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Preface 

The top priority of a nuclear power plant (NPP) is safety. Indeed, safety is a ubiquitous 
concern over the whole life cycle of an NPP, from its design to decommissioning. 
But in a complex large-scale system with a huge number of components such as 
an NPP, it is not easy to identify all vulnerabilities and achieve a perfect level of 
safety. As the TMI-2, Chernobyl, and Fukushima severe accidents demonstrated, 
an NPP emergency does not occur by a single cause but rather by a complicated 
combination of hardware, software, human operators, decision-makers, and so on. 
Research has revealed that human error takes up more than half of core damage 
frequency, a common risk metric, and it is also known that human factors were the 
direct or indirect cause of most nuclear accidents in history. 

One of the approaches to enhance the safety of NPPs is to develop operator support 
systems to reduce latent human errors by optimizing the operators’ required work-
load or automating some portion of their tasks. In fact, research into the application of 
artificial intelligence (AI) to NPPs has been performed for decades, but few develop-
ments have actually been reflected in real NPPs. Despite this though, AI technology 
is now being particularly highlighted again due to increases in data processing and 
advancements in hardware design, graphics processing units, and related methods. 
This has led to an explosive growth in recent years of research related to AI tech-
niques in the nuclear industry. Such global efforts toward applying AI techniques 
to NPPs may result in better performance than conventional methods based on the 
characteristics of NPPs, such as complexity in operation, dynamic behaviors, and 
high burden in decision-making. 

This book is divided into nine chapters. In the first part, Chaps. 1 and 2, the  
framework of the autonomous NPP and the fundamentals of AI techniques are 
introduced. Chapter 1 suggests a high-level framework for an autonomous NPP 
including the functional architecture of the autonomous operation systems. This 
chapter defines multiple levels and sub-functions necessary for automating oper-
ator tasks. The framework consists of monitoring, autonomous control, the human– 
autonomous system interface, and the intelligent management of functions. Chapter 2 
provides fundamental explanations of the various AI techniques appearing in the book 
as an overview.
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vi Preface

In Chaps. 3–6, the essential methods necessary for developing operator support 
systems and autonomous operating systems are introduced. Chapters 3, 4, and 5 
apply various AI-based techniques for the monitoring of NPPs including signal vali-
dation, diagnosis of abnormal situations, and prediction of plant behavior using both 
supervised and unsupervised learning methods. Chapter 6 presents AI applications 
for autonomous control using reinforcement learning for both normal and emergency 
situations along with domain analysis methods. 

Lastly, in Chaps. 7 and 8, applications are introduced. Chapter 7 provides an 
example of an integrated autonomous operating system for a pressurized water reactor 
that implements the suggested framework. Lastly, Chap. 8 deals with the interac-
tion between operators and the autonomous systems. Even though the autonomous 
operation systems seek to minimize operator interventions, supervision and manual 
control by human operators are inevitable in NPPs for safety reasons. Thus, the last 
chapter addresses the design of the human–autonomous system interface and oper-
ator support systems to reduce the task burden of operators as well as increase their 
situational awareness in a supervisory role. 

This book is expected to provide useful information for researchers and students 
who are interested in applying AI techniques in the nuclear field as well as other indus-
tries. Various potential areas of AI applications and available methods were discussed 
with examples. Traditional approaches to recent applications of AI were examined. 
In addition, the specific techniques and modeling examples provided would be infor-
mative for beginners in AI studies. While the focus of this book was the autonomous 
operation of NPPs with AI, the methods addressed here would also be applicable to 
other industries that are both complex and safety-critical. 

Gwangju, Korea (Republic of) 
Ulsan, Republic of Korea 
Daejeon, Republic of Korea 
October 2022 

Prof. Jonghyun Kim 
Prof. Seungjun Lee 

Prof. Poong Hyun Seong
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Chapter 1 
Introduction 

1.1 Background 

Autonomous is a term referring to the power of self-government. By this defini-
tion, control systems with high degrees of autonomy should have the capacity for 
self-governance, which allows them to perform their necessary control functions 
without external intervention over extended time periods (Antsaklis and Passino 
1993). Recently, interest in autonomous systems has increased in a variety of fields, 
from manufacturing to the development of unmanned space, atmospheric, and ground 
vehicles, based on the belief that the technology can improve safety, reliability, and 
efficiency. 

The area in which autonomous systems have been the most actively studied 
and applied is the mobility industry. At present, advanced driver-assistance systems 
(ADASs) are being installed even in commercial vehicles to assist drives in a variety 
of ways. ADASs provide important information about road traffic and can suggest 
more efficient routes based on the current traffic conditions. They can also perform 
functions like basic control, parking, etc., without driver intervention. Furthermore, 
the technology is currently advancing to detect driver fatigue or distraction, alert 
him or her, and even take control of the vehicle from the human driver automatically 
(Joseph and Mondal 2021). 

The extent of automation (or autonomy) is often described with levels of automa-
tion. Sheridan and Verplanck defined 10 such levels for supervisory control systems 
(Sheridan and Verplanck 1978). Their levels of automation represent a continuum 
from low automation (Level 1), in which a human performs a given task manually, 
and full automation (Level 10), in which the system is fully autonomous, requiring no 
human intervention. Similarly, Endsley and Kaber formulated a 10-level taxonomy 
that suggests roles for the human and system in the human information processing 
stages, i.e., monitoring, generating, selecting, and implementing (Endsley and Kaber 
1999). Billings also proposed a comprehensive taxonomy by assigning functions to 
automatic systems and humans, as shown in Table 1.1 (Billings 1997).
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Table 1.1 Level of automation proposed by Billings 

Management mode Automation functions Human functions 

Autonomous operation Fully autonomous operation. 
Human not usually informed. 
System may or may not be 
capable of being disabled 

Human generally has no role in 
operation and monitoring is 
limited 

Operation by exception Essentially autonomous 
operation unless specific 
situations or circumstances are 
encountered 

Human must approve of critical 
decisions and may intervene 

Operation by consent Full automatic control under 
close monitoring and 
supervision 

Human monitors closely, 
approves actions, and may 
intervene 

Operation by delegation Automatic control when 
directed by a human to do so 

Human provides supervisory 
commands that automation 
follows 

Shared control Automatic control of some 
functions/tasks 

Manual control of some 
functions/tasks 

Assisted manual control Primarily manual control with 
some automation support 

Human manually controls with 
assistance from partial 
automation 

Direct manual control No automation Human manually controls all 
functions and tasks 

It should be noted here that an “autonomous system” and an “automatic system” 
do not exist in different worlds. The Billings taxonomy in Table 1.1 uses the term 
autonomous in the two highest levels of automation, i.e., Autonomous Operation and 
Operation by Exception, while automatic is used in the lower levels. Therefore, we 
can say that an autonomous system is placed on the continuum of automation, but at 
the higher levels. 

Nuclear power plants (NPPs) have been automated with the following purposes: 
(1) achieving and maintaining a high level of safety, (2) reducing operators’ phys-
ical and mental burden, and (3) improving production performance and reliability. 
To achieve the high safety standards required of the industry, in commercial NPPs, 
reactor trips and the actuation of safety systems are required to be automated by 
law or regulation. In the power operation mode, the use of automatic, closed loop 
control for process parameters such as temperature, pressure, flow, etc. is common 
(IAEA 1992). In many plants, automation has been extended to include the auto-
matic control of plant start up, mode change, and shutdown. The support of oper-
ators’ decision-making activities is also an area of automation (NRC 2002); exam-
ples of such applications include fault diagnosis, safety function monitoring, plant 
performance monitoring, and core monitoring. 

At present, it can be said that the level of automation in most commercial NPPs 
is around the Shared Control management mode in the Billings taxonomy. That is, 
some functions are performed by automatic systems and others are performed by
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human operators. For instance, the actuation of a reactor trip and the engineered 
safety features is generally performed by an automatic system, while the termination 
and resetting of these functions is assigned to operators. In addition, the authority of 
control can be shared along with the plant mode. For instance, the steam generator 
(SG) water level is generally controlled by operators in the low power and shutdown 
modes, but it is automatically controlled in the power operation mode. 

Recently, the number of studies attempting to achieve higher levels of automation 
in the control of NPPs is increasing with the help of artificial intelligence (AI) tech-
nology. Researchers have investigated the feasibility of applying fuzzy logic, neural 
networks, genetic algorithms, and expert systems to conventional control methods 
to raise the level of automation in different aspects of operations such as reactor 
start-up, shutdown in emergency situations, fault detection and diagnosis, reactor 
alarm processing and diagnosis, and reactor load-following operations. For instance, 
Upadhyaya et al. designed an autonomous control system for a space reactor system 
using a proportional-integral-derivative (PID) controller (Upadhyaya et al. 2007). 
Oak Ridge National Laboratory suggested an autonomous decision-making frame-
work for small modular reactors (Cetiner et al. 2014), and Boroushaki et al. proposed 
an intelligent reactor core controller for load-following operations using AI tech-
niques, i.e., a recurrent neural network (RNN) and fuzzy logic systems (Boroushaki 
et al. 2003). 

The purpose of this book is to introduce one of these efforts to build NPPs to 
become autonomous systems through the use of AI techniques. Although current 
nuclear plants are already highly automated to reduce human errors and guarantee 
the reliability of system operations, the term autonomous is, at the time of this writing, 
still not popular in the industry. However, the use of AI techniques and autonomous 
operation itself seem unavoidable considering the great advantages they can provide, 
in particular for advanced reactors and small modular reactors. Novel approaches 
with practical examples for autonomous NPPs that minimize operator intervention 
are covered in this work. 

This book comprises nine chapters. The next section in this chapter introduces a 
functional architecture of an autonomous operation system for NPPs. A framework 
is defined that consists of multiple levels and sub-functions necessary for automating 
operator tasks. The framework includes monitoring, autonomous control, human– 
autonomous system interfaces (HASIs), and the intelligent management of plant 
functions. Chapter 2 introduces various AI methods, focusing on the particular tech-
niques adopted in this book. Chapter 3 considers particular approaches to signal 
validation, which is a prerequisite for a successful autonomous operation system. 
Chapter 4 covers various AI-based techniques for the diagnosis of abnormal situa-
tions, including supervised and unsupervised learning approaches and AI methods. 
In Chap. 5, a couple of methods to predict plant behavior are presented, and in 
Chap. 6, AI applications for autonomous control using reinforcement learning (RL) 
are presented for both normal and emergency situations along with domain anal-
ysis methods. Chapter 7 introduces some techniques for monitoring whether the 
plant is in a stable state and whether the autonomous operation is managing the 
situations correctly. Chapter 8 focuses on the interaction between operators and
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autonomous systems; even though autonomous operation minimizes operator inter-
ventions, supervision and manual control by operators remain inevitable in NPPs 
for safety reasons. In addition, this chapter discusses how an autonomous opera-
tion system selects operational strategies relevant to the situation. Lastly, Chap. 9 
concludes this book. 

1.2 A Framework of Autonomous NPPs 

The functional architecture for an autonomous controller for space vehicles suggested 
by Antsaklis et al. (Antsaklis and Passino 1993; Antsaklis et al. 1991) can be consid-
ered relevant for NPPs. Figure 1.1 shows a functional framework consisting of three 
levels for an autonomous NPP, modified from that of Antsaklis. At the lowest level, 
referred to as the execution level, controllers and sensors are used to directly control 
and monitor the plant. This level provides automatic control, surveillance, and diag-
nostic functions for the NPP with the main function to generate control actions 
as dictated by the higher levels of the system. The execution level also senses the 
response of the NPP, processes it to identify the relevant parameters, estimates the 
plant state, and detects system failures, information which is then passed to the higher 
levels. Accordingly, it is necessary to validate the integrity of the signals from the 
NPP and detect any signal failures at this level. 

Fig. 1.1 Functional framework for an autonomous NPP
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The second level, called the coordination level, receives commands from the top 
level and generates a sequence of controls as well as an identification algorithm for the 
execution level. This level has accident management capability to deal with certain 
component or system failures, for example by detecting and identifying a failure 
and switching to an alternative control method, along with methods to maintain 
performance or a certain degree of safety during abnormal or emergency operations. 
The capability to predict plant behaviors and provide the information to the top level 
is also included in the coordination level. 

The top level or management level oversees and directs all of the activities at both 
the coordination and execution levels. It evaluates the current situation (i.e., performs 
monitoring) and predicts what can reasonably be expected within a certain time, as 
well as generates attainable goals to be accomplished by the autonomous system. 
The management level also provides for the interaction between the operators and 
the autonomous system. Through the HASI, operators may intervene in the plant 
operations by monitoring the status of the NPP and the autonomous system itself, 
taking over authority, and performing control actions as necessary. 

Brief explanations about the functions performed in the levels are as follows, 
starting with the execution level. 

Signal Validation 
Signal validation refers to monitoring the signals coming from the NPP through 
the instrumentation and control (I&C) system and detecting any signal failures. In 
principle, signals transmitted from the sensors to the operators must be valid and 
correct in order for the NPP to be operated safely and efficiently. Faulty signals 
and sensors have the potential to degrade the performances of control systems and 
operators, which may lead to undesirable situations that compromise NPP safety. 
When considering an autonomous system, the reliability of the signals becomes 
even more crucial because the signals are inputs to the system. If the signals are 
wrong, even a well-developed autonomous system cannot function correctly. 

The signal validation function receives signals from the I&C systems as inputs, 
which take various forms such as parametric values from sensors (e.g., temperature, 
pressure, flow rate), alarms (e.g., high-pressure alarm), the statuses of systems or 
components (e.g., pump operating state and valve position), and processed informa-
tion from computers (e.g., the trip signal and actuation signals from the plant protec-
tion system). With such inputs, the signal validation function continuously monitors 
the signals and validates whether they are normal under the current circumstances. 
If one is determined to be faulty or missing, this function can generate the expected 
(or normal) signal. Specific techniques regarding signal validation are covered in 
Chap. 3. 

Diagnosis 
In the event of an abnormal or emergency situation, the diagnosis function identifies 
the initiating event. This function receives the plant parameters, alarms, and system 
status information selected for diagnosis from the execution level and generates a 
diagnostic result along with the uncertainty of the result in real time. The result of the
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diagnosis about the initiating event is then used by the strategy selection function. 
Several approaches to diagnosis are introduced in Chap. 4. 

Prediction 
The prediction function forecasts the future states of the plant, systems, and 
components. This function includes the prediction of the following:

● plant parameters, such as pressure, temperature, and flow rate;
● system and component statuses, such as system actuation and component auto-

start/stop;
● system and component health, such as remaining useful life. 

In addition to predicting these primary factors, the prediction function has other 
utilities in autonomous operation. First, it can predict when an abnormal or emer-
gency situation may occur, which can be used to provide a pre-trip alarm so that 
operators can intervene before the situation actually occurs. Second, the prediction 
function can be employed by the control and strategy selection functions to choose 
among operational options. For instance, if several control options are available, the 
prediction function can evaluate the effectiveness of applying each option, thereby 
supporting the control function to choose the best one. Chapter 5 discusses methods 
for the prediction function. 

Control 
The control function facilitates the autonomous control of systems or components 
under the given operating condition, which includes normal, abnormal, and emer-
gency situations. This function receives validated NPP signals as inputs, and then 
based on the inputs, it generates control signals to achieve the desired state as provided 
by the strategy selection function. These control signals are transmitted to the corre-
sponding systems or components at the execution level. Approaches to the control 
function are presented in Chap. 6. 

Monitoring 
The monitoring function covers two aspects of autonomous NPP operation. First, it 
checks whether the plant is being successfully managed by the autonomous operation 
system. There are many operational constraints to be monitored in an NPP; for 
instance, under emergency operation, the critical safety function (CSF)s must be 
monitored to confirm that they are working correctly. In all operation modes, the 
limiting conditions for operation (LCOs) should be maintained to ensure the safety 
of the NPP. Second, the monitoring function keeps track of the health or functionality 
of the autonomous system itself. In other words, it checks whether the functions of 
the autonomous system are working correctly, and if any abnormality is detected, an 
alternative is chosen or operator intervention is requested. Chapter 7 presents some 
examples of related studies. 

Human–Autonomous System Interface 
The human–autonomous system interface or HASI provides the means of interaction 
between the operators and autonomous system. Similar to the main control room
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(MCR) of current commercial NPPs, the HASI includes alarms, information displays, 
and controllers for manual operation. In addition, the HASI conveys the monitoring 
information regarding the status of the NPP and the autonomous operations, e.g., the 
autonomous control activities. Alerts to request operator intervention and the means 
to transfer control authority between the operators and the autonomous system are 
also presented through this interface. The HASI is discussed further in Chap. 8. 

Strategy Selection 
The strategy selection function makes the decisions for the operation as the brain of 
the autonomous system. The main role of this function is to determine whether the 
operational strategy that is currently applied is adequate and to monitor whether all 
the functions of the autonomous systems are working normally. To perform decision-
making, the strategy selection function utilizes information from the other functions, 
namely signal validation, diagnosis, prediction, monitoring, and control. If the current 
strategy is evaluated as ineffective, this function generates a new strategy as an output, 
which can be an alternative autonomous operation mode (or algorithm) or a request 
for operator intervention if there is no applicable autonomous operation mode. In 
addition to discussing the HASI, Chap. 8 also provides an example of the strategy 
selection function. 
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Chapter 2 
Artificial Intelligence and Methods 

2.1 Definitions of AI, Machine Learning, and Deep 
Learning 

2.1.1 AI 

AI is a broad classification that includes all artificially implemented intelligence. 
While artificially implemented intelligence may or may not engage in learning, all 
types of AI that mimic human behavior are generally classified as AI. Research into 
AI has been actively conducted since the mid-1900s. 

Algorithms included in the AI classification range from spam filters with a simple 
structure and explicit condition provided that checks a specific string and classifies it 
as spam to current complicated AI models. Algorithms that are AI but not included 
in machine learning (ML) include algorithms with explicit conditions. 

2.1.2 ML 

ML is an AI methodology in which the artificially implemented intelligence can learn 
from previous experience. Algorithms belonging to this category can set and update 
their criteria through learning even if there are no explicit conditions. Representative 
methodologies that are ML but not deep learning (DL) include regression analysis, 
Bayes classifiers, K-means clustering, support vector machine (SVM)s, and single-
layer artificial neural networks.
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2.1.3 DL 

DL is a specific AI category that includes artificial neural networks with multiple 
layers. Multiple single-layer perceptrons can configure deep neural network (DNN) 
structures. While research on single-layer perceptrons has been widely conducted 
since the mid-1900s, expansion to DL research was difficult due to the problems 
such as data quantity, quality, and operation speed. Figure 2.1 illustrates the relation 
among AI, ML, and DL. 

Artificial Intelligence 
Any technique which enables computers to mimic human behavior 

Machine Learning 
Any techniques that give computers the ability to learn 
without explicit set of rules 

Deep Learning 

1950s 1960s 1970s 1980s 1990s 2000s 2010s 

AI techniques that 
are composed of 
multiple neural 
network layers 

Fig. 2.1 AI, ML, and DL 

2.2 Classification of ML Methods Based on Learning Type 

ML methodologies are largely divided into supervised learning, unsupervised 
learning, and reinforcement learning according to the dataset used for training and 
the learning method of the algorithm; see Fig. 2.2. In this chapter, we discuss appli-
cations of each learning method, and specifically, what problems they can help solve 
in the nuclear field. In this chapter, the input data are expressed as vector X and the 
output data are expressed as vector Y, as in Eq. (2.1).

Input data X = 

⎡ 

⎢⎣ 
x11 · · ·  x1n 
... 

. . . 
... 

xn1 · · ·  xnn 

⎤ 

⎥⎦
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Fig. 2.2 ML methods based 
on learning type 

Supervised 

Unsupervised 

Learning 

Reinforcement 

• Labeled data
● Direct feedback
● Predict outcome

● No labels
● No feedback
● Find hidden structure

● Decision process
● Reward system
● Learn series of actions 

Output data Y = 

⎡ 

⎢⎣ 
y1 
... 
y2 

⎤ 

⎥⎦ (2.1)

2.2.1 Supervised Learning 

Supervised learning is a learning method that can be applied to datasets with pre-
assigned input–output pairs. In general, supervised learning applications assume the 
following structure: a pair of vectors X corresponding to the input, and vector Y 
corresponding to the output, where the algorithm learns to estimate Y by receiving 
X. In this case, the algorithm is guided by actual data for Y; it is this characteristic 
that led to the name “supervised learning”. The learning criterion is based on the 
difference between the actual Y and the estimated Y vectors using the algorithm, 
Eq. (2.2). 

Error function = f (Yreal − Yestimate) (2.2) 

Suitable fields for applying supervised learning include classification problems, 
where Y is classified based on the characteristics of X, and regression problems, 
where Y is inferred based on the history from X.
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2.2.2 Unsupervised Learning 

Unlike supervised learning, unsupervised learning utilizes a dataset that does not 
include the output in the dataset configuration. In this case, the algorithm is unguided 
because there no explicit correct answer is provided. Instead, the algorithm mainly 
identifies the similarities between the X vectors received as inputs or the relatively 
important properties of the X vectors with various characteristics. 

Suitable fields for applying unsupervised learning include clustering, feature 
extraction for the identification and compression of data properties, and dimension-
ality reduction. 

2.2.3 Reinforcement Learning (RL) 

Unlike supervised and unsupervised learning schemes, RL involves an agent and 
an environment. The agent is an entity that operates based on a specific algorithm, 
and the environment refers to the situation the agent is in. In a fixed space, the 
agent’s behavior affects the environment. Thus, the scores of actions by the agent are 
differentiated according to how the environment changes by the behavior. For RL, 
the agent, actions of the agent, reward, environment, and state of the environment 
should all be defined. 

A suitable field for applying RL is strategy finding. 

2.3 Overview of Artificial Neural Networks (ANNs) 

2.3.1 History of ANNs 

Figure 2.3 shows of a general timeline of ANN research. In 1943, a mathematical 
model of an ANN was proposed by McCulloch and Pitts (McCulloch and Pitts 1943). 
Based on this, Rosenblatt proposed a single layer perceptron structure in 1957, which 
received high academic praise for its characteristic of mimicking the operation of 
the human nervous system (Rosenblatt 1957). However, the single layer perceptron 
framework, limited to constructing a linear boundary, could not be applied to the 
XOR problem requiring nonlinear boundaries. Minsky and Papert later revealed that 
multilayer perceptrons are difficult to apply owing to the inefficiency of learning 
(Minsky and Papert 1969), which initiated a period of stagnation in ANN research. 
But in 1975, Werbos proposed a backpropagation algorithm that can efficiently 
train multilayer neural networks (Werbos 1974). Based on his research, a seminal 
study applying the backpropagation algorithm to ANN learning was conducted by 
Rumelhart (Rumelhart et al. 1986a).
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Fig. 2.3 History of ANN development 

Since then, through steady research, various techniques and algorithms to improve 
the learning capabilities of neural networks have been developed, such as dropout, 
initialization, optimization, and others. Moreover, computing power has significantly 
improved, as evidenced by a computer program winning a Go match over a world 
champion in 2016, a feat long considered highly difficult for machines. 

2.3.2 Overview of ANNs 

2.3.2.1 Basic Calculations of ANNs 

The general structure of an artificial neuron is illustrated in Fig. 2.4. After receiving 
an input, the neuron framework multiplies the received input by a preset weight 
and passes it to the transfer function. The transfer function performs a predefined 
operation and delivers the result to the activation function. Finally, the activation 
function outputs the result corresponding to the input. For input data X and output 
data Y, the calculation result of an ANN is as follows:

The mathematical expression of the calculation process in an artificial neuron is 
written as in Eqs. (2.3) and (2.5). 

v(network input) = x1w1 + x2w2 +  · · ·  +  xiwi + x0w0 (2.3) 

yestimate(output of neuron) = f (v) 
W here, f is an activation function (2.4) 

Finally, the generated error (E) can be defined as below.
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Fig. 2.4 ANN architecture

f 

E = g(y − yestimate) 
where, g is a loss function (2.5) 

Learning of ANNs is accomplished by adjusting the weights of the neurons based 
on errors. The learning process of an artificial neuron based on the calculation results 
is defined as in Eq. (2.6). 

wupdated ,i = wi − α∇wiE 

W here, α  is a learning rate (2.6) 

Weights are updated based on the contribution of a corresponding weight to 
the overall error. In the next section, the design of an actual ANN following this 
calculation process is described. 

2.3.2.2 How to Construct an ANN? 

ANNs are designed according to the learning method of the specific network. In other 
words, Eq. (2.6) defines the basic ANN design process. The first step in constructing 
Eq. (2.6) is to define an error function, which requires a value for yestimate according 
to Eq. (2.5). To define yestimate, it is necessary to define the activation function. As 
shown in Table 2.1, various functions can be used as the activation function. More 
specifically, any function that can simulate a neuron’s threshold can be used as the 
activation function.

To reiterate, after calculating yestimate via the defined activation function, the error 
function can be defined. This function can take various forms as well; that is, any error 
function suitable for the problem at hand can be chosen. For a regression problem, 
suitable error functions include mean squared error (MSE), mean squared logarithmic 
error (MSLE), and mean absolute error (MAE). For performing binary classification
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Table 2.1 Activation functions 

Activation function Equation Graph 

Unit step f (z) =
(
0, z < 0 
1, z ≥ 0 

3 4

-1

-0.5 

0.5 

1

-4 -3 -2 -1 1 2  

Signum f (z) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

−1, z < 0 
0, z = 0 
1, z > 0 

3 4

-1

-0.5 

0.5 

1

-4 -3 -2 -1 1 2  

Linear f (z) = z 

3 4

-1

-0.5 

0.5 

1

-4 -3 -2 -1 1 2 

Sigmoid f (z) = 1 
1+e−z 

3 4

-1

-0.5 

0.5 

1

-4 -3 -2 -1 1 2  

Hyperbolic tangent f (z) = ez−e−z 

ez+e−z 

3 4

-1

-0.5 

0.5 

1

-4 -3 -2 -1 1 2 

ReLU (Rectified Linear Unit) f (z) = max(0, z)

-4 -3 -2 -1 1 2 3 4

-1

-0.5 

0.5 

1
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Table 2.2 Error functions 

Regression 

MSE 1 
n

Σn 
i=1

(
yi − yi,estimated

)2 

MSLE 1 
n

Σn 
i=1

(
log(yi + 1)− 

log
(
yi,estimated + 1

)
)2 

MAE 1 
n

Σn 
i=1

||yi − yi,estimated
||

Classification 

Binary cross entropy loss − 1 
n

Σn 
i=1

(
yi ∗ log

(
yi,estimated

)+ 
(1 − yi) ∗ log

(
1 − yi,estimated

)
)

Categorical cross entropy loss − Σn 
i=1 yi ∗ log

(
yi,estimated

)

Kullback–Leibler divergence loss − Σn 
i=1 yi ∗ log

(
yi,estimated 

yi

)

problems, an appropriate error function is binary cross-entropy loss. Error func-
tions suitable for multi-class classification include categorical cross-entropy loss 
and Kullback–Leibler divergence loss (Table 2.2). 

After determining the appropriate activation and error functions, it is necessary to 
set up a gradient descent optimization algorithm that determines the update method 
for the weights according to the error. Equation (2.6) expresses a stochastic gradient 
descent algorithm, one type of gradient descent optimization algorithm. The update 
rule of the stochastic gradient descent algorithm is intuitive. However, it converges 
more slowly than other gradient descent optimization algorithms (which will be 
described later) and may converge to a local minimum. Therefore, various gradient 
descent optimization algorithms have been developed to secure fast convergence to 
global minima. Three such algorithms are described as follows. 

Momentum (Qian 1999) 
The momentum algorithm is a method of providing inertia when weights are updated 
through gradient descent. The final update value is calculated by reflecting not only 
the current gradient value but also the direction it moved in the past. The momentum 
algorithm is expressed as follows. 

vupdated = γ v  + α∇wi E 

wi,updated = wi − vupdated 
W here, α  is a learning rate 
γ is a momentum rate (2.7) 

In Eq. (2.7), v is the exponential average of the previous gradients. Therefore, by 
reflecting the movement direction of the previous gradient in the current update, the
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momentum algorithm is relatively free from oscillations compared with the stochastic 
gradient descent method. 

Adaptive Gradient (Adagrad) (Duchi et al. 2011) 
The Adagrad algorithm is a method of updating rarely changed variables with a 
large step size and frequently changed variables with a small step size, for the 
following reasons. As frequently updated variables are more likely to be located 
near the optimum value, the weights are updated with a small step size to determine 
the optimum value. Variables that are rarely updated are likely to be far from the 
optimum, and thus a large step size is applied. The Adagrad algorithm is defined as 
below. 

Gupdated = G + (∇wiE
)2 

wi,updated = wi − η /
Gupdated + ε

∗ ∇wiE 

W here, η  is step size
ε is a constant t (2.8) 

Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015) 
The Adam algorithm possesses the characteristics of both the Adagrad and 
momentum algorithms. Here, the exponential average of the slope and the exponen-
tial average of the square of the slope are used simultaneously. The Adam algorithm 
is defined as follows. 

mupdated = β1m + (1 − β1)∇wiE 

vupdated = β2v + (1 − β2)
(∇wiE

)2 

wi,updated = wi − η √
vupdated + ε

∗ mupdated (2.9) 

In sum, a basic artificial neuron can be created by defining a threshold function, 
defining a loss function according to the problem, and selecting an appropriate opti-
mization algorithm. Through the aforementioned sequences, the ANN updates the 
weights of the neurons in a series of processes called error backpropagation. The 
operation of repeatedly correcting the weights of a neural network until an optimum 
value is obtained is called training. In general, training, test, and validation datasets 
are separated to evaluate the fitness of the model. 

In the next section, various ANN structures are explained.
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2.4 ANN Algorithms 

An ANN model can be configured in various forms depending on the data prepro-
cessing method, the computational process of the ANN, and the arrangement of the 
ANN. Among numerous models, this section briefly describes the ANN algorithms 
that will be discussed later in detail. 

2.4.1 Convolutional Neural Networks (CNNs) 

The first study on modern convolutional neural networks (CNNs) was conducted 
by LeCun (LeCun et al. 1998). This work suggested a general structure of a CNN 
and successfully implemented the algorithm for handwritten character recognition. 
More recently, Krizhevsky et al. suggested a CNN-based image classification model, 
called AlexNet (Krizhevsky et al. 2017), that demonstrated state-of-the-art results in 
image recognition. 

A deep CNN has a feature that reflects the Euclidean characteristics of the input 
data by attaching a convolution layer that performs a preprocessing function before 
the multilayer neural network. The only difference between CNNs and conventional 
ANNs is the convolution layer. What the convolution layer does and how it works 
can be understood as follows. 

In general, for image data, the left and right pixels are important. However, the 
properties of the adjacent pixels are important as well. To reflect the properties of 
the adjacent data, the convolution layer performs a convolution operation between 
the input data and a filter. Through this, the data is compressed, including infor-
mation regarding the adjacent data. The following example demonstrates how the 
convolution layer functions. 

Input data typically take the form of two-dimensional (2D) data (3 × 3 matrices). 
The filter is also a 2D matrix (2 × 2 matrix), as below. 

X = 

⎡ 

⎣ 
1 2 1  
0 1  2  
3 2 1  

⎤ 

⎦, filter =
[
1 2  
2 1

]
(2.10) 

The filter performs a convolution operation on the input data. 

(2.10 Description 1) 

From the convolution operation between the data

[
1 2  
0 1

]
and filter

[
1 2  
2 1

]
, a result 

of 6 is calculated. Repeating this process, the calculation result from the convolution
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Fig. 2.5 Schematic diagram of a CNN 

layer can be stated as follows: 

ouput from convolution layer =
[
6 8  
10 10

]

output from flattening layer = 

⎡ 

⎢⎢⎣ 

6 
8 
10 
10 

⎤ 

⎥⎥⎦ (2.11) 

The existing 3  × 3 data are compressed into 2 × 2 data using adjacent information. 
Subsequently, the result of the convolution operation is flattened through a flattening 
layer, the result of which is input to the ANN; see Fig. 2.5. 

2.4.2 Recurrent Neural Networks (RNNs), Long Short-Term 
Memory Networks (LSTMs), and Gated Recurrent 
Units (GRUs) 

While a CNN performs an operation that reflects the spatial characteristics of the 
data, RNNs, long short-term memory networks (LSTMs), and gated recurrent units 
(GRUs) all perform operations that reflect the temporal characteristics of the data. The 
basic idea behind the RNN was suggested by Rumelhart (Rumelhart et al. 1986b). The 
basic structure of both LSTMs and GRUs is the same as that of an RNN; however, 
they are optimized models with improved calculation methods in the neurons to 
solve problems specific to RNNs. In this section, the basic structure of an RNN and 
the problems that occur in the structure are discussed. Then a method to solve the 
problems that occur in LSTMs and GRUs is provided.
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2.4.2.1 RNNs 

An RNN, which is the most basic model that reflects data’s temporal characteristics, 
sends not only the calculation results obtained in a neuron to the output layer but also 
to the input of the next neuron. This structure enables the i + 1-th neuron to consider 
not only the data from xi+1 but also the data from xi indirectly by using the output 
of the i-th neuron. The output from the i-th neuron contains information from x0 to 
xi directly or indirectly. In other words, through the RNN structure, the influence of 
the data from the previous time instance can be considered in the next layer. 

However, RNNs have a critical problem, called the vanishing gradient problem. 
In Fig. 2.6, we assume that error E2 is calculated. The backpropagation result for 
each hidden layer can be written as follows. 

∂E2 

∂H2 
= 

∂E2 

∂H2 

∂E2 

∂H1 
= 

∂E2 

∂H2 

∂H2 

∂H1 

∂E2 

∂H0 
= 

∂E2 

∂H2 

∂H2 

∂H1 

∂H1 

∂H0 
(2.12) 

Backpropagation from the last to the first neuron inevitably results in multiple 
multiplication operations. In general, the gradient value of the hidden layer is less than 
1, and therefore, the error is diluted as the information is transmitted during repeated 
multiplication operations. Consequently, while adjacent neurons are trained properly, 
neurons far from the result are trained improperly, resulting in the vanishing gradient 
problem. In other words, the algorithm can tackle short-term memory problems 
with the information of the nearby neurons but is vulnerable to problems requiring 
long-term memory.

Fig. 2.6 Schematic diagram 
of an RNN 
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2.4.2.2 LSTMs 

First suggested by Hochreiter and Schmidhuber (1997), the basic structure of an 
LSTM is the same as that of an RNN. The LSTM likewise sends the calculation 
results obtained in the neuron to the output layer as well as to the input layer of the 
next neuron. However, LSTMs differ from RNNs in that they utilize an LSTM cell 
instead of a simple neuron. The LSTM cell consists of a forget gate, input gate, and 
output gate. As shown in Fig. 2.7, the cell state passed by the LSTM cell to the next 
cell can be expressed as follows. 

ct = ft ∗ ct−1 + it ∗ ct
Λ

(2.13) 

The partial derivation of ct over ct−1 can be written as below. 

∂ct 
∂ct−1 

= 
∂ft 

∂ct−1 
∗ ct−1 + ft + 

∂it 
∂ct−1 

∗ ct
Λ + 

∂ct
Λ

∂ct−1 
∗ it (2.14) 

It should be observed that the gradient between the cell states is not composed of 
multiplication operations only. Accordingly, it is possible to prevent the vanishing 
gradient problem thanks to the addition operation in the error backpropagation 
process. As a result, both short-term and long-term memory tasks can be tackled 
relatively well compared to naïve RNNs.

Fig. 2.7 Schematic diagram of an LSTM cell 
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Fig. 2.8 Schematic diagram of a GRU 

2.4.2.3 GRUs 

The GRU structure was first suggested by Cho et al. (2014). Figure 2.8 represents 
a GRU structure. GRUs operate in a similar manner as LSTMs, but unlike LSTMs, 
GRUs only have two gates. In an LSTM, the forget and input gates operate inde-
pendently, while in a GRU model, the total amount of information is fixed and the 
input is forgotten as soon as it is processed. This leads to improved operation speed 
compared with that of an LSTM because GRUs can operate with fewer parameters. 

The output of a GRU and the partial derivation of ht over ht−1 can be expressed 
as follows. 

ht = zt ∗ ht−1 + (1 − zt) ∗ ht
Λ

(2.15) 

∂ht 
∂ht−1 

= 
∂zt 

∂ht−1 
∗ ht−1 + zt + 

∂(1 − zt) 
∂ht−1 

∗ ht
Λ

+ 
∂ht
Λ

∂ct−1 
∗ (1 − zt) (2.16) 

Again, it can be observed that the gradient between the hidden layers is not 
composed of only multiplication operations, and therefore, GRUs can also avoid the 
vanishing gradient problem. 

2.4.3 Variational Autoencoders (VAEs) 

The VAE structure was first suggested by (Kingma and Welling (2013), which is 
based on a autoencoder (AE) structure. The VAE is a generative model that consists 
of two paired ANNs to learn the data-generation process. For example, suppose we 
need to create a distribution that is as similar as possible to a given distribution, 
using the distribution of math scores in a class as an input. If the math scores follow 
a normal distribution, their distribution can be replicated using the mean and standard
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Fig. 2.9 Schematic diagram 
of a VAE 

deviation of the math score distribution. In other words, the distribution of the math 
scores can be compressed into two variables: mean and standard deviation. Data that 
follow a normal distribution can be encoded statistically following this process; but 
in general, it is difficult to understand the distribution of the data. A model that both 
encodes and decodes based on ANNs is called a VAE. 

In Fig. 2.9, the ANN corresponding to the front part acts as an encoder, while the 
ANN corresponding to the rear part acts as a decoder. The encoder neural network 
receives input data x and creates a latent vector z. The encoder extracts the potential 
features from the data and compresses them. Conversely, the decoder neural network 
receiving the latent vector z imitates the input data of the encoder, x, as similarly as 
possible. 

The performance of a VAE depends on the performance of the decoder neural 
network. Therefore, in designing the decoder neural network loss function, the output 
of the network should be similar to the existing data x [maximize pθ (x)]. This can 
be expressed as follows. 

pθ (x) =
{

pθ (z)pθ (x|z)dz (2.17) 

Maximizing Eq. (2.17) should be learned by the network, but it is basically impos-
sible to calculate for the latent vector z as there can be countless cases. To solve this 
problem, a variational inference technique is used. By defining an additional encoder 
network qφ(z|x) that tracks pθ (x|z), the equation can be rewritten as follows with the 
evidence lower bound. 

pθ (x) ≥ L
(
xi , θ, φ

) = Ez
[
log

(
pθ

(
xi|z))] − DKL(qφ

(
z|xi)||pθ (z)) (2.18) 

Changing Eqs. (2.17)–(2.18) has two advantages. The Kullback–Leibler diver-
gence between the distributions can be calculated easily, and thus the meaning of
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loss becomes clear. The first term on the right-hand side of Eq. (2.18) corresponds to 
the reconstruction loss. As mentioned above, the encoder takes data x and creates a 
latent vector z, while the decoder receives the latent vector z created by the encoder 
and restores the original data x; the first term on the right side of the above expres-
sion indicates the cross-entropy between the two. The second term on the right-hand 
side of Eq. (2.18) corresponds to the Kullback–Leibler divergence regularizer. In 
other words, z sampled from the posterior is as diverse as possible (to prevent mode 
collapse), while simultaneously, the amount of information in the posterior and the 
prior should be similar. 

2.4.4 Graph Neural Networks (GNNs) 

The basic structure of the modern GNN model was first suggested by Gori (Gori 
et al. 2005) and then later refined by Scarselli (Scarselli et al. 2008). Figure 2.10 
shows a schematic diagram of a GNN. 

While a CNN is a network that has been preprocessed to reflect the spatial char-
acteristics of the input data (Euclidean space), a GNN is a network model that has 
been preprocessed to reflect the characteristics of non-Euclidean space data. For 
photo-type data, adjacent data are very important, but for graph-type data such as 
social networks, the existence of relationships among the data is more important than 
physical distance. 

In a GNN, graph information to be provided to the input layer can be extracted 
using a graph Laplacian. The graph Laplacian operation is defined as follows.

∇2 f =
Σ
vj∼vi

[
f (vi) − f

(
vj

)]

Fig. 2.10 Schematic diagram of a GNN 



2.4 ANN Algorithms 25

Fig. 2.11 Example of a graph Laplacian 

W here, i and j are nodes (2.19)

Figure 2.11 shows the result of taking a graph Laplacian on an example graph 
structure 

In the adjacency matrix, only the connection relationship between each node is 
expressed. However, as a result of transforming into a Laplacian matrix, the number 
of edges exiting from each node is expressed by checking the diagonal element 
as well as the connection relationship between nodes. In addition, when the graph 
Laplacian is performed, the matrix becomes diagonalizable, as in Eq. (2.20). 

L = D − A = D− 1 
2 LD− 1 

2 = UΛU T (2.20) 

The diagonalized matrix U contains the results of the graph information. If matrix 
U is reflected in the neuron operation in the form of Eq. (2.21), then the neuron 
operation reflecting the graph information can be performed. 

H k (Output from k − th hidden layer) = σ

(
fk−1Σ
i=1 

UW  k i,jU 
T H k−1 

:,i

)

W here, W is  weight 

σ is the activation function (2.21) 

2.4.5 Generative Adversarial Networks (GANs) 

The basic structure of the GAN model was first suggested by Goodfellow (Good-
fellow et al. 2020). Figure 2.12 represents a schematic diagram of a GAN. A GAN, 
similar to a VAE, is a structure that combines two ANNs. In this case, the two parts 
are a generator network and a discriminator network. The generator network is a 
model that generates data similar to the received data, following a similar mecha-
nism as that of the VAE model. The discriminator network receives the generated
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data as an input and tries to distinguish whether the received data are simulated by the 
generator network or actual real-world data. If the discriminator well distinguishes 
between the data simulated by the generator and actual data, the generator network 
receives a large loss and the discriminator receives a small loss; in this way, the two 
networks simultaneously learn in an adversarial manner. When the generator well 
simulates the real data, the discriminator network reaches a state of random guessing 
where it can no longer provide the correct answer. Learning is stopped at this point 
and the generator network is removed, as a generator that effectively simulates real 
data has been achieved. Owing to this operation, the loss function of a GAN can be 
described in two ways, as shown in Eq. (2.22). 

Generator loss = min 
G 

L(D, G) 

= Ex∼pdata(x)
[
log(D(x))

] + Ez∼pz(z)(log(1 − D(G(Z)))) 
Discriminator loss = max 

D 
L(D, G) 

= Ex∼pdata(x)
[
log(D(x))

] + Ez∼pz(z)(log(1 − D(G(Z)))) 
where, D is a discriminator network 

G is a generator network 

x ∼ pdata(x) is a distribution of the real data 
z ∼ pz(z)is a distribution from the latent vector (2.22) 

If the generator network perfectly imitates real data, the discriminator judges it 
to be real data with a high probability, and D(G(Z)) converges to 1. In this case, the 
generator network has a very small loss by the last term in Eq. (2.22).

Fig. 2.12 Schematic diagram of a GAN 
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2.5 Model-Based and Data-Based Approaches 

Detection and diagnosis problems can be solved using two different approaches, 
namely model-based and data-based methods. Both can be classified as quantitative 
or qualitative (Alzghoul et al. 2014), and thus these approaches can be arranged into 
analytical methods (quantitative model-based methods), knowledge-based methods 
(qualitative model-based and data-based methods), and data-driven methods (quan-
titative data-based methods). In this book, for convenience of understanding, quan-
titative model-based methods are called model-based methods, and quantitative 
data-based methods are referred to as data-driven methods. 

A model-based approach uses explicit rules (e.g., a mathematical model of the 
system), and therefore a deep understanding of the system is required. As a result of 
using explicit rules, fast and accurate inference and extrapolation are possible. The 
drawback, though, is that designing explicit rules requires a huge amount of time 
and expense. Moreover, it is difficult to model multi-dimensional systems. 

A data-driven approach uses data to derive decisions. The data-driven methods 
do not require rules, and thus a deep understanding of the system is not required. 
As a result of using data, time and cost can be saved in understanding the target 
system. Also, multi-dimensional complex systems can be analyzed through the use 
of data. Consequently, the success of a data-driven method is highly dependent on 
the quantity and quality of the data. 

For example, suppose that an agent that distinguishes between a cat and a human 
is separately designed using a model-based method and a data-driven method. To 
design the agent following a model-based method, first, explicit rules should be 
defined. We can simply define such a rule as follows: a thing that walks on four 
legs is a cat and a thing that walks on two legs is a human. To design the agent 
following a data-driven method, plenty of human and cat pictures should be provided. 
With such agents, potential issues may arise as follows. For the agent following the 
model-based methodology, a problem in diagnosing a cat may be encountered when 
a person is drunk and crawls on all fours. And although the data-driven method-
ology may distinguish between humans and cats well, it may not be clear why the 
particular distinctions are made. Therefore, hybrid approaches are often developed 
to compensate for the shortcomings of each approach. 
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Chapter 3 
Signal Validation 

In an NPP, there are more than 10,000 sensors installed to measure all the various 
plant parameters. Clearly, valid and precise signals from sensors are a prerequisite for 
both the safety and the efficient operation of the plant. In the case of faulty sensors and 
signals, the performance of the operators and control systems may be degraded. This 
may lead to an undesirable situation that compromises NPP safety as learned from 
the Three Mile Island (TMI) and Fukushima Daiichi NPP accidents, operator error 
resulting from incorrect signals represents one of the main contributors to historical 
severe accidents. During the TMI accident, due to wrong indications, the operating 
staff did not build up a correct situational awareness about the plant status. 

The validity of plant signals is even more important for the successful opera-
tion of autonomous systems. As alluded to above, the performance of various plant 
functions largely relies on the correctness and reliability of the related signals. In an 
autonomous NPP, signals from sensors are used as inputs to the functions that are 
implemented with AI techniques. Wrong inputs therefore increase the probability 
that the autonomous system generates wrong outputs. 

Typical failure modes of sensors in NPPs can be categorized into bias, drift, and 
stuck failures, as illustrated in Fig. 3.1. Among them, bias is a signal failure in which 
constant values are added to or subtracted from the normal and intact signals, while 
a drift failure is a time-correlated permanent offset failure. A stuck failure is, as its 
name implies, an incorrect constant value. Typical stuck failures in NPPs include 
“stuck at the highest value” (stuck-high), “stuck at the lowest value” (stuck-low), or 
“stuck at the current value at the time of failure” (stuck-as-is).

Based on the essential nature of plant signals, there has been wide research into 
methods for signal validation and signal reconstruction. Approaches to signal vali-
dation can be classified into model-based and data-driven approaches (see Sect. 2.5). 
The model-based approaches (Gertler 1997), which were typically applied in earlier 
studies, start from an understanding of the physical mechanisms within the given 
system and their accurate modeling. Accordingly, some applications may require a 
large number of models to represent all possible failures, which could result in high 
computational costs. Moreover, while a higher-order parity space yields improved
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(a) Normal (b) Bias failure 

(c) Drift failure (d) Stuck failure 

Fig. 3.1 Three typical types of sensor failures in NPPs. Reproduced with permission from Choi 
et al. (2021)

performance, it also leads to higher computational costs (Hwang et al. 2009). In 
contrast, data-driven approaches (Fantoni and Mazzola 1996; Choi and Lee 2020; 
Xu et al. 1999; Hines et al. 1998; Kim et al. 2019b; Di Maio et al.  2013; Yoo et al. 
2006; Li et al.  2018; Kaistha and Upadhyaya 2001; Baraldi et al. 2010; Albazzaz and 
Wang 2004; Zavaljevski and Gross 2000; Zio and Di Maio 2010) use empirical oper-
ational data without references to accurate model representations (Li et al. 2018). In 
this way, data-driven approaches appear to be better suited to complex and nonlinear 
systems such as NPPs considering the difficulties associated with developing accurate 
physical models of all the myriad mechanisms. 

The recently increasing availability of large signal-measurement datasets provides 
a key advantage in the application of data-driven approaches to reconstruct signals 
(Zúñiga et al. 2020). Typical examples of data-driven approaches include ANNs 
(Fantoni and Mazzola 1996; Xu et al.  1999; Hines et al. 1998; Kim et al. 2019a), auto-
associative kernel regression (Di Maio et al. 2013), principal component analysis 
(PCA) (Yoo et al. 2006; Li et al.  2018; Kaistha and Upadhyaya 2001; Baraldi et al. 
2010), independent component analysis (Albazzaz and Wang 2004), the multivariate 
state estimation technique (Zavaljevski and Gross 2000), SVMs (Zavaljevski and 
Gross 2000), and fuzzy similarity (Zio and Di Maio 2010). 

In contrast to the above works, relatively few studies on signal reconstruction have 
been conducted to date in the nuclear field. Lin and Wu (2019) applied the multivariate 
autoregressive method, which is a model-based approach, to the reconstruction of 
signals in the case of bias and drift failures. Otherwise, a few studies employing data-
driven approaches have been reported: the denoised auto-associative sensor model



3.1 Sensor Fault Detection Through Supervised Learning 31

(Shaheryar et al. 2016), iterative PCA (Li et al. 2018), and CNNs (Lin et al. 2021; 
Yang et al. 2022). 

This chapter introduces three approaches, namely two for signal validation and 
one for signal reconstruction. Section 3.1 presents a method to detect sensor faults 
using an LSTM, which is a supervised learning method. Section 3.2 describes a signal 
validation approach using an unsupervised learning method, and Sect. 3.3 introduces 
a GAN-based signal reconstruction method. 

3.1 Sensor Fault Detection Through Supervised Learning 

State awareness in complex systems like aircraft systems, oil and gas facilities, and 
NPPs derives from a multitude of sensors installed across numerous locations. In 
terms of maintaining the safety and stability of NPP operation, I&C systems are 
installed that collect the plant parameters from the sensors and process the data. 
In a nuclear accident in particular, all parameters are expected to undergo complex 
changes with potentially dramatically different features from normal operation. Oper-
ators in the MCR depend on the displayed sensor values to provide reasoning for 
their mitigation actions. Thus, the integrity of the sensor data is a critical factor to 
the safety of NPP systems, in which case information about the conditions of the 
sensors is a valuable feature for proper accident responses. 

Since a 1995 US Nuclear Regulatory Commission (NRC) report concluded that 
online monitoring (OLM) techniques are able to monitor field sensors and signals 
(Hines 2009), OLM techniques have been designed and developed to monitor the 
performance of instrument channels so as to extend the calibration intervals required 
by technical specifications. Instrument conditions are tracked by OLM via the appli-
cation of both hardware redundancy and analytical redundancy approaches. Applica-
tions of developed OLM techniques are mainly seen in several data-driven approaches 
(Simani et al. 1999; Fantoni et al. 2004; Zavaljevski and Gross 2000). However, 
previous data-driven methods only considered the steady-state condition with small 
uncertainty in the calibration of the target sensors. The general process involved 
reconstructing sensor signals and performing a residual analysis that compared the 
estimated signals to measured parameters (Baraldi et al. 2015). 

The previous data-driven methods for sensor state monitoring mostly adopted 
unsupervised learning-based methods to reconstruct the input signal data, after which 
the sensor state was determined based on residual analysis as mentioned above. Unsu-
pervised learning is advantageous in terms of its versatility; however, in this case the 
parameter optimization process is a key factor because the trained model should 
express the relations between the sensor values across diverse situations. Therefore, 
to monitor the sensor state in an emergency situation, a supervised learning-based 
sensor fault monitoring model is introduced in this chapter. The application of typical 
unsupervised learning-based methods showed insufficient monitoring performance 
when handling the nonlinear changes of NPP accident data. To overcome this limi-
tation, supervised learning was applied with suggested data labels. With the higher
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performance of supervised learning structures, the sensor fault monitoring model 
can generate labels that indicate the sensor state. 

3.1.1 Sensor Fault Detection System Framework 
with Supervised Learning 

Conventional methods that reconstruct sensor signals and calculate the residuals from 
the measurements provide advantages in both error detection and sensor value esti-
mation under normal operating conditions. But as mentioned above, such methods 
are not suitable for NPP emergency situations because a reactor trip and subsequent 
actuation of safety systems result in highly unstable plant parameters, which presents 
an issue as the previously applied data-driven models including several kernel-based 
approaches cannot handle nonlinear parameter changes. In this context, the research 
aim became to construct a framework for detecting faulty sensors during NPP emer-
gency situations. Applying a neural network, the model monitors for sensor error 
during the rapid changes of all plant parameters following a reactor trip by consid-
ering multivariate inputs, or in other words, a large number of sensor conditions. 
Model training is conducted with numerous time-series data that include the uncer-
tain and complex variables involved in the early phases following a reactor trip. This 
way, the sensor error detection model is able to monitor the soundness of the target 
sensors, which it expresses with a consistency index of the sensors (see Sect. 3.1.1.1). 
While the system does not estimate the plant parameters, it directly displays the 
current state of the sensors during an emergency situation. In other words, the model 
output mainly focuses on detecting any deviation of the measured sensor values from 
the real values. 

An overview of the data processing flow for the neural network model training 
involved in the developed system is shown in Fig. 3.2. Raw data matrices from a 
compact nuclear simulator (CNS) are first processed by injecting errors, and then the 
consistency index is labeled on every time-series sensor parameter. These labeled 
data are then used to train the ML model, which in this case is an LSTM. Following 
training, the model generates consistency values for every sensor in the test data. 
Considering all the dynamic features of NPPs, developing a sensor fault monitoring 
technique for accident sequences represents a challenge when compared to other 
steady states. Relations between various sensor parameters are difficult to clarify as 
all input parameters are differently influenced by the reactor trip. To monitor sensor 
states in such an unstable situation, the developed model requires sufficiently high 
pattern recognition performance to produce case-specific signal validations.

As mentioned in Sects. 2.3 and 2.4, RNNs feature special structural connections 
between nodes, where each node has memory to process inputs from the present 
state as well as from connected nodes. This structure enables the system to consider 
the temporal context of data (Boden 2002). Among the various ANNs, for tasks
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Fig. 3.2 Overview of the data processing for neural network model training

involving time-series data, LSTMs have been preferred for their ability to solve the 
vanishing gradient problem from the long-term dependencies of the data. 

Prior to the selection of this model, a pilot study was conducted in which a deep 
multilayer perceptron model and a CNN model were tested. Both network models 
demonstrated poor performance in the present analysis as compared with the LSTM. 
Similarly, in a previous comparison between multilayer perceptron and LSTMs for 
plant parameter prediction in an NPP emergency situation, the LSTM showed much 
more accurate results (Bae et al. 2020). 

3.1.1.1 Consistency Index 

Introduced for the sensor fault monitoring model, the consistency index expresses the 
soundness of the measurements. Initially, it may take values of 0 or 1 to respectively 
represent faulty and sound sensors; however, such binary classification of sensor 
states would result in a lowering of the threshold for the judgment of sensor failure. 
This is because ML models may easily designate a normal sensor with no error as a 
faulty sensor based on small deviations such as from sensor oscillation (Hashemian 
2010) or untrained sensor values. This leads to the need for a separate evaluation of 
the sensor measurements in order to avoid false detections of sensor error for those 
particular measurements close to the real value. In this case, consistency index values 
are derived from the relative measurement accuracy; around an error of approximately 
10%, the consistency index is calculated from the square of the relative measurement 
accuracy. Previously, it has been reported that relative measurement error or accuracy 
may be adopted to quantify instrumentation performance or data quality (Rabinovich 
and Rabinovich 2010). Equations (3.1) and (3.2) provide the relative measurement 
error (ε) and the consistency index (C) as follows.
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ε = 
Ã − A 
A 

(3.1) 

Ci,t =
((

1 − εi,t
)2 = 1 −

||| Ãi,t−Ai,t 

Ai,t

|||2 , 0 ≤ εi,t ≤ 0.1 
0, εi,t > 0.1 

(3.2) 

In these expressions, Ã and A are the measured and real values, respectively, i is 
the parameter number, and t is time. As Eq. (3.2) shows, the consistency index C 
is taken from the relative measurement error ε. A graphical example of consistency 
labeling is depicted in Fig. 3.3. 

A consistency index is applied to every time-series parameter. The trained model 
processes all normal data and sensor error-injected data during the emergency situ-
ation as inputs and generates consistency outputs from the sensor parameter inputs. 
With no accident information, the model is able to estimate the states of the sensors by 
considering the analytical relation between other sensors and the temporal relations 
between the early sequences of a reactor trip. Normal sensor trends are trained through 
normal data, while parameter deviations are trained through error-injected data. In the 
case of an anticipated sensor error or accident, the system directly lowers the consis-
tency index. High computing power enables the use of a large number of parameter

Fig. 3.3 Example of the consistency index labeling rule. The sensor parameter trend with drift 
error is plotted along with the corresponding consistency index trend 
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inputs and training for complex changes. As a result, the model output, i.e., consis-
tency index values, provides a simple solution to replace parameter reconstruction 
and residual analysis. 

3.1.1.2 Sensor Error Modes 

Sensor failures or sensor uncertainties can be the result of either external or internal 
environmental causes. In previous applications of OLM techniques, typical uncer-
tainty sources were considered to determine the allowance of channel uncertainties. 
Such sources include temperature and pressure (external), and systematic structure 
and sensor type (internal) (Chen et al. 2010). 

Among the possible error modes introduced in Fig. 3.1, two modes are selected 
considering their influence on human error during diagnosis tasks: drift error, which 
is a time-correlated permanent offset error, and stuck at constant error. The reasons 
for choosing these parameters are as follows. In an NPP accident situation, diagnosis 
is conducted mainly by checking the trends of various plant parameters, specifically 
whether the parameters exceed their thresholds. Drift and stuck at constant errors 
present a similar behavior as during error-free operation, and so they are good candi-
dates for analysis as the main target errors for detection. The other error modes, for 
example the stochastic offset and stuck at zero sensor errors, can be easily recognized 
by the operators due to their discrepancies from real trends. 

To implement the two selected error modes, a uniform error injection method is 
applied to all sensors regardless of sensor type or environment. The stuck at constant 
error is implemented by fixing the sensor value to that at the point of error injection, 
while the drift error is classified as slow or rapid drift according to the slope of the 
change, respectively implemented with rates of change of two and five times the 
real trends. In the case that there is no change in the real values, the drift types are 
implemented with 0.4% and 4% of the fixed values. Other than slow or rapid, each 
drift is also divided into upward and downward by the direction of the drift. All 
together, the five injected errors are as follows: stuck at constant, slow upward drift, 
slow downward drift, rapid upward drift, and rapid downward drift. Figure 3.4 shows 
examples of injected error data plotted against normal parameter trends.

3.1.1.3 Data Preprocessing 

Two data preprocessing steps are performed for an efficient training of the LSTM, 
the first of which is a Gaussian smoothing of the time-series parameters. Parameter 
oscillation is frequently observed in Loss of Coolant Accident (LOCA) data, where 
it is estimated to result from coolant vaporization. As oscillations can lead to the 
false detection of sensor error, a one-dimensional (1D) Gaussian smoothing filter 
is applied, where the Gaussian distribution function used for smoothing is given as 
follows.
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Fig. 3.4 Examples of error injection. a Normal, b stuck at constant, c slow drift (upward), and d 
slow drift (downward) sensor error during a loss of coolant accident. Reproduced with permission 
from Choi and Lee (2020)

G(x) = 
1 

σ 
√
2π 

exp− x2 
2σ 2 (3.3) 

From the value of σ (standard deviation), the Gaussian distribution width, or in 
other words the effect of the smoothing, is determined (Ito and Xiong 2000). Here, 
Gaussian smoothing with σ = 100 is applied to the oscillating parameters; as the 
example in Fig. 3.5 shows, the oscillation is removed while the parameter trend is 
maintained. 

Fig. 3.5 Example parameter oscillation (left) and smoothing result (right). Reproduced with 
permission from Choi and Lee (2020)
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The second preprocessing step involves a min–max normalization of all the param-
eters. As seen in Table 3.1, various parameter scales are used for training the LSTM 
network, requiring normalization to reflect all plant parameters. The minimum and 
maximum parameter values along the entire accident sequence are gathered for the 
normalization, following Eq. (3.4). 

xnorm = 
x − xmin 

xmax − xmin 
(3.4) 

Table 3.1 Selected plant parameters from the CNS 

Plant parameter (units) 

1 Pressurizer (PZR) level (m) 

2 Reactor vessel (RV) water level (m) 

3 Containment (CTMT) radiation (mRem/hr) 

4 COLD-LEG #1 temperature (°C) 

5 HOT-LEG #1 temperature (°C) 

6 Core outlet temperature (°C) 

7 SG #1 level, wide range (m) 

8 SG #2 level, wide range (m) 

9 SG #3 level, wide range (m) 

10 Secondary system radiation (mRem/hr) 

11 SG #1 pressure (Pa) 

12 SG #2 pressure (Pa) 

13 SG #3 pressure (Pa) 

14 PZR pressure (Pa) 

15 Feed water line 1 flow (kg/sec) 

16 Feed water line 2 flow (kg/sec) 

17 Feed water line 3 flow (kg/sec) 

18 CTMT sump water level (m) 

19 Steam line 1 flow (kg/sec) 

20 Steam line 2 flow (kg/sec) 

21 Steam line 3 flow (kg/sec)
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3.1.2 Case Study 

3.1.2.1 Data Description 

Reactor trips, a process in which control rods are inserted into the reactor, are initiated 
to ensure NPP safety in response to the detection of plant parameters deviating from 
predetermined set points. Control rod insertion causes a rapid decrease in reactivity, 
which in turn leads to a decrease in reactor thermal power and rapid changes in 
various plant components such as turbine trips, valve openings and closings, the 
actuation of safety systems, and so on. The situations that necessitate reactor trips 
are called emergency situations in the nuclear field. Once a reactor trip has been 
alerted, operators in the NPP MCR follow emergency operating procedures (EOPs) 
to mitigate the factors that caused the plant parameters to exceed the set points 
of the reactor protection system (RPS) or the engineered safety features, or other 
established limits. By conducting the relevant EOP, operators are able to cope with 
the symptoms in the early trip phase and diagnose the accident. 

It is clear that accident diagnosis depends on the process parameter values as 
well as their trends. Regarding the time required for accident diagnosis in an NPP 
emergency situation, the International Atomic Energy Agency (IAEA) published a 
safety report recommending that operators complete the diagnosis within 15 min 
from the first indication of the accident (IAEA 2002). Based on the diagnosis results, 
operators move on to the appropriate optimal response procedure (ORP) providing the 
tasks required to mitigate the particular accident considering the current symptoms. 
Example ORPs include those covering a reactor trip, LOCA, SG tube rupture (SGTR), 
excess steam demand event (ESDE), loss of all feedwater (LOAF), loss of forced 
circulation, loss of off-site power, and station blackout (SBO) (IAEA 2006). 

Each ORP includes different contextual tasks, which means that an accident misdi-
agnosis could, with critical consequences, result in an omission of the appropriate 
mitigation action or an error of commission. One of the lessons learned from the TMI 
accident is that wrong displays of plant parameters during an accident sequence can 
significantly increase the risk of human error, which could potentially result in even 
graver consequences following the diagnosis steps. Even a single sensor parameter 
can be a critical factor in accident diagnosis; for example, an increase in the secondary 
system radiation is a strong indicator of an SGTR. As such, an error in such a critical 
sensor during an emergency situation may lead to a misdiagnosis. It has previously 
been shown that indicator failure is among the factors influencing misdiagnosis error 
(Lee et al. 2009). 

From the emergency situations covered by the ORPs, the following four accidents 
are selected for the sensor fault monitoring model: LOCA, SGTR, ESDE, and LOAF. 
Reactor trips with no specific symptoms or accidents from a loss of power loss are not 
considered due to their lack of distinguishable symptoms in the CNS. The relevant 
malfunctions of the selected accidents are injected to normal CNS operation, after 
which the reactor trips by an automatic signal. From the point of reactor trip, time-
series data of certain plant parameters are collected for 15 min, corresponding to
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the recommended accident diagnosis time limit. Among the plant parameters, 21 are 
selected based on the diagnosis procedures and the importance of the parameters to 
the estimation of the accident. The time interval of data collection is 1 s, leading to 
900 collected time points per dataset. For data variation, nine break sizes and three 
break locations are included in the accident data for LOCA, SGTR, and ESDE. 

In the validation of the system, the following target sensors are considered for 
their diagnostic importance: sensors monitoring the PZR pressure; CTMT radiation; 
secondary system radiation; SG #1, #2, #3 pressure and water level; RV water level; 
cold-leg #1 temperature; hot-leg #1 temperature; and core outlet temperature. As 
the PZR pressure is affected by all accident types, operators typically use it for a 
rough diagnosis. Data from the other 13 target sensors are important to diagnose or 
estimate LOCA, SGTR, ESDE, and LOAF accidents. Errors are injected at six time 
points during the early phase of the reactor trip at intervals of 60 s for the training 
and validation datasets, while the test set has error injection at three different time 
points with the same time interval. To train the single failure of each of the target 
sensors, 7488 training sets, 2223 validation sets, and 3159 test sets are used. 

3.1.2.2 Case Study Results 

Figure 3.6 plots examples of the output, or consistency trend. The yellow lines in 
the panels depict the real consistency trend of the target sensor obtained by labeling 
both normal and error-injected raw data with consistency values, and the blue lines 
show the estimated consistency values of the target sensor from the LSTM network 
test. With a normal sensor in Fig. 3.6a, the estimated result clearly reflects the sensor 
soundness. In Fig. 3.6b with error injection, the estimated consistency effectively 
follows the drop in the real consistency by detecting the injected error. But in Fig. 3.6c 
with a normal sensor, the estimated consistency shows dips in the early phase of the 
reactor trip owing to the drastic parameter changes as well as the error injection 
located in the front of the accident sequence. Then Fig. 3.6d with error-injected data 
shows a slow decrease in the estimated consistency. Each parameter has various rates 
of change and trends, and likewise the consistency trends also vary. Yet even in this 
case, the estimation drops in the later stages, mimicking the real consistency value.

3.1.2.3 Error Criteria 

The test error datasets for which the real consistency labels did not drop to zero are not 
considered because they are not perceived to be faulty sensors in the current system. 
Similarly, for all test data, both success and fault criteria for the sensors should be 
identified. Note that while setting higher criteria would result in the rapid detection of 
sensor error, this may be accompanied by increases in false detections of sensor error. 
Table 3.2 gives the number of datasets in terms of the minimum consistency index 
location from the test outputs of the trained LSTM. From the results, the consistency 
between normal and error cases can be clearly discriminated. With no sensor errors
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Fig. 3.6 a–d Consistency trends of the best and worst cases from normal and error-injected tests. 
Reproduced with permission from Choi and Lee (2020)

Table 3.2 Location of minimum consistency index 

C Index < 0.1 0.1–0.2 0.2–0.3 0.3–0.7 0.7–0.8 0.8–0.9 > 0.9 Total 

Normal 0 0 0 0 17 
(0.79%) 

37 
(1.72%) 

2098 
(97.49%) 

2152 

Error 6751 
(72.77%) 

2514 
(27.10%) 

12 
(0.13%) 

0 0 0 0 9277

(normal case), 97.49% of the data maintains an index value of over 0.9, while during 
the accident sequence, the other 0.79 and 1.72% of the data have index values over 
0.7 and 0.8. As for the error case, 72.77% of the error data are distributed under an 
index of 0.1, 27.10% are between 0.1 and 0.2, and 0.13% are between 0.2 and 0.3. 
Determining the error criteria should be based on the ability to distinguish between 
normal and error states of sensors. According to the results here, the 0.3–0.7 range 
is where the error criteria should be set. Based on the steady output of the normal 
case, the higher error criterion, 0.7, is selected for sensor error detection. 
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Table 3.3 Average time to reach the C index in the error test data 

C Index 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

Detection 
time (s) 

60.20 98.52 116.11 130.13 132.14 134.02 135.58 137.55 140.01 670.31 

3.1.2.4 Error Detection Time Analysis 

Table 3.3 shows the average time to attain the consistency indexes from the error-
injected test data. From the results, the average analysis time for the error data 
was 116.11 s. After reaching a consistency value of 0.8, the decrease of the index 
accelerates. 

The average times required for sensor error detection are given in Tables 3.4 and 
3.5 for the 13 target sensors. The system produces outputs of the true values in all 
the normal cases, and thus the normal data results can be classified as “success” or 
“failure” based on whether the index value is maintained above the error criteria over 
all time steps. Accordingly, all normal cases are classified as “success”. Looking at 
the stuck-at-constant error cases, no meaningful results can be seen for some test 
data (marked with dashes) because the real values remained constant over the course 
of the accident sequences. The tables show that the detection time varied by accident 
type, error mode, and target sensor; the parameter trends or features completely 
differ in each accident. While it can be seen that the rapid drift errors are detected 
earlier than the others, the stuck and slow drift error present unstable results. For 
the CTMT radiation and secondary radiation sensors, the errors are detected in a 
relatively short time when compared with the other sensor errors, likely based on 
their relatively simple parameter trends and the fact that these parameters can be 
clearly distinguished from other parameters.

The results given in Table 3.2 exhibit the performance of the model in distin-
guishing between normal and error data for all test sets. The error criteria value, 
0.7 as mentioned above, was determined based on the observed uncertainty of these 
results. With this criterion, the sensor error detection system achieved successful 
performance. Despite this result, though, the addition of more training data and 
accident types will likely increase the degree or number of peak points, potentially 
leading to false detection of sensor error; this possibility is noted as a limitation of the 
current error detection model. In the case that a false case is observed, more logics 
to determine the sensor error can be incorporated to prevent recurrence. For this, the 
application of a cumulative function or a downward adjustment of the error criteria 
can be considered.
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Table 3.4 Average sensor error detection time (1) (units, sec) 

Accident Error 
mode 

PZR pressure CTMT 
radiation 

Secondary 
radiation 

SG #1 
pressure 

SG #1 
level 

SG #2 
pressure 

SG #2 
level 

LOCA Normal Success Success Success Success Success Success Success 

Stuck 71.56 16.26 — 218.02 15.17 236.11 138.85 

Slow 
drift 

69.89 41.72 11.15 85.03 21.16 195.33 14.26 

Rapid 
drift 

53.45 23.63 7.93 56.24 13.73 110.09 8.83 

SGTR Normal Success Success Success Success Success Success Success 

Stuck 46.80 — 206.35 58.67 60.69 15.36 91.83 

Slow 
drift 

45.64 6.70 151.74 112.17 18.45 218.41 19.24 

Rapid 
drift 

34.88 4.63 125.18 86.46 13.13 121.22 11.40 

ESDE Normal Success Success Success Success Success Success Success 

Stuck 99.71 — — 173.48 60.17 85.40 118.27 

Slow 
drift 

81.35 5.98 10.34 90.69 81.36 103.10 45.85 

Rapid 
drift 

52.59 4.17 7.98 54.59 39.78 71.03 36.37 

LOAF Normal Success Success Success Success Success Success Success 

Stuck 24.33 — — 63.00 13.00 112.00 9.50 

Slow 
drift 

17.83 4.00 11.50 56.00 9.83 119.50 11.92 

Rapid 
drift 

16.17 2.50 8.50 45.17 5.00 80.00 5.58

3.2 Signal Validation Through Unsupervised Learning 

Section 3.2 introduces an algorithm for signal validation that can detect the stuck 
failure of signals in NPP emergency situations that involve rapidly changing signals 
through the use of unsupervised learning methods. The algorithm combines a VAE, 
which employs unsupervised learning, and an LSTM. Development of the signal 
detection algorithm mainly consists of tailoring it to signal validation in the design 
stage and optimizing it at each step for improved performance. The algorithm is then 
validated through a demonstration using a CNS that simulates a Westinghouse-type 
NPP.
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Table 3.5 Average sensor error detection time (2) (units, sec) 

Accident Error 
mode 

SG #3 
pressure 

SG #3 
level 

RV 
water 
level 

Cold-Leg #1 
temperature 

Hot-Leg #1 
temperature 

Outlet 
temperature 

LOCA Normal Success Success Success Success Success Success 

Stuck 220.25 15.39 140.09 343.00 — 338.00 

Slow 
drift 

82.35 21.72 129.30 342.67 334.41 355.51 

Rapid 
drift 

15.29 13.79 92.38 128.00 134.72 135.52 

SGTR Normal Success Success Success Success Success Success 

Stuck 17.27 116.30 246.11 — — 319.50 

Slow 
drift 

125.59 19.54 21.63 311.11 294.01 282.58 

Rapid 
drift 

64.83 14.07 14.06 168.56 175.07 175.45 

ESDE Normal Success Success Success Success Success Success 

Stuck 77.38 149.75 10.00 161.41 320.50 192.28 

Slow 
drift 

111.77 64.55 66.46 221.59 286.41 246.61 

Rapid 
drift 

63.98 40.41 3.37 97.10 178.28 117.52 

LOAF Normal Success Success Success Success Success Success 

Stuck 110.00 12.67 — 279.00 296.00 296.50 

Slow 
drift 

117.50 12.33 66.67 179.33 138.33 139.67 

Rapid 
drift 

79.00 7.00 3.67 77.33 85.00 83.67

3.2.1 Signal Behaviour in an Emergency Situation 

Signal failures have a number of causes, such as anomalies of the related sensors, 
transmitters, and cables. These in turn can be caused by internal, external, or envi-
ronmental problems including pollution, vibrations, extreme temperatures, and aging 
(Zúñiga et al. 2020). As mentioned in Sect. 3.1, the typical failure modes of sensors 
in NPPs are classified as bias, drift, and stuck failures (i.e., stuck-high, stuck-low, 
and stuck-as-is). 

In an emergency situation, tasks such as visually checking and detecting anoma-
lous signals from automatic systems become difficult. Under normal circumstances, 
NPP parameters generally show stable values, meaning that a faulty signal can be 
readily distinguished from a normal one. In contrast, many parameters change rapidly 
in an emergency situation, making it highly challenging to determine whether the 
parameter changes are due to an accident or signal failure.
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(a) Main steam head pressure, indicating 
the minimum value 

(b) Loop 1 delta temperature 

Fig. 3.7 Behavior of different parameters in a LOCA scenario. Reproduced with permission from 
Choi et al. (2021) 

Stuck failures may make it impossible for operators to fully understand the current 
situation if they wrongly consider a faulty signal to be a normal one. For example, 
Fig. 3.7 shows the behavior of two different parameters in a LOCA scenario. Like the 
plot in Fig. 3.7a shows, some parameters may indicate the minimum signal value for 
a particular measurement, which is a similar behavior as a stuck-low signal failure. 
Conversely, many other parameters will change quickly over time, as the example 
in Fig. 3.7b illustrates. Therefore, if an emergency situation includes a stuck failure, 
the operator may incorrectly recognize the reality of the system, and the emergency 
response may be adversely affected. 

3.2.2 Signal Validation Algorithm Through Unsupervised 
Learning for an Emergency Situation 

The developed signal validation algorithm employs a combination of a VAE and an 
LSTM to detect stuck failures (i.e., stuck-high, stuck-low, stuck-as-is) in an emer-
gency situation in an NPP. As shown in Fig. 3.8, the overall algorithm consists of 
the signal validation algorithm itself along with optimization, which is meant to 
improve the performance. This chapter considers a LOCA scenario as a represen-
tative example of an emergency situation and demonstrates the algorithm through 
LOCA simulation using a CNS.

3.2.2.1 Signal Validation Algorithm 

The signal validation algorithm comprises four main steps: input preprocessing (Step 
1), signal reconstruction (Step 2), reconstruction error (RE) calculation (Step 3), and 
determining the signal failures (Step 4). The optimization conducted concurrently 
with these steps is covered in the next section.
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Input: Selected NPP parameters 
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Methodology: Min-max normalization 

Nuclear power plant

                         Test dataset 

Input 
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Step 2. Signal Reconstruction 

Input: Normalized signals, trained model 
Output: Reconstructed signals 
Function: Signal reconstruction 

Methodology: VAE-LSTM reconstruction model 

Step 3. Reconstruction Error Calculation 

Input: Reconstructed signals, 
 normalized NPP parameters 

Output: Reconstruction error (RE) 
Function: Calculation of RE 

Methodology: RE calculation 

Input: RE, thresholds 
Output: Determination of the signal failures 
Function: Determination of signal failures 

Step 4. Determination of Signal Failures 

Methodology: Caparison with RE and thresholds 

Fig. 3.8 Overview of the signal validation algorithm. Reproduced with permission from Choi et al. 
(2021)

Step 1 is to pre-process the inputs by using min–max normalization. This step 
aims to convert each input signal value to a value between 0 and 1. Signals in an 
NPP have different units and ranges, such as loop 1 cold-leg temperature 290.5 °C, 
steam line flow 533.4 kg/sec, and valve states of open, closed, or 50%. Generally, 
variables with higher values will have a larger effect on the network results (Kim 
et al. 2021; Yang and Kim 2018, 2020). However, including such high values is 
not proper because it can cause local minima. To address this issue, Step 1 of the 
algorithm receives the plant parameters as inputs and then outputs normalized plant 
parameters. 

In addition to preventing local minima, the min–max normalization in Step 1 is 
applied to increase the learning speed of the system. Here, normalization is used 
to transform the input signal values from the NPP into a value between 0 and 1 
following Eq. (3.4). A signal closely related to an interesting signal is selected as an 
input value by Pearson correlation analysis to obtain the highest performance in the 
detection of stuck failure. 

Step 2 of the signal validation algorithm is to reconstruct the signal using the 
combined VAE-LSTM network; Fig. 3.9 shows an overview of the network structure, 
consisting of several layers and nodes. This step tries to generate the same signal 
value as each pre-processed input from Step 1. To do this, the hyperparameters of the 
VAE-LSTM network are determined through optimization, as shown in Sect. 3.2.2.2.



46 3 Signal Validation

Normalized NPPs parameters 
Loop 1 

Cold-leg 
temp 

Loop 1 
Cold-leg 

temp 
… SG 1 level 

Steam 
line 1 
flow 

Decoder-LSTM 

Reconstructed signals 

Loop 1 
Cold-leg 

temp 

Loop 1 
Cold-leg 

temp 
… SG 1 level 

Steam 
line 1 
flow 

Encoder-LSTM 

Input 
: 397 normalized signals 

Repeat vector layer 
LSTM layer 
Dense layer 
Dense layer 
Latent variables layer 
Repeat vector layer 
LSTM layer 
LSTM layer 
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: 26 reconstructed signals 

Fig. 3.9 Structure of Step 2 of the signal validation algorithm 

The VAE, a Bayesian inference-based variant of the AE (see Sect. 2.4.3), is an 
unsupervised learning method that forms a network in which the output value resem-
bles the input value (An and Cho 2015). The detection of defect signals by a VAE is 
based on the probability that the normal signals can be successfully reconstructed. 
That is, if the VAE successfully reconstructs the input signal, the implication is that 
the input signal has similar characteristics as the normal trained signal. In contrast, a 
large difference between the reconstructed signal and the input signal means that the 
input may not be trained, implying it may be a faulty signal. The LSTM, as discussed 
in Sect. 2.4.2.2, is a type of RNN that can learn the long short-term dependencies of 
a dataset (Hwang et al. 2009; Yang and Kim 2018, 2020) and is designed to avoid 
the problem of long-term dependencies associated with RNNs (Gers et al. 2000). In 
this step of the algorithm, the LSTM is used to process time-series data. 

The VAE-LSTM model receives a normalized signal from Step 1, as shown in 
Fig. 3.9. At this time, an encoder is trained to extract the characteristics of the input 
data by using the average and standard deviation of the input data. After that, a decoder 
generates an output similar to the input based on the extracted characteristics. Both 
the encoder and decoder of the network adopt LSTM layers to consider the time 
series data. 

Step 3 is to conduct the RE calculation process. In other words, this step calculates 
the deviation between the reconstructed input signal generated as the output in Step 
2 and the normalized input signal. Following this step (i.e., RE calculation), the 
calculated RE is utilized to determine signal failure in Step 4. The RE is calculated 
using Eq. (3.5). 

RE = (xt − x̂)2 (3.5) 

where,
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(a) Reconstructed and normal signals (b) RE calculation results 

Fig. 3.10 Reconstruction results for a normal signal of the loop 2 cold-leg temperature. Reproduced 
with permission from Choi et al. (2021) 

xt normalized value of the original (normal) signal 
x̂ reconstructed value 

Figure 3.10 shows an example of the reconstruction process for a normal signal 
(without faults) and the corresponding calculated RE. Specifically, Fig. 3.10a plots 
the original temperature signal of the loop 2 cold-leg (blue line) in the LOCA scenario 
along with the reconstructed signal (red line, Step 2 results) obtained from the VAE-
LSTM network. When the VAE-LSTM correctly trains the normal signal, the RE 
indicates a small value, as shown in Fig. 3.10b. Figure 3.11 shows an example of the 
reconstruction process and RE calculation for a faulty signal; Fig. 3.11a plots the 
faulty temperature signal in the form of a stuck-low failure at 300 s. As shown in 
Fig. 3.11b, since the network is not trained for the faulty signal, the difference between 
the reconstructed signal and the faulty input signal is large. By selecting a proper 
RE criterion (or threshold) that can distinguish between normal and faulty signals, 
successful signal failure detection can be achieved. The process for the determination 
of this RE threshold is covered in the optimization step (see Sect. 3.2.2.2).

Finally, Step 4 is to determine whether the input signal is faulty or normal by using 
the comparison results of the RE calculated in Step 3 with the predefined threshold 
(i.e., the optimization of Step 3, as discussed in the next section). If the RE of the input 
signal is lower than the predefined threshold, the signal is labeled as a normal signal. 
Conversely, if the RE exceeds the predefined threshold, the signal is determined as 
a faulty signal. This process is shown in Fig. 3.12.

3.2.2.2 Optimization 

To improve the performance of the signal validation algorithm, the algorithm under-
goes the following optimization processes: (1) selecting the optimal inputs, (2) deter-
mining the hyperparameters of the VAE-LSTM network, and (3) determining the RE 
thresholds. For these optimizations, a CNS is used to simulate various emergency 
situations. The CNS, developed by the Korea Atomic Energy Research Institute
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(a) Reconstructed signals (b) RE calculation results 

Fig. 3.11 Reconstruction results for a faulty signal of the loop 2 cold-leg temperature. Reproduced 
with permission from Choi et al. (2021)

Is RE within 
the threshold? 

Faulty signalNormal signal 

Yes No 

Fig. 3.12 Result of Step 4 of the signal validation algorithm. Reproduced with permission from 
Choi et al. (2021)

(KAERI), has as a reference plant the Westinghouse 3-loop 990 MW pressurized 
water reactor (PWR). Figure 3.13 shows the display of the CNS as an overview.

A total of 26 signals are selected for the optimization of the signal validation 
algorithm, as listed in Table 3.6. In other words, optimization is conducted to detect 
the stuck failures of these 26 signals.

Data collection is required to conduct the validation and optimization of the signal 
validation algorithm; Fig. 3.14 provides a breakdown of the data collection. The data 
is divided into four groups. The first, Data #1, includes normal signals from 49
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Fig. 3.13 Overview of the CNS components

LOCA scenarios and is used for VAE-LSTM network training. The second group, 
Data #2 includes normal signal data from five scenarios and is used for Optimization 
1 (i.e., selection of the optimal inputs) and Optimization 2 (i.e., determination of 
the hyperparameters). The data for faulty signals are separated for the purposes of 
optimization and validation. Data #3 includes the stuck failures of the 26 selected 
variables for Optimization 3 (i.e., determination of the RE thresholds), as discussed in 
Sect. 3.2.2.2. It should be noted that the stuck-low dataset includes only the failures of 
12 variables because in the scenarios, the other 14 signals indicate the lowest values 
without any faults and are therefore indistinguishable from stuck-low failures. The 
final data group, Data #4, is used for validation. A detailed list of all scenarios is 
given in Table 3.7.

In the first optimization, or Optimization 1, the optimal inputs for the VAE-LSTM 
network are selected using Pearson correlation analysis. This optimization aims to 
find the best set of inputs to the VAE-LSTM network for it to reconstruct the normal 
signals of the 26 selected plant variables. Before this optimization is performed, the 
VAE-LSTM network is trained to generate normal signals using Data #1. Then Data 
#2 is used for the optimization. 

Different sets of inputs to the VAE-LSTM network would result in different perfor-
mances during Step 2 of the algorithm (i.e., reconstruction). Correlation analysis is 
therefore conducted to select the optimal input sets from 2200 variables that can be 
collected by the CNS. Pearson correlation analysis (Xu and Deng 2017) applies the 
correlation coefficient given in the following equation.
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Table 3.6 The 26 target signals for optimization 

NPP parameter Units 

Feedwater pump outlet pressure kg/cm2 

Feedwater line 1 flow kg/sec 

Feedwater line 2 flow kg/sec 

Feedwater line 3 flow kg/sec 

Feedwater temperature °C 

Main steam flow kg/sec 

Steam line 1 flow kg/sec 

Steam line 2 flow kg/sec 

Steam line 3 flow kg/sec 

Main steam header pressure kg/cm2 

Charging line outlet temperature °C 

Loop 1 cold-leg temperature °C 

Loop 2 cold-leg temperature °C 

Loop 3 cold-leg temperature °C 

Pressurized temperature °C 

Core outlet temperature °C 

Net letdown flow kg/sec 

PZR level % 

PZR pressure kg/cm2 

Loop 1 flow kg/sec 

Loop 2 flow kg/sec 

Loop 3 flow kg/sec 

SG 1 level % 

SG 2 level % 

SG 1 pressure kg/cm2 

SG 1 pressure kg/cm2

r =
Σ((

Xi−X 
sX

)(
Yi−Y 
sY

))
N − 1 

. (3.6) 

Here, N is the number of observations, Xi and Yi are the values for the i-th obser-
vation where X indicates the 26 target variables for signal validation through stuck 
failure detection and Y indicates all the available variables in the CNS (i.e., 2200 
plant variables), and s is the standard deviation. Pearson’s coefficient r has a value 
between –1 and 1, where the larger the absolute value of r, the higher the corre-
lation. An r value approaching 1 means that there is positive linearity, while that 
approaching –1 means that there is negative linearity. A coefficient of 0 indicates 
that there is no linear correlation between the two variables.
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Emergency situation data (LOCA) 

Normal signal 

49 scenarios x 1500 s 
= 72,627 datasets 

5 scenarios x 1500 s 
= 8,070 datasets 

Faulty signal 

54 scenarios x 1500 s 
x 26 signals 

= 2,098,122 datasets 

Stuck-high datasets 

54 scenarios x 1500 s 
x 12 signals 

= 968,364 datasets 

Stuck-low datasets 

54 scenarios x 1500 s 
x 26 signals 

= 2,098,122 datasets 

Stuck-as-is datasets 

18 scenarios x 1500 s 
x 26 signals 

= 702,468 datasets 

Stuck-high datasets 

18 scenarios x 1500 s 
x 12 signals 

= 270,180 datasets 

Stuck-low datasets 

18 scenarios x 1500 s 
x 26 signals 

= 702,468 datasets 

Stuck-as-is datasets 

Data #1 
VAE-LSTM 

network training 

Data #2 
Optimization 1&2 

Data #3 
Optimization 3 

Data #4 
Validation 

Fig. 3.14 Acquired datasets for the LOCA scenarios. Reproduced with permission from Choi et al. 
(2021)

As shown in Eq. (3.6), r is calculated among the 26 target variables and the 
CNS-available variables. Figure 3.15 shows a portion of the calculation. Plant vari-
ables with correlation coefficients higher than a specific threshold are selected as the 
optimal input; this threshold is determined here through an experimental approach.

The accuracy achieved in reconstructing the 26 target signals is checked while 
varying the correlation coefficient. Table 3.8 shows the results of the selected input 
optimization in Step 1 of the algorithm. The results demonstrate that the reconstruc-
tion of the 26 target signals shows the highest accuracy at r = 0.985. Accordingly, 
a total of 397 variables among the CNS parameters having a correlation coefficient 
higher than r = 0.985 are selected as the optimal inputs for the VAE-LSTM network.

In Optimization 2, the hyperparameters—i.e., the number of batches, layers, and 
nodes of the network—to be used for the signal reconstruction step are determined. In 
general, hyperparameters influence the performance of a network, in this case recon-
struction performance. To optimize the hyperparameters, a trial and error approach 
is performed until the reconstruction result is as high as possible. 

Table 3.9 shows a loss comparison among eight different network configurations. 
Here, loss is a number that indicates the range of inaccurate network predictions. 
Perfect network prediction results in a loss of zero, while more incomplete predictions 
lead to greater loss values. Loss is calculated based on Eq. (3.7) (An and Cho 2015). 

Loss = −0.5 
NΣ
t=1

(
1 + log

(
σ2 
t

) − μ2 
t + σ2 

t

) + 
1 

N 

NΣ
t=1

(
xt − xt

Λ)2 
(3.7)
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Table 3.7 Detailed list of the LOCA scenarios 

Failure Mode Scenarios Purpose 

Normal Hot and cold legs of Loops 1, 2, and 
3 with nine different sizes from 10 to 
50 cm2 (every 5 cm2): 49 scenarios 
excluding the five used in 
Optimizations 1 and 2 among 54 
total scenarios (2 legs × 3 loops × 9 
sizes) 

VAE-LSTM network training 
(Sect. 3.2.2.2) 

Hot-leg of Loop 3 with a 30 cm2 

rupture size 
Hot-leg of Loop 3 with a 35 cm2 

rupture size 
Hot-leg of Loop 3 with a 40 cm2 

rupture size 
Hot-leg of Loop 3 with a 45 cm2 

rupture size 
Hot-leg of Loop 3 with a 50 cm2 

rupture size 

Optimizations 1 & 2 (Sect. 3.2.2.2) 

Faulty Stuck-high Hot and cold legs of Loops 1, 2, and 
3 with nine different sizes from 10 to 
50 cm2 (every 5 cm2): 54 (2 legs × 3 
loops × 9 sizes) 

Optimization 3 (Sect. 3.2.2.2) 

Hot and cold legs of Loops 1, 2, and 
3 with three different sizes from 2 to 
6 cm2 (every 2 cm2): 18 (2 legs × 3 
loops × 3 sizes) 

Validation (Sect. 3.2.3) 

Stuck-low Hot and cold legs of Loops 1, 2, and 
3 with nine different sizes from 10 to 
50 cm2 (every 5 cm2): 54 (2 legs × 3 
loops × 9 sizes) 

Optimization 3 (Sect. 3.2.2.2) 

Hot and cold legs of Loops 1, 2, and 
3 with three different sizes from 2 to 
6 cm2 (every 2 cm2): 18 (2 legs × 3 
loops × 3 sizes) 

Validation (Sect. 3.2.3) 

Stuck-as-is Hot and cold legs of Loops 1, 2, and 
3 with nine different sizes from 10 to 
50 cm2 (every 5 cm2): 54 (2 legs × 3 
loops × 9 sizes) 

Optimization 3 (Sect. 3.2.2.2) 

Hot and cold legs of Loops 1, 2, and 
3 with three different sizes from 2 to 
6 cm2 (every 2 cm2): 18 (2 legs × 3 
loops × 3 sizes) 

Validation (Sect. 3.2.3)
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CNS parameters 

Target signals 

Fig. 3.15 Example of Pearson correlation analysis results. Reproduced with permission from Choi 
et al. (2021)

Table 3.8 Reconstruction accuracy and inputs as a function of r 

r value Reconstruction accuracy of the target signal (%) # of inputs 

0.995 94.2 157 

0.985 99.8 397 

0.975 97.5 604

Table 3.9 Performance comparison results for different network hyperparameters 

Configuration No. Batch LSTM layers LSTM nodes Latent nodes Loss 

1 32 2 2 4 1.129E-3 

2 32 2 4 8 8.721E-4 

3 32 3 2 4 9.017E-4 

4 32 3 4 8 5.816E-4 

5 64 3 4 8 8.753E-4 

6 64 3 8 16 7.139E-4 

7 32 4 4 8 1.010E-3 

8 64 4 4 8 1.090E-3 

In this equation, xt is the normalized value of the original signal (the output of 
Step 1), xt

Λ
is the reconstructed value (from Step 2), and σ and μ are the mean and 

deviation values sampled from the latent space z. 
Figure 3.16 shows the loss trends of the eight configurations using Data #2. The 

loss values are calculated for 300 epochs, where an epoch is one loop through the 
full training dataset consisting of one or more batches of sampling data. In terms of 
reconstruction performance, Fig. 3.17 compares the result of Configurations 1 and 4 
for SG #1 pressure in the cold-leg #1 LOCA scenario as an example. Configuration 4 
is shown to reconstruct the original signal more accurately and stably than Configu-
ration 1. Among the configurations, Configuration 4 demonstrates the minimum loss. 
Thus, through this optimization, it can be determined that the VAE-LSTM network 
for the signal reconstruction step (i.e., Step 2 of the signal validation algorithm) 
should include three LSTM layers, four LSTM nods, and eight latent nodes with
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Fig. 3.16 Losses of eight configurations of tested hyperparameters. Reproduced with permission 
from Choi et al. (2021) 

32 batches, as listed for Configuration 4 in Table 3.9. As a result,  the loss of the  
optimized VAE-LSTM network in signal reconstruction is 5.816E-4. 

The final optimization, or Optimization 3, determines the particular RE threshold 
that is the most suitable for detecting the stuck failures of NPP signals. Figure 3.18

Fig. 3.17 Comparison results of the original signal and reconstructed signals of configurations 1 
and 4. Reproduced with permission from Choi et al. (2021) 
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Fig. 3.18 Conceptual determination of RE thresholds for faulty signal detection. Reproduced with 
permission from Choi et al. (2021) 

depicts the process to determine the threshold. In the developed algorithm, RE has 
a large value for faulty signals because such signals are untrained. Hence, selecting 
the optimal threshold for discriminating faulty signals is critical for the performance 
of the signal validation algorithm. 

If the threshold is set too high, like in Case 1 in Fig. 3.18, the algorithm determines 
that both normal and faulty signals are normal. Therefore, a faulty signal is regarded 
as normal, which is termed here as a Type 1 error. If the threshold is chosen too 
low,  as  Case  3 in Fig.  3.18 shows, the algorithm determines that both normal and 
faulty signals are faulty. In this case, a normal signal is detected as faulty, which 
is termed a Type 2 error. If the threshold is chosen properly, demonstrated by Case 
2 in Fig.  3.18, the algorithm becomes capable of correctly distinguishing between 
normal and faulty signals. 

The RE threshold is determined based on the statistical method proposed by 
Shewhart (Nazir et al. 2014). Shewhart’s control charts are widely used to calculate 
changes in process features from the in-control state using Eq. (3.8). 

RE threshold = μ + kσ. (3.8) 

Here, μ and σ represent the mean and standard deviation, respectively, of the 
RE for each variable in the training data (i.e., Data #1), and k is a constant. This 
optimization step calculates the results of distinguishing normal and faulty signals 
for the 26 target variables by entering different k values (i.e., k = 0.5, 1, 2, or 3). By
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testing for Type 1 and Type 2 errors according to the k value, the optimal k can be 
determined. 

Table 3.10 show the results of comparison between Type 1 and Type 2 errors 
for diverse k values. Based on this comparison, the algorithm adopts k = 1, which 
demonstrates the best performance considering both Type 1 and Type 2 errors. The 
optimal RE thresholds when k = 1 are finally obtained as follows. 

RE threshold = μ + σ (3.9)

The μ and σ in this equation are the same as in Eq. (3.8), representing the mean 
and standard deviation of the RE for each variable in the training data. The right-most 
column of Table 3.10 shows the thresholds for each signal following Optimization 
3. 

The conducted optimizations can now be checked for each failure mode. 
Table 3.11 shows the result of the Optimization 3 using Data #3 from Fig. 3.14. The  
signal validation algorithm determines 99.81% of the normal signals as “normal” 
while detecting 97.6% of the signal failures, specifically 100% of the stuck-high, 
98.92% of the stuck-low, and 93.88% of the stuck-as-is failures.

3.2.3 Validation 

Figure 3.19 shows an example of the process by which the signal validation algorithm 
process detects stuck signal failures. In this illustration, the algorithm receives two 
signals as inputs from the LOCA scenario. The loop 1 cold-leg temperature signal is 
faulty, namely a stuck-high failure, while the other signal, PZR pressure, is normal. 
Step 1 of the algorithm normalizes these signal inputs to a range of 0 to 1. Step 2 
attempts to reconstruct the normalized signals similarly to the input signals. Then Step 
3 calculates the RE from the difference between the normalized and reconstructed 
signals. Step 4 compares the calculated RE to the threshold defined in the third 
optimization.

As shown in Fig. 3.19, the RE of the loop 1 cold-leg temperature is larger than 
the threshold, and based on the comparison, Step 5 determines that the input signal 
is faulty. 

The signal validation algorithm is now validated with data not used in either the 
training or optimization, i.e., Data #4. The validation focuses on evaluating whether 
the proposed algorithm can correctly detect stuck failures of the 26 selected signals. 
The dataset contains the three failure modes (i.e., stuck-high, stuck-low, and stuck-
as-is) and accordingly includes 1152 scenarios with added stuck failures. As shown 
in Table 3.12, the signal validation algorithm detects 96.70% of all stuck failures and 
98.29% of all normal signals, similar to the results achieved through the optimization 
(Table 3.11).
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Table 3.10 Type 1 and Type 2 errors with different k values 

Parameter k = 0.5 k = 1 k = 2 k = 3 
Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 

Feedwater pump outlet 
press 

0 0.07 0 0 0 0.06 0 0 

Feedwater line 1 flow 0 0.02 0 0 0 0 0 0 

Feedwater line 2 flow 0 0 0 0 0 0 0 0 

Feedwater line 3 flow 0 0.001 0 0 0 0 0 0 

Feedwater Temp 0 0.11 0 0 0.90 0.09 0.49 0 

Main steam flow 0 0.06 0 0 0.93 0.06 0.06 0 

Steam line 1 flow 0 0.011 0 0 0 0.10 0 0 

Steam line 2 flow 0 0.011 0 0 0 0.10 0 0 

Steam line 3 flow 0 0.011 0 0 0 0.11 0 0 

Main steam header 
pressure 

0 0.011 0 0 0 0.10 0 0 

Charging line outlet 
temp 

0 3.5 0.06 0.06 0.67 0.21 1.28 0 

Loop 1 Coldleg Temp 0 3.5 0.06 0.02 0.14 0.38 0.58 0 

Loop 2 Coldleg Temp 0 3.5 0.12 0.02 0.03 2.97 0.95 0.005 

Loop 3 Coldleg Temp 0 3.5 0.06 0.01 0.23 0.23 0.64 0 

PZR temp 0 3.5 0 0.02 0.14 0.14 0.43 0 

Core Outlet Tempe 0 3.5 0.35 0.01 0.55 0.12 0.98 0 

Net Letdown Flow 0 0.002 0 0 0 0.002 0 0 

PZR level 0.75 0.05 0.41 0 1.07 0.04 0.87 0 

PZR pressure 0 3.5 0.49 0.02 2.05 0.15 3.04 0 

Loop 1 flow 0 3.56 0 0 0 0.13 0 0 

Loop 2 flow 0 3.56 0 0 0 0.15 0 0 

Loop 3 flow 0 3.56 0 0 0 0.11 0 0 

SG 1 level (wide) 0 3.5 0 0.01 0 1.24 0.29 0 

SG 2 level (wide) 0 3.5 0 0.01 0 1.90 0.20 0 

SG 1 pressure 0 3.5 0.52 0.002 0.20 0.02 1.53 0 

SG 2 pressure 0 0.99 0.35 0.001 0.61 0.02 1.56 0 

Sum 0.75 47.41 2.40 0.19 7.52 8.44 12.91 0.005

3.3 Signal Generation with a GAN 

The majority of the decisions in NPPs, as large-scale, safety–critical systems with 
high complexity, are made by human operators who monitor numerous instrumenta-
tion signals and utilize them while following the various procedures that correspond 
to the plant states to maintain safe and efficient operation. But in harsh conditions,
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Table 3.11 Optimization results of the algorithm for each failure mode 

Failure mode Classification result (%) 

Faulty Normal 

Failed Stuck-high 100 0 

Stuck-low 98.92 1.08 

Stuck-as-is 93.88 6.12 

Total 97.6 2.4 

Normal 0.19 99.81

multiple instrumentation signals may become unavailable. During the Fukushima 
accident, for example, most of the instrumentation systems were inoperative. Despite 
this clear importance, relatively few studies have explored the reconstruction of 
multiple missing signals in NPP emergency situations. 

Most conventional signal reconstruction methods strongly depend on correlations 
between signals. As signal correlations can vary drastically with the plant condition, 
traditional methods have limitations in that numerous models need to be developed to 
cover the various plant conditions, and also prior knowledge of the plant conditions is 
necessary to select the appropriate model for signal reconstruction. These limitations 
lead to a type of circular dilemma: normal (reconstructed) signals are necessary 
to accurately diagnose the plant condition, but a proper reconstruction model for 
obtaining the signals cannot be identified until the plant condition is diagnosed. 

New approaches to signal reconstruction are therefore required to deal with 
multiple missing signals in a flexible manner under diverse conditions, including 
emergency situations. Such a method should not depend too strongly on the 
correlations between signals, nor should it require prior knowledge of the plant 
condition. 

3.3.1 GAN 

The basic structure and algorithm of a GAN is described in Sect. 2.4.5. Representative 
problems that are commonly encountered during the training of a GAN model are 
as follows. 

• Premature convergence: If the generator becomes far superior to the discriminator 
or vice versa during the training process, then the GAN model may not be properly 
trained. Typically, it is the discriminator that becomes superior to the generator. 

• Mode collapse: If the generator is trained to generate only a single mode or some 
modes of the data distribution, other modes may be left out. 

• Loss oscillation: Instead of converging, the states of the generator and discrimi-
nator may oscillate, regardless of the training length.
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Step 1. Input pre-processing 

Step 2. Signal reconstruction 

Step 3. RE calculation 

Input Signals 
Loop #1 Coldleg Temp: Stuck-high 
PZR Pressure: Normal 

Signal reconstruction 

NPP parameters 

Min-max normalization 

Decoder-LSTM 

Encoder-LSTM 

RE calculation 

Comparison of RE and threshold 

Step 4. Determination of signal failures 

Is RE within 
the 

threshold? 

Is RE within 
the 

threshold? 

PRZ 
pressure 

Faulty signalNormal signal Faulty signalNormal signal 

Loop #1 
Cold leg 
Temp. 

Fig. 3.19 Validation process of the signal validation algorithm
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Table 3.12 Validation results of the algorithm for each failure mode 

Failure modes Classification results (%) 

Failed Normal 

Failed Stuck-high 100 0 

Stuck-low 97.92 2.08 

Stuck-as-is 92.18 7.82 

Total 96.70 3.30 

Normal 1.71 98.29

Different GAN architectures each have unique characteristics and advantages, and 
thus by merging their concepts, new GAN structures suitable for specific applica-
tion can be constructed. The first variant selected in the current GAN development to 
consider the sequential characteristics of instrumentation signals is a recurrent gener-
ative adversarial network (RGAN) (Esteban et al. 2017; Press et al. 2017). The RGAN 
adopts an RNN as its baseline architecture, and as mentioned in Chap. 2, RNNs that 
include a directed cycle between nodes perform well for sequential or time-series 
data (e.g., natural language and sound). An LSTM (Hochreiter and Schmidhuber 
1997) is also selected for its strength in considering long-term dependencies. 

The second GAN variant chosen is the conditional GAN (Mirza and Osindero 
2014), which is adopted to more precisely consider sets of instrumentation signals 
in various NPP conditions. The conditional GAN was originally proposed to address 
limitations of the vanilla GAN, which is unable to selectively generate samples with 
the desired attributes only. The overall architecture of the conditional GAN is similar 
to that of the vanilla GAN, but the conditional GAN’s generator and discriminator 
take as inputs information on specific attributes of the data, or labels, in addition to 
the latent vector or data. Moreover, while the conditional GAN discriminator outputs 
the same classification results (i.e., real or fake), it also compares the characteristics 
or attributes of the input data and with those in the given information or labels. 
The discriminator of the conditional GAN thus performs two separate functions— 
classification of realistic and unrealistic data, and estimation of data attributes—and 
accordingly it can be divided into two networks. The one that performs the attribute 
or label estimation for the input data is called the classifier network. 

The last variant selected is a manifold-Guided generative adversarial network 
(MGGAN) (Bang and Shim 2021), which is adopted to mitigate the mode 
collapse problem. The MGGAN was developed by adding additional guidance 
networks, namely an encoder network and an encoder-discriminator network, to 
the conventional GAN architecture.
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3.3.2 GAN-Based Signal Reconstruction Method 

The baseline concepts of the current signal reconstruction method are similar to those 
of the image in painting method (Yeh et al. 2017). But owing to the many differences 
between image characteristics (static, high spatial correlations) and instrumentation 
signals (sequential, low spatial correlations), significant modifications to the under-
lying GAN architecture, loss functions, and performance metrics are needed before 
adopting the concepts of the image in painting method in the development of the 
signal reconstruction method. 

The GAN-based signal reconstruction method follows three steps: GAN model 
training, searching for the optimal latent vector and optimal label, and signal 
reconstruction. The following sections describe these steps in detail. 

3.3.2.1 Training of the GAN Model 

The first step of the GAN-based signal reconstruction method involves training the 
GAN model to prepare it for the subsequent steps. In the training process, the gener-
ator is trained to generate a realistic signal set from the given latent vector, while 
the discriminator is trained to distinguish real-world signal sets and generated signal 
sets. 

To achieve successful signal reconstruction across various NPP conditions, the 
generator needs to be able to mimic the signal sets that can be observed in the 
different conditions. It should also be fairly general, meaning that the generator 
should be capable of mimicking not only the signal sets used for training it but also 
the signal sets that belong to similar manifold distributions. 

As mentioned in Sect. 3.3.1, the current GAN architecture combines the 
concepts of the RGAN, conditional GAN, and MGGAN. As a result, it has five 
subnetworks: generator (G), discriminator (D), classifier (C), encoder (E), and 
encoder-discriminator (DE). Figure 3.20 shows a schematic of the GAN architecture.

Among the subnetworks, the AE should be trained before the training of the other 
aspects of the GAN model in order to utilize the encoder, as follows from the adoption 
of the MGGAN. After training the AE and the rest of the GAN, the model parameters 
are fixed and used in all subsequent steps. 

The loss functions necessary for updating the network parameters of the GAN 
architecture are defined in Eqs. (3.10) to (3.13), in which expectation terms and 
normalizing constants are omitted. During the experiments, we attempted to apply the 
Wasserstein-distance-based loss function and a sigmoid cross-entropy loss function 
for the generator and discriminator, but empirically found that such loss functions 
did not perform well, except for the following least-squares loss function. 

LGen = (D(G(z, c)) − 1)2 + (DE(G(z, c)) − 1)2 (3.10) 

LDis = (D(x) − 1)2 + (DE(x) − 1)2 + (D(G(z, c)))2 + (DE(G(z, c)))2 (3.11)
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Fig. 3.20 Schematic of the GAN architecture for signal generation. Reproduced with permission 
from Kim et al. (2020)

LAE =
Σ
i

Σ
j

(
AE(x)(i,j) − x(i,j)

)2 
(3.12) 

LCla = 
NΣ
n=1

{||Ccont,n(x) − ccont,x,n
|| + ||Ccont,n(G(z, c)) − ccont,G(z,c),n

||}

− 
QΣ
i=1 

n(Qi)Σ
j=1

{
Cdisc,i,j(x) log

(
cdisc,x,i,j

) + Cdisc,i,j(G(z, c))log
(
cdisc,G(z,c),i,j

)}
(3.13) 

In these equations, LGen is the generator loss function, LDis is the discriminator loss 
function, LAE is the AE loss function, LCla is the classifier loss function, c is the label, 
ccont,x,n is the n-th continuous label of data x, cdisc,x,i,j is the value of the discrete label 
of data x (i-th discrete label, j-th class), DE is the encoder-discriminator function, AE 
is the AE function (AE(i,j), i-th row, j-th column element of AE output), x(i,j) is the i-th 
row, j-th column element of input x, Ccont,n is the n-th continuous-label-estimation 
function of the classifier network, and Cdisc,i,j is the discrete-label-estimation function
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of the classifier network (i-th discrete label, j-th class). Otherwise, N, Q, and n(Qi) 
are the number of continuous labels, number of discrete labels, and number of classes 
in the i-th discrete label, respectively. 

Compared with other data types, such as image data, it is relatively more chal-
lenging to check the quality of the generated signal sets by manually inspecting 
drawn samples. To address this issue, a simple performance metric called the gener-
ative error is introduced to easily confirm the performance of the generator. For a 
given sample, the generative error is defined as the minimum value of the deviations 
between the training dataset and the generated dataset. By this definition, the gener-
ative error is zero when the generator produces data identical to the training data. 
The generative error can be mathematically expressed with Eq. (3.14). 

Eg(z, c) = min 
k 

⎡ 

⎣Σ
i

Σ
j

(||G(z, c)(i,j) − xk,(i,j)
||)

⎤ 

⎦. (3.14) 

Here, Eg denotes the generative error, G(i,j) is the i-th row, j-th column element of 
the generator output, and xk,(i,j) is the i-th row, j-th column element of the k-th training 
data. In terms of the performance of the GAN model in generating realistic samples, 
a large mean generative error over multiple samples indicates that the generator is ill-
trained to generate realistic samples as intended, assuming that the training datasets 
are generally evenly distributed. But in terms of the generality of the model, an overly 
small mean generative error is not desirable either, as this can indicate an occurrence 
of the overfitting problem. Despite the fact that the suggested metric is not suitable 
for fixing precise criteria, it is clear that a certain level of mean generative error is 
desirable when considering the applicability of the model. We set the mean generative 
error in this work to be about 1%–3% and trained the GAN model following this 
criterion. 

3.3.2.2 Search for the Optimal Latent Vector and Optimal Label 

To reconstruct a damaged signal set, the trained GAN model should generate a 
signal set that is appropriate for reconstruction. In the second step, which is to find 
the optimal latent vector and optimal label, a specific latent vector and label are 
identified and used as inputs for the trained generator. This allows the model to 
generate suitable appropriate signal sets for reconstruction. 

The search for the optimal latent vector and optimal label is performed iteratively, 
where a specific loss function (differing from those in the GAN model training step) 
is minimized; Fig. 3.21 shows a schematic of the iterative process used to find the 
optimal latent vector and label. The loss function for this step is determined based on 
three loss elements, as described below, that are related to the shared characteristics 
of the damaged signal set and the generated signal set as well as the quality of the 
generated signal set.
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Fig. 3.21 Schematic of the iterative process used for finding the optimal latent vector and optimal 
label. Reproduced with permission from Kim et al. (2020) 

The first loss element is called homogeneity loss, which measures the deviation 
between the normal aspects of the damaged signal set and the equivalent aspects of 
the generated signal set. Homogeneity loss is a fundamental loss element, allowing 
the normal data in the damaged signal set to be utilized as a clue for the signal 
reconstruction. 

The second loss element, classification loss, measures the deviation between the 
labels estimated from the normal aspects of the damaged signal set and the labels 
estimated from the equivalent aspects of the generated signal set. While the role of 
classification loss is similar to that of homogeneity loss, classification loss employs 
a classifier network instead of a discriminator network. 

The third loss element is called practicality loss, which is used to determine 
whether the generated signal set is realistic or unrealistic. During the iterative process 
of the search step, LP helps prevent the generation of unrealistic solutions with low 
values of homogeneity loss and classification loss. 

Summing the values of the three loss elements with corresponding weighting 
factors λ1 (for classification loss) and λ2 (for practicality loss) gives the total loss 
(Ltotal). The λ1 and λ2 weighting factors are considered hyperparameters, and thus 
should be tuned to obtain proper values. Mathematically, the above loss elements 
and total loss can be expressed as in Eqs. (3.15) to (3.18). 

In these equations, LH is the homogeneity loss, LC is the classification loss, LP 
is the practicality loss, Ltotal is the total loss, s is the damaged signal set, m is the 
mask matrix indicating the missing and normal parts with binary values (0 and
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1, respectively), λ1 is a relative weighting factor for classification loss, and λ2 is 
a relative weighting factor for practicality loss. The symbol ⊙ is an operator for 
element-wise multiplication. 

LH (z, c|s, m) =
Σ

(m ⊙ |G(z, c) − s|) (3.15) 

LC (z, c|s, m) = 
NΣ
n=1 

|(Ccont,n(m ⊙ G(z, c)) − Ccont,n(m ⊙ s)| 

− 
QΣ
i=1 

n(Qi)Σ
j=1 

Cdisc,i,j(m ⊙ s)log(Cdisc,i,j(m ⊙ (G(z, c))) 
(3.16) 

LP(z, c) = log(1 − D(G(z, c))) (3.17) 

Ltotal = LH (z, c|s, m) + λ1LC (z, c|s, m) + λ2LP(z, c) (3.18) 

3.3.2.3 Signal Reconstruction 

Once the optimal latent vector and the optimal label needed for signal reconstruction 
are found through the iterative process in the second step, the trained GAN model 
generates an ‘optimal’ signal set. Signal reconstruction then proceeds by replacing 
the missing parts of the damaged signal set with the corresponding parts of the 
generated ‘optimal’ signal set. Expressions for the signal reconstruction are given 
below. 

ẑ, ̂c = arg min 
z,c 

(Ltotal) (3.19) 

ŝ = (m ⊙ s) + (
(1 − m) ⊙ G

(
ẑ, ̂c

))
. (3.20) 

Here, ẑ denotes the optimal latent vector, ĉ denotes the optimal label, and ŝ denotes 
the reconstructed signal. It should be noted that the reconstructed signal in Eq. (3.20) 
may include normalized data, and thus post-processing should be conducted to obtain 
the actual signal values. 

3.3.3 Experiments 

Experiments are designed and conducted to validate the GAN-based signal recon-
struction method. In the pilot/main experiments, data acquisition and preprocessing 
are followed by GAN model training, after signal reconstruction is performed. The 
pilot experiment is conducted to verify the signal reconstruction performance and
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determine the most suitable parameter sets. The main experiment is conducted using 
the suitable parameter sets from the pilot experiment and for several conditions. 
Python 3.6 and TensorFlow (version 1.5) are used for programming and as the ML 
platform. 

3.3.3.1 Data Acquisition and Preprocessing 

As the signal reconstruction method is a data-driven method, a sufficient number of 
realistic signal sets reflecting NPP emergency conditions must be prepared for the 
method to be effective. For this, a CNS developed by KAERI was used to simulate 
data for the experiments, based on the lack of real-world data: there have only been 
a small number of cases of NPP emergencies, and real-world instrumentation signal 
data in emergency situations are likewise scarce. The CNS was developed using the 
SMABRE (small break) code and has as its reference plant the Westinghouse three-
loop 900 MW PWR (KAERI 1990). Although the employed CNS is not as precise 
as the simulators typically used in thermal–hydraulic analyses, its performance in 
simulating the early phases of NPP emergency events has been established (Kurki 
and Seppälä 2009). 

In the experiments, four design basis accidents (DBAs) are simulated with the 
CNS: cold-leg LOCA (cold-leg LOCA), hot-leg LOCA (hot-leg LOCA), SGTR, 
and main steam line break (MSLB). For each scenario, 91 break sizes from 10 to 
100 cm2 at 1 cm2 intervals (multiplied by 10 for the MSLB) are simulated. In all 
simulations, the initial plant condition is 100% full-power normal operation, and 
data are collected for over 5 min starting from the actuation of the reactor trip by an 
anomaly. As for the instrumentation signals, 31 different types of signals (refer to 
Table 3.15, experiment I) that are important for plant state diagnosis are selected. 

Following simulation, the simulated data undergo the following preprocessing 
steps to effectively train the GAN model and to be used in the experiments. 

• All data are processed to have the same time length (300 s of plant operation time) 
• Data for all instrumentation signals are linearly interpolated to have the same time 

interval (1 s of plant operation time) 
• Unit input data are generated with a time length of 30 s (plant operation time) 
• Measurement values are normalized to be between –1 (minimum) and 1 

(maximum) 
• Unit input data are labeled according to accident type, break size, and elapsed 

time (from reactor trip). 

In the labeling step, the accident type as a discrete label is one-hot encoded, while 
the break size and time as continuous labels are labeled with values between –1 
(minimum value) and 1 (maximum value). 

As a result of the preprocessing, a total of 98,280 unit data (4 scenarios, 91 break 
sizes, 270 unit data per simulation) are obtained. Each unit data is a 31 × 31 matrix 
and comprising 31 signal types each over 30 s. From the preprocessed data, 55,080 
unit data (4 scenarios, 51 break sizes, 270 unit data per simulation), about 56%, are
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Fig. 3.22 Schematic of the data structure and unit data generation. Reproduced with permission 
from Kim et al. (2020) 

used as training data. Figure 3.22 shows a schematic of the data structure and the 
unit data generation. 

3.3.3.2 GAN Model Training Results with Pilot/Main Experiments 

Based on the GAN architecture (Fig. 3.20), the model is repeatedly trained using 
various sets of hyperparameters. During the AE training process in particular, the 
encoded size (i.e., the size of the encoder’s output), numbers of LSTM layers and 
LSTM sequences, number of fully connected (FC) layers, number of FC layer nodes, 
and learning rate are mainly considered. For the training of the other subnetworks 
of the GAN, the latent vector size, numbers of LSTM layers and LSTM sequences, 
number of FC layers, number of FC layer nodes, and learning rate are considered. 
To find the hyperparameter sets that minimize the AE loss and mean generative 
error in the training process of the AE and other GAN subnetworks, respectively, the 
grid search method is applied. To prevent excessive training time, hyperparameters 
excluding the learning rate are first roughly determined, after which the learning rate 
is determined precisely. 

Table 3.13 lists the hyperparameter sets that are selected for training the GAN 
model. In the subsequent experiments, the corresponding GAN model is trained with 
these hyperparameters. The Adam optimizer Kingma and Ba (2014) is applied using 
its default settings (β1 = 0.9, β2 = 0.999, ε = 10−8) for updating all networks. 

Table 3.13 Hyperparameter set selected for GAN model training 

# of  
LSTM 
layers 

# of LSTM  
sequences 

# of FC  
layers 

# of FC nodes Learning rate 
(10 − 7) 

Generator 2 31 3 248/124/62 50 

Discriminator 2 31 3 248/124/62 10 

Encoder (separately 
trained) 

2 31 2 124/62 200 

Encoder-discriminator 2 31 3 248/124/62 2 

Classifier 2 31 3 248/124/62 10



68 3 Signal Validation

Fig. 3.23 Losses of the generator, discriminator, and classifier networks during model training. 
Reproduced with permission from Kim et al. (2020)

During training, 200 samples are drawn every 100 epochs to check the perfor-
mance of the model. After 3000 training epochs with the selected hyperparameter 
sets, the mean generative error of the drawn samples is 1.10%, the maximum gener-
ative error is 3.46%, and the standard deviation of the generative errors is 0.0076. 
The losses of the generator, discriminator, and classifier networks during training 
are shown in Fig. 3.23, and the mean generative errors during training are shown in 
Fig. 3.24. As shown in the figures, all three loss types mostly converge after about 
500 epochs, while the mean generative error decreases further after 500 epochs. 

Signal Reconstruction 
In the last step of the experiments, the trained GAN model is applied for signal 
reconstruction. Prior to conducting the main experiment, a pilot experiment is 
first attempted, the results of which are used to make modifications for the main 
experiment. 

Pilot Experiment and Modifications 
In the pilot experiment to verify the signal reconstruction performance of the trained 
GAN model, 1000 unit data are randomly selected from the total 98,280 unit data, 
and the signal reconstruction sequences are performed after intentionally omitting 
signals. The types of omitted signals are randomly selected in every trial, and the 
number of omitted signals varies from 1 to 20. For a quantitative evaluation of the
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Fig. 3.24 Mean generative error during model training from samples drawn every 100 epochs. 
Reproduced with permission from Kim et al. (2020)

signal reconstruction performance, the mean RE, maximum RE, and standard devi-
ation of the RE are measured for the reconstruction results of the 1000 intentionally 
damaged signal sets. 

Similar to the GAN model training step, signal reconstruction is repeatedly 
performed with different sets of hyperparameters. The mainly considered ones are λ1, 
λ2, and the learning rate. The grid search method is again applied to find the proper 
hyperparameters for signal reconstruction with a minimal mean RE. Section 3.3.1 
discusses the detailed process of determining the two weighting factors, λ1 and λ2. 

Table 3.14 lists the finally selected hyperparameter set, with which the corre-
sponding reconstruction results are used for performance evaluation. As in the GAN 
model training step, the Adam optimizer Kingma and Ba (2014) is used at its default 
settings (β1 = 0.9, β2 = 0.999, ε = 10−8) for the iterative process of searching for 
the optimal latent vector and optimal label. 

The reconstruction performance tends to be similar or better for increasing 
numbers of iterations, but it is undesirable to spend a significant amount of time 
on the reconstruction task. A maximum of 750 iterations are therefore performed in

Table 3.14 Selected hyperparameters for the iterative process of signal reconstruction 

Max. no. of iterations λ1 λ2 Learning rate (10−2) 

Finding the optimal latent 
vector and optimal label 

750 5 10 10 
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this experiment, requiring about 30 s which is identical to the time length of the unit 
data. The maximum number of iterations can be varied as long as the reconstruction 
performance is not excessively degraded or the time required for the reconstruction 
is not excessively long; any changes to the number of iterations, though, should be 
made after considering the performance of the underlying hardware. 

The reconstruction results are obtained for different numbers of missing signals. 
Figures 3.25 and 3.26 plot the number of data that exceed 10% RE and the maximum 
RE according to the number of missing signals, respectively. 

As the current method does not produce any RE for the normal signals in the 
damaged signal set, it can be expected that the RE increases with an increasing 
number of missing signals. However, multiple performance metrics in the pilot exper-
iment showed contradictory results, for example the reducing trend in the number 
of data that exceed 10% of the RE and the maximum RE with increasing number of 
missing signals as seen in Figs. 3.25 and 3.26. Inspecting the signal reconstruction 
process in the pilot experiment reveals two possible reasons for the contradictory 
results. 

One reason is related to a limitation of the trained GAN model itself, namely that 
it may poorly express a particular signal in a particular scenario. Such a limitation 
would result in large REs for specific signal sets, and even for specific signals within 
a signal set. Accordingly, when reconstruction is attempted in the case that multiple 
signals are missing, several signals may not be appropriately reconstructed even if 
most of the missing signals are reconstructed properly. In this case, with an increasing

Fig. 3.25 Number of data exceeding 10% RE, pilot experiment. Reproduced with permission from 
Kim et al. (2020)
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Fig. 3.26 Maximum RE, pilot experiment. Reproduced with permission from Kim et al. (2020)

number of missing signals, the effect that the poorly reconstructed signals have on 
the RE is reduced because their effect is compensated for by the well-reconstructed 
signals. This case was indeed found to occur in the pilot experiment. It was also 
found that specific types of signals, in particular those related to water levels (e.g., 
RV and PZR water levels), induce higher REs in numerous cases compared to other 
types of signals. 

The other reason for the contradictory results mentioned above, as an extension of 
the first reason, is that RE alone is insufficient to measure the overall reconstruction 
performance of the model. Note that RE is obtained by equally considering all missing 
signals in the signal set. Therefore, it is a valid performance metric for evaluating 
the model from a macroscopic perspective, but it is inappropriate for evaluating 
model performance from a microscopic perspective because it does not clearly reveal 
whether the model successfully reconstructs specific damaged signal sets. 

Considering these two reasons, the following modifications are made for the main 
experiments. The first modification is to conduct additional experiments that exclude 
several types of signals that induce large REs as candidates for the intentionally 
omitted signals. The second modification is to adopt a new performance metric, 
namely mean-max RE, in addition to the conventional RE. As its name implies, 
mean-max RE is the largest value of the mean REs for all signal types. By defining a 
reconstruction result as failed when its mean-max RE exceeds a certain threshold, it 
easier to evaluate whether specific reconstruction cases are successful. Figure 3.27 
shows a schematic of the calculation process for both RE and mean-max RE. It can 
be noted that, in terms of terminology, the term RE as used so far would correspond 
to mean-mean RE.
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Fig. 3.27 Schematic of the calculation processes for the (mean-mean) RE and mean-max RE. 
Reproduced with permission from Kim et al. (2020) 

Main Experiment 
The main experiment is conducted with the modifications determined from the pilot 
experiment. The general process and configurations of the main experiment mirror 
those of the pilot experiment, but with several differences as follows. 

• Metrics based on the mean-max RE, i.e., the number of data exceeding 5 and 10% 
of the mean-max RE, are additionally considered. 

• The number of missing signals is varied from 1 to 21. 
• Additional trials are conducted that exclude 5 or 10 types of signals that induce 

large REs from the candidates of intentionally omitted signals. In what follows, 
the specific experiments excluding 0, 5, and 10 types of signals as candidates for 
intention omission are referred to as Experiments I, II, and III, respectively. 

Table 3.15 lists the candidate signals for intentional omission and their units for 
Experiments I, II, and III. Figures 3.28, 3.29, 3.30, and 3.31 show the number of 
data exceeding 10% of the mean-max RE, percentages of successful reconstruction, 
mean REs, and standard deviations of the REs according to the number of missing 
signals, respectively.
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Table 3.15 Candidates of intentionally omitted signals and their units 

Signal (Experiment I, 
31 types of signals) 

Signal (Experiment II, 
26 types of signals) 

Signal (Experiment III, 
21 types of signals) 

Unit 

CTMT sump level CTMT sump level — m 

CTMT radiation CTMT radiation — mrem/h 

CTMT relative humidity CTMT relative humidity CTMT relative humidity % 

CTMT temperature CTMT temperature CTMT temperature °C 

CTMT pressure CTMT pressure — kg/cm2 

Core outlet temperature Core outlet temperature Core outlet temperature °C 

Hot leg temperature 
(loops 1, 2, and 3) 

Hot leg temperature 
(loops 1, 2, and 3) 

Hot leg temperature 
(loops 1, 2, and 3) 

°C 

Cold leg temperature 
(loops 1, 2, and 3) 

Cold leg temperature 
(loops 1, 2, and 3) 

Cold leg temperature 
(loops 1, 2, and 3) 

°C 

Delta temperature 
(loops 1, 2, and 3) 

Delta temperature 
(loops 1, 2, and 3) 

Delta temperature 
(loops 1, 2, and 3) 

°C 

PRT temperature PRT temperature PRT temperature °C 

PRT pressure PRT pressure PRT pressure kg/cm2 

H2 concentration H2 concentration H2 concentration % 

RV water level — — % 

PZR temperature PZR temperature PZR temperature °C 

PZR level — — % 

PZR pressure (wide 
range) 

PZR pressure (wide range) PZR pressure (wide range) kg/cm2 

SG pressure (loops 1, 2, 
and 3) 

SG pressure (loops 2 and 3) SG pressure (loops 2, and 
3) 

kg/cm2 

SG narrow range level 
(loops 1, 2, and 3) 

SG narrow range level 
(loops 2 and 3) 

— % 

Feedwater flow rate 
(loops 1, 2, and 3) 

Feedwater flow rate 
(loops 2 and 3) 

Feedwater flow rate 
(loops 2 and 3) 

t/h 

CTMT: containment, PRT: PZR relief tank, RV: reactor vessel, PRZ: pressurizer, SG: steam 
generator
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Fig. 3.28 Number of data exceeding 10% of the mean-max RE. Red, green, and blue lines denote 
the results of Experiments I, II and III, respectively. Reproduced with permission from Kim et al. 
(2020) 

Fig. 3.29 Percentages of successful reconstructions. Red, green, and blue lines denote the results 
of Experiments I, II, and III, respectively. Reproduced with permission from Kim et al. (2020)
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Fig. 3.30 Mean REs. Red, green, and blue lines denote the results of Experiments I, II, and III, 
respectively. Reproduced with permission from Kim et al. (2020) 

Fig. 3.31 Standard deviations of the RE. Red, green, and blue lines denote the results of 
Experiments I, II, and III, respectively. Reproduced with permission from Kim et al. (2020)



76 3 Signal Validation

References 

Albazzaz H, Wang XZ (2004) Statistical process control charts for batch operations based on 
independent component analysis. Ind Eng Chem Res 43(21):6731–6741 

An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction 
probability. Special Lect IE 2(1):1–18 

Bae J, Ahn J, Lee SJ (2020) Comparison of multilayer perceptron and long short-term memory for 
plant parameter trend prediction. Nucl Technol 206(7):951–961 

Bang D, Shim H (2021) MGGAN: solving mode collapse using manifold-guided training. In: 
Proceedings of the IEEE/CVF international conference on computer vision, pp 2347–2356 

Baraldi P, Cammi A, Mangili F, Zio E (2010) An ensemble approach to sensor fault detection and 
signal reconstruction for nuclear system control. Ann Nucl Energy 37(6):778–790 

Baraldi P, Di Maio F, Genini D, Zio E (2015) Comparison of data-driven reconstruction methods 
for fault detection. IEEE Trans Reliab 64(3):852–860 

Boden M (2002) A guide to recurrent neural networks and backpropagation. The Dallas Project, 
2(2):1–10. 

Chen Y, Chen R, Pei L, Kröger T, Kuusniemi H, Liu J, Chen W (2010) Knowledge-based error 
detection and correction method of a multi-sensor multi-network positioning platform for pedes-
trian indoor navigation. In: IEEE/ION position, location and navigation symposium. IEEE, pp 
873–879 

Choi Y, Yoon G, Kim J (2021) Unsupervised learning algorithm for signal validation in emergency 
situations at nuclear power plants. Nucl. Eng. Technol 

Choi J, Lee SJ (2020) Consistency index-based sensor fault detection system for nuclear power 
plant emergency situations using an LSTM network. Sensors 20(6):1651 

Di Maio F, Baraldi P, Zio E, Seraoui R (2013) Fault detection in nuclear power plants components 
by a combination of statistical methods. IEEE Trans Reliab 62(4):833–845 

Esteban C, Hyland SL, Rätsch G (2017) Real-valued (medical) time series generation with recurrent 
conditional gans. arXiv preprint arXiv:1706.02633 

Fantoni PF, Hoffmann M, Htnes W, Rasmussen B, Kirschner A (2004) The use of non linear partial 
least square methods for on-line process monitoring as an alternative to artificial neural networks. 
Machine Intelligence: Quo Vadis? World Scientific 

Fantoni PF, Mazzola A (1996) A pattern recognition-artificial neural networks based model for 
signal validation in nuclear power plants. Ann Nucl Energy 23(13):1069–1076 

Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM. 
Neural Comput 12(10):2451–2471 

Gertler J (1997) Fault detection and isolation using parity relations. Control Eng Pract 5(5):653–661 
Hashemian H (2010) Aging management of instrumentation & control sensors in nuclear power 
plants. Nucl Eng Des 240(11):3781–3790 

Hines J, Uhrig RE, Wrest DJ (1998) Use of autoassociative neural networks for signal validation. 
J Intell Rob Syst 21(2):143–154 

Hines J (2009) On-line monitoring for calibration extension: an overview and introduction. US 
Nuclear Regulatory Commission 

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780 
Hwang I, Kim S, Kim Y, Seah CE (2009) A survey of fault detection, isolation, and reconfiguration 
methods. IEEE Trans Control Syst Technol 18(3):636–653 

IAEA (2002) Accident analysis for nuclear power plants. International Atomic Energy Agency 
IAEA (2006) Development and review of plant specific emergency operating procedures. Interna-
tional Atomic Energy Agency 

Ito K, Xiong K (2000) Gaussian filters for nonlinear filtering problems. IEEE Trans Autom Control 
45(5):910–927 

KAERI (1990) Advanced compact nuclear simulator textbook. Nuclear Training Center in Korea 
Atomic Energy Research Institute

http://arxiv.org/abs/1706.02633


References 77

Kaistha N, Upadhyaya BR (2001) Incipient fault detection and isolation of field devices in nuclear 
power systems using principal component analysis. Nucl Technol 136(2):221–230 

Kim SG, Chae YH, Seong PH (2020) Development of a generative-adversarial-network-based 
signal reconstruction method for nuclear power plants. Ann Nucl Energy 142:107410 

Kim H, Arigi AM, Kim J (2021) Development of a diagnostic algorithm for abnormal situations 
using long short-term memory and variational autoencoder. Ann Nucl Energy 153:108077 

Kim SG, Chae YH, Seong PH (2019a) Signal fault identification in nuclear power plants based on 
deep neural networks. Annals DAAAM Proc. 846–853 

Kim YG, Choi SM, Moon JS (2019b) Development of convolutional neural networks diagnose 
abnormal status in nuclear power plant operation. KNS2019a, Korean Nuclear Society 

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412. 
6980. 

Kurki J, Seppälä M (2009) Thermal hydraulic transient analysis of the high performance light water 
reactor using apros and smabre. 

Lee SJ, Kim J, Jang S-C, Shin YC (2009) Modeling of a dependence between human operators in 
advanced main control rooms. J Nucl Sci Technol 46(5):424–435 

Li W, Peng M, Liu Y, Jiang N, Wang H, Duan Z (2018) Fault detection, identification and recon-
struction of sensors in nuclear power plant with optimized PCA method. Ann Nucl Energy 
113:105–117 

Lin T-H, Wu S-C (2019) Sensor fault detection, isolation and reconstruction in nuclear power plants. 
Ann Nucl Energy 126:398–409 

Lin T-H, Wang T-C, Wu S-C (2021) Deep learning schemes for event identification and signal 
reconstruction in nuclear power plants with sensor faults. Ann Nucl Energy 154:108113–108113 

Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411. 
1784 

Nazir HZ, Schoonhoven M, Riaz M, Does RJ (2014) Quality quandaries: a stepwise approach for 
setting up a robust Shewhart location control chart. Qual Eng 26(2):246–252 

Press O, Bar A, Bogin B, Berant J, Wolf L (2017) Language generation with recurrent generative 
adversarial networks without pre-training. arXiv preprint arXiv:1706.01399 

Rabinovich SG, Rabinovich M (2010) Evaluating measurement accuracy. Springer 
Shaheryar A, Yin X-C, Hao H-W, Ali H, Iqbal K (2016) A denoising based autoassociative 
model for robust sensor monitoring in nuclear power plants. Science and Technology of Nuclear 
Installations, 2016. 

Simani S, Marangon F, Fantuzzi C (1999) Fault diagnosis in a power plant using artificial neural 
networks: analysis and comparison. In: 1999 European control conference (ECC). IEEE, pp 
2270–2275 

Xu H, Deng Y (2017) Dependent evidence combination based on Shearman coefficient and Pearson 
coefficient. IEEE Access 6:11634–11640 

Xu X, Hines JW, Uhrig RE (1999) Sensor validation and fault detection using neural networks. In 
Proceedings of maintenance and reliability conference (MARCON 99), pp 10–12 

Yang J, Kim J (2018) An accident diagnosis algorithm using long short-term memory. Nucl Eng 
Technol 50(4):582–588 

Yang J, Kim J (2020) Accident diagnosis algorithm with untrained accident identification during 
power-increasing operation. Reliab Eng Syst Saf 202:107032 

Yang Z, Xu P, Zhang B, Xu C, Zhang L, Xie H, Duan Q (2022) Nuclear power plant sensor signal 
reconstruction based on deep learning methods. Ann Nucl Energy 167:108765–108765 

Yeh RA, Chen C, Yian Lim T, Schwing AG, Hasegawa-Johnson M, Do MN (2017) Semantic image 
inpainting with deep generative models. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp. 5485–5493 

Yoo CK, Villez K, Lee IB, Van Hulle S, Vanrolleghem PA (2006) Sensor validation and reconciliation 
for a partial nitrification process. Water Sci Technol 53(4–5):513–521

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1706.01399


78 3 Signal Validation

Zavaljevski N, Gross KC (2000) Sensor fault detection in nuclear power plants using multivariate 
state estimation technique and support vector machines. Argonne National Laboratory, Argonne, 
IL (US) 

Zio E, Di Maio F (2010) A data-driven fuzzy approach for predicting the remaining useful life in 
dynamic failure scenarios of a nuclear system. Reliab Eng Syst Saf 95(1):49–57 

Zúñiga AA, Baleia A, Fernandes J, Branco PJDC (2020) Classical failure modes and effects analysis 
in the context of smart grid cyber-physical systems. Energies 13(5):1215–1215



Chapter 4 
Diagnosis 

The main objective of diagnosis in a general sense is to detect a failure or failures 
and identify the related cause. In a previous work, fault detection and diagnosis in 
NPPs were categorized into six applications: (1) instrument calibration monitoring, 
(2) dynamic performance monitoring of instrumentation channels, (3) equipment 
monitoring, (4) reactor core monitoring, (5) loose part monitoring, and (6) transient 
identification (Ma and Jiang 2011). Among them, this chapter is focused on transient 
identification, which is to identify the occurrence and cause of transients initiated 
by system failure(s) and external disturbances. It is critical that operators are able to 
mitigate transients in order to minimize their effects on the safety and efficiency of 
NPPs. 

In current commercial NPPs, transients include both abnormal and emergency 
situations. When such a situation occurs, the operators need to specifically identify 
the current situation and also what caused it based on the plant symptoms, which are 
gathered from alarms, plant parameters, and system statuses. Once they diagnose the 
situation, the particular procedure relevant to the situation is selected that provides 
the proper mitigating actions. 

This process, diagnosis, is regarded as one of the most demanding tasks for NPP 
operators. In an emergency situation, the plant changes dynamically, and the fast-
changing parameters make it difficult for operators to diagnose the situation correctly. 
Additional factors that can lead to operator error in the diagnosis of an emergency 
include the presence of numerous alarms, time pressure, and the need to continuously 
monitor the plant status. On the other hand, for an abnormal situation, hundreds of 
potential cases exist in NPPs. For instance, typical NPPs in the Republic of Korea 
have about 100 different abnormal operating procedures, or AOPs, that are used 
to mitigate abnormal events, where each procedure covers one or more abnormal 
cases. Therefore, the selection of the relevant AOP, which is a critical diagnosis task, 
is highly challenging even for well-trained operators considering the hundreds of 
possible related events that can occur and the thousands of plant parameters that 
require monitoring (Park and Jung 2015).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Owing to this difficulty, operator support during diagnosis has been the most 
popular application of AI techniques in this field. For instance, a fault diagnosis 
system was suggested for an NPP based on a state information-imaging method by 
applying kernel PCA using full-scope simulator data (Yao et al. 2020). Another group 
proposed a fault diagnosis technique with regard to tiny leakages in pipelines in an 
NPP using an integrated method of both knowledge-based and data-driven methods 
(Wang et al. 2019). An online diagnosis tool has also been developed to identify the 
severity of a LOCA in NPPs using ANNs to enhance robustness and quantify the 
confidence bounds associated with the prediction (Tolo et al. 2019). In addition, an 
approach to provide the “don’t know” response capability to a DL-based system has 
been suggested for the NPP accident identification problem, which employs several 
data-driven methods such as particle swarm optimization, AE, and deep one-class 
AE (Pinheiro et al. 2020). 

The function of diagnosis itself remains still a key element in related autonomous 
operation systems because the correct diagnosis or situation awareness is a prerequi-
site for the correct response of the autonomous system. This chapter introduces six 
examples of diagnostic algorithms using AI techniques. 

4.1 Diagnosis of Abnormal Situations with a CNN 

The number of variables that can be monitored in an NPP is enormous considering 
the number of components and the physical characteristics of the many NPP systems. 
If each of these variables is analyzed by applying a weight to it, then computational 
efficiency will decrease and data interpretation will be difficult. In this regard, DL 
technology is able to distinguish the useful features of input data and learn how much 
weight to assign them. As a DL method, the CNN provides a great advantage in terms 
of computational efficiency through its features of extracting local information from 
input data as opposed to analyzing all the information. 

The CNN is inspired by the workings of the visual processing system of the human 
brain, which only responds to its local receptive field (Krizhevsky et al. 2017). This 
network type has shown remarkable success in image analysis tasks including face 
recognition (Li et al. 2015), handwritten character recognition (Ciresan et al. 2011), 
and medical image classification (Li et al. 2014). With its ability to deal with image 
data, the CNN can be effective in handling massive amounts of data assuming that 
the data is properly converted into an image format. From this point of view, the 
concept of using of a convolutional layer to identify the key characteristics of raw 
data can also apply to the analysis of NPP data accumulated in a time-series manner. 
With existing approaches, the computational complexity and costs will escalate if 
the dynamic aspects of individual systems at the plant-level are incorporated into the 
diagnosis of abnormal situations. 

The operational data of NPPs have a form in which information on each variable 
is accumulated over time. To utilize the CNN’s ability to identify spatial features, 
data preprocessing is performed on the NPP status at single moments in the shape
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of a square. In this way, as the processed data are transformed into snapshots every 
second, it may be difficult to detect a change in the NPP state from the normal 
state following the occurrence of an abnormal event. To overcome this problem, 
this section introduces a solution that adopts two-channel 2D images to describe the 
NPP state values. One channel represents the current NPP state values, while the 
other channel represents the extent of the changes in the NPP state values during 
a prescribed time period in the past. With this setup, the model is designed to deal 
with all the information that individual systems generate every second, as well as the 
dynamics of the states of individual systems. 

The overall process of this methodology consists of the following four stages. 

1. Raw data generation from an NPP simulator 
2. Data transformation from raw data into two-channel 2D image data 
3. Configuration of the CNN model with a description of each layer in the CNN 
4. Performance evaluation with four typical evaluation metrics measuring the 

performance, reliability, and practicality of the model. 

4.1.1 Raw Data Generation 

AS a characteristic of supervised learning, the performance of CNNs depends on 
the number of data and their diversity. But in actual NPPs, the number of abnormal 
operation data generated to date is insufficient and has low accessibility for use in 
AI learning. Therefore, research related to abnormal situations normally produces 
training data through NPP simulators. 

Abnormal operation data is labeled by dividing the normal states and the 
abnormal states from the moment when the abnormal event occurs. In the case of 
an abnormal event, multiple types of events requiring the implementation of various 
sub-procedures in the relevant AOP can be simulated, which gives the opportunity to 
create diverse abnormal operation scenarios. In addition, the diversity of the scenarios 
can be further expanded by adjusting the severity of the injected abnormal event. 

The target systems for AOPs are widely located across the NPP. For example, 
about 80 AOPs exist for the Advanced Power Reactor (APR)-1400 reactor, and these 
procedures are relevant to almost all the systems in the NPP. To judge whether an NPP 
is in abnormal state through the plant parameters, it is necessary to select as many 
detailed variables as possible and analyze them all. Accordingly, the data obtained 
through abnormal operation should contain information on all observable variables. 

4.1.2 Data Transformation 

The data obtained in the previous step includes more than 1000 variables corre-
sponding to NPP state values. But using such a large number of variables to build 
a classification model results in long training times and requires a huge number of
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training samples (Van Niel et al. 2005). A few studies have attempted to address 
this issue by representing the high dimensional data as images to be used as CNN 
inputs (Wen et al. 2017; Chang and Park 2018). The structure of a CNN reduces the 
number of parameters to be updated by performing the operations of convolution and 
pooling, thereby granting it the ability to effectively deal with high dimensional data 
while saving computational time and cost. Based on this, the developed two-channel 
2D CNN in this section employs image data that (1) describe the NPP state values 
at a certain point in time, and (2) describe the changing patterns of the NPP state 
values during a certain time period in the past. 

Data is transformed from raw data into two-channel 2D images with the following 
process. First, the raw data needs to be normalized because the ranges of the variables 
in the data vary from one to another. For data normalization, the min–max feature 
scaling method is used, which is based on the minimum and maximum values of 
each variable obtained from the NPP simulator. 

Xnormalized = 
X − Xmin 

Xmax − Xmin 
(4.1) 

Second, the normalized data is transformed into a square 2D image. Generally, 
square 2D images are more readily handled by CNNs than rectangular 2D images. In 
cases in which the number of variables in the data is not a square number, adding zeros 
enables the data to be converted into a square, as shown in Fig. 4.1. It is known that 
zero-padding schemes such as this do not affect the performance of the classification 
model, as the zeros are merely dummy information in the data (Clark and Storkey 
2015). Third, the extent of the changes in the NPP state values during a prescribed 
time period in the past is also converted into a 2D image in the same manner by 
assigning some value as the time-lag between the two images. Figure 4.2a, b show 
examples of these converted 2D images. Lastly, by overlapping the two 2D images 
generated in the second and third steps, two-channel 2D image data is constructed, 
as illustrated in Fig. 4.2c. These images are presented in grayscale, with black and 
white pixels indicating zero and one, respectively. 

Fig. 4.1 Example of adding zeros. Reproduced with permission from Lee et al. (2021)
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Fig. 4.2 Example of the result of data transformation. a Image for the NPP state values at a certain 
point in time. b Image for the changing patterns of NPP state values. c Overlapped two-channel 2D 
image. Reproduced with permission from. Reproduced with permission from Lee et al. (2021) 

4.1.3 Structure of the CNN Model 

As shown in Fig. 4.3, the two-channel 2D CNN model consists of two parts for 
feature extraction and classification. When the two-channel 2D image data from 
the previous data transformation step is fed as an input, a series of layers including 
convolution layers and pooling layers construct feature maps from the input data. 
Then a FC layer flattens the constructed feature maps and calculates classification 
scores for the different types of abnormalities. 

4.1.3.1 Convolution Layer 

In the convolution layer, images are taken from the previous layer, called input 
images, and feature maps are constructed through a convolution operation applying 
trainable filters to the transferred images. These convolution layer filters are a square 
matrix of a certain size made up of weights to be updated during training. The filters

Fig. 4.3 Overall structure of the CNN model for abnormality diagnosis. Reproduced with 
permission from. Reproduced with permission from Lee et al. (2021) 
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each share weights and perform the convolution operation by passing over the image 
transferred from the previous layer, multiplying the matrix corresponding to each 
element of the image, and adding them together. In this convolution operation, the 
size of the filter determines the size of the feature maps to be constructed, and the 
number of filters corresponding to the number of channels in the convolution layer 
determine the depth or number of channels of the feature maps. 

Figure 4.4 shows an example of the convolution operation process comprising 
three components assumed to be a square matrix: the input image, filter, and output 
image. In the example, the input image is represented as I ∈ RMi×Ni , where Mi 

and Ni indicate the size of the input image as the number of rows and columns, 
respectively. The output image, which is the feature map, is likewise represented as 
O ∈ RMo×No with Mo and No indicating the output image size. The filter is expressed 
as F ∈ RMf ×Nf , where F indicates the size of the filter. With these components, the 
output value is calculated as in Eq. (4.2). 

(mo, no) = 
MfΣ

mf =0 

NfΣ

nf =0 

f
(
mf , nf

) · i(mi + mf , ni + nf
)
, 

where mo = 0, 1, . . . ,  Mo; no 
= 0, 1, . . . ,  No; mi = 0, 1, . . . ,  Mi; ni 
= 0, 1, . . . ,  Ni, as indexes (4.2) 

In this equation, i(·, ·) is each value of the input image, f (·, ·) is each weight of 
the filter, and o(·, ·) is each value of the output image. Each filter sweeps the input 
image at a certain stride, and therefore the size of the output image can be determined 
as follows.

Fig. 4.4 Example of the convolution process. Reproduced with permission from Lee et al. (2021) 
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Mo =
(
Mi − Mf

)

S
+ 1; No 

=
(
Ni − Nf

)

S
+ 1, where S is stride (4.3) 

The output of each convolution layer generally passes through an activation func-
tion to introduce nonlinearity in the network before entering the next layer. As the 
nonlinear activation function, a ReLU is employed, which is formulated in Eq. (4.4). 

f (x) = max(0, x) (4.4) 

4.1.3.2 Pooling Layer 

The purpose of the pooling layer is to conduct down-sampling in order to reduce the 
spatial size of the output feature maps, which decreases the number of parameters 
and prevents overfitting. The pooling layer adopts a filter similarly to the convo-
lution layer, but with a difference in that the pooling layer filter spatially resizes 
the image with no weights to be trained. Two common types of pooling operation 
are max pooling and average pooling. The former selects the maximum value in a 
sliding window, while the latter finds the average value over the sliding window. As 
mentioned in Sect. 4.1.2, the second channel of the two-channel 2D image represents 
the extent that the NPP state values changed during a certain time period. In reality 
though, NPP state values seldom change while the plant is in a normal state, and only 
a handful of values may show fluctuation even in an abnormal state. In other words, 
most values of the images here are close to zero except for a small number of large 
values. Based on this, max pooling is employed to better capture the changes in the 
state values, as max pooling can lead to substantial information loss. For example, 
if a 2 × 2 filter with a stride of 2 is utilized in the pooling layer, then 75% of the 
values in the input image will be discarded through the max pooling operation. The 
remaining values, i.e., the maximum values in each sliding window, are delivered to 
the next layer. 

4.1.3.3 FC Layer 

In a typical CNN, a FC layer usually serves as the last hidden layer. It carries out the 
classification task based on the feature maps constructed in the previous layers. After 
several convolution and pooling layers, each 2D feature map is flattened into a 1D 
vector as an input to the last layer. The FC layer then calculates a classification score 
for the outputs, which in this case are predicted probabilities for the NPP abnormal 
events and normal state, through a matrix multiplication of the feature maps and 
weights in the layer, similar to the hidden layers of a traditional ANN. In this final
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layer, the softmax function is used as the activation function to convert the output 
values into a probability distribution over the predicted labels, as shown by Eq. (4.5). 

f (xi) = exp(xi)Σk 
i=0 exp(xi) 

, where i = 0, 1, . . . ,  k (4.5) 

4.1.4 Performance Evaluation Metrics 

Abnormality diagnosis in an NPP presents a multi-class classification problem, and 
therefore numerous performance evaluation metrics are considered to assess the 
performance of the approach after constructing a confusion matrix. We first measure 
the accuracy of each class and the overall accuracy of the approach as defined in 
Eqs. (4.6) and (4.7). 

Accuracyi = tpi + tni 
fpi + fni + tpi + fni 

(4.6) 

Overall accuracy =
(Σl 

i=1 
tpi+tni 

fpi+fni+tpi+fni

)

l 
(4.7) 

The true positive (tpi), true negative  (tni), false positive (fpi), and false negative 
(fni) for class i respectively represent the number of positive examples that are 
correctly classified, number of negative examples correctly classified, number of 
negative examples wrongly classified as positive, and number of positive examples 
wrongly classified as negative. l is the number of classes. 

Next, we calculate the precision, recall, and F1 score to check reliability and prac-
ticality. Precision reflects the fraction of true positive results from among all results 
classified as positive, as in Eq. (4.8), and recall reflects the fraction of true positive 
results from among the results that should have been returned, as in Eq. (4.9). The 
F1 score in Eq. (4.10) measures the overall effectiveness of the classification model, 
which is defined as the harmonic average of the precision and recall. The values in 
this measure range between 0 and 1, where 1 represents perfect classification. 

Precisioni = tpi 
tpi + fpi 

(4.8) 

Recalli = 
tpi 

tpi + fni 
(4.9) 

F1 score = 2 ∗ 
precision ∗ recall 
precision + recall 

(4.10)
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4.1.5 Experimental Settings 

The raw data for this experiment are produced with the 3KEYMASTER full-scope 
simulator (Western Service Corporation 2017). This simulator is designed for a 
generic 1400 MWe PWR that implements power generation and air circulation 
systems in addition to the main systems. A total of 10 abnormal events plus the normal 
state are selected to cover a portion of the AOPs. The abnormal events considered 
here, as summarized in the below descriptions, are judged to be more significant than 
others in terms of occurrence probability or consequence. 

• POSRV: Leakage of the pilot-operated safety relief valve that depressurizes the 
reactor coolant system (RCS) 

• LTDN: Abnormality in the letdown water system that controls the RCS inventory 
• CHRG: Abnormality in the charging water system that controls the RCS inventory 
• RCP: Abnormality in the reactor coolant pump (RCP)s that circulate coolant in 

the primary system 
• SGTL: Leakage of tubes inside SGs 
• CDS: Abnormality in the condenser vacuum for the cooling steam transferred 

from the SGs 
• MSS: Abnormality in the main steam system that provides steam to the turbines 
• CWS: Abnormality in the circulating water system that filters water before it is 

pumped to and through the condenser 
• RMW: Valve abnormality in the reactor makeup water tank that provides coolant 

to the volume control tank in emergency situations 
• MSIV: Abnormality in the main steam isolation valve that isolates main steam in 

emergency situations. 

The simulator generated 300 scenarios as the causes of each abnormality, and 
thus the dataset comprises 3300 total scenarios. The same number of scenarios for 
each abnormal event and the normal state is used to prevent the imbalanced dataset 
problem known to cause poor classification performance (Peng et al. 2018). Each 
scenario includes NPP state data spanning 30 s after the simulation starts with 1004 
numerical variables. This generated data can be divided into several subsamples; for 
instance, with a time-lag set to 5 s, the number of subsamples totals 82,500 (= 3300 
× (30–5)). We add 20 zeros to the 1004 variables to give the data a total of 1024 
values and create 32 × 32 square two-channel 2D images that describe the NPP state 
values at a certain point in time as well as the extent of the changes in the NPP state 
values during a prescribed time period in the past. 

These subsamples are employed as the inputs of the developed CNN model. For a 
thorough performance evaluation, we apply a fivefold random sampling technique. 
A total of 80% of the samples are used as the training dataset, while the remaining 
20% of the samples are utilized as the test dataset.
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4.1.5.1 Hyperparameter Selection 

As detailed previously, the CNN model consists of two alternating convolution and 
pooling layers and one FC layer (Fig. 4.3) that conduct the tasks of feature extraction 
and classification. Both pooling layers have a 2 × 2 pooling filter with a stride of 
2. This model architecture follows the standard CNN setup that is known to work 
well on diverse classification problems using data-driven approaches. To find the 
optimal CNN model settings, the hyperparameters other than the pooling layer filter 
size and stride, specifically the number of filters in each convolution layer, the size 
of each convolution filter, and the number of hidden neurons in the FC layer, are 
determined in a grid search that inspects the classification performance with different 
hyperparameter values. Candidates for the number of filters in the two convolution 
layers are first set as three pairs: 8 and 16, 16 and 32, and 32 and 64 in the first 
and second convolution layers, respectively. Second, candidates for the size of the 
convolution filters are set to two square fields: 2 × 2 and 3 × 3 for each convolution 
layer. Candidates for the number of neurons in the FC layer are then set to 50 and 
100. Several CNN structures are built by applying all combinations of the three 
hyperparameters, training them over 50 epochs with the collected and transformed 
data, and obtaining multiple classification performance results for the test dataset. 
Results of the hyperparameter selection process are presented in Table 4.1. While no 
notable differences among the 12 total combinations of hyperparameters are found, 
the CNN structure applying 32 and 64 filters in the two convolution layers, the 2 × 
2 size of the convolution filters, and 100 neurons in the FC layer shows the highest 
classification accuracy for the test dataset, which is highlighted with bold in Table 
4.1. This setting is accordingly This setting is accordingly chosen for the following 
comparative analysis and robustness test. 

Table 4.1 Results of hyperparameter selection 

Filters in the 
first layer 

Filters in the 
second layer 

Filter size Neurons in 
the FC layer 

Accuracy Precision Recall F1 score 

8 16 2 50 0.9992 0.9960 0.9959 0.9959 

8 16 2 100 0.9987 0.9933 0.9931 0.9931 

8 16 3 50 0.9982 0.9906 0.9900 0.9900 

8 16 3 100 0.9977 0.9882 0.9874 0.9875 

16 32 2 50 0.9991 0.9949 0.9948 0.9948 

16 32 2 100 0.9986 0.9926 0.9923 0.9924 

16 32 3 50 0.9991 0.9952 0.9950 0.9950 

16 32 3 100 0.9987 0.9929 0.9927 0.9927 

32 64 2 50 0.9992 0.9959 0.9958 0.9958 

32 64 2 100 0.9993 0.9961 0.9960 0.9960 

32 64 3 50 0.9987 0.9930 0.9927 0.9927 

32 64 3 100 0.9989 0.9940 0.9938 0.9938
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4.1.5.2 Model Training Method 

For model training, the weights to be updated in each layer are typically estimated 
with backpropagation algorithms following a gradient descent method, where the 
weights are updated by calculating the derivatives of a loss function with respect to 
the weights of the network. In the current case, categorical cross entropy is used as 
the loss function and the Adam algorithm, known as an extension of the stochastic 
gradient descent method, is used as the optimizer to update the weights (Kingma and 
Ba 2014). 

With the hyperparameter settings chosen in the previous section, we now conduct 
a comparative analysis between the two-channel CNN model and a one-channel 
CNN, an ANN (Ince et al. 2016; LeCun et al. 2015), and an SVM (Na et al. 2008; Zio  
2007) representing other major classification models to evaluate the performance of 
the developed approach. For a fair comparison, the one-channel CNN is constructed 
in the same way as the developed CNN model with the only difference being that 
it employs one-channel 2D images that describe the current NPP state values as its 
inputs. The ANN takes the network structure of Embrechts and Benedek (2004) as its  
results show good performance (Embrechts and Benedek 2004). The SVM employed 
in this study is based on the work of Na et al. (2008), with the exception that we apply 
the one-against-one method in this case for multi-class classification (Zio 2007). 
Prior to the comparative analysis, we explored various configurations of the latter 
two models based on their references and empirically selected the configurations 
that showed the best performance, as follows: five hidden layers of 128, 128, 64, 32, 
and 16 neurons in the ANN, and the radial basis function kernel in the SVM. All 
classification models including the two-channel 2D image transformation method 
are implemented in a Python 3.6 environment with Keras and scikit-learn modules. 
We used four GPUs for multi-GPU computing in the training process and set the 
batch size to 128 for the training epoch in each neural network model. 

4.1.6 Results 

Tables 4.2, 4.3, 4.4 and 4.5 list the performance evaluation results comparing the 
developed approach and the three major models, respectively. The results demon-
strate far superior performance of the developed two-channel CNN approach across 
all performance evaluation metrics compared to the other classification models. The 
ANN and SVM models achieve an average of nearly 90% accuracy in the results, 
but their precision, recall, and F1 scores are seen to be relatively low and have large 
variances compared to those of the two CNN-based models. This shows that the 
ANN and SVM can generate classification results that may be volatile and biased. 
The one-channel CNN shows a lower performance in the classification of the normal 
state than the abnormal states, which would likely result in a type 1 error in NPP 
abnormality diagnosis. Given that the F1 scores of the developed approach for every
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Table 4.2 Performance evaluation metrics for the developed two-channel CNN 

Class Accuracy Precision Recall F1 score 

Normal 0.9987 0.9863 1.0000 0.9931 

SGTL 0.9999 0.9993 1.0000 0.9997 

CHRG 0.9999 1.0000 0.9991 0.9995 

LTDN 1.0000 0.9996 1.0000 0.9998 

CDS 1.0000 1.0000 1.0000 1.0000 

POSRV 1.0000 1.0000 1.0000 1.0000 

RMW 0.9997 1.0000 0.9965 0.9983 

CWS 0.9993 1.0000 0.9921 0.9961 

MSIV 1.0000 1.0000 1.0000 1.0000 

RCP 0.9998 1.0000 0.9976 0.9988 

MSS 1.0000 1.0000 0.9997 0.9999 

Overall 0.9998 0.9987 0.9986 0.9986 

Table 4.3 Performance evaluation metrics for the one-channel CNN 

Class Accuracy Precision Recall F1 score 

Normal 0.9452 0.7212 0.6471 0.6822 

SGTL 0.9599 0.7902 0.7616 0.7756 

CHRG 0.9477 0.6714 0.8317 0.7430 

LTDN 0.9846 0.8707 0.9760 0.9203 

CDS 0.9877 0.9914 0.8719 0.9278 

POSRV 0.9887 0.9223 0.9558 0.9387 

RMW 0.9914 0.9253 0.9848 0.9541 

CWS 0.9660 0.8015 0.8317 0.8163 

MSIV 0.9979 0.9932 0.9834 0.9883 

RCP 0.9864 0.9946 0.8547 0.9193 

MSS 0.9655 0.8404 0.7666 0.8018 

Overall 0.9746 0.8656 0.8605 0.8607

abnormal event are close to 1 or at 1 with little variation, the two-channel CNN model 
achieves not only the best performance but also unbiased classification results. 

From the results, it can be understood that the model performance may vary 
with the context of analysis. Two additional tests are therefore conducted applying 
different time-lag values and different output variables to assess the robustness of 
the developed classification model. First, the time-lag values are increased from 5 
to 10 s and 20 s. The performance evaluation results are shown in Table 4.6. The  
two-channel CNN model exhibits the best performance at a time-lag of 20 s because 
longer time-lag values can represent richer information about the changes in the NPP 
state values. The performance results of the developed approach with the 5 s time-lag
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Table 4.4 Performance evaluation metrics for the ANN 

Class Accuracy Precision Recall F1 score 

Normal 0.8469 0.3177 0.5960 0.4145 

SGTL 0.9152 0.5653 0.2906 0.3838 

CHRG 0.9520 0.9854 0.4789 0.6445 

LTDN 0.9455 0.7020 0.6956 0.6988 

CDS 0.9737 0.9911 0.7168 0.8319 

POSRV 0.9576 0.9352 0.5737 0.7111 

RMW 0.9678 0.9770 0.6609 0.7884 

CWS 0.9247 0.5928 0.5488 0.5700 

MSIV 0.9543 0.7832 0.6882 0.7326 

RCP 0.9708 0.9655 0.7037 0.8141 

MSS 0.7704 0.2051 0.5306 0.2958 

Overall 0.9253 0.7291 0.5894 0.6260 

Table 4.5 Performance evaluation metrics for the SVM (10% sample) 

Class Accuracy Precision Recall F1 score 

Normal 0.8920 0.4563 0.9800 0.6227 

SGTL 0.9509 0.7078 0.7833 0.7437 

CHRG 0.9363 0.6696 0.5900 0.6273 

LTDN 0.9777 0.9871 0.7644 0.8616 

CDS 0.9833 0.9455 0.8667 0.9043 

POSRV 0.9951 0.9988 0.9467 0.9720 

RMW 0.9966 1.0000 0.9622 0.9807 

CWS 0.9674 1.0000 0.6411 0.7813 

MSIV 0.9819 0.9865 0.8122 0.8909 

RCP 0.9826 0.9223 0.8833 0.9024 

MSS 0.9811 0.9709 0.8167 0.8871 

Overall 0.9677 0.8768 0.8224 0.8340

are seen to be slightly lower than those with the longer time-lag values, but even with 
the shortest time-lag, the results demonstrate that almost every sample is classified 
into the correct abnormal state. In other words, the first test shows that the developed 
approach is robust against different time-lag values.

In the second test, the two-channel CNN conducts classification using a total 
of 19 sub-procedures as its output values based on the fact that each abnormal 
event includes multiple sub-procedures dedicated to different causes of the given 
abnormality. Table 4.7 lists the performance evaluation results of this test. Despite 
the precision showing a slight deterioration in the normal state classification, the 
results in general demonstrate an adequate performance of the developed approach
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Table 4.6 Performance evaluation metrics for the developed two-channel CNN approach with 
different time-lag values 

5 s 10 s 20 s 

Accuracy 0.9998 0.9999 1.0000 

Precision 0.9987 0.9995 0.9999 

Recall 0.9986 0.9995 0.9999 

F1 score 0.9986 0.9995 0.9999

Table 4.7 Performance evaluation metrics for the developed two-channel CNN approach with 19 
sub-procedures (time-lag = 5 s)  
Class Accuracy Precision Recall F1 score 

Normal 0.9987 0.9767 1.0000 0.9882 

SGTL 0.9999 0.9989 1.0000 0.9995 

CHRG [LN] 0.9999 1.0000 0.9975 0.9987 

CHRG [PM] 0.9999 0.9985 1.0000 0.9993 

CHRG [VV] 1.0000 1.0000 0.9999 0.9999 

LTDN [LN] 1.0000 0.9999 1.0000 0.9999 

LTDN [VV] 1.0000 1.0000 1.0000 1.0000 

CDS 1.0000 1.0000 1.0000 1.0000 

POSRV 1.0000 1.0000 1.0000 1.0000 

RMW [LL] 0.9998 1.0000 0.9960 0.9980 

RMW [LH] 1.0000 1.0000 1.0000 1.0000 

CWS [LN] 1.0000 1.0000 1.0000 1.0000 

CWS [VV] 1.0000 1.0000 1.0000 1.0000 

CWS [PM] 1.0000 1.0000 1.0000 1.0000 

MSIV 1.0000 1.0000 1.0000 1.0000 

RCP [LC] 0.9990 1.0000 0.9801 0.9900 

RCP [SD] 1.0000 1.0000 1.0000 1.0000 

MSS [VV] 1.0000 1.0000 1.0000 1.0000 

MSS [LN] 1.0000 1.0000 1.0000 1.0000 

Overall 0.9999 0.9986 0.9986 0.9986 

in achieving the classification of the 19 sub-procedures. In summary, the results of the 
two robustness tests indicate that the developed two-channel CNN model is robust 
across different contexts of analysis, namely time-efficient abnormality diagnosis 
and handling up to dozens of abnormal events. 

For real-world application in an NPP to provide practical assistance to operators, 
it is essential that any abnormality diagnosis model have a high reliability of the 
classification of abnormal events and the normal state in real time. As the results 
shown here are limited to classification with a predetermined dataset, a question
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remains regarding whether the performance of the developed two-channel CNN 
approach can be consistent during real-time diagnosis or not. The current experiments 
examine classification performance without a measure of the reliability of the results, 
so it remains to be seen how confident the model is in providing the classification 
results. 

Along these lines, a second set of additional experiments are conducted to more 
closely examine the practicality of the developed approach, in which the performance 
of the pre-trained two-channel CNN model and the reliability of its classification 
results for longer NPP simulator operating data are obtained. For this, extra operating 
data are collected for about 3 min of operation time simulating abnormal events and 
the normal state that were not previously included in the training or test datasets, and 
the developed CNN model attempts to diagnose the abnormal events from the extra 
operating data. In this test, reliability is defined as the highest probability that the 
model predicts among the outputs. Similar to the previous results, the model succeeds 
in classifying all the cases of extra operating data correctly; Fig. 4.5 plots a number 
of the results in graph form of the model reliability for the extra operating data. 
For instance, in Fig. 4.5a, the model predicts the normal state correctly with a high 
reliability on average. On the other hand, while Fig. 4.5b representing the abnormal 
event CHRG demonstrates that the model generally classifies the event correctly 
with a high reliability, in this case there exists a small area of fluctuation among the 
CHRG, SGTR, and POSRVL abnormal events. In the remaining graphs for LTDN, 
POSRVL, and RMW events, the model diagnoses each abnormal event perfectly

Fig. 4.5 Graphs of reliability for each predicted abnormal event or normal state along time. a 
Normal state, b abnormal event CHRG, c abnormal event LTDN, d abnormal event POSRVL, and 
e abnormal event RMW
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with 100% reliability over the entire time period. Taken together, it can be said that 
in every case, the developed two-channel CNN classifies the abnormal events and 
normal state perfectly, with the reliability of the classification result reaching near 
100% after a certain period of time. Accordingly, the additional reliability results 
confirm that the developed two-channel CNN model has the potential to be adopted 
as an operator support system for real-time abnormality diagnosis in actual NPP 
systems.

Despite these promising results though, some uncertainty remains as represented 
by the fluctuating region in some of the graphs in Fig. 4.5. One possible cause may be 
the scope of the training data, being limited to 30 s from the start of the simulation. In 
some abnormal events, characteristic changes in the input variables may appear after 
30 s from the start of the event, and thus the performance of the developed model can 
be improved if data observed over longer time periods is utilized. To further improve 
the stability of the developed model for real-time diagnosis, additional research is 
needed to fine-tune the developed two-channel CNN structure with additional model 
training involving longer data periods. 

4.2 Diagnosis of Abnormal Situations with a GRU 

The method introduced in Sect. 4.1 converted NPP data into images for use in a 
CNN. Over the past few decades, various studies have applied ML algorithms for 
NPP state diagnosis through data-driven analysis. Anomaly detection technology is 
being researched using increasingly complex DL algorithms to detect NPP states out 
of normal situations by learning patterns when failures occur. Horiguchi et al. (1991) 
used the patterns of 49 normalized plant parameters during an abnormal situation 
for state detection with an ANN, while Santosh et al. (2007) implemented a resilient 
back propagation algorithm to solve the pattern recognition problem for the diagnosis 
of NPP transients. Serker et al. (2003) applied Elman’s RNN to predict plant signals 
and detect damage on bearings, and Zhao et al. (2018) employed a local feature-
based GRU for the prediction of tool wear, the diagnosis of gearbox faults, and the 
detection of bearing faults. 

Prior research such as the above generally encounters two limitations regarding the 
selection of the input variables and the number of cases to be handled. When selecting 
the input variables, domain knowledge of NPP accidents has been considered by 
experts. For example, Ayodeji et al. applied PCA during preprocessing to reduce the 
dimensions of the input dataset and to filter noise (Ayodeji et al. 2018). Although PCA 
successfully achieved the anticipated results, this work covered only 43 variables 
involving only some of the primary systems. 

Referring to these previous studies, the abnormality diagnosis model introduced 
in this section considers the full range of data through preprocessing to reduce 
dimensionality while not missing key features. Training of the preprocessed data 
is conducted through a GRU, and the model structure is divided into two stages 
to prepare for an increase in the number of labels in the future. The next section
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first introduces an analysis of the relationship between the variables constituting 
NPP operational data to find the basis for applying the preprocessing method in the 
subsequent section. 

4.2.1 Characteristics of Abnormal Operation Data 

Figure 4.6 is a heatmap of the correlations among a portion of the data. With the 
number of variables exceeding 1000, correlations are not apparent in the full heatmap 
on the left. The extracted heatmap on the right is therefore shown to indicate the high 
correlations among just 20 variables out of the entire dataset. Operational data with 
such a linear relationship in an abnormal state as well as in the steady state can 
greatly reduce the main features during preprocessing through feature extraction. 
Therefore, it is possible to use a small-dimensional dataset while considering all 
data and also minimizing information loss through feature extraction. Here, feature 
extraction refers to a method of acquiring a feature or features that best represent 
the information possessed by the data. In some cases, the features of a dataset are 
arranged according to their importance as a ranking, or they are excluded one by 
one to find the most influential features. The methodology presented in this chapter 
applies PCA to find a new axis that best represents the information in the data. 
PCA can significantly reduce the thousands of variables recorded during operation 
in detecting anomalies. 

Fig. 4.6 Heatmap of the variances of sample data (bright: 1, dark: –1). Reproduced with permission 
from Kim et al. (2020)
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The data with reduced dimensionality is used to train an AI model that can classify 
abnormalities following the developed methodology. Considering that NPP opera-
tional data are recorded over time, GRU algorithms are chosen among RNNs having 
advantages in the analysis of time-series data. The GRU algorithm is known as 
a solution to overcome the vanishing gradient problem through the use of more 
sophisticated activations than those in traditional RNNs (Bengio et al. 1994; Cho  
et al. 2014; Chung et al. 2014). Even in the case that symptoms of an abnormal situ-
ation may not appear at the beginning of the event, failures can still be identified by 
recognizing any change from the point of observation. Compared to a CNN, which 
learns by extracting local information from instantaneous data, RNNs learn the trend 
of variable change over time. 

4.2.2 PCA 

The CNN model used in Sect. 4.1 had an additional channel to learn the changing 
trends of the variables, but the RNN series introduced in this section can use the data as 
it is. Since the training of an AI network can be difficult when the dimensions increase, 
there are many methods to decrease data dimensionality. As a typical method to 
reduce data dimensionality, feature extraction works by extracting the latent features 
from the original variables. This is advantageous in the development of a real-time 
fault diagnosis system through extracting only the key characteristics from the entire 
dataset. As NPP simulator data cover a wide range of properties, e.g., pressure, 
temperature, and flow rate, PCA is chosen as the preprocessing method. PCA is a 
method to convert some original data into a dimensionally reduced dataset (Jolliffe 
2002); to do so, PCA calculates a linear transformation matrix in the following steps. 

First, a correlation matrix or covariance matrix of the original data is obtained 
during the process of normalizing the original data matrix. The unique features of 
data can be expressed mathematically as a total variance. The maximum-minimum 
normalization method is applied as follows. 

x∗ 
t,i =

{
xt,i − min(xi)

}

/{max(xi) − min(xi)}(i = 1, 2, . . . ,  p) (4.11) 

Here, xt,i is the i-th input variable at time t and x∗
t,i is the normalized variable. The 

maximum and minimum values are extracted from the i-th dataset. 
Second, the correlation matrix is broken into eigenvectors and eigenvalues, 

where the former represents the principal components (PCs) and the latter repre-
sent the percentage of variance given by the corresponding eigenvectors. This can 
be expressed with Eq. (4.12).
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−→z1 = a11−→x1 + a12−→x2 + . . .  + a1p−→xp = −→a1 T X−→z2 = a21−→x1 + a22−→x2 + . . .  + a2p−→xp = −→a2 T X 
. . .−→zp = ap1−→x1 + ap2−→x2 + . . .  + app−→xp = −→ap T X 

(4.12) 

z = 

⎡ 

⎢⎢⎣ 

−→z1 −→z2 
· · ·−→zp 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

−→a1 T X−→a2 T X 
· · ·−→ap T X 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

−→a1 T −→a2 T 
· · ·−→ap T 

⎤ 

⎥⎥⎦X = AT X 

Among the terms, −→zk is the k-th vector of the PCs (k = 1, 2, . . . ,  p), AT is 
the orthogonal matrix in which the k-th column, −→ak , is the  k-th eigenvector of the 
covariance matrix, and X is the normalized dataset. 

In the third step, the number of PCs is determined from the cumulative percentage 
of the described variance. For instance, a sum of the top 10 PCs of 0.90 means that 
these 10 PCs contain 90% of the information in the original data. 

4.2.3 GRU 

The vanishing gradient problem, as mentioned numerous times in Chap. 2, is that 
past data tends to be ignored for long data observation times. The GRU has a solution 
to this problem by applying gates to the information moved between cells, as follows. 
GRU uses two gates, namely update and reset. The activation ht , which is a linear 
interpolation between the previous activation ht−1 and the candidate activation h̃t , is  
computed as follows. 

ht = ztht−1 + (1 − zt)h̃t (4.13) 

Update gate zt determines the extent that the unit updates its activation, or content. 
The updated gate is computed with Eq. (4.14). 

update gate : zt = σ
(
W (z) xt + U (z) ht−1

)
(4.14) 

Here, σ is the logistic sigmoid function, and xt and ht−1 are the input at time t and 
the previous hidden state, respectively. W (r) and U (r) are trained weight matrices. 
The candidate activation h̃t is obtained as follows. 

h̃t = tanh(Wxt + U (rt ⊙ ht−1)) (4.15) 

In this expression, rt is a set of reset gates, and⊙ is an element-wise multiplication. 
Similar to the update gate, the reset gate is computed as below.
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reset gate : rt = σ
(
W (r) xt + U (r) ht−1

)
(4.16) 

Figure 4.7 depicts a GRU algorithm with these two gates controlling how much 
of the information passed between cells is reflected in the current state. This enables 
the GRU to reduce the complexity of the computations, which increases the compu-
tational efficiency. In this way, the GRU can handle data with many variables, the 
dimension of which is reduced through PCA. 

Fig. 4.7 Schematic diagram 
of the gated recurrent unit 
algorithm Chung et al. 
(2014) 

4.2.4 Two-Stage Model Using GRU 

As discussed above, NPP operational data is recorded as time-series data of two 
dimensions, having a time axis and a characteristic axis. RNNs have a structure 
that makes complex judgments on the input data every second and the information 
processed in the previous step. 

Figure 4.8 shows the flow of the overall model development process. Data gener-
ation with an NPP simulator is followed by data preprocessing and then the training 
of the GRU algorithms in both main and substages. 

In more detail, this model is designed to handle all monitorable parameters with 
two judgment processes employing the GRU algorithm for its strength in time-series 
data analysis. The PCA method is first used to extract the features and reduce the

Fig. 4.8 Process to develop 
the GRU-based abnormal 
state diagnosis model. 
Reproduced with permission 
from Kim et al. (2020) 
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dimensionality of the abnormal operation data from the simulator. These prepro-
cessed data are then used for the training and testing of the diagnosis model. The 
model structure is divided into two levels or stages to consider the possible cases 
that may occur. The main level determines the appropriate AOP corresponding to the 
current event, and the sub-level determines the detailed cause of the event. In both 
levels, GRU algorithms are used to handle the preprocessed datasets. 

Since the amount of information to be dealt with at this time may become larger 
than necessary, the number of features is reduced to 10 by preprocessing the input 
data with PCA. The operational data of an NPP typically shows a linear characteristic 
with strong correlation between data, and thus even if the number of new axes through 
PCA is small, the amount of information stored does not change. 

Through this, the GRU model receives data that has undergone PCA as inputs 
and is then trained, while a model structure that can reduce the number of classes 
requiring prediction is applied. This results in high accuracy. 

When diagnosing an abnormal situation in an NPP, the large number of target 
systems and corresponding outputs create difficulty. Figure 4.9 shows the determi-
nation process according to the two-stage model (TSM) utilizing GRU algorithms 
introduced above. New input data is preprocessed and then judged in two-stage. 

In the model structure, processing all cases with one algorithm is avoided; here, 
the first diagnosis or main stage predicts the relevant AOP, and the substage predicts 
the sub-procedures of the individual AOPs with dedicated algorithms. In other words, 
following the prediction results of the algorithm in the main stage, the corresponding 
substage shows the correct sub-procedure of the AOP. Dividing the decision process 
into two such stages increases the opportunity to detect errors. Another advantage is 
that each algorithm in the TSM model considers a smaller number of labels compared 
to employing a single algorithm to cover the entire process.

Fig. 4.9 Determination process of the abnormal state diagnosis model using GRU algorithms in 
two stages. Reproduced with permission from Kim et al. (2020) 
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4.2.5 Experimental Settings 

The data used in the experiment through the 3KEYMASTER simulator and the 
performance evaluation metrics are the same as those in Sect. 4.1. All the variables 
that can be monitored in the NPP simulator are used as the model inputs. A total 
of 10 AOPs are selected that include 18 sub-procedures, as listed in Table 4.8. The  
related systems include both primary and secondary side systems to evenly represent 
an NPP. 

4.2.6 Results 

Data preprocessing and model development are implemented in a Python 3.6 envi-
ronment with Keras and scikit-learn modules. Based on the selected AOPs, the TSM 
has 1 algorithm in the main level and 10 algorithms in the sub-level, one for each

Table 4.8 List of selected abnormal operation scenarios 

# Title of abnormal operating procedure # Sub-procedure 

1 SGTL 1–1 SG 1,2 tube leakage 

2 CHRG 2–1 Normal charging pump trip (PM) 

2–2 Charging valve abnormality (VV) 

2–3 Water line leakage (LN) 

3 LTDN 3–1 Water line leakage (LN) 

3–2 Letdown valve abnormality (VV) 

4 CDS 4–1 CDS vacuum release 

5 POSRVL 5–1 POSRV leakage (VV) 

6 RMW 6–1 VCT low level (LL) 

6–2 VCT high level (LH) 

7 CWS 7–1 LP condenser tube leakage (LN) 

7–1 IP condenser tube leakage (LN) 

7–1 HP condenser tube leakage (LN) 

7–2 Valve abnormality (VV) 

7–3 Pump trip (PM) 

8 MSIV 8–1 MSIV abnormality 

9 RCP 9–1 RCP CCW loss (LC) 

9–2 RCP seal damage (SD) 

10 MSS 10–1 SBCS valve abnormality (VV) 

10–2 Main steam leakage (LN) 

VCT volume control tank; LP low pressure; IP intermediate pressure; HP high pressure; CCW 
component cooling water; SBCS steam bypass control system 
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Fig. 4.10 Prediction process in the two-stage model for a charging water system abnormality with 
water line leakage. Reproduced with permission from Kim et al. (2020) 

abnormal event. For a given abnormal event prediction, the related sub-level algo-
rithm determines the sub-procedure based on the results by the main level algorithm. 
An example of this process is illustrated in Fig. 4.10. The main level algorithm 
determines the title of the AOP, which is CHRG in this example, and then the sub-
level algorithm for CHRG determines the specific sub-procedure, which in this case 
is water line leakage, or sub-procedure 2–3 in Table 4.8. As the graphs show, the 
probabilities of the predicted labels are marked each second. 

To increase the accuracy, 20 PCs are conservatively chosen with more than 99.99% 
of the information conserved. We note that each algorithm in the TSM is trained in 
the same training environment. The performance evaluation metrics of the main 
algorithm of the TSM are given in Table 4.9 along with results from ANN and SVM 
models for comparison. The results indicate that the TSM achieves the best perfor-
mance among the models. Table 4.10 lists the performance evaluation metrics of the 
TSM sub-algorithms, with the results showing that the sub-layer algorithms achieve 
almost 100% accuracy for the given data. Therefore, securing accurate prediction in 
the main stage is the key for the TSM. 

Table 4.9 Performance evaluation metrics in the model performance comparison 

Model TSM (main) ANN SVM 

Accuracy 0.9982 0.9590 0.7563 

Precision 0.9982 0.9715 0.7610 

Recall 0.9983 0.9590 0.7563 

F1 score 0.9982 0.9621 0.7464
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Table 4.10 Performance evaluation metrics for the 10 sub-algorithms of the TSM 

Model CDS CHRG CWS LTDN MSIV 

Accuracy 1.0000 0.9917 1.0000 1.0000 0.9983 

Precision 1.0000 0.9917 1.0000 1.0000 0.9983 

Recall 1.0000 0.9919 1.0000 1.0000 0.9983 

F1 score 1.0000 0.9917 1.0000 1.0000 0.9983 

Model MSS POSRV RCP RMW SGTL 

Accuracy 1.0000 0.9983 0.9944 0.9978 1.0000 

Precision 1.0000 0.9983 0.9945 0.9978 1.0000 

Recall 1.0000 0.9983 0.9944 0.9978 1.0000 

F1 score 1.0000 0.9983 0.9944 0.9978 1.0000 

The analysis of AOPs involves great amounts of time and effort from untrained 
NPP operators. Fortunately, by applying PCA, the data dimensionality can be effi-
ciently reduced while maintaining as much information as required. To first validate 
the PCA method for NPP diagnosis, a test is conducted for comparison with a model 
considering parameters selected by experts based on an AOP analysis (knowledge-
based parameters). A total of 62 parameters are chosen that relate to symptoms and 
alarms in the AOP, including critical parameters of the primary system such as the 
RCS pressure. Figure 4.11 shows that the algorithm applying 20 PCs reached conver-
gence in terms of accuracy within a smaller number of epochs compared to the one 
using knowledge-based parameters. 

Considering the high correlation among plant parameters, a relatively small 
number of PCs can sufficiently preserve the information of the original data. In 
the first test, for example, only 10 PCs are selected but more than 98% of the infor-
mation is preserved. By selecting 20 PCs, the data contains more than 99% of the 
original information. 

Under the same training environment, an ANN can show strong performance with 
an accuracy of more than 95%. But without preprocessing of the input dataset, the

Fig. 4.11 Model accuracy graphs of a knowledge-based parameters and b PCA (epoch: number 
of training cycles). Reproduced with permission from Kim et al. (2020) 
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more than 1000 variables would complicate the algorithm and increase the compu-
tation time for diagnosis. It should be noted here that in this section, 10 out of the 
82 total AOPs for the APR-1400 are considered; therefore, the performances of the 
tested models might show greater diversity when handling entire sets of AOPs. The 
purpose of this section focused on identifying the feasibility of the GRU-based abnor-
mality diagnosis model; future work needs to consider more complex situations by 
increasing the number of scenarios as much as possible. 

One particular advantage of the TSM is its ability to achieve higher efficiency 
in terms of training. When new data is generated, only the main algorithm needs 
to be updated to account for the AOPs, while the individual sub-procedures are 
determined by the algorithms in the sub-level. This is in contrast to a model with 
only one algorithm, which would require new training to update the whole model, 
including all AOPs and corresponding sub-procedures, for any new data. 

As for decision time, directly diagnosing any changes in NPP status in a direct 
manner is advantageous, even including cases where no alarms are actuated. As 
operators typically check symptoms only after being alerted, the detection of a plant 
status change may be delayed if the severity of the abnormal event is low. It was 
found in preliminary tests here that, even in cases with low severity, the TSM is able 
to complete the prediction in under 1 min. 

The TSM also grants benefits in solving given problems in a top-down manner, 
which is similar to the judgment process of human operators. If a complex accident 
situation occurs or if a judgment by an operator is wrong, it is believed that the 
multiple steps in the TSM will allow for review and mistake identification mid-
process. 

4.3 Diagnosis of Abnormal Situations with an LSTM 
and VAE 

Numerous diagnostic algorithms using ANNs have been shown to perform well in 
trained situations, but they have some weaknesses. First, existing diagnostic algo-
rithms cannot correctly evaluate anonymous cases as an unknown situation if such 
an unknown situation occurs. As some abnormal situations are not known and are 
therefore by definition unpredictable in actual NPPs, defining all possible abnormal 
situations is infeasible. Wrong diagnostic results from an algorithm for an unknown 
situation could harm the safety of NPPs. 

In addition, current algorithms typically produce diagnosis results in the form of 
probabilities, leaving operators to make the final decision based on the probability. 
In some situations, the diagnostic algorithms may provide ambiguous results with 
competing probability values. For example, consider that a diagnostic algorithm 
produces an output such that Event A has a probability of 0.6 and Event B has a 
probability of 0.4. In such cases with competing diagnosis results, operators might 
make errors due to confusion and uncertainty, especially during the initial period
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of an abnormal situation when the probabilities of the potential events may not be 
clearly distinguished. In some abnormal situations, fast decision making is critical. 
Hence, confirming the diagnostic result of the algorithm during the initial period of 
an abnormal situation is necessary. 

To this end, this section introduces a diagnostic algorithm for abnormal situations: 
unknown events are identified, the diagnostic results are confirmed, and the final 
diagnosis through the algorithm is conducted, along with efforts to increase the reli-
ability of the diagnostic results. The algorithm combines LSTM and VAE networks 
for identifying unknown situations and confirms the diagnosis with an LSTM. First, 
the methodologies are briefly introduced in Sect. 4.3.1, after which the develop-
ment of the algorithm’s functional architecture consisting of several functions is 
discussed. The various functions and interactions between the functions are covered 
in Sect. 4.3.3, followed by detailed descriptions of the implementation, training, and 
testing of the diagnostic algorithm. The training and testing data include Gaussian 
noise to reflect actual situations in NPPs. The algorithm is trained and implemented 
using a CNS, with the reference plant based on the three-loop Westinghouse 990 
MWe PWR. 

4.3.1 Methods 

This section briefly explains the LSTM and VAE that are adopted for developing 
the diagnosis algorithm. An LSTM is applied as the primary network for diagnosing 
abnormal situations, while VAE-based assistance networks are incorporated to ensure 
the credibility of the diagnosis result from the LSTM network. 

4.3.1.1 LSTM 

The LSTM, as introduced in Sect. 2.4.2.2, is an RNN-based neural network archi-
tecture capable of dealing with the vanishing gradient problem that stems from 
processing data of long temporal sequences. Although the LSTM has a similar 
structure as other RNNs, it employs a different equation to calculate the hidden 
states. In this network, a structure called a memory cell replaces the typical RNN 
neuron. This allows the network to combine fast training with efficient learning of the 
tasks, which requires sequential short-term memory storage over many time steps 
per trial. The LSTM can learn to bridge small time lags over 1000 discrete time 
steps through these special memory cell units. It works by determining whether the 
previous memory value should be updated and calculating the value to be stored 
in the current memory based on the current state and the memory cell input value. 
This makes the structure highly effective in storing and processing long sequences 
(Hochreiter and Schmidhuber 1997; Yang and Kim 2020). 

Figure 4.12 illustrates the architecture of the LSTM cell considered in this section. 
The input x passes through every gate like on a conveyor belt. In an LSTM model,
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Fig. 4.12 Architecture of 
the LSTM. Reproduced with 
permission from Kim et al. 
(2021) 

each cell adjusts the output value based on the input gate, forget gate, and output gate 
while the structure of the cell is maintained. As the operation of each gate includes 
additional operations attached to the cell state, the vanishing gradient problem is 
avoided. 

The three gates work as follows. The input gate determines the level of the 
input value, the forget gate determines the degree to which the previous cell state is 
forgotten, and the output gate determines the value of the output. Equations (4.17) 
to (4.19) show the input gate i, forget gate f , and output gate o calculations, where 
σ and t represent the sigmoid function and time state, respectively. The cell state C 
is derived in Eq. (4.20). Lastly, the LSTM produces the output h of the network via 
Eq. (4.21) (Hochreiter and Schmidhuber 1997). 

ft = σ(Wf ·
[
Ct−1, ht−1, xt] +  bf

)
(4.17) 

it = σ(Wi ·
[
Ct−1, ht−1, xt] +  bi) (4.18) 

ot = σ(Wo ·
[
Ct, ht−1, xt] +  bo) (4.19) 

Ct = it ∗ tanh(Wc ·
[
ht−1, xt] +  bc) + ft ∗ Ct−1 (4.20) 

ht = ot ∗ tanh(Ct) (4.21) 

4.3.1.2 VAE 

The VAE (see Sect. 2.4.3) is an unsupervised DL generative model that can represent 
distributions of training data (Kingma and Ba 2014). When the input data and training 
data are similar, the output appears to be mostly similar to the input. In other cases,
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a probabilistic measure considering the variability in the distribution of variables 
decreases. Several fault detection algorithms using the reconstruction log-likelihood 
of VAE have been developed, showing compatibility between a VAE and LSTM 
(Kim et al. 2021; Kingma and Welling 2013). 

The VAE offers a flexible formulation for the interpretation and encoding of z, 
which is considered as a potential variable in probabilistic generation models. The 
VAE consists of a probabilistic encoder qφ(z|x) and decoder pθ (x|z); the poste-
rior distribution pθ (z|x) is intractable, and so the VAE approximates pθ (z|x) using 
the encoder qφ(z|x), which is assumed to be Gaussian and parameterized by ∅. In  
Fig. 4.13 showing this VAE architecture, the input x goes through the encoder, and 
the parameters of the latent space distribution are obtained. The latent variable z is 
first acquired from sampling in the current distribution and then used to generate a 
reconstructed sample through the decoder (Kingma and Welling 2013). Thus, the 
encoder is able to learn and predict the latent variable z, making it possible to draw 
samples from the distribution. 

Fig. 4.13 Architecture of 
the VAE. Reproduced with 
permission from Kim et al. 
(2021) 

To decode a sample z drawn from qφ(z|x) to the input x, the reconstruction loss 
via Eq. (4.22) should be minimized. The first term in this equation is the KL diver-
gence between the approximate posterior and the prior latent variable z. This term 
aligns the posterior distribution with the prior distribution by operating as a term 
for regularization. The second term in Eq. (4.22) represents the reconstruction of x 
through the posterior distribution qφ(z|x) and the likelihood pθ (x|z). 

L(θ,  φ; x) = −DKL(qφ(z|x)||pθ (z)) + Eqφ (z|x)[logpθ (x|z)] (4.22) 

Here, choosing the appropriate distribution type is important since the VAE models 
the approximated posterior distribution qφ(z|x) from the prior pθ (x) and likelihood 
pθ (x|z). A Gaussian distribution is one typical choice for the posterior, where the 
standard normal distribution N (0, 1) is used for the prior pθ (x).
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4.3.1.3 Softmax 

For the post-processing of the LSTM output, the softmax function is used, which 
is an activation function commonly applied in the output layer of DL models as it 
can categorize more than three classes of output. Softmax works by significantly 
separating the values and then normalizing the output, as shown in Eq. (4.23). In 
y ∈ Rk , which is the input vector of the softmax function, k is the number of classes 
of output. For S(y)1 … S(y)k , the normalized output values are between 0 and 1, and 
the sum of the output values is always 1. 

S(y)i = eyi
Σk 

j=1 e
yj 

(for i = 1, . . . ,  k) (4.23) 

4.3.2 Diagnostic Algorithm for Abnormal Situations 
with LSTM and VAE 

The overall structure of the LSTM-VAE diagnostic algorithm for abnormal situations 
can now be described. Figure 4.14 depicts the designed functional architecture of the 
algorithm, comprising four functions as follows: an input preprocessing function, an 
unknown event identification function, an event diagnosis function, and a confirma-
tion of diagnosis result function, which are detailed in the next subsections. Table 
4.11 provides descriptions as well as the inputs and outputs of each function.

4.3.2.1 Preprocessing Function 

The first function of the algorithm is to preprocess the plant parameters in order to 
put them in suitable form as network inputs. The network inputs are selected from 
operating procedures considering their importance and their ability to influence the 
NPP state or the availability of systems. While network inputs need to have values 
ranging between 0 to 1, plant parameters have various value ranges and states, e.g., 
38% PZR level, or on/off for an alarm. Variables with higher values generally have 
a greater influence on the network results; however, high values are not necessarily 
more meaningful for prediction, a consequence of which is the appearance of local 
minima. To prevent this, the input preprocessing function takes the regular plant 
parameters as inputs and outputs normalized plant parameters for use in the following 
networks. 

Specifically, min–max normalization is applied to prevent local minima. The input 
of the network is calculated via Eq. (4.24), where X is the current value of the plant 
parameter, and Xmin and Xmax are the minimum and maximum values of the collected 
data, respectively. As a normalized value, Xinput has a range of 0–1.
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Fig. 4.14 Functional 
architecture of the LSTM 
and VAE-based diagnostic 
algorithm design. 
Reproduced with permission 
from Kim et al. (2021)

Xinput = (X − Xmin) 
(Xmax − Xmin) 

(4.24) 

4.3.2.2 Unknown Event Identification Function 

The second function, which is for unknown event identification, is used to identify 
unknown events through a combination of LSTM and VAE networks. This combi-
nation not only supports the sequence of the input data but also captures the complex 
temporal dependences in the time series (Park et al. 2018). As inputs, this function 
receives normalized NPP parameters from the preprocessing function and identifies 
unknown events in real time. An anomaly score is assigned to indicate any discrepan-
cies between the actual data and the trained data used for this function. For anomaly 
scores below a pre-set threshold, the event is identified as a known event that the 
diagnosis network in the next function has been trained for. But for anomaly scores
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Table 4.11 Summary of diagnostic algorithm functions 

No. Function Input Output 

1 Preprocessing function – Plant parameters (from the 
NPP) 

– Normalized plant 
parameters (to networks) 

2 Identification of unknown 
event function 

– Normalized plant 
parameters (from the 
preprocessing function) 

– Identification as a known 
event (to the event 
diagnosis function) 

– Identification as an 
unknown event (to 
operators) 

3 Event diagnosis function – Identification of known 
event (from the 
identification of unknown 
event function) 

– Normalized plant 
parameters (from the 
preprocessing function) 

– Eventual highest 
probability event (to the 
confirmation of diagnosis 
result function) 

4 Confirmation of diagnosis 
result function 

– Highest probability event 
(from the event diagnosis 
function) 

– Normalized plant 
parameters (from the 
preprocessing function) 

– Identified event (to 
operators) 

– Incorrect diagnosis results 
(to the event diagnosis 
function)

above the threshold, the event is classified as unknown, with the message “Unknown 
event occurrence” provided as the output to operators. 

The process of the unknown event identification function is illustrated in Fig. 4.15. 
To account for the temporal dependency of time-series data in a typical VAE, the VAE 
in this architecture is combined with LSTMs by replacing the feed-forward network 
in the VAE. For the multi-parameter input xt ∈ RD, where D is the number of input 
parameters, made up of x1,t , …  xD,t at time t which are normalized plant parameters 
from the preprocessing function, the encoder approximates the posterior p(zt|xt) 
by the LSTM in the encoder and estimates the mean μzt ∈ RM and the variance 
σzt ∈ RM of the latent variable zt ∈ RM . A randomly sampled zt from the posterior 
p(zt|xt) is then fed to the LSTM in the decoder. The mean μxt ∈ RD (μx1,t , . . . μxD,t ) 
and variance σxt ∈ RD

(
σx1,t , . . . σxD,t

)
of the reconstruction are computed as the final 

output.
In order to identify an unknown event, the unknown event identification function 

recognizes an anomalous execution when the current anomaly score exceeds the 
threshold α,, as shown  in  Eq. (4.25). The anomaly score calculator is represented 
by the term fs(xt, ∅, θ  ). This score is defined as the negative log-likelihood of xt , as  
in Eq. (4.26), with respect to the reconstructed distribution of xt from the LSTM-
VAE network. In the equation, μxt and σxt are the mean and the variance of the 
reconstructed distribution from the LSTM-VAE network with parameters ∅ and θ , 
respectively. Figure 4.16 depicts the calculation of an anomaly score as an example. 
The normalized input parameters are xt ∈ R3 (for x1,t, x2,t, x3,t), the reconstruction
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Fig. 4.15 Various processes in the unknown even identification function. Reproduced with 
permission from Kim et al. (2021)

Fig. 4.16 Example of anomaly score calculation. Reproduced with permission from Kim et al. 
(2021)

mean is μxt ∈ R3 (for μx1,t , μx2,t , μx3t ), and the reconstruction variance is σxt ∈ R3(for 
σx1,t , σx2,t , σx3t ). Each element is processed via Eq. (4.26) and the anomaly score is 
calculated as a result. In the example shown in the figure, there are three input 
parameters (D), and the anomaly score is calculated to be 0.927. 

(
Unknown event, if fs(xt, ∅, θ  ) > α,

Known event, otherwise, 
(4.25) 

fs(xt, ∅, θ  ) = −  
1 

D 

DΣ

i=1 

logp
(
xi,t; μxi,t , σxi,t

)
(4.26) 

To set the threshold α,, a three-sigma limit is applied following the consideration 
of the anomaly score distribution of the training data. Anomaly scores achieving 
small values indicates that the output data, in other words the reconstructed data 
from the LSTM-VAE, is similar to the training data, with the threshold reflecting the 
upper control limit. In the calculation shown in Eq. (4.27), Smean and Sstd are the mean 
and standard deviation of the anomaly scores of the training data, respectively. This 
sets a range for the process parameter at a control limit of 0.27%, which corresponds 
to the three-sigma in the normal distribution, in addition to minimizing the cost 
associated with preventing errors in terms of classifying a known event as unknown. 
Section 4.3.3.2 describes how the threshold and hyperparameters are determined for 
this function.
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α, = Smean + 3 ∗ Sstd (4.27) 

4.3.2.3 Event Diagnosis Function 

The third function of the algorithm uses an LSTM to provide the diagnosis results 
of the plant situation; Fig. 4.17 shows the flow of the event diagnosis function. The 
LSTM receives normalized plant parameters from the preprocessing function and 
outputs the identified abnormal event along with its probability, which represents 
the confidence level of the identified event. The output is post-processed using the 
softmax function. The function selects the event with the highest probability among 
the diagnosis results and passes it to the confirmation function. Here, multiple events 
can be identified with varying probabilities in the event diagnosis function. After 
receiving the selected event, the confirmation function may return information indi-
cating that the current situation is not consistent with the diagnosis result, in which 
case the event diagnosis function selects the event with the next highest probability 
and sends it to the confirmation function until the current situation is consistent with 
the diagnosis result. The process to determine the model hyperparameters including 
the number of layers and nodes is discussed in Sect. 4.3.3.3. 

Fig. 4.17 Processes in the event diagnosis function. Reproduced with permission from Kim et al. 
(2021) 

4.3.2.4 Confirmation of Diagnosis Result Function 

The last function is to confirm whether the current abnormal situation matches the 
event selected in the previous event diagnosis function. The confirmation function 
has a library composed of LSTM-VAE networks for trained events. For confirmation, 
the particular LSTM-VAE network for the selected event is used to check that the 
selected event is the same as the trained event. 

Figure 4.18 shows the process of confirming the selected event. First, after 
receiving the event selected by the previous event diagnosis function, the confir-
mation function selects the LSTM-VAE network from the library that corresponds to 
the identified event. Next, the function verifies that the current situation is identical to 
the selected event through the LSTM-VAE network. To determine the anomaly score, 
the confirmation function employs negative log-likelihood similarly as the unknown 
event identification function. For negative log-likelihood values below the threshold,
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Fig. 4.18 Processes in the confirmation of diagnosis results function. Reproduced with permission 
from Kim et al. (2021) 

the algorithm affirms that the diagnosis result from the event diagnosis function is 
correct. For negative log-likelihood values above the threshold, the algorithm returns 
to the previous event diagnosis function to select another event. The thresholds of 
the LSTM-VAE networks in this function are determined in a manner similar to that 
discussed in Sect. 4.3.2.2. 

4.3.3 Implementation 

A CNS is used as a real-time testbed to implement, train, and validate the algorithm. 
In the data collection, a total of 20 abnormal situations and 558 cases are simulated. 
Table 4.12 lists the abnormal scenarios along with the number of simulations for 
each event. The scenarios include representative abnormal situations in actual NPPs, 
namely instrument failures (Nos. 1–6), component failures (Nos. 7–16), and leakages 
(Nos. 17–20).

From the AOPs of the reference plant, 139 plant parameters are chosen for the 
inputs, including plant variables like pressure or temperature and component states 
like the status of valves or pumps. The parameters are collected every 1 s over the 
simulations. 

For training, 15 out of the selected 20 scenarios containing 409 cases are used. 
The remaining 5 scenarios, i.e., scenario Nos. 3, 13, 14, 15, and 20, are used for 
testing untrained events with a total of 149 cases. Among them, 115 cases are used 
for determining the two thresholds, namely those of the unknown event identification 
and confirmation functions. 

As the CNS produces data without noise, as shown in Fig. 4.19a, ± 5% Gaussian 
noise is added to the collected data to more realistically reflect actual signals from 
NPPs. The noise intentionally added to the CNS data is shown in Fig. 4.19b.
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Table 4.12 Abnormal scenarios and number of simulations Kim et al. (2021) 

No. Scenario Training cases Test cases Total cases 

1 Failure of PZR pressure channel (High) 14 4 18 

2 Failure of PZR pressure channel (Low) 20 6 26 

3 Failure of PZR water level channel (High) – 6 6 

4 Failure of PZR water level channel (Low) 11 4 15 

5 Failure of SG water level channel (Low) 32 8 40 

6 Failure of SG water level channel (High) 35 6 41 

7 Control rod drop 38 10 48 

8 Continuous insertion of control rod 7 1 8 

9 Continuous withdrawal of control rod 6 2 8 

10 Opening of PZR power-operated relief valve 42 10 52 

11 Failure of PZR safety valve 35 8 43 

12 Opening of PZR  spray valve 41 9 50 

13 Stopping of charging pump – 1 1 

14 Stopping of two main feedwater pumps – 3 3 

15 Main steam line isolation – 3 3 

16 Rupture at the inlet of the regenerative heat 
exchanger 

40 10 50 

17 Leakage from chemical volume and control 
system to component coolant water (CCW) 

40 10 50 

18 Leakage at the outlet of charging control 
flow valve 

24 6 30 

19 Leakage into the CCW system from the RCS 24 6 30 

20 Leakage from SG tube – 36 36 

Total 409 149 558

Fig. 4.19 Examples of PZR temperature data. a Original CNS data and b data with ± 5% added 
Gaussian noise. Reproduced with permission from Kim et al. (2021)
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4.3.3.1 Preprocessing 

For data preprocessing, the maximum and minimum values of the parameters are 
determined for all of the collected data (558 cases) to implement the min–max 
normalization in the preprocessing function. However, adding ± 5% Gaussian noise 
to the simulator data to better reflect an actual NPP environment can result in data 
that is higher than the maximum values or lower than the minimum values, in which 
case the data would be outside the 0 to 1 range when normalized. To prevent this 
issue, 10% and –10% margins, respectively, are added to the maximum and minimum 
values of each parameter. An example of a normalized PZR temperature is shown in 
Fig. 4.20. 

Fig. 4.20 Example of a normalized PZR temperature. Reproduced with permission from Kim et al. 
(2021) 

4.3.3.2 Unknown Event Identification 

The unknown event identification function is implemented with the LSTM-VAE 
network. In this network, the datasets have a sequence of 10 s and 139 input values. As 
mentioned in Sect. 4.3.3, 409 scenarios are trained in this implementation, resulting 
in 192,637 datasets for the 139 parameters. Figure 4.21 illustrates how the unknown 
event function works within the LSTM-VAE network. The VAE does not necessarily 
tune the hyperparameters; rather, it creates a variational information bottleneck to 
prevent overfitting, which consequently has the effect of providing an optimal bottle-
neck size for each hyperparameter (Tishby and Zaslavsky 2015; Alemi et al. 2016; 
Ruder 2016). Otherwise, the LSTM-VAE network uses the Adam optimizer (Kingma 
and Ba 2014) with a learning rate of 0.0001 and runs for 100 epochs.

To evaluate the performance of the LSTM-VAE network, the receiver operating 
characteristic (ROC) curve is considered. An ROC curve is made by plotting the true 
positive rate, which is the ratio of the correctly predicted positive observations to 
all observations in the actual class, against the false positive rate, which is the ratio 
of the incorrectly predicted negative observations to all observations in the actual 
class. It offers a useful method to interpret the performance of binary classifiers. The 
area under the ROC curve (AUC) is an effective measure to determine the overall 
accuracy of the diagnosis, which can be interpreted as the average value of sensitivity 
for all possible values of specificity. This measure takes any value between 0 and 1,
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Fig. 4.21 Identification of unknown event function using the LSTM-VAE network. Reproduced 
with permission from Kim et al. (2021)

where 0 indicates a wholly inaccurate test. The closer the AUC is to 1, the stronger 
the overall diagnostic performance of the model. An AUC value of 0.5 typically 
suggests no discrimination, 0.7–0.8 is considered acceptable, 0.8–0.9 is considered 
excellent, and over 0.9 is considered outstanding (Park et al. 2004; Bergstra and 
Bengio 2012; Mandrekar 2012). The threshold value is calculated to be 0.923 using 
Eq. (4.27). Figure 4.22 plots the result of the ROC and AUC of the identification of 
unknown event function. 

Fig. 4.22 ROC and AUC of 
the identification of 
unknown event function. 
Reproduced with permission 
from Kim et al. (2021)
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Table 4.13 Accuracy comparison results of various configured networks 

No. Time step Batch size Layers Val_Accuracy 

1 5 32 2 0.9668 

2 5 32 3 0.9638 

3 5 64 2 0.9634 

4 5 64 3 0.9650 

5 10 32 2 0.9768 

6 10 32 3 0.9746 

7 10 64 2 0.9764 

8 10 64 3 0.9741 

9 15 32 2 0.9767 

10 15 32 3 0.9762 

11 15 64 2 0.9764 

12 15 64 3 0.9766 

4.3.3.3 Event Diagnosis 

The event diagnosis function adopts the LSTM and softmax function. A total of 
409 scenarios producing 192,637 datasets for 139 parameters are used for training. 
For validation to prevent overfitting, 20% of the training data (38,527 datasets) 
is randomly selected, and to optimize the LSTM in the event diagnosis func-
tion, a manual search method is used in which the hyperparameters such as the 
input sequence length, batch size, and number of layers are individually adjusted. 
In general, no single standard exists for hyperparameter determination in the 
optimization of a network (Ruder 2016; Bergstra and Bengio 2012; Kim et al. 2021). 

Table 4.13 lists the results of an accuracy comparison between different configured 
networks. Accuracy is defined here as the ratio of correctly predicted data to the total 
validation data. According to the results, the optimal LSTM network has 2 layers, 
a time step of 10 s, and a batch size of 32. This network also applies the Adam 
optimizer (Kingma and Ba 2014) with a learning rate of 0.0001 and runs for 100 
epochs. Figure 4.23 depicts the event diagnosis function with the LSTM and softmax 
function.

4.3.3.4 Confirmation of the Diagnosis Result 

To implement the confirmation function, an LSTM-VAE library is developed that 
contains 16 LSTM-VAE networks trained for each known event, in other words 15 
abnormal events and 1 normal state. An illustration of the confirmation of diagnosis 
result function is shown in Fig. 4.24 for the diagnosed event Ab 01. All LSTM-VAE 
networks and thresholds are developed in a similar manner as those in the unknown
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Fig. 4.23 Event diagnosis function with an LSTM and softmax function. Reproduced with 
permission from Kim et al. (2021)

event identification function. Table 4.14 lists the number of training datasets, AUC, 
and threshold of each LSTM-VAE network in the confirmation function.

4.3.3.5 Results 

A test of the network is performed for 149 scenarios with 57,309 datasets. Among 
them, 47,987 datasets from 100 cases are used as the trained events, while 9322 
datasets from 49 cases are used as untrained events. In the test results, the accuracy 
of the network for unknown event identification, which respectively predicts trained 
and untrained events as known and unknown events, is 96.72%. The accuracy of the 
network for confirmation of the diagnosis result is 98.44%. With these results, the 
test demonstrates that the algorithm can successfully diagnose the trained events and 
identify the untrained events. An example of the diagnosis of an untrained event, in 
this case Ab 20 (leakage from SG tubes), is shown in Fig. 4.25. Here, the identification 
of unknown event function classifies Ab 20 as an untrained event because its anomaly 
score exceeds the threshold, and the message “Unknown Event” is provided.

Figure 4.26 illustrates the diagnosis process of the algorithm for a trained event, 
in this case Ab 08 (continuous insertion of control rods). First, the preprocessing 
function normalizes the plant parameters, and the identification of unknown event 
function highlights the event as a trained event. The event diagnosis function then 
determines the event to be Ab 08, and the diagnosis result confirmation function 
affirms that the result is correct. The message “Ab 08: continuous insertion of control 
rods” is finally presented as the diagnosis of the current situation.
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Fig. 4.24 Illustration of the confirmation of diagnosis result function. Reproduced with permission 
from Kim et al. (2021)

4.4 Sensor Fault-Tolerant Accident Diagnosis 

Prompt reactions to anomalies are essential to minimize the potential consequences, 
especially in safety–critical systems. As NPPs may threaten public safety in case of 
a large release of radioactive materials as a result of an accident, accurate diagnosis 
is crucial to determine the ORPs that contain the essential mitigation tasks for the 
particular accident (USNRC 1982). Diagnosis procedures follow intuitive logics to 
identify accidents based on a series of symptom checks, which as previous discussed 
can be a highly demanding task for plant operators because the early phases of an 
emergency can have a great effect on the consequences of the accident. In this light, 
an inaccurate diagnosis leading to the selection of the wrong ORP could result in 
numerous human errors and impair mitigation. 

One factor in the misdiagnosis of severe accidents such as the TMI and Fukushima 
accidents is sensor faults (Mizokami and Kumagai 2015;Norman  1980). In particular, 
the TMI accident represents a case where sensor faults led to a critical misdiagnosis
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Table 4.14 Training data, performance, and thresholds of the LSTM-VAE networks in the 
confirmation function 

No. Name Trained data AUC Threshold 

1 VAE Ab 01 3459 datasets (Ab 01) 0.995 0.923 

2 VAE Ab 02 3785 datasets (Ab 02) 0.934 0.923 

3 VAE Ab 04 5658 datasets (Ab 04) 0.993 0.922 

4 VAE Ab 05 5730 datasets (Ab 05) 0.998 0.921 

5 VAE Ab 06 8312 datasets (Ab 06) 0.974 0.923 

6 VAE Ab 07 34,735 datasets (Ab 07) 0.999 0.920 

7 VAE Ab 08 2831 datasets (Ab 08) 0.958 0.924 

8 VAE Ab 09 2070 datasets (Ab 09) 0.955 0.927 

9 VAE Ab 10 8394 datasets (Ab 10) 0.985 0.921 

10 VAE Ab 11 8004 datasets (Ab 11) 0.938 0.921 

11 VAE Ab 12 23,885 datasets (Ab 12) 0.996 0.920 

12 VAE Ab 16 24,600 datasets (Ab 16) 0.965 0.920 

13 VAE Ab 17 30,904 datasets (Ab 17) 0.953 0.934 

14 VAE Ab 18 14,805 datasets (Ab 18) 0.984 0.922 

15 VAE Ab 19 1546 datasets (Ab 19) 0.967 0.920 

16 VAE Normal 7602 datasets (Normal state) 0.995 0.923

Fig. 4.25 Process of diagnosing an untrained event. Reproduced with permission from Kim et al. 
(2021)

error. In short, electromagnetic relief valves, also called power-operated relief valves 
(PORVs), were accidentally stuck open, but the related indicator showed that the 
valves were closed. From this error, the operators mistakenly understood the situation 
and turned off the safety-injection system, which had automatically actuated to cool 
down the reactor core. The well-documented accident progressed from there.
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Fig. 4.26 Process of diagnosing a trained event. Reproduced with permission from Kim et al. 
(2021)

In this section, an accident diagnosis algorithm considering the sensor fault state to 
aid plant operators is introduced. Numerous models based on data-driven approaches, 
which typically require longitudinal multivariate plant parameters that contain acci-
dent symptoms, have been suggested to reduce the number of required tasks while 
securing accurate accident diagnosis. However, the means to account for sensor faults 
during an accident sequence have not been discussed in existing diagnosis procedures 
or the more recently developed diagnosis models. This seems to imply that current 
diagnosis models are vulnerable to sensor errors, based on their lack of consideration 
of sensor fault-induced diagnosis failure. The diagnosis model in this section adopts 
the sensor fault monitoring system described in Sect. 3.1 and adds a sensor fault 
mitigation system that conditionally isolates any faulty sensor data to achieve sensor 
fault-tolerant diagnosis.
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4.4.1 Sensor Fault-Tolerant Diagnosis System Framework 

The sensor fault-tolerant diagnosis system is made up of two subsystems: one for 
sensor fault detection, and one for sensor fault mitigation. Figure 4.27 shows a basic 
schematic. Following a reactor trip, sensor fault monitoring is initiated as the first 
function of the system. If no sensor faults are detected, the accident diagnosis system 
generates an output that identifies the accident. If a sensor fault is detected by the 
monitoring system, the faulty information is transferred to the sensor fault mitigation 
system, which either substitutes the faulty sensor data via data imputation or weakens 
its influence. This way, accident diagnosis results that are robust against sensor error 
are generated. 

Fig. 4.27 Overall framework for fault detection and fault-tolerant accident diagnosis. Reproduced 
with permission from Choi and Lee (2020) 

4.4.1.1 Accident Diagnosis Algorithm Using GRU 

Correctly identifying the accident type is crucial to mitigate an emergency. Emer-
gency situations create great pressure and stress for operators that invite potential 
human errors in following the complicated diagnosis procedures (Park et al. 2005). 
For operator support, ML-based and statistical model-based accident identification 
algorithms have been proposed to secure accurate diagnosis outputs quickly. The 
tasks included in diagnosis involve checking multiple process parameters, namely 
their trends or if any value exceeds its threshold, which requires knowledge of multi-
variate parameters. Accordingly, accident diagnosis algorithms are also required to 
classify multivariate data via temporal analysis. 

In the current system, the accident diagnosis algorithm is constructed based on 
a GRU to monitor diagnosis performance through tests for any degradation from 
faulty inputs. It has one hidden layer with 64 nodes and uses the Adam optimizer for
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training. The hyperparameters including the number of hidden layers and nodes were 
determined from a pilot study for satisfactory diagnosis performance. Outputs of the 
algorithm are generated with the softmax function, which normalizes the output with 
a probability distribution (Fig. 4.28). 

Fig. 4.28 GRU-based accident diagnosis algorithm with multivariate time-series input and softmax 
output. Reproduced with permission from Choi and Lee (2020) 

The characteristics of GRU are favorable for accident diagnosis in terms of the 
connections between the cells and its forward propagation aspect transferring contex-
tual information. Issues with the robustness of neural network models have been 
raised though, and thus measures to strengthen network robustness receive continued 
attention. One work was able to achieve higher performance of an RNN in the recon-
struction of energy production data but it was accompanied by much lower robustness 
compared with other data-driven approaches (Baraldi et al. 2015). Another work 
compared the performance of various neural network models and found a lower 
robustness of the RNN, with missing values in some cases (Kim et al. 2018). As the 
robustness of RNN models can be questioned, measures to counteract the threat of 
possible sensor errors in the current case need to be prepared to prevent the failure 
of the model from wrong inputs. 

4.4.1.2 Sensor Fault Detection System 

The RNN-based sensor error detection system detailed in Sect. 3.1 that treats several 
time-series multivariate data to account for sensor faults in an emergency situation 
acts as the base of the system in the present section. As discussed in that section, the
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Fig. 4.29 Examples of sensor state identification with a normal data test results and b error 
injected data test results from the sensor fault detection model using supervised learning (Sect. 3.1). 
Reproduced with permission from Choi and Lee (2020) 

output of the detection system takes the form of a consistency index, representing 
numerically normalized scores for sensor health. Figure 4.29 shows an example of 
the consistency index hovering around 1 in normal states but decreasing along the 
degree of deviations in the sensor signal. The criteria for the consistency index as 
a fault threshold was previously determined from empirical test results to be 0.7 
considering detection speed as well as uncertainties. The consistency index allows 
sensor fault information to be derived with masking inputs, which have the same 
data structure as time-series inputs. Masking inputs indicate the absence of data in 
a binary manner, where 1 reflects a normal sensor value and 0 reflects missing data. 
The masking inputs are obtained as in Eq. (4.28). 

mi 
t =

(
1, Ci 

t ≥ 0.7 
0, Ci 

t < 0.7 
(4.28) 

The sensor error modes previously selected consider relations to human error and 
commonness. Accident data were injected with drift and stuck errors and the consis-
tency was evaluated. In the present section, the same sensor errors are implemented 
to check for any degradation in the performance of the diagnosis algorithm. In this 
case, drift error with rates of change of 2 and 10 times in both upward and downward 
directions as well as stuck at zero error are added to the accident data. Examples of 
the drift and stuck errors occurring at 100 s are shown in Fig. 4.30. All error injection 
is added at 1 s as the pilot study found that error injection close to 0 s resulted in 
large deviations of the diagnosis results.
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Fig. 4.30 Example trends of a drift and b stuck at zero sensor errors. Reproduced with permission 
from Choi and Lee (2020) 

4.4.1.3 Fault-Tolerant Accident Diagnosis System 

With successful results of the sensor fault detection system, continuous information 
of the states of the sensors in an accident can be monitored with confidence. But in the 
event that a sensor fault is detected, the inherently unreliable incoming data from the 
faulty sensor should be removed. This presents a problem as GRU-based accident 
diagnosis algorithms cannot accept an empty input based on the GRU structure 
where each input influences all the functions and the outputs via interconnections. 
It is therefore necessary to estimate the missing values or employ a modified RNN 
structure in cases with missing data. In this section, various imputation approaches 
that substitute missing data with estimations are applied to the GRU model and 
compared to construct the fault-tolerant accident diagnosis system. 

Simple imputation methods for time-series data include moving window imputa-
tion and last observed carried forward imputation. Such methods are unsuitable in 
the present case because they cannot reflect the characteristics of multivariate time-
series data, as a faulty sensor will generate inaccurate data continuously following 
the fault occurrence. Moreover, a statistical model or models should be included in 
the imputation to cover the diverse plant symptoms based on the accident type. Three 
imputation methods to substitute the faulty sensor data are compared below. 

K-Nearest Neighbors (KNN) 
K-nearest neighbors (KNN) is a common single imputation method performing a 
single calculation only. The basic principle is to make an estimation based on the 
average of multiple neighbors. In the K parameter setting, data in the same vicinity 
are grouped via distance calculations such as Manhattan distance, Euclidian distance, 
and correlation distance (Zhang 2012). Figure 4.31 shows the basic premise.
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Fig. 4.31 KNN imputation 

In case of missing data, the missing values are substituted for with the weighted 
average of the nearest neighbors. The present model applies a Euclidian distance-
based KNN method for data imputation. 

Multivariate Imputation with Chained Equations (MICE) 
Single imputation methods have limitations that can be addressed with the emergence 
of multiple imputation methods. Basic multiple imputation such as in the multivariate 
imputation with chained equations (MICE) approach which depicts the multiple 
implementation of single imputation to make up the random losses in multivariate 
data is as follows. 

(1) A simple imputation, such as mean, is conducted for every missing data as a 
place holder 

(2) The variable with the largest portion missing is returned to the missing data 
(3) The variable is regressed from other variables 
(4) The regression repeats until convergence is obtained. 

Typical regression models employ linear, logistic, or Poisson regression (White 
et al. 2011). In the different MICE software packages, regression models and conver-
gence criteria differ. In the present case, linear regression and a convergence criteria 
of Δ <0.1 is applied; in other words, the relative change in a new imputation value 
compared to the old imputation value is under 0.1. 

Missforest 
Originally proposed in the medical industry to handle big data containing missing 
sections, the Missforest method is a means of multiple imputation that can work 
with either categorical or numerical data. It follows a similar imputation process as 
MICE except for the regression method. Missforest adopts iterative random forest 
regression, which is a popular ML method in which numerous decision trees are 
constructed following training and a mean regression is generated by the ensembling 
of multiple decision trees (Liaw and Wiener 2002). Computation time for this method
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is adjusted by the inputs, number of trees, and number of iterations. Figure 4.32 
depicts the Random forest regression process which is basis of Missforest. 

Fig. 4.32 Random forest 
regression 

The above imputation methods work by replacing missing data. In addition to this, 
the RNN structure can also be modified to utilize missing data. The RNN structure 
has the same parameters throughout all time-series data, which means that the input 
data must match the data dimensions of the trained model. But it is known that data 
loss may occur for any variable and scale, in which case a typical RNN model cannot 
produce outputs when inputs are missing. To address this problem, the GRU-decay 
(GRUD) model has been developed for multivariate time-series data having missing 
sections (Che et al. 2018). 

GRU-decay 
The GRUD model complements the basic GRU structure with a simple imputation 
and weight decay mechanism to minimize the effect of any missing data; Fig. 4.33 
shows its cell structure. A decay term, γ, is determined from training and used to 
represent the decrease in the missing data. The decay mechanism with decay term γ 
is shown in the following equations. 

γt = exp
(− max

(
0, Wγ σt + bγ

))
(4.29) 

x̂t = mtxt + (1 − mt)
(
γxt xt +

(
1 − γxt

) ‿
x t

)
(4.30)
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Fig. 4.33 GRUD scheme. 
Reproduced with permission 
from Choi and Lee (2020) 

ĥt−1 = γht ⊙ ht−1 (4.31) 

Here, γt is the decay term and m is the masking, which gives the missing features 
of the data. The decay term affects the input and hidden state, which is advantageous 
in unified designs combining imputation and RNN models performing actual work, 
such as the accident diagnosis classification of the present model. Based on the trained 
RNN, imputation manipulates the decays of the missing variables with trained decay 
rates. Hence, the GRUD model is suitable to generate an RNN-based diagnosis output 
when specific variables are missing by sensor failure. The masking inputs can mirror 
the sensor fault monitoring results from the front system. 

With these four approaches, two fault-tolerant diagnosis structures are 
constructed. The first replaces the missing data by performing regression-based 
imputation via KNN, MICE, or Missforest, which are compared in Sect. 4.4.2.3, 
and then makes a diagnosis with GRU. The second structure inputs the data with 
missing sections directly to GRUD for diagnosis. Their diagnosis performance as 
strategies to mitigate sensor error in simulated NPP accidents is compared in the 
next section. 

4.4.2 Comparison Results 

4.4.2.1 Data Descriptions 

For a proper accident diagnosis, proper situational awareness is required to check 
the various accident symptoms. Here, the diagnosis procedures guide operators in 
a standardized way by providing conditional logics as shown in Fig. 4.34, which
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Fig. 4.34 Symptom-based EOP package. Reproduced with permission from Choi and Lee (2020) 

includes the early responses to an accident, the diagnosis procedure, and the appro-
priate ORPs depending on the particular accident (IAEA 2006). It is noted here that 
this flow is vulnerable to inaccurate process parameters from sensor faults. Even 
one wrong transition in a procedure could result in a diagnosis failure, which would 
prevent the optimal response and lead to the commission of unnecessary tasks or 
potentially harmful actions. It is clear that securing robust and accurate diagnosis of 
an NPP accident is indispensable for safe operation. 

A CNS developed by KAERI of the Westinghouse 990 MWe PWR is used to 
generate the nuclear accident data. Such simulators are commonly used as data 
sources for several data-driven ML applications in the nuclear field. The CNS can 
generate emergency or accident data with options for detailed malfunctions. It is a 
simplified 1D model with theoretical assumptions and cannot simulate all accident 
phenomena; however, it can generate large amounts of data in a short time. In this case, 
from the 2217 process parameters generated by the CNS, 41 parameters are chosen 
based on the diagnosis procedure in the EOPs. The parameters are also selected to 
include ones that reflect specific accident symptoms. Data acquisition is set to 900 s 
referring to accident diagnosis time limits recommended in IAEA safety reports. 

All the selected parameters show nonlinear and variable changes in emergency 
situations following reactor trip and the actuation of various safety systems. In addi-
tion, the data includes unexpected phenomena such as parameter oscillation by vapor-
ization, and the diverse accident symptoms differ from the detailed malfunction 
options. Table 4.15 details the simulated accidents and lists the numbers of datasets.

As shown in the table, five broad NPP accident categories are considered, for 
which data from nine detailed accident sequences are extracted. A total of 1850 data 
are divided by severity or break location to generate various accident features, as 
follows. The LOCA data is classified as small/medium LOCA and large LOCA by 
break size from a reference, and the PORV LOCA type is added for its distinctive 
symptoms compared to other LOCA types. The ESDE or MSLB is separated into 
in- and out-CTMT because each involves different symptoms. RCP failure and RPS
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Table 4.15 Number of training and test sets for the nine simulated accidents 

Accident type Detailed accident type Accident label No. of training 
sets 

No. of test 
sets 

LOCA Small/medium LOCA 
Large LOCA 
PORV LOCA 

S/MLOCA 
LLOCA 
PORVLOCA 

228 
390 
54 

72 
126 
17 

SGTR SG tube rupture SGTR 111 36 

ESDE In-CTMT ESDE 
Out-CTMT ESDE 

ESDE_IN_CTMT 
ESDE_OUT_CTMT 

216 
186 

72 
70 

LOAF LOAF LOAF 112 38 

Reactor trip RCP failure RCP fail 50 11 

RPS failure RPS fail 50 11 

Total 1397 453

failure are included as accidents with spurious reactor trips. Among the data, 1397 
are randomly selected for training and validation, and 453 are used for testing. For 
an efficient training of the neural network model, min–max normalization of all 
the collected maximum and minimum variables in all datasets is performed for the 
training and test data. 

4.4.2.2 Results 

At the end of the GRU model, the softmax function generates a numerically normal-
ized output, but in this case there are no exact criteria for identifying the states. 
Despite the fact that accidents have a wide range of symptoms according to the acci-
dent type and scale, RNNs have demonstrated successful accident identification in 
many studies. For both stable and robust diagnosis algorithm performance, consis-
tently high outputs of the true labels should be generated. In the present case, simple 
criteria are set for a thorough evaluation of the diagnosis algorithm. It should be noted 
here that sufficient time for the accident symptoms to appear is needed following 
the accident occurrence. Previous research showed that sensor faults were detected 
around an average of 140 s. Based on this, the success criteria for accident diagnosis 
is assumed as when the true softmax output maintains its maximum value from 200 s 
to the end of the simulation, or 900 s. 

First, the developed diagnosis algorithm with GRU is initially assessed prior to 
testing with injected sensor errors. The GRU model test results are given in Table 
4.166 for classifying the accident type from among 453 test sets with fault-free data. 
Unstable trends were observed in S/MLOCA and LLOCA test data, which have break 
sizes near the boundary value. Despite this, the output maintained the true diagnosis 
across all time sequences. The performance degradation of the diagnosis algorithm 
is then analyzed for five sensor error modes, giving a total of 2265 test data for each 
sensor. The sensor error data are generated to target seven process parameters that
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Table 4.16 Diagnosis accuracy of GRU with error-injected and no-error sensor data 

Unit: % PZR 
Pressure 

Secondary 
RAD 

CTMT 
Pressure 

Cold Leg 
#1 Temp 

Flow SG 
to RCP #1 

RV 
Water 
Level 

SG #3 
Level 

Normal 
data 

100 

Faulty 
data 

92.98 60.04 68.65 83.05 93.20 93.47 87.55 

show diverse trends depending on the accident type and significantly influence the 
diagnosis procedures. In this section, a single sensor error is assumed. Table 4.16 
shows the results, namely that sensor error deteriorates the diagnosis performance at 
varying degrees by the particular error-injected sensor. The largest drop is seen for 
the secondary radiation sensor error because this parameter is critical to discriminate 
SGTR from other accident types. Figure 4.35 shows the successful identification of 
SGTR from normal data along with its diagnosis failure as a consequence of the 
secondary radiation sensor error. 

Fig. 4.35 Example trends of a accident diagnosis success in the normal data test, and b diagnosis 
failure from error-injected data for the secondary radiation sensor. Reproduced with permission 
from Choi and Lee (2020) 

4.4.2.3 Performance Evaluation of Imputation Models 

To select the best imputation model for the diagnosis algorithm, the accuracies of 
the imputation methods described in Sect. 4.4.1.3 are compared. Mean imputation 
is also included as a base method for KNN, MICE, and Missforest. Errors in the 
data reconstructed from the original values are collected in the form of average 
over time. Computation times are also included in the performance comparison as 
a crucial factor in accident situations that require rapid responses. While adjusting 
the model parameters may affect both imputation accuracy and computation time,
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such adjustments in this case are not a major determiner of model performance. The 
imputation model parameters, such as the number of nearest neighbors for KNN or 
the number of decision trees for Missforest, are fixed based on pilot tests that found 
the best performance in under 20 s of computation time. Assuming only single sensor 
faults as previously mentioned, the MICE and Missforest methods deal with single 
fittings from linear and random forest regression in the following tests. 

Certain NPP process parameters present zero values, such as specific radiation 
alarms that are maintained at zero in the absence of a radioactive material leak. Actual 
values of the sensors should be inserted as the denominator in the error percentage 
metrics though, such as for the mean absolute percentage error. To cover this problem, 
the symmetric mean absolute percentage error (MAPE) metric (Armstrong 2010) is  
applied, which is defined as follows. 

symmetic MAPE = 
1 

n 

nΣ

t=1 

2 · ||Av 
t − Fv 

t

||
|Av 

t | + |Fv 
t |

(4.32) 

In this expression, At denotes the actual measured value at time t and Ft denotes the 
imputed value. Asymmetric issues are known with symmetric MAPE (Goodwin and 
Lawton 1999), but these are not a concern with actual data of non-negative values. 
Evaluation with the symmetric MAPE metric is conducted to select the optimum 
imputation method among mean, KNN, MICE, and Missforest, where each involves 
a crucial parameter that determines the computation time and imputation accuracy. 
Imputation model comparisons are based on regressions of the missing sensor values 
from the same sample data as the training data. Tables 4.17 and 4.18 respectively list 
the percentage errors and computation times of the comparisons, where 5 variables 
are randomly selected from the 41 plant parameters (see Sect. 4.4.2.1) to compare 
the reconstruction performances independent of the features of the variables. 

From the results, Missforest is the most stable with the lowest error. MICE demon-
strates good performance with Var #4 having a simple pattern, regardless of the acci-
dent. This seems to be a characteristic of linear regression. But in the case of Var #2 
and #3, which contain constant zero data, MICE performance rapidly declines, as

Table 4.17 Comparative evaluation of imputation accuracy with the symmetric MAPE metric 

Unit: % Accuracy Variable #1 Variable #2 Variable #3 Variable #4 Variable #5 

Mean Max/Min 79.98/8.82 198.00/108.34 198.81/3.13 82.04/4.75 63.04/2.77 

Average 39.94 195.35 135.97 18.06 30.09 

KNN Max/Min 34.35/0.01 82.73/0.00 76.96/0.00 56.00/0.00 21.15/0.00 

Average 3.93 1.94 3.25 4.21 2.50 

MICE Max/Min 22.65/2.79 198.87/11.18 198.41/3.26 6.34/0.0042 51.80/0.86 

Average 7.63 177.95 95.91 0.21 6.80 

Missforest Max/Min 14.93/0.076 44.61/0.00 38.27/0.00 23.67/0.0008 17.99/0.00 

Average 1.68 1.41 0.27 0.77 1.48
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Table 4.18 Total average sMAPE and computation time of the imputation methods 

Mean KNN MICE Missforest 

Symmetric MAPE 83.88 3.17 57.70 1.12 

Computation time 0.0198 s 
(SD = 2.45 × −4) 

17.31 s 
(SD = 1.24 × −1) 

4.53 s 
(SD = 1.53 × −1) 

9.06 s 
(SD = 2.33)

shown in Fig. 4.36d. While KNN shows good performance in min error, it is unstable 
with unusual peaks. Considering the computation time, which as previously stated is 
a critical factor for applicability to real NPP emergencies, MICE shows an average 
computation time of under 5 s, Missforest about 9 s, and KNN about 17 s. Missforest 
presents a range of computation times among the variables because the computation 
time in Missforest derives from the number of branches, and thus the regression of 
sensor values with diverse trends like Var #4 take longer to calculate. Taken together, 
as Missforest-based imputation presented the best performance among the tested 
methods considering mean error, maximum peak error, and affordable computation 
time, it was chosen as the imputation tool to replace the missing data from sensor 
faults for signal reconstruction in the diagnosis algorithm.

4.4.2.4 Fault Mitigation Results 

The selected imputation method, Missforest, is now compared to GRUD by applying 
unreliable sensor data to test the sensor fault mitigation strategies. Each imputation 
method is tested with a test data set containing seven sensor errors. As shown in Table 
4.19, GRUD achieves notable performance recovery from the error states. In this case, 
its recovered diagnosis accuracy is directly affected by the level of degraded accuracy. 
For instance, the lowest accuracy among the faulty data for ‘Secondary radiation’ is 
related to the lowest recovered accuracy in the result. As for Missforest, all sensor 
errors are recovered to 100% diagnosis accuracy. Figure 4.37 plots the performance 
degradations and recovered diagnosis accuracies of the two methods for the seven 
sensor errors.

To summarize the results shown in Table 4.19, we first confirm that the base GRU 
diagnosis algorithm could successfully diagnose the 453 test data at an assumed 
threshold. Injecting sensor errors results in a diagnosis accuracy drop to an average 
of 82.71%, i.e., the failure of 2742 cases out of the total 13,113 test data. The 
GRUD-based fault-tolerant strategy is then applied, which achieves a notable accu-
racy recovery to 96.75%, with 103 failure cases out of the total 3171 test data. As a 
second strategy, Missforest achieves a complete diagnosis accuracy recovery, or in 
other words 0 failures out of the 3171 test data.



4.4 Sensor Fault-Tolerant Accident Diagnosis 133

Fig. 4.36 Comparison of imputation results showing a fine imputation by all models for a variable 
#4 fault, b the maximum error of K-nearest neighbors (KNN) for a variable #5 fault, c accurate 
performance of Missforest for a variable #1 fault, and d the maximum error of multivariate imputa-
tion with chained equations (MICE) for a variable #2 fault. Reproduced with permission from Choi 
and Lee (2020)

Table 4.19 Total diagnosis accuracies 

Normal data Faulty data GRUD Missforest 

Total 100% 
(453/453) 

82.71% 
(13,113/15,855) 

96.75% 
(3068/3171) 

100% 
(3171/3171) 

Fig. 4.37 Diagnosis accuracy results of seven sensor errors with error-free data (white), error-
injected data (dashed), and the application of GRUD (orange) and Missforest (brown) to the error-
injected data. Reproduced with permission from Choi and Lee (2020)
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4.4.3 Considerations for Optimal Sensor Fault Mitigation 

Several models for NPP accident identification are being actively researched, for 
which faulty input data from sensor networks should be considered. One notable 
finding in this section is that the GRU-based diagnosis algorithm is not robust against 
injected sensor faults, as its diagnosis accuracy dropped to about 80% from sensor 
errors in the performance test. Moreover, the sensor features largely determine both 
the performance degradation and the recovery. Table 4.16 highlights that one specific 
sensor parameter can play a crucial role in distinguishing two different accident types, 
with sensor errors of such types resulting in a significant degradation in the accuracy 
of the accident diagnosis system. More specifically, secondary radiation is a key factor 
for discriminating SGTR from LOCA, while CTMT pressure divides in/out CTMT 
ESDE accidents. Sensor error tests in these cases show performance degradations 
down to 60.05% and 68.65% accuracy. Diagnosis algorithm applications therefore 
require dedicated error mitigation strategies to compensate such cases. 

The Missforest mitigation strategy achieves a complete recovery with 100% diag-
nosis accuracy, while GRUD reaches 96.75% accuracy. Despite this lack of complete 
recovery, GRUD offers advantages in computation time and code complexity. The 
GRUD structure includes a decay mechanism, meaning only simple imputations 
need to be computed. Conversely, Missforest takes an average of 9.06 s (Standard 
deviation = 2.552) of computation to generate the imputed data. In an emergency 
situation, this longer calculation time could potentially delay the proper mitigation 
measures. For application of the sensor fault-tolerant diagnosis system in real NPPs, 
the computational time and performance trade-off needs to be examined in more 
detail. 

The developed fault-tolerant diagnosis system, as an advisory support system 
work, is designed to provide operators with accurately identified information during 
an accident situation as well as abnormal situations and start-up and shutdown 
operations. It also has potential for adoption in other industries requiring process 
parameter-based reactions that are sensitive to sensor faults. 

For further improvement of the diagnosis performance of the GRUD-based 
system, the GRUD structure should be developed further. For example, multi-
directional and bi-directional RNNs enable models to consider reverse directional 
or row-wise contextual situations with decay mechanisms for any missing data. In 
addition, the present system assumes error data from a single sensor fault only with 
no operator actions in the emergency situation. But in reality, simultaneous sensor 
errors may occur, and actions by human operators based on judgments at any given 
moment can influence the process parameters. A larger database therefore needs to 
be gathered for more comprehensive model training and testing.
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4.5 Diagnosis of Multiple Accidents with a GNN 

NPPs provide operators with detailed procedures to efficiently and accurately respond 
to accidents while reducing human error. There are two types of emergency situations 
that can occur during NPP operation. The first group represents single accidents, such 
as a reactor trip, LOCA, SGTR, ESDE, LOAF, LOOP, and SBO. In such single-
accident cases, the ORP corresponding to the accident is performed. The second 
group represents multiple accidents, for which accident diagnosis becomes difficult 
because the plant behavior does not permit a definitive diagnosis. Rather than an 
ORP, a functional recovery procedure (FRP) that ensures the integrity of the CSFs 
is performed in this case, without directly responding to the accident. 

With a quick and accurate determination of whether an emergency is a single or 
multiple accident situation, the FRP can be quickly selected in case of multiple acci-
dents, thereby providing additional time for operator response. Accident management 
can likewise be improved if operators can clearly identify the particular combination 
of accidents, which are typically difficult to distinguish because of the similar effects 
they have on the plant behavior. To support operators in various accident situations, 
a diagnosis system or agent requires a high diagnosis resolution. And as the accident 
may distort the measurement values, performing the diagnosis with as little data as 
possible is recommended. 

This section introduces a method achieving high diagnosis resolution with limited 
measurement variables. For increased diagnosis resolution and an optimized amount 
of required data for the neural network agent, the developed algorithm is based on a 
GNN. 

4.5.1 GNN 

The basic structure and algorithm of the GNN are described in Sect. 2.4.4. In this  
section, its major characteristics and the network structure employed in the current 
model development are mainly discussed. 

4.5.1.1 GNN Details 

A type of ANN structure, the GNN was first proposed by Scarselli (2008). While 
the CNNs and RNNs applied in various fields take vectors or matrices as inputs, the 
input for GNNs is a graph structure. With matrices used as inputs, CNNs are well 
suited for data in Euclidean space, like images or text, but conversely they are not 
well suited for data in non-Euclidean space. On the other hand, GNNs are applicable 
to data in a non-Euclidean space as local connections can be represented in a graph 
structure. Figure 4.38 illustrates the CNN and GNN structures for comparison.
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Fig. 4.38 Schematic diagrams of CNN and GNN structures. Reproduced with permission from 
Chae et al. (2022) 

In a CNN, a convolution filter is used to extract data features in Euclidean space, 
and the output of this, called a feature map, is used to train the neural network. By 
modifying the size of the convolution filter, CNNs can be applied to various data 
types. In a GNN, both the graph structure and the features of the nodes are used. 
Here, the graph structure in the form of a matrix, called the adjacency matrix, is input 
to the neural network. The basic GNN algorithm can be described as follows. The 
state of a vertex (hv) is a function of the four following elements: the features of 
node v (xv), features of the edges (xco[v]), states of neighboring nodes (hne[V]), and 
features of neighboring nodes (xne[v]), as shown  in  Eq. (4.33). 

hv = f
(
xv, Xco[v], hne[v], xne[v]

)
(4.33) 

The output of vertex v is obtained using the output function g, the inputs for 
which are the node state (hv) and node features (xv). The output can be written as in 
Eq. (4.34). 

ov = g(hv, xv) (4.34) 

Loss can then be defined as the difference between the target value t and the output 
of function g. 

loss =
Σ

ti − oi 
where i is the number of target data (4.35) 

These f and g functions are modeled using a neural network. The training of a 
GNN is conducted by updating the weights of functions f and g according to the 
loss. Zhou et al. describes various related algorithms in detail (Zhou et al. 2020).
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4.5.1.2 Spectral Graph Convolution Neural Network (Spectral GCN) 

To improve the diagnosis accuracy of the agent with a small dataset, the spectral 
GCN model is adopted, which stands for spectral graph convolution neural network. 
First proposed by Bruna (Bruna et al. 2013), the spectral GCN applies a convolution 
layer before the neural network layers. While its overall shape is similar to that of 
a conventional CNN, a spectral GCN can receive inputs in the form of a graph, 
where the filter g is assumed as a learnable parameter. In addition, spectral GCNs 
can work with multi-channel inputs such as images. From Eq. (4.33), the operation 
in the convolution layer in this case can be defined as in Eq. (4.36). 

H k−1 
:,j (Output from k − th hidden layer) = σ

(
fk−1Σ

i=1 

UΘk 
i,jU 

T H k−1 
:,i

)
(4.36) 

where, σ is activation function,
Θ is convolution filter which is form of diagonal matrix filled with learnable 

parameters. 
H is input signal from k–1 th node

(
H0 = X

)
. 

Employing a spectral GCN instead of a conventional CNN grants the following 
advantages. 

1. Grid structures (i.e., non-Euclidean data) can be analyzed 
2. More abundant relationships between different nodes can be expressed. 
3. The entities properties in the graph can be considered differently 

As shown by Eq. (4.36), not only the input signal (X) but also the matrix from the 
graph (U,Θk 

i,j, U
T) are utilized in the calculation of the output signal with a GNN. 

4.5.2 GNN-Based Diagnosis Algorithm Representing System 
Configuration 

In the diagnosis algorithm, the structure of an NPP control system is graphed and 
provided to the neural network as an additional feature. The form of such a system 
in an NPP is presented in such a way that it does not structurally change during 
operation. Figure 4.39 shows a basic schematic of the shape of an NPP.

The typical power plant is separated into primary and secondary sides. The primary 
side is a closed loop in which the heat from the reactor increases the temperature 
of the coolant (water), the RCP circulates the water, and heat is exchanged in the 
SG. The secondary side also forms a closed loop, in which heat is exchanged in 
the SG, the feedwater pump circulates the water, and the steam is cooled in the 
condenser. Any problem with the PZR will be delivered to the reactor immediately, 
but related information will be delivered to the relatively distant condenser in a 
slow or attenuated manner. As such, the operating variables of actual NPPs are not
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Fig. 4.39 Schematic diagram of an NPP. PZR: pressurizer. Reproduced with permission from Chae 
et al. (2022)

independent at each data point, but rather form a dataset in non-Euclidean space with 
relationships between data points. To represent these non-Euclidean characteristics, 
the operating variables of the power plant are expressed in graph form, as shown in 
Fig. 4.40, based on the shape of the plant. 

The system configuration determines the graph, as follows. 

1. All measured values of a given component are interconnected 
2. When connecting components, measurements of the same type are connected 
3. If it is not possible to connect measurements of the same type, all variables are 

connected. 

For instance, the PZR has measured values of level, pressure, and temperature, 
which are all connected to each other by a first-order neighbor. A flow measurement 
value is connected with the other flow measurement values, and a pressure measure-
ment value is connected with the other pressure measurement values. In the case of 
the RCP, because it only measures the flow rate, both the pressure and level of the

Fig. 4.40 Graph of relationships between operating variables. PZR: pressurizer, RCP: reactor 
coolant pump, SG: steam generator, HP: high pressure, LP: low pressure, TBN: turbine, CDN: 
condenser. Reproduced with permission from Chae et al. (2022) 
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Fig. 4.41 Diagnosis agent. Reproduced with permission from Chae et al. (2022) 

SG are connected to the RCP. Based on the graph in Fig. 4.40, an adjacency matrix 
is constructed for use as the GNN input. 

As mentioned in the previous section, the current ANN structure is based on a 
spectral GCN, which receives graphs as inputs and passes them through various filters 
that convert the data into useful information for training and automatically process 
outliers. The filter variable is a training parameter of the network. Figure 4.41 shows 
a schematic of the developed diagnosis agent model. 

The agent has three stages. The first stage is to transform the system configuration 
to graph form. The main output of the first stage is a node, edge relations in the form of 
an adjacency matrix, and measured value. The NPP is simplified as in Fig. 4.40 to test 
the accident diagnosis capability of the agent. The second stage is to preprocess the 
data, similar to a CNN, where Laplacian and convolution operations are conducted to 
extract more relation information from the graph. After this convolution operation, 
high pass and low pass filters are applied to remove signals with high and low 
frequency ranges that result from the Fourier transform. The preprocessed input then 
goes to the neural network, or third stage, which compares the network output to the 
actual diagnosis result and calculates the loss. 

Among the two filters used in the model, the first is a low pass filter described by 
Eq. (4.37). 

F1(λ) =
(
1 − 

λ 
λmax

)
(4.37) 

where λ is an eigenvalue and λ is a set of eigenvalues 
The second filter is a high pass filter described as follows. The eigenvalue of each 

filter is calculated by graph convolution. 

F2(λ) =
(

λ 
λmax

)
(4.38)
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where λ is an eigenvalue and λ is a set of eigenvalues 
The approach to graphing the system in this section is not only applicable to NPPs 

but other industrial plant systems such as chemical plants. The system in graph form 
is given as an input to the neural network, and GNN-based training is performed to 
provide the graph as a feature. 

4.5.3 Experiments 

For a performance assessment of the GNN-based accident diagnosis agent, we 
compared its performance with that of a CNN. To check for a sufficient diagnosis 
resolution of the methodology to identify multiple accidents, three different diagnosis 
tasks are tested. The first scenario attempts to diagnose two different single accidents, 
and the second scenario attempts to diagnose two types of single accidents in addi-
tion to a multiple accident combining the two single accidents. The third scenario 
attempts to diagnose six types of accidents, namely three different multiple accidents 
combining different sets of single accidents and three types of single accidents. 

4.5.3.1 Data Acquisition and Preprocessing 

While the use of real data from actual power plants would be preferable for verifica-
tion of the agent, such data are limited considering the scarcity of NPP emergency 
situations. Instead, a KAERI-developed CNS is used to generate data. The back-
end of the simulator is built on the SMABRE code, and the reference plant is a 
Westinghouse three-loop 900 MW PWR. 

The DBAs included in the tests are a reactor trip, LOCA, SGTR, ESDE, LOAF, 
LOOP, and SBO. Data are collected for the pipe breakage accidents having similar 
behaviors (LOCA, SGTR, and ESDE). As multiple accidents, data on LOCA + 
SGTR, LOCA + ESDE, and SGTR + ESDE are also collected. For the LOCA, 
the situation is assumed to result from a stuck-open PZR safety valve (PSV), as a 
PSV-LOCA is more likely to be misdiagnosed than a LOCA caused by a general 
pipe breakage (Kim et al. 2003). 

The 19 variables shown in Fig. 4.40 are collected as measured variables, which are 
also listed in Table 4.20. Descriptions of the data acquired for the different accident 
scenarios are as follows.

Single Accidents 

• PSV-LOCA: valve position [1%, 2%, …, 100%] 

i.e., PSV-LOCA with 1% valve stuck open, PSV-LOCA with 2% valve stuck open, 
… 

→ 100 scenarios.
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Table 4.20 Measured variables 

Component Measured variable 

PZR Pressure Level Temperature 

Hot leg Temperature – – – – 

Cold leg Temperature – – – – 

RV Level – – – – 

RCP Flow – – – – 

SG Level (Narrow) Level (Wide) Pressure Main steam 
flow 

Main steam 
pressure 

HP turbine Flow Pressure – – – 

LP turbine Flow Temperature – – – 

Condenser Temperature Pressure – – – 

Feed water 
pump 

Flow – – – –

• SGTR: tube rupture size [10 cm2, 20 cm2, …, 2000 cm2] 

i.e., SGTR with 10 cm2 tube rupture, SGTR with 20 cm2 tube rupture, … 
→ 200 scenarios. 

• ESDE: steam line break size [10 cm2, 20 cm2, …, 2000 cm2] 

i.e., ESDE with 10 cm2 steam line break, ESDE with 20 cm2 steam line break, … 
→ 200 scenarios. 

Multiple Accidents 

• PSV-LOCA + SGTR: [1%, 11%, …, 91%] + [10 cm2, 110 cm2, …, 1910 cm2] 

i.e., 1% PSV-LOCA and 10 cm2 SGTR, 1% PSV-LOCA and 110 cm2 SGTR, … 
10 PSV-LOCA conditions and 20 SGTR conditions 
10 × 20 → 200 scenarios. 

• PSV-LOCA + ESDE: [1%, 11%, …, 91%] + [10 cm2, 110 cm2, …, 1910 cm2] 

i.e., 1% PSV-LOCA and 10 cm2 ESDE, 1% PSV-LOCA and 110 cm2 ESDE, … 
10 PSV-LOCA conditions and 20 ESDE conditions 
10 × 20 → 200 scenarios. 

• SGTR + ESDE: [1%, 11%, …, 91%] + [10 cm2, 110 cm2, …, 1910 cm2] 

i.e., 10 cm2 SGTR and 10 cm2 ESDE, 10 cm2 SGTR and 110 cm2 ESDE, … 
20 SGTR conditions and 20 ESDE conditions 
20 × 20 → 400 scenarios. 
For equal amounts of data, augmentation is performed to create 400 scenarios 

per case. The raw data are normalized using the formula in Eq. (4.39), and 90%
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(10%) of the data is used for training (testing). To prevent overfitting, the tenfold 
cross-validation technique is applied. 

XNormalized = 
X − Xmin 

Xmax − Xmin 
(4.39) 

In the CNN data preprocessing, the data are arranged in 2D as R19×300. First, 
the data extracted from each component at a given time is in the form R1×300. Then 
attaching this data in parallel produces input data expressed in the form of a matrix, 
R19×300. The vertical axis represents the measured variable, and the horizontal axis 
represents the time step. Figure 4.42 illustrates the form of the CNN input data, and 
Table 4.21 lists the model hyperparameters. 

In the GNN data preprocessing, the data are separated into two different types. 
Datasets are constructed by dividing the adjacency matrix expressing the corre-
lation between the measured variables and the node features associated with the 
measured variables. The adjacency matrix takes the form R19×19, and the measured 
variables take the form R19×300. Figure 4.43 illustrates the form of the GNN input 
data, and Table 4.21 lists the model hyperparameters. While the CNN only handles the 
measured variables, the GNN utilizes both adjacency matrix and measured variables 
(Table 4.22).

Fig. 4.42 Inputs for the CNN. Reproduced with permission from Chae et al. (2022) 

Table 4.21 Hyperparameters of the CNN 

Hyperparameter Diagnosis agent 

Number of convolution layers 2(5 × 5 × 32, 5 × 5 × 64) 
Number of hidden layers 2 

Activation function of convolution layers ReLU 

Activation function of hidden layers ReLU (first layer), softmax (second layer) 

Number of neurons in hidden layers 1024 

Input dropout 10% 

Optimizer Adam (Kingma and Ba 2014) 

Learning rate 5e-4 
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Fig. 4.43 Inputs for the GNN. Reproduced with permission from (Chae et al. 2022) 

Table 4.22 Hyperparameters of the GNN 

Hyperparameter Diagnosis agent 

Activation function of hidden layer ReLU 

Activation function of output layer Softmax 

Biases of hidden layer False 

Biases of output layer True 

Input dropout 10% 

Weight decay 10% 

Optimizer Adam (Kingma and Ba 2014) 

Learning rate 10e-5 

4.5.3.2 Experiment Results 

The performance of the two diagnosis agents is analyzed for three cases, as follows: 
case 1 is the diagnosis of two accidents, LOCA and SGTR; case 2 is the diagnosis of 
three accidents, LOCA, SGTR, and LOCA + SGTR; and case 3 is the diagnosis of 
six accidents, LOCA, SGTR, ESDE, LOCA + SGTR, LOCA + ESDE, and SGTR 
+ ESDE. 

In case 1, both the CNN and GNN show good diagnosis performance, as 
seen in Fig. 4.44. This is mainly because LOCA and SGTR have relatively clear 
characteristics, and thus it is relatively easy to distinguish them.

In case 2, Fig. 4.45 shows that while the CNN can identify the individual acci-
dents with good performance, its diagnostic success probability for the multiple acci-
dents (LOCA + SGTR) lowers to approximately 78%. Examining the successful and 
unsuccessful results reveals that most of the failures were diagnosed as SGTR when 
combining small-break LOCA and large-break SGTR, or as a single LOCA when 
combining small-break SGTR and large-break LOCA. In contrast, the GNN results 
confirm that the agent can identify the three accidents with nearly perfect accuracy 
from the correlations among the 19 limited variables.

As for case 3, Fig. 4.46 shows a diagnosis accuracy of approximately 40% for 
the CNN. With a more complex network and more than 19 measured variables, 
the CNN may achieve good performance, but the diagnosis of multiple accidents 
is almost impossible with this network in the current setup. On the other hand, 
the GNN exhibits an accuracy of 98% in the diagnoses of the single and multiple
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Fig. 4.44 Diagnosis accuracy of the CNN and GNN for case 1. Reproduced with permission from 
Chae et al. (2022)

Fig. 4.45 Diagnosis accuracy of the CNN and GNN for case 2. Reproduced with permission from 
Chae et al. (2022)

accidents using only 19 measurement variables. According to Lee (Lee et al. 2021), 
reaching above 90% accuracy with a CNN requires around 1000 measured variables 
to train the neural network. The results of the current tests confirm that a significant 
improvement in performance can be achieved when the structure of the system is 
represented in the neural network training.

To support operators in various situations, the diagnosis agent should have a high 
diagnosis resolution. Moreover, as the accident progression may affect the measured 
values, it is desirable to consider as few measurements as possible in the diagnosis. 
The developed GNN-based diagnosis method addresses both of these points. 

One novelty of this method is the efficient training of the neural network and 
the quick graphing of the form of the system, which has not been used before. 
To date, it has been difficult to know the importance of the data and what kinds 
of relationships between the data can be found when training a neural network. 
Such preprocessing is then completely delegated to the network, resulting in very 
low training speeds. To reduce the required variables, human intuition is also used,
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Fig. 4.46 Diagnosis accuracy of the CNN and GNN case 3. Reproduced with permission from 
Chae et al. (2022)

where experts with a high understanding of the system can efficiently select the data. 
However, non-experts with a lower understanding of the given system have difficulty 
in data selection. By providing the neural network with an intuitive physical form of 
the system as a hint, training that is faster and more efficient can be achieved. The 
physical system form used in this methodology maps only the physical connections 
between the components, and thus it can be easily modeled by not only experts 
but also beginners. With this connection data in addition to the measured variable 
data, diagnosis resolution dramatically improves. The successful diagnosis results of 
multiple complex accidents, which has traditionally been difficult to perform due to 
resolution issues, indicate that transforming physical systems into graph form for use 
in training can result in more efficient and high performance neural network analysis 
of industrial systems. 

4.6 Interpretable Diagnosis with Explainable AI 

4.6.1 Need for Interpretable Diagnosis 

In the previous sections, several algorithms for diagnosing abnormal events and 
severe accidents in NPPs have been introduced. Many AI models studied in this way 
have the purpose to support the diagnostic tasks of operators to reduce human error 
and increase NPP safety. However, it is contradictory to apply technology to increase 
the safety of NPPs that has not been proven to be safe. Therefore, proper validation 
of a developed AI model is required to apply the model as an actual operator support 
system in NPPs, for which safety is the primary concern. 

One area that validation needs to cover is the potential biases that may occur in the 
training of NPP accident diagnosis models. In addition, if a trained model incorrectly 
diagnoses the NPP state, it should be able to analyze the errors and reflect feedback.
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Therefore, interpretation of the AI model forming the basis of the NPP state diagnosis 
system is essential. 

Another area to consider for the application of such an AI-based NPP state diag-
nosis system for operator support is as follows. When an abnormal situation occurs 
in an NPP, operators in the MCR recognize the problem, make a diagnosis of the 
plant status, and carry out the appropriate operating procedures. Following all the 
diagnosis tasks, the subject who makes the final diagnosis is the operator. A support 
system providing operators with the diagnosis results of the model in the course of 
the diagnosis tasks can be confusing if the support information is unreliable. Another 
potential problem is operators relying on unproved results (Lee and Seong 2007). In 
other words, it is uncertain whether providing only the diagnosis results of the model 
directly to the operators can support their tasks and decisions. Additional ways to 
take these issues into account need to be explored. 

An AI model that has a high level of interpretability can be used in various ways. 
For example, a close analysis of the causes of the model diagnosis results can provide 
additional information about the diagnosis to operators, which can increase the reli-
ability of the information and therefore the model results. By internally determining 
the appropriateness of the provided model diagnosis and deciding whether to accept 
it, operators can increase their task efficiency while maintaining the diagnosis subject. 
In order to apply an NPP state diagnosis model as an actual operator support system, 
it is necessary to utilize interpretable AI. 

4.6.2 Explainable AI 

The developed AI models in this chapter have tried to solve difficult classification 
problems following various approaches. They represent algorithms that conduct clas-
sification through a simple tree structure as well as more complex algorithms that 
conduct classification through an ANN structure. As the classification performance 
of a model improves, so does its complexity; in other words, the complexity of a 
model is closely related to its performance. However, the more complex the model 
is, the more difficult it is for humans to analyze the model. This trade-off relation-
ship between model performance (accuracy) and interpretability is shown in Fig. 4.47 
(Duval 2019).

Since the ANNs being actively studied as classification models have complex 
structures, it is difficult to explain their results logically. This is because the logical 
development of the relationship between the input and output with all the various 
weights for the numerous nodes inside the ANN is unclear. For the same reason, 
when an ANN model gives an incorrect classification result, the cause of the error 
cannot immediately be found within the internal structure. This makes it challenging 
to correct the internal structure to improve the model. As such, ANN models present 
a type of black-box problem. To solve the black-box problem of various models, 
including ANNs, numerous model interpretation techniques are under research.
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Fig. 4.47 Relation between 
model performance and 
model explainability

Explainable AI refers to AI that can convey information on its actions and judg-
ments in a form that humans can understand. As stated above, any AI-based classifi-
cation model applied to real industrial systems must be sufficiently safe and reliable, 
and if any problem occurs in the system, feedback on the system should be possible 
by identifying the cause of the problem. Explainable AI can facilitate these points 
by solving the black-box problem, thereby increasing the likelihood of adoption in 
real industries. 

4.6.3 Examples of Explanation Techniques 

Support systems such as those adopting NPP state diagnosis models are designed for 
human operators as the end-users. Therefore, when the model diagnoses the current 
situation as a specific NPP state, the model should give operators the highest level of 
understanding as possible. Techniques developed to explain the classification results 
of AI models work by calculating the relevance of the input values, such as pixels in 
images or parameters in table data, to the classification. The calculated relevance can 
be expressed as a heatmap or ranking; each technique takes a different approach to 
describing the AI model results. The following sections introduce some techniques 
developed to describe AI models. 

4.6.3.1 DeepLIFT (DL Important FeaTures) 

The DL important features or DeepLIFT technique defines a contribution score C as 
in Eq. (4.40) (Shrikumar et al. 2017). Here, t is the node to be interpreted and xi is 
the node that affects the interpreting target node. 

nΣ

i=1 

CΔxiΔt = Δt (4.40)
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In this equation, Δt and Δxi are the amount of change in t and xi, respectively, 
compared to the reference state. The reference state is a domain-specific value that 
is defined to calculate the contribution score by comparing it with judgment. 

4.6.3.2 SHAP (SHapley Additive exPlanations) 

Shapley values are a means of interpreting the contributions of features that make 
up the inputs through the difference in values when the feature to be calculated 
is included and when it is predicted from all possible combinations of the other 
features (Strumbelj and Kononenko 2010; Kuhn and Tucker 1953). This method 
has limitations in application to ANNs with deep structures, as the calculations are 
performed for all possible combinations of features connected to the input of a specific 
node. 

To address this, Deep SHAP refers to calculation using the Shapley values of a 
multiplier between the output layer and the previous hidden layer. The multiplier is 
the contribution defined above divided by Δxi. This can be interpreted as a kind of 
gradient. In order to interpret the deep structure of an ANN, Deep SHAP calculates 
the effect of the input on the output through one-pass backpropagation up to the input 
layer after calculating the Shapley value only for the output layer and the previous 
layer, considering it as a contribution score. 

4.6.3.3 Grad-CAM 

Gradient-weighted Class Activation Mapping (Grad-CAM), one of the explanation 
methods for CNNs (Selvaraju et al. 2017), calculates the contribution score of each 
feature using information about the gradient of the last convolutional layer. Its related 
terms are as follows. Ak is the k-th feature map of the last convolutional layer, as in 
Eq. (4.41) to calculate ac k using the partial derivative of the A

k of the input value of 
the softmax layer. 

αc 
k = 

1 

Z

Σ

i

Σ

j 

∂yc 

∂Ak 
ij 

(4.41) 

The ac k term represents the importance of Ak . Using this, Grad-CAM can be 
calculated through Eq. (4.42). 

Lc Grad−CAM = ReLU

(
Σ

k 

αc 
kA

k

)
(4.42)
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This equation, as the result of Grad-CAM, is derived by applying the ReLU 
activation function. In other words, in order to ignore the features necessary to deter-
mine negative labels, the negative contribution is set to zero and the contribution is 
evaluated only for positive values. 

Grad-CAM can highlight which features contribute to the model classification. 
However, in the case of simulator data, this technique may place a parameter in a 
highly contributing location by the difference of just one pixel. Therefore, the resolu-
tion level of the class activation map from the explanation method is considered highly 
important. Prior research into interpreting an image classification model showed that 
it is possible to obtain a higher resolution heatmap by multiplying the Grad-CAM 
and the guided backpropagation results, referred to as guided Grad-CAM. A more 
accurate explanation is expected for a given model by confirming the result of guided 
Grad-CAM in this way. 

4.6.4 Application to an Abnormal Event Diagnosis Model 

This section demonstrates the application of explainable AI to a simple NPP abnor-
mality diagnosis. As the diagnosis model, the two-channel CNN introduced in 
Sect. 4.1 is adopted for training simple NPP abnormal state datasets. The trained 
model diagnoses the test datasets representative of each abnormality, after which 
the diagnosis results are interpreted through two model explanation techniques: 
DeepLIFT + SHAP and guided Grad-CAM. The explanation results allow users 
to determine the contribution of all the NPP monitoring parameters included in the 
input data to the diagnosis of each state. 

4.6.4.1 Datasets 

The abnormal events considered in this application are shown in Table 4.23. The  
previously introduced 3KEYMASTER full-scope simulator produces scenarios 
consisting of 10 abnormal event situations (Western Service Corporation 2017). 
For the training dataset, 20 data files per abnormal event (200 data files total) are 
acquired. All data are obtained by injecting malfunctions specific to the abnormal 
event with varying intensities. The test dataset has a total of 10 data files with median 
values in each abnormal intensity range used to produce the training dataset. Each 
data file contains information about 744 human–machine interface parameters over 
60 time steps (60 s).

4.6.4.2 Base Model 

The inputs of the two-channel CNN model consist of a channel representing the 
current parameter values for every time step and a channel representing the extent
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Table 4.23 Data description 
with abnormality label 

Label Abnormal event 

CDS Loss of condenser vacuum 

CHRG Charging line break upstream of FT-121 

CWS Circulating water tube leak in low-pressure condenser 

LTDN Letdown line leak inside CTMT 

MFW Main feedwater pump recirculation valve FV2B leak 

MSIV Main steam isolation valve HV14 leak 

POSRV PZR pilot-operated safety relief valve HV456A leak 

RCP Loss of seal injection water with valve HV8351A leak 

SGTL SG A tube leak 

TCS High-pressure turbine control valve CV1 leak 

CDS condensate system abnormality; CHRG charging system 
abnormality; CWS circulating system abnormality; LTDN letdown 
system abnormality; MFW main feedwater system abnormality; 
MSIV main steam isolation valve abnormality; POSRV pressur-
izer pilot-operated safety relief valve abnormality; RCP reactor 
coolant pump abnormality; SGTL SG tube leakage abnormality; 
TCS turbine control system abnormality

of the changes from the parameter values 5 time steps prior to the current state. To 
compose each channel for model training, 744 parameter values points are arranged 
in a square shape of 28 * 28 with 40 padded zeros, as shown in Fig. 4.48. In other 
words, since the two channels for every time step constitute one input data, it can be 
seen that one data file contains 55 datasets. The two-channel CNN model trains with 
a two-channel image structure as the input. 

The whole model consists of two convolutional layers and two batch normalization 
layers for simple training. The output of the model, which shows the classification 
results for the 10 abnormal events, is produced by the FC layer after the flattening

Fig. 4.48 Two-channel 
structure for the model inputs 
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layer. The structure of the two-channel CNN model is shown in Fig. 4.49, and the 
model hyperparameters are given in Table 4.24. 

The model is trained for 100 epochs per dataset, and 30% of the training dataset is 
used as the validation dataset. The final information about the model for the epoch step 
with the lowest logloss is saved for the validation dataset. As a result, the final model 
has an accuracy of 1.0 on both the training and validation datasets. Figure 4.50 and 
Fig. 4.51 plot learning curves showing the accuracy and the logloss, respectively, 
for the training and validation datasets at every epoch step. It can be confirmed 
that the training progression reaches the optimum point for the model through the 
convergence of both the accuracy and logloss for the validation dataset. The trained 
model achieved an appropriate diagnosis for all 10 test scenarios.

Fig. 4.49 Model structure 

Table 4.24 Model 
hyperparameters 

Filter number of convolution 
layer 

32 

Kernel size of convolution 
layer 

3 * 3  

Activation function of 
convolution layer 

ReLU (Goodfellow et al. 2016) 

Activation function of dense 
layer 

Softmax (Nair and Hinton 2010) 

Loss function Categorical cross-entropy 

Optimizer Adam (Kingma and Ba 2014) 
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Fig. 4.50 Learning curve 
with accuracy 

Fig. 4.51 Learning curve with logloss 

4.6.4.3 Deep SHAP Results 

As above, the trained model performed a successful diagnosis of the appropriate 
abnormal event for all 10 test scenarios. The model’s diagnosis is now interpreted 
through Deep SHAP. As each test scenario contains a dataset with 55 time steps 
as the input of the two-channel structure, interpretation results for the diagnosis of 
all datasets included in each test scenario can be obtained. Here, the average inter-
pretation result is calculated, which allows the contribution of each feature (param-
eter) to the diagnosis result of the model to be determined for that test scenario. 
Figure 4.52 shows a heatmap visualizing the contribution of each variable when the
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Fig. 4.52 Heatmap from Deep SHAP 

model diagnoses test scenario 1 with the CDS label. In the heatmap, red indicates a 
high contribution. 

Table 4.25 lists the three parameters with the highest contribution to the label 
when the trained model diagnoses each test scenario as the true label. Through such 
contribution scores to the model diagnosis, the cause of the diagnosis can be better 
understood for users.

4.6.4.4 Analysis 

The interpreted contribution scores can be provided to operators along with the 
diagnosis results. Such provision of the reasons behind the diagnosis plays a number 
of roles in this system. First, the operators can check the provided causal parameters 
and decide whether to accept the diagnosis results of the model. In this example case, 
it can be seen that the parameter ‘LP turbine A vaccum’ has the highest contribution 
score for the model to diagnose test dataset 1 with the CDS label. When the operator 
is provided with this causal information, they can check the ‘LP turbine A vaccum’ 
parameter to confirm that it has a pattern differing from the normal operating state or 
the expected states of other abnormal events. In addition, the operator can consider 
whether the parameter is a suitable cause for the diagnosis result of the model, which 
can support the operator in determining that the diagnosis with the CDS label from 
the model is valid. In this way, a system that provides both the diagnosis result and 
the diagnosis cause of the model can secure a more efficient and faster diagnosis 
process without the need for operators to check the numerous existing monitoring 
parameters.
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Table 4.25 Relevant parameters from Deep SHAP 

True label Relevant parameter Score 

CDS LP turbine A vaccum 0.026798 

SG feedwater pump turbine B speed control 0.025084 

Intermediate pressure condenser cooling water outlet temperature 0.019749 

CHRG NCP running current 0.040696 

Charging header flow 0.032812 

Charging pump discharge header flow 0.029648 

CWS 13.8 kV to site 0.144963 

Condenser make-up valve 0.018840 

18.5 MVA site FDR SPD0209 0.018782 

LTDN Letdown HX outlet flow 0.044578 

Letdown HX outlet temperature 0.042356 

CCW B to SFP CLG HX flow 0.033916 

MFW MFP B SUCT pressure 0.024491 

MFP A SUCT pressure 0.019313 

SG-1 total feedwater flow 0.018084 

MSIV MSL-1B steam flow 0.068966 

MSL-1A steam dump to atmosphere 0.030544 

MSL-1A steam flow 0.030394 

POSRV PZR relief tank temp 0.074451 

PZR relief tank level 0.064210 

RCP-1A seal water flow 0.022176 

RCP RCP-1A seal water flow 0.117724 

RCP-1B seal water flow 0.034537 

SG-1 total feedwater flow 0.014632 

SGTL SG-1 level master controller 0.026942 

SG 1 main feedwater reg valve 0.017940 

RCP-1A seal water flow 0.014504 

TCS HP turbine 1st stage pressure 0.011999 

RCS reference temperature 0.011841 

Load rejection controller 0.010045 

NCP normal charging pump; HX heat exchanger; SFP spent fuel pool; CLG cooling; MFP main 
feedwater pump; SUCT suction; PRESS pressure; MSL main stean line

Figure 4.53 shows the trends of the parameter contributing the most to the diag-
nosis in the test scenarios with 10 different abnormal events. In the plots, the red 
line is the parameter trend in the corresponding test scenario, and the black lines are 
the parameter trends for the test scenarios diagnosed with the remaining 9 abnormal 
events. It can be seen that the causes of the diagnosis for each abnormal event all have
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characteristic tendencies. In other words, the model can infer that it has diagnosed 
the test scenario based on parameters that are understandable to operators. When 
applying model explanation techniques, the approach that best suits the user’s needs 
should be considered. This suggests that the provision of the diagnosis causes using 
Deep SHAP may play a role in explaining the diagnosis of the model to the operators.

4.6.4.5 Guided Grad-CAM Results 

In the previous section, the example model was analyzed by applying the Deep SHAP 
technique to interpret the diagnosis. For comparison, the guided Grad-Cam technique 
is applied in this section to the diagnosis of the example model. 

Figure 4.54 shows a heatmap of the guided Grad-CAM interpretation results, 
visualizing the contribution by each parameter when the model diagnoses test dataset 
1 with the CDS label. This figure exhibits a slightly different result from the heatmap 
in Fig. 4.52, which is the Deep SHAP interpretation results in the diagnosis of the 
same dataset. The reason why the techniques show different explanation results 
despite analyzing the model diagnosis of the same dataset is because the approaches 
of the explanation techniques to interpreting the contribution are different. In other 
words, explanation techniques can give different reasons for the decisions made about 
a particular dataset, depending on how they are interpreted.

Through the guided Grad-CAM technique, the parameter measured with the 
highest contribution to diagnosing the dataset with the CDS label is ‘Intermediate 
pressure condenser cooling water outlet temperature’. This is a different result from 
that measured by Deep SHAP, which found ‘LP turbine A vacuum’ to have the 
highest contribution. However, when checking the trend of the highest contributing 
parameter as determined by guided Grad-CAM, as Fig. 4.55 shows, it can be seen 
that the guided Grad-CAM method also presents the diagnosis cause in a way clearly 
understandable to operators.
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Fig. 4.53 Highest contributing parameter by abnormal event scenario
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Fig. 4.53 (continued)

Fig. 4.54 Heatmap from 
guided Grad-CAM
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Fig. 4.55 Relevant parameter trend with guided Grad-CAM 
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Chapter 5 
Prediction 

The previous two chapters focused on AI approaches to signal validation and diag-
nosis in NPPs. In this chapter, prediction is considered, which generally means 
to predict future NPP parameter trends. But in addition to parameter trends, as 
mentioned in Chap. 1 this function can also predict (1) the failure of systems and 
components, (2) occurrence of alarms, (3) occurrence of abnormal situations, and 
(4) reactor trip. Information provided by the prediction function can be employed 
for autonomous operation, such as for the following key measures. 

• Early request for operator intervention before an adverse situation occurs 
• Selection of the optimal control by predicting the plant behavior upon choosing 

different control means. 

Several researchers have proposed models for predicting the future trends of 
parameters, including thermal–hydraulic design, statistical models, and AI tech-
niques. Among them, thermal–hydraulic design has been applied to predict the 
response of an NPP system under typical operation or accident conditions. These 
designs, though, are time-consuming and unsuitable for real-time prediction as they 
require repeated calculation–evaluation–correction cycles. Statistical methods, such 
as autoregressive integrated moving average modeling, have also been employed to 
predict future trends more quickly, but they can only address linear relationships in 
time trends. Because NPPs consist of nonlinear and multivariate complexes, statis-
tical methods are not appropriate for managing NPP data. More recently, ANNs 
have been regarded as one of the most relevant approaches for pattern recogni-
tion and managing significant amounts of nonlinear data, such as for handwriting 
recognition, natural language processing, and financial forecasting. In the nuclear 
industry, Kim et al. was able to predict the next single step of a SG level using 
a modified backpropagation algorithm (Kim et al. 1993). Moshkbar-Bakhshayesh 
predicted NPP operating parameters under abnormal and emergency situations with 
a cascade feedforward neural network (Moshkbar-Bakhshayesh 2019). El-Sefy et al. 
trained a feedforward backpropagation ANN to simulate the interaction between the 
reactor core and the primary and secondary coolant systems (El-Sefy et al. 2021). To
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predict long-term trends, an LSTM with a multi-input multi-output (MIMO) strategy 
has been proposed; with such a setup, Nguyen et al. showed the prediction of SG 
narrow-range water levels for 45 days at an interval of 3 days, or in other words for 
15 steps (Nguyen et al. 2020). 

This chapter introduces an algorithm to predict NPP parameters following control 
actions in an emergency situation. It also compares available ANN methods for the 
model prediction. 

5.1 Real-Time Parameter Prediction 

Real-time plant parameter prediction refers to the anticipation of future trends from 
the past values of the parameters, not a future scenario. In other words, the prediction 
results follow from when there is no further control after the current time instance 
except automated operation. This section details a real-time prediction model to 
anticipate the future trends of important or safety-related parameters after a device 
control by an operator in a given situation (Bae et al. 2021). Figure 5.1 presents a 
schematic of the prediction model. In the figure, t is the current time step, d is the 
number of time steps backward in time, also called look-backs, H is the prediction 
horizon, and N and M are the numbers of input and output parameters, respectively. 
With the purpose of application to the MCR of an NPP, the prediction model input 
parameters comprise device states, instrument values from sensors, and other impor-
tant signals that are available to typical NPP I&C systems. A record of d time steps 
of the input parameters is provided to the prediction model to reflect that the past 
values and trends influence the future trends. More specifically, the prediction model 
receives a matrix of size N × d as an input and produces a matrix of size M × H 
as the output. As this implies a large number of input and output values, the predic-
tion model adopts ANNs along with a multi-step prediction strategy. The prediction 
strategy works by decomposing the prediction problem and determining the role of 
the ANNs as well as their inputs and output. During training, a neural network opti-
mizer is used to adjust the inner parameters of the ANNs with the aim to align the 
training data with a backpropagation algorithm.

The following sections discuss general multi-step prediction strategies, detail 
the prediction model characteristic when combining each strategy with ANNs, and 
provide case study results from prediction models trained with emergency operation 
data including operator actions. A possible application of this real-time prediction 
model as an operator support system is also explored.
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Fig. 5.1 Parameter trend prediction model with prediction strategy and ANNs. Parameters in the 
ANNs are adjusted by a backpropagation algorithm and training data. Reproduced with permission 
from Bae et al. (2021)

5.1.1 Multi-step Prediction Strategies 

With the historical observation of d time steps, the goal of multi-step ahead prediction 
is to estimate the observation of the next H time steps in the future (Nguyen et al. 
2021; Radaideh et al. 2020; Taieb et al. 2012). For a univariate observation, the 
multi-step ahead prediction problem can be expressed as follows.

[
ŷt+1, ŷt+2, . . . ,  ŷt+H −1, ŷt+H

] = f (yt, yt−1, . . . ,  yt−d+2, yt−d+1) (5.1) 

Here, t is the current time step, y is the historical value, y
Λ

is the predicted value, and 
f is the prediction model. Clearly, solving the prediction problem greatly increases 
in difficulty with an increasing prediction horizon H . To handle large prediction 
horizons, three common prediction strategies are employed: recursive, direct, and 
MIMO strategies (Taieb et al. 2012), as described below. 

The recursive strategy, which is the oldest and most intuitive prediction strategy 
(Taieb et al. 2012), requires a single prediction model only, fREC . This model is trained 
to perform a one-step prediction as in the following equation. 

ŷt+1 = fRec(yt, yt−1, . . . ,  yt−d+2, yt−d+1) (5.2)
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After the prediction of one step ahead, the model takes the predicted value of the 
previous step as a known value and iteratively estimates the next value until H future 
values are acquired. This future observation can be written as follows. 

ŷt+h = 

⎧ 
⎨ 

⎩ 

fRec(yt, . . . ,  yt−d+1) when h = 1 
fRec(ŷt+h−1, . . . ,  ŷt+1, yt, . . . ,  yt−d+h) when h ∈ {2, . . . ,  d} 
fRec(ŷt+h−1, . . . ,  ŷt−d+h) when h ∈ {d + 1, . . . ,  H } 

(5.3) 

Such an iterative approach reusing the output can ease long prediction horizons. 
The major drawback, though, is that this prediction strategy is prone to error accu-
mulation because any errors present in the early or intermediate prediction outputs 
propagate to subsequent predictions. 

The second prediction strategy discussed here is the direct strategy, which utilizes 
multiple prediction models by assigning one per time step (Taieb et al. 2012). Thus, 
combining with neural networks results in the number of networks equalling the 
prediction horizon H , in which case H prediction models simultaneously estimate 
future observations of the next H time steps as

[
y
Λ

t+1, y
Λ

t+2, . . . ,  y
Λ

t+H −1, y
Λ

t+H

]
. 

ŷt+h = fDir,h(yt, yt−1, . . . ,  yt−d+2, yt−d+1) (5.4) 

In Eq. (5.4), h ∈ {1, . . . ,  H }. In contrast to the recursive method, this strategy 
is free from error accumulation because it does not repeat any prediction. However, 
any interdependencies that are present among the time steps are not accounted for in 
this case, as all future time steps are estimated by independent prediction models. 

The two above strategies can be categorized as single-output strategies. 
Conversely, as its name implies, the MIMO strategy represents a multiple-output 
strategy. Here, the prediction model is trained to generate values for the future 
observations of the next H time steps all at once, as below.

[
ŷt+1, ŷt+2, . . . ,  ŷt+H −1, ŷt+H

] = fMIMO(yt, yt−1, . . . ,  yt−d+2, yt−d+1) (5.5) 

As such, the MIMO strategy avoids the issues of the recursive and direct strategies. 
Moreover, a prediction model that adopts the MIMO strategy is able to consider 
stochastic dependencies among the time-series inputs and outputs. But in this case, 
the training of the prediction model becomes complicated because the multi-step 
prediction problem is not decomposed and simplified in this approach. This means 
that the MIMO strategy does not reduce the problem complexity, which is something 
a prediction model should achieve.
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5.1.2 Plant Parameter Prediction Model with Multi-step 
Prediction Strategies 

As introduced in the previous section, the recursive, direct, and MIMO strategies 
are selected as candidate multi-step prediction strategies for univariate time series 
data (Taieb et al.  2012). In the present case, though, the prediction problem is not 
only multi-step but also multivariate. As a consequence, each multi-step prediction 
strategy presents additional characteristics following combination with ANNs, as 
described below. 

With the recursive approach, as an iterative prediction strategy, the estimated 
values are used to make further predictions. Coupled with an ANN, this means that 
the ANN performs a one-step prediction and recursively uses the predicted values as 
the next network inputs. Repeating this process over H time steps, plant parameters 
up to t +H can be estimated. Figure 5.2 depicts the process of this prediction strategy. 

In this case, the recursive strategy only needs a single ANN, and thus the neural 
network training involves a low computational cost compared to other approaches. 
Moreover, there is no prediction limit from the chosen prediction horizon with this 
approach. With sufficient accuracy of the trained neural network, prediction over 
long time scales is possible by simply repeating the one-step prediction continu-
ally. Another advantage is that this strategy can reflect interdependencies between 
adjacent time steps. However, one critical drawback with the recursive strategy is 
that prediction errors continuously accumulate over repeated predictions (Bae et al. 
2019; Taieb et al. 2012; Ryu et al. 2022). Another issue is that, because the one-
step prediction output acts as the input of the next step, the inputs and outputs must 
have an equal number of parameters, and this can drain computational resources. 
In the current application, the recursive strategy requires the future trend predic-
tion of not only the M target parameters but also the remaining M − N parameters 
simultaneously. 

In contrast to the single network of the recursive strategy, the direct prediction 
strategy employs multiple neural networks, devoting each one to its own time step 
like the univariate case. As mentioned above though, the current application requires

Fig. 5.2 Recursive strategy for multi-step prediction. Arrows indicate one-step predictions, where 
the outputs are used as the inputs for the next prediction. Reproduced with permission from Bae 
et al. (2021) 



168 5 Prediction

Fig. 5.3 Direct strategy for multi-step prediction. Arrows indicate simultaneous prediction by 
multiple ANNs, where different ANNs cover each of the time steps separately. Reproduced with 
permission from Bae et al. (2021) 

the networks to predict multiple parameters at dedicated time steps. Figure 5.3 illus-
trates the simultaneous predictions of future parameter trends by the neural networks 
following the direct strategy. 

The direct strategy is free from the two issues of the recursive strategy. First, it 
involves no error accumulation from the reuse of the outputs, and second, the number 
of input and output parameters can differ, meaning that computational resources can 
concentrate on the target parameter predictions. But one drawback in this case is 
that the direct strategy demands high computational power for its multiple neural 
networks to work simultaneously. In addition, neural networks following this strategy 
can only consider interdependencies among the parameters within the dedicated time 
steps. And lastly, neural network training in this case is substantially longer than with 
the recursive strategy, where a set of H ANNs need to be trained to incorporate the 
direct strategy into the prediction model. 

The third candidate prediction strategy is MIMO. This strategy assigns a neural 
network to each target parameter for prediction; in other words, the number of neural 
networks equals that of the target parameters, or M in this case. Similar to the direct 
strategy, multiple neural networks work together to produce the output with MIMO, 
but in this case by parameter rather than by time step. Figure 5.4 shows the MIMO 
strategy. 

Fig. 5.4 Multi-input multi-output strategy for multi-step prediction. Arrows indicate the prediction 
of each target parameter by a dedicated ANN. Reproduced with permission from Bae et al. (2021)
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This approach shares many characteristics with the direct strategy, but MIMO 
is distinct regarding the outputs of the neural networks. Each network estimates 
the future trend of one parameter and considers interdependencies of this target 
parameter among all time steps. Accordingly, the drawback to this strategy is that 
interdependencies between different parameters are not covered. 

5.1.3 Case Study with Data from an NPP Simulator 

To evaluate the feasibility of the multi-step prediction model, a case study is 
conducted for which a variety of prediction models combining different multi-step 
prediction strategies and ANNs are constructed. The neural networks used to build the 
models have different characteristics depending on their particular type of artificial 
neurons. Three neural networks for future parameter trend prediction are chosen, 
namely a multilayer perceptron (MLP), vanilla RNN, and LSTM. Coupling these 
with the three prediction strategies results in nine total prediction models. Keras API 
(Chollet 2015) is used for network implementation, which is a Python-based high-
level application programming interface that runs on the ML framework TensorFlow 
(Abadi et al. 2016). A CNS is used for data collection considering the confidentiality 
of real NPP operational data. The target plant is a Westinghouse 990 MWe 3-loop 
plant (Kwon et al. 1997). 

Prior to model construction, the inputs and outputs of the prediction model must 
first be defined. As the output, 25 target parameters for prediction are selected, all 
of which must be monitored while operators perform the required EOP during an 
NPP emergency. The EOPs of the CNS include a CSF tree, which is a type of plant 
status monitoring procedure. CSFs refer to the particular NPP functions that are 
essential to maintain for securing plant safety. The CNS has six CSFs: subcriticality 
of the reactor core, core cooling, heat removal, integrity of the RCS, CTMT integrity, 
and reactor coolant inventory. As an example, the CSF tree procedure dictates that 
operators monitor the CTMT integrity through the CTMT pressure, sump water level, 
and CTMT radiation level. Table 5.1 lists the 25 prediction target parameters that are 
monitored for the CSFs.

For the model inputs, every parameter that is mentioned at least once in the EOPs 
for three different accident scenarios is selected; see Table 5.2 for details. This gives 
a total of 109 input parameters, which include the 25 prediction target parameters 
(model output). The remaining 84 parameters consist of valve states such as an open 
or closed main steam isolation valve, component states such as the reactor coolant 
charge pump status, instrument values from sensors such as the RV water level, and 
other important signals such as the safety injection (SI) actuation signal.

In the prediction models, the look-backs d is set to 1. Otherwise, setting the 
prediction horizon H should be done with care considering the trade-off relationship 
between long-term prediction and model accuracy—lower accuracy accompanies 
predictions made further into the future. While there is no general rule to setting H 
(i.e., to determine the optimal prediction horizon), Nguyen et al. (2020) reviewed
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Table 5.1 Target plant 
parameters from the CNS for 
prediction 

Plant parameter (units) 

1 POWER RANGE PERCENT POWER (%) 

2 INTERMEDIATE RANGE START-UP RATE (DPM) 

3 INTERMEDIATE RANGE NEUTRON LEVEL (A) 

4 SOURCE RANGE START-UP RATE (DPM) 

5 CORE OUTLET TEMPERATURE (kg/cm2) 

6 LOOP 1 HOT-LEG TEMPERATURE (°C) 

7 LOOP 2 HOT-LEG TEMPERATURE (°C) 

8 LOOP 3 HOT-LEG TEMPERATURE (°C) 

9 PZR PRESSURE (kg/cm2) 

10 SG #1 NARROW LEVEL (%) 

11 SG #2 NARROW LEVEL (%) 

12 SG #3 NARROW LEVEL (%) 

13 FEEDWATER #1 FLOW (m3/hr) 

14 FEEDWATER #2 FLOW (m3/hr) 

15 FEEDWATER #3 FLOW (m3/hr) 

16 SG #1 PRESSURE (kg/cm2) 

17 SG #2 PRESSURE (kg/cm2) 

18 SG #3 PRESSURE (kg/cm2) 

19 LOOP 1 COLD-LEG TEMPERATURE (°C) 

20 LOOP 2 COLD-LEG TEMPERATURE (°C) 

21 LOOP 3 COLD-LEG TEMPERATURE (°C) 

22 CTMT PRESSURE (kg/cm2) 

23 CTMT SUMP WATER LEVEL (m) 

24 CTMT RADIATION (mRem/hr) 

25 PZR LEVEL (%)

the various selected prediction horizons in literature from the period 2015–2019 in 
industrial areas (Nguyen et al. 2020). It was found that most studies carried out a 
single-step prediction only, while a few multi-step prediction studies set the predic-
tion horizon to 3–6 time steps ahead. In the current application, the prediction horizon 
of the model is set to 20. The time interval between time steps is 30 s, and thus the 
model predicts the parameter trends up to 10 min in the future. It should be noted 
that other recent studies in the nuclear industry have applied a prediction horizon of 
more than 40 time steps for the prediction of NPP parameters (Ryu et al. 2022). 

In sum, the prediction problem for the model to solve is the estimation of a 
25 × 20 output matrix (25 prediction target parameters and 20 future time steps) 
using a 109× 2 input matrix (109 input parameters and 2 time steps, namely current 
and past). The emergency operation data via procedure analysis and the construction 
of the ANNs for the prediction model are described below.
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Table 5.2 Emergency operation scenarios simulated by the CNS 

Accident Accident detail Operator action No. of scenarios 

LOCA Leak of reactor coolant due to 
10 cm2, 20 cm2, 30 cm2, 40  
cm2, or 50 cm2 break in the 
cold leg 

Auxiliary feedwater flow 
control 
RCP stop 
PORV shut-off valve open 
PORV open 
SI signal reset 
SI pump stop 
No action 

865 

SGTR Single tube or double tube 
ruptures in a SG 

Auxiliary feedwater flow 
control 
PORV shut-off valve open 
PORV open 
RCP stop 
Main steam line isolation 
Secondary side relief valve 
manual open 
Contaminated steam line 
isolation 
No action 

200 

Simple Trip Unintended reactor trip due to 
a malfunction of the RPS 

Auxiliary feedwater flow 
control 
PORV shut-off valve open 
PORV open 
RCP stop 
No action 

98 

Every scenario has different operator action timings, degrees, and correctly performed prerequisites

The CNS used to generate operational data during an NPP emergency is based on 
the SMABRE thermal–hydraulic system code, which is a simplified 1D nodaliza-
tion code based on assumptions and experiments (Miettinen 1985). While the CNS 
cannot reflect all related phenomena and operator controls, it is able to generate large 
amounts of emergency operation data in an open and fast manner. The primary side 
of the simulated plant contains the reactor core, and the secondary side contains the 
turbines. Heat generated by the reactor core is transferred to the SGs through the 
reactor coolant, with which the SGs convert the water supplied by the secondary side 
into steam and pass it to the turbines. A PZR connected to the primary side controls 
both the volume and the pressure of the reactor coolant, with a PORV installed at the 
top of the PZR to prevent the over-pressurization of the reactor coolant. 

The three different NPP accidents under normal operation considered here are 
LOCA, SGTR, and a simple reactor trip. The first refers to a leak of reactor coolant 
due to a variety of possible incidents and can cause the reactor core to overheat. 
In the simulation, a break in the cold leg, which is the suction line from a SG to 
the reactor core, is assumed to initiate the LOCA. The second accident, SGTR, is 
a rupture in a heat exchange tube in a SG that triggers the depressurization of the 
primary side coolant and the release of radioactive material to the secondary side. In
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the simulation, a rupture of one or two tubes is assumed. The third accident in this 
simulation is an unintended reactor trip caused by a malfunction of the RPS. While 
less severe than a LOCA or SGTR, an unintended reactor trip can cause the plant 
dynamics to change rapidly. 

Considering the huge number of possible operator actions, the CNS EOPs are 
analyzed to highlight probable operator action scenarios. The EOPs present sequen-
tially organized steps with instructions to check plant parameters, transfer procedures 
or steps, and control devices. First, the time that each procedural step is reached 
assuming an appropriate operator response to the accident is identified from our 
expertise. Second, the particular steps requiring operator actions are distinguished, 
and third, human errors in these distinguished steps are assumed by the context. For 
instance, in the E-0 procedure among the CNS EOPs, the 18th step is determined to 
be reached at 380 s following SGTR. This step requires operators to open a shut-off 
valve for the PORV, as shown in Fig. 5.5. A possible human error at this step could 
be that operators open the PORV directly instead of the shut-off valve. In the control 
interface, the PORV and PORV shut-off valve are located right next to each other. 
Also, before opening the shut-off valve, the prerequisite action is to first set the PORV 
to manual mode. 

Based on the above analysis, various operator action timings can be considered. 
In the above example, a number of scenarios indicate that the prerequisites were 
performed correctly, and the PORV shut-off valve was opened without error at 320, 
350, 380, 410, and 450 s following the SGTR. Other scenarios reflect that the PORV 
was mistakenly opened at 320, 350, 380, 410, and 450 s after the SGTR. As shown 
in Table 5.2, a total of 1153 emergency operation scenarios are simulated by the 
CNS. Before using this operational data to train the various prediction models, the 
parameter values are rescaled via min–max normalization to prevent problems from 
the different parameter scales.

Fig. 5.5 18th step in the E-0 procedure of the CNS EOPs. The left column is the expected response, 
and the right is what should be done when the correct response is not obtained. Reproduced with 
permission from Bae et al. (2021) 
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The MLPs, vanilla RNNs, and LSTMs making up the different prediction models 
are respectively constructed using the Dense, SimpleRNN, and LSTM classes of 
Keras API (Chollet 2015). Their overall network structures, referring to the input 
and output shapes and the numbers of hidden layers as well as cells in each hidden 
layer, are considered one of the hyperparameters. The neural network structures of 
the three network types are defined based on the number of trainable parameters and 
the given multi-step prediction strategy, namely recursive, direct, or MIMO. 

As mentioned above, the input matrix size is 109 × 2, which is too large for the 
MLP to deal with. The input shape of the MLP is therefore (218,), while that of the 
other two network types is (2, 109). The output shape is determined by the particular 
multi-step prediction strategy as follows. The recursive strategy requires the output 
shape to equal the number of input parameters (109,), the direct strategy requires 
the output to equal the number of target parameters (25,), and the MIMO strategy 
requires the output to equal the prediction horizon H (20,). 

The trainable parameters are those that are intrinsic to each logical component 
and can be adjusted during training. Because the trainable parameters are tuned 
for the given data through backpropagation, the given data can be considered to 
be compressed into the trainable parameter values. Accordingly, the sizes of the 
hidden layers of the three networks are carefully chosen such that each network has 
a similar total number of trainable parameters. Table 5.3 summarizes the different 
ANN structures of the prediction models. 

The Adam optimizer in Keras API (Chollet 2015), which is a stochastic gradient 
descent method with adaptive estimation of first-order and second-order momentums 
(Kingma and Ba 2015a), is used to conduct the backpropagation for optimization of 
the trainable parameters. The Adam optimizer adjusts the trainable parameters of the 
networks to minimize the MSE between the predicted and real values. The learning 
rate is set to be constant to determine the step size of the gradient descent per iteration.

Table 5.3 ANN structures of the nine prediction models 

Strategy–ANN ANNs Input 
shape 

Hidden 
layers 

Cells per 
hidden layer 

Output 
shape 

Trainable 
parameters 

REC-MLP 1 (218,) 8 200 (109,) 347,109 

REC-RNN 1 (2, 109) 5 200 (109,) 343.709 

REC-LSTM 1 (2, 109) 4 100 (109,) 336,209 

DIR-MLP 20 (218,) 8 200 (25,) 330,225 

DIR-RNN 20 (2, 109) 5 200 (25,) 335,225 

DIR-LSTM 20 (2, 109) 4 100 (25,) 327,725 

MIMO-MLP 25 (218,) 8 200 (20,) 329,220 

MIMO-RNN 25 (2, 109) 5 200 (20,) 334,720 

MIMO-LSTM 25 (2, 109) 4 100 (20,) 327,220 

*REC = recursive, DIR = direct 
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As there are no deterministic rules for setting an optimal learning rate, learning rates 
of 0.1, 0.01, 0.001, and 0.0001 are explored to train the neural networks. 

One major concern in neural network training is the overfitting problem, referring 
to when a trained neural network is accurate only for the trained data and inaccu-
rate for others. To prevent neural network overfitting, 20% of the data is assigned 
as validation data, which is not used in the network training. Training sessions are 
stopped when the prediction accuracy for the validation data does not improve over 
the previous 200 trials. Furthermore, to prevent the output from relying on minority 
artificial neurons, some neurons in the network are temporarily detached. Specifi-
cally, 30% of the artificial neurons in each hidden layer are randomly selected and 
isolated from the neural network in every training trial. 

To sum up, nine prediction models are trained with the data from 1153 scenarios 
and then applied to the test data. The test data comprise 35 scenarios and are normal-
ized in the same way as the training data. The test data and training data scenarios 
differ in terms of the accident initiation, such as the break size of LOCA and the 
number of ruptured tubes in SGTR, and the operator responses, such as a delayed 
action and early response. The prediction models estimate 875 trends, or 25 target 
parameters in the 35 test scenarios, up to 10 min into the future, giving a total of 
17,500 points, or 875 trends for 20 time steps. Errors between the real and predicted 
points and the quantified accuracy of the predicted trends by the different models are 
discussed below. 

Errors between the real and the predicted points are assessed in the form of root 
mean square error (RMSE), MSE, and MAE metrics, all widely used as regression 
metrics (Petneházi 2019). The calculated results of the error metrics of the 17,500 
points are listed in Table 5.4. Note that the error metrics reflect normalized parameter 
values between 0 and 1, which as mentioned above is done to remove any parameter 
scale effects. The prediction model adopting the MIMO strategy and LSTMs trained 
with a learning rate of 0.01 achieves the lowest error, with RMSE, MSE, and MAE 
scores of 0.0213, 0.0005, and 0.0087, respectively. The second-best model adopts 
the direct strategy and LSTMs again with the 0.01 learning rate, showing RMSE, 
MSE, MAE scores of 0.0246, 0.0006, and 0.0132, respectively. As indicated in Table 
5.4, the LSTM-based models outperform the models with MLPs and vanilla RNNs 
regardless of the prediction strategy. Furthermore, the learning rate is also seen to 
strongly influence the prediction model performance. For example, the RMSE of the 
prediction model adopting the direct strategy and MLP ranged widely from 0.0381 
to 0.2918 by the learning rate.

Figure 5.6 plots examples of different parameter trend predictions, where the 
dotted red and solid blue lines indicate the predicted and real trends, respectively. 
The shaded area shows an error range of 5% based on the maximum and minimum 
of each parameter. Figure 5.6a shows an example of the predicted trend exactly 
following the real trend, with the predicted point locating inside the error range at 
every time step. Since the trends are composed of 20 points, the predicted trends are 
still mostly accurate with a small number of error points, or points lying outside the 
5% error range. For example, Fig. 5.6b–d show predicted trends that follow the real 
trends despite respectively containing one, two, and three error points. For larger
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Table 5.4 Error metrics between the real and predicted points 

Learning rate Recursive strategy Direct strategy MIMO strategy 

MLP RNN LSTM MLP RNN LSTM MLP RNN LSTM 

RMSE 0.0640 0.0685 0.0431 0.2804 0.1695 0.0267 0.2096 0.0581 0.0265 

0.0001 MSE 0.0041 0.0047 0.0019 0.0786 0.0287 0.0007 0.0439 0.0034 0.0007 

MAE 0.0292 0.0282 0.0191 0.2181 0.0988 0.0146 0.1442 0.0305 0.0119 

RMSE 0.0888 0.0499 0.0548 0.0381 0.1110 0.0260 0.1052 0.0455 0.0234 

0.001 MSE 0.0079 0.0025 0.0030 0.0015 0.0123 0.0007 0.0111 0.0021 0.0005 

MAE 0.0391 0.0267 0.0226 0.0218 0.0525 0.0143 0.0643 0.0221 0.0099 

RMSE 0.1718 0.1718 0.0467 0.1455 0.1692 0.0246 0.0829 0.1694 0.0213 

0.01 MSE 0.0295 0.0295 0.0022 0.0212 0.0286 0.0006 0.0069 0.0287 0.0005 

MAE 0.1006 0.1006 0.0214 0.0816 0.0991 0.0132 0.0451 0.0987 0.0087 

RMSE 0.1717 0.1716 0.1718 0.2918 0.1693 0.1694 0.3912 0.1693 0.1679 

0.1 MSE 0.0295 0.0295 0.0295 0.0852 0.0287 0.0287 0.1530 0.0287 0.0282 

MAE 0.1008 0.1008 0.1005 0.1744 0.0992 0.0991 0.2640 0.0988 0.0986 

The lowest error metric values for each prediction model are shown in bold

numbers of error points, though, the predicted trends start to diverge, as shown in 
Fig. 5.6e, f for four and five error points, respectively. Following this observation, 
two classification criteria are chosen for the success of parameter trend prediction: 
an Accurate predicted trend is defined as one with all points falling within the 5% 
error range, and a Mostly Accurate predicted trend is defined as one with up to three 
points falling outside the range.

Based on these criteria, Table 5.5 lists the percentage of successful trend predic-
tions for the 875 trends in the test data. The prediction model with the recursive 
strategy and LSTMs trained with a learning rate of 0.001 reaches a maximum of 
80.7% Mostly Accurate. Prediction models with the recursive strategy trained with 
high learning rates of 0.01 or 0.1 produce straight-line trends only as a consequence 
of error accumulation, the main drawback of this strategy. Accordingly, when the 
recursive strategy models are trained with a learning rate of 0.1, the Accurate and 
Mostly Accurate percentages are seen to be mostly similar, as in Table 5.5.

The prediction models implementing LSTMs achieve the best results for all 
prediction strategies. In particular, the models joining the direct or MIMO strategy 
with LSTMs produce more than 90% Mostly Accurate predictions. These two 
prediction models are also the best in terms of the point error metrics as in Table 
5.4. Analyzing the Accurate classification, on the other hand, reveals different 
percentages: 77.7% by the direct strategy model, and 89.1% by the MIMO strategy 
model. 

Based on the results in Tables 5.4 and 5.5, the prediction model with the MIMO 
strategy and LSTMs represents the most suitable model to estimate the future trends 
of the target NPP parameters in the current application. This model achieves 89.1% 
Accurate trend predictions for the test data, i.e., 780 of 875 trends, and 95.4% Mostly
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Fig. 5.6 Examples of trend prediction results of selected plant parameters containing different 
numbers of error points: a zero, b one, c two, d three, e four, and f five, as marked with ‘▲’. The 
shaded area denotes the 5% error range. Reproduced with permission from Bae et al. (2021)

Accurate predictions, i.e., 835 of 875 trends. In terms of computation time, it took 
an average of only 0.06 s to estimate the future trends of the 25 target parameters 
simultaneously. Figure 5.7 plots a number of trend prediction results from the finest 
model coupling the MIMO strategy with LSTMs. In the figure, the predicted trends 
are seen to closely mirror the real trends.

Looking more closely at computation time, Table 5.6 lists the average time for 
calculation of each pair of prediction strategy and ANN to estimate the future trends 
of the 25 target NPP parameters. From the simple nature of the MLP cell, the MLP
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Fig. 5.7 Trend prediction results with the MIMO + LSTM prediction model. a Intermediate range 
neutron level under 25 cm2 LOCA in the Loop 1 Cold-leg. b Loop 3 Hot-leg temperature under 60 
cm2 LOCA in the Loop 1 Cold-leg. c SG #1 narrow level under SGTR with double tube rupture. 
d PZR pressure after PORV opening under SGTR with double tube rupture. e PZR pressure after 
PORV shut-off valve opening under the simple reactor trip situation. f Loop 1 Cold-leg temperature 
after resetting the safety signal under 25 cm2 LOCA. g Loop 3 Cold-leg temperature after RCPs 
stop under 45 cm2 LOCA. h CTMT pressure after PORV opening under SGTR with single tube 
rupture. i CTMT pressure after conducting the prior EOP under 35 cm2 LOCA. Reproduced with 
permission from Bae et al. (2021)

models exhibit the lowest computation times. But even the best-performing model 
combining MIMO with LSTMs is able to record a computation time of merely 
61.1 ms, a time considered sufficient for real-time prediction. Model calculations 
are performed using a laptop computer with an Intel Core i7-8700, 16 GB of RAM, 
Python version 3.7.6, and TensorFlow version 2.0.0.

5.1.4 Operator Support System with Prediction 

Next-generation NPPs have been adopting advanced MCRs with digital features with 
the aim to improve operator performance and prevent human error. For instance, in
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Table 5.6 Average computation times for the 35 test scenarios when the trends of the 25 target 
parameters are predicted 

Recursive strategy Direct strategy MIMO strategy 

MLP RNN LSTM MLP RNN LSTM MLP RNN LSTM 

Computation time (ms) 27.9 45.2 46.5 29.6 47.2 48.3 37.2 59.6 61.1 

Reproduced with permission from Bae et al. (2021)

the advanced MCR of APR 1400, a large central display and personal computers take 
the place of the analog indicators, hand switches, and alarm tiles of traditional MCRs. 
In such digital MCRs, operators monitor the plant status and execute controls from 
their positions via soft controls like keyboard inputs and mouse devices. The previous 
paper-based operating procedures are replaced with a computerized procedure system 
(CPS) that facilitates more efficient task execution. With this system, the task-related 
parameters can be displayed in a selective manner, and by displaying check-off 
provisions after the performance of each procedural action, omission errors can be 
prevented. 

One key element of advanced MCRs is the provision of operator support systems, 
which refer to systems that convey valuable information to operators or automate 
particular tasks. For such support systems, the important characteristic is that the 
final decision-maker is always a human operator. The general system structure was 
formalized by Lee et al. based on the cognitive process of MCR operators (Lee 
and Seong 2014). Operator support systems can then be classified by the cognitive 
activity they support: monitoring/detection, situation assessment, response planning, 
and response implementation. For example, operating procedures support activities 
related to situation assessment and response planning, and alarm systems support 
operator activities related to monitoring and detection. Along these lines, recent 
developments include a CPS (Lew et al. 2018), advanced alarm system (Kang and 
Lee 2022), and abnormal/emergency diagnosis system (Mo et al. 2007; Lee et al., 
2021; Shin et al. 2021; Kim et al. 2020). But in terms of supporting activities related 
to response implementation, such as by developing an operation validation system, 
relatively limited research has been explored. 

The prediction model with neural networks in this chapter has the potential to be 
utilized as an inference model as part of an operation validation system. Through 
the future parameter trend estimates of the prediction model, operators can verify 
an intended control action and detect a potential human error at an early stage. 
A framework for an operator manipulation validation system has previously been 
suggested, in which assessments of the CSFs are performed with a prediction model 
(Bae and Lee 2019). As the primary safety goal in an NPP emergency is to prevent 
reactor core damage, any action that deteriorates the CSFs, which directly relate 
to securing the safety goal, could be considered a human error. By forecasting 
the future trends of the CSF-related parameters, the prediction model enables any 
possible future degradation of the CSFs to be anticipated. When such a degradation
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is predicted, the validation system notifies and guides the MCR operators to delib-
erate the related action, whether planned or already committed. Moreover, the future 
parameter trends as supportive information can also assist operators in diagnosing 
accidents and understanding the ensuing plant dynamics. 

Three examples of future trend predictions by the best-performing prediction 
model are shown in Fig. 5.8 for the PZR level once it reaches 0%. Here, the model 
anticipates that the PZR level will be maintained at 0% upon LOCA occurrence due to 
the loss of reactor coolant, as shown in Fig. 5.8a. In the case that operators incorrectly 
open the PORV, the reactor coolant will be depressurized and expended; as shown 
in Fig. 5.8b, the model correctly predicts for this case that the PZR level will rapidly 
reach 100%. With no loss of coolant as in a simple reactor trip accident, the reactor 
coolant volume drops immediately after the trip but then starts to increase again; 
Fig. 5.8c shows that model reflects this future trend as well. It is noteworthy that 
the prediction model with MIMO and LSTMs can successfully forecast the future 
trends of NPP parameters, such as the PZR water level, even under varying operator 
actions and accident environments. These results demonstrate the model’s potential 
usefulness in helping operators to detect a committed human error, like in Fig. 5.8a, 
b, as well as to diagnose an accident, like in Fig. 5.8a, c. 

Prior to real-world applications, additional work needs to be conducted. The first 
would be the establishment of a more effective framework for data generation. In 
early development stages, it is unavoidable to use data from NPP simulators, as real 
operational data is confidential and in the case of accidents, rare. The prediction 
model introduced in this section employed a compact NPP simulator and considered 
a limited number of scenarios, which were analyzed based on the authors’ expertise. 
To minimize uncertainty in the training data, it would be beneficial for the subsequent 
data generation framework to employ full-scope simulators, which are used in NPP 
design, construction, management, and operation as well as by regulatory boards. 
Such a framework should have the capability to generate a wide range of operational 
scenarios in a short time and prioritize them in terms of probability. The second area 
for future work to focus on would be to revisit the multi-step prediction strategy 
in order to expand the prediction horizon to a sufficient length, which would help

Fig. 5.8 Trend prediction results of PZR water level with the MIMO + LSTM prediction model 
for different operation actions and accident situations. a No human error in a LOCA situation, 
b mistaken opening of the PORV in a LOCA situation, and c no human error in the simple trip 
situation. Each starts with an initial PZR water level of 0%. Reproduced with permission from Bae 
et al. (2021) 



References 181

gain more information that supports the trend predictions. A customized multi-step 
prediction strategy applied to an optimal neural network would grant predictions that 
are both faster and longer-term. The current prediction algorithm has extended its 
prediction horizon (Kim et al. 2021) and has implemented an efficient neural network 
architecture (Ryu et al. 2022). The third requirement for real applications would be 
to achieve tolerance to noise in the field data. Harsh environments, problems with 
transmitters, and calibration shifts, among others, all create noise in field data that 
can markedly decrease neural network prediction accuracy (Shin et al. 2021). 
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Chapter 6 
Control 

Control in an autonomous NPP refers to achieving a high-level of automation. To 
a large extent, NPPs are already automated systems designed to increase electricity 
availability, reduce accident risk, and decrease operating costs (Wood et al. 2004). 
Regulatory authorities have required the automation of safety system functions as 
they must be both exceptionally reliable and rapidly executed to secure public safety. 
But the level of automation in commercial NPPs at present is not so high, as operator 
interventions take up a large portion of operation; it can be said that some functions are 
automated but many are manual. An autonomous NPP, in contrast, aims to minimize 
the operators’ interventions as much as possible. For example, at the automation level 
of Operation by Exception in Table 1.1 of Chap. 1, human operators would only be 
required for approving critical decisions. 

Typical approaches to automatic controllers in current NPPs include PID 
controllers, programmable logic controllers, and field-programmable gate arrays 
(Yoo et al. 2004, 2008; She and Jiang 2011; Khatua and Mukherjee 2021). For safety 
systems, programmable logic controllers are generally used for automatic, fast, and 
reliable responses to prevent malfunctions from propagating into major accidents. 
For non-safety systems, PID controllers or controllers that combine two out of the 
three controller types, e.g., proportional-integral controllers, are the most common 
among existing NPPs. These controllers generally aim to stabilize a given system 
within a defined range. 

Controllers applying AI techniques have recently been studied in several industrial 
fields (Wei et al. 2017). Since the 2000s, DL in general has drawn increased attention 
along with increases in computing power, increases in data sizes, and advances in 
DL-related research (Du et al. 2020; Zhou et al. 2020). One popular approach is 
deep RL or DRL, which derives from the combination of RL and DL. In Deep RL, 
a training mechanism is applied that is very similar to that of humans, and thus a 
DRL-based controller is able to develop its own experiences through trial and error, 
similar to humans. This allows DRL-based controllers to perform tasks that classical 
controllers cannot, such as selecting an operation strategy, operating certain systems, 
making decisions based on the current conditions, and optimizing operations. For

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
J. Kim et al., Autonomous Nuclear Power Plants with Artificial Intelligence, Lecture Notes 
in Energy 94, https://doi.org/10.1007/978-3-031-22386-0_6 
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this reason, DRL-based controllers have been developed in diverse fields including 
robotics (Ng et al. 2006; Zhang et al. 2020; Kohl and Stone 2004), autonomous 
vehicles (Bhalla et al. 2020; Yu et al.  2019; Viitala et al. 2020), smart buildings (Wei 
et al. 2017), power management (Kang et al. 2020; Zhou et al. 2020; Samadi et al. 
2020; Kazmi et al.  2018; Rocchetta et al. 2019), the railway industry (Yang et al. 
2020), wind turbines (Saenz-Aguirre et al. 2019), traffic signals (Genders and Razavi 
2020), and NPPs (Lee and Kim 2021; Dong et al. 2020; Park et al.  2020). 

This chapter describes the development of an autonomous operation algorithm 
applying DRL for two different NPP operational modes. 

6.1 Autonomous Control for Normal and Emergency 
Operations with RL 

Automation has been adopted in many industries to reduce human errors and to 
improve operation reliability (Wood et al. 2004). In the nuclear field, NPPs are oper-
ated through manual manipulations by operators in tandem with automated systems 
(Kim et al. 2020). During full-power operation, most controls are made automat-
ically, but manual controls are still required for start-up and shutdown operations 
(Lee and Kim 2018). For example, normal operation, which refers to the NPP oper-
ational period from start-up to shutdown, includes the following task: “The operator 
should withdraw the control rods while maintaining the reactor power at 2%”. In this 
task, operators should manually monitor a number of parameters such as the reactor 
power, concentration of boron, and withdrawal extent of the control rods to maintain 
the reactor power. Another operational period is emergency operation, which starts 
at the point of reactor trip due to an abnormal event or accident and ends at the point 
when the reactor reaches the shutdown cooling entry condition. An example task for 
operators in emergency operation is as follows: “Cool down the RCS temperature to 
55 °C per hour within the pressure–temperature curve”, an action taken to prevent 
damage to the reactor core. In this task, operation becomes burdensome because 
operators must manually control multiple components such as specific valves and 
pumps while concurrently considering all operating restrictions. Accordingly, by 
automating the tasks that require a lot of manipulations, the operators’ workload can 
be lowered, which can reduce human errors (Kim et al. 2016; Kima and Park 2018; 
Lee et al. 2018). 

The tasks that require manipulation and decision-making are indicated in the 
operating procedures. These tasks can be classified as decision-making, continuous 
control, and discrete control. Decision-making refers to the task of determining an 
operating strategy; it does not include any manipulations by the operator. As a repre-
sentative example, the task requiring operators to determine the rate of power increase 
during start-up operation is classified as decision-making. The result of the decision, 
which is the determined rate, affects subsequent manipulations in terms of timing 
and frequency.
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Continuous control focuses on achieving a defined goal but without specifying the 
related manipulations to achieve the goal, including success criteria and operational 
limitations. For example, in start-up operation, one operational goal is to increase 
the power from 2 to 100%. For this, one task requires operators to adjust the boron 
concentration in the make-up water. The related operating procedure, though, does 
not indicate by how much the boron concentration should be adjusted because the 
amount of boron can change depending on the rate of power increase and the reactivity 
of the nuclear reactor. 

Discrete control, on the other hand, specifies explicit conditions including specific 
states or values for component manipulation. An example of discrete control is the 
following task: “If the reactor power reaches 40%, operate main feed water pump 
#2”. 

To substitute automation for manual manipulation, the characteristics of the tasks 
need to be understood. For discrete controls, since there is a clear rule, automation 
can be achieved using a rule-based system with a simple if–then logic. However, 
it is difficult to implement a rule-based system for continuous controls. Likewise, 
for decision-making tasks, the optimal operating strategies can vary by the opera-
tors’ decisions, which also makes if–then logic difficult to be applied. To address the 
cases of manual manipulation for which it is hard to implement the if–then rule for 
increased levels of automation, DRL presents a promising solution. When given an 
operating goal, DRL can find an efficient way to achieve that goal through learning 
(see Sect. 2.2.3 for a brief background on RL). In this section, an autonomous opera-
tion algorithm based on DRL is developed and applied to both normal and emergency 
NPP operations. The proposed algorithm is validated and demonstrated using a CNS 
via a simulation of a Westinghouse-type NPP. 

6.1.1 Case Study 1: Power-Increase Operation 

The first target of the autonomous operation algorithm is the power-increase oper-
ation, in which electricity is generated by transferring heat from the reactor core to 
the turbines. As NPPs consist of a primary system and a secondary system, as illus-
trated in Fig. 6.1, the power-increase operation must be carried out in parallel so that 
these two systems can be operated simultaneously. In the primary system, operators 
control the reactor power by adjusting the control rods and boron concentration in 
accordance with the procedure “Power operation at greater than 2% power”. In the 
secondary system, operators follow the “Secondary system heat-up and start-up” 
procedure to operate the turbine, which converts the generated power to electricity. 
The operators take these actions for the primary and secondary systems concurrently 
to guide the NPP state from the initial conditions of the power-increase operation to 
the final conditions, as listed in Table 6.1.
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Fig. 6.1 Simplified schematic of the primary and secondary systems with related components. 
Reproduced with permission from Lee et al. (2020) 

Table 6.1 Initial and final 
conditions of the 
power-increase operation 

Major parameter Initial condition Final condition 

Reactor power 2% 100% 

Electric power 0 MWe 990 MWe 

RCS average temperature 294 °C 306 °C 

Turbine revolutions per 
minute (RPM) 

0 1800 RPM 

Turbine load setpoint 0 MWe 990 MWe 

Turbine load rate setpoint 0 MWe/min 2 MWe/min 

Boron concentration 637 ppm 457 ppm 

Rod position 211 Step (A Bank) 
95 Step (B Bank) 
0 Step (C Bank) 
0 Step (D Bank) 

228 Step (A Bank) 
228 Step (B Bank) 
228 Step (C Bank) 
220 Step (D Bank) 

Rod controller Manual Auto 

SG controller Manual Auto 

Feedwater pump 1 On On 

Feedwater pump 2 Off On 

Feedwater pump 3 Off On 

Condenser pump 1 On On 

Condenser pump 2 Off On 

Condenser pump 3 Off On 

Synchronous connection Disconnected Connected 

Reproduced with permission from Lee et al. (2020)
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6.1.1.1 Timeline and Task Analysis for the Power-Increase Operation 

To automate the power-increase operation, it is necessary to clarify which tasks are 
required for heating up the nuclear reactor and generating electricity. The tasks can 
be analyzed by task type and time based on the two above-mentioned operating 
procedures. Table 6.2 sequentially lists the required actions in the order specified in 
the procedures. 

Figure 6.2 shows the timings of the tasks in Table 6.2 as the NPP state changes. 
This timeline analysis is performed based on interviews with a senior reactor operator 
with working experience at the reference NPP. While most of the operation steps are 
made sequentially, some steps can be performed in parallel. For example, as shown 
in Fig. 6.2e, while an operator is following Step 6 (Adjust the boron concentration to

Table 6.2 Operational tasks for increasing the reactor power 

Step Task type Action 

1 Decision-making Determine the rate of power increase in %/h 

2 Continuous control Withdraw all control rods to the position of 100% reactor power while 
maintaining the reactor power at 2% through boration 

3 Continuous control If all the control rods are withdrawn, increase the reactor power from 2 
to 6%–10% by reducing the boron concentration 

4 Discrete control If the reactor power is 10%, the turbine RPM setpoint is 1800 RPM 

5 Discrete control If the reactor power exceeds 10%, the acceleration setpoint is 2 
MWe/min 

6 Continuous control Adjust the boron concentration to increase the reactor power from 10 to 
20% 

7 Discrete control If the reactor power is between 10 and 20%, the load setpoint is 100 MWe 

8 Discrete control If the turbine RPM is 1800 RPM and the reactor power exceeds 15%, 
push the net-breaker 

9 Discrete control If the reactor power is 20%, start condenser pump #2 

10 Continuous control Adjust the boron concentration to increase the reactor power from 20 to 
100% 

11 Discrete control If the reactor power is between 20 and 30%, the load setpoint is 200 MWe 

12 Discrete control If the reactor power is between 30 and 40%, the load setpoint is 300 MWe 

13 Discrete control If the reactor power is 40%, start main feedwater pump #2 

14 Discrete control If the reactor power is between 40 and 50%, the load setpoint is 400 MWe 

15 Discrete control If the reactor power is between 50 and 60%, the load setpoint is 500 MWe 

16 Discrete control If the reactor power is 50%, start condenser pump #3 

17 Discrete control If the reactor power is between 60 and 70%, the load setpoint is 600 MWe 

18 Discrete control If the reactor power is between 70 and 80%, the load setpoint is 700 MWe 

19 Discrete control If the reactor power is 80%, start main feedwater pump #3 

20 Discrete control If the reactor power is between 80 and 90%, the load setpoint is 800 MWe 

21 Discrete control If the reactor power is between 90 and 100%, the load setpoint is 990 
MWe 

Reproduced with permission from Lee et al. (2020) 
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increase the reactor power from 10 to 20%), the operator can concurrently perform 
Step 8 (If the turbine RPM is 1800 RPM and the reactor power exceeds 15%, push 
the net-breaker). 
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Fig. 6.2 Timeline for increasing the reactor power from 2 to 100%. Reproduced with permission 
from Lee et al. (2020)
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The power-increase operation is divided into two operational ranges: (1) with-
drawing control rods and maintaining the reactor power at 2%, and (2) increasing 
the reactor power from 2 to 100%. In the first operational range, the control rod with-
drawal begins as shown in Fig. 6.2d, which may increase the reactor power. In order 
to maintain the reactor power at 2%, boron is injected to compensate the positive 
reactivity, as shown in Fig. 6.2c. 

The goal of the second operational range is to increase the reactor power up 
to the full power condition. In this range, operators should raise the reactor power 
in accordance with the specified power increase rate per hour, which must first be 
determined by the operators. Here, the difference between the average temperature 
of the primary system and the reference temperature, which is the temperature of the 
secondary system, should not exceed ± 1 °C, as illustrated in Fig. 6.2b. To increase 
the reactor power, operators inject make-up water so that the boron concentration 
in the RCS gradually decreases. In this case, the amount of the injected make-up 
water is determined in accordance with the operational constraints of the temperature 
difference and reactor power. 

6.1.1.2 Algorithm Structure for the Power-Increase Operation 

Considering the different types of operational tasks discussed above, the devel-
oped algorithm for the power-increase operation consists of discrete and continuous 
control modules, as depicted in Fig. 6.3. 

Fig. 6.3 Overview of the 
algorithm for the 
power-increase operation. 
Reproduced with permission 
from Lee et al. (2020) 

Algorithm for Autonomous Power-Increase Control 

Discrete control module Continuous control module 
Operational rules 

about discrete task 

Rule: IF-THEN 

Inference 
Engine 

Nuclear power plant 
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• Discrete control signal
- Turbine load controller
- Feedwater pumps
- Condenser pumps
- Synchronizer

. Continuous control signal
- Rod controller
- Make-up water valve
- Boric acid water valve

. Plant parameters. Plant parameters 

Discrete controls can be represented with clear rules, so they can be implemented 
in the algorithm using a rule-based system. Such a rule-based system can generate an 
action according to a predefined if–then condition. In the discrete control module, the 
rule-based system uses converted rules from the operational rules applying if–then
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logic. The operator tasks of discrete control type are largely four control functions— 
control of the synchronizer, turbine, main feedwater pump, and condenser pump— 
which are converted into if–then logic as listed in Table 6.3.

The second module of the algorithm, the continuous control module, aims to 
manage the reactor power during the power-increase operation based on the specified 
power-increase rate. Since continuous control in this operation cannot be represented 
with clear rules, this module applies an asynchronous advantage actor-critic (A3C) 
agent, which is a kind of DRL. The agent mainly consists of a reward algorithm and 
an LSTM model, as shown in Fig. 6.4. The reward algorithm calculates the reward for 
training the agent and evaluates the current plant parameters (Guo 2017). Using the 
obtained and evaluated plant parameters, the LSTM network selects the appropriate 
operation strategies among “increase”, “decrease”, or “stay”. Then the A3C agent 
determines the control actions considering the current goal of the power-increase 
operation.

The reward algorithm is required to provide the direction of learning to the agent. 
As the name of the algorithm implies, the direction of learning is provided to the 
agent in the form of a reward, which is a value determined by the current state of 
the environment. In particular, the reward in the power-increase operation is divided 
into two operational criteria: (1) the power increase rate, and (2) the temperature 
difference between the primary and secondary systems. 

The first reward, or power reward, is provided by considering the power increase 
rate. Since the operational goals differ between the two operational ranges, the reward 
should be provided separately for each range. Figure 6.5 illustrates the two ranges: 
the blue area represents the range in which the reactor power is maintained at 2% by 
± 1%, or in other words from 1 to 3%, and the red area represents the range in which 
the reactor power is increased from 2 to 100%. The transition point, meaning the shift 
from blue to red, is when the control rods are fully drawn out for the power-increase 
to 100%. After the transition, the operational goal changes from “power-maintain” 
to “power-increase”. To calculate the first reward, upper and lower boundaries are 
defined for the reactor power as in Eqs. (6.1) to (6.3). Using these equations, the 
boundaries for the red area in Fig. 6.5 are outlined linearly with the predefined 
power increase rate and the current operation time. 

End of operation time (t100) = t2 + 
100 − 2 

Pr 
(6.1) 

Upper boundary = 

⎧ 
⎪⎨ 

⎪⎩ 

3 (t2 ≥ t) 
100−3 
t100−t2 

(t − t2) + 3 (t100 ≥ t > t2) 
110 (t > t100) 

(6.2) 

Lower boundary = 

⎧ 
⎪⎨ 

⎪⎩ 

1 (t2 ≥ t) 
100−3 
t100−t2 

(t − t2) + 1 (t100 ≥ t > t2) 
90 (t > t100) 

(6.3)
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Table 6.3 Discrete control module if–then rules for increasing the reactor power from 2 to 100% 

Function Rule number(s) If–then rule Input(s) Output(s) 

Synchronizer 
control 

1 If the turbine RPM 
is 1800 RPM and 
the reactor power 
is greater than 
15%, push the 
net-breaker button 

Reactor Power, 
Turbine RPM 

Net-breaker 
Button Control 

Turbine control 2 If the reactor 
power is 10%, the 
turbine RPM 
setpoint is 1800 
RPM 

Reactor Power, 
Turbine RPM 

Turbine RPM 
Setpoint Control 

3 If the reactor 
power is greater 
than 10%, the 
acceleration 
setpoint is 2 
Mwe/min 

Turbine 
Acceleration 

Turbine 
Acceleration 
Setpoint Control 

4 If the reactor 
power is between 
10 and 20%, the 
load setpoint is 
100 Mwe 

Reactor Power, 
Load Setpoint 

Load Setpoint 
Control 

5–11 … … … 

12 If the reactor 
power is between 
90 and 100%, the 
load setpoint is 
990 Mwe 

Reactor Power, 
Load Setpoint 

Load Setpoint 
Control 

Main feedwater 
pump control 

13 If the reactor 
power is 40% and 
the state of the 
main feedwater 
pump 1 is 
“activated,” start 
main feedwater 
pump 2 

Reactor Power, 
Main Feedwater 
Pumps 1 and 2 
States 

Main Feedwater 
Pump 2 Control 

14 If the reactor 
power is 80% and 
the state of main 
feedwater pump 2 
is “activated,” start 
main feedwater 
pump 3 

Reactor Power, 
Main Feedwater 
Pumps 2 and 3 
States 

Main Feedwater 
Pump 3 Control

(continued)
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Table 6.3 (continued)

Function Rule number(s) If–then rule Input(s) Output(s)

Condenser pump 
control 

15 If the reactor 
power is 20% and 
the state of 
condenser pump 1 
is “activated,” start 
condenser pump 2 

Reactor Power, 
Condenser 
Pumps 1 and 2 
States 

Condenser Pump 
2 Control 

16 If the reactor 
power is 50% and 
the state of 
condenser pump 2 
is “activated,” start 
condenser pump 3 

Reactor Power, 
Condenser 
Pumps 2 and 3 
States 

Condenser Pump 
3 Control 

Reproduced with permission from Lee et al. (2020)
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Fig. 6.4 Overview of the continuous control module. Reproduced with permission from Lee et al. 
(2020)

Pr: Predefined rate of power increase (%/h) 
t: Time 
t2: Time at all rods 100% withdrawal 
t100: End of operation time

The power reward is then calculated as the distance between the current power at 
time t and the desirable power that is the midpoint between the boundaries.
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Fig. 6.5 Power reward for the A3C agent. Reproduced with permission from Lee et al. (2020)

Power reward (0 ∼ 1) = 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0
(
P > Rup

)

1 − P−Rmp 

Rup−Rmp

(
Rup ≥ P > Pmp

)

1
(
P = Rmp

)

1 − Rmp−P 
Rmp−Rlp

(
Rmp > P ≥ Rlp

)

0
(
P < Rlp

)

(6.4) 

P: Current power at time t (%) 
Rmp: Middle of power reward boundary, i.e., predefined power at time t 
Rup: Upper power reward boundary 
Rlp: Lower power reward boundary 

A power reward with a negative value indicates that the current power is outside 
the boundaries. In this case, the operation is considered as a failure and the training is 
terminated for that episode. The agent then applies different actions in a new episode 
that is set from the initial operation condition (t = 0). Thus, the power reward plays 
an important role in determining whether the power-increase operation performed 
by the A3C agent succeeds or not. 

The second reward, or temperature reward, considers the difference between the 
average temperature and the reference RCS temperature. Regarding the average 
temperature control, the operation procedure specifies the following recommenda-
tion: “Operate the average RCS temperature within ± 1 °C of the reference RCS 
temperature during the power-increase operation”. Considering that the reference 
RCS temperature is related to the current turbine load (MWe), the temperature reward 
can be calculated using Eq. (6.5) after electrical power is generated. In case of no elec-
trical power, the temperature reward is zero. Since the temperature reward is derived 
from the above recommendation operation unlike the power reward, the temperature
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reward is not directly related to the termination of the episode. If the average RCS 
temperature passes outside either boundary, the temperature reward is returned with 
a negative value proportional to the distance from the closest boundary. Figure 6.6 
plots the temperature reward. 

Temperature reward(−1 ∼ 1) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

−1 (Rut + 1 < Tav) 

−Tav + Ryt (Rut + 1 ≥ Tav > Rut) 

1 − Tav + Trf (Rut ≥ Tav > Trf) 

1 (Tav = Trf) 

1 + Tav − Trf (Trf > Tav ≥ Rlt) 

Tav − Rlt (Rlt − 1 ≤ Tav < Rlt) 

−1 (Rlt − 1 > Tav) 

(6.5) 

T: Average RCS temperature at time t 
Trf: Middle of temperature reward boundary, i.e., reference temperature at time 
t 
Rut: Upper temperature reward boundary (Trf + 1) at time t 
Rlt: Lower temperature reward boundary (Trf − 1) at time t 

With these two rewards, the agent derives the total reward with the arithmetic 
mean of the power and temperature rewards as Eq. (6.6). 

Total Reward (−1 ∼ 1) = 
Power Reward + Temperature Reward 

2 
(6.6)

291 ℃

292 ℃

290 ℃ Time (h) 

Temperature 
(℃) 

Increase reactor power from 2% to 100%Maintain reactor power 2% 

Generate electrical power 

Average temperature 

Reward boundary 

Reference temperature 

Minimum reward boundary 

Trf(t=8) = 291.5℃  

Tav (t=8) = 300℃  

Tav (t=10) = 292.2℃  

Trf(t=10) = 293℃  

306 ℃

307 ℃

305 ℃ Tav (t=20) = 302℃  

Fig. 6.6 Temperature reward for the A3C agent. Reproduced with permission from Lee et al. (2020) 
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6.1.1.3 Experiments 

For a real-time testbed to train and validate the autonomous operation algorithm for 
the power-increase operation, a CNS is employed. One main computer and three sub-
computers make up the environment for A3C training in parallel, as shown in Fig. 6.7. 
The main computer embeds 1 main agent and 60 local agents for implementing the 
algorithm. Each sub-computer can execute 20 CNS simulations at a time, meaning 
60 simulations can be run concurrently. 

The trend of the rewards is evaluated to check that the A3C agent is well trained 
from the simulations. Figure 6.8 plots the rewards over 8800 episodes. For a complete 
power-increase operation (from 0 to 100%) at a rate of 3%/h, the maximum cumula-
tive reward that the agent can optimally achieve through one episode is 4800 (green 
dashed line in Fig. 6.8). The practical reward value that the agent can achieve is 
observed to be 3000 (red dashed line in Fig. 6.8). The trend stabilizes as the rewards 
are returned successful, indicating the completion of the A3C agent training.

Figure 6.9 compares the experimental results with the timeline analysis for the 
operation strategy shown in Fig. 6.2. The algorithm shows a similar operation pattern 
as the established strategy. According to the results, the autonomous operation algo-
rithm successfully controls the components to increase the reactor power and generate 
electricity at the intended rate of power increase. This demonstrates that the A3C 
agent in the continuous control module can effectively conduct experience-based 
control after training with the simulator, and also that the discrete control module 
can manage its related components according to the rules based on the operating 
procedures. Therefore, the developed algorithm combining a rule-based system and 
RL is able to successfully conduct the power-increase operation in an autonomous 
manner.

Fig. 6.7 Structure of the training environment for the A3C agent. Reproduced with permission 
from Lee et al. (2020) 
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Fig. 6.8 Rewards obtained by the A3C agent. Reproduced with permission from Lee et al. (2020)

6.1.2 Case Study 2: Emergency Operation 

Emergency operation refers to the mitigating actions and operations that are 
conducted following a reactor trip by an initiating event to ensure the integrity of 
the reactor core and containment building (Yang and Kim 2020). Currently, NPPs 
adopt highly automated systems that reduce the risk of accidents through immediate 
management, especially during an emergency situation. Nonetheless, except for the 
earliest stages of emergency operation, manual manipulations by operators are still 
required to reduce the pressure and temperature until safety conditions are reached 
(Lee and Kim 2021). 

The second target of the autonomous operation algorithm is emergency operation 
following a reactor trip caused by a LOCA. In this accident scenario, operators 
perform accident diagnosis to identify the LOCA and then conduct recovery actions 
following the related operating procedures. 

6.1.2.1 Work Domain Analysis Using Abstraction-Decomposition Space 

To automate emergency operation, the systems and components involved in reducing 
the pressure and temperature must be identified. One good tool for this is 
the abstraction-decomposition space (ADS) (Rasmussen 1985), a technique that 
analyzes a given work domain and classifies it into an abstraction level and a decom-
position space. Here, an ADS can be used to systematically identify the systems and 
components that operators are required to manipulate during emergency operation. 
Moreover, an ADS can also facilitate the identification of the operational goals and 
constraints of the related systems and components in this operational mode. 

In an ADS, the abstraction level represents the work domain as a hierarchical struc-
ture consisting of a functional purpose, abstraction function, generalized function,
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Fig. 6.9 Comparison between the existing operational strategy and the developed algorithm. 
Reproduced with permission from Lee et al. (2020)

and physical function, in top-down order. The abstraction level is able to discover 
correlations between the hierarchy as how-what-why. 

On the other hand, the decomposition space divides the work domain down 
to the lowest elements and then maps them to a space composed of the whole 
system, subsystems, and components. Even if a large system has a complex structure, 
the decomposition space can review the relationships between the components by 
stepping down through the spaces of detail to the component space. 

Figure 6.10 shows an example of an ADS to control the pressure of the reactor 
and cooling system. The functional purpose in an ADS is defined as the objective 
of the given work domain; here, the objective of emergency operation is to prevent 
core damage, which can be subdivided into decompression and cooling. In the next
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level, the abstraction function represents the related physical variables such as flow, 
mass, temperature, and level. As listed in Table 6.4, these variables each have success 
criteria for achieving the objectives specified at the functional purpose level. 

For example, the physical variable of PZR pressure is involved in the success 
criteria of the RCS pressure control function, namely that the PZR pressure should 
be below 29.5 kg/cm2, which is the shutdown operation entry condition, and stay 
within the P–T curve boundary, as shown in Fig. 6.11.

After the abstraction function level, as shown in Fig. 6.10 the generalized func-
tion level includes the operation functions that directly or indirectly affect the basic 
principle defined in the abstraction function. Specifically, PZR level is affected by 
operations such as decompressing the PZR and pumping (supplying) coolant. The 
operation functions that are identified in the generalized function level are related to 
the operational process required to meet the safety functions. The last level, or phys-
ical function level, includes the components that perform each operational systematic 
process, i.e., the generalized functions such as pumping coolant. For example, in the 
case of the PZR coolant supply, the physical components that need to be operated to 
achieve the desired PZR level are SI valve, SI pump, charging valve, letdown valve 
and orifice valve. 

As above, the ADS identifies the components related to reducing pressure and 
temperature during an emergency situation by analyzing the work domain. Once the 
components are identified, their control types can be highlighted through the EOPs, 
as listed in Table 6.5. For instance, manipulation of the steam dump valve is identified 
as continuous control because when the position of this valve needs to be adjusted,
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PZR Level PZR Level > 20% 

PZR 
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SI Tank 

Orifice 
Valve 

Letdown 
Valve 

Fig. 6.10 An example ADS to reduce pressure. Reproduced with permission from Lee et al. (2021)
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Table 6.4 Required physical parameters and success criteria in the abstraction function level 

Physical variable Success criteria 

PZR pressure Pressure < 29.5 kg/cm2 

Pressure within P–T curve boundary 

PZR level 20% < Level < 76% 

RCS average temperature 170 °C < average Temperature 
Temperature within P–T curve boundary 
55 °C/h < cooling rate 

SG pressure Pressure <88.2 kg/cm2 

SG level 6% < narrow level < 50% 

Reproduced with permission from Lee et al. (2021)
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Fig. 6.11 P–T curve boundary and trajectory of the change in pressure and temperature. 
Reproduced with permission from Lee et al. (2021)

operation procedures provide only the operational goal (e.g., cool the temperature 
down to the shutdown entry condition within the P–T curve) without clear rules for 
its manipulation. On the other hand, manipulation of the RCP is given as discrete 
control. In this case there is a clear rule: if the pressure is below 97 kg/cm2, switch 
the RCP off.

6.1.2.2 Algorithm Structure for Emergency Operation 

The algorithm for emergency operation, as the schematic shows in Fig. 6.12, is  
designed considering the control types. The architecture comprises discrete and



200 6 Control

Table 6.5 Components required to reduce pressure and temperature 

Control type Component 

Continuous control PZR spray valve, SI pump, SI valve, Aux feedwater valve, Steam dump 
valve 

Discrete control PZR heater, Charging valve, Letdown valve, Orifice valve, Aux feedwater 
pump, Main feedwater pump, RCP

continuous control modules, similar to the power-increase algorithm previously intro-
duced (Sect. 6.1.1.2). In the discrete control module, a rule-based system generates 
discrete control signals through an inference engine that can be logically deducted 
based on a database consisting of if–then rules. In the continuous control module, 
control signals are generated by processing physical parameters, such as PZR level 
or pressure, and component states, such as PZR heater on or off, with a basic DNN.

In more detail, the discrete control module controls the components of discrete 
control type, namely the PZR heater, charging valve, letdown valve, orifice valve, aux 
feedwater pump, main feedwater pump, and RCP as listed in Table 6.5. To manage 
these components, operation rules described in the related EOPs are converted into 
if–then logic. Table 6.6 shows an example if–then rule specifying the PZR pressure 
at which the RCPs should be stopped. 

- Algorithm for Autonomous Emergency Operation -

Rule: IF-THEN 

Inference Engine 

Nuclear Power Plant 

Discrete Control Module ( Rule-based System) 

Plant Parameters Discrete Control 
Signal 

Continuous Control Module (Soft Actor -Critic Agent) 

Continuous 
Control Signal 

Physical Parameter 
(5 Values) 

Component State 
(12 Values) 

Reward Algorithm 
(P-T Curve) 

DNN 
Network 

Update network 

Fig. 6.12 Overview of the algorithm to reduce the primary pressure and temperature during 
emergency operation. Reproduced with permission from Lee et al. (2021) 

Table 6.6 Example if–then logic for the RCP 

Function If–then rule Input(s) Output(s) 

RCP If the RCS pressure is below 97 kg/cm2, stop all 
RCPs 

PZR Pressure RCP #1, #2, #3
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As for the continuous control module, during emergency operation its focus is also 
to manage components to reduce the pressure and temperature until the shutdown 
cooling entry condition. This module adjusts components of continuous control type 
such as the PZR spray valve, aux feedwater valve, and steam dump valve, for which 
it applies a DNN with a soft actor-critic (SAC) algorithm. Figure 6.13 illustrates a 
schematic of the continuous control module. The SAC agent works by finding a policy 
to explore more widely while giving up on avenues that are clearly unpromising. The 
policy can capture multiple operation paths of near-optimal behavior. Q-values are 
used to optimize behavior selected from the policy by considering the actual and 
expected rewards. The DNN operates Q-value and policy networks to capture the 
particular actions that achieve the operational goals.

A reward algorithm for the SAC agent is designed to reduce the pressure and 
temperature of the reactor and cooling system down to the shutdown cooling system 
entry condition. The success criteria shown in Table 6.4 found in the work domain 
analysis via ADS are used to develop the reward. The reward is calculated as shown 
in Eqs. (6.7) to (6.10). 

Calculated cooling temperature (Tct) = Ts − 55 ◦C ∗ 
(tc − ttr) 
3600 

(6.7) 

Temperature distance (Td) = |Tc − Tct| (6.8) 

Pressure distance (Pd) = |Pc − Psc| (6.9) 

Total reward = −(Td + Pd ) (6.10) 

tc: Time  [s]  
ttr: Time at reactor trip [s] 
Ts: Stable temperature after reactor trip (260 °C) 
Tc: Temperature at time (tc) 
Pc: Pressure at time (tc) 
Psc: Pressure of shutdown cooling entry condition 

Interacting with the simulator every second, the SAC agent receives a total reward 
as calculated by Eq. (6.10). The range of the expected total reward per second is (–inf ~ 
0). A reward close to zero means that the agent satisfies the success criteria. The SAC 
agent interacts with the simulator until the temperature or pressure moves outside the 
P–T curve boundary (operation failure) or the agent reaches the shutdown cooling 
entry condition (operation success). Once the interaction is complete, the simulator 
returns to the initial operation conditions.
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Fig. 6.13 Structure of the SAC agent. Reproduced with permission from Lee et al. (2021)

6.1.2.3 Experiments 

The developed autonomous operation algorithm for emergency operation is trained 
and validated with a CNS in the same manner as that for the power-increase operation 
(Sect. 6.1.1.3). Training of the SAC agent is performed for more than 800 episodes to 
complete the emergency operation and is stopped when the average reward saturates; 
Fig. 6.14 plots the trend of the rewards in the SAC agent training. In a single episode, 
the theoretical maximum cumulative reward during the entire the emergency opera-
tion is 0 (green dashed line in Fig. 6.14). To receive a cumulative reward of zero in



6.1 Autonomous Control for Normal and Emergency Operations with RL 203

Fig. 6.14 Reward obtained by the SAC agent. Reproduced with permission from Lee et al. (2021) 

one episode, the SAC agent should obtain a reward of zero every second. However, 
since the pressure at the beginning of the operation cannot be the same as the pressure 
at the shutdown cooling entry condition, the maximum cumulative reward should be 
selected through experimental observation. Here, a practical maximum reward for 
emergency operation success is observed to be over −65. 

Following successful training, a test is conducted to demonstrate that the devel-
oped algorithm for emergency operation can automatically cool down the reactor 
during a LOCA scenario while satisfying the operational constraints, i.e., staying 
within the P–T curve boundary at the appropriate cooling rate, 55 °C/hour. As shown 
in Fig. 6.15, the pressure and temperature are found to be reduced by the algorithm 
within the operational criteria down to the entry condition of shutdown cooling.
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Fig. 6.15 Simulation results 
of the emergency operation 
algorithm. Reproduced with 
permission from Lee et al. 
(2021) 
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Chapter 7 
Monitoring 

Among the various functions undertaken by the autonomous NPP, the monitoring 
function has a twofold purpose: (1) monitoring whether the plant status meets its 
operational limits or constraints, and (2) monitoring whether the autonomous system 
itself can manage the NPP properly. 

First, the monitoring function can focus on the several conditions that the various 
NPP operations should satisfy. One example is LCO required by regulation. The 
LCO is the lowest functional capability or performance level of equipment required 
for the safe operation of the facility (NRC 2012). If an LCO is violated in any oper-
ation mode, operators should conduct immediate actions provided by the technical 
specifications of the equipment. Another example is the status of the safety functions 
in emergency operation. In this operation mode, the plant status can be evaluated via 
the health status of the safety functions, such as reactivity control, RCS inventory 
control, RCS pressure control, etc. These health statuses can be categorized into 
normal, abnormal, and severe following criteria defined in the relevant procedure. 
In the case that all the CSFs not damaged by the initiating event are evaluated as 
normal, the indication is that the plant is being managed properly in the emergency 
situation. 

Second, the monitoring function can also check the health of the autonomous 
system itself, i.e., perform self-diagnosis. This allows any failure of the autonomous 
system functions or any error committed by the system to be detected. Once a problem 
is detected by the monitoring function, the information is transferred to the decision-
making function of the system and used to select an alternative strategy. 

Although many conditions can be monitored in the autonomous NPP, this chapter 
introduces two approaches. The first is a system to detect errors committed by 
autonomous systems as well as operators, and the second is a method to monitor 
for violations of LCOs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
J. Kim et al., Autonomous Nuclear Power Plants with Artificial Intelligence, Lecture Notes 
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7.1 Operation Validation System Through Prediction 

Human errors and organizational factors account for a large part of the safety of 
NPPs. In fact, it has been revealed that human error can take up more than half of 
the core damage frequency of plants (Gertman et al. 2002), and moreover, it is well 
known that human factors were the direct or indirect cause of the three major nuclear 
accidents in history (Stanton 1996; NRC  1979; Infield 1987). 

The TMI accident in particular led to improvements in the various human–system 
interfaces (HSIs) in NPPs with the goal to prevent human error (NRC 1979; NRC  
1980). Most of the notable improvements to the HSIs have focused on MCR interface 
design and operator support system development, as plants are largely operated 
and maintained by operators in the MCR. As mentioned previously, the purpose 
of operator support systems in NPPs is to reduce human errors and improve human 
performance by substituting or partially substituting operator tasks or by assisting 
the operators in performing their tasks. From a technical standpoint, introducing such 
computerized support systems to modern NPPs is relatively easy as the I&C systems 
for various plant functions are being rapidly digitalized (Lee and Seong 2014). As 
introduced in other chapters of this book, various technologies based on AI are being 
studied, and they are expected to contribute to increasing the safety of NPPs. 

Operator support systems can be classified as a kind of automation system. An 
appropriate level of automation technology is believed to reduce operator error or 
compensate for the effects of operator error. But before realizing the advantages 
of such level of automation in actual plants, several associated issues need to be 
addressed. One major example is that over-relying on an automated system can 
lower not only the situational awareness but also the skill proficiency of operators 
(Endsley 1996; Endsley and Kaber 1999; Lee and See 2004; OHara et al. 2010; 
Parasuraman and Riley 1997; Kaber and Endsley 2004). In this section, an intelligent 
support system that is concealed from operators is introduced to compensate for this 
automation-related issue. 

In terms of human error, emergency operation of an NPP represents an environ-
ment in which the operators are prone to error due to the dynamically changing plant 
conditions and great stress. But in emergency situations in particular, the potential 
for errors should be reduced and their effects should be minimized, as in this case 
a wrong action by an operator can cause critically serious consequences. Moreover, 
if a human error is made, recovery actions must be taken in a timely manner or the 
impact of the error may aggravate the situation over time. This means that detecting 
an occurred error and conducting coping actions as soon as possible are essential. 
In NPP emergency operation, a work environment with high task loads and utmost 
stress, a support system for reducing operator workload without adding confusion or 
burden could prove beneficial. 

The developed operator support system in this section is called the CIA, or 
concealed intelligent assistant. It works by detecting human error in an NPP 
emergency situation and providing the relevant information to the operators. The 
concealed aspect of the CIA is that the system is not visible to operators during
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normal duties, only appearing when an error occurs. The CIA system employs AI 
technologies such as DNNs, and thus its development provides a further opportunity 
to examine the potential of AI technology to partially replace or assist the role of 
NPP operators. 

7.1.1 CIA System Framework 

If the goal is to provide information about a human error to the operators in an emer-
gency situation, then the first step is the determination of whether an operator behavior 
is an error or not, for which appropriate judgment criteria are necessary. For this deter-
mination, the developed system implements two-stage filtering following the basic 
principle of human error determination shown in Fig. 7.1. A general schematic of 
the CIA with its two filtering modules is illustrated in Fig. 7.2. The first criterion 
in the determination of a human error is whether an operator behavior complies 
with the relevant operation procedure, based on the fact that operators strictly follow 
EOPs to cope with an emergency. The first filter, the procedure compliance check 
(PCC) module, makes this determination. But since emergency operation situations 
are likely highly dynamic, considering static procedures as the complete standard 
is insufficient. In the case that an action does not adversely affect plant integrity, 
even when it is technically a procedural non-compliance, notifying the operator in 
the midst of the emergency situation would be inappropriate from a safety as well 
as operator burden point of view. In principle, no additional workload should be 
assigned to the operators as related to any activity that does not pose a threat to 
safety in the critical course of the emergency. Additional determination is there-
fore necessary, namely how a non-compliant action may affect the integrity of the

Fig. 7.1 Decision tree for human error. Reproduced with permission from Ahn et al. (2022)
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Fig. 7.2 Overall framework of the CIA system. Reproduced with permission from Ahn et al. (2022) 

NPP. This is implemented as CIA’s second filter, the comparison of safety impact 
evaluation (COSIE) module.

As shown in Fig. 7.2, the PCC module as the first filter obtains the expected action 
(EA) according to the procedure and compares it with the real action (RA) by the 
operators. If the RA differs from the EA, the PCC regards the RA as a procedural 
non-compliance and initiates the COSIE module for a second layer of filtering. The 
COSIE module analyzes the safety impacts that the EA and RA received from the 
PCC have on the NPP. For this, the COSIE module utilizes a DL algorithm as a tool 
for the diagnosis of potential risk based on the prediction of plant safety variables. 
In other words, the second filter works by predicting the future state of the NPP 
according to the given EA and RA and then comparing the two predicted results in 
terms of safety. An RA that is evaluated to threaten plant safety more than the EA 
is flagged as a potential threat. In this way, the CIA system can determine a human 
error and notify the operator. The following subsections detail the workings of each 
module. 

7.1.2 Step 1 Filtering: PCC Module 

Operators make decisions and carry out actions based on operating procedures that 
guide all cognitive tasks and actions such as monitoring, decision-making, and equip-
ment control. In order to determine whether a particular operator action (i.e., RA) 
conforms to the procedure being followed, the appropriate action for the situation 
(i.e., EA) should first be determined, after which the two can be compared. 

The overall framework of the PCC module to determine whether operator actions 
comply with the procedure is depicted in Fig. 7.3. To carry out its function, this 
module monitors the plant state, receives information on the current stage of the 
procedure from the computerized procedure system, and derives the appropriate task
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Fig. 7.3 Procedure compliance check (PCC) module framework. Reproduced with permission 
from Ahn et al. (2022) 

to be performed at the current stage, or in other words the EA. At this time, the 
method of judgment differs according to the decision type, classified as Type A, B, 
and C in Fig. 7.3, to determine the necessity of execution. In this judgment process 
following the procedure directives, in the case of Type B (simple decision), rule-based 
judgment can be applied. 

However, in the case of Type C including complex decisions (CDs), a simple rule-
based method is inapplicable. For these types of decisions, a CD model adopting a DL 
algorithm is implemented to predict the judgment of an operator when making a CD. 
To do so, the model judges whether a particular trend is increasing, maintaining, or 
decreasing with respect to time-series data and uses this as its basis for predicting the 
operator’s decision in the given situation. If it is judged through the CD algorithm that 
the task predicted to be performed by the operator does not comply with the procedure 
or if the PCC module requires additional information, the COSIE module is activated. 
The below subsections discuss the overall framework of the PCC module, related 
procedure and task analyses, application of a procedure-based task/action decision 
logic, and CD methods using DL algorithms. 

7.1.2.1 Analysis of EOPs 

Emergency operating procedures are generally written in a simple logic form such 
as if–then-else, as the example in Table 7.1 shows, to reduce the mental burden 
of following the procedure and to support operator decision-making. As exhibited 
in Fig. 7.4, EOPs map out the appropriate process of operation in each particular 
situation, where the flow of operation is presented as a sequence of procedural steps. 
As implied in their name, EOPs are followed in an emergency situation following a 
reactor trip, during which all operator actions are dictated by the appropriate EOP. 
In short, operators examine the integrity of the NPP by comparing the setpoints of 
the automatic systems to the current plant state as instructed by the EOP, and then
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maintain or restore the safety functions following specific EOP steps based on the 
symptoms. 

As briefly mentioned above, decisions can be classified into three types, which 
are further detailed in Table 7.2. Type A, meaning no decision, refers to when the 
entry into the step itself satisfies the executing condition, meaning that operators 
proceed with the given step or perform a given action without any judgment. An 
example of a Type A decision is “E-0 step 2.0 RNO, Manually trip turbines” as in 
Table 7.2. At this step, the current state is one in which the turbine is not tripped in 
the previous step. E-0 step 2.0 is entered based on the determination that a turbine 
trip is needed, where this determination is made in the previous step. Therefore, 
since the condition for performing the task in this step is satisfied just by entering 
the step, operators may simply perform the instructed task without any additional 
decision-making after entering the step. The second decision type, or Type B simple 
decision, involves a basic comparison between a reference value of a parameter 
given in the procedure and the indicated value of the current plant state. Other Type 
B decisions include the simple determination of a device state, such as on or off, or 
open or closed. For example, response planning for the control of a SG level requires 
operators to first check the EOP instruction, “Is the steam generator level 6% or 
higher?”, which corresponds to a simple decision. The third decision type is Type C 
indicating a CD that involves continuous observations of any changes in parameter 
trends. For example, if an EOP step requires the operator to make a determination 
about the statement “the RCS pressure is increasing”, the related parameters should 
be observed for a certain period of time with no set criteria.

Type A and Type B decisions can be handled by the support system with relatively 
simple rule-based approaches. Type C, on the other hand, cannot follow a simple rule 
as it requires judgments of time-series parameter trends that depend on the window 
size and numerous situational variables. Figure 7.5 plots the average temperature 
history of the RCS in an arbitrary condition as an illustrative example. As the figure 
shows, monitoring the temperature value at different points in time or for different 
amounts of time in a separate manner may result in different RCS trend judgments. 
Well-trained and experienced plant operators are likely to make the proper judgement 
though, and thus, opposed to designing a support system that attempts to judge 
complex trends following fixed rules, a system that can learn how actual experts 
arrive at their decisions in specific circumstances may be more appropriate. For this, 
applying a DL algorithm to a neural network offers a valuable solution as part of the 
PCC module with the goal to determine procedure compliance in NPP emergency 
situations by predicting the complex judgments made by operators.

Table 7.1 Example of the 
logical construct of an EOP 
step 

[E-1 Loss of coolant accident, step 14] 
If RCS hot-leg temperature is less than 185 °C 
Then, Reset SI actuation signal 
Else, go to step 15  

RCS reactor coolant system; SI safety injection 
Reproduced with permission from Ahn and Lee (2020)
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Fig. 7.4 Schematic of the flow of EOP steps. Reproduced with permission from Ahn and Lee 
(2020)

Table 7.2 Decision types within the response planning task in following an EOP 

Decision types Description Example 

Type A 
(No decision) 

Action without decision-making [E-0 step 2, RNO] 
“Manually trip turbines” 

Type B 
(Simple decision) 

Action requiring checking a 
parameter/component state 

[E-0 step 18, RNO] 
“If pressurizer pressure is less than 
164.2 kg/cm2, then close PORVs 
manually” 

Type C 
(Complex decision) 

Action requiring monitoring a 
parameter/component state 

[E-0 step 31] 
“If RCS pressure is stable or 
increasing, then stop RHR pumps 
and keep standby” 

PORV power-operated relief valve; RHR residual heat removal 
Reproduced with permission from Ahn and Lee (2020)

7.1.2.2 Procedure Modeling Using Colored Petri Nets 

A Petri net model is a common choice to model a multi-structural procedure, such 
as the emergency operation of an NPP considered here. The basic concept is that the 
entities constituting a system work independently of a shared administrator or time, or 
in other words, each element acts by its own judgment. This makes the model suitable
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Fig. 7.5 Example 
time-series variable showing 
different possible trend 
interpretations. Reproduced 
with permission from Ahn 
and Lee (2020)

to represent systems in which events occur either simultaneously or asynchronously 
and which have either distributed or decentralized elements. The events each occur 
once a predetermined condition is met, and accordingly, a set of these event states 
can represent the whole system. Both concurrent and asynchronous characteristics 
can be expressed by the model because the events that do not share conditions for 
occurrence are independent from one another. The base of a Petri net model is the 
place/transition nets (PN) that only express the relationship of event occurrence. 
The three major model components are place, transition, and arc that respectively 
describe an initial condition, an event, and the relationship between the two. Other 
models can be added to the base model for various performance evaluations, and 
an extension model suitable to the target system to be analyzed can be built. Here, 
colored Petri net (CPN) modeling is applied, where color information is included to 
express more complex conditions and logic. 

The CPN reflects various types of states with color information, making it well 
matched for handling complex processes such as NPP EOPs. The first step to convert 
a procedure document into a CPN model is to prepare a procedure database, for which 
a procedure analysis is conducted to classify the entry conditions and required tasks 
at each procedural stage. Then to create the CPN model, the procedural steps are 
configured as the model “places” and the required tasks are configured as the model 
“transitions”. For a transition to occur, several conditions of the system should be 
satisfied, information about which is stored in each place. Once the conditions are 
satisfied, a colored token is indicated. Each place can be classified as one of six types, 
where the token color represents the plant state, as shown below. 

Token color set—Place states 
1. Green: Current – appropriate 

2. Red: Current –wrong 
3. Yellow: Following 
4. Blue: Continuous  

5. Purple: Concurrent  
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Here, the green token reflects that the current step is the appropriate one based 
on a proper following of the procedure. Red reflects that the current step is not 
appropriate based on a prior procedural mistake or mistakes, including a wrong step 
transfer. The yellow token represents the expected next step that the operator should 
transfer to, and the blue token represents a continuous step that can be performed 
once its operating conditions are satisfied. Purple represents a concurrent step, which 
means that the current procedural step is still ongoing even after the operator transfers 
to the subsequent step. The sixth type is no token, which is used to reflect a standby 
step that does not correspond to the states of other steps. 

An example of the CPN modeling approach is shown in Fig. 7.6. The circles 
represent the steps of the EOP (place) and the rectangles represent the actions by 
operators (transition). A procedural non-compliance can be detected with a CPN 
model by checking whether the actual operator performance matches the correct 
sequence. In the top row of the figure, the green circle represents that step 15 of 
the EOP has been appropriately conducted, and step 16 (yellow) is the expected 
next step. In the middle row, the operator transfers to step 15R, not step 16, and 
this is highlighted with a red token representing an error. In the bottom row, the 
operator correctly transferred to step 16, now appearing as green, which makes step 
15, as shown in purple, a concurrent procedural step indicating that step 15 is not yet 
completed. The EAs are derived from the places in the model having a green, blue, 
or purple token; in other words, the current-appropriate, continuous, and concurrent 
states are treated as those to be conducted. 

Fig. 7.6 Example of modeling a procedure using CPNs. Reproduced with permission from Ahn 
and Lee (2020)
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7.1.2.3 Applying a DL Algorithm to Complex Decisions 

Potential operator mistakes are determined by comparing the response implemen-
tation task performed by the operator with the response planning predicted by the 
system. As mentioned above, CDs corresponding to Type C are not that simple. Time-
series information collected over a period of time is needed to determine parameter 
trends, but since procedures in certain cases do not provide specific criteria for deter-
mining the parameter trends, the various tasks that correspond to monitoring the 
trends are influenced by the state recognition abilities of the operators. Therefore, 
the required time to discern parameter trends varies from operator to operator. Along 
these lines, when the tendencies of the parameters are unclear or ambiguous, oper-
ator judgment is based not only on the current condition information but also on 
the personal experience and knowledge of the operators. Consequently, applying a 
simple mathematical analysis method to the system to make a judgment in such cases 
is inappropriate. 

Operators conduct NPP operations after extensive education over years of training 
and operating experience, leading to rich empirical knowledge. This fact itself can 
provide a way to apply DL models to the problem of operator judgment prediction in 
complicated situations when implementing rule-based logic is difficult, such as the 
case of forecasting future parameter trends. Judgments by expert operators are likely 
to be credible, even in complicated situations requiring CDs. Therefore, by devel-
oping a prediction model for operator response based on expert operator judgments, 
a specific CD such as one in a monitoring situation can be considered accurate or in 
error by comparison with the prediction model. To realize such a model for operator 
judgment prediction, the model training requires a large amount of appropriate data 
on how real operators make decisions in particular situations. In this case, an appro-
priate labeling of the situations is necessary because the decisions stem from human 
judgment. A DL algorithm sufficiently trained with wide data for various situations 
can make it possible to predict the decisions made by operators in certain situations. 

The overall development process of the model is shown in Fig. 7.7. First, training 
datasets are constructed from randomly generated simulator data showing various 
parameter trends, such as RCS temperature as shown in Fig. 7.7, and the data is 
labeled as increasing, maintaining, or decreasing based on operator decisions about 
the trends. For this, a process called virtual operator labeling is employed, and the 
training data represent the sum of the results of the Monte Carlo method and the 
responses to student surveys. The labeled data with varying ratios of answers are 
then used for DL model training and testing. Following successful training, the so-
called CD model is able to predict how operators will judge parameter trends. This 
prediction is then used in the PCC module.

7.1.2.4 Complete CD Model 

Figure 7.8 depicts the overall architecture of the CD model having a total of eight 
hidden layers. The first three layers are densely-connected neural network layers
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Fig. 7.7 Complex decision (CD) model training. Reproduced with permission from Ahn and Lee 
(2020)

Fig. 7.8 Architecture of the CD model network. Reproduced with permission from Ahn and Lee 
(2020) 

with 64, 32, and 16 neurons, respectively. These are followed by an activation layer 
with the LeakyReLU (α = 0.05) function for data nonlinearity and complexity. The 
next three layers also have a dense structure with 8, 40, and 20 neurons, respectively, 
and the last layer applies softmax activation to produce output in a probabilistic 
form. A total of 15,000 sets of time-series data are used in the input layer, which 
are split into 80% for training and 20% for testing (i.e., 12,000 and 3000 datasets, 
respectively). Each dataset contains an RCS temperature history for 60 s with trends 
labeled via virtual operator labeling for a random monitoring time. The results of the 
model testing show an 87% accuracy of the model in predicting the correct operator 
decisions about the trends. 

The DL model is built using Python (version: 3.6) with Tensorflow and keras 
utilities and then compiled with the RMSprop optimizer with a categorical cross-
entropy loss function with metrics of accuracy. Table 7.3 shows the test results in heat 
map form. The left columns represent the correct answer, or operator judgment, and
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Table 7.3 Sample heat map for the test results 

Data set (L) increase (L) maintain (L) decrease (P) increase (P) maintain (P) decrease 
12446 0.107143 0.22619 0.666667 0.128003 0.192349 0.679649 
2157 0.36 0.16 0.48 0.220626 0.499297 0.280077 
3048 0.111111 0.755556 0.133333 0.236379 0.532313 0.231308 
5924 0.772727 0.204545 0.022727 0.681033 0.228782 0.090185 
11627 0.035714 0.142857 0.821429 0.114551 0.119245 0.766203 
14150 0.245614 0.192982 0.561404 0.153697 0.50229 0.344013 
1677 0.157895 0.684211 0.157895 0.219022 0.513831 0.267147 
9281 0.585366 0.219512 0.195122 0.442196 0.427004 0.1308 
6541 0.65 0.125 0.225 0.60612 0.273949 0.119931 
12123 0.043956 0.120879 0.835165 0.11594 0.144021 0.74004 
4215 0.1 0.833333 0.066667 0.230494 0.528783 0.240723 
14729 0.157143 0.042857 0.8 0.085654 0.125699 0.788647 
9295 0.318182 0.136364 0.545455 0.241787 0.490792 0.267421 
12855 0.155556 0.177778 0.666667 0.129679 0.151835 0.718486 
9483 0.734694 0.081633 0.183673 0.528889 0.370692 0.10042 
11056 0.3125 0.5 0.1875 0.244844 0.475878 0.279278 
. 14333 0.268657 0.014925 0.716418 0.108961 0.097167 0.793872 

The green columns are the labeled results, (L) operator answer, and the red columns are the prediction 
results, (P) model output. Reproduced with permission from (Ahn and Lee 2020) 

the right columns represent the CD model prediction. The table reflects a similar heat 
map pattern on both sides, implying that the CD model predicts operator judgments 
with good accuracy. As complex operator decisions involve considerations of the 
various relationships among related parameters, the CD model is better suited to 
predicting complicated situations than rule-based models. 

7.1.3 Step 2 Filtering: COSIE Module 

In the case that an operator conducts an action that does not comply with the proce-
dure, conveying warnings or alerts that the operator must respond to would take 
up cognitive resources. Considering the potential burden of additional tasks during 
emergency operation, it is clear that any additional task such as responding to an alarm 
or alert must be related to eliminating potential safety threats. Accordingly, alerts 
should only be provided to operators when their action results in a potential threat 
to safety. As the second filter of the CIA system, the COSIE (comparison of safety 
impact evaluation) module works by evaluating the actions that might adversely 
affect the plant integrity. Figure 7.9 shows a general schematic of this module. Since 
the integrity of an NPP is maintained through its CSFs, the parameters related to the
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CSFs are monitored and predicted by a predictor function in the COSIE module to 
determine their impact on safety. Table 7.4 lists some example parameters related 
to the CSFs of the reference plant, a Westinghouse 3-loop 990 MWe PWR from 
Westinghouse Owners Group (WOG). 

The COSIE module includes a prediction function for future safety parameter 
changes according to action/no action in the current state of the plant, based on 
the work presented in a preceding chapter of this book. The prediction function 
is implemented with an AI algorithm, where the plant state prediction model is 
built using layered LSTMs. Details and comparative results with other prediction 
strategies and inference models can be found in Chap. 5. As part of the CIA system 
discussed here, the result of the prediction function is scored through the safety 
impact evaluator. 

As depicted in the schematic in Fig. 7.9, the safety impact evaluator in the COSIE 
module produces CSF integrity judgment scores based on reference values from CSF 
status trees. An example of this scoring process is shown in Fig. 7.10. The COSIE 
module is actuated by the PCC module (see Fig. 7.2) and provided with the EA 
and RA information. The DL algorithm-based predictor predicts the plant state for 
10 min in the future from inputs of the current plant state and the combination of 
safety variables with an action set. The action set contains the single or multiple 
actions dictated by the procedure, EAs, or those actually performed by the operators, 
RAs. The result of the prediction is given as a number that reflects the value of each 
safety variable, for example the value of RCS pressure after 10 min. The prediction 
process is separately performed for the EAs and RAs, i.e., for action sets assuming full 
procedural compliance and for the action sets actually performed that may contain 
procedural non-compliance. The CSF integrity scores are then calculated for each 
result and compared to check whether the non-compliance is an error. Equation (7.1) 
shows the CSF integrity score calculation, which adds up the scores of the individual 
CSFs. According to the criteria provided by the CSF status trees, CSF scores of 0,

Fig. 7.9 Comparison of safety impact evaluation (COSIE) module system framework. Reproduced 
with permission from Ahn et al. (2022)
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Table 7.4 Critical safety functions and related parameters of the reference system 

# Name Related parameters Units 

1 Subcriticality Power range percent power 
Intermediate range detector start-up rate 
Intermediate range neutron level 
Source range detector start-up rate 

% 
DPM 
A 
DPM 

2 Core cooling Core outlet temp 
RCS hot-leg temp. (#1–3) 
RCS pressure 

°C 
°C 
kg/cm2 

3 Heat sink S/G narrow range level (#1–3) 
Feedwater flow (#1–3) 
S/G pressure (#1–3) 

% 
m3/hr 
kg/cm2 

4 RCS integrity RCS cold-leg temp. (#1–3) 
RCS pressure 

°C 
kg/cm2 

5 Containment integrity Containment pressure 
Containment sump water level 
Containment radiation level 

kg/cm2 

M 
mRem/hr 

6 RCS inventory Pressurizer (PZR) level % 

Reproduced with permission from Ahn et al. (2022)

1, 2, and 3 respectively represent the normal state, departure, violation, and heavy 
violation (Fig. 7.10). The lower the Stotal score, then, the higher the integrity. If 
Stotal,RA > Stotal,EA, or in other words if the total score of the action set actually 
performed by the operator is high, then the consequent challenge to the CSFs is 
predicted via comparison to the score from complying with the procedure. In such 
a case, the CIA system flags the action set as a human error and provides a warning 
to the operator. 

Stotal =
Σ

i 

Si (7.1) 

Si = 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 
1 

2 
3 

normalstatus 
departure 

violation 
heavyviolation 

· · ·  
· · ·  

· · ·  
· · ·  

green 
yellow 

orange 
red 

(7.2)
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Fig. 7.10 Example of a CSF 
status tree for containment 
integrity. Reproduced with 
permission from Ahn et al. 
(2022) 

7.1.4 CIA System Prototype 

7.1.4.1 CIA System Overall Description 

A prototype of the CIA system is developed with the use of a CNS along with the 
development of a computerized procedure for the CNS to collect information on 
the progress of EOPs. Simulations are conducted through the CNS interface and the 
computerized procedure system interface, and the progress of the CPS along with the 
plant parameters are sent to database storage in shared memory. The CNS operates 
on Linux CentOS 7 and transmits information between systems through the user 
datagram protocol. 

Figure 7.11 shows a flowchart of the CIA system process. The PCC and COSIE 
modules, making up the core of the system, act by monitoring the plant parameters 
and the progress of the given procedure via the CNS database. The PCC module 
actuates each time an operator performs an operation or a procedure step changes. If 
the PCC module judges any action to be non-compliant or unclear, the COSIE module 
first predicts and evaluates the future CSF trends and then determines whether the 
action is a potential threat or not. If judged as a potential threat, the action is treated 
as a human error and a warning with related information is given to the operator. If 
the action is judged as proper or as one that poses no potential threat, no notification 
is sent to the operator.
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Fig. 7.11 Overall process of 
operating action validation 
with the CIA system. 
Reproduced with permission 
from Ahn et al. (2022) 

7.1.4.2 CIA System User Interface 

As mentioned above, the CIA system remains hidden unless a human error is detected. 
Therefore, the CIA user interface has only one purpose, which is to provide warnings 
and relevant information to the operator upon the occurrence of a human error. The 
layout of the interface is shown in Fig. 7.12. The provided information highlights the 
particular action that did not comply with the procedure as well as the specific contents 
of the procedure being performed at the time of the human error. The interface also 
conveys visual information on the particular safety function that was evaluated to 
be impaired. Clicking the CSF button reveals the prediction result of the related 
safety variable. Based on this provided information, the operator can recognize the 
occurrence of the error and decide whether to perform appropriate recovery measures 
according to the predicted results. It should be noted here that the CIA system does 
not override the operator; rather, it merely provides information, and thus for all 
operational actions, operators are maintained as the final decision-makers.
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Fig. 7.12 Human error warning interface of the CIA system. Reproduced with permission from 
Ahn et al. (2022) 

7.1.5 Case Study 

7.1.5.1 Test Scenario Descriptions 

In a case study to verify the CIA system operation, three scenarios are prepared for 
evaluation. The first reflects an operator action that complies with the procedure; 
the second reflects an operator action that does not comply with the procedure but 
the integrity of the CSFs remains intact; and the third reflects an operator action that 
does not comply with the procedure and is expected to harm the CSFs. The operating 
paths of the CIA system for these scenarios are illustrated in Fig. 7.13.

7.1.5.2 Test Result for Scenario #1: Procedural Compliance 

In the first test scenario, the operational action complies with the procedure and thus 
the PCC module should not judge it as a human error. The scenario simulates Step 
19.0 of the E-0 procedure of the reference plant. Table 7.5 lists the instructions for 
this step.

This step instructs the operator to check the conditions for stopping the RCPs 
and to stop all RCPs if necessary. In a LOCA with a fracture size of 50 cm2, the  
corresponding stage is entered within 465 s following the accident, at which point at 
least one charge pump is operating and the RCS pressure falls below the condition
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Fig. 7.13 CIA operating paths for the three test scenarios. Reproduced with permission from Ahn 
et al. (2022)

Table 7.5 Instructions in E-0 procedure step 19 

Response Response not obtained 

19.0 Check if RCP should be stopped 
19.1 Charging pump status: at least 1 pump is operating 
19.2 RCS pressure < 97 kg/cm2 

(RCS Pressure < 104 kg/cm2, if containment is in abnormal state) 
19.3 Stop all RCPs 

Go to step 20.0 
Go to step 20.0 

Reproduced with permission from Ahn et al. (2022)

to stop the RCPs. Following step 19.3, the operator must stop all the RCPs and then 
press the ‘complete’ button on the computerized procedure system. In this case, the 
PCC module should judge the measure to be proper as it followed the procedure. 
The test result of the first scenario is shown in Fig. 7.14. As seen in the result, the 
PCC module confirms that the operator’s action complied with the procedure. Then 
based on the system design, the COSIE module is not actuated, and the whole CIA 
system remains concealed and gives no notification to the operator.

7.1.5.3 Test Result for Scenario #2: Procedural Non-Compliance, CSFs 
Not Challenged 

In the second test scenario, an operator non-compliance that does not affect the 
integrity of the CSFs is simulated. Here, Step 15 of the E-0 procedure is considered; 
Table 7.6 lists the corresponding contents. After the occurrence of a single-tube
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Fig. 7.14 Test result of the PCC module for scenario #1. Reproduced with permission from Ahn 
et al. (2022)

SGTR, E-0 step 15 is reached within 210 s in the simulation, at which point the 
operator arbitrarily isolated the SG based on the assumption that it was an SGTR 
accident. Normally, SG containment measures are performed only after entering 
Category 3 procedures, but in this case the operator performed the measure before 
reaching the proper stage. 

Step 15 of the E-0 procedure is to check the arrangement of the valves related to 
the auxiliary water supply and take action as necessary. This step is independent of 
the one to isolate the faulty SG. But following the occurrence of an SGTR accident, 
the secondary radiation level increases and the PZR pressure changes after some 
amount of time, and through these tendencies the occurrence of an SGTR accident 
can be inferred before the accident diagnosis stage. An operator prematurely taking 
the action to arbitrarily close the main steam isolation valve in this situation is a 
violation of the procedure; however, as concerns the CIA system, the action has no 
negative effect on the integrity of the CSFs, and thus the COSIE module should not 
flag the action as an error and not warn the operator in this test scenario.

Table 7.6 Instructions in E-0 
procedure step 15 

Response Response not obtained 

15.0 Check the aux. feedwater 
valves alignments: 
15.1 Aux. feedwater flow 
control valves: open 
– HV-313, HV-314, HV-315 
15.2 CST–Aux. feedwater 
pump supply valves: open 
– HV-302 

Manually align the valves as 
needed 

Reproduced with permission from Ahn et al. (2022) 
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The test result of the second scenario is shown in Fig. 7.15. The first filter finds 
that the action performed by the operator was a procedural non-compliance, but 
the second filter finds that the action did not negatively affect the related safety 
function. By prematurely closing the main steam isolation valve of the abnormal 
SG, the pressure of SG #2 is predicted to decrease slightly, but the safety function 
integrity score from the CSF tree standard does not change because the decrease is 
small. Therefore, even though the COSIE module is actuated in this case, the operator 
continues to perform their tasks as normal without interruption from the CIA system. 

Fig. 7.15 Test results of the PCC and COSIE functions for scenario #2. Reproduced with permission 
from Ahn et al. (2022) 

7.1.5.4 Test Result for Scenario #3: Procedural Non-compliance, CSFs 
Challenged 

If an operator action does not comply with the procedure and degrades the CSFs, 
the CIA system should flag the action as an error and provide a warning along with 
related information to the operator. The third test scenario simulates this situation 
with step 18 of the E-0 procedure entered after an accident has occurred. Table 7.7 
lists the instructions in this procedure.

Step 18 of the E-0 procedure is to check the valve arrangement of the PZR and 
to shut off the PORV. In the simulated test scenario, the PORV block valve should 
be opened and the PORV should be closed, but the operator mistakenly opened the 
PORV instead of the PORV block valve. This is clearly both a clear procedural non-
compliance as well as human error because opening the PORV in a condition where
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Table 7.7 Instructions in E-0 procedure step 18 

Response Response not obtained 

18.0 Check PZR valves alignment: 
18.1 PORV: close 
– PV-445 
18.2 PORV block valve: open 
– HV-6  

18.1 If PZR P < 164.2 kg/cm2, close PORV manually. If the 
PORV cannot be closed, close the PORV block valve 
instead 
18.2 Open the closed valve 

Reproduced with permission from Ahn et al. (2022)

the PZR pressure is not high will negatively affect the CSFs. The simulation results 
in Fig. 7.16 for the third test scenario show that the CIA system flags the action as a 
human error and displays a warning in a window with relevant information, as shown 
in Fig. 7.17. As part of the warning, the CIA interface provides the instructions in 
the violated step of the procedure, the action that caused the violation, and the CSF 
impact assessment results. In the simulated scenario, the system predicts that the 
integrity of the RCS will degrade and provides the related information as visualized 
in yellow. Moreover, in the interface, the corresponding CSF is implemented as a 
clickable button that displays the prediction results in a pop-up window. This way, 
the operator can see that accidentally opening the PORV will lead to an inappropriate 
rise in the water level of the PZR, which will challenge the RCS integrity. 

The test scenarios demonstrate that the CIA system only interacts with operators 
when an action is expected to negatively affect the safety functions of the plant. When 
met with a CIA warning, operators have the chance to reconsider the appropriateness 
of the action they performed and to recover it if necessary. In dynamic situations such 
as NPP emergency operation, potential threats from a human error will increase over 
time if not addressed quickly, meaning that the burden to recover the error will

Fig. 7.16 Test results of the PCC and COSIE modules for scenario #3. Reproduced with permission 
from Ahn et al. (2022)
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Fig. 7.17 CIA interface warning screen with operator error alarm in scenario #3. Reproduced with 
permission from Ahn et al. (2022)

also increase with time. In this light, the CIA system can contribute to reducing the 
potential workload required for human error recovery in an emergency. 

7.1.6 Summary and Scalability of the Operation Validation 
System 

In an NPP emergency situation, operators carry out their duties by strictly following 
EOPs that instruct the measures to take to secure the safety of the plant. Situations like 
this with great psychological burden are accompanied by a relatively high potential 
for human error. In particular, NPP emergency situations require both rapid and accu-
rate responses from operators with the knowledge that even a minor mistake can lead 
to a major accident involving core damage. Therefore, detecting an error as quickly 
as possible and taking appropriate recovery measures is essential, but considering the 
unfamiliar environment of an actual emergency situation, the possibility exists that 
an error may not be recognized in a timely manner. In such a situation, the developed 
CIA system, as a type of operator support system, can greatly reduce the cogni-
tive burden of operators in emergency situations and provide an opportunity for the 
optimal recovery of the error. It achieves this by immediately informing the operator 
of the occurrence of an error and presenting a basis for their subsequent judgment. 
Another advantage is that the CIA system remains concealed in the absence of human 
error and is thus free from many automation-related issues. In other words, the CIA 
system is designed to not degrade the skill, situational awareness, or authority of 
operators. 

Providing various forms of additional information to NPP operators in critical 
situations can create compounding cognitive burden and thus detrimental effects. 
Accordingly, prior to introducing a new system, an appropriate balance should be 
achieved in terms of its overall impact on safety. The CIA system is designed to
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minimize increases in the cognitive burden of operators by providing additional 
information only when an error is expected to negatively affect plant safety; but the 
extent to which the developed system can actually reduce operator cognitive load 
remains to be evaluated. Another point of consideration is the use of the CIA system 
in the course of regular or irregular operator training sessions. The opportunity to 
gather and analyze information from the operation logs on the particular actions that 
involve frequent operator errors would be valuable in terms of discerning whether 
the cause of frequent human errors is rooted in safety culture, such as the operators’ 
mindset, or from other human factors. Such insight could contribute to strengthening 
the safety culture of NPPs and related organizations, thereby helping to prevent 
serious accidents and achieve higher levels of nuclear safety. 

7.2 Technical Specification Monitoring System 

The monitoring of NPP operations in compliance with the plant technical specifi-
cation (Tech Spec) represents an essential yet demanding task for operators. Chal-
lenges stem from the large volume of the document, complexity of the contents, high 
workload in handling the document, diversity of possible interpretations, and time 
dependence of the related activities. 

To address these difficulties, numerous operator support systems have been 
designed to assist operators in the performance of their Tech-Spec-related activi-
ties. But despite the good capabilities of the developed systems, a significant poten-
tial for improvement still exists. First, many previous systems (Ragheb et al. 1988; 
Lidsky et al. 1988; Paiva and Schirru 2015) mainly utilized rule-based techniques 
to implement LCO monitoring in a Tech Spec. However, rule-based approaches are 
not typically an efficient means for monitoring all LCOs. Second, several previous 
studies (Lidsky et al. 1988; Ragheb et al. 1988; Paiva and Schirru 2015) did not 
include all the functions necessary for operators to successfully apply a Tech Spec. 
More specifically, while these approaches were able to focus on monitoring different 
types of parameters and determining the LCOs, the application of a Tech Spec 
requires numerous additional activities such as examining the operability of instru-
ments, conducting follow-up actions, and confirming that the follow-up actions are 
completed, in addition to the parameter monitoring and LCO determination activities. 

As complements or alternatives to rule-based systems, recent AI techniques open 
the door to strengthening the performance of systems by way of more powerful 
diagnosis associated with human intelligence-related activities. In comparison to the 
low-level ML techniques and expert systems produced in the early stages, current AI 
techniques exhibit substantial improvements in solving problems in various areas. 
In the nuclear industry, as discussed throughout this book AI techniques have great 
potential for operator support, especially for error-prone tasks and those that follow 
complex procedures or require skilled expert knowledge. 

This section presents the concept of a Tech Spec monitoring system (TSMS) 
using modern AI techniques. The design process starts by analyzing the Tech Spec
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of an NPP and identifying the high-level design requirements for the system. Then 
based on these design requirements, the specific functions of the TSMS are defined. 
Following a review of available AI, the most suitable AI techniques are selected for 
each system function, after which the TSMS functions are implemented applying 
the selected techniques. As a demonstration, a TSMS prototype is developed using 
a CNS of a Westinghouse 990 MWe three-loop PWR and tested. 

7.2.1 Identification of Functional Requirements 

The first step in the development of the TSMS is a task analysis to grasp the operator 
tasks that are detailed in a Tech Spec in order to determine the functional requirements 
of the system. For this, the standard Tech Spec for Westinghouse-type plants provided 
in (NRC 2012) is examined. Based on the task analysis, the high-level functional 
requirements of the TSMS can be recognized. 

7.2.1.1 Structure of Tech Spec 

Figure 7.18 depicts an example of the organization of the Tech Spec for 
Westinghouse-type plants (NRC 2012). The document largely covers the following 
four content areas: LCOs, applicability, actions, and surveillance requirements (SRs). 
Brief explanations of these parts are given below. 

LCOs represent the minimum requirements for ensuring safe plant operation. 
Applicability represents the specified conditions or modes under which the LCOs 
should be assured. The different operation modes of the reference plant are listed in 
Table 7.8 along with some related parameters. Actions refer to the tasks that must 
be performed under certain conditions when an LCO is not assured. Lastly, SRs are

Fig. 7.18 Example of standard Tech Spec for Westinghouse-type plants. Reproduced with 
permission from Lee and Kim (2022) 
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Table 7.8 Plant modes of a Westinghouse-type plant 

Mode Title Reactivity condition 
(keff ) 

% Rated thermal 
power 

Average reactor 
coolant temperature 
(°C) 

1 Power operation ≥ 0.99 > 5 – 

2 Startup ≥0.99 ≤ 5 – 

3 Hot standby <0.99 – ≥177° C 

4 Hot shutdown <0.99 – 94 ≤ Tavg < 177° C 

5 Cold shutdown <0.99 – ≤94° C 

6 Refueling – – – 

Reproduced with permission from Lee and Kim (2022) 

the requisite activities related to testing, calibration, and inspection to satisfy that 
the quality and reliability of the structures, systems, and components of the plant are 
preserved. 

In the example in Fig. 7.18, the LCO is the average temperature Tavg of all the 
RCS loops, which needs to be maintained above 283 °C (541 °F). This LCO applies 
to Modes 1 and 2 with keff ≥ 1.0. If the LCO is not met, the operators should conduct 
the required actions to enter Mode 2 with keff < 1.0 within a period of 30 min. 

7.2.1.2 Types of Monitored Variables 

The different types of monitored variables need to be distinguished as the most 
suitable AI method to be used may differ depending on the monitoring type. From 
the task analysis of the Tech Spec, six types of variables are defined: parameters, 
calculated parameters, graph-related parameters, system and component statuses, 
condition of instrumentation, and operator inputs. Table 7.9 lists the different types 
of variables with examples.

7.2.1.3 Identification of High-Level Functional Requirements 
for the TSMS 

As mentioned above, the task analysis involves reviewing the tasks related to applying 
a Tech Spec and using the results to define the high-level functional requirements 
for the TSMS. As implied by Fig. 7.19, it is essential for the TSMS to first define 
the current operation mode because it determines the particular LCO application. 
In normal operation, operators continuously monitor the plant variables based on 
the SRs. But in the event that the plant state does not fulfill any LCO, follow-up 
actions should be identified, executed, and completed within the designated time. If 
the follow-up actions cannot be finished within the available time, then the operators 
need to conduct other follow-up actions or apply other LCOs.
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Table 7.9 Types of monitored variables and examples 

Monitored Type Examples in Tech Spec 

Parameters Verify PZR pressure is greater than or equal to the limit 

Calculated parameters Verify the shutdown margin to be within limits 

Graph-related parameters Verify that RCS pressure, RCS temperature, and RCS heat up 
and cool down rates are within the P–T limit curve 

System and component statuses Verify that, for each emergency core cooling system throttle 
valve listed below, each position stops at the correct position 

Condition of instrumentation Perform a channel check for instrumentation 

Operator inputs Perform visual inspection of exposed interior and exterior 
surfaces of shield building 

Reproduced with permission from Lee and Kim (2022)

Fig. 7.19 Operator tasks in the Tech Spec and corresponding high-level functional requirements 
of the TSMS. Reproduced with permission from Lee and Kim (2022) 

The task analysis results are used to determine the high-level requirements for 
the TSMS to support operators in Tech Spec applications, as listed here and as also 
depicted in Fig. 7.19. 

• R1: The TSMS should continuously monitor the following plant variables: 

– R1.1: Parameters 
– R1.2: System and component statuses
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– R1.3: Calculated parameters 
– R1.4: Graph-related parameters 
– R1.5: Condition of instrumentation 
– R1.6: Operator inputs 

• R2: The TSMS should determine the current operation mode of the plant. 
• R3: The TSMS should identify the violated LCO(s) and provide LCO-related 

alarms upon the violation of any LCO. 
• R4: The TSMS should propose follow-up actions and the required completion 

time. 
• R5: The TSMS should monitor and inform whether a follow-up action is 

completed within the required completion time. 

7.2.2 Conceptual Design of the TSMS 

Figure 7.20 illustrates the overall TSMS architecture. The system comprises six sub-
functions: operation mode monitoring, parameter calculation, graph-related param-
eter monitoring, instrumentation monitoring, LCO monitoring, and follow-up action 
monitoring. Table 7.10 provides a description of each function along with their input, 
output, and implementation method. Further descriptions of the TSMS functions are 
given in the following subsections. 

Fig. 7.20 Architecture of the TSMS. Reproduced with permission from Lee and Kim (2022)
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7.2.2.1 Operation Mode Monitoring Function 

The operation mode monitoring function continuously classifies the current operation 
mode of the plant into one of the six modes listed in Table 7.8. As shown above 
in Fig. 7.18, the operation mode corresponds to the applicability area of the Tech 
Spec. Three parameters are regarded as the inputs of this function: reactivity, percent 
thermal power, and RCS Tavg , as in Table 7.8. 

A rule-based system is applied for this function because clear determination rules 
exist for the different operation modes. The decision rules in Table 7.8 are converted 
to if–then rules in the TSMS. For example, for a reactivity condition of greater than 
or equal to 0.99 and a rated percent thermal power of greater than or equal to 5%, 
the operation mode is classified as Mode 1, power operation. 

7.2.2.2 Parameter Calculation Function 

The parameter calculation function generates parameters that require complicated 
calculations using specific formulas. The Tech Spec instructs operators to manually 
compute certain parameters to be monitored, at times referring to figures showing 
trends and tables expressing plant parameters. As the calculations may entail compli-
cated steps, this process may become long and time-consuming. Examples of param-
eters that require calculation are the shutdown margin (SDM), RCS operational 
leakage, and boron concentration, among others. For the parameter calculation func-
tion of the TSMS, calculation algorithms are developed that apply a specific formula 
to each parameter and, when necessary, also provide data tables and figures from the 
Tech Spec and other related documents. 

7.2.2.3 Graph-Related Parameter Monitoring Function 

The objective of the graph-related parameter monitoring function is to classify 
different regions of parameter graphs when the LCOs require the use of graphs. 
Here, different graph regions indicate the current plant condition. For monitoring 
certain LCOs, operators must use a graph and ensure that the current state is in the 
desired area of the graph. Examples of this type of monitoring include the P–T limit 
curve and the departure of nucleate boiling ratio. Figure 7.21 shows an example of 
a simplified P–T curve. Parameters falling into any of the unacceptable areas means 
that the RCS is being operated under conditions that can result in brittle failure, 
which has the potential to lead to a LOCA. Based on such graphs, operators must 
ensure that the current RCS pressure and temperature are in the acceptable area.
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Fig. 7.21 Example 
pressure–temperature (P–T) 
limit curve. Reproduced with 
permission from Lee and 
Kim (2022) 

An SVM was chosen as the method of implementation for the graph-related 
parameter monitoring function of the TSMS. Generally, SVMs provide good perfor-
mance in sorting data into two categories with a limited number of attributes. Accord-
ingly, the SVM is considered appropriate for this function as graph-related param-
eter monitoring generally distinguishes two regions—desired and undesired, for 
example—based on two or three characteristics. 

7.2.2.4 Instrumentation Monitoring Function 

The purpose of the instrumentation monitoring function is to test the process sensors 
of the instrumentation. The monitoring of some LCOs requires operators to test the 
instruments used in the safety-related systems such as the RPS, engineered safety 
feature actuation system, and control element assembly calculators. The tests are 
to verify that the main components of the instrumentation are in a healthy state 
to perform their function. An example can be seen in LCO 3.3.1 in the standard 
Tech Spec for a Westinghouse-type plant (NRC 2012), which dictates that the RPS 
instrumentation must be operable. In terms of components, the RPS instrumentation 
is made up of process sensors, bistables, logic matrices, and reactor trip switch gear. 
Testing of these components in actual NPPs is conducted by operators in the case of 
the process sensors, while on the other hand by software in the case of the bistables, 
logic matrices, and reactor trip switch gear (Lee et al. 2008). 

As the implementation method for this function, an autoencoder is applied. As 
mentioned previously, neural network methods such as autoencoders provide good
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performance in processing large data and nonlinear data relationships. Furthermore, 
autoencoder models are well known for effectively reconstructing input values by 
adopting the same structure for the input and output layers. This makes an autoen-
coder a suitable approach for the instrumentation monitoring function as the sensor 
reconstruction model should estimate the normal behavior of the sensors. 

7.2.2.5 LCO Monitoring Function 

The LCO monitoring function determines if the plant status complies with the various 
LCOs dictated by the Tech Spec. In order to define the current plant status, this 
function tracks the six types of monitored variables (Table 7.9) and compares them 
with the relevant LCOs. As plant data, the six types of monitored variables are 
transmitted from the NPP, operators, and other TSMS functions (e.g., the operation 
mode monitoring, parameter calculation, graph-related parameter monitoring, and 
instrumentation monitoring functions). The moment any LCO is violated, the LCO 
monitoring function raises an alarm and provides operators with follow-up actions 
to take in order to return the plant to a safe status. The LCO alarms and follow-
up actions are conveyed to operators through the user interface, and the determined 
follow-up actions are also passed to the subsequent function. For implementation, the 
LCO monitoring function applies a rule-based system because in this case, if–then 
rules are able to clearly define the conditions for the decisions. The LCOs for the 
minimum amount of equipment as well as the operating parameters are thoroughly 
detailed in the Tech Spec. 

7.2.2.6 Follow-Up Action Monitoring Function 

The purpose of the follow-up action monitoring function is to confirm that the follow-
up actions previously called for are completed within the appropriate amount of time. 
When the plant status violates any LCO, the Tech Spec generally instructs operators 
to perform a follow-up action or actions to return the plant to a safe status. In this 
case, the operators must confirm the termination time of the follow-up action and 
complete it within the available time. If the follow-up action is not completed in 
the appropriate amount of time or otherwise not properly performed, the operator 
needs to perform an alternative action according to the current plant status. When the 
follow-up action monitoring function receives the LCO alarm and ID of the violated 
LCO, it first identifies the follow-up action(s) to be monitored. Then to confirm the 
completion of the given follow-up action(s), this function tracks the six types of 
monitored variables. If the follow-up action is not completed within the available 
time or otherwise fails, the function raises an alarm and outputs the failed follow-up 
ID and alternate action to the user interface. Then to monitor the completion of the 
alternative follow-up action or actions, follow-up action alarms and IDs are sent in 
turn. Like the LCO monitoring function, the follow-up action monitoring function
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applies a rule-based system since the decision condition (i.e., if) and follow-up action 
(i.e., then) are clearly delineated in the Tech Spec. 

7.2.3 Implementation of the TSMS 

This section details the implementation of the selected AI methods in Sect. 7.2.2 
for the development of each function of the TSMS. For the implementation, a CNS 
developed by KAERI (KAERI 1990) for a Westinghouse 990 MWe three-loop PWR 
reference plant is employed as the testbed. For developing the software, Python 3.7 
is used as the programming language, and for modeling the AI methods, the keras 
and scikit-learn software libraries are used. 

7.2.3.1 Operation Mode Monitoring Function 

As discussed in the previous section, the operation mode monitoring function applies 
a rule-based system and classifies the current operation mode into Modes 1–6. A rule-
based system is a type of AI method composed of three main parts working together: 
a knowledge base, database, and inference engine. As the core of the system, the 
knowledge base contains a set of rules such as ‘if (condition)–then (action)’ to solve 
a particular problem. The database includes a set of facts used to compare the ‘if 
(condition)’ aspect of the rules in the knowledge base. The inference engine provides 
the reasoning by which the rule-based system reaches a solution from the knowledge 
base and database (Jadhav and Channe 2016). 

Figure 7.22 illustrates a flowchart of the rules to determine the operation mode, 
which as stated above can be classified into six types, namely Modes 1–6: power 
operation, startup, hot standby, hot shutdown, cold shutdown, and refueling, respec-
tively. These rules for determination are stored in the knowledge base of the rule-
based system. The relevant plant data, in other words the reactivity (k-value), thermal 
power, and RCS temperature, are used to compare with the ‘if (condition)’ aspect of 
the rules in the knowledge base. From this comparison, the rule-based system deter-
mines the current operation mode via reasoning about the plant data and knowledge 
base.

The bolded path in Fig. 7.22 highlights an example. Here, the plant is in normal 
operation, the k-value is 1.0, the thermal power is 0%, and the reactor coolant temper-
ature is 200 °C. Based on these, the operation mode monitoring function adopting a 
rule-based system determines the plant to be in Mode 3. 

7.2.3.2 Parameter Calculation Function 

The parameter calculation function uses specific calculation algorithms in place of 
manual calculations by operators. One typical calculated parameter is the SDM,
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Fig. 7.22 Rules for operation mode monitoring function. Reproduced with permission from Lee 
and Kim (2022)

which is the instantaneous amount of reactivity to define the sub-criticality of the 
reactor. The complicated manual calculation process for the SDM can be eliminated 
by the parameter calculation function. 

Table 7.11 lists the total 14 input data used for calculating the SDM, and Fig. 7.23 
illustrates the SDM calculation procedure of the function. The steps in this series of 
calculations are as follows. First, the power defect is estimated in the current reactor 
power at the beginning of life (BOL) as in Eq. (7.3). Second, the power defect is 
estimated in the current reactor power at the end of life (EOL) as in Eq. (7.4). Third, 
the power defect is estimated in the current power at the current burnup as in Eq. (7.5). 
The total reactivity defect is then estimated as in Eq. (7.6), after which if there are any 
inoperable or abnormal control rods, the total inoperable and abnormal rod worth is 
calculated using Eq. (7.7). Lastly, the SDM can finally be calculated as in Eq. (7.10).

Figure 7.24 shows an example SDM calculation with the following initial condi-
tions. The reactor is in normal operation with 90% thermal power for 10 min, and 
the current burnup is 4000 MWD/MTU. The reactor trips at 10 min due to a LOCA. 
In order for the parameter calculation function to work, the operators should input 
the current inoperable rod number, i.e., 1 in the example, the abnormal bank name C, 
and abnormal rod number 1. The other input variables are automatically determined 
by the TSMS. The Tech Spec recommends that the lowest limit of the SDM, shown 
as the red line in the plot of Fig. 7.24, should be 1770 pcm in Mode 1 and Mode 2. 
The calculated SDM from the TSMS is plotted as the blue line in the figure, showing 
a calculated SDM of 2568 pcm before the accident followed by an increase in the 
SDM to 4500 pcm after the trip.
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Table 7.11 Inputs for the SDM calculation function 

1 Hot full reactor power 8 Void content 

2 Current reactor power 9 Worst stuck rod worth 

3 Power defect (hot full power, BOL) 10 Inoperable rod number 

4 Power defect (hot full power, EOL) 11 Bank worth 

5 Current burnup 12 Abnormal bank name 

6 BOL burnup 13 Abnormal rod number 

7 EOL burnup 14 Total rod worth 

Reproduced with permission from Lee and Kim (2022) 

Fig. 7.23 Calculation algorithm of the SDM calculation function. Reproduced with permission 
from Lee and Kim (2022)

Power defect (BOL) 

= 
power defect (hot full power, BOL) × current reactor power 

hot full reactor power 
(7.3) 

Power defect (EOL) 

= 
power defect (hot full power, EOL) × current reactor power 

hot full reactor power 
(7.4) 

Power defect = 
(EOL − BOL) × (current burnup − BOL burnup) 

(EOL burnup − BOL burnup)
+ BOL (7.5)
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Total reactivity defect = void content + power defect (7.6) 

Total inoperable and abnormal rod worth 

= inoperable rod worth + abnormal rod worth (7.7) 

Inoperable rod worth = worst stuck rod worth × inoperable rod number (7.8) 

Abnormal rod worth = 
bank worth 

rod number 
× abnormal rod number (7.9) 

Shutdown margin (SDM) = total rod worth 
− Total inoperable and abnormal rod worth − Total reactivity defect (7.10) 

Fig. 7.24 Example SDM 
calculation via parameter 
calculation function. 
Reproduced with permission 
from Lee and Kim (2022)
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7.2.3.3 Graph-Related Parameter Monitoring Function 

The graph-related parameter function adopts an SVM to determine whether the 
graph-related parameters fall within the desired areas of the graph. An SVM can 
divide data into two different classes by identifying a hyperplane; Fig. 7.25 illus-
trates the different elements of the SVM. Support vectors here refer to data points 
located closely to the hyperplane (Berwick 2003), where the hyperplane is a decision 
factor dividing given data into two different classes. The largest distance between 
the hyperplane and the support vectors is known as the maximum margin. For more 
effective classification, the SVM attempts to find the hyperplane with the maximum 
margin. To establish a hyperplane to divide data classes, this method uses a kernel 
function to map the data onto a high-dimensional space, and subsequently deter-
mines the maximum margin hyperplane within that space. Several common kernel 
functions include the linear kernel, polynomial kernel, radial basis function (RBF), 
and sigmoid kernel (Chen et al. 2011). Once set, the hyperplane can be regarded as 
a classifier. 

Figure 7.26 depicts the algorithm for the P–T curve monitoring function applying 
an SVM. Preprocessing of the two inputs, RCS pressure and RCS Tavg , is carried out 
to scale the values for application to the SVM model. For the input preprocessing, 
min–max normalization is utilized in this case. The minimum and maximum of 
each value are defined from the inputs. Then following the min–max normalization 
method, the input values are rescaled to the range of 0 to 1 using Eq. (7.11). 

Xnor = (X − Xmin) 
(Xmax − Xmin) 

(7.11)

The SVM model classifies the P–T curve as 1 or 0 representing the desired region 
and undesired region, respectively. To classify these P–T curve regions, the SVM 
model is pre-trained to generate different outputs from the two different classes based 
on the input values, i.e., RCS pressure and RCS Tavg . The initially prepared training 
dataset thus contains RCS pressure and RCS Tavg values, which are projected on 
the P–T limit curve. The regions are labeled by checking whether each data point 
representing the current RCS pressure and RCS Tavg is in the desired region or 
in the undesired region in the P–T limit curve. Then the datasets are divided into

Fig. 7.25 Support vectors, 
hyperplane, and maximum 
margin. Reproduced with 
permission from Lee and 
Kim (2022) 
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Fig. 7.26 Algorithm of the 
P–T curve monitoring 
function using SVM. 
Reproduced with permission 
from Lee and Kim (2022)
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training and testing datasets. The training dataset contains the RCS pressure, RCS 
Tavg , and P–T curve region with 300 samples. During training, the SVM aims to 
find the optimal hyperplane dividing the data into two different classes, or in other 
words, desired and undesired regions on the P–T curve in the present case. To do so, 
the kernel function maps the data into a higher-dimensional space. Table 7.12 lists 
different model classification accuracies according to different kernel functions. For 
the P–T curve monitoring function of the TSMS, the RBF is selected as the kernel 
function as it shows the highest accuracy at 93.5%. With the RBF kernel function, the 
performance of the SVM depends on fine-tuning the C and gamma parameters that 
are hypermeters in SVM to control error. Table 7.13 shows the results of determining 
the optimal parameters. As a result, (C, gamma)= (100, 100) is selected as it achieved 
the highest performance, namely 100%. 

Following successful training, the algorithm is then tested using the test dataset, 
which contains the RCS pressure, RCS Tavg , and P–T curve region with 100 samples. 
Test results confirm that the regions of the P–T curve can be classified at an accuracy 
of 99%. Figure 7.27 shows an example of the P–T curve monitoring function in 
case of a LOCA. In this event, the RCS pressure and temperature decrease sharply 
over time. Accordingly, through the interface, the P–T curve monitoring function 
indicates that the plant status moves into the undesired region at about 1000 s.

Table 7.12 Classification accuracy of the SVM model with different kernel functions 

Kernel function Classification accuracy 

Linear kernel 0.634 

Polynomial kernel 0.814 

Radial basis function (RBF) 0.935 

Sigmoid kernel 0.401 

Reproduced with permission from Lee and Kim (2022)
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Table 7.13 Classification accuracy of the SVM model with the RBF kernel function for different 
settings of C and gamma 

Gamma/C 0.001 0.01 0.1 1 10 100 

0.001 0.52 0.52 0.52 0.52 0.52 0.58 

0.01 0.52 0.52 0.52 0.52 0.58 0.59 

0.1 0.52 0.52 0.52 0.58 0.63 0.83 

1 0.52 0.52 0.60 0.82 0.92 0.94 

10 0.52 0.52 0.90 0.94 0.98 0.99 

100 0.52 0.52 0.96 0.99 0.99 1.00 

Reproduced with permission from Lee and Kim (2022)

Fig. 7.27 Example result of 
the P–T curve monitoring 
function. Reproduced with 
permission from Lee and 
Kim (2022) 

7.2.3.4 Instrumentation Monitoring Function 

The instrumentation monitoring function adopts an autoencoder; Fig. 7.28 illustrates 
the general form of this type of neural network model. As can be seen in the figure, the 
autoencoder has the same number of inputs and outputs with encoder and decoder 
functions. For input x, the encoder transforms corrupted input data x̃ to a hidden 
representation, h, as described in Eq. (7.12), where f (·) is a nonlinear activation
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Fig. 7.28 Structure of an 
autoencoder. Reproduced 
with permission from Lee 
and Kim (2022) 
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function such as sigmoid. The sigmoid function f (z)= 1 
1+exp(−z) is commonly applied. 

For the other terms, W1 ∈ Rd×m is the weight matrix and b ∈ Rd is the bias vector 
to be optimized in the encoding function with d nodes in the hidden layer. 

H = f(W1x̃ + b) (7.12) 

With parameters W2 ∈ Rm×d and c ∈ Rm, the decoder subsequently attempts to 
map the hidden representation to the reconstructed vector x

Λ

in the output layer using 
a nonlinear transformation, as in Eq. (7.13). 

x
Λ = g(W2h + c) (7.13) 

For an input training set of {xi}n i=1, the reconstruction error can be computed viaΣn 
i=1

||||xi − x̂2 i
||||. The training objective of the autoencoder is to determine the 

optimal parameter θ = {W1, b, c} of the encoder and decoder by minimizing the 
reconstruction error, as defined in Eq. (7.14) (Shaheryar et al. 2016). 

min 
θ 

nΣ

i=1

||||xi − x̂2 i
|||| (7.14) 

Figure 7.29 illustrates the RPS instrumentation monitoring function with the 
autoencoder. In this example, the sensor variables are RCS loop #1, 2, 3 Tavg , PZR  
pressure, feedwater line #1, 2, 3 flow, and SG loop #1, 2, 3 level, which are the RPS 
process sensors. Input preprocessing is first performed to normalize the sensor data, 
specifically with the min–max normalization method to properly scale the sensor 
data for the input layer of the autoencoder model. The minimum and maximum of 
each variable are determined from the sensor data, and then each is rescaled to the 
range of 0 to 1 following Eq. (7.11), similar to the previous section.

When normalized sensor data is used as inputs, the signal reconstruction process 
with an autoencoder produces outputs of reconstructed sensor data. For sensor 
data reconstruction, the autoencoder model is pre-trained with a training dataset
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Fig. 7.29 Algorithm of the RPS instrumentation monitoring function with an autoencoder. 
Reproduced with permission from Lee and Kim (2022)

comprising 3354 data samples of selected sensor data. The autoencoder model has 
five layers, namely an input layer, two encoder layers, and two decoder layers, as 
shown in Fig. 7.28. The objective of training for this model is to minimize the 
difference between the input sensor data and the reconstructed sensor data. 

As the next step shown in Fig. 7.29, output post-processing computes the RE, 
which is the square of the error between the input and reconstructed output obtained 
from a well-trained model. A large residual may indicate that a particular senor is 
faulty; for example, with a training dataset including only normal sensor data, a 
trained model will produce a low residual since the training resulted in a good ability 
to reconstruct the data. But with an input from a faulty sensor, the trained model will 
produce a high residual because, based on its training, it cannot reconstruct faulty 
sensor data well. It is therefore necessary to determine a threshold that distinguishes 
normal and faulty sensor data. 

To define the threshold, a method suggested by Shewhart (Shewhart 1931) is  
applied based on the REs. The main elements of a Shewhart chart are the center 
line CL, the upper control limit UCL, and the lower control limit LCL, as shown 
in Eqs. (7.15) to (7.17). In these equations, μ and σ denote the mean and standard 
deviation of each residual. 

UCL = μ + 3σ (7.15) 

CL = μ (7.16)
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LCL = μ −3σ (7.17) 

With a predefined threshold as such, the detection of a faulty sensor can be 
achieved by comparing the RE. An RE exceeding the threshold suggests a faulty 
sensor. 

Figure 7.30 depicts the process of detecting a faulty sensor through the RPS 
instrumentation monitoring function. First, the function receives signals as inputs 
during a LOCA scenario, one of which is faulty: a stuck failure (300 °C) of the RCS 
loop #1 temperature. Step 1 of function (input pre-processing) normalizes the signal 
data into the range 0–1. Step 2 (signal reconstruction) attempts to reconstruct the 
normalized signals with the autoencoder, after which Step 3 (output post-processing) 
calculates the difference, i.e., the RE, between the normalized measured signals and 
the reconstructed signals. These signals are plotted as the green and red lines in 
the figure, respectively. Step 4 (detection) compares the RE with the predefined 
thresholds, where it is found that the RE for the faulty signal is higher than the 
threshold. The algorithm thus determines that the RCS loop #1 temperature is faulty.

7.2.3.5 LCO Monitoring Function 

The LCO monitoring function applies a rule-based system to confirm that the plant 
condition is in compliance with the LCOs given in the Tech Spec. The rule base for this 
function is constructed by extracting if–then rules for all of the LCOs. Updated plant 
information is continuously sent to the LCO monitoring function, which compares 
the plant information with the predefined rule base. Based on the comparison, the 
function raises an alarm if any LCO is violated. An example of building a rule base 
for an LCO  is  shown in Fig.  7.31, where LCO 3.4.2 of the standard Tech Spec for a 
Westinghouse-type plant (NRC 2012) indicates that the average temperature of each 
RCS loop should be 283 °C. This is converted into if–then rules as follows: if RCS 
Tavg ≥ 283 °C, then LCO 3.4.2 is satisfied (Rule 1), and if RCS Tavg < 283 °C, then 
LCO 3.4.2 is violated (Rule 2).

Figure 7.32 illustrates an example of the LCO monitoring function process for 
LCO 3.4.1. The function first receives the PZR pressure, RCS cold-leg temperature, 
and RCS total flow rate from the NPP, and receives the current plant operation mode 
from the operation mode monitoring function of the TSMS. Then the LCO monitoring 
function compares the plant parameters with the predefined Rules 1 and 2 for this 
LCO. In this example, the current status matches Rule 2, which is a violation of the 
LCO, and accordingly the function generates an LCO alarm and provides operators 
with the ID of the violated LCO (LCO 3.4.1 in this case), the ID of the appropriate 
follow-up actions (FA341-1), and the required completion time (2 h). Table 7.14 lists 
the LCOs and corresponding rules implemented in the TSMS prototype.
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Fig. 7.30 Example of the 
RPS instrumentation 
monitoring function. 
Reproduced with permission 
from Lee and Kim (2022)
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Fig. 7.31 Example 
extraction of an if–then rule 
for the LCO monitoring 
function. Reproduced with 
permission from Lee and 
Kim (2022)

7.2.3.6 Follow-Up Action Monitoring Function 

As discussed in Sect. 7.2.2.6, the follow-up action monitoring function adopts a 
rule-based system to confirm that the follow-up actions are successfully conducted
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Fig. 7.32 Example of the LCO monitoring function process. Reproduced with permission from 
Lee and Kim (2022)

within the required completion time. Similar to the previous section, the rule base is 
constructed by extracting if–then rules for the follow-up actions given in the Tech 
Spec. When an LCO alarm is raised, this function performs a comparison between 
the current plant information and the rule base. If any rules are violated, the function 
outputs alarms indicating the failure of the follow-up action. 

Figure 7.33 depicts an example of the follow-up action monitoring function imple-
mentation and process. If–then rules are first produced to build the rule base from 
the follow-up actions for each LCO listed in the Tech Spec. As seen in Fig. 7.33a, 
when one or more of the RCS departure from nucleate boiling parameters exceed 
the limits, operators must perform actions to restore the parameter(s) to under the 
limit(s) within 2 h. These operator tasks can be converted into if–then rules as shown 
in the figure.

Figure 7.33b illustrates an example of the process of the follow-up action moni-
toring function. The function is first activated by receiving an alarm for LCO 3.4.1 
from the LCO monitoring function. Along with the alarm, the follow-up action moni-
toring function also receives parameter values of the PZR pressure, RCS cold-leg 
temperature, and RCS total flow rate from the NPP and the current operation mode 
from the operation mode monitoring function. Additionally, a timer is initiated to 
measure the elapsed time. The plant parameters and the required completion time 
are monitored based on Rules 1 and 2. As its output, the function provides operators 
either with information about the successful completion of the follow-up actions 
within the required completion time or with other follow-up actions suggested by 
the system in case the follow-up actions fail.
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Table 7.14 Rule base for the LCO monitoring function 

Rule ID LCO ID Rules 

If (condition) Then (action) 

R1 LCO 3.1.1 Shutdown margin ≥ 1770 pcm LCO 3.1.1 
satisfaction 

R2 Shutdown margin < 1770 pcm LCO 3.1.1 
violation, 
FA 311–1 

R3 LCO 3.3.1 Condition of RPS instrumentation = normal sensor LCO 3.3.1 
satisfaction 

R4 Condition of RPS instrumentation = faulty sensor LCO 3.3.1 
violation, 
FA 331–1 

R5 LCO 3.4.1 (154.7 kg/cm2 ≤ PZR pressure ≤ 161.6 kg/cm2) and  
(286.7 °C ≤ RCS cold-leg temperature ≤ 293.3 °C) and 
(75.6 × kg/h ≤ RCS total flow rate) 

LCO 3.4.1 
satisfaction 

R6 (PZR pressure > 161.6 kg/cm2 or 
PZR pressure < 154.7 kg/cm2 or 
(RCS cold-leg temperature > 293.3 °C or 
RCS cold-leg temperature > 286.7 °C) or 
(75.6 × 106 kg/h > RCS total flow rate) 

LCO 3.4.1 
violation, 
FA 341–1 

R7 LCO 3.4.3 Region of P–T curve = desired region LCO 3.4.3 
satisfaction 

R8 Region of P–T curve = undesired region LCO 3.4.3 
violation, 
FA 343–1 

R9 LCO 3.4.4 Reactor coolant pumps 1, 2, and 3 are operable LCO 3.4.4 
satisfaction 

R10 Reactor coolant pumps 1 or 2 or 3 is inoperable LCO 3.4.4 
violation, 
FA 344–1 

Reproduced with permission from Lee and Kim (2022)

7.2.4 TSMS Prototype 

Following the above function implementations, a full TSMS prototype is now devel-
oped. In brief, the system continuously compares the current plant condition with 
the Tech Spec of the NPP. In the event that any LCO is violated, the TSMS generates 
LCO alarms and recommends follow-up actions to the operators. It then monitors the 
operator performance of the follow-up actions in terms of the required completion 
time and identifies when the plant re-enters a safe condition. 

An image of the HSI of the TSMS is shown in Fig. 7.34 for a test of the prototype 
simulating a LOCA scenario with a break size of 100 cm2 in the loop 1 hot-leg. 
Figure 7.34a is the LCO alarm list for notifying operators of the LCO violations, 
where the first column shows the ID of the violated LCO and the second column
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(a) Rule building from the Tech Spec. 

(b) Function process. 

Rule 1: 
If 
(154.7 kg/cm2 ≤ PRZ pressure ≤ 161.6 kg/cm2 ) and 
286.7 ℃ ≤ RCS cold-leg temperature ≤ 293.3 ℃) and 
(75.6 X 10^6 kg/h ≤ RCS total flow rate) and 
Completion time < 2 h 
Then FA 341-1 Completion 

Rule 2: 
If 
(154.7 kg/cm2 ≤ pressurizer pressure ≤ 161.6 kg/cm2 ) and 
( 286.7 ℃ ≤ RCS cold-leg temperature ≤ 293.3 ℃) and 
(75.6X 10^6 kg/h ≤ RCS total flow rate) and 
Completion time > 2 h 
Then FA 341-1 Incompletion, FA 341-2 
... 

PZR pressure = 170 kg/cm2 

RCS cold-leg temperature = 290 ℃ 
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Fig. 7.33 Example of the follow-up action monitoring function. Reproduced with permission from 
Lee and Kim (2022)

gives a description of the relevant LCO with information about the violated NPP 
system and component. The third column presents the time of the alarm occurrence 
upon LCO violation, and the fourth column shows the end time of the alarm upon 
completion of the follow-up action to satisfy the LCO.

The test results indicate that LCO 3.4.1 and LCO 3.4.3 are violated at 37 s and at 
2 min 25 s after LOCA occurrence, respectively. A violation of LCO 3.4.1 indicates 
that the RCS pressure, temperature, and flow departure from nucleate boiling have 
violated their specified limits. A violation of LCO 3.4.3 indicates that the RCS 
pressure and temperature have moved into the undesired region of the P–T limit



7.2 Technical Specification Monitoring System 253

Fig. 7.34 Appearance of the 
human–system interface of 
the TSMS. Reproduced with 
permission from Lee and 
Kim (2022)

(a) LCO alarm list 

(b) Pop-up window representing follow-up ation 

curve. By selecting the LCO in the alarm window, operators can obtain information 
on the appropriate follow-up action from a pop-up window. 

An example of this pop-up window presenting information on the recommended 
follow-up action is shown in Fig. 7.34b for LCO 3.4.1. In this case, the operators 
must complete the first follow-up action to restore the RCS pressure, temperature, 
and flow rate to back within the normal operating ranges. As shown in the window, 
this action should be completed within 2 h. If the operators cannot complete the first 
follow-up action within this time limit, a second follow-up action is indicated as an 
alternative.
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Chapter 8 
Human–Autonomous System Interface 
and Decision-Making 

8.1 Human–Autonomous System Interface 

The goal of the human–autonomous system interface or HASI is to support the 
manual operations of NPP operators. Primarily, it provides the means by which 
operators can obtain information for monitoring and also perform control actions. 
For monitoring, the HASI presents operators with alarms and information displays. 
The information displays include the status of systems and components as well as 
process parameters. For the control actions, the HASI provides the controllers through 
which the operator actions are transferred to the system. These primary features are 
the same as those provided in the HSI of conventional NPPs. 

Additionally, the second goal of the HASI is to support the interaction between 
the operators and the autonomous operation system. In order to design the HASI 
to support this interaction, two aspects need to be taken into account: the level of 
automation, and the issues of human performance in automation. 

The roles of the operator and the system in an autonomous operation environment 
are based on the level of automation. Generally, the level of automation is defined on 
a continuum of fully manual operation to fully automated operation. While Chap. 1 
introduced the Billings’ levels of automation originally developed for the aviation 
industry, Table 8.1 in this chapter details five levels of automation better suited to 
NPP operation (O’Hara and Higgins 2010). O’Hara and Higgins (2010) specifically 
defined each level of automation and provided examples of each level for NPPs. The 
autonomous NPP of this book aims at Level 4, Operation by Exception.

Once the designer determines the level of automation for a particular operation or 
control, its various functions are allocated to the operators and to the automated 
system. Here, the HASI is related to supporting the functions of the operators. 
According to NUREG-0711 (NRC 2012), a task analysis should define the require-
ments for the operator functions, or in other words, the relevant tasks, information, 
and controls to perform the functions allocated to the operators. HASI design then 
follows by addressing the defined requirements to support the operators. That is, the
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Table 8.1 Levels of automation for NPP applications (O’Hara and Higgins 2010) 

Level Automation functions Human functions 

1. Manual operation No automation Operators manually perform 
all functions and tasks 

2. Shared operation Automatic performance of some 
functions/tasks 

Manual performance of some 
functions/tasks 

3. Operation by consent Automatic performance when 
directed by operators to do so, 
under close monitoring and 
supervision 

Operators monitor closely, 
approve actions, and may 
intervene with supervisory 
commands that automation 
follows 

4. Operation by exception Essentially autonomous operation 
unless specific situations or 
circumstances are encountered 

Operators must approve of 
critical decisions and may 
intervene 

5. Autonomous operation Fully autonomous operation. 
System or function not normally 
able to be disabled, but may be 
manually started 

Operators monitor 
performance and perform 
backup if necessary, feasible, 
and permitted

HASI should include all the information and controls necessary to perform the tasks 
assigned to the operators. 

Many issues related to human performance based on interactions with auto-
mated systems have been reported. Although automation technology has introduced 
numerous benefits in many fields and applications, ill-designed automation may fail 
when the design does not consider the interactions between humans and automation. 
Lee well summarized the automation-related problems, including the following (Lee 
2006).

● Out-of-the-loop unfamiliarity
● Clumsy automation
● Automation-induced errors
● Inappropriate trust
● Inadequate training and skill loss 

Out-of-the-loop unfamiliarity refers to the diminished ability of operators to detect 
a failure of automation and to resume manual control (Endsley and Kiris 1995). 
This problem often occurs with a highly automated system in which the operators 
are removed from directly performing the control. In this case, the operators have 
difficulty in maintaining situational awareness about the plant status as well as the 
control activity by the autonomous system. Clumsy automation refers to the case 
when automation makes easy tasks easier and hard tasks harder. This can occur by 
automating easy tasks but leaving hard tasks to the operators. The third problem 
listed above, automation-induced errors, refers to error types newly introduced as a 
result of automation. A typical example is a mode error, in which the operator must 
take an action when the automation is in the wrong mode. The inappropriate trust 
issue includes both misuse and disuse. Misuse refers to when an operator over-relies
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on the automation and thus fails to detect a failure of the automation and intervene 
in the operation. Disuse refers to the situation in which the operator does not use 
the automation because of a low level of trust in its reliability. Lastly, the inadequate 
training and skill loss issue can appear in situations where automation reduces or 
eliminates the opportunities for operators to obtain skills by doing the job. More 
issues and explanations are presented in (Lee 2006). 

One of the approaches to address the above issues is called human-centered 
automation. As Billings (2018) suggests, human-centered automation means that 
automation needs to be designed to work cooperatively with human operators toward 
a common goal. In other words, this concept suggests that automated systems should 
be designed to be team players (Wiener and Curry 1980; Woods 2018; Sarter and 
Woods 1997). Applying this concept to the design of HSIs in NPPs, the OECD Halden 
Reactor Project performed experimental studies to investigate the human–automa-
tion cooperation quality between two different interfaces (Massaiu et al. 2004). One 
was a conventional interface commonly applied in NPPs, while the other followed 
a human-centered design that improves the transparency of the systems through 
explicit representations of the activity of the automated systems. The results showed 
that the human-centered design achieved a clear improvement in human–automation 
cooperation. 

O’Hara and Higgins (2010) also suggested that the ecological-interface design 
(EID) concept could support operators in the monitoring and understanding of 
automation. They identified two main points: (1) the work domain analysis used 
in the EID concept based on an abstraction hierarchy can identify the particular 
information that should be contained in interactions with automation, and (2) the 
EID principle can increase operator understanding of automation and situational 
awareness. 

As the interest in automation is increasing in the nuclear industry, design guide-
lines have recently been published for improving human–automation interaction. For 
example, Naser (2005) provided guidance for function allocation and the design of 
personnel interaction with automation after surveying the contemporary state-of-the-
art automation technology and its impact on personnel and integrated human–system 
performance. Moreover, the US Nuclear Regulatory Commission has added a new 
chapter in NUREG-0700, Human-System Interface Designed Review Guidelines, 
called Automation System (NRC 2002). This chapter provides design guidelines on 
automation display, automation levels, automation modes, and so on, based on the 
results from a previous study (O’Hara and Higgins 2010). Also, Anuar and Kim 
(2014) derived design requirements to address the issues of human performance in 
automation using a modeling method named the Itemized Sequence Diagram. 

8.2 Decision-Making 

Decision-making in the context of the autonomous operation of an NPP refers to the 
selection of the relevant operational strategies based on the current plant status and
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all forms of feedback. To facilitate this, the decision-making function communicates 
with the other functions and evaluates the plant status before selecting the operational 
strategies. 

Figure 8.1 illustrates the interactions between the decision-making function and 
the other functions under the framework suggested in this book. From the diagnosis 
function, the decision-making function receives information about the occurrence of 
an abnormal or emergency state along with the diagnosis results of the plant state. 
From the prediction function, the decision-making function receives predicted trends 
of parameters as well as predictions about a reactor trip and potential threats. From 
the monitoring function, it receives information about any threats to the safety func-
tions, violations of LCOs from the Tech Spec monitoring, and information about 
inappropriate controls by the autonomous system. From the signal validation func-
tion, the decision-making function receives information about any detected faulty 
signal and determines whether to replace the signal with a newly generated one or 
remove or ignore it in the system. 

Based on all this information from the other functions, the decision-making func-
tion is able to select the appropriate operational strategy. To do so, the development 
of decision rules is necessary. Figure 8.2 shows an example flowchart of decision 
rules for an autonomous operation system. In general, NPP states can be divided into 
normal, abnormal, and emergency operation. Definitions of these states are given in 
IAEA Safety Reports Series No. 48 as follows.

Decision Making 

Control 

Diagnosis 

Prediction 

Montioring 

Human-Autonomous System 
Interface

● Operator inputs 
for operational 
goal (H1)

● Occurrence of 
abnormal and 
emergency 
states (D1)

● Events from 
diagnosis (D2)

● Future trend of 
parameters (P1)

● Prediction of 
reactor trip (P2)

● Prediction of 
potential threat 
(P3)

● Threat of safety 
functions (M1)

● Violation of 
LCOs (M2)

● Inappropriate 
control by the 
autonomous 
system (M3)

● Operation 
strategies (O1)

● Request for 
operator 
intervention (O2) 

Signal Validation ● Detected faulty 
signal

● Decision on 
whether 
generating or 
removing the 
signal 

Fig. 8.1 Interactions between the decision-making function and other functions in the autonomous 
NPP 
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Manual 
repairment 
required? 

Any 
inappropriate 
operation by 
autonomous 

control? 

Any 
inappropriate 
operation by 
autonomous 

control? 

Any 
inappropriate 
operation by 
autonomous 

control? 

Shutdown 
cooling entry 

condition 

Operator input for 
further operation 

Request for operator 
intervention 

Request for manual 
repairment 

Request for operator 
intervention 

Autonomous 
operation of 

follow - up 
actions 

Follow - up 
actions performed 

within required 
time? 

No violated 
LCO 

Request for operator 
intervention 

NO 

YES 

NO 

YES 

YES 

NO 

NO YES 

NO YES 

NO 

NO 

NO 

YES 

YES 

YES 

NO 

YES 

NO 

YES 

YES 

NO 

: Decision 

: Plant State 

: Interaction with 
Operator 

: Autonomous Operation 
Strategy 

Request for operator 
intervention 

YES 

Manual or 
autonomous 
operations? 

Request for operator 
intervention 

Manual 

Autonomous 

Fig. 8.2 Decision rules for strategy selection 

Normal operation is defined as plant operation within specified operational limits and condi-
tions. Examples include starting up and shutting down the plant, normal power operation, 
shutdown, maintenance, testing and refueling. 

Abnormal operation or anticipated operational occurrence (AOO) is an off-normal operation 
state which would most likely not cause any significant damage to items important to safety 
nor lead to accident conditions. Examples of abnormal operation events include loss of 
normal electrical power and faults such a turbine trip, malfunctions of individual components 
of a normally running plant, failure to function of individual items of control equipment, 
and loss of power to the main coolant pumps. 

Accident conditions (i.e., emergency operations) are defined as deviations from normal 
operation more severe than AOOs, including design basis accidents, beyond design basis 
accidents and severe accidents. Examples of such deviations include loss of coolant accidents 
(LOCAs), complete loss of residual heat removal from the core, and anticipated transient 
with scram. (IAEA 2006) 

Normal and off-normal (i.e., abnormal or emergency) operations are generally 
divided depending on alarm occurrence. In case of normal operation with no alarms, 
the operational goals are handled by the operators. Examples of operational goals 
include “increase the reactor power to 100% from 2%”, “create a bubble in the 
PZR”, or “shut down the reactor”. The range of such operations depends on the level 
of automation. That is, at higher levels of automation, more extensive operations 
are covered by the autonomous operation system. Once any inappropriate operation
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by the autonomous system is detected via operation validation in the monitoring 
function, a request for operator intervention is generated and transferred to the HASI. 
Although Sect. 7.1 introduced the concept of operation validation only for emergency 
operation, the algorithm developed for this function can be extended to normal and 
abnormal operations. 

In typical PWRs, abnormal or emergency operations are distinguished by the 
occurrence of a reactor trip. In abnormal operation in which the reactor is not tripped, 
the operational strategies can differ depending on whether the current status has been 
trained, meaning whether it is able to be identified by the diagnosis function or not. If 
the current status is trained and diagnosed, the control function is expected to manage 
the situation successfully based on its prior training for the specific event. On the 
other hand, if the status is evaluated as an unknown event, the strategy focuses on 
recovering the failed function and maintaining the plant in as stable a condition as 
possible until the operators intervene. In addition, many abnormal operation scenarios 
require manual control actions after stabilizing the plant. In this case, requests for the 
manual actions are generated. If the prediction function predicts that the reactor is 
about to trip under the current situation, the strategy is switched to reflect emergency 
operation. 

In emergency operation initiated by a reactor trip, one general goal in PWRs is to 
cool down the reactor and depressurize the primary system to the entry condition for 
long-term cooling performed by the shutdown cooling system. During emergency 
operation, any failure of a safety function indicates that the autonomous operations 
are not working well. In this case, as above, requests for operator intervention are 
generated. Once the plant reaches the entry condition for long-term cooling, the 
operators decide upon further operations. 

The Tech Spec monitoring function works in both abnormal and emergency oper-
ations. If any LCO is violated, the decision-making function provides the optimal 
strategy with follow-up actions to perform for the control. 
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Chapter 9 
Conclusion 

This book introduced applicable AI techniques and examples related to the 
autonomous operation of NPPs. The utilization of AI is a recent trend in increasingly 
many industrial fields, stemming from the explosive growth in AI adaptation due to 
increased data processing and developments in hardware design, graphics processing 
units, and related methods. Although NPPs are already highly automated to reduce 
human error and ensure the reliability of the various system operations, the term 
autonomous in this context remains relatively unpopular because the nuclear industry 
strictly relies on proven technologies. But despite this, the adoption of AI tech-
niques and the promotion of autonomous operations based on them seem unavoid-
able when considering their great advantages, especially for advanced reactors and 
small modular reactors. 

Novel approaches and practical examples suggested by the authors were discussed 
in this book for the autonomous operation of NPPs aimed at minimizing human oper-
ator intervention. In addition to the high-level framework to develop an autonomous 
operation system, the topics covered all necessary areas including signal validation, 
diagnosis, prediction, control, monitoring, and the human–autonomous system inter-
face. For all these various functions, the techniques addressed in this book covered a 
wide range of applicable methods such neural networks and reinforcement learning 
as well as traditional knowledge-based systems. 

There are many potential areas to which the approaches and examples introduced 
in this book can be applied in addition to autonomous NPPs. For instance, the tech-
niques for diagnosis and prediction can be used as an algorithm of operator support 
systems to help operators’ diagnosis and decision making in existing NPPs. In addi-
tion, the operation validation system and tech spec monitoring system introduced 
in Chap. 7 may be installed as an independent support system in the current NPPs. 
The algorithms for the signal validation would be a part of the instrumentation and 
control system to detect failures of sensors and signals. Therefore, the algorithms and 
methods in this book could be used as key techniques for operator support systems 
in NPPs.
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The authors hope that this book can provide useful information for researchers 
and students who are interested in applying AI techniques in the nuclear field as well 
as other industries. Various potential areas of AI applications and available methods 
were discussed with examples. Traditional approaches to recent applications of AI 
were examined. In addition, the specific techniques and modeling examples provided 
would be informative for beginners in AI studies. While the focus of this book was 
the autonomous operation of NPPs with AI, the methods addressed here would also 
be applicable to other industries that are both complex and safety–critical.
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