generate statements select at most 

one generate block from a set of alternative generate blocks based on 

constant conditional expressions evaluated during elaboration. The 

selected generate block, if any, is instantiated into the model. The syntax of 

the if-generate statement is

if ( const-expression ) generate-block
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or the extended syntax with the else clause:

if ( const-expression )

      generate-block

else

     generate-block

The latter is also known as the generative if-else statement. The 

syntax of the case-generate statement is

case ( const-expression )

   case-item, ... : generate-block

   case-item, ... : generate-block

       ...

   default : generate-block

endcase

The syntax for conditional generate statements fully resembles that of 

procedural conditional statements. It is permissible to combine if-generate 

and case-generate statements in the same complex generate constructs. 

However, direct nesting applies only to conditional generative statements 

nested in conditional generative statements. It does not apply in any way 

to loop generative statements.

Because at most one of the alternative generate blocks is instantiated, 

it is permissible to have more than one block with the same name within 

a single conditional generate statement. However, it is not permissible 

for any of the named generate blocks to have the same name as generate 

blocks in any other conditional statements in the same scope, even if 

the blocks with the same name are not selected for instantiation. It is 

not permissible for any of the named generate blocks to have the same 

name as any other declaration in the same scope, even if that block is not 

selected for instantiation.
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Conditional generate constructs make it possible for a module to 

contain an instantiation of itself. The same can be said of loop generate 

constructs, but it is more easily done with conditional generates. With 

proper use of parameters, the resulting recursion can be made to 

terminate, resulting in a legitimate model hierarchy. Because of the rules 

for determining top-level modules, a module containing an instantiation 

of itself will not be a top-level module.

The following example of nlres module implements a nonlinear 

resistor using an if-generate statement:

module nlres (inout electrical a,

              inout electrical b);

    parameter real res = 1k from (0:inf);

    parameter real coeff1 = 0.0;

    generate

       if ($param_given(coeff1) && coeff1 != 0.0)

           analog V(a, b) <+ res *

              (1.0 + coeff1 * I(a, b)) * I(a, b);

       else if (res == 0.0)

           analog V(a, b) <+ 0.0;

       else

           resistor #(.r(res)) R1(a, b);

    endgenerate

endmodule

The if-generate statement is used to select among the resistance 

contribution statement, the SPICE resistor primitive, or a short if the 

resistance value is 0.
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For compact modeling of semiconductor devices, the introduction of 

extra nodes can be controlled with if-generate statements as shown in the 

module nmosfet:

module nmosfet (d, g, s, b);

    inout electrical d, g, s, b;

    parameter integer nqsMod = 0 from [0:1];

    if (nqsMod) begin : nqs

        electrical GP;

        electrical BP;

        electrical BI;

        electrical BS;

        electrical BD;

    end

    ...

endmodule

The internal electrical nodes GP, BP, BI, BS, and BD are created only if 

the nqsMod parameter has a nonzero value.

�Looping Generation
The for-generate statement permits instantiating a generate block multiple 

times. The syntax of the for-generate statement is

for ( genvar-initialization ; genvar-control ; genvar-change )

      generate-block

Similar to the procedural for-loop statement, the for-generate 

statement employs three actions, genvar-initialization, genvar-control, and 

genvar-change, for the conditional instantiation of a generate-block. The 
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main difference is that the for-generate statement actions are composed 

using a genvar index variable instead of an integer index variable used in 

procedural for-loops.

Genvars are integer-valued variables declared by the syntax

genvar genvar-name, ... ;

where the keyword genvar is followed by the list of identifiers genvar-

name. A genvar variable is used as an integer index only during the 

elaboration of for-generate statements. It does not exist at simulation 

time and shall not be referenced anywhere other than in for-generate 

statements. Both the genvar-initialization and genvar-change assignments 

in the for-generate statement shall assign to the same genvar variable. 

Moreover, the genvar-initialization assignment shall not reference the 

genvar index variable on the right-hand side.

If the generate-block is named, the for-generate statement implicitly 

declares an array of block instances. The index values in this array are the 

values of the used genvar variable during elaboration. This can be a sparse 

array because the genvar values do not have to form a contiguous range 

of integers. The array is considered to be declared even if the for-generate 

statement produces no instances of the generate block.

If the generate-block is not named, the declarations within it cannot be 

referenced using hierarchical names other than from within the hierarchy 

instantiated by the generate block itself. It shall be an error if the name of a 

generate block instance array conflicts with any other declaration, including 

any other generate block instance array. It shall be an error if the for-generate 

statement does not terminate. It shall be an error if a genvar value is repeated 

during the evaluation of the for-generate statement. It implies some restriction 

on the usage of a defparam statement in a generate-block. It may not target a 

parameter in another instantiation of the same generate block, even when the 

other instantiation is created by the same loop generate construct. Similarly, 

a defparam statement in one instance of an array of generated instances may 

not target a parameter in another instance of the instance array.
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Within a generate-block of a for-generate statement, there is an 

implicitly declared local parameter. This is an integer parameter that has 

the same name as genvar variable, and its value within each instance of the 

generated block is the value of genvar variable at the time the instance was 

elaborated. This parameter can be used anywhere within the generated 

block that a normal parameter with an integer value can be used. It can be 

referenced with a hierarchical name. Because this implicit local parameter 

has the same name as the genvar variable, any reference to this name 

inside the loop generate block will be a reference to the localparam, not 

to the genvar. As a consequence, it is not possible to have two nested loop 

generate constructs that use the same genvar variable.

The example of module genvarexp demonstrates the use of the genvar 

variable in the for-generate statement.

module genvarexp(out, dt);

    parameter integer width = 1;

    output out;

    input [1:width] dt;

    electrical out;

    electrical [1:width] dt;

    real tmp;

    genvar k;

    analog begin

       tmp = 0.0;

       for (k = 1; k <= width; k = k + 1) begin

            tmp = tmp + V(dt[k]);

            V(out) <+ ddt(V(dt[k]));

       end

       $strobe("Summ of potentials = %e", tmp);

    end

endmodule

Chapter 18  Generative Programming



275

Note that the for-generate statement is used here within the analog 

procedural block.

In the next example, the module rcline implements an interconnect 

line constructed from RC sections.

module rcline (n1, n2);

    inout n1, n2;

    electrical n1, n2, gnd; ground gnd;

    parameter integer N = 10 from (0:inf);

    electrical [0:N] n;

    parameter Cap = 1p, Res = 1k;

    localparam Csec = Cap/N, Rsec = Res/(2*N);

    genvar i;

    for (i=0; i<N; i=i+1) begin : section

         electrical n_int;

         resistor #(.r(Rsec)) R1(n[i], n_int);

         resistor #(.r(Rsec)) R2(n_int, n[i+1]);

         analog

            I(n_int, gnd) <+ Csec * ddt(V(n_int));

    end

    analog begin

        V(n1, n[0]) <+ 0.0;

        V(n2, n[N]) <+ 0.0;

    end

endmodule

The resistor network is generated by replicating the resistance 

module instances, while the capacitors are implemented by replicating a 

contribution statement in an analog block statement.
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�Hierarchy Scope and Names
Each instantiation of a generate block is considered to be a separate 

hierarchy scope. If the generate block selected for instantiation is named, 

then this name declares a generate block instance and is the name for 

the scope it creates. Normal rules for hierarchical naming apply. For each 

block instance created by the for-generate statements, the generate block 

identifier for the loop is indexed by adding the genvar value to the end 

of the generate block identifier. These names can be used in hierarchical 

path names.

If a generate block in a conditional generate statement consists of only 

one item, then this generate block is not treated as a separate scope, it is 

said to be directly nested. The directly nested generate blocks are treated 

as if they belong to the outer generate statement. Therefore, they can have 

the same name as the generate blocks of the outer generate statement, and 

they cannot have the same name as any declaration in the scope enclosing 

the outer generate statements (including other generate blocks in other 

generate constructs in that scope). This allows complex conditional 

generate schemes to be expressed without creating unnecessary levels of 

generate block hierarchy.

If the generate block selected for instantiation is not named, it still 

creates a scope, but the declarations within it cannot be referenced using 

hierarchical names. Although an unnamed generate block has no name 

that can be used in a hierarchical name, it needs to have a name by which 

external interfaces can refer to it. Each generate statement in a given scope 

is assigned a number even if it does not contain any unnamed generate 

blocks. The number will be 1 for the construct that appears textually first in 

that scope and will increase by 1 for each subsequent generate construct 

in that scope. All unnamed generate blocks will be given the name 

genblk<n> where <n> is the number assigned to its enclosing generate 
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construct. If such a name would conflict with an explicitly declared name, 

then leading zeros are added in front of the number until the name does 

not conflict.

The following example demonstrates the use of hierarchical names in 

a top module with generate statements:

module top ();

    parameter genblk2 = 0;

    genvar i;

    // The following generate block is implicitly

    //  named genblk1

    if (genblk2) electrical a; // top.genblk1.a

    else         electrical b; // top.genblk1.b

    // The following generate block is implicitly

    // named genblk02 as genblk2 is already

    // a declared identifier

    if (genblk2) electrical a; // top.genblk02.a

    else electrical b; // top.genblk02.b

    // The following generate block would have been

    // named genblk3  but is explicitly named g1

    for (i = 0; i < 1; i = i + 1)

       begin : g1 // block name

          // The following generate block is

          // implicitly named genblk1 as the first

          //  nested scope inside of g1

          if (1) electrical a; // top.g1[0].genblk1.a

       end
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    // The following generate block is implicitly

    // named genblk4 since it belongs to the fourth

    // generate construct in scope "top".

    // The previous generate block would have been

    // named genblk3 if it had not been explicitly

    // named g1

    for (i = 0; i < 1; i = i + 1)

       // The following generate block is implicitly

       // named genblk1 as the first nested generate

       // block in genblk4

       if (1) electrical a;

         // top.genblk4[0].genblk1.a

       // The following generate block is implicitly

       // named genblk5

     if (1) electrical a; // top.genblk5.a

endmodule

�Order of Elaboration
Elaboration is the process that occurs between parsing and simulation. 

It binds modules to module instances, builds the model hierarchy, 

computes parameter values, selects paramsets, resolves hierarchical 

names, establishes net connectivity, resolves disciplines and inserts 

connect modules, and prepares all of this for simulation. With the addition 

of generate statements, the order in which these tasks occur becomes 

significant. They are evaluated at elaboration time, and the result is 

determined before the simulation begins. Therefore, all expressions 

in generate schemes shall be constant expressions, deterministic at 

elaboration time.

Chapter 18  Generative Programming



279

If a generate statement contains an instantiation of an overloaded 

paramset, then the paramset selection is performed after the generate 

construct has been evaluated. The evaluation of the generate construct 

may influence the values and connections of the paramset instance, 

and hence the selection of matching paramset and module. The use of 

paramsets cannot introduce ambiguity as no defparam inside the hierarchy 

below a paramset instantiation is allowed.

Because of generate constructs and paramsets, the model hierarchy 

can depend on parameter values. Because defparam statements can alter 

parameter values from almost anywhere in the hierarchy, the result of 

elaboration can be ambiguous when generate constructs are involved. The 

final model hierarchy can depend on the order in which defparams and 

generate constructs are evaluated.

The following algorithm defines an order that produces the correct 

hierarchy:

	 1.	 A list of starting points is initialized with the list of 

top-level modules.

	 2.	 The hierarchy below each starting point is expanded 

as much as possible without elaborating generate 

constructs. All parameters encountered during this 

expansion are given their final values by applying 

initial values, parameter overrides, defparam 

statements, and paramset selections.

	 3.	 In other words, any defparam statement whose 

target can be resolved within the hierarchy 

elaborated so far must have its target resolved 

and its value applied. defparam statements whose 

target cannot be resolved are deferred until the 

next iteration of this step. Because no defparam 
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inside the hierarchy below a generate construct is 

allowed to refer to a parameter outside the generate 

construct, parameters can get their final values 

before going to step 3.

	 4.	 Each generate construct encountered in step 2 is 

revisited, and the generate scheme is evaluated. The 

resulting generate block instantiations make up the 

new list of starting points. If the new list of starting 

points is not empty, go to step 2.

A module definition may have multiple analog blocks. The simulator 

shall internally combine the multiple analog blocks into a single analog 

block in the order that the analog blocks appear in the module description. 

In other words, the analog blocks shall execute in the order that they are 

specified in the module.

Concatenation of the analog blocks occurs after all generate statements 

have been elaborated, that is, after the loop generate constructs have been 

unrolled, and after the conditional generate constructs have been selected. 

If an analog block appears in a loop generate statement, then the order 

in which the loop is unrolled during elaboration determines the order in 

which the analog blocks are concatenated to the eventual single analog 

block after elaboration.
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CHAPTER 19

Attributes
Verilog-A compilers and simulators often require additional information 

about specific objects within a Verilog-A code, beyond what is conveyed 

in the language itself. Attributes provide a mechanism for specifying 

such additional properties of various objects in the Verilog-A source and 

are left to be implemented by compilers that want to use them. Only 

standard Verilog-A attributes shall be implemented by compilers and 

simulators. Attributes may be used in various ways to control the creation 

of the executable model and model elaboration before the simulation. 

The concept of attributes is similar to pragma directives in programming 

languages, providing a hook to extra functionality in the language.

�Introducing Attributes
An attribute is essentially defined by a name and a value associated with 

it. Attribute names are specified by identifier tokens while the values 

are basic type constants, associated with the attribute name by attribute 

assignments.

�Attribute Assignments
The attribute assignments closely resemble the procedural assignments of 

Verilog-A variables using the syntax

attribute-name = constant-expressions
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where attribute-name is an identifier. For example, the attribute 

assignments

channel = "N"

version = 503 + 1

revision = 1

associate string "N" and integers 504 and 1 with the attribute names 

channel, version, and revision, respectively. However, unlike procedural 

statements, attribute assignments do not end with a semicolon (;). 

Moreover, it is illegal to use a constant expression for attribute assignment 

if it contains the other attribute name:

version = 503 + revision // illegal

The identifiers representing attribute names are not declared and 

cannot be used in a Verilog-A procedural code. The attribute names and 

their associated values are only intended to be used by compilers in the 

preparation for the simulation but not during the simulation. For that 

reason, the attribute value must be only assigned to constant expressions, 

which can be determined before the actual simulation starts.

The constant expression defining attribute values can also contain 

parameters, as in the example:

memory_size = SIZE-1

where SIZE is a declared parameter. Since parameters can be redefined 

during model elaboration, it is possible to create in this way parameterized 

attributes that can be configured at the elaboration time.

The Verilog-A syntax allows specifying an attribute only by attribute-

name without the equal sign (=) and an explicitly assigned value:

revision // the same as revision=1
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In that case, the attributes are implicitly assigned to the integer value 

of 1. Such attributes could be particularly useful in the role of binary flags 

(true or false). The true value could be, for example, indicated by the 

attribute instantiation and the false value if the attribute is not instantiated.

�Attribute Instances
Attribute instantiation associates attributes and their values with certain 

objects in the Verilog-A code to provide additional information to the 

compiler and simulation tool.

Attributes are instantiated in Verilog-A code by enclosing an attribute 

assignment within the token pair (* and *):

(* level = 504 *)

Multiple attributes can be instantiated within the same token pair  

(* and *) using a comma-separated list of attribute assignments:

(* level = 504, channel = "N" *)

It is equivalent to the instantiation of multiple attribute instances in a 

sequence:

(* level = 504 *) (* channel = "N" *)

The attribute instances can continue over many lines:

(* desc = "effective resistance",

   units = "Ohms",

   op = "yes",

   multiplicity = "divide" *)

*)
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If the same attribute name is defined more than once, as in the 

example:

(* level = 504, channel = "N", level = 505 *)

the last attribute value shall be used and a simulation tool can give a 

warning that a duplicate attribute specification has occurred. Nesting of 

attribute instances:

(* level = 504, (* channel = "N" *) *) // error

is not allowed.

An attribute instance is always associated with just one specific 

object within a Verilog-A code. Some objects require to position attribute 

instances just before the object (as a prefix) while the other objects require 

to position attribute instances just after the object (as a suffix).

The objects that require attribute instantiation as a prefix are

•	 Declarations (modules, paramsets, user-defined 

functions, ports, nets, parameters, and variables)

•	 Module items (module instantiations and ports in 

port mappings, defparam statements, procedural 

and generable blocks and statements, event control 

statements)

Here are some examples of attaching attribute instances to 

declarations:

(* simplified *) module mosekv ( ... );

(* with_binning *) paramset nch nmos3;

(* distributed *) electrical [7:0] internal;

(* type="instance" *) parameter real w = 1.0e-4;

(* drain *) inout electrical d;
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and module items:

(* long_channel *) mosekv

      mos1 (d, g, s, b, (* thermal_port *) dt);

(* override_1 *) defparam tgate.m1.gate_width = 5e-6;

(* initial_block *) initial begin ...

(* optional_nodes *)

if (nqsMod) begin : nqs

        electrical GP;

        electrical BP;

        ...

    end

An attribute can be associated as a prefix with a module declaration or 

an instance of that module. If an attribute has different values specified on 

both the module declaration and an instance of that module, the attribute 

on the instance will take precedence. If a net is also a module port, the 

attribute may also be specified on the port declaration line (in which the 

net is declared as input, inout, or output). If the attribute is specified for 

the same net identifier in both the net-discipline declaration and the port 

declaration, then the last attribute value shall be used and the tool can give 

a warning that a duplicate attribute specification has occurred.

Attributes are instantiated as a suffix to

•	 An operator or

•	 A call to a user-defined function

Here are some examples of attaching attribute instances as a prefix:

sum = a + (* second_argument *) b;

a = b ? (* no_glitch *) c : d;

maxValue (* smooth *) (val1, val2);
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Besides being used in modules, attributes can be also associated with 

the parameters and variables in paramsets. The descriptive attributes in 

paramsets can be used by the simulator when generating help messages 

for the paramset.

When the compiler finds an attribute instance, the attribute names 

are examined to see if they are relevant for the executable model and 

simulator, and if it is, the attribute value is parsed and evaluated. If the 

attribute name is not recognized by a compiler, it is ignored, and in that 

case, an attribute instance is just another style of comment. However, the 

Verilog-A language introduces a set of standard attributes that shall be 

always processed by the Verilog-A compiler.

�Standard Attributes
A set of standard attributes is defined in Verilog-A to support the creation 

of simulation reports. The simulator could use these attributes to generate 

detailed reports, help messages, and warnings on module interfaces, 

parameters, and variables using the standard attribute values. Standard 

attributes also allow designating some of the variables as output variables. 

The evolution of the output variable values is recorded during simulation 

similar to signal values. Finally, some of the recommended standard 

attributes are used to explicitly override module port disciplines.

�Simulation Reports
The standard Verilog-A attributes introduced to support the simulation 

reports are given in Table 19-1.
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Table 19-1.  The standard attributes supporting simulation reports

Attribute Role

desc Description of the objects the attribute is attached to. It is 

used to generate help messages when attached to parameter, 

variable, and net declarations within a module. The attribute 

must be assigned a string

units Describing the units of parameters or variables to which it is 

attached within a module. The attribute must be assigned a 

string

op Indicating whether a parameter or variable should be included 

in a short report of the most useful operating point values. 

The attribute must be assigned a value, which must be either 

“yes” or “no”

multiplicity Describing how the value of a parameter or variable should 

be scaled for reporting. The attribute must be assigned one 

of the following string values: "multiply", "divide", or 

"none"

The most common use of desc and units attributes is in module or 

paramset parameter declarations:

(* desc = "Resistance",

   units = "Ohms",

   op = "no",

   multiplicity = "none" *)

parameter real res = 1.0 from [0:inf);

Simulators can use the values of desc and units attributes for 

documentation purposes and when generating help messages for 

parameters. There is no dimensional analysis associated with the usage of 
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the units attribute. However, it is often important for the user to know the 

units of a parameter, such as an angle that could be specified in radians or 

degrees. The units and desc attributes are of particular value for compact 

models, where the number of parameters is large and the description is 

not always clear from the parameter names.

If the multiplicity attribute is specified with the value "multiply" 

or "divide", the value for the associated parameter or variable will be 

multiplied or divided by the value of $mfactor in any report of operating 

point values. If the multiplicity attribute is not specified or specified with 

the value "none", then no scaling will be performed in the operating point 

reports.

Note T he scaling defined by the multiplicity attribute applies 
to operating point value reports; it does not affect the automatic 
scaling of variables and parameters with hierarchical system 
parameters.

The desc attribute can be also attached to net declarations:

(* desc="drain terminal" *) electrical d;

This information can be used by the simulator to generate descriptive 

help messages related to the usage of nets.

The standard attributes desc and units have a special meaning when 

attached to module and paramset variables annotating them as output 

variables.

�Output Variables
The variables associated with a desc or units attribute, or both, shall be 

known as output variables. For example, the following declarations:
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(* desc="gate-source capacitance", units="F" *)

real cgs;

(* desc="effective resistance", units="Ohms"

   op="yes",  multiplicity="divide" *) real reff;

define the variables cgs and reff as output variables. The simulators 

shall provide access to their values during simulation in a similar way the 

signal values are accessible. Besides printing the names, values, units, and 

descriptions of output variables in simulation reports, the output variables 

are also available for plotting as a function of time or the swept variable of 

a DC sweep along with the net signals.

Note T he units and desc attributes have a special meaning only 
for variables with global (module or paramset) scope. The units 
and desc attributes for block-level variables in modules shall be 
ignored by the simulator, but can be still used for code documentation 
purposes.

The standard attributes desc and units can be also used to annotate 

output variables in paramsets. A few special rules apply to paramset output 

variables and output variables of modules referenced by a paramset:

•	 If a paramset output variable has the same name as 

an output variable of the module, the value of the 

paramset output variable is the value reported for any 

instance that uses the paramset.

•	 If a paramset variable without a description has the 

same name as an output variable of the module, the 

module output variable of that name shall not be 

available for instances that use the paramset.
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A paramset output variable’s value may be computed from values of 

paramset parameters and local variables as well as any output variable 

of the module. The module output variables are accessed using the 

hierarchical reference:

. module-output-variable-name

The following example declares an output variable ft for instances of 

the paramset smnpn:

paramset smnpn npn;

  (* desc="cut-off frequency" *) real ft;

  .is=2.0e-17; .bf=120.0; .br=10; rb=145;

  .rc=75; .re=12;

  .cje=2.0e-14; .vje=0.9; .mje=0.4;

  .cjc=3.0e-14; .vjc=0.6; .mjc=0.3; .xcjc=0.2;

  ft = .gm/(‘M_TWO_PI*(.cpi + .cmu));

endparamset

The module npn is assumed to have output variables named gm, 

cpi, and cmu. If the module npn had an output variable named ft, the 

paramset’s output variable would replace it.

�Port Discipline Override
The attribute port_discipline is used to define the desired discipline for 

ports it is attached to. The attribute value shall be a string and the value 

must be a valid Verilog-A discipline. It can be attached to a model instance:

(* port_discipline = "electrical" *)

resistor #(.r(1k)) r1 (node1, node2); // not needed as default

(* port_discipline = "rotational" *)

      resistor #(.r(1k)) r2 (node1, node2);
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to change the basic discipline of all ports for the module instance. It 

can be also attached to the particular port of the module instance:

resistor #(.r(1k)) r3

        ((* port_discipline="rotational" *) node1,

        (* port_discipline="rotational" *) node2);

to override a discipline for the specific ports. The use of these 

attributes can be combined to change the basic discipline of all ports for 

the module instance, but override the discipline for specific ports. The 

following provides an example of this use:

(* port_discipline="electrical" *) vcvs

   #(.gain(1.45e-3)) motor1 (n1, gnd_e,

   (* port_discipline="rotational_omega" *) shaft1,

   (* port_discipline="rotational_omega" *) gnd_rot);

The preceding model uses a voltage-controlled voltage source to 

model a motor as a converter from electrical potential to rotational 

velocity.

If the attribute port_discipline is not found attached to the module 

instance or ports, then the module ports will acquire the disciplines of 

other nets connected to module ports. If no disciplines are connected to 

that nets, then the default discipline is set to electrical.
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CHAPTER 20

Compiler Directives
Compiler directives control the preprocessor part of Verilog-A compilation. 

These directives are capable of performing various transformations on the 

Verilog-A code but know nothing about the Verilog-A syntax and simply 

make textual changes as directed. It typically involves the inclusion of the 

text files, substitution of strings, conditional inclusion or exclusion of code, 

and setting defaults. The scope of a compiler directive is independent of 

module definitions and extends from the point where the directive occurs 

to the next compiler directive that supersedes it.

The Verilog-A compiler directives are preceded by the (`) character 

(grave accent) which should not be confused with the apostrophe 

character ('). Whitespace characters can precede the directive but more 

than one directive on the same line is not permitted. Verilog-A offers a 

multitude of standard compiler directives to steer the source of your code.

�File Inclusion
Verilog-A code can be organized into different files and then compiled 

together as one unit. One of the useful features for gathering Verilog-A 

source code fragments into a single compilation unit is the include 

compiler directive. It takes the form

`include "filename"
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It instructs the preprocessor to insert the content of the file, whose 

name is identified by filename, in the code at the point where the include 

compiler directive appears.

The `include directive can be specified anywhere within the Verilog-A 

description. Only whitespace or comment may appear on the same 

line with the `include directive. A file included in the source using the 

`include directive may contain other `include compiler directives. 

Compiler implementation may limit the maximum number of nesting 

levels for including files.

The whitespace is significant within the double quote characters of the 

`include directive. An include directive

`include " fileA.inc  "

will not find the required fileA.inc. The filename must be the name 

of an existing file that may optionally be preceded by a full or relative 

directory path specification. The syntax of directory path specifications 

depends on the operating system on which the Verilog-A code is compiled. 

For example, the include directive

`include "../noise.va"

on the Linux operating systems will be replaced during compilation by 

the file noise.va located in the parent directory. An included file may itself 

contain compiler directives.

The `include directive is particularly useful when used for the 

inclusion of the standard definitions of natures, disciplines, and physical 

constants:1

`include "disciplines.vams"

`include "constants.vams"

1 www.accellera.org/downloads/standards/v-ams
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In all the Verilog-A code presented in the previous chapters, we have 

implicitly assumed the inclusion of the standard natures and disciplines 

and optionally the definition of the physical constants.

�Macro Definition
A macro (short for “macro instruction”) is a fragment of code that has been 

given a name. Whenever the name is used, it is replaced by the content of 

macro. Macros can be defined and used both inside and outside module 

definitions. There are two kinds of macros: object-like and function-

like macros.

�Object-like Macros
An object-like macro is defined by using the syntax:

`define macro-name macro-text

where the `define compiler directive is followed by an identifier 

macro-name, introducing a name of the macro, and then a sequence of 

token macro-text that should act as a replacement for the macro name. 

The macro-text can be also blank, in which case the macro is defined to be 

empty and no text is substituted when the macro is used.

If more than one line is necessary to specify macro-text, it can be 

continued onto several lines by placing a backslash (\) character, without 

trailing spaces, at the end of each line to be continued. The macro will be 

expanded as a multiline text but without backslash characters. If a one-

line comment is included in the macro-text, then the comment shall not 

become part of the substituted text.

The compiler shall substitute any occurrence of the token `macro-

name in the source description with the macro-text. The scope of the 

defined macro name is from the point of its definition to the end of the 
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source file being compiled. The token `macro-name can be used anywhere 

in the source description. However, it shall not be split across the 

lexical tokens.

A macro definition can use previous macro definitions. It shall be 

an error for a macro to expand text containing another usage of itself (a 

recursive macro). Basically, all compiler directives shall be considered as 

being predefined macros. However, redefining a compiler directive as a 

macro name is illegal.

Object-like macros are conventionally used as part of good 

programming practice to create symbolic names for numeric constants:

`define SPEED_OF_LIGHT 2.997925e8

`define PI 3.141592653

It is common, but not obligatory, to use uppercase letters for constants 

to distinguish them from the variables. Such definitions have no runtime 

overhead during the simulation and increase the readability of the 

Verilog-A code.

�Function-like Macros
A function-like macro is defined by using the syntax:

`define macro-name ( formal-argument, ... ) macro-text

It is similar to the definition of the object-like macros, except for the 

comma-separated list of formal-argument identifiers in parentheses 

after the macro-name. The formal-argument can be any valid Verilog-A 

simple identifier. Such a macro definition looks like a function call and the 

function-like macros basically act like functions but without the associated 

calling overhead.

The preprocessor searches subsequent lines for occurrences of the 

macro “call”:

`macro-name ( actual-argument, ... )
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where each formal-argument is now substituted by an actual-

argument, which can be any valid Verilog-A expression. The number of 

actual arguments must match the number of formal arguments in the 

macro definition. When the macro is expanded, each use of a formal 

argument in its macro-text is replaced by tokens of the corresponding 

actual-argument.

For example, a macro definition

`define MAX(A, B) ((A) > (B) ? (A) : (B))

used in a subsequent statement as

y = `MAX(p+q, r+s);

will be replaced by the line

y = ((p+q) > (r+s) ? (p+q) : (r+s));

Note the excessive use of parentheses here because macros perform 

purely textual substitution and, without these parentheses, unexpected 

expansions may take place. For instance, a macro definition

`define SQUARE(X) (X * X)

y = `SQUARE(u+v);

is equivalent to

y = (u + v * u + v);

which is very different from intended

y = (u + v) * (u + v);

The function-like macros are often used to replace the user-defined 

functions. For example, the following user-defined function definition and 

a calling statement:

analog function real hypsmooth;

   input x,c;
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   real x, c;

   begin

      hypsmooth = 0.5*(x+sqrt(x*x + 4.0*c*c);

   end

endfunction

...

t3 = hypsmooth(t1-t2, -1.0E-6)

can be replaced with macro definition and expansion:

`define hypsmooth (x, c) \

     (0.5*((x)+sqrt((x)*(x) + 4.0*(c)*(c))))

...

t3 = `hypsmooth(t1-t2, -1.0E-6)

The use of functions is safer since the compiler can check the function 

argument types. The main benefit of using macros instead of functions 

could be a faster execution time. During preprocessing, a macro is 

expanded (replaced by its definition) inline each time.

�Undefining Macros
A previously defined macro name can be undefined using the `undef 

compiler directive as

`undef macro-name

It tells the preprocessor to remove all definitions for the specified 

macro-name. An attempt to undefine a macro that was not previously 

defined using the `define directive can result in a warning. An undefined 

macro has no value, just as it had never been defined.
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�Predefined Macros
Verilog-A standards and simulators can also provide predefined macros 

that can be used to include or exclude portions of the code specific to 

a particular Verilog-A version or simulator. To avoid conflicts with the 

predefined Verilog-A macros, the user-defined macros shall never begin 

with __VAMS_ which is reserved for the predefined macros. The `define 

compiler directive shall not affect predefined macros and the simulator 

may issue a warning for an attempt to undefine predefined macros.

The Verilog-A LRM 2.2 introduced a number of extensions to support 

compact modeling and also the predefined object-like macro:

__VAMS_COMPACT_MODELING__

It is implicitly defined by the compiler if and only if all the compact 

modeling extensions from LRM 2.2 are supported by the simulator. It 

allows to conditionally compile the code with the compact modeling 

extensions if they are supported or to generate warnings or errors if they 

are not.

�Conditional Compilation
It is often convenient to be able to have multiple versions of the same 

code. It can be achieved by `ifdef, `ifndef, `elsif, `else, and `endif 

compiler directives for the conditional compilation. They work together in 

two sequences of directives, the ifdef-sequence:

`ifdef macro-name code-fragment

`elsif macro-name code-fragment

...

`else code-code fragment

`endif
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introduced with the `ifdef directive, and the ifndef-sequence:

`ifndef macro-name code-fragment

`elsif macro-name code-fragment

...

`else code-fragment

`endif

introduced with the `ifndef directive. The `endif directive signifies 

the end of the conditional sequences. There cannot be more than one 

`else directive (there may be none) in a sequence, although there may 

be any number (including zero) of `elsif directives preceding the 

`else directive. Each of the directives in the sequence (except `endif) 

is associated with a code fragment, but only one or none of the code 

fragments will be compiled based on the definition status of macro-name 

identifiers in `ifdef, `ifndef, and `elsif directives.

The definition status of macro-name identifiers is tested sequentially 

starting from the `ifdef or `ifndef directive. The code fragment of the 

first directive in a sequence returning the true condition will be compiled, 

ignoring the remaining directives. If the true condition is not found, and 

there is an `else directive in the sequence, the `else code fragment will 

be compiled; otherwise, none of the code fragments will be compiled.

Nesting of compiler directives for conditional compilation is 

permitted, as it is illustrated in the following example:

`ifdef wow

   $display("wow is defined");

   `ifdef nest_one

      $display("nest_one is defined");

      `ifdef nest_two

         $display("nest_two is defined");

      `else

         $display("nest_two is not defined");

      `endif
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   `else

      $display("nest_one is not defined");

   `endif

`else

    $display("wow is not defined");

    `ifdef second_nest

       $display("second_nest is defined");

    `else

       $display("second_nest is not defined");

    `endif

`endif

The conditional compilation directives are used in the standard nature 

definitions, as shown in the following example of the Current nature 

definition:

nature Current;

  units        = "A";

  access       = I;

  idt_nature   = Charge;

`ifdef CURRENT_ABSTOL

  abstol       = `CURRENT_ABSTOL;

`else

  abstol       = 1e-12;

`endif

endnature

It allows redefining the value of the nature abstol attribute by the user-

defined object-like macro CURRENT_ABSTOL.

The following example illustrates the usage of the predefined macro:

`ifdef __VAMS_COMPACT_MODELING__

    reff = ddx(iab, V(a));
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    I(a,b) <+ white_noise(4.0 * ‘P_K *

              $temperature * reff, "thermal");

`else

    if (analysis("noise"))

        $strobe("Noise not computed.");

`endif

The noise of a nonlinear resistor is evaluated and contributed only if 

the compiler supports the use of the derivative operator ddx() introduced 

as one of the compact modeling–related language extensions in Verilog-A 

LRM 2.2.

�Default Transition Directive
This directive specifies the default value for rise and fall times for the 

transition filter introduced in Chapter 14. The syntax for this directive is

`default_transition transition-time

where transition-time is a real value.

For all transition filters which follow a default transition directive and 

do not have rise time and fall time arguments specified, transition-time 

is used for their default rise and fall time values. If another `default_

transition directive is encountered in the subsequent source description, 

the transition filters following the newly encountered directive derive 

their default rise and fall times from the transition time value of the newly 

encountered directive. In other words, the default rise and fall times for a 

transition filter are derived from the transition-time value of the directive 

which immediately precedes the transition filter. If a default transition 

directive is not used in the description, transition-time is controlled by the 

simulator as described in Chapter 14.
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�APPENDIX

�Reserved Words in Verilog-A
�Keywords

above abs absdelay

absdelta abstol acos

acosh ac_stim aliasparam

analog analysis asin

asinh atan atan2

atanh begin branch

case ceil continuous

cos cosh cross

ddt ddt_nature ddx

defpar discipline else

end endcase enddiscipline

endfunction endgenerate endmodule

endnature endparamset endtable

exclude exp final_step

flicker_noise floor flow

for from function

generate genvar ground

hypot idt idtmod

(continued)
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idt_nature if inf

initial_step inout input

integer laplace_nd laplace_np

laplace_zd laplace_zp last_crossing

limexp ln localparam

log macromodule max

min module nature

negedge noise_table noise_table_log

or output parameter

paramset potential pow

real sin sinh

slew sqrt string

table tan tanh

timer transition units

while white_noise zi_nd

zi_np zi_zd zi_zp

�Other Reserved Words

access always and

assert assign automatic

buf bufif0 bufif1

casex casez cell

cmos config connect

(continued)
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connectmodule connectrules deassign

default design disable

discrete domain driver_update

edge endconfig endconnectrules

endprimitive endspecify endtask

event force forever

fork highz0 highz1

ifnone incdir include

initial instance join

large liblist library

medium merged nand

net_resolution nmos nor

noshowcancelled not notif0

notif1 pmos primitive

pull0 pull1 pulldown

pullup pulsestyle_onevent pulsestyle_ondetect

rcmos realtime reg

release repeat resolveto

rnmos rpmos rtran

rtranif0 rtranif1 scalared

showcancelled signed small

specify specparam split

strong0 strong1 supply0

supply1 task time

(continued)
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Table A-1.  Names for primitives, parameters, and ports in SPICE

Primitive Name Port Names Parameter Names

resistor p, n r, tc1, tc2

capacitor p, n c, ic

inductor p, n l, ic

iexp p, n dc, mag, phase, val0, val1, 

td0, tau0, td1, tau1

ipulse p, n dc, mag, phase, val0, val1, 

td, rise, fall, width, 

period

ipwl p, n dc, mag, phase, wave

(continued)

tran tranif0 tranif1

tri tri0 tri1

triand trior trireg

unsigned use uwire

vectored wait wand

weak0 weak1 wire

wor wreal xnor

xor

�SPICE Compatibility
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Primitive Name Port Names Parameter Names

isine p, n dc, mag, phase, offset, 

ampl, freq, td, damp, 

sinephase, ammodindex, 

ammodfreq, ammodphase, 

fmmodindex, fmmodfreq

vexp p, n dc, mag, phase, val0, val1, 

td0, tau0, td1, tau1

vpulse p,n dc, mag, phase, val0,val1, 

td, rise, fall,width, 

period

vpwl p, n dc, mag, phase, wave

vsine p, n dc, mag, phase, offset, 

ampl, freq, td, damp, 

sinephase, ammodindex, 

ammodfreq, ammodphase, 

fmmodindex, fmmodfreq

tline t1, b1, t2, b2 z0, td, f, nl

vccs sink, src,ps, ns gm

vcvs p, n, ps, ns gain

diode a, c area

bjt c, b, e, s area

mosfet d, g, s, b w, l, ad, as, pd, ps, nrd, 

nrs

jfet d, g, s area

msfet d, g, s area

Table A-1.  (continued)
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A
Above() function, 224, 225
Absolute delay filter, 201, 202
Accelerometer, 147–149
AC transfer function, 204
Actual argument reference, 173
Actual port declarations, 55
Analog function, 165
Analog function real 

hypsmooth, 168
Analysis() function, 233
Analysis types, 232
Argument association, 171
Arithmetic expressions, 22, 23
Array, 174
arrayadd function, 169
Array assignments, 105, 106
Array parameters, 31, 71
Array variables, 31, 98, 99, 167
Assignment pattern, 30, 31, 50, 71, 

100, 172, 174, 183, 207
Assignment statement, 103

array assignment, 105, 106
scalar assignments, 104, 105

Attributes, 281, 291
assignments, 281
comma-separated list, 283

concept, 281
constant expression, 282
declarations, 284
instantiation, 283, 284
model and simulator, 286
modules, 285, 286
multiplicity, 288
simulation tool, 284
standard, 286, 288
suffix, 285

B
Base format tokens, 9
Base natures, 34–37, 46
Basic types, Verilog-A language, 17

integer type, 17, 18
real types, 18, 19
string types, 19

Bitwise expressions, 25, 26
Bounding time step, 241
Branch

definition, 115
port branches, 119, 120
scalar branches, 115, 116
vector branches, 117–119

Branch-reference, 122, 126
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Branch signals
potential and flow signals, 120
signal access functions, 121–123
signal directions, 120, 121
signal-flow net, 120
unnamed branches, 123–125

C
Call expression, 20, 21
Case-expression, 109
Case-generate statement, 270
Case statement, 108, 109
Chemical reaction system, 139, 

140, 142
Circular integrator 

operator, 142–145
Close system tasks, 255
cmos_invertor module, 93
Comma-separated list, 296
Comments, 3, 4, 179, 196
Compact modeling extensions, 299
Compiler directives, 7, 8, 293, 295, 

298, 300
Compiler implementations, 8, 55
Concatenation expressions, 26–28
Conditional compilation, 299
Conditional compilation 

directives, 301
Conditional expression, 26
Conditional generate statement, 

270, 271
Conditional statements

case statement, 108, 109

if statement, 106
Conservative disciplines, 42
Constant_expression, 239
Constant extrapolation 

method, 185
Contribution statements

direct, 125–127
explicit and implicit, 125
indirect, 127–129
probe branch, 129, 130
switch branches, 132–134
value retention, 130–132

Control-strings
abrupt transitions, 184
comma-separated list, 183
control character set, 184
dependent variable selector, 183
extrapolation control 

characters, 185
extrapolation method, 185
first-order derivative, 185
interpolation algorithm, 184
interpolations, 183
literals, 183
LUT model, 184
parameter, 187

Conversion specification, 257
Counterpart system, 261
Cross function, 220, 224

D
DC motor, 136, 137
ddt() operator, 136
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degree-of-freedom argument, 161
Dependent-selector, 183
Dependent variables, 178
Derivative/integral operator–based 

expressions, 145
Derived nature, 37, 38
Deterministic functions, 153, 154
Differential equation, 146
Direct contribution 

statements, 125–127
direction specifier, 166
Direction indicator, 220
Discipline compatibility, 45, 46
Discipline-name, 48
Disciplines, 42
Discontinuity task, 238, 239
Displaying and writing data

character, 260
monitor task, 260
output tasks, 260
text output, 259

Distance function, 169
Domain binding statements, 43

E
Elaboration, 278
Empty disciplines, 42
Endif directive, 300
Error code, 254
Escape sequences, 13, 263, 264
Event control statement

analog operators, 216

event-expression, 216
expression, 215
functions, 216
keywords, 216
parentheses, 215
procedural blocks, 216
types, 217
use, 216

exp(x) function, 154
Expression containers

assignment pattern, 30, 31
range, 31, 32

Expression evaluation order
parenthesized expressions, 29
precedence of operators,  

28, 29
short-circuit/minimal 

evaluation, 30
Expressions, 20

arithmetic expression, 22, 23
bitwise expressions, 25, 26
concatenation 

expressions, 26–28
conditional expressions, 26
logical expressions, 24, 25
primary expressions

call expression, 20, 21
subscript expression, 21

relational expression, 23, 24
Expr-tol and time-tol 

arguments, 221
Extrapolation control 

characters, 185
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F
Fetlim, 243
Fifth-order Butterworth filter, 209
File output system, 261
File-output-task, 261
File positioning, 252

code operation, 252
detect end-of-file, 254
end-of-file, 253
error code, 254
flush(), 255
repositioning, 253
repositions, 252

Fil management, 249
First-order integration  

method, 241
First-order partial  

derivatives, 135
floor(x) function, 158
for-loop statement, 272
for-generate statements, 273, 

275, 276
Formal argument, 167, 297
format code, 256
Format data, 256
Format specifications, 265
Format string, 262
Formatting specification, 264
Format token, 10
Frequency-domain filters

Laplace transform 
filters, 206–210

Z-transform filters, 210–214

Function-like macro, 296, 297
Function name, 20
Function references, 170, 171
Functions, 165

G
Generable-module-item, 268
Generate-block, 273, 274, 276
Generative programming, 267

analog blocks, 280
conditional and loop 

statements, 269
constructs and  

paramsets, 279
endgenerate, 269
generate block, 267, 278
hierarchical names, 277
module, 268, 269
parameters, 279, 280
procedural block 

statements, 268
simulation, 267
unnamed, 276

genvar-change, 272
genvar-control, 272
Module genvarexp, 274
genvar-initialization, 272
geomcalc function, 169, 173
Global events

arguments, 217
functions, 217, 218
initial_step function, 219

Grid coordinates, 179
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H
Hierarchical name, 6
Hierarchical system 

parameters, 81–84
Highvoltage nature, 46
Hyperbolic functions, 156, 157

I
idt() operator, 138–140, 142
idtmod() operator, 142, 143
if-generate and case-generate 

statements, 269
if-generate statements, 269, 

271, 272
Illegal syntax, 11
Implicit/fixed-point 

formulation, 127
Indexed multidimensional 

array, 176
Indirect contribution 

equations, 145–149
Indirect contribution 

statements, 127–129
Inout argument, 167, 174
Input and output functions, 252
Input character, 259
Input field characters, 258
Integer literals, 8–10
Integer type, 17, 18
Integer-valued variables, 273
Integral equations, 146
Integration operator, 138

Intermediate interpolation 
points, 177

Interpolation control character, 184
Isoline, 179

J
Jagged array grids, 176–178

K
Kelvin units, 233
k-stage argument, 161

L
Laplace transform filters

numerator-denominator 
Laplace filter, 209, 210

numerator-pole Laplace filter, 
208, 209

zero-denominator filter, 
207, 208

zero-pole filter, 206, 207
Laplace zero-pole filter, 206, 207
Last_crossing() function, 223
Lexical, Verilog-A compiler, 2
Light-emitting diode (LED), 55
Limit() function, 242
Limiting and rounding functions, 

157, 158
Linear interpolation algorithm, 184
Linux operating systems, 294
ln(x) function, 154
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Local parameters, 76
Logarithmic and power functions, 

154, 155
Logical expressions, 24, 25
log(x) function, 154
Lookup table function

control-string, 183–185
data source, 182
input-variables, 181
LUT mapping, 180
one-dimensional arrays, 182
optional control string, 181
table data source, 180
two-dimensional arrays, 183
$table_model function, 181

Looping statements, 109
repeat statement, 112, 113
for statement, 111, 112
while statement, 110

LUT mapping, 180
LUT MOSFET transistor model, 187

M
Macro definition, 295, 296
Macro-name identifiers, 300
max() functions, 158
maxValue function, 168
mean argument, 161
Module instantiation

explicit port mapping, 61–63
implicit nets, 66, 67
module-instance-name 

identifier, 61

module-name identifier, 60
port-connection, 61
positional port mapping, 63, 64
SPICE primitives, 67
top-level instantiation and 

$root, 64, 65
Module-level parameter, 168
Module-port-name, 61
Module procedural code, 171
Modules, 53

definition, 53, 54
keyword module, 53
top-level modules, 53

Monitored events function, 219
Monte-Carlo trial, 159
Mosekv module, 90
MOS transistor, 55
Multichannel descriptors, 251
Multidimensional arrays, 99
Multiple aliases, 75
Multiple hierarchical 

declarations, 50

N
Nature binding statements, 41, 42
Natureless/empty disciplines, 42
Nature override statements, 43
Natures, 33
Negative integer literals, 11
Net declarations

ground nets, 49
net attributes, 51
net initialization, 50
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scalar nets, 47, 48
vector nets, 48

Net-discipline types
definition, 41
discipline compatibility, 45, 46
domain binding statements, 43
flow and potential signals, 33
nature binding 

statements, 41, 42
nature override statements, 43
potential/flow in a discipline, 44
predefined standard 

nature, 46, 47
semicolon (;), 41
signal natures

base natures, 34–37
derived nature, 37, 38
natures, 33
predefined standard natures, 

38, 39, 41
Net initialization, 50
noise_table vs. noise_table_log, 198
Non-generable module, 268
Nonlinear resistor, 302
Module npn, 290
Numerator-denominator filter, 

213, 214
Numerator-denominator Laplace 

filter, 209, 210
Numerator-denominator transfer 

function, 214
Numerator-pole filter, 213
Numerator-pole Laplace filter, 

208, 209

Numerator-pole transfer 
function, 213

Numerical literal, 8
integer literals, 8–10
real literals, 11, 12

O
Object-like macros, 295, 296
Open and Close system 

functions, 249
Operating point analysis, 232
Operator, 14–16
Output variables, 288

P, Q
Parameter aliases, 75
Parameter assignments, 70
Parameter declarations, 69

array parameters, 71
basic type, 70
local parameter, 76
parameter aliases, 75
permissible value ranges,  

72–74
simple parameters, 70, 71

Parameter override
hierarchical parameter 

override, 80
instance parameter override, 76

by name, 77
by order, 79

Param_name, 237
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Paramset instantiation
cmos_invertor module, 93
LEFF parameter, 96
multiple paramsets, 94
paramset resolution  

steps, 94
parent module parameter, 92
SHMOD parameter, 96
WEFF and LEFF, 93

Paramset override 
statement, 90, 92

Paramsets, 85
benefit, 87
definition, 86, 88
hierarchy, 86
identifier, 88
instantiation, 87
module instantiation, 85
overridden paramset 

parameters, 88
parameter declarations, 88, 89
paramset override 

statement, 90, 92
restrictions, 92

Parentheses, 29
Parenthesized expressions, 29
Partial derivatives, 151
Photodiode, 55
pnjlim, 243
Port branches, 119, 120
Port-connection, 61
Port declarations, 57
Port direction, 54–57
Port_discipline, 290

Port-reference, 120
Ports, 53

net declaration statements, 58
net-discipline declaration, 57
potential signal values, 59
unidirectional ports, 59

Positional port mapping, 63, 64
Preceding model, 291
Predefined standard natures, 

38, 39, 41
Probabilistic function

random number generation, 
158, 159

statistical distribution, 160–163
Probe branches, 129, 130
Probe derivative operator, 149–151
Procedural assignments, 104
Procedural blocks

analog block, 100, 101
block procedural 

statement, 101–103
single block procedural 

statement, 101
Procedural evaluation, 175
Procedural programming, 97

array variables, 99, 100
simple variables, 98, 99
variable declaration 

statement, 97
Procedural statement, 168–170
Programming statements, 267
Pseudo-random bitstream 

generator, 227
Punctuators, 15, 16
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R
Ragged arrays, 177
Random number generation 

function, 158, 159
Range, 31, 32
Range specifier, 167
Real and integer parameter 

names, 234
Real literals, 11, 12
Real types, 18, 19
Relational expression, 23, 24
Replication operator, 27
Reserved words, 6, 7
Resistor module, 133
Resistor network, 275
Runtime support

Analysis() query function, 231
device temperature, 230
module monitor, 237
module ports, 229
nonlinear solver, 238
parameter value, 230
param_name, 234
port identifier, 229
simulator supports, 235
sourcescale, 235
system functions, 229

S
$arandom function, 159
Scalar branches, 115, 116
Scalar nets, 47, 48

Scalar numerical value, 168
scalar-terminal, 116
Scale symbols, 12
Scheduled transition, 204
seed argument, 159, 161
Sequential listing, 178
Short-circuit/minimal 

evaluation, 30
Signal access functions, 

121–123, 172
Signal directions, 120, 121
Simulation string parameter 

names, 236
Simulators, 287
Single-point DC analysis, 232
Slew analog filter, 204, 205
Specifying zero (0), 181
SPICE compatibility, 306
SPICE-like simulators, 242
sqrt(x) function, 155
$rdist_normal function, 162
$rdist_uniform, 161
$simprobe() queries, 236
$table_model function, 180, 

181, 183
Standard attributes, 287, 289
standard-dev argument, 161
Standard math functions, 153
Statistical distribution 

function, 160–163
String data type, 257
String literal, 13
String types, 19
Subscript expressions, 21
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Subscript operator [ ], 21
Switch branches, 132–134
System function, 256
System names, 7

T
Table data structure

data acquisition systems, 175
jagged array grids, 176–178
preparation, 178–180

Tethered seismic mass, 147
Text output system, 259
Time derivative operator, 135–138
Time-domain filters

absolute delay filter, 201, 202
slew analog filter, 204, 205
transition filter, 202–204

Time integrator operator, 
138–140, 142

Timer() function schedules, 226
Timer monitored event 

function, 226
Top-level module, 271
Traditional Verilog-A syntax 

style, 153
Transitional Verilog-A function 

style, 154
Transition filters, 202–204, 302
Transition-time, 302
Trigonometric functions, 155, 156
2-D array, 180
Type file descriptors, 250
Type-string argument, 159, 161

U
Unary operators, 14
Underscore character (_), 10
Unidirectional ports, 59
Unnamed branches, 123–125
User-defined functions, 243, 297

analog block, 170
called as statements, 172–174
calling styles, 170
defining, 165, 166
formal arguments, 166, 167
function references, 170, 171
functions in expressions, 172
module body, 166
procedural statement, 168–170
return variable, 167, 168
self-contained segments, 165

V
Vector branches, 117–119
Vector port declaration, 56
Vector terminals, 117
Verilog-A, 231–233, 236, 238, 249, 

255, 281, 303
built-in math functions, 

153, 154
filters, 201
lookup tables, 175
procedural block, 175
user-defined net-discipline 

types (see Net-discipline  
types)
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Verilog-A code, 284, 293, 295
Verilog-A compiler directives, 293
Verilog-A component, 215
Verilog-A description, 294
Verilog-A discipline, 290
Verilog-A expression, 297
Verilog-A functions, 249
Verilog-A language, 1, 2, 286

comments, 3, 4
compiler directives, 7, 8
expressions (see Expressions)
identifier, 4

escaped identifier, 5
hierarchical name, 6
simple identifier, 4, 5

numerical literal, 8
integer literals, 8–10
real literals, 11, 12

operator, 14
punctuators, 15, 16
reserved words, 6, 7
string literal, 13
system names, 7

Verilog-A LUT model function, 175
Verilog-A models, 267
Verilog-A module, 268
Verilog-A procedural code, 282
Verilog-A simulators, 86

Verilog-A source text, 1
Verilog-A syntax, 282, 293
Verilog-A variables, 281
Verilog-A version, 299
Voltage-controlled 

oscillator (VCO),  
144, 145

W, X, Y
Writing and formatting data, 262

Z
Zero-denominator filter, 212
Zero-denominator Laplace filter, 

207, 208
Zero-pole form, 211, 212
Zero-pole transfer function, 207
Z-transform filters

arguments, 210
linear discrete-time filters, 210
numerator-denominator filter, 

213, 214
numerator-pole filter, 213
zero-denominator filter, 212
zero-pole form, 211, 212
zero transition time, 211
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