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Preface

The electrical properties of tissues are a fundamental characteristic providing
a unique and extremely sensitive insight into their composition and function.
While values for intrinsic tissue conductivity and permittivity may be deter-
mined using excised samples or in situ using conductivity cells or probes,
there is increasing interest in imaging the distribution of these properties
within the body. The area of electrical impedance tomography (EIT) has
now existed for over 40 years and has important applications in areas such as
non-invasive lung monitoring and functional imaging. Though EIT is a very
sensitive monitoring technique, limitations arise because of the general ill-
posedness of the inverse problem. Current density imaging using magnetic
resonance imaging was first demonstrated by Scott and Joy, working at
the University of Toronto in the early 1990s. The suggestion to use this
approach to image conductivity distributions was also made by this group.
The earliest approaches to imaging both current density and conductivity
proceeded assuming three different measurements, representing the three
components of the magnetic flux density distribution caused by an external
current. In the early 2000s, Seo and Woo contributed to an approach that
involved measuring and using only a single component of the magnetic flux
density. At around the same time, Katscher and colleagues were developing
practical strategies for imaging conductivity and permittivity distributions at
the Larmor frequencies of MRI systems. Over the years, numerous methods
for reconstructing electromagnetic fields and conductivity distributions have
been suggested and tested. The currents required to image conductivities at
the lowest frequencies have reduced from over 20mA to around 1.5mA,
and measurements of human head conductivities have been obtained in vivo.
High-frequency conductivity measurements are being tested in clinical trials,
and the newest conductivity reconstructionmethods involve no current admin-
istration at all, involving only diffusion tensor imaging and high-frequency
conductivity distributions. The area is also benefiting from interest in studying
mechanisms and individualized treatments in neuromodulation therapies such
as transcranial AC and DC stimulation, which require measurement of current
density and electric field distributions.

The volume is organized assuming the reader is an undergraduate or grad-
uate student focusing on advanced topics in MRI, or a researcher unfamiliar
with the general area of tissue electrical properties andMRI. Chapter 1 begins

v



vi Preface

with a basic treatment of the factors underlying the electrical properties of
tissues. A practical introduction to the finite element analysis and electromag-
netic modeling, typically required during reconstructions, is given in Chap. 2.
Chapter 3 covers a basic introduction to MRI focusing on hardware, physics,
mathematical expressions for k-space, pulse sequences, image reconstruction,
and SNR methods, forming the basis of phase imaging in MRI. Chapters 4
and 5 are concerned with constructing phantoms for conductivity imaging,
and the next two chapters present a comprehensive overview of MRI methods
for reconstructing current density (Chap. 6) and conductivity (Chap. 7). The
volume concludes with an examination of important factors in measuring
high-frequency conductivity (Chap. 8).

This book arose out of a successful workshop that was held at the 39th
Annual International Conference of the IEEE Engineering in Medicine and
Biology conference which took place at Jeju Island, Republic of Korea, in
2018. We would like to thank and acknowledge our friends and mentors Eung
Je Woo, Jin Keun Seo, and Oh In Kwon; our co-authors Camelia Gabriel,
Munish Chauhan, Saurav Z. K. Sajib, Ulrich Katscher, Ruth Oliver, and Nitish
Katoch; and our families and colleagues for their contributions to this project.
We would also like to convey our gratitude to Merry Stuber and Deepak Ravi
at Springer for their assistance in compiling this volume.

Tempe, AZ, USA Rosalind Sadleir
Sydney, NSW, Australia Atul Singh Minhas
February 2022
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1Electromagnetic Properties and the
Basis for CDI, MREIT, and EPT

Rosalind Sadleir, Camelia Gabriel, and Atul Singh Minhas

Abstract

The electromagnetic properties of body tissues
depend on numerous factors, the most impor-
tant of which are ionic concentrations and, par-
ticularly in the low-frequency regime, mem-
brane density and geometry. In this chapter,
the characteristics of these properties and their
spectra are introduced. The properties mea-
sured by different types of MR-based methods
are described.

1.1 Electrical Properties of
Tissue

1.1.1 What Underlies Tissue
Electromagnetic Properties

The electromagnetic properties of body tissues
are characteristic of their cellular structure and

R. Sadleir (�)
School of Biological and Health Systems Engineering,
Arizona State University, Tempe, AZ, USA
e-mail: Rosalind.Sadleir@asu.edu

C. Gabriel
C. Gabriel Consultants, San Diego, CA, USA

A. S. Minhas
School of Engineering, Macquarie University,
Wallumattagal Campus, Macquarie Park, NSW, Australia
e-mail: atul.minhas@mq.edu.au

composition, that is, of biological molecules and
electrolytes arranged in an aqueous solution. Tis-
sue electrical properties can be summarized us-
ing electrical conductivity and permittivity values
and their spectra. For most biological materi-
als, the magnetic permeability is close to that of
free space, which implies very weak interaction
with the magnetic component of electromagnetic
fields at low field strength. The most significant
magnetic contrasts in body tissues are related to
the presence of paramagnetic iron (in ferritin and
deoxygenated hemoglobin) and calcium [34].

Tissue response to an incident electromag-
netic field can therefore be considered as mostly
depending on electrical conductivity or capac-
ity (permittivity) properties and can be modeled
from either perspective. Depending on the tis-
sue composition involved, one approach may be
more natural than another. For example, more
solid tissues tend to have larger charge storage
capability or polarizability and may be described
more appropriately using permittivity rather than
conductivity. In either case, the property charac-
terizing tissue electrical properties is a complex
quantity, and conductive or capacitive properties
may be measured using in-phase (real) or quadra-
ture (imaginary) measurements, respectively.

Tissue properties result from multiple influ-
ences including tissue heterogeneity, interfacial
effects, and directionality or anisotropy. At fre-
quencies below around 100 kHz, phase shifts

© Springer Nature Switzerland AG 2022
R. Sadleir, A. S. Minhas (eds.), Electrical Properties of Tissues, Advances in Experimental
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resulting from capacitive tissue characteristics are
very small, and measurements almost all relate to
conductive properties. The conductive properties
of tissues in this range are mostly due to the
presence of electrolytes in body fluids as well
as the concentration and membrane geometry. At
higher frequencies, conductivity mostly depends
on ionic concentrations. Because tissues contain
a lot of water, all tissues also show effects of the
large absorption energy by of water molecules
around 2 GHz (the same frequency used by mi-
crowave ovens).

The dependencies of real and imaginary tissue
electrical properties on frequency are related via
the Kramers-Kronig relations; therefore, charac-
teristics of conductivity spectra may be intuited
from permittivity spectra, and vice versa. The
compound nature of these properties means that
special electrical components must be introduced
to best model tissue spectra.

In the sections below, we consider ionic con-
tributions to tissue conductivities, followed by
reactive and frequency-dependent characteristics.
Commonly observed features of conductivity and
permittivity spectra will be described and proper-
ties of tissues important to imaging electromag-
netic properties will be outlined. Last, methods
and important considerations for making “bench-
top” measurements of tissue properties for verifi-
cation of these imaging methods will be summa-
rized, as they are important for reconstruction val-
idation. Validation, including constructing phan-
toms to test methods, is also discussed further in
Chap. 4.

1.1.1.1 Ionic Conductivities
Because the water content of tissues is significant,
their properties are closely related to those of
electrolytes in aqueous solution. The most com-
mon ions in the body are sodium and chloride,
with ions of potassium, bicarbonate, calcium, and
magnesium also contributing to the ionic envi-
ronment of intra- or extracellular environments.
Properties of electrolytic solutions were investi-
gated extensively in the nineteenth century. The
Kohlrausch law describes the dependence of the
molar conductivity on concentration. At low con-

centrations, this experimental data agrees very
well with the resistivity values that may be cal-
culated using the expression

�m = �o
m − Kc1/2 (1.1)

where �m is the molar conductivity in S
m−1mol−1 L and where c is the molar conduc-
tivity of the electrolyte. K is the Kohlrausch
coefficient, a value that depends on the solvent
and the charge on ionic species as well as the mo-
lar concentration itself. Themolar conductivity of
the salt at infinite dilution is�o

m. The conductivity
of a solution and its conductivity σ are related via

σ = �mc (1.2)

Following (1.2), the conductivity of a solution
broadly increases linearly with molar concentra-
tion of electrolyte, but this dependence progres-
sively decreases as concentration increases. Fig-
ure 1.1 shows the conductivity of NaCl in solution
(saline) as a function of molar concentration at
25 C. Data from this plot were obtained from
published experimental data [13]. In the case
of NaCl dissolved in water, the value for K is
89.14 × 10−4 �−1 m2mol−1/(mol.L−1)−1/2. The
molar conductivity at infinite dilution at 25 C is
approximately 126.4 × 10−4 �−1m2mol−1. The
curves start to diverge at a molar concentration
of around 0.3 mol/L (17 g/L) which is also about
twice the NaCl concentration of normal (0.9% or
9 g/L) saline solution. Note that the graph indi-
cates that at very high molarities, the conductivity
predicted by Eqs. (1.1) and (1.2) actually begins
to decrease, which is because this approximation
breaks down as concentrations become high. Note
also that at very high concentrations (> 6 mol/L)
of NaCl the solution becomes saturated.

The conductivity of an aqueous salt solution
will also tend to increase with increasing temper-
ature because of the decrease in the viscosity of
water with temperature. This leads to an increase
in the mobility of ions in solution and hence
in the molar conductivity. This trend underlies
the observed temperature dependence of tissue
conductivity. Measurements of tissue properties,
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Fig. 1.1 Dependence of
conductivity of sodium
chloride in aqueous
medium on molar
concentration at 25 ◦C. The
red line shows the
predicted dependence of
conductivity following
Eqs. (1.1) and (1.2). The
blue line plots
experimental
measurements of saline
conductivity
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if not made in vivo, should therefore also spec-
ify the ambient temperature. Tissue properties
change rapidly after death [23], and measured
conductivities in excised tissues, even ifmeasured
at body temperature, may not be representative of
those found in vivo. Conductivity measurements
made using a dielectric probe or conductivity
cell may be calibrated using simple, fully dis-
sociated ionic salt solutions whose conductivi-
ties can be characterized described using (1.2),
such as NaCl or KCl. For example, Gabriel et
al. [8] present measurements of tissue conductiv-
ities and permittivities calibrated over the range
10Hz–20 GHz based on dielectric probe cali-
brations performed using 5mM saline solutions.
Measurements of saline properties over a range
of concentrations, frequencies, and temperatures,
as reported in Peyman et al. [24], may also assist
calibrations. Conductivity standards (usually KCl
solutions) having known and calibrated conduc-
tivities can also be purchased.

1.1.1.2 Membranes and Solid Tissues
Solid tissues demonstrate dielectric-like proper-
ties. In the treatment below,we follow the conven-

tion established by Grimnes and Martinsen [12].
The complex conductivity, σ , consists of real and
imaginary parts σ ′ and σ ′′

σ = σ ′ + iσ ′′ (1.3)

Similarly, the complex permittivity ε can be
expressed as

ε = ε′ − iε′′ (1.4)

where ε′ = ε′
rε0, ε

′′ = ε′′
r ε0, ε0 is the permittivity

of free space (8.8542 × 10−12 F/m, and ε′
r and ε

′′
r

are dimensionless relative parameters character-
istic of the material.

If a measured electrical property is assumed
to be capacitive in nature and is expressed as a
complex admittance Y = iωC, this quantity can
be expressed as

Y = G + iωC = A

d

(
σ ′ + iωε′) (1.5)

where the capacitor or electrodes have face area
A and thickness d . The relationship between
the complex conductivity and permittivity
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parameters can be found by substitution of (1.4)
into (1.5):

Y = iωC = iω
Aε

d
= ω

A

d
ε′′ + i

A

d
ωε′. (1.6)

Comparing (1.5) and (1.6) leads to the identi-
fication

ε′′ = σ ′

ω
. (1.7)

This tells us that the quadrature component of
measured permittivity can be obtained from the
in-phase conductivity by dividing by the angular
frequencyω = 2πf , where f is the measurement
frequency in Hz.

Note that a quantity of interest to in EPT is
denoted κ , where

κ = ωε = ωε′ − iσ ′. (1.8)

1.1.1.3 RelaxationModels of Tissue
Properties

An equivalent circuit that can be used to describe
both capacitive and conductive tissue properties
over a small frequency range consists of a capac-
itor in parallel with a series capacitor and resistor
(Fig. 1.2).

It can be shown that if ω is the angular fre-
quency and τ is a time constant (τ = R
C), the
complex capacitance of the circuit is given by

C = C∞ + 
C

1 + iωτ
(1.9)

You can see that the capacitance tends to an
asymptotic value C∞ at high (∞) angular fre-
quencies and as ωτ >> 1.

At low frequencies, when ωτ << 1 : C ≈

C + C∞, which makes 
C = C0 − C∞ where
we denote the low-frequency “static” capacitance
with the subscript (0).

Fig. 1.2 Example Debye
dispersion circuit
consisting of two
capacitors and one resistor

C∞

R

ΔC

A parallel equation that can be written of terms
of ε′ and ε′′ (taking out the geometrical factor A

d
)

is

ε = ε0 − ε∞
1 + iωτ

= ε′(ω) − iε′′(ω). (1.10)

This relationship is known as the Debye equa-
tion; it applies whenever the decay of polarization
is exponential and associated with a single relax-
ation time.

The frequency dependencies of the Debye pa-
rameters ε′ and ε′′ and measured impedances
have the form illustrated in Fig. 1.3 for R=500�,
ε′∞,r = 1000, 
ε′ = 10000 = 
Cd/Aε0, and a
geometric factor A

d
of 20 m.

The effective permittivity and conductivity of
the material vary as a function of frequency. The
permittivity reduces as frequency increases, and
the conductivity increases, with the frequency of
the transition occurring at the critical frequency
ωc, that is the frequency at which ωτ = 1.

Debye or parallel or series simple resistor-
capacitor models involve ideal components, as
well as describe only a single transition (dis-
persion). Naturally, properties of biological ma-
terials do not show the characteristics of pure
resistors and capacitors; complex tissue proper-
ties are characteristic of multiple, overlapping
polarizations better described in terms of a relax-
ation time distribution. Such properties are better
described using circuits containing components
whose properties vary as a function of frequency.

For most materials (at ωτ >> 1), a power
law dependence of the type ωm−1

τ
applies for both

ε′(ω) and ε′′(ω), with m �= 0, making the ra-
tio ε′′(ω)/ε′(ω) frequency independent (constant
phase). These dependencies are modeled with
constant phase elements (CPEs), such that the
overall phase of Y does not vary.

Instead of using a lumped resistor or capacitor,
consider a parallel-component circuit where the
admittance Y is described by

Ycpe = Gcpe+iBcpe=(ωτ)m
(
G

1
+iB

1

)

= (ωτ)mG
1

+iωmτm−1C
1
, (1.11)
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Fig. 1.3 Characteristics of Debye circuit calculated with
R = 500�, ε′∞,r = 1000,
ε′ = 10000, and (A/d) of
20 m. Part (a) shows characteristics of real (blue curve,
left axis) and imaginary (red, right) components of relative
permittivity as a function of frequency, (b) shows conduc-

tivity (blue, left) and real component of relative permittiv-
ity (red, right), (c) plots real and imaginary components of
frequency, and (d) plots real and imaginary components of
effective impedance (Rz and −Xz)

where the susceptance B = ωC, m is a real
number between 0 and 1, and τ is a frequency
scaling factor. The notation (·)

1
refers to value

ofG, B, or C when ωτ = 1. Since bothG and B
scale with frequency in the sameway, the constant
phase value is

ϕcpe = tan−1 B

G
. (1.12)

Using the constant phase element approach,
both G = (ωτ)mG

1
and B = (ωτ)mB

1
increase with frequency. At 0 Hz, both Y and
B are zero; therefore, a DC admittance is not
included in the model. Since B

1
= 1/τC 1

(recall B = ωC and ωc = ω = 1/τ at ωτ = 1),
it also follows that C = (ωτ)m−1C

1
and that C

decreases with frequency (since m − 1 < 1). As
frequency increases, G tends toward infinity.

A special case of the CPEmodel was observed,
in experimental data, by Fricke [5]; the frequency
dependence of capacitance depends on a parame-
ter, α, such that C ∝ f −α and that the constant
phase angle is ϕcpe = απ/2. In this case, the
model properties are described using the Fricke
CPE as

Ycpe = (iωτ)αG
1

= (ωτ)αG
1

(
cos απ

2 + i sin απ
2

)
(1.13)

As noted above, the general CPE of (1.11) has
an infinite admittance at DC if m �= 0. This is
also true of the Fricke CPE in (1.13) if α �= 0.
The parallel Fricke CPE can be modified to add
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a parallel frequency-independent conductance to
modify this behavior. Another behavior can be
derived if the two CPEs are combined in series.
In this case, the impedance of the CPE is

Zcpe = (iωτ)−αR
1

(
cos

απ

2
− i sin

απ

2

)

(1.14)

A special case of the Fricke CPE, the Cole-
Cole model, involves a series Fricke CPE com-
bination with a fixed series capacitance and one
parallel capacitance, as shown in Fig. 1.4. In this
model, resistive and capacitive CPEs are shown in
series in the lower arm of the parallel combination
and are indicated with modified symbols. It is
most appropriate for characterization of tissues
with little DC conductance or to describe higher-
frequency properties.

The admittance of this model is described by

Y = iωC = iω
A

d
ε

= iω
A

d

(
ε∞ + 
ε

1 + (iωτ)1−α

)
(1.15)

where we define


ε = d

A

C and ε∞ = d

A
C∞ (1.16)

and α is a distribution parameter in the range 1 >

α ≥ 0. The factor 
C describes the difference
between capacitances of the CPE static element
at low and high frequencies, that is, 
C = CL −
C∞.

From (1.4) and (1.5), the Cole-Cole depen-
dence may alternatively be written as

C∞

ΔC

Fig. 1.4 Cole-cole permittivity model. The tagged resis-
tor and capacitor symbols indicate constant phase element
types arranged in series. The capacitors C∞ and 
C

describe capacitance values at high frequencies or changes
in capacitance from low to high frequencies, respectively

ε = ε∞ + 
ε

1 + (iωτ)1−α
or (1.17)

C = C∞ + 
C

1 + (iωτ)1−α
(1.18)

which is known as the Cole-Cole model; for α =
0, it reverts to a Debye dispersion model.

The Cole-Cole models can be used to fit ob-
served tissue measurements to the parameters α,
(·)∞,
(·), and τ in (1.15), (1.17), or (1.18). This
may be used to characterize tissue properties over
a wide frequency range. A plot of the dependence
of parameters on frequency for a tissue having
a single dispersion characterized by a Cole-Cole
model with
ε = 10000, τ = 1 ms, and α = 0.3
is shown in Fig. 1.5. It may be compared with
matching parameters for the Debye dispersion in
Fig. 1.3. Note that the low-frequency properties
shown in Fig. 1.5d are markedly different from
those in Fig. 1.3d.

In real tissue, several characteristic relaxations
are observed, with individual dispersions typi-
cally in the Hz, kHz, and MHz ranges. The pro-
cesses involved in each transition are presumed to
be related to interfacial processes at the different
scales involved and are of course also each due
to a mixture of possible relaxation times and
processes. The transitions are labeled alpha, beta,
and gamma dispersions at lower-, intermediate-,
and higher-frequency ranges, respectively. In
addition, all tissues show a strong water-related
dispersion in the GHz range (Fig. 1.6).

To characterize individual dispersions, param-
eters in (1.15), (1.17), or (1.18) may be fitted by
considering frequencies around each dispersion,
as in [8]. In this case, the parameters α(·)∞,
(·),
and τc are defined only over the frequency range
of each dispersion where (·)∞ would be more
correctly defined as (·)H ; the parameter at the
higher frequency, 
(·), denotes the change in ε

or C that occurs over the frequency range of the
dispersion; and τ indicates the center frequency
of the dispersion fc = 1/(2πτc). Each disper-
sion, characterized by its parameters, provides an
indication of the distribution of relaxation times
and the scales of physical processes involved in
each frequency range.
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Fig. 1.5 Cole-cole dependency for tissue with 
ε =
10000, τ = 1 ms, and α = 0.3. As in Fig. 1.3, part
(a) shows characteristics of real (blue curve, left axis)
and imaginary (red, right) components of relative permit-
tivity as a function of frequency, (b) shows conductivity

(blue, left) and real component of relative permittivity
(red, right), (c) plots real and imaginary components of
frequency, and (d) plots real and imaginary components
of effective impedance (Rz and −Xz)

Fig. 1.6 Alpha, beta, and
gamma dispersions
illustrated in conductivity
and permittivity spectra for
muscle. Plots generated
using parameters
determined by Gabriel et
al. [9]

100 105 1010

Frequency (Hz)

100

102

104

106

108

R
el

at
iv

e 
pe

rm
itt

iv
ity

 
r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

du
ct

iv
ity

, S
/m

α

β

γ



8 R. Sadleir et al.

1.1.1.4 Relationship Between Diffusion
and Conductivity

We noted in Sect. 1.1.1.1 that tissue conductivity
is closely related to ionic mobility. As a con-
sequence, tissue conductivity is also intimately
connected to the diffusivity properties of tissue.
Tuch et al. [32] showed that conductivity and
water diffusion eigenvectors σv and dv are linked
by the approximation

σv = σe

de

[
dv

(
di

3de
+1

)
+ d2

v di

3d2
e

− 2

3
di

]
+O(d2

i )

(1.19)

where di and de and σe are the diffusion coef-
ficients and conductivities in intra- (i) or extra-
cellular (e) spaces. This leads to the inference
that low-frequency conductivity tensors should be
recoverable only from measurements of diffusion
tensor distribution obtained via MRI and assump-
tions or measurements of intra- and extracellular
diffusion coefficients. In practice, accurate em-
ployment of the relationship requires additional
measurements. Practical measurements of con-
ductivity have been approached by using diffu-
sion tensor information combined with current
administration (DT-MREIT; see Chapter 7.6) [3,
18] or combined with high-frequency conductiv-
ity measurements [17] to reconstruct an isotropic
scaling factor η that relates conductivity (C) and
diffusion (D) tensors as

D = ηC. (1.20)

You can find more information about diffusion
tensor imaging (DTI) and methods for recon-
structing conductivity tensors using DTI data in
Chap. 7.

1.1.2 Anisotropic Tissue Properties

Anisotropy relates to the directionality of a prop-
erty. Electrical anisotropy is manifested when the
tissue conductivity is different when measured
along different geometric directions, and as a
consequence, anisotropy is a sensitive metric of
local tissue microstructure defined by membrane
architecture. Because membranes are thin and

their capacitance is effectively “shorted out” at
very high frequencies, anisotropy is mostly man-
ifested at low-frequency ranges (<100 kHz). The
best examples of tissue electrical anisotropy are
observed in skeletal and cardiac muscle and in
white matter. The directionality properties arise
from the cellular structure of these tissues. In
both white matter and skeletal muscle, the tissue
is composed of long cell bundles aligned such
that ion transport along these cells and conse-
quently conductivity is lower along bundles than
across them. Shorter cardiac cells are connected
in long chains to achieve similar properties. It is
important to emphasize that anisotropy is not the
same as tissue inhomogeneity. Consider the case
of measuring impedances across a cubic sample
of tissue in the chamber shown in Fig. 1.10.While
different impedances may be measured if the
tissue rotated into different orientations relative
to the electrodes, this may be because the sample
consists of mixed tissue types. In a simple case,
the tissue might consist of layers of two different
substances as illustrated in Fig. 1.7. The apparent
anisotropy σl/σt is the ratio of the conductivity
measured on the object along the layers in the
longitudinal (l) direction to that measured across
them (t). The ratio is plotted as a function of the
relative layer thickness.

The apparent anisotropy depends on the rela-
tive thickness of the layers (α = t1/t2) and rela-
tive conductivities, with this quantity being much
smaller than the actual conductivity contrast of
the layers. As shown in Fig. 1.7, the maximum
apparent anisotropy for a conductivity ratio of 10
occurs when both layers have the same thickness
and is only around 3 [25]. The characterization of
tissue as anisotropic relates to the geometric scale
of the directionality or inhomogeneity with re-
spect to the geometric scale of the measurement.
In Fig. 1.8 , the apparent (measured) resistivity re-
covered by a specific four-terminal measurement
configuration as layer number increases is plotted
as a function of the relative conductivity of the
layered structure that would be measured by a
uniform field. The measurements are compared
with apparent resistivities characteristic of a truly
anisotropic and inhomogeneous structure.
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Fig. 1.7 Measurement of
anisotropy using simple
layered structure. (a)
Object composed of three
layers of two different
conductivities, σ1 and σ2
(with respective total
thicknesses t1 and t2, such
that t1 = t2 or α = 1),
having overall tangential
length l, radial thickness T ,
and width w. (b) Plot of
apparent anisotropy σl/σt
against α for conductivity
ratios σ2/σ1 of 2, 3, and 10
for the brick-shaped object
shown in (a)
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It is clear from Fig. 1.8 that as the relative
thickness of the layers decreases in the mea-
surement configuration, the apparent resistivity
becomes closer to the anisotropic curve.

1.1.3 Active Membrane Properties

Conductivity changes are observed in active tis-
sue membranes as a consequence of ionic flows
during action potentials. This mechanism can be
used for non-invasive neural source monitoring
using EIT [2, 26, 33]. While large conductivity
increases are found in themembrane itself, effects
on impedance measurements are only of the order
of around 0.1% [11] because of the small ef-
fects on bulk current distributions. Models of EIT
or MREIT measurements have been developed
to verify changes observed during active pro-
cesses [20,27,29,30]. The Hodgkin-Huxley equa-
tions [14,22] describe the evolution of membrane
conductance and voltage in neurons during activ-
ity. Membrane voltage is conventionally defined

as the difference between intra- and extracellular
potentials

Vm = Vi − Ve (1.21)

Membrane conductance is governed by activ-
ity level of ion-specific channels within it. The
simplest active membrane descriptions include
probability states for sodium activation (m), in-
activation (h), and potassium channels (n). The
current flowing through the membrane is

Im = Cm

dVm

dt
+ (Vm−VNa)GNa + (Vm−VK)GK

+ (Vm−VL)GL (1.22)

where Im is the membrane current per unit area
and Cm is the membrane capacitance. VNa ,VK ,
and VL are resting (Nernst) voltages for sodium,
potassium, and leakage ions, respectively, de-
termined by the equilibrium concentrations of
these species within or without the cell. The total
membrane conductance per unit area is the sum
of sodium, potassium, and leakage conductances
where
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Fig. 1.8 Transition to
anisotropy. Comparison of
(two-dimensional)
calculations using a single
four-terminal observation
configuration for
homogeneous anisotropic
and layered structures.
Graph plots apparent
resistivities normalized
with respect to the structure
transverse resistivity as a
function of relative
conductivity as layer
number n is increased.
Layer thicknesses are equal
in each case except where
indicated by an asterisk (*)
where the central layer had
twice the thicknesses of the
outer two layers
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GNa = m3hGNa,max (1.23)

GK = n4GK,max (1.24)

The leakage conductance GL is assumed con-
stant. The differential equations describing m, h,
and n channel states are

dm

dt
= 1

τm
(m∞ − m) (1.25)

dn

dt
= 1

τn
(n∞ − n) (1.26)

dh

dt
= 1

τh
(h∞ − h) (1.27)

and the variables m∞, n∞, h∞, τm, τn, and τh
depend on channel-specific constants and resting
membrane potential.

The total membrane conductanceG = GNa +
GK + GL in this model depends on whether the
membrane is active or inactive, and there is a large
variation in total membrane conductance between
these two states. In fact, the total membrane con-
ductance in the active state is about 1/40 of its in-

active value. This may sound large, but it has only
a small effect on the measured bulk conductivity
of tissue containing active cells. However, be-
cause MREIT methods allow measurement over
local regions containing active cells, it may be
possible to use MREIT as a functional method
(fMREIT).

1.1.4 Tissue Properties

As noted in Sect. 1.1.1.3, the overall observed
frequency dependence of tissue electrical proper-
ties is a consequence of their specific mix of cell
types, sizes, and relaxation processes. A meta-
analysis by Faes [4] found that properties could
be primarily classified with reference to the bulk
tissue water content. Properties of tissues have
been measured in many different contexts, rang-
ing from excised tissues or removed fluids; using
multiple or single frequencies; using different
measurement techniques; and in animal or human
tissues in vivo.

Spectra and characteristic properties of many
different tissues may be found in the database
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Table 1.1 Electrical properties of tissues at 50 kHz

Tissue εr σ (S/m) Tissue εr σ (S/m)

Air (vacuum) 1. 0. Lens 2626.5 0.33849

Aorta 1633.3 0.31686 Liver 690. 0.072042

Bladder 1912.4 0.21688 Lung (deflated) 8531.4 0.26197

Blood 5197.7 0.7008 Lung (inflated) 4272.5 0.10265

Bone (cancellous) 613.18 0.083422 Muscle 10094. 0.35182

Bone (cortical) 264.19 0.020642 Nerve 9587.5 0.069315

Breast fat 117.75 0.024929 Ovary 3010. 0.33615

Cartilage 2762.1 0.17706 Skin (dry) 1126.8 0.00027309

Cerebrospinal fluid 109. 2. Skin (wet) 21876. 0.029369

Cervix 3150.7 0.54431 Small intestine 17405. 0.58028

Colon 4160.6 0.24438 Spleen 5492.8 0.11789

Cornea 16970. 0.48145 Stomach 3551.2 0.53369

Dura 393.83 0.50168 Tendon 814.98 0.38779

Eye sclera 5494.6 0.51475 Testis 6486.3 0.4344

Fat 172.42 0.024246 Thyroid 4023.1 0.53395

Gall bladder 113.99 0.90012 Tongue 5496. 0.28422

Gall bladder bile 120. 1.4 Trachea 6912.4 0.32987

Gray matter 5461.4 0.12752 Uterus 5669.9 0.52584

Heart 16982. 0.19543 Vitreous humor 98.558 1.5

Kidney 11429. 0.15943 White matter 3548.2 0.077584

maintained by the Nello Carrara Institute of Ap-
plied Physics.1 Another database has been estab-
lished by the Foundation for Research on Infor-
mation Technologies in Society.2

Table 1.1 shows the conductivity of several
key tissues at 50 kHz generated using the Italian
database, which in turnwas established using data
collected by Gabriel et al. [7–9].

1.1.5 Measurement of Impedance
Properties

The reconstruction methods used in MR-based
conductivity measurement must be carefully val-
idated with respect to reference measurements.
This normally involves direct measurement on
sample tissues using an impedance probe or mea-
surement cell. All measured impedance or ap-
parent conductivity values are influenced by the
measurement method. For low-frequency mea-

1http://niremf.ifac.cnr.it/tissprop/.
2https://itis.swiss/virtual-population/tissue-properties/
database/.

surements (below <50 MHz), electrodes may be
attached to the sample boundary, and the prop-
erties of the electrode-tissue interface must be
modeled, measured minimized, or compensated
prior to producing corrected data. Measurement
of high-frequency properties (> 50 MHz) may
be made using a dielectric probe. In this case,
the properties of the probe must also be consid-
ered. A schematic diagram of a low-frequency
impedance measurement is shown in the figure
below. The process of measuring low-frequency
electrical properties via electrodes is complex,
because measured voltages also depend on elec-
trode properties. Electrode properties are them-
selves complex and are influenced by the materi-
als composing the electrode-electrolyte interface,
the electrode area, the frequency of measurement,
and the amount of current flowing through the in-
terface, among other factors. Four-terminal mea-
surements greatly reduce the influence of elec-
trode properties, but they must still be taken into

http://niremf.ifac.cnr.it/tissprop/
https://itis.swiss/virtual-population/tissue-properties/database/
https://itis.swiss/virtual-population/tissue-properties/database/
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Fig. 1.9 (a) Two-terminal measurement electrodes and (b) four-terminal measurement circuit

account and included in models when performing
EIT reconstructions [15].

1.1.5.1 Electrode Properties
The connections linking wires, electrodes, and
tissue involve transitions in current flow from
electronic to ionic. The interfaces between these
entities and their resulting effects on measure-
ments may be represented, with electrical ele-
ments. If a two-terminal measurement is made,
as shown in Fig. 1.9a, the resulting voltage mea-
surement includes the interface properties. In its
simplest form, an electrode electrolyte interface
comprises a half-cell potential, a resistance part,
and a capacitive contribution. Values for the effec-
tive resistance and capacitance of the interface are
characteristic of the interface and concentrations
of electrolytes in the ionic conduction compart-
ment. An excellent basic summary of electrode
properties can be found in the book by Ged-
des [10].

1.1.5.2 Conductivity Cell and
Dependence on Geometry

The relationship between a voltage difference
measured on the periphery of an object and a
current flowing through the object (a transfer
impedance) is determined by both the geometry
of the object and its electrical properties. For
example, in the simple case of longitudinal cur-
rent flow in a cylindrical object with length l,
cross-sectional area A, and conductivity σ , the
measured resistance is

R = l

σA
(1.28)

Here, the geometrical factor is l/A , mea-
sured in m−1. Knowledge of the geometric factor
combined with the measured resistance enables
computation of the conductivity σ . If a conduc-
tivity cell has a complicated shape, this geomet-
rical factor can be retrieved using a substance
of known conductivity: a conductivity standard.
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Fig. 1.10 Conductivity cell example. The cell used here
is a cube, but any shape of cell can be used. A standard
conductivity sample can be used to compute the geometric
factor α. This cell has two inner electrodes on opposing
faces (snap connector, left) used to deliver current. The

resulting voltage difference is measured between the inner
electrodes that cover the remainder of each opposing face
(right). An LCR meter is useful for simple, low-frequency
impedance characterization

Such conductivity standards are conventionally
used for low-frequency measurements and are
usually potassium chloride solutions of different
concentrations, chosen to have conductivity in a
similar range as the materials to be tested. An
approximately cubic conductivity cell is shown
in Fig. 1.10. A reading may be taken using a
particular geometry using the standard, and the
geometric or shape factor α can be derived using
the relation

α = Rstdσstd (1.29)

where the shape factor is in units of m−1. Sub-
sequently, resistances measured with an unknown
substance may be converted to conductivity using

σmeas = α

Rmeas

(1.30)

Commercial conductivity cells also measure
temperature so that compensation can be per-
formed.

If a measurement of properties of a solid tissue
is required, it may be easier to cut the sample to a
simple geometric shape with a known shape fac-
tor instead of computing a shape factor separately.

1.1.5.3 High-Frequency (>50MHz)
Properties

The dielectric properties of biological materials
are often measured open-ended coaxial probes.
The measurements are made by placing by plac-
ing the probe in contact with the sample and
measuring its admittance or reflection coefficient.
The technique was described in numerous papers
in the 1980s–1990s, for example, [6]. The probe
in Fig. 1.11 has a ground plate, but this is not
necessary at low frequencies. Probes of differ-
ent sizes are used for measurement across the
frequency of interest; in general, the higher the
frequency, the smaller the probe.

In the low-frequency range of interest to
MREIT (e.g., below 100 Hz), the admittance
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ε μ
ε μ

a
b-a

Fig. 1.11 Dielectric probe, showing inner and outer radii
of a and b, respectively. Permittivities and permeabilities
of inner and outer dielectric are indicated

of the probe in contact with the sample is

Y = G + iωC where (1.31)

G = Kσ

ε0
and (1.32)

C = Kε′ (1.33)

This admittance model is adequate when the
dimensions of the probe are significantly smaller
than the wavelength. In practice, standard liquids
(e.g., water, dilute salt solutions) are used to ob-
tain the cell constant and to eliminate any stray
capacitance within the measurement system. It is
acceptable to use large probes at low frequencies;
however, large probes require large samples and
are therefore not suitable for measuring most
tissues. A 10-mm-diameter probe offers a good
compromise between size and sensitivity andmay
be used at frequencies from Hz to MHz.

1.1.6 Methods for Reconstructing
Electrical Property Images
UsingMR-BasedMethods

1.1.6.1 History
MRI methods such as MREIT, DT-MREIT,
MREPT, and CTI have been widely used to
measure the electrical properties of animals,
humans, and phantoms in vivo. However,
there are various other methods developed by
researchers to measure the electrical properties.
Some of them include electrical impedance

tomography (EIT) [1], magnetic induction
tomography (MIT) [21], and magnetoacoustic
tomography with magnetic induction (MAT-
MI) [19]. We suggest readers explore these key
references for further details.

1.1.6.2 CDI andMREIT
Current density imaging (CDI) is a method to
image the current densities induced in an imaging
object by externally administered electric current.
Notably, CDI has recently been finding applica-
tions in imaging neurostimulation-induced elec-
tric current distributions in the human brain in
vivo [16]. The experimental setup of both CDI
and MREIT is similar in the sense that both de-
liver externally administered current to an object
using surface electrodes and measure a compo-
nent of the magnetic flux density (Bz) induced
due to this external current. However, they differ
in terms of image reconstruction. CDI takes the
measured Bz images and calculates the corre-
sponding current density, whereas MREIT takes
the measured Bz in at least two orthogonal direc-
tions and calculates the underlying electrical con-
ductivity. DT-MREIT is an extension of MREIT
where anisotropic conductivity images are ob-
tained by scanning the imaging object with an
additional MRI protocol of diffusion tensor imag-
ing (DTI). Further details of CDI are provided
in Chap. 6, and the details of MREIT and DT-
MREIT are provided in Chap. 7.

1.1.6.3 MREPT
Magnetic resonance electrical properties tomog-
raphy (MREPT), sometimes just referred to as
EPT, is a method to image the high-frequency
electrical properties of an object. This method
has been rigorously researched over the past
decade, and its feasibility has recently been
demonstrated in brain tumor clinical studies
[31]. Unlike MREIT, it does not require any
external current delivery and instead relies on
the measured B1 magnitude or phase maps of
the radiofrequency (RF) field of an MRI scanner.
Since theB1 magnetic field of anMRI scanner has
an operating frequency at the Larmor frequency
of spins (see details in Chap. 3), it provides the
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electrical properties at the Larmor frequency of
an MRI scanner. Unlike MREIT which provides
only electrical conductivity images, the MREPT
can provide both conductivity and permittivity
images depending on the method used to acquire
the B1 maps. Further details of MREPT are
described in Chap. 8.

1.1.7 Other Electromagnetic
Properties Measureable Using
MRI

The magnetic permeability relates the magnetic
flux and magnetic field strengths as

B = μ0 (H + M) = μ0μrH = μ0 (1 + χ)H
(1.34)

where μr is the relative permeability and χ is
the magnetic susceptibility. Note that like μr ,
χ is a dimensionless quantity. As we noted in
the introduction, for most purposes, we may as-
sume that the magnetic susceptibility of the body
is uniform. However, the MR images used for
reconstructing conductivity images may be af-
fected by variations in susceptibility at air-tissue
boundaries (e.g., in the sinuses of the head) or
by small amounts of more magnetizable material
in the body. Significant natural occurrences of
magnetic susceptibility are in tissues containing
the protein ferritin, a macromolecule that stores
iron in the body, as well as in calcified tissue or
in myelin. The area of quantitative susceptibility
mapping (QSM) has developed to aid imaging
susceptibility variations. We do not discuss the
details of QSM in subsequent chapters in this
book, but readers are encouraged to refer to [28]
for more details.
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2.1 Introduction

Electromagnetic modeling is an essential and cru-
cial element in MRI-based methods of character-
izing electromagnetic properties or current flow.
In its simplest form, modeling can be used to pre-
dict measurements ofmagnetic flux density (Bz in
the case ofMREIT orB1 fields in the case of EPT)
based on realistic representations of the imaged
object. Further, projected current densitymethods
must refer to a uniformmodel of an imaged object
in order to calculate the projected current density
distribution. Modeling in this area is most com-
monly performed using finite element methods
and most often using commercial finite element
software. While it is not necessary to know every
feature of this type of software, understanding
the basics of finite element methods will help in
interpreting and critically examining the results
and learning how to perform simulations effi-
ciently. In this chapter, we describe aspects of the
finite element approach and demonstrate models
relevant to simulations performed in this area.
There are many different approaches to modeling
described in the literature. The examples we show
in the latter parts of the chapter are just one way
of going about this task.
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2.2 Overview of the Finite
Element Approach

The finite element method is generally used to
solve partial differential equations where an an-
alytic solution is not possible. Finite element or
finite difference techniques are very commonly
used to solve partial differential equations that
involve complicated boundary conditions or ir-
regular geometries. The finite element method
was first used to solve problems of aircraft struc-
tural design and other engineering of elasticity
problems. Most of the formal development of this
technique was done in the early 1960s, and more
recent work has been concerned with formulating
new and more specific elements for particular
purposes. Finite element techniques are widely
used in engineering applications, usually using
packages designed for a particular area.

The principal approach in the finite element
method is to consider a continuous region as
an assembly of several discrete parts (elements)
and to find a piecewise polynomial (or other
basis function) approximation to the solution. Al-
though the idea of using many small elements to
approximate the behavior of a complex whole is
not new, the comparatively recent development of
this technique is mostly due to increases in com-
puter power and availability. Progress in finite
element techniques is also dependent on advances
in numerical algorithms for the efficient assembly
and solution of matrix equations.

An example of a two-dimensional finite el-
ement discretization mesh is shown in Fig. 2.1,
with a region R divided into a number of trian-
gular elements. The boundary of R is the contour
C, which may be subdivided into smaller regions
C1, C2, . . . , Cm depending on how many differ-
ent boundary conditions are specified.

2.3 Partial Differential Equations

The partial differential equations (PDEs) com-
monly encountered in physical problems are sec-
ond order and include the Laplace and Poisson
equations, Schrödinger’s andwave equations, and
diffusion equations.

Fig. 2.1 Example two-dimensional finite element dis-
cretization, showing the domain R and the boundary C

with subsections C1, C2, and C3

A second-order, two-dimensional partial dif-
ferential equation may be expressed as

Lφ = f (2.1)

such that (in two dimensions)

Lφ = A
∂2φ

∂x2
+ 2B ∂2φ

∂x∂y
+ C

∂2φ

∂y2

+F
(
x, y, φ,

∂φ

∂x
,
∂φ

∂y

)
(2.2)

Here, L is an operator applied to the solution
and f is the result. The coefficients A, B, and
C are functions of x and y. The coefficients may
also depend on φ or its derivatives. If that is the
case, the PDE is non-linear.

The Poisson equation is a PDE where (now in
three dimensions)

L = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
and (2.3)

Lφ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= ρ (2.4)

This operator is called the Laplacian operator,
and it is often written using ∇, where

∇ =
[

∂
∂x

∂
∂y

∂
∂z

]
(2.5)

and in the case above,

L = ∇ · ∇ = ∇2 (2.6)
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One form of the Poisson equation describes
the relationship between voltages and activity
sources within the brain. In this case, ρ rep-
resents charge density of internal sources, φ is
replaced with V , and the overall equation can be
stated

∇ · (−σ∇V ) = ∇ · (σE) = ∇ · J = ρ (2.7)

where J is electrical current density, σ is the
electrical current density, and E = −∇V is the
electric field.

The PDE describing current flow through
the head without any internal sources (e.g., in
transcranial electrical stimulation) is the Laplace
equation

∇ · J = 0. (2.8)

In the low-frequency electrical context, this
equation is also called Ohm’s law. When working
with PDEs and their boundary conditions, it can
be very useful to confirm dimensions. For exam-
ple, in the case of the Poisson equation above, you
can see that the dimensions of ρ are the same as
the space derivative of J. Since J is measured in
A/m2, the dimensions of ρ are A/m3.

Boundary equations must be specified to solve
PDES. There are three types of boundary condi-
tions, involving specifying the actual solution on
some portion of the domain surface, or the flow
through a surface, or a mixture of the two.

Dirichlet boundary conditions involve specifi-
cation of the solution on part of the domain. For
example, in Fig. 2.1, we could specify that

φ = u1 on C1 (2.9)

and a Neumann boundary condition may be de-
fined with

∂φ

∂n
= g2(s) on C2 (2.10)

where n is a vector normal to C2 and distance
along the boundary is parameterized using s.

Boundary conditions can also be specified as a
weighted combination of Neumann and Dirichlet
boundary conditions. This type is called a Robin
boundary condition. An example of a Robin
boundary condition is to require on C3 that

∂φ

∂n
+ λ3(s)φ = h3(s). (2.11)

A Cauchy boundary condition involves speci-
fying both Dirichlet and Neumann boundary con-
ditions simultaneously on a part of a boundary.

The PDEs describing low-frequency electrical
current flow and current density, as noted above,
is Ohm’s law (2.8). The relationship between
low-frequency conductivity and measured mag-
netic flux densities can be developed by com-
bining Ohm’s and Ampere’s laws. Methods for
reconstructing low-frequency conductivity distri-
butions frommeasurements of current density are
described in Chap. 7. For high-frequency conduc-
tivity or permittivity properties, we must consider
the full Maxwell description used as the basis for
electric properties tomography (EPT) reconstruc-
tions (Chap. 8).

2.4 The Finite Element Method

A key concept involved in the finite element
method is the concept of the functional. The func-
tional is a function, specific to a particular PDE,
that expresses, conceptually, the total potential
energy contained within a solution. For a me-
chanical problem, the functional expression will
literally be the potential energy of the solution.
Minimization of the functional, denoted I [φ], is
therefore equivalent to minimizing the energy of
the solution. A functional expression can be de-
fined for many PDEs, such that a unique solution
of Lφ = f occurs at the minimum value of I [φ].

As we noted above, the basis of the finite
element method is to specify the solution using a
few basis functions within each of a large number
of small regions that together completely cover
the domain. Thus, the solution within the entire
region may be expressed as

�(x, y) =
E∑

e=1

φe(x, y) (2.12)

In each case, outside the element e, the func-
tion for the solution φe is identically zero.
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The basis functions chosen for the solution
within each element are usually polynomials be-
cause of their simple form. When the expressions
for minimizing the energy over each element are
solved simultaneously, the result will be a distinct
set of coefficients for each element, and the full
solution is a piecewise continuous set of polyno-
mial functions. One key feature of the FEM is that
if enough elements are used, the finite element
solution should converge to the actual solution.
Since the solution of the partial differential equa-
tion is only approximated using only a few basis
functions, accuracy within a particular element
depends on how much the solution changes over
it. If the solution is particularly active in parts
of the region, the elements may be graded more
finely about these points to ensure a uniform
accuracy is maintained throughout.

2.5 The Shape Function

Within each element, it holds that

φe(x, y) = Neδe. (2.13)

The matrix Ne is called the shape function
matrix for the element. The shape function has
the same form for similar elements. The vector δe

contains the solution for the PDE at each node

within the element. It is also often called the
displacement vector. In the most simple elements,
nodes are placed at vertices.

The shape function provides a means of inter-
polating solutions at the nodes of the element to
find the solution anywhere within the element. A
very simple example is the linear line segment el-
ement, shown in Fig. 2.2. In this case, the solution

matrix for the element is

δe =
[
φA

φB

]
(2.14)

For the linear line segment, the shape function
matrix can be written as

Ne = [Ne
A(ζ ) N

e
B(ζ )

] = [ 12 (1 − ζ ) 1
2 (1 + ζ )

]

(2.15)
where ζ is a generic parameter denoting location
within the element. Consider the case where we
would like to interpolate the solution to the ele-
ment at its midpoint xm. At this point, ζ = 0 and
Ne

A = Ne
B = 1

2 . The value of the solution at the
midpoint is therefore 1

2φA + 1
2φB .

What does the solution look like as a polyno-
mial expression?Assume that the endpoints of the
element are placed at xA = 0.25 and xB = 0.75.
Then, xm = 0.5, L = 0.5, and ζ = 4x − 2, and
the function within the element is

φe(x) = Neδe = [ 12 (1 − ζ ) 1
2 (1 + ζ )

]
[
φA

φB

]

= [ 32 − 2x 2x − 1
2

] [φA

φB

]

= 2x(φB − φA) + 1

2
(3φA − φB)

(2.16)
which is a linear function in x.

Note that the shape functions in (2.15) and il-
lustrated in Fig. 2.2 are generic and could be used
to summarize any linear line segment element.
Whatever the location or size of the element, the
left vertex will be at ζ = −1 and the right vertex
at ζ = 1. This is key to formulating the expression
for minimizing the functional I .

Fig. 2.2 Linear line
segment element, showing
nodes at segment ends
(red), element midpoint
(xm), and reduced
parameter ζ definition
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2.6 Formulating the Global
SolutionMatrix

Because the overall solution is a patchwork of
individual functions, the functional for the over-
all solution will also be a patchwork function.
From (2.16), we see that each φe depends on
the value of the displacement vector in individual
elements. Therefore, we can say that

I [�] =∑E
e=1 I

e = I
(
φ1, φ2, . . . , φE

)

= I (φ1, φ2, . . . , φN) . (2.17)

where N is the total number of nodes within the
mesh.

Within each element, the derivative of the
functional will end up depending only on the
derivative of the shape functions (since the
displacement vectors just contain numbers).
Because the shape functions are the same in each
element, once the derivative has been computed
for one element, it has been done for all elements.
The remainder of the problem involves applying
boundary conditions and assembling the overall
solution matrix to obtain the solution vector for
all the nodes within the elements.

The next step is to compute the derivative of
the functional with respect to each nodal solution.
Appendix 1 contains a derivation of the functional
for the Laplace or Poisson equation. It is found
that if the derivative of the functional is set to zero,
the equation that must be solved for each element
is [

ke + k̄e
]
δe = fe + f̄e. (2.18)

where

keij =
∫∫

Re

(
∂Ne

i

∂x

∂Ne
j

∂x
+ ∂Ne

i

∂y

∂Ne
j

∂y

)
dxdy

k̄eij =
∫

Ce

λ(s)Ne
i N

e
j ds

f e
i =

∫∫

Re

fNe
i dxdy

f̄ e
i =

∫

Ce

h(s)Ne
i ds.

(2.19)

The contributions for k̄eij and f̄ e
i are only cal-

culated if the element e is coincident with the
boundary and if the functions λ(s) or h(s) are
non-zero on that portion of the boundary. The
indices i and j vary over all the nodes of the
element.

The last step of solving the problem is to as-
semble the global solution matrix. This involves
taking each individual elementmatrix and placing
its entries in the correct locations to form a system

K� = F. (2.20)

The matrix K is then inverted to solve for the
overall displacement matrix,
, which consists of
the solution values at all nodes within the mesh:


 =

⎡

⎢
⎢⎢
⎣

φ1

φ2
...

φN

⎤

⎥
⎥⎥
⎦
. (2.21)

These concepts are explored in the example in
Sect. 2.8.

Some additional examples of shape functions
are shown in Sect. 2.7.

2.7 Shape Functions for Linear
Elements

It was noted before that the shape function ma-
trices Ne have the same form for each element
of the same type. In this section, shape functions
for rectangular, triangular, and cubic linear (first-
order polynomial in x and y) elements are devel-
oped. In simple cases where elements are square
or triangular shaped, the nodes are chosen to be
the vertices of the element.

2.7.1 Rectangular Linear Elements

In the simplest rectangular element, each node is
placed at a vertex of the rectangle as illustrated in
Fig. 2.3.

Thus, the expression or the matrix of nodal
variables, δ, is a 4 × 1 column matrix made up
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Fig. 2.3 Rectangular
element showing reduced
variable notation

a

b

Node D

Node C

Node A

Node B

of the solution values at each vertex

δ =

⎡

⎢
⎢
⎣

φA

φB

φC

φD

⎤

⎥
⎥
⎦ (2.22)

and the interpolation polynomial used to find the
solutionwithin a rectangular element has the form

φe(x, y) = a0 + a1x + a2y + a3xy. (2.23)

Locations within the rectangle can be
expressed in terms of a reduced variable set
(ζ, η) similar to the linear line segment above,
and the general shape function matrix Ne can be
expressed as

Ne(x, y) = [Ne
A(x, y) Ne

B(x, y) Ne
C(x, y)

Ne
D(x, y)

]
. (2.24)

We apply the requirements that the shape func-
tion matrix entry specific to each node is identical
to 1 on the node, that is,

Ne
A(1, 1) = Ne

B(1,−1)

= Ne
C(−1,−1) = Ne

D(−1, 1) = 1,
(2.25)

and that the value of each shape function entry at
all the other nodes is 0, that is,

Ne
A(1,−1) = Ne

A(−1,−1) = Ne
A(−1,−1) = 0

(2.26)
with similar rules for the other shape functions in
the shape function matrix. The expression for the
solution in the element e can then be stated

φe(x, y) = Neδe = 1

4

⎡

⎢⎢
⎣

(1 + ζ )(1 + η)

(1 + ζ )(1 − η)

(1 − ζ )(1 − η)

(1 − ζ )(1 + η)

⎤

⎥⎥
⎦

⎡

⎢
⎢
⎣

φA

φB

φC

φD

⎤

⎥
⎥
⎦

(2.27)

The quantities that must be computed for each
element are ke and fe. You can see from (2.19)
that the expression for ke is the most complex.
The integral is first transformed to be over ζ and
η, becoming

keij =
∫∫

Re

(
∂Ne

i

∂x

∂Ne
j

∂x
+ ∂Ne

i

∂y

∂Ne
j

∂y

)
dxdy

=
∫ 1

−1

∫ 1

−1

(
∂Ne

i

∂ζ

∂ζ

∂x

∂Ne
j

∂ζ

∂ζ

∂x

+∂Ne
i

∂η

∂η

∂y

∂Ne
j

∂η

∂η

∂y

)
a
2
b
2dζdη (2.28)

Consider i, j = A. In this case,



2 Modeling for Electromagnetic Characterization, Prediction, and Reconstruction 23

keAA

=
∫ 1

−1

∫ 1

−1

(
∂Ne

A

∂ζ

∂ζ

∂x

∂Ne
A

∂ζ

∂ζ

∂x
+ ∂Ne

A

∂η

∂η

∂y

∂Ne
A

∂η

∂η

∂y

)
a

2

b

2
dζdη

=
∫ 1

−1

∫ 1

−1

(
1

16
(1 + η)

2

a
(1 + η)

2

a
+ 1

16
(1 + ζ )

2

b
(1 + ζ )

2

b

)
a

2

b

2
dζdη

= 1

16

b

a

∫ 1

−1

∫ 1

−1

(
1 + 2η + η2

)
dζdη + 1

16

a

b

∫ 1

−1

∫ 1

−1

(
1 + 2ζ + ζ 2

)
dζdη

= 1

8

b

a

∫ 1

−1

(
1 + 2η + η2

)
dη + 1

8

a

b

∫ 1

−1

4

3
dη

= b

a

1

3
+ a

b

1

3
= 1

3

(
b

a
+ a

b

)

(2.29)

If the element is square (a = b), then keAA = 2
3 .

Repeating the process for all indices i and j , we
obtain the full ke matrix for a square as

ke = 1

6

⎡

⎢⎢
⎣

4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4

⎤

⎥⎥
⎦ (2.30)

You can see that the integrations are quite te-
dious. Luckily, since the expressions are in terms
of the reduced variables, the quantities only de-
pend on a and b and, once done for one rectangle,
are done for all. Expressions for the matrices k̄,
f, and f̄ are needed to complete the formulation
of the solution. These are dependent upon the

particular boundary conditions, are a bit more
straightforward, and they will be demonstrated in
more detail in the example of triangular elements.

Rectangular elements have a number of char-
acteristics that may make them unsuitable. First,
the blocky shape results in a poor approxima-
tion of general boundary shapes. If a good ap-
proximation to any boundary shape is desired,
a large number of small rectangular elements
will be required. The more elements required, the
more nodes are in the model, and thus the larger
the system of equations describing the system.
Hence, the use of a square element basis may
result in inefficient solutions at any given level
of accuracy. Second, as the simple rectangular
element has four vertices, it does not contain
a complete polynomial expression, i.e., not all
second-order terms are included, and thus there is
some anisotropy in the element. The interpolated
solution along a side common to two rectangular
elements may not be the same if, for instance,
its side is not oriented parallel to the coordinate
(x, y) axes.

2.7.2 Hexahedral Elements

The rectangular element of Fig. 2.3 may be sim-
ply extended to provide solutions to equations in
three dimensions (Fig. 2.4). In the case where the
element is cubic (a = b = c), in this case with
a = b = c, the expression for ke becomes

Fig. 2.4 Hexahedral
element showing reduced
variable notation

A

B

C

D

E

F

G

H

a b

c
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Fig. 2.5 Linear triangular
element. Interpolation
within the element is
described using the
variables LA, LB , and LC .
The value of each variable
along the edge opposite its
corresponding nodes is 0.
For example, the value of
LC along the edge joining
nodes A and B is 0. The
value of each variable
exactly on the
corresponding node is 1

Node A

Node B Node C

ke = 1

6

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

48 0 0 −12 0 −12 −12 −12

0 48 −12 0 −12 0 −12 −12

0 −12 48 0 −12 −12 0 −12

−12 0 0 48 −12 −12 −12 0

0 −12 −12 −12 48 0 0 −12

−12 0 −12 −12 0 48 −12 0

−12 −12 −12 0 −12 0 0 48

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

(2.31)

2.7.3 Triangular Elements

Triangular and tetrahedral elements are the
workhorses of all finite element frameworks.
Their shape enables better approximation to
general boundary shapes to be made, and, as
the simplest triangle element has three vertices,
the approximating polynomial solution inside a
triangular element has the form

φe(x, y) = a0 + a1x + a2y (2.32)

which is a complete first-order polynomial.
Expressions for the shape functions for the

linear triangular element are found in a similar
way to those of the rectangular element. In a
similar way to the formulation of reduced coor-
dinates (x, y)→(ζ, η) for rectangular elements,
locations within this linear triangular element are
expressed in terms of a new coordinate system
(x, y)→(LA,LB,LC), such that

x = LAxA + LBxB + LCxC

y = LAyA + LByB + LCyC. (2.33)

As before, we require that the shape function
matrix entry referred to a particular node has the
value 1 on that node and 0 at all other nodes.
Figure 2.5 shows the triangle nodes A, B, and
C and the properties of the functions LA, LB ,
and LC .

The coordinates Li have the properties that

Li = ai + bix + ciy

2A
(2.34)

whereA is the area of the triangle. Also, with this
shape function definition, (LA + LB + LC = 1).

The constants ai, bi , and ci (i = A,B,C) are
defined using

aA = xByC − xCyB aB = xCyA − xAyC aC = xAyB − xByA

bA = yB − yC bB = yC − yA bC = yA − yB

cA = xC − xB cB = xA − xC cC = xB − xA

(2.35)

Along the edge of a triangle opposite a par-
ticular node, the node’s shape function will be 0.
For example, as we move along the edge joining
node B and node C in Fig. 2.5, we see that LC

will start at 0 at node B and increase to be 1 at
node C. Along the same edge, LA will always
be 0, and since the sum LA + LB + LC is
always 1, LB will decrease from 1 to 0 along the
same edge and 1 − LC . This definition makes it
very straightforward to formulate integrals along
boundary edges.
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As we saw for the previous shape functions, is
true that

φe(x, y) = Neδe = [LA LB LC]

⎡

⎣
φA

φB

φC

⎤

⎦ .

(2.36)
Substituting this in (2.19) gives

keij =
∫

A

(
∂Li

∂x

∂Lj

∂x
+ ∂Li

∂y

∂Lj

∂y

)
dxdy (2.37)

and since by (2.34)

∂Li

∂x
= bi

2A
and

∂Li

∂y
= ci

2A
(2.38)

and the quantities bi, bj , and ci, cj are just found
from locations of triangle vertices, we have that

kij =
∫

A

(
bibj

4A2
+ cicj

4A2

)
dxdy

= bibj

4A
+ cicj

4A

(2.39)

2.7.4 Tetrahedral Elements

Since tetrahedral elements are very similar to
triangles, it makes sense that tetrahedral shape
functions are closely related to those for triangles.
For linear tetrahedral elements, we have that

Ne = [Ne
A Ne

BN
e
C Ne

D

]
(2.40)

where now

Li = ai + bix + ciy + diz

6V
(2.41)

and

ai =
∣∣
∣
∣∣
∣

xj yj zj
xk yk zk
xl yl zl

∣∣
∣
∣∣
∣
, bi = −

∣∣
∣
∣∣
∣

1 yj zj
1 yk zk
1 yl zl

∣∣
∣
∣∣
∣
,

ci = −
∣
∣
∣∣
∣
∣

xj 1 zj
xk 1 zk
xl 1 zl

∣
∣
∣∣
∣
∣
, di = −

∣
∣
∣∣
∣
∣

xj yj 1
xk yk 1
xl yl 1

∣
∣
∣∣
∣
∣
.

(2.42)

where i, j, k, l = A,B,C,D and V is the tetra-
hedral volume.

For an isotropic material, the elements in the
ke matrix for a linear tetrahedron become

keij =
∫

V

(
∂Li

∂x

∂Lj

∂x
+ ∂Li

∂y

∂Lj

∂y

+∂Li

∂z

∂Lj

∂z

)
dxdydz

= 1

36V

(
bibj + cicj + didj

)

(2.43)

2.8 An Example Problem

Suppose we are asked to solve the problem

∇ · (σ (x, y)∇φ) = 0 (2.44)

in two dimensions using the linear triangular el-
ement mesh shown in Fig. 2.6. We will assume
that the conductivity σ(x, y) is constant on each
element and scalar. In this case, in formulating
equations for each element, we can bring σ(x, y)
out of the integral, and expressions will be identi-
cal to those shown in (2.19) except that keij will
be multiplied by σ e in each case. For now, we
will assume that σ(x, y) = 1 throughout the disk.
Cases where σ is anisotropic are considered in
Sect. 2.12.

There are four boundary segments shown in
Fig. 2.6. Assume the following boundary condi-
tions apply:

φ = 0 on C1

∂φ

∂n
= h(s) on C2

∂φ

∂n
= 0 on C3

∂φ

∂n
= 0 on C4

(2.45)

The procedure used to solve the problem is to
compute the matrices keij , k̄

e
ij , f

e
i , and k̄ei for each

element, assemble the overall matrix equation,
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Fig. 2.6 Division of the
unit disk into 16 elements
and 13 nodes, with
different boundary
conditions applying on
boundary segments C1, C2,
C3, and C4. Element
numbers are contained
within circles

and solve. Further details of the formulation are
shown in Appendix 1, but will be outlined here.

First, note the mesh definition. The triangular
mesh does not completely cover the unit disk,
but if more elements are used, they should ap-
proximate the boundary shape better. In Fig. 2.6,
the element numbers are contained in circles. For
example, element 1© involves nodes 1, 4, and 3.
We may choose to create a list that has dimension
E × 3 where each row contains the indices of
nodes in each of the E elements. The ordering
of nodes is important, because this may affect
the sign of integrations performed along element
edges. If integrals are calculated in the same sense
as elements are defined, it doesn’t matter which
sense is chosen (clockwise or counterclockwise in
this two-dimensional case) as long as the choice
is consistent. Another list with dimension N × 2
could contain the locations of each node.

The entries in the keij matrices are straightfor-
wardly calculated from (2.39) multiplied by σ e©
(the conductivity of element e). Because (2.44)
has a zero right-hand side, all entries in fe are zero
for each element within the mesh. Since λ(s) = 0
for the entire boundary, entries in any k̄e matrices
are similarly all zero. As h(s) is non-zero on C2,
we must calculate entries for f̄e on element 14,
which is coincident with C2.

Let’s assume that the nodes in element 14 are
(in order) 5, 6, and 4. We have that:

...

node[4] = −0.16 , 0.39
node[5] = −0.74 , 0.78
node[6] = −1 , 0

...

.

The area of the triangle is 0.56. From (2.35),
we find that

bA = y6 − y4 = −0.39 bB = y4 − y5 = −0.39

bC = y5 − y6 = 0.78

cA = x4 − x6 = 0.84 cB = x5 − x4 = −0.58

cC = x6 − x5 = −0.26

(2.46)

and the entries in k 14 are

=
⎡

⎣
0.39 −0.15 −0.23

−0.15 0.22 −0.07
−0.23 −0.07 0.304

⎤

⎦ (2.47)

k 14 =

5 6 4
⎡

⎣

⎤

⎦
0.39 −0.15 −0.23 5

−0.15 0.22 −0.07 6

−0.23 −0.07 0.304 4

(2.48)

As noted above, the entries in f 14 and k̄ 14

are all zeroes, but we must figure out f̄ 14 .
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Fig. 2.7 Triangular element intersecting with boundary.
The length of the boundary segment is given by (b2j +
c2j )

1/2, and over the same traverse, the parameter Lk

changes from 0 to 1, and Lj is always 0. Changing
variables from x, y to Li,j,k will involve changing the
integration variable from ds to dL and scaling by the edge
length (b2j + c2j )

1/2 as in (2.50)

We need to compute

f̄ 14 =

⎡

⎢⎢
⎢
⎢
⎣

∫
Ce h(s)L

14
A ds

∫
Ce h(s)L

14
B ds

∫
Ce h(s)L

14
C ds

⎤

⎥⎥
⎥
⎥
⎦
. (2.49)

The only part of the element that is coincident
with the boundary is between nodes A and B

of the element (nodes 5 and 6). Traversing the
boundary counterclockwise from A to B, LB

starts at 0 and ends at 1. On this edge, LC is
always 0. The integrals for the element become

f̄ 14 =

⎡

⎢
⎢⎢
⎣

∫ node6
node5 h(s)(1 − L

14
B )ds

∫ node6
node5 h(s)L

14
B ds

0

⎤

⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢
⎢
⎣

∫ 1
0 h(1 − L

14
B )

√
b23 + c23dLB

∫ 1
0 hL

14
B

√
b23 + c23dLB

0

⎤

⎥⎥
⎥
⎥
⎦
.

(2.50)

Where does the factor
√
b23 + c23 come

from?This quantity is the length of the triangle

edge, since ds = √dx2 + dy2 and you can show,
via (2.34), that this is the case since bC = yA−yB
and cC = xB − xA. Figure 2.7 shows the idea.

Finally, we obtain

f̄ 14 ==

⎡

⎢
⎢⎢
⎢
⎣

∫ 1
0 h(1 − L

14
B )

√
b23 + c23dLB

∫ 1
0 hL

14
B

√
b23 + c23dLB

0

⎤

⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
2h

√
b23 + c23

1
2h

√
b23 + c23

0

⎤

⎥
⎥
⎦ =

⎡

⎣
0.412 h

0.412 h

0

⎤

⎦ . (2.51)

2.9 Assembly of the Overall
Matrix Equation

From the previous example, we have only filled
entries for one set of element matrices. Once
entries for each individual element matrix are
assembled, they can be added into the globalN ×
N matrix. For the example in Sect. 2.8, the global
K matrix is assembled from only individual kes.

The entries we found from k 14 would appear in
the global matrix in rows and columns 5, 6, and 4
as shown in (2.52)
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⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.30 −0.23 −0.07 0 0 0 0 0 0 0
0 0 0 −0.23 0.38 −0.15 0 0 0 0 0 0 0
0 0 0 −0.07 −0.15 0.22 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

.

(2.52)
The entries in the matrix are the same, but

the rows and columns are rearranged so that they
refer to global node numbering, not the node
order in the element.

The full K matrix can also be computed. See
Appendix 1 for more details. Similarly, the f̄
contributions from element 14 are

F =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

...

0
0.412h
0.412h

...

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

. (2.53)

You can see that the ke matrix is always sym-
metric. In fact, all the ke matrices we have shown
so far are symmetric (this is a property of the
Laplacian operator), and all rows and columns
sum to zero. This means these matrices are all
singular. As a consequence, the global K matrix
is also singular, and it cannot be inverted to find
the solution �. At this point, we haven’t men-
tioned the Dirichlet boundary conditions applied
on C1. This boundary condition will be applied
by requiring that the solution on nodes 12 and
13 is 0. This can be done by eliminating all
rows and columns involving nodes 12 and 13.
As a consequence, the initially singular K matrix
becomes non-singular, and � can be found.

2.10 Solution of the System of
Equations

After working through all elements within the
mesh, we obtain an overall system of equations
describing the solution in the form

K� = F (2.54)

where K is an N × N matrix, � is an N × 1
vector containing the nodal solutions, and F is
an N × 1 matrix. For the 13 × 13 system above,
inverting K is trivial, but many meshes contain
hundreds of thousands of elements and nodes, or
more. One important property of all K matrices,
regardless of the PDE, is that they are typically
sparse. This is because of the mesh definition.
Non-zero entries only occur in K if nodes are on
the same or neighboring elements. For example,
in Fig. 2.6, there will not be an entry at index 3,6
(or 6,3) in K because there are no mesh edges
shared by nodes 3 and 6. One useful consequence
of sparsity is that even if the nominal size of theK
matrix is very large, special storage and operation
methods can be used to represent and combine
them compactly and efficiently.

The method used to solve the system is de-
pendent upon the properties of K, which in turn
relates to the PDE’s properties. Inversion of K
matrices from Poisson-type PDEs are relatively
straightforward. Because of the large size of K
matrices (even after accounting from sparseness),
it is inefficient to explicitly invert K using Gaus-
sian elimination because the number of opera-
tions required is of O(N3). It is more common
to use iterative techniques that minimize the N-
dimensional function m(�), where

m(φ) = �TK� − F�. (2.55)

The derivative (gradient) of m(�) is

∇m(�) = K� − F. (2.56)
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At the minimum of m(�), ∇m(�) = 0 and
K� = F, effectively inverting K.

An example of a minimization algorithm that
can be used to achieve this inversion is the con-
jugate gradient method [9]. Packages like COM-
SOL use many different types of solution meth-
ods including algebraic multiscale methods and
segregated methods, and the exact solution may
be chosen by the software automatically depend-
ing on the equation characteristics. The solution
becomes more complicated the more partial dif-
ferential equations are being solved simultane-
ously. If equations are time dependent, entire ma-
trices must be inverted at each time step. Methods
used for solution of finite element matrices for
time-dependent PDEs is out of the scope of this
book, but more details can be found in [2] or [6].

2.11 Sampling Solutions

Recall that the shape function provides a means
to convert the solved vector of nodal values into
the value of the solution at any point within
any element (2.13). It is possible to sample your
solution at any point within the domains making
up the model. This is particularly relevant in our
application, where the models and experimental
data must be matched as well as possible. Details
of a convenient scheme for sampling a model to
match MRI data are shown in Appendix 2.

2.12 Accounting for Anisotropy

In the equations shown in the example, we did
not worry about the conductivity σ(x, y) term
included in (2.44). If σ(x, y) is isotropic, all
that will be required is to premultiply expres-
sions in keij by σ e. However, important body tis-
sues including muscle and white matter exhibit
anisotropy, and, depending on the application,
you may need to include it in your model. If
σ(x, y) is anisotropic, the conductivity distribu-

tion in each element is specified by a tensor Ce.
In two dimensions, we can write Ce as

C
e =

[
Cxx Cyx

Cxy Cyy

]
(2.57)

Tensors describing diffusion or conductivity
properties are usually symmetric, i.e., Cxy = Cyx

and Cyz = Czy .
If the conductivity is isotropic or if the direc-

tion of the material anisotropy coincides with the
coordinate axes, all off-diagonal terms are 0, and
the tensor can be expressed as

C
e =

[
Cxx 0
0 Cyy

]
. (2.58)

If the material is isotropic, then Cxx = Cyy .
The operator for the isotropic case shown

in (2.44) is σ e∇ · ∇ = ∇2, but the operator
for anisotropic cases is ∇ · (Ce(x, y)∇). The
computations for the ke matrix must take into
account the individual tensor components. In
calculating the operator (L contribution of the
functional, we must calculate

ke =
∫

R

(
(∇Ne)TCe∇Ne

)
dA. (2.59)

The operator ∇ here can be thought of as a
matrix, that is,

∇ =
[

∂
∂x
∂
∂y

]
(2.60)

Recall that Ne is a 1 × X matrix, where X is
the number of nodes in the element. The result of
applying (2.60) to Ne is a 2 × X matrix. If we
multiply the 2 × 2 matrix σ by the 2 × X ∇Ne,
we obtain another 2 × X matrix. Premultiplying
this result by the X × 2 matrix (∇Ne)T results in
an X × X matrix. An example for the triangular
shape function where X = 3 is shown in (2.61).
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ke=
∫

Re

⎛
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⎝

⎛

⎝

⎡
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∂
∂x

∂
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⎠
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∂
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∂
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⎞

⎟
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∂x
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∂y
∂LB

∂y
∂LC
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⎤

⎦

⎞

⎟
⎠ dA
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∫
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⎛

⎜
⎜
⎝

⎡

⎢
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∂LA

∂x
∂LA

∂y

∂LB
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∂LB

∂y

∂LC
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∂y

⎤
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⎥
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∂LA
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∂LC
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(2.61)

As you can see, the resulting expression gets
large quite quickly. But the result is a 3×3matrix.
Let’s just look at one entry, for keAA. We find that

keAA =
∫

Re

(
Ce

xx

∂LA

∂x

∂LA

∂x
+ Ce

yx

∂LA

∂y

∂LA

∂x

+Ce
xy

∂LA

∂x

∂LA

∂y
+ Ce

yy

∂LA

∂y

∂LA

∂y

)
dA

(2.62)

If the material is isotropic, we recover (2.39).

2.13 Grading

Recall that the solution within each element is
typically a low-order polynomial. Depending on
the boundary conditions, the shape of the bound-
ary itself, and the positions of any sources, the
solution may be more active (that is, change more
rapidly) in different areas of the domain. There-
fore, if elements are uniformly sized, this will re-
sult in reduced accuracy near such areas. Tomain-
tain uniform solution accuracy throughout the
solution space, it is often necessary to grade the
size of elements, using smaller elements where
the solution is most active. This can be done
automatically when the mesh is created, by spec-
ifying a grading function that has large values
where solution activity is expected to be highest.
Meshing will usually be finer (smaller elements)
near regions of higher curvature, and this is where
solutions may also be expected to be more active.
An alternative technique is to bias a coarsely
graded mesh according to the expected solution
activity in order to make the accuracy uniform

throughout and then to increase the fineness of the
mesh uniformly up to the number of elements re-
quired to meet the target accuracy in the solution.

Of course, while it is straightforward to de-
termine the accuracy of a model where an exact
analytic solution is available, in practice, the ac-
curacy of a particular complex model is difficult
to establish. To determine the influence of the
finite element mesh on the solution, it is usual
to solve the problem on meshes with a range
of element numbers (a “mesh refinement study”)
and to trust models when increasing the number
of elements further does not change solutions
beyond a specified tolerance.

2.14 Higher-Order Elements

A method of increasing the solution accuracy
while maintaining the same number of elements
is by increasing the order of the approximat-
ing polynomial inside each element. Often this
will require specification of internal nodes. For
instance, in the case of the triangular element,
increasing the order of the approximating poly-
nomial from 1 to 2 requires the specification
of three extra nodes—resulting in a complete
second-order polynomial of the form

φe(x, y) = a0+a1x+a2y+a3xy+a4x
2+a5y

2.

(2.63)
The three extra nodes are chosen to be the mid-

points of each side of the triangle as in Fig. 2.8.
For a tetrahedron, the extra nodes are inserted in
a similar way.

The shape functions for quadratic triangles
or tetrahedra are derived from the simple linear
triangle or tetrahedral shape functions, and a 6×6
or 10 × 10 ke matrix results.

2.15 Segmentation of Image Data
into Realistic Geometry
Models

The closer a model is to a real experimental situ-
ation, and the larger the number of elements, the
more the solution should be expected to follow
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Fig. 2.8 Linear and quadratic triangular and tetrahedral elements. Nodes in linear elements are placed on vertices.
Extra nodes for quadratic elements are placed halfway along edges

the real-world solution. Recreation of accurate
model geometries usually depends on imaging
data, whether they be photographs or medical
images. In our area,MRmagnitude images are the
principal source of the data used to produce realis-
tic models, since they are a convenient byproduct
of MREIT or EPT data collection. In the sections
that follow, we will consider segmentation of a
three-dimensional neuroimaging volume for elec-
tromagnetic simulations, but the general princi-
ples can easily be extensible to images of other
data and modeling other phenomena.

The simplest model that could be created from
MRI magnitude images of the head is a solid
volume showing its outer shape. The outer shape
of a volume is a strong determinant of the current
pathways formed within it, even more than the in-
ternal conductivity distribution [1]. Models with
the correct outer boundary shape and a uniform
conductivity are used in calculating the projected
current density described in Chap. 6. Determina-
tion of the outer boundary shape of the volume
can be performed just using simple thresholding.
Note that thresholding alone might not result in
a perfect volume because there may be regions
of low signal (e.g., air or bone) within the head
that may have lower values than the threshold you

determine divides the scalp from the external air.
All segmentation, whether manual or automatic,
must always be checked as a final step.

Now we move to the concept of determining
the domain extent. Given that you have a discrete
image volume, it is natural to consider modeling
as much tissue (using as much of the data) as
possible. But remember that the larger the model
is, the longer it will take to solve and the more
storage space it will need once solved. Consider
howmuch you need tomodel while still providing
a good solution in the regions or subdomains you
are interested in. For example, in neurological
image-based models, Indahlastari et al. [4] found
that if the model is truncated below the skull base,
this did not significantly affect current densities
predicted within the cortex.

The next concept is which tissues to segment.
Only electrically distinct tissues need to be seg-
mented, since only these properties appear in the
PDE. Therefore, if you only have conductivity for
“gray matter” or “white matter,” there would nor-
mally be no need to segment, say, the substantia
nigra or dorsolateral prefrontal cortex. Where it
may be useful to segment these structures is in
postprocessing, to see what the predicted fields
are in these specific regions.
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In the next section, we describe a typical work-
flow for constructing a model that satisfies the
principles above. There are of course many more
tools available than one can describe in one doc-
ument, and you are encouraged to explore the
range of resources available in constructing mod-
els.

2.15.1 Segmentation Procedures

In the simplest (and most time-consuming) situa-
tion, you could entertain the idea of methodically
working through a volume “coloring in” each
voxel according to the tissue you believe it must
be, based on the voxel’s intensity. This might be
possible for simple images or in two dimensions,
but to segment a structure as complex as the
brain, some automatic processes must be used.
Luckily, there are many freely available software
tools that enable you to automatically segment
brain tissue, but at present there are fewer that
segment the entire head or other body parts. Many
of the automatic processing steps are intended
to differentiate gray and white matter and cere-
brospinal fluid (CSF) only and are not intended
to segment the entire head. There are also some
tools available to find the skull and scalp. Other
electrically important tissues such as muscle, fat,
the eyes, and blood must be segmented manually,
i.e., by working through voxel by voxel and de-
termining which tissue is which, referring to an
atlas such as [13]. Manual segmentations must be
checked comprehensively by viewing segmented
structures in all three planes (XY, YZ, and ZX) of
the volume as errors can result from segmenting
in only one plane set. Regardless of the method
used to segment the model, it will always be nec-
essary to check the final segmentation and make
sure there are no holes (voxels with unassigned
tissues) or errors in tissue assignments.

Figure 2.9 (from [5]) shows the procedure
used to segment a human head based on T1-
weighted MRI data. The procedure first involves
using FreeSurfer to segment white and gray mat-
ter, followed by SPM to segment scalp and skull.
The resulting masks are combined in software to
make a whole volume where each head voxel is

tagged in terms of tissue type. While you can
do this in MATLAB, specialized software such
as Simpleware ScanIP1 (Synopsys, Inc.Mountain
View, CA), Mimics2 (Materialise, NV, Leuven,
Belgium), or ITK-Snap3 providemore convenient
means of making final manual segmentations or
corrections before segment definitions are ex-
ported to a FEM solver.

Major automated segmentation tools in neu-
roscience applications include FreeSurfer4 and
SPM.5 The emphasis of both FreeSurfer and SPM
is fMRI analysis, but each has extensions en-
abling automatic processing of subject-specific
data to find specific tissues or regions of interest.
The ROAST tool that can be used to automatically
segment MRI data and simulate electric fields
for transcranial electrical stimulation [3] uses el-
ements of SPM 12. The SimNIBS [14] package
used to simulate fields in transcranial electric and
magnetic stimulation applications uses elements
of both FreeSurfer and FSL,6 and more recently,
some parts of SPM12 have been implemented in
SimNIBS to aid skull segmentation [8].

Commonly applied operations in segmenta-
tion include painting, thresholding, and region
growing operations. While these functions can be
performed using MATLAB, programs like Sca-
nIP, Mimics, or ITK-SNAP are specialized to-
ward segmentation operations. They also make it
possible to easily add additional structures such
as electrodes.

When each image voxel has been tagged as a
particular type, all voxels of that type can then be
assigned a property (conductivity, permittivity, or
both, maybe specified as a function of frequency).
If it is appropriate to specify a particular tissue
as anisotropic, the six parameters describing the
conductivity tensor in each voxel can be deter-
mined by finding the principal direction of the

1https://www.synopsys.com/simpleware/software/scanip.
html.
2https://www.materialise.com/en/medical/mimics-
innovation-suite/mimics.
3www.itksnap.org.
4https://surfer.nmr.mgh.harvard.edu.
5https://www.fil.ion.ucl.ac.uk/spm.
6https://fsl.fmrib.ox.ac.uk.

https://www.synopsys.com/simpleware/software/scanip.html
https://www.synopsys.com/simpleware/software/scanip.html
https://www.materialise.com/en/medical/mimics-innovation-suite/mimics
https://www.materialise.com/en/medical/mimics-innovation-suite/mimics
www.itksnap.org
https://surfer.nmr.mgh.harvard.edu
https://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk
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Fig. 2.9 The segmentation pipeline involved both man-
ual and automatic segmentation processes. The pipeline
is shown in terms of the three major operation types
(FreeSurfer, SPM, and manual segmentation and check-

ing). Results from each operation type were finally com-
bined to produce a single head model containing ten tissue
types

diffusion tensor data and rotating a principal con-
ductivity tensor describing the tissue to align with
it. More details on this process are below.

2.15.2 Exporting Segmentation
Information to a Finite
Element Solver

There are a number of options in exporting seg-
mentation information to a FEM solver. You can
save the external shape of the head, that is, save
the surface definition. This can be done by export-
ing the surface to an stl (stereolithography) file.
The stl file format is the same one as used in 3D
printers.

This sort of idea is good if you just want to
calculate the homogeneous contribution to the

projected current density (see Chap. 6). But what
if you want to create an inhomogeneous model?
If you save just the surface, you could spec-
ify the property distribution as a function (us-
ing interpolation based on the conductivities as-
signed at the center of each voxel). In this case,
you could import the homogeneous conductivity
model into your FEM program and import the
volume defining conductivities, and everything is
set. The three-dimensional solid defined by the
.stl file would be meshed by the FEM program,
and calculations would proceed from there.

A second approach would be to generate a
mesh compatible with your FEM program that
recognizes the boundaries of the different tissue
types. This is important because we typically
assume that the properties within one element
are constant. The actual property values could
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Fig. 2.10 Interface of manual segmentation program. The example shown includes masks for skull and entire head
compartments viewed in three planes and rendered in three dimensions

be set before or after mesh export. This type
of option is possible with ScanFE (Synopsys)
and Mimics. An example screenshot from the
ScanFE interface is shown in Fig. 2.10. In the case
shown in Fig. 2.10, entire head and skull compart-
ment masks are displayed. A combined mesh that
respects each compartment’s boundaries can be
generated and exported to compatible file formats
including NASTRAN, ABAQUS, and COMSOL
model files.

Going back a step, seeing as the segmented
T1-weighted model is made of voxels, which are
hexahedrons, it is also perfectly acceptable to
construct a mesh based on this structure. This
method was implemented in [11] using C and
MATLAB code. Starting from the voxelwise seg-
mentation, each hexahedral element was split into
six quadratic tetrahedrons, and global K and F
matrices were assembled. The system was then
solved using the preconditioned conjugate gradi-
ent method. The platform was extended to add

anisotropy in [12]. This approach is quite inflexi-
ble but canworkwell if you are onlyworkingwith
a limited range of problem types. For this reason,
we will now describe use of a commercially avail-
able modeling platform to solve PDEs arising in
this area.

2.15.3 Adding Anisotropy toModels

Anisotropy can be added to models using an in-
terpolation function. There are a number of ways
of doing this. If diffusion tensor information is
available, the (appropriately co-registered) tensor
components for each voxel can be overlaid on the
model. There are two approaches that can be used
to model the full conductivity tensor in the model.
Rullmann et al. [10] suggested calculating a scal-
ing factor (s identical to the factor η reconstructed
in DT-MREIT) in the white and gray matter com-
partment of the brain using a weighted mean of
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isotropic literature conductivities and averaged
diffusivities. The scaling factor was multiplied by
the diffusion tensor to produce the conductivity
tensor applied to the model. An alternative ap-
proach [7, 12] involves computing the principal
eigenvector within each diffusion tensor voxel
and using it to re-orient a tensor assumed for
the tissue type. In both cases, the result can be
imported into the model and incorporated in the
stiffness matrix using the method described in
Sect. 2.12. If only white matter anisotropy needs
to be incorporated, the operation can easily be
masked to only apply to the white matter com-
partment.

2.16 COMSOLModeling

Solving finite element problems of any reason-
able size quickly becomes tedious to program on
your own. This is where use of commercially
available software packages becomes advanta-
geous. In the sections below, we describe three
approaches that are of use in solving or veri-
fying electromagnetic properties mapping, using
COMSOLMultiphysics (Burlington, MA, USA).
The COMSOL platform is designed to solve gen-
eral “multiphysics” problems, that is, problems
governed by multiple PDEs. An example of a
multiphysics problem is electromagnetic heating.
If an external current flows through a conduc-
tor, with the solution to the problem given by
the Laplace equation (2.8), energy will be dissi-
pated within the conductor. The energy distribu-
tion throughout the conductor is given by Qs =
J · E. This measure is in J/m3. This heating dis-
tribution can be used as a source term in the PDE
governing heat diffusion (without convection)

ρcp
∂T

∂t
+ ∇ · (−�∇T ) = Qs (2.64)

where ρ is the density ofmaterial, cp is its specific
heat capacity, � is its thermal conductivity, and
T denotes temperature. You could consider that
this coupling is unidirectional, since the even-
tual heat distribution within the conductor does
not influence current flow. However, temperature

does influence material electrical properties. If
you wished, you could define conductivity or per-
mittivity as a function of temperature and solve
the two PDEs together at each time step of the
diffusion problem. This is bidirectional coupling.

COMSOL has numerous modules that are
instances of PDEs specific to particular physical
contexts. It also allows modeling of generic
PDEs in a mathematics module. The benefits
of the modules are that multiple derived variables
and common application environments are
conveniently predefined. The modules most
commonly used in electrical properties mapping
are the electric currents (ec), magnetic and
electric fields (mef), and magnetic fields (mf)
modules. In the sections below, we show
examples of models using these modules and
outline how they may be used in mapping or
reconstructing electrical properties.

2.16.1 Electric Current Modeling

The images in Fig. 2.11 show a geometry, mesh,
and finite element results found when solving the
Laplace equation using a uniform model. This
model was created by exporting an .stl (stere-
olithography) file from a segmentation program
(in this case, Simpleware ScanIP) and import-
ing it into COMSOL. Export from ScanIP in-
corporated triangle smoothing. Import of three-
dimensional surface structures into COMSOL is
usually tricky to do. In this case, the model was
exported by combining the head and electrodes
into one mask and exporting it as a single part
stl mesh. The electrode boundaries were then
defined by adjusting the surface mesh import to
only generate distinct boundary faces when the
change in angle was greater than around 15◦. This
was sufficient to generate clear boundaries where
the electrodes met the scalp. However, even with
triangle smoothing, this generated a large num-
ber of faces that needed to be combined. The
extraneous faces on the surface geometry were
concatenated to produce the three faces defining
the electrodes and the remainder of the head. The
stl mesh is not used as the finite element mesh.
After import, the region defined with the surface
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Fig. 2.11 Images illustrating uniform-conductivity
COMSOL model constructed using an stl surface mesh
including electrodes only. (a) shows the model surface,

including electrode faces, (b) illustrates surface of final
volume mesh, and (c) shows voltage distribution formed
within the model

mesh was transformed into a solid geometry ob-
ject, and a new volume mesh was defined to solve
the problem.

The conductivity of the entire model was de-
fined as 1 S/m, and the boundary conditions were
specified as +10V on the right electrode (F4)
and 0V on the left electrode, and insulation was
specified on the remainder of the boundary. Nor-
mally, transcranial stimulation parameters are de-
fined in terms of a current, so you may wonder
why voltage was specified. Why not just specify
a normal current density (an f̄ contribution) on
each electrode? If the boundary conditions are
specified only using normal current density, the
matrix K that is inverted to solve the problem
is still singular. In fact, if there is no voltage
solution specified in addition to the current flow,
there are an infinite number of possible solutions
if only a boundary flow (current) is stipulated.
As an alternative, you could set one electrode to
be at ground (0V) and specify a normal current
density on another electrode. A final option is
to stipulate a normal current density on both as
long as a voltage is specified at one of the nodes
in the mesh. The integral of the normal current
density over each electrode should match. Some
COMSOL options will also allow you to specify
a total current (in A) flowing through a boundary
terminal.

Although the model shown in Fig. 2.11 was
exported as a surface mesh and a uniform con-

ductivity of 1 S/m was used for the entire volume,
the model could also be used to solve for a het-
erogeneous conductivity distribution by defining
a conductivity distribution on a grid overlaid on
the volume. This grid could inform an interpo-
lation function used for the conductivity of the
object. This approach is useful because the mesh
is not constrained by the compartment boundaries
which would typically make the mesh larger (and
the solutions longer and its storage requirements
larger).

A second example derived from the same im-
age data is shown in Fig. 2.12. In this case, the
structure was exported directly as a COMSOL
mesh from Simpleware, using ScanFE, and the
model contains no geometry, only a mesh. The
mesh contained multiple compartments for the
different tissues within the head as well as the
electrodes and wires delivering current to the
electrodes. Each compartmentmeshwas exported
with a different material definition (conductivity
or permittivity for time- or frequency-dependent
models), and these can be changed or defined as
a function of frequency within COMSOL if re-
quired. If one compartment material (white mat-
ter) needs to be defined as anisotropic, the vol-
umes for each component of the conductivity
tensor can be imported as a grid and values can be
interpolated, in a similar way as noted above for
importing and interpolating conductivity func-
tions. Because the mesh is predefined, it is not
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Fig. 2.12 Image of full mesh exported from ScanIP in-
cluding wires as well as electrodes. Part (a) shows the
mesh exterior, (b) shows mesh detail, and (c) shows volt-

age formed on the mesh surface as well as streamlines
in left (red) and right (blue) wires and emanating from
electrodes (black) into interior

possible to add extra geometry features (e.g.,
electrodes) to the model. Anything needed must
be added to the Simpleware environment before
the COMSOL mesh is exported. After the mesh
is imported, there is some limited availability to
break up face definitions if those automatically
created within Simpleware are not acceptable, but
this flexibility is limited.

If you wished, you could simulate the effect of
current administration from the end of one wire
to the end of another, and the wires have been
included in Fig. 2.12. However, the increase in the
level of detail required to do this is probably too
large, and there is not much point. For example,
you would need to account for the insulation on
the wires; otherwise, the wire structures lying
directly on the head here may result in conduc-
tion directly into the scalp rather than into the
electrodes. One way of avoiding this is to model
each wire-electrode combination separately using
a separate electric currents module and feed the
current density resulting on the electrodes into
the head using a third module that includes head
tissues only, and this strategy has been used here.

A useful reason for modeling current in the
wires is to account for the magnetic flux density
it contributes to MRI phase recorded within the
head. Depending on the wire geometry and the
slices chosen, these effects can exceed internal
current flow effects. Therefore, careful model-
ing and correction of these fields are required.
The flux density can be directly calculated from

the simulated current density distribution (see
the section on the fast Fourier transform method
used for Biot-Savart calculation in Chap. 6) or
modeled directly using the COMSOL magnetic
and electric fields module (mef), as described in
Sect. 2.16.2.

2.16.2 Magnetic and Electric Fields
Modeling Combined

If the COMSOL AC/DC model is used, it is
possible to extract both the information available
in the electric currents module and compute the B
fields together with J data. Unfortunately, it is not
easily possible to manually add a postprocessing
step to computeB, and adding this step is not very
efficient. The image shown in Fig. 2.13 is of the
z-component of magnetic flux density calculated
in a model created from the same .stl data as
Fig. 2.11 but with the wires added to the model
export. Because there are multiple PDEs solved
in the mef module, if a model with the number
of mesh elements used for the model in Fig. 2.12
were to be used, the number of degrees of free-
dom involved (i.e., the number of values solved
for in total) would likely be too large to be solved
on desktop computer. Therefore, constructing the
model from .stl data is the best option. In
this simple case, the wires were simulated with
a high conductivity, and the remainder of the
head compartment had a conductivity of 1 S/m.
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Fig. 2.13 Images from a model constructed using the
COMSOL mef module and an .stl-based model, with
extended wires and using infinite elements. Part (a) shows
the model geometry, including the air box and infinite

elements, (b) illustrates the mesh, and (c) shows the model
result with the surface color representing voltage and blue
streamlines indicating magnetic flux density distribution

The figure shown in Fig. 2.13 includes an air
compartment within which magnetic fields can
be calculated. The wires have been extended in
the axial (z) direction to ensure that boundary
conditions (Vlef t = 10V; Vright = 0V) can be
applied at the wire ends and that there will be no
Bz component created by the extension. Notice
also that there is a “fishtank” surrounding the air
compartment, but not on the top where the bound-
ary conditions were applied. This edge contains
“infinite elements” which are elements that have
a length scale different from the main model. This
results in the effective volume of air modeled to
bemuch larger than the small box surrounding the
head and reduces any distortion of the magnetic
flux density distribution that might result from the
box edges. The infinite element domain faces are
subject to a perfect magnetic conductor boundary
condition (n × H = 0, n · J = 0) to solve
the problem. You can see at the right edge of
Fig. 2.13c that the flux density distribution looks
like it is truncated at the model edge, but the lines
of flux do not appear distorted by its presence.
Apparent kinks in the distribution at top left and
bottom right result from the streamline calcula-
tion process at the model boundary.

2.16.3 Modeling of High-Frequency
Electromagnetic Properties

EPT measures tissue electrical properties at the
resonant (Larmor) frequency of an MRI system.

For a 1.5 T system, this is around 64MHz,
and at 3 T, properties are measured at around
128MHz. To model these effects, it is necessary
to solve the Maxwell equations in wave form.
In (2.65), μr denotes the relative permeability
of the medium—this is 1 for most tissue, and
εr is the relative permeability at the frequency
in question—at 64MHz, it may be around 50
(in the model example, it is set to 40), and the
average conductivity at this frequency may be
around 1 S/m; k0 is the free space wavenumber
of the fundamental mode of the solution. Losses
and phase shifts caused by non-zero conductivity
are accounted for by the term in brackets on the
right-hand side of (2.65).

∇ × ∇ × E = μrk
2
0

(
εr − iσ

ωε0

)
E (2.65)

A relevant example is shown in Fig. 2.14. This
example illustrates solution of the equationwithin
a resonant birdcage MRI coil 64MHz. The bird-
cage coil can be used to produce a circularly po-
larized magnetic field if it is excited with voltage
waveforms that are 90◦ out of (wave) phase and
applied at ports that are rotated 90◦ with respect
to each other. The resonant frequency of the coil
can be adjusted by changing the capacitance of
elements located along each of the coil’s rungs.
The birdcage coil can be used to both transmit and
receive RF energy into the body to excite MRI
signals, or transmit them only, with reception
being performed by surface coils. The presence
of the body within the coil can affect the coil
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Fig. 2.14 Images from a model constructed using the
COMSOL mf module of a birdcage coil at 64 MHz. Part
(a) shows the model geometry, including the air box and
coil rungs. (b) shows a cross section through the tuned

coil showing the magnitudes and directions of the left-
and right-polarized magnetic fields within the coil and its
distortion by the presence of the head tissues. (c) shows
the conductivity computed from the Bp phase data

resonance, and it is normally necessary to adjust
the capacitors to improve the tuning after the
subject or object to be imaged is in place. You can
see some of the effect of the head tissue properties
manifest in Fig. 2.14 where the vectors indicat-
ing the real or imaginary part of the magnetic
flux density distribution are oriented differently
with respect to each other compared to the sur-
rounding air. The quantity used in reconstructing
the electrical properties is the transmitted flux
density B+

1 . In the simplest case, the Laplacian
of the measured transmit phase (ϕ+) can be
used to compute conductivity distributions. How-
ever, this phase cannot be measured directly in
B1 images because it is combined with the re-
ceive phase ϕ−. Therefore, in many approaches
to EPT, the transceive phase approximation is
used, wherein the transmit phase is approximated
as half of the measured transceive phase ϕ0 =
ϕ+ + ϕ−. If it is assumed that the conductivity
varies slowly, it is possible to calculate it directly
via the approximation

σ(r) ≈ ∇2ϕ+(r)
μ0ω

. (2.66)

More details on EPT data acquisition, algo-
rithms, and processing can be found in Chap. 8.
We will use this equation to illustrate use of the
finite element model in the remainder of this
section.

As we noted above, in the example shown
in Fig. 2.14, the head is specified with an over-
all relative permittivity of 40. Most of the head
conductivity is 0.9 S/m, but there is a cylindrical
inclusion that has a conductivity of 5 S/m. It is
possible to calculate the conductivity distribution
within the head directly from the simulated B+
phase, where B+ = Bx + iBy . The plot in
Fig. 2.14c shows the conductivity calculated ac-
cording to (2.66). This involves first computing
B+ by defining a new variable within COM-
SOL, finding its phase, and then calculating the
Laplacian. Because the full Maxwell equations
are based on derivatives, special shape functions,
known as curl shape functions, are used to solve
these problems [6]. COMSOL does not make
derivatives based on the solutions available, and
if you tried to compute a derivative of an elec-
tromagnetic quantity (E, D, B, or H) within the
COMSOL RF module, the answer will default
to zero. In order to process the data further, it is
necessary to interpolate the solution onto a more
standard shape function (e.g., a quadratic tetrahe-
dron) and base further calculations based on that.
In the model shown in Fig. 2.14, it was necessary
to define a new general PDE au = f and set
a = 1 and B and then calculate the Laplacian
based on u operations involving the COMSOL
derivative operators d(·, x) or d(·, y). Note that
the assumptions involved in (2.66) result in large
discontinuities at the anomaly boundary. There
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are a number of ways of avoiding this assumption,
also discussed in Chap. 8.

Appendix 1: Formulation of the
Functional for Laplace or Poisson
Equations

Before application of any boundary conditions,
the functional (denoted I ) for a PDE Lφ = f ,
whereL is linear self-adjoint and positive definite
operator such as the Laplacian ∇2, in a two-
dimensional region R can be expressed as [2]

I [φ] =
∫∫

R

(φLφ − 2f φ) dxdy (2.67)

If we assume general, Robin-type boundary
conditions are applied on the boundary C, for
example,

∂φ

∂n
+ λ(s)φ = h(s). (2.68)

where n denotes the boundary normal and the
functions λ and h are parameterized using dis-
tance along the boundary s, the functional form
becomes

I [φ] = ∫∫
R
(φLφ − 2φf ) dxdy

− ∫
C

(
λ(s)φ2 − 2φh(s)

)
ds (2.69)

If the operator L is ∇2, the full expression is

I [φ] =
∫∫

R
(φLφ − 2φf ) dxdy −

∫

C

(
λ(s)φ2 − 2φh(s)

)
ds

=
∫∫

R

(
|∇φ|2 − 2φf

)
dxdy −

∫

C

(
λ(s)φ2 − 2φh(s)

)
ds

=
∫∫

R

(
∂φ

∂x

2
+ ∂φ

∂y

2
− 2φf

)

dxdy −
∫

C

(
λ(s)φ2 − 2φh(s)

)
ds

(2.70)

Formulation of the Functional for a
Finite Element Mesh

We have that the overall solution for the problem,
�, is (in 2D)

�e(x, y) =
E∑

e=1

φe(x, y) =
E∑

e=1

Neδe (2.71)

where E is the total number of elements in the
finite element mesh.

Recall that the solution vector (displacement
vector) for the element δe is

δe =

⎡

⎢⎢
⎢
⎣

φA

φB

...

φX

⎤

⎥⎥
⎥
⎦

(2.72)

where φA · · ·φX are the values of the finite ele-
ment solution at each node within the element.

Then, substituting (2.70) into the expression,
we obtain

I [�] =
∫∫

R

⎧
⎪⎨

⎪⎩

⎛

⎝ ∂

∂x

E∑

e=1

φe

⎞

⎠

2

+
⎛

⎝ ∂

∂y

E∑

e=1

φe

⎞

⎠

2

− 2
E∑

e=1

φef

⎫
⎪⎬

⎪⎭
dxdy

+
∫

C

⎧
⎪⎨

⎪⎩
λ(s)

⎛

⎝
E∑

e=1

φe

⎞

⎠

2

− 2
E∑

e=1

φeh(s)

⎫
⎪⎬

⎪⎭
ds

=
E∑

e=1

∫∫

R

{(
∂φe

∂x

)2
+
(
∂φe

∂y

)2
− 2φef

}

dxdy

+
E∑

e=1

∫

Ce

{
λ(s)(φe)2 − 2φeh(s)

}
ds

=
E∑

e=1

Ie = I
(
φ1, φ2, . . . , φE

)
= I

(
φ1, φ2, . . . , φN

)

(2.73)
where N indicates the total number of nodes
within the finite element mesh. The key point to
take away from (2.73) is to note that the functional
can be calculated for each individual element
(line 2) and that the functional depends on the so-
lution at the individual nodes, because functions
within each element depend on nodal values, as
in (2.72).

Minimizing the Functional

From (2.73), the functional depends only on the
nodal values of the solution. To minimize the
functional, it is then necessary to compute the
derivative of the functional with respect to each
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nodal value and determine where the derivative is
zero. This gives rise toN equations that are solved
simultaneously.

Consider the derivative of I with respect to the
nodal value φi . This node may appear in more
than one element, so the derivative is written as

∂I

∂φi

=
E∑

e=1

∂I e

∂φi

(2.74)

Now let’s consider the derivative of I e with
respect to all the nodal values

∂I e

∂�
=
{
∂I e

∂φ1
,
∂I e

∂φ2
, . . . ,

∂I e

∂φN

}
. (2.75)

The value of these derivatives will be 0 for
nodes that are not in element e.

Now look at one non-zero entry in this vector,
∂I e

∂φi
. Expanding the derivative using (2.70), we

find

∂I e

∂φi
=
∫∫

Re

{
∂

∂φi

(
∂φe

∂x

)2
+ ∂

∂φi

(
∂φe

∂y

)2
− 2

∂φe

∂φi
f

}

dxdy

+
∫

Ce

{
λ(s)

∂

∂φi

(
φe
)2 − 2

∂φe

∂φi
h(s)

}
ds

(2.76)

Note that the integral over the boundary Ce

will only be non-zero if the element is on a
boundary. Let us break up (2.76) even further and
examine individual terms. The first term can be
expanded using the definition of φe.

∂

∂φi

(
∂φe

∂x

)2
= 2

∂φe

∂x

∂

∂φi

(
∂φe

∂x

)
= 2

∂φe

∂x

∂

∂x

(
∂φe

∂φi

)
.

(2.77)

Recall that, expanding (2.71)

φe(x, y) = Neδe = [Ne
A Ne

B . . . Ne
X

]

⎡

⎢
⎢
⎢
⎣

φA

φB

...

φX

⎤

⎥
⎥
⎥
⎦

= Ne
AφA + Ne

BφB + · · · + NX
AφX. (2.78)

We see from this that

∂φe

∂φi

= Ne
i , i ∈ A,B, . . . , X (2.79)

and using (2.78) and (2.79)

∂

∂φi

(
∂φe

∂x

)2

= 2
∂

∂x

(
Neδe

) ∂Ne
i

∂x

= 2
[
∂Ne

A

∂x

∂Ne
i

∂x
, . . . ,

∂Ne
X

∂x

∂Ne
i

∂x

]
⎡

⎢
⎣

φA

...

φX

⎤

⎥
⎦ .

(2.80)
The final term on the first line term corre-

sponds to Ne
i , and the term multiplied by λ(s) is

similarly expanded to be

∂

∂φi

(
φe
)2 = 2

[
Ne

i N
e
A Ne

i N
e
B . . . Ne

i N
e
X

]

⎡

⎢⎢
⎢
⎣

φA

φB

...

φX

⎤

⎥⎥
⎥
⎦

(2.81)
Overall, then

∂I e

∂φi

=
∫∫

Re

[{
∂Ne

i

∂x

∂Ne
A

∂x
+ ∂Ne

i

∂y

∂Ne
A
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}
. . .
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∂Ne
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∂Ne
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∂Ne
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}]
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φA

...

φX

⎤

⎥
⎦ dxdy

− 2
∫∫

Re

fNe
i dxdy

+ 2
∫
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λ(s)
[
Ne

i N
e
A . . . Ne

i N
e
X

]
⎡

⎢
⎣

φA

...

φX

⎤

⎥
⎦ ds

− 2
∫

Ce

h(s)Ne
i ds.

(2.82)

The four terms in (2.82) can then be reexpressed
in matrix form as

∂I e

∂φi

= 2
∑

j∈e
keijφj + 2

∑

j∈e
k̄eij − 2f e

i − 2f̄ e
i

(2.83)
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where i, j ∈ A,B . . . , X and

keij =
∫∫

Re

(
∂Ne

i

∂x

∂Ne
j

∂x
+ ∂Ne

i

∂y

∂Ne
j

∂y

)
dxdy

k̄eij =
∫

Ce

λ(s)Ne
i N

e
j ds

f e
i =

∫∫

Re

fNe
i dxdy

f̄ e
i =

∫

Ce

h(s)Ne
i ds.

(2.84)
Note that the matrices formed of keij and k̄eij

entries(ke and k̄e) have dimension X × X where
X is the number of nodes in each element and that
the matrices formed by fi and f̄i entries (fe and
f̄e)) are X × 1.

Finally, requiring that ∂I e

∂φi
= 0 and rearranging

the equations, we find that for each element

[
ke + k̄e

]
δe = fe + f̄e. (2.85)

Assembly of all matrices for each element and
matrix type are then combined to form the global
stiffness matrix

K� = F. (2.86)

where the global displacement vector contains all
of the nodal solutions.

Appendix 2: Extraction of Data from
Finite Element Models

This chapter has detailed extensively how
to simulate the results of electromagnetic
measurements. However, before these results
can be used in formulating reconstructions, or
just to synthesize data to compare results, the
simulated data has to be sampled at a resolution
matching the experimental data. In this appendix,
we will describe an approach that can be used to
appropriately sample J, E, σ , or any other data
defined on a model.

Partial Volume

First, consider the nature of the data recovered
from an MR experiment. Reconstructed MR or
MREIT images are specified in voxel (or pixel)
array form. Within each slice, there may be NX

voxels in one direction andNY in the other. Each
voxel has dimensions
x×
y and fields of view
(FOV) of FOVx = 
x×x and FOVy = 
y×y.
MR image volumes containNZ slices, each slice
having a thickness
z. The volume of each voxel
is 
x × 
y × 
z. Whatever value is reported
as the representative magnitude or phase, or any
other quantity derived from it, is necessarily an
average of the quantities existingwithin the entire
voxel region. Figure 2.15a shows a simple voxel
layout and an individual voxel dimension.

Regardless of the voxel layout, it is inevitable
that some voxels will include tissues from multi-
ple tissue types. The voxel shown in Fig. 2.15b is
an exaggerated example of this, with one voxel
including gray matter, white matter, CSF, and
bone. Any properties derived from this voxel will
reflect this. The value recovered will not be rep-
resentative of a point in the center of the voxel.

Finite Element Sampling

When retrieving data from a finite element model
for use in reconstructions using MRI data, we
must take care to sample from the model in a
similar way to the way the MRI data were gath-
ered. That is, to correctly compare modeled and
imaged data, we must sample the model over
many points and compute model output values as
averages (or integrals) over each simulated voxel.
Figure 2.16a again shows a voxel array, but now
this voxel array must be overlaid on the finite
element domains. Consider the voxel highlighted
in blue. The mesh in Fig. 2.16b covers this voxel.
It may be the case that mesh elements are in more
than one of the voxels.

We now overlay a voxel sampling grid
(Fig. 2.16c) over this part of the mesh. Recall
that the finite element solution is recovered as
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Fig. 2.15 Voxel layout and partial volumes. (a) shows an
8× 8× 3 voxel array; the field of view (FOV) along x, y,
and z directions; and the voxel dimensions 
x,
y, and


z. (b) illustrates partial volume concept with top view of
grid overlaid on tissue structure

Fig. 2.16 Illustration of sampling finite element model
data. (a) Representative NX × NY × NZ voxel layout,

showing individual voxel highlighted in red. (b) Finite
element mesh over voxel region, and (c) sample grid with
S = 5 defined over candidate voxel

the values at each of the mesh nodes within the
domain. But we also know that if we nominate
any point within the domain, locate the element
containing this point, and then multiply this
solution vector within the element by the shape
function matrix for this element (see (2.13)),
then it is possible to determine the interpolated
solution there.

Consider the sampling grid shown in
Fig. 2.16c. To calculate a representative value for
a quantity over this voxel, we take the following
steps:

1. Define the regular grid within each voxel.
2. Recover values at each value of the grid
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(a) If the grid is regular, the valuesmay simply
be averaged to produce the representative
value.

(b) If the grid is a free mesh, you must in-
tegrate the quantities over the mesh and
divide by the voxel volume.

Example Code Using COMSOL

COMSOL provides means of sampling the so-
lution at arbitrary points. These points can be
nominated arbitrarily within the graphical user in-
terface. Alternatively, usingMATLAB andCOM-
SOL together, it is possible to use the mphin-
terp command to extract the value of a model
parameter at any point. Here is some example
code that demonstrates how to perform the steps
above. In this case, we define a fine regular grid
with S = 11, giving 1331 points within each
voxel. The sampled values are averaged over each
voxel to produce the result.

% EXAMPLE CODE FOR SAMPLING FINITE ELEMENT
SOLUTION
% Code samples electric field components Ex
and Ey.
ex128=zeros(NX,NY,NSLICE); ey128=ex128;

fov_xy=8.96;
fov_z=NSLICE*5e-1;

halfwidth=fov_xy/2;
halfwidthz=fov_z/2;

deltaxy=fov_xy/NX; % assumes NX=NY
deltaz=fov_z/NSLICE;

%discretize each voxel to (S)*(S)*(S) GRID.
S SHOULD BE ODD AND >= 3
S=11;
inc=deltaxy/(S-1);
jinc=deltaxy/(S-1);
kinc=deltaz/(S-1);

% assumes no transverse (x,y) offset
[Xfine,Yfine]=meshgrid(-
halfwidth:iinc:halfwidth,-
halfwidth:iinc:halfwidth);
zlist=0:kinc:(NSLICE)*deltaz+OFFSETZ;

fov_z_new=max(zlist)-min(zlist);
sizefine=size(Xfine);

slicefine=size(zlist,2); % number of fine
slices
sizeall=[sizefine slicefine];
ex=zeros(sizeall); ey=ex; % define fine sam-
pling arrays

for fs=1:slicefine
mygrid = [Xfine(:),Yfine(:),ones(size(Xfine(:)))∗
zlist(fs)] ;
% use COMSOL command mphinterp
[d1,d2]= mphinterp(model,‘ec.Ex’,‘ec.
Ey’,’coord’,mygrid’,’recover’,’pprint’);
ux(:,:,fs) = reshape(d1(:), sizefine(1),
sizefine(2));
uy(:,:,fs) = reshape(d2(:), sizefine(1),
sizefine(2));
end

NPOINTS=S**3;
HS=(S-1)/2;

for i=1:NX
for k=1:NSLICE
for j=1:NY
count=0;
mydUX=zeros(1,NPOINTS);
mydUY=zeros(1,NPOINTS);
% modify loop to sample points on arbitrary
grid
for ii=-HS:1:HS
for jj=-HS:1:HS
for kk=-HS:1:HS
count=count+1;
mydUX(count)=ux((i-1)*(S-1)+ii+HS+1,(j-
1)*(S-1)+jj+HS+1,(k-1)*(S-1)+kk+HS+1);
mydUY(count)=uy((i-1)*(S-1)+ii+HS+1,(j-
1)*(S-1)+jj+HS+1,(k-1)*(S-1)+kk+HS+1);
end
end
end
ux128(i,j,k)=mean(mydUX(:));
uy128(i,j,k)=mean(mydUY(:));
end
end
end
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3Magnetic Resonance Imaging Basics

Atul Singh Minhas and Ruth Oliver

Abstract

In this chapter, we will discuss the basic prin-
ciples of signal generation and image forma-
tion in magnetic resonance imaging (MRI).
We will start with a description of nuclear
magnetic resonance (NMR) phenomenon and
then gradually arrive at the mathematical ex-
pressions for MRI signal in spatial domain and
k-space domain. Then we describe the image
reconstruction methods typically used in MRI,
the signal-to-noise ratio calculation methods
in MRI, and common MR image formats. A
key focus of the contents of this chapter is
on the formation of phase images in MRI.
We do not intend to provide a comprehensive
overview of MRI. Instead, the contents are
intended for readers interested in performing
research in electromagnetic properties map-
ping usingMRI. Nevertheless, considering the
generality of the contents, any reader inter-
ested in developing a quick understanding of
the physical and mathematical background of
MRI can find this chapter helpful.

A. S. Minhas (�) · R. Oliver
School of Engineering, Macquarie University,
Wallumattagal Campus, Macquarie Park, NSW, Australia
e-mail: atul.minhas@mq.edu.au; ruth.oliver@mq.edu.au

3.1 Introduction

Magnetic resonance imaging (MRI) is playing
an ever-growing role in modern life, through its
widespread use as the most prominent medical
imaging modality for high-quality soft tissue
imaging. It has come a long way since Raymond
Damadian performed the first full-body scan of
a human being in 1977 [4]. While the credit of
making the first MRI scanner goes to Raymond
Damadian, his idea is not the one used in modern
clinical MRI scanners. That credit goes to the
American chemist, Paul C Lauterbur, and the
British physicist, Sir Peter Mansfield, for their
discoveries of using gradient magnetic fields
to create MR images. Their discoveries are the
foundation of MRI scanners used till today and
earned them the 2003 Nobel Prize in Physiology
and Medicine [4].

Multiple improvements have taken place over
the past four decades in the hardware, software,
and new applications of MRI. Bespoke designs
are now available to cater to different settings
such as clinical imaging centers for medical
diagnosis, pre-clinical research centers for animal
imaging, and research laboratories to image
chemical or biological samples. The basics of
MRI presented in this chapter are applicable for
any of the these aforementioned settings.
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3.2 MRI Hardware

MRI hardware is a combination of multiple elec-
trical and mechanical components mounted in
an optimal manner to acquire superior-quality
MR images. The locations of various compo-
nents with respect to each other are illustrated in
Fig. 3.1 for a cylindrical-shaped design of MRI
system. Magnet is the outermost component of
MRI. There are multiple electromagnetic coils
used in MRI such as gradient coils, shim coils,
and transmit/receive radiofrequency (RF) coils.
In general, a coil is an electrical device consisting
of multiple loops of wire that can either generate
a magnetic field or detect an oscillating magnetic
field through Faraday’s principle of electromag-
netic induction. Each of these hardware compo-
nents is explained in detail in subsequent sections.

3.2.1 Magnet

The magnet in MRI scanner is responsible for
the generation of uniform magnetic field. The
strength ofmagnetic field ismeasured in Tesla (T)
and field homogeneity in parts-per-million (ppm).
MRI scanners are built with various types of mag-
nets such as superconducting, electromagnetic, or
permanent magnets depending on the strength of
the required magnetic field. For example, clinical
MRI scanners with field strength of 0.2 T use
permanent magnets, but those with field strength
≥1.5 T use superconducting magnets. The most
recent designs of superconducting magnets use

technologies such as zero helium boil-off and
nitrogen-free, which enable longer maintenance
intervals.

While high-field (HF) MRI scanners are a
desired choice for better image quality, their ac-
cessibility is limited due to the exponential in-
crease in scanner’s cost with increase in FS [20].
Therefore, the low-field (LF) MRI scanners of
≤1.5 T FS are still a preferred choice in urban
and rural/remote areas of emerging and devel-
oping countries (EDC). MRI scanners with field
strengths ≥7 T are typically referred to as “ultra-
high-field (UHF)” MRI scanners.

The inner diameter (ID) of magnet controls
the patient bore diameter of an MRI scanner.
Diameter of spherical volume (DSV) is a spher-
ically shaped volume where the homogeneity
specifications are defined. For example, for
Bruker 9.4 T pre-clinical MRI scanner (BioSpec
94/20), magnet specifications for homogeneity
are ±10 ppm in a 120mm DSV. Likewise, for
Siemens 3 T scanner (Magnetom Prisma), the
magnet homogeneity specifications are 1.1 ppm
in 500mm DSV.

3.2.2 Gradient and Shim Coils

The gradient coils inMRI scanner are responsible
for the generation of spatially varying magnetic
fields. There are three gradient coils in MRI, one
in each of the three directions, X, Y, and Z, and
accordingly named as X-gradient coil, Y-gradient
coil, and Z-gradient coil. Being electromagnetic

Fig. 3.1 Location of
different hardware
components used in MRI
scanners
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coils, they produce magnetic fields when elec-
tric current flows through them. Typical speci-
fications for gradient coils are gradient strength
(of the order of 45mT/m) and slew rate (of the
order of 200 T/m/s). Gradient coil designers aim
to achieve these two specifications byminimizing
the resistance and inductance of coils.

The shim coils produce second-order (or
higher-order) magnetic fields and, as their name
suggests, used to do shimming or correction of
inhomogeneity in the magnetic field produced
by magnet [18]. Typically, there are five shim
coils in MRI for 1.5 T and 3 T MRI scanners, but
higher magnetic field scanners can have more
than five shim coils (typically along Z0, Z3). The
five shim coils produce second-order magnetic
fields proportional to XY, X2-Y2, XZ, YZ, and Z2

[10, 11]. Since shim coils produce second-order
magnetic fields, their strengths are measured in
mT/m2.

Gradient and shim coils are typically made of
stranded copper strips or copper plates arranged
in a particular pattern around the coil surface.
For a cylindrical coil surface, which is a typi-
cal structure in MRI scanners, the copper strips
(or plates) are arranged around a cylinder. The
patterns of copper strips (or plates) in X- and
Y-gradient coils are of the same shape except
that they are arranged orthogonal to each other.
Likewise, the patterns of XZ and YZ shim coils
are also orthogonal to each other. The patterns
of copper strips (or plates) in Z-gradient coil and
Z2 shim coil are arranged as circular rings along
the surface of the cylindrical structure. Multiple
such rings are placed along z−direction and dis-
tanced optimally to achieve a desired gradient
field strength [10, 11].

Most of the MRI scanners these days use self-
shielded (or actively shielded) gradient coils. This
means that there are two types of coils for each of
the three gradient coils: primary and secondary
coils. The secondary coil carries current opposite
to the primary current and lies away from the
isocenter ((x, y, z) = (0, 0, 0)) of MRI with the
radius of secondary coil> radius of primary coil.
The purpose of secondary coil is to cancel the
primary coil’s magnetic field outside the gradient
coil surface (where other structures of magnet

such as thermal shield and vacuum chamber lie).
While the secondary coil aims to create the net
magnetic field outside the gradient coil surface
close to “zero,” it also reduces the net magnetic
field inside the bore of MRI scanner. Therefore,
the number of turns used in primary coil is always
higher than the number of turns used in secondary
coil.

Mechanical Structure of Gradient Coil
The gradient and shim coils are located
inside a cylindrical-shaped structure. This
structure is typically made of epoxy to pro-
vide rigidity but doped with other materials
to control its elasticity. The shim coils are
located underneath the shield-gradient coils
in the epoxy structure. This means that the
radius of shield-gradient coils > radius of
shim coils. Cooling pipes are embedded
in epoxy, close to the locations of passive
shim tokens, to dissipate the heat produced
by gradient switching. The epoxy structure
with gradient/shim coils and cooling pipes
embedded inside it is collectively given a
generic name of gradient coil as it is a stan-
dalone component of MRI. The gradient
coil is mounted inside magnet using brack-
ets, wedges, or air-filled balloons. The cen-
ter of gradient coil must be aligned to the
isocenter of MRI along z−direction. Care
must be taken duringmounting to avoid any
misalignment in the orientation of gradient
coil in azimuth direction; otherwise, this
might lead to geometric distortions.

3.2.3 Radiofrequency Coils

There are two types of RF coils used in MRI:
the transmit RF coils and the receive RF coils.
As implied by their names, the transmit RF coil
transmits RF magnetic field to the imaging object
(such as the human body), and the receive RF coil
detects the oscillating magnetic field emerging
from within the imaging object. The goal of a
transmit RF coil designer is to design the coil with
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a highly homogeneous RF excitation field (B1)
across the entire volume covered. A receive RF
coil designer aims to design the coil with better
signal-to-noise ratio (SNR) of the received signal.

There are two options for placement of trans-
mit and receive RF coils [7]. In the first case,
transmit RF coil is located underneath the gra-
dient coil and typically called as volume coil or
body coil. The receive signal is detected by a
separate receive coil located close to the imaging
object.While a volume coil can receive the signal,
its received signal is only used for calibration
purposes. In the second case, the transmit and
receive coils are designed as a single unit called
transceive RF coil. The transceive RF coil is
located in close proximity to the imaging object
which increases the signal-to-noise ratio (SNR)
of the received signal.

Many designs exist for receive RF coils [7].
For example, the surface coils used for spine
imaging are located on the patient table, but those
used for abdomen and cardiac imaging are flexi-
ble and placed on top of the abdomen and tho-
rax. These days, parallel imaging has become a
routine practice in MRI, and this is enabled by
phase-array receive coils. These coils consist of
small coil elements that are grouped together or
fed into separate receive channels, and combining
these large groups of smaller-sized coil elements
enhances the overall SNR of the received signal.
When surface coils and phase-array coils are used
as receive coils, the body coil is used as transmit
coil.

3.2.4 Spectrometer

Spectrometer in MRI refers to the hardware com-
ponent which acts as an interface between the
software present in the MRI console computer
and the power amplifiers used in MRI. Spec-
trometer takes instructions about the shapes of
gradient and transmit RFwaveform from theMRI
console computer and generates the correspond-
ing voltage signals to be sent to the gradient
and RF amplifiers. Spectrometer also records the
data acquired by the receive RF coils and shares

it with the computer running the reconstruction
algorithms.

3.2.5 Power Amplifiers

Three different types of power amplifiers are used
in MRI to drive the three hardware components:
gradient coils, transmit RF coils, and shim coils.
The designs of all these amplifiers must adhere to
the IEC 60601-2-33 standards for the basic safety
and essential performance of MRI equipment if
the MRI equipment is intended for medical diag-
nosis.

A set of three high-power amplifiers indepen-
dently drive each of the three channels of gra-
dient coils. They take the voltage signals from
spectrometer and amplify them to produce cur-
rent signals as input to the gradient coils. The
inductance of gradient coils govern the choice
of gradient amplifier specifications. For example,
the typical gradient amplifier specifications to
achieve a gradient strength of 45mT/m and slew
rate of 200 T/m/s in a whole body MRI scanner
are an operating current/voltage of 800A/2000V.

The power rating of shim amplifiers is much
lower than the gradient amplifiers. For example,
typical power ratings for a shim amplifier are
5–10A and 15–30V. There is an independent
amplifier for each of the shim coils. The shim
amplifiers are typically built in a single multi-
channel unit, with a dedicated channel (electronic
circuit board) for each amplifier. Therefore, an
important specification of a shim amplifier is
the combined maximum output power (typically
650W). The shim amplifiers should be robust
against the induced voltage from gradients.

The RF amplifiers take the shape of transmit
RF pulse from spectrometer and amplify it
to drive the transmit RF coil. The operating
frequency of RF amplifier is the same as the
resonance frequency of the MRI scanner (e.g.,
127.74MHz for a 3 T MRI scanner). The output
impedance of the transmit RF coil should
be matched with the input impedance of the
RF amplifier to enable the maximum power
transfer from the power amplifier to the coil,
by minimizing the reflected power from the coil.
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This ensures that the greatest possible fraction of
the power is delivered to the spins and enhances
SNR. Thematching/tuning of the transmit RF coil
is a routine process before starting the imaging
in ultra-high-field MRI scanners such as ≥4.7 T
pre-clinical MRI scanners.

3.2.6 Preamplifier

The analog signals received by the receive RF
coil are very low signals (of the order of mV )
and therefore amplified using a preamplifier. This
increases the amplitude of the received signal to a
level that can be digitized. Since the transmit RF
power is much higher than the received signal, the
preamplifier of the receive RF coil has to be pro-
tected from damage. This is done by minimizing
the coupling from the transmit coil to the receive
coil using a detuning circuit [7].

3.3 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is the fun-
damental phenomenon behind signal generation
in MRI. As the name suggests, the nuclear in
NMR relates to the nuclei of atoms in the imaging
object, the magnetic is named for the external
magnetic field which is applied to generate the
desired behavior, and the resonance describes
the emission of electromagnetic radiation due to
interactions between the magnetic field of the
nuclei and external magnetic field. Therefore,
to understand the signal generation in MRI, we
need to first understand the magnetic properties
of nuclei and the NMR phenomenon.

History of NMR
Before describing the NMR phenomenon
in detail, it is worth knowing about some
of the seminal research works done in the
field of NMR. The credit of describing and
measuring the NMR phenomenon for the
first time goes to Isidor Rabi who per-
formed the NMR measurements in molec-

ular beams in 1938 by extending the Stern-
Gerlach experiment. Isidor Rabi won the
1944 Nobel Prize in Physics for this work.
Later in 1946, Felix Bloch and Edward
Mills Purcell expanded the NMR technique
for use on liquids and solids, and they
were awarded the 1952 Nobel Prize in
Physics for this contribution. Felix Bloch
also proposed the Bloch equations which
determine the time evolution of nuclear
magnetization.

3.3.1 Spin System of Hydrogen
Nucleus

Spin System
The physical principles at nuclear level
can be described by quantum mechanics
as well as classical mechanics. Spin is an
intrinsic property of elementary particles
and defined in quantum mechanics. NMR
discoveries have revealed that nuclei with
odd atomic number (number of protons)
and/or odd mass number, such as 1H, 13C,
19F, and 31P, possess an angular momentum−→
J , which is often called spin. In classical
mechanics, spin is visualized as a physical
rotation analogous to the rotation of a top
about its axis. It is worth noting here that the
concept of an elementary particle having
a spin is the same as the concept of an
electron having a mass. Just like an electron
is indicated as a point particle occupying no
volume of space at all, spin in reality is just
a concept without any physical motion of
nucleus.

An ensemble of spins of the same type
is referred to as a spin system or nuclear
spin system. For example, each of the nuclei
1H, 13C, 19F, and 31P represents a separate
spin system. The signal in MRI comes from
a voxel which is a finite volume with a

(continued)
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large number of nuclei. It is assumed dur-
ing a typical MRI scan that a voxel con-
tains similar type of nuclei. Therefore, MRI
signal from a voxel can be modeled as a
signal of a spin system. Moreover, the MRI
principles can often be described accurately
using classical mechanics with the help of
vectors.

Hydrogen Nucleus
Quantum theory tells us that atomic nu-
clei have specific energy levels due to the
property known as spin quantum number, I.
For example, the hydrogen nucleus, with its
single unpaired proton, has a spin quantum
number I of 1/2. The number of possible
energy statesN of a nucleus is given by the
relationship:

N = 2I + 1 (3.1)

For a single proton with I = 1/2, we have:

N = 2(1/2) + 1 = 2 (3.2)

It follows that a hydrogen nucleus can have
two energy states which we denote as−1/2
or +1/2. As per quantum mechanics, any
particle with non-zero spin quantum num-
ber should have spin. As per classical me-
chanics, when a charged particle is moving,
it creates a magnetic field. Therefore, the
hydrogen protons with a net positive charge
are spinning about their axis and creating a
magnetic field (Fig. 3.2a). The direction of
the magnetic field depends on the direction
of spin of the proton and follows the “right-
hand grip” convention. Note that the two
energy states of hydrogen proton lead to
two possibilities of the directions of mag-
netic field.

Themagnetic field of a spin is somewhat
like that from a bar magnet (Fig. 3.2b), with
flux lines running from the south to the
north pole (inside the magnet) and from
the north pole to the south pole (outside
the magnet), forming closed loops. As is
the convention, the field direction of the
bar magnet is taken to be outward from the
north pole and in to the south pole.

(continued)

Fig. 3.2 (a) Magnetic field of a spin rotating in anti-clockwise direction. (b) Magnetic field of a bar magnet (which is
analogous to a spin). (c) A spin system spins inside an MRI voxel
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Table 3.1 Gyromagnetic
ratios and spin quantum
number for various nuclei

Nucleus Spin quantum number (I) Gyromagnetic ratio (MHz/T)
1H 1/2 42.6
13C 1/2 10.7
17O 5/2 5.8
19F 1/2 40.0
23Na 3/2 11.3

It is worth noting that if there were an
even number of protons in the nucleus, ev-
ery proton would be paired, meaning that
for every “spin-up” proton, there would be a
“spin-down” proton and the magnetic fields
would cancel out, leaving no net magnetic
field. However, when a nucleus contains
an odd number of protons, there exists an
unpaired proton which points either up or
down giving rise to a net magnetic field
(Table 3.1).

3.3.2 Magnetic Moment and
Magnetization

Magnetic Moment
The magnetic field of a nuclei is repre-
sented by a vector quantity −→μ and known
as nuclear magnetic dipole moment ormag-
netic moment. As per particle physics, the
angular momentum of spin is related to the
magnetic moment as:

−→μ = γ
−→
J (3.3)

where γ is a physical constant known as
gyromagnetic ratio. Gyromagnetic ratio is
sometimes also represented with the sym-
bol γ− which is related to γ as:

γ− = γ

2π
(3.4)

When expressed as γ , the unit of gyromag-
netic ratio is rad/T/s, and when expressed
as γ−, the unit is MHz/T. Note that both γ

and γ− are nucleus-dependent, whichmeans
that the NMR-active nuclei such as 1H, 13C,
19F, and 31P would each have its unique
value of γ or γ−. For 1H, γ− = 42.58MHz/T,
and γ = 2.675 × 108 rad/T/s (Table 3.1).

Following on from previous discussion,
a magnetic moment is found in any nu-
cleus with an odd number of protons, neu-
trons, or both. As such, any element with
these properties can be used for MR imag-
ing, not just hydrogen. Other nuclei some-
times imaged in MRI are fluorine (19F) and
sodium (23Na). However, hydrogen is the
usual element under investigation due to its
abundance in the human body—almost two
thirds of the human body is water.

Magnetization
Consider a spin system containing Nspins

number of spins. Considering that this is a
linear system and applying systems engi-
neering principles, the collective behavior
of this spin system can be described using

a magnetization vector
−→
M as:

−→
M =

Nspins∑

n=1

−→μ n (3.5)

where −→μ n is the magnetic moment of nth

spin. Note that since −→μ n is a vector,
−→
M is

the vector sum of −→μ n.

In the descriptions that follow, we will use a
systems engineering approach where the imaging
object acts as a linear system of magnetized
nuclear spins. The system is excited by a
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radiofrequency (RF) signal as input, which
drives the system to a resonance state. When
the system reverts to its original state, a signal
is generated which can be detected using receive
coils. We will discuss this further in the following
sections.

3.3.3 Interaction of Magnetic
Moments with External
Magnetic Field

Consider a spin system of 1H nuclei, where each
spin has a magnetic moment −→μ n. Since

−→μ n is a
vector, it has bothmagnitude and direction, the di-
rection being along the axis of rotation (Fig. 3.2a).
In the absence of any external magnetic field
(B = 0), the direction of −→μ n will be random
due to the thermal random motion. Therefore,
the combined effect of magnetic moments will
cancel out, and the net magnetization will be zero

(
−→
M = 0). This is illustrated in Fig. 3.3a.
If an external magnetic field B = B0az is

applied, this has the effect of causing the spins to

behave like bar magnets and tend to align along
the direction of the applied field (az). However,
unlike bar magnets, the −→μ vector does not align
exactly along the external magnetic field. Instead,
it can only take one of a discrete set of orientations
with respect to az. As per quantum theory, the z-
component of −→μ becomes:

μz = γmI h̄ (3.6)

wheremI is the magnetic quantum number and h̄
is Planck’s constant. As mentioned earlier, since
the number of energy states of a given nucleus
is given by 2I + 1, there are 2I + 1 possible
orientations of −→μ with respect to the external
magnetic field. Therefore, the 1H nuclei with I =
1/2 has two possibilities for the orientation of the
1H spins with respect to az. The energy of spins
in the 2I + 1 states is given by:

E = −−→μ · −→
B = −μzB0 = −γmI h̄B0 (3.7)

For 1H nuclei withmI = 1/2 (spins pointing up),
the energy becomes:

Fig. 3.3 Alignment of spins in a magnetic field
(Nspins=10). (a) In the absence of an external magnetic
field, the spins are randomly oriented, and there is no net

magnetization. (b) With an applied field, the spins align
with or against the field, with slightly more aligning with
the field, leading to a net non-zero magnetization
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Fig. 3.4 (a) Time-course of exponentially increasing net
magnetization for gray matter and white matter at 1.5 T
and 3 T. (b) The time constants of the exponentially in-

creasing net magnetization curves for gray matter and
white matter at 1.5 T and 3T. The values of time constants
(the T1-relaxation times) were taken from [22]

E↑ = −1

2
γ h̄B0 (3.8)

Likewise, for the 1H nuclei with mI = −1/2
(spins pointing down), the energy becomes:

E↓ = 1

2
γ h̄B0 (3.9)

Equations (3.8) and (3.9) indicate that spins point-
ing up have lower energy than the spins pointing
down. Therefore, there are slightly more spins,
about one in one million, aligning up (parallel)
in the stable state with lower energy than align-
ing down (anti-parallel) with higher energy. As
hydrogen is so plentiful in the human body, de-
spite this tiny ratio, we are left with a net mag-
netization which is aligned along az, the direc-
tion of applied magnetic field. This is illustrated
in Fig. 3.3b where the total of −→μ 1,2,4,9 cancels
the total of −→μ 3,5,6,8 leaving the net magnetic
moments of −→μ 7 and −→μ 10 pointing up (parallel
to az).

Time-Course of Magnetization
Let us try to understand the time-course of
development of magnetization since time

t = 0 when the imaging object is outside
MRI scanner. At t = 0, with no exter-
nally applied magnetic field, the spins are
distributed randomly with no net magne-
tization. Upon application of B for t >

0, spins start aligning with the magnetic
field, eventually resulting in a net non-zero
magnetization along az, the direction of B.
If we were to plot the net magnetization
against time, it would look like the graph
in Fig. 3.4a. This is an exponential growth
curve with the time constant depending
on the tissue that we are imaging and the
strength of B, i.e., B0 (see Fig. 3.4b). The
fact that the time constant is specific to the
tissue being imaged is what contributes to
the exquisite tissue contrast we are familiar
with in MR imaging.

Spin Density

The net magnetization
−→
M is also dependent

on a quantity known as proton density or
spin density N(H), which refers to the num-
ber of protons (or spins) present per unit
volume in the tissue under investigation.

(continued)
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Proton density differs for each tissue in
the body and therefore contributes to the
exquisite soft tissue contrast we are familiar
with in MRI. However, it is important to
note that it is not purely the density but the
number of mobile protons aligning with the

external field, which contribute to
−→
M .

Free Precession (Larmor Precession)
Consider a spin rotating about its axis and
interacting with an external magnetic field.
In addition to the spin aligning along az, the
direction ofB, it also undergoes precession.
The precession refers to a rotation around
the axis of the external magnetic field. The
rate at which a spin precesses around the
external magnetic field is described by the
Larmor equation:

ω0 = γB0 (3.10)

where ω is the angular precessional fre-
quency of the spin (measured in rad/s),
γ is the gyromagnetic ratio (measured in
rad/s/T), and B0 is the strength of the ex-
ternal magnetic field (measured in T ). The
Larmor or precessional frequency in MRI
refers to the rate of precession of the mag-
netic moment of the spin around the exter-
nal magnetic field. The direction of preces-
sion is determined using the left-hand rule.
For example, when left thumb represents B
and points along az, the rotation of spins
is clockwise (the direction of movement of
fingers).

3.3.4 Susceptibility andMagnetic
Materials

Magnetic susceptibility is a material property
measuring the tendency of a material to become
magnetized in an applied magnetic field.
Therefore, it is the magnetic susceptibility of

a material which controls the effective magnetic
fieldB experienced by spins present in a material.
Magnetic susceptibility is typically represented
as χ and measured as:

χ = M
H

(3.11)

where M is the magnetization normalized to a
unit volume and H is the applied magnetic field
intensity.

Measuring the magnetic susceptibility of a
material gives us an indication of whether the
material is going to be attracted into or repelled
out of the applied magnetic field. This allows
for a simple classification of materials into two
categories: paramagnetic and diamagnetic. Para-
magnetic materials with χ > 0 align with the
applied field and get attracted toward the regions
of higher magnetic field. On the other hand, the
diamagnetic materials with χ < 0 align opposite
to the applied field and therefore pushed away
from the higher-field regions toward the regions
of lower fields.

3.3.5 Radiofrequency Excitation

Previous section discussed how a net longitudinal

magnetization
−→
Mz arises in an imaging object

in the presence of an external magnetic field.
By discussing about the “magnetic field of spin”
and its “precession,” we covered the nuclear and
magnetic part of the NMR phenomenon. In this
section, we discuss the effect of exciting an imag-
ing object with RFmagnetic field. This covers the
resonance part of NMR phenomenon.

B1 Field
The alignment of the longitudinal magneti-
zation along the direction of external mag-
netic field does not create a measurable
signal in NMR. The primary reason for

(continued)
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Fig. 3.5 Components of net magnetization before and af-
ter applying RF pulse to a spin system withNspins=10. (a)−→
Mz after the subject is placed inside NMR/MRI magnet.

(b)
−→
Mxy after a 90◦ RF pulse is applied. The net magneti-

zation due to the magnetic moment vectors−→μ 1,2,3,4,5,6,8,9
cancel out and the only magnetization contributing mag-
netic moments vectors are −→μ 7,10

this is because the design of receive RF
coils can only permit receiving a signal
in transverse plane. While individual spins
do have a transverse component of −→μ n,
the combined transverse component of a
spin system is “zero” due to randomly dis-
tributed directions of the transverse com-
ponent. This means that

−→
Mz �= 0 but−→

Mxy = 0 after placing an imaging object
inside NMR/MRI scanner. This is illus-
trated in Fig. 3.5a.

To create a signal in transverse plane, the
random directions of the transverse compo-
nents of spins should be re-oriented to pre-

vent cancellation of the
−→
Mxy signal. Reso-

nance in NMR/MRI refers to the establish-
ment of a phase coherence which enables
the spins in a spin system to start precessing
in synchronization with each other, leading

to the development of a non-zero
−→
Mxy com-

ponent. Resonance is achieved by exciting
a spin system with an RF magnetic field of
a particular frequency. This RF magnetic

field is called B1 field in NMR/MRI and
delivered to an imaging object in the form
of RF pulses of short duration. The devel-

opment of a non-zero
−→
Mxy component after

RF pulse is illustrated in Fig. 3.5b.

Resonance Condition
When an RF pulse of energy Erf = 
E =
E↓ − E↑ is received by spins, they move
from their low-energy state (E↑) to their
excited sate (E↓), creating a resonance con-
dition. Since Erf = h̄ωrf and 
E =
γ h̄B0, the frequency of this RF pulse is
given by:

h̄ωrf = γ h̄B0 �⇒ ωrf = γB0 = ω0

(3.12)

This implies that the resonance condition in
NMR/MRI occurs when spins are excited
by an RF pulse of the same frequency as
that of the Larmor frequency of spins.
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Bloch Equations
The changes in magnetization during the
RF pulse are governed by the Bloch equa-
tions. These equations are based on classi-
cal mechanics and described as:

d
−→
M

dt
=γ

−→
M×B=γ

⎡

⎣
(MyBz − MzBy)ax

+(MzBx − MxBz)ay
+(MxBy − MyBx)az

⎤

⎦

(3.13)
Here, the x-, y-, and z-components of

magnetization vector
−→
M and the total

external magnetic field B are given by−→
M = [Mxax,Myay,Mzaz] and B =
[Bxax, Byay, Bzaz]. Recall that the total ex-
ternal magnetic field is composed of the
static magnetic field B0 which points along
z-direction and the RF magnetic field B1

which points orthogonal to the z-direction.
Considering a circularly polarized RF pulse
in x-direction, the total external magnetic
field becomes:

Bx = B1cosωt

By = B1sinωt

Bz = B0

Interaction of theMagnetization Vector with
B1 Field
The detailed derivation of mathematical
expressions governing the interaction be-

tween
−→
M and B1 are out of the scope of

this book.We strongly encourage readers to
look at alternate resources such as [13] to
make themselves familiar with the rotating
frame of reference and derivations of the
time-dependent behavior of magnetization
vector in the rotating frame. Here, we just
briefly discuss the mechanisms behind flip-

ping of
−→
Mz from z-direction to x-y plane,

leading to the generation of
−→
Mxy .

According to the Bloch equation, the
time variation of the magnetization is di-
rectly proportional to the curl between the

magnetization
−→
M vector and the external

magnetic field. Therefore, if RF pulse is
transmitted along the x-axis, the time vari-
ation of the magnetization will not occur
along the x-axis, but will have components
along the y- and z-axis. This indicates that

the net magnetization vector
−→
M will pre-

cess in y-z plane, which is orthogonal to
the x-axis.We can therefore say that the on-
resonance condition leads to the precession
of spins about the x-axis, which is the direc-
tion of delivery of RF pulse. The frequency
of precession is given by ω1 = γB1.

In summary, prior to the application of
RF pulse, the spins were precessing about
the z-axis and were out of phase with one

another, resulting in no net
−→
Mxy . On being

exposed to the B1 field emanating from the
RF pulse, spins begin to precess about the
x-axis and start aligning along this axis,
thereby creating phase coherence. This is

the origin of
−→
Mxy . As the phase coherence

grows, so does the net
−→
Mxy . The magnitude

of B1 field (B1) is much weaker than B0,
somewhere in the order of 50mT compared
to 1.5 T or 3 T on modern clinical scanners.
It follows that B1 � B0 �⇒ ω1 � ω0,
indicating that ω1 can be ignored and the
precession frequency of spins could still be
considered as ω0. Since the protons precess
around the z- and x-axis at the same time,
this results in the “flipping” of Mz from
the z-axis into the x-y plane with a spiral
motion.

Flip Angle
Let us denote the angle between the z-axis

and
−→
M as α. This angle is called flip angle

and controls the movement of
−→
M from z-

axis onto the x-y plane. Flip angle is given

(continued)
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by:

α =
∫ τrf

0
ω1(t)dt =

∫ τrf

0
γB1(t)dt

= γ

∫ τrf

0
B1(t)dt (3.14)

where B1(t) is the envelope (or shape) of
RF pulse and τrf is its duration. As an
example, when RF pulse is of rectangular
shape, B1(t) = B1, and the flip angle
becomes:

α = ω1τrf = γB1τrf (3.15)

Equations (3.14) and (3.15) indicate that the
flip angle depends on the area under the B1

envelope and the duration of this envelope.
Note that the flip angle for two different
RF shapes would be the same as long as
the area under their time curves remains the
same. In actual NMR/MRI scanning, flip
angle and RF pulse duration are chosen by
the user, and B1 amplitude (or RF power) is
calculated using Eq. (3.14).

3.3.6 Relaxation

After the delivery of RF pulse to an imaging
object, its spins get excited. However, since this
is an unstable state, they start returning to their
normal state as soon as the delivery of RF pulse
is stopped. The return of spins to their normal
state from the excited state is called relaxation.
The process of relaxation is characterized by two
types of times, the transverse relaxation time and
the longitudinal relaxation time. It is worth noting
here that while the RF energy is absorbed by
individual spins, the relaxation times are average
quantities measured for a spin system. Therefore,
these two times are the unique properties of tis-
sues and characterize different species/tissues in
NMR/MRI. In this section, we elaborate on these
two times.

Longitudinal Relaxation Time, T1
The longitudinal relaxation time, also re-
ferred to as T1 time, is the time spanned by
the Mz in recovering to 63% of the value it
had before the delivery of RF pulse. We can
note from Fig. 3.6a that for a 3 T MRI, the
T1 of gray matter and white matter in the
human brain are 1820ms and 1084ms, re-
spectively. We can also note from Fig. 3.6a
that Mz is growing exponentially with a
time constant of T1 until it reaches a limit,
which we denote as M0. Considering this,
the T1 relaxation curve can be represented
as:

Mz = M0(1 − e−t/T1) (3.16)

The T1 value of tissues varies with B0.
Reducing B0 shortens the T1 of tissues in-
dicating that the T1-induced contrast among
tissues will deteriorate at lower B0.

Transverse Relaxation Time, T2 and T ∗
2

After the RF pulse is stopped, theMz begins
to recover, and Mxy starts decaying. The
transverse relaxation time, also referred to
as T2 time, is the time after whichMxy falls
to 37% of the value it had attained after
the delivery of RF pulse. As illustrated in
Fig. 3.6b,Mxy is an exponentially decaying
curve with a time constant T2. Denoting the
peak value before the beginning of decay
as Mxymax

, the T2 relaxation curve can be
represented as:

Mxy = Mxymax
e−t/T2 (3.17)

It is important to understand that the recov-
ery of the longitudinal magnetization along
the z-axis and the decay of the magneti-
zation in the x-y plane are occurring at
different rates. While it might seem intu-
itive that the rate of decay in the x-y plane

(continued)
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Fig. 3.6 (a) T1 and (b) T2 relaxation curves for gray mat-
ter and white matter at 3 T. The T1 values for gray matter
and white matter were taken as 1820ms and 1084ms,
respectively [22]. The T2 values for gray matter and white
matter were taken as 99ms and 69ms, respectively [22].

Note that the time points corresponding to the 63% value
of Mz/M0 in (a) indicate the T1 values of the two tissues.
Likewise, the time points corresponding to the 37% values
of Mxy/Mxymax

in (b) indicate the T2 values of the two
tissues

would be matched by growth in the z-axis,
the change in magnetizations is not a sim-
ple exponential process. T2 decay actually
occurs about five times more rapidly than
T1 recovery, and this is due to the “loss of
phase coherence,” also called dephasing

One of the major mechanisms behind
this dephasing is the spin-spin interaction
because of which the transverse relaxation
is also called spin-spin relaxation. The spin-
spin interaction refers to the transfer of en-
ergy from an excited spin to a spin in neutral
state. This is possible when the spins in-
volved in energy exchange are belonging to
the same spin system and lie in close prox-
imity to each other. The spins satisfying this
condition will be oscillating with the same
frequency ω0 and will have phase coher-
ence as long as the external magnetic field
remains B0. However, the inter-molecular
and intra-molecular interactions (vibrations
or rotations) cause transient fluctuations in
B0, leading to the loss of phase coherence
over time.

When the B0 field is inhomogeneous,
different spins of a spin system experience
different B0 field leading to different ω0

for the spins. In this case, the dephasing
of spins is much quicker than T2, and the
relaxation time is denoted as T ∗

2 . Multiple
sources can contribute to field inhomogene-
ity because of which the T ∗

2 can be repre-
sented as:

1

T ∗
2

= 1

T2
+ 1

T 
B
2

+ 1

T

Bsusceptibility

2

+ 1

T

Bgradients

2

+ others (3.18)

Here, T 
B
2 , T


Bsusceptibility

2 , and T

Bgradients

2 are
the time constants induced due to B0 in-
homogeneity, magnetic susceptibility, and
gradients, respectively. Note that the T2
in Eq. (3.17) should be replaced with T ∗

2
when the B0 field is inhomogeneous. Also
note that the T


Bgradients

2 term in Eq. (3.18)

(continued)
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can be compensated by properly designing
the gradient shapes in MRI. Moreover, the
T 
B
2 term in Eq. (3.18) can be compen-

sated either by using a 180◦ RF pulse (see
Sect. 3.3.8) or by correcting for the inhomo-
geneity using higher-order shim coils.

3.3.7 Bloch Equations in General
Formwith T1 and T2

As discussed earlier, the changes in magnetiza-
tion during the RF pulse are governed by the
Bloch equations. A general form of these equa-
tions includes the effect of T1 and T2 relaxation
times on the magnetization. Equation (3.13) can
then be modified as:

dMx

dt
= γ (MyB0 + MzB1sinωt) − Mx

T2

dMy

dt
= γ (MxB1cosωt − MxB0) − My

T2

dMz

dt
=γ (MxB1sinωt+MyB1cosωt)−Mz−M0

T1

If we assume that immediately after the RF
pulse is switched off, B1 = 0, we can solve:

Mx(t) = (Mx(0)cosω0t + My(0)sinω0t).e
−t
T2

My(t) = (My(0)cosω0t − Mx(0)sinω0t).e
−t
T2

Mz(t) = Mz(0)e
−t
T1 + M0[1 − e

−t
T1 ]

Furthermore, for a system initially in equilib-
rium and a 90◦ RF pulse applied along the x-axis,
Mx(0) = Mz(0) = 0 and My(0) = M0, which
implies:

Mx(t) = (M0sinω0t).e
−t
T2

My(t) = (M0cosω0t).e
−t
T2

Mz(t) = M0(1 − e
−t
T1 )

These relationships inform us that the magne-
tizations in the x- and y-directions oscillate at the
Larmor frequency, decaying with time constant
T2, while the magnetization in the z-direction
grows with time constant T1, from zero to M0.

3.3.8 Signal Generation in NMR

FID Signal
As discussed in Sect. 3.3.5, if RF pulse
is transmitted to an imaging object along
x−direction, the spin magnetization flips
to y-direction and then starts precessing
around z-direction in x-y plane. We can
split the spin magnetization into two com-
ponents: transverse magnetization (Mxy)
and longitudinal magnetization (Mz). After
the RF pulse is stopped, the Mxy compo-
nent starts dephasing in x-y plane, and the
Mz component starts recovering along z-
direction. If we place a RF coil in a plane
orthogonal to the z-direction, the exponen-
tially decaying and oscillating Mxy mag-
netization will induce current in the coil.
The induced current will create an exponen-
tially decaying and oscillating signal called
a free induction decay (FID) signal in MRI.
The FID signal requires demodulation with
ω0 to recover the exponentially decaying
signal.

Refocusing RF Pulse and Spin Echo
The FID signal reduces to 37% of its peak
value after time T2. Therefore, we should
aim to receive this signal way before T2 to
achieve higher SNR. Recall that although
T2 is a characteristic of each tissue, the
time constant of decaying FID signal is T ∗

2 ,
and not T2, due to multiple sources of field
inhomogeneity (see Eq. (3.18)). A 180◦ RF
pulse, called refocusing RF pulse, is applied
after the 90◦ RF pulse to recover the lost

(continued)
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Fig. 3.7 Generation of
spin echo by applying 180◦
RF pulse of the same
frequency f0 as that of the
90◦ RF pulse. Data
acquisition window is time
synchronized with the time
duration of echo

RF pulse

Data acqusition 
window

Echo

TE

90⁰

180⁰

coherence in spin phases. As its name in-
dicates, the refocusing RF pulse refocuses
the transverse component of magnetization.
The mechanism behind this is that the 180◦
RF pulse reverses the phase of spins. The
phase reversal leads to the arrival of phase
coherence after a time equal to the time
between 90◦ and 180◦. The onset of phase
coherence leads to a signal called echo in
NMR/MRI. The time instant at which echo
appears is called echo time (TE). A typical
90–180 RF experiment leading to the gen-
eration of a spin echo is shown in Fig. 3.7.
Note that a spin echo appears at T E = 2τ ,
where τ is the time after which a 180◦ RF
pulse is applied.

3.4 Magnetic Resonance
Imaging

Section 3.3 described the physical principles of
NMR and generation of FID signal in spin echo.
The idea of using spatially varying magnetic
fields (or gradient fields) to change the proton
frequency as a function of position along the
direction of the gradient was a remarkable
discovery that helped in transforming the NMR
field into the field of MRI. This discovery earned
the 2003 Nobel Prize in Physiology andMedicine
to Paul Lauterbur and Sir Peter Mansfield. In
this section, we will describe how an image is
formed by MRI scanners in both k-space and

spatial domain using a combination of multiple
sequences of RF and gradient pulses, called
“pulse sequence” in MRI. Figure 3.15 shows
the complete pulse sequence diagram of spin
echo pulse sequence.

3.4.1 Initial Condition Inside anMRI
Scanner

Consider an MRI scanner with its main magnetic
field B = B0az. Initially, when an imaging ob-
ject is outside MRI scanner, the spin phases are
aligned in random directions. This is illustrated
in Fig. 3.8a. When we place an object inside MRI
scanner, the magnetic moment of protons (spin
magnetization) inside the object aligns along az,
as illustrated in Fig. 3.8b, and starts precessing
around B0az. The Larmor or precessional fre-
quency is proportional to the strength of B and
depends on the environment in which protons are
located. If protons are located in water environ-
ment such as muscle, the precessional frequency
fw = γ

2π B0, where γ is the gyromagnetic ratio of
protons. Likewise, if protons are placed in other
environment such as fatty tissue, the precessional
frequency ff = γ

2π (B0 + δB0), where δB0 is the
variation of magnetic field due to the electronic
shielding of the protons in fatty tissue.

3.4.2 Application of Magnetic Field
Gradients

In MRI, the constant magnetic field B0az inside
the bore of magnet is spatially varied through the
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Fig. 3.8 Spin phases when subject is placed (a) outside
and (b) inside an MRI scanner. The green colored (solid
lines) and black colored (dashed lines) indicate two groups
of spins. In each of these groups, the net magnetization is
“zero” in (a) when spins are outside the magnet. When the
subject is placed inside magnet in (b), then the group of

spins with green color (solid lines) attain a net magneti-
zation along z−direction, the direction of main magnetic
field. However, the group with black color (dashed lines)
attain their net magnetization opposite and with slightly
less magnitude than the other group. Therefore, the net
magnetization of spins is along az

application of gradient magnetic fields indepen-
dently in three directions: x, y, and z. This makes
the total magnetic field B linearly dependent on
the location (x, y, z) inside the magnet and can be
expressed in terms of the gradient field strength
Gx , Gy , and Gz as:

B(x, y, z) = B0 + Gxx + Gyy + Gzz

Gradient fields are applied for a short period
of time during the data acquisition cycle and
referred to as gradient pulses. There are three
such gradient pulses: slice selection, phase en-
coding, and frequency encoding. A combination
of these pulses creates images in MRI. The slice
selection gradient is responsible for the selection
of an imaging slice in two-dimensional MRI or
imaging volume in three-dimensional MRI. The
phase-encoding gradient is responsible for the
creation of extra phase in the spins present in

the imaging plane or volume. The frequency-
encoding gradient is responsible for the creation
of difference in frequency in the spins lying in an
imaging plane or volume. For imaging of axial
slices in two-dimensional MRI, these gradients
are applied along z-, y-, and x-direction for slice
selection, phase encoding, and frequency encod-
ing, respectively. These gradients are explained
in detail in subsequent sections considering that
axial slices are acquired. Note that if slices are
acquired in sagittal or coronal planes, then the
directions for slice selection, phase-encoding, and
frequency-encoding gradient would change.

Slice Selection Gradient
When slice selection gradient Gz is turned
on in z-direction, the magnetic field be-
comes (B0+Gzz)az. This variation of mag-

(continued)
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Fig. 3.9 (a) Slab and (b) slice selection process in three- and two-dimensional MRI, respectively. In slab selection, a
thick 3D volume is selected, and in slice selection, a thin 2D slice is selected

netic field as a function of z-direction leads
to a change in the precession frequency of
protons along z-directionwhich is given by:

f (z) = f0 + γGzz (3.19)

where f0 is the center frequency (or fre-
quency without any z-gradient). In a two-
dimensional (2D) data acquisition, a small
section (typically called a “slice”) of the
imaging object is selected, and in a three-
dimensional (3D) data acquisition, a larger
section (typically called a “slab”) is se-
lected. The process of slice and slab se-
lection is illustrated in Fig. 3.9. The exci-
tation RF pulse (see Fig. 3.10a) is time syn-
chronized with the slice selection gradient.
Therefore, only the protons lying in the se-
lected slice (or slab) get excited. The excita-
tion RF pulse is frequency-selective, which
means that it has certain frequency and
bandwidth. The frequency of excitation RF
pulse is chosen as per the location of slice
(or slab) using Eq. (3.19). Typically, the
bandwidth of excitation RF pulse (BWss)
is fixed in a given pulse sequence program,
which enables the user to change the slice

thickness by varying the amplitude of slice
selection gradient inside the pulse program.
The required slice selection gradient (Gz)
in a pulse program is calculated from the
following equation:

Gz = BWss

γ
z
, ∵ BWss = γGz
z

(3.20)

Phase-Encoding Gradient
When phase-encoding gradientGy is turned
on in the y-direction, the magnetic field
becomes (B0 + Gyy)az. This variation of
magnetic field along y-direction leads to
a change in the precession frequency of
protons which is given by:

f (y) = f0 + γGyy (3.21)

The evolution of spin phase and frequency
under the influence of phase-encoding gra-
dient is illustrated in Fig. 3.11. The phase-
encoding gradient is applied for a fixed du-
ration τ . Therefore, a constant phase θ(y)

(continued)
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Fig. 3.10 Effect of slice selection gradient on spin
phases. (a) Gradient pulse applied along z−direction in
synchronization with a slice-selective RF pulse. (b) The
frequency f0 and phase θ0 of spins at the time instants
1 and 3 before and after applying the slice selection gradi-
ent, respectively. (c) The frequency and phase of spins for

three slices at the time instant 2 when a positive gradient
is applied. Note that the frequency and phase of slice at
z=0 remain the same as that without gradient because the
gradient-induced change in magnetic field B0 is equal to
zero (see Eq. (3.19))

is introduced to the precessing protons as a
function of y and can be expressed as:

θ(y) = 2π
∫ τ

0
f (y)dt

= 2πf0

∫ τ

0
dt + 2πγ

∫ τ

0
Gyydt

= 2πτ(f0 + γGyy)

(3.22)

Frequency-Encoding Gradient
When the frequency-encoding gradient Gx

is turned on in the x-direction, the magnetic
field becomes (B0 + Gxx)az. Varying the
magnetic field along x-direction leads to a
change in the precession frequency of pro-
tons along the x-direction, which is given
by:

f (x) = f0 + γGxx (3.23)

(continued)
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Fig. 3.11 Effect of phase-encoding gradient on spin
phases located within a 3 × 3 grid of voxels. (a) Gradient
pulse applied along y−direction after the end of an RF
pulse of frequency f0. (b) The frequency f0 and phase θ0
of spins at the time instant 1 before applying the phase-
encoding gradient, assuming that center slice with spin
frequency f0 was selected by slice selection gradient.

(c) The frequency and phase of spins at the time instant
2 when a positive gradient is applied. Note the change
in frequency and phase along the y−direction. (d) The
frequency and phase of spins at the time instant 3 when the
gradient returns to zero. Note that the frequency is now the
same for spins in all the voxels but they have accumulated
a phase due to the y−gradient

The evolution of spin phase and fre-
quency under the influence of frequency-
encoding gradient is illustrated in Fig. 3.12.
The frequency-encoding gradient is bipolar
with the area (A) of negative gradient being
half of the area (2A) of the positive gradi-
ent. Moving along the time from t2 to t4,
the phase induced by the negative gradient
starts getting cancelled by the phase due
to the positive gradient. When the area (A)
of negative gradient balances the half of
the area (2A) of positive gradient at t3, the
phase of all the spins becomes θ0, which
is the same phase as that of the spins at
the time instant 1 . Note that it is just the

phase of spins which varies along t2 to t4;
the distribution of spin procession frequen-
cies remains the same along t2 to t4. An
illustration of this phenomenon is presented
in Fig. 3.12e using a 3×3 grid where phases
vary with time but frequencies do not.

The sampling duration of one data sam-
ple within a data acquisition window is
typically called dwell time
t . Considering
that Nx data samples are acquired within
this data acquisition window, its duration is
given by:

Data_Acquisition_Window=Nx × 
t

(3.24)

(continued)
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Fig. 3.12 Effect of frequency-encoding gradient on spin
phases located within a 3 × 3 grid of voxels. (a) Bipolar
gradient pulse applied along x−direction after the end
of an RF pulse of frequency f0 and the data acquisition
window. (b) The frequency f0 and phase θ0 of spins at
the time instant 1 before applying the frequency-encoding
gradient, assuming that center slice with spin frequency f0
is selected by the slice selection gradient. (c)–(d) The fre-
quency and phase of spins at the time instants 2 and 3 when

negative and zero gradients are applied, respectively. Note
that the frequency and phase change along the x−direction
at the time instant 2 but the frequency reverses back to f0
when gradient returns to zero at 3 . However, the phase at
the time instant 3 stays the same as that at 2 in the absence
of any gradient. (e) The frequency and phase of spins at
the time instant 4 when the positive gradient is applied.
Note the variation of phase with respect to time at the time
instant 4

The time span 4 in Fig. 3.12 is also the du-
ration when the data acquisition takes place
in MRI. Therefore, different data samples
acquired during the time span 4 have differ-
ent phases depending on the difference in
the areas between the positive and negative
gradients. This leads to a change in the
signal amplitude along the time span 4 with
the signal peaking at t3.

3.4.3 K-Space in MRI

The signal acquired in MRI during data acquisi-
tion window is in Fourier domain, also called k-
space. The k-space image is not something many
of us are familiar with as radiologists do not use

it for diagnosis of abnormalities. However, it is
the starting point for reconstruction of the most
familiar spatial domain image which displays the
structure of body tissues and typically used for
diagnostic purposes. It is very important to under-
stand how k-space data is formed in anMRI scan-
ner to develop new MRI methods for novel MRI
applications. While a brief description is pro-
vided in this section, we strongly recommend that
readers should make themselves familiar with the
Fourier domain and Fourier transform to gain a
better understanding of the k-space in MRI.

Fourier Analysis and K-Space
Fourier theory tells us that any signal or
waveform can be decomposed into a series

(continued)
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Fig. 3.13 Low and high
spatial frequencies

of components at different frequencies and
amplitudes. Such a representation is known
as a spectrum in the frequency domain. As
an analogy, consider the case of an acoustic
signal such as a song. This is a 1D wave-
form in the time domain. When decom-
posing this song into its constituent com-
ponents, we Fourier transform (FT) this
signal to create a spectrum in the frequency
domain, where we have a peak at each fre-
quency contained in the song, with the am-
plitude of the peak reflecting the “loudness”
of that frequency. An image is simply a 2D
signal in the spatial domain, and k-space
is the 2D FT of the anatomical image we
are hoping to create. Note that MRI k-space
signals are sometimes acquired in 3D, in
which case 3D FT represents the series of
concatenated 3D image slices acquired in
MRI.

Spatial Frequency
The MRI k-space is a 2D/3D matrix con-
taining spatial frequency information about
the slice/slab we are imaging. Spatial fre-
quency can be a difficult concept when first
encountered, as frequencies are normally
encountered in time domain rather than im-
age domain. Let us consider two test im-
ages, as shown in Fig. 3.13, to better under-
stand this concept. We can notice that there
are alternating light and dark bands in the
two images, with the narrower bands occur-
ring more frequently than the wider bands
in the same area. A spatial frequency is a pe-

riodic variation in image brightness, which
can be measured in cycles per unit distance.
The higher spatial frequencies correspond
to the finer detail in a given image, and the
lower spatial frequencies correspond to the
uniform regions in the given image.

Spatial Encoding to Generate K-Space
As described in Sect. 3.4.2, spatial en-
coding is accomplished in MRI through
the use of gradient coils to impose spa-
tially varying magnetic fields. Considering
only 2D imaging in axial plane, we have
Gx and Gy gradients for the frequency-
and phase-encoding directions. Referring
to Sect. 3.4.2 again, we can notice that each
voxel in our resultant image contains pro-
tons which have a distinct frequency and
phase. Each time a frequency-encoding step
is performed after phase encoding, we get
a signal for each row of our data space.
Each phase shift fills a different row in k-
space. The ordering of filling the k-space
rows could be arbitrary, so it is important to
realize that the center of k-space does not
represent the center of the spatial domain
(which most of us are familiar with).

Looping in K-Space
K-space is created by a unique combination
of multiple RF and gradient pulses, played
in a certain order over a fixed period of
time. This fixed time period is repeated

(continued)
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in loops to fill the k-space, which gives
it a unique name of repetition time (TR).
The spin echo pulse sequence in Fig. 3.15
shows that the phase-encoding gradient
varies from one TR to another by stepping
from a negative value, through zero, to an
equal positive value. Thus, each row of
k-space experiences a different magnitude
of phase-encoding gradient, which affects
the magnitude of the received signal. The
reason for this is that the phase-encoding
gradient introduces additional dephasing to
that caused by spin-spin interactions andB0

inhomogeneity. When the gradient is at its
maximum, we havemaximum dephasing of
spins. Therefore, the largest gradient used
for phase encoding produces the lowest
magnitude of signal. The highest signal is
observed when the phase-encoding gradi-
ent is zero. This signal is placed at the cen-
ter of k-space. Accordingly, the outer rows
of k-space are filled with signal acquired

with the strongest gradients, producing the
least signal.

Properties of K-Space
The center of k-space contains the maxi-
mum signal. Additionally, each signal has
maximum amplitude in the center column
as this corresponds to the center of each
echo, with more peripheral columns refer-
ring to more peripheral parts of the echo,
either toward the maximum signal or away
from it. This means that both the center
row and center column contain maximum
amplitude and therefore the highest signal-
to-noise ratio. Multiple images of k-space
are shown in Fig. 3.14. Note the high in-
tensity in the center and what may be de-
scribed as a series of concentric rings al-
ternating in high and low intensities, but
with a distinct decrease in intensity from the

(continued)

Fig. 3.14 Twelve consecutive MRI slices acquired from
a healthy adult human brain with a slice thickness of 2mm
and a slice gap of 2mm. Only the magnitude images of the

spatial domain and the k-space domain are shown. The k-
space images are shown after applying |S(kx, ky)|0.4 filter



70 A. S. Minhas and R. Oliver

center to the edge of k-space. Also note that
these concentric rings are more prominent
in images where the spatial domain image
is primarily uniform such as in images 1–4.
As the contrast (or detailed structures) start
appearing in images (from 5 to 12), the
k-space intensities start becoming higher in
the off-center regions as well.

Although on first thought it may seem
appealing to construct an image from the
high SNR center of k-space and neglect the
periphery, if we were to do so, we would
lose the fine detail in the final reconstructed
image. This is because the periphery of
k-space contains the high spatial frequen-
cies which upon transform to the image
domain produce clarity and fine structures
such as boundaries. It is important to real-
ize that all points in the k-space contribute
to the entire image with lesser or greater
SNR depending on their distance from the
center. However, there is no direct rela-
tionship between the center of k-space and
the center of the reconstructed image, and
accordingly, the edges of k-space do not
correspond to the image edges.

3.4.4 Mathematical Expression of
MRI K-Space Signal

The raw k-space MRI data is acquired either in
two dimensions (x-y plane) or in three dimensions
(x-y-z plane). Let us understand the mathematical
model of representing this two- and three-
dimensional signal k-space signal. After slice
selection (see Fig. 3.10), the combination of
phase- and frequency-encoding gradients creates
a phase- and frequency-dependent encoding of
spin-ensemble present in a given voxel (see
Figs. 3.11 and 3.12). The corresponding k-
space signal acquired during the data acquisition
window is then given by a summation of the
signal from all the voxels present in the selected
slice:

S(kx) =
∫

M(x, y)eiδ(x,y)e−i(xkx+δyky)dx

(3.25)

Here, M(x, y) is the proton-, T1-, and T2-
dependent signal from a voxel located at (x, y),
and δ(x, y) is the systematic phase artifact at
(x, y). The kx and ky are given by kx = ∫

γGxt

and ky = ∫ γGyt . Note that Eq. (3.25) represents
only one k-space line acquired at y = δy. Since
phase-encoding gradient is incremented in a loop
during the acquisition of multiple lines in k-
space, the 2D k-space signal can be represented
mathematically as:

S(kx, ky)=
∫ ∫

M(x, y)eiδ(x,y)e−i(xkx+yky)dxdy

(3.26)

In 3D data acquisition, there is one additional
phase increment along the slice selection direc-
tion. This makes the signal in 3D k-space as:

S(kx, ky, kz)

=
∫∫∫

M(x, y, z)eiδ(x,y,z)e−i(xkx+yky+zkz)dxdydz

(3.27)

3.4.5 Discrete K-Space

The mathematical models of 2D and 3D k-space
signals presented in Sect. 3.4.4 are continuous do-
main signals. However, the k-space data acquired
by MRI scanners is in discrete domain. Consid-
ering 2D k-space data acquisition, Eq. (3.26) can
be represented in discrete domain as:

S(kmx , kny )

=
Nx∑

m=1

Ny∑

n=1

M(m
x, n
y)

×eiδ(m
x,n
y)e
−i(m
xkmx +n
ykny )
x
y

(3.28)
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Here, kmx = γGxm
t , and kny = γ n
Gyτ .
Note that the Gx term in kmx corresponds to the
gradient applied at the time instant 4 in Fig. 3.12
and 
t is the dwell time. Additionally, 
Gy is
the increment, and τ is the duration of phase-
encoding gradient. Note that since kmx and kny in
Eq. (3.28) are only the mth and nth voxels in k-
space, the full k-space must be filled by acquiring
data spanning fromm = 1 toNx and n = 1 toNy .

3.4.6 Pulse Sequences in MRI

Pulse sequence is a generic name given to a
combination of RF and gradient pulses. Many
pulse sequences are used in MRI; some are
generic, and others are named based on the
kind of contrast they create. Generic MRI pulse
sequences include spin echo and gradient echo
or their multi-echo versions such as multi-spin-
multi-echo (MSME) and multi-gradient-multi-
echo (MGRE). Other common pulse sequences
include fast spin echo (FSE) and echo planar
imaging (EPI) for T2-weighted imaging and the
diffusion-weighted imaging (DWI) or diffusion-
tensor imaging (DTI) pulse sequences to image

diffusion ofwatermolecules in an imaging object.
Chapter 5 describes various pulse sequences used
for MREIT and MR current density imaging
(sometimes also referred by MRCDI). Chapter 8
describes the pulse sequence widely used for
MREPT.

MRI Data Acquisition Steps
A typical spin echo pulse sequence used
to acquire two-dimensional k-space data,
as represented in Eq. (3.26), is shown in
Fig. 3.15. Let us review this sequence in
detail to better understand the MRI data
acquisition steps. The order of events in this
sequence are listed below:

1. Apply a 90◦ RF pulse using a suitable
slice selection gradient, Gz.

2. Apply a 180◦ RF pulse, and after time
TE, receive an echo.

3. During this time, apply the frequency-
encoding gradient Gx (also called read-
out gradient).

(continued)

Fig. 3.15 Spin echo pulse
sequence for
two-dimensional data
acquisition 90o
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4. Sample this echo, and place it into one
of the rows of k-space, which means k-
space is acquired one row at a time (at
least for conventional imaging).

5. For a 256 × 256 matrix, we would use
256 samples. Note that the k-space does
not have to be square and the frequency-
encoding dimension is usually the first
set of numbers, followed by the number
of phase encode steps.

6. The number of samples dictates the
number of columns in k-space.

7. For the next row, change the phase-
encoding gradient, and repeat.

8. The number of phase encode steps dic-
tates the number of rows in k-space
and, accordingly, the scan duration. One
phase encode step is achieved in each
TR.

3.5 Image Reconstruction in MRI

Multiple image reconstruction algorithms exist
in MRI depending on the way k-space data is
acquired by a pulse sequence. In this section,
we will only focus on the reconstruction algo-
rithms considering that k-space data is acquired
in Cartesian coordinates. The reader should note
that there could be other pulse sequences in MRI
acquiring data in spiral and radial coordinates.We
encourage readers to look for other resources if
their MRI data is to be reconstructed from non-
Cartesian k-space.

3.5.1 Fourier Reconstruction of MRI
Data

Once all the k-space data is collected in Cartesian
coordinates, we reconstruct an anatomical im-
age by performing the inverse Fourier transform
(IFT) of the k-space data. This is possible be-
cause there is a one-to-one relationship between
frequency and position in the x-direction and
between phase-encoding gradient strength and

position in the y-direction. In other words, the
frequency- and phase-encoding gradients provide
the position of a signal in image space (spatial
domain).

Depending on whether the k-space data is ac-
quired in 2D or 3D, we apply either 2D or 3D
IFT. The so-called fast Fourier transform (FFT)
is the most widely used algorithm to implement
IFT due to its computational efficiency. The cur-
rent state-of-the-art in MRI is to use phase-array
coils and acquire multiple snapshots of the same
location from different angles. Since multiple im-
ages are available for the same location, the con-
ventional Fourier reconstruction is no longer a
suitable method of image reconstruction. Instead,
the final reconstructed image must be a weighted
combination of the individual channel images
because the signal received by a given channel is
sensitive only to the area closer to that channel.
This is illustrated in Fig. 3.16 for multi-channel
images acquired with a 52-channel receive RF
coil. Note that only 48 of the 52 channel images
are displayed. The magnitudes of their corre-
sponding k-space images are shown in Fig. 3.17.

The most common method to combine multi-
channel images is the so-called sum-of-squares
method [12]. In this method, the root-mean-
square average of the channel images is taken
to create a combined image. All the 12 brain
slices shown in Fig. 3.14 are created by using
sum-of-squares method. Note that the phase
information is lost in this method because the
root-mean-square averages could be calculated
only for the magnitude images and not for the
phase images. Chapter 8 describes a method to
combine the multi-channel phase images when
data is acquired using multi-echo-spin-echo pulse
sequence.

3.5.2 Parallel Imaging

One of the major issues with MR imaging is the
longer time of data acquisition. Parallel imaging
is a commonly used technique to reduce the scan
time in MRI. In parallel imaging, some of the
phase-encoding lines in k-space are skipped to
reduce the scan time. If we directly apply IFT on
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Fig. 3.16 Forty-eight
spatial domain images of a
single slice (slice 6 in
Fig. 3.14) acquired with a
multi-channel receive RF
coil. Only the magnitude
images are shown

this undersampled data, we would get overlap-
ping/aliased images. As an illustration, refer to
Fig. 3.18a where every alternate phase-encoding
line is skipped and a direct application of IFT
leads to aliasing as is evident from Fig. 3.18b.
Therefore, more sophisticated image reconstruc-
tion algorithms are necessary to correct for these
artifacts. In this section, we are briefly intro-
ducing SENSitivity Encoding (SENSE) [19] and
GeneRalized Autocalibrating Partial Parallel Ac-
quisition (GRAPPA) [6], which are the two most
widely used algorithms for image reconstruction
on the clinical scanners using parallel imaging.
A nice summary of SENSE and GRAPPA is pro-
vided by Deshmane et al. [2]. While SENSE and

GRAPPA are important, we strongly encourage
readers to study other parallel imaging algorithms
such as SMASH [21], PILS [5], and others [9,15].

Parallel Imaging Algorithms
The SENSE algorithm exploits the encod-
ing effect produced by using the sensitiv-
ity of phase-array coils. Since this encod-
ing effect is complementary to the Fourier
preparation created by linear field gradi-
ents, utilizing it compensates for the alias-
ing produced by the skipping of k-space
lines. It is worth noting that the SENSE

(continued)
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Fig. 3.17 Forty-eight
k-space images of a single
slice (slice 6 in Fig. 3.14)
acquired with a
multi-channel receive RF
coil. Only the magnitude
images are shown after
applying |S(kx, ky)|0.4
filter

algorithm uses coil sensitivities to sort out
the overlapping/aliased signals in the image
domain (spatial domain) after applying IFT.
In contrary to SENSE, the GRAPPA algo-
rithm corrects for the overlapping/aliased
signals in image domain by regenerating
themissing phase-encoding lines in k-space
and then applying IFT to create the final
image. Because of the difference in these
twomethods, GRAPPA is said to work with
the undersampled k-space, whereas SENSE
works on the aliased image [2]. Because
GRAPPA does not rely on exact knowledge

of the coil sensitivities, it is robust in ap-
plications where measuring coil sensitivity
maps is difficult. This is especially the case
in regions of low signal and in regions that
are subject to patient motion.

The weighting factors (or weights) used
to generate the missing phase-encoding
lines in GRAPPA are determined by using
a patch of k-space with the same desired
k-space spacing/image FOV as the final
reconstructed image. This patch of lines
is called autocalibration signal (ACS) and
acquired at the center of k-space. The pat-

(continued)
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Fig. 3.18 Illustration of aliasing effect when IFT is di-
rectly applied on data acquired with parallel imaging.
(a) K-space data acquired by skipping every alternate
line in phase-encoding direction. (b) Reconstructed spatial
domain image after applying IFT. The arrows indicate

a hyper-intense signal from gel which was placed on
the head while acquiring these images. Placing gel on
the scalp is a typical experimental setup in MREIT and
MRCDI (see Chap. 4)

tern of phase undersampling is governed by
the so-called acceleration factor (AF). The
AF = 2 means skipping of every alternate
line, and AF = 3 means skipping every two
lines. Therefore, increasing the AF reduces
the scan time, but poses challenges for
image reconstruction due to the enhanced
ghosting associated with themissing phase-
encoding lines.

3.6 Magnitude and Phase
Images in MRI

It is common for MR signals to be detected in
quadrature by two coils which are sensitive to
signal in orthogonal directions. These signals are
demodulated, processed, and recombined to cre-
ate the anatomical image we want to see. The
quadrature receiver coils are both measuring the
same net precessing magnetization, but from dif-
ferent perspectives. In theory, the signal is iden-
tical from either coil, except for a phase shift
of 90◦. In reality, this will not be the case due

to noise, which is independent in each coil and
uncorrelated with the other.

We can represent the net magnetization as a
vector with real and imaginary parts recorded
from the two coil channels (see Fig. 3.19). Com-
plex notation can be used for this, and it is an
arbitrary choice to consider one of the signals as
real and the other imaginary. From this real and
imaginary data, we can construct amagnitude and
a phase image as:

Magnitude(M) =
√
Re2 + Img2 (3.29)

Phase(φ) = tan−1(Img/Re) (3.30)

Significance of Phase Images in MRI
Phase images are something most of us
are not familiar with because they are not
used for clinical diagnosis. However, they
play a significant role in the design of MRI
system and improving the image quality.
Phase images are utilized for the calculation
of the so-called B0 inhomogeneity which is

(continued)
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Fig. 3.19 Representation
of the MRI signal in real
and imaginary terms

then used to calculate the currents in shim
coils to correct for the field inhomogene-
ity. Phase images are also used in certain
MRI applications such as susceptibility-
weighted imaging (SWI) [8, 17] and quan-
titative susceptibility mapping (QSM) [23].
The phase images are a central focus of
this book and widely discussed in Chap. 5
forMREIT andMRCDI applications and in
Chap. 8 for and MREPT applications.

3.7 MRI Applications Exploiting
Imaging Artifacts

In this section, we discuss two applications of
MRI which exploit artifacts in images to create
new types of images with diagnostic capability.

Susceptibility Artifact in MRI
Referring to Sect. 3.3.4, we can note that the
magnetization of a material augments the
applied field B0 with its own χ-dependent
magnetic field, causing the field lines of the
applied field to concentrate in paramagnetic
materials or be excluded in diamagnetic
materials. Either way, if the susceptibility-
induced field distortion is strong enough,
it will create artifacts in MRI. Susceptibil-
ity artifacts are especially problematic at
interfaces between materials with different
susceptibilities, such as near metal implants

or at air-brain interfaces near the paranasal
sinuses [1]. Nevertheless, susceptibility-
weighted imaging (SWI) is an application
in MRI which exploits the χ-dependent
change in MRI signal and produces quan-
titative maps of the magnetic susceptibility
of body tissues. These maps provide in-
sights into the structure of body tissues and
demonstrated to have diagnostic capability
[14].

Chemical Shift Artifact in MRI
Section 3.4.4 described the mathematical
model of the MRI k-space signal in 2D
and 3D when protons are located in water.
However, when protons are located in an
environment (or medium) other than water,
these equations need modification. Under a
specific condition when protons are located
in a fatty environment, an artifact called
chemical shift artifact appears in MR im-
ages. In the description that follows, we
explain the mathematical model of MRI k-
space signal when this artifact appears.

Let us assume that protons are located in
both fat and water environments. Consider-
ing that a read gradientGx is applied in the
x-direction, the water and fat frequencies
are expressed as:

fw = γ

2π
Gxx (3.31)

and

(continued)
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ff = γ

2π
(Gxx + δB0) = fw + γ

2π

B0

(3.32)
where 
B0 is 3.5 ppm of B0. The phase
accumulated by water protons at time t is
given by:

φw
x = γ

2π
Gxxt = kxx (3.33)

where kx = γ

2π Gxt is a spatial frequency.
The phase accumulated by fat protons at
time t is given by:

φf
x = γ

2π
Gxxt + γ

2π

B0t

= kxx + ξ = kx(x + x ′) (3.34)

where x ′ = 
B0
Gx

is a given constant indicat-
ing the pixel shift.

Let W(x, y) and F(x, y) be the proton
densities of the water and fat, respectively.
The k-space signal is assumed to be a linear
combination of water and fat signals. Using
the pulse sequence as shown in Fig. 3.15,
we can obtain the following k-space signals
S±, respectively:

S(kx, ky) =
∫ ∫

W(x, y)eiδ(x,y)

× e−i(xkx+yky)dxdy

+
∫ ∫

F(x, y)eiδ(x,y)

× e−i(kx (x+x ′)+yky)dxdy

(3.35)

where δ is any systematic phase error.
Through the change of variable x + x ′ in
the second term, we get:

S(kx, ky) =
∫ ∫

W(x, y)eiδ(x,y)

× e−i(xkx+yky)dxdy

+
∫ ∫

F(x − x ′, y)eiδ(x−x ′,y)

× e−i(xkx+yky)dxdy.

(3.36)

Equation (3.36) represents the signal model
for chemical shift in MRI when protons
are present in fatty tissues. Taking inverse
Fourier transform, we obtain the complex
MR image of water and fat as:

M(x, y) = W(x, y)eiδ(x,y)

+ F(x − x ′, y)eiδ(x−x ′,y).

(3.37)

While Eq. (3.37) describes an artifact in
images, Dixon [3] leveraged this artifact
to separate water and fat images. Modified
versions of Dixon’s method are widely used
these days in various applications including
MREIT [16].

3.8 Signal and Noise in MRI

The signal-to-noise ratio (SNR) is an important
metric used in MRI during the various stages of
development of an MRI scanner. During hard-
ware development, SNR is calculated by design-
ers of RF coil, gradient coil, and magnet. Once
the different hardware components are integrated
together to form MRI system, SNR is calcu-
lated during MRI pre-scans such as center fre-
quency adjustment and linear shim calculations.
The SNR is also used to compare the quality of
images obtained from different pulse sequences.
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Sometimes, we want to compare the quality of
images acquired from same pulse sequence but
with different scan parameters, and SNR is a good
metric for this purpose. We can also use SNR
to compare the quality of images from different
image reconstruction algorithms.

3.8.1 SNR CalculationMethods

Different SNR calculation methods have been de-
scribed in MRI. We can differentiate them based
on methods that use a single image, two images,
or a series of images for SNR calculation. The
mathematical expressions for SNR calculation
vary for each of these methods. Consider an im-
age voxel at position r = (x, y, z). If “true” MR
image intensity S(r) at position r is corruptedwith
noise, the signal intensity Sη(r, n) in the presence
of noise in a series ofN repeated acquisitions can
be described as:

Sη(r, n) = S(r) + η(r, n) (3.38)

where η(r, n) is the noise at position r = (x, y, z)

for the nth acquisition (n = 1, 2, . . . , N). For
simplicity, we will assume that η(r, n) is nor-
mally distributed in space (that is with respect
to r) and time (that is with respect to n) and
described by mean = 0 and standard deviation
= σ . It should be noted that the assumption of
normal distribution of noise is valid only for large
SNRs, i.e., S(r) >> σ ; otherwise, noise has
more complicated distributions such as the Rician
distribution or non-central chi distribution.

The SNR of a single image voxel at position
r = (x, y, z) can be defined as:

SNR(r) = S(r)
σ

(3.39)

To calculate the SNR at position r = (x, y, z),
the statistical measurement of signal intensity
S(r) and the standard deviation σ of noise dis-
tribution are necessary.

SNR Calculation from a Series of Images
The signal intensity S(r) can be calculated
as the mean value of the signal over all N
repetitions,

S(r) = mean(Sη(r, n)),

n = 1, 2, . . . , N (3.40)

If we prefer to choose a group of voxels
in an image, called region of interest (ROI),
then the signal in this ROI can be calculated
as the mean value of the signal over all the
voxels of the ROI and over allN repetitions.

S(ROI, n) = mean(Sη(ROI, n))
r∈ROI

,

n = 1, 2, . . . , N (3.41)

Although the signal calculation is easy,
the σ calculation is not straightforward. If
we have N repeated and “identical” mea-
surements of the signal, then

σ(r) = stdev(Sη(r, n)) = stdev(η(r, n)),

n = 1, 2, . . . , N (3.42)

Therefore, SNRmult of a voxel at posi-
tion r = (x, y, z) forN repeated and “iden-
tical” measurements of the voxel signal is
given by

SNRmult = Smult

σmult

= mean(Sη(r, n))
stdev(Sη(r, n))

,

n = 1, 2, . . . , N (3.43)

If we prefer to choose an ROI, then we
should select a region with uniform signal
within ROI, i.e., the spatial variation of the
signal can be neglected within the ROI. In
this case, the SNRmult,r∈ROI is given by:

SNRmult,r∈ROI = Smult,r∈ROI

σmult,r∈ROI

(continued)
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= mean(Sη(ROI, n))

mean(stdev(Sη(ROI, n)))
,

n = 1, 2, . . . , N (3.44)

In Eq. (3.44), the numerator is calculated
by taking the mean value of the signals for
each voxel and for all theN repetitions. The
denominator is calculated by first finding,
for each voxel with ROI, the standard devi-
ation of the voxel signal varying across N
repetitions and then taking the mean of the
standard deviations of all the voxels in the
ROI.

SNR Calculation from Two Images
The SNR calculation method described in
Sect. 3.32 is generic and not suitable for
practical applications as the increase in the
number of repetitions increases the MRI
scan time. Additionally, signals from mul-
tiple repetitions may be affected by sys-
tematic signal variations due to motion of
imaging object or due to underlying phys-
iological phenomenon which changes the
signal over time. To overcome these issues,
a method using just two repetitions n1 and
n2 has been developed for SNR calculation.
Using this method, the SNR is calculated
as:

SNRdiff (n1, n2)

= Sdiff

σdiff

=
1
2 meanr∈ROI (Sη(r, n1)) + (Sη(r, n2))

1√
2

stdev(Sη(r, n1)) − (Sη(r, n2))

= mean(Sη(ROI, n1) + Sη(ROI, n2))√
2 stdev(Sη(ROI, n1) − Sη(ROI, n2))

(3.45)

The numerator in SNRdiff (n1, n2) is cal-
culated by first taking the sum of the two

images at the two repetitions n1 and n2
and then taking the mean value of the ROI
voxels within the summed image. The de-
nominator is calculated by taking the stan-
dard deviation of the ROI voxels for the
difference image (difference is taken be-
tween the two images at two repetitions n1
and n2). Note the scaling of denominator
with

√
2. It should also be noted that this

method assumes a Gaussian noise distribu-
tion within the ROI in the difference image.
Therefore, the ROI must be placed on a
tissue with sufficiently high signal and the
regions with low signal or the background
should not be used for SNR calculation
using this method.

SNR Calculation Using NEMAMethod
The National Electrical Manufacturers As-
sociation (NEMA) has developed some
standard methods to determine SNR in di-
agnostic MRI (NEMA Standards Publica-
tion MS 1-2008 (R2014)). While the meth-
ods described in the document are applica-
ble for multi-channel receive coils, the doc-
ument description only restricts to single-
channel receive systems. We describe one
method from this document which is pri-
marily used during prototype MRI devel-
opment but can also be used in clinical
scanners if the manufacturer permits data
acquisition under the specified conditions.

In this method, two images are acquired.
First of all, a normal image is acquired,
and the mean value of the ROI voxels is
calculated (SNEMA). Then, a noise image
is acquired without any RF excitation (i.e.,
either the RF amplifier is turned off or the
RF excitation is suppressed). The TR may
be decreased to accelerate the data acqui-
sition for noise scan, but other parameters
such as bandwidth, matrix size, and number
of signal averages must be held constant. It

(continued)
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must be ensured that the system receiver at-
tenuation (or gain control) and any scaling
of the image reconstruction are identical to
that of the first scan (normal image scan).
Except for TR, the noise image should
be acquired under the same conditions as
those for the normal image scan, i.e., no
system adjustment or calibration should be
performed between the scans. An ROI is
placed at the same location as that of the
normal image, and the standard deviation of
the ROI voxels in the noise image is calcu-
lated (σNEMA). The SNR is then calculated
as:

This noise image obtained in this pro-
cess will not have a Gaussian distribution
but Rician distribution which must be com-
pensated during SNR calculation. The fac-
tor of 0.66 (= √

(4 − π)/2) accounts for
the Rayleigh distribution of the noise in the
magnitude image (Henkelman, R. M. 1985,
Medical Physics, 12, 232–233).

SNRNEMA(image, noise)

= SNRNEMA

σNEMA

= 0.66
meanr∈ROI (Sη(r, image))

stdevr∈ROI (Sη(r, image))

(3.46)

While a preferred method during proto-
typing of MRI scanners, this SNR calcula-
tion method is not suitable for clinical scan-
ners as most clinical scanners do not permit
the acquisition of pure noise image (without
any transmit RF pulse) with standard pulse
sequences.

SNR Calculation from a Single Image
The most widely used technique for SNR
calculation just takes a single image (n =
1) and relies on signal statistics from two

separate ROIs drawn on this image. One
ROI is in foreground of image on the tissue
of interest (ROItissue), and the other ROI
is in the background of image (ROItissue).
The SNR is then calculated as

SNRimage(n1)

= SNRimage

σimage

= meanr∈ROItissue (Sη(r, n1))√
2

4−π
stdevr∈ROIair (Sη(r, n1))

(3.47)

The correction factor (
√
2/(4 − π) =

1.53) is required because of the Rayleigh
distribution of the background noise in the
magnitude image.

3.8.2 SNR Formulation in MRI

Consider the x, y, and z to be the readout, phase-
encoding, and slice selection directions, respec-
tively, in a typical MRI data acquisition protocol.
The SNR/voxel of MRI data acquired using this
protocol can be controlled by carefully selecting
imaging parameters such as the voxel dimensions
(
x, 
y, 
z), the number of acquisitions (or
repetitions) Nacq , the bandwidth BWread , and the
number of k-space samples (kx , ky , kz). The fol-
lowing expression describes the SNR/voxel de-
pendence on imaging parameters selected in this
protocol:

SNR/voxel ∝ 
x
y
z
√
Nacq

√
BWread

NxNyNz

(3.48)

Choosing the scan parameter as data sampling
rate 
t instead of BWread , since BWread = 1


t
,

the SNR/voxel is given by:

SNR/voxel ∝ 
x
y
z
√
NacqNxNyNz
t

(3.49)
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Since the readout time Ts is given by Ts =
Nx
t , the SNR/voxel becomes:

SNR/voxel ∝ 
x
y
z
√
NacqNyNzTs

(3.50)

Since the bandwidth per voxel BW is given by
BW = BWread/Nx

, the SNR/voxel becomes:

SNR/voxel ∝ 
x
y
z

√
NacqNyNz

BW
(3.51)

Further variations of the expression for
SNR/voxel are possible by substituting the
following relations:

FOVx = Nx
x

FOVy = Ny
y

FOVz = Nz
z (3.52)

3.9 CommonMR Image Formats

In this section, we describe two most commonly
used image formats used in MRI: DICOM, which
stands for Digital Imaging and Communications
in Medicine, and NIfTI, which stands for Neu-
roimaging Informatics Technology Initiative.

3.9.1 DICOM

DICOM is the standard for communication and
management of medical information and related
data. It is a standard developed by the American
College of Radiology (ACR) and the NEMA. It
is most commonly used for storing and trans-
mitting medical images which enables the inte-
gration of medical imaging devices and picture
archiving and communications systems (PACS)
from multiple manufacturers. DICOM incorpo-
rates standards for imaging modalities such as
ultrasound, CT, PET, as well as MRI. It also

includes protocols for image exchange, for ex-
ample, by portable media, image compression,
3D visualization, image presentation, and results
reporting. To promote identical grayscale val-
ues on different monitors and viewing devices,
the DICOM committee developed a lookup table
(LUT) to display digitally assigned values.

DICOM format groups information into
datasets with a file consisting of a header and
image dataset packed into a single file. The first
few packets of information in a DICOM file
constitute the header which stores demographic
information about the patient, acquisition
parameters, and image formation:

• Image dimensions—pixel/voxel size
• Sequence specifics—TE, TR, flip angle size
• Date of birth
• Patient name
• And lots of other fields

A disadvantage of the DICOM format is that
there can be inconsistencies in the header filling
between image creation sites.

3.9.2 NIfTI

NIfTI was designed under the auspices of the
National Institutes of Health (NIH) to improve
interchangeability between processing packages.
Image analysis can bemuchmore straightforward
with the NIfTI format as many standard software
packages (certainly of the neuroimaging commu-
nity) work directly with this format, for example,
the ubiquitous FMRIB Software Library (FSL)
from Oxford University.

NIfTI files also contain a header and image
dataset. An important difference to the DICOM
header format is the inclusion of two affine coor-
dinate definitions relating voxel index (i, j, k) to
spatial location (x, y, z): one affine transform to
indicate the mapping to normal space and another
to indicate orientation and location of the data
in scanner coordinates. The header also contains
fields for MRI parameters such as:
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• Image dimensions—pixel/voxel size
• Spatiotemporal order of fMRI slices
• Spiral acquisitions
• Interleaving
• And some other fields

NIfTI headers do not contain patient-specific
information and often few acquisition parameters.
Therefore, the end user must take care when con-
verting fromDICOM toNIfTI that all relevant ac-
quisition parameters are either copied to a NIfTI
header field or stored elsewhere. Failure to do so
can be a tremendous source of frustration if the
original DICOM images are no longer available,
as is often the case with PACS after a set interval.

References

1. R. Cusack, B. Russell, S.M. Cox, C. De Panfilis,
C. Schwarzbauer, R. Ansorge, An evaluation of the
use of passive shimming to improve frontal sensitivity
in fMRI. Neuroimage 24, 82–91 (2005)

2. A. Deshmane, V. Gulani, M.A. Griswold, N. Seiber-
lich, Parallel MR imaging. J. Magn. Reson. Imag.
36(1), 55–72 (2012)

3. W.T. Dixon, Simple proton spectroscopic imaging.
Radiology 153(1), 189–194 (1984)

4. R.R. Edelman, The history of MR imaging as seen
through the pages of radiology. Radiology 273(2S),
S181–S200 (2014)

5. M.A. Griswold, P.M. Jakob,M.Nittka, J.W.Goldfarb,
A. Haase, Partially parallel imaging with localized
sensitivities (PILS). Magn. Reson. Med. 44(4), 602–
609 (2000)

6. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M.
Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Gen-
eralized autocalibrating partially parallel acquisitions
(GRAPPA). Magn. Reson. Med. 47(6), 1202–1210
(2002)

7. B. Gruber, M. Froeling, T. Leiner, D.W.J. Klomp, RF
coils: A practical guide for nonphysicists. J. Magn.
Reson. Imag. 48(3), 590–604 (2018)

8. E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y.-C.N.
Cheng, Susceptibility-weighted imaging: Technical
aspects and clinical applications, part 1. Am. J.
Neuroradiol. 30(1), 19–30 (2009)

9. J. Hamilton, D. Franson, N. Seiberlich, Recent ad-
vances in parallel imaging for MRI. Progr. Nuclear
Magn. Reson. Spectr. 101, 71–95 (2017)

10. C. Juchem, R.A. de Graaf, B0 magnetic field homo-
geneity and shimming for in vivo magnetic resonance
spectroscopy. Analy. Biochem. 529, 17–29 (2017)

11. C. Juchem, B. Muller-Bierl, F. Schick, N.K. Logo-
thetis, J. Pfeuffer, Combined passive and active shim-
ming for in vivo mr spectroscopy at high magnetic
fields. J. Magn. Reson. 183(2), 278–289 (2006)

12. E.G. Larsson, D. Erdogmus, R. Yan, J.C. Principe,
J.R. Fitzsimmons, SNR-optimality of sum-of-squares
reconstruction for phased-array magnetic resonance
imaging. J. Magn. Reson. 163(1), 121–123 (2003)

13. Z.-P. Liang, P.C. Lauterber, Principles of Mag-
netic Resonance Imaging: A Signal Processing Per-
spective. (Wiley/IEEE Press, New York/Piscataway,
2000), pp. 1–416

14. C. Liu, W. Li, K.A. Tong, K.W. Yeom, S. Kuzmin-
ski, Susceptibility-weighted imaging and quantitative
susceptibility mapping in the brain. J. Magn. Reson.
Imag. 42(1), 23–41 (2015)

15. M. Lustig, J.M. Pauly, SPIRiT: Iterative self-
consistent parallel imaging reconstruction from arbi-
trary k-space. Magn. Reson. Med. 64(2), 457–471
(2010)

16. A.S. Minhas, Y.-T. Kim, W.-C. Jeong, H.-J. Kim, S.-
Y. Lee, E.-J. Woo, Chemical shift artifact correction
in MREIT. J. Biomed. Eng. Res. 30(6), 461–468
(2009)

17. S. Mittal, Z. Wu, J. Neelavalli, E.M. Haacke,
Susceptibility-weighted imaging: technical aspects
and clinical applications, part 2. Am. J. Neuroradiol.
30(2), 232–252 (2009)

18. A. Phair, M. Brideson, L.K. Forbes, A cylindrical
basis set for shim coil design in magnetic resonance
imaging. Concepts Magn. Reson. Part B Magn.
Reson. Eng. 48B(3), e21400 (2018)

19. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P.
Boesiger, SENSE: sensitivity encoding for fast MRI.
Magn. Reson. Med. 42(5), 952–962 (1999)

20. M. Sarracanie, N. Salameh, Low-field MRI: how low
can we go? a fresh view on an old debate. Front. Phys.
8, 172 (2020)

21. D.K. Sodickson, W.J. Manning, Simultaneous acqui-
sition of spatial harmonics (SMASH): fast imaging
with radiofrequency coil arrays. Magn. Reson. Med.
38(4), 591–603 (1997)

22. G.J. Stanisz, E.E. Odrobina, J. Pun, M. Escaravage,
S.J. Graham, M.J. Bronskill, R.M. Henkelman, T1,
T2 relaxation and magnetization transfer in tissue at
3T. Magn. Reson. Med. 54(3), 507–512 (2005)

23. Y. Wang, T. Liu, Quantitative susceptibility map-
ping (QSM): decoding MRI data for a tissue mag-
netic biomarker. Magn. Reson. Med. 73(1), 82–101
(2015)



4Phantom Construction and
Equipment Configurations for
Characterizing Electrical Properties
UsingMRI

Munish Chauhan and Rosalind Sadleir

Abstract

Phantom objects are commonly employed in
MRI systems as stable substitutes for biolog-
ical tissues to ensure systems for measuring
images are operating correctly and safely. For
magnetic resonance electrical impedance to-
mography (MREIT) and magnetic resonance
electrical property tomography (MREPT),
conductivity or permittivity phantoms play
an important role in checking MRI pulse
sequences, MREIT equipment performance,
and algorithm validation. The construction of
these phantoms is explained in this chapter.
In the first part, materials used for phantom
construction are introduced. Ingredients for
modifying the electromagnetic properties
and relaxation times are presented, and the
advantages and disadvantages of aqueous,
gel, and hybrid conductivity phantoms are
explained. The devices and methods used to
confirm phantom electromagnetic properties
are explained. Next, different types of MREIT
electrode materials and the constant current
sources used for MREIT studies are discussed.
In the last section, we present the results of
previous MREIT and MREPT studies.

M. Chauhan · R. Sadleir (�)
School of Biological and Health Systems Engineering,
Arizona State University, Tempe, AZ, USA
e-mail: mchauha4@asu.edu; rosalind.sadleir@asu.edu

4.1 Introduction

In recent years, magnetic resonance electrical
impedance tomography (MREIT) and electric
properties tomography (EPT) have emerged as
important new tools for imaging electromagnetic
parameters including current density and electric
fields as well as conductivity and permittivity
distributions within objects. These distributions
may provide better differentiation of the state of
tissues and organs and are expected to result in
enhanced diagnosis and treatment of disease.

The raw signals used in either MREIT or
EPT are the result of small perturbations in
MRI measurements created by intrinsic tissue
properties (EPT) or by the flow of external
currents (MREIT). There is therefore always
a need for phantoms to help validate data
quality and evaluate reconstruction algorithm
performance. The most important property of
phantom materials is that they should have
known, controllable, and stable electrical
properties.

Of course, the need for phantoms is not spe-
cific to MREIT and EPT. MRI phantoms are
frequently used to test signal and reconstruction
quality in all scanners. Although modern MRI
systems show good technical quality (e.g., high
signal-to-noise ratio, good image homogeneity,
and minimal ghosting) and differentiation be-
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R. Sadleir, A. S. Minhas (eds.), Electrical Properties of Tissues, Advances in Experimental
Medicine and Biology 1380, https://doi.org/10.1007/978-3-031-03873-0_4

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-03873-0_4&domain=pdf
mailto:mchauha4@asu.edu
mailto:rosalind.sadleir@asu.edu
https://doi.org/10.1007/978-3-031-03873-0_4


84 M. Chauhan and R. Sadleir

tween tissue classes (i.e., image contrast), ab-
solute signal intensities of acquired images are
not reproducible between systems of the same
or different make and type [57, 72]. Image val-
ues and contrast are dependent on the sequence
parameter settings and on MR scanner hardware
properties [72]. Additionally, MRI artifacts such
as intensity non-uniformity introduce spatial vari-
ations in the image intensity. Magnetic field in-
homogeneities or fluctuations in SNR may cause
intensity variations. This might be a problem
for longitudinal studies, as changes in acquisi-
tion protocols and scanner upgrades may lead
to inaccuracies of measurements over time [72].
Especially whenMRI data is collected at multiple
sites or with several different scanners, vendor-
specific differences in scanners, use of differ-
ent RF coils, and pulse sequence characteristics
should be taken into account. To ensure consistent
MRI interpretation at participating facilities, it is
essential to have a means for system comparison
beyond basic imaging parameters. A commonly
used multi-purpose phantom is the ACR (Amer-
ican College of Radiology) phantom, but it is
not suitable for evaluating MREIT or EPT [8,
13, 81]. Construction of a phantom suitable both
for quality assurance purposes and for evaluating
new imaging techniques and sequences is not
feasible [23]. We therefore require a combination
of phantoms, each one chosen or tailored to best
evaluate the question at hand. Examples in related
fields are ones specific to functional imaging [13]
and diffusion imaging [23].

While EPT does not require any additional
hardware, most methods for reconstructing low-
frequency electrical conductivity require exter-
nal current injection [75, 76, 82]. Thus, MREIT
experiments involve three additional challenges:
the need to construct phantoms that can be phys-
ically connected to current sources (and where
the internal parts of the phantom are electrically
connected to each other); constructing or sourcing
appropriate current sources for use with these
phantoms; and synchronizing current injection
with measurement pulse sequences. In this chap-
ter, we consider methods for constructing electri-
cal property phantoms, current sources, and the
electrodes that form the interface between them.

Current injection protocols and source controls
will be examined in Chap. 5.

4.2 Electrical Property
Phantoms

Materials used in phantoms to mimic soft tis-
sues with respect to one or more MRI properties
include aqueous solutions of paramagnetic salts
(most commonly NaCl), water-based gels of var-
ious forms, and ex vivo tissues [25, 43, 56]. In
the case of MREIT, current must be distributed
throughout the entire phantom and compartments
with different conductivities and electrolyte con-
centrations are in diffusive communication with
each other. One problemwith this sort of phantom
is therefore that they are intrinsically unstable
and diffusion processes will ultimately limit their
lifetime [20]. InMREPT, different property mate-
rials can be enclosed in insulating containers, and
problems caused by diffusion do not occur.

Important characteristics ofMRI phantoms for
MREIT and MREPT are [50]:

1. Electric properties equivalent to human tis-
sues

2. Relaxation times equivalent to human tissue
3. Homogeneous relaxation times and dielectric

properties throughout the phantom
4. Sufficient strength to allow fabrication with-

out the use of physical reinforcement
5. Ability to fabricate the shape of a human

organ
6. Ease of handling
7. Chemical and physical stability over extended

time periods.

We consider four classes of MREIT phantom:
aqueous, gel, hybrid, and anisotropic. Ingredients
used to change the properties of the phantom are
shown in Table 4.1. As well as NaCl, water, agar
or agarose, and TX-151 are the most commonly
used phantom materials for MREIT [33, 61, 75,
82]. As we noted above, MREIT phantoms re-
quire electrical connectivity between the different
gels or tissues used to construct the phantom.
This makes MREIT phantoms more complex to
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construct than MREPT phantoms, although the
same phantom materials and chemicals can be
used for both MREIT and MREPT.

4.2.1 Phantom Types

Aqueous Phantoms
Aqueous solutions of paramagnetic salts
are commonly used in MRI phantoms to
produce a desired value of either T1 or T2.
Aqueous phantoms are easy and safe to
handle, but may require a 10 min settling
time before commencing MRI scanning to
eliminate any remaining convective mo-
tion. Although purely aqueous phantoms
have good homogeneity and can have long-
term stability, water is easily influenced by
vibration during scans, and it is difficult to
image any inclusions without incurringmo-
tion artifacts.More importantly forMREIT,
imaging of aqueous phantoms at high fields
or current densities (caused by using small
electrodes), or both, may produce magneto-
hydrodynamic artifacts [55].

Gel Phantoms
Gel phantoms are constructed by stabi-
lizing aqueous electrolyte solutions with
the use of gelling agents. Gelling agents
make it possible to conveniently construct
phantoms with realistic shapes. These types
of phantoms usually require addition of
preservative to make it stable over time. Be-
cause they aremore solid, no settling time is
required before starting MRI scanning, and
they are not subject to vibration problems.
The time that conductivity contrasts are
maintained depends on the viscosity of the
gel and the contrast itself, but lifetimes of
several hours may be possible [20].

Hybrid Phantoms
Hybrid phantoms may be made by com-
bining aqueous or gel materials and veg-
etable or animal tissues that have different
electrical properties. Hybrid phantoms are
useful in testing algorithms on their ability
to reconstruct more realistic biological en-
vironments. As for gel phantoms, phantoms
containing tissues can never be considered
stable, and conductivity and permittivity
properties may change between construc-
tion and scanning because of diffusion and
osmosis. However, in using tissues in either
MREIT or MREPT phantoms, the tissue
electrical properties may also change over
time because of decomposition processes.

Anisotropic Phantoms
Many biological tissues are also
anisotropic. The best examples of this
are muscle and white matter. The technique
of diffusion tensor MREIT (DT-MREIT)
provides a means of determining the
full anisotropic tensor of these complex
tissues. You can find more information
about the differences between isotropic
and anisotropic tissues in Chap. 2. Stable
anisotropic properties are particularly
difficult to recreate in phantoms. Of
course, muscle tissue or other biological
anisotropic material can be incorporated in
hybrid phantoms, but it is very difficult to
reliably estimate their properties if tissue
is used, even on the benchtop. Attempts
have been made to construct anisotropic
properties in phantoms by incorporating
thin fibers [63] or by layering gels of
different conductivities [71], but the
properties must be truly anisotropic at the
measurement (voxel) scale to be usable in
MREIT. Again, any anisotropic electrical
properties are likely to diffuse away over
time. Phantoms used for characterizing

(continued)
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diffusion MRI could notionally be used
in EPT [78], but the cell membranes
responsible for tissue anisotropy at low
frequencies do not manifest any directional
properties at the high frequencies of EPT
measurements.

4.2.2 T1, Conductivity, and
Permittivity Modifiers

The electrical properties of biological tissues de-
pend on the frequency of the electromagnetic
field towhich they are exposed. The characteristic
electrical properties for many tissue types have
been measured over a wide range of frequen-
cies [15]. Pure fluids and gels tend to have MR
relaxation times much longer than tissues. There-
fore, paramagnetic salts are commonly added to
phantoms to reduce T1 and T2 values. Common
salts such as NaCl and KCl are often use to
control conductivity, and sucrose or polyethylene
may be used to control permittivity. Ingredients
that can change the electromagnetic properties of
the phantom to those found in biological tissues
are listed in Table 4.1. Among relaxation time
modifiers, copper sulfate (CuSO4), nickel chlo-
ride (NiCl2), and manganese chloride (MnCl2)
are frequently used because they are water soluble
and have high stability [31]. Gelling materials
may also slightly affect relaxation times. Gadolin-
ium, as either GdCl3 salt or chelated diethylen-
etriaminepentacetate (DTPA), may also be used
[22], but is more expensive to procure.

4.2.3 Properties of Different Gelling
Agents

Phantom stability is enhanced by using gels in-
stead of conductive fluids. Use of agar, TX-151,
and gelatin as gelling agents is very common in
MRI and MREIT studies because of their use-
ful physical properties and the short preparation
times involved [61,75,82]. The following gelling
agents have been used in MR imaging studies [9,
51, 52, 68].

1. Agarose or agar-agar
2. TX-151
3. Gelatin
4. Hydroxyethyl cellulose (HEC)
5. Polyacrylamide

In the following sections, we consider the
properties of each and outline the pros and cons
and possible utility of each.

Agarose or Agar-Agar
Agar (agar-agar) is a heterogeneous mix-
ture of agaropectin and agarose. Agarose
has more consistent properties and is much
more expensive than agar. Luckily, exper-
iments show that agar is well-suited for
making phantoms, as it does not appear to
influence the overall conductivity or per-
mittivity of phantom materials. However,
the T2 times observed in phantoms de-
pend inversely on the concentration of the
gelling agent. The T2 relaxation time of
both agarose and agar gel at about 2% con-
centrations is similar to that of human tissue
(40–150 ms), and it can be adjusted by
altering the consistency of the gel (i.e., the
concentration of agarose or agar) [25, 56].
Use of very high concentrations of agar
will lead to very short T2 times, making
imaging problematic [50].

In addition to MR research, agarose
is widely used as a brain mimicking
gel for infusion studies because of its
structural properties [1, 8]. For example,
porcine brain in vivo and agarose gel
have similar pressure profiles, penetration
transients, and drag forces associated with
the advancement of a catheter into the
tissue [8]. Agarose gel also mimics the
brain in its ability to create a seal against the
outer wall of a delivery device inserted into
it [8]. Drag forces of agarose gels are within
5–10% of living human brain tissue [8,24].
Agarose gels may therefore also be useful
in constructing electric property measure-
ment phantoms for use with implanted

(continued)
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Table 4.1 Properties of conductivity and relaxation time modifiers used in electric property phantoms

Ingredients Purpose Pros Cons

Copper (II) sulfate T1, T2 modifier –Ease of handling –Cannot be used with live tissue

pentahydrate (CuSO4·5H2O) –Biohazard, disposal complicated

Manganese (II) chloride
tetrahydrate (MnCl2·4H2O)

T1, T2 modifier –Ease of handling –Biohazard

Gadolinium(III) chloride T1, T2 modifier –High susceptibility –Difficult to handle,

hexahydrate (GdCl3·6H2O) as tiny quantities are required

–Harmful

Nickel(II) sulfate T1,T2 modifier –Ease of handling –Biohazard

hexahydrate (NiSO4·6H2O) –Disposal complicated

Sodium chloride (NaCl) Conductivity modifier –Ease of handling –Also influences relaxation times

–Harmless

Sucrose (saccharose) Permittivity modifier –Ease of handling –Sticky

–Harmless –Large amounts required

Polyethylene powder Permittivity modifier –Ease of handling –Does not dissolve in water but can
be mixed through gels

electrodes. However, agar materials are
likely not suitable for forming complex
phantoms such as contrast-resolution
phantoms or anthropomorphic phantoms.

Agar or agarose gels require some care
in handling. Agarose gel phantoms often
have sodium azide added to retard mold
formation [13]. Because sodium azide
is poisonous, extreme caution is needed
for phantoms employing a large amount.
Another problem with sodium azide is that
it also affects the conductivity of the final
gel. So, precise calculations or measure-
ments of the conductivity should be done
during recipe design and after the gel has
been formed to confirm actual values.

There is also the risk of bubbles forming
in the gel. Ohno et al. [67] explained a
two-stage heating method to dissolve the
ingredients of magnetic resonance (MR)
imaging phantoms to overcome issues of
uneven quality and bubbles in conventional
MR imaging phantoms and also evaluated
uniformity and the reproducibility of their
method. Alternatively, a vacuum pumpmay
be used on the solution before the gel sets.

Pros Agarose or agar is cheap, easy to
handle, and easily dissolved in warm or hot
water.

Cons Agarose or agar gels suffer water
loss over time, and apart from diffusion
changes, gel breakdown can make agar-
based phantoms unstable for long-term use.
Another disadvantage of using agarose or
agar gel in phantom material is the fact
that these are natural products. Therefore,
gelling and relaxation properties may dif-
fer somewhat between different product
batches.

Agarose or Agar Gel Preparation Steps
Figure 4.1 shows the ingredients and steps
in making an example agarose or agar gel
for an MREIT conductivity phantom. It
is recommended to dissolve any electric
parametric modifiers like NaCl or CuSO4

(used to reduce T2 values) before adding
agar. Heating can be performed using a
microwave or an induction heater. The mix-
ture will start to solidify into a gel upon
cooling once it has been heated to over

(continued)
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Fig. 4.1 Agarose- or agar gel-making process, showing (left) basic recipe for MREIT gel phantom and (right)
preparation steps

approximately 80 ◦C. At high temperatures,
care has to be taken to avoid incorporating
air bubbles. As noted above, the amount of
agarose or agar used directly influences the
brittleness of the gel.

TX-151
TX-151 is a polysaccharide material that
has commonly been used, together with
water, agar, and NaCl, to create a tissue-
equivalent gel for making realistic, inex-
pensive, conveniently moldable, and tem-
porally stable tissue-equivalent MRI phan-
toms. The amount of TX-151 material
added to a phantom can be varied over
about 5–20% W/V, resulting in conve-
nient sample preparation and gelling times.
Within this range, use of TX-151 also has a
slight influence on T1 and T2 values [52].
Additionally, sodium chloride and copper
sulfate can be used to increase the conduc-
tivity and T1 (and T2), respectively. As for
agar gels, sodium azide can be added as a
preservative, with the same precautions as
noted above.

Pros TX-151 gels are more durable than
agarose gels. TX-151 gels are also more
rigid than agar gels but are soft enough to be
cut easily. They are relatively stable when
immersed in saline solutions.

Cons It solidifies in cold water. Fast mix-
ing may cause unwanted air bubbles within
the gel.

TX-151 Gel Preparation Steps
Parametric modifiers such as NaCl and
CuSO4 should be dissolved in water, and
the solution must be heated before adding
TX-151. Heating can be performed us-
ing a microwave or induction heater. Af-
ter adding the TX-151, mix the solution
slowly to avoid the incorporation of air
bubbles. At the same time, mixing must be
fast enough to completely mix the solution
before it gels. Solidification of the mixture
will start upon cooling once it has been
heated to over 80◦C. At higher tempera-
tures, extra care has to be taken to avoid
adding air bubbles. Finally, the hot solu-
tion should be filtered using a steel mesh
strainer to remove any unwanted lumps
and air bubbles. Figure 4.2 shows the in-
gredients and steps involved in making a
TX-151 gel for an MREIT conductivity
phantom.

Animal Hide Gelatin (AHG)
Animal hide gelatin (AHG) gels have been
used in MRI phantoms [2, 23]. Blechinger
et al. [2] reported a modified version of
materials and recipe used to construct
a gelatin-agar phantom. In the modified
recipe, glycerol was used to control T1

(continued)
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Fig. 4.2 TX-151 gel-making process, showing (left) basic recipe for MREIT gel phantom and (right) preparation steps

instead of a paramagnetic salt (CuSO4). In
this recipe, the solution used in making
the tissue-mimicking material varied the
glycerol/water ratio depending on the T1
value desired. One important observation
of this study was that the glycerol/water
ratio had little effect on the T2 value of the
material. These gels can therefore be made
to have specific T1/T2 ratios, as well as
T1 and T2 values themselves, spanning the
ranges found in normal and abnormal soft
tissues. The frequency dependencies found
for these gels also appear to simulate that
found in nonfat-type soft tissues, and it is of
great importance that the materials exhibit
long-term stability in their MRI properties.
In [2], it was reported that drying could be
controlled by sealing the container using
petroleum gel. Unfortunately, a long-term
instability manifested itself in this study
where a very slow rise in T1 value was
observed over a period of months. This
rise in T1 value was possibly due to the
slow formation of ametal-organic complex,
removing the Cu++ paramagnetic ions re-
sponsible for decreasing T1 [2].

Pros As with TX-151-based gels the gel
recipe shown in Fig. 4.3 is less likely to
shrink or leak from molds while setting and
is therefore a good candidate for use in
complex phantoms.

Cons In gelatin phantoms, bubbles are a
very common problem, and therefore their
preparation is more complicated. Gelatin is
more sticky than agar or TX-151.

Animal Hide Gelatin Gel Preparation Steps
The ingredients (parts 1 and 2) and prepara-
tion steps involved in constructing a gelatin
gel are shown in Fig. 4.3. Mix all mate-
rials in part 1 and part 2 separately, and
heat up each solution using a microwave
oven or induction heater. As each solution
boils, keep watching it as an overflow may
occur rapidly. After a few minutes, you
will see that the bubbling reduces, and this
is a signal to stop heating and combine
the solutions. Mix both solutions slowly,
and then add the amount of NaCl required.
Gelatin gels are generally useful in forming
the background of hybrid phantoms. When
forming the background, it is advisable to
pour the gel into the mold after the solution
has cooled down to at least 50 ◦C.

Polyacrylamide Gels
Polyacrylamide (PAA) is a polymer formed
from acrylamide subunits. It is often used
in place of agar in electrophoresis gels,
and it has similar physical properties. How-

(continued)
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Distilled Water 
(~18.2Mohm)

490 mL

Glycerol 210ml

Agar 20 g

Distilled Water 
(~18.2Mohm)

490 mL

Glycerol 210ml

Animal Hide Gelatin 100g

NaCl 1.2 g ≈ 0.7 S/m
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Fig. 4.3 Components of two-component animal hide
gelatin gel-making process

ever, because some unpolymerized acry-
lamide, which is a neurotoxin, can always
be present even in the usually nontoxic
polyacrylamide gel, it must been treated
with great caution [85]. Preparation of PAA
gels is significantly more tedious than with
agarose or TX-151 gels. Therefore, use of
polyacrylamide is not recommended for
electric property phantoms as large quan-
tities of PAA will probably be required.
However, it may have advantages in terms
of stability and resistance to diffusion.

Pros: Polyacrylamide gel is durable and
can be more stable than agar over time even
when placed inside a saline solution.

Cons: Polyacrylamide gels are rigid,
quite brittle, and poisonous. Preparation of
PAA gels is difficult.

Hydroxyethyl Cellulose (HEC)
Hydroxyethyl cellulose, also called Na-
trosol, is a non-ionic water-soluble poly-
merizing agent [21]. It can be used to
increase viscosity by simply mixing it
into a fluid background, without the need
for heating. Natrosol and similar cellulose
compounds are safe for use with live bio-
logical tissues and can be dissolved to hot or
cold water to create gels with a large range

of viscosities. Since a rigid gel is desired
for MRI phantoms, Natrosol 250 Pharm
HEC HX (Ashland Global, Wilmington,
DE, USA), which has one of the highest
viscosity ranges of the different Natrosol
gelling agents [50], can be useful. A re-
lated compound, methylcellulose powder,
was used at 0.2 g/20ml to increase the vis-
cosity of artificial sea water surrounding an
Aplysia abdominal ganglion imaged using
MREIT at 800 MHz to minimize magneto-
hydrodynamic effects [14, 55].

Pros: Biocompatible and nontoxic,
heating not required.

Cons: Gelling occurs rapidly, even at
room temperature. It is difficult to create a
uniform mix, especially at high concentra-
tions. Large volumes are required, so it can-
not easily be used to make large phantoms.

4.2.4 Phantom Body

The bodies (containers) used for MRI phantoms
are often made of acrylic plastic, glass, or
silicone rubber. The material used for many
custom-designed MREIT phantoms has been
acrylic plastic. Some examples are illustrated
in Fig. 4.4. Acrylic plastic phantom bodies are
very hardy and can be reused multiple times.
However, acrylic plastic materials are expensive
and require precision machining. A specialized
workshop has been used in the past to construct
components used in these phantoms. Components
required may include separate parts for electrode
ports, a top and bottom plates for each face of
the phantom, and gaskets and plastic screws
to seal the phantom once it is assembled and
filled.

Another alternative to acrylic plastic phantoms
is 3D printed (polylactic acid or PLA) phantoms.
Printing technology capable of producing three-
dimensional (3D) objects has evolved rapidly in
recent years and provides a means of quickly
developing reproducible and complex MRI phys-
ical phantoms. Simple geometrical 3D phantoms
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Fig. 4.4 Components of
acrylic phantoms. Part (a)
shows a small phantom
with silicone gasket used to
seal end face; (b) is a larger
phantom with a recessed
electrode and plastic
screws to hold component
in place

can be directly designed within 3D printer soft-
ware or CAD software such as SolidWorks (Das-
sault Systèmes, France). An example is shown in
Fig. 4.5. A big advantage of using computer-aided
design is that reference CT or MRI data sets can
be imported into the design interface and used
to construct phantoms mimicking human body
shapes.

A segmentation design approach can be used
to classify tissues within a source CT or MRI
data set. This segmentation process requires the
developer to have the guidance of an expert in
physiology or a physiological atlas in order to
properly classify the tissues. Software that offers
automatic or manual classification or segmenta-
tion algorithms can be used to perform the process
(described in Chap. 2). To obtain a geometric
mesh representing the segmented tissues, the data
are output in a format compatible with CAD and
3D printing software. One commonly used format
is the stereolithography (.stl) surface triangle
specification. Figure 4.5 shows a human head
mold and agarose gel with conductive inclusions.
The mold shown here only included the exter-
nal head geometry. However, tissues within the
body could be segmented using similar methods,
formed into gels, and incorporated within this
outer shell. The gel volume required to make a
human head is large, and handling such a large
element is difficult. However, only the top mold

sections need to be removed to apply electrodes
and perform imaging.

4.3 Measuring Electrical
Parameters

Measuring the electrical characteristics of gels
created for phantoms is important, as it provides
us reference values which can later be compared
with values determined using MREIT or EPT
imaging methods. Contact methods are the sim-
plest way of measuring the low-frequency con-
ductivity of biological tissues or phantom materi-
als. The basic methods used are the two- and four-
electrode methods shown in Fig. 4.6.

4.3.1 Two-ProbeMethod

The simplest method for measuring conductivity
is the two-electrode (bipolar) measuring method.
This method uses two electrodes. The electrodes
both apply a constant current excitation I in the
sample circuit and measure the voltage V be-
tween them, as shown in Fig. 4.6a. The resulting
impedance Z is the sum of the resistance of
the tissue sample and the parasitic resistances
and capacitances at the electrode-electrolyte in-
terface [17]. These parasitic resistances are due
to electrode polarization. Two-probe methods are
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Fig. 4.5 3D printed human head phantom. Parts (a–b)
show views of the phantom. It is printed in eight sections.
A studded flange (b) and plastic screws are used to hold
the segments together. Part (c) illustrates the phantom ex-
terior (generated from MR magnitude images) with added

carbon electrodes, and the interior of the phantom is shown
in (d, e) including the agarose gel phantom background (1
S/m) and conductive inclusions of kiwi fruit, TX-151 gel
(1.5 S/m), and carrot. Part (f) is a magnitude image slice
containing all three anomalies

problematic because the parasitic impedances de-
pend on electrode area, electrode type, and the
electrolytes in the gel or solution. They are dif-
ficult to estimate directly, and methods that avoid
including their effects are preferred. In addition,
measured values may vary as a function of time as
ions redistribute nearby the electrode-electrolyte
interface. However, if a large electrode area is
used, or if an approximate value is required, a
two-probe method may be considered sufficient.

4.3.2 Four-ProbeMethod

One way of avoiding measuring parasitic resis-
tances is to generate a zero current in the mea-
suring circuit. This can be achieved by using a
four-electrode measurement method. In the four-
electrode measurement, the current I is flow-
ing through two outer current (injection) elec-
trodes, and the voltage V is measured by a vector
voltmeter connected to the inner two measuring
(voltage) electrodes (Fig. 4.6b). Due to the high
input resistance of the voltmeter, no current flows
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through the electrodes, and therefore the resulting
impedance Z should not be affected by electrode
properties [17].

Figure 4.7 demonstrates a practical four-
electrode measurement procedure. Two central
circular electrodes and low resistance metallic
(copper) plates are used for the current(I )
injection and voltage (V ) measurements,
respectively (Fig. 4.7a). Figure 4.7b shows the
four-probe conductivity measurement setup
using an LCR meter (ST2830, Sourcetronic,
Bremen, Germany); it allows direct connection
of the current (injection) and voltage (measuring)
electrodes, making it possible to measure the
impedance Z and the phase angle so that both

V

I

I
V

I

I

)b()a(

Fig. 4.6 Two- and four-electrode impedance measure-
ment configurations. The two-electrode configuration
shown in (a) will include electrical characteristics at the
electrode-electrolyte interface. The four-electrode config-
uration in (b) measures voltage independent of current-
carrying electrodes

conductivity and permittivity characteristics
can be determined. Constructing electronic
equipment that is capable of making true four-
electrode measurements is difficult. Although
many impedance measurement devices provide
four terminals, it is often the case that circuitry
within the devices does not truly isolate current
and voltage measurement operations. The
Solartron 1260 Impedance Analyzer (Solartron
Analytical, Bognor Regis, UK) can make
true four-terminal measurements, but is more
expensive than many other devices. As shown
in Fig. 4.7b, a cubic container can be used to
contain the gel or tissue. This makes calculation
of conductivity directly from the container
dimensions straightforward. However, any
sample container can be used as long as the
impedance of the container is first measuredwhen
it contains a conductivity standard, as described
in Chap. 1.

Recall that phantom impedance characteristics
should be measured at a frequency relevant to
the MR measurement performed. In MREIT,
phasemeasurements are characteristic of tissue or
phantom electrical properties at the frequency of
the current waveform that is applied, andMREPT
measurements reflect properties at the Larmor
frequency. MREIT waveform frequencies are
very low. For example, in Chauhan et al. [5], the
principal frequency of the waveform used was
10 Hz. Measurements at very low frequencies
(<10Hz) may be variable because impedance

Fig. 4.7 Experimental
four-electrode impedance
measurement using a cubic
sample chamber. Current is
applied through large
copper electrodes and
measured via the central
electrodes shown in the
schematic of (a). An
impedance analyzer or
LCR meter can be used to
measure the impedance, as
in (b)
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analyzers may not be designed to operate
in this range or due to changes occurring at
the electrode-electrolyte interface [16, 19]. In
practice, measurements of phantom properties
for use in MREIT are usually performed over the
range 10–1000 Hz.

4.3.3 Temperature Dependence

The conductivities estimated for phantommateri-
als in Sect. 4.2 aremeasured at ambient room tem-
peratures (ca. 22 ◦C), but values measured in vivo
are at body temperature (ca. 37 ◦C). Conductivity
of the gels/tissues increases with temperature, due
to increased mobility of charge carriers. Many
studies have measured the temperature depen-
dence of conductivity in gels or tissues [19, 29].
Kandadai et al. [29] measured AC conductivity
of gelatin, agar, and agarose at room (22 ◦C) and
physiological temperatures (37 ◦C) in the 100–
500 Hz frequency range. In this study, the de-
pendence of gel conductivity on NaCl concentra-
tion and temperature was measured. As expected,
the conductivity increased by about 2%/◦C [19].
Gelatin-based gels were found to be much more
conductive (almost twice) than agar or agarose
gels with the same concentration of NaCl when
measured at the same temperature.

Conducting experiments at 37 ◦C is important
for accurately mimicking human biological sys-
tems. However, when using phantom materials, it
is also important to consider that differences ob-
served between MREIT-measured conductivities
and those found in the laboratory may be due to
differences between laboratory temperature and
temperatures inside the scanner bore. If possible,
it is recommended to measure the MRI scanner
room temperature.

4.4 MREIT Electrodes

In MREIT, we typically inject currents into the
object to be imaged through surface electrodes.
Each current produces a distribution of magnetic
flux density within the object. The conventional
MREIT electrode configuration utilizes two

electrodes—one source (anode) and one sink
(cathode) positioned on the object perimeter.
Technically, an electrode is the surface of metal
or conductive rubber that makes proper contact
with an electrolyte such as saline or conductive
gel [53]. In MREIT, consideration must be
given to properties of all elements associated
with the electrodes including the electrode body
(copper, carbon), electrolyte (hydrogel, saline,
conductivity paste), electrolyte carrier material
(e.g., sponge for liquid electrolyte), and the
mechanism holding electrodes in place, including
any connectors or connecting wires.

In phantom experiments, the choice of elec-
trode is mostly determined by MR imaging fac-
tors. However, for human experiments, current
stimulation can produce unnecessary and possi-
bly dangerous skin irritation or burns [11] when
established electrode protocols are not followed
or poor electrode design is used. Careful attention
to MREIT electrode design and application is
therefore needed to understand prevent adverse
events and minimize MRI-related artifacts.

4.4.1 Copper Electrodes

In early MREIT studies, a non-magnetic cop-
per foil was often used as an electrode material
in phantom experiments [33, 58, 83]. However,
when copper electrodes are directly attached to
the surface of objects inside the bore of the MRI
scanner, these electrodes shield the RF signal and
produce severe image artifacts in the region near
the conductor (Fig. 4.8a).

In order to shift these artifacts away from
the materials of interest, Lee et al. [49] and Oh
et al. [59] suggested using recessed electrodes
for MREIT. Each recessed electrode shown in
Fig. 4.8b is a cylindrical extension of the acrylic
phantom container and is filled with a conduc-
tive gel such as agar, animal hide gelatin, or
TX-151 [49]. The gel in contact with the main
phantom body is in electrical contact with the
object to be imaged, and a copper electrode is
attached to the gel on the outer edge of the re-
cessed electrode. An MREIT current source is
connected to the copper electrode via a lead wire
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Fig. 4.8 Copper surface electrode and recessed elec-
trodes. (a) Copper electrodes attached to saline phantom
and MR magnitude image showing shielding artifact. (b)

Phantom with recessed electrode and respective MR mag-
nitude image. The shielding artifact is moved away from
the imaged domain [49, 61]

to introduce the MREIT imaging current. Since
the copper is moved away from the phantom
surface, the RF shielding artifacts occur inside
the recessed electrode container in the gel region
near the copper conductor. This makes the data
gathered within the object of interest free from
any shielding artifact.

Though the recessed electrodes proved very
successful in phantom and some animal experi-
ments, they have some disadvantages [35,36]. For
example, they are bulky and rigid and require an
electrode holder to attach them onto the object’s
surface. It may be difficult to fit them inside
RF coils. To make good contact, there must also
be sufficient force attaching them to phantom or
sample surfaces. This can end up distorting the
shape of the object.

4.4.2 Carbon-Hydrogel Electrodes

To avoid problems associated with copper or
recessed electrodes, Minhas et al. [54] introduced
thin and flexible carbon-hydrogel electrodes that
attached to objects using a conductive adhesive
(also known as self-adhesive electrodes) for in
vivo animal and human experiments [37, 38, 54].
The carbon-hydrogel electrodes comprise a
custom-designed thin carbon electrode and a
layer of adhesive conductive hydrogel (HUREV
Co. Ltd., Korea) (Fig. 4.9). The size of the carbon
electrodes used in [37, 38, 54] was 80 × 60 ×
0.0596 mm3, and the conductivities of the carbon
and hydrogel used in these electrodes were 2.857
×104 and 0.17 Sm−1, respectively. The lead

wires attached to the carbon electrode were also
made of carbon fiber. The larger resistance of
the electrodes meant that any coupling between
the current source and the MRI scanner was
minimized. The overall electrical resistance of
each carbon-hydrogel electrode, including wires,
was about 300 �. Because the electrodes were
self-adhesive, they required minimal preparation.
However, when they are used on animals, it
is easiest to use them at locations with little
hair [70].

Minhas et al. [54] reported the performance of
the carbon-hydrogel electrodes. It was observed
that a thicker hydrogel layer was minimized arti-
facts near the boundary of the imaged object as
the more conductive carbon still produced some
RF shielding effect. This type of carbon-hydrogel
electrode is inexpensive and requires almost no
skin preparation. As noted above, these type of
electrodes require a clean surface and secure con-
nection to be most effective. The high resistance
of these carbon-hydrogel electrodes may not be
suitable for all montages (electrode placements),
and they are only usable once. In the next sec-
tion, we describe a more useful and economical
approach to applying currents to phantoms or
human subjects.

4.4.3 Carbon Rubber Electrodes

Nonadhesive carbon rubber electrodes are
made of medical-grade conductive carbon rubber
and are designed to be robust and durable.
Carbon rubber electrodes are made in many
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Fig. 4.9 Carbon-hydrogel electrodes. (a) Electrodes with lead wires and hydrogel (HUREV Co. Ltd., Korea) [54], (b)
carbon-hydrogel electrode attached to canine head, and (c) resulting MR magnitude image [38]

Fig. 4.10 Carbon rubber electrode setup. (a) Carbon rubber electrode with lead wire, (b) sponge insert, (c) conductivity
paste applied to electrode, and (d) electrode attachment on human head

different sizes and shapes. For current injection
applications, carbon rubber electrodes can be
used with saline-soaked sponges or conductive
gel to securely attach the electrodes to the skin for
maximum conductivity and current distribution.
These electrodes are particularly useful for
applying current to human subjects in mapping
transcranial electrical stimulation (tES) current
flow in MREIT. Two instances of carbon rubber
electrode use in humans are described below.

In the first method, carbon rubber electrodes
may be connected to the head using a sponge.
The electrode assembly comprises a carbon
rubber electrode that is molded to accept a wire
terminated with a metal pin connector and a
sponge into which the electrode is inserted.
The sponges must be soaked in an isotonic
saline solution before use. This setup can be
used to easily attach electrodes over thick hair
areas [84]. The sponges and electrodes used in
neuroConn tES electrodes (neuroCare, Munich,
Germany) are shown in (Fig. 4.10a, b). The major
disadvantage of this method is that a band or
bandage is required to hold the sponge electrodes

in place during a current injection session. Also,
during long imaging sessions, sometime these
electrodes dry out.

In the second method, the carbon rubber
electrodes may be used with a conductive gel
(e.g., Ten20 paste (Weaver and Company, Aurora,
CO, USA) or Elefix paste (Nihon Kohden,
Tokyo, Japan)) to both affix the electrode
securely and provide a good conductive contact
(Fig. 4.10c) [84]. Around 5 mm of conductive gel
should be introduced on the carbon electrodes to
provide good contact. The gel needs to be applied
liberally and must make full contact with the area
being targeted. Even though the gel is thick and
somewhat adhesive, a headband should still be
used to secure the electrodes, to prevent them
from moving or sliding around. This method is
good for long sessions because the gel is unlikely
to dry out. After sessions, the area should be
cleaned using a wet cloth or by washing the hair.
Figure 4.10d shows the attachment of carbon
rubber electrode on a human head for use in
current density mapping during tES treatments
using MREIT.
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Fig. 4.11 Internal electrodes used in MREIT. (a) Di-
rectional DBS electrode (Abbott Infinity 6172, Abbott
Laboratories, IL, USA), (b) sagittal model view showing
location of DBS electrode in phantom head and sagittal
T1-weighted MR magnitude image of DBS lead imaged

at 3 T, (c) novel carbon electrodes with (left) single “1C”
and (right) two contacts “2C,” and (d) spin echo (left) and
gradient echo (right) 7 T images of a phantom containing
both a DBS lead (Medtronic 3389, Minneapolis, MN,
USA) and a 2C electrode placed in a gel phantom

4.4.4 Internal Electrodes

MREIT need not be performed using external
electrodes, and experiments have been performed
to map currents or measure conductivity dur-
ing deep brain stimulation (DBS), electroporation
treatments, or radiofrequency (RF) ablation [3,7,
44, 73]. MREIT images of current density distri-
bution or conductivity distributionsmay be an im-
portant factor in determining mechanisms of neu-
ral excitation, characterizing tissue damage, and
confirming correct electrode implantation [40].
Because MREIT signals are concentrated nearby,
use of internal electrodes mostly improves the
quality of the MREIT images in their neighbor-
hood, although reconstruction even in this region
can be challenging [7, 73]. Just as with surface
electrodes discussed in Sect. 4.4.1, problems can
be caused RF shielding or susceptibility artifacts
caused by metal electrodes. One strategy to avoid

this is to construct electrodes using carbon, which
has a lower conductivity and susceptibility and
should result in reduced artifact [45, 46].

Figure 4.11 illustrates use of internal elec-
trodes in phantoms. Figure 4.11a, b shows a
schematic of a directional DBS electrode and
sagittal model and MR magnitude views of its
location in the human head phantom described in
Sect. 4.2.4. In Fig. 4.11c, single (1C) and double
(2C) novel carbon fiber electrodes are illustrated,
and images of both a DBS lead and a 2C electrode
placed in a gel phantom and imaged at 7 T are
shown in transverse cross section in Fig. 4.11d
for (left) spin echo and (right) gradient echo
sequences. Image artifacts generated for each
electrode type were quantified by measuring full
width at half maximum (FWHM) signal for each
electrode and sequence type and determining the
ratio of the FWHM to actual electrode diameter.
The ratios found for the 2C carbon electrode
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were 1.34 and 1.00 for spin echo and gradient
echo, respectively, while the corresponding ratios
found for the DBS lead were 2.34 and 4.69 [46].
This indicates that carbon fiber electrodes may
potentially be useful in imaging fields nearby
internal electrodes and should not be as affected
by artifacts found with metal electrodes.

4.4.5 Electrode Preparation and
Placement

For typical MREIT experiments involving two
independent current administrations using four
electrodes, electrodes are conventionally placed
in diametrically opposed pairs [5]. For experi-
ments on human subjects, the preparation and
placement of electrodes remain the most critical
and hence prone-to-error step in tDCS and in
vivo MREIT experiments [10]. During in vivo
experiments, monitoring of electrode resistance
before and during current injection is considered
important for tolerability [10, 32] as unusually
high electrode resistance is indicative of unde-
sired electrochemical changes or poor skin con-
tact. In this section, we will discuss the steps
involved in attachment of electrodes on a human
head for MREIT experiments during tES treat-
ment.

Step 1: Clean the surface or skin with saline or
skin prep gel (Nuprep, Weaver and Company,
Aurora, CO, USA) in the area where elec-
trodes are to be placed.

Step 2: Precisely locate the electrode position.
As head size and shape vary from person to
person, it is important to use a fixed proto-
col such as the international 10–20 Electrode
Placement System [42, 69] to determine elec-
trode position for tES treatments and MREIT
measurements on humans.

Step 3: If using sponge electrodes, place the
sponge in isotonic (0.9%) saline solution un-
til saturated. Remove excess saline from the
sponge and place electrodes within them (see
Fig. 4.10a, b) and place them at the target loca-
tion [84]. Oversaturated sponges will be leaky,
and this may lead to contacts shorting across

the material used to secure them. In addition,
since saline-soaked sponges are exposed to the
room air and are in contact with the human
body, the saline can evaporate over the imag-
ing time period, and dehydration will cause
an increase in contact resistance. The voltage
across current electrodes should therefore be
monitored closely during imaging.
If using a conductive gel applied to carbon
rubber electrodes to form contacts [84], first
apply some gel to the head approximately
where the electrode is to be placed, and
massage it in gently. Combined with Nuprep,
this will prepare the surface to make a good
contact with electrode, especially when there
is hair in this area. Next, apply a thick layer
of gel to the carbon rubber electrodes (∼3–
5 mm). A thick layer is required to ensure
flexible and consistent electrode-skin contact
impedance and is less likely to result in skin
irritation and discomfort [84].

Step 3: Use elastic straps or flexible athletic ban-
dage to fasten the conventional saline-soaked
or gel-layered rubber electrodes over the de-
sired location. Be aware that the force ap-
plied to secure the electrodes over the skin
might increase pressure over the electrode and
pressure-induced erythema (redness) may ap-
pear either under or around the edges of the
electrode after current injection.

Step 4: Attach the lead wires and check the
contact impedance using the stimulator or con-
stant current source. If impedance is not in de-
sired range, check the electrode connection to
the scalp and the lead wires. The best and most
stable contacts will develop after electrodes
have been in place for at least 10 minutes.

4.5 MREIT Constant Current
Sources

A specialized constant current source is required
in order to perform MREIT experiments. In most
MREIT studies, currents have been injected as
rectangular pulses synchronized with a specific
MR pulse sequence. Care must be taken in the
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Fig. 4.12 Aconstant current source comprises a PC interfacemodule, spectrometer interfacemodule, RF pulse detector
with trigger interface module, micro-controller, constant current source, switch module, and voltmeter as in [39]

design and arrangement of both the current source
and lead wires to minimize the amount of ar-
tifact and noise that is ultimately measured in
Bz images. This means that the current source
must have very precise timing and excellent re-
producibility in current amplitude, pulse shape,
and width. There should also be no uncontrolled
DC offset at the output of the current source. The
current source must accept trigger signals from
the spectrometer so that current injections can
be synchronized with the pulse sequence. Users
should be able to adjust current pulse widths
TC so that current injection can be set appropri-
ately for givenMRpulse sequence parameters. As
discussed in Chap. 5 to avoid chemical changes
occurring in phantoms, or to avoid skin irritation
in vivo, the net charge of current waveforms must
be zero, i.e., equal for both positive and negative
current injections. For use in human subjects,
the possibility of subject perception at different
current frequencies and amplitudes also must be
taken into account when designing current wave-
forms.

In the early stages of MREIT, Kim et al. [34]
and Oh et al. [62] designed basic constant cur-
rent sources (CCS) for MREIT studies used for
initial experimental MREIT studies [60, 61]. In
later years, Kim et al. designed improved MREIT

CCS versions [39]. They described an MREIT
current source with features including interleaved
current injection, arbitrary current waveform set-
ting, electrode switching to discharge any stored
charge from previous current injections, a versa-
tile PC control program, optical isolation from the
MR spectrometer and controller PC, and precise
current injection timing control for typical MR
pulse sequences. Figure 4.12 shows the basic
building blocks of a MREIT constant current
source. We will discuss the components of the
MREIT CCS described in [39] in detail, as they
illustrate many important features of any current
source used for MREIT.

4.5.1 Constant Current Source
(CCS-KHU)

4.5.2 Control Program

To accommodate a range of pulse sequence pa-
rameters, Kim et al. [39] developed a current
source setup program running on a PC with Mi-
crosoft Windows operating system (Microsoft,
USA). User interface software was designed in
Microsoft Visual Studio to control the CCS from
a host computer. Users could control the current
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source by editing a script file containing a se-
quence of commands. These commands might be
predetermined based on a chosen pulse sequence
to be used in a certain imaging experiment. The
command sequence in each line of the script file
was initiated by a trigger signal. After each trig-
ger, users could insert a delay period before the
current injection started. Each current pulse was
specified by its width, amplitude, and waveform
type (sine or square). At least one trigger signal
for each TR cycle was required as input. This
allowed a single trigger signal to initiate multiple
current injections (positive or negative) per TR
when delay times were specified.

4.5.3 PC Interface

Since the current source described in [39] was
designed to be located inside the shielded room
while the PC interface was outside, careful design
was required to reject electromagnetic interfer-
ence spreading into the shielded room through the
connection. To achieve this, an optically isolated
USB port was constructed using a USB controller
and fiber-optic diodes. On the PC interface side,
a custom USB-optical converter was designed.
The optically isolated data communication link
between the PC and CCS was established using
10 m optical fiber cables.

4.5.4 Constant Current Source

A micro-controller controlled all circuits in the
current source, including a digital waveform gen-
erator, voltage-to-current converter, and switch
module. Each control parameter could be ad-
justed by modifying commands in the script file.
The digital waveform generator was implemented
using a 16-bit digital-to-analog converter (DAC).
A separate 8-bit DAC and a digital potentiometer
could be employed to adjust the waveform am-
plitude and offset. An improved Howland con-
stant current circuit was used as the voltage-to-
current converter [12]. For either in vitro or in
vivo experiments, a user might require different
dynamic ranges of current outputs. Therefore, in

this constant current source, two separate voltage-
to-current converters were designed: one for a 5
mA maximum current output and the other for
50µA.

4.5.5 Voltmeter

To reconstruct absolute conductivity images,
users must measure at least one boundary voltage
induced by an injected current [26,47]. Therefore,
a voltmeter was also implemented in this design.
This allowed users to measure surface voltage
differences on the object on non-current-carrying
electrodes or to monitor the injected current. To
monitor current, the voltmeter measured a voltage
drop across a known-value resistor inserted in
series with the imaged object.

4.5.6 Discharge Circuit

During current injection, there may be capaci-
tance at electrode-electrolyte interfaces and also
within the imaged object. Charge may accumu-
late in the circuit, and if it is not completely
discharged before injecting subsequent current
pulses, this may produce erroneous extra currents
and therefore changes in Bz images. Therefore,
as suggested by Oh et al. [62], a discharge cir-
cuit was implemented to momentarily connect
the chosen pair of current-injection electrodes to
circuit ground after each current injection.

4.5.7 SwitchModule

In many MREIT experiments, users use two pairs
of electrodes to apply current injections in two
independent directions. The design in [39] was
able to address and switch currents among up to
four electrodes connected to the switch module
via multiple photo-MOS switches. The micro-
controller set the switches so that the user could
inject current between any chosen pair of elec-
trodes. After each current injection, the discharge
circuit was triggered. For voltage measurements,
the switch module also enabled the user to mea-
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sure voltage between a chosen pair of electrodes
or across the current-sensing resistor.

4.5.8 Trigger Pulse Interface

The current source obtained trigger signals from
the MR spectrometer, which is typically located
outside the shielded room containing the magnet
bore. Trigger pulses from the MR spectrome-
ter may be contaminated with switching and RF
noise generated elsewhere in the system. In order
to prevent this noise from entering the current
source, the trigger pulse interface was based on an
optical coupling device. Trigger signals entered
the shielded room through a separate 10 m optical
fiber cable and arrive at the current source, where
they were converted back to electrical signals.
Users could also configure the CCS to accommo-
date and ignore a preset number of dummy trig-
gers (pulses produced before the main imaging
sequence commences).

4.5.9 Commercial Current Sources
for MREIT

Apart from the Kyung Hee University (KHU)
research current source just described, in recent
MREIT studies, commercial stimulators have
also been used for constant current administration
[5,14,30,46]. Some examples are provided below.

DC-STIMULATOR MR (neuroConn GmbH,
Ilmenau, Germany )
In recent studies, researchers have used the
neuroConn DC-STIMULATOR MR stimula-
tor as a current source in studies mapping the
current density in the brains of humans during
tES current administration [5,30]. The system
has also been employed in fMRI studies
performed inside scanners. Other certified tES
stimulators are available from manufacturers
such as Brainstim, Magstim, Neuroelectrics,
Newronika, and Soterix Medical [84].
The DC-STIMULATOR MR is an MRI-
compatible stimulator that is an extension
of the neuroConn DC-STIMULATOR PLUS.

This stimulator uses RF filter modules with
MRI-compatible cables and electrodes to
ensure there is no interference between the
scanner and stimulator during MRI sequences
(Fig. 4.13). While it has a nominal maximum
output amplitude of 4.5 mA, MREIT studies
have used 1.5 mA current amplitudes to
minimize subject perception during pulsed
MREIT current administrations.
Adapting the neuroConn DC MC stimulator
posed two major challenges for MREIT
research. First, it was not feasible for the
stimulator to be triggered by the MRI
spectrometer, and therefore it was not
possible to synchronize current delivery
with pulse sequences. Second, the stimulator
did not allow for sub-second stimulation
durations, which meant that the minimum
TR usable in the MR acquisitions was at
least one second. This would have drastically
increased the scanning time. To address
these shortcomings, a custom-made switching
circuit was constructed. This enabled users
to capture a TTL (transistor-transistor logic)
signal programmed to output from the MRI
spectrometer to gate DC electrical stimulation
as required, including switching polarity of
the applied stimulation. The switching circuit
was controlled by a separate microprocessor
program that could be adapted for use with
different pulse sequence types.

IZ2M/IZ2MHStimulator (Tucker-Davis Tech-
nologies, Alachua, FL, USA)
The IZ2M/IZ2MH can be used as part
of a larger TDT framework that monitors
neural signals over multiple channels. The
IZ2M/IZ2MH stimulators (the difference
between IZ2M and IZ2MH is the maximum
output current and precision permitted) can
be used to output constant-current stimulation
on up to ten electrodes simultaneously and
provide feedback of actual voltages delivered
to each electrode. IZ2MH stimulator can
deliver a maximum of 3 mA (300 μA for
the IZ2/IZ2M) of current per electrode up
to 12 V. The TDT framework provides an
interface that can be used to program arbitrary
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neuroConn RF-filter modules Carbon Rubber
Electrodes

Fig. 4.13 neuroConn DC Stimulator MR. The stimulator
source is shown to the left, with the two RF filter modules
at the center. The RF filter closest to the stimulator is

placed in the scanner console room. The RF filter module
closest to the carbon rubber electrodes (right) is placed in
the magnet bore near the subject’s head

Fig. 4.14 IZ2M stimulator with RZ5D processor base station (left) and MR-compatible non-ferrous headstage
connectors (right)

stimulation waveforms (with a sampling rate
up to 50 kHz), and waveforms can be triggered
from an external MR spectrometer TTL output
(Fig 4.14). The stimulator can be also operated
using Li-poly battery power, which improves
safety and the possibility of interference
between stimulator and scanner. However,
there is full medical-grade isolation between
mains power and electrode outputs.

4.6 Steps in a Typical MREIT or
MREPT Study

1. ACR phantom: Validation using a standard
MRI phantom is important when modifica-
tions have been made to an existing pulse
sequence or reconstruction algorithm. The per-
formance of the modified MR sequence, for
example, in terms of factors such as geometric
accuracy, signal-to-noise ratio (SNR), or the
presence of magnitude or phase dispersion ar-

tifacts should be evaluated before testing using
current injection. This can be done using a
American College of Radiology (ACR) phan-
tom provided with the MRI scanner [27].

2. Gel phantom: After performance of the pulse
sequence has been validated using the ACR
phantom, the next step is check theMRmagni-
tude and phase quality using a uniform known-
conductivity phantom. For MREIT, this step
should be done both with and without external
current injection and using non-magnetic (car-
bon) electrodes. The uniform gel phantom can
be useful in evaluating the quality of current-
induced phase images (phase artifacts, phase
noise analysis) and magnetic flux density (Bz

or B1).
3. Tissue or hybrid phantom: As our final goal

is to implement electrical property imaging
technique on animal or human subjects, more
complex phantoms are required to further val-
idate the (Bz or B1) de-noising methods and
current density or conductivity reconstruction
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algorithms. These types of phantom can be
designed using anomalies made different con-
ductivity gels or ex vivo animal tissues in a gel
or saline backgrounds.

4. In vivo animal experiment: After satisfac-
tory performance has been obtained using the
sequences or algorithm tested in the previous
step, we can move to in vivo animal experi-
ments. If the animal is anesthetized, there will
be little likelihood of motion, and methods can
be evaluated to determine effects of physiolog-
ical noise. Animal ethics approvals from the
Institutional Animal Care and Use Commit-
tees will be required before any imaging can
be done.

5. In vivo human experiment: The final step
is to perform in vivo human experiments to
validate the method or algorithm. This step is
critical, as it also requires ensuring the safety
of the human subject. Additional approvals
may require before performing in vivo human
subject imaging. Because of the need to apply
external currents in MREIT, careful calcula-
tions and tests should be conducted prior to
imaging subjects in the scanner to confirm that
current or charge densities are lower than rec-
ommended and that the frequencies of stimu-
lations are also in a range tolerable by subjects.
Ethical approval must be obtained from insti-
tutional review boards before imaging human
subjects.

4.7 Previous MREIT Studies

4.7.1 MREIT

In this section, we will discuss some specific
examples of previous MREIT studies, starting
from initial MREIT phantoms and progressing to
in vivo measurements.

4.7.2 Non-biological Phantoms

In the early stages of MREIT development, non-
biological phantoms were exclusively used to test
current density and conductivity reconstruction

algorithms. Saline doped with CuSO4 or gels
(described in Sect. 4.2.3) were used to construct
these phantoms. Figure 4.15 shows some
examples of non-biological phantoms used for
MREIT. Oh et al. [64] and Kim et al. [41]
constructed novel phantoms using saline as
a background and thin plastic films pierced
by small holes as anomalies, to demonstrate
effects of ionic mobility and the apparent
conductivity contrast mechanism in MREIT,
shown in Fig. 4.15a, b. Kim et al. [41] used
the same phantom to compare MREIT- and
MREPT-generated conductivity contrasts. The
thin film phantom, with or without holes, was also
used by Oh et al. [65] to determine temperature
distributions via electrical conductivity images
obtained using MREIT. Later, Chauhan et
al. [5] used an agarose gel phantom to evaluate
efficiency of single and multi-shot echo planar
imaging (EPI)-based MREIT sequences. In this
study, a conductivity contrast was created by
placing a hollow insulating cylindrical object at
the center of the phantom (Fig. 4.15c). Hybrid
non-biological phantoms are also frequently
used for MREIT studies. Jeong et al. [28] used
a hybrid phantom to optimize magnetic flux
density measurement using multiple RF receiver
coils and multi-echo in MREIT. To evaluate the
method, a cylindrical phantom was designed with
saline background with three anomalies (agarose,
TX-151, and gelatin), shown in Fig. 4.15d. Other
hybrid non-biological phantoms have been used
in studies for magnetic flux density measurement
optimization [3, 66].

4.7.3 Biological Phantoms

Ideally, MREIT reconstruction algorithm valida-
tion should also be performed using a biologi-
cal phantom, that is, one containing biological
material with very similar MR properties to hu-
man tissues. In these cases, samples easily ob-
tained at a market, such as chicken breast or
porcine muscle, are a convenient substitute for
human muscle and other tissues. These tissues
also contain little fat and are therefore not likely
to complicate MREIT evaluations with MRI fat-
shift artifacts. Further, they provide a simple way
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Fig. 4.15 Examples of non-biological phantoms used in MREIT. Shown are (a, b) thin film phantoms [41, 64], (c)
hollow object phantom [5], and (d) hybrid phantom [28]

of creating anisotropic MREIT phantoms. Oh et
al. [61] constructed a biological tissue phantom
containing porcine muscle, chicken breast, and
bovine tongue to demonstrate electrical conduc-
tivity measurement of biological tissue phantoms

using MREIT. These tissues were placed in a
agar background as shown in Fig. 4.16a. In 2008,
Minhas et al. [54] suggested a carbon-hydrogel
electrode for MREIT in vivo experiments and
used an ex vivo swine leg to verify its perfor-
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Fig. 4.16 Examples of biological phantoms used in MREIT. Shown are (a) early biological tissue phantom [61], (b)
swine leg phantom [54], (c) liver phantom [4], and DT-MREIT phantom [48]
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mance in MR and reconstructed conductivity im-
ages (Fig. 4.16b). Chauhan et al. [4] demonstrated
feasibility of MR-based electrical conductivity
imaging to detect RF ablation lesions (Fig. 4.16c)
using radiofrequency (RF)-ablated bovine liver
samples in agar gel. This study demonstrated
that MREIT imaging based on the conductivity
distribution of tissues can be used to monitor liver
RF ablation without using any contrast media or
additional MR scans.

In 2014, Kwon et al. [48] proposed a new
method, called DT-MREIT, for absolute conduc-
tivity tensor image reconstructions based on a lin-
ear relationship between the water diffusion ten-
sor and the electrical conductivity tensor by com-
bining diffusion tensor (DT)-MRI and MREIT
techniques. This required an anisotropic phan-
tom. To validate this, Kwon et al. used three
pieces of an anisotropic biological tissue (chicken
breast) each oriented along a different axis, in-
side an agar gel phantom, shown in Fig. 4.16d.
The method was able to quantitatively recover
the direction and magnitude of the anisotropic
conductivity tensors as well as isotropic conduc-
tivity values. The same phantom has subsequently
been used in validating other DT-MREIT-based
reconstruction methods [74].

4.7.4 In Vivo Studies

With the advancement of efficient reconstruction
algorithms and MR imaging methods, in vivo an-
imal and human MREIT experiments have been
increasingly performed to visualize current flow
and both isotropic and anisotropic conductivity
images. Kim et al. [36] described an in vivo
MREIT animal imaging experiment using a 3T
MRI scanner (Fig 4.17a). They injected pulsed
5 mA currents into the head of an anesthetized
dog and imaged the canine brain pre- and post-
mortem. Later, in 2009, the first in vivo high-
resolution MREIT imaging of the human leg was
reported by Kim et al. [37] (Fig 4.17b). Because
of the large surface area of the carbon-hydrogel

electrodes used, it was possible to inject pulse-
type currents with an amplitude as high as 10 mA
into the leg without producing peripheral nerve
stimulation.

Recently, Kasinadhuni et al. [30] and Göksu
et al. [18] used MR phase-based current density
imaging techniques to compute current density
maps of brain during tES treatment on in vivo
human subjects. Using the phase data acquired
by Kasinadhuni et al. [30] and diffusion tensor
images, Chauhan et al. [6] were successfully able
to generate conductivity tensor images of the
human brain using DT-MREIT (Fig. 4.17(c)).

4.8 MREPT

The MR-based high-frequency (Larmor fre-
quency) technique of magnetic resonance
electrical properties tomography (MREPT) may
be used to derive electric conductivity and
permittivity distributions from the Laplacian
of the B1 field map measured by MRI RF
coils, specifically maps of the transmit RF
field [77, 79, 80]. Because MREPT does
require use of any external currents or to have
compartments with different electrical properties
connected, construction of MREPT phantoms is
drastically simpler than for MREIT. Naturally,
the phantom concepts used in MREIT can also be
used for MREPT, but it must be considered that
the electrical properties measured by MREPT
are at a much higher frequency (128 MHz for 3
T) than for MREIT (ca. 10 Hz) and the material
properties of phantom components should be
confirmed using independent measurements at
the Larmor frequency. Examples of an MREPT
phantom and in vivo animal and human studies
are demonstrated in Chap. 8.

4.9 Summary

With the development of faster MRI sequences
and techniques, MREIT shows promising poten-
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Fig. 4.17 In vivo examples ofMREIT uses. Images show
configurations used for (a) in vivo experiment measuring
brain conductivity in the anesthetized dog [36], (b) human

leg experiment [37], and (c) in vivo human brain imag-
ing [6, 30]

tial for routine in vivo measurement of current
density and conductivity distributions.
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5MRCurrent Density andMREIT Data
Acquisition

Munish Chauhan and Rosalind Sadleir

Abstract

Magnetic resonance electrical impedance to-
mography (MREIT) can provide internal con-
ductivity distributions at low frequency (be-
low 1 kHz) induced by an external injecting
current. In MREIT, we inject current I using
at least one pair of electrodes into an ob-
ject to produce internal current density J =
(Jx, Jy, Jz) and magnetic flux density B =
(Bx, By, Bz) in the object. An MRI scanner
with its main magnetic field pointing the z
direction is used to measure the induced mag-
netic flux density (Bz) caused by external cur-
rent injection. To avoid the interaction of ex-
ternal current injection with MRI acquisitions,
it is important to synchronize the current in-
jection with MRI sequence. In the first part
of this chapter, we will discuss the practical
aspects of a successful MREIT experiment.
Following a brief introduction to the experi-
ment setup, we will then summarize various
MRI sequences used for MREIT, magnetic
flux density measurement, and image recon-
structions for MREIT experiments.

M. Chauhan · R. Sadleir (�)
School of Biological and Health Systems Engineering,
Arizona State University, Tempe, AZ, USA
e-mail: mchauha4@asu.edu; rosalind.sadleir@asu.edu

5.1 Introduction

The first step in MREIT reconstruction is phase
data acquisition using an MRI scanner. We can
think of an entire MREIT system as comprising
an MRI scanner, constant current source, sur-
face or internal electrodes, and current density or
conductivity image reconstruction algorithms or
software [1–5]. In this chapter, we will discuss
factors related to to the MRI scanner and external
current injection which directly affect theMREIT
data quality. Examples of these are the magnet
field strength, RF coil type, injected current mag-
nitude and current injection time (Tc) and current
source synchronization.Wewill go on to consider
phase data preprocessing, noise corrections, and
preparation of data for reconstruction procedures.
Finally, some specific application examples are
discussed.

5.2 Experiment Setup

In designing an MREIT experiment, the first de-
sign constraint will be the space available within
the magnet bore, followed by the type of coil to
be used. In many applications a transmit/receive
volume coil is used, butmany imaging procedures
on animals or humans may involve use of special
head or surface coils. It is critically important that

© Springer Nature Switzerland AG 2022
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equipment to be placed inside the magnet bore
is MR-safe and will meet the space constraints.
The second important choice to make is the image
pulse sequence type. For example, standard spin
echo pulse sequences can produce low artifact
images, but the total time required for a full spin
echo pulse sequence may be too long for practical
use with human subjects. Electrode design and
preparation can be performed following recom-
mendations in Chap. 4. Once these factors are
determined, image parameters can be adjusted
to capture data within the body region of inter-
est while maximizing the MREIT data signal-to-
noise ratio (SNR). ForMREIT data collection, the
current source must also be synchronized with the
imaging sequence. This section discusses these
important initial steps.

5.2.1 System
Configurations/Magnetic
Resonance Imaging Scanner

MR magnitude image SNR is key to MREIT
image quality, because the standard deviation in
measuredBz noise is inversely proportional to the
MR image SNR [6,7]. The MR magnitude image
SNR is dependent on the following factors [8]:

1. Magnetic field strength
2. Slice thickness and receiver bandwidth
3. Field of view (FOV)
4. Image matrix size
5. Number of acquisitions (averages)
6. Scan parameters (TR, TE, flip angle)
7. Selection of the transmit and receive coil (RF

coil)

SNR is proportional to the degree of nuclear
spin polarization, which scales approximately lin-
early with magnetic field strength. For example,
the move to 3 T is driven mainly by its approxi-
mate doubling of the signal-to-noise ratio (SNR)
compared to 1.5 T [9]. The improved SNR can
be used to shorten acquisition times, to improve
spatial resolution at a fixed scan time, or a com-
bination of the two.

New human MR systems operating at static
magnetic fields of 7 T or higher (≥ 300MHz
proton frequency) have recently become avail-
able. Although this ultrahigh field increases the
SNR, imaging human-sized objects at such high
frequencies presents several challenges, includ-
ing the presence of nonuniform RF fields, en-
hanced susceptibility artifacts, and higher tissue
RF energy deposition (i.e., specific absorption
rate (SAR)) [10]. Field nonuniformity is more
likely to manifest at these high frequencies be-
cause the wavelength at the Larmor frequency
(around 1m) approaches the scale of the imaged
objects, and thus their electrical property distri-
bution greatly affects RF field distributions. RF
inhomogeneity also produces the data required to
reconstruct EPT images [11, 12]. However, it is
important to note that the field may be distorted
at these high frequencies by many other factors as
well as the body’s properties.

Parameters 2–6 listed above can be controlled
during MR image acquisition. The selection
of appropriate MRI RF coils can also improve
the MR image SNR. Conventional RF coils,
including multichannel phased array coils, can
be adopted for MREIT as long as there is enough
space for electrodes and lead wires within them.

Main magnetic field homogeneity and gradi-
ent linearity of MRI scanner are also important
for MREIT. Main magnetic field inhomogene-
ity can be corrected by carefully shimming the
field before starting imaging. There are normally
many different shimming methods available in
commercial MR scanners. These can be passive,
active, or both. Clinical scanners typically per-
form automatic shimming as part of the prepa-
ration phase of each scan. Sensitivity and B1-
field uniformity of the RF coil significantly affect
the image quality in MREIT. All possible means
must be sought to minimize noise and artifacts
in collected k-space data when configuring an
MREIT system.

5.2.2 TTL Triggers

In order to perform MREIT experiments, a con-
stant current source (CCS) (see Chap. 4) must
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Fig. 5.1 MREIT TTL trigger setup for (left) spin echo and (right) gradient echo sequences. Two variants of each current
injection protocol are presented

correctly inject current into the object or sub-
ject [1,3]. In most MREIT studies, these constant
currents have been injected as rectangular pulses
synchronized with a chosen MR pulse sequence.
MR system spectrometers can be programmed to
generate output TTL (transistor-transistor logic)
pulses during a MRI scan. Similar pulses are
often used in fMRI, where TTL pulses are syn-
chronized with image acquisition, often to trigger
the start of a user task. For MREIT experiments,
it is desirable to avoid current injection during
RF pulses as this may disturb phase images. For
example, TTL triggers could be generated to in-
dicate the end of every RF pulse and to initiate
external current injection. More than one trigger
TTL pulse per TR may be required. In spin echo
(SE) MREIT sequences, two TTL trigger pulses
can be used, to indicate the end of the 90◦ and
180◦ degree RF pulses, respectively. Gradient
echo (GE) sequences require only one trigger
pulse, as shown in Fig. 5.1. In the case shown
in Fig. 5.1, note that current source operation is
triggered by the falling edge of each TTL pulse,
as the current is injected immediately after the
TTL pulse ends. The same current injection pat-
tern could be generated if the current source is
programmed to be triggered by the rising edge
of each TTL pulse but with a delay between
detection of the rising pulse and the start of the
current pulse. In general, the CCS should be able
to accommodate rising or falling edge triggers
and be able to insert a variable-width delay after
each pulse.

5.3 Data Acquisition

Figure 5.2a shows a typical setup for MREIT
imaging experiments. The oscilloscope is used
to monitor TTL pulses and the level of injected
output current. The inner and outer RF filters
can be used to minimize propagation of external
electromagnetic noise into or out of the scan-
ner room. Ideally, current-carrying wires near the
imaging object should be aligned parallel to the
main magnetic field direction, to avoid any stray
magnetic field induced by these current-carrying
wires (as discussed in Chap. 6). Figure 5.2b shows
an example of an SE pulse sequence commonly
used inMREIT experiments. The injected current
induces a magnetic flux density B. This pro-
duces a phase accumulation proportional to the z-
component (Bz) of B= (Bx ,By ,Bz). Figure 5.2b–
c shows example TTL pulses and correspond-
ing positive-first current (I+) injected during an
MREIT experiment conducted using an SE se-
quence.

5.4 Measurement ofBz

As discussed in Chap. 3, theMR signal is denoted
(S). For MREIT, the MR spectrometer provides
complex k-space data S± corresponding to ex-
ternal current injections, I+ and I−, respectively.
This signal is
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Fig. 5.2 Typical MREIT current injection configuration.
(a) illustrates connections and position of theMREITCCS
with respect to the imaged object. Current injection may
be monitored using an oscilloscope connected across a
known resistor in the CCS, and RF filtering is employed to

minimize noise pickup by the scanner or CCS. (b) shows
the schematic for an example current injection pattern I+.
(c) is a photograph of the oscilloscope screen for an I+
during an SE sequence

S±(kx, ky) =
∫∫

ρ(x, y)eiδ(x,y)e±iγBz(x,y)Tc

× e−i(xkx+yky)dxdy (5.1)

where ρ is a conventional MR magnitude
image, δ is any systematic phase artifact, γ =
26.75 ×107 T −1.s−1 is the gyromagnetic ratio
of hydrogen, and Tc is the current pulse width in
seconds.

Phase images acquired using positive-first and
negative-first currents, I+ and I−, can be sub-
tracted (or complex-divided) to cancel out the
systematic phase artifact δ in images acquired by
the MRI scanner.

Taking the two-dimensional discrete Fourier
transform, we obtain the following complex MR
images:

M±(x, y) = ρ(x, y)eiδ(x,y)e±iγBz(x,y)Tc (5.2)
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Fig. 5.3 MREIT data flow. Data acquired for I+ or I−
images are Fourier transformed to produce complex spa-

tial data. MR phase images from I− are subtracted from
I+ images to obtain the net phaseψ . Images ofψ are then
rescaled to obtain Bz

The net phase change, ψ(x, y), is

ψ(x, y) = arg

(M+(x, y)
M−(x, y)

)
= 2γBz(x, y)Tc

(5.3)
where we assume that the operator arg(·) includes
any necessary phase unwrapping. By performing
the complex division using I+ and I−, the sys-
tematic phase artifact term δ is eliminated, and the
phase difference is doubled. Once ψ is obtained,
we compute Bz as

Bz(x, y) = ψ(x, y)

2γ Tc
= 1

2γ Tc
arg

(M+(x, y)
M−(x, y)

)

(5.4)

The complete Bz reconstruction process from
raw k-space MRI data is shown in Fig. 5.3 for
a SE sequence. In practice, the data required
to form ψ need not be obtained using separate
scans, and all required phase data for any type
of sequence can be collected during one scan
using multiple dynamics or averages within the
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pulse sequence. This is an important consider-
ation in the presence of magnet drift and when
using small currents. Drift in the main magnetic
field B0 can result in the effective phase artifact
changing as a function of time. If this occurs then
the resulting ψ data will be incorrect. Effects of
magnet drift may be relatively minor when large
injection currents are used, but at the amplitudes
used in human tES experiments (ca. 1mA), this
drift may result in detrimental signal loss [13,14].
For example, in a Philips 3T Achieva system used
in [13,14], it was observed that the main magnetic
field drift was around 0.01Hz/min. The mag-
netic fields due to ca. 1mA currents correspond
to frequency shifts only around four times this
level (0.043Hz). Therefore, data to be divided
should be gathered as close together in time as
possible. This may be done by reversing polarity
in alternate averages of one phase encode line.
Careful attention must thus also be paid to the
order in which slices, averages, and phase encode
lines are gathered. Multiple runs of the same
sequence can be averaged to improve ultimate
SNR while keeping each run a reasonable length
for subjects [13–15].

5.4.1 Noise in MREIT

Noise in measured Bz data is the primary limiting
factor in determining the spatial resolution of a
reconstructed current density or conductivity im-
age. The first method to estimate noise levels in
Bz images was suggested by Scott et al. [6]. They
showed that the noise standard deviation, sBz

,
in measured Bz data is inversely proportional to
the signal-to-noise ratio (SNR) of the magnitude
image, ϒM, and the total current injection time,
Tc as

sBz
= 1

2γ TcϒM
(5.5)

To evaluate ϒM, the most commonly used
technique is based on the signal statistics in
two separate regions of interest (ROIs) from
a single image: one in the tissue of interest to
determine the signal intensity and one in the

image background to measure the noise intensity
[16, 17]. There are two important preconditions
for SNR measurements based on this “two-
region” approach: a spatially homogeneous
distribution of noise over the whole image is
required, and the statistical intensity distribution
of the noise should be known so that the noise
properties measured in a background area can be
used to deduce the noise distribution overlaying
the anatomic structures in the foreground. These
assumptions have been valid for many MR
images, particularly for images from standard
single-channel volume quadrature coils.

The use of phased array surface coils and
parallel reconstruction techniques can influence
both the statistical and the spatial distribution of
noise [18, 19]. Use of a sum-of-squares recon-
struction for data from phased array coils [20]
changes the statistical distribution of background
noise. Dietrich et al. [21] evaluated the valid-
ity of the “two-region” approach in comparison
with two alternative techniques in MRI experi-
ments with multielement surface coils and paral-
lel imaging techniques. Depending on the type of
RF coil and imaging technique used, the method
suggested by Dietrich et al. [21] is recommended
to calculate ϒM in MREIT data.

A practical approach which calculates MREIT
noise standard deviation directly from measured
magnetic flux density (Bz) data was suggested by
Sadleir et al. [7]. The following relation provides
a way to experimentally estimate noise standard
deviation ŝBz

in measured Bz data by determining

ŝBz
= 1
√

20

4 + 6


4
z

s�2
Bz

(5.6)

where
 is the distance between consecutive pix-
els along the x and y directions, 
z is the slice
thickness, and s�2

Bz
is the standard deviation of

the Gaussian random noise in
�2

Bz.
Acquiring Bz data using a homogeneous

conductivity phantom, we can evaluate relation
between theoretical and practical methods,
described in Eqs. (5.5) and (5.6), respectively.
If sBz

in (5.5) and ŝBz
in (5.6) are approximately

equal to each other (within a factor of about two),
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we can conclude that the MREIT experiment is
consistent.

In MREIT, the measured raw data is the net
phase change ψ in (5.3). This phase change is
proportional to the product ofBz and Tc. SinceBz

is directly proportional to I , we must optimize the
MREIT pulse sequence to maximize the product
of I and Tc in Fig. 5.1. During in vivo human
imaging experiments, permissible values of I and
Tc must be determined carefully considering the
physiological effects of current injection [22].

5.4.2 MRI Pulse Sequences for
MREIT

Spin Echo
In last two decades, manyMRI-basedmeth-
ods have been developed to measure the
effects of applied currents at various fre-
quencies (i.e., near DC [2], at RF at the Lar-
mor frequency of the scanner [23] and low-

frequency AC currents up to 2 kHz [24,25].
Most of these methods use a standard spin
echo (SE) pulse sequence, which acquires
one line of k-space data per repetition time
(T R). The SE pulse sequence shown in
Fig. 5.4 has been widely used in MREIT,
since it is most robust to many kinds of
undesirable perturbations to the phase im-
age. As described in Sect. 5.2.2, the SE
pulse sequence requires two TTL triggers to
indicate the end of 90◦ and 180◦ RF pulses.
In the I+ version of the scan, a positive
current is injected between the end of the
90◦ and the beginning of 180◦ RF pulse. A
negative current is injected after the 180◦
RF pulse and up to the beginning of the
read gradient as the 180◦ pulse reverses the
phase polarity. In the I− scan the sequence
is repeated but with an initial negative cur-
rent.

A major drawback of the SE sequence
is the long acquisition time. This limits

(continued)

Fig. 5.4 Spin echo pulse
sequence for MREIT.
Current is injected for a
total of Tc per TR. In a
simple version of the scan
phase data recorded with
I+ and I−, current patterns
are subtracted to remove
systematic phase artifact
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the number of the signal averages that can
be measured and make the sequence sus-
ceptible to motion artifacts during in vivo
studies [26]. More recent MREIT studies
have therefore used multi-slice SE MRI se-
quences to allow simultaneous acquisition
of several spin echo image slices and reduce
overall scan time [4]. The pulse sequence
diagram for MREIT data acquisition using
a SE sequence is shown in Fig. 5.4.

SE Injected Current Nonlinear Encoding (SE-
ICNE)
In the conventional SE current injection
method shown above, currents are injected
during the time segment between the end
of the first RF pulse and the beginning of
the read gradient in order to ensure gradi-
ent linearity. Since longer current injections
accumulate more phase change [7], Park et
al. [27] proposed amodified pulse sequence

called injection current nonlinear encoding
(ICNE) where the current pulse duration is
extended until the end of the read gradi-
ent (Fig. 5.5). Since current injection during
the read gradient disturbs gradient linearity,
Park et al. [27] suggested a novel algorithm
to extract the induced magnetic flux density
from the acquiredMR signal. Lee et al. [28]
showed that the optimal current injection
time T ∗

c and the corresponding optimal data
acquisition time T ∗

s are

T ∗
c = 2

3

(
T E − 3τRF

2

)
and

T ∗
s = 2

3

(
T E − 3τRF

2

)
(5.7)

where T E is the echo time and τRF is
the RF pulse width. Compared with a con-
ventional current injection method [6], the
SE-ICNE method can theoretically reduce
the noise level in measured magnetic flux

(continued)

Fig. 5.5 Spin echo pulse
sequence showing a
comparison of
conventional and ICNE
injection currents
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density up to 42% in the optimal case [28,
29]. Figure 5.5 shows the pulse sequence
diagram for the SE-ICNEMREIT pulse se-
quence. The length of the current injection
after 180◦ pulse is extended until the end of
the read gradient (Gx).

Multi-Echo Spin Echo Injected Current Non-
linear Encoding Sequence (MESE-ICNE)
Another useful approach to effectively in-
crease the Tc in MREIT is to use multi-echo
SE (MESE) MRI sequences. The MESE
pulse sequence generates multiple echoes
by repeatedly applying 180◦ refocusing RF
pulses within one TR [30,31]. Additionally,
the ICNE approach can be used to improve
Bz SNR by extending the current injection
duration until the end of the read gradient.
Figure 5.6 shows a current injection scheme
that could be used in the MESE-ICNE se-
quence with three echoes. Since the multi-
echo approach enables an increase in the
total current injection time (Tc), it should
produce advantages for MREIT. However,
this approach cannot be used indefinitely,
since T2 signal decay will result in noisier
images being recovered as larger numbers
of echoes are recorded.

Minhas et al. [31] evaluated the perfor-
mance of a multi-echo SE-ICNE sequence
using data from phantom and animal stud-
ies. They found that the multi-echo MR
magnitude image (M±

ME) for positive and
negative current injection after combining
N echo datasets can be represented as

M±
ME(x, y) = 1

N

N∑

n=1

ρ(x, y)e
−n TE

T2

(5.8)
The resulting total multi-echo phase

change (ψME) found by combining the n

echoes is

ψME(x, y) =
N∑

n=1

ψn(x, y) = 2γBz(x, y)
T

(5.9)

where 
T = ∑N
n=1

(∑2n
k=1 
k

)
is the

total effective current injection duration for
echo-combined data. The ICNE pulse se-
quencewith a single echo described by Park
et al. [27] is a special case of the multi-echo
sequence where n = 1.

Gradient Echo andMulti-Echo Gradient Echo
Sequences
The gradient echo (GRE) MR sequence is
faster than the SE sequence and is widely
used in MRI imaging. The difference be-
tween SE and GRE pulse sequences relates
to elements used to generate the MR sig-
nal [32]. While two radio-frequency (RF)
pulses (90◦ and 180◦) are used for spin
refocusing and spin echo generation in SE
sequences, GRE imaging is based on only
a single RF pulse applied at a flip angle
that is typically <90◦, in combination with
readout gradient reversals [33,34]. The im-
ages thus retain T ∗

2 dephasing effects. The
consequence of using low-flip angle excita-
tions is faster recovery of longitudinal mag-
netization, which in turn allows for shorter
repetition times (TR) and echo times (TE)
and decreases overall scan times. Figure 5.7
shows a pulse sequence diagram for a GE
MREIT acquisition.

As Bz noise standard deviation is in-
versely proportional to Tc [6, 7], the Bz

standard deviation is higher for gradient
echo sequences due the shorter TE, TR,
and therefore TC values. Because of its
sensitivity to magnetic field inhomogeneity
arising from susceptibility differences, GE-
based MREIT has generally been avoided
in MREIT data acquisitions where time re-
strictions are not present. However, multi-

(continued)
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echo gradient MREIT sequences have suc-
cessfully been implemented in human stud-
ies [15, 35].

Multi-Echo GRE Use of multi-echo gra-
dient echo (ME-GRE) MR sequences solve
many problems observed in GRE se-
quences for MREIT and allow us to take
advantage of their short TR times. In a
normal GRE sequence, a gradient reversal
process is used to create a single gradient
echo and can be repeated to produce two or
more additional gradient echoes after a sin-
gle RF pulse. Multiple gradient echoes can
be acquired using this process, but because
of T ∗

2 -decay, the maximum usable number
of echoes is limited [36].

Kim et al. [36] proposed an MREIT
pulse sequence by combining a ME-GRE
pulse sequence with the injected current
nonlinear encoding (ICNE) approach, with
current injection up to the end of the readout
gradient, as shown in Fig. 5.8. The pro-

posed method increases Tc almost up to TR
as the multiple echoes are recorded.

Later, Oh et al. [37] suggested that es-
timated T ∗

2 relaxation times can be used
to estimate noise levels in the multiple
measured Bz

j ,j = 1, . . . , NE using the
ICNE-MEGRE sequence and to determine
an optimized magnetic flux density Bz

opt

by recovering weighting factorsωj for each
measured magnetic flux density echo Bz

j

that minimize the noise level of Bz
opt ,

where NE is the number of echoes in TR .
The optimal weighting factor ωj(r) can

be obtained by computing

ωj(r) = γj (r)
NE∑

j=1
γj (r)

(5.10)

where γj (r) := T 2
cj
e− 2T

cj

T2
∗(r) and Tcj is

the current injection time at the j th echo.
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Once the weighting factors ωj(r) have
been determined, the optimized Bz

opt (r) =
NE∑

j=1
ωj(r)Bzj (r) can be obtained and used in

further analysis.

Echo Planar Imaging
In recent years, many fast SE or GRE
MR sequences have been developed for
MRI data acquisition, including fast spin
echo(FSE), ultrafast gradient echo (Turbo
GRE), echo planar imaging (EPI), and
ultra-short echo time (UTE) techniques.
Immediate use of these sequences in
MREIT is challenging because of the need
to combine the pulse sequence structure
and data readout method with external cur-
rent injection. In some recent studies, re-
searchers have investigated the use of a
single-shot or multi-shot spin echo EPI
pulse sequences for data acquisition in
MREIT [26, 35]. These sequences acquire
the entire k-space data in single (one shot)
or multiple T Rs and may thus be useful
inMREIT data acquisition—decreasing the
total scan time and reducing susceptibility
to motion artifacts. They may also be useful
in functional MREIT studies.

EPI is one of the most efficient and fast
MRI techniques. Single or multi-shot EPI is
widely used in functional MRI (fMRI) and
diffusion tensor MRI (DT-MRI) imaging
studies. However, EPI artifacts can result in
severe image distortions. While EPI-based
sequences can drastically decrease scan
time, obtaining of artifact-free EPI data is
intrinsically difficult [38, 39]. System im-
perfections and physical phenomena (e.g.,
eddy currents, asymmetric anti-aliasing fil-
ter response, B0 inhomogeneity, chemical
shift effect, mismatched gradient group de-
lays, hysteresis) can lead to Nyquist ghosts
and geometrical distortions in EPI images.

Nyquist ghosting observed in raw EPI
reconstructions is the result of time-reversal
asymmetry between even and odd echoes,
and this reduces SNR and degrades im-
age quality. These artifacts also result in
inaccurate measurements of both magni-
tude and MREIT magnetic flux density
data. Many methods to reduce effects of
ghosting and geometrical distortion in EPI
data have been suggested [40–44]. Chauhan
et al. [35] used the techniques of Chen
and Wyrwicz [43] and Chiou et al. [44]
to apply ghost and geometric corrections,
respectively, to phase images in EPI-based
MREIT. They compared MREIT recon-
structions for single- and multiple-shot EPI
with a gold-standard SE sequence and con-
cluded that EPI methods can be combined
successfully with MREIT reconstruction
algorithms to achieve fast imaging of cur-
rent density, conductivity, and electric field.
Figure 5.9 shows the MREIT current ad-
ministration sequence used in [35] against
the single-shot SE-EPI sequence.

5.4.3 MREIT Data Preprocessing

After collecting multiple sets of k-space data
in (5.1), several processing tasks must be required
to transform it into Bz data. First, the discrete
inverse Fourier transformation is computed to
obtain the complex MR image of (5.2). Though
this step is straightforward, the second step
of computing the net phase change in (5.3)
requires a carefully implemented numerical
phase-unwrapping algorithm. Recall that for
the safety of subjects in in vivo experiments,
the amount of injected current I should be
small, which reduces Bz signal. The SNR of
Bz data is also directly affected by the noise
of M. Therefore, attention must almost always
be paid to denoising phase data prior to its use
in reconstruction. Figure 5.3 shows the flow
diagram for basic MREIT data processing. In the
following subsections, we discuss unwrapping
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Fig. 5.9 Spin echo EPI pulse sequence with conventional
injection currents. Because of the limited time between
the 180◦ pulse and read gradients, no current is injected

after the 180◦ pulse. Scans using positive current (I+) or
negative current first (I−) may be combined to remove
systematic phase artifact

and phase correction methods that can be applied
to MREIT data.

5.4.3.1 MR Phase Corrections

Phase Unwrapping
As we know from Eq. (5.3), the phase
change measured in MR phase images (ψ)
depends on the duration of the applied cur-
rent (Tc) [2,3]. The phase is usually first re-
vealed using the arctan function (see (5.3)),
which constrains the phase to the interval
[−π ,π ]. However, the phase-unwrapping
process in MREIT must extend the interval
to its full correct range. If the total cur-
rent is small, this may not be necessary.
However, if large currents or very small
electrodes that produce large current den-
sities are used, the need for unwrapping
is more likely. The unwrapping problem is
an important aspect in MREIT, as in other
fields using MR phase information such as
EPT or quantitative susceptibility mapping
(QSM).

As noted above, special care must be
given to regions near current injection elec-
trodes where current densities are high and
phase changes may be very rapid (Fig.
5.10). Ghiglia and Pritt [45] explain de-
tails of numerous phase-unwrapping algo-
rithms, and this is a useful general refer-
ence. To unwrap phase discontinuities in
the phase images obtained with current
injection, most MREIT studies have used
Goldstein’s branch cut algorithm [45].

Harmonic In-painting Using MR Data
MR images may contain regions where sig-
nals are weak due to low proton density
or because the tissues may have very short
T1 or T2 values. These MR signal voids
usually occur in tissues such as the lungs,
cortical bones and in gas-filled organs [46].
Within these regions, M ≈ 0 in (5.2). As
the SNR in this region will be very low,
by Eq. (5.5), the measured Bz data in (5.4)
will be very noisy, even though the Bz sig-

(continued)
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Fig. 5.10 (a) MR magnitude image M of a cylindrical
saline phantom including an agar object. Conductivity
values of the saline and agar were different. (b) Wrapped

phase image subject to an injection current from the top
to the bottom electrodes. (c) Corresponding image of
induced Bz after applying a phase-unwrapping algorithm

nal itself may not be small there [3]. Lee
et al. [47] termed this defective Bz data,
since using it for conductivity reconstruc-
tion may result in errors. They proposed
an in-painting method to recover Bz data
in defective regions using Maxwell’s equa-
tions combined with the adjacent higher-
quality Bz data. The method is based on
the fact that ∇2Bz= 0 inside a region with
zero conductivity. They first segmented out
defective regions and their boundaries and
solved the equation ∇2Bz = 0 subject to
boundary conditions of the Bz data along
the region boundary. This computed syn-
thetic Bz data then replaced the original
noisy Bz data inside defective regions, and
they will appear as locally homogeneous
conductivities. If there are multiple small
regions with low SNR, a harmonic decom-
position denoising method [48] may be
preferable to harmonic in-painting [3].

Research software called CoReHA
(Conductivity Reconstructor using
Harmonic Algorithms) is available to aid
MREIT data processing. In older versions
of CoReHA [49], a manual segmentation
tool was provided for the extraction of
boundaries and correction of Bz data
in defective regions using the harmonic

in-painting algorithm [48]. However, the
manual segmentation required to identify
the defective region boundary causes
user-dependent reconstruction results. To
deal with this situation, CoReHA2.0 [50]
assumes that any defective region has low
MR magnitude and that its conductivity
distribution is homogeneous, so that
∇2Bz = 0. CoReHA2.0 then automatically
selects the defective region using a
threshold of 10% of the maximum MR
magnitude.

Bz Denoising
Images of magnetic flux density Bz include
the core information about the conductivity
contrast. These images also contain noise
from the object itself as well as the MRI
system [46, 51]. Denoising methods spe-
cific toMREIT can be attempted as the next
step after phase unwrapping, taking caution
not to distort the signal component. Lee
et al. [48] suggested a PDE-based denois-
ing technique for MREIT. They adopted
a harmonic decomposition method specific
to the relation between Bz and conductiv-
ity contrast to separate noise from the sig-
nal component. Other denoising techniques

(continued)
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may also be applied as long as they preserve
Bz signal components.

The Bz images typically present areas of
sloped transitions, which may be described
as “ramps.” Conductivity contrasts change
ramp slopes in Bz images, and it is criti-
cal to preserve the positions of ramp slope
changes to correctly recover the position of
edges in conductivity images. The ramp-
preserving denoising technique [52] uses
eigenvalue analysis to isolate parts of the
image contaminated by random noise (con-
tributed by the MR scanner) or salt and
pepper noise (contributed by tissue struc-
ture) and applies an anisotropic filter that
smooths ramps while preserving edge data.

Jeon et al. [49, 50, 74] integrated the
functions of ramp-preserving denoising,
harmonic in-painting, and ROI image re-
construction using the local harmonic Bz

algorithm into the CoReHA conductivity
image reconstruction software. Applying
these methods together with the harmonic
Bz algorithm, they confirmed that they
could be used to improve the quality of
conductivity images of phantoms and intact
animals.

5.4.3.2 Current Density and
Conductivity Image
Reconstruction

Data acquired from MREIT experiments can
be used for both current density and conduc-
tivity image reconstructions. In some MREIT
algorithms, current density reconstruction (e.g.,
projected current density) is an intermediate
step in computing conductivity images. While
current density calculations can be done with
single current injection (injecting current
between one pair of electrodes) [53]; for
reliable conductivity image calculations, most
MREIT algorithms require more than one current
injection. Current density and conductivity image
reconstruction algorithms typically also need

a three-dimensional finite element model of
the imaged object. Multi-slice MR magnitude
image volumes can be used for this task, and
methods for constructing these models are
described in Chap. 2. Even though MREIT data
provides magnitude information, the voxel size
may be larger than desired for constructing the
computational model, and a finer-resolution scan
(typically 1mm isotropic) covering the entire
domain of interest is often used for this purpose.
Extraction of the object boundary from multi-
slice MR magnitude images is relatively easy,
since image values are close to zero outside
the object. In addition, as discussed in Chap. 7,
diffusion tensor-based MREIT (DT-MREIT)
algorithms require diffusion tensor images
(DTI) along with current-induced magnetic flux
density (Bz) images to compute conductivity
tensor images of anisotropic objects [54–56].
Coregistration of the structural scans used
to construct computational models, and any
diffusion tensor volumes with MREIT data is
critical for correct reconstructions. This is most
easily achieved by collecting all required data in
a single session.

5.4.4 Clinical Applications of MREIT

5.4.4.1 MREIT During tES Therapy
Transcranial electrical stimulation (tES) tech-
niques have emerged as an important modality
for understanding the relationship between
brain and behavior [57]. It has been assumed
that effects caused by tES neuromodulation
techniques are due to electric current flow within
brain structures that are key to the processes
being studied. MR current density imaging and
diffusion tensor MREIT (DT-MREIT) methods
have recently been used to reconstruct current
density distributions [15, 58] and anisotropic
conductivity images [56] during tES therapy
using MREIT and diffusion tensor image data
gathered from healthy human subjects. The
experimental procedures used in an example
study [15,56] are described in the sections below.
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Subject Preparation and Electrode Attach-
ments
Subjects were neurologically normal and
right-handed. They completed brief ques-
tionnaires before and after interventions to
assess mood and tES-related physical sen-
sations. Prior to scans, neuroConn carbon-
rubber electrodes (∼25 cm2), enclosed in
sponges, were soaked in saline (0.9%NaCl)
and squeezed to remove excess solution.
Immediately before electrode placement on
Fpz, Oz, T7, and T8 locations, a 5ml vol-
ume of saline was applied to both sides of
each sponge. Small amounts (ca. 1ml) of
saline were also applied to the scalp un-
der hair at electrode sites. Electrodes were
applied approximately 30 min before the
current administration procedures began.
Electrode positions, wiring and fastenings
are shown in Fig. 5.11a, b. The process of

electrode attachment is discussed in detail
in Chap. 4.

Subjects were requested to report any
stimulation-related side effects while in the
scanner such as phosphenes, pain, or skin
irritation. Phosphenes are light sensations
appearing in the visual field that can be
induced by external electrical stimuli. They
were particularly likely to occur during the
MREIT waveform used because its prin-
cipal frequency was around 10Hz [59].
Phosphene perception was rated on a 1–
10 scale, with 1 corresponding to “no de-
tectable flashing” and 10 corresponding
to ‘white field.” Phosphene fields were
recorded as either “peripheral” or “central.”
Any subject perceptions of cutaneous stim-
ulation were also recorded. Using recorded
phosphene perception data from multi-
ple subject undergoing tES, Indahlastari et
al. compared the predicted and observed

(continued)

Fig. 5.11 tES MREIT experiment setup and pulse se-
quence. Part (a) shows the four-channel MR-safe stim-
ulator with sponge electrodes, also showing electrodes
secured using elastic bandaging, (b) is a rendering of the
subject in 3D fromMR (MPRAGE) images and illustrates

wiring arrangement, (c) shows a schematic of tES elec-
trical connections used in the experiment, and (d) shows
the ten-echo multigradient echo sequence used to obtain
subject data. Note that the current was applied until just
after the last echo
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phosphene experience using the finite el-
ement method [60] and found that this
method, combined with modeling or direct
measurement, could be used to explore the
mechanism of phosphene generation.

Imaging Procedures
The complete experimental setup is shown
in Fig. 5.11c. All data were measured using
a 32-channel head coil in a 3T MRI Philips
Achieva scanner. After pilot scan acquisi-
tion, a 3D FLASH T1-weighted structural
image was acquired with a 240mm (FH)
× 240mm (AP) × 160mm (RL) field of
view (FOV) and 1mm isotropic resolution,
centered laterally on the midbrain. Fig-
ure 5.11d shows the Philips mffe sequence
modified forMREIT.MREIT datasets were
acquired in three 5mm contiguous slices
(NS = 3) with an in-plane FOV of 224mm
(RL)× 224mm (AP) and a data matrix size
100 × 100 × 3 (resolution 2.24 × 2.24
× 5mm3). MREIT slice positions were
aligned to the T1-image volumes and cho-
sen so that the volume contained as much
of the electrode extent as possible.

MREIT scans for each slice were per-
formed in sequence, each slice comprising
100 phase encode (PE) steps. For each PE
step, ten echoes were acquired during a
current injection time (Tc) of 32ms within
a TR of 50ms, and then the current polarity
was alternated during subsequent TR inter-
vals. This sequence was repeated 12 times
(NAV = 12) for each PE step. Therefore,
the total acquisition time for each MREIT
image acquisition was TR × 2 (polarity
switching)×NAV× PE×NS= 6:00 min.
The entire MREIT procedure was repeated
and results averaged, for a total acquisition
time of 12 min, to achieve better signal-to-
noise ratio (SNR) and to reduce standard
deviations(SDBz

) in current-induced mag-

netic fields (Bz) [7]. “Positive” pulses were
applied first to the first named electrode
in each montage (Fpz or T7). An initial,
no current (NC), MREIT scan was per-
formed to verify system stability and pro-
duce baseline T ∗

2 maps. This required only
6 min since no polarity switching was used.
The entire MREIT acquisition, comprising
stimulation via both Fpz-Oz and T7–T8
electrode pairs and NC scans, lasted ap-
proximately 30 min.

Diffusion-weighted MR (DWI) data re-
quired to perform DT-MREIT reconstruc-
tions were then acquired using a HARDI
(high angular resolution diffusion imag-
ing) protocol, at b-values of 100 s/mm2

(6 directions) and 1000 s/mm2 (64 di-
rections). Data were sampled at a 2mm
isotropic resolution, with a matrix size
of 70 × 112 × 112. Two six-direction
DWI datasets were acquired with reversed
phase encode directions to remove effects
of background magnetic inhomogeneity.
These two datasets were then combined
using the FSL topup procedure [61]. While
T1-weighted, MREIT and DWI data were
all referred to the same reference scan, the
S0 (no diffusion gradient, b = 0 s/mm2)
DWI image registration was used to con-
firm alignment of T1-weighted and DTI
data. Both the S0 and T1-weighted images
were then resampled to a 100 × 100 × 44
matrix size to match MREIT resolution.

Electrical Stimulation Protocol
A 1.5mA current intensity was used in
all experiments, for both Fpz-Oz and T7–
T8 montages. It was found that subjects
tolerated this current amplitude well and
there was good phase signal after averaging
had been applied. Figure 5.11d shows that
current was applied for periods of 32ms of
each 50ms TR. Because current polarity re-

(continued)
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versed after each TR, the stimulation wave-
form therefore corresponded to a sequence
of rectangular pulses with a duty cycle of
approximately 64% [15,56].

5.4.4.2 3D HeadModel Generation

For segmentation, de-identified T1-
weighted axial and sagittal datasets were
resampled using FreeSurfer (Cambridge,
MA) to a 1mm3 isotropic resolution.
Segmentation was completed using
resampled sagittal images. Figure 5.12
shows an outline of the segmentation
procedures. A combination of automatic
and manual steps was used to segment
datasets into ten tissue compartments.
White and gray matter segmentation was
performed using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/), while bone, ski,n
and air segmentations were completed
using MATLAB (Mathworks, Natick, MA)
and the SPM12 module (Wellcome Trust
Centre for Neuroimaging, London, UK).
All automated segmented tissue masks
were corrected manually in ScanIP v7.0
(Simpleware, Synopsys Inc., Exeter, UK)
with reference to an anatomical atlas [62].
The remaining tissue compartments,
comprising cerebrospinal fluid (CSF),

the eyes, blood, fat, and muscle were
segmented manually in ScanIP. Using
thresholding in T1-weighted axial images,
the temporal electrodes (T7, T8) were
segmented to an electrode surface area
of about 36 cm2, in comparison to the
25 cm2 carbon-rubber core. As a final step,
segmented electrodes and tissues were
combined into a single ScanIP model for
each subject. Segmented models were
then exported to COMSOL for subsequent
calculations, as described in Chap. 2.

Current Density and Conductivity Tensor
Imaging During tES
This study demonstrated the first MREIT
current density images in human heads. To
calculate current densities during tES treat-
ment, the projected current density (JP )
algorithm was used. Details of projected
current density reconstruction algorithms
are described in Chap. 6.

The same data collected in the study
were used to reconstruct the first in vivo
anisotropic conductivity images of the hu-
man brain, using the combination of dif-
fusion tensor and MREIT reconstruction
techniques (DT-MREIT) [54]. A full dis-
cussion of the DT-MREIT algorithm is in
Chap. 7. Because the external current in-

(continued)

Fig. 5.12 Modeling simulation workflow. Outlined here
is the general procedure used to process raw T1 datasets
(left) into synthetic Bz (right). Raw T1 datasets were
resampled prior to segmentation, and a combination of
manual and automatic steps was used for the segmentation

process. The segmented model was meshed in Simpleware
ScanFE. All finite element simulation was performed us-
ing COMSOL, and simulation results were processed and
analyzed in MATLAB

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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jection used for these experiments was at
around 10Hz, these measured conductivity
distributions are also those relevant to brain
activity frequencies (DC-250Hz).

5.4.4.3 MREIT During Electroporation
Monitoring of electroporation processes could
provide a path to safe and efficient applications
of electroporation in clinical procedures such as
electrochemotherapy and nonthermal irreversible
electroporation [63]. Several methods of monitor-
ing electroporation processes have already been
suggested, particularly for irreversible (NTIRE),
where immediate changes of tissue properties
can be detected [64]. However, monitoring of
reversible electroporation is more demanding
task since there are almost no immediate
visible physical changes in treated tissue.
Electroporation-based treatment efficiency is
correlated to electric field distribution [63]. More
specifically, at a given number and duration of
pulses, the local electric field is the critical factor
determining tissue electroporation. Therefore,
use of MREIT would benefit understanding of
mechanisms and practice of electroporation if
used intraoperatively.

Electric Field Measurement During Electro-
poration
As accurate coverage of the tissue with
a sufficiently large electric field presents
one of the most important conditions
for successful electroporation, Kranjc et
al. [53, 65] proposed a method for de-
termining electric field distribution dur-
ing electroporation based on magnetic res-
onance electrical impedance tomography
(MREIT). They demonstrated that MREIT
can be used to determine electric field
distribution during electroporation in agar
phantoms, and ex vivo tissues (chicken
liver). Tissues were sectioned in flat and
cylindrical-shaped samples with a diameter

of 20mmand placed in an acrylic glass con-
tainer (Fig. 5.13a). Four cylindrical-shaped
platinum-iridium electrodes with a diame-
ter of 1mm were placed inside. Samples
were then inserted in a 25mmRF probe and
connected to the electric pulse generator
using cables including a low-pass filter to
avoid possible RF disturbances in the NMR
signal. The sequence of four high-voltage
electric pulses with an amplitude Uel of
either 1000V or 1500V and a duration
of 100ms was delivered between opposing
pairs of electrodes using an electric pulse
generator Cliniporator Vitae (IGEA, Carpi,
Italy) to establish electric field distribution
below and above reversible electroporation
threshold values for applied voltages of
1000V and 1500V, respectively.

For these studies, MR phase images
of current-induced magnetic field changes
were obtained using a two-shot RARE
current density imaging (RARE CDI) se-
quence [66], shown in Fig. 5.13b, with the
following scan parameters: imaging matrix
64×64, field of view 30mm, inter-echo
delay 2.64mm, echo time of the current
encoding period 20ms, and the time in-
terval between two RARE signal acquisi-
tions 10 s. MR imaging was performed on
a TecMag NMR spectrometer connected
to an Oxford 2.35 T horizontal bore su-
perconducting magnet. The MRI system
was equipped with Bruker micro-imaging
accessories with maximum gradients of
250mT/m. Measured electric currents and
voltages for liver tissues exposed to four
100-ms-long electroporation pulses at am-
plitudes of 1000 and 1500V were pre-
sented in this study (Fig. 5.13c). Current
densities were reconstructed directly from
Ampere’s law, since use of long electro-
poration electrodes resulted in there be-
ing no z component to the current den-
sity. Conductivity was reconstructed using
J-substitution [67]. Further details of the J-

(continued)
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Fig. 5.13 Electroporation MREIT experiment setup and
results. (a) Liver sample with inserted electrodes placed
in an acrylic glass container. (b) Two-shot RARE CDI

sequence. (c) Electric field distribution in the liver tissue
obtained by MREIT

substitution algorithm are given in Chap. 7.
Significant changes in the liver tissue elec-
trical conductivity were observed when tis-
sue was exposed to pulses with an am-
plitude of 1500V. A region with a higher
electrical conductivity between electrodes
was established as a consequence of tis-
sue changes associated with application of
a high electric field in this region. Such
changes were not detected in tissue exposed
to pulses with an amplitude of 1000V. In
conclusion, monitoring of the electric field
distribution during ECT and NTIRE by
means of MREIT would thus enable detec-
tion of insufficient electric field coverage,
potentially providing a means of avoiding
treatment failure.

Conductivity Measurement During Electro-
poration
One benefit of measurement of electrical
properties of tissues affected by electro-
poration would be a better characteriza-
tion of numerical models of tissues in pa-
tient specific pre-treatment plans [68, 69].
Namely, the local electric field in tissues is
affected by applied electroporation pulses,
which depend on local electrical conduc-
tivity, and, vice versa, electroporation in-
creases the conductivity and consequently
alters the electric field distribution [70,
71]. Studies of these nonlinear effects are
also important for understanding electrical
safety.

In a later study, Kranjc et al. [72]
demonstrated the feasibility of MREIT for

(continued)
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Fig. 5.14 (a) The container used in the study was made
of acrylic glass with four holes for electrodes. Either
an agar phantom or liver tissue was placed inside. The
container was inserted in the radio-frequency (RF) probe.
The distance between the active electrodes was 14.8mm.

Electrical conductivities of agar phantom (b, top row) and
liver tissue (b, bottom row) exposed to electric pulses of
different amplitudes (500, 1000, 1500V). Electric pulses
were delivered between two needle electrodes (marked
with + and −)

assessing conductivity of tissues undergo-
ing electroporation by placing agar anoma-
lies or ex vivo liver tissue into a sam-
ple container. Samples were sliced into
cylindrical shapes measuring 21mm in di-
ameter and 2mm in height before being
placed in in the acrylic container. The cylin-
drical electrodes were made of platinum-
iridium and measured 1mm in diameter.
Both samples were exposed to short dura-
tion (100µs) high-voltage electric pulses
(500, 1000 or 1500V), as are normally
used in electroporation clinical applica-
tions. The electric pulses were delivered by
a Cliniporator Vitae electric pulse generator
(IGEA, Carpi, Italy) between two diago-
nal electrodes that were placed 14.8mm
apart in the tissues (Fig. 5.14a). The same
MRI parameters described in the previous
section were used for the MREIT exper-
iments in [72], and, again, the measured
current density distribution was then used
to reconstruct the conductivity distribution
using the J-substitution algorithm [67, 73].

Electrical conductivities of both measure-
ment objects exposed to electric pulses of
different amplitudes (500, 1000, 1500V)
within ROI are shown in Fig. 5.11b.

In conclusion, these findings suggest
that MREIT can indeed be used for detect-
ing electrical conductivity changes that oc-
cur in tissue exposed to short high-voltage
pulses and that these methods can be used
for assessment and prediction of the elec-
troporation effect on tissue.

5.4.5 Summary

In this chapter, we have covered the technical
aspects of integrating phantoms, MRI pulse se-
quences and MREIT measurements. Considera-
tions required when converting phase to Bz sig-
nals and in dealing with noisy data were dis-
cussed, and some examples of key experiments
and applications were presented. This material
should enable a new MREIT experimenter to
design and perform scans in novel settings.
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6Magnetic Resonance Current Density
Imaging (MR-CDI)

Saurav Z. K. Sajib and Rosalind Sadleir

Abstract

Current density imaging (CDI) was developed
with the aim of determining the three-
dimensional distribution of externally applied
electric current pathways inside a conductive
medium, using measurements of magnetic
flux density B = (Bx, By, Bz

)
data. While the

B field may be measurable using instruments
such as a magnetometer, in magnetic reso-
nance current density imaging (MR-CDI), an
MRI scanner is used to measure the magnetic
flux density data induced by current flow. In
MR-CDI, the object must be rotated inside
the MRI machine to find all three components
of the B-field, as only the component of B
parallel to the magnet main magnetic field
can be measured. In principle, once the all
three components of the B field have been
obtained from anMR imaging experiment, the
current density distribution J = (

Jx, Jy, Jz
)

can be reconstructed from Ampere’s law
J = 1

μ0
∇ × B. However, the need to rotate

the object within the MRI scanner limits the
usability of this technique. To overcome this
problem, researchers have investigated the
current density reconstruction problem using

S. Z. K. Sajib (�) · R. Sadleir
School of Biological Health System Engineering,
Arizona State University, Tempe, AZ, USA
e-mail: ssajib1@asu.edu; rsadleir@asu.edu

only one component of the magnetic flux
density Bq , where q = x, y, z. In this chapter,
we discuss numerical algorithms developed to
reconstruct the distribution of J information
from the measured B-field.

6.1 Introduction

Magnetic resonance current density imaging
(MR-CDI) seeks to visualize electrical current
distributions within a biological medium
caused by an externally impressed electrical
current [10, 35, 36]. The MR-CDI method, first
developed in early 90s, uses amagnetic resonance
imaging (MRI) scanner as a tool to capture
the internal magnetic flux density distribution
generated by the injection current. However, MR
imaging coils can only measure the component
of the magnetic flux density along the direction
of the main magnetic field. To obtain all three
components requires successive rotations of the
object to align with each of the three coordinate
directions. Once the magnetic flux density
component from each orientation is obtained, it is
possible to combine these data B = (Bx, By, Bz)

to produce an image of the corresponding internal
current density distribution J = (Jx, Jy, Jz)

using Ampere’s law J = ∇ × B/μ0, where
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μ0 is the magnetic permeability of free space
[35, 36]. Unfortunately, the need to rotate the
object inside the MRI machine often limits the
usability of this elegant technique, especially in
the case of human and animal studies. Moreover,
rotations may ultimately cause registration or
conformation errors in the combined data [13].

Roth et al. [25] developed a two-dimensional
current density image reconstruction algorithm,
using a Fourier form of the Bio-Savart law and
assuming the current distribution is confined
in a thin sheet of thickness d → 0. Although
this method assumed measurements were to be
made with a magnetometer, it is still applicable
to the MR-CDI problem [23]. Later, a similar
approach was proposed by Gao and He [4]. They
extended Roth et al. ’s approach, assuming a
three-dimensional distribution of the current
density, to reconstruct the transverse current

density components J̃ :=
(
J̃x, J̃y

)
data from the

measuredBq, q = x, y, z images, by discretizing
the Bio-Savart law in the spatial domain. Pyo et
al. [24] developed another iterative algorithm that
accommodated both tissue anisotropy and non-
transversal current flow. While their method can
reconstruct non-transversal current flow within
an anisotropic conductivemedium, its initial steps
require knowledge of an approximate isotropic
conductivity distribution reconstructed using data
from two independent current injections. Seo et
al. [37] also developed an algorithm to reconstruct
transverse current density distributions, with the
assumption that the conductivity distribution
within the object is isotropic and the current flow
in the axial (z) direction is small, i.e., Jz ≈ 0.
As noted above, we can only measure the z

component of the magnetic flux density using
MRI. Therefore, components of the magnetic
flux or current density which are perpendicular
to the measured magnetic flux density direction
are usually referred to as transverse components,
whereas the parallel direction is called the
longitudinal or non-transverse component of the
current density. For example, if we acquire the
z component of the magnetic flux density, i.e.,
Bz, the x and y current density components will

be transverse, and the Jz will be the longitudinal
current component.

By analyzing the relationship between the
three-dimensional distribution of the current and
measured one component of magnetic flux den-
sity data, Park et al. [22] later developed a method
called projected current density JP algorithm.
This method is important because it makes no
assumption about the conductivity distribution.
The algorithm proceeds by decomposing the true
current density vector field into contributions
from the projected P and the null N space. It
can be shown that the reconstructed projected
current density JP is uniquely determined as the
three-dimensional distribution of current which
can be measured from only one component
of the magnetic flux density data. Later, Kim
et al. [14] and Sajib et al. [28] extended this
method to reconstruct the current density in
local regions, to avoid propagation of noise from
regions with lower signal quality throughout the
image. Ider et al. [7] also considered the current
density image reconstruction problem in the
Fourier domain. Since it is possible to construct
a three-dimensional computational model of
the object from MR magnitude data, Jeong et
al. [8] and Kwon et al. [15] suggested improving
current density image reconstruction methods by
comparing the model-predicted current density
with that suggested bymagnetic flux density data.

Several groups have explored the feasibility of
using the MR-CDI method, in numerous biomed-
ical applications. For example, Yoon et al. [41]
proposed using MR-CDI in cardiac applications.
They used CDI to image current density dis-
tributions in a postmortem pig torso subject to
defibrillation. Their study confirmed predictions
that the highest current density can be observed
in the chest wall. Moreover, current streamline
plots within the myocardium closely followed
the fiber direction of the cardiac muscle. They
suggested that MR-CDI method may be useful
in characterizing and diagnose diseases of heart
muscle [41]. MR-CDI has also been proposed
for monitoring osteoporosis, since this condition
lowers the mineralization of solid bone [1]. This
study also proposed that CDI may be useful in
identifying bone fractures.
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The brain is also of great interest to
researchers. Gamba and Delpy [3] produced the
first study to evaluate current density distributions
within the brain. They used a pair of surface
electrodes attached on in vivo and postmortem
piglet skulls and were able to reconstruct the
current distribution inside the brain. Joy et
al. [11] also demonstrate that CDI may be
useful for monitoring the current pathway
during transcranial electrical stimulation (tES)
by demonstrating measurements in the brain of
a rabbit in vivo. However, in reconstructing the
current distribution, both these studies measured
all three components of the magnetic flux density.
The single-component projected current density
method of Kwon et al. [15] was used to study
current density distributions inside the in vivo
human brain during tES [5, 9, 12].

Deep brain stimulation, where internal elec-
trodes are placed inside a specific brain region to
directly deliver a stimulating current [18], is used
to treat neurological conditions such as Parkin-
son’s disease, with newer indications suggesting
it may also be beneficial in managing Parkinson’s
disease and depression [17]. Sajib et al. [30]
demonstrated that it is also possible to image
the current pathways during DBS therapy using
one component of magnetic flux density data
measured in the in vivo canine brain.

In irreversible electroporation ablation ther-
apy [19], pairs of internal electrodes are used to
deliver high-amplitude electric pulses to tissues.
The single-component CDI technique has also
been used to monitor local current density distri-
butions during electroporation treatment [39].

While numerous clinical applications of MR-
CDI methods based on single-component Bmea-
surements are being developed, there are several
practical issues which need to be considered.
Since current is delivered to the object through
pairs of electrodes connected to a source via lead
wires, it is important to constrain the wire traces
so they are parallel to the measurement direction.
For example, if the flux density component Bz

is measured, wires must be arranged so they are
aligned with the z-axis. However, in many ex-
perimental and clinical conditions, this constraint
is not always possible. Therefore, in general the

measured data must be understood as being a
sum of the current-induced domain magnetic flux
density and straymagnetic flux created by current
flow in the lead wires and electrode surface cur-
rents. These stray fields must be corrected before
reconstructing current density distributions. In
this chapter, we aim to provide a solid founda-
tion of various image reconstruction algorithms
in MR-CDI. We also briefly explain a method
to remove wire- and electrode-created stray mag-
netic fields using a computational model acquired
during a standard structural imaging procedures.

6.2 Preliminaries

The flow of externally injected current through-
out the domain � ∈ R

3 caused by a current
I applied by a pair of surface electrodes E± is
described by the divergence-free condition∇·J =
0 with the following constraints [38]

∇ · J = ∇ · (−σ∇u) = 0 in � (6.1a)

I= ±
∫

E±
σ
∂u

∂n
· ds, ∇u×n=0 on E+ ⋃ E−

(6.1b)

− σ
∂u

∂n
= 0 on ∂� \ (E+⋃E−) (6.1c)

where σ and u denote the conductivity and volt-
age distributions within �, respectively, and n
represents the outward normal vector at a position
r on the domain boundary ∂�.

The continuity relationship in Eq. (6.1a) guar-
antees that there will be no charge deposition or
internal source. Also, Eq. (6.1c) ensures that the
current density outside the object � is zero. Fur-
thermore, requiring∇u×n = 0 on the electrodes
guarantees a constant potential in this region. This
condition is valid because electrodes are typically
made of highly conductive materials. The other
condition in Eq. (6.1b)—a Neumann boundary
condition—relates to the total injected current
inside the object, which is known. Numerical
models are often used to create data used in re-
construction processes, and computational elec-
tromagnetic models may be solved on domains
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approximating an experimental object, subject to
the conditions of (6.1b). However, in numerical
models it is impossible to define the Neumann
data in a pointwise sense [38], and an alternative
approach may be used. Since the total injected
current entering � through the anode E+ must
leave the sink electrodeE−, it has been shown that
Eqs. (6.1a)–(6.1c) can be converted to [38],

⎧
⎪⎪⎨

⎪⎪⎩

∇ · (−σ∇ũ) = 0 in �

ũ|E+ = 1 ũ|E− = 0

−σ ∂ũ
∂n = 0 on ∂� \ (E+⋃E−)

(6.2)
Once the solution ũ is obtained from

the Eq. (6.2) with these Dirichlet boundary
conditions, the actual voltage distribution u

of the boundary value problem (6.1a) may be
determined using

u = βũ (6.3)

where the scale factor β is the ratio of the exper-
imentally injected current I and the total current∫
E+ σ ∂ũ

∂n · ds injected into the model. This ratio is

β = I
∫
E+ σ ∂ũ

∂n · ds . (6.4)

The current density distribution J within the
object can then be obtained via Ohm’s law:

J = −σ∇u (6.5)

and the magnetic flux density B� = (Bx, By, Bz

)

can be obtained using the Biot-Savart law:

B(r) = μ0

4π

∫

�

J(r
′
) × r − r

′

|r − r′ |3 dr
′

(6.6)

where μ0 = 4π × 10−7 H/m is the permeability

of free space. Expanding the term J(r
′
) × r−r

′

|r−r′ |3
in Eq. (6.6), each component of the magnetic flux
density can individually be expressed as

Bx (x, y, z)

= μ0

4π

∫

�

(
z − z

′)
Jy

(
x

′
, y

′
, z

′)−
(
y − y

′)
Jz

(
x

′
, y

′
, z

′)

((
x − x

′ )2 + (y − y
′ )2 + (z − z

′ )2)3/2
dx

′
dy

′
dz

′

(6.7a)

By (x, y, z)

= μ0

4π

∫

�

(
x − x

′)
Jz

(
x

′
, y

′
, z

′)−
(
z − z

′)
Jx

(
x

′
, y

′
, z

′)

((
x − x

′ )2 + (y − y
′ )2 + (z − z

′ )2)3/2
dx

′
dy

′
dz

′

(6.7b)

Bz (x, y, z)

= μ0

4π

∫

�

(
y − y

′)
Jx

(
x

′
, y

′
, z

′)−
(
x − x

′)
Jy

(
x

′
, y

′
, z

′)

((
x − x

′ )2 + (y − y
′ )2 + (z − z

′ )2)3/2
dx

′
dy

′
dz

′

(6.7c)

The induced current density J and the mag-
netic flux density B also satisfy Ampere’s law:

J = 1

μ0
∇ × B (6.8)

In a typicalMR-CDI experiment (see Fig. 6.1),
an external current source is connected via the
lead wires to deliver a low-amplitude current
through the surface electrodes. The current-
induced magnetic flux density is then collected
using an MRI machine. Therefore, the total
magnetic flux density measured in an MR-CDI
experiment will be the sum of the current-induced
magnetic flux density inside the imaging domain
Bm
� and magnetic flux density due to the current

flow on the electrode surface BE, and lead wire-
created magnetic fields, BL. Since only the
component of the magnetic flux density which
is parallel to the main magnetic field of the MRI
machine B0 = B0 · (0, 0, 1) can be measured,
the magnetic flux density acquired during the
MR-CDI experiment can be explicitly expressed
as [16]

Bm
x = Bm

x,� + Bx,E + Bx,L (6.9a)

Bm
y = Bm

y,� + By,E + By,L (6.9b)

Bm
z = Bm

z,� + Bz,E + Bz,L (6.9c)
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Fig. 6.1 (a) Illustration of a typical MR-CDI experimen-
tal setup. The surface electrodes

(E = E+⋃E−) with
wires

(L = L+⋃L−) are used to deliver current inside
the object domain�. In a typical MR-CDI experiment, the

B field is collected from a portion of the whole imaging
domain represented by �t ⊂ �. (b) Central imaging
slice �l = �t

⋂{
(x, y, z) ∈ R

3|z=l∈(l−H,l+H)

}
with

boundary notations E±⋂ ∂�l and �±

From Eqs. (6.9a)–(6.9c), it is clear that the
measured magnetic flux density may vary de-
pending on the geometric arrangement of the
lead wires and shape of the electrodes. However,
the Bm

� inside the domain � induced due to the
external current injection depends only on the
Neumann data applied on its boundary ∂�, since
as in [16]

1

μ0
∇ × (BE + BL) = 1

4π
∇
∫

∂�

J(r
′
) · n(r)

|r − r′ | d�
′

(6.10)

Equation (6.10) clearly shows that two com-
pletely different sets of electrodes and lead wires
produce the same current density J in � only
if they establish the same Neumann boundary
conditions on ∂�. Therefore, the lead wire tra-
jectories do not have any effect on the current
density J within �. However, since the measured
magnetic flux density using an MRI scanner is
affected by lead wire and electrode-created stray
magnetic fields (see Eqs. (6.9a)–(6.9c)), in some
current density reconstruction algorithms, addi-
tional preprocessing steps are required to remove
them. Fortunately, because of the superposition
principle, a three-dimensional numerical model
including wire and electrode surfaces can be used
in this purpose. A detailed description can be
found later in this chapter.

6.3 Current Density Imaging via
Ampere’s Law

As we have noted previously, only Bz can be
measured by the MR machine. Therefore, to ex-
plicitly measure the other components of B, the
imaging object must be rotated inside the MRI
system bore. This process is explained in Fig. 6.2.
Once the current-induced magnetic flux density

Bm
� =

(
Bm
x,�, B

m
y,�, B

m
z,�

)
within � is measured,

Ampere’s law (Eq. (6.8)) can be used to recon-
struct the current density images [35]:

Jx = 1

μ0

(
∂Bm

z,�

∂y
− ∂Bm

y,�

∂z

)
(6.11a)

Jy = 1

μ0

(
∂Bm

x,�

∂z
− ∂Bm

z,�

∂x

)
(6.11b)

Jz = 1

μ0

(
∂Bm

y,�

∂x
− ∂Bm

x,�

∂y

)
. (6.11c)

Direct reconstruction of the current density
vector field described in Eqs. (6.11a)–(6.11c)
requires extraction of the B� information from
the complex MR signal. For example, the two-
dimensional complex MR image M±

c,q with
interleaved current injection I± [36] with a
perfect rectangular pulse may be modeled as [36]
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Fig. 6.2 Illustration of object rotation sequence inside
the MRI scanner to sequentially measure components of
B = (Bx, By, Bz) field. (a) Current is injected into yz

plane to measure Bx . (b) Current is injected into zx plane

and By is measured. (c) Current is injected into xy plane
and induced Bz is measured. Coordinate system is relative
to object. The arrow at left shows the direction of the main
magnetic field of the MRI scanner

M±
c,q(x,y)=KMM (x,y) eiδ(x,y)e±iγBm

q,�(x,y)Tc ,

q = x, y, z (6.12)

where the subscript q in Bm
q,� denotes the x,

y, z-coordinates, M (x, y) is the continuous real
transverse magnetization expressed in the sample
coordinate system, γ = 26.7519 × 107 rad/T · s
is the proton’s gyromagnetic ratio, and current in-
jection duration is represented by Tc. Any system-
atic phase artifact is denoted by a constant phase
δ (x, y) which does not change with time, and
the constantKM is related to imaging parameters
such as the voxel size and the number of k-space
lines sampled by the sequence. Comparing the
two measurements, the component Bm

q,� (x, y)

can be found as

Bm
q,� (x, y)

= 1

2γ Tc
tan−1

(M+
I,qM−

R,q − M−
I,qM+

R,q

M+
I,qM−

I,q + M+
R,qM−

I,q

)

,

q = x, y, z (6.13)

where M±
R,q and M±

I,q are spatial components
of the real and imaginary part of the measured
MR complex signal Mc,q± obtained using the
interleaved current injections I±. Since extraction
of Bm

q,� involves the tan−1 operation, which may
cause phase wrapping [35], an efficient phase
unwrapping method may be required. To avoid
this, one may use the exact definition of the

phase derivative. For example, to compute the z

component of the current density in Eq. (6.11c),
the x and y derivatives of Bm

y,� and Bm
x,� data,

respectively, must be evaluated. The exact defi-

nition of
∂Bm

y,�

∂x
,
∂Bm

x,�

∂y
yields [35]

∂Bm
y,�

∂x

=
M+

R,y

∂M+
I,y

∂x
−M+

I,y

∂M+
R,y

∂x
− M−

R,y

∂M−
I,y

∂x
+M−

I,y

∂M−
R,y

∂x

2γ Tc|Mc,y |2
(6.14a)

∂Bm
x,�

∂y

=
M+

R,x

∂M+
I,x

∂y
−M+

I,x

∂M+
R,x

∂y
−M−

R,x

∂M−
I,x

∂y
+M−

I,x

∂M−
R,x

∂y

2γ Tc|Mc,x |2 .

(6.14b)

To reconstruct the current density, the direc-
tional derivative of the measured data must be
evaluated. However, discrete approximation of
the numerical derivative is prone to truncation
errors. For example, for the central difference
approximation of the first derivative, the trunca-
tion error is approximately O (
2

)
, where 
 is

the pixel dimension (see Appendix 1 for details).
The advantage of Eqs. (6.14a)–(6.14b) is that one
can directly apply the Fourier method [36] to
evaluate the directional derivative, without need-
ing to use any numerical approximation. Hence,
this method is called the exact method in [36].
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However, in practice it may not possible to deter-
mine the magnetic flux density within the domain
Bm
q,� , q = x, y, z using an MRI system because

of stray magnetic flux in lead wires and elec-
trodes (see Eqs. (6.9a)–(6.9c)). Additional steps
are therefore required to remove these effects
from the measured phase data. As a consequence,
discrete approximation of the numerical deriva-
tive is frequently used to find the current density
in MR-CDI [35]. This is accomplished by con-
volving the measured phase data with directional
derivative templates. In [35], Scott et al. proposed
several different directional derivative templates.
Though it is possible to design large filter tem-
plates to reduce the noise in the measured data,
these may cause spatial blurring and edge effects.
Therefore, use of such templates may lead to loss
of important features of internal structures. In
practice, 3 × 3 templates are most often used to
evaluate the x and y directional derivatives of B
components [36]. These may be written as

∂

∂x
≈ 1

8


⎛

⎝
−1 0 1
−2 0 2
−1 0 1

⎞

⎠

and
∂

∂y
≈ 1

8


⎛

⎝
1 2 1
0 0 0

−1 −2 −1.

⎞

⎠ (6.15)

Please refer to Appendix 1 for details.

6.4 Current Density
Reconstruction Algorithms
from one Component of
Magnetic Flux Density data

Several methods have been developed to recon-
struct current density images from only one com-
ponent of the magnetic flux density data and
avoid practical limitations on object or subject
rotation. In this section we briefly discuss a few
of them.

6.4.1 Current Density
Reconstruction Using the
Discretized Bio-Savart Law

Gao and He [4] proposed a method to reconstruct

the transverse current density J̃ :=
(
J̃x, J̃y

)

from measured current-induced Bm
z,� data. By

discretizing the volume conductor model into N

elements and assuming that current density are
constant in each element, the Eq. (6.7c) can be
transformed into the following matrix system:

B̃N×1 = KN×2N J̃2N×1 (6.16)

where

B̃N×1 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

Bm
z,�,1

Bm
z,�,2

Bm
z,�,3

...

Bm
z,�,N

⎞

⎟
⎟
⎟⎟
⎟
⎠
, KN×2N =

⎛

⎜
⎜
⎜⎜
⎜
⎝

Ky,11 −Kx,11 Ky,12 −Kx,12 · · · Ky,1N −Kx,1N

Ky,21 −Kx,21 Ky,22 −Kx,22 · · · Ky,2N −Kx,2N

Ky,31 −Kx,31 Ky,32 −Kx,32 · · · Ky,3N −Kx,3N
...

...
...

... · · · ...
...

Ky,N1 −Kx,N1 Ky,N2 −Kx,N2 · · · Ky,NN −Kx,NN

⎞

⎟
⎟
⎟⎟
⎟
⎠

and, J̃2N×1 =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

J̃x,1

J̃y,1

J̃x,2

J̃y,2

J̃x,3

J̃y,3
...

J̃x,N

J̃y,N

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠



142 S. Z. K. Sajib and R. Sadleir

The ij -th kernel elements of thematrixK2N×N

can be found as

⎧
⎪⎪⎨

⎪⎪⎩

Kx,ij = μ0
4π

xi−xj
(
(xi−xj )

2+(yi−yj )
2+(zi−zj )

2
)3/2 
xj
yj
zj

Ky,ij = μ0
4π

yi−yj
(
(yi−yj )

2+(yi−yj )
2+(zi−zj )

2
)3/2 
xj
yj
zj

In Gao and He [4], zeroth-order Tikhonov
regularization was used to solve Eq. (6.16):

J̃(λ) = (KTK + λI2N×2N
)−1 KT B̃ (6.17)

where T represents the matrix transpose, J̃(λ)
is the estimated current density using a regular-
ization parameter λ, and I is the identity matrix
with dimension 2N × 2N . The regularization
parameter in [4] was determined using l-curve
analysis [20]. It is worth mentioning that the
regularization in (6.17) has a smoothing effect.
Therefore, an improper choice of λ-value may
cause image blurring [20].

6.4.2 Seo’s Method

Seo et al. [37] also developed a transverse current
density reconstructionmethod usingmeasuredBz

data. Assuming that the isotropic conductivity σ

is constant along the z direction, that is, ∂σ
∂z

≈ 0,

J̃m can be found as

J̃m(r) = ∇⊥
xy(φ + αψ) (6.18)

where ∇⊥
xy :=

(
∂
∂y
,− ∂

∂x

)
and the terms φ and

ψ in Eq. (6.18) are the solution of the following
boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇2
xyφ = 1

μ0
∇2Bm

z in �l

ν̂ · ∇̃φ = 0 on (E+ ⋃ E−)
⋂

�l

φ = 0 on �+ ⋃ �−
(6.19)

and

⎧
⎪⎪⎨

⎪⎪⎩

∇2
xyψ = 0 in �l

∇xy · ψν̂ = 0 on (E+ ⋃ E−)
⋂

�l

ψ |�± = ±1
(6.20)

The scaling factor α is defined as

α =
∫
E+⋂�l

σ∇u · ν̂dl − ∫E+⋂�l
∇xyφ × ν̂dl

∫
E+⋂�l

∇xyψ × ν̂dl

(6.21)

where �l is the two-dimensional slice cut by the
xy plane {z = l} (Fig. 6.1a). The integration
along E+ ⋂�l, �

+, �−, and E− ⋂�l is defined
in the counterclockwise direction (see Fig. 6.1b),
dl is the arc length element, and ν̂ is the two-
dimensional unit outward normal vector to ∂�l .

Comparing this formula to (6.17) in Sect. 6.4.4,
themethod is computationally complex. However
note that the data used is the Laplacian of Bz

∇2Bz. This method therefore does not require
compensation for wire and electrode-related stray
magnetic fields.

6.4.3 Projected Current Density
Algorithm

Park et al. [22] analyzed the extent of the three-
dimensional current density vector that was re-
coverable from only one component of measured
magnetic flux density data, without any making
any assumption of the conductivity distribution
properties. Using the Helmholtz decomposition
of the current density vector field into its curl-
free and divergence-free parts, Park et al. [22]
provided a reconstruction formula:

JP = J0 + J∗, (6.22)

where J0 and J∗ are the curl-free and divergence-
free contributions, respectively. The quantity
JP = (

JP
x , J P

y , J 0
z

)
is the reconstructed

three-dimensional current density vector field
obtainable from one component of the measured
Bz data, which is denoted the projected current
density.
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To obtain the curl-free part J0, a three-
dimensional numerical model is constructed
using knowledge of the object external boundary
shape, found fromMRmagnitude images (please
see Appendix 2 for details). A three-dimensional
Laplace equation subject to the same boundary
conditions as in the experiment is then solved to
find J0 = −∇α = (J 0

x , J
0
y , J

0
z

)
by solving

{ ∇2α = 0 in �

∇α · n = g on ∂� and,
∫
∂�

αds = 0.
(6.23)

Here, g are the Neumann data obtained
from the experimental boundary conditions. In
practice, to solve the boundary value problem
in (6.23), a subject-specific three-dimensional
volume conductor model with attached electrodes
is built, and Eqs. (6.2)–(6.4) are solved using
a homogeneous conductivity distribution σ =
1S/m and the same experimental current
amplitude. The two-dimensional divergence-free

current density J∗ =
(
∂βl

∂y
,− ∂βl

∂x
, 0
)

satisfies

Poisson’s equation [22]:

{ ∇2
xyβl = 1

μ0
∇2Bm

z in �l

βl = 0 on ∂�l.
(6.24)

For the homogeneous conductivity, σ = σ0;
the Eq. (6.1a) can be expanded as ∇ · J0 = ∇ ·
(σ0∇u0) = ∇σ0 · ∇u0 + σ0∇2u0 = σ0∇2u0 =
∇2u0 = 0 in �, meaning that two different
homogeneous conductivity distributions, σ1 and
σ2, subject to the same boundary condition g in
Eq. (6.23), will produce the same J = −σ1∇u1 =
−σ2∇u2. Therefore, to obtain the curl-free part J0

in projected current density a homogeneous con-
ductivity distribution 1 S/m (or any other constant
value) can be chosen.

We may express the full three-dimensional
true current density J by decomposing it into the
form J = J0 + J∗ + JN, where, JN is the com-
ponent of the current which cannot be recovered
from measurement of only a single component
of the magnetic flux density. Park et al. [22]
proved that

〈
J0, JN

〉 = 0 and
〈
J∗, JN

〉 = 0, where
〈, 〉 denotes the inner product (here this quantity

is the same as the dot product) of two vector
fields. Therefore, the JP in Eq. (6.22) represents
a unique projection component of J. It has also
been shown that the stability of the reconstructed
projected current density within an image slice�l

depends on the difference between the Jz − J 0
z

[22] as

∥
∥∥J − JP

∥
∥∥
�l

≤ C

(∥∥∥
∥
∂

∂z

(
Jz − J 0

z

)∥∥∥
∥
�l

+
∥
∥∥Jz − J 0

z

∥
∥∥
�l

)

(6.25)

In Eq. (6.25), Jz is the z component of the true
current density and J 0

z = − ∂α
∂z
. The constant

C depends on the imaging slice �l . However,
when compared with the two-dimensional current
density, the reconstructed JP provides the true
current density without any error [22].

Although the JP = (
JP
x , J P

y , J 0
z

)
can opti-

mally recover the three dimensional current den-
sity, for some in vivo applications problems may
arise when the true current density J is very low in
some local area inside the image slice�l , because
of low electrical conductivity. In other situations,
the signal-to-noise (SNR) ratio in some regions
may be very low due to rapid T2/T ∗

2 decay. Since
the noise in the Bm

z signal is inversely propor-
tional to the SNR of theMRmagnitude image,ϒ ,
and the current injection duration Tc i.e. sdBz

∝
1

Tcϒ
) [26, 35], noise in the measured Bm

z signal
could therefore be amplified following Eq. (6.24).
Examples of such regions are bone and stomach,
where both have low electrical conductivity MR
signal contributions. As demonstrated in Fig. 6.3,
inclusion of regions that are defective for such
reasons may result in large errors in reconstructed
conductivity images of entire slices [28]. A re-
gional projected current density algorithm was
later developed [14, 28] to avoid noise propaga-
tion from defective areas. When this approach
is used, the regional projected current density
within the ROI (region of interest) Dl ⊂ �l can
be defined as [14]

JP,R
Dl

= J0D|Dl
+J∗Dl

= −∇αD|Dl
+
(
∂βDl

∂y
,− ∂βDl

∂x
, 0

)

(6.26)
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Fig. 6.3 Numerical simulation of an isotropic human
head model used to demonstrate the stability of the pro-
jected and regional projected current density algorithm
defined in Eqs. (6.22) and (6.31), respectively. (a) The seg-
mented brainmaskDl is overlaid on the T1-weightedMR-
magnitude image. (b) and (d) display the reconstructed
|JP,p|, p = 1, 2 using the Eq. (6.22) for the horizontal
(i) and vertical (ii) current injection at SNR = ∞ and
added noise case, respectively. (c) and (e) display the

reconstructed conductivity images using the |JP,p|, p =
1, 2, and the non-iterative harmonic Bz algorithm [37]
demonstrates the influence of the noise propagation from
the defective skull and skin region. (f) and (h) shows the
reconstructed current density images using the Eq. (6.31)
for the horizontal (i) and vertical (ii) current injection
at SNR = ∞ and added noise case, respectively. The
corresponding conductivities are displayed in (g) and (i),
respectively

Here, the potential αD satisfies the three-
dimensional Laplace equation with the local
boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

∇2αD = 0 in D

∇αD · n =
(

J0 + 1
μ0

(
∂
(
Bm
z,�−B0

z

)

∂y
,− ∂

(
Bm
z,�−B0

z

)

∂x
, 0

))

· n on ∂D.

(6.27)

Here, J0 = −∇α is the solution of the par-
tial differential equation in (6.23), and B0

z is the
corresponding z component of the magnetic flux
density. The term βl,D is obtained from the two-
dimensional Poisson equation [14]:

{ ∇2
xyβDl

= 1
μ0

∇2Bm
z in Dl

βDl
= 0 on ∂Dl ,

(6.28)

where D = ⋃
l∈(−HD,HD)Dl and 2HD ⊂ 2H

could be either portion or the total imaging
object height. Note that the three-dimensional
local ROI D is constructed by masking out
the defective portion of each imaging slice

Dl . The MR-magnitude image may be used to
segment the non-defective local regionDl in each
imaging slice. However, in [28] a transversal J -
substitution algorithm was used (see Chap. 7 for
more details). Using data from a single current
administration, the first update of the conductivity
σ 1 can be found as

σ1 = σ0 − 1

μ0

(
∂
∂x

(
Bm
z,�

− B0
z

)
, ∂
∂y

(
Bm
z,�

− B0
z

))
·
(
J 0y ,−J 0x

)

(
J 0x

)2 +
(
J 0y

)2

(6.29)

In (6.29), σ 0= 1 S/m is the homogeneous con-
ductivity distribution, and (J 0

x , J
0
y ) is the x, y

component of J0. This approximate reconstruc-
tion allows clear delineation of noisy regions
and can be used to determine the correct local
segmentation.

It has also been shown that the reconstructed
regional projected current density satisfies the
following stability relationship:
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∥∥
∥J − JP,R

D
∥∥
∥
D

≤ C

⎛

⎝
∥
∥J − JPD

∥
∥
D

+
∥
∥∥
∥
∥
1

μ0

(

−∂Bδ
y

∂z
,
∂Bδ

x

∂z
,
∂Bδ

y

∂x
−∂Bδ

x

∂y

)

· n
∥
∥∥
∥
∥− 1

2 ∂D

⎞

⎠

(6.30)

In this equation, Bδ = Bm
� − B0 =(

Bm
x,� − B0

x , B
m
y,� − B0

y , B
m
z,� − B0

z

)
and B0 can

be obtained using the Bio-Savart law (Eq. (6.6))
and current density obtained from a solution
of a homogenous conductivity distribution J0.
The additional error term in Eq. (6.30) arises
from errors in the boundary approximation (see
Eq. (6.27)). The reconstruction procedure for the
regional projected current density algorithm is
summarized in Algorithm 1.

Algorithm 1 Regional projected current density
algorithm

Step 1. Construct a three-dimensional numerical model
with attached electrodes from the acquired imaging
slices.
Step 2. Using Eqs. (6.23) and (6.7c), obtain J0 and B0

z

subject to the same experimental boundary conditions.
Step 3 Identify defective regions using approximate
reconstruction of Eq. (6.29).
Step 4. Construct another three-dimensional numerical
model, avoiding defective regions..
Step 5. Compute J0D in (6.27).
Step 6. Excluding the defective region, solve Eq. (6.28)
for each of the image slices to compute J∗

D.
Step 7. Use the results in step 3 and 4 in Eq. (6.26) to
obtain the regional projected current density.

As is evident from Algorithm 1, the numeri-
cal implementation of the regional projected cur-
rent density algorithm described in Eqs. (6.26)–
(6.28) is computationally complex. In [28] Sajib
et al. provided an alternative formula for estimat-
ing the local regional projected current density.
In [28] the regional projected current density was
computed as

JP,R
Dl

= J0|Dl
+
(
∂�Dl

∂y
,−∂�Dl

∂x
, 0

)
(6.31)

Here, J0|Dl
is the homogeneous solution of the

Eq. (6.23) restricted to the local region Dl ⊂ �l ,
and �Dl

satisfies the following Poisson equation
[28]:

{
∇2

xy�Dl
= 1

μ0
∇2Bm

z in Dl

�Dl
= 1

μ0

(
Bm
z,� − B0

z

)
on ∂Dl

(6.32)

Compared to Algorithm 1, numerical
implementation of this method is relatively
simple. It is worth noting that both these
regional projected current density algorithms
require removal of stray magnetic fields in
order to correctly specify the local regional
boundary conditions (see Eqs. (6.27)–(6.32)).
Two useful MATLAB (The MathWorks, Inc.,
Natick, Massachusetts, United States) functions,
mrci_projected_current_density1.
m implementing the Eq. (6.26) and mrci_regi
onal_projected_current_density.m
described in Eq. (6.31), can be found in the MR-
based conductivity imaging mrci-toolbox [29]
developed to facilitate MR-CDI research (see
Fig. 6.4). This toolbox can be downloaded from
the developer laboratory website www.iirc.khu.
ac.kr for noncommercial use.

6.4.4 Model-Based Algorithm

The projected current density method [14,22,28]
can optimally recover the current density
information from the measured one component
of the magnetic flux density data. However,
the reconstruction error will be big in case of
a large non-transversal component of current
density (see Eqs. (6.25) and (6.30)). Note that
the non-transversal current flow could be large
depending on the electrode locations. It could
also occur due to the presence of tissue anisotropy
or when the distribution of conductivity is very
variable. An example of such a case is in the
brain, where the electrical conductivity of the
cerebrospinal fluid is large compared to the grey
matter and white matter [27]. Therefore, in order
to compensate for non-transversal current flow
(e.g., Jz), Jeong et al. [8] and Kwon et al. [15]

www.iirc.khu.ac.kr
www.iirc.khu.ac.kr
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Fig. 6.4 Example showing current density image reconstruction method implemented in mrci-toolbox [29]. For
algorithm details see Sect. 6.4.3

developed another algorithm to reconstruct the
three-dimensional current density, by comparing
the model-predicted three-dimensional current
density with that predicted from measurement
of one component of magnetic flux density data.
Decomposing the true current density vector, J
into its model-predicted J0 and the difference
current density Jδ (see Fig. 6.5), we have

J = J0 + Jδ = J0 + 1
μ0

∇ × Bδ

= J0 + 1
μ0

(
∂Bδ

z

∂y
− ∂Bδ

y

∂z
,− ∂Bδ

z

∂x
+ ∂Bδ

x

∂z
,
∂Bδ

y

∂x
− ∂Bδ

x

∂y

)

= J0 + 1
μ0

(
∂Bδ

z

∂y
,− ∂Bδ

z

∂x

)

+ 1
μ0

(
− ∂Bδ

y

∂z
,
∂Bδ

x

∂z
,
∂Bδ

y

∂x
− ∂Bδ

x

∂y

)

(6.33)
where Bδ is the difference between the true and
model-predicted magnetic flux density, B−B0 =(
Bx,� − B0

x , By,� − B0
y , B

m
z,� − B0

z

)
. The current

density J1 is updated as

J1=J0+ 1

μ0

⎛

⎝
∂
(
Bm
z,� − B0

z

)

∂y
,−

∂
(
Bm
z,� − B0

z

)

∂x
, 0

⎞

⎠ .

(6.34)

The three-dimensional model-predicted cur-
rent density J0, subject to the same experimental
boundary conditions, satisfies Equations (6.2)–
(6.5). Since∇·J0 = 0, the updated current density
J1 also satisfies this continuity relation within
a region �t . �t denotes the three-dimensional
imaging region and could be a part of the entire
domain �. The z component of the ∇ × J1 in
Eq. (6.34) fulfills the following condition [15]:

∇⊥
xy

(
J 1x , J

1
y

)
= ∇⊥

xy

(
Jx , Jy

)− 1

μ0

(
∂2B0

z

∂z2
−

∂2Bm
z,�

∂z2

)

(6.35)

Here, ∇⊥
xy :=

(
∂
∂y
,− ∂

∂x

)
. Equation (6.35) im-

plies that the updated current density matches the
measured Bm

z data with an error term depending
on Bm

z − B0
z .

The error between J1 and the true current den-
sity J satisfies the following stability relationship
[15]:
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Fig. 6.5 Decomposition
of the true current density
vector field J into the
model-predicted current
density J0 and the error
term Jδ

∥∥
∥J1⊥ − J⊥

∥∥
∥
�t

≤ C

(∥∥∥
∥∥
∂2B0

z

∂z2
− ∂2Bm

z,�

∂z2

∥
∥∥
∥
∥
�t

+
∥
∥∥∥∥
∂
(
Jz − J 0

z

)

∂z

∥
∥
∥∥∥
�t

)

+C

(∥
∥∥J1⊥ · n−J⊥ · n

∥∥∥
∂�t

)
.

(6.36)

In (6.36), J1⊥ = (
J 1
y ,−J 1

x

)
and J⊥ =(

Jy,−Jx
)
, and ‖·‖ denotes the L2 norm in �t .

Hence, the error in the updated current density
mainly depends on the differences between
Bm
z,�−B0

z and Jz−J 0
z . To improve approximation

of the transverse component, Kwon et al. [15]
suggested iteratively updating the current density
using the Bm

z,� data as

Jn+1 = Jn+ 1

μ0

⎛

⎝
∂
(
Bm
z,� − Bn

z

)

∂y
,−

∂
(
Bm
z,� − Bn

z

)

∂x
, 0

⎞

⎠ .

(6.37)

In [8] the model-predicted current density, J0

was found using a homogeneous conductivity
distribution. However, for tES applications,
Kwon et al. [15] used a volume conductor model
derived from diffusion tensor information [40]
inside the brain region and literature values of the
conductivity for the skin and skull compartments
to compensate for non-transverse current flow
(Eq. (6.36)). Using this realistic numerical human
head model, it has been demonstrated [15] that
the final reconstructed current density could
depend on the initial choice of volume conductor
model, especially for the three-dimensional

current density, Jn = (
J n
x , J

n
y , J

0
z

)
. This is

mainly because Jz information cannot be updated
using Bm

z,� data (see Eq. (6.37)). Hence, the
method may not provide the optimal current
density. In fact, for J0 distributions derived
from an initial homogeneous volume conductor
model (σ0 = 1S/m), it has been shown [8]
that there exists a difference current density
JD = JP − J1 = (

JP
x − J 1

x , J
P
y − J 1

y , 0
) =(

JD
x , JD

y , JD
z

)
(see Sect. 6.4.3 and Eq. (6.35))

which depends on the difference
∂2(Bm

z,�−B0
z )

∂z2

in the two-dimensional imaged slice �l and

the difference
(
∂(Bm

z,�−B0
z )

∂y
,− ∂(Bm

z,�−B0
z )

∂x
, 0
)

on

the two-dimensional domain boundary ∂�l .
However, since the boundary conditions are
the same for Bm

z,� and B0
z , the differences

∂2(Bm
z −B0

z )
∂z2

and
(
∂(Bm

z,�−B0
z )

∂y
,− ∂(Bm

z,�−B0
z )

∂x
, 0
)

could be minimized, especially in the case of
an in-plane electrode configuration. Note that,
in addition, prior to reconstructing the current
density from the experimentally measured Bz,�

data, this method also requires these data to
be preprocessed to remove wire and electrode-
related stray magnetic fields.

Both “projected current density” and “model-
based” methods require calculation of a model-
predicted current density J0 computed from
a three-dimensional numerical model. Since
in the “projected current density” method the
J0-distribution represents the curl-free part of
the current flow, it can be computed using a
homogeneous conductivity distribution. This
statement can be easily verified by applying the
curl operator to Ohm’s law (see Eq. (6.5))
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Fig. 6.6 Numerical model results demonstrating the ne-
cessity for stray magnetic field correction (a) Compu-
tational model domain showing the slice plane �l and
wire trace arrangement. (b) Current-induced z-component

of the magnetic flux density, Bz,� in slice plane �l . (c)
Wire-created stray magnetic field Bz,L calculated using
Eq. (6.39c) in same slice position

∇ × J0 = ∇ × (−σ 0∇u0
) = ∇u0 × ∇σ 0 = 0

However, in the “model-based” method, it is not
necessary that J0 be computed from a homo-
geneous conductivity distribution. The model-
predicted current density for this method may
incorporate any inhomogeneous conductivity dis-
tribution [15]. This is particularly useful in brain
imaging applications [5, 12] to compensate for
any non-transversal current flow.

When compared with the projected current
density JP , computation of J1 has certain advan-
tages. The estimated J1 can be directly calculated
by simple differentiations of themeasuredBz data
without solving any partial differential equations.
Second, where reconstruction of JP requires nu-
merical solution of the Poisson equation in the
entire slice �l using the Laplacian of Bz as a
source term, calculation of J1 recovers current
in the chosen ROI (local region), Rl ⊂ �l ,
without being affected by possible noise prop-
agation from defective regions. The MATLAB
function mrci_projected_current_density2.m im-
plementing this method also can be in found in
the mrci-toolbox [29].

6.5 Correction of StrayMagnetic
Field

It is important to correct the measured MR
phase data to estimate the correct internal
current flow J, even though one can take

advantage of the fact that ∇2 (BE + BL) = 0
[22] offered by some reconstruction algorithms
such as the projected current density method
(see Sect. 6.4.4). However, as demonstrated
in Fig. 6.3, in the presence of local defective
regions, the reliability of the reconstructed
JP can deteriorate due to noise propagation.
Therefore, removing stray magnetic fields is
crucial, especially in in-vivo neuro-imaging
contexts where wires cannot easily be constrained
along the measurement direction [6, 31]. In
this section we briefly explain the process to
remove the stray magnetic field from measured
Bm
q , q = x, y, z data, using a three-dimensional

numerical model built from MR experimen-
tal data and a forward modellng approach
(Fig. 6.6).

6.5.1 BL-Field Correction

Correction of wire-created stray magnetic field
can be performed by creating a three-dimensional
numerical model of the wire paths and com-
puting and compensating for the contribution of
BL fields in image slices. Several methods for
detecting wire trajectories [6,31] appear in the lit-
erature. For example, in [31] wire paths were de-
termined using high-resolution T1-weighted im-
ages. Since most wires cannot be detected in
conventional MR pulse sequences, wires can be
encapsulated in silicon tubing to increase the
MR signal they produce [31]. Once the three-
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dimensional wire trajectory is reconstructed from
the centroid of the segmented tube mask, the
Bio-Savart law can be used to estimate the BL
field as

BL± = Iμ0

4π

∫

L
â(r

′
) × r − r

′

|r − r′ |3 dl
′

(6.38)

where I is the known amplitude of current used
in the CDI experiment and â is the unit vector in
the direction of the current flow at r

′ ∈ L±. As-
suming that the wire trajectory L± is represented
by a set ofM discrete points in three-dimensional
space k = {1, 2, · · · ,M}, the line integral in
(6.38) can be converted to

Bx,L± (x, y, z = l)

= Iμ0

4π

M−1∑

k=1

(y
′
k+1 − y

′
k)(z − z

′
k) − (z

′
k+1 − z

′
k)(y − y

′
k)

{
(x − x

′
k)

2 + (y − y
′
k)

2 + (z − z
′
k)

2
}3/2

(6.39a)

By,L± (x, y, z = l)

= Iμ0

4π

M−1∑

k=1

(z
′
k+1 − z

′
k)(x − x

′
k) − (x

′
k+1 − x

′
k)(z − z

′
k)

{
(x − x

′
k)

2 + (y − y
′
k)

2 + (z − z
′
k)

2
}3/2

(6.39b)

Bz,L± (x, y, z = l)

= Iμ0

4π

M−1∑

k=1

(x
′
k+1 − x

′
k)(y − y

′
k) − (y

′
k+1 − y

′
k)(x − x

′
k)

{
(x − x

′
k)

2 + (y − y
′
k)

2 + (z − z
′
k)

2
}3/2

(6.39c)

Since the MR-imaging parameters are known,
Eqs. (6.39a)–(6.39c) can be used to determine the
BL field within the imaging slice located at the
position (x, y, z).

6.5.2 BE-Field Correction

In most MR-CDI experiments, carbon or copper
electrodes are used to deliver imaging currents.
These have relatively high conductivities com-
pared to the body. As a result, the electrode-

related stray magnetic field is mainly due to cur-
rent flow on the electrode surface. Assuming that
the thickness of the electrodes are negligible i.e.,
t → 0, the surface current density JS satisfies the
following Poisson equation [16]:

{ −∇ · JS = ±I δ(r − r0) in E = E+ ⋃ E−

−JS · l̂ = 0 on ∂E.
(6.40)

Here, δ is the Dirac delta function, and l̂ is the
outward normal vector on the surface boundary.
Since the lead wire is represented by a line L
(see Sect. 6.5.1), the source or sink current at the
point where the wire meets the electrodes E±

can be modeled as a point source in Eq. (6.40).
The finite element method can be used to solve
(6.40) [16] (see Chap. 2 for details). Assuming
that the electrode surface E is represented by a
set of NES discrete elements e and current is
constant within the each element, the Bio-Savart
law can be used to obtain BE in any electrode E
using

BE,x (x, y, z = l)

= μ0

4π

NES∑

e=1

(z − z
′
e)J

(e)
y (x

′
e, y

′
e, z

′
e) − (y − y

′
e)J

(e)
z (x

′
e, y

′
e, z

′
e)

{
(x − x

′
e)

2 + (y − y
′
e)

2 + (z − z
′
e)

2
}3/2 
s

′
e

(6.41a)

BE,y (x, y, z = l)

= μ0

4π

NES∑

e=1

(x − x
′
e)J

(e)
z (x

′
e, y

′
e, z

′
e) − (z − z

′
e)J

(e)
x (x

′
e, y

′
e, z

′
e)

{
(x − x

′
e)

2 + (y − y
′
e)

2 + (z − z
′
e)

2
}3/2 
s

′
e

(6.41b)

BE,z(x, y, z = l)

= μ0

4π

NES∑

e=1

(y − y
′
e)J

(e)
x (x

′
e, y

′
e, z

′
e) − (x − x

′
e)J

(e)
y (x

′
e, y

′
e, z

′
e)

{
(x − x

′
e)

2 + (y − y
′
e)

2 + (z − z
′
e)

2
}3/2 
s

′
e

(6.41c)

where, J(e)S = (
J (e)
x , J (e)

y , J (e)
z

)
is the current

density at the element’s center (x
′
e, y

′
e, z

′
e),


s
′
e is the element area and NES repre-

sents the total number of elements in the
electrode.
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6.6 Conclusion

To assess current flow patterns inside biological
tissue, magnetic resonance current density imag-
ing (MR-CDI) utilizes theMRmeasurement tech-
nique and can find numerous clinical applications
including as internal or transcranial brain stimu-
lation [5, 9, 12, 30]. However, the utility of MR-
CDI is limited by constraints of MR measure-
ment techniques. The methods discussed in this
chapter use measured single-component data and
additional information generated by numerical
models to reconstruct current density. While not
considered here, recent developments in deep-
learning models could be useful in future MR-

CDI image reconstruction techniques [32]. We
hope that this chapter will provide a useful guide
to new researchers working in this area.

Appendix 1

Directional Derivative Operator

Finite difference methods can generally be used
to estimate the directional derivative of an image.
The x-directional derivative of a two-dimensional
image I (x, y) near about the point x = x + 
 is
defined as,

∂I (x, y)

∂x
= lim


→0

I (x + 
, y) − I (x, y)



(6.42a)

= lim

→0

0 × I (x − 
, y) + (−1) × I (x, y) + (1) × I (x + 
, y)



(6.42b)

Here, 
 denotes the x-directional step
size. Discretization of Eq. (6.42a) is known
as a forward-difference method. Likewise, the

backward-difference formula can be written at a
point x = x − 
,

∂I (x, y)

∂x
= lim


→0

I (x, y) − I (x − 
, y)



(6.43a)

= lim

→0

(−1) × I (x − 
, y) + (1) × I (x, y) + (0) × I (x + 
, y)



(6.43b)

Numerically the forward or backward-
difference formula can be realized as,

∂I (x, y)

∂x
≈ 1



[0 − 1 1] ∗ I (x, y) (6.44a)

≈ 1



[−1 1 0] ∗ I (x, y) (6.44b)

Here, ∗ denotes the convolution operator. Like-
wise, the y-directional gradient can be obtained
from

∂I (x, y)

∂y
≈ 1




⎡

⎣
1

−1
0

⎤

⎦ ∗ I (x, y) (6.45a)

≈ 1




⎡

⎣
0
1

−1

⎤

⎦ ∗ I (x, y) (6.45b)

While this simple operator can be used to find
the image gradient, this method suffers from the
truncation error in the order of O (
). Using
the Taylor series expansion, this can be easily
verified



6 Magnetic Resonance Current Density Imaging (MR-CDI) 151

I (x + 
, y) = I (x, y) +
(



1!
)
∂I

∂x

+
(

2

2!
)
∂2I

∂x2
+
(

3

3!
)
∂3I

∂x3
· · · (6.46a)

I (x − 
, y) = I (x, y) −
(



1!
)
∂I

∂x

+
(

2

2!
)
∂2I

∂x2
−
(

3

3!
)
∂3I

∂x3
· · · (6.46b)

Therefore, to reduce the truncation error in the
order of O (
2

)
, the central-difference method is

widely used. From Eqs. (6.46a) and (6.46b),

I (x + 
, y) − I (x − 
, y)

2

= ∂I

∂x
+
(

2

3!
)

∂3I

∂x3
= · · ·

(6.47a)

= ∂I

∂x
+ O

(

2
)

(6.47b)

The directional derivative using the central-
difference method can be computed as

∂I (x, y)

∂x
≈ 1

2

[−1 0 1] ∗ I (x, y) (6.48a)

∂I (x, y)

∂y
≈ 1

2


⎡

⎣
−1
0
1

⎤

⎦ ∗ I (x, y) (6.48b)

Directional Derivative for Noisy Data

Due to measurement noise, estimation of the im-

age gradient, ∇xyI (x, y) =
[
∂I
∂x
, ∂I
∂y

]T
using the

simple finite difference operator (see Eqs. (6.48a)
and (6.48b)) often fails to produce the desired
output. A lower order local-polynomial fitting
method (known as a Savitzky-Golay filter [33]) is
one possible approach to estimate the directional-
derivative of a noisy image. A detailed explana-
tion of the Savitzky-Golay method is beyond the
scope of this chapter. The interested reader may
find more information in [33] and [34].

The other possible choice is to reduce the
noise-level before calculating the image gradient.

For a two-dimensional noisy image I (x, y) the
filtered image If (x, y) can be expressed as

If (x, y) = I (x, y) ∗ G(x, y) (6.49)

Here, G(x, y) is the two-dimensional filter
function. Taking the two-dimensional Fourier
transform operator, F directional directional
derivative of Eq. (6.49) yields

F
[
∂If (x, y)

∂q̃

]
= −ikq̃I

F
f (kx, ky) (6.50a)

= [−ikq̃I
F(kx, ky)

]
GF(kx, ky)

(6.50b)

= IF(kx, ky)
[−ikq̃G

F(kx, ky)
]

(6.50c)

Where q̃ = x or, y, andGF(kx, ky), IFf (kx, ky)
represents the Fourier transom of the function
G(x, y) and If (x, y) respectively. kx , and ky de-
notes the spatial frequency in x, and y-directions,
respectively. Now taking the inverse Fourier op-
erator F−1 on both sides of the Eqs. (6.50b) and
(6.50c)

∂If (x, y)

∂q̃
= ∂I (x, y)

∂q̃
∗ G(x, y) (6.51a)

= I (x, y) ∗ ∂G(x, y)

∂q̃
. (6.51b)

In practice, a Gaussian-function G(x, y) is
generally chosen. Use of a Gaussian-function is
advantageous because of the separability property
of this function. A two-dimensional Gaussian-
filter function with variance σ 2

G can be written as

G(x, y) = 1

2πσ 2
G

exp

{
−x2 + y2

2σ 2
G

}
(6.52)

Note that the two-dimensional Gaussian
function G(x, y) is separable, meaning that
G(x, y) can be expressed as a product of two
one-dimensional Gaussian functions Gx(x) and
Gy(y),
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G(x, y) = 1√
2πσ 2

G

exp
{
− y2

2σ 2
G

}

[
1√
2πσ 2

G

exp
{
− x2

2σ 2
G

}]T
= GyG

T
x (6.53)

Here, the one-dimensional Gaussian functions
Gx(x) and Gy(y) are expressed as column vec-
tors and T denotes the transpose operation. The
x- and y-directional derivatives can be written
as

∂G(x, y)

∂x
= Gy

[
∂Gx

∂x

]T
(6.54a)

∂G(x, y)

∂y
=
[
∂Gy

∂y

]
GT

x (6.54b)

One-dimensional directional-derivatives of a
Gaussian function can be written as

∂Gq̃

∂q̃
= − 1

√
2πσ 2

G

q̃

σ 2
G

exp

{
− q̃2

2σ 2
G

}
= − q̃

σ 2
G

Gq̃

From Eqs. (6.51b), (6.54a) and (6.54b)

∂If (x, y)

∂x
= I (x, y) ∗

{

Gy

[
∂Gx

∂x

]T}

(6.55a)

∂If (x, y)

∂y
= I (x, y) ∗

{[
∂Gy

∂y

]T
Gx

}

(6.55b)

From the definition of the convolution it is easy
to show that a separable kernel function leads to
a separable convolution in the sense that we may
first convolve along the rows with a one dimen-
sional kernel function followed by a convolution
along the columns of the image as [2],

∂If (x, y)

∂x
= I (x, y) ∗

[
∂Gx

∂x

]T
∗ Gy (6.56a)

∂If (x, y)

∂y
= I (x, y) ∗ GT

x ∗
[
∂Gy

∂y

]
(6.56b)

Equation (6.56a) or (6.56b) can be interpreted
as a smoothing of the image along the perpen-
dicular direction followed by derivative opera-
tion along this direction. By defining x, and y-
directional derivative kernels as Dx , and Dy ,

Dx =
[
∂Gx

∂x

]T
∗ Gy (6.57a)

Dy = GT
x ∗
[
∂Gy

∂y

]
(6.57b)

Note that though the two-dimensional differ-
entiating kernel can be expressed as matrix prod-
uct (see Eqs. (6.55a) and (6.55b)), expressing the
equation in convolution form is advantageous
(see Eqs. (6.57a), and (6.57b)) because this form
of equation can easily be expanded into higher
dimensions. Expansion of the derivative kernel
into higher dimensions (dimension = 3) is left as
an exercise for the reader.

Numerical Implementation of the
Directional Derivative

Methods such as direct discretization of the Gaus-
sian functions with known variance can be used to
discretize the Eqs. (6.57a) and (6.57b) [2]. How-
ever, in practice the Gaussian function is dis-
cretized using a binomial coefficients. A binomial
coefficient of window size w can be found using
Pascal sequence. The Pascal sequence generation
can be written as [21],

Pa[n,w] = w!
(w−n)! n! , 0 ≤ n ≤ w

= 0, otherwise
(6.58)

The discretized Gaussian function, G̃w[n] and its
derivative D̃Gw[n] therefore, can be expressed as
[21],

G̃w[n] = Pa[n,w − 1] (6.59a)

D̃Gw[n] = Pa[n,w − 2] − Pa[n − 1, w − 2]
(6.59b)
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Fig. 6.7 Flow diagram for projected current density re-
construction method described in section. To compute the
model-predicted current density |J|0 using Eqs. (6.23), a
three-dimensional numerical model is constructed from

boundary shape of the acquired MR magnitude image.
Equations (6.22) and (6.24) are then applied to compute
the projected current density from the measured Bm

z and
the computed |J|0 data

The coefficients obtained from Eqs. (6.59a)
and (6.59b) must be normalized. In [2]
Eqs. (6.59a) and (6.59b) are normalized as

[
G̃w

]
N =

w−1∑

n=0

G̃w[n] (6.60a)

[
D̃Gw

]
N =

∣∣
∣
∣

w−1∑

n=0

nD̃Gw[n]
∣∣
∣
∣ (6.60b)

It is worth mentioning that the pixel dimension

 must also be multiplied with Eq. (6.60b) to
obtain the appropriate dimension of the discrete
derivative kernel.

Example For a window size w = 3,
Eqs. (6.59a) and (6.59b) will
provide G̃w[n] = [1 2 1]T , and
D̃Gw[n] = [−1 0 1]T , respectively.
The corresponding normalization factor
can be found from Eqs. (6.60a) and (6.60b),[
G̃w

]
N = 4, and

[
D̃Gw

]
N = 2. Now using

equation, (6.57a), and (6.57b), the x, and

y-directional discrete derivative kernel can
be found as,

D̃x = 1

2

(−1 0 1) ∗ 1

4

⎛

⎜
⎜
⎝

1

2

1

⎞

⎟
⎟
⎠ = 1

8


⎛

⎜
⎜
⎝

−1 0 1

−2 0 2

−1 0 1

⎞

⎟
⎟
⎠

D̃y = 1

4
(1 2 1) ∗ 1

2


⎛

⎜⎜
⎝

1

0

−1

⎞

⎟⎟
⎠ = 1

8


⎛

⎜⎜
⎝

1 2 1

0 0 0

−1 − 2 − 1

⎞

⎟⎟
⎠

Appendix 2

Figure 6.7 shows an example flowchart of current
density analysis using the projected current den-
sity method of Park et al. [22]. Three slices are
reconstructed by solving a numerical model of the
object and using (6.22) to compute J0 and then
the gradient of β data obtained from Eq. (6.24).
The results are combined (6.22) to obtain the
projected current density distribution JP within
each slice.
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Abstract

Magnetic Resonance Electrical Impedance
Tomography (MREIT) is a high-resolution
bioimpedance imaging technique that has
developed over a period beginning in the
early 1990s to measure low-frequency
(<1 kHz) tissue electrical properties. Low-
frequency electrical properties are particularly
important because they provide valuable
information on cell structures and ionic
composition of tissues, which may be very
useful for diagnostic purposes. MREIT
uses one component of the magnetic flux
density data induced due to an exogenous-
current administration, measured using an
MRI machine, to reconstruct isotropic or
anisotropic electrical property distributions.
The MREIT technique typically requires two
linearly independent current administrations
to reconstruct conductivity uniquely. Since
its invention, researchers have explored its
potential for measuring electrical conductivity
in regions such as the brain and muscle tissue.
It has also been investigated in disease models,
for example, cerebral ischemia and early
tumor detection. In this chapter, we aim to
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provide a solid foundation of the different
MREIT image reconstruction algorithms,
including both isotropic and anisotropic
conductivity reconstruction approaches.
We will also explore the newly developed
diffusion tensor magnetic resonance electrical
impedance tomography (DT-MREIT) method,
a practical method for anisotropic tissue
property imaging, at the end of the chapter.

7.1 Introduction

MREIT is a method for imaging low-frequency
electrical tissue properties at low frequencies. The
data used in MREIT reconstructions are obtained
using MRI. MREIT can be used to produce
high-resolution cross-sectional low-frequency
conductivity and current density distributions
inside the human body [4,64,73,75]. When low-
frequency current is injected into an electrically
conducting object through a pair of surface
electrodes, it creates internal voltage u, current
density, J = (Jx, Jy, Jz) and magnetic flux
density B = (Bx, By, Bz) distributions [33, 40].
Using an MRI scanner with its main magnetic
field aligned along the z-direction, we can only
measure the one component of the magnetic
flux density data [18, 61, 62]. Early MREIT
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approaches assumed measurement of the full
magnetic flux density vector B = (Bx, By, Bz)

as the core data used in finding current density
or conductivity distributions [19]. As we noted
in Chap. 6, this requires rotations of the object
inside the MRI scanner [18, 61, 62]. When all
three components of B are known it is possible to
directly calculate the current density distribution
using the Amperes law, J = 1

μ0
∇ ×B [18,61,62].

However, object rotation is often impractical and
may cause registration or conformation errors
[19].

In general, MREIT requires at least two in-
dependent current injections [4, 64, 73] to recon-
struct conductivity, even if the all components
of magnetic flux density distributions are mea-
sured. Reconstruction algorithms such as the J -
substitution algorithm [29] and CCVSR algo-
rithm [4] have been developed using full measure-
ment of B and data from two independent current
injections. However, these methods also suffer
from problems caused by the need for object
rotation [19]. For convenient clinical implemen-
tation of theMREITmethod, those using only one
component of themeasuredmagnetic flux density
data are preferred. In this chapter, we consider
methods using one component only and discuss
the conductivity distributions that can be found
using them.

As discussed in Chap. 1, at low frequencies the
electrical conductivity of the biological tissue ex-
hibits directional or anisotropic properties, mean-
ing that the conductivity measured using fields
applied along different principal directions varies.
For example, in tissues such as white matter and
muscle, conductivities measured using current
applied longitudinally along the fiber or tract
directions are much higher than when transverse
current is applied. In general, electrical conduc-
tivity at a point within tissue may be expressed as
a 3×3 symmetric positive definite tensor that has
six unique components: Cxx, Cxy, Cxz, Cyy, Cyz

and Czz, that is

C=
⎛

⎝
Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz

⎞

⎠=
⎛

⎝
Cxx Cxy Cxz

Cxy Cyy Cyz

Cxz Cyz Czz

⎞

⎠.

(7.1)

If the conductivity does not depend on direc-
tion, it is isotropic, and the conductivity may be
expressed as a scalar.We could represent this type
of property in the form of Eq. (7.1) as an identity
matrix multiplied by this scalar value, i.e.,

C = σ

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (7.2)

The Harmonic Bz algorithm [72] was the first
method to use a single component of B to re-
construct isotropic conductivity. As in [29] and
[4], data from two independent current injections
were also required [46, 65, 72]. Results from this
algorithm showed the possibilities of obtaining
high-resolution conductivity images using one-
component data. More recently, methods such
as the transversal J -substitution algorithm [44]
and the non-iterative [68] or absolute conductivity
imaging methods [45] have also been developed.
The feasibility of MREIT in clinical applications
has been further substantiated by results obtained
with nonbiological [32, 47] and biological phan-
tom studies [35, 48] and postmortem [21] and in
vivo animal [22] and human studies [23].

Reconstruction of anisotropic conductivity
distributions requires recovery of the six
independent entries in the conductivity tensor,
which requires more data. Collection of single-
component data from more than six independent
current injections may, in principle, be used to
reconstruct anisotropic distributions. Seo et al.
[66] first proposed an algorithm to reconstruct
anisotropic conductivity distributions. In order to
determine all six components in (7.1), the method
requires data from at least seven independent
current injections. Though this method is
theoretically capable of reconstructing the
anisotropic conductivity distribution, this method
is so sensitive to noise that no experimental
result has yet been reported. Subsequently, other
methods [7–9, 43, 55] have been proposed, but
none of these methods have proved capable
of recovering the full conductivity tensor. The
need to measure a large number of data sets and
attaching a large number of electrodes is also
a limitation for this approach. For this reason,
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most MREIT algorithms have concentrated on
reconstruction of isotropic or equivalent isotropic
conductivity distributions.

However, other ways of obtaining anisotropic
conductivity properties can be considered. Since
water molecules and the ions responsible for con-
ductive properties coexist in the same biological
environment, Tuch et al. [70,71] proposed that the
eigenvectors of conductivity and diffusion tensors
should be identical and therefore suggested an
alternative model for determining the anisotropic
conductivity as

λC,k = σe
de

[
λD,k

(
di
3de

+ 1
)

+λ2D,k
di
3d2

e
+ 2

3di

]
+ O(d2

i ), k = 1, 2, 3

(7.3)
where λC,k and λD,k k = 1, 2, 3 are the eigenval-
ues of the conductivity and the diffusion tensors,
respectively; σe is the extracellular conductivity;
di and de are the intra- and extracellular diffusion
coefficients, respectively; and O(d2

i ) is bounded
as d2

i tends to infinity. Using experimentally ob-
tained diffusion tensor data of the brain, Tuch et
al. [70, 71] determined an empirical scaling fac-
tor which converted the measured diffusion ten-
sor data to its equivalent electrical conductivity.
However, since this factor did not depend on ionic
concentration [30,58], the estimated conductivity
may not have been accurate [30, 52].

Following the work of Tuch et al. [70,71], and
using current density information obtained using
MR-CDI, Ma et al. [39] and Kwon et al. [30]
independently proposed algorithms to reconstruct
the scaling factor. The methods combine mag-
netic flux density images with those of the wa-
ter diffusion tensor that can be obtained using
diffusion-weighted imaging [1]. The technique
was named diffusion tensor magnetic resonance
electrical impedance tomography, or DT-MREIT.
In addition to the development of DT-MTREIT
techniques, significant improvements in MREIT
data acquisition provided by themulti-echo ICNE
pulse sequence [41] and SPMGRE-ICNE pulse
sequences [49] combined with use of multiple re-
ceiver coils [16] enabled high quality Bz and cur-
rent density data to be obtained within a clinical
setting. DT-MREIT techniques have now resulted

in measurements of anisotropic conductivity in
the brain in vivo [5, 17].

7.2 Preliminaries

7.2.1 Fundamental Equations for
MREIT

As in Sect. 6.2, we first describe the partial differ-
ential equations and boundary conditions applica-
ble to MREIT experiments and used in construct-
ing computational models used in reconstruc-
tions. The divergence free condition of current
density (∇ · J = 0) induced inside the domain
� ∈ R

3 due to the externally injected current I
through the attached pair of surface electrodes E±

satisfies the partial differential equation [63]

∇ · J = ∇ · (−σ∇u) = 0 in � (7.4a)

I= ±
∫

E±
σ
∂u

∂n
· ds, ∇u × n = 0 on E+ ⋃ E−

(7.4b)

− σ
∂u

∂n
= 0 on ∂�\ (E+ ⋃ E−)

(7.4c)

As noted in Sect. 6.2, the condition,−σ ∂u
∂n = 0

on the object boundary in Eq. (7.4c) ensures that
the current density outside the imaging object is
zero. Moreover,∇u×n = 0 on the electrodes E±

guarantees a constant potential on the electrodes.
The condition I = ± ∫E± σ ∂u

∂n · ds is the total
current injected into the object. Alternatively, it
has been shown that Eqs. (7.4a)–(7.4c) can be
converted to [63]

⎧
⎪⎪⎨

⎪⎪⎩

∇ · (−σ∇ũ) = 0 in �

ũ|E+ = 1 ũ|E− = 0

−σ ∂ũ
∂n = 0 on ∂�\ (E+⋃E−)

(7.5)
In this form we specify the (constant) voltage

applied at each electrode. This Dirichlet form
of the PDE boundary conditions is preferred to
(7.4a)–(7.4c) because it is difficult to specify the
Neumann boundary condition on each point of
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the electrodes. We denote the solution from this
form of the equations ũ. Once ũ is obtained from
Eq. (7.5), the actual voltage distribution u that
solves the boundary value problem (7.4a)–(7.4c)
is

u = βũ (7.6)

where the scale factor β is the ratio of the exper-
imentally injected current I and the total current∫
E+ σ ∂ũ

∂n · ds injected in the model

β = I
∫
E+ σ ∂ũ

∂n · ds . (7.7)

The current density distribution Jmay then be
calculated via Ohm’s law:

J = −σ∇u. (7.8)

If required, the magnetic flux density B =(
Bx, By, Bz

)
can be obtained from J the Biot-

Savart law:

B(r) = μ0

4π

∫

�

J(r′) × r − r′

|r − r′|3 dr
′ (7.9)

where μ0 = 4π × 10−7 H/m is the permeability
of free space.

The current density J and the induced mag-
netic flux density B are also related via Ampere’s
law:

J = 1

μ0
∇ × B. (7.10)

7.2.2 Characteristics ofBz

Distributions

In MREIT, the inverse problem involves recon-
structing an unknown conductivity distribution σ
from knowledge of the measured z-component of
the magnetic flux density Bz data, the boundary
geometry of the object, the location of current
injection electrodes, and the injected current am-
plitude.

From (7.9), the z-component of the magnetic
flux density; Bz can be expressed explicitly as

Bz(r) = μ0

4π

∫

�

(
y − y′) Jx(r′) − (x − x′) Jy(r′)

|r − r′|3 dr′.
(7.11)

Here, Jx and Jy are the x and y components of
the current density J, respectively.

Using measured Bz and its corresponding cur-
rent density information to reconstruct conductiv-
ity has some limitations. These are listed below.

• First, there is a scaling uncertainty of σ asso-
ciated with Eq. (7.11). Consider the case that
a known current is applied to electrodes on
an object with conductivity distribution σ . If
the conductivity is multiplied by any positive
constant c > 0 such that the conductivity
becomes σ̃ = cσ , the current density through-
out the object and, therefore, Bz are identical.
That is, it can be shown [20, 63] that B̃z =
Bz. This problem can be solved by measur-
ing or assuming the voltage between the two
fixed boundary points (e.g., by using voltage
measurement electrodes placed on the surface)
or by assuming the conductivity in some part
of the imaged object is known. In this case
MREIT can be used to reconstruct absolute
conductivity distributions [20, 63].

• The second problem arises from the fact that
the tangential component of the associated
current density J contains distinguishable
boundary information at the tissue interface, as
shown in Fig. 7.1. To explain this, consider a
three-dimensional conductive domain � ∈ R

3

consisting of one anomaly region D and a
background region �\D. The conductivity
of the background is defined as σ0, and the
anomaly conductivity is defined as σ =
σ0 + δσ . From fundamental electromagnetic
principles [69], any point on the anomaly
subdomain boundary, ζ ∈ ∂D satisfies the
relations

{−σ0∇u+(ζ ) · ν = −(σ0 + δσ )∇u−(ζ ) · ν

∇u+(ζ ) · τ = ∇u−(ζ ) · τ
(7.12)

where ν and τ are normal and tangential unit
vectors on ∂D, respectively, and the voltage
distributions u+ and u− are defined as



7 Magnetic Resonance Electrical Impedance Tomography 161

Fig. 7.1 Three-dimensional numerical model results il-
lustrating the influence of Eq. (7.14). (a) To demonstrate
the relation in (7.14) a rectangular-shaped conductive ob-
ject with dimension 250×250×200mm3 and conductivity
2 S/m is placed in the center of the rectangular container
(dimension 500×500×200mm3). The conductivity of the
outside region was set to 1 S/m. The problem was solved

subject to transverse current flow between electrodes E1,+
and E1,− (I, II, and III) and E2,+ and E2,− (IV, V, and
VI). Parts (b), (c), and (d) show magnitudes of the current
density, z-component of the magnetic flux density and
reconstructed conductivity for the two projections. Arrows
indicate the absence of boundary information. (e) demon-
strates the conductivity reconstructed using data from both
current projections

Fig. 7.2 Two different isotropic conductivity distribu-
tions (a) J/|∇u| and (c) J/|∇w| where u and w =
φ(u) are two different voltage solutions of the boundary
value problem in (7.4a)–(7.4c) that produce the same
J = −σ∇u = − σ

φ(u(r))∇w and Bz (shown in (b)

and (d)) [20, 63]. The strictly increasing continuously
differentiable function φ was chosen so that φ (u(r)) =
1 + (3/7) cos (50 πu(r)). The voltage distribution u was
solved for current flow between electrodes placed on right
and left temporal locations

u+ = u|�\D and, u− = u|D (7.13)

Decomposing the current density vector J
into normal and tangential parts at the subdo-
main interface, J(ζ ) = (J·ν)ν(ζ )+(J·τ )τ (ζ ).
Finally, using Eq. (7.12) we have

J+(ζ ) − J−(ζ ) = (δσ∇u−(ζ ) · τ
)
τ (7.14)

where the current density vectors J+ and J−
are defined in the background and anomaly

regions, respectively, in a similar manner to u+
and u−.

This result implies ambiguity. Any
conductivity gradient ∇σ perpendicular to
equipotential surfaces caused by a specific
current flow is not reflected in the current
density within D and therefore is invisible
to the corresponding Bz distribution. This
phenomenon is demonstrated in Fig. 7.2,
where two distinct conductivity distributions
satisfy the same boundary value problem
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Algorithm 2 General procedure of the MREIT
reconstruction algorithm

Step 1. Obtain �m,p function for Eq. (7.16a) from mea-
sured data.
Step 2. Construct a numerical model, including elec-
trodes, from acquired MR magnitude images.
Step 3. Solve Eq. (7.15) using some initial guess σ =
σ 0 for each of the NP current injections; compute the
functions �p in (7.16a).
Step 4. Solve Eq. (7.16a) to obtain σ̂ .

(7.4a)–(7.4c) [14, 20, 63] and produce the
same Bz. For this reason, conductivity
reconstruction using a single-current injection
is generally ill-posed without prior knowledge
of surface conductivity [50] or measuring
boundary voltage information [28].

Two-current MREIT reconstructions can
be used to address these issues [13, 72]. For
single-current MREIT, the method of Kwon
et al. [28] uses knowledge of the boundary
potential to uniquely determine internal
distribution of the conductivity. However,
experimental realization of this method is
difficult because measurement of additional
boundary voltages is difficult [28]. For two-
dimensional cases, unique determination of
the internal distribution of σ is also possible if
surface conductivity is known [50].

7.3 Approaches to theMREIT
Inverse Problem

Consider measurement of NP sets of Bz

data using multiple current injections p =
1, 2, · · · , NP , the MREIT forward problem for
each case can be written:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (−σ∇ũp) = 0 in �

ũp |Ep,+=1 ũp |Ep,− = 0

−σ ∂ũp

∂n = 0 on ∂�\ (Ep,+ ⋃ Ep,−)

up = βpũp where, βp = I∫
Ep,+ σ ∂ũp

∂n ·ds
Jp = −σ∇up

B
p
z (r) = μ0

4π

∫
�

(y−y′)Jp
x (r′)−(x−x′)Jp

y (r′)
|r−r′ |3 dr′

.

(7.15)

Asmentioned in Chap. 6, inMREITBz images
are acquired from a portion of three-dimensional
domain as a stack of axial slices arranged perpen-
dicularly to the z-axis (see Fig. 6.1 of Chap. 6).

The MREIT inverse problem, that is, the de-
termination of the electrical conductivity distri-
bution from measured Bz data can be expressed
as a minimization problem that compares model-
predicted data �p calculated using Eq. (7.15) to
measured data �m,p

σ̂ (r) = min

⎛

⎝
NP∑

p=1

∥
∥�m,p − �p

∥
∥

⎞

⎠ in �t

(7.16a)

σ̂ (r) = σ0 on ∂�t .

(7.16b)

In Eq. (7.16b) we assume that the conductivity
value on the two-dimensional domain boundary
∂�t is known a priori, to deal with the uniqueness
issue described in Sect. 7.2.2. In Eq. (7.16a) the
measured data �m,p can be Bm

z , its Laplacian, or
the current density calculated from the Bm

z data
(Fig. 7.3).

The finite element method [6] can be used to
solve the problem in (7.15) and generate �p data.
Lee et al. [33] developed a custom finite element
framework to solve MREIT forward problems.
Minhas et al. [40] also developed a method to
solve the forward problem using commercial
software (COMSOL Multiphysics (COMSOL,
Burlingham MA, USA)).

Simulated magnetic flux density can be
estimated from (7.9) and a model-computed J.
Several numerical methods have been developed
to compute the Bz [40]. For example, direct-
discretization of the Biot-Savart law in a regular
grid was described by Lee et al. [33], and Minhas
et al. proposed [40] a hybrid approach based on
solution of the Poisson equation (7.21) inside the
domain � for a known B value at the domain
boundary ∂�. However, for fast computation of
Bz, Eq. (7.11) may be converted to [51, 74]

Bz(r) = μ0
(
Ky ∗ Jx − Kx ∗ Jy

)
(r). (7.17)

Here, ∗ represents the convolution operator
and the convolution kernels Kx and Ky are de-
fined as
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Fig. 7.3 Illustration of the conductivity reconstruction
process in MREIT. Conductivity is reconstructed by com-
paring the measured data �m,p (upper row) with the
computer-simulated model data�p (bottom row). A three-

dimensional finite element model is built from acquired
MR magnitude information. The experimental boundary
conditions are used to solve Eq. (7.15) and obtain�p, p =
1, 2

Kx = 1

4π

x

|r|3 and Ky = 1

4π

y

|r|3
(7.18)

respectively. A similar approach can be
formulated for the other components of B.
Equation (7.17) can be implemented using fast
Fourier transform (FFT) as [51, 74]

Bz(r) = 4πF−1 {F (Ky

) · F (Jx) − F (Kx) · F (Jy
)}

(r)

(7.19)
where F represents the FFT operator.

function Bz = mrci_Bzconv (J, VoxelSize)

% This MatLab routine calculates Bz from
equation (7.19).
% J[N1×N2×N3×2]: x, and y-components of the
current density vector field
% where, Jx = J(:,:,:,1), Jy = J(:,:,:,2).
% VoxelSize[1 × 3]: voxel size in
millimeter.
% Bz[N1 × N2 × N3]: calculated Bz data.

[N1, N2, N3, ~] = size(J)
VoxelSize = VoxelSize*1E-3;
paddSize = [N1, N2, N3];
[X1, X2, X3] = mesh-
grid

(−N1 : N1 − 1, − N2 : N2 − 1, − N3 : N3 − 1
)
;

X1 = X1*VoxelSize(1); X2 = X2*VoxelSize(2);
X3 = X3*VoxelSize(3);

R =
(
X1.ˆ2+X2.ˆ2+X3.ˆ2

)
.ˆ(3/2);

K1 = X1./R;K1(isnan(K1)|isnan(K1)) = 0;K1 =
fftn(K1);
K2 = X2./R; K2(isnan(K2)|isnan(K2)) = 0; K2 =
fftn(K2);

FJ1 = fftn(padarray(flipud(squeeze
(J(:,:,:,1))),paddSize,0,’post’))
FJ2 = fftn(padarray(flipud(squeeze
(J(:,:,:,2))),paddSize,0,’post’))
Bz = 1E-7*ifftshift(real(ifftn(FJ1.*K2-
FJ2.*K1)))*prod(VoxelSize);
Bz = flipud(Bz

(
1 : N1, 1 : N2, 1 : N3

)
);

As noted in Chap. 6, the acquired Bm
z signal

measured by the MRI system may be corrupted
with wire-induced magnetic flux density, Bz,L,
and electrode-induced magnetic flux density sig-
nals Bz,E, where L = L+ ⋃ L− and E =
E+ ⋃ E− [33]. The electrode-induced magnetic
flux density is mainly due to currents flowing
through the electrode surface [33]. In order to
compensate for wire-induced magnetic flux den-
sity, one may constrain wires to run along the z-
direction. However, in many situations, for ex-
ample, in transcranial direct current stimulation
experiments [11, 59], it is difficult to constrain
the wire path in this way. For projections p =
1, 2, · · · , NP , the acquired measured magnetic
flux density at any point r within an object can
therefore be described by [33]

B
m,p
z (r) =μ0

4π

∫

�

(
y − y′) Jp

x (r′) − (x − x′) Jp
y (r′)

|r − r′|3
dr′ + Bz,Lp + Bz,Ep . (7.20)
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In Chap. 6, we saw that in many cases it was
necessary to model Bz contributions from wires
and electrodes in order to correctly estimate and
compensate for them in CDI. We now consider
how this may affect conductivity reconstruction
algorithms.

In many reconstruction methods, compensa-
tion is not necessary. Applying the curl operator
to both sides of Ampere’s law (7.10) and using
the divergence free condition of the magnetic flux
density (∇ · B = 0), we obtain

1

μ0
∇2B(r) = −∇ × J(r). (7.21)

Note that Eq. (7.21) applies within any domain
r ∈ � or, L or, E. However, at any outside
point, that is, r ∈ �\ (L⋃ E), the Laplacian
of Bz is zero and ∇2Bz,L(r) = ∇2Bz,E(r) =
0. Therefore, reconstruction algorithms that use
the Laplacian of measured B

m,p
z data can ignore

the possible contributions from lead wires and
electrodes to Bz. Examples of such algorithms
are the harmonic Bz [46,65] and the non-iterative
harmonic Bz algorithms [45, 68]. However, these
algorithms are prone to problems with low SNR
data because computation of the Laplacian will
tend to amplify noise.

The transverse J -substitution algorithm uses
the first derivative of the measured Bm,p

z p ∈ 1, 2
data [44], and thus any wire- or electrode-created
stray magnetic field signal must be removed be-
fore conductivity reconstruction. After compen-
sation, this algorithm works well for cases with
low SNR data. Fortunately for these reconstruc-
tions, if wire trajectories can be recovered, effects
of stray fields can be minimized using computa-
tional modeling [59].

7.4 Isotropic Image
Reconstruction Algorithms
in MREIT

Isotropic MREIT image reconstruction methods
minimize the difference between the measured
and model-predicted data (see Eq. (7.16a)–

(7.16b)) assuming that the electrical con-
ductivity is expressed by Eq. (7.2), using Bz

data measured from multiple projections (see
Sect. 7.3). Isotropic MREIT algorithms are
simple relative to retrieval of the components
in Eq. (7.1), because only one value, σ , per
pixel is reconstructed. A number of algorithms,
such as the sensitivity matrix method [2, 3, 73],
algebraic reconstruction algorithm [13], the J -
substitution algorithm [29], and harmonic Bz

method [65] have been developed to reconstruct
isotropic electrical conductivity distributions.
As mentioned earlier, these algorithms can
be considered as minimizing the differences
between measured and model data. Another
example of an isotropic MREIT reconstruction
algorithmwas developed byGao et al. [10], where
MREIT was proposed as a means of finding the
electrical conductivity of the skin, skull, and brain
tissue. This Bz-based parametric reconstruction
algorithm [10] used the simplex method, to
minimize differences between measured data
with model data generated using (7.15) and
estimated conductivity values. While this method
may yet prove useful for finding brain tissue
conductivity, no experimental results have been
yet been reported. To alleviate the uniqueness
problem (see Sect. 7.2.2 and Fig. 7.2), Kwon et
al. [28] also proposed an algorithm based on
equipotential lines reconstructed using measured
Bz data. This method also requires voltage data
measured from the object boundary to reconstruct
the equipotential lines. However, in practice
this method is sensitive to noise propagating
along the equipotential lines. Later, Kwon et
al. [29] developed the J -substitution algorithm,
which has since been used to determine isotropic
electrical conductivity distributions during
electroporation processes [26, 27]. Another
algorithm, the harmonic Bz method [46], was
developed shortly after and has been used to
perform in vivo human and animal imaging
studies [22, 23]. In this section we briefly detail
features of a few isotropic MREIT reconstruction
algorithms.



7 Magnetic Resonance Electrical Impedance Tomography 165

7.4.1 Sensitivity-Based Algorithm

The sensitivity matrix-based method is based on a
linearized relationship between measured Bz data
and the conductivity distribution σ [2, 3]:


Bz = S
σ (7.22)

where 
Bz is the difference between Bz mea-
sured in an object having homogenous and per-
turbed conductivity distributions σ 0 and σ 0+
σ ,
respectively. The solution for the conductivity
perturbation
σ is found by inverting the system
in Eq. (7.22), where S can be found by discretiz-
ing the Biot-Savart law (Eq. (7.11)) for multiple
projection data p = 1, 2, 3, · · · , NP .

This method has been used to obtain electrical
conductivity distributions in a phantom experi-
ment [42] and in an in vivo experiment in rats
to determine tumor conductivity [42]. Note that
because Bz data are used directly, this algorithm
requires removal of any stray magnetic fields
caused by wires or electrodes from measured
data.

7.4.2 J -Substitution Algorithm

Early versions of the J -substitution algorithm
assume that the full current density vector
Jm = (

Jm
x , Jm

y , Jm
z

)
has already been measured

from anMRCDI experiment. Using the measured
magnitude of the current density data, Jm =√(

Jm
x

)2 + (Jm
y

)2 + (Jm
z

)2
, Kwon et al. [29]

developed an isotropic image reconstruction
method by minimizing the integrated difference
�(σ) between Jm and the model-predicted
current density σ(r)Eσ (r):

�(σ) =
∫

�

|Jm(r) − σ(r)Eσ (r)|2dr. (7.23)

Here, Eσ (r) = |∇uσ | is the magnitude of the
electric field obtained using a numerical model
after solving Eq. (7.5)–(7.7) for a given conduc-
tivity distribution σ .

Vectorizing the imaging slice into �t =⋃N−1
n=0 �t,n (see Fig. 7.4), Eq. (7.23) can be written

as

�̃(σ0, σ1, σ2, · · · , σN−1) =
N−1∑

n=0

∫

�t,n

∣
∣Jm(r) − σn(r)Eσ (r)

∣
∣2dr (7.24)

where the conductivity σn is assumed to
be constant in each element �t,n and the
electric field Eσ (r) can be expressed as a
function of the discrete conductivity distribution
[σ0, σ1, σ2, · · · , σN−1]T [29].

Differentiating Eq. (7.24) with respect to σq
(q ∈ 0 . . . N − 1), we obtain

1
2
∂�̃
∂σq

= ∫
�t,q

Eσ (r)
[
σqEσ (r) − Jm(r)

]
dr

+
N−1∑

n=0

∫
�n

σn
∂Eσ (r)
∂σn

[σnEσ (r) − Jm(r)] dr

(7.25)
By setting 1

2
∂�̃
∂σq

= 0, the representative con-
ductivity σq for the region �t,q can be found as
[29]

σq = Jm(rq)
Eσ (rq)

for q = 0, 1, 2, · · ·N − 1

(7.26)
where rq is the center point of the element �t,q .
Using two independent current administrations
Jm,p, p ∈ 1, 2, the (k + 1)th update of the
conductivity is written as

σ k+1
q =

2∑

p=1
Jm,p(rq)E

k,p
σ (rq)

2∑

p=1

[
E

k,p
σ (rq)

]2 (7.27)

The J -substitution algorithm can also be used
when only Bz is measured. Park et al. [50] devel-
oped a projected-current-density-based algorithm
see Chap. 6. Using reconstructed projected cur-
rent density data JP,p, p ∈ 1, 2, instead of the full
measured Jm, the J -substitution algorithm yields
[57]
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Fig. 7.4 Discrete
representation of the
imaging plane �t used in
J -substitution algorithm.
(a) Original image plane.
(b) The image pixels can
also be arranged as a
column vector. The
representative conductivity
σq which is assumed to be
constant for the discrete
domain �t,q for, q =
0, 1, 2, · · · , N − 1 is
shown at right

σ k+1
q =

2∑

p=1

〈
JP,p(rq),E

k,p
σ (rq)

〉

2∑

p=1

〈
Ek,p
σ (rq),E

k,p
σ (rq)

〉
(7.28)

where 〈, 〉 represents the inner product of the
two vectors and Eσ = [Eσx , Eσy , Eσz ]T denotes
the components of the model-predicted electric
field vector. In order to uniquely determine the
internal conductivity distribution, the condition
|J1 × J2| �= 0 must be satisfied [29, 63].

7.4.3 HarmonicBz Algorithm

At low frequencies, the relationship between the
conductivity σ , voltage distribution u, and the
z-component of the magnetic flux density Bz

satisfies the relation

∂u

∂y

∂σ

∂x
− ∂u

∂x

∂σ

∂y
= 1

μ0
∇2Bz. (7.29)

This is the z-component of (7.21).
Since the voltage distribution u is a nonlin-

ear function of the conductivity distribution σ ,
the harmonic Bz algorithm uses this equation
to update the conductivity gradients using the
measured Bz and model-predicted voltage data
u. Because two gradient components must be
found,Bz data from at least two current injections
must be measured. For two current injections, the
expression used to calculate the updated gradient
∇̃σ , where ∇̃ := ( ∂

∂x
, ∂
∂y
) takes the following

matrix form [46,58, 65]:

⎛

⎝
∂uk1
∂y

− ∂uk1
∂x

∂uk2
∂y

− ∂uk2
∂x

⎞

⎠

⎛

⎝
∂σ k+1

∂x

∂σ k+1

∂y

⎞

⎠ = 1

μ0

(∇2Bm,1
z

∇2Bm,2
z

)

or

(7.30)

Uksk+1 = b (7.31)



7 Magnetic Resonance Electrical Impedance Tomography 167

From Eq. (7.31), it is clear that the unique
reconstruction of the conductivity is only possible
when |∇̃u1 × ∇̃u2| �= 0 is satisfied, that is,
when the matrix Uk is non-singular. If electrode
pairs are placed approximately orthogonal to each
other, this condition is generally satisfied, and
the gradients are also orthogonal to each other.
However, this orthogonality condition is not satis-
fied for currents flowing near the object boundary,
or near internal structures with very low con-
ductivities. In practical conditions where there is
measurement noise, ∇̃σ k+1 is calculated from a
regularized least-squares solution:

sk+1 =
(
UkT Uk + κ

|UkT Uk| I
)
UkT b (7.32)

Here, UkT is the transpose of the stiff matrix
in Eq. (7.31), κ is a regularization constant, and I
is the 2× 2 identity matrix. Once the solution for
∇̃σ k+1 is obtained for the slice �t , the conduc-
tivity can be estimated using Poisson’s equation
[57]:

{ ∇̃2σ k+1 = ∇̃ · sk+1 in �t

σ k+1 = σ0 on ∂�t
(7.33)

where σ0 is the known or assumed boundary
conductivity value, as discussed in Sect. 7.3. It is
important to note that the harmonic Bz algorithm
requires computing the second derivative of Bz

data, which tends to amplify noise in the data.
PDE-based [34] or ramp-preserving [37] denois-
ing strategies may be employed to mitigate these
effects.

7.4.4 Transversal J -Substitution
Algorithm

The transversal J -substitution algorithm was
proposed as another alternative to the J -
substitution algorithm when full current density
vector data is not available. Instead of measuring
the full magnetic flux density data, the transversal
J -substitution algorithm iteratively updates
the transverse (x,y) components of the current
density, that is, the those components in the plane

perpendicular to the measured B component, as
[44]

J̃
k+1,p
x = 1

μ0

(
∂B

m,p
z

∂y
− ∂B

k,p
z

∂y

)
− σ k ∂uk,p

∂x

J̃
k+1,p
y = 1

μ0

(
∂B

m,p
z

∂x
− ∂B

k,p
z

∂x

)
− σ k ∂uk,p

∂y

(7.34)

where J̃ k+1,p
x and J̃

k+1,p
y are the x and y compo-

nents of the (k + 1)th update of the intermediate
current density and p ∈ 1, 2. Bk,p

z and uk,p repre-
sent the kth update of the Bz and the voltage dis-
tribution obtained using the σ information from
the MREIT forward solution for (Eq. (7.15)) at
the previous step, respectively. The least-squares
solution for the (k + 1)th conductivity update
takes the form

σ k+1=σ k− 1

μ0

2∑

p=1
〈∇̃⊥

(
B

m,p
z − B

k,p
z

)
,∇uk,p〉

2∑

p=1
〈∇uk,p,∇uk,p〉

(7.35)
The formula in Eq. (7.35) has advantages for

low SNR signals. Recall that the SNR in mea-
sured Bz is proportional to the injected current
amplitude and current injection duration. In clin-
ical MREIT applications, it is desirable to collect
data with the lowest practical scan duration and
current amplitudes. It can be shown that the accu-
mulated noise contributed by measured Bz in the
1st update of the conductivity is [44]

sd(σ 1)(r) = sdBz
(r)

μ0


√
3

4

1
√

NP∑

p=1
〈∇̃u0i , ∇̃u0i 〉

(7.36)
In Eq. (7.36) it is assumed that the noise stan-

dard deviation in Bz, sdBz
, is the same for the all

current injections and the derivatives ∂
∂x

and ∂
∂y

are computed using the kernels:

∂

∂x
= 1

8


⎛

⎝
−1 0 1
−2 0 2
−1 0 1

⎞

⎠

and
∂

∂y
= 1

8


⎛

⎝
1 2 1
0 0 0

−1 −2 −1

⎞

⎠
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For further details please see Appendix 1 of
Chap. 6. While this method provides an updated
conductivity at low SNR, recall that additional
data processing steps are needed to remove wire-
and electrode-created stray magnetic fields.

7.4.5 Non-iterative HarmonicBz

Algorithm

The noise level inmeasuredmagnetic flux density
data, sdBz

, depends on the current injection dura-
tion Tc and signal-to-noise ratio (SNR) of the MR
magnitude image, ϒ [53, 61] via

sdBz
∝ 1

γ Tcϒ
. (7.37)

Here, γ = 42.576 × 106 Hz/T is the gyro-
magnetic ratio of the proton. From Eq. (7.37),
for a particular MR-pulse sequence and a fixed
injection current I , noise standard deviation de-
pends inversely on Tc. It may hence be difficult to
obtain sufficient SNR in measured data in clinical
settings. Even though iterative PDE-based [34] or
ramp-preserving [37] denoising techniques may
improve Bz data quality, important information
about conductivity structure boundaries may be
lost as the iterative processes smooth these tran-
sitions. Therefore, it is difficult to use an iterative
MREIT algorithm to obtain absolute conductivity
values, even if boundary voltages or conductivi-
ties are known a priori, mainly because the itera-
tive process accumulates noise with each step.

The characteristics of the iterative harmonic
Bz algorithm were investigated by Sajib et
al. [54]. A simple two-dimensional circular
phantom model with an internal anomaly was
used to find an analytic expression for the k-th
update of the anomaly conductivity as

δσ k = δσ

2 + ξ

[

2 + ξ

{

1 −
(

ξ

2 + ξ

)k−1
}]

,

(7.38)
where

ξ := δσ

(
1 +

( r0
R

)2)
.

FromEq. (7.38), the first update of the conduc-
tivity is

σ 1 = 1+δσ 1 = 1+ 2δσ

2 + δσ
(
1 + ( r0

R

)2) (7.39)

where r0 and R are the anomaly and disk radii,
respectively, shown in Fig. 7.5a and η∗ is the
anomaly conductivity perturbation.

Equation (7.38) shows some key character-
istics of the iterative harmonic Bz algorithm.
Specifically, if the conductivity distribution is
similar to the background conductivity, the first
update σ 1 almost recovers the correct absolute
value. The difference between σ 1 and the true
conductivity σ depends on the size of r0 and the
anomaly conductivity value. Figure 7.5b shows

the relative error E
(
σ 1
) := |σ−σ 1|

σ
dependence

on the conductivity value for a fixed anomaly
size, and Fig. 7.5c shows error dependence on
anomaly size for a fixed conductivity value. For
a fixed anomaly size, relative error increases as
the conductivity value increases. Therefore, the
first conductivity update may not produce an
anomaly conductivity very close to the actual
value. Therefore, to minimize the difference
between the true and reconstructed one, it is
necessary to iteratively update the conductivity.
Depending on the anomaly size and the actual
conductivity value, the number of iterations
required may of course vary (Fig. 7.5d), and this
process is vulnerable to additional errors caused
by measurement noise.

The non-iterative harmonic Bz [68] or abso-
lute conductivity [45] algorithm proceeds from a
variation of (7.21)

Jy
∂ ln σ

∂x
− Jx

∂ ln σ

∂y
= −∇2Bz/μ0 (7.40)

where Jx and Jy are the x and y components of
the current density vector field J.

The non-iterative harmonicBz [68] or absolute
conductivity [45] algorithm uses Eq. (7.40), to
solve the unknown ∇̃σ at each pixel position
using two independent current injections p =
1, 2 using
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Fig. 7.5 Demonstration of convergence characteristics of
harmonicBz algorithm [54]. (a) Two-dimensional circular
domain with radius R containing an anomaly with radius
r0. The conductivity of the background domain was set to
σ0 = 1 S/m, and anomaly conductivity was set to σa =
σ0 + δσ . Current was delivered through two opposing
pairs of point electrodes attached to the domain boundary

∂�. (b) Relative error E(σ 1) := |σ−σ 1|
σ

dependence
on anomaly conductivity for three anomaly sizes r0, (c)
dependence of relative error on anomaly size for three
conductivities (values in S/m), and (d) convergence char-
acteristics of harmonic Bz algorithm for anomalies with
r0 = 0.5 and conductivities of 10 and 20 S/m, respectively

∇̃ ln σ = − 1

μ0

(
J 1
y −J 1

x

J 2
y −J 2

x

)−1 (∇2Bm,1
z

∇2Bm,2
z

)

(7.41)
As in the harmonic Bz algorithm described

above, once ∇̃ ln σ is obtained from Eq. (7.41),
the Poisson equation can be solved with a known
boundary conductivity to recover the absolute
conductivity, in a similar manner to (7.33). Cur-
rent density image reconstruction methods de-
scribed in Chap. 6 can be used to find the x and y
components of current density required by (7.41).
For example, in [50] the projected current density
JP was used to reconstruct conductivity using this
method. The projected current density is the best
approximation of the true current density that can
be computed using single-component magnetic
flux density data [50, 57]. It was shown in [50]
that theL2 error in the conductivity reconstructed

using the non-iterative harmonic Bz method de-
pends on the proportion of the current density
flowing in the z-direction Jz. It has also been
demonstrated that the conductivity reconstructed
by the original harmonic Bz algorithm may be
severely affected by noise propagation from de-
fective regions [24, 54]. Such defective regions
include those with low conductivity or short T2
values such as may be found in skull or bone.
Therefore, a newer version of this reconstruction
algorithm was proposed by Sajib et al. [54] based
on regional projected current density data.

7.4.6 Dual-Loop Algorithm

In applications such as electroporation or tran-
scranial direct current stimulation, it is desirable
to find the electric field distribution caused by
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these therapeutic currents [26, 27, 31]. Although
current density information can be obtained from
magnetic flux density experiments, the conduc-
tivity distribution must also be known to deter-
mine the electric field via Ohm’s law. As men-
tioned in Sect. 7.2.2, it is possible to uniquely de-
termine the conductivity distribution if the bound-
ary voltage or conductivity is known a priori.
Therefore, to reconstruct the electric field for
a specific electrode configuration, two currents
must still be administered to reconstruct MREIT
images, with a known boundary conductivity as-
sumed, to see the internal structures via the cur-
rent density J (see Fig. 7.1 in Sect. 7.2.2 for fur-
ther detail).

Using single-current magnetic flux density
data, Lee et al. [36] proposed reconstruction
of the conductivity distribution σ from the
estimated projected current density data [50]
by using Kirchhoff’s voltage law (KVL) applied
to a mimetic discretized rectangular grid, �t =
⋃Nx,Ny

m=1,n=1 �t,mn (Fig. 7.6). They showed that by
applying the KVL over both primary �t,mn and
secondary loops�′

t,mn (Fig. 7.6), the conductivity
σ within common regions can be found as in [36],
using

JP
x (pij,1)

σ (xi , yj−1)
+ JP

y (pij,2)

σ (xi , yj )
− JP

x (pij,3)

σ (xi , yj )
− JP

y (pij,4)

σ (xi−1, yj )
= 0

(7.42)
and

JP
x (p′

ij,1)

σ (xi , yj )
+

JP
y (p′

ij,2)

σ (xi+1, yj )
−

JP
x (p′

ij,3)

σ (xi , yj+1)
−

JP
y (p′

ij,4)

σ (xi , yj )
= 0,

(7.43)

where pij,1, pij,2, pij,3, and pij,4 in Eq. (7.42)
are the center points located at coordinates
(xi−1, yj−1), (xi, yj−1), (xi, yj ), and (xi−1, yj ),
respectively, and JP

x,y are components of the pro-
jected current density JP . For �′

t,mn the loop ver-
tices are given by, p′

ij,1=
(
xi ,

yj−1+yj

2

)
, p′

ij,2=
(

xi+xi+1
2 ,yj

)
,

p′
ij,3=

(
xi ,

yj +yj+1
2

)
, and p′

ij,4=
(

xi−1+xi
2 ,yj

)
(Fig. 7.6).

Note that this dual-loop network is designed
in such a way that x, y-components of projected

current JP vectors at the points
(
p′
ij,1, pij,2

)
and

(
pij,3, p

′
ij,4

)
(Fig. 7.6) are used simultaneously to

determine σ values at that position [36].
Using linear interpolation of JP vectors at

the center of the nodes shown in Fig. 7.6, and
with the assumption that σ values are known
on the boundary, the dual-loop network defines
an overdetermined system containing a total of
2(Nx−2)(Ny−2) equations and (Nx−2)(Ny−2)
internal nodes for the slice �t , where Nx and Ny

are respectively the number of pixels along the x
and y direction in the slice. The regularized least-
squares solution of the dual-loop matrix system
can be found by solving

! = (ATA + κI
)−1 AT b (7.44)

whereA = (Ap,As)
T and b = (bp,bs)T , κ rep-

resents a regularization parameter, I is the iden-
tity matrix, and the superscript T denotes matrix
transpose. The solution vector! contains inverse
conductivity values, 1

σ
for each node. The ele-

ments of the stiff matrices Ap (primary) and As

(secondary) in Eq. (7.44) contain the numerator
terms from Eqs. (7.42) and (7.43), respectively.

Fig. 7.6 Schematic of the
dual-loop network. The
primary loop is shaded in
blue and the secondary
(primed) loop is shaded in
red
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The corresponding load vector bp or bs contains
known boundary voltage differences, estimated
from known boundary ! and JP values around
the loop perimeter.

Lee et al. [36] also demonstrated that prop-
erties of single-loop conductivity reconstructions
based on the KVLwere strongly influenced by lo-
cal changes in current flow, noise, and reconstruc-
tion pathway. Since both x and y components
of the current density vector are considered si-
multaneously at intersection points of dual-loops
(Fig. 7.6), the dual-loop method is less sensitive
to reconstruction path. However, the performance
of the method is still limited due to the due to
artifacts along equipotential lines, that is, perpen-
dicular to the current flow [36], and therefore may
not be appropriate for clinical applications.

7.5 Anisotropic Image
Reconstruction Algorithms
in MREIT

Biological tissues such as brain white matter and
skeletal muscle exhibit anisotropic properties
at low frequencies [12]. As noted in (7.1), the
anisotropic conductivity can be expressed as a
3 × 3 symmetric and positive definite tensor.
In the presence of tissue anisotropy, Ohm’s law
takes the form

Jx = −Cxx
∂u
∂x

− Cxy
∂u
∂y

− Cxz
∂u
∂z

Jy = −Cxy
∂u
∂x

− Cyy
∂u
∂y

− Cyz
∂u
∂z

Jz = −Cxz
∂u
∂x

− Cyz
∂u
∂y

− Czz
∂u
∂z

(7.45)

If the tissue properties are isotropic (see
Eq. (7.8)), the current density and electric field
vectors are parallel. However, this is not true if
tissue properties are anisotropic (see (7.45)). In
general, to reconstruct anisotropic tissue property
in MREIT, six unknown variables per voxel
must be found. In the following sections, we
describe a few MREIT algorithms which have
been developed for anisotropic tissue imaging.

7.5.1 Seo’s Algorithm

Seo et al. [66] proposed the first algorithm to
reconstruct anisotropic conductivity distribution
in MREIT. This iterative method requires at least
seven linearly independent current injections. The
proposed algorithm is based on the following
identity:

1
μ0

∇2Bz =
(
− ∂Cxx

∂y
+ ∂Cxy

∂x

)
ux +

(
− ∂Cxy

∂y
+ ∂Cyy

∂x

)
uy

+
(
− ∂Cxz

∂y
+ ∂Cyz

∂x

)
uz + Cxy

(
uxx − uyy

)

+ (Cxx + Cyy

)
uxy + Cyzuxz − Cxzuyz

.

(7.46)
The Cij , i, j ∈ x, y, z are the tensor entries of

(7.1). For p = 1, 2, · · ·NP independent current
patterns, the identity (7.46) can be written as a
NP × 7 matrix system:

⎛

⎜⎜
⎝

u1x u1y u1z u1xx − u1yy u1xy u1xz −u1yz
...

. . .
...

uNP
x uNP

y uNP
z uNP

xx − uNP
yy uNP

xy uNP
xz −uNP

yz

⎞

⎟⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

s1

s2

s3

s4

s5

s6

s7

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

1

μ0

⎛

⎜
⎜
⎝

∇2B1
z

...

∇2BNP
z

⎞

⎟
⎟
⎠ (7.47)

where

s =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

− ∂Cxx

∂y
+ ∂Cxy

∂x

− ∂Cxy

∂y
+ ∂Cyy

∂x

− ∂Cxz

∂y
+ ∂Cyz

∂x

Cxy

−Cxx + Cyy

Cyz

Cxz

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

Here, up is the voltage distribution corresponding
to the pth current injection, and u

p
x = ∂up

∂x
. The

off-diagonal elements of the conductivity tensor
can be obtained directly from Eq. (7.47) as

⎧
⎨

⎩

Cxy = s4
Cxz = s7
Cyz = s6

(7.48)
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In order to determine the first diagonal element
Cxx of the symmetric positive definite systemma-
trix in (7.1), one can solve the two-dimensional
Poisson equation:

{
∇̃2Cxx = ∂s2

∂x
− ∂s1

∂y
− ∂2s5

∂x2
+ ∂2s4

∂x∂y
+ ∂2s4

∂y2
in �t

Cxx = Cxx,0 on ∂�t

(7.49)
Similarly, the next diagonal element Cyy can

be obtained from the known boundary conductiv-
ity Cyy,0

{
∇̃2Cyy = ∂s2

∂x
− ∂s1

∂y
+ ∂2s5

∂y2
+ 2 ∂2s4

∂x∂y
in �t

Cyy = Cxx,0 + s5 on ∂�t

(7.50)
Finally, using the divergence free condition of

the current density (∇ · J = 0), the tensor entry
Czz component can be found using

⎛

⎜
⎝

u1z u1zz
...

...

uNP
z uNP

zz

⎞

⎟
⎠

(
∂Czz

∂z

Czz

)
=
⎛

⎜
⎝

ψ1

...

ψNP

⎞

⎟
⎠ (7.51)

where

ψp = ∂J
p
x

∂x
+ ∂J

p
y

∂y
− ∂

∂z

(
Cxzu

p
x + Cyzu

p
y

)
.

The x and y components of the current density
Jx and Jy for the pth projection can be recovered
using

{−J
p
x = Cxxu

p
x + Cxyu

p
y + Cxzu

p
z

−J
p
y = Cxyu

p
x + Cyyu

p
y + Cyzu

p
z

The value of Czz depends on the previously
computed Cxx , Cxy , Cxz, Cyy , and Cyz values and
can therefore be obtained from Eq. (7.51).

In order to initiate the proposed anisotropic
algorithm outlined in Eq. (7.47), Seo et al. sug-
gested finding the voltage distribution u using
an equivalent isotropic conductivity distribution,
reconstructed using the harmonic Bz algorithm.
This is a potential source of error in this algo-
rithm. Although this method is in theory capable
of reconstructing anisotropic conductivity distri-
butions, it is so sensitive to noise that no experi-

mental results have been reported. It nonetheless
provides a useful platform for the discussion of
subsequent algorithms.

7.5.2 Axial Anisotropic
Conductivity Reconstruction
Algorithm

Nam and Kwon [43] proposed an axial (trans-
verse) anisotropic conductivity reconstruction al-
gorithm, where the axial conductivity tensor is

defined asCa =
[
Cxx Cxy

Cxy Cyy

]
. Themethod is based

on projected current density [50] data recovered
from one component of the magnetic flux density.
It requires data from two independent current
injections.

From Ohm’s law, we have (Eq. (7.45)):

−Jx = Cxxux + Cxyuy ≈ −JP
x

−Jy = Cxyux + Cyyuy ≈ −JP
y

. (7.52)

For the p = 1, 2 independent current patterns,
Eq. (7.52) can be written in matrix form as

UĈ = J̃ (7.53)

where

U =

⎛

⎜
⎜
⎜⎜
⎜
⎝

u1x u1y 0

0 u1x u1y

u2x u2y 0

0 u2x u2y

⎞

⎟
⎟
⎟⎟
⎟
⎠
, Ĉ =

⎛

⎜
⎜
⎝

Cxx

Cxy

Cyy

⎞

⎟
⎟
⎠

and, J̃ = −

⎛

⎜⎜
⎜
⎜⎜
⎝

JP,1
x

J P,1
y

J P,2
x

J P,2
y

⎞

⎟⎟
⎟
⎟⎟
⎠

.

The regularized least-squares solution of
Eq. (7.53) is

Ĉ = (UTU + κI
)
UT J̃ (7.54)

where κ is a regularization parameter, UT is the
transpose matrix of U and I denotes the 3 × 3
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identity matrix. An inhomogeneous initial guess
Ĉ

0 = σ I, where σ is the equivalent isotropic
conductivity estimated from the harmonic Bz al-
gorithm [65], is used to initiate the reconstruction
algorithm. It has been validated using a numerical
phantom and a postmortem canine brain experi-
ment with 40mA current injection data [43].

7.5.3 Other Anisotropic Image
Reconstruction Algorithms

Several other algorithms, originally proposed to
find isotropic conductivity images, have been
extended to include anisotropic imaging. For
example, Değirmenci and Eyüboğlu [7] proposed
an equipotential projection algorithm for
reconstructing the axial anisotropic conductivity.
Unlike the equipotential reconstruction method
for isotropic conductivity reconstruction [28],
this “equipotential projection” algorithm requires
knowledge of both boundary conductivity and
voltage data, since the current density vector
field is not parallel to equipotential lines for
anisotropic conductivity distribution cases (see
Eq. (7.52)).

Sajib et al. [55] extended the dual-loopmethod
[36] (see Sect. 7.4.6) to obtain an apparent or-

thotropic tensor Co =
[
Cxx 0
0 Cyy

]
, using data

from two linearly independent projected current
densities JP,p, p ∈ 1, 2. Since the dual-loop
method is sensitive to noise propagating along
equipotential lines, an effective denoisingmethod
based on minimizing the total variation of the
current density data was used as a preprocessing
step. In [8,9], Değirmenci and Eyüboğlu also ex-
tended the sensitivity-based matrix method (see
Sect. 7.4) and harmonic Bz algorithms to find
the orthotropic conductivity tensor distributions.
For their anisotropic harmonic Bz algorithm, the
identity in (7.55) was discretized using a forward
difference approach:

μ0∇2Bz = −∂Cxx

∂y
ux+∂Cyy

∂x
uy−(Cxx−Cyy)uxy.

(7.55)

The conductivity at internal nodes was then
reconstructed using model-predicted u data and
the known boundary conductivities.

7.6 Diffusion Tensor Magnetic
Resonance Electrical
Impedance Tomography:
DT-MREIT

The performance of all anisotropic MREIT
conductivity reconstruction methods described
in Sect. 7.5 is limited by the number of
measurements and the fact that Jz cannot be
measured, as well as the presence ofmeasurement
noise (see Sect. 7.3). Diffusion tensor magnetic
resonance electrical impedance tomography
(DT-MREIT) is an alternative that uses prior
information collected by another MRI technique,
diffusion tensor imaging, to aid recovery of
the components of the anisotropic conductivity
tensor (7.1). By neglecting the intracellular
diffusion coefficient di in Eq. (7.3) and assuming
that conductivity and diffusion tensor share
the same eigenvectors, the conductivity tensor
reconstructed in DT-MREIT is expressed as [71]

C ≈ ηD (7.56)

where D is the water diffusion tensor measured
using diffusion-weighted imaging methods [1]
and given by the 3×3 symmetric positive definite
matrix:

D =
⎛

⎝
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞

⎠ (7.57)

The variable η := σe
de

determined at each
location is called the effective conductivity to dif-
fusivity ratio (ECDR) or simply the “scale factor.”
The extracellular conductivity may be affected
by several factors, including ionic composition,
medium viscosity, and extracellular volume frac-
tion. The goal of the DT-MREIT technique is
to reconstruct the position-dependent scale fac-
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Fig. 7.7 In vivo human brain DT-MREIT experimental
results [5]. The image at left displays the location of a
brain ROI overlaid with a T1-weighted MR magnitude
image. Reconstructed conductivity tensor images within
the ROI outlined are shown using (i) position-dependent
[30, 39] and (ii) global scaling factors [71]. The tensors

representing each voxel are shown as ellipsoids with semi-
axial radii of each ellipsoid proportional to conductivity
eigenvalues. Ellipsoidal axes are oriented along eigen-
vector directions, and colors indicate orientation of the
principal eigenvector

tor distribution from measured diffusion tensors
combined with magnetic flux density data.

To reconstruct scale factor distributions,
methods such as the direct-inversion (also known
as non-iterative DT-MREIT) algorithm and
diffusion-weighted J -substitution algorithm have
been developed.We briefly explain thesemethods
below (Fig. 7.7).

7.6.1 Non-iterative DT-MREIT
Algorithm

Ohm’s law expressed for the case of an
anisotropic medium, J = −C∇u = −ηD∇u,
gives rise to the following relation [30]:

∇×(D−1J)=−∇η

η
×(η∇u)=∇ log η×(D−1J).

(7.58)
For NP = 2 independent current injections,

the non-iterative DT-MREIT algorithm recon-
structs an image of the scale factor distribution
η by solving the following linear system of
equations:

((
D

−1J1
)
y

− (D−1J1
)
x(

D
−1J2

)
y

− (D−1J2
)
x

)( ∂ log η
∂x

∂ log η
∂y

)

=
⎛

⎝
∂(D−1J1)y

∂x
− ∂(D−1J1)x

∂y

∂(D−1J2)y
∂x

− ∂(D−1J2)x
∂y

⎞

⎠
(7.59)

In [30] full current density data Jp forp = 1, 2
are replaced by the projected current density JP,p

computed using the measured B
m,p
z . In [30] the

regularized least-squares solution is obtained via
regularization as

∇̃ ln η =
(
ATA + κ

|ATA| I
)
AT b (7.60)

where κ is a regularization constant and I is the
2×2 identity matrix. From (7.60), the stiff matrix
A and corresponding load vector b are defined as

A =
( (

D
−1JP,1

)
y

− (D−1JP,1
)
x(

D
−1JP,2

)
y

− (D−1JP,2
)
x

)

and,

b =
⎛

⎝
∂(D−1JP,1)y

∂x
− ∂(D−1JP,1)x

∂y

∂(D−1JP,2)y
∂x

− ∂(D−1JP,2)x
∂y

⎞

⎠

.
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Fig. 7.8 Example of reconstructed scale factor images
from an in vivo human brain experiment [5]. (a) T1-
weighted MR magnitude image overlaid with brain mask.

(b) (i) and (ii) Reconstructed scale factor from (7.60)
found by optimizing the GCV function in (7.63). The
GCV function was minimized using 3× 3 neighbourhood
information

Ma et al. [39] also proposed an algorithm to
reconstruct ∇̃ ln η using two independent current
data Ip, p ∈ 1, 2, via

∇̃ ln η = a1

(
D

−1J1
)
+a2

(
D

−1J2
)
+a3

(
D

−1J1 × D
−1J2

)

(7.61)
For independent current injections, the coeffi-

cients in (7.61) take the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1 = (∇×D
−1J2)·(D−1J1×D

−1J2)
|D−1J1×D−1J2|2

a2 = (∇×D
−1J1)·(D−1J2×D

−1J1)
|D−1J1×D−1J2|2

a3 = (∇×D
−1J2)·(D−1J2)

|D−1J1×D−1J2|2

(7.62)

Ma et al. [39] conducted an experiment using
a pineapple phantom to experimentally demon-
strate the method. Instead of reconstructing pro-
jected current density from B

m,p
z , p ∈ 1, 2, they

measured full current density vectors by rotating
the pineapple. The η were then reconstructed
from the estimated ∇̃ ln η and known boundary
scale factor values at the boundary by solving
Poisson’s equation (7.33) (modified to solve for
logged quantities).

The regularization constant κ in (7.60) at each
pixel position may be determined by minimizing
the generalized cross-validation (GCV) function
(Fig. 7.8) [58],

GCV (κ) =

2∑

i=1

(
b̂i

s2i +κ

)2

(
2∑

i=1

1
s2i +κ

)2 . (7.63)

Here, si, i ∈ 1, 2 are the two singular val-
ues (U"V T ) of the 2N × 2 stiff matrix Ã de-
fined at the neighbourhood N(x,y) = {(xi, yi) ∈
1, 2 · · ·N} around the pixel position (x, y) as

Ã =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

w1J1Dy(x1, y1) −w1J1Dx(x1, y1)

w1J2Dy(x1, y1) −w1J2Dx(x1, y1)

...
...

wNJ1Dy(xN, yN) −wNJ1Dx(xN, yN)

wNJ2Dy(xN, yN) −wNJ2Dx(xN, yN)

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

(7.64)

The pseudocurrent.1 Jp
D

= D
−1JP,p, p ∈ 1, 2

and the b̂ = UT b̃. The load vector b̃ can be found
as

1The term pseudocurrent was first introduced by Ma et al.
[39].
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b̃ =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

w1

(
∂J1

Dy (x1,y1)

∂x
− ∂J1

Dx (x1,y1)

∂y

)

w1

(
∂J2

Dy (x1,y1)

∂x
− ∂J2

Dx (x1,y1)

∂y

)

...

wN

(
∂J1

Dy (xN ,yN )

∂x
− ∂J1

Dx (xN ,yN )

∂y

)

wN

(
∂J2

Dy (xN ,yN )

∂x
− ∂J2

Dx (xN ,yN )

∂y

)

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

.

(7.65)
The weight wi is related to the MR magnitude

ρ and the noise level h associated with the mea-
sured Bm

z via

wi = e−h||ρ(xi ,yi )−ρ(x,y)||
N∑

J=1
e−h||ρ(xj ,yj )−ρ(x,y)||

. (7.66)

The denominator in Eq. (7.66) guarantees that
wi ≤ 1. The reconstruction process flow diagram
shown in Appendix 1 uses the method in Kwon et
al. [30].

7.6.2 Diffusion-Weighted
J -Substitution Algorithm

The conductivity tensor image reconstruction in
DT-MREIT can also be performed by adopting a
J -substitution approach [17]. For NP indepen-
dent current injections Ip for p = 1, · · · , NP ,
the diffusion-weighted J -substitution algorithm
iteratively updates the conductivity tensor as

C
k+1 = −

⎛

⎜⎜
⎜
⎝

NP∑

p=1
〈JP,p,D∇uk,p〉

NP∑

p=1
〈D∇uk,p,D∇uk,p〉

⎞

⎟⎟
⎟
⎠
D (7.67)

where uk,p is a solution of (7.15) with the tensor
estimate at the kth iteration C

k substituted for
σ and JP,p is the computed projected current
density using the measured B

m,p
z , p ∈ 1, 2 data.

Using this algorithm, Jeong et al. [17] determined
in vivo brain conductivity tensor distributions for
two canine subjects. A homogeneous initial guess
η0 = 0.7735S·s/mm3 was used [70] to initiate the

canine brain reconstruction. However, as noted in
[57], the choice of initial guess only affects the
number of iterations required to ensure conver-
gence. Recently, Lee et al. [38] demonstrated that
this method could reconstruct electrical conduc-
tivity tensor images using single-current admin-
istration data. The kth update of the scale factor
ηk+1 using “single-current-diffusion-weighted J -
substitution” can be found as [38]

ηk+1 (r) = −

(
∑

ri∈N(x,y)

wiJP (ri )

)

·
(

∑

ri∈N(x,y)

wi∇uk (ri )

)

(
∑

ri∈N(x,y)

wiD (ri )∇uk (ri )

)

·
(

∑

ri∈N(x,y)

wi∇uk (ri )

)

(7.68)
The weighting function wi is defined within
pixels in the neighbourhood of each point
ri , N(x,y) = {ri = (xi, yi) ∈ 1, 2, · · ·N} and
depends on the noise level in measured data
(see Eq. (7.66)). The two-current administration
version of the conductivity tensor reconstruction
process using the diffusion-weighted J -
substitution algorithm is described inAppendix 2.

7.7 Image Reconstruction
Toolbox

The Impedance Imaging Research Center
(IIRC), Korea (http://iirc.khu.ac.kr),
developed a software toolbox for isotropic and
equivalent isotropic conductivity reconstruction
called CoReHA (conductivity reconstructor
using harmonic algorithm) [15]. The methods
implemented in CoReHA are based on the
harmonic Bz algorithm [46, 65]. This software
includes three major components:

• Preprocessing: Experimentally obtained mag-
netic flux density data often contain noise due
to numerous factors. The toolbox provides pre-
processing steps that can be used to denoise the
B

m,p
z , p = 1, 2 data using techniques such as

ramp-preserving denoising [37].
• Model construction: As described in Sect. 7.3,

model construction is an essential step in con-
ductivity reconstruction. CoReHA uses MR
magnitude images to make models of the ob-
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Fig. 7.9 Example of reconstructed equivalent isotropic
conductivity in a biological tissue phantom. (a) MR
magnitude images show distribution of biological
tissue. The phantom was filled with an agar-gel
background material that had isotropic conductivity
σ0 = 1 S/m. A detailed description of the phantom
can be found in Chap. 4. (b) Reconstructed conduc-
tivity images using (i) J -substitution (see Sect. 7.4.2),

(ii) J T -substitution (see Sect. 7.4.4), (iii) harmonic Bz

(see Sect. 7.4.3), and (iv) non-iterative harmonic Bz (see
Sect. 7.4.5) algorithms. The MATLAB-based mrci-
toolbox functions [57], mrci_J_substitution.m,
mrci_JT_substitution.m,mrci_harmonic_Bz.
m, and mrci_noniterative_harmonic_Bz.m
were used to reconstruct images

ject geometry and electrodes. Users can use
a level-set-based semiautomated segmentation
tool to extract the boundary geometry and elec-
trode locations. This software also allows the
user to define source and sink electrodes and
current amplitudes depending on the experi-
mental conditions. An additional manual seg-
mentation tool is also provided in this software
so that the user can define a region of interest
(ROI) for local conductivity estimation. The
software then uses the experimental bound-
ary conditions to solve the two-dimensional
Laplace equation in (7.15) using the finite
element method.

• Conductivity image reconstruction: In
CoReHA, conductivity images are recon-
structed using the harmonic Bz algorithm.
To apply this algorithm, it is essential
to calculate the ∇2B

m,p
z , p ∈ 1, 2. To

calculate the three-dimensional Laplacian

∇2 :
(

∂2

∂x2
, ∂2

∂y2
, ∂2

∂z2

)
, the software requires

data from three consecutive slices. In many
experimental situations, only one slice of data
may be collected. Because of this, CoReHA
allows both two- and three-dimensional
Laplacian calculations to be made. CoReHA
users can also reconstruct the conductivity
within a chosen ROI using the local harmonic
Bz algorithm [67].

The major limitation of CoReHA software is
that users can only implement the harmonic Bz

algorithm and the software is not extensible. To
facilitate adoption of other algorithms, newer
software called the MR-based conductivity
imaging (MRCI) toolbox was developed [57]
by the IIRC. This MATLAB-based toolbox was
originally released with 11 functions. Among
these, three functions implement current density
image reconstructions. For isotropic imaging,
the software implements the projected-current-
density-based J -substitution, non-iterative
harmonic Bz algorithms, and transversal J -
substitution algorithms as well as the harmonic
Bz algorithm (Fig. 7.9). Two functions, the non-
iterative DT-MREIT method and the diffusion-
weighted J -substitution algorithm, are also
included in this software toolbox to enable
reconstruction of anisotropic conductivity
images. Note that instead of diffusion-weighted
MRI data, the user must provide reconstructed
diffusion tensor data, because there are many
algorithms available to compute D. For many
algorithms it is necessary to solve the two-
dimensional Poisson equation (7.33). A function
using the central finite-difference method
named “mrci_poisson_solver2D.m” was
also included in the toolbox to reconstruct
conductivity or scale factor images. However,
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this software does not include any forward solver
to solve the Poisson equation (7.15). For that
purpose the user may use any commercially
available finite element software integrated
with MATLAB such as COMSOL Multiphysics
(MLI, COMSOL Inc, Burlington, MA, USA)
or custom finite element implementations. Both
CoReHA and the MRCI toolbox are free for non
commercial use and are available at http://iirc.
khu.ac.kr.

function sigma =
mrci_harmonic_Bz(gradU, Bz,
reconstruction_parameters)

% gradU[M×N×2×E]: calculated two-
dimensional gradient of voltage
% where,
% ux = gradU(:,:,1,:), uy =
gradU(:,:,2,:).
% Bz[M×N×E]: measured Bz data.
% sigma[M×N]: reconstructed conductivity
image.

function C = mrci_dtmreit_noniterative(J,
D, reconstruction_parameters)

% J[M×N×3×E]: estimated current
density image.
% where,
% Jx = J(:,:,1,:), Jy = J(:,:,2,:), and

Jz = J(:,:,3,:).
% D[M×N×6]: water diffusion tensor

image.
% where,
% Dxx = D(:,:,1), Dxy = D(:,:,2),

Dxz = D(:,:,3), Dyy = D(:,:,4), Dyz =
D(:,:,5),and Dzz = D(:,:,6).
% C[M×N×6]: reconstructed conductivity

tensor image.

7.8 Conclusion

The importance and promise of low-frequency
electrical conductivity imaging is enormous.
Since low-frequency electrical conductivity is
affected by ion concentration mobility [56], it
could potentially provide a new window for
diagnostic techniques. Recently, Kim et al.
[25] have demonstrated that MREIT methods
could be useful for early detection of liver
diseases. This technique is also useful for
monitoring the electromagnetic field distribution
for electrical brain stimulation [60]. The MREIT
electrical conductivity reconstruction problem
is generally a complex mathematical procedure.
In this chapter, we therefore presented several
reconstruction algorithms, to illustrate the range
of approaches that can be adopted and to identify
those that have proven practical. The algorithms
described in this chapter have mostly already
been validated using phantom and in vivo
animal and human imaging data. We hope that
this chapter will provide an essential guide to
the researcher working in this field and those
developing novel algorithms.

Appendix 1

See Fig. 7.10.

http://iirc.khu.ac.kr
http://iirc.khu.ac.kr
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Fig. 7.10 Flow diagram for conductivity tensor recon-
struction process using the non-iterative DT-MREIT algo-
rithm [30]. The top row displays the measured diffusion
tensor and reconstructed projected current density induced
due to noncollinear current flow inside the imaging object
which are used as an input to the algorithm. The bottom-
left figure shows the reconstructed scale factor image
obtained after solving the equation (7.60) described in
Sect. 7.6.1. The reconstructed conductivity tensor com-

ponents obtained from the scale factor and measured
diffusion tensor are displayed in the middle column of
the bottom row. The conductivity tensor is displayed at
the bottom-right panel. Conductivity tensor of each voxel
is represented by tri-axial ellipsoids. The radii of each
ellipsoid are proportional to the eigenvalues, and their
axes are oriented along the directions of the eigenvectors.
The colors of the ellipsoid shown in the top-middle panel
indicate the orientation of the principle eigenvector.

Appendix 2

See Fig. 7.11.
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Fig. 7.11 Flow diagram for conductivity tensor recon-
struction process using iterative DT-MREIT algorithm de-
scribed in Jeong et al. [17]. The top row displays the mea-
sured diffusion tensor and reconstructed projected current
density induced due to noncollinear current flow inside the
imaging object. These images were used as an input to the
algorithm. A global scale factor of η0 = 0.4S · s/mm3

was used to obtain the initial C0 distribution. The Laplace
Eq. (7.4a) subject to the same boundary conditions was
also solved to calculate the∇u distribution. The JP ,D and
∇u information was used to update the scale factor and
the corresponding conductivity tensor (7.67). The process
was repeated until the solution converged. The bottom-
right image displays the reconstructed scale factor and
conductivity tensor at iteration number (n) 16.
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8Magnetic Resonance Electrical
Properties Tomography (MREPT)

Ulrich Katscher, Atul Singh Minhas, and Nitish Katoch

Abstract

This chapter explains the magnetic resonance
electrical impedance tomography (MREPT)
technique used to image electrical properties
at high frequencies. The chapter describes
the MREPT data acquisition methods,
current state-of-the-art image reconstruction
algorithms, and experiments with phantoms,
animals, and humans.

8.1 Introduction

Magnetic resonance electrical properties tomog-
raphy (MREPT) is a technique to measure the
electrical properties (EPs) of body tissues, such
as electrical conductivity and permittivity, at the
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Larmor frequency of MRI. For example, MREPT
performed at 3T and 9.4T provides EPs at 128 and
400 MHz, respectively.

8.2 MREPT Data Acquisition

Unlike MREIT or DT-MREIT, MREPT does not
require any external current to map EPs. Instead,
the reconstruction of EPs relies on the knowledge
of the complex RF transmit (TX) field B1 =
|B1|eiφ , given by its amplitude |B1| (correspond-
ing to local flip angle α) and phase φ. Although
these two quantities belong to the same physical
field, usually two different MR sequences are
applied to measure |B1| and φ, i.e., there is a
(large) family of sequences measuring |B1| (so-
called B1-mapping methods) and another (some-
what smaller) family of sequences measuring φ.
These two families of pulse sequences are sum-
marized in the Sects. 8.3 and 8.3.2.

The image reconstruction algorithms in EPT
involve a second derivative in all three spatial
directions (see Sect. 8.4.2), which is the reason
why a volumetric data set has to be acquired for
EPT. Thus, a single 2D image is not sufficient,
but instead a “true” 3D dataset or multiple 2D
datasets are required. Multiple 2D datasets are
more robust in case of patient motion, however,
might suffer from inconsistent sequence calibra-
tion between slices, hampering differentiation in

© Springer Nature Switzerland AG 2022
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through-plane direction. This problem is elimi-
nated by acquiring true 3D datasets.

8.3 Pulse Sequences and Data
Processing forB1 Magnitude
Measurement

Mapping |B1| has been investigated since the
early days of MR, and over the decades, a large
number of these B1-mapping methods has been
developed, independent of EPT. In general, the
higher the accuracy of the B1-mapping method,
the better it is for EPT. The accuracy of B1-
mapping methods has been investigated both in
general studies without EPT [33] and in EPT [6].
The most popular B1-mapping methods nowa-
days appear to be actual flip angle imaging (AFI)
[45], Bloch-Siegert shift method (BSS, [35]), and
dual refocusing echo acquisition mode method
(DREAM, [31]). These methods are briefly de-
scribed in the following subsections.

AFI
The AFI method [45] uses a steady-state
sequence which applies two identical RF
pulses followed by two different repeti-
tion times T R1 and T R2. After each RF
pulse, a gradient echo signal is acquired. If
T R1 and T R2 are sufficiently short and if
the transverse magnetization is completely
spoiled, the ratio u(r) = S2(r)/S1(r)) of
the two measured signal intensity distribu-
tions S1(r) and S2(r) corresponding to T R1

and T R2 depends on flip angle α(r) via
v = T R2/T R1:

u(r) = 1 + v cosα(r)
v + cosα(r)

(8.1)

and, thus, the spatial distribution of α(r)
can be calculated as

α(r) = arccos

(
vu(r) − 1

v − u(r)

)
. (8.2)

BSS
The Bloch-Siegert shift (BSS) is caused
by irradiating with an off-resonance RF
pulse following conventional spin excita-
tion. When applying the off-resonance RF
in the kilohertz range, spin nutation can be
neglected, and the primarily observed effect
is a spin precession frequency shift. This
shift is proportional to the square of the
magnitude of B1. Placing gradient imaging
after the off-resonance pulse yields spa-
tially resolved B1 maps [35]. The phase
difference of two acquisitions, with the RF
pulse applied at two frequencies symmet-
rically around the water resonance, is used
to eliminate undesired off-resonance effects
due to B0 inhomogeneities and chemical
shift. Care has to be taken that occurring
SAR (upped by the off-resonance pulses)
does not exceed physiologically and legally
recommended limits.

DREAM
The dual refocusing echo acquisition mode
(DREAM) technique applies a stimulated
echo acquisition mode (STEAM) prepa-
ration sequence followed by a tailored
single-shot low-angle gradient echo train.
In contrast to conventional STEAM imag-
ing, both, the stimulated echo and the free
induction decay (FID), are refocused quasi-
simultaneously as gradient-recalled echoes
[31]. In a post-processing step, the ac-
tual flip angle of the STEAM preparation
RF pulse is derived from the ratio of the
two measured signals. Due to this quasi-
simultaneous acquisition of the two images
(practically allB1-mapping methods rely in
one or the other way on the acquisition of
two separate images), DREAM seems to be
one of the fastest B1-mapping methods of
all B1-mapping methods discussed today.
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All these B1-mapping methods would allow to
measure absolute values of B1, which are typ-
ically in the range of 5–15µT. However, the
knowledge of absolute values of B1 is not re-
quired for the reconstruction of electrical proper-
ties (not even for reconstructing electrical prop-
erties quantitatively). It should be noted that it is
also irrelevant for EPT to optimize the flip angle
or make a careful consideration for calculation of
the magnetic field H (unit A/m) and the magnetic
flux density B (unit T).

8.3.1 Examples ofB1
MagnitudeMeasurements

TheB1 magnitude obtained using the AFImethod
is illustrated in Fig. 8.1 for an example phantom
and in vivomeasurements in the human brain. For
each of these experiments, AFI method has been
used with a voxel size of 4× 4× 8 mm3, sagittal
imaging plane, foldover in anterior/posterior di-
rection, a field of view (FoV) of 224 × 224 mm2

in-plane, and 160 mm through-plane. For in vivo
experiments, a slight in-plane rotation has been
applied such that backfolding from eye motion
is placed below the brain. AFI was performed
with flip angle = 60o, TR1 = 30 ms, TR2 =
160 ms, TE = 2.5 ms, and NEX = 1, yielding
a total acquisition time of 3:33 min. Afterward,
spatial resolution of the B1 magnitude maps was
increased linearly to 1× 1× 1 mm3 to match the
spatial resolution of the B1 phase maps shown in
the next Sect. 8.3.2.

8.3.2 Pulse Sequences and Data
Processing forB1 Phase
Measurement

Mapping of B1 magnitude, as discussed in the
previous section, has been undertaken for decades
without having EPT in mind. This is not the
case for mapping of B1 phase φ, which became
popular only during the last few years specifically
with respect to EPT. The main challenge in map-
ping φ is the suppression of phase contributions
unrelated to RF penetration [9], particularly phase

contributions arising from (a)B0 inhomogeneities
(also called off-resonance effects), (b) patient mo-
tion, and (c) eddy currents induced by gradient
switching. A direct measurement of φ as phase of
TX RF field is not possible with a standard MR
system. Instead, we have to rely on its superpo-
sition with its counterpart, the receive RF field
(RX), yielding the so-called transceive (TRX)
phase. From this point, φ should be interpreted
as the TRX phase. This section describes the
measurement of the B1 TRX phase, and its back-
ground theory is described in the subsequent sec-
tion. Three types of sequences are discussed for
measuring TRX phase: spin echo (SE)-based se-
quences, steady-state free precession (SSFP) se-
quences, and sequences with ultrashort/zero echo
time (UTE/ZTE).

We would like to emphasize it as a warning
that phase is a very sensitive quantity. While it
is a big advantage for EPT to be able to detect
even small changes of conductivity, unfortunately
it makes phase susceptible to all sorts of artifacts.
Even in phantoms, it is very difficult to obtain an
artifact-free conductivity mapwith EPT. This fea-
ture has to be kept inmind if accelerationmethods
like parallel imaging or compressed sensing are
applied, which in theory do not change phase
and should thus be compatible with EPT phase
measurements but in practice may introduce ad-
ditional artifacts. Note that even small artifacts
introduced by these techniques could spoil the
reconstruction results.

SE
The easiest way to exclude the unwanted
B0-related phase is to apply spin echo-
based sequences, where the refocusing RF
pulse eliminates this phase contribution au-
tomatically. Since standard SE sequences
tend to have excessive acquisition times,
particularly for the required volumetric
dataset, all kinds of accelerated (“turbo”)
sequence versions have been applied. Ef-
fects of eddy currents from gradient switch-
ing can be eliminated by repeating the mea-
surement with inverted gradient polariza-

(continued)
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Fig. 8.1 Measurements of phantom and in vivo (axial reformats). Magnitude of SSFP image (a, d), transceive phase
of SSFP image (b, e) taken as B1 phase, and B1 magnitude (c, f) measured with AFI

tion and averaging the two results (before
or after EPT reconstruction) [41]. Effects
of patient motion can be suppressed by,
e.g., using a double spin echo sequences
[4]. For enhanced SNR, multi-spin multi-
echo (MSME) can be applied [24], and
echoes can be combined by using a method
described in [24].

SSFP
Gradient echo sequences contain unwanted
B0-related phase contributions, unless the
gradients are balanced over time. Gradients
balanced in each of the spatial direction
leads to the so-called “steady-state free pre-
cession (bSSFP)” sequence. This sequence
is very SNR-efficient, robust with respect
to motion, shows negligible effect of eddy
currents, and thus seems to be the method

(continued)
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of choice for determination of φ in EPT
[39]. The bSSFP sequence is used in the
experimental results described in Fig. 8.1
for B1 phase mapping. However, a major
issue is the appearance of banding artifacts,
exhibiting signal voids and phase jumps
where B0 inhomogeneities are large for a
given TR. Therefore, we must check in
each experiment if bSSFP is applicable for
the given region of interest and for the
given MR system with its individual capa-
bility to minimize TR as well as B0 inho-
mogeneities. Methods have been reported
to eliminate bSSFP banding artifacts (see,
e.g., [6]); however, this comes at a cost of
(significantly) extended scan duration.

UTE/ZTE
The unwanted phase contribution from B0

inhomogeneities increases roughly linearly
with echo time. Thus, the shorter the echo
time, the smaller this unwanted phase con-
tribution. This is the reason why ultrashort
or zero echo time (UTE/ZTE) sequences
are able to provide a phase which can be
used for EPT [21, 37]. Since the SNR of
particular tissue types with short relaxation
times benefit greatly from ultrashort/zero
TE, this idea might become valuable for
investigating corresponding tissues like the
cartilage or lung [15].

8.3.3 Examples ofB1 Phase
Measurement

For illustration of B1 phase mapping with
both phantom and in vivo human experiments,
a bSSFP sequence has been applied with
the geometric setup coinciding with the B1

magnitude mapping sequence described in
Sect. 8.3.1 above. For example, the same
location of FOV, sagittal planes, and foldover
in anterior/posterior direction was used as that of

the AFI method in Sect. 8.3.1 above. However, in
vivo FOV was slightly rotated due to backfolding
from eye motion, which for B1 phase mapping
typically causes even bigger artifacts than for B1

magnitude mapping. Sequence parameters were
voxel size= 2× 2× 2mm3, flip angle = 30◦, TR
= 2.5 ms, TE = 1.2 ms, NEX = 12 for phantom
and voxel size= 1 × 1 × 1mm3, flip angle =
30◦, TR = 3.5 ms, TE = 1.7ms, and NEX = 2 for
in vivo, yielding a total acquisition time of 4:30
min for phantom and 4:10 min for in vivo. SSFP
sequences are usually accompanied by very sharp
and nasty acoustic noise; thus ear plugs for the
volunteer are absolutely necessary.

A commercial 3T scanner (Philips Ingenia,
Best, the Netherlands) has been applied for the
example scans using a two-channel RF body coil
in quadrature mode for RF TX and an eight-
channel RF head coil for RFRX (for the described
experiments, a single TX channel RF body coil
would do as well). The built-in option CLEAR
(“constant level of appearance”) was used to com-
bine the eight RF RX channels based on RX
sensitivities measured in a pre-scan, yielding a
TRX phase as if the body coil would have been
used both for TX and RX. If no such option is
available at the scanner applied, RF RX channels
can be combined in a post-processing step, e.g.,
as it is done for parallel imaging [34] with re-
duction factor R = 1, using separately measured
RX sensitivities. A detailed description of RF coil
combination for EPT is given by [22, 24]. B1

phase maps of example slices for both, phantom
and in vivo, are shown in Fig. 8.1b, e. The phase
jump of 180◦ occurring in the oil compartment
has been compensated offline to better visualize
spatial phase distribution.

8.4 MREPT Image
Reconstruction

8.4.1 Physical Background

This section outlines the physical and mathemat-
ical background of EPT. More details are given
in corresponding reviews [16, 27]. For beginners
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it is recommended to start EPT with its most
simplified version, which is

σ = ∇2φ

ωμ0
(8.3)

The essential message of this equation is that con-
ductivity σ is proportional to the curvature of the
B1-phase φ. The measurement of φ is described
in Sect. 8.3.2, and the calculation of curvature nu-
merically is described in a post-processing step in
Sect. 8.4.2 below. The curvature is obtained by the
second derivative in all three spatial dimensions,
given by∇2 in (8.3). The Larmor frequencyω and
the vacuum permeability μ0 (assumed to be con-
stant) act as scaling factors to convert the phase
curvature to quantitative conductivity values with
the SI unit (S/m). Thus, in this simplest form, no
iteration, matrix inversion, or other “advanced”
numerical method is required for EPT, and con-
ductivity can be calculated (semi-) locally in a
straightforward manner.

As next step, to calculate not only conductivity
but also permittivity, a complex version of (8.3) is
needed (sometimes called “truncated” Helmholtz
equation)"

κ = ωε − iσ = − ∇2B+
1

ωμ0B
+
1

(8.4)

The real part of (8.4) comprises permittivity; the
imaginary part comprises conductivity. Equation
(8.4) is accurate assuming that electrical proper-
ties κ are locally constant, i.e., ∇κ = 0 (the so-
called local homogeneity assumption, LHA). If
the LHA is not fulfilled, the equation gets more
complicated, yielding “full” Helmholtz equation:

κB1 = −∇2B1

ωμ0
− (∇κ/κ) × (∇ × B1)

ωμ0
(8.5)

Comparing Eqs. (8.4) and (8.5), we can notice
that the Eq. (8.5) requires not only the introduc-
tion of an additional term on the right hand side,
to handle the local inhomogeneity of κ , but also
the transition to a vector equation. Note that the
vector B1 = [

B1x, B1y, B1z
]
describes the RF

coil’s full magnetic field instead of the previously

used scalar B+
1 (the positive circularly polarized

component of B1; see below). Equation (8.5),
which involves only B1, can be derived by tak-
ing the curl of both sides of the Ampere’s law
with Maxwell’s correction (∇ × B1 = iμ0κE)
and then combining it with Faraday’s law from
Maxwell’s equations (∇ × E = −iωB1) assum-
ing time-harmonic fields. Gurler et al. [7] have
shown that for σ 2 � (ωε)2, Eq. (8.5) can be
transformed into the transceive phase-based EPT
equation as

(∇σ/σ) · ∇φtr − ∇2φtr + 2ωμ0σ = 0 (8.6)

As mentioned above, a standard MR system
allows only the measurement of the so-called
transceive (TRX) phase, which is the superpo-
sition of RF TX phase and RF RX phase. The
TX phase required for the Eq. (8.6) above can be
estimated by scaling the measured TRX phase φtr

by a factor 1/2 assuming that TX and RX phase
are equal (so-called “TRX Phase Assumption,”
TPA). Before doing so, care has to be taken that
the measured phase is correctly unwrapped. For-
tunately, phase unwrapping does not need to be
3D (a rather nontrivial task) but could be 1D (a
rather trivial task) performed separately for each
spatial direction—in connection with the numer-
ical differentiation, which can also be performed
in each spatial direction separately (see below).
Doing this scaling of φ = φtr/2 will provide us
the following equation:

σ = ∇2φ

ωμ0
− (∇σ/σ) · ∇φ

ωμ0
(8.7)

Equation (8.7) is in the form of a convection-
reaction equation and thus dubbed cr-EPT. For
a locally constant σ , ∇σ = 0, and therefore
Eq. (8.7) reduces to Eq. (8.3).

Complex Components of B1
MRmeasurements of B1,B

+
1 , or even φ are

challenging. The longitudinal component
B1z is generally not measurable, but for
the usually applied RF quadrature volume

(continued)



8 Magnetic Resonance Electrical Properties Tomography (MREPT) 191

coils, this is much smaller than B1x and
B1y and is thus frequently neglected. The
transverse components B1x and B1y could
be derived from the positive (B1x +iB1y)/2
and negative (B1x − iB1y)/2 circularly po-
larized components, related to the TX and
RX field of an RF coil, respectively. How-
ever, MRI allows only the magnitude of the
TX fieldB+

1 to bemeasured exactly, e.g., by
methods presented in the Sect. 8.3 above,
thus asking for further model assumptions
to solve Eq. (8.5) [7, 25] and bring it in the
form of Eq. (8.7). Note that |B+

1 | is referred
to as B1 in Sect. 8.2.

8.4.2 Numerics

Most EPT reconstruction techniques, particularly
the standard EPT reconstruction technique for
beginners, are based on numerical differentiation,
first and foremost by applying Eq. (8.3) for post-
processing of measured TRX phase maps. How-
ever, numerical differentiation has a strong noise-
amplifying effect, and that is why EPT recon-
structions typically consist of two steps, differen-
tiation and denoising. Thus, denoising filters for
EPT should not be considered as cosmetic oper-
ations to improve some awkward reconstruction
results but as an inherently required reconstruc-
tion step. Of course there are countless techniques
published for both numerical differentiation and
denoising. This chapter focusses on the descrip-
tion of techniques which are (a) easy to imple-
ment and (b) already applied in the framework of
EPT.

Numerical Differentiation
It is impossible to perform numerical dif-
ferentiation on a single voxel. Instead, to
obtain the derivative of a certain voxel (the
“target voxel”), a number of voxels around
the target voxel are required (the “kernel”).
The derivative is obtained by summing

up all voxels of the kernel using suitable
weighting coefficients Dn. The optimum
choice ofDn leads to an intricate discussion
but always starts with the simplest choice,
which is determined starting with

∂φ

∂r
≈ 
φ


r
= φn+1 − φn


r
(8.8)

as first derivative of φ with respect to r

(r representing an arbitrary spatial direc-
tion). This equation replaces the infinites-
imal differentiation operation ∂ by finite
differences 
, and these finite differences
correspond to differences of neighbor vox-
els n + 1 and n. The neighbor voxels have
a distance 
r , which is the same as the
voxel size in this direction. Continuing this
way to the second derivative as required by
Eq. (8.3) yields

∂2φ

∂r2
≈

φn+1−φn

r

− φn−φn−1

r


r
= φn+1 − 2φn + φn−1

(
r)2

(8.9)

i.e., the same technique as before applied
to two neighbor voxels of the first deriva-
tive. Voxel n is the target voxel, and the
kernel consists of three voxels n, n−1, and
n + 1. The weighting coefficients for these
three voxels are Dn = {+1,−2,+1} as
taken from the numerator of the right hand
side of (8.9), yielding the simplest choice
of weighting coefficients. It can be easily
checked for the example phase of φn = n2

that (8.9) yields the desired curvature of
(1 · 12 − 2 · 02 + 1 · 12)/12 = 2 (at n = 0)
or, as equivalent example, (1 · (−3)2 − 2 ·
(−2)2+1·(−1)2)/12 = 2 (at n = −2). The
transition from the 1D case given in (8.9) to
the 3D case as required by (8.3) is a trivial
step, since (8.9) can be applied just thrice,
once for each spatial direction x,y, and z,
and the results added.

For a noiseless situation, as usually de-
livered by electromagnetic field simulation

(continued)
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software, (8.9) yields rather perfect results
(at least with sufficiently small voxel size
and within areas of homogeneous electric
properties). The situation gets complicated
with the onset of noise in the measured φ

(or artificial noise added to the simulation
result), which is strongly amplified by (8.9).
Although denoising is typically performed
in a separate step (see below “Local De-
noising”), noise can additionally be treated
by increasing the numerical differentiation
kernel, with weights optimized for denois-
ing. The drawback of this concept is a loss
of spatial resolution, i.e., increasing ker-
nel size lowers noise and spatial resolution
of the resulting conductivity map, just as
would happen by choosing larger voxels
for measurement. Thus, a suitable trade-
off for the kernel size has to be found,
which depends on the SNR of the measured
image. The complexity of this discussion
is demonstrated in [20]. A typical trade-
off might be a kernel size of 11 voxels
per direction, with weighting coefficients
designed to fit a parabola to the voxels,
as is given by Savitzky and Golay [36]
and is thus usually called Savitzky-Golay
coefficients:

Dn={+15,+6,−1,−6,−9,−10,−9,−6,−1,+6,+15}/429.
(8.10)

Interestingly, these coefficients itself
have the shape of a parabola. Savitzky-
Golay coefficients for other kernel size are
described in [36]. The minimum Savitzky-
Golay kernel has a size of three coefficients
and coincides with (8.9).

Numerical Denoising
Numerical denoising is typically per-

formed after the differentiation step. At-
tempts of denoising before the differenti-
ation step [30] might be hampered by the

intrinsic feature of the B1 magnitude and
phase of being nonconstant, whereas elec-
trical properties tend to be approximately
constant over each tissue type, and con-
stant quantities are easier to denoise than
nonconstant quantities. Again, numerical
denoising is a very large field, and this sub-
section sketches only two filter types most
simple and applied in EPT community: the
Gaussian filter and the median filter. As
for numerical differentiation, denoising is
always based on an ensemble of voxels
around the target voxel, thus now leading
to the “filter kernel.” The geometric size
and shape of the filter kernel might co-
incide with the differentiation kernel, but
not necessarily. The Gaussian filter obtains
its weighting coefficients Fn from a Gauss
function

Fn = exp(−a(n − n0)
2) (8.11)

with its maximum located at the target
voxel n0. The width of the Gauss function is
determined by the parameter a, which can
be chosen freely and distinguishes strong
filtering (small a, i.e., broad exponential
function) from weak filtering (large a, i.e.,
narrow/peaked exponential function). For
large a, it does not make sense to use a very
large kernel size as most of the weighting
coefficients might be close to zero any-
way. For small a, the kernel size has a big
impact on the strength of the filter. The
Gaussian filter is a “classical” filter which
not only denoises but also blurs the im-
age and is again to some extent equivalent
with using larger voxels during acquisition.
The median filter is slightly less simple
than the Gaussian filter but typically yields
more “realistic” results than the Gaussian
filter, tending to preserve edges instead of
blurring them. In a first step, the median
filter creates a histogram of the kernel’s
values. In contrast to a standard histogram,

(continued)
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it is advantageous to choose the bins of
the histogram so small that all bins contain
only one or zero voxels. In a second step,
the filter identifies the histogram’s median
value as 50% of the voxels above and 50%
below this value. This median value is then
assigned to the corresponding target voxel
of the denoised image. The median filter
does not include free parameters in contrast
to the Gauss filter (having freely adjustable
parameter a).

Local Adaptation of Kernel Shape
As outlined above, Eqs. (8.3) and (8.4) are
based on the local homogeneity assump-
tion, LHA. This LHA is most often vio-
lated at boundaries separating tissues with
differing electrical properties, and due to
the finite size of differentiation and filter
kernel, it is also violated if these tissue
boundaries are somewhere inside the ker-
nel. This is the reason why both, differen-
tiation and filter kernel, should be shaped
such that they never cross tissue bound-
aries. In other words, for each target voxel,
the kernel should contain only voxels which
belong to the same tissue type as the target
voxel. This is relatively straightforward to
implement and supersedes the much more
sophisticated implementation of (8.3) and
(8.4) having the same goal: to overcome the
EPT boundary problem.

To shape the differentiation and fil-
ter kernel locally to the individual tis-
sue boundaries, the magnitude image can
be taken into account, which is acquired
together with the transceive phase (i.e.,
typically a SE-based or SSFP image, see
Sect. 8.3.2 above). The easiest way to take
this magnitude image into account is to
compare the signal of the target voxel with
the signal of the (potential) kernel voxel.
Thus, a maximum kernel size is defined,

and within this maximum kernel, all voxels
n are skipped which signals’ S(n) differ
from the target voxel’s signal S(n0) bymore
than a predefined threshold Rthresh [17]:

|S(n)/S(n0) − 1| > Rthresh (8.12)

A related strategy is to apply an edge
detection filter to the magnitude image and
to iteratively increase the kernel from the
target voxel up to the surrounding edges
[13].

It should be noted that boundary artifacts
have two origins, a physical and a numer-
ical [28]. The physical artifact is caused
by the missing term in (8.4) and can be
removed by using (8.5), which includes
the missing term. The numerical artifact is
caused by the discontinuity in the phase or
in its first derivative, which is not removed
using (8.4) but using (8.5). However, both
types of boundary artifacts are removed by
the described local shaping of differentia-
tion and filter kernel.

8.4.3 Advanced EPT Reconstruction
Techniques

MREPT clinical studies have recently started
appearing in some research works such as the
breast cancer study reported by Shin et al. [38]
and the brain tumor study reported by Tha et
al. [40]. Notably, the EPs reconstructed in these
studies are based on Eq. (8.3) using numerical
differentiation, which indicates that even the
simplest possible version of EPT is able to
yield meaningful clinical results. Nevertheless,
researchers are attempting to improve EPT
by developing more advanced reconstruction
techniques. A big step toward more advanced
EPT reconstruction techniques is to replace
Eqs. (8.3) and (8.4) by Eqs. (8.5) and (8.7) for
better handling of the EPT boundary problem. As
mentioned earlier, this strategy has been chosen
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for “gradient EPT” [25] or “convection-reaction
EPT” [7,8,10]. These techniques however are still
based on numerical differentiation. Methods have
also been developed to overcome the need for
numerical differentiation. Some of these methods
are summarized in this section. These methods
belong to the family of forward reconstructions
and machine learning reconstructions.

Forward Reconstruction
Standard EPT can be considered as a
“backward” solution: a measured B1 (or its
phase φ) is taken and post-processed to get
back to the underlying electrical proper-
ties. In contrast, “forward” solutions start
with an assumed distribution of electrical
properties (assumed patient tissue struc-
ture), then simulates the resulting B1, and
compares the simulated and measured B1.
Typically, this yields an iterative process,
which optimizes the assumed input electri-
cal properties until difference between the
simulated, and the measured B1 is mini-
mized (method pioneered by Balidemaj et
al. [3] as “contrast source inversion” EPT
(CSI-EPT). No differentiation or denois-
ing is required for such forward solutions,
which can be regarded as advantage of this
method. Instead, two reconstruction steps
are applied: the forward simulation of the
B1 field (e.g., including the question of how
far the knowledge of the applied RF coil
and its shield is required for this goal [2])
and the iteration of the input electrical prop-
erties (e.g., including the question of opti-
mal initial iteration [23]). However, since
there is requirement of iterative steps for
reconstruction, this can easily exceed the
complexity and the CPU time required for
reconstruction with “forward” EPT com-
pared to the “backward” EPT.

Machine Learning Reconstruction
First steps have been undertaken to test the
ability of EPT for machine learning, which

is another way to circumvent differentiation
and denoising required by Eqs. (8.3), (8.4),
(8.5), and (8.7). The main challenge in
this context is to provide sufficient ground
truth, i.e., a multitude of examples connect-
ing B1 field and electrical properties. In
a first attempt, ground truth was provided
by a dictionary containing small patches
of B1 fields together with underlying elec-
trical properties, taken from electromag-
netic simulations of homogeneous spheres
[11]. More advanced, neural networks have
been applied to learn the connection be-
tween B1 fields and electrical properties,
as provided by 2D brain simulations and
applied to measured B1 fields [29]. As is
always the case, a lengthy learning process
is required for the network, allowing for
very fast reconstruction of the individually
measured patient. Again, as is always the
case, generalization might be an issue, i.e.,
howmuch ameasuredB1 field is allowed to
differ from the training data and still hav-
ing a chance to be reconstructed reliably.
Generalization of course improves with the
variety of ground truth data, but one has to
keep in mind that simulating B1 fields from
assumed tissue structures is a rather time-
consuming procedure (see above “Forward
Reconstruction”).

8.4.4 Permittivity Reconstruction

Continuing to more advanced reconstruction
methods, it might become possible to obtain
not only satisfying conductivity results but
also satisfying permittivity results. Permittivity
is much less considered in EPT studies than
conductivity. This is not only due to the less
known meaning of this parameter (particularly
among clinicians) but also because it is
discriminated by underlying physics to be less
sensitive for B1 measurements and, thus, even
more prone to low SNR than conductivity. Studies
suggest that with standard EPT, satisfying in vivo



8 Magnetic Resonance Electrical Properties Tomography (MREPT) 195

permittivity results cannot be expected below
a main field strength of 7T [42]; however, this
might change for advanced versions of EPT.

8.5 MREPT Experiments

8.5.1 Phantom Experiment

It is very simple to build a phantom which fulfils
basic requirements to start with EPT. In short,
roughly half of a bottle is filled with saline in
a first step, and in a second step, oil is added
to the saline until the bottle is filled, yielding
a phantom with two compartments. The oil will
always swim on the saline; thus a sharp boundary
between the compartments is guaranteed (with-
out any unwanted vessel wall, foil, or the like
separating the two compartments). Furthermore,
a conductivity contrast is guaranteed, since oil
has typically a very low conductivity (close to
zero), and saline has a conductivity significantly
different from zero. All required substances are
harmless, cheap, and stable. Some more details
are given in the following sections.

The Bottle In principle, any bottle or vessel can
be used, as long as it does not contain anymetallic
material (i.e., preferably made from plastic or
glass), can be closed tightly (watch out for leaking
oil/saline), and fits into the receive RF (head) coil
used for MRI data acquisition. In fact, it should
be as large as possible to permit high SNR by
enabling a large voxel size.

The Saline For simple initial experiments, just
tap water can be used with standard table salt
(sodium chloride, NaCl) added. A conductivity
σ should be adjusted which is somewhat high
but yet reasonably within the physiologic range,
for instance σ ≈ 1 S/m. This value corresponds
to roughly 6.5 g NaCl per liter H2O (about a
“teaspoon of salt”). For more precise quantities
of NaCl and its relation with conductivity, see
Chap. 2 (MREIT Phantoms).

The Oil For simple initial experiments, some
standard oil for cooking from the supermarket is

sufficient (e.g., rape oil, sunflower oil, olive oil).
All these types of oil have the two necessary fea-
tures, i.e., swimming on water and conductivity
of approximately zero; thus the cheapest (and/or
scentless) oil available might be taken. Pouring
the oil onto the water might lead to small bubbles
at the oil/water interface, which typically dissolve
within a few hours without further interaction.

MRI of the Phantom
In principle, contrast agent might be used
for this phantom, but is notmandatory. Both
saline and oil might show suboptimal sig-
nal, but sufficient SNR could be achieved
by reasonable voxel size and number of
averages. The use of contrast agent might
be tricky since (a) it usually changes con-
ductivity, and (b) it might be soluble only in
water (saline) but not in oil, thus leading to
a nasty huge signal difference between the
compartments. A picture of such a phantom
is shown in Fig. 8.2, and correspondingMR
images are shown in Fig. 8.1a–c.

8.5.2 In Vivo Human Experiment

It is straightforward to perform initial in vivo EPT
experiments. First, a healthy subject willing to
volunteer is required, and approval of the corre-
sponding local Institutional Review Board (IRB)
(or Ethics Committee) has to be obtained. It is
strongly recommended to start with imaging the
brain of the volunteer, which is the part of the
body with the lowest motion, sufficiently high
structural contrast, and no problems with water/-
fat chemical shift. Using the sequence discussed
below, SNR in the brain is large enough to per-
form the EPT experiment within a few minutes,
which is a duration for which all healthy subjects
are easily able to keep still. MR images of such
an in vivo experiment are shown in Fig. 8.1d–f.

The literature electrical properties of brain tis-
sue [5] at 128 MHz (i.e., Larmor frequency at B0

= 3T) are given in Table 8.1 below. Conductivity
of grey and white matter are within the typical
range of around 0.5 S/m of all tissue types which
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Fig. 8.2 Photo of
phantom with two
compartments. Upper
compartment, rape oil;
lower compartment, saline.
The bottle has a diameter
of roughly 12 cm and a
height of roughly 15 cm

Table 8.1 Electrical
properties of brain tissue
types at 128 MHz
according to [5]

Grey matter White matter Cerebrospinal fluid

(GM) (WM) (CSF)

Conductivity (S/m) 0.59 0.34 2.14

Permittivity (/ε0) 73.5 52.5 84.0

are not fluids (high conductivity) or fat or bone
(both low conductivity). In fact, CSF has the
highest tissue conductivity reported, even higher
than all other body fluids typically in the range
1.0–1.5 S/m. Similarly, permittivity of CSF is
the highest one reported, close to the maximum
permittivity of water. Grey and white matter are
in an intermediate range, and fat and bone are at
the lower end of the tissue permittivity range [5].

The only issue connected with EPT brain
imaging is cardiac pulsation transferred to cere-
brospinal fluid (CSF) [18]. Without pulsation, the
conductivity of CSF is quite high compared to
surrounding gray/white matter (GM/WM), thus
yielding a clearly visible conductivity contrast as
outlined above. However, with pulsation, roughly
50% of scans show a corrupted CSF conductivity,
depending on the incidental distribution of k-
space acquisition in relation to cardiac cycle.
Cardiac triggering does not help in this situation,
since optimal point in time in cardiac cycle for

EPT acquisition is different for different parts
of the brain (due to traveling of pulsation wave
throughout brain over cardiac cycle). Corrupted
CSF conductivity is hardly a problem since
clinicians are usually not interested in CSF
conductivity. However, if a “nice” conductivity
map free of CSF pulsation artifacts is desired,
the easiest way is to repeat the measurement a
couple of times and check for conductivity map
with lowest amount of pulsation artifacts.

8.5.3 Examples of Phantom/In Vivo
Reconstructions

Phantom Reconstructions
Different reconstruction examples of phan-
tom conductivity are shown in Fig. 8.3. Us-

(continued)
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Fig. 8.3 Different reconstruction examples of phantom
conductivity. Numbers on the right hand side of the
conductivity color scale apply to (a) and numbers on
the left-hand side to (b)–(e). (a) Reconstruction using a
small differentiation kernel, conductivity appears noisy
and with strong ripples. (b) Reconstruction with a larger
kernel removes noise and ripples but yields a strong arti-

fact along the compartment boundary. (c) Reconstruction
taking compartment boundaries into account reduces the
boundary artifact. (d) Reconstruction including a median
filter removes most of the remaining noise and ripples in
part (c). (e) Reconstruction assuming a constantB1 magni-
tude, i.e., a purely phase-based reconstruction using (8.3).
(f) Relative permittivity, corresponding to reconstruction
of (d)

ing a small differentiation kernel of three
voxels, reconstructed conductivity appears
noisy and with strong ripples as is visible
in Fig. 8.3a. Please note that color scale
of Fig. 8.3a is twice the color scale of the
remaining subplots to better visualize the
effects. The larger kernel of 11 voxels from
Eq. (8.10) removes noise and ripples but
yields a strong artifact (over/undershoot)
along the compartment boundary, as is vis-
ible from Fig. 8.3b. Taking compartment
boundaries into account during differen-
tiation via Eq. (8.12) greatly reduces this
artifact (Fig. 8.3c). The median filter, again
using (8.12), removes most of the remain-
ing noise and ripples (Fig. 8.3d). IfB1 mag-
nitude is ignored by assuming a constant
B1 magnitude (i.e., using Eq. (8.3) instead
of (8.7)), saline compartment shows a ring-

shaped increase of conductivity (Fig. 8.3e).
This increase corresponds to areas with
strong gradients of the B1 magnitude, as
visible on Fig. 8.1c. Since in the oil com-
partment, B1 magnitude is rather flat any-
way, no significant difference is observed in
this compartment between Fig. 8.1d, e. Re-
constructed permittivity suffers from more
artefacts than conductivity, but the permit-
tivity difference between oil and saline is
clearly visible in Fig. 8.3f.

In Vivo Reconstructions in the Human Brain
In analogy to the phantom results shown in
Fig. 8.3, different reconstruction examples
of in vivo brain conductivity are shown in
Fig. 8.4. Using again the small differenti-
ation kernel of three voxels, reconstructed

(continued)
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Fig. 8.4 Different reconstruction examples of brain con-
ductivity. Numbers on the right hand side of the color
scale apply to (a)–(b) and numbers on the left-hand side
to (c)–(d). (a) Reconstruction using a small differentiation
kernel, conductivity appears noisy and with strong ripples.
(b) Reconstruction with a larger kernel reduces noise and

ripples. (c) Reconstruction taking compartment bound-
aries and a median filter into account essentially removes
noise and ripples. (d) Reconstruction assuming a constant
B1 magnitude, i.e., a purely phase-based reconstruction
using (8.3)

conductivity appears noisy and with strong
ripples (Fig. 8.4a). Please note that again
different color scales have been applied for
the different subplots to better visualize
the effects. The larger kernel of 11 voxels
reduces noise and ripples (Fig. 8.4b). Tak-
ing into account a median filter and com-
partment boundaries, via Eq. (8.12), greatly
reduces noise and ripples (Fig. 8.4c). If the
effect of B1 magnitude is ignored by as-
suming a constantB1 magnitude (i.e., using
(8.3) instead of (8.7)), a slight increase of
conductivity appears toward the rim of the
brain (visible by increased appearance of
orange and red areas). As for the phantom,
this increase corresponds to gradients of the
B1 magnitude, as visible on Fig. 8.1f. Small
banding artifacts are visible in the lower
left and right, arising from air cavities in
the ears, leading to nonphysical (“blue”)
negative conductivity in these areas.

Inference from Phantom and In Vivo Experi-
ments
The results allow the conclusion that al-
though conductivity is encoded in the B1

phase, it is usually not obvious by visual

inspection of the phase, particularly in vivo.
The specific setup of the phantom enables
our eyes to distinguish a flat phase in the oil
compartment from the curved phase in the
saline compartment. This is no longer the
case for in vivo: here, a global phase curva-
ture across the brain is visible, but different
local curvature according to anatomic de-
tails cannot be distinguished by our sight.

8.5.4 Preclinical Experiments

Various preclinical EPT studies have been per-
formed in the recent years, predominantly on
rodent models. According to the human stud-
ies conducted, the preclinical studies investigated
mainly tumors models [12,24,26,32,43] but also
stroke models [1, 14, 19]. An exemplary result
for a rat tumor model [24] is shown in Fig. 8.5,
reporting conductivity values increasing linearly
with tumor growth, while diffusion values do not
change with tumor growth. This study has been
performed at 9.4T, representative for the trend to-
ward high field strength for preclinical studies (up
to 21.1T applied in [1]), but standard clinical field
strength does not prohibit preclinical EPT studies
(e.g., [14, 32]). While brain mapping appears to
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Fig. 8.5 Example of preclinical experiment [24]. F98 rat
brain tumor images for three slices S1, S2, S3 showing
the widest spread of the tumor growth in the brain of this
rat. (a) T2-weighted images, (b) high-frequency conduc-

tivity images at 400 MHz, (c) conductivity images in (c)
overlayed over the images in (a), and (d) mean diffusivity
(MD) images



200 U. Katscher et al.

Fig. 8.6 Example of EPT workflow in case that mul-
tiple echoes have been acquired with multiple RF RX
coils. Starting from the upper left, the pre-processing

steps required to combine themultichannel andmulti-echo
data acquired with multi-echo spin/gradient echo pulse
sequences are depicted, eventually leading to the final
reconstruction result (lower left)

be themost promising application of EPT, cardiac
EPT is obviously one of the most challenging ap-
plications, and only a single cardiac animal study
has been published yet (reporting a decreased
conductivity in the infarcted area [44]).

Appendix

When single echo pulse sequences are used in
phase-based EPT, the B1 phase calculation is
straightforward. However, whenmulti-echo pulse
sequences are used with multichannel receive RF
coils, the phase calculation becomes complicated.
While various methods are developed for combi-

nation of channels and echoes to create one phase
image per slice, they all have some generic steps.
These steps are demonstrated using a cylindrical
shaped phantom with two cylindrical anomalies
in Fig. 8.6. Note that the background voxels of
conductivity images are generally removed by
segmenting the masks from magnitude images.
This is illustrated in Fig. 8.6 and the effect of
using mask is evident in Fig. 8.5b and (c) images.
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Polyacrylamide (PAs), 86, 89, 90
Polylactic acid (PLA), 90
Preamplifier, 51
Precession, free, 56, 187, 188
Pulse

90°, 61, 62, 71, 75, 113, 117, 119
refocusing, 180°, 61, 62, 119

Pulse sequence, viii, 62, 64, 69, 71–72, 77, 78, 80,
84, 98–101, 112, 113, 116–123, 148, 159, 168,
185–189, 200

Q
Quality assurance (QA), 84
Quantitative susceptibility mapping (QSM), 15, 76, 123

R
Region of interest (ROI), 78–80, 116, 125, 143, 144, 148,

174, 177, 189
Relaxation, 4–6, 10, 55, 59–61, 84, 86, 87, 121, 189

transverse, spin-spin, 60
Resonance condition, 57, 58
Resting (Nernst) voltage, 9
Right-hand rule, 26, 38, 52, 126, 190, 191, 197, 198

S
Schrödinger’s equation, 18
SENSitivity Encoding (SENSE), 73, 74
Sequence, RARE, 129, 130
Shape function, 20–22, 24, 25, 29, 30, 39
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Signal-to noise ratio (SNR), viii, 50, 51, 61, 77–81, 83,
84, 102, 112, 116, 119, 122–124, 127, 143, 144,
164, 167, 168, 188, 189, 192, 194, 195

SimNIBS, 32
Simpleware ScanIP, 32, 35, 36
Skin preparation, 95, 98
Slew rate, 49, 50
SNR calculation, 77–81
SolidWorks, 91
Specific absorption rate (SAR), 112, 186
Spectrometer, 50, 99, 101, 102, 113, 129

TTL triggers, 102, 112–113
Spectrum analyzer, 68
Spin, 14, 51–67, 69–72, 97, 98, 112, 113, 117–120, 122,

123, 186–188, 200
Spin density, 55–56
Spin echo (SE), 61, 62, 69, 71, 72, 97, 98, 113, 117–120,

122, 123, 187, 188
SPM, 32, 33, 128
Steady state free precession (SSFP), 187–189, 193
Stimulated echo acquisition mode (STEAM), 186
Stray field

correction, 148–149
electrode, 137, 139, 142, 147, 149, 165, 168
lead wire, 137, 139, 141

Susceptance, 5
Susceptibility weighted imaging (SWI), 75

T
Time

echo (TE), 62, 81, 112, 118, 119, 187, 189
repetition (TR), 69, 72, 79–81, 100, 101, 112, 113,

117, 119, 121, 127, 128, 189
Transcranial electrical stimulation (tES), 19, 32, 96, 98,

101, 106, 116, 125, 126, 128, 137, 147
Transform

fast Fourier (FFT), 37, 72, 163
Fourier, 37, 67, 68, 72, 77, 114, 115, 122, 151,

163
inverse Fourier, 72, 77, 122, 151

Tucker Davis Technologies, 101
TX-151, 84, 86, 88–90, 92, 94, 103

U
Ulta-short echo time (UTE), 122, 187, 189

V
Voltmeter, 92, 99, 100

Z
Zero echo time (ZTE), 187, 189
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